

14, March 2023

To my parents, Balram Singh (Ex Army Personnel), Angoori

Patel, Wife Raunak Patel, daughter Toshi, and friends Ajeet Singh,

Anup Singh, Suresh, others without whose support and encouragement,

this would not have been possible.

Acknowledgements

Completing a PhD is a long, challenging journey, and I would like to take

this opportunity to express my deep gratitude to the following individuals

and organizations who have supported me along the way:

First and foremost, I would like to extend my sincere thanks to my advi-

sors, Professor BM Mehtre & Rajeev Wankar, for their unwavering support,

guidance, and encouragement. Their expertise and mentorship have been

invaluable in shaping my research and helping me overcome the obstacles of

the writing process. I appreciate the time and effort they have devoted to

advising me over the past years, and consistent encouragement and positive

reinforcement have made it a very rewarding experience. I would also like

to thank them for their encouragement and support, which helped me build

confidence when I was stuck in my research.

I am also grateful to the Institute for Development and Research in Bank-

ing Technology (IDRBT) & School of Computer and Information Sciences

(SCIS), University of Hyderabad and its faculty that guided me during this

journey. I also sincerely thank the Centre for Cyber Security & Data Pri-

vacy lab at IDRBT for providing me with the resources and opportunities

to conduct my research and for their support throughout my academic jour-

ney.

We are deeply grateful to the IDRBT for their unwavering support and

generous contribution to our work. Your financial support has been instru-

mental in helping us achieve our goals and advance our mission. Thank you

for believing in us and for your commitment to making a positive impact in

our community.

I am privileged to thank Prof. Atul Negi, Dean, School of Computer and

Information Sciences (SCIS), UoH, Hyderabad, for his academic support

throughout my research. Thank you so much! It is an honour for me to

thank Prof. D. Janakiram, Director, IDRBT, for his support throughout

my research. I would like to thank my doctoral review committee members,

Dr M. V. N. K. Prasad and Dr Rukma Rekha N., for providing invaluable

inputs and suggestions. Also, I am grateful to the faculty of IDRBT and

the University of Hyderabad for their support and assistance.

I am thankful to my colleagues In the IDRBT research institute: Dr Anoop

Maurya, Dr Pradeep Kumar Dadabada, Dr Gopal Narayan Rai, Dr Deep-

narayan Tiwari, Dr Ghanshyam Bopche, Dr B. Sriramulu, V. Dinesh, Dr

Dorsala Mallikarjun Reddy, Malvika Singh, M. Sabhapathy, and IDRBT

family. In the SCIS (UoH): Dr Ayang, Dr Anil Kumar, Shailendra Sahu,

Ishan Suryavanshi, and Rohit Bond, among others, for their camaraderie,

encouragement, and insightful feedback on my work. Their support and

friendship have provided comfort and motivation during the past five years.

Their friendship filled the gaps of a lonely period and made me feel at home

in Hyderabad.

I would like to express my gratitude to my parents, especially my wife, for

their love, support, and unwavering encouragement throughout my academic

journey. Their belief in me has been a constant source of inspiration, moti-

vation, patience, and understanding throughout my educational endeavours

and for allowing me to make my own decisions since childhood. I would not

be where I am without their sacrifice and support.

Finally, I would like to acknowledge the support and encouragement of all

my friends and acquaintances who have helped me in various ways through-

out the past five years. This work would not have been possible without the

contributions of these individuals and organizations. I am deeply grateful

to each and every one of you. Thank you from the bottom of my heart.

Finally, last but not least; also to everyone in the IDRBT and UoH, it was

great sharing premises with all of you during the last five years.

Thanks for all your encouragement!

Narottam Das Patel

Abstract

Intrusion is any unauthorized access or malicious activity on a computer

system or network. This can include hacking attempts, malware infections,

unauthorized access to sensitive data, and other cyber attacks. The chal-

lenges in intrusion detection and prevention include detecting novel attacks,

false positives and negatives, scalability and performance, integration with

existing systems, etc. Intrusion Detection System (IDS) is a complex and

constantly evolving field, and it is important to stay up-to-date with the lat-

est developments and best practices to protect against intrusions effectively.

In this thesis, our first contribution is to propose a novel and robust snort-

based Secure Edge Router for Smart Homes (SERfSH) IDS to identify the

signature-based attack. SERfSH automatically generates Snort rules by

combining the extracted string, location, and header information. How-

ever, signature-based IDSs are limited in their ability to detect new and

unknown attacks and generate a large number of false positives as well as

false negatives. To overcome these limitations, we proposed anomaly-based

detection with the help of Machine Learning (ML) algorithms and tested it

on state-of-the-art IDS datasets.

The intrusion detection datasets consist of normal data and minimal attack

data. This data imbalance causes prediction performance degradation due

to factors such as prediction bias of small data presence of outliers. To

address this issue, we have applied four oversampling methods on state-

of-the-art IDS datasets. To further ensure the real-time applicability of

these oversampling methods with classifiers, we also generate a Real-Time

Testbed (RTT) for the resampled dataset. The performance of machine

learning-based IDS largely depends upon the feature set used for modelling.

Generally, using more features increases the accuracy of attack detection

and increases detection time.

iv

An Artificial Neural Network (ANN) based IDS is proposed, which uses

a multi-objective genetic algorithm to satisfy constraints. The proposed

method’s performance is tested using the standards IDS datasets. Sub-

sequently, we propose an efficient and feasible algorithmic framework for

analyzing the network traffic data. The approach mainly consists of two

phases, i.e., "Scatter Matrices and Eigenvalue Computation based feature

Selection" and "Classification procedure for the reduced dimension data".

The phase two algorithm can detect the complex nature of the non-linear re-

lationships between dependents and independent features. This procedure

has the advantage of experimenting with different hyperparameters, such

as activation functions, optimizers, weights and biases, number of epochs,

learning rate, etc. It also provides the functionality of making the architec-

ture compatible as deep as needed in hidden network layers.

Finally, We generate a new Offensive Defensive Intrusion Detection Sys-

tem (OD-IDS2022) Dataset, which fulfils additional desirable characteris-

tics lacking in the existing standard IDS datasets. We applied several data

cleaning, pre-processing techniques, and feature selection methods in the

newly generated dataset. Then, to classify the attack types, we applied four

state-of-the-art ML classification algorithms, including Random Forest, De-

cision Tree, Naive Bayes, and Support Vector Machine (SVM).

Experimental evaluation for the above three approaches has been performed

on various test case scenarios for the chosen state-of-the-art IDS datasets.

The experimental simulation is carried out with a variety of different possi-

ble hyper-parameter of the algorithms and statistical performance metrics.

The test results are observed to outperform the existing intrusion detection

methods for detecting specific attack categories.

v

vi

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Intrusion Detection System (IDS) . 4

1.2.1 IDS Definitions . 5

1.2.2 Classification of IDS . 7

1.2.3 Challenges of IDS . 8

1.3 Aim and Research Objectives (ROs) . 12

1.3.1 RO1: To Propose a Secure and Resilience Edge Router for Smart

Homes . 13

1.3.2 RO2: To Develop a Robust and Effective System for Detecting

and Mitigating Attacks using Machine Learning Techniques . . . 14

1.3.3 RO3: To Generate a Comprehensive Intrusion Detection System

Dataset . 15

1.4 Overview of Contributions . 16

1.4.1 Contribution 1: SERfSH - A Router for a Smart Home 16

1.4.2 Contribution 2: Intrusion Detection Mechanism using Oversam-

pling Technique . 17

1.4.3 Contribution 3: Artificial Neural Network-based IDS using Multi-

objective Genetic Algorithm . 18

1.4.4 Contribution 4: Dimensionality Reduction based Feature Selec-

tion and Attack Classification Approach 18

vii

CONTENTS

1.4.5 Contribution 5: A New Offensive Defensive IDS Dataset: OD-

IDS2022 . 19

1.5 Organization of the Thesis . 20

2 Literature Review & Research Gaps 22

2.1 Research Questions . 22

2.2 Intrusion Detection System Techniques 23

2.2.1 Signature-based IDS . 25

2.2.2 Anomaly-based IDS . 27

2.3 State-of-the-art IDS Datasets . 30

2.3.1 Standard Datasets used in Research Work 30

2.4 Data Preprocessing Techniques . 35

2.4.1 Data Resampling techniques . 36

2.4.2 Dimension Reduction based Feature Selection 38

2.5 Machine Learning Paradigm and Computational Aspects 42

2.5.1 Classification and Regression Problems 42

2.6 Selection of Hyperparameters . 44

2.7 Statistical Preliminaries . 45

2.8 Identified Research Gaps . 48

3 SERfSH - A Router for a Smart Home 54

3.1 Introduction . 54

3.2 Proposed Approach for Detection & Mitigation of Attacks 55

3.2.1 SERfSH Experimental Setup . 55

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm 57

3.3.1 Network Traffic Collection Phase 58

3.3.2 Flow Configuration Steps . 60

3.3.3 Sequence Pattern Construction Steps 60

3.3.4 Content Extraction Step . 61

3.3.5 Additional Information Analysis Steps 64

3.4 Experiment and Analysis of Results . 66

3.4.1 Level-Wise IoT-Attacks Taxonomy 66

3.4.2 Obtained Results . 82

3.5 Conclusions . 83

viii

CONTENTS

4 Intrusion Detection Mechanism using Oversampling Technique 85

4.1 Introduction . 85

4.2 Experimental Datasets and Pre-Processing 88

4.2.1 CICIDS2018 Dataset . 89

4.2.2 Real-Time Testbed (RTT) Resampled Dataset 90

4.3 Feature Selection . 93

4.4 Oversampling Models for Imbalanced Dataset 94

4.4.1 SMOTE . 94

4.4.2 Borderline-SMOTE . 95

4.4.3 ADASYN . 95

4.4.4 CTGAN . 96

4.5 Training Data . 98

4.6 Classification Models . 99

4.6.1 Linear Discriminant Analysis (LDA) 99

4.6.2 Distributed Random Forest (DRF) 100

4.6.3 LightGBM . 101

4.7 Experiment and Analysis of Results . 103

4.7.1 Experimental Setup . 103

4.7.2 Statistical Preliminaries . 103

4.7.3 Experimental Results of Oversampling & Classification Model . . 103

4.8 Conclusions . 109

5 Artificial Neural Network based IDS using Multi-objective Genetic
Algorithm 111

5.1 Introduction . 111

5.2 Datasets . 113

5.2.1 CUP KDD’99 Dataset . 114

5.2.2 NSL-KDD Dataset . 114

5.2.3 CIC-IDS2017 Dataset . 115

5.3 Proposed Method . 115

5.3.1 Data Pre-processing . 116

5.3.2 Multi-objective Genetic Algorithm 118

5.3.3 Artificial Neural Network . 121

ix

CONTENTS

5.4 Experiment Analysis and Obtained Results 122

5.4.1 Experimental Setup . 122

5.4.2 Performance Evaluation . 122

5.5 Conclusions . 125

6 Dimensionality Reduction based Feature Selection and Attack Classi-
fication Approach 126

6.1 Introduction . 126

6.2 Network Intrusion Detection System . 128

6.2.1 Signature-based Detection . 129

6.2.2 Anomaly-based Detection . 129

6.3 Proposed Approach . 129

6.3.1 Framework Blueprint . 130

6.3.2 Datasets Detail . 132

6.3.3 Data Pre-processing Techniques 133

6.3.4 Detailed Algorithmic Procedures 134

6.3.5 Novelty of Proposed Procedures 135

6.4 Experimental Evaluation . 138

6.4.1 Modeling . 138

6.4.2 Experimental Setup . 139

6.4.3 Simulation Testbed (Package and Libraries) 140

6.4.4 Obtained Results . 143

6.4.5 Benchmarking on Various Performance Measures 152

6.5 Conclusions . 152

7 A New Offensive Defensive IDS Dataset: OD-IDS2022 154

7.1 Introduction . 154

7.2 Existing Datasets and Comparisons . 156

7.2.1 Existing IDS Datasets Limitations 156

7.3 OD-IDS2022 Dataset Design . 157

7.3.1 Proposed Approach for Dataset Creation 158

7.3.2 Dataset Description . 159

7.3.3 Dataset Generation . 159

7.3.4 Dataset Features . 160

x

CONTENTS

7.3.5 Getting the Dataset . 161

7.4 Dataset Pre-processing . 164

7.4.1 Preparation of Training and Validation Data 165

7.5 Machine Learning-based Classification Analysis 166

7.5.1 Random Forest (RF) . 166

7.5.2 Decision Tree (DT) . 166

7.5.3 Naive Bayes (NB) . 167

7.5.4 Support Vector Machine (SVM) 168

7.6 Experiment and Analysis of Results . 169

7.6.1 Experimental Setup . 178

7.6.2 Experimental Results of Machine Learning Model 178

7.7 Conclusions . 179

8 Conclusions and Directions for Future Research 180

8.1 Conclusive Summary . 180

8.2 Future Scope . 184

References 185

List of Publications 206

Plagiarism Report 208

xi

List of Figures

1.1 IDS and Several components . 5

1.2 Classification of IDSs . 8

1.3 Taxonomy of IDS challenges and Contributions (appear in Red Color) . 9

1.4 Aim, Research Objectives and Contributions 17

1.5 Thesis Organization . 21

2.1 IDS Techniques . 24

2.2 Survey of Literature on Signature-based Approaches 25

2.3 Survey of Literature on Anomaly-based Approaches 29

2.4 Stages of the Machine Learning Process 29

2.5 Data Preprocessing Techniques . 35

2.6 Feature Selection for Intrusion Detection 39

2.7 Machine Learning Techniques . 43

3.1 Inside & outside the Network Attacks Testbed Topology 56

3.2 The Flow of Automatically Create and Verify SCR 59

3.3 Level-Wise IoT-Attacks Taxonomy . 66

3.4 Scanning by NMAP & Detecting the "TCP_Scan" In this Case, A Tar-

gets B is Represented by "A -> B" . 67

3.5 Scan Demonstrating the WAP-ESSID (Identifier) & the Physical/WiFi_Addresses

BSSID of Connected Sensor-based Devices (The rectangle box shows the

captured BSSID and ESSID) . 68

3.6 Malicious Actor Supplicant Spoofed De-authentication Packets to Victim

Machine (WAP) . 69

xii

LIST OF FIGURES

3.7 Fake-authentication Attack to be Successfully Launched using aireplay-

ng Tool . 70

3.8 Observation of Spoofed De-authentication Packets by using Packet Sniffer

(The rectangle box shows the captured network packets) 71

3.9 ARP_Spoofing Attack on Victim Gadget 73

3.10 IP_Address & Physical_Address Before Attack 75

3.11 IP_Address & Physical_Address After Attack 75

3.12 MAC_Spoofing to a Arbitrary Physical_Address using "macchanger" . 77

3.13 DNS_Spoofing using Ettercap Tool . 78

3.14 Reverse-engineering Router Firmware by using "Firmadyne" Software . 82

4.1 Framework to Improve the Imbalance Data Problem of Intrusion Detec-

tion System . 87

4.2 Testbed Network Diagram to Generate RTT Resampled Dataset 90

4.3 Oversampling Models . 95

4.4 CTGAN Configuration [1] . 97

4.5 CART Algorithm Model . 101

4.6 LightGBM model . 103

4.7 ROC Plots TPR against FPR . 104

4.8 Accuracy Comparison of Oversampling Methods on CICIDS2018 Dataset 106

4.9 Accuracy Comparison of Oversampling Methods on RTT Resampled

Dataset . 107

5.1 The Proposed ANN-Based IDS by using Multi-objective Genetic Algorithm117

6.1 SPAN-type NIDS . 128

6.2 TAP type NIDS . 128

6.3 In-Line NIDS . 129

6.4 Proposed IDS Framework . 131

6.5 Training ROC Curve Plots and Area . 141

6.6 Validation ROC Curve Plots and Area 142

6.7 Eigenvalues, Bar Chart, and Features For NSL-KDD Dataset 144

6.8 Eigenvalues, Bar Chart, and Features For CIC-IDS2017 Dataset 144

6.9 Eigenvalues, Bar Chart, and Features For CIC-IDS2018 Dataset 144

xiii

LIST OF FIGURES

6.10 Eigenvalues, Bar Chart, and Features For IoTID20 Dataset 145

6.11 Eigenvalues, Bar Chart, and Features For UNSW-NB15 Dataset 145

7.1 Testbed Architecture for Dataset Generation 157

7.2 Eigenvalue and principal components on correlations with Features . . . 167

7.3 ROC Curve Plots TPR against FPR for 29 attack classes 167

xiv

List of Tables

2.1 Top 5 Intrusion Detection System Comparison 28

2.2 Comparison of State-of-the-art IDS Datasets used in Thesis 31

2.3 Comparison of Other State-of-the-art IDS Datasets 32

2.4 Confusion Matrix . 46

2.5 Author and Paper Title, Methodology, Dataset, and Research Gap . . . 53

3.1 Snort Rule Syntax and Examples . 58

3.2 Test Results: Detection & Mitigation (fix) of Fifteen Attacks 83

4.1 Summary of Benign and Attack Instances Present in CIC-IDS2018 Dataset 89

4.2 Prerequisite Tools to Generate RTT Resampled Dataset 92

4.3 Number of Instances in Training Data Generated by Oversampling Meth-

ods on CICIDS2018 Dataset and RTT Resampled Dataset 99

4.4 Distributed Random Forest Classifier Hyperparameters 102

4.5 LightGBM Classifier Hyperparameters 104

4.6 Statistical Performance Analysis of State-of-the-art Oversampling Meth-

ods on CICIDS2018 Dataset . 105

4.7 Statistical Performance Analysis of State-of-the-art Oversampling Meth-

ods on RTT Resampled Dataset . 106

4.8 Performance Comparisons With Existing Methods 108

5.1 Four types of attacks included in the KDD’99 dataset [2] 114

5.2 6 Dos attacks in NSL-KDD dataset, [3] 114

5.3 DoS attacks in CIC-IDS2017 Dataset . 115

5.4 Best Feature subsets and Accuracy (ACC) 123

5.5 Performance comparisons with existing methods 124

xv

LIST OF TABLES

6.1 Variation of Different Hyperparameters 140

6.2 Training Confusion Matrix, Error, Accuracy, Precision, and Recall for

NSL-KDD Dataset . 147

6.3 Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for

NSL-KDD Dataset . 147

6.4 Training Confusion Matrix, Error, Accuracy, Precision, and Recall for

CIC-IDS2017 Dataset . 148

6.5 Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for

CIC-IDS2017 Dataset . 148

6.6 Training Confusion Matrix, Error, Accuracy, Precision, and Recall for

CIC-IDS2018 Dataset . 149

6.7 Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for

CIC-IDS2018 Dataset . 149

6.8 Training Confusion Matrix, Error, Accuracy, Precision, and Recall for

IoTID20 Dataset . 150

6.9 Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for

IoTID20 Dataset . 150

6.10 Training Confusion Matrix, Error, Accuracy, Precision, and Recall for

UNSW-NB15 Dataset . 151

6.11 Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for

UNSW-NB15 Dataset . 151

6.12 Performance Comparisons With Existing Methods 153

7.1 Web Server Specification and Attack server specification 158

7.2 Attack Classes, Tools, and Techniques 161

7.3 1 to 40 OD-IDS2022 Features, Relative Importance, Scaled Importance,

Percentage, and Descriptions . 162

7.4 41 to 82 OD-IDS2022 Featuress, Relative Importance, Scaled Importance,

Percentage, and Descriptions . 163

7.5 The Dataset Attack classes, number of records, Probability (Prob), Stan-

dard Error for Probability (StdErr Prob), and Cumulative probability

(Cum Prob) . 164

7.6 RF Training Accuracy and Confusion Matrix for all Attack Classes . . . 170

xvi

LIST OF TABLES

7.7 RF Validation Accuracy and Confusion Matrix for all Attack Classes . . 171

7.8 DT Training Accuracy and Confusion Matrix for all Attack Classes . . . 172

7.9 DT Validation Accuracy and Confusion Matrix for all Attack Classes . . 173

7.10 Naive Bayes Training Accuracy and Confusion Matrix for all Attack Classes174

7.11 Naive Bayes Validation Accuracy and Confusion Matrix for all Attack

Classes . 175

7.12 SVM Training Accuracy and Confusion Matrix for all Attack Classes . . 176

7.13 SVM Validation Accuracy and Confusion Matrix for all Attack Classes . 177

8.1 Summary of the contributions . 181

xvii

List of Algorithms

1 Content Extraction Algorithm . 62

2 Candidate Content Extraction Algorithm 63

3 Location Information Extraction Algorithm 64

4 SMEC: Scatter Matrices and Eigenvalue Computation - based Feature

Selection . 136

5 Classification Procedure . 137

xviii

Chapter 1

Introduction

This chapter discusses the research background and purpose of this work. In addition, it

also discusses the Intrusion, Intrusion Detection and Intrusion Detection System (IDS)

[4], its associated methods, and types in detail. Finally, we discuss the aim of the

research and objectives, contributions, and the organization of the thesis.

1.1 Background and Motivation

The IDS stem from the increasing complexity and sophistication of security threats and

the need for more effective ways to detect and prevent these threats [4]. In the early

days of computing, security was primarily concerned with preventing unauthorized ac-

cess to resources, such as files and applications. However, as the internet and computer

networks became more widespread and complex, the types of security threats evolved

to include new and more sophisticated forms of attack, such as malware infections,

denial-of-service attacks, and hacking attempts [5].

In response to these threats, security experts began developing new tools and technolo-

gies to detect and prevent intrusions. One such tool was the IDS, designed to monitor

network or system activity for signs of malicious or unauthorized behaviour, and alert

administrators when a potential security threat was detected. The IDS was driven by

the need for more effective security measures that could keep pace with the rapidly

evolving threat landscape [6]. With the increasing number of threats and the growing

complexity of computer networks, it became clear that traditional security tools, such

as firewalls, were no longer sufficient for protecting against intrusions. The IDS offered

1

1. INTRODUCTION

a new and more effective way to detect and prevent security threats and provided orga-

nizations with a valuable tool for improving the security of their networks and systems

[7].

By monitoring network and system activity and alerting administrators against poten-

tial security threats, IDS provides organizations with a powerful tool for detecting and

preventing intrusions and helps to ensure the confidentiality, integrity, and availability

of sensitive information. Some open-source IDS tools, such as Snort, can help create a

novel IDS. It combines signature-based detection, anomaly-based detection, and proto-

col analysis to detect and prevent intrusions [8]. Snort is highly customizable and can

be configured to meet the specific security needs of an organization. Snort uses rules

to identify attacks. Rules are a set of conditions that describe the characteristics of an

attack and trigger an alert when the conditions are met. Snort rules can be written

using a flexible rule language that allows us to specify the conditions we want to detect.

Open-source IDS tools are widely used and have several advantages and limitations.

IDS tools have several advantages, including:

• Cost-effective: Snort is open-source software, which means it’s free to use, making

it a cost-effective solution for organizations with limited budgets.

• Flexibility: Snort is highly configurable and can be used in various environments,

making it a versatile solution for organizations with diverse security needs.

• Detection Capabilities: Snort is capable of detecting a wide range of security

threats, including network- and host-based attacks, making it a powerful tool for

detecting security breaches.

• Customizable Rules: Snort provides a large set of predefined rules for detecting

various security threats. It also allows users to create custom rules to meet their

security needs.

• Real-time Alerting: Snort is capable of generating real-time alerts, allowing orga-

nizations to respond quickly to potential security threats.

But IDS tools such as snort has some limitations, including:

• False Positives: Like other IDS tools, Snort can generate false positive alerts,

resulting in many irrelevant notifications and making it difficult to identify real

security threats.

2

1.1 Background and Motivation

• Limited Signature Library: Snort relies on a library of signatures to detect security

threats, which may not include signatures for all known threats. This can result

in false negatives, where real security threats are undetected.

• Performance Overhead: IDS tools can introduce a performance overhead on the

systems it monitors, potentially slowing down the systems and impacting their

performance.

• Limited Visibility: Snort may have limited visibility into some areas of the network

or system, making it difficult to detect all security threats.

• Dependence on Signatures: Snort relies on signatures to detect security threats,

which can be less effective against new and unknown threats.

So, Machine Learning (ML) can be used to overcome some of the limitations of Snort.

It can play an important role in generating Intrusion Detection Systems (IDSs) and

Intrusion Prevention Systems (IPSs) [9]. Machine learning algorithms can detect and

classify intrusions based on network traffic data, system logs, and other security-related

data. The following are some ways machine learning can be used to generate IDS:

• Anomaly Detection: Machine learning algorithms can analyze network and system

activity data and detect anomalies that indicate an intrusion.

• Classification of Intrusions: Machine learning algorithms can classify different

intrusions, such as denial-of-service attacks, malware infections, and unauthorized

access attempts.

• Predictive Modelling: Machine learning algorithms can be used to build predictive

models that identify potential intrusions before they occur based on past behaviour

and historical data.

• Continuous Learning: Machine learning algorithms can continuously learn and

adapt to changing threats and network behaviour, making the IDS more effective.

Machine learning-based IDS can potentially improve the accuracy and efficiency of intru-

sion detection and reduce the number of false positives and false negatives [9]. However,

machine learning-based IDS also has its own challenges, such as the need for large train-

ing data, the risk of overfitting the model, and the difficulty of explaining the reasoning

behind the IDS’s decisions.

3

1. INTRODUCTION

Motivation

There are several motivations for developing robust IDSs:

1. Protecting Sensitive Data: One of the primary motivations for developing

robust IDSs is to protect sensitive data. IDSs can detect unauthorized access

attempts and alert system administrators, allowing them to take action to prevent

the theft or misuse of sensitive data.

2. Compliance with Regulations: Many industries are subject to regulations that

require the implementation of IDSs. For example, the healthcare industry must

comply with the Health Insurance Portability and Accountability Act (HIPAA),

which mandates implementing security measures to protect patient data.

3. Preventing Network Downtime: IDSs can also help prevent network down-

time by detecting and responding to attacks before they can cause damage to

network infrastructure or disrupt service availability.

4. Reducing Financial Losses: A successful cyber attack can result in significant

financial losses, including the cost of remediation, legal fees, and reputation dam-

age. IDSs can help minimize these losses by detecting and mitigating attacks in

their early stages.

5. Improving Incident Response: IDSs can provide valuable information to inci-

dent response teams, enabling them to respond quickly and effectively to security

incidents. This can help minimize the impact of attacks and reduce the time

required to recover from security breaches.

1.2 Intrusion Detection System (IDS)

Intrusion is an attempt to compromise Confidentiality, Integrity, and Availability or

bypass the network’s security mechanisms. This can be done through hacking, viruses,

or other means and can cause damage to the system, theft of sensitive information, or

other negative consequences. Intruder is a malicious entity that attempts to obtain

unauthorised access to a system or network. Furthermore, the data in that system

will be distorted, as would the surroundings of that network. An intruder/attacker

is a person or entity that tries to harm, exploit or compromise a system, network, or

4

1.2 Intrusion Detection System (IDS)

individual. This can be in the form of malicious activities such as hacking, cyber-attacks,

malware infections, etc. Intruders/attackers are of majorly two types; Outside & Inside.

Figure 1.1 refers to a graphical representation of a network, which shows the various

components of the network and how they are interconnected, such as routers, switches,

firewalls, end-user devices (host1, host2), Intruder (Inside/Outside in the network), and

IDS.

Intrusion Detection is monitoring the events occurring in a computer system or

Figure 1.1: IDS and Several components

network and analyzing them for signs of intrusions. In other words, Intrusion detection

is monitoring the threat of violation of computer security policies, acceptable usage

policies, or standard security guidelines occurring in a computer system or network and

analyzing the signs of events [10].

IDS is a software or hardware product that automates this monitoring and analysis

process [4]. IDSs analyze and observe incident signs of threats in computer systems

and networks that violate the use policy and standard security or computer security

policy. An IDS consists of several components, and this section briefly overviews the

IDS. Attacks and intrusions are also increasing due to the increased use of computers

and networks. Methods to prevent and respond to such attacks and intrusions are

essential in information protection.

1.2.1 IDS Definitions

Here are several definitions of IDS:

1. The first Intrusion Detection System (IDS) was developed in the 1980s by James

P. Anderson "A security subsystem that monitors a computer system, gathering

5

1. INTRODUCTION

information about possibly malicious events occurring within that system, and

reports this information to the system administrator."1

2. NIST defines An IDS as a software application or hardware appliance that moni-

tors network or system activities for malicious or unwanted behaviour and alerts

a security administrator or takes action to prevent it [4].2

3. "An intrusion detection system is a mechanism that monitors system and net-

work resources for security-related events and alerts security personnel or system

administrators of any potential security breaches. These systems can be either

host-based, meaning they monitor activity on a single system, or network-based,

meaning they monitor network traffic to identify potential threats to multiple

systems." 3

4. "A security tool designed to detect and respond to cyber threats, such as malware,

network attacks, and other unauthorized access to systems or data. An IDS

monitors network traffic and system activity for signs of malicious activity and

alerts security personnel when potential security breaches are detected."4

5. "A system that monitors network traffic for signs of intrusion or malicious activity.

An IDS can detect various attacks, including Denial-of-Service (DoS) attacks, port

scans, and other attempts to exploit vulnerabilities in a network or system." 5

6. "An IDS uses machine learning algorithms which learn patterns and behaviours

associated with normal and malicious activity. ML-based IDS can detect unknown

threats, adapt to changing network environments, and reduce false positives, but

require significant amounts of training data and may be vulnerable to adversarial

attacks." 6

1Anderson, J. P. (1980). Computer Security Threat Monitoring and Surveillance. Technical report, James P.
Anderson Co., Fort Washington, Pennsylvania.

2National Institute of Standards and Technology (NIST), (2001): Intrusion Detection Systems:
https://csrc.nist.gov/publications/detail/sp/800-94/rev-1/final

3CERT Coordination Center, (2003), Intrusion Detection Systems:
https://www.cert.org/tech_tips/intrusion_detection_systems.html

4Cybersecurity and Infrastructure Security Agency (CISA). (2021): Intrusion Detection Systems. Retrieved
from https://us-cert.cisa.gov/ncas/tips/ST04-005

5TechTarget. (2021). An Intrusion Detection System (IDS):
https://searchsecurity.techtarget.com/definition/intrusion-detection-system-IDF

6ND Patel, BM Mehtre, and Rajeev Wankar. Intrusion Detection System using Resampled Dataset - A
Comparative Study, International Journal of Ad Hoc and Ubiquitous Computing

6

1.2 Intrusion Detection System (IDS)

7. "An intrusion detection system is a security management system for computers

and networks. An IDS inspects all inbound and outbound network activity and

identifies suspicious patterns that may indicate a network or system attack from

someone attempting to break into or compromise a system." 1

8. "An IDS is a tool or application that scans a network or system for signs of

malicious activity or policy violations. It is designed to detect, alert, and respond

to a potential security breach in real-time." 2

1.2.2 Classification of IDS

Figure 1.2 shows the classification of IDS might consist of three branches, such network,

host, and protocol. The figure also shows how the various components work together

to monitor network or system activity for signs of security threats and generate alerts

when threats are detected. The idea is to use systems that are a combination of the

two, the so-called Intrusion Detection and Prevention Systems (IDPSs). The main

functions of IDPSs are to record information related to monitored events, notify system

administrators of relevant events, and generate reports of various types. Many of these

systems also try to react to detected anomalies or threats by trying different techniques,

ranging from performing predefined tasks such as suspending services, re-configuring

the firewall, or banning/blocking the IP addresses [11]. IDS can be classified into three

broad categories:

Network-based Intrusion Detection System (NIDS)

Systems that monitor a computer network are placed at one or more strategic points

to increase the effectiveness of this surveillance. A NIDS is located in a Demilitarized

Zone (DMZ) just beyond the firewall. It captures real-time network traffic, analyzes it,

and takes defensive actions. Various incidents can be identified by monitoring network

traffic to specific network segments or devices and analyzing network and application

protocol activity to identify suspicious activity [12].

1https://www.webopedia.com/TERM/I/intrusion_detection_system_IDS.html
2https://www.solarwinds.com/threat-monitoring-and-detection/intrusion-detection-system-ids

7

1. INTRODUCTION

Figure 1.2: Classification of IDSs

Host-based Instruction Detection System (HIDS)

Systems inspect host systems’ data and analyze all operating systems’ content, system

logs, applications, and datasets. HIDS can detect insider threats that do not involve

network traffic. It examines the characteristics of a single host and events occurring

within the host for suspicious activity. It observes network traffic, system logs, running

processes, application activity, file access, modification, and system and application

configuration changes [13].

Protocol-based Instruction Detection System (PIDS)

They analyze the protocols that share data between the system and the server. Sys-

tems that monitor protocols related to specific applications, such as the SQL language

involved in transactions between a dataset and the design. It is made up of a system

or agent that always sits at the front end of a server, regulating and interpreting the

protocol between a user/device and the server [14].

1.2.3 Challenges of IDS

IDS can encounter various challenges affecting their effectiveness in detecting and pre-

venting cyber-attacks. Some common challenges with IDS include false positives and

8

1.2 Intrusion Detection System (IDS)

negatives, misconfiguration, scalability, maintenance, etc. To address these challenges,

selecting an IDS that fits your organization’s needs is important, ensuring it’s properly

configured and updated and regularly reviewing and adjusting its rules to minimize

false positives and negatives. Additionally, organizations should consider using other

security measures, such as firewalls and antivirus software, to provide a layered defence

against cyber attacks.

Figure 1.3 shows the taxonomy of IDS challenges and our contributions (appear in

Red).

Figure 1.3: Taxonomy of IDS challenges and Contributions (appear in Red Color)

1.2.3.1 Key Challenges of Signature-based and Anomaly-based IDS

The key challenges of IDS techniques include the following:

• Limitations of Signature-based Detection: Signature-based IDSs are limited

in their ability to detect new and unknown attacks. IDSs must be constantly

updated to keep pace with new threats and vulnerabilities. This can be a challenge

if updates are unavailable or are slow to release. It can be overwhelmed by large

amounts of data, leading to a decrease in accuracy and efficiency.

9

1. INTRODUCTION

• False Positive/Negative: One of the major challenges of IDSs is the occur-

rence of false positives, which are alarm signals generated due to normal network

activities or misconfigurations. False alarms (false positives) and missed attacks

(false negatives) can create confusion and hinder the effectiveness of an IDS. False

negatives occur when an IDS fails to detect an attack. This can happen when the

system is not configured properly or an attacker uses an unknown technique.

• Evasion Techniques: Intruders are constantly seeking new ways to evade de-

tection by IDSs, making it difficult for these systems to keep up with the latest

attack techniques. Attackers are constantly looking for ways to bypass IDSs. This

includes using encryption, fragmentation, or masquerading as legitimate traffic to

evade detection.

• Keeping up with the Latest Threats: The threat landscape is constantly

evolving and new attacks are constantly being developed. IDSs must keep up

with these new threats in order to be effective. With new attacks and threat

patterns emerging regularly, IDSs must constantly update their algorithms and

signatures to stay ahead of these evolving threats.

• Scalability and Performance: As networks and systems become more complex,

IDSs must be able to scale to handle the increased load and maintain performance;

as the volume of data generated by networks increases, IDSs must be able to scale

up to handle this data while maintaining high-performance levels.

• Complexity of Deployment: IDSs can be complex to deploy, configure, and

manage. This can lead to issues such as misconfigurations and reduced effective-

ness. The complexity of network traffic makes it difficult for IDSs to identify

threats accurately. The volume and speed of data can also be challenging, making

it difficult to detect malicious activity in real time.

• Privacy Concerns: Privacy and security concerns may arise from collecting

and storing sensitive information by IDSs. Some IDSs collect and analyze large

amounts of data, raising privacy concerns. This can be a challenge for organiza-

tions that need to maintain the privacy of their customers and employees.

• High Data Rate: IDSs must process a high volume of data in real-time, which

10

1.2 Intrusion Detection System (IDS)

can strain system resources. A common problem with data analysis is that it

contains similar noise to the actual anomalies, making distinguishing and removing

them difficult.

• Interpreting Alerts: The large number of alerts generated by IDSs can be

difficult to interpret and prioritize.

• Biased Network: Dealing with the biased network data instances and training

the model in such a way that the optimised model can give the categorisation of

normal and intrusion instances with a higher precision rate is also a core challenge.

• Learning Algorithms: Some state-of-the-art approaches take comparatively

more time when deployed in the network architecture. Even though some ap-

proaches in the literature are computationally fast, they result in the degradation

of statistical performance measures. The selection of the optimal hyperparameter

for the learning algorithm is also a complex task as it deviates from the nature of

input network data.

1.2.3.2 Key Challenges of IDS Datasets

There are several limitations of IDS datasets:

• Reflecting Current Threats: IDS datasets must be updated regularly to in-

clude the latest threats and attack patterns. Attackers constantly evolve their

Tactics, Techniques, and Procedures (TTPs), and IDS datasets must keep pace

with these changes. This ensures that IDSs are capable of detecting new and

emerging threats.

• Improving IDS Performance: The performance of IDSs depends on the quality

and quantity of the data used to train them. By generating new datasets, we can

improve the accuracy and effectiveness of IDSs. This is because new datasets can

provide more diverse and realistic attack scenarios, which can help to uncover

vulnerabilities that may have been missed in previous datasets.

• Imbalanced Datasets: Many intrusion datasets have an imbalanced distribution

of normal and abnormal behaviour patterns, making it difficult for the system to

learn to detect intrusions accurately.

11

1. INTRODUCTION

• Data Scarcity: The scarcity of intrusion data makes it difficult to train accurate

intrusion detection models and limits the testing of various intrusion detection

techniques.

• Quality of Data: The data quality is crucial for IDSs. If the data is incor-

rect, incomplete or outdated, the system may produce false alarms or miss real

intrusions.

• Lack of Diversity: The intrusion datasets are usually limited to a specific net-

work or operating system type, making it challenging to develop IDSs that can

be applied to a diverse range of systems.

• Data Anonymization: Many intrusion datasets anonymize the data to protect

privacy, which can also limit the usefulness of the data for training IDSs.

• Evasion Techniques: Intruders constantly develop new evasion techniques to

bypass IDSs, making it difficult for datasets to keep up with the latest threats.

• Unlabeled Data: The datasets used for intrusion detection may contain unla-

beled data, meaning it is unclear whether the data represents normal traffic or an

attack. This can make it difficult to train the IDS accurately and result in false

positive results.

• Overfitting: The datasets used for intrusion detection can result in overfitting

if they are too small, meaning that the IDS may not generalize well to new data.

This can lead to the IDS producing false positive results or failing to detect attacks.

1.3 Aim and Research Objectives (ROs)

Detecting intrusion and malicious patterns in network data has always been a challeng-

ing problem. The captured network data consists of normal instances and the instances

having intrusion patterns in them. Developing a methodology that can process data in

an efficient and timely manner is a significant problem to address. Over the past decade,

statistical machine learning-based knowledge primitives have shown good potential and

proven themselves as an effective building block for processing such network data and

identifying the intrusion instances.

12

1.3 Aim and Research Objectives (ROs)

An IDS Research Objective (RO) could be to evaluate the effectiveness of different IDS

approaches for detecting and preventing cyber attacks, including network-based, host-

based, and application-based attacks. This could involve developing and testing new

algorithms or models for intrusion detection, analyzing system logs or network traffic,

or exploring the use of machine learning or artificial intelligence techniques for IDS.

The objective could also be to investigate the impact of different factors on IDS per-

formance, such as the type of attack, the network topology, or the system architecture.

The ultimate goal would be to contribute to developing more robust and efficient IDS

solutions that can better protect computer systems and networks against evolving se-

curity threats.

In this thesis, we proposed a set of novel and robust IDSs to identify signature-based

and anomaly-based attacks with the help of rule-based language or statistical machine

learning-based approaches. In the signature-based IDS, Snort is an open-source, free,

lightweight NIDS software for Linux and Windows to detect emerging threats. In

anomaly-based attack detection, The common method used by anomaly-based IDSes is

establishing a baseline of the regular network activity and traffic. To identify patterns

not present in the traffic regularly, we can compare the current status of the network’s

traffic to this baseline.

1.3.1 RO1: To Propose a Secure and Resilience Edge Router for
Smart Homes

• The ultimate goal would be to improve the security, resilience, and usability of the

secure router and contribute to developing more effective and practical solutions

for protecting computer/IoT networks and systems against a wide range of security

threats.

• To develop and test new features or capabilities for the secure router, such as

detecting and blocking malicious traffic, integrating with other security tools or

platforms, or supporting advanced networking protocols and technologies.

• Analyze the IDS tool’s false positive and false negative rates and develop new

rules and configurations to improve its detection capabilities with the help of

automation.

• Research objective for a secure router could be to evaluate the effectiveness of the

13

1. INTRODUCTION

router in providing secure and reliable network connectivity and preventing various

types of cyber attacks, such as malware infections, denial-of-service attacks, or

network intrusion attempts.

1.3.2 RO2: To Develop a Robust and Effective System for Detecting
and Mitigating Attacks using Machine Learning Techniques

The research objective for anomaly-based attack detection using machine learning could

be to develop an effective and efficient model that can accurately detect and classify

anomalies in real time in network traffic, system logs, or any other data source. The goal

is to create a model that can differentiate normal behaviour from malicious behaviour

and trigger alerts or take appropriate actions to prevent security breaches.

Some specific research objectives that could be pursued in this area might include the

following:

• Data Collection: Collect and preprocess data from various sources, including net-

work traffic, system logs, and application data.

• Feature Extraction/Selection: Experimenting with different feature selection and

extraction techniques to identify the most relevant data points that should be

included in the model’s training dataset.

• Algorithm Selection: Choose an appropriate machine learning algorithm(s) that

can accurately classify the data as normal or anomalous.

• Model Training: Train the model on the labeled data using supervised or unsu-

pervised learning techniques, depending on the availability of labeled data.

• Model Evaluation: Evaluate the performance of the trained model using various

metrics such as accuracy, precision, recall, F1-score, and Area Under the Curve

(AUC).

• Model Optimization: Optimize the model by fine-tuning the hyperparameters,

selecting the best features, and applying other techniques, such as data augmen-

tation and ensemble methods, to improve performance.

14

1.3 Aim and Research Objectives (ROs)

• Real-time Deployment: Deploy the trained model in a real-time environment and

monitor its performance to ensure its effectiveness in detecting and preventing

attacks.

Overall, anomaly-based attack detection using machine learning aims to create a robust,

accurate, and efficient system that can detect and prevent cyber attacks in real-time,

thereby improving the system’s or network’s overall security.

1.3.3 RO3: To Generate a Comprehensive Intrusion Detection Sys-
tem Dataset

One research objective for generating a new intrusion detection dataset could be to

create a more diverse and realistic dataset that captures the current landscape of cyber

threats and attacks. The objective is to provide a more comprehensive dataset that

can enable the development of more effective and accurate IDSs. Here are some more

specific research objectives:

• Data Collection: Collect data from various sources representing real-world net-

work traffic and system logs. This could include capturing data from different

geographic regions, industries, and network topologies.

• Data Annotation: Annotate the collected data to classify the different types of

attacks, such as denial-of-service attacks, malware attacks, brute-force attacks,

and others.

• Data Diversity: Ensure that the dataset has a diverse range of attacks, including

known and unknown attacks, and that the attacks represent the latest attack

trends.

• Data Volume: Generate a large volume of data sufficient for training and evalu-

ating machine learning models.

• Data Quality: Ensure that the data is high quality, noise-free, and accurately

labeled.

• Data Privacy: Ensure that the dataset is anonymized and that no sensitive infor-

mation is exposed to protect the privacy of individuals and organizations.

15

1. INTRODUCTION

• Benchmarking: Provide a benchmark for evaluating the performance of IDSs on

the generated dataset.

Overall, generating a new intrusion detection dataset aims to provide a more compre-

hensive, diverse, and realistic dataset that can enable the development of more effective

and accurate IDSs. This will help improve the overall security of computer networks

and systems and mitigate the risks of cyber attacks.

1.4 Overview of Contributions

In this thesis, we developed a set of novel and robust IDSs, each aligned with the afore-

mentioned research objectives to identify signature-based and anomaly-based attacks

with the help of rule-based language and statistical machine learning-based approaches.

Figure 1.4 shows an overview of the components and processes involved in an IDS de-

signed to detect network intrusions with high accuracy and reliability in contributions.

A set of novel and robust IDS diagrams provides a clear and concise representation

of the various stages of building an IDS that can detect network intrusions with high

accuracy and reliability.

1.4.1 Contribution 1: SERfSH - A Router for a Smart Home

This contribution investigates and proposes a method of a snort-based Secure Edge

Router for Smart Homes (SERfSH) that aims to address the issue of cybersecurity

in smart homes. The contribution investigates and proposes a solution resilient to

many cyberattacks, providing a more secure environment for smart homes. The method

involves using Snort [15], an open-source intrusion detection and prevention system, as

the basis for the router. The proposed method can automatically generate Snort rules

by combining extracted strings, location, and header information. This approach can

significantly reduce the workload of cybersecurity experts, who would otherwise have to

create these rules manually. The experimental setup comprises a Raspberry Pi 4 Model,

an ESP32 microcontroller, six IoT devices, and a malicious actor machine. This setup

is tested for fifteen attacks, and the results show that fourteen attacks are detected and

twelve attacks are mitigated. By using the proposed SERfSH, smart homes can benefit

from a more secure edge router that can protect against a wide range of cyber threats.

16

1.4 Overview of Contributions

Figure 1.4: Aim, Research Objectives and Contributions

This method can enhance the privacy and security of smart home devices and prevent

unauthorized access to the network.

1.4.2 Contribution 2: Intrusion Detection Mechanism using Over-
sampling Technique

The proposed contribution aims to improve the accuracy of intrusion detection in com-

puter networks using an oversampling technique and machine learning classification.

The method can detect various types of intrusion, such as DoS (Denial of Service)

attacks, port scanning, and unauthorized access. In this contribution, the intrusion

detection data consists of normal and minimal attack data. This data imbalance causes

prediction performance degradation due to factors such as prediction bias of small data

presence of outliers. We have applied four oversampling methods to address this issue on

17

1. INTRODUCTION

the state-of-the-art IDS datasets. To further ensure the real-time applicability of these

oversampling methods with classifiers, we also generate a Real-Time Testbed (RTT)

for the resampled dataset. Consequently, we applied four state-of-the-art oversampling

methods (SMOTE [16], Boderline-SMOTE [17], ADASYN [18], CTGAN [1]) and three

classifiers (LDA [19], DRF [20], LightGBM [21]) to predict the attacks. It is observed

that the Conditional Tabular Generative Adversarial Network (CTGAN) oversampling

method, along with the LightGBM classifier, gives outperforming results on the existing

CICIDS2018 and RTT resampled datasets. Test results also outperformed the existing

intrusion detection methods and datasets (Credit Card, Gambling Fraud, ISCX-Bot-

2014, CICIDS2017) in terms of Accuracy, Precision, etc. The proposed method offers

a promising approach to improving the accuracy of intrusion detection in computer

networks. It can help to prevent and mitigate the impact of cyberattacks.

1.4.3 Contribution 3: Artificial Neural Network-based IDS using Multi-
objective Genetic Algorithm

In this contribution, the performance of machine learning-based IDS largely depends

upon the feature set used for modelling. Generally, using more features increases the

accuracy of attack detection and increases detection time. An Artificial Neural Net-

work (ANN) [22] based IDS is proposed, which uses a Multi-Objective Genetic Al-

gorithm (MOGA) [23] to satisfy the requirements such as improved attack detection

accuracy and faster response time. The proposed method’s performance is tested using

the KDD’99 [2], NSL-KDD [24], and CIC-IDS2017 [25] datasets. The results show that

the performance of the proposed method is better than the existing methods. Besides,

the new proposed ANN-based IDS using MOGA offers a promising approach to im-

proving the accuracy and time for attack detection of intrusion detection in computer

networks.

1.4.4 Contribution 4: Dimensionality Reduction based Feature Selec-
tion and Attack Classification Approach

In this contribution, we propose an efficient and feasible algorithmic framework for

analyzing the network traffic data to overcome the drawback of forwarding feature

selection-based approaches. The proposed approach mainly consists of two phases, i.e.,

"Scatter Matrices and Eigenvalue Computation based Feature Selection" and "Clas-

18

1.4 Overview of Contributions

sification Procedure for the Reduced Dimension Data". The algorithm of phase one

also has the possibility of parallelization due to its granular nature. It exploits the lin-

ear algebraic building blocks, such as Scatter Matrices, Eigenvalues, and corresponding

Eigenvectors. These blocks will help analyze the reduced dimensional data in the form

of a lower-dimensional projection plane. The phase two algorithm can detect the com-

plex nature of the non-linear relationships between dependents (highly correlated) and

independent variables (features). This procedure has the advantage of experimenting

with different hyperparameters, such as utilizing state-of-the-art non-linear primitives

(activation functions and optimizers), varying training network nodes’ weights and bi-

ases, a number of epochs, training data batch size, and learning rate. It also provides

the functionality of making the architecture compatible as deep as needed in hidden

network layers. Experimental evaluation of various test case scenarios for the chosen

datasets (NSL-KDD-2009, CIC-IDS2017, CIC-IDS2018, IoTID20, and UNSW-NB15) is

carried out in the simulation setting. The test results outperform the existing intrusion

detection methods for detecting specific attack categories.

1.4.5 Contribution 5: A New Offensive Defensive IDS Dataset: OD-
IDS2022

In this contribution, We generate a new Offensive Defensive Intrusion Detection Sys-

tem (OD-IDS2022) Dataset, which fulfils the standard characteristics, namely "At-

tack Diversity", "Anonymity", "Available Protocols", "Complete Capture", "Complete

Interaction", "Complete Network Configuration", "Complete Traffic", "Feature Set",

"Heterogeneity", "Labelling", and "Metadata" which were lacking in the previously

available dataset. We applied several data cleaning, pre-processing techniques, and fea-

ture selection methods in the dataset. Consequently, we applied four state-of-the-art

Machine Learning based classification algorithms (Random Forest, Decision Tree, Naive

Bayes, and Support Vector Machine) to predict the attacks. The SVM algorithm gave

the highest prediction accuracy in the training and validation sample of the proposed

dataset.

19

1. INTRODUCTION

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 discusses the key challenges of

IDS, a literature review of intrusion detection techniques, state-of-the-art IDS datasets,

and identified research gaps. However, we discuss the data preprocessing techniques,

learning techniques, the selection of hyperparameters, and statistical preliminaries.

Chapter 3 discusses how automatic generation snort rules for Detecting signature-based

Attacks. Chapter 4 discusses the intrusion detection mechanism using the oversampling

technique to address the class imbalance, a common problem in intrusion detection.

Chapter 5 discusses the artificial neural network-based IDS using the multi-objective

genetic algorithm to learn the patterns of normal and malicious traffic in a network.

Chapter 6 discusses the dimensionality reduction-based feature selection and attack

classification approach for network intrusion detection. Chapter 7 discusses where we

generate a new offensive defensive intrusion detection dataset for machine learning-

based attack classification". Finally, chapter 8 discusses Conclusions and Directions for

Future Research.

Figure 1.5 shows the thesis organization, i.e. consists of nine chapters.

20

1.5 Organization of the Thesis

Figure 1.5: Thesis Organization

21

Chapter 2

Literature Review & Research Gaps

Intrusion detection systems generally observe, analyse, and detect malicious instances

and signs regarding computer system and network threats. This chapter discusses the

key challenges of IDS, a literature review of intrusion detection techniques, state-of-the-

art IDS datasets, and identified research gaps. However, we discuss the data prepro-

cessing techniques, learning techniques, the selection of hyperparameters, and statistical

preliminaries. As a result of analysing the literature reviewed, various research gaps and

areas for improvement were found, which need to be addressed adequately in most sys-

tems. To improve IDS performance further, we need to address these gaps.

2.1 Research Questions

We have constructed the Research Questions (RQ) below, which serve as the cornerstone

for conducting the systematic literature survey.

1. RQ1: What are the most common types of cyber-attacks, and how effective is the

current intrusion detection system in detecting and preventing cyber-attacks?

2. RQ2: How can intrusion detection systems be adapted to protect against new

and emerging threats, such as those posed by the Internet of Things (IoT) and

network-based systems?

3. RQ3: How can Snort be customized and configured to suit the specific needs of an

organization’s network security strategy? What are the key features and patterns

used to define signatures for intrusion detection, and how can these be effectively

22

2.2 Intrusion Detection System Techniques

curated, updated and managed to ensure accurate and up-to-date detection of

known attacks?

4. RQ4: What challenges do intrusion detection systems face in detecting zero-day

and unknown attacks, and how can they be overcome? How can machine learning

algorithms improve the accuracy and efficiency of intrusion detection systems?

5. RQ5: What are the most effective ways of training and testing intrusion detection

systems to improve their accuracy and performance?

6. RQ6: What are the impact of feature selection, feature engineering, and hyper-

parameter tuning on the performance of the intrusion detection system, and how

can these processes be automated to improve efficiency and accuracy?

7. RQ7: What are the impact of false positives and false negatives on intrusion

detection system performance, and how can they be minimized?

8. RQ8: What are the key factors to consider when selecting and deploying an

intrusion detection system, and how can organizations ensure they get the most

out of their investment?

9. RQ9: How can the machine learning model be trained and tested on a diverse

and representative dataset of real-world attacks, and how can this dataset be

continuously updated to reflect new intrusions?

2.2 Intrusion Detection System Techniques

The IDS uses individual and integrated methods to provide extensive and accurate

detection and can be classified into signature-based and anomaly-based methods [26].

Figure 2.1 shows how IDS can be classified based on the type of analysis. Here are the

common types of IDS based on analysis:

1. Signature-based IDS: This IDS compares incoming network traffic or system

activity to a database of known attack signatures. If a match is found, the IDS

alerts the security team. Signature-based IDS is effective at detecting known

attacks but may not be effective against new or unknown attacks.

23

2. LITERATURE REVIEW & RESEARCH GAPS

Figure 2.1: IDS Techniques

2. Anomaly-based IDS: This type of IDS works by monitoring the normal net-

work traffic or system activity and creating a baseline of normal behaviour. Any

deviation from the baseline is flagged as a potential intrusion. Anomaly-based

IDS is effective at detecting unknown attacks, but it may generate many false

positives.

3. Hybrid IDS: As the name suggests, this type of IDS combines signature-based

and anomaly-based IDS features. It compares the incoming network traffic or

system activity to a database of known attack signatures, monitoring the normal

behaviour and creating a baseline. This combination provides a more accurate

and effective approach to intrusion detection.

4. Behavior-based IDS: This type of IDS focuses on detecting the behaviour of

users or applications within the network. It works by monitoring the patterns

and behaviour of users and applications and alerting the security team if any

deviations from the expected behaviour exist. Behaviour-based IDS effectively

detects insider threats or malware that evades traditional IDS.

5. Protocol-based IDS: This type of IDS focuses on analyzing the protocols used in

network traffic. It works by detecting anomalies or malicious activity based on the

specific protocol being used. Protocol-based IDS is effective at detecting attacks

that exploit protocol vulnerabilities but may not be effective against attacks that

use multiple protocols or encryption.

24

2.2 Intrusion Detection System Techniques

2.2.1 Signature-based IDS

Figure 2.2: Survey of Literature on Signature-based Approaches

Signature-based intrusion detection techniques, or rule-based detection, are IDS that

compares network traffic or system logs to a database of known attack patterns or sig-

natures. The main objective of signature-based detection is to detect known attacks

and malicious activity by matching patterns and signatures of known threats [27]. The

process involves comparing the traffic or logs against a database of known attack sig-

natures, essentially pre-defined rules or patterns representing specific attack types. If

the traffic or logs match any of the signatures in the database, the system generates an

alert, indicating that an attack has been detected.

Signature-based intrusion detection techniques can effectively detect known attacks and

are relatively easy to set up and maintain. However, they can be limited in detecting

new or unknown attacks that have not yet been added to the signature database. Addi-

tionally, attackers can use various evasion techniques, such as obfuscation or encryption,

to bypass signature-based detection [28].

Overall, signature-based intrusion detection is one of several approaches that can be

used to detect and prevent cyber-attacks. It is often used with other techniques, such

as anomaly-based detection, to provide a more comprehensive and effective defence

25

2. LITERATURE REVIEW & RESEARCH GAPS

against various threats. Figure 2.2 shows the literature survey on signature-based Ap-

proaches. Signature-based intrusion detection is a technique in cybersecurity that in-

volves identifying malicious activity by matching it against a database of known attack

patterns or signatures. Here is a brief overview of some of the literature surrounding

signature-based attack detection:

2.2.1.1 Improve the Security and Resilience of the Secure Edge Router for
Smart Home

Signature-based is very effective in detecting known threats and monitoring patterns

in response to known attacks but is ineffective in detecting unknown attacks. For ex-

ample, spoofing attacks using evasion techniques and many variants of known attacks

in intrusion detection used pattern-matching techniques to find the attacks. Stiawan

et al. [29] investigated the Brute_Force Malware_Attack patterns in IoT-based net-

work (FTP Server). They attempted to obtain escalating privileges on an FTP_Server.

Danda et al. [30] proposed a model to inspect security threats to IoT devices. They

ran Snort-based IDS on the bridge with syntax rules for generating warnings/alerts for

intrusion. Aljumah and Abdullah [31] introduced a D-DoS Investigate system using an

Artificial Neural Network (ANN). Jesus Cristhian et al. [32] implemented the Snort as

IDS/ IPS on Raspberry Pi 3 and successfully executed it. They tested the performance

of different tunnelling techniques.

The main attacks that threaten wireless LANs are data leakage by external hackers,

rogue Access Points (APs), access vulnerabilities, and hotspot hacking by Noubir et al.

[33]. The types of security breaches include Packet sniffing, the Man in The Middle

(MITM), Evil twin attack (Wi-Fi phishing), and dictionary attack by Jamal et al. [34].

The IDS proposed by Bace et al. [4], widely used as a network security solution, controls

the network so that abnormal intrusions by hackers do not occur and can block unau-

thorized access attempts. Attacks against intruders are indeed vulnerable. Network

and system intrusions caused by insiders or outsiders require technology to respond and

detect immediately. The IDS is a security solution tailored to fulfil these needs. It is a

system that analyzes and collects security-related information from the network, detects

intrusion or misuse, and includes a countermeasure against intrusion.

Snort (IDS/IPS) is an open_source network intrusion detection/ prevention system in-

troduced by Roesch et al. [15]. It performs network protocol analysis, investigation, and

26

2.2 Intrusion Detection System Techniques

penetration. It can be detected and mitigate (fix) variations of attacks and vulnerabili-

ties, such as stack-based overflows, CGI-based attacks, SMB protocol, and penetration.

Snort is a network IDS based on libpcap, a packet collection library—snort monitors,

records, and alerts packets that match the predefined rules for intrusion detection.

2.2.1.2 IDS Tools

Intrusion detection software is a computer security program that monitors a network or

system for malicious activity or policy violations. It aims to detect and alert administra-

tors to unauthorized access, misuse, and other security-related issues while collecting

and analyzing data to provide insights for security improvements. Table 2.1 shows

the prominent intrusion detection system listed below in the literature. Snort is an

open-source [15], free IDS/IPS software. It can analyse network traffic in real-time and

identify malicious behaviour such as network attacks, viruses, and other security threats.

Snort uses a rules-based approach to detect threats, where administrators can define

and customize rules based on their security needs. Additionally, Snort can perform pro-

tocol analysis, content searching, and matching and can be used in network-based and

host-based intrusion detection. Snort is widely used in commercial and non-commercial

settings and is considered a powerful and flexible solution for intrusion detection and

prevention [15]. Other IDS tools are Suricata [35], Security Onion [36], McAfee Network

Security [37], Palo Alto Networks [38],

2.2.2 Anomaly-based IDS

Anomaly-based intrusion detection techniques are a type of intrusion detection system

that detect attacks by identifying deviations from normal behaviour. These techniques

work by building a model of what is considered "normal" behaviour within a system

and monitoring system activity for any significant deviations from this model [39].

There are several approaches to implementing anomaly-based intrusion detection tech-

niques, including statistical analysis, machine learning, and rule-based systems. Statis-

tical analysis techniques involve analyzing system parameters such as network traffic,

system resource usage, or user behaviour and comparing them to previously observed

patterns. If the observed data differs significantly from these patterns, it may indicate

an attack. Machine learning techniques use algorithms to analyze data and learn the

normal behaviour patterns of a system. The system is then monitored for deviations

27

2. LITERATURE REVIEW & RESEARCH GAPS

S.
No.

Tool
Name

Plateform
IDS
Type

Features Disadvantage

1 Snort

Unix,
Linux,
Mac-OS,
Window

NIDS/
HIDS

Various event detection capabilities, including a
packet sniffer, packet logger, threat intelligence,
signature blocking, real-time updates to security
signatures, in-depth reporting, buffer overflow
attacks, and stealth port scans.

Upgrading is often
risky, It is unstable
due to a Cisco bug.

2 Suricata
Unix,
Linux,
Mac-OS

NIDS

Data collection at the application layer, ability
to monitor protocol activity at lower levels, such
as TCP, IP, UDP, ICMP, TLS, and real-time tracking
for network applications such as SMB, HTTP, and
FTP. Easy for integration with third-party tools.

Complex installation
process, A smaller
community than snort.

3
Security
Onion

Unix,
Linux,
Window

NIDS/
HIDS

A complete Linux distribution focused on log
management, enterprise security monitoring and
intrusion detection runs on Ubuntu and integrates
elements from several front-end analytics tools,
including NetworkMiner, Snorby, etc.
It also includes a HIDS function and the packet
sniffer does network analysis, including nice
graphs and chats.

High knowledge
overhead, A complex
approach to network
monitoring.

4
McAfee
Network
Security

Unix,
Linux,
Window

NIDS
Download protection, DDoS attack prevention,
computer data encryption, blocking access to
harmful sites, etc.

Identified the block
sites that are not
malicious or harmful,
Internet/network
speed may be slow.

5
Palo Alto
Networks

Unix,
Linux

NIDS

Continuously updated threat engine for critical
threats, active threat policies for protection,
complemented by wildfire to protect against
threats,a nd more.

No customization
possibilities, there
is no visibility into
the signature.

Table 2.1: Top 5 Intrusion Detection System Comparison

from these patterns that may indicate an attack [40]. Anomaly-based intrusion detec-

tion techniques have the advantage of being able to detect new and unknown attacks,

as they are not dependent on specific attack signatures or patterns. However, they can

also produce a higher rate of false positives, as legitimate system activity may be flagged

as anomalous if it deviates from the normal behaviour model [41].

Anomaly detection, also known as outlier detection, is identifying unusual patterns in

data that deviate significantly from most data points. This is an important problem in

many fields, including fraud detection, cybersecurity, quality control, and manufactur-

ing. Machine learning algorithms are often used to perform anomaly detection because

they can automatically learn the normal behaviour of data and detect deviations from

that behaviour [42]. It’s important to note that while machine learning algorithms

can be effective for anomaly detection, they are not foolproof and can sometimes miss

28

2.2 Intrusion Detection System Techniques

anomalies or flag normal data points as anomalies. Therefore, it’s crucial to validate the

results and fine-tune the parameters of the algorithm to ensure the accurate detection

of anomalies. Figure 2.3 shows the survey of literature on anomaly-based Approaches.

Figure 2.3: Survey of Literature on Anomaly-based Approaches

The process of implementing a computational learning model takes place over several

stages, as shown in the following figure number 2.4. The stage of the machine learning

process diagram is a visual representation of the different stages involved in building a

machine learning model. It shows the steps in the process, starting with data collection

and ending with the deployment of the model.

Figure 2.4: Stages of the Machine Learning Process

29

2. LITERATURE REVIEW & RESEARCH GAPS

Anomaly-based intrusion detection is a technique in cybersecurity that involves iden-

tifying malicious activity by comparing it to a baseline of normal behaviour and flagging

any deviations from this baseline as potentially suspicious.

2.3 State-of-the-art IDS Datasets

Many public datasets as repositories are available related to intrusion detection for

research and analysis purposes. Since 1998 with the appearance of KDD’99, many

others have been solving problems found in previous datasets. For example, one of the

most common pitfalls of older datasets is that they lack attacks discovered more recently.

On the other hand, the scarcity of data related to certain types of less frequent attacks

is also mentioned as a problem. This section presents the details of some significant IDS

datasets related to the study of this research work. Out of all the datasets discussed

below, some have focused on architectural aspects of these datasets, i.e. structured and

unsaturated data. Others have focused on the learning-based aspects, i.e. supervised

and unsupervised learning. Few datasets have only raw files only in the format of pcap.

Table 2.2 & 2.3 compares the state-of-the-art IDS datasets.

2.3.1 Standard Datasets used in Research Work

The IDS dataset collects data to detect and analyze security threats in computer net-

works and systems. This dataset typically includes network traffic logs, system event

logs, and data from security devices such as firewalls and intrusion detection systems.

Security experts and machine learning algorithms analyze the IDS dataset to identify

potential security threats like hacking attempts, malware infections, and unauthorized

access. The IDS dataset aims to provide an early warning system for security incidents

and help organizations respond to them quickly and effectively.

2.3.1.1 KDD Cup 99 [2]

The KDD Cup 1999 dataset is well-known in machine learning and data mining. It

was used for the Knowledge Discovery in Datasets (KDD) competition held in 1999 and

contains much network traffic data. The data was generated from simulations of the

seven weeks of network traffic data from a typical large US-based organization.

30

2.3
S
tate-of-th

e-art
ID

S
D

atasets

S.
No.

Data Set
No. of
Attacks

Feature
Set

Duration Total Instances
Complete

Traffic
Format Labeled

Bala-
nced

State-of-the-Art IDS Datesets

1 KDD CUP 4 41 Not given
494,021/311,029
(Train/Test)

Yes
Packets,
logs

Yes No

2 NSL KDD 4 41 Not given
125,973/22,544
(Train/Test)

Yes
Packets,
logs

Yes No

3 UNSW-NB15 9 44 7 days 2 M flows Yes CSV Yes No
4 CIC DoS 2017 4 80 24 hours 76,445 No CSV Yes Yes

5 CIC-IDS2017 15 79 7days

557,646
(Attacks)
2,273,097
(Benign)

No CSV Yes Yes

6
CIC-IDS2018
(Republish)

15 79 7 days

846,569
(Attacks)
2,687,419
(Benign)

Yes CSV No No

7
CIC-IDS2018
(Orignal Data)

15
Raw
data

30 days

2,748,235
(Attacks)
13,484,708
(Benign)

Yes pcap No No

Table 2.2: Comparison of State-of-the-art IDS Datasets used in Thesis

31

2.
L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

&
R

E
S
E
A

R
C

H
G

A
P

S

S.
No.

Data Set
No. of
Attacks

Feature
Set

Duration Total Instances
Comp-

lete
Traffic

Format Labeled
Bala-
nced

Other Existing IDS Datasets

1 Kyoto 2006+ 4 24 -
972,780/ 97,278
(Train/Test)

Yes pcap No No

2 ISCXIDS2012 4 32 5 days
2381532 (Normal)
68792 (Attacks)

No
CSV,
pcap

No Yes

3 CTU Malware - - 125 hours 85 M flows Yes pcap No No

4
AWID 2-
2015 (Full)

16 155 96 hours
37817835/4570463
(Train/Test)

No CSV No No

5
AWID 2-
2015 (Reduced)

16 155 1 hours
1795575/575643
(Train/Test)

No CSV No No

6
ISCX-URL
2016

5 38 24 hours 78.8k urls No CSV Yes No

7 DDoS 2019 12 80 2 days 5,03,77,757 (Flows) Yes pcap Yes Yes
8 DAPT 2020 16 78 5 days not avilable logs pcap No No
9 DoHBrw-2020 - 28 - 5,45,463 (Flows) Yes CSV Yes Yes

10 CIC-DNS 2021 3 33 5
988,667 (Benign)/
51,456 (Attacks)

Yes CSV Yes No

Table 2.3: Comparison of Other State-of-the-art IDS Datasets

32

2.3 State-of-the-art IDS Datasets

The KDD Cup 1999 dataset comprised approximately 5 million instances, each

representing a network connection. Simulated attacks in such an environment fall into

the following categories: DoS, U2R, R2L, and Probe. The KDD Cup 1999 dataset

contains 41 features or attributes describing the network traffic.

2.3.1.2 NSL-KDD [24]

The NSL-KDD dataset is a modified version of the original KDD Cup 1999 dataset that

was created to address some of the limitations of the original dataset. The NSL-KDD

dataset was created for the network security community to provide a more accurate and

representative dataset for evaluating and comparing intrusion detection algorithms [24].

The NSL-KDD dataset is an improvement over the KDD Cup 1999 dataset in several

ways:

1. It includes more normal connections, making it more balanced than the original

KDD Cup 1999 dataset.

2. It removes redundant and duplicate records from the original dataset, resulting in

a more compact and efficient dataset.

3. It includes more recent and relevant types of attacks, making it more representa-

tive of the current threat landscape.

4. It includes additional features and attributes that provide a more comprehensive

picture of the network traffic.

The NSL-KDD dataset consists of a total of approximately 125,000 instances, with each

instance representing a network connection.

2.3.1.3 UNSW-NB15 [43]

UNSW-NB15 is a benchmark dataset for IDS. It was created by researchers at the

University of New South Wales in 2015 and has since become a widely used dataset

for evaluating the performance of IDS algorithms. Finally, this dataset consists of four

CSV files containing both normal and malicious traffic. The first three CSVs contain

700,001 records, while the last has 440,044 entries. A list of registered events of each

type and features considered in the dataset, with their corresponding description, was

33

2. LITERATURE REVIEW & RESEARCH GAPS

given in the dataset. This fact reflects the complexity of this new dataset due to the

similar behaviours of normal and malicious traffic recorded in it.

2.3.1.4 CIC-DoS 2017 [44]

In this dataset, Hossein Hadian Jazi et al. [44] covered four types of DoS attacks

obtaining different layers, but they focused on the application layer and network layer.

Published by the University of New Brunswick, it contains data streams catalogued

as benign and malignant, with various types of attacks: brute force, denial of service,

Botnet, SSH, and Heartbleed. In this dataset, more than 80% of the data is benign

categories, and the rest is attack data. It contains 80 features related to network flows

captured from generated traffic. The dataset contains 24 hours of network traffic that

produce 4.6 GB of memory.

2.3.1.5 CIC-IDS2017 [25]

The CIC-IDS dataset was created in 2017 by researchers from the Canadian Institute of

Cybersecurity at the University of New Brunswick due to the notorious difficulty among

researchers in finding suitable datasets with which to evaluate their machine learning

techniques [25]. Many datasets intended for this purpose are not shared due to privacy

concerns. Added to this, those that finally do spread are strongly anonymized, suffering

from the diversity of attack problems and entailing the need to be constantly reviewed

to include new malware. In 2016, Gharib et al. identified 11 mandatory criteria to

create a reliable intrusion detection dataset: complete network configuration, correctly

labeled dataset, complete traffic, complete interaction, complete capture, diversity of

protocols and attacks, anonymity, heterogeneity, having an exhaustive feature set and

collecting metadata [45]. Until CICIDS, none of the existing datasets met these 11

critical requirements.

The traffic capture period lasted five days, of which only one contained normal traffic,

while the remaining four mixed normal traffic with different types of network attacks

at different times. The B-profile system (Benign Profile System) was used to emulate

human behaviour when generating network traffic. The CICFlowMeter 3.6 tool allowed

the extraction of 80 features, which were then screened to choose the most appropriate

features to detect each attack. Finally, all the traffic was grouped into eight CSV files.

34

2.4 Data Preprocessing Techniques

2.3.1.6 CIC-IDS2018 [46]

CSE-CIC-IDS 2018 dataset consists of 15 attack types, and a study performed prepro-

cessing tasks such as merging classes of the same family such as DoS or Web Attack. The

CSE-CIC-IDS 2018 dataset has 80 features, and it is a dataset that reflects relatively

recent attack data for other datasets. A dataset intends to simulate and demonstrate a

behaviour or a real situation in a given scenario. Regardless of the scenario, the dataset

must be constructed to facilitate predictions for computer learning systems.

2.3.1.7 CIC-IDS2018 on AWS (Original)

This dataset was sourced fully from 2018 and will not be updated. Finally, all the traffic

was grouped into many pcap files and hosted in AWS Command Line Interface. This

dataset has only raw network traffic data in the pcap file.

2.4 Data Preprocessing Techniques

Intrusion detection involves identifying and preventing unauthorized access, misuse, or

modification of computer systems or networks. Data preprocessing plays an important

role in preparing data for intrusion detection. Figure 2.5 shows the data preprocessing

techniques. Here are some data preprocessing techniques that are commonly used in

intrusion detection:

Figure 2.5: Data Preprocessing Techniques

35

2. LITERATURE REVIEW & RESEARCH GAPS

• Normalization: Min-Max normalization [47], [48], Standard scalar [48], Quan-

tile transforms [49] [50], Data cleaning, Data deduplication, and Balancing the

dataset.

• Multivariate Analysis: Multiple Regression [51], Multivariate ANOVA, Multivari-

ate Covariance Analysis [52], Factor Analysis, Cluster Analysis, Multiple Discrim-

inant Analysis, and Multidimensional Scaling.

• Data Resampling techniques: Undersampling, Oversampling algorithms such as

ADASYN, BorderlineSMOTE, SMOTE, RandomOverSampler, SVMSMOTE, KMeansS-

MOTE, RegularSMOTE, SMOTENC, etc [53].

• Dimension Reduction based Feature Selection: Feature selection and Feature Ex-

traction. Dimension reduction can be achieved through Principal Component

Analysis (PCA) and Singular Value Decomposition (SVD).

2.4.1 Data Resampling techniques

Data resampling is a preprocessing method that balances class samples by removing a

large number of data samples or generating a small number of data samples to solve

the problem of data imbalance in which the distribution according to each class is not

uniform. The two classes, the over-sampling method and the under-sampling method,

are classified based on the way in which the standards are established and modified [53].

Afterwards, there exist various methods and techniques to achieve data balance. The

term sampling is commonly used, a process that aims to balance the discrepancies of

quantities between the examples of each class. These techniques can be divided into

two approaches:

Undersampling

In general, the number of normal data in the dataset is overwhelmingly greater than

that of anomaly data. The undersampling technique is a method of removing samples of

a class that occupies a high proportion. Various types of Under-sampling Algorithms in-

clude ClusterCentroids, RandomUnderSampler, InstanceHardnessThreshold, NearMiss,

TomekLinks, EditedNearestNeighbours, RepeatedEditedNearestNeighbours, AllKNN,

OnesidedSelection, CondensedNearestNeighbour, NeighbourhoodCleaningRule.

36

2.4 Data Preprocessing Techniques

Oversampling

The method generates new occurrences of classes with few examples from existing ex-

amples. This creation process can be done randomly or synthetically. When forecasting

and analyzing data generated in real life, the lack of data is a common problem. Such

a problem suffers from the difficulty of configuring an environment for data collection

or that the probability of occurrence of an anomaly is very small than that of a sit-

uation judged as normal. The oversampling technique generates similar data based

on real data rather than simple replication, and there are various types of algorithms

such as ADASYN [18], BorderlineSMOTE [17], SMOTE [16], RandomOverSampler,

SVMSMOTE, KMeansSMOTE, RegularSMOTE, SMOTENC, CTGAN [1] etc.

2.4.1.1 Literature Survey of Data Resampling Techniques

In intrusion detection or detection of malicious behaviour in a network, it is essential

to accurately classify a small number of data rather than the prediction rate of the

actual data. However, most classification algorithms are designed because the data dis-

tribution is even. Hence, the dataset with an imbalance problem has low classification

performance presented by Charitou et al. [54]. In addition, Chandola et al. identified

since there is an overwhelming amount of data from multiple classes, minority classes

are ignored, or the problem of biased prediction occurs in the learning process [41].

Correctly classifying the fractional data solves the class imbalance problem, and it is

directly related to enhancing the performance of the predictive model. Ali et al. worked

on intrusion detection and found the dataset was imbalanced. The number of attack

classes accounts for about 1:100 to 1:10000 of the normal class. Except for Dos and

DDoS attacks, which are bandwidth exhaustion attacks, most attacks consist of a small

number of data [55].

Sharafaldin et al. [56] applied Singular Value Decomposition (SVD) to the CICIDS2017

dataset. The problem that the algorithm is not good at learning small numbers of data

was solved by learning the features of high importance for each attack class. Nziga et

al. [57] confirmed the classification performance using PCA-based dimension reduction

in the KDD99 dataset. Kausar et al. [58] reduced the dimension from 38 to 10 using

PCA and confirmed that 10 showed the lowest False Alarm Rate (FAR). Lakhina et

al. [59] compared the classification performance when reducing 41 dimensions to 8 by

37

2. LITERATURE REVIEW & RESEARCH GAPS

applying PCA to the NSL-KDD dataset and learning the entire dataset. Dimensional

reduction during preprocessing means recombining high-dimensional features into the

axis that best describes the data.

Cieslak et al. [60] analyzed the performance of the Ripper algorithm by comparing the

SMOTE and Cluster-SMOTE methods. Tesfahun et al. [61], and Gonzalez-Cuautle et

al. [62] verified that the performance of the classifier that preprocessed the data using

SMOTE sampling and feature selection was improved compared to the non-sampling

group. Yan et al. [63] proposed a model that enhances the limitations of the existing

sampling method using the NSL-KDD dataset. Region adaptive SMOTE, which gener-

ates fractional data by dividing regions similarly to Borderline-SMOTE, showed superior

performance compared to SMOTE in F1-score, Recall, and Precision. An analysis of

representative methodologies for enhancing the class imbalance problem is presented,

and CTGAN oversampling is described utilizing a GAN and DL algorithm.

2.4.2 Dimension Reduction based Feature Selection

In real cases, datasets can have hundreds of features and thousands or millions of in-

stances. But not always are the features all important to discover the preferred patterns.

Feature selection algorithms are used to find the features’ importance or degree of rel-

evance. The selection process involves choosing a subset of features from the originally

available dataset to create a model that maintains or improves the results. This process

is very useful when the datasets have many features, and only a small subset is likely

to be relevant for solving the problem.

Although data reduction may seem problematic initially, reducing the dataset may im-

prove the results obtained by forecasting models [64]. There are direct benefits, such

as saving processing time and computing resources, but these are not the top priority.

Using smaller datasets also reduces the likelihood of overfitting. Fewer features also

allow a smaller area of research and fewer possibilities of wrong decisions and inconsis-

tent generalizations. An additional benefit is a reduction in the number of features that

appear in the detected patterns, which helps to make these patterns easier to perceive

[65].

Figure 2.6 shows the feature selection methods. Typical feature selection techniques

fall into two categories, i.e., filter and wrapper. The wrapper method uses a classifi-

38

2.4 Data Preprocessing Techniques

Figure 2.6: Feature Selection for Intrusion Detection

cation algorithm. A feature is selected by evaluating the detection rate’s importance

through the classification algorithm’s analysis result. Chae et al. [66] suggested the filter

method measures distance and correlation instead of a machine-learning algorithm to

extract irrelevant or unnecessary features. Significant features are selected using inde-

pendent feature selection techniques such as relationship measurement and consistency

measurement. Feature selection algorithms can be classified into Filter Approach and

Wrapper Approach.

Filter Approach

This type of approach precedes the classification process. It is independent of the

learning algorithm, being computationally simple, fast, and scalable. The resulting

dataset can be used with different classifier algorithms using the filtering method [67].

Wrapper Approach

The Wrapper approach uses the classification algorithm itself to measure the impor-

tance of the feature set and therefore depends on the classification model used. These

methods generally perform better than filtering methods because the feature selection is

optimized for the classification algorithm used. However, these methods can be compu-

tationally too expensive for large datasets, as each feature has to be evaluated with the

39

2. LITERATURE REVIEW & RESEARCH GAPS

chosen classification algorithm. This approach identifies the features that it considers

relevant and prescribes the removal of those that do not contribute to obtaining better

accuracy with the model [68].

Principal Component Analysis

It is a commonly used dimensionality reduction technique that is often used as a pre-

processing step in machine learning pipelines. It can also be used for feature selection,

although it is not a traditional feature selection method. In PCA-based feature selec-

tion, the idea is to identify the principal components that capture the most variance in

the data and use only these components as features. This can be useful for reducing

the number of features in high-dimensional data and also for removing noisy features

that don’t contain much information.

2.4.2.1 Literature Survey of Dimensionality Reduction based Feature Se-
lection

In the field of intrusion detection or detection of malicious behaviour in a network, it is

essential to accurately classify a small number of data rather than the prediction rate

of the actual data. However, most classification algorithms are designed because the

data distribution is even. Hence, the dataset with an imbalance problem has compara-

tively low classification performance identified by Charitou et al. [54]. Vinayakumar et

al. [69] used relatively recently collected network traffic datasets such as UNSW-NB15

[43], Kyoto [70], and CIC-IDS2017 as well as KDD Cup 1999 and NSL-KDD datasets

[24] for their study. Aimed at mesh-type wireless networks, the solution involving the

composition of classifiers proposed by Vijayanand et al. [71] makes use of multiple SVM

classifiers, each specialized in a type of attack. In his research, multiple local selections

of features are performed by genetic algorithms so that the selected set of features is

directly associated with the attack type being identified. The solution proposed in their

work was validated using the DFA-LD [72], and CIC-IDS2017 [25] benchmark datasets.

Using a dataset built specifically for this purpose in a mesh-type wireless network simu-

lator obtained an accuracy of 96.95%, 99.85%, and 95.7%, respectively, in each of these

cases.

Iman Sharafaldin et al. [56] applied SVD to the CIC-IDS 2017 dataset, a dataset for

40

2.4 Data Preprocessing Techniques

intrusion detection. The effect of feature extraction, a preprocessing process, on the

prediction performance of the random forest regression model was confirmed. As the

object of optimization and the hyperparameters of an MLP, the solution presented by

Kanimozhi et al. [73]. The binarized version of the problem obtained an accuracy

on the validation set of the order of 99.97% on the CIC-IDS2017 benchmark dataset.

The work by Shenfield et al. [74] also proposed using an MLP network that performs

fast classifications once they have been properly trained. Using 10-fold cross-validation,

their solution achieved average performance in terms of accuracy of the order of 98%

and sensitivity of 95%. Marta Catillo et al. [75] tested against unseen malicious traffic

data, although closely related to the CIC-IDS2017 dataset. Mahdi Soltani et al. [76]

proposed Deep Intrusion Detection (DID) system and showed a high performance in

terms of precision and recall on CIC-IDS17/18 IDS datasets.

In particular, various ML techniques that can extract and detect attack patterns by

learning a model based on a large amount of network traffic data have been consistently

studied. Kim et al. [77] applied a genetic algorithm with a variety of chosen fitness

functions and convergence Hyperparameters. Jalil et al. [78] compared the performance

of detection models using NNs, Support Vector Machines (SVM), and Decision Trees

(DT) and confirmed that the DT model showed higher performance than the other two

models. Tianchen and Vuppala et al. [79] confirmed through experiments that the per-

formance of the post-anomaly detection model strongly depends on the experimental

environment and settings. In addition, since there is an overwhelming amount of data

from multiple classes, minority classes are ignored, or the problem of biased prediction

occurs in the learning process [41]. It correctly classifying the fractional data solves

the class imbalance problem, and it is directly related to the improvement of the per-

formance of the predictive model [55]. The problem that the algorithm is not good at

learning small numbers of data was solved by learning the features of high importance

for each attack class. J. Nziga [57] confirmed the classification performance according

to PCA and Multidimensional Scaling (MDS) dimension reduction in the KDD-CUP-99

dataset. Jain et al. [80] compared the F1 scores of the KDD 99 dataset according to

the pretreatment method.

S. Lakhina et al. [59] compared the classification performance by reducing 41 dimen-

sions to 8 by applying PCA to the NSL-KDD dataset and learning the entire dataset.

N. Kausar et al. [58] reduced the dimension from 38 to 10 using PCA and confirmed

41

2. LITERATURE REVIEW & RESEARCH GAPS

that 10 showed the lowest False Alarm Rate (FAR) on NSL-KDD. However, in the

above study, the detection performance for the new attack type could not be confirmed

because the new attack type was not considered when separating the training data and

the evaluation data. Further research was conducted to reduce the feature size without

the loss of information. Feature reduction using PCA and feature reduction using linear

discriminant analysis were studied, and the performance of PCA was higher than that

of linear discrimination [81]. However, PCA is a linear transformation that does not

capture non-linear correlations among features. The observation in the literature is the

use of pre-processing related to feature selection and extracting the feature. At the

same time, feature selection allows you to reduce the dataset size and work on it by

maintaining a minimal subset of informational features. The feature extraction replaces

pre-existing features with new denser features from an informative point of view. After

that, combine them or identify relationships between them. The dimensionality reduc-

tion provided by both techniques speeds up the classification while contributing to the

capacity of the generated models to make correct predictions, considering that it values

the maintenance of more informative features at the expense of more minor informative

features.

2.5 Machine Learning Paradigm and Computational As-
pects

Computational learning consists of a set of learning, imitation and prediction techniques

that can be used in information processing tasks based on the identification of behaviour

patterns with minimal human intervention [82]. It can also be described as a process of

solving a problem based on a set of data and the consequent algorithmic construction

of a statistical model based on that set of data. Machine learning is defined, in a

summarized way, as an automated process of extracting patterns from a dataset [83]

[84].

2.5.1 Classification and Regression Problems

In this research work mainly, we are focusing on classification and some time regression.

These problem-solving strategies are part of supervised learning only. According to the

description above, the features of a dataset used in a supervised learning algorithm can

42

2.5 Machine Learning Paradigm and Computational Aspects

Figure 2.7: Machine Learning Techniques

be divided into the set of input features x and the feature corresponding to the desired

output y, known as a label. This type of learning uses an algorithm to build a model

y = f(x) that, ideally, should give the correct answer for any example in the problem

domain. That is, the objective is to improve the model as much as possible so that,

when confronted with new input data x, it is able to calculate the correct output y with

a satisfactory degree of accuracy [85].

These algorithms aim to solve problems of two types: Classification and Regression:

Classification

Classification problems are problems where, using the set of input values x, the model

returns a value corresponding to the category y to which that set of values corresponds.

We can have, as examples, types of attacks on a computer network, types of diseases,

genres, and other types of categories. Several classification algorithms are known as

Logistic Regression, Decision Trees, Distributed Random Forest, Multilayer Perceptron,

and Naïve Bayes, among others.

Regression

In the case of regression problems, the result is not the identification of a category

but the prediction of a continuous value y. This value can be a shoe size, a height, a

salary, a blood sugar rate, or a salary, among others. Your forecast model establishes a

43

2. LITERATURE REVIEW & RESEARCH GAPS

relationship between the independent variables x and the dependent variables y. Some

of the most popular regression algorithms are: Simple Linear Regression, Gradient

Boosting Tree, Genetic Algorithm, K-Nearest Neighbor, and Support Vector Machines

[85].

2.5.1.1 Literature Survey of Artificial Neural Network based IDS

In artificial neural networks, large numbers of biological neuron cells are used to simulate

the fast learning performance of a network of neurons. In the ANN, the node simulates

the behaviour of a neuron cell. ANN has various layers and functional blocks where

the training data simulate according to the user requirements. At the same time, ANN

uses the brain’s processing to develop algorithms that can be used to model complex

patterns and prediction problems [86]. In addition, Multi-objective genetic algorithms

fall under the category of nature-inspired biological soft computing approaches [23].

Multi-objective genetic algorithms apply operators to a population to optimize the

outcome. The initial population is generated randomly by default and consists of a set

of points in the projection plain.

Al-Yaseen et al. [87] presented Multi-level hybrid supervised learning techniques capable

of reducing the number of false positives in varied attacks. The work demonstrated

the feasibility of Random Forest and modified K-means in dealing with the problem,

validating the proposal in a real and proper dataset.

Kamarudin et al. [88] proposed a model that uses the Random Forest algorithm to

operate Big Data generated by IDS. The dataset used contains several types of attacks,

including DoS. The work concluded that the model proposed by the author achieves

better results than the previous models. However, the authors used the NSL-KDD

dataset, a dataset less current than the one used in the present work. Finally, Wang

et al. [89] presented a methodology capable of optimizing the number of false alarms

in classifying intrusion alerts. The proposed algorithm was able to obtain satisfactory

results when compared to the J48 decision tree algorithm.

2.6 Selection of Hyperparameters

Hyperparameters are parameters that are set before training a machine learning model

and cannot be learned from the data. They control the learning process and the be-

44

2.7 Statistical Preliminaries

haviour of the model. The selection of hyperparameters has a significant impact on the

performance of the model, and hence it is an important step in the machine-learning

process. These include measures of central tendency, such as the mean and median, mea-

sures of variability, such as the range and standard deviation, probability distributions,

hypothesis testing, Overfitting and Underfitting, Variance, Learning Rate, Selection of

Hyperparameters, Selection of weight and Biases, Back-propagation Procedure, Opti-

mizer, Computation of Boundary Region, Uncertainty and Inconsistency, Inconsistency

Checking, Features’ Correlations, and regression analysis.

2.7 Statistical Preliminaries

In machine learning, statistical preliminaries play a crucial role in understanding and

interpreting the results of the models.

Receiver Operating Characteristics (ROC Curve)

ROC curves derived from signal detection theory of physics [90] are used on the one

hand to visualize the relationship between the detection rate and false-positive rate of

a classifier and to compare the accuracy of different classifiers while tuning. The ROC

curve describes the relationship between the model’s sensitivity (true positive rate, or

TPR) versus specificity (false positive rate: described for 1-FPR). TPR, known as the

model’s sensitivity, is mathematically the ratio of correct classifications of the "positive"

class divided by all the positive classes available in the dataset.

Confusion Matrix

Table 2.4 shows a confusion matrix, and it is a table used to evaluate the performance

of a classification algorithm. It is used to assess the accuracy of a binary classifier

by comparing the predicted classifications with the actual classifications. When an-

alyzing the results of a computer learning algorithm, especially related to intrusion

detection systems, all metrics are related to the number of true positive predictions,

true negative predictions, false positive predictions and false negative predictions [91]

[92]. These metrics provide a comprehensive evaluation of the performance of the clas-

sification algorithm. This matrix aims to evaluate or interpret the results obtained by

45

2. LITERATURE REVIEW & RESEARCH GAPS

Table 2.4: Confusion Matrix

the classification algorithms. This matrix obtains a true or false relationship between

the predicted data axis and the observed real data axis. Next, important metrics arising

from the confusion matrix are presented.

The rows of the confusion matrix represent the predicted class, while the columns rep-

resent the actual class. The values in the matrix cells represent the number of instances

predicted to be in a certain class but belong to another class. Here’s a detailed expla-

nation of each row and column in the confusion matrix:

1. True Positive (TP) Row: This row represents the instances that were predicted

to be positive and are actually positive. The value in the cell under the "Actual

Positive" column is the number of true positive predictions.

2. False Positive (FP) Row: This row represents the instances that were predicted

to be positive but are actually negative. The value in the cell under the "Actual

Negative" column is the number of false positive predictions.

3. True Negative (TN) Column: This column represents the instances that were

predicted to be negative and are actually negative. The value in the cell under

the "Predicted Negative" row is the number of true negative predictions.

4. False Negative (FN) Column: This column represents the instances that were

predicted to be negative but are actually positive. The value in the cell under the

"Predicted Positive" row is the number of false negative predictions.

It is important to understand the values in each cell of the confusion matrix, as they

46

2.7 Statistical Preliminaries

provide valuable information about the classifier’s performance. The row and column

sums can be used to calculate the metrics such as Accuracy, Precision, Recall, F-Score,

False Positive Rate, and False Negative Rate.

Accuracy

Accuracy is the proportion of samples correctly classified according to the total number

of samples. This method by itself is not sufficient. Because it is used when we have the

same class. Accuracy is a metric calculated from the division between the number of

True Forecasts (True Positive (TP) and True Negative (TN)) and the total number of

forecasts. Accuracy is best suited for balanced datasets.

Accuracy =
True Positives + True Negatives

All Samples

Precision

Precision is the proportion of positive samples correctly classified to the total number

of positive classification samples. It is simply the number of samples found that is hit.

The precision value is calculated from the division between the True Positive Forecasts

(TP) and the Total Positive Forecasts (TP + FP). A low result indicates the presence

of a high value of False Positive Forecasts [91].

Precision =
True Positive

True Positive + False Positive

Recall

The recall, or True Positive Rate, is the ratio of the true positive classification to the

total number of positive samples in the dataset. Generally, it indicates how many true

positives have been found. The recall metric is calculated by dividing the True Positive

Forecasts (TP) and the sum of the True Positive Forecasts (TP) and the False Negative

Forecasts (FN). Analyzing the possible variations of results, it is possible to verify that

a low recall value indicates the presence of a high number of False Negative Forecasts

[91].

47

2. LITERATURE REVIEW & RESEARCH GAPS

Recall =
True Positive

True Positive + False Negative

F-Measure or F-Score

The F-Measure is a weighted value that results from dividing twice the multiplication

between recall and precision with the sum of these two metrics. It is mostly used for

unbalanced datasets.

F-Measure/ F-Score =
2 x (Recall x Precision)

Recall + Precision

2.8 Identified Research Gaps

As a result of analyzing the literature reviewed, various research gaps and areas for

improvement were found, which are not addressed adequately in most systems. In or-

der to improve IDS performance further, we need to address these gaps. The research

gaps are covered in depth given as Table number 2.5. Further, it has been seen that

signature-based attack detection with open-source IDS tools and anomaly-based at-

tack detection with machine learning approaches played prominent roles to developed

a robust intrusion detection system. Finally, some research gaps are identified in the

literature reviews. In this thesis, an effort has been made to address all research gaps.

48

2.8 Identified Research Gaps
S
.

N
o.

A
u
th

or
s

&
P
ap

er
T

it
le

M
et

h
od

ol
og

y
D

at
as

et
&

S
et

u
p

R
es

ea
rc

h
G

ap

1
St

ia
w

an
,e

t
al

.(
20

19
),

"I
nv

es
ti

ga
ti

ng
B

ru
te

Fo
rc

e
A

tt
ac

k
P
at

te
rn

s
in

Io
T

N
et

w
or

k"

Si
m

ul
at

or
ba

se
d

Io
T

N
et

w
or

k

SN
M

P
D

at
as

et

T
hi

s
ap

pr
oa

ch
re

qu
ir

ed
a

ha
rd

w
ar

e
co

m
po

ne
nt

se
t

up
to

de
te

ct
in

tr
us

io
n

in
th

e
Io

T
ne

tw
or

k.
T

he
ap

pr
oa

ch
ta

ke
s

co
m

pa
ra

ti
ve

ly
m

or
e

ti
m

e
w

he
n

de
pl

oy
ed

in
th

e
ne

tw
or

k
ar

ch
it

ec
tu

re
.

2
D

an
da

,J
ag

an
et

al
.

(2
01

6)
,"

A
tt

ac
k

id
en

ti
fic

at
io

n
fr

am
ew

or
k

fo
r

Io
T

de
vi

ce
s"

R
an

SN
O

R
T

In
tr

us
io

n
D

et
ec

to
r

on
th

e
br

id
ge

co
nn

ec
te

d
th

ou
gh

W
iF

i

T
es

tb
ed

(A
rd

ui
no

),
W

iz
ne

t
E

th
er

ne
t

Sh
ei

ld
W

51
00

T
hi

s
ap

pr
oa

ch
re

qu
ir

es
a

de
ep

kn
ow

le
dg

e
of

th
e

sy
st

em
co

m
po

ne
nt

s
to

de
ri

ve
th

e
Sn

or
t

ru
le

s.
In

so
m

e
sc

en
ar

io
s,

ge
ne

ra
ti

ng
ru

le
s

fo
r

co
m

pl
ex

-n
at

ur
ed

Io
T

sy
st

em
s

is
ch

al
le

ng
in

g,
an

d
ti

m
e

is
ta

ke
n.

Io
T

de
vi

ce
s

m
us

t
be

m
on

it
or

ed
fo

r
lig

ht
bl

in
ki

ng
w

he
n

an
at

ta
ck

is
de

te
ct

ed
.

3
Je

su
s,

R
uı

z
et

al
.

(2
01

9)
,"

H
ow

to
Im

pr
ov

e
th

e
Io

T
Se

cu
ri

ty
Im

pl
em

en
ti

ng
ID

S/
IP

S
T
oo

l
us

in
g

R
as

pb
er

ry
P

i"

Sn
or

t
ba

se
d

Io
T

P
ro

to
ty

pe
Im

pl
em

en
ta

ti
on

R
ea

l-t
im

e

T
he

sy
st

em
pe

rm
it

s
se

cu
re

co
m

m
un

ic
at

io
n

w
it

ho
ut

re
pu

di
at

io
n.

E
ve

n
th

ou
gh

th
is

ap
pr

oa
ch

pr
ov

id
es

hi
gh

pr
ec

is
io

n,
th

e
de

ve
lo

pe
d

sy
st

em
re

su
lt

s
in

a
co

m
pa

ra
ti

ve
ly

lo
w

er
re

ca
ll

af
te

r
de

pl
oy

in
g

th
e

ru
le

s
in

th
e

ne
tw

or
k.

In
ad

di
ti

on
,i

t
is

di
ffi

cu
lt

an
d

te
di

ou
s

to
lis

t
al

lt
he

po
ss

ib
le

sy
st

em
ru

le
s.

4
G

on
za

le
z,

et
al

.
(2

02
0)

,
"S

yn
th

et
ic

m
in

or
it
y

ov
er

sa
m

pl
in

g
te

ch
ni

qu
e

fo
r

cl
as

si
fic

at
io

n
ta

sk
s

in
ID

S
da

ta
se

ts
"

Sy
nt

he
ti

c
M

in
or

it
y

O
ve

rs
am

pl
in

g
T
ec

hn
iq

ue
(S

M
O

T
E

),
G

ri
d-

se
ar

ch
al

go
ri

th
m

IS
C

X
B

ot
14

,
C

ID
D

S-
00

1

It
ha

s
so

m
e

dr
aw

ba
ck

s,
su

ch
as

-
ov

er
sa

m
pl

in
g

no
is

y,
no

ni
nf

or
m

at
iv

e,
an

d
no

ns
ig

ni
fic

an
t

po
rt

io
ns

in
th

e
sa

m
pl

e
se

t.
A

lim
it

at
io

n
oc

cu
rs

w
he

n
th

e
co

ns
tr

uc
ti

on
of

da
ta

se
ts

is
pr

on
e

to
un

ba
la

nc
ed

in
fo

rm
at

io
n,

le
ad

in
g

to
do

w
ng

ra
di

ng
th

e
le

ar
ni

ng
st

ag
es

of
cl

as
si

fic
at

io
n

al
go

ri
th

m
s

an
d

ca
us

in
g

a
fla

w
ed

in
te

rp
re

ta
ti

on
of

m
al

ic
io

us
pa

tt
er

ns
.

49

2. LITERATURE REVIEW & RESEARCH GAPS

5
C

ha
nd

ol
a,

et
al

.
(2

01
0)

,"
A

no
m

al
y

de
te

ct
io

n:
A

su
rv

ey
"

ID
S

Su
rv

ey
of

T
ec

hn
iq

ue
s

(C
la

ss
ifi

ca
ti

on
,

C
lu

st
er

in
g,

N
ea

re
st

N
ei

gh
bo

r,
an

d
St

at
is

ti
ca

l)
&

A
pp

lic
at

io
ns

Su
rv

ey
It

is
of

te
n

ch
al

le
ng

in
g

to
di

st
in

gu
is

h
an

om
al

ou
sl

y
da

ta
fr

om
no

is
e.

T
he

pa
pe

r
di

sc
us

se
s

cr
it

ic
al

is
su

es
in

th
e

ID
S

do
m

ai
n

w
it

h
di

ffe
re

nt
te

ch
ni

qu
es

an
d

ap
pl

ic
at

io
n

po
in

ts
of

vi
ew

(C
yb

er
-I

nt
ru

si
on

D
et

ec
ti

on
,F

ra
ud

D
et

ec
ti

on
,M

ed
ic

al
A

no
m

al
y

D
et

ec
ti

on
,I

nd
us

tr
ia

lD
am

ag
e

D
et

ec
ti

on
,I

m
ag

e
P

ro
ce

ss
in

g,
T
ex

tu
al

A
no

m
al

y
D

et
ec

ti
on

,a
nd

Se
ns

or
N

et
w

or
ks

).

6
A

li,
et

al
.

(2
01

3)
,

"C
la

ss
ifi

ca
ti

on
w

it
h

cl
as

s
im

ba
la

nc
e

pr
ob

le
m

"

Su
rv

ey
on

cl
as

s
im

ba
la

nc
ed

cl
as

si
fic

at
io

n

N
SL

-K
D

D

T
hi

s
is

on
e

of
th

e
ap

pr
op

ri
at

e
an

d
no

ve
l

m
et

ho
do

lo
gi

es
fo

r
de

al
in

g
w

it
h

cl
as

s-
im

ba
la

nc
ed

da
ta

cl
as

si
fic

at
io

n.
H

ow
ev

er
,t

he
da

ta
sa

m
pl

e
w

as
ch

os
en

w
it

hi
n

th
is

m
et

ho
d

m
ay

be
bi

as
ed

to
w

ar
d

a
pa

rt
ic

ul
ar

at
ta

ck
ca

te
go

ry
if

it
is

no
t

de
al

t
w

it
h

ex
tr

a
ca

re
w

hi
le

sa
m

pl
in

g.

7

Y
an

,B
in

gH
ao

et
al

.
(2

01
7)

,"
A

no
ve

l
re

gi
on

ad
ap

ti
ve

SM
O

T
E

al
go

ri
th

m
fo

r
in

tr
us

io
n

de
te

ct
io

n
on

im
ba

la
nc

ed
pr

ob
le

m
"

R
eg

io
n

A
da

pt
iv

e
SM

O
T

E
,S

V
M

,
B

P
ne

ur
al

ne
tw

or
k,

R
an

do
m

Fo
re

st
s

N
SL

-K
D

D

T
hi

s
pa

pe
r

pr
op

os
es

th
e

R
eg

io
n

A
da

pt
iv

e
Sy

nt
he

ti
c

M
in

or
it
y

O
ve

rs
am

pl
in

g
T
ec

hn
iq

ue
(R

A
-S

M
O

T
E

),
bu

t
it

do
es

no
t

w
or

k
on

ta
bu

la
r

da
ta

,n
or

is
it

as
so

ci
at

ed
w

it
h

th
e

R
is

k
of

O
ve

rfi
tt

in
g.

8
C

ha
ri

to
u,

et
al

.(
20

19
),

"S
em

i-s
up

er
vi

se
d

G
A

N
s

fo
r

fr
au

d
de

te
ct

io
n.

"

Se
m

i-s
up

er
vi

se
d

G
A

N
s

(l
og

is
ti

c
re

gr
es

si
on

,R
F
,

M
LP

)

C
re

di
t

C
ar

d
Fr

au
d

D
at

as
et

T
he

ge
ne

ra
ti

ve
ad

ve
rs

ar
ia

ln
et

w
or

k
is

us
ed

in
th

is
pa

pe
r

fo
r

fr
au

d
de

te
ct

io
n

in
th

e
ne

tw
or

k.
E

ve
n

th
ou

gh
G

A
N

ar
ch

it
ec

tu
re

s
ar

e
w

el
l-p

ro
ve

n
am

on
g

th
e

re
se

ar
ch

co
m

m
un

it
y,

th
ey

co
ns

is
t

of
no

nd
et

er
m

in
is

ti
c

an
d

sl
ow

co
nv

er
si

on
ra

te
s.

50

2.8 Identified Research Gaps

9
Sh

ar
af

al
di

n,
et

al
.

(2
01

8)
,"

T
ow

ar
d

ge
ne

ra
ti

ng
a

ne
w

in
tr

us
io

n
de

te
ct

io
n

da
ta

se
t

an
d

in
tr

us
io

n
tr

affi
c

ch
ar

ac
te

ri
za

ti
on

’

M
ac

hi
ne

le
ar

ni
ng

al
go

ri
th

m
s

C
IC

ID
S2

01
7

T
he

au
th

or
s

pr
op

os
ed

a
no

ve
ld

at
as

et
th

at
ha

s
th

e
po

te
nt

ia
lt

o
pr

ov
id

e
cl

ar
it
y

an
d

pr
ec

is
io

n.
It

ha
s

a
co

ns
id

er
ab

le
go

od
nu

m
be

r
of

fe
at

ur
es

as
w

el
la

s
an

am
pl

e
am

ou
nt

of
da

ta
po

in
ts

w
hi

ch
ca

n
be

effi
ci

en
tl

y
us

ed
fo

r
st

at
is

ti
ca

lm
od

el
in

g
an

d
bu

ild
in

g
no

ve
lI

D
S

sy
st

em
s.

D
ue

to
th

e
ab

se
nc

e
of

pr
e-

pr
oc

es
si

ng
te

ch
ni

qu
es

,
th

es
e

st
ra

te
gi

es
ta

ke
m

uc
h

co
m

pu
ta

ti
on

al
ti

m
e.

10
U

lla
h,

Im
ti

az
et

al
.

(2
01

9)
,"

A
tw

o-
le

ve
l

hy
br

id
m

od
el

fo
r

an
om

al
ou

s
ac

ti
vi

ty
de

te
ct

io
n

in
Io

T
ne

tw
or

ks
"

Fe
at

ur
e

E
lim

in
at

io
n,

SM
O

T
E

fo
r

ov
er

sa
m

pl
in

g

C
IC

ID
S2

01
7,

U
N

SW
15

T
hi

s
pa

pe
r

us
es

a
w

ra
pp

er
-b

as
ed

m
et

ho
do

lo
gy

fo
r

fe
at

ur
e

im
po

rt
an

ce
.

T
hi

s
ap

pr
oa

ch
m

ai
nl

y
fo

llo
w

s
gr

ee
dy

ra
th

er
th

an
dy

na
m

ic
se

ar
ch

,m
ak

in
g

th
is

m
or

e
co

m
pu

ta
ti

on
al

ly
in

te
ns

iv
e.

A
lt

ho
ug

h
ha

vi
ng

th
es

e
lim

it
at

io
ns

,t
hi

s
ap

pr
oa

ch
es

re
su

lt
in

lo
w

er
tr

ai
ni

ng
ti

m
e

in
th

e
ot

he
r

cl
as

si
fic

at
io

n
ph

as
e

in
tr

us
io

n
de

te
ct

io
n.

11
B

or
gh

es
i,

et
al

.
(2

01
9)

,"
A

no
m

al
y

de
te

ct
io

n
us

in
g

au
to

en
co

de
rs

in
hi

gh
pe

rf
or

m
an

ce
co

m
pu

ti
ng

sy
st

em
s"

D
ee

p
le

ar
ni

ng
D

.A
.V

.I
.D

.E
.

In
th

is
pa

pe
r,

th
e

au
th

or
s

us
ed

a
no

nl
in

ea
r

au
to

en
co

de
r

m
et

ho
d

to
so

lv
e

th
e

is
su

e
of

fit
ti

ng
,

bu
t

it
ca

n
su

ffe
r

fr
om

ov
er

fit
ti

ng
.

If
th

e
tr

ai
ni

ng
se

t
da

ta
is

in
su

ffi
ci

en
t,

an
au

to
en

co
de

r
at

ta
ck

cl
as

si
fic

at
io

n
pr

oc
ed

ur
e

w
ill

pr
ov

id
e

go
od

pe
rf

or
m

an
ce

;t
he

re
fo

re
,i

t
is

a
po

te
nt

ia
lc

an
di

da
te

fo
r

th
e

Io
T

ec
os

ys
te

m
.

12

Fa
ra

hn
ak

ia
n

et
al

.
(2

01
8)

,"
A

de
ep

au
to

en
co

de
r

ba
se

d
ap

pr
oa

ch
fo

r
ID

S"

D
ee

p
A

ut
o-

E
nc

od
er

K
D

D
-C

U
P

99
U

se
d

ve
ry

O
ld

da
ta

se
t

fo
r

M
L

m
od

el
.

51

2. LITERATURE REVIEW & RESEARCH GAPS

13
V

in
ay

a,
et

al
.

(2
01

8)
,

"D
ee

p
le

ar
ni

ng
ap

pr
oa

ch
fo

r
ID

S.
"

D
N

N
m

od
el

N
SL

-K
D

D
,

U
N

SW
-N

B
15

,
C

IC
ID

S
20

17

W
it

h
fe

w
er

no
de

s
in

th
e

ex
is

ti
ng

cl
us

te
r,

T
he

D
N

N
us

ed
in

th
is

pa
pe

r
ou

tp
er

fo
rm

s
th

e
cl

as
si

ca
ll

ea
rn

in
g-

ba
se

d
ap

pr
oa

ch
es

.

14

Ja
in

,M
ee

na
le

t
al

.
(2

01
9)

,"
A

st
ud

y
of

fe
at

ur
e

re
du

ct
io

n
te

ch
ni

qu
es

an
d

cl
as

si
fic

at
io

n
fo

r
an

om
al

y
de

te
ct

io
n"

N
on

lin
ea

r
P

C
A

,
D

ec
is

io
n

T
re

e
/S

V
M

/R
F

C
IC

ID
S2

01
7

T
hi

s
ap

pr
oa

ch
w

ill
fil

te
r

ou
t

th
e

op
ti

m
al

se
t

of
va

ri
ab

le
s

du
ri

ng
th

e
pr

e-
pr

oc
es

si
ng

ph
as

e.
H

ow
ev

er
,t

o
pr

oc
es

s
th

is
ta

sk
su

cc
es

si
ve

ly
is

ex
po

ne
nt

ia
ti

on
ti

m
e

ta
ke

n.
A

pa
rt

fr
om

th
is

,t
he

re
is

al
so

th
e

po
ss

ib
ili

ty
of

ov
er

la
pp

in
g

th
e

su
bs

et
s

in
to

th
e

ot
he

r
fil

te
re

d
va

ri
ab

le
se

ts
.

T
he

re
fo

re
th

e
ov

er
al

lt
im

e
an

d
sp

ac
e

co
m

pl
ex

it
y

ar
e

co
ns

id
er

ab
ly

hi
gh

er
.

15

M
ou

st
af

a,
et

al
.

(2
01

5)
,

"U
N

SW
-N

B
15

:
a

co
m

pr
eh

en
si

ve
da

ta
se

t
fo

r
ID

S"

C
om

pr
eh

en
si

ve
da

ta
se

t
fo

r
U

N
SW

-N
B

15

In
th

is
pa

pe
r,

th
e

au
th

or
s

ha
ve

co
m

pa
re

d
th

e
pr

op
os

ed
da

ta
se

t
w

it
h

an
ot

he
r

av
ai

la
bl

e
da

ta
se

t
re

ga
rd

in
g

va
ri

ou
s

st
at

is
ti

ca
l

pe
rf

or
m

an
ce

pa
ra

m
et

er
s.

16
C

at
ill

o,
M

ar
ta

,e
t

al
.

(2
01

7)
,"

T
ra

ns
fe

ra
bi

lit
y

of
m

ac
hi

ne
le

ar
ni

ng
m

od
el

s
le

ar
ne

d
fr

om
pu

bl
ic

in
tr

us
io

n
de

te
ct

io
n

da
ta

se
t

C
IC

ID
S2

01
7"

T
ra

ns
fe

ra
bi

lit
y

of
M

ac
hi

ne
le

ar
ni

ng
C

IC
ID

S2
01

7

T
he

au
th

or
s

in
th

is
pa

pe
r

ha
ve

us
ed

pr
om

in
en

t
ap

pr
oa

ch
es

of
tr

an
sf

er
le

ar
ni

ng
w

hi
ch

ro
bu

st
ly

ca
te

go
ri

ze
th

e
at

ta
ck

in
th

e
ne

tw
or

k.
H

ow
ev

er
,t

he
tr

an
sf

er
le

ar
ni

ng
m

et
ho

do
lo

gy
su

ffe
rs

fr
om

th
e

pr
ob

le
m

of
tr

ue
ne

ga
ti

ve
s

an
d

fa
ls

e
ne

ga
ti

ve
tr

an
sf

er
at

th
e

le
ar

ni
ng

st
ag

e.
T

hi
s

m
ay

so
m

et
im

es
de

gr
ad

e
th

e
ov

er
al

l
pe

rf
or

m
an

ce
of

th
e

sy
st

em
.

52

2.8
Id

entifi
ed

R
esearch

G
ap

s

17

Kanimozhi, et al.
(2019),"Artificial
intelligence-based IDS
with Hyperparameter
optimization
tuning on the
CSE-CIC-IDS2018"

Artificial
Neural
Network

CICIDS2018

However, the optimal number of the hidden layer,
as well as a set of hyperparameters (activation
function, learning rate value, randomized
procedure for generating and assigning weight
and biases value), need to be chosen very
carefully to fit the model in the best possible
manner according to the input IDS dataset.

18
Shenfield, et al.
(2018) ,"Intelligent
IDS using ANN"

Real-time
The data pre-processing steps require careful
attention in order to reflect good
precision in the attack classification phase.

19 Soltani, Mahdi, et al.
(2022),"A content-
based deep IDS"

LSTM CICIDS2018
The authors have used a basic LSTM-based
deep learning approach.
That will classify the attacks in the network.
One of the most notable limitations
of this approach is that - since LSTM
architectures are more prone to overfitting,
Dropout operation is generally harder to
implement.

20
Vijayanand, et al.
(2021),"IDS for
wireless mesh network
using multiple SVM
classifiers with GA
based feature selection"

GA-based
Feature
Selection,
SVM

WMN
Dataset

Authors have use a good combination of
GA and SVM.
This combination works well for small IDS
datasets but not large ones.
The use of SVM will make the kernel selection
hectic during the learning phase, and sometimes
SVM is also sensitive to learning the noise
(target classes overlap).

Table 2.5: Author and Paper Title, Methodology, Dataset, and Research Gap

53

Chapter 3

SERfSH - A Router for a Smart
Home

3.1 Introduction

In this chapter, research and analysis on cyber attacks, which are the main targets

of recent attacks, are conducted using recent attack tools, performing attacks, and

analyzing them through packets. It is meaningful in analyzing cases of hacking accidents

occurring around us, trends in hacking methods that are developing daily, intrusion

detection techniques using these illegal intrusions, intrusion detection methods related

to networks, and trends in the packets. An IDS is an active process or device that

analyzes system and network activity to determine whether unauthorized users log in

or malicious activity occurs.

Contribution of the Chapter

The contribution of this chapter is as follows:

• We contemplate the IoT network model conventionally established in smart homes.

• We have developed a low-cost testbed SERfSH: Secure Edge Router for Smart

Home, a Raspberry Pi 4 (Single-board Computer), Packet Sniffer (Wireless Micro-

controller), and six sensor-based devices are appended to it.

• Propose a method for automatically generating Snort rules by combining the

extracted string, location information, and header information.

54

3.2 Proposed Approach for Detection & Mitigation of Attacks

• Investigate the introvert behaviour of SERfSH and devices undergoing attacks and

security & privacy concerns.

• This setup is tested for fifteen attacks, and the results show that fourteen attacks

are detected and twelve attacks are mitigated. We are confident enough that

the proposed low-cost testbed SERfSH checks all incoming/outgoing traffic and

controls access to our smart home WiFi network. It will significantly increase

resistance to IoT-based attacks.

Outline of this chapter

The rest of the section is structured as follows: Section 3.2 describes the proposed

approach for the detection & mitigation of attacks with SERfSH experimental setup.

Section 3.3 presents the automated snort rule generation by the content rule extraction

algorithm. Section 3.4 shows the experiment and analysis of results with level-wise

IoT-attacks taxonomy. Finally, a conclusive discussion is given in section 3.5.

3.2 Proposed Approach for Detection & Mitigation of At-
tacks

We proposed a Secure Edge Router for Smart Home (SERfSH), resilient to many cy-

berattacks. Apart from handling internet connectivity, this edge router defends against

malicious activities and intruder attacks. This is a SNORT-based one-step solution for

protecting the smart home environment. The experimental setup comprises a Rasp-

berry Pi 4 model, an ESP32 microcontroller, six IoT devices, and a malicious actor

machine. This setup is tested with OWASP-based fifteen attacks on IoT devices.

3.2.1 SERfSH Experimental Setup

Figure 3.1 shows the inside & outside the network attacks testbed topology and SERfSH

experimental setup. In the SERfSH testbed, we installed the official Raspbian OS on it.

The API used for configuring the Raspberry Pi as a secure router is Raspap-WebGUI.

IoT gadgets were connected to this SERfSH and were assigned IP addresses using a

DHCP server. Raspap helped us to monitor the status of which gadgets were connected

to the SERfSH. It gives an 802.11ac wireless mode option with 5GHz. We configure a

55

3. SERFSH - A ROUTER FOR A SMART HOME

Figure 3.1: Inside & outside the Network Attacks Testbed Topology

SERfSH Access Point (AP) for our IoT gadgets to connect. It is possible to a Bridged-

AP mode, log-file output, and show/hide SSID in the broadcast.

ESP32 is a packet sniffer for alarm (beep/light). We programmed an ESP32 microcon-

troller using Arduino IDE studio as a packet sniffer.

As an attacker, we used Kali-Linux (Version = "2019.2") and "Parrot GNU/Linux" to

perform all attacks. We used Atheros AR9271 Wireless USB LAN Adapter to monitor

and send malicious packets. For practical testing, we built up IoT devices with the help

of different micro-controllers (Arduino Uno WiFi/ESP32-S0WD/ESP8266) and various

IoT sensors. We connected a micro-controller with SERfSH to link to the local wireless

network. Also, we tested with an Android App, "IP_WebCam", on a smart android

phone that turns your smartphone into a Network_Camera. Generally, two types of at-

tacks happen on the network interface: External (Outside) or Internal (Inside) attacks.

Snort is the most popular and most used network-based IDS in the open-source NIDS

and was first created by Martion Roesch in 1998. Snort detects intrusions by compar-

56

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm

ing and analyzing traffic packets passing through the system with internal rules and

performs packet logging and real-time traffic analysis on IP networks. In addition, it

performs protocol analysis, content comparison, and search functions and can detect

various attacks and scans (stealth port scan, buffer overflow SMB scan, OS fingerprint-

ing, CGI attack). Snort can be set in three main modes (Network intrusion detection,

Sniffer mode, and Packet logger). In snort mode, it reads packets from the network and

outputs them. In the packet logger mode, packets are stored in the storage medium

in log format. Network intrusion detection mode monitors and analyzes network traffic

with rules set by the user.

If we observe the configuration of Snort’s internal operation phase as shown in stan-

dard snort architecture. It comprises a packet sniffer, preprocessor, detection engine,

logging/warning, and log file/database. First, the packet sniffer receives a packet from

the network, and the preprocessor determines whether the packet is a malicious packet

or a valid packet before reaching Snort’s detection engine. Next, the malicious intru-

sion is detected by comparing it with the rules set by the user through the detection

engine. Finally, based on the results from the detection engine, the security adminis-

trator records alarms and logs to save the detection records in the form of log files and

databases.

This chapter proposes a method for generating snort content rules using a sequential

pattern algorithm. A more accurate rule could be created by extracting the common

string (content) observed from the input traffic and adding the corresponding content’s

location and header information. The validity of the proposed method was verified by

applying it to fifteen state-of-the-art attacks and tested inside & outside the network

attacks testbed environment.

3.3 Automated Snort Rule Generation: Content Rule Ex-
traction Algorithm

This section describes how to automatically create Snort Content Rules (SCRs) using

the sequential pattern algorithm. Table 3.1 demonstrates that while the SCRs can

include various components, only header and payload information are targeted. The

above example described the rule among packets using TCP for protocol and 80 for

destination port number. If the content of “cgi-bin/phf” is located between the 4th and

57

3. SERFSH - A ROUTER FOR A SMART HOME

Detection Rule Rule Header Rule Options

Configuration
Rule
Action

Protocol
Sender_IP /
Netmask

Sender_Port
Numbers

Direction
Operator

Receiver_IP /
Netmask

Receiver_Port
Numbers

"Payload Detection"
"Non-Payload Detection"
"Post-Detection"

Meaning
Treatment
Method

Protocol
Sender_IP
Address

Sender_Port
Number

Packet
Direction

Recipient_IP
Address

Recipient_Port
Number

Option/ Payload

Example alert tcp any any →
any/
192.168.10.12/24

80/111
(Content: "|cgi-bin/phf|";
msg:"mounted access";
offset:8; depth:100;)

Table 3.1: Snort Rule Syntax and Examples

30th bytes of the payload, a notification is sent.

Figure 3.2 shows the process of automatically create a Snort rule. Applications and

services to be analyzed for each host or malicious code-generated traffic are collected

for each host. Network packets with the exact communication path are merged in a

single flow to form one pattern sequence. The pattern sequence set is an input_string to

the pattern algorithm to uproot the content [93]. In the input sequence, the algorithm

discovers candidate content as they increase in length, beginning with the content with

a length of 1, and eventually extracts the content with a specific level of consent [94].

If only content is used, as a rule, the probability of false positives (traffic detection that

is not the target of detection) is high. Therefore, further information is investigated

and explained in the rule. Additional information is used in the header information and

content location information. The finally created Snort rule is applied to the network

setup on which the Snort open-source IDS is installed. We propose an automation

method targeting the step of creating an SCR from the collected traffic. The following

sections describe each part in detail.

3.3.1 Network Traffic Collection Phase

Collecting network traffic is the first step to rule creation. In order to collect traffic,

it is necessary to determine the detection target. Detection targets are very diverse

depending on the purpose of network management, such as application, service, attack,

and malicious code. When the detection target is determined, traffic generated from the

detection target is collected. To collect traffic directly from the host that generates the

traffic, use a network traffic collection tool such as Wireshark [95] [96] and Tcpdump

[97]. When collecting network-wide traffic, it is collected using the non-learning function

of the switch or a tap device. Equations 3.1 and 3.2 indicate the form of the collected

packet. NetworkPacketSet means a set of network packets. A single network packet

58

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm

Figure 3.2: The Flow of Automatically Create and Verify SCR

NP consists of two addresses (SendingHostip and RecevingHostip), source/destination

(Portnumber), hop limit/ time to live (Hoplimit), packet length (Packetlength), protocol

identifier/ stack (Protocolidentifier), and payload <α1α2α3...αα >. In particular, the

Payload consists of consecutive characters, and the content automatically generated

means a substring of the Payload.

NetworkPacketSet = {NP1, NP2, ..., NPρ} (3.1)

NPi =


Flowid, SendingHostip, RecevingHostip, Portnumber,

Hoplimit, Packetlength, P rotocolidentifier,
Payload =< α1 = ”data” : α2 = ”msg” : α3 = ”hi” : · · ·αα = ” ” >


(3.2)

Since only the traffic to be detected needs to be collected in traffic collection for rule

creation, collecting traffic from individual hosts is recommended to improve the ac-

curacy of the created rule. As shown in equation 3.3, the support is based on the

ServiceHost that generated the input traffic, traffic must be collected from at least two

ServiceHosts.

Support =
Number of Support ServiceHosts (svchost.exe)

Total Number of ServiceHosts (svchost.exe)
(3.3)

However, it is very cumbersome and impossible to collect traffic from multiple

ServiceHosts in a virtual traffic collection environment. There is the challenge to find a

59

3. SERFSH - A ROUTER FOR A SMART HOME

way in order to divide and store the traffic collected from the same ServiceHost in mul-

tiple files and calculate the support based on the input file instead of the ServiceHost.

That is, the criterion for calculating the support map may change according to the

environment of traffic collection.

3.3.2 Flow Configuration Steps

The collected packet aggregation traffic is configured as a network flow. The Network

Flows (NF) is used as a set of packets with the same tuple as in equations 3.4 and 3.5.

However, a flow in which the sender and receiver sides are symmetric is composed of

one flow, and the transmission direction (forward, backward) is written in each packet.

The flow defined is a bidirectional flow, including a packet set with the same tuple and

a symmetric packet set. Flowid specifies from which host the flow was collected to

calculate support.

NetworkF low = {NF1, NF2, ..., NFf} (3.4)

NFi =


Flowid, SendingHostip, RecevingHostip, SourcePortnumber,

DestinationPortnumber, Hoplimit, Packetlength, P rotocolidentifier,
forward =

{
P1, P2, . . . , Px | P1.5(tupe) . . . = Px.5(tupe)

}
,

backward =
{
P1, P2, . . . , Py | P1.5(tupe) . . . = Py.5(tupe)

}

(3.5)

The reason for composing a packet into a flow is that although snort is applied on a

packet-by-packet basis, a single message is divided into several packets and transmit-

ted (packet fragmentation) due to network characteristics. Therefore, if the packets

constituting a single flow are divided by transmission direction and the payloads are

combined, the actual transmitted payload message can be checked without interruption

of the message.

3.3.3 Sequence Pattern Construction Steps

Creating a sequence is accomplished by separating only the payload from the packets

and dividing them into the forward and reverse directions. If the flow consists of two-way

communication packets, two sequences are generated, and one sequence is generated in

the case of one-way communication traffic. A SequencePatternSet is composed of several

60

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm

SequencesPattern (SP) as shown in equation 3.6, and one sequence is composed of a

Flow ID (Flowid) and a string < s1, s2, s3, ...sm > as shown in equation 3.7.

SequencePatternSet = {SP1, SP2, ..., SPs} (3.6)

SPi = {Flowid, < s1, s2, s3, ...sm >} (3.7)

Write the flow ID in the sequence configured as in equations 3.6 and 3.7. This is used

to calculate support in the following content extraction step. If the support calculation

is based on a file, enter the file ID.

3.3.4 Content Extraction Step

Content extraction involves inputting a sequence pattern set and a borderline support

threshold, and content that meets the threshold is extracted. Here, the Apriori algo-

rithm is made more appropriate to match the requirements of content extraction. As

shown in equation 3.8, ContentSet (CS), the output of the algorithm, is composed of

several contents, and a single ContentSet is an adjacent substring of sequence pattern

string, as illustrated in equation 3.9.

ContentSet = {CS1, CS2, ..., CSc} (3.8)

CSi = {⟨apap+1 . . . aq⟩ | 1 ≤ p ≤ q ≤ m, } (3.9)

61

3. SERFSH - A ROUTER FOR A SMART HOME

Algorithm 1: Content Extraction Algorithm
Input: SequencePatternSet = {SP1, SP2, ..., SPs}
Output: ContentSet = {CS1, CS2, ..., CSc}

1 ContentExtractor(SequencePatternSet,MinimumSupport)
2 foreach sequencePattern SP in the SequencePatternSet do
3 foreach character s in the SequencePattern SP do
4 L1 = L2 ∪ α;
5 end
6 end
7 n = 2;
8 while Ln−1 = ϕ do
9 foreach content c in the Ln−1 do

10 for j = 1 to s do
11 if SPj include c then
12 count = count+ 1;
13 end
14 end
15 if ((count/s) < MinimumSupport) then
16 Ln−1 = Ln−1 − CS;
17 end
18 end
19 Ln = candidategen (Ln−1)
20 n++;

21 end
22 ContentSet = ∀ Ln

23 delete(CorrespondingContentSet);
24 return ContentSet {CS1, CS2, ..., CSc}

Algorithms 1 and 2 show a method of outputting a ContentSet that fulfills the pre-

defined MinimumSupport from the input PatternSequenceSet. Algo. 1, performs the

content extraction algorithm by extracting content with length size one from all input

sequences. And storing it in a ContentSet with that length L1 (Algo. 1, Line: 1 − 6),

the content with a minimum length of one of all lengths is extracted by increasing the

length by one starting with and storing it in a ContentSet with that length Ln (Algo.

1, Line: 7 − 21).

62

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm

Algorithm 2: Candidate Content Extraction Algorithm
Input: Ln−1

Output: Ln

Data: candidategen(Ln−1)
1 foreach created content ρ in Ln−1 do
2 foreach created content σ in Ln−1 do
3 if ((ρ.a2 = σ.a1) && (ρ.a3 = σ.a2) && (ρ.an−1 = σ.an−2)) then
4 Ln = Ln∪ < ρ.a1, ρ.a2, ..., σ.an−1, σ.an−1 >;
5 end
6 end
7 end
8 return Ln

However, among all the contents of the newly created set Ln−1, the contents that

do not satisfy the input MinimumSupport are deleted (Algo.1, Line: 9 − 18). This

is because the content that does not satisfy the MinimumSupport does not satisfy

the content extraction qualification. Also, the content that extends the corresponding

content does not satisfy the MinimumSupport. The ContentSet Ln−1 from which the

content that does not satisfy the MinimumSupport is deleted is used to create the set

Ln (Algo. 1, Line: 19). The method used at this time is the method described in Algo.

2. ContentSets Ln−1 are compared to create the contents of the set Ln. Creating Con-

tentSet Ln by integrating the ContentSets Ln−1 is possible between ContentSet Ln−1

whose length n-2 content except the foremost character and total length n-2 content

eliminating the last string_char is the same. Do (Algo. 2, Line: 1 − 7). For sample,

“pqrs” and “qrst”, which are the ContentSet L4, “qrs” excluding “p” and “qrs” excluding

“t” are the same, so the content “pqrst” of set L5 cannot be created.

In the same way as above, while increasing the length by 1, content extraction and

deletion of content less than support are repeated until new content is no longer ex-

tracted. As the last step of extraction, the addition interconnection of all extracted

content lengths is checked. If the content in the addition interconnection is found, the

corresponding content is removed from the set (Algo. 1, Line: 23). Finally, the gener-

ated ContentSet is passed to the next step.

63

3. SERFSH - A ROUTER FOR A SMART HOME

3.3.5 Additional Information Analysis Steps

If a Snort rule is written using only the content_root information extracted in the

previous step, the possibility of false positives is high. That is, if the length of the ex-

tracted content_root is too short, the corresponding rule may be applied to traffic that

is not a detection target. There is a big difference between a rule that uses only content

information and a rule that does not. For example, we checks whether the correspond-

ing content exists while examining the entire packet payload. However, among packets

transmitted using the TCP protocol, the destination IP is 192.168.10.12/24, and the

port number is 80, the content is located between the 4th byte and the 30th byte of the

payload. The user need to check whether it is by including content location information

and header information, it is possible to reduce the possibility of false detection of rules,

and it also helps to improve system performance by reducing the amount of payload

inspection, which has a relatively large execution overhead.

Algorithm 3: Location Information Extraction Algorithm
Input: content,NetworkPacketSet = {NP1, NP2, ..., NPρ}
Output: offset, depth, count, seconds
Data: AnalysisContentLocation(content_root,NetworkPcketSet)

1 offset =Max_Network_Packet_Size;
2 depth = 0;
3 count ̸= 0 ≤ 10;
4 seconds = 60;
5 foreach NetworkPacket t in NetworkPacketSet do
6 if (t.ContentMatching(content_root) then
7 offset = min(offset, t.getStartMatching(content_root));
8 depth = max(depth, t.getEndMatching(content_root));
9 count = min(count, t.getStartMatching(content_root));

10 seconds = max(seconds, t.getEndMatching(content_root));
11 end
12 end
13 return offset, depth, count, seconds; // Matching offset sets the minimum bytes

to begin, and matching depth sets the maximum bytes to finish, the count is

the reason the event_filter limit was exceeded, seconds is the time period

for which the count was accrued.

This analysis aims to determine the location information for the extracted con-

tent_root. The packet data generated in the traffic collection step is used. Since

Snort operates in units of packets, the location of content_root should be analyzed as

64

3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm

the location in the actual packet payload, not the sequence. Algorithm 3 shows the

process of analyzing content_root location information when given content_root and

NetworkPacketSet. The output of this algorithm, the offset, means the minimum byte

position of the matching start position when the corresponding content_root matches

the packet of the NetworkPacketSet, and the depth means the maximum byte position

of the matching end position. That is, when the corresponding content_root matches

the packet, it only matches between the offset and the depth of the payload. Count (c)

represents the number of rule matching in (s) seconds that will cause event_filter limit

to be exceeded. Where c and s are defined as nonzero values.

A packet offset indicates the maximum_size of a network packet, and a packet depth

indicates zero (Algo.3, Line: 1−2). Then, it traverses all network packets in the Net-

workPacketSet and modifies the offset and depth. Check whether the content_root

obtained as input matches the network packet; if it reaches, get the start byte position

and compare it with the present offset. If it is a smaller value than the present offset,

the corresponding value is replaced by the present offset. As for depth, the value of the

end byte position is retrieved, and the corresponding value is changed to be equal to

the present depth if it is greater than it is now (Algo.3, Line: 6 − 8). Add the finally

determined offset and depth values to the content_root rule.

A process similar to that described above is used to examine the header information

of the extracted content_root. It traverses all packets in the NetworkPacketSet and

checks whether it matches the corresponding content_root. If there is a match, the

header information of the corresponding packet is saved. After inspecting all packets,

the corresponding header information is added to the content_root rule if the accumu-

lated header details have one unique value.

However, in the case of IP, the Classless Inter-Domain Routing (CIDR) value is de-

creased in the order of 32, 24, and 16 and repeated until a unique value is extracted.

In other words, it tries to find a unique value as a D-class IP with a CIDR value of

32, and if not found, applies the CIDR value to 24 to find a C-class IP. For example, if

“192.168.10.12/32” and “192.168.10.13/32” are extracted as the destination IP matching

the corresponding content with CIDR 32, set as CIDR 24 and extract “192.168.10.11/24”.

65

3. SERFSH - A ROUTER FOR A SMART HOME

3.4 Experiment and Analysis of Results

To experiment with SERfSH and identify rigorous methods (Bugs, Errors, Complexity),

the IoT-Attacks have been grouped into four color-coded levels. We showed fifteen

attacks ranging from level zero to three based on their complexity and vulnerability.

3.4.1 Level-Wise IoT-Attacks Taxonomy

Figure 3.3 demonstrates a level base representation of our taxonomy of various attacks

based on the vulnerabilities/complexity of IoT gadgets/devices. On analysis of these at-

tacks’ methodologies, we understand that spoofed operations such as De-authentication

attacks, ARP_Spoofing, DNS_Spoofing, etc., are the core of cyberattacks on IoT net-

works. Smart home networking and risk or threat recognition are insufficient to protect

the associated smart home against present-day cyber attacks.

Figure 3.3: Level-Wise IoT-Attacks Taxonomy

3.4.1.1 Level-0: Low/General Risk of Attacks

NMAP Port Scanning Attack: This Attack is found within the Local Area Net-

work (LAN). It obtains all the port scanning & A malicious actor can exploit open

ports on the victim’s device to exploit it [98]. They can deliver malicious payloads and

malware when they find open ports. Figure 3.4 shows how the malicious actor scans

66

3.4 Experiment and Analysis of Results

NMAP TCP_Scan on a local network. An example of a TCP_Scan is shown in the

highlighted box, performed by the device "192.168.50.XX:42876" against the device

"192.168.50.XX:903". We performed the NMAP Port Scanning Attack Steps in listing

3.1.

Figure 3.4: Scanning by NMAP & Detecting the "TCP_Scan" In this Case, A Targets
B is Represented by "A -> B"

1 (NMAP Port Scanning Attack Steps)
2 1. Identify your IP using the command #ifconfig
3 2.Use the command: nmap <your Gateway_IP > Various flags can
4 be used to perform various types of NMAP port scans:
5 a. TCP_SYN (Stealth) Scan (-sS)
6 b. UDP_Scan (-sU): # nmap -sU -v IP_Address
7 c. TCP FIN_Scan(-sF), NULL scan(-sN), and Xmas_Scans(-sX)
8 # nmap -sF -T4 IP_Address

Listing 3.1: NMAP Port Scanning Attack Steps

Deauthentication Attack: A deauthentication attack is straightforward, and dif-

ferent occurrences exist in history when "Black Hat" malicious actors have utilized this

attack for vindictive purposes. In this type of attack, the malicious actor must be ex-

ceptionally promiscuous and needs to examine the network now and then with the goal

that the victim does not get associated with some other Access Point (AP) on some

other channel. A good malicious actor sends the deauthentication packets just when

the partners with some AP effectively [99]. Deauthentication frame format is:

1 "wlan.fc.type ==0) &&(wlan.fc.type_subtype ==0x0c"

67

3. SERFSH - A ROUTER FOR A SMART HOME

Figure 3.5: Scan Demonstrating the WAP-ESSID (Identifier) & the Physi-
cal/WiFi_Addresses BSSID of Connected Sensor-based Devices (The rectangle box shows
the captured BSSID and ESSID)

During the deauthentication attack, we analyzed the captured data transmission

packets from our testbed setup. Figure 3.5 demonstrates a scan done during the de-

authentication Attack. We demonstrate the de-authentication attack steps in listing

3.2.

1 (Deauthentication attack setup)
2 1.Plug your WiFi adapter in the kali machine and set it to
3 "Monitor" mode using the following commands:
4 a.airmon -ng start <interface_name >
5 b.Some running processes might interrupt the working of
6 this command.
7 Then use the following commands:
8 i. airmon -ng "check kill"
9 ii. airmon -ng <start/stop > <interface_name >

10 2.Now scan the whole of the network using the following
11 command:
12 a.airodump -ng <interface_name >
13 b.Select the name of the access point and the client
14 whom you want to disassociate from the network and
15 also note the channel on which the AP is broadcasting.
16 c.Use the following command to launch a more
17 sophisticated scanning on the network:
18 i.Airodump -ng -c <channel no.> <interface >
19 d.Use the following command to deauthenticate the
20 victim client from the network:
21 i.Aireplay -ng --deauth <no. Of packets to send >
22 -b <AP_MAC > -c <Victim_MAC > <interface >

68

3.4 Experiment and Analysis of Results

23 ii.If the Attack is to be launched against all the
24 clients connected to the AP , then skip the
25 "-c <Client_MAC >" part from the command.

Listing 3.2: Deauthentication Attack Steps

Figure 3.6: Malicious Actor Supplicant Spoofed De-authentication Packets to Victim
Machine (WAP)

Fake Authentication Attack: Fake authentication is an attack that is launched

against WAPs broadcasting on WEP security. The APs already on WPA/WPA2 pro-

tocols are immune to this Attack. Hence the best mitigation and prevention measure

against this Attack is to use WPA/WPA2 security protocols on the router. This Attack

is exceptionally valuable when we need a connected MAC_Address (device) with the

AP. No ARP packets can be produced, and the malicious device connects with the AP.

Subsequent to the partner, the malicious actor infuses packets in the system and at-

tempts to compel the AP to create ARP packets and consequently use them to get the

subtleties of the system [100]. We have shown the Fake-authentication Attack Steps in

listing 3.3.

1 (Fake -authentication attack)
2 1.Plug your WiFi adapter in the kali machine and set it to
3 "Monitor" mode using the following commands:
4 a. airmon -ng start <interface_name >
5 b. Some running processes might interrupt of this command.
6 If so then use the following commands:
7 i. airmon -ng "check kill"
8 ii. airmon -ng <start|stop > <interface_name >
9 2.Now scan the whole of the network using the following

10 command:
11 a. airodump -ng <interface_name >
12 b. Select the name of the access point and the client you

69

3. SERFSH - A ROUTER FOR A SMART HOME

13 want to disassociate from the network and note the
14 channel on which the AP is broadcasting.
15 c. Use the following command to launch a more sophisticated
16 scanning attack on the local network:
17 i. Airodump -ng -c <channel no. of AP > <interface >
18 d. Use the following command to fake authenticate the
19 victim client from the network:
20 i. Aireplay -ng --fake -auth -b <AP_MAC > <interface >
21 e. Various attacks might not work if this Attack is not
22 successful.

Listing 3.3: Fake-authentication Attack Steps

The figure 3.7 demonstrates a fake-authentication attack where the WEP penetrates

(Open System and Shared Key) the local network. It gives the prosperous WEP au-

thentication and prosperous cooperation by the malicious actor machine. The malicious

actor machine is connected with the router (WEP Access Point) using the falsified cre-

dentials.

Figure 3.7: Fake-authentication Attack to be Successfully Launched using aireplay-ng
Tool

3.4.1.2 Detection and Mitigation of Level-0 Attacks

Since deauthentication packets are part of the 802.11n protocol, they cannot be blocked

or prevented. Malicious actors use this to disconnect the gadgets from the network

router unwillingly. Hence, to validate whether the packets received by the router are

authentic or not, we propose a two-factor authentication for such packets. An encrypted

key generated by the device to be decrypted by the router is used to achieve the same.

The key is unique for each IoT gadget that connects to the network. In this way, a

malicious actor cannot send deauthentication packets to the router.

70

3.4 Experiment and Analysis of Results

Figure 3.8: Observation of Spoofed De-authentication Packets by using Packet Sniffer
(The rectangle box shows the captured network packets)

Deauthentication Detection: The figure 3.6 shows the deauthentication packets

send by a malicious actor machine to target victim machine Wireless Access Point

(WAP). Figure 3.8 demonstrates the successful detection of the de-authentication and

disassociation packets by a packet sniffer. We have shown the main steps to detect the

Attack by a packet sniffer (see listing 3.4).

1 (Attack Detection steps by Packet Sniffer)
2 1. Begin
3 2. Set LED pin to PIN_Number
4 3. Set Serial Baud Rate as 115200
5 4. Set Scan Time for each channel as 140ms
6 5. Define channel list from 1 to 15.
7 6. Set Threshold Packet rate to 5.
8 7. Set Packet_Time to 1
9 8. Fixed device to Station Mode

10 9. Enable the device to Sniff functionality
11 10. For each channel in channel_list
12 a. If the number of De-authentication packets
13 greater than Threshold Packet rate
14 i. Increment attack counter
15 b. Else If
16 Number of De -authentication packets
17 less than the Threshold packet rate
18 i. Set attack counter to zero
19 c. End If

71

3. SERFSH - A ROUTER FOR A SMART HOME

20 d. If attack counter equal to Packet_Time
21 i. Print "ATTACK DETECTED"
22 e. End If
23 11. End For
24 12. End

Listing 3.4: Deauthentication Attack Detection steps by Packet Sniffer

3.4.1.3 Level-1: Significant Risk of Attacks

Wifi Cracking: WiFi (Wireless) network attacks exploit security weaknesses in local

networks and comprising/gaining unauthorized access to IoT gadgets as they pretend to

have a high potential for additional vulnerability. There are four possible WiFi Cracking

Methods for interrupting a whole network Active/Passive Brute Force attacks, wireless

provisioning attack, and WiFi phishing or phishing with probing. The malicious actor

uses some popular hacking tools that seem to have been Aircrack-ng, WIFITE, WiFi

phisher, Fluxion, Reaver, Fern-WiFi cracker, Cowpatty, Omnipeek, etc.

ARP_Spoofing Attack: An ARP_spoofing is also known as ARP_Poisoning,

ARP_Cache_Poisoning, and ARP_Poison_Routing. Address_Resolution_Protocol

(ARP) is used in the Link/Network layer. In this Attack, attacker dispatches falsified

ARP_Packets over a local area network [101].

This Attack is executed by the Kali Linux tool called "mitmf" (Framework). This

Attack needs the malicious actor to be in the same local network in which the targeted

devices are presented. The following command to start this ARP_Spoofing Attack:

$ "mitmf –arp –spoof –gateway <Gateway_IP> –targets <IPs of target machines> -i

<interface_name>"

We have shown the ARP_Spoofing Attack Steps in listing 3.5.

1 (ARP_Spoofing attack steps)
2 1. Plug your WiFi adapter in the kali machine and set it to
3 "Monitor" mode using the following commands
4 a. airmon -ng start <interface_name >
5 b. Some running processes might interrupt the working of
6 this command. If so, then use the following commands:
7 i. airmon -ng "check kill"
8 ii. airmon -ng <start|start > <interface_name >
9 2. Now scan the whole of the network using the following

10 command:

72

3.4 Experiment and Analysis of Results

11 a. airodump -ng <interface_name >
12 b. Select the name of the access point and the client
13 whom you want to launch the ARP_Poisoning Attack on.
14 c. Execute the following commands in different terminals
15 to successfully conduct the attack:
16 i. arpspoof -i <interface > -t < victim_mac > <AP_MAC >
17 ii. arpspoof -i <interface > -t <AP_MAC > <Victim_MAC >

Listing 3.5: ARP-Spoofing Attack Steps

The figure 3.9 shows the translation of IP_addresses into MAC_addresses.

Figure 3.9: ARP_Spoofing Attack on Victim Gadget

Sybil Attack: Sybil_Attack is a type of Attack found in distributed networks (P2P)

in which a node (Hub) in the P2P network runs Multiple_Identities at the time. The

principle point of the Sybil_Node is to advantage of a disproportionately large influence

in the system to carry out illegitimate moves [102]. We detect this Attack with the

help of the Random_Password_Comparison scheme, which verifies the Sybil_Node

pseudonymous identities. Eventually, SERfSH mitigates (fix) the Sybil_Nodes in the

smart home network.

Broken Authentication: Attackers hijack or intercept network connections by imi-

tating legitimate WiFi networks (such as Starbucks WiFi). An authentication certificate

or other technique may be used to decrypt encrypted data if it has been encrypted by

the malicious actor [103]. In listing 3.6, We have shown Broken Authentication Attack

Scenarios.

1 Scenario 1: "Credential stuffing" if the application does not
2 use protection against this.
3 Scenario 2: "Continued use of passwords as a sole factor."
4 Scenario 3: Application Session Expiration does not set
5 correctly.

Listing 3.6: Broken Authentication Attack Scenarios

73

3. SERFSH - A ROUTER FOR A SMART HOME

3.4.1.4 Detection and Mitigation of Level-1 Attacks

WiFi Cracking Mitigation: WiFi Cracking methods involve a deauthentication at-

tack in its primary steps. We have already discussed the detection & mitigation (fix) of

deauthentication attacks. Hence, these mechanisms will prevent WiFi Wireless) network

Cracking attacks also. The way to prevent/mitigate (fix) this type of Attack (Sniffing,

MITM, Dos) is examined by exploiting strong "WPA/WPA-PSK" defense schemes for

WLAN/WiFi authentication & authorization. Another way to secure our wireless net-

works is to change the default passwords, firewall software, and authentication schemes

and allow only registered MAC_Address.

Snort Wireless Rule Analysis: Writing a custom rule to detect 802.11 frames

matching specific criteria is as simple as writing other types of custom snort rules.

Also, Snort Wireless Rule shares most of the same syntax with Snort Rule syntax. The

following listing 3.7 is the Rule provided by Snort Wireless.

1 alert wifi any -> any (msg:"Mgt_Frame";type:TYPE_MANAGEMENT)
2 alert wifi any -> any (msg:"Ctrl_Frame";type:TYPE_CONTROL)
3 alert wifi any -> any (msg:"Dt_Frame";type:TYPE_DATA)

Listing 3.7: Snort Wireless Rule

Rule configuration method is <action> Wi-Fi <mac> <direction> <mac> (<rule

options>). The first item of the Snort Wireless Rule is Action. Actions include Alert,

Log, Pass, Activate, and Dynamic. MAC addresses can be specified in the same way

that IP addresses of the source and destination MAC addresses are specified in Snort

rules, one MAC address being either a colon-separated list of Octets or comma-separated

braces. It can be specified as a list enclosed. In addition, a logical NOT operation can

be performed with the ‘ !’ character.

The direction operator includes two operators to specify the direction of traffic. Rule

option can create rules using the “Wi-Fi” protocol, which is an 802.11-specific rule op-

tion. Wi-Fi options include "frame_control, type, stype, more_frags, from_ds, to_ds,

retry, pwr_mgmt, more_data, wep, order, duration_id, bssid, seqnum, fragnum, addr4,

ssid".

ARP_Spoofing Attack Detection: Figures 3.10 & 3.11 show the Physical_Address

and type of the victim devices simultaneously before and after the Attack and shows the

74

3.4 Experiment and Analysis of Results

Figure 3.10: IP_Address & Physical_Address Before Attack

Figure 3.11: IP_Address & Physical_Address After Attack

default Gateway-entry, changing the Physical_Address, and type of the devices. Also,

we can see the change in IP_Addresses, Wi-Fi_Addresses, and Physical_Addresses of

the victim devices before and after compromise.

In listing 3.8, We have shown that the algorithm to detect the ARP_Spoofing attack:

1 1.Open the "CMD" & Check for the ARP_Table:
2 C:> arp -a (show all MAC_Address)
3 2.Pay a close look at the entries IF find out two
4 IP_Addresses (allotment the same Physical/WiFi_Address)
5 THEN the gadget is suffering from an ARP -Poisoning attack.

Listing 3.8: ARP-Spoofing Attack Detection

ARP_Spoofing Attack Mitigation: To mitigate (fix) this attack, We wrote and

updated SCR file "snort.conf" to include the "local.rules" file where the updated SCR

are located. The updated SCR will make warnings whenever malicious payloads had

founded within the local network area. We can do it as follows in the listing 3.9:

Broken Authentication Attack Mitigate (Fix): SERfSH generates a different

random session ID to ensure the login. The session ID is a unique digit code, and it can

75

3. SERFSH - A ROUTER FOR A SMART HOME

be saved as a URL/Cookies. SERfSH used the Wireless_Intrusion_Detection_System

(WIDS) for unsuccessful login attempts and provided the extra layer of protection. We

also use the traffic filtering mechanisms in the SNORT syntax rule.

1 (Mitigation Method for ARP -Spoofing Attack)
2 1. In the "snort.conf" configuration file:
3 #preprocessor_arpspoof
4 #preprocessor_arpspoof Identify_HOST
5 "192.168.40. XX" f0:0f:00:f0:0f:00
6 2. Recapture the "#", and then update the configuration
7 file as it is:
8 #preprocessor_arpspoof Detect_HOST:
9 "Host_IP" Host_MAC

10 #preprocessor_arpspoof Detect_HOST:
11 "Gateway_IP" Gateway_MAC

Listing 3.9: ARP Spoofing Attack Mitigation Steps

3.4.1.5 Level-2: High Risk of Attacks

MAC_Spoofing: MAC_Spoofing is a sort of Attack in which the malicious actor

changes its Physical_Address to the Physical_Address of some other gadget. This type

of Attack is generally used on APs where MAC filtering is deployed, and only those

things whose MAC_Address is written in the router table can connect with the local

network. In such cases, the malicious actor finds one or more valid Physical_Addresses

and then changes its Physical_Address to the valid Physical_Address and gets access

to the network [104].

Figure 3.12 presents the "MAC_Spoofing" and exhibits the changing "Physical_Address"

of an interface to any required Physical_Address. For this attack, we used Kali 2020

Linux OS, and the Attack is executed by using the "macchanger" tool. We have shown

the MAC_Spoofing Attack Steps in the listing 3.10.

1 (MAC_Spoofing Attack Steps)
2 1.Plug your WiFi adapter in the kali machine and set it to
3 "Monitor" mode using the following commands:
4 a. airmon -ng start <interface_name >
5 b. Running processes might interrupt in the working of
6 this command. If so then use the following commands:
7 i. airmon -ng "check kill"
8 ii. airmon -ng <start|stop > <interface_name >
9 2.Now scan the whole of the network using the following

76

3.4 Experiment and Analysis of Results

10 command:
11 a. airodump -ng <interface_name >
12 b. Select any one of the valid MAC_Address from the
13 list that you will get from scanning.
14 c.Type the following command to change your MAC_Address:
15 i. Macchanger -m <valid MAC_Address > <interface >
16 3.The MAC_Address is changed to the selected MAC_Address ,
17 and you can bypass the filtering.

Listing 3.10: MAC_Spoofing Attack Steps

Figure 3.12: MAC_Spoofing to a Arbitrary Physical_Address using "macchanger"

Sink_Hole Attack: A sinkhole Attack is one of the extreme attacks on a remote

Ad-Hoc-Network. In this Attack, a compromised node or malicious node communicates

wrong routing data to deliver itself as a particular node and gets entire network traffic.

Subsequent to getting the entire network traffic, it can either adjust the parcel data or

drop them to make the network muddled. Sinkhole attacks influence the presentation

of Ad hoc network conventions, for example, DSR, AODV convention [105].

Denial-of-Service (DoS): In the DoS attack, malicious actors hijack a server, port

overloading, de-authentication wireless, and deny internet-based services. The idea be-

hind a DoS attack is making a particular service unavailable by sending un-fragmented

packets [106]. Since IoT gadgets usually are not allocated much bandwidth, they are of-

ten the victim of such attacks. The types of Attacks are flood attacks, reflected-attack,

mailbombs, and teardrop attacks.

We analyzed and captured the Attack’s payloads (Malicious Packets) using Wireshark/Et-

tercap (network scanning tool) and studied the packet data. We formed SCR and con-

figured the IDS to prevent DoS-type attacks. These rules caused an alert as well as

dropped packets while such an attack is existence happened. Also, the malicious actor

& the victim’s internet protocol addresses were demonstrated. This method covered

77

3. SERFSH - A ROUTER FOR A SMART HOME

all types of DoS attacks: TCP, UDP, and HTTP. To launch the DoS atatck, we used

Metasploit Framework. We have shown the DoS Attack Steps in the listing 3.11.

1 (DoS Attack Steps)
2 1. Launch the Metasploit Framework in a terminal:
3 2. Type the command in msfconsole:
4 use auxiliary/dos/tcp/synflood
5 3. Use command to show options to find the attack parameters
6 4. To set the victim IP_Address:
7 RHOST <Victim IP_Address >
8 5. Type "exploit" to execute DoS Attack.

Listing 3.11: DoS Attack Steps

Similarly, various DoS attack exploits can be performed using the Metasploit console

framework.

Figure 3.13: DNS_Spoofing using Ettercap Tool

Distributed DoS: A DDoS Attack is a malevolent attempt to break normal traffic of

a particular/targeted server. The attackers (multiple sources) are flooding the pursuit

with a static flood-of-traffic [107]. There are two most popular DoS/DDoS tools: "Low

78

3.4 Experiment and Analysis of Results

Orbit Ion Cannon (LOIC) and High Orbit Ion Cannon (HOIC)". There are following

steps involved in launching a DDoS attack:

1 MALICIOUS ACTOR -> Sends/Generates
2 Malicious/Infinite_Data -> VICTIM
3 VICTIM -> Cannot Handle
4 Malicious/Infinite_Data -> CRASHES

It’s important to note that DDoS attacks can be highly disruptive and can cause sig-

nificant damage to a target’s reputation and financials.

DNS_Spoofing: It represents the Domain_Name_Server, the primary use to trans-

late the domain name to IP_Address and memorize the IP_Address (192.168..). Re-

gardless of whether a little piece of the DNS is inaccessible for a brief time frame, it

can cause immense problems. UDP is a somewhat weaker protocol than TCP since

it doesn’t use three-way handshaking. In this manner, it can’t decide with confidence

whether a packet has originated from a similar source regarding which it indicates [108].

We have shown DNS_Spoofing Attack Steps in the listing 3.12.

1 (DNS_Spoofing attack Steps)
2 1. Install "Ettercap" tool using the below command:
3 a. sudo apt install ettercap -common
4 2. Open the configuration file using the below command:
5 a. sudo nano etc/ettercap/etter.conf
6 3. Configure the file according to the environment.
7 4. Start Ettercap:
8 a. ettercap -G
9 b. Sniff -> Unified/Bridged Sniffing ->

10 (Select the interface connected to the internet) -> OK
11 c. Hosts -> Scan for hosts
12 5. Select the victim thing as TARGET1 and AP as TARGET2.
13 6. Go to : MITM -> ARP_Poisoning ->
14 "Sniff Remote Connections" -> ok
15 7. Go to : Plugins -> Transact the plugins -> DNS_Spoofing
16 8. Start the Apache server on your thing by typing the
17 following command:
18 a. Change the content of index.html file of
19 apache server according to your needs
20 b. service apache2 start
21 9. The DNS_Spoofing Attack will be activated.
22 10. If any problem repeats the steps (4 to 7).

Listing 3.12: DNS-Spoofing Attack Steps

79

3. SERFSH - A ROUTER FOR A SMART HOME

The figure 3.13 exhibits a DNS_Spoofing attack and exploits the "Ettercap" network

security tool. The colored rectangle demonstrates the prosperous attack on the target

devices (Activating DNS_Spoofing Plugin).

3.4.1.6 Detection and Mitigation of Level-2 Attacks

DNS_Spoofing Detection: To mitigate (fix) DNS_Spoofing attack, It can be de-

tected by us in the snort syntax rules in IDS:

• Using the encrypted "Data_Transfer_Protocols" and "End_to_End_Encryption"

via Transport_Layer_Security/Secure_Sockets_Layer.

• Manage "Domain_Name_System_Security_Extensions"; it utilizes digitally en-

dorsed DNS host records (A/AAAA Record) to assist mapping and manage data-

authenticity.

• Snort Command: "snort -q -A consol -i eth0 -c /etc/snort/snort.conf"

DoS/DDoS Detection: In order to detect continuous packet inflow in DoS/DDoS

attacks, a rule statement for alerting must be added to Snort’s Rule-set. The rule

format used in the experiment is as follows. Action in the header part generates an

alert and uses the source IP of 172.22.22.12/24, so 20 excessive pings per 10 seconds to

the ubuntu server at 172.26.26.16 from any port in the external network rather than

the internal network. Model generates a rule to detect an attack that blows and shows

a DOS form. The snort rule as follows:

1 alert ip 172.22.22.12/24 any -> 172.26.26.16 any
2 (msg:Ping of Death; threshold:type both , track by_src ,
3 count 20, seconds 10; sid :10000035;)

As a result of retrying the Ping of Death attack to test whether the IDS normally

detects a malicious pattern, a warning was shown that Snort was detected normally,

and the DROP command is sent to IP_tables by executing the Python module. It was

confirmed that this was added.

3.4.1.7 Level-3: Severe Risk of Attacks

Malware Based DoS Attacks: The target systems are running on MAC OS in the

Malware Based DoS Attacks. That Malware repeatedly opens draft emails. Instances

80

3.4 Experiment and Analysis of Results

of opening iTunes were reported in some cases. So the effects exhaust system’s memory

causes the system to crash [109]. We can also detect Malware based DoS attack.

RPL Attacks: In the RPL Attacks, we can create categories in the three parts:

Resources, Topology, and Traffic. The resource based attacks are direct or indirect

attacks like SYN Flooding (An attempt to consume enough server resources), Hello

Flooding (Degrading of sensor energy), DNS Flooding (Targets one or more DNS),

HTTP Flooding (Overwhelm a targeted server), UDP Flooding (A large number of

UDP packets sent), etc. Routing_Protocol for Low power & Lossy Network (RPL) is

a lightweight protocol designed for LLN (Low Power Lossy Networks).

SYN Flooding: The Attack requires having a client frequently send SYN_Packets

to every port on a server, using fraudulent IP_Addresses. The normal scenario in three-

way TCP/IP handshake:

1 1. USER -- SYN_Packet -> Transmitting HOST
2 2. HOST -- SYN -ACK_Packet -> USER
3 3. USER -- ACK_Packet -> HOST

In SYN flooding:

1 1. MALICIOUS ACTOR -- Spoofed SYN_Packet -> TARGET
2 2. TARGET -- SYN -ACK_Packet -> SPOOF
3 3. No Reply
4 4. The connection gets Timeout.

Malicious actors send the huge number of SYN_Packets to the target system at a rate

faster than the queued connections get timed out.

Firmware Vulnerabilities: For the IoT gadgets to work appropriately, they come

accompanied by firmware. The available firmware on these devices doesn’t have a robust

security mechanism. Besides, they don’t consistently update the devices, making their

vulnerabilities progressively open as time advances. Some Linux-based automated emu-

lating tools for firmware like "Firmadyne" and "Binwalk" exist. Figure 3.14 exhibits an

example of the Reverse-engineering router firmware using "Firmadyne" emulating soft-

ware. They have been created to determine the vulnerabilities present in this firmware

using reverse engineering. The absence of a secure channel for updation is recognized

as a significant security threat by OWASP IoT Project [110]. Malicious actors can also

use this emulating software to seize the opportunity later.

81

3. SERFSH - A ROUTER FOR A SMART HOME

Figure 3.14: Reverse-engineering Router Firmware by using "Firmadyne" Software

3.4.1.8 Detection and Mitigation of Level-3 Attacks

Malware based DoS Detection: This attack comes under the MALWARE-BACKDOOR

category, as a result of Snort’s malware detection, suspicious traffic has been detected

other than command-driven communication, such as data exfiltration from infected

machines.

1 alert tcp any 1146 -> any 80 (msg:" Trojan_RssFeeder"
2 content :" Professional3&macaddr =00:0C:29:71:24:89&
3 owner=two13&version =1.2.0&t=4841"; offset :152; depth :71;)

SYN Flooding Detection: SERfSH, to filter traffic undergo our network interfaces.

It protects from the SYN flooding attack with TCP intercept. The snort rule for SYN

flooding as follows:

1 alert tcp any any -> IP_Address Port (sid: 1000008; msg:
2 "TCP_SYN_Flooding_flags: S"; threshold: type both ,
3 track by_dst , count 100, seconds 1;)

3.4.2 Obtained Results

Table 3.2 shows the test results for detecting and mitigating fifteen attacks. This chap-

ter proposes a method for generating Snort content rules using a sequential pattern

algorithm. A more accurate rule could be created by extracting the common string

(content) observed from the input traffic and adding location information and header

information of the corresponding content. The validity of the proposed method was ver-

ified by applying it to fifteen attacks. Annotation [✓] [✓] indicates that the particular

attack is detected & mitigated successfully, [✗] [✗] indicates that the particular attack

is not detected & mitigated, and [✓] [✗] indicates that the particular attack is detected

82

3.5 Conclusions

S.No. Threat Level IoT-Based Attack Name Detection Mitigation
1

Level 0
NMAP Scanning Attack ✓ ✓

2 Deauthentication Attack ✓ ✓

3 Fake Authentication Attack ✓ ✓

4

Level 1

Wifi Cracking Attack ✓ ✓

5 ARP Poisoning Attack ✓ ✓

6 Sybil Attack ✓ ✓

7 Broken Authentication Attack ✓ ✓

8

Level 2

MAC Spoofing Attack ✓ ✗

9 Sink Hole Attacks ✓ ✓

10 DoS Attacks ✓ ✓

11 Distributed DoS Attack ✓ ✓

12 DNS Spoofing Attack ✓ ✗

13
Leve 3

Malware based DoS ✓ ✓

14 RPL Attacks ✓ ✓

15 Firmware Vulnerability Attack ✗ ✗

Table 3.2: Test Results: Detection & Mitigation (fix) of Fifteen Attacks

but not mitigated. Attack numbers 8 and 12 (MAC_Spoofing and DNS_Spoofing) are

detected but not mitigated. We need to look at further highly flexible Snort (IDS/IPS)

Syntax Rules for detection and mitigation. Attack number 15 (Firmware vulnerability)

is one of the attacks it cannot detect and mitigate.

3.5 Conclusions

In this chapter, SERfSH is an advanced edge router for securing IoT gadgets at home.

This experimental setup has been tested for the following fifteen attacks: De-Authentication,

Fake-Authentication, Sybil Attacks, Broken-Authentication, MAC Spoofing, Sink Hole

Attacks, Denial-of-Service (DoS), Distributed-DoS, Port-Scanning, WiFi-Cracking, ARP-

Poisoning, DNS-Spoofing, Malware based DoS, RPL Attacks (Flooding), and Firmware

Vulnerability. We have detected all attacks except the Firmware vulnerability and did

not mitigate two attacks, i.e., DNS spoofing and firmware vulnerability. SERfSH is a

scalable and cost-effective solution for small/home networks.

SERfSH collects only packets that come to it. Intrusion information for the entire net-

83

3. SERFSH - A ROUTER FOR A SMART HOME

work cannot be analyzed. If an attacker notices an attack that bypasses the honeypot

then it is possible to compromise the network. The intrusion detection data consists of

normal data and a minimal number of attack data. This data imbalance causes pre-

diction performance degradation due to factors such as prediction bias of small amount

of data presence of outliers. To address this issue, we oversampled the minority class

of the existing intrusion detection datasets using four data oversampling methods and

tested using three different classifiers in the next chapter.

84

Chapter 4

Intrusion Detection Mechanism
using Oversampling Technique

4.1 Introduction

The development of various Machine Learning (ML) and Deep Learning (DL) algorithms

for effective anomaly detection and signature detection have been attempted over the

past few years [83], [84]. In proportion to the growth of the artificial intelligence security

market, attacks using artificial intelligence to bypass the existing control system are also

increasing. Therefore, finding an ML method with a very low False Alarm Rate (FAR)

in practice is a significant challenge. Recently, due to active research in DL, various

attempts are being made to lower the FAR [111]. Taking a look at the study using Gen-

erative Adversarial Networks (GAN), it is seen that it shows better performance than

the existing learning models in the "anomaly detection and avoidance" stage. However,

various studies on predictive models have also been conducted. On the other hand,

only a few studies have solved the fundamental problem of data imbalance of intrusion

detection data in the pre-processing stage [112].

The IDS aims to find a minimal number of attack packets among many normal pack-

ets. Therefore, there is always a problem of data imbalance. Data imbalance causes

prediction bias toward the majority class and the misjudgment of a small number of

data as outliers by ignoring them. This factor degrades the prediction performance of

the model. There are various techniques to solve the data imbalance problem, such as

undersampling and oversampling. These methods have been mainly used as existing

85

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

resampling methods for solving class imbalance. Oversampling methods include ran-

dom oversampling, Synthetic Minority Oversampling Technique (SMOTE) [16] based

on K-Nearest Neighbor (KNN) algorithm [113], Borderline-SMOTE [17], and Adaptive

Synthetic (ADASYN) [18]. However, KNN is synthesized based on the distance between

selected prime samples. These algorithms generate synthetic tabular data; however, the

following limitations still exist.

Suppose the distance between the first selected sample of the minority class data and

the nearest neighbor data is far. In this case, the decision boundary of the majority

class is violated, and the outliers are also not considered [114]. In addition, although

the amount of data is increased, it results in duplication of information. However, over-

sampling is a redundant increase of fractional data, which has the drawback of reducing

the diversity of the generated data and increasing the possibility of overrfitting. In addi-

tion, undersampling has a problem of information lost by reducing the majority of data

by fractional data. The DL-based GAN algorithm [115] proposed by Ian Goodfellow,

a classifier is a discriminator and data created by the generator. Using the generator

part of the GAN, it is possible to generate composite data similar to the original data.

Conditional Tabular Generative Adversarial Network (CTGAN) is an algorithm based

on GAN specialized for sampling structured data. CTGAN can generate both continu-

ous and categorical types of data [1]. CTGAN oversampling algorithm solves the class

imbalance problem and reduces the FAR as compared to the existing sampling tech-

niques. Figure 4.1 presents the overall idea of the proposed framework. This framework

is used to improve the imbalance problem of network intrusion datasets. The proposed

work is based on two scenarios. In the first scenario, we experiment with the existing

CICIDS2018 benchmark dataset [46]. In the second scenario, we experiment with the

real-time testbed resampled dataset developed in the Cybersecurity lab at the Institute

for Development and Research in Banking Technology (IDRBT), Hyderabad to extend

the real-time applicability of the classification models. We use the Principal Component

Analysis (PCA) for dimensional reduction and reduce the data dimensions from 84 to

19 features that confirm the efficiency of the proposed model. Additionally, to solve the

imbalance problem of the dataset, we apply the popular SMOTE, Borderline-SMOTE,

ADASYN, and CTGAN to create the synthetic data for training. Further, we train the

following three classification models: linear discriminant analysis, distributed random

forest, and boosting-type LigtGBM with optimal hyperparameters.

86

4.1 Introduction

Figure 4.1: Framework to Improve the Imbalance Data Problem of Intrusion Detection
System

Contribution of the chapter

The contribution of this chapter are as follows:

• Real-Time Testbed (RTT) resampled dataset is generated to extend the practical

applicability of the classification models. The generated attacks are likely to be

similar to CICIDS2018 dataset attacks.

• The features are reduced from 84 to 19 by applying PCA in the existing CI-

CIDS2018 dataset.

• Four state-of-the-art oversampling models (SMOTE, Borderline-SMOTE, ADASYN,

CTGAN) are used to solve the data imbalance (Non-uniformity) problem in net-

87

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

work intrusion detection.

• Three classification models (Linear Discriminant Analysis (LDA), Distributed

Random Forest (DRF), Light Gradient Boosting Machine (LightGBM)) are used

to predict the attacks.

• Test results are compared with existing state-of-the-art intrusion detection meth-

ods ([54], [62], [56]) using the following datasets: Credit Card, Gambling Fraud,

ISCX-Bot-2014, CICIDS2017, CICIDS2018, and the proposed RTT resampled

dataset in terms of Accuracy, Precision, Recall, and F1-score.

Outline of the chapter

The rest of the chapter is structured as follows: Section 4.2, describes the experimen-

tal datasets and pre-processing. Sections 4.3 and 4.4, describe feature selection and

oversampling models for imbalanced data. Sections 4.5 and 4.6, present training data

and classification models with hyperparameters. Section 4.7 discusses experiment and

analysis of results. Finally, the conclusion and future work is given in section 4.8.

4.2 Experimental Datasets and Pre-Processing

In intrusion detection research, various datasets such as the KDD1999 [2], and NSL-

KDD datasets [24] using the DARPA intrusion detection system are used. In the

KDD1999 dataset, excluding the Denial of Service (DoS) type of attack, a large-capacity

packet attack, the probe is about 4.2%, Remote to Local (R2L). User to Root (U2R) is

about 0.1% and 0.005%, respectively, 1% of normal packets did not even reach. It can

be seen that the KDD99 dataset, which is mainly used for intrusion detection data, is

also severely unbalanced data.

However, we selected the data used in this experiment according to the following three

criteria. First, it checked whether OWASP’s top ten attacks were performed or not.

We focused on whether the attack diversity is guaranteed. The second is whether .csv

files (Structured data) and .pcapng/.pcap (Packet files) files are simultaneously pro-

vided for analysis. It is supported to compare the converted Comma-Separated Values

(CSV) in the captured packet. Finally, we checked whether a PCAP-CSV conversion

was available for model verification.

88

4.2 Experimental Datasets and Pre-Processing

Category Label No. of Instances
BENIGN 2,687,419

DoS

DoS Hulk 231,073
DoS GoldenEye 10,293
DoS Slowloris 5,796
DoS Slowhttptest 5,499

PortScan PortScan 317,860

DDoS
DDoS 256,054
Bot 3,932

Bruteforce
FTP-Patator 7,938
FTP-Bounce 5,897

WebAttack
WebAttack Brute Force 1,507
WebAttack XSS 652
WebAttack Sql Injection 21

Infiltration Infiltration 36
Heartbleed Heartbleed 11

Total 3,533,988

Table 4.1: Summary of Benign and Attack Instances Present in CIC-IDS2018 Dataset

4.2.1 CICIDS2018 Dataset

The dataset that best meets the above criteria is CICIDS2018 [46], [25] intrusion de-

tection data provided by the University of New Brunswick (UNB) in Canada. In a

configuration similar to the virtual network, DoS, PortScan, DDoS, WebAttack, Brute-

Force, Heartbleed, and Infiltration total of seven kinds of attack were carried out. Table

4.1 shows the amounts of data used for each attack. There are 2,687,419 normal packets

(Benign), which occupies more than 76% of the total data. A total of 3,533,988 data,

including malicious data, are provided. Each classified category is classified based on the

security attack and normal browsing (Benign). In the situation where there are too few

decimal samples, high-quality data could not be obtained from both the SMOTE-type

and CTGAN algorithm. They create synthetic data by analyzing the distribution and

the distance between data. In other words, there is a very high possibility that there is

too much data duplication or data with an unintended distribution occurs. This exper-

iment utilized synthetic data with a 1:10000 threshold for malicious data compared to

89

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

normal, considering the validity of the data. According to this limitation, we set up the

testbed, performed the lab’s attack simulation, and generated the resampled dataset.

4.2.2 Real-Time Testbed (RTT) Resampled Dataset

Figure 4.2: Testbed Network Diagram to Generate RTT Resampled Dataset

In the testbed attack scenario, the three key security elements are ’confidential-

ity’, ’availability’, and ’integrity’. A Denial of Service (DoS) attack is an attack that

90

4.2 Experimental Datasets and Pre-Processing

threatens ’availability’, and only one attacking PC can paralyze the service of the target

server. PortScan is classified as a dictionary attack and searches open ports of the tar-

get server. Afterward, an attack is attempted by exploiting the known vulnerabilities

of the service operating on the corresponding port. It is classified as an attack that

violates ’confidentiality’. Distributed Denial of Service (DDoS) attack is an ’availabil-

ity’ neutralization attack. That infects numerous zombie PCs called bots and sends a

maximum number of packets to the target server. DDoS consists of a ’C&C server’ that

receives commands from an attacker and manages the zombie PC, a ’zombie PC (Bot)’

that performs the attack, an ’attacker’, and a ’target server’. A brute force attack hacks

services such as File Transfer Protocol (FTP), Secure Shell Protocol (SSH), and WEB

provided by the server. Randomly assign passwords to random IDs such as ’user’ and

’admin’, which are frequently used as the default administrator account. An attacker

tries logging in with multiple combinations of passwords using IDs found through social

engineering attacks. This attack type violates the ’confidentiality’ of the target server.

A web-based attack refers to an attack using exploit vulnerabilities and gaining access

to a server. Among them, Cross-Site Script (XSS) is an attack that exploits users to

save content on the site’s bulletin board.

A malicious user can store a malicious script that steals general user information and

leaks cookies or redirect it to a site with a malicious script. SQL Injection is an attack

that obtains unauthorized information by intentionally connecting an unauthorized con-

ditional statement to an input form that delivers a query to the database. XSS and

SQL Injection threaten ’confidentiality’ and ’integrity’. The Heartbleed attack uses a

vulnerability in the OpenSSL protocol announced in April 2014. Versions concerned by

this vulnerability are "OpenSSL 1.0.1∼1.0.1f" and "OpenSSL 1.0.2-beta/1.0.2-beta1".

This attack is a ’confidentiality’ threat attack. The client leaks information stored in

the server’s memory during communication with the server. After hacking the target

server, and infiltration attack is carried out within the target server. In the testbed

attack scenario, the stolen information is uploaded or received by using the P2P service

of Dropbox or CoolDisk.

Finally, CICFlowMeter analyzes the PCAP file captured by the network packet for

each session and outputs it as a CSV file with 84 features. In the experiment, a PCAP

file is created by performing a direct attack and then used as data for performance eval-

uation. In Table 4.2, we describe the prerequisite tools that were used to generate RTT

91

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

Web Server
Specification

Attack Server Specification

Operating
System

Window Server2016
Ubuntu Server18.04

Red Team: Kali Linux 2020.2,
Parrot 4.11.3
Blue Team: Window, Ubuntu

Application

Web:
Apache HTTP
Server Version 2.4

Blue Team Tools: Web Application
Firewall, Endpoint detection and
response, ModSecurity

Database:
MySQL,
PostgreSQL

Class Red Team Tools
BENIGN Normal Browsing
BruteForce John the Ripper, Hydra
DDoS Custom python script
DoS Hulk hulk-master
DoS GoldenEye GoldenEye
DoS Slowloris Slowloris
DoS Slowhttptest shekyan/slowhttptest
PortScan RustScan, NMAP

Webattack
BurpSuit, NIKTO,
DVWA, WFUZZ

Heartbleed &
Infilteration

Metasploit,
Custom python script

Table 4.2: Prerequisite Tools to Generate RTT Resampled Dataset

resampled datasets and the test environment used to conduct direct attacks. Figure

4.2 presents attack environment architecture to generate RTT resampled dataset. We

use the VMWareP layer15 for the virtual environment and tcpdump/Wireshark for

packet capture.

Before oversampling, a standardized scale was applied to the data used in the experi-

ment to prevent distortion due to unit differences. The formula is:

z =
(x− η(x))
σ(x)

(4.1)

In equation 4.1, η(x) is the mean of the input data, and σ(x) is the variance. The stan-

dard scale transforms the data so that the mean is 0 and the standard deviation is 1.

To compare the performance of oversampling based on the composite data of CTGAN,

SMOTE, Borderline-SMOTE, and ADASYN among the representative algorithms de-

92

4.3 Feature Selection

scribed in Section 4.4.

4.3 Feature Selection

The number of features increased, which led to an increase in multicollinearity. The

classifier’s predictive power decreased because of unnecessary features. It fell into the

curse of dimension, during which the learning time increased for a long time. Therefore,

in the preprocessing process, the number of features is reduced to N using the dimen-

sionality reduction method and the feature selection technique, and then standardized

scaling is applied. PCA is a predictive model for reducing high-dimensional data to

low-dimensional data [116]. A small set of features can explain a group of data with

the help of the PCA, which is a linear combination of existing features. These are effec-

tively used to reduce the dimensions of high-dimensional data [117]. The features are

calculated from the eigenvalues and eigenvectors obtained from the covariance matrix

in the training data. We will determine what the basis of the space describing the data

will be so that we can minimize the reconstruction error in equation 4.2.

Minµ,λi,Vq

N∑
i=1

xi − (µ+ Vqλi)
2 (4.2)

Here, xi means observation values, and µ + Vqλi can represent the basis of the space

newly constructed by PCA. For example, suppose the data has n features. In that case,

the features selected from the PCA are Equation 4.3 can be expressed as:

Yn = αn1X1 + αn2X2 + · · ·+ αnnXn (4.3)

Where αi,j , i, j = 1, 2, · · · , n, and Y represents the selected feature, and α, the co-

efficient value of the linear combination of X is expressed as the degree to which the

existing feature contributes to the composition of the selected feature. First, to under-

stand the correlation between the standardized influence factors, a correlation matrix is

created by calculating the correlation coefficient between the two factors, and eigenval-

ues and eigenvectors are estimated using this. Here, the rearranged eigenvector refers

to the principal component. In this experiment, the features were reduced to 19 using

PCA.

93

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

4.4 Oversampling Models for Imbalanced Dataset

Handling the class imbalance problem is called Resampling, and the prediction perfor-

mance of the model varies depending on the sampling model applied to the data [118].

Therefore, it is necessary to understand the principle of each algorithm and choose the

one suitable for the data. The sampling method is classified into two parts: under-

sampling and oversampling. Undersampling refers to a technique for removing multiple

classes of data by the number of decimal data. It is inappropriate to use when there is a

defect that information is lost and there is little data. Oversampling is an oversampling

technique that generates as much fractional data as possible. The performance of the

prediction model can be enhanced by oversampling. Representative algorithms using

ML methods include Random Oversampling (ROS), SMOTE, Borderline-SMOTE, and

ADASYN, CTGAN, a DL method based on the GAN algorithm, is described along with

these models.

4.4.1 SMOTE

Synthetic Minority Over-sampling Technique (SMOTE) [16] is an algorithm that ran-

domly selects a sample of a prime class and then generates synthetic data using the

K-nearest neighbor of the sample. The formula for the composite data is as follows:

synthetic i = Xi + gap ∗ (Xn −Xi) (4.4)

In equation 4.4, Xi the sample of the prime class, Xn is the data randomly selected

among the nearest observations of the reference sample Xi, and gap is a random number

between 0 and 1. First, based on Xi selected from the prime class, K neighboring data

are found. Among them, a random observation (Xn) is selected and the difference

from the reference sample (Xi) is calculated. By multiplying the difference (Xn ∼
Xn) by a random number between 0 and 1 (gap) and adding it to the reference

sample (Xi), we get the composite data (synth). Repeat this process several times

to close the gap between the "minority class" and the "majority class". Figure 4.3a

shows the process of generating synthetic data. SMOTE generates new synthetic data

based on the distance of prime classes. It solves the problem of overfitting and improves

the performance of the classifier. However, there are limitations in that the probability

that the synthetic data is biased to a specific distribution is high. The diversity of the

synthetic data decreases due to the generation of duplicate data.

94

4.4 Oversampling Models for Imbalanced Dataset

(a) SMOTE (b) Borderline-SMOTE (c) ADASYN

Figure 4.3: Oversampling Models

4.4.2 Borderline-SMOTE

Borderline-SMOTE [17] calculates the composite data by calculating the KNN of a sam-

ple of a "minority class" and includes observations of a "majority class" in neighboring

observations. Depending on the number of adjacent multiclass observations, they are

classified as ’noisy’, ’dangerous’, or ’safe’. Among K adjacent observations, assuming

that the number of classes is Pnum, the case where K = Pnum is caught, k/2 > Pnum is

classified as safe. If k/2 > Pnum, classify it as a risk and proceed with fractional data

synthesis. The formula for generating synthetic data is the same as for SMOTE, but

only the samples in the ’risk’ area are synthesized. Figure 4.3b shows the algorithm

model of Borderline-SMOTE. Unlike SMOTE, it increases the prediction performance

of the classifier the synthetic data of a few classes in the decision boundary region.

4.4.3 ADASYN

Adaptive Synthetic Sampling (ADASYN) [18] is an oversample algorithm. That gives

weight to the generation of decimal data in the difficult-to-learn decision boundary

region using the density distribution of observations. The formula for calculating the

number of creations is as follows in equation 4.5.

G = (ml −ms)× β (4.5)

Where, ml is the number of observations in the "majority class", and ms is the number

of observations in the "minority class". β is a balance variable between 0 and 1, which

adjusts the number of synthesized data to be generated. G is obtained as the difference

between the number of data of the "majority class" and the data of the "minority class".

It is the total amount of composite data to be generated for the "minority class" shows

95

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

in equation 4.6.

γ̂i =
(∆i/K)∑ms
i=1 (∆i/K)

(4.6)

Where, ∆i is the number of observations belonging to the "majority class" among the

K observations adjacent to the sample of the selected "minority class", and γ̂ is the

probability density function. The larger the value of ∆i, the larger the probability

density function γ̂.

gi = γ̂i ×G (4.7)

In equation 4.7, gi is the number of synthetic data to be generated for the i-th prime

class sample calculated by the probability density function. The calculation formula of

the composite data is the same as that of SMOTE. Figure 4.3c shows that ADASYN

has the advantage of being able to generate synthetic data. It uses a small number

of observations distributed in the domain of multiple classes. It improves a "minority

class" classification performance by oversampling the primary data that is likely to be

regarded as an outlier.

4.4.4 CTGAN

Goodfellow, et al. published DL-based GAN [119]. It is an unsupervised learning

algorithm. In this model, a generator generates similar synthetic data by learning the

probability distribution of the real data and a discriminator that identifies whether

the data is original or synthetic. GAN models have been actively studied and are

mainly used in synthetic data generation and prediction algorithms. However, the

GAN model is based on a discriminator, and the generator learns adversarially. There

is a limitation in that the generator cannot learn well if the classification performance of

the discriminator is high at the beginning of learning. The DCGAN model [120], which

overcomes the limitations of the existing GAN, is commonly used. Still, the DCGAN

model is also difficult to apply to the generation of structured data. Structured data

has the following characteristics:

1. Unlike intrusion data, in the table format, each column has various types (Ex.

number, character, time).

2. Each column has a different data distribution.

96

4.4 Oversampling Models for Imbalanced Dataset

3. Most categorical data have serious imbalance problems and are expressed as sparse

vectors.

For data of a multimodal distribution with several modes that are easy to appear in

such structured data, there is a difficulty in that the generator cannot learn.

Xu, Lei and Skoularidou et al. proposed a Conditional Tabular Generative Adversar-

Figure 4.4: CTGAN Configuration [1]

ial Network (CTGAN) algorithm [1]. It is based on GAN, which can simultaneously

generate continuous and categorical data. The CTGAN algorithm is a model optimized

for unbalanced data by reflecting all these characteristics for structured data and is

used to oversample fractional data in this experiment. CTGAN is a hybrid model of

the Conditional-GAN [121] algorithm, and the Tabular-GAN [122] algorithm is a spe-

cialized algorithm for generating structured data. It is multimodal distribution, and

non-Gaussian distributions are considered and learned using Variable Gaussian Mixed

(VGM) distribution. The formula is in the Equation 4.8.

Pci (Ci,j) =

mi∑
k=1

µkN (Ci,j ; ηk, ϕk) (4.8)

In the Equation 4.8, where Ci,j is the value belonging to the ci column, mi is the the

parameter estimated through VGM, ηk is the kth mode, and µk and ϕk are the weights

and normal distributions of each model. This is calculated to estimate the likelihood. If

mi is estimated as the density of a mixture of three normal distributions through VGM,

where Cij belongs among the three distributions can be found using the probability

density function. The probability of each mode is calculated and expressed as a one-hot

encoding belonging to the dominant model. For example, a value belonging to the third

mode is expressed as [0,0,1]. And the values in the third mode are normalized for the

97

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

Ci,j values, and the expression is as follows in equation 4.9.

αi,j =
ci,j − η3
4ϕ3

(4.9)

For N values, the normalized value and the one-hot encoding vector value are expressed

together in each mode to finally obtain the rj value. The formula is as follows in the

Equation 4.10.

rj = α1,j ⊕ β1,j ⊕ . . .⊕ αNc,j ⊕ βNc,j ⊕ d1,j ⊕ dNd,j
(4.10)

Where, αNc,j means normalized values for the mode, and βNc,j means vector values

expressed in one-hot encoding. Due to this, it was possible to solve the problem of one-

hot encoding and multi-modal problems that occurred when generating structured data

in the existing GAN algorithm. The CTGAN neural network has a similar configuration

to that of the GAN, as shown in figure 4.4. Z is the noise, and the condition is the

value of the condition vector to generate. The generator learns the condition and noise

to create the synthetic data called G(z), and the discriminator decides it.

4.5 Training Data

In the training data, Table 4.3 presents the class 0 means BENIGN, 1 means BruteForce,

and 2, 3, 4, 5, 6, 7, 8, 9 means DDoS, DoS Hulk, DoS GoldenEye, DoS Slowloris, DoS

Slowhttptest, PortScan, WebAttack, Heartbleed & Infiltration respectively. For model

training, label encoding was performed as a preprocessing task. Unlike the SMOTE type

package, the CTGAN package did not automatically oversample the fractional data as

much as the majority data. It was necessary to process the generated data to adjust

the balance between the minority and the majority of data. The remaining SMOTE

packages automatically adjust the amount of data to solve the imbalance problem. In

particular, ADASYN automatically adjusts the number in the package and oversamples

as much as necessary, so it can be seen that the number is slightly different from other

data.

In the experiment, the duplication of synthetic data means the number of fractional

data increases, and the information contained in the data does not increase. Also it is

possible to distinguish the quality of the sampling technique by inspecting how many

Repetition data are generated. Repetition of synthetic data can lead to overfitting

98

4.6 Classification Models

Class Class Name
CICIDS2018 Dataset RTT Resampled Dataset

No. of
Instances

SMOTE/Border
line-SMOTE/
CTGAN

ADASYN
Amount
of Data

SMOTE/Border
line-SMOTE/
CTGAN

ADASYN

0 BENIGN 2687419 2687419 2682677 3224903 3224903 3223927
1 Bruteforce 13835 2687419 2686809 309904 3224903 3221015
2 DDoS 259986 2687419 2687197 2287877 3224903 3220178
3 DoS Hulk 231073 2687419 2681626 2657340 3224903 3223847
4 DoS GoldenEye 10293 2687419 2681723 152336 3224903 3221027
5 DoS Slowloris 5796 2687419 2682636 166345 3224903 3220513
6 DoS Slowhttptest 5499 2687419 2681686 159471 3224903 3222581
7 PortScan 317860 2687419 2685326 1843588 3224903 3224059
8 Webattack 2180 2687419 2684685 69760 3224903 3222566

9
Heartbleed &
Infiltration

47 2687419 2683329 5828 3224903 3222524

Total 3533988 26874190 26837694 10877352 32249030 32222237

Table 4.3: Number of Instances in Training Data Generated by Oversampling Methods
on CICIDS2018 Dataset and RTT Resampled Dataset

problems. CTGAN did not generate any duplicate data except for the 2.2% duplicate

data that the existing training data had. In the order of ADASYN, BorderlineSMOTE,

and SMOTE, many duplicate data occurred. In particular, SMOTE showed the most

ominous performance as duplicate data occupies about 14.6% of the total data. The

training data (CICIDS2018 and RTT resampled datasets) have 84 features. However,

it is necessary to select the features to be used for analysis.

4.6 Classification Models

In order to perform its prediction, the model uses the training input values and makes

certain assumptions about the new class labels/categories. We used three classification

models (LDA, DRF, and LightGBM) to confirm the experimental results. The Light-

GBM shows excellent prediction performance with comparatively higher processing and

computational speed.

4.6.1 Linear Discriminant Analysis (LDA)

In the LDA, it is essential to find an axis that includes these properties simultaneously

to distinguish the categories between the influence factors [19]. Projecting the data on

an axis, we see the axis on which the distance between the average values is maximum.

The axis where the variance within the category is the minimum is found. First, the

99

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

total variance (ST) and the variance within the data (SW) must be calculated, which is

calculated in equations 4.11 and 4.12 respectively.

ST =
1

N − 1

N∑
i=1

(xi −m) (xi −m)T (4.11)

SW =

M∑
j=1

[
1

Nc − 1

Nc∑
i=1

(xi −mj) (xi −mj)
T

]
(4.12)

Here, m represents the average of all data, and mj (j = 1, 2, 3, ...,M) represents the

average of each data. And if we obtain a transformation matrix W to maximize the

overall variance and the ratio within the data, Equation 4.13 can be expressed as:

J(W) =

∣∣∣∣W TSTW

W TSWW

∣∣∣∣ (4.13)

Here, W is a matrix having the eigenvector of SW , ST as a column vector and can

be obtained through eigenvalue analysis such as Equation 4.13. Finally, in the case of

analysis data, the significance was verified by Wilk′sLamda method. Suppose the value

of the structural matrix defines the correlation coefficient between the influence factor

and the standardized canonical discriminant function. It indicates a high value, and

the influence is high; otherwise, the influence is low.

4.6.2 Distributed Random Forest (DRF)

In the DRF, if the input values of all learning models are the same, the prediction values

will be similar. The bootstrap aggregating model is to restore and extract the input data

and train it randomly to remove the correlation by the same input data [20]. However,

bagging does not remove the correlation between variables because features are learned

without change. DRF improved the multicollinearity problem between variables, which

is a disadvantage of the bagging model, by randomly selecting the variables of the input

dataset [123]. The Classification and Regression Tree (CART) algorithm classifies the

input variables into several groups [124]. The Gini coefficient is used to remove the

impurity of the sample. The CART algorithm is a binary decision tree created by

iteratively splitting the node into two sub-nodes, starting with the root node containing

the entire training sample. It has the advantage of handling both classification and

regression problems. The Gini coefficient is an index that minimizes the impurity of the

separated child nodes [125]. The lower the Gini coefficient, the lower the contaminant,

100

4.6 Classification Models

and it means that the nodes of the corresponding category are well classified as highly

correlated with each other. The formula for the Gini coefficient shows in equation 4.14:

1−
k∑

i=1

(Pi)
2 (4.14)

Where, k is the number of categories, and Pi is the probability of being classified into i

categories. According to the above formula, it can be seen that the probability of being

classified into the corresponding category is obtained, and the movement moves toward

the highest probability. For this reason, the model using the CART algorithm has the

advantage of explaining the classified principle, and the analysis result is easy to under-

stand. Figure 4.5 shows the CART algorithm model. DRF uses several of these CART

Figure 4.5: CART Algorithm Model

models to vote for the best value. Table 4.4 summarizes the hyperparameter values of

the DRF classifier used in this experiment. n_estimate is the number of trees used for

classification, max_depth is the depth of the decision forest, and min_samples_split

is the less number of samples to form a branch, a value used to prevent overfitting.

4.6.3 LightGBM

LightGBM [21] uses Gradient-based One-Sided Sampling (GOSS) and Exclusive Feature

Bundling (EFB) technology to improve learning speed and maintain accuracy compared

to existing models. The GOSS uses the fact that an entity with a slight slope. It has

been a small amount of information to acquire, delete, and learn with a significant

pitch. However, suppose the object itself is deleted. In that case, the data distribu-

tion is changed, and the accuracy of the trained model decreases. To prevent this,

101

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

Hyperparameter DRF 1 DRF 2
Number of folds (nfolds) 7 10
Ignore constant columns (ignore_const_cols) Yes Yes
Number of tree (ntrees) 50 100
Maximum tree depth (max_depth) 20 50
Row sample rate (sample_rate) 0.632 0.824
Fold_assignment Random Modulo
Stopping_metric MSE RMSE
Stopping_tolerance 0.001 0.002
Histogram_type UniformAdaptive Random
Categorical_encoding OneHotInternal OneHotExplicit
Distribution gaussian laplace
Min_sample_split 200 200

Table 4.4: Distributed Random Forest Classifier Hyperparameters

GOSS performs random sampling on objects with slight slopes. When calculating the

amount of information acquisition, the data object with a slight incline is multiplied by

a constant multiplier to eliminate the effect on the data distribution. Equation 4.15 is

following for the estimated variance gain.

V̄j(d) =
1

n

((∑
xi∈Ai

gi +
1−a
b

∑
xi∈Bi

gi
)2

njl (d)
+

(∑
xi∈Ar

gi +
1−a
b

∑
xi∈Br

gi
)2

njr(d)

)
(4.15)

Where Al = {xi ∈ A : xi,j ≤ d}, Ar = {xi ∈ A : xi,j > d}, Bl = {xi ∈ B : xi,j ≤ d},
Br = {xi ∈ B : xi,j > d}, and the coefficient 1−a

b is the value used to normalize the

distorted distribution. The training subjects are ranked in descending order according

to the absolute value of the slope. A subset A is created with the top A∗100% subjects,

and the bottom B is created by random sampling for the rest (1 − A). The object is

partitioned according to the finally obtained estimated variance gain. In figure 4.6,

the LightGBM model shows that the branches are down only to one side, unlike other

GBDT-based models due to the estimated variance gain. Table 4.5 summarizes the hy-

perparameter values of the LightGBM classifier used in this experiment. n_estimators

is the number of trees used for classification, max_depth is the depth of the decision

forest, and learning_rate is the learning rate. Objective decides which data to use the

model to predict. Multi : softmax is used for multi-class classification problems.

102

4.7 Experiment and Analysis of Results

Figure 4.6: LightGBM model

4.7 Experiment and Analysis of Results

4.7.1 Experimental Setup

The hardware test environment was tested on a desktop with processor Intel(R) Xeon(R)

Gold 6238R CPU @ 2.20GHz 2.19 GHz (2 processors), 384GB RAM, and Windows 10

Pro operating system installed. This system types a 64-bit operating system x64-based

processor. We applied JMPstatistical software [126] for collections to learn the overall

behavior for all datasets and find the best features by using PCA. The experimental

simulations is tested by using Tensorflow, scikit − learn, seaborn, pandas, numy,

River, sdv.tabular.CTGAN , and keras. These libraries are prevalent in the python

library to develop the IDS model.

4.7.2 Statistical Preliminaries

ROC Curve explained in chapter 2, section number 2.7. Figure 7.3 shows the true

positive rate (Sensitivity) as a function of the false positive rate (1-Specificity) for the

different cuts.

The confusion matrix is explained in chapter 2, section number 2.7. We calculate

the Accuracy, Precision, Recall (Sensitivity), and F1-score, i.e. explained in chapter 2,

section number 2.7.

4.7.3 Experimental Results of Oversampling & Classification Model

In this experiment, after pre-processing, we reduced the features to 19 using PCA,

which were 84 in the CICIDS2018 dataset, and showed in section 4.3. Practically, we

103

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

Hyper Parameter LightGBM1 LightGBM2
Number of folds (nfolds) 5 5
Ignore constant columns (ignore_const_cols) Yes Yes
Number of tree (ntrees) 100 200
Maximum tree depth (max_depth) 50 50
Weight observations (min_rows) 20 20
Learning_rate 0.5 0.8
Sample_rate 1 1
Col_sample_rate 1 0.5
Stopping_metric logloss logloss
Distribution bernoulli multinomial
Quantile regression 0.5 0.8
Huber/M-regression 0.9 1
Categorical_encoding Enum OneHotInternal
Maximum absolute value 1.25 1.5

Table 4.5: LightGBM Classifier Hyperparameters

Figure 4.7: ROC Plots TPR against FPR

104

4.7 Experiment and Analysis of Results

Scenario 1: CICIDS2018 Dataset

Oversampling Classifier
Statistical Performance Metrics

Accuracy Precision Recall F1-score

Imbalanced
Data

LDA 88.18 99.7 42.63 59.72
DRF 88.17 99.7 42.61 59.69
LightGBM 88.36 98.89 43.87 60.78

SMOTE
LDA 98.88 98.15 96.36 97.25
DRF 98.37 96.37 95.67 96.02
LightGBM 98.83 97.57 96.75 97.16

Borderline
SMOTE

LDA 98.55 96.96 95.97 96.46
DRF 98.56 96.41 96.61 96.5
LightGBM 98.64 97.19 96.17 96.69

ADASYN
LDA 97.85 94.57 94.97 94.77
DRF 93.97 85.92 84.59 85.26
LightGBM 97.31 93.07 93.88 93.47

CTGAN
LDA 99.08 98.38 97.13 97.75
DRF 99.05 98.37 96.99 97.67
LightGBM 99.16 98.59 97.3 97.94

Table 4.6: Statistical Performance Analysis of State-of-the-art Oversampling Methods on
CICIDS2018 Dataset

assume two scenarios as follows: first, we used the CICIDS2018 dataset, and second, we

directly generated RTT resampled dataset to extend the real-time applicability of the

classification model. In both datasets, we compare the sampling performance of imbal-

anced data, SMOTE, Borderline SMOTE, ADASYN, and CTGAN models, which are

the usual sampling methods. To evaluate the control group’s performance and control

group, the classification model uses an LDA, DRF, and LightGBM. Moving on from

the previous studies that only compared data performance, we evaluated the model’s

performance by performing a similar attack and collecting packets in a virtual environ-

ment. In this experiment, the given approach and experimental simulation carried out

in this contribution overcomes the difficulty i.e., complexity involves in the Training

Dataset as well as the data instances present in other similar computational environ-

ments. The results shows the comparatively improved performance over State-of-the-art

oversampling methods.

A packaged GAN algorithm such as CTGAN oversampling can generate highly ac-

curate synthetic data without changing hyperparameters. Second, it was possible to

estimate its applicability in practice by developing the same attack as the experimental

105

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

Figure 4.8: Accuracy Comparison of Oversampling Methods on CICIDS2018 Dataset

Scenario 2: RTT Resampled Dataset

Oversampling Classifier
Statistical Performance Metrics

Accuracy Precision Recall F1-score

Imbalanced Data
LDA 88.42 85.75 44.01 58.16
DRF 88.23 85.8 42.76 57.08
LightGBM 87.92 84.31 41.78 55.87

SMOTE
LDA 98.99 98.11 96.35 97.23
DRF 98.5 96 95.82 95.91
LightGBM 98.72 96.86 96.15 96.5

Borderline SMOTE
LDA 98.53 96.09 95.89 95.99
DRF 98.72 96.96 96.1 96.52
LightGBM 98.76 97.3 95.87 96.58

ADASYN
LDA 97.48 91.94 94.5 93.2
DRF 94.47 85.17 84.48 84.82
LightGBM 97.61 92.63 94.44 93.53

CTGAN
LDA 99.18 98.53 96.99 97.75
DRF 99.11 98.31 96.85 97.57
LightGBM 99.25 98.72 97.17 97.94

Table 4.7: Statistical Performance Analysis of State-of-the-art Oversampling Methods on
RTT Resampled Dataset

106

4.7 Experiment and Analysis of Results

dataset and using it as test data. As a result, since the environment greatly influences

the intrusion detection data, it was confirmed that even if the performance of the exper-

imental model was excellent, it was not confirmed whether it was applied in practice.

We find out whether the synthetic data generated by the CTGAN package helps im-

prove the classification model’s performance and verify it with actual malicious data.

In scenarios 1 and 2, we calculate the statistical performance metrics in terms of Accu-

Figure 4.9: Accuracy Comparison of Oversampling Methods on RTT Resampled Dataset

racy, Precision, Recall, and F1-score. We resample the existing CICIDS2018 intrusion

detection dataset as a representative method to address the data imbalance issue. We

use four (SMOTE, Borderline-SMOTE, ADASYN, and CTGAN) state-of-the-art data

oversampling methods and three classification models (LDA, DRF, and LightGBM) on

CICIDS2018 and RTT resampled dataset. Among the four data oversampling meth-

ods used, CTGAN with LightGBM shows outperforming results with 99.16% Accuracy,

98.59% Precision, 97.30% Recall, 97.94% F1-score on the CICIDS2018 dataset. Table

4.6 shows statistical performance analysis of state-of-the-art oversampling methods on

the CICIDS2018 dataset. Figure 4.8 shows the Accuracy comparison of oversampling

methods and imbalance data on the CICIDS2018 dataset. CTGAN with LightGBM

107

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

S.
No.

Method Dataset
Statistical Performance Metrics

Accuracy Precision Recall F1-score

1

SMOTE + RF
Credit Card

(Charitou et al. 2020)

98.26 95.21 86.2 90.45
SMOTE + MLP 96.82 79.56 88.58 83.53
ADASYN + RF 96.77 97.69 85.61 91.2
ADASYN + MLP 87.6 62.69 93.94 75.17

2

SMOTE + RF
Gambling Fraud

(Charitou et al. 2020)

93.61 83.55 94.58 88.72
SMOTE + MLP 92.03 93.72 79.84 86.18
ADASYN + RF 93.47 82.56 95.69 88.62
ADASYN + MLP 92.19 79.46 95.26 86.63

3
SMOTE + Grid Search + RF

ISCX-Bot-2014
(Gonzalez et al. 2020)

98.84 97.96 97.99 97.98
SMOTE + Grid Search + SVM 97.35 81.52 82.61 81.17
SMOTE + Grid Search + KNN 98.72 96.77 96.76 96.76

4
Random Forest

CICIDS2017
(Sharafaldin et al. 2018)

NA 98 97 97
Multilayer Layer Perceptron NA 77 83 76
Quadratic Discriminant Analysis NA 97 88 92

5
CTGAN + LDA

RTT Resampled
Dataset

99.18 98.53 96.99 97.75
CTGAN + DRF 99.11 98.31 96.85 97.57
CTGAN + LightGBM 99.25 98.72 97.17 97.94

Table 4.8: Performance Comparisons With Existing Methods

shows outperforming results with 99.25% Accuracy, 98.72% Precision, 97.17% Recall,

and 97.94% F1-score on RTT resampled dataset. Overall the performance measure of

the CTGAN model is highest with the LightGBM classifier. Table 4.7 shows statisti-

cal performance analysis of state-of-the-art oversampling methods on RTT resampled

dataset. Figure 4.9 shows the Accuracy comparison of oversampling methods and im-

balance data on the RTT resampled dataset. Overall, it showed good performance on

the validation dataset also.

In particular, the unbalanced data showed no significant difference in verification per-

formance compared with scenarios one and two. We compare imbalanced and oversam-

pling data with state-of-the-art models (SMOTE, Borderline-SMOTE, ADASYN, and

CTGAN). Therefore, it can be seen that among previous studies, the same results as

the studies that confirmed the improvement of the prediction performance using only

the PCA preprocessing method were shown. However, looking at the low F1-score of

the test data, it can be seen that it is not easy to predict the test data only with the

preprocessing operation accurately. The robustness that can classify data of a new

environment rather than experimental data is low.

Table 4.8 shows the performance comparisons with existing research in intrusion

detection with oversampling methods. The test results are also compared with exist-

108

4.8 Conclusions

ing state-of-the-art intrusion detection methods and datasets (Credit Card, Gambling

Fraud, ISCX-Bot-2014, CICIDS2017) in Accuracy, Precision, Recall, and F1-score. The

best performance was observed when predicted by the CTGAN model with LightGBM

classifier on all sampling data.

4.8 Conclusions

Generally, data imbalance refers to the unequal statistical distribution of the differ-

ent categories in the provided datasets. The state-of-the-art oversampling algorithms

SMOTE, Borderline-SMOTE, ADASYN, and CTGAN are used to solve the data imbal-

ance problem in intrusion detection datasets. This can discard the significantly useful

information about the data, which could be very much useful in order building rule-

based classification procedures. Another major problem with the imbalance natured

data is that - the sampling procedure performed on such data may also result as a bi-

ased sub-sample. This scenario will result in the degradation of statistical measurement

of accuracy for the entire data points belonging to the population. The state-of-the-art

LDA, DRF, and LightGBM are adopted as learning algorithms for building classifica-

tion models.

CTGAN with LightGBM is observed to attain higher classification performance and

faster prediction speed on the CICIDS2018 dataset with 99.16% Accuracy, 98.59% Pre-

cision, 97.30% Recall, and 97.94% F1-score. The classification models are also tested

using an RTT resampled dataset to check the real-time applicability of the classification

models. As a result, CTGAN with LightGBM shows outperforming results with 99.25%

Accuracy, 98.72% Precision, 97.17% Recall, and 97.94% F1-score. The test results are

also compared with existing intrusion detection methods (SMOTE + RF, SMOTE +

MLP, ADASYN + RF, ADASYN + MLP, SMOTE + Grid Search + RF/SVM/KNN,

QDA) and datasets (Credit Card, Gambling Fraud, ISCX-Bot-2014, and CICIDS2017).

In this chapter, we improve the IDS using the resampling techniques, i.e. dealing

with a highly unbalanced IDS dataset. We found that selecting the right features in

data is critical before building machine learning models. Irrelevant features will af-

fect the model’s accuracy and increase the training time required to create the model.

Feature selection is a necessary process to build IDS. Feature selection aims to deter-

109

4. INTRUSION DETECTION MECHANISM USING OVERSAMPLING
TECHNIQUE

mine the optimally minimal feature subset from the problem domain while retaining

the suitable high accuracy while representing original features. In the next chapter,

we introduce "Feature selection using a genetic algorithm to improve classification in

network intrusion detection system".

110

Chapter 5

Artificial Neural Network based
IDS using Multi-objective Genetic
Algorithm

5.1 Introduction

With the growth of the Internet, the advancement of network infrastructure, and the

development of communication technology, work efficiency, cost reduction, and new

knowledge information are being created in various industrial fields. Cyber-attacks are

continuously evolving with the development of digital technology. It is estimated that

the damage caused by accidents is more substantial than the damage caused by natural

disasters. An IDS is one way to defend against cyber intrusion attacks in real-time by

analyzing packet information or logs. IDSs are classified into two types according to

the attack methods.

1. First, there is a misuse detection method to detect known attacks. The specificity

of this approach is that it detects well-known attacks using predefined rules, which

are most often used in the field. However, it is limited to known attack methods,

so it is difficult to cope with new attack methods.

2. Another intrusion detection method is anomaly detection. The anomaly detection

method considers an action that deviates from it as an anomaly based on the

average use pattern. It has the advantage of detecting previously unknown attack

methods, unlike the misuse detection method.

111

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

However, there is a problem that the abnormal symptom detection method incorrectly

judges the normal usage mode as a cyber-infringement.

Recently, methods of introducing data mining, artificial intelligence, and machine

learning methods to IDSs are attracting attention from researchers. In particular, many

attempts have been made to introduce artificial intelligence technology to anomalous

symptom detection methods that seek to find previously unknown attack patterns and

show reasonably high accuracy. As a method using machine learning, various meth-

ods such as Artificial Neural Network (ANN) [22] and Support Vector Machine (SVM),

[127] were used, and studies comparing them were also presented. Furthermore, ma-

chine learning methods depend heavily on the feature set used, so studies should be

conducted to determine which features are the most effective for classification of at-

tacks.

In general, feature selection methods can be primarily divided into two types: wrapper

method and filter method [128]. The wrapper method searches for the most suitable

feature combinations for a specific machine learning model, targeting all possible feature

combinations. For individual feature combinations, since learning and evaluation for a

particular machine learning method must be performed individually, there is a disad-

vantage that a lot of time and overfitting problems may occur. In contrast, the filter

method uses an approach that selects individual features based on their relationship

to specific attack types. Typically, a method uses the correlation coefficient between

individual characteristics and attack type. In the case of using this filter method for

feature selection of an IDS, there are studies using information gain [129], dependence/-

gain ratio [130], and correlation coefficient [131]. The filter method does not assume a

specific machine learning model, as learning is not used to evaluate individual features,

it is free from problems such as a large amount of time required or over synchronization.

For this reason, in the intrusion detection system where many features are available,

variety of studies are using the filter method rather than the wrapper method.

However, it is known that features with similar characteristics are easily selected (Re-

dundancy), or the emergent performance of a combination of features is easily excluded,

and it is known that the support margin is lower than that of the actual wrapper method.

In addition to the detection rate, a vital evaluation factor is a time required for detec-

tion. Since the IDS used in the field needs to detect abnormal behavior targeting a

112

5.2 Datasets

tremendous amount of network traffic, the time needed for detection is as important as

the detection rate. In the case of an IDS based on anomaly detection using machine

learning, the factor directly related to the detection time is the length of the feature

combination used. In other words, as the length of the feature combination is shorter,

the time straight to the learning time or detection time is required. However, in general,

if the size of the feature combination is quick, the detection rate decreases, and there

is a trade-off between the time necessary and the detection rate, so finding a feature

combination that satisfies all of these is a crucial problem.

Contribution of the Chapter

This chapter describes six Denial-of-Service (DoS) attacks in the KDD’99 and NSL-

KDD datasets and five DoS attacks in CIC-IDS2017. We intend to design an IDS

based on post-detection. In this case, we propose finding feature combinations using a

multi-objective genetic algorithm-based ANN to ensure both detection rate and real-

time performance. The proposed feature selection method is similar to the wrapper

approach. Still, it has the feature of defining an objective function that uses the rigidity

of clustering to avoid the learning time and the overfitting problem. Compared with

the existing wrapper methods, the proposed method measures analysis and evaluation

(Accuracy, Precision, Recall, and F1-score).

Outline of the Chapter

The chapter is organized as follows—first, Data sources and motivation is described

in section 5.2. The proposed model is presented in Section 5.3, representing the pre-

processing data method, multi-objective genetic algorithm, and ANN. Section 5.4 shows

the experiment analysis and obtained results. Finally, conclusions & future work are

drawn in Section 5.5.

5.2 Datasets

This section discusses CUP KDD’99, NSL-KDD, and CICIDS2017 IDS datasets. Also,

the motivation for the proposed methodology is discussed.

113

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

5.2.1 CUP KDD’99 Dataset

Chapter 2, section 2.3 shows more details about the state-of-the-art datasets, In section

number 2.3.1.1 shows the CUP KDD’99 dataset details. Table 5.1 shows the types of

Data Type Explanation
KDD Train+

(Total: 125973)
Normal Normal Data 67343 (53%)

DoS Attack
Denial-of-service attack (Ex: neptune,
teardrop, synflood, mailbomb, smurf, etc)

45927 (37%)

Probing
Probing attack (Ex: port scanning,
portsweep, etc)

11656 (9.11%)

R2L
(Remote to Local)

Unauthorized connection from remote
(Ex: pass_word_estimation, ftp_write, etc)

995 (0.85%)

U2R
(User to Root)

Unauthorized access to gain root privileges
(Ex: buffer_overflow_attack, sqlattack, etc)

52 (0.04%)

Table 5.1: Four types of attacks included in the KDD’99 dataset [2]

attacks it can be categorized into four categories.

5.2.2 NSL-KDD Dataset

Chapter 2, section number 2.3.1.2 shows the NSL-KDD datasets details. There are many

problems in using it as it is, such as large and redundant data. For this reason, there

has been a tendency to arbitrarily select only part of the data and use it for research.

Nevertheless, self-defence data use reduced the objectivity of the research results while

making it difficult to make fair comparisons between the methods being compared. To

solve this above-mentioned problem, the NSL-KDD dataset was proposed by [24].

Normal
Denial-of-Service (DoS) Attacks
Neptune Teardrop Smurf Pod Back Land

Training data 67344 41214 892 2646 201 956 18
Test data 9711 4657 12 665 41 359 7

Table 5.2: 6 Dos attacks in NSL-KDD dataset, [3]

Table 5.2 shows the six types of denial-of-service attacks in the NSL-KDD dataset

i.e. use in the experiment.

114

5.3 Proposed Method

Type of DoS
Attacks

Benign
DoS

GoldenEye
DoS
Hulk

DoS
Slowhttptest

DoS
Slowloris

Heartbleed

Number of
Samples

440031 10293 231073 5499 5796 11

Table 5.3: DoS attacks in CIC-IDS2017 Dataset

5.2.3 CIC-IDS2017 Dataset

Chapter 2, section number 2.3.1.5 shows CIC-IDS2017 dataset [25]. CIC-IDS2017 has

14 types of attacks collected in the CIC-IDS-2017 set, analyzed by various methods in

this study. To develop the proposal, a preliminary analysis was initially carried out

in the CICIDS2017 database in search of records with DoS-type attack alerts. In this

phase, it was observed that the file Wednesday-Working-Hours.csv met the requirement.

Table 5.3 presents the DoS attacks in the CIC-IDS2017 dataset. The total number of

records is 2830743, and 79 features are presented in the dataset.

Due to the small number of occurrences of the Heartbleed vulnerability (CVE- 2014-

0160) and not being a DoS attack, the records of this group were not considered in

the rest of the development of this work. Another relevant point is that, despite the

significant difference in the number of records from the other groups, they all have more

than five thousand occurrences each, corresponding to a sufficient number for the model

to have a good learning curve.

5.3 Proposed Method

This section details data preprocessing with normalized numerical features proposes

a Multi-objective Genetic Algorithm, and implements an ANN-based IDS. Figure 5.1

shows the proposed procedure is a generalized classification procedure applied to any

field with multiple conflicting objectives.

Motivation for the Proposed Methodology

In this work, Multi-Layer Perceptron (MLP) is preferred over Decision Tree (DT),

Random Forest (RF), and SVM due to the following computational advantages

• MLP can detect very complex non-linear relationships between dependent and

independent variables.

115

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

• It requires less formal statistical training.

• It has the availability of multiple training algorithms.

Whereas DT, RF, and SVM can not provide a comparatively better intrusion detection

prediction performance for the following reasons.

• DT can not branch if any feature or variable value for the internal node (Non-Leaf

Node) is missing.

• RF is generally more complex and computationally expensive. Also, over-fitting

can occur can easily in this.

• In SVM, selecting an optimal kernel function is a major hurdle. Also, it can not

classify more than two target variables unless it is extended.

Why GA ?

• Genetic Algorithm (GA) is a kind of optimization simulation in which a popula-

tion of abstract representation is also called Chromosome of candidate solution

(individuals to n optimization problem towards a better solution).

• The algorithm’s functionality is based on a fitness function that can be stochasti-

cally repeated until the particular objective function condition is satisfied.

• GA also supports multi-objective optimization.

5.3.1 Data Pre-processing

In order to use the features as input to a learning algorithm, such as an ANN, all features

must be numeric. However, among the features in NSL-KDD data, there are symbolic

features like protocol type, so it is necessary to quantify them. In addition, since it

has a value of over 1 billion, such as src_bytes and dst_bytes, there are features that

cause bias for other features, so normalization to a value within an appropriate range

is required. The method suggested by [132] and [133] summarizes the normalization

procedure from two perspectives. First, they discussed the cluster validity indices for

generalized machine learning procedures. The second is about the misuse detection

context in terms of the application of ML in developing an intrusion detection system.

116

5.3 Proposed Method

Figure 5.1: The Proposed ANN-Based IDS by using Multi-objective Genetic Algorithm

117

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

Normalization is divided into four types according to the kind of characteristic and

normalized according to each class as follows. First, for features whose value is a symbol,

such as protocol_type, a method of assigning a positive integer from 0 according to the

type of value is used. For example, in the case of a protocol_type consisting of tcp,

udp, and icmp, 0 for tcp, 1 for udp, and 2 for icmp are assigned, respectively. Like

scr_bypes and dst_bytes, although its value is a number, it is very large compared to

other features, and when used in an ANN, a logarithmic value based on 10 is used for

the feature that causes bias. Finally, these numerical features are linearly normalized

to values between 0 and 1 using (5.1).
s−min(vi)

max (vi)−min(vi)
(5.1)

Where, min(vi) and max(vi) signify the min & max value of the feature over the training

& testing dataset (1 ≤ i ≤ TF). TF is the total number of features in the selected

dataset, e.g., KDD’99, NSL-KDD having 41, and CIC-IDS2017 having 79 features.

5.3.2 Multi-objective Genetic Algorithm

We propose a Multi-objective Genetic Algorithm to extract feature sets that guarantee

two conflicting goals for six service attacks: high detection rate and less search time.

The multi-objective genetic algorithm is one of the well-known meta-heuristic algorithms

used to find optimal solutions for various conflicting objectives. Extracting the optimal

feature set is a problem of extracting a feature combination f∗. That minimizes the

value of v when the cost function C is equal to C : f → v(0 ≤ v) for a given feature set

f by [23].

5.3.2.1 Representation of Solutions

A feature combination for minimizing a given cost function in a feature set consisting

of TF features can be expressed as a TF-dimensional vector given 0 or 1 depending on

whether or not the feature is included in the combination shows in (5.2).

S =<s1,s2,s3, ..,si, ..,s41>,where, siε{0,1},0 ≤ i ≤ TF (5.2)

5.3.2.2 Fitness Function

The purpose of the combination of features to choose from is twofold. The first objec-

tive is to maximizes the detection rate for service denial attacks. Another objective is

118

5.3 Proposed Method

to detect the presence and type of denial-of-service attack as quickly as possible and

notify the administrator. One of the essential factors closely related to the attack de-

tection time is the number of features included in the feature vector. The smaller the

number of features, the less time it takes to determine the feature value and use it to

determine the presence and type of an attack. Therefore, the desirable properties that

feature combinations (vectors) must have are high. The number should be small while

guaranteeing the detection rate. However, since the size of the feature number and

the detection rate generally have a positive correlation, it is not easy to ensure a high

detection rate with a small number of features.

Various methods of constructing the objective function are used to achieve the two con-

flicting objectives. Still, this chapter proposes a weighted sum method after separately

defining tasks for the two objectives. First, the objective function for guaranteeing

the detection rate will be described. As mentioned above, there are wrapper and filter

methods for selecting a feature combination to achieve a specific purpose. The method

that can guarantee the emergent characteristics of the feature combination is the wrap-

per method. However, the wrapper method’s drawback, which is a long learning time,

and an over-adaptation problem to a specific machine learning method, may occur. To

avoid this, a k-means clustering method has been proposed to evaluate the suitability of

a given feature vector by [134] & [3], and this method is also used in the chapter. The

method of using k-means clustering is as follows. First, k-means clustering is performed

on the dataset using the given feature vector S. Then, the membership p(x) of each

data point x is obtained. The original membership value q(x) is compared to Equation

(5.3) and finds ω(x).

ω(x) =

{
1, if p(x) = q(x)

0, otherwise
(5.3)

The suitability in terms of detection rate for a given feature combination S is defined

as the ratio of calculating ω(x) for all data, and it is defined as the ratio of the sum and

dividing by the total number of data as shown in Equation (5.4).

Fitdetect (s)=

n∑
i=1

ω (xi)

N
(5.4)

Here, N represents the size of the data. On the other hand, the objective function for

the vector size, which is related to the real-time property of the feature combination, is

119

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

defined to be proportional to the size of the feature vector as shown in Equation (5.5).

Fittime (s)=
(FN−Φ(S))

FN
(5.5)

Here, FN is TF since it represents the total number of features. Φ (S) refers to a value of

1 in a given solution S: the number of selected features. Finally, the fit function aiming

at both the detection rate and real-time performance for the given feature combination

(solution) S is defined as the weighted sum of the two objective functions Equations 5.4

and 5.5 described above. Fit (S)= λFitdetect (s)+ (1− λ)Fittime (s), 0 < λ < 1 λ

is a parameter value representing the weight of the two objective functions and can be

appropriately selected and used according to the importance of the two objectives.

5.3.2.3 Genetic Algorithm

The procedure of a genetic algorithm that uses the sum of weights of various objective

functions as a direct function is not significantly different from that of a general genetic

algorithm that uses a single objective function as a fitness function. The algorithm is

described using the parameters used as follows.

Step 1. Create an Initial Solution Set: To construct the initial solution set, 100

randomly selected TF-dimensional binary vectors are generated and use Equation 5.5

to calculate the fit function’s value.

Step 2. Selection Operation: In order to generate a new solution set, a good parent

solution must be selected from the previous solution set. Various types of selection

operations used in genetic algorithms have been proposed for over a decade. This

chapter used a method of selecting two solutions in proportion to the value of the fit

function, known as the roulettewheel selection operation. However, Elitism was used

for fast convergence. In other words, the solution with the fit function value within

10% in the previous solution set was added as it is to the next solution set without any

additional crossover operation.

Step 3. Crossover Operation: After selecting two solutions proportional to the

value of the fit function, A crossover operation is applied to the solution to generate

120

5.3 Proposed Method

two new solutions. In this case, the single point cross operation (Single Point Crossover)

method was used for the crossover operation. One-point crossover operation selects an

arbitrary point on the coast, separates the point from the front and the back, and then

cross-connects the two years to create two new solutions.

Step 4. Mutation Operation: There are no precise guidelines for mutation rates,

but in general, Giving it not too large ensures convergence of the solution. In the chap-

ter, after the experiment with various mutation rates, 1% was used as the mutation rate

to select the element of the feature combination. If the value was 0, it was transformed

into 1, and if it was 1, it was transformed into 0 to ensure the diversity of the solution

space.

Step 5. Termination Conditions: The fit function is calculated for all solutions

of the newly created solution set, and when 100 solution sets have been generated, the

algorithm is terminated. If not, go to Step 2 and repeat the same procedure.

When the genetic algorithm is finished, the feature combination of the solution with

the highest fit function value obtained from 100 iterations is used as the optimal feature

combination.

5.3.3 Artificial Neural Network

When the feature combination extraction is completed, an intrusion detection system

must be implemented to determine the actual intrusion status and type. This chapter

introduces ANN-based IDS. We used ANN procedure to implement the model for the in-

trusion detection system along with the Multi-objective Genetic Algorithm (for feature

selection and aggregation). This way, the proposed hybrid approach performs compar-

atively better than other methods. In an experiment, we compare detection rates using

various machine learning methods using the KDD’99, NSL-KDD, and CIC-IDS2017

datasets. First, the NSL-KDD dataset was processed using only the feature combina-

tions obtained using the proposed feature selection algorithm to create a dataset. The

ANN used is a multi-layer perceptron type with a structure of three layers (Input layer,

Hidden layer, and Output layer) [22].

The number of input nodes is the same as the number of features used in the feature

combination. The number of output nodes is normal, with six DoS attacks, and it

121

5. ARTIFICIAL NEURAL NETWORK BASED IDS USING
MULTI-OBJECTIVE GENETIC ALGORITHM

consists of 7 nodes representing the record in the KDD’99 and NSL-KDD datasets. In

the CIC-IDS2017, output nodes consist of 5. The number of nodes used in the hidden

layer was used by selecting the number that showed the highest performance through

various experiments. The target value assigned to the learning output layer was 0.9

for the class and 0.1 for the other classes. For example, in the NSL-KDD dataset, the

target output value for a normal record is given as <0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1>.

Denial-of-service attacks induced learning by assigning a value of 0.9 to the correspond-

ing output node. The learning algorithm used an error back-propagation algorithm.

After experimenting with various learning rates and momentum values, the values that

showed the best performance were selected and used in the final experiment. All the

activation functions used at each layer, except the output layer, are sigmoid functions,

i.e., defined as n (ω)=(1+e−ω)−1.

5.4 Experiment Analysis and Obtained Results

This section presents the experimental evaluation on the input datasets and performance

evaluation metrics.

5.4.1 Experimental Setup

The hardware test environment was tested on a desktop with Intel(R) Core(TM) i7-

4790 CPU @ 3.60GHz 3.60 GHz, 32GB RAM, and Windows 10 Pro operating system

installed. We applied Weka’s tool for collections to learn the overall behavior, [135]

for all datasets. Experimental simulations were performed using Tensorflow, scikit−
learn, seaborn, pandas, numy, and keras, which are the most used machine learning

frameworks. Python was used as a programming language.

5.4.2 Performance Evaluation

The confusion matrix is a performance measurement technique for machine learning

classification. It is a kind of table that helps us to know the performance of our classifi-

cation model on a test dataset for which we know the actual values. The model was then

executed according to the defined parameters. Accuracy, Precision, Sensitivity/Recall,

and F1-Score were calculated to estimate its performance.

122

5.4 Experiment Analysis and Obtained Results

Dataset
Feature
/Total

Feature Composition ACC%

KDD’99 16/41
1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1,
0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0

97.87
(±0.42)

NSL-
KDD

18/41
0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1

97.57
(±0.62)

CIC-IDS
2017

32/79

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1

98.2
(±0.3)

Table 5.4: Best Feature subsets and Accuracy (ACC)

Table 5.4 shows the best feature subsets which gained comparatively good accuracy

by using proposed ANN-based IDS using a Multi-objective Genetic Algorithm.

Table 5.5 shows the result of experiments performed on KDD’99, NSL-KDD, and

CIC-IDS2017 datasets. It shows the ML method, number of features, accuracy, Pre-

cision, Sensitivity/Recall, F1-Score, and time taken for training and testing. The pro-

posed multi-objective genetic algorithm is compared with the existing Machine Learning

(ML) methods, namely multi-class SVM, multi-level hybrid SVM, simulated anneal-

ing with MLP, Naive Bayes Classifier (NBC), ANN, Linear Nearest Neighbor Lasso

Step Krill Herd (LNNLS-KH), Feature Vitality Based Reduction Method (FVBRM),

K-Nearest Neighbor (KNN), RF, and XGBoost. It is obtained by setting the weight of

the fit function used for feature combination selection to 0.5. The accuracy is compared

by varying the average length of features even if it is less than the existing methods,

the proposed work outperforms well. On the other hand, the size of the feature vector,

the learning time, and the test time show an overall better improvement. This is an

important improvement because less test time is essential to detect anomalies in real-

time traffic networks accurately.

123

5.
A

R
T

IF
IC

IA
L

N
E
U

R
A

L
N

E
T

W
O

R
K

B
A

S
E
D

ID
S

U
S
IN

G
M

U
LT

I-O
B

JE
C

T
IV

E
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M

DataSet
Machine Learning

Method

No.
of Fea-
tures

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
Time for
Training

(Sec)

Time for
Testing
(Sec)

KDD’99

Multi-class
SVM [87]

- 92.46 - - - - -

Multi-level Hybrid
SVM [87]

- 95.75 - - - - -

Proposed Method 16
97.87
(±0.42)

97.15
(±0.34)

97.23
(±0.45)

0.9695
(±0.0026)

466.83
(±78.23)

32.64
(±13.82)

NSL-KDD

Simulated Anne-
aling with MLP [3]

20
96.83
(±0.90)

- - -
296.79
(±46.19)

0.64
(±0.12)

Naïve Bayes [136] 36 97.16 - - - - -
ANN [136] 36 98.86 - - - - -
LNNLS-KH [137] 10 97.01 96.8 - - - -
FVBRM [138] 24 97.78 - - - - -

Proposed Method
18

97.57
(±0.62)

97.26
(±0.33)

97.82
(±0.43)

0.9745
(±0.0024)

301.24
(±82.94)

0.74
(±16.79)

41
99.52
(±0.06)

99.34
(±0.21)

99.67
(±0.30)

0.9956
(±0.0012)

560.43
(±126.23)

1.22
(±86.23)

IDS2017

KNN [25] 54 - 96 96 0.96 1908.23 (Execution)
RF [25] 54 - 98 97 0.97 74.39 (Execution)
MPL [25] 54 - 77 83 0.76 575.73 (Execution)
SVM [139] 93.8 89.5 92.3 0.921 - -
XGBoost for
DoS Attacks [140]

79 - - - 0.995 - -

Proposed Method
for DoS Attacks

32
98.2
(±0.3)

97.8
(±0.4)

98.1
(±0.3)

0.98
(±0.005)

232.43
(±52.43)

54.87
(±12.87)

Table 5.5: Performance comparisons with existing methods

124

5.5 Conclusions

5.5 Conclusions

This chapter proposed a feature combination selection method for an ANN-based IDS.

The proposed method is applied to a multi-objective genetic algorithm that defines a

function for each objective and uses the sum of weights between the objective func-

tions as a fitness function to satisfy both objectives, which have a trade-off for a high

detection rate and low detection time. It is based on a multi-objective genetic algo-

rithm that defines a function and uses the weights between the objective functions as

a fitness function. The available methods in the literature show a comparatively lower

value for intrusion detection rate. In our experimentation, we obtained results on three

state-of-the-art datasets. It was observed that the proposed method outperforms on

some statistical parameters such as the number of optimal features used, and training

and testing time accuracy. The multi-objective genetic algorithm overcomes the short-

comings by explicitly considering fast detection as an objective function. In contrast,

feature combination selection methods for machine learning-based anomaly detection

systems emphasize only high detection rates. However, more accurate designs and ex-

periments are needed to research other methods for obtaining Pareto-optimal solutions

(non-dominated solutions) that simultaneously satisfy conflicting objectives and the dif-

ference in time required to determine values for each feature. This proposed method

also has the capability to detect and map the complex non-linear relationship between

dependent features without having any extra training cost.

In the next chapter, we deal with the study, modelling, strategic construction, and im-

plementation of a network intrusion detection model based on ML methods. Among the

available IDS datasets, five of the most relevant are chosen for the experimental analysis,

which are NSL-KDD-2009, CIC-IDS2017, CIC-IDS2018, IoTID20, and UNSW-NB15

datasets. we propose an efficient and feasible algorithmic framework for analyzing the

network traffic data. The developed approach mainly consists of two phases, i.e., "Scat-

ter Matrices and Eigenvalue Computation based Feature Selection" and "Classification

Procedure for the reduced dimension data". Experimental evaluation of various test

case scenarios for the chosen datasets is carried out in the simulation setting.

125

Chapter 6

Dimensionality Reduction based
Feature Selection and Attack
Classification Approach

6.1 Introduction

Cyber attacks on the Internet have become more intense in recent years, and coun-

termeasures are urgently needed. There is a Network-based IDS (NIDS) to protect a

computer system from attacks on the network. NIDS is a mechanism that monitors

network traffic and detects Advance Persistence Threats (APT), and provides counter-

measures to prevent them. Currently, the primary method for detecting cyber-attacks

used in all modern information security tools is signature analysis. However, this ap-

proach does not allow the detection of new types of destructive influences, which makes

it urgent to develop heuristic methods capable of detecting previously unknown types

of attacks [141]. The analysis of a number of currently published studies confirms the

possibility of using ML technologies to solve the problems of detecting cyber attacks

[73].

This circumstance determines the expediency of conducting applied research in this

area, aimed at developing specific proposals for constructing intrusion detection models

and prospects for their practical implementation. The aim of this research work is to

develop an ML model for building a cyber-attack detection system. Its achievement

presupposes a solution to the following main tasks: selection of a training dataset, as-

126

6.1 Introduction

sessment of the significance of features and the formation of feature space, justification

of the choice of an ML model or classification Procedure, and selection of quasi-optimal

parameters of the model, quality assessment and testing of the model in real conditions.

The novelty of this work lies in developing a mirror simulation of an attack detection

system based on a modern ML model and experimental verification of the applicability

of the proposed framework. The scope of ML and DL has been observed in the NIDS

domain as a successful strategy by abundant researchers over the past decade. It pro-

vides various methods and setup tools to develop algorithms for analyzing the network

traffic data and performing various inferences and predictions about the probable attack

categories.

Contribution of the Chapter

The contribution highlights of this chapter are as follows:

1. In this chapter, we propose an efficient and feasible algorithmic framework for

analyzing the network traffic data. The developed approach mainly consists of

two phases, i.e., "Scatter Matrices and Eigenvalue Computation based Feature

Selection" and "Classification procedure for the reduced dimension data".

2. Experimental evaluation on various test case scenarios for the NSL-KDD, CIC-

IDS2017/18, IoTID20, and UNSW-NB15 datasets are carried out in the simulation

setting. In this process, finally, we observed the statistical performance in terms of

several metrics such as classification Accuracy, Precision, Recall, ROC curve, etc.

To show the novelty of the proposed method, obtained results are also compared

with the existing approaches.

Outline of the Chapter

The rest of the chapter is structured as follows: Section 6.2 discusses the Network Intru-

sion Detection System (NIDS) and its classification of NIDS. Section 6.3 presents the

blueprint of the proposed method. Dataset details for the NSL-KDD, CIC-IDS2017/18,

IoTID20, and UNSW-NB15 datasets, data pre-processing and the details of algorithmic

steps along with the novelty of proposed procedures. In section 6.4, the experimen-

tal evaluation with the modeling techniques, experimental setup, simulation testbed,

127

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

obtained results and benchmarking on various statistical performance measures are

provided. Finally, the conclusion is given in section 6.5.

6.2 Network Intrusion Detection System

A NIDS is a network security device that monitors traffic generated and detects cyber

threats [12]. The NIDS is classified into Switched Port Analyzer (SPAN) method,

Terminal Access Point (TAP) method, and Inline method according to the construction

method [13]. The SPAN type NIDS is configured as shown in figure 6.1. SPAN is a

Figure 6.1: SPAN-type NIDS

technology that forwards a copy of traffic flowing into one or more ports of a switch to

another monitoring port of a switch, also called port mirroring [12]. A NIDS is connected

to the switch’s SPAN port, and an attack is detected by targeting the traffic copy. The

TAP type NIDS is configured as shown in figure 6.2. TAP refers to a network device

Figure 6.2: TAP type NIDS

that copies and forwards network traffic. In order to detect the attack as NIDS, The

TAP device is added and connected to the particular network. The In-Line method is

a method that allows all traffic to go through the NIDS in the same way as the network

firewall configuration. The In-Line type NIDS is configured as shown in figure 6.3. This

method can block attack traffic as soon as it is detected, but it has the disadvantages of

lowering network performance and causing network failure if a hardware failure occurs.

Most of the NIDS are configured as SPAN or In-Line methods. Such a NIDS can be

divided into signature-based detection and anomaly-based detection.

128

6.3 Proposed Approach

Figure 6.3: In-Line NIDS

6.2.1 Signature-based Detection

The signature detection method detects attack traffic based on a predefined attack pat-

tern. An attack pattern is set based on the traffic analysis result for the existing network

intrusion, and if the generated traffic matches this pattern, it is judged as an attack.

For this reason, the signature detection method detects known attacks quickly and effi-

ciently. Still, when a new type of attack occurs, or the signature information is partially

changed that is not in the pattern, it is impossible to detect and respond immediately

[27]. Snort [15] is a representative signature detection-based NIDS and provides a net-

work intrusion detection function using a pattern-matching algorithm. Snort consists

of four components: Sniffer, Preprocessor, Detection Engine, and Alerts/Logging.

6.2.2 Anomaly-based Detection

The anomaly detection method detects abnormal traffic based on the normal opera-

tion of network traffic, and new attack traffic can be detected. However, the anomaly

detection method has a high rate of false positives for normal traffic as attack traffic be-

cause it can recognize the behavior of new network traffic that has not been previously

identified as an abnormal operation. Primary methodologies for detecting anomalies

include statistical techniques such as PCA, mixed models, clustering techniques based

on similarity, distance, density, graph, information theory-based detection techniques

using entropy, and ML techniques [39]. Therefore, it is necessary to improve the detec-

tion performance by applying the ML technique to the actual operating environment

appropriately.

6.3 Proposed Approach

This section presents our proposed approach and algorithmic framework for an efficient,

feasible, and economical IDS. First, the framework blueprint is provided. Second, the

129

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

input dataset’s detail and the data pre-processing steps are discussed. Further, the

detailed algorithmic modules are presented. Finally, the computational complexity, as

well as other statistical performance measures, are accessed in order to show the novelty

of the proposed procedure.

6.3.1 Framework Blueprint

This section presents an overall framework blueprint of our proposed method. Figure 6.4

shows the computational functionality of each component of the framework is explained

in detail. In the proposed framework, state-of-the-art intrusion detection datasets were

chosen for experimental simulation and computational analysis. These datasets act as

the initial input for the framework, which is fed into the prepossessing data block as

input. As part of data prepossessing: min-max normalization, deduplication, missing

values presence checking, inconsistency checking, and checking of correlation among

features. These methods are applied to the original input data. Further, a dimensional

reduction-based feature selection procedure (given in section 6.3.4.1) is applied. There

are various methods to perform this, i.e., forward feature selection-based approaches,

backward feature elimination-based approaches, hybrid approaches, etc. The proposed

dimensional reduction-based feature selection procedure is based on the granular com-

putation of Scatter matrices and corresponding Eigenvalues and their Eigenvectors. The

given algorithm 4 falls under the backward feature elimination-based approach category.

We chose this approach due to certain computational advantages, such as:

1. The chosen algorithm 4 reduces the computational time for subsequent training

procedures.

2. Since this algorithm will be able to choose the comparatively most significant

features out of all available feature-set; therefore, it will provide the minimum

storage complexity.

Finally, this module will give the reduced dimension decision system matrix, which

will be used further as training data. Next, a supervised learning mechanism (given in

Algorithm 5) is used here. This process of applying algorithm 5 to the obtained training

data is called the training phase, which will produce the trained multi-class classifier

model (M∗) as the output having optimal hyperparameters. Next, the validation test

data/unseen data (experimental test-set attacks data) is provided as the input to the

130

6.3 Proposed Approach

Figure 6.4: Proposed IDS Framework

(M∗) in order to predict the target class as well as to judge the efficiency of (M∗) by

model validation and test-based statistical performance measures. Finally, to prove the

131

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

feasibility of the validated model (M∗), comparisons are performed with other existing

methods based on several statistical parameters such as - Accuracy, Precision, Recall,

F1-score, etc.

6.3.2 Datasets Detail

However, the data used in this experiment were selected according to attack diversity

guaranteed and various types of attacks are performed. we choose state-of-the-art IDS

datasets.

6.3.2.1 NSL-KDD Dataset

In intrusion detection research, various datasets such as the DRAPA98 and KDD 1999

datasets [2] using the DARPA IDS are used. The updated version of KDD-CUP-99 is

NSL-KDD introduced by tavallaee et al. [24]. More details are given in Chapter 2,

section number 2.3.1.2. In the prepossessing, we found 40 different types of sub-attack

levels and a total count of 160,368 instances.

6.3.2.2 CIC-IDS2017 Dataset

The data source CIC-IDS2017 [25] of the open-access cyber security network was used

to research the efficiency of ML algorithms. More details are given in Chapter 2, section

number 2.3.1.5. There are 2,273,097 normal packets (Benign), which occupies more than

80% of the total data. A total of 2,830,743 data, including attack data, are provided.

6.3.2.3 CIC-IDS2018 Dataset

The dataset size is more than 300 GB, and it has been generated every day [25]. More

details are given in Chapter 2, section number 2.3.1.7.

There are 13,484,708 normal packets (Benign), which occupy more than 83% of the

total data. A total of 16,232,943 data, including attack data, are provided.

6.3.2.4 UNSW-NB15 Dataset

Moustafa et al. proposed the UNSW-NB15 dataset [43], network packets were collected

using IXIA Perfect storm in Cyber Range Lab. More details are given in Chapter

2, section number 2.3.1.3. The UNSW-NB15 dataset used in this chapter consists

132

6.3 Proposed Approach

of 257,673 counts, which are stored and distributed in each file, and the number of

normal and abnormal data. UNSW-NB15 dataset has a total of 45 features, ’normal’,

’reconnaissance’, ’backdoor’, ’DoS’, ’exploits’, ’analysis’, ’fuzzers’, ’worms’, ’shellcode’,

’generic’, classified into 1 normal and 9 attack types.

6.3.2.5 IoT Network Intrusion Dataset

I. Ullah et al. [142] proposed the dataset for intrusion detection in IoT environments.

IoT environments give a large attack surface for attackers to exploit more destructive

cyber-offensive. In the experiment, shows the number of data used for each attack

and attack level, counts, probabilities, and lower/Upper confidence intervals. There are

40,073 normal packets, which occupies only 6% of the total data. A total of 6,25,783

data, including attack data, are provided.

6.3.3 Data Pre-processing Techniques

This section briefly introduces the preprocessing technique used in the experiment.

Data preprocessing is a crucial step in the ML pipeline, as it helps prepare the data

for modeling and ensure the quality of the results. It involves cleaning, transforming,

and organizing the data to make it suitable for analysis. Common preprocessing tasks

include:

1. Data normalization: it is a process in data preprocessing where the values of a

feature are rescaled so that they have a specific mean and standard deviation.

It helps to scale the features so they are on a similar scale, which can improve

the performance of certain machine learning algorithms. For example Min-Max

normalization: Rescales the values to be between 0 and 1.

2. Handling missing values: Impute or remove records with missing values.

3. Removing duplicates: Remove records with exact duplicates.

4. Feature scaling: Normalize the values of different features so they are on the same

scale.

5. Encoding categorical variables: Convert categorical variables into numerical rep-

resentations.

133

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

6. Feature selection: Choose a subset of relevant features to use in the model.

7. Splitting the data into training and test sets: Partition the data into two sets, one

for training the model and the other for evaluating its performance.

Each preprocessing step depends on the data and the problem at hand, and they may

need to be repeated multiple times or customized to achieve the best results.

6.3.4 Detailed Algorithmic Procedures

This section presents the proposed algorithmic procedures in the form of a pseudo-code

consisting of two sub-components, i.e., Scatter Matrices and Eigenvalue Computation-

based Feature Selection and classification procedure.

6.3.4.1 Algorithm 4: Scatter Matrices and Eigenvalue Computation Based
Feature Selection

In step one, the input to the system is the data matrix for the dimension system. It

will consist of a finite number of individual instances along with a finite number of

different feature vectors as well as the label or attack categories. This data structure is

in the format of a two-dimensional matrix. The procedure starts with step three and

ends with step ten. At step four, mean vectors for the Ω-dimension matrix consists of

different attack categories for the dataset. In step five, the granular computation for the

scatter matrix is carried out in two aspects: one is within category matrix computation,

and another is between category matrix granular computation. Both computations are

described in the form of statistical formulas given in the algorithm pseudo-code, i.e.,

M⊡ and M⊞. At step six of the procedure, eigenvalues along with their corresponding

eigenvectors are computed for the scatter co-variance matrix. In this, we are solving

the generalized eigenvalue problem. Eigenvectors denote the particular linear direction

for the variance of data, and their corresponding eigenvalues represent the magnitude

of the variance in that same direction. So, in the generalized eigenvalue problem, these

particular directions will be dependent on another matrix of the system.

Further, in step seven, the list is constructed that consists of the selection of eigenvec-

tors on the basis of their corresponding eigenvalues. In step eight of the algorithm, k

number of feature vectors are chosen corresponding to the particular largest eigenvalue.

Therefore, Ω × k dimension matrix is generated at this step. A new feature sub-space

134

6.3 Proposed Approach

will be transformed with its dimension N × k (Represented as M′′). Finally, the algo-

rithm ends at step ten and gives the final output as Reduced dimension decision system

matrix M′′
(N×k).

6.3.4.2 Algorithm 5: Classification Procedure

The above procedure (6.3.4.2) consists of several probabilistic as well as deterministic

sub-modules which are as follows:

1. Selection mechanism of random weights and biases for the network nodes.

2. Choosing the most efficient non-linear unit (Activation Function).

3. Selection of optimization and error correction procedures such as Gradient Descent,

ADAM, RMS Prop, etc.

4. Choosing a total number of layers and number of nodes (Computational units) at

hidden & output units.

5. Selection of the number of batches and epochs.

6. Test the performance on various learning rates.

6.3.5 Novelty of Proposed Procedures

This section throws some light on the computational novelty of proposed procedures

(discussed in section 6.3). We present this in the form of justifications as well as em-

pirical computational time complexity analysis.

6.3.5.1 Novelty of Proposed Algorithm 4

1. Algorithm 4 overcomes the drawback of forwarding feature selection-based ap-

proaches. The output results given by this algorithm will be non-overlapped

feature subsets.

2. This algorithm also has the possibility of parallelization due to its granular nature.

3. Since algorithm 4 exploits the linear algebraic building blocks, such as Scatter

Matrices, Eigenvalues, and corresponding Eigenvectors, these building blocks will

help analyze the reduced dimensional data in the form of a lower-dimensional

projection plane. It also helps to make the linear transformation easy by providing

the magnitude as well as the direction of each feature on the axis plane.

135

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

Algorithm 4: SMEC: Scatter Matrices and Eigenvalue Computation - based
Feature Selection

1: i/p: A data matrix/ decision system, consists of a finite set of instances and a
finite set of 7→ {feature vectors, label/attack category}

2: o/p: Reduced dimension decision system matrix M′′
(N×k)

3: BEGIN Proc

4: Compute → mean vectors with Ω-dimension Vi for (i = 1, 2 · · · , CATN); where,
CATN : represents total count of category varieties in the dataset.

5: Evaluate → pairwise scatter matrices in two certain aspects -
Within-category matrix:
Exploit eq. M⊡ =

∑c
i=1 θi; where, O is a Object for instance.

θi =
N∑

O∈δi

(O − Vi) (O − Vi)T

Vi =
1

Ni

N∑
O∈δi

Ok

Between-category matrix:
Exploit eq. M⊞ =

∑c
i=1 ψi (Vi − V) (Vi − V)T ; where Vi,V and ψi denotes -

sample mean, gross mean and sizes of particular categories.

6: Evaluate → Eigenvectors (α1, α2, · · · , αΩ) along with this, the respective
Eigenvalues (β1, β2, · · · , βΩ) for the scatter covariance matrices evaluated in the
step 5.

7: Construct the tuples list then carry-out sorting of the Eigenvectors with decrease
in the Eigenvalues.

8: k Eigenvectors are then picked with the largest Eigenvalues and then arrange the
Ω × k dimension matrix M (here, individual column depicts an instance of
eigenvector).

9: Transform the samples into a new feature space by exploiting Ω × k matrix i.e., -

M′′
(N×k) = M′

(N×Ω) ×M(Ω×k)

Here, M′ signifies: N × Ω sized matrix with total number of N samples, M′′

denotes: reshaped samples N × k size in the diminished new feature space.

10: END Proc

136

6.3 Proposed Approach

Algorithm 5: Classification Procedure
1: i/p: Input to the system are two components - input matrix and output matrix

(the combination is represented as M′′
(N×k) ← I[X : Y]). It will act as a decision

system for the entire procedure.
2: o/p: A learned model with optimal updated parameters.
3: BEGIN Proc
4: Initialization Phase: It assigns the random value to the network node in the

form of {node weights, node biases}
5: Notations:
θH : Weight matrix for hidden layer
θ⋆H : Bias matrix for hidden layer
θO : Weight Matrix for output layer
θ⋆O : Bias matrix for output layer
ψ : Absolute outcome (Predicted outcome)
lr : Learning rate

6: Perform liner mapping as follows :
Calculate matrix dot product of IX [] and θH then add the bias θ⋆H into it.

7: Use the set of few compatible activation functions such as Sigmoid, Rectifier linear
unit (ReLu), Leaky ReLu, Sigmoid liner unit, etc (function details are discussed in
Table 2) and perform the non-linear mapping on the output of step 6.

8: Perform the matrix dot product of { Output of step 7 and θO }, then add the
quantity θ⋆O into it. Consequently, perform the activation function on the obtained
results.

9: At this step predicted output quantity compared with actual output value and
error for the gradient is calculated i.e, Err = IY []− ψ

10: Calculate the Descent for the output layer by taking the derivatives of activation
function and applying it on ψ. Next apply the derivatives of activation function on
the output of step 7 to get the descent of hidden layer. Therefore the descent for
output layer and descent for hidden layer are computed.

11: In this step a quantity ∆o/player is calculated by the multiplication of → error
obtained in step 9 and output of step 10.

12: Perform error back propagation for the hidden layer as follows:
ErrH = Matrix dot product (Output of step 11 and transpose of θO)

13: Calculate the ∆H multiplication of → descent for hidden layer (This is the output
of step 10) and error for hidden layer (This is the output of step 12) in back
propagation.

14: Use optimal lr to compute the updated node weights for hidden layer as well as
output layer. Resultantly θH and θO are updated.

15: Similarly, biases for the nodes are also updated with the help of lr (use the same
value as in step 14). In this way, θ⋆H and θ⋆O are updated.

16: Empirical optimal number of epoches will be executed by repeating steps 9 to 15.
17: END Proc

137

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

6.3.5.2 Novelty of Proposed Algorithm 5

1. The proposed algorithm 5 performs supervised classification for the attacks in

the IDS system datasets. The learning algorithm learns the patterns as well as

co-relations among the available variables in the data. Since the highly correlated

features in the dataset are identified and either merged or ignored in algorithm 4,

the resultant reduced dimension dataset will have all independent feature vectors,

which will go as input to algorithm 5 (for classification).

2. This algorithmic procedure has the ability to detect the complex nature of the non-

linear relationships between dependents (highly correlated) as well as independent

variables (features).

3. This procedure required less knowledge of the statistical and probabilistic back-

ground.

4. This procedure has the advantage of experimenting with different hyperparame-

ters, such as utilizing state-of-the-art non-linear primitives (activation functions

and optimizers), varying training network node’s weights and biases, number of

epochs, training data batch size, and learning rate. It also provides the function-

ality of making the architecture compatible as deep as needed in network layers.

5. It has the facility to solve both classification and regression issues in the dataset.

6.4 Experimental Evaluation

This section presents the complete experimental evaluation in the form of state-of-the-

art intrusion detection datasets used (details discussed in section 6.3.2), adopted strate-

gies in modeling, simulation testbed, obtained results, and benchmarking (comparative

analysis) on various performance measures.

6.4.1 Modeling

In our system modeling, the following two strategies are used,

1. Perform fine-tuning on various Hyperparameters.

138

6.4 Experimental Evaluation

2. Experiment with other state-of-the-art architectures related to the deeper network

layer.

6.4.1.1 First Modeling Strategy

• As the first discussed strategies, the fine-tuning is performed on the selection of

appropriate activation function.

• Selection of a computationally empirical learning rate for the adoptive model.

• Random selection of network node weights and biases

• Optimal optimization method

• An intelligent selection of the number of hidden layers as well as the number of

nodes at each layer.

• Defining number of Epochs and Batch size.

6.4.1.2 Second Modeling Strategy

We experiment with our data with state-of-the-art architecture such as:

• Residual Networks (ResNet)

• Using Transfer Learning (TL)

• Deploy the model with Inception Architecture

• Use The Transformer Model

6.4.2 Experimental Setup

The hardware test environment was tested on a desktop with processor Intel(R) Xeon(R)

Gold 6238R CPU @ 2.20GHz 2.19 GHz (2 processors), 384GB RAM, and Windows 10

Pro operating system installed. This system types a 64-bit operating system and an

x64-based processor. We applied JMPstatistical software [126] for collections to learn

the overall behavior for all datasets and find the best features.

139

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

Optimizers
Name

learning_
rate/power

momentum beta_1/2
l1/l2_regu
larization

rho
accumula
tor_value

epsilon nesterov centered amsgrad

Stochastic
Gradient
Descent

0.01 0 - - - - - FALSE - -

RMSprop 0.001 0 - - 0.9 - 1 e -07 - FALSE -

ADAM 0.001 - 0.9/0.99 - - - 1 e -07 - - FALSE

Adadelta 0.001 - - - 0.95 - 1 e -07 - - -

Adagrad 0.001 - - - - 0.1 1 e -07 - - -

Adamax 0.001 - 0.9/0.999 - - - 1 e -07 - - -

Nadam 0.001 - 0.9/0.999 - - - 1 e -07 - - -
Flow The

Regularized
Leader

0.001/-0.5 - 0 0.1/0.0 - - - - -

Table 6.1: Variation of Different Hyperparameters

6.4.3 Simulation Testbed (Package and Libraries)

Our simulation test consists of the following package and libraries.

• For experimental study, "Keras" [143] and "TensorFlow" [144]. Keras is a DL

API written in python, running on the top of the ML platform TensorFlow. It

was developed with the focus on enabling fast experimentation.

• "Layers" and "Models" are the main component’s in Keras.

• tf.compat.v1.configproto: This method migrates multi-worker communication

between CPU and GPU during training.

• tf.compat.v1.InteractiveSession: This is a TensorFlow session for use in inter-

active context such as a shell.

We experiment with several activation functions in the hidden layer as well as the out-

put layer. In the hidden layer, some activation functions such as ReLu, LeakyReLu,

PReLu, Mish, etc., are tried out, and the act output layer Sigmoid activation func-

tion has been used. Table 6.1 shows the several optimization methods that usu-

ally modify the features of the network, such as Node weights, Node Bias, Learning

momentum, etc, which will help in reducing the overall loss and improve the clas-

sification accuracy. For example, optimizer that implements the Adam algorithm:

tf.keras.optimizers.Adam(learningrate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon =

1e− 07, amsgrad = False, name =′ Adam′, ∗ ∗ kwargs).

140

6.4 Experimental Evaluation

(a) NSL-KDD Dataset (b) CIC-IDS2017 Dataset

(c) CIC-IDS2018 Dataset (d) IoTID20 Dataset

(e) UNSW-NB15 Dataset

Figure 6.5: Training ROC Curve Plots and Area

141

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

(a) NSL-KDD Dataset (b) CIC-IDS2017 Dataset

(c) CIC-IDS2018 Dataset (d) IoTID20 Dataset

(e) UNSW-NB15 Dataset

Figure 6.6: Validation ROC Curve Plots and Area

142

6.4 Experimental Evaluation

6.4.4 Obtained Results

This section presents the obtained results from the experimental evaluation on four dif-

ferent intrusion detection datasets (NSL-KDD, CICIDS-2017/18, UNSW-NB15, IOTID20).

The results are- exploratory data analysis, various statistical distributions, ROC curve

measures, Fit curve, confusion metrics, computed minimal feature set, etc. The ob-

tained results are compared with existing methods in the form of statistical performance

parameters such as attack classification accuracy, precision, recall, f1-score, etc.

6.4.4.1 ROC Curve Plots

ROC Curve explained in chapter 2, section number 2.7. The ROC curve plots for

selected datasets are depicted as follows: Figure 6.5 illustrates the training ROC curve

plots and area for NSL-KDD, CICIDS-2017, CICIDS2018, IoTID20, and UNSW-NB15

datasets. Figure 6.6 represents the validation ROC curve plots and area for the same

datasets.

6.4.4.2 Dimensional Reduction Based Feature Selection

Algorithm Procedure 1 shows the dimensional reduction-based feature selection. It finds

new basis (axes) orthogonal to each other while preserving the distribution of the original

data as much as possible and transforming it into the lower-dimensional space. In this

case, the calculation mainly uses eigenvalue decomposition or SVD of a matrix. Feature

selection methods select the most optimal variables that do not have a linear relationship

with each other, i.e., Dimensional Reduction (DR), by first combining existing variables.

The first DR Component (DRC1) preserves the distribution of the raw data the most,

and the second DR component (DRC2) preserves the distribution of the raw data the

next most. Consider the scenario that DRC1, DRC2, and DRC3 preserve about 90%

of the original data distribution; in that case, even if about 10% of information is

lost, only DRC1, DRC2, and DRC3 can be selected to reduce the dimension to 3D

data. Subsequently, calculation and visualization are easy. Therefore, exploratory data

analysis can be performed more optimally and computationally economically. Figure

No. 6.7, 6.8, 6.9, 6.10, and 6.11 depict the eigenvalues, bar chart of the percent of

the variation accounted for by each dimensional reduction components, and features for

sequentially NSL-KDD, CIC-IDS2017/18, IoTID20, UNSW-NB15 datasets.

143

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

Figure 6.7: Eigenvalues, Bar Chart, and Features For NSL-KDD Dataset

Figure 6.8: Eigenvalues, Bar Chart, and Features For CIC-IDS2017 Dataset

Figure 6.9: Eigenvalues, Bar Chart, and Features For CIC-IDS2018 Dataset

144

6.4 Experimental Evaluation

Figure 6.10: Eigenvalues, Bar Chart, and Features For IoTID20 Dataset

Figure 6.11: Eigenvalues, Bar Chart, and Features For UNSW-NB15 Dataset

145

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

6.4.4.3 Confusion Matrix

The confusion matrix is explained in chapter 2, section number 2.7. The confusion ma-

trix is a table of size n×n which represents the overall performance of the classification

system. It also represents the count of true negative, true positive, false negative, and

false positive instances distribution. In confusion matrix row labels show the actual

class and column labels show the predicted class for training and validation datasets.

Further, these instance counts can be utilized for calculating the accuracy of the model.

Table No. 6.2, 6.4, 6.6, 6.8, and 6.10 represent the training phase confusion matrices

and Error, Accuracy, Precision, and Recall corresponding to NSL-KDD, CIC-IDS17/18,

IoTID20, and UNSW-NB15 respectively. Table No. 6.3, 6.5, 6.7, 6.9, and 6.11 repre-

sent the validation phase confusion matrices and Error, Accuracy, Precision, and Recall

corresponding for same datasets. In chapter 2, section number 2.7 shows the Accuracy

formula, section number 2.7 shows the Precision formula, and section number 2.7 shows

the Recall formula and corresponding detailed discussion.

The rows of the confusion matrix represent the predicted class, and the columns repre-

sent the actual class. The rows and columns can be interpreted as follows:

1. Row 1: Predicted Positive: This row shows the number of instances that were

predicted as positive by the classifier.

• True Positive (TP): The number of instances that were correctly predicted

as positive.

• False Positive (FP): The number of instances that were incorrectly predicted

as positive.

2. Row 2: Predicted Negative: This row shows the number of instances that were

predicted as negative by the classifier.

• False Negative (FN): The number of instances that were incorrectly predicted

as negative.

• True Negative (TN): The number of instances that were correctly predicted

as negative.

3. Column 1: Actual Positive: This column shows the number of instances that are

actually positive.

146

6.4 Experimental Evaluation

• True Positive (TP): The number of instances that were correctly predicted

as positive.

• False Negative (FN): The number of instances that were incorrectly predicted

as negative.

4. Column 2: Actual Negative: This column shows the number of instances that are

actually negative.

• False Positive (FP): The number of instances that were incorrectly predicted

as positive.

• True Negative (TN): The number of instances that were correctly predicted

as negative.

The confusion matrix provides a summary of the true and false predictions made by the

classifier, allowing for a thorough evaluation of its performance.

Dos Probe Remote to Local User to Root Normal Error Accuracy Precision
Dos 43280 7 0 0 52 0.0014 0.9986 1
Probe 15 12270 1 0 99 0.0093 0.9907 0.96
Remote to Local 4 30 4508 4 334 0.0762 0.9237 0.85
User to Root 0 4 17 276 45 0.193 0.8071 0.91
Normal 139 505 776 22 57840 0.0243 0.9756 0.99
Total 43439 12816 5302 302 58370 0.0171 0.9829

Recall 1 0.99 0.92 0.81 0.98

Table 6.2: Training Confusion Matrix, Error, Accuracy, Precision, and Recall for NSL-
KDD Dataset

Dos Probe Remote to Local User to Root Normal Error Accuracy Precision
Dos 14353 8 0 0 27 0.0024 0.9975 1
Probe 3 4039 0 0 52 0.0134 0.9865 0.96
Remote to Local 4 7 1480 2 130 0.0881 0.9118 0.86
User to Root 0 1 5 87 17 0.2091 0.7909 0.88
Normal 53 171 244 10 19446 0.024 0.976 0.99
Total 14413 4226 1729 99 19672 0.0183 0.9817

Recall 1 0.99 0.91 0.79 0.98

Table 6.3: Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for NSL-
KDD Dataset

147

6.
D

IM
E
N

S
IO

N
A

L
IT

Y
R

E
D

U
C

T
IO

N
B

A
S
E
D

F
E
A

T
U

R
E

S
E
L
E
C

T
IO

N
A

N
D

A
T

T
A

C
K

C
L
A

S
S
IF

IC
A

T
IO

N
A

P
P

R
O

A
C

H

BENIGN Bot DDoS
DoS Go-
ldenEye

DoS
Hulk

DoS Slow-
httptest

DoS Sl-
owloris

FTP-
Patator

Heart-
bleed

Infil-
tration

Port-
Scan

SSH-
Patator

Web Attack
Brute Force

Web Attack
Sql Injection

Web Attack
XSS

Error Accuracy Precision

BENIGN 1768454 290 6 22 243 250 22 55 5 4 125 68 26 0 0 0.0006 0.9993 0.98
Bot 74 1113 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0623 0.9376 1
DDoS 20670 0 10634 0 3 0 0 0 0 0 0 0 0 0 0 0.6603 0.3396 1
DoS GoldenEye 218 0 0 7508 78 13 0 0 0 0 0 0 0 0 0 0.0395 0.9604 1
DoS Hulk 225 0 0 0 173095 0 0 0 0 0 0 1 0 0 0 0.0013 0.9986 1
DoS Slowhttptest 36 0 0 8 3 4113 13 0 0 0 0 6 0 0 0 0.0158 0.9842 0.84
DoS Slowloris 108 0 0 3 16 495 3500 1 0 0 0 209 0 0 0 0.1921 0.8079 0.98
FTP-Patator 101 0 0 0 0 0 33 5809 0 0 0 2 0 0 0 0.0229 0.9771 0.99
Heartbleed 3 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0.375 0.625 0.5
Infiltration 7 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0.2592 0.7407 0.83
PortScan 670 0 0 0 0 0 15 0 0 0 118440 0 26 0 0 0.006 0.994 1
SSH-Patator 17 0 0 0 2 0 3 23 0 0 0 4381 0 0 0 0.0102 0.9898 0.94
Web Attack - Brute Force 6 0 0 0 0 0 0 0 0 0 0 0 1114 0 0 0.0054 0.9946 0.68
Web Attack - Sql Injection 3 0 0 0 0 0 0 0 0 0 0 0 13 0 0 1 0 NaN
Web Attack - XSS 23 0 0 0 0 0 0 0 0 0 0 0 460 0 0 1 0 NaN
Total 1790615 403 10640 7541 173440 4871 3586 5888 10 24 118565 4667 1639 0 0 0.0145 0.9883

Recall 1 0 0.34 0.96 1 0.98 0.81 0.98 0.62 0.74 0.99 0.99 0.99 0 0

Table 6.4: Training Confusion Matrix, Error, Accuracy, Precision, and Recall for CIC-IDS2017 Dataset

BENIGN Bot DDoS
DoS Go-
ldenEye

DoS
Hulk

DoS Slow
httptest

DoS Sl-
owloris

FTP-
Patator

Heart-
bleed

Infil-
tration

Port-
Scan

SSH-
Patator

Web Attack
Brute Force

Web Attack
Sql Injection

Web Attack
XSS

Error Accuracy Precision

BENIGN 589719 105 7 10 100 87 5 13 0 3 30 22 13 0 0 0.0005 0.9995 0.98
Bot 53 331 0 0 0 0 0 0 0 0 0 0 0 0 0 0.138 0.8619 0.76
DDoS 3653 0 6874 0 1 0 0 0 0 0 0 0 0 0 0 0.347 0.6529 1
DoS GoldenEye 71 0 0 2383 16 6 0 0 0 0 0 0 0 0 0 0.0376 0.9624 1
DoS Hulk 75 0 0 0 57677 0 0 0 0 0 0 0 0 0 0 0.0013 0.9987 1
DoS Slowhttptest 7 0 0 0 3 1306 3 0 0 0 0 1 0 0 0 0.0106 0.9893 0.82
DoS Slowloris 38 0 0 1 2 185 1170 0 0 0 0 68 0 0 0 0.2008 0.7991 0.97
FTP-Patator 23 0 0 0 0 0 13 1956 0 0 0 1 0 0 0 0.0186 0.9814 0.99
Heartbleed 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0.3333 0.6666 1
Infiltration 2 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0.2222 0.7777 0.7
PortScan 224 0 0 0 0 0 8 0 0 0 39542 0 5 0 0 0.006 0.994 1
SSH-Patator 4 0 0 0 1 0 1 6 0 0 0 1459 0 0 0 0.0082 0.9918 0.94
Web Attack - Brute Force 2 0 0 0 0 0 0 0 0 0 0 0 385 0 0 0.0052 0.9948 0.69
Web Attack - Sql Injection 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 NaN
Web Attack - XSS 15 0 0 0 0 0 0 0 0 0 0 0 154 0 0 1 0 NaN
Total 593889 436 6881 2394 57800 1584 1200 1975 2 10 39572 1551 560 0 0 0.0147 0.9928

Recall 1 0.86 0.65 0.96 1 0.99 0.8 0.98 0.66 0.77 0.99 0.99 0.99 0 0

Table 6.5: Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for CIC-IDS2017 Dataset

148

6.4
E
xp

erim
ental

E
valu

ation

Benign Bot
Brute
Force-
Web

Brute
Force -
XSS

DDOS
Attack-
HOIC

DDOS
Attack-
LOIC-UDP

DDoS
Attacks-
LOIC-HTTP

DoS
Attacks-
GoldenEye

DoS
Attacks
-Hulk

DoS
Attacks-
SlowHTTPTest

DoS
Attacks-
Slowloris

FTP-
BruteForce

Infil-
teration

SQL
Injection

SSH-
Bruteforce

Error Accuracy Precision

Benign 93,82,609 456 4 0 210 5 2260 42 6251 40112 456 1265 4618 0 389 0.0059 0.9940 0.9084
Bot 82,877 112075 8 5 833 3 1998 39 1230 923 22 25 237 0 23 0.0266 0.9733 0.9935
Brute Force -Web 131 23 196 3 3 8 12 4 2 8 7 11 9 1 7 0.2305 0.7694 0.7656
Brute Force -XSS 10 4 3 109 2 4 7 4 8 2 4 2 0 1 3 0.2699 0.7300 0.6812
DDOS Attack-HOIC 2,05,086 34 6 4 274832 8 12 3 213 88 60 32 23 0 0 0.0010 0.9989 0.9950
DDOS Attack-LOIC-UDP 390 2 4 8 12 640 2 21 56 1 23 9 8 2 8 0.1315 0.8684 0.7485
DDoS Attacks-LOIC-HTTP 1,95,794 89 0 5 92 84 206688 12 503 43 56 78 10 0 13 0.0024 0.9975 0.9715
DoS Attacks-GoldenEye 13,534 12 10 3 65 12 1553 13266 340 31 23 54 76 2 2 0.0753 0.9246 0.9812
DoS Attacks-Hulk 2,26,551 43 8 0 54 6 2 5 96339 34 76 34 72 0 14 0.0010 0.9989 0.9047
DoS Attacks-SlowHTTPTest 9,864 5 6 2 10 58 6 7 4 88084 12 8 13 1 4 0.0013 0.9986 0.6119
DoS Attacks-Slowloris 2,925 3 4 6 12 17 29 9 107 1095 3485 2 7 0 4 0.1680 0.8319 0.7777
FTP-BruteForce 84,029 28 2 4 40 0 58 46 432 5261 56 45261 40 0 4 0.0441 0.9558 0.9623
Infilteration 84,155 5 0 0 38 2 100 54 990 5906 145 247 21773 0 82 0.0666 0.9333 0.8073
SQL Injection -24 2 1 3 0 8 5 0 0 4 0 2 2 48 2 0.5471 0.4528 0.8571
SSH-Bruteforce 40,616 21 4 8 3 0 4 7 3 2349 56 0 80 1 88324 0.0192 0.9807 0.9937
Total 1,03,28,547 1,12,802 256 160 2,76,206 855 2,12,736 13,519 1,06,478 1,43,941 4,481 47,030 26,968 56 88,879

Recall 0.9940 0.5595 0.4611 0.6687 0.5720 0.5396 0.5122 0.4577 0.2980 0.8980 0.4523 0.3346 0.1918 0.9056 0.6717

Table 6.6: Training Confusion Matrix, Error, Accuracy, Precision, and Recall for CIC-IDS2018 Dataset

Benign Bot
Brute
Force
Web

Brute
Force
XSS

DDOS
Attack
HOIC

DDOS
Attack-
LOIC-UDP

DDoS
Attacks-
LOIC-HTTP

DoS
Attacks-
GoldenEye

DoS
Attacks
-Hulk

DoS
Attacks-Slow
HTTPTest

DoS
Attacks-
Slowloris

FTP
Brute
Force

Infil-
teration

SQL
Injection

SSH-
Brute
force

Error Accuracy Precision

Benign 4030606 455 83 245 189 134 1988 1243 1532 18553 1235 675 2006 23 54 0.007 0.993 0.8734
Bot 114140 101849 55 76 81 62 338 56 7 125 8 0 41 5 6 0.0074 0.9925 0.9838
Brute Force -Web 705 6 486 8 14 16 9 45 4 240 7 8 34 4 0 0.3590 0.6409 0.5242
Brute Force -XSS 4745 8 23 567 0 22 43 0 5 126 0 12 0 10 6 0.051 0.949 0.4402
DDOS Attack-HOIC 110258 25 12 16 88918 18 0 16 0 281 0 21 32 8 6 0.0039 0.9960 0.9866
DDOS Attack-LOIC-UDP 23434 35 120 0 0 15000 222 0 541 234 45 340 20 0 9 0.0626 0.9373 0.9574
DDoS Attacks-LOIC-HTTP 83326 0 36 0 72 0 68509 0 211 330 0 18 0 7 4 0.0080 0.9919 0.9470
DoS Attacks-GoldenEye 9829 18 4 24 234 86 630 6880 0 15 124 9 7 8 12 0.1064 0.8935 0.7723
DoS Attacks-Hulk 111636 78 56 122 38 23 89 90 95804 230 234 125 96 11 42 0.0109 0.9890 0.9714
DoS Attacks-SlowHTTPTest 19309 345 23 13 156 0 34 0 45 16806 0 56 8 7 4 0.0345 0.9654 0.3209
DoS Attacks-Slowloris 774 0 4 56 6 7 82 2 35 877 1373 80 75 2 0 0.613 0.387 0.4531
FTP-BruteForce 45048 235 20 46 0 234 344 567 32 8099 0 14566 65 6 4 0.1764 0.8235 0.8900
Infilteration 36462 434 3 75 56 30 52 6 402 2486 4 0 9774 30 33 0.0901 0.9098 0.8039
SQL Injection 114 0 2 4 0 0 0 3 0 3 0 0 0 126 8 0.1492 0.8507 0.4025
SSH-Bruteforce 24096 37 0 36 353 35 0 0 4 3963 0 456 0 66 11567 0.1704 0.8295 0.9840
Total 4614482 103525 927 1288 90117 15667 72340 8908 98622 52368 3030 16366 12158 313 11755

Recall 0.9929 0.8856 0.4418 0.1134 0.8032 0.6 0.8155 0.6254 0.8488 0.8403 0.6865 0.2662 0.2439 0.9402 0.3982

Table 6.7: Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for CIC-IDS2018 Dataset

149

6.
D

IM
E
N

S
IO

N
A

L
IT

Y
R

E
D

U
C

T
IO

N
B

A
S
E
D

F
E
A

T
U

R
E

S
E
L
E
C

T
IO

N
A

N
D

A
T

T
A

C
K

C
L
A

S
S
IF

IC
A

T
IO

N
A

P
P

R
O

A
C

H

DoS-Syn
flooding

MITM ARP
Spoofing

Mirai-Ack
flooding

Mirai-HTTP
Flooding

Mirai-Host
bruteforceg

Mirai-UDP
Flooding

Normal
Scan
Hostport

Scan
Port OS

Error Accuracy Precision

DoS-Synflooding 44268 9 2 10 37 63 4 3 0 0.0029 0.9971 0.99
MITM ARP Spoofing 0 26481 0 0 10 9 0 3 0 0.0008 0.9992 0.99
Mirai-Ackflooding 0 0 33178 133 2038 6063 0 2 0 0.1988 0.8012 0.99
Mirai-HTTP Flooding 0 0 125 34218 1520 6006 0 2 0 0.1827 0.8173 0.58
Mirai-Hostbruteforceg 0 0 12 855 89971 39 0 9 1 0.0101 0.9899 0.94
Mirai-UDP Flooding 0 0 122 23341 1536 112908 0 1 0 0.1813 0.8187 0.90
Normal 0 0 0 0 5 5 29990 1 0 0.0004 0.9996 0.99
Scan Hostport 3 4 0 0 2 0 0 16143 572 0.0347 0.9653 0.76
Scan Port OS 0 5 0 0 9 0 0 5028 34746 0.1267 0.8733 0.98
Total 44271 26499 33439 58557 95128 125093 29994 21192 35319

Recall 0.99 0.99 0.80 0.81 0.98 0.81 0.99 0.96 0.87

Table 6.8: Training Confusion Matrix, Error, Accuracy, Precision, and Recall for IoTID20 Dataset

DoS-Syn
flooding

MITM ARP
Spoofing

Mirai-Ack
flooding

Mirai-HTTP
Flooding

Mirai-Host
bruteforceg

Mirai-UDP
Flooding

Normal
Scan
Hostport

Scan
Port OS

Error Accuracy Precision

DoS-Synflooding 14918 1 0 0 0 0 1 0 3 0.0003 0.9996 1
MITM ARP Spoofing 0 8900 0 0 0 0 0 0 1 0.0001 0.9998 0.99
Mirai-Ackflooding 0 0 11911 862 944 79 0 0 14 0.1375 0.8624 0.76
Mirai-HTTP Flooding 0 0 1805 10088 1006 1113 0 0 25 0.2813 0.7186 0.69
Mirai-Hostbruteforceg 0 0 177 750 28688 665 0 0 19 0.0531 0.9468 0.88
Mirai-UDP Flooding 0 0 1775 2881 1939 39244 0 0 22 0.1442 0.8557 0.95
Normal 0 0 0 0 1 0 9991 0 0 0.0001 0.9998 0.99
Scan Hostport 0 0 0 0 0 0 0 5361 184 0.0331 0.9668 0.95
Scan Port OS 0 0 0 0 0 0 0 251 13026 0.0189 0.9810 0.97
Total 14918 8901 15668 14581 32578 41101 9992 5612 13294

Recall 0.99 0.99 0.86 0.71 0.94 0.85 0.99 0.96 0.98

Table 6.9: Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for IoTID20 Dataset

150

6.4
E
xp

erim
ental

E
valu

ation

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms Error Accuracy Precision
Analysis 1664 74 21 126 121 2 0 0 0 0 0.1713 0.8286 0.91
Backdoor 70 1514 12 11 122 2 1 12 10 0 0.1368 0.8631 0.92
DoS 16 12 11113 715 258 22 0 86 94 2 0.0978 0.9021 0.86
Exploits 36 23 500 31872 396 34 0 439 115 7 0.0463 0.9536 0.91
Fuzzers 24 15 460 663 16844 8 0 78 72 1 0.0727 0.9272 0.94
Generic 4 1 180 612 77 43205 0 5 19 2 0.0204 0.9795 0.99
Normal 0 0 0 0 0 0 69722 0 0 0 0 1 0.99
Reconnaissance 2 14 555 903 70 5 0 8926 7 0 0.1484 0.8515 0.93
Shellcode 0 0 10 48 48 1 0 51 958 0 0.1415 0.8584 0.75
Worms 0 0 6 2 10 1 0 0 0 122 0.13475 0.8652 0.91
Total 1816 1653 12857 34952 17946 43280 69723 9597 1275 134

Recall 0.83 0.86 0.90 0.95 0.93 0.98 1 0.85 0.85 0.86

Table 6.10: Training Confusion Matrix, Error, Accuracy, Precision, and Recall for UNSW-NB15 Dataset

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms Error Accuracy Precision
Analysis 610 18 6 4 31 0 0 0 0 0 0.0881 0.9118 0.95
Backdoor 18 478 6 22 41 0 0 5 5 0 0.1686 0.8313 0.94
DoS 0 4 3889 66 23 10 0 13 30 0 0.0361 0.9638 0.92
Exploits 6 5 122 10777 14 10 0 123 43 3 0.0293 0.9706 0.96
Fuzzers 5 1 61 60 5903 6 0 26 19 0 0.0292 0.9707 0.97
Generic 0 0 68 212 30 14445 0 6 4 1 0.0217 0.9782 0.99
Normal 0 0 0 0 0 0 23278 0 0 0 0 1 1
Reconnaissance 1 0 90 35 17 2 0 3358 2 0 0.0419 0.9580 0.94
Shellcode 0 0 0 50 19 5 0 25 296 0 0.2506 0.7493 0.74
Worms 0 0 0 3 2 1 0 0 0 27 0.1818 0.8181 0.87
Total 640 506 4242 11229 6080 14479 23278 3556 399 31

Recall 0.91 0.83 0.96 0.97 0.97 0.98 1 0.96 0.75 0.81

Table 6.11: Validation Confusion Matrix, Error, Accuracy, Precision, and Recall for UNSW-NB15 Dataset

151

6. DIMENSIONALITY REDUCTION BASED FEATURE SELECTION
AND ATTACK CLASSIFICATION APPROACH

6.4.5 Benchmarking on Various Performance Measures

This section presents the comparative analysis / benchmarking with existing methods

published over recent past year’s literature. Table 6.12 shows the performance com-

parisons with existing research in intrusion detection with our proposed method. The

test results are also compared with existing state-of-the-art intrusion detection methods

and datasets (NSL-KDD, CICIDS-2017, CICIDS-2018, IoTID20, and UNSW-NB15) in

terms of various statistical performances measures, i.e., Accuracy, Precision, and Recall.

The benchmarking shows that our developed method outperforms other state-of-the-art

existing methods on the chosen datasets.

6.5 Conclusions

Building automated intrusion detection systems is considered one of the most adaptable

and feasible domains in the global research community. The exploitation of ML and

modern data mining paradigms has become an essential strategic component to process

and perform modelling of the network’s attack data more efficiently. This will help to

monitor the network traffic, detect suspicious activity and issue predictive alerts based

on the features of the trained data. However, the continuously streamlined data with

massive dimensions is considered a challenging core problem. This has provided us

with the motivation in order to propose a data-driven and computationally economical

algorithmic framework for performing analysis and knowledge discovery of the network

traffic data. In order to analyze the model’s behaviour and optimality, experimental

simulation and evaluation are carried out on the standard chosen datasets. The nov-

elty of the developed framework is judged in terms of lightweight and hyperparameters

while developing a new model/ framework and comparison with the state-of-the-art

approaches.

In the next chapter, we propose a dataset ODIDS2022 (Offensive Defensive IDS), which

meets the above eleven desirable characteristics ("Attack Diversity, Anonymity, Avail-

able Protocols, Complete Capture, Complete Interaction, Complete Network Configu-

ration, Complete Traffic, Feature Set, Heterogeneity, Labelling, and Metadata") and

consists of benign and twenty-eight common attacks. Consequently, we applied four

state-of-the-art ML based classification algorithms (Random Forest, Decision Tree,

Naive Bayes, and SVM) to predict the attacks. We tested four ML algorithms on OD-

152

6.5 Conclusions

S. No. Dataset Author Method
Statistical Performance Metrics
Accuracy Precision Recall

1

NSL-KDD

[137] LNNLS-KH 0.96 NA NA

2 [145]
DT 0.94 0.95 0.96
SVM 0.91 0.92 0.92
KNN 0.93 0.94 0.94

3 Proposed Method 0.98 0.94 0.93

4

CICIDS-2017

[25]

K-Nearest Neighbors NA 0.96 0.96
Random Forest NA 0.98 0.97
Decision Tree -ID3 NA 0.98 0.98
Adaboost NA 0.77 0.84
Multilayer Perceptron NA 0.77 0.83
Quadratic Discriminant Analysis NA 0.97 0.88

5 [146]
K-Nearest Neighbors 0.95 0.96 NA
SVM 0.92 0.92 NA
RF 0.96 0.97 NA

6 [147]
SVM-PCA and Firefly 0.97 84.4 NA
NB-PCA and Firefly 0.84 0.76 NA

7 [148] Hidden Markov Model 0.98 0.97 1
8 [149] CNN + LSTM 0.97 NA NA
9 Proposed Method 0.99 0.92 0.9
10

CICIDS-2018
[150] CNN + LSTM 0.74 0.82 0.81

11 [151] Multi-Task Learning + SMOTE 0.71 0.78 0.62
12 Proposed Method 0.88 0.75 0.63
13

IoTID20
[152] CNN 0.86 0.6 0.56

14 Proposed Method 0.93 0.92 0.91
15

UNSW-NB15
[151] SVM + SMOTE 0.73 0.71 0.65

16 [153] AdaBoost 0.85 NA NA
17 Proposed Method 0.92 0.94 0.92

Table 6.12: Performance Comparisons With Existing Methods

IDS2022, and SVM gave the highest prediction accuracy in the training and validation

sample of the dataset.

153

Chapter 7

A New Offensive Defensive IDS
Dataset: OD-IDS2022

7.1 Introduction

An IDS dataset is a collection of data generated by an IDS system as it monitors a

computer network for malicious activity. The data may include information such as the

source and destination IP addresses, the type of attack, the time of the attack, and other

relevant details. These datasets are used for training and evaluating machine learning

algorithms for intrusion detection [154]. They can also be used for research purposes,

such as developing new techniques for detecting attacks or improving the accuracy of

existing systems. It can be obtained from a variety of sources, including public datasets,

commercial datasets, and private datasets generated by organizations for their own use.

The quality of the dataset depends on the data collection process, the data sources,

and the data labeling process, among other factors [4]. It’s important to keep in mind

that IDS datasets can be imbalanced, with a large number of normal instances and a

small number of malicious instances. This can affect the accuracy of machine learning

algorithms and must be taken into account when preparing the data for analysis.

IDS datasets can pose several challenges that impact the accuracy and effectiveness

of machine learning algorithms for intrusion detection. Some of the challenges include

Imbalanced Classes, High Dimensionality, Evolving Threats, Data Quality, and Scala-

bility. These challenges must be taken into account when preparing and analyzing IDS

datasets for intrusion detection. It may be necessary to use data preprocessing tech-

154

7.1 Introduction

niques, such as oversampling, feature selection, and feature engineering, to overcome

these challenges and improve the accuracy of machine learning algorithms for intrusion

detection.

Contribution Highlights

1. We generate a new Offensive Defensive Intrusion Detection System (OD-IDS2022)

Dataset, which fulfills the standard characteristics, namely "Attack Diversity",

"Anonymity", "Available Protocols", "Complete Capture", "Complete Interac-

tion", "Complete Network Configuration", "Complete Traffic", "Feature Set",

"Heterogeneity", "Labelling", and "Metadata" [45].

2. OD-IDS2022 covers all the necessary criteria (Confidentiality, Integrity, Availabil-

ity) with OWASP top 10:2021-based security vulnerabilities [155].

3. OD-IDS2022 having updated 28 attacks such as Apache_flink_directory_traversal,

ARP_Spoofing, Authenticated Remote Code Execution, Brute Force Attacks,

Denial-of-service, Distributed_denial-of-service, DLL Hijacking, EXE Hijacking,

EXE HijackinPrintNightMare-RCE, Exploiting Node Deserialization, Firmware

Vulnerability, Fragmented Packet Attacks, Google Chrome Remote Code Execu-

tion via Browser, Kernel Exploitation, ManageEngine ADSelfService Plus 6.1 -

CSV Injection, Man-in-the-middle, Persistent Cross-Site Scripting in Blog page,

Print Spooler Service - Local Privilege Escalation, Privilege Escalation Using Un-

quoted Service Path, Ransomware (Malware), Remote Code Execution via Unre-

stricted File Upload access, Slow_HTTP_attack, SYN Floods, TCP_Session_Hijacking,

Time-based SQL Injection, Unauthenticated Arbitrary File Upload, Unauthenti-

cated RCE in Credit Card Customer Care System, and Webmin 1.962 - Package

Update Escape Bypass RCE attack.

4. OD-IDS2022 is labeled with 82 network traffic features and calculated for all

benign and attack flows using the CICFlowMeter tool [156].

5. We examined the dataset to select the best features using Principal Component

Analysis (PCA). And we also executed four state-of-the-art standard ML-based

algorithms to evaluate our dataset.

155

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

The rest of the chapter is structured as follows: Section 7.2 presents the existing datasets

and comparisons. Section 7.3 about the OD-IDS2022 dataset design. Section 7.4 dis-

cusses the pre-processing of the dataset and feature selection. Section 7.5 presents the

machine learning-based classification analysis. Section 7.6 gives the experiment and

results. Finally, the conclusion is discussed in section 7.7.

7.2 Existing Datasets and Comparisons

Some of the best-known datasets for analyzing traffic are CIC-BELL-DNS-2021, CIRA-

CIC-DOHBRW-2020, DAPT-2020, DDOS-2019, CIC-IDS2018, CIC-DOS-2017, ISCX-

URL2016, UNSW-NB15, AWID-2015, CTU-13, ISCXIDS2012, NSL-KDD, KYOTO

2006+, KDD CUP99, and others IDS datasets. However, given the dates on which they

were created, their content can no longer simulate current situations. Currently, there

are some datasets with adapted or artificially generated content. Based on the research,

it is essential to mention some of these sets considered relevant by different authors and

related to the dataset selected for this work. We investigated and appraised the fifteen

open-source IDS datasets since 1999 to demonstrate their deficiencies and issues that

recall the fundamental need for a comprehensive and trustworthy dataset.

7.2.1 Existing IDS Datasets Limitations

Information security systems in organizations require complex protection mechanisms

to avoid compromising their data when they connect locally / remotely, which increases

the chances of being attacked. To defend the organization from this type of access,

IDSs have been developed based on IDS Datasets [26]. However, due to insufficient

resources, research is being conducted with existing IDS datasets created in the past.

Among these datasets, there are some limitations as follows:

• Lack diversity and volume

• Lack coverage of threats

• Anonymize packet information and payload

• Data imbalance (Underfitting / Overfitting)

• Attack Scalability

156

7.3 OD-IDS2022 Dataset Design

• Variety of known attacks

• Simulation-based attacks

• Existing datasets are outdated

• Lack metadata, feature set, and functionality

In this chapter, we proposed a dataset OD-IDS2022, which consists of Realistic back-

ground traffic, Balance data, Threat information, Metadata, Buffer data, and Red /

Blue team observations, which were lacking in the previously available dataset. This

chapter generates a reliable dataset that contains benign and twenty-eight common at-

tack network flows, which meet real-world criteria and eleven desirable characteristics.

Figure 7.1: Testbed Architecture for Dataset Generation

7.3 OD-IDS2022 Dataset Design

This section deals with the preliminary analysis of the OD-IDS2022 (Offensive Defensive

- Intrusion Detection System) dataset, where the origin and structure of the dataset will

157

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

Web Server Specification Attack Server Specification
Operating
System

Window Server2016
Ubuntu Server18.04

Red Team: Kali Linux 2020.2, Parrot 4.11.3
Blue Team: Window, Ubuntu

Application
Web: Apache HTTP Server Version 2.4
Database: MySQL, PostgreSQL

Blue Team Tools: Web Application Firewall, Endpoint detection and response, ModSecurity
Red Team Tools: Burp suite, apache-flink, etc

Table 7.1: Web Server Specification and Attack server specification

be briefly explained. This collection of a dataset in the Center for Excellence in Cyber

Security (CoECS) at the Institute for Development & Research in Banking Technology

(IDRBT) was developed to create a complete, modern dataset in the field of IDSs. A

dataset intends to simulate and demonstrate a behavior or an actual situation of a given

scenario.

7.3.1 Proposed Approach for Dataset Creation

Figure 7.1 presents the framework of the proposed scheme. The proposed scheme aims

to generate a novel OD-IDS2022 dataset, which consists of benign and twenty-eight

common attack network flows which meet real-world criteria and fulfill the standard

characteristics, namely "Attack Diversity", "Anonymity", "Available Protocols", "Com-

plete Capture", "Complete Interaction", "Complete Network Configuration", "Com-

plete Traffic", "Feature Set", "Heterogeneity", "Labelling", and "Metadata" [45]. Con-

sequently, we applied several data cleaning, pre-processing techniques, feature selection

method, and state-of-the-art machine learning-based classification algorithms to predict

the attacks as a result of classifying attack patterns with four classification algorithms;

Random Forest, Decision Tree, Naive Bayes, and Support Vector Machine (SVM).

Figure 4.2 in chapter 4 represents an attack environment architecture to generate net-

work traffic (Malicious / Non-malicious). In the network architecture, we divided into

two teams called the red team and blue team for the observation, perform the attacks,

and defend the attacks. We use the VMWare P layer 15 for the virtual environment,

Kali Linux & parrot security OS for attacks, and tcpdump / Wireshark for network

packet capture [157]. We describe the web and attack server specifications in Table

7.1. Table 7.2 shows all Attack Classes (AC), tools, and techniques. The prerequisite

tools used to generate OD-IDS2022 datasets and the test environment used to con-

duct direct attacks. Finally, for the performance test of the model, download and use

the ′CICFlowMeter′ java project provided by UNB. The code was written using the

jNetPcap open source library [156]. CICFlowMeter analyzes the Pcap file captured

158

7.3 OD-IDS2022 Dataset Design

by the network packet for each session and outputs it as a CSV file with 82 features. In

the experiment, a PCAP file is created by performing a direct attack and then used as

data for performance evaluation.

7.3.2 Dataset Description

The OD-IDS2022 dataset is the simulation of environments that allow the study of

anomalous (Abnormal) events in computer networks is quite complex. It requires a

set of diversified procedures, configurations, and validations that will enable replicating

situations that allow the detection of attacks, also diversified, based on their character-

istics. The main objective of this work was to create a dataset that mirrored the traffic

data obtained in the real world in terms of data considered normal and the detection

of occurrences of different types of attacks.

7.3.3 Dataset Generation

The OD-IDS2022 dataset is considered with 82 features, and it was prepared for a

much larger volume of network traffic containing a total of 1031916 instances with 29

classes. This dataset is made up of network traffic logs with over 82 different features

and patterns. For the extraction process, the CICIF lowMeterV 4 software was used

[156]. The attack organized the data and was captured in 30 working days; network

traffic data and event logs were recorded in different machines. The dataset contains

network traffic aggregated over several working days, during which 28 different attacks

were simulated. The collection also includes an introductory neutral class called benign,

which represents BENIGN, i.e., normal traffic (Normal browsing), during which not a

single attack occurs. Aggregated attacks and benign traffic make this dataset have 29

different classes.

Given that each line contains a corresponding class, it is indicated to which class it

belongs. This set belongs to marked datasets. This dataset includes records of different

types of intrusions targeting different kinds of applications, ports, and other network

resources. A network system can be simulated by creating two types of profiles:

159

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

7.3.3.1 Normal (Benign - Profile)

It represents all the expected daily events in such an environment. Most traffic is HTTP

and HTTPS. However, in this event, SMTP, POP3, IMAP, SSH, and FTP events are

also simulated. In this profile, only the Benign profile class is present.

7.3.3.2 Anomaly (Attack - Profile)

In this profile, we considered 28 different novel attack classes that uniquely identify a

particular attack. All 28 attacks covered different attack scenarios based on OWASP

top ten [155]. This way, it is possible to recreate common events in a network’s day-to-

day activities. Approximation to reality, there are also visible variations in the number

of occurrences of each event of a given threat. Within this profile, there are several

attack scenarios, of which the following stand out:

1. Broken access control and injection type attacks

2. Security misconfiguration

3. Components with known vulnerabilities

4. Authentication and data integrity failures

5. Remote desktop protocol (work from home scenarios)

6. Security logging & monitoring failures

7. Server-side request forgery and blind scripting

8. Malware analysis

7.3.4 Dataset Features

This dataset contains 82 features that characterize the events that occur in a network.

For this, the CICFlowMeter tool mentioned above was used, which allows network traf-

fic flow generation. This tool, written in Java, allows for generating bidirectional flows.

The application’s output files are in CSV format, divided by attacks. Table 7.3 shows

the 1 to 40 features, and 7.4 shows the 41 to 82 features for the OD-IDS2022 dataset.

Those tables present the features and descriptions along with Relative_importance,

160

7.3 OD-IDS2022 Dataset Design

S.No. Attack Classes (AC) Represent Tools and Techniques
1 Apache_flink_directory_traversal (A1) Burp suite [158], apache-flink [159]
2 ARP_Spoofing (A2) arpspoof [160], Netcommander [161]
3 Authenticated Remote Code Execution (A3) Zabbix 5.0.17 [162]
4 BENIGN (A4) Normal Browsing
5 Brute Force Attacks (A5) Aircrack-ng [163], John the Ripper [164]
6 Denial-of-service (A6) libupnp [165], DoSePa [166], jQuery UI [167]
7 Distributed_denial-of-service (A7) Slowloris [168], Smurf6 [169], Trinoo [170]
8 DLL Hijacking (A8) DLLSpy [171]
9 EXE Hijacking (A9) GlassWireSetup [172]
10 EXE HijackinPrintNightMare-RCE [173] (A10) Eval Injection [174]
11 Exploiting Node Deserialization [175] (A11) Burp suite [158], serialization/deserialization module
12 Firmware Vulnerabilitie (A12) TrickBot’s [176]
13 Fragmented Packet Attacks (A13) Teardrop ICMP/UDP, IPFilter [177]
14 Google Chrome Remote Code Execution via Browser [178] (A14) Incorrect-security-UI vulnerability
15 Kernel Exploitation [179] (A15) xairy/linux-kernel-exploitation
16 ManageEngine ADSelfService Plus 6.1 - CSV Injection [180] (A16) python script
17 Man-in-the-middle (A17) Burp suite, Mitmproxy [181], Python script
18 Persistent Cross-Site Scripting in Blog page (A18) DVWA [182], stolen cookie [183], JavaScript keylogger
19 Print Spooler Service - Local Privilege Escalation [184] (A19) PrintDemon
20 Privilege Escalation Using Unquoted Service Path [185] (A20) Exploiting Unquoted Service path

21 Ransomware (Malware) (A21)
MalwareBuster[186], Malware Infections,

WannaCry [187], BadRabbit [188]
22 Remote Code Execution via Unrestricted File Upload access [189] (A22) Bypassing client-side filtering
23 Slow_HTTP_attack (A23) slowhttptest [190]
24 SYN Floods (A24) aSYNcrone [191], OWASP ZAP [192]
25 TCP_Session_Hijacking (A25) Burp Suite, Ettercap [193]
26 Time-based SQL Injection (A26) SQLMap [194], BBQSQL [195]
27 Unauthenticated Arbitrary File Upload (A27) Joomla Core [196]
28 Unauthenticated RCE in Credit Card Customer Care System (A28) Log4j2 Vulnerability [197]
29 Webmin 1.962 - Package Update Escape Bypass RCE [198] (A29) MetasploitModule

Table 7.2: Attack Classes, Tools, and Techniques

Scaled_importance, Percentage, and explanations (Descriptions) used in classification.

The magnitudes of the coefficients are represented by variable significance. If the stan-

dardise option is enabled, the standardised coefficients are returned (which is the de-

fault). These are the predictor weights from the standardised data, and they are simply

given for informative purposes, such as comparing the relative variable importance. Al-

though it is possible to get the raw variable importance for every feature, H2O displays

each feature’s importance Scaled from 0 to 1.

7.3.5 Getting the Dataset

The OD-IDS2022 dataset is not publicly available, and please write an email to the

corresponding author for requesting this dataset.

161

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

S. No. Feature Relative Imp Scaled Imp Percentage Description
1 SrcIP 742453.5 1 0.4976 Attacker IP
2 SrcPort 183333.3438 0.2469 0.1229 Attacker Port
3 DstIP 114376.6641 0.1541 0.0767 Target IP
4 DstPort 113926.8359 0.1534 0.0764 Target Port
5 Protocol 3926.4497 0.0053 0.0026 Protocol Used
6 FlowDuration 1099.5739 0.0015 0.0007 Flow time in seconds
7 TotFwdPkts 3279.6143 0.0044 0.0022 Total network packets count in the forward flow
8 TotBwdPkts 9419.3105 0.0127 0.0063 Total network packets count in reverse
9 TotLenFwdPkts 339.6275 0.0005 0.0002 Total nework packet size in forward flow
10 TotLenBwdPkts 87.9262 0.0001 0.0001 Total network packet size in backward flow
11 FwdPktLenMax 1466.9271 0.002 0.001 Maximum length of forward packets
12 FwdPktLenMin 5650.416 0.0076 0.0038 Minimum length of forward packets
13 FwdPktLenMean 679.7752 0.0009 0.0005 Average packet size in the forward flow

14 FwdPktLenStd 987.6306 0.0013 0.0007
Standard deviation of network

packet lengths in the forward flow
15 BwdPktLenMax 3929.5999 0.0053 0.0026 Maximum length of network packets in reverse flow
16 BwdPktLenMin 9292.5625 0.0125 0.0062 Minimum network packet size in the reverse flow
17 BwdPktLenMean 2547.7148 0.0034 0.0017 Average length of network packets in reverse flow

18 BwdPktLenStd 1636.4076 0.0022 0.0011
Standard deviation size of the

network packet in the reverse flow
19 FlowByts/s 964.0507 0.0013 0.0006 Number of bytes flowing per second
20 FlowPkts/s 1854.9344 0.0025 0.0012 Number of packets flowing per second
21 FlowIATMean 145.0229 0.0002 0.0001 Mean of arrival times of packages
22 FlowIATStd 374.4635 0.0005 0.0003 Standard deviation of arrival times of packages
23 FlowIATMax 190.9945 0.0003 0.0001 Maximum Arrival Time of Packages
24 FlowIATMin 835.8781 0.0011 0.0006 Minimum Arrival Time of Packages
25 FwdIATTot 113.5827 0.0002 0.0001 Total time connecting two network packets sent forward flow
26 FwdIATMean 107.2331 0.0001 0.0001 Average time connecting two network packets sent in the flow

27 FwdIATStd 178.3949 0.0002 0.0001
Standard deviation of the time connecting

two network packets sent in flow
28 FwdIATMax 354.6124 0.0005 0.0002 Maximum arrival time of packages in the flow

29 FwdIATMin 594.3224 0.0008 0.0004
Minimum time connecting two network

packets sent in the direct flow

30 BwdIATTot 166.9702 0.0002 0.0001
Total time connecting

two network packets sent backwards

31 BwdIATMean 359.9548 0.0005 0.0002
Average time connecting two network

packets sent in the reverse flow
32 BwdIATStd 424.4207 0.0006 0.0003 standard deviation of time connecting
33 BwdIATMax 901.3358 0.0012 0.0006 Maximum time connecting two network packets sent backwards
34 BwdIATMin 14872.9756 0.02 0.01 Minimum time connecting two network packets sent back

35 FwdPSHFlags 0 0 0
N times the PSH flags were set in network

packets traveling in the forward flow

36 BwdPSHFlags 1251.521 0.0017 0.0008
N times the PSH flags are alive on

network packets traveling backwards

37 FwdURGFlags 0 0 0
N times the URG flags are alive

in forward-moving network packets

38 BwdURGFlags 0 0 0
N times the URG flags are alive in

network packets traveling backwards
39 FwdHeaderLen 2313.5061 0.0031 0.0016 Total bytes used for forward headers
40 BwdHeaderLen 7100.9326 0.0096 0.0048 Total bytes used for reverse headers

Table 7.3: 1 to 40 OD-IDS2022 Features, Relative Importance, Scaled Importance, Per-
centage, and Descriptions

162

7.3 OD-IDS2022 Dataset Design

S. No. Feature Relative Imp Scaled Imp Percentage Description
41 FwdPkts/s 1991.4585 0.0027 0.0013 Number of direct network packets per second
42 BwdPkts/s 151076.5469 0.2035 0.1013 Number of reverse network packets per second
43 PktLenMin 27233.8086 0.0367 0.0183 Minimum length of a stream
44 PktLenMax 4576.7539 0.0062 0.0031 Maximum length of a stream
45 PktLenMean 2547.7148 0.0034 0.0017 Average length of a stream
46 PktLenStd 2124.1421 0.0029 0.0014 Standard deviation of a stream
47 PktLenVar 29.6662 0 0 Length variance of a stream
48 FINFlagCnt 12924.834 0.0174 0.0087 Number of packages with FIN
49 SYNFlagCnt 881.4092 0.0012 0.0006 Number of network packets with SYN
50 RSTFlagCnt 89.8413 0.0001 0.0001 Number of network packets containing RST
51 PSHFlagCnt 0 0 0 Number of PUSHed network packets
52 ACKFlagCnt 0 0 0 Number of ACK network packets
53 URGFlagCnt 0 0 0 Number of packages containing URG
54 CWEFlagCount 99.3115 0.0001 0.0001 Number of network packets containing CWE
55 ECEFlagCnt 0 0 0 Number of packages containing ECE
56 Down/UpRatio 41191.2852 0.0555 0.0276 Download and upload rate
57 PktSizeAvg 1182.2847 0.0016 0.0008 Median package size
58 FwdSegSizeAvg 0.5162 0 0 Median size observed in the forward flow
59 BwdSegSizeAvg 0 0 0 Median size observed in the reverse flow
60 FwdByts/bAvg 0 0 0 Median number of bytes/mass ratio in forward flow

61 FwdPkts/bAvg 0 0 0
Median number of network packets

mass ratio in the forward flow
62 FwdBlkRateAvg 0 0 0 Median number of mass ratio in forward flow
63 BwdByts/bAvg 0 0 0 Median number of bytes/mass ratio in reverse flow
64 BwdPkts/bAvg 0 0 0 Median number of packages/mass ratio in the reverse flow
65 BwdBlkRateAvg 0 0 0 Median number of mass ratio in reverse flow
66 SubflowFwdPkts 1.0204 0 0 Median number of network packets in a downstream substream
67 SubflowFwdByts 5.0323 0 0 Median number of bytes in a substream in the direct flow
68 SubflowBwdPkts 3.2832 0 0 Median number of network packets in a downstream substream
69 SubflowBwdByts 3.2832 0 0 Median number of bytes in a downstream substream
70 InitFwdWinByts 0 0 0 Number of bytes sent in the beginning window in forward flow
71 InitBwdWinByts 5942.2227 0.008 0.004 Number of bytes sent in the beginning window in reverse flow

72 FwdActDataPkts 1865.947 0.0025 0.0013
Number of network packets with a TCP payload of at

least 1 byte in the forward flow
73 FwdSegSizeMin 0 0 0 Average number of mass ratio in reverse flow
74 ActiveMean 138.0705 0.0002 0.0001 Average time a flow was alive prior to going idle

75 ActiveStd 109.5522 0.0001 0.0001
Standard deviation of time a stream was

alive prior to it was idle
76 ActiveMax 769.4111 0.001 0.0005 Maximum time a stream was alive prior to it was idle
77 ActiveMin 366.9055 0.0005 0.0002 Minimum time a flow was alive prior to going idle
78 IdleMean 1170.6119 0.0016 0.0008 Average time a stream is idle prior to it becomes active

79 IdleStd 210.679 0.0003 0.0001
The standard deviation of the time a stream

is idle prior to it becomes active
80 IdleMax 4097.1211 0.0055 0.0027 Maximum time a stream is idle prior to it becomes active
81 IdleMin 1196.0841 0.0016 0.0008 Minimum time a stream is idle prior to it becomes active
82 Label - - - Attack tag

Table 7.4: 41 to 82 OD-IDS2022 Featuress, Relative Importance, Scaled Importance,
Percentage, and Descriptions

163

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

AC No. Attack Class Name Count Prob StdErr Prob Cum Prob
A1 Apache_flink_directory_traversal 57167 0.0554 0.00023 0.0554
A2 ARP_Spoofing 61489 0.05959 0.00023 0.11499
A3 Authenticated Remote Code Execution 5373 0.00521 0.00007 0.12019
A4 BENIGN 68004 0.0659 0.00024 0.18609
A5 Brute Force Attacks 63663 0.06169 0.00024 0.24779
A6 Denial-of-service 20818 0.02017 0.00014 0.26796
A7 Distributed_denial-of-service 100090 0.09699 0.00029 0.36496
A8 DLL Hijacking 4499 0.00436 0.00006 0.36932
A9 EXE Hijacking 4016 0.00389 0.00006 0.37321
A10 EXE HijackinPrintNightMare-RCE 3633 0.00352 0.00006 0.37673
A11 Exploiting Node Deserialization 3162 0.00306 0.00005 0.37979
A12 Firmware Vulnerabilitie 107554 0.10423 0.0003 0.48402
A13 Fragmented Packet Attacks 125903 0.12201 0.00032 0.60603
A14 Google Chrome Remote Code Execution via Browser 7578 0.00734 0.00008 0.61337
A15 Kernel Exploitation 3171 0.00307 0.00005 0.61645
A16 ManageEngine ADSelfService Plus 6.1 - CSV Injection 8470 0.00821 0.00009 0.62465
A17 Man-in-the-middle 87852 0.08513 0.00027 0.70979
A18 Persistent Cross-Site Scripting in Blog page 2115 0.00205 0.00004 0.71184
A19 Print Spooler Service - Local Privilege Escalation 5463 0.00529 0.00007 0.71713
A20 Privilege Escalation Using Unquoted Service Path 7514 0.00728 0.00008 0.72441
A21 Ransomware (Malware) 4865 0.00471 0.00007 0.72913
A22 Remote Code Execution via Unrestricted File Upload access 13797 0.01337 0.00011 0.7425
A23 Slow_HTTP_attack 45880 0.04446 0.0002 0.78696
A24 SYN Floods 175694 0.17026 0.00037 0.95722
A25 TCP_Session_Hijacking 15179 0.01471 0.00012 0.97193
A26 Time-based SQL Injection 16638 0.01612 0.00012 0.98805
A27 Unauthenticated Arbitrary File Upload 4000 0.00388 0.00006 0.99193
A28 Unauthenticated RCE in Credit Card Customer Care System 4448 0.00431 0.00006 0.99624
A29 Webmin 1.962 - Package Update Escape Bypass RCE 3881 0.00376 0.00006 1
- Total 1031916 1 0 1

Table 7.5: The Dataset Attack classes, number of records, Probability (Prob), Standard
Error for Probability (StdErr Prob), and Cumulative probability (Cum Prob)

7.4 Dataset Pre-processing

The scope of pre-processing operations and to make the predictions of the created

models more objective. We replaced the IP addresses with the blocks "192.0.2.0/24",

"198.51.100.0 /24", and "203.0.113.0/24" are provided for use in documentation [199].

Although we kept destination ports since these can help identify specific attacks. Fea-

tures with missing values were also removed, although there are no references to the

number. We also mention that for the division of training and validation subsets, we

established a stratified ratio of 75:25. This split ratio raised some questions about the

factors that gave rise to it, especially as it is not usual and there is no justification.

164

7.4 Dataset Pre-processing

After some investigation, the actual plots are inconclusive, even more so when in ar-

ticle [200], the work done is described, referring to this division as a 75:25 data split

ratio. There are no references to balancing techniques used. However, discrepancies are

detected in the results of detection rates, which are below average in the case of Web

attacks. One possibility advanced by the authors is that features that contribute to a

better classification of this type of attack may be missing from the dataset. Table 7.5

describes the Dataset attack classes, number of records, Probability (Prob), Standard

Error for Probability (StdErr Prob), and Cumulative probability (Cum Prob).

7.4.1 Preparation of Training and Validation Data

This section presents the pre-processing steps performed and how the data is prepared

for the experiment. Pre-processing of the scope data is carried out through methods

that try to make the data as suitable as possible for training with some algorithm. This

process can only perform so-called data cleaning, i.e., moving NULL values, deleting

rows in which features are missing, and converting values from one data type to another.

The data needs to be further processed after cleaning using one of the most common

methods: standardization, normalization, PCA [116]. The methods mentioned earlier

of standardization and normalization change data distribution into a distribution suit-

able for training neural networks. While procedures like PCA are used to reduce the

dimensionality of the data to reduce the training complexity while not changing the

meaning of the data [117].

Figure 7.2 shows the eigenvalue and principal components on correlations with variables

(features). In this work the dataset was thoroughly processed to train the model. The

process of selecting methods for pre-processing was not straightforward. It was neces-

sary to make many iterations of processing and repeatedly train the model on such data

to determine which methods give the best results. After a few attempts, the model is

trained with the learning algorithm and data. Prior to this, the data was first cleaned,

standardized, reduced in size, and normalized. The next step in data pre-processing

was creating several different datasets for the experiment. Namely, creating progres-

sively smaller datasets was necessary to imitate small, realistic datasets from the real

world. The last step of data pre-processing was splitting the dataset into a training

and validation set. It was decided that the data would be divided in a 75:25 data split

ratio, with 75% of the data reserved for training. After the last step of pre-processing,

165

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

the data is ready to be fed into the learning procedure in order to train the model, i.e.,

to perform the experiment.

7.5 Machine Learning-based Classification Analysis

In this section, we explain the ML-based classification analysis method considered in

this study to understand the attack pattern. The preprocessing results are used for

classification analysis based on features in the proposed dataset.

7.5.1 Random Forest (RF)

A random forest is a model composed of several decision trees [201]. Random forest is

an ensemble method that generates many sub-tree samples and synthesizes the results

by applying a decision tree model. Having a lesser correlation among the decision tree

models developed from the random forest and a smaller prediction error. In addition,

even if the number of decision trees is large, the random forest has the advantage that

it does not overfit [202].

7.5.2 Decision Tree (DT)

The decision tree is an analysis method that classifies or predicts objects of interest into

small groups by data separation, that is, node separation. The decision tree structure

starts from the root node, and the key lies in node separation [203]. Node separation

divides the node M into child nodes C1 and C2. By selecting one of x and a certain

value kj , the object with xj ⩽ kj is placed in node C1, and the object with xj > kj

is placed in node C2. The selection of the variable xj and the separation value xj

is determined by the impurity of the node. The decision tree model is performed by

decision tree formation - pruning - validity evaluation - interpretation, and prediction.

In the decision tree formation stage, a decision tree is formed by designating appropriate

separation criteria and stopping criteria according to the purpose and structure of data

analysis. In the pruning stage, branches with a high risk of significant classification

errors or inappropriate inference rules are removed. In the feasibility evaluation stage,

the decision tree is evaluated using a profit diagram, a risk diagram, and cross-validation

[204].

166

7.5 Machine Learning-based Classification Analysis

Figure 7.2: Eigenvalue and principal components on correlations with Features

Figure 7.3: ROC Curve Plots TPR against FPR for 29 attack classes

7.5.3 Naive Bayes (NB)

In the naive Bayesian model, entities classified by the conditional probabilistic model

are expressed as a vector x representing n explanatory variables [205] [206]. The naive

167

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

Bayes classifier uses this vector to allocate k possible probabilistic results as follows in

equation number 7.1.

p (Ck | x1, , xn) =
p (Ck) p (x | Ck)

p(x)
(7.1)

Under the assumption of independence, the conditional distribution of groups is as

follows in equation number 7.2.

p (Ck | x1, · · · , xn) =
1

Z
p (Ck)

n∏
i=1

p (xi | Ck) (7.2)

Here, Z = p(x), which is a scale factor that depends only on x1, ..., xn. The new

input vector belongs to the group with the highest probability, and for Ck, the group k

with the maximum probability is found through the following equation number 7.3.

ŷ = argmaxk∈(1,··· ,k) p (Ck)

n∏
i=1

p (xi | Ck) (7.3)

7.5.4 Support Vector Machine (SVM)

A support vector machine is an ML method that minimizes errors in training data

through support vectors. Assuming that the explanatory variables constituting a group

are linearly separated, SVM is to find the optimal boundary hyperplane that classifies

one group from another [207].

When linear separation is possible, the optimal separation boundary is defined as pass-

ing through the midpoint of the support vectors. Let f(x) = wtx + b be the linear

classification function we want to find. They are classified into two different groups

depending on whether f(x) > 0orf(x) < 0. The solution can be obtained by imposing

a penalty on constraint relaxation and using the Lagrangian multiplier. Let us minimize
1
2∥w∥

2 +CΣn
i=1ξi such that wtxi− b ≥ 1− ξi for xi with yi = 1, and wtxi− b ≤ −1+ ξi

for xi with yi = −1. Here, ξ1 ≥ 0, · · · , ξ1 ≥ 0 is the slack for relaxation, and C > 0 is

the unit cost imposed on the surplus.

If linear separation is not possible, the kernel method is used. By mapping the data into

the feature space and applying a linear support vector classifier to the mapped feature

value Φ (xi), the following optimization problem is obtained by equation number 7.4.

168

7.6 Experiment and Analysis of Results

min
α

1

2

2∑
i=1

n∑
i=j

yiyjαiαj ⟨Φ (xi) ,Φ (xj)⟩ −
n∑

i=1

 (7.4)

Even if you do not know the specific Φ in the above equation, if you can only

calculate the dot product, you can get a classification function. That is, it is sufficient

to know only the kernel functions K
(
x, xt

)
= Φ(x) ,Φ

(
xt
)
. The optimal boundary is

determined at the midpoint of the margin boundary for both groups, and the support

vector refers to observations that lie on the opposite side of the margin boundary or

just above the margin boundary [208]. This will be more robust for the network noise

and deliver more practicality with the kernel concept.

7.6 Experiment and Analysis of Results

In this section, we performed the analysis of confusion matrices with the help of state-

of-the-art classification models (RF, DT, NB, and SVM) and present the testing and

validation data performance matrices.

169

7.
A

N
E
W

O
F
F
E
N

S
IV

E
D

E
F
E
N

S
IV

E
ID

S
D

A
T
A

S
E
T

:
O

D
-ID

S
2022

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Acuracy
A1 34219 2 1 74 2118 1 469 1563 0 0 1 858 39 1 0 6495 0 0 0 5 0 4 25 0 156 1 0 0 0 0.7434
A2 21 41488 8 234 0 6 4 102 6 4 3 0 0 19 31 18 24 14 10 38 5 427 8 153 7 23 16 1 163 0.9686
A3 0 16 2257 506 0 67 3 144 3 5 60 2 3 10 199 3 73 1 28 297 26 8 9 49 3 5 4 196 30 0.5633
A4 25 0 4 50741 9 3 1 71 4 3 0 1 0 2 0 72 8 0 1 2 2 5 7 1 4 0 3 1 1 0.9955
A5 1126 1 0 27 33172 0 15 665 0 0 0 1014 4 1 0 11776 1 0 0 1 0 0 4 0 14 0 0 0 0 0.6937
A6 4 30 198 447 1 1449 9 124 19 6 38 0 1 66 139 4 97 4 24 412 40 31 16 40 3 6 14 216 7 0.4206
A7 928 1 0 11 85 1 8173 555 0 1 0 1270 6 0 1 4426 0 0 0 0 0 5 17 2 180 0 0 0 0 0.5218
A8 860 2 9 54 235 3 13 69301 0 0 4 742 1 1 6 3738 5 1 1 10 1 3 21 2 30 5 0 1 2 0.9234
A9 8 10 3 178 2 12 0 97 1476 77 16 0 1 82 1 6 312 1 63 129 34 57 0 29 1 67 24 22 20 0.5411
A10 16 36 41 217 2 23 3 77 168 1038 51 3 2 357 42 8 322 1 123 121 117 105 10 22 4 11 31 6 22 0.3484
A11 14 13 107 101 2 28 0 85 82 31 1144 2 1 100 197 5 308 5 32 38 18 17 3 7 1 18 8 2 2 0.4825
A12 158 0 0 0 953 0 100 142 0 0 0 66641 1 0 0 12659 0 0 0 0 0 2 2 1 1 0 0 0 0 0.8262
A13 42 2 4 160 7 0 4 24 1 1 0 3 93191 3 0 265 0 0 1 15 1 6 308 1 291 0 0 3 0 0.9879
A14 8 25 39 662 1 34 3 136 166 156 15 0 5 2934 2 6 386 1 375 71 196 139 4 39 0 3 134 87 11 0.5204
A15 7 23 78 78 13 25 1 37 0 2 46 0 1 0 1780 4 9 27 0 31 0 1 15 19 5 164 0 0 2 0.7517
A16 997 2 5 188 3605 0 37 623 0 4 0 9076 60 1 0 50808 5 0 1 10 0 1 14 0 334 3 0 0 0 0.7725
A17 29 20 131 493 2 42 1 233 195 83 143 1 3 284 67 16 3786 71 92 170 77 50 4 24 5 202 64 20 22 0.5981
A18 8 64 1 42 5 1 2 20 3 2 3 0 2 1 69 5 81 926 0 70 0 4 6 3 5 267 0 6 1 0.5798
A19 5 113 78 431 7 19 3 86 31 54 12 2 4 596 1 2 134 0 1987 55 280 27 10 41 2 4 64 16 42 0.4839
A20 6 16 178 748 2 99 3 210 12 17 40 0 5 31 37 5 75 36 13 3459 8 64 10 16 5 187 22 315 3 0.6153
A21 5 34 84 354 4 28 0 82 65 116 16 0 3 652 0 3 212 2 445 57 1278 52 5 61 1 3 64 8 31 0.3487
A22 6 156 5 70 2 4 1 142 1 5 1 1 4 61 0 23 51 1 3 37 1 9560 5 101 3 11 20 7 97 0.9211
A23 243 2 0 22 1 0 140 572 0 1 0 1 22 2 1 16 0 0 0 0 0 1 130092 0 649 2 0 0 0 0.9873
A24 13 99 57 150 1 10 0 130 6 5 1 0 3 26 35 13 22 0 6 10 17 102 2 33484 3 7 2 65 219 0.9709
A25 1208 2 4 246 7 0 321 880 0 0 1 4 32 2 0 157 6 0 0 21 0 1 2727 0 5840 4 1 2 0 0.5093
A26 3 6 4 132 8 2 3 50 2 2 0 1 2 2 61 10 20 61 0 137 3 13 42 5 5 11902 0 8 1 0.9533
A27 7 8 9 274 1 10 0 83 112 28 11 1 0 556 2 2 237 0 130 78 105 150 8 36 0 1 1139 2 3 0.3806
A28 16 9 123 436 2 35 1 108 20 1 3 1 1 54 3 10 94 28 11 338 14 12 6 54 2 129 2 1811 9 0.5434
A29 14 117 65 91 5 5 6 126 16 7 0 0 3 16 0 12 45 1 67 7 25 146 4 228 17 5 2 30 1831 0.6333
Total 39996 42297 3493 57167 40252 1907 9316 76468 2388 1649 1609 79624 93400 5860 2674 90567 6313 1181 3413 5619 2248 10993 133384 34418 7571 13030 1614 2825 2519 0.8619

Table 7.6: RF Training Accuracy and Confusion Matrix for all Attack Classes

170

7.6
E
xp

erim
ent

an
d

A
n
alysis

of
R

esu
lts

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Acuracy
A1 11456 0 0 17 707 0 189 547 1 0 2 276 13 0 0 2208 0 0 0 0 0 0 6 0 35 0 0 0 0 0.7412
A2 2 13861 0 92 0 3 4 46 1 3 0 0 1 6 11 6 7 5 1 13 2 158 3 40 2 4 4 0 59 0.967
A3 0 6 846 156 0 19 2 35 0 3 19 0 0 0 52 0 20 1 6 97 5 0 1 12 1 4 0 73 8 0.6193
A4 9 0 0 16962 0 0 1 24 0 0 0 0 0 1 0 29 3 0 1 0 0 2 0 0 0 0 0 1 0 0.9958
A5 376 0 0 8 10993 0 8 223 0 0 0 342 1 0 0 3889 0 0 0 0 0 0 1 0 1 0 0 0 0 0.6939
A6 1 13 52 136 2 475 1 28 2 1 8 0 0 22 31 0 24 0 9 147 14 7 3 16 1 4 6 50 1 0.4507
A7 269 0 0 3 30 0 2737 209 0 0 0 417 3 0 2 1435 1 0 0 0 0 1 10 0 39 0 0 0 0 0.5308
A8 295 0 2 21 75 0 2 23083 1 0 1 264 0 0 0 1282 2 0 0 0 0 1 3 1 6 0 0 0 0 0.9219
A9 0 4 3 70 0 4 0 30 523 25 7 0 0 17 0 1 111 0 10 31 14 18 0 11 0 16 6 3 1 0.5779
A10 6 14 16 71 0 8 0 24 86 364 12 0 0 125 10 3 114 0 43 41 41 27 1 6 1 2 12 1 9 0.351
A11 2 11 40 36 0 8 0 19 36 10 391 0 0 28 60 1 111 0 8 14 1 3 1 0 1 7 2 0 1 0.4943
A12 54 0 0 1 349 0 27 40 0 0 0 22235 0 0 0 4184 0 0 0 0 0 1 3 0 0 0 0 0 0 0.8268
A13 11 0 1 53 3 0 2 7 0 0 0 0 31207 1 0 78 0 0 0 2 0 3 105 0 96 0 0 1 0 0.9885
A14 1 5 8 222 0 7 0 48 57 65 3 3 0 1091 1 0 122 0 98 26 56 42 3 14 1 2 33 29 3 0.5624
A15 3 12 17 31 5 8 1 12 0 0 9 0 1 0 634 3 0 6 0 8 0 0 4 4 2 41 1 0 1 0.7895
A16 332 1 0 67 1219 0 10 200 0 0 0 2889 12 0 3 17224 1 0 0 7 0 1 4 0 108 0 0 0 0 0.7801
A17 9 12 51 175 0 14 0 99 57 25 39 0 0 113 25 4 1282 15 28 50 26 21 0 4 2 62 14 6 7 0.5991
A18 1 21 1 14 0 1 0 6 0 0 0 0 0 0 26 0 21 314 1 26 0 1 2 2 2 78 0 1 0 0.6062
A19 1 48 25 138 0 6 0 25 16 15 6 1 0 202 1 2 48 0 690 10 67 18 2 10 0 1 12 2 11 0.5085
A20 2 4 55 252 2 33 1 65 6 5 20 0 0 3 11 1 19 11 1 1199 2 36 2 3 0 48 5 104 2 0.6337
A21 2 9 33 122 0 12 0 26 20 27 2 0 0 195 0 0 71 0 147 22 442 17 0 22 0 0 18 3 10 0.3683
A22 0 52 2 13 0 2 2 64 1 0 0 0 0 13 0 10 16 0 0 11 0 3158 2 36 0 6 3 1 26 0.9239
A23 56 0 0 14 0 0 62 199 0 0 0 0 10 0 0 2 0 0 0 0 0 0 43371 0 213 0 0 0 0 0.9873
A24 3 28 19 59 0 2 0 53 0 3 0 0 1 4 10 1 3 0 1 0 3 33 0 11075 1 0 0 20 73 0.9722
A25 362 0 0 86 2 0 125 274 0 0 0 0 15 0 0 54 3 0 0 6 0 1 917 0 1868 0 0 0 0 0.5031
A26 1 3 1 61 1 0 0 20 0 0 0 0 0 0 9 3 6 13 0 51 0 3 9 2 0 3970 0 0 0 0.9559
A27 0 8 3 88 1 0 0 19 34 10 0 0 0 208 1 0 95 0 50 28 36 49 1 11 0 1 362 0 2 0.3595
A28 1 0 35 157 0 5 1 34 4 2 1 0 0 7 0 3 35 8 2 113 5 1 0 6 0 47 0 644 4 0.5776
A29 5 43 12 26 1 1 2 55 7 2 0 1 0 9 0 4 14 0 16 2 6 42 3 65 6 1 0 3 664 0.6707
Total 13260 14155 1222 19151 13390 608 3177 25514 852 560 520 26428 31264 2045 887 30427 2129 373 1112 1904 720 3644 44457 11340 2386 4294 478 942 882 0.8644

Table 7.7: RF Validation Accuracy and Confusion Matrix for all Attack Classes

171

7.
A

N
E
W

O
F
F
E
N

S
IV

E
D

E
F
E
N

S
IV

E
ID

S
D

A
T
A

S
E
T

:
O

D
-ID

S
2022

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 31950 79 0 136 2984 0 606 2248 0 0 0 945 123 7 0 6556 4 0 1 11 0 14 59 0 281 0 0 0 0 0.6945
A2 110 40617 2 89 3 39 1 321 2 10 7 0 0 149 134 18 98 63 59 63 15 702 30 45 32 4 58 0 168 0.9481
A3 53 8 1868 230 3 166 1 269 2 0 55 0 0 31 165 8 212 2 8 442 52 12 56 135 25 14 0 155 52 0.4642
A4 103 2 1 50402 16 0 4 213 0 0 0 3 0 29 0 35 0 0 3 5 0 25 66 0 17 0 0 1 0 0.9897
A5 390 2 0 57 31994 1 27 1797 0 0 0 1528 0 0 0 11968 1 0 1 0 0 0 3 0 61 0 1 0 0 0.6689
A6 67 24 313 194 5 1124 3 112 4 3 45 1 1 26 187 11 231 8 5 427 19 54 121 95 18 22 50 173 21 0.3341
A7 596 49 24 93 370 4 8008 488 0 1 7 1188 16 6 1 4354 2 0 0 12 0 8 113 0 275 0 0 0 0 0.5128
A8 259 4 14 66 746 0 71 68731 0 0 23 300 0 9 0 4021 216 0 45 0 39 4 88 1 254 88 0 0 0 0.9167
A9 10 8 2 138 2 11 0 74 1067 67 17 0 0 94 0 6 629 2 108 91 36 140 11 29 0 63 8 25 58 0.3958
A10 17 52 52 172 9 20 4 58 92 864 75 0 1 354 25 5 341 0 195 166 82 249 29 23 11 3 11 1 79 0.289
A11 16 36 126 65 11 28 3 240 146 20 870 0 0 73 176 5 254 27 27 89 9 60 57 0 0 4 6 0 0 0.3705
A12 159 0 0 5 2132 0 136 38 0 0 0 57056 2 1 0 21114 0 0 0 0 0 9 2 0 0 0 0 0 0 0.7074
A13 348 11 10 75 12 0 24 115 1 0 0 24 92605 7 0 180 0 0 0 50 0 4 417 0 566 0 0 0 1 0.9805
A14 42 14 5 321 7 14 4 339 244 239 7 3 2 2013 1 14 775 0 492 243 99 436 152 35 3 1 75 59 35 0.3548
A15 22 3 94 51 15 58 15 69 0 3 48 0 1 1 1668 2 44 9 4 44 1 8 116 0 37 40 0 1 1 0.7083
A16 260 19 0 155 5705 1 29 1582 0 0 2 2335 81 5 4 54794 2 0 5 93 0 10 169 4 572 3 0 0 0 0.8324
A17 48 30 136 281 15 15 5 338 238 33 58 0 1 176 80 24 3807 201 73 282 53 80 31 24 1 219 55 7 19 0.6014
A18 16 38 0 21 6 19 1 26 0 0 10 0 0 0 80 2 135 853 0 59 0 6 73 0 12 225 1 2 1 0.5378
A19 26 378 8 222 2 8 5 276 6 73 0 2 0 511 1 5 193 0 1848 169 122 22 47 35 1 3 17 4 125 0.4497
A20 96 30 342 443 0 136 0 229 2 22 51 1 0 31 26 20 280 90 4 2651 15 231 185 1 42 436 1 260 9 0.4705
A21 34 67 60 183 1 4 0 169 26 81 2 1 1 538 0 9 383 0 593 157 783 83 88 222 0 2 19 8 126 0.2151
A22 9 31 1 85 13 3 6 396 0 0 0 0 0 20 15 12 191 0 0 49 0 9335 10 72 11 4 70 0 51 0.899
A23 83 3 4 152 4 1 128 519 0 0 0 1 0 3 1 35 1 0 0 3 0 17 129632 2 1277 2 0 0 0 0.983
A24 34 32 75 64 0 8 1 396 3 4 3 2 0 7 85 10 45 1 5 44 26 42 22 33165 23 4 5 84 254 0.9629
A25 300 1 1 205 3 1 284 1529 0 1 0 2 34 2 2 77 4 0 2 62 0 4 3818 0 5053 0 0 0 1 0.4438
A26 136 0 1 52 9 0 1 267 1 0 3 0 0 1 95 8 68 55 0 125 0 0 380 0 40 11252 0 0 0 0.9006
A27 36 23 1 147 2 22 0 121 140 42 0 0 1 334 0 5 492 0 212 114 46 370 55 8 0 5 814 0 6 0.2717
A28 91 7 191 177 3 62 3 234 2 1 2 0 0 33 0 19 183 115 5 431 1 29 43 205 43 279 0 1135 44 0.34
A29 38 58 80 25 16 7 5 450 8 7 0 1 1 12 9 7 58 0 70 48 26 94 28 80 20 4 2 41 1727 0.591
Total 35349 41626 3411 54306 44088 1752 9375 81644 1984 1471 1285 63393 92870 4473 2755 103324 8649 1426 3765 5930 1424 12048 135901 34181 8675 12677 1193 1956 2778 0.8371

Table 7.8: DT Training Accuracy and Confusion Matrix for all Attack Classes

172

7.6
E
xp

erim
ent

an
d

A
n
alysis

of
R

esu
lts

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 10861 26 0 50 1006 0 205 768 0 1 0 310 44 1 0 2087 1 0 0 1 1 5 14 0 104 0 0 0 0 0.7014
A2 36 13607 2 22 0 9 4 100 0 4 3 0 0 55 34 9 37 17 22 21 1 221 13 9 9 4 18 1 70 0.9497
A3 20 1 572 84 1 49 2 93 1 1 18 0 0 14 89 5 88 1 4 158 15 3 16 41 7 2 0 52 12 0.424
A4 44 0 1 16884 2 0 6 88 0 0 0 1 0 8 0 4 0 0 1 0 0 9 19 0 10 0 0 2 0 0.9886
A5 125 1 0 21 10618 0 9 610 0 0 0 494 0 0 0 3934 0 0 0 0 0 1 1 1 17 0 0 0 0 0.6707
A6 19 4 94 80 1 348 0 35 4 1 19 1 0 10 72 7 81 3 3 159 6 25 41 23 10 7 16 60 6 0.3066
A7 193 23 5 35 129 1 2641 178 0 2 3 404 4 1 1 1445 0 0 0 2 0 1 42 0 93 0 0 0 0 0.5076
A8 101 0 3 23 249 0 30 23024 0 0 2 121 0 6 0 1317 71 0 14 0 15 0 28 0 81 26 0 0 0 0.9169
A9 3 2 1 50 1 6 0 21 341 20 4 0 0 37 3 2 220 2 40 33 14 58 1 16 1 27 4 8 22 0.3639
A10 7 14 19 88 2 16 1 25 36 212 30 0 1 118 10 4 117 0 78 65 35 82 9 8 2 1 3 0 43 0.2066
A11 3 11 63 25 1 20 3 97 51 5 231 0 0 22 74 2 112 8 8 40 5 11 17 0 0 2 1 2 0 0.2838
A12 51 0 0 0 684 0 48 19 0 0 0 18928 1 1 0 7166 0 0 0 0 0 1 0 0 0 0 0 0 1 0.7036
A13 130 3 3 17 5 0 6 54 0 0 0 5 30830 3 0 65 0 0 0 14 0 1 135 0 180 1 0 0 1 0.9802
A14 14 8 2 142 5 4 0 118 93 84 4 0 2 592 0 3 249 0 184 98 54 120 41 29 2 2 27 19 8 0.3109
A15 12 2 36 17 7 40 3 22 0 0 27 0 1 2 534 2 23 6 0 21 1 3 35 0 9 11 1 1 0 0.6544
A16 90 7 0 55 1890 1 13 522 0 0 0 819 17 3 0 18313 1 0 0 25 0 5 59 3 198 1 0 0 0 0.8316
A17 25 16 58 106 11 8 0 120 78 11 39 0 0 69 24 8 1165 83 30 107 19 35 12 6 2 72 22 4 10 0.5444
A18 11 17 0 6 2 5 0 9 0 0 3 0 0 0 27 0 56 246 0 24 0 2 23 1 4 90 0 2 1 0.465
A19 9 135 1 86 0 2 0 88 3 19 2 1 1 200 2 3 61 0 518 64 38 11 30 13 0 1 5 3 58 0.3826
A20 35 14 106 123 0 61 1 86 4 6 25 0 1 12 11 5 96 28 3 841 6 104 51 0 13 168 0 77 3 0.4473
A21 12 40 23 65 0 1 0 67 16 34 2 0 0 189 0 0 105 0 216 45 214 45 24 70 0 0 9 1 47 0.1747
A22 10 8 3 35 9 0 2 148 0 0 0 2 0 13 2 7 60 0 0 14 0 3024 3 18 5 4 26 0 20 0.886
A23 18 0 0 47 1 1 59 149 0 0 0 1 0 0 1 16 0 0 0 1 0 5 43066 0 460 1 0 0 0 0.9827
A24 17 14 26 26 0 2 0 131 2 0 1 0 0 4 33 3 21 0 2 13 7 19 7 10956 4 1 0 38 109 0.958
A25 94 0 1 64 2 0 98 563 0 0 0 0 14 2 1 26 2 0 1 24 0 4 1300 0 1597 0 0 0 0 0.421
A26 46 0 1 17 3 0 0 110 1 0 0 0 0 2 31 5 30 12 0 35 0 0 143 0 13 3695 0 0 0 0.8917
A27 3 11 0 60 0 5 0 42 40 19 0 0 0 126 0 2 170 0 53 42 29 134 17 0 0 1 246 0 4 0.245
A28 18 0 58 52 0 25 1 89 3 0 0 0 0 13 2 2 55 42 4 163 0 8 12 84 19 99 0 347 14 0.3126
A29 10 30 32 15 5 2 4 165 4 1 0 0 0 3 7 0 11 0 31 15 10 29 10 26 3 0 2 12 532 0.5547
Total 12017 13994 1110 18295 14634 606 3136 27541 677 420 413 21087 30916 1506 958 34442 2832 448 1212 2025 470 3966 45169 11304 2843 4216 380 629 961 0.8326

Table 7.9: DT Validation Accuracy and Confusion Matrix for all Attack Classes

173

7.
A

N
E
W

O
F
F
E
N

S
IV

E
D

E
F
E
N

S
IV

E
ID

S
D

A
T
A

S
E
T

:
O

D
-ID

S
2022

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 37485 4 3 35 1068 0 711 404 1 0 1 334 57 1 1 5690 0 0 0 7 0 0 35 1 163 0 1 0 2 0.8148
A2 14 41557 7 20 0 7 6 46 6 19 6 1 0 37 33 30 31 30 27 40 29 355 4 211 5 88 39 4 187 0.9701
A3 0 11 2764 60 0 120 1 35 5 10 43 0 0 36 116 7 80 9 92 313 23 6 8 49 12 8 4 181 31 0.6869
A4 21 0 12 50693 1 11 2 24 1 7 5 0 5 12 0 18 22 0 6 22 4 19 4 5 10 0 9 7 5 0.9954
A5 1521 2 0 19 34450 2 75 351 0 0 0 627 1 0 0 10722 0 0 2 3 0 1 3 0 49 1 0 0 2 0.7202
A6 1 20 204 58 1 2138 0 4 12 9 41 0 4 58 59 11 96 4 19 333 27 23 3 29 3 10 26 165 6 0.6356
A7 680 4 2 13 224 4 9561 63 1 2 2 694 21 3 8 4172 3 0 0 4 0 1 14 1 131 4 2 1 0 0.6123
A8 640 2 9 22 272 5 44 69784 0 0 19 279 0 7 5 3700 22 0 14 11 3 4 34 0 93 4 1 4 1 0.9307
A9 0 15 14 66 2 22 0 2 1625 115 27 0 2 105 3 20 281 7 50 112 59 37 1 10 0 30 36 34 21 0.6027
A10 13 31 59 44 0 44 2 10 127 1561 60 2 8 270 16 11 189 0 115 132 127 32 5 17 4 1 45 23 42 0.5221
A11 5 12 76 19 0 38 3 31 51 36 1500 0 2 117 74 13 228 8 32 34 24 2 4 5 1 2 15 16 0 0.6388
A12 264 1 0 12 870 0 249 280 0 1 0 66107 1 4 0 12859 0 0 0 0 1 1 0 3 1 0 0 0 0 0.8196
A13 84 0 9 28 3 13 14 9 0 0 0 4 93781 2 0 146 5 0 0 9 1 3 194 0 136 1 0 8 0 0.9929
A14 3 19 88 74 0 76 1 17 101 169 31 0 3 3593 0 18 344 0 364 96 208 84 10 27 5 2 168 159 14 0.6332
A15 1 24 48 8 5 46 6 1 0 5 47 0 1 3 1911 4 10 35 0 39 1 1 14 39 3 84 0 6 13 0.8115
A16 985 12 4 30 1865 7 79 341 2 1 0 4909 92 7 3 57186 1 1 2 5 0 1 20 5 261 1 3 5 2 0.8687
A17 17 28 97 125 0 82 4 56 149 105 132 0 1 233 37 30 4419 67 126 189 97 38 2 21 3 114 74 49 35 0.6981
A18 1 64 6 5 2 7 0 0 1 3 9 0 0 0 73 9 73 1114 0 49 2 4 10 18 0 113 1 13 9 0.7024
A19 7 53 116 50 0 32 0 31 27 57 7 0 1 466 0 5 85 1 2697 61 238 2 4 14 3 0 55 30 67 0.6564
A20 3 14 215 74 0 149 3 36 34 31 29 0 4 41 21 9 73 43 29 4302 8 46 7 7 12 116 22 304 2 0.7636
A21 4 13 92 45 0 144 0 37 54 113 14 0 4 499 1 12 138 0 378 77 1832 12 2 36 2 3 49 29 50 0.5033
A22 1 89 0 1 0 11 2 73 7 7 0 0 3 30 14 17 44 0 3 19 0 9852 0 57 1 17 52 7 77 0.9488
A23 120 4 2 7 3 2 214 112 4 0 0 1 51 1 6 12 0 1 0 2 0 9 130610 9 683 11 0 1 3 0.9905
A24 1 44 44 25 0 11 0 70 8 4 4 0 0 16 40 27 9 3 4 14 14 69 0 33801 4 25 3 37 167 0.9813
A25 735 0 7 56 21 6 486 302 2 1 1 1 86 1 1 139 2 0 1 21 0 5 1947 6 7543 6 1 6 3 0.6625
A26 0 8 6 10 1 1 0 25 2 0 0 0 0 2 102 16 30 58 0 97 5 4 32 32 4 12030 0 25 4 0.9629
A27 2 21 17 23 0 20 1 15 62 54 26 0 0 505 0 2 181 0 155 177 131 120 2 7 6 4 1437 13 15 0.4796
A28 2 11 130 82 0 83 3 11 28 15 1 0 2 72 0 16 60 46 34 349 6 4 3 55 3 72 4 2237 9 0.6702
A29 1 126 21 10 3 5 0 54 20 16 2 0 0 22 15 10 14 1 28 11 48 124 1 186 5 7 7 23 2162 0.7399
Total 42611 42189 4052 51714 38791 3086 11467 72224 2330 2341 2007 72959 94130 6143 2539 94911 6440 1428 4178 6528 2888 10859 132973 34651 9146 12754 2054 3387 2929 0.8915

Table 7.10: Naive Bayes Training Accuracy and Confusion Matrix for all Attack Classes

174

7.6
E
xp

erim
ent

an
d

A
n
alysis

of
R

esu
lts

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 12408 2 1 16 440 0 308 159 2 2 2 149 29 0 0 1857 1 0 0 6 0 0 14 0 84 2 1 1 1 0.8013
A2 6 13856 6 11 2 5 3 12 8 8 4 0 2 12 17 10 12 8 11 20 10 134 3 61 5 33 16 3 50 0.9671
A3 0 2 754 22 0 56 2 16 7 7 31 0 2 19 49 1 65 1 40 152 12 2 1 21 3 3 5 65 11 0.5589
A4 15 1 4 16960 10 3 1 12 2 4 7 1 5 4 0 7 13 0 5 5 3 0 2 4 4 0 3 2 2 0.993
A5 611 2 0 5 11021 0 35 152 0 2 0 268 2 1 0 3700 0 0 0 1 1 1 3 1 23 0 2 1 0 0.6961
A6 1 10 87 24 0 598 3 2 6 14 20 0 0 22 24 5 50 2 10 135 7 4 3 12 3 3 12 76 2 0.5269
A7 303 6 1 6 76 1 3016 25 1 0 2 248 11 3 5 1405 4 0 0 0 0 0 13 0 73 1 0 3 0 0.5797
A8 227 2 2 8 122 5 22 23244 0 1 4 139 0 11 3 1224 12 0 6 3 7 3 10 2 43 4 1 5 1 0.9257
A9 1 6 6 27 0 16 0 2 476 51 5 0 1 37 2 2 141 2 19 46 18 13 0 1 0 21 21 11 12 0.508
A10 2 10 25 30 1 20 0 7 67 402 13 2 3 125 11 8 73 0 59 49 60 8 1 5 0 2 18 9 16 0.3918
A11 0 4 52 4 0 18 4 19 21 21 407 0 0 44 36 6 106 2 15 23 15 3 3 0 0 1 6 1 3 0.5
A12 135 0 0 0 352 0 118 143 1 0 1 21248 1 1 0 4890 0 0 0 2 0 2 1 3 0 0 2 0 0 0.7899
A13 27 0 2 11 3 1 8 7 2 0 0 3 31213 0 1 49 3 0 1 1 0 0 70 0 46 1 0 4 0 0.9924
A14 2 11 41 30 0 31 4 14 42 88 16 0 1 943 0 9 134 0 175 37 105 25 4 10 5 1 87 83 6 0.4953
A15 0 10 43 2 1 26 3 3 1 13 44 0 0 4 548 5 14 15 0 21 2 1 3 9 3 36 0 6 3 0.6716
A16 337 2 3 16 870 2 39 143 1 2 1 2195 38 2 0 18245 1 0 2 1 1 3 10 1 100 2 1 1 3 0.8285
A17 5 14 45 58 0 28 2 37 74 65 60 0 3 96 12 12 1275 34 50 71 38 16 4 5 1 47 53 22 13 0.5958
A18 1 23 3 1 2 2 1 0 1 2 8 0 0 0 23 0 35 315 0 34 1 4 2 6 0 52 0 8 5 0.5955
A19 1 28 51 14 1 16 1 12 17 34 6 0 0 201 1 5 29 0 724 26 100 3 3 6 6 0 36 7 26 0.5347
A20 2 10 98 28 0 76 5 15 19 14 29 0 2 17 10 0 42 24 10 1247 2 21 5 6 6 58 11 121 2 0.6633
A21 2 9 31 10 0 50 1 9 26 48 14 0 2 209 0 2 49 0 181 27 468 10 1 17 0 1 21 13 24 0.382
A22 2 53 1 2 0 5 3 27 5 4 1 3 0 14 8 9 24 1 1 18 1 3140 1 33 1 7 12 1 36 0.92
A23 37 4 0 2 1 0 86 35 1 1 0 0 12 0 0 2 1 0 0 0 0 1 43310 2 315 14 0 0 2 0.9882
A24 1 17 19 18 0 12 1 21 2 1 3 0 0 6 26 8 6 1 2 4 11 28 1 11135 0 10 4 19 80 0.9737
A25 295 1 8 12 12 2 197 100 2 0 2 0 49 1 3 70 1 0 1 7 0 3 762 4 2257 2 0 2 0 0.595
A26 0 6 4 5 1 0 4 17 2 0 4 0 1 0 45 5 27 36 0 59 3 4 9 10 1 3882 1 15 3 0.9368
A27 2 7 8 8 0 8 0 6 17 27 14 0 0 189 0 3 75 0 62 60 56 44 0 1 3 1 403 7 3 0.4014
A28 1 1 56 22 0 29 2 9 15 1 0 0 0 31 0 5 36 20 16 187 1 1 2 25 3 38 2 598 9 0.5387
A29 0 42 21 2 0 6 2 20 7 9 0 0 0 11 8 1 4 2 15 4 22 63 3 93 1 3 4 5 611 0.6371
Total 14424 14139 1372 17354 12915 1016 3871 24268 825 821 698 24256 31377 2003 832 31545 2233 463 1405 2246 944 3537 44244 11473 2986 4225 722 1089 924 0.8702

Table 7.11: Naive Bayes Validation Accuracy and Confusion Matrix for all Attack Classes

175

7.
A

N
E
W

O
F
F
E
N

S
IV

E
D

E
F
E
N

S
IV

E
ID

S
D

A
T
A

S
E
T

:
O

D
-ID

S
2022

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 37969 0 0 2 703 0 629 288 0 0 0 389 17 0 0 5919 1 0 0 2 0 0 7 0 78 0 0 0 0 0.8253
A2 0 42274 2 54 0 0 0 7 0 1 0 0 0 12 12 12 13 5 5 27 0 190 1 72 0 39 15 1 97 0.9868
A3 2 2 3527 72 0 35 0 3 0 0 8 0 0 11 20 1 42 0 10 203 1 1 2 9 0 4 0 70 1 0.8765
A4 6 3 6 50883 0 0 0 6 1 1 0 1 0 1 0 0 4 0 1 6 1 0 0 0 4 0 0 1 0 0.9992
A5 1610 0 0 0 34348 0 27 221 0 0 0 467 0 0 0 11141 0 0 0 1 0 0 2 0 14 0 0 0 0 0.7181
A6 1 6 116 60 1 2694 0 2 3 2 5 0 0 19 16 2 54 0 9 252 23 1 3 11 1 3 4 73 3 0.8008
A7 564 0 0 0 84 0 9893 31 0 0 0 715 0 0 0 4220 2 0 1 1 0 0 9 0 95 0 0 0 0 0.6336
A8 728 0 2 0 165 0 12 70280 0 0 2 291 0 0 0 3456 1 0 1 2 0 0 12 0 27 0 0 0 0 0.9373
A9 0 2 7 55 0 4 0 0 2138 26 10 0 0 51 0 1 244 0 18 73 9 4 0 4 0 18 6 18 8 0.793
A10 4 6 39 32 0 19 0 2 67 2228 23 0 0 160 6 2 178 0 54 88 47 8 0 4 0 0 8 13 2 0.7452
A11 2 7 24 11 0 10 0 8 23 10 1996 0 0 66 15 0 123 0 12 26 2 0 0 5 1 0 5 2 0 0.8501
A12 128 0 0 0 667 0 224 250 0 0 0 64624 0 0 0 14761 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8012
A13 34 0 13 20 0 6 0 10 0 1 0 0 94056 5 0 62 0 0 1 16 0 0 139 0 80 0 0 7 0 0.9958
A14 1 2 80 98 0 20 0 9 56 34 16 0 0 4425 1 0 275 0 180 142 60 6 0 5 0 0 78 185 1 0.7799
A15 0 20 1 2 2 1 1 1 0 0 6 0 0 0 2257 0 2 9 0 5 0 0 4 5 1 34 0 0 4 0.9584
A16 981 0 10 18 1378 6 21 254 0 0 0 4106 72 5 3 58786 1 1 0 11 0 0 13 0 155 0 0 9 0 0.893
A17 11 10 66 108 0 27 0 10 56 66 75 0 0 123 16 6 5360 19 68 149 40 8 0 4 1 46 32 28 1 0.8468
A18 0 38 1 7 3 0 0 0 1 0 2 0 0 0 29 2 12 1428 1 7 0 1 2 3 0 40 0 2 7 0.9004
A19 1 20 159 56 0 15 0 13 9 21 1 0 0 266 0 0 62 0 3285 97 76 0 0 3 0 0 13 9 3 0.7995
A20 2 0 102 74 2 39 0 1 9 1 5 0 0 5 4 0 15 5 3 5156 2 18 1 2 0 34 12 141 1 0.9152
A21 1 10 71 49 0 109 0 4 23 35 4 0 0 346 0 0 165 0 233 94 2444 2 0 11 0 0 22 8 9 0.6714
A22 1 51 0 5 0 0 0 8 1 0 0 0 0 2 2 5 6 0 0 3 0 10231 1 35 0 4 7 0 22 0.9853
A23 140 0 0 0 0 0 196 71 0 0 0 0 28 0 0 7 0 0 0 0 0 1 131162 0 259 3 0 0 1 0.9946
A24 0 73 5 55 0 1 0 12 0 1 0 0 0 2 18 4 3 0 1 17 0 47 2 34121 0 7 0 12 63 0.9906
A25 913 1 11 26 4 4 442 184 0 0 1 0 24 4 0 57 1 0 0 19 0 2 817 0 8865 2 0 9 0 0.7786
A26 1 35 0 12 1 0 0 3 0 0 0 0 0 0 43 4 7 14 0 11 0 3 6 2 0 12351 0 1 0 0.9886
A27 3 9 11 20 0 4 0 3 25 10 12 0 0 285 0 0 178 0 96 207 34 37 0 0 0 0 2061 1 0 0.6879
A28 1 3 62 77 0 27 0 1 2 4 0 0 0 22 0 1 33 4 1 177 0 0 0 14 0 28 0 2876 5 0.8616
A29 0 47 10 8 2 0 0 9 2 1 0 0 0 3 1 1 2 0 8 3 9 82 2 88 0 1 0 3 2640 0.9035
Total 43104 42619 4325 51804 37360 3021 11445 71691 2416 2442 2166 70593 94197 5813 2443 98450 6784 1485 3988 6795 2748 10642 132185 34398 9581 12614 2263 3469 2868 0.9104

Table 7.12: SVM Training Accuracy and Confusion Matrix for all Attack Classes

176

7.6
E
xp

erim
ent

an
d

A
n
alysis

of
R

esu
lts

AC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 Accuracy
A1 12538 0 0 9 352 0 282 131 1 0 0 157 15 0 0 1949 0 0 0 1 0 0 4 0 45 0 1 0 0 0.8097
A2 1 14022 1 17 0 0 2 4 1 2 0 0 0 6 13 5 10 5 8 12 3 106 2 43 0 15 11 1 38 0.9786
A3 0 3 950 31 0 36 1 3 1 6 27 0 0 14 40 0 45 0 8 113 8 0 0 7 0 4 2 46 4 0.7042
A4 7 4 3 17035 1 1 1 3 4 0 0 0 0 3 0 0 8 0 2 1 0 0 1 0 4 0 0 1 0 0.9974
A5 641 0 0 1 10939 0 17 130 0 0 0 260 0 1 0 3836 1 0 0 0 0 0 1 0 5 0 0 0 0 0.6909
A6 1 3 59 22 0 701 1 0 3 5 4 0 0 19 22 0 38 0 9 148 18 6 0 7 0 3 8 55 3 0.6176
A7 253 0 0 3 36 0 3105 6 0 0 0 295 3 0 0 1422 2 0 1 0 0 0 6 0 71 0 0 0 0 0.5968
A8 252 3 2 4 111 1 4 23365 0 0 1 162 0 0 0 1168 2 0 2 7 0 0 2 1 17 6 1 0 0 0.9305
A9 0 2 5 22 0 6 0 0 559 36 5 0 0 28 0 0 136 3 16 49 10 11 0 4 0 13 7 18 7 0.5966
A10 2 8 18 27 0 8 0 1 58 464 16 0 0 128 10 1 83 0 61 48 52 10 0 4 0 0 7 9 11 0.4522
A11 2 7 42 6 0 17 1 12 16 13 488 0 0 40 24 0 94 0 11 21 11 2 0 0 1 0 5 1 0 0.5995
A12 84 0 0 0 314 0 150 154 0 0 0 20987 0 0 0 5208 0 0 0 0 0 0 0 0 3 0 0 0 0 0.7802
A13 33 0 7 9 0 0 3 5 0 0 0 0 31248 0 0 40 0 0 1 3 0 0 64 0 37 0 0 3 0 0.9935
A14 0 1 45 41 0 11 0 1 34 51 13 0 0 1124 0 0 136 0 154 56 63 10 0 12 0 0 60 86 6 0.5903
A15 0 15 36 2 1 21 0 1 0 0 30 0 0 1 618 1 10 23 0 8 1 0 1 8 0 35 0 0 4 0.7574
A16 373 0 3 7 703 0 25 113 0 0 0 1666 38 1 0 18992 1 0 0 0 0 0 8 0 89 0 0 3 0 0.8624
A17 4 6 57 58 0 14 0 14 53 49 62 0 0 70 14 0 1466 25 35 74 28 17 0 1 0 44 26 19 4 0.685
A18 0 16 1 4 1 0 0 1 0 1 1 0 0 0 31 0 29 360 0 16 0 2 1 2 1 49 0 8 5 0.6805
A19 0 24 77 19 0 12 0 8 8 20 4 0 0 156 0 0 27 0 866 29 76 1 0 3 0 0 14 3 7 0.6396
A20 0 4 70 38 0 45 0 4 12 8 14 0 0 7 17 0 29 6 0 1465 6 22 1 1 1 48 6 75 1 0.7793
A21 0 5 36 20 0 44 1 7 12 32 6 0 0 210 0 0 60 0 143 36 561 7 0 17 0 0 12 6 10 0.458
A22 1 46 0 7 0 2 0 4 1 1 0 1 0 2 3 4 20 0 1 11 0 3238 2 36 0 3 6 0 24 0.9487
A23 41 0 0 0 0 0 79 27 0 0 0 1 12 0 0 8 0 0 0 0 0 0 43362 0 292 3 0 0 1 0.9894
A24 1 50 18 23 0 2 0 10 0 1 3 0 0 3 14 2 3 1 1 3 7 40 0 11179 0 1 0 17 57 0.9775
A25 345 1 5 15 4 3 184 73 1 0 0 0 26 3 0 49 1 0 1 6 0 0 569 0 2502 0 0 5 0 0.6596
A26 0 11 0 6 2 0 0 8 0 0 0 0 0 0 38 0 4 17 0 18 0 1 5 1 0 4023 0 10 0 0.9708
A27 1 10 2 10 0 0 1 4 14 21 7 0 0 177 0 0 82 0 47 75 35 32 0 0 0 0 484 2 0 0.4821
A28 0 1 45 29 0 15 0 2 9 4 0 0 0 21 0 1 36 5 4 119 2 0 0 21 0 38 0 755 3 0.6802
A29 0 37 15 3 0 2 1 6 3 4 0 0 0 2 1 0 1 1 16 2 14 62 1 70 0 0 1 4 713 0.7435
Total 14580 14279 1497 17468 12464 941 3858 24097 790 718 681 23529 31342 2016 845 32686 2324 446 1387 2321 895 3567 44030 11417 3068 4285 651 1127 898 0.8834

Table 7.13: SVM Validation Accuracy and Confusion Matrix for all Attack Classes

177

7. A NEW OFFENSIVE DEFENSIVE IDS DATASET: OD-IDS2022

7.6.1 Experimental Setup

To test and validate the behaviour and statistical performance of the proposed dataset

on the mentioned learning algorithm, to use the simulation setup has the following

details. The hardware test environment was tested on a desktop with processor Intel(R)

Xeon(R) Gold 6238R CPU @ 2.20GHz 2.19 GHz (2 processors), 384GB RAM, and

Windows 10 Pro operating system installed. This system types a 64-bit operating

system x64-based processor. We applied JMPStatistical software [126] for collections

to learn the overall behaviour for all datasets and find the best features using PCA. To

implement the practical part of this work, many Python ecosystem technologies were

used to develop ML models. The entire implementation is written in Python 3.8, using

mostly the Keras library, and the models are trained on the NVIDIA GeForce RTX

2070 graphics card.

7.6.2 Experimental Results of Machine Learning Model

Table No. 7.6, 7.8, 7.10, and 7.12 show the confusion matrix and classification anal-

ysis prediction accuracy of the results using training (75%) data sample. As for the

prediction performance, the results of the SVM are the best in the order of RF, DT,

NB, and SVM, but there is a possibility of overfitting, so we looked at the results of

the validation data. Table No. 7.7, 7.9, 7.11, and 7.13 show the confusion matrix and

classification analysis prediction accuracy of the validation (25%) data. In chapter 2,

section number 2.7 shows the Accuracy formula and corresponding detailed discussion.

The rows of a confusion matrix represent the predicted class, while the columns repre-

sent the actual class.

1. The first row represents the positive class predictions.

• The first column of the first row represents True Positives (TP), instances

that are both predicted and actual positive.

• The second column of the first row represents False Positives (FP), instances

that are predicted positive but actual negative.

2. The second row represents the negative class predictions.

• The first column of the second row represents False Negatives (FN), instances

that are predicted negative but actual positive.

178

7.7 Conclusions

• The second column of the second row represents True Negatives (TN), in-

stances that are both predicted and actual negative.

For example, in a binary intrusion detection system, the positive class may represent

intrusions, and the negative class may represent normal activity. If the algorithm pre-

dicts that an instance is an intrusion (Positive class), but it is actually normal activity

(Negative class), this is recorded as a false positive. On the other hand, if the algorithm

predicts that an instance is normal activity (Negative class), but it is actually an intru-

sion (Positive class), this is recorded as a false negative. The goal is to minimize both

false positives and false negatives.

As a result of the analysis, classification analysis was performed using SVM, and the

prediction accuracy was the best at 88.34%. The analysis and observation were per-

formed by taking different kernel functions of SVM such that the Polynomial kernel,

Radial Basis Function (RBF), and Gaussian kernel. The results of classification anal-

ysis in this study the SVM with the highest prediction accuracy in the training and

validation samples of data.

7.7 Conclusions

Having an IDS is a mandatory line of defense to protect critical networks against ever-

increasing intrusive activity. Therefore, research in the IDS field has been developed

over the years to recommend a better methodology for IDS systems based on IDS

datasets. In this chapter, we proposed a novel OD-IDS2022 dataset comprising 28 recent

attacks that covered the most recent OWASP-2021 top ten attack categories. Within

the scope of this chapter, we extract 82 features from the network traffic with the help

of CICFlowMeter and apply several pre-processing techniques. Afterward, we applied

random forest, decision tree, naive Bayes, and support vector machine methods from

state-of-the-art machine learning algorithms to detect malicious network traffic, one of

today’s most common cyber-attack methods. The performance of the classifiers, trained

and validated using over ten million records, was examined with various measures such

as confusion matrix, accuracy, and ROC curves. As a result of these measurements,

it can be concluded that the classification performance of the support vector machine

method is better than the other learning methods, with a slight difference.

179

Chapter 8

Conclusions and Directions for
Future Research

IDS systems are essential components in the form of algorithmic setups that will closely

examine network traffic from all the interconnected devices in the developed methods.

Building automated intrusion detection systems is considered as one of the most adapt-

able and feasible domains in the global research community. The figure number 8.1

presents a summary of the key conclusions related to IDS contributions.

8.1 Conclusive Summary

Cybersecurity has been gaining more and more importance in recent times. Currently,

professional and home computer networks are exposed to many malicious attacks. Due

to this scenario developing the attack prediction and issues alert system becomes manda-

tory to tackle this situation. An IDS is a system that monitors network traffic for

malicious activity and generates alerts. As a part of the network defence process, an

intrusion detection mechanism alerts security administrators to malicious behaviours,

such as intrusions, attacks, and malware. Protecting critical networks from intrusive

activities requires IDSs as a mandatory line of defence. In this entire research work, we

have proposed robust algorithmic prototypes and development mechanisms for building

feasible and computationally economical IDS systems.

180

8.1
C

on
clu

sive
S
u
m

m
ary

Sr.
No.

Research Objective Methodology Achievable Limitation

1

RO1: To Propose a
Secure and Resilient
Edge Router
for Smart Homes

SERfSH +
Automatically
Generated Snort Rules

Detected 14 and
Mitigate 12 attacks

Unable to identify
DDoS, Malware
based attacks

2

Oversampling Methods
(SMOTE, Borderline-SMOTE,
ADASYN, CTGAN) +
Classifiers (LDA, DRF, LightGBM

Better Representation
of the minority class,
Improved model performance

Risk of Overfitting

3
Multi-objective
Genetic algorithm + ANN

Improved accuracy,
Scalability, Robustness,
Non-linear relationships

Computationally
Expensive,
Overfitting, Complexity

4

RO2: To Develop a
Robust and Effective
System for Detecting
and Mitigating
Attacks using
Machine Learning
Techniques

Scatter Matrices and
Eigenvalue Computation
+ Classification Procedure

Dimensionality Reduction,
Feature Selection,
Interpretability

High Computational
Complexity

5

RO3: To Generate a
Comprehensive
Intrusion Detection
System Dataset

OD-IDS2022 : A New
Intrusion Detection
Dataset + Feature Selection +
Classification (RF, DT, NB, SVM)

Real-world scenarios,
Control over data
quality, Better IDS
performance

Attack scalability,
Variety of attacks,
Lack coverage of
threats

Table 8.1: Summary of the contributions

181

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

As our first contribution to this research work, we have proposed a mechanism for

Signature Based Attack Detection by Automatically Snort Rules. In this work, we

have designed a snort-based SERfSH, resilient to many cyberattacks. The developed

testbed has been tested against fifteen attacks. We have detected all attacks except

the Firmware vulnerability and did not mitigate two attacks, i.e., DNS spoofing and

firmware vulnerability. SERfSH is a scalable and cost-effective solution for small/home

networks. The IDS data has an imbalance between normal data and abnormal data.

Resultantly, this data imbalance causes prediction performance degradation due to fac-

tors such as prediction bias of a small amount of data presence of outliers. To address

this issue, we oversampled the minority class of the existing intrusion detection datasets

using four data oversampling methods. We tested using three different classifiers in the

next contribution chapter.

In our second contribution to this research work, we have developed Intrusion Detec-

tion Strategies Using Oversampling Technique. ML-based network intrusion detection

aims to identify malicious behaviour and alert a system administrator when an intruder

tries to penetrate the network. The performance of machine learning-based IDS largely

depends upon the feature set used for modelling. To address this issue, we have ap-

plied four oversampling methods on state-of-the-art IDS datasets. To further ensure the

real-time applicability of these oversampling methods with classifiers, we also generate

a Real-Time Testbed for a resampled dataset. The state-of-the-art oversampling algo-

rithms SMOTE, Borderline-SMOTE, ADASYN, and CTGAN solve the data imbalance

problem in intrusion detection datasets. This can discard significantly useful informa-

tion about the data, which could be very much useful for building rule-based classifi-

cation procedures. CTGAN with LightGBM is observed to attain higher classification

performance and faster prediction speed on the CICIDS2018 dataset with 99.16% Accu-

racy, 98.59% Precision, 97.30% Recall, and 97.94% F1-score. The classification models

are also tested using an RTT resampled dataset to check the real-time applicability of

the classification models. As a result, CTGAN with LightGBM outperforms results

with 99.25% Accuracy, 98.72% Precision, 97.17% Recall, and 97.94% F1-score. It is

observed that the CTGAN oversampling method, along with the LightGBM classifier,

gives outperforming results on the existing CICIDS2018 and RTT resampled dataset.

In our third contribution to this research work, we have developed Artificial Neural Net-

work based IDS using Multi-objective Genetic Algorithm. The multi-objective genetic

182

8.1 Conclusive Summary

algorithm overcomes the shortcomings by explicitly considering fast detection as an ob-

jective function. The performance of machine learning-based IDS largely depends upon

the feature set used for modelling. Generally, using more features increases the accuracy

of attack detection and increases detection time. The proposed method’s performance

is tested using the KDD’99, NSL-KDD, and CIC-IDS2017 datasets. The results show

that the performance of the proposed method is better than the existing methods. Be-

sides, the new proposed IDS provides a trade-off between the number of features used

to compute the accuracy and time for attack detection. Feature combination selection

methods for machine learning-based anomaly detection systems emphasize only high

detection rates. However, more accurate designs and experiments are needed to re-

search other methods for obtaining Pareto-optimal solutions (non-dominated solutions)

that simultaneously satisfy conflicting objectives and the difference in time required to

determine values for each feature. This proposed method also has the capability to de-

tect and map the complex non-linear relationship between dependent features without

having any extra training cost.

Consequently, as our next contribution to this research work, we have developed a Di-

mensionality Reduction based Feature Selection and Attack Classification Approach

for Network Intrusion Detection. The developed approach mainly consists of two

phases, i.e., "Scatter Matrices and Eigenvalue Computation based feature Selection"

and "Classification procedure for the reduced dimension data". Since it exploits the lin-

ear algebraic building blocks, such as Scatter Matrices, Eigenvalues, and corresponding

Eigenvectors, these blocks will help analyze the reduced dimensional data in a lower-

dimensional projection plane. The phase two algorithm can detect the complex nature

of the non-linear relationships between dependents (highly correlated) and independent

features. This procedure has the advantage of experimenting with different hyperpa-

rameters, such as utilizing state-of-the-art non-linear primitives (activation functions

and optimizers), varying training network node’s weights and biases, number of epochs,

training data batch size, and learning rate. To analyze the model’s behaviour and opti-

mality, experimental simulation and evaluation are carried out on the standard chosen

datasets. The novelty of the developed framework is judged in terms of computational

complexity analysis and comparison with the state-of-the-art approaches.

Finally, we worked on a methodology to generate a new IDS dataset Offensive Defensive

Intrusion Detection System (OD-IDS2022), which fulfils the standard characteristics,

183

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

namely "Attack Diversity", "Anonymity", "Available Protocols", "Complete Capture",

"Complete Interaction", "Complete Network Configuration", "Complete Traffic", "Fea-

ture Set", "Heterogeneity", "Labelling", and "Metadata" which were lacking in the pre-

viously available dataset. The OD-IDS2022 dataset comprised 28 recent attacks that

covered the most recent OWASP-2021 top ten attack categories. Within the scope of this

chapter, we extract 82 features from the network traffic with the help of CICFlowMeter

and apply several pre-processing techniques. We applied several data cleaning, pre-

processing techniques, and feature selection methods in the dataset. Consequently, we

applied four state-of-the-art Machine Learning based classification algorithms (Random

Forest, Decision Tree, Naive Bayes, and Support Vector Machine) to predict the at-

tacks. Experimental evaluation for the developed approaches has been performed on

various test case scenarios for the chosen state-of-the-art IDS datasets. The experimen-

tal simulation is carried out with various possible hyperparameters of the algorithms

and statistical performance metrics. The test results outperform intrusion detection

methods for detecting specific attack categories.

8.2 Future Scope

All the developed methods discussed in this thesis have gone through the prototype de-

signing phase, functionality validation phase, computational complexity analysis phase

and experimental evaluation phase. We have tested the developed methods with various

state-of-the-art IDS datasets and the performance has been judged based on different

statistical matrices. The future scope of this research lies in exploiting lightweight com-

putational primitives and hyperparameters while developing a new model/ framework.

This will provide several benefits, such as - comparatively lower time complexity and

knowledge space reduction. In addition to this, we can further work on certain pa-

rameters to increase robustness, adaptability, and scalability. Our future research goal

will also be to test the behaviour of developed methods and judge their performance

on IoT-based datasets and other unstructured datasets. In this research work, the de-

veloped methods shall act as an inbuilt utility to the security information and event

management system to scan the network features and timely detect malicious violations

and harmful activity instances.

184

References

[1] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan

Veeramachaneni. Modeling tabular data using conditional gan. Ad-

vances in Neural Information Processing Systems, 32, 2019. (xiii, 18, 37, 86,

97)

[2] KDD Cup 1999 Data. 1999, The UCI KDD Archive, In-

formation and Computer Science, University of California, Irvine,

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. (xv, 18, 30,

88, 114, 132)

[3] In-Seon Jeong, Hong-Ki Kim, Tae-Hee Kim, Dong Hwi Lee, Kuinam J

Kim, and Seung-Ho Kang. A feature selection approach based on simu-

lated annealing for detecting various denial of service attacks. Software

Networking, 2018(1):173–190, 2018. (xv, 114, 119, 124)

[4] Rebecca Gurley Bace, Peter Mell, et al. Intrusion detection sys-

tems. 2001. (1, 5, 6, 26, 154)

[5] Emmanouil Panaousis, Andrew Fielder, Pasquale Malacaria, Chris

Hankin, and Fabrizio Smeraldi. Cybersecurity games and investments:

A decision support approach. In International Conference on Decision and

Game Theory for Security, pages 266–286. Springer, 2014. (1)

[6] Benoît Dupont. The cyber-resilience of financial institutions: signifi-

cance and applicability. Journal of cybersecurity, 5(1):tyz013, 2019. (1)

[7] Sudeep Jadey, SC Girish, K Raghavendra, HR Srinidhi, KM Anilku-

mar, et al. Introduction to cyber security. In Methods, Implementation,

185

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

REFERENCES

and Application of Cyber Security Intelligence and Analytics, pages 1–24. IGI

Global, 2022. (2)

[8] Hamdija Sinanović and Sasa Mrdovic. Analysis of Mirai malicious soft-

ware. In 2017 25th International Conference on Software, Telecommunications

and Computer Networks (SoftCOM), pages 1–5. IEEE, 2017. (2)

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.

Reinforcement learning: A survey. Journal of artificial intelligence research,

4:237–285, 1996. (3)

[10] Paul Cichonski, Tom Millar, Tim Grance, Karen Scarfone, et al.

Computer security incident handling guide. NIST Special Publication,

800(61):1–147, 2012. (5)

[11] Al-Sakib Khan Pathan. The state of the art in intrusion prevention and de-

tection, 44. CRC press Boca raton, 2014. (7)

[12] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Net-

work intrusion detection. IEEE network, 8(3):26–41, 1994. (7, 128)

[13] Nicholas Pappas. Network IDS & IPS deployment strategies. 2nd April,

2008. (8, 128)

[14] Yu-Lun Huang, Ching-Yu Hung, and Hsiao-Te Hu. A Protocol-based

Intrusion Detection System using Dual Autoencoders. In 2021 IEEE 21st

International Conference on Software Quality, Reliability and Security (QRS),

pages 749–758. IEEE, 2021. (8)

[15] Martin Roesch et al. Snort: Lightweight intrusion detection for net-

works. In Lisa, 99, pages 229–238, 1999. (16, 26, 27, 129)

[16] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. SMOTE: synthetic minority over-sampling technique.

Journal of artificial intelligence research, 16:321–357, 2002. (18, 37, 86, 94)

[17] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-SMOTE:

a new over-sampling method in imbalanced data sets learning. In Inter-

186

REFERENCES

national conference on intelligent computing, pages 878–887. Springer, 2005. (18,

37, 86, 95)

[18] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. ADASYN:

Adaptive synthetic sampling approach for imbalanced learning. In 2008

IEEE international joint conference on neural networks (IEEE world congress on

computational intelligence), pages 1322–1328. IEEE, 2008. (18, 37, 86, 95)

[19] Petros Xanthopoulos, Panos M Pardalos, Theodore B Trafalis, Pet-

ros Xanthopoulos, Panos M Pardalos, and Theodore B Trafalis.

Linear discriminant analysis. Robust data mining, pages 27–33, 2013. (18,

99)

[20] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

(18, 100)

[21] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-

dong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient

gradient boosting decision tree. Advances in neural information processing

systems, 30, 2017. (18, 101)

[22] BS Harish and SV Aruna Kumar. Anomaly based intrusion detection

using modified fuzzy clustering. 2017. (18, 112, 121)

[23] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective

optimization using genetic algorithms: A tutorial. Reliability engineering

& system safety, 91(9):992–1007, 2006. (18, 44, 118)

[24] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A

detailed analysis of the KDD CUP 99 data set. In 2009 IEEE symposium

on computational intelligence for security and defense applications, pages 1–6.

Ieee, 2009. (18, 33, 40, 88, 114, 132)

[25] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-

ward generating a new intrusion detection dataset and intrusion traffic

characterization. ICISSp, 1:108–116, 2018. (18, 34, 40, 89, 115, 124, 132, 153)

187

REFERENCES

[26] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kam-

ruzzaman. Survey of intrusion detection systems: techniques, datasets

and challenges. Cybersecurity, 2(1):1–22, 2019. (23, 156)

[27] Marina Thottan and Chuanyi Ji. Anomaly detection in IP networks.

IEEE Transactions on signal processing, 51(8):2191–2204, 2003. (25, 129)

[28] Vinod Kumar and Om Prakash Sangwan. Signature based intrusion

detection system using SNORT. International Journal of Computer Applica-

tions & Information Technology, 1(3):35–41, 2012. (25)

[29] Deris Stiawan, Mohd Idris, Reza Firsandaya Malik, Siti Nurmaini,

Nizar Alsharif, Rahmat Budiarto, et al. Investigating Brute Force

Attack Patterns in IoT Network. Journal of Electrical and Computer Engi-

neering, 2019, 2019. (26)

[30] Jagan Mohan Reddy Danda and Chittaranjan Hota. Attack iden-

tification framework for IoT devices. In Information Systems Design and

Intelligent Applications, pages 505–513. Springer, 2016. (26)

[31] Abdullah Aljumah. Detection of distributed denial of service attacks

using artificial neural networks. IJACSA) International Journal of Advanced

Computer Science and Applications, 8(8), 2017. (26)

[32] Ruíz-Lagunas Juan Jesús, Paniagua-Villagómez Omar Cristhian,

Reyes-Gutiérrez Mauricio René, and Ferreira-Medina Heberto. How

to Improve the IoT Security Implementing IDS/IPS Tool using Rasp-

berry Pi 3B. Editorial Preface From the Desk of Managing Editor. . . , 10(9),

2019. (26)

[33] Guevara Noubir and Guolong Lin. Low-power DoS attacks in data

wireless LANs and countermeasures. ACM SIGMOBILE Mobile computing

and communications Review, 7(3):29–30, 2003. (26)

[34] Tauseef Jamal, Muhammad Alam, and Muhammad Mussadiq Umair.

Detection and prevention against RTS attacks in wireless LANs. In 2017

International Conference on Communication, Computing and Digital Systems (C-

CODE), pages 152–156. IEEE, 2017. (26)

188

REFERENCES

[35] Suricata, Suricata Rules, https://suricata.readthedocs.io/en/suricata-

6.0.1/rules/meta.html. (27)

[36] Doug Burks. Security onion. Securityonion. blogspot. com, 2012. (27)

[37] McAfee Network Security Platform, 2019,

https://docs.trellix.com/bundle/network-security-platform-v8-3-x-manager-

sensor-ips-admin-guide-product/resource/PD26346.pdf. (27)

[38] Palo Alto Networks, 2019, https://www.paloaltonetworks.com/network-

security/advanced-threat-prevention. (27)

[39] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey

of network anomaly detection techniques. Journal of Network and Computer

Applications, 60:19–31, 2016. (27, 129)

[40] VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad. A review

of anomaly based intrusion detection systems. International Journal of

Computer Applications, 28(7):26–35, 2011. (28)

[41] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-

tection: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009. (28,

37, 41)

[42] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learn-

ing: From theory to algorithms. Cambridge university press, 2014. (28)

[43] Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set

for network intrusion detection systems (UNSW-NB15 network data

set). In 2015 military communications and information systems conference (Mil-

CIS), pages 1–6. IEEE, 2015. (33, 40, 132)

[44] Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali A

Ghorbani. Detecting HTTP-based application layer DoS attacks on

web servers in the presence of sampling. Computer Networks, 121:25–36,

2017. (34)

[45] Amirhossein Gharib, Iman Sharafaldin, Arash Habibi Lashkari, and

Ali A Ghorbani. An evaluation framework for intrusion detection

189

https://suricata.readthedocs.io/en/suricata-6.0.1/rules/meta.html
https://docs.trellix.com/bundle/network-security-platform-v8-3-x-manager-sensor-ips-admin-guide-product/resource/PD26346.pdf
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention

REFERENCES

dataset. In 2016 International Conference on Information Science and Security

(ICISS), pages 1–6. IEEE, 2016. (34, 155, 158)

[46] CSE-CIC-IDS2018 on AWS, 2018, Canadian Institute for Cybersecurity,

https://www.unb.ca/cic/datasets/ids-2018.html. (35, 86, 89)

[47] Edgar F Codd. Further normalization of the data base relational model.

Data base systems, 6:33–64, 1972. (36)

[48] Ranjit Panigrahi and Samarjeet Borah. A detailed analysis of CI-

CIDS2017 dataset for designing Intrusion Detection Systems. Interna-

tional Journal of Engineering & Technology, 7(3.24):479–482, 2018. (36)

[49] Mohammed Hamid Abdulraheem and Najla Badie Ibraheem. A de-

tailed analysis of new intrusion detection dataset. Journal of Theoretical

and Applied Information Technology, 97(17):4519–4537, 2019. (36)

[50] Transform features using quantiles information, scikit-learn 1.0.2,

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantiletransform.html.(36)

[51] Joseph F Hair. Multivariate data analysis. 2009. (36)

[52] Maurice M Tatsuoka and Paul R Lohnes. Multivariate analysis: Techniques for

educational and psychological research. American Educational Research Association,

1988. (36)

[53] Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Experi-

mental perspectives on learning from imbalanced data. In Proceedings of the

24th international conference on Machine learning, pages 935–942, 2007. (36)

[54] Charitos Charitou, Artur d’Avila Garcez, and Simo Dragicevic. Semi-

supervised gans for fraud detection. In 2020 International Joint Conference on

Neural Networks (IJCNN), pages 1–8. IEEE, 2020. (37, 40, 88)

[55] Aida Ali, Siti Mariyam Shamsuddin, and Anca L Ralescu. Classification

with class imbalance problem. Int. J. Advance Soft Compu. Appl, 5(3), 2013. (37,

41)

190

https://www.unb.ca/cic/datasets/ids-2018.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html

REFERENCES

[56] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. A detailed

analysis of the cicids2017 data set. In International conference on information

systems security and privacy, pages 172–188. Springer, 2018. (37, 40, 88)

[57] Jean-Pierre Nziga and James Cannady. Minimal dataset for Network In-

trusion Detection Systems via MID-PCA: A hybrid approach. In 2012 6th

IEEE International Conference Intelligent Systems, pages 453–460. IEEE, 2012. (37,

41)

[58] Noreen Kausar, Brahim Belhaouari Samir, Suziah Bt Sulaiman, Iftikhar

Ahmad, and Muhammad Hussain. An approach towards intrusion detection

using PCA feature subsets and SVM. In 2012 international conference on computer

& information science (ICCIS), 2, pages 569–574. IEEE, 2012. (37, 41)

[59] Shilpa Lakhina, Sini Joseph, and Bhupendra Verma. Feature reduction us-

ing principal component analysis for effective anomaly–based intrusion de-

tection on NSL-KDD. 2010. (37, 41)

[60] David A Cieslak, Nitesh V Chawla, and Aaron Striegel. Combating im-

balance in network intrusion datasets. In GrC, pages 732–737. Citeseer, 2006.

(38)

[61] Abebe Tesfahun and D Lalitha Bhaskari. Intrusion detection using random

forests classifier with SMOTE and feature reduction. In 2013 International

Conference on Cloud & Ubiquitous Computing & Emerging Technologies, pages 127–

132. IEEE, 2013. (38)

[62] David Gonzalez-Cuautle, Aldo Hernandez-Suarez, Gabriel Sanchez-

Perez, Linda Karina Toscano-Medina, Jose Portillo-Portillo, Je-

sus Olivares-Mercado, Hector Manuel Perez-Meana, and Ana Lucila

Sandoval-Orozco. Synthetic minority oversampling technique for optimiz-

ing classification tasks in botnet and intrusion-detection-system datasets.

Applied Sciences, 10(3):794, 2020. (38, 88)

[63] BingHao Yan, GuoDong Han, MeiDong Sun, and ShengZhao Ye. A novel

region adaptive SMOTE algorithm for intrusion detection on imbalanced

191

REFERENCES

problem. In 2017 3rd IEEE International Conference on Computer and Communica-

tions (ICCC), pages 1281–1286. IEEE, 2017. (38)

[64] S Gnanambal, M Thangaraj, VT Meenatchi, and V Gayathri. Classifica-

tion algorithms with attribute selection: an evaluation study using WEKA.

International Journal of Advanced Networking and Applications, 9(6):3640–3644, 2018.

(38)

[65] Asha Gowda Karegowda, AS Manjunath, and MA Jayaram. Comparative

study of attribute selection using gain ratio and correlation based feature se-

lection. International Journal of Information Technology and Knowledge Management,

2(2):271–277, 2010. (38)

[66] Hee-su Chae and Sang Hyun Choi. Feature selection for efficient intrusion

detection using attribute ratio. Int. J. Comput. Commun, 8:134–139, 2014. (39)

[67] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P

Trevino, Jiliang Tang, and Huan Liu. Feature selection: A data perspective.

ACM computing surveys (CSUR), 50(6):1–45, 2017. (39)

[68] Siva S Sivatha Sindhu, Suryakumar Geetha, and Arputharaj Kannan. De-

cision tree based light weight intrusion detection using a wrapper approach.

Expert Systems with applications, 39(1):129–141, 2012. (40)

[69] Ravi Vinayakumar, Mamoun Alazab, KP Soman, Prabaharan Poornachan-

dran, Ameer Al-Nemrat, and Sitalakshmi Venkatraman. Deep learning ap-

proach for intelligent intrusion detection system. IEEE Access, 7:41525–41550,

2019. (40)

[70] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke In-

oue, and Koji Nakao. Statistical analysis of honeypot data and building of

Kyoto 2006+ dataset for NIDS evaluation. In Proceedings of the first workshop

on building analysis datasets and gathering experience returns for security, pages 29–36,

2011. (40)

[71] R Vijayanand, D Devaraj, and B Kannapiran. Intrusion detection system

for wireless mesh network using multiple support vector machine classifiers

192

REFERENCES

with genetic-algorithm-based feature selection. Computers & Security, 77:304–

314, 2018. (40)

[72] Gideon Creech and Jiankun Hu. Generation of a new IDS test dataset:

Time to retire the KDD collection. In 2013 IEEE Wireless Communications and

Networking Conference (WCNC), pages 4487–4492. IEEE, 2013. (40)

[73] V Kanimozhi and T Prem Jacob. Artificial intelligence based network in-

trusion detection with hyper-parameter optimization tuning on the realistic

cyber dataset CSE-CIC-IDS2018 using cloud computing. In 2019 international

conference on communication and signal processing (ICCSP), pages 0033–0036. IEEE,

2019. (41, 126)

[74] Alex Shenfield, David Day, and Aladdin Ayesh. Intelligent intrusion de-

tection systems using artificial neural networks. ICT Express, 4(2):95–99, 2018.

(41)

[75] Marta Catillo, Andrea Del Vecchio, Antonio Pecchia, and Umberto Vil-

lano. Transferability of machine learning models learned from public intru-

sion detection datasets: the CICIDS2017 case study. Software Quality Journal,

pages 1–27, 2022. (41)

[76] Mahdi Soltani, Mahdi Jafari Siavoshani, and Amir Hossein Jahangir. A

content-based deep intrusion detection system. International Journal of Infor-

mation Security, 21(3):547–562, 2022. (41)

[77] Dong Seong Kim, Ha-Nam Nguyen, and Jong Sou Park. Genetic algorithm

to improve SVM based network intrusion detection system. In 19th Interna-

tional Conference on Advanced Information Networking and Applications (AINA’05)

Volume 1 (AINA papers), 2, pages 155–158. IEEE, 2005. (41)

[78] Kamarularifin Abd Jalil, Muhammad Hilmi Kamarudin, and Mo-

hamad Noorman Masrek. Comparison of machine learning algorithms per-

formance in detecting network intrusion. In 2010 international conference on

networking and information technology, pages 221–226. IEEE, 2010. (41)

193

REFERENCES

[79] Tianchen Ji, Sri Theja Vuppala, Girish Chowdhary, and Katherine Driggs-

Campbell. Multi-modal anomaly detection for unstructured and uncertain

environments. arXiv preprint arXiv:2012.08637, 2020. (41)

[80] Meenal Jain and Gagandeep Kaur. A study of feature reduction techniques

and classification for network anomaly detection. Journal of computing and

information technology, 27(4):1–16, 2019. (41)

[81] Majjed Al-Qatf, Yu Lasheng, Mohammed Al-Habib, and Kamal Al-Sabahi.

Deep learning approach combining sparse autoencoder with SVM for net-

work intrusion detection. IEEE Access, 6:52843–52856, 2018. (42)

[82] David Barber. Bayesian reasoning and machine learning. Cambridge University

Press, 2012. (42)

[83] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep

learning approach for network intrusion detection system. Eai Endorsed Trans-

actions on Security and Safety, 3(9):e2, 2016. (42, 85)

[84] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu,

Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model

for unsupervised anomaly detection. In International conference on learning rep-

resentations, 2018. (42, 85)

[85] Steve R Gunn et al. Support vector machines for classification and regres-

sion. ISIS technical report, 14(1):5–16, 1998. (43, 44)

[86] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. Artificial neural

networks: A tutorial. Computer, 29(3):31–44, 1996. (44)

[87] Wathiq Laftah Al-Yaseen, Zulaiha Ali Othman, and Mohd Zakree Ah-

mad Nazri. Multi-level hybrid support vector machine and extreme learning

machine based on modified K-means for intrusion detection system. Expert

Systems with Applications, 67:296–303, 2017. (44, 124)

[88] Muhammad Hilmi Kamarudin, Carsten Maple, and Tim Watson. Hybrid fea-

ture selection technique for intrusion detection system. International Journal

of High Performance Computing and Networking, 13(2):232–240, 2019. (44)

194

REFERENCES

[89] Min Wang, Zuo Chen, Zhiqiang Zhang, Sangzhi Zhu, and Shenggang Yang.

A combination classification method based on Ripper and Adaboost. Inter-

national Journal of Embedded Systems, 14(3):229–238, 2021. (44)

[90] Mahbod Tavallaee. An adaptive hybrid intrusion detection system. PhD thesis,

University of New Brunswick, Faculty of Computer Science, 2011. (45)

[91] Jesse Davis and Mark Goadrich. The relationship between Precision-Recall

and ROC curves. In Proceedings of the 23rd international conference on Machine

learning, pages 233–240, 2006. (45, 47)

[92] Ameet V Joshi. Machine learning and artificial intelligence. 2020. (45)

[93] Albert Sagala. Automatic SNORT IDS rule generation based on honeypot

log. In 2015 7th International Conference on Information Technology and Electrical

Engineering (ICITEE), pages 576–580. IEEE, 2015. (58)

[94] Lih-Chyau Wuu, Chi-Hsiang Hung, and Sout-Fong Chen. Building intrusion

pattern miner for Snort network intrusion detection system. Journal of Systems

and Software, 80(10):1699–1715, 2007. (58)

[95] Ulf Lamping and Ed Warnicke. Wireshark user’s guide. Interface, 4(6):1, 2004.

(58)

[96] Wireshark, 1998, GNU General Public License,

https://www.wireshark.org/docs/wsughtml/.(58)

[97] TCPDUMP & LIBPCAP, 1988, BSD licenses, https://www.tcpdump.org/. (58)

[98] Marco De Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O de Vivo.

A review of port scanning techniques. ACM SIGCOMM Computer Communica-

tion Review, 29(2):41–48, 1999. (66)

[99] He Xu, Daniele Sgandurra, Keith Mayes, Peng Li, and Ruchuan Wang.

Analysing the resilience of the internet of things against physical and prox-

imity attacks. In International Conference on Security, Privacy and Anonymity in

Computation, Communication and Storage, pages 291–301. Springer, 2017. (67)

195

https://www.wireshark.org/docs/wsug_html/
https://www.tcpdump.org/

REFERENCES

[100] Md Waliullah, ABM Moniruzzaman, Md Sadekur Rahman, et al. An Ex-

perimental Study Analysis of Security Attacks at IEEE 802. 11 Wireless

Local Area Network. International Journal of Future Generation Communication

and Networking, 8(1):9–18, 2015. (69)

[101] Cristina L Abad and Rafael I Bonilla. An analysis on the schemes for

detecting and preventing ARP cache poisoning attacks. In 27th International

Conference on Distributed Computing Systems Workshops (ICDCSW’07), pages 60–60.

IEEE, 2007. (72)

[102] Hooman Asadian and Hamid Haj Seyed Javadi. Identification of Sybil attacks

on social networks using a framework based on user interactions. Security and

Privacy, 1(2):e19, 2018. (73)

[103] A2:2017-Broken Authentication, 2017, OWASP Top Ten 2017,

https://www.owasp.org/index.php/Top10− 2017A2−BrokenAuthentication.(73)

[104] Jaegwan Yu, Eunsoo Kim, Hyoungshick Kim, and Junho Huh. A framework

for detecting MAC and IP spoofing attacks with network characteristics.

In 2016 International Conference on Software Security and Assurance (ICSSA), pages

49–53. IEEE, 2016. (76)

[105] Bhupinder Singh. DESIGN OF AN INTRUSION DETECTION SYSTEM

TO DETECT THE BLACK HOLE ATTACK USING LESS ENERGY CON-

SUMPTION IN WSN. 2017. (77)

[106] Muhammad Umar Farooq, Muhammad Waseem, Anjum Khairi, and Sadia

Mazhar. A critical analysis on the security concerns of internet of things

(IoT). International Journal of Computer Applications, 111(7), 2015. (77)

[107] Filippo Rebecchi, Julien Boite, Pierre-Alexis Nardin, Mathieu Bouet, and

Vania Conan. DDoS protection with stateful software-defined networking.

International Journal of Network Management, 29(1):e2042, 2019. (78)

[108] Gaurav Varshney, Manoj Misra, and Pradeep K Atrey. A survey and

classification of web phishing detection schemes. Security and Communication

Networks, 9(18):6266–6284, 2016. (79)

196

https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication

REFERENCES

[109] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Ran-

dal E Bryant. Semantics-aware malware detection. In 2005 IEEE Symposium

on Security and Privacy (S&P’05), pages 32–46. IEEE, 2005. (81)

[110] Wei Xie, Yikun Jiang, Yong Tang, Ning Ding, and Yuanming Gao. Vul-

nerability detection in iot firmware: A survey. In 2017 IEEE 23rd International

Conference on Parallel and Distributed Systems (ICPADS), pages 769–772. IEEE, 2017.

(81)

[111] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly

detection: A survey. arXiv preprint arXiv:1901.03407, 2019. (85)

[112] Bartosz Krawczyk. Learning from imbalanced data: open challenges and

future directions. Progress in Artificial Intelligence, 5(4):221–232, 2016. (85)

[113] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.

IEEE transactions on information theory, 13(1):21–27, 1967. (86)

[114] Salima Omar, Asri Ngadi, and Hamid H Jebur. Machine learning techniques

for anomaly detection: an overview. International Journal of Computer Applica-

tions, 79(2), 2013. (86)

[115] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160, 2016. (86)

[116] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. Unsuper-

vised feature selection for principal components analysis. In Proceedings of the

14th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 61–69, 2008. (93, 165)

[117] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-

Betanzos. Feature selection for high-dimensional data. Progress in Artificial

Intelligence, 5(2):65–75, 2016. (93, 165)

[118] Nitesh V Chawla. Data mining for imbalanced datasets: An overview. Data

mining and knowledge discovery handbook, pages 875–886, 2009. (94)

197

REFERENCES

[119] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial nets. Advances in neural information processing systems, 27,

2014. (96)

[120] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adversarial networks.

arXiv preprint arXiv:1511.06434, 2015. (96)

[121] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784, 2014. (97)

[122] Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using gen-

erative adversarial networks. arXiv preprint arXiv:1811.11264, 2018. (97)

[123] Hao Zhang, Shumin Dai, Yongdan Li, and Wenjun Zhang. Real-time

distributed-random-forest-based network intrusion detection system using

Apache spark. In 2018 IEEE 37th international performance computing and commu-

nications conference (IPCCC), pages 1–7. IEEE, 2018. (100)

[124] Roman Timofeev. Classification and regression trees (CART) theory and

applications. Humboldt University, Berlin, 54, 2004. (100)

[125] Huazhen Wang, Fan Yang, and Zhiyuan Luo. An experimental study of

the intrinsic stability of random forest variable importance measures. BMC

bioinformatics, 17(1):1–18, 2016. (100)

[126] JMP Statistical Discovery, 2021, SAS Institute,

https://www.jmp.com/enin/software/data−analysis−software.html.(103, 139, 178)

[127] Md Al Mehedi Hasan, Mohammed Nasser, and Biprodip Pal. On the

KDD’99 dataset: support vector machine based intrusion detection system

(ids) with different kernels. Int. J. Electron. Commun. Comput. Eng, 4(4):1164–

1170, 2013. (112)

[128] Samuel H Huang. Supervised feature selection: A tutorial. Artif. Intell. Res.,

4(2):22–37, 2015. (112)

198

https://www.jmp.com/en_in/software/data-analysis-software.html

REFERENCES

[129] Hee-su Chae, Byung-oh Jo, Sang-Hyun Choi, and Twae-kyung Park. Fea-

ture selection for intrusion detection using NSL-KDD. Recent advances in

computer science, 20132:184–187, 2013. (112)

[130] Adetunmbi A Olusola, Adeola S Oladele, and Daramola O Abosede. Anal-

ysis of KDD’99 intrusion detection dataset for selection of relevance features.

In Proceedings of the world congress on engineering and computer science, 1, pages 20–

22. WCECS, 2010. (112)

[131] Shafigh Parsazad, Ehsan Saboori, and Amin Allahyar. Fast feature reduc-

tion in intrusion detection datasets. In 2012 Proceedings of the 35th International

Convention MIPRO, pages 1023–1029. IEEE, 2012. (112)

[132] Tyrone Naidoo, Andre M McDonald, and Jules-Raymond Tapamo. Fea-

ture selection for anomaly–based network intrusion detection using cluster

validity indices. 2015. (116)

[133] Maheshkumar Sabhnani and Gürsel Serpen. Application of machine learn-

ing algorithms to KDD intrusion detection dataset within misuse detection

context. In MLMTA, pages 209–215, 2003. (116)

[134] Seung-Ho Kang and Kuinam J Kim. A feature selection approach to find

optimal feature subsets for the network intrusion detection system. Cluster

Computing, 19(1):325–333, 2016. (119)

[135] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H Witten. The WEKA data mining software: an up-

date. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009. (122)

[136] Basant Subba, Santosh Biswas, and Sushanta Karmakar. A neural network

based system for intrusion detection and attack classification. In 2016 Twenty

Second National Conference on Communication (NCC), pages 1–6. IEEE, 2016. (124)

[137] Xin Li, Peng Yi, Wei Wei, Yiming Jiang, and Le Tian. LNNLS-KH: a feature

selection method for network intrusion detection. Security and Communication

Networks, 2021, 2021. (124, 153)

199

REFERENCES

[138] Saurabh Mukherjee and Neelam Sharma. Intrusion detection using naive

Bayes classifier with feature reduction. Procedia Technology, 4:119–128, 2012.

(124)

[139] Naila Marir, Huiqiang Wang, Guangsheng Feng, Bingyang Li, and Meijuan

Jia. Distributed abnormal behavior detection approach based on deep belief

network and ensemble SVM using spark. IEEE Access, 6:59657–59671, 2018.

(124)

[140] Ashu Bansal and Sanmeet Kaur. Extreme gradient boosting based tuning

for classification in intrusion detection systems. In International conference on

advances in computing and data sciences, pages 372–380. Springer, 2018. (124)

[141] Sumeet Dua and Xian Du. Data mining and machine learning in cybersecurity.

United States, 2016. (126)

[142] Imtiaz Ullah and Qusay H Mahmoud. A scheme for generating a dataset

for anomalous activity detection in iot networks. In Canadian Conference on

Artificial Intelligence, pages 508–520. Springer, 2020. (133)

[143] Francois Chollet et al. Keras, 2015, GitHub, https://github.com/fchollet/keras.

(140)

[144] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016. (140)

[145] Gholamreza Farahani. Feature selection based on cross-correlation for the

intrusion detection system. Security and Communication Networks, 2020, 2020.

(153)

[146] Muhammad Aamir and Syed Mustafa Ali Zaidi. Clustering based semi-

supervised machine learning for DDoS attack classification. Journal of King

Saud University-Computer and Information Sciences, 33(4):436–446, 2021. (153)

[147] Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, Rajesh Kaluri,

Saurabh Singh, Thippa Reddy Gadekallu, Mamoun Alazab, Usman Tariq,

200

https://github.com/fchollet/keras

REFERENCES

et al. A novel PCA-firefly based XGBoost classification model for intrusion

detection in networks using GPU. Electronics, 9(2):219, 2020. (153)

[148] Wondimu K Zegeye, Richard A Dean, and Farzad Moazzami. Multi-layer

hidden markov model based intrusion detection system. Machine Learning and

Knowledge Extraction, 1(1):265–286, 2018. (153)

[149] Monika Roopak, Gui Yun Tian, and Jonathon Chambers. Deep learning

models for cyber security in IoT networks. In 2019 IEEE 9th annual computing

and communication workshop and conference (CCWC), pages 0452–0457. IEEE, 2019.

(153)

[150] Arunavo Dey, Md Hossain, Md Hoq, Suryadipta Majumdar, et al. Towards

an Attention-Based Accurate Intrusion Detection Approach. In International

Conference on Heterogeneous Networking for Quality, Reliability, Security and Robust-

ness, pages 261–279. Springer, 2021. (153)

[151] Lijian Sun, Yun Zhou, Yanjuan Wang, Cheng Zhu, and Weiming Zhang. The

effective methods for intrusion detection with limited network attack data:

multi-task learning and oversampling. IEEE Access, 8:185384–185398, 2020. (153)

[152] Yanmiao Li, Yingying Xu, Zhi Liu, Haixia Hou, Yushuo Zheng, Yang Xin,

Yuefeng Zhao, and Lizhen Cui. Robust detection for network intrusion of

industrial IoT based on multi-CNN fusion. Measurement, 154:107450, 2020. (153)

[153] Kamalakanta Sethi, E Sai Rupesh, Rahul Kumar, Padmalochan Bera, and

Y Venu Madhav. A context-aware robust intrusion detection system: a rein-

forcement learning-based approach. International Journal of Information Security,

19(6):657–678, 2020. (153)

[154] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, per-

spectives, and prospects. Science, 349(6245):255–260, 2015. (154)

[155] OWASP Top Ten 2021, 2021, Open Web Application Security project,

https://owasp.org/Top10/. (155, 160)

201

https://owasp.org/Top10/

REFERENCES

[156] CICFlowMeter (formerly ISCXFlowMeter), 2021, Canadian Institute for Cyber-

security, https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter. (155,

158, 159)

[157] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal

network protocol analyzer toolkit. Elsevier, 2006. (158)

[158] Burp Suite Professional:. https://portswigger.net/burp/pro. (161)

[159] Apache Flink:. https://flink.apache.org/. (161)

[160] Arpspoof:. https://github.com/smikims/arpspoof. (161)

[161] NetCommander:. https://github.com/meh/NetCommander. (161)

[162] Zabbix 5.0.17 Remote Code Execution:. https://packetstormsecurity.com/

files/166256/Zabbix-5.0.17-Remote-Code-Execution.html. (161)

[163] Aircrack-ng 1.7:. https://www.aircrack-ng.org/. (161)

[164] John the Ripper password cracker:. https://www.openwall.com/john/. (161)

[165] libupnp 1.6.18 - Stack-based buffer overflow (DoS):. https://www.exploit-db.

com/exploits/49119. (161)

[166] DoSePa 1.0.4 - ’textview.php’ Information Disclosure:. https://www.

exploit-db.com/exploits/2795a. (161)

[167] jQuery UI 1.12.1 - Denial of Service (DoS):. https://www.exploit-db.com/

exploits/49489. (161)

[168] Slowloris:. https://github.com/gkbrk/slowloris. (161)

[169] smurf6:. https://kalilinuxtutorials.com/smurf6/. (161)

[170] David Dittrich. The DoS Project’s ‘trinoo’distributed denial of service at-

tack tool. 1999. (161)

[171] Exploiting dll hijack in real world:. https://www.exploit-db.com/papers/14813.

(161)

202

https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter
https://portswigger.net/burp/pro
https://flink.apache.org/
https://github.com/smikims/arpspoof
https://github.com/meh/NetCommander
https://packetstormsecurity.com/files/166256/Zabbix-5.0.17-Remote-Code-Execution.html
https://packetstormsecurity.com/files/166256/Zabbix-5.0.17-Remote-Code-Execution.html
https://www.aircrack-ng.org/
https://www.openwall.com/john/
https://www.exploit-db.com/exploits/49119
https://www.exploit-db.com/exploits/49119
https://www.exploit-db.com/exploits/2795a
https://www.exploit-db.com/exploits/2795a
https://www.exploit-db.com/exploits/49489
https://www.exploit-db.com/exploits/49489
https://github.com/gkbrk/slowloris
https://kalilinuxtutorials.com/smurf6/
https://www.exploit-db.com/papers/14813

REFERENCES

[172] GlassWire’s:. https://www.glasswire.com/download/. (161)

[173] PrintNightmare Vulnerability:. https://www.exploit-db.com/docs/50537. (161)

[174] Direct Dynamic Code Evaluation - Eval Injection:. https://owasp.org/

www-community/attacks/Direct_Dynamic_Code_Evaluation_Eval%20Injection.

(161)

[175] Exploiting Node.js deserialization bug for Remote Code Execution:. https:

//opsecx.com/index.php/2017/02/08/exploiting-node-js-deserialization/

bugfor-remote-code-execution/. (161)

[176] TrickBot Malware:. https://www.cisa.gov/uscert/ncas/alerts/aa21-076a.

(161)

[177] IPFilter 3.x - Fragment Rule Bypass:. https://www.exploit-db.com/exploits/

20730. (161)

[178] Google-CVE-2022-1096:. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2022-1096. (161)

[179] Linux Kernel Exploitation:. https://github.com/xairy/

linux-kernel-exploitation. (161)

[180] ManageEngine ADSelfService Plus 6.1 - CSV Injection:. https://www.

exploit-db.com/exploits/49885. (161)

[181] mitmproxy:. https://mitmproxy.org/. (161)

[182] DAMN VULNERABLE WEB APPLICATION (DVWA): 1.0.7:. https://

www.vulnhub.com/entry/damn-vulnerable-web-application-dvwa-107,43/. (161)

[183] Cookie Theft:. https://guides.codepath.com/websecurity/Cookie-Theft. (161)

[184] Privilege escalation in Microsoft Windows Print Spooler servic-CVE-

2022-30138:. https://msrc.microsoft.com/update-guide/en-US/vulnerability/

CVE-2022-30138. (161)

[185] Windows Privilege Escalation: Unquoted Service Path:. https://www.

hackingarticles.in/windows-privilege-escalation-unquoted-service-path/.

(161)

203

https://www.glasswire.com/download/
https://www.exploit-db.com/docs/50537
https://owasp.org/www-community/attacks/Direct_Dynamic_Code_Evaluation_Eval%20Injection
https://owasp.org/www-community/attacks/Direct_Dynamic_Code_Evaluation_Eval%20Injection
https://opsecx.com/index.php/2017/02/08/exploiting-node-js-deserialization/bug for-remote-code-execution/
https://opsecx.com/index.php/2017/02/08/exploiting-node-js-deserialization/bug for-remote-code-execution/
https://opsecx.com/index.php/2017/02/08/exploiting-node-js-deserialization/bug for-remote-code-execution/
https://www.cisa.gov/uscert/ncas/alerts/aa21-076a
https://www.exploit-db.com/exploits/20730
https://www.exploit-db.com/exploits/20730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1096
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1096
https://github.com/xairy/linux-kernel-exploitation
https://github.com/xairy/linux-kernel-exploitation
https://www.exploit-db.com/exploits/49885
https://www.exploit-db.com/exploits/49885
https://mitmproxy.org/
https://www.vulnhub.com/entry/damn-vulnerable-web-application-dvwa-107,43/
https://www.vulnhub.com/entry/damn-vulnerable-web-application-dvwa-107,43/
https://guides.codepath.com/websecurity/Cookie-Theft
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-30138
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-30138
https://www.hackingarticles.in/windows-privilege-escalation-unquoted-service-path/
https://www.hackingarticles.in/windows-privilege-escalation-unquoted-service-path/

REFERENCES

[186] MalwareBuster:. https://malwarebuster.com/, 2021. (161)

[187] WannaCry: EternalBlue:. https://github.com/topics/wannacry-ransomware.

(161)

[188] Bad Rabbit ransomware:. https://securelist.com/bad-rabbit-ransomware/

82851/. (161)

[189] Unrestricted File Upload:. https://owasp.org/www-community/

vulnerabilities/Unrestricted_File_Upload. (161)

[190] Slowhttptest:. https://www.kali.org/tools/slowhttptest/. (161)

[191] aSYNcrone: Multifunction SYN Flood DDoS Weapon:. https://github.com/

fatihsnsy/aSYNcrone. (161)

[192] OWASP Zed Attack Proxy:. https://owasp.org/www-project-zap/. (161)

[193] Ettercap:. https://www.ettercap-project.org/. (161)

[194] sqlmap: SQL injection flaws:. https://sqlmap.org/. (161)

[195] BBQSQL: Blind SQL Injection Exploitation:. https://github.com/

CiscoCXSecurity/bbqsql. (161)

[196] Joomla 3.3.4:. https://websec.wordpress.com/2014/10/05/

joomla-3-3-4-akeeba/kickstart-remote-code-execution. (161)

[197] Apache Log4j 2:. https://logging.apache.org/log4j/2.x/. (161)

[198] Webmin 1.962 - ’Package Updates’ Escape Bypass RCE (Metasploit):. https:

//github.com/rapid7/metasploit-framework. (161)

[199] Jari Arkko, Michelle Cotton, and Leo Vegoda. Ipv4 address blocks re-

served for documentation. Technical report, 2010. (164)

[200] Muhammet Sinan Başarslan and İrem Düzdar Argun. Classification of a

bank data set on various data mining platforms. In 2018 Electric Electronics,

Computer Science, Biomedical Engineerings’ Meeting (EBBT), pages 1–4. IEEE, 2018.

(165)

204

https://malwarebuster.com/
https://github.com/topics/wannacry-ransomware
https://securelist.com/bad-rabbit-ransomware/82851/
https://securelist.com/bad-rabbit-ransomware/82851/
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://www.kali.org/tools/slowhttptest/
https://github.com/fatihsnsy/aSYNcrone
https://github.com/fatihsnsy/aSYNcrone
https://owasp.org/www-project-zap/
https://www.ettercap-project.org/
https://sqlmap.org/
https://github.com/CiscoCXSecurity/bbqsql
https://github.com/CiscoCXSecurity/bbqsql
https://websec.wordpress.com/2014/10/05/joomla-3-3-4-akeeba/kickstart-remote-code-execution
https://websec.wordpress.com/2014/10/05/joomla-3-3-4-akeeba/kickstart-remote-code-execution
https://logging.apache.org/log4j/2.x/
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

REFERENCES

[201] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. (166)

[202] Gérard Biau and Erwan Scornet. A random forest guided tour. Test,

25(2):197–227, 2016. (166)

[203] J. Ross Quinlan. Learning decision tree classifiers. ACM Computing Surveys

(CSUR), 28(1):71–72, 1996. (166)

[204] Lior Rokach and Oded Maimon. Top-down induction of decision trees

classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 35(4):476–487, 2005. (166)

[205] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. Naïve Bayes.

Encyclopedia of machine learning, 15:713–714, 2010. (167)

[206] Irina Rish et al. An empirical study of the naive Bayes classifier. In IJCAI

2001 workshop on empirical methods in artificial intelligence, 3, pages 41–46, 2001.

(167)

[207] Johan AK Suykens and Joos Vandewalle. Least squares support vector

machine classifiers. Neural processing letters, 9(3):293–300, 1999. (168)

[208] Nicholas G Polson and Steven L Scott. Data augmentation for support

vector machines. Bayesian Analysis, 6(1):1–23, 2011. (169)

205

List of Publications

Journal Papers : Published

[1] ND Patel, BM Mehtre, and Rajeev Wankar. A Snort-based Se-

cure Edge Router for Smart Home. Vol. 41, Issues 1, Pages 42-

59, 2023, International Journal of Sensor Networks. ISSN online: 1748-1287.

http://dx.doi.org/10.1504/IJSNET.2022.10051521

(Indexed in SCIE, DBLP, SCOPUS, UGC, Impact Factor: 1.264, Cite

Score: 2.4). The work reported in this publication appears in Chapter 3.

[2] ND Patel, BM Mehtre, and Rajeev Wankar. Intrusion Detection Sys-

tem using Resampled Dataset - A Comparative Study. International Jour-

nal of Ad Hoc and Ubiquitous Computing, ISSN online: 1743-8233.

http://dx.doi.org/10.1504/IJAHUC.2022.10050801 (Indexed in SCIE, SCO-

PUS, UGC, Impact Factor: 0.773, Cite Score: 1.5).

The work reported in this publication appears in Chapter 4.

[3] ND Patel, BM Mehtre, and Rajeev Wankar. Artificial Neural Net-

work based Intrusion Detection System using Multi-objective Genetic

Algorithm. International Journal of Information and Computer Security, ISSN

online: 1744-1773. http://dx.doi.org/10.1504/IJICS.2022.10046933

(Indexed in DBLP, SCOPUS, UGC, Cite Score: 1.0).

The work reported in this publication appears in Chapter 5.

[4] ND Patel, BM Mehtre, and Rajeev Wankar. Novel attribute selec-

tion technique for an efficient intrusion detection system. Vol. 5, Issue

2, Pages 154-172, Jan 2022 International Journal of Information Privacy, Security

and Integrity. https://doi.org/10.1504/IJIPSI.2021.120358 (Indexed in DBLP).

206

http://dx.doi.org/10.1504/IJSNET.2022.10051521
http://dx.doi.org/10.1504/IJAHUC.2022.10050801
http://dx.doi.org/10.1504/IJICS.2022.10046933
https://doi.org/10.1504/IJIPSI.2021.120358

LIST OF PUBLICATIONS

[5] ND Patel, BM Mehtre, and Rajeev Wankar. An Efficient Intrusion

Detection System using Unsupervised Learning AutoEncoder. Interna-

tional Journal of Grid and Utility Computing. (Indexed in ESCI, Scopus,

DBLP, UGC), [Impact Factor: 0.22, Cite Score: 1.8].

Papers Under Review

[6] ND Patel, BM Mehtre, and Rajeev Wankar. A Computationally Effi-

cient Dimensionality Reduction and Attack Classification Approach for

Network Intrusion Detection. International Journal of Information Security.

(Indexed in SCIE, Scopus, DBLP, UGC), , [Impact Factor: 2.427]. (Re-

vision Submitted). The work reported in this publication appears in Chapter

6.

[7] ND Patel, BM Mehtre, and Rajeev Wankar. OD-IDS2022: Gen-

erating a New Offensive Defensive Intrusion Detection Dataset and

ML-based Classification. International Journal of Information Technology. (In-

dexed in Scopus, DBLP, UGC). (Revision Submitted). The work reported

in this publication appears in Chapter 7.

Conference Papers : Published

[8] ND Patel, BM Mehtre, and Rajeev Wankar. Comparative Study of

Intrusion Detection Effect Using SVM and DNN. 10th International Confer-

ence on Reliability, Infocom Technologies and Optimization (ICRITO’2022), IEEE.

https://doi.org/10.1109/ICRITO56286.2022.9964756 (Indexed in DBLP, SCO-

PUS) The work reported in this publication appears in Chapter 7.

[9] ND Patel, BM Mehtre, and Rajeev Wankar. Spoofed Packet Detec-

tion and Prevention Mechanism. 1st International Conference on Nanoelec-

tronics Machine Learning Internet of Things & Computing Systems (NMIC-2021),

Springer (Indexed in DBLP, SCOPUS) (Accepted, in press).

207

https://doi.org/10.1109/ICRITO56286.2022.9964756

LIST OF PUBLICATIONS

[10] ND Patel, BM Mehtre, and Rajeev Wankar. Things-to-Cloud (T2C):

A Protocol-Based Nine-Layered Architecture. anganathan, G., Chen, J.,

Rocha, Á. (eds): Inventive Communication and Computational Technologies. Lec-

ture Notes in Networks and Systems, Vol. 145, Pages 789-805, Springer 2020, ISBN

978-981-15-7344-6. https://doi.org/10.1007/978-981-15-7345-3_68 (Indexed in

DBLP, SCOPUS).

[11] ND Patel, BM Mehtre, and Rajeev Wankar. Simulators, Emula-

tors, and Test-beds for Internet of Things: A Comparison. 3rd Inter-

national conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)

(I-SMAC 2019), Vol. 3, Pages 288-294, IEEE, 2019, ISBN 978-1-7281-4365-1.

https://doi.org/10.1109/I-SMAC47947.2019.9032519 (Indexed in DBLP, SCO-

PUS).

208

https://doi.org/10.1007/978-981-15-7345-3_68
https://doi.org/10.1109/I-SMAC47947.2019.9032519

	98620fa8-07b7-409c-a6b8-c9d3d2881cfa.pdf
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Intrusion Detection System (IDS)
	1.2.1 IDS Definitions
	1.2.2 Classification of IDS
	1.2.3 Challenges of IDS

	1.3 Aim and Research Objectives (ROs)
	1.3.1 RO1: To Propose a Secure and Resilience Edge Router for Smart Homes
	1.3.2 RO2: To Develop a Robust and Effective System for Detecting and Mitigating Attacks using Machine Learning Techniques
	1.3.3 RO3: To Generate a Comprehensive Intrusion Detection System Dataset

	1.4 Overview of Contributions
	1.4.1 Contribution 1: SERfSH - A Router for a Smart Home
	1.4.2 Contribution 2: Intrusion Detection Mechanism using Oversampling Technique
	1.4.3 Contribution 3: Artificial Neural Network-based IDS using Multi-objective Genetic Algorithm
	1.4.4 Contribution 4: Dimensionality Reduction based Feature Selection and Attack Classification Approach
	1.4.5 Contribution 5: A New Offensive Defensive IDS Dataset: OD-IDS2022

	1.5 Organization of the Thesis

	2 Literature Review & Research Gaps
	2.1 Research Questions
	2.2 Intrusion Detection System Techniques
	2.2.1 Signature-based IDS
	2.2.2 Anomaly-based IDS

	2.3 State-of-the-art IDS Datasets
	2.3.1 Standard Datasets used in Research Work

	2.4 Data Preprocessing Techniques
	2.4.1 Data Resampling techniques
	2.4.2 Dimension Reduction based Feature Selection

	2.5 Machine Learning Paradigm and Computational Aspects
	2.5.1 Classification and Regression Problems

	2.6 Selection of Hyperparameters
	2.7 Statistical Preliminaries
	2.8 Identified Research Gaps

	3 SERfSH - A Router for a Smart Home
	3.1 Introduction
	3.2 Proposed Approach for Detection & Mitigation of Attacks
	3.2.1 SERfSH Experimental Setup

	3.3 Automated Snort Rule Generation: Content Rule Extraction Algorithm
	3.3.1 Network Traffic Collection Phase
	3.3.2 Flow Configuration Steps
	3.3.3 Sequence Pattern Construction Steps
	3.3.4 Content Extraction Step
	3.3.5 Additional Information Analysis Steps

	3.4 Experiment and Analysis of Results
	3.4.1 Level-Wise IoT-Attacks Taxonomy
	3.4.2 Obtained Results

	3.5 Conclusions

	4 Intrusion Detection Mechanism using Oversampling Technique
	4.1 Introduction
	4.2 Experimental Datasets and Pre-Processing
	4.2.1 CICIDS2018 Dataset
	4.2.2 Real-Time Testbed (RTT) Resampled Dataset

	4.3 Feature Selection
	4.4 Oversampling Models for Imbalanced Dataset
	4.4.1 SMOTE
	4.4.2 Borderline-SMOTE
	4.4.3 ADASYN
	4.4.4 CTGAN

	4.5 Training Data
	4.6 Classification Models
	4.6.1 Linear Discriminant Analysis (LDA)
	4.6.2 Distributed Random Forest (DRF)
	4.6.3 LightGBM

	4.7 Experiment and Analysis of Results
	4.7.1 Experimental Setup
	4.7.2 Statistical Preliminaries
	4.7.3 Experimental Results of Oversampling & Classification Model

	4.8 Conclusions

	5 Artificial Neural Network based IDS using Multi-objective Genetic Algorithm
	5.1 Introduction
	5.2 Datasets
	5.2.1 CUP KDD'99 Dataset
	5.2.2 NSL-KDD Dataset
	5.2.3 CIC-IDS2017 Dataset

	5.3 Proposed Method
	5.3.1 Data Pre-processing
	5.3.2 Multi-objective Genetic Algorithm
	5.3.3 Artificial Neural Network

	5.4 Experiment Analysis and Obtained Results
	5.4.1 Experimental Setup
	5.4.2 Performance Evaluation

	5.5 Conclusions

	6 Dimensionality Reduction based Feature Selection and Attack Classification Approach
	6.1 Introduction
	6.2 Network Intrusion Detection System
	6.2.1 Signature-based Detection
	6.2.2 Anomaly-based Detection

	6.3 Proposed Approach
	6.3.1 Framework Blueprint
	6.3.2 Datasets Detail
	6.3.3 Data Pre-processing Techniques
	6.3.4 Detailed Algorithmic Procedures
	6.3.5 Novelty of Proposed Procedures

	6.4 Experimental Evaluation
	6.4.1 Modeling
	6.4.2 Experimental Setup
	6.4.3 Simulation Testbed (Package and Libraries)
	6.4.4 Obtained Results
	6.4.5 Benchmarking on Various Performance Measures

	6.5 Conclusions

	7 A New Offensive Defensive IDS Dataset: OD-IDS2022
	7.1 Introduction
	7.2 Existing Datasets and Comparisons
	7.2.1 Existing IDS Datasets Limitations

	7.3 OD-IDS2022 Dataset Design
	7.3.1 Proposed Approach for Dataset Creation
	7.3.2 Dataset Description
	7.3.3 Dataset Generation
	7.3.4 Dataset Features
	7.3.5 Getting the Dataset

	7.4 Dataset Pre-processing
	7.4.1 Preparation of Training and Validation Data

	7.5 Machine Learning-based Classification Analysis
	7.5.1 Random Forest (RF)
	7.5.2 Decision Tree (DT)
	7.5.3 Naive Bayes (NB)
	7.5.4 Support Vector Machine (SVM)

	7.6 Experiment and Analysis of Results
	7.6.1 Experimental Setup
	7.6.2 Experimental Results of Machine Learning Model

	7.7 Conclusions

	8 Conclusions and Directions for Future Research
	8.1 Conclusive Summary
	8.2 Future Scope

	References
	List of Publications
	Plagiarism Report

