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Abstract

Privacy preserving data mining has been a big research domain with lot of
progress in developing secure algorithms for various data mining tasks such
as classification and clustering. It is important to address the privacy of each
individual when the data is distributed among different parties to get general
outcomes. There has been lot of progress in privacy preserving methods in
distributed data environment to provide privacy to the sensitive information
of a user, even when data is to be partitioned and distributed among multiple
parties. It is observed that application of privacy preserving techniques in
computational intelligence perspectives like neural network learning, fuzzy
logic based learning, and ensemble learning are still open. In view of the
increased amount of data every day and privacy concerns of the distributed
data, the necessity of preserving privacy has been a must to be addressed and
solved while designing algorithms in combined models. This work presents
three different methods, Privacy Preserving SOM clustering (PPSOM), Pri-
vacy Preserving Fuzzy C-Means Clustering (PPFCM) and Privacy Preserv-
ing Global Random Forest Classification (PPGREF'), aimed for the privacy
preserving in distributed data environment.

The work shows that when data is distributed between multiple parties
how the model is capable of preserving privacy of sensitive information of
all the parties participating in the computing process. Each problem gives
solution for horizontal and vertical data distributions. All the methods and
algorithms proposed in this work have shown good performance in the form
of privacy, data quality and complexity on example machine learning bench-
mark data sets such as IRIS, Glass, Wine, and Seeds. In the PPSOM Clus-
tering experiments are conducted using both perturbation based approach
and cryptography based approach over horizontally and vertically distribut-
ed data among multiple parties. In PPFCM, sequential collaboration when
exchanging internal outputs between parties was implemented to perform
collaborative clustering and the algorithm has been adapted both for hor-
izontal and vertical data distributions. In PPGRF, a two-phase approach
that combines local random forest with global random forest was utilized to
build the final global random forest by aggregating based on voting between
parties. Again, the proposed PPGRF algorithm is adapted for horizontal and
vertical data distributions. The main aim of the thesis of developing solu-
tions for preserving the privacy has been successfully achieved with very less
data loss and acceptable computational cost. In addition, the thesis presents
assessment of privacy level of distributed data using privacy metrics.

Keywords: Privacy, PPDM, Perturbation, Distribution, Partitioning, SM-
C, Cryptography, Clustering, PPSOM, PPFCM, Collaboration, Classifica-



tion, Ensemble Learning, PPGRF

vi



Contents

1 Introduction 2
1.1 Privacy Preservingof Data . . . . . . ... ... ... ..... 2
1.2 Privacy Preserving Data Mining . . . . . . .. ... ... ... 2
1.3 Privacy Preserving Distributed Data Mining . . . . . . . . .. 3

1.3.1 Privacy Concerns of Distributed Data . . . . . . .. .. 4
1.3.2 Data Partitioning Methods . . . . . .. .. .. ... .. 4
1.3.3 Perturbation based Privacy Preserving . . .. ... .. 6
1.3.4 Cryptography-based Privacy Preserving . . . . . . . .. 7
1.3.5 Secure Multi Party Computing . . .. .. .. ... .. 7
1.4 Privacy Preserving Methods & Models : A Literature Survey . 9
1.5 Thesis Organization . . . . . . . .. ... ... .. ... .... 10

2 Privacy Evaluation of Privacy Preserving Methods 11
2.1 Privacy Evaluation Metrics . . . . . . ... ... ... ..... 11
2.2 Privacy Evaluation Process . . . . . . . .. .. ... .. .... 13

2.2.1 Privacy Evaluation of Privacy Preserving Self Organiz-
ingMap . . .. .. o 13
2.2.2  Privacy Evaluation of Privacy Preserving Fuzzy C-Means
Clustering . . . . . . . . .. .. 13
2.2.3  Privacy Evaluation of Privacy Preserving Global Ran-
dom Forest Classification . . . . . . . .. .. ... ... 14
2.2.4  Privacy Metrics based on Error, Time & Accuracy of
PP Methods . . . . . . . .. .. ... ... ... ..., 15
2.3 Privacy Level in Proposed Methods . . . . . . .. ... .. .. 15
2.4 Chapter Summary . . . . .. . .. ..o 17

3 Privacy Preserving Clustering using Self Organizing Map 18
3.1 Self Organizing Map . . . .. . .. .. .. ... ... ..... 18
3.2 Clustering using Self Organizing Map . . . . . . . . .. .. .. 19
3.3 Perturbation based Privacy Preserving SOM Clustering-Horizontal 20

3.3.1 Process of Horizontal-PPSOM Algorithm . . . . . . . . 21

Vil



3.4 Cryptography based Privacy Preserving SOM Clustering-Vertical 23

3.4.1 Process of Vertical-lPPSOM Algorithm . . .. ... .. 25
3.4.2  Securely Computing Sum of Square Root of Two Num-
bers: . ... 26
3.4.3 Securely Computing Combined Output in Vertical-PPSOM 27
3.5 Experiments & Results: . . . .. . ... ... ... ...... 28
3.5.1 Results of Horizontal-PPSOM . . . . .. ... .. ... 28
3.5.2  Time complexity and Accuracy of Horizontal-PPSOM . 31
3.5.3 Performance Analysis of Horizontal-PPSOM: . . . . . . 32
3.5.4  Privacy Analysis of Horizontal PPSOM: . . . . . . .. 32
3.5.5  Results of Vertical PPSOM . . . ... ... ... ... 34
3.5.6 Time complexity and Accuracy of Vertical-PPSOM . . 36
3.5.7 Performance Analysis of Vertical PPSOM: . . . . . .. 38
3.5.8 Privacy analysis of Vertical PPSOM: . . ... .. ... 38
3.5.9 Complexity Analysis and Scalability of PPSOM: . . . . 40
3.6 Chapter Summary . . .. .. .. ... .. ... 40
Privacy Preserving Fuzzy C-Means Clustering 42
4.0.1 Fuzzy Set Theory . . . . . .. ... ... ... ... .. 42
4.1 Fuzzification Method . . . . . . .. . ... ... ... ... .. 43
4.2 Fuzzy C-Means Clustering . . . . . . ... .. ... ... ... 43
4.2.1 Process of Fuzzy C-Means Clustering . . . . . . .. .. 44
4.3 Collaborative Clustering . . . . . . . ... .. .. .. ..... 45
4.3.1 Modes of Collaboration . . . . . . . ... ... .. ... 45
4.4 Collaborative Fuzzy C-Means Clustering . . . . . .. ... .. 46
4.4.1 Method of Fuzzy Collaborative Clustering . . . . . . . 47
4.5 Privacy Preserving Collaborative Fuzzy C-Means Clustering-
Horizontal . . . . . . . . . ... . o 48
4.5.1 Process of Horizontal-PPFCM . . . . .. ... .. ... 49
4.6 Privacy Preserving Collaborative Fuzzy C-Means Clustering-
Vertical . . . . . . . .. o0
4.6.1 Process of Vertical-PPFCM Algorithm . . . . ... .. 52
4.7 Experiments & Results . . . . ... ... ... ... 52
4.7.1 Results of Horizontal-PPFCM . . . . .. ... .. ... 53
4.7.2  Cluster Centers in Horizontal-PPFCM Clustering . . . 63
4.7.3 Time Complexity & Accuracy of Horizontal-PPFCM . 63
4.7.4  Privacy Analysis of Horizontal-PPFCM . . . . . . . .. 65
4.7.5 Results of Vertical PPFCM . . . . ... ... .. ... 66
4.7.6  Cluster Centers in Vertical-lPPFCM . . . . .. .. ... 72
4.7.7 Time Complexity & Accuracy of Vertical-PPFCM . . . 72
4.7.8 Privacy Analysis of Vertical-PPFCM . . . . ... ... 74

viii



4.7.9 Complexity analysis & Scalability of PPFCM: . . . . . 74

4.8 Chapter Summary . . . .. .. .. .. ... ... 75
Privacy Preserving Global Random Forest Classification 76
5.1 Ensemble Learning . . . . .. ... .. .. ... 76
5.1.1 Bootstrap Aggregating - Bagging . . . . . ... .. .. 76
5.1.2  Random Forest Classification . . . . .. .. ... ... 7

5.2 Privacy Preserving Global Random Forest Classification-Horizontal 79
5.2.1 Process of Horizontal-PPGRF Algorithm . . . . . . .. 80
5.3 Privacy Preserving Global Random Forest Classification-Vertical 81
5.3.1 Process of Vertical- PPGRF Classification . . . . . . . . 82
5.4 Experiments & Results . . . . ... .. .. ... ... ..... 83
5.4.1 Results of Horizontal-PPGRF . . . . . ... ... ... 83
5.4.2 Time Complexity Analysis of Horizontal-PPGRF . . . 87
5.4.3 Classification Accuracy of Horizontal-PPGRF . . . . . 89
5.4.4 Privacy Analysis of Horizontal-PPGRF . . . . . .. .. 93
5.4.5 Results of Vertical PPGRF . . . . . .. ... ... ... 94
5.4.6 Time Complexity Analysis of Vertical-PPGRF . . . . . 95
5.4.7 Classification Accuracy of Vertical-PPGRF . . . . . . . 100
5.4.8 Privacy Analysis of Vertical-PPGRF . . . ... .. .. 103
5.4.9 Complexity analysis & Scalability of PPGRF: . . . . . 104
5.5 Chapter Summary . . . . .. . .. ... 105
Conlusions & Future Scope 106
6.1 Summary . . . . ... 106
6.2 Limitations . . . . . . .. ... ... ... 107
6.2.1 Limitations of PPSOM . . . . . .. ... ... ... .. 107
6.2.2 Limitations of PPFCM . . . . . .. .. ... ... ... 107
6.2.3 Limitations of PPGRF . . . . . .. ... ... ... .. 108
6.3 Future Scope . . . . . ... .. 108
115
A.1 Privacy Preserving Collaborative Clustering using SOM . . . . 115
A.1.1 Results of Horizontal-PPSOM . . . .. ... ... ... 116
A.2 Privacy Preserving Horizontal-ID3 . . . . . .. .. ... .. .. 118
A.2.1 Results of Horizontal-PPID3 . . . . .. ... ... ... 118
A.3 Privacy Preserving Horizontal-Random Forest Classification . 120
A.3.1 Results of Horizontal-PPRF . . . . .. ... ... ... 121
A4 PhD Work (Thesis) - Summary Table . . . . . ... ... ... 124

X



List of Figures

1.1
1.2
1.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2

4.3

4.4

4.5

4.6
4.7

Horizontal and Vertical Partitioning of Dataset . . . .. . .. 5
Perturbed values of original Data . . . . . ... .. ... ... 6
Computing Secure Sum using Secure Multiparty Computing . 8
Self Organizing Map . . . . . .. .. ... .. ... .. .... 19
Process flow diagram of Horizontal-PPSOM Clustering . . . . 22
Process of Cryptography based privacy preserving in SOM . . 25
Horizontal-PPSOM Clustering for Iris Dataset . . . . . . . .. 29
Horizontal-PPSOM Clustering for Seeds Dataset . . . . . . . . 29
Horizontal-PPSOM Clustering for Glass Dataset . . . . . . . . 30
Horizontal-PPSOM Clustering for Wine Dataset . . . . . . . . 30
SOM Execution Time (Vs) Horizontal PPSOM Execution Time 31
Mean Absolute Error of SOM and Horizontal PPSOM . . . . 32
Vertical-PPSOM Clustering for Iris Dataset . . . . . .. ... 34
Vertical-PPSOM Clustering for Seeds Dataset . . . . . . . .. 35
Vertical-PPSOM Clustering for Glass Dataset . . . . . . . .. 35
Vertical-PPSOM Clustering for Wine Dataset . . . . . . . .. 36
SOM Run Time Compared with Vertical PPSOM Run Time . 37
SOM Error Compared with Vertical PPSOM Error . . . . .. 38
The Fuzzification and Defuzzification Process . . . . . . . .. 43
The granular interface of the numeric data in collaborative
clustering . . . . . ... 46
The collaboration between granular interfaces of the numeric

data . . ... 47
Process of privacy preserving collaborative clustering - Hori-
zontal ... 48
Process flow of Privacy Preserving Collaborative FCM Clustering-
Horizontal . . . . . . . . .. ... 50

Process of Privacy Preserving Collaborative Clustering - Vertical 50
Privacy Preserving Collaborative FCM Clustering model - Ver-
tical . ... 52



4.8 FCM Clustering for Iris Dataset . . . . . ... ... ... ... 53

4.9 FCM Clustering Performance for Iris Dataset . . . . . . . .. 54
4.10 Horizontal-PPFCM Clustering for Iris Dataset . . . . . . . .. 54
4.11 Horizontal-PPFCM Collaborative Clustering Performance for

Iris Dataset . . . . . . . . ... .o 25
4.12 FCM clustering for Glass Identification Dataset . . . . . . .. 56
4.13 Horizontal-PPFCM Clustering for Glass Dataset . . . . . . . . 56

4.14 FCM clustering Performance of Glass Identification Dataset . 57
4.15 Horizontal-PPFCM Clustering Performance for Glass Dataset 57

4.16 FCM clustering of Seeds Dataset . . . .. .. ... .. .... 58
4.17 FCM clustering Performance of Seeds Dataset . . . .. .. .. 59
4.18 Horizontal-PPFCM Clustering for Seeds Dataset . . . . . . . . 59
4.19 Horizontal-PPFCM Clustering Performance for Seeds Dataset 60
4.20 FCM Clustering for Wine Dataset . . . . . .. ... ... ... 61
4.21 FCM Clustering Performance for Wine Dataset . . . . . . .. 61
4.22 Horizontal-PPFCM Clustering for Wine Dataset . . . . . . . . 62
4.23 Horizontal-PPFCM Clustering performance for Wine Dataset 62
4.24 Runtime Graph for Horizontal-PPFCM . . . . . . .. ... .. 64
4.25 Mean Squared Errors of Horizontal-PPFCM . . . . . ... .. 64
4.26 Vertical-PPFCM Clustering for Iris Dataset . . . . .. .. .. 66
4.27 Vertical-PPFCM Clustering Performance for Iris Dataset . . . 67
4.28 Vertical Collaborative FCM Clustering for Glass Dataset . . . 68
4.29 Vertical-PPFCM Clustering for Glass Dataset . . . . . . . .. 68
4.30 Vertical Collaborative FCM Clustering for Glass Dataset . . . 69
4.31 Vertical-PPFCM Clustering for Seeds Dataset . . . . . . . .. 70
4.32 Fuzzy C-Means Clustering for Wine Dataset . . . . . . . . .. 71
4.33 Vertical-PPFCM Clustering and Cluster Centers for Wine Dataset 71
4.34 Runtime Graph for Vertical-PPFCM . . . ... ... ... .. 73
4.35 Mean Squared Errors of Vertical-PPFCM . . . . . .. ... .. 73
5.1 Ensemble Learning Network . . . . .. .. ... ... ..... 76
5.2 Bagging Ensemble Learning Process . . . . . . .. ... .. .. 7
5.3 Random Forest . . . . .. ... ... ... ... L. 78
5.4 The Process flow of Privacy Preserving Global Random Forest
classification-Horizontal . . . . . . . . .. ... ... .. ... 80
5.5 Process Flow of Privacy Preserving Global random forest Classification-
Vertical . . . . . . . . .. 82
5.6 Runtime of Iris Dataset in Horizontal-PPGRF . . . . . . . .. 88
5.7 Runtime of Horizontal-PPGRF for Seeds Dataset . . . .. .. 88
5.8 Runtime of Horizontal-PPGRF for Glass Dataset . . . .. .. 89
5.9 Runtime of Horizontal-PPGRF for Clinical dataset . . . . .. 89

xi



5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Al
A2
A3

A5
A4
AT

A6
A8

A9

Accuracy of Horizontal-PPGRF Clustering for Iris Dataset . . 91
Accuracy of Horizontal-PPGREF Clustering for Glass Dataset . 92

Accuracy of Horizontal-PPGREF Clustering for Seeds Dataset . 92
Accuracy of Horizontal-PPGRF Clustering for Clinical Dataset 93
Runtime of Iris Dataset in Vertical-PPGRF . . ... .. ... 99
Runtime of Vertical-PPGRF for Seeds Dataset . . . . . . . .. 99
Runtime of Vertical-PPGRF for Glass Dataset . . . . . . . .. 100
Runtime of Vertical-PPGRF for Clinical dataset . . . . . . . . 100
Vertical-PPGRF Accuracy scores for Iris Dataset . . . . . .. 102
Vertical-PPGRF Accuracy scores for Glass Dataset . . . . . . 102
Vertical-PPGRF Accuracy scores for Seeds Dataset . . . . . . 103
Vertical-PPGRF Accuracy scores for Clinical Dataset . . . . . 103
Runtime of SOM Compared with Runtime of Horizontal-PPSOM116
Accuracy of SOM and PPCSOM . . . . ... .. ... .. .. 117
A Poster on Privacy Preserving Collaborative Clustering in

Horizontal-PPSOM . . . . . . .. . . ... ... ... ... .. 117
Decision Tree with perturbed Inputs of Iris Dataset . . . . . . 118
Decision Tree without perturbed Inputs of Iris Dataset . . . . 119
Probability Distribution of Perturbed Inputs in Privacy Pre-

serving Decision Tree . . . . . . . . . . ... o L. 119
Probability Distribution of Inputs in Decision Tree . . . . . . 120
Accuracy Scores of Party-1 and Party-2 in Horizontal-PPRF

for Iris Dataset . . . . . . . . . . . ... ... ... 123
Accuracy Scores of Party-1 and Party-2 in Horizontal-PPRF

for Iris Dataset . . . . . . . ... .. ... .. .. ... ... 123

A.10 Runtime Comparison graph for Non PPRF and Horizontal-

PPRE . . . o 124

xil



List of Tables

2.1
2.2

3.1

3.2
3.3
3.4
3.5

3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

5.1
5.2
2.3
5.4
3.5
2.6

Privacy Metrics and their value ranges to measure Privacy Level 16

Privacy Levels of PPSOM, PPFCM & PPGRF measured using
Privacy Metrics . . . . . . . .. . . ... o

Description of Data sets used in Horizontal PPSOM and Ver-
tical PPSOM . . . . . . . .. .
SOM execution time (Vs) Horizontal PPSOM execution time .
Mean Absolute Error of SOM and Horizontal PPSOM

Privacy Metrics Results and Analysis of Horizontal-PPSOM .
SOM Average Time Compared with Vertical PPSOM Average
Time . . . . .
SOM Error Compared with Vertical PPSOM Error . . . . ..
Privacy Metrics Results and Analysis of Vertical-lPPSOM . . .

Fuzzy membership degree values of a sample crisp dataset .
Cluster Centers in Collaboration of Horizontal-PPFCM . . . .
Runtimes of FCM and Horizontal-PPFCM . . . . . .. .. ..
Mean Squared Errors of Horizontal-PPFCM . . . . . . .. ..
Privacy Metrics Results and Analysis of Horizontal-PPFCM .
Cluster Centers in Process of Vertical-PPFCM . . . . . . . ..
Execution time of FCM and Vertical-PPFCM . . . .. .. ..
Mean Squared Errors of Collaborating Parties in Vertical-

PPFCM . . . . .
Privacy Metrics Results and Analysis of Vertical-lPPFCM . . .

IGRF-1 and IGRF-2 in Horizontal-PPGRF for Iris Dataset .

Final global random forest of Horizontal-PPGRF for Iris Dataset

IGRF-1 and IGRF-2 of Seeds Dataset in Horizontal-PPGRE .
Final Global Random Forest of Seeds dataset . . . .. .. ..
IGRF-1 and IGRF-2 of Clinical Dataset in Horizontal-PPGRF

Final Global Random Forest of Clinical Dataset in Horizontal-
PPGRFE . . . .

36
37
39

43
63
63
64
65
72
72

73
74

84
84
84
85
85



5.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

5.21
5.22

5.23
5.24
5.25
5.26
5.27

Al
A2
A3
A4
AL
A6

IGRF-1 and IGRF-2 of Glass dataset using Horizontal-PPGRF 86
Final Global Random Forest of Glass Dataset in Horizontal-

PPGRF . .. . . . 86
Run times of Random Forest Classification (Non PP) . . . . . 87
Run times of Horizontal-PPGRF Classification . . . . . . . .. 87
Accuracy Scores of Non Privacy Preserving Random Forest . . 90
Accuracy Scores of Party-1 in Horizontal-PPGRF . . . . . .. 90
Accuracy Scores of Party-2 in Horizontal-PPGRF . . . . . .. 91
Privacy Metrics Results and Analysis of Horizontal-PPGRF . 93
IGRF-1 and IGRF-2 of Vertical-PPGRF for Iris Dataset . . . 95
Final Global Random Forest in Vertical-PPGRF for Iris dataset 95
Results of Vertical-PPGREF for Seeds Dataset . . . ... ... 96

Final Global random Forest of Vertical-PPGRF for Seeds Dataset 96
Results of Clinical dataset using Vertical-PPGRF Classification 96
Final Global random Forest of Clinical Dataset for Vertical-
PPGRF . . . . . 97
IGRF-1 and IGRF-2 of Glass dataset using Vertical-PPGRF . 97
Final Global Random Forest in Vertical- PPGRF for Glass

Dataset . . . . . . . . 98
Run times of Vertical-PPGRF Classification . . . . . ... .. 98
Accuracy Scores of Non Privacy Preserving Random Forest . . 101
Accuracy Scores of Party-1 in Verticall PPGRF . . . . . . . .. 101
Accuracy Scores of Party-2 in Vertical-PPGRF . . . . . . . .. 101
Privacy Metrics Results of Vertical-PPGRF . . . .. .. ... 104
SOM Runtime and Horizontal-PPSOM Runtime . . . . . . . . 116
Random Forest of Horizontal-PPRF for Iris Dataset . . . . . . 121
Runtime of Horizontal-PPRF for Iris Dataset . . . ... . .. 121

Accuracy Scores of Party-1 in Horizontal-PPRF for Iris Dataset122
Accuracy Scores of Party-2 in Horizontal-PPRF for Iris Dataset122
Privacy measuring notations used for PP Methods . . . . . . . 125

Xiv



List of Algorithms

1 Self Organizing Map Clustering Algorithm . . . . . .. .. .. 19
2 Privacy Preserving Horizontal-PPSOM Algorithm . . . . . . . 21
3 Privacy Preserving Vertical-lPPSOM Algorithm . . . ... .. 24
4 Secure sum of square root of two numbers . . . . . . ... .. 27
5t Fuzzy C-Means Clustering Algorithm . . . . . .. ... .. .. 44
6 Privacy Preserving Collaborative FCM Clustering - Horizontal 49
7 Privacy Preserving Collaborative Fuzzy C-Means clustering
Algorithm - Vertical . . . ... .. .. ... ... ... .. 51
8  Random Forest Classification Algorithm . . . . .. ... ... 78

9  Privacy Preserving Global Random Forest Classification-Horizontal 79
10 Privacy Preserving Global Random Forest Classification-Vertical 81
11 Privacy Preserving Horizontal Collaborative SOM Algorithm . 115
12 Privacy Preserving Horizontal-ID3 Algorithm . . . .. .. .. 118
13 Privacy Preserving Horizontal-PPRF Algorithm . . . . .. .. 120



Chapter 1

Introduction

1.1 Privacy Preserving of Data

Privacy: The privacy is defined when it concern to individually identifiable data,
is the protection from an unauthorized intrusion [38]. If the authorization is given
to users or data miners to access the data for a purposeful data mining task,
then there will not be any privacy issue. In general privacy issue arises at the
time of data disclosure and that be viewed in two ways.

e Data is protected form disclosure: Limiting the ability to infer the
values from results or even to control the results.

e Indirect disclosure of data: disclosing the data indirectly without vio-
lating privacy.

Privacy Preserving: Preserving Privacy of an individual’s private data
when data is to be distributed among multiple parties in order to get com-
bined results [38]. There are an increased number of methods in Data mining
and Information security communities that are addressing privacy and secu-
rity issues and providing the better solutions. Privacy issues mostly being
addressed while extracting or exchanging the data between multiple databas-
es with the goal of getting combined outcomes and protecting privacy of an
individual simultaneously [2].

1.2 Privacy Preserving Data Mining

Data mining is the most effective method, that has ability of extracting and
analyzing the data from large databases. Once the data is extracted the



data analysis is performed by using data mining functionalities like classifi-
cation, association rules, prediction and clustering etc. Privacy preserving
data mining (PPDM) domain is addressing the most important privacy issues
in distributed data environment. As per the literature survey conducted for
this work, various articles clearly presented the privacy preserving methods
used for preserving privacy of data[1][28]. In some of the published papers
of distributed data domain, they addressed privacy preserving mechanisms
and models. Agrawal and Srikant [1] proposed solutions by using random-
ization process which includes the random noise addition to the source data
and applying privacy preserving algorithm to further maintain data privacy.
Lindell and Pinkas [28] used cryptography based protocols to efficiently and
securely build a decision tree and could achieve secure computations.

1.3 Privacy Preserving Distributed Data Min-
ing

In distributed data environment, when the data is distributed among two
or more number of parties, then "No party should know anything more
than its own input and a prescribed output and the only knowledge a party
should learn or know from other party is only the output of other party [27].
The main objective of any data mining technique is to extract generalized
knowledge from dataset rather than extracting individually identifiable in-
formation. When we observe in most of the distributed data mining ap-
plications, the data can be shared and accessed among multiple organiza-
tions(locations/sites), even though the data is under authority of the data
owner. In distributed data environment there is always a scope of privacy vi-
olation by determining the personal information of an individual, that leads
to serious data loss and misuse of data. Hence the privacy preserving data
mining algorithms and models to be effectively designed to ensure that the
knowledge is extracted for a right purpose and the privacy is preserved at the
same time. Privacy preserving distributed data mining domain is providing
some possible solutions by making use of the methods like, Data swapping
technique, data perturbation by random noise addition, oblivious polynomial
transfer, data anonymity approach and random projection based approaches
etc. These are some ways of secure computational methods being successful
in producing combined results without effecting the privacy of an individual
while exchanging their information among multiple parties.



1.3.1 Privacy Concerns of Distributed Data

Addressing the privacy issues of distributed data has become the most im-
portant task. The privacy of an individual must be protected from violation
when the data is distributed among different parties to get general outcomes.
There has been lot of progress in privacy preserving methods in distributed
data environment to provide privacy to the sensitive information of a user,
even when data is to be partitioned and distributed among multiple parties.
For example in medical research multiple databases like medical data, pa-
tient data, medicines data and purchase data etc to improve business with
consumers. Data exchange or sharing of data is necessary for making use of
data resource mangers or data miners in order to get combined outcomes for
purposeful decision making. But the data may have some private information
that cannot be shared, hence privacy concerns or issues must be addressed
in order to protect the data and its privacy.

If data mining techniques to be applied in medical research in order to
study and analyze the health related problems, then that requires extracting
information from various medical centers or hospitals and also from patients.
In such situations the privacy of patients must be preserved as per the Health
Insurance Portability and Accountability act (HIPPA) [18]. The another
act named ”Data-Mining Moratorium Act” which is introduced by defense
department of USA, banned all data mining operations including research
and development due to expected privacy violations [13]. Hence the privacy
preserving must address al the privacy issues and assure the privacy of data
at the time of computing combined results for decision making. Some of the
existing privacy preserving methods and models are presented in a summary
table in appendix.

1.3.2 Data Partitioning Methods

In privacy preserving distributed data mining environment, how the data is
being partitioned and shared between parties will effect the way of privacy
preserving. In distributed computing environments data set can be parti-
tioned into multiple partitions as per the requirement. A dataset is divided
and distributed into multiple partitions in order to get common outcomes in
shortest communication time. In distributed data domain there are different
ways of partitioning methods existing. We adopt and use horizontal way of
partitioning and vertical way of partitioning in this thesis work as shown in
below diagram for example data set (iris).
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Figure 1.1: Horizontal and Vertical Partitioning of Dataset

Horizontal partitioning of dataset
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A data set is defined as D = (F, I), where E is a set of entities for which
the required information to be collected and I is a set of features collected
for an entity set.

Horizontal Partitioning : in horizontal way of partitioning the same type
of information is gathered for different set of entities. Here different parties
from differect locations can extract same set of features for different entities.
Each party owns collection of horizontal instances (rows).

Vertical Partitioning : in vertical way of partitioning different type of
information will be extracted for same set of entities. Each party owns set
of vertical instances (columns).



1.3.3 Perturbation based Privacy Preserving

The main objective of data perturbing is not to reveal original input informa-
tion to any data mining algorithm or model. In distributed data environment
if combined results to be obtained from multiple data sets without violating
privacy of an individual is possible with perturbation based method. Since
the data doesn’t send the exact (original) input values, then if that input
consists any sensitive data item inked to an individual, will be protected
from unauthorized disclosure. There are two ways of data perturbation,
additive perturbation and multiplicative perturbation. The additive pertur-
bation method is used to perturb the sensitive or private data values by
adding some random noise to the original value and share the perturbed
data instead of original data and also assure the privacy while valid output
is securely obtained [38]. If X=z is an individual attribute that represents
information of an individual, then x will be added with a random number r
generated form a normal distribution. Now the perturbed value of z=x + r,
will be shared instead of original value x to the data miner. Following table
shows an example representation of original values after data perturbation is
applied.

Figure 1.2: Perturbed values of original Data

No, Age YearsEdu Income (Original) Income (Perturbed)
1 25 16 54 57.0
2 3 14 55 52.0
3 a2 18 60 57.0
4 36 12 498 52.0
5 43 16 85 61.3
6 48 20 70 71.5
7 50 13 57 61.3
8 53 18 73 71.5
9 56 14 62 61.3

The challenging objective of perturbation technique is to get considerable
results for different data mining tasks. Agrawal and Srikant could derive the
first solution for this type of problems where, the small random noise is added
to the original data value. Then a new dataset with randomized or perturbed
data set is created for using in privacy preserving methods. They came up
with acceptable similarity while reconstructing distribution of perturbed data
and the distribution of original data.



1.3.4 Cryptography-based Privacy Preserving

In cryptography based solutions for privacy preserving, algorithms are de-
signed as protocols that are able to share the input to any other party in an
encrypted format. When ever the information is to be accessed by the oth-
er party that must follow the decryption of input information with mutual
understanding between parties. In the beginning Secure Multi Party com-
puting was introduced for decision tree classification using ID3 algorithm
by Lindell and Pinkas[27]. A cryptography based protocol was designed and
proposed by Du and Zhan to preserve privacy using ID3 algorithm over verti-
cally partitioned data [42]. Chris Clifton proposed secure computing method
for clustering using Expectation Maximization algorithm over vertically par-
titioned data[27]. Kantarcioglu and Clifton proposed some protocols for pri-
vacy preserving distributed data mining of association rules on horizontally
partitioned data [21]. Tt is observed that there is always a communication
overhead on the model when cryptography based protocols are used for data
exchange between parties.

1.3.5 Secure Multi Party Computing

In distributed data environment if two or more parties are involved to get
combined results, then privacy issues to be considered and see that whether
the privacy of any party is being violated while producing the combined
results. Secure Multi party computing describes secure computation of a re-
sult (sum or product etc) with distributed inputs where two or more parties
are involved in giving inputs and producing combined outputs [38] [?]. The
ultimate goal of this SMC approach is without disturbing privacy of an indi-
vidual, the expected results are to be produced. YAQ’s protocol [40] is used
in SMC where Sum or Product of numbers are calculated at various parties
using a secure MOD function, into which the inputs are given by all the
parties until the final output has been adopted by the first party where the
process has been started. Privacy preserving data mining has solutions using
Secure multi party computing and most of the cryptography based solutions
are referred to be SMC based solutions. The example is given to understand
the process of securely calculating the sum of two numbers using SMC.
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Figure 1.3: Computing Secure Sum using Secure Multiparty Computing

32+5 mod 50=37

Party 1 R
5
3+17 mod 50=20 20-R=-12 mod 50=38 37+12 mod 50=49
Party 4
17 49+4 mod 50=3

In this method initially secure two-party computation was proposed Yao,
where he gave the solution for millionaire problem by using secure two-party
computation [40]. In this problem two millionaires could find out who is rich-
er than the other without revealing their exact amount of wealth. Then secure
multi party computing is introduced where most of the privacy-preserving
problems are addressed and solved. In SMC based approaches there are some
models for data sharing and secure computing in order to protect privacy of
multiple parties. Three of them are explained as follows.

e Trusted Third Party Model: In information security domain the s-
tandard for protecting privacy of data is based on assuming that, there
is a trusted third party to whom one can share information. For exam-
ple if a model has three parties, the third party performs the required
common computations and delivers only the outputs or combined re-
sults to other two parties. It is assured that except the third party,
nobody learns anything from other party except its own input and the
combined results.



e Semi Honest Model: Semi-honest model is also known as the honest-
but-curious model, which follows the rules of the concerned protocol,
but after that the protocol is free to use whatever it sees during execu-
tion of the protocol to compromise security.

e Malicious Model: This model has no restrictions imposed on any of
the participant parties, that is any party will be fully free to involve and
do whatever the action it want to do in the total process. It is quite
challenging to develop efficient protocols under the malicious model,
which does not assure privacy for many applications.

1.4 Privacy Preserving Methods & Models :
A Literature Survey

There has been lot of research work going on privacy preserving methods ap-
plied in computational intelligence domain. This section presents a literature
survey on previous work based privacy preserving methods. Work published
on different privacy preserving methods like, decision tree classification [22],
privacy preserving self organizing map [31], privacy preserving fuzzy based
clustering [43] [25] and privacy preserving random forests classification [29]
by various authors. In distributed data environment how the privacy is pre-
served [15]and what are the privacy measures to be used for deriving privacy
level explained in different publications [30] [39] [10] [26]. Comparative stud-
ies of existing methods also addressed in some of the published works [7]. The
work from different research articles motivated to choose and work further
for proposing privacy preserving problems and providing solutions. This sec-
tion has focused on some of the literature helped in exploring our proposed
methods in providing solutions in this thesis.



1.5 Thesis Organization

Chapter 1 (Introduction) presents the details of Privacy and the
data mining methods of preserving privacy when data is distributed.
It has also given the details of data partitioning methods and Privacy
metrics.

Chapter 2 (Privacy Evaluation) presents the privacy evaluation
criteria with the help of privacy metrics used to measure privacy. A
systematic survey is presented followed by the summary of all privacy
metrics used for proposed privacy preserving methods of this thesis
work.

Chapter 3 (PPSOM) will decribe the privacy preserving clustering
using self organizing map for both horizontal and vertical data distri-
butions. It includes the results and chapter summary.

Chapter 4 (PPFCM) will describe the privacy preserving Fuzzy
C-Means clustering in collaborative environment. Chapter gives the
details of FCM clustering and privacy preserving collaborative FCM
clustering follwed with results and chapter summary.

Chapter 5 (PPGRF) will describe the privacy preserving Random
forest classification, building the global random forest from number of
local random forests. It ends up with chapter summary after presenting
the results.

Chapter 6 (Conclusions &Future Scope) gives the detailed thesis
summary, limitations of each problem, future scope and directions for
future work.
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Chapter 2

Privacy Evaluation of Privacy
Preserving Methods

Privacy has no unique standard definition, hence quantifying privacy level has
been a challenging task. There are some privacy evaluation metrics proposed
in the context of Privacy Preserving Data Mining[30]. A privacy preserving
method can be evaluated based on the following criteria.

e Privacy Level: The level of privacy is assured by a privacy preserv-
ing method that indicates how near the privacy of sensitive data is
preserved and still original data can be estimated.

e Hiding Failure: This examines that whether the private information
which is protected by the privacy preserving model successfully or not.

e Data quality: The quality of data (originality) is verified before and
after applied over privacy preserving technique.

e Complexity measure: This measures the efficiency of a privacy pre-
serving algorithm, with respect to the resources that use in the process.

2.1 Privacy Evaluation Metrics

The output of a privacy metric represents a particular property measured
by a privacy metric. It is observed that, no single metric is enough to mea-
sure the privacy level because of multiple parameters involved in preserving
privacy of a method. There are different properties of outputs to represent
different aspects of privacy. A complete estimation of privacy for any priva-
cy preserving mechanism can be obtained from different output categories.
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This section gives some categories of privacy metrics based on the output
properties as per the literature survey[39].

Uncertainty Metrics: This metric measures the privacy level assum-
ing high uncertainty in other party’s estimation, on information known
with certainty related with high privacy (other party can not depend
upon the guess made from information known with certainty). An oth-
er case could be individual users may lose privacy even when the other
party guesses correct having highly uncertain information.

Information Gain/Loss Metrics: These metrics are based on gain
or loss of information at the time of exchange of information between
multiple parties. The metric measures the amount privacy lost or in-
formation received by other party at the time of data disclosure.

Data Similarity Metrics: The data similarity is measured within a
data set or between multiple data sets. The similarity could be fre-
quency of attributes or numerical values of attributes.

Indistinguishability Metrics: measures do not quantify the level of
privacy but, provides a binary indication on whether two outcomes(of
Party-1 and Party-2) of a privacy mechanism are indistinguishable (d-
ifferent /distinct from each other) or not. Privacy is high if it cannot
be distinguished between any pair of outcomes.

Probability of success metrics: This type of metric quantify the
privacy based on the probability of succeed in single attempt and mul-
tiple attempts. Low success probabilities correlate with high privacy.
Individual user may still suffer a loss of privacy even when the other
partys success probability is low.

Error based metrics: measures how correct the other partys estimate
is (eg. distance between the true outcome and estimated outcome).
High correctness and low errors correlate with low privacy.

Time-based metrics: measures (a) time of other partys success (a
longer time relates with high privacy) or (b) time until confusion (short-
er time relates with higher privacy).

Accuracy /Precision Metrics: quantify how precise the other par-
ty’s estimate is without considering the correctness. The more precise
estimates relates with lower privacy level.
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2.2 Privacy Evaluation Process

Once the privacy preserving mechanism, procedure, technique or method is
implemented and the results are published, then the privacy concerns ad-
dressed in algorithm to be proved with respect to the privacy level it has
reached. The input for privacy metrics is the results of privacy preserving
method. The privacy evaluation metrics used for proposed methods in thesis
are explained in this section to give the route map for presenting results of
privacy metrics of proposed methods (PPSOM, PPFCM and PPGRF).

2.2.1 Privacy Evaluation of Privacy Preserving Self
Organizing Map

Normalized Variance: In perturbation based privacy preserving methods
a normalized variance is derived from the statistical variance ¢? and the
dispersion between original data X* and perturbed data Y is measured. The
high normalized variance give the better privacy level.

privyag = o2 (X* — Y)o?(X*) (2.1)

Conditional Privacy Loss: This metric measures the proportion or frac-
tion of privacy of data X* that has lost by revealing the data Y (data revealed
and observed by other party). Low value refers high privacy level.

privepy, =1 — 2155 (2.2)

Positive Information Disclosure: Quantifies the prior probability of the
private input (perturbed input) X* and posterior probability of a new obser-
vation y (output) and check for the equality. Low probability of disclosure
indicates high privacy level.

p(z*) = p(z*ly) (2.3)

2.2.2 Privacy Evaluation of Privacy Preserving Fuzzy
C-Means Clustering

Cluster Similarity: A clustering algorithm is applied to series of transitions
for original data T« and transitions for modified data Ty. The cluster
similarity is measured between two sets of clusters C'x« and Ty belongs to
original and modified data respectively. Miss placed transitions are identified
by computing element wise subtraction between two clusters. The percentage
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of correctly clustered transitions refers the privacy level of original hidden

values.

Vi : Cyi — Cx+
|Tx«

priveg = 1 — (2.4)

t-Closeness: The earth mover distance d must be smaller than a threshold
value 't', between distribution Sg of sensitive attribute values in a class F to
be closer to their local distribution S.

privee = t,Vg : d(S,Sg) <t (2.5)

Privacy Score: The risk of a user u increases with the sensitivity wa* of
information items z* € X* along with their visibility Vis(z*,u). The more
visibility refers the low privacy score.

privps = Z wa* . Vis(z*, u) (2.6)

TreX*

2.2.3 Privacy Evaluation of Privacy Preserving Global
Random Forest Classification

Cumulative Entropy: A combined zone R is common location where many
nodes are close to each other at the same time. Cumulative entropy is sum-
mation of all individual entropies H(X,) of combined zone r. The high
entropy value indicates high privacy level.

priveve = Yy H(X,) (2.7)

ré€ER

Conditional Mutual Information: Quantifies the amount of sensitive
information and correlation between sensitive data X* learned by observing
Y, for given prior knowledge Z.

privews = 1(X*5Y|2) = H(X*|Z) — H(X*|Y, Z) (2.8)

Percentage Incorrectly Classified: The percentage of miss classified
events U’ within the set of all events or users U is measured.

: U’
priveic = 77 (2.9)
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2.2.4 Privacy Metrics based on Error, Time & Accu-
racy of PP Methods

Mean Squared Error: measures error an other party makes in creating his
estimate. It is an error between observations y made from other party and
the true outcome x*.

: 1 .
pTZUMSEEW Z ||z* — yl|[? (2.10)

x*eX*

Time until Success: Assuming that the other party succeeds the time
until other part’y success is measured. The result depends on the success
and varies as per the process flow of privacy preserving method. Example
(i) success could be , identifying n out of N targets in multiple parties, (ii)
when one party first compromises a communication path.

priver = Time(n € N) (2.11)

2.3 Privacy Level in Proposed Methods

The table 2.1 shows all the prerequisites to measure privacy of a privacy
preserving method and model, that consists of 14 different privacy metrics
can be useful for measuring privacy level of algorithms proposed and imple-
mented in this work. The table presents value ranges ([0,1] and [0,00]) to be
considered to decide the privacy level (High/Low), and it also shows the in-
put data source used, stating that whether the input is taken from published,
observed and reported from the privacy preserving methods. The table 2.2
presents the results of privacy metrics and privacy levels observed for the
privacy preserving methods proposed in this work. The privacy analysis is
presented for each problem in individual chapters based on the privacy level
observed by privacy metrics presented here.
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Table 2.1: Privacy Metrics and their value ranges to measure Privacy Level

Sno Output Metric Range | High/Low | Data Source
1 Normalized Variance [0, 1] High published
2 Conditional Privacy Loss 0, 1] Low obs, pub
3 | Positive Information Disclosure | [0, 1] Low published
4 Cluster Similarity 0, 1] Low obs,rep
5 t-closeness [0, o] Low published
6 Privacy Score [0, o] Low published
7 Cumulative Entropy [0, o] High observed
8 | Conditional Mutual Information | [0, o0 Low obs, pub
9 Mean Squared Error [0, oo High published
10 | Percentage Incorrectly Classified | [0, 1] High obs,rep
11 Success Time [0, oo High published
12 Mean Time Confusion [0, o] Low published
13 Confidence Interval Width [0, oo High pub,obs
14 Uncertainty Region Size [0, oo High observed

Table 2.2: Privacy Levels of PPSOM, PPFCM & PPGRF measured using

Privacy Metrics

PP Method | Privacy Metric Range Result | Privacy Level
H-PPSOM priv_NVAR [0, 1] (>0.5=High) 0.56 High
priv_CPL [0, 1] (<0.5=Low) 0.80 Low
priv_PID [0, 1] (<0.5=Low) 0.94 Low
V-PPSOM priv_NVAR [0, 1] (>0.5=High) 0.93 High
priv_CPL [0, 1] (<0.5=Low) 0.81 Low
priv_PID [0, 1] (<0.5=Low) 0.24 High
H-PPFCM priv_CS [0, 1] (<0.5=Low) 0.25 High
priv_.TC [0, 0o] (< co=Low) 1.11 High
priv_PS [0, o0] (< co=Low) 1.00 High
V-PPFCM priv_CS [0, 1] (<0.5=Low) 0.18 High
priv_.TC [0, o0] (< co=Low) 2.45 High
priv_PS [0, o0] (< oco=Low) 0.01 High
H-PPGRF priv_.CUE [0, o0] (>1.00=High) | 0.07 Low
priv_.CMI [0, oo] (< co=Low) 1.00 High
priv_PIC [0, 1] (>0.5=High) 0.05 Low
V-PPGRF priv_.CUE [0, co] (>1.00=High) | 0.95 Low
priv_.CMI [0, oo] (<1.00=Low) | 0.74 High
priv_PIC [0, 1] (>0.5=High) 0.33 Low
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2.4 Chapter Summary

In this chapter the analysis and summary report has been presented for var-
ious privacy metrics for each method used in thesis work. The main purpose
of writing this chapter is to introduce several privacy evaluation metrics in
measuring privacy level of a privacy preserving algorithm or technique. An
analysis of all the privacy metrics along with their respective equations to
be used for measuring the privacy level is presented followed by a complete
summary table with results of privacy metrics for proposed methods.
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Chapter 3

Privacy Preserving Clustering
using Self Organizing Map

Preserving privacy in distributed data environment aiming for combined clus-
tering using SOM. Research on privacy preserving methods applied in neural
networks are very few like Multilayer Perceptron Learning (MLP), Back-
Propagation (BPN) and Self Organising Map (SOM) etc. ”Privacy preserv-
ing SOM based recommendations on horizontally distributed data” [20], and
”SOM-based recommendations with privacy on multi-party vertically dis-
tributed data” [19] were well presented by the authors Kaleli and Polat.
Their work shows collaborative filtering scheme in SOM clustering estimates
truthful predictions while maintaining data owner’s privacy on horizontal and
vertical data. Their work doesn’t follow any specific security method at the
input level to preserve privacy of input data where multiple parties are in-
volved. we adopt perturbation based method for horizontal data distribution
between parties to do clustering using SOM.

3.1 Self Organizing Map

Self organizing map is a self supervised learning model in neural networks
learning, where data is brought into smaller level of groups with similarity in
their features through a clustering approach [23]. SOM network also called
as topology-preserving map that assumes a topological structure among the
cluster units and preserves neighborhood relations and performs topology
preserving. The self organizing map provides the better way of mapping
between sets of input data items. SOM holds a feed forward structure of
nodes, where a single computational layer is determined in rows and columns
and each neuron is fully connected to all input layer nodes as shown in figure.
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Figure 3.1: Self Organizing Map
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3.2 Clustering using Self Organizing Map

In SOM clustering process starts with initializing input and weight vectors
then proceeds to determine a winner neuron in competition phase. Then
weights are updated for winner neuron and for its neighborhood neurons and
continued until there is no change in the feature map. The clustering process
is given in SOM clustering algorithm.

Algorithm 1 Self Organizing Map Clustering Algorithm

1. Competitive Phase: Winner neuron ¢ derived for given input vector
T = [x1, g, ...Tx| With weight vector w; of neuron j {j=1,2,3,...1} connected
to input vector where [ is number of output neurons.

i(x) = argming||z,, — w;|| (3.1)

2. Cooperation phase: The topological neighborhood is determined for
winner neuron 1.

2
R ) (3.2)
.]7Z(I) p 20_2

3. Weight updating phase: Winning neuron and its neighbor neurons
updates their weights

wi(n+1) = wj(n) +1(n)hj i) (n) (24 = w)) (3:3)

Repeat until no change in feature map & Terminate
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For a specified neural network of a — b architecture, an input vector is
denoted as {1, x9,...7, }, weight vector is denoted as w;j and output vector
is denoted as {01, 09, .....0p}. The winner neuron determines the topological
neighborhood h;;. distance is denoted by d;;, that is the lateral distance
between winner and excited neurons j. wj(,) acts as forgetting term to stop
when process leads to infinity. 7 is learning rate that should be decreased
gradually with time n.

An interesting aspect of unsupervised systems is competitive learning, in
which the output neurons compete among themselves to be activated, with
the result that only one neuron is activated at one time, that is called the
winner neuron [17]. The learning is allowed only for winning neuron, and the
resulting algorithm is referred as winner-takes-all learning method, where
competition can be implemented by having lateral inhibition connections
between the neurons and those neurons are forced to organize themselves,
hence such a network is referred as a Self Organizing Map.

3.3 Perturbation based Privacy Preserving SOM
Clustering-Horizontal

In perturbation based methods privacy preserving properties are the results
of perturbation, where attribute values of individual entities are perturbed or
distorted so that the individually identifiable (private) values are not directly
revealed. Hence the privacy of an individual attribute values is preserved as
explained in chapter 1. The perturbation is applied on the input attribute
72" by additive perturbation method, where an individual attribute value
is distorted by adding a random noise r. The perturbed value of 7x” is
represented as ”"x + r”, that will be disclosed as input instead of "z”. In
general perturbation technique, an individual does not know the direct input
sent by another individual other than the data shred with perturbed values.
Perturbation based privacy preserving in SOM clustering for horizontal data
distribution is proposed and Horizontal-PPSOM algorithm is given below.
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Algorithm 2 Privacy Preserving Horizontal-PPSOM Algorithm
Partition: Horizontally Partition dataset & distribute to Party A & B.
Perturbation: Perturbing data by adding random noise r to each input x.
Initialization: Initialize random weights and input parameters.

For all training samples: {r, x5}

Step 1 : Competitive Phase:

(1.a) For Each output layer node o; Party A computes

37wy —wg)” (3.4)

Party B computes

Z (z; — wfj)2 (3.5)

ma<j<ma+mp

(1.b) Secure Sum: Computed by Party A and B for each output layer

node o;
0; = 0;1 + 02 = \/Z (%‘ - wfj)Q (3.6)
J

(1.c) Winner Neuron: For Each output layer node o; find winner neuron
¢ with minimum distance among [ output neurons.

i = argmin(ol, ...,ol) (3.7)

Step 2: Co-Operation & Weight Updation:
For Each output layer weight wy;, neighborhood function h;; is computed by
a party holding input pattern z;. If 7 < m4 then Party A holds input z;
and A computes

wfj — wfj =+ nhjvi(l‘j — ’w;)]) (38)
If my <j <mu+mp then B holds input z; and B computes

wfj — wfj + 77hj7i($j — wfj) (39)

Until Termination Condition

3.3.1 Process of Horizontal-PPSOM Algorithm

In this method the data set is partitioned horizontally and distributed to each
party, hence parties hold only few records of entire dataset. Input is shared in
a perturbed manner without violating privacy of original data. Process flow
diagram is given here followed by the steps in Horizontal-PPSOM clustering.
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Figure 3.2: Process flow diagram of Horizontal-PPSOM Clustering
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Partitioning: Partitioning the data set in horizontal style and distribute
data set to predefined number of parties.

Perturbing: Perturb data items, that means adding some random noise
generated from a normal distribution to the specified data items of
which privacy to be preserved in data set and form a new data set with
perturbed values in place of original values.

Initializing: Initialize all weights and required inputs before start clus-
tering

Training: Train all the samples located at each party , find winner
neuron depending on minimum euclidean distance between nodes at
each party
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e Weights Updating: Modify weights of winner neuron and its neighbor
neurons, then re initialize weights to the network and repeat until all
rows of each partition at each party mapped into clusters.

e Termination: Terminate when all data entries of all parties are mapped
to any of the clusters, hence Horizontal PPSOM process ends

3.4 Cryptography based Privacy Preserving
SOM Clustering-Vertical

When data set is vertically partitioned each party holds only few entity items
of an entire record, hence there must be proper security to be applied to pro-
tect the privacy of individual information while parties exchange information
to compute necessary calculations. The proposed algorithm adopt cryptog-
raphy based approach of exchanging information between parties where the
requires information is shared among parties in a secret manner. In this
section we present a privacy preserving distributed algorithm for SOM that
follows vertical partitioning and it is composed of one security module, which
is used to compute the square root of sum of two numbers securely. The pro-
posed Vertical PPSOM Algorithm is given below.
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Algorithm 3 Privacy Preserving Vertical-PPSOM Algorithm

Partition: Dataset is vertically partitioned and distributed to party A & B.
Initialization: Initialize random weights to small random numbers.
Repeat for All Training samples:{z 4,25}

Stepl: Competitive stage:

(1.1) For Each output layer node o; Party A computes it’s output using my4

0i1 = Z (z; — wfj)2 (3.10)

Party B computes computes it’s output using mg

00 = Z (z; — wfj)2 (3.11)

ma<j<ma+mp

(1.2) Two parties A and B jointly compute output for each output layer

node o;.
0; = 0;1 + 0;9 = \/Z (l'j—ng)Q (312)
J

(1.3) For Each output layer node o; Find the winning neuron ¢ among all [
output neurons.

Winner(i) = argmin(oy, ..., 0;). (3.13)

Step2: Cooperation and weight updating stage:
For Each output layer weight wj;, neighborhood function f;; centered around
winning neuron ¢ is computed based on which party holds the input pattern
l‘j.
If 7 < my4 then A holds the input attribute z; and A computes

wg; < wi; + nh;i(x; — wioj) (3.14)
If my < j <ma + mp then B holds input attribute z; and B computes

wiy <= Wi+ nh(r; — wy;) (3.15)

Until(termination condition)

The input of Verticall PPSOM algorithm is ({xa,zp}) where Party A
holds z 4, while zg is held by party B. The output of Vertical PPSOM algo-
rithm is set of connection weights {wfj |Vje{l,2,...,a},Vie{1,2, ...,b}} )
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3.4.1 Process of Vertica-PPSOM Algorithm

The main idea of vertical PPSOM algorithm is to secure each step of Non
Privacy Preserving SOM algorithm comprises of two main stages, Compet-
itive Stage and Cooperation Stage which include Weight Updating Stage
where parties secretly share their individual shares or outputs at each stage.
The process flow diagram of Vertical-PPSOM algorithm is presented below
followed by steps of the process.

Figure 3.3: Process of Cryptography based privacy preserving in SOM

- Dataset

Data of Partitioning
(Vertical)

Data of

Party A Party B

Updating
Weights by
Party Aor B

! 1
! 1
! L]
! Initialize !

PartyA [ i weights T Party B
Output @, | : Output &,
! 1
[ : . [y
! 1

]

! SOM Clustering i
i 0,=0,+0; '
! ;
| !
! 1
! ]
: ¥ :

Party A Updates ! Finding Winner i Party B Updates
Weights X Neuron : weights
ifj =, | ' if oy < j

' : = M, + g
| !
! 1
| !
| !
1

! 1
| !
! 1
| !
! 1
| !

__________________________

Termination

1. Partitioning: Vertically Partition the data set into predefined number
of vertical partitions and distribute between two parties A & B

2. Initializing: Initializes random weights and input parameters
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3. Competitive Stage : Individual outputs are computed at Party A &
B then winner neuron is declared depending on the euclidean distance
equation of algorithm, after outputs are Combined using Secure Sum
Algorithm.

4. Cooperative & Weight Updating Stage: Party A & B update their
weights privately using neighborhood function, depending on which
party holds winner neuron and it’s related input.

e to maitain privacy of their inputs, two parties randomly share
their results in encrypted form so that no party able to derive
original values of other party.

e cach party holds a "random share”, means the intermediate result
computed as sum of two random numbers and shares with other

party.

e The process can securely carry forward the random shares in order
to compute results and combine results of two parties.

5. Re Initialize updated weights and Repeat the process of Vertical PP-
SOM until all data samples located at each party are mapped into any
cluster.

6. Terminate the process of Clustering

3.4.2 Securely Computing Sum of Square Root of Two
Numbers:

The proof of a secure distributed algorithm (protocol) for computing square
root of sum of two numbers is given in this section. In this protocol each
party hold some share of the square root and the secure sum algorithm helps
them to compute square root of sum of their shares. Considering input z; of
party A and input z of party 2, the output \/z; + 5 is securely computed
and then shared between two parties [16].
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Algorithm 4 Secure sum of square root of two numbers
Step 1: For Each node ¢ such that 0 < ¢ < 2n, where n is a small integer,
a random number R is generated by Party A computes its random share.

m; =z, +i— R (3.16)

Step 2: Each input m; is encrypted by party A using ElGamal scheme, by
adding new random number and gets an encrypted value pair En(m;, ;).

Party A sends an encrypted value pair En(m;,r;) in incremental order of i.
Step 3: Now Party B choose En(my,,r:,) and perform full decryption to

get value of m,,.
My, = \/T1 + Ty — R. (317)

R is known only to party A and m,, is known to only party B. Finally sum
of square root of two numbers is computed using

My, + R = VI + To (318)

3.4.3 Securely Computing Combined Output in Vertical-
PPSOM

This section gives steps in securely finding an output at every out put neuron
0;, which is the euclidean distance between input and output neurons in SOM.
i is the number of output neurons, j is number of input neurons, z; is input
vector and wy; is the weight vector. m4 = party A features and mp = party
B features.

02 +0;1 = Z — wy; 4 E-R|+R
Jj<ma
= Z i —wh) +k
Jj<ma

Zj<mA (‘/L.J' - U);)j)2 +

2
. — o,
mA<j<mA+mB (xJ wz])
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Here o;; is the random share of Party A that is R, and 0;, is the random
share of Party B. In equation we have k, which is index number of encrypted
messages sent by party A and it is computed by Algorithm 3, which is equal

2
to ZmA<j§mA+mB ('%‘.7 - wz]) :

3.5 Experiments & Results:

All the experiments are undertaken for both Horizontal-PPSOM and Vertical-
PPSOM algorithms on 4 different data sets taken from UCI machine learning
repository [9]. Description of data sets used in experiments is given below.

Dataset No of Instances | No of attributes | No of Classes
Iris dataset 150 4 3
Glass Identification 214 10 7
Wine dataset 178 13 3
Seeds dataset 210 7 3

Table 3.1: Description of Data sets used in Horizontal PPSOM and Vertical
PPSOM

3.5.1 Results of Horizontal-PPSOM

Horizontal PPSOM algorithm is implemented in MATLAB R2013a and com-
piled with the help of SOM toolbox. The results are shown for 200 epochs,
weights are initialized as uniformly random values in the range [—0.1,0.1] and
Learning rate 7 is taken as 0.1 for all the experiments of Horizontal PPSOM
method. The results are presented below for Horizontal-PPSOM Clustering.
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Figure 3.4: Horizontal-PPSOM Clustering for Iris Dataset
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Figure 3.5: Horizontal-PPSOM Clustering for Seeds Dataset
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Figure 3.6: Horizontal-PPSOM Clustering for Glass Dataset
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Figure 3.7: Horizontal-PPSOM Clustering for Wine Dataset
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3.5.2 Time complexity and Accuracy of Horizontal-
PPSOM

A table and a time comparison graph are given below, for privacy preserving
SOM execution time compared with non privacy preserving SOM execution
time drawn for four data sets. The results shows acceptable execution times
while preserving privacy.

Data set IRIS | Glass | Wine | Seeds
SOM Execution Time 2.805 | 2.905 | 2.853 | 3.128
Horizontal PPSOM Execution Time | 3.146 | 3.249 | 3.26 | 5.487

Table 3.2: SOM execution time (Vs) Horizontal PPSOM execution time

Figure 3.8: SOM Execution Time (Vs) Horizontal PPSOM Execution Time
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Mean absolute errors observed in SOM and Horizontal-PPSOM for four data
sets are given in a table followed by a comparison graph, where an acceptable
accuracy has been observed by Horizontal-PPSOM.

Data set IRIS | Glass | Wine | Seeds
MSE of SOM 0.093 | 0.056 | 0.064 | 0.048
MSE of Horizontal PPSOM | 0.116 | 0.06 | 0.084 | 0.071

Table 3.3: Mean Absolute Error of SOM and Horizontal PPSOM

31



Figure 3.9: Mean Absolute Error of SOM and Horizontal PPSOM
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3.5.3 Performance Analysis of Horizontal-PPSOM:

In horizontal partitioning of data, there will be always a flexibility of choosing
the number of rows (samples)to be evaluated by the data miner and there
will not be any missing of class label, attribute or entity while distributing
the data between the parties. The communication cost in privacy preserving
methods is always high compared to non privacy preserving methods. If the
data is distributed and two or more parties to exchange information then we
observe that there is definitely an increased communication cost along with
the storage cost of order O(nm).

3.5.4 Privacy Analysis of Horizontal PPSOM:

This is the privacy preserving approach where parties doesn’t reveal direct-
ly to each other. The only information they communicate or share with
each other is the perturbed data and updated weight vector w; which can-
not effect privacy of an individual. The major effect of privacy preserving
can be observed when data set is perturbed, partitioned and distributed a-
mong various parties involved in the process of clustering. The privacy in
Horizontal-PPSOM is analyzed using the metric results given in below table,
and privacy issues/concerns when clustering is also explained in view of pri-
vacy violation aspects.

e Input level privacy:If a party tries to learn target party’s input data:
This is the major attack can be happened in any distributed mod-
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Table 3.4: Privacy Metrics Results and Analysis of Horizontal-PPSOM

Privacy Metric

Range&Level

Metric Result

Privacy Level

priv.NVAR | [0, 1] (>0.5=High) 0.26 High
priv_CPL [0, 1] (<0.5=Low) 0.80 Low
priv_PID [0, 1] (<0.5=Low) 0.94 Low

el. The Horizontal PPSOM algorithm gives the better privacy level
measured using privacy metric priv_NV AR. When a data set is hor-
izontally partitioned, all the entities and class labels are known to all
the parties other than the real values of the samples residing at one
party to other party. If one party tries to attack on other’s input data
then the main privacy preserving method used in our Horizontal PP-
SOM is Perturbation of the input values before giving them to the next
level computations in the model. Hence we prove that when the data is
perturbed no party can try to learn or rebuild the original input values
given by the owner party. This is applied for all the parties involved in
the model aiming for combined result. The privacy level is proved high
when the normalized variance between original and perturbed data is

high.

e Process level privacy:If any party tries to retrieve intermediate out-
comes: 'This attack can be happened when any party is curious to
know the process of computing intermediate outputs of an other par-
ty. A party may eager to know the inputs of other party based on
intermediate outputs or the weights came from the other party. We
prove that there is no way of determining exact values of the inputs
even though the intermediate outputs and weight values are known by
the other party, because any party gives the output O;; using its own
perturbed input values and randomly generated weights. Hence There
is no chance of knowing the exact input values even the other party
knows the intermediate output values of the other party. In same way
the weights come from one party to other are the updated weights af-
ter completion of computing the output at that party. Hence the exact
weights used by one party to other cant be known.

e Output level privacy:If any party tries to predict inputs from the
combined output: This can be done by any party involved in the com-
bined model. We assure the privacy in Horizontal PPSOM at output
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level by proving the that any perturbed value at input level can’t be
reconstructed from the combined output, because of the privacy pre-
served at input and level and the process level. By any chance if a party
tries to learn all the intermediate values and mimics as owner to repli-
cate any of the input and weight values, even then there is no chance of
coming up with exact values, because of input level perturbation and
regular weight vector modification.

3.5.5 Results of Vertical PPSOM

Vertical-PPSOM algorithm is implemented in Matlab 2013a with the help of
SOM tool box. Weights are initialized to uniform random numbers in the
range [—0.1,0.1] and learning rate = 0.1.

Figure 3.10: Vertical-PPSOM Clustering for Iris Dataset
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Figure 3.11: Vertical-PPSOM Clustering for Seeds Dataset
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Figure 3.12: Vertical-PPSOM Clustering for Glass Dataset
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Figure 3.13: Vertical-PPSOM Clustering for Wine Dataset

Vertical- PPSOM Clustering for Wine Dataset
45 T T T T T

35 Bl

Weights

w
T
I

//

251 B

2 I I I I I I I
4 4.5 5 55 6 6.5 7 75 8

Cluster Centers

3.5.6 Time complexity and Accuracy of Vertical-PPSOM

A table and a time comparison graph are given below, for privacy preserving
SOM execution time compared with non privacy preserving SOM execution
time drawn for four data sets. The results shows acceptable execution times
while preserving privacy.

Dataset | SOM Run Time | Vertical- PPSOM Run Time
Iris 3.96 6.42
Glass 3.26 6.03
Wine 2.67 8.27
Seeds 6.73 9.26

Table 3.5: SOM Average Time Compared with Vertical PPSOM Average
Time
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Figure 3.14: SOM Run Time Compared with Vertical PPSOM Run Time
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Mean absolute errors observed in SOM and Vertical-PPSOM for four data
sets are given in a table followed by a comparison graph, where an acceptable
accuracy has been observed by Vertical-PPSOM

Data Set | SOM Error | Vertical-PPSOM Error
IRIS 2.03 4.05
Glass 2.25 3.71
Wine 2.21 4.45
Seeds 2.63 3.56

Table 3.6: SOM Error Compared with Vertical PPSOM Error
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Figure 3.15: SOM Error Compared with Vertical PPSOM Error
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3.5.7 Performance Analysis of Vertical PPSOM:

Accuracy of our algorithm is satisfactory while preserving privacy. Cryptog-
raphy based approaches perform encryption and decryption operations for
required number of times, which causes high percentage of communication
overhead and communication time. Privacy preserving methods may also
leads to other added costs like additional storage cost of randomly generated
messages by all parties involved in overall process.

3.5.8 Privacy analysis of Vertical PPSOM:

As parties have only few information of the entire record, they exchange in-
termediate results to each other in order to get a combined output. If there
are two parties p; and po, first p; do the necessary calculations to decide the
winning neuron and sends its local output to party 2 in a secret way here
we use FlGamal scheme of public key cryptography with which data can be
send to any other party in an encrypted format. Then party 2 receives only
encrypted message sent by party 1 then decrypts it based on the keys gen-
erated earlier with mutual understanding between parties. Hence we assure
privacy in an effective acceptance of performance of the algorithm based on
the metrics used to evaluate privacy given in table below. privacy in Vertical
PPSOM is explained with respect to the privacy concerns at the expected
privacy violation aspects.
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Table 3.7: Privacy Metrics Results and Analysis of Vertical-PPSOM

Privacy Metric

Range & Level

Metric Result

Privacy Level

priv.NVAR | [0, 1] (>0.5=High) 0.93 High
priv_CPL [0, 1] (<0.5=Low) 0.81 Low
priv_PID [0, 1] (<0.5=Low) 0.24 High

e Input level privacy:If a party tries to learn target party’s input data:
This is the important aspect of preserving privacy in vertical partition-
ing algorithms. Only few features/values present at each party and
it is always a big challenge when it comes to combine the input and
compute combined results in vertical data distribution. The Vertical
PPSOM algorithm gives the better privacy assurance compared to the
other existing PPSOM algorithms. When a data set is vertically parti-
tioned, all the entities and class labels are un known to all the parties
other than the real values of the features residing at each party. If one
party tries to attack on other’s input data then the cryptography based
privacy preserving algorithm assures the privacy of input having used
encrypted form of sharing inputs to other party. Vertical PPSOM is
assuring the privacy of the input values, before giving them to the next
level computations in the model. Hence we prove that when the data
is encrypted and distributed, then no party can try to learn or rebuild
the original input values given by the owner party. This is applied for
all the parties involved in the model aiming for combined results.

Process level privacy:If any party tries to retrieve intermediate out-
comes: 'This attack can be happened when any party is curious to
know the process of computing intermediate outputs of an other par-
ty. A party may eager to know the inputs of other party based on
intermediate outputs or the weights came from the other party. We
prove that there is no way of determining exact values of the inputs
even though the intermediate outputs and weight values are known by
the other party, because any party gives the output O;; using its own
encrypted input values and randomly generated weights. Hence There
is no chance of knowing the exact input values even the other party
knows the intermediate output values of the other party. In same way
the weights come from one party to other are the updated weights af-
ter completion of computing the output at that party. Hence the exact
weights used by one party to other cant be known.
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e Output level privacy:If any party tries to predict inputs from the
combined output: This can be done by any party involved in the com-
bined model. We assure the privacy in Vertical PPSOM at output level
by proving the that any perturbed value at input level can’t be recon-
structed from the combined output, because of the privacy preserved
at input and level and the process level. By any chance if a party tries
to learn all the intermediate values and mimics as owner to replicate
any of the input and weight values, even then there is no chance of
coming up with exact values, because of input level perturbation and
regular weight vector modification.

3.5.9 Complexity Analysis and Scalability of PPSOM:

In both Horizontal and Vertical PPSOM (HPPSOM and VPPSOM), dataset-
s used are with instances up to 300. The computational complexity has
shown that, if the number of parties increased and number of secure com-
putations are done in every level of communication, hence the complexity
is more when compared to the non privacy preserving SOM clustering. In
Horizontal-PPSOM we use perturbation based privacy preserving hence the
computational complexity increases for every data instance at the perturba-
tion level. In Vertical PPSOM we use cryptography based approach hence
the computational overhead is noticed. We test these methods for a larger
dataset (cloud data with 2053 instances and 10 attributes), and could not
score acceptable accuracy and privacy level.

3.6 Chapter Summary

We presented Privacy preserving SOM Clustering methods and algorithms
for both perturbation based approach and cryptography based approach over
horizontally and vertically distributed data among multiple parties. Horizon-
tal PPSOM and Vertical PPSOM are two major algorithms we implemented
and presented in this paper. In both horizontal and vertical versions of SOM
clustering, our methods are adopted for perturbation based and cryptogra-
phy based solutions respectively. In general most of the privacy preserving
methods compromises with the accuracy, but our model equally ensures the
privacy and accuracy. We modified the original SOM algorithm to present
Horizontal-PPSOM and Vertical-PPSOM algorithms for both horizontal and
vertical versions. The main objectives of proposed algorithms is to securely
clustering and computing combined outcomes of two different parties when
dataset is horizontally and vertically partitioned. Horizontal-PPSOM and
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Vertical-PPSOM could gain considerable privacy level and acceptable com-
munication overhead without violating their privacy. We conclude that both
perturbation based method and cryptography based methods we implement-
ed in our algorithms for clustering in privacy preserving SOM provides the
better privacy in distributed environment.
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Chapter 4

Privacy Preserving Fuzzy
C-Means Clustering

In this rapidly growing distributed computing world usually to share sensitive
data to others requires strong techniques to ensure privacy of data. The in-
formation about people and organizations needs to be shared when a general
outcomes are to be collected, hence the privacy concerns of their data must
be addressed. The collaborative communication methods and computational
schemes are capable of information exchange between multiple parties aimed
for combined results[8][14]. Collaborative fuzzy C-Means clustering is an effi-
cient method for discovering combined structure within finite group of differ-
ent data sites where the data resides at different locations. Fuzzy clustering
enhances the efficiency of the model without compromising the privacy at
input level of the privacy preserving model. Using fuzzy sets in data mining
techniques like clustering, gives good accuracy compared to other clustering
methods, as every data point is the member of any of the group with a mem-
bership degree[24]. This chapter gives detailed description of collaborative
fuzzy c-means clustering in distributed data environment to preserve privacy.

4.0.1 Fuzzy Set Theory

Fuzzy set theory helps to represent the uncertainty, possibility and approx-
imation of a crisp dataset. In general fuzzy logic tries to imitate natural
human ability of reasoning. A fuzzy set consists of set of fuzzy membership
values u; ranges in between [0, 1], that are derived by mapping set of real
numbers (z;). A fuzzy membership function can be represented as set of
fuzzy values {uy /1, us/x0, ..c.cttn /x5 }.
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4.1 Fuzzification Method

The ability of converting a given set of numerical data values (crisp data) to
fuzzy membership values (degree of membership). For a given universe of X
a fuzzy set A is derived with the help of fuzzy membership function p(x).
if xin A;
pa(z) =140, if xin A;

0 < palz) <1, ifxis partly in A;

The process of fuzzification and defuzzification of a crisp dataset shown in
diagram and an example fuzzy set derived from a crisp set is given below.

Crisp Dataset

Original Value Crisp Input

Fuzzification

|¢

Membership Value Fuzzy Output

Defuzzification

|¢

Original Value Crisp Output

Figure 4.1: The Fuzzification and Defuzzification Process

Table 4.1: Fuzzy membership degree values of a sample crisp dataset

Person Name | Height | Crisp(Boolean) | Fuzzy(Membership Value)
Person 1 205 1 1.00
Person 2 182 1 0.81
Person 3 175 0 0.38
Person 4 167 0 0.10
Person 5 155 0 0.04

4.2 Fuzzy C-Means Clustering

Fuzzy C-Means clustering is a fuzzy based clustering method designed and
developed by Dunn in 1973 and enhanced by Bezdek in 1981[6] and has
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become efficient tool of analyzing and visualizing data. A fuzzy clustering
method devices fuzzy partitions into c¢ clusters, where all the data points
are allowed to become member of more than one cluster. The Fuzzy C-
Means Clustering brings solution of minimizing degree of membership using
an objective function.

Tren(U, V) = {D D (uiw)™ ||z — wil[*} (4.1)

1=1 k=1

The fuzzy membership function derives the partition matrix w;x € [0, 1]
and cluster center v; for ith cluster with a non negative fuzzy coefficient
value m = 1. The fuzzy c-means clustering mainly works with two steps,
where in first step optimal membership function will be estimated and in
second step estimates the cluster centers. The cluster centers are fixed when
ever a membership function is estimated and cluster centers are fixed when
membership function is estimated. The FCM follows an iterative procedure
as represented in FCM algorithm

Algorithm 5 Fuzzy C-Means Clustering Algorithm

Input: Data set X, No of clusters C' and fuzzy coefficient m.

Step 1: Initialize the membership matrix U = [u;;], U(0).

Step 2: Compute Cluster centers C'(k) using membership matrix U (k).

n m .
Zi:l Uy Ty

C; = T (4.2)
! >t Uys
Step 3: Update membership matrix from U (k) to U(k + 1).
1
Uij = 7 (4.3)

¢ (leal
2i=1(fa=an) ™

Continue Step 2 and 3 until termination.

4.2.1 Process of Fuzzy C-Means Clustering

The process of Fuzzy C-Means Clustering algorithm explained in following
steps.

1. Computing membership matrix u;; by initializing c centroids and com-
puting membership degrees of elements in order to form clusters, which
is computed as a function of closer degrees.
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2. Updating the cluster centers as weighted average of degrees of mem-
bership to each cluster. The process continues until termination

4.3 Collaborative Clustering

With respect to privacy in distributed computing, the scheme of collaborative
computing has been introduced that creates a purposeful communication
between different data sites. In collaborative computations of distributed
data, the individual data sites to share the information and reconciled in
order to get final outcomes. The private local computations can be done
at their own sites but to collaborated for final results, which is the best
way of maintaining privacy of inputs at each site. The sites to be mutually
collaborate and carry forward all the required computations till process is
completed [33].

In collaborating approach of clustering there will be two or more number
of data sites and at each data site a common structure can be revealed by
assuming same number of clusters for each individual data site[7]. In process
of collaboration at a particular data site a local level structure of clustering
is discovered after receiving the results from other site. The local data site
can update the structure according to the data it owns at local level and it’s
local level findings.

4.3.1 Modes of Collaboration

In collaborative scheme each data site functions like a separate computing en-
tity and restricts to share data outside the site, because of (i) privacy concerns
and (ii) feasibility of their technical constraints. Data sites in collaboration
exchange only the local outcomes instead of input attribute values. There
exists two modes of communication between sites in collaborative approaches
as follows [34):

e (A) centralized mode: in this mode of interaction, considering one data,
say D; , initialized to reconcile the local findings (its local model) with
the modeling results available at all remaining datasets Dy, Dy, , D; —
1,D;+1,.., Dp.

e (B) distributed mode: in this mode all data sites are allowed to interact
between each other and the resulting local outcomes or local models
can be shared. Each data site affects each other only when optimizing
their parameters based on the local findings of each other.
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4.4 Collaborative Fuzzy C-Means Clustering

Collaborative fuzzy C-means clustering was introduced by Pedrycz, moti-
vated by reasonable and useful features of the collaborative computational
method applied for fuzzy based clustering. It is observed that the method
especially adopted for enhancing quality of unsupervised learning and ac-
quiring better accuracy by using fuzzy based clustering[8]. There are two
basic factors that are related to granularity of data in fuzzy based methods,
(i) granularity is conveyed by prototypes (cluster centers) (ii) membership
degree values are captures by partition matrix (membership matrix). If pro-
totypes are communicated then partition matrix can be developed and if
partition matrix is being known prototypes are generated in collaborative
clustering. These two important outcomes (prototypes and partition ma-
trix) are the communication sources in collaboration and also privacy pre-
serving channels in complete process of collaboration. The data sets residing
at each data site shares the same feature space and a collaboration is es-
tablished by exchanging required outcomes between two or more data sites.
The overall communication is carried through these granular interfaced in
collaboration[36]. Structure of a granular interface and their communication
in collaboration presented in diagrams below.

Infarmationiz@Enuk
Interface
e Partition Watrices &
y -
Murne ric - Prototypes
Cata d
Fa

Figure 4.2: The granular interface of the numeric data in collaborative clus-
tering
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Figure 4.3: The collaboration between granular interfaces of the numeric
data

Initially, FCM algorithm is run independently at each data site that hap-
pens without any collaboration[41]. After FCM has terminated at each site,
processing stops and the data sites communicate their local findings. This
communication needs to be realized at some level of information granularity.
The effectiveness of the collaboration depends on the way how one data site
communicates information granules with another data site [35].

4.4.1 Method of Fuzzy Collaborative Clustering

To explain fuzzy collaborative clustering method carried by different data
sites (1,2,...P), first consider an *h prototype or cluster center at any data
site. The sequence of prototypes generated by different data sites (parties)
in collaboration is denoted as v;[1], v;[2], ...v;[P]. Now, in order to form fuzzy
partitions for n dimensional data set over j'h coordinate the collaboration
method uses the form v;j[1],v;5[2],...v;j[P]. The splitting is done based on
the fuzzy coefficient m, where the values are divided into sets less than v;j
and greater than v;j. These fuzzy partitioning can be done over horizon-
tal and vertical data distribution and forms corresponding fuzzy partitions
Vi1, Vig, ..., Vi and combined together by taking their Cartesian product.

‘/; — H(‘/;la‘/;%'“)‘/;n) (44)

V; is the granular prototype of the i'h cluster where it’s granular information
is reflected by reconciling the collaborative outcomes from different data sites.
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For a given prototype of :'h cluster derived as result of collaboration, where
each membership degree is obtained by the equation given below.

1

C L —
SRR

4.5 Privacy Preserving Collaborative Fuzzy
C-Means Clustering-Horizontal

Here the privacy preserving collaborative fuzzy C-Means clustering for hori-
zontal data distribution is proposed which is denoted as Horizontal-PPFCM.
This process makes use of horizontal collaboration between number of parties
involved in collaboration to form specified number of clusters C. When data
set is horizontally partitioned and distributed between all parties, then each
party holds set of horizontal records and establish a horizontal collaboration.
The process preserve the privacy of all parties and collaborative clustering is
done without directly exchanging the sensitive information between parties.
Communication flow of horizontal collaboration for privacy preserving FCM
clustering is presented in below diagram.

L4

'O
2O
'O
"O

¥

Parties {Data Sites)

L 4

Yoy

Mo Collaboration Collaboration

Figure 4.4: Process of privacy preserving collaborative clustering - Horizontal

First the communication path is established and parties are informed
about granular prototypes generated at other sites. Each data site does it’s
own clustering using FCM, while considering structural findings received from
other sites, then share the local outcomes to next party. Each site proceeds
with its independent computing by considering outcomes communicated by
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other parties. All the parties communicate their local findings and set up
new constraints for the next phase of the FCM clustering in collaboration
process. The next phase of computing is overall collaboration where collab-
orative computations are carried out and continued until no further change
in the complete structure is reported. Algorithm of privacy preserving col-
laborative fuzzy c-means clustering for horizontal data distribution is given
below.

Algorithm 6 Privacy Preserving Collaborative FCM Clustering - Horizontal
Partitioning: Data set is horizontally partitioned and distributed between
n parties.

Initializing: Initialize number of clusters ¢, membership matrix wu;, objec-
tive function Q[it], fuzzy coefficient m = 2 & collaboration matrix «[ii, jj|.
1. FCM Clustering: For All Parties

The first party p; computes prototype v;; vectors for its data and partition
matrix uy, for all C' clusters, using FCM algorithm.

2. Collaboration Phase:

2.a: Now party p; sends it’s prototype v;; vectors and partition matrix w,
to next party ps through collaboration matrix alii, jj]

2.b: Now party p, computes partition matrix u;, and prototype v;; vectors,
then sends to the next party p, through «fii, jj].

2.c: Now party p, computes prototype V[ij] and partition matrix Ulij],
then minimizes index of final collaborative function Q[i7] using

Qlii] = Y > wdlildi i+ Y alii, gl Y > (ualii] —uilij])? (4.6)
i=1 k=1 ji=1,jj#ii i=1 k=1

Repeat Until Termination (End of Collaboration)

4.5.1 Process of Horizontal-PPFCM

Data set is horizontally partitioned and distributed between n parties Initial
Party (IP), assigns all its members to the clusters using FCM and the process
moves to the next party with updated prototypes of the first party. Next
Party 2 do same fuzzy ¢ means clustering as party 1 did, until all its members
are allocated to a cluster, then sends new updated prototypes to the next
party. After all parties assign their members to the clusters, party n computes
and returns the final results through collaboration matrix. The process flow
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diagram of privacy preserving collaborative FCM clustering for horizontal
data distribution is presented here.

Centers) of party 1 Cluster Centers)

+Membership «Prototypes (Cluster || +Membership Matrix

Matrices of party 1 Centers) of party 2 J (Collaboration
' matrix)

*Membership
Party 1 Party n

* Prototypes (Cluster Pﬂl’ty ) ] *Prototypes (Final

Matrices of party 2

Figure 4.5: Process flow of Privacy Preserving Collaborative FCM
Clustering-Horizontal

4.6 Privacy Preserving Collaborative Fuzzy
C-Means Clustering-Vertical

The vertical way of collaborative clustering deals with vertical partitioning of
data set, where a data set is vertically partitioned and distributed to parties
to participate in collaboration. Each party holds disjoint subsets of pattern-
s and these patterns are joined in process of collaboration for finding local
outcomes. These disjoint patterns will be in same feature space and com-
monly adopted for collaborative clustering to join local findings. Vertically
distributed mode of collaboration is presented in below diagram.

Site 1 Site 2 Site i Site P

1
. H ® ®
. M ® ®
. M ® ®
. M ® ®
. M ® ®

Figure 4.6: Process of Privacy Preserving Collaborative Clustering - Vertical

Yertical Collaboration
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Here the collaborative communication carried further depending on pro-
totype level where as same objective function and same fuzzy coefficient are
used for individual prototypes[12]. The collaborative FCM clustering algo-
rithm proposed for vertical data distribution is given below. In this process

Algorithm 7 Privacy Preserving Collaborative Fuzzy C-Means clustering
Algorithm - Vertical

Data Partitioning: Data set is partitioned into P number of vertical par-
titions and distributed between 1,2, ...P parties.

Initializing: Number of clusters C', Objective function, fuzzy coefficient
m = 2 and collaboration matrix S[I, m].

FCM Clustering:(Phase-I)

Step-1: For all Parties holding subset of patterns X, X,, X3, , X, Random-
ly initialize partition matrices U[1],U][2],...U[P].

Step-2: Compute prototypes Vi, Vig,...Vy, and Partition Matrices
Uih UZ‘Q, Uzk:

1
Uik = ~C Tme—uilly 22y
2= Gy 1)
Collaborative Clustering: (Phase-II)

Collaboration Matriz: Prototypes V;[l], partition matrices U;[k] and col-
laboration matrix B[/, m] combine to minimize objective function Q[ii].

(4.7)

X[ e p c X[l
Qlid) = > > wildz N+ > Bllm] > Y ug[lllvill] - vilm]|]* (4.8)
k=1 i—1 m=1,ml i—1 k=1

Until termination.

the prototypes v;[1], v;[2], ...v;[j] of i*h cluster and corresponding membership
matrices u;[1],u;[2], ..., u;[P] are computed and joined through a collabora-
tive matrix S[l,m]. The objective function also referred as collaboration
index Q[éi] is used to compute final outcome for I'h data site. All parties
in sequence collaborate to generate prototypes and partition matrices, then
combine them on collaborative objective function. The collaboration index
to be minimized and process terminates once all the elements get into C
number of clusters.
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4.6.1 Process of Vertical-PPFCM Algorithm

1. For all the parties from 1, 2.. P, of their respective data sites D[1], D[2],...D[P],
define number of clusters C, collaboration coefficient S that optimizes
the level of collaboration.

2. Initial phase: for each individual data site compute fuzzy c-means
clustering results individually in the form of prototypes v;[ii], 71 = 1,2, ..., c.

3. Collaboration phase: allow the individual results (prototypes)to in-
teract to form collaboration between the sets.

4. For each data site the objective function $[/,m| is minimized by con-
sidering prototypes and partition matrix communicated by other sites.

5. the process iteratively continued until termination condition of the col-
laboration.

Privacy preserving model and steps involved in vertically collaborative FCM
clustering is given here.

Fuzzy Partitioning of Individual Data Sites [Parties)

Fuzzy C-Means Clustering
Partyl
Partitionl

Fuzzy Collaborative FCM
Partitionl
Party2 e Prototypes of Prototypes of
Partition2 Partition2 Fartyl Party2

Figure 4.7: Privacy Preserving Collaborative FCM Clustering model - Ver-
tical

4.7 Experiments & Results

All the experiments are undertaken for horizontal and vertical collaboration
for fuzzy ¢ means clustering using Matlab2013a with help of fuzzy clustering
tool box. The results are presented for collaboration (preserving privacy) and
non collaboration (non privacy) based fuzzy clustering for Iris, Glass Identi-
fication, Seeds and Wine datasets. For all the experiments, fuzzy coefficient
m = 2 and the number of clusters are C' = 3.
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4.7.1 Results of Horizontal-PPFCM

The results of collaboration in Horizontal-PPFCM are presented for four
datasets. The following figures shows the individual performance of the
objective function of FCM and performance of the Collaborative objective
function of PPFCM clustering for datasets mentioned earlier (Iris, Glass I-
dentification, Seeds, wine). The performance of objective function is plotted
and compared between non collaborative (non privacy) and horizontal col-
laborative (privacy preserving) fuzzy C-Means Clustering.

Iris Dataset: The first two figure of this section shows the results of
non collaborative FCM and the performance of the objective function for
iris dataset. The next two figures shows the results for Horizontal-PPFCM
when the iris dataset is horizontally partitioned, where each party holds 75
samples each. Figures represents the collaborative clustering of iris dataset
along with the performance of the collaboration function.

FCM Clustering for Iris Data set
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Figure 4.8: FCM Clustering for Iris Dataset
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Figure 4.10: Horizontal-PPFCM Clustering for Iris Dataset
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Horizontal-PPFCM Clustering Performance(lris)
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Figure 4.11: Horizontal-PPFCM Collaborative Clustering Performance for
Iris Dataset

Glass Identification Dataset: Figures shows the non privacy pre-
serving FCM clustering and its performance of glass identification dataset
of 214 instances. Next figures gives the details of privacy preserving fuzzy c
means clustering performed on glass identification dataset, when data is hor-
izontally partitioned and distributed equal number of samples to two parties
(107 for each party). It also shows collaboration function performance while
finding the collaborative outcomes.
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Horizontal-PPFCM Clustering for Glass Dataset
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Figure 4.14: FCM clustering Performance of Glass Identification Dataset
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Figure 4.15: Horizontal-PPFCM Clustering Performance for Glass Dataset
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Seeds Dataset: Clustering and performance of non privacy preserving
FCM of Seeds dataset that has total 210 instances is shown in figures. Next
results are presented for privacy preserving version of fuzzy ¢ means clus-
tering on seeds dataset. The data set is partitioned into two half with 105
samples for each partition has been given to two parties, then trained for pri-
vacy preserving collaborative clustering and results are shown for PPFCM
clustering and its performance.

FCM Clustering for Seeds Data set
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Figure 4.16: FCM clustering of Seeds Dataset
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FCM Clustering Performance (Seeds Dataset)
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Figure 4.17: FCM clustering Performance of Seeds Dataset

Horizontal-PPFCM Clustering for Seeds Dataset
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Figure 4.18: Horizontal-PPFCM Clustering for Seeds Dataset
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Horizontal-PPFCM Clustering Performance(Seeds)
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Figure 4.19: Horizontal-PPFCM Clustering Performance for Seeds Dataset

Wine Dataset: These results are shown for wine dataset which has
178 instances. The FCM clustering and performance of objective function of
FCM clustering is presented on wine dataset. Next figures shows the collabo-
rative fuzzy ¢ means clustering of wine dataset, along with the performance of
collaboration function of PPFCM, when dataset is horizontally partitioned.
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FCM Clustering for Wine Data set

T T T T I I L
o] Data Points

Cluster 1
* Cluster 2
# Cluster 3

________________________________________________

Data Points

__________________________________

|
1.2 14 186 1.8 2 22 24 26 238

Cluster Centers

Figure 4.20: FCM Clustering for Wine Dataset
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Figure 4.21: FCM Clustering Performance for Wine Dataset

61



Horizontal-PPFCM Clustering for Wine Dataset
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Figure 4.22: Horizontal-PPFCM Clustering for Wine Dataset
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Figure 4.23: Horizontal-PPFCM Clustering performance for Wine Dataset
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4.7.2 Cluster Centers in Horizontal-PPFCM Cluster-
ing

Prototypes of the individual data sites of individual parties before collabo-
ration and after collaboration are presented in table below. In collaboration

Table 4.2: Cluster Centers in Collaboration of Horizontal-PPFCM
Dataset | Cluster Centers in Horizontal-PPFCM
Iris 0.6894 , 0.5824 , 0.3427
Glass 1.2510 , 4.2500 , 7.9774
Seeds 3.1884 , 3.1405 , 2.6950
Wine 0.7578 , 1.1637 , 2.3580

process, the prototypes (cluster centers) derived at individual parties are
shown in this table. It is also considered as the collaboration table generated
in the complete collaborative clustering process. The value of collaborative
coefficient «=2.0 that impacts on the performance of collaboration function.
The table shows the cluster centers reported for each dataset. The message
will be shared between parties until there will not be any noticeable change in
the pattern of collaboration. The results are feasible while preserving privacy
in the fuzzy collaboration process.

4.7.3 Time Complexity & Accuracy of Horizontal-PPFCM

Table shows the total execution time (Runtime) of FCM clustering and
Horizontal-PPFCM before and after collaboration respectively, for four dif-
ferent datasets. The run time increased with number of times collaborations
happened between parties.

Table 4.3: Runtimes of FCM and Horizontal-PPFCM

Runtime(in seconds) | FCM | PPFCM-Horizontal
Iris 0.218 3.671
Glass 0.323 20.75
Seeds 0.293 3.699
Wine 0.813 4.82
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Figure 4.24: Runtime Graph for Horizontal-PPFCM
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The accuracy of Horizontal-PPFCM with respect to the mean square
errors in collaboration is presented in following table. Mean squared error is
measured between two parties in collaboration process for 4 datasets.

Table 4.4: Mean Squared Errors of Horizontal-PPFCM

MSE Error | Party-1 | Party-2 | Collaboration
Iris 0.010 0.291 0.557
Glass 0.264 0.690 0.335
Seeds 0.009 0.393 0.487
Wine 0.003 0.516 0.415

Figure 4.25: Mean Squared Errors of Horizontal-PPFCM
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4.7.4 Privacy Analysis of Horizontal-PPFCM

Table 4.5: Privacy Metrics Results and Analysis of Horizontal-PPFCM

Privacy Metric | Range & Level | Metric Result | Privacy Level
priv_CS [0, 1] (<0.5=Low) 0.25 High
priv_.TC [0, 0] (< oco=Low) 1.11 High
priv_PS [0, o0] (< oco=Low) 1.00 High

e Privacy of Granular Information: The granular information mean-
s the input level outcomes to share with other party in collaboration
process. In PPFCM method the inputs are shared in the form of granu-
lar information of the input data. The cluster centers and the partition
matrices are shared between parties instead if direct input attribute
values. The fuzzy partitions and their cluster centers does not carry
any original or sensitive information to other party, hence the privacy
is well preserved in this phase. The privacy measured at this stage us-
ing cluster similarity priv_C'S where the similarity between the clusters
formed by the parties are compared and if the difference is Low then
the privacy is said to be high. The privacy level of Horizontal-PPFCM
has shown high level privacy in this input phase.

e Privacy of Parties in Collaboration: The main phase of collab-
oration process, where privacy of parties to be highly preserved is the
collaboration phase. Collaborating parties expect high privacy level in
collaboration phase as they share the information by exchanging proto-
types to each other. The privacy metric t-Closeness priv_1'C' is used to
evaluate the privacy level of parties, where the distribution of original
input values must be close to the distribution of the shared information
in collaboration. The difference (distance) between two parties must
be small to gain high privacy. The result shows low value and the high
privacy level for Horizontal-PPFCM in this phase.

e Privacy of Outputs in Collaboration: The output level is the final
phase where the combined results of the collaboration are published.
The collective output from any collaborative process must ensure pri-
vacy of parties involved. Privacy score priv_PS measures the privacy
level assured in collaboration. Privacy score indicates the privacy risk
increases with the sensitivity of information granules and their visibil-
ity in collaboration. Low visibility decreases the privacy risk and gives
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high privacy level. Horizontal-PPFCM shows the high privacy level by
showing low visibility of information in collaboration

4.7.5 Results of Vertical PPFCM

All the experiments are carried out for Iris,Glass,Seeds & Wine datasets.
Vertical-PPFCM algorithm has shown following results with collaboration
coefficient 8 = 2.0 for both parties. The results are derived before and after
collaboration, and the impact of party 1 on party 2 and impact of party 2
on party 1 in the collaboration process.

Iris Dtaset: When the iris dataset is vertically partitioned, each party holds
150 instances but only two attribute values resides at each party (sepal length,
sepal width at party-1 and petal length, petal width at party-2) class labels
Setosa, Versicolour, Virginica are known two both parties. Figures show the
collaborative clustering and the performance of collaboration function.

Vertical-PPFCM Clustering for Iris Dataset
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Figure 4.26: Vertical-PPFCM Clustering for Iris Dataset
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Vertical-PPFCM Clustering Performance(lris)
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Figure 4.27: Vertical-PPFCM Clustering Performance for Iris Dataset

Glass identification Data set: When glass identification data set
with 214 instances, is vertically partitioned and distributed to both parties
(Id number, RI, Na, Mg, Al at party-1) and (Si, K, Ca, Ba, Fe are at party-2).
Type of glass is known to both parties. The collaborative clustering results
are shown in figures.
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Vertical-PPFCM Clustering for Glass Dataset
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Figure 4.28: Vertical Collaborative FCM Clustering for Glass Dataset
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Figure 4.29: Vertical- PPFCM Clustering for Glass Dataset

Seeds Dataset: Seeds data set that has total 210 instances is vertically
partitioned into two partitions where party 1 holds area A, perimeter P,
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compactness C' = (4  w * A/P?) and party 2 holds length of kernel, width
of kernel, asymmetry coefficient. Class attribute length of kernel groove is
known to both the parties. results are shown in figures.

Vertical-PPFCM Clustering for Seeds Dataset
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Figure 4.30: Vertical Collaborative FCM Clustering for Glass Dataset
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Vertical-PPFCM Clustering Performance(Seeds)
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Figure 4.31: Vertical-PPFCM Clustering for Seeds Dataset

Wine Dataset: The data set with 178 instances is vertically partitioned
and distributed where party-1 holds Alcohol, Malic acid, Ash, Alcalinity of
ash, Magnesium, Total phenols and party-2 holds Flavanoids, Nonflavanoid
phenols, Proanthocyanins, Color intensity, Hue, OD280/0OD315 of diluted
wines. Class attribute Proline is known to both parties and results are shown
in figures.
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Vertical-PPFCM Clustering for Wine Dataset
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Figure 4.32: Fuzzy C-Means Clustering for Wine Dataset
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Figure 4.33: Vertical-PPFCM Clustering and Cluster Centers for Wine
Dataset
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4.7.6 Cluster Centers in Vertical-PPFCM

Prototypes that are produced in vertical collaboration process are given in
table below. Prototypes are the cluster centers generated and exchanged at

the time of collaboration between parties.

Table 4.6: Cluster Centers in Process of Vertical-PPFCM

Dataset | Cluster Centers in Vertical-PPFCM
Iris 5.922 , 2.7889 , 4.3971
Glass 1.5177 , 13.1935 , 3.2859
Seeds 14.4078 , 5.5077 , 2.8104
Wine 20.7774 , 92.3937 , 2.0683

4.7.7 Time Complexity & Accuracy of Vertical-PPFCM

The execution time of the Vertical-PPFCM algorithm is given for each dataset,
compared with non collaboration algorithm. Table 4.7 shows the total exe-
cution time (run time) of FCM clustering and Vertical-PPFCM before and

after collaboration respectively.

Table 4.7: Execution time of FCM and Vertical-PPFCM

Runtime(in seconds) | FCM | Vertical-PPFCM
Iris 0.305 4.800
Glass 0.408 7.158
Seeds 0.334 4.037
Wine 0.326 5.088
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Figure 4.34: Runtime Graph for Vertical-PPFCM

Execution time of FCM and Vertical-PPFCM

Execution Time (in seconds)

| m Vertical-PPFCM Runtime FCM Runtime(in seconds) |

A table of mean squared errors of parties and their collaboration in ver-
tical PPFCM algorithm for all datasets is given below

Table 4.8: Mean Squared Errors of Collaborating Parties in Vertical-PPFCM

MSE Error | Party-1 | Party-2 | Collaboration
Iris 0.291 0.506 0.816
Glass 0.018 0.027 0.667
Seeds 0.487 0.580 1.160
Wine 0.016 0.516 1.234

Figure 4.35: Mean Squared Errors of Vertical-PPFCM
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4.7.8 Privacy Analysis of Vertical-PPFCM

Table 4.9: Privacy Metrics Results and Analysis of Vertical-PPFCM

Privacy Metric | Range & Level | Metric Result | Privacy Level
priv_CS [0, 1] (<0.5=Low) 0.18 Low
priv_.TC [0, o] (< co=Low) 2.45 High
priv_PS [0, oo] (< co=Low) 0.01 High

e Privacy of Granular Information: The input level outcomes in
the form of granular information are shared with other parties in col-
laboration process. The cluster centers and the partition matrices are
shared between parties instead of direct input values. The privacy mea-
sured at this stage using cluster similarity priv_CS where the similarity
between the clusters formed by the parties are compared and if the d-
ifference is Low then the privacy is said to be high. The privacy level
of Vertical-PPFCM has shown high level privacy in this input phase.

Privacy of Parties in Collaboration: Vertical collaborating par-
ties expect high privacy level in collaboration phase as they share their
information (partial) through prototypes to each other. The privacy
metric t-Closeness priv_T'C' is used to evaluate the privacy level of par-
ties, where the distribution of original input values must be close to the
distribution of the shared information in collaboration. The difference
(distance) between two parties must be small to gain high privacy. The
result shows low value and the high privacy level for Vertical-PPFCM
in this phase.

Privacy of Outputs in Collaboration: The collective output from
any collaborative process must ensure privacy of parties involved. Pri-
vacy score priv_PS measures the privacy level assured in collaboration.
Privacy score indicates the privacy risk increases with the sensitivity
of information granules and their visibility in collaboration. Low visi-
bility decreases the privacy risk and gives high privacy level. Vertical-
PPFCM shows the high privacy level by showing low visibility of infor-
mation in collaboration

4.7.9 Complexity analysis & Scalability of PPFCM:

In both Horizontal and Vertical PPFCM, datasets used are with instances
up to 300 and computational complexity has shown high when number of
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parties increased and number of secure computations are done in every level
of communication. In Horizontal-PPFCM sequential collaboration is used for
privacy preserving, hence the computational complexity increases for every
level. In Vertical PPSOM central collaboration is used hence the compu-
tational overhead is increased. When PPFCM methods tested for a larger
dataset like cloud data with 2053 instances and 10 attributes, it could not
score acceptable accuracy and privacy level.

4.8 Chapter Summary

The Chapter named Privacy Preserving Fuzzy C-Means Clustering, given
the complete information of Fuzzy C-Means Clustering of distributed data.
This chapter described ways of collaboration for preserving privacy of parties
while exchanging the intermediate results with each other. The collabora-
tive clustering process has been undertaken and implemented for horizontal
& vertical data distribution mechanisms for two parties. Experiments and
Results of the proposed algorithms along with the privacy analysis of both
Horizontal-PPFCM and Vertical-PPFCM are presented.
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Chapter 5

Privacy Preserving Global
Random Forest Classification

5.1 Ensemble Learning

Ensemble Learning method has the capability of learning from multiple clas-
sifier systems. This learning mechanism allows multiple base learners applied
for a training data set through multiple base learning algorithms to solve
same problem. It constructs a set of learners and combine them. The gener-
alization ability of an ensemble is much stronger than that of base learners.
Ensemble methods are able to boost learning ability and performance of weak
learners (base learners)

Figure 5.1: Ensemble Learning Network
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5.1.1 Bootstrap Aggregating - Bagging

The Bagging is a bootstrap aggregating learning method, that has the ability
of improving stability and accuracy of a learning algorithm. The Bagging is
an efficient method of bootstrapping of machine learning algorithms that is
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mostly used for improved classification and regression models. The bagging
is an ensemble learning method that also helps in reducing statical variance
and also avoid over fitting. This meta-ensemble learning method usually
applied in decision tree classification to improve it’s learning and classification
accuracy.

Figure 5.2: Bagging Ensemble Learning Process

Final Prediction @

An ensemble method establishes multiple ensembles by training individ-
ual network of each learner over random redistribution of original training
data set. In this method some of the patterns may be repeated or duplicated
in ensemble learning process and not all the patterns of original training set
are included in a member ensemble.

5.1.2 Random Forest Classification

A Random forest is a classification method where multiple number of de-
cision trees are combined together as an ensemble in order to get improved
stability and accuracy prediction results. Generally a random forest is known
as an ensemble of randomly chosen decision trees based on majority of classes
through voting. The main objective of any ensemble learning method is com-
bine learning models aimed for boosting final results. The major advantage
of a random forest classification is that the model can be used for both classi-
fication and regression problems[37]. Random forest is a supervised learning
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method and each decision tree becomes a building block. A random forest is
built by multiple decision trees over data samples and get prediction results
from each decision tree, then produce best solutions after voting process. In
general decision trees have two main properties that are low bias and high
variance[5]. When the decision tree is created with too much depth, then it
is called over fitting that results in high error in test data.

Random Forest

Decision Decision Decizion Decision
Tree 1 Tree 2 Tree 3 Tree n

e - T N SR SRR SR

! . | .

Class &4 Class B Class &4 Class C
— ___.f"" ___,_.--""--J
R -~ e
T & __d____d---"'
) Majority Voting [©
Final Class

Figure 5.3: Random Forest

Why Random Forest? In Random forest decision trees are more in-
dependent because of random feature selection where as in bagging all the
features are selected for splitting a single node. Hence a random forest can
produce a better prediction results in less time as they earn from only subset
of features. The Random forest classification algorithm is given below.

Algorithm 8 Random Forest Classification Algorithm

Input: Records R, attributes A, class attribute ¢, randomization parameter
s, tree depth &, number of trees o.

Output: An Ensemble of o decision trees.

For k < 1 to o Do

R < randomly select n=|R| records out of R with replacement

tree® < Recursive_Random Tree (R, A,c,s,0)

End

return {tree’, tree?,.....tree°}
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5.2 Privacy Preserving Global Random For-
est Classification-Horizontal

Privacy preserving Random Forest classification adopts horizontal partition-
ing to preserve privacy while constructing number of decision trees in Ran-
dom forest. The data is horizontally partitioned and distributed to the par-
ties to be joined in random forest classification. The proposed algorithm uses
(C4.5 algorithm repeatedly and generates decision trees form feature subsets
and aggregates them to build a final random forest without violating privacy.
Privacy preserving algorithm of building a global random forest from all the
local random forests is presented here.

Algorithm 9 Privacy Preserving Global Random Forest Classification-

Horizontal
Partitioning: Dataset D,,, partitioned horizontally

Initialize: D(P) = {d;,d; + 1,...ds}, D(P2) = {d;,d; + 1...k}.

Input: Records R, attributes A, class attribute ¢, randomization parameter
s, tree depth 6, number of trees o.

begin:

Step 1: Local Decision Trees:

Party P; builds decision trees t; = DTC4.5(d;) For each d; € (d;, ....ds).
Party P, builds decision trees t; = DT'C4.5(d;) For each d; € (dj, ....d).
Step 2: Local Random forests:

Party 1 builds LRF; = Unique(t;)

Party 2 builds LRF, = Unique(t;)

Step 3: Aggregation: Initial Global Random Forest-1

IGRF, = Unique(LRFy, LRF,).

Step 4: Local Voting: on left out trees in P, and P,

Party 1 builds LRF 4 = Majclass(t;)

Party 2 builds LRFyp = Majclass(t;)

Step 5: Append: Initial Global Random Forest-2

IGRF, = Mejclass(LRFy 4, LRF>R).

Step 6: Final global random forest:

HFGRF = AGGR(IGRF,,IGRF3)

End

Here Privacy preserving is achieved by hiding original datasets at local
level, and with the secured way of sending only the classified data of the
local parties to the aggregation[3]. Each party performs independent voting
at their local levels in the process of building a final global random forest. In
this entire process, the only information that is commonly shared or known
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to all the parties is Initial and Global Random forest and the final global
random forest. Hence the objective of preserving privacy in random tree
classification has been successfully achieved.

5.2.1 Process of Horizontal-PPGRF Algorithm

The complete process of privacy preserving random forest classification is
presented in process flow diagram below.

Final Global
Random Forest

Initial Global
Random Forest
(1&2)

Local Random
Forest (1 &2)

Figure 5.4: The Process flow of Privacy Preserving Global Random Forest
classification-Horizontal

1. Local Random Forest Construction: For each party, subsets of their own
dataset are selected randomly to generate decision trees and based on
these subsets a local Random Forest is generated by the local parties
at their own sites, then sends to the Ensemble Aggregation

2. Secured Ensemble Aggregation: The ensemble aggregation securely com-
bine all the ensembles received from local parties and also removes the
redundancies then builds an initial global random forest.

3. Local Voting: Local vote manager receives the initial global random
forest and specifies or vote for the majority of class at their site and
sends the updated initial global random forest back to the other parties.

4. Final Global Random Forest: After receiving votes from all the parties,
the last party receives the voted initial global random forest and joins
all the voted trees of local random forests to form final ensemble of
decision trees i.e., the Final Global Random Forest.
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5.3 Privacy Preserving Global Random For-
est Classification-Vertical

Privacy preserving Global Random Forest classification for vertical data dis-
tribution adopts three levels of privacy preserving, (a). to preserve privacy
while constructing number of decision trees in Random forest, (b) aggregat-
ing the local random forests of local decision trees, and (¢) Voting on local
random forests for the final aggregation. Algorithm proposed for Random
Forest Classification for privacy preserving of vertically distributed data is
given below.

Algorithm 10 Privacy Preserving Global Random Forest Classification-
Vertical

Vertical Partitioning: of given dataset D(n) = {d;,d;+1,d;,d; +1,...d,},
Party-1 holds D(P,) = {d;, ...d,}, attribute set (A4;) = {a;,a; + 1, ....a;}
Party-2 holds D(P,) = {d;,...d, } attribute set (4,) = {a;,a; + 1...k}
Input: Records R, attributes A, class attribute ¢, randomization parameter
s, tree depth &, number of trees o.

Begin: For Parties P& P;

Step 1: Local Decision Trees:

Party P; builds decision trees t; = DTC4.5(d;) For each d; € (d;, ....ds).
Party P, builds decision trees t; = DT (C'4.5(d;) For each d; € (dj, ....dy).
Step 2: Local Random forests:

Party 1 builds LRF, = Unique(t;)

Party 2 builds LRF, = Unique(t;)

Step 3: Aggregation: Initial Global Random Forest-1

IGRF, = Unique(LRF,, LRF5).

Step 4: Local Voting: on unique trees in LRF), and LRF; of P, and P,
Party 1 builds LRF\ 4 = Unique(Majclass(t;))

Party 2 builds LRFyp = Uique(Majclass(t;))

Step 5: Append: Initial Global Random Forest-2

IGRF, = Unique(LRF 4, LRF;p).

Step 6: Final Global Random Forest:

VFGRF = AGGR(IGRF,,IGRF>)

End

The algorithm recursively executes a C4.5 algorithm to build local deci-
sion trees and combine them into a local random forest by selecting unique
trees. Party 1 builds LRF-1 and party 2 builds LRF-2, then after ensemble
aggregation the privacy preserving algorithm builds an initial global random
forest from LRF-1 and LRF-2 of local parties. In final stage the voting is
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done at local parties based on the majority of class from classified trees of
party 1 and party 2. A final global random forest (FGRF-Vertical) will be
constructed.

When the dataset is vertically partitioned and distributed to the parties
party 1 and 2, each party will have only few attribute values but all the
samples at that site while performing random forest classification. Hence
it is very important to securely aggregate the decision trees of the vertical
partitions in-order to get an output which can have the complete results of
both the parties. In entire process there in no violation of privacy happens
as the algorithm preserves the privacy of local parties.

5.3.1 Process of Vertical-PPGRF Classification

The complete process of privacy preserving random forest classification is
presented in process flow diagram, followed by steps involved for building
privacy preserving Global Random Forest, when data is vertically distributed.
The digram shows how patries independantly builds local random forests and
how ensemble aggregation is performed to build IGRF-1, IGRF-2 and Final
Global Random Forest, using Vertical-PPGRF method.

FGRF

IGRF-2

IGRF-1
YVoting-1 LRF-1 LRF-2 Yoting-2
Party-1 (P artition-1) Party-2 (P artition-2)

Figure 5.5: Process Flow of Privacy Preserving Global random forest
Classification-Vertical

1. Distributing the data vertically between multiple parties.
2. Building Local Random Forests (LRF-1 & LRF-2) by parties 1 and 2.

3. Aggregating the local random forests using ensemble aggregation.
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4. Building the Initial Global Random Forest-1

5. Voting on classified trees and building new LRF-1A and LRF-2B with
majority class.

6. Aggregating LRF-1A and LRF-2B and building the Initial Global Ran-
dom forest-2

7. Finally aggregation of IGRF-1 and IGRF-2 will be performed and Final
Global Random Forest (V-FGRF) is constructed.

5.4 Experiments & Results

The experiments are carried out for iris, glass, seeds, and clinical datasets in
python (anaconda environment). The results are produced for Horizontal-
PPGRF and Vertical-PPGRF classification methods. In process of building
a final global random forest there are three main privacy preserving phases
to follow to build IGRF-1, IGRF-2 and FGRF for each dataset. each party
generates specified number of decision tress in random forest (between 10
to 100 threshold), limiting tree depth to 5 (this can be varied for larger
datasets). The attribute selection in decision trees is done by measuring
entropy values.

5.4.1 Results of Horizontal-PPGRF

In First Phase, the process starts with partitioning the dataset into two
horizontal partitions and will be distributed to two parties (pl and p2). Then
for each partition, generates specified number of decision tress in random
forest. Then from generated decision trees, all unique decision trees are
picked to form local random forests for two parties (Partyl builds LRF1 and
Party2 builds LRF2). Now aggregating all the uniquely classified decisions
trees in LRF-1 and LRF-2 to build an Initial global random forest-1 (IGRF-
1). In next phase of computations local parties performs voting on miss
classified trees and generates IGRF-2 by appending trees with majority class.
The results are given in following tables for four datasets Iris, Seeds, Clinical
and Seeds.

Now according the proposed algorithm a final global random forest is to
be constructed by performing voting on initial global random forests (IGRF-1
& IGRF-2) generated by both the parties. In last phase, the final aggrega-
tion of IGRF-1 and IGRF-2 takes place to build The final global random
forest(FGRF).
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Table 5.1: IGRF-1 and IGRF-2 in Horizontal-PPGRI for Iris Dataset

Trees | LRF-1 | LRF-2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 8 10 18 1 0 1
20 11 20 31 4 0 4
30 13 30 43 4 0 4
40 13 39 52 6 1 7
50 17 45 62 7 5 12
60 18 59 77 9 1 10
70 14 36 50 4 12 16
80 22 59 81 10 7 17
90 17 73 90 5 10 15
100 22 81 103 9 9 18

Table 5.2: Final global random forest of Horizontal-PPGRF for Iris Dataset

IGRF-1 | IGRF-2 | H-FGRF

18 1 19

31 4 35

43 4 47

52 7 59

62 12 74

77 10 87

50 16 66

81 17 98

90 15 105

103 18 121

Table 5.3: IGRF-1 and IGRF-2 of Seeds Dataset in Horizontal-PPGRF
Trees | LRF-1 | LRF-2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2

10 9 4 13 1 1 2
20 12 13 25 4 3 7
30 30 19 49 0 3 3
40 32 22 54 4 7 11
50 47 27 74 1 9 10
60 58 30 88 2 11 13
70 61 42 103 4 9 13
80 73 46 119 4 12 16
90 7 40 117 8 17 25
100 80 52 132 11 14 25
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Table 5.4: Final Global Random Forest of Seeds dataset

No of Trees | IGRF-1 | IGRF-2 | H-FGRF
10 13 2 15
20 25 7 32
30 49 3 52
40 54 11 65
50 74 10 84
60 88 13 101
70 103 13 116
80 119 16 135
90 117 25 142
100 132 25 157

Table 5.5: IGRF-1 and IGRF-2 of Clinical Dataset in Horizontal-PPGRF

Trees | LRF1 | LRF2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 8 10 18 1 0 1
20 11 20 31 4 0 4
30 13 30 43 4 0 4
40 13 39 52 6 1 7
50 17 45 62 7 d 12
60 18 29 77 9 1 10
70 14 36 50 4 12 16
80 22 59 81 10 7 17
90 17 73 90 > 10 15
100 22 81 103 9 9 18

Table 5.6: Final Global Random Forest of Clinical Dataset in Horizontal-
PPGRF

Trees | IGRF-1 | IGRF-2 | H-FGRF
10 18 1 19
20 31 4 35
30 43 4 47
40 92 7 59
20 62 12 74
60 7 10 87
70 20 16 66
80 81 17 98
90 90 15 105
100 103 18 121
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Table 5.7: IGRF-1 and IGRF-2 of Glass dataset using Horizontal-PPGRF

Trees | LRF1 | LRF2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 10 10 20 10 9 19
20 20 20 40 16 19 35
30 30 30 60 24 27 51
40 40 40 80 36 37 73
50 50 50 100 44 47 91
60 60 60 120 58 59 117
70 70 70 140 55 63 118
80 80 80 160 73 72 145
90 90 90 180 78 88 166
100 100 100 200 91 83 174

Table 5.8: Final Global Random Forest of Glass Dataset in Horizontal-
PPGRF

Trees | IGRF-1 | IGRF-2 | H-FGRF
10 20 19 19
20 40 35 35
30 60 o1 51
40 80 73 73
50 100 91 91
60 120 117 117
70 140 118 118
80 160 145 145
90 180 166 166
100 200 174 174
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5.4.2 Time Complexity Analysis of Horizontal-PPGRF

Run times of each dataset when performing Random Forest Classification
(Non Privacy Preserving) followed by Run times of Horizontal-PPGRF clas-
sification are presented in following table.

Table 5.9: Run times of Random Forest Classification (Non PP)

No of Trees | Iris | Seeds | Glass | Clinical
10 0.51 0.6 0.5 0.4
20 0.77 | 0.8 0.9 0.7
30 1.1 1.1 1.4 1.1
40 1.52 1.5 1.7 1.5
50 1.81 1.9 2.1 1.6
60 1.86 2.2 2.8 2.1
70 2.17 2.5 3.06 2.3
80 2.53 3 3.5 2.6
90 2.73 3.2 3.8 3.04
100 3.02 3.8 4.4 3.96

Table 5.10: Run times of Horizontal-PPGRF Classification
No of Trees | Iris | Seeds | Glass | Clinical
10 0.38 | 0.35 0.4 1.2
20 0.57 | 0.57 0.7 1.9
30 0.82 | 0.75 0.8 2.3
40 1.01 | 1.08 1.2 2.8
50 1.18 | 1.38 1.4 3.4
60 225 141 1.5 4.2
70 1.69 | 1.58 1.9 4.9
80 2.03 1.8 1.9 5.1
90 2.1 2.32 2.4 6.3
100 2.5 2.72 2.4 6.4
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Figure 5.6: Runtime of Iris Dataset in Horizontal-PPGRF
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Figure 5.7: Runtime of Horizontal-PPGRF for Seeds Dataset
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Figure 5.8: Runtime of Horizontal-PPGRF for Glass Dataset
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Figure 5.9: Runtime of Horizontal-PPGRF for Clinical dataset
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5.4.3 Classification Accuracy of Horizontal-PPGRF

The accuracy scores are compared with non privacy preserving approach of
building random forest. Horizontal-PPGRF accuracy scores are drawn for
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Iris, Glass, Seeds and Clinical datasets are presented in following tables.

Table 5.11: Accuracy Scores of Non Privacy Preserving Random Forest

No of Trees | Iris | Seeds | Glass | Clinical
10 95 92 69 89
20 96 92 69 98
30 95 91 70 97
40 95 91 72 99
50 95 90 71 98
60 95 90 72 94
70 95 91 72 98
80 95 90 71 98
90 95 90 72 93
100 94 91 72 95

Table 5.12: Accuracy Scores of Party-1 in Horizontal-PPGRF

No of Trees | Iris | Seeds | Glass | Clinical
10 91 95 69 90
20 94 96 58 95
30 94 94 63 95
40 92 92 61 94
50 92 91 63 92
60 92 96 63 96
70 92 95 64 90
80 92 92 62 92
90 92 91 61 96

100 94 90 64 95
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Table 5.13: Accuracy Scores of Party-2 in Horizontal-PPGRF

No of Trees | Iris | Seeds | Glass | Clinical
10 94 98 69 96
20 92 99 68 95
30 95 99 68 92
40 91 95 71 92
50 95 96 71 94
60 95 94 71 93
70 94 95 70 96
80 92 94 70 95
90 92 96 71 94

100 92 98 71 96

Accuracy Scores (%) of Non PP-RF and Horizontal-PPGRF (Iris)
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Figure 5.10: Accuracy of Horizontal-PPGRFE Clustering for Iris Dataset
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Accuracy Scores (%) of Non PP-RF and Horizontal-PPGRF (Seeds)
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Figure 5.11: Accuracy of Horizontal-PPGRF Clustering for Glass Dataset
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Figure 5.12: Accuracy of Horizontal-PPGRF Clustering for Seeds Dataset
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Figure 5.13: Accuracy of Horizontal-PPGRF Clustering for Clinical Dataset

5.4.4 Privacy Analysis of Horizontal-PPGRF

The privacy in Horizontal-PPGRF is evaluated using the privacy metrics
given in chapter-2 and an analysis is done based on the results of privacy
metrics. Privacy metrics and results for Horizontal-PPGRF are given in
following table The privacy analysis is explained in view of three main phases

Table 5.14: Privacy Metrics Results and Analysis of Horizontal-PPGRF

Metric | Range Level Metric Result | Privacy Level
privevr | [0, co] | >1.00=High 0.07 Low
priveys | [0, 0o] | < co=Low 1.00 High
privere | [0, 1] >0.5=High 0.05 Low

involved in the Horizontal-PPGRFEF method as follows

e Local level privacy: Local privacy is the major priority as parties
have sensitive information at local level while building a global random
forest. In proposed method no party directly share the raw data or the
original attribute values to the other party, other than the resulting
local random forest. Hence there will not be any privacy loss of an
independent party. Result of privacy metric privp;c (percentage incor-
rectly classified) derives the level of privacy at local level. In this case
if incorrectly classified percentage of a party is high than the privacy
level is high. The percentage is high for Horizontal-PPGRF and proved
that the privacy is high.
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e Aggregation level privacy: The privacy level must be high at this
phase because, the aggregation is performed on the information shares
by parties. Information or the results are produced by both the parties
for the aggregation of LRF-1 and LRF-2 for building IGRF. Hence the
level of privacy is the major concern and as per the results of privacy
metric conditional mutual information privey; given the better pri-
vacy level (High) and shown that the aggregation level privacy is well
preserved.

e Global level privacy: The final phase of building Global random
forest must assure the global privacy, that means once parties shares
their local level results and expects a secured outcome at global level.
anyhow the voting is performed by local parties at their local level and
will share only voted trees to the IGRF-1 and IGRF-2 for global ag-
gregation. Hence the privacy is well preserved because of the secured
aggregation without privacy violation. In this case also the privacy
metric result has given the high privacy based on the cumulative en-
tropy priveyg value of both parties falls in high privacy range.

5.4.5 Results of Vertical-PPGRF

For each vertical partition, generates specified number of decision tress (10
to 100) limiting tree depth to 5. Constructs LRF-1 and LRF-2 considering
all unique trees from the generated decision trees. Then the algorithm gen-
erates an Initial Global Random Forest (IGRF-1) by aggregation of all the
unique trees from LRF-1 and LRF-2. Then all the unique decision trees with
majority class from both parties to be selected through voting process, which
results the two local random forests LRF-1A and LRF-2B from both parties.
Then by aggregating and selecting unique trees from both parties, an Initial
Global random Forest-2 (IGRF-2) will be constructed as shown in following
table.

Now in last phase of the process a final global random forest is to be
constructed by performing voting on initial global random forests (IGRF-1 &
IGRF-2) generated by both the parties. The final aggregation of IGRF-1 and
IGRF-2 takes place to build The final global random forest(FGRF-Vertical)
which is the final global random forest constructed using privacy preserving
random forest classification for vertical data distribution. In vertical case of
iris dataset the party-2 returns the IGRF-2 as the final global random forest.
The resulting table of Privacy Preserving Global Random Forest (FGRF-
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Table 5.15: IGRF-1 and IGRF-2 of Vertical PPGRF for Iris Dataset
Trees | LRF1 | LRF2 | IGRF1 | Voting-1 | Voting-2 | IGRF2
10 10 10 20 9 8 17
20 20 20 40 8 15 23
30 30 30 60 17 19 36
40 40 40 80 20 22 42
50 50 50 100 23 34 57
60 60 60 120 26 28 54
70 70 70 140 33 55 88
80 80 80 160 43 23 66
90 90 90 180 44 42 86
100 100 100 200 56 88 114

Vertical) is given below.

Table 5.16: Final Global Random Forest in Vertical-PPGRF for Iris dataset

No.of Trees | IGRF1 | IGRF2 | V-FGRF
10 20 17 17
20 40 23 23
30 60 36 36
40 80 42 42
50 100 57 57
60 120 54 54
70 140 88 88
80 160 66 66
90 180 86 86

100 200 114 114

5.4.6 Time Complexity Analysis of Vertical-PPGRF

Run times of privacy preserving global random forest classification for vertical
data distribution are given in below table.
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Table 5.17: Results of Vertical- PPGREFE for Seeds Dataset
Trees | LRF1 | LRF2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 10 10 20 8 9 17
20 20 20 40 12 19 31
30 30 30 60 23 25 48
40 40 40 80 28 35 63
50 50 50 100 31 43 74
60 60 60 120 50 414 94
70 70 70 140 56 61 117
80 80 80 160 61 69 130
90 90 90 180 61 69 130
100 100 100 200 68 78 146

Table 5.18: Final Global random Forest of Vertical-PPGRF for Seeds Dataset

Table 5.19: Results of Clinical dataset using Vertical-PPGRF Classification

No of Trees | IGRF-1 | IGRF-2 | V-FGRF
10 20 17 17
20 40 31 31
30 60 48 48
40 80 63 63
50 100 74 74
60 120 94 94
70 140 117 117
80 160 130 130
90 180 130 130
100 200 146 146

Trees | LRF1 | LRF2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 10 9 19 0 1 1
20 20 16 36 0 3 3
30 30 16 46 0 7 7
40 37 26 63 3 6 9
50 50 34 84 0 6 6
60 60 27 87 0 8 8
70 68 40 108 1 14 15
80 78 35 113 2 19 21
90 82 50 132 2 14 16
100 97 55 152 2 17 19
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Table 5.20: Final Global random Forest of Clinical Dataset for Vertical-
PPGRF

Trees | IGRF-1 | IGRF-2 | V-FGRF
10 19 1 20
20 36 3 39
30 46 7 53
40 63 9 72
50 84 6 90
60 87 8 95
70 108 15 123
80 113 21 134
90 132 16 148
100 152 19 171

Table 5.21: IGRF-1 and IGRF-2 of Glass dataset using Vertical- PPGRF

Trees | LRF1 | LRF2 | IGRF-1 | Voting-1 | Voting-2 | IGRF-2
10 10 10 20 10 9 19
20 20 20 40 20 19 39
30 30 30 60 29 28 57
40 40 40 80 37 39 76
50 20 50 100 48 46 94
60 60 60 120 60 29 119
70 70 70 140 69 70 139
80 80 80 160 7 72 149
90 90 90 180 89 86 175
100 100 100 200 98 92 190
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Table 5.22: Final Global Random Forest in Vertical-PPGRFE for Glass
Dataset

Trees | IGRF-1 | IGRF-2 | V-FGRF
10 20 19 19
20 40 39 39
30 60 o7 57
40 80 76 76
50 100 94 94
60 120 119 119
70 140 139 139
80 160 149 149
90 180 175 175
100 200 190 190

Table 5.23: Run times of Vertical-PPGRF Classification

No of Trees | Iris | Seeds | Glass | Clinical
10 0.39 | 0.36 0.4 0.26
20 0.57 | 0.61 0.6 0.52
30 0.78 | 0.88 0.9 0.59
40 1.88 1.24 1.2 0.75
50 1.29 1.33 1.4 0.93
60 1.57 | 1.61 1.7 1.24
70 1.66 1.81 1.9 1.46
80 1.86 | 2.17 2.4 1.46
90 2.15 2.35 2.4 1.6
100 2.51 2.52 2.7 1.93
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Figure 5.14: Runtime of Iris Dataset in Vertical-PPGRF
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Figure 5.15: Runtime of Vertical-PPGRF for Seeds Dataset
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Figure 5.16: Runtime of Vertical-PPGREF for Glass Dataset
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Figure 5.17: Runtime of Vertical-PPGREF for Clinical dataset
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5.4.7 Classification Accuracy of Vertical-PPGRF

The accuracy percentages of initial Global random forests constructed by
parties are presented in following tables and in respective graphs.
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Table 5.24: Accuracy Scores of Non Privacy Preserving Random Forest

No of Trees | Iris | Seeds | Glass | Clinical
10 95 92 69 89
20 96 92 69 98
30 95 91 70 97
40 95 91 72 99
50 95 90 71 98
60 95 90 72 94
70 95 91 72 98
80 95 90 71 98
90 95 90 72 93

100 94 91 72 95

Table 5.25: Accuracy Scores of Party-1 in Vertical-PPGRF

No of Trees | Iris | Seeds | Glass | Clinical
10 76 85 69 85
20 76 85 72 85
30 75 85 72 85
40 74 86 73 87
50 75 86 72 87
60 75 85 72 87
70 75 85 72 87
80 75 85 72 87
90 75 84 72 87
100 74 84 73 87

Table 5.26: Accuracy Scores of Party-2 in Vertical-PPGRF

No of Trees | Iris | Seeds | Glass | Clinical
10 95 93 61 84
20 96 93 62 84
30 97 93 62 84
40 97 93 63 84
50 97 93 64 83
60 97 92 63 83
70 97 93 64 84
80 97 93 64 84
90 96 93 64 84

100 97 93 63 83
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Figure 5.18: Vertical-PPGRF Accuracy scores for Iris Dataset
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Figure 5.19: Vertical-PPGRF Accuracy scores for Glass Dataset
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Accuracy Scores(%) of Non PP-RF and Vertical-PPGRF (Seeds)
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Figure 5.20: Vertical-PPGRF Accuracy scores for Seeds Dataset
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Figure 5.21: Vertical-PPGRF Accuracy scores for Clinical Dataset

5.4.8 Privacy Analysis of Vertical-PPGRF

The privacy analysis is presented for Vertical-PPGRF in this section. The
results of privacy metrics for VPPGRF are presented in following table that
includes the privacy level measured. Privacy analysis is explained with the

help of privacy measures in view of three main phases of Vertical- PPGRF
method as given below

e Local level privacy: In vertical partitioning case, the Local level pri-

vacy of independent parties is more important as parties have sensitive
information at their level while building a global random forest. The

103



Table 5.27: Privacy Metrics Results of Vertical-PPGRF

Metric | Range Level Metric Result | Privacy Level
priveyg | [0, oo | >1.00=High 0.95 Low
priveyy | [0, 0o | <1.00=Low 0.74 High
privpie | [0, 1] >0.5=High 0.33 High

proposed method gives independent path to each party to share the
raw data or original values to the other party. Hence there will not
be any privacy loss of information of an independent party. Result of
privacy metric privpre (percentage incorrectly classified) derives the
privacy of a party at local level with respect to the individual classifi-
cation percentage. If incorrectly classified percentage of a party is high
than the privacy level is said to be high. The Vertical-PPGRF method
shows the high privacy level, hence the privacy is considered as well
maintained.

Aggregation level privacy: Privacy level in this intermediate phase
must be high because of the aggregation of the information shared by
parties. The results are produced by both the parties for the aggrega-
tion of LRF-1 and LRF-2 for building IGRF-1 and IGRF-2, hence a
high level privacy is to be assured. As per the results of privacy metric
used for this case, conditional mutual information priveyr has given
the better privacy level (High) and proved that the privacy is well pre-
served.

Global level privacy: In process of building a final Global random
forest, the global level privacy of parties must be assured by the model,
because parties expect a secured outcome at global level after sharing
local information. Though the voting is performed by local parties at
their local level, they share voted trees to build the IGRF-1 and IGRF-
2, hence the privacy is to be well maintained. The metric cumulative
entropy priveyg is used for this phase, that has given the high privacy.

5.4.9 Complexity analysis & Scalability of PPGRF:

In both Horizontal and Vertical PPGRF, datasets used are with instances
up to 300 and computational complexity has shown high when number of
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parties increased and number of secure computations are done in every level
of communication. In Horizontal-PPGRF we use sequential collaboration for
privacy preserving at the time of constructing local random forests and initial
global random forests, hence the computational complexity increases for ev-
ery level. In Vertical PPGRF we use the same way of collaboration approach
and appending after voting is done, hence the computational overhead is in-
creased and privacy is still preserved. When PPGRF methods tested for a
larger dataset (cloud data with 2053 instances and 10 attributes), it could
not score acceptable accuracy and privacy level.

5.5 Chapter Summary

The chapter titled Privacy Preserving Random Forest Classification, present-
ed the method of building a global random forest by aggregating two local
random forests of two local parties by a secured voting procedure. The chap-
ter presented proposed algorithms for horizontal and vertical data distribu-
tions between parties to for random forests. The ensemble aggregation is the
privacy preserving phase where the voting happens at each party separately,
then the aggregation of decision trees will be done based on the majority of
voting on the classes. The results were presented for both horizontal and
vertical versions of Privacy Preserving Global Random Forest classification.
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Chapter 6

Conlusions & Future Scope

6.1 Summary

The entire work has been undertaken for Horizontal and Vertical distribution
of data set between multiple parties. Three major problems were presented,
PPSOM, PPFCM and PPGRF. For first problem we adopted data pertur-
bation technique for horizontal PPSOM and Cryptography based techniques
for vertical PPSOM to perform clustering of two or more parties. The pro-
posed algorithms for PPSOM are novel contributions of this chapter. Our
experimental outcomes for both horizontal PPSOM and vertical PPSOM al-
gorithms shows that the privacy is preserved when clustering is performed
by multiple parties in distributed data environment.

For the first problem the work inspiration for horizontal PPSOM was
taken from [20]. The initial work done on privacy preserving SOM clustering
based on collaborative clustering has published in [14]. For vertical data dis-
tribution we adopted cryptography based methods to preserve privacy using
SOM, inspired from the paper titled ”Privacy preserving back-propagation
neural network learning” [11] proposed by T Cheng and S Zhong. They p-
resented Privacy preserving two party distributed back-propagation training
algorithm to securely computing combined outputs in a neural network. We
adopted the cryptography based approach used in their work for SOM to
form clusters in vertically distributed data environment.

For second problem (PPFCM) adopted the core background work done
by[32][33], and implemented a sequential collaboration when exchanging in-
ternal outputs between parties to perform collaborative clustering. Proposed
algorithms for horizontal and vertical data distribution centric clustering.
The modifications are mentioned in algorithms and results were produced
for four different datasets. The aim of achieving privacy preserving, was

106



successful in collaborative clustering using Fuzzy C-Means Clustering.

For third problem the referral work taken from [4] and modified the stages
as per the requirements to build a privacy preserving global random forest
classifier. The process has two phases from local random forest to global ran-
dom forest. The aim was to build a final global random forest by aggregating
based on voting between parties. The proposed algorithm for horizontal and
vertical were performing well in building PPGRF without disclosing the input
information of any party. The bagging ensemble learning is applied through
random forest classifier to build a secured global random forest.

6.2 Limitations

The thesis work presented privacy preserving methods including results and
privacy concerns along with privacy metrics to measure the privacy of pro-
posed algorithms. All the proposed algorithms were showing acceptable per-
formance, accuracy and privacy levels. Some limitations are noticed based
on various aspects like distribution of data, number of parties involved at the
time of combined computations.

6.2.1 Limitations of PPSOM

Horizontal-PPSOM: used perturbation mechanism to preserve the at-
tribute level privacy, but there is chance of unwanted distortion of values
that leads to the loss of quality or originality of attribute values. The pertur-
bation methods may not give accurate results compared to the other privacy
preserving methods.

Vertical-PPSOM: used cryptography based approach to preserve privacy
while exchanging information between parties. In this method though the
privacy is very well preserved, there is high communication overhead be-
cause of number of encrypted & decrypted messages sent and received by
the parties.

6.2.2 Limitations of PPFCM

Horizontal-PPFCM: uses sequential /parallel collaboration method, where
impact of the collaboration is expressed in the changes of resulting centroids.
Hence there is chance of overlap or redundancy of cluster center values, that
leads to the multiple assignments or outliers of membership degrees.

Vertical-PPFCM: uses central collaboration method, where effect of col-
laboration is noticed in cluster centers also partition matrices of vertical par-
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titions. In vertical scenario there is a chance of miss placing of members into
clusters if the partial information is not correctly combined in collaboration.

6.2.3 Limitations of PPGRF

Horizontal-PPGREF': uses local and global ensemble aggregation & voting
mechanism for building global random forest. The process may have high
computational complexity and an increased miss classification percentage de-
pending on the nature of dataset. Hence the model is to be generalized for
larger datasets, where the global random forest may have high number of
decision trees.

Vertical-PPGREF': uses the local and global level aggregation & voting
mechanism for aggregating individual attribute values into the local ran-
dom forests. Hence there is chance of redundancy in decision trees at local
level and aggregation of redundant trees may lead to the entry of duplicate
trees in global random forest. The model is to be generalized.

6.3 Future Scope

Our further investigations are aimed for increased number of parties for hori-
zontal and vertical data distribution and also aimed to use arbitrary method
of data partitioning. In view of growing privacy issues due to large amount of
data distributed among multiple locations, there is necessity of building full
secure models that are designed with assured privacy. Hence we are aiming
to build a secure learning model where data exchange is possible without
loosing privacy of any data site. There is always a great need of protecting
data in various computing environments and there is always scope of devel-
oping and enhancing privacy preserving methods. There is scope of building
time series privacy preserving methods helpful in medical, financial and de-
fense applications. There is a larger scope in elaborating collaborative modes
of communication and use combination of collaboration methods to increase
the privacy and accuracy level. Finally there is a large scope of developing
privacy metrics based on process and results of privacy preserving methods.
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Appendix A

A.1 Privacy Preserving Collaborative Clus-

tering using SOM

Algorithm 11 Privacy Preserving Horizontal Collaborative SOM Algorithm

1.

Dataset is horizontally partitioned between n parties, then decide on ¢
number of clusters, and determine the sequence of active parties to be
followed in clustering process.

. First Initial Party(say p;) is active and it assigns w; vectors for all ¢

clusters and initialize required parameters.

. Now IP(p;) select a random user among all users it holds and perform

clustering by deciding winner neuron, then updates weights.

. p1 repeats step 2 and 3 unless all it’s users are allocated to a cluster,

then sends the final w; vectors and increased s value to next party(say
P2).

. Now the present active party p, repeats step 2 and 3 same as p;, until

all it’s users are allocated to a cluster, then it sends new s value and
updated w; vectors to the next party.

. After all users are allocated to clusters, the last party updates w; vec-

tors and send to the IP(p;).

Setps 3 to 6 are continued until no noticeable change in the SOM.

In privacy preserving collaborative SOM clustering (PPCSOM) method,
first the dataset is horizontally partitioned and distributed between n number
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of parties to form C' number of clusters, with which each data partition is
owned and resides at each party, then all parties cluster their own data
while collaborating with each other without directly revealing their private

information.

A.1.1 Results of Horizontal-PPSOM

Runtime(in seconds) IRIS | Glass | Wine | Pima Indians
SOM Runtime 2.03 | 4.23 | 5.62 10.23
Horizontal-PPSOM Runtime | 3.92 | 6.23 | 9.12 15.97

Table A.1: SOM Runtime and Horizontal-PPSOM Runtime

Figure A.1: Runtime of SOM Compared with Runtime of Horizontal-PPSOM
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Figure A.2: Accuracy of SOM and PPCSOM
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Figure A.3: A Poster on Privacy Preserving Collaborative Clustering in
Horizontal-PPSOM

Privacy Preserving Collaborative Clustering using SOM for Horizontal Data Distribution
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Abstract:

In view of present advancements in computing, with the development of distributed
environment, many problems have to deal with distributed input data where individual
data privacy is the most important issue to be addressed, for the concern of data owner by
extending the privacy preserving notion to the original learning algorithms. Privacy
Preserving Data Mining has become an active research area in addressing various privacy
issues while bringing out solutions for them. There has been lot of progress in developing
secure algorithms and models, able to preserve privacy using various data mining
techniques like association, classification and clustering, where as importance of privacy
preserving techniques applied for leamning algorithms related to neural networks for
mining problems are still in infancy. We focused on preserving privacy of an individual,
using self organizing map (SOM) adopted for collaborative clustering of distributed data
between multiple parties. We present Privacy Preserving Collaborative Clustering method
using SOM (PPCSOM) for Horizontal Data Distribution, which allows multiple parties
perform clustering in a collaborative approach using SOM neural network, without
revealing their data directly to each other, in order to preserve privacy ofall parties.
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Figure 1: Horizontal & Vertical Partitioning
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Figure 1: Working process of PPCSOM

Working Process of PPCSOM:

>Privacy Preserving Collaborative Clustering method using SOM for Horizontal Data
Distibution (PPCSOM)

> Allows multiple parties to perform clustering in a collaborative approach using SOM
neural network

»Preserving privacy without revealing their data directly to each other

> Preserving privacy of anindividual, of distributed data between multiple parties
»Performance evaluation of the method while Preserving privacy of all parties for
horizontal data distribution

Results Analysis:

=PPCSOM helps multiple parties collaboratively constrct chusters, while da is distibuted
in number of horizontal partitions.

=Better accuracy with an assured privacy and less communication overhead hough at e
costofloss in accuracy.

=The same work can be applied for vertical and arbitrary ways of data partitioning.
=Cellaborations in PPCSOM can be enhanced in future for better online performance
=Vertical partitioning would require cryplographic approach to secrefly share fhe
information zmong mumber of parties

Conclusions & Future Scope:

=PPCSOM helps muliple parties collaboratively construct clusters, while data is distributed
in number of horizontal partitions.

=Better accuracy with an assured privacy and less communication overhead though at the
cost of loss in accuracy.

=The same work can be applied for vertical and arbitrary ways of data partitioning.
=Collaborations in PPCSOM can be enhanced in future for better online performance
*Vertical would require c hic approach to secretly share the
information among number of parties




A.2 Privacy Preserving Horizontal-ID3

ID3 algorithm is used to build decision Tree, which is a recursive process,
which results a tree of decisions on attributes and class labels of dataset.
A privacy preserving ID3 algorithm is used to to build a privacy preserved
decision tree, with decision attributes ” R” class attributes ”C”, and training
entities "T”. Perturbation based Privacy Preserving ID3 Algorithm is given
below.

Algorithm 12 Privacy Preserving Horizontal-ID3 Algorithm

Partition: Data set is horizontally partitioned

Class Label: is known for all parties(two parties in this case)
Perturbing: Data is perturbed by adding random noise from a distribution
Recurse:

Step la: Find attributes A with highest information gain for all training
samples T’

Step 1b: Partition T based on values a; of A

Step 1c: Return a decision Tree with root labeled A and edges a;, with
node at the end of edge a;

Terminate: when all training samples are classified

A.2.1 Results of Horizontal-PPID3

Figure A.5: Decision Tree with perturbed Inputs of Iris Dataset
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Figure A.4: Decision Tree without perturbed Inputs of Iris Dataset

Decision Tree without perturbation of Iris Inputs
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Figure A.7: Probability Distribution of Perturbed Inputs in Privacy Preserv-
ing Decision Tree
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Figure A.6: Probability Distribution of Inputs in Decision Tree
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A.3 Privacy Preserving Horizontal-Random
Forest Classification

Privacy Preserving random forest classification is the novel approach to pre-
serve privacy of distributed data while building the random forest of multiple
decision trees. The privacy is preserved at input level(decision tree level) us-
ing ID3 algorithm on training dataset of two parties. The algorithm follows
the process of adding noise to the input data and learning the model from
noisy data set to build random forest of privacy preserved decision trees.
The Horizontal-PPTID3 Algorithm is given below The input attributes are

Algorithm 13 Privacy Preserving Horizontal-PPRF Algorithm
Partition: Data set is horizontally partitioned and class label is known for
both parties

Perturbing: Data is perturbed by adding random noise from a normal
distribution

Recurse: Call ID3 Decision Tree Algorithm (Horizontal-PPID3)

Local Random Forest: Party 1 & 2 build LRF-1 and LRF-2 at their sites.
Privacy Preserving Random Forest: Party-1 and Party-2 build PPRF
Terminate: If all samples are classified into Random forest
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perturbed so that no one can know which entity belongs to which party
(partition). Split points of noisy data are not obvious hence this problems
can be solved by knowing the distribution of the original data, though the
model dont know the original values.

A.3.1 Results of Horizontal-PPRF

Table A.2: Random Forest of Horizontal-PPREF for Iris Dataset
Trees | LRF-1 | LRF-2 | Non PPRF | PPLRF-1 | PPLRF-2 | PPRF
10 8 10 18 10 10 20
20 11 16 27 15 20 35
30 12 28 40 14 23 37
40 12 32 44 18 39 57
50 17 40 57 19 49 68
60 18 54 72 23 58 81
70 18 52 70 27 67 94
80 16 51 67 26 71 97
90 21 37 58 24 77 101
100 21 70 91 27 82 109
Table A.3: Runtime of Horizontal-PPRF for Iris Dataset
No of Trees | Non PP RF | PPRF
10 0.38 0.96
20 0.57 1.13
30 0.82 1.65
40 1.01 1.55
50 1.18 1.75
60 2.25 2.07
70 1.69 2.2
80 2.03 3.58
90 2.1 2.54
100 2.5 2.99
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Table A.4: Accuracy Scores of Party-1 in Horizontal-PPRF for Iris Dataset

No of Trees | Non PPRF | PPRF
10 95 91
20 96 94
30 6 94
40 96 92
50 93 92
60 95 92
70 92 92
80 95 92
90 95 92
100 94 94

Table A.5: Accuracy Scores of Party-2 in Horizontal-PPRF for Iris Dataset

No of Trees | Non PP RF | PPRF
10 94 94
20 93 92
30 92 95
40 94 91
50 95 94
60 92 90
70 94 94
80 92 92
90 92 92
100 92 92
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Figure A.8: Accuracy Scores of Party-1 and Party-2 in Horizontal-PPRF for
Iris Dataset
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Figure A.9: Accuracy Scores of Party-1 and Party-2 in Horizontal-PPRF for
Iris Dataset
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Figure A.10:

PPRF

Runtime of Horizontal-PPRF(IRIS)

3.5

3.0

2.5

2.0

1.5 A

Run time in Seconds

1.0

0.5 1

= Non Perturbed
——— Perturbed

20 40

T
60

80

Number of generated trees

T
100

Runtime Comparison graph for Non PPRF and Horizontal-

A.4 PhD Work (Thesis) - Summary Table

Complete PhD work - Summary Table

Privacy Preserving | Data Mining | Problem Number of | Experiments Datasets
SNo ) . . . |PP Approach ]
Technique/Method |Functionality | Domain Parties Platform Used

Neural Iris, Glass,

1 | Horizontal PPSOM Clustering eura Perturbation | Two Party |Matlab +Weka Ijls ass
Networls Wine, Seeds

2 | Vertical PPSOM Clusteri Neural | oo¢ hy| Two Party | Matlab + c# | i Class.

ertical usterin, ogra vo Pa atla

g Networls TYPLography Wine, Seeds

Matlab + Iris, Glass,

3 | Horizontal PPFCM Clustering |Fuzzy Sets|Collaboration | Multi Party ata Ijls ass
Fuzzy Wine, Seeds

Matlab + Iris, Glass,

4 Vertical PPFCM Clustering |Fuzzy Sets|Collaboration | Multi Party ata Ijls ass
Fuzzy Wine, Seeds

E bl han + Iris, Glass,

5 Horizontal PPRF | Classification nsem. © Bagging Two Party Python s E_ls_s
Learning anaconda Seeds, Clinical

E bl han + Iris, Glass,

6 Vertical PPRF Classification nsem. © Bagging Two Party Python s E_ls_s
Learning anaconda Seeds, Clinical

N 1 Matlab + SOM Iris, Glass,

7 *PPSOM Clustering SUTa" | collaboration | Multi Party ata Ijls ass
Networls Tool box Wine, Seeds

Machi Matlab + SOM Iris, Glass,

8 *PPID3 Classification 3 l.ne Perturbation | Two Party ata Ijls ass
Learning Tool box Wine, Seeds

Ensemble Python + Iris, Glass,

9 *PPRF Classification Baggin, Multi Pa

Learning sgmg Ty Matlab Seeds, Clinical

* Additional work done
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Abbreviations

PP - Privacy Preserving
PPDM - Privacy Preserving Data Mining
PPDDM | - Privacy Preserving Distributed Data Mining
SMC - Secure Multi Party Computing
HP - Horizontally partitioned
VP - Vertically Partitioned
AP - Arbitrarily Partitioned
GP - Grid Partitioned
TP - Two party
MP - Multi Party
TTP - Trust Third Party Model
SH - Semi-honest Model
MM - Malicious Model
oM - Other Models
PPSOM - Privacy Preserving Self Organizing Map
FCM - Fuzzy C-Means Clustering
CcC - Collaborative Clustering
PPFCM | - Privacy Preserving Fuzzy C-Means Clustering
RF - Random Forest
PPRF - Privacy Preserving Random Forest
PPGRF - Privacy Preserving Global Random Forest
LRF - Local Random Forest
IGRF - Initial Global random Forest
FGRF - Final Global random Forest

Table A.6: Privacy measuring notations used for PP Methods

d() = Distance function D = Data Set
E = Equivalent Class H() = Entropy
I( ;) = Mutual Information K = Privacy Mechanism
L = Location/Site M = Messages/Requests
p(x) = p(X = x) R = Regions
S = Sensitive attribute value T = Time
U = Set of users ueU X = Discrete random variable
X* = True distribution of hidden data | Y = Data observed by other party
7 = Prior Information B() = Loss Function
7 = Thresholds w = Weight
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