
NOVEL TECHNIQUES FOR CROSS-DOMAIN

RECOMMENDATION

A thesis submitted during 2021 to the University of Hyderabad in
partial fulfillment of the award of a Ph.D. degree in Computer Science

by

VEERAMACHANENI SOWMINI DEVI

SCHOOL OF COMPUTER & INFORMATION SCIENCES

UNIVERSITY OF HYDERABAD

(P.O.) CENTRAL UNIVERSITY

HYDERABAD - 500 046, INDIA

December 19, 2021



CERTIFICATE

This is to certify that the thesis entitled “Novel Techniques for Cross-Domain

Recommendation” submitted by Veeramachaneni Sowmini Devi bearing Reg. No.

15MCPC01 in partial fulfillment of the requirements for the award of Doctor of Philos-

ophy in Computer Science is a bonafide work carried out by her under our supervision

and guidance.

This thesis is free from plagiarism and has not been submitted previously in part

or in full to this or any other university or institution for the award of any degree or

diploma. The student has the following publications before submission of the thesis for

adjudication and has produced evidence for the same.

1. "A Matrix Factorization & Clustering based Approach for Transfer Learning."
Pattern Recognition and Machine Intelligence (2017): 77-83.

2. "A Maximum Margin Matrix Factorization based Transfer Learning Approach
for Cross-Domain Recommendation." Applied Soft Computing 85 (2019).

Further, the student has passed the following courses towards fulfillment of course-
work requirement for Ph.D.

Course Code Name Credits Pass/Fail
CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 852 Learning & Reasoning 4 Pass
AI 853 Data Mining 4 Pass

Prof. Arun K Pujari
Supervisor

Prof. Vineet Padmanabhan
Supervisor

Prof. Chakravarthy Bhagavati
Dean, School of Computer and Information Sciences



DECLARATION

I, Veeramachaneni Sowmini Devi, hereby declare that this thesis entitled “Novel

Techniques for Cross-Domain Recommendation” submitted by me under the guid-

ance and supervision of Prof. Arun K Pujari and Prof. Vineet Padmanabhan is a

bonafide research work. I also declare that it has not been submitted previously in part

or in full to this university or any other university or institution for the award of any

degree or diploma.

Date: Name: Veeramachaneni Sowmini Devi

Signature of the Student:

Reg. No. 15MCPC01

i



This dissertation is dedicated to my family members and to

the Almighty God.



ACKNOWLEDGEMENTS

There is a quote saying "Teaching is the profession that teaches all other profes-

sions". So, foremost, I would like to express my heartfelt gratitude to my supervisor

Prof. Arun K Pujari because of whom I got motivated in my masters, to do my PhD.

I am very thankful for his explanations, encouragement, suggestions, and giving his

valuable guidance despite his busy schedule.

I sincerely thank my other supervisor, Prof. Vineet Padmanabhan, for his continuous

support during my research, and his motivation, patience, enthusiasm, knowledge. His

guidance helped in all the way through PhD and the writing of this thesis. I feel he is

so student-friendly in all aspects and a good advisor and mentor for my PhD.

It is also a privilege to express my sincere regards to Mrs. Subha Lakhmi Pujari &

Mrs. Mrinalini Vineet for their care, encouragement, and truthful blessings to accom-

plish success in my research and in my personal life too.

I would like to thank my DRC members, Prof. Hrushikesha Mohanty, Dr. Rukma

Rekha, and Dr. Naveen for patiently listening to my work and giving their valuable

suggestions.

I thank my fellow labmates, Venkat, Vikas, Sandeep, Ayang, Akshay, Tirupathi,

and Prasad for engaging in critical discussions related to research and also support me

morally whenever I need.

I am thankful to the staff of SCIS for giving me knowledge by teaching some of

the subjects during my masters program, which have aided me in some way during my

research.

I thank my friends Deepika, Murthy, Rama Krishna, Sneha, Ruchita, Spoorthy, and

iii



Anji for their considerate friendship and endless support.

I also wish to thank all my childhood teachers, from whom I learned some funda-

mental knowledge.

I would also like to acknowledge the funding agency, Council of Scientific and

Industrial Research (CSIR) Government of India, for the financial support in the form

of CSIR-UGC NET-JRF/SRF.

Last but not least, I would like to express my gratitude to my family: my husband

Yaswanth Gavini, for helping me in understanding some of the technical concepts and

also encouraging me positively by having confidence in me; my parents Mr. Subbarao

and Mrs. Kathyayani, without whom I would not be in this position, as they have always

been there for me since I was a kid, agreeing to everything I needed personally and

educationally; my brother Vivek, who always advises me to eat healthy food in order to

gain enough strength; my in-laws Mr. Satyanarayana and Mrs. UdayaSri, brother-in-

law Mr. Jayanth, co-sister Mrs. Swetha, and kids who have all been supportive in every

way. They would even ask about the progress of my research regularly.

Above all, praise and gratitude to the Almighty God in whom I have the deepest

faith, for his abundant blessings throughout my life and my research work, which has

helped me to successfully finish the research.

Veeramachaneni Sowmini Devi

iv



ABSTRACT

Searching the internet for items of interest have become a nightmare these days due

to the sheer amount of available data. Recommender systems have become indispens-

able for many e-commerce applications to tackle this information overload problem.

Recommender systems are of various types of which collaborative-filtering based rec-

ommender systems are the most popular in which the recommendation is carried out

by utilizing the observed preferences of other users who have similar likings as that of

the target user. Collaborative filtering techniques like matrix factorization have been

demonstrated to be highly successful wherein given a partially filled User-Item rating

matrix, the idea is to correctly predict the missing entries. Among different matrix

factorization methods, maximum margin matrix factorization is shown to be effective

in predicting the unobserved ratings when very small number of observed entries are

given. While collaborative filtering techniques like matrix factorization are good at pre-

diction, as sparsity increases (very less ratings), the accuracy of prediction expectedly

falls. To address the data sparsity issue, transfer learning techniques have emerged in

which the information learnt in one context is used in another. Cross-domain recom-

mender systems or cross-domain collaborative filtering is one such method in which

transfer learning is used to transfer the knowledge from dense source domain to the

sparse target domain so as to improve the prediction accuracy of the target domain. In

order to use transfer learning, the basic assumption is that the source and target do-

mains are inherently related in some sense. Codebook Transfer (CBT) is one of the

popular transfer learning methods of cross-domain collaborative filtering, in which the

codebook which is the cluster-level rating pattern is learnt from source domain and is

transferred to the target domain. Codebook basically captures the rating patterns in a
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condensed form, and it is hypothesized that the condensed rating pattern is, in some

sense, invariant across domains.

In this thesis, the main focus is on proposing novel codebook based cross-domain

collaborative filtering techniques to address the data sparsity issue so as to improve

the prediction accuracy of the sparse domain. The key challenge in designing new al-

gorithms is to improve the prediction accuracy of target domain when both domains

have no overlap of users and items. The main motivation is to construct the codebook

from source domain by making use of techniques like maximum margin matrix fac-

torisation (MMMF), clustering as well as co-clustering and thereafter to transfer the

learnt codebook to the target domain. In one of the proposed methods, we generate

the codebook by clustering the latent factors obtained by MMMF and then transfer the

generated codebook to the target using hard membership and soft membership. In hard

membership, a user or item belongs to a single cluster, whereas in soft membership

a single user or item can belong to multiple clusters with some weights. The other

method uses co-clustering to generate codebook, and later the codebook is processed.

Applying maximum margin matrix factorization on the processed codebook gives the

cluster-level latent factor vectors of the source data which are transferred to the target

domain via hinge loss, to learn the target domain latent features to get the predicted

target rating matrix. Another proposed method uses co-clustering technique to generate

codebook from the source user-item rating matrix. The constructed codebook is trans-

ferred to the target domain by using the hingeloss function instead of squared loss in a

novel way. We validate our methods by conducting experiments on different datasets

and compare with some baseline methods. The results show that our methods achieve a

better approximation of the sparse target matrix which in turn increases the prediction

accuracy of the target domain.
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CHAPTER 1

Introduction

In this chapter, we give a brief introduction on recommender systems wherein we

outline different types of recommender systems and its usage as well as give a clear dis-

tinction between single domain and cross-domain recommender systems. A particular

machine learning technique called transfer learning is discussed as it plays a vital role

in cross-domain recommender systems which in turn is the focus area of this thesis.

Having done that we layout the plan for this dissertation.

1.1 Recommender Systems and its usage

The exponential growth of the World Wide Web and the rapid rise in e-services

(62) have provided consumers (users) with an overwhelming number of options, often

contributing to more complicated decision-making. In (3), Chris quoted that “We are

leaving the Information Age and entering the Recommendation Age.” The implication

of this is that, during earlier days, it was difficult to get sufficient data to make decisions

and therefore individuals used to rely upon others suggestions which were given depen-

dent on their past experiences. However, these days the case is different in the sense

that the access to information is quite easy and collection of information is no longer

a concern. The only problem is to make smart choices based on the available informa-

tion. i.e., we are facing a situation where we can’t locate our target data regardless of

whether we have access to it because it is hidden somewhere in a huge pile of extra-

neous information. Information overload is the term used to describe such a scenario
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and recommender systems are the technology that is being used to help users find their

target information from the immense data that is available. Managing vast volumes of

data effectively and efficiently is the biggest challenge of a recommender system which

is why it is often said that the task of a recommender systems is that of "Information

Filtering". An Information filtering system eliminates excess or undesirable data from

an information source using automated or semi-automated or computerized methods

before displaying it to the user. The primary objective of information filtering system is

to control the information overload problem.

Recommender Systems are specifically designed to support individuals who lack

skill or expertise in coping with the broad variety of choices presented (66; 2; 79). In

e-commerce (10), recommender systems were first applied to deal with the information

overload issue brought about by Web 2.0, and they were immediately extended to the

personalization of e-business, e-government, e-tourism, and e-learning (40). Recom-

mender Systems take advantage of many sources of knowledge to predict the prefer-

ences of users for items of interest (4). In both academia (what courses to take) and

industry, this area of research has been the subject of great concern for the past twenty

years, and research in this field is also driven by the potential benefit that recommen-

dation systems can produce, for companies such as Amazon (74). These days, recom-

mender frameworks are an irreplaceable component of Internet sites (1), for example,

Yahoo, Netflix, YouTube, LinkedIn, Facebook, Amazon, and Last.fm. In short, recom-

Figure 1.1: Recommendations by Amazon

2



mendation systems are meant to estimate an item’s effectiveness and to predict whether

it is worth recommending to the user or not. How does youtube predict what videos

you may watch? How does amazon know what products you may like (Fig. 1.1)? How

does Facebook give friend suggestions to you? How does LinkedIn (Fig. 1.2) know the

people we might know? that magic comes from the Recommender Systems.

Figure 1.2: Suggestions by LinkedIn

In any Recommender Systems, there are three key elements: user (consumer or

customer), item (product), and rating (preference) given by the user to an item. Any

user can utilize the Recommender System by providing his input i.e., opinion (rating or

preference) about the items he has bought or movies he has watched or books he has

read,.., and thereby get the recommendations (suggestions) about the Novel items.

To produce any suggestions (recommendations), the system has to collect the data

which can be of two types: explicit and implicit. For explicit data, it is often the case that

a user is asked to give his/her ratings which are usually given on a particular discrete

rating scale - say [1 − 5], where 1 is the least rating and 5 is the highest rating. There

exist binary preferences too, where 1 denotes that a user likes the item and 0 indicates

that a user dislikes the item. In implicit (49; 33; 86) data collection, the user’s data is
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indirectly captured i.e., the user’s actions are recorded on the web. The data (explicit

or implicit) is advantageous in predicting the user’s future preferences on the items and

can guide the users (37) in a personalized way to get the interesting items.

1.2 Different Approaches in Recommender Systems

There are three different approaches (88) in recommender systems namely,

1. Content-based recommender systems (CB)

2. Collaborative Filtering (CF)

3. Hybrid recommender systems

Figure 1.3: Content-based recommender systems

1. Content-based recommender systems (CB) (75; 73; 46): Recommends similar

items based on a specific item the user has liked in the past. For example, to make movie

recommendations, this framework uses movie (item) metadata, such as genre, descrip-

tion, actors, director, and so on. The notion behind these recommendation algorithms is

that if a person likes a specific item, he/she likes an item that is close (similar) to it as

well. It will make use of the user’s past item metadata to recommend it. For instance,

if we consider Figure 1.3, the user has watched Movie A which falls under the action

category, and has liked the same. Then the content-based recommender system would

recommend Movie B to the user, which is also an action movie as shown in the figure.

Another nice example would be YouTube, where it recommends new videos that a user

might possibly watch based on his/her past viewing experience.
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Figure 1.4: Collaborative Filtering

2. Collaborative Filtering (CF) (88; 24; 50; 83; 71): In CF, which is the most

well-known technique in recommendation, the system tries to find out the users that are

similar to the target user based on their ratings and recommends items the similar users

have liked. It’s “collaborative” because it predicts the preferences of the target user on

the basis of other users’ ratings. The significant assumption underlying the collaborative

filtering is: users with identical preferences(tastes) in the past are probably going to

have similar preferences in the future too. It is this assumption that permits to take a

user’s past history and extrapolate it into their future and predict items that they would

enjoy (like). They will like comparative sorts of things as they preferred before. The

collaborative recommendations are mainly based on user-item interactions (user-item

ratings). For example, in collaborative filtering, if User 1 has preferred (liked) a Movie

A which is likewise enjoyed by some other similar users, at that point Movie B will be

recommended to User 1 which is loved by other similar users. If we consider Figure 1.4,

User 1, User 2, and User 3 have watched Movie A and liked the same, and in addition

to Movie A, User 2 and User 3 have watched Movie B too. So, in this case these three

users are found to be similar, and hence Movie B will be recommended to User 1.

There are two categories (61; 84) of collaborative filtering algorithms which are

Memory based (1; 92) and Model based (1; 82) algorithms. The fundamental distinction
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is that memory-based algorithms use entire data to make predictions and identify top-

k similar users to the target user, while model-based algorithms use the knowledge to

learn/train a model that can be used to make predictions later on. This implies that

the memory-based methods should necessarily have all the data in memory, whereas in

model-based algorithms, once we build the model, it can make fast predictions using

less amount of data than the original data.

Memory-based filtering is further divided into two categories:

User-based Filtering: These systems recommend items to a user that have been liked

by similar users. Let’s assume, for instance, User A and User B have a common (simi-

lar) interest in books (in the sense that they enjoy and dislike many of the same books).

Now, let’s say a new book was published in the market, and User A has read it and

enjoyed it. Thus, it is very likely that User B would enjoy it too, and therefore, this

book is recommended to User B by the system.

Item-based Filtering: These systems are highly comparable to the content based rec-

ommendation. These systems identify similar items based on the users past ratings. For

instance, if User A, User B, and User C have given a rating 5 to item 1 and item 2, the

system recognises these items as similar. Therefore, based on this if someone buys item

1 then item 2 is also recommended to him/her by the system.

To be concise, user-based CF is based on the idea of user similarity, and item-based

CF is based on the idea of item similarity. The most popular strategy in user-based CF

is to find the neighborhood of users that have similar tastes with the target user and

recommend the items. In item-based CF, the reommendation of items would be made

on the basis of the most similar items to the items for which the target user has given

preference.

Matrix Factorization (MF) (28; 41) is one of the widely used Collaborative filtering

techniques and comes under model-based filtering technique. Given a user-item rating

matrix as input in which each user has rated some items, the goal is to predict how the

users would rate the items they haven’t rated ie., to predict the unknown ratings, such

that recommendations can be made to the users. The goal of MF is to find two matrices

such that the dot product of these two matrices approximates the original rating matrix.

There are different types of matrix factorization methods such as regularized matrix fac-

torization (RMF), non-negative matrix factorization (NMF), maximum margin matrix

factorization (MMMF), probabilistic matrix factorization (PMF) to name a few. The
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detailed discussion on MF is given in Chapter-2.

3. Hybrid recommender systems: (63; 5) The integration of both content-based

and collaborative filtering methods is known as the Hybrid approach. It is possible to

incorporate hybrid approaches in many ways: by separately creating and then integrat-

ing collaborative-filtering and content-based approaches; by incorporating the content-

based abilities to a collaborative approach (and opposite); or by merging the approaches

into one system.

The block diagram of the types of approaches is shown in Figure-1.5.

Figure 1.5: Different approaches in Recommender Systems

So far we have discussed about recommender systems (single-domain recommender

systems), in which the system recommends the items of a particular domain. For

instance, Netflix suggests movies, Last.fm recommends music, Douban recommends

books. The major disadvantages of single-domain recommender systems are data

sparsity issue and cold start problem (11).

Data-Sparsity issue: In scenarios wherein the user does not rate the items he (she) has

watched/purchased/read, at that point the data (information) will be very less as such

and one cannot make pertinent recommendations to the user further. In our thesis, we
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concentrate primarily on overcoming the data-sparsity issue which is one of the major

drawbacks of recommender systems.

Cold-start problem: Recommender systems are faced with the issue of cold-start in

situations wherein a new user (who has not yet rated any items) wishes to utilize the rec-

ommender system. It will be an issue as the data (ratings) of that user does not exist and

in such situations, one of the solutions is to take implicit ratings (browsing history,...)

or perhaps ask the user to give some ratings.

1.3 Cross-Domain Recommender Systems

In order to address the limitations like data-sparsity of personalized single-domain

recommender systems, cross-domain (Multi-disciplinary) recommender systems have

come into the picture. In single-domain recommender systems, the user’s past history

(ratings) in the specific domain is not enough to recommend the items in that domain.

In cross-domain RS (15; 39), we can use the ratings of other domains, to solve the data-

sparsity issue. The key principle of Cross-Domain RS is to recommend items from one

domain by using the ratings (data) from a different domain. Suppose that a user needs

to be suggested a book where the ratings given by the user is very limited. We can

then utilize his/her rating data from the movie domain (or some other related domain

in which the active user’s ratings are more) and use it for recommending books. In

cross-domain RS, a technique called Transfer Learning (TL) (94; 99) is used in which

the information (knowledge) from some auxiliary (source, dense) domain is extracted

in order to use it in the sparse target domain.

1.3.1 Transfer Learning

Transfer learning (TL) is a research problem in machine learning that focuses on

storing knowledge gained while solving one problem and applying it to a different but

related problem. The main motivation behind Transfer Learning is Domain Adaptation,

i.e., whether people can apply previously learned knowledge to solve new problems

faster or with better solutions than current ones. In general, people typically have an

implicit ability to transfer information (knowledge) between tasks. At the point we

encounter new tasks, what we gain as knowledge while learning about one task, we use
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in the same way to solve other related tasks. The more related the new task is to our

previous task, the easier we can train it by cross-utilizing or transferring the previously

learnt knowledge. A simple example would be, “knowledge gained while learning to

recognize cars could be applied when trying to recognize trucks“.

In spite of the fact that collaborative filtering based recommendation systems have

become the standard nowadays, because of the data-sparsity issue (i.e., very little exist-

ing information is available), they have difficulty in making precise recommendations.

In the last decade or so, cross-domain collaborative filtering strategies such as transfer

learning (53; 54; 58; 59; 60; 96) have been proposed as a possible solution to alleviate

the issue of data sparsity. In cross-domain we attempt to utilize the knowledge learned

in one domain in another domain, and this can be best attained using Transfer Learning.

Usually, the presumption in machine learning algorithms is that the training data and

test data must be from the same domain. But this may not work in real-world situations.

The primary goal of transfer learning (69; 87; 90) is to transfer the knowledge from the

dense source domain to the sparse target domain. If, for example, a user has watched a

lot of movies and rated them, but has very few ratings in the books domain and wants

a book to be recommended, the book can be recommended utilizing his ratings from

the movie domain. If we have adequate training data in one domain and want to get

recommendations from another domain, then if transfer learning is used, the learning

efficiency will improve to a considerable extent by reducing efforts. Transfer Learning

(TL), in other words, improves learning in a new (target) task by transferring knowledge

from a previously trained related (source) task.

On the other hand, common machine learning algorithms usually handle isolated

tasks. Transfer learning aims to make it different by having methods to transfer the in-

formation gained or knowledge learned in one source task and use it to improve learning

in a related target task. i.e., TL attempts to extract the information (knowledge) from

one or more source tasks and apply the same knowledge to the target task. Traditional

ML methods are such that the system must be trained on training data for any domain

and then evaluated on test data of the same domain, and these algorithms vary from one

domain to the next. Coming to transfer learning, one can learn an algorithm for one

domain and apply it to various similar domains by using the knowledge gained from

the source, such that the accuracy of the target task gets improved. For example, if we

consider Figure 1.6 from recommender systems point of view, there are two different
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Figure 1.6: Learning process of traditional ML vs Transfer Learning

datasets namely dataset-1 (Movies) and dataset-2 (Books). Assuming that the Movie

dataset is denser than that of the Book dataset, and if we consider the left side of Figure

1.6, which is the learning process of traditional ML, the learning is done in an isolated

way for two datasets namely dataset-1 (Movies) and dataset-2 (Books). In this case, the

recommendation performance on books data might not be good enough, as the data is

sparse. Whereas in the learning process of TL (on the right side), the learning system

1 is trained on dataset-1 (Movies) which is denser, and the knowledge gained from this

is extracted and utilized in the training process on dataset-2 (Books) which is sparse, so

as to improve the accuracy of recommendation on books data. So, the key advantage

of TL algorithms is that if there is insufficient training data in the target domain, the

knowledge can be transferred from some other related domain.

In this thesis, we develop different novel techniques for cross-domain recommender

systems using transfer learning approach to address the data sparsity issue and improve

the prediction accuracy of the target domain.

1.4 Problem definition

Given a source user-item rating matrix X of size m′×n′, where m′ is the number of

users (rows) inX and n′ is the number of items (columns) inX , and a sparse target user-

item rating matrix Y of size m× n (where the number of users is m and n the number

of items) with yij known for (i, j) ∈ ω, where ω is the set of observed ratings in target
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rating matrix (Y ), the goal is to find the yij for (i, j) /∈ ω. yij is the rating given by user

i to item j in matrix Y . So, given the source data and very less target data, our goal

is to predict the missing ratings of target rating matrix by utilizing the existing ratings

of target matrix, and some knowledge learnt from the source rating matrix (transferring

the knowledge of source). The prediction of the missing ratings should be in such a way

that the error rate on the existing ratings should be minimum.

1.5 Contributions of Thesis

The major contributions of the thesis are as follows,

1. We propose a technique for cross-domain recommender systems in which we
use MMMF and clustering in order to generate the knowledge (cluster-level rat-
ing pattern which is called as codebook) from dense source domain. We then
transfer the learnt knowledge to the sparse target domain and train the same to
get the membership matrices of target domain and predict the target rating ma-
trix accurately. To the best of our knowledge, there is no research that considers
MMMF while constructing codebook.

2. We extend the above method by introducing the soft membership constraint while
transferring the codebook, and show that the prediction accuracy gets improved.

3. We propose a novel transfer learning method for cross-domain collaborative fil-
tering which uses co-clustering on source domain to construct the codebook, and
by processing the codebook we get the partial codebook. By applying MMMF
on the partial codebook we get the cluster-level latent features of users and items.
We transfer these user and item cluster-level features rather than codebook to the
target domain in a novel way and learn the latent feature matrices of target do-
main to get the predicted matrix of target domain. As far as we know, there is no
work which transfers the learnt latent features of codebook to the target domain.

4. We propose another novel method for cross-domain recommender systems in
which we generate the codebook from source data by using the existing trans-
fer learning techniques and we transfer the constructed codebook to the target
domain in a novel way by using the hinge loss function instead of the com-
monly used squared loss. According to the literature, there is no research work
which considers the hinge loss function while transferring the codebook of source
data to target domain.

The structure of the thesis is shown in Figure 1.7.

11



Figure 1.7: Layout of the thesis

1.6 Thesis Outline

The thesis is organized as follows.

In Chapter 2 we discuss in detail on matrix factorization technique which is one

of the widely used collaborative filtering techniques. We also discuss different types

of matrix factorization methods among which maximum margin matrix factorization

which best suits for discrete ratings is used in our thesis. Thereafter, we discuss the

transfer learning technique which is needed for cross-domain recommender systems

for addressing the data sparsity problem. In the later part of the chapter, we discuss at

length the related work on cross-domain recommender systems which remains the main

focus area as far as this thesis is concerned.

Chapter 3 introduces a novel method of cross-domain recommendation in which we

combine the maximum-margin matrix factorization technique and clustering technique

to generate the codebook which is the knowledge to be transferred to the target domain.
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The novel methodology of generating the knowledge from source is discussed, and

transferring the learnt knowledge to target domain in different ways is also addressed

in the chapter.

Chapter 4 discusses the novel technique of cross-domain collaborative filtering where

the co-clustering technique is used on the rating matrix of source domain to generate

the codebook. Thereafter the codebook is processed to get the partial codebook and

maximum margin matrix factorization is applied on the partial codebook. We transfer

the resultant latent feature matrices of the codebook to the target domain in a novel way.

In Chapter 5, we introduce another novel method for cross-domain recommender

systems in which co-clustering technique is applied on the original source rating data

to generate the codebook of source, and then the codebook gets transferred to the target

domain in a novel way using hinge loss.

We conclude our thesis with Chapter 6, by giving future directions.

1.7 Publications of the Thesis

1. Sowmini Devi V., Vineet Padmanabhan, Arun K. Pujari. "A Matrix Factorizatino
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2. Sowmini Devi Veeramachaneni, Arun K. Pujari, Vineet Padmanabhan, Vikas Ku-
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3. Sowmini Devi Veeramachaneni, Arun K. Pujari, Vineet Padmanabhan. "A Survey
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CHAPTER 2

Fundamental Concepts &

Related Work

In the previous chapter we have seen the basic introduction on recommender sys-

tems, types of recommender systems, and we have also explained the concept of cross-

domain recommender systems in the backdrop of transfer learning. In this chapter, we

discuss in detail about Matrix Factorization techniques which is one of the most popular

and recent methods on which collaborative filtering is based and also discuss in detail

on transfer learning which is essential in building cross-domain recommender systems.

Having done that, we discuss at length on the major research works that have come out

over the years in the area of cross-domain recommender systems trying to address to

the data sparsity problem.

Recommender systems usually depend on explicit form of data (ratings given by

user to items) which is placed in the form of a matrix and is often termed as user-item

rating matrix wherein the rows indicate users and the columns indicate items. Collab-

orative filtering approaches (user-based or item-based) are simple and straightforward.

One of the most successful CF techniques is Matrix Factorization (81; 65; 91; 28; 96).

Matrix factorization or matrix decomposition techniques are typically more powerful

as they allow one to identify the latent characteristics (latent features) underlying the

user-item interactions. The goal of Matrix Factorization is to find two matrices such

that the dot product of these two matrices approximates the original rating matrix. Us-

ing MF, one can find the hidden features of users and items. It characterizes both users

and items by vectors of factors inferred from rating patterns. It is more applicable when
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something is hidden under the data and one would like to find it. The high correlation

between user and item latent features contributes to a recommendation.

2.1 Collaborative Prediction via MF

In collaborative filtering, the system tries to find out the users that are similar to the

target user based on their ratings and recommends items the similar users have liked.

It’s “collaborative” because it predicts the preferences of the target user on the basis of

other users ratings. The significant assumption underlying the collaborative filtering is:

users with identical tastes (preferences) in the past are probably going to have similar

preferences in the future too. It is this assumption that permits to take a user’s past

history and extrapolate it into their future and predict items that they would enjoy (like).

They will like comparative sorts of things as they preferred before. The collaborative

recommendations are mainly based on user-item interactions (user-item ratings). In

collaborative prediction problem, the goal is is to predict the missing ratings using the

existing ratings, and it can be viewed as a simple matrix completion problem.

Matrix Factorization (MF) (28; 91; 85; 41) techniques are a family of algorithms in

collaborative filtering which extract the latent/hidden factors for users and items from

a single rating matrix. By process of factorization of the rating matrix, these methods

try to extract latent factors of users and items as one latent vector for each user (or,

each item) that captures the characteristics of the user (or, item). The product got from

multiplying the latent vector of a user with that of an item yields the rating of the user for

the item. This is achieved by a low-dimensional embedding process. Formally, given a

user-item rating matrix Y ∈ Rm×n where m is the number of users and n is the number

of items, we find two matrices, U ∈ Rm×` and V ∈ Rn×`, where ` is the dimension of

the embedding, such that the product is approximately equal to Y on observed entries,

i.e., U × V T = Ŷ ≈ Y . The problem can be formulated as the following optimization

problem where ω denotes the set of observed entries in the rating matrix.

Minimize J =
∑

(i,j)∈ω

L(yij, uivj)

where L(·) is a loss function that measures the discrepancy between the observed rating
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yij and its approximation ŷij (i.e. uivTj ). In most of the traditional matrix factorization

models, sum-squared error is taken as the loss function. This basic function may

overfit the data, and in order to avoid overfitting, a regularization term is introduced into

the optimization function.

Minimize J =
∑

(i,j)∈ω

L(yij, uivj) +R(U, V ) (2.1)

HereR(U, V ) is a regularization term on user and item latent factor matrices.

2.2 Types of Matrix Factorization Techniques

There are different types of Matrix Factorization models that can be outlined

as follows.

• Sparse Matrix Decomposition (LU)

• QR decomposition

• Singular Value Decomposition (SVD) or Principal Component Analysis (PCA)

• CUR matrix approximation (less accurate than SVD)

• Large Semi Definite Program (LRSDP)

• Regularized MF (RMF)

• Maximum Margin MF (MMMF)

• Probabilistic MF (PMF)

• Non-negative MF (NMF)

• Localized MF

• Divide-and-Conquer MF (parallelized technique)

• Structured MF

In our thesis, we take into consideration NMF, RMF, PMF, and MMMF as these

methods have proven to be successful when applied in the domain of recommender

systems. We have chosen maximum margin matrix factorization to be used in this the-

sis, as our primary focus is to predict the missing values given a highly sparse rating

matrix. It can be seen from the literature that in the context of collaborative filtering,

16



Maximum Margin Matrix factorization (MMMF) (81; 65; 80; 72) is highly successful

and is primarily used for prediction of discrete values {1, 2, . . . , r} with hinge-loss

(or, smooth hinge loss). In this setting, matrix factorization approach to CF is to

determine two factor matrices such that the product of these two matrices is consistent

at the observed elements and the factor matrices capture the user and item characteris-

tics. There are several approaches (64; 38; 45) to accomplish this task and the objective

is to minimize a suitably defined loss function. The loss function can be minimized by

different techniques such as Semi-Definite Programming(SDP), Gradient Descent(GD),

Alternating Least Squares(ALS) (28), Expectation Maximization(EM) (91) to name a

few. The most popular and practical approaches are variants of Gradient-search tech-

niques where the search starts with an initial pair of factors and moves along the gradient

iteratively obtaining new pairs till a minimizing point is reached. In some MF formu-

lations, the loss function is convex (65) and it is possible to get global optimum. Most

often convexity of the loss function is not guaranteed and hence the search terminates

at a local minimizing point. Variants of gradient descent such as Conjugate Gradient-

Search (16) or Stochastic Gradient-Search (18) are proposed earlier to get the better

local minimizing point and improving the probability of reaching a global optimal.

Semidefinite programming approach is theoretically sound but is not scalable for rea-

sonably large data. Expectation Maximization algorithm (91) for CF updates each of

the factors alternately. In other words, it starts with a randomly selected initial user

factor matrix and uses it to determine the item factor matrix which minimizes the er-

ror. The item factor matrix, so computed, is used in the next step to update user factor

matrix. This alternating process is repeated till the termination criterion is met.

2.2.1 Non-negative Matrix Factorization (NMF)

NMF (32; 31) is also called as non-negative matrix approximation. NMF at-

tempts to impose a restriction on individual elements of factor matrices U and V as

non-negative elements. From the factor analysis view this restriction is reasonable.

Suppose if we take a rating ui1 which says that user i likes item 1 which is an action

movie, then a large ui1 means that user i likes the action movies very much whereas

a smaller value indicates the opposite. ui1 × vj1 says the rating of user i for movie j

with respect to action genre(factor). If we take an example where ui1 = 20 and vj1 =
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-20, then it results in a negative score of -400, meaning that user i does not like action

movies at any cost. If elements are non-negative then it becomes ui1 = 20 and vj1 = 0

resulting in 0, indicating that we can’t say about user i’s interest in movie j based on

the "action" factor. The objective is to determine non-negative low rank matrices U and

V which minimizes the following loss function.

J =
∑

(i,j)εω

(yij − uivTj )2, such that U, V ≥ 0 (2.2)

where, ω is the set of observed (i, j) pairs.

2.2.2 Regularized Matrix Factorization (RMF)

This is the simplest formulation of all MF techniques. The objective is to de-

termine a pair of factors such that the element-wise aggregated squared error for the

observed values is minimized. In addition to the loss function, in order to avoid overfit-

ting, a regularization constraint is added to the optimization function. The objective of

RMF is to minimize J ,

J =
∑

(i,j)εω

(yij − uivTj )2 + λ(||U ||F + ||V ||F ) (2.3)

where, ω is the set of observed (i, j) pairs, λ > 0 is the regularization parameter and

||.||F is the Frobenius norm.

Frobenius norm of a matrix (Am×n) is defined as the square root of the sum of absolute

squares of individual elements,

i.e., ||A||F =

√
(
m∑
i=1

n∑
j=1

|aij|2)

2.2.3 Probabilistic Matrix factorization (PMF)

Probabilistic MF (PMF) is a generative model which presupposes a Gaussian distri-

bution for the data. In this, ratings (Y ) are modeled as draws from a Gaussian distribu-

tion with mean for Yij as UiV T
j . Zero-mean spherical gaussian priors are placed on U

and V . i.e., Each row of U and V are drawn from a multivariate gaussian distribution

with mean as 0 and precision is multiple of identity matrix I , as shown in equations
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below (2.4, 2.5).

P (U |σ2
U) =

m∏
i=1

N (Ui|0, σ2
UI) (2.4)

P (V |σ2
V ) =

n∏
j=1

N (Vj|0, σ2
V I) (2.5)

Given the user feature vectors and movie feature vectors, the distribution for the corre-

sponding rating is given by equation (2.6),

P (Y |U, V, σ2) =
m∏
i=1

n∏
j=1

[N (Yij|UiV T
j , σ

2)]Iij (2.6)

The goal of PMF is to maximize the log-posterior of (2.6) over U and V . Maximiz-

ing the log posterior of (2.6) is equivalent to minimizing (2.7) .

J =
1

2
(
m∑
i=1

n∑
j=1

Iij(Yij − UiV T
j )2 + λU

m∑
i

||U ||2F + λV

n∑
j

||V ||2F ) (2.7)

where, Iij is the indicator matrix whose entry is 1 if item j is rated by user i otherwise

0, λU = σ2

σ2
U

and λV = σ2

σ2
V

.

2.2.4 Maximum Margin Matrix factorization (MMMF)

In the context of collaborative filtering, a variant of matrix factorization called the

Maximum Margin Matrix factorization (MMMF) (81; 65; 80; 72) is shown to be suc-

cessful and is primarily used for prediction of discrete values {1, 2, . . . , r} with hinge-

loss (or, smooth hinge loss). It has a process of regularization where it constrains the

norms of U and V (trace norm) instead of the dimensionality. The problem is to de-

termine latent factor matrices U ∈ Rm×` and V ∈ Rn×`, and r − 1 thresholds θia

(1 ≤ a ≤ r − 1) for every user i so as to minimize the following objective function.

J (U, V,Θ) =
∑

(i,j)∈ω

r−1∑
a=1

h(T aij (θia − uivTj )) +
λ

2
(||U ||2F + ||V ||2F ) (2.8)
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where, λ > 0 is regularization parameter,

T aij =

+1 if a ≥ yij

−1 if a < yij

and h(·) is a smoothed hinge-loss function defined as,

h(z) =


0 if z ≥ 1

1
2
(1− z)2 if 0 < z < 1

1
2
− z otherwise.

It can be seen that, MMMF (Eq. 2.8) does not require uivTj and yij to be closer. It

expects uivTj to be as small as possible if a ≥ yij and as large as possible if a < yij ,

when compared with θia. It is pertinent here to discuss the geometric interpretation of

MMMF. The latent factor-vector of each item (corresponding row of V ) can be viewed

as a point in `-dimensional space and the latent factors of users (rows of U ) can be

viewed as decision hyperplanes in this space (29). Every pair (ui, θir) defines a hyper-

plane in `-dimensional space. The objective of MMMF is to learn the embeddings of

these points and hyperplanes in R` such that each hyperplane (corresponding to a user)

separates (or, equivalently, classifies) the items into r rating based on (r−1) thresholds

θir(1 ≤ θir ≤ r − 1). Each hyperplane acts as maximum-margin separator which is

ensured by optimizing hinge loss function or smooth hinge loss function. The inter-

pretation can be equivalently viewed with user-latent factors as points and item-latent

factors as hyperplanes.

One can solve the optimization functions given in Equations (2.3), (2.7) and (2.8)

using gradient descent method by updating U , V , Θ, using (2.9).

Ut+1 = Ut − c ∂J
∂U

Vt+1 = Vt − c ∂J
∂V

Θt+1 = Θt − c ∂J
∂Θ

(2.9)
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where c is a trade-off parameter. ∂J
∂U

, ∂J
∂V

, ∂J
∂Θ

are the partial derivatives (gradients)

of J w.r.t U , V , Θ and are given below (Equations 2.10, 2.11, 2.12).

∂J
∂Ui`

= λUi` −
r−1∑
a=1

∑
j|ij∈ω

T aij .h′(T aij (θia − UV T ))V (2.10)

∂J
∂Vj`

= λVj` −
r−1∑
a=1

∑
i|ij∈ω

T aij .h′(T aij (θia − UV T ))U (2.11)

∂J
∂Θir

=
∑
j|ij∈ω

T aij .h′(T aij (θia − UV T )) (2.12)

where,

h′(z) =


0 if z ≥ 1

z − 1 if 0 < z < 1

−1 otherwise.

2.3 Toy example of matrix factorization

Suppose we have a set of m users (U) and set of n items (I). Let Y = [yij] is m×n

(|U | × |I|) user/item rating matrix as shown in Table-2.1 in which there are 5 users and

4 items (i.e.,Y5×4). Each element yij ε {0, 1, ....R}, R is total level of ratings (5 in our

case). 0 represent the unknown rating. The goal is to predict the unknown ratings.

I1 I2 I3 I4
U1 5 3 0 1
U2 4 0 0 1
U3 1 1 0 5
U4 1 0 0 4
U5 0 1 5 4

Table 2.1: User-Item Rating matrix (Y)

If we apply MF (with squared loss) on the example shown above (2.1), by consid-

ering the number of latent features as two (i.e., ` = 2), the following (Equation-2.13)

are the U5×2, V T
2×4 and the predicted matrix (Ŷ5×4 = UV T ) which we get initially with

the random initialization of U and V . The same are shown in Figure-2.1 in which blue
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color vectors are user latent feature vectors (U ), and the vectors which are green in color

are item latent feature vectors (V ).



0.5904876 0.18520637

0.89651422 0.62040181

0.97932976 0.31239695

0.71248937 0.00531318

0.2988344 0.7485681


U

0.93627203 0.78030931 0.01137135 0.31557944

0.35834808 0.04508127 0.01842057 0.10453503


V T

=



0.6192254 0.78030931 0.01137135 0.31557944

0.35834808 0.04508127 0.01842057 0.10453503

1.0288659 0.7782634 0.0168908 0.3417128

0.6689878 0.5562016 0.0081998 0.2254024

0.5480382 0.2669297 0.0171872 0.1725576


Ŷ

(2.13)

Figure 2.1: Pictorial representation of latent feature vectors (U - blue color vectors and
V - green color vectors) in latent space initially

Once we calculate the predicted rating matrix (UV T ), we need to calculate the dif-

ference between the predicted values and the actual (existing) values and then we need

to try to minimize the difference recursively by using Gradient Descent (GD). GD helps

to find out in which direction (U and V ) we should go to minimize the error and keep on

going iteratively until no more error exist. So, for the given toy example, when we apply

GD and go on updating U and V iteratively, to minimize the error, the updated U , V ,

Ŷ which were obtained at 1500th iteration are shown in Equation-2.14 and which were

obtained at 3000th iteration are shown in Equation-2.15. The pictorial representation of
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the same is shown in Figure-2.2 and Figure-2.3.



1.77752894 0.29656766

1.16303033 0.66145795

1.30310564 0.67387977

1.26769425 0.32239559

1.38022296 1.97844308


U

1.77800423 1.21778941 1.15383339 1.6100205

0.80150418 −0.16676241 1.62889942 0.88737676


V T

=



3.3982 2.1152 2.5341 3.1250

2.5980 1.3060 2.4194 2.4595

2.8570 1.4745 2.6012 2.6960

2.5124 1.4900 1.9879 2.3271

4.0398 1.3509 4.8152 3.9778


Ŷ

(2.14)

Figure 2.2: Pictorial representation of latent feature vectors (U - blue color vectors and
V - green color vectors) in latent space at 1500th iteration



2.11668492 −0.46805813

1.52168501 0.05662858

1.01298558 1.6322625

0.99366696 1.07722617

1.17065079 1.84492609


U

 2.08575665 1.38337271 1.24972628 1.08183373

−0.23726548 −0.3410333 1.77726989 1.8130988


V T

=



4.52594 3.08779 1.81341 1.44127

3.16043 2.08575 2.00233 1.74888

1.72556 0.84468 4.16693 4.05534

1.81696 1.00724 3.15633 3.02810

2.00396 0.99027 4.74192 4.61148


Ŷ

(2.15)



2.13929538 −0.49059839

1.73310635 −0.28993261

1.06195536 2.01308987

0.92227177 1.57269387

1.06416843 1.61413303


U

 2.1818626 1.34069235 1.44112731 0.90992741

−0.64414485 −0.23296697 2.07216746 1.96481116


V T

=



4.98367 2.98243 2.06639 0.98267

3.96816 2.39111 1.89684 1.00734

1.02032 0.95477 5.70187 4.92164

0.99923 0.87010 4.58800 3.92925

1.28213 1.05068 4.87836 4.13978


Ŷ

(2.16)
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Figure 2.3: Pictorial representation of latent feature vectors (U - blue color vectors and
V - green color vectors) in latent space at 3000th iteration

Figure 2.4: Pictorial representation of latent feature vectors (U - blue color vectors and
V - green color vectors) in latent space at 4999th iteration

When the latent feature vectors are updating iteratively by minimizing the error

between actual and predicted values, at some point of time the error doesn’t change or

there will be very less variation between the current error and the previous error. At this

point of time, local minima (or sometimes global minima) is obtained and the feature

vectors obtained here are final vectors (U and V ). For the above toy example (Figure-
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2.1), the user and item latent feature vectors obtained at 4999th iteration are shown in

Equation-2.16, after which there is no change in the error. The corresponding vectors

are depicted in latent space as shown in Figure-2.4.

2.4 Transfer Learning in recommender systems

We have seen the basics of cross-domain recommender systems (6) which can be

achieved using Transfer Learning in Section-1.3 of Chapter 1. As discussed, in order

to reduce the data-sparsity issue in collaborative filtering, cross-domain recommender

systems (51; 95; 100) have come into picture. In recommender systems, one of the

main data used to recommend the items is user-item ratings and besides these ratings

(feedbacks), there exists some auxiliary data that can be used to recommend items to an

active user. This auxiliary data can be used to overcome the data sparsity problem, by

transferring the knowledge (transfer learning) from auxiliary domain (source) to target

domain. In cross-domain recommender systems where transfer learning technique is

used, before transferring the data, the following are the three main questions (52) that

need to be addressed,

1. What to transfer?

2. How to transfer?

3. When to transfer?

What to transfer? - Before transferring the data to the target domain, we

need to decide what information needs to be transferred in order to achieve more accu-

racy in prediction or recommendation. The auxiliary data that can be transferred to the

target domain can be - user latent features, item latent features, tags, cluster-level rating

pattern (codebook) etc..

How to transfer? - Once the data to be transferred is decided, the next ques-

tion is how to transfer that data. This question can be addressed from two perspectives

- “knowledge transfer algorithm styles” (collective, adaptive, integrative) and “knowl-

edge transfer strategies” (regularization, prediction rule, constraint) which will be dis-

cussed in detail in the coming sections of the chapter.
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When to transfer? - This question is addressed by knowing when not to

transfer. Data should not be transferred if the performance is getting reduced after

transferring. This is called ‘negative transfer’ i.e., learning in one context degrades the

performance in another context.

In this thesis, we mainly address the first two questions i.e., what to transfer and

how to transfer. If transferring the knowledge is diminishing the prediction accuracy

of collaborative filtering, then we should not transfer the knowledge as the negative

transfer occurs, and so when not to transfer is automatically addressed.

Figure 2.5: Different scenarios of user and item overlap (6)

In cross-domain recommender systems, there are different scenarios such as user

overlap (user-user overlap) between source and target domains, item overlap (item-

item overlap) between source and target domains, both user and item overlap (user-

item overlap) between source and target domains, and no overlap of users and items

(no overlap) between source and target domains. If we consider Figure 2.5 which is

considered from (6), DS is the source (auxiliary) domain, DT is the target domain, US

is the users from source, IS is the set of items from source, UT and IT is the set of

users and items from target domain, UST is the set of common users between source

and target domain, IST is the set of common items between source and target domains.

In the figure, there are four quadrants, in which the first quadrant shows that DS and

DT have no user or item overlap. The scenario in the second quadrant says that there
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is user overlap between DS and DT , but there is no item overlap. Whereas in the third

quadrant there exists item overlap between DS and DT , but there is no user overlap.

Finally, the fourth quadrant says that there exist both user and item overlap between DS

and DT .

In all our proposed methods, we assume that there is no overlap of users and items

between source and target domains, as a result, all of our proposed methods in the thesis

fall under the first quadrant in which there is no overlap of users and items between

source and target domains.

2.4.1 Transfer learning techniques

To address the query “how to transfer?” w.r.t. “knowledge transfer algorithm styles”

we have the following three different styles,

1) Adaptive knowledge transfer

2) Collective knowledge transfer

3) Integrative knowledge transfer.

For each of these algorithm styles, three knowledge strategies and three different

approaches exist which are as follows.

i) Transfer via regularization

ii) Transfer via prediction rule

iii) Transfer via constraint

a) Instance-based approach

b) Feature-based approach

c) Model-based approach

These approaches of transfer learning place a focus on which portion of knowledge

is being used as a medium to promote knowledge transfer. One of the most common

motivations for instance-based transfer learning approach is that, due to domain differ-

ences, although the source domain labeled data cannot be reused precisely, a portion of

it can be used for the target domain after reweighting or resampling. In this way, the
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source domain labeled instances with significant weights can be thought of as informa-

tion that can be transferred between domains. The instance-based approaches make the

implicit assumption that the source and target domains have many overlapping features,

implying that the domains have similar or identical support.

However, in many real-world implementations, only a small portion of feature spaces

from the source and target domains overlap, preventing many features from being used

directly as information transfer bridges. As a consequence, some instance-based ap-

proaches for information transfer may be ineffective. In this case, feature-based transfer

learning methods are more promising. The concept underlying feature-based methods

is to find out a good feature representation for both source and target domains so that the

labeled data from the source domain can be used to train a precise classifier for the target

domain by projecting data onto the new representation. In this way, the learned feature

representation may be treated as the domain-specific knowledge to be transferred.

Model-based transfer learning methods presume that the source and target domains

share certain learning model parameters or hyperparameters. Model-based methods

are motivated by the fact that a well-trained source model has acquired lots of helpful

structure and that may be transferred to train a more accurate target model. As a result,

the knowledge that is to be transferred is the domain-invariant structure of the model

parameters.

We have studied different papers and categorized them into different algorithmic

styles, as well as into different strategies and approaches discussed above. The upcom-

ing sections gives the categorization of existing literature on cross-domain collaborative

filtering using transfer learning technique to solve the data sparsity problem.

2.4.2 Generic framework of knowledge transfer

As seen, matrix factorization based techniques can be represented with a loss func-

tion, regularization term and a constraint as follows.

min
Θ,K
L(Θ, K|Y,X) +R(Θ|K,X) +R(K), s.t.,Θ ∈ C(K,X)
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Here L(Θ, K|Y,X) is loss function, R(Θ|K,X), R(K) are regularization terms

and Θ ∈ C(K,X) is a constraint. Prediction rule is embedded in the loss function. X is

the auxiliary data, Y is the target user-item rating matrix, K is the extracted knowledge

from X , and Θ is the model parameter. We also have another matrix called as indicator

matrix (I) whose values are either 1 or 0. The value is 1 if the rating exists in the

corresponding entry of Y , and the entry is 0 if the rating does not exist in the target

rating matrix.

2.5 Adaptive knowledge transfer

It aims to fit extracted knowledge of the auxiliary(source) domain to the target do-

main. It is a directed knowledge transfer approach (from auxiliary to target), and fol-

lowing are the two adaptive knowledge transfer strategies - (i) Transfer via constraint,

minΘL(Θ|Y ), s.t.Θ ∈ C(K,X) (ii) Transfer via Regularization, minΘL(Θ|Y ) +

R(Θ|K).

2.5.1 Transfer via constraint

CodeBook Transfer (CBT) (35): In this, a transfer of codebook(cluster-level rat-

ing pattern) from source(auxiliary) to target is done. Initially, rows and columns of

auxiliary rating matrix are co-clustered to get a cluster level rating pattern (codebook)

C ∈ Rk×k. Each entry in C is the mean rating of the associated co-cluster. The con-

structed codebook C gets transferred to the target by codebook expansion as UCV T ,

and with a condition C = C̆. Here rating pattern is shared between auxiliary and target

data, and U , V are membership indicator matrices. CBT is model-based as the code-

book (C-shared parameter between auxiliary and target) is discovered.

Rating Matrix Generative Model (RMGM) (36): This is an extension to CBT, in

which codebook construction and expansion are done in a single step with soft mem-

bership indicator matrices. It assumes that multiple sources share a single latent pattern.

In this, instead of a single auxiliary matrix, there are multiple related auxiliary rating

matrices from which the relatedness can be established by finding the shared implicit

cluster-level rating pattern. It is a probabilistic and model-based approach as codebook

(C) is shared between different domains.
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This Cluster-level rating pattern is a type of collective behavior that is more steady and

transferable than individual behavior. It is especially beneficial when the explicit corre-

spondences or overlaps between target and auxiliary data entities (users/items) are not

available.

2.5.2 Transfer via regularization

Coordinate System Transfer (CST) (58): In this, latent features are getting trans-

ferred. It integrates the latent features (or coordinate systems) obtained from source

domain into the target factorization (i.e., I � Y ∼ UCV T ) through regularization.

||U − U̇ ||2F + ||V − V̈ ||2F

Here U ∈ Rm×l, V ∈ Rn×l are latent feature matrices of target and U̇ ∈ Rn′×l,

V̈ ∈ Rm′×l are user and item specific feature matrices of auxiliary data. These two

regularization terms are used to constrain that U and V to be similar to U̇ and V̈ . Ap-

proximation is done via matrix tri-factorization (UCV T ), where V and U are orthonor-

mal matrices. It is a feature-based approach, as the coordinate systems are getting

transferred between auxiliary and target domains.

2.6 Collective knowledge transfer

In this, shared knowledge and the unshared effect of target and auxiliary data are

jointly learned. This is a bi-directional knowledge transfer strategy. In this, rather than a

two-step process like in adaptive transfer, the model parameter Θ and the shared knowl-

edge K are learned concurrently. Following are the studies in collective knowledge

transfer - (i) Transfer via constraint on model parameters, minΘ,KL(Θ|Y ) +R(Θ) +

L(K|X) +R(K), s.t.Θ ∈ C(K), (ii) Transfer via regularization, minΘ,KL(Θ|Y ) +

R(Θ|K,X) +R(K).
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2.6.1 Transfer via constraint

Collective Matrix Factorization (CMF) (78): In this technique, user-item rating

matrix Y ∈ Rm×n and one item-content matrix are collectively factorized by sharing

the same item-specific latent features V . In this case, V = V̈ , which means that item

specific latent feature matrix V̈ is shared and acts as a bridge for knowledge transfer

between two domains of data. Factorize Ỹ ∼ WV T and Y ∼ UV T , which says that

item-specific latent features are shared between auxiliary and target data domains, re-

sulting in feature-based approach.

Social Recommendation (SoRec) (42): It extends the basic matrix factorization model

by together factorizing user-item rating matrix Y (I � Y ∼ UV T ) and a user-user so-

cial network matrix Ẏ (Ẏ ∼ U̇ V̇ T ) with a constraint U = U̇ . In social network matrix,

vertices represent users and edges represent relation between users, say, how much a

user i trusts/knows a user j. It comes under feature-based approach.

TrAnsfer Learning in MUltiple Domains (TALMUD) (47): This is similar to CBT, in

which a cluster-level rating pattern is shared between source(auxiliary) and target data.

Instead of one auxiliary data as in CBT, TALMUD considers multiple auxiliary data and

checks different combinations of users/items clusters. It generates different codebooks

for each source domain and captures different levels of relatedness between the source

and target domains. Knowledge is extracted from many domains and is transferred to

target via some constraint saying that a certain relation exists between domains that

is captured using codebooks. TALMUD measures the relatedness between different

source and target domains without assuming overlapping users/items, and transfers to

the target domain.

In this, there exists N different source matrices, and N different codebooks (each

represented by Cn). The key problem is determining how to integrate the informa-

tion(knowledge) from multiple sources and how much data (αn) is to be transferred

from each of the source domains. The relatedness coefficient(αn) is learnt by reducing

the error based on the observed target ratings. The codebook (Cn) from different source

domains is transferred using sum of αn(UnCnVn
T ), n = 1, 2, ..., N . In this the relat-

edness between codebooks (Cn) from different source domains is discovered as shared

parameter, which results in model-based approach.

TRAnsfer collaborative filtering framework from multiple sources via ConsE nsus
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Regularization (TRACER) (101): It considers the data from multiple source domains

and learns the corresponding predicted matrices and transfers the knowledge. This is

more related to TALMUD (47) which produces multiple outputs from various auxil-

iary data before assigning weights to integrate. In contrast to TALMUD, the TRACER

algorithm learns and transfers the knowledge at the same time. During the lerning pro-

cess, it forces the prediction outcomes for the same missing rating to converge, and

while transferring the learnt knowledge it uses consensus regularization which forces

all of the predicted results to be similar (say, majority value). Furthermore, the two

approaches have different strategies for integrating the predicted outcomes. TALMUD

gives the same weight to the predicted ratings learnt from the same source domain, and

hence there will be ‘s’ distinct weights if there exist ‘s’ source domains. TRACER is a

local majority voting approach, in which it performs majority voting on each user-item

pair in the target domain. Thus, in terms of rating prediction, TRACER usually outper-

forms TALMUD. It comes under model-based approach.

For instance, if there are three source domains and one target domain, it learns different

knowledge from source domains, and obtains predicted matrices. While transferring the

knowledge, it places constraints on these matrices simultaneously, of which one could

be majority voting. For instance, when target matrices are predicted with some ratings,

we may get different predicted values from various source domains (say 4, 3, 3 from

domains - 1, 2, 3 respectively). In this case, the consensus regularization forces these

predicted results to be similar which in this case is the majority value - 3 (of domains 2

and 3).

Multiple INcomplete Domains Transfer Learning for Information Recommenda-

tion (MINDTL) (20): Considers the data from multiple incomplete source domains

and constructs the codebooks for the domains. These learned codebooks get linearly

combined and get transferred to the target domain to approximate the target rating ma-

trix.

Transfer by Collective Factorization (TCF) (55): If the target and auxiliary data have

different types of feedback data, say target is having ratings (Y ), and auxiliary data is

having binary feedback (X), the TCF tries to learn data dependent correlation between

rows of U and columns of V T for auxiliary and target data. Factorize Y = UCV T and

X = Ũ C̃Ṽ T collectively with constraints of sharing user-specific latent feature matrix

U = Ũ , and item-specific latent feature matrix V = Ṽ , to get U , V . Estimate C and

32



C̃ separately to capture domain-dependent information. Here, Shared latent space is

constructed via matrix tri-factorization to answer what to transfer question, and in a

collective way to address how to transfer. It is a feature-based approach.

interaction-rich Transfer by Collective Factorization (iTCF) (56): It extends CMF

by introducing the interactions between user-specific latent features. It is more efficient

when compared to TCF and more accurate when compared to CMF. It assumes the

same users and same items in target and auxiliary domains. It says that for the same

user, the prediction accuracy learned on target data (on numerical ratings) or auxiliary

data (binary) is likely to be similar.

Y ∼ UV T , Ỹ ∼ WV T , s.t.E = Ẽ

where E and Ẽ are prediction model’s errors on two data. This is a feature-based ap-

proach.

2.6.2 Transfer via regularization

Twin Bridge Transfer learning (TBT) (76): TBT considers two sets of auxiliary

data (X1, X2), in which one set shares common set of users with target (Y ), and the

other shares common set of items with target. It lessens the sparsity in target data by

transferring knowledge from dense auxiliary data via two pathways. i) Extracts the

latent factors from auxiliary data and constructs the similarity graphs using these latent

factors. ii) Transfers latent factors as well as similarity graphs to target data. As the

latent factor transfer alone may transfer negative information, similarity graph transfer

is also added which results in TBT.

||U − U0||2 + ||V − V0||2 + ||ui∗ − uj∗||2(WU)ij + ||vi∗ − vj∗||2(WV )ij,

where WU ,WV ∈ 0, 1 are weight matrices for similarity graphs, in which the distance

between users/items is present.

WU =

1, if ui∗ ∈ Np(uj∗) or uj∗ ∈ Np(ui∗)

0, otherwise
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Here, Np(uj∗), Np(ui∗) are set of p-nearest neighbors of uj∗ and ui∗. Similarly WV . As

latent features and similarity graphs are getting transferred between different domains,

it comes under feature-based approach.

MMMFTL (97): In this, a framework of different factorization techniques with transfer

learning has been proposed and it is concluded that MMMFTL is the best choice as far

as prediction accuracy is concerned. This method applies MMMF on the target domain

and then iteratively selects some entities (users/items) based on some certainty measure,

and finds the corresponding entities in the source domain. By utilizing the similarities

between the selected entities of the source domain, it constrains the similarities of the

corresponding target entities.

2.7 Integrative knowledge transfer

It integrates the actual source data into the learning task on the target data as known

knowledge. Following are different integrative knowledge transfer strategies - (i) Trans-

fer via prediction rule,minΘL(Θ|Y,A)+R(Θ), (ii) Transfer via regularization,minΘL(Θ|Y )+

R(Θ|A) and (iii) Transfer via constraint, minΘL(Θ|Y ) +R(Θ), s.t.Θ ∈ C(A). Here

instead of extracted knowledge K, raw auxiliary data A is included.

2.7.1 Transfer via prediction rule

Adding item metadata and tags (TagGSVD++) (14): This model separately cap-

tures user, item tagging information and transfers source knowledge to the target. The

item metadata and the tag information are integrated into the matrix factorization pro-

cess inorder to compute the rating predictions. It distinguishes between sets of tags for

items and users, and factors the rating matrix into disassociate user and item compo-

nents.

r̃ui = P TQ,

where, P is the user component which contains information about tags assigned by user

to any item, and Q is the item component in which information about items tagged by

any user exists. This is an instance-based approach.
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2.7.2 Transfer via regularization

Tag Informed Collaborative Filtering (TagiCoFi) (98): In this social tagging data

gets incorporated into the target numerical rating data. It tries to make two user-specific

latent feature vectors as similar as possible if the two users have comparable tagging

history. User-user similarity matrix is constructed from social tagging data and a regu-

larization term is added to the basic matrix factorization method.

n∑
i=1

n∑
j=1

Ṡij||U∗i − U∗j||2F ,

where Ṡij is the tag-based similarity between users i and j. The main goal is to make

user-specific latent features as similar as possible, if the corresponding users have simi-

lar tagging history. This regularization term focuses on distance between a user feature

vector and each of their friends’ feature vectors. This is a model-based approach as

it is trying to find the similarity of tags (shared parameter) between source and target

domains.

Social Matrix Factorization (Social MF): Social MF investigates the influence of trust

propagation and generalises the basic matrix factorization system by adding a regular-

ization term of trustworthy friends.

n∑
u=1

||Ui∗ −
∑
u′∈T+

u

Ṡuu′Uu′∗ ||
2
F ,

where, T+
u is the set of trustworthy friends of user u (other than u), and Ṡuu′ is the

similarity between users u and u′ acquired via social networks. It transfers knowledge

of the friends’ tastes by restricting the user-specific latent features to be similar. The

above regularization term defines the distance between one user’s feature vector and the

weighted sum of his/her friends’ feature vectors.

2.7.3 Transfer via constraint

Transfer by Integrative Factorization (TIF) (59): In TIF auxiliary data is repre-

sented with uncertain ratings (score), denoted by [aui, bui], and target data is represented

as numerical ratings. The aim of this is to incorporate the uncertain ratings to the target
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data. Integrates the auxiliary uncertain ratings as constraints into the matrix factoriza-

tion as follows,

r̂ ∈ Ct(aui, bui),

which indicates that the estimated rating must fall within the range of the correspond-

ing auxiliary uncertain rating. It comes under instance-based approach, where uncertain

ratings are getting re-weighted.

Transfer by Mixed Factorization (TMF) (57): If there exist multiple types of ex-

plicit ratings, say 5-star ratings and binary (like/dislike), then two prediction tasks will

be present. TMF is a mixed TL technique of feature-based and instance-based transfer,

and a mixed TL algorithm of collective and integrative factorization. Here, it introduces

integrative factorization method into collective factorization, to lessen the interdepen-

dency between two factorization tasks, and enable more effective knowledge transfer

between X and Y.

r̂ui = UuV
T
i + AuV

T
i ,Wu ↔ Uu

Here, the first term UuV
T
i is from collective factorization, and the second term AuV

T
i

is from integrative factorization, and the last term Wu ↔ Uu indicates the interactions

between user profiles Wu and Uu. Here, Au = δPwpP̃u + δNwnÑu is the fused virtual

user profile for user u with boolean variables δP , δN ∈ {0, 1} and weights wp, wn ≥ 1.

Here P̃u, are normalized user profiles constructed from user u’s liked items’ features,

and Ñu are constructed from disliked items’ latent features. This is a feature-based ap-

proach as latent features are getting transferred and also an instance-based approach as

normalized user profiles are getting constructed from the liked and disliked items (i.e.,

re-weighting the data).

Tags as bridges between domains (TagCDCF) (77): For instance, suppose that two

different domains like a movie domain and book domain have completely different

users and items. However, there exists some tags which are common to both. These

shared tags are used to link different domains. A constraint on tag-based similarities

between user and item pairs across domains is introduced into matrix factorization.

Based on tags shared between domains, construct user-user, item-item similarity ma-

trices. Compute tag-induced cross-domain similarities using cosine similarity measure,

after extracting shared tag set between domains. As we are trying to see the common

tags between two domains, this is a model-based approach.
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Method What to
Transfer

How to
Transfer

TL
approach

Transfer
strategies

(via)

Users/
Items/

User-item
feature

correspondence
CBT (35)

(NMF) Codebook
Adaptive,
(tri-fact) Model-based Constraint

Share cluster
level rating pattern

TALMUD (101)
(from multiple

sources)
Codebook Collective Model-based

Constraint
(some relate

dness
between
domains)

Share cluster-level
rating pattern

CST (58)
(PMF)

Latent features
(principle

coordinates)

Adaptive
(tri-fact) Feature-based Regularization

Share common Users and Items,
U and V are similar

in both domains

iTCF (56)
(PMF)

Latent features
and predictability

Collective
(bi-fact) Feature-based Constraint

Users and Items are same.
It shares U ,

and V is same

TIF (59) Latent features
Collective

+
Integrative

Feature-based
+

Instance-based
Constraint

Users and Items are same
V-shared

TagCDCF (77)
(PMF) Correlation of tags

Integrative
(integrating tag

similarities ,
bi-fact),

Model-based
Constraint

(similarities
between tags)

Users and Items are not same,
but share common tags

TMT (13)
(NMF)

Co-occurrence
matirx (of tags)

Integrative
(tri-fact) Model-based

Constraint
(tags)

Users and Items are not same,
but share common tags

TagiCoFi (98)
(PMF)

Tags
(target user
similarity)

Integrative
(bi-fact) Model-based Regularization

Constrains U to
be similar based on tags

TBT (76)
Latent features

+
Similarity graphs

Collective Feature-based Regularization
Y and X1 share users
Y and X2 share items

TagGSVD++ (14)

Implicit feedback
+

Item attributes
+

Tags

Integrative Instance-based Prediction Shares same tags

CMF (PMF) (78) Latent features
Collective
(multi task,

bi-fact)
Feature-based

Constraint
(V=V’)

Same item latent
feature matrix

TCF (55)
(PMF) Latent features

Collective
(tri-fact) Feature-based Constraint

Users and Items are same.
U and V are same
in both domains

MINDTL (20)
(from multiple

sources)

Codebook
from multiple

sources
Collective Model-based

Constraint
(relatedness

between
domains)

Share part of cluster-
level rating pattern
of different sources

TRACER (47)
(from multiple

sources)
Codebook Collective Model-based

Constraint
(relatedness

between
domains)

& Regularization

Share cluster-level
rating pattern

MMMFTL (97) Latent features
Collective
(multi task,

bi-fact)
Feature-based Regularization

Shares some
users and items

Table 2.2: Brief survey on different transfer learning approaches related to cross-
domain collaborative filtering in alleviating the data-sparsity issue

Tag Matrix Transfer (TMT) (13): Tags are interrelated in different domains. The

main assumption of TMT is that, auxiliary and target domains should share common

tags even though they doesn’t have same users/items. Calculate the co-occurrence dis-

tribution of all tags and construct the tag co-occurrence matrix (T ) to capture the user
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behavior patterns from different rating domains. Based on these, learn U , V and make

prediction via UkTVk. TMT is a model-based approach, as we find the tags between

source and target as shared parameters.

The categorization of all the above discussed methods is briefly shown in Table

2.2, in which the first column naming ‘method’ consists of names of different methods

related to transfer learning for cross-domain collaborative filtering. What knowledge is

to be transferred from source domain to target domain is given in the second column

(What to transfer). Once the information or knowledge which is to be transferred is

decided, the same knowledge is to be transferred to the target domain using different

algorithmic styles which addresses the question ‘How to transfer’ and is given in the

third column of the table. The fourth column (TL approach) gives the transfer learning

approach that is followed in the particular method. For every method, there exist some

strategy through which the data can be transferred and is given in the fifth column. The

source and the target domains share some of the entities or latent features or rating

pattern and is given in the last column.

2.8 Summary

In this chapter, we have discussed in detail about matrix factorization, and various

matrix factorization models. We have also discussed in detail about transfer learning

technique for recommender systems i.e., cross-domain recommender systems, and also

provided the literature related to various works in cross-domain recommender systems.
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CHAPTER 3

A Maximum Margin Matrix

Factorization based Approach for

Cross-Domain Recommender Systems

In this chapter, we discuss our proposed model for transfer learning in collaborative

filtering for addressing the data sparsity issue which is one of the main drawbacks of

collaborative filtering. In our proposed method, we learn a cluster level rating pattern

(codebook) of the source domain and transfer the learnt codebook to the target domain.

Transferring of codebook and finding the predicted rating matrix of target domain is

done in a novel way by introducing a softness constraint into the optimization function.

In the proposed approach, maximum margin matrix factorization and clustering play

a vital role while constructing the codebook. Initially, maximum margin matrix factor-

ization (MMMF) is applied on source domain rating matrix in order to get the user

and item latent feature matrices of source domain. The obtained latent feature matrices

are clustered and combined to get a cluster-level rating pattern called codebook. Hav-

ing done that, codebook transfer is used to transfer the learnt knowledge (codebook)

of the source domain to the target domain and improve the prediction accuracy of the

target domain which is very sparse. Transferring of codebook and finding the predicted

target rating matrix is done in two different ways. In one method the target user and

item membership matrices form hard membership in which a user/item can belong to

a single cluster. In the second method, a softness constraint is introduced into the op-
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timization function where a single user or single item belongs to multiple clusters with

some weights. Various types of clustering techniques have been made use for construct-

ing the codebook and the resultant codebook is transferred to the target domain in two

different ways as discussed above.

The rest of the chapter is organized as follows: Section 3.1 gives a brief introduc-

tion about the motivation behind the use of transfer learning in the area of recommender

systems. Some of the existing works related to cross-domain recommender systems are

described in section 3.2. The proposed approach is given in section 3.3 and the exper-

imental results are shown in section 3.4. Finally, we summarize our work in section

3.5.

3.1 Introduction

As discussed in Chapter 1, recommender systems usually employ techniques like

Collaborative Filtering (CF) where the recommendation for a user (target user) is done

by utilizing the observed preferences of other users with similar tastes as that of the tar-

get user. The other technique being Content-based (CB) recommends the items based

on the items that the user has liked previously. One of the widely used CF techniques

is Matrix factorization(MF) and among the different MF techniques maximum margin

matrix factorization (MMMF) (81) is the most popular. However, this method can only

utilize the data from a single domain and cannot take into account user-item interaction

from other domains. Moreover, most CF-based recommender systems perform poorly

when there are very few ratings, which is known as the data sparsity problem. To ad-

dress this data sparsity, transfer learning (TL) methods have emerged. The idea behind

transfer learning (53) is to extract relevant knowledge from one domain (source) and

transfer to other domain (target) so as to build a predictive model across different do-

mains. Researchers also refer this problem as Cross-Domain Collaborative Filtering. A

more detailed description about Transfer Learning is discussed in Chapter 2.

In the case of recommender systems, for successful knowledge transfer, TL has to

address two critical problems 1) Knowledge transfer when two domains have aligned

users or items and 2) Knowledge transfer when the domains have no aligned users

or items. The scenario of the first problem often doesn’t exist in real-time as the
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users/items in one system may not be present in the other systems. Moreover, even

though if the correspondence exists, it is often expensive to map, as the users/items may

have different names in different systems. The second problem is very difficult and we

use a representative method to solve this issue using CBT (CodeBook Transfer) (35).

CodeBook Transfer (CBT) (35) is a transfer learning approach that addresses this prob-

lem and a codebook generated from the rich information in one domain (dense) is used

to predict the missing rating in another domain (sparse). Codebook essentially captures

the rating patterns in a summarized form, and it is hypothesized that the summarized

rating pattern is, in some sense, invariant across domains. In this chapter, We propose a

novel model of CBT based collaborative filtering. As the first step, we propose a code-

book construction technique based on Maximum Margin Matrix Factorization, which

has natural reasons to be used in the context and has not been explored earlier. For the

purpose of transfer learning using codebook, we adopt a soft membership scheme and

formulate it as a non-linear optimization problem. Unlike the earlier scheme of hard

membership which can be solved by a discreet optimization problem with applicable

greedy method, the soft scheme requires a non-linear optimization which has higher

computational complexity. However, we show that our formulation has a closed-form

solution. The proposed method outperforms all major methods on codebook-based

transfer learning for collaborative filtering. Our experimental analysis is exhaustive

and rigorous in the sense that we provide experimental results for different alternatives.

For instance, for clustering of latent factors, we use k-Means (22), DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) (12) and Spectral (48) clustering.

k-means clustering identifies ‘k’ (input given by user) number of centroids and assigns

each data point to the nearest cluster. It recalculates the centroid and reassigns the points

to the nearest centroid, and the process continues iteratively until the cluster centroids

stabilize. Spectral clustering clusters the data points by connectedness rather than using

distance measure from centroids. DBSCAN clusters the data based on the density of

the data points. If there are at least minPts number of points within a radius of eps to

the point, then it considers all those points to be part of the same cluster. We also report

results of experimenting on prediction for different levels of sparsity of input matrix.

More than that, we report experimental results with soft membership as well as hard

membership.
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3.2 Related work

As we have seen in the previous chapter, MMMF has been a very successful collab-

orative filtering technique in predicting ratings for unobserved entries even with a very

small number of observed entries. In a sense, with a little information it can complete a

sparse matrix to a satisfactory level of accuracy. But as sparsity increases, the accuracy

of prediction expectedly falls. In such a situation, researchers investigate the possibil-

ity of making use of information learnt in another context. Cross-domain collaborative

filtering techniques like transfer learning (53; 54) are proposed in the last decade as

a potential solution to mitigate this problem. The main aim of transfer learning is to

transfer the knowledge from the dense source domain to the sparse target domain. The

problem can be stated formally as follows. Given a dense rating matrix in a source do-

main asXm′×n′ , and a sparse rating matrix in target domain (Ym×n), the aim is to predict

unknown entries of Y by making use of information available in X . One of the major

questions that remains unanswered in this context is to determine whether the two do-

mains in hand are compatible for knowledge transfer. Most of the research on transfer

learning for CF makes certain assumptions on domains to apply transfer learning strat-

egy. These assumptions include a common subset of items or users, similar attributes

of users or items. The objective is to determine a sort of correspondence between two

domains.

In (58) a coordinate system transfer method is proposed in which the latent features

of users and items of source domain are learnt and adapted to a target domain. However,

it requires that there exists either common users or items between the two domains.

In (35), the authors focus on capturing the group level behavior of users on items. The

main assumption is that, though the users/items are different across systems, the clusters

(groups - based on age, interest etc.) of them behave similarly. So, in (35) co-clustering

is applied on a separate auxiliary rating matrix to directly get the cluster-level rating

pattern which is called as codebook. This cluster level rating pattern is then expanded to

get the user and item membership matrices of the target domain in which the user/item

can belong to a single cluster. Our approach differs from that of (35) in the sense that

we do not use a separate dense auxiliary rating matrix to construct the rating pattern.

In addition to that, we also extended the method as outlined in (35) by introducing the
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concept of soft membership into the target user/item membership matrices.

One of the major issues involved in developing transfer learning techniques for rec-

ommendation purpose is to establish a link between the domains that are involved, so

that knowledge transfer from the source domain to the target recommendation domain

can take place. Domains can be linked and the transfer can happen explicitly via inter-

domain similarities, common item attributes, etc. The transfer can happen also implic-

itly via shared user latent features or item latent features or by rating patterns which can

be transferred between the domains. In (7), a framework was proposed where the items

that are relevant in the source domain are chosen based on the common attributes they

share with the target domain (user interested domain). In this way the inter-domain links

were built via the common item attributes, however there was no overlap of users/items

required between the domains.

On the other hand the transfer of knowledge by the shared latent features (of users/items)

is addressed in (58) in which the latent features of users and items of source domain are

learnt and adapted to a target domain by integrating the features into the factorization

of target rating matrix via regularization. However, it requires either common users or

items between the two domains. In (55), the latent features of source and target domains

are shared in a collective way. Here, rather than learning the latent features from source

and utilizing in the target, a method that simultaneously learns the latent features of both

domains is proposed. The shared latent space is constructed via matrix tri-factorization.

It also requires the users and items of both domains to be identical.

There are other set of methods in which rating patterns are analysed and transferred

rather than latent features. Code Book Transfer (CBT) (35) is one such method in which

cluster-level rating-patterns are captured. There exist latent correlations between ratings

of groups of users and the groups of items, which is referred as rating pattern. In this

approach, the rating matrix of source domain is analyzed to extract a codebook which

is used in the target domain for prediction. Users and items, irrespective of domains,

group together in such a fashion that the rating behavior of these groups remain invari-

ant across domains. To apply the CBT concept in CF, a strategy must be devised to

generate a codebook by using the rating matrix of the source domain and subsequently

to devise a technique to use the codebook so generated in target domain for prediction

of missing behavior. The rating matrix in source domain is assumed to be a full matrix
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in (35). When the matrix is not full, the unobserved entries are filled in by a smoothing

technique. Then the rows and columns of this rating matrix are grouped by a process of

simultaneous clustering or co-clustering (35). Codebook matrix is generated wherein it

has a row for each user group, a column for each item group, and a single rating for a

pair of a user-group and an item-group. The rating for a pair of user-group and item-

group is the mean rating of users and items. While using the codebook in target domain,

the aim is to identify users (or, items) in the target domain with the best-fit user-group

(or, item-group) of the codebook. It can be formulated as an optimization problem as

follows (Eq. 3.1).

min
F1∈{0,1}m×k1 ,F2∈{0,1}n×k2

||[Y − F1CF
T
2 ]�W ||2F s.t.,F11 = 1, F21 = 1. (3.1)

where Ym×n is the rating matrix in the target domain, Ck1×k2 is codebook, F1m×k1 and

F2n×k2 are the cluster membership matrices of users to user-group in F1 and items to

item-group in F2, respectively. W is the indicator matrix of size m × n in which the

value is 1 if the rating exists in the original rating matrix and 0 otherwise. In (35), it is

assumed that a user (or an item) can belong to exactly one user-group (or, item-group).

There are several extensions of CBT based transfer learning proposed in (35). In (47),

the linear combination of codebooks extracted from multiple domains are used and the

coefficient of linear combination is determined through an optimization process. In

(20; 19), the assumption of fully dense matrix of the source domain is relaxed.

One work that comes close to ours is that of (23) in which an alternative method of

generating codebook is proposed. It avoids the pre-processing (smoothing) as well as

co-clustering of source matrix. From the source rating matrix, the latent factors of users

Us and items Vs are generated by a process of matrix factorization. Having done that,

the latent factor-vectors are clustered separately to obtain user-group (Uc) and item-

group (Vc). These mean latent vectors, Uc and Vc, of the groups are multiplied to get the

codebook, C. In the original proposal (23), the codebook is used for a single domain

whereas in our method we use it for cross-domain. i.e., in (23) by using the constructed

codebook, the authors reconstructed the original matrix by using codebook transfer

method. In our method, we have utilised the idea of constructing codebook from (23)

and transfer the constructed codebook across different domains using codebook transfer

method. Also, to the best of our knowledge applying MMMF in this scenario is the
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novel approach. When applying MMMF there is also a threshold matrix (Θ). The

usage of Θ while constructing codebook by applying MMMF is discussed in section-

3.3. Once the codebook is constructed, it can be transferred to the other domain in two

ways - one is to find the hard membership matrices of users/items of target domain and

the other one being soft membership of users/items of target domain. Hard membership

problem was addressed in (35) where a user/item can belong to exactly one cluster. But

there can be scenarios in which the user/item can belong to multiple clusters with some

weights which is addressed in this thesis by introducing the softness constraint into the

optimization. Fig. 3.1, gives different ways of using rating information to construct

codebook (C).

Figure 3.1: Block diagram showing construction of codebook (C) from the rating ma-
trix

3.3 Proposed Approach

In MMMF, as stated in section 2.2.4 of Chapter 2, set of items can be viewed as set

of points in a low-dimensional embedded space and set of users as decision hyperplanes

in the same space. For sake of convenience, the thresholds are defined with respect

to user-rating combinations. An equivalent interpretation would be to represent the

set of users as points and set of items as decision hyperplanes. We take the former

interpretation as proposed in the original proposal of MMMF. With this interpretation,

the clustering of latent factors can be viewed as clustering of embedded points for items

and grouping of embedded decision planes for users. Thus in the embedding space, a
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configuration evolves describing a set of clusters, represented by the cluster-means and

a set of decision hyperplanes which separate the space into r regions with the help of

(r − 1) thresholds. This configuration is, in a sense, abstract representation of a rating

pattern for the source domain. At this stage, for the purpose of transfer learning, we

presume that the configuration so evolved for the source domain can also be valid for

the target domain. Hence, in the next stage, it is examined whether by some embedding

process the items and users of the target domain can be mapped to the embedding

space conforming to the configuration. A mapping conforms to the configuration if

the target-users and target-items exhibit similar rating behavior as represented by the

configuration. Thus, codebook generation using clustering of latent factors obtained by

MMMF-based factorization has a natural justification. The present study is motivated

by this observation and this aspect has not been explored earlier.

The process of prediction using codebook, in CBT, essentially determines the mem-

bership of users and items to the user-groups and item-groups. The membership matri-

ces F1 or F2 can be binary with every row having just one entry as 1 and other entries as

0. This is to ensure that an embedded point is a member of one group and no other. Hard

membership problem was addressed in (35). It is pertinent to consider soft membership

by assuming these matrices with entries between 0 and 1.

The step-by-step description of a generic method in this context has the following

essential steps - First to factorize the rating matrix of the source domain to obtain the

latent factor-vector for each user (us) as well as for each item (vs). The latent factor-

vectors (Usm′×`
, Vsn′×`

) are grouped by any clustering algorithm with some distance

metric. The representative latent factor-vector for each cluster is determined. Such

cluster-level user latent factors (Uck1×`
) and item latent factors (Vck2×`

) are multiplied

to obtain the codebook (C). Using the codebook so computed, optimal membership

matrices are determined which minimizes the squared error.

During the clustering process, we use Cosine similarity for user latent matrix (Us)

because of considering users as hyperplanes as discussed above. Cosine similarity is

generally used to measure the similarity between vectors. We use Euclidean distance

for item latent matrix (Vs) as items are viewed as points in the embedded space as

mentioned in the foregoing session. The mean vector for each cluster is taken as the

cluster-level latent vector. In order to determine a threshold value corresponding to each
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rating value for each mean user-latent factor, we have tried two different ways in our

experiments; the median of the thresholds (rows of Θ), and by averaging the thresholds

(rows of Θ) of those users whoever is falling into the same cluster and the resultant

matrix is named as Θmed or Θavg (having dimension k1 × r − 1).

The construction of codebook, at this stage, consists of the following steps. We

multiply the Uc and V T
c matrices to get real-valued matrix which is then mapped to a

discrete rating matrix (using Θc) to get the cluster level rating pattern (Ck1×k2). Mapping

is done in such a way that, the entries of the matrix Uc × V T
c and the values of Θc are

compared. If the entry (say elements of first row (uc1.)) in Uc × V T
c is less than θc11

then the rating is considered as 1. If the value is in between θc11 and θc12 we rate it

as 2 and similarly if the value of the entry falls between θc12 and θc13 we rate it as

3. If the value is in the range of θc13 and θc14 , we make it as 4, and finally if the

value is greater than θc14 we rate it as 5. Here the main assumption is that there exists

some implicit correspondence between the source domain user/item clusters and target

domain user/item clusters. Our assumption is that the correspondence between source

and target is through codebook which is a cluster level rating pattern (C).

Having talked about the construction of codebook in the source domain as men-

tioned above, the next step is to transfer codebook to the target domain. At this stage,

it is to determine the cluster membership of each user and item in the target domain

based on the constructed codebook. So, once the rating pattern is formed, we try to

minimize the objective function (quadratic loss) (3.2) which expands the cluster level

rating pattern so as to get the user and item membership matrices F1m×k1
, F2n×k2

of the

target domain. Expansion is done by duplicating the rows and columns of the code-

book. If there are some users/items in the target domain which behaves like that of the

ith user/item cluster of the source domain, then the ith row/column of the codebook gets

duplicated. Thereafter the predicted matrix can be obtained using Eq. (3.3) as outlined

in Algorithm 1.

min
F1∈{0,1}m×k1 ,F2∈{0,1}n×k2

||[Y − F1CF
T
2 ]�W ||2F s.t.,F11 = 1, F21 = 1. (3.2)

Ỹ = W � Y + [1−W ]� [F1CF
T
2 ], (3.3)
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Algorithm 1: MMMF combined with clustering
1: Input: A m′ × n′ source rating matrix X and a m× n sparse target rating

matrix Y with yij known for (i, j) ∈ ω
2: Output: yij for (i, j) /∈ ω
3: Factorize X by MMMF to get Us, Vs and Θs by solving the optimization problem

(2.8) given in Chapter 2.
4: Cluster the rows of Us with Cosine distance and rows of Vs with Euclidean

metrics. Resultant matrices Uc, Vc and Θc represent the cluster level matrices and
threshold parameters.

5: By comparing (Uc × V T
c )ij with (θc)ir for different ratings r, generate

cluster-level rating pattern (C).
6: Solve the optimization problem (3.2) to find optimal F1, F2.
7: Get the predicted target rating matrix Ŷ with optimal F1 and F2 using (3.3).

Figure 3.2: Construction of cluster-level rating pattern using source rating data

where W is the indicator matrix of size m×n in which the value is 1 if the rating exists

in the original rating matrix and 0 otherwise. W ensures that the error is calculated

based on observed ratings only and, � denotes the Hadamard product (element wise

product). F1 and F2 are binary matrices, in which the value 1 (best cluster indicator)

indicates whether a user or item belongs to a particular cluster and F11 = 1, F21 =

1 ensures that each user or item belongs to only one cluster (Hard membership). For
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example, if we consider [0 0 1] as one of the rows of F1, there are three user clusters

and we can say that the user belongs to the third cluster, as the entry is filled with 1

whereas the remaining entries as 0s. In a similar manner one can say about the item

cluster membership by using F2. The solution to the optimization problem (Eq. 3.2)

that relates the source and the target domains is NP-hard. Smaller value of Eq. (3.2)

indicates a better rating pattern between source and target while larger values indicate

weak correspondence, which may result in negative transfer (68). To get the minimum

local solution, Alternating Least Squares (ALS) technique is used. ALS monotonically

decreases Eq. (3.2), by updating F1 and F2 alternatively. This has been demonstrated

in (35), where F1 and F2 are getting updated by changing the best cluster indices in

each iteration based on the minimum value of the objective function. F1 is getting

updated by fixing F2 and then by fixing F1, F2 gets updated. By updating F1 and F2

alternatively, the value of the Eq. (3.2) gets decreased monotonically and converges to

a local minimum. Once we get F1, F2 by solving the optimization function (3.2), we

construct the predicted target matrix using Eq. (3.3) as shown in Fig. 3.3. In Fig. 3.3,

Y is the original target domain rating matrix, Ỹ is the predicted target rating matrix

in which the observed entries are retained and the missing values are predicted using

F1CF
T
2 . Consider Fig. 3.2, where the source rating matrix - X (presented at level-1

Figure 3.3: Approximation of target rating matrix using cluster-level rating pattern.

containing 8 users and 6 items) is factorized into user latent factor matrix (Us) and item

latent factor matrix (Vs) as shown in level-2. The number of latent features we consider

here is 2. Besides these, a threshold matrix Θ for the users also gets learned. In our

example the maximum rating (r) is 5 and so the size of Θ is 8×4. Clustering technique

(with number of clusters as 3 - both k1, k2) is applied on Us and Vs to get user and
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item cluster matrices (Uc, Vc) which are at level-3. Also there is a Θmed (Θc) threshold

matrix which is obtained by taking the median of the thresholds of those users falling

into the same cluster. In this example, users u1, u2, u6, u7 belongs to cluster-1 and u3,

u4 belongs to cluster-2 and u5, u8 falls under cluster-3. So, for the first user cluster

(uc1), the entry in the median of threshold matrix (Θmed) is the median of four rows (u1,

u2, u6, u7) of Θ. For uc2, it is the median of the values of u3 and u4 of Θ, and for uc3

the entry in the Θmed matrix is the median of rows u5 and u8 of Θ matrix. Finally, at

level-4 the cluster matrices are multiplied and the resultant is mapped using Θmed to get

cluster-level rating pattern or codebook (C) which is to be used in the target domain.

In matrix C, the first entry (value 4) indicates that the users who fall into user-cluster-1

(uc1) has given rating 4 to the items in item-cluster-1 (vc1). Similar explanation holds

for all other entries of C.

In the aforesaid scenario (Eq. 3.2), the user/item belongs to exactly one cluster

which is a hard membership, whereas in real-world scenarios a user might belong to

multiple clusters and for a single item there may exist many attributes. So, a user/item

can belong to multiple clusters at a time with different memberships. Membership

values indicate to what extent the user/item is associated with each cluster. This moti-

vated us to introduce soft membership to the clustering. i.e., we extended the discussed

method (Eq. 3.2) by introducing softness into the target membership matrices. In this

case, instead of {0, 1} values in target membership matrices we can have some real

values (membership values or weights) between 0 and 1. Eq. 3.4 is the new objective

function in which the soft membership is introduced.

min
F1≥0,F2≥0

||[Y − F1CF
T
2 ]�W ||2F + λ1||F1||1 + λ2||F2||1 (3.4)

Here, F1 and F2 are user membership and item membership matrices. Multiplicative

update rules (32) (26) can be used in order to get F1 and F2. By considering the tech-

niques proposed in (26) (25), one can solve Eq. (3.4) by using alternating minimization

scheme in which the factor matrices are optimized one by one iteratively while fixing

the other. We optimize (3.4) w.r.t F1 and F2 as follows. First, we solve Eq. (3.5) to get

F1 by fixing F2.

min
F1≥0
||[Y T − F2C

TF T
1 ]�W T ||2F + λ1||F1||1 (3.5)
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By applying the multiplicative update rule to (3.5) we get,

F1ik1
← F1ik1

((W � Y )F2C
T )ik1

((W � (F1CF T
2 ))F2CT )ik1 + λ1||F1||1

(3.6)

Once we get F1, by fixing F1 we optimize Eq. (3.7) and get F2. Eq. (3.8) gives the

multiplicative update rule for F2.

min
F2≥0
||[Y − F1CF

T
2 ]�W ||2F + λ2||F2||1, (3.7)

F2jk2
← F2jk2

((W T �XT )F1C)jk2
((W T � (F2CTF T

1 ))F1C)jk2 + λ2||F2||1
(3.8)

To avoid division by zero, one can add a small ε > 0 (say, 0.1E − 8) to the denomi-

nator. Once the above equations are solved, we get the membership matrices F1 and F2.

We are getting the matrices F1, F2 by transferring the cluster level rating pattern (C)

from the source domain. However C is obtained by multiplying the user cluster matrix

and item cluster matrix of source, which indirectly says that the user cluster centroids

and item cluster centroids can also be transferred. So, once we get the membership ma-

trices, we multiply the membership weights with the centroids of latent factor matrices

(Uc and Vc), so as to get the target latent feature matrices (Ut and Vt). We also multiply

Algorithm 2: MMMF combined with soft clustering
1: Input: A m′ × n′ source rating matrix X and a m× n sparse target rating

matrix Y with yij known for (i, j) ∈ ω
2: Output: yij for (i, j) /∈ ω
3: Factorize X by MMMF to get Us, Vs and Θs by solving the optimization problem

(2.8) given in Chapter 2.
4: Cluster rows of Us with cosine distance and rows of Vs with Euclidean metrics.
Uc, Vc and Θc represent the cluster level matrices and threshold parameters.

5: By comparing (Uc × V T
c )ij with (Θc)ir for different ratings r, get cluster level

rating pattern (C).
6: Solve the optimization problem (3.4) to find optimal membership matrices F1, F2.
7: Multiply the weights of F1 and F2 with Uc and Vc to get Ut, Vt.
8: Multiply the weights of F1 with Θc to get the weighted threshold matrix.
9: Product of Ut, V T

t by mapping with weighted threshold matrix gives the target
predicted matrix (Ŷ ).

the threshold matrix (Θmed or Θavg) with the corresponding weights of the users (F1).

The resultant target predicted matrix can be obtained by multiplying the target matrices

(Ut, Vt) and mapping it to the discrete values (ratings) using the threshold matrix that we
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obtained after multiplying with the weights of users. This is illustrated in Algorithm-2.

We also analyse the complexity of the proposed transfer learning method which

uses MMMF to learn the codebook from the source domain, and finds the user and

item membership matrices of the target domain. The time complexity of the proposed

method comprises of four components - learning latent factors of source, applying clus-

tering technique to learn the cluster level latent factors, codebook construction, learning

user and item membership matrices of target domain. In the first component in which

MMMF is applied, in every gradient iteration, MMMF requires 3m′n′`(r − 1)(30) for

the update of Us, Vs, Θ matrices. Let the total number of iterations be t1, then the

overall computational cost required by MMMF is 3t1m
′n′`(r − 1). Once the latent

features are learnt, the cost for performing k-means clustering (second component) to

get the cluster level latent factors (Uc and Vc) of Us and Vs are m′`t2 and n′`t2 re-

spectively, where t2 is the maximum number of iterations required to perform k-means

clustering. To construct codebook, which is the third component, the computational

cost required is k1k2l. Once the codebook is formed, we need to learn the user and item

membership matrices (F1, F2) of target domain which is the fourth component. The

computational cost required to update F1 and F2 is t3(2mnk1 +3nk1k2 +2mn+2mk1)

and t3(2mnk2 + 3mk1k2 + 2mn + 2nk2), where t3 is the number of iterations. Hence

the overall computational cost required by the proposed method is (3t1m
′n′`(r − 1) +

m′`t2+n′`t2+t3(2mnk1+3nk1k2+2mn+2mk1)+t3(2mnk2+3mk1k2+2mn+2nk2)),

i.e.,O(t1m
′n′`(r−1)+t3mnk1 +t3mnk2). On the other hand, when MMMF is applied

directly on the target data, in every gradient iteration, it requires 3mn`(r − 1) for the

update of Ut, Vt, Θ matrices. Let the total number of iterations be t1, then the overall

computational cost required by MMMF is 3t1mn`(r− 1), i.e.,O(t1mn`(r− 1)). From

this we say that although the accuracy of the proposed method is high, the computa-

tional cost is slightly higher than that of MMMF. So, reducing the computation cost is

part of our future work.
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3.4 Experimental Analysis

The first set of datasets used in our experiments are MovieLens-1M1 as source

dataset (6040 users and 3952 movies) and Book-Crossing2 as target dataset. From

the target data (Book-Crossing), we consider the entities that have at least 20 rat-

ings and discard those entities having more than 50 ratings. As a result we get the books

data having 1658 users and 1362 books. In MovieLens each user has ratings within the

range of 1-5, whereas in Book-Crossing the range is 1-10, and we have scaled it to 1-5

by taking the ceil value of half of the original rating. We have also experimented our

methods on Synthetic datasets. We followed the method given in (30) to generate the

Synthetic dataset and generated the source dataset of size 1800 × 1500 by consider-

ing 30% density. On the other side, we have generated target dataset of size 1800 ×

1500 with 10% density, as the assumption is to have a sparse target data. In all the

experiments, 80% of total rating data is taken for training, and the rest 20% is used for

testing.

3.4.1 Evaluation Metrics

Computing prediction accuracy is one of the major criterion to evaluate rating-

oriented collaborative filtering algorithms. The most commonly used metrics to mea-

sure the prediction accuracy are Root Mean Square Error (RMSE) (Eq. (5.5)) and Mean

Absolute Error (MAE) (Eq. (5.6)), which depends on the difference between actual and

predicted rating. We evaluate our algorithms using these metrics (RMSE and MAE),

where smaller the values of these, better the performance. The values reported in the

tables are the average of five runs.

RMSE =

√√√√ ∑
(i,j)εω

(yij − ŷij)2

|ω|
(3.9)

MAE =
∑

(i,j)εω

|(yij − ŷij)|
|ω|

(3.10)

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/book-crossing/
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where yij is the original rating and ŷij is the predicted rating, |ω| is the number of test

ratings.

3.4.2 Methods for Comparison

To evaluate the performance of our methods, we consider the following approaches.

• MMMF (81; 65): It is one of the popular matrix factorization methods used in
collaborative filtering. MMMF predicts the missing values of the rating matrix by
determining the low-norm latent feature matrices of users and items. This works
for single domain and we have applied this method on the target domain in our
experiments.

• MINDTL (20): Considers the data from multiple incomplete source domains and
constructs the codebooks for the domains. These learned codebooks get linearly
combined and get transferred to the target domain to approximate the target rating
matrix. In our experiments, we have considered only a single source domain.

• TRACER (101): Considers the data from multiple source domains and learns
the corresponding predicted matrices and transfers the knowledge. While trans-
ferring the learnt knowledge, it uses consensus regularization which forces all
of the predicted results to be similar (say, majority value). Also, this algorithm
learns and transfers the knowledge at the same time. In our experiments, we have
considered only a single source domain and as a result there will be no consensus
regularization, but learning and transferring the knowledge happens at the same
time. We thank the authors for providing the code3 online.

• MMMFTL (97): In this paper, a framework of different factorization techniques
with transfer learning has been proposed and it is concluded that MMMFTL is
the best choice as far as prediction accuracy is concerned. This method applies
MMMF on the target domain and then iteratively selects some entities (users/items)
based on some certainty measure, and finds the corresponding entities in the
source domain. By utilizing the similarities between the selected entities of the
source domain, it constrains the similarities of the corresponding target entities.

• CBT (35): This method finds the codebook of the source data by performing co-
clustering on users and items. Unlike in (35), we consider the whole source data
for constructing the codebook. The learned codebook then gets transferred to the
target domain by minimizing Eq. (3.2) so as to predict the target ratings.

For simplicity, we use the following notations for our methods,

• KHTL – k-means clustering is applied while constructing codebook on source,
and Hard membership Transfer Learning is used on target.

3https://github.com/hezi73/TRACER
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• SHTL – Spectral clustering is applied in codebook construction process, and
Hard membership Transfer Learning is used on target.

• DHTL – DBSCAN clustering technique is used in codebook construction proce-
dure, and Hard membership Transfer Learning is used on target.

• KSTL – k-means clustering technique is applied during the codebook construc-
tion process, and Soft membership Transfer Learning is used on target.

• SSTL – Spectral clustering is applied while constructing the codebook, and Soft
membership Transfer Learning is used on target.

• DSTL – DBSCAN clustering is used while constructing the codebook, and Soft
membership Transfer Learning is used on target.

Table 3.1 and Table 3.2 gives the values of RMSE and MAE of Book-Crossing

and Synthetic data by using the baseline methods considered and best of our meth-

ods.

Table 3.3 and Table 3.4 gives the RMSE and MAE values on Book-Crossing and

Synthetic data using our methods by utilizing Θavg to get the cluster level rating pat-

tern. Table 3.5 and Table 3.6 gives the values of RMSE and MAE of Book-Crossing

and Synthetic data when Θmed is used to get the cluster level rating pattern.

Table 3.1: RMSE and MAE of baseline methods and our methods on Book-Crossing
data

Method MMMF MMMFTL MINDTL TRACER CBT DHTL DSTL
RMSE 1.0017 0.9767 1.6428 1.0354 0.8682 0.9018 0.8604
MAE 0.6910 0.6892 1.3077 0.8421 0.6856 0.6542 0.6182

Table 3.2: RMSE and MAE of baseline methods and our methods on Synthetic data

Method MMMF MMMFTL MINDTL TRACER CBT KHTL KSTL
RMSE 1.4743 1.4709 1.6066 1.4834 1.4249 1.4398 1.4162
MAE 1.2361 1.2345 1.3213 1.2673 1.2258 1.2155 1.2023

Table 3.3: RMSE and MAE on Book-Crossing data when Θavg is used for mapping

Method KHTL KSTL SHTL SSTL DHTL DSTL
RMSE 0.9589 0.8752 0.9052 0.8685 0.9018 0.8604
MAE 0.6710 0.6288 0.6602 0.6205 0.6542 0.6182
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Table 3.4: RMSE and MAE on Synthetic data when Θavg is used for mapping

Method KHTL KSTL SHTL SSTL DHTL DSTL
RMSE 1.4400 1.4168 1.4468 1.4225 1.4502 1.4278
MAE 1.2159 1.2029 1.2199 1.2096 1.2216 1.2134

Table 3.5: RMSE and MAE on Book-Crossing data when Θmed is used for mapping

Method KHTL KSTL SHTL SSTL DHTL DSTL
RMSE 0.9477 0.8746 0.9035 0.8678 0.9113 0.8610
MAE 0.6659 0.6282 0.6559 0.6199 0.6678 0.6187

Table 3.6: RMSE and MAE on Synthetic data when Θmed is used for mapping

Method KHTL KSTL SHTL SSTL DHTL DSTL
RMSE 1.4398 1.4162 1.4471 1.4229 1.4492 1.4289
MAE 1.2155 1.2023 1.2204 1.2089 1.2214 1.2146

Figure 3.4: Change in RMSE on Book-Crossing data when the percentage of training
data considered from training set changes

The idea behind providing the Tables 3.3, 3.4, 3.5, 3.6 is to show that in all of the

cases soft membership (of users/items) transfer learning (e.g. KSTL) performs better

than hard membership (of users/items) transfer learning (e.g. KHTL). Best values are

given in bold in the tables. We have tuned the parameters of our methods by considering

the RMSE and MAE as measures. The range of the number of clusters considered is 50

to 200, and we have fixed the number of clusters to 150 (best). In the case of DBSCAN

clustering, the range of eps parameter which we have tuned is 0.001 to 0.15 and that of
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Figure 3.5: Change in MAE on Book-Crossing data when the percentage of training
data considered from training set changes

minPts is 3 to 8 and the results given in the table are by using the best (eps = 0.008,

minPts = 4 for Books data and eps = 0.005, minPts = 3 for Synthetic data) of those.

In all of the experiments the number of latent features (`) is fixed to 100. In major-

ity, mapping of real values of Uc × Vc using Θmed is performing well when compared

to that of mapping with Θavg. The reason is that there may exist some outliers in the

threshold matrix and if the average is considered then the centroid may shift towards

the outliers rather than towards the dense region whereas the median is less affected by

the outliers and the centroid falls into the denser region. Also, in some cases where the

members are connected but not compact, spectral clustering performs well when com-

pared to that of k-means clustering. On the other hand, we have also experimented on

different datasets to show the effect of sparsity level of data. We divide the target data

into training (80%) and testing (20%) sets, and by fixing the testing set we considered

different percentages of the training data. Fig. 3.4, 3.5 and Fig. 3.6, 3.7 depicts the ef-

fect of sparsity level (lesser the percentage of training data more the sparsity) on RMSE

as well as MAE on Book-Crossing data and Synthetic data. X-axis gives the percent-

age of training data considered for training, and Y-axis gives the corresponding RMSE

(Fig. 3.4, 3.6) or MAE (Fig. 3.5, 3.7) on testing set. Only the best comparison methods

are plotted. Also, among our methods, we have plotted the best performing hard and
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Figure 3.6: Change in RMSE on Synthetic data when the percentage of training data
considered from training set changes

soft membership transfer learning methods in the case of synthetic data, namely, KHTL

and KSTL. Similarly, the best performing hard and soft membership transfer learning

methods in the case of Book-crossing, namely, DHTL and DSTL is also plotted. If we

observe these figures, MMMFTL is almost performing same as that of MMMF. Also,

as the sparsity level of the target rating matrix increases (i.e., less percentage of train-

ing data is considered), the performance of MMMF and MMMFTL decreases. On the

other hand, whatever percentage of training data is considered, soft membership trans-

fer learning method is performing better. It can also be observed that the performance

of codebook based transfer learning methods is consistent with varying sparsity levels.

This is due to the fact that these methods in true sense exploit the knowledge of the

source domain (in the form of codebook) and effectively use the same for the prediction

of the target domain. This also justifies our aim for the need of transfer learning when

sufficient information is not available for prediction.
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Figure 3.7: Change in MAE on Synthetic data when the percentage of training data
considered from trainset changes

3.5 Summary

In this chapter a novel method for cross-domain collaborative filtering is discussed,

in which MMMF is applied on the source domain data to generate the user/item latent

feature matrices which are then clustered to get the user/item cluster-level latent feature

matrices of the source domain. The clustered matrices are then multiplied to generate

the codebook which is then transferred to the target domain. To the best of our knowl-

edge there is no method which considers MMMF to construct the codebook from the

source data. Codebook is transferred to the target domain in two different ways. In

one approach, the target user and item membership matrices form hard membership in

which a user/item can belong to single cluster, and in the other approach a softness con-

straint was introduced into the optimization function where a single user or single item

belongs to multiple clusters with some weights.
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CHAPTER 4

Transfer of Cluster-Level Latent

Features to address the Data-Sparsity

In this chapter we discuss a novel approach (named TLFC - Transfer of Latent Fea-

tures of Codebook) for transfer learning in collaborative filtering in which we transfer

the latent features of codebook. In this method, the cluster-level rating pattern (code-

book) of the source domain is obtained using the co-clustering technique. The ob-

tained codebook is processed by removing some of the entries and we get the partial

(processed) codebook. Applying MMMF on the processed codebook yields the latent

features of codebook, that are nothing but the cluster-level latent features of source do-

main. These learnt cluster-level latent features of source domain are introduced into the

optimization function of the target domain in a novel way via hinge loss and thereafter

the prediction of target domain ratings is done.

The rest of the chapter is organized as follows: The introduction and related work

are given in Section 4.1, and we discuss our proposed approach in Section 4.2. Section

4.3 discusses the experimental results. We summarize the chapter in Section 4.4.

4.1 Introduction & Related Work

Though collaborative filtering based recommender systems have become the norm

these days, they have trouble in making accurate recommendations due to the data spar-

sity problem, i.e., very little existing information is available. To address the data
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sparsity problem in recommender systems, transfer learning (53; 54; 96) techniques

(through which cross-domain collaborative filtering is achieved) has been proposed in

the literature. As discussed previously in Chapters 1, 2, in transfer learning there is a

source domain which is usually considered as a dense domain from which knowledge

is transferred to the target domain which is usually sparse.

One of the major issues involved in developing transfer learning techniques for rec-

ommendation purpose is to establish a link between the domains that are involved, so

that knowledge can be transferred from source to the target domain. As discussed in

the preceding chapters, domains can be linked and the transfer can happen explicitly

via inter-domain similarities, common item attributes, etc. The transfer can happen

also implicitly via shared user latent features or item latent features or by rating pat-

terns which can be transferred between the domains. In (7), a framework was proposed

where the items that are relevant in the source domain are selected based on the common

attributes they have with the target domain (user interested domain). In this way, the

inter-domain links were established through the common item attributes, however no

overlap of users/items was required between the domains. On the other hand the trans-

fer of knowledge through shared latent features (of users/items) is addressed in (58).

The idea is to learn the hidden features present in the users and items of the source do-

main so that they can be integrated into the target rating matrix during the factorization

process via regularisation. The success of this procedure is dependent on the presence

of common users or items. In (55), the latent features of target and source are shared in

a collective way. Here, rather than learning the latent features from source and utilizing

them in the target, a technique is proposed wherein the latent features are simultane-

ously learnt from both the domains. A method called matrix tri-factorization is used

to construct the shared latent space with the condition that from both the domains the

users and items needs to be identical.

There are other set of methods in which rating patterns are analysed and transferred

rather than latent features. These methods can be used in scenarios wherein users/items

are not common between the domains. Rating patterns stem from the assumption that

among the ratings of groups of users and groups of items a correlation could exist.

One such method is codebook transfer (CBT) (35), where the main assumption is that,

though the users/items are different across systems, the clusters (groups - based on

age, interest etc.) of them behave similarly. It is an adaptive method which consists
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of mainly two steps. One is the codebook construction and the second step is filling

the target matrix by transferring the learnt codebook. As part of the initial step, the

users and items that belong to the dense source domain is co-clustered to get the rating

pattern at the cluster level. This rating pattern is called the codebook which consists

of the mean rating of each of the co-clusters of users and items. Following that, the

codebook is transferred to the target domain by expanding the values of the codebook.

To do the same, users and items of the target domain needs to be mapped (to co-clusters)

and this can be done by minimizing the quadratic loss which can be expressed as,

min
F1∈{0,1}m×k1 ,F2∈{0,1}n×k2

||[Y − F1CF
T
2 ]�W ||2F s.t.,F11 = 1, F21 = 1. (4.1)

Here, Ym×n is the target domain rating matrix. Ck1×k2 is codebook (rating pattern

at cluster-level) which is learned from the source domain. The codebook is fixed and

utilized to learn the cluster membership matrices of users (F1m×k1) and items (F2n×k2)

of target data. A value of 1 in the indicator matrix W of size m×n shows the existence

of the rating in the original rating matrix and 0 otherwise. The idea of code book

transfer is to find a common latent space wherein the information obtained from C

(source domain data) can be used to improve the recommendation in the target domain.

i.e., here the ratings gets transferred in the condensed form (codebook).

In (36), authors have proposed a method called rating-matrix generative model

which uses a probabilistic framework and fill the missing ratings of target domain by

considering the rating data from multiple source rating matrices to construct the rating

pattern. (47) extends the CBT by considering multiple source domains and checking

different combinations of user/item clusters. It builds different codebooks for each

of the source domain and extracts the relatedness between the target and each of the

sources. It is based on the linear combination of different codebooks in which the

learning of weights is done by the minimization of target domain prediction error. A re-

laxation related to the assumption of a fully dense source domain rating matrix is taken

into consideration in (20; 19).
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4.2 Proposed Approach

Let there be two user-item rating matrices of different domains say Xm′×n′ (source

domain matrix), Ym×n (target domain matrix). Here m′, m is the number of users and

n′, n is the number of items, and the entries of the matrices are the ratings given by

the users to the items. Our goal is to predict the missing entries of the target domain

more accurately using the source domain data. Figure-4.1 gives the sequential steps of

the proposed method. Initially, we fill the missing entries in the source rating matrix

with the mean of the ratings of that row (Step-1) and denote the filled-in rating matrix

as X ′. In Step-2, we apply the co-clustering on the filled-in rating matrix (X ′) in order

to get the rating pattern at the cluster-level called as codebook (Ck1×k2). Once the code-

book is obtained, we process the codebook (Step-3) by removing some of the entries

of codebook and replacing by 0. Processing of codebook is done by comparing it with

filled-in rating matrix as follows. Take the entry of the codebook which indicates the

average of ratings given by a cluster of the users to some group of items. Compare the

value with the entries of the particular users (forming a cluster) and particular items (of

the cluster) of the filled-in rating matrix. If the number of entries containing the same

value is more than some specific threshold percentage (th) then keep it, else we remove

and replace it as zero. As there are real values in codebook and filled-in rating matrix,

we don’t check for the values to be exact, but instead we check for their difference to

be small. The difference (error) is compared using some margin ε. Calculate the dif-

ference between the entries of filled-in matrix and that of codebook, and if more than

some threshold percentage (th) of entries contain the margin less than or equal to |ε|,

then keep the entry as it is, else remove the entry. By following this removal of entries

we get a partial codebook (Cp). Now, apply MMMF (2.8) on the processed codebook

(Cp) to get the cluster-level latent feature vectors of users (Uck1×l′
), and items (Vck2×l′

)

alongside a threshold matrix of users (Θck1×r−1
), which is shown in Step-4.

Once the cluster-level latent features are obtained, we transfer the same to the target

domain which is given at Step-5, by minimizing the optimization function given in Eq.

4.2. To the best of our knowledge, there is no research which addresses transfer of

cluster-level latent features and also consider hinge loss (Eq. 4.2) as the loss function

while transferring the learnt knowledge of the source domain to the target domain. Our
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Figure 4.1: Illustration of the proposed method

assumption is that there could exist between the source and target domain some implicit

correspondence through cluster-level user/item latent features (Uc, Vc).

J (α, β) =
∑

(i,j)∈ω

r−1∑
a=1

h(T aij (αiθ·a − (αiUc)(βjVc)
T )) + λ1(

m∑
i=1

l1(

k1∑
k=1

αik) +
n∑
j=1

l1(

k2∑
k=1

βjk))

+ λ2(
m∑
i=1

k1∑
k=1

l2(αik) +
n∑
j=1

k2∑
k=1

l2(βjk))

(4.2)

where,

h(z) =


0 if z ≥ 1

1
2
(1− z)2 if 0 < z < 1

1
2
− z otherwise.

(4.3)

T aij =

+1 if a ≥ xij

−1 if a < xij

l1(z) =


1− z, if z < 1

z − 1, if z > 1

0, otherwise

l2(z) =

z, if z < 0

0, otherwise
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λ1, λ2 > 0 are regularization parameters. h(·) is the smooth-hinge loss defined as given

in Eq.(4.3). For a given matrix A, A·a is the ath column of A. l1(z) ensures the row

sum of α and column sum of β to be 1, whereas l2(z) ensures all elements of α and β

to be positive. We have used Gradient Descent technique to optimize the Eq.(4.2), by

updating the variables α and β. Initially α and β are randomly assigned, and then by

calculating the gradients of Eq.(4.2) w.r.t. to α and β, we update α and β. By using

the updated values of α and β, the value of the Eq.(4.2) decreases monotonically and

converges to a local minimum.

The gradients of Eq.(4.2) w.r.t. variables α and β are as follows,

∂J
∂αik

= λ1l
′

1(

k1∑
k=1

αik)+λ2l
′

2(αik)+
r−1∑
a=1

∑
(i,j)∈ω

T aij .h′(T aij (αiθ·a−(αiUc)(βjVc)
T ))(θka−IUc(βjVc)T )

(4.4)

∂J
∂βjk

= λ1l
′

1(

k2∑
k=1

βjk)+λ2l
′

2(βjk)−
r−1∑
a=1

∑
(i,j)∈ω

T aij .h′(T aij (αiθ·a−(αiUc)(βjVc)
T ))(αiUc)(Vck)T

(4.5)

where,

h′(z) =


0 if z ≥ 1

z − 1 if 0 < z < 1

−1 otherwise.

l
′

1(z) =


−1, if z < 1

1, if z > 1

0, otherwise

l
′

2(z) =

1, if z < 0

0, otherwise

I is the row vector of dimension 1× k1 containing all 1′s.

The updation of α and β variables is done as,
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αt+1
ik = αtik − η

∂J
∂αtik

βt+1
jk = βtjk − η

∂J
∂βtjk

Here η is the step size. Once we get the converged values of α and β, we construct

the predicted target rating matrix (Step-6) using Equation (4.6), and map the resultant

matrix with the threshold matrix (α.Θc) to get the target predicted rating matrix.

Ŷ = W � Y + [1−W ]� [αUcV
T
c β

T ], (4.6)

where Ŷ is the predicted (approximated) target rating matrix. A value of 1 in the

Algorithm 3: Co-clustering combined with MMMF
1: Input: A m′ × n′ source rating matrix X and a m× n sparse target rating

matrix Y with yij known for (i, j) ∈ ω
2: Output: yij for (i, j) /∈ ω
3: Fill the missing entries of each row of X with the average of the rows and call

it as X ′.
4: Apply co-clustering on Y ′ to get the codebook (C).
5: Process the codebook to get the partial codebook (Cp).
6: Find Uc, Vc, Θc using MMMF (by minimizing Eq. 2.8) on Cp.
7: Use Uc, Vc, and find α, β of target domain by minimizing equation (4.2).
8: Using these α and β, calculate Eq. 4.6 and map with the αΘc in order to get the

discrete predicted rating matrix (Ŷ ).

indicator matrix W of size m × n shows the existence of the rating in the original

rating matrix and 0 otherwise. Error calculation for only the observed ratings is ensured

through W and the Hadamard product (element-wise product) is denoted using �. By

using the gradient descent technique as given in Eq.(4.2) a minimal solution can be

obtained by updating α and β. Initially α and β are randomly assigned, and then by

calculating the gradients of Eq.(4.2) w.r.t. to α and β, we update α and β. By using

the updated values of α and β, the value of the Eq.(4.2) decreases monotonically until

a local minima is reached. Once we get α and β by solving the optimization function

(4.2), we construct the predicted target rating matrix (Step-6) using Equation (4.6), and

map the resultant matrix with the threshold matrix (α.Θc) to get the target predicted

rating matrix.

To be brief of Figure-4.1, it shows the flow of the proposed method, in which learn-

ing from source and transferring to target are the main steps. In the learning stage, the
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cluser-level latent features from the source domain are learnt, and in the transferring

stage, the learnt knowledge (cluster-level latent features) get transferred to the target

domain in order to predict the missing ratings of target domain more accurately.

4.3 Experimental Analysis

MovieLens-1M1 is used as the source dataset and Goodbooks2 is used as the

target dataset in our experiments. We have taken the first 5000 users and 3000 items

from the Goodbooks data. The values of the datasets are in {0,1,2,3,4,5}. The value 0

indicates that the rating is missing, and 1 indicates the least rating, and 5 is the high-

est rating. Table 4.1 gives the statistics of the datasets. In our experiments, we have

divided the data into training (80%) and testing (20%) sets. Root Mean Squared Error

(RMSE) (Eq.4.7) and Mean Absolute Error (MAE) (Eq.4.8) are the two metrics used

for evaluating our algorithms wherein smaller the values of these metrics indicate better

performance.

Table 4.1: Datasets statistics

Dataset # of Users # of Items % of Observed entries
MovieLens 1M 6040 3952 3.77

Goodbooks 5000 3000 1.08

4.3.1 Evaluation Metrics

From the literature it can be seen that a variety of collaborative filtering algorithms

have been put forward in the last decade or so. The accuracy with which these algo-

rithms can predict a new item/set of items vary. It is often the case that performance

evaluation of these collaborative filtering algorithms is based on prediction accuracy,

and Root Mean Square Error (RMSE) (Eq. (4.7)) and Mean Absolute Error (MAE)

(Eq. (4.8)) are the two commonly used metrics to measure prediction accuracy. We

evaluate our proposed method using RMSE and MAE. The smaller the values of RMSE

1https://grouplens.org/datasets/movielens/
2https://github.com/zygmuntz/goodbooks-10k
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and MAE, better the performance of the said method.

RMSE =

√√√√ ∑
(i,j)εω

(yij − ŷij)2

|ω|
(4.7)

MAE =
∑

(i,j)εω

|(yij − ŷij)|
|ω|

(4.8)

where xij is the original rating, x̂ij is the predicted rating, and |ω| is the number of

test ratings.

4.3.2 The different Methods used for Comparison

Some of the baseline methods we use for evaluating the performance of our pro-

posed method can be outlined as follows:

• MMMF (81; 65): Maximum Margin Matrix Factorization (MMMF) is the dom-
inant factorization technique used in collaborative filtering. MMMF is usually
applied on the input rating matrix consisting of the user-item ratings. The idea is
to find the user and item latent-factor vectors which are of low rank by making
use of the existing ratings. MMMF can be applied on a single domain only, and
hence in our experiments, we applied it on the target domain directly.

• MINDTL (20): In MINDTL, codebook is constructed by taking into consider-
ation the data from all the incomplete source domains. Here codebook for each
domain is constructed.

Following that, the constructed codebooks are linearly combined and transferred
to the target domain, and the missing values of the target rating matrix gets pre-
dicted. As far as our experimental setup is concerned only a single domain is
taken into consideration.

• TRACER (101): In TRACER, data from multiple domains are accounted for and
based on this, ratings (which includes missing ratings) for all the source matrices
are predicted. Thereafter the predicted knowledge is utilized by transferring it
into the target domain. By making use of consensus regularisation during the
knowledge transfer process, all the predicted values are forced to be similar. In
a way it can be said that in TRACER at the same time learning and transferring
happens. In our experiments, we have considered a single domain and therefore
there is no need for consensus regularisation.

We thank the authors for providing the code3 online.

• CBT (35): In this approach, the dense part of the source user-item rating matrix
is considered, and the missing values of the rows of the dense matrix get imputed

3https://github.com/hezi73/TRACER
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using the average of the ratings of particular row (user). The codebook is obtained
from the dense user-item matrix by applying the technique of co-clustering.

In our experiments, unlike in (35), which consider only the dense part of the input
data, the codebook is constructed by making use of the whole source data. Trans-
ferring of the learned codebook to the target domain is achieved by minimizing
Eq. (4.1).

Figure 4.2: Impact of number of clusters on RMSE of Goodbooks data when
MovieLens-1M is considered as source

Table 4.2: RMSE and MAE of baseline methods and TLFC method on Goodbooks data
using MovieLens-1M as source

MetricMethod MMMF MINDTL TRACER CBT TLFC
RMSE 0.9582 1.2794 0.9637 0.9641 0.9507
MAE 0.6501 0.9232 0.7781 0.7890 0.6466

We have conducted the experiments on MovieLens-1M data (source) and Good-

books data (target), with varying number of clusters (k1, k2 - 25, 50, 75, 100, 125, 150,

175, 200). Fig. (4.2) gives the impact of number of clusters on RMSE and Fig. (4.3)

shows the impact of number of clusters on MAE. Although there is not much change

in the metric values with varying number of clusters, in our experiments we have fixed

k1 to 150, k2 to 100, for which the best performance is achieved. By fixing the number

of clusters, we have also experimented our algorithm by varying the values of threshold
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Figure 4.3: Impact of number of clusters on MAE of Goodbooks data when MovieLens-
1M is considered as source

(th) and margin (ε). The range of th (in %) fall in {40, 50, 60, 70, 80}, and the values

of ε considered are {0.1, 0.2, 0.3, 0.4, 0.5}. The performance of our algorithm is satis-

fying when the value of th is 50, and that of ε is 0.2. Hence, in the experiments of the

proposed method, when Goodbooks data is the target and MovieLens-M is source, we

have fixed the values of parameters as follows: k1 = 150, k2 = 100, th = 80, ε = 0.3.

Table 4.2 shows the RMSE and MAE values on Goodbooks (target) data of base-

line methods considered and the proposed method, by considering MovieLens-1M as

source. The values reported are the average of five runs.

4.4 Summary

In this chapter, we have seen a novel model (TLFC) for cross-domain recommen-

dation where the cluster-level latent features of the source domain are considered, and

used in the target domain when the domains do not share common users or common

items. As the first step, missing entries of the source rating matrix are imputed with

the average of the rows to get the filled-in rating matrix. Thereafter the co-clustering
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technique is used to construct the codebook of the source domain, i.e., to get the cluster-

level rating pattern. After this stage, processing of codebook is done by comparing the

entries of codebook with the values of the filled-in source rating matrix. The applica-

tion of the Maximum margin matrix factorization technique on the processed codebook

gives the cluster-level latent factor vectors of the source data. The learnt source knowl-

edge (cluster-level latent factors) is then transferred to the target domain via hinge loss,

and the learnt target domain latent features are utilized to get the predicted target rating

matrix. By observing the experimental results on the benchmark data sets, we say that

our model approximates the target matrix well.
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CHAPTER 5

A Hinge-Loss based Codebook

Transfer for Cross-Domain

Recommendation

In the previous chapter we have discussed a cross-domain collaborative filtering

mehod in which cluster-level latent features of codebook are transferred. In this chapter,

we propose another novel transfer learning technique for cross-domain recommender

systems (TCH - Transfer of codebook via Hinge loss) in which we use the co-clustering

method on the original source rating matrix to generate the codebook. The obtained

codebook is transferred to the target domain in a novel way using the hinge loss function

instead of the squared loss function.

5.1 Introduction

Not only in recommender systems but also in many machine learning algorithms,

loss functions play a significant role in empirical risk minimization and computational

complexities (43; 67). So, choice of the loss function is very important. Among all

the loss functions, hinge loss is more suitable for the discrete classification task. Also,

among all the matrix factorization techniques, MMMF treats the collaborative predic-

tion problem as the classification task and takes full advantage of hinge loss. As MMMF

is applicable for single domain only, in this chapter, we take advantage of hinge loss and
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utilise it for cross-domain recommendation problem.

In this chapter, we present a novel method of CBT based collaborative filtering. As

the first step, we perform co-clustering of source rating data to construct the codebook

and in the next step, the learned codebook gets transferred to the target domain in a

novel way by using hinge loss which has not been tried earlier. Previous research work

takes into consideration squared loss while transferring the source knowledge to the

target domain in order to predict the missing ratings of the target domain. Experimental

results shows that the proposed transfer learning CF method outperforms MMMF (i.e.,

when MMMF is applied directly on target data) and other major methods on codebook

based transfer learning for collaborative filtering.

The rest of the chapter is organized as follows: Section 5.2 gives a brief description

of the existing works on transfer learning in recommender systems and Section 5.3

explains the proposed approach. The experimental results are given in Section 5.4, and

the summary of the work is given in section 5.5.

5.2 Related work

Matrix Factorization has been very successful and popular in predicting the missing

ratings of the user-item rating matrix even when the data is too sparse. In a sense,

with a little existing information it can fill-up a sparse matrix to an adequate level of

accuracy. But as the sparsity increases, the accuracy level of the prediction falls. In such

a situation, researchers think through the possibility of using the information learnt in

another context. Here comes the concept of cross-domain recommendation. Transfer

learning (53; 54) is the technique of cross-domain collaborative filtering which was

proposed in the last decade as a potential solution to minify this problem. Transfer

learning aims to transfer the knowledge from the dense source domain to the sparse

target domain. For example, suppose that a particular user has watched many movies

and have rated the same. The same user has very less ratings in another domain related

to books but wants a book to be recommended, then by using his ratings from the

movie domain book can be recommended. Formally, given a dense source rating matrix

(source domain), and a sparse target rating matrix (target domain), the goal is to predict

the missing entries of target domain by using the information available in the source
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domain.

The major question that was unanswered is to determine whether both domains are

suitable for knowledge transfer. Most of the transfer learning for CF methods make

certain assumptions on domains to apply transfer learning strategy. These assumptions

include common subset of items or users, similar attributes of items or users. The

objective is to determine a sort of correspondence between two domains so that the

transfer of knowledge can take place positively. Domains can be linked and the transfer

can happen explicitly via inter-domain similarities, common item attributes, etc. The

transfer can happen also implicitly via shared user latent features or item latent features

or by rating patterns which can be transferred between the domains.

In (7), a framework was proposed in which the relevant items in the source domain

are selected based on the common attributes they have with the target domain (user in-

terested domain). The inter domain links were established through the common item

attributes, however there is no overlap of users/items required between the domains. On

the other hand the transfer of knowledge by the shared latent features (of users/items)

is addressed in (58) in which the latent features of users and items of source domain are

learnt and adapted to a target domain by integrating the features into the factorization

of target rating matrix via regularization. However, it requires either common users

or items between the two domains. In (55), the latent features of source and target are

shared in a collective way. Here, rather than learning the latent features from source and

utilizing in the target, a method which simultaneously learns the latent features of both

domains is proposed. The shared latent space is constructed via matrix tri-factorization.

It also requires the users and items of both domains to be identical. These methods are

based on the premise that the rating behavior does not change with change of domain

for the same user (or, same item) or different users (or items) with similar attributes. In

(96; 97), authors presume the correspondence of users/items across different domains

in order to maximize the knowledge transfer. The methods initially apply Matrix Fac-

torization on the target rating data and learn the latent features of target and thereafter

select some users/items from the target domain based on some criterion and try to find

the corresponding users/items in the source domain. However as the second step, the

methods enforce the selected users’/items’ latent factors of target data to be same as

that of the source domain, via regularization.
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Figure 5.1: Illustration of the proposed method

If the target and source data have different types of feedback data, say target is

having discrete ratings, and source data is having binary feedback, then the methods in

(56; 57; 55) are applicable. In (56) it is assumed that the same users and same items

exists in target and auxiliary domains. In (76) two sets of source data are taken into

consideration, in which one set shares common set of users with target data, and the

other shares common set of items with target data. It extracts the latent factors from

source and constructs the similarity graphs from these latent factors and transfers both

latent factors and similarity graphs to target data.

In Code Book Transfer (CBT) (35) CF approach, cluster-level rating-patterns are

captured. The latent correlations between ratings of groups of users and groups of

items exist, which is referred as cluster-level rating pattern (codebook). In this method,

the source domain rating matrix is analyzed to extract a codebook which is used for

prediction in the target domain. Regardless of the domains, users and items cluster

together in such a way that the rating behavior of these clusters remain invariant across

domains. Here, it is assumed that the source domain rating matrix is a full matrix. When

the rating matrix is not full, the missing entries of the user get filled-in by an average

rating of particular user. Thereafter the rows (users) and columns (items) of the filled-in

rating matrix are clustered using co-clustering (35). Codebook is generated having a

row for each user group and a column for each item group and a rating for a pair of

user-group and item-group. The rating for a pair of user-group and item-group is the

average rating of users and items in that particular group. While using the codebook

in the target domain, the idea is to identify users/items in the target domain with the

best-fit user-group/item-group of the transferred codebook. It can be formulated as the

following optimization problem (5.1).

min
F1∈{0,1}m×k1 ,F2∈{0,1}n×k2

||[Y − F1CF2
T ]�W ||2F s.t.,F11 = 1, F21 = 1. (5.1)
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where Ym×n is the target domain rating matrix, Ck1×k2 is the codebook, F1m×k1 and

F2n×k2 are the cluster membership matrices of users and items respectively. W is the

indicator matrix of size m× n in which the value is 1 if the rating exists in the original

rating matrix and 0 otherwise.

In (47), the linear combination of codebooks obtained from multiple domains are

used and the coefficient of linear combination is learned through an optimization tech-

nique. In (20; 19), the assumption of fully dense rating matrix of source domain is

relaxed.

The authors in (23) has come up with another method to generate codebook. The

proposed method avoids pre-processing as well as co-clustering of rating matrix. In this

method, the latent factors of users and items of source domain are generated by matrix

factorization. The obtained latent factor-vectors are grouped separately to obtain user

latent factor group and item latent factor group. The mean latent vectors of the groups

are multiplied to generate a codebook.

In (35), the authors focus on extracting the group level behavior of users on items by

assuming that, though the users/items are different across systems, the groups (groups

- based on age, interest etc) of them behave similarly. All the missing ratings in the

source rating matrix are filled in a priori by a preprocessing step and then co-clustering

is applied on a filled-in source rating matrix to directly get the cluster-level rating pat-

tern (codebook). The cluster-level rating pattern is then transferred to another domain

(target). In the target domain, the user and item membership to clusters encode in the

codebook so that a user (or, an item) is member of one user-cluster (or, item-cluster)

represented in the codebook. In our approach, we do not use a separate preprocessing

stage in the source domain and while transferring the learnt codebook of source to the

target domain we use hinge loss instead of squared loss.

5.3 Proposed Method

Formally, given a dense source user-item rating matrix X ∈ Rm′×n′ and a sparse

target user-item rating matrix Y ∈ Rm×n where m′, m are the number of users in

source and target domain, and n′, n are the number of items in source and target data,

the goal is to predict the missing entries (as may users don’t give ratings to many items)
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in target domain using the source domain data. Prediction of missing entries should

take place in such a way that the existing ratings must be approximated with less error

rate.

The illustration of the proposed method is shown in Figure 5.1. Initially (Step-1),

the users (rows) and items (columns) of the source rating matrix need to be simultane-

ously clustered (co-clustering) to construct the codebook. We need the cluster indicators

of users and items, and in order to get the cluster indicators we can choose any of the

co-clustering algorithms. We employed the similar formulation that was used in Or-

thogonal nonnegative matrix tri-factorization technique (ONMTF) (9) to get the cluster

indicators. In addition, we have added the regularization term which ensures that the

row sum of user cluster matrix to be one, and similarly with item cluster matrix. The

source rating matrix X can be tri-factorized as follows.

min
P,Q,S

||[X − PSQT ]�W ||2F + α||P1− 1||2F + β||Q1− 1||2F (5.2)

where W is an indicator matrix of size m′ × n′ in which the entry is 1 if the rating

exists in X and 0 otherwise. ||.||F represents the Frobenius norm. The dimension of P

is m′ × k1, S is k1 × k2, and Q is n′ × k2. ||P1 − 1||F ensures the row sum of P to

be one, similarly with Q. Maximum value of each row of P and Q becomes the cluster

indicator for the user/item in that row. These P and Q are not in a recognizable form

in terms of user/item membership matrices. We use binary values to represent P and

Q by setting the maximum valued entry in each row to be 1 and the others to be 0. As

a result, these binary user/item cluster indicators form (membership) matrices, denoted

by Ps and Qs, for the source rating matrix. From these matrices, we can construct the

codebook C as follows.

C = [P T
s XQs]� [P T

s 11TQs] (5.3)

� indicates element-wise division. Averaging of all the ratings in each of the user/item

co-cluster takes place in Eq. 5.3

Once the codebook from the source domain is constructed, transfer (Step-2) it to

the target domain (Y ) by substituting it in Eq. 5.4 and solve the objective function (J )

in order to get U and V of target data. We use Hinge loss to learn U and V instead of
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squared loss. As the data of ours is discrete, in addition to U and V , r − 1 thresholds

θia (1 ≤ a ≤ r − 1) for every user i has to be learned to classify the prediction value

into r discrete values. Here, r is the maximum rating (say 5).

J (U, V,Θ) =
∑

(i,j)∈ω

r−1∑
a=1

h(T aij (θia − Ui·BV T
j· )) +

λ

2
(||U ||2F + ||V ||2F ) (5.4)

where,

T aij =

+1 if a ≥ yij

−1 if a < yij

h(.) is a smoothed hinge-loss function defined as,

h(z) =


0 if z ≥ 1

1
2
(1− z)2 if 0 < z < 1

1
2
− z otherwise.

ω is the set of observed entries, λ > 0 is regularization parameter. For any given

matrix A, Ai· is the ith row of A, and A·j is the jth column of A.

Gradient based approach can be used to solve the optimization function (Eq. 5.4) and

the following are the gradients.

∂J
∂Uik1

= λUik1 −
r−1∑
a=1

∑
j|ij∈ω

T aij .h′(T aij (θia − Ui·BV T
j· ))Vj·B

T
k1·

∂J
∂Vjk2

= λVjk2 −
r−1∑
a=1

∑
i|ij∈ω

T aij .h′(T aij (θia − Ui·BV T
j· ))Ui·B·k2

∂J
∂Θia

=
∑
j|ij∈ω

T aij .h′(T aij (θia − Ui·BV T
j· ))

where,

h′(z) =


0 if z ≥ 1

z − 1 if 0 < z < 1

−1 otherwise.
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In gradient descent algorithms, we start with random U , V , Θ and iteratively update

them using the following update rules.

U t+1
ik1

= U t
ik1
− c ∂J

∂U t
ik1

V t+1
jk2

= V t
jk2
− c ∂J

∂V t
jk2

Θt+1
ia = Θt

ia − c
∂J
∂Θt

ia

c is the trade-off parameter.

Once U , V of target data are learnt, the product of U , C, and V T (i.e., UCV T )

is mapped with the threshold matrix (Θ) and becomes the approximation (prediction∈

{1, 2, ..., r} say r = 5) of the target rating matrix (Step-3). This is illustrated in Algo-

rithm 4.

Algorithm 4: Codebook transfer via hinge loss
1: Input: A m′ × n′ source rating matrix X and a m× n sparse target rating

matrix Y with yij known for (i, j) ∈ ω
2: Output: Ŷ (yij for (i, j) /∈ ω)
3: Tri-factorize X using Eq. 5.2 inorder to get P , Q and S.
4: Calculate codebook C using Eq. 5.3.
5: Transfer the codebook to the target data by substituting in Eq. 5.4.
6: Solve the optimization (Eq. 5.4) using gradient descent technique inorder to get

the target U , V and Θ.
7: Product of U , C, V T (i.e., UCV T ) by mapping with the threshold matrix gives Ŷ .

Complexity Analysis: We analyze the computational complexity of the proposed method.

The time complexity mainly comprises of two components: construction of codebook

from source domain (Eq. 5.2), and transferring the same to the target domain (Eq. 5.4).

The optimization problem given in Eq. 5.2 and Eq. 5.4 requires major computations for

matrix multiplication. For the simplicity of representation, we assume that the compu-

tation cost for multiplication of two matrices, say, a m′ × k matrix and a k × n′ matrix,

isO(m′n′k). The computation cost required for updation of P , Q and S areO(m′n′k1),

O(m′n′k2) and O(m′2k1), respectively (21). Hence, the overall computation required

for the construction of codebook is O(t1(m′n′k1 + m′n′k2 + m′2k1)), where t1 is the

maximum number of iterations. In the target domain, the major computation is involved

with the calculation of gradient w.r.t. each element of matrices U , V , and Θ. Overall
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time complexity required for codebook transfer isO(t2(mnk1 +mnk2 +mnk1)), where

t2 is the maximum number of iterations. Hence, the overall computation cost of the pro-

posed mentod is, O(t1(m′n′k1 +m′n′k2 +m′2k1) + t2(2mnk1 +mnk2)).

5.4 Experimental Results and Analysis

To evaluate the performance of our method we have experimented the method with

different datasets. The datasets used are MovieLens 100K1, MovieLens 1M1,

Goodbooks2, Douban Music3, Douban Book3. From the Goodbooks dataset

we have considered the first 5000 users and 2000 items. From the Douban Music and

Douban Book data, we have considered the first 2000 users and 2000 items. The entries

of all the datasets fall in {0,1,2,3,4,5}, where 0 indicates the missing value, 1 indicates

that the item is leastly liked and 5 indicates that the item is heavily liked. The statistics

of the datasets are given in Table 5.1. In all the experiments, we have divided the ob-

served data into 80% and 20%, in which 80% is used for training, and 20% is used for

testing.

Table 5.1: Datasets statistics

Dataset # of Users # of Items % of Observed
entries

MovieLens 100K 945 1682 6.29
MovieLens 1M 6040 3952 3.77
Goodbooks (Sub-
set)

5000 3000 1.08

Douban Music
(Subset)

2000 2000 11.26

Douban Book
(Subset)

2000 2000 5.51

5.4.1 Evaluation Metrics

The computation of prediction accuracy is the major criterion to evaluate the per-

formance of rating-oriented collaborative filtering algorithms. To measure the predic-

1https://grouplens.org/datasets/movielens/
2https://github.com/zygmuntz/goodbooks-10k
3https://github.com/hezi73/TRACER/blob/master/douban.rar
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RMSE MAE

Figure 5.2: Impact of number of clusters (k1, k2) on MovieLens 1M data when Movie-
Lens 100K is considered as source

tion accuracy, Root Mean Square Error (RMSE) (Eq. (5.5)) and Mean Absolute Error

(MAE) (Eq. (5.6)) are the commonly used metrics which depend on the difference

between the predicted rating and the actual rating. So, we evaluate our method using

these metrics (RMSE and MAE). The smaller the values of RMSE and MAE, better the

performance of the method. The values reported in the tables are the average of five

runs.

RMSE =

√√√√ ∑
(i,j)εω

(yij − ŷij)2

|ω|
(5.5)

MAE =
∑

(i,j)εω

|(yij − ŷij)|
|ω|

(5.6)

where yij is the original rating and ŷij is the predicted rating, |ω| is the number of test

ratings.

5.4.2 Comparison Methods

To evaluate the performance of the proposed method, we consider the following

baseline methods.

• MMMF (81; 65): It is one of the popular matrix factorization techniques used in
collaborative filtering. MMMF predicts the missing entries of the given user-item
rating matrix by finding the low-rank latent feature matrices of items and users.
As MMMF can be applied on a single domain only, we applied it on the target
domain directly in our experiments.
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• MINDTL (20): In this approach, the data from multiple source domains is con-
sidered and the codebooks for all the domains get constructed. In the next step,
the learned codebooks get linearly combined and transferred to the target domain
in order to predict the missing values of the target rating matrix. In our experi-
ments, we have considered a single source domain only.

• TRACER (101): This method considers the data from multiple source domains
and predicts all the source rating matrices and exploit the predicted knowledge by
transferring to the target domain. While transferring the knowledge, the method
uses the consensus regularization which forces all the predicted values to be sim-
ilar (say, majority value). In this method, learning and transferring happens at
the same time. We have considered only a single source domain in our experi-
ments and so there will be no consensus regularization, but knowledge learning
and transferring happens at the same time. We thank the authors for providing
the code4 online.

• CBT: Finds the codebook of source data by applying co-clustering on the fully
dense user-item rating matrix as given in (35). In our experiments we consider
the whole source data to construct the codebook and the learned codebook gets
transferred to the target domain by minimizing Eq. (5.1).

Table 5.2: RMSE and MAE of baseline methods and proposed method on MovieLens
1M data, Goodbooks data, Douban Book data

Dataset Method RMSE MAE

MovieLens 1M

MMMF 0.9361 0.6402
MINDTL 0.9948 0.7965
TRACER 0.9800 0.8039

CBT 0.9676 0.7746
TCH 0.9123 0.6134

Goodbooks

MMMF 0.9604 0.6524
MINDTL 1.2818 0.9224
TRACER 0.9617 0.7772

CBT 0.9634 0.7886
TCH 0.9470 0.6381

Douban Book

MMMF 0.7976 0.5414
MINDTL 1.1970 0.9054
TRACER 0.8047 0.6600

CBT 0.7828 0.6130
TCH 0.7785 0.5022

We have conducted the experiments with varying number of clusters (k1, k2 - 25,

50, 75, 100, 125, 150, 175, 200) and Fig. 5.2 shows the impact of number of clusters

on MovieLens 1M data when MovieLens 100K data is considered as source. Fig. 5.2a

gives the impact of number of clusters on RMSE and Fig. 5.2b shows the impact of

4https://github.com/hezi73/TRACER
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Table 5.3: RMSE and MAE of baseline methods and proposed method on MovieLens
data by considering same dataset as source and target

Dataset Method RMSE MAE

MovieLens 100K

MMMF 0.9828 0.6808
MINDTL 1.9026 1.6538
TRACER 1.0027 0.8213

CBT 1.0264 0.8239
TCH 0.9653 0.6600

MovieLens 1M

MMMF 0.9349 0.6389
MINDTL 1.8545 1.5984
TRACER 0.9892 0.8145

CBT 1.0729 0.8725
TCH 0.9138 0.6175

number of clusters on MAE. By observing the figures we can say that the best perfor-

mance for this scenario (source - MovieLens 100K, target - MovieLens 1M) is achieved

when the number of clusters are in between 100 and 150 and hence we have fixed both

k1, k2 to 125. In the similar way, when MovieLens 1M is used as source and Goodbooks

is the target, we set the number of clusters to 150. Similarly, when Douban music data

is used as source and Douban book is the target, we set the number of clusters to 100.

Table 5.2 gives the values of RMSE and MAE of MovieLens 1M dataset, Goodbooks

dataset, Douban Book dataset. For MovieLens 1M data, MovieLens 100K is consid-

ered as source and for Goodbooks data, MovieLens 1M is considered as source, and for

Douban Book data, Douban music is considered as source data. The first column gives

different datasets considered, whereas second column gives the methods considered for

comparison along with the proposed method (TCH). The third and the fourth columns

gives the RMSE and MAE values of the considered methods on datasets. By observing

the table, we can say that the TCH method is performing well on any of the datasets

considered.

We have also carried out experiments using our method by considering the same

datasets as source and target data. It is nothing but reconstructing the same matrix by

using the extracted knowledge. Table 5.3 gives the results on MovieLens 100k data

when the same is used as source, and also on MovieLens 1M data when itself is used

as source. By observing the metric values (RMSE, MAE) in the table, we can claim

that TCH is outperforming all the comparision methods on the datasets considered.
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5.5 Summary

In this chapter, we have discussed a novel codebook based transfer learning method

called TCH for cross-domain recommendation. We have used a codebook construction

technique, in which ONMTF is used on the source user-item rating matrix to construct

the codebook. The constructed codebook is then transferred to the target domain in a

novel way using the hinge loss. By observing the experimental results we say that TCH

approximates the sparse target matrix well by utilizing the knowledge extracted from

the source domain.
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CHAPTER 6

Conclusions & Future Work

In this thesis, we have addressed one of the main issues in collaborative filtering

based recommender systems, namely, data sparsity problem. To address data spar-

sity in cross-domain collaborative filtering recommender systems we proposed novel

methodologies based on transfer learning. Whenever the data in the target domain is

very less, using the technique of transfer learning, we made use of the information in

source domain to transfer knowledge from source to target and thereby improved the

accuracy of the prediction in the target domain.

In Chapter-1, we have discussed the basic concepts related to recommender systems

and their usage, types of recommender systems, the motivation behind transfer learning

which is used in cross-domain recommender systems. In Chapter-2, we had a detailed

discussion on matrix factorization which is the most successful collaborative filtering

technique, and also discussed the concept of transfer learning which is utilized in cross-

domain recommender systems. We have also provided the literature survey on the pa-

pers related to transfer learning in collaborative filtering, which is cross-domain col-

laborative filtering. In Chapter-3, we have discussed our proposed technique of cross-

domain recommender systems, which is based on codebook transfer. We have proposed

a codebook construction technique, in which Maximum Margin Matrix Factorization is

applied on the user-item rating matrix of source domain to obtain the latent-factor vec-

tors of users and items, followed by clustering. The cluster-level latent factors of users

and items are multiplied to get the codebook. By using the computed codebook, the op-

timal membership matrices of users and items of target domain are obtained. We have

also introduced the soft membership of users and items while transferring the codebook
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learned from source to the target domain. We have also shown that the codebook based

transfer learning methods are performing in a consistent manner with varying sparsity

levels in target domain. In the proposed method, codebook is constructed by multi-

plying the cluster-level user and item latent factors. In this sense, the codebook can be

seen as the compressed representation of cluster-level latent factors of users and items.

In Chapter-4, we have discussed a novel technique related to transfer learning in

collaborative filtering. This method, consider the cluster-level latent features of the

source domain and utilize in the target when the domains do not share common users

or common items. Initially, the missing entries of source domain rating matrix are

imputed with the average of the rows to get the filled-in rating matrix. By making use

of the co-clustering technique on the source domain, codebook is generated. Thereafter,

the codebook is processed by comparing the entries of codebook with the values of the

filled-in source rating matrix. Then maximum margin matrix factorization technique is

applied on the processed codebook which gives the cluster-level latent factor vectors

of the source data. The learnt source knowledge (cluster-level latent factors) is then

transferred to the target domain via hinge loss, to learn the target domain latent features

which are then used to get the predicted target rating matrix.

In Chapter-5, a novel method based on codebook based transfer learning for cross-

domain recommendation is discussed. In this method, co-clustering technique is applied

on the original source rating matrix to construct the codebook of source user-item rating

matrix. The constructed codebook is transferred to the target domain by utilising the

hinge loss function in a novel way. By observing the results it is proved that the sparse

target matrix is predicted well by the proposed method.

In this thesis, the only goal we focused is to alleviate the data sparsity issue. In the

future, it is worthwhile to consider the cold start issue too. The ratings are the only

input data we have considered, and in the future one can consider social tags also as

input types. Also, in real-world scenarios, user behaviour patterns change over time.

As a result, precise estimation of such evolution, as well as optimization of the recom-

mendation technique on top of it, is necessary. i.e., our recommendations should be

based on users’ constantly evolving feedback data. To be precise, our recommendation

system should be capable of handling dynamic data too. One can also extend the works

by considering multiple source domains and multiple target domains. Transfer learning
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applications of other types rather than rating prediction in recommender systems could

be another direction that could be pursued. Another area where one can focus is on

transfer learning for group recommender systems.
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[49] Edward Rolando Núúńez-Valdéz, Juan Manuel Cueva Lovelle, Oscar Sanjuán
Martínez, Vicente García-Díaz, Patricia Ordońez de Pablos, and Carlos Enrique
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