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ABSTRACT

This thesis consists of four chapters. Chapter 1 is dedicated to the introduction

and the literature survey of the McKendrick—Von Foerster type equations.

In Chapter 2, an implicit finite difference scheme is presented to approximate
the solution to the McKendrick—Von Foerster equation with diffusion (M-VD)
with Robin condition at both the end points. The notion of upper solution is
introduced and used effectively with aid of discrete maximum principle to study
the wellposedness and stability of the numerical scheme. A relation between the

numerical solutions to the M-V-D and the steady state problem is established.

In Chapter 3, a numerical scheme to find approximate solutions to the M-V-D
with Robin condition at the left end point and Dirichlet boundary condition at
right point is presented. The main difficulty in employing the standard analysis
to study the properties of this scheme is due to presence of nonlinear and nonlocal
term in the Robin boundary condition in the M-V-D. To overcome this, we use
the abstract theory of discretizations based on the notion of stability threshold to
analyze the scheme. Stability, and convergence of the proposed numerical scheme

are established.

In Chapter 4, higher order numerical schemes to the McKendrick—Von Foerster
equation are presented when the death rate has singularity at the maximum age.
The third, fourth order schemes that are proposed are based on the characteristics
(non intersecting lines in this case), and are multi-step methods with appropriate
corrections at each step. In fact, the convergence analysis of the schemes are
discussed in detail. Moreover, numerical experiments are provided to validate

the orders of convergence of the proposed third order and fourth order schemes.
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Chapter 1

Introduction

1.1 Introduction

Population dynamics is one of the fundamental areas of ecology, forming both
the basis for the study of more complex communities and of many applied ques-
tions. Understanding population dynamics is the key to understand the relative
importance of competition for resources and predation in structuring ecological

communities, which is a central question in ecology.

Population dynamics is the study of how populations change with respect to
structures like age, size etc., and time. Important factors in population dynamics

include rates of reproduction, death and migration etc.

Usage of differential equations in the modeling of population dynamics can be
traced back to several centuries. One of the earliest models was due to Malthus
(see [53]). In that model, Malthus has proposed that the rate of population
growth/ decay is proportional to the size of the total population. The Malthus
model does not refer to the effects of crowding or the limitation of resources.
In 1938, Verhulst presented a model which incorporates the effect of limitation
of resources. The Verhulst model is also known as the logistic equation. In the
logistic model, the total population tends to the nontrivial steady state called the
carrying capacity. The logistic model does not consider the correlation between
the population size and the mean individual fitness (often measured as per capita
population growth rate) of the population. A more realistic model of population
growth would allow the Allee effect (see [80]).

1
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1.2 Structured models

The structured population models distinguish individuals from one another ac-
cording to characteristics such as age, size, location, status, and movement etc.
to determine the birth, growth and death rates, interaction with each other and
with the environment. The goal of the structured population models is to under-
stand how these characteristics affect the dynamics of these models and thus the
outcomes and consequences of the biological processes. Many authors considered

age, size, spatial and maturity structured population models (see [31, 82, 83, 75]).

1.2.1 Age-structured models : Hyperbolic PDEs

In the modeling of population dynamics, the main step is to identify some signifi-
cant variables called structured variables that allow the division of the population
into homogeneous subgroups. Then, one can describe its dynamics through the
interaction of these groups, ruled by mechanisms that depend on these variables.
Age is one of the most natural and widely used structured variables. Let u(z,t)
denote the density of population that has age x at time t. Assume that p and
are the age-specific mortality rate and the age-specific fertility rate, respectively.
One of the earliest age-structured population models is due to A. G. McKendrick
(see [55]) and is given by

u(x,t) + ug(x,t) + p(x)u(z,t) =0, z > 0,t > 0,
u(0,1) / B(z)u(z,t)dx, t >0, (1.1)
U(ZL‘,O) ZUO(x)> x>0,

where u, 3, uy are assumed to be non-negative functions. Model (1.1) is known
as the renewal equation and has been rediscovered by von-Foerster. Henceforth,
we refer (1.1) as the McKendrick—Von Foerster equation.

In McKendrick—Von Foerster equation (1.1), the fertility and the mortality rates
merely depend on the age but not on the total populations. Practically it is
not the case. As there is a competition among individuals for limited resources
and individuals of different ages have different advantages (disadvantages) in
this competition, it is natural to assume that the fertility and mortality rates

depend on the weighted population. To this end, Gurtin and MaCamy introduced
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a nonlinear age-dependent population model where the fertility and mortality
functions are density dependent (see[25]). The Gurtin-MacCamy model is given
by

;

u(x,t) + ug(x,t) + p(z, s1(t))u(x,t) =0, o > 0,t > 0,

u(0,1) / B(x, so(t))u(z, t)dx, t >0,
(1.2)
( —Uo ),l’>0

/ Uy (x)u(z,t)dr, t >0, v=1,2,

\
where 11, 1y are the competition weights. Henceforth, we call (1.2) as the non-

linear McKendrick—Von Foerster equation.

1.2.2 Age-structured models : Parabolic PDEs

In [12], the authors introduced the diffusion term in the McKendrick—Von Foerster
equation to account the variability in the DNA content which can influence the
‘biological age’. The McKendrick—Von Foerster equation with diffusion (M-V-D)

is given by

(w2, t) + o, t) + pu(, ()2, 8) = Uge(2,t), x € (0,as), t >0,
u(0, 1) +(0,1) / B1(x, s1(t))u(z, t)dz, t >0,

u(as, t) + ug(as, t) / Ba(x, s2(t))u(z, t)dz, t >0,

u(z,0) = ug(x), x >0,

/ Y(x)u(x,t)dx, s,(t / Uy (z)u(x,t)de, v=1,2, t >0,
(1.3)

where u and p are as in (1.2) and the functions s(t), s,(t) represent the weighted

\

populations which influence the mortality and fertility rates p , 51 and fs.

Since a4 is the maximum age, it is natural to impose the Dirichlet boundary
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condition at right boundary. Then (1.3) becomes

w(z,t) + ug (2, ) 4+ p(z, s1(8))u(z, t) = uge(z,t), © € (0,at), t >0
w(0,4) — 1 (0, 1) = /0 "B, so(t))ul, )dz, >0,
u(ay, t) =0, t>0, (1.4)

u(z,0) = up(z), x € (0,a4),
/w,, t>0, v=1,2.

In the recent years, the M-V-D has attracted interest of many engineers as well

as mathematicians due to its applications in the modeling of thermoelasticity,
neuronal networks etc. (see [18, 19, 36, 37, 56, 57, 58]). The main difficulty in the
study of the M-V-D is due to the nonlocal nature of the PDE, and the boundary
condition(s). Though numerical study of nonlocal equations got considerable
focus, relatively less attention was paid to problems with the Robin boundary
condition(s). In this thesis, we present numerical schemes to models (1.2), (1.3),
and (1.4).

1.3 A stable scheme to M-V-D with Robin—Robin

boundary condition

In Chapter 2, we provide a stable numerical scheme to (1.3) and investigate the
long time behavior of the numerical solution to (1.3). In this section, we briefly
present the concepts and main results that we have given in Chapter 2.

Before defining the numerical scheme, first we introduce the following notations.
Let h and k be the spacial and temporal step sizes, respectively. Denote by
(x;,t,) a typical grid point with z; = ih, and t,, = nk. Moreover, we assume that
ay = Mh for some M € N and define the set of grid points

A:{(Cﬁz,tn)Z:1,2,,M—1’ n:1727”_}’
A={(zstn):i=0,1,....M, n=0,1,...}.

At every grid point (z;,t,), let U, , denote the approximate solution to (1.3), and

O, = up(z;), Uy =Y(x;), Uy = Uon, Uiy oo, Unrp), ¥ = (Yo, ¥q,..., V),
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\I}z/i = 1/)1/(xi)7 v, = (‘111/07\111/17 '-'7\1111M)7 V= 1727 /sz(X) - ,u(.%‘i,X),
Bui(X) = Bz, X), B,(X) = (Ba(X), Ba(X), ..., Bom(X)), X > 0.

To approximate the integral terms in equation (1.3), we choose composite Simpson’s—
% quadrature formula with weights {qo, q1, ..., qn}. In other words, we approxi-

mate

at M
/ Y@z, t)de ~ Y gV, = 1(¥U,),
0 i=0

a; M
/ 1/}V($)U(I7t)d$ ~ ZQZ\IIVZU’L,TZ = ](\I’VUH>? v=12
0 i=0

Moreover, we approximate the integral terms in the boundary conditions with

/OaT Bu(xa Sy(t))’LL(.’L', t)dl‘ ~ Z Qzﬁyz(1<‘IJVUn))Uz,n = I(BV(I(‘PVUH))UTL)a

=0

where v =1, 2.

With the notation introduced so far, we propose the following implicit scheme:
( (1 + QT)Ui,n - bUi+1,n - CUvi—l,n = Ui,n—l - kHz(I(‘IJUn))UZ,na (Za n) S A7

1 1
(1) U = 300 = B,URUNT,). n e

1 1
(1 n 5) Unin = 7 Ust 10 = 11U, )U,), n €N,

(Uio =@;, 0 <7< M,

(1.5)
where b=r — 2, c=7r+3, A= % and r = ;5. Notice that (1.5) is a nonlinear
scheme.

We now define the following finite difference operators
ﬁ[Ui,n] = (1 -+ 2T)Ui,n — bUi—‘,—l,n — CUi—l,m (Z, n) - A,

1 1
BCI[UOJL] - (1 + E) UO,n - (E) Ul,na ne Na

1 1
BCQ[UMﬂl] = (1 + E) UM,n — (E) UM—l,na n € N.
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Then numerical scheme (1.5) using the finite difference operators is written as

;

LU =Uin-1— kpi(I(PU Ui, (i,n) € A,
BC1[Uo,n] = 1(B,(1(¥1U,))Uy), n €N,
BCo[Unin] = 1(B,(1(¥2U,))U,), n €N,
Uio=o;, 0<i < M.

(1.6)

\

Since (1.6) is a system of nonlinear equations, a priori it is not clear whether
there exists a solution to it. In order to establish the existence and uniqueness of
a solution to (1.6), we use the monotonicity arguments with the aid of notions of
upper, and lower solutions (see [19, 37]). To this end, we begin with the following

definition.

Definition 1.3.1 (Upper solution) A matrix (U;,) is called an upper solution
o (1.6) if it satisfies

LU n) > Uiy = kpi(LI(RU L)) Ui, (i,n) € A,
BCi[Ug] > 1(8,(1(®,U,))U,), n €N,
BC2[UMn] > [(B,(I(¥,U,))U,), n €N,
Ui,OZ(I)ia 0<i< M.

(1.7)

Similarly, (U;,,) is called a lower solution to (1.6) if it satisfies all inequalities of
(1.7) in the reversed order. A pair of upper and lower solutions (U, U;,,) is said
to be ordered if Um > Um on A.

For a given pair of ordered upper and lower solutions (U ,, Ui,n)» we set

(Ui Usn) = Ui : Uiy < Uy < Uy}

1.3.1 Existence and uniqueness

In this thesis, existence of a solution to (1.6) is proved in four cases: (i) s — pu(., s)
is decreasing and s +— f,(.,s) is increasing, (i7) s +— p(.,s) is increasing and
s — B,(.,s) are decreasing, (ii1i) s — pu(.,s) is decreasing and s — (,(.,s) is
decreasing, (iv) s +— p(.,s) is increasing and s — (3, (., s) is increasing. The main
results of case (i) are stated in this subsection. Results in the other cases, i.e.,

(74) — (iv) can be found in Chapter 2
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9 9By
Assume 3%(.,s) <0, aﬁs (.,s) > 0.

Let [Afm and (me be a pair of ordered lower and upper solutions to (1.6). Now,
define

w=sup { (i, s) | s = I(¥U,), Ui < Ui < Ui, (i) €A},

& =sup {%u(wi,s) | s =1(¥U,), Um <U, < ﬁm, (i,n) € /_X} )

We now introduce a linear operator
LUia] = LIUin] + k (5Ui,n1(\pUn) v in,n) . (1.8)

Using this new operator, (1.6) can be written as

;

L[Ui,n] :Ui,nfl +k (_Ni(j(‘I’Un))Ui,n“‘ fUz,nI(‘I’Un) + WUi,n) ) (i, n) €A,
BCl{UO,n] = [(/61<[(\111Un>>Un>7 ne N7

BC?[UMJL] - ](/32<](\112Un))Un)7 nec N7

\Ui,OZq)i; OSZS M.

(1.9)
For (i,n) € A, we construct a sequence {U{} of approximations to a solution
{Uin} to (1.9) in the following manner. Let {U]} be the solution to

(LU7) = Unh + b (i (T(RU ) U + €0, 1 (WU
+in’7’}1_1) , (i,n) € A, meN,

BC,\ U] = (B, (I(T U NUT), neN, meN, (1.10)

BCo[Uy; ] = 1(B,(I(¥U)UZR ), neN, meN,

Um—<I>z,O§z§M,mEN

L 60 T

To close the system, we need to fix the initial approximation Up,. If the initial
approximation is taken to be an upper solution (a lower solution, resp.) to (1.6),
then the solution to (1.10) is denoted by U7, (U, resp.).

To state the existence and uniqueness result, we first introduce the following

notation:

o1 = mln{ﬁﬁl,nf(\I’) +w ’ (z,n) € A, Ui,n < Ui,n < (jz,n}
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0 . . _
~ = min {%M(%’, s):s=1(YU,), U, <U, <Up,,(i,n) € A},

o = min {,u(a:i, s):s=1(¥U,), Um <U, < Uijn, (i,n) € /_X},

o3 = min{yU;, I(¥) + a : (i,n) € A},
d1 = sup {n[(\Ill,)I(fJn) +1(8,(I(¥,U,)) :n=0,1,2,..., v=1,2},

We are now ready to state the existence and uniqueness result for (1.6).

Theorem 1.3.2 (Existence and uniqueness) Let (A]m, and Uz-,n be a pair of
ordered lower and upper solutions to equation (1.6), respectively. Assume that
s+ p(.,s) is decreasing, s — B,(.,s) is increasing, for v = 1,2 and —koy < 1.
Then the following hold:

(i) For every fized (i,n) € A, both {U%}, {U} are monotone sequences. More-

over, we have

A~

. _
U <UD S UM < Ui < Ui

IN

Um+1 S Um S Ui,na (Zvn) € A7

,n in

for every m € NU{0}, where lim U = Uy, lim U = Usyp.

(i4) Both U;,, and U;,, are solﬁizorjs to (1.6). e

(ii) If U}, is another solution to (1.6) in (Ui, Uiy, then Uy, < U < Ui on
A.

(iv) If max{—kos, 81} < 1, then (1.6) has a unique solution in (ﬁ,n, Um> O

For more details and a proof of this result, see Theorems 2.3.2, 2.3.3 and 2.4.1,
in Chapter 2.

1.3.2 Steady state and the long time behavior

In Chapter 2, we study the long time behavior of the numerical solution to (1.3)
also. Analysis of the long time behavior of the solution to (1.3) requires the

study of the corresponding steady state problem. The steady state equation
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corresponding to (1.3) is the following boundary value problem

vu(2) + il p)o() = vu(a), @ € (0,ar),

p)v

—0,(0 / Bi(y. pr)v(y)dy,
1.11
v(at) +vg(at) = / Ba(y, p2)v(y)dy, ( )

:/Oafw(x) x)dz, p, = / Uy (z)v(z)dz, v=1,2.

Set V' = (V, Vi, ..., Vay). The numerical method that we propose to find an ap-

proximate solution to (1.11) is
a'Vi = 0Vigr = Viey = —(I(BV)V;, 1 <i <M —1,
1 1
(1+5) v~ () vi = 16,0007V, 112
1 1
(14 E) Vir = (3) Vi = 18,02V ) V)

where a’ = h2, bV =5 — % and ¢ = h2 + 2h By introducing the following finite

difference operators

L] =d'V; = V'V — Vi,

BCiVi) = (1 " %) v (%) v
BC5 [V = (1 + %) Vi — (%) Vi1,

we write finite difference scheme (1.12) as

BCi[Vo] = 1(B,(I(¥,V))V), (1.13)
BC3 V] = 1(B,(1(¥2V)) V).

Definition 1.3.3 A vector (V;) is called an upper solution to (1.13) if it satisfies
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the relation
LWV] > —w(I(RV)V;, 1<i <M -1,
BC3[Vh) = 1(8,(1(%, V) V), (1.14)
BC3[Var] = 1(By(I(¥,V))V).

Similarly, (V;) is called a lower solution to equation (1.13) if it satisfies all the
inequalities in (1.14) in the reverse order. A pair of upper solution (V;) and lower
solution (Vl) is said to be ordered if V; > f/i, 0<i< M.

For a given pair of ordered upper and lower solutions V;, f/i, we set <1A/l, XZ) =
{(Vi:V; < Vi <V}

Observe that any ordered lower and upper solution to (1.14) is also an ordered
upper and lower solution to (1.7). Let V; and V; be a pair of upper and lower

solutions to (1.13), respectively. Now, define

£
Il
=
"
—~—
=
8
=
%
Il
=
i
=
[\
=
VAN
e
o
VAN
VAN
~
—

Thus (1.13) becomes

LV = (~u(H(BV)Vi + EVI@V) +w,Vi), 1< i< M1,
BC;[Vo] = 1(B,(I(®,V))V), (1.15)
BC3[Vir] = [(By(1(¥:V) V).

We now construct a sequence of approximations {V;} to (1.15) using the linear

iteration process

(L) = (—m(I(\I/Vm—l))v;m—l e VI(BVTY 4 %Vim_1> |
1<i<M-—1, meN,

(B,(I(T, V" NV™ Y meN,

(Bo(I(TV )V, meN.

(1.16)
BCi[Vy"]

| BC5[Vir]

1
1

If V? is equal to an upper solution (lower solution, resp.) to (1.13) then denote
the solution to (1.16) by V;™ (V™ resp.).
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The existence and uniqueness of solution to (1.13) is proved along the same lines
of the existence and uniqueness of solution to (1.6). In particular, we show that
(V/™), and (V;™) are monotone for each fixed 4. The limits of these monotone
sequences turnout to be solutions to (1.13) (See Theorems 2.5.2 and 2.5.3). For
uniqueness of slution to (1.13) see Theorem 2.5.4 in Chapter 2.

We conclude this section with the statement of the result regarding the long time

behavior of the solution.

Theorem 1.3.4 (Asymptotic behavior) Let Vi and V; be a pair of ordered up-
per and lower solutions to (1.13), respectively. Assume that Um < VZ < f/l < Um
Let Y, and Y;, be solutions to (1.6) with Y;o = Vi and Yio = Vi, respectively.
Then the following conclusions hold:

(i) For each fized 0 < i < M, the sequence (Y;,) is decreasing and (Y;,) is in-
creasing in n.

(ii) For each 0 <i < M, set lim Y;,, = V;, lim Y;

n—oo n—oo

. =Vi. Then V; and V; are
the mazimal and minimal solutions to (1.13) in (V;,V;), respectively.

(iii) Let ®; € (V;,V;). Then lim U, =V, = V;. O
n—oo

For more details see Theorem 2.6.2.

1.4 A convergent scheme to M-V-D with Robin—
Dirichlet boundary data

In this section, our objective is to propose a convergent numerical scheme to find
approximate solutions to (1.4) and provide the main results that are discussed in
Chapter 3.

First fix T' > 0, assume that a; = 2(M’ + 3)h, for some M’ € N and T'= Nk for
some N € N. To simplify the notations, we write M = 2(M'+ 3). For every grid

point (x;,t"), we denote the numerical solution by U, and set

\Ijuz:wy(xi)a ‘IJV:(\I]V17\I]V27"' \IJVM 1)7 V= 1 2
,3() = (5(371, ) (532,'),---,5 TM-1," ),
n(-) = (u(@r, ), ple, ), o @i, )

U" = (Uf7U27 UM 1)

Y
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To approximate the integrals in (1.4), we use the following quadrature rule

which is a combination of the composite Simpsonf% and Minle’s rule. For V =

(Vi,...,Viu_1) € RM~1 we define the quadrature formula
4h h
(V) :?(2‘/1 — Vo +2V3) + 3 Z(Vm + 4Voi1 + Vaiya)
i=2
4h
+ ?(Q%M’-&-S — Vonrrga + 2Vonrs).

For V = (‘/1, .. '7VM—1)7 W = (Wl, .. '7WM—1) in RMﬁl, define
V . W — (%Wl, ey VM71WM71).

With the notation introduced so far, we propose the following scheme for (1.4)
using the forward difference approximation for wu;, the backward difference for u,,
and the central difference for wu,,:
(" — Unfl Un—l _ Un_—l
7 p 7 + 7 - i—1 + ILL(SCZ, Qh(\Ill . Un—l))Uinfl
UL + U =200

— = L, 1<i<M-1,1<n<N,

1 1
(1 + E) Vg — 207 = u(B(Qu(®: - UM) - U"). 0<n <N,

Un =0, 0<n<NAN,
\Uiozuo(a:i), 1<:<M-—-1.

In order to carry out the analysis within an abstract theory of discretizations, we

introduce the general discretization framework. For, we define the spaces
Xy, =Y, =RV (RMHNFL 5 RV

We also introduce the operator ®;: X, — Y}, defined through the formulae

D, (Vo, VO, VLI . VN V) = (P, P°, PL,..., PN Py,
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where

POZ(P(())7P(]1a"'7P(§V)7

1 1
Py = (1 + E) V=W - Qh(ﬁ(Qh(\Ilz V) - V"), 0<n<N,

PM:(P](\)/DP]%/D 7P]\]Z)7

V’rl
Py=- 0<n<N,

" (1.18)
P"= (PP}, ....,Py_;), 0<n<N,

PP=V'-U) 1<i<M-1,

Vv — anl V;nfl _ V;.Tifl o B
]gin: 7 g 7 + - 1 +,u(:v,,Qh(lIllV 1))‘/;71 1
n—1 n—1 n—1
: Vil =2V,
— ’+1+li—l; L 1<n<N,1<i<M-1.

Now U, = (Uy, U, U',--- ,U") € X, is a solution to (1.17) if and only if it is

a solution of the discrete problem
(I)h<Uh) =0¢eY,. (119)

To investigate how close Uy, is to u, we first need to choose an element u, € X,
which is a suitable discrete representation of w. In particular, our choice is the

set of nodal values of the theoretical solution u, namely
_ 0 N
'U/h—('U/O7’U, yeee, W ,UM> EXha (120)

where

wo = (ud, up, ..., u)) € RN ul = u(0,t"), 0<n <N,
n

w' = (uful, . u ) ERMTN = u(r "), 1 <i <M —1,0<n <N,

Uy = (u(])\/lau}\/[a s 7u§\V/[) S RN+1a u7]\l/[ = u<aTatn)a 0<n< N.
(1.21)

Then the global discretization error is defined to be the vector

e, =up — U, € Xy,
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and the local discretization error is given by
Ih = (I)h(uh) S Yh-

In order to measure the magnitude of errors, we define the following norms in the

spaces X; and Yj:

1Vo, VO VL VIV x,= BV ol |V all) +max { [ VOV [V,

N 1/2
|(Po, P°, P, ..., PV, Pyp) |y, = (IIPon + [|P* + Al P2+ ) kIIP”||2) :

n=1

M-1 N
where [[V"[|? = 32 h|V;"[* and [V = Zokl%”lz-

=1
For V. ¢ RM=1 Z ¢ RV*! we define
M-1
(V,W)=> " hViW,
i—1

|V = max |Vi|, [|Z]|*° = max |Z"|.

1<j<M—1 0<n<N

In order to state the main results, we give the following standard definitions.

Definition 1.4.1 (Consistency) Discretized equation (1.19) is said to be con-
sistent with (1.4) if

tin (1 (a1 Iy, = T [[T,ly, = 0.

Definition 1.4.2 (Stability) Discretized equation (1.19) is said to be stable
restricted to the thresholds M), if there exist two positive constants hg and S such
that for each 0 < h < hg and for all V', W, in the open ball B(u,, M) C X},

|V —Willx, < S||Pn(Vi) — Po(Wh)lly, -

Definition 1.4.3 (Convergence) Discretized equation (1.19) is said to be con-
vergent if there exists hg > 0 such that, for each 0 < h < hg, the discretized

equation has a solution U} for which

lim ||up, — Upl|x, = lim ||es]|x, = 0.
h—0 h—0
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1.4.1 Consistency, stability and convergence
Using the notations introduced so far, we state the main theorems in Chapter 3

in the following.

Theorem 1.4.4 (Consistency) Assume that u, (3,11 and 1y are sufficiently
smooth such that the solution u to (1.2) is four times continuously differentiable
with bounded derivatives. Moreover, we assume that there exists L > 0 such that

for every 0 < x < a4, 51,52 > 0,

‘:u(xv Sl) - u(m, 32)|§ L"Sl — S2|,

and

|B(x,s1) — B(x, s2)|< L|sy — sal-

Then the local discretization error satisfies

@5 (un) |y, = {|U° —u°|* + O(h*) + O(K*)}?,  as h — 0.

O

Theorem 1.4.5 (Stability) Assume the hypotheses of Theorem 1.4.4. Let r
and \ be such that k = rh®> = Ah, and X\ + 2r < 1. Then discretization (1.19) is

stable with thresholds Ry, = Rh, where R is a fixed positive constant independent
of h. O

Theorem 1.4.6 (Convergence) Assume the hypotheses of Theorem 1.4.5. If
|U° — u’||x, = O(h), as h — 0,

then discretization (1.19) is convergent. O

1.5 The McKendrick—Von Foerster equation with
singularity

In this section, we outline the main results which are given in Chapter 4. In

that chapter, we propose and analyze a numerical scheme to find approximate
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solutions to (1.2) with the mortality function having singularity at a = a;.

When p is linear, the survival probability

m(x) = exp < - /Ox u(y)dy>,

must be zero at the maximum age at x = a;, which indeed suggests us that

/OaT 11(y, s())dy = +oo0. (1.22)

This readily implies that p has a singularity at = a.
Let u be the solution to (1.2). We define

ftu(y+x—t,sl(y))dy, t>
dlz,t) =4 " (1.23)

x—t1

Ofu(y,sl(O))dy+ju(yﬂtx—t,sl(y))dy, t<uz,

Az, t) = exp(—d(z,t)). (1.24)

and
u(z,t) = Mz, t)v(z,t), 0 <z <ay, t>0. (1.25)

In view of (1.2), it is straightforward to obtain that v satisfies

(vt(x,t) +uy(x,t) =0, 0 <z <a;, t>0,
0(0,) = [ Bla, p) A ol D)dz, t > 0,
0
1.96
v(z,0) = 7:?(;(%0)), 0<z<ay, ( )
o) = [ eal@)\(z, (. Hda
\ 0

Moreover, one can observe that if v is a weak solution to (1.26) then u is also a

weak solution to (1.2).
Tz
integer M. Let [%| = J* for some J* € N and |Z] = N. At every grid point

(x;,t"), each U!" is the numerical approximation to wu(z;,t") and V™ represents

In order to define the scheme, we define step size h = for a given a positive

the numerical approximation to v(x;,t"), i = 0,1,...,2M + 1. Moreover, the
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approximation of the survival probability A(x;,t™) is denoted by AZ.

At each time level ", n =10,1,..., N, we denote
Ur=[Ug, U, .. Uy, V= [V Vo Vi) € R2M+2,

and let the vector A" = [Af, A}, ..., Ay, ] approximate the survival probability
A" = [)\(.I'o, tn), )\(l‘l, tn), ce ,)\(l’QM+1, tn)]
Also, we use this vector notation to represent the evaluations of the fertility rate
ﬂ() = [6(1}0, ')7 5(1’1, ')7 s 7B<I2M+17 )]
To approximate the integral term that appears in the boundary condition, we use

the following quadrature rule which is a combination of the composite Simpson

% and Milne’s rules. For the vector Y = [Yy, Y1, ..., You41], we define
4h ~ h 4h
oY) = 3(2m—3@+21@,)+z 3 (Yot 4Yai 1+ Ya140)+ = (2Varr 1= Yaur+2Yanr 11).

=2

(1.27)
With this notation, we propose following numerical scheme to (1.26) based on

the method of characteristics:

’

Vi=vrt i=1,2,...,2M+1, n=1,2,..., N,

(2 2

Vo' = Qu(B(FY) A" V"), n=12,... N,

UQ 1.28
WO:H—B,¢=0,1,...,2M+1, (1.28)

| Pl = Quwy - A" V"), n=1,2,...,N.

Finally, to compute an approximate solution U to (1.2), we use the following

relation
U;L:A;l‘/;n7't:();]-772M+17n:1”N (129)

The nontrivial part in (1.28) is to find an approximation of the survival probabil-
ity Al and we postpone the discussion on how to approximate A to Subsections
1.5.1 and 1.5.2.

In order to compare the numerical and analytical solutions at each grid point,
we represent the restriction of the solution u to (1.2) to the grid by the vector
u” = [u(xo, t"), u(z1,t"), ..., u(@by,1,t")], n = 0,1,...,N. Similarly, the re-
striction of the solution v to (1.26) to the grid is denoted by the vector v =

[v(x0, t"),v(x1, "), ..., (T840, t")], n=0,1,..., N.
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ForaY = [Yy, Yy, ..., Yory1] € RPMT5 we define the following norms

2M+1

1Ylli= ) nlvi,
i=0

1Y ]loo = _max [Yj].

0<i<2M+1

(1.30)

To state the approximation theorems of the survival probability (1.24), we make
the following assumptions.

(H1) Suppose u’, B are continuous, bounded, and, p, 1, 1, are nonnegative
and sufficiently regular so that the solution to (1.2) is in C*([0, as) x [0,T]).
Since 1, 1, are continuous on [0, a;], for every bounded function u, the map
t +— s,(t) is a bounded function, i.e., there exists K > 0 such that s,(¢) < K for
all t € [0,T], where v =1, 2.

(H2) For a given s(t) € C*([0,T]) , let

( ay

/u(y,sl(y+t—aT))dy:oo, t>(IT,
’ (1.31)

at

/ u(y,sl(qut—aT))dy:oo, t < as.

at—t

\

(H3) The function u € C*([0, at) x (0, 00)) and Sk are bounded in [0, ay) x [0, K,
where 1 < p < 4.

(H4) There exists C' > 0 such that %@:;)5 Ca@%; holds in [0,a4) x [0, K],
where 1 <p <3, 1<¢g<3and p+q <4

(H5) The functions
o(y) = 24 (y,51(0)) exp < — [ ulz, 81(0))d2>,

and

o) = 2 (52(0)) exp = [z, s0(0)) ),

are bounded on [a*, a;].

With this set of notation, we state one of our main theorems in Chapter 4 in the

following (see [27]).

Theorem 1.5.1 (Convergence) Assume that § € C([0, a] x (0,00)), and p €
C([0,a3) x (0,00)) satisfies (1.22). Let uw € C([0,a;] x [0,T]) be the solution to
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(1.2) and v be a bounded solution to (1.26) on [0,a;:) x [0,T]. Assume that A}
denote an approximation to survival probability \(x;,t") at each grid point such
that

max ||[A" — A", < Ch. (1.32)

0<n<N
Furthermore, assume that the quadrature rule Qy is of k-th order accuracy and
q = max(l, k). Then the numerical approximations U" and V", n=0,1,..., N

)

associated to u and v, respectively, that are obtained using numerical method
(1.28)—(1.29), satisfy
max || V" —v" ||.< Ch",

0<n<N
and
Jmax || U™ —u” [|o< OB,
where ¢, 1, k,r € N, r = min(l, k). d

1.5.1 A third order aprroximation of \

In this subsection, we approximate A in the following three iterative steps. This
is a predictor-corrector method in which we correct the approximate value of A
twice.

Step—1 First we define

U° = ug(z;), 0<i<2M +1,
S\S = Qh(’lpy : ﬁo)a V= 1727
h o . ~ B LG .
D! = =3 [0(G = Dk 51) +4u(( = h.81) +u(ih 8))], 1<i <2+ 1,
j=1

DY =DY=D!=DY 1<i<2M+1,
Dy =D =Dp=00<n<N,

and

~n—1

Dr =D+ 2wl -0n 8T 4 u(n ST miz1 sy
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where ﬁf__ll and :S‘\{l_l are defined in Step-3. We approximate the survival prob-

ability function A(z,t) at each grid point by

A =exp(—D!'), 0<i<2M +1. (1.34)
From (1.28)—(1.29) (on substituting A = A7), we get U. Define

S’ =9y, -U", v=1,2. (1.35)
Step—2 In this step, we first update D? to obtain

Dy =D + g (=R, 8 + (i, 8Y)], iz (1.36)

We now correct the approximated survival probability function A} at each grid

point by replacing D with 5?, ie.,
AP = exp(=D?), 0<i<2M+1. (1.37)

As in the previous step, we substitute A” = A” in (1.28)~(1.29) to get U". In

this step, we correct the approximate weighted population to arrive at

~Nn

S =0, - U"), v=1,2. (1.38)

Step—3 We make the final correction to D to get

~ h ~n— ~n
R Dl +5 [u((i — V)R8 + plin, 51)], n=1, ori=1,
! = h ~n—2 ~n—1 ~n
D7+ 3 [u((z’ —2)h, S, ) +4u((i — DR, S, ) + p(ih, Sl)], n,i > 2.
(1.39)
We correct A once more to find
A} =exp(—Df), 0<i<2M+1. (1.40)

As before, we use (1.28)—(1.29), with A? = /AXf to get the updated solution of
(1.2) namely U”. We define

-~n N

S =0y, -U), v=1,2. (1.41)
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Note that the survival probability vanishes only at the maximum age, but a;
is not a grid point. Now we present the result corresponding to third order

approximation of \.

Theorem 1.5.2 Assume hypotheses (H1) — (H5). Moreover assume that
p€ CU([0,a1) x (0,00)), Th(y,s1(y + @) > 0 and T (y, s1(y + ) > 0 for all
[

y € [a*,a;) and o > —a*. Let u € C*(]0,a4] x [0,T]) be the solution to (1.2).
Then

A" — A"l < CRY, (1.42)
where C' is a constant independent of n, h. O

For more details and a proof of this result, see Theorems 4.4.3 and 4.4.4 in Chapter
4.

1.5.2 A fourth order aprroximation of A

In this subsection, we propose a fourth order numerical scheme to (1.2) by in-
troducing two more corrections to the predictor corrector method presented in
Subsecection 1.5.1. In other words, the method that we introduce here is a five
step scheme and the first three steps are exactly the same as those defined in
the previous section. Before defining the new steps, we need to introduce the
notation (7?_1%, 1<n<N,1<i<2M + 1. We define (/]\n_% with step size h

as the approximation Ui" | with the step size 5 computed in Step 3 of the third
order scheme in (1.33), (1.36) and (1.39) in the previous subsection.
Step—4 We define

1 n—1
Sl/ QZQh(wy'U 2)7 V:1727
D, =D 1<i<2M+1,
Dy=Dl'=0, 0<n<N,

~

Dy = D+ 5 [ = Db ST (G- Db, 87 i 8], mi> 1
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where D' and S§7~" are defined in Step-5. We approximate the survival prob-

ability function A(z,t) at each grid point by
A, =exp(—D;), 0<i<2M+1. (1.44)
From (1.28)—(1.29) (on substituting A" = A, ), we get U, . We now define

-~n

S —Ou, U ), v=1,52. (1.45)

Step—5 Finally, we define

(.1 h , . o1, an-d
DIt + 2 (G = Vb ST7) + 4u(( = )b, 51 )
+u(ih, §1)}, n=1,ori=1,
Dln == h ~n—1
D+ - 281 + au( - 1.8, )
\ —I—;L(zh,Sl)}, n>1>2.
(1.46)
We now correct _/A\z once more to find
A =exp(=D}), 0<i<2M+1 (1.47)

As before, we use (1.28)—(1.29) to get the updated value of solution of (1.2)

namely U". We now define
S, =0n,-U"), v=12 (1.48)

With this set of notation, we state our main theorem corresponding to fourth

order approximation of A\ as follows.

Theorem 1.5.3 Assume hypotheses (H1) — (H5).Moreover assume that
p € C4[0,a4) x (0,00)), %(y, s1(y +a)) >0 and Z%‘(y, s1(y + ) > 0 for all
y € [a*,a;) and o > —a*. Let u € C*([0,a4] x [0,T]) be the solution to (1.2).
Then

A" = X"[| < ChY, (1.49)

where C' is a constant independent of n, h. ([l
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Finally, in order to validate the effectiveness of the proposed numerical scheme,
we presented numerical simulations in which the order of convergence is computed

(see Section 4.6).







Chapter 2

Numerical solution to a nonlinear
McKendrick—Von Foerster

equation with diffusion

2.1 Introduction

Reaction diffusion equations with nonlocal boundary condition are studied widely
due to many applications in physical and biological phenomena (see [19, 23, 66,
68]). In the literature, various methods are introduced to deal with these types
of equations (see [18, 19, 20, 23, 39, 49]). One of the methods to analize these
equations, both analytically and numerically, is the method of upper and lower
solutions (see [15, 24, 46, 64, 65, 76, 78]). Many authors use this technique to
solve nonlinear diffusion equations with linear boundary conditions. However, in
physical problems such as gas-liquid interaction problems, generally the nonlin-
earity occurs at the boundary conditions also (see [22, 54, 62, 74]). At the same
time, the qualitative properties of solutions to those partial differential equations
(PDEs) in the above mentioned references are studied widely compared to the
numerical aspects of them (see [49]).

On the other hand, the McKendrick—Von Foerster equation is ubiquitous in
the study of population dynamics (see [21, 60, 61, 72, 73, 81]). In particular, the
McKendrick—Von Foerster equation with diffusion (M-V-D) arises naturally in the
modeling of neuronal networks, thermoelasticity etc, (see [18, 19, 58]). The main
difficulty in the study of the M-V-D is due to the nonlocal nature of the PDE,

25
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and the boundary condition(s). Though numerical study of non-local equations
got considerable focus, relatively less attention was paid to problems with the
Robin boundary conditions. The authors of [57] studied well-posedness and long
time behavior of the solution to M-V-D with a nonlinear boundary condition.
In [38], the authors presented a numerical scheme of the M-V-D with the Robin
boundary condition in the positive quarter plane.

This paper is dedicated to the numerical study of the following nonlinear nonlocal

M-V-D with nonlinear nonlocal Robin boundary conditions:
(wy(,t) + ug(z,t) + d(2, s(t))u(z,t) = Upe(2,t), © € D, t >0,
at
(0.0 = 0a(0.6) = [ Buly.si(e)ulyit)dy, ¢ >0
0

u(ay, t) + ug(ay,t) = /OaT Bs(y, so(t))uly, t)dy, t > 0, (2.1)

, Tt €D,

_uo
/¢ u(zx, t)dz, s,(t /wy u(z,t)dr, v=1,2, t >0,

where a; > 0, D = (0,a;) C R. The functions d, By, Bs, ¥, 11, ¢, ug are
assumed to be non-negative and continuous, in their respective domains. In [37],
the authors have proved the existence of a global solution to (2.1) when d = d(z)
and B, = B,(x), v = 1,2. Moreover, the authors have proved that the solution
to (2.1) converges pointwise to the solution to its steady state equation as time
tends to infinity. The author of [63, 64, 67, 69] presented a numerical scheme
and introduced a monotone iterative method to find an approximate solution to
the nonlinear nonlocal reaction diffusion equation. In [69], the author considered
a class of nonlinear reaction-diffusion equations with linear nonlocal boundary
conditions to investigates its the asymptotic behavior of the discrete solution.

Analysis of the long time behavior of the solutions to (2.1) requires the study of
its steady state problem. The steady state equation corresponding to (2.1) is the
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following boundary value problem

(v,(2) + d(z, p)v(z) = veu(), v € D,

v(0) —v,(0) = i B (y, p1)v(y)dy,

:/OQTQ/;(;[;) 2)dz, p, = /% ©)dr, v =1,2.

Using an implicit finite difference scheme, we discretize (2.1) to get a system

(2.2)

of nonlinear equations. A similar nonlinear finite difference scheme is given for
steady state problem (2.2). To slove this system of equations, we introduce a
linear monotone iterative scheme. Moreover, we prove that the numerical solution
o (2.1) converges to that of its steady state as time tends to infinity. The
important difference between the present work and the earlier ones is due to the

nonlinear and nonlocal nature of the term d and B, in (2.1), v = 1,2.

The chapter is organized as follows. In Section 2.2, we present a finite-
difference scheme to find an approximate solution to equation (2.1). Moreover,
we establish existence and uniqueness of solution to the nonlinear systems given
by the numerical scheme in Section 2.3 and the uniqueness of the same is proved
in Section 2.4. In Section 2.5, we present a numerical scheme for (2.2). We study
the long time behavior of numerical solution to equation (2.1) in Section 2.6. In
Section 2.7, a particular type of nonlinearity is considered where one can analyze
the numerical scheme under weaker hypotheses. Finally, numerical examples are

presented in Section 2.8 to re-validate the theoretical results.

2.2 Numerical scheme

In this section, we first discretize equation (2.1) using an implicit finite-difference
scheme. Thus the numerical scheme that we propose turns out to be a nonlin-
ear system of equations. Let h and k be the spacial and temporal step sizes,
respectively. Denote by (z;,t,) a typical grid point with x; = ih, and t, = nk,

respectively. Moreover, we assume that a; = Mh for some M € N and define the
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set of grid points

A={(zyty):i=1,2,.. M =1, n=1,2,..},
A= {(zsty):i=0,1,... M, n=0,1,..}.

At every grid point (z;,t,), let U; , denote the approximate solution to (2.1), and
(I)i == uO(xi)a \Ijl = Zﬁ(l’z% Un = (UO,na Ul,na ceey UM,n)a v = (‘Ifo, \Ijh ceey \IJM)a
\Ijl/i = ¢V(xi>7 \I’V = (\IJV07‘IIV1a "'7\IIVM)7 V= 1727 dZ(X) = d(xlaX))
B,i(X) = B,(x;, X), B,(X) = (Bu,1(X), Bo(X),...,B,u(X)), X > 0.

To approximate the integral terms in equation (2.1), we choose composite Simp-

1
3
proximate

son’s ; quadrature formula with weights {qo, ¢1, ..., qar }. In other words, we ap-

(Z-I— M
/ Y(x)u(x, t)dr ~ Z VUi, = 1(PU,,),
0 i=0

ot M
/ Uy (x)u(z, t)dr ~ Zqi\I/ViUi,n =I1(v,U,), v=1,2.
0

=0

Moreover, we approximate the integral terms in the boundary conditions with

/0 " By, 5u(0)u(z, )z ~ N 4B (L(2,U))U;, = [(B,(1(2,U,))U,),

1=0

where v = 1,2. In view of the results in [67], we avoid explicit, semi-implicit
schemes, and present an implicit numerical scheme for (2.1). With the notation
introduced so far, we propose the following implicit scheme for (2.1) using the
backward difference approximation for u; and the centered in space discretization

for ug, Ugy:

( (1 + 2r)Ui,n — bUi+1,n — CUifl,n = Uin-1— kdl([(\IIUn»U%n, (Z, n) € A,

1 1
<1 + E) UO,n - EUI,n = ](B1<I(\I’1Un>>U”>’ ne N’

1 1
(1 + E) Ustn = 3010 = IBo(I(U,)U,), n €N,

\Ui,l):q)h OSZSMa
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. A — k -k
where b=r—35,c=r+5, A=7 and r = ;5.

We now define the following finite difference operators

(ﬁ[U%n] = (1 + QT)Ui,n — bUi+17n — CUifl,na (2, n) € A,
1 1

BCI[UO,TL] = (1 + E) UO,n - (E) Ul,TL? nec N7 (24)
1 1

BCQ[UM’TL] = (1 + E) UM,n — <E> UM—I,n; n € N.

\

Then numerical scheme (2.3) using the finite difference operators is written as

LU =Uin-1—kdi(I(¥U,))U;,, (i,n) € A,
BC1[Us,] = I(B1(I(%:U,))U.,), n € N,
BCo[Uns) = I(By(I(¥:U,))U,). n € N,
(Ui =@, 0<i < M.

(2.5)

Since (2.5) is a system of nonlinear equations, a priori it is not clear whether
there exists a solution to it. In the next section, we establish the existence of
a solution to (2.5), and its uniqueness is discussed in Section 2.4. For, we use
the monotonicity arguments with the aid of notions of upper, and lower solutions
(see [19, 37]). To this end, we begin with following definition.

Definition 2.2.1 A matrix (U, ,,) is called an upper solution to (2.5) if it satisfies

(L[U; ] > Uiy — kd;(I(®U
BC1[Upy] > 1(B1(1(¥ ff U
BCo[Unin] > I(Bs(I(¥2U,)U,), n €N,
(Ui > ®;, 0<i <M.

T)) Ui, (i) € A,
n), n €N,

Similarly, (U;,,) is called a lower solution to (2.5) if it satisfies all inequalities of
(2.6) in the reversed order.
A pair of upper and lower solutions (Ui,n, [A]m) are said to be ordered if Um > Um

on A. For a given pair of ordered upper and lower solutions (Um, Um), we set

<Ui,na Ui,n> = {Uz,n : Ui,n < Ui,n < Ui,n}a
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n:sup{a%Bl,(xi,s) | s=1(P,U,), Um <U, < Ui,n, (i,n) € /_\,1/:1,2}.

We conclude this section with the following assumptions which are used through-

out the paper:

The spacial and temporal step sizes are such that b > 0, (
d is a nonnegetive C' function, s — d(., s) is monotone, (

B, is a nonnegetive C' function, s — B,(.,s) is monotone, v = 1,2, (2.
2

max{nI(¥,)]|®||scas + (B, (0)) | v = 1,2} < 1. (2.10

Observe that under assumption (2.10) U, ,, = |||~ and Um = 0 are upper solu-

tion and lower solution to (2.5), respectively.

2.3 Existence of solution

In this section, we employ the monotonicity method along with a discrete max-
imum principle to establish the existence result to nonlinear system (2.5). We
prove the existence of a solution to (2.5) in four cases: (i) s — d(., s) is decreas-
ing and s — B, (., s) is increasing, (ii) s — d(.,s) is increasing and s — B, (., s)
are decreasing, (ii1) s — d(.,s) is decreasing and s — B, (., s) is decreasing, (iv)
s — d(.,s) is increasing and s — B, (., s) is increasing. The cases (i) and (i7) are
given separately in the next subsections. Existence of solutions to (2.5) in the
cases (ii1) and (iv) can be proved using the similar arguments, thus the details

are omitted.

2.3.1 The case 2(.,s) <0, 2(,s) >0

Let Um and Um be a pair of ordered lower and upper solutions to (2.5). Now,
define
B = sup {d(xi,s) | s =1(¥U,), Um < U< Um, (i,n) € /_X},

We now introduce a linear operator

L{Up] = £[Uin] + b (€001 (¥U,) + 8U;, ) (2.11)
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Using this new operator, (2.5) can be written as

;

LUin] =Usn1 + k (—diu(\wn))m,ﬁ €U, 1(TU,) + ﬁUm) ((i,n) € A,
BC\[Usn] = I(By(1(®,U,))U,), n €N,

BC[Unrn] = I(Bo(I1(®,U,))U.), n €N,

(U0 =2, 0<i <M.

(2.12)
For (i,n) € A, we construct a sequence {U/} of approximations to a solution
{Uin} to (2.12) in the following manner. Let {U]7,} be the solution to

(LU7) = U2t + b (—d(1@U ) U + €0, L (BT

+5U{f,‘;1) , (i,n) € A, meN,
BC\[Ug] = I(B(I(T,UT)U™ "), n €N, m €N, (2.13)
BCo[Usr ) = I(By(I(® U )U ), ne€N, meN,

(Ul =0, 0<i< M, meN,

To close the system, we need to fix the initial approximation Up,. If the initial
approximation is taken to be an upper solution (a lower solution, resp.) to (2.5),
then the solution to (2.13) is denoted by U7}, (U, resp.).

We next show that the sequences of approximations (U/) and (U/,) are indeed

monotone at each grid point (i,n) € A.

Lemma 2.3.1 (Discrete maximum principle) Assume that s +— d(.,s) is
decreasing, s — B, (.,s) is increasing, v = 1,2. Assume (2.7) holds, and —koy <

1, where

o1 = min{€U; I () + B | (i,n) € A, Ui < Uspp < Uin}.

If W, satisfies
)

LW;,] >0, (i,n) € A,
BC1[Wo..] >0,
BCo[Whrn]) >0, neN,
(Wio >0, 0<i< M,

n €N,
(2.14)

then W,;,, >0, (i,n) € A.
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Proof.On the contrary, assume that for some N € N, there exists (¢/,n') € A
such that
VVi’,n’ = min I/Vi,n < 0. (215)

0<n<N
0<i<M

We first notice that W; o > 0 for 0 < ¢ < M, which gives n’ # 0.
On the other hand, since BC;[Wj,,] > 0, we have

AW1 0 < (1 + h)Wo 0,

which readily gives that ¢/ # 0. Using the other boundary condition and the same
argument, one can easily show that i’ # M. Therefore we obtain (i/,n') € A.
Using the definition of b, ¢, and the fact that b > 0 with 2r = b + ¢, we get

20 Wity — OWiriq pr — W1 < 0. (2.16)
From (2.14)-(2.16) and the definition of L, we obtain
0 < Wirg + e (€0 [(RW 1) + BV )
< W+ & (00w () + B) Wi, (2.17)
In view of (2.15) and (2.17), we deduce
0> 14k (00w (9) + 8) > 1+ ko,

which is a contradiction to the assumption —ko; < 1. Hence, we find that

Win >0, (i,n) € A.

This completes the proof.

Theorem 2.3.2 Let Ui,n, and Um be a pair of ordered lower and upper solutions
to equation (2.5), respectively. Assume that s — d(., s) is decreasing, s — B, (., s)
18 increasing, for v=1,2 and —koy < 1. Then the following hold:

(i) For every fized (i,n) € A, both {U}, {U} are monotone sequences. More-
over, we have

A

U <UR < UM < Usp <

=]
VAN
]
3
A
N




§2.3. Existence of solution 33

for every m € NU{0}, where lim U = Us,, lim U = Uy,
_ m—00 m—00
(i1) Both U;,, and U, are solutions to (2.5).

A ~

(iii) If U, is another solution to (2.5) in (Uin, Usn), then Uy, < U, < Uy, on
A.

Proof.(i) Set W, = U?, — U}

i,n)

(i,n) € A.

Claim 1: We first prove that W2, >0, (i,n) € A.
From (2.6) and (2.13), it follows that for n € N, we find

BC,[Wy,] = BC1[Us,] — BCA[UG,,]
> I(Bi(1(9,U,))U,) — (B1(1(%,U,))U.,,)
= 0. (2.18)

Similarly, we have
BCo[Wyy,] >0, neN. (2.19)

Again, from (2.13) and (2.6), for 1 <i < M — 1, n € N, we get

LIW;,] = LIUT,) = LU,
= £[00,] + k (§0:, 1 (9T + 80, ) = 0,
— k (~di(1(RO)T?, + €01, 1 (9T, + 50, )
= L[07,] = TP, + kdi(1(®T,))U?,
>0, (2.20)

where the last inequality is due to the assumption that [_fi?n is an upper solution
o (2.5).

In view of Lemma 2.3.1, we conclude that
(i,n) € A. (2.21)

Using the same argument employed to prove (2.21), one can easily prove that

v, <ul,, (i,n) € A.

Lwn — ¥in’

Claim 2: We next prove that U}, > U}, .
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For, we set W = U! — U} . and consider

=i,n

= 00,y + b (—d(I(WT)00, + €03, (¥T) + 807, ) = U

“Zi,n—1

— k (~d(I(RUILY, + €U, 1 (9T + 5UT, )

0,

v

i,n

v

(2.22)
where the last inequality follows from the fact that £ < 0 and Claim 1. Using the
boundary condition and the fact that s — Bj(.,s) is increasing, one can easily
prove that BC,[Wy,] > 0, BCy[W};,] > 0, and W}, = 0.

From Lemma 2.3.1, it follows that W}, >0 .
Hence

Uy, <U., <U, <U,. (i,n) € A.

wn — Yin

Claim 3: We now prove that U/ < U”

in? (Zan) S A; meNU {0}
Let the following hold

ur, > U, (i,n) €A, p=0,1,...,m. (2.23)

iwn

Set Wntt = U — U2 then from (2.6) and (2.13) it follows that, for (i,n) €
A,
LW = LO7] = LIUT )
= O+ k (—d (WO, + €0 (9T + BUL, ) = U

—k (—di(l(\IfUnm“))Uﬁl + U (PO + BUZL“)

where the last inequality is due to (2.23) and the technique employed in the proof
of (2.22).
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Again, from the linearity of the operator BC;, nonnegativity of ¥, ¥y, ¥, and
the induction hypothesis, we find that BC:[Wg,"'] > 0, BCy[Wjj+'] >0, n € N.
Again in view of Lemma 2.3.1, we conclude that

Uﬁ“ > U;”,f?, (i,n) € A.
Similarly, by the induction argument, it straightforward to show that

~

Ui,n < _Um < Um+1 < U;:Zl+1 < Um < 0@',71’ (Z,TL) € Av m e NU {0}

nwn — ¥in ,n —

Now (i) is an immediate consequence of the previous inequality.

(1) Since d, B,, v = 1,2 are continuous functions, we let m — oo in (2.13) to
obtain that both Ui,n and U, ,, are solutions to (2.5).

(4ii) Let U}, be a solution to (2.5) in (Um,ﬁm) Hence it is clear that Um =
U, > Uz, (i,n) € A. Set W} =U}, —Us,, (i,n) € A.

As before, it is easy to verify that LW} ] > 0, (i,n) € A, BCi[Wy,] > 0,
BCy[Wy;,] >0, n €N, and hence we conclude that W}, >0, (i,n) € A.

Thus we have

U, <ul, <0, (i,n) € A.

By following the method used in the proof of (i), we can easily show that

A

Letting m — oo in (2.37), we find that

Ui,n < Ufn S Ui,n7 (27 TL) S A7

= = Y

which completes the proof of (ii).

2.3.2 The case 2(.,s) >0, aai”(.,s) <0

Now, define

0 = inf {By(xi,sy) | s, = 1(¥,U,), Um <U, < Um, (i,n) €A, v = 1,2}.

Consider the following linear operators
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LUin] = L[Us] + k (gUi,nI(\I:Un) + BUM> . (i,n) € A,
BC1[Uy,] = BCi[Us,] — 01(®,U,,) — ¢I(U,)I(®,U,), n €N, (2.25)
BCQ[UM,n] BC2[UMn] - 91(‘1’2 ) CI( ) ( Un)’ ne N

Using these new operators, scheme (2.5) can be written as

(

LUin] =Uspr+ k(—d,;(](\IlUn))Ui,nJr&ﬁi (WU, + BUi,n>, (i,n) € A,
BC1[Uyy] = I(B1(I1(®1U,))U,,) — 01(U,) — (I(U,)I(¥,U,), n €N,

BC,[Unrn] = I(Bs(1(®2U,)U,) — 01(U,) — (LU I(®,U,,), n €N,
\Ui,OZ(bia OSZS M

(2.26)
For (i,n) € A, we construct a sequence {Uf,} of approximations to a solution
{Uin} to (2.26) as follows. Let {U;7,} be the solution to

(L[U7] = U + b (—dL(RU U + €0, (WU + BUST )
(i,n) € A, m € N,

BCH[Ugh,] = I(BL(I(®, U~ NUR) = 01U ) = (LU (RU ),
n € N,méeN,

BCs[Uy; ] = I(Bo(I(®U " ))U R = 01U ") = (LU L(B,U 1),
neN, meN,

(Ui =@, 0<i< M, meN.

(2.27)
If the initial approximation Ugn is taken to be an upper solution (a lower solution,
resp.) to (2.5), then the solution to (2.27) is denoted by U (U™, resp.).
The sequences of approximations (U/7,) and (U!",) are indeed monotone at each

grid point (i,n) € A as in Theorem 2.3.2.

Theorem 2.3.3 Let Ui,n, and Um be a pair of ordered lower and upper solutions
to equation (2.5), respectively. Assume that s — d(., s) is increasing, s — B,(.,s)
18 decreasing, v = 1,2, —koy < 1 and 6 < 1, where

0 = inf{fa; + CI(®,)I(U,) | v=1,2},

oy = min{&U; . ] (®) + B | (i,n) € A, U;, < Uiy < Uin}.
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Then the following hold:
(i) For every fized (i,n) € A, both {U™}, {U/™} are monotone sequences. More-

over, we have

A~

Ui < U SUSH S Uy < Ui U < UP < Ui, (im) € A,

for every m € NU {0}, where lim U" = U,,, lim U™ = U,,.
- m—oo m ’
(i1) The functions U;,, and U, ,, are solutions to (2.5).
(i) If U}, is another solution to (2.5) in (Ui, U ), then Uy, < U < Ui on
A.

Proof. The proof is similar to that of Theorem 2.3.2 and we omit the details.

2.4 Uniqueness
In this section, we show that there exists indeed a unique solution to (2.5). To
this end, we first introduce the following notation:
~ = min {%d(xi,s) s =1(PU,), Um <U, < Um, (i,n) € /_\},
o = min {d(xi, s):s=1(¥U,), [A]m <U,n< Uiyn, (i,n) € /_X},
o3 = min{yU;, ](¥) + a : (i,n) € A},
o4 = min{yU, . I(®) + a : (i,n) € A},
61 = sup {nI(¥,)[(U,) + I(B,(I(¥,U,))) :n=0,1,2,..., v=1,2},
dy = sup {n[(@y)l(ﬁn) +I(B,(I(®,U,)) :n=0,1,2,..., v=1, 2}.

We are ready to prove the uniqueness result.

Theorem 2.4.1 (Uniqueness) Assume one of the following conditions:

(i) s+—d(.,s) is decreasing, s — B, (., s) is increasing and max{—kos, 01} < 1,
(i7) s —d(.,s) is increasing, s — B, (., s) is increasing and max{—koy, 01} <1,
(1ii) s w—d(.,s) is decreasing, s+ B,(.,s) is decreasing and max{—kos,dy} < 1,
(1v) s —d(.,s) is increasing, s — B, (., s) is decreasing and max{—koy, Jo} < 1.

Then, equation (2.5) has a unique solution in (U, U;.,).

Proof.We prove the theorem under the assumptions given in (7). The proof in
the other cases follow from the same argument.

In view of Theorem 2.3.2(7ii), to prove uniqueness of solution to equation (2.5),
it suffices to show that (_]Z-,n = U, ,. To this end, let X;, = Ui,n — U, ». Note that
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Xin > 0in A.
Define W;,, = (1 — p)" X, ,, for some constant p > 0 such that —kos < p < 1.
Claim W;,, =0, (i,n) € A.
On the contrary, assume that there exists N € N, (i',n/) € A such that
VVZ/n/ = max I/Vln > 0.

0<n<N
0<i<M

From the initial conditions, we get n’ # 0. Let, if possible, i/ = 0.
We observe from the left boundary term that

(e
()

I(B

/

= (1= )" I(B:(I(¥,U )
+ [(B1(1<\Illl7n/))Un
< (L= )" o = Us) (1BLI(1T ) + 11 (¥1)1(Tr))
S 51W07n’
< ng/,

or

W(),n/ < Wl,n’- (2.28)

In view of (2.28), we see that i # 0. Using the same argument at the other
boundary point, we get i’ % M. This shows that (i',n’) € A.
Finally, we use the argument that was used to prove Claim 1 in Theorem 2.3.2(7)

to get a contradiction. Since b, ¢ > 0 and b + ¢ = 2r, we readily obtain that
QTM/i/,n/ - bWi’-l—l,n’ - Cm’—l,n’ > 0.
Then from the definition of £, we immediately get

Wi < LWy ). (2.29)
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Thus from (2.5) and (2.29), it follows that

Wit < (1= p)Wip1 = k(1= p)" di(H(QU ) Uj r + k(1 = p)" ds(1(QU,))Uj
= (1= p)Wiw-r — k(1= p)" [Usw(de(I(RU ) — d (1(¥U,,)))]
— k(1= p)" [ds(1(®U ) (Uiryur — Uyr )]
S (=)W1 — kWi [Ui’,n'ﬁl(‘l’) + a] :

Therefore we find that

(= W1 2 (14 k [ Ur oy 1(®) + a] ) Wi
Z (1 + kO’g)VVi/m/.

Hence from the above relation, we obtain
(1 + kO’g)Wi/’n/ < (1 — p)Wi’,n’fl < (1 — p)Wi/,n/7

which is impossible because —kos < p. Thus it follows that W, = 0 or Ui,n =

Uin, (i,n) € A, proving the uniqueness result.

2.5 Steady state

The objective of this section is to provide a numerical solution to (2.2). Asin the
unsteady case, we present an implicit numerical scheme to find an approximate
solution to the steady state problem, and study its well posedness. Moreover,
we introduce the notions of upper, lower solutions to address the existence of a

solution to the nonlinear scheme.

2.5.1 Numerical scheme

In order to discretize the ordinary differential equation (ODE) given in (2.2), we
use the notation from the earlier sections. Let h, M, d, B,, {qo, q1,--,qu} be as
in Section 2.2, and V; denote the approximate solution to (2.2) at the grid point
x; = ih, 0 < ¢ < M. As before, we approximate the integrals in the ODE and
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the boundary conditions in (2.2) by

/OaT Y(x)v(x)dr ~ Z Vv,V = 1(PV),

=0

a; M
[ @@ ~ Y 0w = 1w,v), v =12
0

/OaT BV(ZE,p)U(QT)dx ~ Z%Bu,z(](\l}uv))% = I(BV(I(lIIVV))V)7 V= 172a

where V' = (Vy, V1, ..., V).
The numerical method that we propose to find an approximate solution to (2.2)
is based on the central difference approximation for v,, and v,. Therefore the

numerical solution (V;) of (2.2) is given by
(a'V; — V'V — Vioy = —d;(I(¥V))V;, 1<i <M — 1,

(1 " %) Vo (%) Vi = I(By(I(B,V)V), (2.30)

k (1 i %) Var — (%) Vi = [(Bo(I(9,V))V),

2 p_ 11 f_ 11
V=157 —gpand d =55 + 55

By introducing following finite difference operators

where a' =

(L°[V}] = a'V; = V' Vg — Vi,
. 1 1
BCi[Vol = (1 + E) Vo — (E) Vi, (2.31)
Byl = (1+ ) v — (2 v
\ 21V M| — h M — h M—-1,

we write finite difference scheme (2.30) as

LoVi] = =d;(I(¥V)Vi, 1 <i < M —1,
BCi[Vo] = I(B1(1(¥,V))V), (2.32)
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Notice that numerical scheme (2.32) is a system of nonlinear equations. We
need to prove existence and uniqueness result for (2.32). For, we apply the
monotonicity arguments that were used in Sections 2.3 and 2.4. To this end, we

introduce the notion of upper (lower) solution to (2.32).

Definition 2.5.1 A vector (V;) is called an upper solution to (2.32) if it satisfies
the relation ~ o
LoV > —d(I(WV) Vi, 1< i< M1,
BC;[Vo] > I(B1(I(¥,V))V), (2.33)
BC3[Viy] > I(By(1(¥,V))V).
Similarly, (V;) is called a lower solution to equation (2.32) if it satisfies all the

inequalities in (2.33) in the reverse order.

A pair of upper solution (V;) and lower solution (V;) are said to be ordered if
Vi, > V@-, 0 <i < M. For a given pair of ordered upper and lower solutions Vi,
Vi, we set (V;, Vi) ={V;: V; <V, < Vi}.

Observe that any ordered lower and upper solution to (2.32) is also an ordered
upper and lower solution to (2.5). Moreover, notice that if hypothesis (2.10)
holds, then V; = ||®]|o and V; = 0 are upper solution and lower solution to

(2.32), respectively.

2.5.2 Existence

As in the unsteady case, we prove existence of solution to (2.32) in the following
four cases: (i) §2(.,p) <0, 8P=(.,p) >0, (i) G4(.,p) > 0, %=(.,p) <0, (i)
52(p) 20, %=(.,p) 20, (iv) G2, p) <0, &P=(,p) < 0. Cases (i) and (ii) are

discussed briefly in the next two subsubsections. On the other hand, existence of

solution to (2.32) in cases (ii7) and (iv) can be proved using the similar arguments.

The case g—z(.,p) <0, 6@%('717) 20

Let V; and V; be a pair of upper and lower solutions to (2.32), respectively. Now,
define
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Thus (2.32) becomes

LV] = (~d(H(BV )V + EVI(®V) + 5Vi), 1<i< M- 1,
BC3 V] = I(BL(I(®,V))V), (2.34)
BC3[Vi] = I(Bo(1(®,V))V).

We now construct a sequence of approximations {V;"} to (2.34) using the linear

iteration process

( % 1

LV = (~d(H(@VT )V VIRV 4 51 )
1<i<M—-1, meN,

I(B,(I1(®, V™ )V™h meN,
I(By(I(®, V™) V™H m e N.

(2.35)
BCi[Vg"]

BC5[Viy]

\

If V¥ is equal to an upper solution (lower solution, resp.) to (2.32) then denote
the solution to (2.35) by V;™ (V;™, resp.). As in the earlier sections, we show that
both (V™) and (V™) are monotone sequences for each 1 < i < M — 1. This is

given in the next result.

Theorem 2.5.2 (Existence) Let Vi, and V; be a pair of ordered lower and upper
solutions to equation (2.32), respectively. Assume that p — d(.,p) is decreasing,
p— B,(.,p) is increasing and py = min{&,V,I(¥) 4+ 8, :0<i < M} > 0. Then
the following hold:

(i) For each 0 < i < M, both {V/™}, {V/™} are monotone. Moreover, we have

Vi<Vm <Vl <V <V <UL <V <V,

for every m € NU {0}, where lim {V/"} =V, lim {V/"} =V,.
m—0o0 m—0oQ
(i) Both V; and V; are solutions to (2.32).

(iii) If Vi* is another solution to (2.32) in (V;, V) then V; < V* <V, for 0 <i <
M.

Proof.The proof follows from the same arguments used in the proof of Theorem
2.3.2.
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The case g—;l(.,p) >0, aai"(wp) <0

Let
0, :min{B,,(xi,pV) :p, =1(¥, V), Vi<V < Vi, 0<i< M,v= 1,2},

o =min {zZB,(z;,p,) 1 py = (L, V), V; < Vi <V;, 0<i < Myv=1,2}.

We now introduce the following linear operators

L3[V)] = £°[V)] + (gsle(\IlV)Jrﬁsm), 1<i<M-—1,
BC;[Vo] = I(B1(I(,V))V) = 0,1(®, V) — (I(V)I(¥,V), (2.36)
BC3[Vir] = I(Bay(1(®2V))V) = 0.1 (¥,V) = (I(V) (V).

Thus (2.32) becomes

LoV = (~d(I(@V)V, + EVI(®V) + 8,Vi), 1<i < M -1,
BC3[Vo] = I(B1(I(O,V)V) — 0,1(®, V) — GI(V)I(¥,V), (2.37)
BC3[Vi] = I(Bo(I(¥,V))V) = 0,1(¥,V) — (I(V)I(B,V).

We construct a sequence of approximations {V;™} to (2.37) using the linear iter-

ation process

(L2 = (—d(T(@V )Vt TV 4 g
1<i<M-1, meN,
BC [V =1(By(I(¥, V™ )V Y=, 1(O, V)= I(V) (¥, V™Y,
m € N,
BC[ViM =I(By(I(T, V™ NV Y =0, 1 (W, V™ Y= I(V)I(T,V™Y,
m € N.

\

(2.38)
If V? is equal to an upper solution (lower solution, resp.) to (2.32) then the
solution to (2.38) is denoted by V™ (V/™, resp.). As in Section 2.3, we show that
both (V™) and (V™) are monotone sequences for each 1 < i < M — 1. This is

given in the next result.

Theorem 2.5.3 (Existence) Let ‘A/l-, and V; be a pair of ordered lower and upper

solutions to equation (2.32), respectively. Assume that p — d(.,p) is increasing,
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p +— B,(.,p) is decreasing, py = min{&,V;I(®¥) + B, : 0 < i < M} > 0 and
A = max{fa; + CI(®,)I(V) | v =1,2} < 1. Then the following hold:
(i) For each 0 <1i < M, both {V;™}, {V/™} are monotone. Moreover, we have

V,<ym<ymtl <y <

=

<V <y <V

for every m € NU {0}, where lim {V;™} =V, lim {V/"} =V;.
m—0o0 m—0o0
(i4) Both V; and V; are solutions to (2.32).
(iii) If Vi* is another solution to (2.32) in (V;,V;) then V; < V* < Vi, for 0 <i <
M.

Proof. The proof follows from the same arguments used in the proof of Theorem
2.3.2.

2.5.3 Uniqueness

The objective of this subsection is to provide a statement of the uniqueness result
to (2.32). In order to state the uniqueness result, we introduce the following

notations:
7o =min{ Zd(z,p) : p = I(BV), V; SV, <V, 0<i < M},

aszmin{d(x,p):p:](\IJV), Vi<Vi<Vi,0<i< M},

3 = min{ys\zf(\Il) +a,:0<i< M},
[y = min{’ysf/if(\Il) +as:0<i< M},

<
nNs = max{%By(xiapy) Dy = I(lIlI/V)’ Ai S V; S f/'h O S l S ny = 172}7
AL = max {1 (nsl(\py)ffi + BV(I(\IIVV))) =1, 2} ,

Ay = max {I (773[(‘1’1/)‘71' + B,,([(W,,V))) V= 1,2}.

We conclude the section with the following uniqueness theorem for system (2.32).

Theorem 2.5.4 (Uniqueness) Assume one of the following conditions:
(1) p— d(.,p) is decreasing, us > 0, p+— B,(.,p) is increasing and A\ < 1,
(17) p— d(.,p) is increasing, g > 0, p— B,(.,p) is increasing and \; < 1,
(1ii) p — d(.,p) is decreasing, us > 0, p— B,(.,p) is decreasing and Ay < 1,
() p > d(.,p) is increasing, g > 0, p— B,(.,p) is decreasing and Ay < 1.
Then equation (2.32) has a unique solution in (V;,V;).
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2.6 Long time behavior

In this section, our aim is to establish the stability of numerical scheme (2.5) and
a relation between U;,, and V;. In particular, we show that if the initial data
satisfies f/; <P, < f/i, 0 <4 < M, then the corresponding numerical solution U, ,,
to (2.1) converges to the numerical solution V; to (2.2). We first begin with the
stability result.

Theorem 2.6.1 (Stability) Assume the hypotheses of Theorem 2.4.1. Then
scheme (2.5) is stable.

Proof.We prove this result under hypotheses (i) in Theroem 2.4.1. The other
cases follow using the same argument. First, fix 7" > 0. Let N € N, k£ > 0 be
such that Nk < T. To prove stability of the numerical scheme, we show that
| Up |oo<|| @ [|o, 7 € N. We set U, =|| @ ||oo and U;,, = 0. Observe that U,
is an upper solution to (2.5), due to §; < 1. It is easy to verify that the constant
zero matrix (U;,,) is a lower solution to (2.5). From Theorems 2.3.2 and 2.4.1,
there exists a unique solution to (2.5), say U, satistying, 0 < U;,, <|| ® ||co,
0<1< M, 0<n<N. We now prove the main theorem of this section.

Theorem 2.6.2 (Asymptotic behavior) Let Vi and V; be a pair of ordered
upper and lower solutions to (2.32), respectively. Let the hypotheses of Theorem
2.4.1 hold. Assume that (A]m < V; < ‘7, < Um Let ﬁn and Y;,, be solutions to
(2.5) with Yi,o = ‘71 and Y;o = ‘A/Z-, respectively. Then the following conclusions
hold:

(i) For each fited 0 < i < M, the sequence (Yi,) is decreasing and (Y;,) is
increasing in n. Moreover, we have Ym > Y, on A.

(13) If U is a solution to (2.5) with initial data ®; € <1A/l, V;), then Y;,, < U, <
Vi

(1ii) For each 0 < i < M, set nh_{{)lo Yi,n =V, 7}1_)120 Yin =V,. Then Vi and V; are
the mazimal and minimal solutions to (2.32) in (V;, V;), respectively.

(iv) Let ®; € (V;,V;). Assume that pis > 0, and py > 0 whenever 94 >0, and

% < 0, respectively. Then lim U;,, = V=V,
n—oo

Proof.We prove the theorem under the assumptions given in (7) in the statement
of Theroem 2.4.1. The other cases follow from the same argument.

(1) In order to prove (i), we use the same strategy employed in the proof of
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Theorem 2.4.1.

Let Xi, =Y, — Yi,1, (i,n) € A

Now define W;,, = (1 — p)"(Yin — Yini1), for some constant p > 0 such that

—kos < p < 1.

Claim W,,, > 0 on A.

On the contrary, assume that for some N € N, there exists (i,n’) € A such that
Wi = min W, <0.

0<n<N
0<i<M

Observe that V; is also an upper solution to (2.5). In view of Theorems 2.3.2 and
2.4.1, we obtain, Wiy = Yo — Y;; = Vi — Y;1 > 0. Thus we find that n’ # 0. Let
if possible i = 0.

Then from the left boundary condition and hypothesis, we get

1 1
]_ - [/[/ /I - [/[/ ’

= (1—p)" (I(BL(I(2,Y )Y ) - I(Bl<f(\IllYnf+1>>Ynf+1>)

= (1= )" U(Bi(I(2,Y )Y ) — I(By(I(¥,Y )Y 1)
+I(BL(I(WY )Y i) — (BT (E)Y 1)) Y )]

> (1 p)" (Yo — Yo,nurl)[ (Bluomvnf)) () i1 )

> 6 Wo

> Wo (2.39)

In view of (2.39), we obtain ¢/ # 0. Using the same argument at the other
boundary, we get i # M. Therefore we have (i, n’) € A.
Since

20 Wi — bWy — Wi _y u <0,
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from the definition of £, we deduce

W = £0Wo
= (1= p)Wi w1 — (1= p)" klds (I(®Y 1)) Vi
— dy(I(PY 1)) Yo 1]
= (1= p)Wirgw1 = (1= p)"k [Yirgu (i (L(RY 1)) = d(1(RY 41)))]
—(1- P)nlk [di’([(‘I’Yn’H))(Yi',n/ - }_/i’,nurl)}

(1= p) W1 — k [01»,7,1,1(\1:)7 n oz} Wi

A%

> (1= p)Wir w1 — kosWi .

In view of the above relation, we find that

(1+ ko) Wiz = (1= p)Wirgwoy = (1= p)Wirw,
which is impossible because —ko3 < p. This contradiction shows that Wm > 0.

Hence
Vins1 > Vin, (i,n) € A (2.40)

A similar argument employed to prove (2.40) gives the relations Y;,+1 > Y;, and
Yin > Yin, (i,n) € A.

(i) Let U;,, be the solution to (2.5) with initial data ®; € (V;, V;).
On setting W, = (1—p)"(Yin, — Ui ), and using the argument employed to prove
(2.40), one can readily obtain W;,, > 0, which yields U;,, < Y;,. Similarly, one

can show that Y;,, < U, ,.

(117) We first notice that V; < V; < V; < Vi.
Using (7) and letting n — oo in (2.5), we find that both V; and V; are solutions
to equation (2.32).

Let V* be a maximal solution to (2.32) in (V;,V;). On setting W;,, = (1 —
p)" (Y, — Vi¥), and using the argument employed to prove (i), one readily obtains
Wi, > 0. Again, let n — oo, to get V; > V;*. Maximality of V;* ensures that

]

V; = V;*. Similarly, one can prove that V; is a minimal solution to (2.32) in (V;, V;).

(iv) Since 1 > 6; > Ay, Theorem 2.5.4 ensures that (2.32) has a unique solution.
i.e., Vi =V;, 0<i< M. In view of Theorem 2.6.2(i1) and (i), we conclude that

n—oo




48 §2.7. A special type of nonlinearity

2.7 A special type of nonlinearity

In this section, we study the following nonlinear nonlocal M-V-D with nonlinear

nonlocal Robin boundary conditions

ur(x,t) + ug(x,t) + d(z, s(t))u(x, t) = ug(x,t), x € D, t >0,

u(0,7) — =g ( )dy) > 0,

u(ay, t) + ug(as,t) = (/0 Bo(y)u(y ,t)dy), t>0, (2.41)

—UO ,I’GD
/ Y(x)u(z, t)dx, t > 0.

The functions d, By, Bs, 1, g, ug are assumed to be non-negative and continuous.
Notice that with the choice

Bi(z,s) = LU By(x), ¢ = By,

S

Bg(x,s)—gTS) Bs(z), 1y = B,

system (2.1) reduces to (2.41). In fact, this choice of B, has singularity at s = 0,
for v = 1,2. Notwithstanding the presence of the singularities, we study the
existence, uniqueness and the long time behavior of approximate solutions to
(2.41) analogous to the earlier sections.

As before, the steady state equation corresponding to (2.41) is given by

;

ve(x) + d(z, p)v(z) = v (), x € D,
o) =0 =g [ Bihy).

vmo+%@a=g(éwéxwww@),

_ /Oat O(@)o(z)de

2.7.1 Numerical scheme

(2.42)

Let B, = (B, (%), B,(1),..., B,(x)), v = 1,2. Using the finite difference oper-

ators given in (2.4), we propose the following implicit scheme to find approximate
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solutions to (2.41):

¢

ﬁ[U%n] = Ui,nfl — kdl([(‘IlUn))Uzvn, (Z, n) € A,
Bcl[Uo,n} =g (I(BlUn>) , neN,

_ (2.43)
BColUnn) = g (I(B2U,)) , n €N,
\Ui’() :(I)Z', 0 < 7 < M.
We now introduce the notion of upper and lower solutions to (2.43).
Definition 2.7.1 A vector (Uj,,) is called an upper solution to (2.43) if
(['[Ui,n] 2 Ui,n—l — k’dl([(‘l’f]n))ﬁzm, (Z,n) € A,
BC\[U) = g (I(B\T,)), n €N,
(2.44)

BC2[le,n] 2 g (I(BQﬁn>) , NE N7

kﬁi,oz@i, 0<i< M.

A~

Similarly, (U;,,) is called a lower solution to (2.43) if it satisfies inequalities of
(2.44) in the reversed order.

Throughout this section, we make the following hypotheses:
g is a C' such that ¢’ > 0 and g(Ax) < z, (2.45)

where A = max{ZﬁO ¢ B, Zij\io qiB2,;}. We prove the existence result in the
following two cases: (i) s — d(.,s) is decreasing, (i) s — d(.,s) is increasing.
We provide an outline of the existence result in case (i) and the other case can
be delt with a similar technique.

To that end, using the notation introduced in (2.11), scheme (2.43) can be written

as

/

LU} =Us1+ b (—di (WU ) Ui+ €03 (RU) + BUs ) (5,1m) € A,
BCl[UO,n] =g (I(BlUn>) , ne N,

BCQ[UMﬂl] =g (I(BQUn)) , n € N,

| Uip =i, 0 <7< M.

(2.46)
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For (i,n) € A, we construct a sequence {Uj} of approximations to a solution
{Uin} to (2.46) as follows. Let {U]7,} be the solution to

(LU7] = Unzh + b (=i (WU ) U+ €0, L (RUT) + U7
(i,n) € A, m €N,

BC\[Uy) =g (I(B.UY ), neN, meN,

BC,[Uy; .l =g (I(BUY ), neN, meN,

(U =®;, 0<i< M, meN,

(2.47)
If Ugn is equal to an upper solution (lower solution, resp.) to (2.43), then the
solution to (2.47) is denoted by U (U7, resp.).
Observe that, in view of hypothesis (2.45), we get that U, =|| ® ||o, Ui = 0
is a pair of ordered upper and lower solution to (2.43). We are ready to state an

existence result whose proof is analogous to that of Theorem 2.3.2.

Theorem 2.7.2 (Existence) Let Um, and Um be a pair of ordered lower and
upper solutions to equation (2.43), respectively. Assume (2.45), s +— d(.,s) is a
decreasing function and —koy < 1. Then the following hold:

(i) For every fized (i,n) € A, both {U}, {U} are monotone sequences. More-

over, we have

Uin < um < UM < Uy < Uiy <USH < UM < Usn, (i,n) € A,
for every m € NU {0}, where lim U" = U,,, lim Uph, = Uin.

(ii) Both U;,, and U;,, are solzﬁfons to (2.4
(i4) If U}, is another solution to (2.43) in (Ui, Ui, then Uy, < U < Ui on

A.

w0
~

When s — d(., s) is an increasing function, using the notation in (2.25), one can
write (2.43) as

(

Lo[Uin] = Ui +k (-di(I(qJUn))UZ-,ﬁsUi,n[(nyn) + BUM> (i,n) € A,
Bcl[UQm] =g ([(BlUn)) , n S N,

BCs[Unin] = g (1(B2U,)), n €N,

Ui,():q)i, OSZSM

\

(2.48)

As before, for (i,n) € A, we construct a sequence {U/",} of approximations to
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a solution {U;,,} to (2.48). The sequence (i,n) € A is monotonic and its limit
turns out to be the solution to (2.43).

Before stating the uniqueness result, we introduce the following notation:
J, = max {g/(CV) (Ve (I(Byﬁn),l(Byﬁn)) U= 1,2}.

Now we are ready to state the uniqueness theorem.

Theorem 2.7.3 (Uniqueness) Assume one of the following conditions:
(1) s —d(.,s) is decreasing, max{—kos, Ad,} <1,
(i7) s+ d(.,s) is increasing, max{—koy, Ad,} < 1.

Then, equation (2.43) has a unique solution in (Us,, Ui,).

We now recall the finite difference operator given in (2.31) and propose the fol-

lowing implicit scheme for (2.42) which is immediate from (2.30)
), (2.49)

Using the notion of upper and lower solution to (2.49), we can get the similar
results as in Section 2.5. We conclude this section with the following result

concerning asymptotic behavior.

Theorem 2.7.4 (Asymptotic behavior) Let V; and V; be a pair of ordered
upper and lower solutions to (2.49), respectively. Let the hypothesis of Theorem
2.7.8 hold. Assume that (Afm < Vz < ‘71 < ﬁm Let Ui,n and U, ,, be solutions
to (2.43) corresponding to ®; = Vi and ®; = ‘A/Z-, respectively. Then the following
conclusions hold:

(1) Uz’,n is decreasing and U, ,, is increasing in n. Moreover, we have Ui,n > Uin
on A.

(13) If U, , is a solution to (2.43) with initial data ®; € <I7Z, ‘7,>, thenU;,, < U;, <
Ui

(1i) For each 0 <i < M, set nh_)ngo Uin =V, nh_}ngo Uin =Vi. ThenV; and V; are
the mazimal and minimal solutions to (2.49) in (V;, V;), respectively.

(iv) Let ®; € (V;,V)). Assume that iz > 0, and juy > 0 whenever 94 >0, and
% < 0, respectively. Then we have lim U;, = V.=V,

n—oo
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2.8 Numerical simulations

In this section, we present four examples in which the numerical solutions to
time dependent problem (2.5) and corresponding steady state problem (2.32)
are computed to validate the results in the earlier sections. In Examples 2.8.1—
2.8.2, we demonstrate the facts that for each i,n (U}7,) is decreasing, (U/%) is
increasing and the approximate U;,, tends to V; for each 7, as n tends to oco. If
E} denotes the magnitude of the error with step size h, then the experimental

order of convergence can be computed using the standard formula

log(En) — 10%(Eg)

order =
log 2

Moreover, to demonstrate the advantage of the proposed numerical scheme over a
standard implicit difference scheme, we present two examples in which analytical
solutions are known explicitly. In these examples, we use the same notation that
is introduced in Section 2.2. In particular, we compare our scheme with the
following scheme (backward difference approximation for u; and centered the in

space discretization for u,, and w,,):

(14 20) X, — bXip1m — Xioyn = (1 - kdi(I(\Ian_l))>Xi,n_l, (i,n) € A,

1 1
(1 " E) Xon = 3 X1 = I(By(I(¥, X, 1)) X, 1), n €N,

1 1
(1 + E) XM,n — EXM_l’n = I(B2(I<\I"2Xn—1))Xn—1)a n e Nu

Xio=®;, 0<1< M,

‘ (2.50)

where X, is a numerical approximation to u at the grid point (z;,t").
All computations have been performed using Matlab 8.5. In all the examples, we
have taken a; = 1 and ¥ (z) = ¢1(x) = o(x) = 1. Moreover, in the first two

examples we have taken h = 0.01, k = 0.5 x 1074, and ug(z) = %, x € [0,1].

Example 2.8.1

In order to test our numerical scheme, we assume that d, B; and B, are given by

d(z,s) = (x4 1) — 5, Bi(w,s) = 5, By(x,s) =0, z € (0,1), s >0.

Taking into account of the definitions of upper and lower solutions to (2.5), we
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choose Um =1land U = 0. Tt is easy to verify that \~/Z =1 and V; = 0 are
upper and lower solutions to (2.32), respectively. On the other hand, one can
easily check that d and B, satisfy hypotheses of Theorems 2.4.1 and 2.6.2. Hence
(2.5) has a unique numerical solution. Note that, for the given set of functions,
v(z) = 0 is a unique solution to (2.32).

In Figure 2.1 (Left), we show the upper and lower solutions UZ}I and U"

~i,n)

-3 -11
9.5 10 : : ‘ ‘ 15 210

85

Absolute difference
©
,

0.5000.5000 0.5 0.5 0.5000
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X X

Figure 2.1: Approximate solutions to (2.1) with d(x,s), Bi(z,s), Ba(z,s) given
in Example 2.8.1; Left: U3(z,1) (dash-dot line), U*(z,1) (dashed line), U*(z, 1)
(dotted line), U*(z,1) (solid line) for 0 < z < 1; Right: |U3(z,1) — U?(x, 1)
(dash-dot line) and |U*(x,1) — U*(z,1)| (dashed line).

respectively, to (2.5) for m = 3, 4, and ¢t = 1. From this figure, it is evident that
for every fixed (i,n), Ug"n is decreasing with m and U/, is increasing with m. This
phenomenon re-validates the results that are proved in Theorem 2.3.2. In Figure
2.1 (Right), we plot the absolute difference between U{?}z and U}, at ¢ = 1, for

m = 3 and 4. From this figure, one can observe that U

i Ul are very close to
each other, and the sequence (U{’}l) indeed converges to a unique solution U;,, as
mentioned in Theorem 2.4.1. In the next figure, we turn towards the long time

behavior of the numerical solution.

As the solution U;,, to (2.5) lies in the interval (U™

i,mn?

U, if the length of the
interval is too small, then without loss of generality, we take U;,, to be U[’}I In
Figure 2.2, we present the numerical solutions to (2.5) at ¢t = 2,3 and the solution
to the steady state problem. In particular, we have taken U;, = U{’:n at t = 2

and 3. Since the numerical solution V; is identically 0, Figure 2.2 can be used for

the error analysis also. From Figure 2.2, it is evident that (U, ) is very close to
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-0.5

1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 2.2: Approximate solutions to (2.5) and (2.32) with d(z,s), Bi(z,s),
By(z,s) given in Example 2.8.1; U(z,2) (dash-dot line), U(z,3) (dashed line),
V(z) (solid line) for 0 <z < 1.

the trivial steady state (V;) for sufficiently large n (it indeed converges to V;), as

demonstrated theoretically in Theorem 2.6.2.

Example 2.8.2

In this example, we validate the results presented in Section 2.7 when the special
type of nonlinearity described in that section is considered. For the numerical

simulations, we take d, g, B; and B, as

d(w,s) = (v +1) + {5, 9(s) = Y52, Bi(x) = 3,
By(x) =e®, x€(0,1), z€(0,1), s>0.

In this example, we choose Ui,n =1 and U = 0 as the upper and lower solutions
to (2.43) respectively. Furthermore, V; = 1 and Vi = 0 are chosen to be the
upper and lower solutions to (2.49). One can easily check that d and g satisfy

the hypotheses of Theorem 2.7.3. Hence (2.43) has a unique numerical solution.

In Figure 2.3 (Left), we present approximate solutions to (2.43) at ¢t = 1,2 and
the solution to the steady state problem. Moreover, in Figure 2.3 (Right) the
absolute errors \(_Ji,n — V| are displayed at t = 1 and 2. From the these graphs, it
is clear that (U, ,) is very close to the nontrivial steady state (V;) whenever n is

large, as mentioned in Theorem 2.7.4.

Example 2.8.3
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Figure 2.3: Approximate solutions to (2.43) and (2.49) with d(z, s), g(s), Bi(z),
By(x) given in Example 2.8.2; Left: U(z,1) (dashed line), U(z,2) (dash-dot
line), V(x) (solid line) for 0 < = < 1; Right: |U(z,1) — V(z)| (dashed line) and
|U(z,2) — V(z)| (dash-dot line).

In this example, we choose the vital rates d, By, By and the initial data uy such

that the solution to (2.1) is known in the closed form. In particular, let

B 12 (22—1)2
d(l‘, 8) — 14+ 214 L (2x161) _ (51_1)2 , uo(g;) =e 16
2f01 e~ 16 dx
Bi(x,s) = Ba(z,5) = %, z € (0,1), s>0.
4‘[.0167 6 dx
12
Now it is easy to verify that u(z,t) = ﬁe_@ 5 is the solution to (2.1). On
the other hand, to compute approximate solutions using (2.3), we first choose

~ ih— 2 A~
Uin = e~ and U = 0 as an upper solution and a lower solution to (2.5),

respectively. Moreover, one can easily check that d and B, satisfy hypotheses of
Theorem 2.4.1. Hence (2.5) has a unique numerical solution.

We now compare the numerical solutions and the exact solution at ¢ = 1. The
plots of U?, and U}, for 0 < z < 1, t = 1, are presented in Figure 2.4(a). In
Figure 2.4(b), the absolute difference |U2, — U2,| is shown. When m = 3, the
graphs of U2, and U?,, for 0 <z <1 at ¢ = 1 are depicted in Figure 2.4(c) and
the absolute difference |U2, — U2, | at ¢ = 1 is presented in Figure 2.4 (d). From
these numerical experiments, in particular from Figures 2.4(b), and 2.4(d), it is
evident that the approximate solutions U{j}L and U]’} are very close to each other
as m grows. In this case m = 3 gives a good approximation. This verifies the

conclusions of Theorem 2.3.2.
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Figure 2.4: The exact solution to (2.1) and approximate solutions to (2.5) with
d(z,s), Bi(z,s), Ba(z,s) given in Example 2.8.3 with A = 0.01, k£ = 0.01; (a):
u(x,1) (solid line), U?, (dashed line) and Qin (dotted line); (b): |UZ, — U3,
at t = 1; (¢): u(x,1) (solid line), U}, (dashed line) and U7, (dotted line); (d):
U2, — U, at t =1.

Since U, lies in the interval (U7, Ulf?n) and the length of the interval is suf-
ficiently small, we take the numerical solution at ¢ = 1 to be (_Jf’n In Fig-
ure 2.5, we discuss convergence of numerical scheme (2.5). In particular, we
present the exact solution w and the numerical solutions U;,, to (2.5) at t = 1
with h = 0.01, & = 0.01 in Figure 2.5(a). We show the absolute difference
|u(,1) = U; | at t = 1 in Figure 2.5(b) for the same values of h and k. At ¢t =1,
we have computed U;,, with smaller step sizes. In particular, we show U;,, with
h=0.1x10"2, k= 0.1x1073, and u in Figure 2.5(c), and the corresponding the
absolute difference |u(-,1) — U, ,| in Figure 2.5(d). These numerical simulations
show that the numerical solution U indeed converges to the exact solution u at
t=1ash,k—0.

In Table 2.1, we display the magnitude of the discretization error and the experi-
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Figure 2.5: The exact solution to (2.1) and approximate solutions to (2.5) with
d, B, Bs given in Example 2.8.3; (a): u(x, 1) (solid line) and U;,, (dashed line)
at t = 1 with h = 0.01, k = 0.01; (b): |u(x,1) — U;,| (solid line) at ¢ = 1 with
h =10.01, k£ =0.01; (¢): u(x,1) (solid line) and U;,, (dashed line), at ¢t = 1 with
h=01x10"2 k=0.1x 1073 (d): |u(z,1) — U;,| (solid line) at ¢ = 1 with
h=01x10"2 k=0.1x1073.

mental order of convergence for different choices of h and k. In the third column,
we present the maximum absolute error at t = 1, and in the fourth column the
experimental order of convergence is shown. From Table 2.1, we can observe that
the order of convergence of the proposed numerical scheme (2.5) is one.

Our next objective is to demonstrate the advantage of scheme (2.3) over (2.50).
To this end, in Table 2.2, we show the absolute error and the time required to
compute approximate solutions using (the computational time) (2.3) and (2.50).
In particular, we present the equation number of the scheme and the correspond-
ing absolute error in the first and fourth column of Table 2.2 for different choices
of h, k, respectively, at t = 1. Moreover, we display the corresponding computa-
tional time in the fifth column. From the first two rows of Table 2.2, it is clear

that at ¢ = 1 when h = 0.05, K = 0.1 scheme (2.3) gives better approximation
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h k max {|U; y — u(z;, tV)[}  order
0<i<M

0.1 0.01 0.006939 0.9888

0.05 0.0025 0.003496 0.9941

0.02 0.0004 0.001405 0.9977

0.01 0.0001 0.000703 0.9988

Table 2.1: Magnitude of the discretization error and the experimental order of
convergence for different choices of h and k at ¢t = 1 with d, By, By given in
Example 2.8.3

Scheme — h k 02%3%4{|U@N —u(z;, t")|}  Computational time (sec)
(2.3) 0.05 0.1 1.35 x 1073 0.113

(2.50)  0.05 0.1 1.88 x 1072 0.109

(2.50) 0.02 0.1 1.49 x 1073 0.150
23) 002 0.02 381 x 10° 0.177

(2.50)  0.02 0.02 3.23 x 1073 0.145

(250)  0.01 0.005 457 x 1074 0.295
23) 001 0.008 287 x 107 0.468

(250)  0.01 0.008 1.15 x 10~ 0.196

(2.50)  0.005 0.004 5.78 x 1074 0.522

Table 2.2: The absolute difference between the exact solution and the computed
solutions, and the computational time for different choices of h and k at t = 1
with d, By, By given in Example 2.8.3
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than (2.50). In order to get the absolute error close to 1.35 x 1073 using (2.50),
we need to take smaller step sizes. From the third row of Table 2.2, we observe
that with A = 0.02, k£ = 0.1, semi-implicit (2.50) gives an approximate solution
with the absolute error 1.49 x 1073. Moreover, the computational time to get an
approximate solution with this accuracy using scheme (2.50) is more than that of
scheme (2.3). Similarly, with different step sizes, we observe the same phenom-
ena (see Rows 4-9 of Table 2.2). Thus from Table 2.2, we deduce that proposed
implicit scheme (2.3) takes less computational time than (2.50) to get the same
accuracy. Therefore from these calculations, it is evident that proposed scheme

(2.3) is more efficient than standard semi-implicit scheme (2.50).

Example 2.8.4

Let the vital rates d, By, By and the initial data ug be given by

2 2—1)2
d(z,s) =1+ 29:;1 + (211?51)2 B ( (o1 ) , uo(w) = e 5
2f016_de
Bi(x,8) = Ba(z,s) = %, r e (0,1), s>0.

4ffe 16 dz
9 _@a—1? .
o€ © s the solution to (2.1). In
_ (2ih—1)2 ~

order to compute approximate solutions, we set ﬁm =e¢ 1 and U = 0.

One can easily check that u(x,t) =

Moreover, one can easily verify that d and B, satisfy hypotheses of Theorem
2.4.1. Hence (2.5) admits a unique numerical solution.

In Figure 2.6, we compare the numerical solutions to (2.13) at ¢ = 1. In
particular, the graphs of U2, and U2, for 0 < z <1 at t = 1 are shown in Figure
2.6(a). Moreover, the absolute difference |U?, — U2, | is shown in Figure 2.6(b).
The plots of U}, and U2, for 0 < 2 <1 at ¢t = 1 are depicted in Figure 2.6(c),
and the absolute difference |U?, —U?,| at t = 1 in Figure 2.6 (d). It is clear from
Figures 2.6(b), and 2.6(d) that the approximate solutions U/, and U} are close
to each other as m grows. Therefore in this case, we got a good approximation
with m = 3. This revalidates the conclusions of Theorem 2.3.2.

Since the length of the interval (U2,,U?,) is too small (see Figure 2.6 (d)),
as in the previous example, we take U;, to be Ufn In Figure 2.7, we present
the exact solution and numerical solutons to (2.1) at time ¢t = 1 with different
choices of h, k, which help us to discuss numerical convergence of scheme (2.5).
To be more specific, we show the exact solution u and numerical solutions U,

to (2.5) at ¢ = 1 with A = 0.01, £ = 0.01 in Figure 2.7(a), and the absolute
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Figure 2.6: The exact solution to (2.1) and approximate solutions to (2.5) with
d(z,s), Bi(z,s), Ba(z,s) given in Example 2.8.4 with A = 0.01, k£ = 0.01; (a):
u(x,1) (solid line), U?, (dashed line) and Qin (dotted line); (b): |UZ, — U3,
at t = 1; (¢): u(x,1) (solid line), U}, (dashed line) and U3, (dotted line); (d):
U2, — U, at t =1.

differences |u(-,1) — U; | at t = 1 in Figure 2.7(b). We present U,,, which is
computed using smaller step sizes, namely, h = 0.1 x 1072, & = 0.1 x 1072 in
Figure 2.7(c) and the corresponding absolute difference |u(,1) — U;,| in Figure
2.7(d). From these numerical simulations, one can observe that the numerical
solution U indeed converges to the exact solution u as the step sizes tend to 0.
In Table 2.3, we show the computational error and the experimental order of
convergence for different choices of h and k. In particular, in the third column,
we display the maximum absolute error at ¢t = 1 and in the fourth column the
experimental order of convergence is shown. From Table 2.3, one can conclude
that the experimental order of convergence of the proposed numerical scheme
(2.5) is one.

In Table 2.4, we present the absolute difference between the exact solution to
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h k 022}]@“&” —u(x;, tV)[}  order
0.1 0.01 0.005847 0.9921
0.05 0.0025 0.002939 0.9857
0.02  0.0004 0.001190 0.9929
0.01 0.0001 0.000598 0.9963

Table 2.3: The magnitude of the error and the order of convergence for different
choices of h and k at t = 1 with d, By, B, given in Example 2.8.4

Scheme  h k Og%ﬁﬂUi,N —u(z;, t")|}  Computational time (sec)
23) 005 01 355 x 103 0.101

(2.50) 0.05 0.1 1.74 x 1072 0.094

(2.50)  0.02 0.04 7.09 x 1073 0.107
(2.3) 0.02  0.02 2.84 x 1074 0.127

(2.50) 0.02  0.02 2.98 x 1073 0.118

(2.50) 0.0l 0.005 4.46 x 104 0.189
23)  0.01 0.008 751 % 107 0.505

(2.50)  0.01 0.008 1.07 x 107 0.174

(2.50)  0.005 0.004 5.38 x 1074 0.578

Table 2.4: The absolute difference between the exact solution and the computed
solutions, and the computational time for different choices of h and k at t = 1
with d, By, By given in Example 2.8.4
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Figure 2.7: The exact solution to (2.1) and the approximate solutions to (2.5)
with d, By, By given in Example 2.8.4; (a): u(x,1) (solid line) and U;,, (dashed
line) at t = 1 with A = 0.01, k£ = 0.01; (b): |u(z,1) — U;,| (solid line) at ¢t = 1
with h = 0.01, £ = 0.01; (c): u(x,1) (solid line) and U;,, (dashed line), at ¢t =1
with h = 0.1x 1072, k= 0.1x107%; (d): |u(z,1) — U;,| (solid line) at ¢t = 1 with
h=01x10"2 k=0.1x1073.

(2.1) and the approximated solutions that are obtained using (2.3) and (2.50),
and the computational time for different values of h, k. As in the previous
example, we display the equation number of the scheme, the absolute error and
computation time in the first, fourth and fifth columns of Table 2.4, respectively.
From the first three rows of Table 2.4, it is easy to observe that scheme (2.50) takes
more computational time compared to (2.3) to achieve the same accuracy due to
the requirement of smaller step sizes. It is evident from Table 2.4 that proposed

scheme (2.3) is more efficient than standard semi-implicit scheme (2.50).




Chapter 3

A numerical scheme for a
diffusion equation with nonlocal

nonlinear boundary condition

3.1 Introduction

The McKendrick—Von Foerster equation arises naturally in many areas of math-
ematical biology such as cell proliferation, and demography modeling (see [2, 21,
60, 61, 72, 73, 81]). In particular, the McKendrick—Von Foerster equation is one
amongst the important models whenever age structure is a vital feature in the
modeling (see [3, 28, 33, 35, 47]). In the recent years, the McKendrick—Von Fo-
erster equation with diffusion (M-V-D) has attracted interest of many engineers
as well as mathematicians due to its applications in the modeling of thermoelas-
ticity, neuronal networks etc., (see [18, 19, 36, 37, 57, 58]). The main difficulty
in the study of the M-V-D is due to the nonlocal nature of the partial differen-
tial equation (PDE) and the boundary condition. The qualitative properties of
the M-V-D have been developed by many authors. Though, numerical study of
nonlocal equations got considerable focus, relatively less attention was paid to
problems with the Robin boundary condition.

In this paper, our objective is to propose and analyze a numerical scheme to find

63
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approximate solutions to the following nonlinear diffusion equation

u(z,t) + ug (2, ) + d(z, 51(t) ) u(z, t) = uge(z,t), z € (0,a4), t >0

w(0,4) — 1, (0, £) = /OGTB(x,SQ(t))u(x,t)dx, £>0,

u(ay, t) =0,t>0, (3.1)
u(r,0) = ug(x), x € (0,a4),

/ U ()u(x, t)de, t>0, v=12,

where a; > 0. In the given model, the unknown function u(x,t) represents the
age-specific density of individuals of age x at time ¢. The function d represents
the death rate and it depends on x and the environmental factor s;. Similarly, the
fertility rate B depends on the age x and the environmental factor s;. Both the
functions v, and 1, are called the competition weights. Moreover, the functions
d and B are assumed to be non-negative. Without loss of generality, we take the
diffusion rate is equal to one.

In [36], the authors considered the M-V-D with nonlinear nonlocal Robin bound-
ary condition and studied the existence and uniqueness of the solution. The
authors of [38] proposed a convergent numerical scheme to the M-V-D. On the
other hand, the existence of a global solution to the M-V-D in a bounded domain
with nonlinear nonlocal Robin boundary condition was proved when d = d(z) in
[37]. Moreover, the authors of [13, 14] designed numerical schemes to compute
the basic reproduction number Ry for general continuously structured popula-
tion models, in particular for models with boundary conditions of Robin type.
Regarding the basic reproduction number for diffusion equation (1), taking the
approach developed in [11], one can get Ry = ﬁ I B(,0) e(=VItido)5 y
under the assumptions that the mortality rate is a constant dy and a; = co. Re-
cently in [30], an implicit finite difference scheme was introduced to approximate
the solution to the M-V-D in a bounded domain with nonlinear nonlocal Robin
boundary condition at both the boundary points. Moreover, the wellposedness
and the stability of the numerical scheme were proved using the method of upper
and lower solution with the aid of the discrete maximum principle.

The author of [50] presented an upwind scheme for a nonlinear hyperbolic integro-
differential equation with nonlocal boundary condition. The analysis was carried

out employing the general analytic framework developed in [52, 51, 77]. The
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notion of ‘stability with threshold’” and a result due to Stetter (see [79], Lemma
1.2.1) were the most important tools for the analysis.

The above mentioned results inspired us to propose and analyze an explicit finite
difference numerical scheme to (3.1). The main difficulty in the analysis of the
proposed numerical scheme is due to the nonlinearity and the Robin boundary
condition that are presented in (3.1). The objective of this paper is to establish
the stability and the convergence of our numerical method. Since the scheme is of
the form U = F(Ug,...,Uy,), where F is a nonlinear function, the standard
techniques of proving stability (for instance, the Lax theory etc.) can not be
used. Instead, the notion of nonlinear stability (with threshold) is used to arrive
at the convergence result.

This chapter is organized as follows. In Section 3.2, we present a finite difference
scheme and define the required norms to use the general discretization framework.
Moreover, we introduce the notion of stability with h-dependent thresholds. We
prove consistency, stability and convergence results in Section 3.3. In Section 3.4,
numerical schemes to (3.1) with other types of boundary conditions are discussed.
Finally, numerical examples are provided in Section 3.5 to justify the convergence

results that are proved.

3.2 The numerical scheme

Let h, k be the spatial and temporal step sizes. Denote by (z;,t") a typical
grid point, where x; = ¢h, and t" = nk. Moreover, we fix T" > 0, assume that
ay = 2(M’ + 3)h for some M’ € N and T'= Nk for some N € N. To simplify the
notations, we write M = 2(M’ + 3). For every grid point (z;,t"), we denote the
numerical solution by U/, and set

‘Ijl/,i = wu(%‘), v, = (‘I’u,h ‘I’y,2, ceey \Ilu,Mfl)y v=1,2,

B(:) = (B(xl, ), B(xa,+), ..., B(zy-1, )),

d(-) = (d(z1,"), d(z2,"),. ... d(xrp-1,")),

u"=uruy,..., Uy ).

To approximate the integrals in (3.1), we use the following quadrature rule

1

which is a combination of the composite Simpson—3 and Minle’s rules. For
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V =(Vi,...,Vir_1) € RM7! we define the quadrature formula

M/
4h h
n(V) :?(2‘/1 — Vo +2V3) + 3 Z(sz + 4Voit1 + Vaite)
i—2
4h
+ E(vaww — Vorrga + 2Vaprrys).

HV=(V,....,Viy1), W= (Wy,...,Wy_1) are in R¥~! then V « W denotes
the vector in RM~! which is obtained by the element wise multiplication of V/
and W i.e.,

V.-W=(ViWy,...,Vay_aWy1).

With the notation introduced so far, we propose the following scheme for (3.1)
using the forward difference approximation for wu;, the backward difference for u,,

and the central difference for wu,,:

(77 _ Jn—1 Unfl - Unfl
Uz U'L + 1 i—1 4 d(x“ Qh(ql]_ X UTL—I))U/L'H—I

k h
urt+ ot 20!
_ Yin 521 L 1<i<M-1,1<n<N\,
[ W - . . (3.2)
1+ UO—EUI:Qh<B(Qh(\IIQ-U))-U), 0<n<N,

Uy, =0, 0<n<N,
U =up(z;), 1<i<M-—1.

\ ~1

In order to carry out the analysis within an abstract theory of discretizations, we

introduce the general discretization framework. For, we define the spaces
Xh — Yh — RN+1 % (RM—l)N-‘rl % RN-i—l'

We also introduce the operator ®;: X, — Y}, defined through the formulae

D, (Vo, VO, VLI . VN Vi) = (P, P°, PL,..., PN Py,
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where

PO:(P(?aPOlv'”7P0N)a

1 1
R= (145) V0 - - Qu(B(@uE V) V) 0 <<,

PM:(p]%p]\lm...’pﬁ),

Vn
Py=—="1 0<n<N,

! (3.3)
pP"=(P"Py,....,Py_;), 0<n<N,

PP =V -U}, 1<i<M-1,

VA anl anl o Vaifl
Pin i 3 i + i - i—1 + d(l’“ Qh(‘pl X Vn_l))‘/;n_l
n—1 n—1 n—1
: Vi =2V,
— ’+1+’;Z; L 1<n<N,1<i<M-1.

Now Uj, = (U,,U°,U",--- ,U") € X, is a solution to (3.2) if and only if it is a

solution of the discrete problem
(I)h<Uh) =0€Y,. (34)

To investigate how close Uy, is to u, we first need to choose an element u, € X,
which is a suitable discrete representation of w. In particular, our choice is the

set of nodal values of the theoretical solution u, namely

Up = (u07u07 s 7uN7uM> S Xha (35)
where
wo = (ud, up, ..., u)) € RN ul = u(0,t"), 0<n <N,
w' = (uful, . uh ) ERMTN = u(n "), 1 <i <M —1,0<n <N,
Uy = (u(])\/[,U}\/[,,Uﬁ) € RN+1a u7]\l/[ = u<aTﬂtn)a 0 S n < N.
(3.6)

Then the global discretization error is defined to be the vector

e, =up — U, € Xy,
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and the local discretization error is given by
Ih = (I)h(uh) S Yh-

In order to measure the magnitude of errors, we define the following norms in the

spaces X; and Yj:

1Vo, VO VL VIV x,= BV ol |V all) +max { [ VOV [V,

N 1/2
[(Po, P°, P!, ..., P, Pyp)lly, = <||Po||f + [|P* + Al P2+ ) k||Pn||2> :
n=1
M-1 N
where [[V"[|? = >° h|V;"[? and |[Vo|[Z = 3 k[Vi'[*
i=1 n=0
For V. W ¢ RM~1 and Z ¢ RV*!, we define

M—-1
(V.W) =) hiW;,
=1

|V = max |Vi|, [|Z]|*° = max |Z"|.

1<j<M—1 0<n<N

Throughout the chapter, we use C' to denote the generic positive constant which
does not depend on the step sizes, grid points and it need not be the same constant
as in the preceding calculations.

For the sake of completeness, we give the following standard definitions (see [50]).

Definition 3.2.1 (Consistency) Discretization (3.4) is said to be consistent
with (3.1) if

tim [ () |y, = lim |24y, = 0.
Moreover, if || Iy, = O(h?) + O(k?) then we say that (p, ¢) is the order of the

consistency.

Definition 3.2.2 (Stability) Discretization (3.4) is said to be stable restricted
to the thresholds Ry, if there exist two positive constants hg and S such that

Vi = Whllx, <S[Pn(Vh) — Pu(Wh)lv,,
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whenever h € (0,ho], Vi, W), € B(up, Rp), where B(uy, Ry) = {z € X}, |
Iz — unl[x, < Rn}-

Definition 3.2.3 (Convergence) Discretization (3.4) is said to be convergent if
there exists hg > 0 such that, for all 0 < h < hg, (3.4) has a solution Uy}, for
which

lim [y, — Upl|x, = lim [le,]|x, = 0.

The following theorem which is established in [51] is based on a result due to

Stetter (see [79]), and plays an important role in the proof of convergence of

(3.2).

Theorem 3.2.4 (Cf. [51]) Assume that (3.4) is consistent and stable with thresh-
olds M. If @y, is continuous in B(up, My) and ||I|| = O(My) as h — 0, then
the following hold.

(1) For sufficiently small h > 0, discrete equation (3.4) admits a unique solution
in B(up, My).

(i7) The solutions to (3.4) converge to the solution to (3.2) as h — 0. Further-

more, the order of convergence is not smaller than the order of consistency.

3.3 Consistency, stability and convergence

In this section, we prove that numerical scheme (3.2) is consistent and stable. In
order to obtain the stability result, we first need to prove an elementary inequality.
Next, with the help of Theorem 3.2.4, we establish the convergence result. We

begin with the consistency result in the following theorem.

Theorem 3.3.1 (Counsistency) Assume that d, B,v;, i = 1,2, are sufficiently
smooth such that the solution u to (3.1) is four times continuously differentiable
with bounded derivatives. Moreover, we assume that there exists L > 0 such that

for every 0 < x < at, s1,52 >0,
|d(x, 1) — d(z, $2)|< L|s; — sa,

and
|B(x,s1) — B(x, s2)|< L|sy — sl
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Then the local discretization error satisfies

1@n (un) v, = {IU° = u|* + O(h*) + O(K*)}'/?, as h — 0.

Proof.Using the notation introduced in (3.6), it is standard to verify that

1
— uy(z, t"_l)

n_

u;

e
U;

k

sup =0O(k), as k — 0, (3.7)

,Mm

ur Tt — !
=1 Ux(mi; tn_l)

sup |— - = O(h), as h — 0, (3.8)

M

and L 1 1
T — 2un
L S (@ )| = O0R), ash = 0. (3.9)

h2

sup

\n

On the other hand, it is well known that if f € C*[0, a], then

[ e - au) < ont (3.10)

where C' > 0 is independent of h.

Lipschitz continuity of d on compact sets readily implies

A1) s, @ apy - w1l
< Lluf s (t"7") — Qn(pu )]
< LCR*u}~1.

Hence we get

supld(z;, s1(¢" ")) ul = d(zs, Qu(vpy - w"1))uf | = O(h*), as h — 0. (3.11)

©,n
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From the boundary condition, it follows that

) / (z, 52(t™))u(z, t")dz — Qy, <B(Qh(1,b2 u)) - u”)
/ B(z, s5(t"))u(x, t")dz — Q, (B(SQ(t”)) -u")

0
]2 (B(sar) - w) — Qu(B(Qulwsy - u)) )

< Ch* + |Qn(|s2(t") — Qu(¥y - u™)|Lu™)|

< Ch*+ LCh4aT||'u,"||oo.

(3.12)

Therefore we can write

= O(h*), as h — 0.

(3.13)
Using (3.7), (3.8), (3.9), (3.11) and (3.13), one can easily conclude the proof of

the required result.  To prove numerical scheme (3.2) is stable, we need the

sup
n

/OaT B(az, sz(t”))u(x, t"Ydx — Qp, (B(Qh(1/;2 . u”)) . u")

following lemma.

Lemma 3.3.2 Ifz, y, a, b and h are positive real numbers such that (1 + %) xr—
1y <a+b, then (1+ 1) 2% — ty? < 2(a” 4+ b%).

Proof.Consider

1 1 1\ [ah+bh+y\> 1
1Yz Lo () (errontyy L,
(+h)x hy_(+h)( W1 ) 1Y

a’h? + *h? + 2abh® + y? + 2yh(a +D) 1,

- h(h+ 1) Y
2h(h+1)(a* +0*) + (h+1)y* 1,
= h(h+ 1) [k

=2(a® 4 b?).

This completes the proof of the lemma. Now, we are ready to establish the

following stability theorem.

Theorem 3.3.3 (Stability) Assume the hypotheses of Theorem 3.5.1. Let r
and X be such that k = rh* = Ah, and X\ + 2r < 1. Then discretization (3.4) is

stable with thresholds Ry, = Rh, where R is a fized positive constant independent
of h.
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Proof.Assume that u;, € X}, is the discrete representation of u given in (3.5)—
(3.6). Suppose V,, W, belong to the ball B(uy, Ry,). We set

Vi=(Vo, VO, VL . VN V), &V,) = (P, P° P, ... PN Py,
W, = (Wo, W W . WY Wy), ®W,)=(Ry, R°, R, ... RN Ry).
Then from the definition of the norm in X}, we find that

Rh > |V}, — wn| x,
= h(HVO - 'UIOH* + HVM — ’U,MH*) + OggigXN{||Vn _ un”}

2

M-1
=1

or
RVhL> |V —ul|, 0<n<N,1<i<M-—1.

This readily implies
RVE> |V" = 4|, 0 <n < N.
Therefore there exists C' > 0, independent of n, such that
Voo < RVE+ |[u"]|loe < C, 0<n < N. (3.14)
On the other hand, from the definition of &, we obtain

V=W =(1=X=2r)(V" = WY + (r+ NV - W
+r(ViT = WY + k(P — R}) — k[d(z;, Qu(®y - V' H) V!
— d(z, Qu(¥y - W) YW, (3.15)

for1 <n < N,1<i<M-1. Multiply (3.15) with h(V;*—W/"), take summation
over 1 << M —1, use 2r+ X\ < 1, and the Cauchy-Schwarz inequality to arrive
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at
n n||2 1 n—1 n—11|2 1 n n||2
V"= WP <V = WP (G RV W
k
+ 51 (@u(¥r- V) VI — d(Qu(T - W))W
k n n k 1 n— e 1 o .
P R () W e W

1 n— n—= 1 n— n—
—<1+%)‘VM711 _WM*11’2+E|VM 1_WM 1|2> . (316)

Now consider

d(@u(; - V')V — d(Qu(®y - W)W
< d(Qn(Ty - V) [l [V — W

+ HWn_l”ooHd(Qh(‘I’l . V"_l)) — d(Qh(q;l . W”_l))||
<clvrt—wrTl, (3.17)

for some C' > 0 independent of h, k. Thus (3.16)—(3.17) together give

(1=2k)[|[V" = W"|]? <1+ CEK)|[|[V* ' =W + k| P" — R"|?

1 n— n— 1 n— n—
*’“(@*z)'% LW P = WP

1 n— n—
+o Vi = Wi 1|2> . (3.18)
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Using (3.14) and the left boundary condition, we can write

(1 IV = W=V = W)
<Ry - Ryl+|Qu(B(Qu(W- V1)) - V")
_ Qh<B(Qh(\112 W) -W”)
<IP — Ril+|Qn(B(Qu(%2 - V) - (V" = W)
0n((B(Qu(®2- V") ~ B(Qu(¥2-W"))) - W)
<Ry = Ry +1Blloo| @n (V" = W7

+ Lag[[Ws oo | Qn(V" = W) [[W"]|oo
<|Fg = Rp|+Cl[v" = W™, (3.19)

+

for some C' > 0 independent of mesh sizes h and k. From (3.19) and Lemma
3.3.2, we deduce that

1 N . 1 n—
e e e A

(3.20)
<C(Ivri=wrP R - Ry
On substituting this bound in (3.18), we obtain
1+Ck Ck
V- W" 2 < Vn—l_wn—l 2 P"— R" 2
H P < 2 0F P (1P = R
+| Pyt = Ry P+h| Py — Ry (3.21)

From the discrete Gronwall lemma, there exists Cp depending solely on 1" such
that

vt Wl < o Ive- we e LS5 Y (1P - R
m=1

+ [Py = Ry PRl Py - R;{jlﬁ) } (3.22)
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Thus for k sufficiently small, this immediately gives

N
V" =w"| < CT{HPO ~RIP+C (Z K P™ — Rm”2>
m=1

[NIES

+O||P0—Ro||f+h||PM—RM||3} : (3.23)
Again, from (3.19), we have
(L+ M)V = Wi | =" = W< R (CV" = WP + | By = Rgl) -

On multiplying both sides with |V — W{'| and using the AM-GM inequality, we
get

Ve = WP V" = WPP+h (CIV™ = WP + [Py — Rgl) - (3.24)

On multiplying both sides by hk, taking summation on n, we find that
N N
BV = Woll2 < D hEIVY = WP+ ) kh? (Cl[V" = WP + | By — Ry ?)
n=0 n=0

N
< (1+CR)Y K|V = W' + 1?||Py — Ro|)%. (3.25)

n=0

The second boundary condition immediately gives
Vi = Wl =hl|Py — Ryl (3.26)
From (3.23), (3.25) and (3.26), we observe that

h(I1Vo = Woll. + Vo = W)
max {|[VO = WO [V = WL VY - W

m=1

N 2
<K (||P0 — Ro|? + | P° — R°|* + h||Pys — Ryf|2 + > k| P™ — Rm||2> :

where K is a constant. This completes the proof. In the following result, we

establish that (3.2) is indeed a convergent scheme.
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Theorem 3.3.4 (Convergence) Assume the hypotheses of Theorem 3.3.5. If
|U° —u°||x, = O(h), as h — 0,

then discretization (3.4) is convergent.

Proof.The proof is an immediate consequence of Theorems 3.2.4-3.3.3.

3.4 Other types of boundary conditions

In this section, we discuss the M-V-D with two other boundary conditions. In
particular, we study (3.1) when the right boundary codition is non-homogeneous
instead of homogeneous. On the other hand, in Subsection 3.4.2, we consider

Robin boundary condition at both the end points.

3.4.1 Non-homogeneous boundary condition at r = a;

In this subsection, we consider (3.1) with non-homogeneous Dirichlet boundary

condition, i.e.,

w(,t) + ug (2, ) + d(z, s1(8))u(w, t) = uge(x,t), z € (0,a4), t >0,

w(0,1) — a0, 1) = /aTB(x,SQ(t))u(x,t)dx, >0,

wlap,t) = glt), t > oO (3.27)
(@, 0) = up(z), € (0,ar),

/ Yy (x t>0, v=1,2,

where ¢ is a given smooth function. In order to discretize (3.27), we use the
notations from the previous section. Let h, k, T, M be as in Section 3.2 and U
denote the approximate solution to (3.27) at the grid point (x;,t"). Moreover,
we define ¢" = ¢g(t"), 0 <n < N.

By discretizing (3.27) as in Section 3.2, we arrive at the following finite dif-
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ference scheme (see (3.2))
(yr — -t pgrtl gt
7 k 7 4 7 h i—1 —|—d(CL’Z, Qh(lIll . Unfl))Uin—l
urst+ ot 20t

1 1

Upr=g", 0<n<N,
LU = wp(z;), 1<i<M—1.

)

(3.28)

As before, to carry out the analysis, we use the spaces X; and Y} that are
introduced in Section 3.2. Moreover, we consider the operator 5h: X, — Y,
defined through the formulae

3,(Vo, VO,V VN Vi) = (P, P°, P, ..., PN Py,

where
PO:(Pé)aPOla"'7PON)7

Py - <1+%> V= = 0 (B(Qu(¥2- V™) - V)0 < < N,

h
PM:(P](\Z7PJ\147 7Pﬁ)7
p}\}:VM—_g7 0<n<N\,
h (3.29)

P'=(P"P},....PY ), 0<n<N,
PP=V'-U) 1<i<M-1,

AR VA N VA T
P = R : h = d(, QT V)V
n—1 n—1 n—1
. vhot -2V
o Z+1+’Lh’12 1 71§n§N71SZSM_1'

Using the definition of éh, and the arguments used in Theorems 3.3.1-3.3.4, one
can easily show that (3.28) is indeed a convergent scheme whenever the hypotheses
in Theorem 3.3.4 hold.
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3.4.2 Robin condition at both z =0, a4

Consider the following M-V-D with nonlinear nonlocal Robin boundary condi-

tions:
u(z,t) + ug(z,t) + d(z, 51(t) ) u(, t) = uga(z,t), € (0,a4), t >0,

u(O,t)—um(O,t):/OaT By (2, 55(t))ulz, t)dz, t> 0,

u(at, t) + ug(at, t) = /aT By (z,s3(t))u(z, t)dx, t>0, (3.30)
0
( - uO ); S (O CLT)
/ by (x v, t>0 v=1,23.

In view of [11], equation (3.30) can be interpreted as a model for population living
in a one-dimensional habitat. In that case, x represents the spatial position
instead of age. In the right boundary condition, B, = 0 is an important case
which represents the nonflux condition at + = a4. The authors of [30] designed a
numerical scheme to (3.30), and studied wellposedness and long time behavior of
the solution of that numerical scheme. Their numerical scheme is nonlinear and
it is proved that the scheme is indeed stable. In this subsection, we propose a
numerical scheme to (3.30) and establish its convergence.

For, we use the notation from the earlier sections. Moreover, we denote

U, =, (z;), ¥, =(Vy1,Ypo,..., ¥, n1), v=1,2,3,

B (:) = (Bi(x1,-), By(x2,-),..., Bi(zp—1,)), and

By (+) = (By(x1,-), Ba(xa,*), ..., Ba(zpr—1,))-

Now we discretize (3.30) to get the following finite difference scheme

(Ur—urt urt-urt
7 k 7 + 7 h i—1 4 d([EZ, Qh(\Ill . Un—1>>Uin—1

U+1 +US 20!
12
1+ UO—EUl:Qh<Bl(Qh(\Ilg-U))-U>, o<n<n, (331

h

<1—|—1>U ——UM1 Qh(Bz(Qh(‘I’s U))‘Un), 0<n<N\,
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In order to establish the convergence of the solution of (3.31) to the solution to

(3.30), we introduce the operator &\Dh: X, — Y, given by
O,(Vo, VO, VL ., VN Vi) = (P, P°, P!, ... PN Pyy),
where
Py = (R, Py, By,
Fy = (1 + %) Vo' — %Vfl — Qh<B1(Qh(‘I’2 . Vn)) -V"), 0<n<N,

PM:(P]?J7P]\1/[77P]\]\47)7

P"=(P"Py,....P}_;), 0<n<N,
PP=VvP-U}, 1<i<M-1,

Vn — Vn—l Vn—l . Vi_l
Pin _ i p i + 7 - 1—1 —Fd(&lz, Qh(lIll . Vn—l))‘/;nfl

an an Vn—l
i1 T = L 1<n<N,1<i<M-1.

(3.32)

Now, observe that (3.16) can be written as

1
Ve =wrP <gllvrt = W ( +R)V"— W

_Hd(Qh Vn 1 )Vn 1 ( (‘I’l . Wn—l))wn—l||2

s ( D - wp
1 n— n— n— n—
_EM - 1’2_E‘VM711_WM711’2
1 n— n—
+(1+ 5)]VM LWy 112) : (3.33)

Using the same argument to establish (3.20), we obtain

1 1
14+ = Vn—l o Wn—l 2~ Vn:l o Wn:l 2
(1 DIV = Wi P=g Vi = Wik s
<C (vt W Py - Ry ).
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Using (3.33)—(3.34), the definition of @, and the arguments used in Theorems
3.3.1-3.3.4, it is straightforward to show that (3.28) is indeed a convergent scheme
whenever the hypotheses in Theorem 3.3.4 hold.

3.5 Numerical simulations

In this section, we present some examples in which the numerical solutions to
(3.1), (3.27) and (3.30) are computed using (3.2), (3.28) and (3.31), respectively,
to validate the results in the earlier sections. If Ej, denotes the magnitude of
the error with step size h, then the experimental order of convergence can be

computed using the standard formula

log(E}) — log(Eg)
log 2

order =

All the computations that are presented in this section have been performed using
Matlab 8.5 (R2015a). In all the examples, we have taken a; = 1, 1 (z) = ¥a(x) =
Y3(z) =1and r =5 =0.4.

Example 3.5.1

In order to test the efficacy of the numerical scheme, we assume that ug, d, and

B are given by
up(z) =e—e€*, d(z,s) =1, B(z,s) =e, x€(0,1), s> 0.

Note that given vital rates (d and B) are constant. Therefore, the first equation
in (3.1) becomes linear. We now seek a solution to (3.1) of the form u(z,t) =
(cre™®) 4 cye22))e()  On substituting « in (3.1), an easy computation gives

Ao (144/1+4(d+N))
12="—"3

, where \ is a solution of the characteristic equation

det e et =0 (3.35)
(§ = U. .
1— A+ 1*;1“ 1— Ay + 1*A€2A2

One can easily verify that A = —1 is a solution of (3.35). This readily gives us
that Ay = 0, Ay = 1. After substituting u(z,t) = (cie 4+ ce®)e™" in the initial
condition and the right boundary condition given in (3.1), we find ¢; = 1 and
c2 = —1. Hence for the given set of vital rates, u(z,t) = (e—e*)e" is the solution
to (3.1). It is straightforward to check that d and B satisfy the hypotheses of
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h Uy —ug|« order 113132}3\/{HU” —u"||} order |leyllx, order
0.1 0.0212 1.1009 0.0391 0.9805 0.0412 1.0212
0.05 0.0099 1.0509 0.0198 0.9921 0.0203 1.0105
0.02 0.0037 1.0204 0.0079 0.9972 0.0080 1.0041
0.01 0.0018 1.0102 0.0039 0.9986 0.0040 1.0020

0.005 0.0009 1.0051 0.0020 0.9993 0.0020 1.0010

Table 3.1: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.2 with d, B given in Example 3.5.1.

Theorem 3.3.4. Hence (3.2) is a convergent numerical scheme.

In Figure 3.1, we show the absolute difference between the exact solution and the

15 T T T T 0.025
1.125

3

2 TR -

ARNIN 002"
N
~.

3

1.115
1F ™ 11

0.015

0.295 0.3 0.305

u, U

Absolute difference
o
2

05

0.005

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6
X X

Figure 3.1: The exact solution to (3.1), and the approximate solutions using (3.2)
at t = 0.2 with d(z, s), B(x, s) given in Example 3.5.1; Left: u(z,0.2) (solid line),
Uo.os (dotted line), Uy (dash-dotted line), Ug o5 (dashed line) for 0 < x < 1,
Right: |u(z,0.2) — Ugs| (dotted line), |u(z,0.2) — Ug 1| (dash-dotted line) and
|u(z,0.2) — Uggos| (dashed line).

computed solution. In Figure 3.1 (left), we present the exact solution u to (3.1)
and the corresponding numerical solutions using (3.2) with A = 0.05, 0.01, 0.005
at t = 0.2. From this figure, it is evident that Ug g5, Ugo1 and Ugggs are very
close to u at t = 0.2. This phenomenon re-validates the result that is proved
in Theorem 3.3.4. In Figure 3.1 (right), the difference between u(x,0.2) and U,
at t = 0.2, with A = 0.05, 0.01, 0.005 are shown. From these figures, we can
conclude that the sequence U}, indeed converges to the solution u as h tends to
zero at t = 0.2, as mentioned in Theorem 3.3.4.

In Table 3.1, we display the magnitude of the global discretization error and the

experimental order of convergence in [0, 1] x [0, 0.2] for different choices of h. In
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the second column of Table 3.1, we show the error at the boundary point z = 0,
and in the fourth column the interior error i.e., max U™ —u"|| is shown. In the
third, and fifth columns, the experimental order of convergence corresponding
to the boundary x = 0, interior of the domain are given, respectively. Finally,
the experimental order of convergence corresponding to the global discretization
error is shown in the last column. From Table 3.1, one can easily observe that

the order of convergence of the proposed numerical scheme is one.

Example 3.5.2

In this example, we consider the non-homogeneous case described in Subsection

3.4.1. In particular, we consider (3.27) with ug, d, B, and g are given by

= d(z,s) =1+ —=, B(x,s) =2¢*, x€(0,1), s >0,

1—e—1
-1

g(t) = #7 t>0.

We observe that d and B satisfy hypotheses of Theorem 3.3.4. Therefore (3.28)
is a convergent numerical scheme. On the other hand, it is easy to check that for

the given set of functions, the function

u(z,t) = 5=, x € (0,1), £ >0,

is a solution to (3.27).

0.75 T T T T 0.025

0.02 -

0.015

Absolute difference
o
2

0.005 |- .

X X

Figure 3.2: The exact solution to (3.27) and the approximate solutions using
(3.28) at t = 0.8 with d(z, s), B(z, s), g(t) given in Example 3.5.2; Left: u(z,0.8)
(solid line), U 5 (dotted line), Uy (dash-dotted line), U o5 (dashed line) for
0 <z <1, Right: |u(z,0.8) = Ujgs| (dotted line), |u(x,0.8) — Uy | (dash-dotted
line) and |u(x,0.8) — Uggos| (dashed line).
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h Uy —ug|« order 113132}3\/{HU” —u"||} order |leyllx, order
0.1 0.0451 1.0404 0.0416 0.9425 0.0461 1.0197
0.05 0.0219 1.0202 0.0216 0.9722 0.0227 1.0086
0.02 0.0086 1.0080 0.0088 0.9891 0.0090 1.0031
0.01 0.0042 1.0040 0.0044 0.9946 0.0045 1.0015

0.005 0.0021 1.0020 0.0022 0.9973 0.0023 1.0007

Table 3.2: The magnitude of the global discretization error and the order of
convergence for different choices of h at ¢t = 0.8 with d(z, s), B(z,s), ¢g(t) given
in Example 3.5.2.

We display the exact solution u to (3.27) and the numerical solutions U using
(3.28) in Figure 3.2. In Figure 3.2 (left), the exact solution u to (3.27) and nu-
merical solutions using (3.28) with h = 0.05, 0.01, 0.005 at ¢t = 0.8 are presented.
From this figure, it is evident that U o5, Ug.01 and U g5 are approaching to u at
t = 0.8. In Figure 3.2 (right), we show the absolute difference between u and U,
at t = 0.8, with h = 0.05, 0.01, 0.005. We conclude from these figures that the
sequence of numerical solutions U}, indeed converges to the solution u at ¢t = 0.8
as h tends to 0.

In Table 3.2, we show computational errors and their experimental order of con-
vergence for various choices of h at t = 0.8. In particular, we display the error at
the boundary point £ = 0, the maximum error in the interior of domain and the
global discretization error in the second, fourth and sixth columns of the table,
respectively. On the other hand, the experimental order of convergence corre-
sponding to the error at the boundary point x = 0, the maximum error in the
interior of domain and the global discretization error are presented in the third,
fifth and seventh columns of the table, respectively. From Table 3.2, we observe

that the experimental order of convergence of the proposed scheme is indeed one.

Example 3.5.3

In this example, we take the nonflux boundary condition at the right boundary
described in Subsection 3.4.2, i.e., By = 0. Let the vital rates d, By, By and the

initial data ug be given by

up(x) = e *, d(z,s) =2 —1—4(1_5 >i,

e—1

Bi(z,s) = 2¢*, By(x,8) =0,z € (0,1), s> 0.
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Once again, using the ansatz u(x,t) = X(z)T'(t) and substituting it in (3.30),

we obtain that u(x,t) = ﬁ is the solution to (3.30). Moreover, it is easy to

verify that d, B; and Bj satisfy hypotheses of Theorem 3.3.4. Therefore (3.31) is

a convergent numerical scheme.

-3
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009 L\ 0.058 -1

FN
T

0.08 1 0.499 0.5 0.501
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Figure 3.3: The exact solution to (3.30) and the approximate solutions using
(3.31) at t = 0.8 with d(x,s), Bi(x,s), Ba(x,s) given in Example 3.5.3; Left:
u(z,0.8) (solid line), Uy g5 (dotted line), Ug g1 (dash-dotted line), U o5 (dashed
line) for 0 < x < 1, Right: |u(z,0.8) — Ugs| (dotted line), |u(z,0.8) — U 1|
(dash-dotted line) and |u(x,0.8) — Uggos| (dashed line).

We compare the exact solution to (3.30) and the approximate solutions that are
computed using (3.31) for different values of h at ¢ = 0.8 in Figure 3.3. In
particular, the exact solution to (3.30) and approximate solutions to (3.30) with
h = 0.05, 0.01, 0.005 at t = 0.8 are shown in Figure 3.3 (left). Moreover, we plot
the absolute difference between u(x,0.8) and U, with A = 0.05, 0.01, 0.005 at
t = 0.8 in Figure 3.3 (right). From these graphs, it is clear that U}, approaches
u(z,0.8) as h goes to zero at t = 0.8. Furthermore, one can conclude that the
numerical scheme (3.31) converges.

In Table 3.3, we present the absolute error |ul' — U’| and the experimental order
of convergence for different choice of h at t = 0.8. In particular, we show the
error at the boundary point x = 1 and the maximum error in the interior of
domain in the second and fourth columns, respectively. In the third and fifth
columns, we display the experimental order of convergence corresponding to the
boundary point x = 1 and the interior of domain, respectively. Moreover, the
global discretization error and corresponding experimental order of convergence
are shown in the sixth and seventh columns of the table, respectively. From Table

3.3, one can conclude that the experimental order of convergence of the proposed
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h ||{Um —unl« order 1I<r51<><§v{||U" —u"||} order |leyllx, order
0.1 0.0076 1.2307 0.0141 0.8375 0.0169 0.9790
0.05 0.0032 1.0394 0.0079 0.9180 0.0085 0.9788
0.02 0.0012 0.9942 0.0033 0.9671 0.0035 0.9898
0.01 0.0006 0.9932 0.0017 0.9835 0.0017 0.9947

0.005 0.0003 0.9956 0.0008 0.9917 0.0008 0.9973

Table 3.3: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.8 with d(z,s), Bi(z,s), Ba(z,s)
given in Example 3.5.3.

numerical scheme (3.30) is one.

Example 3.5.4

In this example, we choose the vital rates d, By, By and the initial data ug such
that the solution to (3.30) is known in the closed form. In particular, let wy, d,
By and B, be given by

_(22-1)? 2m—1 | (2w—1)2
U()(LL') =e 6, d(ﬁ, S) =1+ a:4 + 16 - (317”2 5
2f01 e~ 16 dx

Bi(z,s) = By(z,s) = —3 2 2¢€(0,1), s> 0.

(2z—1)2
4f01 e” 16 dx

_(e-1)? | )
_1+24€t6 6 is the solution to

(3.30). On the other hand, it is easy to check that d, B; and By satisfy hypotheses

of Theorem 3.3.4. Therefore (3.31) is a convergent numerical scheme.

Now it is straightforward to verify that u(z,t) =

In Figure 3.4, we plot the exact solution to (3.30) and computed solutions using
(3.31) for different values of h at ¢ = 0.8. In Figure 3.4 (left), the exact, and
approximate solutions to (3.30) with A = 0.05, 0.01, 0.005 at t = 0.8 are pre-
sented. From these figures, it is straightforward to see that u(zx,0.8) is closer to
Uo.oo5 than Uy and U g5 at t = 0.8. In Figure 3.4 (right), we plot the absolute
difference between u(x,0.8) and U}, with h = 0.05, 0.01, 0.005 at ¢ = 0.8. From
these graphs, one can observe that the numerical solutions U}, converge.

We display various discretization errors and their experimental orders of conver-
gence for different choice of h at ¢ = 0.8 in Table 3.4. We present the error at
the boundary point = 0 and the maximum error in the interior of domain in
the second and fourth columns, respectively. In the third and fifth columns, we

show the experimental order of convergence corresponding to the boundary point
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Figure 3.4: The exact solution to (3.30) and the approximate solutions using
(3.31) at t = 0.8 with d(x,s), Bi(x,s), Ba(x,s) given in Example 3.5.4; Left:
u(z,0.8) (solid line), U5 (dotted line), Ug g (dash-dotted line), U o5 (dashed
line) for 0 < x < 1, Right: |u(z,0.8) — Uggs| (dotted line), |u(z,0.8) — Ug1]
(dash-dotted line) and |u(x,0.8) — Ug.gos| (dashed line).

h Uy —ugl« order 1I<I}la%>§v{\|U" —u"||} order |leyllx, order
0.1 0.0120 1.0586 0.0114 1.0457 0.0136 1.1717
0.05 0.0057 1.0290 0.0055 1.0225 0.0060 1.0888
0.02 0.0022 1.0115 0.0021 1.0089 0.0022 1.0367
0.01 0.0011 1.0057 0.0010 1.0044 0.0010 1.0186

0.005 0.0005 1.0028 0.0005 1.0022  0.0005 1.0093

Table 3.4: The magnitude of the global discretization error and the order of
convergence for different choices of h at t = 0.8 with d(x,s), Bi(z,s), Ba(z,s)
given in Example 3.5.4.

x = 0 and the interior domain, respectively. Moreover, the global discretization
error and the corresponding experimental order of convergence are given in the
sixth and seventh columns of the table, respectively. From Table 3.4, it is easy
to observe that the experimental order of convergence of the proposed scheme is

one.

Example 3.5.5
In order to test our numerical scheme, we assume that d, B and ug are given by
up(z) = e —e€®, d(z, s) :2+x2+§, B(z,s) =2¢"+s, z€(0,1), s> 0.

Note that, the given set of functions d, B and wug satisfy hypotheses of Theorem

3.3.4. Hence (3.2) is a convergent numerical scheme.




§3.5. Numerical simulations 87

0.7 . . . . 52102
0.534 [~
06 1™ - 45
0.532 : 4t
05 0.53 35T
2
0.4 0.199 0.2 0.201 87
=) =
5 Tosr
03} 2
2
02f <. sl
1t
0.1
0.5 [
0 ‘ ‘ s e et e S
0 0.2 0.4 0.6 0.8 1 0 01 02 03 04 05 06 07 08 09 1
X X

Figure 3.5: The approximate solutions to (3.1) at ¢t = 0.8 with d(z, s), Bi(z, s),
By(z,s) given in Example 3.5.5; Left: Ugos (dotted line), Ug; (dash-dotted
line), Ug.gos (solid line) for 0 < x < 1 at £ = 0.8, Right: |Ug o5 — Uoos| (dotted
line) and |Ug o5 — Uo1| (dash-dotted line).

In Figure 3.5 (left), we present approximate solutions to (3.1) at t = 0.8 for
h = 0.05, 0.01, 0.005. On the other hand, we display the absolute difference
U —Uogoos| at t = 0.8 for h = 0.05, 0.01 in Figure 3.5 (right). From this figure,
it is evident that U}’s are very close to each other as h goes to zero, and the
limit of the sequence Uy}, indeed converges to the solution of (3.1) as mentioned
in Theorem 3.3.4.
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Chapter 4

A higher order numerical scheme
to a nonlinear McKendrick—Von
Foerster equation with singular

mortality

4.1 Introduction

Among the structured population models, one of the earliest one is due to McK-
endrick (later rediscovered by Von Foerster) which is popularly known as the
McKendrick—Von Foerster equation (see [10, 28, 35, 82, 48, 33]). Assume that
u(x,t), p, B, and a; > 0 denote the population density of individuals with age = at
time ¢, the mortality rate, the fertility rate and the maximum age upto which any
individual can survive, respectively. The age-structured linear McKendrick—Von

Foerster equation is given by

w(z,t) + ugp(x,t) + p(z)u(z,t) =0, 0 <z <a;, t >0,
u(0, 1) / B(x)u(x,t)dz, t >0, (4.1)

uw(z,0) =u(z), 0 <z <aj, 0<z<ay,

This model is an improvement of the unstructured Verhulst model (see [28]). In
the linear model (4.1), the population is assumed to be isolated and consisting of

individuals living in an invariant environment with unlimited resources. Except

89
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their age, all individuals are identical. The fertility and mortality rates in this
model solely depend on age. In reality, individuals compete with one another
due to limited resources, and in this competition distinct advantages are there
for individuals of different cohorts. To incorporate this, Gurtin and MacCamy
developed a nonlinear age-dependent population model in which the mortality and
fertility functions depend on the age and the total population size (see [26]). In
both linear and nonlinear models, it is necessary to consider unbounded mortality
rate in order to obtain that the probability of any individual to survive till or
beyond the maximum age a; is zero (see [42, 7, 41, 43, 44, 6, 16, 34]). However,
this assumption on the mortality rate leads to additional complications while

designing and analyzing numerical schemes.

In this paper, our objective is to propose and analyze a numerical scheme to

find approximate solutions to the following nonlinear age-structured model

u(x,t) + ug(x,t) + p(x, s1(t))u(z,t) =0, 0 <z < ay, t >0,
u(0, ) / B(x, so(t))u(x, t)dz, t >0,

(4.2)
u(z,

, 0<r<ay, 0 <z <ay,
T T

0)
/ Uy (z)u(z, t)de, v=1,2, t >0,

when p has singularity. As before, the unknown function u(z, t) in (4.2) represents
the age-specific density of individuals at time ¢. The death rate is represented by
the function p which depends on the variables  and the weighted population s;.
Similarly, the fertility rate 8 depends on z and sy. Moreover, the fertility rate 3,
the mortality rate p and the competition weights ¢); and 1), are assumed to be
non-negative.

In the theoretical study of (4.1), the survival probability

m(z) = exp < - /Om M(y)dy),

must be zero at the maximum age at x = a4, which indeed suggests us that

| st sty = 4. (43)

This readily implies that p has a singularity at = ay.
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Finding explicit analytical solutions of population models is infeasible except
in very special cases. Therefore many authors proposed numerical schemes to
age-structured model (see [1, 3, 5, 8, 17, 30, 28, 29, 40, 45, 59, 70, 71]). In
particular, the numerical approximation to (4.1) and (4.2) can be obtained by
different methods. Usually, in order to get convergence of the numerical schemes,
uniform bounds on vital functions are required. In [34], authors considered (4.1)
and pointed out that when the mortality function is unbounded, the standard
finite-difference methods fail near the maximum age due to the difficulty in ap-
proximating the survival probability function. To overcome this difficulty, under
some assumptions on p, authors of [3] approximated the survival probability asso-
ciated to (4.1) with a second order method. Using this result in [3], the authors of
[4] obtained a second order finite diffrerence scheme to (4.1). On the other hand,
the authors of [42] have designed numerical solution to (4.2) using a collocation
method (Gauss—Legendre method; fourth order implicit Runge-Kutta method of
two stages) which is a fourth order convergent scheme. In this work, they have

considered a particular type of mortality function p(z, s) = m(x)+M(x, s), where

c

m(x) is the natural mortality which is assumed to be in the form m(x) = =L

for some a > 1, ¢ > 0 (see [32, 42]).

Above mentioned results inspired us to propose finite difference schemes to
(4.2) when p has singularity at z = a;. We present a third order scheme and a
fourth order scheme. The main advantage of our schemes is the following. Our
schemes are convergent though the mortality rate has ‘essential singularity’ at
x = ay. For instance, if p = ™= then the methods described in [42] are not

applicable because the ubounded part of i does not have the structure of ‘pole’.

This chapter is organized as follows. In Section 4.2, we introduce a new
variable A and use it to reduce (4.2) to a nonlocal simple transport equation.
Moreover, we present a finite difference scheme to approximate A and with its
help a finite difference scheme to (4.2) is proposed. We prove the main con-
vergence theorem for the proposed schemes in Section 4.3. In Section 4.4, we
establish the third order convergence of the approximation of A. Moreover, with
the help of results proved in Section 4.4, we present a fourth order approximation
of A in Section 4.5. In addition, we present a fourth order one step method to
approximate X associated to (4.1) in section 4.5. Finally, numerical examples are
given in Section 4.6 to re-validate the convergence results that are proved in the

earlier sections.




92 §4.2. Scheme

4.2 Scheme

Let u be the solution to (4.2). We define

ftu(yﬂﬁ—t,sl(y))dy, t >,
dz,t) =4 ° t (4.4)

x—1

Ofu(y,sl(O))der{u(varc—t,sl(y))dy, t <,
and
Az, t) = exp(—d(z,t)). (4.5)

From the definition, it immediately follows that \ satisfies 0 < A < 1 whenever

i > 0. We now define a new function v(z,t) given by
u(z,t) = Mz, t)v(z,t), 0 <z <ay, t>0. (4.6)

In view of (4.2), it is straightforward to obtain

;

v(z,t) +vy(x,t) =0, 0 <z <ay, t>0,

v(0, 1) / Bz z,t)v(x,t)dx, t >0,

v(z,0) = 0 <z <ay,

)

/ (@)@, oz, £)da.

For each z € (0,a;) and 7 > 0, we know that the first equation of (4.7) satisfies

v(z,t) =v(®—1,t—7T), x,t > T. (4.8)

In fact, our method of finding the numerical approximation to (4.7) is based on
(4.8).

Moreover, one can observe that if v is a weak solution to (4.7) then w is also a
weak solution to (4.2).

As mentioned in the previous section, different methods were proposed to ap-
proximate the survival probability in the finite life-span case. In [3, 4, 6, 42],
the authors considered a particular type of mortality profiles which were widely

employed in biology problems. However, a specific behaviour of the mortality
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rate was assumed near the maximum age, i.e., over an age interval [a*, at), for
the theoretical analysis of these methods. As in [3, 4, 6, 42, 43], we assume that
after age a* the mortality rate p satisfies some growth conditions which will be

described at the end of this section.

Now, given a positive integer M, we define step size h = 3 A‘LQ Let [%J = 4, for
some j, € N and L%J = N. Denote by (x;,t") a typical grid point with z; = ih
and t" = nh, where 0 <7 <2M +1,0<n < N.

At every grid point (z;,t"), let U and V;" denote the approximate solutions to
(4.2) and (4.7), respectively. In other words, each U}* is the numerical approxima-
tion to u(z;, ") and V" represents the numerical approximation to v(x;,t"), i =
0,1,...,2M+1. Moreover, the approximation of the survival probability A(z;, t")
is denoted by Al

At each time level t", n = 0,1,..., N, the numerical solution to (4.2) and (4.7)

are described by the vectors

Ur = [U3, U, .., Ubya), Vo = VR, Ve, Vi) € R2M#2,

Let the vector A" = [Af, AT, ..., A%, 1] approximates the survival probability
A" = [)\(.Z'Q, tn), )\(33'1, tn), c. ,)\(l’QM+1, tn)]
Also, we use this vector notation to represent the evaluations of the fertility rate
ﬂ() - [B(x(]a ')7 6(1’1, ')7 s 7/8<I2M+17 )]
To approximate the integral term that appears in the boundary condition, we use

the following quadrature rule which is a combination of the composite Simpson

% and Milne’s rule. For the vector Y = [Yy, Y1, ..., Yaopr41], we define
4h h 4h
(Y) = 5 (=Yo42V5)+ Y | o (Vait AV aisa +Yair2)+ 5 (2¥ar1—Yaur+2Yanr1).
=2

(4.9)
On the other hand, for any two vectors Y, Z € R?M*2 let Y - Z represent the
usual dot product, i.e., Y - Z = [Yo 20, Y171, ..., Yonre1 Zonr41]-

With this notation, we propose the following numerical scheme to (4.7) based on
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the method of characteristics:

(

V=Vt i=1,2,....2M+1, n=1,2,...,N,
%n:Qh(/g(P]XI)AnVn)’ n:1727"-aN7

0 4.10
Vioz%,izo,l,...,QM-i-l, 0

| Pi=Quw, A" V"), n=1,2,...,N.

Finally, to compute an approximate solution U]* to (4.2), we use the following

relation
Ur=AW", i=0,1,....2M+1, n=1,...,N. (4.11)

The nontrivial part in (4.10) is to find the approximation A} of the survival
probability A? and we postpone the discussion on how to do it to Sections 4.4
and 4.5.

In order to compare the numerical and analytical solutions at each grid point, we
represent the restriction of the solution u to (4.2) to the grid by the vector u™ =
[u(zo, t"), u(wy,t"), ..., u(xhy,q,t")], n = 0,1,...,N. Similarly, the restriction
of the solution v to (4.7) to the grid is denoted by the vector

v" = [v(z0, "), v(21,t"), ... v(2540,t")], n=0,1,...,N.
ForaY = [Yy,Yy,..., Yon1] € R2MT2 we define the following norms
2M+1

Ylh= 3 nyil
1=0

1Y ]loo = _max [Yi].

0<i<2M+1

(4.12)

It is straightforward to verify that

1Y ][ < ai][Y ] (4.13)
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Then from the definition of Qy, given in (4.9), for every Y, Z € R*M*! we have

4h
QY - Z)] <= (2N 2] + [VaZo| + 2|Y3Z5))
M-1
+2

+ ?(2’}/2M—IZ2M—1’ + |Yonr Zont | + 2|Yons+1Z2n01411)

8
=MD

(|1Yai Zoi| + 4|Yais1Zoi1| + |Yair2Zaital)

C»-"lb‘

Throughout the chapter, we make the following assumptions.

(4.14)

(H1) Suppose u°, 3 are continuous, bounded, and, u, 1, 1 are nonnegative
and sufficiently regular so that the solution to (4.2) is in C*([0,a;) x [0,77).

Since 11, 1, are continuous on [0, a;], for every bounded function u, the map
t — s,(t) is a bounded function, i.e., there exists K > 0 such that s,(t) < K for

all t € [0,T], where v =1, 2.
(H2) For a given s(t) € C*([0,T]) , let

(CLT

/M<y781(y+t_aT))dyzoov t>aT7

0
at

/ w(y,si(y+t—ap))dy =00, t<a.

at—t

\

(H3) The function u € C*([0, at) x (0, 00)) and “ are bounded in [0, a;) X

where 1 < p < 4.

(H4) There exists C' > 0 such that 070 < 2 1olds in 0,a4) x

apaq— Oz (p+a)
where 1 <p <3, 1<q¢g<3and p+q< 4.

(H5) The functions
o(y) = 54 (y,51(0)) exp ( - f,u(z,sl(O))dz>,

and

P(y):g—z’f(y,& )eXp< fyu(zsl )z),

a*

are bounded on [a*, as].

(4.15)

[0, K1,

[07 K]?
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Remark 4.2.1 From hypothesis (H2), one can easily get that

lim A(z,-) = 0. (4.16)

T—rayt

Authors of [6, 32, 42] have considered the case in which the mortality rate is in

the form
p(x,s) =m(x) + M(x,s), (4.17)

where the function m is called the natural mortality that has singularity at a;,
and the function M is called the external mortality caused due to resource com-
petition. The mortality p given in (4.17) satisfies hypothesis (H2) due to (4.3).
Moreover, it is easy to observe that p given in (4.17) satisfies (H3)— (H4). There-
fore the mortality rate that we consider in this chapter is more generic one than
that of (4.17).

Following theorem is ensures that at every ¢ > 0 the population density vanishes

at a = ay.

Theorem 4.2.2 Assume (H1), and v(z,0) is a bounded function. Then, v is a
bounded solution to (4.7) on [0,a;) x [0,T]. Further, if u satisfies (H2), then

lim u(x,t) =0, 0<t<T. (4.18)

T—rat

Proof.For, 0 <t < at, (4.7) gives

0(0,)] < / B ()M ol ) de

—t

< 6l [ o0 90as+ [ s 0las)

t
<3l [ 1000, 9)lds + a0
0
Now, from Gronwall’s lemma, we have

[0(0,8)] < atl|Bllscllv(; 0)lloc exp(l|Bllocat), 0 <t < ay. (4.19)

From (4.19) and the fact v(z,0) is bounded, one can get that v is a bounded on
0, at) x [0, 7).
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Finally, since v is bounded, thanks to (4.16), we conclude that (4.18) holds.
Throughout the chapter, we use C' to denote the generic positive constant which

need not be the same constant as in the preceding calculations.

4.3 A convergence result

In this section, we prove a convergence theorem provided we can approximate the
survival probability A. Notice that the quadrature rule Q) given in (4.9) gives
fourth order approximation. However, in the following convergence theorem, we

consider a generic quadrature rule Qj, which is of k-th order accuracy.

Theorem 4.3.1 (Convergence) Assume (H1)-(H5). Moreover assume that
B e CU[0,as] x (0,00)), and p € CI([0,a+) x (0,00)) satisfies (4.3). Let u €
C([0,a4] x [0,T7]) be the solution to (4.2). Assume that A} denote an approxi-

mation to survival probability A(x;,t") at each grid point such that

max [[A" — A", < COh. (4.20)

0<n<N

Furthermore, assume that the quadrature rule Qy is of k-th order accuracy and
N
associated to u and v, respectively, that are obtained using numerical method
(4.10)—(4.11), satisfy

q = max(l, k). Then the numerical approzimations U" and V", n =0,1,...

Y )

max || V" —v" ||< Ch',
0<n<N

and

no__ ,.n < r
Jpax [[U" —u |lo< COR,

where r = min(l, k).

Proof.Step - 1: In this step, we prove that (||V"|1), (||V"|l«) are bounded

sequemnces.
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From the boundary condition in (4.10), it follows that

Vo'l =1Qn(B(PY) - A" - V7|
<[1Blloo [ A™[[oo| @n(V™)]
g 2M+5
<218l A o Y A1V
i=1
<OV, (4.21)
for some C' > 0. From (4.10) and (4.21), one can ecasily get that

V7l < 1+ ORIV

From the discrete Gronwall lemma, there exists C7 depending solely on 1" such
that

[VPly < Crl[VO]l1, 1 <n < N. (4.22)
From the recursive relation, for i = 1,2,...,2M + 1, we can get
VOl ifi>n,
V" = Vil e (4.23)
Vo ™', ifi<n.

From (4.13), (4.21), (4.22) and (4.23), we can conclude that
V"l < ClIV s, (4.24)

for some C > 0.
Step - 2: In this step, we estimate ||[V" — v"|};.

Let the errors due to quadrature formula (4.9) be denoted by 1, €9, i.e.,

S (") =| Qutp, - A" v") / "y @)\ (e, e, ) |< OB

e2(t") =| Qu(B(p(t")) - A" - v") — /Oaf B, p(t") A, tyo(z, t")dx |< CR,
(4.25)
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for some C' > 0 independent of n and h, where n = 0,1,..., N. Furthermore, we

have
|V — (g, t") |=| Vir = o(ao, ") |, i =1,2,...,2M + 1. (4.26)

We define py = Qp(1py - A" - v™) and p§ = Qp(py - A" - v").
On the other hand, from the boundary condition, we obtain

Vg = 0(0,67) |= | Qu(B(PY) - A" V") — / " B, p(") M o, )|

<1 QUB(F) A V") = Qu(B) A" V™)
£ QuBWR) - AT V) — Qu(BUR) - AT VT |

11 QuBWY) - AT V™) — Qu(B((IM) - A" V) |

1 QB - A V) Qhw(( ") A" o) |

£ QuB((E) - A" ") — Qu(B((E™) - A v |

1 QB / B, p(t™) A, D)oz, t)dx |

SC[V" = 0"[[s + ClJA" = X|o + &1 (") + £2(t"). (4.27)

Therefore from (4.26) and (4.27), it is follows that

2M+1
V" ="l = Y BV — (i, 1)
i=0
2M
=RV = v(0,8")[ + > hlVit, — v(wia, t")] (4.28)
1=0

<h(CIIV™ = "l + ClIA" = N'[Jog + 21(87) + &(t"))
+ ||Vn71 _ ’Un_1||1.

For sufficiently small h, the discrete Gronwall lemma gives

V' = = C <||v0 o+ Y [IA7 = Nl +e(8) +62<’fj)}> |
j=0
(4.29)
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where C' is independent of h. In view of [|[V? —2°||, = 0, (7?), (4.25) and (4.29),

we have

V" — ||, <CR", n=0,1,2,...,N,

for some C' > 0 independent of n and h, where r = min(l, k).
Step - 3: We now estimate the error ||[V" —v"||o, n=1,2,..., N.
For, due to (4.25), (4.27) and (4.30), it follows that

Vgt —v(0,t")| < Ch", n=0,1,2,...,N.

From the definition of V", for : = 1,2,...,2M + 1, we can get

V" — v

(]

n |V;0—n - U(xi*n7 O)’? if 4 >n,
(w5, 1")] = i i e
Vo' —o(0,t" ), ifi<n.

Now from (4.31)-(4.32), and V? = v(z;,0), 1 <i < 2M + 1, we obtain
V" —v(z;, t")] < Ch", 0 <n <N,

or
max || V" —v" ||< Ch".
0<n<N

Step - 4: We estimate |[U" — u"||» in this step.

Consider

< AV = vl )] + oz, )| A7 — Az, 7).

Finally, from (?7), (4.33) and (4.34), we conclude that

max ||[U" —u"||w < Ch'.
0<n<N

This completes the proof.

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

Remark 4.3.2 Step 1 of Theorem 4.3.1 readily implies that scheme (4.10) is

stable in L*° norm.
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4.4 A third order approximation of \

In this section, we approximate A in the following three iterative steps. This is a
predictor-corrector method in which we correct the approximate value of A\ twice.
Step—1 First we define

U° = ug(x;), 0<i<2M +1, (4.36)
§3 = Qh(’l/)u : ﬁo)v v=12 (437)
h o . ~0 1 ~0 A0
D! = 23 (G = D0 8)) +4u(( = ), 8)) +u(in 8) | (438)
j=1

DY=D"=D%=D0 1<i<2M~+1,
Dp=Di=Dp=0,0<n<N,

and

~

pr—brl ¢ g (i = 1)h, S + u(in, S| mizt, (4.39)

where ﬁ?:ll and §f‘1 are defined in Step-3. We approximate the survival prob-

ability function A(z,t) at each grid point by

Al = exp(—D}). (4.40)
Now, from (4.10)—(4.11) (on substituting A? = A7), we get U". Set
S’ =9y, -U", v=1,2. (4.41)

Step—2 In this step, we first update D? to obtain

~ o~ h ~n—1 n

Dr =Dyt + 5 [u(G = D 8Y) + a(ih, ST)], miiz 1, (4.42)
We now correct the approximated survival probability function A} at each grid
point by replacing D! with 15?, ie.,

A" = exp(—DP). (4.43)
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As in the previous step, we substitute A” = A" in (4.10)~(4.11) to get U". In

this step, we correct the approximate weighted population to arrive at

S, =, U (4.44)

Step—3 We now make the final correction to D to get

(D = 0n 8T i 8D, n=1ori=1
Dy =9 Dy + g (i =2k, 81 7) +4u((i - DA, 8] ) (4.45)
| +u(ih, S’T)], n,i > 2

We now correct A once more to find

~ ~

Al = exp(—D}). (4.46)

As before, we use (4.10)—(4.11), with A? = /A\;1 to get the updated value of solution
of (4.2) namely U". We now define

S =Quv, - U), v=1,2 (4.47)

Note that the survival probability vanishes only at the maximum age, but a; is
not a grid point.
We prove the following technical lemma, which plays an important role in ob-

taining the convergence of //{? to A

Lemma 4.4.1 Let u € C*([0,a;] x [0,T]) be the solution to (4.2) and Ul be an
approzimation of u(x,t) at every grid points (z;,t") with r-th order accuracy,
where 2 < r < 4. Assume that p € C*([0,a+) x (0,00)) and H%%HOO bounded on
0,a3) x [0, K]. Then there exit 0 < ny, 12, 13 < h such that

tn

' / (Y +wi — " 51(y))dy — g[u((i ~ D, ST7) 4 u(ih. S1)| '

tn—1
3

h
T Ch?, (4.48)

S'j—yQ[,u(m +x — t",sl(m))]
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n

‘ / M(y o — tn,81(y))d?/ — g[lu((l —1)h, S?_l) + “(ih’ S?—l)} ‘

h3
— + Ch?, (4.49)

d2
—‘ 12

<| il + = 7, s()

and

‘ / u(y+z — " s1(y))dy — h [,u((i —2)h, 877?) +4p((i — 1)h, ST71)

3
d* h®
+ p(ih, S?)} ‘ < ‘d—yz;[ﬂ(ns + i — " 51(m))] | 55 + Ch™*, (4.50)
for1 <i<2M +1,1<n<N.
Proof.Since 1, is a bounded function, for n = 1,2,..., N, we have the following
817" = ST = 1Qu(thy - u™™) — Qulyp, - U™ )| < CI. (4.51)

Using (4.51), we obtain

. n— : n— a n— n—
(G = Dh 77 = p((G = Db, ST <[5 [lolsi™ = 877
0s
<CH', (4.52)

for every n = 1,2,..., N, ¢ =1,...,7,. Since the quadrature formula Q, that

we use is of fourth order, it follows that
(@ = 1)h, s1(t"71) — (@ — 1)h, s771)| <Ch*. (4.53)

From the trapezoidal rule (see [9]), we get that, forn =1,2,..., N, and 1 <i <
oM + 1,

n

g [M((i — Dh, s (") + p(ih, sl(t”))] - / p(y +a — 1", 51(y)) dy

tn—1
d2

:d—yZ[ﬂ(y +x; — ", s1(y))]

i (4.54)
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where n; € (0, h).
On the other hand, in view of (4.52)—(4.54) we find that

t’!L

[ o= sy = [~ DR ST + uin )|
< / n(y+ i — " 51 (y))dy — g[u((z’ ~ Dhsy("Y) + (i, sl(t”))] ’
+ g' (GG = Db, sy (87 + ik, s (87)) — (G — )b, 520)
— p(ih, sT)| + g‘,u((i — Dh,st7) + p(ih, st)

—u((i = V)b, STY) — p(ih, SY)

W +1
— +Ch . 4.55
T (4.55)

d? "
S‘d—?ﬁ[u(mﬂi—t s1(m)

This proves (4.48). On repeating similar calculations in the derivation of (4.55),

we can write

i
[ o+ = sy = (6= D7)+ i 517
tn—l
d? . h3 s h| . . . -
< d—yQ[M(Th +x; — ", s1(m2))] T Ch® + §‘u(zh, s1(t")) — p(ih, s (t ))‘
d? B3
< d—yrz[u(nz 25 = 1", 5(2))]| 15 + COB*. (4.56)

This completes the proof of (4.49). We use the same strategy to prove (4.50). For,
from the Simpson’s % quadrature rule (see [9]), we obtain that forn = 1,0,..., N,
i=0,1,....2M+1

g [M((i — )b, 51("2)) + 4p((i — Dhy 51 (7)) + p(ih, sl(t"))}

tn
d* h®
- / w(y +z; — ", s1(y))dy = d—yél[/vb(m +x; — 1", 81(771))]%7 (4.57)

tn—2
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for some 7y € (0, 2h).
Moreover, in view of (4.52), (4.53) and (4.57) we get that

’ /u(y+xi—t"751(y))dy—g[#((i—mha Si7%)

+4p((i — 1), ST + p(ih, S’f)] '
s\/ o+ = 0 )y — (G~ 2)h,51077)
+4p((i — 1)h, s1(t"7Y) + p(ih, sl(t"))] ’

+ g‘,u((i —2)h, s1(t" 7)) +4p((i — )b, s1(¢"71)) + p(ih, s1(t"))

— (i = 2)h, 877%) —4p((i — 1)h, s77") — p(ih, s7)

+ g‘u((z — 2)h, 877%) +4p((i — 1)h, s77) + u(ih, s7)

— p((i = 2)h, 877%) —4p((i — 1)h, ST) — p(ih, ST)

d4 5

h
S’d—w[ﬂ(ﬁs +z; — 1", 51(n3))] 90 Ch™, (4.58)

which readily gives (4.50). This proves the promised result. Besides this lemma

the following standard inequality is also very useful in this section
e —e™Y| < |z —y|, Vo,y >0. (4.59)

In the following, we show that A is indeed a third order approximation of A in
[0, T j*] .

Theorem 4.4.2 Assume hypotheses (H1)—(H5). Moreover assume that
w € C*[0,a4) x (0,00)), %(y, s1(y +a)) >0 and %(y, s1(y + ) > 0 for all
y € [a*,a;) and o > —a*. Let u € C*([0,a4] x [0,T]) be the solution to (4.2).
Then

A" = A" < CRh?, 0<n<N, (4.60)

where C' is a constant independent of n, h.
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In view of the assumptions on the behavior of 4 around the singularity, we prove
Theorem 4.4.2 in two parts. In the first part, we estimate |[A” — A(z;,t")| when
0 <1 < j,. In the other part, we estimate the same near the singularity i.e.,
Je+1<i<2M +1.

Theorem 4.4.3 Assume the hypotheses of Theorem 4.4.2. Then

max |A? — A(z;,t")| < Ch®, 0<n<N, (4.61)

0<i<ju

where C' 1s a constant independent of n, h.
Theorem 4.4.4 Assume the hypotheses of Theorem 4.4.2. Then

max  |[A? — Mz, t")| < Ch®, 0<n <N, (4.62)

Jet1<i<2M+1
where C' is a constant independent of n, h.

Due to the nature of numerical scheme (4.10), at each stage proofs of Theorem
4.4.3 and 4.4.4 depend on each other. In particular, the proof of Step—1 of The-
orem 4.4.4 depends on Step—1 of Theorem 4.4.3. To prove Step—2 of Theorem
4.4.3, we need Step—1 of both the Theorems. We prove Step—2 of Theorem 4.4.4
using Step—2 of Theorem 4.4.3 and Step-1 of both the Theorems. We follow the
same strategy to prove the others steps. We have adopted this way of presenting
proofs because the proof of Theorem 4.4.3 is too long.

Proof of Theorem 4.4.3. Observe that p(z,s) is fourth times continuously
differentiable when = € [0,a*] and it has bounded derivatives with respect to s.
Therefore from (4.48)-(4.50), we obtain that

t'n/
h , - .
‘/ﬂ@“z‘—t”’&(y))d@/—g{ﬂ(@—l)h’Sl 1)+u(zh,sl)Hsoh3,
tn—l

(4.63)

tn

‘ / w(y +z; — ", s1(y))dy — g[u((z — 1)h, ST71) + pu(ih, ST_l)] ’ < Ch?

tn—1

(4.64)
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and

‘ / ,u(y +x; —t", sl(y))dy — % [,u((z —2)h, 5”1%2) + 4,u((z' —1)h, S’f*l)

+ u(ih, ST;)} ' < O, (4.65)
where 2 < r < 4. In view of (4.39), (4.42) and (4.45), we find that
A = A(0,t"), n=0,1,...,N.

Step—1: Consider n=0and 7 =1,..., . Since

[ s O = 37 (G~ 01,81 + (- 1.8
+ u(jh, §f)} ‘ < Ch4, (4.66)

from (4.59), we conclude that
A? — A&, %) < ChY, i =0,1,...,j..

Step—2: Let n=1andi=1,...,J,.
From (4.63) and (4.66), it follows that

d(xi, 1) — D
z;—t! t!

=| / u(y7sl(0))dy+/u(y+xi—tl,sl(y))dy—f??_l

hr . a0 s
_ 5 [M((z — ]_)]’L, Sl) + /«L(lha Sl)i| |
<Ch"' + Ch? < Ch?. (4.67)

Using (4.59) and (4.67), we conclude that

A} = Mai, )] < Ch*, i=0,1,...,j.. (4.68)
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From Step—2 of Theorem 4.4.4, it follows that
A} = My, tY)| < Ch?, =g, +1,...,2M + 1. (4.69)
On taking A} = A}, Ul = U} in Theorem 4.3.1 and using (4.68)—(4.69), we get
10" —u' ||o< CRP. (4.70)
Again from (4.63) and (4.66), we get
|d(z:, ') — D
tl
<| [y +mi =t ss(0)dy = 5 (6 — D BY) + w(in $Y)] | +
0
<Ch*+ Ch* < Ch®. (4.71)
As before using (4.59) and (4.71), we obtain
A} = Nz, t1)| < CB®, i =0,1,..., ju. (4.72)

On taking A] = Kzl and U} = (72-1 in Theorem 4.3.1 and using the similar argument

employed to prove (4.89), we find that
1T — ! ||o< CRE. (4.73)
Now using the same argument, we can easily prove that
AL = Nai, tY)] < CR®, i =0,1,..., ], (4.74)

and

1T — ! [|< CRE. (4.75)

Step—3: Assumen=2andi=1,...,7,.
There are two possibilities in this case, viz., one is ¢ > 2 and the other one is
i € {0,1}. We consider the case i > 2 now, and the other situation can be dealt

in a similar way.
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Using the similar argument to obtain (4.72)—(4.73), we get
A2 — Az, t2)| < CRH®, i =0,1,...,j,. (4.76)

and
1T — ! ||o< CRE. (4.77)

From (4.65)—(4.66) and (4.76)—(4.77), we obtain
|d(;, 1) — D?|
t2
2 h . ~0 . ~1
<[ nly+zi =8 si(y)dy — 5 [u((l —2)h, 8)) +4p((i = 1)h, S})
0

+ u(ih, §f)] +Oh?
<Ch*. (4.78)
From (4.78), thanks to (4.59), it immediately follows that
A2 — Az, t2)] < 2Ch*, i =2,3,..., ..

As before, on substituting A2 = A2 in Theorem 4.3.1, we obtain U2 = U? which
satisfies

| 0° — u? || < CRE. (4.79)

Step—4: In this we employ the induction argument to prove the required the
result.

For, Assume

(s, ™) — D] < Lm - QL%JJ Cyh® + (1 + L%J) Cyh? (4.80)

<Ch®, i=m,...,j., m=0,1,...,n—1,
and

(s, ™) — D] < {z - 2L%JJ O3 + L%J(Jgh‘* (4.81)

<Ch® i=0,1,....m—1, m=0,1,...,n—1,
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where |- | denote the floor function. The motivation for assumptions (4.80)—(4.81)

lies in the calculations presented in the earlier steps. First, consider the case 1 > n.

Now from (4.63) and (4.80), we obtain

z;—t" tm

| / (s 51(0))dy + / wly + 2, — £, s (y))dy — DI}
0 0
h

- [u((i — DR, 8 + plin, §71H)] |

xi_1—t" 1 =1
= L/, u(y,slﬂn)dy—kt/iu(y-%la1——tn_a51@0)dy

0 0
tn

fan h . ~n— . ~n—
+ [ et o= i)y = D= 3 (- DB + u(in 5]

n—1

t’n
h , ~n— L oan—
<| / ply + s =1, 1) dy — 5 (i = DA ST + u(in 81|
tn—1

n—1

+ {(n—l)—ZL 5 JJ01h3+ <1+ Ln;1J>Cgh4

n—1

<Ch? + [(n 1) 2| jJClhf‘ + (1 + L”T_locgh‘* < Ch. (4.82)

Next, we proceed to the situation where n > 1.

Then from (4.64) and (4.81), we readily get

1—1
2

1—1
2

|Cyh* < Ch2.
(4.83)

(i, ") — DV < Ch? + L(z 1 -2| JJOlh3 T

Thus (4.59), (4.82)—(4.83), together give us

IA? — Nz, t")| < Ch? i =1,..., ],
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and as before Theorem 4.3.1 grants us (on substituting A = A7)
|| U" —u"||o< Ch?. (4.84)

Using similar arguments, one can prove that

~ i~ 1 i~ 1
m%ﬂyimgcm+w—n—nz uqm+ﬁ2jam§om,i2m
(4.85)
and
~ i~ 1 —1
m%wywmgom+w—n—n?2”qm+ﬁ |Coht < CH®, i <n.
(4.86)
Using (4.59) and (4.85)—(4.86), we conclude that
A — Ny, ") < Ch?, i =1,..., ] (4.87)
From Step—4 of Theorem 4.4.4, it follows that
A" — Ny, ") < Ch®, i=jo+1,...,2M +1. (4.88)

On taking A} = Al, U! = U} in Theorem 4.3.1 and using (4.87)(4.88), we get

| U" —u” ||o< OB, (4.89)
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Due to (4.65) and (4.80) for i > n, we find that

|d(z:, ") = Dy

z;—t" tm
= / 1(y, s1(0))dy + /u(y +a; — 1", 51(y))dy — DI
0 0
h

_2 [,u((i — )0, 8 ) +4p((i — D)k, 8y ) + p(ib, §T)} |

tn

tn—2

- g [u((i —2)h, 8 ) +4p((i — 1)k, 8} ) + p(ib, §I‘)} |
n—2

| + (1 + L”T_zj>02h4 <CR.(4.90)

On the other hand, using the same strategy from (4.65) and (4.81), we get
d(zi. ") = Dy

o
~ h , ~n—
=| / wly+zi = s1(y))dy — D5 = 5 [u((l ~2)h, 8, )
th—z;
+4u((i =10, 8)7) + u(in 8]
m
:|d($i,2, tn72> + / ,u(y +x; — tn, Sl(y))dy
tn—2
N9 h . ~n—2 X ~n—1 . ~n
- D55 — 3 [u((z —2)h, S, ) + 4#((2 —1h, S, ) + M(Zh’v 51)] |
71— 2 1—2
2 2

<Cr' 4 |(i=2) = 2] [ond + |SSCnt < OB, i< (491)
Finally, from (4.59), (4.90)—(4.91), we conclude that
A" — Nz, ™) < Ch%, i=1,...,j.. (4.92)

This completes the proof.  Now we present a result which is quite useful in

estimating |A — A(z;,t")| for ¢ > j,.

Lemma 4.4.5 Let u € C*([0,a;] x [0,T]) be the solution to (4.2). Assume that
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and p € C*([0,a4) x (0,00)) and satisfies (H1)-(H5). Then the functions

(.t ;)
= dd—;[u(wx—t, i) exp (- I/_tu<z,sl<o>)dz— / p(z+ 3= t,51(2))dz)
and J* |

(.1,

= j—;[u(wx—t, i) exp (- 7tu<z,sl<o>)dz— / p(z+ 3= t51(2))dz)

are bounded on [a*,a;] x [0, K| x [a*, a+].

Proof.We begin with the observation

pw(y+z—t s1(y))

“uly 7 151(0) + Py w1, 510) (s1(9) — 3:(0))
-t = 50) + g o+ o~ b)) [ V)G e, (199

for some 75, ns € (0,y), and

exp { - / (Vo= tosstm) [ 05 oo Jagh < €. (2o

for some positive constant C. From (4.94), we can conclude that

r—t t x

exp(—/u(z,sﬂO))dz—/u(z—Hv—t,sl(z))dz> SC’exp(—/u(z,sl(O))dz>.

(4.95)
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On the other hand, a straight forward computation gives

d2

d—y2[ﬂ(y +z—t,51(y))]

_[82_“ Lods Op (@)282_“ s, Op
~ LOgz2 dy 0x0s; dy /) 0s2 ' dy? s,

} (y+z—t.s(y).  (4.96)

From hypothesis (H4) and (4.96), we get

d2

d—yQ[u(y +a—t,5(y))]

0 d31>282p d*s; Ou

[C’Qa 2}(y+x—t,sl(0)) + K@ 6_3%+ o asj(er:r—t s1(y))-

(4.97)
¢
On multiplying with exp (— f u(z $1(0))dz — [pu(z+z—t, sl(z))dz> on both
0
sides of (4.97) and using (4. 95) we obtain
g(l‘a ta Y, l']*) < 0390(y) + C’47 (498)

where C5 and Cy are constants. Similarly, consider

d4
dy*

4y 4 4 2 4 3 4 4
[0y T D T () DR () O (A
oxt 3xdsy dy 0?x0?%s1 \ dy 0xd3s1 \ dy 0%sy \ dy

iy o=t s1(y))]

Lo Pu sy O das O (il s
0%?x0s, dy? 0xd%sy dy dy? PBsy \ dy ) dy?
Pu ddsy  0*u d?sq 2 dsy d>sq op d*s,
rZ oy SRS —t .
M 0x0sy dy3  0%sy (3( dy? ) dy dy3 > Osy dy* ] (y e ’81<y>)

(4.99)
From (4.99) and (H4) — (Hb), it readily follows that
g(xa ta Y, mj*) S C3P(y) + C14-

for some Cy > 0. This completes the proof. Now we are ready to give a proof of

Theorem 4.4.4 which estimates |A” — A(z;, t")| when the grid points are close to




§4.4. A third order approximation of A 115

the singularity.

Proof of Theorem 4.4.4. We prove the proposition in the case when z; >
a*, t" < x;. The proof in the case when t" > x; > a* follows from the same
argument.

Step—1: Assume n = 0.

Consider the following estimate

A? = Az, 1)) |
= exp{ — ﬁ?} exp{ — % _XZ: [,u((j —1)h, §(1)) + 4#(@ - %)ha §(1))
+ [L(jh, §?)] } — exp{ — /J*,u(y,&(()))d?/} exp{ - /,u(y,sl(()))dy}‘

<

eXp{ - /M(y,sl(()))dy}

Lijx

exp{ _ f);?*} - exp{ . /u(y, 31(0))@}

T exp{ -2 Z (G~ 11,8+ 4u((G — 5)h 8)) + u(in 52)]}
_ exp{ — /,u(y7sl(0))dy} exp{ — ﬁ;)*}
—1) + Ly, J* (4.100)

We now estimate I; and I, separately. Since ‘347@‘ > 0 and from (4.50) and (4.99),

one can obtain

Z;

/u(y,sl(()))dy <

Zj

7
~0

S [u(G— 008 +4u((G — )n.5Y)

2
j=jet1

>

*

+ (i, §1)| +Cnt (4.101)
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Using (4.101) and (4.50), we obtain

exp{ -2 3 (G = DR 8 + 40 (GG — ) ) + u(in. §f)]}

j=det1

I, <

T

—exp{ - /u(y, 31(0))dy}‘

Ljx
T

Sexp{ —/u(y781(0))dy+0h4}

L

i

— % > [u((j ~ 1)k, §))

j=jet1

Ty

+4u(( - %)h, S)) + u(jn, §?)} + /u(y, 81(0))dy‘

SC’eXp{ —/,u(y,81(0))dy}’j—;[ﬂ(773,81(0))]

xj*

h4

(ﬂﬁz‘ _xj*)ﬁ

h4

<C|p(ns)]| (xi — l’j*)ﬁ7 (4.102)

where 13 € (z,, ;).
From the fact that p is a bounded function, and form (4.102), we conclude that
I, < Ch*. From Theorem 4.4.3, it follows that I; < Ch*. Hence form (4.100)

conclude

A0 — Az, 0 < CRY, i=j.+1,....2M + 1.
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Step—2 Suppose n = 1. Consider the following estimate

R h i—1 . N ' 1 N
exp{ — D?*} exp{ -5 [u((y — D)h,8,) +4p(( — ) 5)
h
2

+ u(jh, §[1))} exp{ [u((z —1)h, S ) + p(ih, S )}}
—eXp{ —/u(y, 81(0))dy} exp{ — /_ 1(y, s1(0))dy

L i—1
h » o~
_/,u(erxi—tl,sl(y))dy}Jr exp{ ~ 35 E [,u((j—l)h,S(l))

h
+ap((j - )hS +uth] .

[u( z—1h,s)+u(ih,§?)]}
—eXp{—/ (y,51(0))dy — /uyﬂfz—t 81())619}6@{—13?*}

[L'j* 0
(4.103)

1213 —I— ]4.

Since %% > 0 and from (4.49) and (4.96), one can obtain

aci—tl t!

/ u(y,sl(o))dy+/u(y+wi—tl,sl(y))dy

0

S [0 = 018 + 40— )n ) + (i, 81

(= 1), 1) + u(in, 8))] + Cn2 (4.104)
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Using (4.104), (4.49), (4.50) and the Lagrange theorem, we obtain

i—1

Iﬁémp{—%ézﬂMU—Uh§)+Mﬂ 3 S1) -+ (. 5)]
Z[u((z —jj)*h,s ) + u(ih, S} }}
._%p{_fyit%ﬁ i [ ot
gexp{ _ 7»” (4, 51(0 ] (y+ —tl,sl(y))dy+0h2}
’— %Z+ (G = 0,80 + 4G = ) + u(in. 8Y)]

—3@W—nm§b+ﬂm§ﬁ+—]u@£mm@
+ /u(y +; —t, sl(y))dy’

_C<‘j—;[ﬂ(773a 51(0))]‘(%*1 - xj*)g_;

+ ‘c;d_;[u(m = s ()| (i xi_l)fll_é)

(zi — (4.105)

So'p(n3)+g('rlvtn7n47xj*> xj*)ﬁ,

where 73 € (z;,,2,.1) and 0 <ny < h .
From the fact that p and & are bounded functions, and from (4.105), we conclude
that I, < Ch?. From Theorem 4.4.3, it follows that I3 < Ch*. Using these fact,

from (4.103) we conclude
A} — Moy, t)| < CR?, i=j,+1,...,2M + 1. (4.106)
From Step-2 of Theorem 4.4.3, it follows that

A} = Aoy, tH)| < Ch?, i=1,..., 7. (4.107)
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On taking A} = A}, U} = U} in Theorem 4.3.1 and using (4.106)—(4.107), we get
10" —u' ||o< CR2. (4.108)

Using similar arguments, we can prove that

A} = Mo, 1) S CRP, = ju+1,..,2M +1, (4.109)
1T — ul [|< OB, (4.110)
and
A} — Ny, t)| < CR?, i=j,+1,...,2M +1, (4.111)
1T — ul [|< OB, (4.112)

Step—3 Consider the case when n = 2.
Using the similar arguments to get (4.106), (4.125)—(4.110), we obtain

A7 = Mai, )| S OB, i=ja+1,...,2M +1, (4.113)
0% —u? ||o< OR2, (4.114)

and
A2 — Az, )| < CR®, i=j.+1,...,2M +1, (4.115)

1T — u? [|< OB, (4.116)
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Case—1 Suppose n =2 and 7 = j, + 1.

Consider

A, 11 = Mg, %)

~ h N .
exp{ = B0 besp { = 5 [l — .80 + duliot a0~ 2,81

3

Tjy—1

+ pu(2h + zj 40 — 1, gi)] } - exp{ - / 1(y, 51(0))dy}

0
+2

exp{ — /u(y-i-ﬂ?j*ﬂ —t2>51(?/))dy}'

0

Tjy—1

exp{ - ﬁg*l} —eo{- [ u(y,sl(O))dy}‘

0

<

t2

eXp{ - /u(y +zj, 1 — 1, sl(y))dy}
0
~1

h ~
exp { = 2 [nesn = 2, 8)) + (b + w0 - £2,8))

- 3

+ u(2h + zj 41 — 2, :S’f)] }
t2

— exp{ — /u(y + Tj41 — t2,51(y))dy}

0

exp { - ﬁ;.;l}

=15 + I, (4.117)

Since % > 0 and from (4.50) and (4.96), one can obtain
t2

h . _
/u(y + i = Csi(y))dy < 5 [u(:vj*ﬂ —2,8)) +apu(h + w500 — 2, 8))
’ 2
1

+p(2h+ 2y — 12,8 )} O, (4.118)
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This implies

exp{ a g[ﬂ(l‘j*H — %, §(1)) +Ap(h+ @)1 — 1, §1)

+2

+ 2k + 240 — t27§f)}} - exp{ — /u(y+xj*+1 - t2,81(y))dy}‘
0

Is <

+2

<exp{ - /M(y s — £ 51())dy + Ch?}
0

' B g['u(xj*ﬂ — 1%, ‘/S\(l)) + 4M<h + Tj41 — t2, S'\b + N(Qh + Zj 41— t2, §i)]

t2

+/,u(y+xj*+1—t2,sl(y))dy’

0

<C d—4[u(77 + zj1 — o s1(3))]| (@41 — 25 )h—4
=Yy 3 Jetl , S1(13 Jetl Gu—1 B
h4
SC g(‘rj*+17t277]57 xj*—l) (xj*+1 - Ij*—l)ﬁv (41].9)

where 75 € (0,2h). Using the fact that £ are bounded functions, and from (4.119),
one can conclude that Iy < Ch*. From Theorem 4.4.3, it follows that I; < Ch3.
Using these fact, from (4.117) we conclude

AZ = Mai, )| < CR®, i=j. + 1. (4.120)
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Case—2 We now assume n =2 and j, +2 <17 < 2M + 1.
We estimate

A2 — (@, t2)

< exp{ — ﬁ?} — exp{ — /u(y,sl(()))dy}‘
0
- , ~0 R BN A0
+ eXp{ -5 > [u((y = Dh, 81) +4u((G = 5k, 1) + p(ih, Sl)}
Jj=j«+1
— %[#(% — 2 §?) + 4,u(h + x; — % ,/9\1) + ,u(Qh + oz — 1% gi)]
x;—t2 2
— eXp{ - / 11(y, 51(0))dy — /u(y +a; — 17, sl(y))dy}’
T 0
—I 4 L, (4.121)
and
- _ ~0 1. =0 A0
Iy = eXp{ - > [u((y = Dh, 81) +4u((G = )k, 1) + p(ih, Sl)]
J=jet1
— %[u(mz — 1% §(1)) + 4u(h 4y — 12, §1) + /L(Qh + oy — 12, gi)}
x;—t2 t2
— exp{ - / 1y, 51(0))dy — /,u(y +xz; — t2751(y))dy})
Tjx 0
h4
<Cloto) + €m0 o~ 1), (4.122)

where ng € (z),,x;_2) and 0 < n; < 2h .
From the fact that p and £ are bounded function, and form (4.122) | we conclude

that Iy < Ch*. From Theorem 4.4.3, it follows that I; < Ch3. Using these fact,
from (4.121) we conclude

A2 = Mag, 83)| S CR?, i=ju+2,....2M + 1. (4.123)
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From Step—3 of Theorem 4.4.3, it follows that
A2 — N, D) < CR®, i=1,... 7. (4.124)

On taking A2 = A2, U2 = U2 in Theorem 4.3.1 and using (4.120), (4.123)—(4.124),
we get
1T — wu? [|< OB, (4.125)

Step—4: We complete the proof of the required result using the induction argu-
ment.

For, assume

Awi, ™) = R7'| <[m — 2| T ] JOR® + (1 + L%J)C}#

<Ch® i=j,+1,....,2M+1, m=0,1,...,.n—1. (4.126)
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Consider the following estimate

A7 = Az, 17)]
N h i—n » N . 1 N
= exp{ - D;{}exp{ -5 > [u((y — Dh, 8) +4p((j — ) 5))
j=jet1
Lo h . ‘ : o2
+ u(jh, S?)} } exp { -3 Z [u((z —n+2j—2)h, Sfj 2)
j=1

(i —n+2j — D, 87 ) + p((i — n+ 2))h, 5‘?)] }

exp{ - g[u((z —1)h, §71171) + u(ih, S’\Til)} } - exp{ - /,u(y, 31(0))dy}

z;—t" tm

eXp{ - / 1(y, 51(0))dy — /u(y%—m - t"751(y))dy}‘

Tjx 0

/\O :

< exp{ — Dj*} — exp{ - /u(y,sl(O))dy}‘
0

x;—t" "
eXp{ N / u(y,sl(o))dy_/“(y+xi_tn751(y))dy}

Tjx 0

h i—n - N . 1 R . R
+ exp{ ~ % Z [u((] —1)h, Sg) —1—4#((] - é)hv 5(1)) +M(]h, S(l))}
J=gut1
S [ =22 87 w2 - 0 87
j=1

+u((i —n+2j)h, §Tj)] - g [“((i =8 + u(ih, §T_1)]}

z;—t" "
~0
exp { — Dj*}

_ exp{ — / 1(y, s1(0))dy — /u(y + oz — t”,sl(y))dy}
—Ty + o, (4.127)

:Ej*
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Since % > 0 and from (4.49) and (4.96), one can obtain

z;—t" tm
/ 1(y, 81(0))dy+/u(y+xi—t",sl(y))dy
Tjx 0
h 1. =0 0
<= [u((y —1)h, Sy) +4u((j — 30 S1) + u(jh, 51)]
J=jx+1
+ g [u((z’ 42— Dh 8y ) +4u((i—n+2j — Db, 8, )

=+ 29)h 8] + L= )n 8 + u(in 81N + o,
>

(4.128)
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Using (4.128), (4.49), (4.50) and the Lagrange theorem, we obtain

_ % i [M((] — 1)h, §(1)) +4/L((j _ %)h, g[l)) +,u(jh, §[1J)}

j=iat1

Lo <|exp

—N

n—1

~25-2

(= n+27 =20, 8" )+ 4u(( = n+2j - 1)h, §)

w| =
.

1

(i =+ 2)h. §fj)] _ g[ﬂ((i — DR, 8 + plin, §7f_1)]}

.
Il

x;—t" t"
—exp{— / u(y,sl(O))dy—/u(er:vi—t”,sl(y))dy}‘
Tjx 0
ai—t" ¢
Sexp{— / u(y,sl(O))dy—/u(era:i—t",sl(y))derChZ}
Tjx 0
h , ~0 1. =0 A0
‘ ~5 > [u((y = Dh, 8)) +4p(( = 5k, 1) + p(ih, 51)]
=jut1
_ g [,u((z —n+2j—2)h, §ij_2) +4p((i —n+2j — 1)h, §ij_1)
j=1
| hp oo e o
+u((i—n+2))h,8Y)] - 5@((@— DR 81 ) + (i, 8]
z;—t" tn
+ / u(y,sl(O))dy+/u(y+:ci—t”,sl(y))dy'
a:j 0
x;—t" tm
<eXp{— / u(y,sl(O))dy—/u(erxi—t”,sl(y))dy}
T 0
4 h4
(s 510)]| @i = 21.) 55
e B
+ ‘?[M(Tlg-irxz t 751(779))]’(%—1 xz—n)%
N h2
+ ‘_2[/1/(7710+xz t ,81(7710))]‘(96’1 $171)§>

n n h’2
SC‘P(US) + f(%at angvxj*) + C<x27t 777107mj*)|($i - :L‘] )

— 4.129
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where 15 € (2, Zi—n), N9 € (Ti—pn, Ti—1) and g € (z5-1, 2;) .
From the fact that p, ¢ and £ are bounded functions, and from (4.129), one can
show that ;o < Ch?. From Theorem 4.4.3, it follows that Iy < Ch3. Using these

fact, from (4.127) we conclude

IA? — Ny, t")| < Ch?, i=j.+1,...,2M + 1.
Now it is straightforward to conclude that

A" — Az t)| < Ch®, i=j.+1,...,2M +1, (4.130)
and

A" — Nz, t™)| < Ch®, i=j.+1,...,2M +1. (4.131)

4.5 A fourth order approximation of A

In this section, we propose a fourth order numerical scheme to (4.2) by introducing
two more corrections to the predictor corrector method presented in Section 4.4.
In other words, the method that we introduce here is a five step scheme and first
three steps are exactly the same as those defined in the previous section. Before
defining the new steps, we need to introduce the notation (7::;, 1<n<N, 1<

~n_1 ~
i < 2M + 1. We define Ul.n_f with step size h as U, " with the step size 2 and
2

it is computed using the methods described in the previous section.
Step—4 We define

1 p_1
S, 2 =0Qu, U ?), v=1,2 (4.132)
D, =D 1<i<2M+1,
Dy=Dp=0, 0<n<N,
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=~ h L, gn—3 "

D, =D+ 2 [u((z’ — D Si7) + du((i — 5)h, 81 %) + p(ih, Sl)}, ni>1,
(4.133)

where D' and S7~" are defined in Step—5. We approximate the survival prob-

ability function A(z,t) at each grid point by

-n

A, =exp(=D,). (4.134)

From (4.10)(4.11) (on substituting A" = A, ), we get U, . We now define

-~n

S — 0., U ), v=1,2 (4.135)

Step—5 Finally, we set

(.1 D ) . 1. gn-i
DIt + 2 1 = Vb ST7) + 4u(( = )b, 51 )
—i—u(ih, §1)}, n=1 ori=1,
D:L = h ~n—1
D2+ 2 (= 2m.S77%) +an(— Dn 5, )
| +uin ). n>i>2.
(4.136)
We now correct Kl once more to find
Al = exp(—D7}). (4.137)

As before, we use (4.10)—(4.11) to get the updated value of solution of (4.2)

namely U". We now define

S" = Qu(, U"), v=1,2 (4.138)

Theorem 4.5.1 Assume hypotheses (H1)—(Hb). Moreover assume that
i€ C([0,a) x (0,00)), TH(y,s1(y + @) > 0 and L (y, s1(y + ) > 0 for all
y € [a*,at) and o > —a*. Let u € C*([0,a4] x [0,T]) be the solution to (4.2).
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Then
A" = X"[|oo < ChY, (4.139)

where C' is a constant independent of n, h.

Proof.To prove the theorem, we need to consider all the cases which are consid-
ered in Theroems 4.4.3 and 4.4.4. In this proof, we show the steps which play
crucial role to get the fourth order.

We prove the required result using the induction argument. For, assume

(a5, ™) — D| < L(m 1) - 2LmT_1JJ(th4 + ((@' —m) + LmT_lj>02h5
(4.140)

<CR®, i=m,....j., m=0,1,...,n—1,
and

(s, ™) — D gp - 2{%”@# + L%J(Jgff (4.141)

<Ch? i=0,1,....m—1, m=0,1,...,n— 1.
Using (4.65) and Theorem 4.3.1, we obtain
[d(zi,t") = D;|
t" h
, " N
S' / w(y+ i — ", s1(y))dy — 8 [u((z — 1A, ST +4p((i — §)h, S, ?)
tn—1

N

+ u(ih, Sl)} ‘ + Un— 1) — 2[”;”01}1% ((@' —n)+ Ln;1J>02h5

n—1
2

n—1
2

<Ch* + L(n— 1) —2| JJ(thu <(i—n) + J>02h5. (4.142)




130 §4.5. A fourth order approximation of A

Similarly, using (4.65) and Theorem 4.3.1, we get

|d(;, t") = Dy'|

~n—1

S’ /u(y+xi—t”,sl(y))dy—g[u((i—%h,s’f”)+4u((i—1)h751 )

+ u(ih, §T)] ‘ + L(n —9) 2|1 QJJCJ# + (1 + LnT_QJ>CQh5
<Ch® + L(n— 2) —2Ln;2JJClh5+ <(z' —n)+ L”;2J>02h5 < O,

(4.143)

Using the similar arguments to get (4.92) and (4.131), from (4.143) one can

obtain
A — N, t")| < Ch*, i=4,+1,...,2M +1, n=0,1,...,N. (4.144)

This completes the proof.

4.5.1 A special case

In this subsection, we discuss approximations of A when pu is depends solely on
z, ie., p(x,s) = f(x), v € [0,1). Then (4.4) reduces to

) = [ F)dy. @ € 0.0 (4.145)
and
As(z) = exp(—ds(x)), = €[0,a4). (4.146)

To approximate A, we use the composite Simpson’s % quadrature rule. For, we

define '
Gi = QZ [f((j—l)h)+4f((j—%)h) +f(jh)] (4.147)

j=1
As before, we define
Agi = exp(—G,). (4.148)
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We are ready to state following proposition whose proof can be given using the

arguments given in Theorems 4.4.3-4.4.4.

Theorem 4.5.2 Let f € C*0,a;) and f™) denote the fourth derivative of f.
Assume that f satisfies the following assumptions.

(H4) The function f@)(x) >0, for x € [0, ay),

(H5) The function o(x) = ) (z) exp(— fx f(y)dy), is bounded on [a*,ay].

Then for given T > 0, we have

[As — Aslloe < CRY (4.149)

4.6 Numerical simulations

In order to validate the effectiveness of the proposed numerical scheme, we present
some examples in this section. To compute the experimental order of convergence,

we use the following formula

log(E}) — log(E%)

order =
log 2

)

where F), denotes the magnitude of the error with step size h.
All the computations that are presented in this section have been performed using
Matlab 8.5. In all the examples, we have taken a; = 1, and 9y (z) = ¢q(x) = 1.

Example 4.6.1

In order to test our numerical scheme, we assume that ug, u, and 3 are given by

uo(x) = exp (— [ eTidy), p(x) = e7F +as, B, s) = b1 — 1), w € [0,1), 5 >0,

1 1
where 2 = [exp (— [ eTvdy)dx ~ 0.2553, and = J(1—2)*exp (— [y eTvdy)dx ~
0 0
0.1720. L
Note that, for these set of functions u(z,t) = W is a solution to (4.2).
From (4.4)—(4.5), we get
u(z, t)e r, x>t

Az, t) =
uw(z, t)(1—x+1t), z<t
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h JUY —uN| order(u) [[AY —AN|| order())
0.1/2 47221 x 107 3.6091 6.0334 x 107°  2.6719
0.1/3 1.0381 x 107*  3.3609  2.1055 x 107> 2.8290
0.1/4 3.8698 x 107>  3.2711  9.4679 x 1076 2.8858
0.1/5 1.8376 x 107>  3.2052  5.0143 x 1075 2.9146
0.1/6 1.0104 x 1075  3.1450 2.9631 x 1076 2.9321
0.1/8 4.0087 x 107%  3.0197 1.2810 x 1075 2.9525

Table 4.1: The order of convergence for different choices of A with wug, ¢ and g
given in Example 4.6.1 using (4.36)—(4.47) and (4.10)—(4.11)

h [UY —uN| order(u) [[AY =AY, order()\)
0.1/2 1.6668 x 10~*  4.9733  1.7616 x 107°  3.7483
0.1/3 22412 x 1075 4.9871  3.9422 x 1075 3.8728
0.1/4 5.3061 x 1075 4.7665 1.3109 x 1075  3.9248
0.1/5 1.7338 x 1075 4.2071  5.5028 x 10~"  3.9527

Table 4.2: The order of convergence for different choices of ug, h with p and g
given in Example 4.6.1 using (4.132)—(4.138) and (4.10)—(4.11)

Now it is easy to verify that u, v, u and [ satisfy the hypotheses of Theorem
4.3.1. Hence (4.10) is a convergent numerical scheme.

In Table 4.1, we display the discretization error and the experimental order of
convergence using (4.36)—(4.47) and (4.10) for different choices of h. On the other
hand, we show the discretization error and the experimental order of convergence
using (4.132)—(4.138) and (4.10) for different choices of h in Table 4.2. In the
second column of the both tables, we show the maximum error of [|[U"Y — 4" ||
and in the fourth column of the both tables the maximum error of [|AY — AV ||
is presented at t = 1. From Tables 4.1 and 4.2, one can conclude that the orders
of convergence of proposed schemes (4.36)—(4.47) and (4.132)—(4.138) are three
and four, respectively. Moreover, from the second and fourth columns of Tables
4.1 and 4.2, one can conclude that the approximate solution U, and A indeed
converge to solution u, and A, respectively as h — 0.

In Figure 4.1, we display the exact and computed solution to (4.2) and (4.5).
Moreover, we present the absolute difference between the exact solutions and
the corresponding numerical solutions in Figure 4.1. In particular, we show the
exact and approximate solutions to (4.2), and (4.5) in Figure 4.1(a) and 4.1(c),
respectively, using (4.36)—(4.47) and (4.11) with A = 0.025 at ¢t = 2,3. The
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Figure 4.1: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the third order approximation of A at t = 2, 3 for 0 < x < 1 with
w(zx,s), B(x,s) given in Example 4.6.1; (a): u(x,2),u(z,3) (solid line), U(x,2)
(dash-dotted line), U(x,3) (dotted line), (b): | u(x,2) — U(z,2) | (dash-dotted
line), | u(z,3) — U(x,3) | (dotted line), (c): A(z,2), A(z,3) (solid line), A(zx,2)
(dash-dotted line), A(x,3) (dotted line), (d): | A(z,2) — A(z,2) | (dash-dotted
line), | A(z,3) — A(z, 3) | (dotted line).

absolute differences |u(z,t) — U(x,t)| and |A(z,t) — A(z,t)| at t = 2,3 with
h = 0.025 are presented in Figure 4.1(b) and Figure 4.1(d), respectively.

Similarly, we display the exact and computed solutions to (4.2) and (4.5), and
their absolute differences at different times in Figure 4.2. In Figure 4.2(a), we
present the exact solution to (4.2) and the approximate solutions to (4.2) using
the fourth order method (4.132)—(4.138) and (4.10) at ¢t = 2,3 with h = 0.025.
We also show the exact and the computed solutions to (4.5) in Figure 4.2(c). On
the other hand, we show the absolute differences |u(x,t) — U(z,t)| and |A(z,t) —
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Figure 4.2: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the fourth order approximation of A at ¢ = 2, 3 for 0 < x < 1 with
p(x,s), B(x,s) given in Example 4.6.1; (a): u(zx,2),u(z,3) (solid line), U(x,2)
(dash-dotted line), U(x,3) (dotted line), (b): | u(z,2) — U(x,2) | (dash-dotted
line), | u(x,3) — U(x,3) | (dotted line), (c): A(x,2), A(z,3) (solid line), A(x,2)
(dash-dotted line), A(z,3) (dotted line), (d): | A(x,2) — A(z,2) | (dash-dotted
line), | A(z,3) — A(z,3) | (dotted line).

A(z,t)| at t = 2,3 with h = 0.1/4 in Figures 4.2(b) and 4.2(d), respectively.

Example 4.6.2

In this example, we consider a standard type of unbounded mortality rate that
is considered in literature. In order to test the efficacy of our numerical scheme,

we assume that ug, ¢, and [ are given by

up(z) = (1 —2)°, p(x) = 2= + 1852, B(x,s) =7(1 —x), z €[0,1), s > 0.

Note that, for these set of functions u(x,t) = (\1/71%5 is a solution to (4.2). From
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h JUY —uN| order(u) [[AY —AN|| order())
0.1/3 28225 x 10°*  3.7548 22193 x 1075  2.6891
0.1/4 9.1319 x 107> 3.5184 1.0594 x 107°  2.8136
0.1/5 3.9448 x 107> 3.3576  5.7497 x 1070 2.8686
0.1/6 2.0908 x 107> 3.2845 3.4413 x 1070  2.8988
0.1/7 1.2419x107° 3.2370 22150 x 1076 2.9178
0.1/8 7.9692x 1070 3.2014 1.5069 x 1075 2.9308

Table 4.3: The order of convergence for different choices of A with wug, ¢ and g
given in Example 4.6.2 using (4.36)—(4.47) and (4.10)—(4.11)

h [UY —uN|w order(u) [[AY =AY, order())
0.1/2 95184 x 10~*  5.0938 2.7872x 10™°  5.0601
0.1/3 1.2293 x 10~*  5.2508 4.6183 x 1075  5.2877
0.1/4 27872 x 1075 54257 1.0488 x 1075 5.4758
0.1/5 8.6093 x 1075  5.6448  3.2029 x 10~"  5.6677
0.1/6 3.2285 x 10~ 5.9418 1.1823 x 10~7  5.9255

Table 4.4: The order of convergence for different choices of ug, h with p and g
given in Example 4.6.2 using (4.132)—(4.138) and (4.10)—(4.11)

(4.4)-(4.5), we get that

—x+t

u(z,t)e 2z, x>t

u(z,t)V1—az+t, x<t

Az, t) =

One can easily check that ug, p and g satisfy the hypotheses of Theorem 4.3.1.
Hence (4.10) is a convergent numerical scheme.

In Table 4.3, we present the computational error and the experimental order of
convergence using (4.36)—(4.47) and (4.10) for different choices of h. Similarly, we
display the computational error and the experimental order of convergence using
(4.132)—(4.138) and (4.10) for different choices of h in Table 4.4. In particular,
we show the maximum error |[UY — u||o at t = 1 in the second column of
the both tables. Besides this, the maximum error of [|[AY — AV|| at ¢ = 1 is
presented in the fourth column of both the tables. From Tables 4.3 and 4.4, we
can observe that the orders of convergence of proposed schemes (4.36)—(4.47) and
(4.132)—(4.138) are three and four, respectively. The second and fourth columns
of Tables 4.3 and 4.4 show that (U*, A7) indeed converges to (u}', A'), as h — 0.
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Figure 4.3: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the third order approximation of A at t = 2, 3 for 0 < x < 1 with
w(z,s), B(x,s) given in Example 4.6.2; (a): u(z,2),u(z,3) (solid line), U(zx,2)
(dash-dotted line), U(x,3) (dotted line), (b): | u(z,2) — U(x,2) | (dash-dotted
line), | u(x,3) — U(x,3) | (dotted line), (c): A(x,2), A(z,3) (solid line), A(x,2)
(dash-dotted line), A(x,3) (dotted line), (d): | M(«x,2) — A(x,2) | (dash-dotted
line), | A(z,3) — A(z, 3) | (dotted line).

In Figure 4.3, we present the exact and computed solutions to (4.2) and (4.5) and
their absolute differences. To be more specific, we plot the exact solution and the
computed solutions to (4.2) using (4.36)—(4.47) and (4.10) at different time levels
with h = 0.0.025 in Figure 4.3(a), and the corresponding absolute error in Figure
4.3(b). We present A and its approximation A using (4.36)—(4.47) at t = 2,3 in
Figure 4.3(c), and the corresponding |A — A| in Figure 4.3(d).

As before, the exact solutions to u and A, and their approximated solutions using
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Figure 4.4: The exact solutions and the approximate solutions to (4.2) using
(4.11) and the fourth order approximation of A at ¢t = 2,3 for 0 < z < 1 with
w(zx,s), B(x,s) given in Example 4.6.2; (a): u(x,2),u(z,3) (solid line), U(x,2)
(dash-dotted line), U(x,3) (dotted line), (b): | u(x,2) — U(z,2) | (dash-dotted
line), | u(z,3) — U(x,3) | (dotted line), (c): A(z,2), A(z,3) (solid line), A(z,2)
(dash-dotted line), A(x,3) (dotted line), (d): | A(z,2) — A(z,2) | (dash-dotted
line), | M(z,3) — A(z, 3) | (dotted line).

(4.132)—(4.136) and (4.10) at t = 2, 3 with A = 0.025 are displayed in Figure 4.4(a)
and Figure 4.4(c), respectively. We show the corresponding absolute differences
|lu — Ul and |A — A| in Figure 4.4(b) and Figure 4.4(d), respectively.
Example 4.6.3
Let the vital rates p, 8 and the initial data ug be given by

up(z) = e do (“(y)fl)dy, pu(x) = i, p(x) = 3.9156e~*, x € [0,1).

One can easily check that u(z,t) = e*'~Jo #®)% ig a solution to (4.2). From
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h JUY —uN| order(u) ||[As — Xl order())
0.1/2 25302 x 10™°  5.5334  2.0396 x 107°  3.9304
0.1/3 25580 x 1075 52011 4.1738 x 1077 3.9677
0.1/4 5.4632 x 1077 4.8602 1.3378 x 1077  3.9816
0.1/5 1.7110 x 1077 4.5834 55131 x 1078  3.9882
0.1/6 6.9538 x 107%  4.4077 2.6676 x 107%  3.9918
0.1/8 1.8810 x 107  4.2093  8.4686 x 1077  3.9953

Table 4.5: The order of convergence for different choices of h with u, p and g
given in Example 4.6.3 using (4.147) and (4.10)—(4.11)

(4.5), we get that \(z) = e~ Jo #®)dy,

Since ug, p and [ satisfy the hypotheses of Theorem 4.3.1, (4.10) is a convergent
numerical scheme.

In Table 4.5, we show the magnitude of the computational error and the exper-
imental order of convergence for different choices of h at ¢ = 1. In the second
and fourth columns, we present the maximum absolute error [|[U" — u|,, and
|As — Asl|oo, Tespectively at ¢ = 1. The corresponding experimental orders of
convergence are shown in the third and fifth column of the table, respectively.
From Table 4.5, we can observe that the order of convergence of the proposed

numerical scheme (4.10) and (4.146) is indeed four.

x107

Absolute difference (JU -ul)
7/

0.2000 0.2 0.2000 |

0.4
Space variable (x)

0.4 0.6 0.8 1 0 0.2
Space variable (x)

0 0.2

Figure 4.5: The exact solution to (4.1), and the approximate solutions using (4.11)
and (4.147) with p(z, s), B(z, s) given in Example 4.6.3; Left: u(x, 1) (solid line),
Ug.o (dash-dotted line) for 0 < = < 1, Right: | u(z,1) — U | (solid line).

In Figure 4.5, we show the exact and computed solutions to (4.1) and their ab-

solute differences with h = 0.025 at t = 2, 3. In particular, we display the exact
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h |UY —uV| order(u) ||Ag—Aslloc  order())
0.1/4 1.8138 x 107  5.4199  2.1744 x 107°  3.9990
0.1/6 21157 x 1075 5.9903  4.2981 x 1071  3.9995 >y =5
0.1/8 4.2368 x 1077  7.5077  1.3599 x 1071*  3.9994
0.1/4 4.4947 x 1075 59740  3.2233 x 107°  3.9914
0.1/6 4.4745x 1077 10.9143 6.3934 x 107*°  3.9950 3~y =4
0.1/8 7.1506 x 107®  5.0687  2.0266 x 1071  3.9966
0.1/4 1.3231x10°% 59153  6.6043 x 10~%  3.0000
0.1/6 1.3355 x 1077  5.7828  1.9568 x 10~%  3.0000 »~v =3
0.1/8 21924 x 1078 4.4181  8.2554 x 10~?  3.0000

0.1/4 1.0130 x 1075 4.0587  3.4820 x 10"  2.5000
0.1/6 1.4755 x 1077  2.7357  1.2636 x 1077 2.5000 pvy=2.5
0.1/8 6.0789 x 1078 2.4910  6.1554 x 10~®  2.5000

Table 4.6: The order of convergence for different choices of A with u, p and g
given in Example 4.6.4 using (4.147) and (4.10)—(4.11)

solution and computed solutions to (4.1) using (4.10) and (4.146) at ¢ = 2,3
with h = 0.025 in Figure 4.5(left). In Figure 4.5(right), we present the absolute
difference |u — U| when h = 0.025.

Example 4.6.4

In this example, we consider a standard type of unbounded mortality rate that
appears in the literature. In order to test the efficacy of the numerical scheme,

we assume that ug, ¢, and [ are given by

wole) = (1— 2%, p(e) = 2=, B(z) = (+2)(1—2), € [0,1), 5> 0.
For the given set of functions, one can observe that u(x,t) = (1 — x)%e* " is

the solution to (4.1). From (4.145)—(4.146), we get that A(z) = (1 — x)7. It
is easy to verify that p satisfies the hypotheses of Theorem4.5.2 when v > 5.
Moreover, if v € [3,5), then u satisfies the hypotheses of the main theorems of
[3, 4]. In Table 4.6, we display the magnitude of the computational error and
the experimental order of convergence for different choices of h and v at t = 1.
We show the maximum absolute error [|[UY — 4|, and |[As — Ao at ¢ =1
in the second and fourth columns of the table, respectively. In addition, the

corresponding the experimental orders of convergence are presented in the third
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and fifth columns of the table, respectively. From Table 4.5, we can observe that
the order of convergence of the proposed numerical scheme (4.10) and (4.146)
is min{7,4}. On the other hand, the order of the numerical scheme proposed
in [3, 4] is at most 2. Though the hypotheses of Theorems 4.3.1 and 4.5.1 are
not satisfied when 7 € [3,5), experimental results suggest that our method gives
better order of convergence. Therefore from these calculations, it evident that
proposed numerical scheme (4.10) and (4.146) is more efficient than the scheme

proposed in [3, 4].




Conclusion

An implicit finite difference scheme is presented to approximate the solution to the
McKendrick—Von Foerster equation with diffusion (M-V-D) (2.1) in which non-
local nonlinear Robin boundary conditions is considered at both the end points.
We have introduced the notion of upper and lower solutions and used effectively
with the aid of the discrete maximum principle to study the wellposedness and
stability of the numerical scheme. A relation between the numerical solutions to
the M-V-D and the steady state problem is established. Moreover, we have pro-
posed an implicit scheme to find an approximate the solution to the M-V-D with
a special type of nonlinearity (see (2.41)). Using the similar technique, we have
established a relation between the numerical solutions to (2.41) and its steady
state problem.

We have proposed a finite difference numerical scheme to the M-V-D (3.1) in
which the Robin condition is prescribed at the boundary point x = 0, and the
Dirichlet condition is given at = a4. Furthermore, we have proved that the
proposed numerical scheme is stable restricted to the thresholds Rj,. Moreover,
we have established that the given scheme is indeed convergent using a result due
to Stetter. The result is extended to the M-V-D with nonlocal nonlinear Robin
boundary conditions at both the end points in a bounded domain (see (3.30)).
Using the similar technique, one can easily obtain a convergent scheme when (3.1)
has nonlinear, nonlocal Neumann boundary condition at x = 0. However, it is
an interesting problem to design a convergent scheme for (3.1) in the unbounded
domain [0, 00).

We presented higher-order numerical schemes to the McKendrick—Von Foer-
ster equation (4.2) when the death rate has singularity at the maximum age.
Using the method of characteristics (non-intersecting), we proposed the third,
fourth-order schemes which are multi-step methods with appropriate corrections

at each step. In fact, the convergence analysis of these schemes is discussed in
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detail in the thesis. Moreover, numerical experiments are provided to validate

the orders of convergence of the proposed third-order and fourth-order schemes.
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