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ABSTRACT

This thesis consists of four chapters. Chapter 1 is dedicated to the introduction

and the literature survey of the McKendrick–Von Foerster type equations.

In Chapter 2, an implicit finite difference scheme is presented to approximate

the solution to the McKendrick–Von Foerster equation with diffusion (M-VD)

with Robin condition at both the end points. The notion of upper solution is

introduced and used effectively with aid of discrete maximum principle to study

the wellposedness and stability of the numerical scheme. A relation between the

numerical solutions to the M-V-D and the steady state problem is established.

In Chapter 3, a numerical scheme to find approximate solutions to the M-V-D

with Robin condition at the left end point and Dirichlet boundary condition at

right point is presented. The main difficulty in employing the standard analysis

to study the properties of this scheme is due to presence of nonlinear and nonlocal

term in the Robin boundary condition in the M-V-D. To overcome this, we use

the abstract theory of discretizations based on the notion of stability threshold to

analyze the scheme. Stability, and convergence of the proposed numerical scheme

are established.

In Chapter 4, higher order numerical schemes to the McKendrick–Von Foerster

equation are presented when the death rate has singularity at the maximum age.

The third, fourth order schemes that are proposed are based on the characteristics

(non intersecting lines in this case), and are multi-step methods with appropriate

corrections at each step. In fact, the convergence analysis of the schemes are

discussed in detail. Moreover, numerical experiments are provided to validate

the orders of convergence of the proposed third order and fourth order schemes.
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Chapter 1

Introduction

1.1 Introduction

Population dynamics is one of the fundamental areas of ecology, forming both

the basis for the study of more complex communities and of many applied ques-

tions. Understanding population dynamics is the key to understand the relative

importance of competition for resources and predation in structuring ecological

communities, which is a central question in ecology.

Population dynamics is the study of how populations change with respect to

structures like age, size etc., and time. Important factors in population dynamics

include rates of reproduction, death and migration etc.

Usage of differential equations in the modeling of population dynamics can be

traced back to several centuries. One of the earliest models was due to Malthus

(see [53]). In that model, Malthus has proposed that the rate of population

growth/ decay is proportional to the size of the total population. The Malthus

model does not refer to the effects of crowding or the limitation of resources.

In 1938, Verhulst presented a model which incorporates the effect of limitation

of resources. The Verhulst model is also known as the logistic equation. In the

logistic model, the total population tends to the nontrivial steady state called the

carrying capacity. The logistic model does not consider the correlation between

the population size and the mean individual fitness (often measured as per capita

population growth rate) of the population. A more realistic model of population

growth would allow the Allee effect (see [80]).

1
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1.2 Structured models

The structured population models distinguish individuals from one another ac-

cording to characteristics such as age, size, location, status, and movement etc.

to determine the birth, growth and death rates, interaction with each other and

with the environment. The goal of the structured population models is to under-

stand how these characteristics affect the dynamics of these models and thus the

outcomes and consequences of the biological processes. Many authors considered

age, size, spatial and maturity structured population models (see [31, 82, 83, 75]).

1.2.1 Age-structured models : Hyperbolic PDEs

In the modeling of population dynamics, the main step is to identify some signifi-

cant variables called structured variables that allow the division of the population

into homogeneous subgroups. Then, one can describe its dynamics through the

interaction of these groups, ruled by mechanisms that depend on these variables.

Age is one of the most natural and widely used structured variables. Let u(x, t)

denote the density of population that has age x at time t. Assume that µ and β

are the age-specific mortality rate and the age-specific fertility rate, respectively.

One of the earliest age-structured population models is due to A. G. McKendrick

(see [55]) and is given by





ut(x, t) + ux(x, t) + µ(x)u(x, t) = 0, x > 0, t > 0,

u(0, t) =

∫ a†

0

β(x)u(x, t)dx, t > 0,

u(x, 0) = u0(x), x > 0,

(1.1)

where µ, β, u0 are assumed to be non-negative functions. Model (1.1) is known

as the renewal equation and has been rediscovered by von-Foerster. Henceforth,

we refer (1.1) as the McKendrick–Von Foerster equation.

In McKendrick–Von Foerster equation (1.1), the fertility and the mortality rates

merely depend on the age but not on the total populations. Practically it is

not the case. As there is a competition among individuals for limited resources

and individuals of different ages have different advantages (disadvantages) in

this competition, it is natural to assume that the fertility and mortality rates

depend on the weighted population. To this end, Gurtin and MaCamy introduced
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a nonlinear age-dependent population model where the fertility and mortality

functions are density dependent (see[25]). The Gurtin-MacCamy model is given

by 



ut(x, t) + ux(x, t) + µ(x, s1(t))u(x, t) = 0, x > 0, t > 0,

u(0, t) =

∫ a†

0

β(x, s2(t))u(x, t)dx, t > 0,

u(x, 0) = u0(x), x > 0,

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, t > 0, ν = 1, 2,

(1.2)

where ψ1, ψ2 are the competition weights. Henceforth, we call (1.2) as the non-

linear McKendrick–Von Foerster equation.

1.2.2 Age-structured models : Parabolic PDEs

In [12], the authors introduced the diffusion term in the McKendrick–Von Foerster

equation to account the variability in the DNA content which can influence the

‘biological age’. The McKendrick–Von Foerster equation with diffusion (M-V-D)

is given by





ut(x, t) + ux(x, t) + µ(x, s(t))u(x, t) = uxx(x, t), x ∈ (0, a†), t > 0,

u(0, t)− ux(0, t) =

∫ a†

0

β1(x, s1(t))u(x, t)dx, t > 0,

u(a†, t) + ux(a†, t) =

∫ a†

0

β2(x, s2(t))u(x, t)dx, t > 0,

u(x, 0) = u0(x), x > 0,

s(t) =

∫ a†

0

ψ(x)u(x, t)dx, sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, ν = 1, 2, t > 0,

(1.3)

where u and µ are as in (1.2) and the functions s(t), sν(t) represent the weighted

populations which influence the mortality and fertility rates µ , β1 and β2.

Since a† is the maximum age, it is natural to impose the Dirichlet boundary
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condition at right boundary. Then (1.3) becomes





ut(x, t) + ux(x, t) + µ
(
x, s1(t)

)
u(x, t) = uxx(x, t), x ∈ (0, a†), t > 0

u(0, t)− ux(0, t) =

∫ a†

0

β
(
x, s2(t)

)
u(x, t)dx, t ≥ 0,

u(a†, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ (0, a†),

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, t ≥ 0, ν = 1, 2.

(1.4)

In the recent years, the M-V-D has attracted interest of many engineers as well

as mathematicians due to its applications in the modeling of thermoelasticity,

neuronal networks etc. (see [18, 19, 36, 37, 56, 57, 58]). The main difficulty in the

study of the M-V-D is due to the nonlocal nature of the PDE, and the boundary

condition(s). Though numerical study of nonlocal equations got considerable

focus, relatively less attention was paid to problems with the Robin boundary

condition(s). In this thesis, we present numerical schemes to models (1.2), (1.3),

and (1.4).

1.3 A stable scheme to M-V-D with Robin–Robin

boundary condition

In Chapter 2, we provide a stable numerical scheme to (1.3) and investigate the

long time behavior of the numerical solution to (1.3). In this section, we briefly

present the concepts and main results that we have given in Chapter 2.

Before defining the numerical scheme, first we introduce the following notations.

Let h and k be the spacial and temporal step sizes, respectively. Denote by

(xi, tn) a typical grid point with xi = ih, and tn = nk. Moreover, we assume that

a† =Mh for some M ∈ N and define the set of grid points

{
Λ = {(xi, tn) : i = 1, 2, . . . ,M − 1, n = 1, 2, ...},
Λ̄ = {(xi, tn) : i = 0, 1, . . . ,M, n = 0, 1, ...}.

At every grid point (xi, tn), let Ui,n denote the approximate solution to (1.3), and

Φi = u0(xi), Ψi = ψ(xi), Un = (U0,n, U1,n, ..., UM,n), Ψ = (Ψ0,Ψ1, ...,ΨM),
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Ψνi = ψν(xi), Ψν = (Ψν0,Ψν1, ...,ΨνM), ν = 1, 2, µi(X) = µ(xi, X),

βνi(X) = βν(xi, X), βν(X) = (βν1(X), βν2(X), . . . , βνM(X)), X ≥ 0.

To approximate the integral terms in equation (1.3), we choose composite Simpson’s–
1
3
quadrature formula with weights {q0, q1, ..., qM}. In other words, we approxi-

mate ∫ a†

0

ψ(x)u(x, t)dx ∼
M∑

i=0

qiΨiUi,n =: I(ΨUn),

∫ a†

0

ψν(x)u(x, t)dx ∼
M∑

i=0

qiΨνiUi,n =: I(ΨνUn), ν = 1, 2.

Moreover, we approximate the integral terms in the boundary conditions with

∫ a†

0

βν(x, sν(t))u(x, t)dx ∼
M∑

i=0

qiβνi(I(ΨνUn))Ui,n = I(βν(I(ΨνUn))Un),

where ν = 1, 2.

With the notation introduced so far, we propose the following implicit scheme:





(1 + 2r)Ui,n − bUi+1,n − cUi−1,n = Ui,n−1 − kµi(I(ΨUn))Ui,n, (i, n) ∈ Λ,
(
1 +

1

h

)
U0,n −

1

h
U1,n = I(β1(I(Ψ1Un))Un), n ∈ N,

(
1 +

1

h

)
UM,n −

1

h
UM−1,n = I(β2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M,

(1.5)

where b = r − λ
2
, c = r + λ

2
, λ = k

h
and r = k

h2 . Notice that (1.5) is a nonlinear

scheme.

We now define the following finite difference operators

L[Ui,n] = (1 + 2r)Ui,n − bUi+1,n − cUi−1,n, (i, n) ∈ Λ,

BC1[U0,n] =

(
1 +

1

h

)
U0,n −

(
1

h

)
U1,n, n ∈ N,

BC2[UM,n] =

(
1 +

1

h

)
UM,n −

(
1

h

)
UM−1,n, n ∈ N.
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Then numerical scheme (1.5) using the finite difference operators is written as





L[Ui,n] = Ui,n−1 − kµi(I(ΨUn))Ui,n, (i, n) ∈ Λ,

BC1[U0,n] = I(β1(I(Ψ1Un))Un), n ∈ N,

BC2[UM,n] = I(β2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(1.6)

Since (1.6) is a system of nonlinear equations, a priori it is not clear whether

there exists a solution to it. In order to establish the existence and uniqueness of

a solution to (1.6), we use the monotonicity arguments with the aid of notions of

upper, and lower solutions (see [19, 37]). To this end, we begin with the following

definition.

Definition 1.3.1 (Upper solution) A matrix (Ũi,n) is called an upper solution

to (1.6) if it satisfies

L[Ũi,n] ≥ Ũi,n−1 − kµi(I(ΨŨn))Ũi,n, (i, n) ∈ Λ,

BC1[Ũ0,n] ≥ I(β1(I(Ψ1Ũn))Ũn), n ∈ N,

BC2[ŨM,n] ≥ I(β2(I(Ψ2Ũn))Ũn), n ∈ N,

Ũi,0 ≥ Φi, 0 ≤ i ≤M.

(1.7)

Similarly, (Ûi,n) is called a lower solution to (1.6) if it satisfies all inequalities of

(1.7) in the reversed order. A pair of upper and lower solutions (Ũi,n, Ûi,n) is said

to be ordered if Ũi,n ≥ Ûi,n on Λ̄.

For a given pair of ordered upper and lower solutions (Ũi,n, Ûi,n), we set

⟨Ûi,n, Ũi,n⟩ := {Ui,n : Ûi,n ≤ Ui,n ≤ Ũi,n}.

1.3.1 Existence and uniqueness

In this thesis, existence of a solution to (1.6) is proved in four cases: (i) s 7→ µ(., s)

is decreasing and s 7→ βν(., s) is increasing, (ii) s 7→ µ(., s) is increasing and

s 7→ βν(., s) are decreasing, (iii) s 7→ µ(., s) is decreasing and s 7→ βν(., s) is

decreasing, (iv) s 7→ µ(., s) is increasing and s 7→ βν(., s) is increasing. The main

results of case (i) are stated in this subsection. Results in the other cases, i.e.,

(ii)− (iv) can be found in Chapter 2
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Assume ∂µ
∂s
(., s) ≤ 0, ∂βν

∂s
(., s) ≥ 0.

Let Ûi,n and Ũi,n be a pair of ordered lower and upper solutions to (1.6). Now,

define

ω = sup
{
µ(xi, s) | s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

ξ = sup

{
∂

∂s
µ(xi, s) | s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
.

We now introduce a linear operator

L[Ui,n] = L[Ui,n] + k
(
ξÛi,nI(ΨUn) + ωUi,n

)
. (1.8)

Using this new operator, (1.6) can be written as





L[Ui,n]=Ui,n−1 + k
(
−µi(I(ΨUn))Ui,n+ ξÛi,nI(ΨUn) + ωUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = I(β1(I(Ψ1Un))Un), n ∈ N,

BC2[UM,n] = I(β2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(1.9)

For (i, n) ∈ Λ̄, we construct a sequence {Um
i,n} of approximations to a solution

{Ui,n} to (1.9) in the following manner. Let {Um
i,n} be the solution to





L[Um
i,n] = Um−1

i,n−1 + k
(
−µi(I(ΨU

m−1
n ))Um−1

i,n + ξÛi,nI(ΨU
m−1
n )

+ωUm−1
i,n

)
, (i, n) ∈ Λ, m ∈ N,

BC1[U
m
0,n] = I(β1(I(Ψ1U

m−1
n ))Um−1

n ), n ∈ N, m ∈ N,

BC2[U
m
M,n] = I(β2(I(Ψ2U

m−1
n ))Um−1

n ), n ∈ N, m ∈ N,

Um
i,0 = Φi, 0 ≤ i ≤M, m ∈ N.

(1.10)

To close the system, we need to fix the initial approximation U0
i,n. If the initial

approximation is taken to be an upper solution (a lower solution, resp.) to (1.6),

then the solution to (1.10) is denoted by Ūm
i,n (

¯
Um
i,n, resp.).

To state the existence and uniqueness result, we first introduce the following

notation:

σ1 = min{ξÛi,nI(Ψ) + ω | (i, n) ∈ Λ̄, Ûi,n ≤ Ui,n ≤ Ũi,n}.
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γ = min
{ ∂
∂s
µ(xi, s) : s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

α = min
{
µ(xi, s) : s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

σ3 = min{γŨi,nI(Ψ) + α : (i, n) ∈ Λ̄},

δ1 = sup
{
ηI(Ψν)I(Ũn) + I(βν(I(ΨνŨn))) : n = 0, 1, 2, . . . , ν = 1, 2

}
,

We are now ready to state the existence and uniqueness result for (1.6).

Theorem 1.3.2 (Existence and uniqueness) Let Ûi,n, and Ũi,n be a pair of

ordered lower and upper solutions to equation (1.6), respectively. Assume that

s 7→ µ(., s) is decreasing, s 7→ βν(., s) is increasing, for ν = 1, 2 and −kσ1 < 1.

Then the following hold:

(i) For every fixed (i, n) ∈ Λ̄, both {Ūm
i,n}, {¯U

m
i,n} are monotone sequences. More-

over, we have

Ûi,n ≤
¯
Um
i,n ≤

¯
Um+1
i,n ≤

¯
Ui,n ≤ Ūi,n ≤ Ūm+1

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄,

for every m ∈ N ∪ {0}, where lim
m→∞

Ūm
i,n = Ūi,n, lim

m→∞ ¯
Um
i,n =

¯
Ui,n.

(ii) Both Ūi,n and
¯
Ui,n are solutions to (1.6).

(iii) If U∗
i,n is another solution to (1.6) in ⟨Ûi,n, Ũi,n⟩, then

¯
Ui,n ≤ U∗

i,n ≤ Ūi,n on

Λ̄.

(iv) If max{−kσ3, δ1} < 1, then (1.6) has a unique solution in ⟨Ûi,n, Ũi,n⟩. □

For more details and a proof of this result, see Theorems 2.3.2, 2.3.3 and 2.4.1,

in Chapter 2.

1.3.2 Steady state and the long time behavior

In Chapter 2, we study the long time behavior of the numerical solution to (1.3)

also. Analysis of the long time behavior of the solution to (1.3) requires the

study of the corresponding steady state problem. The steady state equation
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corresponding to (1.3) is the following boundary value problem





vx(x) + µ(x, p)v(x) = vxx(x), x ∈ (0, a†),

v(0)− vx(0) =

∫ a†

0

β1(y, p1)v(y)dy,

v(a†) + vx(a†) =

∫ a†

0

β2(y, p2)v(y)dy,

p =

∫ a†

0

ψ(x)v(x)dx, pν =

∫ a†

0

ψν(x)v(x)dx, ν = 1, 2.

(1.11)

Set V = (V0, V1, ..., VM). The numerical method that we propose to find an ap-

proximate solution to (1.11) is





a′Vi − b′Vi+1 − c′Vi−1 = −µi(I(ΨV ))Vi, 1 ≤ i ≤M − 1,
(
1 +

1

h

)
V0 −

(
1

h

)
V1 = I(β1(I(Ψ1V ))V ),

(
1 +

1

h

)
VM −

(
1

h

)
VM−1 = I(β2(I(Ψ2V ))V ),

(1.12)

where a′ = 2
h2 , b

′ = 1
h2 − 1

2h
and c′ = 1

h2 +
1
2h
. By introducing the following finite

difference operators

Ls[Vi] =a
′Vi − b′Vi+1 − c′Vi−1,

BCs
1[V0] =

(
1 +

1

h

)
V0 −

(
1

h

)
V1,

BCs
2[VM ] =

(
1 +

1

h

)
VM −

(
1

h

)
VM−1,

we write finite difference scheme (1.12) as





Ls[Vi] = −µi(I(ΨV ))Vi, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(β1(I(Ψ1V ))V ),

BCs
2[VM ] = I(β2(I(Ψ2V ))V ).

(1.13)

Definition 1.3.3 A vector (Ṽi) is called an upper solution to (1.13) if it satisfies
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the relation
Ls[Ṽi] ≥ −µi(I(ΨṼ ))Ṽi, 1 ≤ i ≤M − 1,

BCs
1[Ṽ0] ≥ I(β1(I(Ψ1Ṽ ))Ṽ ),

BCs
2[ṼM ] ≥ I(β2(I(Ψ2Ṽ ))Ṽ ).

(1.14)

Similarly, (V̂i) is called a lower solution to equation (1.13) if it satisfies all the

inequalities in (1.14) in the reverse order. A pair of upper solution (Ṽi) and lower

solution (V̂i) is said to be ordered if Ṽi ≥ V̂i, 0 ≤ i ≤M .

For a given pair of ordered upper and lower solutions Ṽi, V̂i, we set ⟨V̂i, Ṽi⟩ ≡
{Vi : V̂i ≤ Vi ≤ Ṽi}.
Observe that any ordered lower and upper solution to (1.14) is also an ordered

upper and lower solution to (1.7). Let Ṽi and V̂i be a pair of upper and lower

solutions to (1.13), respectively. Now, define

ωs = max
{
µ(xi, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

ξs = max
{ ∂
∂p
µ(xi, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

Ls[Vi] = Ls[Vi] +
(
ξsV̂iI(ΨV ) + ωsVi

)
, 1 ≤ i ≤M − 1.

Thus (1.13) becomes





Ls[Vi] =
(
−µi(I(ΨV ))Vi + ξsV̂iI(ΨV ) + ωsVi

)
, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(β1(I(Ψ1V ))V ),

BCs
2[VM ] = I(β2(I(Ψ2V ))V ).

(1.15)

We now construct a sequence of approximations {V m
i } to (1.15) using the linear

iteration process





Ls[V m
i ] =

(
−µi(I(ΨV

m−1))V m−1
i + ξsV̂iI(ΨV

m−1) + ωsV
m−1
i

)
,

1 ≤ i ≤M − 1, m ∈ N,

BCs
1[V

m
0 ] = I(β1(I(Ψ1V

m−1))V m−1), m ∈ N,

BCs
2[V

m
M ] = I(β2(I(Ψ2V

m−1))V m−1), m ∈ N.

(1.16)

If V 0
i is equal to an upper solution (lower solution, resp.) to (1.13) then denote

the solution to (1.16) by V̄ m
i (

¯
V m
i , resp.).
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The existence and uniqueness of solution to (1.13) is proved along the same lines

of the existence and uniqueness of solution to (1.6). In particular, we show that

(V̄ m
i ), and (

¯
V m
i ) are monotone for each fixed i. The limits of these monotone

sequences turnout to be solutions to (1.13) (See Theorems 2.5.2 and 2.5.3). For

uniqueness of slution to (1.13) see Theorem 2.5.4 in Chapter 2.

We conclude this section with the statement of the result regarding the long time

behavior of the solution.

Theorem 1.3.4 (Asymptotic behavior) Let Ṽi and V̂i be a pair of ordered up-

per and lower solutions to (1.13), respectively. Assume that Ûi,n ≤ V̂i ≤ Ṽi ≤ Ũi,n.

Let Ȳi,n and
¯
Yi,n be solutions to (1.6) with Ȳi,0 = Ṽi and

¯
Yi,0 = V̂i, respectively.

Then the following conclusions hold:

(i) For each fixed 0 ≤ i ≤ M , the sequence (Ȳi,n) is decreasing and (
¯
Yi,n) is in-

creasing in n.

(ii) For each 0 ≤ i ≤ M , set lim
n→∞

Ȳi,n = V̄i, lim
n→∞ ¯

Yi,n =
¯
Vi. Then V̄i and

¯
Vi are

the maximal and minimal solutions to (1.13) in ⟨V̂i, Ṽi⟩, respectively.
(iii) Let Φi ∈ ⟨V̂i, Ṽi⟩. Then lim

n→∞
Ui,n = V̄i =

¯
Vi. □

For more details see Theorem 2.6.2.

1.4 A convergent scheme to M-V-D with Robin–

Dirichlet boundary data

In this section, our objective is to propose a convergent numerical scheme to find

approximate solutions to (1.4) and provide the main results that are discussed in

Chapter 3.

First fix T > 0, assume that a† = 2(M ′ + 3)h, for some M ′ ∈ N and T = Nk for

some N ∈ N. To simplify the notations, we write M = 2(M ′ +3). For every grid

point (xi, t
n), we denote the numerical solution by Un

i , and set

Ψν,i = ψν(xi), Ψν = (Ψν,1,Ψν,2, . . . ,Ψν,M−1), ν = 1, 2,

β(·) = (β(x1, ·), β(x2, ·), . . . , β(xM−1, ·)
)
,

µ(·) = (µ(x1, ·), µ(x2, ·), . . . , µ(xM−1, ·)
)
,

Un = (Un
1 , U

n
2 , . . . , U

n
M−1).
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To approximate the integrals in (1.4), we use the following quadrature rule

which is a combination of the composite Simpson–1
3
and Minle’s rule. For V =

(V1, . . . , VM−1) ∈ RM−1, we define the quadrature formula

Qh(V ) =
4h

3
(2V1 − V2 + 2V3) +

h

3

M ′∑

i=2

(V2i + 4V2i+1 + V2i+2)

+
4h

3
(2V2M ′+3 − V2M ′+4 + 2V2M ′+5).

For V = (V1, . . . , VM−1), W = (W1, . . . ,WM−1) in RM−1, define

V ·W = (V1W1, . . . , VM−1WM−1).

With the notation introduced so far, we propose the following scheme for (1.4)

using the forward difference approximation for ut, the backward difference for ux,

and the central difference for uxx:





Un
i − Un−1

i

k
+
Un−1
i − Un−1

i−1

h
+ µ
(
xi,Qh(Ψ1 ·Un−1)

)
Un−1
i

=
Un−1
i+1 + Un−1

i−1 − 2Un−1
i

h2
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

(
1 +

1

h

)
Un
0 − 1

h
Un
1 = Qh

(
β
(
Qh(Ψ2 ·Un)

)
·Un

)
, 0 ≤ n ≤ N,

Un
M = 0, 0 ≤ n ≤ N,

U0
i = u0(xi), 1 ≤ i ≤M − 1.

(1.17)

In order to carry out the analysis within an abstract theory of discretizations, we

introduce the general discretization framework. For, we define the spaces

Xh = Yh = RN+1 × (RM−1)N+1 × RN+1.

We also introduce the operator Φh : Xh → Yh, defined through the formulae

Φh(V0,V
0,V 1, ...,V N ,VM ) = (P0,P

0,P 1, ...,PN ,PM ),
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where

P 0 = (P 0
0 , P

1
0 , · · · , PN

0 ),

P n
0 =

(
1 +

1

h

)
V n
0 − 1

h
V n
1 −Qh

(
β
(
Qh(Ψ2 · V n)

)
· V n

)
, 0 ≤ n ≤ N,

PM = (P 0
M , P

1
M , · · · , PN

M ),

P n
M =

V n
M

h
, 0 ≤ n ≤ N,

P n = (P n
1 , P

n
2 , . . . , P

n
M−1), 0 ≤ n ≤ N,

P 0
i = V 0

i − U0
i , 1 ≤ i ≤M − 1,

P n
i =

V n
i − V n−1

i

k
+
V n−1
i − V n−1

i−1

h
+ µ
(
xi,Qh(Ψ1 · V n−1)

)
V n−1
i

− V n−1
i+1 + V n−1

i−1 − 2V n−1
i

h2
, 1 ≤ n ≤ N, 1 ≤ i ≤M − 1.

(1.18)

Now Uh = (U 0,U
0,U 1, · · · ,UN) ∈ Xh is a solution to (1.17) if and only if it is

a solution of the discrete problem

Φh(Uh) = 0 ∈ Yh. (1.19)

To investigate how close Uh is to u, we first need to choose an element uh ∈ Xh,

which is a suitable discrete representation of u. In particular, our choice is the

set of nodal values of the theoretical solution u, namely

uh = (u0,u
0, . . . ,uN ,uM) ∈ Xh, (1.20)

where





u0 = (u00, u
1
0, . . . , u

N
0 ) ∈ RN+1, un0 = u(0, tn), 0 ≤ n ≤ N,

un = (un1 , u
n
2 , . . . , u

n
M−1) ∈ RM−1, uni = u(xi, t

n), 1 ≤ i ≤M − 1, 0 ≤ n ≤ N,

uM = (u0M , u
1
M , . . . , u

N
M) ∈ RN+1, unM = u(a†, t

n), 0 ≤ n ≤ N.

(1.21)

Then the global discretization error is defined to be the vector

eh = uh − Uh ∈ Xh,
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and the local discretization error is given by

Ih = Φh(uh) ∈ Yh.

In order to measure the magnitude of errors, we define the following norms in the

spaces Xh and Yh:

∥(V 0,V
0,V 1,. . . ,V N,V M)∥Xh

= h(∥V 0∥∗+∥V M∥∗)+max{∥V 0∥,∥V 1∥, . . ., ∥V N∥},

∥(P 0,P
0,P 1, ...,PN ,PM)∥Yh

=

(
∥P 0∥2∗ + ∥P 0∥2 + h∥PM∥2∗ +

N∑

n=1

k∥P n∥2
)1/2

,

where ∥V n∥2 =
M−1∑
i=1

h|V n
i |2 and ∥V 0∥2∗ =

N∑
n=0

k|V n
0 |2.

For V ∈ RM−1,Z ∈ RN+1, we define

⟨V ,W ⟩ =
M−1∑

i=1

hViWi,

∥V ∥∞ = max
1≤j≤M−1

|Vi|, ∥Z∥∞ = max
0≤n≤N

|Zn|.

In order to state the main results, we give the following standard definitions.

Definition 1.4.1 (Consistency) Discretized equation (1.19) is said to be con-

sistent with (1.4) if

lim
h→0

||Φh(uh)||Yh
= lim

h→0
||Ih||Yh

= 0.

Definition 1.4.2 (Stability) Discretized equation (1.19) is said to be stable

restricted to the thresholdsMh if there exist two positive constants h0 and S such

that for each 0 < h ≤ h0 and for all V h, W h in the open ball B(uh,Mh) ⊂ Xh

||V h −W h||Xh
≤ S||Φh(V h)− Φh(W h)||Yh

.

Definition 1.4.3 (Convergence) Discretized equation (1.19) is said to be con-

vergent if there exists h0 > 0 such that, for each 0 < h ≤ h0, the discretized

equation has a solution Uh for which

lim
h→0

||uh −Uh||Xh
= lim

h→0
||eh||Xh

= 0.
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1.4.1 Consistency, stability and convergence

Using the notations introduced so far, we state the main theorems in Chapter 3

in the following.

Theorem 1.4.4 (Consistency) Assume that µ, β, ψ1 and ψ2 are sufficiently

smooth such that the solution u to (1.2) is four times continuously differentiable

with bounded derivatives. Moreover, we assume that there exists L > 0 such that

for every 0 ≤ x ≤ a†, s1, s2 > 0,

|µ(x, s1)− µ(x, s2)|≤ L|s1 − s2|,

and

|β(x, s1)− β(x, s2)|≤ L|s1 − s2|.

Then the local discretization error satisfies

∥Φh(uh)∥Yh
= {∥U 0 − u0∥2 +O(h2) +O(k2)}1/2, as h→ 0.

□

Theorem 1.4.5 (Stability) Assume the hypotheses of Theorem 1.4.4. Let r

and λ be such that k = rh2 = λh, and λ + 2r ≤ 1. Then discretization (1.19) is

stable with thresholds Rh = Rh, where R is a fixed positive constant independent

of h. □

Theorem 1.4.6 (Convergence) Assume the hypotheses of Theorem 1.4.5. If

∥U 0 − u0∥Xh
= O(h), as h→ 0,

then discretization (1.19) is convergent. □

1.5 The McKendrick–Von Foerster equation with

singularity

In this section, we outline the main results which are given in Chapter 4. In

that chapter, we propose and analyze a numerical scheme to find approximate
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solutions to (1.2) with the mortality function having singularity at a = a†.

When µ is linear, the survival probability

π(x) = exp

(
−
∫ x

0

µ(y)dy

)
,

must be zero at the maximum age at x = a†, which indeed suggests us that

∫ a†

0

µ(y, s(·))dy = +∞. (1.22)

This readily implies that µ has a singularity at x = a†.

Let u be the solution to (1.2). We define

d(x, t) =





t∫
t−x

µ
(
y + x− t, s1(y)

)
dy, t > x,

x−t∫
0

µ
(
y, s1(0)

)
dy +

t∫
0

µ
(
y + x− t, s1(y)

)
dy, t ≤ x,

(1.23)

λ(x, t) = exp(−d(x, t)). (1.24)

and

u(x, t) = λ(x, t)v(x, t), 0 ≤ x < a†, t ≥ 0. (1.25)

In view of (1.2), it is straightforward to obtain that v satisfies





vt(x, t) + vx(x, t) = 0, 0 < x < a†, t > 0,

v(0, t) =

∫ a†

0

β(x, p(t))λ(x, t)v(x, t)dx, t > 0,

v(x, 0) =
u0(x)

π(x, 0)
, 0 ≤ x < a†,

p(t) =

∫ a†

0

ψ2(x)λ(x, t)v(x, t)dx.

(1.26)

Moreover, one can observe that if v is a weak solution to (1.26) then u is also a

weak solution to (1.2).

In order to define the scheme, we define step size h =
a†

2M+2
for a given a positive

integer M . Let ⌊a∗
h
⌋ = J∗ for some J∗ ∈ N and ⌊T

h
⌋ = N . At every grid point

(xi, t
n), each Un

i is the numerical approximation to u(xi, t
n) and V n

i represents

the numerical approximation to v(xi, t
n), i = 0, 1, . . . , 2M + 1. Moreover, the
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approximation of the survival probability λ(xi, t
n) is denoted by Λn

i .

At each time level tn, n = 0, 1, . . . , N , we denote

Un = [Un
0 , U

n
1 , . . . , U

n
2M+1], V

n = [V n
0 , V

n
1 , . . . , V

n
2M+1] ∈ R2M+2.

and let the vector Λn = [Λn
0 ,Λ

n
1 , . . . ,Λ

n
2M+1] approximate the survival probability

λn = [λ(x0, t
n), λ(x1, t

n), . . . , λ(x2M+1, t
n)].

Also, we use this vector notation to represent the evaluations of the fertility rate

β(·) = [β(x0, ·), β(x1, ·), . . . , β(x2M+1, ·)].
To approximate the integral term that appears in the boundary condition, we use

the following quadrature rule which is a combination of the composite Simpson
1
3
and Milne’s rules. For the vector Y = [Y0, Y1, . . . , Y2M+1], we define

Qh(Y ) =
4h

3
(2Y1−Y2+2Y3)+

M−2∑

i=2

h

3
(Y2i+4Y2i+1+Y2i+2)+

4h

3
(2Y2M−1−Y2M+2Y2M+1).

(1.27)

With this notation, we propose following numerical scheme to (1.26) based on

the method of characteristics:





V n
i = V n−1

i−1 , i = 1, 2, . . . , 2M + 1, n = 1, 2, . . . , N,

V n
0 = Qh(β(P

n
Λ ) ·Λn · V n), n = 1, 2, . . . , N,

V 0
i =

U0
i

Π0
i

, i = 0, 1, . . . , 2M + 1,

P n
Λ = Qh(ψ2 ·Λn · V n), n = 1, 2, . . . , N.

(1.28)

Finally, to compute an approximate solution Un
i to (1.2), we use the following

relation

Un
i = Λn

i V
n
i , i = 0, 1, . . . , 2M + 1, n = 1, . . . , N. (1.29)

The nontrivial part in (1.28) is to find an approximation of the survival probabil-

ity Λn
i and we postpone the discussion on how to approximate Λn

i to Subsections

1.5.1 and 1.5.2.

In order to compare the numerical and analytical solutions at each grid point,

we represent the restriction of the solution u to (1.2) to the grid by the vector

un = [u(x0, t
n), u(x1, t

n), . . . , u(xn2M+1, t
n)], n = 0, 1, . . . , N . Similarly, the re-

striction of the solution v to (1.26) to the grid is denoted by the vector vn =

[v(x0, t
n), v(x1, t

n), . . . , v(xn2M+1, t
n)], n = 0, 1, . . . , N .
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For a Y = [Y0, Y1, . . . , Y2M+1] ∈ R2M+5, we define the following norms

||Y ||1 =
2M+1∑

i=0

h|Yi|,

||Y ||∞ = max
0≤i≤2M+1

|Yi|.
(1.30)

To state the approximation theorems of the survival probability (1.24), we make

the following assumptions.

(H1) Suppose u0, β are continuous, bounded, and, µ, ψ1, ψ2 are nonnegative

and sufficiently regular so that the solution to (1.2) is in C4([0, a†)× [0, T ]).

Since ψ1, ψ2 are continuous on [0, a†], for every bounded function u, the map

t 7→ sν(t) is a bounded function, i.e., there exists K > 0 such that sν(t) ≤ K for

all t ∈ [0, T ], where ν = 1, 2.

(H2) For a given s1(t) ∈ C4([0, T ]) , let





a†∫

0

µ
(
y, s1(y + t− a†)

)
dy = ∞, t > a†,

a†∫

a†−t

µ
(
y, s1(y + t− a†)

)
dy = ∞, t < a†.

(1.31)

(H3) The function µ ∈ C4([0, a†)×(0,∞)) and ∂pµ
∂sp

are bounded in [0, a†)× [0, K],

where 1 ≤ p ≤ 4.

(H4) There exists C > 0 such that ∂(p+q)µ
∂xp∂sq

≤ C ∂(p+q)µ
∂x(p+q) holds in [0, a†) × [0, K],

where 1 ≤ p ≤ 3, 1 ≤ q ≤ 3 and p+ q ≤ 4.

(H5) The functions

φ(y) = ∂2µ
∂x2

(
y, s1(0)

)
exp

(
−

y∫
a∗
µ(z, s1(0))dz

)
,

and

ρ(y) = ∂4µ
∂x4

(
y, s1(0)

)
exp

(
−

y∫
a∗
µ
(
z, s1(0)

)
dz
)
,

are bounded on [a∗, a†].

With this set of notation, we state one of our main theorems in Chapter 4 in the

following (see [27]).

Theorem 1.5.1 (Convergence) Assume that β ∈ Cq([0, a†]× (0,∞)), and µ ∈
Cq([0, a†)× (0,∞)) satisfies (1.22). Let u ∈ Cq([0, a†]× [0, T ]) be the solution to
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(1.2) and v be a bounded solution to (1.26) on [0, a†) × [0, T ]. Assume that Λn
i

denote an approximation to survival probability λ(xi, t
n) at each grid point such

that

max
0≤n≤N

∥Λn − λn∥∞ ≤ Chl. (1.32)

Furthermore, assume that the quadrature rule Qh is of k-th order accuracy and

q = max(l, k). Then the numerical approximations Un and V n, n = 0, 1, . . . , N ,

associated to u and v, respectively, that are obtained using numerical method

(1.28)–(1.29), satisfy

max
0≤n≤N

|| V n − vn ||∞≤ Chr,

and

max
0≤n≤N

|| Un − un ||∞≤ Chr,

where q, l, k, r ∈ N, r = min(l, k). □

1.5.1 A third order aprroximation of λ

In this subsection, we approximate λ in the following three iterative steps. This

is a predictor-corrector method in which we correct the approximate value of λ

twice.

Step–1 First we define

Û0 = u0(xi), 0 ≤ i ≤ 2M + 1,

Ŝ
0

ν = Qh(ψν · Û
0
), ν = 1, 2,

D0
i =

h

6

i∑

j=1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]
, 1 ≤ i ≤ 2M + 1,

D̄0
i = D̃0

i = D̂0
i = D0

i , 1 ≤ i ≤ 2M + 1,

D̄n
0 = D̃n

0 = D̂n
0 = 0, 0 ≤ n ≤ N,

and

D̄n
i = D̂n−1

i−1 +
h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
, n, i ≥ 1, (1.33)
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where D̂n−1
i−1 and Ŝn−1

1 are defined in Step-3. We approximate the survival prob-

ability function λ(x, t) at each grid point by

Λ̄n
i = exp(−D̄n

i ), 0 ≤ i ≤ 2M + 1. (1.34)

From (1.28)–(1.29) (on substituting Λn
i = Λ̄n

i ), we get Ūn
i . Define

S̄
n
ν = Qh(ψν · Ū

n
), ν = 1, 2. (1.35)

Step–2 In this step, we first update D̄n
i to obtain

D̃n
i = D̂n−1

i−1 +
h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̄

n
1

)]
, n, i ≥ 1. (1.36)

We now correct the approximated survival probability function Λn
i at each grid

point by replacing D̄n
i with D̃n

i , i.e.,

Λ̃n
i = exp(−D̃n

i ), 0 ≤ i ≤ 2M + 1. (1.37)

As in the previous step, we substitute Λn
i = Λ̃n

i in (1.28)–(1.29) to get Ũn
i . In

this step, we correct the approximate weighted population to arrive at

S̃
n

ν = Qh(ψν · Ũ
n
), ν = 1, 2. (1.38)

Step–3 We make the final correction to D̃ to get

D̂n
i =





D̂n−1
i−1 +

h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
, n = 1, or i = 1,

D̂n−2
i−2 +

h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)
+ 4µ

(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
, n, i ≥ 2.

(1.39)

We correct Λ̃ once more to find

Λ̂n
i = exp(−D̂n

i ), 0 ≤ i ≤ 2M + 1. (1.40)

As before, we use (1.28)–(1.29), with Λn
i = Λ̂n

i to get the updated solution of

(1.2) namely Ûn
i . We define

Ŝ
n

ν = Qh(ψν · Û
n
), ν = 1, 2. (1.41)
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Note that the survival probability vanishes only at the maximum age, but a†

is not a grid point. Now we present the result corresponding to third order

approximation of λ.

Theorem 1.5.2 Assume hypotheses (H1)− (H5). Moreover assume that

µ ∈ C4([0, a†) × (0,∞)), d2µ
dy2

(y, s1(y + α)) ≥ 0 and d4µ
dy4

(y, s1(y + α)) ≥ 0 for all

y ∈ [a∗, a†) and α ≥ −a∗. Let u ∈ C4([0, a†] × [0, T ]) be the solution to (1.2).

Then

∥Λn − λn∥∞ ≤ Ch4, (1.42)

where C is a constant independent of n, h. □

For more details and a proof of this result, see Theorems 4.4.3 and 4.4.4 in Chapter

4.

1.5.2 A fourth order aprroximation of λ

In this subsection, we propose a fourth order numerical scheme to (1.2) by in-

troducing two more corrections to the predictor corrector method presented in

Subsecection 1.5.1. In other words, the method that we introduce here is a five

step scheme and the first three steps are exactly the same as those defined in

the previous section. Before defining the new steps, we need to introduce the

notation Û
n− 1

2

i− 1
2

, 1 ≤ n ≤ N, 1 ≤ i ≤ 2M + 1. We define Û
n− 1

2

i− 1
2

with step size h

as the approximation Û2n−1
2i−1 with the step size h

2
computed in Step–3 of the third

order scheme in (1.33), (1.36) and (1.39) in the previous subsection.

Step–4 We define

Ŝ
n− 1

2

ν = Qh(ψν · Û
n− 1

2 ), ν = 1, 2,

̂̂
D

n

i = D0
i , 1 ≤ i ≤ 2M + 1,

̂̂
D

n

0 = Dn
0 = 0, 0 ≤ n ≤ N,

and

̂̂
D

n

i = Dn−1
i−1 +

h

6

[
µ
(
(i− 1)h,Sn−1

1

)
+4µ

(
(i− 1

2
)h, Ŝ

n− 1
2

1

)
+ µ
(
ih, Ŝ

n

1

)]
, n, i ≥ 1,

(1.43)
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where Dn−1
i−1 and Sn−1

1 are defined in Step–5. We approximate the survival prob-

ability function λ(x, t) at each grid point by

̂̂
Λ

n

i = exp(− ̂̂D
n

i ), 0 ≤ i ≤ 2M + 1. (1.44)

From (1.28)–(1.29) (on substituting Λn
i =

̂̂
Λ

n

i ), we get
̂̂
U

n

i . We now define

̂̂
S

n

ν = Qh(ψν ·
̂̂
U

n

), ν = 1, 2. (1.45)

Step–5 Finally, we define

Dn
i =





Dn−1
i−1 +

h

6

[
µ
(
(i− 1)h,Sn−1

1

)
+ 4µ

(
(i− 1

2
)h, Ŝ

n− 1
2

1

)

+µ
(
ih,
̂̂
S

n

1

)]
, n = 1, or i = 1,

Dn−2
i−2 +

h

3

[
µ
(
(i− 2)h,Sn−2

1

)
+ 4µ

(
(i− 1)h,

̂̂
S

n−1

1

)

+µ
(
ih,
̂̂
S

n

1

)]
, n > i ≥ 2.

(1.46)

We now correct
̂̂
Λ

n

i once more to find

Λn
i = exp(−Dn

i ), 0 ≤ i ≤ 2M + 1. (1.47)

As before, we use (1.28)–(1.29) to get the updated value of solution of (1.2)

namely Un
i . We now define

Sn
ν = Qh(ψν ·Un), ν = 1, 2. (1.48)

With this set of notation, we state our main theorem corresponding to fourth

order approximation of λ as follows.

Theorem 1.5.3 Assume hypotheses (H1)− (H5).Moreover assume that

µ ∈ C4([0, a†) × (0,∞)), d2µ
dy2

(y, s1(y + α)) ≥ 0 and d4µ
dy4

(y, s1(y + α)) ≥ 0 for all

y ∈ [a∗, a†) and α ≥ −a∗. Let u ∈ C4([0, a†] × [0, T ]) be the solution to (1.2).

Then

∥Λn − λn∥∞ ≤ Ch4, (1.49)

where C is a constant independent of n, h. □
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Finally, in order to validate the effectiveness of the proposed numerical scheme,

we presented numerical simulations in which the order of convergence is computed

(see Section 4.6).





Chapter 2

Numerical solution to a nonlinear

McKendrick–Von Foerster

equation with diffusion

2.1 Introduction

Reaction diffusion equations with nonlocal boundary condition are studied widely

due to many applications in physical and biological phenomena (see [19, 23, 66,

68]). In the literature, various methods are introduced to deal with these types

of equations (see [18, 19, 20, 23, 39, 49]). One of the methods to analize these

equations, both analytically and numerically, is the method of upper and lower

solutions (see [15, 24, 46, 64, 65, 76, 78]). Many authors use this technique to

solve nonlinear diffusion equations with linear boundary conditions. However, in

physical problems such as gas-liquid interaction problems, generally the nonlin-

earity occurs at the boundary conditions also (see [22, 54, 62, 74]). At the same

time, the qualitative properties of solutions to those partial differential equations

(PDEs) in the above mentioned references are studied widely compared to the

numerical aspects of them (see [49]).

On the other hand, the McKendrick–Von Foerster equation is ubiquitous in

the study of population dynamics (see [21, 60, 61, 72, 73, 81]). In particular, the

McKendrick–Von Foerster equation with diffusion (M-V-D) arises naturally in the

modeling of neuronal networks, thermoelasticity etc, (see [18, 19, 58]). The main

difficulty in the study of the M-V-D is due to the nonlocal nature of the PDE,

25
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and the boundary condition(s). Though numerical study of non-local equations

got considerable focus, relatively less attention was paid to problems with the

Robin boundary conditions. The authors of [57] studied well-posedness and long

time behavior of the solution to M-V-D with a nonlinear boundary condition.

In [38], the authors presented a numerical scheme of the M-V-D with the Robin

boundary condition in the positive quarter plane.

This paper is dedicated to the numerical study of the following nonlinear nonlocal

M-V-D with nonlinear nonlocal Robin boundary conditions:





ut(x, t) + ux(x, t) + d(x, s(t))u(x, t) = uxx(x, t), x ∈ D, t > 0,

u(0, t)− ux(0, t) =

∫ a†

0

B1(y, s1(t))u(y, t)dy, t > 0,

u(a†, t) + ux(a†, t) =

∫ a†

0

B2(y, s2(t))u(y, t)dy, t > 0,

u(x, 0) = u0(x), x ∈ D̄,

s(t) =

∫ a†

0

ψ(x)u(x, t)dx, sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, ν = 1, 2, t > 0,

(2.1)

where a† > 0, D = (0, a†) ⊂ R. The functions d, B1, B2, ψ, ψ1, ψ2, u0 are

assumed to be non-negative and continuous, in their respective domains. In [37],

the authors have proved the existence of a global solution to (2.1) when d = d(x)

and Bν = Bν(x), ν = 1, 2. Moreover, the authors have proved that the solution

to (2.1) converges pointwise to the solution to its steady state equation as time

tends to infinity. The author of [63, 64, 67, 69] presented a numerical scheme

and introduced a monotone iterative method to find an approximate solution to

the nonlinear nonlocal reaction diffusion equation. In [69], the author considered

a class of nonlinear reaction-diffusion equations with linear nonlocal boundary

conditions to investigates its the asymptotic behavior of the discrete solution.

Analysis of the long time behavior of the solutions to (2.1) requires the study of

its steady state problem. The steady state equation corresponding to (2.1) is the
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following boundary value problem





vx(x) + d(x, p)v(x) = vxx(x), x ∈ D,

v(0)− vx(0) =

∫ a†

0

B1(y, p1)v(y)dy,

v(a†) + vx(a†) =

∫ a†

0

B2(y, p2)v(y)dy,

p =

∫ a†

0

ψ(x)v(x)dx, pν =

∫ a†

0

ψν(x)v(x)dx, ν = 1, 2.

(2.2)

Using an implicit finite difference scheme, we discretize (2.1) to get a system

of nonlinear equations. A similar nonlinear finite difference scheme is given for

steady state problem (2.2). To slove this system of equations, we introduce a

linear monotone iterative scheme. Moreover, we prove that the numerical solution

to (2.1) converges to that of its steady state as time tends to infinity. The

important difference between the present work and the earlier ones is due to the

nonlinear and nonlocal nature of the term d and Bν in (2.1), ν = 1, 2.

The chapter is organized as follows. In Section 2.2, we present a finite-

difference scheme to find an approximate solution to equation (2.1). Moreover,

we establish existence and uniqueness of solution to the nonlinear systems given

by the numerical scheme in Section 2.3 and the uniqueness of the same is proved

in Section 2.4. In Section 2.5, we present a numerical scheme for (2.2). We study

the long time behavior of numerical solution to equation (2.1) in Section 2.6. In

Section 2.7, a particular type of nonlinearity is considered where one can analyze

the numerical scheme under weaker hypotheses. Finally, numerical examples are

presented in Section 2.8 to re-validate the theoretical results.

2.2 Numerical scheme

In this section, we first discretize equation (2.1) using an implicit finite-difference

scheme. Thus the numerical scheme that we propose turns out to be a nonlin-

ear system of equations. Let h and k be the spacial and temporal step sizes,

respectively. Denote by (xi, tn) a typical grid point with xi = ih, and tn = nk,

respectively. Moreover, we assume that a† =Mh for some M ∈ N and define the
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set of grid points

{
Λ = {(xi, tn) : i = 1, 2, ...,M − 1, n = 1, 2, ...},
Λ̄ = {(xi, tn) : i = 0, 1, ...,M, n = 0, 1, ...}.

At every grid point (xi, tn), let Ui,n denote the approximate solution to (2.1), and

Φi = u0(xi), Ψi = ψ(xi), Un = (U0,n, U1,n, ..., UM,n), Ψ = (Ψ0,Ψ1, ...,ΨM),

Ψνi = ψν(xi), Ψν = (Ψν0,Ψν1, ...,ΨνM), ν = 1, 2, di(X) = d(xi, X),

Bνi(X) = Bν(xi, X), Bν(X) = (Bν1(X), Bν2(X), . . . , BνM(X)), X ≥ 0.

To approximate the integral terms in equation (2.1), we choose composite Simp-

son’s 1
3
quadrature formula with weights {q0, q1, ..., qM}. In other words, we ap-

proximate ∫ a†

0

ψ(x)u(x, t)dx ∼
M∑

i=0

qiΨiUi,n = I(ΨUn),

∫ a†

0

ψν(x)u(x, t)dx ∼
M∑

i=0

qiΨνiUi,n = I(ΨνUn), ν = 1, 2.

Moreover, we approximate the integral terms in the boundary conditions with

∫ a†

0

Bν(x, sν(t))u(x, t)dx ∼
M∑

i=0

qiBν,i(I(ΨνUn))Ui,n = I(Bν(I(ΨνUn))Un),

where ν = 1, 2. In view of the results in [67], we avoid explicit, semi-implicit

schemes, and present an implicit numerical scheme for (2.1). With the notation

introduced so far, we propose the following implicit scheme for (2.1) using the

backward difference approximation for ut and the centered in space discretization

for ux, uxx:





(1 + 2r)Ui,n − bUi+1,n − cUi−1,n = Ui,n−1 − kdi(I(ΨUn))Ui,n, (i, n) ∈ Λ,
(
1 +

1

h

)
U0,n −

1

h
U1,n = I(B1(I(Ψ1Un))Un), n ∈ N,

(
1 +

1

h

)
UM,n −

1

h
UM−1,n = I(B2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M,

(2.3)
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where b = r − λ
2
, c = r + λ

2
, λ = k

h
and r = k

h2 .

We now define the following finite difference operators





L[Ui,n] = (1 + 2r)Ui,n − bUi+1,n − cUi−1,n, (i, n) ∈ Λ,

BC1[U0,n] =

(
1 +

1

h

)
U0,n −

(
1

h

)
U1,n, n ∈ N,

BC2[UM,n] =

(
1 +

1

h

)
UM,n −

(
1

h

)
UM−1,n, n ∈ N.

(2.4)

Then numerical scheme (2.3) using the finite difference operators is written as





L[Ui,n] = Ui,n−1 − kdi(I(ΨUn))Ui,n, (i, n) ∈ Λ,

BC1[U0,n] = I(B1(I(Ψ1Un))Un), n ∈ N,

BC2[UM,n] = I(B2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.5)

Since (2.5) is a system of nonlinear equations, a priori it is not clear whether

there exists a solution to it. In the next section, we establish the existence of

a solution to (2.5), and its uniqueness is discussed in Section 2.4. For, we use

the monotonicity arguments with the aid of notions of upper, and lower solutions

(see [19, 37]). To this end, we begin with following definition.

Definition 2.2.1 A matrix (Ũi,n) is called an upper solution to (2.5) if it satisfies





L[Ũi,n] ≥ Ũi,n−1 − kdi(I(ΨŨn))Ũi,n, (i, n) ∈ Λ,

BC1[Ũ0,n] ≥ I(B1(I(Ψ1Ũn))Ũn), n ∈ N,

BC2[ŨM,n] ≥ I(B2(I(Ψ2Ũn))Ũn), n ∈ N,

Ũi,0 ≥ Φi, 0 ≤ i ≤M.

(2.6)

Similarly, (Ûi,n) is called a lower solution to (2.5) if it satisfies all inequalities of

(2.6) in the reversed order.

A pair of upper and lower solutions (Ũi,n, Ûi,n) are said to be ordered if Ũi,n ≥ Ûi,n

on Λ̄. For a given pair of ordered upper and lower solutions (Ũi,n, Ûi,n), we set

⟨Ûi,n, Ũi,n⟩ := {Ui,n : Ûi,n ≤ Ui,n ≤ Ũi,n},
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η=sup
{

∂
∂s
Bν(xi, s) | s=I(ΨνUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄, ν=1, 2

}
.

We conclude this section with the following assumptions which are used through-

out the paper:

The spacial and temporal step sizes are such that b > 0, (2.7)

d is a nonnegetive C1 function, s 7→ d(., s) is monotone, (2.8)

Bν is a nonnegetive C1 function, s 7→ Bν(., s) is monotone, ν = 1, 2, (2.9)

max{ηI(Ψν)||Φ||∞a† + I(Bν(0)) | ν = 1, 2} ≤ 1. (2.10)

Observe that under assumption (2.10) Ũi,n ≡ ||Φ||∞ and Ûi,n ≡ 0 are upper solu-

tion and lower solution to (2.5), respectively.

2.3 Existence of solution

In this section, we employ the monotonicity method along with a discrete max-

imum principle to establish the existence result to nonlinear system (2.5). We

prove the existence of a solution to (2.5) in four cases: (i) s 7→ d(., s) is decreas-

ing and s 7→ Bν(., s) is increasing, (ii) s 7→ d(., s) is increasing and s 7→ Bν(., s)

are decreasing, (iii) s 7→ d(., s) is decreasing and s 7→ Bν(., s) is decreasing, (iv)

s 7→ d(., s) is increasing and s 7→ Bν(., s) is increasing. The cases (i) and (ii) are

given separately in the next subsections. Existence of solutions to (2.5) in the

cases (iii) and (iv) can be proved using the similar arguments, thus the details

are omitted.

2.3.1 The case ∂d
∂s(., s) ≤ 0, ∂Bν

∂s (., s) ≥ 0

Let Ûi,n and Ũi,n be a pair of ordered lower and upper solutions to (2.5). Now,

define

β = sup
{
d(xi, s) | s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

ξ = sup
{

∂
∂s
d(xi, s) | s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
.

We now introduce a linear operator

L[Ui,n] = L[Ui,n] + k
(
ξÛi,nI(ΨUn) + βUi,n

)
. (2.11)
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Using this new operator, (2.5) can be written as





L[Ui,n]=Ui,n−1 + k
(
−di(I(ΨUn))Ui,n+ ξÛi,nI(ΨUn) + βUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = I(B1(I(Ψ1Un))Un), n ∈ N,

BC2[UM,n] = I(B2(I(Ψ2Un))Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.12)

For (i, n) ∈ Λ̄, we construct a sequence {Um
i,n} of approximations to a solution

{Ui,n} to (2.12) in the following manner. Let {Um
i,n} be the solution to





L[Um
i,n] = Um−1

i,n−1 + k
(
−di(I(ΨUm−1

n ))Um−1
i,n + ξÛi,nI(ΨU

m−1
n )

+βUm−1
i,n

)
, (i, n) ∈ Λ, m ∈ N,

BC1[U
m
0,n] = I(B1(I(Ψ1U

m−1
n ))Um−1

n ), n ∈ N, m ∈ N,

BC2[U
m
M,n] = I(B2(I(Ψ2U

m−1
n ))Um−1

n ), n ∈ N, m ∈ N,

Um
i,0 = Φi, 0 ≤ i ≤M, m ∈ N.

(2.13)

To close the system, we need to fix the initial approximation U0
i,n. If the initial

approximation is taken to be an upper solution (a lower solution, resp.) to (2.5),

then the solution to (2.13) is denoted by Ūm
i,n (

¯
Um
i,n, resp.).

We next show that the sequences of approximations (Ūm
i,n) and (

¯
Um
i,n) are indeed

monotone at each grid point (i, n) ∈ Λ̄.

Lemma 2.3.1 (Discrete maximum principle) Assume that s 7→ d(., s) is

decreasing, s 7→ Bν(., s) is increasing, ν = 1, 2. Assume (2.7) holds, and −kσ1 <
1, where

σ1 = min{ξÛi,nI(Ψ) + β | (i, n) ∈ Λ̄, Ûi,n ≤ Ui,n ≤ Ũi,n}.

If Wi,n satisfies 



L[Wi,n] ≥ 0, (i, n) ∈ Λ,

BC1[W0,n] ≥ 0, n ∈ N,

BC2[WM,n] ≥ 0, n ∈ N,

Wi,0 ≥ 0, 0 ≤ i ≤M,

(2.14)

then Wi,n ≥ 0, (i, n) ∈ Λ̄.
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Proof.On the contrary, assume that for some N ∈ N, there exists (i′, n′) ∈ Λ̄

such that

Wi′,n′ = min
0≤n≤N
0≤i≤M

Wi,n < 0. (2.15)

We first notice that Wi,0 ≥ 0 for 0 ≤ i ≤M , which gives n′ ̸= 0.

On the other hand, since BC1[W0,n] ≥ 0, we have

hW1,n′ ≤ (1 + h)W0,n′ ,

which readily gives that i′ ̸= 0. Using the other boundary condition and the same

argument, one can easily show that i′ ̸=M . Therefore we obtain (i′, n′) ∈ Λ̄.

Using the definition of b, c, and the fact that b > 0 with 2r = b+ c, we get

2rWi′,n′ − bWi′+1,n′ − cWi′−1,n′ ≤ 0. (2.16)

From (2.14)-(2.16) and the definition of L, we obtain

0 ≤ Wi′,n′ + k
(
ξÛi′,n′I(ΨW n′) + βWi′,n′

)

≤ Wi′,n′ + k
(
ξÛi′,n′I(Ψ) + β

)
Wi′,n′ . (2.17)

In view of (2.15) and (2.17), we deduce

0 ≥ 1 + k
(
ξÛi′,n′I(Ψ) + β

)
≥ 1 + kσ1,

which is a contradiction to the assumption −kσ1 < 1. Hence, we find that

Wi,n ≥ 0, (i, n) ∈ Λ̄.

This completes the proof.

Theorem 2.3.2 Let Ûi,n, and Ũi,n be a pair of ordered lower and upper solutions

to equation (2.5), respectively. Assume that s 7→ d(., s) is decreasing, s 7→ Bν(., s)

is increasing, for ν = 1, 2 and −kσ1 < 1. Then the following hold:

(i) For every fixed (i, n) ∈ Λ̄, both {Ūm
i,n}, {¯U

m
i,n} are monotone sequences. More-

over, we have

Ûi,n ≤
¯
Um
i,n ≤

¯
Um+1
i,n ≤

¯
Ui,n ≤ Ūi,n ≤ Ūm+1

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄,
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for every m ∈ N ∪ {0}, where lim
m→∞

Ūm
i,n = Ūi,n, lim

m→∞ ¯
Um
i,n =

¯
Ui,n.

(ii) Both Ūi,n and
¯
Ui,n are solutions to (2.5).

(iii) If U∗
i,n is another solution to (2.5) in ⟨Ûi,n, Ũi,n⟩, then

¯
Ui,n ≤ U∗

i,n ≤ Ūi,n on

Λ̄.

Proof.(i) Set W̄ 0
i,n = Ū0

i,n − Ū1
i,n, (i, n) ∈ Λ̄.

Claim 1: We first prove that W̄ 0
i,n ≥ 0, (i, n) ∈ Λ̄.

From (2.6) and (2.13), it follows that for n ∈ N, we find

BC1[W̄
0
0,n] = BC1[Ũ0,n]− BC1[Ū

1
0,n]

≥ I(B1(I(Ψ1Ũn))Ũn)− I(B1(I(Ψ1Ũn))Ũn)

= 0. (2.18)

Similarly, we have

BC2[W̄
0
M,n] ≥ 0, n ∈ N. (2.19)

Again, from (2.13) and (2.6), for 1 ≤ i ≤M − 1, n ∈ N, we get

L[W̄ 0
i,n] = L[Ū0

i,n]− L[Ū1
i,n]

= L[Ū0
i,n] + k

(
ξÛi,nI(ΨŪ

0
n) + βŪ0

i,n

)
− Ū0

i,n−1

− k
(
−di(I(ΨŪ 0

n))Ū
0
i,n + ξÛi,nI(ΨŪ

0
n) + βŪ0

i,n

)

= L[Ū0
i,n]− Ū0

i,n−1 + kdi(I(ΨŪ
0
n))Ū

0
i,n

≥ 0, (2.20)

where the last inequality is due to the assumption that Ū0
i,n is an upper solution

to (2.5).

In view of Lemma 2.3.1, we conclude that

Ū0
i,n ≥ Ū1

i,n, (i, n) ∈ Λ̄. (2.21)

Using the same argument employed to prove (2.21), one can easily prove that

¯
U0
i,n ≤

¯
U1
i,n, (i, n) ∈ Λ̄.

Claim 2: We next prove that Ū1
i,n ≥

¯
U1
i,n.
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For, we set W 1
i,n = Ū1

i,n − ¯
U1
i,n, and consider

L[W 1
i,n] = L[Ū1

i,n]− L[
¯
U1
i,n]

= Ū0
i,n−1 + k

(
−di(I(ΨŪ 0

n))Ū
0
i,n + ξÛi,nI(ΨŪ

0
n) + βŪ0

i,n

)
−

¯
U0
i,n−1

− k
(
−di(I(Ψ

¯
U 0

n))¯
U0
i,n + ξÛi,nI(Ψ

¯
U 0

n) + β
¯
U0
i,n

)

= W̄ 0
i,n−1 + k

(
−di(I(Ψ

¯
U 0

n))W̄
0
i,n + [di(I(Ψ

¯
U 0

n))− di(I(ΨŪ
0
n))]Ū

0
i,n

+ξÛi,nI(ΨW̄
0
n) + βW̄ 0

i,n

)

≥ W̄ 0
i,n−1 + kξI(ΨW̄

0
n)(Ûi,n − Ū0

i,n)

≥ 0,

(2.22)

where the last inequality follows from the fact that ξ ≤ 0 and Claim 1. Using the

boundary condition and the fact that s 7→ B1(., s) is increasing, one can easily

prove that BC1[W
1
0,n] ≥ 0, BC2[W

1
M,n] ≥ 0, and W 1

i,0 = 0.

From Lemma 2.3.1, it follows that W 1
i,n ≥ 0 .

Hence

¯
U0
i,n ≤

¯
U1
i,n ≤ Ū1

i,n ≤ Ū0
i,n, (i, n) ∈ Λ̄.

Claim 3: We now prove that Ūm+1
i,n ≤ Ūm

i,n, (i, n) ∈ Λ̄, m ∈ N ∪ {0}.
Let the following hold

Ūp
i,n ≥ Ūp+1

i,n , (i, n) ∈ Λ̄, p = 0, 1, ...,m. (2.23)

Set W̄m+1
i,n = Ūm+1

i,n − Ūm+2
i,n , then from (2.6) and (2.13) it follows that, for (i, n) ∈

Λ̄,

L[W̄m+1
i,n ] = L[Ūm+1

i,n ]− L[Ūm+2
i,n ]

= Ūm
i,n−1 + k

(
−di(I(ΨŪm

n ))Ū
m
i,n + ξÛi,nI(ΨŪ

m
n ) + βŪm

i,n

)
− Ūm+1

i,n−1

− k
(
−di(I(ΨŪm+1

n ))Ūm+1
i,n + ξÛi,nI(ΨŪ

m+1
n ) + βŪm+1

i,n

)

≥ Ūm
i,n−1 − Ūm+1

i,n−1

≥ 0,

where the last inequality is due to (2.23) and the technique employed in the proof

of (2.22).
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Again, from the linearity of the operator BC1, nonnegativity of Ψ, Ψ1, Ψ2 and

the induction hypothesis, we find that BC1[W̄
m+1
0,n ] ≥ 0, BC2[W̄

m+1
M,n ] ≥ 0, n ∈ N.

Again in view of Lemma 2.3.1, we conclude that

Ūm+1
i,n ≥ Ūm+2

i,n , (i, n) ∈ Λ̄.

Similarly, by the induction argument, it straightforward to show that

Ûi,n ≤
¯
Um
i,n ≤

¯
Um+1
i,n ≤ Ūm+1

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄, m ∈ N ∪ {0}.

Now (i) is an immediate consequence of the previous inequality.

(ii) Since d, Bν , ν = 1, 2 are continuous functions, we let m → ∞ in (2.13) to

obtain that both Ūi,n and
¯
Ui,n are solutions to (2.5).

(iii) Let U∗
i,n be a solution to (2.5) in ⟨Ûi,n, Ũi,n⟩. Hence it is clear that Ũi,n =

Ū0
i,n ≥ U∗

i,n, (i, n) ∈ Λ̄. Set W 1
i,n = Ū1

i,n − U∗
i,n, (i, n) ∈ Λ̄.

As before, it is easy to verify that L[W 1
i,n] ≥ 0, (i, n) ∈ Λ, BC1[W

1
0,n] ≥ 0,

BC2[W
1
M,n] ≥ 0, n ∈ N, and hence we conclude that W 1

i,n ≥ 0, (i, n) ∈ Λ̄.

Thus we have

U∗
i,n ≤ Ū1

i,n ≤ Ū0
i,n, (i, n) ∈ Λ̄.

By following the method used in the proof of (i), we can easily show that

Ûi,n ≤
¯
Um
i,n ≤ U∗

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄, m ∈ N ∪ {0}. (2.24)

Letting m→ ∞ in (2.37), we find that

¯
Ui,n ≤ U∗

i,n ≤ Ūi,n, (i, n) ∈ Λ̄,

which completes the proof of (iii).

2.3.2 The case ∂d
∂s(., s) ≥ 0, ∂Bν

∂s (., s) ≤ 0

Now, define

ζ=inf
{

∂
∂sν
Bν(xi, sν) | sν = I(ΨνUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄, ν=1, 2

}
,

θ = inf
{
Bν(xi, sν) | sν = I(ΨνUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄, ν = 1, 2

}
.

Consider the following linear operators
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



L∗[Ui,n] = L[Ui,n] + k
(
ξŨi,nI(ΨUn) + βUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = BC1[U0,n]− θI(Ψ1Un)− ζI(Ũn)I(Ψ1Un), n ∈ N,

BC2[UM,n] = BC2[UM,n]− θI(Ψ2Un)− ζI(Ũn)I(Ψ2Un), n ∈ N.

(2.25)

Using these new operators, scheme (2.5) can be written as





L∗[Ui,n]=Ui,n−1+ k
(
−di(I(ΨUn))Ui,n+ξŨi,nI(ΨUn)+ βUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = I(B1(I(Ψ1Un))Un)− θI(Un)− ζI(Ũn)I(Ψ1Un), n ∈ N,

BC2[UM,n] = I(B2(I(Ψ2Un))Un)− θI(Un)− ζI(Ũn)I(Ψ2Un), n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.26)

For (i, n) ∈ Λ̄, we construct a sequence {Um
i,n} of approximations to a solution

{Ui,n} to (2.26) as follows. Let {Um
i,n} be the solution to





L∗[U
m
i,n] = Um−1

i,n−1 + k
(
−di(I(ΨUm−1

n ))Um−1
i,n + ξŨi,nI(ΨU

m−1
n ) + βUm−1

i,n

)
,

(i, n) ∈ Λ, m ∈ N,

BC1[U
m
0,n] = I(B1(I(Ψ1U

m−1
n ))Um−1

n )− θI(Um−1
n )− ζI(Ũn)I(Ψ1U

m−1
n ),

n ∈ N,m ∈ N,

BC2[U
m
M,n] = I(B2(I(Ψ2U

m−1
n ))Um−1

n )− θI(Um−1
n )− ζI(Ũn)I(Ψ2U

m−1
n ),

n ∈ N, m ∈ N,

Um
i,0 = Φi, 0 ≤ i ≤M, m ∈ N.

(2.27)

If the initial approximation U0
i,n is taken to be an upper solution (a lower solution,

resp.) to (2.5), then the solution to (2.27) is denoted by Ūm
i,n (

¯
Um
i,n, resp.).

The sequences of approximations (Ūm
i,n) and (

¯
Um
i,n) are indeed monotone at each

grid point (i, n) ∈ Λ̄ as in Theorem 2.3.2.

Theorem 2.3.3 Let Ûi,n, and Ũi,n be a pair of ordered lower and upper solutions

to equation (2.5), respectively. Assume that s 7→ d(., s) is increasing, s 7→ Bν(., s)

is decreasing, ν = 1, 2, −kσ2 < 1 and δ < 1, where

δ = inf{θa† + ζI(Ψν)I(Ũn) | ν = 1, 2},

σ2 = min{ξŨi,nI(Ψ) + β | (i, n) ∈ Λ̄, Ûi,n ≤ Ui,n ≤ Ũi,n}.
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Then the following hold:

(i) For every fixed (i, n) ∈ Λ̄, both {Ūm
i,n}, {¯U

m
i,n} are monotone sequences. More-

over, we have

Ûi,n ≤
¯
Um
i,n ≤

¯
Um+1
i,n ≤

¯
Ui,n ≤ Ūi,n ≤ Ūm+1

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄,

for every m ∈ N ∪ {0}, where lim
m→∞

Ūm
i,n = Ūi,n, lim

m→∞ ¯
Um
i,n =

¯
Ui,n.

(ii) The functions Ūi,n and
¯
Ui,n are solutions to (2.5).

(iii) If U∗
i,n is another solution to (2.5) in ⟨Ûi,n, Ũi,n⟩, then

¯
Ui,n ≤ U∗

i,n ≤ Ūi,n on

Λ̄.

Proof.The proof is similar to that of Theorem 2.3.2 and we omit the details.

2.4 Uniqueness

In this section, we show that there exists indeed a unique solution to (2.5). To

this end, we first introduce the following notation:

γ = min
{

∂
∂s
d(xi, s) : s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

α = min
{
d(xi, s) : s = I(ΨUn), Ûi,n ≤ Ui,n ≤ Ũi,n, (i, n) ∈ Λ̄

}
,

σ3 = min{γŨi,nI(Ψ) + α : (i, n) ∈ Λ̄},

σ4 = min{γÛi,nI(Ψ) + α : (i, n) ∈ Λ̄},

δ1 = sup
{
ηI(Ψν)I(Ũn) + I(Bν(I(ΨνŨn))) : n = 0, 1, 2, . . . , ν = 1, 2

}
,

δ2 = sup
{
ηI(Ψν)I(Ûn) + I(Bν(I(ΨνÛn))) : n = 0, 1, 2, . . . , ν = 1, 2

}
.

We are ready to prove the uniqueness result.

Theorem 2.4.1 (Uniqueness) Assume one of the following conditions:

(i) s 7→d(., s) is decreasing, s 7→Bν(., s) is increasing and max{−kσ3, δ1} < 1,

(ii) s 7→d(., s) is increasing, s 7→Bν(., s) is increasing and max{−kσ4, δ1} < 1,

(iii) s 7→d(., s) is decreasing, s 7→Bν(., s) is decreasing and max{−kσ3, δ2} < 1,

(iv) s 7→d(., s) is increasing, s 7→Bν(., s) is decreasing and max{−kσ4, δ2} < 1.

Then equation (2.5) has a unique solution in ⟨Ûi,n, Ũi,n⟩.

Proof.We prove the theorem under the assumptions given in (i). The proof in

the other cases follow from the same argument.

In view of Theorem 2.3.2(iii), to prove uniqueness of solution to equation (2.5),

it suffices to show that Ūi,n =
¯
Ui,n. To this end, let Xi,n = Ūi,n −

¯
Ui,n. Note that



38 §2.4. Uniqueness

Xi,n ≥ 0 in Λ̄.

Define Wi,n = (1 − ρ)nXi,n, for some constant ρ > 0 such that −kσ3 < ρ < 1.

Claim Wi,n ≡ 0, (i, n) ∈ Λ̄.

On the contrary, assume that there exists N ∈ N, (i′, n′) ∈ Λ̄ such that

Wi′,n′ = max
0≤n≤N
0≤i≤M

Wi,n > 0.

From the initial conditions, we get n′ ̸= 0. Let, if possible, i′ = 0.

We observe from the left boundary term that

(
1 +

1

h

)
W0,n′ −

(
1

h

)
W1,n′

= (1− ρ)n
′
((

1 +
1

h

)
X0,n′ −

(
1

h

)
X1,n′

)

= (1− ρ)n
′
(
I(B1(I(Ψ1Ūn′))Ūn′)− I(B1(I(Ψ1

¯
Un′))

¯
Un′)

)

= (1− ρ)n
′
[I(B1(I(Ψ1Ūn′))Ūn′)− I(B1(I(Ψ1Ūn′))

¯
Un′)

+ I(B1(I(Ψ1Ūn′))
¯
Un′)− I(B1(I(Ψ1

¯
Un′))

¯
Un′)]

≤ (1− ρ)n
′
(Ū0,n′ −

¯
U0,n′)

(
I(B1(I(Ψ1Ũn′))) + ηI(Ψ1)I(Ũn′)

)

≤ δ1W0,n′

< W0,n′ ,

or

W0,n′ < W1,n′ . (2.28)

In view of (2.28), we see that i′ ̸= 0. Using the same argument at the other

boundary point, we get i′ ̸=M . This shows that (i′, n′) ∈ Λ.

Finally, we use the argument that was used to prove Claim 1 in Theorem 2.3.2(i)

to get a contradiction. Since b, c > 0 and b+ c = 2r, we readily obtain that

2rWi′,n′ − bWi′+1,n′ − cWi′−1,n′ ≥ 0.

Then from the definition of L, we immediately get

Wi′,n′ ≤ L[Wi′,n′ ]. (2.29)
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Thus from (2.5) and (2.29), it follows that

Wi′,n′ ≤ (1− ρ)Wi,n′−1 − k(1− ρ)n
′
di(I(ΨŪn′))Ūi,n′ + k(1− ρ)n

′
di(I(Ψ

¯
Un′))

¯
Ui,n′

= (1− ρ)Wi′,n′−1 − k(1− ρ)n
′ [
Ūi′,n′(di′(I(ΨŪn′))− di′(I(Ψ

¯
Un′)))

]

− k(1− ρ)n
′ [
di′(I(Ψ

¯
Un′))(Ūi′,n′ −

¯
Ui′,n′)

]

≤ (1− ρ)Wi′,n′−1 − kWi′,n′

[
Ũi′,n′γI(Ψ) + α

]
.

Therefore we find that

(1− ρ)Wi′,n′−1 ≥
(
1 + k

[
Ũi′,n′γI(Ψ) + α

])
Wi′,n′

≥ (1 + kσ3)Wi′,n′ .

Hence from the above relation, we obtain

(1 + kσ3)Wi′,n′ ≤ (1− ρ)Wi′,n′−1 ≤ (1− ρ)Wi′,n′ ,

which is impossible because −kσ3 < ρ. Thus it follows that Wi,n ≡ 0 or Ūi,n =

¯
Ui,n, (i, n) ∈ Λ̄, proving the uniqueness result.

2.5 Steady state

The objective of this section is to provide a numerical solution to (2.2). As in the

unsteady case, we present an implicit numerical scheme to find an approximate

solution to the steady state problem, and study its well posedness. Moreover,

we introduce the notions of upper, lower solutions to address the existence of a

solution to the nonlinear scheme.

2.5.1 Numerical scheme

In order to discretize the ordinary differential equation (ODE) given in (2.2), we

use the notation from the earlier sections. Let h,M, d,Bν , {q0, q1, ..., qM} be as

in Section 2.2, and Vi denote the approximate solution to (2.2) at the grid point

xi = ih, 0 ≤ i ≤ M . As before, we approximate the integrals in the ODE and
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the boundary conditions in (2.2) by

∫ a†

0

ψ(x)v(x)dx ∼
M∑

i=0

qiΨiVi = I(ΨV ),

∫ a†

0

ψν(x)v(x)dx ∼
M∑

i=0

qiΨνiVi = I(ΨνV ), ν = 1, 2,

∫ a†

0

Bν(x, p)v(x)dx ∼
M∑

i=0

qiBν,i(I(ΨνV ))Vi = I(Bν(I(ΨνV ))V ), ν = 1, 2,

where V = (V0, V1, ..., VM).

The numerical method that we propose to find an approximate solution to (2.2)

is based on the central difference approximation for vxx and vx. Therefore the

numerical solution (Vi) of (2.2) is given by





a′Vi − b′Vi+1 − c′Vi−1 = −di(I(ΨV ))Vi, 1 ≤ i ≤M − 1,
(
1 +

1

h

)
V0 −

(
1

h

)
V1 = I(B1(I(Ψ1V ))V ),

(
1 +

1

h

)
VM −

(
1

h

)
VM−1 = I(B2(I(Ψ2V ))V ),

(2.30)

where a′ = 2
h2 , b

′ = 1
h2 − 1

2h
and c′ = 1

h2 +
1
2h
.

By introducing following finite difference operators





Ls[Vi] = a′Vi − b′Vi+1 − c′Vi−1,

BCs
1[V0] =

(
1 +

1

h

)
V0 −

(
1

h

)
V1,

BCs
2[VM ] =

(
1 +

1

h

)
VM −

(
1

h

)
VM−1,

(2.31)

we write finite difference scheme (2.30) as





Ls[Vi] = −di(I(ΨV ))Vi, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(B1(I(Ψ1V ))V ),

BCs
2[VM ] = I(B2(I(Ψ2V ))V ).

(2.32)
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Notice that numerical scheme (2.32) is a system of nonlinear equations. We

need to prove existence and uniqueness result for (2.32). For, we apply the

monotonicity arguments that were used in Sections 2.3 and 2.4. To this end, we

introduce the notion of upper (lower) solution to (2.32).

Definition 2.5.1 A vector (Ṽi) is called an upper solution to (2.32) if it satisfies

the relation 



Ls[Ṽi] ≥ −di(I(ΨṼ ))Ṽi, 1 ≤ i ≤M − 1,

BCs
1[Ṽ0] ≥ I(B1(I(Ψ1Ṽ ))Ṽ ),

BCs
2[ṼM ] ≥ I(B2(I(Ψ2Ṽ ))Ṽ ).

(2.33)

Similarly, (V̂i) is called a lower solution to equation (2.32) if it satisfies all the

inequalities in (2.33) in the reverse order.

A pair of upper solution (Ṽi) and lower solution (V̂i) are said to be ordered if

Ṽi ≥ V̂i, 0 ≤ i ≤ M . For a given pair of ordered upper and lower solutions Ṽi,

V̂i, we set ⟨V̂i, Ṽi⟩ ≡ {Vi : V̂i ≤ Vi ≤ Ṽi}.
Observe that any ordered lower and upper solution to (2.32) is also an ordered

upper and lower solution to (2.5). Moreover, notice that if hypothesis (2.10)

holds, then Ṽi ≡ ||Φ||∞ and V̂i ≡ 0 are upper solution and lower solution to

(2.32), respectively.

2.5.2 Existence

As in the unsteady case, we prove existence of solution to (2.32) in the following

four cases: (i) ∂d
∂p
(., p) ≤ 0, ∂Bν

∂p
(., p) ≥ 0, (ii) ∂d

∂p
(., p) ≥ 0, ∂Bν

∂p
(., p) ≤ 0, (iii)

∂d
∂p
(., p) ≥ 0, ∂Bν

∂p
(., p) ≥ 0, (iv) ∂d

∂p
(., p) ≤ 0, ∂Bν

∂p
(., p) ≤ 0. Cases (i) and (ii) are

discussed briefly in the next two subsubsections. On the other hand, existence of

solution to (2.32) in cases (iii) and (iv) can be proved using the similar arguments.

The case ∂d
∂p
(., p) ≤ 0, ∂Bν

∂p
(., p) ≥ 0

Let Ṽi and V̂i be a pair of upper and lower solutions to (2.32), respectively. Now,

define

βs = max
{
d(xi, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

ξs = max
{

∂
∂p
d(xi, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

Ls[Vi] = Ls[Vi] +
(
ξsV̂iI(ΨV ) + βsVi

)
, 1 ≤ i ≤M − 1.
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Thus (2.32) becomes





Ls[Vi] =
(
−di(I(ΨV ))Vi + ξsV̂iI(ΨV ) + βsVi

)
, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(B1(I(Ψ1V ))V ),

BCs
2[VM ] = I(B2(I(Ψ2V ))V ).

(2.34)

We now construct a sequence of approximations {V m
i } to (2.34) using the linear

iteration process





Ls[V m
i ] =

(
−di(I(ΨV m−1))V m−1

i + ξsV̂iI(ΨV
m−1) + βsV

m−1
i

)
,

1 ≤ i ≤M − 1, m ∈ N,

BCs
1[V

m
0 ] = I(B1(I(Ψ1V

m−1))V m−1), m ∈ N,

BCs
2[V

m
M ] = I(B2(I(Ψ2V

m−1))V m−1), m ∈ N.

(2.35)

If V 0
i is equal to an upper solution (lower solution, resp.) to (2.32) then denote

the solution to (2.35) by V̄ m
i (

¯
V m
i , resp.). As in the earlier sections, we show that

both (V̄ m
i ) and (

¯
V m
i ) are monotone sequences for each 1 ≤ i ≤ M − 1. This is

given in the next result.

Theorem 2.5.2 (Existence) Let V̂i, and Ṽi be a pair of ordered lower and upper

solutions to equation (2.32), respectively. Assume that p 7→ d(., p) is decreasing,

p 7→ Bν(., p) is increasing and µ1 = min{ξsV̂iI(Ψ) + βs : 0 ≤ i ≤ M} > 0. Then

the following hold:

(i) For each 0 ≤ i ≤M , both {V̄ m
i }, {

¯
V m
i } are monotone. Moreover, we have

V̂i ≤
¯
V m
i ≤

¯
V m+1
i ≤

¯
Vi ≤ V̄i ≤ V̄ m+1

i ≤ V̄ m
i ≤ Ṽi,

for every m ∈ N ∪ {0}, where lim
m→∞

{V̄ m
i } = V̄i, lim

m→∞
{
¯
V m
i } =

¯
Vi.

(ii) Both V̄i and
¯
Vi are solutions to (2.32).

(iii) If V ∗
i is another solution to (2.32) in ⟨V̂i, Ṽi⟩ then

¯
Vi ≤ V ∗

i ≤ V̄i, for 0 ≤ i ≤
M .

Proof.The proof follows from the same arguments used in the proof of Theorem

2.3.2.



§2.5. Steady state 43

The case ∂d
∂p
(., p) ≥ 0, ∂Bν

∂p
(., p) ≤ 0

Let

θs = min
{
Bν(xi, pν) : pν = I(ΨνV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M, ν = 1, 2

}
,

ζs = min
{

∂
∂pν
Bν(xi, pν) : pν = I(ΨνV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M, ν = 1, 2

}
.

We now introduce the following linear operators





Ls
∗[Vi] = Ls[Vi] +

(
ξsṼiI(ΨV ) + βsVi

)
, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(B1(I(Ψ1V ))V )− θsI(Ψ1V )− ζsI(Ṽ )I(Ψ1V ),

BCs
2[VM ] = I(B2(I(Ψ2V ))V )− θsI(Ψ2V )− ζsI(Ṽ )I(Ψ2V ).

(2.36)

Thus (2.32) becomes





Ls
∗[Vi] =

(
−di(I(ΨV ))Vi + ξsṼiI(ΨV ) + βsVi

)
, 1 ≤ i ≤M − 1,

BCs
1[V0] = I(B1(I(Ψ1V ))V )− θsI(Ψ1V )− ζsI(Ṽ )I(Ψ1V ),

BCs
2[VM ] = I(B2(I(Ψ2V ))V )− θsI(Ψ2V )− ζsI(Ṽ )I(Ψ2V ).

(2.37)

We construct a sequence of approximations {V m
i } to (2.37) using the linear iter-

ation process





Ls
∗[V

m
i ] =

(
−di(I(ΨV m−1))V m−1

i + ξsṼiI(ΨV
m−1) + βsV

m−1
i

)
,

1 ≤ i ≤M − 1, m ∈ N,

BCs
1[V

m
0 ]=I(B1(I(Ψ1V

m−1))V m−1)−θsI(Ψ1V
m−1)−ζsI(Ṽ )I(Ψ1V

m−1),

m ∈ N,

BCs
2[V

m
M ]=I(B2(I(Ψ2V

m−1))V m−1)−θsI(Ψ2V
m−1)−ζsI(Ṽ )I(Ψ2V

m−1),

m ∈ N.
(2.38)

If V 0
i is equal to an upper solution (lower solution, resp.) to (2.32) then the

solution to (2.38) is denoted by V̄ m
i (

¯
V m
i , resp.). As in Section 2.3, we show that

both (V̄ m
i ) and (

¯
V m
i ) are monotone sequences for each 1 ≤ i ≤ M − 1. This is

given in the next result.

Theorem 2.5.3 (Existence) Let V̂i, and Ṽi be a pair of ordered lower and upper

solutions to equation (2.32), respectively. Assume that p 7→ d(., p) is increasing,
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p 7→ Bν(., p) is decreasing, µ2 = min{ξsṼiI(Ψ) + βs : 0 ≤ i ≤ M} > 0 and

λ = max{θa† + ζI(Ψν)I(Ṽ ) | ν = 1, 2} < 1. Then the following hold:

(i) For each 0 ≤ i ≤M , both {V̄ m
i }, {

¯
V m
i } are monotone. Moreover, we have

V̂i ≤
¯
V m
i ≤

¯
V m+1
i ≤

¯
Vi ≤ V̄i ≤ V̄ m+1

i ≤ V̄ m
i ≤ Ṽi,

for every m ∈ N ∪ {0}, where lim
m→∞

{V̄ m
i } = V̄i, lim

m→∞
{
¯
V m
i } =

¯
Vi.

(ii) Both V̄i and
¯
Vi are solutions to (2.32).

(iii) If V ∗
i is another solution to (2.32) in ⟨V̂i, Ṽi⟩ then

¯
Vi ≤ V ∗

i ≤ V̄i, for 0 ≤ i ≤
M .

Proof.The proof follows from the same arguments used in the proof of Theorem

2.3.2.

2.5.3 Uniqueness

The objective of this subsection is to provide a statement of the uniqueness result

to (2.32). In order to state the uniqueness result, we introduce the following

notations:

γs = min
{

∂
∂p
d(x, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

αs = min
{
d(x, p) : p = I(ΨV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M

}
,

µ3 = min{γsṼiI(Ψ) + αs : 0 ≤ i ≤M},
µ4 = min{γsV̂iI(Ψ) + αs : 0 ≤ i ≤M},

ηs = max
{

∂
∂pν
Bν(xi, pν) : pν = I(ΨνV ), V̂i ≤ Vi ≤ Ṽi, 0 ≤ i ≤M, ν = 1, 2

}
,

λ1 = max
{
I
(
ηsI(Ψν)Ṽi +Bν(I(ΨνṼ ))

)
: ν = 1, 2

}
,

λ2 = max
{
I
(
ηsI(Ψν)V̂i +Bν(I(ΨνṼ ))

)
: ν = 1, 2

}
.

We conclude the section with the following uniqueness theorem for system (2.32).

Theorem 2.5.4 (Uniqueness) Assume one of the following conditions:

(i) p 7→ d(., p) is decreasing, µ3 > 0, p 7→ Bν(., p) is increasing and λ1 < 1,

(ii) p 7→ d(., p) is increasing, µ4 > 0, p 7→ Bν(., p) is increasing and λ1 < 1,

(iii) p 7→ d(., p) is decreasing, µ3 > 0, p 7→ Bν(., p) is decreasing and λ2 < 1,

(iv) p 7→ d(., p) is increasing, µ4 > 0, p 7→ Bν(., p) is decreasing and λ2 < 1.

Then equation (2.32) has a unique solution in ⟨V̂i, Ṽi⟩.
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2.6 Long time behavior

In this section, our aim is to establish the stability of numerical scheme (2.5) and

a relation between Ui,n and Vi. In particular, we show that if the initial data

satisfies V̂i ≤ Φi ≤ Ṽi, 0 ≤ i ≤M , then the corresponding numerical solution Ui,n

to (2.1) converges to the numerical solution Vi to (2.2). We first begin with the

stability result.

Theorem 2.6.1 (Stability) Assume the hypotheses of Theorem 2.4.1. Then

scheme (2.5) is stable.

Proof.We prove this result under hypotheses (i) in Theroem 2.4.1. The other

cases follow using the same argument. First, fix T > 0. Let N ∈ N, k > 0 be

such that Nk ≤ T . To prove stability of the numerical scheme, we show that

|| Un ||∞≤|| Φ ||∞, n ∈ N. We set Ũi,n =|| Φ ||∞ and Ûi,n = 0. Observe that Ũi,n

is an upper solution to (2.5), due to δ1 < 1. It is easy to verify that the constant

zero matrix (Ûi,n) is a lower solution to (2.5). From Theorems 2.3.2 and 2.4.1,

there exists a unique solution to (2.5), say Ui,n satisfying, 0 ≤ Ui,n ≤|| Φ ||∞,
0 ≤ i ≤M, 0 ≤ n ≤ N. We now prove the main theorem of this section.

Theorem 2.6.2 (Asymptotic behavior) Let Ṽi and V̂i be a pair of ordered

upper and lower solutions to (2.32), respectively. Let the hypotheses of Theorem

2.4.1 hold. Assume that Ûi,n ≤ V̂i ≤ Ṽi ≤ Ũi,n. Let Ȳi,n and
¯
Yi,n be solutions to

(2.5) with Ȳi,0 = Ṽi and
¯
Yi,0 = V̂i, respectively. Then the following conclusions

hold:

(i) For each fixed 0 ≤ i ≤ M , the sequence (Ȳi,n) is decreasing and (
¯
Yi,n) is

increasing in n. Moreover, we have Ȳi,n ≥
¯
Yi,n on Λ̄.

(ii) If Ui,n is a solution to (2.5) with initial data Φi ∈ ⟨V̂i, Ṽi⟩, then
¯
Yi,n ≤ Ui,n ≤

Ȳi,n.

(iii) For each 0 ≤ i ≤ M , set lim
n→∞

Ȳi,n = V̄i, lim
n→∞ ¯

Yi,n =
¯
Vi. Then V̄i and

¯
Vi are

the maximal and minimal solutions to (2.32) in ⟨V̂i, Ṽi⟩, respectively.
(iv) Let Φi ∈ ⟨V̂i, Ṽi⟩. Assume that µ3 > 0, and µ4 > 0 whenever ∂d

∂s
≥ 0, and

∂d
∂s
< 0, respectively. Then lim

n→∞
Ui,n = V̄i =

¯
Vi.

Proof.We prove the theorem under the assumptions given in (i) in the statement

of Theroem 2.4.1. The other cases follow from the same argument.

(i) In order to prove (i), we use the same strategy employed in the proof of
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Theorem 2.4.1.

Let Xi,n = Ȳi,n − Ȳi,n+1, (i, n) ∈ Λ̄.

Now define W̄i,n = (1 − ρ)n(Ȳi,n − Ȳi,n+1), for some constant ρ > 0 such that

−kσ3 < ρ < 1.

Claim W̄i,n ≥ 0 on Λ̄.

On the contrary, assume that for some N ∈ N, there exists (i′, n′) ∈ Λ̄ such that

W̄i′,n′ = min
0≤n≤N
0≤i≤M

W̄i,n < 0.

Observe that Ṽi is also an upper solution to (2.5). In view of Theorems 2.3.2 and

2.4.1, we obtain, W̄i,0 = Ȳi,0 − Ȳi,1 = Ṽi − Ȳi,1 ≥ 0. Thus we find that n′ ̸= 0. Let

if possible i′ = 0.

Then from the left boundary condition and hypothesis, we get

(
1 +

1

h

)
W0,n′ −

(
1

h

)
W1,n′

= (1− ρ)n
′
((

1 +
1

h

)
X0,n′ −

(
1

h

)
X1,n′

)

= (1− ρ)n
′ (
I(B1(I(Ψ1Ȳ n′))Ȳ n′)− I(B1(I(Ψ1Ȳ n′+1))Ȳ n′+1)

)

= (1− ρ)n
′
[I(B1(I(Ψ1Ȳ n′))Ȳ n′)− I(B1(I(Ψ1Ȳ n′))Ȳ n′+1)

+ I(B1(I(Ψ1Ȳ n′))Ȳ n′+1)− I(B1(I(Ψ1Ȳ n′+1))Ȳ n′+1)]

≥ (1− ρ)n
′
(Ȳ0,n′ − Ȳ0,n′+1)I

(
B1(I(Ψ1Ũn′)) + ηI(Ψ1)Ũi,n′+1

)

≥ δ1W0,n′

> W0,n′ . (2.39)

In view of (2.39), we obtain i′ ̸= 0. Using the same argument at the other

boundary, we get i′ ̸=M . Therefore we have (i′, n′) ∈ Λ.

Since

2rW̄i′,n′ − bW̄i′+1,n′ − cW̄ 0
i′−1,n′ ≤ 0,
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from the definition of L, we deduce

W̄i′,n′ ≥ L[W̄i′,n′ ]

= (1− ρ)W̄i′,n′−1 − (1− ρ)n
′
k[di′(I(ΨȲ n′))Ȳi′,n′

− di′(I(ΨȲ n′+1))Ȳi′,n′+1]

= (1− ρ)W̄i′,n′−1 − (1− ρ)n
′
k
[
Ȳi′,n′(di′(I(ΨȲ n′))− di′(I(ΨȲ n′+1)))

]

− (1− ρ)n
′
k
[
di′(I(ΨȲ n′+1))(Ȳi′,n′ − Ȳi′,n′+1)

]

≥ (1− ρ)W̄i′,n′−1 − k
[
Ũi′,n′I(Ψ)γ + α

]
W̄i′,n′

≥ (1− ρ)W̄i′,n′−1 − kσ3W̄i′,n′ .

In view of the above relation, we find that

(1 + kσ3) W̄i′,n′ ≥ (1− ρ)W̄i′,n′−1 ≥ (1− ρ)W̄i′,n′ ,

which is impossible because −kσ3 < ρ. This contradiction shows that W̄i,n ≥ 0.

Hence

Ȳi,n+1 ≥ Ȳi,n, (i, n) ∈ Λ̄. (2.40)

A similar argument employed to prove (2.40) gives the relations
¯
Yi,n+1 ≥

¯
Yi,n and

Ȳi,n ≥
¯
Yi,n, (i, n) ∈ Λ̄.

(ii) Let Ui,n be the solution to (2.5) with initial data Φi ∈ ⟨V̂i, Ṽi⟩.
On settingWi,n = (1−ρ)n(Ȳi,n−Ui,n), and using the argument employed to prove

(2.40), one can readily obtain Wi,n ≥ 0, which yields Ui,n ≤ Ȳi,n. Similarly, one

can show that
¯
Yi,n ≤ Ui,n.

(iii) We first notice that V̂i ≤
¯
Vi ≤ V̄i ≤ Ṽi.

Using (i) and letting n → ∞ in (2.5), we find that both V̄i and
¯
Vi are solutions

to equation (2.32).

Let V ∗
i be a maximal solution to (2.32) in ⟨V̂i, Ṽi⟩. On setting Wi,n = (1 −

ρ)n(Ȳi,n−V ∗
i ), and using the argument employed to prove (i), one readily obtains

Wi,n ≥ 0. Again, let n → ∞, to get V̄i ≥ V ∗
i . Maximality of V ∗

i ensures that

V̄i = V ∗
i . Similarly, one can prove that

¯
Vi is a minimal solution to (2.32) in ⟨V̂i, Ṽi⟩.

(iv) Since 1 > δ1 ≥ λ1, Theorem 2.5.4 ensures that (2.32) has a unique solution.

i.e., V̄i =
¯
Vi, 0 ≤ i ≤M . In view of Theorem 2.6.2(ii) and (iii), we conclude that

lim
n→∞

Ui,n = V̄i =
¯
Vi.
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2.7 A special type of nonlinearity

In this section, we study the following nonlinear nonlocal M-V-D with nonlinear

nonlocal Robin boundary conditions





ut(x, t) + ux(x, t) + d(x, s(t))u(x, t) = uxx(x, t), x ∈ D, t > 0,

u(0, t)− ux(0, t) = g

(∫ a†

0

B̄1(y)u(y, t)dy

)
, t > 0,

u(a†, t) + ux(a†, t) = g

(∫ a†

0

B̄2(y)u(y, t)dy

)
, t > 0,

u(x, 0) = u0(x), x ∈ D̄,

s(t) =

∫ a†

0

ψ(x)u(x, t)dx, t > 0.

(2.41)

The functions d, B̄1, B̄2, ψ, g, u0 are assumed to be non-negative and continuous.

Notice that with the choice





B1(x, s) =
g(s)

s
B̄1(x), ψ1 = B̄1,

B2(x, s) =
g(s)

s
B̄2(x), ψ2 = B̄2,

system (2.1) reduces to (2.41). In fact, this choice of Bν has singularity at s = 0,

for ν = 1, 2. Notwithstanding the presence of the singularities, we study the

existence, uniqueness and the long time behavior of approximate solutions to

(2.41) analogous to the earlier sections.

As before, the steady state equation corresponding to (2.41) is given by





vx(x) + d(x, p)v(x) = vxx(x), x ∈ D,

v(0)− vx(0) = g

(∫ a†

0

B̄1(y)v(y)dy

)
,

v(a†) + vx(a†) = g

(∫ a†

0

B̄2(y)v(y)dy

)
,

p =

∫ a†

0

ψ(x)v(x)dx.

(2.42)

2.7.1 Numerical scheme

Let B̄ν = (B̄ν(x0), B̄ν(x1), . . . , B̄ν(xM)), ν = 1, 2. Using the finite difference oper-

ators given in (2.4), we propose the following implicit scheme to find approximate
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solutions to (2.41):





L[Ui,n] = Ui,n−1 − kdi(I(ΨUn))Ui,n, (i, n) ∈ Λ,

BC1[U0,n] = g
(
I(B̄1Un)

)
, n ∈ N,

BC2[UM,n] = g
(
I(B̄2Un)

)
, n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.43)

We now introduce the notion of upper and lower solutions to (2.43).

Definition 2.7.1 A vector (Ũi,n) is called an upper solution to (2.43) if





L[Ũi,n] ≥ Ũi,n−1 − kdi(I(ΨŨn))Ũi,n, (i, n) ∈ Λ,

BC1[Ũ0,n] ≥ g
(
I(B̄1Ũn)

)
, n ∈ N,

BC2[ŨM,n] ≥ g
(
I(B̄2Ũn)

)
, n ∈ N,

Ũi,0 ≥ Φi, 0 ≤ i ≤M.

(2.44)

Similarly, (Ûi,n) is called a lower solution to (2.43) if it satisfies inequalities of

(2.44) in the reversed order.

Throughout this section, we make the following hypotheses:

g is a C1 such that g′ > 0 and g(Ax) ≤ x, (2.45)

where A = max{∑M
i=0 qiB̄1,i,

∑M
i=0 qiB̄2,i}. We prove the existence result in the

following two cases: (i) s 7→ d(., s) is decreasing, (ii) s 7→ d(., s) is increasing.

We provide an outline of the existence result in case (i) and the other case can

be delt with a similar technique.

To that end, using the notation introduced in (2.11), scheme (2.43) can be written

as





L[Ui,n]=Ui,n−1+ k
(
−di(I(ΨUn))Ui,n+ξÛi,nI(ΨUn) + βUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = g
(
I(B̄1Un)

)
, n ∈ N,

BC2[UM,n] = g
(
I(B̄2Un)

)
, n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.46)
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For (i, n) ∈ Λ̄, we construct a sequence {Um
i,n} of approximations to a solution

{Ui,n} to (2.46) as follows. Let {Um
i,n} be the solution to





L[Um
i,n] = Um−1

i,n−1 + k
(
−di(I(ΨUm−1

n ))Um−1
i,n + ξÛi,nI(ΨU

m−1
n ) + βUm−1

i,n

)
,

(i, n) ∈ Λ, m ∈ N,

BC1[U
m
0,n] = g

(
I(B̄1U

m−1
n )

)
, n ∈ N, m ∈ N,

BC2[U
m
M,n] = g

(
I(B̄2U

m−1
n )

)
, n ∈ N, m ∈ N,

Um
i,0 = Φi, 0 ≤ i ≤M, m ∈ N.

(2.47)

If U0
i,n is equal to an upper solution (lower solution, resp.) to (2.43), then the

solution to (2.47) is denoted by Ūm
i,n (

¯
Um
i,n, resp.).

Observe that, in view of hypothesis (2.45), we get that Ũi,n ≡|| Φ ||∞, Ûi,n ≡ 0

is a pair of ordered upper and lower solution to (2.43). We are ready to state an

existence result whose proof is analogous to that of Theorem 2.3.2.

Theorem 2.7.2 (Existence) Let Ûi,n, and Ũi,n be a pair of ordered lower and

upper solutions to equation (2.43), respectively. Assume (2.45), s 7→ d(., s) is a

decreasing function and −kσ1 < 1. Then the following hold:

(i) For every fixed (i, n) ∈ Λ̄, both {Ūm
i,n}, {¯U

m
i,n} are monotone sequences. More-

over, we have

Ûi,n ≤
¯
Um
i,n ≤

¯
Um+1
i,n ≤

¯
Ui,n ≤ Ūi,n ≤ Ūm+1

i,n ≤ Ūm
i,n ≤ Ũi,n, (i, n) ∈ Λ̄,

for every m ∈ N ∪ {0}, where lim
m→∞

Ūm
i,n = Ūi,n, lim

m→∞ ¯
Um
i,n =

¯
Ui,n.

(ii) Both Ūi,n and
¯
Ui,n are solutions to (2.43).

(iii) If U∗
i,n is another solution to (2.43) in ⟨Ûi,n, Ũi,n⟩, then

¯
Ui,n ≤ U∗

i,n ≤ Ūi,n on

Λ̄.

When s 7→ d(., s) is an increasing function, using the notation in (2.25), one can

write (2.43) as





L∗[Ui,n]=Ui,n−1+k
(
−di(I(ΨUn))Ui,n+ξŨi,nI(ΨUn) + βUi,n

)
, (i, n) ∈ Λ,

BC1[U0,n] = g
(
I(B̄1Un)

)
, n ∈ N,

BC2[UM,n] = g
(
I(B̄2Un)

)
, n ∈ N,

Ui,0 = Φi, 0 ≤ i ≤M.

(2.48)

As before, for (i, n) ∈ Λ̄, we construct a sequence {Um
i,n} of approximations to
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a solution {Ui,n} to (2.48). The sequence (i, n) ∈ Λ̄ is monotonic and its limit

turns out to be the solution to (2.43).

Before stating the uniqueness result, we introduce the following notation:

δ∗ = max
{
g′(ζν) : ζν ∈

(
I(B̄νÛn), I(B̄νŨn)

)
, ν = 1, 2

}
.

Now we are ready to state the uniqueness theorem.

Theorem 2.7.3 (Uniqueness) Assume one of the following conditions:

(i) s 7→ d(., s) is decreasing, max{−kσ3, Aδ∗} < 1,

(ii) s 7→ d(., s) is increasing, max{−kσ4, Aδ∗} < 1.

Then equation (2.43) has a unique solution in ⟨Ûi,n, Ũi,n⟩.

We now recall the finite difference operator given in (2.31) and propose the fol-

lowing implicit scheme for (2.42) which is immediate from (2.30)





Ls[Vi] = −di(I(ΨV ))Vi, 1 ≤ i ≤M − 1,

BCs
1[V0] = g

(
I(B̄1V )

)
,

BCs
2[VM ] = g

(
I(B̄2V )

)
.

(2.49)

Using the notion of upper and lower solution to (2.49), we can get the similar

results as in Section 2.5. We conclude this section with the following result

concerning asymptotic behavior.

Theorem 2.7.4 (Asymptotic behavior) Let Ṽi and V̂i be a pair of ordered

upper and lower solutions to (2.49), respectively. Let the hypothesis of Theorem

2.7.3 hold. Assume that Ûi,n ≤ V̂i ≤ Ṽi ≤ Ũi,n. Let Ūi,n and
¯
Ui,n be solutions

to (2.43) corresponding to Φi = Ṽi and Φi = V̂i, respectively. Then the following

conclusions hold:

(i) Ūi,n is decreasing and
¯
Ui,n is increasing in n. Moreover, we have Ūi,n ≥

¯
Ui,n

on Λ̄.

(ii) If Ui,n is a solution to (2.43) with initial data Φi ∈ ⟨V̂i, Ṽi⟩, then
¯
Ui,n ≤ Ui,n ≤

Ūi,n.

(iii) For each 0 ≤ i ≤M , set lim
n→∞

Ūi,n = V̄i, lim
n→∞ ¯

Ui,n =
¯
Vi. Then V̄i and

¯
Vi are

the maximal and minimal solutions to (2.49) in ⟨V̂i, Ṽi⟩, respectively.
(iv) Let Φi ∈ ⟨V̂i, Ṽi⟩. Assume that µ3 > 0, and µ4 > 0 whenever ∂d

∂s
≥ 0, and

∂d
∂s
< 0, respectively. Then we have lim

n→∞
Ui,n = V̄i =

¯
Vi.
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2.8 Numerical simulations

In this section, we present four examples in which the numerical solutions to

time dependent problem (2.5) and corresponding steady state problem (2.32)

are computed to validate the results in the earlier sections. In Examples 2.8.1–

2.8.2, we demonstrate the facts that for each i, n (Ūm
i,n) is decreasing, (

¯
Um
i,n) is

increasing and the approximate Ui,n tends to Vi for each i, as n tends to ∞. If

Eh denotes the magnitude of the error with step size h, then the experimental

order of convergence can be computed using the standard formula

order =
log(Eh)− log(Eh

2
)

log 2
.

Moreover, to demonstrate the advantage of the proposed numerical scheme over a

standard implicit difference scheme, we present two examples in which analytical

solutions are known explicitly. In these examples, we use the same notation that

is introduced in Section 2.2. In particular, we compare our scheme with the

following scheme (backward difference approximation for ut and centered the in

space discretization for ux, and uxx):





(1 + 2r)Xi,n − bXi+1,n − cXi−1,n =
(
1− kdi(I(ΨXn−1))

)
Xi,n−1, (i, n) ∈ Λ,

(
1 +

1

h

)
X0,n −

1

h
X1,n = I(B1(I(Ψ1Xn−1))Xn−1), n ∈ N,

(
1 +

1

h

)
XM,n −

1

h
XM−1,n = I(B2(I(Ψ2Xn−1))Xn−1), n ∈ N,

Xi,0 = Φi, 0 ≤ i ≤M,

(2.50)

where Xi,n is a numerical approximation to u at the grid point (xi, t
n).

All computations have been performed using Matlab 8.5. In all the examples, we

have taken a† = 1 and ψ(x) = ψ1(x) = ψ2(x) ≡ 1. Moreover, in the first two

examples we have taken h = 0.01, k = 0.5× 10−4, and u0(x) =
e−x

2
, x ∈ [0, 1].

Example 2.8.1

In order to test our numerical scheme, we assume that d, B1 and B2 are given by

d(x, s) = (x+ 1)− s
10
, B1(x, s) =

x+s
10

, B2(x, s) = 0, x ∈ (0, 1), s ≥ 0.

Taking into account of the definitions of upper and lower solutions to (2.5), we
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choose Ũi,n ≡ 1 and Û ≡ 0. It is easy to verify that Ṽi ≡ 1 and V̂i ≡ 0 are

upper and lower solutions to (2.32), respectively. On the other hand, one can

easily check that d and Bν satisfy hypotheses of Theorems 2.4.1 and 2.6.2. Hence

(2.5) has a unique numerical solution. Note that, for the given set of functions,

v(x) ≡ 0 is a unique solution to (2.32).

In Figure 2.1 (Left), we show the upper and lower solutions Ūm
i,n and

¯
Um
i,n,
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Figure 2.1: Approximate solutions to (2.1) with d(x, s), B1(x, s), B2(x, s) given
in Example 2.8.1; Left: Ū3(x, 1) (dash-dot line), Ū4(x, 1) (dashed line), U3(x, 1)
(dotted line), U4(x, 1) (solid line) for 0 ≤ x ≤ 1; Right: |Ū3(x, 1) − U3(x, 1)|
(dash-dot line) and |Ū4(x, 1)− U4(x, 1)| (dashed line).

respectively, to (2.5) for m = 3, 4, and t = 1. From this figure, it is evident that

for every fixed (i, n), Ūm
i,n is decreasing with m and

¯
Um
i,n is increasing with m. This

phenomenon re-validates the results that are proved in Theorem 2.3.2. In Figure

2.1 (Right), we plot the absolute difference between Ūm
i,n and

¯
Um
i,n at t = 1, for

m = 3 and 4. From this figure, one can observe that Ūm
i,n, ¯

Um
i,n are very close to

each other, and the sequence (Ūm
i,n) indeed converges to a unique solution Ui,n as

mentioned in Theorem 2.4.1. In the next figure, we turn towards the long time

behavior of the numerical solution.

As the solution Ui,n to (2.5) lies in the interval (Ūm
i,n, ¯

Um
i,n), if the length of the

interval is too small, then without loss of generality, we take Ui,n to be Ūm
i,n. In

Figure 2.2, we present the numerical solutions to (2.5) at t = 2, 3 and the solution

to the steady state problem. In particular, we have taken Ui,n = Ū4
i,n at t = 2

and 3. Since the numerical solution Vi is identically 0, Figure 2.2 can be used for

the error analysis also. From Figure 2.2, it is evident that (Ui,n) is very close to
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Figure 2.2: Approximate solutions to (2.5) and (2.32) with d(x, s), B1(x, s),
B2(x, s) given in Example 2.8.1; U(x, 2) (dash-dot line), U(x, 3) (dashed line),
V (x) (solid line) for 0 ≤ x ≤ 1.

the trivial steady state (Vi) for sufficiently large n (it indeed converges to Vi), as

demonstrated theoretically in Theorem 2.6.2.

Example 2.8.2

In this example, we validate the results presented in Section 2.7 when the special

type of nonlinearity described in that section is considered. For the numerical

simulations, we take d, g, B̄1 and B̄2 as

d(x, s) = (x+ 1) + s2

100
, g(s) =

√
s+1
2

, B̄1(x) =
1
2
,

B̄2(x) = e−x, x ∈ (0, 1), x ∈ (0, 1), s ≥ 0.

In this example, we choose Ũi,n ≡ 1 and Û ≡ 0 as the upper and lower solutions

to (2.43) respectively. Furthermore, Ṽi ≡ 1 and V̂i ≡ 0 are chosen to be the

upper and lower solutions to (2.49). One can easily check that d and g satisfy

the hypotheses of Theorem 2.7.3. Hence (2.43) has a unique numerical solution.

In Figure 2.3 (Left), we present approximate solutions to (2.43) at t = 1, 2 and

the solution to the steady state problem. Moreover, in Figure 2.3 (Right) the

absolute errors |Ūi,n − V̄i| are displayed at t = 1 and 2. From the these graphs, it

is clear that (Ui,n) is very close to the nontrivial steady state (Vi) whenever n is

large, as mentioned in Theorem 2.7.4.

Example 2.8.3
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Figure 2.3: Approximate solutions to (2.43) and (2.49) with d(x, s), g(s), B̄1(x),
B̄2(x) given in Example 2.8.2; Left: U(x, 1) (dashed line), U(x, 2) (dash-dot
line), V (x) (solid line) for 0 ≤ x ≤ 1; Right: |U(x, 1) − V (x)| (dashed line) and
|U(x, 2)− V (x)| (dash-dot line).

In this example, we choose the vital rates d,B1, B2 and the initial data u0 such

that the solution to (2.1) is known in the closed form. In particular, let

d(x, s) = 1 + 2x−1
4

+ (2x−1)2

16
− s

2
∫ 1
0 e−

(2x−1)2

16 dx

, u0(x) = e−
(2x−1)2

16 ,

B1(x, s) = B2(x, s) =
3e−1/16

4
∫ 1
0 e−

(2x−1)2

16 dx

, x ∈ (0, 1), s ≥ 0.

Now it is easy to verify that u(x, t) = 2
1+4et

e−
(2x−1)2

16 is the solution to (2.1). On

the other hand, to compute approximate solutions using (2.3), we first choose

Ũi,n = e−
(2ih−1)2

16 and Û ≡ 0 as an upper solution and a lower solution to (2.5),

respectively. Moreover, one can easily check that d and Bν satisfy hypotheses of

Theorem 2.4.1. Hence (2.5) has a unique numerical solution.

We now compare the numerical solutions and the exact solution at t = 1. The

plots of Ū2
i,n and

¯
U2
i,n for 0 ≤ x ≤ 1, t = 1, are presented in Figure 2.4(a). In

Figure 2.4(b), the absolute difference |Ū2
i,n −

¯
U2
i,n| is shown. When m = 3, the

graphs of Ū3
i,n and

¯
U3
i,n, for 0 ≤ x ≤ 1 at t = 1 are depicted in Figure 2.4(c) and

the absolute difference |Ū3
i,n − ¯

U3
i,n| at t = 1 is presented in Figure 2.4 (d). From

these numerical experiments, in particular from Figures 2.4(b), and 2.4(d), it is

evident that the approximate solutions Ūm
i,n and

¯
Um
i,n are very close to each other

as m grows. In this case m = 3 gives a good approximation. This verifies the

conclusions of Theorem 2.3.2.
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Figure 2.4: The exact solution to (2.1) and approximate solutions to (2.5) with
d(x, s), B1(x, s), B2(x, s) given in Example 2.8.3 with h = 0.01, k = 0.01; (a):
u(x, 1) (solid line), Ū2

i,n (dashed line) and U2
i,n (dotted line); (b): |Ū2

i,n − U2
i,n|

at t = 1; (c): u(x, 1) (solid line), Ū3
i,n (dashed line) and U5

i,n (dotted line); (d):

|Ū3
i,n − U3

i,n| at t = 1.

Since Ui,n lies in the interval (
¯
U3
i,n, Ū

3
i,n) and the length of the interval is suf-

ficiently small, we take the numerical solution at t = 1 to be Ū3
i,n. In Fig-

ure 2.5, we discuss convergence of numerical scheme (2.5). In particular, we

present the exact solution u and the numerical solutions Ui,n to (2.5) at t = 1

with h = 0.01, k = 0.01 in Figure 2.5(a). We show the absolute difference

|u(·, 1)− Ui,n| at t = 1 in Figure 2.5(b) for the same values of h and k. At t = 1,

we have computed Ui,n with smaller step sizes. In particular, we show Ui,n with

h = 0.1×10−2, k = 0.1×10−3, and u in Figure 2.5(c), and the corresponding the

absolute difference |u(·, 1) − Ui,n| in Figure 2.5(d). These numerical simulations

show that the numerical solution U indeed converges to the exact solution u at

t = 1 as h, k → 0.

In Table 2.1, we display the magnitude of the discretization error and the experi-
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Figure 2.5: The exact solution to (2.1) and approximate solutions to (2.5) with
d, B1, B2 given in Example 2.8.3; (a): u(x, 1) (solid line) and Ui,n (dashed line)
at t = 1 with h = 0.01, k = 0.01; (b): |u(x, 1) − Ui,n| (solid line) at t = 1 with
h = 0.01, k = 0.01; (c): u(x, 1) (solid line) and Ui,n (dashed line), at t = 1 with
h = 0.1 × 10−2, k = 0.1 × 10−3; (d): |u(x, 1) − Ui,n| (solid line) at t = 1 with
h = 0.1× 10−2, k = 0.1× 10−3.

mental order of convergence for different choices of h and k. In the third column,

we present the maximum absolute error at t = 1, and in the fourth column the

experimental order of convergence is shown. From Table 2.1, we can observe that

the order of convergence of the proposed numerical scheme (2.5) is one.

Our next objective is to demonstrate the advantage of scheme (2.3) over (2.50).

To this end, in Table 2.2, we show the absolute error and the time required to

compute approximate solutions using (the computational time) (2.3) and (2.50).

In particular, we present the equation number of the scheme and the correspond-

ing absolute error in the first and fourth column of Table 2.2 for different choices

of h, k, respectively, at t = 1. Moreover, we display the corresponding computa-

tional time in the fifth column. From the first two rows of Table 2.2, it is clear

that at t = 1 when h = 0.05, k = 0.1 scheme (2.3) gives better approximation
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h k max
0≤i≤M

{|Ui,N − u(xi, t
N)|} order

0.1 0.01 0.006939 0.9888
0.05 0.0025 0.003496 0.9941
0.02 0.0004 0.001405 0.9977
0.01 0.0001 0.000703 0.9988

Table 2.1: Magnitude of the discretization error and the experimental order of
convergence for different choices of h and k at t = 1 with d, B1, B2 given in
Example 2.8.3

Scheme h k max
0≤i≤M

{|Ui,N − u(xi, t
N)|} Computational time (sec)

(2.3) 0.05 0.1 1.35× 10−3 0.113
(2.50) 0.05 0.1 1.88× 10−2 0.109
(2.50) 0.02 0.1 1.49× 10−3 0.150
(2.3) 0.02 0.02 3.81× 10−4 0.177
(2.50) 0.02 0.02 3.23× 10−3 0.145
(2.50) 0.01 0.005 4.57× 10−4 0.295
(2.3) 0.01 0.008 2.87× 10−4 0.468
(2.50) 0.01 0.008 1.15× 10−3 0.196
(2.50) 0.005 0.004 5.78× 10−4 0.522

Table 2.2: The absolute difference between the exact solution and the computed
solutions, and the computational time for different choices of h and k at t = 1
with d, B1, B2 given in Example 2.8.3
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than (2.50). In order to get the absolute error close to 1.35× 10−3 using (2.50),

we need to take smaller step sizes. From the third row of Table 2.2, we observe

that with h = 0.02, k = 0.1, semi-implicit (2.50) gives an approximate solution

with the absolute error 1.49× 10−3. Moreover, the computational time to get an

approximate solution with this accuracy using scheme (2.50) is more than that of

scheme (2.3). Similarly, with different step sizes, we observe the same phenom-

ena (see Rows 4-9 of Table 2.2). Thus from Table 2.2, we deduce that proposed

implicit scheme (2.3) takes less computational time than (2.50) to get the same

accuracy. Therefore from these calculations, it is evident that proposed scheme

(2.3) is more efficient than standard semi-implicit scheme (2.50).

Example 2.8.4

Let the vital rates d,B1, B2 and the initial data u0 be given by

d(x, s) = 1 + 2x−1
4

+ (2x−1)2

16
−
(

s

2
∫ 1
0 e−

(2x−1)2

16 dx

)2
, u0(x) = e−

(2x−1)2

16 ,

B1(x, s) = B2(x, s) =
3e−1/16

4
∫ 1
0 e−

(2x−1)2

16 dx

, x ∈ (0, 1), s ≥ 0.

One can easily check that u(x, t) = 2√
1+24e2t

e−
(2x−1)2

16 is the solution to (2.1). In

order to compute approximate solutions, we set Ũi,n = e−
(2ih−1)2

16 and Û ≡ 0.

Moreover, one can easily verify that d and Bν satisfy hypotheses of Theorem

2.4.1. Hence (2.5) admits a unique numerical solution.

In Figure 2.6, we compare the numerical solutions to (2.13) at t = 1. In

particular, the graphs of Ū2
i,n and

¯
U2
i,n for 0 ≤ x ≤ 1 at t = 1 are shown in Figure

2.6(a). Moreover, the absolute difference |Ū2
i,n −

¯
U2
i,n| is shown in Figure 2.6(b).

The plots of Ū3
i,n and

¯
U3
i,n, for 0 ≤ x ≤ 1 at t = 1 are depicted in Figure 2.6(c),

and the absolute difference |Ū3
i,n− ¯

U3
i,n| at t = 1 in Figure 2.6 (d). It is clear from

Figures 2.6(b), and 2.6(d) that the approximate solutions Ūm
i,n and

¯
Um
i,n are close

to each other as m grows. Therefore in this case, we got a good approximation

with m = 3. This revalidates the conclusions of Theorem 2.3.2.

Since the length of the interval (
¯
U3
i,n, Ū

3
i,n) is too small (see Figure 2.6 (d)),

as in the previous example, we take Ui,n to be Ū3
i,n. In Figure 2.7, we present

the exact solution and numerical solutons to (2.1) at time t = 1 with different

choices of h, k, which help us to discuss numerical convergence of scheme (2.5).

To be more specific, we show the exact solution u and numerical solutions Ui,n

to (2.5) at t = 1 with h = 0.01, k = 0.01 in Figure 2.7(a), and the absolute
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Figure 2.6: The exact solution to (2.1) and approximate solutions to (2.5) with
d(x, s), B1(x, s), B2(x, s) given in Example 2.8.4 with h = 0.01, k = 0.01; (a):
u(x, 1) (solid line), Ū2

i,n (dashed line) and U3
i,n (dotted line); (b): |Ū2

i,n − U2
i,n|

at t = 1; (c): u(x, 1) (solid line), Ū3
i,n (dashed line) and U3

i,n (dotted line); (d):

|Ū3
i,n − U3

i,n| at t = 1.

differences |u(·, 1) − Ui,n| at t = 1 in Figure 2.7(b). We present Ui,n which is

computed using smaller step sizes, namely, h = 0.1 × 10−2, k = 0.1 × 10−3 in

Figure 2.7(c) and the corresponding absolute difference |u(·, 1) − Ui,n| in Figure

2.7(d). From these numerical simulations, one can observe that the numerical

solution U indeed converges to the exact solution u as the step sizes tend to 0.

In Table 2.3, we show the computational error and the experimental order of

convergence for different choices of h and k. In particular, in the third column,

we display the maximum absolute error at t = 1 and in the fourth column the

experimental order of convergence is shown. From Table 2.3, one can conclude

that the experimental order of convergence of the proposed numerical scheme

(2.5) is one.

In Table 2.4, we present the absolute difference between the exact solution to
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h k max
0≤i≤M

{|Ui,N − u(xi, t
N)|} order

0.1 0.01 0.005847 0.9921
0.05 0.0025 0.002939 0.9857
0.02 0.0004 0.001190 0.9929
0.01 0.0001 0.000598 0.9963

Table 2.3: The magnitude of the error and the order of convergence for different
choices of h and k at t = 1 with d, B1, B2 given in Example 2.8.4

Scheme h k max
0≤i≤M

{|Ui,N − u(xi, t
N)|} Computational time (sec)

(2.3) 0.05 0.1 3.55× 10−3 0.101
(2.50) 0.05 0.1 1.74× 10−2 0.094
(2.50) 0.02 0.04 7.09× 10−3 0.107
(2.3) 0.02 0.02 2.84× 10−4 0.127
(2.50) 0.02 0.02 2.98× 10−3 0.118
(2.50) 0.01 0.005 4.46× 10−4 0.189
(2.3) 0.01 0.008 7.51× 10−5 0.505
(2.50) 0.01 0.008 1.07× 10−3 0.174
(2.50) 0.005 0.004 5.38× 10−4 0.578

Table 2.4: The absolute difference between the exact solution and the computed
solutions, and the computational time for different choices of h and k at t = 1
with d, B1, B2 given in Example 2.8.4
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Figure 2.7: The exact solution to (2.1) and the approximate solutions to (2.5)
with d, B1, B2 given in Example 2.8.4; (a): u(x, 1) (solid line) and Ui,n (dashed
line) at t = 1 with h = 0.01, k = 0.01; (b): |u(x, 1) − Ui,n| (solid line) at t = 1
with h = 0.01, k = 0.01; (c): u(x, 1) (solid line) and Ui,n (dashed line), at t = 1
with h = 0.1× 10−2, k = 0.1× 10−3; (d): |u(x, 1)−Ui,n| (solid line) at t = 1 with
h = 0.1× 10−2, k = 0.1× 10−3.

(2.1) and the approximated solutions that are obtained using (2.3) and (2.50),

and the computational time for different values of h, k. As in the previous

example, we display the equation number of the scheme, the absolute error and

computation time in the first, fourth and fifth columns of Table 2.4, respectively.

From the first three rows of Table 2.4, it is easy to observe that scheme (2.50) takes

more computational time compared to (2.3) to achieve the same accuracy due to

the requirement of smaller step sizes. It is evident from Table 2.4 that proposed

scheme (2.3) is more efficient than standard semi-implicit scheme (2.50).



Chapter 3

A numerical scheme for a

diffusion equation with nonlocal

nonlinear boundary condition

3.1 Introduction

The McKendrick–Von Foerster equation arises naturally in many areas of math-

ematical biology such as cell proliferation, and demography modeling (see [2, 21,

60, 61, 72, 73, 81]). In particular, the McKendrick–Von Foerster equation is one

amongst the important models whenever age structure is a vital feature in the

modeling (see [3, 28, 33, 35, 47]). In the recent years, the McKendrick–Von Fo-

erster equation with diffusion (M-V-D) has attracted interest of many engineers

as well as mathematicians due to its applications in the modeling of thermoelas-

ticity, neuronal networks etc., (see [18, 19, 36, 37, 57, 58]). The main difficulty

in the study of the M-V-D is due to the nonlocal nature of the partial differen-

tial equation (PDE) and the boundary condition. The qualitative properties of

the M-V-D have been developed by many authors. Though, numerical study of

nonlocal equations got considerable focus, relatively less attention was paid to

problems with the Robin boundary condition.

In this paper, our objective is to propose and analyze a numerical scheme to find

63
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approximate solutions to the following nonlinear diffusion equation





ut(x, t) + ux(x, t) + d
(
x, s1(t)

)
u(x, t) = uxx(x, t), x ∈ (0, a†), t > 0

u(0, t)− ux(0, t) =

∫ a†

0

B
(
x, s2(t)

)
u(x, t)dx, t ≥ 0,

u(a†, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ (0, a†),

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, t ≥ 0, ν = 1, 2,

(3.1)

where a† > 0. In the given model, the unknown function u(x, t) represents the

age-specific density of individuals of age x at time t. The function d represents

the death rate and it depends on x and the environmental factor s1. Similarly, the

fertility rate B depends on the age x and the environmental factor s2. Both the

functions ψ1 and ψ2 are called the competition weights. Moreover, the functions

d and B are assumed to be non-negative. Without loss of generality, we take the

diffusion rate is equal to one.

In [36], the authors considered the M-V-D with nonlinear nonlocal Robin bound-

ary condition and studied the existence and uniqueness of the solution. The

authors of [38] proposed a convergent numerical scheme to the M-V-D. On the

other hand, the existence of a global solution to the M-V-D in a bounded domain

with nonlinear nonlocal Robin boundary condition was proved when d = d(x) in

[37]. Moreover, the authors of [13, 14] designed numerical schemes to compute

the basic reproduction number R0 for general continuously structured popula-

tion models, in particular for models with boundary conditions of Robin type.

Regarding the basic reproduction number for diffusion equation (1), taking the

approach developed in [11], one can get R0 =
2

1+
√
1+4d0

∫∞
0
B(x, 0) e(1−

√
1+4d0)

x
2 dx

under the assumptions that the mortality rate is a constant d0 and a† = ∞. Re-

cently in [30], an implicit finite difference scheme was introduced to approximate

the solution to the M-V-D in a bounded domain with nonlinear nonlocal Robin

boundary condition at both the boundary points. Moreover, the wellposedness

and the stability of the numerical scheme were proved using the method of upper

and lower solution with the aid of the discrete maximum principle.

The author of [50] presented an upwind scheme for a nonlinear hyperbolic integro-

differential equation with nonlocal boundary condition. The analysis was carried

out employing the general analytic framework developed in [52, 51, 77]. The
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notion of ‘stability with threshold’ and a result due to Stetter (see [79], Lemma

1.2.1) were the most important tools for the analysis.

The above mentioned results inspired us to propose and analyze an explicit finite

difference numerical scheme to (3.1). The main difficulty in the analysis of the

proposed numerical scheme is due to the nonlinearity and the Robin boundary

condition that are presented in (3.1). The objective of this paper is to establish

the stability and the convergence of our numerical method. Since the scheme is of

the form Un+1
i = F (Un

0 , . . . , U
n
M), where F is a nonlinear function, the standard

techniques of proving stability (for instance, the Lax theory etc.) can not be

used. Instead, the notion of nonlinear stability (with threshold) is used to arrive

at the convergence result.

This chapter is organized as follows. In Section 3.2, we present a finite difference

scheme and define the required norms to use the general discretization framework.

Moreover, we introduce the notion of stability with h-dependent thresholds. We

prove consistency, stability and convergence results in Section 3.3. In Section 3.4,

numerical schemes to (3.1) with other types of boundary conditions are discussed.

Finally, numerical examples are provided in Section 3.5 to justify the convergence

results that are proved.

3.2 The numerical scheme

Let h, k be the spatial and temporal step sizes. Denote by (xi, t
n) a typical

grid point, where xi = ih, and tn = nk. Moreover, we fix T > 0, assume that

a† = 2(M ′ + 3)h for some M ′ ∈ N and T = Nk for some N ∈ N. To simplify the

notations, we write M = 2(M ′ + 3). For every grid point (xi, t
n), we denote the

numerical solution by Un
i , and set

Ψν,i = ψν(xi), Ψν = (Ψν,1,Ψν,2, . . . ,Ψν,M−1), ν = 1, 2,

B(·) = (B(x1, ·), B(x2, ·), . . . , B(xM−1, ·)
)
,

d(·) = (d(x1, ·), d(x2, ·), . . . , d(xM−1, ·)
)
,

Un = (Un
1 , U

n
2 , . . . , U

n
M−1).

To approximate the integrals in (3.1), we use the following quadrature rule

which is a combination of the composite Simpson–1
3
and Minle’s rules. For
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V = (V1, . . . , VM−1) ∈ RM−1, we define the quadrature formula

Qh(V ) =
4h

3
(2V1 − V2 + 2V3) +

h

3

M ′∑

i=2

(V2i + 4V2i+1 + V2i+2)

+
4h

3
(2V2M ′+3 − V2M ′+4 + 2V2M ′+5).

If V = (V1, . . . , VM−1), W = (W1, . . . ,WM−1) are in RM−1, then V ·W denotes

the vector in RM−1 which is obtained by the element wise multiplication of V

and W , i.e.,

V ·W = (V1W1, . . . , VM−1WM−1).

With the notation introduced so far, we propose the following scheme for (3.1)

using the forward difference approximation for ut, the backward difference for ux,

and the central difference for uxx:





Un
i − Un−1

i

k
+
Un−1
i − Un−1

i−1

h
+ d
(
xi,Qh(Ψ1 ·Un−1)

)
Un−1
i

=
Un−1
i+1 + Un−1

i−1 − 2Un−1
i

h2
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

(
1 +

1

h

)
Un
0 − 1

h
Un
1 = Qh

(
B
(
Qh(Ψ2 ·Un)

)
·Un

)
, 0 ≤ n ≤ N,

Un
M = 0, 0 ≤ n ≤ N,

U0
i = u0(xi), 1 ≤ i ≤M − 1.

(3.2)

In order to carry out the analysis within an abstract theory of discretizations, we

introduce the general discretization framework. For, we define the spaces

Xh = Yh = RN+1 × (RM−1)N+1 × RN+1.

We also introduce the operator Φh : Xh → Yh, defined through the formulae

Φh(V0,V
0,V 1, ...,V N ,VM ) = (P0,P

0,P 1, ...,PN ,PM ),
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where

P 0 = (P 0
0 , P

1
0 , · · · , PN

0 ),

P n
0 =

(
1 +

1

h

)
V n
0 − 1

h
V n
1 −Qh

(
B
(
Qh(Ψ2 · V n)

)
· V n

)
, 0 ≤ n ≤ N,

PM = (P 0
M , P

1
M , · · · , PN

M ),

P n
M =

V n
M

h
, 0 ≤ n ≤ N,

P n = (P n
1 , P

n
2 , . . . , P

n
M−1), 0 ≤ n ≤ N,

P 0
i = V 0

i − U0
i , 1 ≤ i ≤M − 1,

P n
i =

V n
i − V n−1

i

k
+
V n−1
i − V n−1

i−1

h
+ d
(
xi,Qh(Ψ1 · V n−1)

)
V n−1
i

− V n−1
i+1 + V n−1

i−1 − 2V n−1
i

h2
, 1 ≤ n ≤ N, 1 ≤ i ≤M − 1.

(3.3)

Now Uh = (U 0,U
0,U 1, · · · ,UN) ∈ Xh is a solution to (3.2) if and only if it is a

solution of the discrete problem

Φh(Uh) = 0 ∈ Yh. (3.4)

To investigate how close Uh is to u, we first need to choose an element uh ∈ Xh,

which is a suitable discrete representation of u. In particular, our choice is the

set of nodal values of the theoretical solution u, namely

uh = (u0,u
0, . . . ,uN ,uM) ∈ Xh, (3.5)

where





u0 = (u00, u
1
0, . . . , u

N
0 ) ∈ RN+1, un0 = u(0, tn), 0 ≤ n ≤ N,

un = (un1 , u
n
2 , . . . , u

n
M−1) ∈ RM−1, uni = u(xi, t

n), 1 ≤ i ≤M − 1, 0 ≤ n ≤ N,

uM = (u0M , u
1
M , . . . , u

N
M) ∈ RN+1, unM = u(a†, t

n), 0 ≤ n ≤ N.

(3.6)

Then the global discretization error is defined to be the vector

eh = uh − Uh ∈ Xh,
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and the local discretization error is given by

Ih = Φh(uh) ∈ Yh.

In order to measure the magnitude of errors, we define the following norms in the

spaces Xh and Yh:

∥(V 0,V
0,V 1,. . . ,V N,V M)∥Xh

= h(∥V 0∥∗+∥V M∥∗)+max{∥V 0∥,∥V 1∥, . . ., ∥V N∥},

∥(P 0,P
0,P 1, ...,PN ,PM)∥Yh

=

(
∥P 0∥2∗ + ∥P 0∥2 + h∥PM∥2∗ +

N∑

n=1

k∥P n∥2
)1/2

,

where ∥V n∥2 =
M−1∑
i=1

h|V n
i |2 and ∥V 0∥2∗ =

N∑
n=0

k|V n
0 |2.

For V ,W ∈ RM−1 and Z ∈ RN+1, we define

⟨V ,W ⟩ =
M−1∑

i=1

hViWi,

∥V ∥∞ = max
1≤j≤M−1

|Vi|, ∥Z∥∞ = max
0≤n≤N

|Zn|.

Throughout the chapter, we use C to denote the generic positive constant which

does not depend on the step sizes, grid points and it need not be the same constant

as in the preceding calculations.

For the sake of completeness, we give the following standard definitions (see [50]).

Definition 3.2.1 (Consistency) Discretization (3.4) is said to be consistent

with (3.1) if

lim
h→0

∥Φh(uh)∥Yh
= lim

h→0
∥Ih∥Yh

= 0.

Moreover, if ∥Ih∥Yh
= O(hp) + O(kq) then we say that (p, q) is the order of the

consistency.

Definition 3.2.2 (Stability) Discretization (3.4) is said to be stable restricted

to the thresholds Rh if there exist two positive constants h0 and S such that

∥V h −W h∥Xh
≤ S∥Φh(V h)− Φh(W h)∥Yh

,
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whenever h ∈ (0, h0], V h,W h ∈ B(uh, Rh), where B(uh, Rh) = {z ∈ Xh |
∥z − uh∥Xh

< Rh}.

Definition 3.2.3 (Convergence) Discretization (3.4) is said to be convergent if

there exists h0 > 0 such that, for all 0 < h ≤ h0, (3.4) has a solution Uh for

which

lim
h→0

∥uh −Uh∥Xh
= lim

h→0
∥eh∥Xh

= 0.

The following theorem which is established in [51] is based on a result due to

Stetter (see [79]), and plays an important role in the proof of convergence of

(3.2).

Theorem 3.2.4 (Cf. [51]) Assume that (3.4) is consistent and stable with thresh-

olds Mh. If Φh is continuous in B(uh,Mh) and ∥Ih∥ = O(Mh) as h → 0, then

the following hold.

(i) For sufficiently small h > 0, discrete equation (3.4) admits a unique solution

in B(uh,Mh).

(ii) The solutions to (3.4) converge to the solution to (3.2) as h → 0. Further-

more, the order of convergence is not smaller than the order of consistency.

3.3 Consistency, stability and convergence

In this section, we prove that numerical scheme (3.2) is consistent and stable. In

order to obtain the stability result, we first need to prove an elementary inequality.

Next, with the help of Theorem 3.2.4, we establish the convergence result. We

begin with the consistency result in the following theorem.

Theorem 3.3.1 (Consistency) Assume that d,B, ψi, i = 1, 2, are sufficiently

smooth such that the solution u to (3.1) is four times continuously differentiable

with bounded derivatives. Moreover, we assume that there exists L > 0 such that

for every 0 ≤ x ≤ a†, s1, s2 > 0,

|d(x, s1)− d(x, s2)|≤ L|s1 − s2|,

and

|B(x, s1)−B(x, s2)|≤ L|s1 − s2|.



70 §3.3. Consistency, stability and convergence

Then the local discretization error satisfies

∥Φh(uh)∥Yh
= {∥U 0 − u0∥2 +O(h2) +O(k2)}1/2, as h→ 0.

Proof.Using the notation introduced in (3.6), it is standard to verify that

sup
i,n

∣∣∣u
n
i − un−1

i

k
− ut(xi, t

n−1)
∣∣∣ = O(k), as k → 0, (3.7)

sup
i,n

∣∣∣u
n−1
i − un−1

i−1

h
− ux(xi, t

n−1)
∣∣∣ = O(h), as h→ 0, (3.8)

and

sup
i,n

∣∣∣u
n−1
i+1 + un−1

i−1 − 2un−1
i

h2
− uxx(xi, t

n−1)
∣∣∣ = O(h2), as h→ 0. (3.9)

On the other hand, it is well known that if f ∈ C4[0, a†], then

|
∫ a†

0

f(x)dx−Qh(f)| ≤ Ch4, (3.10)

where C > 0 is independent of h.

Lipschitz continuity of d on compact sets readily implies

|d
(
xi, s1(t

n−1)
)
un−1
i −d

(
xi,Qh(ψ1 · un−1)

)
un−1
i |

≤ L|un−1
i ||s1(tn−1)−Qh(ψ1u

n−1)|
≤ LCh4|un−1

i |.

Hence we get

sup
i,n

|d
(
xi, s1(t

n−1)
)
un−1
i − d

(
xi,Qh(ψ1 · un−1)

)
un−1
i | = O(h4), as h→ 0. (3.11)
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From the boundary condition, it follows that

∣∣∣
∫ a†

0

B
(
x, s2(t

n)
)
u(x, tn)dx−Qh

(
B
(
Qh(ψ2 · un)

)
· un

)∣∣∣

≤
∣∣∣
∫ a†

0

B
(
x, s2(t

n)
)
u(x, tn)dx−Qh

(
B
(
s2(t

n)
)
· un

)∣∣∣

+
∣∣∣Qh

(
B
(
s2(t

n)
)
· un

)
−Qh

(
B
(
Qh(ψ2 · un)

)
· un

)∣∣∣

≤ Ch4 + |Qh

(
|s2(tn)−Qh(Ψ2 · un)|Lun

)
|

≤ Ch4 + LCh4a†∥un∥∞.

(3.12)

Therefore we can write

sup
n

∣∣∣
∫ a†

0

B
(
x, s2(t

n)
)
u(x, tn)dx−Qh

(
B
(
Qh(ψ2 · un)

)
· un

)∣∣∣ = O(h4), as h→ 0.

(3.13)

Using (3.7), (3.8), (3.9), (3.11) and (3.13), one can easily conclude the proof of

the required result. To prove numerical scheme (3.2) is stable, we need the

following lemma.

Lemma 3.3.2 If x, y, a, b and h are positive real numbers such that
(
1 + 1

h

)
x−

1
h
y ≤ a+ b, then

(
1 + 1

h

)
x2 − 1

h
y2 ≤ 2(a2 + b2).

Proof.Consider

(
1 +

1

h

)
x2 − 1

h
y2 ≤

(
1 +

1

h

)(
ah+ bh+ y

h+ 1

)2

− 1

h
y2

=
a2h2 + b2h2 + 2abh2 + y2 + 2yh(a+ b)

h(h+ 1)
− 1

h
y2

≤ 2h(h+ 1)(a2 + b2) + (h+ 1)y2

h(h+ 1)
− 1

h
y2

= 2(a2 + b2).

This completes the proof of the lemma. Now, we are ready to establish the

following stability theorem.

Theorem 3.3.3 (Stability) Assume the hypotheses of Theorem 3.3.1. Let r

and λ be such that k = rh2 = λh, and λ + 2r ≤ 1. Then discretization (3.4) is

stable with thresholds Rh = Rh, where R is a fixed positive constant independent

of h.
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Proof.Assume that uh ∈ Xh is the discrete representation of u given in (3.5)–

(3.6). Suppose V h, W h belong to the ball B(uh, Rh). We set

V h = (V0,V
0,V 1, ...,V N ,VM ), Φ(V h) = (P0,P

0,P 1, ...,PN ,PM ),

W h = (W0,W
0,W 1, ...,WN ,WM ), Φ(W h) = (R0,R

0,R1, ...,RN ,RM ).

Then from the definition of the norm in Xh, we find that

Rh ≥ ∥V h − uh∥Xh

= h(∥V 0 − u0∥∗ + ∥V M − uM∥∗) + max
0≤n≤N

{∥V n − un∥}

≥
(

M−1∑

i=1

h|V n
i − uni |2

) 1
2

,

or

R
√
h ≥ |V n

i − uni |, 0 ≤ n ≤ N, 1 ≤ i ≤M − 1.

This readily implies

R
√
h ≥ ∥V n − un∥∞, 0 ≤ n ≤ N.

Therefore there exists C > 0, independent of n, such that

∥V n∥∞ ≤ R
√
h+ ∥un∥∞ ≤ C, 0 ≤ n ≤ N. (3.14)

On the other hand, from the definition of Φh, we obtain

V n
i −W n

i =(1− λ− 2r)(V n−1
i −W n−1

i ) + (r + λ)(V n−1
i−1 −W n−1

i−1 )

+ r(V n−1
i+1 −W n−1

i+1 ) + k(P n
i −Rn

i )− k
[
d
(
xi, Qh(Ψ1 · V n−1)

)
V n−1
i

− d
(
xi, Qh(Ψ1 ·W n−1)

)
W n−1

i

]
, (3.15)

for 1 ≤ n ≤ N , 1 ≤ i ≤M−1. Multiply (3.15) with h(V n
i −W n

i ), take summation

over 1 ≤ i ≤M − 1, use 2r+λ ≤ 1, and the Cauchy-Schwarz inequality to arrive
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at

∥V n −W n∥2 ≤1

2
∥V n−1 −W n−1∥2 + (

1

2
+ k)∥V n −W n∥2

+
k

2
∥d
(
Qh(Ψ1 · V n−1)

)
V n−1 − d

(
Qh(Ψ1 ·W n−1)

)
W n−1∥2

+
k

2
∥P n −Rn∥2+ k

2

((
1+

1

h

)
|V n−1

0 −W n−1
0 |2−1

h
|V n−1

1 −W n−1
1 |2

−
(
1 +

1

h

)
|V n−1

M−1 −W n−1
M−1|2+

1

h
|V n−1

M −W n−1
M |2

)
. (3.16)

Now consider

∥d
(
Qh(Ψ1 · V n−1)

)
V n−1 − d

(
Qh(Ψ1 ·W n−1)

)
W n−1∥

≤∥d
(
Qh(Ψ1 · V n−1)

)
∥∞∥V n−1 −W n−1∥

+ ∥W n−1∥∞∥d
(
Qh(Ψ1 · V n−1)

)
− d

(
Qh(Ψ1 ·W n−1)

)
∥

≤C∥V n−1 −W n−1∥, (3.17)

for some C > 0 independent of h, k. Thus (3.16)–(3.17) together give

(1− 2k)∥V n −W n∥2 ≤(1 + Ck)∥V n−1 −W n−1∥2 + k∥P n −Rn∥2

+ k

((
1 +

1

h

)
|V n−1

0 −W n−1
0 |2−1

h
|V n−1

1 −W n−1
1 |2

+
1

h
|V n−1

M −W n−1
M |2

)
. (3.18)
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Using (3.14) and the left boundary condition, we can write

(1 +
1

h
)|V n

0 −W n
0 |−

1

h
|V n

1 −W n
1 |

≤|P n
0 −Rn

0 |+
∣∣∣Qh

(
B
(
Qh(Ψ2 · V n)

)
· V n

)

−Qh

(
B
(
Qh(Ψ2 ·W n)

)
·W n

)∣∣∣

≤|P n
0 −Rn

0 |+
∣∣∣Qh

(
B
(
Qh(Ψ2 · V n)

)
· (V n −W n)

)∣∣∣

+
∣∣∣Qh

((
B
(
Qh(Ψ2 · V n)

)
−B

(
Qh(Ψ2 ·W n)

))
·W n

)∣∣∣

≤|P n
0 −Rn

0 |+∥B∥∞|Qh(V
n −W n)|

+ La†∥Ψ2∥∞|Qh(V
n −W n)| ∥W n∥∞

≤|P n
0 −Rn

0 |+C∥V n −W n∥, (3.19)

for some C > 0 independent of mesh sizes h and k. From (3.19) and Lemma

3.3.2, we deduce that

(1 +
1

h
)|V n−1

0 −W n−1
0 |2−1

h
|V n−1

1 −W n−1
1 |2

≤ C
(
∥V n−1 −W n−1∥2 + |P n−1

0 −Rn−1
0 |2

)
.

(3.20)

On substituting this bound in (3.18), we obtain

∥V n −W n∥2 ≤ 1 + Ck

1− 2k
∥V n−1 −W n−1∥2 + Ck

1− 2k

(
∥P n −Rn∥2

+|P n−1
0 −Rn−1

0 |2+h|P n−1
M −Rn−1

M |2
)
. (3.21)

From the discrete Gronwall lemma, there exists CT depending solely on T such

that

∥V n −W n∥2 ≤ CT

{
∥V 0 −W 0∥2 + Ck

1− 2k

n∑

m=1

(
∥Pm −Rm∥2

+ |Pm−1
0 −Rm−1

0 |2+h|Pm−1
M −Rm−1

M |2
)}

. (3.22)
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Thus for k sufficiently small, this immediately gives

∥V n −W n∥ ≤ CT

{
∥P 0 −R0∥2 + C

(
N∑

m=1

k∥Pm −Rm∥2
)

+ C∥P 0 −R0∥2∗ + h∥PM −RM∥2∗
} 1

2

. (3.23)

Again, from (3.19), we have

(1 + h)|V n
0 −W n

0 |−|V n
1 −W n

1 |≤ h (C∥V n −W n∥+ |P n
0 −Rn

0 |) .

On multiplying both sides with |V n
0 −W n

0 | and using the AM-GM inequality, we

get

|V n
0 −W n

0 |2≤ |V n
1 −W n

1 |2+h
(
C∥V n −W n∥2 + |P n

0 −Rn
0 |2
)
. (3.24)

On multiplying both sides by hk, taking summation on n, we find that

h∥V 0 −W 0∥2∗ ≤
N∑

n=0

hk|V n
1 −W n

1 |2+
N∑

n=0

kh2
(
C∥V n −W n∥2 + |P n

0 −Rn
0 |2
)

≤ (1 + Ch2)
N∑

n=0

k∥V n −W n∥2 + h2∥P 0 −R0∥2∗. (3.25)

The second boundary condition immediately gives

∥V M −WM∥∗ = h∥PM −RM∥∗. (3.26)

From (3.23), (3.25) and (3.26), we observe that

h
(
∥V 0 −W 0∥∗ + ∥V M −WM∥∗

)

+max
{
∥V 0 −W 0∥, ∥V 1 −W 1∥, . . . , ∥V N −WN∥

}

≤K
(
∥P 0 −R0∥2∗ + ∥P 0 −R0∥2 + h∥PM −RM∥2∗ +

N∑

m=1

k∥Pm −Rm∥2
) 1

2

,

where K is a constant. This completes the proof. In the following result, we

establish that (3.2) is indeed a convergent scheme.
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Theorem 3.3.4 (Convergence) Assume the hypotheses of Theorem 3.3.3. If

∥U 0 − u0∥Xh
= O(h), as h→ 0,

then discretization (3.4) is convergent.

Proof.The proof is an immediate consequence of Theorems 3.2.4–3.3.3.

3.4 Other types of boundary conditions

In this section, we discuss the M-V-D with two other boundary conditions. In

particular, we study (3.1) when the right boundary codition is non-homogeneous

instead of homogeneous. On the other hand, in Subsection 3.4.2, we consider

Robin boundary condition at both the end points.

3.4.1 Non-homogeneous boundary condition at x = a†

In this subsection, we consider (3.1) with non-homogeneous Dirichlet boundary

condition, i.e.,





ut(x, t) + ux(x, t) + d
(
x, s1(t)

)
u(x, t) = uxx(x, t), x ∈ (0, a†), t > 0,

u(0, t)− ux(0, t) =

∫ a†

0

B
(
x, s2(t)

)
u(x, t)dx, t ≥ 0,

u(a†, t) = g(t), t ≥ 0,

u(x, 0) = u0(x), x ∈ (0, a†),

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, t ≥ 0, ν = 1, 2,

(3.27)

where g is a given smooth function. In order to discretize (3.27), we use the

notations from the previous section. Let h, k, T, M be as in Section 3.2 and Un
i

denote the approximate solution to (3.27) at the grid point (xi, t
n). Moreover,

we define gn = g(tn), 0 ≤ n ≤ N .

By discretizing (3.27) as in Section 3.2, we arrive at the following finite dif-
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ference scheme (see (3.2))





Un
i − Un−1

i

k
+
Un−1
i − Un−1

i−1

h
+ d
(
xi,Qh(Ψ1 ·Un−1)

)
Un−1
i

=
Un−1
i+1 + Un−1

i−1 − 2Un−1
i

h2
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

(
1 +

1

h

)
Un
0 − 1

h
Un
1 = Qh

(
B
(
Qh(Ψ2 ·Un)

)
·Un

)
, 0 ≤ n ≤ N,

Un
M = gn, 0 ≤ n ≤ N,

U0
i = u0(xi), 1 ≤ i ≤M − 1.

(3.28)

As before, to carry out the analysis, we use the spaces Xh and Yh that are

introduced in Section 3.2. Moreover, we consider the operator Φ̃h : Xh → Yh,

defined through the formulae

Φ̃h(V0,V
0,V 1, ...,V N ,VM ) = (P0,P

0,P 1, ...,PN ,PM ),

where

P 0 = (P 0
0 , P

1
0 , · · · , PN

0 ),

P n
0 =

(
1 +

1

h

)
V n
0 − 1

h
V n
1 −Qh

(
B
(
Qh(Ψ2 · V n)

)
· V n

)
, 0 ≤ n ≤ N,

PM = (P 0
M , P

1
M , · · · , PN

M ),

P n
M =

V n
M − gn

h
, 0 ≤ n ≤ N,

P n = (P n
1 , P

n
2 , . . . , P

n
M−1), 0 ≤ n ≤ N,

P 0
i = V 0

i − U0
i , 1 ≤ i ≤M − 1,

P n
i =

V n
i − V n−1

i

k
+
V n−1
i − V n−1

i−1

h
+ d
(
xi,Qh(Ψ1 · V n−1)

)
V n−1
i

− V n−1
i+1 + V n−1

i−1 − 2V n−1
i

h2
, 1 ≤ n ≤ N, 1 ≤ i ≤M − 1.

(3.29)

Using the definition of Φ̃h, and the arguments used in Theorems 3.3.1–3.3.4, one

can easily show that (3.28) is indeed a convergent scheme whenever the hypotheses

in Theorem 3.3.4 hold.
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3.4.2 Robin condition at both x = 0, a†

Consider the following M-V-D with nonlinear nonlocal Robin boundary condi-

tions:





ut(x, t) + ux(x, t) + d
(
x, s1(t)

)
u(x, t) = uxx(x, t), x ∈ (0, a†), t > 0,

u(0, t)− ux(0, t) =

∫ a†

0

B1

(
x, s2(t)

)
u(x, t)dx, t ≥ 0,

u(a†, t) + ux(a†, t) =

∫ a†

0

B2

(
x, s3(t)

)
u(x, t)dx, t ≥ 0,

u(x, 0) = u0(x), x ∈ (0, a†),

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, t ≥ 0 ν = 1, 2, 3.

(3.30)

In view of [11], equation (3.30) can be interpreted as a model for population living

in a one-dimensional habitat. In that case, x represents the spatial position

instead of age. In the right boundary condition, B2 = 0 is an important case

which represents the nonflux condition at x = a†. The authors of [30] designed a

numerical scheme to (3.30), and studied wellposedness and long time behavior of

the solution of that numerical scheme. Their numerical scheme is nonlinear and

it is proved that the scheme is indeed stable. In this subsection, we propose a

numerical scheme to (3.30) and establish its convergence.

For, we use the notation from the earlier sections. Moreover, we denote

Ψν,i = ψν(xi), Ψν = (Ψν,1,Ψν,2, . . . ,Ψν,M−1), ν = 1, 2, 3,

B1(·) = (B1(x1, ·), B1(x2, ·), . . . , B1(xM−1, ·)), and
B2(·) = (B2(x1, ·), B2(x2, ·), . . . , B2(xM−1, ·)).
Now we discretize (3.30) to get the following finite difference scheme





Un
i − Un−1

i

k
+
Un−1
i − Un−1

i−1

h
+ d
(
xi,Qh(Ψ1 ·Un−1)

)
Un−1
i

=
Un−1
i+1 + Un−1

i−1 − 2Un−1
i

h2
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

(
1 +

1

h

)
Un
0 − 1

h
Un
1 = Qh

(
B1

(
Qh(Ψ2 ·Un)

)
·Un

)
, 0 ≤ n ≤ N,

(
1 +

1

h

)
Un
M − 1

h
Un
M−1 = Qh

(
B2

(
Qh(Ψ3 ·Un)

)
·Un

)
, 0 ≤ n ≤ N,

U0
i = u0(xi), 1 ≤ i ≤M − 1.

(3.31)
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In order to establish the convergence of the solution of (3.31) to the solution to

(3.30), we introduce the operator Φ̂h : Xh → Yh given by

Φ̂h(V0,V
0,V 1, ...,V N ,VM ) = (P0,P

0,P 1, ...,PN ,PM ),

where

P 0 = (P 0
0 , P

1
0 , · · · , PN

0 ),

P n
0 =

(
1 +

1

h

)
V n
0 − 1

h
V n
1 −Qh

(
B1

(
Qh(Ψ2 · V n)

)
· V n

)
, 0 ≤ n ≤ N,

PM = (P 0
M , P

1
M , · · · , PN

M ),

P n
M =

(
1 +

1

h

)
V n
M − 1

h
V n
M−1 −Qh

(
B2

(
Qh(Ψ3 · V n)

)
· V n

)
, 0 ≤ n ≤ N,

P n = (P n
1 , P

n
2 , . . . , P

n
M−1), 0 ≤ n ≤ N,

P 0
i = V 0

i − U0
i , 1 ≤ i ≤M − 1,

P n
i =

V n
i − V n−1

i

k
+
V n−1
i − V n−1

i−1

h
+ d
(
xi,Qh(Ψ1 · V n−1)

)
V n−1
i

− V n−1
i+1 + V n−1

i−1 − 2V n−1
i

h2
, 1 ≤ n ≤ N, 1 ≤ i ≤M − 1.

(3.32)

Now, observe that (3.16) can be written as

∥V n −W n∥2 ≤1

2
∥V n−1 −W n−1∥2 + (

1

2
+ k)∥V n −W n∥2

+
k

2
∥d
(
Qh(Ψ1 · V n−1)

)
V n−1 − d

(
Qh(Ψ1 ·W n−1)

)
W n−1∥2

+
k

2
∥P n −Rn∥2 + k

2

(
(1 +

1

h
)|V n−1

0 −W n−1
0 |2

− 1

h
|V n−1

1 −W n−1
1 |2−1

h
|V n−1

M−1 −W n−1
M−1|2

+(1 +
1

h
)|V n−1

M −W n−1
M |2

)
. (3.33)

Using the same argument to establish (3.20), we obtain

(1 +
1

h
)|V n−1

M −W n−1
M |2−1

h
|V n−1

M−1 −W n−1
M−1|2

≤ C
(
∥V n−1 −W n−1∥2 + |P n−1

M −Rn−1
M |2

)
.

(3.34)
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Using (3.33)–(3.34), the definition of Φ̃h, and the arguments used in Theorems

3.3.1–3.3.4, it is straightforward to show that (3.28) is indeed a convergent scheme

whenever the hypotheses in Theorem 3.3.4 hold.

3.5 Numerical simulations

In this section, we present some examples in which the numerical solutions to

(3.1), (3.27) and (3.30) are computed using (3.2), (3.28) and (3.31), respectively,

to validate the results in the earlier sections. If Eh denotes the magnitude of

the error with step size h, then the experimental order of convergence can be

computed using the standard formula

order =
log(Eh)− log(Eh

2
)

log 2
.

All the computations that are presented in this section have been performed using

Matlab 8.5 (R2015a). In all the examples, we have taken a† = 1, ψ1(x) ≡ ψ2(x) ≡
ψ3(x) ≡ 1 and r = k

h2 = 0.4.

Example 3.5.1

In order to test the efficacy of the numerical scheme, we assume that u0, d, and

B are given by

u0(x) = e− ex, d(x, s) = 1, B(x, s) = e, x ∈ (0, 1), s ≥ 0.

Note that given vital rates (d and B) are constant. Therefore, the first equation

in (3.1) becomes linear. We now seek a solution to (3.1) of the form u(x, t) =

(c1e
(Λ1x) + c2e

(Λ2x))e(λt). On substituting u in (3.1), an easy computation gives

Λ1,2 =
(1±

√
1+4(d+λ))

2
, where λ is a solution of the characteristic equation

det

(
eΛ1 eΛ2

1− Λ1 +
1−eΛ1

Λ1
1− Λ2 +

1−eΛ2

Λ2

)
= 0. (3.35)

One can easily verify that λ = −1 is a solution of (3.35). This readily gives us

that Λ1 = 0, Λ2 = 1. After substituting u(x, t) = (c1e + c2e
x)e−t in the initial

condition and the right boundary condition given in (3.1), we find c1 = 1 and

c2 = −1. Hence for the given set of vital rates, u(x, t) = (e−ex)e−t is the solution

to (3.1). It is straightforward to check that d and B satisfy the hypotheses of
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h ∥U 0 − u0∥∗ order max
1≤n≤N

{∥Un − un∥} order ∥eh∥Xh
order

0.1 0.0212 1.1009 0.0391 0.9805 0.0412 1.0212
0.05 0.0099 1.0509 0.0198 0.9921 0.0203 1.0105
0.02 0.0037 1.0204 0.0079 0.9972 0.0080 1.0041
0.01 0.0018 1.0102 0.0039 0.9986 0.0040 1.0020
0.005 0.0009 1.0051 0.0020 0.9993 0.0020 1.0010

Table 3.1: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.2 with d, B given in Example 3.5.1.

Theorem 3.3.4. Hence (3.2) is a convergent numerical scheme.

In Figure 3.1, we show the absolute difference between the exact solution and the
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Figure 3.1: The exact solution to (3.1), and the approximate solutions using (3.2)
at t = 0.2 with d(x, s), B(x, s) given in Example 3.5.1; Left: u(x, 0.2) (solid line),
U 0.05 (dotted line), U 0.01 (dash-dotted line), U 0.005 (dashed line) for 0 ≤ x ≤ 1,
Right: |u(x, 0.2)−U 0.05| (dotted line), |u(x, 0.2)−U 0.01| (dash-dotted line) and
|u(x, 0.2)−U 0.005| (dashed line).

computed solution. In Figure 3.1 (left), we present the exact solution u to (3.1)

and the corresponding numerical solutions using (3.2) with h = 0.05, 0.01, 0.005

at t = 0.2. From this figure, it is evident that U 0.05, U 0.01 and U 0.005 are very

close to u at t = 0.2. This phenomenon re-validates the result that is proved

in Theorem 3.3.4. In Figure 3.1 (right), the difference between u(x, 0.2) and Uh

at t = 0.2, with h = 0.05, 0.01, 0.005 are shown. From these figures, we can

conclude that the sequence Uh indeed converges to the solution u as h tends to

zero at t = 0.2, as mentioned in Theorem 3.3.4.

In Table 3.1, we display the magnitude of the global discretization error and the

experimental order of convergence in [0, 1]× [0, 0.2] for different choices of h. In
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the second column of Table 3.1, we show the error at the boundary point x = 0,

and in the fourth column the interior error i.e., max
1≤n≤N

∥Un−un∥ is shown. In the

third, and fifth columns, the experimental order of convergence corresponding

to the boundary x = 0, interior of the domain are given, respectively. Finally,

the experimental order of convergence corresponding to the global discretization

error is shown in the last column. From Table 3.1, one can easily observe that

the order of convergence of the proposed numerical scheme is one.

Example 3.5.2

In this example, we consider the non-homogeneous case described in Subsection

3.4.1. In particular, we consider (3.27) with u0, d, B, and g are given by

u0 =
e−x

2
, d(x, s) = 1 + s

1−e−1 , B(x, s) = 2ex, x ∈ (0, 1), s ≥ 0,

g(t) = e−1

1+e−t , t > 0.

We observe that d and B satisfy hypotheses of Theorem 3.3.4. Therefore (3.28)

is a convergent numerical scheme. On the other hand, it is easy to check that for

the given set of functions, the function

u(x, t) = e−x

1+e−t , x ∈ (0, 1), t ≥ 0,

is a solution to (3.27).
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Figure 3.2: The exact solution to (3.27) and the approximate solutions using
(3.28) at t = 0.8 with d(x, s), B(x, s), g(t) given in Example 3.5.2; Left: u(x, 0.8)
(solid line), U 0.05 (dotted line), U 0.01 (dash-dotted line), U 0.005 (dashed line) for
0 ≤ x ≤ 1, Right: |u(x, 0.8)−U 0.05| (dotted line), |u(x, 0.8)−U 0.01| (dash-dotted
line) and |u(x, 0.8)−U 0.005| (dashed line).
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h ∥U 0 − u0∥∗ order max
1≤n≤N

{∥Un − un∥} order ∥eh∥Xh
order

0.1 0.0451 1.0404 0.0416 0.9425 0.0461 1.0197
0.05 0.0219 1.0202 0.0216 0.9722 0.0227 1.0086
0.02 0.0086 1.0080 0.0088 0.9891 0.0090 1.0031
0.01 0.0042 1.0040 0.0044 0.9946 0.0045 1.0015
0.005 0.0021 1.0020 0.0022 0.9973 0.0023 1.0007

Table 3.2: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.8 with d(x, s), B(x, s), g(t) given
in Example 3.5.2.

We display the exact solution u to (3.27) and the numerical solutions U using

(3.28) in Figure 3.2. In Figure 3.2 (left), the exact solution u to (3.27) and nu-

merical solutions using (3.28) with h = 0.05, 0.01, 0.005 at t = 0.8 are presented.

From this figure, it is evident that U 0.05, U 0.01 and U 0.005 are approaching to u at

t = 0.8. In Figure 3.2 (right), we show the absolute difference between u and Uh

at t = 0.8, with h = 0.05, 0.01, 0.005. We conclude from these figures that the

sequence of numerical solutions Uh indeed converges to the solution u at t = 0.8

as h tends to 0.

In Table 3.2, we show computational errors and their experimental order of con-

vergence for various choices of h at t = 0.8. In particular, we display the error at

the boundary point x = 0, the maximum error in the interior of domain and the

global discretization error in the second, fourth and sixth columns of the table,

respectively. On the other hand, the experimental order of convergence corre-

sponding to the error at the boundary point x = 0, the maximum error in the

interior of domain and the global discretization error are presented in the third,

fifth and seventh columns of the table, respectively. From Table 3.2, we observe

that the experimental order of convergence of the proposed scheme is indeed one.

Example 3.5.3

In this example, we take the nonflux boundary condition at the right boundary

described in Subsection 3.4.2, i.e., B2 = 0. Let the vital rates d, B1, B2 and the

initial data u0 be given by

u0(x) = e−x, d(x, s) = 2 + 4
(

s
1−e−1

) 1
4
,

B1(x, s) = 2ex, B2(x, s) = 0, x ∈ (0, 1), s ≥ 0.
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Once again, using the ansatz u(x, t) = X(x)T (t) and substituting it in (3.30),

we obtain that u(x, t) = e−x

(1+t)4
is the solution to (3.30). Moreover, it is easy to

verify that d, B1 and B2 satisfy hypotheses of Theorem 3.3.4. Therefore (3.31) is

a convergent numerical scheme.
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Figure 3.3: The exact solution to (3.30) and the approximate solutions using
(3.31) at t = 0.8 with d(x, s), B1(x, s), B2(x, s) given in Example 3.5.3; Left:
u(x, 0.8) (solid line), U 0.05 (dotted line), U 0.01 (dash-dotted line), U 0.005 (dashed
line) for 0 ≤ x ≤ 1, Right: |u(x, 0.8) − U 0.05| (dotted line), |u(x, 0.8) − U 0.01|
(dash-dotted line) and |u(x, 0.8)−U 0.005| (dashed line).

We compare the exact solution to (3.30) and the approximate solutions that are

computed using (3.31) for different values of h at t = 0.8 in Figure 3.3. In

particular, the exact solution to (3.30) and approximate solutions to (3.30) with

h = 0.05, 0.01, 0.005 at t = 0.8 are shown in Figure 3.3 (left). Moreover, we plot

the absolute difference between u(x, 0.8) and Uh with h = 0.05, 0.01, 0.005 at

t = 0.8 in Figure 3.3 (right). From these graphs, it is clear that Uh approaches

u(x, 0.8) as h goes to zero at t = 0.8. Furthermore, one can conclude that the

numerical scheme (3.31) converges.

In Table 3.3, we present the absolute error |uni −Un
i | and the experimental order

of convergence for different choice of h at t = 0.8. In particular, we show the

error at the boundary point x = 1 and the maximum error in the interior of

domain in the second and fourth columns, respectively. In the third and fifth

columns, we display the experimental order of convergence corresponding to the

boundary point x = 1 and the interior of domain, respectively. Moreover, the

global discretization error and corresponding experimental order of convergence

are shown in the sixth and seventh columns of the table, respectively. From Table

3.3, one can conclude that the experimental order of convergence of the proposed
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h ∥UM − uM∥∗ order max
1≤n≤N

{∥Un − un∥} order ∥eh∥Xh
order

0.1 0.0076 1.2307 0.0141 0.8375 0.0169 0.9790
0.05 0.0032 1.0394 0.0079 0.9180 0.0085 0.9788
0.02 0.0012 0.9942 0.0033 0.9671 0.0035 0.9898
0.01 0.0006 0.9932 0.0017 0.9835 0.0017 0.9947
0.005 0.0003 0.9956 0.0008 0.9917 0.0008 0.9973

Table 3.3: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.8 with d(x, s), B1(x, s), B2(x, s)
given in Example 3.5.3.

numerical scheme (3.30) is one.

Example 3.5.4

In this example, we choose the vital rates d, B1, B2 and the initial data u0 such

that the solution to (3.30) is known in the closed form. In particular, let u0, d,

B1 and B2 be given by

u0(x) = e−
(2x−1)2

16 , d(x, s) = 1 + 2x−1
4

+ (2x−1)2

16
− s

2
∫ 1
0 e−

(2x−1)2

16 dx

,

B1(x, s) = B2(x, s) =
3e−1/16

4
∫ 1
0 e−

(2x−1)2

16 dx

, x ∈ (0, 1), s ≥ 0.

Now it is straightforward to verify that u(x, t) = 2
1+4et

e−
(2x−1)2

16 is the solution to

(3.30). On the other hand, it is easy to check that d, B1 and B2 satisfy hypotheses

of Theorem 3.3.4. Therefore (3.31) is a convergent numerical scheme.

In Figure 3.4, we plot the exact solution to (3.30) and computed solutions using

(3.31) for different values of h at t = 0.8. In Figure 3.4 (left), the exact, and

approximate solutions to (3.30) with h = 0.05, 0.01, 0.005 at t = 0.8 are pre-

sented. From these figures, it is straightforward to see that u(x, 0.8) is closer to

U 0.005 than U 0.01 and U 0.05 at t = 0.8. In Figure 3.4 (right), we plot the absolute

difference between u(x, 0.8) and Uh with h = 0.05, 0.01, 0.005 at t = 0.8. From

these graphs, one can observe that the numerical solutions Uh converge.

We display various discretization errors and their experimental orders of conver-

gence for different choice of h at t = 0.8 in Table 3.4. We present the error at

the boundary point x = 0 and the maximum error in the interior of domain in

the second and fourth columns, respectively. In the third and fifth columns, we

show the experimental order of convergence corresponding to the boundary point



86 §3.5. Numerical simulations

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
, 
U

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
b
s
o
lu

te
 d

if
fe

re
n
c
e

×10
-3

0

1

2

3

4

5

6

Figure 3.4: The exact solution to (3.30) and the approximate solutions using
(3.31) at t = 0.8 with d(x, s), B1(x, s), B2(x, s) given in Example 3.5.4; Left:
u(x, 0.8) (solid line), U 0.05 (dotted line), U 0.01 (dash-dotted line), U 0.005 (dashed
line) for 0 ≤ x ≤ 1, Right: |u(x, 0.8) − U 0.05| (dotted line), |u(x, 0.8) − U 0.01|
(dash-dotted line) and |u(x, 0.8)−U 0.005| (dashed line).

h ∥U 0 − u0∥∗ order max
1≤n≤N

{∥Un − un∥} order ∥eh∥Xh
order

0.1 0.0120 1.0586 0.0114 1.0457 0.0136 1.1717
0.05 0.0057 1.0290 0.0055 1.0225 0.0060 1.0888
0.02 0.0022 1.0115 0.0021 1.0089 0.0022 1.0367
0.01 0.0011 1.0057 0.0010 1.0044 0.0010 1.0186
0.005 0.0005 1.0028 0.0005 1.0022 0.0005 1.0093

Table 3.4: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.8 with d(x, s), B1(x, s), B2(x, s)
given in Example 3.5.4.

x = 0 and the interior domain, respectively. Moreover, the global discretization

error and the corresponding experimental order of convergence are given in the

sixth and seventh columns of the table, respectively. From Table 3.4, it is easy

to observe that the experimental order of convergence of the proposed scheme is

one.

Example 3.5.5

In order to test our numerical scheme, we assume that d, B and u0 are given by

u0(x) = e− ex, d(x, s) = 2 + x2 + s2

2
, B(x, s) = 2ex + s, x ∈ (0, 1), s ≥ 0.

Note that, the given set of functions d, B and u0 satisfy hypotheses of Theorem

3.3.4. Hence (3.2) is a convergent numerical scheme.
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Figure 3.5: The approximate solutions to (3.1) at t = 0.8 with d(x, s), B1(x, s),
B2(x, s) given in Example 3.5.5; Left: U 0.05 (dotted line), U 0.01 (dash-dotted
line), U 0.005 (solid line) for 0 ≤ x ≤ 1 at t = 0.8, Right: |U 0.005 −U 0.05| (dotted
line) and |U 0.005 −U 0.01| (dash-dotted line).

In Figure 3.5 (left), we present approximate solutions to (3.1) at t = 0.8 for

h = 0.05, 0.01, 0.005. On the other hand, we display the absolute difference

|Uh−U 0.005| at t = 0.8 for h = 0.05, 0.01 in Figure 3.5 (right). From this figure,

it is evident that Uh’s are very close to each other as h goes to zero, and the

limit of the sequence Uh indeed converges to the solution of (3.1) as mentioned

in Theorem 3.3.4.
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Chapter 4

A higher order numerical scheme

to a nonlinear McKendrick–Von

Foerster equation with singular

mortality

4.1 Introduction

Among the structured population models, one of the earliest one is due to McK-

endrick (later rediscovered by Von Foerster) which is popularly known as the

McKendrick–Von Foerster equation (see [10, 28, 35, 82, 48, 33]). Assume that

u(x, t), µ, β, and a† > 0 denote the population density of individuals with age x at

time t, the mortality rate, the fertility rate and the maximum age upto which any

individual can survive, respectively. The age-structured linear McKendrick–Von

Foerster equation is given by





ut(x, t) + ux(x, t) + µ(x)u(x, t) = 0, 0 < x < a†, t > 0,

u(0, t) =

∫ a†

0

β(x)u(x, t)dx, t > 0,

u(x, 0) = u0(x), 0 ≤ x < a†, 0 < x < a†,

(4.1)

This model is an improvement of the unstructured Verhulst model (see [28]). In

the linear model (4.1), the population is assumed to be isolated and consisting of

individuals living in an invariant environment with unlimited resources. Except

89
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their age, all individuals are identical. The fertility and mortality rates in this

model solely depend on age. In reality, individuals compete with one another

due to limited resources, and in this competition distinct advantages are there

for individuals of different cohorts. To incorporate this, Gurtin and MacCamy

developed a nonlinear age-dependent population model in which the mortality and

fertility functions depend on the age and the total population size (see [26]). In

both linear and nonlinear models, it is necessary to consider unbounded mortality

rate in order to obtain that the probability of any individual to survive till or

beyond the maximum age a† is zero (see [42, 7, 41, 43, 44, 6, 16, 34]). However,

this assumption on the mortality rate leads to additional complications while

designing and analyzing numerical schemes.

In this paper, our objective is to propose and analyze a numerical scheme to

find approximate solutions to the following nonlinear age-structured model





ut(x, t) + ux(x, t) + µ(x, s1(t))u(x, t) = 0, 0 < x < a†, t > 0,

u(0, t) =

∫ a†

0

β(x, s2(t))u(x, t)dx, t > 0,

u(x, 0) = u0(x), 0 ≤ x < a†, 0 < x < a†,

sν(t) =

∫ a†

0

ψν(x)u(x, t)dx, ν = 1, 2, t > 0,

(4.2)

when µ has singularity. As before, the unknown function u(x, t) in (4.2) represents

the age-specific density of individuals at time t. The death rate is represented by

the function µ which depends on the variables x and the weighted population s1.

Similarly, the fertility rate β depends on x and s2. Moreover, the fertility rate β,

the mortality rate µ and the competition weights ψ1 and ψ2 are assumed to be

non-negative.

In the theoretical study of (4.1), the survival probability

π(x) = exp

(
−
∫ x

0

µ(y)dy

)
,

must be zero at the maximum age at x = a†, which indeed suggests us that

∫ a†

0

µ(y, s(·))dy = +∞. (4.3)

This readily implies that µ has a singularity at x = a†.
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Finding explicit analytical solutions of population models is infeasible except

in very special cases. Therefore many authors proposed numerical schemes to

age-structured model (see [1, 3, 5, 8, 17, 30, 28, 29, 40, 45, 59, 70, 71]). In

particular, the numerical approximation to (4.1) and (4.2) can be obtained by

different methods. Usually, in order to get convergence of the numerical schemes,

uniform bounds on vital functions are required. In [34], authors considered (4.1)

and pointed out that when the mortality function is unbounded, the standard

finite-difference methods fail near the maximum age due to the difficulty in ap-

proximating the survival probability function. To overcome this difficulty, under

some assumptions on µ, authors of [3] approximated the survival probability asso-

ciated to (4.1) with a second order method. Using this result in [3], the authors of

[4] obtained a second order finite diffrerence scheme to (4.1). On the other hand,

the authors of [42] have designed numerical solution to (4.2) using a collocation

method (Gauss–Legendre method; fourth order implicit Runge–Kutta method of

two stages) which is a fourth order convergent scheme. In this work, they have

considered a particular type of mortality function µ(x, s) = m(x)+M(x, s), where

m(x) is the natural mortality which is assumed to be in the form m(x) = c
(a†−x)α

,

for some α > 1, c > 0 (see [32, 42]).

Above mentioned results inspired us to propose finite difference schemes to

(4.2) when µ has singularity at x = a†. We present a third order scheme and a

fourth order scheme. The main advantage of our schemes is the following. Our

schemes are convergent though the mortality rate has ‘essential singularity’ at

x = a†. For instance, if µ = e
1

(1−x) then the methods described in [42] are not

applicable because the ubounded part of µ does not have the structure of ‘pole’.

This chapter is organized as follows. In Section 4.2, we introduce a new

variable λ and use it to reduce (4.2) to a nonlocal simple transport equation.

Moreover, we present a finite difference scheme to approximate λ and with its

help a finite difference scheme to (4.2) is proposed. We prove the main con-

vergence theorem for the proposed schemes in Section 4.3. In Section 4.4, we

establish the third order convergence of the approximation of λ. Moreover, with

the help of results proved in Section 4.4, we present a fourth order approximation

of λ in Section 4.5. In addition, we present a fourth order one step method to

approximate λ associated to (4.1) in section 4.5. Finally, numerical examples are

given in Section 4.6 to re-validate the convergence results that are proved in the

earlier sections.
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4.2 Scheme

Let u be the solution to (4.2). We define

d(x, t) =





t∫
t−x

µ
(
y + x− t, s1(y)

)
dy, t > x,

x−t∫
0

µ
(
y, s1(0)

)
dy +

t∫
0

µ
(
y + x− t, s1(y)

)
dy, t ≤ x,

(4.4)

and

λ(x, t) = exp(−d(x, t)). (4.5)

From the definition, it immediately follows that λ satisfies 0 ≤ λ ≤ 1 whenever

µ ≥ 0. We now define a new function v(x, t) given by

u(x, t) = λ(x, t)v(x, t), 0 ≤ x < a†, t ≥ 0. (4.6)

In view of (4.2), it is straightforward to obtain





vt(x, t) + vx(x, t) = 0, 0 < x < a†, t > 0,

v(0, t) =

∫ a†

0

β(x, p(t))λ(x, t)v(x, t)dx, t > 0,

v(x, 0) =
u0(x)

π(x, 0)
, 0 ≤ x < a†,

p(t) =

∫ a†

0

ψ2(x)λ(x, t)v(x, t)dx.

(4.7)

For each x ∈ (0, a†) and τ > 0, we know that the first equation of (4.7) satisfies

v(x, t) = v(x− τ, t− τ), x, t > τ. (4.8)

In fact, our method of finding the numerical approximation to (4.7) is based on

(4.8).

Moreover, one can observe that if v is a weak solution to (4.7) then u is also a

weak solution to (4.2).

As mentioned in the previous section, different methods were proposed to ap-

proximate the survival probability in the finite life-span case. In [3, 4, 6, 42],

the authors considered a particular type of mortality profiles which were widely

employed in biology problems. However, a specific behaviour of the mortality
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rate was assumed near the maximum age, i.e., over an age interval [a∗, a†), for

the theoretical analysis of these methods. As in [3, 4, 6, 42, 43], we assume that

after age a∗ the mortality rate µ satisfies some growth conditions which will be

described at the end of this section.

Now, given a positive integer M , we define step size h =
a†

2M+2
. Let ⌊a∗

h
⌋ = j∗ for

some j∗ ∈ N and ⌊T
h
⌋ = N . Denote by (xi, t

n) a typical grid point with xi = ih

and tn = nh, where 0 ≤ i ≤ 2M + 1, 0 ≤ n ≤ N .

At every grid point (xi, t
n), let Un

i and V n
i denote the approximate solutions to

(4.2) and (4.7), respectively. In other words, each Un
i is the numerical approxima-

tion to u(xi, t
n) and V n

i represents the numerical approximation to v(xi, t
n), i =

0, 1, . . . , 2M+1. Moreover, the approximation of the survival probability λ(xi, t
n)

is denoted by Λn
i .

At each time level tn, n = 0, 1, . . . , N , the numerical solution to (4.2) and (4.7)

are described by the vectors

Un = [Un
0 , U

n
1 , . . . , U

n
2M+1], V

n = [V n
0 , V

n
1 , . . . , V

n
2M+1] ∈ R2M+2.

Let the vector Λn = [Λn
0 ,Λ

n
1 , . . . ,Λ

n
2M+1] approximates the survival probability

λn = [λ(x0, t
n), λ(x1, t

n), . . . , λ(x2M+1, t
n)].

Also, we use this vector notation to represent the evaluations of the fertility rate

β(·) = [β(x0, ·), β(x1, ·), . . . , β(x2M+1, ·)].
To approximate the integral term that appears in the boundary condition, we use

the following quadrature rule which is a combination of the composite Simpson
1
3
and Milne’s rule. For the vector Y = [Y0, Y1, . . . , Y2M+1], we define

Qh(Y ) =
4h

3
(2Y1−Y2+2Y3)+

M−2∑

i=2

h

3
(Y2i+4Y2i+1+Y2i+2)+

4h

3
(2Y2M−1−Y2M+2Y2M+1).

(4.9)

On the other hand, for any two vectors Y , Z ∈ R2M+2, let Y · Z represent the

usual dot product, i.e., Y ·Z = [Y0Z0, Y1Z1, . . . , Y2M+1Z2M+1].

With this notation, we propose the following numerical scheme to (4.7) based on
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the method of characteristics:





V n
i = V n−1

i−1 , i = 1, 2, . . . , 2M + 1, n = 1, 2, . . . , N,

V n
0 = Qh(β(P

n
Λ ) ·Λn · V n), n = 1, 2, . . . , N,

V 0
i =

U0
i

Π0
i

, i = 0, 1, . . . , 2M + 1,

P n
Λ = Qh(ψ2 ·Λn · V n), n = 1, 2, . . . , N.

(4.10)

Finally, to compute an approximate solution Un
i to (4.2), we use the following

relation

Un
i = Λn

i V
n
i , i = 0, 1, . . . , 2M + 1, n = 1, . . . , N. (4.11)

The nontrivial part in (4.10) is to find the approximation Λn
i of the survival

probability λni and we postpone the discussion on how to do it to Sections 4.4

and 4.5.

In order to compare the numerical and analytical solutions at each grid point, we

represent the restriction of the solution u to (4.2) to the grid by the vector un =

[u(x0, t
n), u(x1, t

n), . . . , u(xn2M+1, t
n)], n = 0, 1, . . . , N . Similarly, the restriction

of the solution v to (4.7) to the grid is denoted by the vector

vn = [v(x0, t
n), v(x1, t

n), . . . , v(xn2M+1, t
n)], n = 0, 1, . . . , N.

For a Y = [Y0, Y1, . . . , Y2M+1] ∈ R2M+2, we define the following norms

||Y ||1 =
2M+1∑

i=0

h|Yi|,

||Y ||∞ = max
0≤i≤2M+1

|Yi|.
(4.12)

It is straightforward to verify that

||Y ||1 ≤ a†||Y ||∞. (4.13)
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Then from the definition of Qh given in (4.9), for every Y, Z ∈ R2M+1, we have

|Qh(Y ·Z)| ≤4h

3
(2|Y1Z1|+ |Y2Z2|+ 2|Y3Z3|)

+
M−1∑

i=2

h

3
(|Y2iZ2i|+ 4|Y2i+1Z2i+1|+ |Y2i+2Z2i+2|)

+
4h

3
(2|Y2M−1Z2M−1|+ |Y2MZ2M |+ 2|Y2M+1Z2M+1|)

≤8

3
||Y ||∞||Z||1.

(4.14)

Throughout the chapter, we make the following assumptions.

(H1) Suppose u0, β are continuous, bounded, and, µ, ψ1, ψ2 are nonnegative

and sufficiently regular so that the solution to (4.2) is in C4([0, a†)× [0, T ]).

Since ψ1, ψ2 are continuous on [0, a†], for every bounded function u, the map

t 7→ sν(t) is a bounded function, i.e., there exists K > 0 such that sν(t) ≤ K for

all t ∈ [0, T ], where ν = 1, 2.

(H2) For a given s1(t) ∈ C4([0, T ]) , let





a†∫

0

µ
(
y, s1(y + t− a†)

)
dy = ∞, t > a†,

a†∫

a†−t

µ
(
y, s1(y + t− a†)

)
dy = ∞, t < a†.

(4.15)

(H3) The function µ ∈ C4([0, a†)×(0,∞)) and ∂pµ
∂sp

are bounded in [0, a†)× [0, K],

where 1 ≤ p ≤ 4.

(H4) There exists C > 0 such that ∂(p+q)µ
∂xp∂sq

≤ C ∂(p+q)µ
∂x(p+q) holds in [0, a†) × [0, K],

where 1 ≤ p ≤ 3, 1 ≤ q ≤ 3 and p+ q ≤ 4.

(H5) The functions

φ(y) = ∂2µ
∂x2

(
y, s1(0)

)
exp

(
−

y∫
a∗
µ(z, s1(0))dz

)
,

and

ρ(y) = ∂4µ
∂x4

(
y, s1(0)

)
exp

(
−

y∫
a∗
µ
(
z, s1(0)

)
dz
)
,

are bounded on [a∗, a†].
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Remark 4.2.1 From hypothesis (H2), one can easily get that

lim
x→a†

λ(x, ·) = 0. (4.16)

Authors of [6, 32, 42] have considered the case in which the mortality rate is in

the form

µ(x, s) = m(x) +M(x, s), (4.17)

where the function m is called the natural mortality that has singularity at a†,

and the function M is called the external mortality caused due to resource com-

petition. The mortality µ given in (4.17) satisfies hypothesis (H2) due to (4.3).

Moreover, it is easy to observe that µ given in (4.17) satisfies (H3)−(H4). There-

fore the mortality rate that we consider in this chapter is more generic one than

that of (4.17).

Following theorem is ensures that at every t > 0 the population density vanishes

at a = a†.

Theorem 4.2.2 Assume (H1), and v(x, 0) is a bounded function. Then, v is a

bounded solution to (4.7) on [0, a†)× [0, T ]. Further, if µ satisfies (H2), then

lim
x→a†

u(x, t) = 0, 0 < t ≤ T. (4.18)

Proof.For, 0 < t ≤ a†, (4.7) gives

|v(0, t)| ≤
∫ a†

0

|β(x, p(t))λ(x, t)v(x, t)|dx

≤ ∥β∥∞
(∫ t

0

|v(0, s)|ds+
∫ a†−t

0

|v(s, 0)|ds
)

≤ ∥β∥∞
(∫ t

0

|v(0, s)|ds+ a†∥v(·, 0)∥∞
)
.

Now, from Grönwall’s lemma, we have

|v(0, t)| ≤ a†∥β∥∞∥v(·, 0)∥∞ exp(∥β∥∞a†), 0 < t ≤ a†. (4.19)

From (4.19) and the fact v(x, 0) is bounded, one can get that v is a bounded on

[0, a†)× [0, T ].
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Finally, since v is bounded, thanks to (4.16), we conclude that (4.18) holds.

Throughout the chapter, we use C to denote the generic positive constant which

need not be the same constant as in the preceding calculations.

4.3 A convergence result

In this section, we prove a convergence theorem provided we can approximate the

survival probability λ. Notice that the quadrature rule Qh given in (4.9) gives

fourth order approximation. However, in the following convergence theorem, we

consider a generic quadrature rule Qh which is of k-th order accuracy.

Theorem 4.3.1 (Convergence) Assume (H1)–(H5). Moreover assume that

β ∈ Cq([0, a†] × (0,∞)), and µ ∈ Cq([0, a†) × (0,∞)) satisfies (4.3). Let u ∈
Cq([0, a†] × [0, T ]) be the solution to (4.2). Assume that Λn

i denote an approxi-

mation to survival probability λ(xi, t
n) at each grid point such that

max
0≤n≤N

∥Λn − λn∥∞ ≤ Chl. (4.20)

Furthermore, assume that the quadrature rule Qh is of k-th order accuracy and

q = max(l, k). Then the numerical approximations Un and V n, n = 0, 1, . . . , N ,

associated to u and v, respectively, that are obtained using numerical method

(4.10)–(4.11), satisfy

max
0≤n≤N

|| V n − vn ||∞≤ Chr,

and

max
0≤n≤N

|| Un − un ||∞≤ Chr,

where r = min(l, k).

Proof.Step - 1: In this step, we prove that (∥V n∥1), (∥V n∥∞) are bounded

sequences.
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From the boundary condition in (4.10), it follows that

|V n
0 | =|Qh(β(P

n
Λ ) ·Λn ·Vn)|

≤∥β∥∞∥Λn∥∞|Qh(V
n)|

≤8

3
∥β∥∞∥Λn∥∞

2M+5∑

i=1

h|V n
i |

≤C∥V n−1∥1, (4.21)

for some C > 0. From (4.10) and (4.21), one can easily get that

∥V n∥1 ≤ (1 + Ch)∥V n−1∥1.

From the discrete Gronwall lemma, there exists CT depending solely on T such

that

∥V n∥1 ≤ CT∥V 0∥1, 1 ≤ n ≤ N. (4.22)

From the recursive relation, for i = 1, 2, . . . , 2M + 1, we can get

|V n
i | =

{
|V 0

i−n|, if i ≥ n,

|V n−i
0 |, if i < n.

(4.23)

From (4.13), (4.21), (4.22) and (4.23), we can conclude that

∥V n∥∞ ≤ C∥V 0∥∞, (4.24)

for some C > 0.

Step - 2: In this step, we estimate ||V n − vn||1.
Let the errors due to quadrature formula (4.9) be denoted by ε1, ε2, i.e.,

ε1(t
n) =| Qh(ψ1 · λn · vn)−

∫ a†

0

ψ1(x)λ(x, t)v(x, t)dx |≤ Chk,

ε2(t
n) =| Qh(β(p(t

n)) · λn · vn)−
∫ a†

0

β(x, p(tn))λ(x, t)v(x, tn)dx |≤ Chk,

(4.25)
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for some C > 0 independent of n and h, where n = 0, 1, . . . , N . Furthermore, we

have

| V n
i − v(xi, t

n) |=| V n−1
i−1 − v(xi−1, t

n−1) |, i = 1, 2, . . . , 2M + 1. (4.26)

We define pnΛ = Qh(ψ2 ·Λn · vn) and pnλ = Qh(ψ2 · λn · vn).
On the other hand, from the boundary condition, we obtain

| V n
0 − v(0, tn) |= | Qh(β(P

n
Λ ) ·Λn · V n)−

∫ a†

0

β(x, p(tn))λ(x, t)v(x, tn)dx |

≤ | Qh(β(P
n
Λ ) ·Λn · V n)−Qh(β(p

n
Λ) ·Λn · V n) |

+ | Qh(β(p
n
Λ) ·Λn · V n)−Qh(β(p

n
λ) ·Λn · V n) |

+ | Qh(β(p
n
λ) ·Λn · V n)−Qh(β(p(t

n)) ·Λn · V n) |
+ | Qh(β(p(t

n)) ·Λn · V n)−Qh(β(p(t
n)) ·Λn · vn) |

+ | Qh(β(p(t
n)) ·Λn · vn)−Qh(β(p(t

n)) · λn · vn) |

+ | Qh(β(p(t
n)) · λn · vn)−

∫ a†

0

β(x, p(tn))λ(x, t)v(x, tn)dx |

≤C||V n − vn||1 + C||Λn − λn||∞ + ε1(t
n) + ε2(t

n). (4.27)

Therefore from (4.26) and (4.27), it is follows that

||V n − vn||1 =
2M+1∑

i=0

h|V n
i − v(xi, t

n)|

=h|V n
0 − v(0, tn)|+

2M∑

i=0

h|V n
i+1 − v(xi+1, t

n)|

≤h
(
C||V n − vn||1 + C||Λn − λn||∞ + ε1(t

n) + ε2(t
n)
)

+ ||V n−1 − vn−1||1.

(4.28)

For sufficiently small h, the discrete Gronwall lemma gives

||V n − vn||1 = C

(
||V 0 − v0||1 + h

n∑

j=0

[
||Λj − λj||∞ + ε1(t

j) + ε2(t
j)
])

,

(4.29)
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where C is independent of h. In view of ||V 0−v0||∞ = 0, (??), (4.25) and (4.29),

we have

||V n − vn||1 ≤ Chr, n = 0, 1, 2, . . . , N, (4.30)

for some C > 0 independent of n and h, where r = min(l, k).

Step - 3: We now estimate the error ||V n − vn||∞, n = 1, 2, . . . , N.

For, due to (4.25), (4.27) and (4.30), it follows that

|V n
0 − v(0, tn)| ≤ Chr, n = 0, 1, 2, . . . , N. (4.31)

From the definition of V n
i , for i = 1, 2, . . . , 2M + 1, we can get

|V n
i − v(xi, t

n)| =
{

|V 0
i−n − v(xi−n, 0)|, if i ≥ n,

|V n−i
0 − v(0, tn−i)|, if i < n.

(4.32)

Now from (4.31)–(4.32), and V 0
i = v(xi, 0), 1 ≤ i ≤ 2M + 1, we obtain

|V n
i − v(xi, t

n)| ≤ Chr, 0 ≤ n ≤ N,

or

max
0≤n≤N

|| V n − vn ||∞≤ Chr. (4.33)

Step - 4: We estimate ∥Un − un∥∞ in this step.

Consider

|Un
i − u(xi, t

n)| = |Λn
i V

n
i − λ(xi, t

n)v(xi, t
n)|

≤ |Λn
i ||V n

i − v(xi, t
n)|+ |v(xi, tn)||Λn

i − λ(xi, t
n)|.

(4.34)

Finally, from (??), (4.33) and (4.34), we conclude that

max
0≤n≤N

∥Un − un∥∞ ≤ Chr. (4.35)

This completes the proof.

Remark 4.3.2 Step 1 of Theorem 4.3.1 readily implies that scheme (4.10) is

stable in L∞ norm.



§4.4. A third order approximation of λ 101

4.4 A third order approximation of λ

In this section, we approximate λ in the following three iterative steps. This is a

predictor-corrector method in which we correct the approximate value of λ twice.

Step–1 First we define

Û0 = u0(xi), 0 ≤ i ≤ 2M + 1, (4.36)

Ŝ
0

ν = Qh(ψν · Û
0
), ν = 1, 2, (4.37)

D0
i =

h

6

i∑

j=1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]
, (4.38)

D̄0
i = D̃0

i = D̂0
i = D0

i , 1 ≤ i ≤ 2M + 1,

D̄n
0 = D̃n

0 = D̂n
0 = 0, 0 ≤ n ≤ N,

and

D̄n
i = D̂n−1

i−1 +
h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
, n, i ≥ 1, (4.39)

where D̂n−1
i−1 and Ŝn−1

1 are defined in Step-3. We approximate the survival prob-

ability function λ(x, t) at each grid point by

Λ̄n
i = exp(−D̄n

i ). (4.40)

Now, from (4.10)–(4.11) (on substituting Λn
i = Λ̄n

i ), we get Ūn
i . Set

S̄
n
ν = Qh(ψν · Ū

n
), ν = 1, 2. (4.41)

Step–2 In this step, we first update D̄n
i to obtain

D̃n
i = D̂n−1

i−1 +
h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̄

n
1

)]
, n, i ≥ 1. (4.42)

We now correct the approximated survival probability function Λn
i at each grid

point by replacing D̄n
i with D̃n

i , i.e.,

Λ̃n
i = exp(−D̃n

i ). (4.43)
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As in the previous step, we substitute Λn
i = Λ̃n

i in (4.10)–(4.11) to get Ũn
i . In

this step, we correct the approximate weighted population to arrive at

S̃
n

ν = Qh(ψν · Ũ
n
). (4.44)

Step–3 We now make the final correction to D̃ to get

D̂n
i =





D̂n−1
i−1 +

h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
, n = 1, or i = 1,

D̂n−2
i−2 +

h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)
+ 4µ

(
(i− 1)h, Ŝ

n−1

1

)

+µ
(
ih, S̃

n

1

)]
, n, i ≥ 2.

(4.45)

We now correct Λ̃ once more to find

Λ̂n
i = exp(−D̂n

i ). (4.46)

As before, we use (4.10)–(4.11), with Λn
i = Λ̂n

i to get the updated value of solution

of (4.2) namely Ũn
i . We now define

Ŝ
n

ν = Qh(ψν · Û
n
), ν = 1, 2. (4.47)

Note that the survival probability vanishes only at the maximum age, but a† is

not a grid point.

We prove the following technical lemma, which plays an important role in ob-

taining the convergence of Λ̂n
i to λni .

Lemma 4.4.1 Let u ∈ C4([0, a†] × [0, T ]) be the solution to (4.2) and Un
i be an

approximation of u(x, t) at every grid points (xi, t
n) with r-th order accuracy,

where 2 ≤ r ≤ 4. Assume that µ ∈ C4([0, a†) × (0,∞)) and ∥∂µ
∂s
∥∞ bounded on

[0, a†)× [0, K]. Then there exit 0 < η1, η2, η3 < h such that

∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn

1

)]∣∣∣∣

≤
∣∣∣∣
d2

dy2
[µ
(
η1 + xi − tn, s1(η1)

)
]

∣∣∣∣
h3

12
+ Ch3, (4.48)
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∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn−1

1

)]∣∣∣∣

≤
∣∣∣∣
d2

dy2
[µ
(
η2 + xi − tn, s(η2)

)
]

∣∣∣∣
h3

12
+ Ch2, (4.49)

and

∣∣∣∣
tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h,Sn−2

1

)
+ 4µ

(
(i− 1)h,Sn−1

1

)

+ µ
(
ih,Sn

1

)]∣∣∣∣ ≤
∣∣∣∣
d4

dy4
[µ
(
η3 + xi − tn, s1(η3)

)
]

∣∣∣∣
h5

90
+ Chr+1, (4.50)

for 1 ≤ i ≤ 2M + 1, 1 ≤ n ≤ N .

Proof.Since ψ1 is a bounded function, for n = 1, 2, . . . , N , we have the following

|sn−1
1 − Sn−1

1 | = |Qh(ψ1 · un−1)−Qh(ψ1 ·Un−1)| ≤ Chr. (4.51)

Using (4.51), we obtain

|µ
(
(i− 1)h, sn−1

1

)
− µ

(
(i− 1)h,Sn−1

1

)
| ≤∥∂µ

∂s
∥∞|sn−1

1 − Sn−1
1 |

≤Chr, (4.52)

for every n = 1, 2, . . . , N , i = 1, . . . , j∗. Since the quadrature formula Qh that

we use is of fourth order, it follows that

|µ
(
(i− 1)h, s1(t

n−1)
)
− µ

(
(i− 1)h, sn−1

1

)
| ≤Ch4. (4.53)

From the trapezoidal rule (see [9]), we get that, for n = 1, 2, . . . , N , and 1 ≤ i ≤
2M + 1,

h

2

[
µ
(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)]

−
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy

=
d2

dy2
[µ
(
y + xi − tn, s1(y)

)
]

∣∣∣∣∣
y=η1

h3

12
, (4.54)
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where η1 ∈ (0, h).

On the other hand, in view of (4.52)–(4.54) we find that

∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn

1

)]∣∣∣∣

≤
∣∣∣∣

tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)]∣∣∣∣

+
h

2

∣∣∣∣µ
(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)
− µ

(
(i− 1)h, sn−1

1

)

− µ
(
ih, sn1

)∣∣∣∣+
h

2

∣∣∣∣µ
(
(i− 1)h, sn−1

1

)
+ µ
(
ih, sn1

)

− µ
(
(i− 1)h,Sn−1

1

)
− µ

(
ih,Sn

1

)∣∣∣∣

≤
∣∣∣∣
d2

dy2
[µ
(
η1 + xi − tn, s1(η1)

)
]

∣∣∣∣
h3

12
+ Chr+1. (4.55)

This proves (4.48). On repeating similar calculations in the derivation of (4.55),

we can write

∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn−1

1

)]∣∣∣∣

≤
∣∣∣∣
d2

dy2
[µ
(
η2 + xi − tn, s1(η2)

)
]

∣∣∣∣
h3

12
+ Ch3 +

h

2

∣∣∣∣µ
(
ih, s1(t

n)
)
− µ

(
ih, s1(t

n−1)
)∣∣∣∣

≤
∣∣∣∣
d2

dy2
[µ
(
η2 + xi − tn, s(η2)

)
]

∣∣∣∣
h3

12
+ Ch2. (4.56)

This completes the proof of (4.49). We use the same strategy to prove (4.50). For,

from the Simpson’s 1
3
quadrature rule (see [9]), we obtain that for n = 1, 0, . . . , N,

i = 0, 1, . . . , 2M + 1

h

3

[
µ
(
(i− 2)h, s1(t

n−2)
)
+ 4µ

(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)]

−
tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy =

d4

dy4
[µ
(
η1 + xi − tn, s1(η1)

)
]
h5

90
, (4.57)
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for some η2 ∈ (0, 2h).

Moreover, in view of (4.52), (4.53) and (4.57) we get that

∣∣∣∣
tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h,Sn−2

1

)

+ 4µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn

1

)]∣∣∣∣

≤
∣∣∣∣

tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h, s1(t

n−2)
)

+ 4µ
(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)]∣∣∣∣

+
h

3

∣∣∣∣µ
(
(i− 2)h, s1(t

n−2)
)
+ 4µ

(
(i− 1)h, s1(t

n−1)
)
+ µ
(
ih, s1(t

n)
)

− µ
(
(i− 2)h, sn−2

1

)
− 4µ

(
(i− 1)h, sn−1

1

)
− µ

(
ih, sn1

)∣∣∣∣

+
h

3

∣∣∣∣µ
(
(i− 2)h, sn−2

1

)
+ 4µ

(
(i− 1)h, sn−1

1

)
+ µ
(
ih, sn1

)

− µ
(
(i− 2)h,Sn−2

1

)
− 4µ

(
(i− 1)h,Sn−1

1

)
− µ

(
ih,Sn

1

)∣∣∣∣

≤
∣∣∣∣
d4

dy4
[µ
(
η3 + xi − tn, s1(η3)

)
]

∣∣∣∣
h5

90
+ Chr+1, (4.58)

which readily gives (4.50). This proves the promised result. Besides this lemma

the following standard inequality is also very useful in this section

|e−x − e−y| ≤ |x− y|, ∀x, y ≥ 0. (4.59)

In the following, we show that Λ̂ is indeed a third order approximation of λ in

[0, xj∗ ].

Theorem 4.4.2 Assume hypotheses (H1)–(H5). Moreover assume that

µ ∈ C4([0, a†) × (0,∞)), d2µ
dy2

(y, s1(y + α)) ≥ 0 and d4µ
dy4

(y, s1(y + α)) ≥ 0 for all

y ∈ [a∗, a†) and α ≥ −a∗. Let u ∈ C4([0, a†] × [0, T ]) be the solution to (4.2).

Then

∥Λ̂n − λn∥∞ ≤ Ch3, 0 ≤ n ≤ N, (4.60)

where C is a constant independent of n, h.
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In view of the assumptions on the behavior of µ around the singularity, we prove

Theorem 4.4.2 in two parts. In the first part, we estimate |Λ̂n
i − λ(xi, t

n)| when
0 ≤ i ≤ j∗. In the other part, we estimate the same near the singularity i.e.,

j∗ + 1 ≤ i ≤ 2M + 1.

Theorem 4.4.3 Assume the hypotheses of Theorem 4.4.2. Then

max
0≤i≤j∗

|Λ̂n
i − λ(xi, t

n)| ≤ Ch3, 0 ≤ n ≤ N, (4.61)

where C is a constant independent of n, h.

Theorem 4.4.4 Assume the hypotheses of Theorem 4.4.2. Then

max
j∗+1≤i≤2M+1

|Λ̂n
i − λ(xi, t

n)| ≤ Ch3, 0 ≤ n ≤ N, (4.62)

where C is a constant independent of n, h.

Due to the nature of numerical scheme (4.10), at each stage proofs of Theorem

4.4.3 and 4.4.4 depend on each other. In particular, the proof of Step–1 of The-

orem 4.4.4 depends on Step–1 of Theorem 4.4.3. To prove Step–2 of Theorem

4.4.3, we need Step–1 of both the Theorems. We prove Step–2 of Theorem 4.4.4

using Step–2 of Theorem 4.4.3 and Step–1 of both the Theorems. We follow the

same strategy to prove the others steps. We have adopted this way of presenting

proofs because the proof of Theorem 4.4.3 is too long.

Proof of Theorem 4.4.3. Observe that µ(x, s) is fourth times continuously

differentiable when x ∈ [0, a∗] and it has bounded derivatives with respect to s.

Therefore from (4.48)–(4.50), we obtain that

∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn

1

)]∣∣∣∣ ≤ Ch3,

(4.63)

∣∣∣∣
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h,Sn−1

1

)
+ µ
(
ih,Sn−1

1

)]∣∣∣∣ ≤ Ch2,

(4.64)
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and

∣∣∣∣
tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h,Sn−2

1

)
+ 4µ

(
(i− 1)h,Sn−1

1

)

+ µ
(
ih,Sn

1

)]∣∣∣∣ ≤ Ch4, (4.65)

where 2 ≤ r ≤ 4. In view of (4.39), (4.42) and (4.45), we find that

Λ̂n
0 = λ(0, tn), n = 0, 1, . . . , N.

Step–1: Consider n = 0 and i = 1, . . . , j∗. Since

∣∣∣∣
xi∫

0

µ
(
y, s1(0)

)
dy − h

6

i∑

j=1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)

+ µ
(
jh, Ŝ

0

1

)]∣∣∣∣ ≤ Ch4, (4.66)

from (4.59), we conclude that

|Λ̂0
i − λ(xi, t

0)| ≤ Ch4, i = 0, 1, . . . , j∗.

Step–2: Let n = 1 and i = 1, . . . , j∗.

From (4.63) and (4.66), it follows that

|d(xi, t1)− D̄1
i |

=|
xi−t1∫

0

µ
(
y, s1(0)

)
dy +

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy − D̂0

i−1

− h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]
|

≤Ch4 + Ch2 ≤ Ch2. (4.67)

Using (4.59) and (4.67), we conclude that

|Λ̄1
i − λ(xi, t

1)| ≤ Ch2, i = 0, 1, . . . , j∗. (4.68)
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From Step–2 of Theorem 4.4.4, it follows that

|Λ̄1
i − λ(xi, t

1)| ≤ Ch2, i = j∗ + 1, . . . , 2M + 1. (4.69)

On taking Λ1
i = Λ̄1

i , U
1
i = Ū1

i in Theorem 4.3.1 and using (4.68)–(4.69), we get

|| Ū 1 − u1 ||∞≤ Ch3. (4.70)

Again from (4.63) and (4.66), we get

|d(xi, t1)− D̃1
i |

≤|
t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, S̄

1
1

)]
|+ Ch4

≤Ch4 + Ch3 ≤ Ch3. (4.71)

As before using (4.59) and (4.71), we obtain

|Λ̃1
i − λ(xi, t

1)| ≤ Ch3, i = 0, 1, . . . , j∗. (4.72)

On taking Λ1
i = Λ̃1

i and U
1
i = Ũ1

i in Theorem 4.3.1 and using the similar argument

employed to prove (4.89), we find that

|| Ũ 1 − u1 ||∞≤ Ch3. (4.73)

Now using the same argument, we can easily prove that

|Λ̂1
i − λ(xi, t

1)| ≤ Ch3, i = 0, 1, . . . , j∗, (4.74)

and

|| Ũ 1 − u1 ||∞≤ Ch3. (4.75)

Step–3: Assume n = 2 and i = 1, . . . , j∗.

There are two possibilities in this case, viz., one is i ≥ 2 and the other one is

i ∈ {0, 1}. We consider the case i ≥ 2 now, and the other situation can be dealt

in a similar way.
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Using the similar argument to obtain (4.72)–(4.73), we get

|Λ̃2
i − λ(xi, t

2)| ≤ Ch3, i = 0, 1, . . . , j∗. (4.76)

and

|| Ũ 1 − u1 ||∞≤ Ch3. (4.77)

From (4.65)–(4.66) and (4.76)–(4.77), we obtain

|d(xi, t2)− D̂2
i |

≤|
t2∫

0

µ
(
y + xi − t2, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h, Ŝ

0

1

)
+ 4µ

(
(i− 1)h, Ŝ

1

1

)

+ µ
(
ih, S̃

2

1

)]
+ Ch4

≤Ch4. (4.78)

From (4.78), thanks to (4.59), it immediately follows that

|Λ̂2
i − λ(xi, t

2)| ≤ 2Ch4, i = 2, 3, . . . , j∗.

As before, on substituting Λ2
i = Λ̂2

i in Theorem 4.3.1, we obtain U2
i = Û2

i which

satisfies

|| Û 2 − u2 ||∞≤ Ch3. (4.79)

Step–4: In this we employ the induction argument to prove the required the

result.

For, Assume

|d(xi, tm)− D̂m
i | ≤

⌊
m− 2⌊m

2
⌋
⌋
C1h

3 +

(
1 + ⌊m

2
⌋
)
C2h

4 (4.80)

≤Ch3, i = m, . . . , j∗, m = 0, 1, . . . , n− 1,

and

|d(xi, tm)− D̂m
i | ≤

⌊
i− 2⌊ i

2
⌋
⌋
C1h

3 + ⌊ i
2
⌋C2h

4 (4.81)

≤Ch3, i = 0, 1, . . . ,m− 1, m = 0, 1, . . . , n− 1,
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where ⌊·⌋ denote the floor function. The motivation for assumptions (4.80)–(4.81)

lies in the calculations presented in the earlier steps. First, consider the case i ≥ n.

Now from (4.63) and (4.80), we obtain

∣∣d(xi, tn)− D̄n
i

∣∣

=|
xi−tn∫

0

µ
(
y, s1(0)

)
dy +

tn∫

0

µ
(
y + xi − tm, s1(y)

)
dy − D̂n−1

i−1

− h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
|

=|
xi−1−tn−1∫

0

µ
(
y, s1(0)

)
dy +

tn−1∫

0

µ
(
y + xi−1 − tn−1, s1(y)

)
dy

+

tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − D̂n−1

i−1 − h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
|

≤|
tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
|

+
⌊
(n− 1)− 2⌊n− 1

2
⌋
⌋
C1h

3 +

(
1 + ⌊n− 1

2
⌋
)
C2h

4

≤Ch2 +
⌊
(n− 1)− 2⌊n− 1

2
⌋
⌋
C1h

3 +

(
1 + ⌊n− 1

2
⌋
)
C2h

4 ≤ Ch2. (4.82)

Next, we proceed to the situation where n > i.

Then from (4.64) and (4.81), we readily get

|d(xi, tn)− D̄n
i | ≤ Ch2 +

⌊
(i− 1)− 2⌊i− 1

2
⌋
⌋
C1h

3 + ⌊i− 1

2
⌋C2h

4 ≤ Ch2.

(4.83)

Thus (4.59), (4.82)–(4.83), together give us

|Λ̄n
i − λ(xi, t

n)| ≤ Ch2, i = 1, . . . , j∗,
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and as before Theorem 4.3.1 grants us (on substituting Λn
i = Λ̄n

i )

|| Ūn − un ||∞≤ Ch2. (4.84)

Using similar arguments, one can prove that

|d(xi, tn)− D̃n
i | ≤ Ch3 +

⌊
(i− 1)− 2⌊i− 1

2
⌋
⌋
C1h

3 + ⌊i− 1

2
⌋C2h

4 ≤ Ch3, i ≥ n,

(4.85)

and

|d(xi, tn)− D̃n
i | ≤ Ch3 +

⌊
(i− 1)− 2⌊i− 1

2
⌋
⌋
C1h

3 + ⌊i− 1

2
⌋C2h

4 ≤ Ch3, i < n.

(4.86)

Using (4.59) and (4.85)–(4.86), we conclude that

|Λ̃n
i − λ(xi, t

n)| ≤ Ch3, i = 1, . . . , j∗. (4.87)

From Step–4 of Theorem 4.4.4, it follows that

|Λ̃n
i − λ(xi, t

n)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1. (4.88)

On taking Λ1
i = Λ̃1

i , U
1
i = Ũ1

i in Theorem 4.3.1 and using (4.87)–(4.88), we get

|| Ũn − un ||∞≤ Ch3. (4.89)



112 §4.4. A third order approximation of λ

Due to (4.65) and (4.80) for i ≥ n, we find that

|d(xi, tn)− D̂n
i |

=|
xi−tn∫

0

µ
(
y, s1(0)

)
dy +

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy − D̂n−2

i−2

− h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)
+ 4µ

(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
|

=|d(xi−2, t
n−2) +

tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − D̂n−2

i−2

− h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)
+ 4µ

(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
|

≤Ch4 +
⌊
(n− 2)− 2⌊n− 2

2
⌋
⌋
C1h

3 +

(
1 + ⌊n− 2

2
⌋
)
C2h

4 ≤ Ch3. (4.90)

On the other hand, using the same strategy from (4.65) and (4.81), we get

|d(xi, tn)− D̂n
i |

=|
tn∫

tn−xi

µ
(
y + xi − tn, s1(y)

)
dy − D̂n−2

i−2 − h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)

+ 4µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
|

=|d(xi−2, t
n−2) +

tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy

− D̂n−2
i−2 − h

3

[
µ
(
(i− 2)h, Ŝ

n−2

1

)
+ 4µ

(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, S̃

n

1

)]
|

≤Ch4 +
⌊
(i− 2)− 2⌊i− 2

2
⌋
⌋
C1h

3 + ⌊i− 2

2
⌋C2h

4 ≤ Ch3, i < n. (4.91)

Finally, from (4.59), (4.90)–(4.91), we conclude that

|Λ̂n
i − λ(xi, t

n)| ≤ Ch3, i = 1, . . . , j∗. (4.92)

This completes the proof. Now we present a result which is quite useful in

estimating |Λn
i − λ(xi, t

n)| for i > j∗.

Lemma 4.4.5 Let u ∈ C4([0, a†] × [0, T ]) be the solution to (4.2). Assume that
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and µ ∈ C4([0, a†)× (0,∞)) and satisfies (H1)–(H5). Then the functions

ζ(x, t, y, xj∗)

=
d2

dy2
[µ
(
y + x− t, s1(y)

)
] exp

(
−

x−t∫

xj∗

µ
(
z, s1(0)

)
dz −

t∫

0

µ
(
z + x− t, s1(z)

)
dz
)

and

ξ(x, t, y, xj∗)

=
d4

dy4
[µ
(
y + x− t, s1(y)

)
] exp

(
−

x−t∫

xj∗

µ
(
z, s1(0)

)
dz −

t∫

0

µ
(
z + x− t, s1(z)

)
dz
)

are bounded on [a∗, a†]× [0, K]× [a∗, a†].

Proof.We begin with the observation

µ
(
y + x− t, s1(y)

)

=µ
(
y + x− t, s1(0)

)
+
∂µ

∂s

(
y + x− t, s1(η5)

)(
s1(y)− s1(0)

)

=µ
(
y + x− t, s1(0)

)
+ y

∂µ

∂s

(
y + x− t, s1(η5)

) ∫ a†

0

ψ(x)
∂u

∂t
(x, η6)dx, (4.93)

for some η5, η6 ∈ (0, y), and

exp
{
−

t∫

0

(
y
∂µ

∂s

(
y + x− t, s1(η5)

) ∫ a†

0

ψ(x)
∂u

∂t
(x, η6)dx

)
dy
}
≤ C, (4.94)

for some positive constant C. From (4.94), we can conclude that

exp
(
−

x−t∫

xj∗

µ
(
z, s1(0)

)
dz−

t∫

0

µ
(
z+x−t, s1(z)

)
dz
)
≤ C exp

(
−

x∫

xj∗

µ
(
z, s1(0)

)
dz
)
.

(4.95)
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On the other hand, a straight forward computation gives

d2

dy2
[µ
(
y + x− t, s1(y)

)
]

=
[∂2µ
∂x2

+ 2
ds1
dy

∂2µ

∂x∂s1
+
(ds1
dy

)2∂2µ
∂s21

+
d2s1
dy2

∂µ

∂s1

](
y + x− t, s1(y)

)
. (4.96)

From hypothesis (H4) and (4.96), we get

d2

dy2
[µ
(
y + x− t, s1(y)

)
]

≤
[
C2
∂2µ

∂x2

](
y + x− t, s1(0)

)
+
[(ds1

dy

)2∂2µ
∂s21

+
d2s1
dy2

∂µ

∂s1

](
y + x− t, s1(y)

)
.

(4.97)

On multiplying with exp
(
−

x−t∫
xj∗

µ
(
z, s1(0)

)
dz−

t∫
0

µ
(
z + x− t, s1(z)

)
dz
)
on both

sides of (4.97) and using (4.95), we obtain

ζ(x, t, y, xj∗) ≤ C3φ(y) + C4, (4.98)

where C3 and C4 are constants. Similarly, consider

d4

dy4
[µ
(
y + x− t, s1(y)

)
]

=
[∂4µ
∂x4

+ 4
∂4µ

∂3x∂s1

ds1
dy

+ 6
∂4µ

∂2x∂2s1

(
ds1
dy

)2

+ 4
∂4µ

∂x∂3s1

(
ds1
dy

)3

+
∂4µ

∂4s1

(
ds1
dy

)4

+ 6
∂3µ

∂2x∂s1

d2s1
dy2

+ 12
∂3µ

∂x∂2s1

ds1
dy

d2s1
dy2

+ 6
∂3µ

∂3s1

(
ds1
dy

)2
d2s1
dy2

+ 4
∂2µ

∂x∂s1

d3s1
dy3

+
∂2µ

∂2s1

(
3
(d2s1
dy2

)2
+ 4

ds1
dy

d3s1
dy3

)
+
∂µ

∂s1

d4s1
dy4

](
y + x− t, s1(y)

)
.

(4.99)

From (4.99) and (H4)− (H5), it readily follows that

ξ(x, t, y, xj∗) ≤ C3ρ(y) + C4.

for some C4 > 0. This completes the proof. Now we are ready to give a proof of

Theorem 4.4.4 which estimates |Λ̂n
i − λ(xi, t

n)| when the grid points are close to
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the singularity.

Proof of Theorem 4.4.4. We prove the proposition in the case when xi >

a∗, tn ≤ xi. The proof in the case when tn > xi > a∗ follows from the same

argument.

Step–1: Assume n = 0.

Consider the following estimate

|Λ̂0
i − λ(xi, t

0)|

=

∣∣∣∣ exp
{
− D̂0

j∗

}
exp

{
− h

6

i∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)

+ µ
(
jh, Ŝ

0

1

)]}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}
exp

{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy
}∣∣∣∣

≤
∣∣∣∣ exp

{
− D̂0

j∗

}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}∣∣∣∣ exp

{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy
}

+

∣∣∣∣ exp
{
− h

6

i∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]}

− exp
{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy
}∣∣∣∣ exp

{
− D̂0

j∗

}

:=I1 + I2. (4.100)

We now estimate I1 and I2 separately. Since
∂4µ
∂x4 ≥ 0 and from (4.50) and (4.99),

one can obtain

xi∫

xj∗

µ
(
y, s1(0)

)
dy ≤ h

6

i∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)

+ µ
(
jh, Ŝ

0

1

)]
+ Ch4. (4.101)
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Using (4.101) and (4.50), we obtain

I2 ≤
∣∣∣∣ exp

{
− h

6

i∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]}

− exp
{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy
}∣∣∣∣

≤ exp
{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy + Ch4

}∣∣∣∣−
h

6

i∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)

+ 4µ
(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]
+

xi∫

xj∗

µ
(
y, s1(0)

)
dy

∣∣∣∣

≤C exp
{
−

xi∫

xj∗

µ
(
y, s1(0)

)
dy
}∣∣∣∣

d4

dy4
[µ
(
η3, s1(0)

)
]

∣∣∣∣(xi − xj∗)
h4

12

≤C
∣∣ρ(η3)

∣∣(xi − xj∗)
h4

12
, (4.102)

where η3 ∈ (xj∗ , xi).

From the fact that ρ is a bounded function, and form (4.102), we conclude that

I2 ≤ Ch4. From Theorem 4.4.3, it follows that I1 ≤ Ch4. Hence form (4.100)

conclude

|Λ̂0
i − λ(xi, t

0)| ≤ Ch4, i = j∗ + 1, . . . , 2M + 1.
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Step–2 Suppose n = 1. Consider the following estimate

|Λ̄1
i − λ(xi, t

1)|

=

∣∣∣∣ exp
{
− D̂0

j∗

}
exp

{
− h

6

i−1∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)

+ µ
(
jh, Ŝ

0

1

)]}
exp

{
− h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]}

− exp
{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}
exp

{
−

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy

−
t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy
}∣∣∣∣

≤
∣∣∣∣ exp

{
− D̂0

j∗

}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}∣∣∣∣ exp

{
−

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy

−
t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy
}
+

∣∣∣∣ exp
{
− h

6

i−1∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)

+ 4µ
(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]
− h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]}

− exp
{
−

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy −

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy
}∣∣∣∣ exp

{
− D̂0

j∗

}

:=I3 + I4. (4.103)

Since ∂2µ
∂x2 ≥ 0 and from (4.49) and (4.96), one can obtain

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy +

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy

≤h
6

i−1∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

+
h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]
+ Ch2. (4.104)
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Using (4.104), (4.49), (4.50) and the Lagrange theorem, we obtain

I4 ≤
∣∣∣∣ exp

{
− h

6

i−1∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]}

− exp
{
−

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy −

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy
}∣∣∣∣

≤ exp
{
−

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy −

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy + Ch2

}

∣∣∣∣−
h

6

i−1∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

2

[
µ
(
(i− 1)h, Ŝ

0

1

)
+ µ
(
ih, Ŝ

0

1

)]
+

xi−t1∫

xj∗

µ
(
y, s1(0)

)
dy

+

t1∫

0

µ
(
y + xi − t1, s1(y)

)
dy

∣∣∣∣

≤C
(∣∣∣ d

4

dy4
[µ
(
η3, s1(0)

)
]
∣∣∣(xi−1 − xj∗)

h4

90

+
∣∣∣ d

2

dy2
[µ
(
η4 + xi − t1, s1(η4)

)
]
∣∣∣(xi − xi−1)

h2

12

)

≤C
∣∣∣∣ρ(η3) + ζ(xi, t

n, η4, xj∗)

∣∣∣∣(xi − xj∗)
h2

12
, (4.105)

where η3 ∈ (xj∗ , xi−1) and 0 ≤ η4 ≤ h .

From the fact that ρ and ξ are bounded functions, and from (4.105), we conclude

that I4 ≤ Ch2. From Theorem 4.4.3, it follows that I3 ≤ Ch4. Using these fact,

from (4.103) we conclude

|Λ̄1
i − λ(xi, t

1)| ≤ Ch2, i = j∗ + 1, . . . , 2M + 1. (4.106)

From Step–2 of Theorem 4.4.3, it follows that

|Λ̄1
i − λ(xi, t

1)| ≤ Ch2, i = 1, . . . , j∗. (4.107)
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On taking Λ1
i = Λ̄1

i , U
1
i = Ū1

i in Theorem 4.3.1 and using (4.106)–(4.107), we get

|| Ū 1 − u1 ||∞≤ Ch2. (4.108)

Using similar arguments, we can prove that

|Λ̃1
i − λ(xi, t

1)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1, (4.109)

|| Ũ 1 − u1 ||∞≤ Ch3, (4.110)

and

|Λ̂1
i − λ(xi, t

1)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1, (4.111)

|| Û 1 − u1 ||∞≤ Ch3, (4.112)

Step–3 Consider the case when n = 2.

Using the similar arguments to get (4.106), (4.125)–(4.110), we obtain

|Λ̄2
i − λ(xi, t

2)| ≤ Ch2, i = j∗ + 1, . . . , 2M + 1, (4.113)

|| Ū 2 − u2 ||∞≤ Ch2, (4.114)

and

|Λ̃2
i − λ(xi, t

2)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1, (4.115)

|| Ũ 2 − u2 ||∞≤ Ch3. (4.116)
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Case–1 Suppose n = 2 and i = j∗ + 1.

Consider

|Λ̂2
j∗+1 − λ(xj∗+1, t

2)|

=

∣∣∣∣ exp
{
− D̂0

j∗−1

}
exp

{
− h

3

[
µ
(
xj∗+1 − t2, Ŝ

0

1

)
+ 4µ

(
h+ xj∗+1 − t2, Ŝ

1

1

)

+ µ
(
2h+ xj∗+1 − t2, S̃

2

1

)]}
− exp

{
−

xj∗−1∫

0

µ
(
y, s1(0)

)
dy
}

exp
{
−

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy
}∣∣∣∣

≤
∣∣∣∣ exp

{
− D̂0

j∗−1

}
− exp

{
−

xj∗−1∫

0

µ
(
y, s1(0)

)
dy
}∣∣∣∣

exp
{
−

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy
}

+

∣∣∣∣ exp
{
− h

3

[
µ
(
xj∗+1 − t2, Ŝ

0

1

)
+ 4µ

(
h+ xj∗+1 − t2, Ŝ

1

1

)

+ µ
(
2h+ xj∗+1 − t2, S̃

2

1

)]}

− exp
{
−

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy
}∣∣∣∣ exp

{
− D̂0

j∗−1

}

:=I5 + I6. (4.117)

Since ∂2µ
∂x2 ≥ 0 and from (4.50) and (4.96), one can obtain

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy ≤ h

3

[
µ
(
xj∗+1 − t2, Ŝ

0

1

)
+ 4µ

(
h+ xj∗+1 − t2, Ŝ

1

1

)

+ µ
(
2h+ xj∗+1 − t2, S̃

2

1

)]
+ Ch2. (4.118)
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This implies

I6 ≤
∣∣∣∣ exp

{
− h

3

[
µ
(
xj∗+1 − t2, Ŝ

0

1

)
+ 4µ

(
h+ xj∗+1 − t2, Ŝ

1

1

)

+ µ
(
2h+ xj∗+1 − t2, S̃

2

1

)]}
− exp

{
−

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy
}∣∣∣∣

≤ exp
{
−

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy + Ch2

}

∣∣∣∣−
h

3

[
µ
(
xj∗+1 − t2, Ŝ

0

1

)
+ 4µ

(
h+ xj∗+1 − t2, Ŝ

1

1

)
+ µ
(
2h+ xj∗+1 − t2, S̃

2

1

)]

+

t2∫

0

µ
(
y + xj∗+1 − t2, s1(y)

)
dy

∣∣∣∣

≤C
∣∣∣∣∣
d4

dy4
[µ
(
η3 + xj∗+1 − t2, s1(η3)

)
]

∣∣∣∣∣(xj∗+1 − xj∗−1)
h4

12

≤C
∣∣∣∣ξ(xj∗+1, t

2, η5, xj∗−1)

∣∣∣∣(xj∗+1 − xj∗−1)
h4

12
, (4.119)

where η5 ∈ (0, 2h). Using the fact that ξ are bounded functions, and from (4.119),

one can conclude that I6 ≤ Ch4. From Theorem 4.4.3, it follows that I5 ≤ Ch3.

Using these fact, from (4.117) we conclude

|Λ̂2
i − λ(xi, t

2)| ≤ Ch3, i = j∗ + 1. (4.120)
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Case–2 We now assume n = 2 and j∗ + 2 ≤ i ≤ 2M + 1.

We estimate

|Λ̂2
i − λ(xi, t

2)|

≤
∣∣∣∣ exp

{
− D̂0

j∗

}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}∣∣∣∣

+

∣∣∣∣ exp
{
− h

6

i−2∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

3

[
µ
(
xi − t2, Ŝ

0

1

)
+ 4µ

(
h+ xi − t2, Ŝ

1

1

)
+ µ
(
2h+ xi − t2, S̃

2

1

)]

− exp
{
−

xi−t2∫

xj∗

µ
(
y, s1(0)

)
dy −

t2∫

0

µ
(
y + xi − t2, s1(y)

)
dy
}∣∣∣∣

:=I7 + I8, (4.121)

and

I8 =

∣∣∣∣ exp
{
− h

6

i−2∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

3

[
µ
(
xi − t2, Ŝ

0

1

)
+ 4µ

(
h+ xi − t2, Ŝ

1

1

)
+ µ
(
2h+ xi − t2, S̃

2

1

)]

− exp
{
−

xi−t2∫

xj∗

µ
(
y, s1(0)

)
dy −

t2∫

0

µ
(
y + xi − t2, s1(y)

)
dy
}∣∣∣∣

≤C
∣∣∣∣ρ(η6) + ξ(xi, t

2, η7, xj∗)

∣∣∣∣(xi − xj∗)
h4

90
, (4.122)

where η6 ∈ (xj∗ , xi−2) and 0 ≤ η7 ≤ 2h .

From the fact that ρ and ξ are bounded function, and form (4.122) , we conclude

that I8 ≤ Ch4. From Theorem 4.4.3, it follows that I7 ≤ Ch3. Using these fact,

from (4.121) we conclude

|Λ̂2
i − λ(xi, t

2)| ≤ Ch3, i = j∗ + 2, . . . , 2M + 1. (4.123)
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From Step–3 of Theorem 4.4.3, it follows that

|Λ̂2
i − λ(xi, t

2)| ≤ Ch3, i = 1, . . . , j∗. (4.124)

On taking Λ2
i = Λ̂2

i , U
2
i = Û2

i in Theorem 4.3.1 and using (4.120), (4.123)–(4.124),

we get

|| Û 2 − u2 ||∞≤ Ch3. (4.125)

Step–4: We complete the proof of the required result using the induction argu-

ment.

For, assume

|λ(xi, tm)− Λ̂m
i | ≤⌊m− 2⌊m

2
⌋⌋Ch3 +

(
1 + ⌊m

2
⌋
)
Ch4

≤Ch3, i = j∗ + 1, . . . , 2M + 1, m = 0, 1, . . . , n− 1. (4.126)
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Consider the following estimate

|Λ̄n
i − λ(xi, t

n)|

=

∣∣∣∣ exp
{
− D̂0

j∗

}
exp

{
− h

6

i−n∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)

+ µ
(
jh, Ŝ

0

1

)]}
exp

{
− h

3

n−1
2∑

j=1

[
µ
(
(i− n+ 2j − 2)h, Ŝ

2j−2

1

)

+ 4µ
(
(i− n+ 2j − 1)h, Ŝ

2j−1

1

)
+ µ
(
(i− n+ 2j)h, Ŝ

2j

1

)]}

exp

{
− h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}

exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy
}∣∣∣∣

≤
∣∣∣∣ exp

{
− D̂0

j∗

}
− exp

{
−

xj∗∫

0

µ
(
y, s1(0)

)
dy
}∣∣∣∣

exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy
}

+

∣∣∣∣ exp
{
− h

6

i−n∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

3

n−1
2∑

j=1

[
µ
(
(i− n+ 2j − 2)h, Ŝ

2j−2

1

)
+ 4µ

(
(i− n+ 2j − 1)h, Ŝ

2j−1

1

)

+ µ
(
(i− n+ 2j)h, Ŝ

2j

1

)]
− h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]}

− exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy
}∣∣∣∣ exp

{
− D̂0

j∗

}

:=I9 + I10. (4.127)
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Since ∂2µ
∂x2 ≥ 0 and from (4.49) and (4.96), one can obtain

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy +

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy

≤ h

6

i−n∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

+
h

3

n−1
2∑

j=1

[
µ
(
(i− n+ 2j − 2)h, Ŝ

2j−2

1

)
+ 4µ

(
(i− n+ 2j − 1)h, Ŝ

2j−1

1

)

+ µ
(
(i− n+ 2j)h, Ŝ

2j

1

)]
+
h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]
+ Ch2.

(4.128)
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Using (4.128), (4.49), (4.50) and the Lagrange theorem, we obtain

I10 ≤
∣∣∣∣ exp

{
− h

6

i−n∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

3

n−1
2∑

j=1

[
µ
(
(i− n+ 2j − 2)h, Ŝ

2j−2

1

)
+ 4µ

(
(i− n+ 2j − 1)h, Ŝ

2j−1

1

)

+ µ
(
(i− n+ 2j)h, Ŝ

2j

1

)]
− h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]}

− exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy
}∣∣∣∣

≤ exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy + Ch2

}

∣∣∣∣−
h

6

i−n∑

j=j∗+1

[
µ
(
(j − 1)h, Ŝ

0

1

)
+ 4µ

(
(j − 1

2
)h, Ŝ

0

1

)
+ µ
(
jh, Ŝ

0

1

)]

− h

3

n−1
2∑

j=1

[
µ
(
(i− n+ 2j − 2)h, Ŝ

2j−2

1

)
+ 4µ

(
(i− n+ 2j − 1)h, Ŝ

2j−1

1

)

+ µ
(
(i− n+ 2j)h, Ŝ

2j

1

)]
− h

2

[
µ
(
(i− 1)h, Ŝ

n−1

1

)
+ µ
(
ih, Ŝ

n−1

1

)]

+

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy +

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy

∣∣∣∣

≤ exp
{
−

xi−tn∫

xj∗

µ
(
y, s1(0)

)
dy −

tn∫

0

µ
(
y + xi − tn, s1(y)

)
dy
}

(∣∣∣ d
4

dy4
[µ
(
η8, s1(0)

)
]
∣∣∣(xi−n − xj∗)

h4

90

+
∣∣∣ d

2

dy2
[µ
(
η9 + xi − tn, s1(η9)

)
]
∣∣∣(xi−1 − xi−n)

h4

90

+
∣∣∣ d

2

dy2
[µ
(
η10 + xi − tn, s1(η10)

)
]
∣∣∣(xi − xi−1)

h2

12

)

≤C
∣∣ρ(η8) + ξ(xi, t

n, η9, xj∗) + ζ(xi, t
n, η10, xj∗)

∣∣(xi − xj∗)
h2

12
, (4.129)
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where η8 ∈ (xj∗ , xi−n), η9 ∈ (xi−n, xi−1) and η10 ∈ (xi−1, xi) .

From the fact that ρ, ζ and ξ are bounded functions, and from (4.129), one can

show that I10 ≤ Ch2. From Theorem 4.4.3, it follows that I9 ≤ Ch3. Using these

fact, from (4.127) we conclude

|Λ̄n
i − λ(xi, t

n)| ≤ Ch2, i = j∗ + 1, . . . , 2M + 1.

Now it is straightforward to conclude that

|Λ̃n
i − λ(xi, t

n)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1, (4.130)

and

|Λ̂n
i − λ(xi, t

n)| ≤ Ch3, i = j∗ + 1, . . . , 2M + 1. (4.131)

4.5 A fourth order approximation of λ

In this section, we propose a fourth order numerical scheme to (4.2) by introducing

two more corrections to the predictor corrector method presented in Section 4.4.

In other words, the method that we introduce here is a five step scheme and first

three steps are exactly the same as those defined in the previous section. Before

defining the new steps, we need to introduce the notation Û
n− 1

2

i− 1
2

, 1 ≤ n ≤ N, 1 ≤

i ≤ 2M + 1. We define Û
n− 1

2

i− 1
2

with step size h as Û2n−1
2i−1 with the step size h

2
and

it is computed using the methods described in the previous section.

Step–4 We define

Ŝ
n− 1

2

ν = Qh(ψν · Û
n− 1

2 ), ν = 1, 2, (4.132)

̂̂
D

n

i = D0
i , 1 ≤ i ≤ 2M + 1,

̂̂
D

n

0 = Dn
0 = 0, 0 ≤ n ≤ N,



128 §4.5. A fourth order approximation of λ

and

̂̂
D

n

i = Dn−1
i−1 +

h

6

[
µ
(
(i− 1)h,Sn−1

1

)
+ 4µ

(
(i− 1

2
)h, Ŝ

n− 1
2

1

)
+ µ
(
ih, Ŝ

n

1

)]
, n, i ≥ 1,

(4.133)

where Dn−1
i−1 and Sn−1

1 are defined in Step–5. We approximate the survival prob-

ability function λ(x, t) at each grid point by

̂̂
Λ

n

i = exp(− ̂̂D
n

i ). (4.134)

From (4.10)–(4.11) (on substituting Λn
i =

̂̂
Λ

n

i ), we get
̂̂
U

n

i . We now define

̂̂
S

n

ν = Qh(ψν ·
̂̂
U

n

), ν = 1, 2. (4.135)

Step–5 Finally, we set

Dn
i =





Dn−1
i−1 +

h

6

[
µ
(
(i− 1)h,Sn−1

1

)
+ 4µ

(
(i− 1

2
)h, Ŝ

n− 1
2

1

)

+µ
(
ih,
̂̂
S

n

1

)]
, n = 1, or i = 1,

Dn−2
i−2 +

h

3

[
µ
(
(i− 2)h,Sn−2

1

)
+ 4µ

(
(i− 1)h,

̂̂
S

n−1

1

)

+µ
(
ih,
̂̂
S

n

1

)]
, n > i ≥ 2.

(4.136)

We now correct
̂̂
Λ

n

i once more to find

Λn
i = exp(−Dn

i ). (4.137)

As before, we use (4.10)–(4.11) to get the updated value of solution of (4.2)

namely Un
i . We now define

Sn
ν = Qh(ψν ·Un), ν = 1, 2. (4.138)

Theorem 4.5.1 Assume hypotheses (H1)–(H5). Moreover assume that

µ ∈ C4([0, a†) × (0,∞)), d2µ
dy2

(y, s1(y + α)) ≥ 0 and d4µ
dy4

(y, s1(y + α)) ≥ 0 for all

y ∈ [a∗, a†) and α ≥ −a∗. Let u ∈ C4([0, a†] × [0, T ]) be the solution to (4.2).
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Then

∥Λn − λn∥∞ ≤ Ch4, (4.139)

where C is a constant independent of n, h.

Proof.To prove the theorem, we need to consider all the cases which are consid-

ered in Theroems 4.4.3 and 4.4.4. In this proof, we show the steps which play

crucial role to get the fourth order.

We prove the required result using the induction argument. For, assume

|d(xi, tm)−Dm
i | ≤

⌊
(m− 1)− 2⌊m− 1

2
⌋
⌋
C1h

4 +

(
(i−m) + ⌊m− 1

2
⌋
)
C2h

5

(4.140)

≤Ch3, i = m, . . . , j∗, m = 0, 1, . . . , n− 1,

and

|d(xi, tm)− D̂m
i | ≤

⌊
i− 2⌊ i

2
⌋
⌋
C1h

4 + ⌊ i
2
⌋C2h

5 (4.141)

≤Ch3, i = 0, 1, . . . ,m− 1, m = 0, 1, . . . , n− 1.

Using (4.65) and Theorem 4.3.1, we obtain

|d(xi, tn)− ̂̂
D

n

i |

≤
∣∣∣∣

tn∫

tn−1

µ
(
y + xi − tn, s1(y)

)
dy − h

6

[
µ
(
(i− 1)h,Sn−1

1

)
+ 4µ

(
(i− 1

2
)h, Ŝ

n− 1
2

1

)

+ µ
(
ih, Ŝ

n

1

)]∣∣∣∣+
⌊
(n− 1)− 2⌊n− 1

2
⌋
⌋
C1h

4 +

(
(i− n) + ⌊n− 1

2
⌋
)
C2h

5

≤Ch4 +
⌊
(n− 1)− 2⌊n− 1

2
⌋
⌋
C1h

4 +

(
(i− n) + ⌊n− 1

2
⌋
)
C2h

5. (4.142)
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Similarly, using (4.65) and Theorem 4.3.1, we get

|d(xi, tn)−Dn
i |

≤
∣∣∣∣

tn∫

tn−2

µ
(
y + xi − tn, s1(y)

)
dy − h

3

[
µ
(
(i− 2)h,Sn−2

1

)
+ 4µ

(
(i− 1)h,

̂̂
S

n−1

1

)

+ µ
(
ih,
̂̂
S

n

1

)]∣∣∣∣+
⌊
(n− 2)− 2⌊n− 2

2
⌋
⌋
C1h

4 +

(
1 + ⌊n− 2

2
⌋
)
C2h

5

≤Ch5 +
⌊
(n− 2)− 2⌊n− 2

2
⌋
⌋
C1h

5 +

(
(i− n) + ⌊n− 2

2
⌋
)
C2h

5 ≤ Ch4.

(4.143)

Using the similar arguments to get (4.92) and (4.131), from (4.143) one can

obtain

|Λn
i − λ(xi, t

n)| ≤ Ch4, i = j∗ + 1, . . . , 2M + 1, n = 0, 1, . . . , N. (4.144)

This completes the proof.

4.5.1 A special case

In this subsection, we discuss approximations of λ when µ is depends solely on

x, i.e., µ(x, s) = f(x), x ∈ [0, 1). Then (4.4) reduces to

ds(x) =

x∫

0

f(y)dy, x ∈ [0, a†), (4.145)

and

λs(x) = exp(−ds(x)), x ∈ [0, a†). (4.146)

To approximate λ, we use the composite Simpson’s 1
3
quadrature rule. For, we

define

Gi =
h

6

i∑

j=1

[
f
(
(j − 1)h) + 4f

(
(j − 1

2
)h
)
+ f
(
jh
)]
. (4.147)

As before, we define

Λsi = exp(−Gi). (4.148)
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We are ready to state following proposition whose proof can be given using the

arguments given in Theorems 4.4.3–4.4.4.

Theorem 4.5.2 Let f ∈ C4[0, a†) and f (iv) denote the fourth derivative of f .

Assume that f satisfies the following assumptions.

(H4) The function f (iv)(x) ≥ 0, for x ∈ [0, a†),

(H5) The function φ(x) = f (iv)(x) exp(−
x∫

a∗
f(y)dy), is bounded on [a∗, a†].

Then for given T > 0, we have

∥Λs − λs∥∞ ≤ Ch4. (4.149)

4.6 Numerical simulations

In order to validate the effectiveness of the proposed numerical scheme, we present

some examples in this section. To compute the experimental order of convergence,

we use the following formula

order =
log(Eh)− log(Eh

2
)

log 2
,

where Eh denotes the magnitude of the error with step size h.

All the computations that are presented in this section have been performed using

Matlab 8.5. In all the examples, we have taken a† = 1, and ψ1(x) ≡ ψ2(x) ≡ 1.

Example 4.6.1

In order to test our numerical scheme, we assume that u0, µ, and β are given by

u0(x) = exp (−
∫ x

0
e

1
1−y dy), µ(x) = e

1
1−x + as, β(x, s) = b(1− x)2, x ∈ [0, 1), s ≥ 0,

where 1
a
=

1∫
0

exp (−
∫ x

0
e

1
1−y dy)dx ≈ 0.2553, and 1

b
=

1∫
0

(1−x)2 exp (−
∫ x

0
e

1
1−y dy)dx ≈

0.1720.

Note that, for these set of functions u(x, t) =
exp (−

∫ x
0 e

1
1−y dy)

(1+t)
is a solution to (4.2).

From (4.4)–(4.5), we get

λ(x, t) =





u(x, t)e−x+t, x ≥ t,

u(x, t)(1− x+ t), x < t.
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h ∥UN − uN∥∞ order(u) ∥ΛN − λN∥∞ order(λ)
0.1/2 4.7221× 10−4 3.6091 6.0334× 10−5 2.6719
0.1/3 1.0381× 10−4 3.3609 2.1055× 10−5 2.8290
0.1/4 3.8698× 10−5 3.2711 9.4679× 10−6 2.8858
0.1/5 1.8376× 10−5 3.2052 5.0143× 10−6 2.9146
0.1/6 1.0104× 10−5 3.1450 2.9631× 10−6 2.9321
0.1/8 4.0087× 10−6 3.0197 1.2810× 10−6 2.9525

Table 4.1: The order of convergence for different choices of h with u0, µ and β
given in Example 4.6.1 using (4.36)–(4.47) and (4.10)–(4.11)

h ∥UN − uN∥∞ order(u) ∥ΛN − λN∥∞ order(λ)
0.1/2 1.6668× 10−4 4.9733 1.7616× 10−5 3.7483
0.1/3 2.2412× 10−5 4.9871 3.9422× 10−6 3.8728
0.1/4 5.3061× 10−6 4.7665 1.3109× 10−6 3.9248
0.1/5 1.7338× 10−6 4.2071 5.5028× 10−7 3.9527

Table 4.2: The order of convergence for different choices of u0, h with µ and β
given in Example 4.6.1 using (4.132)–(4.138) and (4.10)–(4.11)

Now it is easy to verify that u, v, µ and β satisfy the hypotheses of Theorem

4.3.1. Hence (4.10) is a convergent numerical scheme.

In Table 4.1, we display the discretization error and the experimental order of

convergence using (4.36)–(4.47) and (4.10) for different choices of h. On the other

hand, we show the discretization error and the experimental order of convergence

using (4.132)–(4.138) and (4.10) for different choices of h in Table 4.2. In the

second column of the both tables, we show the maximum error of ∥UN − uN∥∞
and in the fourth column of the both tables the maximum error of ∥ΛN −λN∥∞
is presented at t = 1. From Tables 4.1 and 4.2, one can conclude that the orders

of convergence of proposed schemes (4.36)–(4.47) and (4.132)–(4.138) are three

and four, respectively. Moreover, from the second and fourth columns of Tables

4.1 and 4.2, one can conclude that the approximate solution U , and Λ indeed

converge to solution u, and λ, respectively as h→ 0.

In Figure 4.1, we display the exact and computed solution to (4.2) and (4.5).

Moreover, we present the absolute difference between the exact solutions and

the corresponding numerical solutions in Figure 4.1. In particular, we show the

exact and approximate solutions to (4.2), and (4.5) in Figure 4.1(a) and 4.1(c),

respectively, using (4.36)–(4.47) and (4.11) with h = 0.025 at t = 2, 3. The
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(c) 4th order solution
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Figure 4.1: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the third order approximation of λ at t = 2, 3 for 0 ≤ x < 1 with
µ(x, s), β(x, s) given in Example 4.6.1; (a): u(x, 2), u(x, 3) (solid line), U(x, 2)
(dash-dotted line), U(x, 3) (dotted line), (b): | u(x, 2) − U(x, 2) | (dash-dotted
line), | u(x, 3) − U(x, 3) | (dotted line), (c): λ(x, 2), λ(x, 3) (solid line), Λ(x, 2)
(dash-dotted line), Λ(x, 3) (dotted line), (d): | λ(x, 2) − Λ(x, 2) | (dash-dotted
line), | λ(x, 3)− Λ(x, 3) | (dotted line).

absolute differences |u(x, t) − U(x, t)| and |λ(x, t) − Λ(x, t)| at t = 2, 3 with

h = 0.025 are presented in Figure 4.1(b) and Figure 4.1(d), respectively.

Similarly, we display the exact and computed solutions to (4.2) and (4.5), and

their absolute differences at different times in Figure 4.2. In Figure 4.2(a), we

present the exact solution to (4.2) and the approximate solutions to (4.2) using

the fourth order method (4.132)–(4.138) and (4.10) at t = 2, 3 with h = 0.025.

We also show the exact and the computed solutions to (4.5) in Figure 4.2(c). On

the other hand, we show the absolute differences |u(x, t)−U(x, t)| and |λ(x, t)−
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Figure 4.2: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the fourth order approximation of λ at t = 2, 3 for 0 ≤ x < 1 with
µ(x, s), β(x, s) given in Example 4.6.1; (a): u(x, 2), u(x, 3) (solid line), U(x, 2)
(dash-dotted line), U(x, 3) (dotted line), (b): | u(x, 2) − U(x, 2) | (dash-dotted
line), | u(x, 3) − U(x, 3) | (dotted line), (c): λ(x, 2), λ(x, 3) (solid line), Λ(x, 2)
(dash-dotted line), Λ(x, 3) (dotted line), (d): | λ(x, 2) − Λ(x, 2) | (dash-dotted
line), | λ(x, 3)− Λ(x, 3) | (dotted line).

Λ(x, t)| at t = 2, 3 with h = 0.1/4 in Figures 4.2(b) and 4.2(d), respectively.

Example 4.6.2

In this example, we consider a standard type of unbounded mortality rate that

is considered in literature. In order to test the efficacy of our numerical scheme,

we assume that u0, µ, and β are given by

u0(x) = (1− x)5, µ(x) = 5
1−x

+ 18s2, β(x, s) = 7(1− x), x ∈ [0, 1), s ≥ 0.

Note that, for these set of functions u(x, t) = (1−x)5√
1+t

is a solution to (4.2). From
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h ∥UN − uN∥∞ order(u) ∥ΛN − λN∥∞ order(λ)
0.1/3 2.8225× 10−4 3.7548 2.2193× 10−5 2.6891
0.1/4 9.1319× 10−5 3.5184 1.0594× 10−5 2.8136
0.1/5 3.9448× 10−5 3.3576 5.7497× 10−6 2.8686
0.1/6 2.0908× 10−5 3.2845 3.4413× 10−6 2.8988
0.1/7 1.2419× 10−5 3.2370 2.2150× 10−6 2.9178
0.1/8 7.9692× 10−6 3.2014 1.5069× 10−6 2.9308

Table 4.3: The order of convergence for different choices of h with u0, µ and β
given in Example 4.6.2 using (4.36)–(4.47) and (4.10)–(4.11)

h ∥UN − uN∥∞ order(u) ∥ΛN − λN∥∞ order(λ)
0.1/2 9.5184× 10−4 5.0938 2.7872× 10−5 5.0601
0.1/3 1.2293× 10−4 5.2508 4.6183× 10−6 5.2877
0.1/4 2.7872× 10−5 5.4257 1.0488× 10−6 5.4758
0.1/5 8.6093× 10−6 5.6448 3.2029× 10−7 5.6677
0.1/6 3.2285× 10−6 5.9418 1.1823× 10−7 5.9255

Table 4.4: The order of convergence for different choices of u0, h with µ and β
given in Example 4.6.2 using (4.132)–(4.138) and (4.10)–(4.11)

(4.4)–(4.5), we get that

λ(x, t) =





u(x, t)e
−x+t

2 , x ≥ t,

u(x, t)
√
1− x+ t, x < t.

One can easily check that u0, µ and β satisfy the hypotheses of Theorem 4.3.1.

Hence (4.10) is a convergent numerical scheme.

In Table 4.3, we present the computational error and the experimental order of

convergence using (4.36)–(4.47) and (4.10) for different choices of h. Similarly, we

display the computational error and the experimental order of convergence using

(4.132)–(4.138) and (4.10) for different choices of h in Table 4.4. In particular,

we show the maximum error ∥UN − uN∥∞ at t = 1 in the second column of

the both tables. Besides this, the maximum error of ∥ΛN − λN∥∞ at t = 1 is

presented in the fourth column of both the tables. From Tables 4.3 and 4.4, we

can observe that the orders of convergence of proposed schemes (4.36)–(4.47) and

(4.132)–(4.138) are three and four, respectively. The second and fourth columns

of Tables 4.3 and 4.4 show that (Un
i , Λ

n
i ) indeed converges to (uni , λ

n
i ), as h→ 0.
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Figure 4.3: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the third order approximation of λ at t = 2, 3 for 0 ≤ x < 1 with
µ(x, s), β(x, s) given in Example 4.6.2; (a): u(x, 2), u(x, 3) (solid line), U(x, 2)
(dash-dotted line), U(x, 3) (dotted line), (b): | u(x, 2) − U(x, 2) | (dash-dotted
line), | u(x, 3) − U(x, 3) | (dotted line), (c): λ(x, 2), λ(x, 3) (solid line), Λ(x, 2)
(dash-dotted line), Λ(x, 3) (dotted line), (d): | λ(x, 2) − Λ(x, 2) | (dash-dotted
line), | λ(x, 3)− Λ(x, 3) | (dotted line).

In Figure 4.3, we present the exact and computed solutions to (4.2) and (4.5) and

their absolute differences. To be more specific, we plot the exact solution and the

computed solutions to (4.2) using (4.36)–(4.47) and (4.10) at different time levels

with h = 0.0.025 in Figure 4.3(a), and the corresponding absolute error in Figure

4.3(b). We present λ and its approximation Λ using (4.36)–(4.47) at t = 2, 3 in

Figure 4.3(c), and the corresponding |λ− Λ| in Figure 4.3(d).

As before, the exact solutions to u and λ, and their approximated solutions using
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Figure 4.4: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the fourth order approximation of λ at t = 2, 3 for 0 ≤ x < 1 with
µ(x, s), β(x, s) given in Example 4.6.2; (a): u(x, 2), u(x, 3) (solid line), U(x, 2)
(dash-dotted line), U(x, 3) (dotted line), (b): | u(x, 2) − U(x, 2) | (dash-dotted
line), | u(x, 3) − U(x, 3) | (dotted line), (c): λ(x, 2), λ(x, 3) (solid line), Λ(x, 2)
(dash-dotted line), Λ(x, 3) (dotted line), (d): | λ(x, 2) − Λ(x, 2) | (dash-dotted
line), | λ(x, 3)− Λ(x, 3) | (dotted line).

(4.132)–(4.136) and (4.10) at t = 2, 3 with h = 0.025 are displayed in Figure 4.4(a)

and Figure 4.4(c), respectively. We show the corresponding absolute differences

|u− U | and |λ− Λ| in Figure 4.4(b) and Figure 4.4(d), respectively.

Example 4.6.3

Let the vital rates µ, β and the initial data u0 be given by

u0(x) = e−
∫ x
0

(
µ(y)−1

)
dy, µ(x) = e

1
1−x , β(x) = 3.9156e−x, x ∈ [0, 1).

One can easily check that u(x, t) = ex−t−
∫ x
0 µ(y)dy is a solution to (4.2). From
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h ∥UN − uN∥∞ order(u) ∥Λs − λs∥∞ order(λs)
0.1/2 2.5302× 10−5 5.5334 2.0396× 10−6 3.9304
0.1/3 2.5580× 10−6 5.2011 4.1738× 10−7 3.9677
0.1/4 5.4632× 10−7 4.8602 1.3378× 10−7 3.9816
0.1/5 1.7110× 10−7 4.5834 5.5131× 10−8 3.9882
0.1/6 6.9538× 10−8 4.4077 2.6676× 10−8 3.9918
0.1/8 1.8810× 10−8 4.2093 8.4686× 10−9 3.9953

Table 4.5: The order of convergence for different choices of h with u, µ and β
given in Example 4.6.3 using (4.147) and (4.10)–(4.11)

(4.5), we get that λ(x) = e−
∫ x
0 µ(y)dy.

Since u0, µ and β satisfy the hypotheses of Theorem 4.3.1, (4.10) is a convergent

numerical scheme.

In Table 4.5, we show the magnitude of the computational error and the exper-

imental order of convergence for different choices of h at t = 1. In the second

and fourth columns, we present the maximum absolute error ∥UN − uN∥∞ and

∥Λs − λs∥∞, respectively at t = 1. The corresponding experimental orders of

convergence are shown in the third and fifth column of the table, respectively.

From Table 4.5, we can observe that the order of convergence of the proposed

numerical scheme (4.10) and (4.146) is indeed four.
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Figure 4.5: The exact solution to (4.1), and the approximate solutions using (4.11)
and (4.147) with µ(x, s), β(x, s) given in Example 4.6.3; Left: u(x, 1) (solid line),
U 0.01 (dash-dotted line) for 0 ≤ x < 1, Right: | u(x, 1)−U 0.01 | (solid line).

In Figure 4.5, we show the exact and computed solutions to (4.1) and their ab-

solute differences with h = 0.025 at t = 2, 3. In particular, we display the exact
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h ∥UN − uN∥∞ order(u) ∥Λs − λs∥∞ order(λ)

0.1/4 1.8138× 10−5 5.4199 2.1744× 10−9 3.9990


γ = 50.1/6 2.1157× 10−6 5.9903 4.2981× 10−10 3.9995

0.1/8 4.2368× 10−7 7.5077 1.3599× 10−10 3.9994

0.1/4 4.4947× 10−6 5.9740 3.2233× 10−9 3.9914


γ = 40.1/6 4.4745× 10−7 10.9143 6.3934× 10−10 3.9950

0.1/8 7.1506× 10−8 5.0687 2.0266× 10−10 3.9966

0.1/4 1.3231× 10−6 5.9153 6.6043× 10−8 3.0000


γ = 30.1/6 1.3355× 10−7 5.7828 1.9568× 10−8 3.0000

0.1/8 2.1924× 10−8 4.4181 8.2554× 10−9 3.0000

0.1/4 1.0130× 10−6 4.0587 3.4820× 10−7 2.5000


γ = 2.50.1/6 1.4755× 10−7 2.7357 1.2636× 10−7 2.5000

0.1/8 6.0789× 10−8 2.4910 6.1554× 10−8 2.5000

Table 4.6: The order of convergence for different choices of h with u, µ and β
given in Example 4.6.4 using (4.147) and (4.10)–(4.11)

solution and computed solutions to (4.1) using (4.10) and (4.146) at t = 2, 3

with h = 0.025 in Figure 4.5(left). In Figure 4.5(right), we present the absolute

difference |u− U | when h = 0.025.

Example 4.6.4

In this example, we consider a standard type of unbounded mortality rate that

appears in the literature. In order to test the efficacy of the numerical scheme,

we assume that u0, µ, and β are given by

u0(x) = (1− x)γex, µ(x) = γ
1−x

, β(x) = (γ + 2)(1− x), x ∈ [0, 1), s ≥ 0.

For the given set of functions, one can observe that u(x, t) = (1 − x)γex−t is

the solution to (4.1). From (4.145)–(4.146), we get that λ(x) = (1 − x)γ. It

is easy to verify that µ satisfies the hypotheses of Theorem4.5.2 when γ ≥ 5.

Moreover, if γ ∈ [3, 5), then µ satisfies the hypotheses of the main theorems of

[3, 4]. In Table 4.6, we display the magnitude of the computational error and

the experimental order of convergence for different choices of h and γ at t = 1.

We show the maximum absolute error ∥UN − uN∥∞ and ∥Λs − λs∥∞ at t = 1

in the second and fourth columns of the table, respectively. In addition, the

corresponding the experimental orders of convergence are presented in the third
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and fifth columns of the table, respectively. From Table 4.5, we can observe that

the order of convergence of the proposed numerical scheme (4.10) and (4.146)

is min{γ, 4}. On the other hand, the order of the numerical scheme proposed

in [3, 4] is at most 2. Though the hypotheses of Theorems 4.3.1 and 4.5.1 are

not satisfied when γ ∈ [3, 5), experimental results suggest that our method gives

better order of convergence. Therefore from these calculations, it evident that

proposed numerical scheme (4.10) and (4.146) is more efficient than the scheme

proposed in [3, 4].



Conclusion

An implicit finite difference scheme is presented to approximate the solution to the

McKendrick–Von Foerster equation with diffusion (M-V-D) (2.1) in which non-

local nonlinear Robin boundary conditions is considered at both the end points.

We have introduced the notion of upper and lower solutions and used effectively

with the aid of the discrete maximum principle to study the wellposedness and

stability of the numerical scheme. A relation between the numerical solutions to

the M-V-D and the steady state problem is established. Moreover, we have pro-

posed an implicit scheme to find an approximate the solution to the M-V-D with

a special type of nonlinearity (see (2.41)). Using the similar technique, we have

established a relation between the numerical solutions to (2.41) and its steady

state problem.

We have proposed a finite difference numerical scheme to the M-V-D (3.1) in

which the Robin condition is prescribed at the boundary point x = 0, and the

Dirichlet condition is given at x = a†. Furthermore, we have proved that the

proposed numerical scheme is stable restricted to the thresholds Rh. Moreover,

we have established that the given scheme is indeed convergent using a result due

to Stetter. The result is extended to the M-V-D with nonlocal nonlinear Robin

boundary conditions at both the end points in a bounded domain (see (3.30)).

Using the similar technique, one can easily obtain a convergent scheme when (3.1)

has nonlinear, nonlocal Neumann boundary condition at x = 0. However, it is

an interesting problem to design a convergent scheme for (3.1) in the unbounded

domain [0,∞).

We presented higher-order numerical schemes to the McKendrick–Von Foer-

ster equation (4.2) when the death rate has singularity at the maximum age.

Using the method of characteristics (non-intersecting), we proposed the third,

fourth-order schemes which are multi-step methods with appropriate corrections

at each step. In fact, the convergence analysis of these schemes is discussed in

141
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detail in the thesis. Moreover, numerical experiments are provided to validate

the orders of convergence of the proposed third-order and fourth-order schemes.
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proximating the survival probability in finite life-span population models. J.

Comput. Appl. Math., 330:783–793, 2018. ↑63, ↑91, ↑92, ↑93, ↑139, ↑140
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