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                            Preface    

 

           
The primary aim of this thesis is to study quantum transport in a single 

molecular transistor (SMT) and also across a metal-semiconductor interface.  

In the first part of the thesis, we consider the problem of an SMT device. An 

SMT system consists of a central molecule or a quantum dot (QD) with 

discrete energy levels and coupled to two metal electrodes, one acting as 

Source (S) and the other as Drain (D). We assume that the source and the 

drain have continuous energy levels and the central QD has a single energy 

level and a single phonon mode. An electron can move from the source to the 

drain through QD by the hopping process. An electron on QD can have local 

repulsive Coulomb interaction with another electron on the QD by the usual 

onsite Hubbard interaction. We also consider a QD electron to interact with 

the QD phonon with the local electron-phonon (el-ph) interaction. We employ 

Holstein Hamiltonian to model this interaction. Thus the aforementioned SMT 

system can be described by the Anderson-Holstein model.  

The el-ph interaction effects on the transport properties of an SMT device 

have been studied by several researchers. Chen et al. have investigated non-

equilibrium transport in an SMT device using the Keldysh Green function 

method in the presence of el-ph interaction. They have shown that the current 

reduces with increase in el-ph coupling due to the polaronic effect. Later, the 

transport in an SMT system has been examined by Raju and Chatterjee 

incorporating dissipation and Coulomb correlation in addition to el-ph 

interaction using Keldysh formalism. They have considered an SMT system 

based on an insulating substrate that acts as a bath of phonons and 

incorporated a coupling between the substrate phonons and the QD phonon 



 

using the linear Caldeira-Leggett model which takes care of the dissipative 

effect. Raju and Chatterjee have employed the Anderson-Holstein-Caldeira-

Leggett (AHCL) model to describe whole system and observed that 

dissipation causes an enhancement in the current through SMT.  

In the present thesis, we first investigate how a magnetic field influences the 

transport properties in the aforementioned dissipative SMT system.   This 

work is described in Chapter 2 of thesis. We model our system using the 

AHCL Hamiltonian. The dissipative interaction between the substrate 

phonons and the local QD phonon modeled by the Caldeira-Leggett is treated 

by using a unitary transformation. This results in a reduction in the frequency 

of the QD phonon, which is precisely the dissipative effect. The el-ph 

coupling term is dealt with by first performing the Lang-Firsov transformation 

and then carrying out an expectation value with respect to the zero-phonon 

state. We calculate the spectral density, the current, the differential 

conductance and the spin polarization parameter using the Keldysh Green 

function method. The magnetic field removes the spin degeneracy and this 

leads to the splitting of QD energy levels and gives rise to peaks of the 

spectral functions. The el-ph interaction reduces the spin-polarised current 

densities. The spin-down current density is reduced by the magnetic field 

whereas the spin-up current density initially increases as the magnetic field 

increases and beyond a certain field it decreases with increasing field and 

finally drops to zero. The differential conductance graphs also exhibit the 

splitting of peaks due to the magnetic field, implying the availability of 

additional energy levels for transport. As the magnetic field increases, the spin 

polarization decreases and finally vanishes.  The damping is shown to increase 

the spin-polarised currents. differential conductance, and spin-polarization 

parameter. This system can have potential application as a spin filter.   

Next, we study, in Chapter 3, the effect of temperature on the spectral density, 

current and differential conductance in an SMT system in the presence of el-



 

ph interaction, Coulomb correlation and quantum dissipation. Here also we 

model the system using the AHCL Hamiltonian and study aforementioned 

transport properties at finite temperature using the Keldysh approach and the 

equation of motion method. We show that dissipation increases the current 

density at finite temperature but the increase is less significant than at zero 

temperatures. The current density is found to decrease as temperature 

increases, and the behaviour of the differential conductance is found to be 

similar.  

  In Chapter 4 of the thesis we study Double refraction and Tunneling 
conductance of electron spin across a metal-semiconductor interface.  We 

assume an infinite two-dimensional (2D) system in the     plane, where a 

2D metallic lead fills the region      and a semiconductor system with 

Rashba and Dresselhaus spin-orbit interactions occupies the region    . At    , the two materials are separated by an interface. Khodas et al.  (Phys. 

Rev. Lett. 92, 086602 (2004)) have used the spin-orbit interaction effect to 

cause electron polarisation in nonmagnetic semiconductor heterostructures 

and  Dargys (Superlattices Microstruct. 48, 221, (2010)) has explored the 

phenomenon of electron reflection by an infinite barrier in a 2D device. 

Extending the works of Khodas et al. and Dargys, we investigate the reflection 

and refraction of electrons at a metal/semiconductor interface where the 

semiconducting material can be considered as a semi-infinite 2D electron gas 

with non-zero spin-orbit interactions. The current density and differential 

conductance are also calculated. We calculate experimentally measurable 

quantities such as spin-up and spin-down currents and corresponding 

differential conductances, as well as spin-polarization current in the metallic 

and semiconductor region and investigate the role of incident angle, incident 

energy, applied voltage, and spin-orbit interactions on them.  We show that 

the Dresselhaus interaction reduces the angle of refraction of spin-up and 

spin-down electrons, with the spin-down electrons undergoing a more 



 

significant reduction. When both the spin-orbit interactions are considered, the 

spin polarization is found to increase significantly, improving the spin-

filtering effect observed in the presence of Rashba coupling alone. We find 

that increasing the incident energy increases the angle of refraction of spin-up 

electrons and decreases the angle of refraction of spin-down electrons. 

Therefore, the spin-filtering effect can be controlled by tuning the incident 

energy. The currents corresponding to spin-up and spin-down electrons reduce 

as the Fermi energy is increased. However, they increase as the applied 

voltage is increased. In the semiconductor region, the spin polarisation current 

turns out to be negative in the presence of both Rashba and Dresselhaus 

interactions, and it decreases with increasing Dresselhaus interaction.  In 

contrast, the spin polarisation current in the metallic region turns out to be 

positive and decreases with increasing Dresselhaus coupling. The present 

work can have potential applications in spin-filtering and spin-polarising 

devices. 

 

 

 

 

 

 

 

 

 



 

            List of Publications based on which the thesis  

                                     has been written 

 

1. Manasa Kalla, Narasimha Raju Chebrolu and Ashok Chatterjee, 

Magneto-transport properties of a single molecular transistor in the 

presence of electron-electron and electron-phonon interactions and 

quantum dissipation, Sci. Rep. 9, 16510(2019). 

 

2. Manasa Kalla, Narasimha Raju Chebrolu and Ashok Chatterjee, 

Quantum transport properties of a single molecular transistor at finite 

temperature, Sci. Rep. 11, 10458 (2021). 

 

3. Manasa Kalla, Sanjeev Kumar, Shreekantha Sil and Ashok Chatterjee,  

Double Refraction and tunneling conductance across the metal-

semiconductor junction in the presence of  Rashba and Dresselhaus spin-

orbit interaction: A spin filtering device, Super lattices and 

Microstructures 156, 106951 (2021). 

 

4. Manasa Kalla, Swathi. T.S, Narasimha Raju Chebrolu and Ashok 

Chatterjee Transport properties of a single-molecular transistor at finite 

temperature. IJIIP, Vol. 1, Issue 2, (2020). 

 

 

 

 

 

 

 

 

 



 

                   Other publications (not included in the thesis) 

 
1. Manasa Kalla, Narasimha Raju Chebrolu and Ashok Chatterjee, 

Transient dynamics of a single molecular transistor in the presence of 

electron-phonon interaction at zero temperature (Under review). 

 

2. H. K. Sharma, Manasa Kalla and A. Chatterjee, Non-equilibrium 

Quantum transport through a Quantum dot dimer in the presence of 

electron-electron interaction, electron-phonon interaction, magnetic field 

and quantum dissipation (to be communicated). 

 

3. Kuntal Bhattacharya, Manasa Kalla and A.Chatterjee, Quantum transport 

in a dissipative single molecular transistor in the presence of electron 

correlations and polaronic interaction at a finite temperature and external 

magnetic field (to be communicated). 

 

 

 

 

 

 

 

 

 

 

 



 

                  List of Publications in Conference proceedings 

 
 

1. Manasa Kalla, Ashok Chatterjee Magneto-transport in an Interacting 

Single Molecular Transistor using Anderson-Holstein model. AIP 

Conference Proceedings 1942, 110027 (2018). 

 

2. Manasa Kalla, Narasimha Raju Chebrolu and Ashok Chatterjee Magneto-

transport properties of a single molecular transistor: Anderson-Holstein-

Caldeira-Leggett model. AIP Conference Proceedings 2115, 030450 

(2019). 

 

3. Kuntal Bhattacharya, Manasa Kalla and A.Chatterjee, Effect of finite 

temperature and external magnetic field on the non-equilibrium transport 

in a single molecular transistor with quantum dissipation: Anderson-

Holstein-Caldeira-Leggett model, Materials today: Proceedings(2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

               List of Conferences and workshops attended 

 

• Poster Presentation: Manasa Kalla and Ashok Chatterjee,  “Magneto-

transport in an Interacting Single Molecular Transistor using Anderson-

Holstein model”, „DAE SSPS 2017‟, December 26-30 2017, BARC 

Mumbai, Maharashtra. 

• Oral presentation:  Manasa Kalla, Narasimha Raju Chebrolu, Ashok 

Chatterjee, “Magneto-transport properties of a single molecular transistor: 

Anderson-Holstein-Caldeira-Leggett Model”,  International Conference on 

Advanced basic sciences, February 7-9, 2018, GDC Memorial College, 

Bahal, Bhiwani district, Haryana. 

• Poster presented: Manasa Kalla, Narasimha Raju Chebrolu and Ashok 

Chatterjee, “Magneto-transport properties of a single molecular transistor: 

Anderson-Holstein-Caldeira-Leggett Model”,  „DAE SSPS 2018‟, 
December 18-22 2018, Guru Jambeshwar University of Science and 

Technology, Hisar, Haryana. 

• Workshop attened: Manasa Kalla, “Integrable systems in 

Mathematics,Condensed matter and Statistical physics”, July 16 – August 

10, 2018, ICTS, Bangalore, Karnataka. 

• Poster presented: Manasa Kalla, D. Sanjeev Kumar, Shreekantha Sil, and 

Ashok Chatterjee, “Double refraction of electron spin across metal-

semiconductor junction with spin-orbit interactions” 2
nd

 Annual 

Conference on Quantum Condensed Matter,  July 8-10, 2019,  IISc, 

Bangalore. 

• Oral presentation: Manasa Kalla, Swathi.T.S, Narasimha Raju Chebrolu 

and Ashok Chatterjee,  “Transport properties of a single molecular 



 

transistor at finite temperature”, International Conference on Condensed 

Matter Physics, November 14 -16, 2019, Department of Basic Science and 

Humanities, Institute of Engineering & Management, Kolkata.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                             Contents 

Declaration form                                                                                         I                                                                                   

Certificate                                                                                                   II                                                                                                 

Acknowledgments                                                                                     III                                                                                                              

Preface                                                                                                       IV                                                                                                                           

List of publications                                                                                    V                                                                                                                          

Contents                                                                                                    VI              

                                                      

1. Introduction 

1.1  Single molecular transistor  

    1.1.1 What is an SMT device and its importance………………1 

    1.1.2 Anderson-Holstein-Caldeira-Leggett model……………...3  

1.2 Tunneling across a Metal-Semiconductor Interface…………………..8 

1.3  Organization of thesis……………………………………………….10 

1.4 References………………………………………………………........11 

2. Magneto-transport properties: Keldysh Formalism 

2.1 Introduction…………………………………………………………..16 

2.2 Model Hamiltonian…………………………………………………..17 

2.3 Decoupling of bath phonons…………………………………………19 

2.4 Effective Hamiltonian: Lang-Firsov transformation…………………21 

2.5 Current density, Differential conductance and Spin polarization……23 

2.6 Results and discussions………………………………………………37 

2.7 Conclusions…………………………………………………………..62 

2.8 References……………………………………………………………64 

3. Temperature effect on the transport 

3.1 Introduction………………………………………………………......66 

3.2 Model and Calculations……………………………………………...66 



 

3.3 Results and discussions……………………………………………...71 

3.4 Summary……………………………………………………………..84 

3.5 References…………………………………………………………...85 

4. Double Refraction: Metal-Semiconductor interface 

4.1 Introduction…………………………………………………….........87  

4.2 Model and Hamiltonian Descriptions……………………………….88 

4.3 Formalism……………………………………………………………91 

4.4 Results and discussions……………………………………………...99 

4.5 Conclusions…………………………………………………………118 

4.6 References…………………………………………………………..119 

5. Conclusions……………………………………………………………..124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 1 

 

 

 

 

                         Introduction 
 

 

 
In this thesis we mainly study the transport properties of a Single 

Molecular Transistor. We also study the Tunneling Conductance of 

electron spin across a metal-semiconductor interface in the presence of 

Rashba and Dresselhaus spin-orbit interactions in the semiconductor 

medium. 

 

 

1.1 Single molecular transistor (SMT) 

 

1.1.1 Introduction 

 
  In the last four decades, we have seen the shift from the employment of 

bulk systems to nanosystems, semiconductor systems, and magnetic 

systems in material science applications. The quantum effects become 

extremely important for the nanosystems. Early studies have provided us 



with a number of important and interesting features about the physics of 

nanosystems, their quantum transport properties, and device applications. 

The field has been adequately discussed by Datta [1]. In recent years, due 

to advances in fabrication techniques and the availability of 

instrumentation facilities, detailed investigations have been carried out on 

the electronic, optical, transport and magnetic properties of various 

nanosystems.  

 

  In 1974, Aviram and Ratner [2] have given the theoretical design of a 

molecular device using a single organic molecule and observed that the 

response of this device in an applied field works as a rectifier. Later, a few 

research groups fabricated a single molecular transistor [3, 4] using 

organic molecules. An SMT device usually consists of a central molecule 

or any nanosystem like a quantum dot (QD) that would have discrete 

energy levels. It is connected to two metallic electrodes, one being the 

Source (S) and the other the Drain (D). In an SMT device [5, 6], the 

current can be successfully regulated by adjusting the gate voltage. 

 

  Considering the potential applications of molecular electronic devices, 

research on SMTs [7-9] has received significant attention in the last few 

decades and provided many interesting results. It has been suggested that 

SMTs can have important applications in micro-electronic technology as 

spin-filtering devices [10], switching devices [11], sensors [12] etc. At low 

temperature, an SMT device shows very many interesting properties such 

as  non-equilibrium effects of el-ph interaction during the charge tunneling 

like phonon-assisted tunneling transport [13, 14], Coulomb blockade [15], 

Kondo effect [16-18], hysteresis-induced bistability [19- 21], local heating 

[22, 23], molecular switching and negative differential conductance [24, 

25]. If a polar QD is considered as a central molecular in an SMT device, 

transport mechanism will be additionally influenced by polarons which are 



quasi-particles consisting of electrons dressed with a cloud of virtual 

phonons and form because of the el-ph interaction. Thus, the quantum 

transport phenomena in an SMT device are influenced by both el-el and 

el-ph interactions. The transport properties of SMT have been investigated 

by using different theoretical and numerical methods like kinetic equation 

method [26, 27], rate equation approach [28], slave-boson mean-field 

method [29], non-crossing approximation method [30], numerical 

renormalization method [31-33] and non-equilibrium Green‟s function 
approaches [34-38].  

 

1.1.2  Anderson-Holstein-Caldeira-Leggett model 

  
     The schematic representation of an SMT system that we have 

investigated in this thesis is shown in Fig. 1. It is connected to two 

metallic electrodes, one being the Source (S) and the other the Drain (D). 

 

 

 

 

 

 

 

 

 

                                                 Fig.1 Schematic representation of an SMT device   

 

Since the Source (S) and the Drain (S) contain free electrons, they can be 

described by the Hamiltonian   



                                               H    ∑ 𝜀  𝑛                                                 (1.1) 
 

where  𝜀   is the energy of a free electron in S or D with momentum   and 

spin   and  𝑛  (        )   represents the number operator corresponding 

to these electrons,     (   ), referring to the corresponding creation 

(annihilation) operator.  

  We consider the QD to have a single energy level of energy 𝜀 . We also 

include the el-el interaction in the QD. Such a QD can be modelled by the 

Hubbard model which is described by the Hamiltonian  

 H   ∑(𝜀  𝑒𝑉 ) 𝑛  + 𝑈𝑛   𝑛                                             (1.2) 
where 𝑛  (     (   )) is the number operator for the QD electrons of 

spin   with 𝜀  as the onsite energy,     (   )  being the creation 

(annihilation) operator for the QD electrons and 𝑉  is the gate voltage that 

can be used to tune the energy level. 𝑈 denotes the onsite el-el interaction 

strength  in QD.  

   We consider the electron to move from one site to anther by hopping and 

the hopping Hamiltonian (𝐻 ) can be written as   

 𝐻  ∑ 𝑉 (       + ℎ.  )                                               (1.3) 
 
where 𝑉  represents the hybridization coefficient that governs the 

tunnelling strength for the electron to tunnel between the QD and the 

leads.  



   The system described above can be modelled by the Anderson 

Hamiltonian [39]. Many research groups have employed the Anderson 

model to investigate different solid state systems like mixed valence 

systems, superconductors, Heavy fermions, negative tunneling centers in 

semiconductor glasses, etc.. Thus the Anderson Hamiltonian 

corresponding to our system described above is given by  

 𝐻   𝐻   + 𝐻  + 𝐻  

     ∑𝜀 𝑛    + ∑𝜀  𝑛  + 𝑈𝑛   𝑛   + ∑ 𝑉 (       + ℎ.  )         

(1.4) 
 

The QD is assumed to have a single local phonon mode of dispersionless 

frequency 𝜔  which can be described by the free phonon Hamiltonian  

                                               𝐻      ℏ𝜔 𝑏 𝑏 .                                           (1.5) 

 
where   𝑏 (𝑏) represents the creation (annihilation) operator of the QD 

phonon. The above phonon mode is assumed to interact with the local QD 

electrons through el-ph interaction which can be described by the Holstein 

model:   

 
                                       𝐻      𝜆ℏ𝜔 (𝑏 + 𝑏)∑𝑛   .                     (1.6) 
 
 
where 𝜆 gives the el-ph coupling constant. Thus the SMT system 

consisting of  S, D and QD can be described by the Anderson-Holstein 

Hamiltonian which can be written as  

 𝐻   𝐻   + 𝐻  + 𝐻 + 𝐻     + 𝐻      



      ∑𝜀 𝑛    + ∑𝜀  𝑛  + 𝑈𝑛  𝑛  + ∑ 𝑉 (       + ℎ.  )         

                  + ℏ𝜔 𝑏 𝑏 +  𝜆ℏ𝜔 (𝑏 + 𝑏)∑𝑛     .                                    (1.7) 
 
Many research groups have examined the el-ph interaction effects on 

transport in an SMT system. Chen et al. [40] have found that el-ph 

coupling generates side bands in the spectral density and makes the width 

of the zero-phonon peak narrower. They have also analysed how the  

chemical potentials of the leads influence the tunnelling current and 

differential conductance at zero temperature.  Later, Raju and Chatterjee 

(RC) [41] have examined, for the first time, the dissipative effect on the 

transport properties of an SMT system at zero temperature using the 

Keldysh technique incorporating the effects of el-ph interaction and 

Coulomb correlation. RC have considered an arrangement in which the 

SMT device is mounted on a substrate which is an insulator and acts as a 

phonon bath. They have assumed that the single phonon mode of the QD 

interacts with the substrate phonons leading to quantum dissipation in the 

SMT current. RC have incorporated the coupling of the QD phonon with 

the substrate phonons using the Caldeira-Leggett (CL) model. The bath 

Hamiltonian (𝐻 ) considered by RC is given by  

 𝐻  ∑*    2  + 12  𝜔      + 
   + ∑   

                                (1.8) 
 

where   ‟s and     refer to the position coordinates of the substrate 

oscillators and the QD, respectively, 𝜔  denotes the frequency of the  -th 

substrate oscillator and    represents coupling strength of interaction 

between the QD oscillator and the   -th substrate oscillator.  Hence, the 



whole system is modeled using Anderson-Holstein-Caldeira-Leggett 

(AHCL) Hamiltonian. Thus the total Hamiltonian studied by RC is given 

by 

       𝐻   𝐻   + 𝐻  + 𝐻 + 𝐻     + 𝐻     + 𝐻  

 
             ∑ 𝜀 𝑛    +∑ 𝜀  𝑛  +𝑈𝑛   𝑛   + ∑ 𝑉 (       + ℎ.  )         

                + ℏ𝜔 𝑏 𝑏 +  𝜆ℏ𝜔 (𝑏 + 𝑏)∑𝑛   + ∑*   22  + 12  𝜔 2  2 + 
  1  

         +∑   
        .                                                                                                   (1.9) 

 
RC have used the the non-equilibrium Keldysh formalism and the 

Equation of motion technique to study el-ph interaction effect on the 

spectral density, tunnelling current and differential conductance in the 

presence of quantum dissipation. According to their calculations, the local 

phonon frequency of QD gets renormalized because of phonon dissipation. 

Furthermore, the el-ph interaction decreases the tunnelling current 

whereas the phononic dissipation increases it.     

  In the present thesis we consider the aforementioned SMT device in a 

magnetic field and study its magneto-transport properties using the 

Keldysh technique and the Equation of motion method within the 

framework of the Green function formalism.  We furthermore examine the 

effect of temperature on the quantum transport in an SMT system at zero 

magnetic field.  

 



 

1.2 Tunneling across a Metal-Semiconductor Interface 

 

   In the second part of the thesis, we study double refraction and tunneling 

current across a metal-semiconductor interface. The system we consider is 

an infinite 2D system in the     plane, where a 2D metallic lead fills the 

negative-x region and a semiconductor system fills the positive-x region.  

At    , the two materials are separated by an interface.   

 

 

 

 

 

 

 

                                                 

 

                                            Fig.2 Schematic sketch of the system 

 

    This problem has been earlier studied by Khodas et al.  [42] by 

incorporating the Rashba spin-orbit interaction (RSOI) in the 

semiconductor medium.  

  The Dirac theory provides a term known as the Thomas term (𝐻 ) which 

is given by  



                                                 𝐻   𝑒ℏ . (   )4      .                                           (1.1 ) 
 

where   refers to the electron momentum and   the spin. In an electric 

field      ̂, the system loses the inversion symmetry at the surface and 

the Thomas term reads   

      𝐻  𝐻   𝑒ℏ  . ( ̂   )4        ℏ (         ) .               (1.11) 
 

Eq. (11) is the well-known Rashba spin-orbit interaction (RSOI) where     ℏ        denotes the RSOI strength which in certain systems can be 

significantly large. It has been shown by Khodas et al. that in the presence 

of RSOI in region II, there will be a split in the path of the spin-up and 

spin-down electrons which suggests that the system under consideration 

can have potential application as a spin-filtering device. 

 In systems which have zinc blend structure, such as a GaAs system, the 

bulk inversion symmetry is also broken. This gives rise to another 

important spin-orbit interaction known as the Dresselhaus SOI (DSOI) and 

is given by   

                                    𝐻   ℏ (         )  .                                          (1.12) 

DSOI can have sizable effect on spin transport and therefore in the present 

thesis, we study the transport across the metal-semiconductor interface 

incorporating both RSOI and Dresselhaus spin-orbit interactions (DSOI). 

More specifically, we explore the RSOI and DSOI effects on the 

tunnelling current, differential conductance and the spin polarization. We 

show that in the presence of the Dresselhaus interaction, the spin-filter 

effect is enhanced significantly.  



 

1.3  Organization of Thesis 

 

  In the present thesis, we mainly study the transport properties of a single 

molecular transistor. We also study the spin transport across a metal-

semiconductor interface. The organization of the thesis as follows.  

 

  In the present chapter i. e., Chapter 1, we have introduced the subject of 

Single Molecular Transistor and briefly touched upon the problem of 

Transport across a Metal-Semiconductor junction.   

  In the following chapter i. e., in Chapter 2, we study magneto-transport in 

an SMT device incorporating the effects of el-el interaction, el-ph 

interaction and quantum dissipation. We deal with the problem using the 

non-equilibrium Green function method. We present, in detail, the 

derivation of the current density using the Equation of motion method and 

the Keldysh formalism. We model the system using the AHCL 

Hamiltonian introduced in this chapter. We study, in particular, the 

magnetic field on the tunneling current, spectral density, differential 

conductance, and spin-polarization parameter at zero temperature.  

  In Chapter 3, we investigate quantum transport through SMT at finite 

temperature. In particular, we consider an SMT system with el-ph 

interaction, Coulomb correlation and quantum dissipation at finite 

temperature and zero magnetic field and obtain the spectral density, 

tunneling current and differential conductance using the temperature-

dependent Keldysh formalism.   

  Next, in Chapter 4, we delineate our work on the spin transport across a 



metal-semiconductor interface. We incorporate Rashba and Dresselhaus 

spin-orbit interactions in the semiconductor region of the system. Because 

of the spin-orbit interactions the up-spin and down-spin electrons have 

different angles of refraction. This gives rise to a double refraction 

phenomenon leading to the spin-filtering effect. We show that Dresselhaus 

interaction significantly increases the spin-filtering effect caused by the 

Rashba interaction alone.  

      Finally, in Chapter 5, we summarize the main results of the present 

thesis and make concluding remarks. 
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Chapter 2 

 

 

Magneto-transport properties of a single molecular 

transistor 

 

 

2.1  Introduction  
  

  In this chapter, we study quantum magneto-transport in an SMT system 

using the non-equilibrium Green function theory due to Keldysh. Costi [1] 

has demonstrated using Wilson's renormalization group method that a 

magnetic field can influence the electron transport properties of a QD in 

an SMT system. They have also proposed that a strongly coupled QD in a 

magnetic field can be used as a spin-filtering device.  The properties of the 

device can also be tuned by controlling the gate voltage. According to 

Dong et al. [2], the magnetic field reduces the linear conductance at zero-

temperature. It has also been reported that when the magnetic field is 

sufficiently increased, the conductance develop side peaks. The SMT 

system has been recently studied in the presence of quantum dissipation 

by Raju and Chatterjee [12] (RC). In the present chapter, we study 

quantum transport in an SMT system in the presence of el-ph interaction, 

Coulomb correlation, quantum dissipation and an external magnetic field. 

  To model the system, we add to the AHCL Hamiltonian introduced in 

Chapter 1, the Zeeman term (arising because of the presence of the 



magnetic field) and calculate the current density using the equation of 

motion method. We also explore the effect of the magnetic field on the 

SMT properties namely, the spectral density (SD) function and the spin-

polarized currents and differential conductances.  

 

2.2  The Model  

The SMT device, under consideration, consists of a single-level QD as a 

central molecule which  is connected to two metallic electrodes, one 

being the Source (S) and the other the Drain (D). The entire system is 

placed on a substrate which is an insulator and which can act as a bath of 

independent oscillators. Electrons from S can hop to QD and from QD to 

D. The central QD is assumed to have one phonon mode that can interact 

with the bath phonons through the linear Caldeira-Leggett (CL) 

interaction [3] and also with the local QD electrons though the Holstein 

interaction. The electrons on QD can also interact with each other  

 

 

                               

 

                     

 

 

 

                            

                              Fig.1 Schematic representation of an SMT device.    



through the onsite Hubbard interaction. The CL interaction [3] causes a 

dissipation in the SMT current. Fig.1 shows a schematic diagram of an 

SMT device placed in a external magnetic field. The external field applied 

to QD is expected to modify its transport properties, and such effects have 

indeed been observed [4, 5]. 

  As the external field lifts the QD's spin-degeneracy, the QD 

configuration acts as a spin filter producing spin-polarized currents. 

Because of the external magnetic field, we will have an additional term 𝐻  in the AHCL Hamiltonian introduced in Sec. 1.1.2 of Chapter 1. 𝐻  is 

given by  

𝐻   12                                                                 (2.1) 
 

where   (     )   ̂   and     refers to the z component of the total spin 

of the QD electrons. The SMT Hamiltonian is thus given by     

 𝐻   𝐻   + 𝐻  + 𝐻 + 𝐻     + 𝐻     + 𝐻 + 𝐻  

   ∑ 𝜀 𝑛    + ∑ 𝜀  𝑛  + 𝑈𝑛   𝑛   + ∑ 𝑉 (       + ℎ.  )         

               + ℏ𝜔 𝑏 𝑏 +  𝜆ℏ𝜔 (𝑏 + 𝑏)∑𝑛    

               +∑*    2  + 12  𝜔      + + ∑   
       + 12          .               (2.2) 

    

 
 

The spectral function ( (𝜔)) for the substrate phonons can be represented 

as:  

 



 (𝜔)  ∑*    2  𝜔 + 
    (𝜔  𝜔 ).                                  (2.3)  

 

 

2.3  Decoupling of the substrate oscillators 

 

We first consider the following vibrational part of Eq. (2.2):  

 𝐻     + 𝐻  

         (    2  + 12    𝜔 2   )+∑[   22  + 12  𝜔 2  2 ]+∑   
  1      

  1         (2.4) 

 

where the first term denotes the free phonon part of the QD Hamiltonian  ℏ𝜔 𝑏 𝑏 and perform the following canonical transformations 

                                      ̃  *  +     (  𝜔  )+                                                    (2.5) 
                                      ̃    ℏ    ̃    ℏ         .                               (2.6) 
 

Eq. (2.6) then transforms to  

 𝐻     + 𝐻  (    2  + 12    𝜔̃     ) + ∑.  ̃ 22  + 12     𝜔     ̃  /          (2.7) 
    

where  



         𝜔̃  ,𝜔   ( 𝜔) -  ⁄                𝜔  .∑        𝜔  
 

   /   .           (2.8) 
 

Eq. (2.7) suggests that the QD phonon and the bath phonons are 
approximately separated by the canonical transformations (5) and (6).  

The role of the interaction between the bath phonons and the QD phonon 
is to renormalize the frequency of the QD phonon from  𝜔  to  𝜔̃ . From 

now onwards, we will concentrate on SMT only. 

 
    Using Eq. (3) for the spectral density, ( 𝜔)  can be written as  

                                   ( 𝜔)  2  ∫  (𝜔)𝜔 
  𝜔                                          (2.9) 

 

In the Ohmic situation, the spectral density  (𝜔) follows the relationship: 

  (𝜔)  2   𝜔                                                   (2.1 ) 

 

for all frequencies, where the Ohmic damping coefficient can be expressed 

as  

   12  ∑(    2  𝜔  ) 
    (𝜔  𝜔 )  .                            (2.11) 

 
 

One can see from Eq. (2.11) that   diverges in the limit:  𝜔    and 

therefore the form of   given by (2.11) is not a realistic expression for a 

pue Ohmic spectral density. To salvage the situation, one introduces a cut-

off frequency. In this regard, various forms have been proposed. We 

employ the Lorentz-Drude form [6], which gives  (𝜔) as follows: 



                                       (𝜔)  2   𝜔[1 + .𝜔𝜔  / ]                                                           (2.12) 
 
where 𝜔  denotes the cut-off frequency. It is evident that in the limit:  𝜔       (𝜔)   , and in the limit: 𝜔      one obtains the pure Ohmic 

spectral density. Finally, we can express the change in the frequency of 

QD phonon as: 

  𝜔  2  𝜔  .                                                      (2.13) 

 

The SMT Hamiltonian now reads  

      𝐻  ∑ 𝜀 𝑛        +∑(𝜀  𝑒𝑉 )𝑛  + 𝑈𝑛   𝑛    +        + ℏ𝜔̃ 𝑏 𝑏   
                            + 𝜆ℏ𝜔̃ (𝑏 + 𝑏)∑𝑛      +  ∑ (𝑉        + ℎ.  )       .      (2.14) 
 

where 𝑏 (𝑏) is now considered to represent the creation (annihilation) 

operator of QD phonon of frequency  𝜔̃ . 
 

2.4  Elimination of phonons 

In order to treat the el-ph coupling term, we perform on the transformed 

QD Hamiltonian 𝐻̅, the celebrated unitary Lang-Firsov transformation 

[7] by the operator: 

        𝑈  𝑒                        𝜆(𝑏  𝑏)∑𝑛   .                             (2.15) 
         



         The transformed Hamiltonian can be written as 

                                               𝐻̃  𝑒 𝐻𝑒                                                      (2.16) 

 

The electron operators of the system are transformed as follows: 

                                       ̃        ̂                 ̃          ̂                                    (2.17) 
 
where,    ̂   𝑒  (    )   ̂  𝑒  (    )                               (2.18) 
 

and the phonon operators are transformed as: 

                         𝑏̃  𝑏  ∑𝜆𝑛     𝑏̃  𝑏  ∑𝜆𝑛     .                       (2.19) 
 
Thus the effective Hamiltonian of the SMT system reads   

                     𝐻̃  ∑𝜀   𝑛  + ∑𝜀 ̃ 𝑛  + 𝑈̃𝑛   𝑛    + ℏ𝜔 𝑏 𝑏 

                                         +∑(       ̃  + ℎ.  )                                                     (2.2 ) 
 

 where the system parameters get renormalized as 

                                              𝜀 ̃  𝜀  𝑒𝑉  𝜆 ℏ𝜔                                               (2.21)                                              𝑈̃  𝑈  2ℏ𝜔 𝜆                                                           (2.22) 
                                              ̃  𝑉  ̂  𝑉 𝑒 (    )  .                                            (2.23) 
 



2.5  Tunnelling current : The non-equilibrium Keldysh Green 

function formalism  

 
  We calculate the expression for the current density employing Keldysh 

method. We shall present here the derivation of the tunneling current 

expression in the presence of the el-el, el-ph interactions and quantum 

dissipation. Then the current from the source to the quantum dot in a 

single molecular transistor can be written as the average value of the rate 

of change of charge operator 

                                                               𝑒                                               (2.24) 

 

where    is the operator corresponding to the number of electrons in the 

source and is given by                                                                 ∑            .                                                  (2.25) 
 
Thus the current from S to QD is given by  

                        𝑒 〈     〉    𝑒ℏ 〈[𝐻̃   ]〉                                                (2.26) 
 

where  𝐻̃ refers to the effective Hamiltonian given by Eq. (2.20). Since    

commutes with all but the hybridization term of  𝐻̃, we obtain   

                                𝑒ℏ ∑ [𝑉̃ 〈       〉  ℎ.  ]          .                            (2.27) 
 
Let us now define the following Green functions.  

                                             (    )   〈     (  )   ( )  〉                            (2.28 ) 



                                             (    )   〈      (  )  ( )  )〉                         (2.28𝑏) 
where   (    ) (  (    )) is the Keldysh greater (lesser) Green function,   ( )(    ) is the usual retarded (advanced) Green function,    ⟩ denotes 

the actual ground state of the whole system and  

                                      ( )  𝑒   ̃      𝑒  ̃                                               (2.29) 
 

 

where   (    ). Using the property 

                                                (   )    [      (   )]                               (2.3 ) 
 

the current from S to QD can be written as 

                                   2𝑒ℏ  𝑒 { ∑  ̃        (   )    }     .                          (2.31) 
       ( ) can be obtained through the equation of motion (EOM) method. 

Due to the structural similarity between the non-equilibrium theory and 

the equilibrium theory, we consider the zero temperature time-ordered 

Green function and its equation of motion.  So, let us define the retarded 

and the advanced tunnelling Green functions as 

                               ( )(    )      (     )〈 |{ ̃ ( )    (  )}| 〉               (2.32) 
 

which satisfies the following (inhomogeneous) EOM  

                                 (       𝜀 )     ( )(    )   𝑉      ( )(    )                (2.33) 



where,     
                                            ( )(    )      (     )〈 |{ ̃ ( )  ̃  (  )}| 〉  .                (2.34) 
 

The Green functions for the non-interacting lead electrons is given by  

                             ( )(    )     ((     ))〈{    ( )    (  )}〉 
                                                      ((     ))𝑒    (    )  .                            (2.35) 
where the averaging state is the ground state of the non-interacting 

electron system.     ( )
 satisfies the equation 

                                  (      𝜀 )     ( )( )     ( )  .                           (2.36) 
 
Therefore, Eq. (2.33) can be easily solved to give 

                                          ( )( )  ∫  𝑉      ( )( )    ( )( )       .                    (2.37) 
 
According to the analytical continuum rule, 

                              ( )   ( ) ( )                                              (2.38) 
 

which can be explicitly written as  

  (    )  ∫    (    ) (     )                                        (2.39) 
 

and the real axis of the  ( ) is given as  

 



                   (    )  ∫[  (    ) ( )(     ) +   (    )  (     )]     .    (2.4 ) 
 

So we can write   

         (    )  ∫   𝑉  ,    (    )    (     ) +     (    )    (     )-     (2.41)  
where   

     (    )   〈    (  )   ( )〉     (𝜀 )𝑒    (    )                       (2.42) 
 

  (𝜀 ) denoting the Fermi-Dirac (FD) distribution function. The Fourier 

transforms of the different Green functions are defined as  

                                      ( )   12 ∫ 𝜀  𝑒           (𝜀)                                     (2.43)  
                                   ( )  12  ∫ 𝜀 𝑒        (𝜀)                                            (2.44)  
                                   ( )  12 ∫ 𝜀 𝑒         (𝜀)                                             (2.45) 
                                    ( )  12 ∫ 𝜀 𝑒         (𝜀)                                           (2.46) 
 

where      ( )(𝜀) and      (𝜀) represent the retarded (advanced) and lesser 

Keldysh Green functions respectively for the QD electron in the energy 

space and     (𝜀) refers to the advanced Green function for the non-

interacting electrons in the 𝜀-space.  The first term of         (    )  can be 

calculated as follows. 

 



               (    )     ∫   𝑉      (    )    (     ) 
  ( 12 ) ∫   𝑉  ∫ 𝜀 𝑒   (    )      (𝜀)∫ 𝜀 𝑒    (     )

 

                 12 ∫ 𝜀 𝑉         (𝜀)    (𝜀) 𝑒   (    )                            (2.47) 
 

Similarly, we can calculate the second term of         (    ) and thus         (    ) is given by  

        (    )  ∫  𝜀2 𝑉  [       (𝜀)    (𝜀) +     (𝜀)    (𝜀)] 𝑒   (    ).       (2.48)  
 

The current expression then becomes 

       2𝑒ℏ ∫  𝜀2  𝑒 {∑𝑉̃ 𝑉  ,    (𝜀)    (𝜀) +     (𝜀)    (𝜀)- }       (2.49) 
 

where     (𝜀) is given by: 

          (𝜀)  ∫   𝑒        ( )  2    (𝜀 ) (𝜀  𝜀 )   .              (2.5 ) 
 
The first term in the current expression that contains      (𝜀) is calculated 

as follows. 

                 (1)    2𝑒ℏ ∫  𝜀2  𝑒 {∑𝑉̃ 𝑉  ,    (𝜀)    (𝜀)- }                             (2.51) 
 

We convert the momentum summation into energy integration and get 



      (1)   2𝑒ℏ ∫  𝜀2 ∫ 𝜀   (𝜀 )  𝑒,    (𝜀)  (𝜀  𝜀 )  (𝜀 )-      (2.52) 
 
     where 

   (𝜀 )  2   (𝜀 )𝑉̃ 𝑉                                              (2.53) 
 

   ( ) and   ( )(𝜀)  are respectively the density of states and the FD  

distribution function of S(D) and the chemical potentials of S and D are 

related to the bias voltage (𝑉 ) and mid-voltage (𝑉 ) as: 

 (     )  𝑒𝑉            (  +   ) 2  𝑒𝑉 .                           (2.54)  
 

Integration over 𝜀  gives  

     (1)   2𝑒ℏ ∫  𝜀2   (𝜀)  (𝜀) 𝑒*     (𝜀)+ 
              2𝑒ℏ ∫  𝜀2   (𝜀)  (𝜀)  *    (𝜀)+   
               𝑒ℏ ∫  𝜀2   (𝜀)  (𝜀),    (𝜀)      (𝜀)-  .                                  (2.55) 
Since  

                                                (𝜀)  ,    (𝜀)-                                          (2.56) 
 

 

the other part of the current expression can be manipulated similarly. 

Finally, one obtains  



  ( )   𝑒ℏ ∫  𝜀2   ( )(𝜀){    (𝜀) +   ( ),    (𝜀)      (𝜀)-}       (2.57) 
 

where    ( )(𝜀)  the hybridization interaction of the quantum dot with the 

source (drain) is given by  

     ( )  2   ( )(𝜀) 𝑉   𝑒  (    )  .                              (2.58) 
 

 

 In steady-state, the current will be uniform, and we have:  
 
                                                              (2.59) 
 

and after symmetrizing, we can write  

    (     )2  

       𝑒2ℏ∫  𝜀2 ,(     )    (𝜀) + (         )*    (𝜀)      (𝜀)+-.                                                                                                                             (2.6 ) 
The SD function which gives a possible excitation is defined as   

        (𝜀)      ,    (𝜀)      (𝜀)-   ,    (𝜀)      (𝜀)-.                   (2.61) 
  

Finally, the current through QD assumes the expression  [8 - 10] 

   𝑒2ℎ∫, *  (𝜀)     (𝜀)  +  (𝜀)   + *(     )    (𝜀) + -  𝜀 .  (2.62) 
 
 The occupation number of the quantum dot is given by  



   〈𝑛  〉  ∫  𝜀2  *  (𝜀)  +   (𝜀)  +  (𝜀).                                          (2.63) 
 
For a symmetric quantum dot, 
 
       ( )(𝜀)    (𝜀) +   (𝜀)2                                      (2.64)  
 

which we approximate   as 
 
     ( ) 𝑉   〈𝑛|𝑒  (    )|𝑛〉                                     (2.65) 
where 

                                                      (2.66) 
 

and  𝑛⟩ is an n-phonon state. The above approximation should be plausible 

when the el-ph interaction energy is much weaker than the hopping 

energy. In the limit       , we can write 

   ⟨𝑛|𝑒  (    )|𝑛⟩  𝑒        ⟨𝑛 𝑒    𝑒   𝑛⟩  𝑒   .    /                (2.67) 
 

where  

  𝑛⟩  (  )   ⟩√𝑛                                                  (2.68) 
 

 

 is an 𝑛   phonon state, so that we have 

     ( ) 𝑉   𝑒   .    /.                                         (2.69)  



     ( )(    ) can be expressed as: 

     ( )(    )      (     )〈{ ̃ ( )  ̃  (  )}〉 ̃ 

                  (     ) 〈{   ( )     (  )}〉   〈  ( ) ( )〉       
      0 ̃   ( )(    )1    〈  ( ) ( )〉   .                                        (2.7 ) 

where, 

      ( )  𝑒   ̃      𝑒  ̃      ( )  𝑒   ̃     𝑒  ̃   .                   (2.71) 
 

Now we shall calculate 〈 ( )  (  )〉  . 

 〈 ( )  (  )〉     (    )  ∑ 〈𝑛|𝑒   ̃   ( )  (  )|𝑛〉    ∑ 〈𝑛|𝑒   ̃  |𝑛〉                  (2.72) 
     where  ∑ 〈𝑛|𝑒   ̃  |𝑛〉     is given by 

 ∑〈𝑛|𝑒   ̃  |𝑛〉 
    ∑𝑒   ℏ ̃  

    1(1  𝑒  ℏ ̃ )  𝑒 ℏ ̃              (2.73) 
 

where  

    1(𝑒 ℏ ̃  1)                                              (2.74) 
 

is the phonon distribution function. We obtain 



             〈 ( )  (  )〉   𝑒  (  )  ∑    
    𝑒   ̃                               (2.75) 

where   

     (  )  𝜆 0(2   + 1) [   (1 +    )]   2   (ℏ𝜔̃ (  +   2   ))1      (2.76)  
         [ 𝜆 (2   + 1)

+ (𝑛𝜔̃  2   )]   .2𝜆 [   (1 +    )]   /.              (2.77)  
where,      refers to the Modified Bessel function of the second kind and    (   ) represents  the spectral weight corresponding to the +𝑛 ( 𝑛)-th  

phonon side band. Eq. (2.7 ) now reads   

       ( )(    )  0 ̃   ( )(    )1  〈 ( )  (  )〉     
                     0 ̃   ( )(    )1   ∑    

    ( )𝑒   ℏ ̃  .                               (2.78) 

Thus the energy-dependent Green function      ( )(𝜀) is given by  

        ( )(𝜀)   ∫0 ̃   ( )( )1   ( ) 𝑒       

         ∫𝑒   (     ) ∑   ( )𝑒 ℏ ̃     0 ̃   ( )( )1   
    𝑒   ℏ ̃  𝑒      

  ∑ 𝑒   (     )𝑒 ℏ  ̃     ( )∫0 ̃   ( )( )1   
     𝑒  (     ℏ ̃ )    



   ∑   ( )0 ̃   ( )(𝜀  𝑛ℏ𝜔̃ )1   
       .                                          (2.79) 

 0 ̃   ( )(𝜀)1    can be determined from EOM method within the mean-field 

approximation (MFA). We obtain  

      0 ̃   ( )(𝜀)1    (     )    (     )〈{  ( ) [     𝐻̃  ]}〉 
        (     )    (     ) 〈{    ( ) [     (  )  ∑𝜀 ̃𝑛   +  ]}〉 

                      +∑(𝑉̃        + ℎ.  )                                                            (2.8 ) 
 

          (     )     (     )  
                     〈{    ( ) (𝜀 ̃     (  )  𝑈̃〈𝑛  〉    (  )

 ∑(𝑉̃      (  ) + ℎ.  . ) )}〉                                         (2.81) 
        (     ) + 𝜀 ̃ ̃   ( )(    ) + 𝑈̃〈𝑛  〉 ̃   ( )(    ) + 𝑉̃  ̃   ( )(    )   

     (2.82) 
which  gives 

 ̃   ( )(𝜀  𝑛ℏ𝜔̃ )  1 + 𝑉̃  ̃     ( )(𝜀  𝑛ℏ𝜔̃ ) [(𝜀  𝑛ℏ𝜔̃ )  𝜀 ̃  𝑈̃〈𝑛  〉]                (2.83) 



where   ̃     ( )(𝜀  𝑛ℏ𝜔̃ ) is  the Fourier transform of  ̃     ( )(    ). We 

obtain the EOM for  ̃     ( )(    ) in a similar way. 

       ̃     ( )(    )     (     )〈{  ( ) [     𝐻̃]}〉                          (2.84) 
     (     ) 〈{  ( ) [     ∑𝜀 𝑛  +  ∑(𝑉̃       + ℎ.  )  ]}〉    

   𝜀  ̃     ( )(    ) + 𝑉̃   ̃   ( )(    )         .                                              (2.85) 
 

Multiplying by 𝑒 (   ℏ ̃ )( ) and integrating over  , we have after some 

algebraic manipulation 

          ̃     ( )(𝜀  𝑛ℏ𝜔̃ )  * 𝑉̃  (𝜀  𝜀 )+  ̃   ( )(𝜀  𝑛ℏ𝜔̃ )     .                    (2.86) 
 

 Substituting for   ̃   ( )(𝜀  𝑛ℏ𝜔̃ ) in the expression of  ̃   ( )(𝜀  𝑛ℏ𝜔̃ )  
we obtain  

       ̃   ( )(𝜀  𝑛ℏ𝜔̃ )  1[(𝜀  𝑛ℏ𝜔̃ )  𝜀 ̃  𝑈̃〈𝑛  〉    ( )]            (2.87) 
 

where   ( )(𝜀) represents the retarded (advanced) self-energy arising  due 

to el-ph interaction and hybridization and can be written as   

                  ( )(𝜀)   ∑ |𝑉̃ | (𝜀  𝜀     )       (𝜀)    (𝜀)                   (2.88) 
 



In Eq. (2.87), the real part of   ( )(𝜀) can be absorbed into the onsite 

energy of QD.       ( ) can be calculated as follows.   

       ( )    〈 ̃  ( ) ̃ ( )〉 
                   〈   ( )  ( )〉    〈  ( ) ( )〉     ̃     ( ) 𝑒  (  ).   (2.89) 
 
The lesser and greater Green‟s functions are expanded as   

         (𝜀)  ∑   ( ) 
     ̃   (𝜀 + 𝑛ℏ𝜔̃ ).                                            (2.9 ) 

The SD function can now be written as   

           (𝜀)  ∑      
    ( )[ ̃ (𝜀  𝑛ℏ𝜔̃ )    ̃ (𝜀 + 𝑛ℏ𝜔̃ )].      (2.91) 

 
To calculate lesser (greater) Green function, we can use the Keldysh 

formalism [11]. We can write the Dyson equations for  ̃   (𝜀) using 

Langreth analytical continuation rules,   

        ̃   (𝜀)   ̃   (𝜀)     (𝜀)  ̃   (𝜀)                        (2.92) 
 
with                                          (𝜀)      ,  (𝜀) +   (𝜀)-                              (2.93 )                                           (𝜀)       ,2    (𝜀)    (𝜀)-.                  (2.93𝑏) 

For the symmetric case, we obtain 



      𝑒 2ℎ∫, *  (𝜀)    (𝜀)+ (𝜀) -  𝜀                                           (2.94) 
 

where  (𝜀) is given by (Eqn. 2.61).   ̃   ( )
  now reads  

             ̃   ( )(𝜀  𝑛ℏ𝜔̃ )  1[(𝜀  𝑛ℏ𝜔̃ )  𝜀 ̃  𝑈̃〈𝑛  〉    ]          (2.95) 
 
and thus  (𝜀) reduces to  

  (𝜀)   ∑   ( )  
    

2 [.(𝜀  𝑛ℏ𝜔̃ )  𝜀 ̃  𝑈̃〈𝑛  〉/ +   ] .   (2.96) 
   can be obtained by substituting for  (𝜀) in Eq. (2.94) where  

    (𝜀)  11 + 𝑒  (    )                  (𝑒𝑉 + 𝑒𝑉 2 )                    (2.97) 
 

and 

   (𝜀)  11 + 𝑒  (    )                 (𝑒𝑉  𝑒𝑉 2 ).                 (2.98)  
 

               

At zero temperature, we have  

     ( ) 𝑉   𝑒             { 𝜆  𝑛 𝑒         𝑛                           𝑛                        (2.99) 
 

The onsite Correlation term is treated using the Hartree-Fock (HF) MFA. 

So, the results obtained by us are expected to be valid away from the 



Kondo regime. Now  ̃ ( )(𝜀) and   (𝜀) can be easily determined and 

consequently, one can obtain the the current flowing through QD. The 

differential conductance is calculated using the following equation 

     𝑉                                                       (2.1  )  
 

and spin polarization parameter from: 

       (        )(  +     ) .                                         (2.1 1) 

 

2.6  Results and Discussions 

 

   For simplicity, we consider a single-level QD (with energy 𝜀   ) that 

is symmetrically coupled to S and D. Also we measure energy in units of  ℏ𝜔  which is the phonon energy and set    .2 𝑒𝑉          ℏ𝜔  1. In addition, we take r  𝑈  5  for major part of our 

computations.  𝑈  5 might appear to be a bit large from the point of view 

of MFA that is employed here, but as the on-site the Hubbard term is 

modified by the polaronic effect to a much smaller  effective interaction, 

the HF MFA may be a reasonable approach for the current situation. In 

addition, it is assumed that the density of electron states of  S and D that 

participate in transport is constant.  

RC [12] have investigated the SD function   for non-zero values of  𝜆 and    for    . We have recently examined the SD function for    . We 

present our results in Fig. 2. The inset displays the behaviour of the 

function   for 𝜆      when 𝑈   , and    . Clearly one observes a 

Lorentzian behavior with single central resonance peak structure. The 

presence of a peak in the SD function indicates an excitation. Fig. 2 also 



shows the results of RC obtained for 𝜆    and at    .  One can see that 

in this case, side peaks appear in addition to the central peak due to the 

polaronic effect [12]. Our results for     show that the central peak is 

split when     and the side peaks shift towards left. In the case of    , the electronic states of QD are spin-degenerate and the magnetic 

field removes this spin degeneracy. As a result of the lifting if this spin- 

degeneracy, the central peak of the SD function undergoes a splitting.  

 

    

 

 

 

 

 

                                   

                                             

                                          Fig. 2   vs. 𝜔 for a few values of    .  

 

 

  To figure out the role of magnetic field further, we display the spin-

resolved SD functions in Figs. 3 (a-b). Fig. 3(a) depicts how the down-

spin SD function   (𝜔) varies with 𝜔, whereas Fig. 3(b) shows the 

behaviour of up-spin SD function   (𝜔). As shown in Fig. 3(a), as     

increases, the peaks of   (𝜔) increase in height and move to the higher 

values of 𝜔. The side peaks, however, increase only marginally. It is 

observed from Fig. 3(b) that for   (𝜔) also, peaks grow higher with   but 

shift to the lower values of 𝜔. However, for up-spin SD function, side 

peaks show a sizable increase.  



    

 

 

 

 

                         

    

                                

 

 

 

 

                          

                                  

 

                                             
                                                Fig. 3      𝑛     vs. 𝜔 for a few values of    . 

 

 

 

In Figs. 4(a-b), the behaviour of      𝑛     is shown with the bias voltage 𝑉  for different   values. The qualitative behavior of      𝑛      with 𝑉  

is similar in general. At small 𝑉 , both            increase slowly with 𝑉  

while at large 𝑉   the rate of increase is a little more. The non-Ohmic 

effect at large 𝑉  is probably responsible for the quicker increase in      𝑛     at large 𝑉 . We find that though at    ,      𝑛      behave  



   

 

  

 

                                              

 

                         

 

 

 

 

 

                               

 

                                         
                                      
                                  Fig. 4       𝑛     vs. 𝑉  for different values of    . 

 

 

 

in the same way, as     increases,      𝑛     behave differently. While      is found to decrease with increasing    ,     is found to increase as     increases. This is due to the magnetic field-induced removal of 

degeneracy with respect of electron spin. The down-spin level is raised by 

the magnetic field raises while the up-spin level is lowered.  

 



   

 

 

 

     

 

 

                                                 

                                 

 

 

 

 

 

 
                                          Fig. 5      𝑛     vs.     for a few values of 𝜆.  

 

  In Fig. 5, we present the behaviour of            with respect   for a few 𝜆 values. As can be seen from Fig. 5(a), for 𝜆   ,     exhibits a peak-

structure at some specific value of    . With increasing 𝜆, the peak-width 

becomes narrower and the peak moves to the lower   values. Around the 

prominent peak, also a few side peaks form. Fig. 5(b) demonstrates that 

the behaviour of    is more or less same as   , though now the height of 

the main peak decreases as 𝜆 increases.  



     

 

 

 

 

 

 

                                                                                                                                       

     

 

                                                 

                           

 

 

                                            Fig. 6      𝑛     vs. 𝜆 for different values of    . 

 

   We present in Figs. 6(a-b) the variation of              with 𝜆 for      .5  𝑛  1.  to unravel the effect of SD functions on the el-ph 

interaction.  When     , the behaviour of      𝑛     is similar, but for 

non-zero    , the qualitative behaviour of    is different from that of   .  
   Figs. 7 (a-d) show the nature of the variation of the up-spin current     
with 𝑉 . The behaviour for 𝜆    is shown in Fig. 7(a) for a few values of  . When    ,    turns out to be ohmic at low 𝑉   and seems to saturate 



asymptotically to a constant at large 𝑉 .  As 𝑉  is increased, the Fermi 

goes up and this makes it easier for electrons to tunnel from S into QD and 

consequently the current increases. However, since the number of 

electrons the QD can hold is limited, it is only natural that the current 

should saturate if 𝑉   increases beyond a particular value. The two-fold 

spin-degeneracy of the QD-level is lifted in the case of     and 

consequently, the spin-up energy level goes down and spin-down energy 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

                                  

(a) 

(b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          

 

                                                 

                                               Fig. 7    vs. 𝑉  for different values of     . 
 

level goes up.  As a result of this, unless 𝑉  is sufficiently increased to 

bring down the Fermi level of D to the spin-up level of QD, the spin-up 

electrons from  QD will not be able to tunnel into D and consequently the 

spin-up current flowing through the drain channel will be zero. As, with 

increase in 𝑉   the Fermi level in D falls below the spin-up electron level 

(c) 

(d) 



of QD, the spin-up tunnelling current acts more or less in an ohmic 

manner, eventually reaching saturation for the same reason as happens for    . The splitting of QD-level grows as       is increased. As a result,    remains zero up to a greater  𝑉  value. The behavior for  𝜆   .3 is 

shown in Fig. 7(b). The qualitative behaviour of current is same as seen in 

Fig.7 (a), save for it is now slightly lower due to the decline in electron 

mobility caused by polaron formation. Figs. 7(c) and 7(d) show that at 

large 𝜆, the decrease in the electron mobility is more significant due to the 

polaronic effect.   
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(b) 



         

 

 

 

 

 

 

 

 

 

 

 

 

 

  
                                          Fig. 8    vs. 𝑉  for different values of     . 
 

 

 

   Figs.8 (a-d) show the behaviour of 𝜆  both for 𝜆    and 𝜆   , for 

various      values. Again,    increases with 𝑉  and ultimately reaches 

saturation. Of course, this is the expected behavior. As 𝜆 increases, 𝜆 is 

found to develop shoulders. Khedri et al. [13-16] and Luffe et al. [17] have 

examined the appearance of these shoulders.   

   Fig. 9 provides a comparison between the spin-up and spin-down 

currents. One can observe that for 𝜆   ,   the value of    is less than that 

(c) 

(d) 



of    up to a particular 𝑉 . This has a simple explanation. The magnetic 

field lowers the spin-up electron levels while it raises the spin-down 

 

 

 

 

 

 

 

                                      Fig. 9   vs. 𝑉  for a few 𝜆 values  at     1. 
 

electron levels, resulting in a lower value of    due to the reduced 

probability of tunnelling of the spin-up electrons from QD to D. For 𝜆   , the behaviour of the current density appears a bit complex.    is found 

to be higher at lower bias voltages. However, there is a crossover behavior 

at a specific value of  𝑉  and    increases beyond this bias voltage. We do 

not have a clear explanation for this strange behaviour.   

  Figs.10 (a-b) show direct plots of    and    vs.   for various damping 

coefficients with 𝜆   .6. Fig. 10(a) shows the results for   , whereas Fig. 

10(b) shows those for   . According to Fig. 10(a),    initially increases 

with increasing magnetic field, but then drops and eventually reaches zero 

at a specific magnetic field.  Again, the explanation is straightforward. As    increases, spin-up levels decrease, allowing a larger number of 

electrons to participate in conduction and consequently the current flow 

increases. However, when the magnetic field reaches a critical value, two 

factors inhibit the current. The first is that the accessibility of vacant levels  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Fig. 10    and     vs.      for different values of   . 

 

in QD becomes less. The second is that the probability of 

electrontunnelling from the QD to D also becomes less. As a consequence, 

above a specific magnetic field, the current begins to diminish and finally 

vanishes. As one can see from Fig. 10(b),    monotonically decreases as      increases. As      increases, the spin-down levels rise and this 

makes the electron tunnelling from S to QD more difficult. This causes the 

current to decrease as the magnetic field increases. 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Fig. 11     and     vs 𝜆 for different values of       at 𝑒𝑉   .5,    .02.  

 

   It is expected that the dissipation of the type considered here should 

raise the current. Figures 11(a-b) explicitly display how    and    depend 

on 𝜆  for a      values. Fig. 11(a) presents the behaviour of   . The spin-

up electron levels decrease in the presence of a magnetic field, promoting 

electron tunnelling. The polaronic interaction has two effects. One is that 

it lowers the electronic level causing an enhancement in the current and 

secondly, it limits the mobility owing to polaron formation. As a result, 

numerous competing processes lead to the most remarkable structure in   . 

(a) 



The polaronic interaction gives rise to a factor: 𝜆  𝑒   
 in   . So at small 

values of 𝜆, 𝜆  being the dominant factor,     undergoes a quadratic rise, 

whereas at large 𝜆,     is expected to fall in a Gaussian way. Thus,    
exhibits a maximum in    with respect to 𝜆. The magnetic field shifts up 

the spin-down electron level. As a result, in this scenario, one would 

expect      to reduce as 𝜆 is increased. Fig. 12 depicts 3D plots of    and     

with 𝜆 and     .   
 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Three dimensional plots of Spin-polarized current densities for 𝑒𝑉   .5 as a function of both 𝜆 

and    .  

(a) 

(b) 



  Figs. 13 and 14 show how the differential conductance ( ) varies with 𝑉 . The inset in Fig. 13(a) depicts the variation for 𝜆       , 

whereas the main figure shows the behaviour for 𝜆   .6  and    . 2 

for a few      values. For 𝜆   , one can see that even for      the  

 

     

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13      Vs. 𝑒𝑉  : (a) for different B values with 𝜆   .6.   (Inset: 𝜆       ); (b)  for 

different values     𝜆 with      .5,     .  

(a) 

(b) 



there is a splitting in the peak. As      increases, splitting occurs in each 

peak. Also the distance between the two double peak structures increases.  

Because of the el-ph interaction, a few side peaks arise at higher values of 𝑉 . As previously said, each peak signals the probability of an excitation. 

As a result, as     increases, the states accessible for participation in 

conduction process also increases in a certain range of 𝑉 . Fig. 13(b) 

depicts the behaviour of   with 𝑉  for various 𝜆-values in the case when  

 

 

 

 

                                                  

 

  

 

 

 

 

 

 

 

        
                  
                           Fig.14     and    vs. 𝑒𝑉  for a few   vaues at 𝜆   .6,    . 2.  

 

(b) 

(a) 



  there is no dissipation. As expected,   is found to decrease as 𝜆 

increases.   Figs. 14(a-b) show the changes a magnetic field brings about 

in the graph of spin-polarised differential conductances (   and    ) 
versus 𝑉 .    

 

   

 

                                                                                                                                      

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15       Vs.     : (a) for a few values of    with 𝜆   .5  𝑛  𝑒𝑉   .5  (inset      

vs          𝜆       𝑛  𝑒𝑉   .5); (b)                                   𝑛  𝑒𝑉   .5.  

 

 

  In Fig. 15, we study the direct effect of the magnetic field on  . Fig.  

(a) 

(b) 



15(a) shows the behaviour for different   values with 𝜆   .5. The inset in 

the figure shows that for 𝜆     ,   reduces as    increases, which is 

expected as the magnetic field has a localizing effect. However,   also 

exhibits a small shoulder in a specific window of the magnetic field. In the 

case of        generally decreases and the decrease becomes more rapid 

as      increases. It is interesting to mention that the shoulder appearing  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig.16     and     Vs.       for a few values of   at 𝜆   .6   𝑛  𝑒𝑉   .5. 
 

(b) 

(a) 



in the absence of el-ph interaction changes into a peak for 𝜆    and the 

height of the peak grows as   is increased. In Fig 15(b), we plot   versus      for 𝜆   .   . .6      .8 and    . As 𝜆 increases, we find that the 

shoulder changes into a peak structure.   produces two peaks for 𝜆   .8. 

We show in Figs. 16 (a-b) the behaviour of     and    with respect to      for a few values of  . One can explain the behavior using Figs. 7 and 

8. We investigate the el-ph coupling effect on    and    in Figs. 17(a-b). 

The observed behaviour can be understood in view of Fig. 11.   

 
 

 

 

 

 

 

                    

 

 

 

 

 

 

 

                        Fig. 17      and      Vs. 𝜆 for a few values of       at 𝑒𝑉   .5    . 2 

(a) 

(b) 



     In Fig. 18(a), we study the behaviour of the spin polarisation parameter       with 𝑉  for a few values of    values for non-zero 𝜆 and  . At low 

values of              first grows with 𝑉 , reaches a maximum and then 

decreases to zero. At higher values of      too,       first increases with 𝑉  but finally bends over and reaches a saturation value that is dependent 

of     . Fig. 18(b) reveals that as 𝜆 increases,       diminishes at small 𝑉  

though beyond a certain 𝑉          grows with 𝜆. This gives rise to a 

crossing behaviour. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 18        vs. 𝑒𝑉 : (a) for a few values of      with 𝜆   .5       . 2; (b) for  a few values 

of  𝜆 with        3 &     .02.   

(b) 

(a) 



    Fig. 19 shows the behaviour of        with respect to     . In the case  

of 𝜆      , as      increases,       first rises with     , assumes a 

maximum value and then reduces to constant value. For 𝜆   ,       

behaves in the same way initially and exhibits a maximum but as     

increases further,       eventually falls to zero. Fig. 19(b) depicts the 

behaviour of       with      for various values of   . The qualitative 

behaviour in this case turns out to be essentially similar to that seen in the 

 

 

 

   

 

 

 

                   

 

 

 

 

 

 

  

Fig. 19        Vs.     : (a) for a few  values of  𝜆 with        𝑛  𝑒𝑉   .5  ; (b) for a few 

values of    with  𝜆   .5  𝑛  𝑒𝑉   .5.    

(a) 

(b) 



          - graphs for 𝜆   . Also,       decreases as damping 

increases.     

    Fig. 20 displays the behavior of    ⁄  as a function of the mid-voltage  𝑉  for some      values with 𝜆  1 and 𝑈  5. In the inset, we show 

the variation of    ⁄  for 𝑈         𝑒𝑉  3.6 and      and 1  as 

obtained by Chen et al. [18]. It is clear that at         ⁄  has a asymmetric 

plateau-like structure and the el-ph coupling reduces    ⁄   and induces a 

wavy structure in the plateau and    ⁄  becomes symmetric around 𝑉 . The 

main figure shows that for 𝑈         ⁄  has a peak structure which shifts to 

the positive mid-voltage side as   increases. Furthermore,    ⁄  is now zero 

for negative 𝑉 .   
 

 

 

 

 

 

 

 
Fig. 20       vs 𝑒𝑉  at 𝑈  5 𝑒𝑉  3.6 for different   values. (Inset:      vs 𝑒𝑉  at 𝑈   , 𝑒𝑉  3.6 and      ). 
We plot      vs.     with 𝑈  5 in the absence of a magnetic field in 

Fig. 21(a). We also display the results for 𝑈     and         1 as 

obtained by Chen et al. [18] to see how el-el interaction affects the results. 

For 𝜆       exhibits two peaks appearing asymmetrically around 𝑉   . 

The peaks get shorter and sharper at   1 and symmetric with 𝑉   . A 



few symmetric side-peaks can also be seen. When 𝑈 increases to 𝑈  5, 

peak-heights reduce and the peaks move to right hand side of 𝑒𝑉   . 

Furthermore,   reduces to zero for negative    and also for small positive 

values of   .   Fig. 21(b) shows the plot of      with    for    1,  𝑈  5 , and two values of  . We see a lot of peaks at       .6. Peak 

structures change when      approaches 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21        Vs. 𝑒𝑉 : (a) for       , 𝑒𝑉  3.6, 𝑈     𝑛  5 𝜆     𝑛  1 ; (b) for different 

values of      at 𝑈  5, 𝑒𝑉  3.6.  
    Fig. 22 shows the contour diagram of   in the (Vb-Vm) - plane for a few sets 
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       Fig.  22  Map of    in the Vb -Vm – space : (a) for 𝜆  1 ,      1 and 𝑈    ;(b) for   𝜆  1 ,       and 𝑈  5  (c) for 𝜆  1 ,      1 and 𝑈  5. 

    

 of parameter values such as: 𝜆  1      1 𝑈      𝜆  1        𝑈  5 and 𝜆  1      1 𝑈  5. It is useful to make a comparison of Fig. 



22 (a) with the similar figure in [18]. This shows that the magnetic moves   to 

the left on the Vm - axis bringing in symmetry in   around  Vm = 0. It can also  
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Fig 23   Map of   in (𝑉 -𝑉 )-space for: (a)  𝜆  1 ,      1 and    ; (b)  𝜆  1 ,     and 𝑈  5. ; (c)   𝜆  1 ,      1 and 𝑈  5.   



 

 

be noticed that plateaus appear corresponding to different values of  . Fig. 

22(b) shows that   decreases for 𝑈   .  Furthermore,   is non-zero only 

for positive Vm. The   -map for non-zero      and 𝜆 is shown in Fig. 22 

(c). As expected, now the plateau heights come down and the  -map shifts 

to the right on the Vm axis. 

 

   Fig. 23 shows the contour plot of G in the (𝑉  𝑉 )                                       𝜆  1      1 𝑈       𝜆  1     𝑈  5 and 𝜆  1      1 𝑈  5. When Fig. 23 (a) is 

compared to the similar map in [18], it becomes clear that magnetic field 

splits each peak in the   map into two. The role of Coulomb correlation 

on the contour plot of   is depicted in Fig. 23 (b). The el-el interaction 

clearly reduces the differential conductance. This map also shows some 

chaotic behaviour for 𝑉   . The origin of this complicated behaviour is, 

however, not clear. Figure 23(c) presents the effect of both e-e interaction and 

the magnetic field along with the el-ph interaction. Fig. 22(c) contains more 

general information than Figs. 22(a) and 22(b).  

 

2.7  Conclusion 

 
    In this chapter, we have presented our work on the effect of el-ph 

interaction, onsite Coulomb correlation, magnetic field, and damping on 

transport properties of an SMT system. The system has been modeled by 

the Anderson-Holstein-Caldeira-Leggett Hamiltonian. The dissipative 

effect is caused by the linear coupling between the lattice mode the QD 

and substrate phonons according to the Caldeira-Leggett model and has 

been approximately addressed by a canonical transformation. This reduces 

the QD phonon frequency, which is precisely the effect of dissipation. The 



Holstein el-ph Hamiltonian has been dealt with by the Lang-Firsov 

method and averaging with respect to the zero-phonon state. We have used 

the Keldysh Green function method to calculate the spectral function  , 

current density  , differential conductance    and spin polarization 

parameter        and the effect of el-ph coupling, magnetic field, and 

dissipation on the transport properties have been investigated.  

  The spin degeneracy of the QD energy levels is removed by the magnetic 

field     .  As a result, the electron levels of QD are split, and 

consequently SD functions develop peaks. Both the el-ph coupling and  

magnetic field  reduce   .  However,     increases with      up to a critical      and then drops to zero.    versus 𝜆 shows a similar behaviour.  

  The spin-split conductances    and     have been shown to decrease as   

is increased. As a function of 𝜆, however, the behaviour of     and    is 

opposite. It is also observed that el-ph interaction induces    to develop 

peaks while it suppress them in   .  
   At small     ,         as a function of Vb, exhibits a peak and then falls 

off to zero whereas at large     ,        initially increases with 𝑉  and 

eventually saturates. Furthermore, as      increases,        decreases and 

finally drops to zero. It has been shown that the phononic dissipation 

considered in this chapter enhances   ,    and      .  We have also shown 

that the number of peaks in the graph of     versus Vm, increases with      due to spin-splitting. The present work suggests that the SMT device 

considered here can have potential applications in  spin-filtering device. 
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 Chapter 3 

 

 

Quantum transport in a single molecular transistor 

at finite temperature 

 

 

3.1   Introduction 

 
   In recent years, several researchers [1-3] have investigated 

experimentally the temperature dependent transport in SMT. Theoretical 

research, on the other hand, has been scarce [4]. In this work, our aim is to  

to study the effect of temperature on transport properties in an SMT 

device. We examine the same SMT system as introduced in Chapter 1. As 

before, we model the system by AHCL Hamiltonian and study the non-

equilibrium quantum transport using Keldysh Green function approach.  

 

3.2   The Model  

 

  The SMT device to be studied in this chapter is shown schematically in 

Fig. 1.    The system is modelled by the Hamiltonian   

 𝐻   𝐻   + 𝐻  + 𝐻 + 𝐻     + 𝐻     + 𝐻 + 𝐻  

 



     ∑𝜀 𝑛    + ∑𝜀  𝑛  + 𝑈𝑛   𝑛   + ∑ 𝑉 (       + ℎ.  )         

        + ℏ𝜔 𝑏 𝑏 +  𝜆ℏ𝜔 (𝑏 + 𝑏)∑𝑛   + ∑*    2  + 12  𝜔      + 
    

         +∑   
        .                                                                                                        (3.1) 

 

 

  

                                                                                 

                                                                                   

 

  

                                
                                       Fig.1 Schematic diagram of an SMT device  

                               

   As in Chapter 2, we first use a simple canonical transformation to 
partially decouple the QD phonon and the bath oscillators and then deal 
with the el-ph coupling using the Lang-firsov transformation. The 

transformed Hamiltonian of the SMT system then reads   

  𝐻̃  ∑𝜀   𝑛  + ∑𝜀 ̃ 𝑛  + 𝑈̃𝑛   𝑛    + ℏ𝜔 𝑏 𝑏 +∑(       ̃  + ℎ.  )                                                                                                                                              (3.2) 
 

 where the system parameters get renormalized as 



                                              𝜀 ̃  𝜀  𝑒𝑉  𝜆 ℏ𝜔                                                (3.3)                                              𝑈̃  𝑈  2ℏ𝜔 𝜆                                                            (3.4) 
                                              𝑉̃  𝑉  ̂  𝑉 𝑒 (    )  .                                            (3.5) 
 

3.2  Current density and Spectral density function: 

 
As shown in Chapter 2, the tunneling current [5-7] flowing through QD is 

given by   

         𝑒2ℎ∫(*  (𝜔)     (𝜔)  + (𝜔) + (     )  (𝜔)) 𝜔       (3.6) 
 
where  

     (𝜀 )  2     (𝜀 )𝑉̅̃ 𝑉                                     (3.7) 
 
 𝑉̅̃  referring to the phonon-average of 𝑉̃  and   ( ), the density of states in 

S(D),   ( )(𝜔) refers to the FD distribution in  S (D) which has the 

following expression   

     (𝜔)  1,    ,(     𝜔)    - + 1-                       (3.8) 
 

 

      being the chemical potential of S(D) and related to 𝑉  and  𝑉  as: 

𝑒𝑉  (     )    𝑒𝑉  (  +   )2                                (3.9) 
  (𝜔) is the SD function which is related to Green‟s functions as follows: 

  (𝜔)   ,    (𝜔)      (𝜔)-    ,    (𝜔)      (𝜔)-          (3.1 ) 



 

 

where      ( )(𝜔) represents the energy-dependent retarded (advanced) 

Green function and      ( )(𝜔) is the (greater) Green function 

corresponding to the QD electron. All the afore-mentioned quantities 

including the Green functions have been introduced in Chapter 2. These 

Green functions can be derived using EOM as we have shown in Chapter 

2.  We calculate the mean occupancy on QD using the equation   

  𝑛     ∫ 𝜔   ,(    +     )  (𝜔)-2   .                      (3.11) 
  
 For mathematical simplicity, we consider symmetric coupling of QD with  

leads. Then we may write:                                        (𝜔)   ,  (𝜔) +   (𝜔)-2  .                                   (3.12) 
 

where we approximate   ( ) by its n-phonon average. Thus we have  

   ( )  2  ( ) 𝑉    𝑒[    (       )]                      (3.13) 
where                                                1,𝑒(ℏ ̃    ⁄ )  1-                                     (3.14) 
 

denotes the phonon distribution at a specific temperature. The spectral 

function of SMT is obtained as 

             (𝜔)  ∑    ( )[ ̃ (𝜔  𝑛𝜔̃ )       ̃ (𝜔 + 𝑛𝜔̃ )] 
     

  ∑   ( ) [ 2 ̃(𝜔  𝑛𝜔̃  𝜀 ̃  𝑈̃〈𝑛    〉) +  ̃ ] 
           (3.15) 

 



where 𝑛 denotes the number of phonons,  

  ̃    𝑒   (      )                                     (3.16) 
 

and  

                 𝑒[   (      )   ̃     ]   .2𝜆 [   (1 +    )]   /  (3.17) 
 
where    is the Modified Bessel function and     are the spectral weights 

of the +𝑛th and  𝑛th phonon side bands as indicated in [8].   (𝜔) is 

calculated and consequently   is determined.  

 

3.3    Differential conductance (G)   is defined as:      𝑉 ⁄ . Straight-forward calculation gives    

                          𝑒  2ℎ ∑     
    ∫  𝜔   

  (𝜔) (𝜔  𝑛𝜔̃ )                (3.18) 
where  

   (𝜔)   12   ,  (𝜔)*1    (𝜔)+ +   (𝜔)*1    (𝜔)+- 
                       [1 + 12 (𝑒    ̃     1),  (𝜔  𝑛𝜔̃ ) +   (𝜔  𝑛𝜔̃ )-] 

               + 14   (𝑒    ̃     1),  (𝜔)    (𝜔)-   ,  (𝜔  𝑛𝜔̃ )*1    (𝜔  𝑛𝜔̃ )+    (𝜔  𝑛𝜔̃ )     *1     (𝜔  𝑛𝜔̃ )+-.                                          (3.19) 
 

 



3.4     Results and Discussions 

 

     We set the phonon energy ℏ𝜔  as the scale of energy in our numerical 

computation and for the SMT parameters, we set the following values: 𝜀     𝑒𝑉       .2 𝑒𝑉   .5 𝑈  3 (unless otherwise 

specified). To understand the effect of temperature on the transport 

properties of the SMT device, we calculate the SD function  , Current 

density   and the differential conductance   at different values of  .   Fig. 

2 depicts the behavior of the SD function  (𝜔) with energy 𝜔 at 𝜆   .6  
 

 

 

 

                                        
                                       
                                   

 
                                                  

                                                        

  

 

                                                      Fig. 2    (𝜔)  ( ) vs. 𝜔 for different values  of      .      

  𝑒𝑉   .5  𝑒𝑉  2.5. The results for 𝜆    and        are shown in 

the inset which clearly shows the Lorentzian peak at 𝜔   . The main 

graph in Fig. 2 shows the behavior of  (𝜔) with respect to 𝜔 for several   

values with 𝜆   . The figure demonstrates that when the el-ph interaction 

is activated at    , the polaronic effect renormalizes the SMT 

parameters, causing the central peak in  (𝜔) to redshift and side peaks to 

emerge at 𝜔  𝑛𝜔̃  in it. The emergence of sidebands represents the 

excitation of phonons. An electron can tunnel into or out of QD by 



emitting or absorbing a phonon, which appears as side bands in  .  The 

probability of occurrence of higher-order phonon processes is smaller and 

therefore the side-band heights fall with increasing energy. At finite 

temperature, a more fascinating situation emerges. At    , the central 

peak sharpens, becomes higher and goes through a blue shift. Also, as   

increases, the side bands diminish in the region: 𝜔    and grow in the 

region: 𝜔   .   

 

                                                                        

 

 

 

 

 

 

 

 

 

 

 

 
 
                                                 Fig. 3   (𝜔)  ( ) vs. 𝜔 for a few   values . 

  

 

 

 

 

 

 

 

   

 

                                               Fig. 4    vs.  𝜆 for a few   values with     . 2 . 



 

 

      Fig. 3 depicts the behavior of  (𝜔) with 𝜔 at      .6 for 𝜆   .6 and  

several   values. As dissipation increases, the height of the peak in  (𝜔) 

decreases and its width broadens. So we conclude that the dissipation 

reduces the occupancy of the phonon side-bands as stated in [9, 10]. 

 

  In [8], nature of the spectral weight (  ) has been demonstrated at      for various 𝑛. Fig. 4 presents the behaviour of    (𝑛  1)  with  𝜆 

for a few    values.     grows in height with rising    until some critical 

value, after which the  - dependence of    appears to be insignificant. As 

a function λ,    first increases, reaches a peak at some λ, and then drops in 

a smooth way. We have observed (though we have not shown here) that 

for higher values of 𝑛  though the qualitative behavior remains the same, 

the quantitative value of    decreases quite significantly.  

    

 

 

 

                                                 

 

 

 

 

 

                                                  Fig. 5    vs.      for a few   values with 𝜆   .6. 

We plot    versus   for various   in Fig.5 to see the effect of damping 

effect at 𝑛  1. It is evident that as   increases,     grows rapidly and 



reaches a peak value at some  , and finally declines with a further rise in  . One can also see that up to a certain    dissipation enhances   , albeit 

marginally and above a certain    dissipation reduces   . 

 

 

 

 

 

    

                     

 

 

                                            
                                       Fig. 6        vs.  𝑒𝑉  for different values of    .  

 

 

   The behavior of current density   with bias voltage 𝑉  for a specific 

value of 𝜆 is plotted at different values of   in Fig. 6. The inset which 

gives the behaviour for 𝜆          suggests that   linearly increases 

with 𝑉  and finally saturates. According to main graph, as   increases,   
decreases.  We present in Fig.7 the plot of    versus 𝑉  for various 𝜆 

values. The el-ph interaction reduces the current density at a finite 

temperature due to thepolaronic effect. The reduction is, however, 

marginal for the el-ph coupling range studied in this work. To understand 

how dissipation influences behaviour of   with respect to 𝑉  at a finite 

temperature, we plot    versus 𝑉   for various   values with 𝜆   .6  and       .6  in Fig.8.   increases just marginally with increasing  .  

  



 

 

 

 

 

 

 

 

                                                 Fig.7       vs.  𝑒𝑉  for different values of 𝜆 . 

   

 

 

 

 

    

 

                                    
                                       Fig. 8        vs  𝑒𝑉  for different values of  . 

 

  Fig. 9 presents the plot for    versus  𝜆.  The el-ph interaction reduces the 

current density and at some critical 𝜆, the current density reaches to zero. 

The graph also indicates that when   increases,   reduces. Fig. 10 depicts 

directly how   varies with   for various values of the el-ph interaction 

strength 𝜆. As one would normally expect,    is found to decrease with 

increasing   and 𝜆.  This is consistent with Figs. 6 and 7.  

 



 

 

 

 

 

 

 

 

 
 
                                                  Fig.9       vs  𝜆 for different values of     . 

        

 

 
   
                                           

 

 

  

 

  
                                                      Fig.10       vs      for a few 𝜆 values.    

 

  Fig. 11 presents the behaviour of   with 𝑉  at various   values. The plot 

at      for 𝜆    and     is shown in the inset. Obviously, for        , G has a central symmetric peak. The main graph reveals that 

because of the el-ph coupling, the central peak splits resulting in two 

symmetric peaks and a few side bands are produced. Temperature appears 

to reduce    in general.  



  

 

    

 

 

 

 

 

                                                
                                                   Fig. 11       vs  𝑒𝑉  for different values of      

 

    

 

 

 

 

 

                                         
                                                Fig. 12        vs.  𝜆 for different values of     .  

 

The behaviour of   with 𝜆 is displayed in Fig. 12 at various   values. As 

can be seen from the figure, at       as 𝜆 is increased from zero,   first 

decreases and develops a minimum and then exhibits a peak and 

eventually falls off to zero. It is worth noting that when the   is made 

finite, the behavior of   changes qualitatively. To be more explicit,   

displays a double-peak structure, one at (say)    and the other at (say)   , 

where       . The peak at    is significantly broader than the peak at   . 



Also, as   increases,    also increases while    decreases. Furthermore, as 

T increases, the second peak decreases in height, whereas the first peak 

appears to remain unchanged. At small  ,    reduces with increasing 

temperature. 

     

 

 

 

 

 

 

 

                                            
                                                   Fig. 13        vs.  𝑒𝑉  for different values of      . 

   

Fig. 13 shows the plot of G versus 𝑉  for various   values. We observe 

that with increase in       shows a decreasing nature. However, as   

increases, the side bands vanish altogether, and we observe only a single 

broad maximum in the   𝑒𝑉  curves. With further increase in    the 

nature of the curves becomes quite flat and hardly depends on  𝑉 .  

   Fig. 14 shows the behavior of   with 𝑉  at      for a few  𝜆 values 

The figure displays a peak at 𝑉    for 𝜆   . For non-zero 𝜆, the 𝑉    peak splits into two peaks, resulting in a  minimum at 𝑉   . 

With increase in 𝜆, the heights of the peaks diminish and the distance 

between them increases. Also the minimum 𝑉    becomes broader and 

comes down. One can observe that for 𝜆   .8    continues to remain zero 

at low 𝑉  around 𝑉   .  



 

          

 

 

 

 

 

                                              
                                                Fig. 14        vs. 𝑒𝑉  for a few 𝜆 values.  

 

 

 

 

 

 

 

 
 
                                               Fig. 15        vs. 𝑒𝑉  for different values of  𝜆.  

Fig. 15 displays the variation of G with 𝑉  at a finite temperature (     .6). Now the 𝜆    peak of   is also split and   has the value zero over 

a wider window of 𝑉  on both sides of 𝑉   . At low  𝜆, as we increase 𝜆   
the peaks get shorter and closer, and the range of 𝑉  values for which   

remains zero, reduces. However, as 𝜆 exceeds a certain value, double-peak 

pattern ceases to exist and single broad maximum with the maximum at 𝑉    , appears. As 𝜆  is further increased, an interesting structure with a 

fat maximum around 𝑉     is observed.  



   We demonstrate in Fig. 16, the nature of variation of   with 𝑉  for 𝜆    and 𝑈     for several values of  . Evidently,    and its peak 

diminish with increase in  . It is found that when the temperature rises, 

the peaks move to the positive side. At      peaks, in general, decreases. 

As a result, as temperature rises, the differential conductance decreases. 

 

                                                                                       

    

 

 

                                                    
                   

 

 

 

 

 

                                                         Fig. 16      vs  𝑒𝑉  for a few   values. 

 

 

   

   

 

 

 

 

 

 

                                                          
                                                          Fig. 17      vs      for a few 𝜆 values.  



To find the effect of   on   more clearly, we present our results of   

directly with respect to   in Fig. 17 for various 𝜆 values. At 𝜆   .4, we 

see that as a function of      first rises and exhibits a peak and finally 

drops continuously with  . As 𝜆 increases, the peak becomes broader in 

width and moves in the direction in which   increases. A careful 

examination of the nature of variation of   with   and 𝜆 suggests that the 

behaviour is dependent on the range of   or 𝜆.  

 

 

   

 

 

       

 

 

 

 

 

 

 

 

       Fig. 18  3D graphs for (a)    ⁄   vs.      𝑛  𝜆  (b)    ⁄  vs       𝑛  𝜆  (at 𝑒𝑉  2.5). 
 

 

  Fig. 18 displays the 3D diagrams of   and   as a function of    and 𝜆, 

while  Figs. 19 and 20 present the contour plots of    and   as a function 



of    and    respectively at different values of  . Figs. 19 and 20 show 

that though the boundary area of the  -curves decrease with increasing   , 

that of the G-curves appear to broaden with temperature. 
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Fig. 19  Contour plot     in (Vb -Vm ) – plane with 𝜆   .6 and 𝑈  3 for (a)      .4 ; (b)      .6 ; (c)      .8. 
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Fig. 20  Contour plot of   in (Vb -Vm) – plane with 𝜆   .6 and 𝑈  3 for (a)      .4 ; (b)      .6 ; (c)      .8. 

 

 

 

 

 



 

 

3.5   Conclusion 

 
In this chapter, we have investigated the quantum dissipative effect on the 

electronic transport properties of an SMT device at finite temperature in 

the presence of el-el and el-ph interaction. The interaction of the QD 

phonon with the phonons of the substrate, which functions as a heat 

reservoir, causes the dissipative effect. The QD phonon interacts with the 

phonons of the substrate, according to the Caldeira-Leggett model. This 

interaction produces quantum dissipation, which has been approximately 

addressed by a canonical transformation. This led to the renormalization 

of the frequency of the QD phonon. The el-ph interaction term has been 

separated using the conventional Lang-Firsov transformation followed by 

an averaging with respect to the zero-phonon state. Finally, the transport 

parameters have been calculated using the Keldysh technique and the 

equation of motion method. The impact of temperature, damping rate, and 

el-ph interaction on the spectral function, current density, and differential 

conductance has been explored. The quantum dissipative effects on the 

spectral weight have also investigated at finite temperature. It has been 

discovered that as the damping rate increases, the spectral weight also 

increases. It is found that the damping rate enhances the current density at 

finite temperature but not as much as it does at zero temperatures. Also the 

current density decreases with increasing el-ph interaction and 

temperature, and the differential conductance follows the same behaviour. 

In the presence of an external magnetic field or spin-orbit interactions, this 

system can be utilised as a spin filter. 
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Chapter 4 

 

 

Tunneling conductance of electron spin across a 
metal-semiconductor junction with Rashba and 

Dresselhaus spin-orbit interactions 

 

 

4.1 Introduction  

 

   The Rashba and Dresselhaus spin-orbit interactions (SOI), which have a 
significant influence on the properties of nano-structures, have paved the 
way for a new research frontier in semiconductor nanotechnology called 
Spintronics [1-3]. This area was initiated by Datta and Das through their 
pioneering work on the spin-field-effect transistor [4, 5]. Since then, a 
significant number of studies on the impact of spin-orbit interaction on the 
energy spectrum and impurity states in low-dimensional systems have 
been reported in the literature [6-19]. The SOI effect on persistent current 
in quantum rings has recently been explored [20, 21]. However, the 
fundamental interest in spintronics lies on the transport of electron spins 

and in this context, a reliable source of spin-polarized electron generator is 
required [22-24]. Spin polarisation can be accomplished using a variety of 
sources, such as magnetic semiconductors [25, 26], ferromagnetic-metal 
interfaces [27], ferromagnetic-superconducting interfaces [28, 29], 
graphene-based spin filters [30-32], and so on. However, spin filters based 
on hetero-structures [33-35] have some advantages. For example, since 



high-quality heterostructures can be easily manufactured using the modern 
fabrication techniques, it is easier to have high-quality spin-filters through 
this approach. Spin polarizability in semiconductor devices can be 

achieved by utilising the zero-field spin splitting caused by Rashba SOI 

(RSOI) and Dresselhaus SOI (DSOI) [36-38].  

  Koga et al. [39] have conducted the first theoretical investigation on the 

role of SOI in spin-filtering applications. Khodas et al. [40] have 

developed an alternative approach for producing spin currents. They have 

used the spin-orbit interaction (SOI) effect to cause electron polarisation in 

nonmagnetic semiconductor heterostructures. Dargys [41-43] have 

explored the phenomenon of electron reflection by an infinite barrier in a 

two-dimensional device. Using Clifford (geometric) algebra, they have 

discovered that under certain conditions for the angle of incidence, SOI 

results in double refraction [44] for the incident electrons. Recently, we 

have extended the works of Khodas et al. and Dargys to investigate the 

refraction and reflection of electrons over a metal/semiconductor junction 

where the semiconductor material is a semi-infinite two-dimensional 

electron gas (2DEG) with non-zero RSOI and DSOI. Following 

Srisongmuang et al. [45, 46], we have calculated the zero-temperature 

current density and differential conductance. The most important finding 

of this work is that the inclusion of DSOI makes the spin-filtering effect 

much stronger. In this chapter we shall present the results of this work. 

 

4.2  The Model  

 
  We consider an infinite two-dimensional (2D) system in the     plane, 

where a metallic 2D lead fills the region      and a 2D  

 



 

 

                                                                                                 

                                                                                                    

 

 

 

                  

                                       

                                

                                         Fig. 1 Schematic sketch of the system 

 

       

semiconductor system with RSOI and DSOI occupies the region    . At    , the two materials are separated by an interface. The system is 

schematically described in Fig. 1. The system Hamiltonian 𝐻 can be 

represented as  

           𝐻  𝐻 + 𝐻                                                           (4.1) 
 

where 𝐻   the free-electron Hamiltonian in the metallic region with the 

eigenfunction    and energy 𝜀 , is given by 

           𝐻     2 +    2                                (4.2) 
 

                  
and 𝐻   is the Hamiltonian for an electron in the semiconductor area with 

both RSOI and DSOI in the presence of a perpendicular electric field and 



a barrier 𝑉 , with the appropriate eigenfunction     and energy  . The 

Thomas term (𝐻 ) of the Dirac theory that provides in general the spin-

orbit interaction is given by 

   𝐻   𝑒ℏ  . (   )4      .                                                    (4.3) 
 

When an electric field of strength   is applied in the z direction, i.e.,      ̂, the system inversion symmetry is broken at the surface, and the 

ensuing SOI or 𝐻  corresponds to RSOI. We denote this interaction 

Hamiltonian by 𝐻  which can be written as   
                       𝐻   𝑒ℏ  . ( ̂   )4        ℏ (         ) .                 (4.4) 
 

where   𝑒ℏ  4                                                              (5) 
 

denotes the RSOI strength. DSOI occurs in heterostructures with bulk 

inversion asymmetry and is described by the Hamiltonian 𝐻  : 

                                                𝐻   ℏ (         ) .                                   (4.6) 
 

 𝐻   is given by: 

       𝐻𝐼𝐼      2 +    2 + 𝐻 + 𝐻 + 𝑉                  .          (4.7)  
 



4.3 Formulation 

 
The Schrodinger equations for regions I and II are given by 

   𝐻    𝜀                                                                      (4.8) 
                                     𝐻            .                                                             (4.9) 
 

The energy eigenvalue in region I is given by: 

 𝜀  ℏ (   +    )2  ℏ   2                                                  (4.1 ) 

 

and the corresponding wave function is given as  

                         1√2 0111 𝑒 (       ) + [𝑏 𝑏 ] 𝑒  (       )                      (4.11) 

 

where the first term presents the incoming wave with equal probability 

amplitudes of up-spin and down-spin electrons, and the second term 

represents to the reflected wave with 𝑏  and 𝑏 referring to the spin-up and 

spin-down probability amplitudes Because the system is translationally 

symmetric along the y axis, the    ℎ components of the wave vector for 

up-spin and down-spin electrons are equal. However, in the x-direction, 

they can differ. The wave function of the electron in region    can be 

written as  

                            𝑒 (       ) +    𝑒  (       )                       (4.12) 
 

which on substituting in Eq. (9) leads to the following matrix equation: 



   * 𝜀  (     )  (     ) 𝜀 + [   ( )   ( )]  (  𝑉 ) [   ( )   ( )]    [   ( )   ( )] (4.13) 

 
where 

                           (     )   (   +    )   (   +    )              (4.14 ) 
  

We obtain a similar equation for (   ( )    ( )). We now define  

 
                           +     (       +        )                              (4.15) 

                       +     (       +        )                              (4.16) 

 

so that we can write  

        +       ,  +   + 4              -  .                             (4.17) 

 

Defining  

        (    )       (       +               +         )                     (4.18) 

 

we can write 

                                               √(   +    ) 𝑒                                 (4.19) 
 

and finally, we obtain two solutions for the energy of the electron in the  

region    as: 



                                            𝜀 + 𝑉   𝜆(   )                                       (4.2 ) 
 
where  

   𝜆(   )  1 (   +    )    √  +   + 4                  .       (4.21) 

 
Substituting  

𝜀  ℏ   2                                                        (4.22) 

 
in Eq. (20), we get a quadratic equation in     
 

                              2 ℏ 𝜆(   )  2 ℏ (   𝑉)   .                          (4.23) 

 
Solving the above equation, we get two solutions for    one positive and 

the other negative. We choose the positive solution: 

                       𝜆(   )ℏ + √( 𝜆(   )ℏ ) + 2 (   𝑉 )ℏ .                (4.24) 

 

Eq. (20) demonstrates that for a given       has two values depending on 

whether the positive or negative sign in Eq. (20) is used. The wave vector 

corresponding to the positive sign is represented as    whereas the wave 

vector corresponding to the negative sign is denoted as    . Thus we can 

write 

                      𝜆(    )ℏ + √( 𝜆(    )ℏ ) + 2 (    𝑉 )ℏ .             (4.25) 



Each   in the preceding equations for the semiconductor area can be 

replaced by    and these two wave vectors form two spin-split refracted 

waves with wave vectors    and    . As there is no reflection in the 

semiconductor region, we have: 

                                                      ( )     ( )                                               (4.26) 

 

and as a result, we get 

         (   )  [   ( ) 0 1 𝑒     1 𝑒     +    ( ) [𝑒    1 ] 𝑒     ] 𝑒    .    (4.27) 
 

Using the boundary conditions: 

        ( .  )     (   )       *   ( .  )  +    *    ( .  )  +            (4.28) 

 

and taking the wave vector at the boundary and defining 

                                                            (4.29) 

 we get   

                                                           𝑛                                                 (4.3 ) 

 
where the refractive indices for the two refracted waves are  𝑛   and 𝑛  . The 
projection of the wave vector on to the boundary between the two media (i.e., 
at    ) should be conserved and so we have  

                   



                                    ⇒  𝑛   (    )               

                                    ⇒              {(    )      } .                             (4.31) 

 

The wave vector corresponding to the metallic region is denoted by    in 

the above equations. Solving Eqs. (20), (21), (25) and (31) self-

consistently, we obtain    and the related energies from (20). As the 

incident beam gets divided into two refracted beams in region II, there will 

be two critical angles, one for each refracted wave. As a result, we have 

    𝑛             𝜆 . 2/   

          (  2𝜀 )   𝜆 . 2/ℏ  + ,( 𝜆 . 2/) + 2 .   . 2/  𝑉 /-  
√2 𝜀 ℏ  .  (4.32)  

 

     Using the boundary conditions for   𝐼 and  𝐼𝐼, we obtain  

    ( )  √2(1 +       ) (𝑒      1)(𝑒     + 𝑒     )                                              (4.33) 

 

   ( )  √2(1 +       ) (𝑒      1)(𝑒     + 𝑒     )                                               (4.34) 

 

𝑏  √2(1 +       ) (1  𝑒    )(1 + 𝑒  (       ))  



                                   + √2(1 +       ) (1 + 𝑒    )(1 + 𝑒 (       ))  1√2              (4.35) 
       𝑏  √2(1 +       ) (1  𝑒     )(1 + 𝑒 (       ))  

                                   + √2(1 +       ) (1 + 𝑒     )(1 + 𝑒  (       ))  1√2            (4.36) 

                          
  

Using Eqs. (33-36), one can write the reflection and refraction coefficients as 

                                                      2 𝑏                                                     (4.37) 
                                                     2(        )|   (   )|                            (4.38) 

 
where the pre-factor 2 corresponds to two spin orientations for the un-

polarized incident electron. The current densities at zero temperature are 

are given by the following expressions [40]: 

                (𝑉)      ∫     
 ∫          √1 + (    )  ⁄

   ⁄ (   )         (4.39 ) 
               (𝑉)      ∫     

 ∫          √1 + (    )  ⁄
   ⁄ (  )          (4.39 ) 

                        (𝑉)      ∫     
 ∫          √1 + (    )  ⁄

   ⁄ (  )         (4.39 ) 

                 (𝑉)      ∫     
 ∫          √1 + (    )  ⁄

   ⁄ (  ) .     (4.39 ) 



      

The differential conductance  

    *  (𝑉) 𝑉 +                                                   (4.4 ) 

 
 
in the semiconductor region is obtained as [40]: 
 

         (𝑉)      ∫          √1 + (𝑒𝑉  )  ⁄
   ⁄ (    )                   (4.41) 

with   

                                                    𝑒   2 ℎ                                                       (4.42) 

 

and  

                                                    𝑒    2 ℎ                                                     (4.43) 

 

 

where   represents the area of the metallic region,    gives the maximum 

possible incident angle,    denotes the Fermi energy, and  𝑒𝑉 is the 

applied voltage. Finally, we define the spin polarization current as: 

                                                                +   .                                               (4.44) 

 

 For the reflected current densities,    is denoted as         while for the 

refracted ones,    is denoted as       
.   

   Before moving on to the numerical results, we would like to discuss the 

competition between the two interactions, RSOI and DSOI.  



    Let us consider the following transformation: 

 𝑈    (  +   )2                                               (4.45) 

 

Under this transformation,    transforms to  

                                                     𝑈  𝑈                                                  (4.46) 

 
and    transforms to 

                                                 𝑈  𝑈                                                    (4.47) 

 

and    to    .  Thus under this transformation, the RSOI Hamiltonian 

changes to the DSOI Hamiltonian and vice versa. When RSOI is replaced 

by DSOI, the spin-current 

        ̇ +  ̇  2                                               (4.48) 
 
 

reverses direction and becomes     . As a result, RSOI and DSOI polarise 

the spins in different directions. When   and   both are present in the 

system, the scattering of up and down-spin electrons along, say, the  -

direction will be different for RSOI and DSOI, and the wave functions 

will acquire phases depending on the strengths of RSOI and DSOI. 

Because the scattering phases for up and down-spin electrons differ, 

different transmission coefficients will emerge from the interference of the 

scattered waves for electrons with opposite spins. 

 

 



4.4  Numerical Results and Discussion 

 
    In our numerical computation, We consider that the incident electron 

energy   is 2  𝑒𝑉 and the potential height  𝑉  is 12 𝑒𝑉. Fig.1 shows the 

behavior of the refracted angle (    ) as a function of the incident angle (  ). We chose   5 𝑒𝑉  𝑛  and   5 𝑒𝑉  𝑛 . The angle of 

refraction is zero for normal incidence (    ). Furthermore, as expected, 

in the absence of SOIs in region II, the angle of refraction equals the angle 

of incidence. According to Khodas et al., in the presence of RSOI in 

region II, the electron with energy      (    ) increases with increasing    

while the electron with energy      (    ) reduces with increasing   

resulting in a split in the path of the spin-up and spin-down electrons In 

the presence of both RSOI and DSOI, we determine the angle of refraction 

of spin-up and spin-down electrons. In Fig. 2 (a), we show that in the 

presence of DSOI, the angle of refraction of both spin-up and spin- down 

electrons decreases, the spin-down electrons, however, experiencing 

significantly larger decrease. Thus, the increase in the spin polarizability is 

more in the presence of both SOIs as compared to that in the presence of 

RSOI alone. This spin polarizability looks similar to the double refraction 

seen in some optical materials. As suggested by Khodas et al. [40], we see 

from Fig. 2 (a) that there exists a critical angle of incidence at which the 

up-spin electrons undergoes a total internal reflection while no such total 

internal reflection is possible for the down-spin electrons. In contrast, 

down-spin electrons do not undergo total internal reflection. We find that 

DSOI enhances the critical angle of incidence for the total internal 

reflection of up-spin electrons. Fig.2 (b) shows the variation of the angle 

of refraction of the spin-up and the spin-down electrons as a function of 

the angle of refraction for two different incident energies for certain values 

of RSOI and DSOI coefficients. We observe that as the incident energy is 



increased, the angle of refraction of spin-up electrons increases while that 

of spin-down electrons decreases.  
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                                          Fig. 2      Vs.    for different values of:  (a)        (b) E.  
 

Fig. 3 depicts the variation of      and       with RSOI for various DSOI 

values. The figure clearly shows that in the absence of DSOI,      first  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 (a)       vs.   for different values of    at     .5; (b)      vs.     for different values of   

at     .5.    
 

exhibits a substantial monotonic growth with  , but eventually saturates to 

a constant value at higher levels of  . In the presence of DSOI,      is 

shown to be high even at    , but it increases slowly with   and 

eventually saturates to the same constant value as observed at    . One 

can observe that as    increases, the saturation of      becomes faster. 



However, the behavior of      with respect to   is virtually opposite to 

that of      i.e., it reduces with   and eventually saturates to a constant. 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (a)        vs.     for different values of   at     .5; (b)       vs.     for different values of    at     .5.  

 

   Fig. 4 gives the behavior of       𝑛       with respect to  . A 

comparison of Figs. 3 and 4 reveals that the behavior of       𝑛       

with respect to   and   is similar. This is obvious from Eq. (5), which is 



symmetric in    𝑛   .  Fig. 4 gives the behavior of       𝑛       with 

respect to  . A comparison of Figs. 3 and 4 reveals that the behavior of       𝑛       with respect to   and   is similar. This is obvious from Eq. 

(5), which is symmetric in        .     

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 (a)    Vs.  ; (b)    Vs.    for different cases as:  (1)        (2)        (3)   (4)    (5)    .  

 

(a) 

(b) 



 In Fig. 5, we show the plot of refraction coefficients (     ) for up-spin  

and down-spin electrons with respect to the incident angle for various 

combinations of   and  .  We can easily see that    and     are 

asymmetric over the range:      to 
    and    is generally greater than    . 

In the presence of only RSOI,    is larger in the –ve side than in the +ve 

side. On both sides of     ,     continues to remain small but finite up to 

a certain value of      and then reduces to zero and shows a dip structure 

thereafter. After the dip structure,    increases very rapidly on the negative 

side, while on the positive side, it shows a rather slow increase and a 

down-turn after a certain value of   .   Even on the negative side, there 

appears to be an indication of the down-turn effect. When only DSOI is 

present,    behaves in a similar but opposite way to that in the presence of 

only RSOI. There is no much structural difference for other combinations 

of RSOI and DSOI coefficients.  When RSOI is less than DSOI, the value 

of    is lower in the –ve side than the –ve side and the opposite behaviour 

is observed when RSOI is greater than DSOI.  When RSOI and DSOI are 

equal,    is higher in the –ve side and lower in the +ve side.    is more 

significant in the presence of only DSOI than in the presence of the only 

RSOI, and    is greater in the –ve side than in the +ve side. The dip-like 

structure observable in the case of    at certain values of    is comparable 

to the structures observed for   . For other combinations of RSOI and 

DSOI,    behaves in an opposite to    .  
   We plot the variation of reflection coefficient (  ) for spin-up and spin-

down electrons with respect to         in Figs. 6. Fig. 6 (a) shows that for          rises monotonically but slowly with  . For a non-zero but  

small value of   (say    .1), as   is increased,     initially increases 

and reaches a maximum, and then passes through a broad minimum with a 

further increase in  . As   increases, the maximum in    becomes broader 



and shifts towards larger values of   . As   becomes larger than a specific 

value,     increases monotonically with   and eventually saturates.  Fig. 6 

(b) shows the variation of     with   for various values of  . For         shows an infinitesimally small decrease as   increases. For non-zero    
as   increases,      initially increases , reaches a broad maximum and then 

decreases as   increases further.   

    

 

 

 

 

 

 

 

 

   

   

 

 

 

 

      

 

 
         Fig. 6  ( )    vs.   for different values of    ;  (b)     vs.     for different values of   .   

(a) 

(b) 



 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

                  
           Fig. 7  ( )    vs.      for different values of    ; (b)    vs.   for different values of   .  
 

 

 

  Fig. 7 represents the behaviour of    as a function of   and  .  Fig. 7 (a) 

shows that    rises monotonically with both   and  . It may be noted 

from Fig. 7 (a) and (b) that    behaves symmetrically with respect to   and  .  

(b) 



  The variation of     with respect to   and   are shown in Fig. 8 (a) and 8 

(b). As shown in these figures, the behaviour of    is similar to that of   , 
except for a small difference in    vs.   behaviour at low  .  

 

 

 

 

 

 

         

 

 

 

 

      

 

 

 

 

 

              Fig. 8 ( )    vs.   for different values of    ;   (b)     Vs   for different values of   .   
 

 

 

  Fig. 9 depicts the variation of    with   and  . Fig. 9(a) shows that for    ,    drops monotonically with increasing    almost linearly. For 

non-zero but small  ,    first decreases rapidly as   increases from zero, 

then acquires a shallow minimum-like structure, and finally decreases  

(b) 



again. As   becomes a little lartger, the minimum disappears and    
decreases with increasing   in a non-linear manner. The variation of    
with   for different values of    is shown in Fig. 9 (b). For    ,    
   

    

      

      

                          

 

              

 

 

 

 

 

 

 

 

           

 

 

 

 
             Fig.  9  ( )    Vs.   for different values of    ;   (b)    Vs   for different values of   .         
    

exhibits a slow monotonic linear decrease with increasing  . For non-zero  ,    initially decreases as   increases from zero, develops a shallow 

(a) 



minimum-like structure and again increases. As   becomes larger, the 

minimum flattens more and more.  We notice that     decreases with 

increasing   in a non-linear way.   

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  
Fig. 10 (a)     Vs.     (b)    vs   for different cases as: (1)        (2)        (3)   (4)   (5)   .  

 

  Fig. 10 gives the behavior of spin-polarized current densities (     𝑛    )  
with Fermi energy    for various values of     (with 𝑒𝑉  25  𝑒𝑉). In 



general, at small   , both    and    decrease rapidly with   , but as    is 

increased further, the rate of decrease in     and    becomes very slow and    and    appear to reach saturation. For certain combinations of    , the 

saturation in    happens quite fast though for a few other combinations the 

saturation is not so fast and also the saturation value is large. Fig. 10(b) 

shows that the saturation in    is slower in the case when either RSOI or 

DSOI is present than in the case when both are present.  

 

 

 

  

 

 

 

              

                   

 

 

 

 

 

 

 

 

      

                 

  Fig. 11 (a)     vs. 𝑉  (b)    vs. 𝑉for different cases as: (1)        (2)         (3)    (4)    (5)   .  



  Fig. 11 (a) shows the variation of spin-polarized current density (   ) with 

respect to the applied voltage for a few combinations of RSOI and DSOI 

coefficients with     15 𝑒𝑉. The figure suggests that     increases with 

the applied voltage monotonically and also reveals that    in the presence 

of RSOI alone, is much greater than     in the presence of DSOI alone. In  

 

 

 

 

 

   

                   

 

 

 

 

 

 

 

 

 

 

 

                 

               Fig. 12 (a)     vs.    for different values of    ;  (b)     vs.    for different values of   .    



the presence of RSOI, as DSOI is switched on,     initially increases with 

the voltage as   increases, though beyond a critical value of         
decreases with the increase in the voltage. The behaviour of     with the 

voltage is shown in Fig. 11 (b) which is qualitatively similar to that of    . 
    

 

 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

                    

                   
                   Fig. 13 (a)      vs.   for a few    value;   (b)     vs.    for different values of   .    

Figs. 12(a) and 12(b) show the plots of      with respect to of   and   

respectively. One can see that RSOI reduces     while DSOI enhances it.  



Fig. 13 shows that the variations of      with respect to   and   are very 

similar to those of   , although the magnitude of     is significantly larger  

than that of    . 
   The variation of the spin-up differential conductance     as a function of 

the SOI strengths is shown in Fig. 14. The inset of Fig.4 (a) shows that in 

the absence of DSOI,     increases with increasing   almost linearly. For 

non-zero, however,       remains zero up to a certain value of  ,  beyond  

 

    

 

 

 

 

 

 

                                                                  

 

 

 

 

 

      

 

        
     Fig. 14  (a)    vs.   for different values of    ;  (b)      vs.    for different values of   .  



  which it monotonically grows with  . Fig. 14 (b) shows that in the 

absence of RSOI,     is virtually independent of  , while for non-zero 

values of  ,     is extraordinarily large at small values of  , and as    

increases,     rapidly falls off to zero. 

  Fig. 15 shows the behavior of     with regard to SOIs. As shown in Fig. 

15 (a), for    ,     is very large up to a particular value of  , after  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

       Fig. 15 (a)     vs.    for different values of    ; (b)     vs.   for different values of   .  



which it rapidly drops to some constant value. For non-zero but small 

values of   (such as   1),     is generally small at small  . It however 

shows a decreasing behaviour with increasing  , and then exhibits a dip- 

like structure and finally shows a slow linear increase with  . As   is 

increased further,     gets even smaller and drops extremely slowly with  . For large  ,    becomes essentially independent of   .  According to 

         

      

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

         Fig. 16 (a)       
vs.   for different values of    ; (b)         .    for different values of   .  



 Fig. 15(b), as a function of  ,     decreases quite rapidly to a constant 

value for    . However, for nonzero values of  ,     is very large below 

a specific value of   (which varies with  ), above which,  however, it 

rapidly decreases and produces a shallow minimum. The minimum shifts 

to the right and becomes shallower as   is increased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Fig. 17 (a)       
vs.   for different values of    ; (b)         .    for different values of   .  



 The variation of spin polarisation current with   and   in the 

semiconductor region (       ) is showed in Fig.16. Fig. 16(a) reveals that        
 is negative and its magnitude increases with   and saturates as   

becomes large. The magnitude of       
 diminishes as a function of   and 

appears to saturate to some constant value at some large  . The same 

conclusion can be drawn from Fig. 16(b). 

 

 

 

   

 

             

 

 

 

 

 

 

 

 

            Fig. 18 Contour plots of (a)         
in      space (b)        

 in     space.  

The behavior of spin polarisation current (      )  in the metallic region as 

a function of   and   is plotted in Fig. 17. The figures clearly show that 



      
 is positive. According to the inset of Fig. 17(a), in the absence of 

DSOI,       
 reduces with  . For non-zero  ,       

 depends on   in a 

more complicated way. As   increases,       
 initially decreases, develops 

a shallow minimum (which becomes even shallower as increases  ), and 

then develops a broad hump. Fg.17 (b) demonstrates that       
 reduces 

with increasing   and exhibits a crossing behavior. 

  Fig. 18 shows the contour plots of       
 and       

.  We see that       
 is 

negative while        
 is positive. This is consistent with the findings in 

Figs. 16 and 17. According to Fig. 18(a), the values of       
are larger for 

higher values of   and for lower values of  . Thus, DSOI reduces       
 

while RSOI increases it. As a result, RSOI and DSOI have competing 

effects on       
. Consequently, spin polarisation current is greater when 

the only   is large than when both    𝑛    are large. As shown in Fig. 18 

(b), both RSOI and DSOI diminish the spin polarisation current in the 

metallic region.  

  

4.5  Conclusions 

  The spin polarisation effects caused by electron refraction and reflection 

across a barrier separating a metal and a semiconductor have been 

investigated in the presence of both RSOI and DSOI. The refraction and 

reflection coefficients have been calculated, and experimentally 

measurable quantities such as up and down-spin current densities, the 

corresponding differential conductances, and the spin-polarization current 

have been obtained. The effects of incident angle, incident energy, applied 

voltage, and SOI strengths have been investigated. DSOI reduces the angle 



of refraction of spin-up and spin-down electrons, with the spin-down 

electrons going through a significantly greater reduction. When both SOIs 

are present, the spin polarisability increases significantly, improving the 

spin-filtering effect as compared to the case when RSOI is present alone. 

It has been demonstrated that increasing the incident energy increases the 

angle of refraction of spin-up electrons while it decreases the angle of 

refraction of spin-down electrons. As a result, the incident energy can be 

employed to tune the spin-filtering effect   and    are likewise shown to 

decrease with Fermi energy and increase with applied voltage. 

Furthermore, RSOI decreases    while DSOI increases it. The behavior of    with respect to   and   is found to be comparable to that of     although 

the magnitude of    is significantly bigger than that of   . 
  When both RSOI and DSOI are present, the spin polarisation current        in the semiconductor material is found to be negative, and its 

magnitude increases with   and decreases with  . The spin polarisation 

current         in the metallic region turns out to be positive, and its 

magnitude increases with   and decreases with  . The current work could 

be used in spin filtering and spin polarising devices. 
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Chapter 6 

 

                             Conclusions 

 

                                    

   In this thesis, we have investigated quantum transport SMT 

incorporating the effects of el-ph interaction Coulomb correlation and 

phononic dissipation and have also studied the Tunneling Conductance of 

electron spin across a metal-semiconductor junction where the 

semiconductor material contains Rashba and Dresselhaus spin-orbit 

interactions. In Chapters 2 and 3, we have studied the transport in the 

SMT system and in Chapter 4, we have studied the transport across a 

metal-semiconductor junction. 

   The SMT device we have explored in our work consists of a central 

quantum dot connected to two metallic electrodes, one being the Source 

(S) and the other the Drain (D). The central QD has been assumed to have 

a single phonon mode which interacts with the QD electrons. We have 

modelled this interaction using the Holstein Hamiltonian.  The S-QD-D 

system is placed on an insulator substrate that works as a heat-bath. The 

heat-bath phonons and the QD phonon interact via Caldeira-Leggett 

coupling causing a quantum dissipative effect on the current in SMT. The 

entire dissipative SMT system has been modelled by the Anderson-

Holstein-Caldeira-Leggett-Model.  



   In Chapter 2, we have considered the aforementioned SMT system in 

magnetic field at zero temperature. The coupling between the QD phonon 

and the bath phonons has been treated approximately using a unitary 

transformation that takes care of the dissipative effect of this coupling. 

The dissipation essentially reduces the QD phonon frequency and hence 

the energy. The Lang-Firsov unitary transformation has been used to 

separate the el-ph interaction from the system Hamiltonian. As a 

consequence, the device parameters are renormalized. The spectral density 

A, the tunnelling current  , and the differential conductance   have been  

calculated by employing the Keldysh non-equilibrium Green function 

approach. The spin polarisation parameter       has been estimated. 

   The spin degeneracy of the electronic state in QD is lifted by the 

magnetic field and this leads to splitting in the electron energy in QD and 

peaks in the spectral density.    is shifted to the +ve energy region by the 

magnetic field and    to the –ve energy region.    is reduced by both the 

magnetic field and el-ph coupling, as expected, but     increases with the 

increase in the magnetic field up to a critical value of   and then reduces 

to zero.     exhibits a similar pattern with respect to the el-ph coupling 

constant 𝜆. The G-plots also indicate peak splitting due to the magnetic 

field  . This gives rise to additional energy levels accessible due to the 

splitting of spin degeneracy.    and     are found to reduce with 

increasing  . At zero magnetic field,     as well as    exhibits a peak at a 

particular value of 𝜆 and then both reduce to zero. With increasing   , the 

number of peaks    increases and the peaks become sharper. In the case of    however, the peak is suppressed by the magnetic field. At low magnetic 

field,       , as a function of Vb, initially increases and reaches a 

maximum at a acertain value of Vb after which it starts decreasing and 

eventually reduces to zero. At higher magnetic fields,        increases with 𝑉  and finally reaches saturation. We observe that as a function of the 



magnetic field,          initially increases with  ,  attains a maximum and 

then reduces with further increase in   and eventually becomes zero. We 

have demonstrated that increasing the damping rate raises the spin 

polarised current densities, differential conductance, and spin polarisation 

parameter.  

   The behaviour of J and G with 𝑉m had been studied before without 

taking into account the effect of el-el coupling and magnetic field. We 

have shown in this work that for      and 𝑈   ,    vs 𝑉m and    vs 𝑉m 

curves undergo a shift towards positive side of 𝑉m.  Also in the case of   

vs 𝑉m curves, the number of peaks increases with  . The results of the 

present work suggest that the spin-polarization parameter can be tuned by 

a magnetic field and so an SMT device can find potential applications as a 

spin filter.  

  In Chapter 3, quantum transport in the same SMT system as above has 

been studied at finite temperature in the absence of a magnetic field using 

the same method. It is observed that dissipation increases the tunnelling 

current at finite temperatures but not as much as at zero temperature. As 

temperature increases, the current decreases and a similar behaviour is 

observed for the differential conductance.  

  In Chapter 4, we have studied the spin polarisation effects caused by 

electron reflection and refraction across a barrier separating a metal and a 

semiconductor that contains Rashba and Dresselhaus spin-orbit interaction 

(SOI) effects. The reflection and refraction coefficients have been 

calculated as a function of incident angle, incident energy, and SOI 

strengths. Furthermore, the effects of applied voltage, Fermi energy and 

SOIs have been studied on experimentally measurable quantities like up 

and down spin-current densities and the corresponding differential 

conductances.  Finally the effect of SOIs on spin-polarization current has 



been studied. It is found that DSOI reduces the angle of refraction of spin-

up and spin-down electrons, the reduction being much larger for the spin-

down electrons. Thus, when both SOIs are present, the spin polarizability 

increases substantially giving rise to a much larger spin-filtering effect 

compared to that in the presence RSOI alone. It is shown that the increase 

in the incident energy increases the angle of refraction of spin-up electrons 

while it reduces that of the spin-down electrons. Thus the incident energy 

can also be used to tune the spin-filtering effect. It is also observed that    
and    decrease with Fermi energy and increase with the applied voltage. 

The spin polarization current        in the semiconductor material is found 

to be negative in the presence of both RSOI and DSOI and their 

magnitudes increase with    and decrease with   while the spin 

polarization current          in the metallic region is positive and it slightly 

increases with   and decreases with  . The present work has potential 

applications in spin filtering and spin polarizing devices.  
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