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Abstract

Understanding the 3D organisation of the genome provides insights into the

intricate relationship between chromatin architecture and its e�ects on the

functional state of the cell. In coordination with the combinatorial activity

of cis-regulome and the transcription factors (TFs), the cell type speci�c gene

expression is governed via the organisation of genome in 3D that also plays

a dominant role in cell di�erentiation and varied cellular functions. However,

the concerted dynamics of the mega-size genomic regions and cis-regulome is

unclear. Although chromosome conformation capture techniques have been piv-

otal in understanding chromatin organisation inside the cell nucleus, they are

limited to only a static 2D representation of it. In order to quantitatively

understand the structural alterations and dynamics of chromatin in 3D, we

have developed a computational model that not only captures the hierarchical

structural organisation but also provides mechanistic insights into the spatial

rearrangements of chromatin during developing lymphoid lineage cells. From

the combination of approaches of polymer physics representing chromatin as a

homopolymeric chain and incorporation of the biological information of chromo-

somal interactome inferred from the Hi-C data, we generated a coarse grained

bead-on-a-string polymer model of chromatin to comprehend the characteris-

tics underlying the di�erential chromatin architecture. Our study showed that

our simulated chromatin structure not only recapitulates the intrinsic features

of chromatin organisation, including the fractal globule nature, compartmental-

ization, presence of topologically associating domains (TADs), phase separation

and spatial preferences of genomic regions in chromosomal territories; but is also

able to capture cell type speci�c compartmental switching and changes in the

spatial positioning of lineage speci�c genomic regions upon comparative analyses

of these simulated chromatin structures in di�erentiating B cell stages. Analysis

of the compactness of the switched regions showed insights into consequential

structural rearrangements & acquired open or closed states for gene regulation

for aiding interactions with the cis-regulome and TFs, thereby orchestrating

the cell fate. Further, we emphasise on the predictive potential of our model by

identifying genes that demonstrated undergoing structural rearrangement in our

simulated structures which were subsequently validated through their di�eren-

tial expression patterns in vitro. From these results we were able to apprehend

the distinct structural changes of chromatin for its regulatory role in sustaining

cell speci�city.
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Introduction

1.1 Why is studying 3D chromatin structural organ-

isation important?

Our genome, together with the cis- and trans-regulatory elements, is responsible for

expressing genes in a regulated manner across hundreds of di�erent cell types. Though

all the cells of an organism have identical genetic blueprint, yet it is specialised to

perform remarkably diverse functions across cell types. This is principally because

of the di�erential regulation & expression of genomic regions by the cis-regulome

and various transcription factors (TFs) via their 3D organisation and positioning

in the nuclear space. In essence, the structural arrangement of the genome facil-

itates interactions within distinct nuclear compartments and thus, plays a pivotal

role in gene regulation, consequently governing the functional state and fate of the

cell. The three-dimensional architecture of chromatin in space, therefore, represents

a crucial link which maps the linear genomic information with its corresponding bio-

logical function [11]. Studying this causal relationship between genome function and

its spatio-temporal organisation in the nucleus is, therefore, very exciting to under-

stand a wide spread of cellular processes including di�erentiation, replication, repair,

epigenetic modi�cation and genomic stability etc. A comprehensive quantitative de-

scription elucidating in what way chromosomes fold & interact will provide further

insights into the mechanism of cell functioning. It has been thought that 3D chro-

matin organisation, which is far from random, is governed by a set of principles that

take into account the necessity of physically connecting remote functional regions of

the genome, like regulatory elements, enhancers and promoters, in order to instigate

speci�c transcriptional programmes [12]. Recent �ndings have really highlighted the

importance of this structural order in controlling embryonic development and how its

disruption may lead to human anomalies [13�16]. Unravelling the formation, mainte-

nance or any perturbation of the chromatin spatial structure leading to consequential
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e�ects in the downstream molecular processes would, therefore, certainly be pivotal in

understanding common genetic diseases. Further, elaborative functional importance

of 3D genome architecture is reviewed in [17�19].

1.2 The Chromatin Organization: from the 3D nu-

cleus to the linear genome

To understand 3D chromatin organisation, it is important to �rst understand its

components and their salient features. The eukaryotic genomes, speci�cally the

mammalian genomes are folded inside a nucleus roughly �ve orders of magnitude

smaller. For example, there are about 3.2 billion base pairs of nucleotides in the

human genome, which is ∼2m in length when stretched out but is remarkably packed

into a nucleus of diameter ∼10µm in vivo. Interestingly, the genome is nevertheless

accessible to all essential cellular functions despite this tight folding. To comprehend

how this exceptional folding is achieved in 3D, comprehensive understanding of the

distinct levels of chromatin compaction and organisation is required.

Genome folding occurs at multiple scales ranging from whole chromosome struc-

tures to interactions across a few kilobases(kb), where each scale highlights an im-

portant interplay between structure and function [20]. This multi-scale organisation

leads to a hierarchical architecture, where the histone-DNA interactions correspond

to the smallest sub-nucleosomal scale, nucleosomes and regulatory loops to the nucle-

osomal scale, chromosome domains and compartments to the supra-nucleosomal scale

or sub-chromosomal scale and �nally chromosome territories to the largest nuclear

scale as shown in Figure 1.1 and reviewed in [5, 6, 21, 22].
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Figure 1.1: Levels of chromatin organisation. The multi-scale organisation
leading to a hierarchical genome architecture with chromosome territory formation
at the nuclear scale, formation of compartments at the chromosomal scale, TADs at
sub-chromosomal scale and regulatory loops at sub-megabase scale. Adapted from [1]

1.2.1 Chromosome Territories

At the largest scale, all chromosomes position themselves in their speci�c domain or

region known as 'chromosome territories' that results in minimal intermixing between

individual chromosomes (leftmost image in Figure 1.1). Chromosome territories were

�rst visualised and identi�ed by FISH experiments utilising probes which speci�cally

covered the entire chromosome [23] and with further advancement of chromosome con-

formation techniques, they were also observed in Hi-C maps [7] (as shown in Figure

1.2). Intuitively, chromosomes are expected to randomly intermingle and �ll out the

entire nuclear space due to the high orders of magnitude of compactness achieved by

them, in order to �t in the much smaller dimensions of the nucleus. On the contrary,

each chromosome occupies a non-random, largely non-overlapping space, de�ning its

own territory inside the nucleus. Wherever these territories overlap, intermingling

may take place, raising the possibility of functional connections across loci on dif-
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ferent chromosomes [24]. However, it has been shown that such inter-chromosomal

interactions (between di�erent chromosomes) are quite less frequent than the intra-

chromosomal interactions (on the same chromosome) [7]. The infrequent intermin-

gling might also be a consequence of the crowding arising from the tight packaging

of the chromosomes inside such a small volume of the nucleus. The positioning of

these territories is shown to be cell speci�c and conserved between human and other

primates, suggesting a functional role of speci�c chromosome organisation inside the

nucleus [25�27].

Figure 1.2: Hi-C represents chromatin organisation. Interpretation of Hi-C
interactome data capturing di�erent levels of chromatin organisation. Adapted from
RPM-lab [2]

Within these chromosome territories, chromatin is known to be organised in a

fractal structure [28], devoid of any knots, occupying the nuclear volume fraction

of 0.1 [29, 30]. It has been shown that within the territories, the gene-rich regions

are generally positioned at the periphery, a position favourable for easy accessibility

to the transcriptional machinery regulating their expression. The gene-poor regions

having less commonly expressed genes, such as the tissue speci�c or developmentally

5
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regulated genes, are buried at the interior of chromosome territories and are expressed

only after a conformational change [31�33]. It has been proposed that since the

probability of chromosomal translocations increases with spatial proximity of loci or

chromosomes, chromosome territories might play an important role in minimising

such undesired inter-chromosomal rearrangements by acting as a barrier between

chromosomes to some extent [24, 34]. Apart from this, not much of the functional

relevance of chromosome territories is known, with few studies proposing that they

also facilitate chromosome condensation prior to mitosis [35].

1.2.2 Chromatin Compartments

The next level at the sub-chromosomal scale is the formation of Chromatin Compart-

ments (Figure 1.1), a consequence of the spatial segregation of euchromatin (com-

posed of `active' and `open') region from heterochromatin (composed of `inactive' and

`closed') region as de�ned cytogenetically for all chromosomes. Additionally, compart-

mentalisation of the genome into A and B compartments alternating along chromo-

somes, having a typical size of around ∼5 Mb each, was captured as checkerboard

pattern in the Hi-C map (Figure 1.2) [7,22]. On comparison of the epigenomic states

of these two compartments with the ChIP-Seq (Chromatin Immuno-Precipitation and

Sequencing) data, it was demonstrated that the A compartment strongly correlates

with decondensed chromatin regions having histone marks that are involved in tran-

scription, whereas the B compartment region correlates with dense chromatin regions

and histone marks that are not involved in transcription. As a result, euchromatin

and heterochromatin were given a new de�nition as A (permissive) and B (repres-

sive) compartments based on the presence of largely active and inactive chromatin,

respectively. Subsequent experiments with higher resolution further subdivided these

compartments into A1-A2 and B1-B4 according to their chromatin signature as dis-

cussed in [36].
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The regions of similar epigenetic states were observed to contact each other form-

ing both intra- and inter-chromosomal contacts, giving rise to the plaid-pattern

as indicated in the Hi-C map [7] (although, as mentioned in section 1.2.1, inter-

chromosomal interactions are less frequent compared to intra-chromosomal interac-

tions). They tend to indulge in homotypic (A-A or B-B) rather than heterotypic

(A-B) contacts, i.e., in the genome, a locus from the compartment A interacts with

other A compartment loci preferentially more often than it would with B compart-

ment loci of the genome. Similarly, regions in B compartment tend to associate with

other B compartment-associated regions than A compartment-associated regions.

Imaging experiments have also enhanced our understanding of the preferential

positioning of these compartments [37, 38]. It was shown that the less compact A

compartments containing gene-rich and active euchromatin regions position them-

selves at the centre of the nucleus, possibly for an easy access to the hub of tran-

scriptional machinery, and also beneath the nuclear pores for faster transportation

of the transcribed mRNA outside the nucleus for further translational processes. On

the other hand, the denser B compartments composed of the gene-poor and inac-

tive heterochromatin regions are generally positioned close to the nuclear envelope

and surrounding the nucleoli. The B compartments have also demonstrated a strong

link with the chromatin areas that are in contact with the nuclear envelope, also

known as lamina-associated domains or LADs [38, 39]. Thus, the functional opera-

tions are in�uenced by the genome's division into compartments and LADs. These

A/B compartments have also been found to be cell-type speci�c and are associated

with distinct chromatin patterns [7, 36, 40].

1.2.3 Topologically Associated Domains (TADs)

At a further smaller scale within a compartment, chromatin is compacted and or-

ganised into multiple sub-megabase regions, known as topologically associated do-
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mains or TADs (Figure 1.1), mainly formed by loop extrusion [41�43]. They are

marked by their appearance along the diagonal of Hi-C maps in the form of contigu-

ous square domains as seen in Figure 1.2 and discussed in [7]. These regions within

the chromatin compartments exhibit a very high self-interaction frequency but they

are comparatively separated from nearby domains due to the presence of boundary

insulators [44,45] (blue spheres shown in Figure 1.3). This is because of the fact that

the physical interaction of DNA sequences within a TAD is much more frequent than

with the sequences outside the TAD. TADs can be active or inactive, being smaller

in size (median size of around 400-500kb, ∼900 kb in mice [44, 45]), contrary to the

bigger A and B compartments which span many megabases and appear as alter-

nate active and inactive sections throughout the chromosomes. The adjoining TADs

are not necessarily of opposite chromatin status. However, there exists a preferen-

tial clustering where groups of adjacent TADs of same chromatin type can organise

themselves into corresponding A or B compartments (detailed discussion in [46,47]),

e.g. broader and more active TADs would very likely result in the formation of A

compartment domains [48,49].

Figure 1.3: TADs, Sub-TADs and Loops. Representation of organisation of
topologically associated domains (TADs), sub-TADs and regulatory loops such as
the enhancer-promoter loops. Adapted from [3]

The insulation at the TAD boundary regions, which is often linked to housekeep-

8



Introduction

ing genes (in ∼34% of TAD boundaries), repetitive elements, tRNA and most signif-

icantly, the CCCTC-binding protein (CTCF) [50] (detected at ∼76% of all bound-

aries with converging CTCF-motifs, i.e. motifs oriented in a way that they approach

each other), results in the demarcation of these TADs from the neighbouring re-

gions. The signi�cance of these border-elements as CTCF-motifs was studied in the

loop-extrusion model mentioned earlier, where interphase chromatin is extruded by

the ring-shaped cohesin complex until it encounters the chromatin-bound convergent

CTCFs. A `stripe' is produced at the TAD border as a result of the unidirectional

extrusion of chromatin and the landing of Cohesin close to a CTCF site. Hence,

CTCF plays a key role in nuclear organisation and appears to be a major player in

chromatin structure formation in general.

In contrast to the A/B compartments which are tissue-speci�c, correlating with

cell-type speci�c gene expression patterns as mentioned in 1.2.2, the TADs are posi-

tioned in a way that their boundaries are secured [51] and mainly conserved across

species and amongst di�erent cell types, i.e most of the TADs are tissue-invariant,

but not all of them [44,45], although their epigenetic state and compaction can vary

signi�cantly. Although recently, studies have shown that TADs are dynamic and

can undergo conformational changes during cell di�erentiation, which suggests their

capability to not only constrain but to also facilitate the most signi�cant enhancer-

promoter interactions during cellular development [52,53]. Overall, TADs are shown

to be the universal building blocks of chromosomes [47] as domains displaying high

regulatory potential [54]. Each of human and mouse genomes are known to exhibit

regions of over 2,000 TADs, with over 90% of their genomes sharing 50-70% of TAD

boundaries between them [51].

Further classi�cation of TADs can be made into smaller sub-TADs (Figure 1.3),

exhibiting a lesser degree of conservation across tissue types and seemingly related to

cell type-speci�c gene expression [55,56].
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1.2.4 Chromatin Loops

The organisation of the above domains is guided by speci�c DNA contacts: DNA-

DNA or `chromatin loops' which form the next level of organisation. Chromatin

loops, roughly less than 1Mb [36], facilitate the actual interactions between distant

genomic loci causing the activation or the repression of genes [25]. The genome adopts

such loop conformations to be able to achieve structure-mediated regulatory e�ect on

genes which are governed by a large set of cis-balancing elements such as enhancers,

insulators or repressors, often located at a considerable distance from the target genes

(Figure 1.3). Thus, the functional relevance of chromatin loops is to bring together

two elements to a spatial proximity to elicit a regulatory response.

Figure 1.4: Loop formation. (right) Existence of loops demarcating TAD bound-
aries and also within TADs. (left) TADs and loops been represented in the Hi-C data
matrix. Adapted from [4]

CTCF binding not only intervenes most of the chromatin loops [36] but also

frequently demarcates TAD boundaries, although the chromatin loops are also po-

sitioned within them (Figure 1.4). Similar to TADs, most CTCF-mediated loops

have a constitutive character and are highly conserved across cell types and dur-

ing di�erentiation. Contrarily, interactions that are directly associated to the tran-
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scriptional process, such as enhancer-promoter or Polycomb-mediated contacts, are

linked to CTCF-dependent loops that are more dynamic [36, 52, 57]. In both sit-

uations, chromatin loops enable the further division of TADs into more dynamic,

nested substructures known as sub-TADs, which have more cell-to-cell variability

than TADs [16,36,55,58�60].

Figure 1.5: Types of loops within TAD domain. Enhancer-promoter loop,
Polycomb-mediated loop, gene loop, and architectural loop are a few examples of
chromatin loops that may exist inside a domain. Adapted from [5]

Enhancer-promoter loop, Polycomb-mediated loop, gene loop, and architectural

loop are a few examples of chromatin loops that may exist inside a domain [5] where

the gene regulatory elements use this looping process as a tool to control genes over

enormous genomic lengths (Figure 1.5).

1.3 Background on Techniques and Approaches to

study Chromatin Organization

The interpretation of genomic function and evaluation of its role in cellular processes

is dependent on our knowledge of the scrupulous interaction between the di�erent

hierarchical orders of chromatin organisation. Three main categories of the tech-
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niques to study this chromatin organisation are broadly available as: (i) image based

(ii) biochemical or genomics-based and (iii) computational & modelling techniques

(representative Figure 1.6)

Figure 1.6: Overview of techniques to study chromatin organisation. Three
categories to group methodologies for analysing chromatin organisation: (i) Imag-
ing (ii) Biochemical or Genomics and (iii) Computational & Modelling techniques.
Adapted from [6]

1.3.1 Imaging Techniques

The initial approaches for studying the 3D genome organisation were predominantly

`image-based' methods, including FISH, EM, X-Ray, Super-resolution light microscopy

as the most popular ones.

� DNA FISH (Fluorescence in situ Hybridization) allows the localisation of in-

tended chromatin domains or entire chromosome in a cell by hybridising �u-

orescently tagged probes to DNA after �xation, and then visualise the labels
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under light microscopy [61,62]. Although done at a lower resolution with probe

size around 40kb, FISH had the capabilities for live cell imaging during dy-

namic chromatin movements and interactions and in measurement of distances

between two or more loci in space. [63, 64].

� Electron Microscopy (EM) imaging allowed visualisations of individual cell nu-

clei's sections of condensed versus decondensed chromatin in exquisite detail

and even the in situ analysis of chromatin �bre structure [65], but mostly

constrained to accentuate speci�c DNA sequences. Electron microscopy, when

combined with DNA-speci�c labelling, could unveil 3D chromatin structures of

nanometer-scale in frozen samples [66].

� Super-resolution light microscopy (resolution up to 20nm), combining the tra-

ditional light microscopy and electron microscopy o�ered some important novel

approaches to the imaging of genome architecture including the use of pat-

terned excitation on the same sample and combinatorial labelling techniques to

concurrently expose several distinct loci.

� Soft X-ray Tomography (SXT) is used for imaging chromatin organisation, dis-

tribution and biophysical properties during neurogenesis. It o�ered mesoscale

resolution upto 20-50nm in intact, unprocessed cells [67].

1.3.2 Biochemical Techniques

Despite the advances, analysis of only a small number of loci could be possible by these

imaging methods. The advent of novel `genomics-based' experimental or `biochemical

approaches', as detailed below, could overcome this limitation:

� Chromosome Conformation Capture (3C), a technique that enables the identi�-

cation and measurement of the frequency of physical interactions between DNA
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segments [68]. This approach was further augmented to enable the analysis of

contacts across the entire genome (known as Hi-C), in turn providing enormous

quantitative data in regard to genome architecture at the level of large cell

populations [7].

Figure 1.7: Schematic representation of Hi-C protocol Steps involved in Hi-C
method include: digestion, biotinylation, ligation, cross-linking, pull-down and deep
sequencing. Detailed description in [7]. Adapted from [8]

In Hi-C, di�erent chromatin regions that are adjacent to one another spatially,

undergo the protocol of cross-linking, fragmentation, ligation, and are then

tagged with adapters (see Figure 1.7). Following reverse cross-linking, puri�ca-

tion, sequencing, and mapping of the fragments to their genomic sites, genome-

wide contact frequency matrices are produced. Apart from 3C (one-to-one) and

Hi-C (all-to-all), other chromosome conformation capture based approaches in-

clude 4C (one-to-all), 5C (many-to-many), ChIA-PET (Chromatin Interaction

Analysis with Paired-End Tag sequencing), Capture 3C, Capture Hi-C, TCC

(Tethered Conformation Capture), Single-cell Hi-C (scHi-C), Dilution Hi-C and

DNase Hi-C.

� Genome Architecture Mapping (GAM), a procedure that sequences DNA after

cryosectioning nuclei into thin slices [69].
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� Split-Pool Recognition of Interactions by Tag Extension (SPRITE) in which

DNA and RNA fragments are sequentially barcoded, allowing to identify and

sequence both DNA-DNA and DNA-RNA interactions [70].

� DNA Adenine Methyltransferase IDenti�cation (DamID) whereby the Dam

methyltransferase marks chromatin sites near the nuclear lamina and genome-

wide sequencing is used to map them [39].

1.3.3 Computational Techniques

Although advances in both `imaging' and `experimental' methods discussed above

have been impressive, they also have their limitations and therefore, in order to bet-

ter understand the genome architecture, computational models have proved to be the

indispensable tool of choice. [22]. Techniques for nuclear architecture imaging have

advanced signi�cantly, although they still su�er from on screen limited throughput

choices for visualising chromatin interactions and has its own artefacts such as milder

�xation and structure degradation. 3C-based experimental techniques too, had limi-

tations of unclear ine�ciencies and certain biases. In fact, the current experimental

techniques prevent a direct quantitative description of the folding, movement and

interaction of chromosomes within the nucleus. Moreover, unravelling the processes

that control genome architecture or predicting how it will evolve in various environ-

ments or organisms is not viable by mere descriptions, however accurate. These gaps

may be �lled using the computational methods that have the potential to answer

these unresolved questions. Consequently, the interest had shifted from generating

more and more collections of detailed and quantitative data sets from experimental

approaches, to developing tools for data analysis and its interpretation, and also devel-

oping high predictive powers of computational methods. This led to the development

of computational models which can be broadly classi�ed into:

polymer models or direct models or thermodynamic-based approaches or
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top-down approaches and data-driven models or inverse models or restraint-

based approach or bottom-up approaches based on the key strategies used to

build these models.

consensus structure models and ensemble models based on whether the

model can generate a single consensus structure or ensemble of con�gurations.

optimization-based methods and probabilistic methods based on the di�er-

ent mathematical approaches to operate on spatial distances between genomic loci.

1.3.3.1 Polymer Models and Data-Driven Models

As the name suggests, `polymer models ' are based on the fact that DNA can be consid-

ered as an extremely long semi-�exible polymer chain obeying the laws of physics (de-

tailed review in [71�73]). To elaborate, polymer models use fundamentals of polymer

physics and folding principles of polymers to explain vital features of the large-scale

architecture of chromosomes. The behaviour of chromosomes, is mostly inferred `di-

rectly' from the principles of polymer physics and thermodynamics, depending upon

on a relatively small set of factors such as the persistence length of chromatin, or

its looping probabilities etc and a very limited physical assumptions among others.

Due to this de novo approach, these models have a particularly strong potential to

provide quantitative, predicted mechanistic insights into the chromosomal architec-

ture that has correlated well with the experimental observations. Therefore, even

after a limited set of inputs to start with and while not being very informative about

possible mechanisms of folding, these models do provide signi�cant explanations to

the chromosomal organisation. Well known polymer models from the literature in-

clude random walk (RW) model [74,75], self-avoiding walk (SAW) model [76], random

loop (RL) model [77], dynamic loop (DL) model [78, 79], strings and binder switch

(SBS) model [80], Worm-like chain (WLC) model [81], Rouse model, entropy driven

thermodynamic model [82] and more complex equilibrium globule [83] and fractal
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globule [7, 28,84,85] model.

� The RW model was one of the initial looped-polymer models (driven by cis-

interactions) for individual chromosomes that relied on loops as a potential

explanation for how chromosomal territories are predicted. The existence of

giant loops of chromatin emerging from an underlying backbone were described

by a generalisation of the polymer description as a random walk also known as

the Giant Loop or GL model. The parameters of this model were determined by

�tting the analytical demonstration to the FISH data on human chromosome

4 [75].

� Contrary to the RW or GL (and another Multi-Loop/Subcompartment or MLS)

models, which assumed that loops were e�ectively 'frozen' and would originate

only at speci�c chromosomal loci that arise at typical genomic sizes (∼1 Mbp

for RW or GL, ∼120 kbp for MLS) without any change in their positions dur-

ing the course of simulations, another straightforward RL model proposed that

chromatin loops are 'annealed', that is, they arise and vanish at random loci

and at all genomic sizes in order to account for the observed folding of the

chromatin �bre inside the nucleus [77]. The model was eventually developed

into the so-called DL model, in which the chromosomal �bre was modelled as a

self-avoiding chain and the looping-related protein-chromatin interactions were

incorporated by a probabilistic and dynamic method employing MC simulations

to produce starting con�gurations for mitotic rather than interphase chromo-

somes [79]. The looping probability was the main model parameter thus giving

rise to di�erent loops of varied size. The RL or random coil is considered the

simplest model characterised by non-interacting monomers as opposed to the

self-avoiding chains, which are characterised by non-overlapping monomers that

display excluded volume interactions giving rise to an increased e�ective volume

(due to self-avoidance e�ects) compared to the random coil.
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� Another SAW polymer is one that folds spontaneously in a random conformation

and thus, there is entropy induced intermingling within the polymer. However,

a model that was developed in 2004 suggested that polymers also have a high

self-attraction force that can give rise to separate chromosomal territories [86].

� The WLC or Kratky-Porod model adds intrinsic sti�ness, a characteristic of

semi-�exible polymers like double-stranded DNA, by coupling chain bending

with an energy cost. It is a bit complex model as it takes persistence length

into account.

� Unlike the RW/GL, MLS, and RL models that considered looping interactions

implicitly while completely ignoring the role of di�usible chromatin-binding

proteins in the nucleoplasm that mediate such looping interactions, the SBS

model precisely modelled the action of these di�usible binding proteins [80].

The concentration of these binding proteins was shown to signi�cantly a�ect

chromosome looping and hence folding by adopting to many di�erent states. It

is a unique variation of the DL model in which the polymer �ber is modelled

as a self-avoiding chain and the binding molecules are modelled as a certain

concentration of Brownian particles. According to the SBS model, chromatin

resides inside nuclei as a complex mixture of di�erently folded areas that are

subject to local speci�c stimuli and are capable of self-organizing across spatial

scales through general physical mechanisms. In fact, using the SBS model,

it is possible to create more intricate organisational structures with multiple

nested layers. One of the many conceivable states obtained by the SBS model

turns out to be the so-called crumpled globule model or fractal globule model

in particular.

� The fractal globule model describes the compact polymer state that results from

polymer condensation with `topological constraints' in the process [84]. Given
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that it exhibits the same scaling behaviour of the contact probability as a func-

tion of genomic distance, s, at a scale of ∼1-10 Mbp [85], it is said to be in

agreement with the original Hi-C data of the human genome [7]. In particular,

intrachromosomal (cis) contacts appeared to degenerate as a power law ∼ s−1 of

the genomic distance s, as opposed to the expected power law decay of ∼ s−3/2

for con�ned polymers at equilibrium (the equilibrium globule model). It was

suggested that the fractal polymer that underwent fast con�nement prevented

chain relaxation and self-entanglements, resulting in a knot-free polymer that

could unfold easily without being constrained by entanglements. This is an

appealing property that could facilitate local decondensation of chromatin for

gene regulation. This was in contrast to the equilibrium globule which under-

went slow con�nement resulting in highly tangled polymer. The role of entropy

comes into play as a guiding force in territorial separation by restraining the

intermingling between di�erent chromosomes [35, 87, 88]. Entropy-based mod-

els, however, are unable to account for the wide range of speci�c, functional

contacts made possible by chromatin looping (such as enhancer-promoter inter-

actions), the organisation of its domains (LADs, TADs), and, in particular, the

behaviour of the contact probability between genomic loci as revealed by Hi-C

experiments.

To summarise, direct models essentially do not consider biological information

(such as DNA sequence-related �bre heterogeneity, chemical modi�cations to DNA or

histones, the presence of particular chromatin binding proteins, etc) and only account

the physical assumptions. Despite this extreme simpli�cation, these polymer physics

models are actually able to explain a vast array of qualitative characteristics, such as

the spatial segregation of chromosomes into distinct territories, as well as quantitative

information, such as the scaling laws of average contact frequencies with genomic

distance. However, several elements of large experimental data sets, including the
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apparent segregation of higher eukaryotic chromosomes into topological domains, are

not fully explained by these models.

These led to the development of so called `data-driven models ' which can com-

pletely assimilate a wealth of experimental data sets, like genome-wide contact fre-

quencies. Unlike the direct models, these methods use the experimentally generated

contact map as input to reiterate the genome's underlying 3D structure, thus, also

obtaining the name `inverse-models ' or 3D reconstruction methods. These indirect

models rely primarily on translating known data into conformations that are essen-

tially based on an implicit relationship between the contact frequencies and spatial

distances between genomic regions. The goal of these 'bottom-up' methods is to `re-

construct' the conformations by satisfying the `spatial restraints' derived from the

progressively larger data sets produced by imaging methods, and particularly the

high-throughput 3C-based methods. Both these models, in practice, can be di�er-

entiated by the amount of experimental data used: the inverse models often use

thousands or more values from massive, often genome-wide data as opposed to the

direct models, which typically use a small number of parameters. Popular 3D recon-

struction models include:

(i) reconstructing the yeast chromosome from 3C data [68] where the authors

tallied the number of cross-linking occurrences as contact frequencies converted into

the corresponding spatial separations between 13 loci that are spread out over the

∼320 kbp long chromosome 3 giving rise to 78 pairs of measurements,

(ii) reconstruction of the ∼2.5 Mbp long immunoglobulin heavy-chain locus in B

lymphocytes based on single-cell FISH experiments [89] theorising that the spatial

con�guration of this chromosome region makes way for genomic reshu�ing from the

earlier Pre-Pro-B stage to the Pro-B cell stage,

(iii) reconstruction of all the 16 chromosomes in budding yeast genome from Hi-C

data at a model resolution of 10kb for each chromosomal segment [90] (utilising an op-
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timised strategy in moving the positions of the beads in such a way, that their relative

distances are a close match to the estimated distances from the contact frequencies. It

is achieved by keeping the sum of the squared di�erences between modelled distances

and desired distances to be minimum, while still satisfying the other constraints)

thereby giving rise to a `water-lily' model that displayed all 16 centromeres grouped

together close to the same nuclear pole, chromosomal arms reaching out from the

pole, and rDNA occupying the opposite pole,

(iv) reconstructing the �ssion yeast from Hi-C data [91] which totals onto a ∼14

Mbp region and comprises only three chromosomes at a model resolution of 20kb,

utilising the FISH data �tted to measured contact frequencies obtained in Hi-C for

seven interchromosomal pairs among the 18 di�erent pairs of loci in 100 or more cells

for each pair, which particularly reveals that co-regulated genes frequently lie in close

vicinity,

(v) reconstruction of a 500kb long α-globin locus on human chromosome 16 from

5C data to calculate the contact frequencies among 70 fragments scattered over this

domain [92] with the two important model parameters of equilibrium length and

sti�ness computed as Z-scores from 5C giving rise to an ensemble of structures,

(vi) a bacterial genome's reconstruction from 5C data comprising a single circular

∼4 Mbp long chromosome for 339 fragments at a genomic resolution of 12kb done by

Bau et al [93]

(vii) reconstruction using probabilistic methods called MCMC5C [94] of the 142

kbp region of chromosome 7 containing a cluster of Hox genes [95] based on previ-

ously acquired 5C data. This region was shown to play a crucial role in development

and cell di�erentiation revealing statistically signi�cant di�erence in the chromoso-

mal region in di�erentiated cells which was more compact than in undi�erentiated

cells. The same method was applied to Hi-C data previously acquired for a human

chromosome 14 arm measuring 88.4 Mbp [7] which exhibits fairly good correlation of
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FISH data with the distances predicted by their model for three pairs of loci. It was

unfortunately not feasible to extend the analysis to the entire human genome because

the reliable sampling consumes excessive computation time. In a recent Hi-C data

set on mouse embryonic stem cells [44], a similar MCMC-based sampling technique

termed BACH-MIX [96] was utilised to distinguish chromosome topologies within

∼Mb long topological domains.

(viii) reconstruction of a population of genome structures where a total of 2 x 428

spheres represented the whole diploid human genome, each of which was referable

to a distinct chromosomal region [97]. The experimental input was taken from hu-

man lymphoblasts retrieved using an improved variant of 3C-based methods called

TCC or tethered chromosome conformation method which utilises a procedure for

cross-linking in which cross-linked fragments were tethered to beads. It was possible

to predict the preferential bearings of chromosome territories with this model with

respect to the nuclear centre or periphery, which were in consonance with those that

FISH already identi�ed.

(ix) recent reconstruction methods including ShRec3D [98] and ChromSDE [99]

which use shortest path reconstruction in 3D and semi-de�nite programming methods

respectively.

(x) a novel study that uses a neural network to infer the relationship between

the genomic compartment in which a locus is located as determined by DNA-DNA

proximity ligation (Hi-C) and the epigenetic information acquired from ChIP-Seq for

that locus [100,101].

With such a large amount of work, the inverse models in comparison to direct

models, lag behind in terms of relative paucity of their predictive power. Inverse

models fail to predict, for example, the change in chromosome models due to translo-

cation or a change in gene expression, since as an input for reconstruction, new data

from such experiments would be required.
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Certain limitations of both direct and indirect models led to the development of

a hybrid model i.e. between polymer models and data-based reconstruction models

[102,103]. In this model, chromosomes were modelled as chains of beads, each with a

diameter of 3 kbp, simulated using Brownian dynamics undergoing motions with an

assumption of persistence length and other additional forces. In yet another study,

a least-biased e�ective energy landscape for the chromosome was derived using a

maximum entropy method and the chromosome conformation capture data [104].

There is scope of improvement in this �eld owing to its advantages over both polymer-

based and reconstruction-based approaches.

1.3.3.2 Consensus Structure Models and Ensemble Models

The models discussed above can be divided into consensus structure models and

ensemble models based on whether a single consensus structure or ensemble of con�g-

urations is generated from the model. There are both advantages and disadvantages

for consensus as well as ensemble methods. Since ensemble approaches take into ac-

count the fact that Hi-C data is collected from an ensemble of conformations, they

are more acceptable in a biological context. However, it is not simple to investigate a

group of inferred ensemble of 3D structures. One of the options is to characterise the

ensemble average [97], while another alternative is to pick a few structures that re�ect

the diversity of the ensemble [94]. In contrast, the consensus methods, generate a sin-

gle structure which is easier to analyse and can be thought of as a visualisation of the

contact map. Many of the models in the foregoing description generated a single 3D

structure of one chromosome [68, 89] or multiple chromosomes [90, 91]. However, the

chromosomal polymers' dynamics is not accounted for by the consensus methods and

distinct con�gurations may exist in di�erent cells of a population even in the absence

of the chromosomal dynamics. Ensemble methods are much more arduous in terms

of computation than consensus methods because they require sampling of candidate
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3D structures from a very large dimensional space .

1.3.3.3 Optimisation-Based Models and Probabilistic Models

Based on the underlying strategy to develop the model, another important categori-

sation of the models discussed in section 1.3.3.1 can also be done into optimisation-

based approaches and probabilistic approaches. In the former approach, an objec-

tive function is minimised to ful�l all the set of constraints in order to build the

model [7, 35, 68, 80, 87�93, 97�99] while in the latter strategy, a probability distribu-

tion, such as Gaussian distribution (MCMC5C) or Poisson distribution (BACH-MIX,

PASTIS) of structures from contact frequency data is followed from which it is pos-

sible to derive 3D structures [94, 96, 105]. Apart from MCMC5C and BACH-MIX

discussed in 1.3.3.1 to reconstruct the 3D structure, PASTIS employs calculation of

maximum likelihood of the model parameters, with the highest likelihood given the

observed contact data.

Various optimisation methods such as numerical optimisation or gradient-descent

optimisation are used to minimise the objective function in optimised-based meth-

ods. The optimization algorithms may fetch altogether di�erent results, based on the

chosen initial con�guration, raising scepticism on the explanation of the particular

con�gurations derived from a single optimization run. Additionally, it was not pos-

sible to immediately interpret the variability seen after the output of various initial

random structures was clustered (partially re�ected by the multiplicity of clusters),

either in terms of the biological variability of structures within a cell population or

as statistical errors when building a model from necessarily small amounts of data.

Despite the fact that most inverse models employ optimization techniques, it seems

more assuring to use probabilistic sampling approaches which can determine uncer-

tainties in reconstructed models and their parameters. This approach can o�er a

thorough and less biassed perspective of the ensemble of models that seem to be
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compatible with the experimental results. The potential capacity of such approaches

to focus on the limitations of existing experimental data sets a�ecting the model un-

certainties, is particularly interesting. The implication could be useful in developing

future experimental techniques, with an aim to minimise such uncertainties to the

extent possible.

1.4 Interest and Focus of the study

This research work focuses on understanding the dynamics of chromatin organisation

and transitional changes in developmental cell stages during cell di�erentiation of the

hematopoietic system. The study was motivated from the previous work of high-

throughput Hi-C analyses with epigenetic landscapes and genome-wide expression

pro�les done on progenitor (Pre-Pro-B) and committed (Pro-B) cell stages by our

lab [53]. It had provided signi�cant insights on the architecture of genome in the

context of 2D information obtained from Hi-C. Here, in this work, we improve our

analysis of studying the genomic architecture of lymphoid lineage developmental cells

using the 2D information of the Hi-C data and building upon it to �rst generate a

prototype model structure of the two cell stages using the approach and underlying

principles of polymer physics. We were speci�cally interested in investigating their

3D structures and organisation of chromatin in these cell stages by performing a

comparative analysis and studying their transitional dynamics through Molecular

Dynamics (MD) simulations.

To begin with the most fundamental concepts of our research on blood cell devel-

opment, we brief here about the Haematopoietic system. The broader background of

the study is discussed in section 1.4.1 followed by the speci�c research focus in section

1.4.2. The approach we followed to carry out our study is further discussed in section

1.5.
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1.4.1 Interest: Blood Cell Development (The Haematopoietic

System)

Haematopoiesis is described as the process of development of all the cellular compo-

nents of blood and immune system. Haematopoietic stem cells (HSCs), which are

responsible for maintaining and producing a variety of cells that make up an or-

ganism's blood and immune system, are the initial point of haematopoiesis (Figure

1.8). Hence, it forms an excellent model to study changes occurring at the chromatin

architectural level.

Figure 1.8: Schematic representation of Hematopoiesis Development of dif-
ferent blood cells from HSC. Adapted from [9]

Two essential properties, self-renewal and multipotent di�erentiation are the basis

of de�nition of HSCs, which are capable of producing cells of all blood lineages: from

erythrocytes (or RBCs that transport oxygen) and megakaryocytes (which produce

platelets that control blood clotting) to both innate and adaptive immune cells (leuko-

cytes) which �ght infections. The most primitive self-renewing HSCs with long-term

reconstituting activity (LT-HSCs) & also the short-term (ST)-HSCs were found in the
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mouse bone marrow population as part of the LSK population (Lin-Sca-1+c-Kit+).

This is reviewed in detail in [106].

ST-HSCs generate multipotent progenitors, MPPs, de�ned by the absence of

self-renewal and restricted lineage di�erentiation capacities. The MPP population

is heterogeneous and includes progenitor subgroups dedicated to myelo-erythroid

(megakaryocytes, erythrocytes, granulocytes, mast cells, dendritic cells and only

monocyte-macrophage cells among agranulocytes) or myelo-lymphoid (granulocytes,

mast cells, dendritic cells and both monocyte-macrophage & lymphocytes among

agranulocytes) lineages. As a result, the myelo-erythroid subgroup of MPPs has

the ability to directly develop into either common-myeloid progenitors (CMPs) or

megakaryocyte-erythrocyte progenitors (MEPs). MEPs di�erentiate into megakary-

ocytes/platelets and erythrocytes while the CMPs ultimately bring about granulo-

cytes, mast cells, dendritic cells and macrophages via granulocyte�macrophage pro-

genitors (GMPs). The CMP can give rise to all types of myeloid colonies, while the

MEP or the GMP generates only megakaryocyte-erythrocyte (ME) or granulocyte-

macrophage (GM) lineage cells, respectively, indicating that the CMP retains the

potential to di�erentiate into MEP along with GMP (Figure 1.8 and detailed re-

view in [106]). It is because of the co-expression of PU.1 and GATA-1 that MPPs

�rst become committed to CMPs; nonetheless, their mutual exclusion is essential

for the di�erentiation of CMPs into either megakaryocytic-erythroid or granulocytic-

monocytic progenitors. CMPs must express GATA-1 in order to di�erentiate into

MEPs and express PU.1 in order to di�erentiate into GMPs.

On the other hand, for the myelo-lymphoid subset of the MPPs, the MPPs can

attain Flt3+ to develop into lymphoid primed MPPs or the LMPPs which can produce

all granulocyte/macrophage progenitors (GMPs) as well as lymphocytes but no longer

have the ability to self-renew or di�erentiate into megakaryocytes or erythrocytes.

As LMPPs acquire IL-7R, they even loose the myeloid developmental potential and

27



Introduction

become solely committed to the lymphoid lineage i.e. common lymphoid progenitors

(CLPs) which can further di�erentiate to produce natural killer (NK) cells, dendritic

cells, and the B and T lymphocytes (Figure 1.8). Two important TFs that promote

initiation of lymphocyte development from LMPPs are Ikaros and the E-protein TF,

E2A. Rag1, Rag2, Dntt, and the cytokine receptor IL-7R are among the lymphocyte-

speci�c genes that E2A activates to cause lymphocyte-speci�c priming.

Figure 1.9: B-cell development Developmental stages during B cell di�erentia-
tion. The blue box represents the focus of this study.

The CLPs, usually regarded as the branch-point for the formation of B- and T-

cells, determine the fate of lymphocytes after the LMPPs (Figure 1.9). The CLPs

loose myeloid potential once they acquire IL-7R and progress towards lymphoid lin-

eage. B-cell lymphopoiesis requires a number of TFs, including PU.1, E2A, Ikaros,

and FOXO1, which 'prime' the genomic cis-regulatory areas. The B lineage-speci�c

TFs EBF1 and PAX-5 are responsible to activate this 'priming' process (Figure 1.9).

Additionally, E2A cooperates with FOXO1 to activate EBF1, a crucial B-lineage de-

terminant. The TF Runx1 has been shown to be responsible for activating EBF1

expression in addition to E2A and FOXO1. [107]. B-cell development is caused by

the interaction of all these factors. On the other hand, Notch-DLL4 signalling, which
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promotes the di�erentiation of progenitors towards T-lineage, causes the CLPs to

mostly di�erentiate towards T-lineage upon entering the thymus [108].

1.4.2 Focus: Chromatin Structural Dynamics during B-Cell

Commitment

The induction as well as maintenance of lineage-a�liated genetic programs is brought

out by lineage speci�cation and commitment. This incorporates two aspects: the ex-

pression of lineage-speci�c genes as well as the repression of alternate-lineage genes

in order to establish the lineage identity. Complex cellular dynamics plays a role

to achieve this by involving spatial & structural rearrangement of genome architec-

ture in order to integrate the lineage-speci�c transcription factors & cytokine signals

along with several other epigenetic mechanisms. As seen above in section 1.4.1, a

lot has been known in terms of the role of cis-regulome in cell type speci�c gene

regulation; however the structural changes that enable interactions between regions

of the genome in order to achieve lineage-speci�c gene regulation are still unknown.

Therefore, this dynamics, involving spatial re-organization of chromatin during the

developmental transitions of B-cells, is the focus of this study in order to understand

the 'lineage speci�c chromatin organisation'. To do so, we are focusing on two cell

stages during the B cell development: Pre-Pro-B cell stage and Pro-B cell stage. The

blue rectangular box in Figure 1.9 highlights our focus of this research. The Pre-Pro-

B cells are undi�erentiated cells arrested at a multipotent cell stage and maintained

such that they still have the potential to di�erentiate into both B and T cells. On the

other hand, the Pro-B cells are di�erentiated cells committed towards B cell develop-

ment and have lost the di�erential potential to alternate lineages. In this study, we

elucidate the principles underlying the intra-chromosomal structural dynamics and

investigate its role in cell-type speci�c gene expression patterns, an area that has

been underappreciated in theoretical and computational studies. In particular, we
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are trying to determine the transitional structural variations in the two cell stages

that maintain cell identity and orchestrate B cell commitment.

1.5 Our Approach: Our Hybrid Model Method and

its Advantages

Figure 1.10: Direct versus Inverse models Illustration of comparison between
direct and inverse models.

As we have already discussed in detail in section 1.3.3, there have been vari-

ous computational methods developed using polymer physics simulations, which are

solely guided by a limited number of physical assumptions and parameters. Although,

these direct models helped in understanding qualitative & quantitative properties,

they essentially did not consider any biological informations but only retained sim-

pli�ed physical assumptions failing to take into account every aspect of the extensive

experimental data sets. On the other hand, the rich experimental data sets, such

genome-wide contact frequencies, are fully incorporated into the indirect or inverse
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models as input to rebuild the underlying 3D structure of a genome. Such models

lack in their predictive power, for example, it is impossible to foresee the e�ects of a

translocation or a change in gene expression through these models since new data set

would be required from such experiments as an input for the reconstruction. A pic-

torial representation of both approahes is highlighted in Figure 1.10. Limitations of

both direct and indirect models led us to the development of our hybrid model where

we generated a physical coarse-grained bead-on-a-string polymer model and incorpo-

rated the experimental datasets as input to it and let this hybrid model evolve with

time. From this time-evolved trajectories, we study the dynamic changes occurring

in the two systems representing the two cell stages. By doing so, we introduce a pre-

dictive computational model, with minimal biological information to begin with, in

order to study the cell-type speci�c 3D chromatin folding. Through this combinato-

rial approach, we were able to utilise the concepts of the polymer physics along with

the relevant biological information to be able to derive a fundamental relationship

between genome organisation & cell type-speci�c gene expression and also provide

mechanistic insights to its regulation. We show that our polymer model is a power-

ful tool for investigating structural rearrangements and predicting consequential gene

expression patterns upon cell di�erentiation. We have studied the organisation of a

murine chromosome that shows crucial changes during B cell development. In order

to study its dynamics, we have modelled a self-avoiding polymer chain with harmonic

bonds between consecutive beads and incorporated Hi-C information as weak har-

monic bonds and performed Langevin dynamic simulations, the details of which are

discussed in Chapter 2.
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1.6 Objectives: Overall and Speci�c

The overall objective of this study is to determine the structural alterations during

the developmental transitions of B-cells with a focus to understand the lineage speci�c

chromatin organization.

This was then classi�ed into the following speci�c objectives:

1. Develop and validate a robust prototype structural model of a chromosome

using high-throughput chromatin interactome by employing mechanistic modelling.

2. Comparative structural characterization to identify cell type speci�c chromatin

architecture at di�erent levels of chromatin organization using the simulated models.

3. Determine novel spatial rearrangements leading to di�erential changes and

correlate with gene expression patterns.
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2.1 Data Acquisition

The experimental data used in the present study was obtained from the in-house

experiments of high-throughput Hi-C sequencing data published online (GSE85858)

[53]. The Ebf1-/- cells indicate the Pre-Pro-B stage while the Pro-B cell stage is

represented by Rag2-/- cells.

2.2 Model Generation

We have computationally modelled the chromosome 11 of mouse genome as a beads-

on-a-string homopolymeric chain consisting of spherical non-overlapping beads (self-

avoiding walk polymer) of de�ned diameter σ, connected by a spring. Each of the

beads in the present model maps genomic region of size 40kb, which is same as the Hi-

C matrix resolution as reported in [53]. This leads to the total number of beads as 3053

(size of chromosome/resolution = 122082543bp/40x103bp) in our model system as the

length of chromosome 11 of the mouse genome is 122082543bp (in mm10 genome).

200 such initial self-avoiding polymer chains with 3053 beads each, were generated

where each polymer chain was de�ned in a con�nement of radius (rconf) 0.986µm in

real units. The con�nement depicts the chromosomal territory (as shown in Figure

2.1), where the radius of the con�nement is calculated proportional to the known

genomic volume fraction of an eukaryotic cell (explained in section 2.3.2). Based on

the volume fraction of 0.1 for a eukaryotic genome (refer section 1.2.1), the diameter

of the 40kb sized spherical bead was calculated to be 63.13nm (i.e. σ = 63.13nm) and

the radius of con�nement to be 15.6 times larger than the bead diameter (i.e. rconf

= 15.6σ). The calculations for determining the bead diameter σ and the radius of

con�nement rconf are discussed in section 2.3. The contact information from the Hi-C

data was then integrated to these initial random generated structures, the details of
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which are discussed in section 2.4.

rconf

Figure 2.1: Prototype of initial con�guration. Prototype representing the
bead-on-a-string homopolymeric chromatin model with bead size (σ) and radius of
con�nement (rconf) shown. The size of one bead is considered to be 1σ or 40kb in
genomic units.

2.3 Determining Bead Size and the Radius of Con-

�nement of the Polymer

2.3.1 Determining Bead Size, σ

To determine the bead size, we assume that the volume of chromosome 11 having L

basepairs (VL) in vivo is equal to the volume of the modelled polymer for chromosome

11 in silico. Volume of the polymer in silico is computed as the volume of one bead

× total number of beads in the polymer. Therefore, if 4/3π(σ/2)3 is the volume of

one bead with diameter σ and N as the total number of beads in the polymer, VL in
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silico can then be written as

Vol. of one bead× No. of beads = Vol. of chromosome of length L bp

i.e.
4

3
π
(σ
2

)3

×N = VL (2.1)

Now, to compute the volume VL in vivo, we �rst compute the volume of 1 bp. VL can

then be derived as volume of 1 bp × L bp, with an assumption of uniform volume

of each basepair. Since the entire genome of total length G bp occupies a volume

denoted by Vgenome, we assume that 1 bp will e�ectively occupy a volume Vgenome/G

and therefore, chromosome with L bp will occupy a volume Vgenome/G × L i.e. VL in

vivo can be written as

VL =
Vgenome

G
× L (2.2)

Here, if 0.1 is the volume fraction where volume of the genome occupies 10% of

the nuclear volume (Vnucleus) as discussed in section 1.2.1 and also in [29, 30], then,

we can derive Vgenome as Vgenome = 0.1 × Vnucleus and substitute it in equation 2.2 as

VL =

(
0.1× Vnucleus

)
G

× L (2.3)

Here, Vnucleus = 4/3π(dnucleus/2)
3 where the nuclear diameter, dnucleus =∼7µm for
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lymphocytes since in normal situations, the coarse, dense nucleus of a lymphocyte is

approximately about 7µm in diameter [109]. Substituting Vnucleus in equation 2.3, we

obtain VL in vivo as

VL =

(
0.1× 4

3π
(
dnucleus

2

)3)
G

× L (2.4)

Equating the VL in vivo from equation 2.4 and VL in silico from equation 2.1, we get

4

3
π
(σ
2

)3

×N =

(
0.1× 4

3π
(
dnucleus

2

)3)
G

× L

Simplifying that gives us,

σ = dnucleus

(0.1× L

G×N

)1/3

(2.5)

For dnucleus = 7µm,

L = 122082543 bp,

G = 2 × haploid = 2 × 2725521370 bp and

N = L/40kbp = 3053 beads, we obtain

σ = 63.13 nm
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2.3.2 Determining Radius of Con�nement, rconf

Based on the fact that the total genome has a volume fraction of 0.1 within its entire

nuclear volume or the con�ning volume enveloping that genome, i.e Vgenome =0.1 ×

Vnucleus; we assume that VL in silico would also occupy a volume fraction of 0.1 within

its chromosomal territory de�ned as Vcon�nement-for-L in silico. That is to say, in silico

VL = 0.1× Vcon�nement-for-L (2.6)

where

Vcon�nement-for-L =
4

3
π
(dcon�nement-for-L

2

)3

Substituting Vcon�nement-for-L in equation 2.6 and then equating the resulting VL in

silico to VL in vivo from equation 2.4, we obtain

0.1× 4

3
π
(dcon�nement-for-L

2

)3

=

(
0.1× 4

3π
(
dnucleus

2

)3)
G

× L (2.7)

Simplifying it, we get
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(
dcon�nement-for-L

)3
=

(
dnucleus

)3
G

× L

dcon�nement-for-L = dnucleus

(L
G

)1/3

rcon�nement-for-L =
dnucleus

2

(L
G

)1/3

(2.8)

With values of dnucleus, L for chromosome 11 and G mentioned in section 2.3.1, we

calculated rcon�nement-for-L or rconf = 986.57nm i.e. 986.57nm/63.13nm = 15.6σ.

Therefore, rconf = 15.6σ

2.4 Incorporation of Hi-C Data

Once the polymer chains are generated with model parameters, σ, and the radius of

con�nement rconf, the biological information from the Hi-C interactome data is incor-

porated, thus obtaining the current hybrid model. The intra-chromosomal interaction

data for chromosome 11 was obtained from the in-house generated genome-wide Hi-C

for Pre-Pro-B cells as well as the Pro-B cells [53] and was integrated into all the

200 initial polymer models as weak harmonic bonds. For this, we �rst extracted the

N×N intra-chromosomal matrices from the normalised genome-wide Hi-C contact fre-

quency matrices for both the Pre-Pro-B and Pro-B cell stages. The steps to process

the raw reads of the Hi-C data have already been discussed in [53] wherein the It-

erative mapping module of hiclib (https://github.com/mirnylab/hiclib-legacy

by Mirny lab) was used. After ICE (iterative correction and eigenvector decomposi-

tion) normalisation, the corrected contact frequency matrix was converted to contact
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probability matrix using the method previously employed in [104], i.e.

Pij = min
(
1,

cij

min
(
ni, nj

)) (2.9)

where, nk = max
(
nk-4,k, ..., nk-1,k, nk+1,k, ..., nk+3,k

)
where cij is the contact frequency and Pij is the contact probability between re-

gions or beads i and j. These experimentally derived Hi-C contact probability maps

were integrated in the current model as harmonically restrained bonds between two

given beads representing the corresponding 40kb sized genomic region in the Hi-C

contact frequency matrix. However, unlike bonds between consecutive beads, these

`Hi-C bonds' between non-consecutive beads are restrained by contact probability-

dependent distances and distance-dependent force constants. In particular, if the

Hi-C pair contact probability, Pij between i & j of the N×N contact probability

matrix is such that, Pij ≥ Pc where Pc is the probability cut-o� at 0.04, then the

corresponding `Hi-C bond' is modelled via a harmonic restraint of spring constant,

kHi-C, de�ned as

kHi-C =
k0
rij

(2.10)

where, rij = σ/Pij, k0 = 2.0 kJmol-1nm-2. Here, the amplitude term k0 establishes

the maximum limit to the force constant for the Hi-C bond. For longer distances,

this function e�ectively assigns lesser values of the force constant. The threshold

probability cut-o�, Pc, was chosen in order to consider only the minimal set of Hi-C
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data above the selected threshold of contact probability. An overview of the complete

work�ow is depicted in Figure 2.2.

Figure 2.2: Schematic overview of the approach. The �ow chart explains the
work�ow of the approach followed and the processes involved in each step

.

2.5 De�ning the Force Field

The force �elds were de�ned by de�ning the following potentials:

(i) The bonded interaction potential Vb(rij) between consecutive beads i & j sep-

arated by distance rij was de�ned as strong harmonic springs given by the equation
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Vb(rij) =
1

2
kb
(
rij − r0

)
with the equilibrium bond length, r0 = 1σ and a strong bond constant kb =

300kJmol-1σ-2.

(ii) The angular potential (Uangle) between three consecutive beads was de�ned as

Uangle = Ka

[
1− cos

(
θ − θ0

)]
where Ka = 2.0, θ0 = 180, in order to provide rigidity to the polymer and reduce

the possibilities of unwanted bending that can give rise to overlaps between beads.

(iii) Since we assume that Hi-C interactions take care of the attractive interactions,

the other non-bonded interactions are repulsive that were de�ned as the repulsive term

of the Lennard-Jones potential,

VLJ(r) =
c12

r12
− c6

r6

with the attractive term, c6 = 0.0 and the repulsive term, c12 = 1.0 kJmol-1. The

interactions between all the non-consecutive or the non-adjacent bead pairs have been

permitted purely via this repulsive potential.

2.6 Simulation Details

To perform the simulations, we have used GROMACS 5.0.7 [110] which is a popu-

lar open source programme. We energy minimised the 200 polymer con�gurations,

generated using the method described in the previous sections, followed by 2×106

steps of Langevin Dynamics simulation for each of these con�gurations. A Langevin

thermostat set to 310K and a coupling constant of 1 ps was used to maintain the tem-
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perature of our system. All the 200 simulations were run for a total time of 2.372s

in real units, 1 timestep(ts)=0.002τ (refer section 2.6.2 for derivation of time-scales)

and at equal intervals of every 250 timesteps, we had recorded the coordinates of the

system. Thus, the number of con�gurations saved for each of the 200 simulations will

be total timesteps/250, giving rise to 8000 simulation frames for each polymer.

2.6.1 Langevin Dynamics for Molecular Simulations

In molecular dynamics simulations, for each atom or a coarse-grained (CG) unit in

a system, Newton's second law of motion, also known as the equation of motion (F

=ma) is solved. The full solvent features can be ignored in order to simplify the

simulations and to do so, a popular method to accomplish this is Langevin dynamics.

In our model simulations, we have used Langevin dynamics in order to mimic the

e�ect of solvent and the real world scenario. In Langevin dynamics, the in�uence

of the solvent can be roughly described by two extra force terms in the equation of

motion. Hence, the resultant equation of motion or the Langevin equation for an

atom or CG entity (i.e. bead i in our case) becomes

m
d2ri
dt2

= Fi − ξ
du

dt
+
√
6ξkBTηi(t)

where ri is the vector position of bead i. The force i.e. mass times the acceleration

shown on the left-hand side of the equation, experienced by the bead i is calculated

from the three terms on the right of the equation. This equation is solved numerically

during a simulation run wherein time is assumed to evolve discretely in the form of

timesteps. These three terms are used to compute the force acting on the bead at one

time point, which is used to determine how the force a�ects the bead's velocity and

location at the next time point. This equation is basically solved for all of the beads

in a CG system by the simulation software program GROMACS mentioned above.
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The three force terms on the right of the equation can be explained as:

(i) The force that a bead experiences as a result of interactions with all the other

beads in the system is represented by the �rst term, Fi. It is essentially a set of

simpli�ed potentials as mentioned in section 2.5 that takes into account the important

aspect of the beads' connectivity in a polymeric chain via the bonded potential,

avoiding beads from overlapping with each other in space via the non-bonded repulsive

potential, and taking into account the polymer bending sti�ness via the angular

potential.

The next two terms help in approximating the e�ects of the solvent on the model

system where

(ii) The term -ξ du
dt
refers to the frictional or viscous drag that the bead experiences

as it moves inside the solvent. Here, ξ is the friction parameter associated to the

solvent's viscosity and it follows an inverse relation to determine the movement of the

bead in the solvent i.e. the bead's velocity is inversely proportional to this frictional

force or drag due to the viscosity of the solvent.

(iii) To account for the random interactions within the solvent molecules, the

second solvent term approximately represents them as the thermal jostling. The

term ηi(t) denotes the random force that the solvent molecules exert on the bead

i at a time point t. At each time step, it generates a random number in order to

incorporate stochasticity in the simulations, while on the other hand, this noise has

a well-de�ned mathematical description. The
√
6ξkBT factor guarantees that the

equation complies with the �uctuation-dissipation theorem, which describes the link

between an object's di�usive motion (�uctuations) and the viscous drag it experiences

while being pushed through a �uid (dissipation).
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2.6.2 Derivation of Simulation Time Scales

Simulations were run for the total number of timesteps = 2×106 timesteps where 1

timestep (ts) = 0.002τ . The value of τ is calculated as τ = 3πησ3/kBT

where η (viscosity of water) = 10-3Pa sec,

kBT = 4×10-21 J and

σ = 63.13nm

which results in τ = 0.593ms. Therefore, the total time for which the simulation

ran for each of the con�guration was: total number of timesteps × 1 timestep =

(2×106) × (0.002 × 0.593 × 10-3 secs) = 2.372s

2.7 Calculation of Simulated Contact Probability Ma-

trix

The simulations were done independently for both scenarios, the Pre-Pro-B cell stage

and the Pro-B cell stage. Last 2000 frames of each of these 200 GROMACS trajecto-

ries were employed for any production analyses as these were energy minimzed and

had attained equilibrium. Using the last 2000 frames in each simulated trajectory,

all inter-particle distances were calculated in order to generate a distance matrix for

each frame. For a single trajectory k, a �nal distance matrix Dk was then obtained

by averaging over the 2000 total number of frames. From this distance Dk, we also

generated probability matrix Pk for each of the k trajectories such that Pk = σ/Dk.

All the analysis was done by converting the distances to contact probabilities using

MDAnalysis Python Package. Further, a �nal simulation derived contact probabil-

ity matrix was generated by averaging Pk over all the k trajectories. Therefore, the

simulation-derived contact probability matrix (PsimPPB for Pre-Pro-B and PsimPB

for Pro-B) is essentially averaged over 200(trajectories)×2000(frames) independent
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conformations. Here, each frame corresponds to a microstate of the ensemble of

chromatin conformations whose average is the experimental Hi-C matrix. Since a

set of 2000 frames belong to a particular initial conformation, instead of generating

200×2000 = 4×105 probability matrices and performing an average over them, we

average over 200 matrices, which have already been averaged frame-wise.

We further �ltered this simulated contact probability matrix by replacing elements

in the matrix with zeros which were also zero in the experimental matrix to avoid

any misinterpretations from our simulated matrix. To render the representative 3D

conformations of the chromosome model, we have used the open-source package Visual

Molecular Dynamics (VMD) [111].

2.8 Principal Component Analysis

A potent tool for studying multivariate or data with many dimensions is principal

component analysis (PCA). The fundamental principle behind PCA is to rede�ne

the coordinate system such that the data may be described using as few dimensions

as feasible. This is a form of clustering or dimensionality reduction method. The

�rst component can be used to describe as much of the system variance as feasible,

the second component can be used to describe as much of the remaining variance as

possible, and so on. These axes of the coordinate system are known as the principal

components. The data can then be viewed more simply by taking into account each

region in relation to its values along the �rst two primary components.

PCA was �rst used on Hi-C data by [7] for the prediction of A and B compart-

ments. In this setting, each region along the chromosome represents a dimension in

the analysis. The �rst eigenvector or Principal Component 1 (PC1) of the correlation

matrix was then used to calculate the compartment score, and genomic regions with

positive or negative compartment scores were categorised as belonging to compart-
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ments A or B, respectively. We have used the same principle in our study where

we perform PCA on the simulation-derived contact probabilities matrices in order

to identify A/B compartments. We have performed PCA analysis using the Python

package.
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3.1 Polymer-based model recapitulates chromosome-

conformation capture data

To begin with, we have modelled chromosome 11 of mouse for two reasons: �rst, it

harbours crucial factors responsible for B cell development and second, this chromo-

some has a genomic length of 122kb that is intermediate in size. Hence, it is optimal

in terms of handling complexity in a computationally a�ordable model. As described

in chapter 2 in section 2.2, we have modelled the chromosome as a beads-on-a-string

homopolymer consisting of identical monomers or beads at 40kb resolution in our

study. The energy function incorporates experimentally rendered Hi-C probability

matrix, excluded volume interaction and the resultant polymer model is constrained

in a con�nement (refer section 2.3.2) that is commensurate with its chromosomal

territory (Figure 2.1).

To validate our proposed computational model, we �rst computed the simulation

contact probability matrix by averaging over the ensemble of conformation simulated

across multiple con�gurations (averaged over 200 × 2000 independent conformations)

and compared it with the experimental contact matrix obtained from the Hi-C data

(refer section 2.7 for details of simulation-derived contact probability calculation).

Figure 3.1a and 3.1b compares the heatmap between simulation derived contact prob-

ability matrix and the experimental Hi-C contact probability matrix of chromosome

11 for Pre-Pro-B and Pro-B cell stage, respectively. With a Pearson correlation co-

e�cient of 0.91 and 0.92 between corresponding experimental and simulated contact

probability matrices of Pre-Pro-B and Pro-B, respectively, our model clearly indi-

cates a very good agreement between simulations and experimental data for both cell

stages. This is also evident through remarkably similar checker-board patterns of the

corresponding matrices in both cell types. The results also show that inspite of con-

sidering only a small percentage of experimental interactions in our simulations above

49



Results

(a) Pre-Pro-B (b) Pro-B

Figure 3.1: Comparison of experimental versus simulation-derived contact

probabilities The heatmap shows the comparison between experimental and simu-
lated contact probability maps of chromosome 11 at 40kb resolution for (a) Pre-Pro-B
and (b) Pro-B cells.

a threshold, Pc, such that Pij ≥ Pc where Pc = 0.04, our model faithfully reproduces

not only the considered Hi-C interactions but also those experimental Hi-C interac-

tions which weren't included in the initial incorporation while generating the model.

This result contributes to the model's e�ciency and performance only on limited in-

put information. In the heatmap generated in Figure 3.1, we also observed intense

diagonal regions which indicate smaller distances having a higher contact probability

between neighbouring chromosomal regions. This is justi�ed since the proximal re-

gions represented by the diagonal, tend to exhibit higher contact probabilities than

the distal genomic regions that exhibit relatively smaller contact probabilities unless

there is a possibility of formation of highly interacting regions such as TADs. We talk

about the presence and predictability of these regions further in section 3.2.4.

For a more rigorous assessment of the computed simulation-derived matrix, we

plotted a heatmap of the di�erence matrix, calculated as di�erence between the

simulation-derived contact probability matrices and the experimental contact prob-

ability matrices for both Pre-Pro-B and Pro-B (Figure 3.2a for Pre-Pro-B and 3.2b
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(a) Pre-Pro-B (b) Pro-B

Figure 3.2: Di�erence plot between simulation-derived and the experimen-

tal contact probabilities The heatmap shows the di�erence between experimental
and simulated contact probability maps of chromosome 11 at 40kb resolution for (a)
Pre-Pro-B and (b) Pro-B cells. The blue and red colours in the colour bar indicate
higher contact probability in the experimental data and simulation, respectively.

for Pro-B) cell stage. We observe that this di�erence for any bead i and j is minimal

in both cell types (the white regions in the di�erence plots), except in regions near

the diagonal. In the diagonal region, simulation contact probability is estimated to

be higher than the corresponding experimental probabilities. This could arise due to

the high interaction frequencies between consecutive beads of the polymer owing to

their physical proximity that accounts for the over estimation of contact probabilities.

Even in the absence of any contact information, the simulation contact probabilities

tend to be greater due to the closely packed adjacent beads that lead to the observed

di�erence. Thus, the results from the di�erence heatmap indicate that for longer

genomic distances, the simulation-derived contact probabilities are in agreement and

exhibit least di�erence with the experimental contact probabilities.

Further, in order to quantify this di�erence, we generated the probability density

plot of absolute di�erences between the experimental and simulation contact proba-

bilities for both cell types (Figure 3.3), after excluding the noise near the diagonal

regions that was due to the higher di�erences in the contact probabilities, as observed
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in Figure 3.2 above. In the distribution of absolute values of the di�erence in contact

probabilities between experiment and simulation data obtained from the di�erence

heatmap, we see that the discrepancy or the di�erence between the simulation and ex-

periment contact probability is as tiny as <0.1, indicating that there is a fair amount

of agreement between the simulation and experiment contact probabilities. We ob-

serve that above 90% of the contact probabilities show the absolute di�erence close

to 0, indicating almost negligible di�erence between the experimental and simula-

tion probabilities, thereby, suggesting our model's conformity with experiments. We

observe the maximum di�erence value to be as low as 0.004 and 0.006 between experi-

mental and simulation-derived probabilities for Pre-Pro-B (Figure 3.3a) & Pro-B cells

(Figure 3.3b), respectively. Due to these small scale di�erences, we demonstrate that

our model is su�ciently robust to be investigated for the analysis and prediction of

key chromosomal properties. We discuss about them in section 3.2 where we further

test our model for results independent of any experimental inputs.

Finally, we also show a conformation representative from the ensemble of confor-

mations for the structure of chromosome 11 obtained via simulations for Pre-Pro-B

(Figure 3.4a) and Pro-B (Figure 3.4b). The snapshots were generated using VMD

software and rendered for image quality purposes. The chromosomal regions have

been coloured with respect to their genomic location for both Pre-Pro-B and Pro-B

chromosome models.

3.2 Model independently demonstrates intrinsic struc-

ture and folding properties of chromatin

The above results were obtained based on the initial input of the biological data

provided during the model generation and incorporation of Hi-C step (discussed in

section 2.4). In order to test the predictability, reliability and behaviour of our simu-

52



Results

(a) Pre-Pro-B (b) Pro-B

Figure 3.3: Absolute di�erence plot between experiment and simulation-

derived contact probability matrices The absolute di�erence plot shows maxi-
mum di�erence value of 0.004 and 0.006 between experimental and simulation-derived
probabilities for (a) Pre-Pro-B and (b) Pro-B cells, respectively.

(a) Pre-Pro-B (b) Pro-B

Figure 3.4: Representative snapshot of chromosome 11 The regions of the
chromosome have been coloured with respect to their genomic location for both (a)
Pre-Pro-B and (b) Pro-B chromosome models.
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lated model structures, we extended our investigation to explore some of the intrinsic

properties of the chromatin which were independent of any implicit or explicit exper-

imental inputs other than the Hi-C data used during the generation of the model.

3.2.1 Chromatin folding

Starting with the highest chromosomal level of organisation, we �rst investigated the

nature of folding of our simulated chromatin structures. It has been shown that the

genome is fractal globule in nature unlike the equilibrium globule state as shown

in previous studies [7, 84, 85] and also discussed in section 1.2.1. During polymer

condensation, topological restrictions that forbid one part of the chain from crossing

over another result in the development of a fractal globule, which is essentially a

compact polymer state. If the attraction between the monomers is strong enough to

overcome the e�ect of excluded volume repulsion or if the polymer is contained in a

su�ciently tiny volume, the polymer instead experiences a coil-globule transition and

becomes an equilibrium globule [85]. Based on this background, we carried out the

analysis of chromatin folding for our simulated structures.

The standard method is by observing the scaling of contact probabilities P(s) as

a function of genomic distance (s) which follow a power-law relationship also repre-

sented from its slope [7]. The scaling of s -1 means that loci two-fold farther apart

having greater genome distance are two-fold less likely to interact with a smaller

contact probability. To examine this relationship in our model, we plotted the intra-

chromosomal contact probabilities as a function of genomic distance for both the

simulated structures that represented the respective cell types (Figure 3.5). The in-

verse power law scaling with the slope of -0.86 (s -0.86) and -0.83 (s -0.83) was observed

in case of Pre-Pro-B (Figure 3.5a) and Pro-B simulated structures (Figure 3.5b), re-

spectively. These values are very close to the previously reported value of -1 (s -1)

for fractal nature of chromosomes as discussed above. These �ndings allowed us to
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validate that the folding and local packing of the polymer structures we used to rep-

resent a single chromosome behaved in a way that was compatible with a fractal

globule. Due to the fractal globule architecture of our simulated structures, our in

silico chromatin structures would be able to function similarly to the in vivo chro-

matin structures, showing fast and extensive opening of genomic loci as well as their

spatial mobility in the unfolded state. This essentially con�rms the reliability of our

model. Interestingly, if a chain folds as a fractal globule, each consecutive region of

the chain (called subchain) occupies a distinct spatial region termed as genomic ter-

ritories [85] that is a continuous and spatially compact genomic region with di�erent

regions occupying di�erent spatial locations. This spatial segregation due to the frac-

tal globule nature is exhibited at further scales, discussed at the level of chromatin

compartments and TAD formations at the sub-chromosomal scale in the upcoming

sections. At the nuclear scale, this segregation of subchains was shown to be analo-

gous to the segregation of polymer rings formed due to the topological constraints,

and it was proposed as a mechanism for the establishment of the chromosomal terri-

tories [35,84]. Therefore, based on such convincing results on a single chain polymer

model at the chromosomal level, we deduce that a genome-wide polymer model at

a larger nuclear or genomic scale, generated using the approach implemented in our

study would, certainly, demonstrate the formation of genome-wide architecture of

chromosome territories observed in a cell nucleus.

3.2.2 3D modularity of chromatin

We were then interested to examine the e�ect of deletion of regions and comparing

those partial chromatin regions with the entire chromosome in order to better under-

stand the spatial modularity in chromatin folding. To do so, we considered di�erent

sizes of the chromatin polymer chains of N = 51, 101, 201, 501, 1001 and 2001 beads

and simulated these self-avoiding chromatin chains of di�erent lengths. These regions
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(a) Pre-Pro-B (b) Pro-B

Figure 3.5: Chromatin folding prediction Plot of cumulative contact probabil-
ities (P(s)) as a function of genomic distance (s) with a slope (�t shown in red) of
-0.86 for (a) Pre-Pro-B and -0.83 for (b) Pro-B which is close to the slope of -1.0 for
a fractal globule structure.

of variable lengths were selected starting from the centre of the chromatin polymer

and extending at equal intervals towards the left and right of the chain. We estimated

the radius of gyration, Rg, for these various values of N in order to derive the power

law scaling from our simulations. The resulting plot is shown in Figure 3.6a. By

taking into account how, for large values of N, the polymer's radius of gyration Rg

behaves, one may apply the most popular critical exponent, the compactness index, ν,

which has been studied previously for the three polymeric phases [112]. The value of ν

corresponds to 1/2 for a random-walk polymer, 3/5 for a self-avoiding walk polymers

without any restraints and 1/3 if the self-avoiding chain polymer is in collapsed phase

inside a con�ned boundary. From our results in Figure 3.6a, we �nd that the chro-

matin behaves in a modular fashion with its Rg correlated as the slope corresponding

to 0.297 which is slightly less than 1/3 for the collapsed state of self-avoiding walk

polymer in a con�nment. This is due to the presence of intra-chromosomal local in-

teractions obtained from Hi-C that have been incorporated as weak harmonic bonds.
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Hence, the value (of 0.297) is little lesser than the expected value of 0.33. It is deduced

that even though our chromatin polymer faithfully follows the polymeric properties,

it is in�uenced slightly due to the presence of genomic interactions that in turn gov-

ern its overall folding. This essentially implies chromatin folding in a bad solvent

having more intra-polymeric interactions than polymer-solvent interactions which is

certainly the case since the chromatin-chromatin interactions are more prevalent in

deciding the chromatin organisation and arrangement inside the nucleus.

Since, we see that these interactions play a crucial role in governing the folding

and dynamics of chromatin polymer, we were interested to investigate their nature

of impact. For this, we plotted the Rg of di�erent regions of same size (=200 beads)

and examined its behaviour. From Figure 3.6b, we show that short-ranged local

interactions are more prevalent than the long-ranged interactions. Also, there is

heterogeneity in these interactions as is evident from the di�erent values of Rg for the

same size of polymer. It is the presence of these heterogenous local interactions that

impacts the chromatin folding and three dimensional architecture of chromatin.

3.2.3 Chromatin state

Further at the next hierarchical chromatin organisation level, we investigated if our

model can determine the states of the chromatin regions as transcriptionally active

and inactive, i.e. A and B compartments, essentially corresponding to the euchro-

matin and heterochromatin regions respectively (discussed in section 1.2.2). Owing

to the fractal globule nature of our simulated structures seen in the above section

3.2.1, we anticipated chromosomal segregation into compartments. To investigate

that, we performed Principal Component Analysis (PCA) to our simulation derived

contact probability matrices. It has been discussed earlier in section 2.8 that PCA

is the canonical and the most popular method for identifying compartmental status

of a given region, where the �rst principal component (PC1) or eigenvector captur-
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(a) Chromatin Modularity

(b) heterogeneity in local chromatin interactions

Figure 3.6: 3D Chromatin Modularity (a) Behaviour of chromatin regions in
terms of their Rg values for di�erent sizes of the polymeric chain. (b) Behaviour
in terms of mean Rg values of di�erent chromatin regions of same size. Standard
deviation for each region is indicated as red error bars.
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ing the dimension with the highest variance, is utilised to assess the region's A/B

compartmental status. The PC1 has two sets of values assigned, i.e. positive and

negative PC1 values. The permissive A compartment regions are represented by the

positive PC1 values and the repressive B compartment areas are represented by the

negative PC1 values [7]. Further, it was also shown that the areas with positive

eigenvalue harboured more genes based on the investigations on the gene expression

levels and the histone modi�cations carried out on both the positive and negative

regions. This also resulted in the formation of more genomic interactions in the pos-

itive PC1 regions that were also captured in the Hi-C. Therefore, the corresponding

gene expression levels were relatively high and these regions correlated well as the

transcriptionally active or permissive A compartment regions. On the contrary, the

negative eigenvalue is related to gene-poor regions with lesser genomic interactions,

thus, correlating well with the transcriptionally inactive or repressive B compartment

regions. These interactions were well represented through the checker-board pattern

in the Hi-C matrix. We implemented the same concept to our simulation results to

identify A/B compartments through PCA and simultaneously overlaid it with the

experimental contact probability heatmap for its validation, as shown in Figure 3.7.

The results clearly demonstrate the segregation of chromatin into A and B compart-

ments where the positive PC1 values of the simulation data (black region in Figure

3.7) correlate to the A compartment in the experimental heatmap while the negative

PC1 values (grey region in Figure 3.7) correspond to the B compartment in the ex-

perimental heatmap in case of both Pre-Pro-B (Figure 3.7a) and Pro-B (Figure 3.7b)

simulated structures. This invariably con�rms the correctness of our model structures

wherein the chromatin status of di�erent regions in the simulated chromatin model

is predicted correctly in accordance with the corresponding chromatin status of those

regions observed experimentally. Hence, we establish the e�ciency of our model even

at the megabase level of chromatin organisation.
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(a) Pre-Pro-B (b) Pro-B

Figure 3.7: Prediction of chromatin state Prediction of chromatin states from
PCA (PC1 values) of the simulation derived contact probabilities is compared with the
heatmap of experimental contact probabilities for (a) Pre-Pro-B and (b) Pro-B. The
plot shows that the prediction of A compartments (or permissive regions) from the
positive PC1 values (black region) in the simulation corresponds to the high contact
probabilities in the experimental matrix while the prediction of B compartments
(or repressive regions) from the negative PC1 values (grey region) in the simulation
corresponds to the low contact probabilities in the experimental matrix.
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3.2.4 Prediction of TADs

After the encouraging performance of our model at the sub-chromosomal level, we

were interested to examine its behaviour at the sub-megabase level also. At this

level, the chromatin is compacted and organised into highly self-interacting regions

called TADs (discussed in section 1.2.3) where TAD boundaries are important in

gene regulation. These can be seen as `triangles' near the diagonal in the Hi-C con-

tact heatmap. Owing to such a critical role in gene regulation, we were keen if our

model could represent TADs and TAD boundaries accurately. There are a num-

ber of well-established TAD prediction tools, such as Arrowhead [36], TADbit [113],

TADtree [114], TopDom [115] and many others. Based on the evaluation of many

TAD callers and eventually choosing the one that produced the most consistent and

visually pronounced TADs, we decided to use Armatus TAD caller [10] for our anal-

ysis. In Armatus, TADs are de�ned using algorithms that detect switches in the

directionality of interactions. Figure 3.8a shows the results for TAD calling for Pre-

Pro-B and Figure 3.8b for Pro-B that compares the results of the simulated structures

with their corresponding experimental data. We observe that the number of domains

predicted for simulated structure is 480 and 463 for experimental data in case of Pre-

Pro-B while for Pro-B, the number of domains predicted for simulated structure is

511 and 410 for the experimental data. The positions of the corresponding TAD in

simulated structure versus experimental data for both the cell types is remarkably

similar as shown in Figure 3.8. This is a bona�de agreement of the simulated chro-

matin structures with the intrinsic feature of TAD formation in chromosomes, even

at such small sub-megabase pair level.
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(a) Pre-Pro-B (b) Pro-B

Figure 3.8: Prediction of TADs We have used Armatus [10] to predict TADs
from the simulated (blue triangles) structures and the experimental (green triangles)
contacts obtained from Hi-C. The results are shown for (a) Pre-Pro-B and (b) Pro-B
simulated structures representing the two cell stages. In this �gure TADs which are
at least 1 Mbp long have been shown.

3.2.5 Phase separation

Further, we examined for possible phase separation of A and B compartments in 3D

space in our simulated structures. The dynamic phase separation of the genome had

been proposed due to the �exible chromatin structure and movements [116]. Phase

separation is the consequential e�ect in 3D arising initially as an outcome of chromatin

folding as fractal globule resulting into segregation of genomic regions discussed in ear-

lier sections. Further, due to the respective spatial constraints to allow for di�erences

in interactions of transcriptionally active and inactive regions with other genomic

regions, that these similar-state chromatin regions tend to co-localize and become

phase separated. Phase separation may also result from a number of non-equilibrium

processes occurring inside the cell nucleus, such as transcription, chromatin remod-

elling, and other processes, in addition to passive interactions caused by the various

chromatin regulators and histone markers linked to regions of euchromatin and het-

erochromatin. The phase-separated multi-molecular assemblies have previously been
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(a) Pre-Pro-B
(b) Pro-B

Figure 3.9: Phase Separation Phase separation of A and B compartments in the
simulated structures for (a) Pre-Pro-B and (b) Pro-B cell stage. Similar compartment
regions (A compartment in red and B compartment in cyan colour) co-localize leading
to a phase separation of active (permissive) from inactive (repressive) regions.

studied to provide a general regulatory mechanism of transcriptional control [116].

We try to investigate the phase separation in our simulated structures from Figure

3.9a for Pre-Pro-B and Figure 3.9b for Pro-B simulated structures and show that

the similar compartment regions (A compartment in red and B compartment in cyan

colour) co-localize leading to a phase separation of active (permissive) from inactive

(repressive) regions. We generated these images by visualising the simulated struc-

tures in VMD. Although these results are after qualitative visual inspection only, it

will be further interesting to observe di�erential patterns in these phase-separated

compartments which we speculate to largely determine dynamic genome organisation

and contribute towards cell fate decisions (discussed further in section 3.3).

3.2.6 Spatial positioning

Further, we were interested to quantitatively assess the preferential spatial position-

ing of these phase separated compartments in 3D space. To do so, we computed

the mean distances of A and B compartments from the centre of mass (COM) of

the simulated structures. The resultant plot in Figure 3.10a for Pre-Pro-B simulated
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structure and Figure 3.10b for Pro-B, clearly shows that the A compartments have

larger mean distance from the COM of the chromatin polymer indicating that these

active regions tend to position themselves farther from the centre and towards the

periphery of the chromatin. This positioning in 3D space in the exterior surface of

the chromatin would allow easy accessibility of the genes harboured by these com-

partments to the transcriptional machinery of the cell, for their expression. On the

other hand, the B compartments have smaller mean distance from the COM of the

chromatin polymer indicating that these inactive regions are closer to the COM and

are buried in the interior of the chromatin correlating to the inactivation of genes in

those compartments. We can, thus, say that the phase separated compartments have

preferential positioning in space which is directly related to their gene expression.

Therefore, it can be deduced that our model's predictions on the state and position-

ing of its chromatin regions in 3D space are in-line with the theoretical phenomenon

where the spatial arrangement of chromatin has a signi�cant in�uence on the genome

function. In the upcoming sections, we show dynamics of these regions as the cell

di�erentiates during B-cell development.

Taken together, our �ndings show that our model is able to successfully capture

and predict some of the very important characteristic features of chromatin architec-

ture at di�erent levels of chromatin organisation, such as folding of chromatin as a

fractal globule, transcriptional state of chromatin resulting into compartmentaliza-

tion into A/B compartments, formation of TADs and prediction of TAD boundaries,

phase separation of similar chromatin state regions and the spatial positioning of the

transcriptionally variable regions in context of the chromatin, all of which are inde-

pendent of any biological inputs other than a small subset of the Hi-C interactions

used during model generation and are entirely the resultant properties and behaviour

of our generated simulated structures. Hence, we have established the reliability

and predictability of our model. We, now, use these characteristics as our model's

64



Results

(a) Pre-Pro-B (b) Pro-B

Figure 3.10: Preferential spatial positioning of compartments Mean dis-
tances of A and B compartments from the centre of mass (COM) of the simulated
structures of (a) Pre-Pro-B and (b) Pro-B. In both the structures, A compartments
have larger mean distance from the COM of the chromatin indicating their preferen-
tial positioning farther from the centre, at the chromosomal periphery while smaller
mean distances of B compartments indicates that their preferential positioning is in
the interior of the chromatin, closer to the centre of the chromatin polymer.

strengths and extend our investigation to further carry out comparative analysis of

the two cell types and examine cell type speci�c di�erential changes.

3.3 Comparative analysis of simulated structures demon-

strates lineage-dependent chromatin architecture

The remarkable agreement of the chromatin interactions, folding behaviour, com-

partmentalization and TAD formations between the simulated structures and the

experimental data of the two cell stages, Pre-Pro-B and Pro-B, led us to extend the

model's usage in comparing the chromatin organisation and capturing the structural

alterations during cell di�erentiation that could not be captured in experiments. We

proceeded to speci�cally probe spatial rearrangements of chromatin regions and re-

organisation of chromatin architecture signifying functional implications as the cell

progresses towards a committed cell stage during B-cell development.
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3.3.1 Chromatin undergoes reorganization during B-cell de-

velopment

We were interested in qualitatively investigating if there were any changes in chro-

matin organisation by doing the comparative analysis of the two simulated structures

representing di�erent stages of B-cell di�erentiation (Figure 3.11). We �rst plotted

the number of compartments in both the cell stages as identi�ed from their respective

simulated structural models (Figure 3.11a). In the �gure, it was observed that there

is indeed a rearrangement of chromatin architecture in Pro-B cells as evident from

the di�erence in the number of A and B compartments between the two simulated

structures. This indicates di�erential transcriptional states of chromatin regions in

the two cell types highlighting their contribution towards maintaining the cell iden-

tity and also responsible for governing cellular transitions. To further support it, we

quantitatively investigated the number of compartments switching from A to B and

B to A compartments and plotted the result in Figure 3.11b. The result con�rms that

although small, the chromatin undergoes compartmental switching as the cell di�er-

entiates from Pre-Pro-B to Pro-B stage during the B-cell development. We anticipate

that this developmental change leads to the activation and repression events of lineage

speci�c and multi-lineage genes, respectively, leading to switching of compartments

between permissive and repressive states as the cell transitions towards a committed

and di�erentiated cell stage (i.e. Pro-B) from an undi�erentiated stage (i.e. Pre-

Pro-B). The small-scale di�erence is justi�ed because, �rstly, this transition from an

undi�erentiated to a di�erentiated cell stage is a collective outcome of the di�erential

changes contributed by all the chromosomes of the cell which weren't considered in

our model. Hence, our results show only the contribution of the chromosome under

consideration for this study, which is the sub-set of the concerted dynamics brought

by the entire genome. Secondly, the two cell stages under consideration are otherwise
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(a) Comparative analysis of compartments (b) Compartmental rearrangement

Figure 3.11: Comparative analysis of simulated structures. (a) Comparison
of di�erential number of compartments in Pre-Pro-B and Pro-B. (b) Compartmen-
tal rearrangement from A to B and vice versa during cell di�erentiation as the cell
progresses from Pre-Pro-B to Pro-B stage.

very similar in their expressions except for the small yet crucial lineage dependent

di�erential expressions. Therefore, the set of di�erential genes here undergoing the

transitions could be very small as compared to the set of other house-keeping genes

maintaining the similar state of expression in both the cell stages; but to be able to de-

tect these changes has proved to be a phenomenal achievement by our model. Within

the scope of this study, the model's performance is highly remarkable as it succeeds

in detecting those crucial consequential changes (with limited initial parameters) that

were very di�cult to detect otherwise.

3.3.2 A/B compartmental switching promotes cell-type de-

pendent genetic switch for B-cell fate commitment

After identifying chromatin rearrangements upon comparing the two structures rep-

resenting the di�erent stages during B-cell development, discussed in section 3.3.1

above, we further examined those speci�c regions which underwent the shift in their

chromatin states and resulted in chromatin reorganisation. To do so, we compared the
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compartmental status of the entire chromatin of both the simulated structures and

identi�ed those regions that showed compartmental switching which consequently,

contributed to the di�erential functional state of the cell. In order to quantitatively

identify these switched regions, we compared the PC1 values of both Pre-Pro-B and

Pro-B structures (top two panels in Figure 3.12) and identi�ed genomic regions that

showed opposite signs in their corresponding PC1 values in the two cell types. The

regions shown as green bars in the bottom-most panel in Figure 3.12 are the re-

gions that switched from either permissive to repressive or repressive to permissive

compartments in Pro-B cells. In total, >4% of the regions showed compartmental

switching from permissive to repressive (A to B) compartments while >5% of the

regions showed the reverse trend in Pro-B cell stage (Figure 3.11b). These results

substantiate that the compartmental switching between A/B compartments corre-

lates to cell type speci�c genetic switch. To further verify, it would be interesting to

know the expression of genes harboured by these switched regions in order to estab-

lish functional relevance associated with the switching observed. To quantitatively

carry out this examination, we �rst annotated these regions and performed expression

analysis in the two cell types (discussed later in section 3.4). The goal was to identify

if the switched regions possessed any lineage-speci�c or alternate-lineage genes that

underwent compartmental switch from B to A and A to B compartments demonstrat-

ing gene activation and gene repression events, respectively, during the developmental

transition from Pre-Pro-B to Pro-B cell stage.

3.3.3 Di�erential spatial positioning of switched compartments

reveals dynamic structural rearrangements in chromatin

Within a single chromosomal territory, it has been observed previously that the inner

region is comprised of more condensed chromatin domains, while a thin layer of more

decondensed chromatin, known as the perichromatin region, can be found around
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Figure 3.12: Identi�cation of switched compartments. Comparison of PC1
values of both Pre-Pro-B and Pro-B cells is plotted in the �rst two panels. The
regions shown as green bars in the third panel are the compartments that switched
from permissive to repressive and vice versa in Pro-B cells.

the chromosomal periphery [117]. Also, earlier in the section 3.2.6, we had seen

that the spatial positioning of the genome critically impacts its function and that's

why genomic regions have preferential positioning in 3D space corresponding to their

chromatin state. The most active genomic regions preferentially lie at the surface of

the chromosomal territory while the inactive regions are buried inside, which is also

demonstrated in our simulated structures for both cells (Figure 3.10). Since we had

observed a shift in the chromatin status of some of the genomic regions of the Pre-

Pro-B cell, we were intrigued to investigate the corresponding changes in the spatial

positioning in 3D of these switched regions in the two cell types from their respective

structural models. Therefore, we tried to investigate the distance of these switched

regions from the COM of the chromatin. We plotted the mean distance of all the

switched bins (from both A to B and B to A) from the COM of the chromatin as

shown in Figure 3.13. It was observed that the distance between the spatial positions

of most of the regions switching from permissive A compartment in Pre-Pro-B (blue
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dots in Figure 3.13a) to repressive B compartment in Pro-B cells (orange dots in

Figure 3.13a) and the centre of mass of the chromatin, reduces in Pro-B indicating a

shift in their spatial position towards the interior of the chromosomal territory. Since

these regions show switching into repressive compartments, they also dynamically

rearrange spatially and move from the periphery towards the chromatin interiors

which is also indicative of the preferred position of inactive chromatin state.

On the other hand, a reverse trend was observed where an increase in the distances

between the regions switching from repressive B compartments in Pre-Pro-B (blue

dots in Figure 3.13b) to permissive A compartments Pro-B cells (orange dots in Fig-

ure 3.13b) and the centre of mass of the chromatin suggested spatial rearrangement of

regions in the repressive compartment residing at the interior, to permissive compart-

ment shifting towards the periphery of the chromosomal territory which is indicative

of the preferential positioning of activated chromatin state. Together, the overall in-

vestigation undoubtedly indicates that the genomic regions spatially rearrange them-

selves depending upon their acquired active or inactive status and dynamically move

towards their preferential positions within the chromosomal territory. This clearly

implies that the chromatin undergoes dynamic structural alterations in the Pro-B

cell stage, orchestrating functional implications resulting in a committed B-cell stage.

3.3.4 Degree of compactness of switched regions corresponds

to lineage-dependent alterations in chromatin structural

framework

Further, in support of our previous �ndings, we moved forward to investigate if there

exists any change in the compactness and folding of the switched regions. The com-

pactness of a region measures the degree of openness or closeness in 3D space which

is also associated to the chromatin state and function. In order to examine these
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(a) Compartment switching from A to B

(b) Compartment switching from B to A

Figure 3.13: Spatial positioning of regions switching compartments. (a)
Compartments switching from A compartment in Pre-Pro-B to B compartment in
Pro-B. Blue dots indicate the distance from the COM of regions in the permissive
compartment in Pre-Pro-B while orange dots indicate their distance from COM in
the switched repressive compartments in Pro-B. (b) Compartments switching from
B compartment in Pre-Pro-B to A compartment in Pro-B. Blue dots indicate the
distance from the COM of regions in the repressive compartment in Pre-Pro-B while
orange dots indicate their distance from COM in the switched permissive compart-
ments in Pro-B.
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di�erential structural changes in the switched regions of chromatin in Pro-B cell, we

computed the radius of gyration, Rg (a popular metric in polymer-physics) which

measures the compactness of a region that also correlates to the accessibility of that

region; lower Rg value represent a more condensed or compacted state indicating an

inactive repressed region while active permissive regions are less compacted and de-

condensed having a larger Rg value providing an easy access to the transcriptional

machinery. As a �rst step to calculate Rg, we identi�ed and selected regions show-

ing compartmental switching consisting of a continuous stretch of atleast four beads.

Then we computed the Rg of these regions in both Pre-Pro-B and Pro-B simulated

structures. From Figure 3.14a, we �nd that the Rg value of most regions in the

permissive compartment in Pre-Pro-B structure show a slight reduction when they

switch to repressive compartment in Pro-B cell. It is to be noted that the e�ect is

more pronounced and easily visible in regions that are longer in length (regions from

2235 to 2244 and from 2265 to 2343 bead in Figure 3.14a) than the regions of smaller

length comprising of 4 beads (regions from 1464 to 146 and from 2060 to 2064),

as the measurement of compactness makes more sense as the length of the region

increases. The same holds true in case of �gure 3.14b where an increase in the Rg

value of most regions switching from repressive compartment in Pre-Pro-B cell to

permissive compartment in Pro-B cell was observed. These results clearly show that

the compartmental switching is favoured by relative change in the compactness of

those regions where active regions in the Pre-Pro-B stage acquire a more compacted

structure when they switch into inactive compartments in the Pro-B stage while the

inactive regions in Pre-Pro-B open up and attain a comparatively less compacted de-

condensed structure when they switch to active compartments in Pro-B cells. Hence,

we demonstrate a shift in the chromatin structural framework that governs the func-

tional state as the cell di�erentiates into lineage-speci�c developmental stages.

We speci�cally show the above changes occurring in Ebf1, the master regulator
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(a) Rg of regions switching from A to B

(b) Rg of regions switching from B to A

Figure 3.14: Analysis of compactness of regions that show compartmental

switching. (a) Radius of gyration (Rg) of regions switching from permissive A com-
partment in Pre-Pro-B to repressive B compartment in Pro-B. (b) Radius of gyration
(Rg) of regions switching from repressive B compartment in Pre-Pro-B to permissive
A compartment in Pro-B.
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and crucial factor for B-cell commitment [107,118], through our simulated structures

in Figure 3.15 (top). It is evident that the Ebf1 region in the repressive compartment

of Pre-Pro-B structure (red beads in Figure 3.15a) is a compact region buried in the

interior of the chromatin that rearranges itself towards the chromosomal surface and

acquires an open chromatin state as it switches to permissive compartment in the

Pro-B structure shown in Figure 3.15b. This provides clear evidence of the struc-

tural change in the chromatin organisation framework during di�erentiation having

consequential functional implication of activation of lineage dependent gene, Ebf1, in

Pro-B cells con�rming B-cell fate commitment. Thus, through our model, we were

able to show activation of lineage-dependent genes is related to 3D changes in the

structure and architecture of chromatin.

Similarly, Ccl11 is a chemokine gene from the CC subfamily that displays chemo-

tactic activity for eosinophils only. It is an eosinophil-speci�c chemokine that has no

signi�cant functional relevance in the B-cell development and hence, is an alternate

lineage-dependent gene. From the 3D positioning of Ccl11 (in read beads) in Figure

3.15c and 3.15d, it is distinctly evident that 3D spatial positioning of Ccl11 gene

shifts from the exterior of the chromatin structure (in the undi�erentiated Pre-Pro-B

cell stage) and buries towards the interior in the committed Pro-B cell stage. Al-

though small, a relative increase in the compactness of the gene is observed in the

simulated structure of Pro-B stage indicating an inactivation event of the function

of the gene. Together from these results of both the genes, we con�rm the lineage-

dependent dynamic structural alterations in the chromatin architecture during B-cell

development.
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(a) Ebf1 in Pre-Pro-B (b) Ebf1 in Pro-B

(c) Ccl11 in Pre-Pro-B (d) Ccl11 in Pro-B

Figure 3.15: Di�erential 3D positioning of lineage dependent and

alternate-lineage dependent gene examples. (top) 3D position of lineage-
dependent gene Ebf1 (in red beads) in (a) Pre-Pro-B and (b) Pro-B simulated struc-
tures. (bottom) 3D position of alternate-dependent gene Ccl11 (in red beads) in (a)
Pre-Pro-B and (b) Pro-B simulated structures.
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3.4 Prediction of novel di�erential regions and their

role in maintaining cell identity during di�eren-

tiation

So far through our model, we were able to identify and compare the chromatin archi-

tectural changes between two cell types during di�erentiation. From the convincing

performance of our model to accurately capture these intrinsic and di�erential features

of the chromatin organisation, we extended its capabilities to predict novel di�erential

genes that weren't captured in the experiments but showed evident changes in our

simulated structures of the two cell types. We further supported our model's predic-

tion through experimental validations in order to establish this predictive behaviour

to our model's existing features.

We �rst annotated the genomic regions which showed compartmental switching,

with genes from the publicly available data in UCSC (http://genome.ucsc.edu) and

other published resources [119] in order to cross-examine their functional roles that

can be associated to the observed compartmental switching. All the genes switching

compartments from Pre-Pro-B to Pro-B, identi�ed through our simulated structural

model of Pre-Pro-B and Pro-B cells are listed in Table 3.1. Next, we compared this

list with the publicly available RNA-seq expression data of both cell types [120] and

identi�ed genes in our results which showed di�erential patterns in the two cell types

that were not captured in the RNA-seq expression data. We call the novel list of

these genes as predicted exclusively from the simulated structures (Table 3.2).
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Table 3.1: List of genes switching compartments from Pre-Pro-B to Pro-B, identi�ed

through the simulated structures of the two cell types

2210407C18Rik 0610010F05Rik, Gm12167, Myo1g

4930405D11Rik 1700030C12Rik, Gm12184, Nacad

4930507D10Rik 1700061J23Rik, Gm12185, Ntn1

4930527B05Rik 1700093K21Rik, Gm12188, Nudcd3

5530401A14Rik 2610024D14Rik, Gm12192, Olfr1393

Ankfn1 4921536K21Rik, Gm12193, Olfr1396

Asic2 4930512M02Rik, Gm12194, Olfr56

Car10 8430429K09Rik, Gm12195, Osbp2

Ccl11 9130017K11Rik, Gm12196, Papolg

Ccl12 9130230N09Rik, Gm12208, Peli1

Ccl2 9230020A06Rik, Gm12209, Pex13

Ccl7 9530068E07Rik Gm12210, Phykpl

Ccl8 9930111J21Rik1, Gm12235, Pik3ip1

Cox11 Actr2, Gm12301, Pla2g3

Fam183b Aftph, Gm12303, Psme2b

Gm11207 Ahsa2, Gm12304, Pus10

Gm11416 Atox1, Gm12305, Rab1a

Gm11417 B3gnt2, Gm12592, Rack1

Gm11419 C78197, Gm16170, Rasgef1c

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Continued on next page
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Table 3.1: List of genes switching compartments from Pre-Pro-B to Pro-B, identi�ed

through the simulated structures of the two cell types (Continued)

Gm11494 Canx, Gm16518, Rel

Gm11498 Cby3, Gm20169, Rnf130

Gm11500 Ccm2, Gm20456, Rnf185

Gm11501 Cct4, Gm22600, Rpl12-ps2

Gm11502 Cct4, Gm22753, Rufy1

Gm11506 Cep68, Gm22807, Selenok-ps1

Gm11511 Cfap52, Gm22990, Selenom

Gm11512 Cnot6, Gm23114, Sertad2

Gm11516 Col23a1, Gm23492, Slc1a4

Gm12251 Commd1, Gm23582, Slc35e4

Gm12252 Cy�p2, Gm23681, Slc36a1

Gm12253 Dusp18, Gm23772, Slc36a1os

Gm12254 Ebf1, Gm23813, Slc36a2

Gm12255 Efcab9, Gm23827, Slc36a3

Gm12570 Ehbp1, Gm24013, Slc36a3os

Gm17268 Eif4enif1, Gm24313, Smtn

Gm22599 Eml6, Gm24398, Snora5c

Gm22702 Fam161a, Gm24439, Snord95

Gm22762 Fam71b, Gm24917, Snord96a

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Continued on next page
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Table 3.1: List of genes switching compartments from Pre-Pro-B to Pro-B, identi�ed

through the simulated structures of the two cell types (Continued)

Gm24612 Fbxw11, Gm25296, Stk10

Gm24856 Fstl4, Gm26157, Stx8

Gm25113 G3bp1, Gm26253, Tbc1d9b

Gm31522 Gas7, Gm26393, Tbrg4

Hlf Gfpt2, Gm27194, Tcn2

Kif2b Gm10428, Gm27517, Trim41

Lypd8 Gm11186, Gm27624, Trim7

Lypd8l Gm11189, Gm27640, Tug1

Lypd9 Gm11944, Gm27937, Ugp2

Myo1d Gm11945, Gm28048, Usp34

Olfr224 Gm11948, Gm30942, Usp43

Olfr30 Gm11949, Gm33351, Vps54

Olfr311 Gm11950, Gm3718, Wap

Olfr312 Gm11951, Gm40824, Wdpcp

Olfr313 Gm11952, Gm47279, Wsb2-ps

Olfr314 Gm11973, Gm51877, Xpo1

Olfr315 Gm11998, Gm5431, Zfp287

Olfr318 Gm12030, Hnrnph1, Zrsr1

Olfr319 Gm12031, Hspa4

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Continued on next page
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Table 3.1: List of genes switching compartments from Pre-Pro-B to Pro-B, identi�ed

through the simulated structures of the two cell types (Continued)

Olfr320 Gm12034, I�47

Olfr322 Gm12035, Inpp5j

Olfr323 Gm12036, Irgm1

Olfr324 Gm12037, Itk

Olfr325 Gm12038, Lcp2

Olfr326-ps1 Gm12039, Lgalsl

Olfr328 Gm12040, Limk2

Olfr329 Gm12041, Mapk9

Olfr329-ps Gm12042, Mdh1

Olfr330 Gm12043, Med7

Olfr331 Gm12044, Mgat1

Olfr332 Gm12055, Mir1933

Olfr333-ps1 Gm12056, Mir340

Spaca3 Gm12057, Mir3470a

Stxbp4 Gm12058, Mir6406

Tmem132e Gm12061, Mir804

Tmem98 Gm12062, Morc2a

Tom1l1 Gm12158, Mup-ps22

Trim58

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B
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Table 3.2: List of novel predictions of genes exhibiting compartmental switching in

Pro-B, exclusively identi�ed in the simulated structural models

2210407C18Rik, Lypd8l 4921536K21Rik, Gm27194

4930405D11Rik, Lypd9 8430429K09Rik, Gm27517

4930507D10Rik, Myo1d 9130017K11Rik, Gm27624

Ankfn1, Olfr224 9230020A06Rik, Gm27640

Car10, Olfr30 9530068E07Rik, Gm27937

Ccl11, Olfr311 9930111J21Rik1, Gm33351

Ccl12, Olfr312 Atox1, Gm51877

Ccl2, Olfr313 C78197, Hnrnph1

Ccl7, Olfr314 Canx, Hspa4

Ccl8, Olfr315 Cby3, Inpp5j

Cox11, Olfr318 Cfap52, Limk2

Fam183b, Olfr319 Dusp18, Mir3470a

Gm11207, Olfr320 Eif4enif1, Mir6406

Gm11419, Olfr322 G3bp1, Mir804

Gm11494, Olfr323 Gm10428, Morc2a

Gm11498, Olfr324 Gm11189, Mup-ps22

Gm11500, Olfr325 Gm11944, Myo1g

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Continued on next page
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Table 3.2: List of novel predictions of genes exhibiting compartmental switching in

Pro-B, exclusively identi�ed in the simulated structural models (Contin-

ued)

Gm11501, Olfr326-ps1 Gm11945, Ntn1

Gm11502, Olfr328 Gm11948, Nudcd3

Gm11506, Olfr329 Gm11949, Osbp2

Gm11511, Olfr329-ps Gm11950, Phykpl

Gm11512, Olfr330 Gm11951, Pik3ip1

Gm11516, Olfr331 Gm11952, Pla2g3

Gm12251, Olfr332 Gm11973, Psme2b

Gm12252, Olfr333-ps1 Gm12062, Rnf185

Gm12253, Spaca3 Gm12194, Selenom

Gm12254, Stxbp4 Gm12195, Slc35e4

Gm12255, Tmem132e Gm12196, Slc36a1

Gm12570, Tmem98 Gm12208, Slc36a1os

Gm17268, Tom1l1 Gm12235, Slc36a2

Gm22599, Trim58 Gm12301, Slc36a3

Gm22702, Gm12303, Slc36a3os

Gm22762, Gm12304, Smtn

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Continued on next page
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Table 3.2: List of novel predictions of genes exhibiting compartmental switching in

Pro-B, exclusively identi�ed in the simulated structural models (Contin-

ued)

Gm24612, Gm12305, Stx8

Gm24856, Gm12592, Tbc1d9b

Gm25113, Gm16518, Tcn2

Gm31522, Gm20169, Trim41

Hlf, Gm24013, Tug1

Kif2b, Gm24439, Usp43

Lypd8, Gm26157, Wsb2-ps

Gm26393, Zfp287

Permissive (A) in Pre-Pro-B to

Repressive (B) in Pro-B

Repressive (B) in Pre-Pro-B to

Permissive (A) in Pro-B

Permissive (A) in Pre-Pro-B Repressive (B) in Pre-Pro-B
to Repressive (B) in Pro-B to Permissive (A) in Pro-B

Ccl2 Limk2
Ccl7 Hnrnph1
Ccl11 Morc2a
Ccl12 Myo1g

Tmem98

Table 3.3: Selected list of genes for experimental validation through RT-PCR

3.4.1 Quantitative validation of the exclusively predicted genes

Next, we functionally annotated these genes and selected a few genes (Table 3.3)

to be analysed quantitatively through RT-PCR for an experimental validation. We
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(a) Permissive to Repressive
(b) Repressive to Permissive

Figure 3.16: Quantitative analysis of annotated genes by RT-PCR. (a)
Genes predicted to switch from permissive to repressive (A to B) compartments
show downregulation in Pro-B cells due to their involvement in the development
of alternate-lineages. (b) Genes predicted to switch from repressive to permissive (B
to A) compartments show upregulation in Pro-B cell which is a B-cell committed cell
stage and marks the expression of B-cell related genes.

found that the majority of the predicted genes in regions switching from permissive

to repressive compartments were related in the developmental expression in alternate

lineage immune cells. For example, genes such as Ccl7, Ccl11 and Ccl12 are not

expressed in Pro-B cells but in neutrophils, mast cells, macrophages and other cells

of alternate lineages. On the other hand, genes in regions switching from repressive

to permissive compartments had characteristic roles in the development and main-

taining the identity of B cell and begin to express in the Pro-B cell stage. The same

trend has been observed through the results of RT-PCR analysis showing the reduced

expression of genes involved in the development of alternate lineages as they switch

from permissive to repressive compartments in Pro-B cells (Figure 3.16a) while B-

cell related genes harboured by the regions switching from repressive to permissive

compartments are upregulated in Pro-B cell stage (Figure 3.16b).

Through these results, the prediction of gene switching has been duly validated

and we were able to con�rm the predictive potential of our model.
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The complex yet indispensable relationship between chromatin architecture and

its impact on the functional state of the cell has been an interest of research for many

years in gaining insightful learnings on the underlying mechanisms associated with dif-

ferent cellular functions ranging from cell development, di�erentiation, maintenance,

cell repair etc. This can be better understood by appreciating the three-dimensional

organisation of the genome that mediates genomic interactions in 3D nuclear space

to bring out the desired functional implications. Hence, a lot of work including ex-

perimental and computational studies has been carried out and continues to improve

our knowledge on this aspect.

It is understood that despite each cell having an identical genetic makeup, there

exists cell type-speci�c gene expression patterns that play an immensely crucial role in

the variety of cellular events. The investigation of these cell-type speci�c patterns in

the context of 3D during the process of cell di�erentiation was the overall aim of this

study. In particular, we looked into the three-dimensional structural architecture and

dynamics of chromatin during the formation of B-cells through mechanistic modelling

using a combinatorial approach of polymer physics and high-throughput chromosomal

conformation capture Hi-C data. We presented a computational model that not

only captured the hierarchical structural organisation but also provided mechanistic

insights into the spatial rearrangements of chromatin during developing lymphoid

lineage cells.

Through this study, we were able to show the spatial dynamics and 3D transi-

tional rearrangements in chromatin organisation upon cell di�erentiation, which were

not possible through data-driven reconstruction-based modelling approaches that are

limited to reconstruction of only static chromatin structures based on the input pro-

vided. Also, bene�tting from our polymer-based predictive approach, we went ahead

to make signi�cant di�erential structural predictions through our simulated struc-

tures, which could not be captured in other high-throughput experiments but were
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detected by our simulated structures.

To understand the chromatin's 3D alterations during cell di�erentiation, we gen-

erated a homopolymeric bead-on-a-string model that could represent the chromatin

of respective cell stages and help in understanding how it evolves in 3D through sim-

ulations. The model structures represent chromosome 11 of mouse that essentially

consisted of spherical non-overlapping beads with each bead mapping a genomic re-

gion of 40kb de�ning the resolution of our model. We show that our simulated struc-

tures succeed in independently recapitulating the salient features of di�erent levels of

chromatin architecture and additionally, help in identifying the cell-type speci�c 3D

organisation of the chromosome between the two di�erent cell stages considered in our

study. In particular, it faithfully reproduced all the considered Hi-C interactions while

showing remarkable agreement to chromatin interactions that were not included while

generating the initial model structures. Further, we were able to show the intrinsic

features of chromatin organisation including folding and local packing as a fractal

globule, compartmentalization into permissive A and repressive B compartments and

formation of TADs even at the sub-chromosomal scale. The model's predictions were

in agreement for long-range interactions with some amount of noise observed for short-

ranged chromatin interactions. These results established the integrity of our model

with minimalistic inputs without relying on the proximity-based experimental data.

Additionally, in 3D space, we demonstrated through our simulated structures the

spatial dynamics and positioning of chromatin into phase separated regions based on

their similar chromatin states. Through the mean distances of di�erent regions from

the centre of the chromosome, we con�rmed that the preferential position in 3D of

permissive regions is at the periphery of the chromosomal territory, while repressive

regions tend to reside at the chromosomal interiors.

After the successful predictions of the 3D chromatin structures & organisation, we

further extended its use in investigating the cell type speci�c di�erential changes by
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performing a comprehensive comparative analysis of the two cell types of the B-cell

developmental stages. Our model revealed that chromatin undergoes compartmental

switching and dynamic 3D spatial rearrangements during cell di�erentiation towards

B-cell commitment. Although the transitions of lineage speci�c genes were observed

to be small as compared to other genes maintaining the similar state of expression

in both the cell stages, yet being able to detect these changes with the help of our

model, has proved to be a phenomenal achievement. Within the scope of this study,

the model's performance is highly remarkable as it succeeded in detecting those cru-

cial consequential changes (with limited initial parameters) that were otherwise very

di�cult.

From the investigations of compactness of switched regions, we showed that the

genomic regions acquire an open or closed state depending on their switched active or

inactive status and dynamically move in 3D space towards their preferential positions

within the chromosomal territory. Our results clearly implied that chromatin under-

goes dynamic structural alterations in the Pro-B cell stage, orchestrating functional

implications resulting in a committed B-cell stage.

A major advantage of our model is that it further allowed us to make important

structural and functional predictions about chromatin rearrangements & folding and

its relationship with gene regulation which would not have been detected by simple

qualitative examination of the Hi-C data. We were able to predict switching of novel

regions from permissive to repressive and vice versa during cell di�erentiation through

our simulated structures. These cell type speci�c chromatin organisation predictions

were further quantitatively validated in vitro. The role of the genes in the predicted

regions showing downregulation in Pro-B cells is largely associated with alternate

lineage development related events, con�rming the cell's commitment towards B-cell

fate, thereby also con�rming the reliability and predictivity of our model. This pre-

dictive model, thus, presents a signi�cant leap forward in understanding the 3D chro-
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matin architecture and in silico study of the 3D chromatin architecture and dynamics

of di�erentiated versus undi�erentiated cells during development of lymphoid-lineage

cells.

In spite of the successful performance of our model, there are few constraints to

which our model is limited to. First, is the resolution of coarse-graining, i.e. 40kb,

in the current study that depends on the resolution of the Hi-C data considered.

Although, the model shows phenomenal achievement in capturing the 3D organisation

and detecting signi�cant spatial changes, a higher resolution can help in throwing

more light on the structural changes of genes and cis-regulatory elements that are

smaller than 40kb in size, along with the associated gene-gene or enhancer-promoter

interactions. Presently, a bead represents a genomic size of 40kb that may harbour

many genes. Therefore, changes in one bead may account for the cumulative e�ect of

all the genes in that bead which might be unnecessary. However, a higher resolution

would provide granularity and upgrade the scope of the model to single-gene level

and its regulation through epigenetic mechanism by treating each gene as a single

bead. Certainly, this would result in heterogeneity in size of each bead which might

require further assumptions. Additionally, since the resolution considered is much

lower than the magnitude of persistence length of a chromatin polymer, analysis of the

bending and sti�ness of the chromatin is beyond the scope of this study and cannot

be studied in the context of interpreting the structural aspects of gene regulation

through loop formations. Increasing the resolution close to the nucleosomal scale

might prove useful to understand it better. Nevertheless, it can not be neglected

that a balance between computational cost and further enhancement of this model

would be a major challenge. Second, is the number of chromosomes considered in our

investigations. It is not denied that cellular changes are a collective outcome brought

by the entire genome. However, in our study, we were restricted to perform our

analysis on a single chromosome due to the high computational costs and increased
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complexities upon incorporation of more chromosomes. Modelling of an entire genome

would de�nitely provide multiscale inter-chromosomal information and understanding

of genome-wide structural dynamics while simultaneously facing di�culties arising

from it, such as the heterogeneity in polymer sizes, adjustment of corresponding model

parameters, complexities arising due to increased interactions and associated noise,

computationally expensive simulations etc, to mention a few. Hence, we limited our

present work to a single chromosomal analysis for a start since the genome-wide 3D

study of chromatin organisation is indeed challenging requiring various compromises

at di�erent levels.

90



Chapter 5

Conclusion

91



Conclusion

We have introduced a novel computational model for studying the 3D chromatin

architecture by integrating high-throughput chromosome conformation capture data

with polymer modelling. Our combinatorial approach of this hybrid-model has helped

in overcoming the limitations of previously reported direct and indirect modelling

techniques, while retaining the best of both for amalgamation into a powerful predic-

tive tool.

This computational model aided in quantitatively understanding the chromatin

organisation & dynamics in 3D unlike the chromatin conformation capture and other

genomic and biochemical assays that only give a 2D depiction of it. The results gave

broad insights into the structural dynamics of architectural changes via the 3D spatial

rearrangements of genomic regions during the quantitative study of di�erentiation

towards B-cell fate, as we carried out a comprehensive comparative analysis of two

di�erent cell types representing undi�erentiated and di�erentiated cell stages.

The �ndings from our study suggest that:

a. Chromatin undergoes compartmental switching and dynamic 3D spatial rear-

rangements during cell di�erentiation for B-cell commitment. Upon directly compar-

ing the regions of di�erential compartmental status in the two cells, we found that

the chromatin in Pro-B cell stage undergoes spatial repositioning and changes in its

compactness, corresponding to the switched compartmental status and consequen-

tial 3D regulation of gene expression in those regions. This suggested a coordinated

chromosomal dynamics towards B-cell fate commitment.

b. Importantly, we also established the predictive nature of our model by identify-

ing regions associated with these alterations that were not detected in the experiments

and were further quantitatively veri�ed in vitro.

c. Collectively, our studies demonstrate that during B-cell fate commitment, dy-

namic three-dimensional re-organization of chromatin induces lineage-speci�c gene

expression patterns. Thus, our prediction model represents both an in silico study
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of the 3D chromatin architecture & dynamics and a substantial advancement in our

knowledge of di�erential 3D chromatin organisation.

d. There exists a scope for potentially extending this study for an entire genome-

wide structural analysis at a higher resolution which should address the principles

of 3D organisation at a multi-scale level while parallelly maintaining the integrity,

reliability and predictability of our model. These future studies should also address

chromatin interactions and interpretation at the single-cell level.

e. Besides, the study opens up a plethora of other horizons to expand the di-

mensions of this research. To start with, a few factors can be enhanced to build

upon the approach considered in our study, for example, improving the resolution

of Hi-C data and incorporation of other chromosomes for a genome-wide multi-scale

analysis. Additionally, inclusion of trans-regulatory elements such as TFs and other

cellular proteins as separate entities during model generation along with their epi-

genetic landscape can also be helpful in providing improved mechanistic insights in

studying the epigenetics of gene regulation in the context of three-dimensional un-

derstanding of the events involved. Recent advances in high throughput experiments

has evolved into single-cell Hi-C (scHi-C) data that can also be utilised in future for

enhancing the existing model rather than the ensemble averaged-based study. scHi-C

can help in identifying cell-to-cell variability of 3D chromatin organisation, however

the sparseness of measured interactions can pose an analysis challenge.

Clearly, this fascinating voyage is only getting started. In the future, with the

improvement in the data that is more extensive and sophisticated, we will be able to

better understand the underlying mechanism of many cellular functions in the context

of 3D. It would be exciting to see the ever-evolving modelling strategies and the en-

hancement of those that prove to be most promising. The close relationship between

computational modelling and experimentation will aid in elucidating the mechanisms

governing genomic architecture and its relationship to biological processes. The up-
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coming boom of Arti�cial Intelligence and Machine Learning (AI/ML) might soon

overcome the present hurdles and is expected to introduce smarter ways to handle

and include the multi-omic data and improve model interpretability to deepen our un-

derstanding of the mechanisms governing gene regulation via the prism of 3D genome

organisation.

Highlights of the study:

� Hybrid polymer model for chromatin de�nes the chromatin structure and prop-

erties using minimalistic experimental inputs.

� The predictive nature of the model demonstrated intrinsic features of chromatin

folding, hierarchical organisation and co-localization of similar regions in 3D

nuclear space which were independent of proximity based experimental inputs.

� Comparative analysis of simulated structures demonstrated that chromatin un-

dergoes lineage-dependent chromatin reorganisation during B-cell fate commit-

ment.

� Cell type speci�c spatial rearrangement showed transition of repressive com-

partments towards the periphery and permissive compartments towards the

chromatin interiors, as they switch into permissive and repressive compartments

respectively, in di�erentiated & committed B-cell stage.

� Chromatin dynamics showed changes in the compactness of the switched regions

that is associated with their acquired functional state.

� Identi�cation of novel regions through comparative study of the two simulated

structures and its quantitative experimental validation revealed that the role of

genes, associated to the switching into repressive compartments, shown to be
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downregulated in Pro-B, is largely associated with alternate lineage develop-

ment, con�rming the cell's commitment towards B-cell fate.

� Compartmental switching promotes cell-type dependent genetic switch via 3D

spatial rearrangement for B-cell fate commitment.
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