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Preface 

 
This thesis contains two parts. In Part I, we study the phase transitions in the Holstein-

Hubbard model and in Part II, we study the quantum transport in a bi-molecular transistor.  

 

   We begin Chapter 1 of the thesis by giving a brief motivation behind our work. We then 

present an introduction to the tight binding model, the concept of Coulomb correlation and 

the Hubbard model, the concept of polaron and the Holstein model. We next introduce the 

Holstein-Hubbard model and the phase transitions that can occur in this model. In this 

context, we discuss the spin and charge density wave states and the phenomenon of self-

trapping transition. Next we introduce the Anderson-Holstein model and the Caldeira-Legette 

model and the Anderson-Holsrtein-Caldeira-Leggett model and their application to molecular 

transistors. 

 

    Interplay of electron-electron (e-e) and electron-phonon (e-p) interactions in a condensed 

matter system can lead to interesting ground states. The Holstein-Hubbard (HH) model is one 

of the most suitable models to study this interplay in a correlated polar material. Depending 

on the relative strengths of the e-e and e-p interactions, the system can be in a spin-density-

wave (SDW) ground state (GS) or in a charge-density-wave (CDW) GS. Variation of the e-e 

interaction and e-p interaction in the system can change the GS of the system from one 

insulating state to another insulating state. Though these phases have been quite well known, 

the nature of the transition has not been very clear. The nature of the SDW-CDW transition 

has been first studied by Hirsch and Fradkin by a Monte-Carlo calculation and they have 

shown that the SDW-CDW transition is direct. Takada and Chatterjee (TC) have studied the 

one-dimensional half-filled HH model analytically to examine more critically the nature of 

the SDW-CDW transition and have shown for the first time that there exists an intermediate 

metallic phase between these two insulating phases. This study has thrown a new challenge 

and received attention from other researchers who also contributed on this problem.  Because 

of these contrary results, it is really very important to study the nature of SDW-CDW phase 

transition in HH model by more improved analytical calculations. Chatterjee and 

collaborators have shown, in this context that modifications of the phonon wave function lead 

to broadening of the width of the intermediate metallic phase. This lends credence to the 

conjecture of TC regarding the existence of the intervening metallic phase at the cross-over 



xxii 
 

 

 

region of the SDW and CDW phases. Considering the anharmonic vibrations of the apex 

oxygen atoms in the cuprate superconductors, CT [18] have studied the SDW-CDW 

transition in a 1D HH model taking cubic and quartic phonon anharmonicities. Lavanya et al. 

have extended this work by considering Gaussian anharmonicity and performed an improved 

variational calculation.  They have supported the existence of the intermediate metallic phase 

at the cross-over region of the SDW-CDW phases. The metallic phase obtained from their 

results is also wider than the TC one.  

 

   In Chapter 2 of the thesis, we consider the same HH model in the presence of Gaussian 

phonon anharmonicity, as studied by Lavanya et al. We study the nature of the SDW-CDW 

transition within the framework of the above model using a more improved analytical 

calculation. Following a series of canonical transformations followed by a generalized many-

phonon state, we obtain an effective electronic Hamiltonian which we solve exactly using 

Bethe ansatz to obtain the ground state energy of the system. This calculation can be 

considered as semi-exact. The transition from the SDW state to CDW state is examined by 

calculating the effective Hubbard hopping parameter 𝑡𝑒𝑓𝑓 and effective Coulomb correlation 

strength 𝑈𝑒𝑓𝑓. The phase diagram of the e-p coupling constant 𝛼 vs. 𝑈 shows an intervening 

region in between the SDW and CDW phases. The nature of the intermediate region is 

studied by calculating the Mott-Hubbard metallicity criteria, double-occupancy parameter, 

entanglement entropy and the local spin moment. Our study ensures the metallicity of the 

intermediate region. 

 

   In Chapter 3, we study the SDW-CDW phase transition for a two-dimensional (2D) 

system given by the extended 2D HH Hamiltonian. This work is more realistic in view of the 

2D nature of the cuprate superconductors. However, the HH model is not exactly soluble in 

2D. So, we solve the extended HH model in two different regions separately, namely in the 

weak-correlation regime and the strong-correlation regime using two different analytical 

methods. After eliminating the phonons, the electronic Hamiltonian is solved in weak 

correlation regime using the mean-field Hartree-Fock (HF) method. In the strong Coulomb 

correlation regime, the electronic Hamiltonian is first transformed to an effective 𝑡 − 𝐽 model 

and solved by using the Zubarev Green function technique and HF approximation (which 

becomes valid because of the restriction on the double occupancy). Our result shows that 

even in 2D there exist an intermediate metallic phase which is wider than that of the 1D case. 
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The nature of the intermediate region is further studied by calculating the Mott-Hubbard 

metallicity criteria. Our analytical result matches well with the recent numerical calculations 

of Wang et al. 

 

    In a polar material, an electron forms a polaron because of the e-p interaction that distorts 

the lattice. If the e-p coupling is weak, the resulting polaron is a large mobile polaron, 

whereas in the case of strong e-p coupling, the polaron is confined within single lattice 

spacing and we have what is called a small polaron which is a localized quasi particle. Thus, 

as the e-p interaction is increased, at a critical value of the e-p coupling constant, one can 

have a large polaron to small polaron transition. This is known as the self-trapping (ST) 

transition, as the polarization potential that traps the polaron is created by the electron itself. 

In the last few decades, extensive investigations have been carried out to study the nature of 

the ST transition. But, a clear consequence to the nature of this ST transition is still lacking.  

  

    In Chapter 4, we study the nature of the ST transition in 1D extended HH model. We 

study this Hamiltonian using a very accurate analytical method. Performing a series of 

canonical transformations followed by a many-phonon averaging, we obtain an effective 

electronic Hamiltonian. The effective electronic Hamiltonian is then solved exactly using the 

Bethe ansatz technique and the ST transition from a large polaron state to the small polaron 

state is studied.  

 

    In Chapter 5, we examine the nature of ST transition in 2D extended HH model. In 2D, as 

the HH model is not exactly soluble, after eliminating the phonons, we deal with the effective 

electronic Hamiltonian for the weak correlation regime and the strong correlation regime 

separately by two different analytical methods. The methods employed here to solve the 

Hamiltonian is similar to the method used in Chapter 3. Our results show that though in 1D 

HH model, the ST transition is always continuous, in 2D HH model, the ST transition is 

continuous in the anti-adiabatic regime while it is discontinuous in the adiabatic limit.  

 

   Transistors are one of the integral part of modern technology for the fabrication of nano-

devices. Of late, single molecular transistors (SMT) have attracted considerable attention for 

their practical application in transport devices. In 2000, the fabrication of 𝐶60  molecular 

transport was first reported by Park et al. with the help of gold electrodes connected with the 

𝐶60 molecules. An SMT device can be used as a switching device as well as a sensor. Dutta 
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has studied electronic transport in mesoscopic systems and subsequently he extended this 

study to molecular transistors. Lately, extensive studies have been carried out on the double-

QD-based molecular transistors as they show many interesting properties like large charge 

sensibility and more controllable current.  

 

   In Chapter 6, we study the transport properties of a bi-molecular transistor where two QDs 

mounted on an insulating substrate are placed between two metallic electrodes one of which 

acts as a source (S) and the other as a drain (D). The electrons can be made to flow from the 

source to the drain through the QDs by applying an external bias-voltage and the energy 

levels in the QDs can be tuned with a gate voltage applied to the substrate. The QDs are 

considered to have only single energy levels and onsite e-e and e-p interactions. The e-p 

interaction is described by the Holstein interaction. The electrons in the source and the drain 

are considered free and thus they have continuous energy levels. Electrons from the source 

can tunnel into the QD and from QD to the drain and vice versa. This process is modelled by 

the Anderson hybridization term. The QD phonon interacts with the phonons of the substrate 

by a linear coupling which we model by the Caldeira-Leggett (CL) Hamiltonian. This 

interaction gives rise to dissipation in the phonon dynamics of the QD phonon and increases 

the tunnelling current. The entire bi-molecular transistor system is thus modelled by the 

Anderson-Holstein- Caldeira-Leggett (AHCL) Hamiltonian. We first eliminate the interaction 

between the QD phonon and the substrate phonon (approximately) and then the e-p 

interaction by the Lang-Firsov transformation. Next we calculate the spectral function, 

tunnelling current, differential conductance and spin-polarization parameters at different 

magnetic fields and different temperatures using the non-equilibrium Green function 

technique of Keldysh.   

 

   In Chapter 7, we summarize our findings and present our concluding remarks. 

 

 

 

 

 



“Things are always at their best at their beginning”…Blaise Pascal 

 

               1 
Introduction 
 

1.1 Motivation  

  The present thesis contains two parts. In the first part, our aim is to examine the nature of 

some interesting phase transitions that can occur in correlated polar materials and in the 

second part we wish to study the quantum transport in a bi-molecular transistor.  

  Phase transitions in correlated polar materials have continued to remain an interesting 

subject of research for the last few decades. It is well known that if the electron-electron (e-e) 

Coulomb repulsive interaction much greater than the electron-phonon (e-p) coupling in a 

correlated polar system, the ground state (GS) of the system would be a spin-density-wave 

(SDW) GS.  The system behaves as an insulator in this state and is known as a Mott insulator. 

However, if the e-p coupling is much stronger than the Coulomb correlation, the system is 

known to be in a charge-density-wave (CDW) GS. This is also an insulating state and we can 

call it a Peierls insulator. Thus as the e-e interaction increases, a correlated polar material can 

make an SDW-CDW transition. It is well accepted that there exists such a transition; 

however, consensus regarding the detailed behaviour of the transition is lacking. The key 

question that requires an answer is whether the transition from SDW state to CDW state is 

direct or goes through an intermediate metallic phase.  This issue is of profound importance 

in the context of superconductivity. To attain high 𝑇𝑐  superconductivity through e-p 

interaction, a material has to have large e-p coupling. But, as we have mentioned above, if the 

system has a strong the e-p coupling, then it would settle into a CDW state which is 

obviously not a suitable GS state if we are interested in superconductivity. if the SDW to 
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CDW transition occurs through a conducting metallic phase, then that metallic phase can 

become superconductive even at large enough e-p interaction strength. In this thesis, we wish 

to investigate the possibility of such a metallic phase. 

  Another objective of this thesis is to examine, in detail, the behaviour of self-trapping 

transition in a polar material.  In such a material, e-p interaction distorts the lattice and creates 

a polarization potential and forms a polaron. For weak e-p coupling, the polarization potential 

is shallow and the resulting polaron is mobile and is called a large polaron. For strong e-p 

coupling, the polarization potential is deep and the electron gets trapped in this potential. 

Such a localized polaron is called a small polaron. Thus, with the increase in the e-p 

coupling, one expects a large to small polaron transition. Such a transition is called self-

trapping (ST) transition, as the potential that traps the electron is created by the electron 

itself.  

  Finally, we wish to study the quantum transport in a bi-molecular transistor. It is known that 

a single molecular transistor can act as a spin filter. Our objective in this thesis is to examine 

whether the spin-filtering effect can be enhanced in a dissipative bi-molecular transistor with 

Coulomb correlation and polaronic interaction.   

  To study correlated materials, the suitable model is the tight-binding model. To study the 

polaronic coupling, the suitable model is the Holstein model and for the Coulomb correlation, 

we consider the Hubbard model.  To consider tunnelling in the bi-molecular transistor, we 

shall use the celebrated Anderson model and the dissipation will be taken care of by the 

Caldeira–Leggett model. In the following section, we shall introduce all these models and 

discuss the necessary concepts.    

 

  1.2    Tight Binding Model (TBM) 

  The free electron theory proposed by Sommerfeld [1] has been a useful tool to describe the 

metallic behaviour of elements up to a specific limit. But it fails to explain several other 

features of the materials. As an improvement on the free electron model, Bloch [21] 

introduced the linear combination of atomic orbitals (LCAO) method in which the atomic 

orbitals associated with each lattice site overlap and then it is possible to write the Block 

function as a linear superposition the atomic states 𝜙𝑛 as 
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𝜓𝑛,𝒌(𝒓) =
1

√𝑁
∑𝑒𝑖𝒌⋅𝑹𝒋  𝜙𝑛(𝒓 − 𝑹𝒋)

𝑹𝒋

,                                            (1.1) 

where 𝑁  denotes the number of lattice sites which is a very large number and 𝑹𝒋  is the 

position vector of the atom at the j-th site. The Hamiltonian for a system of electrons 

interacting with a periodic lattice can be written as 

 

𝐻 =
𝒑2

2𝑚
+∑𝑉𝑎(𝒓 − 𝑹𝒋)

𝑹𝒋

.                                                   (1.2) 

The energy 𝐸 of the Hamiltonian in Eq. (1.2) can be found using the LCAO state of Eq. (1.1). 

We obtain  

 

𝐸 = 𝐸0 +
1

𝑁
∑ ∫𝑑3𝑟 𝑒𝑖𝒌⋅(𝑹𝒊−𝑹𝒋)𝜙𝑛

∗(𝒓 − 𝑹𝒋)𝑉𝑎(𝒓 − 𝑹𝒋)𝜙𝑛(𝒓 − 𝑹𝒊)

𝑹𝒊,𝑹𝒋

 

 = 𝐸0 + 𝐸𝑖,𝑗=0 + 𝐸𝑖𝑗 ,                                                                                                  (1.3) 

 

where 𝐸0 = ℏ
2𝑘2/2𝑚 is the free-electron kinetic energy, 𝐸𝑖,𝑗=0 is the on-site potential energy 

and 𝐸𝑖𝑗 is the potential energy due to the NN interaction that is given by  

𝐸𝑖𝑗 = −𝑡 ∑ 𝑒𝑖𝒌⋅(𝑹𝒊−𝑹𝒋)

𝑹𝒊,𝑹𝒋

,                                                         (1.4) 

where  

𝑡 = ∫𝑑3𝑟 𝜙𝑛
∗(𝒓 − 𝑹𝒋)𝑉𝑎(𝒓 − 𝑹𝒋)𝜙𝑛(𝒓 − 𝑹𝒊).                                  (1.5) 

 

where 𝑖, 𝑗 refer to the NN sites. The integral in Eq. (1.5) is called the overlap integral that 

represents the inter-site atomic interaction. Depending upon the interaction involved in the 

generic Hamiltonian, the overlap integral can be extended to next NN and next to next NN as 

well. 

   The lattice Hamiltonian in the tight-binding approximation is easier to deal with when it is 

written in the second quantized notation. The tight-binding Hamiltonian can be written in 

second quantization notation as 
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𝐻 = − ∑ 𝑡𝑖𝑗𝑐𝒊𝜎
† 𝑐𝒋𝜎

<𝑖𝑗>
𝜎

.                                                            (1.6) 

 

Here 𝑖, 𝑗 refer to NN sites, <> implies that the sum extends over the NN sites.  𝑡𝑖𝑗 carries the 

information of the electron hopping from one site to another, 𝑐𝒊𝜎
†

 is the creation operator for a 

spin-𝜎 electron at site 𝑖 and 𝑐𝑖𝜎 is the corresponding annihilation operator. Using the discrete 

lattice model of tight-binding approximation, the band structures of different materials have 

been studied. Also, the tight-binding (TB) model (TBM) has been useful to calculate the 

effective mass 𝑚∗  of an electron interacting with a lattice. Diagrammatically we can 

represent different atomic sites with the corresponding wave function in the presence of the 

lattice potential 𝑉𝑎 as the following:  

 

  

 

Fig. 1.1: Lattice potential and electronic wave function in tight binding model 

 

  The hopping of an electron from one atomic site to another is possible due to the overlap 

of the electronic wavefunction and this overlap integral can be calculated using the Bloch 

wavefunction or Wannier wave function. The tight binding formulation is considered under 

the independent electron approximation and it describes the creation of narrow-band 

materials. Therefore the theory predicts the d and f-orbital band structure in a more correct 

way than the s and p-orbital elements. 

   The conductivity measured in certain materials could be well-established with the help of 

the TB model [4]. When the atoms are in a closed packed structure with a small lattice 

constant, the overlap between the atomic orbitals is higher which leads to high 
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conductivity. But as the lattice spacing increases in a lattice, the overlap between the 

atomic orbitals decreases and as a result, the bandwidth reduces and eventually the 

conductivity diminishes.   

 

 

                                  Fig. 1.2: Band structure formulation [Ref. 3].   

   

1.3 Hubbard Model 

  Certain oxide materials behave as insulators, though according to the band theory they 

should be conductors. This issue was resolved by Hubbard [5] in 1963. In the case of certain 

oxides, the number of electrons in the d-orbitals is more than that in the s or the p-orbital. In 

the tight-binding model, only the overlap of the atomic orbitals is considered. But the 

presence of several electrons results in a large Coulomb repulsion, which is not incorporated 

in the tight-binding model. Hubbard introduced this electron-electron (e-e) interaction in the 

tight-binding model. The Hubbard Hamiltonian is given by  
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𝐻 = − ∑ 𝑡𝑖𝑗𝑐𝒊𝜎
† 𝑐𝒋𝜎

<𝑖𝑗>
𝜎

+ 𝑈∑𝑛𝑖↑ 𝑛𝑖↓
𝑖

 ,                                               (1.7) 

 

where 𝑈 is the e-e Coulomb interaction at a particular site and is called the onsite Coulomb 

correlation energy. In this model, an electron can hop from one site to its neighbouring site 

which is represented by the first term (hopping term) of the Hamiltonian (1.7) and the second 

term says it costs an energy 𝑈 for two anti-parallel-spin electrons to stay at the same lattice 

site. When the electron density is significantly low in the system, then it is very less likely for 

two electrons to meet at the same site and hence in that case, the system acts as a weakly 

correlated system. But if we consider a system in which each site has a single electron in an 

anti-ferromagnetic order, then it is difficult for the up (down) spin electron of a particular site 

to hop to the neighbouring down (up) spin electron site, as it will cost an extra energy 𝑈. 

Hence, the motion of the up- (down-) spin electron is correlated with the down- (up-) spin 

electron. Therefore this system is referred to as a strongly correlated system. We normally 

assume the 𝑡𝑖𝑗 is same for all nearest neighbours and write 𝑡𝑖𝑗 = 𝑡. 

   

 

 

Fig. 1.3: 2D Hubbard model [source Wikipedia] 

 

   

The competing parameters involved in the Hubbard Hamiltonian are 𝑡 and 𝑈 and the ratio 

𝑈/𝑡 can describe the electronic motion involved in the system. Therefore, by varying these 

two parameters, it is possible to describe a metal-insulator transition. For example, even if a 

system has a half-filled band, if 𝑈/𝑡 is much smaller than one, it will be easy for the electrons 
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to hop from one atom to another and the system would behave as a metal. On the other hand, 

even for a half-filled band system, if  𝑈/𝑡 is much larger than one, hopping of an electron 

from one site to another site will be prohibited and the material would behave as an insulator. 

These systems are called Mott insulators. Thus, by increasing 𝑈 , one can have a metal-

insulator transition which is known as the Mott-Hubbard transition [6].  

  For the finite values of the hopping parameter 𝑡 and Coulomb correlation 𝑈, the half-filled 

Hubbard model was first solved by Lieb and Wu [7] in one dimension using the Bethe ansatz 

method [8]. The away from half-filling case was first solved by Shiba and collaborators [9]. 

So far, no exact solution has been found for the Hubbard model in higher dimensions. 

Therefore, several analytical approximation methods (like the mean-field Hartree-Fock (HF) 

method, renormalization group (RG) method etc.) and numerical techniques (like Monte 

Carlo simulation) have been developed to solve the higher dimensional Hubbard model.  

 

1.4 Polaron 

    An electron in the conduction band of an ionic crystal or a polar semiconductor distorts 

and polarizes the lattice in its vicinity by the e-p interaction. Such an electron then moves 

through the crystal together with the distortion (Fig. 1.4). The electron and the distortion 

together comprise a quasi-particle called polaron. If the e-p interaction is weak, the lattice 

distortion spreads over many lattice sites and the polarization potential is shallow. Such a 

polaron is known as a large polaron. If the e-p interaction is strong, the distortion is confined 

to a single lattice site and the polarization potential is deep and corresponding plaron is called 

a small polaron. It was Landau [10] who conceived the idea of polaron and term “polaron” 

was coined by Pekar [11]. The works of Landau and collaborators [12] were essentially semi-

classical and dealt with what is now known as the strong-coupling polaron.  The quantum 

mechanical formulation of the polaron problem was first given by Fröhlich in 1954 [13]. He 

proposed the celebrated Fröhlich Hamiltonian which could give solutions for both the weak 

and strong coupling regimes within the framework of the continuum model. Later, Holstein 

proposed an interesting model [14] which is a suitable model for the small polaron in a 

discrete lattice.  
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Fig. 1.4: Schematic diagram of polaron [Ref. 15] 

 

 

1.4.1 Holstein Model 

The Holstein Hamiltonian is given by  

 

𝐻 = − 𝑡 ∑ 𝑐𝒊𝜎
† 𝑐𝒋𝜎

<𝑖𝑗>
𝜎

+ 𝜔0∑𝑏𝒊
†𝑏𝒊

𝑖

+ 𝑔∑𝑛𝑖𝜎(𝑏𝒊
† + 𝑏𝒊)

𝑖𝜎

,                         (1.8) 

 
 
where the first term gives tight-binding Hamiltonian, the next term represents the free phonon 

Hamiltonian and the third term describes the e-p interaction. Here 𝑛𝑖𝜎(= 𝑐𝒊𝜎
† 𝑐𝑖𝜎) denotes the 

electron number operator for electrons at site 𝑖 with spin 𝜎, 𝑐𝒊𝜎
†  (𝑐𝑖𝜎) denoting the creation 

(annihilation) operator for the corresponding electrons, 𝑏𝒊
†
 is the phonon creation operator at 

site 𝑖  with the dispersionless frequency 𝜔0 , 𝑏𝒊  is the corresponding phonon annihilation 

operator and 𝑔  refers to the e-p coupling coefficient. The e-p interaction can also be 

described with the Feynman diagram in the following way: 
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Fig. 1.5: Feynman diagrams of the e-p interaction in the Holstein model 

 

1.5 Holstein-Hubbard Model 

  For a correlated system which has a significant e-p interaction, one of the appropriate 

models is the Holstein-Hubbard model. This is a combination of the Holstein and the 

Hubbard models and has been employed by several researchers to explain the high 

temperature superconductivity in cuprates. The interplay between the e-p and the strong 

Coulomb couplings in a material can be investigated using the Holstein-Hubbard (HH) model 

(HHM). The HH Hamiltonian (HHH) is given by  

 

𝐻 = − 𝑡 ∑ 𝑡𝑖𝑗𝑐𝒊𝜎
† 𝑐𝒋𝜎

<𝑖𝑗>
𝜎

+ 𝑈∑𝑛𝑖↑ 𝑛𝑖↓
𝑖

+ 𝜔0∑𝑏𝒊
†𝑏𝒊

𝑖

+ 𝑔∑𝑛𝑖𝜎(𝑏𝒊
† + 𝑏𝒊)

𝑖𝜎

,           (1.9) 

 

where all the terms have been defined earlier. The ground state (GS) of the HH Hamiltonian 

can be a spin density wave (SDW) insulator or a charge density wave (CDW) insulator. This 

will essentially depend on the values of the parameters 𝑈 and 𝑔.    

 

1.5.1 Spin density wave (SDW) 

  An anti-ferromagnetic (AF) Mott-insulating state can be found as the solution of the HH 

Hamiltonian if a strong Coulomb correlation is present in the system. When the Hubbard 

interaction 𝑈 is much greater than 𝑔, the system fails to pay the extra energy cost to keep any 

two electrons at the same lattice site. Then the electrons stay localized at their respective sites 

and GS of the system is an AF Mott insulator. This is also known as the SDW state (Fig. 1.6). 

As the electrons form polarons because of the e-p coupling, this state can also be called a 

polaronic state. The following diagram represents schematically the AF SDW polaronic Mott 

insulator:  
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Fig. 1.6: AFMI or SDW 

 

1.5.2 Charge density wave (CDW) 

  In HH model, if 𝑔 is so large that the phonon-induced e-e attraction dominates over the 

repulsive onsite Coulomb correlation, the system prefers to  

 

 

 

 

 

 

 

                                               Fig. 1.7: Peierls insulator or CDW 

 

stay in a bipolaronic phase. In this case, each alternating lattice sites are filled with two 

electrons with opposite spins and the system’s GS becomes a paramagnetic CDW state. In 

this case, the lattice spacing doubles up leading to peierls instability. The lattice is now 

dimerized and each lattice site is occupied by a bipolaron. Fig. 1.7 shows schematically the 

CDW state.  
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1.6 Phase transition in Holstein-Hubbard Model 

1.6.1 Transition from Spin density wave to Charge density wave 

  The HH model is an extremely useful model to study the competing effects of the e-e 

Coulomb correlation and the e-p interaction. We have already discussed that in the case of 

𝑈 ≫ 𝑔, the GS of the HH Hamiltonian has an AF SDW polaronic Mott insulator, whereas in 

the case of 𝑔 ≫ 𝑈,  the GS is the paramagnetic CDW bipolaronic Peierls  insulator. Thus 

with the increase in the e-p interaction, one would expect the system to undergo a transition 

from an SDW phase to CDW phase. In 1983, the SDW-CDW transition has been studied by 

Hirsch and Fradkin [35] by using a numerical Monte Carlo simulation. Their investigation 

has suggested that this is a direct transition. An analytical study by Takada and Chatterjee 

(TC) [17] in 2003 has thrown a challenge in this area. TC have considered the one-

dimensional (1D) half-filled HH Hamiltonian. Treating the phonon sub-system variationally 

and employing the Bethe ansatz technique [18-19], TC have shown that the SDW-CDW 

transition is not a direct rather it goes through an intervening phase which is interestingly 

metallic. Thus, according to TC, there exists an intermediate metallic phase flanked by the 

SDW and CDW phases. This result is important in the context of high-TC superconductivity 

because it suggests that even at a large e-p interaction, one can have a metallic phase which 

can become superconductive. Since the apex oxygen atoms in the cuprate superconductors 

have anharmonic vibration, it is important to consider the phonons to be anharmonic and 

consider a more realistic HH Hamiltonian with anharmonic phonons. Chatterjee and Takada 

(CT) [20] have studied the HH model in the presence of cubic and quartic phonon 

anharmonicity. The results show that width of the metallic phase broadens in the presence of 

phonon anharmonicity. After the prediction of the intermediate metallic phase in the HH 

model, several other researchers have examined the same problem using different numerical 

techniques. The density matrix renormalization group (DMRG) calculation of Clay and 

Hardikar [21-22] have supported the assertion of TC. DMRG study by Fehske et al. [23] has 

suggested that the existence of metallic phase for the HH model for large phonon frequencies. 

Using the exact diagonalization technique and cluster perturbation method, Payeur and 

Senechal [24] have also observed the metallic state. Quantum Monte-Carlo analyses by 

Nowadnick et al. [25] and Bourbonnais and Bakrim [26] have further confirmed the presence 

of the intermediate metallic phase.  
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   There have also been a few studies that disputed the assertion of TC. For example, the 

studies by Tezuku et al. [27-28] show that the SDW to CDW transition does not require any 

intermediate phase. Furthermore, the renormalization group (RG) study by Tam et al. [29] 

also shows a direct transition between the two insulating phases. Therefore, it was important 

to examine the behaviour of the phase transition by more accurate analytical calculations.  

With this aim, Chatterjee and collaborators [30-35] have carried out a few improved 

analytical studies using variational calculations and they have shown that with every 

improvement of the variational wave function, the width of intermediate metallic phase 

widens. Recently, Lavanya et al. [33] have studied the HH model in the presence of the 

Gaussian phonon anharmonicity. The width of metallic phase obtained from their calculation 

turns out to be broader than that obtained by TC.   

  In this thesis, we have considered the 1D HH Hamiltonian with the Gaussian anharmonicity 

at half filling i.e., the same model as considered by Lavanya et al. Using an accurate phonon 

wave function, we have obtained the effective electronic Hamiltonian which we have solved 

by the Bethe ansatz method. This calculation can be called semi-exact. We have next 

considered an extended HH model in two dimensions. We have solved this problem in two 

different correlation regimes separately. The metallic phases obtained from both our 1D and 

2D studies are found to be wider than that obtained by TC.  

 

1.6.2  Self-trapping transition of polaron 

In section 1.4, we have discussed the formation of the quasi-particle polarons in a polar semi-

conductor or an ionic crystal. The polaron size is dependent on the strength of the e-p 

interaction strength. In the case of weak e-p coupling, the electron-created polarization 

potential is shallow and therefore the lattice distortion spreads over several lattice points. In 

this case, the wave function of the polaron is essentially extended in character and the 

resulting polaron is known as the large polaron which is delocalized and can wade through 

the lattice essentially as a free particle with a renormalized effective mass. But as the e-p 

interaction increases, the lattice deformation potential induced by the electron becomes 

deeper and the polaron size shrinks. At a sufficiently large e-p interaction, the polarization 

potential may become so deep that the electron may get confined to a length scale which is of 

the order of a lattice constant. The resulting complex is known as a small polaron and it 
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becomes immobile. The small polaron can be described by a localized wave function and has 

been the subject of the conventional Landau-Pekar problem [12]. The quantum mechanical 

formulation was first given by Fröhlich [13] who introduced a continuum polaron model and 

gave the weak-coupling solution. The Frohlich model can also give intermediate coupling 

[36], strong-coupling [11-12] and all-coupling solutions [37-38]. Alexandrov and 

Kornilovitch [39] have discussed the possibility of lattice distortion spreading over many 

sites even for large e-p interaction strength. In this case, the resulting complex is a small 

Fröhlich polaron i.e., a polaron with a localized wave function, but an extended distortion. It 

is well known that as the e-p coupling is increased, a polaron undergoes a transformation 

from a large polaron to a small polaron at a critical e-p coupling constant. This is usually 

known as the self-trapping (ST) transition because here, the transition occurs because of the 

trapping of the electron in a potential that is created by the electron itself. Though there is no 

dispute over the existence of the ST transition, the consensus over the nature of the transition 

is still lacking. The key question one has to answer here is whether this transition occurs in a 

continuous fashion or it is accompanied by a discontinuity. Several authors have studied the 

nature of the ST transition for the single-polaron and the many-polaron systems within the 

framework of the Fröhlich model. Löwen [40-41] has studied the ST transition for the 

Fröhlich model and found the transition is continuous. Toyozawa et al. [42-45] have 

examined the case of an adiabatic small polaron model and Emin [46] has investigated the ST 

transition in polar insulators using the Holstein molecular crystal model and both the studies 

have found the ST transition to be discontinuous. Löwen has explained that the discontinuity 

appearing in some of the studies may be the artefacts of the simplifying mathematical 

approximations employed in those studies. Raedt and Lagendijk [47] have studied the ST 

transition problem for both single and multi-polaron systems within the framework of the 

molecular crystal model of Holstein using a numerical Monte Carlo Technique and have 

demonstrated the continuous nature of the ST transition. Romero and collaborators [48] have 

studied the GS of the Holstein molecular crystal of a single electron with the help of a global-

local variational approach and they have found that the small polaron to large polaron 

transition is smooth until the system approaches the adiabatic limit. Recently, Krishna, 

Mukhopadhyay and Chatterjee (KMC) [49] have examined the behaviour of the ST transition 

in an extended HH system using a variational technique. Their calculation shows that ST 

transition in a 1D correlated polar system is continuous. It should however be mentioned that 

the analysis of KMC is still approximate because of the approximate treatment of the phonon 

subsystem.  
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  The issue of ST transition has continued to remain in the focus of attention in the last few 

decades for its importance in colossal magneto-resistance materials or manganites, 

semiconductor nanostructures and so on. Therefore, this problem deserves a more accurate 

solution, preferably analytical, so that the physics of the system can remain transparent. In 

this thesis, we have made such an attempt. More specifically, we have examined the detailed 

behaviour of the ST transition in both 1D and 2D extended HH models.   

 

1. 7  Quantum transport through molecular transistors 

   

1.7.1    Single molecular transistor 

   Transistors are one of the integral parts of modern technology for the fabrication of nano-

devices. In a single molecular transistor (SMT), a central molecule or a quantum dot (QD) 

with discrete energy levels is connected to two metallic leads (source and drain) with 

continuous energy levels on the two sides and is acted upon by an external bias voltage. The 

presence of discrete energy levels in the central molecule (i.e. the QD which is also called a 

tunnelling molecule) is important to study the quantum mechanical effects on the device. The 

difference in the electronic potential energies of the source and the drain helps the electrons 

in tunnelling from the source to the drain through the QD. The transfer of electrons through 

the QD results in a net tunnelling current. The SMT system is mounted on an insulating 

substrate whose energy is controllable by an external gate voltage. Therefore by applying this 

gate voltage, the tunnelling current can be manipulated. The fabrication of a single molecular 

transistor was first reported with 𝐶60 as the central molecule by Park et al. [50] in 2000 with 

the help of gold electrodes connected with the 𝐶60 molecules. The SMT device has shown the 

properties of a switching device [51] and it can also work as a sensor [52]. Dutta [53] has 

described the electronic transport in the mesoscopic systems [53] and he has also extended its 

application to the molecular transistors [54]. The recent review articles by Mickael et al. [55] 

and Huanyan et al. [56] have reported the mechanisms of the SMT device and its recent 

developments and applications. Very recently, Pipit and collaborators [57] have 

experimentally established the Coulomb blockade and Coulomb staircase behaviour for 

single electron transport at the room temperature. Liang et al. [58] have described the Kondo 

resonance effect in the SMT device and explained that by tuning the gate voltage, the Kondo 
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phenomena in quantum dot structures can be modified. Later, many other works also have 

reported the Kondo behaviour in molecular transport [59-61]. Sang and collaborators [62]  

 

 

                                        Fig. 1.8: SMT device (Ref. [89]) 

 

have investigated the interplay between the e-e and e-p interactions in the Anderson-Holstein 

model and computed the spectral functions (SF) for the electrons and phonons using the 

numerical renormalization group technique. Using the Keldysh technique, Chen et al. [63] 

have shown that the polaronic effect generates side peaks in the SF of an SMT device and 

modifies the tunnelling current. Extending the work of Chen, Juntao and collaborators [64] 

have measured the phonon-associated conductance in a SMT device. Raju and Chatterjee 

[65] have extended the SMT problem to investigate the phonon dissipation-induced 

tunnelling current by introducing an insulating substrate (Fig. 1.8) and concluded that the 

dissipation increases the tunnelling current in the single molecular transistor. Chatterjee and 

collaborators [66] have studied magneto-transport in a dissipative SMT device incorporating 

the effects of e-e and e-p coupling interactions. Their result shows that the spin-filtering 

effect is enhanced with the magnetic field. It has been found that the tunnelling current in a 

SMT reduces with the external temperature [67-68].  

 

1.7.2 Anderson-Holstein-Caldeira-Leggett Model 
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     The electronic, phononic and the tunnelling terms for the SMT device can be described by 

the Anderson–Holstein [69, 14] Hamiltonian. We consider that the central QD contains a 

single energy level, a single phonon mode,  an onsite e-e interaction strength and an onsite e-

p interaction. The source and the drain are considered to have free electrons with continuous 

energy levels and the electrons from the source can be made to tunnel to the drain through the 

QD by using a bias voltage. The Hamiltonian for the SMT device can be written as  

 

           𝐻 =∑𝜀𝒌𝜎𝑛𝒌𝜎
𝑘,𝜎

+∑𝜀𝑑𝜎𝑛𝑑𝜎
𝜎

+ 𝑈𝑛𝑑↑ 𝑛𝑑↓ + 𝜔0𝑏
†𝑏 + 𝑔∑𝑛𝑑𝜎(𝑏

† + 𝑏)

𝜎

 

                           +∑(𝑉𝒌𝑐𝒌𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐. )

𝑘

,                                                                                      (1.9) 

where  𝑛𝒌𝜎(= 𝑐𝒌𝜎
† 𝑐𝒌𝜎) is the number operator for the lead electrons, 𝑐𝒌𝜎

†  (𝑐𝒌𝜎) denoting the 

creation (annihilation) operator for a lead electron with wave vector 𝒌, spin 𝜎 and energy 𝜀𝒌𝜎 ,  

𝑛𝑑𝜎(= 𝑐𝑑𝜎
† 𝑐𝑑𝜎) is the number operator for the QD electrons, 𝑐𝑑𝜎

† (𝑐𝑑𝜎) being the creation 

(annihilation) operator corresponding to the QD electrons with energy 𝜀𝑑𝜎 and spin 𝜎, 𝑈 is 

the onsite e-e interaction energy of the QD, 𝑏†(𝑏) creates (annihilates) a QD phonon with 

dispersionless frequency 𝜔0,  𝑔 is onsite e-p coupling coefficient for the QD and  𝑉𝒌 gives the 

hybridization coefficient that gives the strength of tunnelling between the lead and the QD.  

  For a dissipative system, where a particle of mass 𝑚  is coupled to a bath of harmonic 

phonons, the dynamics of the system can be explained through the Caldeira-Leggett (CL) 

model [70-71] given by the Hamiltonian  

𝐻 =
𝑝0
2

2𝑚0
+
1

2
𝑚0𝜔0

2𝑥0
2 +∑[

𝑝𝑗
2

2𝑚𝑗
+
1

2
𝑚𝑗𝜔𝑗

2𝑥𝑗
2]

𝑁

𝑗=1

−∑𝐶𝑗𝑥𝑗𝑥0

𝑁

𝑗=1

,                          (1.10) 

where the particle of mass 𝑚 with momentum 𝑝 at position 𝑥0, interacts with the harmonic 

oscillators of mass 𝑚𝑗 , momentum 𝑝𝑗  and the interaction coefficient of the dissipative 

particle is 𝐶𝑗.  The potential 𝑉0(𝑥) can also be written as, 

 

1

2
𝑚0𝜔0

2𝑥0
2 = (∑

𝐶𝑗
2

2𝑚𝑗𝜔𝑗
2

𝑁
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)𝑥0
2 + (

1

2
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2𝑥0
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2

𝑁

𝑗=1

𝑥0
2).                    (1.11) 
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Using Eq. (1.11), the CL model can be written as, 

 

𝐻 =
𝑝2

2𝑚
+
1

2
𝑚0(𝜔0

2 −∑
𝐶𝑗
2

2𝑚𝑗𝜔𝑗
2

𝑁

𝑗=1

)𝑥0
2 +∑[

𝑝𝑗
2

2𝑚𝑗
+
1

2
𝑚𝑗𝜔𝑗

2 (𝑥𝑗 −
𝐶𝑗

𝑚𝑗𝜔𝑗
2 𝑥0)

2

]

𝑁

𝑗=1

. (1.12) 

 

Eq. (1.12) shows that the phonon-phonon interaction term of (1.10) reduces the QD phonon 

frequency as a dissipative effect and thus screens the e-p interaction.  

   The Anderson-Holstein model combined with the Caldeira-Leggett model can describe the 

transport in a dissipative SMT device in the presence of e-e and e-p interactions. The 

combined Hamiltonian is referred as the Anderson-Holstein-Caldeira-Leggett (AHCL) 

Hamiltonian [72].  

    Recently, extensive studies have been performed on the double-QD-based molecular 

transistors [73-75] as they show many useful and interesting properties, like large charge 

sensibility and more controllable current. We can call such a system as a bi-molecular 

transistor. In the present thesis, we consider a bi-molecular transistor and calculate the 

quantum transport in such a system.  

 

1.8   Organisation of the thesis 

  In the following chapter i.e., in Chapter 2, we consider the 1D HH model with Gaussian 

anharmonicity and give a semi-exact solution. We treat the phonon subsystem using an 

accurate wave function and solve the effective electronic Hamiltonian exactly using the Bethe 

ansatz technique. We study the phase space spanned by the e-e Coulomb interaction (𝑈) and 

the e-p interaction (𝑔 = √𝛼) and show that a metallic phase exists in between the insulating 

SDW and CDW phases. Our present result demonstrates that the intervening conducting 

phase is broadened with the consideration of a more accurate phonon wave function.  

  In Chapter 3, an extended HH model is studied in 2D. For the phonon subsystem a 

variational wave function is used. As the 2D Hubbard model does not admit an exact 

solution, we solve the effective electronic problem separately for the weak and strong 

correlation regimes. In the weak-coupling regime, the effective electronic Hamiltonian is 

treated by the Hartree-Fock method, while for the strong-coupling regime, the Hamiltonian is 
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first transformed to the  𝑡 − 𝐽 model which is then treated at the mean field level. The phase 

diagram is obtained by combing the results of the two regimes.  

  In Chapter 4, The ST transition in the 1D HH model is studied and the nature of the 

transition is examined using an accurate phonon wave function and the exact Bethe ansatz 

technique. In Chapter 5, an extended HH model is studied in 2D for weak and strong 

correlation strengths and the nature of the ST transition is studied using same method that is 

used to study the SDW-CDW transition for the 2D system in Chapter 3. 

  In Chapter 6, quantum transport is studied in a dissipative bi-molecular transistor. The 

effects of bias-voltage, e-p interaction, Coulomb correlation, external magnetic field and 

temperature are studied on the tunnelling current, conductance and spin-polarization.  

  In Chapter 7, we present a summary of results and make some concluding remarks. 
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“Logic will get you from A to B. Imagination will take you   

everywhere”…Albert Einstein 

 

2 
A semi exact solution for a metallic phase in 

a Holstein-Hubbard chain at half-filling 

with Gaussian anharmonic phonons 

 

2.1 Introduction 

  The exotic superconducting behaviour in ceramic Cu-based compounds [1] has continued to 

elude a convincing theoretical paradigm that could consistently conform to all experimental 

observations. Though a large number of investigators have posed their faith in the electronic 

mechanism, there have also been quite a few advocates of the phonon mechanism [2-7] and 

this tribe has grown with time. The main objection against the phonon mechanism is as 

follows.  In a strongly correlated system, if the e-p interaction is small, the minimum energy 

state will have the characteristics of a polaronic SDW state that corresponds to an anti-

ferroagnetic Mott insulator. Naturally for the superconductivity to be driven by the phonon-

mechanism, the e-p coupling needs to be adequately large compared to the repulsive e-e 

interaction strength. A study by Plakida [8] has shown that the lattice instability and strong e-

p coupling have a pivotal role in inducing high 𝑇𝐶 superconductivity. Interestingly, however, 

if e-p coupling is strong, the GS of the system is described by the bipolaronic CDW which 

corresponds to a paramagnetic Peierls insulator.  

  As described in chapter 1, the Holstein-Hubbard (HH) model is a suitable model to study the 

interplay between e-e and e-p interaction. The interplay between the e-e and e-p interaction 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Ew0Z-XwAAAAJ&citation_for_view=Ew0Z-XwAAAAJ:d1gkVwhDpl0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Ew0Z-XwAAAAJ&citation_for_view=Ew0Z-XwAAAAJ:d1gkVwhDpl0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Ew0Z-XwAAAAJ&citation_for_view=Ew0Z-XwAAAAJ:d1gkVwhDpl0C
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leads to an interesting phase diagram that represents the phase transition from SDW state to 

the CDW state. In chapter 2, we have explained the results established in this model so far. 

Though a few studies [9, 10-12] have reported the HH model makes a direct SDW-CDW 

transition, the Bethe ansatz exact solution by Takada and Chatterjee (TC) [13] in 2003 has 

thrown a new challenge in the field. The principal premise of the investigation of TC is as 

follows. With the increase in e-p coupling, both the effective onsite e-e interaction energy 

(𝑈𝑒𝑓𝑓) and the effective hopping energy (𝑡𝑒𝑓𝑓) decrease and with 𝑈𝑒𝑓𝑓 approaching zero, the 

system becomes so sensitive to the interplay between the relative strengths of these two 

energy scales that instead of going from a SDW phase or to a CDW phase, the system prefers 

to settle in an intermediate phase which has been shown by TC to be metallic. This 

interesting observation of TC has sparked off a lot of interest on this issue and naturally a 

host of investigations [14-17] followed closely on the heels of the work of TC. Using the 

density matrix renormalization group (DMRG) technique, Clay and Hardikar [14, 15] have 

not only demonstrated the existence of an intermediate metallic phase (MP) in agreement 

with the contention of TC but also suggested that this intermediate phase can exhibit 

superconductivity, which is an exciting result in the context of high-temperature 

superconductivity. Feshke et al. [16] have also implemented the DMRG method and 

established the occurrence of the metallic regime between the two insulating phases. They 

have also proved that IMP widens as the phonon frequency increases. Several other studies 

using renormalization group (RG) technique [18], Monte- Carlo simulations [19], exact 

numerical diagonalization and cluster perturbation theory [20] etc. have also shown the 

evidence of intermediate MP between the SDW and CDW phases.   

  Chatterjee and Takada (CT) [21] have also examined the problem in the presence of lattice 

anharmonicity. They have considered cubic and quartic phonon anharmonicities and have 

shown that intermediate MP becomes broader in the presence of lattice anharmonicity and 

thus the conjecture on the presence of intermediate MP in the HH system is strengthened in 

the presence of anharmonic phonons. This work is of much importance because lattice 

anharmonicity has been found to play a crucial role in high 𝑇𝑐 superconductors. In fact, it has 

been observed that apex oxygen has a substantial anharmonic motion in the cuprates and also 

the phonon anharmonicity makes a significant impact on the electronic structure of these 

systems [22-26]. Konior [27] has explained the importance of Gaussian phonon 

anharmonicity in the context of high−𝑇𝑐  superconductors and have shown that in the 

presence of Gaussian phonon anharmonicity, the hopping parameter reduces at a slow rate 
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causing an enhancement in the polaron mobility and the polaron bandwidth, which is a 

favourable condition for the phonon mechanism to stake claim for inducing pairing. Lavanya 

et al. [28] have recently re-examined the work of CT with Gaussian anharmonic potential by 

applying in succession a number of unitary transformations followed by an averaging with a 

general many-phonon state and the Bethe ansatz technique. This give a wider metallic phase.   

  The principal aim of the present paper is to further modify the variational wave function of 

the phonon sub-system used by Lavanya et al. for the anharmonic HH system to obtain a 

better solution for the GS energy and the SDW-CDW phase diagram.  This calculation can be 

considered as semi-exact as we have included rigorously all possible phonon processes 

including coherence and correlations while treating the phonon subsystem and solved the 

effective electronic part exactly with the help of the Bethe ansatz. The GS energy, local spin 

moment, Von-Newmann entropy, the double occupancy parameter and the phase diagram at 

the SDW-CDW transition region have been obtained.   

 

2.2 Model and formulation 

The one dimensional HH system with Gaussian phonon anharmonicity may be described by 

the Hamiltonian 

 

                                                𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝 ,                                                                      (2.1) 

with 

                                  𝐻𝑒 = −𝑡 ∑ 𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎 + 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

 ,                                                    (2.2) 

 

                                𝐻𝑝 = ℏ𝜔0∑𝑏𝑖
†𝑏𝑖

𝑖

+ 𝜆𝑎𝑝∑𝑒−𝛾(𝑏𝑖
†
+𝑏𝑖)

2

𝑖

 ,                                                (2.3) 

 

                        𝐻𝑒𝑝 = 𝑔∑𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

 ,                                                             (2.4) 

where 𝐻𝑒 describes the Hubbard Hamiltonian, 𝐻𝑝 is the phonon Hamiltonian and 𝐻𝑒𝑝 is the 

Holstein e-p interaction. In Eq. (2.2), the parameter 𝑡  is the nearest-neighbour hopping 

integral (HI), the operator 𝑐𝑖𝜎
† (𝑐𝑖𝜎) creates (annihilates) a spin-𝜎 electron at the 𝑖 − 𝑡ℎ site, 
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𝑛𝑖𝜎(= 𝑐𝑖𝜎
† 𝑐𝑖𝜎) being the corresponding electron occupation number and 𝑈 gives the onsite e-e 

interaction energy. In Eq. (2.3), 𝑏𝑖
†(𝑏𝑖) represents an operator that creates (annihilates) an 

optical phonon at site 𝑖 with dispersionless frequency 𝜔0,  𝜆𝑎𝑝 and 𝛾 measure respectively the 

strength and range of Gaussian anharmonic phonon. In Eq. (2.4), 𝑔 is the on-site e-p coupling 

coefficient which can be written as: 𝑔 = √𝛼𝜔0, where dimensionless 𝛼 is referred to as the e-

p coupling constant.  

 

2.2.1 GS energy 

 

In order to solve the Hamiltonian (2.1) we choose to seek a variational solution. First of all, 

we apply the modified Lang-Firsov transformation (LFT) [29] with the generator  

 

                           𝑅1 = √𝛼𝜂 ∑𝑛𝑖𝜎(𝑏𝑖
† − 𝑏𝑖)

𝑖𝜎

 ,                                                       (2.5) 

 

where 𝜂 is the variational parameter that carries the information of the polaronic structure. 

For strong e-p interaction, 𝜂 → 1, and Eq. (2.5) generates usual LFT and gives a reasonable 

approximation for the anti-adiabatic region. To deal with the adiabatic regime, we perform 

the Takada-Chatterjee (TC) transformation [13] with the generator:  

 

                                          𝑅2 = ∑ℎ𝑖
𝑖

 (𝑏𝑖
† − 𝑏𝑖),                                                              (2.6) 

where we assume, ℎ𝑖 = ℎ, as all sites are equivalent. The above two transformations together 

can be generated by:  

                                𝑅12 =∑[ℎ + 𝜂√𝛼 (𝑛𝑖𝜎 −
ℎ

√𝛼
)]

𝑖𝜎

(𝑏𝑖
† − 𝑏𝑖).                                         (2.7) 

 

  With 𝜂 = 1, the transformation (2.7) represents the conventional LFT which gives exact 

results in the anti-adiabatic limit, while for 𝜂 = 0, it takes care of the adiabatic limit. Thus 

both the anti-adiabatic and the adiabatic regions can be studied by considering: 0 < 𝜂 < 1. 

Using the Baker-Campbell-Hausdorff (BCH) formula we may calculate the transformed 

Hamiltonian as, 
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𝐻12 = 𝑒
𝑅12𝐻𝑒−𝑅12 = 𝐻 + [𝑅12, 𝐻] +

1

2!
[𝑅12, [𝑅12, 𝐻]] + ⋯                              (2.8) 

𝐻12 =
𝛼𝜂(𝜂 − 2)

ℏ𝜔0
∑𝑛𝑖𝜎
𝑖𝜎

+ [𝑈 − {
2

ℏ𝜔0
𝛼𝜂(2 − 𝜂)}]∑𝑛𝑖↑𝑛𝑖↓

𝑖

− 𝑡 ∑ 𝑒(𝑥𝑖−𝑥𝑗)𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ ℏ𝜔0∑(𝑏𝑖
† − ℎ)(𝑏𝑖 − ℎ)

𝑖

+ √𝛼(1 − 𝜂)∑𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖 − 2ℎ)

𝑖𝜎

+ 𝜆𝑎𝑝∑𝑒
−𝛾[{(𝑏𝑖

†
+𝑏𝑖−2ℎ)−

2√𝛼𝜂𝑛𝑖
ℏ𝜔0

}

2

]

𝑖

                                                                   (2.9) 

 

where 

𝑥𝑖 − 𝑥𝑗 =
√𝛼𝜂

ℏ𝜔0
{(𝑏𝑖

† − 𝑏𝑖) − (𝑏𝑗
† − 𝑏𝑗)}                                           (2.10) 

To calculate this transformed Hamiltonian we have used the identity, 𝑛𝑖𝜎
2 = 𝑛𝑖𝜎 . 

 

  It is important to note that Eq. (2.7) assumes that the phonons associated with the electron 

are in a coherence state. This is essentially a semi-classical approximation in which it is 

assumed that the phonons in the polaron cloud are independent of each other satisfying a 

Poissonian distribution. In other words, the phonons emitted or absorbed by the electrons are 

completely uncorrelated and in that sense, the present transformation is equivalent to Hartree 

approximation.  

  The presence of Gaussian anharmonicity in the system introduces anharmonicity to infinite 

order and results in a finite lifetime of the phonons through phonon-phonon interactions.  

Furthermore, an electron undergoes a recoil motion while emitting a phonon. While 

undergoing a recoil motion, if the electron emits another phonon, then these two successively 

emitted virtual phonons will be correlated. The correlation effects of the phonons and the 

anharmonicity can be taken into account (to a great extent) by squeezing the phonon vacuum. 

The squeezing of the phonon vacuum state can be accomplished by the celebrated 

Bogoliubov transformation with the generator [30]:  

                   𝑅3 = 𝛼𝑠  ∑(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖

,                                                      (2.11) 

where the squeeze parameter 𝛼𝑠 is to be obtained variationally and this generator transforms  

the Hamiltonian to, 
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𝐻3 = 𝑒
𝑅3𝐻12𝑒

−𝑅3 = 𝐻12 + [𝑅3, 𝐻12] +
1

2!
[𝑅3, [𝑅3, 𝐻12]] + ⋯                       (2.12) 

The anharmonic term is transformed by the squeezing transformation as follows: 

               𝑒𝑅3∑𝑒
−𝛾{(𝑏𝑖

†
+𝑏𝑖−2ℎ)−

2√𝛼𝜂𝑛𝑖
ℏ𝜔0

}

2

𝑖

𝑒−𝑅3 

=∑𝑒𝑅3 [∑
1

𝑚!
(−𝛾 {(𝑏𝑖

† + 𝑏𝑖 − 2ℎ) −
2√𝛼𝜂𝑛𝑖
ℏ𝜔0

}

2

)

𝑚

𝑚

]

𝑖

𝑒−𝑅3 

=∑∑
(−𝛾)𝑚

𝑚!
𝑚

{[𝑒𝑅3 {(𝑏𝑖
† + 𝑏𝑖 − 2ℎ) −

2√𝛼𝜂𝑛𝑖
ℏ𝜔0

} 𝑒−𝑅3]

2

}

𝑚

𝑖

 

                            = ∑𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠−2ℎ−
2√𝛼𝜂𝑛𝑖
ℏ𝜔0

]

2

𝑖

.                                                                  (2.13) 

 

Using this relation, 𝐻3 of Eq. (2.12) becomes, 

 

𝐻3 =
𝛼𝜂(𝜂 − 2)

ℏ𝜔0
∑𝑛𝑖𝜎
𝑖𝜎

+ [𝑈 − {
2

ℏ𝜔0
𝛼𝜂(2 − 𝜂)}]∑𝑛𝑖↑𝑛𝑖↓

𝑖

− 𝑡 ∑ 𝑒(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑠

𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ ℏ𝜔0∑[
𝑒4𝛼𝑠

4
(𝑏𝑖
† + 𝑏𝑖)

2
−
𝑒−4𝛼𝑠

4
(𝑏𝑖
† − 𝑏𝑖)

2
−
1

2
− ℎ(𝑏𝑖

† + 𝑏𝑖)𝑒
2𝛼𝑠 + ℎ2]

𝑖

+ √𝛼(1 − 𝜂)∑𝑛𝑖𝜎[(𝑏𝑖
† + 𝑏𝑖)𝑒

2𝛼𝑠 − 2ℎ]

𝑖𝜎

+ 𝜆𝑎𝑝∑𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠−2ℎ−
2√𝛼𝜂𝑛𝑖
ℏ𝜔0

]

2

𝑖

    .                                                        (2.14) 

 

  The variational parameter 𝛼𝑠 has been assumed by all investigators to be independent of the 

electron concentration untill 2019, when Malik-Mukhopadhyay-Chatterjee (MMC) [31] has 

considered the squeezing of the phonon state to be partly dependent on electron density. 

According to MMC, the correlation between phonons emitted by the electrons may depend 

on the number of electrons available at a particular lattice site. Thus, we next apply, a 

squeezing transformation with the generator:  

 



                         Chapter 2 

 

 

28 

                                 𝑅4 = 𝛼𝑑  ∑𝑛𝑖𝜎(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖𝜎

,                                                       (2.15) 

 

where 𝛼𝑑  is the variational parameter. It may be pointed out that in Eq. (2.11), phonon 

correlation and anharmonicity have been included at a mean-field level while Eq. (2.15) 

incorporates the fluctuations. Therefore, the transformed Hamiltonian looks like:  

ℋ = 𝑒𝑅4𝑒𝑅3𝑒𝑅2𝑒𝑅1𝐻𝑒−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4 .                                              (2.16) 

The generators transformed the Hamiltonian as 

 

ℋ =∑[−
𝛼𝜂(𝜂 − 2)

ℏ𝜔0
+ 𝛼(1 − 𝜂){(𝑏𝑖

† + 𝑏𝑖)𝑒
2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 − 2ℎ}

𝑖𝜎

+ 𝜆𝑎𝑝𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 −2ℎ−
2√𝛼𝜂𝑛𝑖
ℏ𝜔0

]

2

− 𝜆𝑎𝑝𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 −2ℎ]
2

] 𝑛𝑖𝜎

+ [𝑈 − {
2

ℏ𝜔0
𝛼𝜂(2 − 𝜂)} + 𝜆𝑎𝑝∑𝑒−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 −2ℎ]
2

𝑖

− 𝜆𝑎𝑝∑𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 −2ℎ−
2√𝛼𝜂𝑛𝑖
ℏ𝜔0

]

2

𝑖

+ 𝜆𝑎𝑝∑𝑒
−𝛾[(𝑏𝑖

†
+𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎 −2ℎ−
4√𝛼𝜂𝑛𝑖
ℏ𝜔0

]

2

𝑖

]∑𝑛𝑖↑𝑛𝑖↓
𝑖

− 𝑡 ∑ 𝑒(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑠𝑒−2𝛼𝑠 ∑ 𝑛𝑖𝜎𝜎

𝑒(𝑥𝑖
′−𝑥𝑗

′)𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ ℏ𝜔0∑[
𝑒4𝛼𝑠

4
{(𝑏𝑖

† + 𝑏𝑖)𝑒
2𝛼𝑠∑ 𝑛𝑖𝜎𝜎 }

2
−
𝑒−4𝛼𝑠

4
{(𝑏𝑖

† − 𝑏𝑖)𝑒
−2𝛼𝑠∑ 𝑛𝑖𝜎𝜎 }

2
−
1

2
𝑖

− ℎ(𝑏𝑖
† + 𝑏𝑖)𝑒

2𝛼𝑠𝑒2𝛼𝑠∑ 𝑛𝑖𝜎𝜎 + ℎ2] + 𝜆𝑎𝑝∑𝑒−𝛾[(𝑏𝑖
†
+𝑏𝑖)𝑒

2𝛼𝑠−2ℎ]
2

𝑖

           (2.17) 

 

where  
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𝑥𝑖
′ − 𝑥𝑗

′ = 𝛼𝑑[(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†) − (𝑏𝑗𝑏𝑗 − 𝑏𝑗

†𝑏𝑗
†)]                                 (2.18) 

   In order to eliminate the phonons, we need to take the expectation value of the Hamiltonian 

ℋ  in a suitable phonon state. To make the calculation most accurate, we choose the 

averaging phonon state as:  

                                    |Φ𝑝ℎ⟩   =  ∑ 𝑐𝑛

𝑀

𝑛=0

 |𝜑𝑛(𝑥)⟩,                                                         (2.19) 

where  𝜑𝑛(𝑥) is the 𝑛 −th excited-state oscillator eigen function in 1D and the coefficients 

𝑐𝑛’s are to be obtained variationally. The idea is to start the calculation with 𝑀 = 0 and then 

keep on increasing the value of 𝑀  till the energy converges. It may be noted that the 

canonical transformation procedure followed by the averaging with respect to the phonon 

state (2.19) described above is same as taking the expectation value of the Hamiltonian (2.1) 

with respect to the trial variational state  

                             | 𝜓⟩ = 𝑒−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4|Φ𝑝ℎ⟩ .                                                 (2.20) 

 

  We choose units in which ℏ = 𝜔0 = 1,  𝜔0 being the dispersionless phonon frequency. The 

effective electronic Hamiltonian defined by: 𝐻𝑒𝑓𝑓 = ⟨𝜓|ℋ|𝜓⟩  assumes the following 

expression:  

𝐻𝑒𝑓𝑓 = 𝜀𝑒𝑓𝑓∑𝑛𝑖𝜎
𝑖𝜎

− 𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎 + 𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

+𝑁 𝜆𝑎𝑝𝐸1 + 𝑁 (ℎ
2 −

1

2
) 

                      +
𝑁

4
[𝑆2(1 + 4𝛼𝑑 + 12𝛼𝑑

2)𝑒4𝛼𝑠 − 𝑆3(1 − 4𝛼𝑑 + 12𝛼𝑑
2)𝑒−4𝛼𝑠

− 4ℎ𝑒2𝛼𝑠𝑆1(1 + 2𝛼𝑑 + 3𝛼𝑑
2)],                                                                          (2.21) 

where 

 𝜀𝑒𝑓𝑓 = −𝛼𝜂(2 − 𝜂) − √𝛼(1 − 𝜂)[𝑒
2𝛼𝑠𝑆1(1 + 2𝛼𝑑 + 3𝛼𝑑

2) − 2ℎ] + 𝜆𝑎𝑝(𝐸2 − 𝐸1),   (2.22)  

𝑡𝑒𝑓𝑓 = 𝑡 𝑀1
2 𝑀2

2 ,                                                                                                                               (2.23) 

𝑈 𝑒𝑓𝑓 = 𝑈 − 2𝛼𝜂(2 − 𝜂) + 𝜆𝑎𝑝(𝐸1 − 2𝐸2 + 𝐸3),                                                                    (2.24) 

 

with 
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𝑆𝑖 = ∑ 𝑐𝑘𝑙  ∫ 𝑒
−𝑦2𝜉𝑖(𝑦)𝐻𝑘(𝑦)𝐻𝑙(𝑦)𝑑𝑦

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                                            (2.25) 

𝐸𝑖 = 𝑒
−𝛾𝜈𝑖  𝐹 ∑ 𝑐𝑘𝑙  ∫ 𝑒

(√2𝜁𝑖−𝑦)𝑦 𝐻𝑘(𝑦) 𝐻𝑙(𝑦)𝑑𝑦

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                           (2.26) 

𝑀1 = ∑ 𝑐𝑘𝑙 𝑒
−
𝑎2

4 ∫ 𝑒−𝑦
2
𝐻𝑘 (𝑦 +

𝑎

2
)𝐻𝑙 (𝑦 −

𝑎

2
)𝑑𝑦

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                       (2.27) 

𝑀2 = ∑ 𝑐𝑘𝑙 𝑒
𝛼𝑑 ∫ 𝑒−

𝑦2

2
(1+𝛽2) 𝐻𝑘(𝑦) 𝐻𝑙(𝑦𝛽)𝑑𝑦

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                              (2.28) 

𝐹 = ∑ 𝑐𝑘𝑙  ∫ 𝑒
(2𝐵−1)𝑦2  𝐻𝑘(𝑦) 𝐻𝑙(𝑦)𝑑𝑦

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                                             (2.29) 

where  

 𝑐𝑘𝑙 = 𝑐𝑘𝑐𝑙√1 2𝑘+𝑙𝑘! 𝑙!⁄ 𝜋,          𝑦 = √𝑥,  

 𝛽 = 1 + 2𝛼𝑑,         𝑎 = √2𝛼𝜂𝑒
−2𝛼𝑠(1 − 2𝛼𝑑 + 3𝛼𝑑

2),  

 𝜉1 = √2𝑦,      𝜉2 = 2𝑦
2,     𝜉3 = 2(𝑦

2 − 2𝑙 − 1),   

𝜁𝑖 = 2𝛾𝜈𝑖𝑒
2𝛼𝑠(1 + 2𝛼𝑑 + 3𝛼𝑑

2),  

𝜈1 = 2ℎ,        𝜈2 = 2(ℎ + √𝛼𝜂),    𝜈3 = 2(ℎ + 2√𝛼𝜂),   

 𝐵 = 𝛾𝑒4𝛼𝑠(1 + 4𝛼𝑑 + 12𝛼𝑑
2).                                                                                                   (2.30)  

 

𝜀𝑒𝑓𝑓 is the renormalized onsite electron energy or in other words the polaron energy,  𝑈𝑒𝑓𝑓 is 

the renormalized onsite e-e interaction energy and 𝑡𝑒𝑓𝑓  denotes the effective electronic 

mobility. The GS energy of the system described by the Hamiltonian 𝐻𝑒𝑓𝑓 can be obtained 

exactly at half-filling with the help of the Bethe ansatz method [32]. The LW solution has 

however been obtained for 𝑈𝑒𝑓𝑓 > 0.  We modify the solution to include the results for 

𝑈𝑒𝑓𝑓 ≤ 0. To apply the LW result for 𝑈𝑒𝑓𝑓 < 0, we may write 𝑈𝑒𝑓𝑓 = −|𝑈𝑒𝑓𝑓| and transform 

the electronic operators as: 

𝑐𝑖↑ → 𝑐𝑖↑   ;      𝑐𝑖↓ → (−1)
𝑖𝑐𝑖↓
†  .                                                     (2.31) 

By this transformation, the hopping integral remains same. But the Coulomb interaction term 

modifies as, 
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                  𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

→ −|𝑈𝑒𝑓𝑓|∑𝑐𝑖↑
† 𝑐𝑖↑𝑐𝑖↓𝑐𝑖↓

† (−1)2𝑖

𝑖

      

= −|𝑈𝑒𝑓𝑓|(−1)
2𝑖∑𝑐𝑖↑

† 𝑐𝑖↑(1 − 𝑐𝑖↓
† 𝑐𝑖↓)

𝑖

 

                                                  = −|𝑈𝑒𝑓𝑓|∑𝑛𝑖↑(1 − 𝑛𝑖↓)

𝑖

 

= −|𝑈𝑒𝑓𝑓|∑𝑛𝑖↑
𝑖

+ |𝑈𝑒𝑓𝑓|∑𝑛𝑖↑𝑛𝑖↓
𝑖

 

                                                    = −
𝑁

2
|𝑈𝑒𝑓𝑓| + |𝑈𝑒𝑓𝑓|∑𝑛𝑖↑𝑛𝑖↓

𝑖

.                                            (2.32) 

Therefore, to consider the attractive e-e interaction contribution, an additional term, (−
𝑈𝑒𝑓𝑓

2
) 

is to be added to the GS energy. With this modification, the GS per electron (𝜀0) is finally 

obtained as,  

 

      𝜀0 = − 𝐽 +
1

4
(𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|) +

𝑒4𝛼𝑠

4
 𝑆2(1 + 4𝛼𝑑 + 12𝛼𝑑

2)

−
𝑒−4𝛼𝑠

4
 𝑆3(1 − 4𝛼𝑑 + 12𝛼𝑑

2) + (ℎ2 + 𝜆𝑎𝑝𝐸1 −
1

2
)

− ℎ𝑒2𝛼𝑠𝑆1(1 + 2𝛼𝑑 + 3𝛼𝑑
2) − ∫

4 𝑡𝑒𝑓𝑓𝐽0(𝑦)𝐽1(𝑦)𝑑𝑦

𝑦 [1 + 𝑒𝑥𝑝 (
𝑦|𝑈𝑒𝑓𝑓|
2𝑡𝑒𝑓𝑓

)]

∞

0

  ,                     (2.33) 

where  

 

    𝐽 = 𝛼𝜂(2 − 𝜂) + √𝛼(1 − 𝜂)[𝑒2𝛼𝑠𝑆1(1 + 2𝛼𝑑 + 3𝛼𝑑
2) − 2ℎ] − 𝜆𝑎𝑝(𝐸2 − 𝐸1),          (2.34) 

 

and 𝐽0(𝑦) and 𝐽1(𝑦) are the Bessel functions of zeroth order and first order, respectively. 𝜀0 is 

finally minimized with respect to the variational parameters to obtain the GS energy.  

  In order to study the role of the quantum correlation in phase transition, we calculate 

entanglement entropy for the 1D HH Hamiltonian. Considering a set of four available states 

|0⟩, |↑⟩, |↓⟩ > and |↑↓⟩, the single-site entanglement entropy is calculated as:  

                                                    𝐸𝜗 = −𝑇𝑟(𝜌𝑟𝑙𝑜𝑔2𝜌𝑟),                                                              (2.35) 
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where  𝜌𝑟 is called the reduced density operator given by  

                                𝜌𝑟 = 𝜔𝑒|0⟩⟨0| + 𝜔↑|↑⟩⟨↑| + 𝜔↓|↓⟩⟨↓| + 𝜔↑↓|↑↓⟩⟨↑↓| ,                             (2.36) 

where  

        𝜔↑↓ = 〈𝑛𝑖↑𝑛𝑖↓〉 = 𝜔    ;      𝜔↑ = 𝜔↓ =
𝑛

2
− 𝜔↑↓ ;    𝜔𝑒 = 1 − 𝜔↑ − 𝜔↓ − 𝜔↑↓ .            (2.37) 

Therefore we obtain the entanglement entropy as, 

      𝐸𝜗 = −[𝜔𝑒𝑙𝑜𝑔2(𝜔𝑒) + 2𝜔↑𝑙𝑜𝑔2(𝜔↑) + 𝜔𝑙𝑜𝑔2(𝜔)] .                          (2.38) 

Using the Hellmann-Feynman theorem, we get  

                                                                  
𝜕𝜀0
𝜕𝑈

=  〈𝑛𝑖↑𝑛𝑖↓〉.                                                               (2.39) 

Thus all the occupation numbers can be calculated and the corresponding Von-Newman 

entanglement entropy (𝐸𝜗) is evaluated.  

The mean-square spin angular momentum per site (𝐿0) can be defined as:  

                                                          𝐿0 =
1

𝑁
∑〈𝑆𝑖

2〉

𝑖

 ,                                                                     (2.40) 

where 𝑆𝑖  is the electron spin at site 𝑖 , 𝑆𝑖
2 = 𝑆𝑖𝑥

2 + 𝑆𝑖𝑦
2 + 𝑆𝑖𝑧

2 . Using 𝑆𝑖
± = 𝑆𝑖𝑥 ± 𝑖𝑆𝑖𝑦 ,  𝑆𝑖

𝑧 =

1

2
(𝑛𝑖↑ − 𝑛𝑖↓),    𝑆𝑖

+ = 𝑐𝑖↑
† 𝑐𝑖↓,    𝑆𝑖

− = 𝑐𝑖↓
† 𝑐𝑖↑,    𝑆𝑖

+ ∙ 𝑆𝑖
− = −𝑛𝑖↑𝑛𝑖↓,     𝑛𝑖↑

2 = 𝑛𝑖↑,   𝑛𝑖↓
2 = 𝑛𝑖↓, 

we may obtain,  〈𝑆𝑖
2〉 =

3

4
−
3

2
〈𝑛𝑖↑𝑛𝑖↓〉. Therefore, 

                                         𝐿0 =
3

4
−
3

2𝑁
∑〈𝑛𝑖↑𝑛𝑖↓〉

𝑖

=
3

4
−
3

2

𝑑𝜀0
𝑑𝑈
 .                                             (2.41) 

where use has been made of Eq. (2.39).  𝐿0 gives a measure of the spin magnetic moment and 

will be loosely referred to as the spin moment. For a completely un-correlated electron gas, 

we can write: 〈𝑛𝑖↑𝑛𝑖↓〉 = 〈𝑛𝑖↑〉〈𝑛𝑖↓〉, and so the average spin moment per site (𝐿0) is 0.375. 

 

 

2.3 Numerical results and discussions 

2.3.1 Ground State (GS) Energy 



                                  Ch.2: Phase diagram of 1D Holstein-Hubbard model 

 

 

33 

  The single-site GS energy is determined by varying 𝜀0  in the space of the variational 

parameters. The minimum value of 𝜀0  gives the GS energy. The result (Fig. 2.1) shows that 

for 𝜆 = 0.1 and 𝛾 = 0.05, though the new transformation (2.15) has only a marginal effect on 

the GS energy, it has a discernible effect on the phase diagram.  

   

Fig. 2.1: Single-site GS energy (𝜀) vs. onsite Coulomb energy (𝑈). 

 

  The variations of the effective hopping integral (𝑡𝑒𝑓𝑓)  and the effective onsite e-e 

interaction energy (𝑈𝑒𝑓𝑓) are respectively studied in Figs. 2.2 (a) and 2.2 (b) with respect to 

the onsite e-e interaction energy (𝑈) for the different strengths of the e-p coupling constant 

(𝛼). As expected, for 𝛼 = 0, the effective hopping integral, 𝑡𝑒𝑓𝑓 becomes equal to the bare 

Hubbard hopping parameter 𝑡 and the 𝑈𝑒𝑓𝑓 becomes equal to the Hubbard 𝑈. As e-p coupling 

constant increases, 𝑡𝑒𝑓𝑓  decreases and with the increase in 𝑈 , it gradually increases and 

saturates to the Hubbard value. At small values of the onsite e-e interaction 𝑈, the effective 

attractive e-e interaction induced by e-p interaction overcomes the repulsive e-e interaction 𝑈 

and the effective onsite e-e interaction 𝑈𝑒𝑓𝑓 becomes negative i.e., attractive. The lattice is 

then unstable against the Peierls transition in which bound states of singlet bipolarons form 

on every alternate site leading to an insulating phase called the CDW state. On the contrary, 

when 𝑈 is larger compared to 𝛼, the repulsive 𝑈 wins, and the polarons cannot hop from one 

site to the other and consequently the GS of the system is given by the anti-ferromagnetic 
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mott-insulator state which is also known as SDW. Fig. 2.2(a) shows that in the weak e-p 

coupling regime, the variation of 𝑡𝑒𝑓𝑓 and 𝑈𝑒𝑓𝑓 with 𝑈 is continuous. But for higher values of 

𝛼, discontinuous jumps occur in the behaviour of 𝑡𝑒𝑓𝑓  and 𝑈𝑒𝑓𝑓 . The discontinuous jump 

corresponds a direct CDW-SDW transition.  

  In order to examine the nature of the transition between the two phases observed in Figs. 

2.2(a) and 2.2(b), the quantity, (𝑑𝑡𝑒𝑓𝑓/𝑑𝑈) is plotted in Fig. (2.3) with respect to 𝑈 for 𝛼 =

0.05, 0.08 and 1.0. The double-peak structure in (𝑑𝑡𝑒𝑓𝑓/𝑑𝑈) is clearly evident. One can also 

observe that the peaks grow in height and shift towards larger values of 𝑈 with increasing 𝛼.  

Furthermore, the new transformation used in the present calculation broadens the width 

between the two peaks in Fig. (2.3). Corresponding to the peak values of the (𝑑𝑡𝑒𝑓𝑓/𝑑𝑈) vs. 

𝑈 plot, the phase-diagram is drawn in the (𝛼 − 𝑈) plane. This is shown in Fig. (2.4). 

 

  

Fig. 2.2:  (a) 𝑡𝑒𝑓𝑓 vs  𝑈 ;  (b) 𝑈𝑒𝑓𝑓 vs 𝑈. 
 

 

  The intermediate phase satisfies the condition: 4𝑡𝑒𝑓𝑓 ≥ 𝑈𝑒𝑓𝑓 , which is the signature of a  

metallic or a conducting phase. The metallic phase is flanked by the SDW phase on the left 

and the CDW phase on the right. The figure shows that intermediate MP appearing at the 

CDW-SDW cross-over region is now wider compared to that predicted by LSC [28]. It is 

important to emphasize that it is not important by how much the present modified 
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variational wave function broadens the width of the intermediate MP, that the improved 

variational calculation widens intervening MP is itself a result of great significance. 

 

 

 

Fig. 2.3:   𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄   vs.  𝑈 for 𝛼 = 0.5, 0.8, 1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4:  Phase diagram in the (𝛼 − 𝑈) − plane. 

 

  The reason is simple. If a modified variational wave function predicts a narrower 

intermediate MP, it will have a disastrous effect on the prediction of the existence of 
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intermediate MP because one may then argue that the MP may as well collapse if a more 

improved variational calculation is performed. That with every improved variational 

calculation, the metallic phase widens is indeed an encouraging result.  

 

 

 

 

 
                    

 

 

 

 

 

 

 

 

   Fig. 2.5:   𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄   vs.  𝑈 for 𝛼 = 2.0, 2.5,   3.0. 

 

                     
 

Fig. 2.6:  (a)  𝑡𝑒𝑓𝑓  vs.  𝛼 ;  (b)  𝑈𝑒𝑓𝑓  vs  𝛼. 

     

  In Fig. (2.5), we plot  (𝑑𝑡𝑒𝑓𝑓/𝑑𝑈) with 𝑈 for larger values of α. We find that the double 

peak structure almost disappears as 𝛼 increases and one can observe from Fig. (2.5) that for 
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𝛼 > 2, only a single peak structure appears. This indicates the absence of any intermediate 

phase for large α. Figs. 2.6 (a) and 2.6 (b) illustrate respectively the behaviour of 𝑡𝑒𝑓𝑓 and 

𝑈𝑒𝑓𝑓 as a function of 𝛼. As 𝛼 → 0, 𝑡𝑒𝑓𝑓 → 𝑡. Thus at low 𝛼, the system GS is in the SDW 

phase.  As 𝛼 increases, 𝑡𝑒𝑓𝑓 gradually decreases and finally falls off to zero. 

  Fig. 2.6(b) tells us that corresponding 𝑈𝑒𝑓𝑓 becomes maximally negative. This indicates the 

formation of massive singlet bipolarons giving rise to the CDW phase. Here also we see that 

for large 𝑈, SDW-CDW transition is again direct.  

 

 

 

Fig. 2.7:  (a)  𝜔  vs. 𝛼 ;  (b) entanglement entropy (𝐸𝜈)  vs. 𝛼. 

 

In Figs. 2.7(a) and 2.7(b), we plot respectively the double occupancy (ω)  and quantum 

entanglement entropy (Eν)  as a function of α.  The entanglement entropy (EE) gives a 

measure of the accessible states the system can have. Obviously then, the maximum in 

entanglement entropy would correspond to a conducting state. It is observed that for certain 

combinations of α and 𝑈, Eν has maxima and for other values Eν becomes very small. Small 

values of entanglement entropy correspond to insulating states. When e-p interaction 

becomes strong compared to the e-e interaction, the electrons form pairs and the double 

occupancy parameter ω reaches the maximum value 0.5 driving the system to the CDW state. 

For ω < 0.5 , the formation of polaronic SDW state takes place. Similar behaviour is 
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observed in Figs. 2.8(a) and 2.8(b) when we plot the double occupancy (ω) and quantum 

entanglement entropy (Eν) with respect to 𝑈 for different values of e-p interaction (𝛼). 

 

 

Fig. 2.8:  (a)  𝜔  vs.  𝛼 ;  (b)  𝐸𝜈  vs. 𝛼. 

 

  In order to unravel the effect of e-e and e-p interaction simultaneously, we plot 3D graphs in 

Figs. 2.9. Fig. 2.9(a) shows that between the SDW and CDW phases, there lies a region 

where the value of  𝜔 neither corresponds to the SDW region with 𝜔 = 0 nor to the CDW 

region with 𝜔 = 0.5.  Therefore, the effect of e-p and e-e interactions has been found 

simultaneously on ω  and Eν.  This intermediate cross-over region corresponds to metallic 

phase. In Fig. 3.9(b), the peak of entanglement entropy (Eν) lies over the metallic region in 

the (α − U) plane. Therefore, the peak denotes the MP.  

  We have already emphasized that for a metallic state the bandwidth follows the criterion: 

2𝑧𝑡𝑒𝑓𝑓 ≥ 𝑈𝑒𝑓𝑓. In Fig. 2.10, we present a 3D representation of |𝑈𝑒𝑓𝑓| and 4𝑡𝑒𝑓𝑓 with respect 

to 𝑈  and 𝛼 . The figure displays a region of (𝛼, 𝑈)  where the condition: 4𝑡𝑒𝑓𝑓 ≥ 𝑈𝑒𝑓𝑓  is 

satisfied. This is the metallic phase. There are two other regions in the (𝛼 − 𝑈) −  plane 

where this condition is not satisfied and those are insulating phases.  Among them the phase 

where 𝑈𝑒𝑓𝑓 > 0 corresponds to the SDW phase and the one where 𝑈𝑒𝑓𝑓 < 0 corresponds to 

the CDW state.   
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Fig. 2.9  (a) 3D plot of 𝜔 with respect ro  𝛼 and  𝑈; (b) 3D plot of 𝐸𝜐 with respect to 𝛼 and 𝑈. 

 

 

 

 

 

 

Fig. 2.10:  3D plots of 4𝑡𝑒𝑓𝑓 and |𝑈𝑒𝑓𝑓|                  Fig. 2.11:  4𝑡𝑒𝑓𝑓 vs 𝑈𝑒𝑓𝑓. 

                                    with respect to 𝛼 and 𝑈. 
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          Fig. 2.12  𝐿0 with respect to 𝛼 and 𝑈.        Fig. 2.13 Contour plot of 𝐿0 in the  (𝛼 − 𝑈) − plane      

              

  

 In order to look into MP by the Mott-Hubbard (MH) criteria more directly, 4𝑡𝑒𝑓𝑓 is plotted 

in Fig. 2.11, with respect to 𝑈𝑒𝑓𝑓 and the region that satisfies the MH condition is indicated 

by the dotted line. It is observed that the region satisfying the MH criterion is more extended 

in the present work than the LSC’s result, which again confirms the broadening of the 

intermediate MP. 

  The local spin moment (𝐿0) is calculated using Eq. (2.41) and plotted in Fig. (2.12) with 

respect to 𝛼  and 𝑈  and in Fig. (2.13), the contour plots for constant 𝐿0  are drawn in the 

(𝛼 − 𝑈)  plane. Both the figures indicate the presence of the intermediate MP which is 

consistent with the phase diagram. The contour plot in LSC’s work predicts MP to lie 

between 𝐿0 = 0.25 and 𝐿0 =0.50 while the present calculation shows an extended MP that 

lies between 𝐿0 = 0.15 and 𝐿0 =0.60.  One can make the same observation from the local 

spin moment calculation that re-establishes the broadening of intermediate MP between the 

CDW and SDW regions. 

 

 

2.4 Conclusion 
 

The nature of SDW-CDW transition has been studied in a 1D half-filled HH model with 

Gaussian phonon anharmonicity by improving the variational calculation of Lavanya et al. 
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[28]. Using a number of unitary transformations performed in succession followed by a 

generalized many-phonon averaging an effective electronic Hamiltonian is obtained. The 

phonon-subsystem has been treated in a semi-exact way. The effective electronic 

Hamiltonian has been solved exactly using the BA technique to obtain the GS energy. The 

hopping integral and the Coulomb correlation are renormalized by the e-p interaction and 

phonon anharmonicity. Using the Mott-Hubbard criterion we have shown that the present 

modified approach broadens the width of intermediate MP reported by Lavanya et al. [28]. 

The same conclusion has been drawn from the calculation of the local spin moment and 

double occupancy. Finally a study of quantum entanglement entropy and the double 

occupancy parameter reconfirms the existence of a wider IMP at the SDW-CDW transition 

region.   
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“I am now convinced that theoretical physics is actual philosophy”…Max 

Born 

 

3 
An analytical study of the phase diagram of 

a two-dimensional Extended Holstein-

Hubbard model: a mean-field study 

 

3.1 Introduction 

Strongly correlated e-p systems exhibit intriguing properties due to the interplay of various 

interactions. The e-e Coulomb repulsion and the phonon-mediated attractive e-e interaction 

lead to spin fluctuations and enhance the charge and spin correlations in these systems. These 

correlations have been studied extensively in the context of phonon mechanism of 

superconductivity [1-3]. Though the phonon mechanism was advocated by several 

researchers for inducing pairing in cuprates [4-9], it ran into difficulty because of the 

following reason. It is well known that in a correlated e-p system, different ground state (GS) 

phases, known as SDW and CDW states, are possible based on the relative strengths of the 

different interactions present in the system.  

  As described in chapter 1, several investigations on the HH model have shown the existence 

of the SDW-CDW transition. Though a few researchers have claimed the transition to be 

direct [10], many investigators have reported the existence of an intermediate metallic phase 

in between the two insulating states [11-21]. All these calculations were however restricted to 

1D systems, though the real systems of interest in the context of high−𝑇𝐶 superconductivity 

are doped cuprate materials [22-24], transition-metal dichalcogenides [25-27] and other 

correlated systems [28-32] which are essentially two-dimensional.   
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  Berger et al. [28] have extensively studied the one and two-dimensional (2D) HH model to 

examine of the detailed characteristics of the quantum SDW-CDW transition. Hohenadler 

and Batrouni [29] have shown through a quantum Monte Carlo (QMC) study of the square 

lattice that there is a possibility of a strongly correlated region in between the spin-density 

and charge-density phases, which can be either metallic or superconducting. In a recent 

investigation of the 2D HH system, Wang et al. [30] have shown using a non-Gaussian exact 

diagonalization method, the presence of an intermediate phase in between the spin and 

charge-order states. Here, too, the intermediate phase shows a metallic or superconducting 

behaviour at weak coupling. Costa et al. [31] have analysed the 2D HH model and obtained a 

rich phase diagram for a square lattice containing anti-ferromagnetic Mott-insulator and 

CDW phases. Using auxiliary-field quantum Monte Carlo and finite temperature determinant 

quantum Monte Carlo techniques, they have observed a correlated metallic phase at the cross-

over region of the SDW and CDW phases. Very recently, Yirga et al. [32] have considered 

the 2D Hubbard system with the Holstein phonon modes through the Su-Schrieffer-Heeger 

model and studied the anti-ferromagnetic Mott-insulator-CDW transition by calculating the 

renormalized quasi-particle weight using the functional renormalization group technique. 

Their calculation also suggests the presence of a conducting phase flanked by two insulating 

phases. Since all the aforementioned investigations of the 2D HH model are numerical, we 

wish to analytically examine the transition region so that the underlying physics of the system 

becomes more transparent.  

  We purport to consider, in the present paper, an extended HH model with the nearest 

neighbour (NN) and next nearest neighbour (NNN) electronic correlations for a 2D square 

lattice. The e-p interaction is first eliminated from the system by choosing an appropriate 

phonon state, which gives rise to an effective electronic Hamiltonian with modified Hubbard 

parameters namely the effective hopping parameter and effective online Coulomb correlation 

energy. In the case of the weak effective correlation, the problem is solved by employing the 

Hartree-Fock (HF) mean-field (MF) technique and for large effective on-site correlation, we 

transform the effective electronic Hamiltonian to the 𝑡 − 𝐽 model and solve the problem using 

the Zubarev Green function technique. Combining the results of both the regimes, we obtain 

the phase diagram for the whole range of the interaction strength and analyse the properties 

of the different phases using the Mott-Hubbard (MH) criterion.  
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3.2   Model and formulation 

An extended HH model can be written in 2D as  

 

    𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝 ,                                                                 (3.1) 

with 

 𝐻𝑒 = −𝑡 ∑ 𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎 + 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

          

+ 𝑉3 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

 ,                                                                                        (3.2) 

 𝐻𝑝 = ℏ𝜔0∑𝑏𝑖
†𝑏𝑖

𝑖

 ,                                                                 (3.3) 

𝐻𝑒𝑝 = 𝑔1∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑔2∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

 .                                 (3.4) 

Here 𝐻𝑒 describes the extended Hubbard Hamiltonian where the parameter 𝑡 denotes the NN 

hopping integral, 𝑛𝑖𝜎(= 𝑐𝑖𝜎
† 𝑐𝑖𝜎) represents the number operator for the spin-σ electron at the 

i–th site, ciσ
†  (ciσ)  being the corresponding electron creation (annihilation) operator, and 

𝑈, 𝑉1, 𝑉2 and 𝑉3 give the onsite, nearest neighbour (NN), next nearest neighbour (NNN) and 

next to next nearest neighbour (NNNN) Coulomb interaction energies  respectively,   𝐻𝑝 is 

the phonon Hamiltonian, 𝑏𝑖
† (𝑏𝑖) being the creation (annihilation) operator for an optical 

phonon at the 𝑖-th site with dispersionless frequency 𝜔0 and 𝐻𝑒𝑝  is the extended Holstein 

EPI,  𝑔1 and 𝑔2 being the on-site and NN EPC strengths, respectively. We will write: 𝑔1 = 

√𝛼 , where 𝛼 is the onsite e-p coupling constant. 

  To disentangle the e-p coupling term, the Lang-Firsov transformation (LFT) [33] has been 

used extensively in the past. This transformation lowers the energy by displacing the phonon 

vacuum. The phonon state then becomes a coherent superposition of states with different 

phonon numbers. Several studies on the HH model [16-21, 34, 35] and the Anderson-

Holstein model [36, 37] have shown that the variational LFT (VLFT) method is more useful. 

We, therefore, employ VLFT to transform the extended HH model with the generator,  

  

    𝑅1 =
𝑔1
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖𝜎

+
𝑔2
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖+𝛿

† − 𝑏𝑖+𝛿)

𝑖𝛿𝜎

 ,                                   (3.5) 



                      Chapter 3 

 

 

46 

where 𝑔1
′ = 𝜂1√𝛼  and 𝑔2

′ = 𝜂2√𝛼  , 𝜂1  and 𝜂2  being the variational parameters. 𝑔1
′  gives 

essentially a measure of the depth of the on-site lattice polarization potential created by the 

EPI and 𝑔2
′  represents the width of the polaron potential well. The VLFT transforms the 

Hamiltonian 𝐻 to 𝐻1 = 𝑒
𝑅1𝐻𝑒−𝑅1 . Using the Baker-Campbell-Hausdorff (BCH) formula we 

may calculate the transformed Hamiltonian as, 

𝐻1 = 𝐻 + [𝑅1, 𝐻] +
1

2!
[𝑅1, [𝑅1, 𝐻]] + ⋯                                                                                    (3.6) 

     = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉̃1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉̃2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

          

+ 𝑉̃3 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

+𝜔0∑𝑏𝑖
†𝑏𝑖

𝑖

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+ 𝑃1∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑃2∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

 ,                                                                                  (3.7) 

 

where, 

𝑥𝑖 − 𝑥𝑗 =
𝑔1
′

𝜔0
(𝑏𝑖
† − 𝑏𝑖) +

𝑔2
′

𝜔0
∑(𝑏

𝑖+𝛿/
† − 𝑏𝑖+𝛿/)

𝛿/

,                                 (3.8) 

𝑈̃ = 𝑈 −
2

𝜔0
[2(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) − (𝑔1

′2 + 𝑧𝑔2
′2)] ,                                 (3.9) 

 𝑉̃1 = 𝑉1 −
2

𝜔0
[(𝑔1𝑔2

′ + 𝑔1
′𝑔2) − 𝑔1

′𝑔2
′ ] , 𝑉̃2 = 𝑉2 −

1

𝜔0
[2𝑔2𝑔2

′ − 𝑔2
′2] , 𝑉̃3 = 𝑉3,       (3.10) 

𝜀 = − [
2

𝜔0
(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) −

1

𝜔0
(𝑔1
′2 + 𝑧𝑔2

′2)],                                  (3.11) 

𝑃1 = 𝑔1 − 𝑔1
′ ,     𝑃2 = 𝑔2 − 𝑔2

′ .                                               (3.12) 

  An electron can be considered as a phonon-source. As an electron makes an emission of a 

phonon, it undergoes a recoil motion and during its action of recoiling, if it releases another 

phonon, then these two phonons would have a built-in correlation. This phonon-correlation 

effect can be incorporated by considering a squeezing transformation (or Bogolubov 

transformation as it is more commonly referred to in condensed matter physics) with a 

generator [38]:  
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               𝑅2 = 𝛼𝑠  ∑(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖

,                                                        (3.13) 

where 𝛼𝑠 gives a measure of the phonon correlation and is called a squeeze parameter and 

will be treated as a variational parameter. The squeezing transformation transforms 𝐻1  to 

𝐻2 = 𝑒
𝑅2𝐻1𝑒

−𝑅2. The transformed Hamiltonian is obtained as, 

 

𝐻2 = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑠

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉̃1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉̃2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

  

+ 𝑉̃3 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+ 𝜔0 [
𝑒4𝛼𝑠

4
∑(𝑏𝑖 + 𝑏𝑖

†)
2

𝑖

−
𝑒−4𝛼𝑠

4
∑(𝑏𝑖 − 𝑏𝑖

†)
2

𝑖

] + 𝑃1𝑒
2𝛼𝑠∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖

†)

𝑖𝜎

+ 𝑃2𝑒
2𝛼𝑠∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿

† )

𝑖𝛿𝜎

+
𝑁𝜔0
2
.                                                           (3.14) 

  Since the average phonon correlation in the phonon function is expected to depend on the 

electron concentration at the lattice sites, Malik, Mukhopadhyay and Chatterjee (MMC) [19] 

have recently suggested that an increase in the electron concentration would increase the 

average phonon correlation. This immediately implies that 𝑅2 should at least partially depend 

on the electron concentration. MMC [19] have introduced a new unitary transformation to 

incorporate this density-dependent phonon correlation effect. Chatterjee and collaborators 

have subsequently used this transformation in a more improved work [20] and also in a 

related problem [21] to lower the GS energy. We apply this density-dependent squeezing 

transformation to 𝐻2 with the generator  

                        𝑅3 = 𝛼𝑑∑𝑛𝑖𝜎(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖

,                                                     (3.15) 

where 𝛼𝑑  is to be obtained variationally. The new Hamiltonian is now given by: 𝐻3 =

𝑒𝑅3𝐻2𝑒
−𝑅3 which can be written as, 
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𝐻3 = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑠−2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎

𝑒
(𝑥𝑖
′−𝑥𝑗

′)

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉̃1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉̃2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

  + 𝑉̃3 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+ 𝜔0 [
𝑒4𝛼𝑠

4
∑[(𝑏𝑖 + 𝑏𝑖

†)𝑒2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ]
2

𝑖

−
𝑒−4𝛼𝑠

4
∑[(𝑏𝑖 − 𝑏𝑖

†)𝑒−2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 ]
2

𝑖

] 

        +𝑃1𝑒
2𝛼𝑠∑𝑛𝑖𝜎𝑒

2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 (𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑃2𝑒
2𝛼𝑠∑𝑛𝑖𝜎𝑒

2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 (𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

+
𝑁𝜔0
2
.                                                                                                                    (3.16) 

Here,         𝑥𝑖
′ − 𝑥𝑗

′ = 𝛼𝑑[(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†) − (𝑏𝑗𝑏𝑗 − 𝑏𝑗

†𝑏𝑗
†)]. 

  Finally, we consider correlation between phonons at different sites. This can be incorporated 

by correlated squeezing transformation. However, we consider only NN phonon correlation. 

Following Lo and Sollie [39], the generator of the correlated squeezing transformation is 

chosen as, 

                          𝑅4 =
1

2
 ∑𝛽𝑖𝑗 (

𝑖≠𝑗

𝑏𝑖𝑏𝑗 − 𝑏𝑖
†𝑏𝑗
†).                                                    (3.17) 

  Here we choose, 𝛽𝑖𝑗 = 𝛽, when 𝑖  and 𝑗 are NN and 𝛽𝑖𝑗 = 0, otherwise. The parameter 𝛽 is 

obtained variationally. The Hamiltonian after the above transformation becomes: ℋ ≡ 𝐻4 =

𝑒𝑅4𝐻3𝑒
−𝑅44. To calculate the transformed Hamiltonian, we have to calculate the transformed 

phonon operators using BCH formula which gives  

                    𝑏̃𝑖 = 𝑒
𝑅4𝑏𝑖𝑒

−𝑅4 = 𝑏𝑖 + [𝑅4, 𝑏𝑖] +
1

2!
[𝑅4, [𝑅4, 𝑏𝑖]] + ⋯ 

= 𝑏𝑖 +∑𝛽𝑖𝑘𝑏𝑘
†

𝑘

+
1

2!
∑𝛽𝑖𝑘𝛽𝑘𝑘/𝑏𝑘/

𝑘𝑘/

+
1

3!
∑ 𝛽𝑖𝑘𝛽𝑘𝑘/𝛽𝑘/𝑗𝑏𝑗

†

𝑘𝑘/𝑗

+⋯ 

=∑𝛿𝑖𝑗𝑏𝑗
𝑗

+∑𝛽𝑖𝑗𝑏𝑗
†

𝑗

+
1

2!
∑𝛽𝑖𝑘𝛽𝑘𝑗𝑏𝑗
𝑘𝑗

+
1

3!
∑𝛽𝑖𝑘𝛽𝑘𝑙𝛽𝑙𝑗𝑏𝑗

†

𝑘𝑙𝑗

+⋯ 
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                   𝑏̃𝑖 =∑(𝜇𝑖𝑗𝑏𝑗 + 𝜈𝑖𝑗𝑏𝑗
†)

𝑗

.                                                    (3.18) 

Similarly, we may calculate, 

𝑏̃𝑖
† =∑(𝜇𝑖𝑗𝑏𝑗

† + 𝜈𝑖𝑗𝑏𝑗)

𝑗

                                                     (3.19) 

where 

𝜇𝑖𝑗 = 𝛿𝑖𝑗 +
1

2!
∑𝛽𝑖𝑘𝛽𝑘𝑗
𝑘

+
1

4!
∑𝛽𝑖𝑘𝛽𝑘𝑙𝛽𝑙𝑚𝛽𝑚𝑗
𝑘𝑙𝑚

+⋯                     (3.20) 

𝜈𝑖𝑗 = 𝛽𝑖𝑗 +
1

3!
∑𝛽𝑖𝑘𝛽𝑘𝑙𝛽𝑙𝑗
𝑘𝑙

+
1

5!
∑ 𝛽𝑖𝑘𝛽𝑘𝑙𝛽𝑙𝑚𝛽𝑚𝑛𝛽𝑛𝑗
𝑘𝑙𝑚𝑛

+⋯             (3.21) 

Using this we may obtain, 

(𝑏𝑖
† + 𝑏𝑖)
̃ =∑(𝜇𝑖𝑗 + 𝜈𝑖𝑗)

𝑗

(𝑏𝑗
† + 𝑏𝑗)                                          (3.22) 

and 

(𝑏𝑖
† − 𝑏𝑖)
̃ =∑(𝜇𝑖𝑗 − 𝜈𝑖𝑗)

𝑗

(𝑏𝑗
† − 𝑏𝑗)                                         (3.23) 

Using Eqs. (3.20) and (3.21), we calculate 

(𝜇𝑖𝑗 + 𝜈𝑖𝑗) = 𝛿𝑖𝑗 + 𝛽𝑖𝑗 +
1

2!
(𝛽2)𝑖𝑗 +⋯ = (𝑒𝜷)

𝑖𝑗
                           (3.24) 

(𝜇𝑖𝑗 − 𝜈𝑖𝑗) = 𝛿𝑖𝑗 − 𝛽𝑖𝑗 +
1

2!
(𝛽2)𝑖𝑗 +⋯ = (𝑒−𝜷)

𝑖𝑗
.                         (3.25) 

Therefore the transformed Hamiltonian becomes, 
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𝐻4 = −𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉̃1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉̃2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

  

+ 𝑉̃3 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

+ 𝜀𝑒𝑓𝑓∑𝑛𝑖𝜎
𝑖𝜎

+ 𝜔0
𝑒4𝛼𝑠+4𝛼𝑑∑ 𝑛𝑖𝜎𝜎

4
∑[∑(𝜇𝑖𝑗 + 𝜈𝑖𝑗)(𝜇𝑖𝑗/ + 𝜈𝑖𝑗/)(𝑏𝑗

† + 𝑏𝑗) (𝑏𝑗/
† + 𝑏𝑗/)

𝑗𝑗/

]

𝑖

− 𝜔0
𝑒−4𝛼𝑠−4𝛼𝑑∑ 𝑛𝑖𝜎𝜎

4
∑[∑(𝜇𝑖𝑗 − 𝜈𝑖𝑗)(𝜇𝑖𝑗/ − 𝜈𝑖𝑗/)(𝑏𝑗

† − 𝑏𝑗) (𝑏𝑗/
† − 𝑏𝑗/)

𝑗𝑗/

]

𝑖

+ 𝑃1𝑒
2𝛼𝑠+2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 ∑𝑛𝑖𝜎

𝑖𝜎

∑(𝜇𝑖𝑗 + 𝜈𝑖𝑗)(𝑏𝑗
† + 𝑏𝑗)

𝑗

+ 𝑃2𝑒
2𝛼𝑠+2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 ∑𝑛𝑖𝜎

𝑖𝜎

∑(𝜇𝑖+𝛿,𝑗 + 𝜈𝑖+𝛿,𝑗)(𝑏𝑗
† + 𝑏𝑗)

𝑗

+
𝑁𝜔0
2
.  

                                        (3.26) 

  One may notice that the transformation (3.13), incorporates the mean-field part of the 

phonon correlations while (3.15) includes the deviation from the mean-field part i.e., the 

fluctuations. The purpose of carrying out a set of unitary transformation is to decouple the 

electron and phonon variables. However an exact separation of the electron and phonon 

variables is not possible for the present problem. Therefore we seek a variational solution by 

taking the average of  ℋ with a suitable phonon state |Φ𝑝ℎ⟩ so that the phonon variables are 

eliminated. This entire process is same as making a following choice for the phonon wave 

function:   

                     |𝜓𝑝ℎ⟩ = 𝑒
−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4|Φ𝑝ℎ⟩  .                                              (3.27) 

  We thus write an approximate wave function for the original Hamiltonian in the following 

product form:  

|Ψ⟩ = |𝜓𝑒𝑙⟩⨂|𝜓𝑝ℎ⟩,                                                            (3.28) 

so that the total energy of the system can then be written as:  

𝐸 = ⟨Ψ|𝐻|Ψ⟩ = ⟨𝜓𝑒𝑙|⟨𝜓𝑝ℎ|𝐻|𝜓𝑝ℎ⟩ |𝜓𝑒𝑙⟩ = ⟨𝜓𝑒𝑙|⟨Φ𝑝ℎ|ℋ|Φ𝑝ℎ⟩ |𝜓𝑒𝑙⟩.      (3.29) 
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For  |Φ𝑝ℎ⟩,  we choose a fully general phonon state as:  

                       |Φ𝑝ℎ⟩   =  ∑ 𝑟𝑛

𝑀

𝑛=0

 |𝜑𝑛(𝑥)⟩ ,                                                        (3.30) 

where  𝜑𝑛(𝑥) is the 𝑛 −th eigen function of a harmonic oscillator and 𝑟𝑛’s are variational 

parameters. Our aim is to begin the numerical computation with the value of 𝑀 equal to zero 

and then systematically increase its value till the energy becomes convergent. The effective 

electronic Hamiltonian becomes 

 

      𝐻𝑒𝑓𝑓 = ⟨𝜓𝑝ℎ|𝐻|𝜓𝑝ℎ⟩ = ⟨Φ𝑝ℎ|ℋ|Φ𝑝ℎ⟩ = ⟨Φ𝑝ℎ|𝑒
𝑅4𝑒𝑅3𝑒𝑅2𝑒𝑅1𝐻𝑒−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4|Φ𝑝ℎ⟩ 

                = 𝜀𝑒𝑓𝑓∑𝑛 𝑖𝜎
𝑖𝜎

− 𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ 𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉1
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉2
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

 

+  
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝜷)

00
 𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2)

− 𝑒−4𝛼(𝑒2𝜷)
00
 𝑇3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2) − 2]                                                   (3.31) 

where  

 

 𝜀𝑒𝑓𝑓 = −
1

𝜔0
[2(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) − (𝑔1

′2 + 𝑧𝑔2
′2)]

+ 𝑒2𝛼(1 + 2𝛼𝑑 + 3𝛼𝑑
2)𝑀1𝑇1[(𝑔1 + 𝑧𝑔2) − (𝑔1

′ + 𝑧𝑔2
′ )] ,                          (3.32) 

 𝑡𝑒𝑓𝑓 = 𝑡𝑒
𝛼𝑑𝐹1𝐹2𝐹3 ,                                                                                                                        (3.33) 

𝑈𝑒𝑓𝑓 = 𝑈 −
2

𝜔0
[2(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) − (𝑔1

′2 + 𝑧𝑔2
′2)] ,                                                             (3.34) 

 𝑉1
𝑒 = 𝑉1 −

2

𝜔0
[(𝑔1𝑔2

′ + 𝑔1
′𝑔2) − 𝑔1

′𝑔2
′ ] , 𝑉2

𝑒 = 𝑉2 −
1

𝜔0
[2𝑔2𝑔2

′ − 𝑔2
′2] , 𝑉3

𝑒 = 𝑉3,          (3.35) 

𝐹1 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙=0

 ∫ 𝑑𝑦 𝑒−𝑦
2
 𝐻𝑘(𝑦) 𝐻𝑙(𝑦)

∞

−∞

 ,                                                                                   (3.36) 
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 𝐹2 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙=0

 𝑒−
𝛾2

4 ∫ 𝑑𝑦 𝑒−𝑦
2
 𝐻𝑘 (𝑦 +

𝛾

2
) 𝐻𝑙 (𝑦 −

𝛾

2
)

∞

−∞

 ,                                                     (3.37) 

𝐹3 = ∑ 𝑐𝑘𝑙  ∫ 𝑑𝑦 𝑒
−
𝑦2

2
(1+𝜂2) 𝐻𝑘(𝑦) 𝐻𝑙(𝑦𝜂)

∞

−∞

𝑀

𝑘,𝑙=0

                                                                       (3.38) 

 𝑇𝑖 = ∑ 𝑐𝑘𝑙  ∫ 𝑒
−𝑦2𝜉𝑖(𝑦)𝐻𝑘(𝑦)𝐻𝑙(𝑦)𝑑𝑦 

∞

−∞

,

𝑀

𝑘,𝑙=0

                                                                           (3.39) 

𝑀1 = (𝑒
𝜷)
00
+ 2𝑛 ∑(𝑒𝜷)

0𝑚
 

∞

𝑚=1

  ,                                                                                                (3.40) 

 ∑(𝐴𝑘
𝑖𝑗
)
2

𝑘

=
2𝑔1

′2

𝜔0
2 [(𝑒

2𝜷)
00
− (𝑒−2𝜷)

01
] +

2𝑔2
′2

𝜔0
2 ∑ [(𝑒−2𝜷)

𝑖+𝛿′,𝑖+𝛿′′
− (𝑒−2𝜷)

𝑖+𝛿′,𝑗+𝛿′′
]

𝛿′𝛿′′

 

                                              + 
4𝑔1

′𝑔2
′

𝜔0
2 ∑[(𝑒−2𝜷)

0,𝑖+𝛿′
− (𝑒−2𝜷)

𝑖+𝛿,𝑖+𝛿′
]

𝛿′

 ,                           (3.41) 

where  𝑦 = √𝑥  and                                        (3.42) 

     𝑐𝑘𝑙 = 𝑐𝑘𝑐𝑙√1 2𝑘+𝑙𝑘! 𝑙!⁄ 𝜋,                                       (3.43) 

    𝛾 = 𝑒−2𝛼𝑠  ∑ 𝐴𝑘
𝑖𝑗

𝑘  (1 − 2𝛼𝑑 + 3𝛼𝑑
2), 𝜂 = 1 + 2𝛼𝑑,                        (3.44) 

    𝜉1 = √2𝑦, 𝜉2 = 2𝑦
2 ,   𝜉3 = 2(𝑦

2 − 2𝑙 − 1).              (3.45) 

 

 

 

We calculate  (𝑒±𝑛𝜷)
0𝑛

 using the periodic boundary condition. Then the 2D lattice can be 

viewed as a toroid of 𝑁 lattice sites with 𝑁 very large so that the effects of end points do not 

matter (Fig. 3.1).  
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Fig. 3.1: The 2D HH model in the form of a toroid under periodic boundary condition.  

 

The matrix 𝜷 is given by  

 

𝜷 =

(

 
 

0 𝛽 0
𝛽 0 𝛽
0 𝛽 0

0 0
0 0
𝛽 0

… 0 0   0    𝛽
… 0      0   0     0     
… 0 0   0    0

⋮ ⋮ ⋮
𝛽     0     0     0     0    0        0    0    0 )

 
 

 

 

We find that the element (𝑒±𝑛𝜷)
0𝑞

 for the ring structure in Fig. 3.1 can be represented 

exactly by the following closed form analytical expression:   

 (𝑒±𝑛𝜷)
00
=∑(

2𝑚
𝑚
) 
(±𝑛𝛽)2𝑝

𝑝! 𝑝!

∞

𝑝=0

 ,                                                                                               (3.46) 

 (𝑒±𝑛𝜷)
0𝑞
=∑(2𝑝 + (

𝑞 − 1

2
+ 1)

𝑝
) 

(±𝑛𝛽)[2𝑝+(
𝑞−1
2
+1)]

𝑝! [𝑝 + (
𝑞 − 1
2 + 1)] !

∞

𝑝=0

   ,         (𝑞 = 𝑜𝑑𝑑)           (3.47) 



                      Chapter 3 

 

 

54 

   (𝑒±𝑛𝜷)
0𝑞
=∑(

2𝑝 + (
𝑞

2
+ 1)

𝑝 + 1
) 
(±𝑛𝛽)

[2𝑝+(
𝑞
2
+1)]

𝑝! [𝑝 + (
𝑞
2 + 1)] !

∞

𝑝=0

    .                      (𝑞 = 𝑒𝑣𝑒𝑛)         (3.48) 

For the electrons, we assume a square density of states (which is a valid assumption in 2D) 

and write,   

   𝜌(𝜀𝑘) =
1

2𝑊
       ;       −𝑊 ≤ 𝜀𝑘 ≤ 𝑊                                                     (3.49) 

                                                  = 0            ;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

3.2.1 Weak Coulomb correlation 

 

3.2.1.1 Hartree-Fock Approximation: 

 
  In the mean-field theory a four operator term could be decomposed into two-operator form 

so that the system Hamiltonian can be solved easily in the following way: 

𝑛𝑖𝑛𝑗 = [(𝑛𝑖 − 〈𝑛𝑖〉) + 〈𝑛𝑖〉][(𝑛𝑗 − 〈𝑛𝑗〉) + 〈𝑛𝑗〉]                                                                        

= 〈𝑛𝑖〉(𝑛𝑗 − 〈𝑛𝑗〉) + (𝑛𝑖 − 〈𝑛𝑖〉)〈𝑛𝑗〉 + 〈𝑛𝑖〉〈𝑛𝑗〉 + (𝑛𝑖 − 〈𝑛𝑖〉)(𝑛𝑗 − 〈𝑛𝑗〉)    (3.51) 

 

  In the HF mean-field theory, we neglect the fluctuations term (𝑛𝑖 − 〈𝑛𝑖〉)(𝑛𝑗 − 〈𝑛𝑗〉) as this 

approximation does not have any effect on the physics of the problem, to solve the electronic 

Hamiltonian. Therefore we may write Eq. (3.31) as 

𝑛𝑖𝑛𝑗 = 〈𝑛𝑖〉(𝑛𝑗 − 〈𝑛𝑗〉) + (𝑛𝑖 − 〈𝑛𝑖〉)〈𝑛𝑗〉 + 〈𝑛𝑖〉〈𝑛𝑗〉                                          

= 〈𝑛𝑖〉𝑛𝑗 + 𝑛𝑖〈𝑛𝑗〉 − 〈𝑛𝑖〉〈𝑛𝑗〉                                                              (3.52) 

so that 

  〈𝑛𝑖𝑛𝑗〉 = 〈𝑛𝑖〉〈𝑛𝑗〉                                                                    (3.54) 

Also, 

〈𝑛𝑖〉 = 𝑛 = 〈𝑛𝑖↑〉 + 〈𝑛𝑖↓〉                                                           (3.55) 

Therefore, 
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〈𝑛𝑖𝜎〉 =
𝑛

2
                                                                        (3.56) 

 

  The HF mean-field approximation transforms the many particle average to the product of 

single particle averages by removing the quartic operator terms. Thus the Hamiltonian 

becomes soluble. This approximation gives better results at lower electron concentration. 

Using the HF mean-field theory we may write the electronic terms of Eq. (3.31) as shown 

below.  

 

𝑉1
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

= 𝑉1
𝑒 ∑ [〈𝑛𝑖𝜎〉𝑛𝑗𝜎′ + 𝑛𝑖𝜎〈𝑛𝑗𝜎′〉 − 〈𝑛𝑖𝜎〉〈𝑛𝑗𝜎′〉]

<𝑖𝑗>𝜎𝜎′

 

= 𝑉1
𝑒 [𝑧𝑛∑𝑛𝑗𝜎′

𝑗𝜎

+ 𝑧∑𝑛𝑖𝜎
𝑖𝜎

𝑛 − 𝑁𝑧𝑛2] 

= 𝑉1
𝑒 [2𝑧𝑛∑𝑛𝑖𝜎

𝑖𝜎

− 𝑁𝑧𝑛2] ,                                                         (3.57) 

 

where  𝑗 = 𝑖 + 𝛿, carries the NN information and 𝑧 is the number of NN in the extended HH 

model.  

 

Let us consider another term of Eq. (3.31).  

𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

= 𝑈𝑒𝑓𝑓∑[〈𝑛𝑖↑〉𝑛𝑖↓ + 𝑛𝑖↑〈𝑛𝑖↓〉 − 〈𝑛𝑖↑〉〈𝑛𝑖↓〉]

𝑖

 

        = 𝑈𝑒𝑓𝑓∑[
𝑛

2
𝑛𝑖↓ + 𝑛𝑖↑

𝑛

2
−
𝑛2

4
]

𝑖

 

     = 𝑈𝑒𝑓𝑓
𝑛

2
∑𝑛𝑖𝜎
𝑖𝜎

− 𝑁𝑈𝑒𝑓𝑓
𝑛2

4
                                            (3.58) 

The other two electronic terms can be written with the HF mean-field theory as 

𝑉2
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

= 2𝑧′𝑛𝑉2
𝑒∑𝑛𝑖𝜎
𝑖𝜎

− 𝑁𝑧′𝑛2𝑉2
𝑒 ,                        (3.59𝑎) 

and  
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𝑉3
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′′,𝜎′

𝑖𝛿′′𝜎𝜎′

= −𝑁𝑧′′𝑛2𝑉3
𝑒                                   (3.59𝑏) 

where 𝑧′ represents the number of the NNN in the extended HH Hamiltonian.  

  Using these results the effective electronic Hamiltonian of Eq. (3.31) is solved using the 

mean-field HF approximation. For weak electronic correlation, the mean-field HF decoupling 

method gives the GS energy (𝜀𝑊) (per particle) for the system as 

𝜀𝑊 = 𝑛 𝜀𝑒𝑓𝑓 −
1

2
𝑧 𝑡𝑒𝑓𝑓(2𝑛 − 𝑛

2) +
𝑛2

4
𝑈𝑒𝑓𝑓 + 𝑧𝑛

2𝑉1
𝑒 + 𝑧′𝑛2𝑉2

𝑒 + 𝑧′′𝑛2𝑉3
𝑒  

+
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝜷)

00
 T2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2)

− 𝑒−4𝛼(𝑒2𝜷)
00
 T3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2) − 2]  ,                                                (3.60) 

 

which is finally minimized with respect to 𝑔1
′ , 𝑔2

′ , 𝛼𝑠, 𝛼𝑑 , 𝛽  and 𝑐𝑛’s.  

 

3.2.2 Strong  Coulomb correlation 

  To investigate the strongly correlated region, the half-filled HH model can be transformed 

into a Heisenberg model. In this regime, it is assumed that each site is either occupied by a 

single electron or remains empty, though the presence of virtual fluctuations may result in 

double occupancies. But in the present case, we consider the system in the subspace of no 

double occupancy and therefore an effective 𝑡 − 𝐽 model can be obtained.  

 

3.2.2.1 𝒕 − 𝑱 model 

  For the strong Coulomb correlation, i.e. at 𝑈 ≫ 𝑡, there is no hopping process if 𝑡 = 0 and 

the ground state of the lattice is degenerate which is a singly occupied lattice chain of 

electrons. But as 𝑡  becomes finite, the lattice degeneracy breaks and there could be four 

possible ways that may have effect on the double occupancy in the chain of lattice. The four 

probable hopping processes can be explained through the Hamiltonians in the following 

ways: 
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Fig. 3.2: 𝑡 − 𝐽 model mechanism 

 

The mechanism (a) represents the process where unoccupied sites are occupied by hopping, 

that can be presented by the Hamiltonian, 

   𝐻𝑡
0 = −𝑡 ∑ {(1 − 𝑛𝑖,−𝜎)𝑐𝑖𝜎

† 𝑐𝑗𝜎(1 − 𝑛𝑗,−𝜎) + (1 − 𝑛𝑗,−𝜎)𝑐𝑗𝜎
† 𝑐𝑖𝜎(1 − 𝑛𝑖,−𝜎)}

<𝑖𝑗>𝜎

.     (4.61) 

In the mechanism (b), the doubly occupied states hop by one lattice site. This process can be 

described by the Hamiltonian, 

𝐻𝑡
1 = −𝑡 ∑ {𝑛𝑖,−𝜎𝑐𝑖𝜎

† 𝑐𝑗𝜎𝑛𝑗,−𝜎 + 𝑛𝑗,−𝜎𝑐𝑗𝜎
† 𝑐𝑖𝜎𝑛𝑖,−𝜎}

<𝑖𝑗>𝜎

.                             (3.62) 

The third process (c) increases the number of doubly occupied sites that can be expressed 

with the Hamiltonian, 

𝐻𝑡
+ = −𝑡 ∑ {𝑛𝑖,−𝜎𝑐𝑖𝜎

† 𝑐𝑗𝜎(1 − 𝑛𝑗,−𝜎) + 𝑛𝑗,−𝜎𝑐𝑗𝜎
† 𝑐𝑖𝜎(1 − 𝑛𝑖,−𝜎)}

<𝑖𝑗>𝜎

.             (3.63) 

The fourth process decreases the number of doubly occupied sites that can be presented by 

the Hamiltonian, 

𝐻𝑡
− = −𝑡 ∑ {(1 − 𝑛𝑖,−𝜎)𝑐𝑖𝜎

† 𝑐𝑗𝜎𝑛𝑗,−𝜎 + (1 − 𝑛𝑗,−𝜎)𝑐𝑗𝜎
† 𝑐𝑖𝜎𝑛𝑖,−𝜎}

<𝑖𝑗>𝜎

.             (3.64) 

Considering all the possible hopping mechanisms, the hopping process in the total Hubbard 

Hamiltonian can be written as, 

𝐻𝑡 = 𝐻𝑡
0 + 𝐻𝑡

1 + 𝐻𝑡
+ + 𝐻𝑡

−.                                                     (3.65) 
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Here as the two processes (c) and (d) change the number of doubly occupied sites, we may 

write them together as 𝐻𝑡
+ + 𝐻𝑡

− = 𝐻𝑡
± and this Hamiltonian causes an extra energy 𝑈 to the 

system. Therefore in order to eliminate any extra energy cost to the system we apply the 

Schrieffer-Wolff transformation (SWT) to the total hopping Hamiltonian 𝐻𝑡. 

The generator of the canonical SWT is considered as, 

𝑆 =
1

𝑈
(𝐻𝑡

+ − 𝐻𝑡
−),                                                          (3.66) 

That transforms the Hubbard Hamiltonian as, 

     𝐻̃ = 𝑒𝑆(𝐻𝑡
0 + 𝐻𝑡

± +𝐻𝑈)𝑒
−𝑆 

= 𝐻𝑡
0 + 𝐻𝑡

± + 𝐻𝑈 + [𝑆, 𝐻𝑡
0 ] + [𝑆, 𝐻𝑈] + [𝑆, 𝐻𝑡

±] +
1

2
[𝑆, [𝑆, (𝐻𝑡

0 + 𝐻𝑡
± + 𝐻𝑈)]].    (3.67) 

For a strongly correlated system, as we do not want any change in the doubly occupied sites, 

the result of the SWT gives, 

𝐻𝑡
± + [𝑆, 𝐻𝑈] = 0 .                                                                (3.68) 

Other terms in the transformed Hamiltonian become:  

[𝑆, 𝐻𝑡
±] =

1

𝑈
[𝐻𝑡

+, 𝐻𝑡
−] = ℴ(𝑡2 𝑈⁄ ),                                             (3.69) 

1

2
[𝑆, [𝑆, 𝐻𝑈]] = −

1

𝑈
[𝐻𝑡

+, 𝐻𝑡
−] = ℴ(𝑡2 𝑈⁄ ),                                   (3.70) 

1

2
[𝑆, [𝑆, 𝐻𝑡

0 + 𝐻𝑡
±]] = [𝑆, 𝐻𝑈] + ℴ(𝑡

3 𝑈⁄ ).                                    (3.71) 

Therefore collecting all the terms we obtain the transformed Hamiltonian as, 

𝐻̃ = 𝐻𝑡
0 + 𝐻𝑈 +

2

𝑈
[𝐻𝑡

+, 𝐻𝑡
−] + ℴ(𝑡3 𝑈⁄ ).                                   (3.72) 

The commutator [𝐻𝑡
+, 𝐻𝑡

−] contains the terms 𝐻𝑡
+𝐻𝑡

− and 𝐻𝑡
−𝐻𝑡

+. Here the term 𝐻𝑡
+𝐻𝑡

− acts on 

a doubly occupied site. So we may ignore the effect of that term. Also the bare Hubbard 

correlation term has to be neglected as it contributes the energy og the doubly occupied sites.  
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  The term 𝐻𝑡
−𝐻𝑡

+ acts to creat a doubly occupancy at one site and destroys the same at other 

site, and 𝐻𝑡
−𝐻𝑡

+ = ℴ(𝑡2). This term has the same effect of a spin-flip operator: 𝑆𝑖
+𝑆𝑗

−+𝑆𝑗
−𝑆𝑖

+. 

𝑺𝑖 ∙ 𝑺𝑗 can be written in terms of the spin-flip operator as 

𝑺𝑖 ∙ 𝑺𝑗 =
1

2
(𝑆𝑖
+𝑆𝑗

− + 𝑆𝑖
−𝑆𝑗

+) + 𝑆𝑖
𝑧𝑆𝑖
𝑧 ,                                                (3.73) 

with 

𝑆𝑖
+ = 𝑐𝑖↑

† 𝑐𝑖↓ ,           𝑆𝑖
− = 𝑐𝑖↓

† 𝑐𝑖↑ ,                                                    (3.74) 

and  𝑆𝑖
𝑧 , the z-component of 𝑺𝑖, is given by  

𝑆𝑖
𝑧 =

1

2
(𝑛𝑖↑ − 𝑛𝑖↓).                                                                (3.75) 

As the flipping of spin happens for the anti-parallel spin configuration and there is no effect 

of this spin-flip operator on the parallel spin, this may be written as, (𝑺𝑖 ∙ 𝑺𝑗 −
1

4
𝑛𝑖𝑛𝑗). 

Therefore the two site effective 𝑡 − 𝐽 model can be written as, 

𝐻𝑡−𝐽 = −𝑡 ∑ {(1 − 𝑛𝑖,−𝜎)𝑐𝑖𝜎
† 𝑐𝑗𝜎(1 − 𝑛𝑗,−𝜎) + ℎ. 𝑐}

<𝑖𝑗>𝜎

+
4𝑡2

𝑈
∑ (𝑺𝑖 ∙ 𝑺𝑗 −

1

4
𝑛𝑖𝑛𝑗)

<𝑖𝑗>

.   (3.76) 

Using this effective 𝑡 − 𝐽 model, we may write our effective electronic Hamiltonian (3.13) as 

ℋ̃𝑒𝑓𝑓 = 𝜀𝑒𝑓𝑓∑𝑛 𝑖𝜎
𝑖𝜎

+ 𝑡𝑒𝑓𝑓 ∑ (1− 𝑛𝑖𝜎̅) 𝑐𝑖𝜎
† 𝑐𝑗𝜎 (1 − 𝑛𝑗𝜎̅)

<𝑖𝑗>𝜎

+ 𝐽 ∑ (𝑺𝑖 ∙ 𝑺𝑗 −
1

4
𝑛𝑖𝑛𝑗)

<𝑖𝑗>

+ 𝑉1
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

  

+  
1

4
𝑁𝜔0 [𝑒

4𝛼(𝑒2𝛽)
00
 T2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2)

− 𝑒−4𝛼(𝑒2𝛽)
00
 T3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2) − 2] ,                                                 (3.77) 

where 𝑺𝑖  is the electron spin operator at site  𝑖  and  𝐽 represents the NN AFM coupling 

strength for the electronic interaction which is obtained as  

                                                  𝐽 =
4𝑡𝑒𝑓𝑓
2

( 𝑈𝑒𝑓𝑓   −   𝑉1
𝑒)
  ,                                                          (3.78) 
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Because we consider here a strongly correlated electronic system, we neglect the NN and 

NNN interaction terms 𝑉2 and 𝑉3. 

 

  It is difficult to solve Eq. (3.77) analytically with the double occupancy constraint. 

Therefore, we replace the actual local constraints by the average double-occupancy constraint 

using the Gutzwiller approximation (GA) [40, 41]. 

 

3.2.2.2 Gutzwiller Approximation 

  GA is a more improved approximation technique than the mean-field theory where the 

system with a constraint can be dealt with. In this method, the GS energy of the system is 

calculated using variational technique with respect to the renormalized GS wave function. 

Therefore GA can also be described as a variational approximation to the dynamical mean-

field theory (DMFT). To estimate the GS energy, the effective renormalized wave function is 

first written as  

|𝜓⟩ = 𝑃̂|𝜓0⟩,                                                                     (3.79) 

where 𝑃̂ is the projection operator, |𝜓0 > is the uncorrelated electronic wavefunction and in 

case of the GA, this operator is defined as, 

𝑃̂ =∏(1 − 𝑛̂𝑗↑𝑛̂𝑗↓)

𝑗

.                                                              (3.80) 

Using the projected mean-field approximation the double occupancy can be avoided and the 

expectation values of the operators can be calculated as 

〈𝑂̂〉 =
⟨𝜓|𝑂̂|𝜓⟩

⟨𝜓|𝜓⟩
=
⟨𝜓0|𝑃̂𝑂̂𝑃̂|𝜓0⟩

⟨𝜓0|𝜓0⟩
.                                                (3.81) 

Therefore to solve the 𝑡 − 𝐽  Hamiltonian, the renormalized expectation values for the 

electronic number operator 𝑐𝑖𝜎
† 𝑐𝑗𝜎 and the spin projection operator can be written as, 

〈𝑐𝑖𝜎
† 𝑐𝑗𝜎〉 = 𝜑𝑡〈𝑐𝑖𝜎

† 𝑐𝑗𝜎〉0                                                        (3.82) 

〈𝑺𝑖 ∙ 𝑺𝑗〉 = 𝜑𝑠〈𝑺𝑖 ∙ 𝑺𝑗〉0 ,                                                      (3.83) 
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where the coefficients 𝑔𝑡  and 𝑔𝑠  are the renormalization factors for the corresponding 

operators’ expectation values. In the similar way, the parameters 𝑡 and 𝐽 can be replaced in 

the 𝑡 − 𝐽 model with the multiplication factor due to renormalization, 

     𝑡𝑒𝑓𝑓 = 𝜑𝑡𝑡,    and     𝐽𝑒𝑓𝑓 = 𝜑𝑡𝐽.                                         (3.84) 

Ogawa et al. [42] have applied the GA to the strongly correlated 𝑡 − 𝐽 model. Considering the 

average electron density 𝑛 and the hole density 𝑥 = (1 − 𝑛), the GA leads to [43], 

𝜑𝑡 =
2𝑥

(1 + 𝑥)
                                                               (3.85) 

and  

𝜑𝐽 =
4

(1 + 𝑥2)
.                                                             (3.86) 

where 𝜑𝑡 acts as the band reduction factor due to the strong correlation. Using this formalism 

of GA, we may write the effective hopping term of the Hamiltonian of Eq. (3.77) as 

          (1 − 𝑛𝑖𝜎̅) 𝑐𝑖𝜎
† 𝑐𝑗𝜎  (1 − 𝑛𝑗𝜎̅) ≅ 𝜑𝑡 𝑐𝑖𝜎

† 𝑐𝑗𝜎   ,                                     (3.87) 

Under GA, the antiferromagnetic interaction coefficient 𝐽 is also renormalized by a factor 

𝜑𝐽 = 4 (1 + 𝑥
2)⁄ , i.e.,   𝐽 transforms to 𝐽 where  𝐽 = 𝜑𝐽 𝐽.  

  Next we impose the HFA which is now a valid approximation because of the restriction on 

the double occupancy. The effective Hamiltonian in the Fourier space reads,  

ℋ̃̃𝑒𝑓𝑓 =∑𝐸𝒌𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝒌𝜎

− 2 (𝐽 − 𝑉1
𝑒) ∆𝑏∑𝛾𝒌 (𝑐𝒌↑

†  𝑐−𝒌↓ + 𝑐−𝒌↓
† 𝑐𝒌↑)

𝒌

 

 

             +𝑁𝑧 [
1

4
(𝐽 − 4𝑉1

𝑒)𝑛2 + (𝐽 − 𝑉1
𝑒)∆𝑏

2 + 𝐽𝑝2] 

 

            + 
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝛽)

00
𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2) − 𝑒−4𝛼(𝑒2𝛽)
00
𝑇3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2)

− 2]                                                                                                                       (3.88) 

 

with      

 𝐸𝒌 = 𝜀𝑒 − 𝜀𝒌 , 
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𝜀𝑒 = 𝜀𝑒𝑓𝑓 −
1

2
(𝐽 − 4𝑉1

𝑒)𝑧𝑛  ,  

𝜀𝒌 = (𝜑𝑡 𝑡𝑒𝑓𝑓 + 𝑝𝐽) 

 𝛾𝒌 = 𝑊 𝛾𝒌 ,                                                                                                                                      (3.89)  

where 𝛾𝒌  is given by:  𝛾𝒌 = ∑ 𝑒𝑖𝒌∙𝑹𝑖𝑗𝑗≠𝑖  which for a square lattice reduces to:  𝛾𝒌 =

2 (cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎), the expression of 𝜀𝒌 may be used to define the band width and the 

average occupation number per site (𝑛), the Hartree correction to the kinetic energy term (𝑝) 

and the gap parameter term (∆𝑏) are defined as 

 

 𝑛 =
1

𝑁
∑ < 𝑐𝑖𝜎

† 𝑐𝑖𝜎 >

𝑖𝜎

 ; 

   𝑝 =
1

2𝑧𝑁
∑ < 𝑐𝑖𝜎

† 𝑐𝑗𝜎 >

<𝑖𝑗>𝜎

 ;    

 ∆𝑏=
1

𝑧𝑁
∑ < 𝑐𝑖↑

† 𝑐𝑗↓ >

<𝑖𝑗>

=
1

𝑧𝑁
∑ < 𝑐𝑖↓

† 𝑐𝑗↑ >

<𝑖𝑗>

 ,                                (3.90) 

which are calculated using the double-time Green function method of Zubarev. 

 

3.2.2.3 Zubarev’s Green’s function technique 

  Green function is a very useful mathematical tool to study the many body physics,. Though 

there are several Green function methods, the double time, temperature dependent Green 

function method is one of the most useful methods among them. Zubarev has suggested a 

double time temperature-dependent Green function technique which has been applied to 

superconductivity, ferromagnetism and also to the electron-lattice interacting system. Here, 

we also use the Green function method of Zubarev.  

  The time dependent advanced and retarded Green’s functions can be defined as the average 

value of the time product of operators as, 

 

𝐺±(𝑡, 𝑡
/) = 〈〈𝐴(𝑡); 𝐵(𝑡/)〉〉± = ∓𝑖𝜃{±(𝑡 − 𝑡

/)} 〈[𝐴(𝑡), 𝐵(𝑡/)]
𝜂
〉,            (3.91) 
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where 𝐺+ and 𝐺− represent the retarded (𝐺𝑟) and advanced (𝐺𝑎) Green functions respectively 

and 〈… 〉 indicates the average over a grand canonical ensemble, 〈〈… 〉〉 denotes the double 

time Green function which is of higher order than the initial one and  𝜂 = +1(−1) for bosons 

(fermions).  

Using the equation of motion method we obtain 

 

𝑖
𝑑

𝑑𝑡
〈〈𝐴(𝑡), 𝐵(𝑡/)〉〉± = 𝛿(𝑡 − 𝑡/) 〈[𝐴(𝑡), 𝐵(𝑡/)]

𝜂
〉 + 𝑖𝜃(𝑡 − 𝑡/) 〈[𝑖

𝑑

𝑑𝑡
𝐴(𝑡), 𝐵(𝑡/)]

𝜂

〉 (3.92) 

 

Using the Heisenberg equation of motion method, we finally obtain the equation of motion 

for the Zubarev Green function as  

𝐸𝐺(𝐸) = 𝐸 〈〈𝐴(𝑡), 𝐵(𝑡/)〉〉± =
1

2𝜋
〈[𝐴(𝑡), 𝐵(𝑡/)]

𝜂
〉 + 〈〈[𝐴(𝑡), 𝐻]; 𝐵(𝑡/)〉〉± .    (3.93) 

 

After calculating the Green functions, the time-dependent correlation functions can be 

calculated as, 

 

〈𝐵(𝑡/)𝐴(𝑡)〉 = 𝑖 ∫
[𝐺(𝜔 + 𝑖𝜀) − 𝐺(𝜔 − 𝑖𝜀)]

𝑒𝛽𝜔 − 𝜂

∞

−∞

𝑒−𝑖𝜔(𝑡−𝑡
/)𝑑𝜔.                   (3.94) 

 

Following Zubarev’s formalism and using Eq. (3.94), we have to calculate the Green 

functions 

𝐺𝒌↑ = 〈〈𝑐𝒌↑; 𝑐𝒌↑
† 〉〉,                                                            (3.95) 

and  

𝐹𝒌↓↑ = 〈〈𝑐−𝒌↓
† ; 𝑐𝒌↑

† 〉〉.                                                           (3.96) 

Now considering, 

                                            𝜔𝒌 = √𝐸𝒌 + ∆𝒌   ;    ∆𝒌= 2(𝐽 − 𝑉1
𝑒)∆𝑏 𝛾𝒌 ,                           (3.97) 

and using the equation of motion method for the Hamiltonian (3.88), we obtain the following 

two relations, 



                      Chapter 3 

 

 

64 

(𝜔 − 𝐸𝒌)𝐺𝒌↑ =
1

2𝜋
− ∆𝑏𝐹𝒌↓↑ ,                                               (3.98) 

and 

(𝜔 + 𝐸𝒌)𝐹𝒌↓↑ = −∆𝑏𝐺𝒌↑ .                                                   (3.99) 

Solving these two equations we obtain the Green functions as 

𝐺𝒌↑ =
1

2𝜋

(𝜔 + 𝐸𝒌)

(𝜔2 − 𝜔𝒌
2)
 ,                                                    (3.100) 

𝐹𝒌↓↑ = −
1

2𝜋

∆𝒌
(𝜔2 − 𝜔𝒌

2)
 .                                                 (3.101) 

To find the average occupation number per site of Eq. (3.90), we can Fourier transform the 

operators and using Eq. (3.94) we write  

 

〈𝑐𝒌↑
† (0)𝑐𝒌↑(𝑡)〉 = −2 lim

𝜀→0
∫
𝐼𝑚 𝐺(𝜔 + 𝑖𝜀)

(𝑒𝛽𝜔 + 1)
𝑒−𝑖𝜔𝑡 𝑑𝜔

∞

−∞

.                    (3.102) 

From Eq. (3.100) we may write 

 

                𝐺𝒌↑(𝜔) =
1

2𝜋
[

𝜔

(𝜔2 − 𝜔𝒌
2)
+

𝐸𝒌
(𝜔2 − 𝜔𝒌

2)
] 

=
1

2𝜋
[
1

2
(

1

𝜔 − 𝜔𝒌
+

1

𝜔 + 𝜔𝒌
) +

𝐸𝒌
2𝜔𝒌

(
1

𝜔 − 𝜔𝒌
−

1

𝜔 +𝜔𝒌
)] 

=
1

2𝜋
[
1

2
(1 +

𝐸𝒌
𝜔𝒌
)

1

𝜔 − 𝜔𝒌
+
1

2
(1 −

𝐸𝒌
𝜔𝒌
)

1

𝜔 + 𝜔𝒌
]                                (3.103) 

Therefore, we have 

 

lim
𝜀→0

𝐼𝑚 𝐺(𝜔 + 𝑖𝜀)  

       =
1

2𝜋
[(
𝜔𝒌 + 𝐸𝒌
2𝜔𝒌

) 𝐼𝑚 (
1

𝜔 + 𝑖𝜀 − 𝜔𝒌
) + (

𝜔𝒌 − 𝐸𝒌
2𝜔𝒌

) 𝐼𝑚 (
1

𝜔 + 𝑖𝜀 + 𝜔𝒌
)].                 (3.104) 
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For  𝑡 → 0, we can use the Eq. (3.104) and calculate the Eq. (3.102) as,  

lim
𝑡→0
〈𝑐𝒌↑
† (0)𝑐𝒌↑(𝑡)〉 

     = −2
1

2𝜋
∫

𝑑𝜔

(𝑒𝛽𝜔 + 1)
(−

𝜋

2𝜔𝒌
) {(𝜔𝒌 + 𝐸𝒌)𝛿(𝜔 − 𝜔𝒌) + (𝜔𝒌 − 𝐸𝒌)𝛿(𝜔 + 𝜔𝒌)}

∞

−∞

  

      =
1

2𝜔𝒌
[(
𝜔𝒌 + 𝐸𝒌
𝑒𝛽𝜔𝒌 + 1

) + (
𝜔𝒌 − 𝐸𝒌
𝑒−𝛽𝜔𝒌 + 1

)] 

      =
𝜔𝒌
2𝜔𝒌

(
1

𝑒𝛽𝜔𝒌 + 1
+

1

𝑒−𝛽𝜔𝒌 + 1
) +

𝐸𝒌
2𝜔𝒌

(
1

𝑒𝛽𝜔𝒌 + 1
−

1

𝑒−𝛽𝜔𝒌 + 1
) 

      =
1

2
(

1

𝑒𝛽𝜔𝒌 + 1
+

𝑒𝛽𝜔𝒌

1 + 𝑒𝛽𝜔𝒌
) +

𝐸𝒌
2𝜔𝒌

(
1

𝑒𝛽𝜔𝒌 + 1
−

𝑒𝛽𝜔𝒌

1 + 𝑒𝛽𝜔𝒌
) 

      =
1

2
+
𝐸𝒌
2𝜔𝒌

(
1 − 𝑒𝛽𝜔𝒌

1 + 𝑒𝛽𝜔𝒌
) 

      =
1

2
[1 −

𝐸𝒌
𝜔𝒌
tanh (

𝛽𝜔𝒌
2
)] .                                                                                                   (3.105) 

 

As total 𝑛 = 𝑛↑ + 𝑛↓,  we may write for N number of particles, 

  

          𝑛(𝑇, ∆) =
1

𝑁
∑[1 −

𝐸𝒌
𝜔𝒌
tanh (

1

2
𝛽𝜔𝒌)]

𝒌

.                                        (3.106) 

Similarly, the number of holes can be calculated as, 

     𝑝(𝑇, ∆) =
1

2𝑁𝑧
∑ 𝛾𝒌 [1 −

𝐸𝒌
𝜔𝒌
tanh (

1

2
𝛽𝜔𝒌)]

𝒌

,                               (3.107) 

and the gap parameter is found to be, 

      ∆𝑏=
1

𝑁𝑧
∑ 𝛾𝒌 [(

∆𝒌
2𝜔𝒌

) tanh (
1

2
𝛽𝜔𝒌)]

𝒌

.                                      (3.108) 

In order to solve the final Hamiltonian Eq. (3.88), consider materials with  ∆𝑏= 0, at 𝑇 → 0. 

Under this assumption, the GS energy per site (𝜀𝑆𝑁) for the system reads   
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            𝜀𝑆𝑁 = 𝑁𝑛𝜀𝑒 − (𝜑𝑡 𝑡𝑒𝑓𝑓 + 𝑝𝐽)∑ 𝛾𝒌𝜃(−𝐸𝒌)

𝒌𝜎

+ 𝑁𝑧 [
1

4
(𝐽 − 4𝑉1

𝑒)𝑛2 + 𝐽𝑝2] 

  + 
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝛽)

00
 𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2) − 𝑒−4𝛼(𝑒2𝛽)
00
 𝑇3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2)

− 2] ,                                                                                                                     (3.109) 

 

where 𝜃(−𝐸𝒌) is the step function and the correlation functions read, 

                           𝑝 (0, 0) =  
1

4
(1 − 𝑥2).          ;        𝑛 (0, 0) = ( 1 − 𝑥 ) ≅ 𝑛.                   (3.110) 

      

Therefore, the GS energy per site is given by 

𝜀𝑆 = 𝑛𝜀𝑒 − (𝜑𝑡 𝑡𝑒𝑓𝑓 + 𝑝𝐽) 𝑧𝑝 + 𝑁𝑧 [
1

4
(𝐽 − 4𝑉1

𝑒)𝑛2 + 𝐽𝑝2] 

        +
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝛽)

00
 𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2) − 𝑒−4𝛼(𝑒2𝛽)
00
 𝑇3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2) − 2].    

(3.111) 

 

3.3 Numerical results and discussions 

 

 Our primary goal here is to examine the nature of the phase transition from the SDW state to 

the CDW state for the 2D extended HH model. As the Hamiltonian (3.1) does not admit an 

exact analytical solution, we deal with the system analytically in two different regimes 

separately, namely, the weak-correlation regime and the strong-correlation regime for 

different e-p coupling constants. For low values of  𝑈𝑒𝑓𝑓, we would use the formulation for 

weak correlation given in Section 3.2.1 to calculate the effective parameters and for high 

values of the 𝑈𝑒𝑓𝑓, we use the formulation for strong correlation presented in Section 3.2.2. 

We find that for 𝑈𝑒𝑓𝑓 ≲ 2.1, the strong-correlation expressions do not work and lead to 

divergent results. We therefore use weak-correlation expressions for the region  𝑈𝑒𝑓𝑓 ≳ 2.1.  

This critical value of 𝑈𝑒𝑓𝑓 varies a little bit depending on the el-ph coupling strength 𝛼. For 

example, for 𝛼 = 0.5, 𝑈 = 3, the critical 𝑈𝑒𝑓𝑓 is 2.08,  whereas, for 𝛼 = 1, 𝑈 = 4, 𝑈𝑒𝑓𝑓 =

2.12.  
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Fig 3.3: Effective onsite e-e interaction (𝑈𝑒𝑓𝑓) vs. bare onsite e-e interaction (𝑈) for 𝑡 = 0.2 

and 𝑔2 = 0  (solid lines) & 𝑔2 = 0.2 (dashed lines) for a few values of on-site e-p coupling 

coefficient (𝛼).  

 

In Fig. 3.3, we plot the effective onsite Coulomb correlation (𝑈𝑒𝑓𝑓) with respect to the bare 

onsite e-e interaction strength(𝑈).  As we deal with two different regimes of the system by 

two different mathematical formulations, the graphs of the two regimes meet each other in a 

discontinuous manner at the correlation boundary. Thus this discontinuity may well be an 

artefact of the approximation we have used.  We however find that this discontinuity does not 

affect the energy or the phase diagram. Fig. 3.3 shows that at weak correlation i.e., at small 𝑈, 

the phonon-mediated electronic attraction dominates over the onsite bare Coulomb repulsion 

and the effective e-e interaction 𝑈𝑒𝑓𝑓  becomes negative which implies that at low 𝑈, the e-p 

interaction drives the effective onsite electronic interaction attractive. This leads to the 

formation of the onsite bipolarons leading to a Peierls insulator that can also be described as 

the CDW state. 

  As 𝑈 increases, 𝑈𝑒𝑓𝑓 increases gradually and turns positive and then the GS is given by an 

anti-ferromagnetic Mott polaronic SDW state which is also an insulating phase. In other 

words, as 𝛼 exceeds a certain strength, the GS of the system undergoes a transformation from 
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an SDW phase to a CDW phase, both being insulating phases. In both the phases, 𝑈𝑒𝑓𝑓 

appears to increase linearly with 𝑈 which is understandable from Eq. (3.34). One can also 

find that as α  increases, the bipolaronic bound state becomes stronger and localization 

increases.  

  

Fig 3.4: 𝑈𝑒𝑓𝑓  versus 𝛼  for 𝑡 = 0.2  and 𝑔2 = 0  (shown by straight lines) and  𝑔2 = 0.2 

(shown by dashed lines) for a few values of 𝑈.  

 

   

The behaviour of 𝑈𝑒𝑓𝑓 versus 𝛼 for a few  𝑈 values is shown in Fig. 3.4. We find that as 𝛼 

increases, 𝑈𝑒𝑓𝑓 decreases and the decrease is essentially linear, which is again understandable  

from in Eq. (3.34). This reduction in the value of 𝑈𝑒𝑓𝑓  is caused by the phonon-induced 

attractive el-el interaction. At low e-p interaction, 𝑈𝑒𝑓𝑓 is positive and the GS is a polaronic 

Anti-ferromagnetic Mott SDW wave insulator. As the e-p interaction increases, beyond a 

certain 𝛼,  𝑈𝑒𝑓𝑓  becomes negative and the GS transforms into a bipolaronic CDW Peierls 

insulator. The nature of the intermediate region in between these two insulating states is the 

focus of our attention in this work. We find that with increasing  𝑈, the role of the NN e-p 

coupling becomes important.   



                     Ch.3: Phase diagram of a 2D extended HH model: analytical mean-field study 

 

 

69 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.5:  Mott-Hubbard metallicity parameter (MHMP) (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) versus 𝑈 for 𝑡 = 0.2 

and 𝑔2 = 0 (shown by the straight lines) & 𝑔2 = 0.2 (shown by the dashed lines) for a few 

values of 𝛼. (The dotted line shows ±1 value).  

 

  According to the Mott-Hubbard (MH) criterion, the condition for metallicity is given by: 

(2𝑧𝑡𝑒𝑓𝑓/𝑈𝑒𝑓𝑓) ≥ 1, where 𝑧  is the coordination number which for a 2D square lattice is 

equal to 4. We shall investigate the behaviour of the SDW-CDW transition in the 2D HH 

system with the help of the above MH metallicity criterion and accordingly draw the phase 

diagram of the system in the 𝛼 − 𝑈 space. The quantity: 8𝑡𝑒𝑓𝑓/𝑈𝑒𝑓𝑓 will be referred to as the 

Mott-Hubbard metallicity parameter (MHMP). In Fig. 3.5, we show the variation of the 

MHMP with 𝑈 for a few values of 𝛼. The negative values of the Mott-Hubbard parameter 

correspond to a CDW phase with  −1 < (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) < 0. Above a critical value of 𝑈, 

MHMP satisfies  |8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ | ≥ 1. Hence this region should have the attributes of a metallic 

phase. As 𝑈 increases further, MHMP again becomes less than 1 but positive. In this phase,  

𝑈𝑒𝑓𝑓 > 0 and 0 < (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) < 1, and therefore this corresponds to an SDW phase and 

the one where 𝑈𝑒𝑓𝑓 < 0, i.e.  1 < (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) < −1, corresponds to the CDW state. Fig. 

3.5 clearly depicts that the intermediate region lying between the CDW and SDW phases is 

metallic in nature. One can observe that for a finite value of NN e-p interaction coefficient, 

the intermediate region only shifts towards higher 𝑈 values. The reason for this is that as the 
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NN e-p interaction 𝑔2 becomes finite, stronger on-site Coulomb correlation is required to 

overcome the e-p interaction coefficient to make the transitions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6: MHMP (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) versus 𝛼 for 𝑡 = 0.2 and 𝑔2 = 0 (shown by the straight lines) 

& 𝑔2 = 0.2 (shown by the dashed lines) for a few values of 𝑈. (The dotted line shows ±1 

value). 

 

 

  The variations of MHMP with  𝛼 for a few values of  𝑈 are studied in Fig. 3.6. Here also the 

behaviour of MHMP in the figure shows an SDW-CDW transition with the cross-over region 

being a metallic phase. We now observe that for a finite NN e-p interaction coefficient 𝑔2, the 

plot shifts towards left i.e., towards the lower values of 𝛼. The reason is understandable 

because at finite 𝑔2, the polaronic interaction is stronger than that for 𝑔2 = 0 and therefore 

the transition to the CDW phase can take place at a lower value of 𝛼 for a given 𝑈.  
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Fig 3.7: 3D plot of MHMP  (8𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ) with respect to 𝛼 and 𝑈 for 𝑡 = 0.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 3.8:  Phase diagram in (𝛼 − 𝑈) plane: Comparison with results of Wang et al. [30]. 

 

  In Fig. 3.7, we display the three-dimensional (3D) phase diagram by plotting MHMP in the 

(𝛼 − 𝑈) plane. The left side of the graph indicates the SDW phase while the right side shows 
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the CDW state. The region in between the two phases satisfies the Mott-Hubbard metallicity 

criterion.  

   

 

Fig. 3.9:  Comparison of 1D and 2D phase diagrams. 

 

  We next plot in Fig. 3.8, the SDW-CDW phase diagram for an extended 2D HH system in 

the (𝛼 − 𝑈) −plane using the transition-point values of 𝛼 for each 𝑈 from Fig. 3.5 and Fig. 

3.6. The figure shows a wide intermediate region flanked by the SDW and CDW regions. 

This intervenng phase satisfies the MH metallicity creterion and is therefore a metallic phase. 

We have also shown the result of Wang et al. [30] obtained by non-Gaussian exact 

diagonalization method for the sake of comparison.  It is clear that the results of Wang et al. 

[30] and our results are qualititatively similar though our results predict a wider metallic 

phase and therefore more appealing from the point of view of superconductivity. In Fig. 3.9, 

we compare our present 2D phase diagram with that obtained for the 1D HH model [20]. The 

figure shows that the metallic region is wider in 2D, which is of course an expected result. 

This result is particularly important because the majority of high temperature 

superconductors are either two-dimensional or quasi-two dimensional systems.    
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   Fig. 3.10:  Width of MP vs. 𝛼 in 1D and 2D HH systems. 

 

 

 

Fig. 3.11: Comparison of present results for the width                                                                                                              

of MP vs. 𝛼  with those of Wang et al [30]. 

 

We have finally calculated the width of the metallic phase from the Fig. 3.8 and plotted it 

with respect to 𝛼 in Fig. 3.10 and Fig. 3.11. At a specific 𝛼 value, we can find two values of 
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𝑈 from the phase diagram, one corresponding to the transition from CDW phase to MR (say, 

𝑈1) and the other corresponding to the transition from MR to the SDW phase (say, 𝑈2). The 

difference  ∆𝑈 = (𝑈2 −𝑈1 ) gives the width of the metallic phase. In Fig 3.10, the 2D 

metallic width is compared with the 1D system [20]. 

  We see that in 2D, the width of the MP decreases with 𝛼 more slowly than in 1D. Thus the 

existence of an intermediate metallic phase is more probable in a 2D system.  This is again an 

interesting result and useful for superconductivity in 2D. In Fig 3.11, in contrast to our result, 

the result of Wang et al. shows that the width of the metallic phase hardly changes with 𝛼 

even over large range of 𝛼. We would normally expect the MP to shrink with increasing 𝛼 

because of the emergence of the CDW phase at large 𝛼.    

 

  

3.4 Conclusion 

In this chapter, the CDW-SDW transition is studied in a two-dimensional half-filled extended 

HH model by employing an analytical method which is variational in nature. A fully-

generalized many-phonon averaging is performed upon the succession of canonical 

transformations that leads to an effective electronic system which is solved analytically in 

weak and strong correlation regimes separately using plausible approximations. More 

specifically, for low values of the Coulomb correlation strength, i.e. in the weak correlation 

regime, the renormalized  electronic system is treated by the method of Hartree-Fock mean-

field theory while for the higher values of the on-site Coulomb correlation i.e. in the strong 

correlation regime, the effective Hamiltonian is first mapped on  the 𝑡 − 𝐽 model and then 

simplified, employing the Gutzwiller approximation and finally solved using the Zuberev 

time dependent Green’s function technique followed by the Hartree-Fock method. For both 

the regimes, we have calculated the effective Hubbard correlation and examined it as a 

function of the bare Hubbard parameter 𝑈  for different e-p interaction coefficients. The 

SDW-CDW transitions are observed at different e-p interaction strengths as the 𝑈𝑒𝑓𝑓 changes 

its sign. The principal interest in this work has been to unravel the nature of the phase across 

the SDW-CDW transition. Studies in 1D HH model have almost unequivocally revealed the 

existence of a metallic phase at the CDW-SDW cross-over region.  Few recent investigations 

have made similar claim for a 2D HH system using numerical methods [31, 32]. An 

analytical examination of this issue was certainly called for from the point of view of the 
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basic understanding of the physics behind the system. We have therefore investigated the 

nature the phases around the SDW-CDW transition using the Mott-Hubbard criterion. 

Calculation of the Mott-Hubbard parameter over different regimes reveal that even in a 2D 

HH system, an intervening metallic phase exists between the insulating SDW and CDW 

phases. This result is consistent with what our commonplace notion would justify, as one 

would normally expect more accessible states in 2D than in 1D and hence more mobility. The 

comparison of the present results with the 2D non-Gaussian exact diagonalization results of 

Wang et al. [30] shows that the present results are qualitatively similar to the numerical 

results of Wang et al. However, our analytical results predict a wider intermediate metallic 

phase which is more appealing from the view of superconductivity. Comparison of the 

present results with those of one of our previous works shows that the width of the metallic 

phase is wider in 2D than 1D. This result is again interesting from the point of view of high-

temperature superconductivity in 2D systems.    
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 “When you change the way you look at things, the things you look at 

change”…Max Planck 

 

4 
A semi-exact study of self-trapping 

transition in a one-dimensional Holstein-

Hubbard model 

 

4.1 Introduction 

In chapter 1, we have described the phenomenon of self-trapping (ST) transition in electron-

phonon system. The issue of ST transition has continued to remain in the focus of attention in 

the last few decades for its importance in high-𝑇𝐶 superconductors [4-5], colossal magneto-

resistance (CMR) materials or manganites [6] and semiconductor nanostructures [7]. 

Therefore several authors have studied the nature of ST transition for the single-polaron [8-

12] and the many-polaron systems [13] within the framework of the Fröhlich model and for 

the correlated polar systems using the Holstein-Hubbard (HH) model. However, no clear 

concord has been established regarding the nature of the ST transition.  

  Recently, Krishna, Mukhopadhyay and Chatterjee (KMC) [14] have examined the 

behaviour of the ST transition in an extended HH system including the NN e-p interaction 

with the help of a variational technique. To incorporate coherence and correlation in the 

phonon wave function, they have applied a variational Lang-Firsov (LF) transformation [15] 

and the on-site and inter-site squeezing transformations [16-17] followed by a zero-phonon 

averaging. The resulting effective electronic problem has been solved using the exact Bethe 

ansatz technique following Lieb and Wu (LW) [18]. Their calculation shows that ST 

transition in a one-dimensional correlated polar system is continuous. It should however be 
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mentioned that the analysis of KMC is approximate because of the approximate treatment of 

the phonon subsystem. Because of the relevance of the ST transition in systems like 

manganites etc, a more improved analysis of the ST transition in the HH system may be 

useful so that a more authentic statement can be made about the continuity or otherwise of the 

nature of the ST transition. Our main goal in this chapter is to achieve this purpose.  

  In this work, we study the ST transition in a 1D extended HH model with a more improved 

variational calculation than the one carried out by KMC. We consider the strength of the 

onsite Coulomb interaction to be sufficiently large so that the phonon-induced effective 

correlation coefficient remains positive in order to prevent the formation of bipolaronic 

charge density wave (CDW) state through Peierls instability. The ST transition is examined 

by analyzing the relevant parameters both in the adiabatic and anti-adiabatic regimes.  

 

4.2 Model and Formulation 

 

    An extended HH Hamiltonian in 1D can be written as 

 

𝐻 = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗> 𝜎

+ 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝜔𝑜∑𝑏𝑖
†𝑏𝑖

𝑖

+ 𝑔1∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑔2∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

,                                                                                  (4.1)  

where the first and the second terms together constitute the Hubbard model, the third term 

refers to the free phonon Hamiltonian and the last two terms represent respectively the onsite 

and nearest-neighbour (NN) electron-phonon (e-p) interactions. Here, 𝑡 gives the electronic 

hopping integral, 𝑐𝑖𝜎
†  (𝑐𝑖𝜎)  creates (annihilates) an electron at site- 𝑖  with spin 𝜎 , 𝑛𝑖𝜎(=

𝑐𝑖𝜎
†  𝑐𝑖𝜎) represents the number operator for electrons at site 𝑖 and with spin 𝜎, 𝑈 refers to the 

onsite Coulomb correlation strength, 𝑏𝑖
† (𝑏𝑖) stands for the creation (annihilation) operator of 

an optical phonon at site with Einstein frequency 𝜔𝑜,  𝑔1 and 𝑔2 indicate respectively the 

onsite and NN e-p interaction coefficients, 𝛿 referring to an NN site. 

  To deal with the phonon degrees of freedom, we carry out a sequence of unitary  
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transformations on Hamiltonian (4.1). We first perform on (4.1) a modified LF (MLF) 

transformation [15] with the generator:  

𝑅1 =
𝑔1
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖𝜎

+
𝑔2
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖+𝛿

† − 𝑏𝑖+𝛿)

𝑖𝛿𝜎

,                               (4.2) 

where 𝑔1
′  and 𝑔2

′  are the variational parameters. The Hamiltonian transforms to  

𝐻1 = 𝑒
𝑅1𝐻𝑒−𝑅1 = 𝐻 + [𝑅1, 𝐻] +

1

2!
[𝑅1, [𝑅1, 𝐻]] + ⋯                                                           (4.3) 

 

     = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝜔0∑𝑏𝑖
†𝑏𝑖

𝑖

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+ 𝑃1∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑃2∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

 ,                                                                                  (4.4) 

where  

(𝑥𝑖 − 𝑥𝑗) =
𝑔1
′

𝜔0
(𝑏𝑖
† − 𝑏𝑖) +

𝑔2
′

𝜔0
(𝑏𝑖+𝛿
† − 𝑏𝑖+𝛿),                                                                           (4.5) 

𝜀 = − [
2

𝜔0
(𝑔1𝑔1

′ + 2𝑔2𝑔2
′ ) −

1

𝜔0
(𝑔1
′2 + 2𝑔2

′2)],                                                                        (4.6) 

𝑈̃ = 𝑈 −
2

𝜔0
[2(𝑔1𝑔1

′ + 2𝑔2𝑔2
′ ) − (𝑔1

′2 + 2𝑔2
′2)],                                                                       (4.7) 

𝑃1 = 𝑔1 − 𝑔1
′     ;         𝑃2 = 𝑔2 − 𝑔2

′ .                                                                                                (4.8) 

 

Physically 𝑔1
′  plays the role of the depth of the onsite polaron potential and would thus 

increase with increasing 𝑔1 and be responsible for localization. On the other hand,  𝑔2
′  gives 

the length scale over which the lattice is distorted by the e-p interaction and thus it would be 

responsible for delocalization.  In the conventional LF transformation 𝑔1
′ = 𝑔1 and 𝑔2

′ = 𝑔2 

which is a good approximation when we consider the e-p interaction as strong. But, for weak 

and intermediate coupling regime, one can obtain a lower value of the ground state (GS) 

energy by considering 𝑔1
′  and 𝑔2

′  as variational parameters. One may note that the above 

variational LF transformation takes into account the displacement of the lattice modes caused 

by the e-p interaction and brings in coherence in the phonon state which is the essential effect 
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of the e-p interaction. Next, we apply, following Zheng [16], an onsite squeezing 

transformation with the generator: 

𝑅2 = 𝛼∑(

𝑖

𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†),                                                           (4.9) 

where 𝛼 is a variational parameter. The transformed Hamiltonian now becomes, 

𝐻2 = 𝑒
𝑅2𝐻1𝑒

−𝑅2 = 𝐻1 + [𝑅2, 𝐻1] +
1

2!
[𝑅2, [𝑅2, 𝐻1]] + ⋯                                                   (4.10) 

      = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+𝜔0 [
𝑒4𝛼

4
∑(𝑏𝑖

† + 𝑏𝑖)
2

𝑖

−
𝑒−4𝛼

4
∑(𝑏𝑖

† − 𝑏𝑖)
2

𝑖

] + 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+
𝑁𝜔0
2

+ 𝑃1𝑒
2𝛼∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖

†)

𝑖𝜎

+ 𝑃2𝑒
2𝛼∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿

† )

𝑖𝛿𝜎

                           (4.11) 

The above transformation can be identified as the Bogolubov transformation and it normally 

takes care of some of the higher-order effects. Specifically, it incorporates the correlation 

between successively emitted virtual phonons at a particular site and also the anharmonic 

phonon-phonon interaction partially and thus the finite phonon life-time effect to a certain 

extent.  Recently, Malik, Mukhopadhyay and Chatterjee (MMC) [19] have proposed a new 

electron-density-dependent squeezing transformation that lowers the GS energy further. This 

transformation is accomplished by the generator: 

𝑅3 = 𝛼𝑑∑𝑛𝑖𝜎  (

𝑖

𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†),                                                        (4.12) 

where the parameter 𝛼𝑑 is to be obtained variationally. After the transformation with (4.12), 

the transformed Hamiltonian reads 

𝐻3 = 𝑒
𝑅3𝐻2 𝑒

−𝑅2 = 𝐻2 + [𝑅3, 𝐻2] +
1

2!
[𝑅3, [𝑅3, 𝐻2]] + ⋯                                                  (4.13) 
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     = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑒−2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎

𝑒
(𝑥𝑖
′−𝑥𝑗

′)

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝜔0 [
𝑒4𝛼

4
∑{(𝑏𝑖

† + 𝑏𝑖)𝑒
2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 }

2

𝑖

−
𝑒−4𝛼

4
∑{(𝑏𝑖

† − 𝑏𝑖)𝑒
−2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 }

2

𝑖

]

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+
𝑁𝜔0
2
+ 𝑃1𝑒

2𝛼∑𝑛𝑖𝜎𝑒
2𝛼𝑑∑ 𝑛𝑖𝜎𝜎 (𝑏𝑖 + 𝑏𝑖

†)

𝑖𝜎

+ 𝑃2𝑒
2𝛼∑𝑛𝑖𝜎𝑒

2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 (𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

                                                        (4.14) 

where,  

𝑥𝑖
′ − 𝑥𝑗

′ = 𝛼𝑑[(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†) − (𝑏𝑗𝑏𝑗 − 𝑏𝑗

†𝑏𝑗
†)].                                         (4.15) 

Next we perform the NN correlated squeezing transformation [17] with the generator:  

ℛ4 =
1

2
 ∑𝛽𝑖𝑗 (

𝑖≠𝑗

𝑏𝑖𝑏𝑗 − 𝑏𝑖
†𝑏𝑗
†),                                                        (4.16) 

where 𝛽𝑖𝑗 = 𝛽, if 𝑖 and 𝑗 are NN sites and zero otherwise. The transformed Hamiltonian then 

becomes  

𝐻4 = 𝑒
𝑅4𝐻3 𝑒

−𝑅4 = 𝐻3 + [𝑅4, 𝐻3] +
1

2!
[𝑅4, [𝑅4, 𝐻3]] + ⋯                                                  (4.17) 

    = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎𝑒

(𝑥𝑖−𝑥𝑗)𝑒
−2𝛼𝑒−2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎

𝑒(𝑥𝑖
′−𝑥𝑗

′)

<𝑖𝑗>𝜎

+ 𝑈̃∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝜔0
𝑒4𝛼+4𝛼𝑑∑ 𝑛𝑖𝜎𝜎

4
∑[∑(𝜇𝑖𝑗 + 𝜈𝑖𝑗)(𝜇𝑖𝑗′ + 𝜈𝑖𝑗′)

𝑗𝑗/

(𝑏𝑗
† + 𝑏𝑗) (𝑏𝑗′

† + 𝑏𝑗′)]

𝑖

− 𝜔0
𝑒−4𝛼−4𝛼𝑑∑ 𝑛𝑖𝜎𝜎

4
∑[∑(𝜇𝑖𝑗 − 𝜈𝑖𝑗)(𝜇𝑖𝑗′ − 𝜈𝑖𝑗′)

𝑗𝑗/

(𝑏𝑗
† − 𝑏𝑗) (𝑏𝑗′

† − 𝑏𝑗′ )]

𝑖

+ 𝜀∑𝑛𝑖𝜎
𝑖𝜎

+
𝑁𝜔0
2
+ 𝑃1𝑒

2𝛼∑𝑛𝑖𝜎𝑒
2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ∑(𝜇𝑖𝑗 + 𝜈𝑖𝑗)(𝑏𝑗

† + 𝑏𝑗)

𝑗𝑖𝜎

+ 𝑃2𝑒
2𝛼∑𝑛𝑖𝜎𝑒

2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ∑(𝜇𝑖+𝛿,𝑗 + 𝜈𝑖+𝛿,𝑗)(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑗𝑖𝛿𝜎

  

                   (4.18) 
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The Hamiltonian 𝐻4 is to be averaged over a suitable phonon state for which KMC chose the 

zero-phonon state.  In this work, we choose for the averaging phonon state a fully-generalized 

many-phonon state [20]: 

|Φ𝑝ℎ⟩ = ∑ 𝑐𝑛⌊𝜑𝑛(𝑥)⟩

𝑛=0,1,2,…,𝑀

,                                                   (4.20) 

where 𝜑𝑛(𝑥) represents the 𝑛 −th excited state eigen function of a simple harmonic oscillator 

and 𝑀  is the value of the upper limit of the summation in (4.20) at which the result 

converges. This is a fully generalized many-phonon state in the sense that it does not set any 

limit to the phonon occupation for any lattice site i.e., any site can contain any number of 

phonons. We can also have a less-general many-phonon state in which a particular site can 

have at most one phonon, which is a Gurari state. Obviously, the state (4.20) is the most 

general many-phonon state. The effective electronic Hamiltonian is obtained as 

 

ℋ𝑒𝑓𝑓 = 𝜀𝑒𝑓𝑓∑𝑛 𝑖𝜎
𝑖𝜎

− 𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ 𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

 

+ 𝑁𝜔0 [
𝑒4𝛼

4
(𝑒2𝜷)

00
(1 + 4𝛼𝑑 + 12𝛼𝑑

2)𝑆2 −
𝑒−4𝛼

4
(𝑒2𝜷)

00
(1 − 4𝛼𝑑 + 12𝛼𝑑

2)𝑆3 −
1

2
] , (4.21) 

 

where  

𝜀𝑒𝑓𝑓 = −[
2

𝜔0
(𝑔1𝑔1

′ + 2𝑔2𝑔2
′ ) −

1

𝜔0
(𝑔1
′2 + 2𝑔2

′2)]

+ [𝑒2𝛼(1 + 2𝛼𝑑 + 3𝛼𝑑
2)𝑀1𝑆1][(𝑔1 + 2𝑔2) − (𝑔1

′ + 2𝑔2
′ )] ,                      (4.22) 

𝑈𝑒𝑓𝑓 = 𝑈 −
2

𝜔0
[2(𝑔1𝑔1

′ + 2𝑔2𝑔2
′ ) − (𝑔1

′2 + 2𝑔2
′2)] ,                                                              (4.23) 

𝑡𝑒𝑓𝑓 = 𝑡𝑒
𝛼𝑑𝐹1𝐹2,                                                                                                                              (4.24) 

𝐹1 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙=0

 𝑒−
𝛾2

4 ∫ 𝑑𝑦 𝑒−𝑦
2
 𝐻𝑘 (𝑦 +

𝛾

2
) 𝐻𝑙 (𝑦 −

𝛾

2
)

∞

−∞

 ,                                                      (4.25) 

𝐹2 = ∑ 𝑐𝑘𝑙  ∫ 𝑑𝑦 𝑒
−
𝑦2

2
(1+𝜂2) 𝐻𝑘(𝑦) 𝐻𝑙(𝑦𝜂)

∞

−∞

𝑀

𝑘,𝑙=0

,                                                                       (4.26) 

𝑆𝑖 = ∑ 𝑐𝑘𝑙  ∫ 𝑒
−𝑦2𝜉𝑖(𝑦)𝐻𝑘(𝑦)𝐻𝑙(𝑦)𝑑𝑦 

∞

−∞

,

𝑀

𝑘,𝑙=0

                                                                            (4.27) 
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𝑀1 = (𝑒
𝜷)
00
+ 2𝑛 ∑(𝑒𝜷)

0𝑚

∞

𝑚=1

 ,                                                                                                  (4.28) 

∑(𝐴𝑘
𝑖𝑗
)
2

𝑘

=
2𝑔1

′2

𝜔0
2 [(𝑒

2𝜷)
00
− (𝑒−2𝜷)

01
] +

2𝑔2
′2

𝜔0
2 ∑ [(𝑒−2𝜷)

𝑖+𝛿′,𝑖+𝛿′′
− (𝑒−2𝜷)

𝑖+𝛿′,𝑗+𝛿′′
]

𝛿′𝛿′′

 

                                +
4𝑔1

′𝑔2
′

𝜔0
2 ∑[(𝑒−2𝜷)

0,𝑖+𝛿′
− (𝑒−2𝜷)

𝑖+𝛿,𝑖+𝛿′
]

𝛿′

 ,                                          (4.29) 

where 

𝑐𝑘𝑙 = 𝑐𝑘𝑐𝑙√1 2𝑘+𝑙𝑘! 𝑙!⁄ 𝜋,   𝑦 = √𝑥,   

 𝛾 = 𝑒−2𝛼  ∑𝐴𝑘
𝑖𝑗

𝑘

 (1 − 2𝛼𝑑 + 3𝛼𝑑
2) , 

  𝜂 = 1 + 2𝛼𝑑, 

 𝜉1 = √2𝑦,       𝜉2 = 2𝑦
2,      𝜉3 = 2(𝑦

2 − 2𝑙 − 1)                                                                    (4.30)    

  

We calculate  (𝑒±𝑛𝜷)
0𝑛

 using the periodic boundary condition. Then the linear chain can be 

viewed as a ring of 𝑁 lattice sites with 𝑁 very large so that the effects of end points do not 

matter (Fig. 4.1).  

 

 

 

 

 

 

 

 

 

Fig. 4.1: The HH chain in the form of a ring under periodic boundary condition. 

 

The matrix 𝜷 is given by  
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𝜷 =

(

 
 

0 𝛽 0
𝛽 0 𝛽
0 𝛽 0

0 0
0 0
𝛽 0

… 0 0   0    𝛽
… 0      0   0     0     
… 0 0   0    0

⋮ ⋮ ⋮
𝛽     0     0     0     0    0        0    0    0 )

 
 

 

 

We find that the element (𝑒±𝑛𝜷)
0𝑞

 for the ring structure in Fig. 4.1 can be represented 

exactly by the following closed form analytical expression:   

       (𝑒±𝑛𝜷)
0𝑞
= ∑ (±1)𝑞

(𝑛𝛽)2𝑝+𝑞

𝑝! (𝑝 + 𝑞)!
𝑝=0,1,2…

 ,                                          (4.31) 

 

For a half-filled band, the Hamiltonian (4.21) can be exactly solved using the Bethe ansatz 

technique [35] and the GS energy per site is obtained (in units of 𝜔0) as: 

         𝜀0 = 𝜀𝑒𝑓𝑓 +
1

4
[𝑒4𝛼(𝑒2𝜷)

00
{(1 + 4𝛼𝑑 + 12𝛼𝑑

2)𝑆2 − 𝑒
−8𝛼(1 − 4𝛼𝑑 + 12𝛼𝑑

2)𝑆3}] −
1

2

− ∫
4 𝑡𝑒𝑓𝑓𝐽0(𝑦)𝐽1(𝑦)𝑑𝑦

𝑦 [1 + 𝑒

𝑦𝑈𝑒𝑓𝑓
2𝑡𝑒𝑓𝑓 ]

∞

0

,                                                                                    (4.32) 

 

which is finally minimized  with respect to  𝑔1
′ , 𝑔2

′ , 𝛼, 𝛼𝑑, 𝛽 and 𝑐𝑛’s. 

 

 

4.3    Numerical results and discussion 

  We consider here both the adiabatic regime (large 𝑡, small 𝜔0) and the non-adiabatic regime 

(small 𝑡, large 𝜔0) and examine the nature of the large-polaron to small-polaroron transition 

as a function of the  hopping parameter, the e-p interaction coefficients and the Hubbard 

correlation. Throughout the analysis, we work with 𝑈𝑒𝑓𝑓 > 0  so that the formation of 

bipolaron is precluded and the only insulating phase that the system can possible in the 

system is the Mott antiferromagnetic (AFM) spin density wave (SDW) polaron state. We 

make a comparison of our results for the GS energy with those of KMC to show that the 

present calculation lowers the GS energy and therefore is expected to predict a more accurate 

result for the ST transition. Using the Bethe ansatz solution of the effective electronic 
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problem, KMC have predicted the continuity of the ST transition. As the problem is not 

exactly soluble, our primary objective here has been to examine whether the scenario changes 

in the case of an improved calculation. 

  We find that the present variational calculation does yield an improvement, albeit marginal, 

in the GS energy which is of course expected because the present work involves an improved 

phonon wave function. Also, the GS energy is found to decrease as the on-site e-p interaction 

coefficient 𝑔1 increases. This is also an expected result as an increase in 𝑔1 is expected to 

lead to a stronger polaron binding. We do not show the results for the GS energy here 

because the magnitude of the improvement in the GS energy is not so much important for our 

purpose; what is really important for us is whether or not the improved calculation supports 

the conclusion of the KMC. To that end, we need to calculate the parameters that can indicate 

the behaviour of the ST transition unequivocally. The size and depth of the polarization 

potential, the phonon correlation coefficient and the effective hopping parameter are some of 

the quantities the behaviour which can clearly demonstrate the character of the ST transition.   

 

   
 

Fig. 4.2 𝑔1
′/𝑔1 vs 𝑔1 for a few values of 𝑔2  for an:  (a) anti-adiabatic case (𝑡 = 0.5) ; (b) 

adiabatic case (𝑡 = 2). 

 

For a small value of the onsite e-p interaction coefficient 𝑔1, the distortion of the lattice 

vibration is spread over many lattice sites and a large polaron is created. As 𝑔1 increases, the 
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spread of the lattice distortion shrinks and the polaron size decreases. In Fig. 4.2, we plot the 

behaviour of 𝑔1
′/𝑔1 with respect to 𝑔1 for a few values of the NN e-p interaction coefficient 

𝑔2. For the anti-adiabatic case, we have chosen 𝑡 = 0.5  and 𝑈 = 10.  These values satisfy 

the condition: 𝑈𝑒𝑓𝑓 > 0  for the considered range of 𝑔1 . For the adiabatic case, we have 

chosen 𝑡 = 2.  In this case, we need to consider a stronger Coulomb correlation strength to 

keep the effective Coulomb correlation strength positive and we have chosen to work with 

𝑈 = 30.   

 

   

Fig. 4.3:  𝑔2
′ /𝑔1

′  vs 𝑔1 for different values of 𝑔2 for  an (a) anti-adiabatic case (𝑡 = 0.5) ; (b) 

adiabatic case (𝑡 = 2).  

 

Figs. 4.2(a) and 4.2(b) show that as 𝑔1 increases, 𝑔1
′/𝑔1 initially goes through a dip and then 

increases monotonically and finally 𝑔1
′  becomes asymptotically equal to 𝑔1. In this limit, the 

depth of the polarization potential becomes maximum leading to the strongest polaronic 

binding. What we have in this case is a self-trapped small polaron localized in a single lattice 

state. One can clearly see that Fig. 4.2 suggests that the ST transition is continuous in both the 

adiabatic and anti-adiabatic cases which is in agreement with the observation of KMC. Since 

the present calculation is more accurate, it lends more credence in favour of the continuity of 

the ST transition. One can also see that the present improved calculation predicts a stronger 

coherence in the phonon cloud of the polaron than the one indicted by KMC, particularly for 
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weaker e-p coupling constant. We also note that as 𝑔2  increases, a larger value of 𝑔1  is 

necessary for polaron localization. The reason for such a behaviour is easy to understand. 

With increasing 𝑔2, the polaron develops a stronger tendency to remain mobile and therefore, 

unless the on-site e-p interaction 𝑔1 is made sufficiently large, the polaron cannot be trapped. 

The spread of the lattice distortion is denoted by 𝑔2
′ .    

 

  

Fig. 4.4: 𝛼  vs 𝑔1  for different values of 𝑔2 for an (a) anti-adiabatic case (𝑡 = 0.5)  ; (b) 

adiabatic case (𝑡 = 2).  

 

  In Fig. 4.3, we plot  𝑔2
′ /𝑔1

′  as a function of 𝑔1 for a few values of 𝑔2. In Fig. 4.3(a), we plot 

results for an anti-adiabatic region whereas in Fig. 4.3(b), we give results for an adiabatic 

region. One can see that  𝑔2
′ /𝑔1

′   is higher for smaller values of 𝑔1. This implies that the 

polaron size is large at small 𝑔1. As 𝑔1 increases,  𝑔2
′ /𝑔1

′  decreases and gradually becomes 

zero, which implies that the polaron reduces its size with increasing 𝑔1 and eventually gets 

trapped within a single lattice spacing. According to Fig. 4.3, in both adiabatic and anti-

adiabatic cases, the ST transition takes place continuously.  

  Fig. 4.4 suggests the same qualitative behaviour as shown in Fig. 4.3. For example, as the 

NN EPI becomes stronger, a larger value of 𝑔1 is necessary to localize the polaron. Similarly, 

with the increase in 𝑔2, 𝑔2
′ /𝑔1

′  increases as well. This suggests that the polaron becomes more 



                   Ch.4: Self-trapping transition in a 1D HH model: A semi-exact study 

 

 

89 

mobile as 𝑔2 increases. The present result predicts that the ST transition takes place at a 

higher value of 𝑔1 than the one indicated by the KMC result.  

 

  

Fig. 4.5 𝑡𝑒𝑓𝑓 vs 𝑔1 for different values of 𝑔2 for an (a) anti-adiabatic case (𝑡 = 0.5); (b) 

adiabatic case (𝑡 = 2). 

 

  The effective polaron hopping parameter 𝑡𝑒𝑓𝑓 is plotted with respect to 𝑔1 in Fig. 4.5. We 

find that in the limit 𝑔1 → 0, 𝑡𝑒𝑓𝑓 completely loses the shroud of the phononic clouding and 

turns onto the bare Hubbard parameter 𝑡.  As 𝑔1  increases, 𝑡𝑒𝑓𝑓  decreases and decreases 

continuously and finally reduces to zero. The renormalized hopping parameter 𝑡𝑒𝑓𝑓 is linear 

in the width of the polaron band and is reciprocal to the polaron mass, a quantity that can be 

measure in the laboratory through optical experiments or magneto-optical experiments. 

Hence, the continuous transition of a large mobile polaron with finite 𝑡𝑒𝑓𝑓 to an immobile 

localized small polaron with 𝑡𝑒𝑓𝑓 = 0  clearly describes continuity of the ST transition for 

both non-adiabatic and adiabatic cases. Fig. 4.5 shows that our result for 𝑡𝑒𝑓𝑓 is a little higher 

than the one obtained by KMC which again implies that according to our results, a higher 𝑔1 

than the one predicted by KMC is needed to cause the ST transition.   

 

4.4 Conclusion   

  In the present work, we have examined the ST transition in a 1D extended HH model by 

employing a more accurate variational method than the one used by KMC [31]. The phonon 
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subsystem has been treated by a series of unitary transformations by incorporating all the 

essential aspects of the phonon mechanisms and the attributes of the e-p interaction. A fully 

generalized many-body phonon state has been used as the averaging phonon state in place of 

the zero-phonon state used previously, to get the effective electronic problem which is finally 

treated exactly by the Bethe ansatz method. Since the total phonon state used in this work can 

be considered as essentially exact and the Bethe ansatz technique has been used to obtain the 

effective electron problem exactly, the present calculation can be considered to provide very 

accurate results.    

  Our results suggest that a stronger EPI than the one suggested by KMC is required for the 

ST transition to take place. Also as the NN e-p interaction strength increases, a higher value 

of the onsite e-p coupling is needed to induce polaronic localization. This is because with the 

enhancement in the NN e-p interaction, the polaron mobility increases and then naturally we 

need a higher on-site e-p coupling for polaron trapping. Regarding the nature of the ST 

transition, our results support the conjecture of KMC i.e., the ST transition is a continuous 

transition both in the adiabatic regime and also in the anti-adiabatic regime. Since the present 

calculation is analytical and is based on an essentially exact wave function, it has a few 

advantages over other calculations. First, since we have an accurate wave function of the 

system, we have a much clearer understanding of the physics and dynamics of the system. 

Secondly, we have a clear view of how variables and interactions between variables affect the 

result. Thirdly and finally, the analytical results are more transparent and trustworthy than 

those obtained from numerical methods.  
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 “Intelligence is the ability to adapt to change”…Stephen Hawking 

 

5 
Self-trapping transition in a two-

dimensional Holstein-Hubbard model: A 

Mean-field approach 

 

5.1 Introduction 

  Though the ST transition of polaron [1-3] has been in the forefront of research due to its 

several applications, the nature of the transition is still under investigation. In Chapter 4, we 

have presented our recent work on the ST transition in an extended Holstein-Hubbard (HH) 

model and have shown using a semi-exact calculation that the ST transition in 1D extended 

HH model is continuous in both adiabatic and anti-adiabatic regimes. But the real systems of 

interest in the context of high-temperature curate superconductors [5-7], transition-metal 

dichalcogenides [8-10] and other correlated systems [11-15] are all essentially two-

dimensional. A few ST transition problems have been studied for the excitonic [16] and 

photonic lattices [17, 18] and perovskite materials [19, 20] in 2D. But these studies have not 

reported about the nature of the ST transition.  

  Recently, Sankar, Mukhopadhyay and Chatterjee (SMC) [25] have studied the ST transition 

in the 2D extended HH Hamiltonin in the weak correlation regime. They have included the 

phonon coherence and correlations for the phonon sub-system using the modified LF 

transformation and squeezing transformations and obtained the effective electronic 

Hamiltonian by averaging with respect to a zero-phonon state. Finally they have solved the 

effective electronic Hamiltonian using the mean-field Hartree-Fock (HF) method. Their 
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calculation shows that the ST transition is continuous in the anti-adiabatic regime while it is 

discontinuous in the adiabatic region. Sankar and Chatterjee (SC) [26] have studied the ST 

transition in the same 2D extended HH model in the strong correlation regime. They have 

treated the phonon sub-system in the same way as SMC did, but to treat the effective electric 

Hamiltonian, they have first transformed it to an effective 𝑡 − 𝐽 model and solved it finally 

using the Zuberev Green function technique. Their conclusions are qualitatively similar to 

that of SMC.  

  In this chapter, we study the ST transition in a 2D extended HH model with a more 

improved variational calculation than the one carried out by Sankar and collaborators [25, 

26]. The idea is to examine whether an improved variational calculation with a modified 

phonon state discounts the conclusion of Sankar and collaborators or reinforces it. The 

calculation is modified by making the phonon wave function more accurate by performing a 

newly invented electron-density-dependent correlated squeezing transformation [28] 

followed by a many-phonon averaging [29]. The variational phonon wave function chosen 

here can be considered as “essentially” exact. The effective electronic Hamiltonian is solved 

using the similar method as incorporated by Sankar and his collaborators. Here also we 

consider the strength of the onsite Coulomb interaction to be sufficiently large so that the 

phonon-induced effective correlation coefficient remains positive in order to prevent the 

formation of bipolaronic CDW state through Peierls instability. The ST transition is 

examined by analyzing the relevant parameters both in the adiabatic and anti-adiabatic 

regimes for both the strong and weak Coulomb interaction strengths. 

 

5.2    Model and formulation  

A 2D EHH model can be described by the Hamiltonian   

 

        𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝 ,                                                                (5.1) 

with 

                      𝐻𝑒 = −𝑡 ∑ 𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎 + 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉1 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

 

+ 𝑉2 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

 ,                                                                                          (5.2) 
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 𝐻𝑝 = ℏ𝜔0∑𝑏𝑖
†𝑏𝑖

𝑖

 ,                                                                (5.3) 

 

𝐻𝑒𝑝 = 𝑔1∑𝑛𝑖𝜎(𝑏𝑖 + 𝑏𝑖
†)

𝑖𝜎

+ 𝑔2∑𝑛𝑖𝜎(𝑏𝑖+𝛿 + 𝑏𝑖+𝛿
† )

𝑖𝛿𝜎

 .                              (5.4) 

 

Here 𝐻𝑒 describes the extended Hubbard Hamiltonian where the parameter 𝑡 denotes the NN 

hopping integral, 𝑛𝑖𝜎(= 𝑐𝑖𝜎
† 𝑐𝑖𝜎) represents the number operator for the spin-σ electron at site 

𝑖 , ciσ
†  (ciσ)  being the corresponding electron creation (annihilation) operator, and U, V1 , 

and V2 give the onsite, nearest neighbour (NN) and next nearest neighbour (NNN) Coulomb 

interaction energies  respectively,   𝐻𝑝 is the phonon Hamiltonian, 𝑏𝑖
† (𝑏𝑖) being the creation 

(annihilation) operator for an optical phonon at site  𝑖 with dispersionless frequency 𝜔0 and 

𝐻𝑒𝑝 is the extended Holstein e-p interaction, 𝑔1 and 𝑔2 being the on-site and NN e-p coupling 

strengths, respectively. We will write: 𝑔1 =  √𝛼 , where 𝛼  is the onsite e-p coupling 

coefficient.  

 

   To disentangle the e-p interaction term, the Lang-Firsov transformation (LFT) [27] has 

been used extensively in the past. This transformation lowers the energy by displacing the 

phonon vacuum. The phonon state then becomes a coherent superposition of states with 

different phonon numbers. Several studies on the HH model [26, 30, 32, 49-52] and the 

Anderson-Holstein model have shown that the variational LFT (VLFT) method is more 

useful. We, therefore, employ VLFT to transform the EHH model with the generator   

 

𝑅1 =
𝑔1
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖𝜎

+
𝑔2
′

𝜔0
∑𝑛𝑖𝜎(𝑏𝑖+𝛿

† − 𝑏𝑖+𝛿)

𝑖𝛿𝜎

 ,                          (5.5) 

 

where 𝑔1
′ = 𝜂1√𝛼  and 𝑔2

′ = 𝜂2√𝛼  , 𝜂1  and 𝜂2  being the variational parameters. 𝑔1
′  gives 

essentially a measure of the depth of the on-site lattice polarization potential created by the e-

p interaction and 𝑔2
′  represents the width of the polaron potential well. The VLFT transforms 

the Hamiltonian 𝐻 to 𝐻1 = 𝑒
𝑅1𝐻𝑒−𝑅1 .  An electron can be considered as a phonon-source. 

As an electron makes an emission of an optical phonon, it undergoes a recoil motion and 

during its action of recoiling, if it releases another phonon, then these two phonons would 

have a built-in correlation. This phonon-correlation effect can be incorporated by considering 

a Bogolubov transformation with a generator [28]:  
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                       𝑅2 = 𝛼𝑠  ∑(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖

,                                                       (5.6) 

where 𝛼𝑠 which gives a measure of the phonon correlation is called a squeeze parameter and 

will be treated as a variational parameter.  The squeezing transformation transforms 𝐻1 to 

𝐻2 = 𝑒
𝑅2𝐻1𝑒

−𝑅2. Since the average phonon correlation in the phonon function is expected to 

depend on the electron number at the lattice sites, Malik et al. (MMC) [19] have recently 

suggested that an increase in the electron concentration would increase the average phonon 

correlation. This immediately implies that 𝑅2 should at least partially depend on the electron 

concentration. MMC [30] have introduced a new unitary transformation to incorporate this 

density-dependent phonon correlation effect. Chatterjee and collaborators have subsequently 

used this transformation in a more improved work [32] and also in a related problem [52] to 

lower the GS energy. We apply this density-dependent squeezing transformation to 𝐻2 with 

the generator  

                     𝑅3 = 𝛼𝑑∑𝑛𝑖𝜎(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖
†)

𝑖

,                                                     (5.7) 

where 𝛼𝑑  is a trial parameter to be determined variationally. The new Hamiltonian reads  

𝐻3 = 𝑒
𝑅3𝐻2𝑒

−𝑅3 . Finally, we consider intersite phonon correlations. This can be incorporated 

by correlated squeezing transformation. However, we consider only NN phonon correlation. 

Following Lo and Sollie [29], the generator of the correlated squeezing transformation is 

chosen as 

                ℛ4 =
1

2
 ∑𝛽𝑖𝑗 (

𝑖≠𝑗

𝑏𝑖𝑏𝑗 − 𝑏𝑖
†𝑏𝑗
†).                                                        (5.8) 

Here we choose, 𝛽𝑖𝑗 = 𝛽, when 𝑖  and 𝑗 are NN and 𝛽𝑖𝑗 = 0, otherwise. The parameter 𝛽 is 

obtained variationally. The Hamiltonian after the above transformation becomes: ℋ ≡ 𝐻4 =

𝑒𝑅4𝐻3𝑒
−𝑅4. One may notice that the transformation (6), incorporates the mean-field part of 

the phonon correlations while (8) includes the deviation from the mean-field part i. e., the 

fluctuations. The purpose of carrying out a set of unitary transformation is to decouple the 

electron and phonon variables. However an exact separation of the electron and phonon 

variables is not possible for the present problem. We therefore seek a variational solution by 

taking the average of  ℋ with a suitable phonon state |Φ𝑝ℎ⟩ so that the phonon variables are 

eliminated. This entire process is same as making the following choice for the variational 

phonon wave function:   
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     |𝜓𝑝ℎ⟩ = 𝑒
−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4|Φ𝑝ℎ⟩  .                                           (5.9) 

 

We thus write an approximate wave function for the original Hamiltonian in the following 

product form:  

|Ψ⟩ = |𝜓𝑒𝑙⟩⨂|𝜓𝑝ℎ⟩,                                                       (5.10) 

so that the total energy of the system can then be written as:  

 

𝐸 = ⟨Ψ|𝐻|Ψ⟩ = ⟨𝜓𝑒𝑙|⟨𝜓𝑝ℎ|𝐻|𝜓𝑝ℎ⟩ |𝜓𝑒𝑙⟩ = ⟨𝜓𝑒𝑙|⟨Φ𝑝ℎ|ℋ|Φ𝑝ℎ⟩ |𝜓𝑒𝑙⟩.       (5.11) 

 

For |Φ𝑝ℎ⟩,  we choose a fully general phonon state as:  

      |Φ𝑝ℎ⟩   =  ∑ 𝑟𝑛

𝑀

𝑛=0

 |𝜑𝑛(𝑥)⟩ ,                                              (5.12) 

where  𝜑𝑛(𝑥) is the 𝑛 −th eigen function of a harmonic oscillator and 𝑟𝑛’s are variational 

parameters. Our aim is to begin the numerical computation with the value of 𝑀 equal to zero 

and then systematically increase its value till the energy becomes convergent. The effective 

electronic Hamiltonian becomes 

 

      𝐻𝑒𝑓𝑓 = ⟨𝜓𝑝ℎ|𝐻|𝜓𝑝ℎ⟩ = ⟨Φ𝑝ℎ|ℋ|Φ𝑝ℎ⟩ = ⟨Φ𝑝ℎ|𝑒
𝑅4𝑒𝑅3𝑒𝑅2𝑒𝑅1𝐻𝑒−𝑅1𝑒−𝑅2𝑒−𝑅3𝑒−𝑅4|Φ𝑝ℎ⟩ 

 

               = 𝜀𝑒𝑓𝑓∑𝑛 𝑖𝜎
𝑖𝜎

− 𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ 𝑈𝑒𝑓𝑓∑𝑛𝑖↑𝑛𝑖↓
𝑖

+ 𝑉1
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑗𝜎′

<𝑖𝑗>𝜎𝜎′

+ 𝑉2
𝑒 ∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′

𝑖𝛿′𝜎𝜎′

 

                                     + 
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝜷)

00
 𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2)

− 𝑒−4𝛼(𝑒2𝜷)
00
 𝑇3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2) − 2]  ,                                                (5.13) 

 

where  

 

     𝜀𝑒𝑓𝑓 = −
1

𝜔0
[2(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) − (𝑔1

′2 + 𝑧𝑔2
′2)]

+ 𝑒2𝛼(1 + 2𝛼𝑑 + 3𝛼𝑑
2)𝑀1𝑇1[(𝑔1 + 𝑧𝑔2) − (𝑔1

′ + 𝑧𝑔2
′ )] ,                        (5.14) 
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     𝑡𝑒𝑓𝑓 = 𝑡𝑒
𝛼𝑑𝐹1𝐹2𝐹3 ,                                                                                                                 (5.15) 

     𝑈𝑒𝑓𝑓 = 𝑈 −
2

𝜔0
[2(𝑔1𝑔1

′ + 𝑧𝑔2𝑔2
′ ) − (𝑔1

′2 + 𝑧𝑔2
′2)] ,                                                         (5.16) 

     𝑉1
𝑒 = 𝑉1 −

2

𝜔0
[(𝑔1𝑔2

′ + 𝑔1
′𝑔2) − 𝑔1

′𝑔2
′ ] ,     𝑉2

𝑒 = 𝑉2 −
1

𝜔0
[2𝑔2𝑔2

′ − 𝑔2
′2] ,                   (5.17) 

  𝐹1 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙=0

 ∫ 𝑑𝑦 𝑒−𝑦
2
 𝐻𝑘(𝑦) 𝐻𝑙(𝑦)

∞

−∞

 ,                                                                              (5.18) 

 𝐹2 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙=0

 𝑒−
𝛾2

4 ∫ 𝑑𝑦 𝑒−𝑦
2
 𝐻𝑘 (𝑦 +

𝛾

2
) 𝐻𝑙 (𝑦 −

𝛾

2
)

∞

−∞

 ,                                                  (5.19) 

     𝐹3 = ∑ 𝑐𝑘𝑙  ∫ 𝑑𝑦 𝑒
−
𝑦2

2
(1+𝜂2) 𝐻𝑘(𝑦) 𝐻𝑙(𝑦𝜂)

∞

−∞

𝑀

𝑘,𝑙=0

 ,                                                                 (5.20) 

  𝑇𝑖 = ∑ 𝑐𝑘𝑙  ∫ 𝑒
−𝑦2𝜉𝑖(𝑦)𝐻𝑘(𝑦)𝐻𝑙(𝑦)𝑑𝑦 

∞

−∞

,

𝑀

𝑘,𝑙=0

                                                                       (5.21) 

  𝑀1 = (𝑒
𝜷)
00
+ 2𝑛 ∑(𝑒𝜷)

0𝑚
 

∞

𝑚=1

  ,                                                                                           (5.22) 

  ∑(𝐴𝑘
𝑖𝑗
)
2

𝑘

=
2𝑔1

′2

𝜔0
2 [(𝑒

2𝜷)
00
− (𝑒−2𝜷)

01
] +

2𝑔2
′2

𝜔0
2 ∑ [(𝑒−2𝜷)

𝑖+𝛿′,𝑖+𝛿′′
− (𝑒−2𝜷)

𝑖+𝛿′,𝑗+𝛿′′
]

𝛿′𝛿′′

 

                    + 
4𝑔1

′𝑔2
′

𝜔0
2 ∑[(𝑒−2𝜷)

0,𝑖+𝛿′
− (𝑒−2𝜷)

𝑖+𝛿,𝑖+𝛿′
]

𝛿′

 ,                                                  (5.23) 

where 𝑦 = √𝑥                                                                                                                                  (5.24) 

and  𝑐𝑘𝑙 = 𝑐𝑘𝑐𝑙√1 2𝑘+𝑙𝑘! 𝑙!⁄ 𝜋,                                       (5.25) 

 𝛾 = 𝑒−2𝛼𝑠  ∑ 𝐴𝑘
𝑖𝑗

𝑘  (1 − 2𝛼𝑑 + 3𝛼𝑑
2), 𝜂 = 1 + 2𝛼𝑑,             (5.26) 

 𝜉1 = √2𝑦, 𝜉2 = 2𝑦
2 ,   𝜉3 = 2(𝑦

2 − 2𝑙 − 1),              (5.27) 

(𝑒±𝑛𝜷)
0𝑛

 is to be calculated for a 2D square lattice as explained in chapter 3.  

 

 (𝑒±𝑛𝜷)
00
=∑(

2𝑚
𝑚
) 
(±𝑛𝛽)2𝑝

𝑝! 𝑝!

∞

𝑝=0

 ,                                                                                            (5.28) 
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 (𝑒±𝑛𝜷)
0𝑞
=∑(2𝑝 + (

𝑞 − 1

2
+ 1)

𝑝
) 

(±𝑛𝛽)
[2𝑝+(

𝑞−1
2
+1)]

𝑝! [𝑝 + (
𝑞 − 1
2 + 1)] !

∞

𝑝=0

   ,         (𝑞 = 𝑜𝑑𝑑)           (5.29) 

 

   (𝑒±𝑛𝜷)
0𝑞
=∑(

2𝑝 + (
𝑞

2
+ 1)

𝑝 + 1
) 
(±𝑛𝛽)[2𝑝+(

𝑞
2
+1)]

𝑝! [𝑝 + (
𝑞
2 + 1)] !

∞

𝑝=0

    .                      (𝑞 = 𝑒𝑣𝑒𝑛)         (5.30) 

For the electrons, we assume a square density of states (which is a valid assumption in 2D) 

and write   

                     𝜌(𝜀𝑘) =
1

2𝑊
       ;       −𝑊 ≤ 𝜀𝑘 ≤ 𝑊                                             (5.31) 

 

                                             = 0            ;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

(a) Weak Correlation: 

 

For weak correlation, we use the HF approximation and the GS energy (𝜀𝑊) (per particle) for 

the system is obtained as 

𝜀𝑊 = 𝑛 𝜀𝑒𝑓𝑓 −
1

2
𝑧 𝑡𝑒𝑓𝑓(2𝑛 − 𝑛

2) +
𝑛2

4
𝑈𝑒𝑓𝑓 + 𝑧𝑛

2𝑉1
𝑒 + 𝑧′𝑛2𝑉2

𝑒 

                  +
𝑁𝜔0
4
[𝑒4𝛼(𝑒2𝜷)

00
 T2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2) − 𝑒−4𝛼(𝑒2𝜷)
00
 T3 (1 − 4𝛼𝑑 + 12𝛼𝑑

2)

− 2]  ,                                                                                                                       (5.32) 

 

which is finally minimized with respect to 𝑔1
′ , 𝑔2

′ , 𝛼𝑠, 𝛼𝑑 , 𝛽  and 𝑐𝑛’s.  

 

(b) Strong Correlation 

 

In the strong correlation regime we solved the electronic Hamiltonian in the same way as 

explained in chapter 3, section 3.2.2. The GS energy per site (𝜀𝑆𝑁) for the system reads   
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            𝜀𝑆 = 𝑛𝜀𝑒 − (𝜑𝑡 𝑡𝑒𝑓𝑓 + 𝑝𝐽) 𝑧𝑝 + 𝑁𝑧 [
1

4
(𝐽 − 4(𝑉1

𝑒 + 𝑉2
𝑒)) 𝑛2 + 𝐽𝑝2] 

 

                          +
𝑁𝜔0

4
[𝑒4𝛼(𝑒2𝜷)

00
 𝑇2 (1 + 4𝛼𝑑 + 12𝛼𝑑

2) − 𝑒−4𝛼(𝑒2𝜷)
00
 𝑇3 (1 − 4𝛼𝑑 +

12𝛼𝑑
2) − 2]  .                                                                                                                                   (5.33) 

 

 

5.2  Numerical Results 

 

5.3.1      Weak Correlation results 

   We have considered both the non-adiabatic (large 𝜔0, small 𝑡) and adiabatic (small 𝜔0 , 

large 𝑡) cases by taking two different values of 𝑡 (0.5 and 2). We have also compared our 

results with those of Sankar et al. [50] by choosing 𝑉1 = 𝑉2 =  0. 

 

 

 

Fig. 5.1: GS energy (𝜀0) vs. Coulomb correlation (𝑈) for (a) anti-adabatic case; (b) adiabatic 

case. 

 

 Fig 5.1 shows how NN e-p interaction influences the 𝜀0 − 𝑈 plots. It is clearly visible that 

the NN e-p interaction lowers the GS energy further. Also the present method provides a 

lower GS than the ones obtained by Sankar et al. [50], as expected from an improved 

variational calculation. In Fig. 5.2, 𝑔1
′ 𝑔1⁄  is plotted with respect to 𝑔1 for both adiabatic and 
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non-adiabatic cases. At small 𝑔1 , 𝑔1
′  is small. This is because at small 𝑔1 , the lattice 

deformation spreads over several sites and one has a large polaron. As 𝑔1 increases, 𝑔1
′  also 

increases and above a critical 𝑔1, 𝑔1
′  equals 𝑔1. This is the small polaron phase. With the 

increase in 𝑔1, the onsite polarization potential becomes deep and consequently the polaron 

gets confined and loses its mobility resulting in the formation of a small polaron. Thus, an 

increase in 𝑔1 leads to a ST transition. In Fig. 5.2(a), 𝑔1
′ 𝑔1⁄  gradually increases with 𝑔1 and 

finally saturates to 𝑔1
′ = 𝑔1  in a continuous way. Thus ST transition turns out to be 

continuous in this case. For the adiabatic case (Fig. 5.2(b)), 𝑔1
′ 𝑔1⁄  sharply reaches 1 at a 

critical 𝑔1  implying that the transition is discontinuous here. In the present analysis, the 

polaron localization takes place at a higher value of 𝑔1 compared to that in [50].   

 

Fig. 5.2  𝑔1
′ 𝑔1⁄  vs. 𝑔1 for different values of 𝑔2 for: (a) anti-adiabatic case; (b) adiabatic 

case, with 𝑈 = 3 at less than half-filling.  

 

The variations of 𝑔2
′ 𝑔1

′⁄  with respect to 𝑔1 is studied in Fig. 5.3 for 𝑡 = 0.5  and  2. As 𝑔1 

increases, 𝑔2
′  decreases and eventually reduces to zero. This implies that as 𝑔1 increases, the 

width of the polarization potential shrinks and eventually ST transition takes place. Here 

again, we see that the transition is continuous for 𝑡 = 0.5 whereas it is discontinuous for 𝑡 =

2.  𝑔2
′ 𝑔1

′⁄  is now lower compared to [50], in the case of weak coupling.  This implies that in 

the present analysis ST transition requires a stronger e-p interaction strength.   
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Fig. 5.3: 𝑔2
′ 𝑔1

′⁄  vs. 𝑔1 for different values of 𝑔2 for: (a) anti-adabatic case; (b) adiabatic case 

with 𝑈 = 3 at less than half-filling 

   

We study the behaviour of 𝛼𝑠 with 𝑔1 in Fig. 5.4; the anti-adiabatic case in Fig. 5.4 (a) and 

the adiabatic case in Fig. 5.4(b). One can observe that as 𝑔1  increases, 𝛼𝑠  also increases, 

attains a peak and then decreases to zero in a continuous manner for 𝑡 = 0.5 and in a 

discontinuous manner at 𝑡 = 2.  Thus the phonon correlation is maximum at a certain critical  

𝑔1, above which it reduces to zero. In the anti-adiabatic case, the phonon correlation becomes 

maximum at a lower value of 𝑔1 than in the adiabatic case.    

 

   

Fig. 5.4: 𝛼𝑠 vs. 𝑔1 for different values of 𝑔2: (a) for anti-adabatic case; (b) for adiabatic case, 

with  𝑈 = 3 at less than half-filling. 



                                Chapter 5 

 

 

 

102 

  

    

 

 

Fig. 5.5: 𝑡𝑒𝑓𝑓  vs. 𝑔1  for different values of  𝑔2  at 𝑡 = 0.5  (anti-adiabatic case) and 𝑡 = 2 

(adiabatic case) with  𝑈 = 3 at less than half-filling. 

    

  To examine the ST transition through the hopping parameter, we plot 𝑡𝑒𝑓𝑓 versus 𝑔1 in Fig. 

5.5. We expect: 𝑡𝑒𝑓𝑓  ∝  𝑚𝑝,  where the polaron mass 𝑚𝑝 is a measurable quantity. One can 

observe that 𝑡𝑒𝑓𝑓 decreases with 𝑔1 and becomes zero in both adiabatic and the anti-adiabatic 

regimes. Thus the system shows ST transition in both cases. One can see that ST transition is 

continuous in the ant-adiabatic regime and discontinuous in the adiabatic limit. Furthermore, 

we observe that in the adiabatic case, discontinuous jumps in 𝑡𝑒𝑓𝑓 are observed at higher 𝑔1 

values. Thus, a stronger e-p interaction is required to localize the polaron in the adiabatic 

case.  

 

5.3.2  Strong Correlation results        

  Here we will look into a strongly correlated system both in adiabatic and anti-adiabatic 

regimes. In Fig. 5.6, we plot the variational GS energy as a function of 𝑈 and compare our 

present results with those of SC [51]. It is clear that the present results are more accurate than 

the results of SC in general. In Fig. 5.7, we study the variation of 𝑔1
′  with 𝑔1 for a strongly 

correlated system. One can observe that 𝑔1
′  in general increases with 𝑔1. At small values of 

𝑔1, 𝑔1
′  however remains small which implies the presence of a shallow  on-site polarization 
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potential and consequently a large polaron in both the adiabatic and anti-adiabatic regimes. 

At some critical 𝑔1,  𝑔1
′  becomes equal to 𝑔1 indicating a small-polaron formation. Thus we 

observe an ST transition here.  

 

 Fig. 5.6: 𝐸0 vs. 𝑈 for different values of hopping parameter 𝑡 in: (a) anti-adiabatic regime; 

(b) adiabatic regime. 

 

 

Fig. 5.7: Depth of the polarisation potential (𝑔1
′ 𝑔1⁄ ) vs. 𝑔1  with 𝑔2 = 0 and 0.03: (a) for 

anti-adiabatic regime;  (b) for adiabatic regime. 

 

In Fig. 5.7(a), i.e., in the anti-adiabatic regime, ST transition is continuous, but in Fig. 5.7(b), 

i.e., in the adiabatic regime, a finite discontinuity is accompanied with ST transition. For non-

zero 𝑔2, the polarization potential becomes shallower as compared to the one in the case of 
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𝑔2 = 0 and the polaron remains mobile till a higher critical 𝑔1. In this case, a stronger on-site 

e-p interaction strength is required to trap the polaron. One can also observe from the figure 

that in the adiabatic regime, ST transition occurs at a higher value of g1 than in the anti-

adiabatic case. 

 

 

Fig. 5.8: Spread of the polarisation potential (𝑔2
′ /𝑔1

′ ) vs. 𝑔1 with with 𝑔2 = 0 and 0.2 for: 

(a)  anti-adiabatic regime;  (b) for adiabatic regime. 

 

 

Fig. 5.9:  𝛼𝑠 vs. 𝑔1 with 𝑔2 = 0 and 0.2  for: (a) ant-adiabatic regime ; (b) adiabatic regime. 
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The variation of  (𝑔2
′ 𝑔1

′⁄ ) with respect to 𝑔1 is plotted in Fig. 5.8. 𝑔2
′   decreases gradually 

with 𝑔1 and eventually becomes zero at some critical value of 𝑔1. At 𝑔2
′ = 0, the width of the 

polarization potential vanishes and the polaron becomes small and localized. One can clearly 

see from Fig. 5.8 that for 𝑡 = 0.2, 𝑔2
′  falls off to zero in a continuous way, whereas in the 

adiabatic case, it goes to zero in a discontinuous manner. Thus this result also confirms the 

continuity of ST transition  in the non-adiabatic regime and the discontinuity of ST transition 

in the adiabatic case.   

 

Fig. 5.10:  𝛽 vs. 𝑔1 with 𝑔2 = 0 and 0.2  for (a) anti-adiabatic regime ;  (b) adiabatic regime.  

 

  The variations of the phonon correlation parameters (𝛼𝑠, 𝛽)  with respect to 𝑔1 are also 

studied to investigate the nature of STT. In Fig. 9, 𝛼𝑠  is plotted with respect to 𝑔1. Fig. 5.9(a) 

shows the anti-adiabatic scenario whereas the adiabatic case is plotted in Fig. 5.9(b). In both 

cases, the onsite phonon correlation is largest at certain critical value of 𝑔1 . One may notice 

that the present modified calculation indicates a marginally higher polaron mobility than the 

one suggested by SC.  Again, the nature of the transition is found to be continuous in the anti-

adiabatic regime and discontinuous in the adiabatic case. Also, in the presence of a finite NN 

e-p interaction, a larger value of 𝑔1 is required to trap the delocalized polaron both in the 

adiabatic and the anti-adiabatic cases. Similar behaviour is exhibited by  𝛽 versus 𝑔1 figures 

in Fig. 5.10. Fig. 5.10(a) shows that in the non-adiabatic regime, 𝛽 as a function of 𝑔1 goes to 

zero through a symmetric minimum continuously and smoothly while in the adiabatic regime 

(Fig. 5.10(b)), we see that 𝛽  go to zero through an asymmetric minimum in a discontinuous 
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way making the ST transition sharp. Fig. 5.11(b) shows that in the adiabatic case, ST 

transition occurs at a marginally higher 𝑔1 value than the one predicted from the SC 

calculation [51].    

 

  

 Fig. 5.11 𝑡𝑒𝑓𝑓 vs. 𝑈 with  𝑔2 = 0 and 0.2  (a) anti-adiabatic regime and (b) adiabatic regime 

 

   Fig. 5.11 shows the change in the effective electronic hopping parameter with respect 𝑈.  

Our present modified variational calculation shows that it is higher than the SC result [51]. 

This is quite reassuring as a higher value of 𝑡𝑒𝑓𝑓 implies a higher polaron mobility which is 

always useful from the point of view of polaronic transport. For small  (= 0.2), the variation 

of 𝑡𝑒𝑓𝑓  with 𝑈 is much slower that for large 𝑡 (= 2). It is also observed that effective polaron 

mobility decreases as 𝑈 becomes stronger.  

  In Fig. 5.12, we show the behaviour of 𝑡𝑒𝑓𝑓  with respect to 𝑔1. It is found that the effective 

polaron mobility decreases with increasing 𝑔1 than the Hubbard hoping parameter t value and 

it reaches to zero. The condition: 𝑡𝑒𝑓𝑓 = 0  indicates that the polaron is localized. The 

delocalization-localization transition is clearly visible in Fig. 5.12. The present modified 

calculation shows that a stronger e-p coupling is required for ST transition to occur. Also in 

the presence of the NN e-p interaction, the effective electronic hopping is larger. Fig. 5.12(a) 

and 5.12(b) also establish that the nature of ST transition is continuous in the anti-adiabatic 

regime and discontinuous at the adiabatic case. 
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Fig. 5.12: 𝑡𝑒𝑓𝑓 vs. 𝑔1 with with 𝑔2 = 0 and 0.2  for: (a) anti-adiabatic regime and (b) 

adiabatic regime.  

 

 

 

 

 

 

 

 

                                

Fig. 5.13: Band reduction factor (𝜑𝑡𝑒𝑓𝑓) vs.  𝑔1 for (a) anti-adiabatic regime and (b) 

adiabatic regime. 

 

 

The effective electronic hopping parameter gives us the information about the polaron 

mobility, and it also helps us to calculate the band-width and polaron mass. The band 

reduction factor (𝜑𝑡𝑒𝑓𝑓)  gives the physical effect of the presence of impurities in the system. 

We plot 𝜑𝑡𝑒𝑓𝑓  with respect to the 𝑔1  in Fig. 5.13. Though the behaviour of 𝜑𝑡𝑒𝑓𝑓  is 
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qualitatively similar to 𝑡𝑒𝑓𝑓 , the effective polaron mobility gets suppressed by the parameter 

𝜑. 

 

 

   

 

 

 

 

 

 

 

 

 

 

  Fig. 5.14: Self-trapping transition line. 

 

 

   In Fig. 5.14, we plot the ST transition line and compare with the results of SC [51]. The ST 

transition line is plotted for the sets of (𝑔1, 𝑡) that give 𝑡𝑒𝑓𝑓 = 0. We call them (𝑔1𝑐, 𝑡𝑐). The 

curves give the large polaron-small polaron phase diagram. It is found that as 𝑡𝑐 increases, 

𝑔1𝑐 also increases. Below a certain 𝑔1, one cannot have a small polaron. Compared to SC, the 

present result provides a little broader phase for the large polaron.  

 

5.4   Conclusion  

  

  In conclusion, we have explored in this work, the nature of ST transition in a 2D extended 

HH model. For the phonon subsystem, we have used a very acute wave function 

incorporating all the important characteristics of the phonon dynamics and the e-p interaction. 

The effective electronic system is solved analytically in the weak and strong correlation 

regimes separately using plausible approximations. More specifically, in the weak-correlation 

regime, the renormalized electronic system is treated by the Hartree-Fock mean-filed theory 
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and in the strong correlation regime, the effective Hamiltonian is first mapped on the t-J 

model and then simplified employing the Gutzwiller approximation and finally solved by the 

Hartree-Fock method using the restriction that double occupancy is not allowed. For both the 

regimes, the GS energy is calculated variationally. The ST transition is examined by studying 

the depth and spread of the polarization potential as a function of the e-p coupling constants. 

The effective polaron hopping also indicates the nature of the ST transition for the entire 

range of the Coulomb correlation strength. Our results confirm that the ST transition occurs 

in a continuous way in the anti-adiabatic case while in the adiabatic regime it is accompanied 

with a finite discontinuity.   
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“It is no good to try to stop knowledge from going forward. Ignorance is never 

better than knowledge”…Enrico Fermi 

 

6 
Quantum Transport in a bi-molecular 

transistor through the Anderson-Holstein-

Caldeira-Leggett model 

 

6.1 Introduction 

  Transistors are one of the integral parts of modern technology for the fabrication of nano-

devices. Of late, single molecular transistors have attracted considerable attention for their 

practical application in nano-devices. In a single molecular transistor (SMT), a central 

molecule or a quantum dot (QD) with discrete energy levels is connected to two metallic 

leads (source and drain) with continuous energy levels on the two sides and is acted upon by 

an external bias voltage. The presence of discrete energy levels in the central molecule which 

is also called a tunnelling molecule is important to have pure quantum mechanical effects on 

the device properties. The difference in the electronic potential energies of the source and the 

drain helps the electrons to tunnel from one lead to the other through the QD and from the 

QD to the other lead. The transfer of electrons through the QD results in a net tunnelling 

current. The SMT system is mounted on an insulating substrate which can be attached to a 

gate. Then by applying a gate voltage, the tunnelling current can be manipulated. In late 90s 

scientists have been interested in studying the electronic transport in nano-materials using 

molecules, nanotubes, nanocrystals etc. In 2000, the fabrication of 𝐶60 molecular transistor 

was reported by Park et al. [1] with the help of gold electrodes connected with the 𝐶60 

molecules. Using a single-electron hopping mechanism they have shown the conduction 



                                    Ch.6: Quantum transport in a bi-molecular transistor 

 
 

113 

properties in the transistor with respect to the applied bias-voltage. In 2002, Liang et al. [2] 

have studied the Kondo effect on SMT following the works by Goldhaber-Gordon et al. [3] 

and Yu et al. [4]. Liang et al. have studied the Kondo resonance effect on the SMT device 

and examined how the gate voltage can influence the Kondo phenomenon in quantum dot 

structures. Later, many other works have unravelled the Kondo behaviour in molecular 

transport [5-7]. Another important low-temperature property that shows up in electronic 

transport is the effect of Coulomb blockade. Very recently, Pipit and his collaborators [8] 

have experimentally established the Coulomb blockade and Coulomb staircase behaviour for 

single electron transport at the room temperature. This work has a great significance for the 

molecular transport at room temperature. The three-terminal device has found potential use in 

the study of fine-structure of single-molecule magnets [9] and in magnetic anisotropy in SMT 

[10-11]. The SMT device can be used as a switching device [12] and also a sensor [13]. Dutta 

has discussed the electronic transport in the mesoscopic systems [14] and also explained the 

quantum transport in a molecular transistor [15]. The recent review articles by Mickael et al. 

[16] and Huanyan et al. [17] have reported the mechanisms involved in the SMT device and 

its recent developments and applications.  

 

  In an SMT system, QD electrons can interact with the phonons through the Holstein e-p 

interaction leading to the creation of quasi-particles called polarons. The Coulomb correlation 

and the e-p interaction are likely to influence different molecular characteristics like 

transition and vibrational energy levels of different spin-states, quantum interference, 

transport properties and other interesting phenomena [18-24]. The fabrication of different 

molecular devices and their theoretical and experimental study constitute a new area of 

research called moletronics [25, 26] which has attracted a great deal of attention in recent 

times.  

 

  In 2003, Sang and collaborators [27] have investigated the interplay of the e-e and e-p 

interaction for the Anderson-Holstein Hamiltonian and computed the electron and phonon 

spectral function (SF) using the numerical renormalization group technique. Using Keldysh 

Green function method, Chen et al. [28] have shown that the polaronic effect generates side 

peaks in the SF of an SMT device and modifies the tunnelling current. Extending the work of 

Chen, Juntao and collaborators [29] have measured the phonon assisted conductance in a 

SMT device. Raju and Chatterjee [30] have extended the SMT problem to investigate the 

dissipation-induced tunnelling current by introducing an insulating substrate. They have 

reported that the interaction between the substrate phonons and the QD phonon introduces 
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dissipation in the phonon dynamics of the QD phonon and enhances the tunnelling current in 

the molecular transistor. Very recently, Khedri et al. [31-33] have considered the spinless 

Anderson-Holstein impurity model and investigated the phonon-assisted linear thermo-

electric tunnelling transport in molecular QDs. Chatterjee and collaborators [33] have studied 

the SMT in the presence of e-e and e-e interactions, quantum dissipation and an external 

magnetic field. Their result shows that the spin-filtering effect increases with the magnetic 

field. They have subsequently shown that the tunnelling current in an SMT device reduces 

with increasing temperature [34, 35]. Kuntal et al. [36] have studied the combined effect of 

temperature and magnetic field on tunnelling current and differential conductance in an SMT 

device in the presence of phonon dissipation. It has been shown that the tunnelling current 

and the spin-polarization coefficient can be controlled by the bias-voltage, e-p interaction 

coefficient, external magnetic field and the temperature.  

 

  Several theoretical techniques have been implemented to study the molecular devices. The 

Anderson model has been studied using the slave-boson mean-field method by Meir et al. 

[37] and by non-crossing approximation method by Wingreen and Meir [38]. The molecular 

transistor has also been treated by using the rate equation approach [39]. To solve the single 

impurity Anderson model, the numerical renormalization group technique [31, 32, 40] has 

been found to be very useful, as this is applicable for the entire parameter regime. Another 

celebrated method to study the quantum transport in the molecular device is the non-

equilibrium Green function approach [28, 30, 33, 35, 41].  

 

  More recently extensive studies have been performed on the double-QD (DQD) based 

molecular transistors [42-44] as they show many useful practical applications.  In the present 

chapter, we study a double-QD-based molecular transistor which we refer to as a bi-

molecular transistor (BMT). In a BMT, we introduce an extra QD in the SMT system i.e., we 

place two QDs in series between the source (S) and the drain (D) and the whole system is 

embedded on an insulating substrate. The system is represented by the Anderson-Holstein-

Caldeira-Leggett (AHCL) model [46-49] as discussed in Chapter 1 and the spectral function, 

tunnelling current, differential conductance and spin-polarization are studied in the BMT in 

the presence of an external magnetic field, finite temperature and phonon dissipation. 

 

6.2 Model and formulation 
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  In our present work, we place two QDs in series in the central region of the molecular 

transistior. One of the QDs is connected to the source and another QD is connected to the 

drain. This whole system is placed on an insulating substrate. The two metallic leads are 

connected to an external voltage source so that electrons can tunnel from S to first QD and 

from the second QD to D. The schematic diagram of the BMT device is shown in Fig. 6.1. 

Here the QDs are considered to have single energy levels and the conducting leads have free 

electrons with continuous energy levels. Electrons in an individual QD can interact with 

themselves with the onsite Hubbard interaction. Electrons from the first QD can go to the 

second QD by hopping. This interacting system is modelled by the Anderson-Holstein model 

[45, 46]. The insulating substrate works as a heat bath and its phonons interact with the QD 

phonon through the linear Caldeira Leggett model [47, 48]. An external magnetic field is also 

introduced so that the electron spin degeneracy is lifted. 

 

 

Fig. 6.1: Schematic diagram of the Multi-molecular transistor (MMT). 

 

 

The Hamiltonian for the BMT system can be written as  

𝐻 = 𝐻𝐿 + 𝐻𝑄𝐷𝐷 + 𝐻𝑆 + 𝐻𝐷𝑆 + 𝐻𝑇 + 𝐻𝑡 ,                                                   (6.1) 

Here, the first term represents the lead Hamiltonian (𝐻𝐿), 𝐿 = 𝑆 referring to the source and 

𝐿 = 𝐷  to the drain. The second term represents the Hamiltonian of the two-QD systems 

(𝐻𝑄𝐷𝐷) which we call a QD dimer (QDD). The insulating substrate Hamiltonian is described 

by 𝐻𝑆 . The interaction between the substrate phonons and the phonons of the QDD is 
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described by 𝐻𝐷𝑆.   The electronic hopping from the QD1 to QD2 is described by the 

Hamiltonian 𝐻𝑇, and the last term of (6.1) describes the tunnelling of electrons from S to QD 

1 and  from QD2 to D. The different terms of (6.1) are given by   

𝐻𝐿  = ∑𝜀𝑘
𝑘𝜎

(𝑐𝑘𝑆,𝜎
† 𝑐𝑘𝑆,𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑘𝐷,𝜎),                                             (6.2) 

𝐻QDD =∑(𝜀𝑖 − 𝑒𝑉𝑔)𝑛𝑖,𝜎

2

𝑖=1,
𝜎

+ 𝑈∑𝑛𝑖,𝜎𝑛𝑖,−𝜎

2

𝑖=1

+ ℏ𝜔0∑𝑏𝑖
†𝑏𝑖

2

𝑖=1

+ ℏ𝜔0∑𝑔𝑖 𝑛𝑖,𝜎(𝑏𝑖
† + 𝑏𝑖) 

2

𝑖=1

+
1

2
∑𝑔𝜇𝐵𝐵𝑆𝑧

2

𝑖=1

,                                                                                                      (6.3) 

𝐻𝑆 =∑ℏ𝜔𝑗𝑏𝑗
†𝑏𝑗

𝑁

𝑗=1

,                                                                     (6.4) 

           𝐻𝑡 = 𝑉𝑟∑(𝑐𝑘𝑆,𝜎
† 𝑐1𝜎 + 𝑐1𝜎

† 𝑐𝑘𝑆,𝜎)

𝑘𝜎

+ 𝑉𝑟∑(𝑐𝑘𝐷,𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐𝑘𝐷,𝜎)

𝑘𝜎

.           (6.5𝑎)  

                 

𝐻𝐷𝑆 =∑∑𝛽𝑗𝑥𝑖𝑥𝑗

𝑁

𝑗=1

2

𝑖=1

=∑𝛽𝑗 (𝑥1 + 𝑥2)𝑥𝑗

𝑁

𝑗=1

,                                   (6.5𝑏) 

                      𝐻𝑇 = 𝑡12∑(𝑐1𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐1𝜎)

𝜎

                                                       (6.6) 

 

In 𝐻𝐿, 𝑛𝒌𝑆(𝐷),𝜎(= 𝑐𝒌𝑆(𝐷),𝜎
† 𝑐𝒌𝑆(𝐷),𝜎)  is the number operator for the lead (S, D) 

electrons, 𝑐𝒌𝑆(𝐷),𝜎
†  (𝑐𝒌𝑆(𝐷),𝜎) being the creation (annihilation) operator for an S(D) electron 

with wave vector 𝒌, spin 𝜎 and energy 𝜀𝑘. In 𝐻QDD, 𝑛𝑖,𝜎(= 𝑐𝑖,𝜎
† 𝑐𝑖,𝜎) denotes is the number 

operator for the QD electrons, 𝑐𝑖,𝜎
†  (𝑐𝑖,𝜎) being the creation (annihilation) operator for the 

electron of the 𝑖 th QD (𝑖 = 1, 2)  with energy 𝜀𝑖 ,  𝑉𝑔  is the gate voltage, 𝑈  is the onsite 

Coulomb interaction, 𝑏𝑖
†(𝑏𝑖) denotes the  creation (annihilation) operator for the QD phonon 

of  frequency 𝜔0,  𝑔𝑖 gives the on-site e-p interaction coefficient for the 𝑖 −th QD, 𝐵 is the 

external magnetic field applied in the z-direction, 𝑆𝑧 is the z-component of spin of the QD 

electron, 𝑔 is the gryo-magnetic ratio and 𝜇𝐵 is the Bohr magneton. In 𝐻𝑇, 𝑉𝑟 gives a measure 



                                    Ch.6: Quantum transport in a bi-molecular transistor 

 
 

117 

of the strength of electron tunnelling from the lead to the QD and vice versa. In 𝐻𝑆, 𝑏𝑗
†(𝑏𝑗) 

denotes the creation (annihilation) operator for the 𝑗 −th substrate phonon with frequency 𝜔𝑗. 

In 𝐻𝐷𝑆, 𝛽𝑗  gives the coupling strength for the interaction of the QD phonons with 𝑗 −th 

substrate phonon. In 𝐻𝑡, 𝑡12 is the coefficient for hopping between the two quantum dots. 

 

   𝐻𝑆 and 𝐻𝐷𝑆 can be combined together and may be written as  

𝐻𝑆 + 𝐻𝐷𝑆 ≡∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2𝑥𝑗
2 ]

𝑁

𝑗=1

+∑∑𝛽𝑗  𝑥𝑖𝑥𝑗

𝑁

𝑗=1

2

𝑖=1

 ,                            (6.7) 

where we have written the phonon energy in the form of Harmonic oscillator Hamiltonian as, 

∑ℏ𝜔𝑗𝑏𝑗
†𝑏𝑗

𝑁

𝑗=1

=∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2𝑥𝑗
2 ]

𝑁

𝑗=1

.                                      (6.8) 

In Eq. (6.7), the coupling between the QDD phonons and the substrate phonons can be 

decoupled by the following transformations: 

                                                            𝑥̃𝑗 = 𝑥𝑗 +
𝛽𝑗

𝑚𝑗𝜔𝑗
2 (∑𝑥𝑖

2

𝑖=1

),      

 𝑝𝑗 = −𝑖ℏ
𝜕

𝜕𝑥̃𝑗
   .                                                                 (6.9) 

Using these transformations, we may write the Eq. (6.7) as, 

𝐻𝑆 + 𝐻𝐷𝑆 =∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2 (𝑥̃𝑗 −
𝛽𝑗 ∑ 𝑥𝑖

2
𝑖=1

𝑚𝑗𝜔𝑗
2 )

2

]

𝑁

𝑗=1

+∑∑𝛽𝑗 (𝑥̃𝑗 −
𝛽𝑗𝑥𝑖

𝑚𝑗𝜔𝑗
2) 𝑥𝑖

𝑁

𝑗=1

2

𝑖=1

   

                  = ∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2𝑥̃𝑗
2 −

𝛽𝑗
2∑ 𝑥𝑖

2
𝑖

2𝑚𝑗𝜔𝑗
2 ]

𝑁

𝑗=1

.                                                                 (6.10) 

Combining the phonon energy for the QDD with the Eq. (6.10), we may write the combined 

terms as, 

∑[
𝑝𝑖
2

2𝑚𝑖
+
1

2
𝑚𝑖𝜔𝑖

2𝑥𝑖
2] +

2

𝑖=1

∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2𝑥̃𝑗
2 −

𝛽𝑗
2∑ 𝑥𝑖

2
𝑖

2𝑚𝑗𝜔𝑗
2 ]

𝑁

𝑗=1

 

=∑[
𝑝𝑖
2

2𝑚𝑖
+
1

2
𝑚𝑖𝜔̃𝑖

2𝑥𝑖
2] +

2

𝑖=1

∑[
𝑝𝑗
2

2𝑚𝑗
+ 
1

2
𝑚𝑗𝜔𝑗

2𝑥̃𝑗
2]

𝑁

𝑗=1

                      (6.11) 
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Therefore, the transformed phonon frequencies become modified and the renormalized 

frequency becomes,  

𝜔̃𝑖 = [𝜔𝑖
2 − ∆𝜔2]

1
2⁄  ,                                                    (6.12) 

where, 

∆𝜔2 =∑
𝛽𝑗
2

𝑚𝑖𝑚𝑗𝜔𝑗
2

𝑁

𝑗=1

 .                                                      (6.13) 

In the large 𝑁 limit, ∆𝜔2 can be cast in an integral form through the spectral density function 

𝐽(𝜔) of the bath-phonon over 𝜔  as, 

                                     ∆𝜔2 = 2∫ (
𝐽(𝜔)

𝑚0𝜔
)

∞

0

 𝑑𝜔,                                                   (6.14) 

 where 

𝐽(𝜔) =∑(
𝛽𝑖
2

2𝑚𝑖𝜔𝑖
)

𝑁

𝑖=1

𝛿(𝜔 − 𝜔𝑖)                                           (6.15) 

 

which at large-N limit can be written in the Lorentz-Drude form as  

𝐽(𝜔) =   
2𝑚0𝛾𝜔

[1 + (𝜔 𝜔𝑐⁄ )2]
 ,                                                   (6.16) 

where 𝛾  is the rate of quantum dissipation and 𝜔𝑐  is the cut-off frequency. As 𝜔𝑐  is 

considerably larger than other SMT frequencies, the deviation in the QD phonon frequency 

essentially becomes: 𝛥𝜔2 = 2𝜋𝛾𝜔𝑐.  With the modified phonon frequency, the transformed 

Hamiltonian becomes, 

𝐻̃ =∑𝜀𝑘
𝑘𝜎

(𝑐𝑘𝑆,𝜎
† 𝑐𝑘𝑆,𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑘𝐷,𝜎) +∑𝜀𝑖̃𝑛𝑖,𝜎

2

𝑖=1,
𝜎

+ 𝑈∑𝑛𝑖,𝜎𝑛𝑖,−𝜎

2

𝑖=1

+∑ℏ𝜔̃𝑖 𝑏𝑖
†𝑏𝑖

2

𝑖=1

+ 𝑔𝜇𝐵𝐵𝑆𝑧 +∑𝑔𝑖 𝑛𝑖,𝜎(𝑏𝑖
† + 𝑏𝑖) ℏ𝜔̃𝑖

2

𝑖=1

+ 𝑉𝑟∑(𝑐𝑘𝑆,𝜎
† 𝑐1𝜎 + 𝑐1𝜎

† 𝑐𝑘𝑆,𝜎)

𝑘𝜎

+ 𝑡12∑(𝑐1𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐1𝜎)

𝜎

        

+ 𝑉𝑟∑(𝑐𝑘𝐷,𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐𝑘𝐷,𝜎)

𝑘𝜎

.                                                                          (6.17) 
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Now in order to decouple the e-p interaction in Eq. (6.17), the Lang-Firsov (LF) 

transformation [51] is applied. The generator for the LF transformation is 

𝑆 =∑𝑔𝑖(𝑏𝑖
† − 𝑏𝑖) 𝑛𝑖

2

𝑖=1

 .                                                      (6.18) 

where  𝑛𝑖 = ∑ 𝑛𝑖,𝜎𝜎 .  Using the Baker-Campbell-Hausdorff (BCH) formula we calculate the 

transformed Hamiltonian as, 

𝐻̃̃ = 𝑒𝑆𝐻𝑒−𝑆 = 𝐻̃ + [𝑆, 𝐻̃] +
1

2!
[𝑆, [𝑆, 𝐻̃]] + ⋯                             (6.19)  

Thus, we obtain, 

     𝐻̃̃ = ∑𝜀𝑘
𝑘𝜎

(𝑐𝑘𝑆,𝜎
† 𝑐𝑘𝑆,𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑘𝐷,𝜎) +∑𝜀𝑖̃ 𝑛𝑖,𝜎

2

𝑖=1,
𝜎

+ 𝑈̃∑𝑛𝑖,𝜎𝑛𝑖,−𝜎

2

𝑖=1

+∑ℏ𝜔̃𝑖 𝑏𝑖
†𝑏𝑖

2

𝑖=1

 

                      + 𝑉̃𝑟∑(𝑐𝑘𝑆,𝜎
† 𝑐1𝜎 + 𝑐1𝜎

† 𝑐𝑘𝑆,𝜎)

𝑘𝜎

+ 𝑡̃∑(𝑐1𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐1𝜎)

𝜎

+ 𝑉̃𝑟∑(𝑐𝑘𝐷,𝜎
† 𝑐2𝜎 + 𝑐2𝜎

† 𝑐𝑘𝐷,𝜎)

𝑘𝜎

,                                                                         (6.20) 

where  

𝜀𝑖̃ = 𝜀𝑖 − 𝑒𝑉𝑔 − ℏ𝜔̃0𝑔𝑖
2 − 𝜇𝐵𝐵𝜎 ,                                                                                                 (6.21) 

𝑈̃ = 𝑈 − 2ℏ𝜔̃0𝑔𝑖
2,                                                                                                                            (6.22)  

𝑉̃𝑟 = 𝑉𝑟𝑒
−𝑔𝑖(𝑏𝑖

†−𝑏𝑖),                                                                                                                          (6.23) 

𝑡̃ = 𝑡12𝑒
[𝑔1(𝑏1

†−𝑏1)−𝑔2(𝑏2
†−𝑏2)] .                                                                                                    (6.24)  

The tunnelling current in a molecular transistor is defined as, 

𝐽𝑆(𝐷) = 〈
𝑑𝑄

𝑑𝑡
〉 = 〈

𝑑(−𝑒𝑁𝑆(𝐷))

𝑑𝑡
〉 = −𝑖𝑒 〈[𝐻̃̃, 𝑁𝑆(𝐷)]〉                                  (6.25) 

where Q is the total charge transported and 𝑁𝑠(𝐷) = ∑ 𝑐𝑘𝑆(𝐷),𝜎
† 𝑐𝑘𝑆(𝐷),𝜎𝑘𝜎   represents the total 

number of particles in the source(drain). 

Using the transformed Hamiltonian of Eq. (6.20) we obtain the commutation relation, 
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[𝐻̃̃, 𝑁𝑆] =∑𝑉̃𝑟(𝑐1,𝜎
† 𝑐𝑘𝑆,𝜎 − 𝑐𝑘𝑆,𝜎

† 𝑐1,𝜎)

𝑘𝜎

,                                      (6.26) 

and, 

 [𝐻̃̃, 𝑁𝐷] = 𝑖𝑒∑𝑉̃𝑟(𝑐2,𝜎
† 𝑐𝑘𝐷,𝜎 − 𝑐𝑘𝐷,𝜎

† 𝑐2,𝜎)

𝑘𝜎

.                                  (6.27) 

Using the results of the commutation relations we calculate the tunnelling current as the 

following: 

The current from the source to the first QD is denoted as, 

𝐽𝑆 = −𝑖𝑒∑𝑉̃𝑟
̅  [〈𝑐1,𝜎

† 𝑐𝑘𝑆,𝜎〉 − 〈𝑐𝑘𝑆,𝜎
† 𝑐1,𝜎〉]

𝑘𝜎

.                              (6.28) 

The current from the first QD to the second QD is denoted as, 

𝐽12 = −𝑖𝑒∑𝑉̃𝑟
̅  [〈𝑐1,𝜎

† 𝑐2,𝜎〉 − 〈𝑐2,𝜎
† 𝑐1𝜎〉]

𝑘𝜎

.                               (6.29) 

The current from the drain to the second QD is found as, 

𝐽𝐷 = −𝑖𝑒∑𝑉̃𝑟
̅  [〈𝑐2,𝜎

† 𝑐𝑘𝐷,𝜎〉 − 〈𝑐𝑘𝐷,𝜎
† 𝑐2,𝜎〉]

𝑘𝜎

.                             (6.30) 

Here, 𝑉̃𝑟
̅ = 〈𝑉̃𝑟〉, is the expectation value of 𝑉̃𝑟 with respect to the phonon state. 

The Keldysh lesser (greater) Green function 𝐺𝑑𝜎,𝑘𝑆(𝐷)
<(>)

and the retarded (𝑟) and the advanced 

(𝑎) Green’s functions are calculated to find the transport current for the BMT. By definition, 

the retarded (advanced) Green function for the coupling of the first (second) QD to the source 

(drain) is calculated as, 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)

 (𝑡, 𝑡′) = ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′)}|0〉 .                (6.31) 

Here, ‘d’ denotes the QDs and using the LFT and the BCH formula the electronic operator 

𝑐𝑖𝜎 transforms as  

𝑐̃𝑖𝜎(𝑡) = 𝑐𝑖𝜎(𝑡)𝑒
−𝑔𝑖(𝑏𝑖

†−𝑏𝑖),                                                (6.32) 

and, therefore we may write the retarded and advanced Green functions for the QDs as 

𝐺𝑑𝜎,𝑑𝜎
𝑟(𝑎)

 (𝑡, 𝑡′) = ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐̃𝑑,𝜎
† (𝑡′)}|0〉 .                        (6.33) 

The Green function for the leads is defined as, 
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𝑔𝑘𝑆(𝐷)
𝑟(𝑎)

 (𝑡, 𝑡′) = ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈{𝑐𝑘𝑆(𝐷)(𝑡), 𝑐𝑘𝑆(𝐷)
† (𝑡′)}〉 ,                        (6.34) 

and, the lesser and greater Green functions for the leads are defined as, 

                                                 𝑔𝑘𝑆
<(>)(𝑡 − 𝑡′) = 〈𝑐𝑘𝑆(𝐷)

† (𝑡′)𝑐𝑘𝑆(𝐷)(𝑡)〉                                      (6.35) 

Following the work of Chen et al. [28], the tunnelling current through BMT can be calculated 

using the Keldysh non-eqilibrium Green function (KNGF) technique as, 

𝐽𝜎 =
𝐽𝑆 − 𝐽𝐷
2

=
𝑒

ℏ
 ∫
𝑑𝜔

2𝜋
 𝑅𝑒 {∑ < 𝑉̃𝑟 > 𝐺1𝜎,𝑘𝑆𝜎

< (𝜔)

𝑘

−∑ < 𝑉̃𝑟 > 𝐺2𝜎,𝑘𝐷𝜎
< (𝜔)

𝑘

} .    (6.36) 

Using the equation of motion method, we may calculate the relation between the Green 

functions: 

−
𝜕

𝜕𝑡′
[𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′)] = −

𝜕

𝜕𝑡′
[∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐𝑘𝑆(𝐷),𝜎

† (𝑡′)}|0〉] 

                          = −𝑖[∓𝑖(∓)𝛿(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′)}|0〉]

+ (−𝑖) [∓𝑖𝜃(±𝑡 ∓ 𝑡′) 〈0 |{𝑐̃𝑑𝜎(𝑡),
𝜕

𝜕𝑡′
(𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′))}| 0〉]                      (6.37) 

Using the Ehrenfest’s theorem we may write, 

𝜕

𝜕𝑡′
(𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′)) = −

𝑖

ℏ
[𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′), 𝐻̃̃]  .                                 (6.38) 

Considering the transformed Hamiltonian of Eq. (6.20), we calculate the commutation 

relation of Eq. (6.39) which gives (considering ℏ = 1), 

[𝑐𝑘𝑆(𝐷),𝜎
† (𝑡′), 𝐻̃̃] = −𝜀𝑘𝑐𝑘𝑆(𝐷),𝜎

† (𝑡′) − 𝑉̃𝑟𝑐̃𝑑,𝜎
† (𝑡′)                           (6.39) 

Using Eqs. (6.35) and (6.36), on Eq. (6.34) we obtain, 

−𝑖
𝜕

𝜕𝑡′
[𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′)]

= 𝜀𝑘[∓𝑖𝜃(±𝑡 ∓ 𝑡
′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐𝑘𝑆(𝐷),𝜎

† (𝑡′)}|0〉]      

+ 𝑉̃𝑟[∓𝑖 𝜃(±𝑡 ∓ 𝑡
′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐̃𝑑,𝜎

† (𝑡′)}|0〉] 
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Using Eq. (6.26) and (6.28), we may write this as, 

(−𝑖
𝜕

𝜕𝑡′
− 𝜀𝑘)𝐺𝑑𝜎,𝑘𝑆(𝐷)

𝑟(𝑎)  (𝑡, 𝑡′) = 𝑉̃𝑟𝐺𝑑𝜎,𝑑𝜎
𝑟(𝑎)  (𝑡, 𝑡′)  .                               (6.40) 

Similarly we calculate the relation between the lead and QD coupling Green’s function 

(𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)

) and the QD’s Green’s function (𝐺𝑑𝜎,𝑑𝜎
𝑟(𝑎) ) and the Green function for the leads 

(𝑔𝑘𝑆(𝐷)
𝑟(𝑎) ) as, 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′) = 𝑉̃𝑟𝐺𝑑𝜎,𝑑𝜎

𝑟(𝑎)   (𝑡, 𝑡′)𝑔𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′)                                 (6.41) 

Eq. (6.41) is known as the Dyson’s equation at equilibrium which contains the structure of 

𝐶(𝜏) = 𝐴(𝜏)𝐵(𝜏).  Using the analytical continuation rule we may write this explicitly 

following Langreth theorem as, 

𝐶(𝑡, 𝑡′) = ∫𝑑𝑡1𝐴(𝑡, 𝑡1)𝐵(𝑡1, 𝑡
′)

𝑙

𝐶

                                            (6.42) 

To solve this integral we modify the Keldysh contour in such way that 𝑡 is on the first half of 

the contour (in the outward direction) and 𝑡′ is on the latter half (on the way back). 

 

Fig. 6.2: Deformation of Keldysh Contour 

 

For the new configuration of the Keldysh contour we can express Eq. (6.42) as, 



                                    Ch.6: Quantum transport in a bi-molecular transistor 

 
 

123 

𝐶<(𝑡, 𝑡′) = ∫𝑑𝑡1𝐴(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′)

𝑙

𝐶1

+ ∫𝑑𝑡1𝐴
<(𝑡, 𝑡1)𝐵(𝑡1, 𝑡

′)

𝑙

𝐶2

.                 (6.43) 

For the integration on the contour 𝐶1, the integration variable 𝑡1 is confined on the contour 

and it must be less than 𝑡′. Therefore we may split the first term of the Eq. (6.43) as, 

∫𝑑𝑡1𝐴(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′)

𝑙

𝐶1

= ∫ 𝑑𝑡𝐴>(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′) 

𝑡1

−∞

+ ∫ 𝑑𝑡𝐴<(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′)

∞

𝑡1

              

= ∫ 𝑑𝑡𝐴𝑟(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′) 

∞

−∞

                                                   (6.44) 

where we have used the definition of the retarded function of Eq. (6.28) and here 𝐴𝑟(𝑎) 

represent the retarded(advanced) function. In the similar way, we may split the second term 

of the Eq. (6.43) and obtain, 

∫𝑑𝑡1𝐴
<(𝑡, 𝑡1)𝐵(𝑡1, 𝑡

′)

𝑙

𝐶2

= ∫ 𝑑𝑡𝐴<(𝑡, 𝑡1)𝐵
𝑎(𝑡1, 𝑡

′)

∞

−∞

                    (6.45) 

Combining Eqs. (6.44) and Eq. (6.45), we may write Eq. (6.43) as, 

𝐶<(𝑡, 𝑡′) = ∫ 𝑑𝑡[𝐴𝑟(𝑡, 𝑡1)𝐵
<(𝑡1, 𝑡

′) + 𝐴<(𝑡, 𝑡1)𝐵
𝑎(𝑡1, 𝑡

′)]

∞

−∞

.                  (6.46) 

Therefore, in the form of Eq. (6.46), we may write the Dyson equation of Eq. (6.41) as, 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
<  (𝑡, 𝑡′) = ∫𝑑𝑡1 𝑉̃𝑟[𝐺𝑑𝜎,𝑑𝜎

𝑟 (𝑡, 𝑡′)𝑔𝑘𝑆(𝐷)
<  (𝑡, 𝑡′) + 𝐺𝑑𝜎,𝑑𝜎

< (𝑡, 𝑡′)𝑔𝑘𝑆(𝐷)
𝑎  (𝑡, 𝑡′)]. (6.47) 

We define 𝐺𝑑𝑑
< (𝜔) and  𝐺𝑑𝑑

> (𝜔)  as the Fourier Transforms of 𝐺𝑑𝑑
< (𝜏 = 𝑡 − 𝑡′)  =

𝑖〈0|𝑐̃𝑑𝜎
† (𝑡′)𝑐̃𝑑𝜎(𝑡)|0〉  and  𝐺𝑑𝑑

> (𝑡 − 𝑡′) = 𝑖〈0|𝑐̃𝑑𝜎(𝑡) 𝑐̃𝑑𝜎
† (𝑡′)|0〉, which can be written for the 

QD electrons as follows, 

𝐺𝑑𝑑
< (𝜏) = 𝑖⟨0|𝑐̃𝑑

†(0)𝑐̃𝑑(𝜏)|0⟩ = 𝑖⟨0|𝑐𝑑
†(0)𝑐𝑑(𝜏)|0⟩𝑒𝑙

〈𝜒̂†𝜒 ̂〉𝑝ℎ                    (6.48) 

 

𝐺𝑑𝑑
> (𝜏) = −𝑖⟨0|𝑐̃𝑑(0)𝑐̃𝑑

†(𝜏)|0⟩ = −𝑖⟨0|𝑐𝑑(0)𝑐𝑑
†(𝜏)|0⟩

𝑒𝑙
〈𝜒̂†𝜒 ̂〉𝑝ℎ                 (6.49) 
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where 

〈𝜒̂†𝜒 ̂〉𝑝ℎ = 〈𝑒
−𝑔𝑖(𝑏𝑖

†−𝑏𝑖)𝑒−𝑔𝑖(𝑏𝑖
†−𝑏𝑖)〉                                        (6.50) 

To calculate < 𝑉̃𝑟 >, we consider the ‘n’ phonon state as, 

|𝑛⟩ =
(𝑎†)𝑛|0⟩

√𝑛!
   .                                                           (6.51) 

Using this phonon state we calculate the following quantities. 

< 𝑉̃𝑟 >= 𝑉𝑟 〈𝑒
−𝑔𝑖(𝑏𝑖

†−𝑏𝑖)〉 

〈𝑒−𝑔𝑖(𝑏𝑖
†−𝑏𝑖)〉 =

⟨𝑛|∑ 𝑒−2𝑛𝛽ℏ𝜔̃0∞
𝑛=0 𝑒−𝑔𝑖(𝑏𝑖

†−𝑏𝑖)|𝑛⟩

⟨𝑛|∑ 𝑒−2𝑛𝛽ℏ𝜔̃0∞
𝑛=0 |𝑛⟩

                        

=
 ⟨𝑛| ∑ 𝑒−2𝑛𝛽ℏ𝜔̃0∞

𝑛=0 𝑒−𝑔𝑖𝑏𝑖
†
𝑒𝑔𝑖𝑏𝑖𝑒−

𝑔𝑖
2

2 |𝑛⟩

⟨𝑛|∑ 𝑒−2𝑛𝛽ℏ𝜔̃0∞
𝑛=0 |𝑛⟩

.                           (6.52) 

Using the n-th phonon state of Eq. (6.51) we calculate, 

⟨𝑛 |𝑒−𝑔𝑖𝑏𝑖
†
𝑒𝑔𝑖𝑏𝑖| 𝑛⟩ = ∑(−1)𝑚

𝑛!

𝑚! (𝑛 − 𝑚)!
(𝑔1)

2𝑚

𝑛

𝑚=0

= ℒ𝑛(𝑔1
2) ,               (6.53) 

where ′ℒ𝑛′ represents the Laguerre polynomial.  

∑𝑒−2𝑛𝛽ℏ𝜔̃0
∞

𝑛=0

=
1

1 − 𝑒−2𝛽ℏ𝜔̃0
=

𝑒2𝛽ℏ𝜔̃0

𝑒2𝛽ℏ𝜔̃0 − 1
= 𝑒2𝛽ℏ𝜔̃0  𝑁𝑝ℎ ,                (6.54) 

where 𝑁𝑝ℎ =
1

𝑒2𝛽ℏ𝜔̃0−1
 is the number of phonons. Using these results we obtain, 

〈𝑒−𝑔𝑖(𝑏𝑖
†−𝑏𝑖)〉 =

𝑒−
𝑔𝑖
2

2 ∑ ℒ𝑛(𝑔1
2)∞

𝑛=0 𝑒−2𝑛𝛽ℏ𝜔̃0

𝑒2𝛽ℏ𝜔̃0 𝑁𝑝ℎ
 

Considering, 𝑔1
2 = 𝑥  and   𝑒−2𝛽ℏ𝜔̃0 = 𝑦, we have 

                       ∑ℒ𝑛(𝑔1
2)

∞

𝑛=0

𝑒−2𝑛𝛽ℏ𝜔̃0 = ∑ℒ𝑛(𝑥)

∞

𝑛=0

𝑦𝑛                                   
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 =
𝑒
−
𝑥𝑦

(1−𝑦)

(1 − 𝑦)
=
𝑒
−𝑔1

2 
𝑒−2𝛽ℏ𝜔̃0

(1−𝑒−2𝛽ℏ𝜔̃0)

(1 − 𝑒−2𝛽ℏ𝜔̃0)
 

=
𝑒
−𝑔1

2 
1

(𝑒2𝛽ℏ𝜔̃0−1)

(1 − 𝑒−2𝛽ℏ𝜔̃0)
= 𝑒−𝑔1

2 𝑁𝑝ℎ ∙
1

(1 − 𝑒−2𝛽ℏ𝜔̃0)
                             (6.55) 

Therefore we may write, 

〈𝑒−𝑔𝑖(𝑏𝑖
†−𝑏𝑖)〉 = 𝑒−

𝑔𝑖
2

2 𝑒−𝑔1
2 𝑁𝑝ℎ ∙

1

(1 − 𝑒−2𝛽ℏ𝜔̃0)

1

𝑒2𝛽ℏ𝜔̃0 𝑁𝑝ℎ
 

          = 𝑒−𝑔1
2 (𝑁𝑝ℎ+

1
2
) ∙

1

(𝑒2𝛽ℏ𝜔̃0 − 1)
∙
1

𝑁𝑝ℎ
 

= 𝑒−𝑔1
2 (𝑁𝑝ℎ+

1
2
)𝑇 ∙ 𝑁𝑝ℎ ∙

1

𝑁𝑝ℎ
     

= 𝑒−𝑔1
2 (𝑁𝑝ℎ+

1
2
).                                                                        (6.56) 

At temperature 𝑇 → 0, number of phonons 𝑁𝑝ℎ = 0. Therefore we may write, 

〈𝑒−𝑔𝑖(𝑏𝑖
†−𝑏𝑖)〉 = 𝑒−

𝑔1
2

2
 .                                                              (6.57) 

Another term we need to calculate is the phonon average with respect to the n-phonon state to 

evaluate the Green functions of Eqs. (6.48) and (6.49). Let, 

ℱ(𝑡, 𝑡′) = 〈𝜒̂†𝜒 ̂〉𝑝ℎ 

=
⟨𝑛| ∑ 𝑒−𝛽ℏ𝜔̃0∑ 𝑏𝑖

†𝑏𝑖
2
𝑖∞

𝑛=0 𝜒̂†(𝑡)𝜒̂(𝑡′)|𝑛⟩

⟨𝑛|∑ 𝑒−𝛽ℏ𝜔̃0∑ 𝑏𝑖
†𝑏𝑖

2
𝑖∞

𝑛=0 |𝑛⟩
   .                              (6.58) 

Using the results of Eqs. (6.50) and (6.52), we obtain 

ℱ(𝑡, 𝑡′) = 𝑒−𝑔𝑖
2 (2𝑁𝑝ℎ+1)𝑒𝑧 cos𝜃                                         (6.59) 

and, 

𝑒𝑧 cos𝜃 = ∑ 𝐼𝑛(𝑧)𝑒
−𝑖𝑛ℏ𝜔̃0(𝑡− 𝑡

′)𝑒2𝑛ℏ𝜔̃0𝛽
∞

𝑛=−∞

                               (6.60) 

So, we can write 

ℱ(𝑡, 𝑡′) = 𝑒−𝑔𝑖
2 (2𝑁𝑝ℎ+1) ∑ 𝐼𝑛(𝑧)𝑒

−𝑖𝑛ℏ𝜔̃0(𝑡− 𝑡
′)𝑒2𝑛ℏ𝜔̃0𝛽

∞

𝑛=−∞
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= ∑ 𝐼𝑛(𝑧)𝑒
𝑛ℏ𝜔̃0𝛽

∞

𝑛=−∞

𝑒−𝑔𝑖
2 (2𝑁𝑝ℎ+1) ∙  𝑒−𝑖𝑛ℏ𝜔̃0(𝑡− 𝑡

′) 

= ∑ 𝐿±𝑛(𝑧)

∞

𝑛=−∞

∙  𝑒−𝑖𝑛ℏ𝜔̃0𝜏 ,                                                     (6.61) 

where, 𝑧 = 2𝑔𝑖
2[𝑁𝑝ℎ(1 + 𝑁𝑝ℎ)]

1

2  , 𝜏 = (𝑡 − 𝑡′) and  𝐼𝑛 is the nth order Modified Bessel 

function of the second kind. Here, 𝐿±𝑛(𝑧) = 𝑒𝑥𝑝 [−𝑔𝑖
2(2𝑁𝑝ℎ + 1) + (

𝑛ℏ𝜔̃0

𝑘𝐵𝑇
)] 𝐼𝑛(𝑧),  and 

L±n describes the spectral weight of the ±𝑛th phonon side band [28].  

  We may now write Eqs. (6.48) and (6.49) as 

𝐺𝑑𝑑
< (𝜏) = 𝑖⟨0|𝑐𝑑

†(0)𝑐𝑑(𝜏)|0⟩𝑒𝑙
〈𝜒̂†𝜒 ̂〉𝑝ℎ                         

  = 𝐺̃𝑑𝑑
< (𝜏) ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒𝑖𝑛ℏ𝜔̃0𝜏,                                                          (6.62) 

and, 

        𝐺𝑑𝑑
> (𝜏) = −𝑖⟨0|𝑐𝑑(0)𝑐𝑑

†(𝜏)|0⟩
𝑒𝑙
〈𝜒̂†𝜒 ̂〉𝑝ℎ                                

= 𝐺̃𝑑𝑑
> (𝜏) ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒𝑖𝑛ℏ𝜔̃0𝜏.                                                                  (6.63) 

Next, multiplying Eq. (6.40) by 𝑒𝑖(𝜖∓𝑛ℏ𝜔̃0)𝑡
′
on both sides and integrating over 𝑡′ we obtain, 

[(𝜖 ∓ 𝑛ℏ𝜔̃0) −∑𝜀𝑘𝑆
𝑘

] 𝐺̃1𝜎,𝑘𝑆
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) = 𝑉̃𝑟

̅ 𝐺̃1𝜎,1𝜎
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) 

which gives  

𝐺̃1𝜎,𝑘𝑆
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) =

𝑉̃𝑟
̅ 𝐺̃1𝜎,1𝜎

𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0)

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − ∑ 𝜀𝑘𝑆𝑘 ]
.                             (6.64) 

 

Eq. (6.64) represents the relation between the two Green functions of the source and the first 

QD, i.e.  𝐺̃1𝜎,𝑘𝑆
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) and 𝐺̃1𝜎,1𝜎

𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0). 

Similarly, we calculate the following relations, 

𝐺̃1𝜎,2𝜎
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) =

𝑡̃ 𝐺̃1𝜎,1𝜎
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0)

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘 − 𝑈̃〈𝑛𝜎〉]
+

𝑉̃𝑟
̅ 𝐺̃1𝜎,𝑘𝐷

𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0)

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘 − 𝑈̃〈𝑛𝜎〉]
 ,    (6.65) 
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and 

𝐺̃1𝜎,𝑘𝐷
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0) =

𝑉̃𝑟
̅ 𝐺̃1𝜎,2𝜎

𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0)

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘]
 .                             (6.66) 

Using Eqs. (6.65) to Eq. (6.66), we obtain 

𝐺̃𝑑𝜎,1𝜎
𝑟(𝑎) (𝜖 ∓ 𝑛ℏ𝜔̃0)

=
1

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘 − 𝑈̃〈𝑛𝜎〉 −
𝑡̃̅2

(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘 − 𝑈̃〈𝑛𝜎〉
− 𝛴̃̃𝑟(𝑎)]

    (6.67) 

where ‘d’ represents the QD (𝑑 = 1 for the first QD and 𝑑 = 2 for second QD) and using Eq. 

(6.57) we get 

𝑡̃̅ = 𝑡12 〈𝑒
[𝑔1(𝑏1

†−𝑏1)−𝑔2(𝑏2
†−𝑏2)]〉 = 𝑡12𝑒

−𝑔𝑖
2
                              (6.68) 

𝛴̃̃𝑟(𝑎) is known as the self-energy of the interaction which is calculated as, 

𝛴̃̃𝑟(𝑎) =
𝑉̃𝑟
̅𝑒−𝑔𝑖

2

[(𝜖 ∓ 𝑛ℏ𝜔̃0) − 𝜀𝑘]
 ,                                               (6.69) 

and the self-energy can be written as, 

𝛴̃̃𝑟(𝑎)(𝜖) =∧̃ (𝜖) ∓ 𝑖Γ̃(𝜖).                                                  (6.70) 

with Γ̃ = 2𝜋𝜌(0)|𝑉̃𝑟
̅ |
2
𝑒−𝑔𝑖

2
   at (𝑇 → 0). 

We can write the spectral function (SF) 𝐴(𝜀) which describes the possible energy excitation 

in terms of the Keldysh lesser and greater Green functions as 

𝐴(𝜀) = 𝑖[𝐺𝑑𝑑
𝑟 (𝜖) − 𝐺𝑑𝑑

𝑎 (𝜖)] =  𝑖[𝐺𝑑𝑑
> (𝜖) − 𝐺𝑑𝑑

< (𝜖)],                               (6.71) 

and using the Dyson equation of motion method, 𝐺̃>(<)(𝜖) can be obtained from  𝐺̃𝑑𝑑
𝑟(𝑎)(𝜖) as  

𝐺̃>(<)(𝜀) = 𝐺̃𝑑𝑑
𝑟 (𝜀) 𝛴̃>(<)(𝜀) 𝐺̃𝑑𝑑

𝑎 (𝜀).                                              (6.72) 

Substituting Eq. (6.72) in Eq. (6.71), we calculate the tunnelling current as  

𝐽𝜎 =
𝑒

2ℎ
∫𝑑𝜀 [{(𝑓𝑆(𝜀)𝛤𝑆 − 𝑓𝐷(𝜀)𝛤𝐷)} 𝐴(𝜀) + (𝛤𝑆 − 𝛤𝐷)𝐺

<(𝜀)],                 (6.73) 

The lesser and the greater self-energies are defined as,  

𝛴̃<(𝜀) = 𝑖 𝛤̃[𝑓𝑆(𝜀) + 𝑓𝐷(𝜀)],                                                (6.74) 
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                                                   𝛴̃>(𝜀) = −𝑖 𝛤̃ [2 − (𝑓𝑆(𝜀) + 𝑓𝐷(𝜀))],                                      (6.75)  

where 𝑓𝑆(𝜀) and 𝑓𝐷(𝜀) are respectively the Fermi distribution functions of S and D  and are 

given by : 𝑓𝑆,𝐷(𝜀) = (𝑒𝑥𝑝 [(𝜇𝑆,𝐷 − 𝜀)/𝑘𝐵𝑇] + 1 )
−1

  ,  𝜇𝑆  and 𝜇𝐷   being the chemical 

potentials of S and D, and related to the bias-voltage (𝑉𝑏) and the mid-voltage (𝑉𝑚) as  

 

𝑒𝑉𝑏 = (𝜇𝑆 − 𝜇𝐷),                                                           (6.76) 

𝑒𝑉𝑚 =
(𝜇𝑆 + 𝜇𝐷)

2
,                                                          (6.77) 

 

 𝛤̃ =  𝛤𝑒−𝑔𝑖
2(2𝑁𝑝ℎ+1)  with 𝛤 = (𝛤𝑆 + 𝛤𝐷)/2 ,  𝛤𝑆  and 𝛤𝐷  being defined as:  𝛤𝑆,𝐷 =

2𝜋𝜌𝑆,𝐷|𝑉̃𝑟
̅|
2
𝑒−𝑔𝑖

2(2𝑁𝑝ℎ+1) , where  𝜌𝑆,𝐷  is the density of states of the leads and 𝑁𝑝ℎ  is the 

phonon distribution given by 𝑁𝑝ℎ = [𝑒𝑥𝑝(ℏ 𝜔̃0 𝑘𝐵𝑇⁄ ) − 1]−1. 

  We treat the onsite Coulomb interaction strength at the Hartree-Fock mean-field level and 

evaluate numerically the self-energy self-consistently and hence the tunnelling current 𝐽𝜎 . 

Next we calculate the total differential conductance 𝐺  which is defined as 

𝐺 =
𝑑𝐽𝜎
𝑑𝑉𝑏

.                                                                       (6.78) 

and the spin-polarization parameter which is defined as 

𝑃𝜎,−𝜎 =
(𝐽𝜎 − 𝐽−𝜎)

(𝐽𝜎 + 𝐽−𝜎)
 .                                                            (6.79) 

 

6.3 Numerical Results 

 
  We consider symmetric metallic leads. We also consider that as two QDs have the same EPI 

strength i.e., 𝑔1 = 𝑔2 = 𝑔. All the energies are measured in units of the QDs’ phonon energy 

i.e., we consider ℏ𝜔0 = 1.  We mostly consider the cut-off frequency 𝜔𝑐 = 3, the phonon 

dissipation 𝛾 = 0.02, onsite Coulomb correlation 𝑈 = 5 and the gate voltage 𝑒𝑉𝑔 = 0. The 

main aim of this work is to study the changes in the spectral function (SF), tunnelling current 

(𝐽𝜎) and the differential conductance (𝐺) due to the incorporation of one extra QD in series 

with the already existing QD in the central region of the single molecular transistor.  In Fig. 
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6.3, the variation of the renormalized SF,  𝐴(𝜔)/𝐴0 is plotted with respect to 𝜔 for different 

values of the hopping parameter 𝑡12. It is observed that as 𝑡12 increases, the peak height in the 

SF increases. For each peak, there is a sub-peak and as 𝑡12 increases the sub-peaks become 

more prominent. These sub-peaks carry the significance of the second QD.  

 

 

Fig. 6.2:  The spectral function (𝐴(𝜔)/𝐴0) with respect to 𝜔  for different values of the 

tunnelling coefficient 𝑡12. 

 

 

 

 Fig.6.4: The spectral function (𝐴(𝜔)/𝐴0) with respect to 𝜔 at different temperature (𝐾𝐵𝑇). 
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Fig. 6.5: The spectral function (𝐴(𝜔)/𝐴0) with respect to 𝜔 for different magnetic fields(𝐵). 

 

  In Figs. 6.4 and 6.5, the variations of SF with 𝜔  have been studied. In Figs. 6.4, results have 

been obtained at different temperature while in Fig. 6.5, at different magnetic field. Fig. 6.4 

shows that as temperature increases, the number of phonon side-bands and the spectral peak 

heights increase. The appearance of the side-peaks is due to the phonon excitations, as 

explained in Ref. [27].  

 

  

 Fig. 6.6:  The spectral function (a)(𝐴↑(𝜔)/𝐴0) and (b) (𝐴↓(𝜔)/𝐴0) with respect to 𝜔 for 

different magnetic field (𝐵). 
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The inset in Fig. 6.5 is plotted in the absence of the magnetic field. Though SMT exhibits 

only one peak, the double-QD structure in BMT splits the SMT peak into two peaks. As the 

magnetic field increases, the peaks in SF move towards right and as 𝐵 increases, the peak 

heights increase. This behaviour of SF exhibits the spin-filtering effect due to the application 

of the magnetic field 𝐵.  

  To see how the spin filtering effect changes SF, we plot in Fig. 6.6, the variations of the 

spin-resolved SF, 𝐴↑(𝜔) and 𝐴↓(𝜔) with 𝜔  for two values of 𝐵. The figures show some 

interesting behaviour. For the spin-up SF, the peaks shift to the left (negative 𝜔 side) as B 

increases, whereas, for the spin-down SF, the peaks shift towards right. Also, the peaks are 

higher for A↓(ω). With increasing B, the spin-up peaks decrease in height, though for the 

down spin, the SF peaks increase with B. The multi-molecular feature of BMT again shows 

up through the appearance of the extra sub-peak with each major peak. Thus the number of 

peaks for BMT is more than a corresponding SMT system. 

    In Fig. 6.7(a), we study the variations of the spin-current 𝐽𝜎 with respect to the tunnelling 

or QD coupling constant 𝑡12 at different temperatures. At low temperature, as the coupling 

between the two QDs increases, the tunnelling current increases (if t12 is very large). As T 

increases, the rate of increase of the tunnelling current with t12 decreases. Above a certain T, 

the current decreases with increasing t12. The reason for this behaviour can be explained 

from the Fermi distribution (FD) function of the electrons. When 𝑇 is small, the Fermi level 

in the metallic leads and the QDs are at comparable energy levels, so the electron can 

transport from S to D through the QDs. In the low-temperature limit, there is a cross-over 

region where the Jσ value is small for low  t12. This may be because when  t12 and T are both  

low, the electron does not get sufficient energy to hop from one QD to another. But as T 

increases, the energy levels shift and the tunnelling current increases even for low t12, or else 

if the t12 is sufficiently high the current is much higher even at low temperature T. 

  To study the effect of the magnetic field on the current density 𝐽𝜎 , we plot Fig. 6.7 (b). As 

the magnetic field 𝐵 increases, the spin-splitting of the energy levels in the QDs increases. 

The energy level due to the spin-up electron goes down and the energy level for the spin-

down electron goes up. Therefore, as 𝐵 is increased, the tunnelling current decreases. This 

behaviour of BMT is similar to that of SMT. But an interesting behaviour is found for the 

BMT in the low temperature regime. Here, we observe a competing effect of 𝑇 and 𝐵 on 
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current. As B increases, the current Jσ reduces if T is sufficiently high. But if T is low, Jσ 

increases initially, but after a certain value of B, Jσ reduces again. It is observed from Figs. 

6.7(b) that the tunnelling current is higher in BMT that in SMT in the low temperature and 

high magnetic field regime. 

   

 Fig. 6.7: (a) Total tunnelling current (𝐽𝜎/𝐽0) with respect to the DQD tunnelling parameter 

(𝑡12) & (b) 𝐽𝜎/𝐽0 with respect to the magnetic field (𝜇𝐵𝐵) for different temperatures (𝐾𝐵𝑇). 

 

 

  

Fig. 6.8: Spin dependent tunnelling current (𝐽↑/𝐽0) & (𝐽↓/𝐽0)  with respect to the DQD 

tunnelling parameter (𝑡12) for different values of the magnetic field (𝜇𝐵𝐵) at (a) 𝐾𝐵𝑇 = 0.3 

& (b) 𝐾𝐵𝑇 = 0.8. 
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  To understand the competing effect of the temperature and the magnetic field, we plot the 

spin-resolved tunnelling currents 𝐽↑ and 𝐽↓ with respect to the QD tunnelling coefficient 𝑡12. 

Fig. 6.8 (a) is plotted for 𝐾𝐵𝑇 = 0.3 (low temperature) and Fig. 6.8 (b) is plotted for 𝐾𝐵𝑇 =

0.8 (high temperature). For 𝜇𝐵𝐵 = 0, there is no spin-filtering effect, as is understandable. 

For KBT = 0.3,  J↑ is lower than J↓, while for KBT = 0.8,  J↑ is higher than J↓. For KBT = 0.3, 

as B  increases, difference in currents between J↑  and J↓  decreases. The opposite effect is 

observed for KBT = 0.8 case i. e., the difference between J↑ and J↓ increases as B increases.  

   As the e-p interaction strength increases in each QD,  𝐽𝜎 decreases. It is well known that as 

e-p interaction increases in a QD, the polaron size decreases and the polaron mass increases 

and the polaron may get trapped in its own potential, which reduces the polaronic transport. 

Therefore, as the e-p coupling increases in the QDs, the tunnelling current also decreases. In 

Fig. 6.9 (a) and 6.9 (b), we consider 𝜇𝐵𝐵 = 1 and the variation of 𝐽𝜎 with respect to the e-p 

interaction g   is plotted for different values of temperature and phonon dissipation. 𝐽𝜎 

decreases due to the increase in the polaronic effect as 𝑔  increases. The increase in 

temperature also decreases the current as we have explained in Fig. 6.7 (b). Fig. 6.9 (b) shows 

the effect of dissipation on current. At a certiain value of g , as 𝛾  increases, the current 

increases. This is the effect of phonon dissipation. As the phonon dissipation rate increases, it 

screens the effect of -p interaction more by reducing the frequency of the QDs.  

 

  

Fig. 6.9: Spin dependent tunnelling current (𝐽𝜎/𝐽0) with respect to the EPI coefficient (𝑔) 

for different values of (a) the magnetic field (𝜇𝐵𝐵) & (b) the phonon dissipation rate(𝛾). 
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With the increase in the bias-voltage 𝑒𝑉𝑏 , more electrons can enter from the source to the 

QDs, which results in the rise in the tunnelling current. In Fig. 6.10 (a), the variation of the 

tunnelling current with the bias-voltage is studied for different values of the magnetic field. It 

is found that when the magnetic field is zero, the current 𝐽𝜎 in BMT is lower than that in 

SMT. But, as the magnetic field increases, we find that there exists a certain regime of the 

bias voltage in which  𝐽𝜎 is higher for BMT than for SMT. To see the effect of the magnetic 

field and the bias-voltage on the spin-polarized tunnelling currents, we plot Fig. 6.10 (b). In 

the absence of a magnetic field, at a particular bias-voltage 𝑉𝑏 ,  the spin-polarized currents 𝐽↑ 

and 𝐽↓ are equal. But in the presence of a magnetic field, the energy levels in the QDs are split 

and the spin-up level goes down and the spin-down level goes up. As a result, 𝐽↓ increases 

with the magnetic field and 𝐽↑ decreases as 𝐵 increases. 

 

 

  

Fig. 6.10: (a) The total tunnelling current (𝐽𝜎 𝐽0⁄ ) and (b) the Spin-resolved tunnelling current 

𝐽↑ 𝐽0⁄   &  𝐽↓ 𝐽0⁄   with respect to the bias-voltage (𝑒𝑉𝑏) for different values of the magnetic field 

(𝜇𝐵𝐵). 
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Fig. 6.11: Differential conductance 𝐺𝜎 𝐺0⁄   with respect to the bias-voltage (𝑒𝑉𝑏),  

for different values of the tunnelling coefficient (𝑡12). 

 

 

  In Fig. 6.11, we plot the differential conductance 𝐺𝜎with respect to the bias voltage 𝑒𝑉𝑏 for 

different values of the QD tunnelling coefficient 𝑡12. As 𝑒𝑉𝑏 increases, more electrons can 

flow from the source to QD, which results in the rise in the tunnelling current as well as in the 

differential conductance. One can also observe a few side peaks, which occur due to the 

polaronic fluctuations. 

  In Fig. 6.12, we plot the differential conductance 𝐺𝜎with respect to the bias voltage 𝑒𝑉𝑏. Fig. 

6.12(a) gives results for different values of the magnetic field and Fig. 6.12(b) provides 

results for different values of temperature. 𝐺𝜎 is symmetric about 𝑒𝑉𝑏 = 0 for all values of 

𝐵 & 𝑇. At 𝐾𝐵𝑇 = 0.3,  in the absence of a magnetic field, there is one peak in 𝐺𝜎 for SMT, 

whereas for BMT, the peak splits into two peaks due to the presence of two QDs in the 

system. But as 𝐵 is switched on, two peaks appear as the energy levels in the QDs are split. 

As 𝐵 increases, 𝐺𝜎 decreases which is, of course, an expected behaviour. Fig. 6.12 (b) shows 

that the effect of temperature on 𝐺𝜎  is similar to what we observe in the 𝐽𝜎  plot. As 𝑇 

increases more, 𝐺𝜎 saturates. 
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Fig. 6.12: Differential conductance 𝐺𝜎 𝐺0⁄   with respect to the bias-voltage (𝑒𝑉𝑏), for 

different values of the magnetic field (𝜇𝐵𝐵) & (b) the temperature (𝐾𝐵𝑇). 

 

  To understand how the temperature changes the energy levels in the metallic leads, we have 

plotted the spin-resolved differential conductance in Fig. 6.13, with respect to the bias voltage 

for different temperatures. The 𝐺↑  and 𝐺↓  are not symmetric with respect to 𝑒𝑉𝑏 . The 𝐺↑ 

component is shifted to the left and the 𝐺↓ component is shifted to the right. This behaviour is 

similar to what we observe in the case of SF.   

 

    

Fig. 6.13: Spin-resolved Differential conductance (a) 𝐺↑ 𝐺0⁄   & (b) 𝐺↓ 𝐺0⁄  with respect to the 

bias-voltage (𝑒𝑉𝑏) for different values of the temperature (𝐾𝐵𝑇). 
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Fig. 6.14: Differential conductance 𝐺𝜎 𝐺0⁄   with respect to the bias-voltage (𝑒𝑉𝑏), for 

different values of (a) the e-p interaction coefficient (𝑔) & (b) the Coulomb correlation (U). 

 

 

 

Fig. 6.15: Spin-resolved differential conductance (a) 𝐺↑ 𝐺0⁄   & (b) 𝐺↓ 𝐺0⁄  with respect to the 

magnetic field (𝜇𝐵𝐵) for different values of the dissipation constant (𝛾). 

 

 

 

  In Fig. 6.14 (a), the effect of the EPI coefficient 𝑔 on  𝐺𝜎  is studied. We find that as 𝑔 

increases, the differential conductance Gσ decreases. As a result, the differential conductance 

peak also decreases with increasing 𝑔. Another very important parameter is the Coulomb 

correlation 𝑈  which opposes electrons from coming to the same site. Therefore, as 𝑈  is 
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increased, the electrons would like to tunnel from QDs to the drain and the current 𝐽𝜎 and 

differential conductance 𝐺𝜎 would increase (Fig. 6.14 (b)). 

 

 
 

Fig. 6.16: Spin-Polarization (𝑃↑↓) with respect to the bias-voltage (𝑒𝑉𝑏)for different values of 

 (a) the magnetic field (𝜇𝐵𝐵) and (b) the e-p interaction coefficient (𝑔). 

 

 

  The effect of phonon dissipation on 𝐺𝜎 is plotted in Fig. 6.15. Here we study the variation of 

𝐺𝜎  with respect to the magnetic field for different phonon dissipation rates (𝛾). The spin-

resolved conductances 𝐺↑ and 𝐺↓ show a different behaviour, as is understandable. But from 

both the Figs. 6.15(a) and (b), we find that when the magnetic field is high, the phonon 

dissipation 𝛾  reduces 𝐺↑  and 𝐺↓ . But at low values of magnetic field, the conductance 

increases with dissipation.  

  Spin polarization (𝑃↑↓)  is an important parameter in the spin-transport phenomena. In Fig. 

6.16(a) we study the effect of magnetic field on spin-polarization. As the magnetic field 

(𝜇𝐵𝐵)  increases, the spin-filtering effect becomes more prominent. Therefore, with the 

increase in 𝐵, the spin-polarization also increases and at a certain 𝐵, 𝑃↑↓ become maximum. 

From Fig. 6.16(b), we find that e-p interaction also enhances the spin-polarization effect and 

in the strong coupling limit, 𝑃↑↓ become 1. 
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Fig. 6.17: Spin-Polarization (𝑃↑↓) with respect to the bias-voltage (𝑒𝑉𝑏) for different values 

of the tunnelling coefficient (𝑡12) and (b) temperature (𝐾𝐵𝑇). 

 

   

    

  

Fig. 6.18: 3D plot of the total tunnelling current (𝐽𝜎/𝐽0) (a) with respect to bias-voltage(𝑒𝑉𝑏) 

& magnetic field(𝜇𝐵𝐵) with respect to QD tunnelling coefficient (𝑡12) & e-p interaction 

coefficient (𝑔). 
 

The effect of 𝑡12 on the spin-polarization 𝑃↑↓ is studied in Fig. 6.17 (a). We find that as 𝑡12 

increases, 𝑃↑↓  reduces. The reason for this behaviour is not quite clear. The effect of 

temperature is interesting on 𝑃↑↓ in BMT. Fig. 6.17 (b) shows that as 𝑇 increases, initially the 



                            Chapter 6 

 

 

 

140 

spin-polarization is elevated due to the shifting in Fermi energy level. At a certain 

temperature, the system attains the maximum polarization and above that temperature, the 

spin-polarization starts decreasing. The combined effect of different parameters on the 

tunnelling current (𝐽𝜎/𝐽0)  is studied in Fig. 6.18. In Fig. 6.18(a),  𝐽𝜎 is plotted with respect to 

the magnetic field and the bias voltage and the variation is much clearer in the 3D plot. Fig. 

6.18(b) shows that 𝐽𝜎 increases with 𝑡12 at 𝐾𝐵𝑇 = 0.3 and 𝐵 = 1 and with the e-p interaction 

coefficient,  𝐽𝜎 reduces.  

 The variation of differential conductivity 𝐺𝜎  is studied with respect to  𝑒𝑉𝑏 and  𝑡12 in a 3D 

plot in Fig. 6.19. We find that 𝐺𝜎  initially increases with the bias-voltage 𝑒𝑉𝑏  and after a 

certain value of 𝑒𝑉𝑏, 𝐺𝜎  reduces but with 𝑡12, it monotonically increase. The spin-resolved 

differential conductances 𝐺↑ and 𝐺↓ are plotted in Fig. 6.19 with respect to the magnetic field 

and temperature. Both the spin-resolved conductances are found to be maximum at low 

temperature and high magnetic field limit. 

 

 

 

 

Fig. 6.19: 3D plot of the differential conductance (𝐺𝜎/𝐺0) (a) with respect to bias-

voltage(𝑒𝑉𝑏) & the QD tunnelling coefficient (𝑡12). 
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Fig. 6. 20  Spin-resolved differential conductance (a) 𝐺↑ 𝐺0⁄   & (b) 𝐺↓ 𝐺0⁄  with respect to  

the magnetic field (𝜇𝐵𝐵) and temperature (𝐾𝐵𝑇). 

 

 

6.4   Conclusion 

  In the present work, two QDs are connected in series and placed between two metallic leads 

in the presence of an external magnetic field and the whole system is mounted on an 

insulating substrate which is further attached to a gate. An external bias voltage and a gate 

voltage is applied to the system. The system has been studied by the Anderson-Holstein-

Caldeira-Leggett model and the tunnelling current calculated using the Keldysh non-

equilibrium Green function method. The spectral function is studied with respect to the 

phonon frequency and it has been observed that the spectral function increases as the hopping 

coefficient between the QDs increases. The external magnetic field splits the spectral 

function peaks and the polaron side bands are increased with the phonon frequency. The 

tunnelling current is found to increase with the bias voltage and the QD tunnelling 

coefficient. The differential conductance is found to be symmetric with respect to the bias 

voltage, though the spin-resolved quantity is not. It has been found that the tunnelling current 

and differential conductance are higher in the high-magnetic field and low-temperature 

regime. The spin-polarization parameter reduces with the QD tunnelling coefficient and at 

low bias voltage, the spin-polarization increases with the e-p interaction and the magnetic 



                            Chapter 6 

 

 

 

142 

field. For BMT, we obtain the maximum spin-polarization for a high magnetic field and 

strong e-p coupling limit.   
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 “There are very few things that can be proved rigorously in condensed matter 

physics”…Anthony James Leggett 

 

7 
Conclusion 

 

In the present thesis, titled “Electronic and transport properties of the low dimensional 

systems”, we have studied the nature of SDW-CDW transition and the self-trapping transition 

in a correlated polar system.  

 

  In Chapter 1, we have described the basic models and motivations towards the thesis. 

 

  In Chapter 2, we have studied the SCW-CDW transition in a 1D Holstein-Hubbard model 

with Gaussian phonon anharmonicity using a more accurate variational calculation than the 

ones used earlier. Performing a series of canonical transitions followed by a generalized 

many phonon state, we have obtained an effective electronic Hamiltonian which we have 

finally solved using the Bethe ansatz technique. Our results suggest a wider metallic phase at 

the crossover region of the SDW and CDW phases.  

 

  In Chapter 3, we have considered a 2D Holstein-Hubbard model and examined the nature 

of the CDW-SDW transition in this model. We have treated the phonon sub-system of this 

problem in the same way as in Chapter 1.  Since the effective electronic Hamiltonian in this 

case does not admit an exact solution, we have solved the effective electronic problem in the 

weak correlation regime and the strong correlation regime separately. In the weak Coulomb 

correlation regime, the effective electronic Hamiltonian has been solved using the mean-field 

Hartree-Fock method. In the strong correlation regime, the effective electronic Hamiltonian 

has been first transformed to the t-J model which has then been solved using the Gutzwiller 
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approximation and the Zubarev technique.  Combining the results from two different regimes, 

we have plotted the phase diagram with respect to the e-e and e-p interaction strengths and 

obtained the intermediate metallic region. The intervening metallic phase is found to be wider 

than the result for the corresponding 1D case.  

 

  Another phase transition in the Holstein-Hubbard model is the self-trapping (ST) transition. 

We have studied the nature of the ST transition in the extended Holstein-Hubbard model in 

1D in Chapter 4. Here we have used same method as in Chapter 2 and have shown that as 

the e-p interaction is increased, the polaron undergoes a transition from a large polaron to a 

small polaron in a continuous way.  

 

  In Chapter 5, we have examined the nature of the ST transition in a 2D Holstein-Hubbard 

model using the same method as used in Chapter 3. We have shown that the ST transition is 

continuous in the anti-adiabatic regime, but it shows sharp discontinuity for the adiabatic 

case.  

 

    In Chapter 6, we have studied temperature dependent magneto-transport in a bi-molecular 

transistor in the presence of e-e and e-p interactions and quantum dissipation. The system has 

been modelled by the Anderson-Holstein-Caldeira-Leggett model and the spectral function, 

tunnelling current and differential conductance are calculated using the non-equilibrium 

Keldysh Green function technique. Our results show that the tunnelling current in a bi-

molecular transistor is higher than that in single molecular transistor in the high magnetic 

field and low temperature regime.  

 

 

 

 

 

 

“The physics is theoretical, but the fun is real”… I hope you have enjoyed reading the 

thesis. 



          
 

 

 

 

 

 

“Physics isn’t the most important thing. 

Love is”…Richard Feynman 
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