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Preface

The primary aim of this thesis is to study quantum transport in a single

molecular transistor (SMT) and also across a metal-semiconductor interface.

In the first part of the thesis, we consider the problem of an SMT device. An
SMT system consists of a central molecule or a quantum dot (QD) with
discrete energy levels and coupled to two metal electrodes, one acting as
Source (S) and the other as Drain (D). We assume that the source and the
drain have continuous energy levels and the central QD has a single energy
level and a single phonon mode. An electron can move from the source to the
drain through QD by the hopping process. An electron on QD can have local
repulsive Coulomb interaction with another electron on the QD by the usual
onsite Hubbard interaction. We also consider a QD electron to interact with
the QD phonon with the local electron-phonon (el-ph) interaction. We employ
Holstein Hamiltonian to model this interaction. Thus the aforementioned SMT

system can be described by the Anderson-Holstein model.

The el-ph interaction effects on the transport properties of an SMT device
have been studied by several researchers. Chen et al. have investigated non-
equilibrium transport in an SMT device using the Keldysh Green function
method in the presence of el-ph interaction. They have shown that the current
reduces with increase in el-ph coupling due to the polaronic effect. Later, the
transport in an SMT system has been examined by Raju and Chatterjee
incorporating dissipation and Coulomb correlation in addition to el-ph
interaction using Keldysh formalism. They have considered an SMT system
based on an insulating substrate that acts as a bath of phonons and

incorporated a coupling between the substrate phonons and the QD phonon



using the linear Caldeira-Leggett model which takes care of the dissipative
effect. Raju and Chatterjee have employed the Anderson-Holstein-Caldeira-
Leggett (AHCL) model to describe whole system and observed that

dissipation causes an enhancement in the current through SMT.

In the present thesis, we first investigate how a magnetic field influences the
transport properties in the aforementioned dissipative SMT system.  This
work 1s described in Chapter 2 of thesis. We model our system using the
AHCL Hamiltonian. The dissipative interaction between the substrate
phonons and the local QD phonon modeled by the Caldeira-Leggett is treated
by using a unitary transformation. This results in a reduction in the frequency
of the QD phonon, which is precisely the dissipative effect. The el-ph
coupling term is dealt with by first performing the Lang-Firsov transformation
and then carrying out an expectation value with respect to the zero-phonon
state. We calculate the spectral density, the current, the differential
conductance and the spin polarization parameter using the Keldysh Green
function method. The magnetic field removes the spin degeneracy and this
leads to the splitting of QD energy levels and gives rise to peaks of the
spectral functions. The el-ph interaction reduces the spin-polarised current
densities. The spin-down current density is reduced by the magnetic field
whereas the spin-up current density initially increases as the magnetic field
increases and beyond a certain field it decreases with increasing field and
finally drops to zero. The differential conductance graphs also exhibit the
splitting of peaks due to the magnetic field, implying the availability of
additional energy levels for transport. As the magnetic field increases, the spin
polarization decreases and finally vanishes. The damping is shown to increase
the spin-polarised currents. differential conductance, and spin-polarization

parameter. This system can have potential application as a spin filter.

Next, we study, in Chapter 3, the effect of temperature on the spectral density,

current and differential conductance in an SMT system in the presence of el-



ph interaction, Coulomb correlation and quantum dissipation. Here also we
model the system using the AHCL Hamiltonian and study aforementioned
transport properties at finite temperature using the Keldysh approach and the
equation of motion method. We show that dissipation increases the current
density at finite temperature but the increase is less significant than at zero
temperatures. The current density is found to decrease as temperature
increases, and the behaviour of the differential conductance is found to be

similar.

In Chapter 4 of the thesis we study Double refraction and Tunneling
conductance of electron spin across a metal-semiconductor interface. We
assume an infinite two-dimensional (2D) system in the x — y plane, where a
2D metallic lead fills the region x < 0 and a semiconductor system with
Rashba and Dresselhaus spin-orbit interactions occupies the region x > 0. At
x = 0, the two materials are separated by an interface. Khodas et al. (Phys.
Rev. Lett. 92, 086602 (2004)) have used the spin-orbit interaction effect to
cause electron polarisation in nonmagnetic semiconductor heterostructures
and Dargys (Superlattices Microstruct. 48, 221, (2010)) has explored the
phenomenon of electron reflection by an infinite barrier in a 2D device.
Extending the works of Khodas et al. and Dargys, we investigate the reflection
and refraction of electrons at a metal/semiconductor interface where the
semiconducting material can be considered as a semi-infinite 2D electron gas
with non-zero spin-orbit interactions. The current density and differential
conductance are also calculated. We calculate experimentally measurable
quantities such as spin-up and spin-down currents and corresponding
differential conductances, as well as spin-polarization current in the metallic
and semiconductor region and investigate the role of incident angle, incident
energy, applied voltage, and spin-orbit interactions on them. We show that
the Dresselhaus interaction reduces the angle of refraction of spin-up and

spin-down electrons, with the spin-down electrons undergoing a more



significant reduction. When both the spin-orbit interactions are considered, the
spin polarization is found to increase significantly, improving the spin-
filtering effect observed in the presence of Rashba coupling alone. We find
that increasing the incident energy increases the angle of refraction of spin-up
electrons and decreases the angle of refraction of spin-down electrons.
Therefore, the spin-filtering effect can be controlled by tuning the incident
energy. The currents corresponding to spin-up and spin-down electrons reduce
as the Fermi energy is increased. However, they increase as the applied
voltage is increased. In the semiconductor region, the spin polarisation current
turns out to be negative in the presence of both Rashba and Dresselhaus
interactions, and it decreases with increasing Dresselhaus interaction. In
contrast, the spin polarisation current in the metallic region turns out to be
positive and decreases with increasing Dresselhaus coupling. The present
work can have potential applications in spin-filtering and spin-polarising

devices.
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Chapter 1

Introduction

In this thesis we mainly study the transport properties of a Single
Molecular Transistor. We also study the Tunneling Conductance of
electron spin across a metal-semiconductor interface in the presence of
Rashba and Dresselhaus spin-orbit interactions in the semiconductor

medium.

1.1 Single molecular transistor (SMT)

1.1.1 Introduction

In the last four decades, we have seen the shift from the employment of
bulk systems to nanosystems, semiconductor systems, and magnetic
systems in material science applications. The quantum effects become

extremely important for the nanosystems. Early studies have provided us



with a number of important and interesting features about the physics of
nanosystems, their quantum transport properties, and device applications.
The field has been adequately discussed by Datta [1]. In recent years, due
to advances in fabrication techniques and the availability of
instrumentation facilities, detailed investigations have been carried out on
the electronic, optical, transport and magnetic properties of various

nanosystems.

In 1974, Aviram and Ratner [2] have given the theoretical design of a
molecular device using a single organic molecule and observed that the
response of this device in an applied field works as a rectifier. Later, a few
research groups fabricated a single molecular transistor [3, 4] using
organic molecules. An SMT device usually consists of a central molecule
or any nanosystem like a quantum dot (QD) that would have discrete
energy levels. It is connected to two metallic electrodes, one being the
Source (S) and the other the Drain (D). In an SMT device [5, 6], the

current can be successfully regulated by adjusting the gate voltage.

Considering the potential applications of molecular electronic devices,
research on SMTs [7-9] has received significant attention in the last few
decades and provided many interesting results. It has been suggested that
SMTs can have important applications in micro-electronic technology as
spin-filtering devices [10], switching devices [11], sensors [12] etc. At low
temperature, an SMT device shows very many interesting properties such
as non-equilibrium effects of el-ph interaction during the charge tunneling
like phonon-assisted tunneling transport [13, 14], Coulomb blockade [15],
Kondo effect [16-18], hysteresis-induced bistability [19- 21], local heating
[22, 23], molecular switching and negative differential conductance [24,
25]. If a polar QD is considered as a central molecular in an SMT device,

transport mechanism will be additionally influenced by polarons which are



quasi-particles consisting of electrons dressed with a cloud of virtual
phonons and form because of the el-ph interaction. Thus, the quantum
transport phenomena in an SMT device are influenced by both el-el and
el-ph interactions. The transport properties of SMT have been investigated
by using different theoretical and numerical methods like kinetic equation
method [26, 27], rate equation approach [28], slave-boson mean-field
method [29], non-crossing approximation method [30], numerical
renormalization method [31-33] and non-equilibrium Green’s function

approaches [34-38].

1.1.2 Anderson-Holstein-Caldeira-Leggett model

The schematic representation of an SMT system that we have
investigated in this thesis is shown in Fig. 1. It is connected to two

metallic electrodes, one being the Source (S) and the other the Drain (D).

VBI.

Fig.1 Schematic representation of an SMT device

Since the Source (S) and the Drain (S) contain free electrons, they can be

described by the Hamiltonian



HS,D = z EkaNio » (1.1)
k,0€S,D

where &, is the energy of a free electron in S or D with momentum k and
spin 0 and N, (= c;crac,m) represents the number operator corresponding

to these electrons, c,to_(ckg), referring to the corresponding creation

(annihilation) operator.

We consider the QD to have a single energy level of energy &;. We also
include the el-el interaction in the QD. Such a QD can be modelled by the
Hubbard model which is described by the Hamiltonian

Hop = Z(sd — el(g) Nge + Unging (1.2)

g
where ng, (= C;G(Cda)) is the number operator for the QD electrons of
spin o with g, as the onsite energy, c;,‘,,(cd,,) being the creation

(annihilation) operator for the QD electrons and Vj is the gate voltage that

can be used to tune the energy level. U denotes the onsite el-el interaction

strength in QD.

We consider the electron to move from one site to anther by hopping and

the hopping Hamiltonian (Hj) can be written as

H, = Z Vk(cgacd(, + h.c) (1.3)

o,kaeS,D

where V) represents the hybridization coefficient that governs the
tunnelling strength for the electron to tunnel between the QD and the

leads.



The system described above can be modelled by the Anderson
Hamiltonian [39]. Many research groups have employed the Anderson
model to investigate different solid state systems like mixed valence
systems, superconductors, Heavy fermions, negative tunneling centers in
semiconductor glasses, etc.. Thus the Anderson Hamiltonian

corresponding to our system described above is given by
H = HS,D + HQD + Hh

= Z ExNia T+ z EgNge + Ungng, + Z Vk(c,'{rgcdJ + h.c)
ka o o,kaeS,D

(1.4)

The QD is assumed to have a single local phonon mode of dispersionless

frequency w, which can be described by the free phonon Hamiltonian
HQD—ph = fl(l)ob-l-b . (15)

where  bT(b) represents the creation (annihilation) operator of the QD
phonon. The above phonon mode is assumed to interact with the local QD
electrons through el-ph interaction which can be described by the Holstein

model:
Hop—ep = Ahwo(bT + b) Z gy (1.6)
g

where A gives the el-ph coupling constant. Thus the SMT system
consisting of S, D and QD can be described by the Anderson-Holstein

Hamiltonian which can be written as

H = HS,D + HQD + Hh + HQD—ph + HQD—ep



Z ExNia T+ Z EqNge + Unging, + Z Vk(ckacd,I + h.c)

ka o,kaeS,D

+ hwebth + Ahw, (bt + b)z Ny, . (1.7
o

Many research groups have examined the el-ph interaction effects on
transport in an SMT system. Chen et al. [40] have found that el-ph
coupling generates side bands in the spectral density and makes the width
of the zero-phonon peak narrower. They have also analysed how the
chemical potentials of the leads influence the tunnelling current and
differential conductance at zero temperature. Later, Raju and Chatterjee
(RC) [41] have examined, for the first time, the dissipative effect on the
transport properties of an SMT system at zero temperature using the
Keldysh technique incorporating the effects of el-ph interaction and
Coulomb correlation. RC have considered an arrangement in which the
SMT device is mounted on a substrate which is an insulator and acts as a
phonon bath. They have assumed that the single phonon mode of the QD
interacts with the substrate phonons leading to quantum dissipation in the
SMT current. RC have incorporated the coupling of the QD phonon with
the substrate phonons using the Caldeira-Leggett (CL) model. The bath
Hamiltonian (Hg) considered by RC is given by

N N
1
= Z [— + = m] ; x]-Z:I + Zﬁ] ijo , (18)
j=1 j=1

where xj:s and  x, refer to the position coordinates of the substrate
oscillators and the QD, respectively, w; denotes the frequency of the j-th
substrate oscillator and f; represents coupling strength of interaction

between the QD oscillator and the j-th substrate oscillator. Hence, the



whole system is modeled using Anderson-Holstein-Caldeira-Leggett
(AHCL) Hamiltonian. Thus the total Hamiltonian studied by RC is given
by

H == HS,D + HQD + Hh + HQD—ph + HQD—ep + HB

_|.
= Z EMNga + Z EqNgs + Ungng, + Z V(e Cao + hC)
ka o o,kaeS,D

2

p, 1

— 4 —mjw]zsz ]
2m; 2

N
+ hwebth + Ahwo(bT + b) Z Mgy + Z
o =1

N
+z B; %o (1.9)
=1

RC have used the the non-equilibrium Keldysh formalism and the
Equation of motion technique to study el-ph interaction effect on the
spectral density, tunnelling current and differential conductance in the
presence of quantum dissipation. According to their calculations, the local
phonon frequency of QD gets renormalized because of phonon dissipation.
Furthermore, the el-ph interaction decreases the tunnelling current

whereas the phononic dissipation increases it.

In the present thesis we consider the aforementioned SMT device in a
magnetic field and study its magneto-transport properties using the
Keldysh technique and the Equation of motion method within the
framework of the Green function formalism. We furthermore examine the
effect of temperature on the quantum transport in an SMT system at zero

magnetic field.



1.2 Tunneling across a Metal-Semiconductor Interface

In the second part of the thesis, we study double refraction and tunneling
current across a metal-semiconductor interface. The system we consider is
an infinite 2D system in the x — y plane, where a 2D metallic lead fills the
negative-x region and a semiconductor system fills the positive-x region.

At x = 0, the two materials are separated by an interface.

<
k sin 6;
=
+
~

k, = ksin 6;

kV
Les)

D
H;'\-

Yo ky = k™ cos 6,.-

Metal (Free electrons) 0 Semiconductor (Rashba and
Dresselhaus spin-orbit interactions)

Fig.2 Schematic sketch of the system

This problem has been earlier studied by Khodas et al. [42] by
incorporating the Rashba spin-orbit interaction (RSOI) in the

semiconductor medium.

The Dirac theory provides a term known as the Thomas term (Hy) which

is given by



eho.(E X p)

H. =
T 4m?2c?

(1.10)
where p refers to the electron momentum and o the spin. In an electric
field E = E Z, the system loses the inversion symmetry at the surface and

the Thomas term reads

ehoE.(Z X p) B

a
HT = HR = W = - E (O'ypx - O'xpy) . (111)

Eq. (11) is the well-known Rashba spin-orbit interaction (RSOI) where
eh?E

4m?2c2

denotes the RSOI strength which in certain systems can be

significantly large. It has been shown by Khodas et al. that in the presence
of RSOI in region 1II, there will be a split in the path of the spin-up and
spin-down electrons which suggests that the system under consideration

can have potential application as a spin-filtering device.

In systems which have zinc blend structure, such as a GaAs system, the
bulk inversion symmetry is also broken. This gives rise to another
important spin-orbit interaction known as the Dresselhaus SOI (DSOI) and

is given by

Hp = %(prx — aypy) . (1.12)

DSOI can have sizable effect on spin transport and therefore in the present
thesis, we study the transport across the metal-semiconductor interface
incorporating both RSOI and Dresselhaus spin-orbit interactions (DSOI).
More specifically, we explore the RSOI and DSOI effects on the
tunnelling current, differential conductance and the spin polarization. We
show that in the presence of the Dresselhaus interaction, the spin-filter

effect is enhanced significantly.



1.3 Organization of Thesis

In the present thesis, we mainly study the transport properties of a single
molecular transistor. We also study the spin transport across a metal-

semiconductor interface. The organization of the thesis as follows.

In the present chapter i. e., Chapter 1, we have introduced the subject of
Single Molecular Transistor and briefly touched upon the problem of

Transport across a Metal-Semiconductor junction.

In the following chapter i. e., in Chapter 2, we study magneto-transport in
an SMT device incorporating the effects of el-el interaction, el-ph
interaction and quantum dissipation. We deal with the problem using the
non-equilibrium Green function method. We present, in detail, the
derivation of the current density using the Equation of motion method and
the Keldysh formalism. We model the system using the AHCL
Hamiltonian introduced in this chapter. We study, in particular, the
magnetic field on the tunneling current, spectral density, differential

conductance, and spin-polarization parameter at zero temperature.

In Chapter 3, we investigate quantum transport through SMT at finite
temperature. In particular, we consider an SMT system with el-ph
interaction, Coulomb correlation and quantum dissipation at finite
temperature and zero magnetic field and obtain the spectral density,
tunneling current and differential conductance using the temperature-

dependent Keldysh formalism.

Next, in Chapter 4, we delineate our work on the spin transport across a



metal-semiconductor interface. We incorporate Rashba and Dresselhaus
spin-orbit interactions in the semiconductor region of the system. Because
of the spin-orbit interactions the up-spin and down-spin electrons have
different angles of refraction. This gives rise to a double refraction
phenomenon leading to the spin-filtering effect. We show that Dresselhaus
interaction significantly increases the spin-filtering effect caused by the

Rashba interaction alone.

Finally, in Chapter 5, we summarize the main results of the present

thesis and make concluding remarks.
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Chapter 2

Magneto-transport properties of a single molecular
transistor

2.1 Introduction

In this chapter, we study quantum magneto-transport in an SMT system
using the non-equilibrium Green function theory due to Keldysh. Costi [1]
has demonstrated using Wilson's renormalization group method that a
magnetic field can influence the electron transport properties of a QD in
an SMT system. They have also proposed that a strongly coupled QD in a
magnetic field can be used as a spin-filtering device. The properties of the
device can also be tuned by controlling the gate voltage. According to
Dong et al. [2], the magnetic field reduces the linear conductance at zero-
temperature. It has also been reported that when the magnetic field is
sufficiently increased, the conductance develop side peaks. The SMT
system has been recently studied in the presence of quantum dissipation
by Raju and Chatterjee [12] (RC). In the present chapter, we study
quantum transport in an SMT system in the presence of el-ph interaction,

Coulomb correlation, quantum dissipation and an external magnetic field.

To model the system, we add to the AHCL Hamiltonian introduced in

Chapter 1, the Zeeman term (arising because of the presence of the



magnetic field) and calculate the current density using the equation of
motion method. We also explore the effect of the magnetic field on the
SMT properties namely, the spectral density (SD) function and the spin-

polarized currents and differential conductances.

2.2 The Model

The SMT device, under consideration, consists of a single-level QD as a
central molecule which is connected to two metallic electrodes, one
being the Source (S) and the other the Drain (D). The entire system is
placed on a substrate which is an insulator and which can act as a bath of
independent oscillators. Electrons from S can hop to QD and from QD to
D. The central QD is assumed to have one phonon mode that can interact
with the bath phonons through the linear Caldeira-Leggett (CL)
interaction [3] and also with the local QD electrons though the Holstein

interaction. The electrons on QD can also interact with each other

Source

Fig.1 Schematic representation of an SMT device.



through the onsite Hubbard interaction. The CL interaction [3] causes a
dissipation in the SMT current. Fig.1 shows a schematic diagram of an
SMT device placed in a external magnetic field. The external field applied
to QD is expected to modify its transport properties, and such effects have

indeed been observed [4, 5].

As the external field lifts the QD's spin-degeneracy, the QD
configuration acts as a spin filter producing spin-polarized currents.
Because of the external magnetic field, we will have an additional term
Hy; in the AHCL Hamiltonian introduced in Sec. 1.1.2 of Chapter 1. Hy,; is
given by

1
Hy = EQMBB% ) (2.1)

where B (0,0, B) = 2B and Sj refers to the z component of the total spin
of the QD electrons. The SMT Hamiltonian is thus given by

H = HS,D +HQD + Hh+ HQD—ph+ HQD—ep +HB +HM

Z EMNpa + z gqNgs + Ungng, + Z Vk(ckacd(I + h.c)
ka o,kaeS,D

+ hwobth + Ahwy(bt + b) Z Mg
o

1
+Z [— +5mjw xfl Zﬁ, XjXo + guBBSZ (2.2)

The spectral function (J(w)) for the substrate phonons can be represented

as:



J(w) = ; [ij]l 5(w — w;). (2.3)

2.3 Decoupling of the substrate oscillators

We first consider the following vibrational part of Eq. (2.2):

HQD—ph +HB
P N 2 N
= (2—mo+2 mow%x§> +z Z—ril.+§mjwfxf +z,8jxjx0, (2.4)

where the first term denotes the free phonon part of the QD Hamiltonian

hwobth and perform the following canonical transformations

,Bjxo l
% =|x + , (2.5)
’ I (o)
. . 0 . 0
pj = —ih 6_55] = —ih a—x] =Dp;- (2.6)

Eq. (2.6) then transforms to

p2 1 N
0 ~ E
HQD—ph + HB = (2—0 + E mow3x§> +

~2
P, 1
(—’+Emjwf azj2>, (2.7)

where



1/2

B

L N
2

jzlmom]wj

N

@y = [w3 — (Aw)?]V? Aw = (2.8)

Eq. (2.7) suggests that the QD phonon and the bath phonons are

approximately separated by the canonical transformations (5) and (6).

The role of the interaction between the bath phonons and the QD phonon
is to renormalize the frequency of the QD phonon from w, to @,. From

now onwards, we will concentrate on SMT only.

Using Eq. (3) for the spectral density, (Aw)? can be written as
2 [ J()
Aw)? =— | —dw, 2.9
e (29)
0

In the Ohmic situation, the spectral density J(w) follows the relationship:

J(w) = 2myyw (2.10)

for all frequencies, where the Ohmic damping coefficient can be expressed
as

N

1 B?
y = Zmoz <2mjw-2> 6(w — a)j) . (2.11)

j=1

One can see from Eq. (2.11) that y diverges in the limit: @ — oo and
therefore the form of y given by (2.11) is not a realistic expression for a
pue Ohmic spectral density. To salvage the situation, one introduces a cut-
off frequency. In this regard, various forms have been proposed. We

employ the Lorentz-Drude form [6], which gives J(w) as follows:



()]

where w,. denotes the cut-off frequency. It is evident that in the limit:

J(w) = : (2.12)

w — o, J(w)— 0, and in the limit: w — 0, one obtains the pure Ohmic

spectral density. Finally, we can express the change in the frequency of

QD phonon as:

Aw? = 2myw, . (2.13)

The SMT Hamiltonian now reads

H= Z ExNgo + Z(sd —eVpngs + Unging _ + gupBS7 + haobth
koeS,D o

+ Ah@o (bt + b)z nge + z (Vech cao +hc) . (214)
(e

koeS,D

where bt(b) is now considered to represent the creation (annihilation)

operator of QD phonon of frequency @,.

2.4 Elimination of phonons

In order to treat the el-ph coupling term, we perform on the transformed

QD Hamiltonian H, the celebrated unitary Lang-Firsov transformation

[7] by the operator:

U=es, S=A(bt—b) ana . (2.15)
o



The transformed Hamiltonian can be written as

H=e%He™S ,

The electron operators of the system are transformed as follows:

—_— N T T
Cac = Caocks Cag = CdoXT ’
where,
7 = e~ A(bT-b) ) gt = e tA(bT-D) )

and the phonon operators are transformed as:

Thus the effective Hamiltonian of the SMT system reads

ﬁ = z Ex Nk o + Z gd Ngo + Und’Tnd’_l + ha)ob-rb
ko o

+Z(chll-06d0' + h. C) ,
k,o

where the system parameters get renormalized as

gd = &g — eVG —Azhwo,
U =U—2hwyA?,

Vk = Vk)? = Vkel(b_b‘r) .

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)



2.5 Tunnelling current : The non-equilibrium Keldysh Green
function formalism

We calculate the expression for the current density employing Keldysh
method. We shall present here the derivation of the tunneling current
expression in the presence of the el-el, el-ph interactions and quantum
dissipation. Then the current from the source to the quantum dot in a
single molecular transistor can be written as the average value of the rate

of change of charge operator
Q = —eN; (2.24)

where N is the operator corresponding to the number of electrons in the

source and is given by

N = Z o Cro- (2.25)

ko€S

Thus the current from S to QD is given by

dNg ie
Js=—el7)=—(A N, (2.26)

where H refers to the effective Hamiltonian given by Eq. (2.20). Since N,

commutes with all but the hybridization term of H, we obtain

]S = % Z [Vk(cgacda) — h. C] . (227)

ko€eS

Let us now define the following Green functions.

Gie,a (8, = i(0]c] (t) e ()]0), (2.28a)



Garo(tt") = i{0]c, (t)ca(®)]0)), (2.28b)

where G~ (¢t,t") (G<(t, t')) is the Keldysh greater (lesser) Green function,

GT@(t,t') is the usual retarded (advanced) Green function, |0) denotes

the actual ground state of the whole system and

Cao(t) = e tHettc, gifet (2.29)
do do

where T = (t — t'). Using the property
Grratt) = —[65 D], (2.30)

the current from S to QD can be written as

Js = —Re{Z Ve Gl t)} . (2.31)

ko€S

G ko (t) can be obtained through the equation of motion (EOM) method.
Due to the structural similarity between the non-equilibrium theory and
the equilibrium theory, we consider the zero temperature time-ordered
Green function and its equation of motion. So, let us define the retarded

and the advanced tunnelling Green functions as
Gol(t —t) = Fio(£t F £)(0]{c(®), cf (t)}]0), (232)

which satisfies the following (inhomogeneous) EOM

2
(-igm-a)Gle-t) =viaPe-) ,  @33)



where,

GLiD (¢ —t) = Fi 0(t F t)0[{ca (), & (t}|0) .

(2.34)

The Green functions for the non-interacting lead electrons is given by

ar Dt —t") = Fio((xt F )], (0, ceo (t)))

= Fio((t F t))e tal(t=t)

(2.35)

where the averaging state is the ground state of the non-interacting

electron system. g,:((,a) satisfies the equation

d
(@) —
(-is: - ) I9m = 8@ .
Therefore, Eq. (2.33) can be easily solved to give
ANAORS RAN L OPHSIC
According to the analytical continuum rule,

C(r) = A(®B(1) ,

which can be explicitly written as
Ctt") = f dt, A(t, t))B(ty,t") ,

and the real axis of the C(t) is given as

(2.36)

(2.37)

(2.38)

(2.39)



c<(t,t") = f[A<(t, t)B@(ty,t") + AT(t,t)B(ty, )] dty . (2.40)

So we can write

Giro(tt") = f dty Vi [Gia(t, t) ghs (b1, t') + Gig (8, £) grs (t1, tD], (2.41)

where
Gis(t —t") = et (tDere (0) = i feg)e~ex(E=) (2.42)

f (&) denoting the Fermi-Dirac (FD) distribution function. The Fourier

transforms of the different Green functions are defined as

< 1 —ier <

Gako(T) = Py de e Gyq (), (2.43)
[ 1 —ieT T

Gdd(T) == E d Ee Gdd(g) , (2.4‘4)
< 1 —iet <

Gaa(7) = o de e Ggy(e), (2.45)
a 1 —leT Ha

Gio (D) =5 | de e gy (), (2.46)

where G;C(ia) (¢) and Gg,(€) represent the retarded (advanced) and lesser
Keldysh Green functions respectively for the QD electron in the energy
space and gp,(e) refers to the advanced Green function for the non-
interacting electrons in the e-space. The first term of Gg (¢ t") can be

calculated as follows.



Gd<,ka(t' t’) = fdtl Ve Gaa(t, t) gy (t1,t")

2

1 . . T !
= (E) Jdth,:Jde e“s(t_tl)G;ka(s)jds’e_ls (t2-t)

1

= o [ eV G gty () et (247)

Similarly, we can calculate the second term of Gg,,(t,t") and thus

G3ro(t,t") is given by

d . )
6 (tt) = | =V Giuo (£)9% () + Gla(e)gS, ()] et (2.48)
27

The current expression then becomes

2e (d _
Js=2 iRe{Z TV [Gha(©)gie(e) + Ga(gls (@]} (249)

S h
where gg,(€) is given by:

95, (e) = f dt et g5, (1) = 2mi f(e)8(e — &) . (250)

The first term in the current expression that contains GJ,(€) is calculated

as follows.

2e (d _
=5 iR"’{Z vkv,:[agd(s>g,fa(s)]} @51
k

We convert the momentum summation into energy integration and get



2e [ de )
1) =5 [ 5= | deTs(e0 RelGiu(@iote - e)fi(ed]  (252)

where

Ts(er) = 2mos(e)VicVi (2.53)

pspy and fgpy(e) are respectively the density of states and the FD
distribution function of S(D) and the chemical potentials of S and D are

related to the bias voltage (V) and mid-voltage (V;,,) as:

(us — up) = eVp, (s + up)/2 = eV, (2.54)
Integration over &, gives
(D = 2 [ SO EReiG()

2 d
= -2 [ S AN @)

s o
=2 [ 2 AT — Gia(o)] (255)

Since

Gaa(e) = [G4a()]", (2.56)

the other part of the current expression can be manipulated similarly.

Finally, one obtains



ie [ ds

sy = n %FS(D)(E){G%(@ + E(D)[Gdrd(g) - ng(g)]}’ (2.57)

where Tspy(¢), the hybridization interaction of the quantum dot with the

source (drain) is given by
Tsp) = 27pspy(e) Vi |2 A(07-0) | (2.58)

In steady-state, the current will be uniform, and we have:

J=Js==Jp, (2.59)

and after symmetrizing, we can write

J= Us 2]D)
de
~onl [(T5 = TP)Gga(e) + (fsT° = foTP){GGale) — GGa ().
(2.60)
The SD function which gives a possible excitation is defined as
A(e) =il[Ggq(e) — Gga(&)] = i[Gza(e) — Gia(e)]- (2.61)

Finally, the current through QD assumes the expression [8 - 10]
e
J = ﬁf[ (s — fo()p} A(e) + {(Ts —Tp)Giy(e) Y] de. (2.62)

The occupation number of the quantum dot is given by



d
(nar) = | o (s + ()T} AC). (263)

For a symmetric quantum dot,

Is(e) + Ip(e) T

Tsy(e) = > ) (2.64)
which we approximate I' as
[ = 7p(0)|Vil? n|e~2C=2)|n), (2.65)
where
pPs=pp=p, (2.66)

and |n) is an n-phonon state. The above approximation should be plausible
when the el-ph interaction energy is much weaker than the hopping

energy. In the limit T — 0 K, we can write

<n|e"1(bf‘b)|n> _ e 2 (nle=*" el |p) = ¥ (n+3) (2.67)
where
_ (ahH™|0)
In) = AT (2.68)

is an n — phonon state, so that we have

1
[ = 1p(0) |V |2+ ("+2), (2.69)



r(a)(t t') can be expressed as:

GIi (e, ) = Fi 0(xt F t)({4(0), €t Da
= Fi0(+t F t') ({cae (@), ¢l (e XTOX @),
[Gr(a)(t,t’)]el (XT(0)X(D))ph (2.70)
where,
Cap(t) = e"Hette, eiflett y(t) = e~ tHpnty otHpnt, (2.71)

Now we shall calculate {y(t)xT(t) Ypn-

Y oln|e Fiory () x (¢ |n)

x@OxTpn = Ft,t) = . ;o (272)
P no(n|e~FHn|n)
where Z;‘fzo(nle_ﬁﬁphln) is given by
(o] B (o] ~ 1
-BH _ —nBhG, — hé
n= n=
where
1
fp = —(eﬁhwo ey (2.74)

is the phonon distribution function. We obtain



GOX O = 700D = Y L eindor 275)

n=—o

where

o(F1) = 22| (2fpn + 1)

F [fon(1+ fon)]*2c05(ho(Fr +i/2k,T))|  (276)
Lin = exp[—2%(2fpn + 1)

+ (n@0/2ks )] 1 (222[fon(1 + fy)] ") 2.77)

where, [, refers to the Modified Bessel function of the second kind and
L,n(L_,) represents the spectral weight corresponding to the +n (—n)-th

phonon side band. Eq. (2.70) now reads

Gas(6,6) = [Gag® @ )] OxT @y

=& t’)]el i L, (z)e~inh@ot, (2.78)

n=-—oo

Thus the energy-dependent Green function Gg c(ia) (¢) is given by

G (e) = f |G @] F@ e dr

_ je—12(1+zfp) z In(z)enha‘)oﬁ/z [G‘;éa)(r)]ele—inha‘)oreisrd,[
n=-—oo

[ee]

— Z e—AZ(1+2fp)enhﬁ&)0/21n(Z)f[ég((ia)(l_)]el el (e = nhdo)T 47

n=-—oo



co

Z (z)[c;“a)(e—nhao)]el . (2.79)

n=—oo

[Gr(a)(s)] z can be determined from EOM method within the mean-field
e

approximation (MFA). We obtain
[Gr(a)( )| =8 T ) F 0 T O){ea(,[e] Hal)
e

= (£t F ') Fib(£t Ft) ({cdar ®), [cjw, (" Z Eqnao +

b
+ Z(chll-acda +h.c) (2.80)

=6(xt+t)Fio(xt+t")
X ({Cda'(t)r (8116261 (t") — Ulngy)el (&)
- Z(ch;a, ") + h.c. ))}) (2.81)
%
= 5(+t Ft) + 5,69t t) + T(ng )GV (¢, t) + Ve Gh® (6, 1),

(2.82)

which gives

1+ VG0 (e F nhdso)
[(e + nhw,) — &; — U(ndi)] ’

r(a) (e F nha,) = (2.83)



where Gd(kag(e + nh@,)is the Fourier transform of G;,(,fg(t, t'). We

obtain the EOM for G2 (t,t") in a similar way.

d
i— Gy (e, t") = FiO (e F t'){ca(®), [cf, H]} (2.84)

at’
b

= g6y O () + TGP ) (2.85)

cf ,2 kMo + Z(ch,tacd + h.c)

ko ko

= Fif(xt +t') ({cd(t).

Multiplying by e!E¥®)® and integrating over T, we have after some

algebraic manipulation

r(a)

G g (€ F nhy) = [ GI9 (e F nhd,) (2.86)

(e -

Substituting for G7\? (e F nha,) in the expression of G, (e F nha,),

we obtain

1
[(e F nhdy) — &; — Ulng,) — Zr@)]

r(a) (e F nh@,y) = (2.87)

where 7@ (¢) represents the retarded (advanced) self-energy arising due

to el-ph interaction and hybridization and can be written as

~ 12
r(a) _ |Vk| _ -,
2@(e) = kEZD e o S MO F I, (2.88)



In Eq. (2.87), the real part of yr@ (e) can be absorbed into the onsite

energy of QD. G () can be calculated as follows.

Ga (D) = i(E} (0)&4 (D))
= +i{c}(0)ca(@)er KNOX(D)pn = Gy (1) 79D, (2.89)

The lesser and greater Green’s functions are expanded as

G<>(e) = Z L, (2) G=7 (& + nhd,). (2.90)

n=—oo

The SD function can now be written as

[oe]

Ale) = Z i Ln (2)[G” (e — nhdo) — G<(e + nhdy)].  (291)

n=—oo

To calculate lesser (greater) Green function, we can use the Keldysh
formalism [11]. We can write the Dyson equations for G<>(&) using

Langreth analytical continuation rules,

G<> (&) = Gga(e) 257 (&) Gia(e) (2.92)

with
2=(e) =il [fs(e) + fo(a], (2.93a)
27(e) = —iT [2 = fs(e) = fo ()] (2.93b)

For the symmetric case, we obtain



el
1= [15@ - foenA@)] de, (299)

where A(¢) is given by (Eqn. 2.61). G;t(ia) now reads

~ 1
G (e F nhdy) = —— _____ , (295
aa ¢ o) [(e F nhd,) — &4 — Uing,) T il (295)
and thus A(¢g) reduces to
- 2r
Ae) = z L, (2) — . (2.96)
n=—oo [((s + nh@,y) — &; — U(ndl)) + FZ]
J can be obtained by substituting for A(e) in Eq. (2.94) where
elVy
1+e KT
and
elVy
14+e KT
At zero temperature, we have
2n
AZ A _Az
I'=nmp(0)|Vi|?e™2 ; L, = { We nz0 ,  (299)
0 n<o,

The onsite Correlation term is treated using the Hartree-Fock (HF) MFA.

So, the results obtained by us are expected to be valid away from the



Kondo regime. Now G>(9)(g) and A(e) can be easily determined and
consequently, one can obtain the the current flowing through QD. The
differential conductance is calculated using the following equation

dj

=— 2.1
G v, (2.100)

and spin polarization parameter from:

(]cr_]—cr)

Py _g=—"""7T22,
> Us+J-0)

(2.101)

2.6 Results and Discussions

For simplicity, we consider a single-level QD (with energy ¢; = 0) that
is symmetrically coupled to S and D. Also we measure energy in units of
hwy which is the phonon energy and set I'=0.2,eV, =0,kgT =

0,Awg = 1. In addition, we take r U =5 for major part of our
computations. U = 5 might appear to be a bit large from the point of view
of MFA that is employed here, but as the on-site the Hubbard term is
modified by the polaronic effect to a much smaller effective interaction,
the HF MFA may be a reasonable approach for the current situation. In
addition, it is assumed that the density of electron states of S and D that

participate in transport is constant.

RC [12] have investigated the SD function A for non-zero values of A and
y for B = 0. We have recently examined the SD function for B # 0. We
present our results in Fig. 2. The inset displays the behaviour of the
function A for A = 0 =y when U = 0, and B = 0. Clearly one observes a
Lorentzian behavior with single central resonance peak structure. The

presence of a peak in the SD function indicates an excitation. Fig. 2 also



shows the results of RC obtained for A # 0 and at B = 0. One can see that
in this case, side peaks appear in addition to the central peak due to the
polaronic effect [12]. Our results for B # 0 show that the central peak is
split when B # 0 and the side peaks shift towards left. In the case of
B = 0, the electronic states of QD are spin-degenerate and the magnetic
field removes this spin degeneracy. As a result of the lifting if this spin-

degeneracy, the central peak of the SD function undergoes a splitting.
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Fig. 2 A vs. w for a few values of ugB.

To figure out the role of magnetic field further, we display the spin-
resolved SD functions in Figs. 3 (a-b). Fig. 3(a) depicts how the down-
spin SD function A;(w) varies with w, whereas Fig. 3(b) shows the
behaviour of up-spin SD function A;(w). As shown in Fig. 3(a), as ugB
increases, the peaks of A;(w) increase in height and move to the higher
values of w. The side peaks, however, increase only marginally. It is
observed from Fig. 3(b) that for A;(w) also, peaks grow higher with B but
shift to the lower values of w. However, for up-spin SD function, side

peaks show a sizable increase.
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Fig. 3 Ay and A, vs. w for a few values of ugB.

In Figs. 4(a-b), the behaviour of Ay and A, is shown with the bias voltage
V,, for different B values. The qualitative behavior of A; and A; with V,
is similar in general. At small V},, both A; and A, increase slowly with V,
while at large V), the rate of increase is a little more. The non-Ohmic
effect at large V, is probably responsible for the quicker increase in

A, and A at large V},. We find that though at B = 0, Ay and A, behave
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in the same way, as ugB increases, Ay and A; behave differently. While
A, is found to decrease with increasing ugB, A; is found to increase as
ugB increases. This is due to the magnetic field-induced removal of
degeneracy with respect of electron spin. The down-spin level is raised by

the magnetic field raises while the up-spin level is lowered.



Fig. 5 Ay and A, vs. ugB for a few values of A.

In Fig. 5, we present the behaviour of A; and A, with respect B for a few
A values. As can be seen from Fig. 5(a), for A = 0, A; exhibits a peak-
structure at some specific value of ugB. With increasing A, the peak-width
becomes narrower and the peak moves to the lower B values. Around the
prominent peak, also a few side peaks form. Fig. 5(b) demonstrates that
the behaviour of A; is more or less same as Ay, though now the height of

the main peak decreases as A increases.
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We present in Figs. 6(a-b) the variation of A; and A; with A1 for
ugB = 0.5 and 1.0 to unravel the effect of SD functions on the el-ph
interaction. When B = 0, the behaviour of Ay and A, is similar, but for

non-zero UgB, the qualitative behaviour of A; is different from that of A4,.

Figs. 7 (a-d) show the nature of the variation of the up-spin current J;
with V},. The behaviour for A = 0 is shown in Fig. 7(a) for a few values of

B. When B = 0, J; turns out to be ohmic at low V;, and seems to saturate



asymptotically to a constant at large V. As V), is increased, the Fermi
goes up and this makes it easier for electrons to tunnel from S into QD and
consequently the current increases. However, since the number of
electrons the QD can hold is limited, it is only natural that the current
should saturate if V;,, increases beyond a particular value. The two-fold
spin-degeneracy of the QD-level is lifted in the case of B # 0 and

consequently, the spin-up energy level goes down and spin-down energy
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Fig. 7 J; vs. V,, for different values of ugB .

level goes up. As a result of this, unless V, is sufficiently increased to
bring down the Fermi level of D to the spin-up level of QD, the spin-up
electrons from QD will not be able to tunnel into D and consequently the
spin-up current flowing through the drain channel will be zero. As, with

increase in V,, the Fermi level in D falls below the spin-up electron level



of QD, the spin-up tunnelling current acts more or less in an ohmic
manner, eventually reaching saturation for the same reason as happens for
B = 0. The splitting of QD-level grows as ugB is increased. As a result,
J; remains zero up to a greater V, value. The behavior for A = 0.3 is
shown in Fig. 7(b). The qualitative behaviour of current is same as seen in
Fig.7 (a), save for it is now slightly lower due to the decline in electron
mobility caused by polaron formation. Figs. 7(c) and 7(d) show that at
large A, the decrease in the electron mobility is more significant due to the

polaronic effect.
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Fig. 8 J, vs. V, for different values of ugB .

Figs.8 (a-d) show the behaviour of A both for A =0 and A # 0, for
various pupB values. Again, J, increases with V;, and ultimately reaches
saturation. Of course, this is the expected behavior. As A increases, A is
found to develop shoulders. Khedri et al. [13-16] and Luffe et al. [17] have

examined the appearance of these shoulders.

Fig. 9 provides a comparison between the spin-up and spin-down

currents. One can observe that for A = 0, the value of J; is less than that



of J, up to a particular V},. This has a simple explanation. The magnetic

field lowers the spin-up electron levels while it raises the spin-down
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Fig.9 ] vs. V), for a few A values at ugB = 1.

electron levels, resulting in a lower value of J; due to the reduced
probability of tunnelling of the spin-up electrons from QD to D. For A #
0, the behaviour of the current density appears a bit complex. J; is found
to be higher at lower bias voltages. However, there is a crossover behavior
at a specific value of V}, and J; increases beyond this bias voltage. We do

not have a clear explanation for this strange behaviour.

Figs.10 (a-b) show direct plots of J; and J; vs. B for various damping
coefficients with 4 = 0.6. Fig. 10(a) shows the results for J;, whereas Fig.
10(b) shows those for J;. According to Fig. 10(a), J; initially increases
with increasing magnetic field, but then drops and eventually reaches zero
at a specific magnetic field. Again, the explanation is straightforward. As
B increases, spin-up levels decrease, allowing a larger number of
electrons to participate in conduction and consequently the current flow
increases. However, when the magnetic field reaches a critical value, two

factors inhibit the current. The first is that the accessibility of vacant levels
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Fig. 10 J; and J; vs. ugB for different values of y.

in QD becomes less. The second is that the probability of
electrontunnelling from the QD to D also becomes less. As a consequence,
above a specific magnetic field, the current begins to diminish and finally
vanishes. As one can see from Fig. 10(b), J; monotonically decreases as
ugB increases. As ugB increases, the spin-down levels rise and this
makes the electron tunnelling from S to QD more difficult. This causes the

current to decrease as the magnetic field increases.
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Fig. 11 J; and J, vs A for different values of ugB at eV, = 0.5,y = 0.02.

It is expected that the dissipation of the type considered here should
raise the current. Figures 11(a-b) explicitly display how J; and J; depend
on A for a ugB values. Fig. 11(a) presents the behaviour of J;. The spin-
up electron levels decrease in the presence of a magnetic field, promoting
electron tunnelling. The polaronic interaction has two effects. One is that
it lowers the electronic level causing an enhancement in the current and
secondly, it limits the mobility owing to polaron formation. As a result,

numerous competing processes lead to the most remarkable structure in Jj.



The polaronic interaction gives rise to a factor: A2 e in J+. So at small
values of 4, A2 being the dominant factor, J; undergoes a quadratic rise,
whereas at large A, J; is expected to fall in a Gaussian way. Thus, J;
exhibits a maximum in J; with respect to A. The magnetic field shifts up
the spin-down electron level. As a result, in this scenario, one would
expect J; toreduce as A is increased. Fig. 12 depicts 3D plots of J; and ]
with A and ugB .

Fig. 12 Three dimensional plots of Spin-polarized current densities for eV, = 0.5 as a function of both 4

and ugB.



Figs. 13 and 14 show how the differential conductance (G) varies with
Vp. The inset in Fig. 13(a) depicts the variation for A =y = B =0,
whereas the main figure shows the behaviour for A = 0.6 and y = 0.02

for a few ugB values. For A # 0, one can see that even for B = 0, the

uBB=I] 2

(b) — A=0.6

Fig. 13 G/G, Vs. eV}, : (a) for different B values with A = 0.6. (Inset: A =y = B = 0); (b) for
different values of A with ugB = 0.5, y = 0.



there is a splitting in the peak. As ugB increases, splitting occurs in each
peak. Also the distance between the two double peak structures increases.
Because of the el-ph interaction, a few side peaks arise at higher values of
V. As previously said, each peak signals the probability of an excitation.
As a result, as ugB increases, the states accessible for participation in
conduction process also increases in a certain range of V,. Fig. 13(b)

depicts the behaviour of G with V}, for various A-values in the case when
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Fig.14 G; and G, vs. eV, for a few B vaues at A = 0.6,y = 0.02.



there is no dissipation. As expected, G is found to decrease as A
increases. Figs. 14(a-b) show the changes a magnetic field brings about
in the graph of spin-polarised differential conductances (Gy and G))

versus V.

Fig. 15 G/Gy Vs. ugB: (a) for a few values of y with A = 0.5 and eV, = 0.5 (inset G/G,
vs ugB for A =y = 0 and eV, = 0.5); (b) for a few values of A with y = 0 and eV, = 0.5.

In Fig. 15, we study the direct effect of the magnetic field on G. Fig.



15(a) shows the behaviour for different y values with A = 0.5. The inset in
the figure shows that for A =y = 0, G reduces as B increases, which is
expected as the magnetic field has a localizing effect. However, G also
exhibits a small shoulder in a specific window of the magnetic field. In the
case of y # 0, G generally decreases and the decrease becomes more rapid

as ugB increases. It is interesting to mention that the shoulder appearing
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Fig.16 G; and G Vs. ugB for a few values of y at A = 0.6 and eV}, = 0.5.



in the absence of el-ph interaction changes into a peak for 4 # 0 and the
height of the peak grows as y is increased. In Fig 15(b), we plot G versus
ugB for A =0.0,0.0.6 and 0.8 and y = 0. As A increases, we find that the
shoulder changes into a peak structure. G produces two peaks for 4 = 0.8.
We show in Figs. 16 (a-b) the behaviour of G; and G, with respect to
ugB for a few values of y. One can explain the behavior using Figs. 7 and
8. We investigate the el-ph coupling effect on Gy and G, in Figs. 17(a-b).

The observed behaviour can be understood in view of Fig. 11.
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Fig. 17 G; and G, Vs. A for a few values of ugB atel}, = 0.5,y = 0.02



In Fig. 18(a), we study the behaviour of the spin polarisation parameter
P, _s with V,, for a few values of B values for non-zero A and y. At low
values of ugB, P;_, first grows with V},, reaches a maximum and then
decreases to zero. At higher values of ugB too, P; _, first increases with
V, but finally bends over and reaches a saturation value that is dependent
of ugB . Fig. 18(b) reveals that as A increases, P, _, diminishes at small V},
though beyond a certain V},, P;_, grows with A. This gives rise to a

crossing behaviour.
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Fig. 18 P, _, vs. eV}: (a) for a few values of ugB with 1 = 0.5 & y = 0.02; (b) for a few values
of AwithuygB = 3 & y =0.02.



Fig. 19 shows the behaviour of P, _; with respect to ugB . In the case
of A =0= vy, as ugB increases, P, _, first rises with ugpB , assumes a
maximum value and then reduces to constant value. For A # 0, P, _,
behaves in the same way initially and exhibits a maximum but as ugB
increases further, P;_, eventually falls to zero. Fig. 19(b) depicts the
behaviour of P;_; with ugB for various values of y. The qualitative

behaviour in this case turns out to be essentially similar to that seen in the
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Fig. 19 P, _; Vs. ugB: (a) for a few values of A with y = 0and eV, = 0.5 ; (b) for a few
values of y with A = 0.5 and eV}, = 0.5.



Py _s —ugB - graphs for A # 0. Also, P,_, decreases as damping

increases.

Fig. 20 displays the behavior of J/], as a function of the mid-voltage
eV, for some ugB values withA =1 and U = 5. In the inset, we show
the variation of J/], for U=0,B=0,¢eV, =36 and A=0and 1 as
obtained by Chen et al. [18]. It is clear that at A = 0, J /], has a asymmetric
plateau-like structure and the el-ph coupling reduces J/J,, and induces a
wavy structure in the plateau and ] /], becomes symmetric around V;,,. The
main figure shows that for U # 0, ]/], has a peak structure which shifts to
the positive mid-voltage side as B increases. Furthermore, ] /], is now zero

for negative V,.
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Fig. 20 J/J, vs eV, at U =5,eV, = 3.6 for different B values. (Inset: J/J, vs eV, at U =
0, eV, = 3.6 and B = 0).

We plot G/Gy vs. V,, with U =5 in the absence of a magnetic field in
Fig. 21(a). We also display the results for U =0, and A=0and 1 as
obtained by Chen et al. [18] to see how el-el interaction affects the results.
For A = 0, G exhibits two peaks appearing asymmetrically around V,,, = 0.

The peaks get shorter and sharper at A = 1 and symmetric with },, = 0. A



few symmetric side-peaks can also be seen. When U increases to U = 5,
peak-heights reduce and the peaks move to right hand side of eV,, = 0.
Furthermore, G reduces to zero for negative V,,, and also for small positive
values of V. Fig. 21(b) shows the plot of G/G, with V, for A =1,
U =5, and two values of B. We see a lot of peaks at uzB = 0.6. Peak

structures change when ugB approaches 1.
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Fig21 G/Ggy Vs.eVy,: (a) for ugB =0,eV, =3.6,U =0and 5, 1 =0 and 1 ; (b) for different
values of ugB atU =5, eV, = 3.6.

Fig. 22 shows the contour diagram of J in the (Vp-Vy,) - plane for a few sets
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Fig. 22 Map of J in the Vy, -V, —space : (a) for A =1, ugB =1land U =0 ;b) for A=1,
B=0andU =5;()forA=1,usB =1land U =5.

of parameter values such as: A=1, uygB =1, U=0; A=1, uyzgB =0,
U=5and A =1,ugB =1, U =5. It is useful to make a comparison of Fig.



22 (a) with the similar figure in [18]. This shows that the magnetic moves J to

the left on the Vy, - axis bringing in symmetry in J around Vp, = 0. It can also

Fig 23 Map of G in (V},-V,,)-space for: (a) A=1,ugB =1land=0;(M) A=1,B =0 and
U=5.;() A=1,ugB =1andU =5.



be noticed that plateaus appear corresponding to different values of J. Fig.
22(b) shows that | decreases for U # 0. Furthermore, J is non-zero only
for positive Vy,. The J-map for non-zero ugB and A is shown in Fig. 22
(c). As expected, now the plateau heights come down and the J-map shifts

to the right on the V,, axis.

Fig. 23 shows the contour plot of G in the (V,—-1V,)—
plane for a few sets of parameters: A = 1,ugB =1, U=0; A=1,
B=0,U=5 and A=1, uygB =1, U =5. When Fig. 23 (a) is
compared to the similar map in [18], it becomes clear that magnetic field
splits each peak in the G —map into two. The role of Coulomb correlation
on the contour plot of G is depicted in Fig. 23 (b). The el-el interaction
clearly reduces the differential conductance. This map also shows some
chaotic behaviour for V,,, > 0. The origin of this complicated behaviour is,
however, not clear. Figure 23(c) presents the effect of both e-e interaction and
the magnetic field along with the el-ph interaction. Fig. 22(c) contains more

general information than Figs. 22(a) and 22(b).

2.7 Conclusion

In this chapter, we have presented our work on the effect of el-ph
interaction, onsite Coulomb correlation, magnetic field, and damping on
transport properties of an SMT system. The system has been modeled by
the Anderson-Holstein-Caldeira-Leggett Hamiltonian. The dissipative
effect is caused by the linear coupling between the lattice mode the QD
and substrate phonons according to the Caldeira-Leggett model and has
been approximately addressed by a canonical transformation. This reduces

the QD phonon frequency, which is precisely the effect of dissipation. The



Holstein el-ph Hamiltonian has been dealt with by the Lang-Firsov
method and averaging with respect to the zero-phonon state. We have used
the Keldysh Green function method to calculate the spectral function A,
current density ], differential conductance G, and spin polarization
parameter P;_, and the effect of el-ph coupling, magnetic field, and

dissipation on the transport properties have been investigated.

The spin degeneracy of the QD energy levels is removed by the magnetic
field ugB. As a result, the electron levels of QD are split, and
consequently SD functions develop peaks. Both the el-ph coupling and
magnetic field reduce J;. However, J; increases with ugB up to a critical

ugB and then drops to zero. J; versus A shows a similar behaviour.

The spin-split conductances Gy and G; have been shown to decrease as B
is increased. As a function of A, however, the behaviour of G; and G is
opposite. It is also observed that el-ph interaction induces G; to develop

peaks while it suppress them in G;.

At small pgB, P;_,;, as a function of Vy, exhibits a peak and then falls
off to zero whereas at large ugB, P;_, initially increases with V}, and
eventually saturates. Furthermore, as pgB increases, P; _; decreases and
finally drops to zero. It has been shown that the phononic dissipation
considered in this chapter enhances J;, /, and P; _,. We have also shown
that the number of peaks in the graph of G versus V,,, increases with
ugB due to spin-splitting. The present work suggests that the SMT device

considered here can have potential applications in spin-filtering device.



2.8 References

10

11

Costi. T. A. Magnetotransport through a strongly interacting quantum dot.
Phys. Rev. B 64, 241310(R) (2001).

Bing. D and Lei. X. L. Kondo-type transport through a quantum dot under
magnetic fields. Phys. Rev. B 63, 235306(2001).

Caldeira. A. O & Leggett. A. J. Quantum tunneling in dissipative system.
Ann. Phys. 149, 374 (1983).

Cornaglia. P. S & Grempel. D. R. Strongly correlated regimes in a double
quantum dot device. Phys. Rev. B 71, 245326—6(2005).

Hui. P. Spin-polarized current diode effect of a quantum dot in a rotating
magnetic field. Phys. scr. 78, 065703(2008).

Weiss. U, Quantum Dissipative systems (University of Stuttgart, 1999).

Lang. I. G & Firsov. Yu. A. Kinetic theory of semiconductors with low
mobility. Sov. Phys. JETP 16, 1301 (1962).

Jauho. A. P, Wingreen. N. S & Meir. Y. Time-dependent transport in
interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50,
5528 (1994).

Meir. Y, Wingreen. N. S and Lee. P. A. Transport through a strongly
interacting electron system: Theory of periodic conductance oscillations.
Phys. Rev. Lett. 66, 3048 (1991).

Swirkowicz. R et al., Nonequilibrium Kondo effect in quantum dots. Phys.
Rev. B 68, 195318 (2003).

Keldysh. L. V. Diagram technique for nonequilibrium processes. Sov. Phys.
JETP 20, 1018 (1965).



12

13

14

15

16

17

18

Narasimha Raju. Ch. and Ashok. C. Quantum dissipative effects on non-
equilibrium transport through a single-molecular transistor: The Anderson-
Holstein-Caldeira-Leggett model. Scientific Reports. 6, 18511 (2016).

Khedri. A Costi. T.A, Meden V. Exponential and power-law renormalization
in phonon-assisted tunneling, Phys. Rev.B 96, 195155 (2017).

Khedri. A Costi. T.A, Meden V. Influence of phonon-assisted tunneling on
the linear thermoelectric transport through molecular quantum dots, Phys.
Rev.B 96, 195156 (2017).

Khedri. A Costi. T.A, Meden V. Nonequilibrium thermoelectric transport
through vibrating molecular quantum dots, Phys. Rev.B 98, 195138 (2018).

Keldysh. L. V. Diagram technique for nonequilibrium processes. Sov. Phys.
JETP 20, 1018-1026 (1965).

Luffe. M. C., Koch, J. & von Oppen, F. Theory of vibrational absorption
sidebands in the Coulomb-blocked regime of singlemolecular transistors.
Phys. Rev. B 77, 125306-7 (2008).

Chen. Z. Z, Li. R, Zhu B. F. Effects of electron-phonon interaction on
nonequilibrium transport through a single-molecule transistor. Phys, Rev. B
71, 165324 (2005).



Chapter 3

Quantum transport in a single molecular transistor
at finite temperature

3.1 Introduction

In recent years, several researchers [1-3] have investigated
experimentally the temperature dependent transport in SMT. Theoretical
research, on the other hand, has been scarce [4]. In this work, our aim is to
to study the effect of temperature on transport properties in an SMT
device. We examine the same SMT system as introduced in Chapter 1. As
before, we model the system by AHCL Hamiltonian and study the non-

equilibrium quantum transport using Keldysh Green function approach.

3.2 The Model

The SMT device to be studied in this chapter is shown schematically in

Fig. 1. The system is modelled by the Hamiltonian

H = HS,D + HQD + Hh + HQD—ph + HQD—ep + HB + HM



2 ExNia Z EgNge + Ungng, + Z Vk(ckacd(r + h.c)
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Fig.1 Schematic diagram of an SMT device

As in Chapter 2, we first use a simple canonical transformation to
partially decouple the QD phonon and the bath oscillators and then deal
with the el-ph coupling using the Lang-firsov transformation. The

transformed Hamiltonian of the SMT system then reads

H Z Ex Ngo + Z Sd Ngo + UTld Tnd —1l + h(l)ob-l-b + Z(chkacdo' + h. C)

ko
(3.2)

where the system parameters get renormalized as



&, =4 — eV — A2hw,, (3.3)
U=U-2hwyA? (3.4)

Vi =V = Vero-pT) (3.5)

3.2 Current density and Spectral density function:

As shown in Chapter 2, the tunneling current [5-7] flowing through QD is
given by

J= %j({ﬂ(wﬁs — fo(@HIA(W) + (Ts = T5)6(w)) dw, (3.6)
where

Isp (&) = 2mQs p (gk)Vle:; 3.7)

I7k referring to the phonon-average of ¥, and Ps(p) the density of states in
S(D), fspy(w) refers to the FD distribution in S (D) which has the

following expression

1
[exp[(usp — @)/kpT] +1]

fsp(@) = (3.8)

Us p being the chemical potential of S(D) and related to Vg and 1, as:

_ (us + 1p)

- (3.9)

eVy = (us — up), eVy

A(w) is the SD function which is related to Green’s functions as follows:

A(w) = i[Ggq(w) — Gga(w)] = i[67(w) — G (w)],  (3.10)



where Ggéa) (w) represents the energy-dependent retarded (advanced)

Green function and G;d(>)(w) is the (greater) Green function
corresponding to the QD electron. All the afore-mentioned quantities
including the Green functions have been introduced in Chapter 2. These
Green functions can be derived using EOM as we have shown in Chapter

2. We calculate the mean occupancy on QD using the equation

(3.11)

_ [(fsTs + fpIp) Alw)]
Ngo —fdw T .

For mathematical simplicity, we consider symmetric coupling of QD with

leads. Then we may write:

[Is(w) + Ip(w))] _

INw) = 5

(3.12)
where we approximate [p) by its n-phonon average. Thus we have

Tspy = 2mp(0) |V |? el=4% (fpnt1/2)] ) (3.13)

where
1

fph = [e(hao/kBT) —1]

(3.14)

denotes the phonon distribution at a specific temperature. The spectral

function of SMT is obtained as

(0.0)

AW) = Y il @67 (@—nBy) — G<(w +ndy)]

n=-—oo

= i Ly (2)

n=—oo

2r

. (3.15)

(0 Fnay—&; — lpf(rzd,_o.))2 + I'2



where n denotes the number of phonons,

[ = re=*(2fpn+1) (3.16)

and
Ly, = oG] 2[fn(1+ £)]"?), BA7)

where I, is the Modified Bessel function and L., are the spectral weights
of the +nth and —nth phonon side bands as indicated in [8]. A(w) is

calculated and consequently J is determined.

3.3 Differential conductance (G)

G is defined as: G = dJ/dV,,. Straight-forward calculation gives

21" * o)
G = ez—hnzoo Lin f_mdan (w)A(w — nwy), (3.18)
where
1
Fu(@) = S (@)1 = (@)} + fo(@)}1 — fo@))]
B
X |1+ > (9_% — D[fs(w —nay) + fp(w — nwy)]

1 _ o
2 © T = D) ~ o)

X [fs(w —n@g){1 — fo(w —n@y)} — fp(w —ndy)

x {1 - fp(w—nag)}l. (3.19)

_|_




3.4 Results and Discussions

We set the phonon energy Aw, as the scale of energy in our numerical
computation and for the SMT parameters, we set the following values:
gg=0,el;=0 TI=02 eV, = 0.5 U=3 (unless otherwise
specified). To understand the effect of temperature on the transport
properties of the SMT device, we calculate the SD function A, Current
density J and the differential conductance G at different values of T. Fig.

2 depicts the behavior of the SD function A(w) with energy w at A = 0.6,

10 10 I k_ T=0
= § B
%5 g - -k T=04
. 813 gt k, T=0.6]
SN i k_T=0.8
s 6F 4202 401 T B
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Fig.2 A(w)/A(0) vs. w for different values of kgT .

eV, = 0.5, eV}, = 2.5. The results for A = 0 and kgT = 0 are shown in
the inset which clearly shows the Lorentzian peak at w = 0. The main
graph in Fig. 2 shows the behavior of A(w) with respect to w for several T
values with A # 0. The figure demonstrates that when the el-ph interaction
is activated at T =0, the polaronic effect renormalizes the SMT
parameters, causing the central peak in A(w) to redshift and side peaks to
emerge at w + n@, in it. The emergence of sidebands represents the

excitation of phonons. An electron can tunnel into or out of QD by



emitting or absorbing a phonon, which appears as side bands in A. The
probability of occurrence of higher-order phonon processes is smaller and
therefore the side-band heights fall with increasing energy. At finite
temperature, a more fascinating situation emerges. At T # 0, the central
peak sharpens, becomes higher and goes through a blue shift. Also, as T
increases, the side bands diminish in the region: w < 0 and grow in the

region: w > 0.

A(w)/A(0)

Fig.4 L,, vs. A for afew T values with y = 0.02 .



Fig. 3 depicts the behavior of A(w) with w at kzT = 0.6 for A = 0.6 and
several y values. As dissipation increases, the height of the peak in A(w)
decreases and its width broadens. So we conclude that the dissipation

reduces the occupancy of the phonon side-bands as stated in [9, 10].

In [8], nature of the spectral weight (L,) has been demonstrated at
T = 0K for various n. Fig. 4 presents the behaviour of L,, (n = 1) with A
for a few T values. L, grows in height with rising T until some critical
value, after which the T- dependence of L,, appears to be insignificant. As
a function A, L,, first increases, reaches a peak at some A, and then drops in
a smooth way. We have observed (though we have not shown here) that
for higher values of n, though the qualitative behavior remains the same,

the quantitative value of L,, decreases quite significantly.

Fig. 5 L,, vs. kgT for a few y values with 4 = 0.6.

We plot L, versus T for various y in Fig.5 to see the effect of damping

effect at n = 1. It is evident that as T increases, L; grows rapidly and



reaches a peak value at some T, and finally declines with a further rise in
T. One can also see that up to a certain T, dissipation enhances L4, albeit

marginally and above a certain T, dissipation reduces L.

Fig. 6 J/], vs. eV, for different values of kgT.

The behavior of current density J with bias voltage Vg for a specific
value of A is plotted at different values of T in Fig. 6. The inset which
gives the behaviour for A = T =y = 0, suggests that J linearly increases
with Vp and finally saturates. According to main graph, as T increases,
decreases. We present in Fig.7 the plot of | versus Vg for various A
values. The el-ph interaction reduces the current density at a finite
temperature due to thepolaronic effect. The reduction is, however,
marginal for the el-ph coupling range studied in this work. To understand
how dissipation influences behaviour of J with respect to Vg at a finite
temperature, we plot | versus Vp for various y values with A = 0.6 and

kgT = 0.6 in Fig.8. J increases just marginally with increasing y.



Fig.7 /], vs. eV, for different values of A .

Fig.8 /], vs eV, for different values of y.

Fig. 9 presents the plot for ] versus A. The el-ph interaction reduces the
current density and at some critical A, the current density reaches to zero.
The graph also indicates that when T increases, J reduces. Fig. 10 depicts
directly how J varies with T for various values of the el-ph interaction
strength A. As one would normally expect, /] is found to decrease with

increasing T and A. This is consistent with Figs. 6 and 7.



J!Ju

Fig.10/ /]y vs kgT for a few A values.

Fig. 11 presents the behaviour of G with Vp at various T values. The plot
at T = 0K for A =0 and y = 0 is shown in the inset. Obviously, for =
Yy =T =0, G has a central symmetric peak. The main graph reveals that
because of the el-ph coupling, the central peak splits resulting in two
symmetric peaks and a few side bands are produced. Temperature appears

to reduce G in general.



G/G 0

G/G 0

Fig. 12 G /G, vs. A for different values of kgT.

The behaviour of G with A is displayed in Fig. 12 at various T values. As
can be seen from the figure, at T = 0K, as 4 is increased from zero, G first
decreases and develops a minimum and then exhibits a peak and
eventually falls off to zero. It is worth noting that when the T is made
finite, the behavior of G changes qualitatively. To be more explicit, G
displays a double-peak structure, one at (say) A; and the other at (say) A,,
where A, > A; . The peak at A, is significantly broader than the peak at A,.



Also, as T increases, A; also increases while A, decreases. Furthermore, as
T increases, the second peak decreases in height, whereas the first peak
appears to remain unchanged. At small A, G reduces with increasing

temperature.

Fig. 13 G /G, vs. eV, for different values of kpT .

Fig. 13 shows the plot of G versus Vp for various T values. We observe
that with increase in T, G shows a decreasing nature. However, as T
increases, the side bands vanish altogether, and we observe only a single
broad maximum in the G — eV}, curves. With further increase in T, the

nature of the curves becomes quite flat and hardly depends on Vj,.

Fig. 14 shows the behavior of G with V3 at T = 0 for a few A values
The figure displays a peak at V, =0 for A = 0. For non-zero A, the
Vg = 0 —peak splits into two peaks, resulting in a minimum at Vg = 0.
With increase in A, the heights of the peaks diminish and the distance
between them increases. Also the minimum V};, = 0 becomes broader and
comes down. One can observe that for A = 0.8, G continues to remain zero

at low V}, around V,, = 0.
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G/G 0

Fig. 15 G /Gy vs. eV, for different values of A.

Fig. 15 displays the variation of G with V,, at a finite temperature (kgT =
0.6). Now the A = 0 —peak of G is also split and G has the value zero over
a wider window of V;, on both sides of V;, = 0. At low A, as we increase A,
the peaks get shorter and closer, and the range of V;,, —values for which G
remains zero, reduces. However, as A exceeds a certain value, double-peak
pattern ceases to exist and single broad maximum with the maximum at
V, = 0, appears. As A is further increased, an interesting structure with a

fat maximum around V;, = 0 is observed.



We demonstrate in Fig. 16, the nature of variation of G with V,, for
A#0 and U # 0, for several values of T. Evidently, G and its peak
diminish with increase in T. It is found that when the temperature rises,
the peaks move to the positive side. At T # 0, peaks, in general, decreases.

As aresult, as temperature rises, the differential conductance decreases.
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Fig. 16 G /Gy vs eV, for afew T values.
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Fig. 17 G/G, vs kgT for a few A values.



To find the effect of T on G more clearly, we present our results of G
directly with respect to T in Fig. 17 for various A values. At 1 = 0.4, we
see that as a function of T, G first rises and exhibits a peak and finally
drops continuously with T. As A increases, the peak becomes broader in
width and moves in the direction in which T increases. A careful
examination of the nature of variation of G with T and A suggests that the

behaviour is dependent on the range of T or A.
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Fig. 18 3D graphs for (a) J /], vs. kgT and 4; (b) G/Gy vs kgT and A (at eV, = 2.5).

Fig. 18 displays the 3D diagrams of / and G as a function of T and A,

while Figs. 19 and 20 present the contour plots of J and G as a function



of V}, and V|, respectively at different values of T. Figs. 19 and 20 show
that though the boundary area of the J-curves decrease with increasing T ,

that of the G-curves appear to broaden with temperature.
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Fig. 19 Contour plot J in (Vy -V, ) — plane with A = 0.6 and U = 3 for (a) kgT = 0.4 ; (b) kgT =
0.6 ; (c) kgT = 0.8.
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Fig. 20 Contour plot of G in (V -V,,) — plane with A = 0.6 and U = 3 for (a) kzT = 0.4; (b)
kgT =0.6; (c) kgT = 0.8.



3.5 Conclusion

In this chapter, we have investigated the quantum dissipative effect on the
electronic transport properties of an SMT device at finite temperature in
the presence of el-el and el-ph interaction. The interaction of the QD
phonon with the phonons of the substrate, which functions as a heat
reservoir, causes the dissipative effect. The QD phonon interacts with the
phonons of the substrate, according to the Caldeira-Leggett model. This
interaction produces quantum dissipation, which has been approximately
addressed by a canonical transformation. This led to the renormalization
of the frequency of the QD phonon. The el-ph interaction term has been
separated using the conventional Lang-Firsov transformation followed by
an averaging with respect to the zero-phonon state. Finally, the transport
parameters have been calculated using the Keldysh technique and the
equation of motion method. The impact of temperature, damping rate, and
el-ph interaction on the spectral function, current density, and differential
conductance has been explored. The quantum dissipative effects on the
spectral weight have also investigated at finite temperature. It has been
discovered that as the damping rate increases, the spectral weight also
increases. It is found that the damping rate enhances the current density at
finite temperature but not as much as it does at zero temperatures. Also the
current density decreases with increasing el-ph interaction and
temperature, and the differential conductance follows the same behaviour.
In the presence of an external magnetic field or spin-orbit interactions, this

system can be utilised as a spin filter.
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Chapter 4

Tunneling conductance of electron spin across a
metal-semiconductor junction with Rashba and
Dresselhaus spin-orbit interactions

4.1 Introduction

The Rashba and Dresselhaus spin-orbit interactions (SOI), which have a
significant influence on the properties of nano-structures, have paved the
way for a new research frontier in semiconductor nanotechnology called
Spintronics [1-3]. This area was initiated by Datta and Das through their
pioneering work on the spin-field-effect transistor [4, 5]. Since then, a
significant number of studies on the impact of spin-orbit interaction on the
energy spectrum and impurity states in low-dimensional systems have
been reported in the literature [6-19]. The SOI effect on persistent current
in quantum rings has recently been explored [20, 21]. However, the
fundamental interest in spintronics lies on the transport of electron spins
and in this context, a reliable source of spin-polarized electron generator is
required [22-24]. Spin polarisation can be accomplished using a variety of
sources, such as magnetic semiconductors [25, 26], ferromagnetic-metal
interfaces [27], ferromagnetic-superconducting interfaces [28, 29],
graphene-based spin filters [30-32], and so on. However, spin filters based

on hetero-structures [33-35] have some advantages. For example, since



high-quality heterostructures can be easily manufactured using the modern
fabrication techniques, it is easier to have high-quality spin-filters through
this approach. Spin polarizability in semiconductor devices can be
achieved by utilising the zero-field spin splitting caused by Rashba SOI
(RSOI) and Dresselhaus SOI (DSOI) [36-38].

Koga et al. [39] have conducted the first theoretical investigation on the
role of SOI in spin-filtering applications. Khodas et al. [40] have
developed an alternative approach for producing spin currents. They have
used the spin-orbit interaction (SOI) effect to cause electron polarisation in
nonmagnetic semiconductor heterostructures. Dargys [41-43] have
explored the phenomenon of electron reflection by an infinite barrier in a
two-dimensional device. Using Clifford (geometric) algebra, they have
discovered that under certain conditions for the angle of incidence, SOI
results in double refraction [44] for the incident electrons. Recently, we
have extended the works of Khodas et al. and Dargys to investigate the
refraction and reflection of electrons over a metal/semiconductor junction
where the semiconductor material is a semi-infinite two-dimensional
electron gas (2DEG) with non-zero RSOI and DSOI. Following
Srisongmuang et al. [45, 46], we have calculated the zero-temperature
current density and differential conductance. The most important finding
of this work is that the inclusion of DSOI makes the spin-filtering effect

much stronger. In this chapter we shall present the results of this work.

4.2 The Model

We consider an infinite two-dimensional (2D) system in the x — y plane,

where a metallic 2D lead fills the region x < 0 and a 2D



<
k sin 6;
S
w
+
=

k sin 6;

k, =
f_J_“\
2 N\
kv

e
P
N

Yo ky = k™ cos 6,,.-

Metal (Free electrons) 0 Semiconductor (Rashba and
Dresselhaus spin-orbit interactions)

Fig. 1 Schematic sketch of the system

semiconductor system with RSOI and DSOI occupies the region x > 0. At
x = 0, the two materials are separated by an interface. The system is
schematically described in Fig. 1. The system Hamiltonian H can be

represented as
H = HI + HII (4‘1)

where Hj, the free-electron Hamiltonian in the metallic region with the

eigenfunction Y and energy &, is given by

_pL

H_ )
'"2m  2m

for —o0 <x <0, (4.2)

and Hyj is the Hamiltonian for an electron in the semiconductor area with

both RSOI and DSOI in the presence of a perpendicular electric field and



a barrier V,, with the appropriate eigenfunction ;; and energy E. The
Thomas term (Hy) of the Dirac theory that provides in general the spin-

orbit interaction is given by

eha.(E X p)

H. =
T 4m?2c2

(4.3)

When an electric field of strength E is applied in the z direction, i.e.,
E = E Z, the system inversion symmetry is broken at the surface, and the
ensuing SOI or Hy corresponds to RSOI. We denote this interaction

Hamiltonian by Hp which can be written as

ehoE.(Z X p) a
Hp = T 4m2cz =- 7 (prx - pry) . (4.4)
where
_ eh’E c
T amec? ®)

denotes the RSOI strength. DSOI occurs in heterostructures with bulk

inversion asymmetry and is described by the Hamiltonian Hp, :

Hp = '[_;(O-xpx - pry) . (4.6)

Hjy; 1s given by:

2 2
p p
Hu:ﬁ*‘ﬁ*‘HR'*'HD"'VO for—oo<x<0 . (4.7)



4.3 Formulation

The Schrodinger equations for regions I and II are given by
Hyyy = &y (4.8)
Hyppy = Eyy (4.9)
The energy eigenvalue in region I is given by:

_ hA(kZ+k3)  h2k?

Ex > 5 (4.10)
and the corresponding wave function is given as
1 . b .
Wy = ﬁ [ﬂ elillxx+kyy) 4 [bI] e ~ikxx=kyy) (4.11)

where the first term presents the incoming wave with equal probability
amplitudes of up-spin and down-spin electrons, and the second term
represents to the reflected wave with by and b,referring to the spin-up and
spin-down probability amplitudes Because the system is translationally
symmetric along the y axis, the y — th components of the wave vector for
up-spin and down-spin electrons are equal. However, in the x-direction,
they can differ. The wave function of the electron in region II can be

written as
l/)II :Allei(kxx+kyy) _l_BHe—i(kxx—kyy) ) (412)

which on substituting in Eq. (9) leads to the following matrix equation:



™

AII
@

AII

€Y
Ap

=F
()
AII

o (k"’ky)] = (E-Vy)

f*(kx' ky) €k

where

f(ky ky) = —(aky, + Bky) — i(ak, + Bk,),
We obtain a similar equation for (BI(ID, BI(IZ)). We now define

Yi = ak, + Bk, = (asin by + S cos )k,

8, = aky + Bk, = (acos b + fsinb)k
so that we can write
YE + 6 = k*[a? + B? + 4af sinB), cos 6] .

Defining

o) acosB, + BsinB,
¢ =tan™! (—k> =tan~! < +h k) )

Vi asin 8, + f cos 6,

we can write

Yt id, = /(y;? +67) etk

™

AII
@

AII

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

and finally, we obtain two solutions for the energy of the electron in the

region /] as:



Ek =&+ VO + k/l(@,’c) , (420)

where
/ 1 2 2\1/2 2 2 ; ! !
AOy) = E(yk +6;)* = |a?+ %+ 4af sinf; cosb;, . (4.21)
Substituting
thZ
= ) 4.22
€k om ( )
in Eq. (20), we get a quadratic equation in k:
, , 2m , 2m
k* + ﬁl(ek)k — 2z (Ex=V)=0. (4.23)

Solving the above equation, we get two solutions for k, one positive and

the other negative. We choose the positive solution:

k =

7 %) ne (4.24)

ma(6,) j (m(e,;))z 2m(E, — V)
- + + .
Eq. (20) demonstrates that for a given k, Ej, has two values depending on
whether the positive or negative sign in Eq. (20) is used. The wave vector
corresponding to the positive sign is represented as k* whereas the wave
vector corresponding to the negative sign is denoted as k~. Thus we can

write

* 5 - = (4.25)

. _ _mz(e,;i) N \/ (m/l(e,;i)>2 N 2m(E .+ — Vo)'



Each k in the preceding equations for the semiconductor area can be
replaced by k* and these two wave vectors form two spin-split refracted
waves with wave vectors k* and k™. As there is no reflection in the

semiconductor region, we have:

BV =B® =0, (4.26)

and as a result, we get
, oy L ,
Yi(x,y) = [A(l) _ —l¢> +] ikix +A§IZ) [ellk ]elk"x] elkyy (4.27)

Using the boundary conditions:

ey _ [9¥u(x.y) (x )
Y1(0.y) = Yu(0,y) ; I I 3 (4.28)
and taking the wave vector at the boundary and defining
ky
tanf = — (4.29)
A2
we get
o sin
sinf, s+ = - (4.30)

where the refractive indices for the two refracted waves are n,+ and ng-. The

projection of the wave vector on to the boundary between the two media (i.e.,

at x = 0) should be conserved and so we have

kisin®; = k*sinf,.



s _ (k*\ _ sing;

Thet = k; _sinEII’CJ_r

6", = sin (X sing 4.31
= 0,+ =sin 7z ) sinbig . (4.31)

The wave vector corresponding to the metallic region is denoted by k; in
the above equations. Solving Egs. (20), (21), (25) and (31) self-
consistently, we obtain k* and the related energies from (20). As the
incident beam gets divided into two refracted beams in region II, there will

be two critical angles, one for each refracted wave. As a result, we have

+(E
N+ = sin 6F = kJri—l(Z)
1
i a(® {(mA (%))2 +2m (Ep: (3) = Vo }2
_F <2_ek) 2 4 — . (432)
hZ

Using the boundary conditions for i; and y;;, we obtain

V2 (7P —1) (4.33)
T A+ ki k) (e7k+ +e-idn-) '

2@ _ V2 (e7'v” —1)
T A+ ki /ky) (e7x+ + emidhim)

(4.34)

B V2 (1—eix)
C Atk /R (14 el —01))

by



\/E (1 + el¢k+)
(1 + ki /ky) (1 + i+ —di- )) \/— (4.35)

vz (1—ei9e)

b, = (1+k}/k,) (1 + ei(¢k+—¢k—))

V2 (1+e ‘¢k+) 2
(1+k/kx)(1+el(¢k+ ¢k)) \/— (4-36)

Using Egs. (33-36), one can write the reflection and refraction coefficients as

Ryy = 2|by, )% (4.37)
ot a2)|?
Ty = 2(ki /) |43 (4.38)

where the pre-factor 2 corresponds to two spin orientations for the un-
polarized incident electron. The current densities at zero temperature are

are given by the following expressions [40]:

JET W) =, J dE jn/z do; cosb; ’ ( )(TT) (4.39a)
/2

Refr(V) = Jo J dE .[TT/Z do; cosb; ’ ( )(Ti) (4.39b)
/2

Reﬂ(V) = ]"J dE jﬂ/Z d@; cosb; ’ ( )(RT) (4-390)
/2

JRN vy = fof dEf / do; cosb; /1+(i) (R). (439d)
/2



The differential conductance

aj(V)
G=|—— 4.40
[ = (4.40)
in the semiconductor region is obtained as [40]:
/2 eV
GL(V) = G, f d6; cos b; 1+(—) (1)), (4.41)
—-1/2 EF
with
_ eAkp 442
°7 2mh (4-42)
and
_ e Ak 4.43
°" 2mh (4.43)

where A represents the area of the metallic region, 6,, gives the maximum
possible incident angle, Er denotes the Fermi energy, and eV is the

applied voltage. Finally, we define the spin polarization current as:

' =]T -
T h+

(4.44)

For the reflected current densities, P; is denoted as F}Ref l, while for the

refracted ones, P; is denoted as F}Ref T

Before moving on to the numerical results, we would like to discuss the

competition between the two interactions, RSOI and DSOL.



Let us consider the following transformation:

U = az(ax + ay)

> (4.45)
Under this transformation, g, transforms to
Uo Ut = -0, , (4.46)
and g, transforms to
Uo,UT = —a, (4.47)

and o, to —o,. Thus under this transformation, the RSOI Hamiltonian
changes to the DSOI Hamiltonian and vice versa. When RSOl is replaced

by DSOI, the spin-current

jr=2_"Z (4.48)

reverses direction and becomes —JZ. As a result, RSOI and DSOI polarise
the spins in different directions. When a and f both are present in the
system, the scattering of up and down-spin electrons along, say, the x-
direction will be different for RSOI and DSOI, and the wave functions
will acquire phases depending on the strengths of RSOI and DSOL
Because the scattering phases for up and down-spin electrons differ,
different transmission coefficients will emerge from the interference of the

scattered waves for electrons with opposite spins.



4.4 Numerical Results and Discussion

In our numerical computation, We consider that the incident electron
energy E is 20meV and the potential height V, is 12meV. Fig.1 shows the
behavior of the refracted angle (9,'(1) as a function of the incident angle

(6;). We chose a = 5meV —nm and f = 5meV —nm. The angle of
refraction is zero for normal incidence (6; = 0). Furthermore, as expected,
in the absence of SOIs in region II, the angle of refraction equals the angle
of incidence. According to Khodas et al., in the presence of RSOI in
region II, the electron with energy Ej (6;{4,) increases with increasing o
while the electron with energy Ej (0,-) reduces with increasing o
resulting in a split in the path of the spin-up and spin-down electrons In
the presence of both RSOI and DSOI, we determine the angle of refraction
of spin-up and spin-down electrons. In Fig. 2 (a), we show that in the
presence of DSOI, the angle of refraction of both spin-up and spin- down
electrons decreases, the spin-down electrons, however, experiencing
significantly larger decrease. Thus, the increase in the spin polarizability is
more in the presence of both SOIs as compared to that in the presence of
RSOI alone. This spin polarizability looks similar to the double refraction
seen in some optical materials. As suggested by Khodas et al. [40], we see
from Fig. 2 (a) that there exists a critical angle of incidence at which the
up-spin electrons undergoes a total internal reflection while no such total
internal reflection is possible for the down-spin electrons. In contrast,
down-spin electrons do not undergo total internal reflection. We find that
DSOI enhances the critical angle of incidence for the total internal
reflection of up-spin electrons. Fig.2 (b) shows the variation of the angle
of refraction of the spin-up and the spin-down electrons as a function of
the angle of refraction for two different incident energies for certain values

of RSOI and DSOI coefficients. We observe that as the incident energy is



increased, the angle of refraction of spin-up electrons increases while that

of spin-down electrons decreases.
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Fig. 2 6',+ Vs. 0; for different values of: (a) a, B; (b)E.

Fig. 3 depicts the variation of 8+ and 8y~ with RSOI for various DSOI

values. The figure clearly shows that in the absence of DSOL, 6, + first
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Fig. 3 (a) 0'+ vs. a for different values of B at8; = 0.5; (b) 8',+ vs. B for different values of &
at Hi =0.5.

exhibits a substantial monotonic growth with a, but eventually saturates to
a constant value at higher levels of a. In the presence of DSOIL, 6+ is
shown to be high even at a = 0, but it increases slowly with S and
eventually saturates to the same constant value as observed at § = 0. One

can observe that as [ increases, the saturation of 9,'(+ becomes faster.



However, the behavior of 6';- with respect to a is virtually opposite to

that of 6’y + i.e., it reduces with a and eventually saturates to a constant.
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Fig. 4 (a) 0'y- vs. a for different values of B at §; = 0.5; (b) 'y~ vs. B for different values of
a at Bi =0.5.

Fig. 4 gives the behavior of 6’y + and 'y~ with respect to B. A
comparison of Figs. 3 and 4 reveals that the behavior of 6',+ and '}~

with respect to @ and f is similar. This is obvious from Eq. (5), which is



symmetric in a and . Fig. 4 gives the behavior of 6'y+ and 6',- with
respect to 5. A comparison of Figs. 3 and 4 reveals that the behavior of
0'+ and 0',~ with respect to @ and B is similar. This is obvious from Eq.

(5), which is symmetric in a and (.
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Fig. 5 (a) T; Vs.0;; (b) Ty Vs. 8; for different cases as: (1)a # 0,8 =02)a=0,8+03)a <
BHa>p (Ba=p.



In Fig. 5, we show the plot of refraction coefficients (T3, T,) for up-spin

and down-spin electrons with respect to the incident angle for various

combinations of ¢ and . We can easily see that T} and T, are
asymmetric over the range: —% to g and T; is generally greater than T.

In the presence of only RSOI, T; is larger in the —ve side than in the +ve
side. On both sides of 8; = 0, T; continues to remain small but finite up to
a certain value of |0;| and then reduces to zero and shows a dip structure
thereafter. After the dip structure, Ty increases very rapidly on the negative
side, while on the positive side, it shows a rather slow increase and a
down-turn after a certain value of 6;. Even on the negative side, there
appears to be an indication of the down-turn effect. When only DSOI is
present, Ty behaves in a similar but opposite way to that in the presence of
only RSOI. There is no much structural difference for other combinations
of RSOI and DSOI coefficients. When RSOI is less than DSOI, the value
of T} is lower in the —ve side than the —ve side and the opposite behaviour
is observed when RSOl is greater than DSOI. When RSOI and DSOI are
equal, T; is higher in the —ve side and lower in the +ve side. T| is more
significant in the presence of only DSOI than in the presence of the only
RSOI, and T is greater in the —ve side than in the +ve side. The dip-like
structure observable in the case of T| at certain values of 8; is comparable
to the structures observed for T;. For other combinations of RSOI and

DSOI, T, behaves in an opposite to T.

We plot the variation of reflection coefficient (R;) for spin-up and spin-
down electrons with respect to & and £ in Figs. 6. Fig. 6 (a) shows that for
B =0, Ry rises monotonically but slowly with a. For a non-zero but
small value of § (say f = 0.1), as « is increased, R; initially increases
and reaches a maximum, and then passes through a broad minimum with a

further increase in a. As f increases, the maximum in R; becomes broader



and shifts towards larger values of a. As § becomes larger than a specific
value, Ry increases monotonically with a and eventually saturates. Fig. 6
(b) shows the variation of Ry with £ for various values of a. For a = 0,
R; shows an infinitesimally small decrease as f§ increases. For non-zero «,
as f increases, R; initially increases , reaches a broad maximum and then

decreases as f increases further.
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Fig. 6 (a) Ry vs. a for different values of B; (b) Ry vs. B for different values of a.
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Fig. 7 represents the behaviour of R as a function of « and . Fig. 7 (a)
shows that R| rises monotonically with both @ and £. It may be noted
from Fig. 7 (a) and (b) that R; behaves symmetrically with respect to
a and 3.



The variation of T; with respect to a and f are shown in Fig. 8 (a) and 8
(b). As shown in these figures, the behaviour of T; is similar to that of Ry,

except for a small difference in T} vs. § behaviour at low £5.
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Fig. 8 (a) Ty vs. a for different values of B; (b) Ty Vs B for different values of a.

Fig. 9 depicts the variation of T} with a and . Fig. 9(a) shows that for
B =0, Ty drops monotonically with increasing a almost linearly. For
non-zero but small B, T, first decreases rapidly as a increases from zero,

then acquires a shallow minimum-like structure, and finally decreases



again. As [ becomes a little lartger, the minimum disappears and T
decreases with increasing « in a non-linear manner. The variation of T

with £ for different values of a is shown in Fig. 9 (b). Fora = 0, T
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Fig. 9 (a) Ty Vs. a for different values of B; (b) Ty Vs S for different values of a.

exhibits a slow monotonic linear decrease with increasing . For non-zero

a, T, initially decreases as [§ increases from zero, develops a shallow



minimum-like structure and again increases. As a becomes larger, the
minimum flattens more and more. We notice that T, decreases with

increasing « in a non-linear way.
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Fig. 10 gives the behavior of spin-polarized current densities (/; and J,)

with Fermi energy Ej for various values of a, 8 (with eV = 25 meV). In



general, at small E¢, both J; and ], decrease rapidly with E¢, but as Ef is
increased further, the rate of decrease in J; and ]J; becomes very slow and
Js and J; appear to reach saturation. For certain combinations of «, 3, the
saturation in J; happens quite fast though for a few other combinations the
saturation is not so fast and also the saturation value is large. Fig. 10(b)
shows that the saturation in J; is slower in the case when either RSOI or

DSOl is present than in the case when both are present.
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Fig. 11 (a) shows the variation of spin-polarized current density (J; ) with
respect to the applied voltage for a few combinations of RSOI and DSOI
coefficients with Er = 15meV. The figure suggests that J; increases with
the applied voltage monotonically and also reveals that J; in the presence

of RSOI alone, is much greater than J; in the presence of DSOI alone. In
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Fig. 12 (a) J; vs. « for different values of f; (b) J; vs. B for different values of a.



the presence of RSOI, as DSOI is switched on, J; initially increases with
the voltage as [ increases, though beyond a critical value of f, J;
decreases with the increase in the voltage. The behaviour of J; with the

voltage is shown in Fig. 11 (b) which is qualitatively similar to that of Jj.
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Figs. 12(a) and 12(b) show the plots of J; with respect to of @ and

respectively. One can see that RSOl reduces J; while DSOI enhances it.



Fig. 13 shows that the variations of ], with respect to a and f are very
similar to those of J;, although the magnitude of J; is significantly larger

than that of J;.

The variation of the spin-up differential conductance G; as a function of
the SOI strengths is shown in Fig. 14. The inset of Fig.4 (a) shows that in
the absence of DSOI, G; increases with increasing a almost linearly. For

non-zero, however, Gy remains zero up to a certain value of a, beyond
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Fig. 14 (a) G; vs. a for different values of f; (b) G; vs. B for different values of a.



which it monotonically grows with a. Fig. 14 (b) shows that in the
absence of RSOI, G; is virtually independent of £, while for non-zero
values of a, G is extraordinarily large at small values of 5, and as f

increases, Gy rapidly falls off to zero.

Fig. 15 shows the behavior of G; with regard to SOIs. As shown in Fig.

15 (a), for B = 0, G, is very large up to a particular value of «, after
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which it rapidly drops to some constant value. For non-zero but small

values of B (such as § = 1), G, is generally small at small a. It however

shows a decreasing behaviour with increasing a, and then exhibits a dip-

like structure and finally shows a slow linear increase with a. As [ is

increased further, G, gets even smaller and drops extremely slowly with

a. For large 5, G| becomes essentially independent of a. According to
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Fig. 15(b), as a function of B, G, decreases quite rapidly to a constant
value for @ = 0. However, for nonzero values of a, G| is very large below
a specific value of f (which varies with @), above which, however, it
rapidly decreases and produces a shallow minimum. The minimum shifts

to the right and becomes shallower as « is increased.
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The variation of spin polarisation current with @ and £ in the

semiconductor region (I?Ref ") is showed in Fig.16. Fig. 16(a) reveals that

P.Refr

f is negative and its magnitude increases with a and saturates as a

becomes large. The magnitude of I}Ref " diminishes as a function of 8 and

appears to saturate to some constant value at some large . The same

conclusion can be drawn from Fig. 16(b).
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Fig. 18 Contour plots of (a) PjRef "in a — B space (b) F;.Ref Yina — B space.

The behavior of spin polarisation current (PjRef l) in the metallic region as

a function of a and f is plotted in Fig. 17. The figures clearly show that



Refl
}}

DSOI, I}Ref ! reduces with a. For non-zero B, P]

is positive. According to the inset of Fig. 17(a), in the absence of

Refl .
! depends on « in a

[IRef

) ! initially decreases, develops

more complicated way. As a increases,
a shallow minimum (which becomes even shallower as increases «), and
then develops a broad hump. Fg.17 (b) demonstrates that %Ref ! reduces

with increasing f§ and exhibits a crossing behavior.

Fig. 18 shows the contour plots of PjRef " and I;Ref !, We see that }}Ref "is
negative while PjRef s positive. This is consistent with the findings in

Figs. 16 and 17. According to Fig. 18(a), the values of F}-Ref "are larger for

Refr
F

while RSOI increases it. As a result, RSOI and DSOI have competing

higher values of a and for lower values of . Thus, DSOI reduces

effects on I?Ref ", Consequently, spin polarisation current is greater when

the only « is large than when both a and 8 are large. As shown in Fig. 18
(b), both RSOI and DSOI diminish the spin polarisation current in the

metallic region.

4.5 Conclusions

The spin polarisation effects caused by electron refraction and reflection
across a barrier separating a metal and a semiconductor have been
investigated in the presence of both RSOI and DSOI. The refraction and
reflection coefficients have been calculated, and experimentally
measurable quantities such as up and down-spin current densities, the
corresponding differential conductances, and the spin-polarization current
have been obtained. The effects of incident angle, incident energy, applied

voltage, and SOI strengths have been investigated. DSOI reduces the angle



of refraction of spin-up and spin-down electrons, with the spin-down
electrons going through a significantly greater reduction. When both SOIs
are present, the spin polarisability increases significantly, improving the
spin-filtering effect as compared to the case when RSOI is present alone.
It has been demonstrated that increasing the incident energy increases the
angle of refraction of spin-up electrons while it decreases the angle of
refraction of spin-down electrons. As a result, the incident energy can be
employed to tune the spin-filtering effect/; and J; are likewise shown to
decrease with Fermi energy and increase with applied voltage.
Furthermore, RSOI decreases J; while DSOI increases it. The behavior of
J, with respect to @ and £ is found to be comparable to that of /; although
the magnitude of /| is significantly bigger than that of J;.

When both RSOI and DSOI are present, the spin polarisation current

Pjref " in the semiconductor material is found to be negative, and its

magnitude increases with @ and decreases with . The spin polarisation

refl

current P, in the metallic region turns out to be positive, and its

magnitude increases with a and decreases with . The current work could

be used in spin filtering and spin polarising devices.
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Chapter 6

Conclusions

In this thesis, we have investigated quantum transport SMT
incorporating the effects of el-ph interaction Coulomb correlation and
phononic dissipation and have also studied the Tunneling Conductance of
electron spin across a metal-semiconductor junction where the
semiconductor material contains Rashba and Dresselhaus spin-orbit
interactions. In Chapters 2 and 3, we have studied the transport in the
SMT system and in Chapter 4, we have studied the transport across a

metal-semiconductor junction.

The SMT device we have explored in our work consists of a central
quantum dot connected to two metallic electrodes, one being the Source
(S) and the other the Drain (D). The central QD has been assumed to have
a single phonon mode which interacts with the QD electrons. We have
modelled this interaction using the Holstein Hamiltonian. The S-QD-D
system is placed on an insulator substrate that works as a heat-bath. The
heat-bath phonons and the QD phonon interact via Caldeira-Leggett
coupling causing a quantum dissipative effect on the current in SMT. The
entire dissipative SMT system has been modelled by the Anderson-
Holstein-Caldeira-Leggett-Model.



In Chapter 2, we have considered the aforementioned SMT system in
magnetic field at zero temperature. The coupling between the QD phonon
and the bath phonons has been treated approximately using a unitary
transformation that takes care of the dissipative effect of this coupling.
The dissipation essentially reduces the QD phonon frequency and hence
the energy. The Lang-Firsov unitary transformation has been used to
separate the el-ph interaction from the system Hamiltonian. As a
consequence, the device parameters are renormalized. The spectral density
A, the tunnelling current /, and the differential conductance G have been
calculated by employing the Keldysh non-equilibrium Green function

approach. The spin polarisation parameter P, _, has been estimated.

The spin degeneracy of the electronic state in QD is lifted by the
magnetic field and this leads to splitting in the electron energy in QD and
peaks in the spectral density. A, is shifted to the +ve energy region by the
magnetic field and Ay to the —ve energy region. J; is reduced by both the
magnetic field and el-ph coupling, as expected, but J; increases with the
increase in the magnetic field up to a critical value of B and then reduces
to zero. J; exhibits a similar pattern with respect to the el-ph coupling
constant A. The G-plots also indicate peak splitting due to the magnetic
field B. This gives rise to additional energy levels accessible due to the
splitting of spin degeneracy. G; and G; are found to reduce with
increasing B. At zero magnetic field, G; as well as G, exhibits a peak at a
particular value of A and then both reduce to zero. With increasing B , the
number of peaks G increases and the peaks become sharper. In the case of
G, however, the peak is suppressed by the magnetic field. At low magnetic
field, P;_,, as a function of V,, initially increases and reaches a
maximum at a acertain value of Vy, after which it starts decreasing and
eventually reduces to zero. At higher magnetic fields, P; _, increases with

V, and finally reaches saturation. We observe that as a function of the



magnetic field, P;_; initially increases with B, attains a maximum and
then reduces with further increase in B and eventually becomes zero. We
have demonstrated that increasing the damping rate raises the spin
polarised current densities, differential conductance, and spin polarisation

parameter.

The behaviour of J and G with V,, had been studied before without
taking into account the effect of el-el coupling and magnetic field. We
have shown in this work that for B # 0,and U # 0, J vs V,and G vs V,
curves undergo a shift towards positive side of V. Also in the case of G
vs Vi curves, the number of peaks increases with B. The results of the
present work suggest that the spin-polarization parameter can be tuned by
a magnetic field and so an SMT device can find potential applications as a

spin filter.

In Chapter 3, quantum transport in the same SMT system as above has
been studied at finite temperature in the absence of a magnetic field using
the same method. It is observed that dissipation increases the tunnelling
current at finite temperatures but not as much as at zero temperature. As
temperature increases, the current decreases and a similar behaviour is

observed for the differential conductance.

In Chapter 4, we have studied the spin polarisation effects caused by
electron reflection and refraction across a barrier separating a metal and a
semiconductor that contains Rashba and Dresselhaus spin-orbit interaction
(SOI) effects. The reflection and refraction coefficients have been
calculated as a function of incident angle, incident energy, and SOI
strengths. Furthermore, the effects of applied voltage, Fermi energy and
SOIs have been studied on experimentally measurable quantities like up
and down spin-current densities and the corresponding differential

conductances. Finally the effect of SOIs on spin-polarization current has



been studied. It is found that DSOI reduces the angle of refraction of spin-
up and spin-down electrons, the reduction being much larger for the spin-
down electrons. Thus, when both SOIs are present, the spin polarizability
increases substantially giving rise to a much larger spin-filtering effect
compared to that in the presence RSOI alone. It is shown that the increase
in the incident energy increases the angle of refraction of spin-up electrons
while it reduces that of the spin-down electrons. Thus the incident energy
can also be used to tune the spin-filtering effect. It is also observed that J;

and J; decrease with Fermi energy and increase with the applied voltage.
The spin polarization current Pjref " in the semiconductor material is found

to be negative in the presence of both RSOI and DSOI and their

magnitudes increase with a and decrease with [ while the spin
polarization current Pjref " in the metallic region is positive and it slightly

increases with a and decreases with . The present work has potential

applications in spin filtering and spin polarizing devices.
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