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Abstract

The existence of normal marginals and normal conditionals in the traditional bivari-

ate normal distributions is widely known. It makes it natural to wonder if Poisson

marginals and conditionals can experience a similar phenomenon. However, it is known

from studies on conditionally specified models that Poisson marginals and both con-

ditionals would only be seen in the scenario when the variables are independent. This

thesis discusses a bivariate pseudo-Poisson model in which the conditional density

of one variable and the marginal density of the other are both Poisson forms. These

models are commonly used to model bivariate count data with a positive correlation.

Moreover, such models have simple, flexible dependence structures and generate a

sufficiently large number of parametric families. It has been a strong case made for

the pseudo-Poisson model as the initial option to take into account when modeling bi-

variate over-dispersed data with positive correlation and having one of the marginal

equi-dispersion. In the current thesis, we look at separate gamma priors for the pa-

rameters as well as pseudo-gamma priors for the Bayesian estimation of the unknown

parameters of bivariate pseudo-Poisson models. Both comprehensive and sub-model

investigations of potential conjugacy are verified, and conjugate priors can be found in

some unique sub-instances. The effectiveness of Bayesian parameter estimates employ-

ing a range of priors, both informative and non-informative, is demonstrated through

a simulation study. Two well-known bivariate count data sets are re-analyzed to illus-

trate the methodologies. Similarly, we also considered a bivariate pseudo-exponential

model initially introduced by Arnold and Arvanitis (2019) for Bayesian analysis us-

ing pseudo gamma priors and independent gamma priors for the parameters. We also

include an application to the Infant mortality and GDP data set.
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Yet, before we start fitting, it is necessary to test whether the given data is compat-

ible with the assumed pseudo-Poisson model. Hence, in the present note, we derive

and propose a few goodness-of-fit tests for the bivariate pseudo-Poisson distribution.

Also, we emphasize two tests, a lesser-known test based on the supremes of the ab-

solute difference between the estimated probability generating function and its empir-

ical counterpart. A new test has been proposed based on the difference between the

estimated bivariate Fisher dispersion index and its empirical indices. However, we

also consider the potential of applying the bivariate tests that depend on the generat-

ing function (like the Kocherlakota and Kocherlakota and Muñoz and Gamero tests)

and the univariate goodness-of-fit tests (like the Chi-square test) to the pseudo-Poisson

data. However, we analyze finite, large, and asymptotic properties for each of the

tests considered. Nevertheless, we compare the power (bivariate classical Poisson and

Conway-Maxwell bivariate Poisson as alternatives) of each of the tests suggested and

also include examples of application to real-life data.

Keywords: Bivariate Pseudo-Poisson, MLE, Square Error Loss, Bayesian Analy-

sis, marginal and conditional distributions, Empirical probability generating function,

Goodness-of-fit, χ2-goodness-of-fit, Neyman type A distribution, Index of dispersion,

Parametric Bootstrap estimators, Consistency estimation, Thomas distribution.
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C H A P T E R 1

Introduction

The classical bivariate normal distribution is one in which both conditionals and marginals

are normally distributed. That is, if random variables (X, Y) has bivariate normal dis-

tribution, X ∼ N (normal distribution), Y ∼ N and for each x ∈ R, the conditional

distribution of Y given X = x ∼ N , while for each y ∈ R, the conditional distribution

of X given Y = y ∼ N also. Further the distributions of X and Y are also normal.

One more example with a similar properties is the Mardia Pareto distribution in which

both as marginals and conditionals have the Pareto form with dependence structure

detailed in Mardia [25]. The Mardia bivariate Pareto with parameters θ1, θ2, and θ all

of which are positive is given by

f (x, y, θ1, θ2, θ) =

[
θ(θ + 1)(θ1θ2)

θ+1
]

(θ2x + θ1y− θ1θ2)θ+2 (1.0.1)

where x > θ1 > 0 and y > θ2 > 0, θ > 0, otherwise zero, and call it a bivariate Pareto

distribution of type I. Note that for the above bivariate density, both marginal and

conditionals again follows the Pareto distribution. The correlation between X and Y is

positive. In general, the density function of k-dimensional random variables (X1, ..., Xk)

is a Pareto distribution of type I with parameters θ1, ..., θk and θ is given by

1
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f (x1, ..., xk) =
(θ(θ + 1)...(θ + k− 1))(

∏k
i=1 θi

){(
∑k

i=1 θ−1
i xi

)
− k + 1

}θ+k . (1.0.2)

where xi > θi > 0, for i = 1, 2, ..., k and θ > 0, otherwise zero.

Now, it seems sensible to wonder if Poisson conditionals and Poisson marginals

can experience a similar effect. A simple illustration of this type has two independent

Poisson variables, X and Y. In reality, there are no other cases. Regarding the following

theorem by Seshadri and Patil [35], which states that:

Theorem 1.1. For a given dependent bivariate distribution of X and Y, the following state-

ments hold:

• If X is Poisson, then the conditional distribution of X given Y = y is not Poisson.

• If the conditional distribution of Y given X = x is Poisson, then the marginal distribution

of Y is not Poisson.

For the detailed proof in Seshadri and Patil [35] page 216. That is, Seshadri and

Patil [35] shows that it is impossible to have a non-independent bivariate distribution

in which on X has a Poisson distribution and its conditional distribution of X given

Y = y is also Poisson distributed for each y. That is, there exists no bivariate random

variables (X, Y) in which X and Y are not independent with Poisson marginals as well

as Poisson conditionals. They only have Poisson marginals in the case of independence

(which could be deduced using the Seshadri-Patil result).

In addition, Arnold, Castillo, and Sarabia [3] (for example) like wise consider a

bivariate random variables (X, Y), the conditional distribution of Y given X = x is

Poisson for each x, while the conditional distribution of X given Y = y is also Poisson

for each y. It is called Poisson conditional distributions. In Ghosh et al.[16], one can

find more information on conditional Poisson model properties and applications. For

the bivariate pseudo-Poisson distribution random variables (X, Y) one of the marginals

say X has Poisson distribution, while the conditional distribution of Y given X = x is

Poisson distribution. It is perfectly fit the bill.
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1.1 Bivariate pseudo-Poisson models

1.1 Bivariate pseudo-Poisson models

The bivariate pseudo-Poisson model will be discussed in the section that follows. It

was first introduced in Arnold and Manjunath [4], page 2307.

Definition 1.1. A bivariate pseudo-Poisson distribution exists for a 2-dimensional random

variable (X, Y) if there exists a positive constant λ1 such that

X ∼P(λ1)

and a function λ2 : {0, 1, 2, ...} → (0, ∞) such that, for every non-negative integer x,

Y|X = x ∼P(λ2(x)).

Indeed, no constraints on the λ2(x) allow us to incorporate a variety of properties

such as positive and negative correlation, for instance over and equi-dispersions.

Hence, the joint probability mass function of X and Y is given by

P(X = x, Y = y) =


e−λ1 λx

1
x!

e−λ2(x)(λ2(x))y

y! ; x = 0, 1, 2, ...; y = 0, 1, 2, ...

0; Otherwise

Example 1. Consider, a parametric family of choices for λ2(x) that will admit positive and

negative correlation between X and Y. For example if we consider

λ2(x; θ, δ) = 1 + (2θ − 1)(1− e−δx). (1.1.1)

Where δ > 0, the above function will be increasing if θ > 1/2, decreasing if θ < 1/2, and

constant if θ = 1/2. Consequently, X and Y will have positive correlation if θ > 1/2, negative

correlation if θ < 1/2 and will be uncorrelated if θ = 1/2. A more general model with the

same properties can be obtained by replacing 1 − e−δx by F(x; θ), a parametrized family of

distribution functions with support (0, ∞).
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Here, we restrict the shape of the function λ2(x) to a polynomial with positive co-

efficients. In particular, the simple form we assume is that λ2(x) = λ2 + λ3x, then the

bivariate distribution shown above will have the following form:

X ∼P(λ1) (1.1.2)

and x ∈ {0, 1, 2, ...}

Y|X = x ∼P(λ2 + λ3x). (1.1.3)

For this model, the parameter space is {(λ1, λ2, λ3) : λ1 > 0, λ2 > 0, λ3 ≥ 0}. If

we chose λ3 = 0, then the corresponding random variables are independent. Then the

joint probability mass function is given by

P(X = x, Y = y) =


e−λ1 λx

1
x!

e−λ2+λ3x(λ2+λ3x)y

y! ; x = 0, 1, 2, ...; y = 0, 1, 2, ...

0; Otherwise.

For this bivariate pseudo-Poisson distribution, the probability generating function

(p.g.f.) is given by

G(t1, t2) = eλ2(t2−1)eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (1.1.4)

Remark 1. As noted in Arnold and Manjunath [4], for the case λ2 = 0, the bivariate pseudo-

Poisson distribution reduces to the bivariate Poisson-Poisson distribution. The corresponding

Poisson-Poisson distribution was originally introduced by Leiter and Hamdani [24] in mod-

elling traffic accidents and fatalities count data. We remark that the bivariate pseudo-Poisson

model is a generalization of the Poisson-Poisson distribution.

If λ2 = 0, then the joint p.g.f in equation (1.1.4) reduces to

GI I(t1, t2) = eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (1.1.5)

Now, form equation (1.1.4), the marginal p.g.f of Y is

4



1.1 Bivariate pseudo-Poisson models

G(1, t2) = GY(t2) = eλ2(t2−1)eλ1[eλ3(t2−1)−1]; t2 ∈ R. (1.1.6)

Note that, in general, the p.g.f in equation (1.1.4) can not be simplified to compute

all marginal distributions. Yet, we can use equation (1.1.5) to derive a few marginal

distributions of Y. The derivation of marginal probability of Y is demonstrated for Y =

0, 1, 2, 3 in Section 1.1.3, and one can still extend the mentioned procedure to get albeit

complicated values for the probability that Y assumes any positive value. Besides, the

derivation of the other conditional distribution of the bivariate pseudo-Poisson, i.e.,

P(X = x|Y = y), has been included in Section (1.1.4).

In the following sections, we discuss a few one-dimensional distributions which are

derived from the bivariate pseudo-Poisson for the case λ2 = 0. Moreover, the derived

univariate distributions has classical relevance to the two-parameter Neyman Type A

and Thomas distribution.

1.1.1 Neyman Type A distribution

As noted in Arnold and Manjunath [4], in the case in which λ2 = 0, the marginal

distribution is a Neyman Type A distribution with λ3 being the index of clumping

(detailed in page 403 of Johnson, Kemp, and Kotz [20]). It can also be recognized as

a Poisson mixture of Poisson distributions. Now, the marginal mass function of Y is

given by

P(Y = y) =
e−λ1λ

y
3

y!

∞

∑
j=0

(λ1e−λ3)j jy

j!
; y = 0, 1, 2, .... (1.1.7)

i.e., Y has a Poisson distribution with the parameter λ1 while λ1 is also a Poisson ran-

dom variable with parameter λ3. We refer to Glesson and Douglas [17] and Johnson,

Kemp, and Kotz [20] Section 9.6 for applications and inferential aspects of the Neyman

Type A distribution.
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1.1.2 Thomas distribution

Consider the joint probability generating function defined in equation (1.1.5), i.e.,

GI I(t1, t2) = eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (1.1.8)

Take t1 = t2 := t and the above p.g.f. reduces to

G∗(t) = G(t, t) = eλ1[teλ3(t−1)−1]; t ∈ R. (1.1.9)

Note that the above univariate p.g.f. is the p.g.f. of the Thomas distribution with

parameters λ1 and λ3. The probability mass function of Z that follows the Thomas

distribution is

P(Z = z) =
e−λ1

z!

z

∑
j=1

(
z
j

)
(λ1e−λ3)j(jλ3)

z−j, z = 0, 1, 2, .... (1.1.10)

For further applications and inferential aspects of the Thomas distribution, we refer

to Glesson and Douglas [17] and Johnson, Kemp, and Kotz [20] Section 9.10.

Remark 2. The Neyman Type A and the Thomas distribution have historical relevance in mod-

eling plant and animal populations. For example: suppose that the number of clusters of eggs

an insect lays and the number of eggs per each cluster have specified probability distributions.

Then for the Neyman Type A distribution and Thomas distributions, the number of clusters

of eggs laid by the insect follows a Poisson distribution with parameter λ1. For the Neyman

Type A, the number of eggs per cluster is also a Poisson distribution with parameter λ3. But

for the Thomas distribution, the parent of the cluster is always to be present with the number of

eggs(offspring) which has a shifted Poisson distribution with support {1, 2, 3, ...} and parame-

ter λ3. Note that Neyman Type A and Thomas distributions can be generated by a mixture of

distributions and also a random sum of random variables.

Consider that the mixing distribution is a Poisson with parameter λ1 with mixture has a

Poisson with parameter λ3, then the resultant random variable has a Neyman Type A distri-

bution. In the sequel, if the mixing distribution is a Poisson with parameter λ1 and the jth

6
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distribution in the mixture has a distribution of the form j + Y(j), where Y(j) has a Poisson

with parameter jλ3, then the resultant random variable has Thomas distribution.

However, for a random sum of random variables (also known has Stopped-Sum distribu-

tions): let us consider that the size N of the initial generation is a random variable and that each

individual i of this generation independently gives a random variable Yi, where Y1, Y2, ... has a

common distribution. Then the total number of individuals is SN = Y1 + ...+YN. For the case

that N is a Poisson random variable with parameter λ1 and Yi is a Poisson random variable

with parameter λ3, then the random sum SN has a Neyman Type A distribution. However, if Yi

is a shifted Poisson with parameter λ3 and support {1, 2, 3, ...}, then the random sum SN has

a Thomas distribution. A sum of N independent and identically distributed non-zero Poisson

random variables, where N is also a Poisson random variable has a Thomas distribution.

1.1.3 Marginal probability of Y

For the marginal distribution of Y, the probability that Y = 0 can be computed as

P(Y = 0) = GY(0) = e−λ2eλ1(e−λ3−1). (1.1.11)

For the probability that Y = 1 we have

d
dt

GY(t2) = GY(t2)
[
λ1λ3eλ3(t2−1) + λ2

]

P(Y = 1) =
d
dt GY(t2)|t2=0

1!
= GY(0)

[
λ1λ3e−λ3 + λ2

]
. (1.1.12)

Similarly, P(Y = 2) is given as

d2

dt2 GY(t2) = GY(t2)

[(
λ1λ2eλ2(t2−1) + λ2

)2
+ λ1λ2

3eλ3(t2−1)
]

7
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P(Y = 2) =
d
dt GY(t2)|t2=0

2!
=

GY(0)
2!

[(
λ1λ2e−λ2 + λ2

)2
+ λ1λ2

3e−λ3

]
(1.1.13)

and finally P(Y = 3) is given by

d3

dt3 GY(t2) = GY(t2)
[
λ1λ3((λ1λ3eλ3(t2−1) + λ2)

2 + λ3

(2(λ1λ3eλ3(t2−1) + λ2) + λ3(1 + λ1eλ3(t2−1))))eλ3(t2−1)+

λ2((λ1λ3eλ3(t2−1) + λ2)
2 + λ1λ2

3eλ3(t2−1))
]

(1.1.14)

P(Y = 3) =
1
3!

d3

dt3 GX2(0)|t2=0 =
GY(0)

6

[
λ1λ3((λ1λ3e−λ3 + λ2)

2 + λ3

(2(λ1λ3e−λ3 + λ2) + λ3(1 + λ1e−λ3)))e−λ3+

λ2((λ1λ3e−λ3 + λ2)
2 + λ1λ2

3e−λ3)
]

. (1.1.15)

On a similar line, one can extend the above procedure to get albeit complicated values

for the probability that Y assumes any positive value.

1.1.4 Other conditional distribution of the bivariate pseudo-Poisson

In general, in another conditional distribution of the pseudo-Poisson model, i.e., X

given Y = y, the derivation is theoretically ambiguous. Still, for the Sub-Model II, i.e.,

λ2 = 0, we can derive the conditional distribution. In the following, we are deriving

other conditional distributions, i.e., the conditional distribution of X given Y = y by

induction for the Sub-model II. Consider the joint mass function of pseudo-Poisson

Sub-model II

P(X = x, Y = y) =


e−λ1λx

1
x!

e−λ3x(λ3x)y

y! ; x = 1, 2, ...; y = 0, 1, 2, ...

e−λ1 ; (x, y) = (0, 0).

8



1.1 Bivariate pseudo-Poisson models

Now, consider the case in which y = 0 then for each x = 0, 1, 2, ... the conditional mass

function will be

PX|Y(x|0) =
P(X = x, Y = 0)

P(Y = 0)

=
e−λ1e−λ3 (λ1e−λ3)x

x!
(1.1.16)

Indeed the above conditional mass function is a Poisson distribution with mean equal

to λ1e−λ3 .

Next, consider the case with y = 1. For each x = 1, 2, ..., we have

PX|Y(x|1) =
P(X = x, Y = 1)

P(Y = 1)

=
e−λ1e−λ3 (λ1e−λ3)x−1

(x− 1)!
(1.1.17)

which is recognizable as the distribution of 1 plus a Poisson(λ1e−λ3).

For y ≥ 1 and for each x = 1, 2, ..., we have a

PX|Y(x|y) =
P(X = x, Y = y)

P(Y = y)

=

e−λ1e−λ3 (λ1e−λ3 )x−1xy

(x−1)!

µy
(1.1.18)

where µy is the yth moment of a Poisson(λ1e−λ3) variable. Note that the expression µy

can also be expressed in terms of factorial moments, and the yth factorial moment is

(λ1e−λ3)y. Thus we have

µy =
y

∑
j=0

S(y, j)(λ1e−λ3)y (1.1.19)

where S(y, j) is a Stirling number of the second kind. Also note that if y ≥ 1 then

S(y, 0) = 0.

For the detailed discussion on derivation, characterization, distributional features,

and inferential aspects of bivariate pseudo-Poisson, refer Arnold and Manjunath [4].
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Finally, we refer recent article by Arnold and Manjunath [5] on bivariate pseudo-Poisson

with concomitant variables explored distributional and inferential aspects and an ex-

ample of application to real-life data.

1.2 Other bivariate count distribution with Poisson struc-

ture

In the following, we briefly introduce the other bivariate count distribution having a

Poisson structure.

1.2.1 Classical Bivariate Poisson

Consider three independent Poisson random variables X1 ∼P , X2 ∼P and X3 ∼P .

Then, the random sum X = X1 + X3 and Y = X2 + X3 is said to follow a classical

bivariate Poisson distribution with the mass function

P(X = x, Y = y) = exp
(
− (λ1 + λ2 + λ3)

)λx
1λ

y
2

x!y!

min{x,y}

∑
i=1

(
x
i

)(
y
i

)
i
( λ3

λ1 + λ2

)i
(1.2.1)

where λi > 0, i = 1, 2, 3, x = 0, 1, 2, ... and y = 0, 1, 2, .... For the bivariate mass function

only marginals follow Poisson distribution.

1.2.2 Both conditional Poisson

Consider the two conditional mass function

X|Y = y ∼ P(λ1λ
y
3) for each Y = y, (1.2.2)

Y|X = x ∼ P(λ2λx
3) for each X = x. (1.2.3)

10
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According to the Theorem, 4.1 by Arnold et al. [3], the joint mass function of X and Y

will be

P(X = x, Y = y) = κ(λ1, λ2, λ3)
λx

1λ
y
2λ

xy
3

x!y!
. (1.2.4)

where λi > 0, i = 1, 2, 3, x = 0, 1, 2, ... and y = 0, 1, 2, .... Note that if λ3 = 1, then X and

Y are independent. Here both conditionals are Poisson.

1.2.3 Bivariate Conway-Maxwell Poisson

Note that the above two mass functions defined are stricken to equi-dispersed data;

either we assume marginals or conditionals. For flexible bivariate count model which

can handle over, under or equi-dispersion is one defined in Seller et al. [33], i.e., bivari-

ate Conway-Maxwell Poisson. The joint probability generating function is

π(t1, t2) =
∞

∑
n=0

λn

(n!)νZ(λ, ν)
π(t1, t2|n) (1.2.5)

where

π(t1, t2|n) = 1 + p1+(t1 − 1) + p+1(t2 − 1) + p11(t1−)(t2 − 1)n (1.2.6)

and

Z(λ, ν) =
∞

∑
s=0

λs

(s!)ν
(1.2.7)

where ν is a dispersion parameter with ν = 1 is equi-dispersion, ν > 1 is over disper-

sion and ν < 1 is under dispersion.
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C H A P T E R 2

Bayesian Inference for pseudo-Poisson

data

2.1 Introduction

Conditionally specified bivariate models often provide helpful, flexible models exhibit-

ing a variety of dependence structures. However, for bivariate count data, the unique

conditionally specified Poisson distribution, which turns out to be Obrechkoff’s bivari-

ate model [32], is often inappropriate since its dependence structure is often not felt

to be appropriate. In such circumstances, attention can be diverted to consider what

are known as pseudo-Poisson models (advocated strongly by Filus, Filus, and Arnold

[15]). We begin by reviewing the pseudo-Poisson construction, highlighting certain

simplified sub-models. Bayesian inference for these sub-models is then discussed. We

refer to Arnold and Manjunath [4] for classical inferential aspects and also an example

of applications of the bivariate pseudo-Poisson model. Bayesian inference for a par-

ticular classical bivariate Poisson model with Poisson marginals is discussed by Karlis

and Tsiamyrtzis [21]. Finally, we note that Ghosh et al. [16] present recent results on

bivariate count models with both conditionals being of the Poisson form.
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2.2 Bivariate pseudo-Poisson models

The mass function for a general bivariate pseudo-Poisson distribution discussed in

Chapter 1 Section 1.1 (Definition 1.1) is of the following form:

P(X = x, Y = y) =
e−λ1λx

1
x!

e−h(x,θ)(h(x, θ))y

y!
I(x ∈ {0, 1, 2, ...}, y ∈ {0, 1, 2, ...}) (2.2.1)

where the positive function h(x, θ) is quite arbitrary and θ is parameter vector. The sub

model in which h is a linear function involving two dependence parameters will be the

focus of the present this chapter. Using λs to denote the three parameters in this model,

its mass function is of the form

P(X = x, Y = y) =
e−λ1λx

1
x!

e−λ2−λ3x(λ2 + λ3x)y

y!
I(x ∈ {0, 1, 2, ...}, y ∈ {0, 1, 2, ...}),

(2.2.2)

where λ1 > 0, λ2 ≥ 0, λ3 > 0. Consequently the likelihood function for a sample of

size n from this distribution is given by

L(λ1, λ2, λ3; (x1, y1), ..., (xn, yn)) =
e−nλ1λ

∑n
i=1 xi

1

∏n
i=1 xi!

e−nλ2−λ3 ∑n
i=1 xi ∏n

i=1(λ2 + λ3xi)
yi

∏n
i=1 yi!

.

(2.2.3)

Note that this likelihood factors as follows:

L(λ1, λ2, λ3; (x1, y1), ..., (xn, yn)) =

{
e−nλ1λ

∑n
i=1 xi

1

∏n
i=1 xi!

}{
e−nλ2−λ3 ∑n

i=1 xi ∏n
i=1(λ2 + λ3xi)

yi

∏n
i=1 yi!

}
.

(2.2.4)

The first factor only involves the parameter λ1, while the second factor only involves

the parameters λ2 and λ3. We will call λ1 the marginal parameter, while λ2 and λ3 will

be called conditional parameters. This factorization will be important in Bayesian infer-

ence for the model, as discussed below. Because of the factorization, we will know that

if a priori λ̃1 and (λ̃2, λ̃3) are independent, then they will be independent a posteriori

also.

This feature of separation of marginal and conditional parameters continues to oc-

14



2.2 Bivariate pseudo-Poisson models

cur for more general pseudo-F models defined as follows. Let F = {F(x; θ) : θ ∈ Θ ⊂

Rm} be an m-parameter family of univariate distributions. A 2-dimensional pseudo-F

distribution can be constructed as follows

P(X ≤ x) = F(x; θ(1)) (2.2.5)

and for every x

P(Y ≤ y|X = x) = F(y; θ(2)(x, τ)), (2.2.6)

where θ(1) ∈ Θ and, for each τ, θ(2)(x, τ) : R → Θ. In this setting, θ1 are the marginal

parameters, and τ are the conditional parameters.

Returning to the pseudo-Poisson model defined in (2.2.2), it is natural to assume a

gamma prior for the marginal parameter λ̃1, i.e., a priori, and we assume that

λ̃1 ∼ Γ(α1, δ1), 0 < α1 < ∞, 0 < δ1 < ∞. (2.2.7)

Here and subsequently, we parametrize a gamma distribution by a shape parameter δ1

and an intensity parameter (the reciprocal of the scale parameter α1). Specifically the a

priori density for λ̃1 is of the form

fλ̃1
(λ1) =

δα1
1 λα1−1

1 e−δ1λ1

Γ(α1)
, 0 < λ1 < ∞.

The choice of an a priori joint density for (λ̃2, λ̃3) that will be independent of λ̃1 is

not so obvious. It is not clear whether it is possible to choose such a prior that will be

“conjugate” with the second factor in (2.2.4). In general, for most choices of this prior,

the joint posterior of (λ̃2, λ̃3) will need to be dealt with numerically.

In the following section, we consider independent priors and also certain two-

parameter sub-models for which the choice of independent gamma prior densities

turns out to be conjugate.
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2.3 Independent priors

Consider an a priori joint density in which all three parameters are independent, and

each has a gamma distribution. Thus we have

fλ̃1,λ̃2,λ̃3
(λ1, λ2, λ3) =

3

∏
i=1

δ
αi
i λ

αi−1
i e−δiλi

Γ(αi)
, 0 < λi, αi, δi < ∞, i = 1, 2, 3. (2.3.1)

The kernel of the posterior, which is the product of the kernel of the factored likelihood

(2.2.4) and the kernel of the prior (2.3.1) is of the form

ker( fλ̃1,λ̃2,λ̃3|X,Y(λ1, λ2, λ3|x, y)) =
{

e−(δ1+n)λ1λ
α1+∑n

i=1 xi−1
1

}
(2.3.2)

×
{

e−(δ2+n)λ2−(δ3+∑n
i=1 xi)λ3λα2−1

2 λα3−1
3

n

∏
i=1

(λ2 + λ3xi)
yi

}

From the first factor in (2.3.2) we recognize that a posteriori λ̃1 has a gamma distri-

bution, i.e.,

λ̃1|X = x, Y = y ∼ Γ(α1 +
n

∑
i=1

xi, δ1 + n). (2.3.3)

The second factor is the kernel of the posterior distribution of (λ̃2, λ̃3). It will need to

be dealt with numerically.

2.3.1 Sub-model I

There are two simple sub-models of the linear model (2.2.2) that merit consideration

because of their simplicity while retaining dependence between X and Y. We first

focus on the sub-model of (2.2.2) obtained by equating λ2 and λ3. The model is thus of

the form

P(X = x, Y = y) =
e−λ1λx

1
x!

e−λ3(1+x)λ
y
3(1 + x)y

y!
. (2.3.4)

The likelihood function for a sample of size n from this distribution is given by
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2.3 Independent priors

L(λ1, λ3; (x1, y1), ..., (xn, yn)) =
e−nλ1λ

∑n
i=1 xi

1

∏n
i=1 xi!

e−nλ3e−λ3 ∑n
i=1 xi ∏n

i=1(1 + xi)
yi λ

∑n
i=1 yi

3

∏n
i=1 yi!

.

(2.3.5)

Here too, the likelihood factors are as follows:

L(λ1, λ3; (x1, y1), ..., (xn, yn)) =

{
e−nλ1λ

∑n
i=1 xi

1

∏n
i=1 xi!

}{
e−nλ3e−λ3 ∑n

i=1 xi ∏n
i=1(1 + xi)

yi λ
∑n

i=1 yi
3

∏n
i=1 yi!

}
.

(2.3.6)

The first factor only involves the parameter λ1, while the second factor only involves

the parameter λ3. We will call λ1 the marginal parameter, while λ3 will be called the

conditional parameter.

It will be observed that the joint density of (X, Y) in (2.2.2) constitutes a two-parameter

exponential family. A prior conjugate density consequently exists. For such a conju-

gate joint prior density for the two parameters in the model, we can take one with

independent gamma marginals. Thus

fλ̃1,λ̃3
(λ1, λ3) =

δα1
1 λα1−1

1 e−δ1λ1

Γ(α1)

δα3
3 λα3−1

3 e−δ3λ3

Γ(α3)
. (2.3.7)

The kernel of the posterior, which is the product of the kernel of the factored likeli-

hood (2.3.6) and the kernel of the prior (2.3.7), is of the form

ker( fλ̃1,λ̃3|X,Y(λ1, λ3|x, y)) =
{

e−(δ1+n)λ1λ
α1+∑n

i=1 xi−1
1

}
(2.3.8)

×
{

e−(δ3+n+∑n
i=1 xi)λ3λ

α3+∑n
i=1 yi−1

3

}
.

For examples of such prior and posterior densities, see Figure 2.1 and 2.2. We have

thus confirmed that our choice of a prior with independent gamma marginals was a

conjugate prior for the likelihood (2.3.6) and that a posteriori, the two parameters have

independent gamma distributions. Thus

λ̃1|X = x, Y = y ∼ Γ(α1 +
n

∑
i=1

xi, δ1 + n), (2.3.9)
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and, independently,

λ̃3|X = x, Y = y ∼ Γ(α3 +
n

∑
i=1

yi, δ3 + n +
n

∑
i=1

xi). (2.3.10)

The squared error loss estimates of the parameters (the posterior means) are thus

λ̂1
(B)

=
α1 + ∑n

i=1 xi

δ1 + n
(2.3.11)

and

λ̂3
(B)

=
α3 + ∑n

i=1 yi

δ3 + n + ∑n
i=1 xi

. (2.3.12)

If we choose to use an improper prior with α1 = α3 = δ1 = δ3 = 0 then the resulting

Bayes estimates coincide with the corresponding maximum likelihood estimates.

If we use an improper prior with α1 = α3 = δ1 = δ3 = 0, then the resulting Bayes
estimates coincide with the corresponding maximum likelihood estimates.

Figure 2.1: Density plot of prior (independent gamma) with parameter values α1 = 1,
α3 = 4, δ1 = 1, δ3 = 2 of the Sub-model I.
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2.3 Independent priors

Figure 2.2: Density plot of posterior (independent gamma prior) with parameter values
α1 = 1, α3 = 4, δ1 = 1, δ3 = 2, λ1 = 1, λ3 = 4 and n = 20 of the Sub-model I.

2.3.2 Sub-model II

Consider the sub-model obtained by setting λ2 = 0. The model is thus of the form

P(X = x, Y = y) =



e−λ1 λx
1

x!
e−λ3xλ

y
3xy

y! ; x = 1, 2, ..., y = 0, 1, 2, ....

e−λ1 ; (x, y) = (0, 0)

0; otherwise

The likelihood function for a sample of size the following expression gives n from this

distribution, in which n∗ denotes the number of observed values of x equal to 0.

L(λ1, λ3; (x1, y1), ..., (xn, yn)) = e−n∗λ1
e−(n−n∗)λ1λ

∑xi>0 xi

1

∏xi>0 xi!
e−λ3 ∑xi>0 xi [∏xi>0(xi)

yi ]λ
∑xi>0 yi

3

∏xi>0 yi!
.

(2.3.13)

Here too, the likelihood factors are as follows

L(λ1, λ3; (x1, y1), ..., (xn, yn)) =

 e−nλ1λ
∑xi>0 xi

1

∏xi>0 xi!


 e−λ3 ∑xi>0 xi [∏xi>0(xi)

yi ]λ
∑xi>0 yi

3

∏xi>0 yi!

 .

(2.3.14)
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The first factor only involves the parameter λ1, while the second factor only involves

the parameter λ3. Again, we will call λ1 the marginal parameter, while λ3. will be called

the conditional parameter.

The kernel of the likelihood is given by

L(λ1, λ3; (x1, y1), ..., (xn, yn)) ∝ e−nλ1λ
∑xi>0 xi

1 e−λ3 ∑xi>0 xi λ
∑xi>0 yi

3 . (2.3.15)

If we use a prior with independent gamma marginals, such as

fλ̃1,λ̃3
(λ1, λ3) =

δα1
1 λα1−1

1 e−δ1λ1

Γ(α1)

δα3
3 λα3−1

3 e−δ3λ3

Γ(α3)
, (2.3.16)

with kernel of the form

fλ̃1,λ̃3
(λ1, λ3) ∝ λα1−1

1 e−δ1λ1λα3−1
3 e−δ3λ3 , (2.3.17)

then the kernel of the posterior, which is the product of the kernel of the factored

likelihood, and the kernel of the prior is of the form

ker( fλ̃1,λ̃3|X,Y(λ1, λ3|x, y) =

{
e−(δ1+n)λ1λ

α1+∑xi>0 xi−1
1

}

×
{

e−(δ3+∑xi>0 xi)λ3λ
α3+∑xi>0 yi−1
3

}
.

For an example of such posterior densities, see Figure 2.3. We have confirmed that our

choice of a prior with independent gamma marginals is a conjugate prior for the like-

lihood and yields a posterior density which also has independent gamma marginals.

λ̃1|X = x, Y = y ∼ Γ(α1 + ∑
xi>0

xi, δ1 + n) (2.3.18)

and, independently,

λ̃3|X = x, Y = y ∼ Γ(α3 + ∑
xi>0

yi, δ3 + ∑
xi>0

xi). (2.3.19)
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The squared error loss estimates of the parameters (the posterior means) are thus

λ̂1
(B)

=
α1 + ∑xi>0 xi

δ1 + n
(2.3.20)

and

λ̂3
(B)

=
α3 + ∑xi>0 yi

δ3 + ∑xi>0 xi
(2.3.21)

Note that, since yi = 0 whenever xi = 0, we can simplify the above expressions by

replacing ∑xi>0 xi by ∑n
i=1 xi and replacing ∑xi>0 yi by ∑n

i=1 yi

If we choose to use an improper prior with α1 = α3 = δ1 = δ3 = 0 then the resulting

Bayes estimates coincide with the corresponding maximum likelihood estimates.

Figure 2.3: Density plot of posterior (independent gamma prior) with parameter values
α1 = 1, α3 = 4, δ1 = 1, δ3 = 2, λ1 = 1, λ3 = 4 and n = 20 of the Sub-model II.

Remark 3. It should be noted that the model with λ2 = 0 will only be appropriate for data sets

for which Y = 0 whenever X = 0.
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2.4 Pseudo-gamma priors

In this section, we introduce a bivariate pseudo-gamma prior, which allows us to in-

corporate external information on the dependence between the parameters. Note that

the hyperparameter ψ3(say) in the pseudo-gamma prior plays a crucial role in defin-

ing a priori dependence between λ1 and λ3. Also, note that Sub-models I & II are the

sub-families of all bivariate pseudo-Poisson distributions having severe dependence

between the variables. Hence, the importance of considering the pseudo-gamma prior

to developing posterior inference. To reduce the computational complexity and have

closed-form expression of marginals, we shall consider some special cases of pseudo-

gamma distribution as priors. For the classical bivariate Poisson distribution, a dis-

cussion of the importance of considering dependence in the prior and its application

can be found in Karlis, and Tsiamyrtzis [21]. However, the prior proposed here, i.e.,

bivariate pseudo-gamma prior, is very simple because of its marginal and conditional

composition. Hence, analytical computations and simulation algorithms are easy to

implement and render comprehensible its posterior properties.

Dubey [11] and Sen et.al.[34] provides a discussion of alternative bivariate gamma

distributions. Also, reference can be made to Balakrishnan and Lai [6] for coverage of

various methods of constructing bivariate continuous distributions. In addition, de-

velopments on similar lines to the bivariate pseudo-exponential distribution modeling

and its applications can be found in Mohsin et. al. [27].

In the following sections, we will discuss bivariate pseudo-gamma priors and their

applications in more detail for each sub-models I and II.

2.4.1 Sub-model I

Consider the sub model, specified in (2.3.4), the likelihood function for a sample of size

n from this distribution is given by

L(λ1, λ3; (x1, y1), ..., (xn, yn)) =
e−nλ1λ

∑n
i=1 xi

1

∏n
i=1 xi!

e−nλ3e−λ3 ∑n
i=1 xi ∏n

i=1(1 + xi)
yi λ

∑n
i=1 yi

3

∏n
i=1 yi!

.

(2.4.1)
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2.4 Pseudo-gamma priors

This time we will consider a joint prior that is of the bivariate-pseudo-gamma form.

For it we assume that λ3 has a Γ(τ1, ψ1) density, i.e.,

f (λ3) ∝ λτ1−1
3 e−ψ1λ3 I(λ3 > 0), 0 < τ1, ψ1 < ∞,

and then for each value of λ3, the conditional density of λ1 given λ3 is assumed to

be of the gamma form with an intensity parameter that is a linear function of λ3. Thus

f (λ1|λ3) ∝ (ψ2 + ψ3λ3)
τ2λτ2−1

1 e−(ψ2+ψ3λ3)λ1 I(λ1 > 0), 0 < τ2, ψ3 < ∞, 0 ≤ ψ2 < ∞.

The joint prior is thus of the form

f (λ1, λ3) ∝ (ψ2 + ψ3λ3)
τ2λτ2−1

1 e−(ψ2+ψ3λ3)λ1λτ1−1
3 e−ψ1λ3 I(λ1 > 0)I(λ3 > 0). (2.4.2)

Consider the simpler prior in which we assume that ψ2 = 0. This prior density will

be of the form

fp(λ1, λ3) ∝ λτ2−1
1 e−ψ3λ3λ1λτ1+τ2−1

3 e−ψ1λ3 I(λ1 > 0)I(λ3 > 0). (2.4.3)

The corresponding posterior density corresponding to a sample of size n from sub-

model I will be

f (λ1, λ3|X = x, Y = y)) ∝ [e−nλ1λ
∑n

i=1 xi
1 ][e−nλ3e−λ3 ∑n

i=1 xi λ
∑n

i=1 yi
3 ]

×[λτ2−1
1 e−ψ3λ3λ1λτ1+τ2−1

3 e−ψ1λ3 ]

∝ λ
τ2+∑n

i=1 xi−1
1 e−nλ1λ

τ1+τ2+∑n
i=1 yi−1

3 e−(n+ψ1)λ3e−ψ3λ1λ3

∝
[
λ

τ1+∑n
i=1 yi−1

3 e−(n+ψ1)λ3
] [

λ
τ2+∑n

i=1 xi−1
1 e−(n+ψ3λ3)λ1

]
.(2.4.4)

For examples of such prior and posterior densities, see Figures 2.4, 2.5, 2.6 (for priors)

and Figures 2.7, 2.8, 2.9(for posteriors). The marginal posterior distributions of λ1 and

λ3 are
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f P
λ1
(λ1) ∝

[
λ

τ2+∑n
i=1 xi−1

1 e−nλ1
] Γ(τ1 + ∑n

i=1 yi)

(n + ψ1 + ψ3λ1)
(τ1+∑n

i=1 yi)
, (2.4.5)

and

f P
λ3
(λ3) ∝

[
λ

τ1+∑n
i=1 yi−1

3 e−(n+ψ1)λ3
] Γ(τ2 + ∑n

i=1 xi)

(n + ψ3λ3)
(τ2+∑n

i=1 xi)
. (2.4.6)

Figure 2.4: Density plot of prior (pseudo-gamma prior) with parameter values τ1 = 1,
τ2 = 4, ψ1 = 1, ψ2 = 1(small value), ψ3 = 3 of the Sub-model I.
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Figure 2.5: Density plot of prior (pseudo-gamma prior) with parameter values τ1 = 1,
τ2 = 4, ψ1 = 1, ψ2 = 5 (large value), ψ3 = 3 of the Sub-model I.

Figure 2.6: Density plot of prior (pseudo-gamma prior simple) with parameter values
τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 0 (simple), ψ3 = 3 of the Sub-model I.

Note that the mean and variance of the marginals need to be dealt with numerically.
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Figure 2.7: Density plot of posterior (pseudo-gamma prior) with parameter values τ1 =
1, τ2 = 4, ψ1 = 1, ψ2 = 1 (small value), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of Sub-model
I.

Figure 2.8: Density plot of posterior (pseudo-gamma prior ) with parameter values
τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 5 (large value), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of
Sub-model I.

2.4.2 Sub-model II

Consider the sub-model obtained by setting λ2 = 0. The model is thus of the form
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2.4 Pseudo-gamma priors

Figure 2.9: Density plot of posterior (pseudo-gamma prior simpler) with parameter
values τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 0 (simple), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of
the Sub-model I.

P(X = x, Y = y) =



e−λ1 λx
1

x!
e−λ3xλ

y
3xy

y! ; x = 1, 2, ..., y = 0, 1, 2, ....

e−λ1 ; (x, y) = (0, 0)

0; otherwise

The likelihood function for a sample of size the following expression gives n from this

distribution, in which n∗ denotes the number of observed values of x equal to 0.

L(λ1, λ3; (x1, y1), ..., (xn, yn)) = e−n∗λ1
e−(n−n∗)λ1λ

∑xi>0 xi

1

∏xi>0 xi!
e−λ3 ∑xi>0 xi [∏xi>0(xi)

yi ]λ
∑xi>0 yi

3

∏xi>0 yi!
.

(2.4.7)

Here too, the likelihood factors are as follows

L(λ1, λ3; (x1, y1), ..., (xn, yn)) =

 e−nλ1λ
∑xi>0 xi

1

∏xi>0 xi!


 e−λ3 ∑xi>0 xi [∏xi>0(xi)

yi ]λ
∑xi>0 yi

3

∏xi>0 yi!

 .

(2.4.8)

The first factor only involves the parameter λ1, while the second factor only involves

the parameter λ3. Again, we will call λ1 the marginal parameter, while λ3 will be called

the conditional parameter.
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The kernel of the likelihood is given by

L(λ1, λ3) ∝ e−nλ1λ
∑xi>0 xi

1 e−λ3 ∑xi>0 xi λ
∑xi>0 yi

3 . (2.4.9)

Consider the simpler pseudo-gamma prior in which we assume that ψ2 = 0. This

prior density will be

fp(λ1, λ3) ∝ λτ2−1
1 e−ψ3λ3λ1λτ1+τ2−1

3 e−ψ1λ3 I(λ1 > 0)I(λ3 > 0). (2.4.10)

The posterior density will be

f (λ1, λ3|X = x, Y = y) ∝ e−nλ1λ
∑xi>0 xi

1 e−λ3 ∑xi>0 xi λ
∑xi>0 yi

3

×λτ2−1
1 e−ψ3λ3λ1λτ1+τ2−1

3 e−ψ1λ3 . (2.4.11)

For examples of such posterior densities, see Figure 2.10, 2.11 and 2.12.

The marginal posterior distributions of λ1 and λ3 are

f P∗
λ1
(λ1) ∝

[
λ

τ2+∑xi>0 xi−1
1 e−nλ1

] Γ(τ1 + ∑yi>0 yi)

(ψ1 + ψ3λ1)
(τ1+∑yi>0 yi)

, (2.4.12)

and

f P∗
λ3
(λ3) ∝

[
λ

τ1+∑yi>0 yi−1
3 e−(n+ψ1)λ3

]
Γ(τ2 + ∑xi>0 xi)

(n + ψ3λ3)
(τ2+∑xi>0 xi)

. (2.4.13)
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Figure 2.10: Density plot of posterior (pseudo-gamma prior ) with parameter values
τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 1 (small value), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of the
Sub-model II.

Figure 2.11: Density plot of posterior (pseudo-gamma prior ) with parameter values
τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 5 (large value), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of the
Sub-model II.

Note that the mean and variance of the marginals need to be dealt with numerically.

Some comparisons of Bayesian posterior analyses using a variety of prior densities,

including non-informative, independent gammas, and pseudo-gamma, are provided

in the following section.
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Figure 2.12: Density plot of posterior (pseudo-gamma prior simpler) with parameter
values τ1 = 1, τ2 = 4, ψ1 = 1, ψ2 = 0 (simple), ψ3 = 3, λ1 = 1, λ3 = 4 and n = 20 of
the Sub-model II.

2.5 Examples

2.5.1 Simulation study

Due to the marginal and conditional compositions of the pseudo-Poisson distributions,

simulation can be done in two steps: first, simulate x from Poisson(λ1) and next, sim-

ulate y from Poisson(λ2 + λ3x). However, inference for the posterior distributions is

more complex for a complete model, even under independent gamma priors. We need

to rely on numerical algorithms to compute marginal distributions and their moments.

In the current work, we will use a Hit-And-Run Metropolis (HARM) algorithm to sim-

ulate observations from the posterior distributions under all priors (improper, inde-

pendent, and pseudo) and for its full and sub-models. We refer to Chen [9] for the

HARM algorithm implementation and its comparison with Gibbs and metropolis sam-

pling. However, for each set of samples from the posterior densities, the convergence

of the HARM algorithm is verified and assured. Although, due to the limitations in

the content of the current work, all convergence plots are not included. However, one

can refer to Hall [18] for all contemporary Bayesian simulation algorithms, including
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HARM. Also, convergence plots of each of the algorithms can be verified in Laplaces-

Demon R package [36].

We have simulated 10, 000 data sets using the HARM algorithm with thinning at the

10th sample from each posterior distribution of λ’s with varying sample sizes from n =

10, 20, 30, 50, 100, 500. Mean and posteriori 95% confidence intervals are mentioned in

Table 2.1 and 2.2 are computed from 1000 iterations of the aforementioned procedure.

Full-model : For the parameter values λ1 = 1, λ2 = 3 and λ3 = 4, we consider the

following priors

FP1: Uniform prior (improper prior)

FP2: Independent gamma prior, i.e., λ1 ∼ Γ(α1, δ1), λ2 ∼ Γ(α2, α2) and λ3 ∼

Γ(α3, δ3) for the prior parameter values α1 = 1, δ1 = 1, α2 = 3, δ2 = 1, α3 = 4

and δ3 = 2.

The posterior density plots of λ1, λ2 and λ3 with improper (Uniform prior) and

independent gamma priors c.f. Figures 2.13, 2.14 and 2.15 1. The plot has been

illustrated for one set of 100000 observations with thinning at 10th sample to un-

derstand the large sample behaviour of posterior distribution.

Sub-model I (i.e. when λ2 = λ3): for the parameter values λ1 = 1 and λ3 = 4, we

consider the following priors:

SIP1: Uniform prior (improper prior)

SIP2: Independent gamma prior, i.e.,λ1 ∼ Γ(α1, δ1) and λ3 ∼ Γ(α3, δ3), for the

prior parameter values α1 = 1, δ1 = 1, α3 = 4 and δ3 = 2 .

SIP3: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the prior parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 1, ψ3 = 3

SIP4: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the prior parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 5, ψ3 = 3

1li imp: posteriori observations of λi by improper prior ; li ind: posterior observations from λi by
independent gamma prior, i = 1, 2, 3.
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SIP5: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the prior parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 0, ψ3 = 3

We refer to Table 2.1 for the comparison of different prior effects on posteriori

means distribution. Also, c.f. Figure 2.16 and 2.17 for posteriori density plots and

the plots has been illustrated for one set of 100000 observations with thinning at

10th sample to understand the large sample behaviour of posteriori distribution.

Sub-Model II (i.e. when λ2 = 0): for the parameter values λ1 = 1 and λ3 = 4, we

consider the following priors:

SIIP1: Uniform prior (improper prior)

SIIP2: Independent gamma prior, i.e.,λ1 ∼ Γ(α1, δ1) and λ3 ∼ Γ(α3, δ3), for the

parameter values α1 = 1, δ1 = 1, α3 = 4 and δ3 = 2 .

SIIP3: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 1, ψ3 = 3

SIIP4: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 5, ψ3 = 3

SIIP5: Bivariate pseudo-gamma prior, i.e., λ3 ∼ Γ(τ1, ψ1) and λ1|λ3 ∼ Γ(τ2, (ψ2 +

ψ3λ3)), for the parameter values τ1 = 1, ψ1 = 1, τ2 = 4 ψ2 = 0, ψ3 = 3

We refer to Table 2.2 for the comparison of different prior effects on posteriori.

Also, refer Figure 2.18 and 2.19 for the posterior density plots and the plots has

been illustrated for one set of 100000 observations with thinning at 10th sample

to understand the large sample behaviour of posteriori distribution.
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Figure 2.13: Posterior density plot of λ1 (independent gamma and improper priors)
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Figure 2.14: Posterior density plot of λ2 (independent gamma and improper priors)
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Figure 2.15: Posterior density plot of λ3 (independent gamma and improper priors)
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Table 2.1: Simulation (Sub-model I)
Sample size (n), parameters (P), posterior mean by improper prior (SIP1), posterior mean by independent gamma prior
(SIP2), posterior mean by pseudo-gamma prior for ψ2 = 1 (SIP3), posterior mean by pseudo-gamma prior for ψ2 =
5 (SIP4), posterior mean by pseudo-gamma prior for ψ2 = 0 (SIP5), 95% confidence interval of SIP1 (CISIP1), 95%
confidence interval of SIP2 (CISIP2), 95% confidence interval of SIP3 (CISIP3), 95% confidence interval of SIP4 (CISIP4),
95% confidence interval of SIP5 (CISIP5)

n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

10 λ1 1.535 1.414 0.954 0.961 0.955 (1.478, 1.791) (1.349, 1.638) (0.914, 1.110) (0.912, 1.212) (0.905, 1.161)
λ3 3.959 3.588 3.203 3.194 3.213 (3.896, 4.121) (3.511, 3.877) (3.145, 3.336) (3.122, 3.335) (3.132, 3.375)

20 λ1 1.176 1.128 0.875 0.866 0.865 (1.135, 1.321) (1.086, 1.310) (0.829, 1.077) (0.826, 1.020) (0.827, 1.063)
λ3 4.261 4.002 3.731 3.723 3.733 (4.189, 4.492) (3.928, 4.312) (3.657, 3.858) (3.663, 3.818) (3.665, 3.957)

30 λ1 1.133 1.108 0.928 0.905 0.907 (1.092, 1.347) (1.059, 1.292) (0.870, 1.320) (0.868, 1.080) (0.869, 1.135)
λ3 4.054 3.896 3.688 3.682 3.684 (4.012, 4.148) (3.815, 4.152) (3.626, 3.846) (3.630, 3.863) (3.626, 3.842)

50 λ1 1.048 1.042 0.913 0.909 0.907 (1.010, 1.248) (0.993, 1.297) (0.874, 1.128) (0.874, 1.073) (0.874, 1.052)
λ3 4.045 3.936 3.798 3.796 3.795 (3.995, 4.236) (3.879, 4.143) (3.746, 3.989) (3.744, 3.954) (3.745, 3.931)

100 λ1 1.100 1.112 1.006 1.009 1.008 (1.066, 1.303) (1.054, 1.402) (0.968, 1.213) (0.968, 1.258) (0.968, 1.279)
λ3 4.540 4.482 4.393 4.395 4.391 (4.499, 4.700) (4.434, 4.677) (4.347, 4.572) (4.348, 4.625) (4.345, 4.581)

500 λ1 1.120 1.127 1.113 1.110 1.111 (1.094, 1.266) (1.092, 1.326) (1.075, 1.333) (1.074, 1.298) (1.075, 1.327)
λ3 3.994 3.989 3.976 3.980 3.975 (3.963, 4.151) (3.953, 4.140) (3.935, 4.181) (3.936, 4.180) (3.936, 4.172)

36



2.5
Exam

ples

Table 2.2: Simulation (Sub-model II)
Sample size (n), parameters (P), posterior mean by improper prior (SIP1), posterior mean by independent gamma prior
(SIP2), posterior mean by pseudo-gamma prior for ψ2 = 1 (SIP3), posterior mean by pseudo-gamma prior for ψ2 =
5 (SIP4), posterior mean by pseudo-gamma prior for ψ2 = 0 (SIP5), 95% confidence interval of SIP1 (CISIP1), 95%
confidence interval of SIP2 (CISIP2), 95% confidence interval of SIP3 (CISIP3), 95% confidence interval of SIP4 (CISIP4),
95% confidence interval of SIP5 (CISIP5)

n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

10 λ1 1.531 1.402 1.035 1.040 1.027 (1.479, 1.731) (1.343, 1.589) (1.002, 1.139) (1.002, 1.213) (0.995, 1.070)
λ3 3.105 2.911 2.626 2.628 2.637 (3.041, 3.286) (2.847, 3.126) (2.576, 2.703) (2.577, 2.778) (2.575, 2.816)

20 λ1 1.202 1.123 0.850 0.855 0.867 (1.139, 1.536) (1.082, 1.300) (0.817, 0.982) (0.818, 1.047) (0.819, 1.119)
λ3 4.244 4.029 3.834 3.836 3.832 (4.201, 4.359) (3.976, 4.189) (3.772, 3.957) (3.766, 4.112) (3.773, 4.046)

30 λ1 1.127 1.096 0.921 0.937 0.928 (1.090, 1.300) (1.055, 1.255) (0.886, 1.122) (0.885, 1.226) (0.885, 1.169)
λ3 3.742 3.621 3.464 3.463 3.482 (3.697, 3.889) (3.570, 3.836) (3.423, 3.547) (3.411, 3.631) (3.421, 3.616)

50 λ1 1.050 1.033 0.906 0.900 0.907 (1.013, 1.219) (0.992, 1.236) (0.863, 1.158) (0.862, 1.105) (0.864, 1.136)
λ3 4.250 4.149 4.032 4.033 4.030 (4.199, 4.471) (4.098, 4.370) (3.978, 4.203) (3.983, 4.220) (3.986, 4.190)

100 λ1 1.115 1.098 1.003 1.002 1.003 (1.064, 1.369) (1.053, 1.338) (0.967, 1.204) (0.967, 1.198) (0.967, 1.185)
λ3 4.536 4.472 4.403 4.403 4.404 (4.484, 4.753) (4.428, 4.661) (4.358, 4.600) (4.358, 4.581) (4.358, 4.598)

500 λ1 1.139 1.131 1.109 1.105 1.107 (1.094, 1.380) (1.092, 1.353) (1.075, 1.314) (1.074, 1.274) (1.074, 1.299)
λ3 4.052 4.039 4.029 4.022 4.028 (4.014, 4.225) (4.005, 4.192) (3.990, 4.222) (3.989, 4.170) (3.989, 4.183)
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Figure 2.16: Posterior density plot of λ1 of Sub-model I.
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Figure 2.17: Posterior density plot of λ3 of Sub-model I.
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Figure 2.18: Posterior density plot of λ1 of Sub-model II
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Figure 2.19: Posterior density plot of λ3 of Sub-model II

Note that from the above simulation, Table 2.1 and 2.2 and posterior density plots

with varying sample sizes summarize that with a sufficient sample size pseudo-gamma

prior are closer to the true value than improper and independent gamma priors. Be-

sides, in most cases, the estimated posterior confidence interval contains the true value.

For example, in a sample size of n = 10, both improper and independent gamma

prior posterior confident interval doesn’t contain the true value. It is expected that
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with an increase in sample size, all five posterior distributions converge to true values.

We also remark that posterior distribution behaviour is similar under pseudo-gamma

prior under different values of ψ and varying sample sizes. We strongly advocate that

from small sample sizes to sufficiently large samples, the estimated length of the con-

fidence intervals is shorter under pseudo-gamma priors. Hence, we concluded that

the standard errors of posterior means under pseudo-gamma priors are smaller than

the improper and independent gamma priors. Finally, the simulation study insists we

consider pseudo-gamma prior as the first choice under dependence priors.

2.5.2 Real data sets

In the following section, we consider two data sets which are mentioned in Karlis

and Tsiamyrtzis [21], Islam and Chowdhury [19], Leiter and Hamdani [24] and also

in Arnold and Manjunath [4]. We also consider an additional quantity of interest un-

der each particular example: the ratio of the two marginal means, denoted by φ. For

the importance of analyzing the posterior distribution of φ, see Karlis and Tsiamyrtzis

[21] page 33.

Also, remark that pseudo-gamma prior with particular parameter value, i.e., ψ2 =

0, the density function of φ is equal to λ3 under Sub-models I & II. The exact distri-

bution can be derived, c.f. equation (2.4.6) and (2.4.13). However, for further analysis,

like moment computations, one has to rely on numerical methods. We conclude that

under dependence priors, we can derive the exact density of the marginals for particu-

lar hyperparameters (i.e., ψ2 = 0). Nevertheless, the prior mixture mentioned in Karlis

and Tsiamyrtzis [21] does not have closed-form expressions for marginals, so also, for

φ, one needs to depend on numerical computations.

A particular data set I

We consider a data sets which is mentioned in Islam and Chowdhury [19] and also in

Arnold and Manjunath [4]; the source of the data is from the tenth wave of the Health

and Retirement Study (HRS). The data represents the number of conditions that ever

had (X) as mentioned by the doctors and utilization of healthcare services (say, hos-
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Table 2.3: Health and retirement study data (Full Model)

n P SIP1 SIP2 CISIP1 CISIP2

5567
λ1 2.642 2.642 (2.608, 2.673) (2.608, 2.678)
λ2 0.639 0.628 (0.598, 0.683) (0.585, 0.667)
λ3 0.049 0.054 (0.033, 0.642) (0.039, 0.070)

pital, nursing home, doctor and home care) (Y). The Pearson correlation coefficient

between X and Y is 0.063. The test for independence, classical inference (m.l.e and mo-

ment estimates), and AIC values for full and its sub-models c.f. Arnold and Manjunath

[4] page 16 and 18 (Table 10).

In the following, we will consider the following two models. The criteria for se-

lecting below two models are discussed in Arnold, and Manjunath [4] on page 18 and

Table 10.

Full-model : For the full model, the ratio of two marginal means is

φ =
λ2 + λ3λ1

λ1

We refer to Table 2.3 and Figure 2.20 for posteriori analysis and the sample density

of φ for the Full-model.

Sub-model II: Similarly, for the Sub-model II, the ratio of two marginal means will be

equal to

φ = λ3

We refer to Table 2.4 and Figure 2.21 for posteriori analysis and the sample density

of φ for the Full and its Sub-model II.
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Table 2.4: Health and retirement study data (Sub-model II)
n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

5567 λ1 2.674 2.642 2.648 2.767 2.642 (2.610, 2.681) (2.605, 2.677) (2.610, 2.680) (2.605, 2.681) (2.606, 2.681)
λ3 0.291 0.290 0.309 0.302 0.291 (0.284, 0.298) (0.282, 0.298) (0.283, 0.298) (0.284, 0.298) (0.284, 0.298)
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Figure 2.20: Posterior density plot of φ of Full-model (improper and independent-
gamma prior)

A particular data set II

Now, we consider a data set in Leiter and Hamdani [24]; the data source is a 50-mile

stretch of Interstate 95 in Prince William, Stafford, and Spotsylvania counties in Eastern

Virginia. The data represents the number of accidents categorized as fatal accidents,

injury accidents, or property damage accidents, along with the corresponding number

of fatalities and injuries for the period 1 January 1969 to 31 October 1970. For classical

inference (m.l.e and moment estimates) and AIC values for full and its sub-models

c.f. Arnold and Manjunath [4] page 17 and 19 (Table 11). The ratio of two marginal

means, i.e., φ, refers to the number of fatalities per accident. The criteria for selecting

below two models are discussed in Arnold, and Manjunath [4] on page 19 and Table

11. Moreover, the Mirror Sub-model II suggested below is the same model considered
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Figure 2.21: Posterior density plot of φ of Sub-model II

Table 2.5: Accidents and fatalities study data (Full Model)

n P SIP1 SIP2 CISIP1 CISIP2

639
λ1 0.059 0.060 (0.044, 0.076) (0.044, 0.077)
λ2 0.814 0.813 (0.753, 0.879) (0.753, 0.973)
λ3 0.881 0.952 (0.534, 1.269) (0.641, 1.268)

in Leiter and Hamdani [24]. It has been emphasized in Leiter and Hamdani [24] and

Arnold and Manjunath [4] that mirror Sub-model II fits the data better than any other

sub-models.

Full-model : We refer to Table 2.5 for posteriori analysis and the sample density of φ

for the Full-model. Note that, since Mirror Sub-model II fits the data and for the

Full model computation φ or reference of two marginal means is of no signifi-

cance to the application.

Mirror Sub-model II: We refer Table 2.6 and Figure 2.22 for posteriori analysis and the

sample density of φ for the mirror Sub-model II.

As mentioned earlier, under pseudo-gamma prior (dependence), the estimated con-

fidence interval includes posterior means. Also, under specific hyper-parameters, i.e.,
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Table 2.6: Accidents and fatalities study data (Mirrored Sub-model II)
n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

639 λ1 0.860 0.908 0.867 0.867 0.871 (0.802, 0.917) (0.803, 0.921) (0.807, 0.928) (0.800, 0.928) (0.807, 0.927)
λ3 0.069 0.076 0.069 0.072 0.132 (0.052, 0.088) (0.056, 0.095) (0.052, 0.089) (0.051, 0.089) (0.057, 0.095)
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Figure 2.22: Posterior density plot of φ of Mirror Sub-model II

ψ2 = 0, we have an exact density of the φ, so simulation and further analysis are

reliable. Due to the simplicity of its structure, the pseudo-gamma prior allows for

simple simulation and marginal distribution computations. Unlike the mixture prior

(dependence) suggested in Karlis and Tsiamyrtzis [21], the computation of marginal

distributions or simulating from the same, one has to rely on numerical computations.

The pseudo-gamma discussed in this paper may be feasible alternatives to the other

dependence priors for analyzing count data sets.

In the following, we extend bivariate pseudo-Poisson to a high dimension. Due

to the simplicity of trivariate pseudo-Poisson, we have considered improper and inde-

pendent gamma priors for an illustration of higher dimensions of the above-mentioned
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approaches.

2.6 Trivariate pseudo-Poisson model

Analogously, we could consider a trivariate model with:

X ∼ P(λ1)

Y|X = x ∼ P(λ2 + λ3x)

Z|X = x, Y = y ∼ P(λ4 + λ5x + λ6y)

For the parameter values λ1 = 1, λ2 = 3, λ3 = 4, λ4 = 4, λ5 = 2 and λ6 = 5, we

consider the following priors:

FP1: Uniform prior (improper prior)

FP2: Independent gamma prior, i.e., λ1 ∼ Γ(α1, δ1), λ2 ∼ Γ(α2, α2), λ3 ∼ Γ(α3, δ3),

λ4 ∼ Γ(α4, δ4), λ5 ∼ Γ(α5, δ5) and λ6 ∼ Γ(α6, δ6) for the prior values α1 = 1,

δ1 = 1, α2 = 3, δ2 = 1, α3 = 4,δ3 = 2, α4 = 2, δ4 = 3, α5 = 1, δ5 = 3, α6 = 1 and

δ6 = 1.

The posterior density plots of λ1, λ2 and λ3 with improper (Uniform prior) and inde-

pendent gamma priors c.f. Figures 2.23, 2.24, 2.25, 2.26, 2.27 and 2.28 . The plot has

been generated with one set of 100000 observations with thinning at 10th sample from

posteriori with varying sample size. As mentioned in the bivariate case, posteriori

estimates are close to the true value for a sufficiently large sample size.

The sub model in which λ2 = λ3 and λ4 = λ5 = λ6 is particularly easy to an-

alyze. Further analysis and applications of trivariate pseudo-Poisson models will be

discussed in a separate report.

The analysis’s overall summary and detailed overview are included in the Conclu-

sion Section.
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Figure 2.23: Posterior density plot of λ1 (independent gamma and improper priors)
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Figure 2.24: Posterior density plot of λ2 (independent gamma and improper priors)

46



2.6 Trivariate pseudo-Poisson model

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=10

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=20

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=30

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=50

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=100

l3_ind

l3_imp

0 2 4 6

l3

l3
_d

is
t n=500

l3_dist l3_ind l3_imp

Figure 2.25: Posterior density plot of λ3 (independent gamma and improper priors)
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Figure 2.26: Posterior density plot of λ4 (independent gamma and improper priors)
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Figure 2.27: Posterior density plot of λ5 (independent gamma and improper priors)
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Figure 2.28: Posterior density plot of λ6 (independent gamma and improper priors)
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C H A P T E R 3

On pseudo-Poisson goodness-of-fit tests

3.1 Introduction

Indeed, goodness-of-fit (GoF) is a statistical procedure to test whether the given data is

compatible with the assumed distribution. Any GoF test requires the following three

steps: (1) identifying the unique characteristic of the assumed model (examples: distri-

bution function, generating function, or density function); (2) computing the empirical

version of the assumed characteristic; (3) with the pre-assumed measure(examples: L1

- or L2-space), measure the distance between the assumed item in Step (1) and its em-

pirical one, in Step (2). A rejection region can be computed with a given level and the

cut-off value for the distance measure determined. However, if the rejection region can

not be derived explicitly, then one can use the Bootstrapping technique to generate a

critical region. The general steps required to simulate a rejection region using the Boot-

strapping are discussed detail in Section 3.4. We refer to Meintanis [26] and Nikitin

[31] for a detailed discussion of the GoF tests, which involve the aforementioned steps.

Besides, there exist or can be constructed tests that are not based on a unique charac-

teristic of the assumed distribution. For example, considering the univariate Poisson

distribution, there exists a GoF test which depends on the Fisher index of depression.

We also know that the Poisson distribution belongs to the class of equi-dispersed mod-

49



On pseudo-Poisson goodness-of-fit tests

els, but this property does not characterize the Poisson distribution. Hence, such tests,

which are not based on a unique characteristic of the assumed distributions, are not

consistent tests.

The literature on GoF tests for bivariate count data is sparse. For the classical bivari-

ate and multivariate Poisson distributions, a GoF test using the probability generating

function is discussed by Muñoz and Gamero [29] and Muñoz and Gamero [30]. More

recently, Muñoz [28] contains a review of the available bivariate GoF tests and also a

new test using the differentiation of the probability generating function(p.g.f.).

In the following sections, we are starting with a test defined in Kocherlakota and

Kocherlakota [22] and a few bivariate GoF tests reviewed in Muñoz [28]. In addition

to the classical GoF tests using probability generating function (p.g.f.), we considered

a less known test statistic which is the supremum of the absolute difference between

estimated p.g.f. and empirical ones. In addition, we are introducing a non-consistent

test which is based on the moments, in particular, defining the test taking the differ-

ence between the estimated bivariate Fisher index and its empirical counterpart. We

examine each test’s finite, large, and asymptotic properties and recommend a few tests

based on their power and robustness analysis.

Before we start a discussion on GoF tests, we would like to make a few remarks

on the bivariate pseudo-Poisson model and its relevance in the literature. Finally, we

refer to Arnold and Manjunath [4] and Arnold et. al. [1] for classical inferential aspects,

characterization, Bayesian analysis, and also an example of applications of the bivariate

pseudo-Poisson model.

3.2 Bivariate pseudo-Poisson models

As discussed in Chapter 1 Section 1.1 (Definition 1.1), the bivariate pseudo-Poisson

definition is given by

Definition 3.1. A 2-dimensional random variable (X, Y) is said to have a bivariate Pseudo-
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3.2 Bivariate pseudo-Poisson models

Poisson distribution if there exists a positive constant λ1 such that

X ∼P(λ1)

and a function λ2 : {0, 1, 2, ...} → (0, ∞) such that, for every non-negative integer x,

Y|X = x ∼P(λ2(x)).

Here we restrict the form of the function λ2(x) to be a polynomial with unknown

coefficients. In particularly the simple form we assume is that λ2(x) = λ2 + λ3x, ∀x ∈

{0, 1, 2, ...}, then the above bivariate distribution will be of the form

X ∼P(λ1) (3.2.1)

and x ∈ {0, 1, 2, ...},

Y|X = x ∼P(λ2 + λ3x). (3.2.2)

The parameter space for this model is {(λ1, λ2, λ3) : λ1 > 0, λ2 > 0, λ3 ≥ 0}. The

case in which the variables are independent corresponds to the choice λ3 = 0. The

probability generating function (p.g.f) for this bivariate Pseudo-Poisson distribution is

given by

G(t1, t2) = eλ2(t2−1)eλ1[t1eλ3(t2−1)−1]; t1, t2 ∈ R. (3.2.3)

Now, the marginal p.g.f of Y is

G(1, t2) = GY(t2) = eλ2(t2−1)eλ1[eλ3(t2−1)−1]; t2 ∈ R. (3.2.4)

Note that, in general, the p.g.f. in equation (3.2.3) can not be simplified to compute

all marginal probabilities. Yet, we can use equation (3.2.4) to derive a few marginal

probabilities of Y. The derivation of marginal probability of Y is demonstrated for
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Y = 0, 1, 2, 3 in Appendix A.1, and one can still extend the mentioned procedure to

get albeit complicated values for the probability that Y assumes any positive value.

Besides, the derivation of the other conditional distribution of the bivariate pseudo-

Poisson, i.e., P(X = x|Y = y), has been included in Appendices A.1 Section.

3.3 GoF tests for the bivariate pseudo-Poisson

In the following section, we discuss GoF tests (I) based on unique characteristics (con-

sistent tests), (II) based on the moments (non-consistent tests) and, (III) the simple clas-

sical χ2 goodness of fit test.

3.3.1 New tests based on moments

In the following, we will be extending a univariate GoF test based on the Fisher index

to the bivariate case. We know that for a multivariate distribution, the Fisher index of

dispersion is not uniquely defined. However, in the following, we use the definition

of the multivariate Fisher dispersion given by Kokonendji and Puig [23] in Section

3 as; for any d-dimensional discrete random variable Z with mean vector E(Z) and

covariance matrix Cov(Z) the generalized dispersion index is

GDI(Z) =
√

E(Z)
T

Cov(Z)
√

E(Z)
E(Z)TE(Z)

. (3.3.1)

For the bivariate pseudo-Poisson model, define the random vector Z = (X, Y)T for

and the moments are (c.f. Arnold and Manjunath [4] page 2309–2310)

E(Z) = (λ1, λ2 + λ3λ1)
T (3.3.2)

cov(Z) =

 λ1 λ1λ3

λ1λ3 λ2 + λ3λ1 + λ2
3λ1

 .

Now, using the definition given in Kokonendji and Puig [23] page 183, the disper-

sion index for the bivariate pseudo-Poisson is
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GDI(Z) =
λ2

1 + 2λ
3
2
1 λ3
√

λ2 + λ3λ1 + (λ2 + λ3λ1)(λ2 + λ3λ1 + λ2
3λ1)

λ2
1 + (λ2 + λ3λ1)2

= 1 +
2λ

3
2
1 λ3
√

λ2 + λ3λ1 + (λ2 + λ3λ1)λ
2
3λ1

λ2
1 + (λ2 + λ3λ1)2

> 1, (3.3.3)

which indicates over-dispersion.

For the corresponding sample version, consider the n sample observations. If

Z1 = (X1, Y1)
T,..., Zn = (Xn, Yn)T is a random sample of size n from a bivariate popu-

lation. Denote Zn = 1
n ∑n

i=1 Zi = (X, Y)T and ĉov(Z) = 1
n−1 ∑n

i=1 ZiZT
i − ZnZT

n are the

sample mean vector and the sample covariance matrix, respectively. Then the empiri-

cal bivariate dispersion index is

ĜDI(Z)n =

√
ZT

n ĉov(Z)
√

Zn

ZT
n Zn

. (3.3.4)

According to Theorem 1 in Kokonendji and Puig [23] page 184, as n→ ∞,
√

n{ĜDI(Z)n − GDI(Z)} ∼ N(0, σ2
g), where σ2

g = ∆TΓ∆, where

Γ =

Σ 0

0 0


and

Σ =

 var(X) cov(X, Y)

cov(X, Y) var(Y)

 .

A new bivariate GoF test for the count data based on the Fisher dispersion index is

FI(.)n =
√

n{ĜDI(Z)n − GDI(Z)} (3.3.5)

and the null hypothesis is rejected for large values of FI(.)n . The asymptotic distribution
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of the test statistic is

ĜDI(Z)n − GDI(Z)
σg√

n

∼asy. N(0, 1), as n→ ∞. (3.3.6)

For detailed proof, c.f. Theorem 1 in Kokonendji and Puig [23] page 184. However,

for the two sub-models of the bivariate pseudo-Poisson model, i.e., when λ2 = λ3 is

Sub-Model I and when λ2 = 0 is Sub-Model II, the new test statistics are

FI(SI)
n =

√
n{ĜDI(Z)n − GDI(SI)(Z)}, (3.3.7)

and

FI(SII)
n =

√
n{ĜDI(Z)n − GDI(SII)(Z)}, (3.3.8)

where

GDI(SI)(Z) = 1 +
2λ

3
2
1 λ

3
2
3
√

1 + λ1 + (1 + λ1)λ
3
3λ1

λ2
1 + λ2

3(1 + λ1)2
, (3.3.9)

and

GDI(SII)(Z) = 1 +
2λ

3
2
1 λ

3
2
3
√

λ1 + λ3
3λ2

1

λ2
1 + λ2

3λ2
1

. (3.3.10)

One can derive test statistic FI(SI)
n and FI(SII)

n . The estimated dispersion index can

be obtained by plugging in the m.l.e estimates of λi,i = 1, 2, 3. Also, due to the in-

variance and asymptotic properties of the m.l.e estimates, the proposed test statistics

are normally distributed (with appropriate scaling). For large sample sizes, the null

hypothesis is rejected whenever the test statistic value exceeds the standard normal

quantile value. In Section 3.4, we analyze the proposed test statistic’s finite, large, and

asymptotic behavior.
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3.3.2 Tests based on unique characteristic

In the following, we consider a few test statistics for the full, sub-model I, and sub-

model II.

Muñoz and Gamero (M&G) method

The GoF tests for a bivariate random variable based on the finite sample size are lim-

ited. This is due to difficulty deriving closed-form expression for the critical region

with finite sample size. Yet, in the following, we construct the GoF test for the bivari-

ate pseudo-Poisson distribution using Munoz and Gamero’s[29] finite sample size test

for the classical bivariate Poisson distribution. For a finite sample test based on the

p.g.f to test GoF for the univariate Poisson, we refer to Unam and Cimat [37]. Further-

more, using a bootstrapping technique, the critical region for the test is simulated and

illustrated with an example in Section 3.4.

Let (X, Y) be a bivariate random variable with p.g.f, G(t1, t2; λ1, λ2, λ3), (t1, t2)
T ∈

[0, 1]2. For the given data set (Xi, Yi), i = 1, ..., n, we denote by Gn(t1, t2) =
1
n ∑n

i=1 tXi
1 tYi

2

an empirical counterpart of the bivariate p.g.f. According to Muñoz and Gamero [29],

a reasonable test for testing the compatibility of the assumed density should reject the

null hypothesis for large values of the given statistic

T(.)
P,n,w(λ̂1, λ̂2, λ̂3) =

1∫
0

1∫
0

g2
n(t1, t2; λ̂1, λ̂2, λ̂3)w(t1, t2)dt1dt2 (3.3.11)

where λ̂1, λ̂2, λ̂3 are consistent estimators of λ’s and

gn(t1, t2; λ̂1, λ̂2, λ̂3) =
√

n{Gn(t1, t2) − G(t1, t2; λ̂1, λ̂2, λ̂3)} and also w(t1, t2) ≥ 0 is a

measurable weight function satisfying

1∫
0

1∫
0

w(t1, t2)dt1dt2 < ∞. (3.3.12)
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The above condition implies that the test statistic T(.)
P,n,w(λ̂1, λ̂2, λ̂3) is finite for the

fixed sample size n. Similarly, for the Sub-model, I & II with appreciate p.g.f. one can

derive test statistic T(SI)
P,n,w and T(SII)

P,n,w.

Due to the difficulty in obtaining an explicit expression for the critical region, it has

been argued in Muñoz and Gamero [29] and in Muñoz [28], the rejection regions can

be simulated using the bootstrapping method. The general procedure to identify an

appropriate weight function is difficult to argue. One can consider the weight func-

tions, which include a more prominent family of functions. A few weight functions are

considered in Appendix A in Example 3 and derived from its test statistics. In Section

3.4, we analyzed the effects of weight functions and feasible parameter values on the

critical region.

Kocherlakota and Kocherlakota(K&K) method

Let Z1, ..., Zn be a random sample from the bivariate distribution F(Z; `), where θ =

(θ1, ..., θd)
T is the d-dimensional parameter vector. Let G(t1, t2; θ) be the p.g.f. of Z =

(X, Y)T, t1, t2 ∈ R2 and parameter vector θ is estimated by the maximum likelihood es-

timation (m.l.e) method and the estimator we denote by θ̂. Let Gn(t1, t2) =
1
n ∑n

i=1 tXi
1 tYi

2 ,

t ∈ R be the empirical p.g.f. (e.p.g.f.) then the test statistic

TN(t1, t2) =
Gn(t1, t2)− G(t1, t2; θ̂)

σ
, |t1| < 1; |t2| < 1 (3.3.13)

is asymptotically follows the standard normal distribution, where

σ2 = 1
n [G(t2

1, t2
2; θ) − G2(t1, t2; θ))] − ∑d

i=1 ∑d
j=1 σi,j

∂G(t1,t2;θ)
∂θi

∂G(t1,t2;θ)
∂θj

, ((σi,j)) is the in-

verse of the Fisher information matrix and σ can be estimated by plugging in the m.l.e

of θ. We refer to Kocherlakota and Kocherlakota(K&K) [22] for the asymptotic distri-

bution of the test statistic.

Now, for the sub-model I, the Fisher information matrix is

I(SI)(λ1, λ3) = n

E
(

X
λ2

1

)
0

0 E
(

Y
λ2

3

)
 =

 n
λ1

0

0 n(1+λ1)
λ3

 .
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Similarly, for the sub-model II, the Fisher information matrix is

I(SII)(λ1, λ3) = n

E
(

X
λ2

1

)
0

0 E
(

Y
λ2

3

)
 =

 n
λ1

0

0 nλ1
λ3

 .

The GoF test statistic under sub-model I is

T(SI)
PN (t1, t2) =

Gn(t1, t2)− GI(t1, t2; λ̂1, λ̂3)

σ(SI)
, |t1| < 1, |t2| < 1 (3.3.14)

where Gn(.) is empirical p.g.f. and GI(t1, t2; λ̂1, λ̂3) is estimated p.g.f. of the sub-model

I and

σ2(SI) =
1
n
[GI(t2

1, t2
2; λ1, λ3)− G2

I (t1, t2; λ1, λ3)]−
λ1

n
∂2GI(t1, t2; λ1, λ3)

∂λ2
1

− λ3

n(λ1 + 1)
∂2GI(t1, t2; λ1, λ3)

∂λ2
3

. (3.3.15)

Similarly, for the sub-model II, the GoF test statistic will be

T(SII)
PN =

Gn(t1, t2)− GI I(t1, t2; λ̂1, λ̂3)

σ(SII)
, |t1| < 1, |t2| < 1. (3.3.16)

where Gn(.) is empirical p.g.f. and GI I(t1, t2; λ̂1, λ̂3) is estimated p.g.f. of the sub-model

II and

σ2(SII)(t1, t2) =
1
n
[G(t2

1, t2
2; λ1, λ3)− G2

(I I)(t1, t2; λ1, λ3)]−
λ1

n
∂2G(I I)(t1, t2; λ1, λ3)

∂λ2
1

− λ3

nλ1

∂2GI I(t1, t2; λ1, λ3)

∂λ2
3

. (3.3.17)

The bootstrapped finite sample and asymptotic distributions of the GoF test statistic of

T(.)
PN are studied in Section 3.4.
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In the following, we propose a test procedure that will be supremum on the ab-

solute value of the K&K test statistic with (t1, t2) over (−1, 1) × (−1, 1). The reason

behind proposing such a test is exemplified in Section 3.4. The mentioned GoF test-

ing procedure for the K&K method is originally discussed in Feiyan Chen [8] for the

univariate and bivariate geometric models. Besides, Feiyan Chen (2013) also discusses

the K&K method for the multiple t-values for the GoF test for geometric models, c.f.

page 12 of Chen[8] . However, in the present note, we are interested in proposing tests

free from the choices of t-values; hence the advantages or disadvantages of considering

multiple t-values are not discussed or illustrated in this note.

The GoF test statistic is

T(.)
SPN = sup

(t1,t2)∈{(−1,1)×(−1,1)}

∣∣∣∣∣Gn(t1, t2)− G.(t1, t2; λ̂1, λ̂3)

σ(.)

∣∣∣∣∣ (3.3.18)

where Gn(.), G. and σ(.) are defined in Section 3.3.2. Also, note that deriving the asymp-

totic distribution of the statistic T(.)
SPN is theoretically ambiguous. Hence, in Section 3.4

the finite sample distribution of the test statistic T(.)
SPN is analyzed.

3.3.3 GoF test free from alternative

In the class of distribution-free tests, the χ2 test is commonly used even when there is no

specific alternative hypothesis. However, this also needs to be improved in assessing

the power of the test.

χ2 GoF

In the following, we are using the classical χ2 GoF test, and cell probabilities are com-

puted up to k. The cell probability matrix is given by
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X — Y 0 1 2 3 ... k+

0 p00 p01 p02 p03 ... P(X = 0)−∑k−1
j=0 p0j

1 p10 p11 p12 p13 ... P(X = 1)−∑k−1
j=0 p1j

2 p20 p21 p22 p23 ... P(X = 2)−∑k−1
j=0 p2j

3 p30 p31 p32 p33 ... P(X = 3)−∑k−1
j=0 p3j

... ... ... ... ... ... ...

k+ P(Y = 0)−∑k−1
i=0 pi0 P(Y = 1)−∑k−1

i=0 pi1 P(Y = 2)−∑k−1
i=0 pi2 P(Y = 3)−∑k−1

i=0 pi3 ... 1−∑∞
i=k ∑∞

j=k pij

where pij = P(X = i, Y = j). The test statistic is

Tχ2 =
k

∑
i=0

k

∑
j=0

Oi,j − Ei,j

Ei,j
(3.3.19)

where k is the truncation point, Oi,j is frequency of (i, j) observation in the data of

size n and Ei,j = nP(X = i, Y = j). Hence, with Pearson theorem Tχ2 follows a χ2

distribution with [(k + 1)× (k + 1)− 1− 3] degrees of freedom.

Similarly, the above two tests for the Sub-Models I & II can be derived with appro-

priate cell probabilities pij = P(X = i, Y = j). In Section 3.4, we analyze a finite sample

and large sample behavior of the above two test statistics.

3.4 Examples

3.4.1 Simulation

In the following, we give a general procedure to analyze the finite sample distribution

of the GoF test statistics with bootstrapping technique.

Step 1 Simulate n observations from the bivariate pseudo-Poisson with fixed parameter

values. Otherwise, estimate parameters by moment or m.l.e. method, say λ̂i.

Then compute GoF test statistics, say Tobs.

Step 2 Fix the number of bootstrapping samples, say B (ideal size is 5, 000,10, 000) and

sample m(< n) observation from the above sample. , repeat Step 1 and compute

Tb
m,obs for b ∈ {1, 2, ..., B}.
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Step 3 From the frequency distribution of Tb
m,obs obtain the quantile values and the em-

pirical p-value is 1
B{Total no. of Tb

m,obs greater than Tobs}.

K&K Method

In the following, we discuss the finite, large, and asymptotic distribution of the test

statistics T(.)
PN(t1, t2) and T(.)

SPN (c.f. Section 3.3.2). Here, we limit our analysis to sub-

models of the bivariate pseudo-Poisson model, and statistical inference or parameter

estimation is well defined (see Section 7 in Arnold and Manjunath [4]). However, in

sub-models I and II, the method of moments and the maximum likelihood estimators

coincide. Hence, due to the invariance property of the maximum likelihood estimator,

the defined test statistic asymptotically follows standard normal with a variance that

will be inverse of the Fisher information matrix.

Now, we consider bootstrapping size of B = 5, 000 with varying sample size of

n = 20, 30, 50, 100, 500 at different ti = ±0.01,±0.5,±0.9, i = 1, 2.

Sub-Model I: (i.e. λ2 = λ3) The corresponding quantile values and density plots refer

to Table 3.1 and Figure 3.1, respectively.

Sub-Model II: (i.e. λ2 = 0) The corresponding quantile values and density plots refer

to Table 3.2 and Figure 3.2, respectively.

According to the simulation study, it has been observed that whenever t is closer to

zero, the empirical critical points are closer to the standard normal quantile values. It

has been recommended that the t values be chosen either in the neighbourhood of zero

or well-spanned in the interval (−1, 1) to have consistency in the tests.

Note that from Table 3.1 & 3.2 and also from Figure 3.1 & 3.2 K&K-method finite

sample distribution depends on the selected values for t. In particular, at t1 = −0.5(0.5)

and t2 = −0.5(0.5) K & K statistic distributions are inconsistent. Hence, we consider

the test statistic T(.)
SPN(defined in (3.3.18)) such that the test support completely depends

on the complete span of t-values. For an illustration of the proposed test, we are analyz-

ing the finite sample distribution of the test statistic, which is computed with varying

t1 and t2 from −0.99 to 0.99 at an increment of 0.01.

Finally, it has been argued in Feiyan Chen [8] that such tests are robust to the choice
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of alternatives and that the performance of the test is better than the K&K test because

it also spanned the entire interval of (−1, 1)× (−1, 1).

We refer to Table 3.3 and Figure 3.3 for the quantile values and frequency distri-

bution of the test statistic, respectively. The test statistic’s behavior is more stable and

consistent for small and moderately large samples.
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K&K-test statistic.

Muñoz and Gamero(M&G) method

Now, we consider GoF using p.g.f. (c.f. Muñoz and Gamero [29]) T(.)
P,n,w with depends

on the underlying weight functions. We refer to 3.5, 3.6, 3.6 and Figure 3.4, 3.5, 3.6, 3.7,

3.8 for small and large sample distribution of the test statistic and its quantile values

for the full and its sub-models.

To better understand the behavior of the test statistic, we examined the impact of

different weights at a1 = −0.9,−0.5,−0.01, 0.5, 3 and a2 = −0.9,−0.5,−0.01, 0.5, 5 on

the test statistic. According to the simulation study, the test is consistent and stable for

moderately large sample sizes, irrespective of the weight chosen. Also, note that for

the increasing sample size, the test statistic distribution is less variant and is shown to

be consistent.
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Figure 3.4: Example 1

62



3.4 Examples

Table
3.1:T

(S
I)

P
N

distribution
for

the
Sub-M

odelI
Sam

ple
size

(0.5%
,2.5%

,5%
;95%

,97.5%
,99.5%

)
n
=

20
n
=

30
n
=

50
n
=

100
n
=

500

T
(S

I)
P

N

t1
=
−

0.9,t2
=
−

0.9
(−

2.503,−
1.953,−

1.652;1.660,1.912,2.522)
(−

2.447,−
1.886,−

1.626;1.637,1.981,2.528)
(−

2.582,−
1.975,−

1.669;1.619,1.928,2.548)
(−

2,622,−
2.011,−

1.674;1.620,1.912,2.543)
(−

2.582,−
1.910,−

1.612;1.634,1.948,2.560)
t1

=
−

0.5,t2
=
−

0.5
(−

2.839,−
2.187,−

1.811;1.953,2.458,3.196)
(−

2.986,−
2.168,−

1.825;2.031,2.523,3.390)
(−

2.917,−
2.189,−

1.825;1.927,2.412,3.342)
(−

2.822,−
2.198,−

1.872;1.988,2.364,3.106)
(−

3.021,−
2.156,−

1.845;1.947,2.270,3.078)
t1

=
−

0.01,t2
=
−

0.01
(−

0.464,−
0.402,−

0.376;1.701,1.976,2.981)
(−

0.519,−
0.456,−

0.428;1.454,1.688,2.912)
(−

0.593,−
0.535,−

0.510;1.407,2.036,2.936)
(−

0.747,−
0.695,−

0.668;1.332,1.734,2.453)
(−

1.388,−
1.263,−

0.997;1.228,1.553,2.220)
t1

=
0.01,t2

=
0.01

(−
0.452,−

0.392,−
0.362;1.620,1.870,2.456)

(−
0.492,−

0.440,−
0.415;1.352,1.612,2.853)

(−
0.574,−

0.520,−
0.492;1.231,1.867,2.456)

(−
0.713,−

0.665,−
0.641;1.240,1.645,2.347)

(−
1.310,−

1.216,−
0.958;1.223,1.529,2.049)

t1
=

0.5,t2
=

0.5
(−

0.751,−
0.640,−

0.581;0.771,0.977,1.423)
(−

0.821,−
0.692,−

0.619;0.760,0.966,1.281)
(−

0.863,−
0.725,−

0.634;0.753,0.9358,1.304)
(−

0.944,−
0.753,−

0.654;0.710,0.892,1.238)
(−

1.008,−
0.792,−

0.683;0.707,0.853,1.111)
t1

=
0.9,t2

=
0.9

(−
0.750,−

0.624,−
0.541;0.498,0.625,0.880)

(−
0.733,−

0.622,−
0.541;0.516,0.630,0.854)

(−
0.776,−

0.625,−
0.543;0.545,0.643,0.884)

(−
0.833,−

0.657,−
0.550;0.539,0.654,0.867)

(−
0.829,−

0.648,−
0.552;0.554,0.669,0.842)

Table
3.2:T

(S
II)

P
N

distribution
for

the
Sub-M

odelII
Sam

ple
size

(0.5%
,2.5%

,5%
;95%

,97.5%
,99.5%

)
n
=

20
n
=

30
n
=

50
n
=

100
n
=

500

T
(S

II)
P

N

t1
=
−

0.9,t2
=
−

0.9
(−

17.388,−
8.192,−

5.956;5.168,7.046,13.129)
(−

13.272,−
6.980,−

5.286;4.862,5.972,10.505)
(−

9.952,−
6.382,−

5.020;4.653,5.737,7.871)
(−

7.590,−
5.342,−

4.345;4.612,5.568,7.522)
(−

6.667,−
4.788,−

3.7800;5.200,5.930,7.723)
t1

=
−

0.01,t2
=
−

0.01
(−

2.306,−
1.700,−

1.557;1.347,1.608,2.216)
(−

2.222,−
1.803,−

1.507;1.303,1.587,2.116)
(−

2.241,−
1.726,−

1.393;1.264,1.517,2.023)
(−

2.174,−
1.679,−

1.441;1.341,1.624,2.230)
(−

2.203,−
1.690,−

1.390;1.362,1.588,2.173)
t1

=
0.01,t2

=
0.01

(−
2.301,−

1.740,−
1.432;1.203,1.549,2.007)

(−
2.215,−

1.802,−
1.440;1.297,1.558,1.965)

(−
2.176,−

1.733,−
1.480;1.259,1.568,2.123)

(−
2.261,−

1.680,−
1.434;1.383,1.618,2.136)

(−
2.219,−

1.727,−
1.436;1.363,1.624,2.065)

t1
=

0.9,t2
=

0.9
(−

0.927,−
0.737,−

0.647;0.580,0.750,1.014)
(−

0.913,−
0.755,−

0.657;0.572,0.714,0.986)
(−

0.950,−
0.784,−

0.669;0.590,0.723,0.981)
(−

0.980,−
0.825,−

0.701;0.594,0.748,1.012)
(−

1.033,−
0.853,−

0.730;0.549,0.672,0.906)

Table
3.3:T

(S
I)

SP
N

distribution
for

the
Sub-M

odelI
Sam

ple
size

(0.5%
,2.5%

,5%
;95%

,97.5%
,99.5%

)
n
=

20
n
=

30
n
=

50
n
=

100
n
=

500
T
(S

I)
SP

N
(0.380,0.450,0.528;2.647,2.987,3.005)

(0.337,0.489,0.586;2.656,3.012,3.622)
(0.401,0.511,0.593;2.623,2.863,3.567)

(0.423,0.574,0.643;2.679,3.013,3.591)
(0.410,0.550,0.634;2.558,2.860,3.279)

Table
3.4:T

(S
II)

SP
N

distribution
for

the
Sub-M

odelII
Sam

ple
size

(0.5%
,2.5%

,5%
;95%

,97.5%
,99.5%

)
n
=

20
n
=

30
n
=

50
n
=

100
n
=

500
T
(S

II)
SP

N
(0.367,0.676,0.830;6.868,9.190,24.875)

(0.422,0.651,0.771;6.121,7.016,11.323)
(0.394,0.620,0.783;5.559,6.506,9.039)

(0.423,0.638,0.793;5.208,6.221,7.612)
(0.487,0.701,0.850;5.113,5.588,6.720)
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Table
3.5:Exam

ple
1

Sam
ple

size
(0.5%

,2.5%
,5%

;95%
,97.5%

,99.5%
)

n
=

20
n
=

30
n
=

50
n
=

100

T
P

,n,w

FullM
odel

(7.085,8.664,9.632;30.382,33.138,38.773)
(5.117,5.793,6.190;15.599,16.820,20.041)

(2.666,3.002,3.230;6.908,7.490,8.600)
(0.885,0.960,1.005;1.635,1.720,1.911)

Sub
M

odelI
(10.808,12.772,13.980;40.614,42.949,49,598)

(6.560,7.770,8.455;21.579,23.463,28.388)
(3.535,4.008,4.346;8.914,9.507,10.722)

(0.958,1.07,1.126;2.093,2.217,2.513)
Sub

M
odelII

(21.270,29.847,35.064;147.186,164.792,197.586)
(16.463,21.968,24.682;78.691,86.521,103.263)

(12.906,15.543,16.812;33.672,36.303,41.303)
(3.191,3.582,3.951;7.981,8.418,9.304)

Table
3.6:Exam

ple
2

Sam
ple

size
(0.5%

,2.5%
,5%

;95%
,97.5%

,99.5%
)

n
=

20
n
=

30
n
=

50
n
=

100

T
P

,n,w

FullM
odel

(24.003,29.695,32.916;109.461,120.825,143.666)
(18.688,21.358,23.045;56.043,60.840,72.928)

(9.814,11.380,12.424;18.230,27.670,33.967)
(3.340,3.758,3.964;6.958,7.362,8.115)

Sub
M

odelI
(35.178,41.764,46.663;153.635,166.724,205.881)

(21.543,26.233,28.611;81.378,90.566,111.364)
(12.925,14.971,16.330;36.434,39.121,44.605)

(3.735,4.290,4.546;9.0899.648,11.126)
Sub

M
odelII

(83.950,120.662,150.705;750.712,854.663,1027.723)
(66.689,94.637,108.678;398.689,440.015,540.523)

(51.414,64.302,72.087;169.210,184.953,213.675)
(13.119,15.157,16.856;38.858,41.334,46.675)

Table
3.7:T

(.)
P

,n,w
Sam

ple
size

(0.5%
,2.5%

,5%
;95%

,97.5%
,99.5%

)
n
=

20
n
=

30
n
=

50
n
=

100

T
P

,n,w

(a1
=
−

0.9,a1
=
−

0.9)
(30.918,43.773,54.367;455.914,527.123,1023.235)

(25.182,33.193,38.630;204.290,414.503)
(13.956,17.766,20.112;85.184,103.305,140.462)

(4.543,5.389,5.885;18.364,22.210,29.855)
(a1

=
−

0.01,a1
=
−

0.01)
(12.663,18.047,19.808;69.013,77.235,97.099)

(9.193,11.206,12.488;36.494,39.859,47.084)
(4.981,5.839,6.373;15.345,16.561,19.420)

(1.774,1.951,2.060;3.755,3.994,4.461)
(a1

=
0.01,a1

=
0.01)

(10.923,13.726,15.786;54.873,61.512,75.468)
(7.864,9.473,10.465;29.302,31.877,37.684)

(4.216,4.899,5.315;12.289,13.215,15.395)
(1.506,1.645,1.734;3.037,3.213,3.570)

(a1
=

0.5,a1
=

0.5)
(8.400,10.410,11.925;40.708,45.527,54.879)

(5.935,7.091,7.752;20.261,21.926,25.859)
(3.122,3.598,3.884;8.470,9.118,10.522)

(1.120,1.213,1.271;2.100,2.210,2.445)
(a1

=
3,a1

=
5)

(3.066,3.557,3.851;10.352,11.398,13.679)
(3.032,3.353,3.566;6.451,6.745,7.330)

(1.480,1.618,1.677;2.695,2.832,3.089)
(0.235,0.259,0.365;0.533,0.551,0.584)

(a1
=
−

0.9,a1
=

5)
(16.295,26.760,36.107;235.847,262.617,326.237)

(14.523,22.047,27.541;124.208,137.808,165.083)
(0.213,12.853,15.190;52.653,57.075,67.911)

(8.825,0.945,1.028;8.050,9.502,12.366)

Table
3.8:D

istribution
ofthe

F
I
(.)
n

Sam
ple

size
(0.5%

,2.5%
,5%

;95%
,97.5%

,99.5%
)

n
=

20
n
=

30
n
=

50
n
=

100
n
=

500

F
I
(.)
n

FullM
odel

(−
7.818,−

5.701,−
4.665;5.033,6.900,11.231)

(−
7.760,−

5.762,−
4.698;5.084,6.703,10.598)

(−
7.166,−

5.530,−
4.748;5.034,6.544,9.666)

(−
7.167,−

5.530,−
4.748;5.034,6.544,9.666)

(−
6.897,−

5.676,−
4.841;5.047,6.063,8.20)

Sub
M

odelI
(−

9.537,−
7.749,−

6.766;9.093,11.852,17.648)
(−

9.947,−
8.140,−

7.131;8.825,11.500,15.842)
(−

10.477,−
8.560,−

7.505;8.725,10.887,15.936)
(−

11.018,−
8.610,−

7.507;9.203,11.223,15.689)
(−

11.759,−
9.034,−

7.802;8.365,10.293,13.741)
Sub

M
odelII

(−
15.205,−

12.628,−
11.181;13.710,18.740,29.800)

(−
15.917,−

13.277,−
11.695;13.924,17.255,28.748)

(−
17.191,−

14.088,−
12.162;13.748,17.947,27.665)

(−
18.434,−

15.108,−
13.076;12.997,15.976,21.976)

(−
20.647,−

16.782,−
14.478;11.629,14.497,21.093)
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Figure 3.5: Example 2
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On pseudo-Poisson goodness-of-fit tests
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Figure 3.7: T(SI)
P,n,w
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3.4 Examples

Test based on moments

In the current section, we will analyze the non-consistent test defined in Section 3.3.1.

The finite sample distribution of the FI(.)n , see Table 3.8 and Figure 3.9 for the distri-

bution and its quantile values for the full and its sub-models. The simulation study

clearly shows that the distribution of test statistics is shown to be standard normal be-

havior for increasing sample size. In addition, we note that for small and moderately

large sample sizes, the test is conducted to be stable and consistent.
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Figure 3.9: Distribution of the FI(.)n

GoF test free from alternative

The Chi-square GoF test statistic sample distribution for the full and its sub-models,

see Figure 3.10. However, in the case when alternative just the negotiation of the null

hypothesis distribution information, the Chi-square GoF test is recommended; other-

wise, other tests which are mentioned perform better than the Chi-square. Also, the

Chi-square test depends on the value of k chosen. For illustration, we have considered

K = 4 and analyzed its finite and large sample distributions.
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67



On pseudo-Poisson goodness-of-fit tests

Power analysis

In the present section, we will be considering classical bivariate Poisson and bivariate

Conway-Maxwell Poisson distributions as alternatives to analyze the power of each of

the tests discussed above.

Hence, we simulate n = 20, 30, 50, 100, 500 samples from Zi ∼ Poisson(θi), i = 1, 2, 3

and taking U = Z1 + Z3 and V = Z2 + Z3 the resultant joint random variable (U, V)

will be n observations from the classical bivariate Poisson distribution. Nevertheless, to

simulate n = 20, 30, 50, 100, 500 samples from the bivariate Conway-Maxwell Poisson,

we begin with simulating an observation from the univariate Conway-Maxwell Pois-

son with parameter θ and ν, say N. Further, simulate N observations from the bivari-

ate binomial distribution with specified cell probabilities, say (W1i, W2i), i = 1, 2, ..., N.

Then, the random vector (∑N
i=1 W1i, ∑N

i=1 W2i) will be an observation from the bivari-

ate Conway-Maxwell Poisson distribution. For the desired sample size, repeat the

above procedure for n times to have a specified sample size from the bivariate Conway-

Maxwell Poisson distribution. We refer to Sellers et al. [33] for further discussion and

an algorithm to simulate from the bivariate Conway-Maxwell Poisson using R soft-

ware.

The empirical power computation is as follows

Step 1 Compute GoF test statistic value for the samples from alternative distribution,

say Tobs.

Step 2 For the given bootstrapping size (sayB = 5000), compute Tb
A for b ∈ {1, 2, ..., B}.

Step 3 Hence, 1
B{Total no. of Tb

m,obs greater than Tobs} is an empirical power of the test.

We refer to Table 3.9 for the each of the tests empirical powers.
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3.4 Examples

Table 3.9: Power (% of observations) under classical bivariate Poisson (BCBP((θ1 = 1,

θ2 = 3, θ3 = 4))) and bivariate Con-Max Poisson (BCMP(θ = 1, ν = 5, µ1 = 0.1,

oratio = exp(1.5))) alternatives
Sample size

n = 20 n = 30 n = 50 n = 100 n = 500

T(SII)
PN

t1 = −0.9, t2 = −0.9 (17.2, 8.8) (21.6, 4.2) (22.6, 2.6) (59.2, 0.03) (90.4, 0.01)

t1 = −0.5, t2 = −0.5 (0.92, 82.4) (0.89, 84.0) (0.91, 92.4) (0.93, 0.95.8) (0.99, 0.97)

t1 = −0.01, t2 = −0.01 (0.99, 0.91) (0.97, 0.93) (0.99, 0.99) (0.99, 0.97) (0.99, 0.99)

t1 = 0.01, t2 = 0.01 (0.99, 0.99) (0.99, 0.98) (0.98, 0.97) (0.99, 0.99) (0.99, 0.98)

t1 = 0.5, t2 = 0.5 (0.99, 0.99) (0.91, 0.99) (0.92, 0.99) (0.89, 0.99) (0.81, 0.99)

t1 = 0.9, t2 = 0.9 (0.98, 0.99) (0.92, 0.93) (0.94, 0.96) (0.99, 0.99) (0.99, 0.99)

T(SII)
SPN — (0.95, 0.92) (0.99, 0.91) (0.95, 0.98) (0.99, 0.99) (0.99, 0.97)

T(.)
P,n,w

a1 = −0.9, a2 = −0.9 (35.2, 67.8) (56.9, 82.7) (59.9, 12.6) (35.0, 9.2) −−

a1 = −0.01, a2 = −0.01 (6.0, 85.4) (72.5, 27.4) (24.5, 15.2) (10.1, 50.3) −−

a1 = 0.01, a2 = 0.01 (79.5, 2.6) (20.3, 16.0) (36.3, 34.2) (6.1, 59.8) −−

a1 = 0.5, a2 = 0.5 (19.2, 37.3) (4.5, 27.0) (26.1, 85.4) (2.1, 55.5) −−

a1 = 3, a2 = 5 (35.0, 74.0) (72.7, 19.0) (5.5, 25.5) (1.2, 10.0) −−

a1 = −0.9, a2 = 5 (12.0, 91.0) (10.8, 72.0) (4.7, 92.8) (0.1, 43.6) −−

T(SI)
P,n,w

a1 = −0.9, a2 = −0.9 (79.3, 96.5) (12.3, 95.0) (11.2, 21.8) (13.4, 34.6) −−

a1 = −0.01, a2 = −0.01 (73.5, 20.4) (16.9, 9.5) (0.9, 87.0) (0.1, 13.2) −−

a1 = 0.01, a2 = 0.01 (22.4, 3.8) (15.9, 96.4) (2.2, 93.8) (13.8, 17.4) −−

a1 = 0.5, a2 = 0.5 (43.2, 87.1) (27.5, 4.8) (21.3, 80.2) (1.1, 69.4) −−

a1 = 3, a2 = 5 (40.8, 43.2) (36.0, 94.7) (2.1, 75.8) (1.3, 10.2) −−

a1 = −0.9, a2 = 5 (54.4, 87.2) (62.7, 72.0) (4.7, 36.8) (0.1, 24.4) −−

T(SII)
P,n,w

a1 = −0.9, a2 = −0.9 (7.1, 12.9) (41.9, 99.9) (7.7, 26.2) (60.71, 64.2) −−

a1 = −0.01, a2 = −0.01 (71.4, 74.7) (9.6, 56.6) (2.9, 31.6) (0.2, 36.5) −−

a1 = 0.01, a2 = 0.01 (8.1, 36.1) (2.5, 54.4) (7.5, 67.1) (0.1, 37.3) −−

a1 = 0.5, a2 = 0.5 (38.9, 18.9) (18.2, 99.6) (5.4, 78.7) (0.4, 96.2) −−

a1 = 3, a2 = 5 (2.6, 70.0) (2.5, 1.8) (0.1, 82.3) (0.0, 6.0) −−

a1 = −0.9, a2 = 5 (50.6, 70.6) (55.0, 36.4) (4.4, 84.4) (0.0, 13.2) −−

FI(.)n — (58.4, 34.6) (46.1, 86.7) (56.0, 22.9) (11.8, 42.4) (63.5, 20.8)

FI(SI)
n — (76.9, 13.5) (6.3, 90.6) (83.0, 40.6) (41.7, 30.9) (88.1, 73.8)

FI(SII)
n — (69.9, 94.4) (86.4, 70.2) (95.0, 26.6) (91.0, 46.7) (100, 33.8)
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On pseudo-Poisson goodness-of-fit tests

According to the power analysis, all tests are effective or significant in identifying

the pseudo-Poisson and Conway-Maxwell Poisson distributions. When compared to

the classical bivariate Poisson, tests are moderately consistent in detecting the true pop-

ulation. We conclude that one needs to think about altering the parameter values and

conducting additional research on the same better to grasp the power of the classical

bivariate Poisson alternative.

3.4.2 Real-life data

In the following section, we consider two data sets which are mentioned in Karlis

and Tsiamyrtzis [21], Islam and Chowdhury [19], Leiter and Hamdani [24] and also

in Arnold and Manjunath [4]. For empirical p-value computation, we have simulated

5000 observations from the pseudo-Poisson models with respective maximum likeli-

hood values and compared them with the critical value of each test.

3.4.3 A particular data set I

We consider a data sets which is mentioned in Islam and Chowdhury [19] and also

in Arnold and Manjunath [4]; the source of the data is from the tenth wave of the

Health and Retirement Study (HRS). The data represents the number of conditions

that one ever had (X) as mentioned by the doctors and, let (Y) denote the utilization of

healthcare services (say, hospital, nursing home, doctor and home care). The Pearson

correlation coefficient between X and Y is 0.063. The test for independence, classical

inference (m.l.e and moment estimates), and AIC values for full model and its sub-

models c.f. Arnold and Manjunath [4] page 16 and 18 (Table 10).

In the following, we will consider the full model and its sub-model II. The criteria

for selecting below two models are discussed in Arnold, and Manjunath [4] on page 18

and Table 10. We refer to Table 3.10 for the critical values and its empirical p-values for

the full model and sub-model II.
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3.4 Examples

Table 3.10: Health and retirement study data (Full Model) and m.l.e. estimates Full

model (λ̂1 = 2.643,λ̂2 = 0.688,λ̂3 = 0.031) for Sub-Model II (λ̂3 = 0.031)

n = 5567

Test statistic value p-value

T(SII)
PN

t1 = −0.9, t2 = −0.9 151.734 0.025

t1 = −0.5, t2 = −0.5 −2870.383 0.891

t1 = −0.01, t2 = −0.01 755.821 0.901

t1 = 0.01, t2 = 0.01 803.119 0.921

t1 = 0.5, t2 = 0.5 1713.7 0.141

t1 = 0.9, t2 = 0.9 3710.615 0.164

T(SII)
SPN — 12.740 0.097

T(.)
PN

a1 = −0.9, a2 = −0.9 578.674 0.01

a1 = −0.5, a2 = −0.55 117.940 0.99

a1 = −0.01, a2 = −0.01 64.179 0.8

a1 = 1, a2 = 1 67.564 0.09

a1 = 3, a2 = 5 21.739 0.12

a1 = −0.9, a2 = 5 23.830 0.02

T(SII)
PN

a1 = −0.9, a2 = −0.9 659.816 0.99

a1 = 1, a2 = 1 71.881 0.07

a1 = −0.9, a2 = 5 24.465 0.02

FI(.)n — −13.532 0.987

FI(SII)
n — −25.729 0.991

Chi-square (.) — 417.653 −−
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On pseudo-Poisson goodness-of-fit tests

The tests T(SII)
PN on neighbourhood of 0, T(SII)SPN, T(.)

PN (large than −0.9), FI(.)n and

FI(SII)
n are suggests that the Health and Retirement data fits bivariate pseudo-Poisson

Full model and its Sub-Model II, which agree with the AIC values listed on pages 16 &

18 of Arnold and Manjunath’s [4].

3.4.4 A particular data set II

Now, we consider a data set which is in Leiter and Hamdani [24]; the source of the

data is a 50-mile stretch of Interstate 95 in Prince William, Stafford, and Spotsylvania

counties in Eastern Virginia. The data represents the number of accidents categorized

as fatal accidents, injury accidents, or property damage accidents (X), along with the

corresponding number of fatalities and injuries (Y) for the period 1 January 1969 to 31

October 1970. For classical inference (m.l.e and moment estimates) and AIC values for

full model and its sub-models c.f. Arnold and Manjunath [4] page 17 and 19 (Table 11).

The criteria for selecting below two models are discussed in Arnold, and Manjunath

[4] on page 19 and Table 11. It has been emphasized in Leiter and Hamdani [24] and

Arnold and Manjunath [4] that mirrored sub-model II fits the data better than any other

sub-models.

In the following, we will consider the two models. We refer to Table 3.11 for the

critical values and its empirical p-values for the full model and Mirrored sub-model II.
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3.4 Examples

Table 3.11: Accidents and fatalities (Full Model) and m.l.e. estimates Full model (λ̂1 =

0.058,λ̂2 = 0.812,λ̂3 = 0.867) and for mirrored Sub-Model II (λ̂1 = 0.862,λ̂3 = 0.067)

n = 639

Test statistic value p-value

Mirrored T(SII)
PN

t1 = −0.9, t2 = −0.9 165.966 0.054

t1 = −0.5, t2 = −0.5 −359.286 0.932

t1 = −0.01, t2 = −0.01 −135.242 0.914

t1 = 0.01, t2 = 0.01 −133.630 0.899

t1 = 0.5, t2 = 0.5 −126.924 0.763

t1 = 0.9, t2 = 0.9 −220.890 0.558

Mirrored T(SII)
SPN — 4.237 0.544

T(.)
PN

a1 = −0.9, a2 = −0.9 1057.191 0.99

a1 = −0.5, a2 = −0.55 100.903 0.98

a1 = −0.01, a2 = −0.01 24.906 0.87

a1 = 1, a2 = 1 3.786 0.91

a1 = 3, a2 = 5 1.178 0.01

a1 = −0.9, a2 = 5 152.5798 0.007

Mirrored T(SII)
PN

a1 = −0.9, a2 = −0.9 78.337 0.40

a1 = 1, a2 = 1 4.049 0.91

a1 = −0.9, a2 = 5 1.438 0.20

FI(.)n — 2.289 0.986

Mirrored FI(SII)
n — 3.443 0.3

Chi-square (.) — 586 −−
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On pseudo-Poisson goodness-of-fit tests

The tests T(SII)
PN on a neighborhood of 0, T(SII)

SPN , T(.)
PN (large than−0.9), FI()n and FI(SII)

n

suggests that the Accidents and Fatalities data fits well the bivariate pseudo-Poisson

Full model and its mirrored Sub-Model II, which is in line with the AIC values listed

on pages 16 & 18 of Arnold and Manjunath’s [4]. A detailed discussion of the analysis

is discussed in the conclusion chapter.
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C H A P T E R 4

Bayesian Inference for

pseudo-Exponential data

4.1 Introduction

Bivariate conditionally specified models frequently offer valuable, adaptable models

with a range of dependence patterns. In such cases, consideration should be given to

what is recognized as pseudo-exponential models (According to Filus and Filus [12]-

[14]). According to Cacoullos [7], the distributions with multiple parameters of the

exponential family are characterized to obtain prior knowledge about the posterior

densities. We create conjugate priors for discrete exponential families examined for

the count data model in J. P. Chour [10]. The bivariate pseudo-exponential approaches

have exponential first marginal and exponential conditional distributions for the sec-

ond variable. We start by reviewing the pseudo-exponential development, focusing

on a few simplified sub-models. The Bayesian inference for such sub-models is again

explained in detail. For traditional inference issues and an illustration of uses of the

bivariate pseudo-exponential distribution, we refer to Arnold and Arvanitis [2], and

also we refer Arnold et al. [1].
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Bayesian Inference for pseudo-Exponential data

4.2 The Bivariate Pseudo-Exponential Distributions

Let X and Y be a random variable with X > 0 and Y > 0 that could be used as a model

for the lifespans of connected system components. Inside one method, the joint density

is specified as a specific non-negative function on (0, ∞)× (0, ∞) that integrates to 1. In

contrast, Filus and Filus[13] suggest using one marginal distribution (let’s say X) and

the family of conditional densities of the other variable (Y) given X=x, for every x, in

various articles, such as Filus and Filus[12]. Therefore, the joint density of (X, Y) will

have the following form, if h(x) denotes the density of X for each x, and gx(y) indicates

the conditional density of Y given that X=x, then

fX,Y(x, y) = h(x)gx(y)I(x > 0, y > 0). (4.2.1)

In general, the Pseudo-exponential distributions (inside the context of Filus and Filus)

the equivalent to the case where h and gx’s have exponential densities. As a result, the

joint density of a bivariate pseudo-Exponential distribution is one where

X ∼ Exp(θ1), (4.2.2)

and for each x > 0,

Y|X = x ∼ Exp(θ(x)), (4.2.3)

where θ1 > 0 and θ(x) > 0 ∀ x. Except for measurability, there are no constraints on

the structure of the function θ(x). The corresponding joint density is given by

fX,Y(x, y) = θ1e−θ1xθ(x)e−θ(x)y I(x > 0, y > 0). (4.2.4)

where the positive function θ(x) is quite arbitrary. Suppose that θ(x) = θ2 + θ3x, then

the corresponding joint p.d.f. is given by

fX,Y(x, y) = θ1e−θ1x(θ2 + θ3x)e−(θ2+θ3x)y I(x > 0, y > 0). (4.2.5)
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4.2 The Bivariate Pseudo-Exponential Distributions

where θi > 0, i=1,2,3.

4.2.1 Notes on priors for Pseudo-Exponential data

The joint density function for a bivariate Pseudo-Exponential distribution is of the form

equation (4.2.5).

Consequently, the likelihood function for a sample of size n from this distribution is

given by

L(θ1, θ2, θ3|x, y) = θn
1 e−θ1 ∑n

i=1 xi(
n

∏
i=1

(θ2 + θ3xi))e−θ2 ∑n
i=1 yi−θ3 ∑n

i=1 xiyi (4.2.6)

Note that this likelihood factors as follows:

L(θ1, θ2, θ3|x, y) =
{

θn
1 e−θ1 ∑n

i=1 xi
}{

(
n

∏
i=1

(θ2 + θ3xi))e−θ2 ∑n
i=1 yi−θ3 ∑n

i=1 xiyi
}

(4.2.7)

In the first factor only involves the parameter θ1, while the second factor involves the

parameters θ2 and θ3. We will call θ1 the marginal parameter, and θ2 and θ3 will be

called conditional parameters. This factorization will prove to be important in Bayesian

inference for this model, as discuss below. Because of the factorization we will know

that if a priori θ̃1 and (θ̃2, θ̃3) are independent, then they will be independent posteriori

also.

Now, to the Pseudo-Exponential distribution defined in equation (4.2.5), it is simply

assume a gamma prior for the marginal parameter θ̃1. i.e., a priori we assume that

θ̃1 ∼ Γ(α1, β1), (4.2.8)

where 0 < α1 < ∞ and 0 < β1 < ∞.

Therefore, the priori density for θ̃1 is of the form

fθ̃1
(θ1) =

βα1
1 θα1−1

1 e−β1θ1

Γ(α1)
; 0 < θ1 < ∞.
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Bayesian Inference for pseudo-Exponential data

The choice of an a priori joint density of (θ̃2, θ̃3) that will be independent of θ̃1 is not so

obvious. It is clear whether it is possible to choose such a prior that will be ”Conjugate”

with the second factor in equation (4.2.7). The joint posterior of (θ̃2, θ̃3) will need to be

dealt with numerically.

4.3 Independent priors

Consider an a priori joint density in which all three parameters are independent, and

each has a gamma distribution. Thus we have

fθ̃1,θ̃2,θ̃3
(θ1, θ2, θ3) =

3

∏
i=1

β
αi
i θ

αi−1
i e−βiθi

Γ(αi)
(4.3.1)

where 0 < θi, αi, βi < ∞, for i=1,2,3.

The kernel of the posterior which is the product of the kernel of the factored likelihood

(4.2.7) and the kernel of the prior (4.3.1) is of the form

ker( fθ̃1,θ̃2,θ̃3|X,Y(θ1, θ2, θ3|x, y)) =
{

θα1+n−1
1 e−θ1(β1+∑n

i=1 xi)
}

∗
{
(

n

∏
i=1

(θ2 + θ3xi))θ
α2−1
2 θα3−1

3 e−θ2(β2+∑n
i=1 yi)

∗ e−θ3(β3+∑n
i=1 xiyi)

} (4.3.2)

From the first factor in equation (4.3.2) we recognise that a posteriori θ̃1 has a gamma

distribution, i.e.,

θ̃1|X = x, Y = y ∼ Γ(α1 + n, β1 +
n

∑
i=1

xi) (4.3.3)

The second factor is the kernel of the posterior density of (θ̃2, θ̃3). It will need to be

dealt with numerically.

78



4.3 Independent priors

4.3.1 Sub-Model-I(θ2 = θ3):

We first focus on the the sub-model of equation (4.2.5) obtained by equating θ2 and θ3.

The model is given by

fX,Y(x, y) = θ1e−θ1xθ3(1 + x)e−θ3(1+x)y I(x > 0, y > 0). (4.3.4)

The likelihood function for a sample of size n from this distribution is

L(θ1, θ3|x, y) = θn
1 e−θ1 ∑n

i=1 xi θn
3 (

n

∏
i=1

(1 + xi))e−θ3(∑n
i=1 yi+∑n

i=1 xiyi)

The likelihood factors as follows:

L(θ1, θ3|x, y) =
{

θn
1 e−θ1 ∑n

i=1 xi
}{

θn
3 (

n

∏
i=1

(1 + xi))e−θ3(∑n
i=1 yi+∑n

i=1 xiyi)
}

(4.3.5)

For such a conjugate joint prior density for two parameters in the model, we can take

one with independent gamma marginals. Thus

fθ̃1,θ̃3
(θ1, θ3) =

βα1
1 θα1−1

1 e−β1θ1

Γ(α1)
.
βα3

3 θα3−1
3 e−β3θ3

Γ(α3)
(4.3.6)

The kernel of the posterior density, which is the product of the kernel of the likelihood

factors (4.3.5) and the kernel of the joint prior (4.3.6) is of the form

Ker( fθ̃1,θ̃3|X,Y(θ1, θ3|x, y)) =
{

θα1+n−1
1 e−θ1(β1+∑n

i=1 xi)
}

∗
{

θα3+n−1
3 e−θ3(β3+∑n

i=1 yi+∑n
i=1 xiyi)

} (4.3.7)

A posteriori the two parameters have independent gamma distributions. Thus

θ̃1|X = x, Y = y ∼ Γ(α1 + n, β1 +
n

∑
i=1

xi), (4.3.8)

and, independently,
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Bayesian Inference for pseudo-Exponential data

θ̃3|X = x, Y = y ∼ Γ(α3 + n, β3 +
n

∑
i=1

yi +
n

∑
i=1

xiyi). (4.3.9)

The squared error loss estimates of the parameters (the posterior means) are thus,

θ̂1
(B)

=
α1 + n

β1 + ∑n
i=1 xi

and

θ̂3
(B)

=
α3 + n

β3 + ∑n
i=1 yi + ∑n

i=1 xiyi

If we choose to an improper prior with α1 = α3 = β1 = β3 = 0, then the resulting Bayes

estimates coincide with the corresponding maximum likelihood estimates(M.L.E’s).

Figure 4.1: Density plot of independent gamma prior with hyper-parameter values are
α1 = 2, α3 = 4, β1 = 2, β3 = 3 and parameter values θ1 = 2, θ3 = 5 with sample of size
30 of the sub-model-I.
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4.3 Independent priors

Figure 4.2: Density plot of posterior (independent gamma prior) with hyper-parameter
values are α1 = 2, α3 = 4, β1 = 2, β3 = 3 and parameter values θ1 = 2, θ3 = 5 with
sample of size 30 of the sub-model-I.

4.3.2 Sub-Model-II(θ2 = 0):

Consider the sub-model-II obtained by setting θ2 = 0. The model is thus of the form

fX,Y(x, y) = θ1e−θ1xθ3xe−θ3xy I(x > 0, y > 0). (4.3.10)

The likelihood function for a sample of size n from this distribution is

L(θ1, θ3|x, y) = θn
1 e−θ1 ∑n

i=1 xi θn
3 (

n

∏
i=1

xi)e−θ3 ∑n
i=1 xiyi

The likelihood factors as follows:

L(θ1, θ3|x, y) =
{

θn
1 e−θ1 ∑n

i=1 xi
}{

θn
3 (

n

∏
i=1

xi)e−θ3 ∑n
i=1 xiyi

}
(4.3.11)

If we use a prior with independent gamma marginals such as

fθ̃1,θ̃3
(θ1, θ3) =

βα1
1 θα1−1

1 e−β1θ1

Γ(α1)
.
βα3

3 θα3−1
3 e−β3θ3

Γ(α3)
(4.3.12)
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The kernel of the posterior density, which is the product of the kernel of the likelihood

factors (4.3.11) and the kernel of the joint prior (4.3.12) is given by

Ker( fθ̃1,θ̃3|X,Y(θ1, θ3|x, y)) =
{

θα1+n−1
1 e−θ1(β1+∑n

i=1 xi)
}

∗
{

θα3+n−1
3 e−θ3(β3+∑n

i=1 xiyi)
} (4.3.13)

A posteriori the two parameters have independent gamma distributions. Thus

θ̃1|X = x, Y = y ∼ Γ(α1 + n, β1 +
n

∑
i=1

xi), (4.3.14)

and, independently,

θ̃3|X = x, Y = y ∼ Γ(α3 + n, β3 +
n

∑
i=1

xiyi). (4.3.15)

The squared error loss estimates of the parameters (the posterior means) are thus,

θ̂1
(B)

=
α1 + n

β1 + ∑n
i=1 xi

and

θ̂3
(B)

=
α3 + n

β3 + ∑n
i=1 xiyi

If we choose to an improper prior with α1 = α3 = β1 = β3 = 0, then the resulting Bayes

estimates coincide with the corresponding maximum likelihood estimates(M.L.E’s).
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4.4 Pseudo-Gamma priors:-

Figure 4.3: Density plot of posterior (independent gamma prior) with hyper-parameter
values are α1 = 2, α3 = 4, β1 = 2, β3 = 3 and parameter values θ1 = 2, θ3 = 5 with
sample of size 30 of the sub-model-II.

4.4 Pseudo-Gamma priors:-

In the following sections we will be discussing bivariate pseudo-gamma priors and

their applications in more details for each of the sub-model I & II.

4.4.1 Sub-Model-I(θ2 = θ3):

Consider the sub-model, specified in equation (4.3.1), the likelihood function for a sam-

ple of size n from this distribution is given by

L(θ1, θ3|x, y) = θn
1 e−θ1 ∑n

i=1 xi θn
3 (

n

∏
i=1

(1 + xi))e−θ3(∑n
i=1 yi+∑n

i=1 xiyi) (4.4.1)

This time we will consider a joint prior that is of the bivariate pseudo-gamma form.

For it we assume that θ3 has a Γ(τ1, ψ1) density, i.e.,

f (θ3) ∝ θτ1−1
3 e−θ3ψ1 I(θ3 > 0), 0 < τ1, ψ1 < ∞.
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and then for each value of θ3, the conditional density θ1 given θ3 is assumed to be of

the gamma form with an intensity parameter that is a linear function of θ3. Thus

f (θ1|θ3) ∝ (ψ2 + ψ3θ3)
τ2θτ2−1

1 e−(ψ2+ψ3θ3)θ1 I(θ1 > 0).

where 0 < τ2, ψ3 < ∞ and 0 ≤ ψ2 < ∞.

The joint prior is thus of the form

f (θ1, θ3) ∝ (ψ2 + ψ3θ3)
τ2θτ2−1

1 e−(ψ2+ψ3θ3)θ1θτ1−1
3 e−θ3ψ1 I(θ1 > 0, θ3 > 0). (4.4.2)

Consider the simpler prior in which we assume that ψ2 = 0. This prior density will be

of the form

fp(θ1, θ3) ∝ θτ2−1
1 e−θ1θ3ψ3θτ1+τ2−1

3 e−ψ1θ3 I(θ1 > 0, θ3 > 0). (4.4.3)

The corresponding posterior density to a sample of size n from sub-model I will be

f (θ1, θ3|X = x, Y = y) ∝ (θn
1 e−θ1 ∑n

i=1 xi)(θn
3 e−θ3(∑n

i=1 yi+∑n
i=1 xiyi)

∗ (θτ2−1
1 e−θ1θ3ψ3θτ1+τ2−1

3 e−ψ1θ3)

∝ θτ2+n−1
1 e−θ1 ∑n

i=1 xi θτ1+τ2−1
3 e−θ3(ψ1+∑n

i=1 yi+∑n
i=1 xiyi)

∗ e−θ1θ3ψ3

∝ (θτ1+n−1
3 e−θ3(ψ1+∑n

i=1 yi+∑n
i=1 xiyi))

∗ (θτ2+n−1
1 e−θ1(∑n

i=1 xi+ψ3θ3))

(4.4.4)

The marginal posterior distributions of θ1 and θ3 are

f p
θ1
(θ1) ∝ [θτ2+n−1

1 e−θ1 ∑n
i=1 xi ].

Γ(τ1 + n)
(ψ1 + ∑n

i=1 yi + ∑n
i=1 xiyi + θ1ψ3)(τ1+n)

, (4.4.5)

and

f p
θ1
(θ1) ∝ [θτ1+n−1

3 e−θ3(ψ1+∑n
i=1 yi+∑n

i=1 xiyi)].
Γ(τ2 + n)

(∑n
i=1 xi + θ3ψ3)(τ2+n)

. (4.4.6)
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4.4 Pseudo-Gamma priors:-

For the plots of such prior and posterior densities, see Figures 4.4, 4.5, 4.6 (for priors)

and Figures 4.7, 4.8, 4.9 (for posteriors).

Figure 4.4: Density plot of pseudo-gamma prior with hyper-parameter values are τ1 =
2, τ2 = 4, ψ1 = 2, ψ2 = 1(small), ψ3 = 3 and parameter values θ1 = 2, θ3 = 5 with
sample of size 30 of the sub-model-I.
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Figure 4.5: Density plot of pseudo-gamma prior with hyper-parameter values are τ1 =
2, τ2 = 4, ψ1 = 2, ψ2 = 0(simple), ψ3 = 3 and parameter values θ1 = 2, θ3 = 5 with
sample of size 30 of the sub-model-I.

Figure 4.6: Density plot of pseudo-gamma prior with hyper-parameter values are τ1 =
2, τ2 = 4, ψ1 = 2, ψ2 = 7(large), ψ3 = 3 and parameter values θ1 = 2, θ3 = 5 with
sample of size 30 of the sub-model-I.
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4.4 Pseudo-Gamma priors:-

Figure 4.7: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 1(small), ψ3 = 3 and parameter values
θ1 = 2, θ3 = 5 with sample of size 30 of the sub-model-I.

Figure 4.8: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 0(simple), ψ3 = 3 and parameter values
θ1 = 2, θ3 = 5 with sample of size 30 of the sub-model-I.
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Figure 4.9: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 7(large), ψ3 = 3 and parameter values
θ1 = 2, θ3 = 5 with sample of size 30 of the sub-model-I.

4.4.2 Sub-Model-II (θ2 = 0):

Consider the sub-model obtained by setting θ2 = 0. The model is thus of the form

fX,Y(x, y) = θ1e−θ1xθ3xe−θ3xy I(x > 0, y > 0).

The likelihood function for a sample of size n from this distribution is given by

L(θ1, θ3|x, y) = θn
1 e−θ1 ∑n

i=1 xi θn
3 (

n

∏
i=1

xi)e−θ3 ∑n
i=1 xiyi

the kernel of the likelihood function is given by

L(θ1, θ3|x, y) ∝ θn
1 e−θ1 ∑n

i=1 xi θn
3 e−θ3 ∑n

i=1 xiyi (4.4.7)

Consider the simpler joint pseudo-gamma prior in which we assume that ψ2 = 0. This

joint prior density will be

fp(θ1, θ3) ∝ θτ2−1
1 e−θ1θ3ψ3θτ1+τ2−1

3 e−ψ1θ3 I(θ1 > 0, θ3 > 0). (4.4.8)
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4.4 Pseudo-Gamma priors:-

The posterior density will be

f (θ1, θ3|X = x, Y = y) ∝ (θn
1 e−θ1 ∑n

i=1 xi)(θn
3 e−θ3(∑n

i=1 xiyi)

∗ (θτ2−1
1 e−θ1θ3ψ3θτ1+τ2−1

3 e−ψ1θ3)

∝ θτ2+n−1
1 e−θ1 ∑n

i=1 xi θτ1+τ2−1
3 e−θ3(ψ1+∑n

i=1 xiyi)

∗ e−θ1θ3ψ3

∝ (θτ1+n−1
3 e−θ3(ψ1+∑n

i=1 xiyi))

∗ (θτ2+n−1
1 e−θ1(∑n

i=1 xi+ψ3θ3))

(4.4.9)

The marginal posterior distributions of θ1 and θ3 are

f p
θ1
(θ1) ∝ [θτ2+n−1

1 e−θ1 ∑n
i=1 xi ].

Γ(τ1 + n)
(ψ1 + ∑n

i=1 xiyi + θ1ψ3)(τ1+n)
, (4.4.10)

and

f p
θ1
(θ1) ∝ [θτ1+n−1

3 e−θ3(ψ1+∑n
i=1 xiyi)].

Γ(τ2 + n)
(∑n

i=1 xi + θ3ψ3)(τ2+n)
. (4.4.11)

Note that the mean and variance of the marginals need to be dealt with numerically.

Figure 4.10: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 1(small), ψ3 = 3 and parameter values θ1 =
2, θ3 = 5 with sample of size 30 of the sub-model-II.
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Figure 4.11: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 0(simple), ψ3 = 3 and parameter values θ1 =
2, θ3 = 5 with sample of size 30 of the sub-model-II.

Figure 4.12: Density plot of posterior (pseudo-gamma prior) with hyper-parameter
values are τ1 = 2, τ2 = 4, ψ1 = 2, ψ2 = 7(large), ψ3 = 3 and parameter values θ1 =
2, θ3 = 5 with sample of size 30 of the sub-model-II.
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4.5 Simulation study:

4.5 Simulation study:

Due to the general marginal and conditional composition of exponential distributions,

simulation can be performed in two steps: first, simulate x from exponential(θ1) and

then y from exponential(θ2 + θ3x). However, even with independent gamma priors,

inference for the posterior distribution is difficult for the full model. We must rely

on a numerical algorithm to compute marginal distributions and their moments. In

this paper, we will use the Hit-And-Run Metropolis (HARM) algorithm to simulate

posterior distributions from observations for all priors (improper, independent, and

pseudo) and for full and sub-models. For the (HARM) algorithm implementation and

comparison with Gibbs and Metropolis sampling, see Chen[9]. We refer to Hall[18] for

current Bayesian simulation algorithms using R software.

We have simulated 10,000 data sets using the HARM algorithm with thinning at 10th

sample from the posterior distributions of θ’s with varying sample sizes of n = 20, 30,

50, 100, 200, 500: Mean and posterior 95% confidence intervals are mentioned in Table

4.1 and 4.2 are computed from 10000 iterations of the preceding procedure.

Figure 4.13: Posterior density plot of θ1 (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters α1 = 2, α2 = 3, α3 = 4, β1 = 2, β2 = 1, β3 = 5
and parameter values θ1 = 2, θ2 = 1, θ3 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).
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Figure 4.14: Posterior density plot of θ2 (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters α1 = 2, α2 = 3, α3 = 4, β1 = 2, β2 = 1, β3 = 5
and parameter values θ1 = 2, θ2 = 1, θ3 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).

Figure 4.15: Posterior density plot of θ3 (independent gamma, improper and pseudo-
gamma priors) with hyper-parameters α1 = 2, α2 = 3, α3 = 4, β1 = 2, β2 = 1, β3 = 5
and parameter values θ1 = 2, θ2 = 1, θ3 = 3 with sample of size(n=10, 20, 30, 50, 100,
500).
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4.5
Sim

ulation
study:

Table 4.1: Simulation (Sub-model I)
Sample size (n), parameters (P), posterior mean by independent gamma prior (IGP(1)), posterior mean by improper
prior (ImP(2)), posterior mean by pseudo-gamma prior for ψ2 = 1 (PGP1(3)), posterior mean by pseudo-gamma prior
for ψ2 = 0 (PGP2(4)), posterior mean by pseudo-gamma prior for ψ2 = 7 (PGP3(5)), 95% confidence interval of IGP(1)
(CI(1)), 95% confidence interval of ImP(2) (CI(2)), 95% confidence interval of PGP1(3) (CI(3)), 95% confidence interval of
PGP2(4) (CI(4)), 95% confidence interval of PGP3(5) (CI(5))

n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

20 θ1 1.483 1.624 0.998 1.071 0.815 (0.924 2.141) (1.015 2.371) (0.504 1.550) (0.608 1.608) (0.516 1.172)
θ3 2.304 3.306 2.239 2.075 1.984 (1.350 3.291) (2.028 4.965) (1.257 9.249) (1.258 2.935) (1.259 2.936)

30 θ1 1.729 1.953 1.242 1.287 1.016 (1.152 2.365) (1.257 2.648) (0.836 1.707) (0.853 1.769) (0.702 1.401)
θ3 2.184 3.159 1.895 1.884 1.929 (1.486 3.041) (2.011 4.498) (1.282 2.643) (1.283 2.616) (1.319 2.625)

50 θ1 2.294 2.450 1.677 1.746 1.404 (1.723 2.926) (1.813 3.127) (1.240 2.179) (1.273 2.261) (0.984 1.808)
θ3 2.488 3.091 2.121 2.030 2.309 (1.845 3.193) (2.248 4.013) (1.517 2.765) (1.482 2.621) (1.547 2.868)

100 θ1 2.465 2.918 1.986 2.032 1.782 (2.033 2.981) (2.129 3.265) (1.625 2.399) (1.648 2.479) (1.449 2.128)
θ3 2.830 3.175 2.422 2.417 2.450 (2.278 3.435) (2.565 3.811) (1.970 2.892) (1.971 2.942) (1.961 2.973)

200 θ1 2.039 2.066 1.823 1.845 1.801 (1.765 2.324) (1.776 2.362) (1.582 2.088) (1.588 2.132) (1.503 2.020)
θ3 2.850 3.028 2.650 2.813 2.663 (2.474 3.258) (2.625 3.425) (2.281 3.010) (2.303 3.180) (2.279 3.051)

500 θ1 1.912 1.944 1.828 2.245 1.781 (1.747 2.096) (1.761 2.085) (1.673 1.996) (1.669 2.042) (1.639 1.934)
θ3 3.026 3.104 2.944 2.906 2.934 (2.776 3.262) (2.829 3.384) (2.676 3.206) (2.614 3.190) (2.669 3.204)
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Table 4.2: Simulation (Sub-model II)
Sample size (n), parameters (P), posterior mean by independent gamma prior (IGP(1)), posterior mean by improper
prior (ImP(2)), posterior mean by pseudo-gamma prior for ψ2 = 1 (PGP1(3)), posterior mean by pseudo-gamma prior
for ψ2 = 0 (PGP2(4)), posterior mean by pseudo-gamma prior for ψ2 = 7 (PGP3(5)), 95% confidence interval of IGP(1)
(CI(1)), 95% confidence interval of ImP(2) (CI(2)), 95% confidence interval of PGP1(3) (CI(3)), 95% confidence interval of
PGP2(4) (CI(4)), 95% confidence interval of PGP3(5) (CI(5))

n P SIP1 SIP2 SIP3 SIP4 SIP5 CISIP1 CISIP2 CISIP3 CISIP4 CISIP5

20 θ1 1.473 1.643 0.792 0.822 0.629 (0.900 2.177) (1.040 2.394) (0.481 1.192) (0.469 1.321) (0.383 0.913)
θ3 3.744 11.814 3.344 3.417 3.739 (2.297 5.415) (7.516 16.266) (2.065 4.996) (2.045 5.184) (2.227 5.714)

30 θ1 1.757 1.909 0.969 1.001 1.103 (1.222 2.399) (1.268 2.617) (0.633 1.399) (0.667 1.444) (0.540 1.400)
θ3 4.207 9.799 3.679 3.565 4.066 (2.954 5.829) (6.403 14.006) (2.452 5.282) (2.430 4.943) (2.538 6.711)

50 θ1 1.824 1.821 0.988 1.011 0.860 (1.295 2.251) (1.337 2.247) (0.718 1.295) (0.738 1.329) (0.644 1.070)
θ3 6.041 12.405 5.126 5.070 5.388 (4.452 7.781) (9.154 14.984) (3.653 6.581) (3.689 6.629) (4.063 7.842)

100 θ1 2.057 2.285 1.316 1.351 1.210 (1.680 2.481) (1.711 2.646) (1.052 1.604) (1.087 1.649) (0.982 1.478)
θ3 7.628 11.732 6.154 6.064 6.306 (6.319 9.046) (9.091 14.179) (4.912 7.569) (4.872 7.438) (4.984 7.669)

200 θ1 1.983 2.005 1.466 1.482 1.398 (1.709 2.265) (1.730 2.290) (1.271 1.694) (1.276 1.690) (1.208 1.592)
θ3 8.995 11.257 7.583 7.565 7.661 (7.880 10.261) (9.636 12.890) (6.516 8.689) (6.486 8.579) (6.631 8.792)

500 θ1 2.212 2.048 1.731 1.732 1.694 (1.866 2.270) (1.876 2.211) (1.589 1.880) (1.558 1.894) (1.543 1.848)
θ3 10.185 11.098 9.047 9.253 9.083 (9.129 11.412) (10.163 12.109) (8.268 9.915) (8.177 10.141) (8.301 10.008)
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4.5 Simulation study:

Figure 4.16: Posterior density plot of θ1 with hyper-parameters α1 = 2, α3 = 4, β1 =
2, β3 = 5 and parameter values θ1 = 2, θ3 = 3 of sub-model-I.

Figure 4.17: Posterior density plot of θ3 with hyper-parameters α1 = 2, α3 = 4, β1 =
2, β3 = 5 and parameter values θ1 = 2, θ3 = 3 of sub-model-I.

95



Bayesian Inference for pseudo-Exponential data

Figure 4.18: Posterior density plot of θ1 with hyper-parameters α1 = 2, α3 = 4, β1 =
2, β3 = 5 and parameter values θ1 = 2, θ3 = 3 of sub-model-II.

Figure 4.19: Posterior density plot of θ1 with hyper-parameters α1 = 2, α3 = 4, β1 =
2, β3 = 5 and parameter values θ1 = 2, θ3 = 3 of sub-model-II.
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4.6 Applications:

Table 4.3: per Capita GDP and Infant Mortality rate dataset (full-model)

n P IGP(1) ImP(2) PGP1(3) CI(1) CI(2) CI(3)

225
θ1 0.209 0.113 0.112 (0.041 0.056) (0.031 0.170) (0.040 0.321)
θ2 0.026 0.032 2.234 (0.011 0.056) (0.007 0.033) (0.009 35.763)
θ3 0.004 0.098 0.022 (0.002 0.005) (0.003 0.005) (0.001 0.016)

Table 4.4: per Capita GDP and Infant Mortality rate dataset (sub-model-I)

n P IGP(1) ImP(2) PGP1(3) CI(1) CI(2) CI(3)

225 θ1 0.04103 0.04739 0.05478 (0.04906, 0.04113) (0.04729, 0.04773) (0.05410, 0.05768)
θ3 0.00468 0.00451 0.00420 (0.00447, 0.00498) (0.00441, 0.00490) (0.00400, 0.00464)

4.6 Applications:

One example from the social sciences where an inverse dependence relationship is ex-

pected is infant mortality and GDP. Both of these indicators are roughly exponentially

distributed for countries and regions all over the world. The C.I.A. generates estimates

of values based on massive databases of global affairs information. In 2022, 225 coun-

tries and regions will provide data on infant mortality as deaths per 1000 live births (Y)

and per capita GDP in thousands of dollars (X).

Table 4.5: per Capita GDP and Infant Mortality rate dataset (sub-model-II)

n P IGP(1) ImP(2) PGP1(3) CI(1) CI(2) CI(3)

225 θ1 0.04131 0.05280 0.04991 (0.04125, 0.04142) (0.04013, 0.06238) (0.04768, 0.05091)
θ3 0.00506 0.00484 0.00508 (0.00484, 0.00536) (0.00395, 0.00588) (0.00481, 0.00550)
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Figure 4.20: Posterior density plots for full-model

Figure 4.21: Histograms for the bivariate data of the per Capita GDP and Infant Mor-
tality rate dataset for sub-model-I & II
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C H A P T E R 5

Conclusion

It has been advocated strongly by Arnold and Manjunath [4] that the pseudo-Poisson

distribution might be considered the first choice in modeling bivariate count data when-

ever one marginal is equi-dispersed and another marginal is over-dispersed. Also,

due to the simplicity of its structure, the pseudo-Poisson allows simple simulation and

straightforward computation and Bayesian inference. Nevertheless, when external in-

formation indicates dependence between the parameters, there are very few bivariate

priors in the literature that can accommodate such dependence. The pseudo-gamma

prior, which was introduced in Chapter 2, can be considered a possible choice for

Bayesian analysis with dependence on the prior. Through a simulation study and a

real-life data analysis, it has been highlighted that the pseudo-Poisson with a pseudo-

gamma prior performs better than an improper or an independent prior when the sam-

ple size is moderately large. The pseudo-Poisson with pseudo-gamma prior can be

easily extended to any higher dimension, and one extension has been discussed in Sec-

tion 6 of Chapter 2. Finally, we recommend pseudo-Poisson with pseudo-gamma prior

for Bayesian analysis of count data whenever there is additional information about the

dependence in the prior.

The GoF tests for the bivariate pseudo-Poisson and its sub-models were the main

emphasis of the current note. We proposed a few GoF tests based on p.g.f., moments,
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and Chi-square tests. The supremum of the absolute difference between the calculated

p.g.f. and its empirical equivalent, the new GoF test we proposed and analyzed. The

bivariate Fisher index of the dispersion-based GoF test has also been added. Addi-

tionally, we took into account a few existing tests that depend on the estimated p.g.f

and its empirical results, such as K&K, Munoz, and Gamero approaches. Finally, the

Chi-square GoF test results for the pseudo-Poisson data were also examined. A finite

sample, a fairly large sample, and asymptotic distributions of test statistics are exam-

ined for each of the tests discussed. In addition, we looked at the power and efficacy

of each statistical test using the bivariate Com-Max-Poisson and the bivariate Classi-

cal Bivariate (BCP) as alternative distributions. It has been demonstrated that a test

based on the supremum and index of dispersion is reliable, consistent, and satisfying.

Particularly, the supremum-based test proved to be more robust to the choice of alter-

native distribution. Additionally, we suggest utilizing the Muñoz and Gamero (M&G)

test for moderately small samples and the supremum (robust) and dispersion tests for

moderately large samples. Due to the asymptotic distribution of the test statistic, we

also recommend K&K and dispersion tests for sufficiently large data sets. Also, due to

its robust property, we suggest considering the supremum and Chi-square GoF tests

if there are no reasonable alternatives to the hypothesis. The suggested procedures

and algorithms will add another tool for analyzing count data. The developed proce-

dures will merit a spot in the toolkit of contemporary modelers because of their simple

structure and fast computation.
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A.1 Examples

A.1 Examples

Consider the following examples:

Example 2. define w1(t1, t2) = c1 + c2t1t2 + c3t2
1t2

2, (t1, t2)
T ∈ [0, 1]2, c1, c2, c3 ∈ R and

Tn,w1(λ̂1, λ̂2, λ̂3) is

c1

{
1
n

n

∑
i=1

n

∑
j=1

(
1

(Xi + Xj + 1)(Yi + Yj + 1)

)
+

+
∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

∞

∑
n=0

(
P(k; λ̂1)P(l; λ̂2 + kλ̂3)P(m; λ̂1)P(n; λ̂2 + mλ̂3)

1∫
0

1∫
0

tk+m
1 tl+n

2 dt1dt2

)
−

−2
n

∑
i=1

∞

∑
x=0

∞

∑
y=0

(
P(x; λ̂1)P(y; λ̂2 + xλ̂3)

1∫
0

1∫
0

tx+Xi
1 ty+Yi

2 dt1dt2

)}
+

c2

{
1
n

n

∑
i=1

n

∑
j=1

(
1

(Xi + Xj + 2)(Yi + Yj + 2)

)
+

+
∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

∞

∑
n=0

(
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1∫
0

1∫
0
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1 tl+n+1
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)
−

−2
n

∑
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∞

∑
x=0

∞

∑
y=0
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P(x; λ̂1)P(y; λ̂2 + xλ̂3)

1∫
0

1∫
0

tx+Xi+1
1 ty+Yi+1
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1
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∑
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∑
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1
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1∫
0

1∫
0
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1 tl+n+2

2 dt1dt2

)
−

−2
n

∑
i=1

∞

∑
x=0
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0

1∫
0

tx+Xi+2
1 ty+Yi+2

2 dt1dt2

)}
(A.1.1)
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where P(i; .λ̂) is a Poisson probability at i for the estimated parameter λ̂.
Further simplication gives us

Tn,w1(λ̂1, λ̂2, λ̂3) =
c1

n

n

∑
i=1

n

∑
j=1

(
1

(Xi + Xj + 1)(Yi + Yj + 1)
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+
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∑
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. (A.1.2)

We refer to Table 3.5 and Figuare 3.4 for the quantile values and frequency distribu-
tion for a1 = 1 and a2 = 1, respectively.

Example 3. For a general form of w(., .), consider w2(t1, t2) = ta1
1 ta2

2 , (t1, t2)
T ∈ [0, 1]2,

a1, a2 ∈ (−1, ∞), which allows us to include a negative powers as well, then the Tn,w2 is

1
n

n

∑
i=1

n

∑
j=1

(
1
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)
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+
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∞
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0
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)
−
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)
.

Now, further simplification will give us closed form expression for the statistic

Tn,w2(λ̂1, λ̂2λ̂3) =
1
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)
. (A.1.3)

We refer to Table 3.6 and Figuare 3.5 for the quantile values and frequency distribution
for a1 = 1 and a2 = 1, respectively. Also, with varying a1 and a2 values finite sample
distribution of the statistics, see Table 3.7 and Figuares 3.6, 3.7 and 3.8.

ne more
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