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Abstract

The existence of normal marginals and normal conditionals in the traditional bivari-
ate normal distributions is widely known. It makes it natural to wonder if Poisson
marginals and conditionals can experience a similar phenomenon. However, it is known
from studies on conditionally specified models that Poisson marginals and both con-
ditionals would only be seen in the scenario when the variables are independent. This
thesis discusses a bivariate pseudo-Poisson model in which the conditional density
of one variable and the marginal density of the other are both Poisson forms. These
models are commonly used to model bivariate count data with a positive correlation.
Moreover, such models have simple, flexible dependence structures and generate a
sufficiently large number of parametric families. It has been a strong case made for
the pseudo-Poisson model as the initial option to take into account when modeling bi-
variate over-dispersed data with positive correlation and having one of the marginal
equi-dispersion. In the current thesis, we look at separate gamma priors for the pa-
rameters as well as pseudo-gamma priors for the Bayesian estimation of the unknown
parameters of bivariate pseudo-Poisson models. Both comprehensive and sub-model
investigations of potential conjugacy are verified, and conjugate priors can be found in
some unique sub-instances. The effectiveness of Bayesian parameter estimates employ-
ing a range of priors, both informative and non-informative, is demonstrated through
a simulation study. Two well-known bivariate count data sets are re-analyzed to illus-
trate the methodologies. Similarly, we also considered a bivariate pseudo-exponential
model initially introduced by Arnold and Arvanitis (2019) for Bayesian analysis us-
ing pseudo gamma priors and independent gamma priors for the parameters. We also

include an application to the Infant mortality and GDP data set.
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Yet, before we start fitting, it is necessary to test whether the given data is compat-
ible with the assumed pseudo-Poisson model. Hence, in the present note, we derive
and propose a few goodness-of-fit tests for the bivariate pseudo-Poisson distribution.
Also, we emphasize two tests, a lesser-known test based on the supremes of the ab-
solute difference between the estimated probability generating function and its empir-
ical counterpart. A new test has been proposed based on the difference between the
estimated bivariate Fisher dispersion index and its empirical indices. However, we
also consider the potential of applying the bivariate tests that depend on the generat-
ing function (like the Kocherlakota and Kocherlakota and Mufioz and Gamero tests)
and the univariate goodness-of-fit tests (like the Chi-square test) to the pseudo-Poisson
data. However, we analyze finite, large, and asymptotic properties for each of the
tests considered. Nevertheless, we compare the power (bivariate classical Poisson and
Conway-Maxwell bivariate Poisson as alternatives) of each of the tests suggested and

also include examples of application to real-life data.

Keywords: Bivariate Pseudo-Poisson, MLE, Square Error Loss, Bayesian Analy-
sis, marginal and conditional distributions, Empirical probability generating function,
Goodness-of-fit, x?-goodness-of-fit, Neyman type A distribution, Index of dispersion,

Parametric Bootstrap estimators, Consistency estimation, Thomas distribution.
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CHAPTER 1

Introduction

The classical bivariate normal distribution is one in which both conditionals and marginals
are normally distributed. That is, if random variables (X, Y) has bivariate normal dis-
tribution, X ~ .4 (normal distribution), Y ~ .4 and for each x € IR, the conditional
distribution of Y given X = x ~ .4/, while for each y € RR, the conditional distribution
of X given Y = y ~ .4 also. Further the distributions of X and Y are also normal.
One more example with a similar properties is the Mardia Pareto distribution in which
both as marginals and conditionals have the Pareto form with dependence structure
detailed in Mardia [25]. The Mardia bivariate Pareto with parameters 61,0, and 6 all

of which are positive is given by

(006 +1)(6102)"]

4 /9 /6 /6 —
f(x Yo 72 ) (sz + 91]/ — 9192)9+2

(1.0.1)

where x > 07 > 0andy > 6> > 0, 6 > 0, otherwise zero, and call it a bivariate Pareto
distribution of type I. Note that for the above bivariate density, both marginal and
conditionals again follows the Pareto distribution. The correlation between X and Y is
positive. In general, the density function of k-dimensional random variables (X3, ..., Xi)

is a Pareto distribution of type I with parameters 64, ..., 0 and 6 is given by

1
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o) = 06 +1)..(6+k—1)) 1.02)

() {(ztio ) o)™

where x; > 0; > 0,fori =1,2,...,k and 6 > 0, otherwise zero.

Now, it seems sensible to wonder if Poisson conditionals and Poisson marginals
can experience a similar effect. A simple illustration of this type has two independent
Poisson variables, X and Y. In reality, there are no other cases. Regarding the following

theorem by Seshadri and Patil [35], which states that:

Theorem 1.1. For a given dependent bivariate distribution of X and Y, the following state-

ments hold:
e If X is Poisson, then the conditional distribution of X given Y = y is not Poisson.

* If the conditional distribution of Y given X = x is Poisson, then the marginal distribution

of Y is not Poisson.

For the detailed proof in Seshadri and Patil [35] page 216. That is, Seshadri and
Patil [35] shows that it is impossible to have a non-independent bivariate distribution
in which on X has a Poisson distribution and its conditional distribution of X given
Y = y is also Poisson distributed for each y. That is, there exists no bivariate random
variables (X, Y) in which X and Y are not independent with Poisson marginals as well
as Poisson conditionals. They only have Poisson marginals in the case of independence
(which could be deduced using the Seshadri-Patil result).

In addition, Arnold, Castillo, and Sarabia [3] (for example) like wise consider a
bivariate random variables (X,Y), the conditional distribution of Y given X = x is
Poisson for each x, while the conditional distribution of X given Y = vy is also Poisson
for each y. It is called Poisson conditional distributions. In Ghosh et al.[16], one can
tind more information on conditional Poisson model properties and applications. For
the bivariate pseudo-Poisson distribution random variables (X, Y) one of the marginals
say X has Poisson distribution, while the conditional distribution of Y given X = x is

Poisson distribution. It is perfectly fit the bill.

2



1.1 Bivariate pseudo-Poisson models

1.1 Bivariate pseudo-Poisson models

The bivariate pseudo-Poisson model will be discussed in the section that follows. It

was first introduced in Arnold and Manjunath [4], page 2307.

Definition 1.1. A bivariate pseudo-Poisson distribution exists for a 2-dimensional random

variable (X,Y) if there exists a positive constant Ay such that
X~ 2(M)
and a function Ay : {0,1,2,...} — (0,00) such that, for every non-negative integer x,
Y| X =x~ P(Ay(x)).

Indeed, no constraints on the A,(x) allow us to incorporate a variety of properties
such as positive and negative correlation, for instance over and equi-dispersions.

Hence, the joint probability mass function of X and Y is given by

e MA} e 2 Ay (x))Y
0; Otherwise

x=0,1,2,.;y=0,1,2,..

Example 1. Consider, a parametric family of choices for Ay(x) that will admit positive and

negative correlation between X and Y. For example if we consider
Ay (x;6,8) =1+ (20 —1)(1 — e %%). (1.1.1)

Where 6 > 0, the above function will be increasing if 0 > 1/2, decreasing if 6 < 1/2, and
constant if 0 = 1/2. Consequently, X and Y will have positive correlation if > 1/2, negative
correlation if 0 < 1/2 and will be uncorrelated if 0 = 1/2. A more general model with the
same properties can be obtained by replacing 1 — e=%* by F(x;8), a parametrized family of

distribution functions with support (0, o).
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Here, we restrict the shape of the function A;(x) to a polynomial with positive co-
efficients. In particular, the simple form we assume is that Ay(x) = A, + A3x, then the

bivariate distribution shown above will have the following form:
X~ P(M) (1.1.2)

and x € {0,1,2,...}
Y‘X =X~ gz()\z + )\33(?). (1.1.3)

For this model, the parameter space is {(A1,A2,A3) : Ay > 0,A2 > 0,A3 > 0}. If
we chose A3 = 0, then the corresponding random variables are independent. Then the

joint probability mass function is given by

e M e M2t My Agx)Y
0; Otherwise.

x=0,1,2,.;y=0,1,2,..

For this bivariate pseudo-Poisson distribution, the probability generating function

(p.g-f.) is given by

G(t, by) = 2l Dehlte™ 2 V=1]. 4 o R (1.1.4)
Remark 1. As noted in Arnold and Manjunath [4], for the case Ay = 0, the bivariate pseudo-
Poisson distribution reduces to the bivariate Poisson-Poisson distribution. The corresponding
Poisson-Poisson distribution was originally introduced by Leiter and Hamdani [24] in mod-

elling traffic accidents and fatalities count data. We remark that the bivariate pseudo-Poisson

model is a generalization of the Poisson-Poisson distribution.

If A, = 0, then the joint p.g.f in equation (1.1.4) reduces to
G[[(tl,tz) = e/\l[tle/\s(tzq)_l],' t1,t2 € R. (1.1.5)

Now, form equation (1.1.4), the marginal p.g.f of Y is

4



1.1 Bivariate pseudo-Poisson models

G(1, 1) = Gy(ty) = el Dehle™®2V=1], R, (1.1.6)

Note that, in general, the p.g.f in equation (1.1.4) can not be simplified to compute
all marginal distributions. Yet, we can use equation (1.1.5) to derive a few marginal
distributions of Y. The derivation of marginal probability of Y is demonstrated for Y =
0,1,2,3 in Section 1.1.3, and one can still extend the mentioned procedure to get albeit
complicated values for the probability that Y assumes any positive value. Besides, the
derivation of the other conditional distribution of the bivariate pseudo-Poisson, i.e.,

P(X = x|Y = y), has been included in Section (1.1.4).

In the following sections, we discuss a few one-dimensional distributions which are
derived from the bivariate pseudo-Poisson for the case A = 0. Moreover, the derived
univariate distributions has classical relevance to the two-parameter Neyman Type A

and Thomas distribution.

1.1.1 Neyman Type A distribution

As noted in Arnold and Manjunath [4], in the case in which A, = 0, the marginal
distribution is a Neyman Type A distribution with A3 being the index of clumping
(detailed in page 403 of Johnson, Kemp, and Kotz [20]). It can also be recognized as
a Poisson mixture of Poisson distributions. Now, the marginal mass function of Y is
given by

—/\1Ay [ee] Ale_AS ]]y

P(Y =y) Z

;y=0,1,2,... (1.1.7)

i.e.,, Y has a Poisson distribution with the parameter A; while A; is also a Poisson ran-
dom variable with parameter A3. We refer to Glesson and Douglas [17] and Johnson,
Kemp, and Kotz [20] Section 9.6 for applications and inferential aspects of the Neyman

Type A distribution.
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1.1.2 Thomas distribution

Consider the joint probability generating function defined in equation (1.1.5), i.e.,
G[[(tl,tz) = eAl[tleA3(t27l)_1]; t1,tr € R. (1.1.8)

Take t; = t; := t and the above p.g.f. reduces to

e/\3(t71

G*(t) = G(t t) = Ml -1, c R, (1.1.9)

Note that the above univariate p.g.f. is the p.g.f. of the Thomas distribution with
parameters A; and Az. The probability mass function of Z that follows the Thomas

distribution is

P(Z=2)="1Y (j) (Me )i (jAs)*, 2 =0,1,2, .... (1.1.10)

For further applications and inferential aspects of the Thomas distribution, we refer

to Glesson and Douglas [17] and Johnson, Kemp, and Kotz [20] Section 9.10.

Remark 2. The Neyman Type A and the Thomas distribution have historical relevance in mod-
eling plant and animal populations. For example: suppose that the number of clusters of eggs
an insect lays and the number of eggs per each cluster have specified probability distributions.
Then for the Neyman Type A distribution and Thomas distributions, the number of clusters
of eggs laid by the insect follows a Poisson distribution with parameter Aq. For the Neyman
Type A, the number of eggs per cluster is also a Poisson distribution with parameter A3. But
for the Thomas distribution, the parent of the cluster is always to be present with the number of
eggs(offspring) which has a shifted Poisson distribution with support {1,2,3, ...} and parame-
ter A3. Note that Neyman Type A and Thomas distributions can be generated by a mixture of
distributions and also a random sum of random variables.

Consider that the mixing distribution is a Poisson with parameter A with mixture has a
Poisson with parameter A3, then the resultant random variable has a Neyman Type A distri-

bution. In the sequel, if the mixing distribution is a Poisson with parameter A1 and the jth

6



1.1 Bivariate pseudo-Poisson models

distribution in the mixture has a distribution of the form j + Y (j), where Y(j) has a Poisson

with parameter jA3, then the resultant random variable has Thomas distribution.

However, for a random sum of random variables (also known has Stopped-Sum distribu-
tions): let us consider that the size N of the initial generation is a random variable and that each
individual i of this generation independently gives a random variable Y;, where Y1,Y>, ... has a
common distribution. Then the total number of individuals is Sy = Y1 + ... + Y. For the case
that N is a Poisson random variable with parameter Ay and Y; is a Poisson random variable
with parameter A3, then the random sum Sy has a Neyman Type A distribution. However, if Y;
is a shifted Poisson with parameter A3 and support {1,2,3, ...}, then the random sum Sy has
a Thomas distribution. A sum of N independent and identically distributed non-zero Poisson

random variables, where N is also a Poisson random variable has a Thomas distribution.

1.1.3 Marginal probability of Y

For the marginal distribution of Y, the probability that Y = 0 can be computed as

P(Y = 0) = Gy(0) = e H2eMle-1), (1.1.11)

For the probability that Y = 1 we have

%Gy(tz) = Gy(tz) [)Ll)\3€/\3(t2_1) + )Lz

PIY — 1) — #Gy(B2)ln=0 s
(¥ = 1) = 002820 = Gy (0) [AiAse™ + 25 (1.1.12)

Similarly, P(Y = 2) is given as

dZ

2
ﬁGY(tz) = Gy(t) {(Al,\zem(tz—l) +/\2> + A1AZeta(tD)

7
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£Gy(t2)|l—0 _ Gy(0)
2! 2!

2
P(Y =2) = MAze ™2 4 1) + AAZe s (1.1.13)
3

and finally P(Y = 3) is given by

4 _
ﬁcy(tz) = Gy(tz) [/\1/\3((/\1/\362\3“2 1 + /\2)2 + )\3
(2(AMA3e™3 21 £ 20) 4 A5(1 + AgeslD))))talta=1) 4
Az ((ApAze?(2=1) 4 25)% 4 AlAge%(fz—l))] (1.1.14)
]. d3 GY(O) Y 2
P(Y =3) = 525Cx (0,0 = 22— [AlAg((AlAge 4 M) 4 A
(2(/\1/\3€_A3 + )Lz) + )\3(1 + /\1€_A3)))€_/\3+
Ao((MAse ™ + Ap)% + AlAge—Aa)} . (1115

On a similar line, one can extend the above procedure to get albeit complicated values

for the probability that Y assumes any positive value.

1.1.4 Other conditional distribution of the bivariate pseudo-Poisson

In general, in another conditional distribution of the pseudo-Poisson model, i.e., X
given Y = y, the derivation is theoretically ambiguous. Still, for the Sub-Model II, i.e.,
Ay = 0, we can derive the conditional distribution. In the following, we are deriving
other conditional distributions, i.e., the conditional distribution of X given Y = y by
induction for the Sub-model II. Consider the joint mass function of pseudo-Poisson

Sub-model 11

e MM e (Agx)Y
e (x,y) = (0,0).

x=1,2,.;,y=0,1,2,..
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Now, consider the case in which y = 0 then for each x = 0,1, 2, ... the conditional mass

function will be

P(X=x,Y=0
Pa(xl) = PR
e—)\le_/\3 ()\1@_/\3)x
= o (1.1.16)

Indeed the above conditional mass function is a Poisson distribution with mean equal

to e~ s,

Next, consider the case with y = 1. For each x = 1, 2, ..., we have

_ PX=xY=1)
e—)Lle_/\3 (Ale—/\:;)x—l
= 1) (1.1.17)
which is recognizable as the distribution of 1 plus a Poisson(Ae~"3).
Fory > 1and foreachx = 1,2, ..., we have a
 PX=xY=y)
ef)\le_/\?) (/\167/\3)x71x}/
(x—=1)!
= (1.1.18)
Hy

where ji, is the yth moment of a Poisson(A;e %) variable. Note that the expression
can also be expressed in terms of factorial moments, and the yth factorial moment is

(A1e~%)Y. Thus we have

Y
my =Y S(y,j)(Ae )Y (1.1.19)
j=0

where S(y, ) is a Stirling number of the second kind. Also note that if y > 1 then
S(y,0) = 0.
For the detailed discussion on derivation, characterization, distributional features,

and inferential aspects of bivariate pseudo-Poisson, refer Arnold and Manjunath [4].

9
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Finally, we refer recent article by Arnold and Manjunath [5] on bivariate pseudo-Poisson
with concomitant variables explored distributional and inferential aspects and an ex-

ample of application to real-life data.

1.2 Other bivariate count distribution with Poisson struc-

ture

In the following, we briefly introduce the other bivariate count distribution having a

Poisson structure.

1.2.1 Classical Bivariate Poisson

Consider three independent Poisson random variables X1 ~ &2, X ~ &2 and X3 ~ Z.
Then, the random sum X = X; + X3 and Y = X, + X3 is said to follow a classical

bivariate Poisson distribution with the mass function

L MAS I N N o Ay
P(X=xY =y) =exp (— (A1 + A2+ A3)) P ,_21 (1> <i>l<A1+Az) (1.2.1)

where A; >0,i=1,2,3,x=0,1,2,...andy = 0,1, 2, .... For the bivariate mass function

only marginals follow Poisson distribution.

1.2.2 Both conditional Poisson

Consider the two conditional mass function

XY=y ~ P(MA})foreachY =y, (1.2.2)
YIX=x ~ Z(AA35) for each X = x. (1.2.3)

10
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According to the Theorem, 4.1 by Arnold et al. [3], the joint mass function of X and Y
will be

AFASASY

P(X = X, Y = y) = K(Al, )\2,)\3) 'y'

(1.2.4)

where A; >0,i=1,2,3,x=0,1,2,...and y = 0,1, 2, .... Note that if A3 = 1, then X and

Y are independent. Here both conditionals are Poisson.

1.2.3 Bivariate Conway-Maxwell Poisson

Note that the above two mass functions defined are stricken to equi-dispersed data;
either we assume marginals or conditionals. For flexible bivariate count model which
can handle over, under or equi-dispersion is one defined in Seller et al. [33], i.e., bivari-

ate Conway-Maxwell Poisson. The joint probability generating function is

tl/ t2 rg) 7’1' VZ ) (tll t2|7’1) (125)
where
(t, taln) = 1+ pro(t — 1) + pia(t — 1) + pu(ti—) (22 — 1)" (1.2.6)
and
©  As
- (1.2.7)
Ly

where v is a dispersion parameter with v = 1 is equi-dispersion, v > 1 is over disper-

sion and v < 1 is under dispersion.

11






CHAPTER 2

Bayesian Inference for pseudo-Poisson

data

2.1 Introduction

Conditionally specified bivariate models often provide helpful, flexible models exhibit-
ing a variety of dependence structures. However, for bivariate count data, the unique
conditionally specified Poisson distribution, which turns out to be Obrechkoff’s bivari-
ate model [32], is often inappropriate since its dependence structure is often not felt
to be appropriate. In such circumstances, attention can be diverted to consider what
are known as pseudo-Poisson models (advocated strongly by Filus, Filus, and Arnold
[15]). We begin by reviewing the pseudo-Poisson construction, highlighting certain
simplified sub-models. Bayesian inference for these sub-models is then discussed. We
refer to Arnold and Manjunath [4] for classical inferential aspects and also an example
of applications of the bivariate pseudo-Poisson model. Bayesian inference for a par-
ticular classical bivariate Poisson model with Poisson marginals is discussed by Karlis
and Tsiamyrtzis [21]. Finally, we note that Ghosh et al. [16] present recent results on

bivariate count models with both conditionals being of the Poisson form.

13
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2.2 Bivariate pseudo-Poisson models

The mass function for a general bivariate pseudo-Poisson distribution discussed in

Chapter 1 Section 1.1 (Definition 1.1) is of the following form:

e~ MAT e (h(x,0))Y

PX=xY=y)= ” m

I(x€{0,1,2,..},y €{0,1,2,..}) (22.1)

where the positive function h(x, 8) is quite arbitrary and 8 is parameter vector. The sub
model in which # is a linear function involving two dependence parameters will be the
focus of the present this chapter. Using As to denote the three parameters in this model,

its mass function is of the form

e MAY e MM () 4 Agx)Y

PX=x,Y=y)= po m

I(x€{0,1,2,..},y € {0,1,2,..}),
(2.2.2)
where Ay > 0,A, > 0,A3 > 0. Consequently the likelihood function for a sample of

size n from this distribution is given by

AT g e LR ST (A £ Ay
1 = i=1 A2 3X;

L(Aq, Ay, Az (x1,Y1), ..., (X1, =
(A1, A2, Az; (X1, Y1), o (X0, Yin)) o oy

(2.2.3)
Note that this likelihood factors as follows:

n . n Al
ie1 Xi! i=1Yi

oA | Li=1 % e M= AT X T (Ao + Aax;)Vi
L(A1, Az, As; (x4, Y1), vy (X0, Yn)) :{ 1 }{ [T2q (A2 +Asx;) |

(2.2.4)
The first factor only involves the parameter A;, while the second factor only involves
the parameters A, and A3. We will call A the marginal parameter, while A, and A3 will
be called conditional parameters. This factorization will be important in Bayesian infer-
ence for the model, as discussed below. Because of the factorization, we will know that
if a priori A; and (A,, A3) are independent, then they will be independent a posteriori
also.

This feature of separation of marginal and conditional parameters continues to oc-

14



2.2 Bivariate pseudo-Poisson models

cur for more general pseudo-.# models defined as follows. Let % = {F(x;0) : 6 € ® C
R™} be an m-parameter family of univariate distributions. A 2-dimensional pseudo-.#

distribution can be constructed as follows
P(X < x) = F(x;00) (2.2.5)
and for every x
P(Y <y|X =x) = F(y;6?(x, 1)), (2.2.6)

where Q(l) € O and, for each T, Q(z) (x,T) : R — O. In this setting, §; are the marginal

parameters, and T are the conditional parameters.

Returning to the pseudo-Poisson model defined in (2.2.2), it is natural to assume a

gamma prior for the marginal parameter A1, i.e., a priori, and we assume that
;Ll ~ F(le,él), 0 < <00,0< 97 <o0. (2.2.7)

Here and subsequently, we parametrize a gamma distribution by a shape parameter é;
and an intensity parameter (the reciprocal of the scale parameter a1). Specifically the a

priori density for Ay is of the form

5?‘1 A‘i‘l_le*(sl}\l

,0< A .
r(le) <N <

fz,(M1) =

The choice of an a priori joint density for (A3, A3) that will be independent of A; is
not so obvious. It is not clear whether it is possible to choose such a prior that will be
“conjugate” with the second factor in (2.2.4). In general, for most choices of this prior,

the joint posterior of (A,, A3) will need to be dealt with numerically.

In the following section, we consider independent priors and also certain two-
parameter sub-models for which the choice of independent gamma prior densities

turns out to be conjugate.
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2.3 Independent priors

Consider an a priori joint density in which all three parameters are independent, and
each has a gamma distribution. Thus we have
3 5% /\?‘i*1 o 0iMi .
Frudads Ao ds) =TT gy 0 < Aiaidi <o =123 (231
The kernel of the posterior, which is the product of the kernel of the factored likelihood
(2.2.4) and the kernel of the prior (2.3.1) is of the form

— noxi—1
ker (fi, 1, 7sxy (M A2 Aslxy)) = {e (GrtmAs 81 L ¥ } (2.3.2)

n
> {e—(52+ﬂ)/\2—(53+):?_1 xi))\3/\2‘2_1)\g‘3_1 H()‘Z + )\3xi>]/i}
i=1

From the first factor in (2.3.2) we recognize that a posteriori A; has a gamma distri-
bution, i.e.,

n
MX=xY=y~T(a1+ ) x,0 +n). (2.3.3)
i=1

The second factor is the kernel of the posterior distribution of (A,, A3). It will need to

be dealt with numerically.

2.3.1 Sub-model I

There are two simple sub-models of the linear model (2.2.2) that merit consideration
because of their simplicity while retaining dependence between X and Y. We first
focus on the sub-model of (2.2.2) obtained by equating A, and A3. The model is thus of

the form

e MAY e MIFINL(1 + x)¥
x! y! '

The likelihood function for a sample of size n from this distribution is given by

PX=xY=y)= (2.3.4)

16
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A A1 X pda ARy ALY
e A 1% ,—nA3, 321:1X1H?:1(1+x1.)y1)\31 1Yi

n n
i—1 X! iz1Yi!

L(A1, As; (x1,y1), 000 (X0, 40)) =
(2.3.5)

Here too, the likelihood factors are as follows:

e_nAlA§i:1 Xj } { e~ MA3p—As Uiy X T, (1+ xi)yiAEizl Yi

n n
i=1 %! i—1 Yi!

L(Aq, Az (x1,y1), 00 (X, 40) ) = {

(2.3.6)
The first factor only involves the parameter A;, while the second factor only involves
the parameter A3. We will call A; the marginal parameter, while A3 will be called the

conditional parameter.

It will be observed that the joint density of (X, Y) in (2.2.2) constitutes a two-parameter
exponential family. A prior conjugate density consequently exists. For such a conju-
gate joint prior density for the two parameters in the model, we can take one with

independent gamma marginals. Thus

(50‘1/\0‘1—167(51)\1 5“3)\“3—167(53/\3
fii, (A, A3) = 2= 22
’ I'(a1) I'(as)

(2.3.7)

The kernel of the posterior, which is the product of the kernel of the factored likeli-
hood (2.3.6) and the kernel of the prior (2.3.7), is of the form

— noox—1
ker(fx, ,xy (M Aslxy)) = {e (‘5l+”))‘1)ti‘1+2’*1x } (2.3.8)

n p—
% {e—(53+”+2?=1 xi)/\s)Lg‘3+Zi:1 Yi 1} .

For examples of such prior and posterior densities, see Figure 2.1 and 2.2. We have
thus confirmed that our choice of a prior with independent gamma marginals was a
conjugate prior for the likelihood (2.3.6) and that a posteriori, the two parameters have

independent gamma distributions. Thus

n

MX=xY=y~T(a1+) x,6 +n), (2.3.9)
i=1

17
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and, independently,

n
;\3|X:LXZENF(oc3+2yi,(53—|—n+2xi). (2.3.10)

n
=1

i=1 i=

The squared error loss estimates of the parameters (the posterior means) are thus

n .
Xl(B) _ % (2.3.11)
and
~ (B) a3+ Y Vi
B _ _ 2.3.12
3 O3+ 1+ i X ( )

If we choose to use an improper prior with ay = a3 = §; = J3 = 0 then the resulting

Bayes estimates coincide with the corresponding maximum likelihood estimates.

If we use an improper prior with a1 = a3 = 6; = d3 = 0, then the resulting Bayes
estimates coincide with the corresponding maximum likelihood estimates.

f1

0.4

0.4 \ 0.2

0.1

Figure 2.1: Density plot of prior (independent gamma) with parameter values a1 = 1,
x3 = 4,61 =1, 63 = 2 of the Sub-model 1.
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6x10724%

4107243

2x107243

S, o o
- ~

0t
ov
0S

Figure 2.2: Density plot of posterior (independent gamma prior) with parameter values
0y =1,a35=4,01=1,03=2,A1 =1, A3 = 4 and n = 20 of the Sub-model I.

2.3.2 Sub-model I1

Consider the sub-model obtained by setting A, = 0. The model is thus of the form

.

—A1ax ,—Arx Y
e xlg/\l e 3y!)\3xy; x=12,.. y= 0,1,2,...
PX=xY=y)=qe ™y (x,y) = (0,0)
0; otherwise
\

The likelihood function for a sample of size the following expression gives n from this

distribution, in which n* denotes the number of observed values of x equal to 0.

_(n_n*)/\lAzxi>0 Xi —Aj Exi>0 b [H ( .)yi]Ain>0 Yi
L(Aq, As; (x1,91), oony (X, —e M 1 Xi>
(A1, As; (X1, 1), weer (X, Y)) T ! [0/
(2.3.13)
Here too, the likelihood factors are as follows
_ Zx- 0Xi —A Z ~0 Xj . Zx->0yi
n/\lA i~ e 3 Lux;>0 4 . YA
L()\ll)\3; (xllyl),.__, (xn,yn)) — e—l' [Hx,>0( |l) ] 3
[Ty;>0xi! [Le~oYi!
(2.3.14)
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Bayesian Inference for pseudo-Poisson data

The first factor only involves the parameter A, while the second factor only involves
the parameter A3. Again, we will call A; the marginal parameter, while A3. will be called

the conditional parameter.

The kernel of the likelihood is given by

L(All /\3/ (xll yl)/ eer (xn/ yi’l)) X e_n/\l)lexi>0 xie—/\3 in>0 xi/\gxi>0yi_ (2315)

If we use a prior with independent gamma marginals, such as

5:‘{51 /\3‘1 _16—(51)\1 5;‘3)\%‘3716—(53/\3

. - 2.3.16
f)\l,/\3(/\1' A3) F(ocl) r(lX3) ( )

with kernel of the form
i3y (A1, Ag) o AP T lem AR om0k, (2.3.17)

then the kernel of the posterior, which is the product of the kernel of the factored
likelihood, and the kernel of the prior is of the form

- —(814+m)Ay T x>0 X1
fer(fy, pyrOa s y) = fe Gt
" {6(53+zxi>0 xi)/\3/\‘;‘3+2xi>0 yi—l} |
For an example of such posterior densities, see Figure 2.3. We have confirmed that our

choice of a prior with independent gamma marginals is a conjugate prior for the like-

lihood and yields a posterior density which also has independent gamma marginals.

MX=xY=y~T(x1+ ) x;,61+n) (2.3.18)
- x;>0
and, independently,
MX=xY=y~T(az+ ) vi, 63+ ) xi). (2.3.19)
- x;>0 x;>0
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2.3 Independent priors

The squared error loss estimates of the parameters (the posterior means) are thus

~(B) X1 +2xi>0 X;

2.3.2
1 P (2.3.20)

and
~(B) a3+ Yy s0Vi
,P) = 8 T exix0 i
03 + x>0 Xi

Note that, since y; = 0 whenever x; = 0, we can simplify the above expressions by

(2.3.21)

replacing }_, - X; by Y.i'; x; and replacing }", o y; by Y.i_1
If we choose to use an improper prior with a1 = a3 = ; = J3 = 0 then the resulting

Bayes estimates coincide with the corresponding maximum likelihood estimates.

0.8x10%°
0.6x10%°
0.4x10%°
0.2x10%°

0

Figure 2.3: Density plot of posterior (independent gamma prior) with parameter values
v =1,0a3=4,61=1,03 =2,A1 =1, A3 = 4 and n = 20 of the Sub-model II.

Remark 3. It should be noted that the model with Ay = 0 will only be appropriate for data sets
for which Y = 0 whenever X = 0.
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2.4 Pseudo-gamma priors

In this section, we introduce a bivariate pseudo-gamma prior, which allows us to in-
corporate external information on the dependence between the parameters. Note that
the hyperparameter ¢3(say) in the pseudo-gamma prior plays a crucial role in defin-
ing a priori dependence between A; and A3. Also, note that Sub-models I & II are the
sub-families of all bivariate pseudo-Poisson distributions having severe dependence
between the variables. Hence, the importance of considering the pseudo-gamma prior
to developing posterior inference. To reduce the computational complexity and have
closed-form expression of marginals, we shall consider some special cases of pseudo-
gamma distribution as priors. For the classical bivariate Poisson distribution, a dis-
cussion of the importance of considering dependence in the prior and its application
can be found in Karlis, and Tsiamyrtzis [21]. However, the prior proposed here, i.e.,
bivariate pseudo-gamma prior, is very simple because of its marginal and conditional
composition. Hence, analytical computations and simulation algorithms are easy to
implement and render comprehensible its posterior properties.

Dubey [11] and Sen et.al.[34] provides a discussion of alternative bivariate gamma
distributions. Also, reference can be made to Balakrishnan and Lai [6] for coverage of
various methods of constructing bivariate continuous distributions. In addition, de-
velopments on similar lines to the bivariate pseudo-exponential distribution modeling
and its applications can be found in Mohsin et. al. [27].

In the following sections, we will discuss bivariate pseudo-gamma priors and their

applications in more detail for each sub-models I and II.

24.1 Sub-model I

Consider the sub model, specified in (2.3.4), the likelihood function for a sample of size

n from this distribution is given by

A A1 X A — AR Y x ALY
e A 1% ,—nA3, 321:1x11—[?:1(1+xi)y1)\31 1Yi

L/\,/\;x/ 7o \ Xy =
(A1, A3; (x1,91), 0 (X0, Yn)) ! =1 it

(2.4.1)
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2.4 Pseudo-gamma priors

This time we will consider a joint prior that is of the bivariate-pseudo-gamma form.

For it we assume that A3 has a I'(7y, ¢ ) density, i.e.,
F(A3)  AZ e M 1(A5 > 0),0 < 7y, ¢ < o9,

and then for each value of A3, the conditional density of A; given A3 is assumed to

be of the gamma form with an intensity parameter that is a linear function of A3. Thus
F(A1|A3) o (P2 + 1,03/\3)72)\{2_16_(¢2+‘/’3A3))‘1I()\l > 0),0 < 7, 3 < 00,0 < Pp < 0.
The joint prior is thus of the form
F(A1,A3) o (P + p3As) 2AR e~ (2F¥sda) iy T—le=dida[(A) > 0)1(A3 > 0). (2.4.2)

Consider the simpler prior in which we assume that 1, = 0. This prior density will

be of the form

fp(Ar, Az) s AR Tem9shshpmit =l o=ids (A} > 0)1(A5 > 0). (2.4.3)

The corresponding posterior density corresponding to a sample of size n from sub-

model I will be

fALA|X =xY =y)) o [e7 AT e AL mip R ]
> [)\Iz—lefllj:;/\g/\lA§1+T271671/J1)\3]

/\‘1(24’2?:1 xiflefl’l)\l A§1+TZ+Z?:1 yifle*(i’l+lpl))\3efll)3/\1)\3

[A§1+Z?:1 yi—le—(n+¢1))x3} [/\;erZ?:l xi—le—(n+¢3)\3))\(1%‘4_4)

For examples of such prior and posterior densities, see Figures 2.4, 2.5, 2.6 (for priors)
and Figures 2.7, 2.8, 2.9(for posteriors). The marginal posterior distributions of A; and

Az are
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n L n .
o) o« [prEen] EERWL gy
1 (Tl + 1,01 + 1P3/\1)(T1+2i=1 Yi)

and

P T+ Yi— 1 — (n4¢1)As I'(m + 20 xi)
fs) o« [A] e } PR W (2.4.6)

fi

Figure 2.4: Density plot of prior (pseudo-gamma prior) with parameter values 7; = 1,
T =4,y =1, P = 1(small value), 13 = 3 of the Sub-model L.
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2.4 Pseudo-gamma priors

fi

Figure 2.5: Density plot of prior (pseudo-gamma prior) with parameter values 7 = 1,
T =4, Y1 =1, P =5 (large value), 3 = 3 of the Sub-model L.

fi

Figure 2.6: Density plot of prior (pseudo-gamma prior simple) with parameter values
1=110=4 91 =1, = 0 (simple), P3 = 3 of the Sub-model L.

Note that the mean and variance of the marginals need to be dealt with numerically.
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f2
1x107%%

0.8x107%*
|
-30 3
1x10-30% | 0.6x1073!
0.4x107%*

0.2x107%

Figure 2.7: Density plot of posterior (pseudo-gamma prior) with parameter values 7; =
1, =419 =1,y =1 (small value), 3 = 3, A\; =1, A3 = 4 and n = 20 of Sub-model
L

f2
1.5x1077%

1x107301
1.5x10-301

0.5x10730%

1x10-301

Figure 2.8: Density plot of posterior (pseudo-gamma prior ) with parameter values
T1=11n=4 19 =1, ¢ = 5 (large value), Y3 = 3, A\; = 1, A3 = 4 and n = 20 of
Sub-model I.

2.4.2 Sub-model II

Consider the sub-model obtained by setting A, = 0. The model is thus of the form
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2.4 Pseudo-gamma priors

6x107250

4x1077%°
6x10-260

2x1072%0

4510260

Figure 2.9: Density plot of posterior (pseudo-gamma prior simpler) with parameter
valuesty =1, =4, ¢ =1, ¢, = 0 (simple), 3 =3, A; =1, Az =4 and n = 20 of
the Sub-model L.

.

—A1ax ,—A3x VY
e xlg/\l e 3y!)\3xy; x=12,., y=012,..
PX=xY=y)=qeM; (x,y) = (0,0)
0; otherwise

The likelihood function for a sample of size the following expression gives n from this

distribution, in which n* denotes the number of observed values of x equal to 0.

—(—pn* Zx- Xi —\ X i . le- Yi
L(A1, As; (x1,91), s (X, Yn)) = oM G |1 M C e A
7 7 7 VALY nryn -
[Tx;>0 xi! [Ty;>0¥i!
(2.4.7)
Here too, the likelihood factors are as follows
_ Zx- 0Xi —A Z ~0 Xj . Zx->0yi
1”1/\1)L i~ e 3 Lux;>0 % . X Yi A i
L(A1/A3; (xllyl),“., (xn,yn)) — e—l' [Hxl>0( |1) ] 3
[Ty;>0xi! [Le>ovi!
(2.4.8)

The first factor only involves the parameter A;, while the second factor only involves
the parameter A3. Again, we will call A; the marginal parameter, while A3 will be called

the conditional parameter.
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The kernel of the likelihood is given by

L(/\ll)\?)) x e nAlAl x;>0 ze Agin>0x,A3xl>oy,.

(2.4.9)

Consider the simpler pseudo-gamma prior in which we assume that ¢ = 0. This

prior density will be

Fp(Ar, Az) o AR Tem¥sahz Tt e—lo=ids (1) > 0)1(A5 > 0).

The posterior density will be

fA A X=xY=y) « efml/\?wo Ve ok xi}‘?i>0 !

X )\;2*13—%”3)\3)\1 )\? +T2_1e—1/’17\3_

For examples of such posterior densities, see Figure 2.10, 2.11 and 2.12.

The marginal posterior distributions of A; and A3 are

1 (l[)1+lP3/\1)(Tl+2yi>oyi)

and

fhs (A3)

|:/\T1+Zyi>0 }/i—le(wﬂpl)/\s} F(TZ + in>0 xi)
3
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2.4 Pseudo-gamma priors

fi1
1.5F
1f

156 |
0.5f

Figure 2.10: Density plot of posterior (pseudo-gamma prior ) with parameter values
T1=11n=41 =1 ¢, =1 (small value), 3 = 3, A; =1, A3 = 4 and n = 20 of the
Sub-model II.

fi1

4x107°
3x10718
2x107%8

1x107%8

S0

Figure 2.11: Density plot of posterior (pseudo-gamma prior ) with parameter values
1=11=4 9 =1, ¢ =5 (large value), 3 = 3, A; =1, A3 = 4and n = 20 of the
Sub-model II.

Note that the mean and variance of the marginals need to be dealt with numerically.

Some comparisons of Bayesian posterior analyses using a variety of prior densities,
including non-informative, independent gammas, and pseudo-gamma, are provided

in the following section.
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fi1
20f

15f

20f | |

10f

5f

Figure 2.12: Density plot of posterior (pseudo-gamma prior simpler) with parameter
valuestn =1, =4, ¢ =1, ¢, = 0 (simple), 3 =3, A; =1, Az =4 and n = 20 of
the Sub-model II.

2.5 Examples

2.5.1 Simulation study

Due to the marginal and conditional compositions of the pseudo-Poisson distributions,
simulation can be done in two steps: first, simulate x from Poisson(A1) and next, sim-
ulate y from Poisson(A; + Azx). However, inference for the posterior distributions is
more complex for a complete model, even under independent gamma priors. We need
to rely on numerical algorithms to compute marginal distributions and their moments.
In the current work, we will use a Hit-And-Run Metropolis (HARM) algorithm to sim-
ulate observations from the posterior distributions under all priors (improper, inde-
pendent, and pseudo) and for its full and sub-models. We refer to Chen [9] for the
HARM algorithm implementation and its comparison with Gibbs and metropolis sam-
pling. However, for each set of samples from the posterior densities, the convergence
of the HARM algorithm is verified and assured. Although, due to the limitations in
the content of the current work, all convergence plots are not included. However, one

can refer to Hall [18] for all contemporary Bayesian simulation algorithms, including
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2.5 Examples

HARM. Also, convergence plots of each of the algorithms can be verified in Laplaces-
Demon R package [36].

We have simulated 10, 000 data sets using the HARM algorithm with thinning at the
10th sample from each posterior distribution of A’s with varying sample sizes from n =
10, 20, 30, 50, 100, 500. Mean and posteriori 95% confidence intervals are mentioned in

Table 2.1 and 2.2 are computed from 1000 iterations of the aforementioned procedure.

Full-model : For the parameter values A; = 1, A, = 3 and A3 = 4, we consider the

following priors

FP;: Uniform prior (improper prior)

FP;: Independent gamma prior, i.e., Ay ~ I'(a1,61), Ay ~ T(ag,ap) and Az ~
I'(a3,d3) for the prior parameter valuesa; = 1,01 =1,a, =3,0, =1, a3 =4

and é3 = 2.

The posterior density plots of Ay, Ay and A3 with improper (Uniform prior) and
independent gamma priors c.f. Figures 2.13, 2.14 and 2.15 !. The plot has been
illustrated for one set of 100000 observations with thinning at 10th sample to un-

derstand the large sample behaviour of posterior distribution.

Sub-model I (i.e. when Ay = A3): for the parameter values Ay = 1 and A3 = 4, we
consider the following priors:
SIP;: Uniform prior (improper prior)

SIP;: Independent gamma prior, i.e., A7 ~ I'(a1,61) and Az ~ I'(a3,d3), for the

prior parameter valuesa; =1,5y =1, a3 =4and 63 = 2.

SIP;: Bivariate pseudo-gamma prior, i.e., A3 ~ I'(1y, ¢1) and A1|Az ~ T'(12, (2 +
P3A3)), for the prior parameter values g =1, 1 =1, o =4y =1, 93 =3

SIPy: Bivariate pseudo-gamma prior, i.e., A3 ~ I'(1y, 1) and A1|Az ~ T'(1, (2 +
P3A3)), for the prior parameter values g =1, 1 =1, o =4y =5, 93 =3

i _imp: posteriori observations of A; by improper prior ; li_ind: posterior observations from A; by
independent gamma prior, i = 1,2, 3.
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SIPs: Bivariate pseudo-gamma prior, i.e., A3 ~ I'(1y, 1) and A1|Az ~ T'(1, (Y2 +
P3A3)), for the prior parameter values 7y =1, 1 =1, =4y, =0, 3 =3

We refer to Table 2.1 for the comparison of different prior effects on posteriori
means distribution. Also, c.f. Figure 2.16 and 2.17 for posteriori density plots and
the plots has been illustrated for one set of 100000 observations with thinning at

10th sample to understand the large sample behaviour of posteriori distribution.

Sub-Model II (i.e. when A, = 0): for the parameter values A; = 1 and A3 = 4, we

consider the following priors:

SIIP;: Uniform prior (improper prior)

SIIP,: Independent gamma prior, i.e., A} ~ I'(a1,61) and A3 ~ T'(a3,d3), for the

parameter valuesay = 1,61 =1, a3 =4and d3 = 2.

SIIPs: Bivariate pseudo-gamma prior, i.e., A3 ~ I'(1, 1) and A1 |As ~ T(1o, (P2 +
P3A3)), for the parameter values 7y =1, 1 =1, =4 ¢ =1, 3 = 3

SI1IP,: Bivariate pseudo-gamma prior, i.e., A3 ~ T'(7y, 1) and A1 |A3 ~ T'(1o, (2 +
P3A3)), for the parameter values g =1, 1 =1, =4 ¢ =5, 3 = 3

SI1IPs: Bivariate pseudo-gamma prior, i.e., A3 ~ I'(7y, 1) and A1 |A3 ~ T'(1o, (2 +
P3A3)), for the parameter values g =1, 1 =1, =4 ¢, =0, 3 = 3

We refer to Table 2.2 for the comparison of different prior effects on posteriori.
Also, refer Figure 2.18 and 2.19 for the posterior density plots and the plots has
been illustrated for one set of 100000 observations with thinning at 10th sample

to understand the large sample behaviour of posteriori distribution.
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B n=10 % n=20 3 n=30
'73‘ "EI 'EI
= = =
1_inp A Linp A 1_inp /\
11_imp 11_imp 11_imp
00 05 10 15 20 00 05 1.0 15 20 00 05 1.0 15 20
11 11 1
? n=50 B n=100 @ n=500
'73‘ "EI "EI
= = =
11_inp //\\ 11_inp ’ 11_inp
11_imp 11_imp 11_imp
00 05 10 15 20 00 05 1.0 15 20 00 05 1.0 15 20
11 11 11

11_dist [ 11_imp [ 11_inp

Figure 2.13: Posterior density plot of A; (independent gamma and improper priors)
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Figure 2.14:
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Figure 2.15: Posterior density plot of A3 (independent gamma and improper priors)
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Table 2.1: Simulation (Sub-model I)

Sample size (n), parameters (P), posterior mean by improper prior (SIP;), posterior mean by independent gamma prior
(SIP,), posterior mean by pseudo-gamma prior for ¢ = 1 (SIP3), posterior mean by pseudo-gamma prior for ¥, =
5 (SIP4), posterior mean by pseudo-gamma prior for ¢, = 0 (SIP5), 95% confidence interval of SIP; (CISIP;), 95%
confidence interval of SIP, (CISIP;), 95% confidence interval of SIP; (CISIP3), 95% confidence interval of SIP, (CISIP,),

95% confidence interval of SIP5 (CISIP5)

n P SIP; SIP, SIP; SIP, SIP;  CISIP; CISIP, CISIP; CISIP, CISIP;
o M 1535 1414 0954 0961 0955 (1478,1.791) (1.349,1638) (0914,1.110) (0.912,1212) (0.905,1.161)
A3 3959 3588 3203 3.194 3213 (3.896,4.121) (3.511,3.877) (3.145,3.336) (3.122,3.335) (3.132,3.375)
o M L1176 11287 0875 0866 0.865 (1.1351321) (1.086,1.310) (0.829,1.077) (0826,1.020) (0.827,1.063)
A3 4261 4002 3731 3723 3.733 (4.189,4.492) (3.928,4312) (3.657,3.858) (3.663,3.818) (3.665,3.957)
50 M1 1133 1108 0928 0905 0907 (1.092,1347) (1.059,1.292) (0.870,1320) (0.868,1.080) (0.869,1.135)
A3 4054 3.896 3.688 3.682 3.684 (4.012,4.148) (3.815,4.152) (3.626,3.846) (3.630,3.863) (3.626,3.842)
5o M1 1048 1042 0913 0909 0907 (L.010,1248) (0993,1.297) (0.874,1.128) (0874,1.073) (0.874,1.052)
A3 4.045 3936 3798 379 3.795 (3.995,4.236) (3.879,4.143) (3.746,3.989) (3.744,3.954) (3.745,3.931)
100 M L1100 1112 1.006 1009 1.008 (1.066,1.303) (L054,1.402) (0.968,1213) (0.968,1258) (0.968,1.279)
A3 4540 4482 4393 4395 4391 (4.499,4700) (4.434,4.677) (4.347,4572) (4.348,4.625) (4.345,4.581)
s0p M 1120 L1127 L1113 1110 LT (1.09%,1266) (1.092,1326) (1.075,1.333) (1.074,1.298) (1.075,1.327)
A3 3994 3989 3976 3.980 3.975 (3.963,4.151) (3.953,4.140) (3.935,4.181) (3.936,4.180) (3.936,4.172)
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Table 2.2: Simulation (Sub-model II)

Sample size (n), parameters (P), posterior mean by improper prior (SIP;), posterior mean by independent gamma prior
(SIP,), posterior mean by pseudo-gamma prior for ¢ = 1 (SIP3), posterior mean by pseudo-gamma prior for ¥, =
5 (SIP4), posterior mean by pseudo-gamma prior for ¢, = 0 (SIP5), 95% confidence interval of SIP; (CISIP;), 95%
confidence interval of SIP; (CISIP;), 95% confidence interval of SIP; (CISIP3), 95% confidence interval of SIP, (CISIP,),

95% confidence interval of SIP5 (CISIP5)

n P SIP; SIP, SIP; SIP, SIP;  CISIP; CISIP, CISIP; CISIP, CISIPs
o M 1531 1402 1.035 1040 1.027 (1479,1.731) (1.343,1589) (1.002,1.139) (1.002,1213) (0.995,1.070)
A 3105 2911 2.626 2.628 2637 (3.041,3.286) (2.847,3.126) (2.576,2.703) (2.577,2.778) (2.575,2.816)
o M1 1202 112370850 0855 0.867 (1.139,1536) (1.082,1.300) (0.817,0982) (0318,1.047) (0.819,1.119)
A 4244 4029 3.834 3.836 3.832 (4.201,4.359) (3.976,4.189) (3.772,3.957) (3.766,4.112) (3.773,4.046)
50 M 1127 109 0921 0937 0928 (1.09,1300) (1.0551.255) (0.886,1.122) (0.885,1.226) (0.885,1.169)
As 3742 3.621 3.464 3463 3482 (3.697,3.889) (3.570,3.836) (3.423,3.547) (3.411,3.631) (3.421,3.616)
s M1 1050 1.033 0906 0900 0907 (1.013,1219) (0992,1.236) (0.863,1.158) (0.862,1.105) (0.864,1.136)
A3 4250 4.149 4.032 4.033 4.030 (4.199,4471) (4.098,4.370) (3.978,4203) (3.983,4.220) (3.986,4.190)
o0 M L1I5 1098 1.003 L1002 1.003 (1.064,1369) (L053,1338) (0.967,1.204) (0.967,1.198) (0.967,1.185)
A3 4536 4472 4403 4403 4404 (4.484,4753) (4.428,4.661) (4.358,4.600) (4.358,4.581) (4.358,4.598)
s0p M 1139 LI31 1109 1105 1.107 (1.09%,1380) (1.092,1353) (1.075,1314) (1.074,1.274) (1.074,1.299)
A3 4052 4.039 4.029 4.022 4.028 (4.014,4225) (4.005,4.192) (3.990,4.222) (3.989,4.170) (3.989,4.183)
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Figure 2.16: Posterior density plot of A; of Sub-model L.
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2.5 Examples

Note that from the above simulation, Table 2.1 and 2.2 and posterior density plots
with varying sample sizes summarize that with a sufficient sample size pseudo-gamma
prior are closer to the true value than improper and independent gamma priors. Be-
sides, in most cases, the estimated posterior confidence interval contains the true value.
For example, in a sample size of n

prior posterior confident interval doesn’t contain the true value. It is expected that
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Figure 2.18: Posterior density plot of A; of Sub-model I
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with an increase in sample size, all five posterior distributions converge to true values.
We also remark that posterior distribution behaviour is similar under pseudo-gamma
prior under different values of i and varying sample sizes. We strongly advocate that
from small sample sizes to sufficiently large samples, the estimated length of the con-
tidence intervals is shorter under pseudo-gamma priors. Hence, we concluded that
the standard errors of posterior means under pseudo-gamma priors are smaller than
the improper and independent gamma priors. Finally, the simulation study insists we

consider pseudo-gamma prior as the first choice under dependence priors.

2.5.2 Real data sets

In the following section, we consider two data sets which are mentioned in Karlis
and Tsiamyrtzis [21], Islam and Chowdhury [19], Leiter and Hamdani [24] and also
in Arnold and Manjunath [4]. We also consider an additional quantity of interest un-
der each particular example: the ratio of the two marginal means, denoted by ¢. For
the importance of analyzing the posterior distribution of ¢, see Karlis and Tsiamyrtzis
[21] page 33.

Also, remark that pseudo-gamma prior with particular parameter value, i.e., i, =
0, the density function of ¢ is equal to A3 under Sub-models I & II. The exact distri-
bution can be derived, c.f. equation (2.4.6) and (2.4.13). However, for further analysis,
like moment computations, one has to rely on numerical methods. We conclude that
under dependence priors, we can derive the exact density of the marginals for particu-
lar hyperparameters (i.e., i = 0). Nevertheless, the prior mixture mentioned in Karlis
and Tsiamyrtzis [21] does not have closed-form expressions for marginals, so also, for

¢, one needs to depend on numerical computations.
A particular data set I

We consider a data sets which is mentioned in Islam and Chowdhury [19] and also in
Arnold and Manjunath [4]; the source of the data is from the tenth wave of the Health
and Retirement Study (HRS). The data represents the number of conditions that ever

had (X) as mentioned by the doctors and utilization of healthcare services (say, hos-
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Table 2.3: Health and retirement study data (Full Model)
n P SIP; SIP CISIP, CISIP;

A 2642 2642 (2.608,2.673) (2.608,2.678)
5567 Ay 0.639 0.628 (0.598,0.683) (0.585,0.667)
A3 0.049 0.054 (0.033,0.642) (0.039,0.070)

pital, nursing home, doctor and home care) (Y). The Pearson correlation coefficient
between X and Y is 0.063. The test for independence, classical inference (m.l.e and mo-
ment estimates), and AIC values for full and its sub-models c.f. Arnold and Manjunath
[4] page 16 and 18 (Table 10).

In the following, we will consider the following two models. The criteria for se-
lecting below two models are discussed in Arnold, and Manjunath [4] on page 18 and

Table 10.

Full-model : For the full model, the ratio of two marginal means is

B Ay 4+ Az
4) - )\1

We refer to Table 2.3 and Figure 2.20 for posteriori analysis and the sample density
of ¢ for the Full-model.

Sub-model II: Similarly, for the Sub-model II, the ratio of two marginal means will be

equal to

¢ = A3

We refer to Table 2.4 and Figure 2.21 for posteriori analysis and the sample density
of ¢ for the Full and its Sub-model II.
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Table 2.4: Health and retirement study data (Sub-model II)

n P sSIp;, SIP, SIP; SIP, SIPs CISIP, CISIP, CISIP; CISIP, CISIPs

5567

A 2674 2642 2648 2767 2642  (2.610,2.681) (2.605,2.677) (2.610,2.680)  (2.605,2.681)  (2.606,2.681)
Az 0291 0290 0309 0302 0291 (0.284,0.298) (0.282,0.298)  (0.283,0.298)  (0.284,0.298)  (0.284,0.298)

phi_dist

phi_imp
phi_ind

phi_dist

phi_ind -

phi_imp-

027 028 029 030 031 032
phi_dist

Figure 2.20: Posterior density plot of ¢ of Full-model (improper and independent-
gamma prior)

A particular data set II

Now, we consider a data set in Leiter and Hamdani [24]; the data source is a 50-mile
stretch of Interstate 95 in Prince William, Stafford, and Spotsylvania counties in Eastern
Virginia. The data represents the number of accidents categorized as fatal accidents,
injury accidents, or property damage accidents, along with the corresponding number
of fatalities and injuries for the period 1 January 1969 to 31 October 1970. For classical
inference (m.l.e and moment estimates) and AIC values for full and its sub-models
c.f. Arnold and Manjunath [4] page 17 and 19 (Table 11). The ratio of two marginal
means, i.e., ¢, refers to the number of fatalities per accident. The criteria for selecting
below two models are discussed in Arnold, and Manjunath [4] on page 19 and Table

11. Moreover, the Mirror Sub-model II suggested below is the same model considered

42



2.5 Examples
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Figure 2.21: Posterior density plot of ¢ of Sub-model I

Table 2.5: Accidents and fatalities study data (Full Model)

n P SIP; SIP,  CISIP CISIP,
A1 0059 0.060 (0.044,0.076) (0.044,0.077)

639 A, 0814 0.813 (0.753,0.879) (0.753,0.973)
A3 0.881 0952 (0.534,1.269) (0.641,1.268)

in Leiter and Hamdani [24]. It has been emphasized in Leiter and Hamdani [24] and

Arnold and Manjunath [4] that mirror Sub-model II fits the data better than any other

sub-models.

Full-model : We refer to Table 2.5 for posteriori analysis and the sample density of ¢

for the Full-model. Note that, since Mirror Sub-model II fits the data and for the

Full model computation ¢ or reference of two marginal means is of no signifi-

cance to the application.

Mirror Sub-model II: We refer Table 2.6 and Figure 2.22 for posteriori analysis and the

sample density of ¢ for the mirror Sub-model II.

As mentioned earlier, under pseudo-gamma prior (dependence), the estimated con-

tidence interval includes posterior means. Also, under specific hyper-parameters, i.e.,
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Table 2.6: Accidents and fatalities study data (Mirrored Sub-model II)

n P sSIp;, SIP, SIP; SIP, SIPs CISIP; CISIP, CISIP; CISIP,

CISIPs

A1 0860 0908 0.867 0.867 0.871 (0.802,0.917) (0.803,0.921)  (0.807,0.928)  (0.800,0.928)

639 ), 0069 0076 0069 0072 0132 (0.052,0.088) (0.056,0.095) (0.052,0.089) (0.051,0.089)

(0.807,0.927)
(0.057,0.095)
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Figure 2.22: Posterior density plot of ¢ of Mirror Sub-model II

Yo = 0, we have an exact density of the ¢, so simulation and further analysis are

reliable. Due to the simplicity of its structure, the pseudo-gamma prior allows for

simple simulation and marginal distribution computations. Unlike the mixture prior

(dependence) suggested in Karlis and Tsiamyrtzis [21], the computation of marginal

distributions or simulating from the same, one has to rely on numerical computations.

The pseudo-gamma discussed in this paper may be feasible alternatives to the other

dependence priors for analyzing count data sets.

In the following, we extend bivariate pseudo-Poisson to a high dimension. Due

to the simplicity of trivariate pseudo-Poisson, we have considered improper and inde-

pendent gamma priors for an illustration of higher dimensions of the above-mentioned
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approaches.

2.6 Trivariate pseudo-Poisson model

Analogously, we could consider a trivariate model with:

X ~ P(A)
Y|X =x ~ P(Ay + Azx)

ZIX=x,Y =y~ P(Ay+ Asx + Agy)

For the parameter values Ay = 1, A, =3, A3 =4, A4 =4, A5 =2 and Ag = 5, we

consider the following priors:
FP;: Uniform prior (improper prior)

FP,: Independent gamma prior, i.e.,, A; ~ I'(a1,61), Ay ~ T'(ap,a2), Az ~ T'(ag,d3),
Ay ~ T(ay,d4), As ~ T(as,05) and Ag ~ T'(ag, ) for the prior values a; = 1,
nh=1wa=3,0p=1,03 =403 =2, 04 =2,04 =3,05 =1,05 = 3,06 = 1 and
s = 1.

The posterior density plots of A1, A; and A3 with improper (Uniform prior) and inde-
pendent gamma priors c.f. Figures 2.23, 2.24, 2.25, 2.26, 2.27 and 2.28 . The plot has
been generated with one set of 100000 observations with thinning at 10th sample from
posteriori with varying sample size. As mentioned in the bivariate case, posteriori
estimates are close to the true value for a sufficiently large sample size.

The sub model in which Ay = A3 and Ay = A5 = Ag is particularly easy to an-
alyze. Further analysis and applications of trivariate pseudo-Poisson models will be
discussed in a separate report.

The analysis’s overall summary and detailed overview are included in the Conclu-

sion Section.
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Figure 2.23: Posterior density plot of A; (independent gamma and improper priors)
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Figure 2.27: Posterior density plot of A5 (independent gamma and improper priors)
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CHAPTER 3

On pseudo-Poisson goodness-of-fit tests

3.1 Introduction

Indeed, goodness-of-fit (GoF) is a statistical procedure to test whether the given data is
compatible with the assumed distribution. Any GoF test requires the following three
steps: (1) identifying the unique characteristic of the assumed model (examples: distri-
bution function, generating function, or density function); (2) computing the empirical
version of the assumed characteristic; (3) with the pre-assumed measure(examples: L;
- or Lp-space), measure the distance between the assumed item in Step (1) and its em-
pirical one, in Step (2). A rejection region can be computed with a given level and the
cut-off value for the distance measure determined. However, if the rejection region can
not be derived explicitly, then one can use the Bootstrapping technique to generate a
critical region. The general steps required to simulate a rejection region using the Boot-
strapping are discussed detail in Section 3.4. We refer to Meintanis [26] and Nikitin
[31] for a detailed discussion of the GoF tests, which involve the aforementioned steps.
Besides, there exist or can be constructed tests that are not based on a unique charac-
teristic of the assumed distribution. For example, considering the univariate Poisson
distribution, there exists a GoF test which depends on the Fisher index of depression.

We also know that the Poisson distribution belongs to the class of equi-dispersed mod-
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els, but this property does not characterize the Poisson distribution. Hence, such tests,
which are not based on a unique characteristic of the assumed distributions, are not

consistent tests.

The literature on GoF tests for bivariate count data is sparse. For the classical bivari-
ate and multivariate Poisson distributions, a GoF test using the probability generating
function is discussed by Mufioz and Gamero [29] and Mufioz and Gamero [30]. More
recently, Mufioz [28] contains a review of the available bivariate GoF tests and also a

new test using the differentiation of the probability generating function(p.g.f.).

In the following sections, we are starting with a test defined in Kocherlakota and
Kocherlakota [22] and a few bivariate GoF tests reviewed in Mufioz [28]. In addition
to the classical GoF tests using probability generating function (p.g.f.), we considered
a less known test statistic which is the supremum of the absolute difference between
estimated p.g.f. and empirical ones. In addition, we are introducing a non-consistent
test which is based on the moments, in particular, defining the test taking the differ-
ence between the estimated bivariate Fisher index and its empirical counterpart. We
examine each test’s finite, large, and asymptotic properties and recommend a few tests

based on their power and robustness analysis.

Before we start a discussion on GoF tests, we would like to make a few remarks
on the bivariate pseudo-Poisson model and its relevance in the literature. Finally, we
refer to Arnold and Manjunath [4] and Arnold et. al. [1] for classical inferential aspects,
characterization, Bayesian analysis, and also an example of applications of the bivariate

pseudo-Poisson model.

3.2 Bivariate pseudo-Poisson models

As discussed in Chapter 1 Section 1.1 (Definition 1.1), the bivariate pseudo-Poisson

definition is given by

Definition 3.1. A 2-dimensional random variable (X,Y') is said to have a bivariate Pseudo-
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Poisson distribution if there exists a positive constant Ay such that
X~ P (M)
and a function Ay : {0,1,2,...} — (0,00) such that, for every non-negative integer x,
Y|X =x~ Z(A(x)).

Here we restrict the form of the function A;(x) to be a polynomial with unknown
coefficients. In particularly the simple form we assume is that A»(x) = Ay + Azx, Vx €

{0,1,2, ...}, then the above bivariate distribution will be of the form

X~ 2(M) (3.2.1)

and x € {0,1,2, ...},
Y|X =X @()\2 + )Lgx). (3.2.2)

The parameter space for this model is {(A1, A, A3) : Ay > 0,A, > 0,A3 > 0}. The
case in which the variables are independent corresponds to the choice A3 = 0. The
probability generating function (p.g.f) for this bivariate Pseudo-Poisson distribution is

given by

G(ty, by) = M2l Dehlhe27V=1]. 4 o R (3.2.3)

Now, the marginal p.g.f of Y is

G(1, k) = Gy(h) = e[ V=1], R (3.2.4)

Note that, in general, the p.g.f. in equation (3.2.3) can not be simplified to compute
all marginal probabilities. Yet, we can use equation (3.2.4) to derive a few marginal

probabilities of Y. The derivation of marginal probability of Y is demonstrated for
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Y = 0,1,2,3 in Appendix A.1, and one can still extend the mentioned procedure to
get albeit complicated values for the probability that Y assumes any positive value.
Besides, the derivation of the other conditional distribution of the bivariate pseudo-

Poisson, i.e., P(X = x|Y = y), has been included in Appendices A.1 Section.

3.3 GOF tests for the bivariate pseudo-Poisson

In the following section, we discuss GoF tests (I) based on unique characteristics (con-
sistent tests), (II) based on the moments (non-consistent tests) and, (II) the simple clas-

sical x? goodness of fit test.

3.3.1 New tests based on moments

In the following, we will be extending a univariate GoF test based on the Fisher index
to the bivariate case. We know that for a multivariate distribution, the Fisher index of
dispersion is not uniquely defined. However, in the following, we use the definition
of the multivariate Fisher dispersion given by Kokonendji and Puig [23] in Section
3 as; for any d-dimensional discrete random variable Z with mean vector E(Z) and

covariance matrix Cov(Z) the generalized dispersion index is

GDI(Z) = VE(Z])E((Z:;’;’I(;Z)) EZ). (3.3.1)

For the bivariate pseudo-Poisson model, define the random vector Z = (X, Y)T for
and the moments are (c.f. Arnold and Manjunath [4] page 2309-2310)

E(Z) = (A, Ay + A3Ap)T (3.3.2)

) M AMA3
cov(Z) =
AMAs Ay + AsAq + )\%)\1

Now, using the definition given in Kokonendji and Puig [23] page 183, the disper-

sion index for the bivariate pseudo-Poisson is
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3
A2+ 2A2 37/ A5 + A3A1 + (Ag + A3A1) (A2 + Aszdg + A%Aq)
A2+ (Mg + A3Aq)?2
3
A2 A3/ A0 + AsAy + (A2 + AsAg)A%A

= 1+ >1, 3.3.3
A2+ (Mg 4+ A3Aq)2 (3:3:3)

GDI(Z) =

which indicates over-dispersion.

For the corresponding sample version, consider the n sample observations. If
Z, = (Xy,)7,..., Zy = (X4, Yn)T is a random sample of size n from a bivariate popu-
lation. Denote Z, = 1Y, Z; = (X,Y)T and cm) =-Lyrn, zz!l - Z,Z, are the
sample mean vector and the sample covariance matrix, respectively. Then the empiri-

cal bivariate dispersion index is

— \Zw(2)VZ,

GDI(Z), = T
n*n

(3.3.4)

According to Theorem 1 in Kokonendji and Puig [23] page 184, as n — oo,

—

Vn{GDI(Z), — GDI(Z)} ~ N(0,03), where 03 = ATTA, where

and

var(X)  cov(X,Y)
cov(X,Y) wvar(Y)

A new bivariate GoF test for the count data based on the Fisher dispersion index is

FIY) = Vn{GDI(Z), — GDI(Z)} (33.5)

and the null hypothesis is rejected for large values of F I,(l'). The asymptotic distribution
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of the test statistic is

GDI(Z), — GDI(Z)
g

N

~%Y-N(0,1), asn — oo. (3.3.6)

For detailed proof, c.f. Theorem 1 in Kokonendji and Puig [23] page 184. However,
for the two sub-models of the bivariate pseudo-Poisson model, i.e., when A, = A3 is

Sub-Model I and when A, = 0 is Sub-Model II, the new test statistics are

FI®Y = \/n{GDI(z), — GDID(Z)}, (33.7)
and
FI°™ = /u{GDI1(Z), — GDISM(Z)}, (33.8)
where
3 3
2AZAZ/T+ A 14+ A)AA
GDI(SI)(Z):1+ 1/'3 2+ 21+( + 1) 3 1, (339)
AT+ A5(1+ Aq)?
and
DAZAZ /AT + AA2
+
GDIS! () =1 173 VAL T 7237 3.3.10
e L (3310

(SI)

One can derive test statistic FI;,”’ and F IT([GH)

. The estimated dispersion index can
be obtained by plugging in the m.Le estimates of A;i = 1,2,3. Also, due to the in-
variance and asymptotic properties of the m.le estimates, the proposed test statistics
are normally distributed (with appropriate scaling). For large sample sizes, the null
hypothesis is rejected whenever the test statistic value exceeds the standard normal
quantile value. In Section 3.4, we analyze the proposed test statistic’s finite, large, and

asymptotic behavior.
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3.3.2 Tests based on unique characteristic

In the following, we consider a few test statistics for the full, sub-model I, and sub-

model II.
Muiioz and Gamero (M&G) method

The GoF tests for a bivariate random variable based on the finite sample size are lim-
ited. This is due to difficulty deriving closed-form expression for the critical region
with finite sample size. Yet, in the following, we construct the GoF test for the bivari-
ate pseudo-Poisson distribution using Munoz and Gamero’s[29] finite sample size test
for the classical bivariate Poisson distribution. For a finite sample test based on the
p-g.f to test GoF for the univariate Poisson, we refer to Unam and Cimat [37]. Further-
more, using a bootstrapping technique, the critical region for the test is simulated and
illustrated with an example in Section 3.4.

Let (X,Y) be a bivariate random variable with p.g.f, G(t1, t2; A1, Az, A3), (f1, t)T e
[0,1]2. For the given data set (X;,Y;), i = 1,...,n, we denote by G, (t1,t2) = % Y ti{itzyi
an empirical counterpart of the bivariate p.g.f. According to Mufioz and Gamero [29],
a reasonable test for testing the compatibility of the assumed density should reject the

null hypothesis for large values of the given statistic

11
Tl(a',quw(;\l,;\z,j\s) = //g% t, to; A1, Ao, Ag)w(ty, ta)dtydty (3.3.11)
0 0

where A1, Ay, A3 are consistent estimators of A’s and
gn(tll tr; 5\1,5\2,;\3) = \/E{Gn(tl, tz) — G(tl, tr; }\1, }\2,}\3)} and also W(tl,tz) > 0isa

measurable weight function satisfying

w i’1, tz dtydt, < oo. (3.3.12)

o —

/
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On pseudo-Poisson goodness-of-fit tests

The above condition implies that the test statistic TI(J'IL’w(/A\l, Ao, 5\3) is finite for the
tixed sample size n. Similarly, for the Sub-model, I & II with appreciate p.g.f. one can
derive test statistic Tlgsnl)w and TI(DSHI;)]

Due to the difficulty in obtaining an explicit expression for the critical region, it has
been argued in Mufioz and Gamero [29] and in Mufioz [28], the rejection regions can
be simulated using the bootstrapping method. The general procedure to identify an
appropriate weight function is difficult to argue. One can consider the weight func-
tions, which include a more prominent family of functions. A few weight functions are
considered in Appendix A in Example 3 and derived from its test statistics. In Section

3.4, we analyzed the effects of weight functions and feasible parameter values on the

critical region.

Kocherlakota and Kocherlakota(K&K) method

Let Z3, ..., Zn be a random sample from the bivariate distribution F(Z;"), where 0§ =
(61,...,64)T is the d-dimensional parameter vector. Let G(t1,tp;0) be the p.g.f. of Z =
(X, Y)T, t1,t, € R? and parameter vector @ is estimated by the maximum likelihood es-
timation (m.l.e) method and the estimator we denote by 9. Let G, (t1,t2) = % Yiiq ti{i t;i,

t € R be the empirical p.g.f. (e.p.g.f.) then the test statistic

Gn(t1, 1) — G(ty, £2;0)
o

TN(tl,tz) = p |t1| <1 ’t2| <1 (3.3.13)

is asymptotically follows the standard normal distribution, where

d /27 0 ;) . .
02 = L[G(8,150) — GX(t, 1:0))] — Ty X ;2 t2) G<§9j2 9, ((03))) is the in-

verse of the Fisher information matrix and ¢ can be estimated by plugging in the m.Le
of 8. We refer to Kocherlakota and Kocherlakota(K&K) [22] for the asymptotic distri-
bution of the test statistic.

Now, for the sub-model I, the Fisher information matrix is

X
(s1) CIE(E) o | e o
[V (A, A3) =n Y\ | — n(1+;)
O B e



3.3 GoF tests for the bivariate pseudo-Poisson

Similarly, for the sub-model II, the Fisher information matrix is
E(X 0 n
I(SH)(ALA?,) —n ()\%> — [)‘1 0 ] .
Y
0 E(3)
The GoF test statistic under sub-model I is

Gn(t1, t2) — Gr(ty, ta; Ay, A3)

Tlg%)(tlfb) = o(S)

Ll <1, ]h] <1 (3.3.14)

where G, (.) is empirical p.g.f. and Gj(t1, to; A1, A3) is estimated p.g.f. of the sub-model
I and

1 A 092Gy (ty, to; A, A
UZ(SI) = _[Gl(t%/ t%1A1/A3) o G%(tll to; Al/ A3)] — I( : 22 : 3)
" n 0A%

Az 02Gy(ty, to; A1, A3)

_ 3.3.15
n()\l + 1) 8)\% ( )

Similarly, for the sub-model II, the GoF test statistic will be

TSI _ Gu(t1,t2) — Gri(t, to; A1, A3)
PN o (SII)

k] <1, |t < 1. (3.3.16)

where G,(.) is empirical p.g.f. and Gy (t;, tp; A1, A3) is estimated p.g.f. of the sub-model
IT and

1 Ay 902G (t1, 125 A, A3)
2 (1, 1)) = ~[G(H, 13\, 43) — Gy (b, t2; A1, Aa) —71 - A2
1

A3 9*Gri(ty, ta; M, A3)

3.3.17
n)Ll a)\% ( )

The bootstrapped finite sample and asymptotic distributions of the GoF test statistic of

Tl(j])\] are studied in Section 3.4.
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On pseudo-Poisson goodness-of-fit tests

In the following, we propose a test procedure that will be supremum on the ab-
solute value of the K&K test statistic with (¢, ;) over (—1,1) x (—1,1). The reason
behind proposing such a test is exemplified in Section 3.4. The mentioned GoF test-
ing procedure for the K&K method is originally discussed in Feiyan Chen [8] for the
univariate and bivariate geometric models. Besides, Feiyan Chen (2013) also discusses
the K&K method for the multiple t-values for the GoF test for geometric models, c.f.
page 12 of Chen[8] . However, in the present note, we are interested in proposing tests
free from the choices of t-values; hence the advantages or disadvantages of considering
multiple t-values are not discussed or illustrated in this note.

The GOoF test statistic is

Té.}gN _ sup Gn(t1, t2) — G(.()h,l‘z;/\l,)\ss)
(t1t2)€{(-1,1)x (~1,1)} o

(3.3.18)

where G, (.), G. and o) are defined in Section 3.3.2. Also, note that deriving the asymp-

totic distribution of the statistic T(') is theoretically ambiguous. Hence, in Section 3.4
PN y g

the finite sample distribution of the test statistic Té‘;N is analyzed.

3.3.3 GOoF test free from alternative

In the class of distribution-free tests, the x test is commonly used even when there is no
specific alternative hypothesis. However, this also needs to be improved in assessing

the power of the test.
x> GoF

In the following, we are using the classical x> GoF test, and cell probabilities are com-

puted up to k. The cell probability matrix is given by
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3.4 Examples

X—Y 0 1 2 3 k+
0 Poo Po1 P02 Po3 | P(X = 0) = T}=] po;
1 P10 P11 P12 P13 - P(X=1) - Z;(;& p1j
2 P20 P21 P22 P23 - | P(X'=2) — E;-Z& P2j
3 P30 P31 P32 P33 | P(X'=3) — Z;-(;& P3j
kt |P(Y =0) = T pio|P(Y = 1) = L7 pin |P(Y = 2) = T pig | P(Y = 3) = D0 pis| | 1 - LR X2 pyg

where p;; = P(X =i, Y = j). The test statistic is

Tpo = i i@ (3.3.19)
i=0j=0  “ij
where k is the truncation point, O; ; is frequency of (7,j) observation in the data of
size n and E;; = nP(X = i,Y = j). Hence, with Pearson theorem T,. follows a x>
distribution with [(k+ 1) x (k+1) — 1 — 3] degrees of freedom.
Similarly, the above two tests for the Sub-Models I & II can be derived with appro-
priate cell probabilities p;; = P(X =i, Y = j). In Section 3.4, we analyze a finite sample

and large sample behavior of the above two test statistics.

3.4 Examples

3.4.1 Simulation

In the following, we give a general procedure to analyze the finite sample distribution

of the GoOF test statistics with bootstrapping technique.

Step 1 Simulate n observations from the bivariate pseudo-Poisson with fixed parameter
values. Otherwise, estimate parameters by moment or m.l.e. method, say A;.

Then compute GoF test statistics, say T,ps.

Step 2 Fix the number of bootstrapping samples, say B (ideal size is 5,000,10,000) and
sample m(< n) observation from the above sample. , repeat Step 1 and compute

Tb  forbe {1,2,..,B}.

m,obs
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On pseudo-Poisson goodness-of-fit tests

Step 3 From the frequency distribution of T?

' ops ODtain the quantile values and the em-

pirical p-value is % {Total no. of T;Z, ops Sreater than Ty}
K&K Method

In the following, we discuss the finite, large, and asymptotic distribution of the test
statistics T('I)\](tl, tp) and Té';N (c.f. Section 3.3.2). Here, we limit our analysis to sub-
models of the bivariate pseudo-Poisson model, and statistical inference or parameter
estimation is well defined (see Section 7 in Arnold and Manjunath [4]). However, in
sub-models I and II, the method of moments and the maximum likelihood estimators
coincide. Hence, due to the invariance property of the maximum likelihood estimator,
the defined test statistic asymptotically follows standard normal with a variance that
will be inverse of the Fisher information matrix.

Now, we consider bootstrapping size of B = 5,000 with varying sample size of
n = 20,30, 50,100, 500 at different t; = £0.01, £0.5,+£0.9,i =1, 2.
Sub-Model I: (i.e. A = A3) The corresponding quantile values and density plots refer
to Table 3.1 and Figure 3.1, respectively.
Sub-Model II: (i.e. A, = 0) The corresponding quantile values and density plots refer

to Table 3.2 and Figure 3.2, respectively.

According to the simulation study, it has been observed that whenever t is closer to
zero, the empirical critical points are closer to the standard normal quantile values. It
has been recommended that the t values be chosen either in the neighbourhood of zero
or well-spanned in the interval (—1,1) to have consistency in the tests.

Note that from Table 3.1 & 3.2 and also from Figure 3.1 & 3.2 K&K-method finite
sample distribution depends on the selected values for t. In particular, at t; = —0.5(0.5)
and t; = —0.5(0.5) K & K statistic distributions are inconsistent. Hence, we consider
the test statistic Té'lzN(defined in (3.3.18)) such that the test support completely depends
on the complete span of t-values. For an illustration of the proposed test, we are analyz-
ing the finite sample distribution of the test statistic, which is computed with varying
t1 and tp from —0.99 to 0.99 at an increment of 0.01.

Finally, it has been argued in Feiyan Chen [8] that such tests are robust to the choice
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3.4 Examples

of alternatives and that the performance of the test is better than the K&K test because
it also spanned the entire interval of (—1,1) x (—1,1).

We refer to Table 3.3 and Figure 3.3 for the quantile values and frequency distri-
bution of the test statistic, respectively. The test statistic’s behavior is more stable and

consistent for small and moderately large samples.

/)
- / \_ i [ y. \\ 44‘ ‘L—L‘%\Mﬁﬁm
(@)t = —09,t = —09 (b) = —05,t, = —05 () f = —0.01,t, = —0.01
\ \\ :7’%‘3\
| = . IEEC TR,
| \ _,f \
I e , W) h. A N
(d) t; = 0.01, £, = 0.01 (€t = 05,t = 0.5 ()t = 0.9, = 0.9

Figure 3.1: Finite sample distribution of TI()%) for the Sub-Model I

//>\ /yf\\\‘

/ R / \ =

(@)t = —09,tp = —-0.9 (b) t; = —0.01,¢t, = —0.01
A A
/,,,::?/ \ /
;\}1 // .
A N S N

(c)t; =0.01,t, = 0.01 (d)t; =09,t, =09

Figure 3.2: Finite sample distribution of Tl(;j'\fl) for the Sub-Model II
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On pseudo-Poisson goodness-of-fit tests

(@) Tipy, (b) T

Figure 3.3: Finite sample distribution of the supremum of absolute deviation for the

K&K-test statistic.

Muifioz and Gamero(M&G) method

)

n,w

Now, we consider GoF using p.g.f. (c.f. Mufioz and Gamero [29]) Tlg with depends
on the underlying weight functions. We refer to 3.5, 3.6, 3.6 and Figure 3.4, 3.5, 3.6, 3.7,
3.8 for small and large sample distribution of the test statistic and its quantile values

for the full and its sub-models.

To better understand the behavior of the test statistic, we examined the impact of
different weights at 11 = —0.9, —0.5, -0.01,0.5,3 and a2 = —0.9, —0.5, —0.01,0.5,5 on
the test statistic. According to the simulation study, the test is consistent and stable for
moderately large sample sizes, irrespective of the weight chosen. Also, note that for
the increasing sample size, the test statistic distribution is less variant and is shown to

be consistent.

Figure 3.4: Example 1
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Table 3.1: HA 1) distribution for the Sub-Model 1

Sample size (0.5%, 2.5%, 5%; 95%, 97.5%,99.5%

n=20 n =30 n=>50 n =100 n = 500
t1 =—-09,t, =-09 A —2.503, —1.953, —1.652;1.660,1.912, wamv AIN%»N —1.886, —1.626;1.637,1.981, 2. mmmv AINmmN —1.975,-1.669;1.619,1.928, Nm»mv A —2,622,-2.011, —1.674;1.620,1.912, 2. m»mv A —2.582,-1.910, —1.612;1.634,1.948, 2. mmov
t1 = —05,tp = -0.5 AINmmP —2.187,—1.811;1.953, 2.458, 3.196 v Alwbmm‘ —2.168, —1.825;2.031,2.523,3.390 V AIN.SN —2.189, —1.825;1.927,2.412, w@»wv A —2.822,-2.198, —1.872;1.988,2.364, 3.106 v A —3.021, —2.156, —1.845;1.947,2.270, 3.078 v
AE t; = —0.01, , = —0.01 Aloﬁmﬁ —0.402, —0.376;1.701,1.976, 2.981 v Alo.ms‘ —0.456, —0.428;1.454,1.688,2.912 V Alo.mow\ —0.535, —0.510; 1.407,2.036, waov A 0.747, —0.695, —0.668; 1.332,1.734,2.453 v A 1.388, —1.263, —0.997;1.228,1.553,2.220 v
H t; = 0.01, £, = 0.01 Alo.»mm\ —0.392, —0.362;1.620, 1.870, 2.456 v Alo.»cw‘ —0.440, —0.415;1.352,1.612,2.853 V Alo.mﬂr —0.520, —0.492;1.231,1.867, N»mmv A 0.713, —0.665, —0.641; 1.240, 1.645,2.347 v A 1.310, —1.216, —0.958;1.223,1.529, 2.049 v
t1=05,t,=05 Alo.wmf —0.640, —0.581;0.771,0.977, 1. »va Alo.wwﬁ —0.692, —0.619;0.760, 0.966, 1. NmC Alo.mmw‘ —0.725, —0.634;0.753,0.9358, H.mo@ A 0.944, —0.753, —0.654;0.710,0.892,1.238 v A 1.008, —0.792, —0.683; 0.707,0.853, 1. :C
t1=09,t, =09 Alo.wmo\ —0.624, —0.541;0.498, 0.625, 0. mmov Alo.wwm\ —0.622, —0.541;0.516,0.630, 0. wm»v Alohwo\ —0.625, —0.543;0.545,0.643, Pmm»v A 0.833, —0.657, —0.550; 0.539, 0.654, 0. mmd A 0.829, —0.648, —0.552;0.554, 0.669, 0. m»mv
(SII) 3 vt o:
Table 3.2: Tpn distribution for the Sub-Model II
Sample size Ao.mu\a\ 2.5%, 5%;95%,97.5%, wc.mO\ov
n=20 n =230 n=>50 n =100 n = 500
t1=—-09,t, =-09 (—17.388, —8.192, —5.956;5.168,7.046, G.mev A\G.mﬂm\ —6.980, —5.286;4.862,5.972,10.505) | (—9.952, —6.382, —5.020;4.653,5.737,7. me n 7.590, —5.342, —4.345;4.612,5.568, 7. mNNV A\m,@mN —4.788, —3.7800; 5.200, m.wmoﬁywwwv
t; = —0.01, t, = —0.01 AINAwo@ —1.700, —1.557;1.347,1.608, NNHmV (—2.222,-1.803, —1.507;1.303, H.mmNN.:@ AIN.NRE‘ —1.726,—-1.393;1.264,1.517,2.023 v A —2.174,—1.679, —1.441;1.341,1.624,2.230 V AIN.NOm‘ —1.690, —1.390;1.362, Hmmm&uwv
(s t; = 0.01, t, = 0.01 A\N,woﬁ —1.740, —1.432; H.Nowb.mﬁo\w.ooi A\N.NG\ —1.802, —1.440;1.297,1.558, H.ommv A\N 176, —1.733, —1.480; 1.259, 1.568,2.123 v A 2.261,—1.680, —1.434;1.383,1.618,2.136 v A\N.NHP —1.727,—-1.436;1.363, Hm.NPN.ommv
sz t1=09,t,b =09 AlobNN —0.737,—0.647;0.580,0.750, Eogv (—0.913, —0.755, —0.657; QmwNo.wEb,om@ A 0.950, —0.784, —0.669; 0.590, 0.723, 0. omC A —0.980, —0.825, —0.701; 0.594,0.748, 1. oHNV AIH.omw‘ —0.853, —0.730;0.549, odwm\o.oomv
Table 3.3: HmA D distribution for the Sub-Model I
Sample size (0.5%, 2.5%, 5%; 95%, 97.5%, 99.5%)
n =20 n =30 n=2>50 n = 100 n = 500
[0 | (0.380,0.450,0.528;2.647,2.987,3.005) | (0.337,0.489,0.586;2.656,3.012,3.622) | (0.401,0.511,0.593;2.623,2.863,3.567) | (0.423,0.574,0.643;2.679,3.013,3.591) | (0.410,0.550,0.634;2.558,2.860,3.279)
(SII) 3. vt o:
Table 3.4: Hm distribution for the Sub-Model 11
Sample size (0.5%,2.5%, 5%; 95%, 97.5%, 99.5%)
n =20 n =230 n=>50 n =100 n = 500

(70T | (0.367,0.676,0.830; 6.868,9.190,24.875) | (0.422,0.651,0.771;6.121,7.016,11.323) | (0.394,0.620,0.783;5.559,6.506,9.039) | (0.423,0.638,0.793;5.208,6.221,7.612) | (0.487,0.701,0.850;5.113,5.588,6.720)
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Table 3.5: Example 1

Sample size (0.5%, 2.5%, 5%; 95%, 97.5%,99.5%)

n =20 n =230 n=>50 n = 100
Full Model (7.085,8.664,9.632;30.382,33.138,38.773) (5.117,5.793,6.190; 15.599, 16.820,20.041) (2.666,3.002, 3.230; 6.908, 7.490, 8.600) (0.885,0.960, 1.005; 1.635,1.720,1.911)
Tpnw | Sub Model I (10.808,12.772,13.980; 40.614, 42.949, 49, 598) (6.560,7.770, 8.455; 21.579, 23.463,28.388) (3.535,4.008,4.346;8.914,9.507,10.722) (0.958,1.07,1.126;2.093,2.217,2.513)
Sub Model IT | (21.270,29.847,35.064;147.186,164.792,197.586) | (16.463,21.968,24.682;78.691,86.521,103.263) | (12.906,15.543,16.812;33.672,36.303,41.303) | (3.191,3.582,3.951;7.981,8.418,9.304)
Table 3.6: Example 2
Sample size (0.5%, 2.5%, 5%; 95%, 97.5%, 99.5%)
n =20 n =30 n =50 n =100
Full Model (24.003,29.695,32.916; 109.461,120.825, 143.666) (18.688,21.358, 23.045; 56.043, 60.840,72.928) (9.814,11.380, 12.424;18.230, 27.670, 33.967) (3.340,3.758,3.964; 6.958,7.362,8.115)
Tpnw | Sub Model T (35.178,41.764,46.663; 153.635, 166.724,205.881) (21.543,26.233,28.611;81.378,90.566, 111.364) (12.925,14.971,16.330; 36.434, 39.121, 44.605) (3.735,4.290,4.546;9.0899.648,11.126)
Sub Model IT | (83.950,120.662, 150.705; 750.712, 854.663,1027.723) | (66.689,94.637,108.678;398.689,440.015,540.523) | (51.414,64.302,72.087;169.210,184.953,213.675) | (13.119,15.157,16.856; 38.858,41.334,46.675)
Table 3.7: TV g
" Pnw
Sample size (0.5%, 2.5%, 5%; 95%, 97.5%, 99.5%)
n =20 n =30 n=>50 n =100
(a1 = —0.9,a7 = —0.9) | (30.918,43.773,54.367; 455.914,527.123,1023.235) (25.182,33.193, 38.630; 204.290, 414.503) (13.956,17.766,20.112; 85.184,103.305, 140.462) | (4.543,5.389,5.885;18.364,22.210,29.855)
(ay = —0.01,a4 = —0.01) Gw.mmm: 18.047,19.808;69.013,77.235, @NO@@V G.How\ 11.206,12.488;36.494,39.859,47.084) (4.981,5.839,6.373;15.345, 16.561, 19.420) (1.774,1.951,2.060; 3.755,3.994, 4.461)
Tp,n,w (aqy = 0.01,a; = 0.01) (10.923,13.726,15.786; 54.873,61.512,75.468) (7.864,9.473,10.465;29.302,31.877,37.684) (4.216,4.899,5.315;12.289,13.215,15.395) (1.506,1.645,1.734;3.037,3.213,3.570)
(ay =0.5,a1 =0.5) (8.400,10.410,11.925;40.708,45.527, m».mwov G.om@ 7.091,7.752;20.261,21.926,25.859) (3.122,3.598,3.884;8.470,9.118, Ho.mmwv (1.120,1.213,1.271;2.100, 2.210, 2.445)
(ap, =3,a1 =5) (3.066,3.557,3.851;10.352,11.398,13.679) (3.032,3.353,3.566; 6.451, 6.745,7.330) (1.480,1.618,1.677;2.695,2.832,3.089) (0.235,0.259,0.365; 0.533,0.551, 0.584)
(a1 = —0.9,a; =5) ﬁo.wo@ 26.760, 36.107; 235.847,262.617, mmo.wmwv (14.523,22.047,27.541;124.208,137.808, 165.083) Ao.mfw\ 12.853,15.190; 52.653,57.075, 67.911) Am.mwm\ 0.945,1.028; 8.050,9.502, Hm.mmov
Table 3.8: Distribution of the F hm.v
Sample size (0.5%,2.5%, 5%; 95%, 97.5%,99.5%)
n =20 n =30 n =50 n =100 n = 500
Full Model (=7.818, —5.701, —4.665,5.033,6.900, 11.231) (=7.760, —5.762, —4.698,5.084, 6.703, 10.598) (=7.166, —5.530, —4.748,5.034, 6.544,9.666) (=7.167,—5.530, —4.748,5.034, 6.544,9.666) (=6.897, —5.676, —4.841,5.047,6.063,8.20)
FI}) [ SubModelT | (—9.537, —7.749, —6.766;9.093, 11.852, 17.648) (—9.947,—8.140,—7.131,8.825, 11.500, 15.842) (—10.477,—8.560, —7.505;8.725,10.887, 15.936) (—11.018, —8.610, —7.507;9.203, 11.223, 15.689) (=11.759, —9.034, —7.802;8.365, 10.293, 13.741)
Sub Model IT | (—15.205, —12.628, —11.181;13.710, 18.740,29.800) | (—15.917, —13.277, —11.695, 13.924,17.255,28.748) | (—17.191, —14.088, —12.162; 13.748,17.947,27.665) | (—18.434, —15.108, —13.076; 12.997,15.976,21.976) | (—20.647, —16.782, —14.478; 11.629, 14.497,21.093)
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(a) (b) (o)

(d) (e) ()

Figure 3.6: T

/n/w
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On pseudo-Poisson goodness-of-fit tests

(a) (b) (©

(d) © (f)

Figure 3.7: 7D

Pn,w

(a) (b) (©

(d) (e) (f)

Figure 3.8: T(Sm

Pn,w
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Test based on moments

In the current section, we will analyze the non-consistent test defined in Section 3.3.1.
The finite sample distribution of the FI ('), see Table 3.8 and Figure 3.9 for the distri-
bution and its quantile values for the full and its sub-models. The simulation study
clearly shows that the distribution of test statistics is shown to be standard normal be-
havior for increasing sample size. In addition, we note that for small and moderately

large sample sizes, the test is conducted to be stable and consistent.

)
N

P i \\ L - = e
(a) Full Model (b) Sub-Model I (c) Sub-Model 11

Figure 3.9: Distribution of the F I,S')

GOF test free from alternative

The Chi-square GoF test statistic sample distribution for the full and its sub-models,
see Figure 3.10. However, in the case when alternative just the negotiation of the null
hypothesis distribution information, the Chi-square GoF test is recommended; other-
wise, other tests which are mentioned perform better than the Chi-square. Also, the
Chi-square test depends on the value of k chosen. For illustration, we have considered

K = 4 and analyzed its finite and large sample distributions.

X/\ , \\\
— V/ W, X\
(a) Full Model (b) Sub-Model 1 (c) Sub-Model 1T

Figure 3.10: Chi-square GoF test for k = 4.
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On pseudo-Poisson goodness-of-fit tests

Power analysis

In the present section, we will be considering classical bivariate Poisson and bivariate
Conway-Maxwell Poisson distributions as alternatives to analyze the power of each of
the tests discussed above.

Hence, we simulate n = 20, 30, 50, 100, 500 samples from Z; ~ Poisson(6;),i =1,2,3
and taking U = Z; + Z3 and V = Z; + Z3 the resultant joint random variable (U, V)
will be n observations from the classical bivariate Poisson distribution. Nevertheless, to
simulate n = 20, 30, 50,100, 500 samples from the bivariate Conway-Maxwell Poisson,
we begin with simulating an observation from the univariate Conway-Maxwell Pois-
son with parameter 6 and v, say N. Further, simulate N observations from the bivari-
ate binomial distribution with specified cell probabilities, say (Wy;, Wy;),i = 1,2, ..., N.
Then, the random vector (YN, Wy;, YN, W,;) will be an observation from the bivari-
ate Conway-Maxwell Poisson distribution. For the desired sample size, repeat the
above procedure for n times to have a specified sample size from the bivariate Conway-
Maxwell Poisson distribution. We refer to Sellers et al. [33] for further discussion and
an algorithm to simulate from the bivariate Conway-Maxwell Poisson using R soft-
ware.

The empirical power computation is as follows

Step 1 Compute GOF test statistic value for the samples from alternative distribution,

say Typs.
Step 2 For the given bootstrapping size (sayB = 5000), compute T4 for b € {1,2, ..., B}.

Step 3 Hence, 1 {Total no. of T"

o ops Sreater than Ty} is an empirical power of the test.

We refer to Table 3.9 for the each of the tests empirical powers.
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Table 3.9: Power (% of observations) under classical bivariate Poisson (BCBP((6; = 1,
6, = 3, 83 = 4))) and bivariate Con-Max Poisson (BCMP® = 1, v = 5, y; = 0.1,

oratio = exp(1.5))) alternatives

Sample size
n =20 n =30 n =50 n =100 n = 500
h=-09t=-09 | (172,88) | (21642) | (226,26) | (59.2,003) | (90.4,0.01)
h=—05t=-05 |(092824) | (0.89,840) | (0.91,92.4) | (0.93,0.958) | (0.99,0.97)
s | B= 001t = ~001 | (0.99,091) | (097,093) | (099,099) | (099,097) | (099,099)
PN =001t =001 | (0.99,0.99) | (0.99,098) | (0.98,0.97) | (0.99,0.99) | (0.99,0.98)
h=051t=05 |(0.99099) | (091,099 | (092,099) | (0.89,099) | (0.81,0.99)
h=09t=09 | (0.98099) | (092093) (094,096) | (0.99,099) | (0.99,0.99)
o | — (0.95,092) | (0.99,091) | (0.95,098) | (099,099) | (099,097) |
0= —09,ay=—09 |(352,678) | (569,82.7) | (59.9,12.6) | (35.0,9.2) -
a1 = —001,ay = 001 | (6.0,854) | (725,27.4) | (24.5,152) | (10.1,50.3) -
0 a1 =001,a, =001 | (795,2.6) | (203,16.0) | (363,342) | (6.1,59.8) -
P 05,4, =05 | (192,373) | (45,27.0) | (261,854) | (2.1,55.5) -
0 =3 =5 (35.0,74.0) | (727,19.0) | (55,255) | (1.2,10.0) -
m=-09am=>5 |(120,910) | (108,720) | (47,928) | (0.1,43.6) -
0= —09,ay= 09 | (793,965) | (123,950) | (11.2,21.8) | (13.4,34.6) -
a1 = —001,ay = 001 | (735,204) | (169,9.5) | (0.9,87.0) | (0.1,13.2) -
on | m=00Lm =001 | (22438) | (159,94) | (22,938) | (138174) -
P a; =05,a, =05 (432,87.1) | (27.5,4.8) | (21.3,80.2) | (1.1,69.4) ——
a1 =30 =5 (40.8,432) | (36.0,947) | (21,758) | (1.3,10.2) -
4= —09,a =5 | (544,872) | (627,720) | (47,368) | (0.1,24.4) -
0= —09,ay=-09 | (7.1,129) | (419,99.9) | (7.7,262) | (60.71,642) | ——
a1 = —001,ay = 001 | (714,747) | (9.6,56.6) | (2.9,31.6) | (02,365) -
sm | m=00La=001 | (81,361) | (25544) | (75,671) | (0.1,373) -
P a1 =05,a, =05 (38.9,18.9) | (18.2,99.6) | (5.4,78.7) | (0.4,96.2) ——
0 =3 a=5 (26,700) | (25,1.8) | (0.1,823) | (0.0,6.0) -
m=—09,am=5 |(506706) | (550,364) | (44,844) | (0.0,13.2) -
| FIY | _ (58.4,34.6) | (46.1,86.7) | (56.0,22.9) | (11.8,424) | (635,208) |
| | _ (769,135) | (63,90.6) | (83.0,406) | (417,309) | (88.1,738) |
P | _ (69.9,94.4) | (86.4,70.2) | (95.0,26.6) | (91.0,467) | (100,338) |
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On pseudo-Poisson goodness-of-fit tests

According to the power analysis, all tests are effective or significant in identifying
the pseudo-Poisson and Conway-Maxwell Poisson distributions. When compared to
the classical bivariate Poisson, tests are moderately consistent in detecting the true pop-
ulation. We conclude that one needs to think about altering the parameter values and
conducting additional research on the same better to grasp the power of the classical

bivariate Poisson alternative.

3.4.2 Real-life data

In the following section, we consider two data sets which are mentioned in Karlis
and Tsiamyrtzis [21], Islam and Chowdhury [19], Leiter and Hamdani [24] and also
in Arnold and Manjunath [4]. For empirical p-value computation, we have simulated
5000 observations from the pseudo-Poisson models with respective maximum likeli-

hood values and compared them with the critical value of each test.

3.4.3 A particular data set I

We consider a data sets which is mentioned in Islam and Chowdhury [19] and also
in Arnold and Manjunath [4]; the source of the data is from the tenth wave of the
Health and Retirement Study (HRS). The data represents the number of conditions
that one ever had (X) as mentioned by the doctors and, let (Y)) denote the utilization of
healthcare services (say, hospital, nursing home, doctor and home care). The Pearson
correlation coefficient between X and Y is 0.063. The test for independence, classical
inference (m.l.e and moment estimates), and AIC values for full model and its sub-
models c.f. Arnold and Manjunath [4] page 16 and 18 (Table 10).

In the following, we will consider the full model and its sub-model II. The criteria
for selecting below two models are discussed in Arnold, and Manjunath [4] on page 18
and Table 10. We refer to Table 3.10 for the critical values and its empirical p-values for

the full model and sub-model II.
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Table 3.10: Health and retirement study data (Full Model) and m.lLe. estimates Full
model (X; = 2.643,1, = 0.688,A3 = 0.031) for Sub-Model II (A3 = 0.031)

n = 5567
Test statistic value | p-value

= —09,t = —09 151.734 0.025
=05t = —0.5 —2870.383 0.891
(st t = —0.01,t = —0.01 755.821 0.901
PN t = 0.01, t, = 0.01 803.119 0.921
t; =05, t = 0.5 1713.7 0.141
=09, t =09 3710.615 0.164
TS — 12.740 0.097
4 = —09,ay = —09 578.674 0.01

4, = —0.5,ay = —0.55 117.940 0.9

0 4, = —0.01,ay = —0.01 64.179 0.8
PN =1 =1 67.564 0.09
4, =3,ay=5 21.739 0.12

4 = 09,0, =5 23.830 0.02

4, = —09,ay = —09 659.816 0.99

TGO 4 =1,0, =1 71.881 0.07
4 = —09,a, =5 24.465 0.02
F1t) _ —13.532 0.987
F1S1D _ 25729 0.991
Chi-square (- — 417.653 ——
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On pseudo-Poisson goodness-of-fit tests

The tests TI(;;'\;I) on neighbourhood of 0, T(SII )SPN, TI(JZ)\] (large than —0.9), FI,S') and

F I,(ZSH) are suggests that the Health and Retirement data fits bivariate pseudo-Poisson
Full model and its Sub-Model II, which agree with the AIC values listed on pages 16 &

18 of Arnold and Manjunath’s [4].

3.4.4 A particular data set II

Now, we consider a data set which is in Leiter and Hamdani [24]; the source of the
data is a 50-mile stretch of Interstate 95 in Prince William, Stafford, and Spotsylvania
counties in Eastern Virginia. The data represents the number of accidents categorized
as fatal accidents, injury accidents, or property damage accidents (X), along with the
corresponding number of fatalities and injuries (Y) for the period 1 January 1969 to 31
October 1970. For classical inference (m.l.e and moment estimates) and AIC values for
full model and its sub-models c.f. Arnold and Manjunath [4] page 17 and 19 (Table 11).
The criteria for selecting below two models are discussed in Arnold, and Manjunath
[4] on page 19 and Table 11. It has been emphasized in Leiter and Hamdani [24] and
Arnold and Manjunath [4] that mirrored sub-model II fits the data better than any other
sub-models.

In the following, we will consider the two models. We refer to Table 3.11 for the

critical values and its empirical p-values for the full model and Mirrored sub-model II.
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Table 3.11: Accidents and fatalities (Full Model) and m.l.e. estimates Full model (A; =
0.058,1, = 0.812,A3 = 0.867) and for mirrored Sub-Model II (A; = 0.862,A3 = 0.067)

n =639
Test statistic value | p-value
h=—09,t=—09 165.966 0.054
h=—05t, =—05 —359.286 0.932
sy | B =001t = —0.01 —135.242 0.914
Mirrored Ty,
H = 0.01, t, = 0.01 —133.630 0.899
H =051t =05 —126.924 0.763
H =09t =09 —220.890 0.558
Mirrored T on — 4.237 0.544
a1 =—09,ay = —09 1057.191 0.99
a1 = —05,a, = —0.55 100.903 0.98
0 a1 = —0.01,a, = —0.01 24.906 0.87
PN 4 =1,a =1 3.786 0.91
4 =3,a=5 1.178 0.01
0 =—09,a, =5 152.5798 0.007
a1 =—09,a, = —09 78.337 0.40
Mirrored TS ) o =10 =1 4.049 0.91
0 =—-09,a,=5 1.438 0.20
FI — 2.289 0.986
Mirrored FI{*'" — 3.443 0.3
Chi-square () — 586 ——
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On pseudo-Poisson goodness-of-fit tests

The tests TIESI\;I) on a neighborhood of 0, TS(%\I]), T('])\, (large than —0.9), F 1,9 and F I,g

SII)
suggests that the Accidents and Fatalities data fits well the bivariate pseudo-Poisson
Full model and its mirrored Sub-Model II, which is in line with the AIC values listed
on pages 16 & 18 of Arnold and Manjunath’s [4]. A detailed discussion of the analysis

is discussed in the conclusion chapter.
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CHAPTER 4

Bayesian Inference for

pseudo-Exponential data

41 Introduction

Bivariate conditionally specified models frequently offer valuable, adaptable models
with a range of dependence patterns. In such cases, consideration should be given to
what is recognized as pseudo-exponential models (According to Filus and Filus [12]-
[14]). According to Cacoullos [7], the distributions with multiple parameters of the
exponential family are characterized to obtain prior knowledge about the posterior
densities. We create conjugate priors for discrete exponential families examined for
the count data model in J. P. Chour [10]. The bivariate pseudo-exponential approaches
have exponential first marginal and exponential conditional distributions for the sec-
ond variable. We start by reviewing the pseudo-exponential development, focusing
on a few simplified sub-models. The Bayesian inference for such sub-models is again
explained in detail. For traditional inference issues and an illustration of uses of the
bivariate pseudo-exponential distribution, we refer to Arnold and Arvanitis [2], and

also we refer Arnold et al. [1].
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Bayesian Inference for pseudo-Exponential data

4.2 The Bivariate Pseudo-Exponential Distributions

Let X and Y be a random variable with X > 0 and Y > 0 that could be used as a model
for the lifespans of connected system components. Inside one method, the joint density
is specified as a specific non-negative function on (0, 00) x (0, co0) that integrates to 1. In
contrast, Filus and Filus[13] suggest using one marginal distribution (let’s say X) and
the family of conditional densities of the other variable (Y) given X=x, for every X, in
various articles, such as Filus and Filus[12]. Therefore, the joint density of (X, Y) will
have the following form, if h(x) denotes the density of X for each x, and g, (y) indicates
the conditional density of Y given that X=x, then

fxy(x,y) =h(x)g«(y)I[(x >0,y > 0). 4.2.1)

In general, the Pseudo-exponential distributions (inside the context of Filus and Filus)
the equivalent to the case where h and g,’s have exponential densities. As a result, the

joint density of a bivariate pseudo-Exponential distribution is one where
X ~ Exp(01), (4.2.2)

and for each x > 0,

Y|X =x ~ Exp(0(x)), (4.2.3)

where 6; > 0 and 6(x) > 0V x. Except for measurability, there are no constraints on

the structure of the function 6(x). The corresponding joint density is given by
Fxy(x,y) = 01e7%0(x)e ™V (x > 0,y > 0). (4.2.4)

where the positive function 6(x) is quite arbitrary. Suppose that 6(x) = 6, + 65x, then
the corresponding joint p.d.f. is given by

Fxy(x,y) = 016705 (0, + O3x)e @B (x > 0,y > 0). (4.2.5)
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4.2 The Bivariate Pseudo-Exponential Distributions

where 6; > 0, i=1,2,3.

4.2.1 Notes on priors for Pseudo-Exponential data

The joint density function for a bivariate Pseudo-Exponential distribution is of the form

equation (4.2.5).
Consequently, the likelihood function for a sample of size n from this distribution is
given by
n
L(61,62,63]x,y) = 07e™ 1 1= ([ T(62 + 3x;) )2 Zima Vi Kica i (4.2.6)

i=1

Note that this likelihood factors as follows:

L(61,0,,05]x,y) = {oFe O xms (ﬁ((’z +53))e R b (427)
i=

In the first factor only involves the parameter 01, while the second factor involves the
parameters 0, and 03. We will call 6; the marginal parameter, and 6, and 63 will be
called conditional parameters. This factorization will prove to be important in Bayesian
inference for this model, as discuss below. Because of the factorization we will know
that if a priori §; and (65, 63) are independent, then they will be independent posteriori
also.
Now, to the Pseudo-Exponential distribution defined in equation (4.2.5), it is simply

assume a gamma prior for the marginal parameter 6;. i.e., a priori we assume that
th ~ T, B1), (4.2.8)

where 0 < 7 < coand 0 < B1 < oo.

Therefore, the priori density for 0] is of the form

ngt1—1,- iy
f9~1(91) — Py 1r(“1) ; 0 <6 < oo.
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Bayesian Inference for pseudo-Exponential data

The choice of an a priori joint density of (65, 63) that will be independent of 6; is not so
obvious. It is clear whether it is possible to choose such a prior that will be “Conjugate”
with the second factor in equation (4.2.7). The joint posterior of (6,,63) will need to be

dealt with numerically.

4.3 Independent priors

Consider an a priori joint density in which all three parameters are independent, and
each has a gamma distribution. Thus we have

0‘19041 1 _:3 i0;

fa.6,6, (61,62, 63) H P @) (4.3.1)

where 0 < 6;, a;, B; < oo, for i=1,2,3.
The kernel of the posterior which is the product of the kernel of the factored likelihood
(4.2.7) and the kernel of the prior (4.3.1) is of the form

ker (f5, 4,6,y (01,02, 03], ) = {9§1+n—1€—91(51+2;’=1 ) }
n

# {([](02 + 03x:))052 1057 e i) (432
i=1

* 6793(1334»2?:1 xiyi) }

From the first factor in equation (4.3.2) we recognise that a posteriori #; has a gamma
distribution, i.e.,

n
| X=xY=y~T(g+np+) x) (4.3.3)
i—1

The second factor is the kernel of the posterior density of (65,63). It will need to be

dealt with numerically.
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4.3 Independent priors

4.3.1 Sub-Model-1(6, = 63):

We first focus on the the sub-model of equation (4.2.5) obtained by equating 6, and 6.
The model is given by

Fxy(x,y) = 01e70%03(1 + x)e B0+ (x > 0,y > 0). (4.3.4)

The likelihood function for a sample of size n from this distribution is

n
L(61, 65|, y) = 8 e o ief ([ (1 +xp)e Lyt b
- i=1

The likelihood factors as follows:

n
L(91’93|LZ) = {9?6—91 Yity xl}{@'g(n(l + x,-))e_93(2?=1 Yyitlitg xi%’)} (4.3.5)
i=1

For such a conjugate joint prior density for two parameters in the model, we can take
one with independent gamma marginals. Thus
a1 —1 B0 a3 n3—1 3.0
B e 161 B33 e B33

fo,4,(61,03) = Ma) T (4.3.6)

The kernel of the posterior density, which is the product of the kernel of the likelihood
factors (4.3.5) and the kernel of the joint prior (4.3.6) is of the form

Ker(fg, 1. (01,0312, y)) = {077 lem Bl |

(4.3.7)
% {9§3+"*1e*93(ﬁ3+2?:1 yit Xz Xiyi) }
A posteriori the two parameters have independent gamma distributions. Thus
_ n
Ol‘XZK,X:zN I—'((xl +n/,31 + in)/ (438)

i=1

and, independently,
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n
I X=xY=y~T(az+nBs+ ) vi+ Y xivi) (4.3.9)

n
i=1 i=1

The squared error loss estimates of the parameters (the posterior means) are thus,

g (B) _ atmn
! B1+ Xizg Xi
and
~ (B) a3 +n

03

Bt L1yt Ly vy
If we choose to an improper prior with a1 = a3 = 1 = B3 = 0, then the resulting Bayes

estimates coincide with the corresponding maximum likelihood estimates(M.L.E’s).

Figure 4.1: Density plot of independent gamma prior with hyper-parameter values are
ay = 2,03 = 4, B1 = 2, B3 = 3 and parameter values 0; = 2,63 = 5 with sample of size
30 of the sub-model-1.
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4.3 Independent priors

14k
12k

10k

Figure 4.2: Density plot of posterior (independent gamma prior) with hyper-parameter
values are 01 = 2,a3 = 4,81 = 2,3 = 3 and parameter values 8; = 2,63 = 5 with
sample of size 30 of the sub-model-I.

4.3.2 Sub-Model-1I(6, = 0):

Consider the sub-model-II obtained by setting 6, = 0. The model is thus of the form

Fxy(x,y) = 01e” %030 %Y (x > 0,y > 0).

(4.3.10)
The likelihood function for a sample of size n from this distribution is
n
L(61,63]x,y) = Ofe =gy ([ T x)e S
a i=1
The likelihood factors as follows:
n n n
L(61,031x,y) = { et mms Loy ([ e fariw ) (4.3.11)
B i=1

If we use a prior with independent gamma marginals such as

B Al L (43.12)
[lw) ~ Tlas) :
81

fo,6,(01,03)
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The kernel of the posterior density, which is the product of the kernel of the likelihood
factors (4.3.11) and the kernel of the joint prior (4.3.12) is given by

Ker(félléﬂX/X(Gl’ 03 |£’ z)) = {9?‘14‘”—16—91 (B1+Yiq xi) }

(4.3.13)
“ {9§3+”—1e—93(ﬁ3+2?=1 Xiyi) }

A posteriori the two parameters have independent gamma distributions. Thus

n
O X=xY=y~T(ay+npB1+) x) (4.3.14)
i=1
and, independently,
- n
0] X =xY=y~T(az+nBs+ ) xiyi). (4.3.15)
i=1

The squared error loss estimates of the parameters (the posterior means) are thus,

4. (B _ X1 +n
' Br+ Y xi

and
~ (B) a3 +n

- B3+ Y xiyi

If we choose to an improper prior with a1 = a3 = 1 = B3 = 0, then the resulting Bayes

estimates coincide with the corresponding maximum likelihood estimates(M.L.E’s).

82



4.4 Pseudo-Gamma priors:-

1x10720

Figure 4.3: Density plot of posterior (independent gamma prior) with hyper-parameter
values are 01 = 2,a3 = 4,81 = 2,3 = 3 and parameter values 8; = 2,63 = 5 with
sample of size 30 of the sub-model-IL.

4.4 Pseudo-Gamma priors:-

In the following sections we will be discussing bivariate pseudo-gamma priors and

their applications in more details for each of the sub-model I & II.

441 Sub-Model-1(6, = 65):

Consider the sub-model, specified in equation (4.3.1), the likelihood function for a sam-

ple of size n from this distribution is given by

n
L(6y,03]x,y) = Ofe 1 Lz %ig] T+ x:) )e 03 (Lia it Ly xiti) (4.4.1)
a i=1

This time we will consider a joint prior that is of the bivariate pseudo-gamma form.

For it we assume that 63 has a I'(7y, 1) density, i.e.,

03) x 00 Lo O¥iT(9; > 0), 0< T, < .
3
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and then for each value of 83, the conditional density 6; given 03 is assumed to be of

the gamma form with an intensity parameter that is a linear function of 63. Thus
£(61]63) o< (1 + ¢393)T291T2—16—(¢2+¢393)91 (61 > 0).

where 0 < 1, 3 < coand 0 < ¢, < o0.

The joint prior is thus of the form
F(81,83) o (2 + 1h303) 202 e~ ¥2930)019T1 1 o=0s81 (9, > 0,05 > 0). (4.4.2)

Consider the simpler prior in which we assume that ¢, = 0. This prior density will be

of the form
Fp(61,03) o 672 e~ 010sgTt Rl omnbs [ (9, > 0,65 > 0). (4.4.3)
The corresponding posterior density to a sample of size n from sub-model I will be

F(By 851X = Y = y) o (B0 ) e T4 T
% (61(2716—91931/)39:;[1+T2—1e—lp193)

o 91T2+"_1e_91 Yity xi9§1+f2_13_93(¢1 + L1 Vit el Xivi)

444
x ¢ 01033 ( )
o (9§1+”_1e*93(¢1+2?:1 Yityiog xiyi))
* (91(2+n716—91 (Z?:l Xi+l,l7393))
The marginal posterior distributions of 8; and 63 are
o I'(t+n)
p 0:) 972"'” 16 0131 % . 1 , 445
f@l( 1) [ 1 ] (lpl +er'l:] %’"’2?:1 xiyi +611P3)(Tl+n) ( )
and
fg?l (61) [9§1+"—1e*93(¢1+2?:1 Yitlig xi}/i)]' [(m+n) (4.4.6)

(X xi + O3p3) (2F7)

84



4.4 Pseudo-Gamma priors:-

For the plots of such prior and posterior densities, see Figures 4.4, 4.5, 4.6 (for priors)

and Figures 4.7, 4.8, 4.9 (for posteriors).

f1

Figure 4.4: Density plot of pseudo-gamma prior with hyper-parameter values are 71 =
2, = 4,91 = 2,9, = 1(small),p3 = 3 and parameter values 6; = 2,03 = 5 with
sample of size 30 of the sub-model-I.
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Figure 4.5: Density plot of pseudo-gamma prior with hyper-parameter values are 7; =
2,7 =4,y = 2,9, = 0(simple), 3 = 3 and parameter values 0; = 2,03 = 5 with
sample of size 30 of the sub-model-I.

f1

Figure 4.6: Density plot of pseudo-gamma prior with hyper-parameter values are 71 =
2,7 = 4,91 = 2,9, = 7(large),p3 = 3 and parameter values 61 = 2,03 = 5 with
sample of size 30 of the sub-model-I.
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4.4 Pseudo-Gamma priors:-

70k
60k
50k
A0k
30k
20%

40%

Figure 4.7: Density plot of posterior (pseudo-gamma prior) with hyper-parameter

values are 1 = 2, = 4,y = 2,9, = 1(small),p3 = 3 and parameter values
01 = 2,05 = 5 with sample of size 30 of the sub-model-I.

80k
80k

i | 60k
60k /

20K

Figure 4.8: Density plot of posterior (pseudo-gamma prior) with hyper-parameter

values are 71 = 2, = 4,91 = 2,¢» = O(simple), 3 = 3 and parameter values
01 = 2,05 = 5 with sample of size 30 of the sub-model-I.
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Figure 4.9: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are 1 = 2,75 = 4,y = 2,9, = 7(large),3 = 3 and parameter values
61 = 2,03 = 5 with sample of size 30 of the sub-model-I.

4.4.2 Sub-Model-II (6, = 0):

Consider the sub-model obtained by setting 6, = 0. The model is thus of the form
Fxy(x,y) = 01" "%0sx0e %Y (x > 0,y > 0).
The likelihood function for a sample of size n from this distribution is given by

n
L(6, 83, y) = 6 E gy ([ Tog)e ST
- i=1

the kernel of the likelihood function is given by
L(61,03]x, y) o< 0 e~ Lz gl o0 Licy it (4.4.7)

Consider the simpler joint pseudo-gamma prior in which we assume that i, = 0. This

joint prior density will be

Fp(01,03) o 072 em0039spn TR, 9103 (g, > 0,65 > 0). (4.4.8)
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4.4 Pseudo-Gamma priors:-

The posterior density will be

F(By 851X = Y = y) o (B ) g T 1)
* (9;2716*9193#730;—1“!‘72_16711)193)

- 91T2+n716—91 Y xig; +T2—1e—93(1/11 +X0q XiYi)

449
x o 010393 ( )
. (9§1+”*1e*93(¢1+2?:1 xiyi))
« (9{2+”*16—91(2L1 xi+lP393))
The marginal posterior distributions of 8; and 63 are
4 aen [(t +n)
P(0,)  [pr2tn—1,—01 Kby xi] 1 , 4.4.10
£5.(61) o [6] o T i+ g (4410
and
fgll (91) - [9;1-*-”—16—93(%4-2?:1 xi]/i)]. T(Tz + n) (4.4.11)

(T i+ Oap) ()

Note that the mean and variance of the marginals need to be dealt with numerically.

6x10-20

4% 10-20

leﬂ’m

Figure 4.10: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are 1 = 2,» = 4,91 = 2,9 = 1(small),p3 = 3 and parameter values 6; =
2,03 = 5 with sample of size 30 of the sub-model-II.
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6x1072°

4x107%

2x1072°

Figure 4.11: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are 71 = 2, 1p = 4,91 = 2,9, = 0(simple), 3 = 3 and parameter values 0; =
2,03 = 5 with sample of size 30 of the sub-model-II.

1x107%3

0.5x10723

Figure 4.12: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are 1 = 2,0 = 4,91 = 2,¢, = 7(large), 3 = 3 and parameter values 6, =
2,03 = 5 with sample of size 30 of the sub-model-II.
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4.5 Simulation study:

4.5 Simulation study:

Due to the general marginal and conditional composition of exponential distributions,
simulation can be performed in two steps: first, simulate x from exponential(6;) and
then y from exponential(f, + 63x). However, even with independent gamma priors,
inference for the posterior distribution is difficult for the full model. We must rely
on a numerical algorithm to compute marginal distributions and their moments. In
this paper, we will use the Hit-And-Run Metropolis (HARM) algorithm to simulate
posterior distributions from observations for all priors (improper, independent, and
pseudo) and for full and sub-models. For the (HARM) algorithm implementation and
comparison with Gibbs and Metropolis sampling, see Chen[9]. We refer to Hall[18] for
current Bayesian simulation algorithms using R software.

We have simulated 10,000 data sets using the HARM algorithm with thinning at 10th
sample from the posterior distributions of 6’s with varying sample sizes of n = 20, 30,
50, 100, 200, 500: Mean and posterior 95% confidence intervals are mentioned in Table

4.1 and 4.2 are computed from 10000 iterations of the preceding procedure.

o/k k] n=20 k @ n=30
3 s
< <
(((((( t1_psed
t1_ind t_ind

1_dist

-

t1_dist

t_ind
ti_imp
0 1

n=1
|
t1_psed
t_ind
ti_imp tt_imp t1_imp
0 1 2 3 4 0 1 2 3 4 0
t1 t
n=50 k] n=100 3 n=
3 3
] 2 ]
tpsed  _AMBMEN tpse t1_psed
t1_ind t_ind
t1_imp _ _imp
0 1 2 3 4 2 3 4 0
1
t1_dist [ tt_imp [ t1_ind [ t1_psed

Figure 4.13: Posterior density plot of 8; (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters 0y = 2,0y = 3,03 = 4,81 =2, =163 =5
and parameter values 6; = 2,0, = 1,603 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).
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3
T

°

2_dist @ t2_imp M t2_ind @ t2_psed

Figure 4.14: Posterior density plot of 6, (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters 0y = 2,ap = 3,03 = 4,1 =2, =1,3 =5
and parameter values 0; = 2,0, = 1,63 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).

n=500

13_dist
13_dist

3_dist [l 3_imp [l t3_ind [ t3_psed

Figure 4.15: Posterior density plot of 83 (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters a1 = 2,ap = 3,03 = 4,1 =2, = 1,3 =5
and parameter values 0; = 2,0, = 1,603 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).
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Table 4.1: Simulation (Sub-model I)

Sample size (n), parameters (P), posterior mean by independent gamma prior (IGP(1)), posterior mean by improper
prior (ImP(2)), posterior mean by pseudo-gamma prior for ¢, = 1 (PGP1(3)), posterior mean by pseudo-gamma prior
for o = 0 (PGP2(4)), posterior mean by pseudo-gamma prior for i = 7 (PGP3(5)), 95% confidence interval of IGP(1)
(CI(1)), 95% confidence interval of ImP(2) (CI(2)), 95% confidence interval of PGP1(3) (CI(3)), 95% confidence interval of

PGP2(4) (CI(4)), 95% confidence interval of PGP3(5) (CI(5))

n P SIP, SIP, SIP; SIP, SIP;  CISIP; CISIP, CISIP; CISIP, CISIP;
o 01 1483 1624 0998 1071 0815 (0.9242.141) (10152.371) (0.5041.550) (0.608 1.608) (0.5161.172)
03 2304 3.306 2239 2.075 1.984 (1.3503.291) (2.0284.965) (1.2579.249) (1.2582.935) (1.259 2.936)
50 01 1729 1953 1242 1287 1016 (L1522365) (1.2572.648) (0.8361.707) (0.8531.769) (0.702 L401)
03 2.184 3.159 1.895 1.884 1.929 (1.4863.041) (2.0114.498) (1.2822.643) (1.2832.616) (1.319 2.625)
=0 01 2294 2450 1677 1746 1404 (1.7232926) (18133.127) (1.2402179) (1.2732.261) (0.984 1.808)
05 2488 3.091 2.121 2.030 2.309 (1.8453.193) (2.2484.013) (1.5172.765) (1.4822.621) (1.547 2.868)
0 01 2465 2918 1986 2032 1782 (20332981) (21293265) (1.6252399) (1.6482479) (1.4492.128)
03 2.830 3.175 2422 2417 2450 (2.2783.435) (2.5653.811) (1.9702.892) (1.9712.942) (1.9612.973)
09 01 2089 2066 1823 1845 1.801 (1.7652.324) (1.7762.362) (1.5822.088) (1.5882.132) (1.503 2.020)
0; 2.850 3.028 2.650 2.813 2.663 (2.4743.258) (2.6253.425) (2.2813.010) (2.3033.180) (2.279 3.051)
cop 01 1912 1944 1828 2245 1781 (1.7472.09) (1.7612.085) (1.6731.996) (1.6692.042) (1.639 1.934)
03 3.026 3.104 2944 2906 2934 (2.7763.262) (2.8293.384) (2.6763.206) (2.6143.190) (2.669 3.204)

:Apnjs vonemuwis Gy
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Table 4.2: Simulation (Sub-model II)

Sample size (n), parameters (P), posterior mean by independent gamma prior (IGP(1)), posterior mean by improper
prior (ImP(2)), posterior mean by pseudo-gamma prior for ¢ = 1 (PGP1(3)), posterior mean by pseudo-gamma prior
for ¢, = 0 (PGP2(4)), posterior mean by pseudo-gamma prior for ¢, = 7 (PGP3(5)), 95% confidence interval of IGP(1)
(CI(1)), 95% confidence interval of ImP(2) (CI(2)), 95% confidence interval of PGP1(3) (CI(3)), 95% confidence interval of

PGP2(4) (CI(4)), 95% confidence interval of PGP3(5) (CI(5))

n P SIP; SIP, SIP; SIP, SIP; CISIP, CISIP, CISIP, CISIP, CISIP;
o 01 1473 1643 0792 0822 0629 (09002.177)  (1.0402.394) (0.4811.192) (0469 1.321)  (0.3830913)
03 3744 11.814 3344 3417 3739 (22975415) (7.51616.266) (2.0654.996) (2.0455.184) (2.227 5.714)
50 01 L1757 1909 0969 1001 L1103 (12222399) (12682617) (0.6331399) (0.667 L444) (0.540 1.400)
03 4207 9.799 3.679 3565 4.066 (2.9545.829) (6.40314.006) (2.4525.282) (2.4304.943) (2.5386.711)
= 01 1824 1820 0988 LOIT 0860 (12952251) (13372247) (0.7181295) (0.7381329) (0.6441.070)
03 6041 12405 5.126 5070 5388 (4.4527.781) (9.15414.984) (3.6536.581) (3.689 6.629)  (4.063 7.842)
0 01 2057 2285 1316 1351 1210 (L680248I) (1.7112.646) (1.0521.604) (1.0871.649) (0.982 1478)
03 7.628 11732 6.154 6.064 6306 (6.3199.046) (9.09114.179) (4.9127.569) (4.8727.438)  (4.9847.669)
0o 01 1983 2005 1466 1482 1398 (1.7092265) (1.7302290) (1.2711694) (1.2761690) (1.208 1.592)
63 8995 11257 7.583 7.565 7.661 (7.88010.261) (9.63612.890) (6.5168.689) (6.4868.579)  (6.631 8.792)
cop 01 2212 2048 1731 1732 1694 (18662270) (18762211) (1.589 1880) (1.558 1.894) (1543 1.848)
03 10.185 11.098 9.047 9.253 9.083 (9.12911.412) (10.16312.109) (8.2689.915) (8.17710.141) (8.301 10.008)
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4.5 Simulation study:
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Figure 4.16: Posterior density plot of 8; with hyper-parameters a1 = 2,a3 = 4,1 =

n=50
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2, B3 = 5 and parameter values 6; = 2,63 = 3 of sub-model-I.
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Figure 4.17: Posterior density plot of 63 with hyper-parameters a; = 2,43 = 4,1 =

n=30
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Figure 4.18: Posterior density plot of 8; with hyper-parameters a; = 2,43 = 4, =

n=50
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Figure 4.19: Posterior density plot of 8; with hyper-parameters a1y = 2,03 = 4,1 =

n=50
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4.6 Applications:

Table 4.3: per Capita GDP and Infant Mortality rate dataset (full-model)
n P IGP@1) ImP(2) PGP1(3) CI(1) CI1(2) CI(3)

6, 0209 0113 0112  (0.0410.056) (0.0310.170) (0.040 0.321)
225 6, 0.026 0032 2234 (0.0110.056) (0.0070.033) (0.009 35.763)
63 0.004 0098 0022  (0.0020.005) (0.0030.005) (0.0010.016)

Table 4.4: per Capita GDP and Infant Mortality rate dataset (sub-model-I)
n P IGP(1) ImP(2) PGP1(3) CI1(1) CI(2) CI(3)

61 0.04103 0.04739 0.05478 (0.04906, 0.04113) (0.04729, 0.04773) (0.05410, 0.05768)
63 0.00468 0.00451 0.00420 (0.00447,0.00498) (0.00441, 0.00490) (0.00400, 0.00464)

225

4.6 Applications:

One example from the social sciences where an inverse dependence relationship is ex-
pected is infant mortality and GDP. Both of these indicators are roughly exponentially
distributed for countries and regions all over the world. The C.I. A. generates estimates
of values based on massive databases of global affairs information. In 2022, 225 coun-
tries and regions will provide data on infant mortality as deaths per 1000 live births (Y)

and per capita GDP in thousands of dollars (X).

Table 4.5: per Capita GDP and Infant Mortality rate dataset (sub-model-II)
n P IGP(1) ImP(2) PGP1(3) CI(1) CI(2) CI(3)

61 0.04131 0.05280 0.04991 (0.04125,0.04142) (0.04013, 0.06238) (0.04768, 0.05091)
63 0.00506 0.00484 0.00508 (0.00484, 0.00536) (0.00395,0.00588) (0.00481, 0.00550)

225
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Figure 4.20: Posterior density plots for full-model

Bivariate Histogram for Model-l Bivariate Histogram for Model-lI

10

Figure 4.21: Histograms for the bivariate data of the per Capita GDP and Infant Mor-
tality rate dataset for sub-model-I & II
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CHAPTER D

Conclusion

It has been advocated strongly by Arnold and Manjunath [4] that the pseudo-Poisson
distribution might be considered the first choice in modeling bivariate count data when-
ever one marginal is equi-dispersed and another marginal is over-dispersed. Also,
due to the simplicity of its structure, the pseudo-Poisson allows simple simulation and
straightforward computation and Bayesian inference. Nevertheless, when external in-
formation indicates dependence between the parameters, there are very few bivariate
priors in the literature that can accommodate such dependence. The pseudo-gamma
prior, which was introduced in Chapter 2, can be considered a possible choice for
Bayesian analysis with dependence on the prior. Through a simulation study and a
real-life data analysis, it has been highlighted that the pseudo-Poisson with a pseudo-
gamma prior performs better than an improper or an independent prior when the sam-
ple size is moderately large. The pseudo-Poisson with pseudo-gamma prior can be
easily extended to any higher dimension, and one extension has been discussed in Sec-
tion 6 of Chapter 2. Finally, we recommend pseudo-Poisson with pseudo-gamma prior
for Bayesian analysis of count data whenever there is additional information about the
dependence in the prior.

The GoF tests for the bivariate pseudo-Poisson and its sub-models were the main

emphasis of the current note. We proposed a few GoF tests based on p.g.f., moments,
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Conclusion

and Chi-square tests. The supremum of the absolute difference between the calculated
p-g.f. and its empirical equivalent, the new GoF test we proposed and analyzed. The
bivariate Fisher index of the dispersion-based GoF test has also been added. Addi-
tionally, we took into account a few existing tests that depend on the estimated p.g.f
and its empirical results, such as K&K, Munoz, and Gamero approaches. Finally, the
Chi-square GoF test results for the pseudo-Poisson data were also examined. A finite
sample, a fairly large sample, and asymptotic distributions of test statistics are exam-
ined for each of the tests discussed. In addition, we looked at the power and efficacy
of each statistical test using the bivariate Com-Max-Poisson and the bivariate Classi-
cal Bivariate (BCP) as alternative distributions. It has been demonstrated that a test
based on the supremum and index of dispersion is reliable, consistent, and satisfying.
Particularly, the supremum-based test proved to be more robust to the choice of alter-
native distribution. Additionally, we suggest utilizing the Mufioz and Gamero (M&G)
test for moderately small samples and the supremum (robust) and dispersion tests for
moderately large samples. Due to the asymptotic distribution of the test statistic, we
also recommend K&K and dispersion tests for sufficiently large data sets. Also, due to
its robust property, we suggest considering the supremum and Chi-square GoF tests
if there are no reasonable alternatives to the hypothesis. The suggested procedures
and algorithms will add another tool for analyzing count data. The developed proce-
dures will merit a spot in the toolkit of contemporary modelers because of their simple

structure and fast computation.
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A.1 Examples

A.1 Examples

Consider the following examples:
Example 2. define wy(ty, ta) = c1 + catrta + c3t3t3, (t1,t2)T € [0,1]% ¢1,¢0,¢5 € Rand
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where Z(i;.A) is a Poisson probability at i for the estimated parameter A.
Further simplication gives us

A A oA (o] non 1
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n,wl( 1,742 3) n;j_Z;(Xi—FXj‘f‘l)(Yi‘{‘Yj‘i‘l)
CZ n n 1
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e e
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We refer to Table 3.5 and Figuare 3.4 for the quantile values and frequency distribu-
tion for a; = 1 and a; = 1, respectively.

Example 3. For a general form of w(.,.), consider wy(t1,t2) = #{'t52, (t1,t2)T € [0,1]?,
a1,az € (—1,00), which allows us to include a negative powers as well, then the Ty y, i

n

1
ZZ( Xi+Xj+a1+1)(Y; +Y+”2+1)> '

i=1j=1

:Ib—\

o0

(9(& M) P (A + kA3) 2 (m; A ) 2 (n; A + mAs)
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k !
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A.1 Examples

n o0 [ee] L1
-2y Z Z < ;A1) P (y; Ay + xA3) / / g “%Z”f'*”dtldtz).
== 00

i=1x

Now, further simplification will give us closed form expression for the statistic

R o 1 n n 1
T A1, ApA = -
YZ,LUQ( 1,/\2 3) nzz ((X1+X+111+1)(Y1+Y]+ﬂ2+1)> -+

k )\1 c@(lj\z + k;\3),@(m;)11)33(n<@(x;5\1)

+ ZZZZ< (k+m+a+1)(I+n+a2+1) >_

k=01=0m=0n=0
Shuby P (x;,M) P (y; Aa + xA3)

—2 A13
gxgoy; ((x+X +m+1)(y+Yitar+1) (A-13)

We refer to Table 3.6 and Figuare 3.5 for the quantile values and frequency distribution
for aj = 1 and a; = 1, respectively. Also, with varying a; and a; values finite sample
distribution of the statistics, see Table 3.7 and Figuares 3.6, 3.7 and 3.8.

ne more
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