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Preface

This thesis contains two parts. In Part I, we study the phase transitions in the Holstein-

Hubbard model and in Part I, we study the quantum transport in a bi-molecular transistor.

We begin Chapter 1 of the thesis by giving a brief motivation behind our work. We then
present an introduction to the tight binding model, the concept of Coulomb correlation and
the Hubbard model, the concept of polaron and the Holstein model. We next introduce the
Holstein-Hubbard model and the phase transitions that can occur in this model. In this
context, we discuss the spin and charge density wave states and the phenomenon of self-
trapping transition. Next we introduce the Anderson-Holstein model and the Caldeira-Legette
model and the Anderson-Holsrtein-Caldeira-Leggett model and their application to molecular

transistors.

Interplay of electron-electron (e-e) and electron-phonon (e-p) interactions in a condensed
matter system can lead to interesting ground states. The Holstein-Hubbard (HH) model is one
of the most suitable models to study this interplay in a correlated polar material. Depending
on the relative strengths of the e-e and e-p interactions, the system can be in a spin-density-
wave (SDW) ground state (GS) or in a charge-density-wave (CDW) GS. Variation of the e-e
interaction and e-p interaction in the system can change the GS of the system from one
insulating state to another insulating state. Though these phases have been quite well known,
the nature of the transition has not been very clear. The nature of the SDW-CDW transition
has been first studied by Hirsch and Fradkin by a Monte-Carlo calculation and they have
shown that the SDW-CDW transition is direct. Takada and Chatterjee (TC) have studied the
one-dimensional half-filled HH model analytically to examine more critically the nature of
the SDW-CDW transition and have shown for the first time that there exists an intermediate
metallic phase between these two insulating phases. This study has thrown a new challenge
and received attention from other researchers who also contributed on this problem. Because
of these contrary results, it is really very important to study the nature of SDW-CDW phase
transition in HH model by more improved analytical calculations. Chatterjee and
collaborators have shown, in this context that modifications of the phonon wave function lead
to broadening of the width of the intermediate metallic phase. This lends credence to the

conjecture of TC regarding the existence of the intervening metallic phase at the cross-over
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region of the SDW and CDW phases. Considering the anharmonic vibrations of the apex
oxygen atoms in the cuprate superconductors, CT [18] have studied the SDW-CDW
transition in a 1D HH model taking cubic and quartic phonon anharmonicities. Lavanya et al.
have extended this work by considering Gaussian anharmonicity and performed an improved
variational calculation. They have supported the existence of the intermediate metallic phase
at the cross-over region of the SDW-CDW phases. The metallic phase obtained from their

results is also wider than the TC one.

In Chapter 2 of the thesis, we consider the same HH model in the presence of Gaussian
phonon anharmonicity, as studied by Lavanya et al. We study the nature of the SDW-CDW
transition within the framework of the above model using a more improved analytical
calculation. Following a series of canonical transformations followed by a generalized many-
phonon state, we obtain an effective electronic Hamiltonian which we solve exactly using
Bethe ansatz to obtain the ground state energy of the system. This calculation can be
considered as semi-exact. The transition from the SDW state to CDW state is examined by
calculating the effective Hubbard hopping parameter ¢, and effective Coulomb correlation
strength U,f¢. The phase diagram of the e-p coupling constant a vs. U shows an intervening
region in between the SDW and CDW phases. The nature of the intermediate region is
studied by calculating the Mott-Hubbard metallicity criteria, double-occupancy parameter,
entanglement entropy and the local spin moment. Our study ensures the metallicity of the

intermediate region.

In Chapter 3, we study the SDW-CDW phase transition for a two-dimensional (2D)
system given by the extended 2D HH Hamiltonian. This work is more realistic in view of the
2D nature of the cuprate superconductors. However, the HH model is not exactly soluble in
2D. So, we solve the extended HH model in two different regions separately, namely in the
weak-correlation regime and the strong-correlation regime using two different analytical
methods. After eliminating the phonons, the electronic Hamiltonian is solved in weak
correlation regime using the mean-field Hartree-Fock (HF) method. In the strong Coulomb
correlation regime, the electronic Hamiltonian is first transformed to an effective t — J model
and solved by using the Zubarev Green function technique and HF approximation (which
becomes valid because of the restriction on the double occupancy). Our result shows that

even in 2D there exist an intermediate metallic phase which is wider than that of the 1D case.
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The nature of the intermediate region is further studied by calculating the Mott-Hubbard
metallicity criteria. Our analytical result matches well with the recent numerical calculations

of Wang et al.

In a polar material, an electron forms a polaron because of the e-p interaction that distorts
the lattice. If the e-p coupling is weak, the resulting polaron is a large mobile polaron,
whereas in the case of strong e-p coupling, the polaron is confined within single lattice
spacing and we have what is called a small polaron which is a localized quasi particle. Thus,
as the e-p interaction is increased, at a critical value of the e-p coupling constant, one can
have a large polaron to small polaron transition. This is known as the self-trapping (ST)
transition, as the polarization potential that traps the polaron is created by the electron itself.
In the last few decades, extensive investigations have been carried out to study the nature of

the ST transition. But, a clear consequence to the nature of this ST transition is still lacking.

In Chapter 4, we study the nature of the ST transition in 1D extended HH model. We
study this Hamiltonian using a very accurate analytical method. Performing a series of
canonical transformations followed by a many-phonon averaging, we obtain an effective
electronic Hamiltonian. The effective electronic Hamiltonian is then solved exactly using the
Bethe ansatz technique and the ST transition from a large polaron state to the small polaron
state is studied.

In Chapter 5, we examine the nature of ST transition in 2D extended HH model. In 2D, as
the HH model is not exactly soluble, after eliminating the phonons, we deal with the effective
electronic Hamiltonian for the weak correlation regime and the strong correlation regime
separately by two different analytical methods. The methods employed here to solve the
Hamiltonian is similar to the method used in Chapter 3. Our results show that though in 1D
HH model, the ST transition is always continuous, in 2D HH model, the ST transition is

continuous in the anti-adiabatic regime while it is discontinuous in the adiabatic limit.

Transistors are one of the integral part of modern technology for the fabrication of nano-
devices. Of late, single molecular transistors (SMT) have attracted considerable attention for
their practical application in transport devices. In 2000, the fabrication of C,;, molecular
transport was first reported by Park et al. with the help of gold electrodes connected with the

Ceo Molecules. An SMT device can be used as a switching device as well as a sensor. Dutta
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has studied electronic transport in mesoscopic systems and subsequently he extended this
study to molecular transistors. Lately, extensive studies have been carried out on the double-
QD-based molecular transistors as they show many interesting properties like large charge

sensibility and more controllable current.

In Chapter 6, we study the transport properties of a bi-molecular transistor where two QDs
mounted on an insulating substrate are placed between two metallic electrodes one of which
acts as a source (S) and the other as a drain (D). The electrons can be made to flow from the
source to the drain through the QDs by applying an external bias-voltage and the energy
levels in the QDs can be tuned with a gate voltage applied to the substrate. The QDs are
considered to have only single energy levels and onsite e-e and e-p interactions. The e-p
interaction is described by the Holstein interaction. The electrons in the source and the drain
are considered free and thus they have continuous energy levels. Electrons from the source
can tunnel into the QD and from QD to the drain and vice versa. This process is modelled by
the Anderson hybridization term. The QD phonon interacts with the phonons of the substrate
by a linear coupling which we model by the Caldeira-Leggett (CL) Hamiltonian. This
interaction gives rise to dissipation in the phonon dynamics of the QD phonon and increases
the tunnelling current. The entire bi-molecular transistor system is thus modelled by the
Anderson-Holstein- Caldeira-Leggett (AHCL) Hamiltonian. We first eliminate the interaction
between the QD phonon and the substrate phonon (approximately) and then the e-p
interaction by the Lang-Firsov transformation. Next we calculate the spectral function,
tunnelling current, differential conductance and spin-polarization parameters at different
magnetic fields and different temperatures using the non-equilibrium Green function
technique of Keldysh.

In Chapter 7, we summarize our findings and present our concluding remarks.
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Introduction

1.1 Motivation

The present thesis contains two parts. In the first part, our aim is to examine the nature of
some interesting phase transitions that can occur in correlated polar materials and in the

second part we wish to study the quantum transport in a bi-molecular transistor.

Phase transitions in correlated polar materials have continued to remain an interesting
subject of research for the last few decades. It is well known that if the electron-electron (e-e)
Coulomb repulsive interaction much greater than the electron-phonon (e-p) coupling in a
correlated polar system, the ground state (GS) of the system would be a spin-density-wave
(SDW) GS. The system behaves as an insulator in this state and is known as a Mott insulator.
However, if the e-p coupling is much stronger than the Coulomb correlation, the system is
known to be in a charge-density-wave (CDW) GS. This is also an insulating state and we can
call it a Peierls insulator. Thus as the e-e interaction increases, a correlated polar material can
make an SDW-CDW transition. It is well accepted that there exists such a transition;
however, consensus regarding the detailed behaviour of the transition is lacking. The key
question that requires an answer is whether the transition from SDW state to CDW state is
direct or goes through an intermediate metallic phase. This issue is of profound importance
in the context of superconductivity. To attain high T, superconductivity through e-p
interaction, a material has to have large e-p coupling. But, as we have mentioned above, if the
system has a strong the e-p coupling, then it would settle into a CDW state which is
obviously not a suitable GS state if we are interested in superconductivity. if the SDW to
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CDW transition occurs through a conducting metallic phase, then that metallic phase can
become superconductive even at large enough e-p interaction strength. In this thesis, we wish

to investigate the possibility of such a metallic phase.

Another objective of this thesis is to examine, in detail, the behaviour of self-trapping
transition in a polar material. In such a material, e-p interaction distorts the lattice and creates
a polarization potential and forms a polaron. For weak e-p coupling, the polarization potential
is shallow and the resulting polaron is mobile and is called a large polaron. For strong e-p
coupling, the polarization potential is deep and the electron gets trapped in this potential.
Such a localized polaron is called a small polaron. Thus, with the increase in the e-p
coupling, one expects a large to small polaron transition. Such a transition is called self-
trapping (ST) transition, as the potential that traps the electron is created by the electron
itself.

Finally, we wish to study the quantum transport in a bi-molecular transistor. It is known that
a single molecular transistor can act as a spin filter. Our objective in this thesis is to examine
whether the spin-filtering effect can be enhanced in a dissipative bi-molecular transistor with

Coulomb correlation and polaronic interaction.

To study correlated materials, the suitable model is the tight-binding model. To study the
polaronic coupling, the suitable model is the Holstein model and for the Coulomb correlation,
we consider the Hubbard model. To consider tunnelling in the bi-molecular transistor, we
shall use the celebrated Anderson model and the dissipation will be taken care of by the
Caldeira—Leggett model. In the following section, we shall introduce all these models and

discuss the necessary concepts.

1.2 Tight Binding Model (TBM)

The free electron theory proposed by Sommerfeld [1] has been a useful tool to describe the
metallic behaviour of elements up to a specific limit. But it fails to explain several other
features of the materials. As an improvement on the free electron model, Bloch [21]
introduced the linear combination of atomic orbitals (LCAQO) method in which the atomic
orbitals associated with each lattice site overlap and then it is possible to write the Block

function as a linear superposition the atomic states ¢,, as
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1O g
Y1) = TNZ e®i ¢ (r —R,), (1.1)

where N denotes the number of lattice sites which is a very large number and R; is the

position vector of the atom at the j-th site. The Hamiltonian for a system of electrons

interacting with a periodic lattice can be written as

pZ
H=%+2Va(r—R,). (1.2)
R;

The energy E of the Hamiltonian in Eq. (1.2) can be found using the LCAO state of Eq. (1.1).
We obtain

1 iy s -
E=Ey+y . [ dr e® R, (= RV = R)gn(r = R)
RyR;

= EO + Ei,j=0 + Eij' (13)

where E, = h*k?/2m is the free-electron kinetic energy, E; ;_, is the on-site potential energy

and E;; is the potential energy due to the NN interaction that is given by

Ej=—t Z otk (Ri=R)), (1.4)
R R,
where
e = [ @r (= R)Valr = RGa(r = R). (15)

where i, j refer to the NN sites. The integral in Eq. (1.5) is called the overlap integral that
represents the inter-site atomic interaction. Depending upon the interaction involved in the
generic Hamiltonian, the overlap integral can be extended to next NN and next to next NN as
well.

The lattice Hamiltonian in the tight-binding approximation is easier to deal with when it is
written in the second quantized notation. The tight-binding Hamiltonian can be written in

second quantization notation as
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H=-— Z tijcljl-gcjd' (16)

Here i, j refer to NN sites, <> implies that the sum extends over the NN sites. t;; carries the

information of the electron hopping from one site to another, lera is the creation operator for a
spin-o electron at site i and c;, is the corresponding annihilation operator. Using the discrete
lattice model of tight-binding approximation, the band structures of different materials have
been studied. Also, the tight-binding (TB) model (TBM) has been useful to calculate the
effective mass m* of an electron interacting with a lattice. Diagrammatically we can
represent different atomic sites with the corresponding wave function in the presence of the
lattice potential 1/, as the following:

\
\
\ \

— o @ @ — @ —@—
i—2 i— i i+ i+2
Vi

Fig. 1.1: Lattice potential and electronic wave function in tight binding model

The hopping of an electron from one atomic site to another is possible due to the overlap
of the electronic wavefunction and this overlap integral can be calculated using the Bloch
wavefunction or Wannier wave function. The tight binding formulation is considered under
the independent electron approximation and it describes the creation of narrow-band
materials. Therefore the theory predicts the d and f-orbital band structure in a more correct

way than the s and p-orbital elements.

The conductivity measured in certain materials could be well-established with the help of
the TB model [4]. When the atoms are in a closed packed structure with a small lattice
constant, the overlap between the atomic orbitals is higher which leads to high
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conductivity. But as the lattice spacing increases in a lattice, the overlap between the
atomic orbitals decreases and as a result, the bandwidth reduces and eventually the

conductivity diminishes.

3 =
/ \ : 4th hand

’4

\ / 30d Band

i / = \\ I Znd hand

j 15t band

181 Sniloum 200

Fig. 1.2: Band structure formulation [Ref. 3].

1.3 Hubbard Model

Certain oxide materials behave as insulators, though according to the band theory they
should be conductors. This issue was resolved by Hubbard [5] in 1963. In the case of certain
oxides, the number of electrons in the d-orbitals is more than that in the s or the p-orbital. In
the tight-binding model, only the overlap of the atomic orbitals is considered. But the
presence of several electrons results in a large Coulomb repulsion, which is not incorporated
in the tight-binding model. Hubbard introduced this electron-electron (e-e) interaction in the
tight-binding model. The Hubbard Hamiltonian is given by
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H=- Z tijc;roc]-o + UETL” n;, , (17)
i

<>
o

where U is the e-e Coulomb interaction at a particular site and is called the onsite Coulomb
correlation energy. In this model, an electron can hop from one site to its neighbouring site
which is represented by the first term (hopping term) of the Hamiltonian (1.7) and the second
term says it costs an energy U for two anti-parallel-spin electrons to stay at the same lattice
site. When the electron density is significantly low in the system, then it is very less likely for
two electrons to meet at the same site and hence in that case, the system acts as a weakly
correlated system. But if we consider a system in which each site has a single electron in an
anti-ferromagnetic order, then it is difficult for the up (down) spin electron of a particular site
to hop to the neighbouring down (up) spin electron site, as it will cost an extra energy U.
Hence, the motion of the up- (down-) spin electron is correlated with the down- (up-) spin
electron. Therefore this system is referred to as a strongly correlated system. We normally

assume the ¢;; is same for all nearest neighbours and write t;; = t.

Fig. 1.3: 2D Hubbard model [source Wikipedia]

The competing parameters involved in the Hubbard Hamiltonian are t and U and the ratio
U/t can describe the electronic motion involved in the system. Therefore, by varying these
two parameters, it is possible to describe a metal-insulator transition. For example, even if a

system has a half-filled band, if U/t is much smaller than one, it will be easy for the electrons
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to hop from one atom to another and the system would behave as a metal. On the other hand,
even for a half-filled band system, if U/t is much larger than one, hopping of an electron
from one site to another site will be prohibited and the material would behave as an insulator.
These systems are called Mott insulators. Thus, by increasing U, one can have a metal-

insulator transition which is known as the Mott-Hubbard transition [6].

For the finite values of the hopping parameter t and Coulomb correlation U, the half-filled
Hubbard model was first solved by Lieb and Wu [7] in one dimension using the Bethe ansatz
method [8]. The away from half-filling case was first solved by Shiba and collaborators [9].
So far, no exact solution has been found for the Hubbard model in higher dimensions.
Therefore, several analytical approximation methods (like the mean-field Hartree-Fock (HF)
method, renormalization group (RG) method etc.) and numerical techniques (like Monte
Carlo simulation) have been developed to solve the higher dimensional Hubbard model.

1.4 Polaron

An electron in the conduction band of an ionic crystal or a polar semiconductor distorts
and polarizes the lattice in its vicinity by the e-p interaction. Such an electron then moves
through the crystal together with the distortion (Fig. 1.4). The electron and the distortion
together comprise a quasi-particle called polaron. If the e-p interaction is weak, the lattice
distortion spreads over many lattice sites and the polarization potential is shallow. Such a
polaron is known as a large polaron. If the e-p interaction is strong, the distortion is confined
to a single lattice site and the polarization potential is deep and corresponding plaron is called
a small polaron. It was Landau [10] who conceived the idea of polaron and term “polaron”
was coined by Pekar [11]. The works of Landau and collaborators [12] were essentially semi-
classical and dealt with what is now known as the strong-coupling polaron. The quantum
mechanical formulation of the polaron problem was first given by Frohlich in 1954 [13]. He
proposed the celebrated Frohlich Hamiltonian which could give solutions for both the weak
and strong coupling regimes within the framework of the continuum model. Later, Holstein
proposed an interesting model [14] which is a suitable model for the small polaron in a
discrete lattice.
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Fig. 1.4: Schematic diagram of polaron [Ref. 15]

1.4.1 Holstein Model

The Holstein Hamiltonian is given by

H=-t z Cl:I-O.CjO- + (I.)OZ bl-l-bl + gz nia(b;r + bi)! (18)
i io

<>
o

where the first term gives tight-binding Hamiltonian, the next term represents the free phonon
Hamiltonian and the third term describes the e-p interaction. Here n;, (= C;rgcia) denotes the
electron number operator for electrons at site i with spin o, c;ra (cip) denoting the creation
(annihilation) operator for the corresponding electrons, bl.T is the phonon creation operator at
site i with the dispersionless frequency w,, b; is the corresponding phonon annihilation

operator and g refers to the e-p coupling coefficient. The e-p interaction can also be

described with the Feynman diagram in the following way:
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Fig. 1.5: Feynman diagrams of the e-p interaction in the Holstein model

1.5 Holstein-Hubbard Model

For a correlated system which has a significant e-p interaction, one of the appropriate
models is the Holstein-Hubbard model. This is a combination of the Holstein and the
Hubbard models and has been employed by several researchers to explain the high
temperature superconductivity in cuprates. The interplay between the e-p and the strong
Coulomb couplings in a material can be investigated using the Holstein-Hubbard (HH) model
(HHM). The HH Hamiltonian (HHH) is given by

H=-t z tijCiTona + UZ nir Ny + woz b;l-bl + gz ni(,(b;r + bi)! (19)
i i io

<>

g
where all the terms have been defined earlier. The ground state (GS) of the HH Hamiltonian
can be a spin density wave (SDW) insulator or a charge density wave (CDW) insulator. This

will essentially depend on the values of the parameters U and g.

1.5.1 Spin density wave (SDW)

An anti-ferromagnetic (AF) Mott-insulating state can be found as the solution of the HH
Hamiltonian if a strong Coulomb correlation is present in the system. When the Hubbard
interaction U is much greater than g, the system fails to pay the extra energy cost to keep any
two electrons at the same lattice site. Then the electrons stay localized at their respective sites
and GS of the system is an AF Mott insulator. This is also known as the SDW state (Fig. 1.6).
As the electrons form polarons because of the e-p coupling, this state can also be called a
polaronic state. The following diagram represents schematically the AF SDW polaronic Mott

insulator:
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Fig. 1.6: AFMI or SDW

1.5.2 Charge density wave (CDW)

In HH model, if g is so large that the phonon-induced e-e attraction dominates over the

repulsive onsite Coulomb correlation, the system prefers to

=t

(N [
JoU U

Fig. 1.7: Peierls insulator or CDW

stay in a bipolaronic phase. In this case, each alternating lattice sites are filled with two
electrons with opposite spins and the system’s GS becomes a paramagnetic CDW state. In
this case, the lattice spacing doubles up leading to peierls instability. The lattice is now

dimerized and each lattice site is occupied by a bipolaron. Fig. 1.7 shows schematically the
CDW state.
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1.6 Phase transition in Holstein-Hubbard Model

1.6.1 Transition from Spin density wave to Charge density wave

The HH model is an extremely useful model to study the competing effects of the e-e
Coulomb correlation and the e-p interaction. We have already discussed that in the case of
U > g, the GS of the HH Hamiltonian has an AF SDW polaronic Mott insulator, whereas in
the case of g >» U, the GS is the paramagnetic CDW bipolaronic Peierls insulator. Thus
with the increase in the e-p interaction, one would expect the system to undergo a transition
from an SDW phase to CDW phase. In 1983, the SDW-CDW transition has been studied by
Hirsch and Fradkin [35] by using a numerical Monte Carlo simulation. Their investigation
has suggested that this is a direct transition. An analytical study by Takada and Chatterjee
(TC) [17] in 2003 has thrown a challenge in this area. TC have considered the one-
dimensional (1D) half-filled HH Hamiltonian. Treating the phonon sub-system variationally
and employing the Bethe ansatz technique [18-19], TC have shown that the SDW-CDW
transition is not a direct rather it goes through an intervening phase which is interestingly
metallic. Thus, according to TC, there exists an intermediate metallic phase flanked by the
SDW and CDW phases. This result is important in the context of high-Tc superconductivity
because it suggests that even at a large e-p interaction, one can have a metallic phase which
can become superconductive. Since the apex oxygen atoms in the cuprate superconductors
have anharmonic vibration, it is important to consider the phonons to be anharmonic and
consider a more realistic HH Hamiltonian with anharmonic phonons. Chatterjee and Takada
(CT) [20] have studied the HH model in the presence of cubic and quartic phonon
anharmonicity. The results show that width of the metallic phase broadens in the presence of
phonon anharmonicity. After the prediction of the intermediate metallic phase in the HH
model, several other researchers have examined the same problem using different numerical
techniques. The density matrix renormalization group (DMRG) calculation of Clay and
Hardikar [21-22] have supported the assertion of TC. DMRG study by Fehske et al. [23] has
suggested that the existence of metallic phase for the HH model for large phonon frequencies.
Using the exact diagonalization technique and cluster perturbation method, Payeur and
Senechal [24] have also observed the metallic state. Quantum Monte-Carlo analyses by
Nowadnick et al. [25] and Bourbonnais and Bakrim [26] have further confirmed the presence

of the intermediate metallic phase.
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There have also been a few studies that disputed the assertion of TC. For example, the
studies by Tezuku et al. [27-28] show that the SDW to CDW transition does not require any
intermediate phase. Furthermore, the renormalization group (RG) study by Tam et al. [29]
also shows a direct transition between the two insulating phases. Therefore, it was important
to examine the behaviour of the phase transition by more accurate analytical calculations.
With this aim, Chatterjee and collaborators [30-35] have carried out a few improved
analytical studies using variational calculations and they have shown that with every
improvement of the variational wave function, the width of intermediate metallic phase
widens. Recently, Lavanya et al. [33] have studied the HH model in the presence of the
Gaussian phonon anharmonicity. The width of metallic phase obtained from their calculation

turns out to be broader than that obtained by TC.

In this thesis, we have considered the 1D HH Hamiltonian with the Gaussian anharmonicity
at half filling i.e., the same model as considered by Lavanya et al. Using an accurate phonon
wave function, we have obtained the effective electronic Hamiltonian which we have solved
by the Bethe ansatz method. This calculation can be called semi-exact. We have next
considered an extended HH model in two dimensions. We have solved this problem in two
different correlation regimes separately. The metallic phases obtained from both our 1D and
2D studies are found to be wider than that obtained by TC.

1.6.2 Self-trapping transition of polaron

In section 1.4, we have discussed the formation of the quasi-particle polarons in a polar semi-
conductor or an ionic crystal. The polaron size is dependent on the strength of the e-p
interaction strength. In the case of weak e-p coupling, the electron-created polarization
potential is shallow and therefore the lattice distortion spreads over several lattice points. In
this case, the wave function of the polaron is essentially extended in character and the
resulting polaron is known as the large polaron which is delocalized and can wade through
the lattice essentially as a free particle with a renormalized effective mass. But as the e-p
interaction increases, the lattice deformation potential induced by the electron becomes
deeper and the polaron size shrinks. At a sufficiently large e-p interaction, the polarization
potential may become so deep that the electron may get confined to a length scale which is of

the order of a lattice constant. The resulting complex is known as a small polaron and it
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becomes immobile. The small polaron can be described by a localized wave function and has
been the subject of the conventional Landau-Pekar problem [12]. The quantum mechanical
formulation was first given by Frohlich [13] who introduced a continuum polaron model and
gave the weak-coupling solution. The Frohlich model can also give intermediate coupling
[36], strong-coupling [11-12] and all-coupling solutions [37-38]. Alexandrov and
Kornilovitch [39] have discussed the possibility of lattice distortion spreading over many
sites even for large e-p interaction strength. In this case, the resulting complex is a small
Frohlich polaron i.e., a polaron with a localized wave function, but an extended distortion. It
is well known that as the e-p coupling is increased, a polaron undergoes a transformation
from a large polaron to a small polaron at a critical e-p coupling constant. This is usually
known as the self-trapping (ST) transition because here, the transition occurs because of the
trapping of the electron in a potential that is created by the electron itself. Though there is no
dispute over the existence of the ST transition, the consensus over the nature of the transition
is still lacking. The key question one has to answer here is whether this transition occurs in a
continuous fashion or it is accompanied by a discontinuity. Several authors have studied the
nature of the ST transition for the single-polaron and the many-polaron systems within the
framework of the Frohlich model. Léwen [40-41] has studied the ST transition for the
Frohlich model and found the transition is continuous. Toyozawa et al. [42-45] have
examined the case of an adiabatic small polaron model and Emin [46] has investigated the ST
transition in polar insulators using the Holstein molecular crystal model and both the studies
have found the ST transition to be discontinuous. Léwen has explained that the discontinuity
appearing in some of the studies may be the artefacts of the simplifying mathematical
approximations employed in those studies. Raedt and Lagendijk [47] have studied the ST
transition problem for both single and multi-polaron systems within the framework of the
molecular crystal model of Holstein using a numerical Monte Carlo Technique and have
demonstrated the continuous nature of the ST transition. Romero and collaborators [48] have
studied the GS of the Holstein molecular crystal of a single electron with the help of a global-
local variational approach and they have found that the small polaron to large polaron
transition is smooth until the system approaches the adiabatic limit. Recently, Krishna,
Mukhopadhyay and Chatterjee (KMC) [49] have examined the behaviour of the ST transition
in an extended HH system using a variational technique. Their calculation shows that ST
transition in a 1D correlated polar system is continuous. It should however be mentioned that
the analysis of KMC is still approximate because of the approximate treatment of the phonon

subsystem.
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The issue of ST transition has continued to remain in the focus of attention in the last few
decades for its importance in colossal magneto-resistance materials or manganites,
semiconductor nanostructures and so on. Therefore, this problem deserves a more accurate
solution, preferably analytical, so that the physics of the system can remain transparent. In
this thesis, we have made such an attempt. More specifically, we have examined the detailed
behaviour of the ST transition in both 1D and 2D extended HH models.

1. 7 Quantum transport through molecular transistors

1.7.1 Single molecular transistor

Transistors are one of the integral parts of modern technology for the fabrication of nano-
devices. In a single molecular transistor (SMT), a central molecule or a quantum dot (QD)
with discrete energy levels is connected to two metallic leads (source and drain) with
continuous energy levels on the two sides and is acted upon by an external bias voltage. The
presence of discrete energy levels in the central molecule (i.e. the QD which is also called a
tunnelling molecule) is important to study the quantum mechanical effects on the device. The
difference in the electronic potential energies of the source and the drain helps the electrons
in tunnelling from the source to the drain through the QD. The transfer of electrons through
the QD results in a net tunnelling current. The SMT system is mounted on an insulating
substrate whose energy is controllable by an external gate voltage. Therefore by applying this
gate voltage, the tunnelling current can be manipulated. The fabrication of a single molecular
transistor was first reported with Cg, as the central molecule by Park et al. [50] in 2000 with
the help of gold electrodes connected with the C¢q molecules. The SMT device has shown the
properties of a switching device [51] and it can also work as a sensor [52]. Dutta [53] has
described the electronic transport in the mesoscopic systems [53] and he has also extended its
application to the molecular transistors [54]. The recent review articles by Mickael et al. [55]
and Huanyan et al. [56] have reported the mechanisms of the SMT device and its recent
developments and applications. Very recently, Pipit and collaborators [57] have
experimentally established the Coulomb blockade and Coulomb staircase behaviour for
single electron transport at the room temperature. Liang et al. [58] have described the Kondo
resonance effect in the SMT device and explained that by tuning the gate voltage, the Kondo
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phenomena in quantum dot structures can be modified. Later, many other works also have

reported the Kondo behaviour in molecular transport [59-61]. Sang and collaborators [62]

|, Vb
Il

Fig. 1.8: SMT device (Ref. [89])

have investigated the interplay between the e-e and e-p interactions in the Anderson-Holstein
model and computed the spectral functions (SF) for the electrons and phonons using the
numerical renormalization group technique. Using the Keldysh technique, Chen et al. [63]
have shown that the polaronic effect generates side peaks in the SF of an SMT device and
modifies the tunnelling current. Extending the work of Chen, Juntao and collaborators [64]
have measured the phonon-associated conductance in a SMT device. Raju and Chatterjee
[65] have extended the SMT problem to investigate the phonon dissipation-induced
tunnelling current by introducing an insulating substrate (Fig. 1.8) and concluded that the
dissipation increases the tunnelling current in the single molecular transistor. Chatterjee and
collaborators [66] have studied magneto-transport in a dissipative SMT device incorporating
the effects of e-e and e-p coupling interactions. Their result shows that the spin-filtering
effect is enhanced with the magnetic field. It has been found that the tunnelling current in a

SMT reduces with the external temperature [67-68].

1.7.2 Anderson-Holstein-Caldeira-Leggett Model
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The electronic, phononic and the tunnelling terms for the SMT device can be described by
the Anderson—Holstein [69, 14] Hamiltonian. We consider that the central QD contains a
single energy level, a single phonon mode, an onsite e-e interaction strength and an onsite e-
p interaction. The source and the drain are considered to have free electrons with continuous
energy levels and the electrons from the source can be made to tunnel to the drain through the

QD by using a bias voltage. The Hamiltonian for the SMT device can be written as

H = Z koMo T Z €aoNae + Ungr ngy, + wobTh + gz Nge(bT + b)
k,o o o

+ Z(ch,:racda + h.c. ), (1.9)
k

where ng, (= c,lrackg) is the number operator for the lead electrons, c,Ia (cks) denoting the
creation (annihilation) operator for a lead electron with wave vector k, spin ¢ and energy &,
Nge (= c;r(,cd(,) is the number operator for the QD electrons, c;r(,(cd(,) being the creation
(annihilation) operator corresponding to the QD electrons with energy ¢4, and spin o, U is
the onsite e-e interaction energy of the QD, bT(b) creates (annihilates) a QD phonon with
dispersionless frequency w,, g is onsite e-p coupling coefficient for the QD and Vj gives the

hybridization coefficient that gives the strength of tunnelling between the lead and the QD.

For a dissipative system, where a particle of mass m is coupled to a bath of harmonic
phonons, the dynamics of the system can be explained through the Caldeira-Leggett (CL)
model [70-71] given by the Hamiltonian

~ 2m, 2m; | 2

N N
zZ 1 p? 1

- 'j -
j=1 j=1

where the particle of mass m with momentum p at position x,, interacts with the harmonic
oscillators of mass m;, momentum p; and the interaction coefficient of the dissipative

particle is C;. The potential V,(x) can also be written as,

rmw? | * 2
m](,l)j = m](i)

1 o C? 1
J J
Emoa)%xg = E . s+ Emong(z, — x5 |- (1.11)
j=1 J
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Using Eq. (1.11), the CL model can be written as,

N

2 c? 3
H=p—+—m0 w§ — L x§+z

ijw] =

j=1

Eq. (1.12) shows that the phonon-phonon interaction term of (1.10) reduces the QD phonon

frequency as a dissipative effect and thus screens the e-p interaction.

The Anderson-Holstein model combined with the Caldeira-Leggett model can describe the
transport in a dissipative SMT device in the presence of e-e and e-p interactions. The
combined Hamiltonian is referred as the Anderson-Holstein-Caldeira-Leggett (AHCL)
Hamiltonian [72].

Recently, extensive studies have been performed on the double-QD-based molecular
transistors [73-75] as they show many useful and interesting properties, like large charge
sensibility and more controllable current. We can call such a system as a bi-molecular
transistor. In the present thesis, we consider a bi-molecular transistor and calculate the

quantum transport in such a system.

1.8 Organisation of the thesis

In the following chapter i.e., in Chapter 2, we consider the 1D HH model with Gaussian
anharmonicity and give a semi-exact solution. We treat the phonon subsystem using an
accurate wave function and solve the effective electronic Hamiltonian exactly using the Bethe

ansatz technique. We study the phase space spanned by the e-e Coulomb interaction (U) and

the e-p interaction (g = va) and show that a metallic phase exists in between the insulating
SDW and CDW phases. Our present result demonstrates that the intervening conducting

phase is broadened with the consideration of a more accurate phonon wave function.

In Chapter 3, an extended HH model is studied in 2D. For the phonon subsystem a
variational wave function is used. As the 2D Hubbard model does not admit an exact
solution, we solve the effective electronic problem separately for the weak and strong
correlation regimes. In the weak-coupling regime, the effective electronic Hamiltonian is

treated by the Hartree-Fock method, while for the strong-coupling regime, the Hamiltonian is
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first transformed to the t — J model which is then treated at the mean field level. The phase

diagram is obtained by combing the results of the two regimes.

In Chapter 4, The ST transition in the 1D HH model is studied and the nature of the
transition is examined using an accurate phonon wave function and the exact Bethe ansatz
technique. In Chapter 5, an extended HH model is studied in 2D for weak and strong
correlation strengths and the nature of the ST transition is studied using same method that is
used to study the SDW-CDW transition for the 2D system in Chapter 3.

In Chapter 6, quantum transport is studied in a dissipative bi-molecular transistor. The
effects of bias-voltage, e-p interaction, Coulomb correlation, external magnetic field and

temperature are studied on the tunnelling current, conductance and spin-polarization.

In Chapter 7, we present a summary of results and make some concluding remarks.

1.6 References

[1] A. Sommerfeld, Zeitschrift fir Physik (in German), 47 (1-2): 1-3 (1928).

[2] F. Bloch, Zeitschrift fiir physik, 52(7), 555-600 (1929).

[3] Charles Kittel, Introduction to Solid State Physics. New York: Wiley (1996).

[4] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

[5] J. Hubbard, 276 (1365), 238 — 257 (1963).

[6] N. F. Mott., Proceedings of the Physical Society. Section A. IOP Publishing. 62 (7): 416—
422 (1949).

[7] E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445-1448, (1968);

[8] H. Bethe, Magazine for physics 71, 205-226 (1931).

[9] H. Shiba and P. A. Pincus, Phys. Rev. B 5, (1966).

[10] L. Landau, Z. Phys. 3, 664 (1933).

[11] S. I. Pekar, ZhETF 16, 341 (1946).

[12] L. D. Landau, S. I. Pekar, JETP 18, 341 (1948).

[13] H. Frohlich, Adv. Phys. 3, 11, 325-361, (1954).

[14] T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959); 8, 343 (1959).

[15] A. Chatterje, S. Mukhopadhyay, Polarons and Bipolarons, An introduction, CRC press
(2019).


https://en.wikipedia.org/wiki/Charles_Kittel
https://en.wikipedia.org/wiki/Charles_Kittel
https://link.springer.com/journal/218

Ch.1: Introduction

[16] E. Fradkin and J. E. Hirsch, Phys. Rev. B 27 4302 (1983).

[17] Y. Takada and A. Chatterjee, Phys. Rev. B 67 081102 (R) (2003).
[18] E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445-1448, (1968);
[19] H. Bethe, Magazine for physics, 71, 205-226 (1931).

[20] A. Chatterjee, Y. Takada, J. Phys. Soc. Jap. 73, 964-969 (2004).
[21] R. T. Clay, R. P. Hardikar, Phys. Rev. Lett. 95, 096401 (2005).

[22] R. P. Hardikar, R. T. Clay, Phys. Rev. B. 75, 245103 (2007).

[23] H. Fehske, G. Hager, E. Jeckelmann, Europhys. Lett. 84, 57001 (2008).
[24] A. Payeur, D. Senechal, Phys. Rev. B 83 033104 (2011).

[25] E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, T. P. Devereaux, Phys. Rev.
Lett. 109 246404 (2012).

[26] H. Bakrim, C. Bourbonnais, Phys. Rev. B 91 085114 (2015).

[27] M. Tezuka, R. Arita, H. Aoki, Phys. Rev. Lett. 95 226401 (2005).

[28] M. Tezuka, R. Arita, H. Aoki, Phys. Rev. B 76 155114 (2007).

[29] K. M. Tam, S. W. Tsai, D. K. Cambell, A. H. C. Neto, Phys. Rev. B 75 161103 (R)
(2007).

[30] P. M. Krishna, A. Chatterjee, Physica C 457, 55-59 (2007).

[31] A. Chatterjee, Adv. Con. Matt. Phys. 350787 (2010).

[32] I. V. Sankar, A. Chatterjee, Physica B 489, 17-22 (2016).

[33] C. U. Lavanya, I. V. Sankar, A. Chatterjee, Sci Rep. 7, 3774 (2017).

[34] Z. M. Malik, S. Mukhopadhyay, A. Chatterjee, Phys. Lett. A 383, 1516-1519 (2019).
[35] Z. M. Malik, A. Chatterjee, J. Phys. Commun. 4 (2020) 105005.

[36] M. Gurari, Phil. Mag. 44, 329 (1953).

[37] T. D. Lee, F. Low, D. Pines, Phys. Rev. 90, 297 (1953).

[38] A. Chatterjee, Ann. Phys. NY 202,320 (1990).

[39] A.S. Alexandrov, P.E. Kornilovitch, Phys. Rev. Lett. 82 (1999) 807.

[40] H. Léwen, J. Math. Phys. 29, 1498 (1988).

[41] H. Léwen, Z. Phys. B - Condensed Matter 72, 59-64 (1988).

[42] Y. Toyozawa, Prog. Theor. Phys. 26 (1) (1961);

[43] K. Cho, Y. Toyozawa, J. Phys. Soc. Jpn. 30 (1971) 1555;

[44] K. Cho, Y. Toyozawa, J. Phys. Soc. Jpn. 30 (1971) 1555;

[45] Y. Shinozuka, Y. Toyozawa, J. Phys. Soc. Jpn. 46 (1979) 505.

[46] D. Emin, Adv. Phys. 22 (1973) 57;

[47] H. De Raedt, A. Lagendijk, Phys. Rep. 127 (1985) 233.



https://link.springer.com/journal/218

Chapter 1

[48] A. H. Romero, D. W. Brown, K. Lindenberg, Phys. Rev. B 60 (7) (1999);

[49] R.P.M. Krishna, S. Mukhopadyay, A. Chatterjee, Phys. Lett. A 327 (2004) 67,

[50] Park, H. et al. Nature 407, 57—60 (2000).

[51] Makoto Yamamoto, Yasuo Azuma, Masanori Sakamoto, Toshiharu Teranishi, Hisao
Ishii,

Yutaka Majima & Yutaka Noguchi, Sci. Rep. 7, 1589 (2017).

[52] N. Abdelghafar, B. Aimen, H. Bilel, K. assim, K. Adel, IEEE Sens. J. 18, 1558 (2018).
[53] Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge University Press,
1997).

[54] S. Datta. Quantum Transport Atom to Transistor (Cambridge University Press,
Cambridge, 2005)

[55] L. P. Mickael, B. Enrique, H. S. van der Zant, J. Chem. Soc. Rev. 44, 902 (2015).

[56] Huanyan Fu, Xin Zhu, Peihui Li, Mengmeng Li, Lan Yang, Chuancheng Jia and
Xuefeng Guo, J. Mater. Chem. C, 10, 2375 (2022).

[57] U. V. Pipit, A. Yasuo, S. Masanori, T. Toshiharu, M. Yutaka, Mater. Res. Express 4,
024004 (2017).

[58] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park, Nature 417, 725-729 (2002).
[59] L. H. Yu, D. Natelson, Nano Lett. 4, 79-83 (2003).

[60] Chen, Z. Z., Lu, H., LU, R., Zhu, B. F., J. Phys.:Condens. Matter 18, 5435-5446 (2006).
[61] G. Gonzalez, M. N. Leuenberger, E. R. Mucciolo, Phys. Rev. B 78, 054445-12 (2008).
[62] G. S. Jeon, T. H. Park, H. Y. Choi, Phys. Rev. B 68, 045106 (2003).

[63] Chen, Z. Z., Lii, R., Zhu, B. F., Phys, Rev. B. 71, 165324 (2005).

[64] Song, Sun, J. Gao, X. C. Xie, Phys. Rev B. 75, 195320 (2007)

[65] Narasimha Raju, A. Chatterjee, Sci. Rep. 6, 18511 (2016).

[66] M. Kalla, Narasimha Raju, Ch., Chatterjee, A., Sci. Rep. 9, 16510 (2019).
[67] Lundin, U., & McKenzie, R. H., Phys. Rev B 66, 075303 (2002).

[68] M. Kalla, Narasimha Raju, Ch., Chatterjee, A., Sci Rep. 11, 10458 (2021).
[69] P. W. Anderson, Phys. Rev. 124, 41 (1961).

[70] A. O. Caldeira, A. J. Leggett, Physica A, 587 112(1983).

[71] A. O. Caldeira, A. J. Leggett, Annals of Physics 149, 374 (1983).

[72] Narasimha Raju, A. Chatterjee, Sci. Rep. 6, 18511 (2016).

[73] V. Khademhosseini, D. Dideban, M.T. Ahmadi, H. Heidari, Molecules, 27(1):301
(2022).



Ch.1: Introduction

[74] Faris Abualnaja, Chen Wang, Vlad-Petru Veigang-Radulescu, Jonathan Griffiths,
Aleksey Andreev, Mervyn Jones, and Zahid Durrani, Phys. Rev. Applied 12, 064050 (2019).
[75] E. C. Siqueira and G. G. Cabrera, Journal of Applied Physics 111, 113905 (2012).



WWM”...@%MX Oinolein

A semi exact solution for a metallic phase In
a Holstein-Hubbard chain at half-filling
with Gaussian anharmonic phonons

2.1 Introduction

The exotic superconducting behaviour in ceramic Cu-based compounds [1] has continued to
elude a convincing theoretical paradigm that could consistently conform to all experimental
observations. Though a large number of investigators have posed their faith in the electronic
mechanism, there have also been quite a few advocates of the phonon mechanism [2-7] and
this tribe has grown with time. The main objection against the phonon mechanism is as
follows. In a strongly correlated system, if the e-p interaction is small, the minimum energy
state will have the characteristics of a polaronic SDW state that corresponds to an anti-
ferroagnetic Mott insulator. Naturally for the superconductivity to be driven by the phonon-
mechanism, the e-p coupling needs to be adequately large compared to the repulsive e-e
interaction strength. A study by Plakida [8] has shown that the lattice instability and strong e-
p coupling have a pivotal role in inducing high T, superconductivity. Interestingly, however,
if e-p coupling is strong, the GS of the system is described by the bipolaronic CDW which

corresponds to a paramagnetic Peierls insulator.

As described in chapter 1, the Holstein-Hubbard (HH) model is a suitable model to study the

interplay between e-e and e-p interaction. The interplay between the e-e and e-p interaction
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leads to an interesting phase diagram that represents the phase transition from SDW state to
the CDW state. In chapter 2, we have explained the results established in this model so far.
Though a few studies [9, 10-12] have reported the HH model makes a direct SDW-CDW
transition, the Bethe ansatz exact solution by Takada and Chatterjee (TC) [13] in 2003 has
thrown a new challenge in the field. The principal premise of the investigation of TC is as
follows. With the increase in e-p coupling, both the effective onsite e-e interaction energy
(Uefy) and the effective hopping energy (t.rs) decrease and with U, approaching zero, the
system becomes so sensitive to the interplay between the relative strengths of these two
energy scales that instead of going from a SDW phase or to a CDW phase, the system prefers
to settle in an intermediate phase which has been shown by TC to be metallic. This
interesting observation of TC has sparked off a lot of interest on this issue and naturally a
host of investigations [14-17] followed closely on the heels of the work of TC. Using the
density matrix renormalization group (DMRG) technique, Clay and Hardikar [14, 15] have
not only demonstrated the existence of an intermediate metallic phase (MP) in agreement
with the contention of TC but also suggested that this intermediate phase can exhibit
superconductivity, which is an exciting result in the context of high-temperature
superconductivity. Feshke et al. [16] have also implemented the DMRG method and
established the occurrence of the metallic regime between the two insulating phases. They
have also proved that IMP widens as the phonon frequency increases. Several other studies
using renormalization group (RG) technique [18], Monte- Carlo simulations [19], exact
numerical diagonalization and cluster perturbation theory [20] etc. have also shown the
evidence of intermediate MP between the SDW and CDW phases.

Chatterjee and Takada (CT) [21] have also examined the problem in the presence of lattice
anharmonicity. They have considered cubic and quartic phonon anharmonicities and have
shown that intermediate MP becomes broader in the presence of lattice anharmonicity and
thus the conjecture on the presence of intermediate MP in the HH system is strengthened in
the presence of anharmonic phonons. This work is of much importance because lattice
anharmonicity has been found to play a crucial role in high T, superconductors. In fact, it has
been observed that apex oxygen has a substantial anharmonic motion in the cuprates and also
the phonon anharmonicity makes a significant impact on the electronic structure of these
systems [22-26]. Konior [27] has explained the importance of Gaussian phonon
anharmonicity in the context of high —T, superconductors and have shown that in the

presence of Gaussian phonon anharmonicity, the hopping parameter reduces at a slow rate
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causing an enhancement in the polaron mobility and the polaron bandwidth, which is a
favourable condition for the phonon mechanism to stake claim for inducing pairing. Lavanya
et al. [28] have recently re-examined the work of CT with Gaussian anharmonic potential by
applying in succession a number of unitary transformations followed by an averaging with a

general many-phonon state and the Bethe ansatz technique. This give a wider metallic phase.

The principal aim of the present paper is to further modify the variational wave function of
the phonon sub-system used by Lavanya et al. for the anharmonic HH system to obtain a
better solution for the GS energy and the SDW-CDW phase diagram. This calculation can be
considered as semi-exact as we have included rigorously all possible phonon processes
including coherence and correlations while treating the phonon subsystem and solved the
effective electronic part exactly with the help of the Bethe ansatz. The GS energy, local spin
moment, Von-Newmann entropy, the double occupancy parameter and the phase diagram at
the SDW-CDW transition region have been obtained.

2.2 Model and formulation

The one dimensional HH system with Gaussian phonon anharmonicity may be described by

the Hamiltonian

H=H, +H, + H,p, (2.1)
with

H, = —t z c;ro Cjig T UZniTnil , (2.2)

<ij>o i

+ —y(b.’f+b-)2
H, =hw02bi b+ Agy Y e 70T (2.3)
i i
Hop =g Z nis (b} +b;), (2.4)
io

where H, describes the Hubbard Hamiltonian, H,, is the phonon Hamiltonian and H.,, is the
Holstein e-p interaction. In Eqg. (2.2), the parameter t is the nearest-neighbour hopping

integral (HI), the operator c;ra(cia) creates (annihilates) a spin-o electron at the i — th site,
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Ny (= C;rgcia) being the corresponding electron occupation number and U gives the onsite e-e
interaction energy. In Eq. (2.3), blT (b;) represents an operator that creates (annihilates) an
optical phonon at site i with dispersionless frequency w,, A4, and y measure respectively the
strength and range of Gaussian anharmonic phonon. In Eq. (2.4), g is the on-site e-p coupling

coefficient which can be written as: g = Vaw,, where dimensionless « is referred to as the e-
p coupling constant.

2.2.1 GSenergy

In order to solve the Hamiltonian (2.1) we choose to seek a variational solution. First of all,

we apply the modified Lang-Firsov transformation (LFT) [29] with the generator

Ry =an ) niy(b] = b)), 25)

where n is the variational parameter that carries the information of the polaronic structure.
For strong e-p interaction, n — 1, and Eq. (2.5) generates usual LFT and gives a reasonable
approximation for the anti-adiabatic region. To deal with the adiabatic regime, we perform
the Takada-Chatterjee (TC) transformation [13] with the generator:

Ry= ) i (bf ~by) (26)

where we assume, h; = h, as all sites are equivalent. The above two transformations together

can be generated by:

Ry, = z [h +na (nio — \%)] (b} — by). (2.7)

io

With n = 1, the transformation (2.7) represents the conventional LFT which gives exact
results in the anti-adiabatic limit, while for n = 0, it takes care of the adiabatic limit. Thus
both the anti-adiabatic and the adiabatic regions can be studied by considering: 0 <n < 1.
Using the Baker-Campbell-Hausdorff (BCH) formula we may calculate the transformed

Hamiltonian as,
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1
H12 = eRlee_RH = H + [R12' H] + E[Rlz, [RIZF H]] + b (28)

an(n — 2) 2 —x;
Hip =—7——) Nz + [U - {m an(2 - 77)}] § Ny =t Z e el ¢
- 0 -
l

hwg -
<ij>o

+ thZ(bj — h)(b; — ) +Va(l - n)z nio (b} + b — 2h)

Lo

-y
+Aap ) €

1

sy

where

Van

_ + t

Xi =% = h_wo{(bi = b;) = (b - b;)} (2.10)
To calculate this transformed Hamiltonian we have used the identity, n?, = n,.

It is important to note that Eq. (2.7) assumes that the phonons associated with the electron
are in a coherence state. This is essentially a semi-classical approximation in which it is
assumed that the phonons in the polaron cloud are independent of each other satisfying a
Poissonian distribution. In other words, the phonons emitted or absorbed by the electrons are
completely uncorrelated and in that sense, the present transformation is equivalent to Hartree

approximation.

The presence of Gaussian anharmonicity in the system introduces anharmonicity to infinite
order and results in a finite lifetime of the phonons through phonon-phonon interactions.
Furthermore, an electron undergoes a recoil motion while emitting a phonon. While
undergoing a recoil motion, if the electron emits another phonon, then these two successively
emitted virtual phonons will be correlated. The correlation effects of the phonons and the
anharmonicity can be taken into account (to a great extent) by squeezing the phonon vacuum.
The squeezing of the phonon vacuum state can be accomplished by the celebrated

Bogoliubov transformation with the generator [30]:
R, = a, Z(bibi —bip), 2.11)
i

where the squeeze parameter a; is to be obtained variationally and this generator transforms

the Hamiltonian to,
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1
H; = e®sHyye™® = Hyp + [R3, Hyp] + 51 [Rs, [R3,H12]] + e
The anharmonic term is transformed by the squeezing transformation as follows:

_Zx/anni}z
e Rs

ok z e—y{(b;f+bi—2h) o

i

1 a2\
_ R3 — | _ t o _ ann; —Rj3
_Ze Zm!< y{(bi +by—2h) == }) e

—y\m 2\/_ ; 2™
R O

2
1, \o2as o5 2Vann;
(bi +bl)e S—2h “hwe

(2.13)

:Ze‘y

i

Using this relation, H; of Eq. (2.12) becomes,

an(n — 2 2 : 2 § E o
Hy = 77(77 ) N + [U _ {_ an(2 — 77)}] npn; —t e(xi—xj)e z CLC]‘J
h(l)o - h(l)o i <ij>
ic l U=

4as dag 1
oy, [ 6 +0)° =S (0 =00~ (BT + b)e 41
i

+va(l—n) Z nio[ (b} + b;)e?® — 2h]

2
t1p.)e2as_ _2\/577711'
(b +b)eras—2n-=571 ]

-y
+Aap ) €

l

(2.14)

The variational parameter ag has been assumed by all investigators to be independent of the
electron concentration untill 2019, when Malik-Mukhopadhyay-Chatterjee (MMC) [31] has
considered the squeezing of the phonon state to be partly dependent on electron density.
According to MMC, the correlation between phonons emitted by the electrons may depend
on the number of electrons available at a particular lattice site. Thus, we next apply, a

squeezing transformation with the generator:
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R, = ay Z nio (bib; — bbY), (2.15)

io

where a, is the variational parameter. It may be pointed out that in Eqg. (2.11), phonon
correlation and anharmonicity have been included at a mean-field level while Eq. (2.15)

incorporates the fluctuations. Therefore, the transformed Hamiltonian looks like:
H = eReeRseRegRifjeRig Rag=R3 g~ R (2.16)

The generators transformed the Hamiltonian as

-2
3= 3 |- D o1 (5] + br)ereseresZamo - 2n)
n 0

T 2va1]n
2a, 2a n; i
(bl +b)e Se SZO’ ic—2h———=

4
+ Agpe

 gape T eserestonis -zl
ap io

§ 2
+|U— {hz an(2 — n)}-l_/lap y[(b;r+bi)32asezasZania_Zh]
Wo

i

(bf+b;)e2ase?@sZomio—2p— Zrnm]

v
—Aap ) € hwo
i
—v|(b] +b)e?@se2@s 2o Mic—2n— 4‘/—"7“
+ lap Z nin;y
i

—t Z (xl x])e 2ase=2asToNig (xl —Xj )C

<ij>o

e4a
+ hw, z
i

2
— h(b] + b;)e?%se2sXomio hzl + Aap Z e | (owpi)ees—2n] (2.17)

i

LUC](T

1

i + bi)ezaszﬂnia 2 — bi)e_zaszania}z — E

where
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x;' — x;' = ag[(bib; — b b]) — (b;b; — bb])] (2.18)

In order to eliminate the phonons, we need to take the expectation value of the Hamiltonian
H in a suitable phonon state. To make the calculation most accurate, we choose the

averaging phonon state as:

M

[®p) = ) e lgnCO)) (219)

n=0

where ¢, (x) is the n —th excited-state oscillator eigen function in 1D and the coefficients
c,’s are to be obtained variationally. The idea is to start the calculation with M = 0 and then
keep on increasing the value of M till the energy converges. It may be noted that the
canonical transformation procedure followed by the averaging with respect to the phonon
state (2.19) described above is same as taking the expectation value of the Hamiltonian (2.1)

with respect to the trial variational state

| ) = e Fre Ree Rsg~Re| @, ) . (2.20)

We choose units in which A = wy, = 1, w, being the dispersionless phonon frequency. The
effective electronic Hamiltonian defined by: H.rr = (Y|H[p) assumes the following

expression:

1
Heff = eefonw — teff Z CLTO' Cjo‘ + UefoniTnil + N AapEl + N (hZ —E)

io <ij>o i
N
+7 [S,(1 + 4ay + 12a3)e*®s — S;(1 — 4ay + 12a3)e 4%
— 4h62“551(1 + 204 + 3a§)], (2.21)
where
Eeff = —6”7(2 - 77) - \/E(l - 77)[92“551(1 + Zad + 3ad2) - Zh] + Aap(EZ - El), (2-22)

Uerr=U=2an(2—n) + Aqp(E1 — 2E; + E3), (2.24)

with
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M (0e]
> | e aOHIIy, (225)
M (o]
E;=e Vi F Z Cri f eMV28)y 1y, (y) H,(y)dy (2.26)
k,l=0 — 00
< @ a a
= -7 -y? ht =
Ml—zckle ) fe Hk(y+2)Hl(y 2)dy, (2.27)
k,l=0 —00
M (o]
2 (1+7)
M= Y caess [ e T ) Hvpdy, (228)
k,1=0 —0
M (o]
F= [ €@ o) HOddy, (229)
k,l=0 — 00
where
Cr1 = CkCr/ 1/2k+lk! I 1T, y = \/},
f=1+2a; a=+2ane %1 - 2a,;+ 3a,?),
51:‘/§y' & =2y% &G=200*-20-1),
il' = 2}/Vl-ez“5(1 + Zad + 3ad2),
Vi = Zh, Vo = Z(h + \/Er]), V3 = Z(h + 2\/&77),
B =ye**s(1+ 4ay + 12a4%). (2.30)

ge55 Is the renormalized onsite electron energy or in other words the polaron energy, Uy is
the renormalized onsite e-e interaction energy and t.rr denotes the effective electronic
mobility. The GS energy of the system described by the Hamiltonian H,¢, can be obtained
exactly at half-filling with the help of the Bethe ansatz method [32]. The LW solution has
however been obtained for U.rr > 0. We modify the solution to include the results for
Uers < 0. To apply the LW result for U < 0, we may write Ugrp = —|Ueff| and transform

the electronic operators as:
crocin 5o - (Dl (2.31)

By this transformation, the hopping integral remains same. But the Coulomb interaction term

modifies as,
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Uers Z nigtiy = = |Uery| Z cheacuct (=D
i i

= —|Ueff|(—1)2i Z CITTCL'T(l — c;ricu)

L

= —|Uess| Z nir (1 —ny)
i

= —|Uess| Z it + |Uesr] Z NNy
; i

N
= _Elueffl + |Ueff|zniTnil- (2.32)
i

Therefore, to consider the attractive e-e interaction contribution, an additional term, (— %)

is to be added to the GS energy. With this modification, the GS per electron (&) is finally
obtained as,

4ag

4

e

1
g0= =+ 7 WUersr = Uesr|) +

o —4as

52(1 + 4ad + 12ad2)

1
53(1 — 4ad + 12ad2) + (hZ + AapEl - E)

4 teff]O()’)h(Y)dy

0y Il + exp <y—|Ueff|>l

Zteff

— he?%S,(1+ 2ay + 3a,;%) —

(2.33)
where
J=an2—n) +Va(@ —n)[e?*S;(1 + 2a4 + 3a4*) — 2h] — A4p(E, — Ey), (2.34)

and J,(y) and J; (y) are the Bessel functions of zeroth order and first order, respectively. g, is

finally minimized with respect to the variational parameters to obtain the GS energy.

In order to study the role of the quantum correlation in phase transition, we calculate
entanglement entropy for the 1D HH Hamiltonian. Considering a set of four available states

[0), [T), |{) > and |T!), the single-site entanglement entropy is calculated as:

Ey = =Tr(prlog,p:), (2.35)
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where p, is called the reduced density operator given by

Pr = we|0XO0| + wi| T + wy [L{] + wp [TINTL, (2.36)
where
n
wy =Mpny) =0 ; o =wp = 7T 0N We = l—wr—w,—wy. (2.37)

Therefore we obtain the entanglement entropy as,
Ey = —[welog,(w,) + 2wrlog, (wr) + wlog,(w)] . (2.38)
Using the Hellmann-Feynman theorem, we get

deg

Fiiin (nipnyy). (2.39)

Thus all the occupation numbers can be calculated and the corresponding Von-Newman

entanglement entropy (Ey) is evaluated.

The mean-square spin angular momentum per site (L) can be defined as:

1 2
Lo = NZ(Si ) (2.40)
i
where S; is the electron spin at site i, S? = S + S5, + S5. Using Sif = S, £iS;,,, S7 =
1 — _
Su—mny), St=chew, ST=clen STST=—mma, ne® =ng ng? =g,
we may obtain, (S?) = Z — ;(n”ni 1)- Therefore,
3 3dg,
o= 222, 2.41

where use has been made of Eq. (2.39). L, gives a measure of the spin magnetic moment and
will be loosely referred to as the spin moment. For a completely un-correlated electron gas,

we can write: (n;1n;;) = (n;1){n;,), and so the average spin moment per site (L) is 0.375.

2.3 Numerical results and discussions

2.3.1 Ground State (GS) Energy
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The single-site GS energy is determined by varying g, in the space of the variational
parameters. The minimum value of g, gives the GS energy. The result (Fig. 2.1) shows that
for A = 0.1 and y = 0.05, though the new transformation (2.15) has only a marginal effect on

the GS energy, it has a discernible effect on the phase diagram.

-0.6 '
t=0.2, a=0.8,
A =0.1,y=005  ___..--{
L ap -

1.6V —— Present

™~
-

0 1
U

Fig. 2.1: Single-site GS energy (&) vs. onsite Coulomb energy (U).

The variations of the effective hopping integral (t.rr) and the effective onsite e-e
interaction energy (U,sf) are respectively studied in Figs. 2.2 (a) and 2.2 (b) with respect to
the onsite e-e interaction energy (U) for the different strengths of the e-p coupling constant
(a). As expected, for a = 0, the effective hopping integral, ¢, becomes equal to the bare
Hubbard hopping parameter t and the U, s becomes equal to the Hubbard U. As e-p coupling
constant increases, t.r decreases and with the increase in U, it gradually increases and
saturates to the Hubbard value. At small values of the onsite e-e interaction U, the effective
attractive e-e interaction induced by e-p interaction overcomes the repulsive e-e interaction U
and the effective onsite e-e interaction U,rr becomes negative i.e., attractive. The lattice is

then unstable against the Peierls transition in which bound states of singlet bipolarons form
on every alternate site leading to an insulating phase called the CDW state. On the contrary,
when U is larger compared to «a, the repulsive U wins, and the polarons cannot hop from one

site to the other and consequently the GS of the system is given by the anti-ferromagnetic
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mott-insulator state which is also known as SDW. Fig. 2.2(a) shows that in the weak e-p

coupling regime, the variation of t,fr and U, with U is continuous. But for higher values of
a, discontinuous jumps occur in the behaviour of t,rr and U.sf. The discontinuous jump

corresponds a direct CDW-SDW transition.

In order to examine the nature of the transition between the two phases observed in Figs.
2.2(a) and 2.2(b), the quantity, (dt.fr/dU) is plotted in Fig. (2.3) with respect to U for a =
0.05,0.08 and 1.0. The double-peak structure in (dt.;r/dU) is clearly evident. One can also
observe that the peaks grow in height and shift towards larger values of U with increasing a.
Furthermore, the new transformation used in the present calculation broadens the width
between the two peaks in Fig. (2.3). Corresponding to the peak values of the (dt.s/dU) vs.
U plot, the phase-diagram is drawn in the (a — U) plane. This is shown in Fig. (2.4).

0.25

t=0.2, ;Lap=0.1,' ——- LSC t=0.2,3. =0.1,
] — Present . P
0.2 v=0.05 5 v=0.05
5 =
0.1
0.05; St
I _ 4 —— Present
0 * :
0 2 4 6 8 0 2 4 6 8
U U

Fig. 2.2: (@) terr Vs U; (D) Ugss Vs U.

The intermediate phase satisfies the condition: 4t,rs = U.ff , Which is the signature of a
metallic or a conducting phase. The metallic phase is flanked by the SDW phase on the left
and the CDW phase on the right. The figure shows that intermediate MP appearing at the
CDW-SDW cross-over region is now wider compared to that predicted by LSC [28]. It is
important to emphasize that it is not important by how much the present modified
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variational wave function broadens the width of the intermediate MP, that the improved

variational calculation widens intervening MP is itself a result of great significance.

0.15- T T
=02, =0.1,7=0.05
--- LSC O
, PR
= 0.1 — Present '
=z
3
<

41 =02, . .
lap=0'l’ 2nd Peak in dtc". /dL' 4%

y=0.05

—— Present

K 1 1.5 2
a

Fig. 2.4: Phase diagram in the (@ — U) — plane.

The reason is simple. If a modified variational wave function predicts a narrower

intermediate MP, it will have a disastrous effect on the prediction of the existence of
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intermediate MP because one may then argue that the MP may as well collapse if a more
improved variational calculation is performed. That with every improved variational

calculation, the metallic phase widens is indeed an encouraging result.

2 | T Y T T
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Fig. 2.5: dtese/dU vs. U fora = 2.0, 2.5, 3.0.
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Flg 2.6: (a) teff VS. «, (b) Ueff VS «.

In Fig. (2.5), we plot (dt.sr/dU) with U for larger values of a. We find that the double

peak structure almost disappears as a increases and one can observe from Fig. (2.5) that for
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a > 2, only a single peak structure appears. This indicates the absence of any intermediate
phase for large a. Figs. 2.6 (a) and 2.6 (b) illustrate respectively the behaviour of t,fr and
Uesr as a function of a. Asa — 0, t.sr — t. Thus at low a, the system GS is in the SDW

phase. As a increases, t.rr gradually decreases and finally falls off to zero.

Fig. 2.6(b) tells us that corresponding U, s becomes maximally negative. This indicates the

formation of massive singlet bipolarons giving rise to the CDW phase. Here also we see that
for large U, SDW-CDW transition is again direct.

(a) ®y =02,
005' ............ kap=0.].
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0.4 A =0.1, Lig
ap
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---LSC
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0 ---LSC
— Present
* 2 4 6 0 2 4 6

o

Fig. 2.7: (d) w vs. a; (b) entanglement entropy (E,) Vs. a.

In Figs. 2.7(a) and 2.7(b), we plot respectively the double occupancy (w) and gquantum
entanglement entropy (E,) as a function of a. The entanglement entropy (EE) gives a
measure of the accessible states the system can have. Obviously then, the maximum in
entanglement entropy would correspond to a conducting state. It is observed that for certain
combinations of a and U, E, has maxima and for other values E, becomes very small. Small
values of entanglement entropy correspond to insulating states. When e-p interaction
becomes strong compared to the e-e interaction, the electrons form pairs and the double
occupancy parameter w reaches the maximum value 0.5 driving the system to the CDW state.

For w < 0.5, the formation of polaronic SDW state takes place. Similar behaviour is
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observed in Figs. 2.8(a) and 2.8(b) when we plot the double occupancy (w) and quantum

entanglement entropy (E,) with respect to U for different values of e-p interaction («).

t=0.2, . =0.1,y=0.05 05 =02,
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0.1 : ~ A L 05 ~ ~

0 2 4 6 8 0 2 + 6 8

U 8]

Fig.2.8: (@) w vs. a; (b) E, vs. a.

In order to unravel the effect of e-e and e-p interaction simultaneously, we plot 3D graphs in
Figs. 2.9. Fig. 2.9(a) shows that between the SDW and CDW phases, there lies a region
where the value of w neither corresponds to the SDW region with w = 0 nor to the CDW
region with w = 0.5. Therefore, the effect of e-p and e-e interactions has been found
simultaneously on w and E,. This intermediate cross-over region corresponds to metallic
phase. In Fig. 3.9(b), the peak of entanglement entropy (E,) lies over the metallic region in

the (a — U) plane. Therefore, the peak denotes the MP.

We have already emphasized that for a metallic state the bandwidth follows the criterion:
2zterr = Uggr. In Fig. 2.10, we present a 3D representation of |U,ff| and 4t With respect
to U and a. The figure displays a region of (a,U) where the condition: 4t.r = U,fy is
satisfied. This is the metallic phase. There are two other regions in the (o« — U) — plane
where this condition is not satisfied and those are insulating phases. Among them the phase
where U, ;s > 0 corresponds to the SDW phase and the one where U,sr < 0 corresponds to
the CDW state.



Ch.2: Phase diagram of 1D Holstein-Hubbard model
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Fig. 2.9 (a) 3D plot of w with respect ro a and U; (b) 3D plot of E,, with respect to a and U.
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with respect to « and U.
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Fig. 2.12 L, with respect to a and U. Fig. 2.13 Contour plot of L, inthe (a — U) — plane

In order to look into MP by the Mott-Hubbard (MH) criteria more directly, 4t is plotted
in Fig. 2.11, with respect to U s and the region that satisfies the MH condition is indicated
by the dotted line. It is observed that the region satisfying the MH criterion is more extended
in the present work than the LSC’s result, which again confirms the broadening of the

intermediate MP.

The local spin moment (L) is calculated using Eq. (2.41) and plotted in Fig. (2.12) with
respect to @ and U and in Fig. (2.13), the contour plots for constant L, are drawn in the
(a — U) plane. Both the figures indicate the presence of the intermediate MP which is
consistent with the phase diagram. The contour plot in LSC’s work predicts MP to lie
between L, = 0.25 and L, =0.50 while the present calculation shows an extended MP that
lies between L, = 0.15 and L, =0.60. One can make the same observation from the local
spin moment calculation that re-establishes the broadening of intermediate MP between the
CDW and SDW regions.

2.4 Conclusion

The nature of SDW-CDW transition has been studied in a 1D half-filled HH model with
Gaussian phonon anharmonicity by improving the variational calculation of Lavanya et al.
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[28]. Using a number of unitary transformations performed in succession followed by a
generalized many-phonon averaging an effective electronic Hamiltonian is obtained. The
phonon-subsystem has been treated in a semi-exact way. The effective electronic
Hamiltonian has been solved exactly using the BA technique to obtain the GS energy. The
hopping integral and the Coulomb correlation are renormalized by the e-p interaction and
phonon anharmonicity. Using the Mott-Hubbard criterion we have shown that the present
modified approach broadens the width of intermediate MP reported by Lavanya et al. [28].
The same conclusion has been drawn from the calculation of the local spin moment and
double occupancy. Finally a study of quantum entanglement entropy and the double
occupancy parameter reconfirms the existence of a wider IMP at the SDW-CDW transition

region.
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An analytical study of the phase diagram of
a two-dimensional Extended Holstein-
Hubbard model: a mean-field study

3.1 Introduction

Strongly correlated e-p systems exhibit intriguing properties due to the interplay of various
interactions. The e-e Coulomb repulsion and the phonon-mediated attractive e-e interaction
lead to spin fluctuations and enhance the charge and spin correlations in these systems. These
correlations have been studied extensively in the context of phonon mechanism of
superconductivity [1-3]. Though the phonon mechanism was advocated by several
researchers for inducing pairing in cuprates [4-9], it ran into difficulty because of the
following reason. It is well known that in a correlated e-p system, different ground state (GS)
phases, known as SDW and CDW states, are possible based on the relative strengths of the

different interactions present in the system.

As described in chapter 1, several investigations on the HH model have shown the existence
of the SDW-CDW transition. Though a few researchers have claimed the transition to be
direct [10], many investigators have reported the existence of an intermediate metallic phase
in between the two insulating states [11-21]. All these calculations were however restricted to
1D systems, though the real systems of interest in the context of high—T, superconductivity
are doped cuprate materials [22-24], transition-metal dichalcogenides [25-27] and other

correlated systems [28-32] which are essentially two-dimensional.
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Berger et al. [28] have extensively studied the one and two-dimensional (2D) HH model to
examine of the detailed characteristics of the quantum SDW-CDW transition. Hohenadler
and Batrouni [29] have shown through a quantum Monte Carlo (QMC) study of the square
lattice that there is a possibility of a strongly correlated region in between the spin-density
and charge-density phases, which can be either metallic or superconducting. In a recent
investigation of the 2D HH system, Wang et al. [30] have shown using a non-Gaussian exact
diagonalization method, the presence of an intermediate phase in between the spin and
charge-order states. Here, too, the intermediate phase shows a metallic or superconducting
behaviour at weak coupling. Costa et al. [31] have analysed the 2D HH model and obtained a
rich phase diagram for a square lattice containing anti-ferromagnetic Mott-insulator and
CDW phases. Using auxiliary-field quantum Monte Carlo and finite temperature determinant
qguantum Monte Carlo techniques, they have observed a correlated metallic phase at the cross-
over region of the SDW and CDW phases. Very recently, Yirga et al. [32] have considered
the 2D Hubbard system with the Holstein phonon modes through the Su-Schrieffer-Heeger
model and studied the anti-ferromagnetic Mott-insulator-CDW transition by calculating the
renormalized quasi-particle weight using the functional renormalization group technique.
Their calculation also suggests the presence of a conducting phase flanked by two insulating
phases. Since all the aforementioned investigations of the 2D HH model are numerical, we
wish to analytically examine the transition region so that the underlying physics of the system

becomes more transparent.

We purport to consider, in the present paper, an extended HH model with the nearest
neighbour (NN) and next nearest neighbour (NNN) electronic correlations for a 2D square
lattice. The e-p interaction is first eliminated from the system by choosing an appropriate
phonon state, which gives rise to an effective electronic Hamiltonian with modified Hubbard
parameters namely the effective hopping parameter and effective online Coulomb correlation
energy. In the case of the weak effective correlation, the problem is solved by employing the
Hartree-Fock (HF) mean-field (MF) technique and for large effective on-site correlation, we
transform the effective electronic Hamiltonian to the t — J model and solve the problem using
the Zubarev Green function technique. Combining the results of both the regimes, we obtain
the phase diagram for the whole range of the interaction strength and analyse the properties
of the different phases using the Mott-Hubbard (MH) criterion.
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3.2 Model and formulation

An extended HH model can be written in 2D as

H=H, +H, + H,p, (3.1)
with
H,=—t Z Clj-a Cjio t UzniTnil +V z NigNjgr + V, z NigNits' 0’
<ij>o i <ij>oa’ is'ao’
HVs ) Mighisgngr (3.2
is""oo’
H, = ha)oz bib; , (3.3)
i
Hep = 91 ) 1ig(bi+ b)) + 2 ) mig(bivs + blis) (34
io ido

Here H, describes the extended Hubbard Hamiltonian where the parameter t denotes the NN
hopping integral, n;, (= c;[,cw) represents the number operator for the spin-o electron at the
i—th site, ci‘; (i) being the corresponding electron creation (annihilation) operator, and
U,V;, V, and V5 give the onsite, nearest neighbour (NN), next nearest neighbour (NNN) and
next to next nearest neighbour (NNNN) Coulomb interaction energies respectively, H, is
the phonon Hamiltonian, b;f (b;) being the creation (annihilation) operator for an optical
phonon at the i-th site with dispersionless frequency w, and He,, is the extended Holstein
EPI, g, and g, being the on-site and NN EPC strengths, respectively. We will write: g, =

Va , where « is the onsite e-p coupling constant.

To disentangle the e-p coupling term, the Lang-Firsov transformation (LFT) [33] has been
used extensively in the past. This transformation lowers the energy by displacing the phonon
vacuum. The phonon state then becomes a coherent superposition of states with different
phonon numbers. Several studies on the HH model [16-21, 34, 35] and the Anderson-
Holstein model [36, 37] have shown that the variational LFT (VLFT) method is more useful.

We, therefore, employ VLFT to transform the extended HH model with the generator,

g1 g
Ry =N o =) + 22 nig (bl = biv) (35)
0 Wo

io ido
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where g; = n;vVa and g, = n,v/a , n; and 1, being the variational parameters. g; gives
essentially a measure of the depth of the on-site lattice polarization potential created by the
EPI and g5 represents the width of the polaron potential well. The VLFT transforms the
Hamiltonian H to H; = ef1He™R1, Using the Baker-Campbell-Hausdorff (BCH) formula we

may calculate the transformed Hamiltonian as,

1
H, =H+[R,H]+ T [Ry, [Ry, H]| + -+ (3.6)
=—t Z cit,cjae(xi"xi) + Uz ning + V4 z NigNjgr + V; z NigNiss' o'
<ij>oc i <ij>oo’ is'oa’
+ V3 Z Tlio-ni_{_(gll’o.' + Wy Z b;l-bl + SZ Nig + P1 Z nia(bi + bl-l-)
i6""oo’ i io io
+ P, Z Nig(birs + blys) (3.7)
ibo
where,
91,4 92 "
x =y = (b] ~b) + w—OZ(bM, — b5, (3.8)
57
I7 2 ! /; 2 12
U=U-—1[2(9191 +29.92) — (91" + 29271, (39
0

2 _ 1 , r
V=V, — (U_o [(9192 + 9192) — 9192], V2 =V, — (29,9, — 922] V3 =Vs, (3.10)

wo
2 14 14 1 12 12

e=—|—0(09191 +29292) —— (91" + 295 )], (3.11)
Oh) Wo

Pi=g,—91, P»=g:— 9> (3.12)

An electron can be considered as a phonon-source. As an electron makes an emission of a
phonon, it undergoes a recoil motion and during its action of recoiling, if it releases another
phonon, then these two phonons would have a built-in correlation. This phonon-correlation
effect can be incorporated by considering a squeezing transformation (or Bogolubov
transformation as it is more commonly referred to in condensed matter physics) with a

generator [38]:
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R, = a, Z(bibi —~bip),

L

(3.13)

where a, gives a measure of the phonon correlation and is called a squeeze parameter and
will be treated as a variational parameter. The squeezing transformation transforms H; to

H, = e®2H,e Rz, The transformed Hamiltonian is obtained as,

— T xi—x;)e 2% , 77 % 7
Hy = —t z Cingoe( %)) + UzniTnil + 1 z NigNjs' + V2 z NigNit5',6'
<ij>o i <ij>oa’ is'ao’

+ V3 Z NigNiys" o' T+ EZ Nig

i6""oo’ io
4ag 2 e—4-(xs 2
0 [ > (b + b)) =S (b = b])” |+ Pre?®s ) iy (b + b))
i i io

Nw,
>

+ PZeZ“San(bH,g + bL_s) +

ibo

(3.14)

Since the average phonon correlation in the phonon function is expected to depend on the
electron concentration at the lattice sites, Malik, Mukhopadhyay and Chatterjee (MMC) [19]
have recently suggested that an increase in the electron concentration would increase the
average phonon correlation. This immediately implies that R, should at least partially depend
on the electron concentration. MMC [19] have introduced a new unitary transformation to
incorporate this density-dependent phonon correlation effect. Chatterjee and collaborators
have subsequently used this transformation in a more improved work [20] and also in a
related problem [21] to lower the GS energy. We apply this density-dependent squeezing

transformation to H, with the generator

R, = ay z nio (bib; — b1b}), (3.15)

l

where a,; is to be obtained variationally. The new Hamiltonian is now given by: H; =

eRsH,e~Rs which can be written as,
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e \p—2a5—2a4 Yo N !t ~ ~
Hy =t Z cf ¢jpelFimxj)e T AR g (xi=]) 4 UzniTnu +V Z NigTq!
i

<ij>o <ij>oa’
+ I72 z NigNits' o' T VB z NigNits" o' T € Z Nig
is'aga’ is'"'oa’ io
o4as 2 e %A 2
+a [~ ) (bt b)eroaomin]” — = B [ (b~ bf)em2eaZome]
i i

4P, %% z nze?%2omis (b, + bl) + P,e2% 2 nze2%aZemis (b s + b}, ;)

io ido

Nw,
2

(3.16)

Here,  x{—x/ = ay[(bib; — b bl) — (bjb; — b'b))].

Finally, we consider correlation between phonons at different sites. This can be incorporated
by correlated squeezing transformation. However, we consider only NN phonon correlation.
Following Lo and Sollie [39], the generator of the correlated squeezing transformation is

chosen as,

1
R, =5 z Bij (bib; — bibD). (3.17)
%)
Here we choose, §;; = 8, when i and j are NN and g;; = 0, otherwise. The parameter 3 is
obtained variationally. The Hamiltonian after the above transformation becomes: H = H, =
eReH e Ra To calculate the transformed Hamiltonian, we have to calculate the transformed

phonon operators using BCH formula which gives

5 1
b; = eRebe ™Rs = b; + [Ry, b;] + o [Ra, [Ry, bi]] + -

1 1
=b; + ZBika + EZ BiscPiews/byr + 35 Z BB/ Bt b + -+
k

kk/ kk/j

1 1
= z Sijbj + Z Bub; + gz BikBrjbj + 52 BiBruByib) + -+
] ] K

kij
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Ei = Z(,uub] + Vijb]T).

J
Similarly, we may calculate,

b = Z(:“ijbjT +vijb;)
Jj
where

1 1
Uij = 6ij += ) BubBrj+— ) BixBriBimPmj + -
2! 4!
3

kim

1 1
vy = By + 5; BubaBy + 55 ) BucBitBimBmnbns + -

kimn

Using this we may obtain,

(bf +b,) = Z(Hij +vij) (b + by)
7

and
(b -b) = Z(Hij —vi;) (b — by)
J
Using Egs. (3.20) and (3.21), we calculate
1 ) P
(wij +vij) = 8ij + By 5 (Bt = (e )i,-

1
(wij = vij) = 8ij — Bij + ﬂ(ﬂz)ij + o= (e‘”)ij.

Therefore the transformed Hamiltonian becomes,

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Hy = —tosy z CiTnga + ﬁz ngng +V z NigNygr + V; z NigNi+s' 6!
i

<ij>o <ij>oo’ is'oo’
+ V3 Z NigNiys' o' T Eeff Z Nig
is'"'oa’ io

e4a5+4ad Yo Nio
+ o> | > (s + i) (s + v,y ) (0] + ;) (5], + )
i

e_4as_4ad Yo Nig ¥ +
— Wo 4 z z(“ii - Vij)(“ij/ - Vij/)(bj - bj) (bj/ - bj/)

i |jj/
+ P162a5+2adzaniaz Nig Z(‘HU + Vl])(bj-l— + b])
io j

. Nwo
+ P262a5+2ad20nwz Nig Z(,ui+8,j + Vi+<‘>‘,j)(ijr + bj) + 2 "

io j

(3.26)

One may notice that the transformation (3.13), incorporates the mean-field part of the
phonon correlations while (3.15) includes the deviation from the mean-field part i.e., the
fluctuations. The purpose of carrying out a set of unitary transformation is to decouple the
electron and phonon variables. However an exact separation of the electron and phonon

variables is not possible for the present problem. Therefore we seek a variational solution by
taking the average of H with a suitable phonon state |CI>ph) so that the phonon variables are
eliminated. This entire process is same as making a following choice for the phonon wave

function:

[pn) = e Fie Ree Rz ~Re| D) (3.27)

We thus write an approximate wave function for the original Hamiltonian in the following

product form:
W) = [Ye))®|Wpn), (3.28)

so that the total energy of the system can then be written as:

E = <1P|H|l}’) = (lpell(l/)pthll/)ph) |¢el) = (djell(q)phl}[lq)ph) |7~/)el>- (3-29)
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For |<bph), we choose a fully general phonon state as:

M

[Ppr) = > i lon(@), (3:30)

n=0
where ¢, (x) is the n —th eigen function of a harmonic oscillator and r;,,’s are variational
parameters. Our aim is to begin the numerical computation with the value of M equal to zero
and then systematically increase its value till the energy becomes convergent. The effective

electronic Hamiltonian becomes

Herp = (Wpn|H|wpn) = (Ppn|H |Ppr) = (PprleRieRzefeefiHe R Ree~Rag Re| @, )
= geffz N — tesr Z CiTnga + Ueffz gy + VP Z NigNjg!
ioc <ij>oc i <ij>ogo’

e
+V; z NigNits' o'

i6'oo’
Nwg 4 2 2

+ [e “(e*£),, T2 (1 + 4ay + 12a)

—e~*4(e2F) Ty (1—4ay +12a3) - 2 (3.31)
where

1 ! !

Eeff = —w—0[2(91g{ +29,95) — (91> + zg52)]

+e2*(1 4 2a4 + 3ad)M;T1[(9; + zg,) — (g1 + zg3)], (3.32)
teff = teadF1F2F3 ) (333)

2 /; ! 12 12
Ueff =U - (U_o [2(9191 + 29292) — (91" + 295°)], (3.34)

2 1
VE=V; — o [(9192 + 9192) — 91921 . Vs =V, — w—o[Zgzgé — 931, Vs = Vs, (3.35)

o)

= o [ dye™ BOIHO), (336)

k,l=0 — 00
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[0

_r _ 14 14
Fzzzckle 7 fdye ysz(y+§) Hl(y—z), (3.37)
k=0 —o
M [ee]
Y2 (14m2)
Fo= Y aa | dye 70 00 o) (338)
k,l=0 —00
M oo
=Y [ e EOMOHGIY, (339)
k,l=0 —00
My = (eF)y, +2n ) (eF), (3.40)
m=1

w, w [(e_ZB)i+5’,i+5” o (e_w)i+8’,j+6”]

. 2qg'?
D ==
X 0

[(ezﬁ)oo - (6_23)01] + 2‘9;2 Z

578"
* 4%(%% Z [(e_ZB)o.Hé" B (e_ZB)i+8,i+6’] ’ (3.41)
=7
where y =+/x and (3.42)
Cil = ckcl\/m, (3.43)
y = e 2% ZkAﬁcj (1-2a4+3a2), n =1+ 2ay, (3.44)
& =V2y & =2y%, &=20%-20-1). (3.45)

We calculate (ei”/’)(m using the periodic boundary condition. Then the 2D lattice can be

viewed as a toroid of N lattice sites with N very large so that the effects of end points do not

matter (Fig. 3.1).
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Fig. 3.1: The 2D HH model in the form of a toroid under periodic boundary condition.

The matrix B is given by

0 B O 0 0 0 00 B
g 0 P 0 0 oooo\l
B=10 B 0 g 0 0 00 O
ﬁdo 0'0 0000/

We find that the element (e "/’) for the ring structure in Fig. 3.1 can be represented

exactly by the following closed form analytical expression:

o)

(einﬁ _ Zm (+pn[;)'2p (3.46)
had — 2p+(Lt+1

(), Z <2p + (q— + 1)) @np)l p—(12 ) (g = odd) (3.47)
& e @]
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+n i N 2p + (g + 1)) (inﬁ)[zm(%“)] _
" oq Z < p +21 p! [p + (% + 1)] - (q =even)  (348)

For the electrons, we assume a square density of states (which is a valid assumption in 2D)

p=0

and write,

1
p(&'k) = ﬁ ’ -W < & < w (349)

=0 ; otherwise.

3.2.1 Weak Coulomb correlation

3.2.1.1 Hartree-Fock Approximation:

In the mean-field theory a four operator term could be decomposed into two-operator form

so that the system Hamiltonian can be solved easily in the following way:

nn; = [(n; — () + (ni)][(nj - (nj>) + (nj)]
= (n;)(n; — () + (n; — (M) (y) + (e )ny) + (ny — () (my — () (3.51)

In the HF mean-field theory, we neglect the fluctuations term (n; — (n;))(n; — (n;)) as this
approximation does not have any effect on the physics of the problem, to solve the electronic

Hamiltonian. Therefore we may write Eq. (3.31) as

nn; = (ni)(nj - (nj)) + (n; — (){(ny) + (n;)(n;)

= (nyn; + ny(n;) — (N M) (3.52)
so that
(ninj) = (ni)(nj) (3.54)
Also,
(ny) =n = (nyp) + (ny) (3.55)

Therefore,
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n

(nicr) =5

> (3.56)

The HF mean-field approximation transforms the many particle average to the product of
single particle averages by removing the quartic operator terms. Thus the Hamiltonian

becomes soluble. This approximation gives better results at lower electron concentration.

Using the HF mean-field theory we may write the electronic terms of Eq. (3.31) as shown
below.

Vle z NigNjgs' = Vle 2 [(nio)njo’ + nio(nja’) - (ni0)<nja’>]

<ij>oo’ <ij>o0’

=V znZ Mg + 22 njz n — Nzn?
| jo io

=V§ ZZnZ nis — Nzn?

io

, (3.57)

where j =i+ 4§, carries the NN information and z is the number of NN in the extended HH
model.

Let us consider another term of Eq. (3.31).

Uesr z ity = Ugsg Z[(nn)nu + nir(ngy) — (M Xngy)]

l

l

n n n?

= Ueffz St nns -
i

n n?
io

The other two electronic terms can be written with the HF mean-field theory as
vy Z NigNiys' o = 22'NV5 Z ni; — Nz'n?V§, (3.59a)
is'oo’ io

and
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Vs Z NigNiys ot = —Nz''n?Vg (3.59h)

is""oo’!
where z' represents the number of the NNN in the extended HH Hamiltonian.

Using these results the effective electronic Hamiltonian of Eq. (3.31) is solved using the
mean-field HF approximation. For weak electronic correlation, the mean-field HF decoupling

method gives the GS energy (&y,) (per particle) for the system as

1 n?
&w =N éepp =57 terr(2n —n?) + IUeff + zn2V§{ + z'n?V§ + z''n?V§

Nwg
- [e‘*“(ezﬁ)oo T, (1 + 4ay + 12a3)
— e () Ty (1 —4ay +12a3) — 2] , (3.60)

which is finally minimized with respect to g1, g3, @, @4, B and ¢;;’s.

3.2.2 Strong Coulomb correlation

To investigate the strongly correlated region, the half-filled HH model can be transformed
into a Heisenberg model. In this regime, it is assumed that each site is either occupied by a
single electron or remains empty, though the presence of virtual fluctuations may result in
double occupancies. But in the present case, we consider the system in the subspace of no

double occupancy and therefore an effective t — J model can be obtained.

3.22.1 t—J] model

For the strong Coulomb correlation, i.e. at U > t, there is no hopping process if t = 0 and
the ground state of the lattice is degenerate which is a singly occupied lattice chain of
electrons. But as t becomes finite, the lattice degeneracy breaks and there could be four
possible ways that may have effect on the double occupancy in the chain of lattice. The four
probable hopping processes can be explained through the Hamiltonians in the following

ways:
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Fig. 3.2: t — ] model mechanism

The mechanism (a) represents the process where unoccupied sites are occupied by hopping,

that can be presented by the Hamiltonian,
HY = —t z {(1-ni_g)clcio(1 =1 6) + (1 — nj__o.)c]-t,cia(l -ni5)}  (4.61)
<ij>o
In the mechanism (b), the doubly occupied states hop by one lattice site. This process can be

described by the Hamiltonian,
Hl = —t Z {ni,_(,c;racj(,nj,_cr + nj,_ac]-t,cwni,_(,}. (3.62)
<ij>o

The third process (c) increases the number of doubly occupied sites that can be expressed

with the Hamiltonian,

Hf =—t Z {ni‘_(,c;rocja(l — nj,_(,) + nj,_acjt,cw(l — ni,_a)}. (3.63)

<ij>o

The fourth process decreases the number of doubly occupied sites that can be presented by

the Hamiltonian,

H =—t Z {(1 — ni,_(,)c;racjanj,_a + (1 — nj’_a)c;;cl-ani,_g}. (3.64)

<ij>o

Considering all the possible hopping mechanisms, the hopping process in the total Hubbard

Hamiltonian can be written as,

H,=H? + H} + Hf + Hf. (3.65)
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Here as the two processes (c) and (d) change the number of doubly occupied sites, we may
write them together as H;” + H; = H and this Hamiltonian causes an extra energy U to the
system. Therefore in order to eliminate any extra energy cost to the system we apply the

Schrieffer-Wolff transformation (SWT) to the total hopping Hamiltonian H,.

The generator of the canonical SWT is considered as,
1
S= E(Ht* —Hp), (3.66)

That transforms the Hubbard Hamiltonian as,
H=eS(H? + Hf + Hy)e™®

1
= HY + Hi +Hy + [S,H? ]+ [S, Hy] + [S, Hi'] + 5 |5.[5, (1 + HE + Hy)]|. (3.67)

For a strongly correlated system, as we do not want any change in the doubly occupied sites,
the result of the SWT gives,

Hf +[S,Hy]1=0. (3.68)

Other terms in the transformed Hamiltonian become:

S, B ] = %[HJJH{] = o(t?/U), (3.69)
1 1
(8,15 Hyl] = =5 [HE H ] = o (62 /), (3.70)
%[5, [s, HO + Hti]] =[S, Hy] + o (t3/U). (3.71)

Therefore collecting all the terms we obtain the transformed Hamiltonian as,
~ 2
H=H)+H,+ il [H}, H ]+ o(£3/U). (3.72)

The commutator [H;", H; ] contains the terms H; H; and H; H;f. Here the term H H; acts on
a doubly occupied site. So we may ignore the effect of that term. Also the bare Hubbard

correlation term has to be neglected as it contributes the energy og the doubly occupied sites.
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The term H; H; acts to creat a doubly occupancy at one site and destroys the same at other
site, and H; H = o(t?). This term has the same effect of a spin-flip operator: Sl-+Sj‘+Sj‘Sl-+.

S; - §; can be written in terms of the spin-flip operator as

1
SitSj=5 (SFS7 +S7S*) + SEs?, (3.73)
with

St =chew, ST = clen, (3.74)

and S7 , the z-component of §;, is given by

1
St =5 (i — ). (3.75)

As the flipping of spin happens for the anti-parallel spin configuration and there is no effect

of this spin-flip operator on the parallel spin, this may be written as, (Si -8 — %ninj).

Therefore the two site effective t — J model can be written as,

2

4t 1
H,_;=—t Z {(1=ni_o)ct cio(1 —nj_5) + hoc} + o Z (sl- -S; — Znl-nj). (3.76)
<ij>o <ij>
Using this effective t — J model, we may write our effective electronic Hamiltonian (3.13) as
}[eff = Seffz Nig + teff Z (1 - Tll'a-) CiO'CjO' (1 - nj(—,) +] Z (Sl ' S] — Zninj)
io <ij>o <ij>

+ V¢ Z NigNjg

<ij>oo’
+ %Nmo [e‘wf(ezﬁ’)00 T, (1 + 4a, + 12a2)
— e (e?F) Ty (1—4ay +12a2) - 2] , (3.77)
where S; is the electron spin operator at site i and J represents the NN AFM coupling
strength for the electronic interaction which is obtained as

. 42
(Uers — V5)

, (3.78)
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Because we consider here a strongly correlated electronic system, we neglect the NN and

NNN interaction terms V, and V5.

It is difficult to solve Eq. (3.77) analytically with the double occupancy constraint.
Therefore, we replace the actual local constraints by the average double-occupancy constraint

using the Gutzwiller approximation (GA) [40, 41].

3.2.2.2  Gutzwiller Approximation

GA is a more improved approximation technique than the mean-field theory where the
system with a constraint can be dealt with. In this method, the GS energy of the system is
calculated using variational technique with respect to the renormalized GS wave function.
Therefore GA can also be described as a variational approximation to the dynamical mean-
field theory (DMFT). To estimate the GS energy, the effective renormalized wave function is

first written as

[¥) = Plyo), (3.79)

where P is the projection operator, [y, > is the uncorrelated electronic wavefunction and in

case of the GA, this operator is defined as,
=] (-, (3.80)
J

Using the projected mean-field approximation the double occupancy can be avoided and the
expectation values of the operators can be calculated as
A (WI0l$) (ol POP|io)

O ="My = o) (3:81)

Therefore to solve the t —J Hamiltonian, the renormalized expectation values for the

electronic number operator cl.‘:,cja and the spin projection operator can be written as,

<CiTaCja) = ‘Pt(CiJrngcr)o (3.82)

(Si-8;) = 0s(Si " Sjho, (3.83)
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where the coefficients g, and g, are the renormalization factors for the corresponding
operators’ expectation values. In the similar way, the parameters t and J can be replaced in

the t — J model with the multiplication factor due to renormalization,
terr = @et, and  Jorr = ). (3.84)

Ogawa et al. [42] have applied the GA to the strongly correlated t — /] model. Considering the
average electron density n and the hole density x = (1 — n), the GA leads to [43],

2x
and
4
Py = —(1 T x2) (3.86)

where ¢, acts as the band reduction factor due to the strong correlation. Using this formalism

of GA, we may write the effective hopping term of the Hamiltonian of Eq. (3.77) as
(1-n;5) c;rocj(r (1 — nja) = ¢, c;rocjg , (3.87)

Under GA, the antiferromagnetic interaction coefficient J is also renormalized by a factor

@, =4/(1+x?),ie, Jtransformsto ] where | = ¢, J.

Next we impose the HFA which is now a valid approximation because of the restriction on

the double occupancy. The effective Hamiltonian in the Fourier space reads,

Hepr = z EkC;(raCka -2 -V A, Z Yk (C;(FT C_p + Cikicm)
ko k

1. ) )
+Nz [Z (= 4VOn? + (J — VEIAZ + ]pz]

Nw,

2 [e4e(e2) T2 (1 + 4aq + 12a3) — e~*%(e%F) | T5 (1 — 4aq + 1203)

B 2] (3.88)

with

Ey =& — &,
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1 .
E¢ = Eeff — E(] - 4V18)Z7’l ,

&k = ((pt Lepr + Pj)
Vie=W vk, (3.89)

where y is given by: y, =Y. e*®

u which for a square lattice reduces to: y; =
2 (cos k,a + cos kya), the expression of g, may be used to define the band width and the

average occupation number per site (n), the Hartree correction to the kinetic energy term (p)

and the gap parameter term (A,) are defined as

1 +
n=ﬁz < CjyCig > ;
io

1 t
p:m z <Ciacj0>;

<ij>o
Ap=—5 Z <G> = oy Z < G > (3.90)
<ij> <yj>

which are calculated using the double-time Green function method of Zubarev.

3.2.2.3 Zubarev’s Green’s function technique

Green function is a very useful mathematical tool to study the many body physics,. Though
there are several Green function methods, the double time, temperature dependent Green
function method is one of the most useful methods among them. Zubarev has suggested a
double time temperature-dependent Green function technique which has been applied to
superconductivity, ferromagnetism and also to the electron-lattice interacting system. Here,

we also use the Green function method of Zubarev.

The time dependent advanced and retarded Green’s functions can be defined as the average

value of the time product of operators as,

Gy (tt/) = ((A@®); B(t/))s = Fio{x(t — t/)}([A(®), B(¢/)] ), (3.91)
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where G, and G_ represent the retarded (G,.) and advanced (G,) Green functions respectively
and (...) indicates the average over a grand canonical ensemble, ((...)) denotes the double
time Green function which is of higher order than the initial one and n = +1(—1) for bosons

(fermions).

Using the equation of motion method we obtain
ii((A(t),B(t/)))i =6(t —t/)([A@®),B(t/)] ) +i6(t —t/) ([iiA(t),B(t/)] )(3.92)
dt n dt n

Using the Heisenberg equation of motion method, we finally obtain the equation of motion
for the Zubarev Green function as

1

EG(E) = E (A(0), B(t/))* = 5—([A(©), B(+/)],) + ([A@, HL; B(/))E. (3.93)

After calculating the Green functions, the time-dependent correlation functions can be

calculated as,

o)

(BEHA®)) = i f

—00

[G(w +ic) — G(w — ig)]

o e~iw(t=t)) gy, (3.94)

Following Zubarev’s formalism and using Eq. (3.94), we have to calculate the Green

functions
Grr = ((cus i), (3.95)
and
Frar = (T i) (3.96)
Now considering,
wp =\Ex + 0k 5 A=20 = VA, v, (3.97)

and using the equation of motion method for the Hamiltonian (3.88), we obtain the following

two relations,
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1
—EL)Gpy = — — A Fy
(w k) kT o 29725

and

(@ + ER)Frur = =Dy G -
Solving these two equations we obtain the Green functions as

ket = 21 (w? — wg) '’

1 A

Fpp = ———t
felT 21 (w? — w§)

(3.98)

(3.99)

(3.100)

(3.101)

To find the average occupation number per site of Eq. (3.90), we can Fourier transform the

operators and using Eq. (3.94) we write

(CZT(O)CkT(t)) =—2 !Ei_r)% _j (eBo + 1)

From Eqg. (3.100) we may write

G ( )_ 1 [ w n Ek
k@) = o (0?2 — wE)  (w? — w})

ImG(w + ig)

et du.

1

1 1 1 Ey 1
)
2n 2 \w —w, o+ wy 20 \0 — wy,

171 E 1 1 E
G R
Wi

Therefore, we have

limIm G(w + i€)
£-0

0)+(1)k

)

1 wk+Ek 1 wk—Ek 1
=2l ) =) * o) m )
21 2wy w+is— wy 2wy W+ i+ wy

(3.102)

(3.103)

(3.104)
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For t — 0, we can use the Eq. (3.104) and calculate the Eq. (3.102) as,

lti_I}g(C,tT(O)CkT(t))

1 [ d
- —zﬁ_f o5~ 20) 0x+ B8 = @) + @k~ B + )

- () - ()

- 2wy L\ePor +1 e Por + 1

g ( 1 N 1 )+ E ( 1 1 )
T 2w \ePek +1 " e Bk +1) 2wy \ePork +1 e Bok +1
1 1 N eP ok N Ey 1 efex

S 2\efeor+1 1+efor) 2w \efer+1 14 efox

_ 1+ Ex (1—ePox

2 2w \1 + eBek

_ %[1 _ 5—’;tanh (%)] | (3.105)

As total n = ny + ny, we may write for N number of particles,

n(T,A) = %z [1 - i—l;tanh (%ﬂwkﬂ. (3.106)
k

Similarly, the number of holes can be calculated as,
T,A) = — Z [1 Bre h(l )] 3.107
p(')_ZNzky" oy 0 S Bwk)]| (3.107)
and the gap parameter is found to be,
b= () o o)
b—NZka 201 an Z.Bwk : (3.108)

In order to solve the final Hamiltonian Eq. (3.88), consider materials with A,= 0, atT — 0.

Under this assumption, the GS energy per site (&) for the system reads
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1 . -
esy = Nne, — (@ teps + 1)) Z Y0 (—Ey) + Nz [Z (J — 4V{)n? +]p2]
ko

Nw
+ TO [e‘*“(ezﬁ)oo T, (1 +4aq +12a3) —e~**(e?F) T3 (1 - 4ay +12a3)

2], (3.109)

where 6(—E},) is the step function and the correlation functions read,

p(0,0)zi(l—xz). : n(0,0=(1-x)=n (3.110)

Therefore, the GS energy per site is given by

1 . -
& =N, — ((Pt terr + pf) zp + Nz [ZU - 4V1€)n2 +]p2]

Nwg

2 e‘“"(ezﬁ)00 T, (1 + 4ay + 12a2) — e“‘“(ezﬁ)oo Ty (1 —4ay + 12a2) — 2].

(3.111)

3.3 Numerical results and discussions

Our primary goal here is to examine the nature of the phase transition from the SDW state to

the CDW state for the 2D extended HH model. As the Hamiltonian (3.1) does not admit an
exact analytical solution, we deal with the system analytically in two different regimes
separately, namely, the weak-correlation regime and the strong-correlation regime for
different e-p coupling constants. For low values of U,fr, we would use the formulation for
weak correlation given in Section 3.2.1 to calculate the effective parameters and for high
values of the U, ¢, we use the formulation for strong correlation presented in Section 3.2.2.
We find that for U,rr < 2.1, the strong-correlation expressions do not work and lead to
divergent results. We therefore use weak-correlation expressions for the region U,z = 2.1.
This critical value of U, s, varies a little bit depending on the el-ph coupling strength a. For
example, for a« = 0.5, U = 3, the critical U,sf is 2.08, whereas, fora =1, U =4, Ugsf =
2.12.
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Fig 3.3: Effective onsite e-e interaction (U,) vs. bare onsite e-e interaction (U) for t = 0.2
and g, = 0 (solid lines) & g, = 0.2 (dashed lines) for a few values of on-site e-p coupling

coefficient (a).

In Fig. 3.3, we plot the effective onsite Coulomb correlation (U, ) with respect to the bare
onsite e-e interaction strength(U). As we deal with two different regimes of the system by
two different mathematical formulations, the graphs of the two regimes meet each other in a
discontinuous manner at the correlation boundary. Thus this discontinuity may well be an
artefact of the approximation we have used. We however find that this discontinuity does not
affect the energy or the phase diagram. Fig. 3.3 shows that at weak correlation i.e., at small U,
the phonon-mediated electronic attraction dominates over the onsite bare Coulomb repulsion
and the effective e-e interaction U,rr becomes negative which implies that at low U, the e-p
interaction drives the effective onsite electronic interaction attractive. This leads to the
formation of the onsite bipolarons leading to a Peierls insulator that can also be described as
the CDW state.

As U increases, U,sf increases gradually and turns positive and then the GS is given by an

anti-ferromagnetic Mott polaronic SDW state which is also an insulating phase. In other

words, as a exceeds a certain strength, the GS of the system undergoes a transformation from
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an SDW phase to a CDW phase, both being insulating phases. In both the phases, U.sf
appears to increase linearly with U which is understandable from Eqg. (3.34). One can also
find that as « increases, the bipolaronic bound state becomes stronger and localization

increases.

U=4
4
10 10
U=6 e — U=8
Sous 5 “~_ | 5' ‘~~“‘~
= 0 0]
(©) \ (d) ™
_5 & o - _5,
0 2 4 0 2 4
u a

Fig 3.4: U.sr versus a for t = 0.2 and g, = 0 (shown by straight lines) and g, = 0.2

(shown by dashed lines) for a few values of U.

The behaviour of U, versus a for a few U values is shown in Fig. 3.4. We find that as a
increases, U, decreases and the decrease is essentially linear, which is again understandable
from in Eq. (3.34). This reduction in the value of U.sf is caused by the phonon-induced
attractive el-el interaction. At low e-p interaction, U, is positive and the GS is a polaronic

Anti-ferromagnetic Mott SDW wave insulator. As the e-p interaction increases, beyond a
certain a, U,rr becomes negative and the GS transforms into a bipolaronic CDW Peierls
insulator. The nature of the intermediate region in between these two insulating states is the
focus of our attention in this work. We find that with increasing U, the role of the NN e-p

coupling becomes important.
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Fig 3.5: Mott-Hubbard metallicity parameter (MHMP) (8teff/Ueff) versus U fort = 0.2
and g, = 0 (shown by the straight lines) & g, = 0.2 (shown by the dashed lines) for a few

values of a. (The dotted line shows +1 value).

According to the Mott-Hubbard (MH) criterion, the condition for metallicity is given by:
(2zterr/Uerr) = 1, where z is the coordination number which for a 2D square lattice is
equal to 4. We shall investigate the behaviour of the SDW-CDW transition in the 2D HH
system with the help of the above MH metallicity criterion and accordingly draw the phase
diagram of the system in the @ — U space. The quantity: 8t.s/U.r Will be referred to as the
Mott-Hubbard metallicity parameter (MHMP). In Fig. 3.5, we show the variation of the
MHMP with U for a few values of a. The negative values of the Mott-Hubbard parameter
correspond to a CDW phase with —1 < (8teff/Ueff) < 0. Above a critical value of U,
MHMP satisfies |8teff/Ueff| > 1. Hence this region should have the attributes of a metallic
phase. As U increases further, MHMP again becomes less than 1 but positive. In this phase,
Uesr > 0and 0 < (8t.rr/Uerr) < 1, and therefore this corresponds to an SDW phase and
the one where U,rr < 0, i.e. 1 < (8torr/Uesr) < —1, corresponds to the CDW state. Fig.
3.5 clearly depicts that the intermediate region lying between the CDW and SDW phases is
metallic in nature. One can observe that for a finite value of NN e-p interaction coefficient,

the intermediate region only shifts towards higher U values. The reason for this is that as the
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NN e-p interaction g, becomes finite, stronger on-site Coulomb correlation is required to

overcome the e-p interaction coefficient to make the transitions.

20 10 o
U=2 ; -
10!
@ ¢ oz 20 (b) '.
40’ :
0 2 4 0 2
10
< e— ——
o 10! (c)
0 2 2

Fig 3.6: MHMP (8t,/;/U,f) versus a for ¢t = 0.2 and g, = 0 (shown by the straight lines)

& g, = 0.2 (shown by the dashed lines) for a few values of U. (The dotted line shows +1
value).

The variations of MHMP with « for a few values of U are studied in Fig. 3.6. Here also the
behaviour of MHMP in the figure shows an SDW-CDW transition with the cross-over region
being a metallic phase. We now observe that for a finite NN e-p interaction coefficient g,, the
plot shifts towards left i.e., towards the lower values of a. The reason is understandable
because at finite g,, the polaronic interaction is stronger than that for g, = 0 and therefore

the transition to the CDW phase can take place at a lower value of « for a given U.
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--------- U=2a
— Present result

----- 1D result

Fig. 3.8: Phase diagram in (a — U) plane: Comparison with results of Wang et al. [30].

In Fig. 3.7, we display the three-dimensional (3D) phase diagram by plotting MHMP in the
(a — U) plane. The left side of the graph indicates the SDW phase while the right side shows



Chapter 3

the CDW state. The region in between the two phases satisfies the Mott-Hubbard metallicity

criterion.

R Wang et al. result
Present result

0 1 2 3 4
a

Fig. 3.9: Comparison of 1D and 2D phase diagrams.

We next plot in Fig. 3.8, the SDW-CDW phase diagram for an extended 2D HH system in
the (a« — U) —plane using the transition-point values of « for each U from Fig. 3.5 and Fig.
3.6. The figure shows a wide intermediate region flanked by the SDW and CDW regions.
This intervenng phase satisfies the MH metallicity creterion and is therefore a metallic phase.
We have also shown the result of Wang et al. [30] obtained by non-Gaussian exact
diagonalization method for the sake of comparison. It is clear that the results of Wang et al.
[30] and our results are qualititatively similar though our results predict a wider metallic
phase and therefore more appealing from the point of view of superconductivity. In Fig. 3.9,
we compare our present 2D phase diagram with that obtained for the 1D HH model [20]. The
figure shows that the metallic region is wider in 2D, which is of course an expected result.
This result is particularly important because the majority of high temperature

superconductors are either two-dimensional or quasi-two dimensional systems.
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Fig. 3.11: Comparison of present results for the width
of MP vs. @ with those of Wang et al [30].

We have finally calculated the width of the metallic phase from the Fig. 3.8 and plotted it

with respect to « in Fig. 3.10 and Fig. 3.11. At a specific a value, we can find two values of
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U from the phase diagram, one corresponding to the transition from CDW phase to MR (say,
U;) and the other corresponding to the transition from MR to the SDW phase (say, U,). The
difference AU = (U, — U;) gives the width of the metallic phase. In Fig 3.10, the 2D
metallic width is compared with the 1D system [20].

We see that in 2D, the width of the MP decreases with & more slowly than in 1D. Thus the
existence of an intermediate metallic phase is more probable in a 2D system. This is again an
interesting result and useful for superconductivity in 2D. In Fig 3.11, in contrast to our result,
the result of Wang et al. shows that the width of the metallic phase hardly changes with «
even over large range of a. We would normally expect the MP to shrink with increasing a

because of the emergence of the CDW phase at large a.

3.4 Conclusion

In this chapter, the CDW-SDW transition is studied in a two-dimensional half-filled extended
HH model by employing an analytical method which is variational in nature. A fully-
generalized many-phonon averaging is performed upon the succession of canonical
transformations that leads to an effective electronic system which is solved analytically in
weak and strong correlation regimes separately using plausible approximations. More
specifically, for low values of the Coulomb correlation strength, i.e. in the weak correlation
regime, the renormalized electronic system is treated by the method of Hartree-Fock mean-
field theory while for the higher values of the on-site Coulomb correlation i.e. in the strong
correlation regime, the effective Hamiltonian is first mapped on the t —J model and then
simplified, employing the Gutzwiller approximation and finally solved using the Zuberev
time dependent Green’s function technique followed by the Hartree-Fock method. For both
the regimes, we have calculated the effective Hubbard correlation and examined it as a
function of the bare Hubbard parameter U for different e-p interaction coefficients. The
SDW-CDW transitions are observed at different e-p interaction strengths as the U, changes
its sign. The principal interest in this work has been to unravel the nature of the phase across
the SDW-CDW transition. Studies in 1D HH model have almost unequivocally revealed the
existence of a metallic phase at the CDW-SDW cross-over region. Few recent investigations
have made similar claim for a 2D HH system using numerical methods [31, 32]. An

analytical examination of this issue was certainly called for from the point of view of the
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basic understanding of the physics behind the system. We have therefore investigated the
nature the phases around the SDW-CDW transition using the Mott-Hubbard criterion.
Calculation of the Mott-Hubbard parameter over different regimes reveal that even in a 2D
HH system, an intervening metallic phase exists between the insulating SDW and CDW
phases. This result is consistent with what our commonplace notion would justify, as one
would normally expect more accessible states in 2D than in 1D and hence more mobility. The
comparison of the present results with the 2D non-Gaussian exact diagonalization results of
Wang et al. [30] shows that the present results are qualitatively similar to the numerical
results of Wang et al. However, our analytical results predict a wider intermediate metallic
phase which is more appealing from the view of superconductivity. Comparison of the
present results with those of one of our previous works shows that the width of the metallic
phase is wider in 2D than 1D. This result is again interesting from the point of view of high-

temperature superconductivity in 2D systems.
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A semi-exact study of self-trapping
transition in a one-dimensional Holstein-
Hubbard model

4.1 Introduction

In chapter 1, we have described the phenomenon of self-trapping (ST) transition in electron-
phonon system. The issue of ST transition has continued to remain in the focus of attention in
the last few decades for its importance in high-T, superconductors [4-5], colossal magneto-
resistance (CMR) materials or manganites [6] and semiconductor nanostructures [7].
Therefore several authors have studied the nature of ST transition for the single-polaron [8-
12] and the many-polaron systems [13] within the framework of the Frohlich model and for
the correlated polar systems using the Holstein-Hubbard (HH) model. However, no clear
concord has been established regarding the nature of the ST transition.

Recently, Krishna, Mukhopadhyay and Chatterjee (KMC) [14] have examined the
behaviour of the ST transition in an extended HH system including the NN e-p interaction
with the help of a variational technique. To incorporate coherence and correlation in the
phonon wave function, they have applied a variational Lang-Firsov (LF) transformation [15]
and the on-site and inter-site squeezing transformations [16-17] followed by a zero-phonon
averaging. The resulting effective electronic problem has been solved using the exact Bethe
ansatz technique following Lieb and Wu (LW) [18]. Their calculation shows that ST

transition in a one-dimensional correlated polar system is continuous. It should however be
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mentioned that the analysis of KMC is approximate because of the approximate treatment of
the phonon subsystem. Because of the relevance of the ST transition in systems like
manganites etc, a more improved analysis of the ST transition in the HH system may be
useful so that a more authentic statement can be made about the continuity or otherwise of the

nature of the ST transition. Our main goal in this chapter is to achieve this purpose.

In this work, we study the ST transition in a 1D extended HH model with a more improved
variational calculation than the one carried out by KMC. We consider the strength of the
onsite Coulomb interaction to be sufficiently large so that the phonon-induced effective
correlation coefficient remains positive in order to prevent the formation of bipolaronic
charge density wave (CDW) state through Peierls instability. The ST transition is examined

by analyzing the relevant parameters both in the adiabatic and anti-adiabatic regimes.

4.2 Model and Formulation

An extended HH Hamiltonian in 1D can be written as

H=-t Z c;[,cj(r + UZniTnu + a)OZb;rbi +glznw(bi + b:r)
i i

<ij>o io
+ 92 Z Nig(biss + biys), (4.1)

ido

where the first and the second terms together constitute the Hubbard model, the third term
refers to the free phonon Hamiltonian and the last two terms represent respectively the onsite

and nearest-neighbour (NN) electron-phonon (e-p) interactions. Here, t gives the electronic
hopping integral, ci‘; (c;s) creates (annihilates) an electron at site-i with spin o, n;,(=
c;ra Ciy) represents the number operator for electrons at site i and with spin o, U refers to the

onsite Coulomb correlation strength, b;r (b;) stands for the creation (annihilation) operator of
an optical phonon at site with Einstein frequency w,, g, and g, indicate respectively the

onsite and NN e-p interaction coefficients, § referring to an NN site.

To deal with the phonon degrees of freedom, we carry out a sequence of unitary
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transformations on Hamiltonian (4.1). We first perform on (4.1) a modified LF (MLF)

transformation [15] with the generator:

i g:
R, = _12 nia(bi1L — b))+ _22 nia(biT+6 — biys), (4.2)
a)O io @ ido

where g; and g5 are the variational parameters. The Hamiltonian transforms to

1
H, = efiHe R = H + [Ry, H] + T [Ry, [Ry, H]] + - (4.3)
_ t . o (xi—x;) o f7 . T ) ) ) t
= —t ¢ cige X + T Y nymy +wo ) bibi+e ) nig+Py ) nig(b;+b))
<ij>o i i io io
ido
where
g1 9>
(xi—x) = w—l (b} = b)) + == (b, s — biss), (4.5)
0 (Oh)
2 14 14 1 12 12
£=- [— (9191 + 29292) —— (91° + 29 )]. (4.6)
wWo (ON)
T 2 ! ! 2 12
U=U- w_o[z(glgl +29.92) — (91° + 29,71, (4.7)
Pr=g1—g91 ; P,=9,—9> (4.8)

Physically g; plays the role of the depth of the onsite polaron potential and would thus
increase with increasing g, and be responsible for localization. On the other hand, g5 gives
the length scale over which the lattice is distorted by the e-p interaction and thus it would be
responsible for delocalization. In the conventional LF transformation g; = g, and g5 = g,
which is a good approximation when we consider the e-p interaction as strong. But, for weak
and intermediate coupling regime, one can obtain a lower value of the ground state (GS)
energy by considering g; and g; as variational parameters. One may note that the above
variational LF transformation takes into account the displacement of the lattice modes caused

by the e-p interaction and brings in coherence in the phonon state which is the essential effect
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of the e-p interaction. Next, we apply, following Zheng [16], an onsite squeezing

transformation with the generator:
_ E b _ ptpt
Ry =a ) (bib;—Db/b;), (4.9)

where « is a variational parameter. The transformed Hamiltonian now becomes,

1
H, = eR2H,e Rz = H, + [R,, H,] + T [Ro, [Ry, Hyl| + - (4.10)
=t z Cjacjae(xi_xf)e_m + ﬁZ L)
<ij>o i
et® 2 e4e 2 Nw
+ w, —Z(b;‘+bi ——Z(bj—bi) +eZnia+ 2
4 L 4 L _ 2
l l Lo
+ pe2a Z nio (b + b1 + Pye?® Z nio(biss + bl 5) (4.11)

io ibo

The above transformation can be identified as the Bogolubov transformation and it normally
takes care of some of the higher-order effects. Specifically, it incorporates the correlation
between successively emitted virtual phonons at a particular site and also the anharmonic
phonon-phonon interaction partially and thus the finite phonon life-time effect to a certain
extent. Recently, Malik, Mukhopadhyay and Chatterjee (MMC) [19] have proposed a new
electron-density-dependent squeezing transformation that lowers the GS energy further. This

transformation is accomplished by the generator:

R, = adan (bib; — bib1), (4.12)

l

where the parameter a,; is to be obtained variationally. After the transformation with (4.12),

the transformed Hamiltonian reads

1
Hy = eRsH, e~F2 = H, + [Rs, Hy] + o [Rs, [Rs, Ho]] + - (4.13)
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o2 p,—2aG Yo N xl—x" ~
T T
<ij>a i

e—4a

e4a 2 5
TZ{(b;r + bl.)ezad Zdnia} — y Z{(blf — bi)e—ZadZo—Tlid}
i i

+ wg

Nw
+ ez Nig + TO + Pe?® Z n;ze2%2emis (b, + b])

io io
+ P,e2@ z nze?%a2omis (b s + b}, ;) (4.14)
ido
where,
x{ — x] = ag[(b;b; — b b]) — (b;b; — b[b])]. (4.15)

Next we perform the NN correlated squeezing transformation [17] with the generator:

1
Ry =5 Z Bij (biby — b bD), (4.16)
i#j
where B;; = B, if i and j are NN sites and zero otherwise. The transformed Hamiltonian then

becomes

1
H, = eR+H, e R+ = Hy + [R,, Hs] + o [R4, [Ry, H3]] + - (4.17)

v \p—2a,-2a4 Yo N [ ~
=t Z cf cjpelrimxj)eT e Mt i g(xi5]) 4 Uznnnu
i

<ij>o

elataag Yo Nig

+ W TZ Z(#ii +vi)(uijr +vijr) (b +by) (b,-T' + bj’)

i ji’

e—4a—4ad YoNig T T
o 4 Z Z(M” = vij) (i = vijr) (b = by) (bj' - bj’)
l

Ji’

Nw
+ sZni(, +TO+ PleZ“ZniaezadZG”wZ(,uU + VU)(b]-l- + b])

io io j

+ P,e%@ Z Nn;pe2%d Lo i Z(MH&]’ +Virs,j)(bivs + birs)

ido j
(4.18)
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The Hamiltonian H, is to be averaged over a suitable phonon state for which KMC chose the
zero-phonon state. In this work, we choose for the averaging phonon state a fully-generalized

many-phonon state [20]:

|®pn) = Z Cnl @ (X)), (4.20)

n=0,1,2,...M

where ¢, (x) represents the n —th excited state eigen function of a simple harmonic oscillator
and M is the value of the upper limit of the summation in (4.20) at which the result
converges. This is a fully generalized many-phonon state in the sense that it does not set any
limit to the phonon occupation for any lattice site i.e., any site can contain any number of
phonons. We can also have a less-general many-phonon state in which a particular site can
have at most one phonon, which is a Gurari state. Obviously, the state (4.20) is the most
general many-phonon state. The effective electronic Hamiltonian is obtained as

Herr = geffz L z ChrCi + Ueyy z Nty

<ij>c

—4a

e*@ 1
+ Nw, [T (ezﬁ)00(1 + 4ay +12a3)S, — (ezﬂ)00(1 —4ay + 12a3)S; — S| 42D

where
2 ! !
Eeff = — [00_0 (9191 + 29297) — >+ 295 )]
+[e**(1 + 2a4 + 3a§)M151][(gl +2g,) — (91 + 292)1, (4.22)
2 !
Uesr = U — w—o[z(glgi +29,93) — (g + 2991, (4.23)
teff = te“dFle, (424)
- ' 14 14
F, = z o €% j dy e Hy(y +§) H, (y _E) , (4.25)
k,l=0 —00
M o0
—Xi(1+n2)
Fo= Y aa [ dye 0 0 Hom), (4:26)
k,l=0 — 00
M o
Si= Y | e EOIHOIHY (427)
k,l=0 —00
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My = (eF)yy +2n ) (eF),. (4.28)

2.y =2 ()~ S ), = €]

0 Y
I ) GONREICUNE (429
where
Cret = CC/ 1/2K k! N, y = +/x,
y = e~2a zAjj (1-2ay +3a2),
n=1+2a,,
=2y, & =2y2, &=2(y2-20-1) (4.30)

We calculate (ei””)On using the periodic boundary condition. Then the linear chain can be

viewed as a ring of N lattice sites with N very large so that the effects of end points do not
matter (Fig. 4.1).

Fig. 4.1: The HH chain in the form of a ring under periodic boundary condition.

The matrix B is given by
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/0/30 0 0 0005\
B 0 B 0 0 0 00 0
g=10 g 0 B 0 0 00 0

g 0 0 0 O 0000)

We find that the element (ei"/’)oq for the ring structure in Fig. 4.1 can be represented

exactly by the following closed form analytical expression:

(nB)?P+d
p'(@+q!’

(einﬁ)oq: Z (+1)4

p=0,1,2...

(4.31)

For a half-filled band, the Hamiltonian (4.21) can be exactly solved using the Bethe ansatz

technique [35] and the GS energy per site is obtained (in units of w) as:

1
£ = op 5 [e4“(e2ﬁ)00{(1 +day + 12a2)S, — e 89(1 — 4ay + 12a§)53}] -5

_f 4terro(¥)1()dy

YUerr
oy [1 +e 2t‘?ffl

, (4.32)

which is finally minimized with respectto g1, g5, @, a4, B and ¢;;’s.

4.3 Numerical results and discussion

We consider here both the adiabatic regime (large t, small w,) and the non-adiabatic regime
(small t, large w,) and examine the nature of the large-polaron to small-polaroron transition
as a function of the hopping parameter, the e-p interaction coefficients and the Hubbard
correlation. Throughout the analysis, we work with U,rr > 0 so that the formation of
bipolaron is precluded and the only insulating phase that the system can possible in the
system is the Mott antiferromagnetic (AFM) spin density wave (SDW) polaron state. We
make a comparison of our results for the GS energy with those of KMC to show that the
present calculation lowers the GS energy and therefore is expected to predict a more accurate
result for the ST transition. Using the Bethe ansatz solution of the effective electronic
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problem, KMC have predicted the continuity of the ST transition. As the problem is not
exactly soluble, our primary objective here has been to examine whether the scenario changes

in the case of an improved calculation.

We find that the present variational calculation does yield an improvement, albeit marginal,
in the GS energy which is of course expected because the present work involves an improved
phonon wave function. Also, the GS energy is found to decrease as the on-site e-p interaction
coefficient g, increases. This is also an expected result as an increase in g, is expected to
lead to a stronger polaron binding. We do not show the results for the GS energy here
because the magnitude of the improvement in the GS energy is not so much important for our
purpose; what is really important for us is whether or not the improved calculation supports
the conclusion of the KMC. To that end, we need to calculate the parameters that can indicate
the behaviour of the ST transition unequivocally. The size and depth of the polarization
potential, the phonon correlation coefficient and the effective hopping parameter are some of

the quantities the behaviour which can clearly demonstrate the character of the ST transition.

0.98 |
~ 096!
of
0 094t”
0.921 d KMC result y KMC result |
’ ——  Present result , —— Present result
. 2 0.65'——— —.— o H
" os 1 15 0.5 1 1.5
¥ ; K :
|

Fig. 4.2 g1/g, Vs g, for a few values of g, for an: (a) anti-adiabatic case (t = 0.5) ; (b)

adiabatic case (t = 2).

For a small value of the onsite e-p interaction coefficient g,, the distortion of the lattice

vibration is spread over many lattice sites and a large polaron is created. As g, increases, the
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spread of the lattice distortion shrinks and the polaron size decreases. In Fig. 4.2, we plot the
behaviour of g;/g, with respect to g, for a few values of the NN e-p interaction coefficient
g». For the anti-adiabatic case, we have chosent = 0.5 and U = 10. These values satisfy
the condition: U.sr > 0 for the considered range of g,. For the adiabatic case, we have
chosen t = 2. In this case, we need to consider a stronger Coulomb correlation strength to
keep the effective Coulomb correlation strength positive and we have chosen to work with
U = 30.

0.8 v 2 : 0.8
@) === KMC result (b) === KMC result

\ _ Se¢ sult )
\ Present resul \ —— Present result

s t=0.5
X U=1

=

Fig. 4.3: g,/91 Vs g, for different values of g, for an (a) anti-adiabatic case (t = 0.5) ; (b)

adiabatic case (t = 2).

Figs. 4.2(a) and 4.2(b) show that as g, increases, g;/g, initially goes through a dip and then
increases monotonically and finally g; becomes asymptotically equal to g,. In this limit, the
depth of the polarization potential becomes maximum leading to the strongest polaronic
binding. What we have in this case is a self-trapped small polaron localized in a single lattice
state. One can clearly see that Fig. 4.2 suggests that the ST transition is continuous in both the
adiabatic and anti-adiabatic cases which is in agreement with the observation of KMC. Since
the present calculation is more accurate, it lends more credence in favour of the continuity of
the ST transition. One can also see that the present improved calculation predicts a stronger
coherence in the phonon cloud of the polaron than the one indicted by KMC, particularly for
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weaker e-p coupling constant. We also note that as g, increases, a larger value of g, is
necessary for polaron localization. The reason for such a behaviour is easy to understand.
With increasing g,, the polaron develops a stronger tendency to remain mobile and therefore,
unless the on-site e-p interaction g, is made sufficiently large, the polaron cannot be trapped.

The spread of the lattice distortion is denoted by g5.

0.012:

0.01:

. = 0.04

0.006 .-

0.004 0.02

0.002 0.01

0

Fig. 4.4: a vs g, for different values of g,for an (a) anti-adiabatic case (t = 0.5) ; (b)

adiabatic case (t = 2).

In Fig. 4.3, we plot g;/g; as a function of g, for a few values of g,. In Fig. 4.3(a), we plot
results for an anti-adiabatic region whereas in Fig. 4.3(b), we give results for an adiabatic
region. One can see that g;/g; is higher for smaller values of g,. This implies that the
polaron size is large at small g;. As g, increases, g;/g; decreases and gradually becomes
zero, which implies that the polaron reduces its size with increasing g; and eventually gets
trapped within a single lattice spacing. According to Fig. 4.3, in both adiabatic and anti-
adiabatic cases, the ST transition takes place continuously.

Fig. 4.4 suggests the same qualitative behaviour as shown in Fig. 4.3. For example, as the
NN EPI becomes stronger, a larger value of g, is necessary to localize the polaron. Similarly,

with the increase in g,, g5/g; increases as well. This suggests that the polaron becomes more
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mobile as g, increases. The present result predicts that the ST transition takes place at a

higher value of g, than the one indicated by the KMC result.

=== KMC result
—— Present result

- == KMC result

—— Present result

0.5

0.05

5

Fig. 4.5 t.rr vs g, for different values of g, for an (a) anti-adiabatic case (t = 0.5); (b)

adiabatic case (t = 2).

The effective polaron hopping parameter ¢, is plotted with respect to g, in Fig. 4.5. We
find that in the limit g; — 0, ¢, completely loses the shroud of the phononic clouding and
turns onto the bare Hubbard parameter t. As g, increases, t.rr decreases and decreases
continuously and finally reduces to zero. The renormalized hopping parameter ¢, is linear

in the width of the polaron band and is reciprocal to the polaron mass, a quantity that can be
measure in the laboratory through optical experiments or magneto-optical experiments.

Hence, the continuous transition of a large mobile polaron with finite . to an immobile
localized small polaron with ¢, = 0 clearly describes continuity of the ST transition for
both non-adiabatic and adiabatic cases. Fig. 4.5 shows that our result for ., is a little higher

than the one obtained by KMC which again implies that according to our results, a higher g4

than the one predicted by KMC is needed to cause the ST transition.

4.4 Conclusion

In the present work, we have examined the ST transition in a 1D extended HH model by

employing a more accurate variational method than the one used by KMC [31]. The phonon
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subsystem has been treated by a series of unitary transformations by incorporating all the
essential aspects of the phonon mechanisms and the attributes of the e-p interaction. A fully
generalized many-body phonon state has been used as the averaging phonon state in place of
the zero-phonon state used previously, to get the effective electronic problem which is finally
treated exactly by the Bethe ansatz method. Since the total phonon state used in this work can
be considered as essentially exact and the Bethe ansatz technique has been used to obtain the
effective electron problem exactly, the present calculation can be considered to provide very

accurate results.

Our results suggest that a stronger EPI than the one suggested by KMC is required for the
ST transition to take place. Also as the NN e-p interaction strength increases, a higher value
of the onsite e-p coupling is needed to induce polaronic localization. This is because with the
enhancement in the NN e-p interaction, the polaron mobility increases and then naturally we
need a higher on-site e-p coupling for polaron trapping. Regarding the nature of the ST
transition, our results support the conjecture of KMC i.e., the ST transition is a continuous
transition both in the adiabatic regime and also in the anti-adiabatic regime. Since the present
calculation is analytical and is based on an essentially exact wave function, it has a few
advantages over other calculations. First, since we have an accurate wave function of the
system, we have a much clearer understanding of the physics and dynamics of the system.
Secondly, we have a clear view of how variables and interactions between variables affect the
result. Thirdly and finally, the analytical results are more transparent and trustworthy than

those obtained from numerical methods.

4.5 References

[1] T.K. Mitra, A. Chatterjee, S. Mukhopadhyay, Phys. Rep. 153 (1987) 91,

[2] J.T. Devreese, A.S. Alexandrov, Rep. Prog. Phys. 72 (2009) 066501.

[3] A. Chatterjee, S. Mukhopadhyay, Polarons and Bipolarons: An Introduction, Taylor and
Francis, 2018.

[4] A.S. Alexandrov, N.F. Mott, Rep. Prog. Phys. B 57 (1994) 1197.

[5] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Modern Phys. 62 (1) (1990) 113-171.
[6] K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77 (1996) 1877.
[7] M. Califano, G. M. Francisco, Nano Lett. 13, 5, (2013) 2047-2052.



Ch.4: Self-trapping transition in a 1D HH model: A semi-exact study

[8] F. Peeters, J.T. Devreese, et al., Phys. Status Solidi B 112 (1982) 219;

[9] B. Gerlach, H. Léwen, Phys. Rev. B 35 (1987) 4291,

[10] B. Gerlach, H. Lowen, Phys. Rev. B 35 (1987) 4297;

[11] R. Manka, Phys. Stat. Solidi (b) 93, 53 (1979);

[12] R. Manka, M. Suffczynski, J. Phys. C 13, 6369 (1980);

[13] A. Chatterjee, S. Sil, Phys. Rev. B 51 (1995) 2223.

[14] R.P.M. Krishna, S. Mukhopadyay, A. Chatterjee, Phys. Lett. A 327 (2004) 67.
[15] I. Lang, Y.A. Firsov, Sov. Phys. JETP 16 (1963) 1301.

[16] H. Zheng, Phys. Lett. A 131 (1988) 115.

[17] C.F. Lo, R. Sollie, Phys. Rev. B 48 (1993) 10183.

[18] Lieb, E. H. & Wu, F. Y, Phys. Rev. Lett. 20, 1445-1448 (1968).

[19] Z.M. Malik, S. Mukhopadhyay, A. Chatterjee, Phys. Lett. A, 383, 1516-1519 (2019).
[20] D. Debnath, M. Z. Malik & A. Chatterjee, Sci Rep. 11, 12305 (2021).

[21] H. Bethe, Magazine for Physics, 71, 205-226 (1931).




“Snlelligence io the ability to adapt to change” . .. Dlephen Harking

Self-trapping transition In a two-
dimensional Holstein-Hubbard model: A
Mean-field approach

5.1 Introduction

Though the ST transition of polaron [1-3] has been in the forefront of research due to its
several applications, the nature of the transition is still under investigation. In Chapter 4, we
have presented our recent work on the ST transition in an extended Holstein-Hubbard (HH)
model and have shown using a semi-exact calculation that the ST transition in 1D extended
HH model is continuous in both adiabatic and anti-adiabatic regimes. But the real systems of
interest in the context of high-temperature curate superconductors [5-7], transition-metal
dichalcogenides [8-10] and other correlated systems [11-15] are all essentially two-
dimensional. A few ST transition problems have been studied for the excitonic [16] and
photonic lattices [17, 18] and perovskite materials [19, 20] in 2D. But these studies have not
reported about the nature of the ST transition.

Recently, Sankar, Mukhopadhyay and Chatterjee (SMC) [25] have studied the ST transition
in the 2D extended HH Hamiltonin in the weak correlation regime. They have included the
phonon coherence and correlations for the phonon sub-system using the modified LF
transformation and squeezing transformations and obtained the effective -electronic
Hamiltonian by averaging with respect to a zero-phonon state. Finally they have solved the

effective electronic Hamiltonian using the mean-field Hartree-Fock (HF) method. Their
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calculation shows that the ST transition is continuous in the anti-adiabatic regime while it is
discontinuous in the adiabatic region. Sankar and Chatterjee (SC) [26] have studied the ST
transition in the same 2D extended HH model in the strong correlation regime. They have
treated the phonon sub-system in the same way as SMC did, but to treat the effective electric
Hamiltonian, they have first transformed it to an effective t — ] model and solved it finally
using the Zuberev Green function technique. Their conclusions are qualitatively similar to
that of SMC.

In this chapter, we study the ST transition in a 2D extended HH model with a more
improved variational calculation than the one carried out by Sankar and collaborators [25,
26]. The idea is to examine whether an improved variational calculation with a modified
phonon state discounts the conclusion of Sankar and collaborators or reinforces it. The
calculation is modified by making the phonon wave function more accurate by performing a
newly invented electron-density-dependent correlated squeezing transformation [28]
followed by a many-phonon averaging [29]. The variational phonon wave function chosen
here can be considered as “essentially” exact. The effective electronic Hamiltonian is solved
using the similar method as incorporated by Sankar and his collaborators. Here also we
consider the strength of the onsite Coulomb interaction to be sufficiently large so that the
phonon-induced effective correlation coefficient remains positive in order to prevent the
formation of bipolaronic CDW state through Peierls instability. The ST transition is
examined by analyzing the relevant parameters both in the adiabatic and anti-adiabatic
regimes for both the strong and weak Coulomb interaction strengths.

5.2 Model and formulation

A 2D EHH model can be described by the Hamiltonian

H=H,+ H,+ Hgy, (5.1
with
H, =—t z c;ra Cjo + UZ npn; +V; Z NigNjg!
<ij>o i <ij>oa’
AV, D Mgl (5:2)

is'oa’
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H, = hwoz bib; (5.3)
i
Hep = 91 ) nio(bi+ b)) + 92 ) mig(bivs + blis) (5:4)
io ido

Here H, describes the extended Hubbard Hamiltonian where the parameter t denotes the NN
hopping integral, n;, (= c;fc,cw) represents the number operator for the spin-o electron at site
i, c;rc (cijs) being the corresponding electron creation (annihilation) operator, and U,V,,
and V, give the onsite, nearest neighbour (NN) and next nearest neighbour (NNN) Coulomb
interaction energies respectively, H, is the phonon Hamiltonian, b;r (b;) being the creation
(annihilation) operator for an optical phonon at site i with dispersionless frequency w, and

H,, is the extended Holstein e-p interaction, g, and g, being the on-site and NN e-p coupling

strengths, respectively. We will write: g, = +a, where a is the onsite e-p coupling

coefficient.

To disentangle the e-p interaction term, the Lang-Firsov transformation (LFT) [27] has
been used extensively in the past. This transformation lowers the energy by displacing the
phonon vacuum. The phonon state then becomes a coherent superposition of states with
different phonon numbers. Several studies on the HH model [26, 30, 32, 49-52] and the
Anderson-Holstein model have shown that the variational LFT (VLFT) method is more

useful. We, therefore, employ VLFT to transform the EHH model with the generator

g1 gz
Ry =N o =) + 22 nig (bl = bivs) (5:5)
0 Wo

io ido

where g; = n,Va and g, = n,v/a , n; and n, being the variational parameters. g; gives
essentially a measure of the depth of the on-site lattice polarization potential created by the e-
p interaction and g; represents the width of the polaron potential well. The VLFT transforms
the Hamiltonian H to H; = e®1He ®1. An electron can be considered as a phonon-source.
As an electron makes an emission of an optical phonon, it undergoes a recoil motion and
during its action of recoiling, if it releases another phonon, then these two phonons would
have a built-in correlation. This phonon-correlation effect can be incorporated by considering

a Bogolubov transformation with a generator [28]:
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R, =a ) (bib;— b]b]), (5.6)
i
where a; which gives a measure of the phonon correlation is called a squeeze parameter and
will be treated as a variational parameter. The squeezing transformation transforms H; to
H, = eR2H,e Rz, Since the average phonon correlation in the phonon function is expected to
depend on the electron number at the lattice sites, Malik et al. (MMC) [19] have recently
suggested that an increase in the electron concentration would increase the average phonon
correlation. This immediately implies that R, should at least partially depend on the electron
concentration. MMC [30] have introduced a new unitary transformation to incorporate this
density-dependent phonon correlation effect. Chatterjee and collaborators have subsequently
used this transformation in a more improved work [32] and also in a related problem [52] to
lower the GS energy. We apply this density-dependent squeezing transformation to H, with

the generator

R3 = g4 Z nio(bibi - b;l-b;r), (57)

l

where a, is a trial parameter to be determined variationally. The new Hamiltonian reads
H; = e®3H,e ™R3, Finally, we consider intersite phonon correlations. This can be incorporated
by correlated squeezing transformation. However, we consider only NN phonon correlation.
Following Lo and Sollie [29], the generator of the correlated squeezing transformation is
chosen as
_1 fpf
Ry =5 ) By (biby = b)), (58)
i)

Here we choose, g;; = B, when i and j are NN and g;; = 0, otherwise. The parameter 3 is
obtained variationally. The Hamiltonian after the above transformation becomes: # = H, =
eR+Hze~R+ One may notice that the transformation (6), incorporates the mean-field part of
the phonon correlations while (8) includes the deviation from the mean-field part i. e., the
fluctuations. The purpose of carrying out a set of unitary transformation is to decouple the
electron and phonon variables. However an exact separation of the electron and phonon
variables is not possible for the present problem. We therefore seek a variational solution by
taking the average of H with a suitable phonon state |d>ph) so that the phonon variables are
eliminated. This entire process is same as making the following choice for the variational

phonon wave function:
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[pn) = e Fre Ree Rse~Re|d ) (5.9)

We thus write an approximate wave function for the original Hamiltonian in the following

product form:

W) = [$e)®Ypn), (5.10)

so that the total energy of the system can then be written as:

E = (PIH) = Qe ($pnl H|Ypn) [Ye) = el (PpnlH|Ppn) [er).  (5.11)

For |d>ph), we choose a fully general phonon state as:

M

|Ppn) = Zrn lpn (x)), (5.12)

n=0

where ¢, (x) is the n —th eigen function of a harmonic oscillator and r,’s are variational
parameters. Our aim is to begin the numerical computation with the value of M equal to zero
and then systematically increase its value till the energy becomes convergent. The effective

electronic Hamiltonian becomes

Herp = (Wpn|H|Wpn) = (®Ppn|H |@pr) = (DpnleReefzefzefrHe e Ree Ree~Ra| D )

= Eeff z Nig — Lefr Z C;rgcjo + Ueffz iy + VY Z NigNjg!

io <ij>o i <ij>oa’

+ V5 Z NigNjts' o'

is'oo’
Nw
+— [64“(323) T, (1+4a, + 12a2)
4 00
—e~te(e2) Ty (1—4ay +12a3) - 2|, (5.13)
where
1
Eeff = [2(g191 + 29295) — (9% + 2z95°)]

Wo

+ eza(l + 2a4 + 30621)M1T1[(g1 +zg9,) — (91 +2zg93)], (5.14)



Ch.5: Self-trapping transition in a 2D H-H model: Mean-field approach

tefr = te“F F>F3,

2
Uepp = U — w—o[z(glgi +29,97) — (91> + 29291, (5.16)
e 2 14 ! oI e 1 ! 2
Vr=V- w_o [(9192 + 9192) — 9192, Vi =V, — (U_o (29292 — 9571, (5.17)
M 0
Z Ckl f dy e H,(y) H,(y) (5.18)
k,l1=0 —o0
S v Y 14
- -z -y? z _r
F, Z oy €3 fdye Hk(y+2) H, (y 2), (5.19)
k,1=0 —00
M o y2
2 2
Fo= Y aa [ dye 0 G om), (5.20)
k,1=0 —0
M (0]
Ti= Y au [ eV GOHOTO)Y, (5:21)
k,1=0 —0
My = (eF)y, +2n ) (eF),. (522)
m=1

Sy = 2 (o), - (), |+ 2L Y [ 2
kT w2 e oo &) T wE Z [(e )i+6’,i+6”—(e )i+6’,j+6"]
K

578
+ 4%552 [(e_Zﬁ)o,ms’ B (e_Zﬁ)i+8,i+8’] ’ (5.23)
7
where y = vx (5.24)
and ¢y = ckcl\/m, (5.25)
y=e 2% ¥ AV (1-2aq+3a2), n=1+ 2ay, (5.26)
&1 =V2y, & =2y%, &=2("-21-1), (5.27)

(ei"”)On is to be calculated for a 2D square lattice as explained in chapter 3.

o)

(eJ—’"ﬁ Zm (+nﬁ)2p

o (5.28)
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(q = odd) (5.29)

(2” + (T 1)) (@)l ('7 )

T T

n S o+ (E11)\ @l
(e* B)Oq = Z( p pE—zl )> o [p " (%+ 1)] - (g =even)  (5.30)

For the electrons, we assume a square density of states (which is a valid assumption in 2D)

and write
1
p(8k) = W y W< W (531)
=0 ; otherwise.

(a) Weak Correlation:

For weak correlation, we use the HF approximation and the GS energy (e,) (per particle) for
the system is obtained as

1 n?
Ew =N éepf — 52 terr(2n —n?) + s Uerr + zn?VE + 2'nV5

Nw,

+— [64“(623)00 T, (1 + 4ay + 12a2) — e““"(ezB)OO T (1 — 4ay + 12a2)

- 2] , (5.32)
which is finally minimized with respect to g1, g3, a5, a4, B and ¢;;’s.

(b) Strong Correlation

In the strong correlation regime we solved the electronic Hamiltonian in the same way as

explained in chapter 3, section 3.2.2. The GS energy per site (egy) for the system reads
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- 1,. -
g = ne, — ((pt tesr + p]) zp+ Nz [Z (] —4Ve+ VZ“’)) n? +]p2]

N(l)o
4

+ [e““(ezﬁ)oo T, (1 +4ay +12a3) —e~*“(e?F) T3 (1 - 4ag +

12a3) - 2| . (5.33)

5.2 Numerical Results

5.3.1 Weak Correlation results

We have considered both the non-adiabatic (large w,, small t) and adiabatic (small w,,
large t) cases by taking two different values of ¢t (0.5 and 2). We have also compared our

results with those of Sankar et al. [50] by choosing V; = V, = 0.

-2.45 v
t=2.0| (b) o
-2.5 |n=03 me e ek
A >
8 & LS8} sevllEerl Ker
= = W i 20 \ \
2 Z rm™ : 1,=0.02
2 = 267 g,=0 £,=0.01 ,~0.02
3 & f " :
E = :
- ::« ‘2.65 {
_.G [—]
w w
-e- SMC ! 2.7 - == SMC
— Present — Present
-1.6° % 4 5 -2.75 ; :
0 1 2 3 4 0 1 2 3 4

U (in units of o) U (in units of 0 )

Fig. 5.1: GS energy (gy) vs. Coulomb correlation (U) for (a) anti-adabatic case; (b) adiabatic

case.

Fig 5.1 shows how NN e-p interaction influences the &, — U plots. It is clearly visible that
the NN e-p interaction lowers the GS energy further. Also the present method provides a
lower GS than the ones obtained by Sankar et al. [50], as expected from an improved

variational calculation. In Fig. 5.2, g1/g, is plotted with respect to g, for both adiabatic and
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non-adiabatic cases. At small g,, g; is small. This is because at small g,, the lattice
deformation spreads over several sites and one has a large polaron. As g, increases, g; also
increases and above a critical g;, g; equals g,. This is the small polaron phase. With the
increase in g4, the onsite polarization potential becomes deep and consequently the polaron
gets confined and loses its mobility resulting in the formation of a small polaron. Thus, an
increase in g, leads to a ST transition. In Fig. 5.2(a), g;/g, gradually increases with g, and
finally saturates to g; = g4 in a continuous way. Thus ST transition turns out to be
continuous in this case. For the adiabatic case (Fig. 5.2(b)), g1/g, sharply reaches 1 at a
critical g, implying that the transition is discontinuous here. In the present analysis, the

polaron localization takes place at a higher value of g, compared to that in [50].

1.2 v
=== SMC for g =0
.1} —— Present for g,=0
I =05

n=0.3

0.9
a0
~ 0.8
%
0.6} ’
0.5F---" " === SMC for g,=0.25 A B
" —— Present g =0.25 0% [oyassa==" — Present
04L--", 7 = — = — =
1 2 3 4 1 2 3 4 5
g, (in units of ®) g, (in units of 0,

Fig. 5.2 g1/91 vs. g, for different values of g, for: (a) anti-adiabatic case; (b) adiabatic

case, with U = 3 at less than half-filling.

The variations of g5 /g7 with respect to g, is studied in Fig. 5.3 fort = 0.5 and 2. As g,
increases, g, decreases and eventually reduces to zero. This implies that as g, increases, the
width of the polarization potential shrinks and eventually ST transition takes place. Here
again, we see that the transition is continuous for t = 0.5 whereas it is discontinuous for t =
2. g5/ g1 is now lower compared to [50], in the case of weak coupling. This implies that in

the present analysis ST transition requires a stronger e-p interaction strength.
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‘ (b) - SNIC

1 2 3 4 5 1 S 3 4
g, (in units of © ) g, (in units of ® )

Fig. 5.3: g5/91 vs. g, for different values of g, for: (a) anti-adabatic case; (b) adiabatic case
with U = 3 at less than half-filling

We study the behaviour of ag with g, in Fig. 5.4; the anti-adiabatic case in Fig. 5.4 (a) and
the adiabatic case in Fig. 5.4(b). One can observe that as g, increases, a, also increases,
attains a peak and then decreases to zero in a continuous manner for t = 0.5 and in a
discontinuous manner at t = 2. Thus the phonon correlation is maximum at a certain critical

g1, above which it reduces to zero. In the anti-adiabatic case, the phonon correlation becomes
maximum at a lower value of g, than in the adiabatic case.

(=()5 R SR SN‘C 0.3 - - SN'C
% ' —— Present
—— Present .
t=2
n=03

(b)

05 1 15 2 25 3 35 ! 2 3
g, (in units of @ ) g, (in units of © )

Fig. 5.4: a, vs. g, for different values of g,: (a) for anti-adabatic case; (b) for adiabatic case,
with U = 3 at less than half-filling.
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Fig. 5.5: tesf vs. g; for different values of g, at t = 0.5 (anti-adiabatic case) and t = 2

(adiabatic case) with U = 3 at less than half-filling.

To examine the ST transition through the hopping parameter, we plot t, ¢ versus g, in Fig.
5.5. We expect: t.;r « m,, where the polaron mass m, is a measurable quantity. One can
observe that t. s, decreases with g, and becomes zero in both adiabatic and the anti-adiabatic
regimes. Thus the system shows ST transition in both cases. One can see that ST transition is
continuous in the ant-adiabatic regime and discontinuous in the adiabatic limit. Furthermore,
we observe that in the adiabatic case, discontinuous jumps in t. . are observed at higher g,
values. Thus, a stronger e-p interaction is required to localize the polaron in the adiabatic

case.

5.3.2 Strong Correlation results

Here we will look into a strongly correlated system both in adiabatic and anti-adiabatic
regimes. In Fig. 5.6, we plot the variational GS energy as a function of U and compare our
present results with those of SC [51]. It is clear that the present results are more accurate than
the results of SC in general. In Fig. 5.7, we study the variation of g; with g, for a strongly
correlated system. One can observe that g; in general increases with g,. At small values of

91, g1 however remains small which implies the presence of a shallow on-site polarization
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potential and consequently a large polaron in both the adiabatic and anti-adiabatic regimes.
At some critical g,, g; becomes equal to g, indicating a small-polaron formation. Thus we

observe an ST transition here.

-5.115 w=s'SC
— Present 6.6, — Present
-5.12 — . - - :
10 20 30 40 10 20 U 30 40

U
Fig. 5.6: E, vs. U for different values of hopping parameter t in: (a) anti-adiabatic regime;

(b) adiabatic regime.
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&

Fig. 5.7: Depth of the polarisation potential (g;/g:) Vvs. g1 with g, = 0 and 0.03: (a) for

anti-adiabatic regime; (b) for adiabatic regime.

In Fig. 5.7(a), i.e., in the anti-adiabatic regime, ST transition is continuous, but in Fig. 5.7(b),
i.e., in the adiabatic regime, a finite discontinuity is accompanied with ST transition. For non-
zero g,, the polarization potential becomes shallower as compared to the one in the case of
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g» = 0 and the polaron remains mobile till a higher critical g,. In this case, a stronger on-site
e-p interaction strength is required to trap the polaron. One can also observe from the figure

that in the adiabatic regime, ST transition occurs at a higher value of g; than in the anti-
adiabatic case.

— Present

1 2 3 4 1 15 2 25 3

Fig. 5.8: Spread of the polarisation potential (g5/g1) vs. g, with with g, = 0 and 0.2 for:
(a) anti-adiabatic regime; (b) for adiabatic regime.
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Fig. 5.9 a; vs. g, with g, = 0 and 0.2 for: (a) ant-adiabatic regime ; (b) adiabatic regime
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The variation of (g3/g;) with respect to g, is plotted in Fig. 5.8. g; decreases gradually
with g, and eventually becomes zero at some critical value of g,. At g, = 0, the width of the
polarization potential vanishes and the polaron becomes small and localized. One can clearly
see from Fig. 5.8 that for t = 0.2, g5 falls off to zero in a continuous way, whereas in the
adiabatic case, it goes to zero in a discontinuous manner. Thus this result also confirms the

continuity of ST transition in the non-adiabatic regime and the discontinuity of ST transition

in the adiabatic case.

-0.005 o
-0.05 o
= -0.01 = H i
;""):0‘2 :I :
-0.015 011 U=35"\ "\ :
-0.02 =02\ X f,c “i‘ 1
. — o — rresent °x
s U=35 Present 0.15. : : , _
Vs I > 3 4 1 2 3 4

Fig. 5.10: B vs. g, with g, = 0 and 0.2 for (a) anti-adiabatic regime ; (b) adiabatic regime.

The variations of the phonon correlation parameters (a,, f) with respect to g, are also
studied to investigate the nature of STT. In Fig. 9, a is plotted with respect to g,. Fig. 5.9(a)
shows the anti-adiabatic scenario whereas the adiabatic case is plotted in Fig. 5.9(b). In both
cases, the onsite phonon correlation is largest at certain critical value of g, . One may notice
that the present modified calculation indicates a marginally higher polaron mobility than the
one suggested by SC. Again, the nature of the transition is found to be continuous in the anti-
adiabatic regime and discontinuous in the adiabatic case. Also, in the presence of a finite NN
e-p interaction, a larger value of g, is required to trap the delocalized polaron both in the
adiabatic and the anti-adiabatic cases. Similar behaviour is exhibited by p versus g, figures
in Fig. 5.10. Fig. 5.10(a) shows that in the non-adiabatic regime, S as a function of g; goes to
zero through a symmetric minimum continuously and smoothly while in the adiabatic regime

(Fig. 5.10(b)), we see that § go to zero through an asymmetric minimum in a discontinuous
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way making the ST transition sharp. Fig. 5.11(b) shows that in the adiabatic case, ST
transition occurs at a marginally higher g, value than the one predicted from the SC

calculation [51].
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Fig. 5.11 t.¢r vs. U with g, = 0 and 0.2 (a) anti-adiabatic regime and (b) adiabatic regime

Fig. 5.11 shows the change in the effective electronic hopping parameter with respect U.
Our present modified variational calculation shows that it is higher than the SC result [51].
This is quite reassuring as a higher value of . s, implies a higher polaron mobility which is
always useful from the point of view of polaronic transport. For small (= 0.2), the variation
of t.r with U is much slower that for large t (= 2). It is also observed that effective polaron

mobility decreases as U becomes stronger.

In Fig. 5.12, we show the behaviour of ¢, with respect to g,. It is found that the effective
polaron mobility decreases with increasing g, than the Hubbard hoping parameter t value and
it reaches to zero. The condition: t.rr = 0 indicates that the polaron is localized. The
delocalization-localization transition is clearly visible in Fig. 5.12. The present modified
calculation shows that a stronger e-p coupling is required for ST transition to occur. Also in
the presence of the NN e-p interaction, the effective electronic hopping is larger. Fig. 5.12(a)
and 5.12(b) also establish that the nature of ST transition is continuous in the anti-adiabatic

regime and discontinuous at the adiabatic case.
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Fig. 5.12: t.¢f vs. g; With with g, = 0 and 0.2 for: (a) anti-adiabatic regime and (b)

adiabatic regime.

1.5
t=2
U=35
il (b)
3 2
05

--- SC
g — Present
1 2 3 4 1 2 3 4
2 8

Fig. 5.13: Band reduction factor (¢t.sf) vs. g, for (a) anti-adiabatic regime and (b)

adiabatic regime.

The effective electronic hopping parameter gives us the information about the polaron
mobility, and it also helps us to calculate the band-width and polaron mass. The band

reduction factor (@t.rr) gives the physical effect of the presence of impurities in the system.

We plot ¢t.rr with respect to the g; in Fig. 5.13. Though the behaviour of ¢t s is
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qualitatively similar to t. ;¢ , the effective polaron mobility gets suppressed by the parameter

Q.
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Polaron
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Fig. 5.14: Self-trapping transition line.

In Fig. 5.14, we plot the ST transition line and compare with the results of SC [51]. The ST
transition line is plotted for the sets of (g, t) that give t.r = 0. We call them (g4, t.). The
curves give the large polaron-small polaron phase diagram. It is found that as t. increases,
91 also increases. Below a certain g,, one cannot have a small polaron. Compared to SC, the

present result provides a little broader phase for the large polaron.

5.4 Conclusion

In conclusion, we have explored in this work, the nature of ST transition in a 2D extended
HH model. For the phonon subsystem, we have used a very acute wave function
incorporating all the important characteristics of the phonon dynamics and the e-p interaction.
The effective electronic system is solved analytically in the weak and strong correlation
regimes separately using plausible approximations. More specifically, in the weak-correlation
regime, the renormalized electronic system is treated by the Hartree-Fock mean-filed theory
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and in the strong correlation regime, the effective Hamiltonian is first mapped on the t-J
model and then simplified employing the Gutzwiller approximation and finally solved by the
Hartree-Fock method using the restriction that double occupancy is not allowed. For both the
regimes, the GS energy is calculated variationally. The ST transition is examined by studying
the depth and spread of the polarization potential as a function of the e-p coupling constants.
The effective polaron hopping also indicates the nature of the ST transition for the entire
range of the Coulomb correlation strength. Our results confirm that the ST transition occurs
in a continuous way in the anti-adiabatic case while in the adiabatic regime it is accompanied

with a finite discontinuity.
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Quantum Transport In a bi-molecular
transistor through the Anderson-Holstein-
Caldeira-Leggett model

6.1 Introduction

Transistors are one of the integral parts of modern technology for the fabrication of nano-
devices. Of late, single molecular transistors have attracted considerable attention for their
practical application in nano-devices. In a single molecular transistor (SMT), a central
molecule or a quantum dot (QD) with discrete energy levels is connected to two metallic
leads (source and drain) with continuous energy levels on the two sides and is acted upon by
an external bias voltage. The presence of discrete energy levels in the central molecule which
is also called a tunnelling molecule is important to have pure quantum mechanical effects on
the device properties. The difference in the electronic potential energies of the source and the
drain helps the electrons to tunnel from one lead to the other through the QD and from the
QD to the other lead. The transfer of electrons through the QD results in a net tunnelling
current. The SMT system is mounted on an insulating substrate which can be attached to a
gate. Then by applying a gate voltage, the tunnelling current can be manipulated. In late 90s
scientists have been interested in studying the electronic transport in nano-materials using
molecules, nanotubes, nanocrystals etc. In 2000, the fabrication of C4, molecular transistor
was reported by Park et al. [1] with the help of gold electrodes connected with the Cg,

molecules. Using a single-electron hopping mechanism they have shown the conduction
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properties in the transistor with respect to the applied bias-voltage. In 2002, Liang et al. [2]
have studied the Kondo effect on SMT following the works by Goldhaber-Gordon et al. [3]
and Yu et al. [4]. Liang et al. have studied the Kondo resonance effect on the SMT device
and examined how the gate voltage can influence the Kondo phenomenon in quantum dot
structures. Later, many other works have unravelled the Kondo behaviour in molecular
transport [5-7]. Another important low-temperature property that shows up in electronic
transport is the effect of Coulomb blockade. Very recently, Pipit and his collaborators [8]
have experimentally established the Coulomb blockade and Coulomb staircase behaviour for
single electron transport at the room temperature. This work has a great significance for the
molecular transport at room temperature. The three-terminal device has found potential use in
the study of fine-structure of single-molecule magnets [9] and in magnetic anisotropy in SMT
[10-11]. The SMT device can be used as a switching device [12] and also a sensor [13]. Dutta
has discussed the electronic transport in the mesoscopic systems [14] and also explained the
guantum transport in a molecular transistor [15]. The recent review articles by Mickael et al.
[16] and Huanyan et al. [17] have reported the mechanisms involved in the SMT device and
its recent developments and applications.

In an SMT system, QD electrons can interact with the phonons through the Holstein e-p
interaction leading to the creation of quasi-particles called polarons. The Coulomb correlation
and the e-p interaction are likely to influence different molecular characteristics like
transition and vibrational energy levels of different spin-states, quantum interference,
transport properties and other interesting phenomena [18-24]. The fabrication of different
molecular devices and their theoretical and experimental study constitute a new area of
research called moletronics [25, 26] which has attracted a great deal of attention in recent

times.

In 2003, Sang and collaborators [27] have investigated the interplay of the e-e and e-p
interaction for the Anderson-Holstein Hamiltonian and computed the electron and phonon
spectral function (SF) using the numerical renormalization group technique. Using Keldysh
Green function method, Chen et al. [28] have shown that the polaronic effect generates side
peaks in the SF of an SMT device and modifies the tunnelling current. Extending the work of
Chen, Juntao and collaborators [29] have measured the phonon assisted conductance in a
SMT device. Raju and Chatterjee [30] have extended the SMT problem to investigate the
dissipation-induced tunnelling current by introducing an insulating substrate. They have

reported that the interaction between the substrate phonons and the QD phonon introduces
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dissipation in the phonon dynamics of the QD phonon and enhances the tunnelling current in
the molecular transistor. Very recently, Khedri et al. [31-33] have considered the spinless
Anderson-Holstein impurity model and investigated the phonon-assisted linear thermo-
electric tunnelling transport in molecular QDs. Chatterjee and collaborators [33] have studied
the SMT in the presence of e-e and e-e interactions, quantum dissipation and an external
magnetic field. Their result shows that the spin-filtering effect increases with the magnetic
field. They have subsequently shown that the tunnelling current in an SMT device reduces
with increasing temperature [34, 35]. Kuntal et al. [36] have studied the combined effect of
temperature and magnetic field on tunnelling current and differential conductance in an SMT
device in the presence of phonon dissipation. It has been shown that the tunnelling current
and the spin-polarization coefficient can be controlled by the bias-voltage, e-p interaction
coefficient, external magnetic field and the temperature.

Several theoretical techniques have been implemented to study the molecular devices. The
Anderson model has been studied using the slave-boson mean-field method by Meir et al.
[37] and by non-crossing approximation method by Wingreen and Meir [38]. The molecular
transistor has also been treated by using the rate equation approach [39]. To solve the single
impurity Anderson model, the numerical renormalization group technique [31, 32, 40] has
been found to be very useful, as this is applicable for the entire parameter regime. Another
celebrated method to study the quantum transport in the molecular device is the non-
equilibrium Green function approach [28, 30, 33, 35, 41].

More recently extensive studies have been performed on the double-QD (DQD) based
molecular transistors [42-44] as they show many useful practical applications. In the present
chapter, we study a double-QD-based molecular transistor which we refer to as a bi-
molecular transistor (BMT). In a BMT, we introduce an extra QD in the SMT system i.e., we
place two QDs in series between the source (S) and the drain (D) and the whole system is
embedded on an insulating substrate. The system is represented by the Anderson-Holstein-
Caldeira-Leggett (AHCL) model [46-49] as discussed in Chapter 1 and the spectral function,
tunnelling current, differential conductance and spin-polarization are studied in the BMT in

the presence of an external magnetic field, finite temperature and phonon dissipation.

6.2 Model and formulation
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In our present work, we place two QDs in series in the central region of the molecular
transistior. One of the QDs is connected to the source and another QD is connected to the
drain. This whole system is placed on an insulating substrate. The two metallic leads are
connected to an external voltage source so that electrons can tunnel from S to first QD and
from the second QD to D. The schematic diagram of the BMT device is shown in Fig. 6.1.
Here the QDs are considered to have single energy levels and the conducting leads have free
electrons with continuous energy levels. Electrons in an individual QD can interact with
themselves with the onsite Hubbard interaction. Electrons from the first QD can go to the
second QD by hopping. This interacting system is modelled by the Anderson-Holstein model
[45, 46]. The insulating substrate works as a heat bath and its phonons interact with the QD
phonon through the linear Caldeira Leggett model [47, 48]. An external magnetic field is also
introduced so that the electron spin degeneracy is lifted.

Fig. 6.1: Schematic diagram of the Multi-molecular transistor (MMT).

The Hamiltonian for the BMT system can be written as
H=HL+HQDD+HS+HDS+HT+HtJ (61)

Here, the first term represents the lead Hamiltonian (H;), L = S referring to the source and
L = D to the drain. The second term represents the Hamiltonian of the two-QD systems
(Hopp) Which we call a QD dimer (QDD). The insulating substrate Hamiltonian is described

by Hg. The interaction between the substrate phonons and the phonons of the QDD is
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described by Hps. The electronic hopping from the QD1 to QD2 is described by the
Hamiltonian Hy, and the last term of (6.1) describes the tunnelling of electrons from S to QD
1 and from QD2 to D. The different terms of (6.1) are given by

H, = Z €k (C;s,acks,cr + C;D,aCkD,a), (6.2)
ko

2 2 2 2
HQDD = Z(Si — eVg)ni,a + UZ ni,ani,_a + ha)o Z bi-l-bi + ha)o z 9i ni'(,(biT + bl)
i=1, i=1 i=1 i=1
o

2
1
+5 ) gusBS,, (63)
i=1
N
j=1
Ht=V§:(cJr Cio +cl c )+V2(CT 26+ Ch o Ckp s )- (6.5a)
T kS,otlo 10“kS,0 r kD,c‘“20 20%kD,o
ko ko
2 N N
Hps = ZZﬁjxixj = Zﬁj (1 + x2)x;, (6.5b)
i=1j=1 j=1
Hy = tq, Z(c’r Cro €l ) (6.6)
10%“20 20%10

g

In Hy, Nysp)o(= Cli-S(D),aCkS(D),O') is the number operator for the lead (S, D)
electrons, CI-ES(D),U (cks(p),s) being the creation (annihilation) operator for an S(D) electron
with wave vector k, spin o and energy &. In Hypp, n; s (= c;facl-,,,) denotes is the number
operator for the QD electrons, cga (ci») being the creation (annihilation) operator for the
electron of the ith QD (i = 1,2) with energy ¢;, V, is the gate voltage, U is the onsite

Coulomb interaction, biT(bi) denotes the creation (annihilation) operator for the QD phonon
of frequency w,, g; gives the on-site e-p interaction coefficient for the i —th QD, B is the
external magnetic field applied in the z-direction, S, is the z-component of spin of the QD

electron, g is the gryo-magnetic ratio and p is the Bohr magneton. In Hy, V. gives a measure
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of the strength of electron tunnelling from the lead to the QD and vice versa. In Hg, bjT(bj)
denotes the creation (annihilation) operator for the j —th substrate phonon with frequency w;.
In Hpg, B; gives the coupling strength for the interaction of the QD phonons with j —th

substrate phonon. In H, t,, is the coefficient for hopping between the two quantum dots.
Hg and Hj¢ can be combined together and may be written as

2 N
1
H5+HD5_ [—+2m] l ZZ Bj xix;j , (6.7)
=1 =1

where we have written the phonon energy in the form of Harmonic oscillator Hamiltonian as,
bt 1 2
z hajb; by = —+ Sy (6.8)

In Eq. (6.7), the coupling between the QDD phonons and the substrate phonons can be

decoupled by the following transformations:

pj = —ih=— . (6.9)

]=1 ] J J i=1 ]:1
N ~2 2 2
p; 1 5, Bi"Xix
=Z[m+ 2N T g | (6.10)
ey jWj

Combining the phonon energy for the QDD with the Eg. (6.10), we may write the combined

terms as,

2 pZ 1 N 2’52 1
. i ~2.2 vy 252
= E lz i+5miwixil + E 2m) + > Mw; %; l (6.11)
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Therefore, the transformed phonon frequencies become modified and the renormalized

frequency becomes,

&; = [w? - Aw?]'2, (6.12)
where,
N 2
- z B (6.13)
= mlmja)]

In the large N limit, Aw? can be cast in an integral form through the spectral density function

J(w) of the bath-phonon over w as,

[ ](w)
zof mow (6.14)
where
J(@) = Z <2mﬁlw) 5(w — w;) (6.15)

i=1

which at large-N limit can be written in the Lorentz-Drude form as

2moyw

[1+ (w/w)?]”

J(w) = (6.16)

where y is the rate of quantum dissipation and w, is the cut-off frequency. As w, is
considerably larger than other SMT frequencies, the deviation in the QD phonon frequency
essentially becomes: Aw? = 2myw,.. With the modified phonon frequency, the transformed

Hamiltonian becomes,

H= Zek(cks(,cks(,+ ckDUckDU)+Zenm+Uannl C,+Z:h(ul b;"b;
0'

ko
+ gugBS, + Z ginig(bT + b)) hés; + V;, Z(CZS,O'CIO' + ¢l crso)
= ko
+ t1o Z(CLCZG + cgacw)
g

+ VT Z(CIID,O'CZO' + C;o-ckD,a)- (617)
ko
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Now in order to decouple the e-p interaction in Eq. (6.17), the Lang-Firsov (LF)

transformation [51] is applied. The generator for the LF transformation is

2
S = Z gi(bi-l- - bl) n;. (618)
i=1

where n; = },n;,. Using the Baker-Campbell-Hausdorff (BCH) formula we calculate the

transformed Hamiltonian as,
~ o1 _
A =eSHe™ = A+ [s, ] +[s.[s.8]] + - (6.19)

Thus, we obtain,

2 2
H z &k (Cks aCkSa + CkD aCkD o) + 2 81 nl o 2 lani,—a + Z hai bi-rbi
i=1

ko i=1, i=1

7 T T s t T
+ V. Z(ck&acw + €1 Crso) + tZ(cwcw +C15C10)
ko o

+ 7 Z(C;DJJCZG + cgocm(,), (6.20)
ko
where
& =& — eV, — hddog} — ugBo, (6.21)
U=U-2hd,g? (6.22)
7. = v.e-9ibi’ b)), (6.23)
£ =ty el1(b1"=b1)=g2(b2"-02)] (6.24)

The tunnelling current in a molecular transistor is defined as,

d(— eNS(D))

Jswy = (—) = ) = —ie (| A, Nycp)|) (6.25)

where Q is the total charge transported and Ny(p) = Yxs c,J{S(D)'ackS(D),(, represents the total

number of particles in the source(drain).

Using the transformed Hamiltonian of Eq. (6.20) we obtain the commutation relation,
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[ﬁ, NS] = Z (el yekso = Chs5C10)s (6.26)
ko
and,
[ﬁ, ND] = iez (el ykpo = ChpsCac)- (6.27)
ko

Using the results of the commutation relations we calculate the tunnelling current as the
following:

The current from the source to the first QD is denoted as,

Js = =ie ) T [(c] scuso) = (elsocra)]. (6.28)
ko

The current from the first QD to the second QD is denoted as,
ho = —ie ) T (el 000 = (el gers)]. (6:29)
ko
The current from the drain to the second QD is found as,

Jo = =ie ) T [(€]ounod = (clp o20)] (6.30)
ko

Here, IZ = (7.), is the expectation value of V. with respect to the phonon state.

<(>)

The Keldysh lesser (greater) Green function G, ;%

and the retarded (r) and the advanced

(a) Green’s functions are calculated to find the transport current for the BMT. By definition,
the retarded (advanced) Green function for the coupling of the first (second) QD to the source

(drain) is calculated as,
Goosy (6 1) = FiO(EE F £)(0[{Ca0 (1), ¢l s (¢)}]0) - (6.31)

Here, ‘d’ denotes the QDs and using the LFT and the BCH formula the electronic operator

Ci, transforms as

Eio (£) = cig(t)e9ilbi' ), (632)
and, therefore we may write the retarded and advanced Green functions for the QDs as

G0, (6,6 = Fib (£t F £')(0] {40 (0, €] ,(¢)}]0) . (6.33)

The Green function for the leads is defined as,
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s (66" = FiO(Et F ) {crs (B, clsp) I, (6.34)

and, the lesser and greater Green functions for the leads are defined as,
glf:§>)(t —t) = <C;S(D)(t,)ckS(D)(t)> (6.35)

Following the work of Chen et al. [28], the tunnelling current through BMT can be calculated
using the Keldysh non-eqilibrium Green function (KNGF) technique as,

AR L P —Re{z< > Giouso(@) = ) < >62akw(w)} (6:36)

k

Using the equation of motion method, we may calculate the relation between the Green

functions:

9
—5[ sy (6] = === [FIO L F £)(0]{Ea0(6), sy - ()}]0)]

= —i[Fi(F)s (£t F t')(0|{é4s (D), C;S(D),o_(tl)}l())]

+ (=) [+19(+t+t)(0|{cd(,(t) (et ®)) }|o>] (6.37)

Using the Ehrenfest’s theorem we may write,

35 (o @) = = lebsino @], 39

Considering the transformed Hamiltonian of Eq. (6.20), we calculate the commutation

relation of Eq. (6.39) which gives (considering A = 1),

[CIIS(D),J(tI)' H] EkaS(D) J(t ) Cd o—(t ) (639)

Using Egs. (6.35) and (6.36), on Eq. (6.34) we obtain,

9 o7
~im | Ghonsoy (61
ex[FiO (£t F £)(0]{Cur (1), sy, (¢)}0)]

+ U [Fi 0t F £)(0]{ea0(0), &1, (£)}]0)]
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Using Eq. (6.26) and (6.28), we may write this as,

.0 ,
(_lat' — £k> ;f,“,zs(m t,t) =G4, tt) . (6.40)

Similarly we calculate the relation between the lead and QD coupling Green’s function

(G;f,‘f,zs(m) and the QD’s Green’s function (G.%,) and the Green function for the leads

(Tisidy) 3,

Grt sy () = TGE . (6t ghsehy (6t (6.41)

Eq. (6.41) is known as the Dyson’s equation at equilibrium which contains the structure of
C(t) = A(t)B(t). Using the analytical continuation rule we may write this explicitly

following Langreth theorem as,
C(t,t") =fdt1A(t, t1)B(t,, t") (6.42)

To solve this integral we modify the Keldysh contour in such way that t is on the first half of

the contour (in the outward direction) and t’ is on the latter half (on the way back).

Fig. 6.2: Deformation of Keldysh Contour

For the new configuration of the Keldysh contour we can express Eq. (6.42) as,
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C<(t,t") = fdtlA(t, t1)B<(t,, t") + fdt1A<(t, t1)B(ty, t"). (6.43)
C1 CZ

For the integration on the contour C;, the integration variable t; is confined on the contour

and it must be less than t’. Therefore we may split the first term of the Eq. (6.43) as,
t1 0
[ataceop<ey = [ aen@edns,e) + [ deasce e)p<,e)
Cq —o00 ty
= f dtA" (t,t;)B<(t;,t") (6.44)

where we have used the definition of the retarded function of Eq. (6.28) and here A™(®
represent the retarded(advanced) function. In the similar way, we may split the second term
of the Eqg. (6.43) and obtain,

j dt;A<(t,t;)B(ty, t") = j dtA<(t,t;)B*(t,,t") (6.45)
Cy —00
Combining Egs. (6.44) and Eqg. (6.45), we may write Eq. (6.43) as,

C<(t,t') = f dt[A"(t, t;)B=<(t,,t") + A<(t, t;)B*(t,, t")]. (6.46)

— 00

Therefore, in the form of Eq. (6.46), we may write the Dyson equation of Eq. (6.41) as,
Gaorsp) () = fdt1 'Z"[Gga,da(t't’)glfS(D) (t,t") + Gioao(t t)gksm) (t,t")]- (6.47)

We define G3;(w) and GZ;(w) as the Fourier Transforms of Gg,(zr=t—t") =
i{0|&} ()¢5 (£)]0) and G, (t —t") = i{0|éq,(t) E)_(t")|0), which can be written for the

QD electrons as follows,

Gaa(® = i{0]e5(0)é4()|0) = (0]l (0)ca()]0) (£ 7 )pn (6.48)

Gaa(®) = =i(0]€4(0)&5 (1)]0) = —=i(0]c4(0)cf (D)]0) (&7 )pn (6.49)
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(XATX\ )ph = (e_gi(bif—bi)e—gi(bﬁ—bi)>

To calculate < V. >, we consider the ‘n’ phonon state as,

(a™)™|0)

In) = N

Using this phonon state we calculate the following quantities.

<U>=V (e—gi(bitbi))

(n| 22, =280 g=i(bi"=bi) )

-gi(p;T-b;) =
emem ) (| Sy e 2P )

2
~ g.
(nl Z;?lo=0 e—Znﬁhwo e_gibi-regibie_Tlln)

(n| Xn=o e~ 2"hh00 |n)

Using the n-th phonon state of Eq. (6.51) we calculate,

n
(n e_gibi-regibi| n) = z (—1)m
m=0

m!(n—m)!

where 'L,," represents the Laguerre polynomial.

[oe)

_ 1 e2Bh@o _
e—Znﬁth — — — ezﬁhwo N.
1 — e-2Bh@,  g2fhe — | ph
n=0
where N,,,, = ewh—zo_l is the number of phonons. Using these results we obtain,

2
gt o
e 2 Y7 oL, (g?) e 2P0

<e_gi(biT_bi)) =

Considering, g? = x and e~2f"®0 =y we have

z L,(g?) e™2mBhBo = Z L, (x) y™
n=0 n=0

(91)*™ = L, (97),

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)
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xy 2 e—Zﬁh('I)O
e - e Il (1-e-2BRa0)

T (A—y)  (1—e-2Bhdo)

S SR S—
I N Y S 6.5
T A —e2Bhany ¢ T = e-2hha) (6.55)
Therefore we may write,
2
(e_gi(bi-r_bi)) = e_gTLe_g% Nph . 1 — ~1
— e_g% (Nph+%) . h'“l . 1
(ezﬁ @o — 1) Nph
1
— e—g% (Nph"'i)T Ny, i
Nyp
1
_ o~ 9% (Vont3) (6.56)
At temperature T — 0, number of phonons N, = 0. Therefore we may write,
+ g%
(e_gi(bi _bi)) = e_T_ (657)

Another term we need to calculate is the phonon average with respect to the n-phonon state to
evaluate the Green functions of Egs. (6.48) and (6.49). Let,

Ft,t) =R 7))

oo - ) 2p.tp. o A
_ (I X e PO X b FT () R () )

(n| 3, e~BhBo S bi'bi ) (6.58)
Using the results of Egs. (6.50) and (6.52), we obtain
F(t,t") = e9i (2Npn+1)gzcoso (6.59)
and,
p7C0S6 _ i I, (z)e~mho(t=t") g2nh@op (6.60)

n=-—oo

So, we can write

Ft,t') = e~9% @Npr+1) z I, (z)e~inho(t=t") g2nh@op

n=—oo
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= Z L,,(z)e™@oB e~9f (2Nppt1) . p—inh@o(t—t')

n=-—oo

— Z Lin(2)- g~ inh@oT (6.61)

n=—oo

1
where, z = 2g;%[N,n(1 4+ Npp)]? . = (t — t')and I, is the n™ order Modified Bessel

function of the second kind. Here, Ly, (2) = exp [—giz(ZNph +1)+ (nhw")]l (2), and

L., describes the spectral weight of the £n™ phonon side band [28].

We may now write Egs. (6.48) and (6.49) as
Gaa(@ = i{0]ci(0)ca(D)]0) (17 )pn

= Gau(®) ) Lyeimtaor, (6.62)

n=-—o

and,

Gaa(®) = =i(0]ca(0)c (D)[0)_ (272 )pn

= G20 Z L, einh@or, (6.63)

n=-—oo

Next, multiplying Eq. (6.40) by ei(e¥nh&o)t’ o hoth sides and integrating over t’ we obtain,

G g;gs(e T nhay) = V.G (€ F nhio)

(e ¥+ nh,) — Z Eks
k

which gives

7.GTY (e F nhd,)

10 lo

[(e + nawy) — X €xs]

LEC;{)S(G F nhd,) =

(6.64)

Eq. (6.64) represents the relation between the two Green functions of the source and the first

QD,i.e. G (e ¥+ nh@,) and Gr@ (e ¥ nh@,).

10,kS 10,10

Similarly, we calculate the following relations,

5@ t Glrc(fll)a(e + nhw,) 17 125—6213 (e ¥ nhw,)
G1p.30(€ F nh@,) = — + ,
[(6 + nhw,) — & — U(n(,)] [(6 + nhw,) — & — U(ng)]

(6.65)
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and

I7r @ (e F nha,)

r(a) 10 20
h . 6.66
Gioen (€ F hB0) = T E ] (6.66)
Using Egs. (6.65) to Eqg. (6.66), we obtain
;gal)a(e + nh@,)
1
_ _ (6.67)

EZ

_ _ _ Sr@
(e ¥ nhwy) — &, — U(ny)

(e F nhd,) — & — Un,) —

where ‘d’ represents the QD (d = 1 for the first QD and d = 2 for second QD) and using Eqg.
(6.57) we get

F =t (elor(br"-b1)-0a(bo"-b2)]y = ¢ o-0F (6.68)

7@ js known as the self-energy of the interaction which is calculated as,

sr@@) — ]Ze_giz 6.69
(e Fnha@y) — &)’ (6.69)

and the self-energy can be written as,
7@ () =R (e) F if'(e). (6.70)

~ = ,2
with F = 2p(0)|77| =97 at (T - 0).

We can write the spectral function (SF) A(e) which describes the possible energy excitation

in terms of the Keldysh lesser and greater Green functions as
A(e) = i[Gga(e) — Gga(e)] = i[GFa(e) — Ggy(e)], (6.71)
and using the Dyson equation of motion method, G>(<)(¢) can be obtained from Gr(“)(e) as
G (e) = Gha(e) 7O (e) GLa(e). (6.72)
Substituting Eqg. (6.72) in Eq. (6.71), we calculate the tunnelling current as
Jo =5 [ @ M@ - LA + G-1)6<@] (673
The lesser and the greater self-energies are defined as,

I<(e) = il[fs(e) + fo ()], (6.74)
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2(e) = =il [2 = (fs() + fp(e))], (6.75)

where fs(¢) and f, () are respectively the Fermi distribution functions of S and D and are

given by : fsp(e) = (exp[(usp — €)/ksT] + 1 )_1 , Us and pp being the chemical
potentials of S and D, and related to the bias-voltage (V) and the mid-voltage (V,,) as

eV, = (us — up), (6.76)

_ (us + pp)

eV > ,

(6.77)
[= re-9:@Nent) with = (Is+1,)/2, Iy and I, being defined as: I3, =

= ,2
2nps |V e9:(2Npn*1) where pg ) is the density of states of the leads and Ny is the

phonon distribution given by N,,, = [exp(h &@o/kpT) — 1]~ .

We treat the onsite Coulomb interaction strength at the Hartree-Fock mean-field level and
evaluate numerically the self-energy self-consistently and hence the tunnelling current /.

Next we calculate the total differential conductance G which is defined as

dJs
G = v (6.78)
and the spin-polarization parameter which is defined as
Ucr _]—a)
P _y=—7"7""7. 6.79
" = Us ¥o) (©79)

6.3 Numerical Results

We consider symmetric metallic leads. We also consider that as two QDs have the same EPI
strength i.e., g; = g, = g. All the energies are measured in units of the QDs’ phonon energy
i.e., we consider Awy, = 1. We mostly consider the cut-off frequency w. = 3, the phonon
dissipation y = 0.02, onsite Coulomb correlation U = 5 and the gate voltage eV}, = 0. The
main aim of this work is to study the changes in the spectral function (SF), tunnelling current
(J5) and the differential conductance (G) due to the incorporation of one extra QD in series

with the already existing QD in the central region of the single molecular transistor. In Fig.
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6.3, the variation of the renormalized SF, A(w)/A, is plotted with respect to w for different
values of the hopping parameter ¢t,,. It is observed that as t;, increases, the peak height in the
SF increases. For each peak, there is a sub-peak and as t,, increases the sub-peaks become

more prominent. These sub-peaks carry the significance of the second QD.

35 , .
0| (48 | =-son M3
30 —pop| Mt
e eV =01
1 0 eV, =0.5;
23 -2 0 2 g=b0.6; ﬂ
U=5;
=20 K, T=05;
g p:B=I
=
< 15}
10+
5
0 L
-2 -1 0 1 2

w

Fig. 6.2: The spectral function (A(w)/A,) with respect to w for different values of the
tunnelling coefficient t;,.

w

Fig.6.4: The spectral function (A(w)/A,) with respect to w at different temperature (KgT).



Chapter 6

200

20 K, T=0.3

Fig. 6.5: The spectral function (A(w)/A,) with respect to w for different magnetic fields(B).

In Figs. 6.4 and 6.5, the variations of SF with w have been studied. In Figs. 6.4, results have
been obtained at different temperature while in Fig. 6.5, at different magnetic field. Fig. 6.4
shows that as temperature increases, the number of phonon side-bands and the spectral peak

heights increase. The appearance of the side-peaks is due to the phonon excitations, as

explained in Ref. [27].

60 — — 00—
5

e\:m =0.1: (a) a8 "BB=0.6
50 :\—h::..s: a8 pBB=l

K T=1;

n b

40 'l!=l —_— ( )

- SQD ?{ s
30— DPQD = 100F __. sop

&

A (0)/A)

Fig. 6.6: The spectral function (a)(4;(w)/A,) and (b) (4,(w)/A,) with respect to w for
different magnetic field (B).
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The inset in Fig. 6.5 is plotted in the absence of the magnetic field. Though SMT exhibits
only one peak, the double-QD structure in BMT splits the SMT peak into two peaks. As the
magnetic field increases, the peaks in SF move towards right and as B increases, the peak
heights increase. This behaviour of SF exhibits the spin-filtering effect due to the application
of the magnetic field B.

To see how the spin filtering effect changes SF, we plot in Fig. 6.6, the variations of the
spin-resolved SF, A;(w) and A;(w) with w for two values of B. The figures show some
interesting behaviour. For the spin-up SF, the peaks shift to the left (negative w side) as B
increases, whereas, for the spin-down SF, the peaks shift towards right. Also, the peaks are
higher for A;(w). With increasing B, the spin-up peaks decrease in height, though for the
down spin, the SF peaks increase with B. The multi-molecular feature of BMT again shows
up through the appearance of the extra sub-peak with each major peak. Thus the number of

peaks for BMT is more than a corresponding SMT system.

In Fig. 6.7(a), we study the variations of the spin-current J, with respect to the tunnelling
or QD coupling constant t,, at different temperatures. At low temperature, as the coupling
between the two QDs increases, the tunnelling current increases (if t,, is very large). As T
increases, the rate of increase of the tunnelling current with t,, decreases. Above a certain T,
the current decreases with increasing t,,. The reason for this behaviour can be explained
from the Fermi distribution (FD) function of the electrons. When T is small, the Fermi level
in the metallic leads and the QDs are at comparable energy levels, so the electron can
transport from S to D through the QDs. In the low-temperature limit, there is a cross-over
region where the J, value is small for low t;,. This may be because when t,, and T are both
low, the electron does not get sufficient energy to hop from one QD to another. But as T
increases, the energy levels shift and the tunnelling current increases even for low t,,, or else

if the t,, is sufficiently high the current is much higher even at low temperature T.

To study the effect of the magnetic field on the current density J,, we plot Fig. 6.7 (b). As
the magnetic field B increases, the spin-splitting of the energy levels in the QDs increases.
The energy level due to the spin-up electron goes down and the energy level for the spin-
down electron goes up. Therefore, as B is increased, the tunnelling current decreases. This
behaviour of BMT is similar to that of SMT. But an interesting behaviour is found for the

BMT in the low temperature regime. Here, we observe a competing effect of T and B on
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current. As B increases, the current ], reduces if T is sufficiently high. But if T is low,
increases initially, but after a certain value of B, ], reduces again. It is observed from Figs.
6.7(b) that the tunnelling current is higher in BMT that in SMT in the low temperature and

high magnetic field regime.

0.6 0.5 v
] KBTso'z @) sz eV N 0.1; m KBT-0'3
MK, T=03 eV,=0.5 WK, T=0.6
il WK T=0.4 0.4 Y g=0.6; BK T-1
= WK T=0.6 N 4!
WK, T-08
qe
=, 0.4
-

Fig. 6.7: (a) Total tunnelling current (J,/J,) with respect to the DQD tunnelling parameter
(t12) & (b) J5/Jo With respect to the magnetic field (ugB) for different temperatures (KgT).
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Fig. 6.8: Spin dependent tunnelling current (J1/Jo) & (J,/Jo) with respect to the DQD
tunnelling parameter (t,,) for different values of the magnetic field (uzB) at (a) KzT = 0.3

& (b) KzT = 0.8.
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To understand the competing effect of the temperature and the magnetic field, we plot the
spin-resolved tunnelling currents J; and J; with respect to the QD tunnelling coefficient t;,.
Fig. 6.8 (a) is plotted for KzT = 0.3 (low temperature) and Fig. 6.8 (b) is plotted for KzT =
0.8 (high temperature). For ugB = 0, there is no spin-filtering effect, as is understandable.
For KgT = 0.3, J; is lower than J;, while for KgT = 0.8, ]; is higher than J,. For KgT = 0.3,
as B increases, difference in currents between J; and ], decreases. The opposite effect is

observed for KgT = 0.8 case i. e., the difference between J; and ], increases as B increases.

As the e-p interaction strength increases in each QD, ], decreases. It is well known that as
e-p interaction increases in a QD, the polaron size decreases and the polaron mass increases
and the polaron may get trapped in its own potential, which reduces the polaronic transport.
Therefore, as the e-p coupling increases in the QDs, the tunnelling current also decreases. In
Fig. 6.9 (a) and 6.9 (b), we consider ugB = 1 and the variation of J, with respect to the e-p
interaction g is plotted for different values of temperature and phonon dissipation. J,
decreases due to the increase in the polaronic effect as g increases. The increase in
temperature also decreases the current as we have explained in Fig. 6.7 (b). Fig. 6.9 (b) shows
the effect of dissipation on current. At a certiain value of g, as y increases, the current
increases. This is the effect of phonon dissipation. As the phonon dissipation rate increases, it
screens the effect of -p interaction more by reducing the frequency of the QDs.

0.35 0.35 5
== SQD K T=03 b) m y=0.01
— DOD (a) - KuT=0.S ® m 7=0.02
03] B 03 m v=0.03
u I\BT—I , m v=0.04
l".m = 0.1 H ¢ m 7=0'05
0.25 _ 025 K, T=0.1
:c = ngB=1
EA T 02t 4T
RIS " 0.15 ! . 3
____________________ -t SOD e
0 | - N
0.1
0 0.5 1 0 0.5 1
g g

Fig. 6.9: Spin dependent tunnelling current (J,/J,) with respect to the EPI coefficient (g)
for different values of (a) the magnetic field (uzB) & (b) the phonon dissipation rate(y).
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With the increase in the bias-voltage eV,, more electrons can enter from the source to the
QDs, which results in the rise in the tunnelling current. In Fig. 6.10 (a), the variation of the
tunnelling current with the bias-voltage is studied for different values of the magnetic field. It
is found that when the magnetic field is zero, the current J, in BMT is lower than that in
SMT. But, as the magnetic field increases, we find that there exists a certain regime of the
bias voltage in which J, is higher for BMT than for SMT. To see the effect of the magnetic
field and the bias-voltage on the spin-polarized tunnelling currents, we plot Fig. 6.10 (b). In
the absence of a magnetic field, at a particular bias-voltage V,,, the spin-polarized currents J;
and J, are equal. But in the presence of a magnetic field, the energy levels in the QDs are split
and the spin-up level goes down and the spin-down level goes up. As a result, J, increases

with the magnetic field and J; decreases as B increases.

2
2 -
mp B=1 . ® P
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oy | [
) 2 0
=, 0/ o= SQD
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m
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Fig. 6.10: (a) The total tunnelling current (J,/J,) and (b) the Spin-resolved tunnelling current
J+/Jo & J./J], with respect to the bias-voltage (eV,,) for different values of the magnetic field
(upB).
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0.4

Fig. 6.11: Differential conductance G, /G, with respect to the bias-voltage (eV}),

for different values of the tunnelling coefficient (t;,).

In Fig. 6.11, we plot the differential conductance G,with respect to the bias voltage eV, for
different values of the QD tunnelling coefficient t;,. As eV, increases, more electrons can
flow from the source to QD, which results in the rise in the tunnelling current as well as in the
differential conductance. One can also observe a few side peaks, which occur due to the

polaronic fluctuations.

In Fig. 6.12, we plot the differential conductance G,with respect to the bias voltage eV,,. Fig.
6.12(a) gives results for different values of the magnetic field and Fig. 6.12(b) provides
results for different values of temperature. G, is symmetric about eV, = 0 for all values of
B&T.AtKzT = 0.3, in the absence of a magnetic field, there is one peak in G, for SMT,
whereas for BMT, the peak splits into two peaks due to the presence of two QDs in the
system. But as B is switched on, two peaks appear as the energy levels in the QDs are split.
As B increases, G, decreases which is, of course, an expected behaviour. Fig. 6.12 (b) shows
that the effect of temperature on G, is similar to what we observe in the J, plot. As T

increases more, G, saturates.
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Fig. 6.12: Differential conductance G, /G, with respect to the bias-voltage (eV},), for
different values of the magnetic field (ugB) & (b) the temperature (KzT).

To understand how the temperature changes the energy levels in the metallic leads, we have
plotted the spin-resolved differential conductance in Fig. 6.13, with respect to the bias voltage
for different temperatures. The G; and G, are not symmetric with respect to eV;,. The G;
component is shifted to the left and the G, component is shifted to the right. This behaviour is

similar to what we observe in the case of SF.
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Fig. 6.13: Spin-resolved Differential conductance (a) G1/G, & (b) G,/G, with respect to the

bias-voltage (eV,,) for different values of the temperature (KgT).
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Fig. 6.14: Differential conductance G, /G, with respect to the bias-voltage (eV},), for

different values of (a) the e-p interaction coefficient (g) & (b) the Coulomb correlation (U).
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Fig. 6.15: Spin-resolved differential conductance (a) G1/G, & (b) G,/G, with respect to the

magnetic field (ugB) for different values of the dissipation constant (y).

In Fig. 6.14 (a), the effect of the EPI coefficient g on G, is studied. We find that as g
increases, the differential conductance G, decreases. As a result, the differential conductance
peak also decreases with increasing g. Another very important parameter is the Coulomb

correlation U which opposes electrons from coming to the same site. Therefore, as U is
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increased, the electrons would like to tunnel from QDs to the drain and the current J, and

differential conductance G, would increase (Fig. 6.14 (b)).

Fig. 6.16: Spin-Polarization (P;;) with respect to the bias-voltage (eV},)for different values of
(a) the magnetic field (ugB) and (b) the e-p interaction coefficient (g).

The effect of phonon dissipation on G, is plotted in Fig. 6.15. Here we study the variation of
G, with respect to the magnetic field for different phonon dissipation rates (y). The spin-
resolved conductances G and G, show a different behaviour, as is understandable. But from
both the Figs. 6.15(a) and (b), we find that when the magnetic field is high, the phonon
dissipation y reduces G; and G;. But at low values of magnetic field, the conductance

increases with dissipation.

Spin polarization (P;;) is an important parameter in the spin-transport phenomena. In Fig.
6.16(a) we study the effect of magnetic field on spin-polarization. As the magnetic field
(ugB) increases, the spin-filtering effect becomes more prominent. Therefore, with the
increase in B, the spin-polarization also increases and at a certain B, P;; become maximum.
From Fig. 6.16(b), we find that e-p interaction also enhances the spin-polarization effect and

in the strong coupling limit, P;; become 1.
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Fig. 6.17: Spin-Polarization (P;;) with respect to the bias-voltage (eV,,) for different values
of the tunnelling coefficient (t,,) and (b) temperature (KgT).
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Fig. 6.18: 3D plot of the total tunnelling current (J,//,) (a) with respect to bias-voltage(eV})
& magnetic field(ugB) with respect to QD tunnelling coefficient (t;,) & e-p interaction
coefficient (g).

The effect of t;, on the spin-polarization Py, is studied in Fig. 6.17 (a). We find that as t;,
increases, P;, reduces. The reason for this behaviour is not quite clear. The effect of

temperature is interesting on Py, in BMT. Fig. 6.17 (b) shows that as T increases, initially the



Chapter 6

spin-polarization is elevated due to the shifting in Fermi energy level. At a certain
temperature, the system attains the maximum polarization and above that temperature, the
spin-polarization starts decreasing. The combined effect of different parameters on the
tunnelling current (J/J,) is studied in Fig. 6.18. In Fig. 6.18(a), J,, is plotted with respect to
the magnetic field and the bias voltage and the variation is much clearer in the 3D plot. Fig.
6.18(b) shows that J, increases with t,, at KzT = 0.3 and B = 1 and with the e-p interaction

coefficient, J, reduces.

The variation of differential conductivity G, is studied with respect to eV}, and t;, ina 3D
plot in Fig. 6.19. We find that G, initially increases with the bias-voltage eV}, and after a
certain value of eV, G, reduces but with t;,, it monotonically increase. The spin-resolved
differential conductances G and G, are plotted in Fig. 6.19 with respect to the magnetic field
and temperature. Both the spin-resolved conductances are found to be maximum at low

temperature and high magnetic field limit.
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Fig. 6.19: 3D plot of the differential conductance (G,/G,) (a) with respect to bias-
voltage(eV},) & the QD tunnelling coefficient (t;;).
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Fig. 6. 20 Spin-resolved differential conductance (a) G1/G, & (b) G,/G, with respect to
the magnetic field (ugB) and temperature (KgT).

6.4 Conclusion

In the present work, two QDs are connected in series and placed between two metallic leads
in the presence of an external magnetic field and the whole system is mounted on an
insulating substrate which is further attached to a gate. An external bias voltage and a gate
voltage is applied to the system. The system has been studied by the Anderson-Holstein-
Caldeira-Leggett model and the tunnelling current calculated using the Keldysh non-
equilibrium Green function method. The spectral function is studied with respect to the
phonon frequency and it has been observed that the spectral function increases as the hopping
coefficient between the QDs increases. The external magnetic field splits the spectral
function peaks and the polaron side bands are increased with the phonon frequency. The
tunnelling current is found to increase with the bias voltage and the QD tunnelling
coefficient. The differential conductance is found to be symmetric with respect to the bias
voltage, though the spin-resolved quantity is not. It has been found that the tunnelling current
and differential conductance are higher in the high-magnetic field and low-temperature
regime. The spin-polarization parameter reduces with the QD tunnelling coefficient and at

low bias voltage, the spin-polarization increases with the e-p interaction and the magnetic
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field. For BMT, we obtain the maximum spin-polarization for a high magnetic field and

strong e-p coupling limit.
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Conclusion

In the present thesis, titled “Electronic and transport properties of the low dimensional
systems”, we have studied the nature of SDW-CDW transition and the self-trapping transition

in a correlated polar system.
In Chapter 1, we have described the basic models and motivations towards the thesis.

In Chapter 2, we have studied the SCW-CDW transition in a 1D Holstein-Hubbard model
with Gaussian phonon anharmonicity using a more accurate variational calculation than the
ones used earlier. Performing a series of canonical transitions followed by a generalized
many phonon state, we have obtained an effective electronic Hamiltonian which we have
finally solved using the Bethe ansatz technique. Our results suggest a wider metallic phase at

the crossover region of the SDW and CDW phases.

In Chapter 3, we have considered a 2D Holstein-Hubbard model and examined the nature
of the CDW-SDW transition in this model. We have treated the phonon sub-system of this
problem in the same way as in Chapter 1. Since the effective electronic Hamiltonian in this
case does not admit an exact solution, we have solved the effective electronic problem in the
weak correlation regime and the strong correlation regime separately. In the weak Coulomb
correlation regime, the effective electronic Hamiltonian has been solved using the mean-field
Hartree-Fock method. In the strong correlation regime, the effective electronic Hamiltonian

has been first transformed to the t-J model which has then been solved using the Gutzwiller
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approximation and the Zubarev technique. Combining the results from two different regimes,
we have plotted the phase diagram with respect to the e-e and e-p interaction strengths and
obtained the intermediate metallic region. The intervening metallic phase is found to be wider
than the result for the corresponding 1D case.

Another phase transition in the Holstein-Hubbard model is the self-trapping (ST) transition.
We have studied the nature of the ST transition in the extended Holstein-Hubbard model in
1D in Chapter 4. Here we have used same method as in Chapter 2 and have shown that as
the e-p interaction is increased, the polaron undergoes a transition from a large polaron to a

small polaron in a continuous way.

In Chapter 5, we have examined the nature of the ST transition in a 2D Holstein-Hubbard
model using the same method as used in Chapter 3. We have shown that the ST transition is
continuous in the anti-adiabatic regime, but it shows sharp discontinuity for the adiabatic

case.

In Chapter 6, we have studied temperature dependent magneto-transport in a bi-molecular
transistor in the presence of e-e and e-p interactions and quantum dissipation. The system has
been modelled by the Anderson-Holstein-Caldeira-Leggett model and the spectral function,
tunnelling current and differential conductance are calculated using the non-equilibrium
Keldysh Green function technique. Our results show that the tunnelling current in a bi-
molecular transistor is higher than that in single molecular transistor in the high magnetic

field and low temperature regime.

“Ihe P?ujm io theorelical, but the Jﬁm is weaf”... T hope you have enjoyed reading the

thesis.
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Try not to become
a man of Success,
but rather try to become
aman of value. § §

— Albert Einstein

German-born theoretical physicist who developed the theory of relativity
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