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ABSTRACT

How the brain forms memories and associations between them has been a long-

standing question in psychology and neuroscience. Computational models, in partic-

ular, the Hopfield model[1] with Hebbian learning[2] have been shown to be useful

in studying the mechanisms underlying learning and memory in the brain. However,

the Hopfield model suffers from a severe limitation in terms of the amount of infor-

mation it can store before it experiences the so-called catastrophic blackout resulting

in an abrupt and complete loss of information. A solution to the capacity problem

by invoking an orthogonalization scheme in the Hopfield model has been proposed

earlier[3] and demonstrated to be effective in increasing the memory capacity of the

network. In this thesis, we first analyze the post-synaptic potential in detail to show

how the Gram-Schmidt orthogonalization scheme helps in overcoming the memory

catastrophe and enhances memory capacity. We then address some fundamental is-

sues related to memory stability and the associative character of the network. We

also define mathematically the terms retrieval, recognition and recall in order to list

out in exact terms the conditions required for pattern stability and hence for the

efficient functioning of an associative memory network. Apart from the sequential

Gram-Schmidt orthogonalization procedure, in this thesis we also study the effects

of invoking the democratic Symmetric and Canonical schemes due to Löwdin[4, 5, 6]

on the dynamics of the Hopfield network. We have also attempted to situate our

studies in the context of cognition, to understand how the results of the study relate

to biological learning and memory.
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Chapter 1

Introduction

A refrain from a song or the scent of a meal can evoke memories, the sound of

a passing train could remind you of your first train journey. Seeing a face could

trigger memories of familiarity, especially if they bear some resemblance to someone

you know or have come across. How does this happen? How do we learn and form

memories? How does seeing or hearing something remind us of something else? What

makes the brain capable of forming associations between the various things we learn

or remember?

These questions have long been the focus of research across domains including psy-

chology, neuroscience and computation. Computational modelling of observed cog-

nitive phenomena using principles from mathematics, physics and computer science

have proven to be a valuable tool in furthering our understanding of cognitive mech-

anisms. In this thesis, we try to address some of the questions mentioned above using

a mathematical model.

In the decades since it was first proposed, the Hopfield model[1] has been studied

extensively in the context of learning and memory. The model is a multi-nodal

fully-connected network which can memorize and recover information represented by

vectors with binary components. The model employs the learning principle postu-

lated by Hebb[2]. The information thus stored become points of minimum energy.

Not only that, each memorized vector is associated with a set of vectors that collec-

tively form its basin of attraction. This property of the network makes the vectors

attractors, which is why such networks are also known as attractor neural networks.

1



Chapter 1. Introduction 2

The appeal of the Hopfield model lies in its simplicity, though the network is still

capable of reproducing many observed complex phenomena. In spite of its limitations,

the model remains relevant to our attempts at studying the mechanisms underlying

learning and memory.

The brain is capable of not just storing information, but also categorizing and clas-

sifying information and forming associations between them. This aspect of the func-

tionality of the brain is captured well by the Hopfield model using principles from

physics (see for instance, [7] or [8]). The model acts not just as a storage system,

but also as an associative memory. However, the storage capacity of the model is

severely limited, and is just a small fraction of its size. Moreover, beyond this low

limit, there is a sudden and total loss of memory, a phenomenon referred to as the

memory catastrophe or blackout.

Implementation of orthogonalization in the Hopfield model has been proposed earlier[3]

as a solution to the capacity problem. It has been demonstrated to be effective in

increasing the memory capacity of the network and in overcoming the memory catas-

trophe.

Orthogonalization refers to the transformation of a set of linearly independent vec-

tors into an orthonormal basis, a set whose component vectors are all perpendicular

to each other and normalized, that is, of uniform length. It has been explored exten-

sively in physics, chemistry and mathematics. While orthogonalization may initially

appear completely unrelated to cognition, it may not be so – we have shown that or-

thogonalization might be a part of the mechanisms underlying learning and memory,

and may also be biologically plausible.

The Gram-Schmidt orthogonalization scheme plays a role in the capacity of the brain

to learn, store and distinguish between information [15, 16]. The information is

first perceived through the sense organs and then received by the brain, and may

include sights, sounds and/or smells. We claim argue that the brain is capable

of the process of orthogonalization and can differentiate new from the previously

memorized information [24]. By comparing new incoming information with what is

already present, the brain is, in essence, performing the process of orthogonalization.

The brain may thus possess the physiological architecture and mechanisms required

for orthogonalization. This idea is part of our hypothesis that the functioning of the

brain might be, by and large, mathematical in nature.
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We have shown earlier how when the brain compares different information and iden-

tifies similarities and differences between them, it is, in fact, carrying out the process

of Gram-Schmidt orthogonalization [15, 16]. Adopting the Hopfield model[1] as our

base , we have seen that when the model brain uses Gram-Schmidt orthogonaliza-

tion in the memorization process, it compares the new information coming in with

what has been memorized previously and checks how similar or different they are.

Following orthogonalization, what the model brain memorizes is the result of the

comparison, the similarities and differences the model brain has established, rather

than the information in its entirety. A significant result of the model is the substantial

increase in the memory capacity of the network. Another interesting and remarkable

highlight of the model is that in spite of the network memorizing the orthogonalized

versions, or the similarities and differences between the incoming information, the

model brain is capable of recognizing the complete input information when it is pre-

sented to the network. In other words, the network can recover the presented input

information with perfect accuracy. The network is also capable of associative recall

of the information, that is, each input information has a basin of attraction around

it, indicating that the information is content addressable [7].

We hence argue that the brain might have become capable of performing orthogo-

nalization along the lines of the Gram-Schmidt scheme early during the evolutionary

process, though the mathematical procedure was invented relatively recently, about

a century ago.

1.1 Objectives of the thesis

In this thesis, we first show analytically how the proposed orthogonalization scheme

provides a solution to the catastrophic blackout problem, apart from increasing the

memory capacity of the network. To do so, we present a detailed analysis of the post-

synaptic potential. We also show how the scheme addresses the stability-plasticity

dilemma.

However, a deeper probe into the robustness of the enhanced memory capacity raises

some fundamental questions related to pattern stability and the associative character

of the network, which we will try to address. Pattern stability forms the crux of

an efficient storage system, ensuring that the information stored in the system can

be recovered. While the concept of pattern stability in the Hopfield model can be
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understood in straightforward terms, the results of our study show that this notion

may not be universal in its definition. Different criteria have been used to term a

pattern stable or unstable (refer to [9] and [8]for stability criteria). We list out all

the conditions stable patterns must satisfy, and also define them mathematically.

This brings us to re-examine what we mean by terms such as retrieval, recognition

and recall. While these terms are often used interchangeably in the literature, their

meanings differ across domains. For consistency, we define each term precisely in our

context. We also express them in mathematical terms, and discuss how our definitions

compare to their counterparts in other fields such as psychology or computation.

1.2 Evaluating network efficacy

We evaluate the efficacy of the Hopfield model in terms of the following:

• the memory capacity of the network,

that is, the amount of information that can be stored in a network of a certain

size;

• the sizes of the basins of attraction of the memories,

or, the maximum distance between a memory and a pattern within its basin of

attraction and hence associated with the memory;

• the network dynamics,

i.e., the effect of increasing memory loads on the basins of attraction,

• the energy landscape,

or how the energies of the patterns are affected as more patterns are added to

the memory store;

and

• the effect of correlations between the patterns on the behaviour of the network.

For comparison, we analyze the performance of our model with Gram-Schmidt or-

thogonalization along the same lines.

Our results indicate that implementing orthogonalization in the Hopfield model not

only increases the memory capacity, but also makes the network a more effective
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associative memory in comparison with the Hopfield network. Moreover, the Gram-

Schmidt scheme also automatically endows the network with many desirable traits in

the network performance parameters, such as making the basins of attraction large

and uniform, for instance.

Apart from the Gram-Schmidt orthogonalization procedure which is sequential in

nature, we also implement two democratic orthogonalization schemes in the Hopfield

network. Symmetric and Canonical schemes proposed by Löwdin[4, 5, 6] orthogo-

nalize sets of vectors, independent of the sequence in which the vectors are arranged.

We highlight some remarkable properties of the schemes and analyze the behaviour

of the Hopfield model invoking these two schemes.

Finally, we interpret what our results could mean in cognitive terms. We also discuss

the possible biological circuitry that could realize the proposed schemes.

1.3 Organization of the thesis

This thesis is a study on the effects of various orthogonalization schemes in the

Hopfield model. The thesis is organized into various chapters as follows: Chapter

2 presents an overview of the Hopfield model with Hebbian learning, while Chapter

3 discusses GS orthogonalization as a solution to the memory catastrophe. A more

in-depth study of the scheme is presented in Chapter 4, with emphasis on pattern

stability and the associative character of the network. Chapter 5 looks at Löwdin

orthogonalization schemes and their relevance to cognition. The thesis concludes

with a summary and a discussion on future research avenues in Chapter 6.





Chapter 2

An overview of the Hopfield model

In this chapter, we present a brief overview of the Hebb-Hopfield model which forms

the base upon which we have built the models used in our studies.

2.1 Introduction

We adopt the Hopfield model[1] as our base for our studies. As the model follows the

Hebbian learning principle[2], we also refer to the Hopfield model as Hebb-Hopfield

or H-H model hereafter. In this thesis, we propose and elaborate upon some schemes

that can be implemented in the basic Hopfield network to improve its performance

and cognitive relevance, while also taking biological plausibility into account. We will

now outline the model and discuss the behaviour and functioning of the network.

2.2 Learning and memorization in the Hopfield

network

The Hopfield network[1, 7] is a system of N nodes, called neurons, which are con-

nected to all other neurons without self-connections. They are connected to each

other through synapses which are characterized by their nature and weights (also

referred to as strengths or efficacies). The synapses can be excitatory or inhibitory in

nature and are characterized by efficacies that change in response to new information

being memorized by the network. Information is presented to the network in the

7
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form of patterns. Each pattern ξ(µ) is an N−dimensional vector whose components

ξ
(µ)
i are ±1 with equal probability. +1 denotes an active or firing neuron while −1

denotes one which is inactive or non-firing. The information is thus represented as a

pattern of activities on the neurons given by

ξ(µ) = {+1,+1,−1, . . . ,+1}. (2.1)

Here we use ±1 for mathematical convenience, but conversion to 0 − 1 (0=non-

firing/1=firing) notation can be achieved easily as follows:

ξ
(µ)
i = 2ni − 1, (2.2)

where ξi and ni represent −1/+ 1 and 0/1 units respectively[19] (also see [7]).

When an information is to be memorized by the network, it follows the learning rule

constructed following Hebb’s hypothesis[2] and written as:

Jij =
1

N

p∑
µ=1

N∑
i=1
i 6=j

ξ
(µ)
i ξ

(µ)
j . (2.3)

Here ξ
(µ)
i and ξ

(µ)
j give the activities of the ith and j th neurons in the µth pattern and

Jij is the weight of the synapse between the two neurons i and j. For the neuron

i, ξ
(µ)
i · ξ(µ)i = 1. The addition of new patterns leads to cumulative changes in the

synaptic weights.

The activities of the remaining N − 1 neurons in pattern ν projecting onto neuron i

via Jij ’s give rise to a local field potential(LFP) or the post-synaptic potential (PSP)

on the neuron i given by:

h
(ν)
i =

N∑
i=1
i 6=j

Jijξ
(ν)
j . (2.4)
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The neurons are connected with all the neurons except themselves and so the self-

connection terms in eq.(2.3) are explicitly made zero. See 1 and also [19] for a

discussion of the mathematical reason for this.

2.3 The concept of pattern stability

Patterns stored in the network following the learning prescription in eq.(2.3) form

fixed points in the network, as they minimize an energy function, or Hamiltonian,

given by,

H = −1

2

N∑
i,j=1
i 6=j

Jijξ
(µ)
i ξ

(µ)
j . (2.6)

This condition is a prerequisite for pattern stability and can be verified from the fol-

lowing simple analysis (following [19]). For symmetric connections, the Hamiltonian

is given by

H = C − 1

2

N∑
i,j=1
i 6=j

Jijξ
(µ)
i ξ

(µ)
j ,

H = C − 1

2

N∑
i,j=1
i 6=j

h
(µ)
i ξ

(µ)
i ,

(2.7)

1We know from eq.(2.4) that

h
(ν)
i =

N∑
j=1

Jijξ
(ν)
j ,

= Jiiξ
(ν)
i +

N∑
j=1
j 6=i

Jijξ
(ν)
j ,

and so,

h
(ν)
i ξ

(ν)
i = Jiiξ

(ν)
i ξ

(ν)
i ξ

(ν)
i +

N∑
j=1
j 6=i

Jijξ
(ν)
j ξ

(ν)
i . (2.5)

The first term will always be positive, as ξ
(ν)
i ξ

(ν)
i = 1 and Jii =

∑p
µ=1 ξ

(µ)
i ξ

(µ)
i = p. Now, if∑N

j=1
j 6=i

Jijξ
(ν)
j < 0, then both ξ

(ν)
i = +1 and ξ

(ν)
i = −1 will result in h

(ν)
i ξ

(ν)
i taking a positive

value if the first term on the right side of eq.(2.5) is large. As we shall see later in Chapter 4, this
indicates the stability condition being satisfied. That is, Jii 6= 0 leads to the presence of additional
spurious states in the vicinity of the actual stable states corresponding to the ξ(ν)’s. If Jii = 0,

h
(ν)
i ξ

(ν)
i = [

∑N
i=1
i 6=j

Jijξ
(ν)
j ]ξ

(ν)
i which will be < 0 when ξi

(ν) = −1 and > 0 when ξi
(ν) = +1.
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where C is a constant due to the ii terms. The parentheses refers to all the distinct

(symmetric) ij pair terms for which ij terms = ji terms. Our aim here is to show that

the learning rule in eq.(2.3) can only lead to a decrease in the energy of the system.

Now let H ′ be the new Hamiltonian on some neuron i such that ξ
′(µ)
i = sgn

(
h
(µ)
i

)
.

Now if ξ
′(µ)
i = h

(µ)
i , then H ′ = H and the Hamiltonian remains as it is. But if

ξ
′(µ)
i = −h(µ)i , then,

H
′(µ) −H(µ) = −

N∑
i,j=1
i 6=j

Jijξ
′(µ)
i ξ

(µ)
j +

N∑
i,j=1
i 6=j

Jijξ
(µ)
i ξ

(µ)
j ,

= 2ξ
(µ)
i

N∑
i,j=1
i 6=j

Jijξ
(µ)
j ,

= 2ξ
(µ)
i

N∑
j=1

Jijξ
(µ)
j − 2Jii. (2.8)

We can ignore the second term containing the self-connection terms. We can infer

from eq.(2.6) the definition of and ξ
′(µ)
i that the Hamiltonian can only decrease.

Thus, we see that the learning rule (in eq.(2.3)) ensures the minimization of the

energy function.

Moreover, for patterns to be stable or retrievable, the signs of the LFP on each neuron

must match with the corresponding element of the presented pattern. That is,

sgn
(
h
(ν)
i

)
= sgn

(
ξ
(ν)
i

)
for all i’s. (2.9)

Alternatively, pattern stability requires

sih
(ν)
i > 0, (2.10)

where si = sgn
(
ξ
(ν)
i

)
for all i.

We now use this condition to check the stability of the first pattern ξ(1) when p

patterns have been stored in the system. For this, we first evaluate s1h1 following

eq.(2.10). and separate it into two terms, the first containing the contribution of the
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first pattern and the second due to all other patterns as,

s1h1 =
1

N

N∑
j=2

p∑
µ=1

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j ,

=
1

N

(
N∑
j=2

ξ
(1)
1 ξ

(1)
1 +

N∑
j=2

p∑
µ=2

ξ
(µ)
j ξ

(1)
j

)
,

=
1

N

(
N − 1 +

N∑
j=2

p∑
µ=2

ξ
(µ)
j ξ

(1)
j

)
,

s1h1 =
N − 1

N
+

N∑
j=2

p∑
µ=2

ξ
(µ)
j ξ

(1)
j .

(2.11)

The first term in the equation is straightforward, as (±1)2 = 1. As there are no self-

connections and ξ
(µ)
j and ξ

(1)
j are uncorrelated for µ 6= 1, each of the four elements in

the second term is independent of the other three. Besides, there is a term in each

sum which is not correlated with any of the other terms. Hence, each element in the

sum can be approximated as ±1. The second term in eq. (2.11) can therefore be

considered as a random walk with (N − 1)(p− 1) terms.

The first term can be understood as the signal due to the pattern ξ(1), and takes

value 1 for N >> 1. The second term constitutes the noise due to the correlations

between ξ(1) and the remaining p− 1 patterns. Its value is typically expressed as the

root mean square σ given by:

σ =
N − 1

N
+

N∑
j=2

p∑
µ=2

ξ
(µ)
j ξ

(1)
j . (2.12)

We see that eq.(2.11) satisfies the condition in (2.10) when the signal term is larger

than the noise term, indicating that the pattern ξ(1) is retrievable. We can generalize

this analysis to any of the p memorized patterns.

sihi =
1

N

√
(N − 1)(p− 1) ≈ p

N
. (2.13)

The above condition requires the signs on the neurons to match with perfect accuracy,

that is, on all N neurons. However, a match of ≥ 97% is deemed sufficient for pattern

retrieval. A plot showing the average number of stable patterns for different memory

loads is shown in Fig.2.1.
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Figure 2.1: Stable patterns in the Hopfield model with 100 neurons plotted
against the number of memorized patterns. The plot is shown for 50 trials, where
each trial refers to a particular set of patterns. Patterns are retrieved completely

upto p = 11, beyond which patterns start becoming unstable.

2.4 Memory capacity of the network and catas-

trophic blackout

We can now estimate the memory capacity of the network. The memory capacity of

the network gives a measure of the efficacy of the network as an associative memory.

The maximum number of patterns p such that all p inscribed patterns can be retrieved

gives the memory capacity of the network of size N . In other words, it marks the limit

within which the signals arising from the learnt patterns are clearly distinguishable

from the noise, rendering the patterns stable. In order to calculate the value of p upto

which there no degradation in the stored memory, we must work out the probability

of a single neuron being unstable, i.e., sihi < 0.

For large values of (N − 1)(p − 1), when the random walk has a high number of

steps, the noise term in eq.(2.13) can be approximated by a Gaussian. Then, the
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probability of the neuron i being unstable is given by:

P (sihi < 0) =
1

σ
√

2π

∫ −1
−∞

e−
1
2( xσ )

2

dx. (2.14)

Rewriting the above equation using the error function, we get

P (sihi < 0) =
1

2

(
1− erf

(
1

σ
√

2

))
. (2.15)

The memory capacity αc is now

αc =
p

N
= σ2. (2.16)

From theoretical and analytical studies, αc = 0.144 for σ = 0.379 [7, 8] (and references

therein). The memory capacity of the network is shown in Fig.2.2 as the fraction of

retrieval for different values of the load parameter (p/N).
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Figure 2.2: Plot showing the memory capacity of the network, with the fraction
of retrieval plotted against the load parameter (p/N). The plotted data pertains
to three different trials with p = 300 in a network of size N = 1000. The average
of 18 sets including these three is plotted in the inset. The fraction of retrieved
patterns deteriorates rapidly for loads beyond the theoretical limit of p = 0.14N ,

falling to 0 around p = 0.17N .
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The above limit gives the critical value at which the network dynamics shift from

the stored information being retrievable to all the stored memories being lost. This

effect is referred to as catastrophic blackout. Beyond this point, the learnt patterns

become unstable as shown in Fig.2.3

Figure 2.3: Unstable patterns in the Hopfield model with 100 neurons plotted
against the number of memorized patterns. The plot is shown for 50 trials. Some
of the patterns become unstable as p nears 10, but this fraction is negligible. With

further increase in p, more and more patterns become unstable.

2.5 Relationship between basins of attraction, pat-

tern stability and memory capacity

The stability of a pattern also indicates the presence of a finite or non-zero basins

of attraction. Basin of attraction refers to the set of patterns around an inscribed

pattern ξ(ν) (a minimum in the energy landscape) such that they settle down to that

particular pattern ξ(ν) when presented to the network for retrieval. The patterns
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within the basin of attraction of ξ(ν) share some degree of similarity with ξ(ν) and are

hence associated with it. It is intuitive that patterns are associated with or fall within

the basin of attraction of the inscribed pattern to which they are the most similar.

However, whether a test pattern lies within the basin of attraction of an inscribed

pattern depends on the size(or extent or radius) of the basin. The maximum number

of differences between a test pattern ξ(test) and an inscribed pattern ξ(ν) (that is,

the Hamming distance between them) such that ξ(test) retrieves ξ(ν) when presented

to the network gives the extent of the basin of attraction of ξ(ν). The protocol for

calculating basins of attraction along with an example is explained in Appendix B.

An in-depth study of the basins of attraction will be presented in Chapter 3.

We will now look at the relationship between memory capacity of the network and

the sizes of the basins of attraction. In order to get a general estimate the radius

of a basin of attraction, following [8] we first choose a test pattern ξ(t) which differs

from the first pattern by b elements, i.e., the Hamming distance between ξ(t) and

ξ(t) is b. For the sake of convenience, we make the test pattern such that its first b

elements are the same as those of the first inscribed pattern ξ(1) and the remaining

N − b elements are the inverses of the corresponding elements of ξ(1). That is,

ξ
(t)
i =

ξ
(1)
i , i ∈ {1, 2, ...N − b}
−ξ(1)i , i ∈ {N − b+ 1, N − b+ 2, ...N}.

(2.17)

Now, to check if the test pattern is stable after p patterns have been stored, we can

check the stabilization parameter of either the first or the last neuron (as the signs

of the remaining neurons will follow, from eq.(2.17)). ξ(t) will be stable if either

s1h1 > 0 or sNhN < 0. And so, using eq.(2.9) and eq.(2.4), we get,

s1h1 = ξ
(1)
1 h1 = ξ

(1)
1

N−b∑
j=2

J1jξ
(1)
j + ξ

(1)
1

N∑
j=N−b+1

J1j(−ξ(1)j ) > 0, (2.18)

or

sNhN = ξ
(1)
N hN = (−ξ(1)N )

N−b∑
j=2

JNjξ
(1)
j + (−ξ(1)N )

N∑
j=N−b+1

JNj(−ξ(1)j ) < 0. (2.19)

As the first and last neurons of ξ(t) have the same and inverted values of the cor-

responding elements of ξ(1), either of the above two conditions will ensure that the

signs on the test pattern and the inscribed pattern match. They are also equivalent,
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as eq.(2.19) multiplied by a factor of −1 yields the same criterion as in eq.(2.18). We

will now focus on the first neuron and calculate its stabilization parameter:

ξ
(1)
1 h1 =

1

N

N−b∑
j=2

p∑
µ=1

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j −

1

N

N∑
j=N−b+1

p∑
µ=1

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j , which yields,

=
1

N

N−b∑
j=2

ξ
(1)
1 ξ

(1)
1 ξ

(1)
j ξ

(1)
j +

1

N

N−b∑
j=2

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j

− 1

N

N∑
j=N−b+1

ξ
(1)
1 ξ

(1)
1 ξ

(1)
j ξ

(1)
j −

1

N

N∑
j=N−b+1

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j ,

on separating the µ = 1 terms from the rest, and,

=
1

N
(N − b− 2− (N − (N − b+ 1))

+
1

N

N−b∑
j=2

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j −

1

N

N∑
j=N−b+1

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j ,

since ξ
(1)
1 ξ

(1)
1 = 1, and hence

ξ
(1)
1 h1 =

N − 2b− 1

N︸ ︷︷ ︸
signal

+

1

N

N−b∑
j=2

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j −

1

N

N∑
j=N−b+1

p∑
µ=2

ξ
(1)
1 ξ

(µ)
1 ξ

(µ)
j ξ

(1)
j︸ ︷︷ ︸

noise

.

(2.20)

We have separated the terms into a signal and a noise term. The noise term is

a random walk whose constituent terms are uncorrelated, and can be evaluated as

(N − 1)(p − 1). When N and p are large, the 1 term can be neglected in both the

signal and noise terms. So, we get an expression for the signal-to-noise ratio (SNR)

as,

SNR =
(N − 2b)/N√

p/N
=
N − 2b√
pN

. (2.21)
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Now, to estimate the radius of the basin of attraction, we make the SNR = αc (from

eq.(2.16)) to get,
N − 2b√
p/N

=
1

αc

b = −1

2

(√
pN

αc
−N

)
=
N

2

(
1−

√
pN

N
√
αc

)
b =

N

2

(
1−

√
p

αcN

)
.

(2.22)

From the above analysis, we can see that the basin of attraction can be at most N/2

for very small values of p, and when p/N approaches αc, the radius becomes 0, that

is, the basin of attraction vanishes. We can hence see that the catastrophic blackout

(discussed previously) also marks the limit where the basin of attraction surrounding

each of the inscribed patterns disappears. This is due to the destructive interference

(between the basins) resulting from the crosstalk between the stored patterns [10].

2.6 Conclusion

In this chapter, we have presented a brief overview of the Hopfield model. In the

forthcoming chapters, we will build our model based on this network. We will also

revisit the concept of pattern stability and elaborate further on some aspects of the

network dynamics described in this chapter.





Chapter 3

Gram-Schmidt orthogonalization:

a solution to Catastrophic

Interference

In this chapter, we invoke Gram-Schmidt orthogonalization in the Hopfield model as

a way of overcoming the detrimental effects of catastrophic interference between the

patterns to improve the memory capacity of the network. We discover that it has

profound biological implications on cognitive learning and memory.

3.1 Introduction

Learning and memory require a system to possess two properties - stability and plas-

ticity. The system must be plastic or malleable in order to learn information, while

at the same time remain stable and retain information in the presence of changes due

to newer information being encountered by the system. These contradictory require-

ments consitute the stability-plasticity dilemma[11]. Neurobiologists must address

this issue while studying the functioning of the nervous system, while in artificial in-

telligence research, the problem bears relevance in building and understanding mem-

ory systems. At the theoretical level, the stability-plasticity dilemma prompts the

following question: how can the elements of a system store new information without

affecting what has already been memorized?

19
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In the nervous system, memory is stored in the synapses following the principles

postulated by Donald Hebb[2]. Long-term potentiation of the synapses has been pro-

posed as the primary mechanism underlying learning and memory[12]. The Bienenstock-

Cooper-Munro (BCM) model [13] pointed out that this mechanism could suffer from

an inherent instability- in a system whose synapses have a threshold for plasticity,

the entry of new information causes a growth in the synapses which are above the

threshold, while those below it decay. The growth or decay pertains to the patterns

rather than to the synapses, resulting in certain patterns being favoured over others.

As the same set of synapses is used to store more than one memory, there could be

further growth or potentiation of synapses even in response to non-favoured patterns.

The potentiation (or depression) due to patterns other than a specific pattern be-

ing stored contributes to the “ongoing plasticity”[22]. This could result in runaway

cycles of potentiation or depression which would disrupt the information already in

the memory. Such an unhindered increase in synaptic potentiation could lead to

excitoxicity, cell death and epileptogenesis in biological systems[25].

A similar phenomenon is observed in connectionist neural networks. In artificial

neural networks, as more and more patterns are stored, we reach a critical point

beyond which there is a sudden abrupt, drastic and complete loss of memory, a

blackout. This blackout is due to Catastrophic Interference (CI). Any information

learnt by the system modifies the same set of synaptic weights, while the network

still retains the information pertaining to the patterns memorized earlier; but this is

possible only for a small set of patterns before CI sets in. CI is thus a manifestation

of the stability-plasticity dilemma.

The set of patterns in the memory store overlap with each other. The presence of

correlations between the patterns indicates that they share several common features

and are similar to each other. (Refer to [15] for a mathematical interpretation.)

These correlations result in further potentiation or depression of the same synapses.

This is akin to the concept of stability described earlier. While newer memories in

the human brain are labile and susceptible to change[26, 27], there is no abrupt or

complete deterioration in the retrieval of earlier memories. Any degradation of prior

memorized information happens gradually and “gracefully”[28, 29, 30, 31]. The

catastrophic blackout is hence a limiting feature of connectionist networks which rely

on modifications to the same finite set of synapses to store multiple memories. In

contrast, the human brain is inherently capable of learning new information without
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any drastic loss of earlier memories. (But, see [32] for an example of retroactive inter-

ference in humans wherein newly learnt information affects the retrieval of previously

stored memories.) It would hence be useful to understand the mechanisms underly-

ing human memory and explore their implementation in and relevance to artificial

intelligence networks.

A number of ways of overcoming the detrimental effects of CI have been proposed. For

instance, the usage of a cascade of states and including the strength of synapses[33],

updating only a fraction of weight-restricted synapses for specific rates of information

presentation[34] or dual systems, one for learning and another for retention[35]. Other

strategies entail implementing neurogenesis i.e., the generation of new neurons [36]

or following an anti-Hebbian learning prescription[37] to offset the negative effects

of CI. Another biologically plausible approach involves having the synaptic efficacies

traverse between a number of states which are bounded on either side[22]. The

modifications to the efficacies depend on the current strength of the synapse, reflecting

the so-called “soft bound plasticity”[38]. However, these proposed strategies are

limited in scope of implementation or biological feasibility.

Given the commonalities between biological systems and artificial neural systems

in terms of stability and plasticity, it would be useful and interesting to apply the

strategies to overcome CI to a deeper analysis of the runaway cycle of potentiation.

The BCM model proposes a threshold for synaptic modifications that is dependent

on the current and previous states of the synapse[39]. This dependence represents the

plasticity of the (plastic) synapse, the “metaplasticity”[40]. The “sliding threshold”

regulates synaptic changes due to LTP and LTD and brings about homeostasis in

the system by making the synapses stable and impervious to disturbances[40, 41].

A synapse grows following LTP or decays after LTD depending on whether or not

the threshold is crossed. Crossing the threshold and memorizing a pattern require

sufficient amount of activity on the synapses, thus ensuring that the changes due to

the non-pertinent synapses in the system fall below the threshold without modifying

all the synapses considerably.

The BCM model offers a means of limiting synaptic efficacies within bounds, making

it a biologically tenable neural network model. It would be useful to establish a link

between experimental results pertaining to cellular and synaptic processes and net-

work function. While the presence of a shifting plasticity has been observed, there is

no evidence yet of a BCM-like effect in human memory, nor has the model been stud-

ied with relation to CI in artificial neural networks. We implement Gram-Schmidt
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orthogonalization in a Hopfield model following Hebbian learning (hereafter referred

to as H-H-GS model) and show that the network then becomes capable of auto-

matically containing the creation of runaway potentiation cycles, thereby effectively

eliminating CI.

In our study, we use a basic network model which only incorporates the minimum

essential features and underlying conditions of the system we wish to explore. While

it does not appear biologically plausible at the outset, it can be modified to incor-

porate knowledge gained from experimental observations. The model captures the

basic properties of our system of interest, as its components are capable of synapse-

like encoding, and the network captures the essence of the phenomena we wish to

understand. The network can be generalized provided it meets certain criteria (dis-

cussed later). We believe that the results from our current study may pertain to

real observed phenomena. The model can also be generalized and brought closer to

biology by systematically including more features, while also ensuring mathematical

tractability at each step. The model should in principle then be capable of producing

results similar to those observed experimentally.

3.2 Catastrophic interference

We adopt the Hebb-Hopfield model as the base for our study. The network was

described in some detail in the previous chapter, and we saw that the network had

a low memory capacity. When patterns are stored in the network, there is a sudden

and complete loss of memory beyond a certain limit. This memory blackout is the

result of the catastrophic interference discussed above. In order to understand the

problem better, we perform an alternate signal-to-noise analysis of the LFP, the local

field potential (discussed in 2.3 of the previous chapter). We have seen previously

that the LFP or post-synaptic potential can be split into a signal and a noise term,

resulting in the catastrophic blackout when the noise accumulates and overrides the

signal. We now revisit the LFP and evaluate eq.(2.4) by substituting for Jij from

eq.(2.3) which can be rewritten as:

Jij =
1

N

p∑
µ=1

(
ξ
(µ)
i ξ

(µ)
j − δijξ(µ)i ξ

(µ)
i

)
, (3.1)
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where the Kronecker delta function δij = 1 for i = j and = 0 otherwise. The above

learning rule was originally postulated by Cooper[14] to mimic Hebbian synaptic

plasticity. We then have,

h
(ν)
i =

N∑
j=1

[
1

N

p∑
µ=1

(
ξ
(µ)
i ξ

(µ)
j − δijξ(µ)i ξ

(µ)
j

)]
ξ
(ν)
j . (3.2)

We can express the above equation as:

h
(ν)
i =

1

N

p∑
µ=1

ξ
(µ)
i

[(
ξ(µ) · ξ(ν)

)
− ξ(µ)i ξ

(ν)
i

]
=

1

N

p∑
µ=1
µ 6=ν

ξ
(µ)
i

[(
ξ(µ) · ξ(ν)

)]
+

[
ξνi −

p∑
µ=1

ξ
(µ)
i ξ

(µ)
i ξ

(ν)
i

]

h
(ν)
i =

(
1− p

N

)
ξ
(ν)
i +

1

N

p∑
µ=1
µ 6=ν

ξ
(µ)
i

(
ξ(µ) · ξ(ν)

)
. (3.3)

Here again, the first term represents the signal due to the inscribed pattern ξ(ν), while

the second term denotes the noise. The correlations between the stored patterns, the

crosstalk contribute to the noise in the system.

3.3 Overcoming the catastrophic blackout

The addition of new information leads to an increase in the noise in the system

which eventually becomes so high that the signals due to the memorized patterns

get submerged in it, while the basins of attraction shrink or vanish altogether. From

the previous section, we see that the overlaps between the patterns are the source of

noise which leads to the catastrophic interference. In order to overcome this, we try

to reduce or remove the correlations between the inscribed patterns. A simple way

of doing so is by incorporating the Gram-Schmidt orthogonalization procedure in the

memorization process[15, 16].
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3.3.1 Gram-Schmidt orthogonalization

For a set of linearly independent vectors {ξ(µ)} = {ξ(1), ξ(2), . . . , ξ(p)}, the Gram-

Schmidt procedure yields a set {η(µ)} = {η(1),η(2), . . . ,η(p)} whose elements are mu-

tually orthogonal. The orthogonalization process is done by removing the projections

of all the other vectors on each individual ξ. This can be expressed mathematically

as,

η(ν) = ξ(ν) −
ν−1∑
µ=1

η(µ) η
(µ) · ξ(ν)
η(µ) · η(µ)

, (3.4)

where ν is the pattern index which runs from 1 to p. The second term on the right

hand side gives the projection of ξ(ν) on η(1) to η(ν−1). We normalize η(ν) to yield η̂(ν)

whose components are denoted by η˜(ν)’s. η̂(ν) is obtained by calculating η̂(ν) = η(ν)

‖η(ν)‖ ,

where ‖η(ν)‖ gives the norm of the vector.

We first study the case of p = 2, where 2 patterns ξ(1) and ξ(2) are orthonormalized

following the Gram-Schmidt procedure to yield η(1) and η(2). We first verify whether

η(1) and η(2) are mutually orthogonal.

η(2) · η(1) =

(
ξ(2) − η(1) η

(1) · ξ(2)
η(1) · η(1)

)
· η(1) (3.5)

= ξ(2) · η(1) − η(1) · η(1) η
(1) · ξ(2)
η(1) · η(1)

= ξ(2) · η(1) − η(1) · ξ(2)

η(2) · η(1) = 0. (3.6)

Now, we add a third vector, ξ(3) to the network following the Gram-Schmidt proce-

dure, and obtain η(3). We can now verify if this new third pattern is indeed orthogonal

to the previous two. We have:

η(3) · η(2) =

(
ξ(3) − η(1) η

(1) · ξ(3)
η(1) · η(1)

− η(2) η
(2) · ξ(3)
η(2) · η(2)

)
· η(2) (3.7)

= ξ(3) · η(1) − η(1) · η(1) η
(1) · ξ(3)
η(1) · η(1)

− η(2) · η(2) η
(2) · ξ(3)
η(2) · η(2)

= ξ(3) · η(1) − η(1) · ξ(3) − 0

η(3) · η(2) = 0, (3.8)
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and,

η(3) · η(1) =

(
ξ(3) − η(1) η

(1) · ξ(3)
η(1) · η(1)

− η(2) η
(2) · ξ(3)
η(2) · η(2)

)
· η(2) (3.9)

= ξ(3) · η(1) − η(1) · η(1) η
(1) · ξ(3)
η(1) · η(1)

− η(2) · η(2) η
(2) · ξ(3)
η(2) · η(2)

= ξ(3) · η(1) − η(1) · ξ(3) − 0

η(3) · η(1) = 0, (3.10)

as η(1) · η(2) = 0. This can be generalized to all the η’s. Having established their

mutual orthogonality, we now study the projections of the ξ’s on the η’s to confirm

that ξ(ν) does not project onto η(µ) for µ > ν.

ξ(1) · η(1) = ξ(1) · η(1)

ξ(1) · η(2) = ξ(1) · ξ(2) − ξ(1) · η(1) η
(1) · ξ(2)
η(1) · η(1)

= ξ(1) · ξ(2) − ξ(1) · ξ(2)

ξ(1) · η(2) = 0.

ξ(1) · η(3) = ξ(1) · ξ(3) − ξ(1) · η(1) η
(1) · ξ(3)
η(1) · η(1)

− ξ(1) · η(2) η
(2) · ξ(3)
η(2) · η(2)

= ξ(1) · ξ(3) − ξ(1) · ξ(1)ξ
(1) · ξ(3)
ξ(1) · ξ(1)

= ξ(1) · ξ(3) − ξ(1) · ξ(3)

ξ(1) · η(3) = 0. (3.11)

We see that ξ(1) projects onto η(1), but not η(2) or η(3). This result can be extrapo-

lated amd generalized to show that ξ(ν) projects onto η(µ) only when ν ≤ µ. (Note

that the above holds true only for orthonormalized vectors.)

3.3.2 An example of the orthogonalization process

We now provide an example of the Gram-Schmidt orthogonalization procedure. Ta-

ble3.1 shows the orthogonal and orthonormal bases for a set of 5 10−dimensional
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random vectors ξ(1), ξ(2), . . . , ξ(5), the input patterns.

Table 3.1: Table showing the orthogonal(η’s) and orthonormal(η̂’s) bases of the
input patterns (ξ’s) obtained using GS orthogonalization. The ξ’s are a set of
5 randomly generated patterns whose elements are ±1. The number of similari-
ties and differences between the input pattern pairs are represented by S and D

respectively.

Input patterns

ξ(1) 1 -1 -1 1 -1 1 1 -1 1 -1
ξ(2) 1 -1 -1 1 -1 -1 -1 -1 1 1
ξ(3) 1 1 1 1 -1 -1 -1 1 -1 -1
ξ(4) -1 -1 1 1 1 1 1 1 1 -1
ξ(5) 1 1 -1 -1 1 1 -1 -1 1 -1

ξ(1) · ξ(2) = 4 ξ(1) · ξ(3) = −2 ξ(1) · ξ(4) = 2 ξ(1) · ξ(5) = 2
7S/3D 4S/6D 6S/4D 6S/4D

ξ(2) · ξ(3) = 0 ξ(2) · ξ(4) = −4 ξ(2) · ξ(5) = 0
5S/5D 3S/7D 5S/5D

ξ(3) · ξ(4) = −2 ξ(3) · ξ(5) = 2
4S/6D 6S/4D

ξ(4) · ξ(5) = −2
4S/6D

Orthogonalized patterns

η(1) 1 −1 −1 1 −1 1 1 −1 1 −1
η(2) 0.6 −0.6 −0.6 0.6 −0.6 −1.4 −1.4 −0.6 0.6 1.4
η(3) 1.1429 0.8571 0.8571 1.1429 −1.1429 −0.6667 −0.6667 0.8571 −0.8571 −1.3330
η(4) −0.7149 −1.0399 0.9601 1.2801 0.7199 −0.0801 −0.0801 0.9601 1.0399 −0.1601
η(5) 0.7235 0.8095 −0.2856 −0.3709 1.2757 0.5238 −1.4762 −0.2856 1.1905 −0.9524

η(1) · η(1) = 10 η(2) · η(2) = 8.4 η(3) · η(3) = 9.5231 η(4) · η(4) = 6.72 η(5) · η(5) = 7.8847

Orthonormalized patterns

η̂(1) 0.3162 −0.3162 −0.3162 0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162 −0.3162
η̂(2) 0.2070 −0.2070 −0.2070 0.2070 −0.2070 −0.4831 −0.4831 −0.2070 0.2070 0.4831
η̂(3) 0.3704 0.2777 0.2777 0.3704 −0.3704 −0.2160 −0.2160 0.2777 −0.2777 −0.4320
η̂(4) −0.2777 −0.4012 0.3704 0.4938 0.2777 −0.0309 −0.0309 0.3704 0.4012 −0.0618
η̂(5) 0.2577 0.2883 −0.1017 −0.1321 0.4543 0.1865 −0.5257 −0.1017 0.4240 −0.3392

η̂(1) · η̂(1) = 1 η̂(2) · η̂(2) = 0.9995 η̂(3) · η̂(3) = 0.9996 η̂(4) · η̂(4) = 1.001 η̂(5) · η̂(5) = 1

η(1) · ξ(2) = 4 η(1) · ξ(3) = −2 η(1) · ξ(4) = 2 η(1) · ξ(5) = 2
η(2) · ξ(3) = 0.8 η(2) · ξ(4) = −4.8 η(2) · ξ(5) = −0.8

η(3) · ξ(4) = −1.1433 η(3) · ξ(5) = −1.5241
η(4) · ξ(5) = −3.0402

It has been proposed that the brain might use orthogonalization as a way of classi-

fying information in an economical manner, by emphasizing the differences between

information that are similar to each other, and the similarities in patterns that are

very different from each other, and storing this information[15]. For instance, in the

above table, ξ(4) is dissimilar to ξ(2) and ξ(3) but shares more similarities with ξ(1),

while all 4 patterns have one element in common (4th element). The 7th element,

ξ
(4)
7 is similar to ξ

(2)
7 and ξ

(3)
7 but dissimilar to ξ

(1)
7 . These factors are reflected in the

magnitudes of η˜(4)7 and η˜(4)4 . In fact, η˜(4)4 has the maximum magnitude, emphasizing

the shared commonality between all 4 patterns.
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3.3.3 Memory capacity of the H-H-GS model

We now estimate the memory capacity of the H-H-GS model using the set of orthog-

onal vectors {η(µ)} instead of {ξ(µ)} to calculate Jij’s and hence to inscribe patterns

{ξ(µ)} in the network.

Jij =

p∑
µ=1

(
η
(µ)
i η

(µ)
j − δijη(µ)i η

(µ)
i

)
, (3.12)

where δij serves to replace the i 6= j condition in the summation in eq.(2.3).

With these weights, we can calculate the local field potential h
(ν)
i when {ξ(ν)} is

presented for retrieval (i.e., {ξ(1), ξ(2), . . . , ξ(p)} are imprinted in their orthogonalized

form.

h
(ν)
i =

N∑
j=1

Jijξ
(ν)
j

=
N∑
j=1

p∑
µ=1

(
η
(µ)
i η

(µ)
j ξ

(ν)
j − δijη(µ)i η

(µ)
i ξ

(ν)
i

)
, or,

h
(ν)
i =

p∑
µ=1

η
(µ)
i

{(
η(µ) · ξ(ν)

)
− η(µ)i ξ

(ν)
i

}
. (3.13)

From eq.(3.4), we have

η
(ν)
i = ξ

(ν)
i −

ν−1∑
µ=1

η
(µ)
i

η(µ) · ξ(ν)
η(µ) · η(µ)

.

For orthonormal vectors, η̂(µ) · η̂(µ) = 1, and so we get

η
(ν)
i = ξ

(ν)
i −

ν−1∑
µ=1

ηi˜ (µ)
(
η̂(µ) · ξ(ν)

)
. (3.14)

Rearranging the terms in eq.(3.14), we get

ξ
(ν)
i − η(ν)i =

ν−1∑
µ=1

ηi˜ (µ)
(
η̂(µ) · ξ(ν)

)
. (3.15)
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As verified earlier, ξ(ν) does not project onto η(µ) for µ > ν, so we can rewrite

eq.(3.13) using normalized vectors as

h
(ν)
i =

ν∑
µ=1

η
(µ)
i

{
η̂(µ) · ξ(ν)

}
−

p∑
µ=1

η
(µ)
i

(
η
(µ)
i ξ

(ν)
i

)
. (3.16)

From (3.14),

η(µ) = ξ(ν) −
ν−1∑
µ=1

(
η̂(µ) · ξ(ν)

)
Normalizing η(ν) and multiplying it by η̂(µ), we get

η̂(ν) · η̂(ν) = ξ(µ) · η̂(ν) −
ν−1∑
µ=1

(
η̂(µ) · η̂(ν)

) (
η̂(µ) · ξ(ν)

)
. (3.17)

As η̂(µ) · η̂(ν) = 0 for µ ≤ ν, the second term on the right hand size of the equation

vanishes to give

η̂(ν) · η̂(ν) = ξ(µ) · η̂(ν). (3.18)

This holds true for any ξ(µ) as long as η’s are normalized.

Now, plugging in the values from equations (3.15) and (3.18) in eq.(3.16), we get

h
(ν)
i = ξ

(ν)
i − η(ν)i + η

(ν)
i

(
η̂(ν) · η̂(ν)

)
−

p∑
µ=1

(
η˜(µ)i

)2
ξ
(ν)
i . (3.19)

Since η̂(ν) · η̂(ν) = 1, we get

h
(ν)
i = ξ

(ν)
i − η(ν)i + η

(ν)
i −

p∑
µ=1

(
η˜(µ)i

)2

ξ
(ν)
i

h
(ν)
i = ξ

(ν)
i −

p∑
µ=1

(
η˜(µ)i

)2

ξ
(ν)
i .

(3.20)

For orthonormal vectors,
(
η˜(µ)i

)2
≈ 1

N
. Hence,

h(ν) =
(

1−O
( p
N

))
ξ(ν). (3.21)

We can thus see that though it is the η’s that are stored in the network, the ξ’s

can actually be retrieved perfectly[17]. We see that the stability condition (2.9)

is satisfied upto p = N − 1, as there can be at most N − 1 orthogonal vectors
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of dimension N . Fig.3.1 shows stable patterns in the Hopfield model with Gram-

Schmidt orthogonalization.

Figure 3.1: Plot showing stable patterns in the H-H-GS model from our compu-
ations with 100 neurons after 50 trials with 100 patterns each, plotted as fraction
of retrieved patterns vs the load parameter (given by p/N ). All the patterns are

stable upto p = 99.

The memory capacity of a 1000−neuron H-H-GS network is shown in Fig.3.2, with

retrieval being checked with the raw patterns (ξ’s) while the orthonormalized set{η̂}
is used for storage. All the patterns are retrieved perfectly upto p = 998, with a

sharp decrease in retrieval for p = 999. At p = 1000, the retrieval falls completely to

zero.

3.4 Studying the post-synaptic potential (PSP)

3.4.1 Analyzing the PSP

We now return our focus to the PSP. We have seen that the second term of eq.(2.4)

(hereafter denoted by A) constitutes a random walk whose components are fractions

and < 1. The values of p and N determine the bounds of the range of values A can

take. While A can take any value within this range, the signs of the terms in the

stability condition (eq.(2.9)) match provided A < (1− p/N). The shaded regions in

Fig.3.3 show the values of A for which the condition holds true.

As discussed earlier, the ξ(ν)’s are correlated with each other as they are randomly

generated and not necessarily mutually orthogonal. This implies that their dot prod-

ucts are non-zero, and can therefore take arbitrarily large positive or negative values
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Figure 3.2: Plot from our compuations showing the retrieval of patterns in the H-
H-GS model with 1000 neurons after 50 trials of 1000 patterns, plotted as fraction
of retrieved patterns against load parameter. All the patterns are retrieved as long

as p < N .

for high enough values of p. This leads to a higher likelihood of the occurence of CI.

The reason for this is as follows:

We can see from eq.(3.3) that the PSP on neuron i can be expressed in terms of a

signal and the noise A. The signal term is obtained by distinguishing the contribution

of the pattern presented to the network for retrieval, ξ(ν) from the overlaps of ξ(ν)

with every other pattern. These non-zero overlaps obscure the signal and together

constitute the noise term A. It follows that the PSP will lie between 1 − p/N and

p/N − 1 as long as A falls below 1− p/N and above p/N − 1, indicating that CI is

suppressed. However, as p increases, the correlations of the newer patterns with those

stored previously add to the noise, as the Hopfield network lacks a default mechanism

to contain these overlaps and hence limit the noise to the favourable range mentioned
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Figure 3.3: Schematic representation of the post-synaptic potential h
(ν)
i on a

random neuron i on presenting pattern ξ(ν) to the network for retrieval, versus ,
the noise term in eq.(3.3). ξ(ν) is one of the learnt patterns chosen at random. The
shaded areas represent the regions where A will be positive definite. The bounds
on slide up and down with variations in p and N enabling, at least in principle,

plasticity to control CI to some extent.

above. As more patterns are learnt by the network, there is an increase in the number

of sites i where eq.(2.9) no longer holds true, eventually and inevitably resulting in

CI. The values of p and N determine the limits within which h
(ν)
i satisfies the stability

criterion, thereby making the network more or less prone to the detrimental effects of

CI. For a network of fixed size N , high values of p would cause the limits to shrink,

making the system more prone to CI. On the other hand, if the size of the network

is increased such that p/N → 0, the distance between the bounds gets extended,

making CI less likely.

But, A can, in principle take very large values (both positive and negative) beyond

the bounds. This is comparable to the runaway effect in the BCM model[13] dis-

cussed earlier. While the stability condition is still satisfied, the changes in the value

of A are (apparently) arbitrary and unrestrained. Such a growth leads to CI and
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affects the retrieval of information stored in the memory[42]. It results in the run-

away phenomenon and even leads to false and incorrect associations with the feature

represented by the neuron i. The unchecked growth of PSP on multiple neurons i

eventually leads to the catastrophic blackout discussed earlier in Sec. 2.4.

3.4.2 Gram-Schmidt orthogonalization and PSP

Now consider a Hopfield network in which p patterns have been stored. On presenting

a new (p+ 1)th pattern (ξ(p+1)) to the network, the orthogonalized pattern, η(p+1) is

obtained from the Gram-Schmidt orthogonalization scheme as:

η
(p+1)
i = ξ

(p+1)
i −

p∑
µ=1

η
(µ)
i

∑N
j=1 η

(µ)
j ξ

(p+1)
j∑N

j=1 η
(µ)
j η

(µ)
j

. (3.22)

The system compares the new incoming pattern ξ(p+1) with all the previously stored

patterns. Taking eq.(3.2) into consideration, these differences get computed through

the PSP as ξ(p+1)−h(p+1) on each individual neuron i. This computation is equivalent

to the process of orthogonalization[15], that is,

η(p+1) = ξ(p+1) − h(p+1), (3.23)

with h(p+1) = {h(p+1)
i } given by:

h(p+1) =

p∑
µ=1

η(µ)
(
η(µ).ξ(p+1)

)
−O

( p
N

)
ξ(p+1). (3.24)

A highlight of the H-H-GS model is that if ξ(p+1) is one of the previously memorized

patterns, say ξ(ν) (1 ≤ ν < p), then ξ(ν) will project onto only the first η(ν) patterns

and not η(ν+1) . . .η(p) [3]. (We have verified this in Sec. 3.3.1.) The first (ν − 1)

terms in eq.(3.24) yield (ξ(ν) − η(ν)) and so we get,

h(ν) = ξ(ν) − η(ν) + η̂(ν)
(
η̂(ν) · ξ(ν)

)
−O

( p
N

)
ξ(ν) =

(
1−O

( p
N

))
ξ(ν), (3.25)

as η̂(ν) · ξ(ν) = η̂(ν) · η̂(ν) for orthonormal vectors. The network would hence identify

ξ(p+1) as ξ(ν) while η(p+1) will be approximately 0. This indicates that ξ(p+1) will not

be orthogonalized and re-learnt by the system however many times it is presented.
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However, any novel ξ(p+1) would be identified as such and the corresponding η(p+1)

would be calculated, adding it to the memory store.

The main point to be emphasized here is that the process of orthogonalization

restricts the noise A by removing the correlations of the new incoming patterns

with those already in the memory. The PSP on each neuron i (h
(p+1)
i ) takes the

value
(
1−O

(
p
N

))
ξi

(ν). Moreover, the PSPs are restricted to lie between the limits((
O
(
p
N

)
− 1
)
,
(
1−O

(
p
N

)))
, as ξ

(ν)
i = ±1. This implies that the synapses do not get

modified on each presentation of a previously memorized pattern, and are thereby

protected against possible runaway potentiation (or depression) cycles.

3.5 Discussion

Various strategies have been proposed to address the issue of loss of information

stored in a system, due to CI in the case of artificial networks, or the stability-

plasticity problem in biological systems. A system needs to be malleable in response

to information entering it for storage; at the same time, it must also be impervious

to modifications in order to retain the stored memories. In our current strategy,

we have used a conventional Hopfield network. While we do not claim biological

accuracy or incorporate finer physiological details in our model, we argue that our

model is a simple tool but still provides us a handle on addressing the stability-

plasticity dilemma. Our strategy uses the same set of units to learn and memorize

information, with new information being compared to what is already present in the

system, and stored in relation to that. The network gets endowed with the capability

of recovering any of the memories in store, though only the similarities and differences

between the patterns get recorded.

The H-H-GS model in our proposed strategy is capable of storing a much larger num-

ber of sequentially presented patterns compared to the conventional Hopfield model.

Moreover, the scheme also provides a means of comparing and generalizing newer

information with respect to the ones stored earlier. This is in contrast with other

non-overlapping strategies to surmount CI (for instance, see [43] or [31]). Segregating

the patterns to be memorized would eliminate CI. But at the same time, it would pre-

vent the network from being able to identify shared features or generalize the input

set, thereby affecting the capacity of the network to classify or categorize the stored

information [35]. The chief merit of our model is that the information learnt using
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the orthogonalization scheme will automatically be compared to and stored in the

context of what has already been memorized, without any need to restrict synaptic

efficacies or the learning rate.

Learning in humans involves newer information being added to and blending with

previously stored memories without superimposing on them[44]. The Gram-Schmidt

orthogonalization procedure inherently possesses this property, without having to

implement it separately. This property can be harnessed to benefit any system–

biological or artificial– implementing the scheme. The system would then compare

new and old information, and identify their commonalities and differences. It would

also store each information only once, even if it encounters the same information

multiple times. The system would hence be self-organized, also acting as an “inter-

nal supervisor”[22] to identify the synapses to be modified to accommodate a new

memory over earlier ones. Repeated presentations of a stimulus once learnt do not

modify the local field potential on the neurons, and preventing the possibility of a

BCM-like runaway effect by keeping in check any unrestricted growth (or decay) in

the synaptic efficacies.

While orthogonalization has previously been suggested as a remedy to the issue of CI

in artificial neural networks (for instance, see [45]), the term differs in meaning from

our usage. The term ‘orthogonalization’ could typically refer to the use of sparse

coding to eliminate the interference between correlated patterns by using different

uncorrelated sets of nodes to store different items of information (see for instance

[31, 46, 47] and references therein). In our scenario, orthogonalization refers to

making vectors mutually perpendicular. Each vector represents an information, and

new vectors are made perpendicular to the previous ones such that there is no overlap

between the vectors. These vectors are all stored using the same set of nodes.

Randomly generated vectors whose components can take one of two values can be

expected to be orthogonal or non-overlapping. However, this holds true only for

infinitely large systems of vectors. For finite vectors, the orthogonalization is only

approximate, and so their inner products will take a finite value rather than zero as

in the case of truly (completely) orthogonal vectors. This orthogonalization is not

deliberate, and the non-zero overlaps imply that the noise will eventually override the

signal, beyond the limit of p/N = 0.14[16]. The general idea of orthogonal vectors is

that of a sparsely coded set whose components do not overlap with each other [48],

which can help overcome CI, irrespective of how the vectors are orthogonalized [45].
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In the Gram-Schmidt procedure we have described here, the set of randomly gen-

erated input vectors is intentionally made mutually perpendicular. This eliminates

the noise in the system, thus increasing the memory capacity of the network from

p/N = 0.14 to p/N ≈ 1. (Note that the set of vectors which is learnt and retrieved

the network is still the original random set of correlated patterns- the input set is

itself not altered or made mutually orthogonal as in [49])

Our study has been carried out on an artificial neural network, but experiments are

needed to see how it pertains to living networks. While this strategy may have some

bearing on actual biological systems, it must be verified experimentally, given that the

degree of biological accuracy can influence the behaviour of theoretical systems dif-

ferently (refer to [34]). While there is evidence of sliding thresholds for plasticity[39],

orthogonalization of input information necessitates certain network architecture and

physiological conditions. For instance, a network must have feedforward excitation

and feedback inhibition[16], or dendritic multiplication and the nature of inputs to

different dendrites of the same neuron[48]. These criteria pertain to general structural

or functional properties of biological networks, making experimental verification of

theoretical predictions feasible.





Chapter 4

Stability and associativity of

memories in Attractor Neural

Networks

In this chapter, we analyze the H-H-GS model in more detail, focusing on pattern

stability which is crucial for associativity. For this, we first define precisely the terms

retrieval, recognition and recall. We then study the effects of GS orthogonalization

on pattern stability and the associative property of the network. We also discuss

what the results mean in terms of cognition.

4.1 Introduction

Learning and memory are inherently associative by nature. An information learnt

and stored in the memory can be recovered not just on coming across the same infor-

mation, but also by encountering something even partially similar. The brain thus

possesses the property of associativity– it sorts and groups information within the

memory store as well as external stimuli it encounters. Theoretical and mathemati-

cal modelling of such associative networks using ideas from physics and mathematics

could shed light on functional aspects of learning and memory[1, 17, 50, 51, 52, 53].

Associativity can be modeled using Attractor Neural Networks (ANNs) which can

learn information presented as sequences of ±1s, or patterns, in such a way that the

memorized patterns become fixed points and attractors in the network dynamics[7].

37
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Each attractor is surrounded by a basin of attraction, the region containing the set

of patterns associated with the attractor[7, 8]. When the network is presented with

any of the patterns within a basin of attraction, it identifies and recovers the attrac-

tor pertaining to the basin. Even presenting an incorrect or inexact version of the

pattern would yield the memorized pattern, indicating that the network is capable

of ‘error correction’. The network is also capable of classification or categorization of

information, as categorization in essence amounts to partitioning the pattern space

and separating the patterns into basins of attraction[8].

The proper functioning of a network as an effective memory system depends critically

on the stability of the patterns lodged in the memory. That is, memorized patterns

must form (stable) fixed points in the network dynamics. In addition to being fixed

points, the learnt patterns must also be attractors. Only then can the system be an

efficient associative memory. The reason for this distinction will be explained shortly.

The chief objective of this chapter is to examine the meaning of pattern stability and

study how it is influenced by the network dynamics. We also define clearly and

distinguish between the terms retrieval, recognition and recall which are often used

interchangeably in the literature. The reason for this lies in how each of these terms

relates to pattern stability, which we will explore in detail in a later section.

The deterioration in the memory capacity and the ability of the Hopfield model

to function as an effective associative memory beyond a certain low limit has been

established widely. The cause for this degradation is the so-called catastrophic in-

terference, the consequence of the memorized patterns overlapping with each other.

The H-H-GS model[15, 16, 53] described in the previous chapter provides a way of

getting around the problems of CI[17]. The model was able to improve the memory

capacity of the network and model some cognitive aspects of learning and memory.

But whether the effects of orthogonalization on the processes of retrieval, recognition

and recall are uniform or vary in extent is not clear at the outset. It is therefore

imperative to provide proper definitions for these terms, how they relate to each

other, how orthogonalization affects these relations and what the ramifications are

for pattern stability. We address these issues in this chapter through an in-depth

study of the influence of orthogonalization on memory stability and associativity.
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4.2 Retrieval, recognition and recall

It is essential that we define the terms retrieval, recognition and recall at the outset,

prior to elaborating on our study. In physics and neuroscience literature, the terms are

treated as being equivalent synonymous with each other. While they are differentiated

in cognitive-psychology literature, their interpretation there is different, and it is hard

to establish a one-to-one correspondence in the meanings of the terms across domains.

We hence need to define the terms clearly and also in mathematical terms.

If the presentation of any of the previously memorized information to the network

yields that particular information instantaneously and accurately, we consider that

information as retrieved by the network. Within our framework, exactness and in-

stantaneity are crucial for the process of retrieval. However, the reproduction of

the presented learnt pattern may not be perfectly accurate in the first instance, but

may take multiple steps, with a similar pattern reproduced at each step before cul-

minating accurately in the learnt pattern. We term this process recognition of the

presented pattern as part of the stored information. We must point out that the

process of recognition comprises two parts, which we will elaborate on, but first we

define recall.

If the network is able connect a memorized pattern within a few steps when it comes

across the same pattern or a very similar one, then the network can recall informa-

tion. This is akin to pattern completion or error correction. The process of recov-

ering a memorized pattern when the network encounters an incomplete or incorrect

or erroneous version of that pattern is referred to as pattern completion or error

correction[54, 55, 56, 57]. Note that recollection of an inscribed pattern can occur

even when the presented information is different from that learnt pattern.

The information reproduced during recognition is identified as being already in the

memory store, that is, familiar. One part of recognition is thus familiarity, as used in

cognitive-psychology literature [58, 59, 60, 61, 62, 63]. The other part of recognition is

recollection. In our context as in cognitive psychology literature, the combined effect

of the processes of familiarity/retrieval and recollection results in memory recognition.

We will later come upon a scenario where a memorized pattern is neither retrieved

nor recognized when presented to the network, but instead gets associated with a new

pattern which is not any of the stored patterns but is very similar to that presented
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pattern. We now consider the issue of pattern stability before further discussion of

the scenario.

We would like to point out here that associative recall is present in our model system

so long as the learnt patterns each have a set of novel but similar patterns which

eventually lead to the stored patterns, and so are associated with them.

We will now present mathematical definitions of the terms retrieval, recognition and

recall and connect them to the discussion above. We know from eq.(2.9) that for

a pattern inscribed in the network to be treated as recovered, it must satisfy the

following condition:

sgn
(
h
(ν)
i

)
= sgn

(
ξ
(ν)
i

)
(for all i’s), (4.1)

where h
(ν)
i is the LFP/PSP from eq.(2.4)

h
(ν)
i =

N∑
i=1
i 6=j

Jijξ
(ν)
j . (4.2)

We will henceforth refer to each occurence (instance) of the above equations as an

iteration.

In the following analysis, we use ξ(ν) and ξ(t) to represent an inscribed pattern and

a test pattern respectively. ξ(ν) is one of the learnt patterns chosen at random, while

ξ(t) is a pattern similar to ξ(ν) or ξ(ν) itself. Now, if ξ(t) is presented to the network

and checked for retrieval using eqs.(4.2) and (4.1), then

• if ξ(t) = ξ(ν) and ξ(ν) is recovered spontaneously, that is, a test pattern which

is exactly the same as an inscribed pattern recovers that pattern in the first

instance itself, then ξ(ν) is said to be retrieved. Also,

• if ξ(t) = ξ(ν) converges to ξ(ν) but in more than one iteration, then ξ(ν) is

considered as recognized. In other words, ξ(t) reaches ξ(ν) within a few steps

and does not deviate from it with subsequent iterations. But,

• if ξ(t) is similar to but not the same as ξ(ν) (ξ(t) differs from ξ(ν) on some

components) but still converges to ξ(ν) within a small number of steps, then

ξ(ν) is considered to be recalled.
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Note that the condition for retrieval does not inherently check for or guarantee con-

vergence. Prior to settling down to an attractor, ξ(t) may recover an inscribed pattern

ξ(ν), but further iterations would bring it away from ξ(ν). ξ(t) would eventually settle

down to an attractor which may or may not be one of the memorized patterns. This

is illustrated in Table4.1.

Table 4.1: Examples of the evolution of a presented pattern till convergence : how
a pattern reaches an attractor. The values represent the overlap of the presented
pattern X = ξ(ν) and the retrieved pattern X ′. Convergence is immediate, as in
the case of X1, or after a very small number of iterations, as in the case of X2. In
both these cases, the inscribed pattern presented for convergence is stable and is an
attractor. In the case of an unstable pattern like X3, even though X3 is retrieved
in the first iteration, it moves away and eventually converges at X ′3, which is 96%

similar to X3 and is the new attractor.

Iteration 1 2 3 4 5 6 7 8 9 10
X1 100 100 100 100 100 100 100 100 100 100
X2 99 100 100 100 100 100 100 100 100 100
X3 100 99 97 96 96 96 96 96 96 96

Table 4.2: Table illustrating the difference between retrieval and recognition. For
different values of p (p = 12, 14, 16) in a network of size N = 100 , the rows marked
Ret indicate whether a pattern is retrieved (X) or not (×), while the rows marked
Rec indicate whether or not recognition has happened. A pattern which is retrieved
is also trivially understood as also being recognized. For patterns which are not
retrieved, the overlap between the inscribed pattern and the recovered pattern after
the first iteration are indicated within square brackets [ ]. Upto p = 10, all the
patterns are retrieved. When a pattern is not retrieved, it is presented back to
the network and the process is repeated to check whether the pattern converges
within 10 iterations. The ( ) give the number of iterations to convergence, and (-)
indicates lack of convergence after 10 iterations. The table shows the results for

the first 10 patterns ξ(1) to ξ(10) for each value of p.

ξ(1) ξ(2) ξ(3) ξ(4) ξ(5) ξ(6) ξ(7) ξ(8) ξ(9) ξ(10)

p = 12
Ret X X X X X X X ×[99] X X

Rec X X X X X X X X(2) X X

p = 14
Ret X X X X X X ×[99] ×[99] X X

Rec X X X X X X X(3) X(3) X X

p = 16
Ret X X X X X X X ×[99] X X

Rec X X X X X X X ×(-) X X
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Table4.2 provides some examples of the difference between retrieval and recognition.

The reason for the emphasis on convergence and for distinguishing between retrieval

and recognition is that convergence (to self) is a defining feature of an attractor and

crucial for pattern stability, as we shall see later. When we talk about convergence,

we mean an exact match between the presented and recovered patterns. While some

errors are generally permitted and a ≥ 97% accuracy deemed sufficient to term a

pattern recovered, we impose the stricter condition of perfect fidelity, which we will

justify shortly. Fig.4.1 shows how convergence quality relates to different degrees of

accuracy. Their cognitive relevance will be discussed in a later section.

Figure 4.1: Quality of convergence as a function of load parameter: Plot
showing where the inscribed patterns in the Hopfield network converge for var-
ious values of N (N = 100, 500, 1000), for different qualities of convergence
(Q = 100%, 99%, 97%). A pattern can converge either to itself (solid line) or
to a different pattern (dashed line), depending on the error tolerance for that value
of Q. The thin dotted line indicates lack of convergence even after 10 iterations.
For Q = 100%, the error tolerance is 0%, and only a perfect match is treated as
converging to ‘itself’. For Q = 99% and 97%, the error tolerances are 1% and 3%
respectively, which means that convergence to a nearby pattern is acceptable in

such calculations . The plots show data from 50 different sets of patterns.
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4.3 Criteria for pattern stability

Having defined the various terms, we now focus on establishing the conditions for

an inscribed pattern to be considered stable, as pattern stability is a fundamental

requirement for the network to function effectively as an associative memory.

Since the stability condition in eq.(2.4) does not assure or necessarily imply conver-

gence of a test pattern to itself, it cannot be the sole criterion for memory stability.

As seen from Table4.1, a test pattern may reproduce an inscribed pattern in some

iteration before settling down to a different pattern on further iterations. Errors, or

mismatches between the presented and recovered patterns in an iteration could poten-

tially lead to more mismatches on later iterations, eventually creating an ‘avalanche’

of errors[19]. Hence, recognition rather than retrieval must be a criterion for the

stability of a memory.

We explain how a pattern may be rendered unstable by expressing eq.(4.2) using a

signal term and a noise term arising from the correlations between the patterns. This

noise is referred to as slow noise. We now introduce a stabilization parameter s
(ν)
i

[7, 9] given by,

s
(ν)
i = h

(ν)
i ξ

(ν)
i . (4.3)

From the signal-to-noise analysis in Sec.2.5 of Chapter2, we have

h
(ν)
i = ξ

(ν)
i +

1

N

p∑
µ=1
µ6=ν

N∑
j=1
j 6=i

(
ξ
(µ)
i ξ

(µ)
j ξ

(ν)
j

)
, (4.4)

which can be expressed in terms of the stabilization parameter as,

s
(ν)
i = 1 +

1

N

p∑
µ=1
µ 6=ν

N∑
j=1
j 6=i

(
ξ
(µ)
i ξ

(µ)
j ξ

(ν)
j

)
ξ
(ν)
i . (4.5)

From the above equation (and from Sec.2.4), we can see that it is the noise term

whose value determines whether or not the signal will be detected, thereby indicating

whether or not the pattern will be stable. The noise term can take negative values,

and the likelihood of it doing so goes up as more patterns are stored in the network.

From eqs. (4.1) and (4.3), we see that pattern stability requires the stabilization

parameter to take a positive value. We can also understand this from eq.(4.5), for

when s
(ν)
i > 0, the signal is clearly distinguishable from the noise and ξ(ν) will be
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recognized (or retrieved, depending on the pattern) or recalled if ξ(ν) is different from

ξ(ν).

Taking our cue from [8] (also refer to [19] and [9] for other discussions pertaining to

the conditions for pattern stability), we will now list out the conditions for pattern

stability: for a pattern ξ(ν) to be stable,

1. it must converge to itself with perfect accuracy within a few iterations when

presented to the network, that is, it must be recognized.

2. it must be an attractor in the network dynamics, with its own basin of attrac-

tion. In other words, the network should be able to recall ξ(ν) when presented

with any of the (similar) patterns within its basin of attraction.

3. it must have a positive value for the stabilization parameter on each of the

neurons - s
(ν)
i must be > 0 for all i’s.

The first two conditions are interlinked, as the inscribed pattern will be an attractor

and have a basin of attraction only if it converges to itself without any errors. If it

converges to a different pattern, then that pattern would be an attractor with its own

basin of attraction, and the inscribed pattern would be one among the patterns within

the basin. This new pattern would also necessarily converge to itself. In general, any

pattern which is an attractor and has a basin of attraction will converge to itself when

presented for recovery. Thus, condition1 can be treated as a necessary condition for

the stability of a pattern (any pattern, not necessarily one in the memory store),

while conditiom2 would be a sufficient one. Also, note that condition 3 will hold true

as long as condition1 is satisfied.

We will come back to the pattern stability criteria discussed above and examine their

pertinence to the network with orthogonalization(the H-H-GS model described in

the previous chapter), where the patterns to be memorized are first orthogonalized

and normalized and stored. The network is able to recover the memorized patterns

even though it is their orthonormalized versions that are stored. The H-H-GS model

will present a case which challenges the above criteria - there will be a situation

where patterns will be recognized (or retrieved, at times) but will not have basins of

attraction. Such patterns which are stable fixed points but not attractors are referred

to as stable non-attractors. In the H-H-GS model, we will find that all the inscribed

patterns are stable attractors, but with increasing memory loads, the memorized
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patterns become stable non-attractors. We will hence claim that the learnt patterns

are stable states though they only satisfy the necessary condition of recognition, but

not the sufficient condition of non-zero basins of attraction. This will bring us to

question what a basin of attraction with radius zero means.

As the basins of attraction are integral to the concept of memory stability, we first

perform a detailed investigation of the network dynamics of the H-H model. We then

invoke orthogonalization in the network and examine how the network dynamics,

including basins of attraction are modified following orthogonalization.

4.4 A study of the behaviour and dynamics of the

H-H model

In light of the definitions presented earlier in the chapter, and the criteria for pattern

stability listed above, we now look at the behaviour and dynamics of the Hopfield

network.

4.4.1 A detailed analysis of the basins of attraction

We discussed the concept of basins of attraction briefly in Chapter2 (Sec.2.5), and

will look at them more closely now. We will first discuss the size and shape of the

basins of attraction and how to compute them (emulating [8]). We can visualize a

N + 1-dimensional space with N space dimensions and an energy dimension. Each

pattern ξ(ν) is a point in this configuration space and possesses some energy E
(
ξ(ν)
)
.

We can picture an energy landscape made up of hills and valleys, with the bottoms

of the valleys containing the energy minima, the points with lowest energy. Each

inscribed pattern must minimize the total energy of the system, the Hamiltonian

(eq.(2.6)) and hence be an energy minimum lying at the bottom of a valley. The

patterns in the valley surrounding the minimum converge to it and form its basin of

attraction containing the set of patterns associated with it.

While the configuration space needs to be large and capable of containing 2(N) pat-

terns, it must also be finite (for mathematical reasons not discussed here). With

increasing number of memorized patterns, the energy landscape gets reorganized to

accommodate each new pattern. This process brings about topographical changes
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with basins shrinking and becoming shallower, and energy minima getting displaced.

Consequently, the minima corresponding to some of the inscribed patterns may be

replaced by other new patterns which were not learnt by the network, and those

inscribed patterns now lie in the basins of attraction of these new minima.

The size of the basin is typically expressed as the average of the extent of the basin in

different directions from the minimum[8]. In the H-H model, it is expressed in terms

of the Hamming distance, a measure of the number of sites on which two patterns

differ. But, the average may be an inaccurate and even a deceptive measure, as the

term basin of attraction encompasses the complete structure around a minimum, and

is generally irregular in shape. as represented schematically in Fig.4.2. Thus, instead

of a single average value, a better choice of representation of a basin would be to use

a set of Hamming distances for different directions starting from the minimum. Each

of these Hamming distances denotes the maximum distance or number of differences

for which a test pattern still converges to that minimum. We will justify our choice

later.

We can see from Table4.3 that the basin of attraction is not uniform or anisotropic.

It may extend to different extents in different directions, as reflected by the great

variations in the set of Hamming distances denoting the basin. While the basin of

a stable pattern may have one or a few ‘0’ values, it will also have other non-zero

values. However, all the Hamming distances in the basin of an unstable pattern will

be zeroes, as an unstable pattern lacks convergence to itself. Although an unstable

pattern may converge elsewhere, to a ‘new’ attractor with a non-zero basins, an

unstable pattern itself will not have basin of attraction.

A brief summary of the calculation of a basin is as follows: we start with a pattern

ξ(ν) whose basin we wish to evaluate. We then choose a random sequence, referred

to as a sample, and flip the elements of ξ(ν) according to the sequence and present it

to the network for recognition. At each step, we test whether the presented pattern

converges to ξ(ν). The process is continued as long as there is convergence, and the

maximum such value gives the Hamming distance for that sample. We would like to

point out here that this methodical flipping of spins acts as another source of noise,

referred to as fast noise. We repeat the procedure for a specified number of samples

and get the basin of attraction of ξ(ν). We then repeat the complete procedure for

multiple sets with the same number of memorized patterns, with each set constituting

a trial. Refer to AppendixB for the detailed protocol illustrated with an example.
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Figure 4.2: Schematic diagram showing the basins of attraction for three arbi-
trary memories, ξ1, ξ5, and ξ11 inscribed in the configuration space - these form
minima in an energy landscape created by eq. ((2.6)). A configuration or pattern
of ±1’s forming a vector similar to an inscribed pattern and falling in the latter’s
basin would converge to the inscribed vector or pattern. There can be other shallow
minima within a basin of attraction of an inscribed patterns, but their basins of
attraction are usually very small, and patterns falling within these basins eventu-
ally converge to the inscribed pattern by increasing the temperature. An example
of such a spurious minimum ξs, is also shown. Note that the minima are separated
by hilly regions which are nonuniform in their height and width as shown by the

hatched boundaries of the basins.

4.4.2 Network dynamics and exploration of the energy land-

scape

When patterns are learnt by the network following the Hebbian learning prescription

in eq.(2.3), they minimize the total energy of the system given by eq.(2.6) and become

attractors. This is due to the inherent nature of the learning rule, as we have seen

earlier in Sec.2.3. However, with an increase the number of stored memories, the

network dynamics get altered and the energy landscape curtailed . We can see this

from energy calculations (after [20]). A pattern ξ(µ) is characterized by an energy

E(ξ(µ)) given by,

E(ξ(µ)) = −1

2
ξ(µ)Jξ(µ) T , (4.6)
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Table 4.3: Table showing the basins of attraction of certain attractors
corresponding to various inscribed patterns (ξ(ν)’s) for different values of
p for N = 100. ξ(ν

′) represents the (new) attractor to which an unstable
ξ(ν) converges. The basin of attraction of a stable pattern can include
a Hamming distance of value zero: 0 can be one amongst the various
numbers representing the basin. The basin of attraction of ξ(4) when
p = 12 provides an example of this. In addition, we can see the differences
in basins of attraction even between stable patterns like in ξ(1) and ξ(4)

for the same value of p. Also note the anisotropy in the spread of the
Hamming distances in the case of ξ(4). The basins of attraction of the
stable patterns shrink in most directions as p increases, as seen for p = 14
and p = 16. The new attractors ξ(ν

′) have non-zero basins of attraction.

ξ(ν) Hamming distances forming the basin of attraction of ξ(ν)

p = 10
ξ(1) 31 29 37 35 40 24 30 34 41 31

ξ(7) 44 39 48 39 39 32 40 36 35 37

p = 12

ξ(1) 32 36 32 44 34 34 35 32 34 37

ξ(4) 0 4 6 7 3 6 6 8 1 19

ξ(7) 0 0 0 0 0 0 0 0 0 0

ξ(7
′) 31 32 39 35 40 26 30 47 37 37

p = 14

ξ(1) 26 31 36 41 37 22 30 31 31 39

ξ(7) 0 0 0 0 0 0 0 0 0 0

ξ(7
′) 5 16 8 22 3 7 6 10 6 6

p = 16

ξ(1) 31 21 8 27 28 35 27 33 17 28

ξ(7) 0 0 0 0 0 0 0 0 0 0

ξ(7
′) 13 6 10 7 7 23 8 17 18 7

where J is a matrix containing the synaptic efficacies and T gives the transpose of

the vector ξ(µ) which is typically expressed as a row vector. The transpose of a

vector converts it into a column vector if it is a row vector and vice-versa. Now, after

memorizing p patterns, the synaptic weight matrix becomes,

J =

p∑
µ=1

ξ(µ)Tξ(µ) − pI. (4.7)

Here I denotes an N×N identity matrix. The second term in the equation containing

I serves to eliminate self-connections from the efficacy matrix.
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Now, from eqs.(4.2),(4.3) and (4.6), we get,

E(ξ(µ)) = −1

2
s(µ). (4.8)

s(µ) is a vector comprising the energy on all the neurons. We can see from eq.(4.5)

that the stabilization parameter will be positive and its value large as long as p is

much smaller compared to N . From eq.(4.8) it follows that the memorized patterns

are energy minima at these memory loads. We see from Table4.4 that the average

energy of an attractor, whether a memorized pattern or not, lies close to a mean

value which is generally N/2. The spread of the energies of the attractor around this

mean value remains impervious to changes in both p and N , though the value of p

influences the sizes of the basins of attraction.

Table 4.4: Table showing the mean, or average energy of patterns, E
(µ)
avg,

and that of the attractors, E
(µ′)
avg , for a particular value of p for various

N . The energies of the patterns are distributed around a mean, which is
typically around N/2. Even as p increases, the energies of the patterns

are still scattered around N/2.

p Average Energy N = 100 N = 200 N = 500 N = 700 N = 1000

0.10N
E

(µ)
avg −48.58 −100.18 −249.49 −349.63 −500.66

E
(µ′)
avg −48.58 −100.18 −249.49 −350.15 −501.14

0.14N
E

(µ)
avg −49.06 −98.62 −249.83 −349.55 −503.45

E
(µ′)
avg −49.06 −98.66 −251.70 −350.43 −504.46

0.16N
E

(µ)
avg −49.36 −102.24 −248.38 −350.95 −501.30

E
(µ′)
avg −49.62 −102.52 −250.34 −353.21 −503.94

0.20N
E

(µ)
avg −48.52 −102.76 −247.82 −352.95 −499.95

E
(µ′)
avg −49.00 −103.98 −249.83 −360.21 −504.42

Lodging a new information in the memory modifies the Jij’s. The energy landscape

also undergoes changes to fit in the new information along with its basin of attraction.

These changes affect the basins of attraction of the earlier memories causing them to

stretch in some directions and contract in others. Additionally, the energy minima

may get displaced, and the depths of the basins could reduce. As a result, the
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anisotropy or non-uniformity in the shapes of the basins increases, making the energy

landscape more convoluted. Storing new memories also contributes to a growth in

the slow noise. The basins also shrink further as a consequence of the increased noise

due to interference between the various basins of attraction[10].

As the neurons in the Hopfield network are all interconnected, each pattern within

the system is correlated with all the other patterns, and not just with those in close

proximity. Eq.(4.4) also shows this. Storing more information hence contributes

to the cross-talks and hence to the noise. The growth in the noise may affect the

recognition of some of the imprinted patterns. The noise term grows so much that

the stabilization parameter (eq.(4.3)) turns negative on some sites. In other words,

the noise destabilizes some of the neurons in stable patterns. As a result, the signs on

some of the elements of the inscribed patterns differ from the corresponding elements

of the recovered patterns, indicating that the patterns have now become unstable.

Consequently, their basins of attraction shrink to zero or disappear.

In brief, the memorized patterns are all stable at first, and they all minimize the

Hamiltonian in eq.(2.6). They are also all attractors with large basins of attraction.

As the energy landscape restructures itself to allow for the addition of more infor-

mation, some of the attractors may get displaced. An attractor may shift away from

an inscribed pattern, making that pattern unstable. While these new attractors may

at first lie near the inscribed patterns, increasing memory loads shift them further

away. Fig.4.3 illustrates this displacement with rising p .

The energy landscape contains other attractors besides the learnt patterns. Storing

a pattern in the memory also creates a minimum or an attractor corresponding to

its inverse. Table4.5 shows the basins of attraction of some of the inverse states. We

can see that the inverse states are attractors and that their basins of attraction are

similar in size and shape to their counterparts among the inscribed patterns. We can

hence consider the configuration space as being divided in two– one half pertains to

the imprinted patterns, and the other to the inverses, with each half also containing

the basins of attraction of the respective attractors.

Apart from these, there is another class of attractors known as spurious states or

false memories. They are attractors that arise from and pertain to combinations

of an odd number the memorized patterns. Hence, they are also referred to as

combination states or mixture states. If a combination state is made from combining

an even number of imprinted patterns, some of its elements may take value 0, instead
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Figure 4.3: Plot showing the energies for the inscribed patterns (•) and the
attractors(◦) for (A) p = 14 and (B) at p = 16 and 20 for N = 100. At p = 14,
for stable patterns, the attractor corresponds to the inscribed pattern, indicated
by the • and ◦ coinciding. For an unstable inscribed patterns (for instance, ξ(7)),
the attractor is at a slightly lower energy than the inscribed pattern but very close
to it. (The difference between the attractors in the plot is not very distinct at this
resolution). The ∗’s represent various symmetric mixture states with 3, 5 and 7
components, and are plotted against the inscribed pattern with which they have
maximum overlap. These mixture states have much higher energy than any of the
inscribed patterns. From Fig.(B), we can see that even at such high values of
p, there are still stable patterns, but with increase in p, the number of unstable
patterns goes up. As p increases from 16 to 20, the attractors pertaining to unstable

patterns move further away from the corresponding inscribed patterns.

of the permitted values of ±1[19]. Moreover, combination states with an odd number

of component patterns form stable fixed points, while mixtures with even number of

components are saddle points in the network dynamics[7]. Mixture states formed from

such simple and straightforward combinations typically overlap with their component

states to a (fairly) similar extent and are termed symmetric. The energy landscape

also contains minima corresponding to asymmetric mixture states, resulting from

more complex combinations involving integer or fractional prefactors. An example

of a symmetric mixture state could be ξ(mix) = sgn
(
ξ(1) + ξ(12) + ξ(14)

)
, and that of

an asymmetric mixture, ξ(mix) = sgn
(
2ξ(10) + (3/8)ξ(2) + (2/5)ξ(4)

)
(for p = 14).

These spurious memories are attractors that are distinct from the inscribed patterns.

They also overlap with all the other patterns, but more so with their component pat-

terns. However, compared to the inscribed patterns, they typically possess higher en-

ergy (as seen from Fig.4.3(A)) and have smaller and shallower basins of attraction[8],

as we can see from Table4.6. The spurious memories are hence termed local minima,

while the inscribed patterns are global minima.
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Table 4.5: Table showing the basins of attraction of some inscribed patterns

(ξ(ν)’s) and their inverses(ξ
(ν)
inv’s) for different values of p for N = 100. For stable

patterns, the basins of attraction of the inverse or mirror states are similar to those
of the inscribed patterns. The inverses of the unstable states (with no basins) may

have basins of attraction.

ξ(ν) Hamming distances in the basin of attraction of ξ(ν)

p = 10
ξ(1) 31 29 37 35 40 24 30 34 41 31

ξ
(1)
inv 39 32 40 33 40 34 42 38 43 35

p = 12

ξ(1) 32 36 32 44 34 34 35 32 34 37

ξ
(1)
inv 32 35 30 35 42 40 27 32 39 36

ξ(7) 0 0 0 0 0 0 0 0 0 0

ξ
(7)
inv 13 6 0 0 12 36 0 19 0 14

p = 14

ξ(1) 26 31 36 41 37 22 30 31 31 39

ξ
(1)
inv 12 26 14 15 34 41 32 18 19 20

ξ(7) 0 0 0 0 0 0 0 0 0 0

ξ
(7)
inv 0 10 8 5 13 14 0 10 18 0

When p is low, a mixture state and its basin of attraction may lie anywhere within the

larger basin corresponding to an inscribed pattern, typically the component imprinted

pattern with which it has maximum overlap, or its inverse. A pattern within the basin

of a false minimum, including the minimum itself, can be brought out of the basin by

introducing a little extra noise (such as by flipping spins to raise the temperature);

the eventual convergence occurs at the component imprinted state. The spurious

states can hence be considered to be pseudoattractors. By contrast, a tremendous

amount of energy would be required to bring a pattern out of the basin of a deep

global minimum.

As p increases, there is a corresponding combinatorial increase in the number of

spurious states[8]. Some of them may even form in the region of configuration space

between the basins of other attractors. The growing number of spurious patterns

crowd the configuration space, reducing the area available to the basins of attraction
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Table 4.6: Table showing the basins of attraction of some mixture states for
p = 14 with N = 100. A mixture state ξ(mixm,n,q,···) is formed from the combina-
tion of some of the inscribed patterns, viz. its ‘Components’ (ξ(m),ξ(n),ξ(q),···) and
converges to an attractor ξ(µ). This ξ(µ) can be one of the inscribed patterns, typi-
cally the component with which ξ(mixm,n,q,···) has maximum overlap, or ξ(mixm,n,q,···)

itself . When ξß(mixm,n,q,···) converges to ξ(µ), it lacks a basin of attraction of its
own, but when it converges to itself, the basin of attraction is very small as seen

below.

Components of ξ(mixm,n,q,···) Attractor Basin of attraction of ξ(mixm,n,q,···)

(ξ(m),ξ(n),ξ(q),···) ξ(µ) Hamming distances

ξ(1),ξ(3),ξ(4) ξ(1) 0 0 0 0 0 0 0 0 0 0

ξ(2),ξ(5),ξ(8) ξ(3) 0 0 0 0 0 0 0 0 0 0

ξ(3),ξ(6),ξ(4),ξ(8),ξ(11) ξ(mix3,6,4,8,11) 0 0 0 6 2 0 1 0 0 3

of the imprinted patterns, making the basins smaller or even making the minima

change positions. The network eventually enters a spin glass state[7, 8] where the

synaptic efficacies become, to a large extent, random and there is no longer a direct

correspondence between the imprinted patterns and the synaptic weights. Once the

network has entered this state, none of the imprinted patterns can even be recognized

anymore.

4.4.3 Memory capacity of the H-H network

We now look at the memory capacity of the network in the light of our above dis-

cussions on retrieval, recognition and recall, the energy and the basins of attraction.

We know that the requirement for a pattern to be added to the memory is for it to

minimize the Hamiltonian. However, we have seen that this condition is no longer

satisfied by some of the inscribed patterns as the memory store expands, while there

may be other novel unlearnt patterns which minimize the total energy. These novel

patterns cannot be included in the list of memorized patterns. This brings us to a

need to reexamine the definition of memory capacity.

We have pointed out subtle differences between retrieval, recognition and recall in

our definitions of the terms. So it becomes clear that the memory capacity should

include the imprinted patterns only if the network can recognize them. Only those
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patterns can be guaranteed to be energy minima and attractors with their own basins

of attraction, thereby also ensuring recall. The other imprinted patterns which cannot

be recognized are neither energy minima nor attractors.

Our study thus highlights the importance of complete accuracy, recognition and recall

for pattern stability and the storage capacity of the memory. We can hence expect

our estimated memory capacity to be less than p = 0.14N [64], which we had also

estimated/calculated earlier (in 2.4). The reason for this is our stricter condition of

a 100% match between the presented and recovered patterns.

We would like to point out here that following our definitions in Sec.4.2 and the

discussion in Sec.2.4 of Chapter2, αc gives the memory capacity of the Hopfield

network for recognition. We can see from the analysis in Sec.2.5 that it also marks

the capacity for associative recall. To sum up, the memory capacity of the Hopfield

model is the same for both recognition and recall, and is given by αc.

4.5 An in-depth analysis of the H-H-GS model

It has previously been shown that when the Gram-Schmidt orthogonalization pro-

cedure is incorporated into the H-H model, the system gains some properties that

make it an attractive representation of cognition[15, 16, 53]. In the previous chap-

ter, we saw how the H-H-GS model provided the system a way out of the negative

consequences of CI, thereby improving the memory capacity vastly, from p = 0.14N

in the H-H model to p = N − 1 in the H-H-GS model. Here, we must reiterate

that though the network uses the orthonormalized vectors, the η̂(ν)’s to calculate the

weights and inscribe the information coming into the system, the network dynamics

is still capable of recognizing and associatively recalling the raw patterns, the ξ(ν)’s.

(Note that the input information need not be mutually orthogonal. Refer to [49] for

a study on storing orthogonal patterns in the Hopfield network.)

Our analysis shows that the network can recognize (or retrieve, depending on the

pattern) the η̂(ν)’s as well as ξ(ν)’s for upto p = N − 1. However, the case of recall

is not as straightforward. We will first list out some of our observations before going

into a detailed discussion of associative recall in the H-H-GS model.
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4.5.1 Basins of attraction in the H-H-GS network

It is clear from our discussion earlier in the chapter that the stability of the memories

is critically linked to the basins of attraction. We have seen in the previous chapter

that the GS scheme removes the noise in the system. So, we now examine how this

absence of noise affects the radii of the basins of attraction.

Table 4.7: Table showing the basins of attraction of some of the raw patterns,
ξ(ν)’s, for different values of p for N = 100 after invoking orthogonalization. The

basins are fairly large and uniform.

ξ(ν) Hamming distances forming the basin of attraction of ξ(ν)

p = 10

ξ(1) 38 38 35 33 36 42 44 43 34 42

ξ(5) 40 36 39 42 43 43 37 44 41 41

ξ(10) 37 43 34 41 36 37 41 37 42 40

p = 20

ξ(1) 32 32 29 34 29 34 31 29 36 37

ξ(10) 35 32 32 31 40 30 33 35 33 39

ξ(20) 35 36 34 32 39 33 28 34 26 31

p = 30

ξ(1) 28 28 28 28 28 26 32 27 29 28

ξ(15) 25 28 29 26 29 31 21 24 20 27

ξ(30) 26 30 29 25 22 32 30 28 28 27

p = 40

ξ(1) 23 24 17 19 20 18 19 19 17 16

ξ(20) 20 23 20 23 17 16 20 22 20 21

ξ(40) 22 17 19 19 18 17 19 19 18 18

p = 50

ξ(1) 8 6 10 9 8 7 11 10 8 8

ξ(25) 8 8 9 11 11 7 10 9 10 12

ξ(50) 11 6 12 9 7 8 8 7 12 11

p = 60

ξ(1) 4 3 5 6 3 3 4 5 4 7

ξ(30) 6 5 4 4 4 3 5 3 3 6

ξ(60) 5 5 4 5 4 3 4 4 3 3

Table4.7 shows the basins of attraction of some of the learnt patterns (ξ(ν)’s). We can

see that the radii of the basins are quite big and rather uniform at low memory loads.

As p increases, the radii become smaller, but the basins are still fairly isotropic. This

scenario is in sharp contrast to the H-H model in which some patterns may have
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non-uniform basins or may not even have a basin of attraction for p/N as small as

0.1.

4.5.2 Network dynamics and energy landscape subsequent

to orthogonalization

While our study is focused on the raw patterns, the ξ(ν)’s, we must mention that in

the H-H-GS model, both η̂(ν)’s and ξ(ν)’s are global minima in the energy landscape

and are all recognized by the network as long as p ≤ N−1. Moreover, the elimination

of the noise in the system also prevents the minima from being displaced. Hence, in

contrast to the Hopfield network, all the learnt patterns are energy minima.

We can now work out the energy E(ξ(µ)) of the pattern ξ(µ) as

E(ξ(µ)) = −N
2

+
N

2

(
O
( p
N

))
, (4.9)

from eq.(4.6) and taking into account that the synaptic weights matrix is obtained

from the {η̂}. We can see that the energy of the pattern is determined by and

proportional to the memory load p. This is in contrast to the H-H model where the

energies of the attractors remain distributed around the same mean value irrespective

of the value of p. As the number of memorized patterns increases, so do their energies,

as we can see from Fig.4.4(A). The distribution of the radii of the basins of attraction

of the ξ’s for increasing memory loads is shown in Fig.4.4(B). The size of the basin

is calculated for each pattern, for various p. The complete set of Hamming distances

representing the basins of attraction are then binned using the interval [0, N/2]. This

interval represents the range of values that the basin radius can take, as we have

seen from the analysis in Sec.2.5 (of Chapter2) that the minimum and maximum

values the basin size can take are 0 and N/2 respectively. The histograms show the

probability of the basin sizes taking each of the terms in this interval. As p goes up,

there is a corresponding increase in the energies and a reduction in the basin sizes.

We can also verify theoretically (following [20]) that ξ’s form minima and are hence

attractors even though it is the η’s that are inscribed in the network. The energy

E(ξ(µ)) corresponding to a pattern ξ(µ) is given by eq.(4.6). Now, on inscribing a



Chapter 4. Stability and associativity of memories in ANNs 57

Figure 4.4: Fig.(A) shows the energy of the ξ’s (�) and the attractors or en-
ergy minima(�) for various values of p following the orthogonalization scheme for
N = 100. The x-axis gives the pattern index, or pattern number for each value of
p. As the ξ’s all form energy minima, the � and � coincide, indicating that there
are no instances of minima shifting with increasing p. As p increases, the energy of
the ξ’s go up, but they remain as energy minima, i.e., with rising p, the valleys in
the energy landscape shrink in size and the bottoms are at higher energy. Fig.(B)
illustrates the evolution of basins of attraction after orthogonalization. The his-
tograms show the distribution of the Hamming distances in the basins of attraction
for different values of p after orthogonalization for 50 trials with N = 100. Each
Hamming distance pertains to one particular sample of a pattern from a particular
trial. The x-axis gives the range of values that Hamming distances can take, while
the y-axis shows the probability for each of these values. The probability (P ) is
calculated as P = f(x)/c, where f(x) gives the number of Hamming distances with
value x, and c is the total number of Hamming distances. The value of c is given
by p ∗ s ∗ T , where p gives the number of patterns, s is the number of samples and
T gives the number of trials. Note that the basins are initially large and relatively
isotropic. Zeroes begin to appear around p = 60 and by p = 80, the basins of

attraction are dominated by 0’s.
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single vector ξ(1) in the network, the synaptic weights are given by

J (1) =
1

N

N∑
i,j=1
i 6=j

ξ
(1)
i ξ

(1)
j

=
1

N

(
N∑

i,j=1

ξ
(1)
i ξ

(1)
j − ξ(1)i ξ

(1)
i

)
.

(4.10)

This can be rewritten as

J (1) = ξ(1)Tξ(1) − I, (4.11)

where I represents the N × N identity matrix. This identity matrix I ensures a

zero diagonal in the weights matrix because ξ(1) · ξ(1) = 1 for any pattern ν whose

components are ±1. It performs the function of removing self-connections from the

weights matrix. The outer product of ξ(1) with its transpose, ξ(1) T ξ(1) yields an

N ×N matrix . Calculating the energy(4.6) for a random test pattern ξ(ν),

E(ξ(ν)) = −1

2
ξ(ν)J

(
ξ(ν)
)T

= −1

2

(
ξ(ν)ξ(1)Tξ(1)ξ(ν)T − ξ(ν)ξ(ν)T

)
,

(4.12)

the minimum of the energy function of the networks with synaptic weights given by

J (1) is located at ξ(1). Then ξ(ν) = ξ(1) is a minimum of the energy function as

E(ξ(ν)) = −1

2
‖ξ(ν)Jξ(ν)T‖2 +

N

2
, (4.13)

since

ξ(ν)ξ(1)Tξ(1)ξ(ν)T = ξ(ν)ξ(1)T
(
ξ(ν)ξ(1)T

)T
= ‖ξ(ν)(ξ(1)T‖2 and ξ(1)·ξ(ν) = N for ξ

(ν)
i = ±1.

We then have,

E(ξ(ν)) = −N
2

2
+
N

2
, (4.14)

whose value will be < 0 indicating that the energy has decreased, thereby making

ξ(1) a stable state of the network.

After p patterns have been inscribed in the network, the weight matrix is given by

J =

p∑
µ=1

ξ(µ)Tξ(µ) − pI. (4.15)
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We can then calculate h(1) as

h(1) = ξ(1)J

= ξ(1)

(
p∑

µ=1

ξ(1)Tξ(1) − pI
)

= ξ(1)ξ(1)Tξ(1) + ξ(1)ξ(2)
T

ξ(2) + . . .+ ξ(1)ξ(p)Tξ(p) − pξ(1)I

= Nξ(1) +

p∑
µ=2

ξ(1)ξ(µ)
T

ξ(µ) − pξ(1),

(4.16)

as ξ(1)ξ(1)
T

= N . Thus,

h(1) = (N − p) ξ(1) +

p∑
µ=2

α1µξ
(1), (4.17)

where α1µ gives the correlation between the inscribed pattern ξ(1) and each of the

remaining p− 1 patterns. As long as p� N , the second term in eqn.(4.17) would be

negligible and the pattern ξ(1) would be stable: it would have a positive stabilization

parameter(4.5). We can show similarly that each of the remaining p inscribed patterns

is stable and a minimum in the energy landscape.

In order to make our study comprehensive, we also test whether the ξ’s can still

form spurious states, given that it is their orthogonalized forms that is used in the

inscription process. Our results show that the mirror states, or the inverses of the

ξ’s are minima, as are combination states which are present at low values of p, and

converge to one of their constituent states, as shown in Fig.4.5. As p increases, to

50, say, the mixture states are no longer stable. This is logical, given that the radii

of the basins of even the ξ’s are miniscule at high memory loads.

4.5.3 Improvement in the memory capacity

Our results show that, following orthogonalization, all the ξ’s are minima in the

energy landscape and are recognized by the network as long as p ≤ N − 1.

For these values of p, the stabilization parameter si
(ν) > 0 and will have positive

values on all neurons i. This is due to the fact that the orthogonalization process

removes all the noise arising from the crosstalk between the patterns. However, the

magnitude of the si
(ν)’s decrease as p→ N − 1, though they are still > 0(/positive).
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Figure 4.5: Plot showing the energy (from eq.(4.9)) of the raw patterns, ξ’s
(�) and the corresponding attractors(�) for p = 14 following the orthogonalization
scheme. � and � overlap each other completely for all the patterns. Some mixture
states (formed from combinations of ξ’s, denoted by (∗’s)) are also shown for
p = 14, plotted against the pattern ξ with which they have maximum overlap.
The mixture states shown here lack basins of attraction of their own and typically
converge to one of their component patterns. Refer to Fig.4.3(A) for comparison.

At the same time, there is an increase in the energies of the patterns, while the basins

of attraction shrink. In due course, as p reaches a limit (0.63N , shown in Fig.4.6), the

basins of attraction of some of the memorized patterns vanish. Within this limit, the

patterns all have non-zero basins of attraction, while the number of patterns lacking

a basin of attraction goes up once the limit is crossed. This limit delineates the upper

bound for associative recall by the network. However, the network remains capable

of recognition well beyond this bound.

The basins of attraction of the memories in an efficient associative memory should

ideally be big and uniform in size and shape. The memorized patterns in the H-H

model possess large and uniform basins of attraction, but only when p is very small

(as seen in Table4.8). Modifying the learning prescription (as in ref. [65]) is one way

of achieving the preferred traits in basin properties. However, the basins of attraction

of the memories in the H-H-GS model are large and uniform or isotropic without the

need for any such modifications to the learning rule, nor were the input patterns pre-

processed in any way. This upgrade in the efficacy of the network as an associative

memory is the result of the process of orthogonalization itself.

The changes in the energies of the attractors and basin radii in the H-H and H-H-GS

models can be seen from Fig.4.7.
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Figure 4.6: Histograms showing the capacity for associative recall in the H-H-GS
network. The plots show the data for N = 100. Beyond p = 63, zero basins of

attraction begin to appear and grow in number as p increases

Table 4.8: Table showing the basin of attraction of a stable pattern (ξ(1)) for
different values of p (p = 2, 4, 6) for N = 100. The basin is fairly uniform/isotropic

for low values of p.

Samples 1 2 3 4 5 6 7 8 9 10

p = 2 43 49 42 49 48 43 48 47 42 46

p = 4 43 36 40 45 37 43 45 42 46 38

p = 6 35 41 37 38 29 35 40 39 38 42

4.6 Ramifications of correlations in the H-H and

H-H-GS models

While the H-H-GS model removes the overlaps affecting pattern stability, and learns

the orthogonalized patterns, it would be useful to study the role of overlaps between

the raw patterns in the network dynamics of the model. We look at the extreme case

where there is a very high degree of similarity between the patterns to be memorized.

We first check to see if such patterns can be stored in both the H-H and H-H-GS

models, and whether the high amount of overlaps affects the processes of recognition
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Figure 4.7: The histograms in Fig. (A) show the distribution of the Hamming
distances in the basins of attraction for p = 10 and p = 20 in the Hopfield network
and in the network after orthogonalization for 50 trials. When p = 10, some of
the basins of attraction in the Hopfield network become zeroes, by p = 20, the
basins of attraction are predominantly 0. By contrast, after orthogonalization, the
sizes of the basins are larger and the distribution of the Hamming distances is
also relatively uniform. Fig.(B) plots the energy of the ξ’s and the corresponding
attractors ξ′’s for various values of p (p = 10, 14, 16, 20) for both the Hopfield
network and orthogonalization scheme. In the Hopfield network, as p increases,
some of the ξ’s are no longer minima. However, the energies of the attractors
remains distributed around a mean (close to 0.5N). The average energy of the
inscribed patterns is shown next to each value of p. After orthogonalization, all
the ξ’s have uniform energy for a particular value of p, and while the energy increase

with the number of patterns, the ξ’s remain minima.
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and/or recall. We show that the H-H-GS model is capable of distinguishing between

patterns that are very similar to each other. While very similar patterns in the Hop-

field model tend to fall within the same basin of attraction, after orthogonalization,

they become two separate and distinct attractors, though they may or may not have

basins of attraction. In terms of cognition, an attractor pertaining to a ξ(ν) is a sepa-

rate category and may have a set of items associated with it. After orthogonalization,

the network still remains capable of identifying and separating individual categories,

irrespective of the amount of correlations between the ξ’s.

If we try to store two very similar(98% match) patterns in the Hopfield model, then

either one or both the patterns become unstable - one of the inscribed patterns will

be in the basin of the other, or they may both fall within the basin of a different

attractor altogether. This new attractor would be very similar (99%, say) to both of

those inscribed patterns. Table4.9 shows an example of each of these cases. In terms

of cognition, both the similar patterns would belong to the same category.

Even at very small values of p, high levels of similarity between the patterns contribute

significantly to the slow noise in the Hopfield network.

But in the H-H-GS model, high amounts of overlaps do not affect pattern stability,

though it causes changes in the basin radii and shapes. Table4.10 shows the basins

of attraction in a H-H-GS network with p = 5, out of which two have a high degree

(98%) of overlap. We see that though both the similar patterns are attractors and

can be recognized by the network, their basins are no longer uniform - the extents of

the basins get constrained in some directions.
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Table 4.9: Table showing examples of where patterns may converge in multiple
trials in the Hopfield network and in the network after Gram-Schmidt orthogonal-
ization when two very similar patterns are inscribed in a network of size N = 100.
We first inscribe 4 patterns (ξ(1) to ξ(4)) in the network, then choose ξ(ν) randomly
from one of these 4 to make a fifth pattern ξ(5) which is similar (98% similarity) to
it, and differs on the sites marked as ‘Differences’. We now store this fifth pattern
and check whether all the 5 patterns are attractors. The inscribed patterns other
than the chosen ξ(ν) remain attractors even as p changes from 4 to 5. We are
interested in the situation with the two similar patterns, and whether ξ(ν) and ξ(5)

are attractors (X) or not (×), when p = 5. When ξ(5) is presented to the network,
three possibilities arise: (i) ξ(5) falls within the basin of attraction of ξ(ν) and con-
verges there (Case 1), (ii) ξ(5) is an attractor, and ξ(ν) which was previously stable
now falls within the basin of attraction of ξ(5) (Case 2), or (iii) both ξ(5) and ξ(ν)

converge to a third pattern which is not any of the inscribed patterns and has 99%
overlap with both ξ(5) and ξ(ν) (Case 3). We have used examples from different

trials to illustrate each of these cases.

ξ(ν) ≡ ξ(5) (98% similarity) Status of ξ(ν) and ξ(5) when p = 5

(ν=1−4, chosen randomly) Hopfield network After orthogonalization

Case ξ(ν) Differnces ξ(ν) ξ(5) Remarks ξ(ν) ξ(5) Remarks
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1 ξ(1) 56,71 X × ξ(1) is an
attractor,
ξ(5) falls
within its
basin of
attraction.

X X ξ(1) and
ξ(5) are
both at-
tractors

2 ξ(4) 15,62 × X ξ(5) is an
attractor,
ξ(4) falls
within its
basin of
attraction.

X X ξ(4) and
ξ(5) are
both at-
tractors

3 ξ(2) 52,91 × × ξ(2) and
ξ(5) both
fall within
the basin
of a third
attractor
distict
from both
but 99%
similar to
each.

X X ξ(2) and
ξ(5) are
both at-
tractors
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Our computations show that the above results hold true even at higher memory

loads (p = 10, 20, 30 . . . , 90). In the network with orthogonalization, a high level

of correlations between even two of the memorized patterns disturbs the sizes and

shapes of the basins, making them anisotropic when their radii are non-zero. However,

recognition remains intact even in the presence of high correlations. This is in sharp

contrast to the behaviour of the H-H network, where high levels of similarity between

the patterns are detrimental to both recognition and recall. This is because the

two processes are interconnected in the Hopfield model where recognition necessarily

implies recall as the attractors always have non-zero basins. The inverse is also true,

as attractors are by nature stable fixed points in the network dynamics, and so recall

automatically indicates recognition.

This analysis brings us to an important observation. We have seen that as p goes

up, more and more patterns imprinted in the Hopfield network become unstable and

cease to be attractors. But, after orthogonalization, all the imprinted patterns remain

stable in that their recognition remains intact, though their recollection is not always

assured. As p/N → 1,recall of an imprinted pattern through an erroneous version of

the pattern acquires a novel status. This is understandable, as the basin radii are

reduced for rising p, while the minima remain in place. Beyond the limit p ≈ 0.63N

established earlier, some of the basins shrink so much that they resemble inverted

δ−functions, that is, the basins consist of just the inscribed patterns themselves.

There are no patterns associated with such imprinted patterns, not even those closest

to the imprinted patterns. A basin is, in essence, a category, with the set of patterns

within the basin being the items associated with the category label or the attractor.

In this context, we can visualize the δ−function-basins as a representation of the

extreme situation where each of the inscribed patterns is a category by itself. That

is, each imprinted pattern is a category label and also the only item in the category.

In order to reach and identify the item/category, we must specify the information

exactly and in its entirety. Such situations are encountered often in real life, and we

can see here how they can be modelled using the H-H-GS model.

4.7 Discussion

The memory capacity of the network is enhanced following orthogonalization. The

network can recognize all the ξ’s, as they are all global minima for upto p = N − 1.
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Table 4.10: Basins of attraction for p=4 and p=5, with ξ(5) (98%) similar to ξ(2).
Following the addition of a pattern very similar to one of the previously inscribed
patterns, the basin of attraction of ξ(5) in the Hopfield network(HN) vanishes or
becomes 0. After orthogonalization (GS) , the basins of attraction are all non-zero,

however, the addition of a similar pattern makes the basins anisotropic.

ξ(ν) Hamming distances in the basins of attraction

p = 4

ξ(1)
HN 46 34 39 41 47 40 46 43 38 46

GS 42 40 46 41 38 38 32 45 40 43

ξ(2)
HN 44 41 40 41 47 45 39 45 28 44

GS 42 41 43 34 37 44 40 39 38 44

ξ(3)
HN 39 44 46 37 34 45 39 28 45 48

GS 47 47 43 41 35 31 45 45 43 37

ξ(4)
HN 46 35 41 27 42 40 43 43 33 44

GS 39 41 43 44 41 38 40 46 39 37

p = 5

ξ(1)
HN 38 20 41 39 15 38 43 42 25 42

GS 15 34 38 27 5 45 27 38 34 14

ξ(2)
HN 48 47 42 44 50 48 47 46 47 50

GS 8 29 13 25 39 6 16 34 5 38

ξ(3)
HN 31 37 29 43 15 17 43 25 16 31

GS 41 47 45 44 43 42 45 44 46 33

ξ(4)
HN 40 40 38 34 34 40 26 44 38 33

GS 4 41 38 42 18 4 39 2 43 30

ξ(5)
HN 0 0 0 0 0 0 0 0 0 0

GS 38 30 7 16 16 30 41 44 44 42
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This is an improvement from the H-H network whose memory capacity is ≈ p =

0.1N . This limit is the same for both recognition and recall, as they are interlinked.

However, after orthogonalization, the capacity for associative recall increases to about

p = 0.63N , the point till which the ξ’s all have non-zero basins. Recognition does

not always guarantee recall in the H-H-GS model.

Moreover, it is clear from our discussion earlier in the chapter that after orthogo-

nalization, the memorized patterns satisfy the criterion 1 for stability whether or

not they satisfy 2. This led us to separate the criteria for pattern stability into a

necessary condition (recognition) and a sufficient one (recall).

We must also point out that the processes of pattern separation and pattern comple-

tion are separable in our model. Pattern separation is the process of separating and

identifying individual patterns no matter how much they overlap with each other,

and is basically the orthogonalization procedure itself. Pattern completion is the

process of accurate associative recall of an imprinted pattern when the network is

presented with an incorrect or partial version of the same. There is some biological

evidence of that these two processes are dissociated and pertain to different parts of

the hippocampus [55, 56].

Our study details the active changes to the energy landscape as a result of growing

amount of memorized information. Nearly all aspects of these changes have some

bearing on cognition. A basin of attraction is essentially a valley, or a category

containing items similar to the category label pattern, the attractor which lies at

the bottom. As new information enters the network and gets added to the memory

store, the categories naturally get rearranged and honed. In the context of cognition,

we can say that the introduction of more and newer information causes a change in

perception of some of the previously known information. This phenomenon is widely

known and, corresponds to the displacement of minima in the H-H model where some

of the minima pertaining earlier to the imprinted patterns may shift to other novel

patterns.

However, there does not appear to be a cognitive analogue of the catastrophic black-

out in the Hopfield network where there is neither recognition nor recall if the number

of learnt patterns is too high. This is where the orthogonalization scheme plays a role

and makes the model brain more robust with respect to retrieval/recognition/recall

as well as in classification and categorization.
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Evidence from biology indicate the presence of attractor dynamics in the cerebellum

and hippocampus, and CA3 in particular [66, 67]. These areas could possibly perform

the process of orthogonalization. For a model of recognition in the perirhinal cortex,

see [68, 69].

4.8 Some issues related to the H-H and H-H-GS

networks

Some more issues related to the Hopfield network and the model with orthogonaliza-

tion are discussed below:

4.8.1 Cognitive relevance of the network dynamics of the

Hopfield network

When patterns are inscribed in the network, the energy landscape is partitioned

into basins of attraction of the attractors. This is equivalent to the process of cat-

egorization in which the attractors can be considered to be the ‘category labels’ or

‘representatives’ of the categories. The basins of attraction give the set of patterns

in each category, i.e. those associated with the category label [7, 8].

We present below in Fig.4.8 an example of categorization and the minima shifting

described earlier. Consider for instance a network whose dynamics now includes a

category called ‘Computers’, with the category label or default representation cor-

responding to a single unit PC, such as a Mac, which we hapenn to come across in

the beginning. Other items within the category could include ‘laptops’ and ‘tablets’.

When we come across more versions of computers which means more patterns are

inscribed and we happen to come across relatively older versions of computers, the

representation of a computer could change to a traditional desktop PC with a sep-

arate CPU, while single unit PC’s would still be associated with computers. This

situation would still be associated with computers. This situation would be akin

to the shiftig of minima in the energy landscape. As more patterns are added, a

large number of which are related to laptops, say, then ‘laptops’ would now be a

separate category with a set of patterns associated with it. A subset of patterns

that was previously associated with generic computers would now be associated with
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laptops. This corresponds to the reduction of basin radii with the accumulation of

more patterns. There would also be sub-categories pertaining to spurious minima.

For instance, there could be a smaller category in between ‘TV’ and ‘Computer’. A

flat-screen TV may fall into this category. Such categories have fewer items within

them.

(a) Examples of categories: The inscribed pat-
terns corresponding to single unit PC (ξ(ν)) and
CRT TV (ξ(ν+1)) form attractors (red circles),
with the black dashed lines marking their basins
of attraction. The pattern corresponding to Flat
screen TV may be a spurious minimum (ξ(mix)),
with a small basin of attraction shown as grey
dashed lines. Other patterns such as CRT mon-
itor and Flat screen monitor are similar to both
ξ(ν) and ξ(ν+1), and eventually converge to one
of them. The red circles in the energy landscape
pertain to the attractors, while the purple circle is
the minimum corresponding to the mixture state.

(b) Modifications in the categories, the scenario
after many more patterns have been inscribed in
the network: The basins of attraction become
smaller and more anisotropic. Some of the in-
scribed patterns may become unstable: ξ(ν) cor-
responding to single unit PC is no longer a mini-
mum but converges to a new attractor ξ(ν

′). The
number of spurious states also increases with in-

creasing p.

Figure 4.8: Examples of categorization

When the number of patterns is small, the categories are broad and there would be

more ‘items’ (i.e., patterns) in each category. As more patterns are inscribed, the
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classification gets increasingly fine-tuned and more categories are created, resulting in

a decrease in the number of items in each category (shrinking of basins of attraction).

Further increase in the number of inscribed patterns leads to some of the inscribed

patterns becoming unstable with the network no longer being able to recognize or

recall these unstable patterns in that when presented for association the convergence

does not happen on them, instead it happens on a nearby pattern. As a result

of shifting of minima, the unstable patterns themselves fall within the basins of

attraction of the newly found attractors, referred to as new attractors. These new

attractors are initially very close to the nearest unstable inscribed pattern but move

farther away as p increases. The presence of these new attractors indicates that the

category labels have changed while the inscribed patterns can still be within the same

category. Cognitively, this is like a change in perception.

4.8.2 An issue with definition of forgetting

We have attributed precise criteria to stability of patterns. We now take another

look at those inscribed patterns that were stable to start with (in accordance with

the strict condition in eq.(2.9) ) but become unstable with increasing p. Should they

be discarded as irrelevant? When presented for association, these patterns are not

retrieved or recognized in the manner we have defined, instead the iteration procedure

converges to a novel attractor. We have given this a cognitive interpretation that with

increasing assimilation of information (i.e. increasing p) the perception associated

with the inscribed information gets modified and the new attractor represents the new

perception. So, as we have asked above, is the original inscribed pattern forgotten?

In the present scheme of definition of eq.(2.9) the answer would be ‘yes’. But intu-

itively this would not appear to be correct. The inscribed pattern is in the basin

of the new attractor, so the two are intimately connected. The inscribed pattern

uniquely leads to the attractor. It might appear to be a limitation of the models that

only the attractors are treated as stable memories, while the huge number of patterns

in their individual basins that help in recalling or connecting with the patterns at

the bottom of the basins are dubbed as unstable. It would be inappropriate to treat

them as forgotten. They were in the memory and ought to be still there if they lead

to recollection albeit in a different form. Qualitatively we can take a larger view

and say that all the patterns in the basin of an attractor are familiar to the system

and the attractor represents not just a single memory but a memory of a group of
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items. This calls for a modification of the mathematical definition of memory such

that it can address the problem of treating something as forgotten that was earlier

in memory.

In cognitive psychology domain Tulving [70] defines forgetting as the failure in re-

calling information which could previously be recalled. This failure in recall can be

attributed to the absence of adequate cues necessary to retrieve the information that

is still present in the system. In our case the iterations that take the inscribed pat-

tern to the new attractor can be viewed as supplying on every iteration those extra

cues. However, the difference remains that the extra cues, in our case, do not take

us back to something that was once a stable memory or an attractor. We need a

mathematical framework that enables us to recall something that could be recalled

previously.

After orthogonalization, there is no forgetting since the raw patterns can always be

accessed or recognized by the network: the network always converges to the pattern

when presented with any of the raw patterns. We reiterate here that there is no

shifting of minima in the dynamics of the H-H-GS model, which ensures the recogni-

tion of raw patterns. At lower memory loads, the set of patterns within the basin of

attraction of each pattern act as a set of cues as they all lead to the attractor, namely

the raw pattern, and converge there. Presenting any of these associated patterns is

sufficient to recall a raw pattern ξ(ν). At higher loads, each of the raw patterns be-

comes an individual category. As the categorization is now very strict, each pattern

is now the only item within and associated with a category and therefore the patterns

ξ’s are themselves the only and unique cues for the retrieval of ξ’s.

4.8.3 Two pertinent issues about the new minima or attrac-

tors

First, since they do not belong to any of the inscribed patterns, strictly speaking in

our scheme of formulation, such minima ought to be termed as spurious. But that

would be, for quite obvious reasons, inappropriate as is evident from the above dis-

cussion. So, the definition of spurious states needs to be modified in the conventional

associative neural network models.

The second issue is about making cognitive sense out of the distance between an

unstable inscribed pattern and the corresponding new attractor. Starting from one
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or two mismatches for very low values of p (say 0.1N) the new attractor progres-

sively moves further away from the inscribed pattern as p increases. While we have

interpreted a few mismatches for small p as indicating changing perception, it is hard

to make a simple interpretation when the mismatch is on say 20% of the sites. It

is also hard to draw a line to demarcate the highest percentage of mismatches that

would be cognitively relevant.

4.8.4 Information contained in a pattern

The input patterns, the ξ’s are N-dimensional vectors whose components represent

the various features of an information. In the Hopfield network, these components

can take values +1 or −1, which we can interpret as the presence (+1) or absence

(−1) of a certain feature in a particular pattern ξ(ν). After orthogonalization, the

inscribed patterns, viz. η’s, can take ± fractional values. We can consider this

range of values to represent a spectrum or continuum ranging from very weak or very

strong on either side of zero, that is different degrees to which particular features

may be present or absent in a pattern. A value of slightly greater than zero would

indicate a weak presence of that feature, while one closer to 1/
√
N would indicate

an emphatically strong presence, similarly for negative values. Thus we like to infer

that orthogonalization enables a lot more information to be embedded in the network

within Hebbian mechanism.

4.8.5 Sharing of the configuration space

In the present state of formulation of Hopfield network, any of the stable inscribed

patterns can become unstable as p increases. It is not necessarily the patterns that

are stored later that become unstable, but even the earlier patterns may lose their

stability. Although with further increase in memory loading, the new attractors cor-

responding to the unstable inscribed patterns drift further away from the latter, they

can have large basins of attraction, which may contain not just the inscribed pattern

and some of the patterns previously associated with it, but may also include patterns

which were previously not associated with any of the earlier inscribed patterns. In

this sense, the network is able to explore more of the configuration space, though

this is not of much cognitive significance as the majority of the inscribed patterns

are deemed to be unstable at such high loading. The anisotropy in the basins can
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also be considered as an exploration of the configuration space, but it is not quite

desirable, as uniform basins are supposed to improve the associative performance of

the network. We hence do not attach much cognitive significance to it at this stage

of formulation of network.

Orthogonalization is merely a transformation of the set of ξ’s into an orthogonalized

set, and the η’s span the same space as ξ’s. It would thus be logical to conclude

that the two sets of patterns and their respective basins of attraction lie in the same

space.

However, the signs of ξ’s and η’s match only at very low values of p. The two sets of

patterns have similar basins of attraction (same range) for the same value of p. If the

signs matched, we could treat the minima pertaining the two sets as coinciding with

each other. If they are distinct sets within the same space, then an ξ(ν) which differs

from the corresponding η(ν) by 3 elements, say, would lie fairly close to that η(ν).

If they both form attractors within the same space, then where would the patterns

falling in the shared region converge to? Should we instead treat the two spaces as

separate, with the ξ-space containing only patterns whose components are either +1

or −1, and a separate η-space whose components are fractions?

Furthermore, the process of orthogonalization renders all the inscribed patterns

‘equivalent’ in that they all have the same energy and similar basins of attraction.

The energies of the patterns go up as more patterns are inscribed in the network.

This is in contrast to the scenario pertaining to the Hopfield network, where the en-

ergies of the inscribed patterns are scattered around a mean value (typically around

N/2) regardless of the value of p, as seen from Fig.4.7.

As we have seen, the correlations between the patterns in the Hopfield network lead

to non-uniform basins of attraction and displacement of attractors. We can also see

that the presence of correlations between the ξ’s in varying degrees influence the size

and shape of the basins of attraction even after orthogonalization but do not affect

the location of energy minima.

4.9 Conclusion

We have presented exact mathematical definitions of the terms retrieval, recognition

and recall. We have also shown that the criteria for memory stability can be expressed
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in terms of a necessary and a sufficient condition, namely recognition and recall.

After studying the network dynamics and examining the energy landscape of the

Hopfield model, we analyzed the H-H-GS model before comparing the two. When

orthogonalization is introduced in the network learning, it presents new results for the

stability of the memories. While the network improves greatly in terms of its memory

capacity and effectiveness as an associative memory, the network is not completely

free of the destructive effects of catastrophic interference. However, the CI does not

affect recognition, while its negative consequences for associative recall are delayed

considerably.

Various schemes[71, 72, 73, 74] have been proposed to increase the memory capacity

of the Hopfield network. However, the orthogonalization scheme proposed here has a

significant advantage over them - it does need any modifications to either the network

structure or the learning prescription.

The biological equivalents of the H-H-GS model and the network dynamics analyzed

here need to be investigated and validated experimentally. There is some literature

(, including in vivo data-based modeling) on the effects of the introduction of or-

thogonalization in the network dynamics of the H-H model. We must point out here

that stability is not an actual default state of a memory. Whenever a memory is

recovered, it must be added back to the memory store once more for reconsolidation

[75, 76]. This process makes the memory labile and malleable to changes prior to

(re-)memorization. The concept of stability in our context is consistent with the

idea of lability of memories, though our focus is on the robustness or stability of the

memories in the face of newer information being added to the network. Our study

must hence be generalized taking into consideration the fact that memories are labile

in nature. This can be done by focusing on understanding the interaction between

stability and pliability.

It would be of interest to extend the current study and its results to other orthog-

onalization schemes[3, 77], while also exploring and comparing the behaviour of the

system in each case. Another potential avenue to be explored is the situation where

the system uses sparse coding.



Chapter 5

Relevance of Löwdin

orthogonalization schemes to

cognition

So far we have studied the Gram-Schmidt orthogonalization scheme, which is se-

quential in nature. In this chapter, we will invoke two democratic orthogonalization

schemes due to Löwdin, namely Symmetric and Canonical procedures, in the Hebb-

Hopfield network. The democratic nature of the schemes refers to the set of vectors

being orthogonalized as a whole, whereas the Gram-Schmidt process orthogonalizes

individual vectors as they are added, while the previously orthogonalized vectors are

retained. We will present some preliminary results and present our hypothesis that

these two schemes may have some relevance to the learning and memorization capa-

bilities of the brain, and to the physiological mechanisms underlying certain kinds of

memories.

5.1 Introduction

We know that the Gram-Schmidt procedure is sequential in nature - the vectors are

orthogonalized and added to the orthonormal basis in the same order as the input set.

That is, a new vector presented to the system is made mutually perpendicular to all

the vectors currently in the basis. In other words, each new vector is orthogonalized

and added to the basis set without disturbing the previously orthogonalized vectors.

75
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It has been discussed that in cognitive terms, the Gram-Schmidt procedure could be

applied to semantic memory which includes a sequential process such as language

learning[15]. In the previous chapters, we have analyzed in detail the H-H-GS model

and discussed its relevance to learning and memory. We now wish to explore if

other kinds of memory can be modelled in a similar fashion. For instance, episodic

memory, where a memory is stored along with a set of other information including

the environment or context in addition to that memory, rather than just one piece

of information at a time. Such memories could be regarded as ‘snapshots’, and are

not sequential in nature.

The two orthogonalization schemes due to Löwdin, namely symmetric and canonical

orthogonalization [4, 5, 6, 78] are ‘democratic’ in nature in that the order of pre-

sentation does not affect the orthonormal basis. Each time a new vector is added,

the complete set of vectors consisting of the new vector and all the previous vectors

is used to calculate the new orthonormal basis. Given this, the two schemes could

possibly be applied in situations such as the episodic memories mentioned above. In

such scenarios, the brain processes and stores multiple information simultaneously

- a particular information along with some contextual information, for instance, in-

formation about an event along with the environment in which the event occurred.

Coming across a similar environment later would trigger the memory of the event in

the brain. In other words, the two Löwdin schemes should be able to shed light on

the cognitive mechanisms underlying the memorization and recall of memories where

the contexts serve as cues to remembering the memories.

The interesting properties of the two schemes have been highlighted earlier by Sri-

vastava [3]. In the case of symmetric orthogonalization, the sums on the squares of

the projections of the orthonormalized vectors is the same for each of the vectors

in the basis. In the orthonormal basis obtained from canonical orthogonalization,

there is a hierarchy among the sums of the squares of the projections, with the sum

taking highest value for one of the basis vectors, and the remaining sums following

a hierarchical order. This highest value sum also happens to be the maximum value

for any possible orthonormal basis.

Prior to examining what the above-mentioned properties of these two schemes could

mean in terms of cognition of learning and memory, we first try and interpret the

possible cognitive meanings of the orthonormal basis set and its constituent vectors.
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As discussed in 4.8.4, the information entering the model brain of size N is denoted

by a N−dimensional vector. The components of the input vectors are ±1 gener-

ated randomly and represent a set of features. +1 and −1 represent ‘Yes’ and ‘No’

respectively, with respect to the corresponding feature. Together, the components

characterize the information in terms of its features[15, 16, 17]. On encountering

such information, the model brain first orthogonalizes them[15], and then memorizes

the orthogonalized information in a Hebbian manner[2]. The components of these

orthogonalized vectors are fractions, and may be understood as the firing rates of the

neurons in response to the incoming information which is then learnt by the system.

In our hypothesis, each of the orthonormal vectors would be representative of an in-

formation stored in the system. The vectors in the basis are all mutually orthogonal,

making each of the representative vectors unique. The positive or negative values in

the vector components show whether the corresponding features in the information

get highlighted/emphasized or de-emphasized to the degree given by the magnitude.

The signs of the components of the different representative vectors adapt themselves

in order to maintain the mutual orthogonality of the vectors.

We can now attempt to conjecture what the Symmetric and Canonical orthogonaliza-

tion schemes could mean in terms of cognition. Symmetric orthogonalization could

be applied in situations where we take in information about our surroundings, noting

everything in general but not focusing on anything in particular, while Canonical or-

thogonalization would be used for instant classification of incoming information and

for sorting them into groups in a hierarchical manner.

With these considerations in mind, we now turn our attention to the possible studies

that might shed more light on how the brain might implement orthogonalization. We

will now comment on a few prospective research avenues.

The modular nature of the brain has been a subject of debate for more than a hundred

years– is the brain made up of different task-specific modules, or does the brain use

a common mechanism to address a variety of tasks?[79] A study by Tsao et al [80]

demonstrating a face-specific region in the cortex provides evidence in favour of the

modular brain theory. Faces possess the same characteristic sets of features, but a

large number of individual faces can still be identified distinctly. This prompts the

following question: how are the faces encoded by the cortical neurons such that each

face can be distinctly separated from the rest?[79]. We believe that the brain might

use Löwdin orthogonalization schemes to memorize, sort and recognize faces.
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We plan to study the issues mentioned above through simulations, but here, we dis-

cuss whether Löwdin orthogonalization schemes help with content addressability. To

do so, we now study associativity in the network following Symmetric and Canonical

orthogonalization schemes, as we have already elaborated on the effects of Gram-

Schmidt orthogonalization on associativity in the previous chapter.

This result bears some resemblance to episodic memory, where an episode is remem-

bered along with its context. Encountering a similar environment could lead to re-

membering the memory of the episode and its environment. The content-addressable

or associative nature of our model system is comparable to episodic memory, as we

will show in our simulations. But first, we briefly recapitulate the reason for in-

troducing orthogonalization in the Hopfield model, and the significant difference in

the associative property of the modified model compared to that of the conventional

Hopfield model.

Prior to elaborating on the Löwdin orthogonalization and their relevance to cognition,

we remark on a curious (yet telling) coincidence – the factors that hinted at the

parallels between the memory catastrophe problem in learning and memory and the

‘non-orthogonality catastrophe’[81] in chemistry which prompted Löwdin to develop

his orthogonalization schemes[4] inspired us to apply orthogonalization to the problem

in cognition. As we have seen earlier, the memory catastrophe in the brain is the

result of growing correlations between the patterns as more information is memorized,

similarly, small overlaps between the orbitals of ions in close proximity to each other

contibute to the rise in the number of overlap integrals, eventually leading to the

non-orthogonality catastrophe[82].

5.2 A précis of the orthogonalization schemes

Consider anN− dimensional space where a set V whose component vectors v1,v2,v3, . . . ,vN

are linearly independent. Let A represent the transformation taking V to an or-

thonormal basis Z. Then,

Z = VA, (5.1)

with

< Z|Z >= I , (5.2)
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where I is the identity matrix. We can see from [3] that

< Z|Z > =< VA|VA >,

= A† < Z|Z > A,

= A†AA;

yields the general solution to the orthogonalization problem on substituting for A as

A = M − 1
2B , (5.3)

with M being the Hermitian metric matrix of the basis V , and B being the unitary

matrix. Two particular solutions of the general solution(5.3) generate the Symmetric

and Canonical bases. B = I in the case of Symmetric Orthogonalization Z = Φ =

VM − 1
2 ; while B = U where U diagonalizes M and

U †MU = d , (5.4)

yields the Canonical Orthogonalization Z = Λ = VUd−
1
2 .

Some interesting characteristics of the two schemes[3] can be gleaned from the Scheinler-

Wigner matrix[21]:

|(v1, z1)|2 |(v1, z2)|2 . . . |(v1, zN)|2

|(v2, z1)|2 |(v2, z2)|2 . . . |(v2, zN)|2

...
...

. . .
...

|(vN , z1)|2 |(vN , z2)|2 . . . |(vN , zN)|2


.

The elements of the matrix are the squares of the projections of the vectors vk’s on

the vectors zκ’s of the orthonormal basis. While the row sums give the squares of

the lengths of the given vectors, the column sums contain fascinating information. A

column sum is given by cκ[3]

∑
k

| (vk, zκ)|2 = (AMMA†)κκ = (BMB †)κκ = cκ; k = 1 , . . . ,N . (5.5)
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We must point out here that,

N∑
κ=1

cκ =
N∑
k=1

|vk|2, takes a constant value for a given set V , (5.6a)

while

∑
κ

c2κ = m , the SW parameter. [3, 21] (5.6b)

It has been shown that in the case of Symmetric orthogonalization,

m = mmin for the orthonormal basis Z = Φ, (5.7a)

while

m = mmax for the orthonormal basis Z = Λ. (5.7b)

in the case of Canonical orthogonalization, when the vectors vk are normalized[3].

In other words, the orthonormal basis vectors have an average distribution in the case

of Symmetric orthogonalization, that is, c1 = c2 = . . . = cN = (c1 + c2 + . . .+ cN)/N ,

whereas in Canonical orthogonalization, the cκ’s are distributed in a maximally

skewed manner. To paraphrase, for Symmetric orthogonalization, Z = Φ ≡ {φκ},
and ∑

k

|(vk,φκ)|2 =
∑
κ

|(vk,φκ)|2 = |vk|2, (5.8a)

indicating that the projection squares of all the normalized vectors vk’s on the indi-

vidual φκ’s add up to the same value. Whereas, in the case of Canonical orthogonal-

ization, Z = Λ ≡ {λκ}, and

∑
k

|(vk,λl)|2 = the maximum for, say, κ = l; (5.8b)

∑
k

|(vk,λm)|2 = the next to maximum for, say κ = m,

and so on. The maximum value of the collective projections of all the vk’s is encap-

sulated in λl, indicating a hierarchy among the sums of projection squares of vk’s on
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the λκ’s.

In the case of Symmetric orthogonalization, the orientation of the orthogonal basis

set is such that the sums of squares of the projections of the input vectors vk’s on

each of the orthogonal vectors φκ’s takes the same value for each individual φκ. This

is a significant trait of the orthogonal basis which retains any symmetry properties

possessed by the input set. However, the Canonically orthogonalized basis set vectors

λκ’s are oriented in a descending order – the highest amount of information about the

shared features present in the input set is captured in one of the orthogonal vectors

λl, followed by other orthogonal vectors λm and λn which capture the information

but to successively lesser extents. The component vectors of the orthogonal basis can

thus typically be sorted by the amount of information captured, thereby making the

Canonical orthogonalization a powerful classification procedure.

The properties of the orthogonalization discussed above are illustrated using a simple

example in Fig. 5.1. The Gram-Schmidt procedure is also illustrated for comparison

and correctness. The data pertaining to the figure is given in Table5.1.

(a) Symmetric orthogonalization (b) Canonical orthogonalization

(c) Gram-Schmidt orthogonalization

Figure 5.1: 3D Plots depicting various orthogonalization schemes. The 3-
dimensional input vectors p1, p2 and p3 are orthogonalized using Symmetric 5.1a,
Canonical 5.1b and Gram-Schmidt 5.1c schemes, with the corresponding orthonor-
malized vectors plotted using dashed lines. The vectors are tabulated in Table5.1.
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Table 5.1: Table showing an example of the various orthogonalization schemes
usning 3D vectors along with their corresponding SW matrices. The row sums and
column sums of the SW matrices are also shown. The vectors are plotted in Fig.

5.1.

Normalized input patterns
p1: 0.57735 −0.57735 0.57735
p2: 0.57735 −0.57735 −0.57735
p3: −0.57735 −0.57735 −0.57735

Symmetric orthogonalization
p1 SO: 0.33333 −0.66667 0.66667
p2 SO: 0.66667 −0.33333 −0.66667
p3 SO: −0.66667 −0.66667 −0.33333

SW Matrix

( )
0.92593 0.03704 0.03704 1.00001
0.03704 0.92593 0.03704 1.00001
0.03704 0.03704 0.92593 1.00001
1.00001 1.00001 1.00001

Canonical orthogonalization
p1 CO: −0.8165 0.40825 −0.40825
p2 CO: 0 −0.70711 −0.70711
p3 CO: −0.57735 −0.57735 0.57735

SW matrix

( )
0.88889 0.22222 0.22222 1.33333

0 0.66667 0.66667 1.33334
0.11111 0.11111 0.11111 0.33333

1 1 1

Gram-Schmidt orthogonalization
p1 GS: 0.57735 −0.57735 0.57735
p2 GS: 0.40825 −0.40825 −0.81650
p3 GS: −0.70711 −0.70711 0

SW matrix

( )
1 0.11111 0.11111 1.22222
0 0.88889 0.22222 1.11111
0 0 0.66667 0.66667
1 1 1
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5.3 Numerical Illustration

Prior to discussing what these two Löwdin orthogonalization could mean in terms of

cognition, we first implement Symmetric and Canonical orthogonalizations in a small

system to demonstrate numerically the features of the two schemes discussed in the

previous section.

Our input set of 10-dimensional vectors {vk} comprises randomly generated ±1 ele-

ments, which are each divided by a factor of
√

10 to normalize the vectors. Initially,

two such random vectors are generated and orthogonalized using the two Löwdin

schemes. More vectors are then added to the input set, with the entire set being

orthogonalized following the addition of each new vector. Table5.2 gives the data

pertaining to Symmetric and Canonical orthogonalization schemes.

Table 5.2: Five randomly generated 10-dimensional vectors are normalized and
orthogonalized following Symmetric (Table I) and Canonical (Table II) schemes.
First, two vectors are orthogonalized, then new vectors are added, one at a time.
The SW matrices are presented sequentially to examine how they change as new
vectors are added. For the convenience of presentation, these numbers are pre-

sented as transpose of the SW matrix in the text.

Unnormalized input vectors

v1 : 1 -1 1 1 1 -1 1 1 -1 -1

v2 : 1 -1 1 -1 -1 -1 -1 1 -1 -1

v3 : -1 1 -1 -1 1 -1 -1 1 1 -1

v4 : 1 -1 1 -1 -1 -1 1 -1 -1 -1

v5 : -1 -1 1 1 1 1 1 1 1 -1
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Table - I : Symmetric Orthogonalization

of v1, v2 (normalized) : (p = 2 )
0.2673 −0.2673 0.2673 0.4082 0.4082 −0.2673 0.4082 0.2673 −0.2673 −0.2673
0.2673 −0.2673 0.2673 −0.4082 −0.4082 −0.2673 −0.4082 0.2673 −0.2673 −0.2673

of v1,v2,v3 (normalized) : (p = 3 )
0.2351 −0.2351 0.2351 0.3804 0.4531 −0.3078 0.3804 0.3078 −0.2351 −0.3078
0.2770 −0.2770 0.2770 −0.4000 −0.4223 −0.2547 −0.4000 0.2547 −0.2770 −0.2547
−0.2966 0.2966 −0.2966 −0.2743 0.3693 −0.3470 −0.2743 0.3470 0.2966 −0.3470

of v1,v2,v3,v4 (normalized) : (p = 4 )
0.2259 −0.2259 0.2259 0.4207 0.4715 −0.2768 0.3392 0.3582 −0.2259 −0.2768
0.2578 −0.2578 0.2578 −0.2639 −0.3711 −0.1506 −0.5441 0.4307 −0.2578 −0.1506
−0.2835 0.2835 −0.2835 −0.3670 0.3344 −0.4178 −0.1763 0.2272 0.2835 −0.4178

0.1499 −0.1499 0.1499 −0.4220 −0.2313 −0.3405 0.4301 −0.5115 −0.1499 −0.3405

of v1,v2,v3,v4,v5 (normalized) : (p = 5 )
0.3470 −0.1135 0.1135 0.4084 0.4617 −0.4002 0.2779 0.2972 −0.3470 −0.1667
0.2019 −0.3096 0.3096 −0.2581 −0.3664 −0.0936 −0.5157 0.4590 −0.2019 −0.2013
−0.2813 0.2856 −0.2856 −0.3669 0.3345 −0.4202 −0.1773 0.2262 0.2813 −0.4158

0.0959 −0.2001 0.2001 −0.4161 −0.2265 −0.2855 0.4577 −0.4841 −0.0959 −0.3897
−0.3797 −0.3624 0.3624 0.1505 0.1462 0.3840 0.2547 0.2539 0.3797 −0.3580

Schweinler-Wigner matrices for p = 2 , 3 , 4 , 5

p = 2 :

(
0.9583 0.0417
0.0417 0.9583

)
: 1.0000
: 1.0000

p = 3 :

(
0.9472 0.0422 0.0106
0.0422 0.9577 0.0001
0.0106 0.0001 0.9893

)
: 1.0000
: 1.0000
: 1.0000

p = 4 :

0.9283 0.0341 0.0078 0.0298
0.0341 0.8655 0.0019 0.0985
0.0078 0.0019 0.9454 0.0448
0.0298 0.0985 0.0448 0.8269

 : 1.0000
: 1.0000
: 0.9999
: 1.0000

p = 5 :


0.8602 0.0406 0.0079 0.0358 0.0555
0.0406 0.8510 0.0019 0.0937 0.0128
0.0079 0.0019 0.9454 0.0447 0.0000
0.0358 0.0937 0.0447 0.8131 0.0127
0.0555 0.0128 0.0000 0.0127 0.9190


: 1.0000
: 1.0000
: 0.9999
: 1.0000
: 1.0000
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Table - II : Canonical Orthogonalization

of v1, v2 (normalized) : (p = 2 )
0.3780 −0.3780 0.3780 0 0 −0.3780 0 0.3780 −0.3780 −0.3780
0 0 0 −0.5774 −0.5774 0 −0.5774 0 0 0

of v1,v2,v3 (normalized) : (p = 3 )
−0.4353 0.4353 −0.4353 −0.1027 0.0635 0.2690 −0.1027 −0.2690 0.4353 0.2690
−0.1414 0.1414 −0.1414 −0.4243 0.1414 −0.4243 −0.4243 0.4243 0.1414 −0.4243
−0.1027 0.1027 −0.1027 0.4353 0.7042 −0.1663 0.4353 0.1663 0.1027 −0.1663

of v1,v2,v3,v4 (normalized) : (p = 4 )
0.4311 −0.4311 0.4311 −0.0717 −0.2142 −0.2886 0.1969 0.0200 −0.4311 −0.2886
−0.1002 0.1002 −0.1002 −0.3716 0.1691 −0.4405 −0.4143 0.4832 0.1002 −0.4405

0.0402 −0.0402 0.0402 0.5954 0.6310 −0.0758 0.2902 0.3810 −0.0402 −0.0758
−0.1512 0.1512 −0.1512 −0.2482 0.2297 −0.3268 0.5766 −0.4981 0.1512 −0.3268

of v1,v2,v3,v4,v5 (normalized) : (p = 5 )
0.0843 −0.2014 0.2014 0.1859 −0.2886 0.3903 −0.5709 0.4837 −0.0843 0.2731
0.3869 0.2584 −0.2584 0.4342 0.3750 −0.3277 −0.0485 0.1650 −0.3869 0.3177
−0.1153 0.0764 −0.0764 −0.3088 0.2319 −0.4253 −0.3718 0.5272 0.1153 −0.4643

0.1778 0.2645 −0.2645 −0.4882 −0.4508 −0.2153 −0.3843 −0.3311 −0.1778 0.2271
−0.4380 0.4225 −0.4225 0.0838 0.2259 0.2960 −0.1865 −0.0101 0.4380 0.2805

Schweinler-Wigner matrices for p = 2 , 3 , 4 , 5

p = 2 :

(
0.7000 0.7000
0.3000 0.3000

)
: 1.4000
: 0.6000

p = 3 :

(
0.7236 0.5789 0.1447
0.0000 0.2000 0.8000
0.2764 0.2211 0.0553

)
: 1.4472
: 1.0000
: 0.5528

p = 4 :

0.4984 0.5810 0.2150 0.7640
0.0120 0.2497 0.7398 0.0046
0.4884 0.0678 0.0014 0.1010
0.0012 0.1015 0.0438 0.1304

 : 2.0585
: 1.0061
: 0.6585
: 0.2769

p = 5 :


0.0079 0.1135 0.0428 0.1090 0.0026
0.1423 0.0108 0.0009 0.0571 0.1021
0.0342 0.2196 0.7359 0.0100 0.0038
0.3384 0.0651 0.0064 0.0491 0.8889
0.4772 0.5910 0.2141 0.7749 0.0025


: 0.2759
: 0.3131
: 1.0035
: 1.3479
: 2.0596
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Examining the data for a pair of vectors, that is, for p = 2 highlights how the two

schemes compare the vectors of the input set during the orthogonalization process.

The elements of the Symmetric basis vector each take one of two values, one repre-

senting similarities and the other, differences. The magnitude of the elements depends

on the number of similarities or differences - higher the count, greater the magnitude.

That is, if the pair of vectors share more similarities than differences, the number

denoting the similarities in the orthogonal basis vector takes a higher value, while

the differences are represented by a smaller number. The opposite occurs when the

two vectors are more different from each other.

The similarities and dissimilarities between the two patterns are reflected sharply in

the case of Canonical orthogonalization – the similarities or differences, whichever

is smaller in number, is represented by a number of greater magnitude, and in the

second vector. This comparison is highlighted further in the first vector, with the

corresponding elements taking value zero. Also, the differences, or similarities, which

are more in number are reflected in the first vector, but with smaller magnitude, with

the corresponding elements in the second vector being zeroes. In short, the first vector

emphasizes the majority feature, while the second vector emphasizes the minority.

That is, the model brain first pays attention to the majority feature, reflecting it in

the first vector, and then in the second vector, it stresses solely the minority feature.

Following the introduction of a third vector and orthogonalization, the bases get

altered completely instead of a cumulative change as in the case of Gram-Schmidt

orthogonalization. However, as in the case of p = 2, the patterns of similarities and

differences present in the input set can still be seen in the orthogonal bases of either

scheme.

Beyond p = 3, as the number of input vector goes up, it gets harder to attribute the

values in the orthogonal bases to the patterns of similarities and differences present

in the input set. However, the parameters cκ’s provide a general picture of the

reorganization of the orthonormal bases, showing how the bases re-orient themselves

following the introduction of newer vectors.

The eq.(5.8a) is satisfied perfectly in the case of Symmetric orthogonalization, indi-

cating the perfect symmetry in the SW matrices. Another interesting aspect of the

SW matrices is that they are diagonally dominated. This implies a close alignment

of the basis set vectors with the input vectors – φ1 with v1, φ1 with v1, . . ., though
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there is a marginal reduction in the degree of alignment as more input vectors are

added.

In the case of Canonical orthogonalization, one of the basis vectors λk records max-

imally the projections of the input vectorsvk’s. In our example, it is λk = λ1 which

captures the majority of the projections of v1,v2, . . . ,v4 for p = 2, 3, 4. However,

following the introduction of the fifth vector v5, λk changes to λ5 which is now the

vector sampling the input set to the greatest extent. The hierarchical ordering of the

basis vectors can be seen from the sums of projection squares in Table II.

5.4 Löwdin orthogonalization schemes - implemen-

tation and cognitive relevance

In Chapter 2, we saw how the Hebb-Hopfield network suffers from a catastrophic

blackout when the number of patterns p in a network of size N crosses the small

limit of p = 0.14N . We also saw that the reason for this is the growing amount of

correlations between the patterns manifesting as a noise which eventually submerges

the signals due to the learnt information. One way of evading this catastrophe is

the elimination of noise by using orthogonalization. In the Chapters 3 and 4, we

discussed in detail the network properties of the H-H-GS model in which Gram-

Schmidt orthogonalization is invoked in the H-H model. While information in the

H-H-GS network is stored as the orthogonalized versions η’s of the input patterns ξ’s,

the original patterns or the raw input ξ’s can still be recovered with total accuracy.

Not just that, the network is also capable of associatively recalling the input memories

when presented with patterns similar to them.

Encouraged by these results, we now study the H-H network with Löwdin orthogonal-

izations and what the results could mean in cognitive terms. That is, we orthogonalize

the input vectors using Symmetric and Canonical orthogonalizations to get the basis

vectors which are then memorized by the network. We then examine if the network

can still recognize and recall the input patterns.

Tables I and II tabulate the results of Symmetric and Canonical orthogonalizations

on a set of 5 10-dimensional vectors whose components are generated randomly. The

corresponding SW matrices are also shown. The input vectors vk’s represent the

information that need to be lodged in the memory, and correspond to the vectors
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ξν ’s of the earlier chapters. φκ’s and λκ’s represent the orthogonal vectors after

Symmetric and Canonical orthogonalizations respectively. The model network might

focus equally and impartially on all the incoming patterns, or it might rank them,

focusing more on some patterns and less on others. That is, the network can perform

either Symmetric or Canonical orthogonalization based on the situation. This choice

is in turn reflected in the basis vectors and the corresponding SW matrix. These

vectors are then used to calculate the synaptic weights.

The issues of recognition and recall arise once again, as in the case of Gram-Schmidt

orthogonalization, leading to the question: are the input patterns recognized by

the network, and are they still content-addressable when Löwdin orthogonalization

schemes are used in the memorization process? The answer to both these questions is

yes. Not just the input patterns themselves, but even something similar can lead the

network to retrieve the original input patterns, proving that the network is indeed

still capable of recognition as well as associative recall.

Figure 5.2: Plot showing the fraction of stable patterns for different values of the
load parameter following Symmetric, Canonical and Gram-Schmidt orthogonaliza-

tion schemes in a network of size N = 100. The data pertains to 3 trials.
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Figure 5.3: Probability of finding basin of attraction of a certain size for p =
10 − 87 (in steps of 10) following Symmetric or Canonical orthogonalization in a
network of size N = 100. (Refer to AppendixD for details on the equivalence of
the orthogonalization schemes.) The data pertains to 5 trials, and the basins are

averaged over 10 samples.

The memory capacity of the network for recognition is p = N−1, as shown in Fig.5.2.

We examine in some detail the results pertaining to recall which is relevant to episodic

memory. We find that the network can associate with the input patterns other

patterns which are fairly similar to them. It is worth noting that as the memory load

increases, the recall process would become more attuned to the commonalities shared

by the presented patterns and the memorized ones, that is, the proximity between

the presented and the input patterns. This is evident in the basins of attraction

(calculated following the protocol described in AppendixB) plotted in Fig.5.3. The

radii of the basins of attraction reduce with increase in p. As memory load goes up,

there is also a rise in the number of patterns with zero basins of attraction.



Chapter 5. Löwdin orthogonalization schemes and cognition 90

5.5 In short

We have seen that Löwdin orthogonalization schemes can be applied to address prob-

lems in computational neuroscience. If validated through experiments, our claims

here could provide novel insights into Löwdin orthogonalizations as the physiological

mechanism involved in episodic memory wherein an episode gets stored in the brain

along with its context.

In this chapter, we have discussed the probable cognitive meanings of the orthonormal

bases and their components which are greatly altered each time a new information

is added to the memory. Also, the Schweinler-Wigner matrix helps in interpreting in

gross terms the processes of orthogonalizations.

We have discussed some preliminary results of our study in this chapter. Further

studies using Löwdin orthogonalization schemes could provide insights into complex

phenomena observed in the domains of cognitive neuroscience and psycholinguistics.

We also believe that Löwdin orthogonalization schemes might be implicated in dyslexia.

It might help us understand the distinct brain state of dyslexics who, despite their

learning difficulties, are proficient in identifying patterns in seemingly random collec-

tions of data (such as a group of people, objects or numbers) which other non-dyslexic

people may not be able to identify as easily.



Chapter 6

Summary and outlook

This thesis focused on the implementation of various orthogonalization schemes in

the Hopfield model and also attempted to situate the study in the context of cog-

nition, to understand how the results of the study relate to biological learning and

memory. The sequential Gram-Schmidt orthogonalization procedure and the demo-

cratic Symmetric and Canonical schemes were invoked in the Hopfield model and the

network performance was evaluated by estimating the memory capacity.

The thesis also addressed deeper issues related to memory stability and the associative

character of the network. The terms retrieval, recognition and recall were defined

precisely and distinguished from each other after stating the rationale behind the

distinction and the need for it. A detailed study of the behaviour of the network

following orthogonalization was presented and compared to that of the standard

Hebb-Hopfield model.

Future work would involve a more in-depth study of Löwdin orthogonalization schemes

and their relevance to understanding dyslexia and to pattern identification. Other

themes to pursue include formulating a representation for forgetting within our frame-

work, and ways to combine a short-term memory model with our long-term memory

models.

Another avenue to be explored is a model where the network can implement different

orthogonalization schemes according to the situation and capture different aspects of

the incoming information.

Further work also includes addressing some of the limitations of the Hopfield model,

beyond the low memory capacity that we have addressed here, such as the (possibly)
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arbitrarily large values the synaptic efficacies can take. This can be resolved by

using orthogonalization as discussed in the previous chapters. An alternate solution

is to restrict the range of values synaptic efficacies can take, a process which also

takes the model closer to biological realism. This situation, where the weights are

regulated to always lie within certain limits can be referred to as learning within

bounds [19, 83, 84, 85]. We take our cue from a series of studies[22, 86, 87] and

consider a network of bounded synapses (following [22] , referred to as “original”

model hereafter) and study its efficiency in terms of memory lifetime, or how long

memorized information remains in the system and is distinguishable from the noise.

We wished to incorporate synaptic nature in the network - biologically, synapses

are either excitatory or inhibitory in nature and retain this nature in the face of

modifications during the learning process. We elaborate upon this in AppendixF,

but preliminary results show that our modified network shows a slight increase in the

initial signal-to-noise ratio, while memory lifetimes are roughly half compared to the

original model.

Another criticism of the Hebb-Hopfield network is its use of dense patterns to rep-

resent information, with roughly half of the total neurons active in each pattern,

whereas only a fraction of neurons in the brain fire or are active in response to any

information entering the brain. Such sparse patterns of activity can be implemented

computationally through a model proposed by David Willshaw et al[23, 88].

The Willshaw model consists of a network of neurons connected by synapses which

are all initially inactive and get activated only if both the neurons connected by

the synapse fire simultaneously. The model is biologically realistic in terms of the

sparseness in the information. However, unlike biological systems, it is fully connected

and the synaptic efficacies are symmetric. We attempt to address this issue by

modifying the learning prescription such that a synapse can take one of three values

(positive/active, 0 and negative/inactive), rather than two (active/inactive). With

this simple modification, we can introduce dilution and asymmetry in the network

dynamics, as well as vary inhibition and/or excitation and study the effects of varying

amounts of dilution, as discussed in AppendixG.

The network performance in this case is measured in terms of the number of patterns

the network can memorize and retrieve accurately. Initial results show favourable

results when inhibition is maintained at a constant level and the excitation varied.

This result could be of relevance to biological systems (see [89] related to Alzheimer’s

disease, for instance), as well neural networks[90]. However, the results were less
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favourable when both inhibition and excitation are varied. Further work remains to

be done in improving the model.

In sum, in this thesis, we have studied the Hebb-Hopfield network following the

implementation of various orthogonalization schemes. We have analyzed network

efficacy using memory capacity, pattern stability and associativity. We have also

discussed some possible avenues of further research.





Appendix A

Methods

A.1 Method - Chapter 2

The network was built on GNU Octave/MATLAB and FORTRAN 90. The size

of the network was fixed at N = 100. The patterns were randomly-generated N -

dimensional vectors whose components were ±1. The patterns were stored using the

learning rule of eq.(2.3) and presented to the network for retrieval. The fractions

of stable and unstable patterns were then calculated. The percentage of stable and

unstable patterns were then plotted against the number of patterns. The data was

obtained from 50 trials (sets of patterns) and plotted using GNUPlot.

A.2 Method - Chapter 3

The network was built on GNU Octave/MATLAB and FORTRAN 90. The number

of neurons in the network were N = 100 and N = 1000. The patterns were randomly-

generatedN -dimensional vectors whose components were±1. The patterns were then

orthogonalized and normalized following the Gram-Schmidt procedure described in

sec. 3.3.1 and stored using the learning rule of eq. (3.12). They were then presented

to the network for retrieval. The fractions of patterns were then calculated. The

percentage of stable patterns were then plotted against the number of patterns. The

fraction of retrieval was then plotted for different values of the load parameter. The

data was obtained from 50 trials (sets of patterns) and plotted using GNUPlot.
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A.3 Method - Chapter 4

The network was built on GNU Octave/MATLAB and plots generated using GNU-

Plot. The size of the network was fixed at N = 100. The patterns were randomly-

generatedN -dimensional vectors with components having different signs but the same

magnitude, namely 1. The patterns were stored using the learning rule of eq.(2.3) and

tested for retrieval following eq.(2.9). The quality of convergence was also checked

for different values of N (N = 100, 500, 1000). The data was obtained always from

50 sets of patterns (or trials), collated and then arranged into bins. That is, the

fraction of retrieval (number of retrieved patterns/total number of patterns) for each

bin (here, representing the load parameter (p/N)) was counted for all the trials and

the resulting set plotted. Recall of a learnt pattern was tested by calculating its basin

of attraction – in a learnt pattern chosen to test for recall the signs of its components,

visualized as spins, are flipped systematically in a random sequence (which is called

a sample) and convergence is checked at each step; the process is stopped when there

is no more convergence. The number of flipped spins gives the Hamming distance

for that sample. The process is repeated with different samples and the set of all

Hamming distances gives the basin of attraction for that pattern. This protocol is

described in greater detail in the box in the appendix B.

A.4 Method - Chapter 5

The network was built on GNU Octave/MATLAB. The size of the network was fixed

at N = 100. The patterns were randomly-generated N -dimensional vectors with

components having different signs but the same magnitude, namely 1 and normalized.

The patterns were stored using the learning rule of eq.(2.3) and tested for retrieval and

recognition and recall following eq.(2.9). The data was obtained always from 50 sets

of patterns (or trials), collated and then arranged into bins. The network performance

was evaluated in terms of capacity for retrieval and recall, i.e., estimation of basins

of attraction following the same procedure as in the previous chapter.



Appendix B

More on basins of attraction

B.1 How to calculate a basin of attraction

1. Select the pattern ξ(ν) whose basin we wish to calculate. Present the test pat-

tern X = ξ(ν) to the network for retrieval following eq.(2.9). Let the recovered

pattern be X ′. If X ′ = X, then the network has retrieved X. Present X ′ back

to the network using

X ′ = sgn(h′)|1| (B.1)

where h′ is calculated from eq.(2.4) for pattern X ′ (as the patterns presented to

the network have components with magnitude ±1) to obtain X ′′. If X ′′ = X ′,

then we call it convergence. If X ′′ = X ′ = X, then we can say X ′′ and X ′

converge to X. Pattern X = ξ(ν) is hence an attractor.

2. Make a sample (S1) by choosing a random sequence of N/2 elements. This

sequence contains the indices of the elements of the test pattern to be flipped.

Sequentially flip or change the signs of the components of the test pattern

corresponding to these indices. For instance, for N = 10,

S1 10 7 5 3 6

Flip the element of X whose index is the first element of S1 to get pattern

X1 and present it to the network for retrieval to get pattern X ′1. If X ′1 6= X1,

then present X ′1 back to the network to get X
(1)
1 , where the 1 in the superscript

refers to an iteration.
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X 1 -1 -1 -1 1 -1 1 -1 1

X1 1 -1 -1 -1 1 -1 1 -1 -1

X ′1 1 -1 -1 -1 1 -1 1 -1 1

X
(1)
1 1 -1 -1 -1 1 -1 1 -1 1

Now, if X
(1)
1 = X ′1, then we say that X ′1 has converged. Additionally, if X

(1)
1 =

X, then we say that X1 converges to X in one iteration. Hence, pattern X1

which is one flip away from X is associated with X.

If X
(1)
1 6= X1, then we present it for one more iteration, and repeat until either

convergence or the maximum number of iterations (fixed at 10, say) is reached.

Convergence happens only at an attractor, so if X is an attractor, X ′1 = X1

would not be possible.

3. If X1 converges to X, then prepare pattern X2 by flipping two elements of X

whose indices correspond to the first two elements of S1. Now present X2 to

the network and check for convergence to X.

X 1 -1 -1 -1 1 -1 1 -1 1

X2 1 -1 -1 -1 1 1 1 -1 -1

X
(1)
2 -1 1 -1 -1 1 -1 1 -1 -1

X
(2)
2 1 -1 1 -1 1 1 1 -1 1

X
(3)
2 1 -1 -1 -1 1 -1 1 -1 1

X
(4)
2 1 -1 -1 -1 1 -1 1 -1 1

Here, we see that X2 converges to X, but in 3 iterations. Hence, X2 which is 2

flips away from X is also associated with X.
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4. Repeat the process as long as there is convergence. If test pattern Xb with b flips

converges to X, then present Xb+1 with b + 1 flips and check for convergence.

If there is no convergence to X even after 10 iterations, then stop the process.

5. The maximum value of b for which Xb converges to X within the specified

number of iterations gives the Hamming distance b1 for sample S1.

6. Repeat the above steps with more samples (for upto s = 10 samples, say),

checking for convergence to X at each step, to get the Hamming distances

b2, b3, . . . b10 for samples S2, S3, . . . , S10.

7. Get the basin of attraction of pattern X = ξ(ν) as B = {b1, b2, . . . , bs} for s

samples.

After orthogonalization, the process is repeated to obtain the basins of attraction of

the raw input patterns ξ(ν)s’. However, to calculate the basins of attraction of the

η’s , we start with X = η(ν). For further iterations, we present X ′

X ′ = sgn(h′)|X|. (B.2)

with h′ calculated from eq.(3.13) using η(ν) and the magnitude of X.

B.2 Memory capacity and average basin size

We can now see how the memory capacity of the network is related to the average

basin size. The average radius of the basin of attraction of the Hopfield network can

be expressed in terms of Hamming distance, and provides an estimate of the limit on

the number of patterns that can be learnt by the network. The Hamming distance

d
(µ,ν)
H between two patterns µ and ν is given by the number of sites q such that

{ξ(µ)i 6= ξ
(ν)
i } for q values of i randomly distributed between 1 and N . We inscribe p

patterns in the network and present a random test pattern ξ(t) for retrieval. Then,

h
(t)
i =

N∑
j=1
j 6=i

Jijξ
(t)
j

=
1

N

[
p∑

µ=1

ξ
(µ)
i ξ(µ) · ξ(t) − pξ(t)i

]
. (B.3)
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If d
(t,µ)
H is the Hamming distance between the test pattern ξ(t) and the µth pattern

ξ(µ), then,

ξ(µ) · ξ(t) = N − 2dH
(t,µ), (B.4)

since ξ(µ) · ξ(µ) = N and ξ(t) differs from ξ(µ) on d
(t,µ)
H elements.

The average Hamming distance between ξ(µ) and ξ(t) is,

d̃
(t,µ)
H =

d
(t,1)
H + d

(t,2)
H + . . .+ d

(t,p)
H

p
. (B.5)

We can now rewrite (B.3) as:

h
(t)
i =

1

N

[
N

p∑
µ=1

ξ
(µ)
i − 2p

p∑
µ=1

ξ
(µ)
i d̃

(t,µ)
H − pξ(t)i

]
. (B.6)

If the test pattern is within the basin of attraction of a stored pattern, it must

converge to that pattern, and so must satisfy the retrieval criterion (eqn. (2.9)), i.e.

sgn
(
ξ
(µ)
i

)
= sgn

(
h
(t)
i

)
, for all i’s.

This holds as long as the average distance between the test pattern and a stored

pattern is[91],

d̃
(t,µ)
H <

(N − 1)

2p
. (B.7)

This is a useful relation showing how a typical basin size can estimate the memory

capacity, or vice versa.

B.3 Basins of attraction after orthogonalization

We now estimate the radii of basins of attraction following orthogonalization to study

the effects of noise elimination on basin size.

We present a test pattern ξ(t) for retrieval such that its first b elements are the same

as those of ξ(ν) and the remaining N−b elements are the inverses of the corresponding

elements of ξ(ν). That is,

ξ(t) =
N−b∑
i=1

(
ξ
(ν)
i

)
−

N∑
i=N−b+1

(
ξ
(ν)
i

)
= ξ(ν) −

N∑
i=N−b+1

(
2ξ

(ν)
i

)
. (B.8)
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The maximum value of b gives a Hamming distance in the basin of attraction of ξ(ν).

Now, calculating h
(ν)
i with the new weights calculated from the set {η(µ)},

h
(t)
i =

N∑
j=1
j 6=i

Jijξ
(t)
j

=

p∑
µ=1

η
(µ)
i

[∑
j

η
(µ)
j ξ

(t)
j − η(µ)i ξ

(t)
i

] (B.9)

Substituting for ξ(t) using (B.8),

h
(t)
i =

p∑
µ=1

η
(µ)
i

[
N−b∑
j=1

η
(µ)
j ξ

(t)
j +

N∑
j=N−b+1

η
(µ)
j

(
ξ
(ν)
j − 2ξ

(t)
j

)
− η(µ)i ξ

(t)
i

]
. (B.10)

The complete set of hi’s corresponding to pattern ν is:

h(t) = {h(t)i } =

p∑
µ=1

[
η(µ)

(
η(µ) · ξ(ν)

)
− 2η(µ)

N∑
j=N−b+1

η
(µ)
j ξ

(ν)
j − (η(µ))

2
ξ
(t)
i

]

= ξ(ν) − 2η̂(ν)

N∑
j=N−b+1

ηj˜ (µ)ξ
(ν)
j −

p∑
µ=1

(η̂(µ))
2
ξ(t),

(B.11)

since
∑p

µ=1 η̂
(µ)
(
η̂(µ) · ξ(ν)

)
= ξ(ν) for normalized η’s. We can now calculate the

stabilization parameter as,

s(ν) = h(t) · ξ(ν)

= ξ(ν) · ξ(ν) − 2

p∑
µ=1

η̂(ν) · ξ(ν)
N∑

j=N−b+1

ηj˜ (µ)ξ
(ν)
j −

p∑
µ=1

(η̂(µ))
2
ξ(t) · ξ(ν)

(B.12)

We can evaluate the first term of this equation explicitly as ξ(ν) · ξ(ν) = N for ξ(ν)’s

with components ξ
(ν)
i = ±1. The dot product in the last term would yield N − 2b,

and the whole term will thus be p(N − 2b). As ξ(ν) does not project onto η(µ) for

µ > ν, the summation in the second term is only upto the first ν patterns. Thus,

s(ν) = N − 2
ν∑

µ=1

η̂(ν) · ξ(ν)
N∑

j=N−b+1

ηj˜ (µ)ξ
(ν)
j − p(N − 2b). (B.13)

Thus, the stabilization parameter will always be positive upto p = N − 1, ensuring

the recognition of patterns within that limit. Thus, the ξ’s will all be energy minima
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for upto p = N − 1, but as p approaches N − 1 , although s(ν) > 0, its magnitude

decreases, and so the energy of the patterns goes up.



Appendix C

Comparison of the H-H and

H-H-GS models - some

considerations

C.1 Comparison of the H-H and H-H-GS models

We reiterate in Table C.1 below the various network parameters of the H-H and

H-H-GS networks and present them side-by-side for ease of comparison.
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Table C.1: Table summarizing various parameters of the H-H and H-H-GS models
for comparison

Parameter

H-H model H-H-GS model

Synaptic effi-
cacy (Jij)

1
N

p∑
µ=1

(
ξ
(µ)
i ξ

(µ)
j − δijξ(µ)i ξ

(µ)
i

)
1
N

p∑
µ=1

(
η̂(µ)η̂

(µ)
j − δij η̂(µ)i η̂

(µ)
i

)

Post-synaptic
poten-
tial/PSP
(h(ν))

(
1−O

(
p
N

))
ξ(ν) − 1

N

p∑
µ=1
µ6=ν

ξ
(µ)
i

(
ξ(µ).ξ(ν)

) (
1−O

(
p
N

))
ξ(ν)

Stabilization
parameter
(s(ν))

N − p− 1
N

p∑
µ=1
µ6=ν

(
ξ(µ).ξ(ν)

)2
N −O

(
p
N

)
N

Pattern
energy
(E
(
ξ(ν)
)
)

−N
2

+ p
2

+ 1
2N

p∑
µ=1
µ6=ν

(
ξ(µ).ξ(ν)

)2 −N
2

+ N
2

(
O
(
p
N

))
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C.2 Range of basins of attraction - comparison

Table C.2: The following table shows the extent of basins of attraction in the H-H
and H-H-GS(shown within parentheses) networks of size N = 100. The Hamming
distances constituting the basins of attraction are calculated for 50 trials with 10
samples per pattern for different values of p. The Hamming distances for all the
samples for a particular value of p are examined to get the possible extent of a basin
of attraction at that value of p. For instance, for p = 2, with 10 samples for each
pattern and for 50 trials, there would 50 ∗ 2 ∗ 10 = 1000 Hamming distances, the
minimum and maximum among which give the range the basin of attraction of any
of a pair of (/the p = 2) patterns can take. The tabulated values show the ranges
for different values of p. The smaller the range, more the isotropy, and greater
the range, more the anisotropy. We can see that the basins in the H-H network
are initially somewhat isotropic, but become more anisotropic with increasing p.
However, after orthogonalization, the corresponding basins for the same values of
p are relatively more isotropic and remain so even for higher values of p. Also note
that there are 0’s in the basins of attraction for p as low as 8 in the H-H model,
while the basin size remains large in the case of H-H-GS network, even for higher

values of p, such as p = 30, shown here.

p Minimum Maximum

2 32 (30) 49 (50)

4 22 (23) 49 (49)

6 6 (26) 49 (48)

8 0 (28) 50 (47)

10 0 (25) 50 (48)

12 0 (26) 49 (48)

14 0 (24) 49 (47)

16 0 (24) 49 (46)

18 0 (21) 44 (45)

20 0 (23) 39 (46)

22 0 (21) 39 (43)

24 0 (20) 38 (43)

26 0 (18) 37 (41)

28 0 (18) 33 (41)

30 0 (16) 32 (39)
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C.3 Probability of zero basins of attraction

The following figure (Fig. C.1) shows the probability of zero basins of attraction in

the H-H and H-H-GS models.

Figure C.1: Probability of finding basin of attraction of size zero (P(0)) for
p = 1 − 100 (in steps of 10) in the H-H (a) and H-H-GS (b) networks. The data
is shown for a single trial in a network of size N = 100. Note the difference in
the Y-axis. As we can see from Fig. (a), even for low values of p, around p = 10,
the probability of finding a zero basin is about 0.9 in the H-H network, while Fig.
(b) shows how after orthogonalization, the probability of finding a zero basin is

non-zero only much beyond p = 50.



Appendix D

Numerical example of the

equivalence of various

orthogonalization schemes

We find computationally that the weights calculated using the orthonormal bases

obtained from the various orthogonalization schemes discussed in this thesis, are the

same, even though the bases themselves are very different from each other. We refer

to this phenomenon as “equivalence”.

D.1 Numerical demonstration

We present here a numerical example of the equivalence. For a set of input vectors

(V), we calculate the orthonormal bases using Gram-Schmidt (G) and Löwdin’s

Symmetric (S) and Canonical (C) orthogonalization schemes. The corresponding

constituent vectors are given by v’s, g’s, s’s and c’s respectively.We then calculate

the weights using each orthonormal basis and compare them.

We first look at the weights when p = 2.
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Table D.1: Unnormalized input patterns
V

1 -1 -1 1 -1 1 1 -1 1 -1

1 -1 -1 1 -1 -1 -1 -1 1 1

1 -1 1 1 -1 -1 1 -1 1 -1

Table D.2: Orthonormal bases for p = 2

G

0.3162 −0.3162 −0.3162 0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162 −0.3162

0.2070 −0.2070 −0.2070 0.2070 −0.2070 −0.4830 −0.4830 −0.2070 0.2070 0.4830

S

0.2673 −0.2673 −0.2673 0.2673 −0.2673 0.4082 0.4082 −0.2673 0.2673 −0.4082

0.2673 −0.2673 −0.2673 0.2673 −0.2673 −0.4082 −0.4082 −0.2673 0.2673 0.4082

C

−0.3780 0.3780 0.3780 −0.3780 0.3780 −0 −0 0.3780 −0.3780 0

0 0 0 0 0 −0.5774 −0.5774 0 0 0.5774
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Calculating weights using G:

J = J1 + J2 = (g1)′ ∗ (g1) + (g2)′ ∗ (g2). (D.1)



0 −0.1 −0.1 0.1 −0.1 0.1 0.1 −0.1 0.1 −0.1
−0.1 0 0.1 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0.1
−0.1 0.1 0 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0.1

0.1 −0.1 −0.1 0 −0.1 0.1 0.1 −0.1 0.1 −0.1
−0.1 0.1 0.1 −0.1 0 −0.1 −0.1 0.1 −0.1 0.1

0.1 −0.1 −0.1 0.1 −0.1 0 0.1 −0.1 0.1 −0.1
0.1 −0.1 −0.1 0.1 −0.1 0.1 0 −0.1 0.1 −0.1
−0.1 0.1 0.1 −0.1 0.1 −0.1 −0.1 0 −0.1 0.1

0.1 −0.1 −0.1 0.1 −0.1 0.1 0.1 −0.1 0 −0.1
−0.1 0.1 0.1 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0


+

0 −0.0429 −0.0429 0.0429 −0.0429 −0.1 −0.1 −0.0429 0.0429 0.1
−0.0429 0 0.0429 −0.0429 0.0429 0.1 0.1 0.0429 −0.0429 −0.1
−0.0429 0.0429 0 −0.0429 0.0429 0.1 0.1 0.0429 −0.0429 −0.1

0.0429 −0.0429 −0.0429 0 −0.0429 −0.1 −0.1 −0.0429 0.0429 0.1
−0.0429 0.0429 0.0429 −0.0429 0 0.1 0.1 0.0429 −0.0429 −0.1
−0.1 0.1 0.1 −0.1 0.1 0 −0.2333 0.1 −0.1 −0.2333
−0.1 0.1 0.1 −0.1 0.1 −0.2333 0 0.1 −0.1 −0.2333
−0.0429 0.0429 0.0429 −0.0429 0.0429 0.1 0.1 0 −0.0429 −0.1

0.0429 −0.0429 −0.0429 0.0429 −0.0429 −0.1 −0.1 −0.0429 0 0.1
0.1 −0.1 −0.1 0.1 −0.1 −0.2333 −0.2333 −0.1 0.1 0


=

0 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0 0.1429 −0.1429 0.1429 0 0 0.1429 −0.1429 0
−0.1429 0.1429 0 −0.1429 0.1429 0 0 0.1429 −0.1429 0

0.1429 −0.1429 −0.1429 0 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0.1429 0.1429 −0.1429 0 0 0 0.1429 −0.1429 0

0 0 0 0 0 0 0.3333 0 0 −0.3333
0 0 0 0 0 0.3333 0 0 0 −0.3333
−0.1429 0.1429 0.1429 −0.1429 0.1429 0 0 0 −0.1429 0

0.1429 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0 0
0 0 0 0 0 −0.3333 −0.3333 0 0 0


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Calculating weights using S:

J = J1 + J2 = (s1)′ ∗ (s1) + (s2)′ ∗ (s2). (D.2)



0.0714 −0.0714 −0.0714 0.0714 −0.0714 0.1091 0.1091 −0.0714 0.0714 −0.1091
−0.0714 0.0714 0.0714 −0.0714 0.0714 −0.1091 −0.1091 0.0714 −0.0714 0.1091
−0.0714 0.0714 0.0714 −0.0714 0.0714 −0.1091 −0.1091 0.0714 −0.0714 0.1091

0.0714 −0.0714 −0.0714 0.0714 −0.0714 0.1091 0.1091 −0.0714 0.0714 −0.1091
−0.0714 0.0714 0.0714 −0.0714 0.0714 −0.1091 −0.1091 0.0714 −0.0714 0.1091

0.1091 −0.1091 −0.1091 0.1091 −0.1091 0.1667 0.1667 −0.1091 0.1091 −0.1667
0.1091 −0.1091 −0.1091 0.1091 −0.1091 0.1667 0.1667 −0.1091 0.1091 −0.1667
−0.0714 0.0714 0.0714 −0.0714 0.0714 −0.1091 −0.1091 0.0714 −0.0714 0.1091

0.0714 −0.0714 −0.0714 0.0714 −0.0714 0.1091 0.1091 −0.0714 0.0714 −0.1091
−0.1091 0.1091 0.1091 −0.1091 0.1091 −0.1667 −0.1667 0.1091 −0.1091 0.1667


+

0 −0.0714 −0.0714 0.0714 −0.0714 −0.1091 −0.1091 −0.0714 0.0714 0.1091
−0.0714 0 0.0714 −0.0714 0.0714 0.1091 0.1091 0.0714 −0.0714 −0.1091
−0.0714 0.0714 0 −0.0714 0.0714 0.1091 0.1091 0.0714 −0.0714 −0.1091

0.0714 −0.0714 −0.0714 0 −0.0714 −0.1091 −0.1091 −0.0714 0.0714 0.1091
−0.0714 0.0714 0.0714 −0.0714 0 0.1091 0.1091 0.0714 −0.0714 −0.1091
−0.1091 0.1091 0.1091 −0.1091 0.1091 0 0.1667 0.1091 −0.1091 −0.1667
−0.1091 0.1091 0.1091 −0.1091 0.1091 0.1667 0 0.1091 −0.1091 −0.1667
−0.0714 0.0714 0.0714 −0.0714 0.0714 0.1091 0.1091 0 −0.0714 −0.1091

0.0714 −0.0714 −0.0714 0.0714 −0.0714 −0.1091 −0.1091 −0.0714 0 0.1091
0.1091 −0.1091 −0.1091 0.1091 −0.1091 −0.1667 −0.1667 −0.1091 0.1091 0


=

0 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0 0.1429 −0.1429 0.1429 0 0 0.1429 −0.1429 0
−0.1429 0.1429 0 −0.1429 0.1429 0 0 0.1429 −0.1429 0

0.1429 −0.1429 −0.1429 0 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0.1429 0.1429 −0.1429 0 0 0 0.1429 −0.1429 0

0 0 0 0 0 0 0.3333 0 0 −0.3333
0 0 0 0 0 0.3333 0 0 0 −0.3333
−0.1429 0.1429 0.1429 −0.1429 0.1429 0 0 0 −0.1429 0

0.1429 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0 0
0 0 0 0 0 −0.3333 −0.3333 0 0 0


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Calculating weights using C:

J = J1 + J2 = (c1)′ ∗ (c1) + (c2)′ ∗ (c2). (D.3)



0 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0 0.1429 −0.1429 0.1429 0 0 0.1429 −0.1429 0
−0.1429 0.1429 0 −0.1429 0.1429 0 0 0.1429 −0.1429 0

0.1429 −0.1429 −0.1429 0 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0.1429 0.1429 −0.1429 0 0 0 0.1429 −0.1429 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−0.1429 0.1429 0.1429 −0.1429 0.1429 0 0 0 −0.1429 0

0.1429 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0 0
0 0 0 0 0 0 0 0 0 0


+

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.3333 0 0 −0.3333
0 0 0 0 0 0.3333 0 0 0 −0.3333
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.3333 −0.3333 0 0 0


=

0 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0 0.1429 −0.1429 0.1429 0 0 0.1429 −0.1429 0
−0.1429 0.1429 0 −0.1429 0.1429 0 0 0.1429 −0.1429 0

0.1429 −0.1429 −0.1429 0 −0.1429 0 0 −0.1429 0.1429 0
−0.1429 0.1429 0.1429 −0.1429 0 0 0 0.1429 −0.1429 0

0 0 0 0 0 0 0.3333 0 0 −0.3333
0 0 0 0 0 0.3333 0 0 0 −0.3333
−0.1429 0.1429 0.1429 −0.1429 0.1429 0 0 0 −0.1429 0

0.1429 −0.1429 −0.1429 0.1429 −0.1429 0 0 −0.1429 0 0
0 0 0 0 0 −0.3333 −0.3333 0 0 0


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We now consider the situation when p = 3 and again calculate and compare the

weights obtained using the various orthonormal bases.

Table D.3: Orthonormal bases for p = 3

G

0.3162 −0.3162 −0.3162 0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162 −0.3162

0.2070 −0.2070 −0.2070 0.2070 −0.2070 −0.4830 −0.4830 −0.2070 0.2070 0.4830

0.1157 −0.1157 0.6944 0.1157 −0.1157 −0.5401 0.2700 −0.1157 0.1157 −0.2700

S

0.2195 −0.2195 −0.4493 0.2195 −0.2195 0.5507 0.3209 −0.2195 0.2195 −0.3209

0.2448 −0.2448 −0.3462 0.2448 −0.2448 −0.3462 −0.4476 −0.2448 0.2448 0.4476

0.2195 −0.2195 0.5507 0.2195 −0.2195 −0.4493 0.3209 −0.2195 0.2195 −0.3209

C

−0.3921 0.3921 0.1170 −0.3921 0.3921 0.1170 −0.1581 0.3921 −.3921 0.1581

−0.0498 0.0498 0.3336 −0.0498 0.0498 0.3336 0.6175 0.0498 −0.0498 −0.6175

0 0 0.7071 0 0 −0.7071 0 0 0 0

The weights are now calculated as:

• Gram-Schmidt

J = J1 + J2 + J3 = (g1)′ ∗ (g1) + (g2)′ ∗ (g2) + (g3)′ ∗ (g3), (D.4)

• Symmetric

J = J1 + J2 + J3 = (s1)′ ∗ (s1) + (s2)′ ∗ (s2) + (s3)′ ∗ (s3), (D.5)

• Canonical

J = J1 + J2 + J3 = (c1)′ ∗ (c1) + (c2)′ ∗ (c2) + (c3)′ ∗ (c3). (D.6)
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Calculating weights using G:



0 −0.1 −0.1 0.1 −0.1 0.1 0.1 −0.1 0.1 −0.1
−0.1 0 0.1 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0.1
−0.1 0.1 0 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0.1

0.1 −0.1 −0.1 0 −0.1 0.1 0.1 −0.1 0.1 −0.1
−0.1 0.1 0.1 −0.1 0 −0.1 −0.1 0.1 −0.1 0.1

0.1 −0.1 −0.1 0.1 −0.1 0 0.1 −0.1 0.1 −0.1
0.1 −0.1 −0.1 0.1 −0.1 0.1 0 −0.1 0.1 −0.1
−0.1 0.1 0.1 −0.1 0.1 −0.1 −0.1 0 −0.1 0.1

0.1 −0.1 −0.1 0.1 −0.1 0.1 0.1 −0.1 0 −0.1
−0.1 0.1 0.1 −0.1 0.1 −0.1 −0.1 0.1 −0.1 0


+

0 −0.0429 −0.0429 0.0429 −0.0429 −0.1 −0.1 −0.0429 0.0429 0.1
−0.0429 0 0.0429 −0.0429 0.0429 0.1 0.1 0.0429 −0.0429 −0.1
−0.0429 0.0429 0 −0.0429 0.0429 0.1 0.1 0.0429 −0.0429 −0.1

0.0429 −0.0429 −0.0429 0 −0.0429 −0.1 −0.1 −0.0429 0.0429 0.1
−0.0429 0.0429 0.0429 −0.0429 0 0.1 0.1 0.0429 −0.0429 −0.1
−0.1 0.1 0.1 −0.1 0.1 0 −0.2333 0.1 −0.1 −0.2333
−0.1 0.1 0.1 −0.1 0.1 −0.2333 0 0.1 −0.1 −0.2333
−0.0429 0.0429 0.0429 −0.0429 0.0429 0.1 0.1 0 −0.0429 −0.1

0.0429 −0.0429 −0.0429 0.0429 −0.0429 −0.1 −0.1 −0.0429 0 0.1
0.1 −0.1 −0.1 0.1 −0.1 −0.2333 −0.2333 −0.1 0.1 0


+

0 −0.0133 0.0804 0.0133 −0.0133 −0.0625 0.0313 −0.0133 0.0133 −0.0313
−0.0133 0 −0.0804 −0.0133 0.0133 0.0625 −0.0313 0.0133 −0.0133 0.0313

0.0804 −0.0804 0 0.0804 −0.0804 −0.3750 0.1875 −0.0804 0.0804 −0.1875
0.0133 −0.0133 0.0804 0 −0.0133 −0.0625 0.0313 −0.0133 0.0133 −0.0313
−0.0133 0.0133 −0.0804 −0.0133 0 0.0625 −0.0313 0.0133 −0.0133 0.0313
−0.0625 0.0625 −0.3750 −0.0625 0.0625 0 −0.1458 0.0625 −0.0625 0.1458

0.0313 −0.0313 0.1875 0.0313 −0.0313 −0.1458 0 −0.0313 0.0313 −0.0729
−0.0133 0.0133 −0.0804 −0.0133 0.0133 0.0625 −0.0313 0 −0.0133 0.0313

0.0133 −0.0133 0.0804 0.0133 −0.0133 −0.0625 0.0313 −0.0133 0 −0.0313
−0.0313 0.0313 −0.1875 −0.0313 0.0313 0.1458 −0.0729 0.0313 −0.0313 0


=

0 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0 0.0625 −0.1563 0.1563 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 0 −0.0625 0.0625 −0.3750 0.1875 0.0625 −0.0625 −0.1875

0.1563 −0.1563 −0.0625 0 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0.1563 0.0625 −0.1563 0 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 −0.3750 −0.0625 0.0625 0 0.1875 0.0625 −0.0625 −0.1875

0.0313 −0.0313 0.1875 0.0313 −0.0313 0.1875 0 −0.0313 0.0313 −0.4063
−0.1563 0.1563 0.0625 −0.1563 0.1563 0.0625 −0.0313 0 −0.1563 0.0313

0.1563 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0 −0.0313
−0.0313 0.0313 −0.1875 −0.0313 0.0313 −0.1875 −0.406 25 0.0313 −0.0313 0


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Calculating weights using S:



0 −0.0482 −0.0986 0.0482 −0.0482 0.1209 0.0704 −0.0482 0.0482 −0.0704
−0.0482 0 0.0986 −0.0482 0.0482 −0.1209 −0.0704 0.0482 −0.0482 −0.0704
−0.0986 0.0986 0 −0.0986 0.0986 −0.2474 −0.1442 0.0986 −0.0986 0.1442

0.0482 −0.0482 −0.0986 0 −0.0482 0.1209 0.0704 −0.0482 0.0482 −0.0704
−0.0482 0.0482 0.0986 −0.0482 0.0 −0.1209 −0.0704 0.0482 −0.0482 −0.0704

0.1209 −0.1209 −0.2474 0.1209 −0.1209 0 0.1767 −0.1209 0.1209 −0.1767
0.0704 −0.0704 −0.1442 0.0704 −0.0704 0.1767 0 −0.0704 0.0704 −0.1030
−0.0482 0.0482 0.0986 −0.0482 0.0482 −0.1209 −0.0704 0 −0.0482 −0.0704

0.0482 −0.0482 −0.0986 0.0482 −0.0482 0.1209 0.0704 −0.0482 0 −0.0704
−0.0704 0.0704 0.1442 −0.0704 0.0704 −0.1767 −0.1030 0.0704 −0.0704 0


+

0 −0.0599 −0.0848 0.0599 −0.0599 −0.0848 −0.1096 −0.0599 0.0599 0.1096
−0.0599 0 0.0848 −0.0599 0.0599 0.0848 0.1096 0.0599 −0.0599 −0.1096
−0.0848 0.0848 0 −0.0848 0.0848 0.1199 0.1550 0.0848 −0.0848 −0.1550

0.0599 −0.0599 −0.0848 0 −0.0599 −0.0848 −0.1096 −0.0599 0.0599 0.1096
−0.0599 0.0599 0.0848 −0.0599 0 0.0848 0.1096 0.0599 −0.0599 −0.1096
−0.0848 0.0848 0.1199 −0.0848 0.0848 0 0.1550 0.0848 −0.0848 −0.1550
−0.1096 0.1096 0.1550 −0.1096 0.1096 0.1550 0 0.1096 −0.1096 −0.2004
−0.0599 0.0599 0.0848 −0.0599 0.0599 0.0848 0.1096 0 −0.0599 −0.1096

0.0599 −0.0599 −0.0848 0.0599 −0.0599 −0.0848 −0.1096 −0.0599 0 0.1096
0.1096 −0.1096 −0.1550 0.1096 −0.1096 −0.1550 −0.2004 −0.1096 0.1096 0


+

0 −0.0482 0.1209 0.0482 −0.0482 −0.0986 0.0704 −0.0482 0.0482 −0.0704
−0.0482 0 −0.1209 −0.0482 0.0482 0.0986 −0.0704 0.0482 −0.0482 −0.0704

0.1209 −0.1209 0 0.1209 −0.1209 −0.2474 0.1767 −0.1209 0.1209 −0.1767
0.0482 −0.0482 0.1209 0 −0.0482 −0.0986 0.0704 −0.0482 0.0482 −0.0704
−0.0482 0.0482 −0.1209 −0.0482 0 0.0986 −0.0704 0.0482 −0.0482 −0.0704
−0.0986 0.0986 −0.2474 −0.0986 0.0986 0 −0.1442 0.0986 −0.0986 0.1442

0.0704 −0.0704 0.1767 0.0704 −0.0704 −0.1442 0 −0.0704 0.0704 −0.1030
−0.0482 0.0482 −0.1209 −0.0482 0.0482 0.0986 −0.0704 0 −0.0482 −0.0704

0.0482 −0.0482 0.1209 0.0482 −0.0482 −0.0986 0.0704 −0.0482 0 −0.0704
−0.0704 0.0704 −0.1767 −0.0704 0.0704 0.1442 −0.1030 0.0704 −0.0704 0


=

0 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0 0.0625 −0.1563 0.1563 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 0 −0.0625 0.0625 −0.3750 0.1875 0.0625 −0.0625 −0.1875

0.1563 −0.1563 −0.0625 0 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0.1563 0.0625 −0.1563 0 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 −0.3750 −0.0625 0.0625 0 0.1875 0.0625 −0.0625 −0.1875

0.0313 −0.0313 0.1875 0.0313 −0.0313 0.1875 0 −0.0313 0.0313 −0.4063
−0.1563 0.1563 0.0625 −0.1563 0.1563 0.0625 −0.0313 0 −0.1563 0.0313

0.1563 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0 −0.0313
−0.0313 0.0313 −0.1875 −0.0313 0.0313 −0.1875 −0.406 25 0.0313 −0.0313 0


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Calculating weights using C:



0 −0.1538 −0.0459 0.1538 −0.1538 −0.0459 0.0620 −0.1538 0.1538 −0.0620
−0.1538 0 0.0459 −0.1538 0.1538 0.0459 −0.0620 0.1538 −0.1538 0.0620
−0.0459 0.0459 0 −0.0459 0.0459 −0.0137 −0.0185 0.0459 −0.0459 0.0185

0.1538 −0.1538 −0.0459 0 −0.1538 −0.0459 0.0620 −0.1538 0.1538 −0.0620
−0.1538 0.1538 0.0459 −0.1538 0 0.0459 −0.0620 0.1538 −0.1538 0.0620
−0.0459 0.0459 −0.0137 −0.0459 0.0459 0 −0.0185 0.0459 −0.0459 0.0185

0.0620 −0.0620 −0.0185 0.0620 −0.0620 −0.0185 0 −0.0620 0.0620 −0.0250
−0.1538 0.1538 0.0459 −0.1538 0.1538 0.0459 −0.0620 0 −0.1538 0.0620

0.1538 −0.1538 −0.0459 0.1538 −0.1538 −0.0459 0.0620 −0.1538 0 −0.0620
−0.0620 0.0620 0.0185 −0.0620 0.0620 0.0185 −0.0250 0.0620 −0.0620 0


+

0 −0.0025 −0.0160 0.0025 −0.0025 −0.0160 −0.0307 −0.0025 0.0025 0.0307
−0.0025 0 0.0160 −0.0025 0.0025 0.0160 0.0307 0.0025 −0.0025 −0.0307
−0.0160 0.0160 0 −0.0160 0.0160 0.1113 0.2060 0.0160 −0.0160 −0.2060

0.0025 −0.0025 −0.0160 0 −0.0025 −0.0160 −0.0307 −0.0025 0.0025 0.0307
−0.0025 0.0025 0.0160 −0.0025 0 0.0160 0.0307 0.0025 −0.0025 −0.0307
−0.0160 0.0160 0.1113 −0.0160 0.0160 0 0.2060 0.0160 −0.0160 −0.2060
−0.0307 0.0307 0.2060 −0.0307 0.0307 0.2060 0 0.0307 −0.0307 −0.3813
−0.0025 0.0025 0.0160 −0.0025 0.0025 0.0160 0.0307 0 −0.0025 −0.0307

0.0025 −0.0025 −0.0160 0.0025 −0.0025 −0.0160 −0.0307 −0.0025 0 0.0307
0.0307 −0.0307 −0.2060 0.0307 −0.0307 −0.2060 −0.3813 −0.0307 0.0307 0


+

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


=

0 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0 0.0625 −0.1563 0.1563 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 0 −0.0625 0.0625 −0.3750 0.1875 0.0625 −0.0625 −0.1875

0.1563 −0.1563 −0.0625 0 −0.1563 −0.0625 0.0313 −0.1563 0.1563 −0.0313
−0.1563 0.1563 0.0625 −0.1563 0 0.0625 −0.0313 0.1563 −0.1563 0.0313
−0.0625 0.0625 −0.3750 −0.0625 0.0625 0 0.1875 0.0625 −0.0625 −0.1875

0.0313 −0.0313 0.1875 0.0313 −0.0313 0.1875 0 −0.0313 0.0313 −0.4063
−0.1563 0.1563 0.0625 −0.1563 0.1563 0.0625 −0.0313 0 −0.1563 0.0313

0.1563 −0.1563 −0.0625 0.1563 −0.1563 −0.0625 0.0313 −0.1563 0 −0.0313
−0.0313 0.0313 −0.1875 −0.0313 0.0313 −0.1875 −0.406 25 0.0313 −0.0313 0



These results can be extended to higher values of p, and remain valid as long as the

network is capable of recognition, that is, upto p = N − 1.
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D.2 Possible implications for cognition

We have seen in the earlier chapters that the brain possesses the capability to or-

thogonalize information. Here, we have presented a numerical example of equivalence

of the orthogonalization procedures. We could hence hypothesize that the brain is

capable of performing more than one type of orthogonalization, and chooses the pro-

cedure based on the context and what information it wants to store. It would be

interesting to study a network which can switch between different orthogonalization

schemes and also examine how it can be implemented.



Appendix E

A comment on the

orthogonalization schemes

E.1 Orthogonalization with an already orthogonal

vector

The tables show the orthonormal bases following Gram-Schmidt (G), Symmetric (S)

and Canonical (C) orthogonalization of an set of vectors V which contains a vector

orthogonal to one or more of the other vectors. Table E.1 shows an example of sets

with 3 and 4 vectors in which the last vector is already orthogonal to the rest. Table

E.2 shows the orthonormal bases when sets of 4 vectors, in which the fourth vector is

orthogonal to one or two of the previous three vectors. The presence of an orthogonal

vector is reflected most clearly in the values of the Canonical basis.
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Table E.1: Orthonormal bases for shown for two sets V with p = 3 and p = 4.
The last vector in V is already orthogonal to the remaining vectors in the set.

p = 3

V

−1 1 1 −1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 −1 −1 −1 1

−1 −1 1 −1 −1 −1 −1 1 1 −1

G

−0.3162 0.3162 0.3162 −0.3162 −0.3162 0.3162 −0.3162 0.3162 −0.3162 0.3162

0.3162 −0.3162 0.3162 −0.3162 0.3162 −0.3162 −0.3162 −0.3162 −0.3162 0.3162

−0.2582 −0.3873 0.2582 −0.2582 −0.2582 −0.3873 −0.2582 0.2582 0.3873 −0.3873

S

−0.2887 0.3536 0.2887 −0.2887 −0.2887 0.3536 −0.2887 0.2887 −0.3536 0.3536

0.3162 −0.3162 0.3162 −0.3162 0.3162 −0.3162 −0.3162 −0.3162 −0.3162 0.3162

−0.2887 −0.3536 0.2887 −0.2887 −0.2887 −0.3536 −0.2887 0.2887 0.3536 −0.3536

C

0.4082 0 −0.4082 0.4082 0.4082 0 0.4082 −0.4082 0 0

−0.3162 0.3162 −0.3162 0.3162 −0.3162 0.3162 0.3162 0.3162 0.3162 −0.3162

0 0.5000 0 0 0 0.5000 0 0 −0.5000 0.5000

v4 orthogonal to v1, v2 and v3

V

1 1 −1 −1 −1 −1 1 1 −1 1

−1 1 −1 1 1 1 1 −1 1 1

1 −1 −1 1 −1 −1 1 −1 1 1

−1 1 1 1 −1 −1 1 −1 −1 −1

G

0.3162 0.3162 −0.3162 −0.3162 −0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162

−0.2582 0.3873 −0.3873 0.2582 0.2582 0.2582 0.3873 −0.2582 0.2582 0.3873

0.3333 −0.5000 −0.1667 0.3333 −0.3333 −0.3333 0.1667 −0.3333 0.3333 0.1667

−0.3162 0.3162 0.3162 0.3162 −0.3162 −0.3162 0.3162 −0.3162 −0.3162 −0.3162

S

0.2488 0.4082 −0.3285 −0.3285 −0.2488 −0.2488 0.3285 0.3285 −0.3285 0.3285

−0.3285 0.4082 −0.3285 0.2488 0.3285 0.3285 0.3285 −0.2488 0.2488 0.3285

0.3285 −0.4082 −0.2488 0.3285 −0.3285 −0.3285 0.2488 −0.3285 0.3285 0.2488

−0.3162 0.3162 0.3162 0.3162 −0.3162 −0.3162 0.3162 −0.3162 −0.3162 −0.3162

C

−0.4714 0 0.2357 0.2357 0.4714 0.4714 −0.2357 −0.2357 0.2357 −0.2357

0 0 −0.4082 0.4082 0 0 0.4082 −0.4082 0.4082 0.4082

−0.3162 0.3162 0.3162 0.3162 −0.3162 −0.3162 0.3162 −0.3162 −0.3162 −0.3162

0.2357 −0.7071 0.2357 0.2357 −0.2357 −0.2357 −0.2357 −0.2357 0.2357 −0.2357
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Table E.2: Orthonormal bases for sets of 4 vectors each containing an already
orthogonal vector. Examples are shown with sets where a vector is already orthog-

onal to 1 or 2 other vectors.

v4 orthogonal to v1

V

1 1 −1 −1 −1 −1 1 1 −1 1

−1 1 −1 1 1 1 1 −1 1 −1

1 1 −1 1 −1 −1 1 −1 1 1

−1 1 1 1 −1 −1 1 −1 −1 −1

G

0.3162 0.3162 −0.3162 −0.3162 −0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162

−0.2070 0.4830 −0.4830 0.2070 0.2070 0.2070 0.4830 −0.2070 0.2070 −0.2070

0.3273 0 0 0.4364 −0.3273 −0.3273 0 −0.4364 0.4364 0.3273

−0.3273 0.2182 0.4364 0.2182 −0.3273 −0.3273 0.2182 −0.2182 −0.4364 −0.3273

S

0.1772 0.3818 −0.3818 −0.3818 −0.1772 −0.1772 0.3818 0.3818 −0.3818 0.1772

−0.3018 0.3696 −0.4271 0.1650 0.3594 0.3594 0.3696 −0.1650 0.2225 −0.3018

0.3594 0.1650 −0.2225 0.3696 −0.3018 −0.3018 0.1650 −0.3696 0.4271 0.3594

−0.3248 0.2673 0.3823 0.2673 −0.3248 −0.3248 0.2673 −0.2673 −0.3823 −0.3248

C

−0.4362 −0.1995 0.1995 0.1995 0.4362 0.4362 −0.1995 −0.1995 0.1995 −0.4362

0.1543 −0.4629 0.1543 −0.4629 0.1543 0.1543 −0.4629 0.4629 −0.1543 0.1543

−0.2887 0 0.5774 0 −0.2887 −0.2887 0 0 −0.5774 −0.2887

0.2444 −0.3562 0.3562 0.3562 −0.2444 −0.2444 −0.3562 −0.3562 0.3562 0.2444

v4 orthogonal to v1 and v3

V

1 1 −1 −1 −1 −1 1 1 −1 1

−1 1 −1 1 1 1 1 −1 1 −1

1 −1 −1 1 −1 −1 1 −1 1 1

−1 1 1 1 −1 −1 1 −1 −1 −1

G

0.3162 0.3162 −0.3162 −0.3162 −0.3162 −0.3162 0.3162 0.3162 −0.3162 0.3162

−0.2070 0.4830 −0.4830 0.2070 0.2070 0.2070 0.4830 −0.2070 0.2070 −0.2070

0.2777 −0.4320 −0.2160 0.3703 −0.2777 −0.2777 0.2160 −0.3703 0.3703 0.2777

−0.2722 0.2074 0.4278 0.2852 −0.3760 −0.3760 0.2204 −0.2852 −0.3630 −0.2722

S

0.2451 0.4448 −0.3949 −0.3180 −0.2220 −0.2220 0.3718 0.3180 −0.2949 0.2451

−0.2451 0.3949 −0.4448 0.2220 0.3180 0.3180 0.3718 −0.2220 0.2949 −0.2451

0.2949 −0.3679 −0.2718 0.3487 −0.2989 −0.2989 0.2758 −0.3487 0.3448 0.2949

−0.2949 0.2718 0.3679 0.2989 −0.3487 −0.3487 0.2758 −0.2989 −0.3448 −0.2949

C

−0.4798 0.1405 0.1405 0.3393 0.3393 0.3393 0 −0.3393 0.1988 −0.4798

0 0.1645 −0.1645 0.3971 −0.3971 −0.3971 0.5615 −0.3971 0 0

−0.2527 0.4314 0.4314 −0.1787 −0.1787 −0.1787 0 0.1787 −0.6101 −0.2527

0 −0.5745 0.5745 0.2380 −0.2380 −0.2380 −0.3366 −0.2380 0 0





Appendix F

Some preliminary results from a

model with bounded synapses and

fixed synaptic type

One of the criticisms of the Hopfield network is that the synapses can take arbitrarily

large values. This issue can be addressed by restricting the range of values synaptic

efficacies can take, a process which also takes the model closer to biological realism.

It has been shown that incrementing each Jij by a small amount during the learning

process only reduces the memory capacity slightly [92]. The processes of discretiza-

tion and clipping also have a similar effect on the memory capacity of the network

[19]. Discretization refers to the mechanism which prohibits the weights from moving

beyond a permitted set of discrete values, while clipping is a means of limiting all

the synaptic efficacies to a certain range. This situation, where the weights are regu-

lated to always lie within certain limits can be referred to as learning within bounds

[19, 83, 84, 85]. The clipping procedure can be applied either after the presentation

of a single pattern, in the Hopfield fashion, or following the presentation of a small

group of patterns [86].

In this case, the efficiency of the network is better measured in terms of the memory

lifetime rather than the number of patterns it can store without any loss of informa-

tion. Memory lifetime refers to duration of the memorized information being present

in the network and being distinguishable from the noise in system. It can in principle

be prolonged by increasing the number of states between the limits. A state refers to

an interval in the range of the synaptic weights bounded by the limits, with transition
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between the states modifying the efficacies by a small amount (inversely proportional

to the number of states). However, this improvement is not robust [22]. A better

way of increasing memory lifetime is to alter how the limits are enforced.

Turning our attention to a network with bounded synapses [22, 86, 87], we try to

refine it and improve its biological plausibility by characterizing each synapse to be

either excitatory or inhibitory. While synapses get potentiated or depressed in the

course of on-going plasticity,1 they do not switch their character– excitatory synapses

remain excitatory and inhibitory synapses remain inhibitory.

F.0.1 A model with bounded synapses

We take our cue from [22] and consider a network where synaptic efficacies lie within

a certain small range, which we will henceforth refer to as “original model”. Modifica-

tions to the efficacies can occur in the form of hard or soft bounds. Hard bounds refer

to a fixed-step increase or decrease in the synaptic weights, while soft bounds result

in modifications based on the current state of the synapse. These will be explained

further later on. In this model, a memory can be tracked as a pattern of activities on

the synapses, and the memory lifetime is a measure of how long the system retains a

particular memory in the face of constant changes due to continuous plasticity.

There are two advantages to studying the activity of the synapses directly, without

going into the details of how neuronal activity affects the synapses. The first is that

we can check for the presence of a particular memory in the activity of the synapses.

The other is that this method can be useful in evaluating the efficiency of ideally

performing networks.

We consider a network of n synapses whose weights, w’s, can lie in the range [0, 1].

Synaptic plasticity results in the potentiation or depression of the synapses, with the

amount of modification dictated by the following equation:

w → w + q+(w) or w → w − q−(w), (F.1)

where w gives the synaptic strength and q+(w) and q+(w) are the amounts of poten-

tiation and depression.

1Changes in the weights of the synapses due spontaneous activity and also due to the addition
of other memories together constitute ‘ongoing plasticity’.



Appendix F. A model with bounded synapses and fixed synaptic type 123

We specify the rate, r of ongoing plasticity and estimate the potentiation and depres-

sion components constituting the ongoing plasticity. If f+ and f− are respectively the

probabilities of potentiation and depression due to the plasticity (and f+ + f− = 1),

then rf+ and rf− give the corresponding rates of potentiation and depression events.

Starting from the stage where the system is at equilibrium, the introduction of a

memory would result in a perturbation of the equilibrium. The time required for the

system to settle back into equilibrium gives the lifetime of that memory. During the

course of this period, the signal due to the memory is clearly distinguishable from the

background noise contributed by the ongoing plasticity. If w̄ represents the average

synaptic efficacy at equilibrium, then the signal due to a memory trace is given by

S =
1

n

(∑
i=pot

(wi − w̄)−
∑
i=dep

(w̄ − wi)
)
. (F.2)

The noise term due to ongoing plasticity can be estimated as the standard deviation

of the signal.

The performance of the network is evaluated in terms of a memory lifetime τ , and an

initial signal-to-noise ratio S0/N0. This ratio gives a measure of the versatility of the

network in memorizing new information. The value of τ estimates the time during

which the signal due to the memory gradually merges with the noise and is given by

the time constant of slowest exponential component in convergence to equilibrium

distribution.

The synapses in this network can be considered to be continuous variables whose

values lie within specified limits. Let α denote the magnitude of a single plasticity

event, that is, a single instance of potentiation or depression. Examining two as-

pects of plasticity, the magnitudes of q+(w) and q−(w) and their relation to synaptic

strengths would provide insights on whether memory lifetimes can be improved by

increasing the number of synaptic states or by modifications in the implementations

of the limits.
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Various classes of bounds

Hard boundary

Hard bounds refer to the case where potentiation and depression are varied by a fixed

amount following a plasticity event, irrespective of the current state of the synapse.

This constant is given by

q+(w) = q−(w) = α, 0 < w < 1, (F.3)

and weights that cross the bounds are curtailed.

Increasing the number of states now leads to an improvement in memory lifetimes,

but this effect is observed only when potentiation and depression are present in equal

amounts. Then, τ ≈ 1
rα2 , τ ∝ 1

α2 . Storing a memory in a network in which poten-

tiation and depression are uniform and characterized by hard bounds is tantamount

to an unbiased random walk, except at the boundaries. The return to equilibrium as

the memory decays is a diffusion process and is invalid at the extremities. Deviating

from a balance between the amounts of potentiation and depression results in the

loss of enhancement of memory lifetimes if the number of states is higher.

The memory lifetime of the network with small potention step size is given by

τ =
1

r
(√

f+ −
√
f−

)2
+ α2π2r

√
f+f−

. (F.4)

As the effects of potentiation and depression are equivalent, the results pertaining

to the subset of synapses which are potentiated are equally valid for the subset of

synapses undergoing depression. It is hence sufficient to study one of these two

subsets.

Soft bounds

A more lenient way of implementing the bounds is to allow the current efficacy of

a synapse dictate the amount of modification, i.e., the amounts of potentiation and

depression, q+(w) and q−(w) depend on w and vanish at the limits. Such bounds can
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be implemented in the following fashion:

q+(w) = α(1− w) and q−(w) = αw. (F.5)

In this case, the results are equally applicable to both the balanced and unbalanced

cases, and τ ∝ 1
α

.

More generally, soft bounds can be implemented in the form:

q+(w) = α(1− w)γ and q−(w) = αwγ, (F.6)

where γ is an odd positive integer.

In this case again τ ∝ 1
α

. While higher the value of γ, longer the memory lifetime,

at the same time, the initial signal-to-noise ratio decreases.

Optimal memory lifetimes can be achieved by using the following prescription for the

implementation for the bounds:

q+(w) =
α

2
(1− (2w − 1)γ) and q−(w) =

α

2
(1 + (2w − 1)γ) . (F.7)

F.0.2 Refinement of the model

It is well-known that biological synapses are of two types, namely excitatory and

inhibitory. This character of the synapse is decided by the nature of the neurons

connected by the synapse. Synapses emanating from a firing neuron are in general

all excitatory or all inhibitory. Though there can be many exceptions to this, it is

true in general. The nature of the synapses does not change - a neuron may or may

not fire, but synaptic character remains constant and is pre-decided. That is, whether

a synapse is excitatory or inhibitory is not governed by the activity of the pre- and

post-synaptic neuron. An excitatory synapse will connect two firing neurons, whereas

an inhibitory synapse will connect a firing pre-synaptic neuron with a quiescent post-

synaptic neuron.

This synaptic character has not been taken into consideration in the models discussed

above, where the synapses are treated only as excitatory (since their weights acquire

only positive values, between 0 and 1). We propose a refinement to the model by

accounting for the fixed nature of a synapse. Recall that (a) there are two types of
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synapses, namely excitatory or inhibitory and (b) in the course of on-going plasticity

they do not switch their character, i.e while synapses get potentiated or depressed, ex-

citatory synapses remain excitatory and inhibitory synapses remain inhibitory; they

retain their nature and transitions between these two synaptic classes are generally

not possible.

We consider a network (“our (modified) model” hereafter) of synapses with weights

in the range of -0.5 to +0.5, with the weights on either side of the zero representing

the two classes of synapses, namely excitatory synapses with positive efficacies and

inhibitory synapses with negative weights. The synapses are then allowed to move

among a number of states. The system is first allowed to settle down into an equilib-

rium, or a steady state. It is followed by the introduction of a memory. The system

is then allowed to evolve in the presence of on-going plasticity, with the additional

restriction of maintaining its type or ‘nature’, that is, the synapses in the negative

interval are not permitted to cross over to the positive interval and vice-versa.

We find from preliminary studies that the initial value of the signal-to-noise ratio

was higher for our model, as shown in Fig.F.1. This increase could indicate a greater

probability of the signals due to newer memories being detected against the noise in

the background. However, the memory lifetime in our model is reduced, as shown in

Fig.F.2 . This result can be understood as an effect of the introduction of the synaptic

type, which imposes an additional bound on the weights. Moreover, the separation

of the synapses by type amounts to considering two sets or classes of synapses with

half the number of states in each.

Further research along these lines is needed to establish more significant findings.

But such studies are beyond the scope of this thesis and remain to be explored in

future.
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Figure F.1: Plot showing the memory lifetime as a function of time in the original
model (in red) and our modified model (in black). The data pertains to a network
with n = 300 synapses and m = 8 states and rate r = 1/10 (time steps). Soft
bounds are implemented following eq.(F.7), with α = 1

m and γ = 3. The initial
value of SNR (S0/N0) is slightly higher in our model compared to the original

model.

Figure F.2: Plot comparing the signal-to-noise ratio in the original model and
our refined model. The data pertains to a network with n = 100 synapses and
m = 8 states and rate r = 1/10 (time steps). The memory lifetime in our model is

reduced to roughly half of that in the original model.





Appendix G

Effects of modifying the learning

rule in the Willshaw model

The Hebb-Hopfield model deals with information in the form of dense patterns, how-

ever, information is better and more realistically represented by sparse patterns of

activity. When the brain encounters some information, only a fraction of neurons fire

or are active. This process can be implemented computationally through a model

proposed by David Willshaw et al.[23]

G.1 The Willshaw model

The Willshaw model consists of a network of neurons connected by synapses which

are all initially inactive (represented by 0’s or − 1
n
’s). Information is presented to the

network in the form of N−dimensional vectors or patterns of neural activities whose

components are ±1. When a pattern is presented to the network for memorization,

a synapse can get activated (take value 1 or 0) if both the neurons connected by

the synapse fire, or are active simultaneously. Once a synapse is active (excited), it

remains in that state forever.

Hebbian learning in the model is implemented by the following learning rule[92]:

Jij =
1

n
Θ

(
p∑

µ=1

(Sµi + 1)(Sµj + 1)

)
− 1

n
, (G.1)
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where θ(x) = 1 if x > 0 and 0 otherwise. Sµi and Sµj represent the activities of the

pre- and post-synaptic neurons i and j which are connected by the synapse whose

weight is given by Jij. n is the number of neurons in the network. The synapses

are all initially at − 1
n
. As more and more patterns are stored, more Jij’s become 0.

Unlike in the Hopfield model, here changes in the synaptic matrix are not cumulative.

The network requires a large fraction of the efficacies to be zeroes in order to avoid

saturation - the network thus deals with sparse information, with only a small fraction

m of firing neurons in each pattern. The usage of sparse coding makes the network

biologically more realistic.

The learning rule in eq.(G.1) gives rise to the following energy function:

E = −1

2

N∑
i,j=1
i 6=j

Jij((S
µ
i + 1)(Sµj + 1)), (G.2)

Retrieval is checked by presenting a pattern to the network and comparing the output

pattern with the presented pattern for faithfulness. The prescription for retrieval can

be stated as

hνi = sgn
(
Jij(S

ν
j + 1)

)
(G.3)

One measure of the usefulness of a network as memory is its capacity. It can simply

be defined as the number of patterns that can be stored in a network of size N . A

more precise definition is the ratio of the mutual information between the stored and

retrieved patterns to the number of synapses [93].

C =
T (~ξ(1), ~ξ(2) . . . ~ξ(p); ~ξ(1

′), ~ξ(2
′) . . . ~ξ(p

′))

n
(G.4)

Alternately, we can analyze the performance of the network using the 0, 1 binary

coding and rewriting the learning rule in the familiar Hopfield fashion [9]:

Jij = 1

(
p∑

µ=1

ξµi ξ
µ
j

)
, (G.5)

where

1(x) =

1 if x > 0

0 if x ≤ 0
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Calculating the local field potential on neuron i after the first pattern has been stored,

h
(1)
i =

∑
j

1Jijξ
(1)
j . (G.6)

We now arrive at an expression for the signal term from eq.(G.5) for µ = 1:

h
(1)
i = Nmξ

(1)
i , (G.7)

as Jij = 1 for all j’s for ξ
(1)
i ξ

(1)
j = 1.

For a network of size N with m active neurons, we can now set up a threshold Θ

whose maximum value is given by

Θ = Nm. (G.8)

The capacity of the network under this formulation is now given by

C = − log(1−N−−1/mN)

m2
(G.9)

The memory capacity of the network increases as the patterns become more sparse,

i.e., have more 0’s in them. However, a decrease in the number of 1’s in the patterns

leads to a reduction in the amount of information present in them.

Limitations of the model and a new model

The learning rule in eq.(G.2), along with the sparseness of the input patterns together

ensure that the levels of inhibition remain constant. (The effects of asymmetry in the

network are also described in [88]). The network described above still remains fully

connected. We propose here two modified learning rules where synaptic efficacies

can now take one of three values : 0, a positive value and a negative value. One

advantage of this advantage is that missing synapses characterized by 0’s can be

identified and distinguished from synapses which become active during the process

of memorization. Moreover, this new formulation provides a means of varying the

excitation and inhibition levels, keeping one or both constant.
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Figure G.1: Schematic representation of the synapstic matrix in the Willshaw
model with n = 10. The (blue) circles show the synapses activated on storing the
first pattern (P1). The (pink) squares and (green) triangles represent the synapses
activated following the memorization of P2 and P3 respectively. Once activated,
a synapse remains in that state forever, even if the same pair of neurons connected

by the synapse fire simultaneously in a different pattern.

From Fig.G.1, we can see that once a pair of neurons fire simultaneously, they activate

the synapse connecting them. This activated synapse retains that state permanently,

even if the same pair of neurons are not simultaneously active in the other patterns

being stored. Also, there is no difference in the active state of a synapse if the neurons

connected by it fire together in more than one pattern.

The performance of the network is measured in terms of the fraction of retrieval.

Retrieval is checked by whether presenting the stored patterns back to the network

leads to recovery of the presented patterns.
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G.2 Modifications to the learning rule

While the model takes into account the sparseness of the input patterns, the net-

work still remains fully connected. It would be interesting to study the network with

different degrees of dilution. Moreover, the symmetry of synaptic weights is biologi-

cally inaccurate, and the synapses in the model can be modified to have asymmetric

weights. Both dilution and asymmetry can be introduced in the model by assigning

positive weights to active synapses, and negative weights to the inactive ones. Under

this new scheme, a ‘0’ would represent a missing synapse.

The introduction of the new classification of weights also provides a tool for studying

the effects of varying levels of excitation and inhibition on network performance.

Their effects on the network with different levels of sparseness can also be studied.

We first examine the case where inhibition is kept constant while varying the excita-

tion levels. The modified learning rule is now given by:

Jij =
c

N

p∑
µ=1

θ((Sµi + 1)(Sµj + 1))− 1

N
, c ∈ [1, 2] (G.10)

In the second scenario, we modify the learning rule such that both inhibition and

excitation levels vary. This learning prescription follows the following equation:

Jij =
1

N

p∑
µ=1

θ((Sµi + 1)(Sµj + 1))− c

N
, c ∈ (0, 1] (G.11)

The excitation-inhibition ratios for these two modified learning rules are plotted in

Figs.G.2 and G.3.

G.3 Results of the modified learning rules

Our preliminary study involved simulations with network size N = 100 and N =

1000. Patterns were generated randomly, with sets of patterns with a uniform num-

ber of firing patterns for each value of the sparseness parameter (f). The network

was later diluted and a certain number of synapses corresponding to the level of

dilution(D) were removed randomly. The dilution was also uniform across the net-

work, i.e., the same number of synapses emanating from each neuron was removed.
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Figure G.2: Figure showing the ratio of excitation(E) and inhibition(I) for various
values of c in the Willshaw model following the modified learning rule (G.10).
Excitation levels vary, while inhibition is at a constant level, resulting in a linear

variation in the E/I ratio.

This process of dilution automatically introduces asymmetry into the system. The

weights are no longer symmetric, as a synapse from neuron ‘i’ to ‘j’ might be present,

whereas the synapse from ‘j’ to ‘i’ may be missing. The effects of the modified learn-

ing rules were then studied.

G.3.1 Case (i)

When patterns were stored in a network of size N = 1000 following eq. (G.10), there

was complete retrieval upto f = 0.001 for c = 1− 1.1. Beyond that, there is a slight

deterioration in retrieval quality for c = 1.2−1.3, with retrieval upto f = 0.005. The

quality of retrieval degrades further for higher values of c (c = 1.4, 1.5 . . . 2), with

patterns being retrieved only when f < 0.005.

In a network of size N = 100, patterns were retrieved upto f = 0.1 for c = 1, 1.1.

For c = 1.2, 1.3, retrieval went down beyond f = 0.05. With further increase in c,
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Figure G.3: Figure showing the ratio of excitation(E) and inhibition(I) for various
values of c in the Willshaw model following the modified learning rule (G.11). Both
excitation and inhibition levels vary, resulting in the variation in the E/I ratio

following a curve as shown above.

the value of f upto which there was complete retrieval was as low as f = 0.02. This

can be seen from Fig.G.4a.

G.3.2 Case (ii)

Learning in a network (N = 1000) following eq.(G.11) results in retrieval upto f =

0.07 for c = 0.8− 0.9. For c = 0.6− 0.7, retrieval quality deteriorates, and patterns

are retrieved only upto f = 0.03. However, at lower values of c (c < 0.6), retrieval

quality degrades even further, as can be seen from Fig.G.4b

For N = 1000, there was complete retrieval upto f = 0.009 for c = 0.9. Patterns

were retrieved completely upto f = 0.005 for c = 0.7 and upto f = 0.006 for c = 0.8.

For even values of c (c = 0.1− 0.6), hardly any patterns were retrieved completely.
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(a) With modified learning rule (i) (b) With modified learning rule (ii)

Figure G.4: Figure showing the results of the Willshaw model with modified
learning rules (i) (Fig.a) and (ii) (Fig.b) for various values of the sparseness pa-
rameter f when p = 100 patterns are stored in a network of size N = 100. r gives
the number of patterns retrieved while c is a constant whose range is specified by
the learning rule. The network can efficiently retrieve the stored patterns when c

remains close to 1 (c = 1 is the default Willshaw model).

G.3.3 Effects of dilution

As we can see from Fig.G.5, the retrieval is not significantly affected at low levels of

dilution, when 1% or 10% of the synapses were removed at random. However, there

is a drastic decrease in network performance when the dilution is 25%.
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(a) With modified learning rule (i) (b) With modified learning rule (ii)

At 1% dilution

(c) With modified learning rule (i) (d) With modified learning rule (ii)

At 10% dilution

(e) With modified learning rule (i) (f) With modified learning rule (ii)

At 25% dilution

Figure G.5: Results from the Willshaw model with modified learning rules with
different levels of dilution and for different values of sparseness. The performance
of the network is not significantly impeded at D = 1% or 10%, but worsens at

D = 25%.

G.4 Summing up

The model thus addresses some of the drawbacks of the Hopfield network, including its

complete connectivity, dense patterns and the symmetry of the efficacies (Jij = Jji).

The network in our study deals with sparse patterns, and the modified learning rules

address the issues of connectivity and symmetry.
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We have presented some exploratory results here, but a deeper study of the network

remains beyond the scope of this thesis.
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[78] Per-Olov Löwdin. On the nonorthogonality problem. Advances in quantum

chemistry, 5:185, 1970.

[79] Nancy Kanwisher. What’s in a face? Science(Washington), 311(5761):617–618,

2006.

[80] Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Living-

stone. A cortical region consisting entirely of face-selective cells. Science, 311

(5761):670–674, 2006.

[81] DR Inglis. Non-orthogonal wave functions and ferromagnetism. Physical Review,

46(2):135, 1934.

[82] John C Slater. Cohesion in monovalent metals. Physical Review, 35(5):509, 1930.

[83] Giorgio Parisi. A memory which forgets. Journal of Physics A: Mathematical

and General, 19(10):L617, 1986.



Bibliography 146

[84] JP Nadal, G Toulouse, JP Changeux, and S Dehaene. Networks of formal

neurons and memory palimpsests. EPL (Europhysics Letters), 1(10):535, 1986.

[85] Mirta B Gordon. Memory capacity of neural networks learning within bounds.

Journal de Physique, 48(12):2053–2058, 1987.

[86] Daniel J Amit and Stefano Fusi. Constraints on learning in dynamic synapses.

Network: Computation in Neural Systems, 3(4):443–464, 1992.

[87] Daniel J Amit and Stefano Fusi. Learning in neural networks with material

synapses. Neural Computation, 6(5):957–982, 1994.

[88] Haim Sompolinsky. Statistical mechanics of neural networks. Physics Today, 41

(21):70–80, 1988.

[89] Anupam Hazra, Feng Gu, Ahmad Aulakh, Casey Berridge, Jason L Eriksen, and
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Abstract

Connectionist models of memory storage have been studied for many years, and aim to provide insight into potential
mechanisms of memory storage by the brain. A problem faced by these systems is that as the number of items to be stored
increases across a finite set of neurons/synapses, the cumulative changes in synaptic weight eventually lead to a sudden
and dramatic loss of the stored information (catastrophic interference, CI) as the previous changes in synaptic weight are
effectively lost. This effect does not occur in the brain, where information loss is gradual. Various attempts have been made
to overcome the effects of CI, but these generally use schemes that impose restrictions on the system or its inputs rather
than allowing the system to intrinsically cope with increasing storage demands. We show here that catastrophic
interference occurs as a result of interference among patterns that lead to catastrophic effects when the number of patterns
stored exceeds a critical limit. However, when Gram-Schmidt orthogonalization is combined with the Hebb-Hopfield model,
the model attains the ability to eliminate CI. This approach differs from previous orthogonalisation schemes used in
connectionist networks which essentially reflect sparse coding of the input. Here CI is avoided in a network of a fixed size
without setting limits on the rate or number of patterns encoded, and without separating encoding and retrieval, thus
offering the advantage of allowing associations between incoming and stored patterns. PACS Nos.: 87.10.+e, 87.18.Bb,
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Introduction

Nervous systems have two basic requirements: they must be
stable and thus able to generate reliable specific outputs, while at
the same time they must be flexible to allow the output to change
during development or as a result of experience. This is the
‘‘stability-plasticity dilemma’’ [1], and it is a concern to both
neurobiologists who want to understand how nervous systems cope
with constantly changing internal and external conditions, and
those working on artificial neural networks. While not exclusively
related to it, this problem is often considered in relation to
memory. The analysis of memory systems has been a major focus
of neuroscience research, but there are still many unanswered
questions that need to be addressed at both the experimental and
theoretical levels. In terms of the stability-plasticity problem, the
question is how a system can store new input patterns across
shared components without disturbing previously stored informa-
tion in those components.

One of the first considerations of this problem was highlighted
by Bienenstock, Cooper and Munro [2], who suggested that long-
term potentiation (LTP), a proposed mechanism for learning and
memory [3], could suffer from an inherent instability (the BCM
model). They suggested that in systems with a set threshold for
plasticity the potentiation of a synapse by a particular input that
exceeded the threshold could leave that synapse open to further
potentiation when another, non-salient, input was presented (this

has also been referred to as the ‘‘ongoing plasticity’’ problem; see
[4]). Due to the initial potentiation of the synapse, non-salient or
random inputs caused by a non-stationary environment could
exceed the threshold for plasticity, resulting in the potential for
run-away cycles of potentiation which would alter the synaptic
changes associated with the original memory. This would
effectively overwrite the original memory, and in biological
systems if left unchecked, excessive activation could also lead to
epileptogenic or excitotoxic damage and cell death [5]. The
opposite effect could occur with long-term depression, where a
synapse is weakened when the input falls below a depression
threshold: in this case there could be a positive feedback loop that
results in the successive depression of the synapse.

While the exact relationship is not clear, a similar effect may
occur in artificial neural networks. When the number of
sequentially recorded/stored patterns exceeds a critical value
there is a sudden and complete loss of previously stored inputs [6].
This example of retroactive interference is called catastrophic
interference (CI) and is caused by the sharing of connections
whose weights are changed by the presentation of specific inputs.
As more patterns are stored the weights are changed and beyond a
critical point new inputs erase the memory of previous inputs. If
the memories happen to be overlapping, or correlated, which
essentially means that several of their elements are similar (the
mathematical meaning is explained in [7], [8]), then a particular
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Preamble
How the brain processes information, where and how it stores them, 
and how it retrieves from memory as and when required, are some of 
the basic questions one is naturally curious about. In spite of neuro-
science being an old discipline and the brain having been mapped ex-
tensively, one hardly knows much about the physiological mechanisms 
underlying such basic functions of the brain involving learning and mem-
ory. One has begun to develop some understanding on this account in 
the past few decades due to the efforts by psychologists (e.g. Donald 
Hebb [1]) and formal approaches by mathematicians, physicists, engi-
neers, and cognitive scientists employing mathematical and cognitive 
models for certain brain functions. The theoretical approach not only 
gives crucial insight into how the brain functions, but also helps in de-
signing and planning experiments that would otherwise be difficult and 
expensive, and in devising ways of processing and storing non-cognitive 
information. The latter may pertain to information technology. It is our 
contention that the mathematical and cognitive models of brain pro-
cesses should give ideas to construct algorithms to handle numerous 
non-cognitive problems.

A Hypothesis
In this short communication, we summarize one such theoretical ap-
proach we have pursued for some time. We have hypothesized since 
2000 [2] that in many situations the brain might be functioning in a math-
ematical manner in that it might be using mathematical functions and 
transformations (which are otherwise well known to mathematicians and 
physicists) to perform certain cognitive tasks. A natural question that will 
arise then is “how would an untrained brain know about these functions 
and transformations?” To this end, we go on to conjecture that the brain 
might be hard-wired to do such mathematical functions and transfor-
mations, and that these competencies might have been acquired by the 
brain in the course of evolution while mathematicians and physicists 
have been only reinventing them. Apparently, a section of modern phi-
losophers also believes so.

The Crux
Let us start with the basic question: how do we learn? — On the basis of 
certain experimental observations, a psychologist Donald Hebb [1] put 
forth a hypothesis that the synaptic efficacies, i.e. the nature (whether 
excitatory or inhibitory) and strength of synaptic connections between 
numerous neurons in the brain, change as and when an information is 
registered. The synapses have plastic character, i.e. the modification in 

their efficacies stay, sometimes for short durations and sometimes over 
longer periods, and it is through this ongoing process of modifications 
that we learn and store information in synapses. 

Electrical impulses are constantly exchanged by the huge number 
of neurons (≈1011) when the brain is active. Suppose, when information 
comes to be recorded, the neurons are already individually potentiated 
(or inhibited) to certain levels, which may be a base level or a level reached 
in the course of assimilating earlier information. The level of potentiation 
or inhibition will typically vary from one neuron to the other. The new in-
formation triggers them and some of them that might have been already 
near the threshold of firing might fire, i.e. send out electrical impulses, 
while the others remain quiescent. These impulses are received by oth-
er neurons via synapses, which, depending on their chemical character, 
whether excitatory or inhibitory, will excite or depress the neurons that 
are the recipients of the impulses. A neuron receives such excitatory and 
inhibitory inputs from a large number of pre-synaptic neurons and adds 
them linearly. If the net effect of the combined input makes the recipient 
neuron cross its threshold, which is pre-assigned to it by nature, then it 
fires an electrical impulse that is received by a large number of neurons 
via synapses. Note that the signal or impulse sent out by a neuron is 
replicated into as many of them as the number of neurons this particular 
neuron is synaptically connected with.

Thus, we see that the neurons might be already programmed to add 
linearly. The brain also knows how to multiply as an input from a pre-syn-
aptic neuron goes to a post-synaptic neuron weighted by the synaptic 
efficacy of the synapse connecting them. The combined capabilities of 
neurons to add, and the neuron-synapse duos to multiply enable the 
neuronal network to form memories and the Hebbian plasticity enables 
them to be stored in the synapses. We further propose that when these 
competencies are extended over a collection of neurons and synapses, 
they enable them to also perform mathematical operations of higher lev-
els like ‘orthogonalization’ and ‘Fourier transformation’. We have studied 
these two mathematical operations, in particular, to propose that the 
brain might employ them respectively to discriminate between informa-
tion [2,3] and make the long-term memory robust against trauma [4]. 
When we categorize information, we compare entities and isolate simi-
larities and differences between them. To acquire this capability, we ar-
gue, the brain employs the mathematics involved in orthogonalization. 
Orthogonalization is a mathematical transformation that converts a 
given set of vectors into a set of mutually perpendicular or orthogonal 
vectors. So how is it connected with the brain and its capability to discrim-
inate between information to categorize them? To address this question, 
we will first prepare the background.

Abstract
We have put forth a hypothesis that the brain bears the innate capability of performing high-level mathematical computing in order to perform 
certain cognitive tasks. We give examples of Orthogonalization and Fourier transformation and argue that the former may correspond to the 
physiological action the brain performs to compare incoming information and put them in categories, while the latter could be responsible for the 
holographic nature of the long-term memory, which is known to withstand trauma. We plead that this proposal may not be as strange as it may 
appear, and argue how this line of mathematical modeling can have far-reaching consequences.
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Abstract

Attractor neural networks such as the Hopfield model can be used to model associative

memory. An efficient associative memory should be able to store a large number of patterns

which must all be stable. We study in detail the meaning and definition of stability of network

states. We reexamine the meanings of retrieval, recognition and recall and assign precise

mathematical meanings to each of these terms. We also examine the relation between

them and how they relate to memory capacity of the network. We have shown earlier in this

journal that orthogonalization scheme provides an effective way of overcoming catastrophic

interference that limits the memory capacity of the Hopfield model. It is not immediately

apparent whether the improvement made by orthgonalization affects the processes of

retrieval, recognition and recall equally. We show that this influence occurs to different

degrees and hence affects the relations between them. We then show that the conditions

for pattern stability can be split into a necessary condition (recognition) and a sufficient one

(recall). We interpret in cognitive terms the information being stored in the Hopfield model

and also after it is orthogonalized. We also study the alterations in the network dynamics of

the Hopfield network upon the introduction of orthogonalization, and their effects on the effi-

ciency of the network as an associative memory.

1 Introduction

Associativity is a fundamental feature of learning and memory. When some information is
learnt or memorized, it can be recalled not just when the same information is encountered
again, but also by similar or partial information. The brain thus forms associations between the
various information it learns and memorizes with those it encounters externally. This kind of
associative memory can be modeled mathematically using some ideas from physics and math-
ematics which can be adapted to neuronal networks [1–6]. Such models of networks can help
us gain insights into the mechanisms underlying learning and memory.

An attractor neural network (ANN) can be used to model associative memory [7]. Informa-
tion is presented to the network as vectors, which can be sequences of numbers, usually ±1’s
forming a variety of patterns [1, 8, 9]. A set of patterns learnt by the network should form fixed
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On basins of attraction in attractor neural networks SUCHITRA
SAMPATH, VIPIN SRIVASTAVA1, Centre for Neural and Cognitive Sciences, Uni-
versity of Hyderabad, Hyderabad -500046. India — We present an in-depth study
of basin of attraction for patterns of ±1 inscribed following Hebbian hypothesis [1]
in a spin-glass like neural network. The aim is to investigate if basin of attraction
being non-zero is a sufficient condition for the stability of an inscribed state when
the necessary condition is that the inscribed state should be retrieved without any
error. While this is true for Hopfield model [1], we find that the following model is an
exception in that as many as p=N-1 stored patterns (N being the number of neurons
in a fully connected network) can be retrieved without error while their basins of
attraction consistently reduce in size as p increases and become zero around p=0.8N.
The model proposes that the information that comes to be recorded in the brain is
first orthogonalized (as in Gram-Schmidt orthogonalization) and then inscribed in
synaptic weights. While the orthogonalized versions of input vectors with ±1 com-
ponents are stored in the model brain, the original vectors/patterns are retrieved
exactly when checked for retrieval. Simulations are presented that give insight into
the energy landscape in the space spanned by the network states.
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