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Abstract

The Ph.D. (Physics) thesis entitled “Particle scattering by ultracold quantum gases of
trapped atoms” presents the research work done by us (me and my collaborator / su-
pervisor) during the last six years at the School of Physics, University of Hyderabad,
India. The thesis consists of five chapters viz., [i] introduction, [ii] particle scattering
by harmonically trapped quantum gases at finite temperatures, [iii] particle scattering by
rotating trapped quantum gases at the finite temperatures, [iv] particle scattering by har-
monically trapped quantum gases exposed to an artificial magnetic field, [v] conclusions and
future scopes. The main contents and the discussion pertaining to the contents are

systematically presented chapter wise.

Chapter 1: Introduction

In chapter 1, we have begun with the physics of scattering with some common ex-
amples of light scattering and particle scattering. We have introduced the basic scat-
tering theory for particles with an emphasis on the quantum scattering theory. We
have discussed various approximation techniques for the theoretical determination
of the differential scattering cross-sections, such as - partial wave analysis, phase
shift method, and Born approximation. Then we have obtained exact result for the
Fermi-Huang potential by considering all orders of Born series for the particle scat-
tering. Then we have briefly reviewed the particle scattering for unfixed scatterers
having quantized motions in a box geometry for the Fermi-Huang potential. We
have introduced several thermochemical properties of ultracold quantum (Bose or
Fermi) gases of trapped scatterers having quantized motions. For the bosonic or
fermionic scatterers, we have briefly introduced the Bose-Einstein condensation in
a harmonically trapped geometry, the quantum Hall effect in rotating harmonically
trapped Bose gas, the Abrikosov vortex lattice in a rapidly rotating harmonically
trapped Bose-Einstein condensate, and the de Haas-van Alphen effect on harmoni-

cally trapped Fermi gas of uncharged atoms exposed to an artificial magnetic field.

Chapter 2: Particle scattering by harmonically trapped quantum gases at finite tem-
peratures

In chapter 2, we have analytically explored the quantum phenomenon of parti-
cle scattering by harmonically trapped Bose and Fermi gases for the short ranged
Fermi-Huang ((52) interactions between the incident particle and the scatterers. We
have considered elastic scattering. We have predicted differential scattering cross-
sections and their temperature dependence in this regard. The coherent scattering
even by a single boson or fermion in the finite geometry gives rise to a new tool
for determining the energy eigenstates of the scatterer. Our predictions on the dif-
ferential scattering cross-sections can be tested within the present day experimental
setups, specially, for (i) 3-D harmonically trapped interacting Bose-Einstein conden-
sate (BEC), (ii) BECs in a double well, and (iii) BECs in an optical lattice.
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Chapter 3: Particle scattering by rotating trapped quantum gases at finite tempera-
tures

In chapter 3, we have analytically explored the quantum phenomena of particle scat-
tering by rotating trapped quantum gases of electrically neutral bosons and fermions
for the short-ranged Fermi-Huang interactions between the incident particle and the
scatterers. We have considered rotating co-moving frame for all our analyses. We
also have considered elastic scattering. We have predicted differential scattering
cross-sections and their temperature and angular velocity dependencies in this re-
gard, in particular, for an ideal Bose gas in a rotating harmonic trap, an ideal Fermi
gas in a rotating harmonic trap, and a weakly interacting Bose gas in a slow rotating
harmonic trap. We have theoretically probed the lattice-pattern of the vortices in a
rapidly rotating strongly interacting Bose—Einstein condensate by the particle scat-
tering method. We also have obtained de Haas-van Alphen-like oscillations in the
differential scattering cross-section for an ideal ultracold Fermi gas in a rotating har-
monic trap for T — 0. Our predictions on the differential scattering cross-sections

can be tested within the present-day experimental setups.

Chapter 4: Particle scattering by harmonically trapped quantum gases exposed to

an artificial magnetic field

In chapter 4, we have analytically explored the quantum phenomena of particle
scattering by harmonically trapped trapped quantum (Bose or Fermi) gases of elec-
trically neutral atoms exposed to a uniform artificial magnetic field for the short-
ranged Fermi-Huang interactions between the incident particle and the scatterers.
We have considered elastic scattering. For the bosonic scatterers, we have obtained
the differential scattering cross-section around the Bose-Einstein condensation point.
For the fermionic scatterers, we have obtained artificial magnetic field dependent
differential scattering cross-section exhibiting de Haas-van Alphen like oscillations
for T — 0. Here, the main difference from the theoretical study mentioned in chapter
2 is coming from the centrifugal force in the rotating frame. The difference has also
been further made by the consideration of the inelastic scattering for all the above

cases.

Chapter 5: Conclusions and future scopes

The final chapter (i.e. chapter 5) describes the summary of the thesis and the conclu-
sions made out of the present work. This chapter also presents the future prospects

and the scopes for further investigations.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Both the light scattering and the particle scattering are useful to know the structural
and physical properties of the scatterers. Particle scattering is further useful for un-
derstanding the transport properties of matter. However, it has not been realized
so far that the differential cross-section, as well as the cross-section, of a scattering
phenomenon could be a thermodynamic property except for a few cases, such as
- the electron-phonon scattering and electron-electron scattering in a metal, critical
opalescence, etc. While electron-phonon scattering and electron-electron scattering
result in a temperature dependence of the resistivity which is proportional to the
total scattering cross-section [1], the critical opalescence results in a temperature de-
pendence of the differential scattering cross-section for the light scattering (Rayleigh
scattering) by a liquid (or a mixture of liquids) near around its critical point where
the density fluctuation plays a significant role [2]. In all the above examples, the
scatterer(s) is either fixed or having classical motion. Systematic study of the tem-
perature dependence of the differential scattering cross-section for a particle scatter-
ing has not been done so far with the consideration of the quantized bound motion
of the scatterer except for particle(s) in a box [3].

There have been a lot of experimental and theoretical studies on ultracold Bose
and Fermi gases in magneto-optical traps during the last three decades since the
observation of the Bose-Einstein condensation of ultracold (K - nK) alkali atoms
(23Na, 87Rb, etc) [4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17]. The s-wave scatter-
ing length plays an important role in a gas of ultra-cold atoms [9, 18], in particular,
determining its thermodynamic properties, such as - the Bose-Einstein condensate
fraction [19], density profile of a harmonically trapped Bose gas below the conden-
sation point [7, 20], BEC-BCS crossover of a harmonically trapped Fermi gas [11, 21],
vortex lattice structure of a rotating harmonically trapped Bose-Einstein condensate
[12,22], etc. Scattering of impurity atoms with a harmonically trapped Bose-Einstein
condensate has also been experimentally studied to probe the many-body effects in
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it [23]. The impurity scattering in a Bose-Einstein condensate has also been theo-
retically studied for finite temperature [24]. Scattering of atoms on the harmoni-
cally trapped interacting Bose-Einstein condensate has also been theoretically in-
vestigated for T — 0 [25]. However, the quantized bound motion of the magneto-
optically trapped ultracold atom(s) has not been theoretical /experimentally probed
by scattering of a beam of indecent particles so far for finite temperatures.

Thus we are motivated to theoretically prove the quantized bound motion of
the magneto-optically trapped ultracold atom(s) at finite temperatures by the parti-
cle scattering method [26, 27, 28, 29]. For the simplicity, we consider short-ranged
(Fermi-Huang) interaction(s) between an incident particle and the scatterer(s) in this
regard. We mainly considered the elastic scattering for our analyses because inelastic
scattering is less probabilistic at a finite temperature and the differential scattering
cross-section in the inelastic channels decays exponentially with the number of scat-
terers beyond a certain value. In connection with the particle scattering by ultracold
quantum gases of magneto-optically trapped atoms, we are motivated to find the
following: (i) differential scattering cross-section for the Fermi-Huang interaction ( gég (7))
between an incident particle and a quantum harmonic oscillator at a finite temperature, (ii)
differential scattering cross-section for a Bose or Fermi gas of quantum harmonic oscilla-
tors at a finite temperatures, (iii) differential scattering cross-section for a weakly interacting
Bose gas at around the condensation point, (iv) differential scattering cross-section for Bose-
Einstein condensates in double-well potential or optical lattice, (v) differential scattering
cross-section for a rotating harmonically trapped interacting Bose gas, (vi) differential scat-
tering cross-section for a rotating harmonically trapped Fermi gas, (vii) differential scatter-
ing cross-section for a harmonically trapped Bose or Fermi gas exposed to a uniform artificial
magnetic field. These are our objectives for this thesis.

Let us now introduce various topics related to our objectives.

1.2 Scattering

Scattering is a phenomenon where an incident particle (or wave) changes its momen-
tum (or wavevector) after colliding or interacting with an object (called scatterer)
and remains free after the collision or interaction. There are numerous classic exam-
ples of scattering such as Rayleigh scattering, Rutherford scattering, X-ray scatter-
ing, Compton scattering, Raman scattering, electron scattering, neutron scattering,
etc. While Rayleigh scattering, X-ray scattering, and Raman scattering in the above
examples involve the scattering of light/photons by atoms, crystalline objects, and
electrons, respectively, Rutherford scattering, electron scattering, and neutron scat-
tering involve scattering of particles by atomic nuclei, crystalline objects, magnetic
material, respectively. Let us now elaborate or introduce a few keywords for the
light scattering, the particle scattering, and the theory for particle scattering.
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1.2.1 Light Scattering

One of the most important phenomena in daily life is light scattering. Light is a
form of oscillating EM field which excites charges, hence radiating EM waves. The
redirection of radiation away from its original propagating direction is known as
light scattering. Light scattering usually occurs due to the interaction between EM
waves and atomic or molecular electrons. In the case of the interaction between
the EM waves and molecules, radiation is further coupled to the internal degrees
of freedom of the molecules. In the case of light scattering, the EM wavelength is
so much greater than the distances between the atoms that the atoms perceive a
local uniform electric field. In the case of light scattering case, it makes sense to
discuss how the radiation is coupled to a varying dielectric constant (related density
fluctuations) for the medium. Elastic light scattering occurs when the wavelength
remains same before and after collision but the intensity of the scattered radiation
changes. On the other hand, the wavelength of the emitted radiation differs from
that of the incident radiation due to inelastic scattering. The Maxwell equations
provide the foundation for theoretical and computational approaches to describe
light scattering from the classical point of view. In the following section, we will

mention various examples of light scattering.

Rayleigh Scattering

Rayleigh scattering is the elastic scattering of light by particles (atoms or molecules)
whose size (radius) is smaller than the wavelength of the incident light so that the
scattered radiation spreads uniformly in all directions. The charges inside an atom
or a molecule are affected by the oscillating electric field of a light wave, which
causes them to vibrate with the same frequency. As a result, the atom or molecule
transforms into a radiating dipole, the radiation of which we observe as scattered
light. The differential cross-section due to the Rayleigh scattering is given by the
following expression [30]

2 2
jg = W(l + cos? 0) (1.1)
where A is the wavelength of the incoming radiation, 6 is the scattering angle, n is
the refractive index of the medium, and ny is the molecular number density. The
scattered intensity is inversely proportional to the fourth power of the wavelength.
Thus EM waves of short-wavelength scatter more than the EM wave of longer wave-
lengths. Because of its long wavelength, the red light is scattered less and the blue
light is scattered more than the other colours because of its small wavelength. The
sky appears blue for this reason.
Rayleigh scattering has an interesting application towards the temperature de-
pendence of the differential scattering cross-section. The critical opalescence results

in a temperature dependence of the differential scattering cross-section for the light
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scattering by a liquid (or a mixture of liquids) near around its critical point (T,) where
the density fluctuation plays a significant role [2]. The differential scattering cross-
section for such a system near around the critical point takes the following form

[2,31]

do Vr? (86)2 )

—==—1 =) ksTp"Br (1.2)
da At \9p /¢

where A is the wavelength of the incident plane monochromatic lightwave which
is polarized perpendicular to the scattering plane, € is the local isotropic dielectric
constant, T is the temperature of the liquid medium, p is the density of the liquid
medium, and Br = —+ (%—‘;)T is the isothermal compressibility which diverges as
Br o |T — T;|~! near the critical point. This result was originally obtained by Ein-
steinin 1910 [31]. In this thesis we study the temperate dependence of the differential
scattering cross-section in connection with the particle scattering for various system

of scatterers have quantized bound motion.

Raman Scattering

The Raman effect [32], also known as Raman scattering, is the inelastic scattering of
photons by atoms molecules. This process involves a change in the frequency of the
scattered radiation. Indian physicist C V Raman discovered it for light scattering
by liquids. Raman scattering occurs in a fluid due to a change in the vibrational or
rotational energy of a molecule. The schematic diagram of the Raman scattering is
shown in figure 1.1.

)\Laser

Anti-Stoke
Raman Scattering

Ascatter< ALaser

Rayleigh
Stoke Raman Scattering
Scattering

Ascatter > ALaser

)\Scatter= 7\Laser

FIGURE 1.1: A schematic diagram for the Raman scattering.

Usually the Raman effect causes molecules to gain the vibrational energy as inci-
dent photons from a visible laser is shifted to lower energy. This is called the Stokes
Raman scattering. On the other hand, energy of photons also increases in a reverse
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process by lowering the vibrational energy of molecules in anti-Stokes Raman scat-
tering. The observed Raman shift of the anti-Stokes and Stokes properties is a direct
measure of the vibrational energies of the molecule. The schematic diagram for the
Stokes Raman scattering and the anti-Stokes Raman scattering is shown figure 1.2.
The Raman Scattering technique is used in the medical diagnostic analysis, hyper-

4
SJ.
4 T — Virtual
3 * T levels
v
IS A 4 A 4
Raman Scattering Rayleigh Scattering Raman Scattering

(anti-Stoke line) (Stoke line)

FIGURE 1.2: Schematic diagram for Stokes Raman scattering,
Rayleigh scattering, and anti-Stokes Raman scattering are shown in
the picture.

spectral molecular imaging of cells and tissue, and others. Raman spectroscopy can
be applied to detect low-frequency excitations of the solid, such as magnons, plas-
mons, and superconducting gap excitations [33].

Raman transitions, on the other hand, may take place in an atom. Indirect EM
transitions between two non-degenerate ground states of an atom via EM transitions
to and from another excited state without any population inversion can be called as a
Raman transition. Raman transitions can to used to create artificial gauge (magnetic)
field.

Compton Scattering

The Compton effect occurs when a beam of photons inelastically collide with free
electrons or charged particles [34, 35]. One of the most important methods of absorp-
tion of radiant energy by matter is Compton scattering which leads to an increase
in the wavelength of X-ray and other intense electromagnetic rays (such as - gamma
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ray) once they are scattered by the electrons. This effect has been shown to be one of
the pillars of quantum mechanics because it explains both the wave and particle as-
pects of the radiation. The collision between a photon and an electron creates new a
photon with reduced energy and momentum. The scattering angle for the new pho-
ton can be determined in terms of the amount of energy lost to the recoiling electron.
The change in the wavelength of the photon due to the Compton scattering can be
expressed by the following formula [35]

p h
AN—A= m—oc(l—COSQ) (1.3)
where A is the wavelength of incident photon, A’ is the wavelength of the (new)
scattered photon, m( is the rest mass of the electron, 6 is the angle at which the
photon is scattered (i.e. the angle between the wave vectors k' and k of the scattered
and incident photons, respectively, as shown in figure 1.3) and c is the speed of light
in the free space.

According to one of the fundamental pro-
cesses for the Compton scattering, an electron af-
ter completely absorbing the photon moves freely
for a while before emitting the (new) scattered
photon. The Feynman diagram for this process
(e” 4+ v — e~ + ) is shown in figure 1.3. Comp-
ton scattering is used in radiation therapy.

X-ray Scattering

X-ray scattering occurs when an X-ray (EM wave)

passes through a crystalline object and is elasti-
FIGURE 1.3: A Feynman diagram

cally scattered by atoms at the lattice points [36].
y Y ice points [36] for the Compton scattering.

The wavelength for the X-ray is nearly equal to
the size of the lattice spacing of the crystal. Thus
the X-ray scattering is useful to determine the lat-
tice structure of a crystalline object [37].

A crystalline object is periodic in space. Bragg’s law for the scattering of an X-
ray by two consecutive layers of a crystalline object (as shown is figure 1.4) can be
written as 2d sin 6 = nA where n is an integer. This is the necessary condition for con-
structive interference between waves for an angle of incidence on two lattice planes
separated by d. We need to determine the scattering amplitude for X-ray scattering
by a “small” single crystal. Here, “small” indicates that we can neglect numerous
scattering events. We assume the crystal is entirely periodic. The Fourier transform
of the number density of scatterers (atomic electrons) is the form factor or the scat-
tering factor for a single atom. The form factor can be expressed as follows [37]

F@) = [ n@e T (14



1.2. Scattering 7

where 1(7) is the number density of the scatters (atomic electrons) at the position 7, k
is the wave vector of the incoming beam, K’ is the wave vector of the scattered beam,
and k' — k = Ak = § represents the change in wave vectors. This form factor is
also proportional to the scattering amplitude. By integrating over the entire crystal
(instead of that for a single atom as shown in Eqn.
(1.4)) one can obtain the scattering amplitude in
each final polarisation direction as [38]

£(@) = 1o /C rysmz"(?) TPr[e. & (15)

where r( is the classical radius of the electron (i.e.
2

the Thompson scattering length: rp = ;—— =~
oMmecC

2.82 x107° Angstroms), é represents a unit vec-

tor for the polarization of the incident ray, and &

represents a unit vector for the polarization of the

scattered ray. The crystal lattice structure can be
represented as n(7) = n(7; + ¥) = n(¥) where 7; FIGURE 1.4: A schematic diagram
represents the lattice translation fori = 0,1,2, ...... for the Bragg scattering.

We can take the advantage of the periodicity of

the number density to get the following result

A

f@ = 702/. n(Z)e M tdx (e €
F Unit Cell

= Yle iy / n(F)e 747 [¢ - &) (1.6)
; Unit Cell

the Structure Factor F(§)

where the summation is taken for all the unit cells of the crystal and F(7) =
0 fUmt Cell n(f)e*iﬁ"?df is the structure factor of crystal. It is clear from this expres-
sion that the Fourier transform of the number density of the scatterers (atomic elec-
trons) integrated over the unit cell of a crystal is essentially the structure factor of the
crystal. The structure factor of a crystal can be determined by the X-ray scattering
method. The differential scattering cross-section for the crystal can now be written
as

do (@) _ Ao~
q = (@l ZZG T |F ()12 [e - €1 (1.7)

where the double summation in the parentheses runs over all the lattice points of the
crystal. The number density of the scatterers for a unit call, can however, be written
as n(¥) = L% n(¥) = L1 fj6(X —7;) where n;(¥) = f;0(¥ —7) is the number
density of the scatterers (atomic electrons) bound to the jth atom in the unit cell,
7; represents the position of the jth atom in the unit cell (j = 1,2,3...,ngp), np is the
number of atoms in the unit cell, and f; = = [nj(x e T ETN A ¥ — 7 i] is the
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form factor for the jth atom. Thus the structure factor for a crystal takes the form
no -
F(@) =ro}_ fi(@)e 7. (18)
j=1

This equation relates the form factor with the structure factor. Incidentally, this (clas-
sical) equation has a similarity with the equation for the scattering amplitude for the
(quantum) particle scattering due to unfixed scatterers [26]. Evaluating over the
summation over i and j of Eqn. (1.7) the differential scattering cross-section can,
however, be recast as follows

do i) Lo s
- = — —~ = ’\F(g é.-¢ 2 (1.9)
a0~ o IF@FlE -l

where {71, d,, 43} are the primitive (translation) vectors for the unit cell of the crystal
and {Ny, Ny, N3} are the number of lattice points along the three primitive vectors.
It is clear from Eqn. (1.9) that the differential scattering cross-section has maxima for
the following condition

g-d; = Nk-d; = 2mn; (1.10)

wherei = 1,2,3,and ny = h = 0,1,2,3,...., no = k = 0,1,2,3,...., &nz =1 =
0,1,2,3,.... are known as the Miller indices {h,k,1}. Eqn. (1.10) is known as the
Laue condition or the Laue equation. By applying the Laue equations we recast the
structure factor as
" —i2m(hxj + ky; + Izj)
Foi(7) =) £i(q) e s (1.11)

=L ==
Amplitude

where 7; = x;d; + y;d1 + zjd3 represents the position of the j atom in a unit cell and
{x},yj,z;} are the dimensionless coordinates for the j atom along the primate vectors
d1, A, and a3, respectively.

The arrangement of the atoms in the crystal deter-
mines the intensity of the diffraction peaks as follows

Inje1 () o [Fyper (7)) (1.12)

Let us take an example of the bcc crystal. It has ef-

fectively two atoms in a unit cell. Their position can be

described as (0,0,0) and (%, %, %) as one can see from

figure 1.5. For identical atoms sitting at both the po-

sitions we have f;(§) = f. Thus we get the structure

FIGURE 1.5: A schematic di-
agram for body centred or-
thorhombic crystal.
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factor for the bcce crystal as
Fh,k,l(‘?) — f[l +ei7r(h+k+l)] (1.13)

for the bce crustal. This form can now be recast in terms of the Miller indices (which

define a crystal plane) as follows

E 2f if h+k+1=eveninteger
k] =
0 ifh+k+1=o0ddinteger.

For the bcc lattice, the X-ray scattering (diffraction) peaks are observed from the
crustal planes like (200), (110), (222) but not from the planes like (100), (300), (111),
(221).

Bragg scattering results in due to the scattering of a plane wave (X-ray) by succes-
sive parallel lattice planes of a reflecting crystal (see figure 1.4). The incident wave
will be eventually diffracted after reflection from the set of parallel lattice planes.
The separation between two consecutive parallel lattice planes (h, k, 1) and (2h, 2k, 2])
can, however, be written as d such that 3 = + h; + 2 2 + > if the primitive vec-
tors are orthogonal. The intensity pattern due to the X- ray dlffractlon is modulated
by the destructive and constructive interferences. Thus, the path length difference
between the scattered waves coming out from two adjacent planes must be an inte-
gral multiple of the wavelength for the constructive interference. This leads to the
Bragg’s law

2dsin@ = nA (1.14)

0 is the angle between incident wave and lattice plane (see in figure 1.4) and 7 is the
order of diffraction. Lattice constant and the lattice planes (Miller indices) can be

determined from the X-ray diffraction method.

1.2.2 Particle Scattering

The particle scattering, however, is applicable for a wide range of objects from nu-
cleons to billiard balls. There are a few examples of particle scattering: electron

scattering, neutron scattering, etc.

Electron Scattering

The Davisson-Germer experiment confirmed the existence of the wave associated
with a particle (de Broglie’s hypothesis). It marked a significant advancement in
the development of quantum mechanics by giving wave-particle duality a solid ex-
perimental foundation. Let us consider the elastic scattering of electron due the
Coulomb potential. Mainly electron scattering occurs when the incoming electron is
scattered by a system of bound charged particles. Solids such as metals, semiconduc-

tors, and insulators are common examples of the occurrence of electron scattering.
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The Coulomb potential arises due to the nucleus and the electrons bound in an atom.
For simplicity, we assume the electrons are spinless particles. Within the first Born
approximation, the scattering amplitude is proportional to the Fourier transform of
scattering potential energy [39]. Thus we have the following result for the scattering
amplitude for the particle scattering:

1 2m 77
0, _77/(1% V(7)e 17 1.15
where V(7) is the potential energy of the incident particle near an atom, m is the
mass of the incident particle (electron), and § = k' — k is amount of the momentum
transfer in the units of i due to the scattering process. We can further recast the above
result (by virtue of the Fourier transform and the integration by parts) as follows:

m

f(6,¢) ~ W

/ PRV (F) V2 = ’;:2 : / P e 1T 2V(F).  (116)
T

The expression for the charge density of an atom with atomic number Z is p(7) =
Ze 6%(F) + (—e) pe () where the p,; is the number density of the bound electrons of
an atom and —e is the charge of an electron. Now using Poisson’s equation electro-
static potential V(7) we have

V2V (F) = ¢ <Z53( ) — 0ol (7 )>/eo (1.17)

The expression for differential scattering cross-section for this process takes the fol-

lowing form

99 _ 10, 9)P = (’”) zZ-
@) ’ a 27T€0h2q2

where the integral [ p,(F)e 17d’7 = f(7) is the form factor which have already

(1.18)

been introduced in connection with the X-ray scattering. The term m"zhz in the

parentheses of the above equation takes the approximate value 3.779 x 1010
This term divined by 42 is analogous to the Thompson scattering length (classical

~ 2.82 x 10~ m for the X-ray scattering. There-

47'(6 me? T
fore, we can see that the range of g (1-10 A=) is used in the electron diffraction

radius of an electron) ry =
experiments.

Neutron Scattering

Neutron scattering occurs when neutrons are scattered with atomic nuclei via very
short-range (~ fm) forces. A magnetic dipole interaction also occurs between Neu-
trons and unpaired electrons. Neutron wavelength is much greater than the range
of nuclear force ( ~ 1 fm), so Neutron scattering is “point-like." Scattering is elastic

because the energy of the neutron is very small to change the energy of the nucleus
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and the Neutron cannot transfer KE to a fixed nucleus. Neutron scattering cross sec-
tion by a single (fixed) nucleus is given by ¢ = 47th? [40]. Here, we only take into
account scattering away from nuclear resonances, at which neutron absorption is
nominal. If the neutrons are scattered by many nuclei then the differential scattering

cross-section can be written as [40]

= = Y bibe TR-R), (1.19)

The scattering length b; is influenced by the nuclear isotope, spin, etc. For a single
nucleus, the differential scattering cross-section is [40]

do e o
= b 2 —ig-( l-fR]-) b2 b 2 ‘ '
40 (b) ;e + ((t°) = ()N (1.20)

Incoherent Scattering

Coherent Scattering

Here the coherent scattering part is the direction of g4 dependent. But, the incoher-
ent scattering part is uniform in all directions. In the scattering system, N is the
total number of atoms. The structure factor or correlations of atomic positions is
measured by coherent elastic scattering. In the process of inelastic neutron scatter-
ing, neutrons can also gain or lose energy. Atomic motions are determined by the
inelastic neutron scattering process.

Magnetic neutron scattering occurs due to a neutron scatters from magnetic atoms
or molecules. Magnetic neutron scattering couples to fluctuations in magnetization
density [41]. In neutron scattering, the short-distance and short-time behavior are
measured. One of the most crucial methods for determining microstructure is small-
angle neutron scattering, which is used in a broad range of scientific areas, such as
materials science, physics, chemistry, and biology.

1.3 Theory for Particle Scattering

1.3.1 Classical Scattering Theory

The scattering cross section identifies the characteristics of both quantum and classi-
cal scattering. Assume a particle collides with a scattering target. Let us consider an
incoming particle with energy E and impact parameter b exits at a particular scat-
tering angle 6-see figure 1.6. For simplicity, we assume that the target is azimuthally
symmetric, keeps the trajectory in one plane, and the target is heavy. We can there-
fore ignore the recoil effect. In classical mechanics, the impact parameter b(6) de-
termines the scattering angle for a central potential V(7). Of course, generally, the
scattering angle increases with decreasing the impact parameter. Let us consider a
collision experiment where a detector counts the number of particles per unit time,
Nd() that are scattered into an element of solid angle d() in the direction (6, ¢) per
unit time. The differential cross section is used to describe the angular distribu-
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FIGURE 1.6: The incoming particles incident in an elementary area do
and scatter into the elementary solid angle 4}

tion of scattered particles in a particular process. From the figure 1.6 it is clear that
between b and b + db the number of incident particles per unit time is equal to the
number of particles per unit time between 6 + 40 that are scattered. The number of
particles scattered into the solid angle d() per unit time for incident flux (J;,,) is given
by NdQ) = Nsin0d¢d¢p = [;,bdbdp = Ji,do. Therefore, we have

_do b |db

For classical Coulomb scattering V(r) = X. In this case, we get the Rutherford for-

mula [39]
2 1

Therefore, the Rutherford scattering cross-section depends on the scattering angle
and the velocity of the incoming particles. The form of the scattering intensity is the
same for the repulsive force as it is for an attractive one, since it is unaffected by the
sign of the charge.

How does the overall cross-section look for Rutherford scattering? The differen-
tial cross-section Eqn. (1.22) has an unusual characteristics in that the associated to-
tal cross-section is infinite. Because the Coulomb force’s infinite range is responsible
for this result. A key point to note that the classical derivation and the quantum-
mechanical treatment of Coulomb scattering gives the same outcome.

1.3.2 Quantum Scattering Theory

The collision or interaction of two particle are treated by viewing an incoming par-

ticle that scatters off a second particle and propagates as measured by the nature of
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FIGURE 1.7: The basic setup is a flux of incident particles with uni-
form energies that are scattered from the target and captured by de-
tectors that measure deflection angles.

the potential and the incoming particle. We use the transformation to the center of
the mass frame because we are dealing with the two-particle problem. The origi-
nal problem is now reduced to a single particle traveling in a target potential V(7).
The scattering information is carried by the wave function for the particle’s relative
motion. Perhaps one of the simplest examples of 3D scattering is scattering by a
spherical potential. In this case, the scattering potential V (7) is fully dependent on
the separation between the target and the particle. The spatial representation of the
time-independent Schrodinger equation looks like

2
2h V¥ (7) + [E - V()]¥ () = 0. (1.23)
It is useful to take class of potentials that diminish when r > a. Or, at least become

insignificant in comparison to the centrifugal potential i I(ZH)

. In quantum scatter-

ing theory, we imagine that an incoming plane wave ¥(z ) = elkz

propagates along
the z-direction, collides with some localized target, and then produces an outgoing

spherical wave. The solution to the Schrodinger Eqn. (1.23) can be written as [39]

) ikr
¥~ eikz f(@,gb)eT, for large r. (1.24)
Scattering Cross-section
The energy of the incident particle E = wh11e the uniform flux is given by

(1.25)

S

o . T * )
]in——l%(llj VY -¥YVY*) =
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The asymptotic form of the outgoing spherical wave at large distance r is f(6, ¢) #

Particle flux associated with scattered particle in the (6, ¢) direction is given by

- _h OYs o R f(6,9)%,
Jout = %IW(TS ?)er = %Té’y. (1.26)

The particle flux crosses the area dA = r2dQ) which subtends an elementary solid

angle d() at the centre of the target is given by

NdQ = EM%Q. (1.27)
m T

Again NdQ) = [,dA = J;,do. Hence, we get the differential cross section

;jg = 1f(O,)I (1.28)

This expression is significant because the fluxes J; and J;, are measurable quantities
and can be determined theoretically.

Fermi-Huang Potential

An usable short-range Fermi-Huang potential [42] in three dimensions can be de-
fined as

< F|Vup|¥ >= g6 (F)Freg(7) (1.29)

where ¥y, = 4 (¥¥(7)). This potential is also known as a “regularized delta poten-
tial”. Now we expand ¥ (7) in power of r, starting with 1

Y (7) = Cl(e,q))% +Co(6,¢9) +C1(6,9)r + ... . (1.30)

Thus we have,

Freg = ;,,(7‘1’(7)) = Co(6,¢) +2C1(0,¢)r + ... (1.31)

The Eqn. (1.31) shows that due to the effect of regularization operator the singularity
is removed. Thus, ¥, (7) has always non-singular behavior at 7 = 0. Using the
shifting properties of delta function Eqn. (1.29) will give

(7| Vur|¥) = 6% (F)¥(0). (1.32)

Lippman- Schwinger Equation

To describe the scattering theory, let us take an incident particle state |¥y), is scat-
tered by the interacting potential V, resulting in a scattered state is |'¥;). The incident
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state |¥) is considered to be an eigenstate of the free particle (with V=0). Hamilto-
nian or ‘background” Hamiltonian Hy with eigenvalue E. This is written mathemat-
ically as

(E — Ho)[¥o) =0 (1.33)

where Hy is free particle Hamiltonian with incident state is ¥ (7) = ¢*". For asymp-
totic case (r — o), the eigenvectors are determined by

(E - Ho)l¥) = V[¥) (134

where we take E > 0 and |¥) is the eigenstate of the total Hamiltonian H = Hy +
V with eigenvalue E. Using Eqn. (1.33) and Eqn. (1.34) the Lippmann-Schwinger
equation can be obtained as

['¥) = [Yo) + Go(E)V[Y) (1.35)

where the symbol Gy is known as unperturbed Green’s function, defined as Gy =

lim¢_.g m The small parameter € is inserted to resolve the singularity in the
operator Go(E). If we choose the boundary condition #ﬂ_le ,
be produced by the starting from infinity and convergent at the origin. Thus, it is

the second term can

practically impossible to arrange. An alternative form of Eqn. (1.35) can be expressed
as

[¥) = (1 - Go(E)V) ™ [¥o). (1.36)
Now we are trying to understand the meaning of this solution in the next section.

Born Series

The iteration approach can be used to solve the Lippmann-Schwinger equation. To
solve Eqn. (1.36) by using the iteration method, we first rewrite the equation as

|¥iew) = [Yo) + Go(E)V[¥ora)- (1.37)

For zero-order approximation [¥,ey) = [¥o). Thus, Eqn. (1.37) can rewrite as |¥ ) =
(14 Go(E)V)|¥o). After successive number of iterations, the whole equation lead-
ing to the Born series:

¥) = (1+ Go(E)V + Go(E)VGo(E)V + Go(E)VGo(E)VGo(E)V +...)[¥o)

[ee]

= §<GO(E)V>"|%>. (1.38)

Eqn. (1.38) leads to an infinite series with increasing powers of the interaction poten-
tial V(7). Physically Eqn. (1.38) represents from the potential the incident particle is
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Detector

1
/d’S> 0

7

© Scattering angle

—> Z- axis
eikz

FIGURE 1.8: The Schrodinger equation has a solution that is the sum
of the incident plane wave ¢/ and the wave scattered by the potential
propagating outward from r = 0 in the quantum mechanical descrip-
tion of low-energy scattering. That is, the wave function in the form
¥ ~ ¢k 4 £(6,$)e*" /r. This is an eigenstate with energy E = h?k? /m
(no energy loss due to elastic scattering). Only the amplitude of the
scattering is f(6, ¢) which depends on the scattering potential V (r).

subjected to a series of numerous scattering events. The position representation of
Lippmann- Schwinger Eqn. (1.37) can be expressed as [39]

-

Y(7) = Yo () + / &rGo7, 7, E)V (F)E (7). (1.39)

In this approximation, Eqn. (1.39) leads to an expansion first order in V. The n-th or-
der approximation for the wave function can be obtained by analogy to Eqn. (1.38).
At zeroth order in V(7), scattering wave function translates to an unperturbed in-
coming plane wave. The Green function in position representation in free space the
Eqn. (1.39) is given by [39]

Go(7,7",E) = (7|(E— Hp+i0)~|r")
o eiklF-7|
h” 4r|? — 1|
This represents the outgoing spherical wave function. If we consider the center of the
scattering potential is at the origin and if the detector is sufficiently large distances
from the scatterer. For a spherically symmetric potential, behavior of ¥(7) at very
large distances, one can write

ei%-?

¥(7) i, .. €7+ £(6,0) (1.41)

r
The incoming plane wave is represented by the first term while the departing spheri-
cal wave is represented by the second term (see figure 1.8). The scattering amplitude
depends on the incident particle momentum k and the angle of scattering between
the incoming particle and the direction of observation, which contains all of the in-
formation. The factor f(6, ¢) can be expressed as [39]

2m
47th?

-

/ STy (7Y (7 (1.42)

f(0,¢) = —
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where f(6,$) has a dimension of length. The scattering amplitude is independent
of the distance 7. Here, 1’ represents the target size and 7 is the distance between
the target and the detector. In the above approximation valid for » >> r’. Thus,
7 — 1’| ~ r [39]. The scattered particle state is [¥;) = |¥) — [¥o). The T- matrix or

transition matrix is defined as

[¥s) = Go(E)T[¥o)
— Go(E)(V + VGo(E)V + VGo(E)VGo(E)V +...)[¥o)
= Go(E)V(1—Go(E)V)~"|[¥0)- (1.43)

Thus, the final form of T- matrix is

T = V(1-GoE)V)!
= V+VGy(E)V +VGy(E)VGH(E)V +... . (1.44)

Now we want to show the transition matrix (T-matrix) for the Fermi-Huang poten-
tial

FITIE) = 0% ¥us(0) |1+ Gog 0,005 +

d .
77G0(r/ O)GO,reg(()/ 0)g2 + .. :|

= () ¥s(0) [1+G0reg(0 0)g + G2y 0, o>g]
g53( )Tre (0)

= 1.45
ZGO,reg ) O)g ( )
where Go(F,0) = — 321~ ik — £7 +...]. Thus, Goeg(0,0) = — ik =
Finally T- matrix we have
V
= % (1.46)
+ e

where ¢’ = m%' ¢’ is known as ‘re-normalized’ coupling constant. The scattering
nh?

amplitude in term of T- matrix is defined as

JEF) = =5 [P I e
T
2m)2m o
_ _(hg<k/|T|k> (1.47)

where the initial and final relative momenta of the colliding particle are E, K. If
we take the Fermi-Huang potential as an interacting potential, then the scattering
amplitude can be expressed as [43]

m

f(K, &) = £(6,¢) = Hzl”ihzk (1.48)
27th?
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The amplitude of scattering is independent on the direction of scattering, as shown
by the above calculation. So, whatever the modulus k is, the Fermi-Huang potential
scatters only in the s -wave. The scattering amplitude at low momentum converges
to a constant value known as the s-wave scattering length if we analyze the potential
from a short-ranged central potential. We can relate this important parameter in
terms of the T-matrix as a; = — limy_, f(6,¢) = limy_p o ?’”hzf(lz’, E) = " The

22
scattering amplitude at low energies is constant at f o Y(p and the condition ka; <<

1is satisfied, in the interaction region, the phases kz and kr are negligible. Therefore,
Y ~ 1+ f/r. From Eqn. (1.46), we can determine the scattering cross-section and its

angular dependency:

do —

& = FERE=1£0 )P (1.49)

Eqn. (1.49) represents the probability of scattering per unit solid angle at an angle be-
tween the wave vector k' and k. We explain the quantum scattering for distinguish-
able particles. The varied internal states of alkali atoms are caused by couplings of
nuclear and electronic spins which are referred to as atomic hyperfine states. We
assume there are two identical particles which mean they can occupy the same hy-
perfine states. For fermions or bosons particle, we must then take antisymmetrize
or symmetrize the wave function according to the total atomic spin. The differential
cross section for both types of particle can be written as[39]

9 @) F fa-0)P (1.50)

where the minus and plus signs indicates fermions and bosons respectively. The de-
termination of the scattering cross-section has been an essential tool in the physics
community. In the high-energy physics area, scattering experiments give us infor-
mation about the size of the particle and the interaction strength. In condensed mat-
ter physics, neutron scattering and X-ray scattering off materials reveal the crystal
structure of bulk material.

Are the conditions for Born approximation experimentally satisfy?

The Born approximation’s validity condition is k|as| < 1. For scattering state one
requires ¥ > as. Now r = p_% be the mean distance between the particles, where
p is density of the gas. Thus, the Born approximation is valid when p% las] < 1.
At a temperature of T = 1uK, we use an average of the k* atoms in the Maxwell-
Boltzmann distribution which is often greater than the critical temperature for alkali

gases to determine the order of magnitude of k. The average yields a root mean
3mkpT
. T

where ap,,, = 0.53A, first used at MIT under the direction of Wolfgang Ketterle. So,

we obtain Akas = 2 x 1072, For 8Rb atoms case scattering length 110ap,,,. Thus,

square for k equal to Ak = . Scattering length for 2*Na atoms is 50ap,,,

we obtain Aka; = 0.1. First, measured experimentally at JILA for 87Rb atoms. Let
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us now discuss the second case. Condensates reach when densities of the order of
2 x 10 atoms per cubic centimeter. When the scattering length of 2*Na atoms is
specified p!/3a5 = 0.015 < 1. This results for the specified scattering length of 8Rb
atoms p'/3a; = 0.034 < 1.

Partial wave analysis of quantum scattering

At the low energy limit, the analysis of the scattering problem can be used by the
method of partial wave expansion. If the scattering potential V() is zero, then the
unique solution (plane wave) would be expressed in term of spherical wave using
the Rayleigh formula. Therefore,

¥(r) = e =Y (21 4+ 1)i'j; (kr) P(cos 0) (1.51)
]
where P, is a Legendre polynomial, k = 2;”—2’5 and j; is a spherical Bessel function.

The total wave function (i.e, solution of the Schrédinger Eqn.(1.23)) outside of the
potential range takes the following form
. eikr
¥ (r) = e + f(k,0)

— 1.52
: (152)
where the scattering amplitude f(k,6) for the spherical symmetric potential. The
system is symmetric (rotationally invariant) about the z-axis because V(7) is cen-
tral. Therefore, the azimuthal quantum number m = 0, the scattered wave function
cannot depend on the azimuthal angle. The complete solution of Eqn. (1.23) is as

follows [39]

‘P(T’) = ZalRl (kT)PI(COS 9) (153)
1

where the partial wave equation is satisfied by the radial function R;(r). Now
the radial form of the Schrodinger equation can be written as using Eqn. (1.53) in
Eqn. (1.23)

wi1d,d

%ZET ERZ (7") + [E — V(V)

R I(I+1)
2m 12

IR;(r) = 0. (1.54)

Now V(r) = 0 when r > g, the linear combination of the spherical Bessel functions
ji(kr) and n;(kr), which represents the solution of Eqn. (1.54). In the limit kr — oo,
the asymptotic forms of the spherical Bessel functions are [39]

sin(kr — Z1)

cos(kr — Z)
kr ’ '

jl (k?’) — r

n(kr) — — (1.55)
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Therefore, using the Eqn. (1.55), the radial from can be written as

sin(kr — 2L + 6y)

Rl(r) — kr

, (1.56)

Because of the phase shifts ¢, this wave function is referred to distorted plane wave.
The radial function of Eqn. (1.56) is finite at ¥ = 0 with §; = 0 as R;(r) in Eqn. (1.55)
simplifies to j;(kr). In the absence of the scattering potential (i.e., V = 0), ¢; is a real
angle that diminishes for all values of [, §; is also known as the phase shift of the 1-th
partial wave. The series Eqns. (1.51) and (1.53) are inserted in an Eqn. (1.52), and
replace the Bessel functions at kr — oo limit, giving us

il

in(kr — 2L +5 in(kr — 2l
Zl:ulsm( ! krz * l)Pl(cos(?) = 2(21+1)i’m(’;2)Pl(c039)

1
f(k, 9>eikr
7}/ .

+ (1.57)

One can obtain by applying the formula siny = ely’zileﬂy and matching the coefficients

of e~ in the equation above

a = (21 +1)ie™, (1.58)

Putting a; in place of Eqn. (1.53) and comparing the coefficient of %, Eqn. (1.57) we
have

£(k,8) = Y- (21 +1)fy(K) Py (cos(6)) (159)
1
where [ is the value of angular momentum of the scattering particle. In the asymp-

totic limit, we can obtain partial amplitude

ﬁ(k)::ié&“)ﬁnéﬂk)::koxﬁil_i). (1.60)
The scattering amplitude f(k, @) is written as a superposition of Legendre polyno-
mials. In ultracold gases, the scattering energies are very low. Then the scattering
occurs only due to the s-wave (I = 0) momentum states. The scattering amplitude
in this low energy limit is explained by the resulting s-wave phase shift §;. Now
the scattering amplitude can be obtained by expanding the cot term in the above
equation via the effective range expansion

1
ﬁwﬁzvﬂ+%mﬂ—i) (1.61)

where k cotdy (k) ~ — ali + %Rokz. From the cot expansion at very low energy one can
determine the s-wave scattering length as and effective range Ry of the potential.
These terms represent the effective size of the scatterer from the asymptotic limit.
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The elastic cross-section for identical boson is given precisely in terms of a(k) is
given by

87a?

ae(k) = m.

(1.62)
The additional factor of 2 emerges as a result of constructive interactions of bosons,
which increases scattering.

To determine the implicit formula for the I-wave scattering length a;. Let us
examine the analytic properties of f;(k) for small k as

fitk) = _2;/ arv (n)lrji (kr))* (1.63)
m r)! 2
N _zhz/drv(r)’z [@;’jr)l)!!(”@([k%z]) - (1.64)

By switching the limits and assuming uniform convergence, it is possible to arrive at
the general momentum dependency f;(k) = O(k?) as k — 0. One can reformulate
this in terms of phase shifts by using the formula f;(k) ~ m. Finally, that leads

to
2041 @y 100, 4
k COtél(k) = —a + Ele + O(k ), a 75 0 (165)
or
tan J; (k (2
kﬂi(l ) - @ o). (1.66)

For the I-wave scattering length 4;, it provides an implicit definition and the effective
range R;. The amplitude does not vanish at low energies except for s-wave scattering
(I = 0). No matter the shape of the potential, a5 is the only important parameter in
that limit.

1.4 The scattering length

A crucial characteristic of ultra-low-energy collisions is that despite of the attractive
interacting potential between two atoms in the figure 1.9. The total effect is identical
to that of the hard-sphere potential scattering. The cold atomic cloud can be modeled
as a hard-sphere gas, especially for calculating the energy contribution to the gas
from interactions between atoms. An atomic collision happens in the center-of-mass
frame. The scattering happens from potential V(r) of a particle with a reduced mass

can be written as
, mM

V:m+M'

(1.67)
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Wavefunction without potential

V(r)

Wavefunction with potential

FIGURE 1.9: The radial wavefunction is = sin(kr — ®) and the phase
shift is produced by the same scattering as a hard-sphere potential.
When the distance is very large, the overall effect of each potential on
the scattered wave function has a phase shift (indicated by the dashed
line for waves spread from a point- object at r = 0). The equivalent
hard-sphere potential radius as can be applied to characterize the po-
tential. Greenhow extended computational techniques to the study
of quantum scattering (1990). Figure from Butcher et al. al (1999).

When two atoms collide in a gas of identical particles, their reduced mass becomes
#' = m/2 ! because they have the same mass, m = M = m. In the short range,
where sin(k(r — R)) = k(rR), the radial solution can be written as

Y(r) R as

1-==1-% 1.68
r 0< r r ( )

It shows the general form of the low-energy wavefunction (kas < 1) near the hard-
sphere (2, < 7 < A“’B 8 region). Here, | = 0. Use eigenstates in the express10n (1.68)
with amplitude 77, we can calculate the average of the kinetic energy —27,V2 with
u' =m/2,is given by [45]

4rth? 4rth2aq
Bee ==l [ 15 00- )Prar = g (1.69)

A reasonable estimate of the energy is obtained by assuming an infinite upper bound
on the integral of r ( please see, Pathra et al. 1971). Pitaevskii and Stringari (2003)
book [9] provides a brief description of different aspects of collisions among ultra-
cold bosons associated with BEC. This reference gives a more details definition of the
scattering length and also provides an brief explanation of positive (a;s > 0) or nega-
tive (as < 0) (see 1.10) scattering length. When a5 > 0, the interaction between hard
spheres is effectively repulsive. For a; < 0 this is the case for attractive hard-sphere
interactions. However, most Bose-Einstein condensation experiments use sodium
and rubidium atomic states with positive scattering lengths corresponding to strong

Both classical and quantum physics use the reduced mass and the transformation to the centre of
mass frame in very similar ways.
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V(r)

(a)

(b)

FIGURE 1.10: Radial wave functions for molecular potentials with

slightly different very low-energy scattering from a) large positive

and b) negative scattering lengths (see Butcher et al. (1999)). The

dashed line crosses the horizontal axis at r = a5 representing the ex-
trapolation of the wavefunction for large r.
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Intensity
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FIGURE 1.11: Intensity distribution for a “particle’ scattering (e’*?) by
a quantum scatterer in 2-D box.

repulsive interactions between hard spheres.

1.5 Quantum scattering for unfixed scatterers in a box geom-
etry

We will now discuss the brief review of quantum scattering for unfixed scatterers in a
box geometry which is studied by Ankita Bhattachrya et al, (2017) [44]. The incident
particle is considered to propagate in the z-direction. One can express the interaction
between the incident particle and scatterers by a short-range Fermi-Huang potential
gég (7). We will look at two spatial scenarios: The scatters move in a one-dimensional
box geometry. So, the possible position of the scatterers is (—//2 < xg < [/2) along
the x-axis. The interaction between the incident particle and the scatters along the
x-axis can be written as

Vin = 86, (7 — xo) (1.70)

where 7 is the position of the incident particle and x is the position of the scatter-

ers. Due to these interactions, the particle would scatter coherently from all possible

points with probability density |¥7n(P)(xo)|>. The normalised energy eigenstate of
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the scatterer is

Y7 (x) = v/2/1cos ”7;’60 (1.71)
forn=1,3,5...., and
WP (x0) = v/2/Tsin X0 (1.72)

[

for even n = 2,4,6.... All outgoing spherical waves interfere with different phases,
resulting in coherent scattering amplitude. Now scattering amplitude depends on
the scatterer’s quantum state in a given direction (6, ¢) at the large distance xo+r
from the scattering center. The interaction between the incident particle and scatterer
is given by the Fermi-Huang potential. Using the Eqn. (1.70), particle scattering
amplitude for the single scatter in the quantum state [¥},(xo)) can be written as

m 12 —ik-xol
fl0.9) = 5% [ e )P
m .
_ ng sinc(gxl) - Lvl)z (1.73)
nr

where g, = ksin(60) cos(¢)/2. For I — 0, the scatterer should be fixed. For classical
fixed scatters one can get

P(0,9) = — 5K 1.74
ful0,9) =~ (1.74)
Additionally, the aperture will contribute to quantum scattering. This is due to the
fact that a particle can be scattered when an incident occurs on an empty box. The
Fresnel- Kirchoff formula will give the eigenstate in this situation
. —Aik (1 + cosf) g

P~ i(kxxg-i-kyyo) ) )
yr R / e dxodyo (1.75)

The scattering amplitude for a rectangular aperture (—% < xg < %, —% <y < %) of

area A = [ d can be obtained as

6,9) =e 2 Wsinc(qxl) sinc(qyl) (1.76)

where g, = ksin 8 sin ¢. The solution shown above is for a rectangular 2-D aperture,
but by assuming a few conditions [/d << 1,kd >> 1,and A = d [ non zero finite
constant. Then we can get the same result in 1-D. Since d k >> 1 now, sinc(qd) — 0
except for ¢ = 0 and ¢ = 77 which results in sinc(q d) = 1. The scattering amplitude
can therefore be written as

£(0,0) = AL Ge0.1) (090 + b.2). (1.77)
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Adding Eqns. (1.74) and (1.77) give the total scattering amplitude for 1D box. The
significance of the above result increases with temperature, where the amplitude
of a diffraction maximum at § = 0 can also decrease due to the completion between
particle scattering and aperture scattering. The figure 1.11 shows the intensity profile
of the scattered particle in a 2-D box.

1.6 Ultracold Gas

Atoms stored at temperatures below ten microkelvins (k) near absolute zero are
called ultracold atoms. At these temperatures, the quantum mechanical properties
of the atom come into play. Achieving such low temperatures usually requires a
combination of techniques. First, the atoms are usually trapped in a magneto-optical
trap and precooled by laser cooling. Further cooling is done by evaporative cooling
in a magnetic or optical trap to achieve the lowest possible temperature. Quantum
magnetism, Bose-Einstein condensation (BEC), quantum phase transitions, boson
superfluidity, Efimov states, many-body spin dynamics, Bardeen-Cooper-Schrieffer
(BCS) superfluidity and BEC-BCS crossover are only a small part of the phenom-
ena studied in experiments with ultracold atoms. Ultracold atomic systems have
been used as quantum simulators in some of these research directions to study the
physics of other systems, e.g., unitary Fermi gas and the Ising and Hubbard models.
Quantum computers can also be built with ultracold atoms.

1.7 Properties of scatterers

At the microscopic quantum level, there are two types of scatterers: Fermi scatter
and Bose scatter, which differ in their intrinsic angular momentum, the spin. Bose
scatterers behave like bosonic particles, while Fermi scatterers behave like fermionic
particles. According to Pauli’s exclusion principle, there is only one electron in each
of the quantum mechanical states of the atom. The shells fill up while we add elec-
trons. As a result, each electron requires a particular spatial volume. Without inter-
action, the fermions continuously fill the lowest quantum states of the trap, eventu-
ally reaching the Fermi energy level and producing a degenerate Fermi gas. The spin
statistics theorem states that bosons are particles with integer spins, while fermions
are particles with half-integer spins. When identical particles grow so close to each
other that their wave packets overlap, their distinct characteristics become visible.
At low temperature, bosons tend to congregate in the same state, whereas fermions
repel one another. Bosons contained in a trap experience a phase shift at very low
temperatures, here all the particles condense into a single macroscopic matter wave,
the Bose-Einstein Condensation (BEC). The BEC is a purely statistical quantum phe-
nomenon in which the phase transition occurs without the requirement for interac-
tion. BEC has appealing qualities, such as a coherence nature (as for the laser). In
1995, various groups achieved their first experimental successes with atomic gases,
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the Bose-Einstein condensates of bosonic atoms. The temperatures required to reach
condensation are of the order of 0.5 — 2uK, about 10% to 10’ number of atoms are
needed in the condensate, while the densities are between 10* — 10°¢m 3. The
cigar-shaped Bose condensate has a typical diameter of 15um and a length of 0.3
mm (Ketterle, 2001). The study of Bose-Einstein condensates demonstrates how
early quantum mechanics’ core ideas can be understood and shown in experiments.
Observations of macroscopic matter-wave interference, vortex formation, and dark
and bright solitons are the most famous experimental achievements. An attractive
interaction is required for a phase transition to a superfluid state, as it influences the
formation of pairs, which subsequently operate as bosons due to their integer total
angular momentum and Bose condense. The quantum phenomena begin to appear
when the number density n = % reaches a specific value [45]
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n_i
3
AdB

(1.78)

where the thermal de Broglie wavelength is denoted by

h
V2remksT
h

This definition refers to the conventional statement A ;3 = ;- with v as the typical ve-

Agp = (1.79)

locity of the atomic gas. Easily said, the thermal de-Broglie wavelength
measures the delocalization of atoms. This is the
size of the portion in which an atom is most likely
to reside when the atomic position is measured.
When A ;5 equals the distance between atoms, the
quantum effect becomes so pronounced that it be-
comes impossible to distinguish between individ-
ual particles. The Eqns. (1.78) and (1.79) state that
3.1K is the critical temperature of the Bose gas
at the density of liquid *He (145 kg m~2 at at-
mospheric pressure). This is near to A point at
2.2 K when superfluid He starts to form (see [1]).
Helium liquefies at 4.2 K, but since helium is less
dense than other liquids ( 103 kg m 3 for water)
because of it’s atomic structure. Helium atoms

have weak interactions; their small size and ex- -

tremely low polarizability are caused by the con-

FIGURE 1.12: The MOT is made up
of two coils with opposite currents
characteristics however are very different from for the magnetic field gradient and

those of a Bose-condensed gas with weak interac- three pairs of counter-propagating

beams with opposite &= polariza-

tion.

tined electron shell. Superfluid helium’s detailed

tions. BEC takes place at temperatures about one
microkelvin because trapped atomic gases have
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m; = +1
AoI mj =0
m. =-1

O, O.

>

0

FIGURE 1.13: For the case of an atom havinga ] =0 to ] = 1 transition,
the mechanism of a magneto-optical trap is shown. The atomic posi-
tion affects how the sub-levels of the magnetic field gradient are Zee-
man divided. The atom is illuminated by two counter-propagating
circularly polarised light beams, and because of how transitions be-
tween the Zeeman states are chosen. There is an imbalance in the
radiative force generated by the laser beams which pulls the atom
back centre of the trap.

substantially lower density.

1.8 Magneto-optical trapping (MOT)

In the magneto-optical trap (MOT), the quadrupole magnetic field induces an imbal-
ance in the scattering forces of the laser beams. It is this radiation force that closely
confines the atoms?. Figure 1.13 shows the basic principle of MOT for a transition
from ] = 0 to ] = 1. The magnetic fields generated by the coils cancel out at their
centre, resulting in B = 0. A uniform field gradient exists close to this zero field that
perturbs the atomic energy levels. As a result of the Zeeman effect, the energy of
the three sub-levels of the ] = 1 level (with m; = 0, 1) varies linearly with posi-
tion of the atoms, as illustrated for the z-axis in figure 1.13.3 The figure 1.12 depicts
the circularly polarized laser beams and frequency of the counter-propagating laser
beams which are just below the atomic resonance frequency. The optical molasses
method to incorporate the frequency shift brought on by the Zeeman effect into the
description of the magneto-optical trap

. d d
ot = Fa (0 — ko= (@0 +62)) — Flan(w +ko— (o +2)) = ~2k0 5L +22 gz
(1.80)
The terms wy + Bz and wy — Pz represent the resonant absorption frequency for the

mj = +1 transition at position z, and for m; = —1 respectively. The Zeeman shift is

2Jean Dalibard proposed the fundamental concept of magneto-optical trapping which was then
tested at Bell Laboratories in the United States in collaboration with a team from MIT

3There are other variations in the energy levels as well. Acoording with Maxwell’s equation div

2 . . . dB, _ dBy _  dB
B = 0 which implies that &=y — 5
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obtained for the displacement z as

UB dB
pr=g7 17 (1.81)

More generally, g = gpmjT — grmr is during a transition between the hyperfine-
structure levels|F’,m}) and |F’,m}). However, ¢ ~ 1 for many of the transitions
employed for laser cooling. The force is affected by frequency detuning § = w — wy.

So, ;Z = df . Therefore, the equation of motion is as follows

fmor = Zi{)(kvﬂLﬁZ)

= —av— %z. (1.82)

The Zeeman effect causes an imbalance in the radiation force which results in a
restoring force with a spring constant of % (expressed in this manner to empha-
size that it evolves similarly to damping). The atom experiences over-damped sim-
ple harmonic motion under typical working conditions, as seen in Ref.[45] example.
The magneto-optical trap is frequently employed in laser cooling experiments due

to its excellent trapping and damping properties, which make it simple to load.

1.9 A Bose-Einstein condensate

Atomic interactions are accounted for by including terms in the Schrodinger equa-
tion derived from Eqn. (1.69), proportional to the square of the wave function [9]

hz 2 2 _

The additional energy due to the interaction is proportional to [¥|? and it determines
the probability of a particle being found in a particular region and the coupling con-
stant are ¢ = ﬂMN‘IS. This is obtained from Eqn. (1.69) with |7|> — N|¥|2, which
gives the interaction per atom when N atoms are present®. The energy of a single
atom when there are all other atoms is denoted by the symbol y (instead of E). This
equation is called the Gross-Pitaevskii equation (see rigorous derivation in the book
by Pitaevskii and Stringari (2016) [46]). Let us think about the atoms that are trapped
in a harmonic potential

1 1 1
V(r) = EMw >+ Mw y + Mcuzz2 (1.84)

We should consider all three oscillation frequencies are equal for the sake of simplic-
ity, i.e., the isotropic potential V(r) = $Mw?r?. To estimate the energy, we apply a

4There are actually N — 1 other atoms, although, for large numbers of atoms, the difference from N
is negligible.
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variational technique. We select a Gaussian function for the trial wavefunction:
p— 72
¥(r) = Ae 27, (1.85)

This can be used to calculate the expectation values of the terms in Eqn.(1.83)

3, (a2, b2 g 1
E= hw<h0+> + —. (1.86)
4 bZ llio (27-[)% b3
When ¢ = 0, this expression of differentiation in-
dicates that the minimum energy obtains when (@ Avo
b = ay,, where u
h
o =\ Meo (1.87) .
® A n(r)

is the characteristic length of the quantum har-
monic oscillator’s Gaussian ground-state wave-

function. aj,, = 2 x 107 m is the harmonic oscil-

lator length if sodium atoms are in a trap with os- r
cillatory frequency 5 = 100 Hz. With this equi- FiGURE 1.14: The condensate in the

librium value of b, the two terms that are poten- Thomas-Fermi regime has the sim-
ilar form as the confining poten-

tial.(a) harmonic potential. (b) The
amount equal to the total energy E = %hw. This density of atoms in a harmonic trap

is consistent with the quantum harmonic oscilla- has an inverted-parabolic shape
along all three axes.

tial energy and kinetic energy each contribute an

tor’s ground state®. Variational approaches pro-
vide accurate outcomes in this specific case, because the trial wave function has the
Gaussian shape as the solution for the harmonic oscillator. Now let us explore what
occurs when g > 0°. Atomic interactions and kinetic energy are expressed in a ratio,
which is 7 [9]

4 1 g Nag

= ~ . 1.88
3 (27‘[)% hwaio A0 ( )

We can ignore the kinetic energy term if N > 700 atoms compensate the condensate
because this ratio equals ay,/as = 700 for a;, = 2um and a; = 3 nm. However, if the
kinetic energy term is neglected, the Gross-Pitaevskii (G.P) equation can be solved
very easily. In this alleged Thomas-Fermi regime, Eqn. (1.83) is reduced to

<V(r) + g|‘I’]2>‘{’ =u¥. (1.89)

5A zero-point energy of %hw has been allocated to each of the three degrees of freedom.
®Tt has been possible to create small Bose-Einstein condensates with interactions that are basically
attractive, but when the number of atoms increases, these condensates collapse inwards.

"The factor % ( 1) + has a numerical value of about 1.
2m)2

8Typically, experiments have N > 105, and the condensate is considerably larger than a;,0 due to the
effectively repulsive interactions. On the value of T, the interactions between the atoms in a diluted
gas only have a marginal influence (less than 10%)
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Thus, the region where ¥ # 0 one find

— V()

y2 =l (1.90)
hd s

As a result, in a harmonic potential, the number density of atoms is n(r) = N|¥|?,

which takes the shape of an inverted parabola

N 2 2 2 2 PR R
n(r):(1_1@_1@_122):;1(0)(1—1{2—%—1{2) 1.91)

where 7(0) is the condensate’s central number density. The density of the conden-
sate is zero at points on the axes indicated by x = +Ry,y = £R;,z = £R;, and it
has an ellipsoidal shape (see figure (1.14)) defined by

1
EwiRi = . (1.92)

It is also similar for Ry and R;. The chemical potential y is obtained by the normal-
ization condition

1= / ¥ 2dxdydz = igngRsz. (1.93)
The suitable form of y is [9]
)
"= ;(15:11;2%)5?@ (1.94)

1. . . . .
where @ = (wywyw;)3 is the gemetric mean of the oscillation frequencies.

1.10 Properties of Bose-condensed gases

Coherence and superfluidity are two remarkable features of Bose-condensed sys-
tems. Both connect to the microscopic explanation of condensate as N atoms with
the same wave function and for Bose-condensed gases, they can be quite easily ex-
plained from the first principles (as in the following section).

1.10.1 Healing length

The kinetic energy expressions in the Schrodinger equation are ignored by the Thomas-
Fermi approximation. As a result, the condensate’s surface exhibits an unusually
sharp edge (see figure 1.14), thus the gradient would become discontinuous and
V2Y¥ would become infinite. Therefore, we must consider kinetic energy at the
boundary. We compare the kinetic term (that included V2¥ ~ h?/ (2M¢E?) to the
energy scale of the system given by the chemical potential to calculate the closest
distance ¢ over which the wave function can change. Atoms having energies greater
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than y leave the condensate. The ngp = N /g from Eqn. (1.92) we find that [9]

i N _47Th2asn0
e T T M

(1.95)

Hence, we get { = which use to characterize the vortex-core radius, which

1
8rmasng’
appear in a superfluid as the confining potential rotates (or a fast-moving object
passes through it). For cold atomic gases, the healing length is near the order ¢ ~
0.5um. In the case of superfluid He-3, due to the strong interactions effect,the healing

length is small ( ~ § ~ 0.8A).

1.10.2 The coherence properties of a Bose- Einstein Condensate

Coherence is the another crucial characteristic. This property makes it possible to
treat the entire condensate as a single large matter wave similar to how a laser pro-
duces light waves. The two atomic clouds became expanded and overlapped when
the trapping potential was removed due to the atomic repulsion to each other. The
two condensates interfere with one another; atoms are absent from certain locations
where destructive interaction between the matter waves from the two source points
occur. These atoms are then redistributed to locations in the fringe pattern where
matter waves effectively superpose. Such interference is common in optics, but this
experiment differs significantly from standard double-slit experiments in a very in-
triguing way. The phases of the two condensates in the MIT experiment had no
fixed relationship, and before the experiment was carried out. There was a lot of
debate about whether interference would be seen. Each time the experiment was
carried out, distinct interference fringes were observed. When the experiment was
repeated, bright and dark stripes appeared in different places. As a result, the fringe
pattern is "washed out" on average over many runs. However, the position of these
stripes depends on how the phase of the condensate changed in that particular ex-
periment. It is necessary to be able to discern interference fringes in a single shot to
see the interference of two condensates.

1.11 Rotating quantum gases

Now we are interested in the origin of Landau levels in the single-particle energy
spectrum of the quantum gases. In this section, we will describe how this appears
for trapped harmonically quantum gases under situations of rapid rotation. We con-
sider the atoms are neutral. Simulating behavior of charged particles (electrons) in
a magnetic field is a common problem. The Lorentz force does not affect our ul-
tracold atoms since they are neutral. Rotating the trap containing the particles is
probably the simplest (conceptually) approach to this problem. The force acting on
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the rotating frame, we have

—

dv A (G i
ME MwlrL — Mcu Z —-MQx (Qx7) — E X7 —2M7 x Q). (1.96)
Trapping force Centrifugal force = MQ?r | Euler force— 0 Coriolis force

The idea is to take advantage of the similarity between the magnetic Lorentz force
(qv x B) and the Coriolis force (2M7 x ﬁ), which occurs when the frame rotates
at angular frequency Q) along the z-direction. 2M() takes on the role of g*B. As a
result in the rotating frame, neutral atoms act as charged particles if they were in a
true magnetic field. Furthermore, the particles will be subjected to centrifugal force,
which can be compensated for by harmonic confinement. This technique works and
has resulted in the formation of vortices and vortex lattices in BECs. However, there
are some disadvantages. One of the issues is the destabilizing centrifugal force in the
presence of trap asymmetry. More precisely, one can understand from the hamilto-
nian expression. When addressing the problem of a rotating gas theoretically, it is
common to assume that an arbitrarily anisotropic potential moving at frequency ) is
added to the isotropic trapped potential. The state of the system is only stationary in
the frame rotating at () when the stirring potential is present. H = H; 5, — Q) - L, de-
duces the Hamiltonian in the rotating frame from the Hamiltonian in the lab frame
Hpgp. The rotational potential is usually switched off for a short amount of time
before to the measurement. When the system evolves in the axis-symmetric poten-
tial, then () acts as the Lagrange multiplier for the angular momentum that is being
placed L, , which is a constant of motion. Consider an atom that is trapped in an
isotropic harmonic trap with an oscillation frequency of w_L in the xy plane. In a
rotating frame around the z-axis with angular frequency (), the Hamiltonian that

describes particle motion is given as

2 L M2 (1.97)

Pzt p;
e Mwl(x +¥7) QL+ 535 + 5

Hrot = =51 2

where the angular momentum operator of the particle along the z-axis is L, = xpy —
ypx. This Hamiltonian one can be written as follows:

- 12
(Fr—q'4)" 1

+ ZM(O? — ?)(x* +y?) + H.. (1.98)

H =
Rot M 2

However, since H | only contains the coordinates x and y. The quantum Hall effect is
based on this Hamiltonian, as well as the term describing the interaction effects. The
7. = (x,y,0)and p, = (px, py,0) are the 2-d position and momentum vectors, and
the effective vector potential is q'A(F) = MQ(x] — yi) and the corresponding mag-
netic field is ¢’B = 2MQ). For identical neutral particle one consider 4’ = 1. Thus,
one can justify the comparison of the Coriolis and Lorentz forces. In addition to
the Coriolis force, the centrifugal force MQ?7, appears in the rotating frame. The
system is stable when the rotation rate is below the “centrifugal limit” () < w.
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Centrifugal force leads to a drop in the harmonic confinement potential. It is excit-
ing to see how this rotation technique can exactly apply the magnetic Hamiltonian
Eqn. (1.123). If we compare Eqn. (1.123) to Eqn. (1.98), we realize that one condition
need to be fulfilled: The centrifugal potential would balance the trapping potential,
thus O = w,, implying that an extra potential (possibly quadratic, as in [47]) is
required to confine the particles). When () < w, the Hamiltonian Eqn. (1.98) in
the polar coordinates system, one can also be solved alternatively. The normalized

eigen-state is given by

|m|

_ 2\ 2 -
Vo) - w AT e-m@)

22 (n+ \m\ o

_ 2/212
X \mHm \/7 Z/l z . (199)
\/ 2]

Eqn. (1.99) comes after solving the time-independent Schrédinger equation. Here

}:"N

(BN

n =20,1, 2,... is known as the Landau level index, m = —-n, —n+1, —n+
2,...,+n the magnetic quantum number in the n'th Landau level, and j = 0,1,2, ...
is called the sub-band index for motion along the z-axis. The Eqn. (1.99) contains
analytical equations for higher Landau levels as well as wave functions with the
correct angular momentum. The Eqn. (1.99) describes the relationship between the
Fock-Darwin spectrum for the neutral particles in a magnetic field in the xy plane
and harmonic confinement along the z-axis. The energy eigenvalue of the system in

the rotating frame of reference, when rotated at an angular speed of (), is given by
€nmj = (M+1/2) h(w, + Q)+ (m' +1/2) h(w, — Q) + (j+1/2) hw;. (1.100)

wherem’ =n—m =0,1,2,... is treated as a single quantum number in Ref.[12, 10,
48, 49].

To create a vortex, one must rotate faster than the critical speed of (), ~ 0.7w
([12]). However, due to centripetal forces, the atoms are no longer bound in the
trap when the rotation frequency is higher than the trapping frequency. Thus, it is
a delicate balancing act to choose the right rotation frequency for generating vortex
lattices in BEC systems. Even yet, large vortex lattices have already been generated,
both conceptually and practically [22, 50, 51, 52]. A “rotating bucket" method has
been used an ultracold atomic systems. It is one way to experimentally create rota-
tion for a few vortices ([53]). This technique involves confining bosons in a magnetic
field and superimposing an aniso-tropic potential that rotates at the required angu-
lar speed [54, 55, 56]. The evaporative spin-up approach, in which atoms with lower
angular momentum are evaporated so that the remaining atoms have a higher rota-
tional speed, is one of the ways [50, 57]. Additionally, the rotation has recently been

used in experiments to create vortex-ring-like formations.
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1.11.1 Quantum Hall effect for rotating quantum gases

The Lorentz force F = g7 x B (for an electron) does not act on electrically neutral
atoms in a magnetic field B. However, when we place atoms in a rotating frame,
they experience the Coriolis force( F = 2M7 x )), as a result of a rotating field.
Because of the structural similarities of the Coriolis forces and Lorenz forces. The ro-
tating ultracold gases of neutral atoms can be able to produce quantum Hall states.
In this part, we will explain the relationship between rotating gas and quantum Hall
states. The quantum Hall effect which is characterized by a 2-d electron gas in a
strong magnetic field and fast-rotating atomic BEC has quite a strong theoretical
similarity that was first identified more than 20 years ago. The QHE, which hap-
pens in a 2-d electron gas at low temperatures in the presence of strong magnetic
fields, and a fast- rotating dilute BEC of electrically neutral atoms, are well known
to have a tight theoretical link. The key to this similarity is that rotation and per-
pendicular magnetic fields are found to play analogous roles in 2-d, making the two
systems mathematically identical. This implies that given a quick enough rotation,
a Bose condensate must reach a domain of tightly coupled quantum Hall states. The
quasiparticle excitations obey fractional (anyon) statistics in this regime.

Experimentally constructed Abrikosov lattices with hundreds of vortices are near
the rotation velocity at which this vortex lattice structure is projected to melt, putting
the system in the quantum Hall regime. The fundamental reason for this is that at
these rotation velocities, the system is approaching the point when the centrifugal
potential drops the external harmonic trap, causing the atomic cloud to fly apart.
The fractional effect is a considerably more delicate phenomenon that occurs (pri-
marily) in the LLL and can only be learned when the electron interactions are taken
into consideration, as discussed below. Another important aspect to note is that if
w, = (), the mean system flattens out, revealing the Landau problem (free electrons
in a perpendicular magnetic field) which is connected to QHE. The total energy of
the system is then independent of m. Thus, total Hamiltonian describes as a quasi-
2D system with an energy spectrum given as

€nmj = (n+1/2)hwe + (j+1/2)hw.. (1.101)

The energy spectrum is highly degenerate with single-particle states having the
same energy regardless of angular momentum value m. Now the effective “Larmor
frequency” is hw, = hq*WB = 2hw; = 2hQ). For the quasi-2d case, the wave-function
for the lowest Landau level (LLL(n = 0,j = 0)) [58] states can be written as

2,2 2

. e 2
X Wyme o2, (1.102)

Yo,m(r) o ( I

This wave function of course, meets the normalization condition [ dxdy|¥o.|> = 1.
Where [, , = "_ s the confinement lengths in the radial and axial directions.

Mw 1,z
If one makes the connection of Eqn. (1.102) with fractional quantum Hall state then
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the new length scale define as { = xltiy and | = Miwc = \% Now normalized 2d

the wave function for LLL states can be written as

1
vV 2m2mi2m

where [ is the magnetic length and m > 0. It is noted that { = %ei‘/’ when expressed

I?

Yom(l) = {Mem v (1.103)

in 2-d polar coordinates.

Now, we want to show an expression for the total number of states per unit area
in a single Landau level. One knows that the complex coordinates representation of
the position vector can be expressed in terms of ladder operators as z = 2I, (a' +
b),z = 21, (a+b"). One can determine the quantized orbit for the ¥, ({) state
using

m(ny|zz|n_) = 2nl4 (ny +n_+1). (1.104)

Now the ring has the radius R = \/ 27tl% (ny +n_ +1). For a large n value, the orbit
becomes strongly localized within ~ I, of the ring. In a thermodynamic limit, the
area occupied per electron is 27t/ . We take here the lowest landau level is filled by
occupying all single particle quantum state with n, = 0, and n_ = n* — 1. Another
way one can obtain the same result

n*—1 ) 1 n*—1 Xm X 1
mgo [Fom(Q)]> = 2l n;o e 2l (1.105)

g2
212
ing for novel physical phenomena in the strong magnetic field limit. The rotation

where X = 2. The macroscopic Landau level degeneracy that creates the open-
rate cannot be greater than the radial trapping frequency since the centrifugal force
effectively creates an anti-trapping potential.

Let us now return to the harmonic trapping potential for the many-body prob-
lem. We will use the Gross-Pitaevskii (G.P) approximation and at the end of this
portion we will see, when it fails. The effective confining potential in the rotating
frame becomes shallower as the rotation rates increase (see Eqn. (1.122)), lowering
the interaction energy and lowering the density of the gas. A suitable approxima-
tion is to employ a trial condensate wave function with components mainly at the
LLL when the interaction energy ¢, is less than the energy 2i1() required to excite
higher Landau levels [48]. The trial wave function is a polynomial in { = x + iy
multiplied by a Gaussian factor, based on the form of the functions Eqn. (1.103).
Now we consider that the G.P wave function is a linear combination of these LLL
eigenfunctions

N I?
4

Yor(r) =Y Co¥om(ri) « (T —gj)e 7. (1.106)

j=1
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The product from H]N:1 (¢ — ;) is a complex polynomial function that disappears at
each of the points {{;} and all those are nodes position of ¥. The LLL trial solu-
tion has only quantized vortices found at positions of zeros {{;}, the reason is the
phase of wave function raises by 27t whenever { goes around any of these zeros
{Z;}. The spacing of the vortices is determined by number density |[¥.11(r| |*>. The

core size is same with the inter-vortex spacing | = \/% in the limit of O = w) .
Since LLL wave functions are crucial to the quantum Hall effect, this LLL regime
is known as “mean-field quantum Hall" limit. It to be noted that we are still in the
regime directed by the G.P equation, so there still the presence of a BEC. The most
crucial fractional states at v = 1/m are defined theoretically with m is an odd inte-
ger, when Laughlin introduced his well-known many-body wave function in 1983,

for the ground state

DY I;1?
Y1, 8o, On) = [ (G —gj)"e 1 (1.107)
i<j
where (; = (x%:y‘) are 2-d complex coordinates indicating the positions of the par-

ticles in the complex plane. A number of highly correlated states related to some
well-known quantum Hall effect states in a particular bosonic version of the Laugh-
lin state, exist for the smaller value of v (here {; = %ﬁyl refers to i-th particle). A
novel, completely quantum mechanical state of matter is represented by the Laugh-

lin wave function (especialy for an incompressible quantum fluid). In the plasma

analogy, if the particles have artificial charge m and electron density is 1 ﬁ Hence
€L
landau level filling factor % = %, %, %, ... etc. For w; > O and at absolute zero

temperature, the density of atoms is [, (r.)[*@(€ym — €r) with er is the Fermi
energy and O(y) is the step function. The total number of atoms can be written as
Y m(€F — €n,m). The density of atoms at finite temperature T becomes

fiog = Y [Fum(r ) > f(€nm) (1.108)

where f (€, ) is Fermi-Dirac distribution function and total number of atoms is N =

Yo f(€nm)-

1.11.2 The filling fraction

The Gross-Pitaevskii mean-field theory explained earlier is an approximate theory.
Here we assume that the ground state is a simple condensate. It is essential to inves-
tigate under what conditions its results are reliable. It is obvious that the single-
electron quantum mechanics cannot account for fractional Hall states. Now the
connection between cold atoms in the 2-d LLL and the FQHE of electrons can be
explained. Thus, the presence of a strongly correlated and gapped ground state at
particular filling factors provides a base for the FQH physics mechanism. In the
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FQHE of electrons, the ground states are described by the electron filling factor

h
Velectron = nelectron@ (1109)

where #yjpctr0n is the 2-d number density. From the mapping of the rotating atomic
gas in 2-d, the similar quantity is (Cooper et al., 2001)

h h

= =N 1.11
V=n poye e (1.110)
Thus, the filling factor of the rotating gas in term of the votex density is
n N
S 1.111
VTN, (1.111)

Here, we assume that the particle is to be distributed uniformly over an area con-
taining N, vortex. The above result arises from the equivalence of flux density 7,
and vortex density 7, in a large system. Because of similarities of a 2-d electron
gas in a high magnetic field, v is known as the “filling fraction"[49]. Theoretically,
the range of rotational frequencies () can be separated into three regimes. They can
be identified by the value of the filling factor. Strongly correlated states achive at
higher () ~ w,. The high fillings fraction v > 100 corresponds to the regime of
vortex lattices, which is known as a mean-field quantum Hall regime. The previous
experiment [50] was showed N ~ 10° and N, ~ several hundred, so that v ~ a
few hundred. Transversal excitations of the vortex lattice become less frequent as
more vortices start to form in the system. The expected lattice melting below v ~ 10,
which is assumed to be caused by quantum fluctuations, is predicted by the long-
wavelength characteristic of Tkachenko modes. The numerical studies [49] show
that, for a small number of vortices N, ~ 8 with variable N the coherent G.P state
is favored for v > 6. In the crossover regime, extrinsic vortex phases are exacted to
substitute the Abrikosov vortex lattice. Strongly correlated quantum phases are ex-
pected to produce mainly fractional quantum-Hall liquids if N, eventually exceeds
the number of particles in the region of critical rotation. Numerical simulations show
the subsequent creation of a highly correlated fractional (incompressible) quantum
Hall state for v ~ 2. Highly degenerate LLLs approve the creation of states with low
occupation per level (“fully fragmented condensate.”). The difficulty is that one can-
not rotate condensate fast enough in an experiment to enter this regime. Reducing
the number of particles does not operate since one loses the signal.

1.11.3 Vortex Lattice

When superfluid He is allowed to circulate in a rotating vessel by cooling liquid He
from above the superfluid transitions to the superfluid phase [59]. The superfluid
then produces a collection of single quantized vortex lines that are oriented parallel

to the rotational axis. The kinetic energy of the superfluid flow becomes a significant
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impact on the arrangement of dilute vortices when they are separated by a distance
of a, >> ¢. The following results arise from the minimization of the kinetic energy
of the superfluid flow in the rotational system [60]:

i) For the average vortex density to be determined in the plane perpendicular to
the rotational axis, the mean superfluid flow must mimic rigid body rotation. The

average vortex density n, = % = %

is determined by the Feynman result [61] by
setting the integral of the vorticity of a rotating body over an area A is 2()A, equal
to the motion of a superfluid with N, vortices in that area N,/1/m.

ii) the vortices interact pairwise in a logarithmic repulsive manner and have an

interaction energy per unit length of

h? IR; — R;|

—Ng——— —_— 1.112
]
where R; = (X;,Y;) is the location of the iy, vortex in the plane perpendicular to

the rotation axis and n; is the superfluid density. A triangular lattice is a ground
state form of a set of classical particles that interact in a logarithmic repulsive man-
ner. Therefore, at low temperatures one expects the vortices to form a triangular
Abrikosov lattice [62].

1.11.4 Mean- field Quantum Hall regime

Let us think about the effects of increasing the rotation frequency. Based on the
filling factor, several phenomena can be anticipated. In the case of rapid rotation
(Qc 3 O S w)) the vortex lattice is formed in the rotating trapped Bose Einstein
condensate. The lattice pattern is tri-angular shape. This vortex lattice is called
Abrikosov vortex lattice. The Abrikosov vortex lattice [63] has been experimentally
observed [22, 54]. In the rotating frame, at zero temperature, the state of the system
is obtained by minimizing the energy

E=E-QL= / [‘(p - MZ(]\ZX D¥E | %(wi — )R ¥ P+ S ¥ a7 (1119)
The above equation clearly shows that as () approaches w | then the system belongs
to a quasi-2d system. When the boson filling factor (vo = No/Ny ,7<o 8) then the
system belongs in the mean-field quantum Hall regime obeys the Gross-Pitaevskii
equation (G.P), where the mean-field theory is still appropriate but the system state
is well described by the LLL (Eqn. (1.106)) approximations [64]. The kinetic energy of
the system remains exactly equal to fiw | in the LLL approximation, where n = |¥|?
denotes the particle number density. So, the Eqn. (1.113) reduces to

E' = hw, N+ %(wi —?) /rz\‘l’]2d?+ s / P [4d7. (1.114)
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We are looking for situations with a many vertices. The particle wave function varies
rapidly near to the vortex position due to the wave function nodes at the vortex gap.
It is thus convenient to incorporate coarse-grained averages of density (7)) taken over
a distance greater than the inter vortex distance, but small respect to the cloud size.
Thus, the energy of the system is defined as

M

E' =hw N+ 7(wi —?) /r2ﬁd7—i— % a*dr (1.115)

where the Abrikosov lattice parameter is represented by

11
I\)I

3'\1)‘

B (1.116)

for a triangular lattice. The value of B, one can calculate to be  ~ 1.1596 [63]. One
takes the approximation that the vortices are on a regular triangular lattice and hence
we can take § to be independent of position. N = [ 7id7 and the appropriate density
distribution is obtained via minimization of E w.r.t the coarse-grained density distri-

bution, under the assumption that the total particles number remains constant and

thus gives
M
Bgin =y —hw, — i(wi — Q)% (1.117)
or
il
a(r.)=7a(0)(1- RT) (1.118)
1
where 71(0) = £ ;ZQ and R; = % The chemical potential represented by u
1

in the rotating frame. The coarse-gained density profile of a rapid rotating BEC has
a Thomas—Fermi distribution like form [65].

1.12 Introduction of Artificial Gauge

Many different physical contexts exist for the realization of synthetic gauge fields.
One of the most pervasive ideas in physics. Gauge fields offer incredible connections
between the domains of condensed matter physics, quantum optics, high-energy
physics, and cosmology. It is difficult to simulate magnetic effects with quantum
gases: requires the creation of “artificial gauge potentials" as “substitutes” for true
electromagnetic fields. Electric forces can be simulated by gravitational acceleration
or gradient magnetic fields. But how can we simulate the Lorentz force (ﬁLmntZ =
q'7 x B) experienced by charged particles moving in a magnetic field? In quantum
mechanics the Schrodinger equation is
¥ (7, 1)

: _ (P —dA@)) g -
if 5 Wi Y (7). (1.119)
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Now consider gauge transformation which is imposed by the Schrodinger equation
can be expressed as follows

A7) = A7) = A7) + Vx(7) (1.120)

where x is gauge parameter.

Y71 = Y7 ) = V¥, ). (1.121)
A gauge transformation changes the wave function by giving it a phase. Investi-
gation of the physical consequences of gauge fields, first demonstrated by the pi-
oneering Aharonov-Bohm effect [66]. Gauge potentials arise naturally from “real"
electromagnetic fields, but through proper manipulation of physical systems, gauge
tields of various types can be created and fine-tuned. This can be done both in
solid-state devices and ultracold atomic gases [67, 68, 69] and photonic crystals [70].
We are especially interested in the spectral char-
acteristics that are well described by a designed ~Quantum Hall physics

Hamiltonian of the type
H(p—A), A= A{?51t} (1.122)

where p represents the canonical momentum op-
erator and A{?,&,t} represents a general gauge artificial gauge fields
potential. A can theoretically be affected by the FIGURE 1.15: Artificial Magnetic
position operator 7 and the “spin” degrees of free- field

dom or time. It is crucial to note that the technical gauge potential is always treated
as a classical external field. This gauge field is not dynamic. On the other hands,
particle motion has no effect. The method presented in this work does not repro-
duce the full gauge theory (such as Maxwell’s electromagnetic equations). Let us
recall the idea of the magnetic field in quantum mechanics. Suppose there is a free
particle in quantum mechanics. The Hamiltonian operator is H = ;. The Hamil-
tonian is given as follows for the motion of a charged particle in an external, static,
and uniform magnetic field

p = P TAG)S Z;\‘;@)z (1.123)

where p is the canonical momentum which is canonically conjugate to the posi-
tion. It is not the mechanical momentum. If we see the dispersion curve for a free
particle, 7 = 0 the potential energy is minimum (see figure (1.16)). But, for the
charged particle in a magnetic field, minimum at g A in the dispersion curve (see fig-
ure (1.16)). Thus, by shifting the dispersion curve one can simulate a vector gauge
potential. We design a Hamiltonian with a spatially variable vector potential, by giv-
ing B* = V x A* in order to construct an artificial magnetic field B*for charge-less

atoms [14]. If we make shift time-dependent we can simulate gA giving E = — dt’g* .
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Free Particle : Charge particle in magnetic vector potential:
A ® g- (P-a A’
E= pM M
2

. —>

p p

FIGURE 1.16: Shifting the dispersion curve simulates a vector gauge
potential.

Researchers can construct and control complex vortex structures with the use of ar-
tificial magnetic fields, which is a very powerful tool. Two photons Raman- dressed
atom behaves like a charged particle in a magnetic field [14].

1.13 The Artificial de Haas-van Alphen effect

The de Haas-van Alphen (dHvA) effect is a quantum mechanical phenomenon,
that causes the magnetization of a pure metal crystal to oscillate by increasing the
strength of the magnetic field. A macroscopic manifestation of the Landau level
quantization of the electron spectrum in the presence of a magnetic field is the de
Haas-van Alphen oscillation. The de Haas-van Alphen oscillations have now devel-
oped into a useful tool for describing the electronic states of semimetals and metals
with large mean-free paths. We investigate the prospect of finding comparable quan-
tum oscillation phenomena for ultracold gases of fermionic atoms, either by rotating
the gas or by employing an artificial gauge field. The effect of rotation or an artificial
magnetic field on a non-interacting Fermi gas in a cylindrically symmetric harmonic
trap is examined in our study. The rotating harmonically trapped Fermi gas (please
see Eqn. (1.96)) exploit the analogy between magnetic field effects on charged parti-
cles and rotational effects on rotating systems to predict de Haas-van Alphen- like
oscillations in the differential scattering cross-section. When the artificial magnetic
tield is swept, we demonstrate the quasi-periodic behavior of the differential scat-

tering cross-sections in the low- temperature limit.
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Chapter 2

Particle scattering by harmonically
trapped quantum gases at finite
temperatures

2.1 Introduction

In the existing literature, quantum scattering theory is discussed both for classical
scatterers (which are either fixed or having classical motions in space [1]) and quan-
tum scatterers e.g. quantum scattering by atoms, molecules, nuclei, etc [2]. ‘Par-
ticle’ can be scattered coherently from each and every point of the region of space
of the quantum scatterer if it is fired onto the region, and carries information about
the state of the scatterer after being scattered. There are some theoretical discus-
sions on quantum scattering for unfixed quantum scatterer(s) bounded in a region
of space, e.g. diffraction of atoms from a standing-wave Schrdinger field [3], scatter-
ing of slowly moving atoms by a 3D harmonically trapped Bose-Einstein condensate
(BEC) within Bogoliubov-de Gennes formalism [4], particle scattering by a weakly
interacting BEC[5, 6, 7, 8, 9, 10], transport of atoms across interacting BECs in a 1D
optical lattice [11], a nondestructive method to probe a complex quantum system
using multi-impurity atoms as quantum probes [12], particle scattering by quantum
scatterers in restricted geometries [13],etc.

In none of the previous works, related to the quantum scatterers, temperature
dependence of the scattering amplitude or that of the differential scattering cross-
section was studied. Thus, we naturally take up discussion on quantum scattering
to introduce quantum scattering with quantized motions of the scatterers in thermal
equilibrium in harmonically trapped geometries as probe for Fermi-Huang (52 inter-
actions (among the ‘incident’ particle and the scatterers), which although are easy to
deal with have huge applications in the field of ultra-cold atoms [14, 15]. We are spe-
cially interested in temperature dependence of differential scattering cross-section
for scatterers in the harmonically trapped geometry in this regard, as because, ther-
modynamic properties of ultra-cold gases in harmonic traps are of growing interest
[15, 16,17, 18].
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FIGURE 2.1: Intensity distribution (D3(6, ¢) = |f3(6, $)|?) along a line

parallel to the x-axis for scattering of a ‘particle’ (¢/*?) by the 1-D har-

monic oscillator along x-axis for as as unit length, kas = 5, i — m,
and I /as = 1. Plots follow from Eqn.(2.8).

If a plane wave (¢/*?) associated with a free particle (‘particle’) of a fixed momen-
tum (p = hkk) is scattered by a fixed scatterer (situated at r = 0) with an interacting
potential (Vj,;(r)), then spherical wave (#) goes out of the scatter with a scattering
amplitude (f (6, ¢)) to a particular direction (6 and ¢) with respect to the initial direc-
tion (IAc). Now, if the scatterer is not fixed, say, the scatterer is a particle in a 1-D simple
harmonic oscillator (—oo < xp < ©0), then the “particle’ would be scattered coher-
ently from all the positions ({xo}) with probability density |, (x)|> where 1,,(xo)
(n =0,1,2,....) is the normalized eigenstate of the scatterer. In this case, after being
scattered from all of the scattering sources points ({x¢}), the spherical waves (Ei:: /)
will go out. To a particular direction (6, ¢) at a distance r = x¢ + t’ from the center
of the oscillation, all the outgoing spherical waves ({E;L,r/}) interfere with different
phases and give rise to a coherent scattering amplitude f, (6, ¢) which now depends
on the quantum state (|¢, >) of the scatterer. Small angle neutron scattering by
quantum dots was investigated by Pinero et al without precisely probing quantized
motions of the scatterers in them [19]. Particle scattering by coherent media was also
studied experimentally by Chikkatur et al [20] and Bromley et al [21]. While Brom-
ley et al did not probe quantized motions of the scatterers in the dense medium,
Chikkatur et al, could probe quantized motion of the scatterers, to a certain extent, in
a BEC; though they did not probe angular dependence of the scattering amplitude.
However, electron scattering by harmonically trapped BEC [22] and Fermi gas [23]
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was studied theoretically for T — 0. Although temperature dependence in particle
scattering by a BEC was studied by Montina [7], he did not consider quantized mo-
tions of the bosonic scatterers. About light scattering by a BEC or by ultra-cold atoms
in optical trap, the experimental work of Schneble et al in [24], the recent theoretical
work of Ezhova et al in [25], Zhu et al in [26] and Kozlowski et al in [27], the review
work of Mekhov and Ritsch in [28],and the references therein are quite interesting.
Above all, temperature dependence of the differential scattering cross-section, for
particle scattering with quantized motion(s) of the scatterer(s) in harmonic/otical
trap, has not been studied so far.

This article begins with revisiting of the quantum theory of particle scattering for
a fixed (classical) scatterer with Fermi-Huang potential (i.e. regularized 6° potential:
Vint(r) = géf;(r) = g(53(r)%1’). Then we have generalized the theory for quantum
scatterer(s) in restricted geometries, in particular, for bosonic/fermionic scatterer(s)
in a (i) 1-D harmonic trap, (ii) 2-D harmonic trap, and (iii) 3-D harmonic trap. Then
we have calculated the scattering amplitudes, and have plotted the differential scat-
tering cross-sections for all the cases. We also have investigated temperature depen-
dence of the differential scattering cross-sections for the above cases, and specially
emphasized on the differential cross-section for particle scattering by BEC(s) in the
3-D harmonic trap [29], double well trap, and the optical lattice.

2.2 Particle scattering by a single scatterer in a harmonic trap

In quantum scattering theory of particle scat-
tering we deal with the time independent
Schrodinger equation

2
(= 53 V2 Vi) ) () = By, 2)

Scattering of an incident particle of mass m and

the given momentum hkfc, is recast, as scattering
of a ‘particle’ (i.e. scattering of the plane wave
Yin = ekz) by the interacting potential Vj,;(r), into
an outgoing spherical wave ,,; = %kr General

form of the solution to Eqn. (2.1), in the radiation

<

zone, takes the form [1]
FIGURE 2.2: In the figure the

scattered wave vector related

ikr
], (2.2) to incident wave vactor is

, e
#(E) = 900, 0,9) = Al +7(0,0)°;
Only along the z-direction the mo-
where | A|? is proportional to the intensity of the mentum is shifted.
incident “particle’. From this information, we can
find out the scattering (probability) amplitude (f(6,¢)) of the out going spherical

wave to a particular direction (6, ¢ in usual convention) with respect to the direction

k' = k(sin 0 cos ¢i + sin 0 sin ¢] + cos Ok).
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of the incidence. The scattering amplitude, for Vi, (r) = g65(r), with all orders of
the Born series, takes the form [30, 31, 32, 15]

mg
f(0,¢) = — . : (2.3)
27t (1 4 ik5255)
In Eqn. (2.3), The scatterer has been assumed to be fixed. If it is not fixed but is
moving relative to the incident particle and the interaction potential is unchanged,

then the scattering amplitude would change to

Hg
f(el(P) == 2 o Ag N/ (24)
2rth= (1 4+ zkﬁ)
where ji = mm+MM is the reduced mass and M is the mass of the scatterer [15]. The

scattering amplitude is independent of 6 and ¢ for low energy scattering, so that,

s-wave scattering length can be conveniently defined, for low energy scattering, as
27th2a;

as = limy_,o —f (6, ¢). Thus, we quantify the coupling constant, as g = 7

2.21 For a single scatterer in a 1D harmonic trap

If r be the position of the incident particle such

that, r = 0, the center of the trapped potential, is
the origin, then the (52 interaction, as previously
expressed, the interaction between the incident
particle at r and the scatterer at x0i can be writ-
ten as follows:

Vint (1) = g6, (r — xo). (2.5)

Eqn. (2.3) can be recast, using Eqn. (2.5), for this

problem, as

f(6,9) = Mk ik~ )xal _ M8k —ik-xf

Y = —— 2.6 ) g
2 h2 27172 (2.6) FIGURE 2.3: A schematic diagram

for particle scattering by a harmon-

ically trapped BEC.

where g = Eqn. (2.6) is correct only

if the scattering has happened only from r = xp7, and will not be correct if x(i is
not a fixed point. Although we can consider Eqn. (2.6) where there is a relative
motion (between the particle and scatterer) by replacing mass of the ‘particle” by
the reduced mass, yet the scatterer is still classical as we have not quantized the
motion of the scatterer. Let us now consider quantized motion of the scatterer(s)
into the theory of quantum scattering, and begin with the scatterer as a particle in a
1-D harmonic trap potential V(1) = 3 Mw?x3 where wy is the angular frequency of
oscillations, M (M >> m) is the mass and 1y = xoi is the position of the scatterer such
that —oo < xp < oo. We again consider the scatterer to scatter the incident “particle’,

Ae'*?, by the interacting potential V;,;;(r) = gég (r — xoi). Scattering amplitude, if the



2.3. For a single scatterer in a 2D harmonic trap 51

scatterer is fixed at r = xoi, would be the same as that in Eqn. (2.6) as f(6,¢) =

_ gk ik xpf
27th?

energy eigenvalue E,,, = (ny + 1/2)hwy, can be written, as [1]

— 1 1 —x2/212
P, (x0) = \/ ﬁﬁﬂnx(xo/lx)e , (2.7)

where I, = \/Ii/ Mwy is the confining length scale of the scatterer, and H,, (xo/I)
is the Hermite polynomial of degree n, = 0,1,2,.... Now, the quantum scattering

. Normalized energy eigenstate of the scatterer, corresponding to the

is happening from all the points —co < xp < oo simultaneously with respective
probability density {|y,(x0)|?}. Thus, the scattering amplitude for the scatterer in
the quantum state |1, >, can be written, using Eqn. (2.6), as

ful@g) = 8 [ Mg, (o)t

2 )
_ M8k 212 212
= ot P L, (205 1%), (2.8)
where g, = ksin(6) cos(¢)/2 as defined before, and Ly, (24212) is the Laguerre poly-
nomial of degree n, [33]. We show the profile of the differential scattering cross-
section (Dy,,(6,¢) = |fu.(0,¢)]?) or the 1D case in figure 2.1 for quantum number
ny = 3.

2.3 For a single scatterer in a 2D harmonic trap

For 2-D case, the trap potential would be V(1)) = IMw?2x3 + %Mwﬁy% where w,
is the angular frequency of oscillations along y direction, and ry = xg7 + yoj is the
position of the scatterer such that —co < yp < co. We again consider, that, the
scatterer to scatter the incident ‘particle’, Ae’?, by the interacting potential V(1) =
g(5;3,(r — X0l — yoj). Thus, scattering amplitude, for the 2-D case, would be, in the
separable form

Mk _R212_g22
From, 0,9) = =7 Le HE B L, (QGRR) L, (24315) 29)
where ¢, . (%0, ¥o0) is the normalized energy eigenstate of the scatterer with energy
eigenvalue Ey, », = (nx +1/2)hwy + (ny +1/2)hw, and n, =0,1,2, ...

2.3.1 For a single scatterer in a 3D harmonic trap

Above generalization, however, is not obvious for the scatterer in a 3-D harmonic
trap potential V(rg) = 3Mw?2x3 + %Mw;y% + $Mw?z3 as because we further have
to consider momentum transfer mechanism for the motion of the scatterer along
the z direction since the incident “particle’ has momentum only along the z direc-
tion. For this reason, generalization Eqn.(2.6), for an arbitrary fixed position ry =
Xoi 4 o] + zok in 3-D, would be £(0,¢) = —%e*ik/'(x05+y0]7+i(k*k/)'20’2. Thus, 3-D
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generalization of Eqn. (2.9) would be in the separable form
_ mgk —iK- K N i(k—K')-z0k
) = 2 [ i
x W)nx 1y, 1z (XO; yO, Z()) ’2d31'0
_ mgk _qzlz y qzlz
27th2
X Ly, (24313) L y (211212) . (2%12), (2.10)

where ¢, , . (x0,Y0,20) is the normalized energy eigenstate of the quantum scat-
terer in the 3-D harmonic trap with energy eigenvalue Ey, u,n, = (1x +1/2)hwy +
(ny +1/2)hwy + (n, +1/2)hw;, n, = 0,1,2, ..., w; is the angular frequency of oscilla-
tion of the scatterer along the z direction, I, = Vh/Mw,, and j. = —k(1—cosh)/2 =
—ksin?(68/2) which acts like an obliquity factor. Differential scattering cross-section
for the 3-D harmonic scatterer, can be obtained from Eqn. (2.10), as

m _
an,ny,nz((?,(p) — zﬂik PR 212212
2
X L, (20313) L, (2q,1) L, 22213) | - (2.11)

Eqn. (2.10), though it goes beyond the first Born approximation, is fully consistent
(for ka; < 1) with the result obtained by Bodefeld and Wilkens after truncating the
Lippmann-Schwinger equation to the level of the first Born approximation [3]. Av-
eraging over the position of the scatterer in Eqn. (2.10) (and that in the preceding
two as well) is justified by the fundamental principle of superposition!,that if we
do not know the initial position of the scatterer rather know only its energy eigen-
state |y, n,n.) then the scattering takes place from all the points {ro} of the scatterer
with the respective probability densities {|¢y, n,.|*}. We are considering the energy
eigenstate to be unaltered in the process of scattering. Energy eigenstate |y, n,,n.)
would change in the process of inelastic scattering [3]. We will discuss the reasons
in the concluding section to justify less probability of the inelastic scattering in the
context of thermal and many-body effects [4].

2.4 Particle scattering by Bose and Fermi gases in thermody-
namic equilibrium in 3D harmonic traps
Let us now consider N identical ideal scatterers in the 3-D harmonic trap [16, 15].

Above expression in Eqn. (2.10) can be generalized for these scatterers, all of which
scatter the incident “particle’ (Ae*?) by the same delta potential (Vj,(r) = Z}il 805 (r —

1The superposition principle is often applied in a similar way for the light scattering (diffraction)
by a double slit. Please see [34] for the same.
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1o;)), as
o (0.9) = — IS9P 1 o)
27 ny
7=
X L, (2q,15) L, (27217), (2.12)
where n; = (njy,nj,nj;) represents quantum numbers corresponding the energy

eigenstate of the jth oscillator, and ||q -1/|* = 313 + g5l + §213. Eqn. (2.12), however,
is applicable not only for distinguishable scatterers, but also for Bose and Fermi
scatterers as all the energy eigenstates are orthogonal.

Let us now consider the ideal scatterers in thermodynamic equilibrium with its
surroundings at temperature T and chemical potential y. Scattering amplitude for
the scatterers would now depend upon the temperature and chemical potential, and

can be written, as

B ) (00,00,00)
Fr(0,9) = _Lgkzef\lq.ll\z S finLn, (2212)
27th n=(0,0,0)
X L, (2q515) L, 27212), (2.13)
where i, = —z—rr— represents no. of scatterers in the single-particle quan-
n e(En—y)/kBTzFl
tum state yYn(rg) = 1/Jnx,ny,nz(x0,y0,20) for Bose (—) or Fermi (+) scatterers, and

En = Engnyn. = (nx +1/2)hwy + (ny +1/2)hwy + (nz +1/2)hw,. Eqn. (2.13) is
our prediction for the scattering amplitude for a harmonically trapped ideal Bose
or Fermi gas at any temperature. For a single particle, 71, in Eqn. (2.13) can be re-
placed by the Boltzmann probability P, = e~ En/kT /7 where Z = ¥, e En/*sT is the
partition function. We show temperature dependence of D7(6,¢) = |fr(0,$)|* for a
single particle in figure (2.5). We also show its statistics dependence in the figure 2.5.

For T — 0, all (N) the Bose scatterers occupy the ground state. Differential scat-

tering cross-section, in this situation, takes the form, from Eqn. (2.13), as

Dr0(8,¢) = |fr-0(8,¢) > = |Nay|?e 21, (2.14)

mgx __ asm/ fi
omh? — 1+ikasm/fi°

ters. Eqn. (2.14) leads to the scattering cross-section, for k — 0, as

where g, = We plot it in figure 2.6 for relevant values of parame-

. 2
(7'—/ a6 ndquT_m(G ¢)sin@ = 47t|Nagm/ fi|*. (2.15)

On the other hand, for T — 0, all the (N) Fermi scatterers (of the same spin compo-
nent, say spin up) will occupy the first N single particle states. Thus, for large N and
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FIGURE 2.4: Particle scattering by a quantum gas of harmonic oscil-
lator at T — 0.

isotropic case, modulus squared of the r.h.s. of equation (2.13), takes the form?, for
harmonically trapped Fermi gas as

Dr.o(0,¢) = [Nay[2e~#IalFN", (2.16)

For classical scatterers (11,1, 1, — ©0), in contrary to the above, the scattering am-
plitude in Eqn. (2.13) would be infinitely narrow® as shown in figure (2.6).

2.4.1 Weak interparticle interactions and finite size effects for Bose scat-
terers in a 3D harmonic trap

Temperature dependence of the scattering amplitude comes from the triple sum-
mation in Eqn. (2.13). The summation, in the thermodynamic limit, followed by the
Taylor expansions of the Laguerre polynomials about k = 0 with > = (g2 + qﬁ +32),

1 x
Nt—1
2As because, we can approximate ;> e_”/NL,,(x) = £ HlN for N > 1, as Zﬁ;o Ly(x) =~
—1+eN
NeNx,

3As because, for nn > 1, we can write Ly, (x) — e~ ™ from the expression of the polynomial itself.
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FIGURE 2.6: Intensity distribution for scattering of a ‘particle’ (%)

by a 3-D isotropic harmonic oscillator for a5 as unit length and i —

m. Dashed, dotted and solid lines are linked to Bose gas (Eqn.(2.14)),

Fermi gas (Eqn.(2.16)), and classical scatterers (Eqn.(2.13) for n — oo
limit) in the 3-D isotropic harmonic trap.
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FIGURE 2.7: Particle scattering by Bose gas above and bellow the con-
densate temperature(T;)

Wy = Wy = w; = w, [ = Vh/Mw,t = kBT ,z = et/RT and N = t3Li3(z) takes the
form S = t3Li3(z) — 6q**t*Liy(z ) + (g7 l_z) [12£°Lis(z) + 3t*Lis(z)] + O(q®) for the
Bose gas above the condensation point (T > T, = 1 “[N/{(3)]'/?)* For T < T, simi-

kB Tc

lar form also appears with non-condensate fractlon (t /t.)® where t, = . Conden-

sate part shows temperature dependence only in the form of the condensate fraction
% = 1— (t/t.)°. Temperature dependence of Dr(0,¢) = |fr(0,¢)|?, for the Bose
gas, with the appropriate temperature dependence of the chemical potential [35], is
shown in second figure 2.8 . For Fermi gas, only change would be the replacement of
Lij(z) by —Li;j(—z) Vj. For anisotropic trap, forms of the bulk quantities are mostly
unaltered with the replacement w = (wxwyw:)'/3.

For the finite size of the trap and weak inter-scatterer interactions

2.

Vigt = 477’1 Ly i<i ’5;(17'@ — 70]‘)/ the condensate fraction, to the lowest order in s,
2

takes the form NO =1—(t/t.)>— g;ggg - 42§’§€7/)2”’ within the Hartree-Fock (H-F) ap-

proximation [15, 36, 37]. Inter-scatterer interactions do not greatly modify Eqn. (2.13)
as N'/4; /I < 1. These interactions, apart from modifying the condensate fraction,
can substantially scale (I — /) the typical confining length I (i.e. Iy, I, and I.) in the
exponent in Eqn. (2.13) keeping its form unaltered. Finite temperature scaling of /,
as prescribed in Ref.[38], is shown in figure 2.8 (a) for repulsive interactions. With
both the modifications, we have shown corrections due to the finite size and the

“Here Lij(z) =z + é—j + %7 + ... is a poly-logarithmic function of the argument z and order j. It is
also known as a Bose-Einstein integral.
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FIGURE 2.8: Second figure shows the temperature dependence of the
differential scattering cross-section along the forward (¢ = 0, dotted
line), perpendicular (0 = 7t/2, dashed line) and backward (0 = 7,
solid lines) directions for 3-D harmonically trapped isotropic ideal
Bose gas for the relevant parameters as mentioned above. Plots fol-
low from Eqn. (2.13) for i — m. First figure (a)represents finite tem-
perature scaling (I — 7) of I for the same system (within the 4th order
in 7/I — 1 in the H-F energy functional [38]) for the coupling constant
% with 4; = 90a¢ = 0.0056] [39]. Dotted line in the inset-a repre-
sents finite size and inter-scatterer effects within the H-F approxima-
tion over the solid line which also represents backward scattering in
the main figure
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inter-scatterer interactions effects® to the temperature dependence of Dt (6, ¢) spe-
cially for the backward scattering below T. in figure 2.8 (inset-a). From the trend of
the scaling, one can neglect the effect of interactions for T > T.. However, effect of
the interactions, for T — 0, may not necessarily be perturbative, and can be better
described within Thomas-Fermi approximation [4].

In second figure (2.8) inset a) we show the scaling result for the angular depen-
dence 6 of the differential scattering cross-section for the weakly interacting case of
the BEC for T — 0, and finite temperature and size effects over this result within
the H-F approximation according to the prescription described above. It is quite
clear from the plots in second figure (2.8)(a) that repulsive interactions lead to nar-
rowing down the profile of the differential scattering cross-section around 6 = 0
as the condensate broadens up around 6 = 0. This is quite natural, as the scatter-
ing amplitude for the extended object (BEC) is Fourier decomposed at all the source
points of scattering. However, if temperature increases, probability of excited states
being occupied by the scatterers increases, which in turn increases probability of
scattering to some larger angles like that shown in figure (2.1). Thus, increase of
temperature leads to large angle scattering. However, coherency get reduced if scat-
terers are found in different energy eigenstates other than the ground state at a finite
temperature. It results reduction of the scattering cross-section with the increase of
temperature. This is true in general. This is also apparent in figure (2.6) both for
ideal Bose and Fermi scatterers in harmonic traps. We will also investigate the same
for interacting BECs in other trapped geometries like double-well trap and optical
lattice trap.

2.5 Particle scattering by Bose scatters in other 3D optical
traps

2.5.1 For Bose scatterers in a double-well potential

Let us now consider an ideal gas of 2N Bose scatterers in a 3-D double-well potential
V(rg) = —Mw?2x3/2 + Mw?x}§/4d* + ZMwﬁy%/Z + 2Mw?z3/2, such that, frequency
of oscillation is the same as that in the previous case, and the minima of double-well
are separated along x-axis by a distance d [40, 15]. In thermodynamic equilibrium,
for T — 0, all the particles condense to the ground state. Within the tight-binding
approximation (which is very good for d > I,), there would be two distinct con-
densates of N scatterers in each well, such that each of the condensates scatters the
incident “particle’ (Ae*?) like that in Eqgn. (2.14). However, net scattering amplitude
would be the superposition of the scattering amplitudes corresponding to the indi-
vidual condensate as the setup is analogue of the double slit experiment [15, 41].

5Both the effects are comparable for 0 5 T 5 Te.
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(a) For a scatterer in a 3-D harmonic trap
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FIGURE 2.9: The figures shows the total differential scattering cross-
section for quantum scatterer(s) in trapped geometry. For all the fig-
ures, we have considered the following: I, = 100 nm, I, =1, = [,/2,
kly = 2,as/ly = 1, and i — m. Solid, dotted and dashed lines
in figure 2.9 (a) follow Eqn. (2.11) for ny = 5, ny = 1, n; = 0,
ny =0, ny, =0, np = 0and ny = 20, ny, = 20, n; = 20 respec-
tively. While the solid lines in (b) figures represent non-interacting
BEC(s), the dotted lines in the same figures represent scaling results
for interacting BEC(s) with 4; = 90ag = 0.0056] as set in figure 2.8,
and dashed lines represent finite temperature and size effects over
the dotted lines within the H-F approximation for T/T. = 0.1
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Thus, scattering from the two condensates would interfere, as
_ _ dsin(0
Dr0(6,9) = |Na|%e 2117 [2 cos (7”';:‘())]2. (2.17)

Here we did not consider any Josephson oscillation as d > I, [42, 43]. We plot the
differential cross-section in figure (2.10)(b) for relevant values of parameters. In the
same figure we further present scaling results for weakly interacting Bose scatterers
in the double-well trap well below the condensation point and finite temperature
and size effects within the H-F approximation on top of the tight binding approxi-
mation in a similar way as prescribed in the previous section for the Bose scatterers

in the harmonic trap.

2.5.2 For Bose scatterers in a 1D optical lattice

Let us now consider N’ 3-D noninteracting BECs in a 1-D optical lattice [44, 17], such
that two consecutive condensates are separated along x-axis by the lattice spacing d.
Entire system is in thermodynamic equilibrium. For T — 0, all the condensates have
the same (N) number of particles. So, the system essentially is a 1-D grating of 3-D
condensates. Within the tight-binding approximation, there would be N’ distinct
condensates of N scatterers in each well, such that each of the condensates scatters
the incident ‘particle’ (Ae’*?) like that in Eqn. (2.14) [45, 15]. However, net scattering
amplitude would be the superposition of the scattering amplitudes corresponding
to the individual condensate as the setup is now analogue of the 1-D grating experi-

ment. Thus, scattering from the N’ condensates would interfere, as

sin(——

( nd s/i\n((?) )

N’ 7id sin(6) ) 2
] (2.18)

Dro(6, ) = |Nakrze2“‘_"”2{ .
sin

Since d > I, Eqn. (2.18) is good for the Mott insulator phase of the condensates.
We plot Dy_,(6, ¢) in figure 2.11(b) for relevant values of parameters. In the same
tigure we further present scaling results for weakly interacting Bose scatterers in the
optical lattice trap well below the condensation point and finite temperature and
size effects within the H-F approximation on top of the tight binding approximation
in a similar way as prescribed in the previous section for the Bose scatterers in the
harmonic trap.

Again we see, in figures 2.10 b) and 2.11 b), according to our expectation, that re-
pulsive interactions lead to narrowing down the profile of the differential scattering
cross-section around 6§ = 0 as the condensates broaden up around 6 = 0. Increase
of temperature, as expected and explained before, leads to large angle scattering
also for the scatterers in the double-well trap and the optical lattice trap. Coherency
would be lost in presence of the disorders in the BECs. In this situation the differen-
tial scattering cross-sections in the figures 2.11 b)and 2.10 b) would be infinitesimally
narrow like that shown by the solid lines in the figure 2.5
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FIGURE 2.10: Figure a) represents a schematic diagram for particle

scatering in a double well. Figure 2.10 (b) represents Eqn.(2.17) for

d = 10 Iy. While the solid lines in (b)figure represents non-interacting

BEC(s), the dotted lines in the same figures represent scaling results

for interacting BEC(s) with @5 = 904y = 0.0056/ as set in figure 2.10

b), and dashed lines represent finite temperature and size effects over
the dotted lines within the H-F approximation for T/T; = 0.1
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b)Particle scattering for Bose scatterers in a 1D optical lattice.

FIGURE 2.11: Figure a) represents a schematic diagram for particle
scatering in a 1-D optical lattice . Fig. 2.11 (b) represents Eqn.(2.18)
ford =10y and N’ = 10. While the solid lines in (b)figures represent
non-interacting BEC(s), the dotted lines in the same figures represent
scaling results for interacting BEC(s) with @; = 90ag = 0.0056! as set
in figure 2.11 b), and dashed lines represent finite temperature and
size effects over the dotted lines within the H-F approximation for
T/T. =01
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2.6 Conclusions

To conclude, we have presented quantum theory of particle scattering by quantum
scatterers in quantized bound states in harmonically trapped geometry for Fermi-
Huang (5;’, interactions (between the incident particle and the scatterers), which al-
though are easy to deal with have huge applications in the field of ultra-cold atoms
[14, 15]. Particle scattering by the quantum scatterer(s) in thermal equilibrium has
not been investigated before us except for T — 0 [4, 23, 22]. Temperature depen-
dence of the differential scattering cross-sections, as shown in Fig.2.6, would be an
important tool to distinguish type (bosonic/fermionic) of the scatterers. The discon-
tinuities in the slops of Dr(6,¢)s at T = T., except for the forward scattering as
shown in figure 2.8, can be used to detect occurrence of BEC by particle scattering
method. Our predictions can be tested within the present day experimental setups.

Just by looking into the scattering intensity-pattern for sufficiently large energy
of the incident “particle’, as shown in figure 2.1, and counting the maximum number
of the zeros of the differential scattering cross-section along x-axis, one can easily
determine energy eigenstate of 1-D harmonic oscillator, as number of the zeros along
the x axis is equal to quantum number 7n,. From the highest possible peak height
of the forward differential scattering cross-section for a scatterer in the harmonic
oscillator, one can easily determine scattering length (a5) of the incident ‘particle” as
the height, for low energy of the incident “particle’, is proportional to a2.

We have constructed our theory for a single incident ‘particle’. For a beam of N
incident ‘particles’, A in Eqn. (2.2) would be replaced by VN A, and all the results
which depend on “A” would be scaled accordingly. However, the scattering ampli-
tude, the differential scattering cross-section, and the total scattering cross-section
are independent of “A’. So, all our result would be unaltered under this scaling.

Parameters used for plotting the figures are not specific to a particular scattering
problem. However, we set m/M = 0.1 which would be appropriate for 40K as
(fermionic) scatterer and *He as the scattered particle. The ratio of m/M though
would be even less (0.046) for the combination of 8 Rb (bosonic scatterer) and *He
(scatterer particle), our results would not change much, asm/jifor both the cases
are approximately 0.91 and 0.96 respectively. We set a;/] = 1 and ds/I = 0.0056
(which is appropriate for 87Rb atoms) to show a stronger effect due to the particle
scattering than that due to inter-scatterer interactions. Values of w and kas are set
1000 and 2 respectively to clearly show effect of temperature on particle scattering
by a harmonic oscillator in the ultra-cold regime (T ~ 1077K). If k increases, the
number of maxima and minima increases in the profile of the differential scattering
cross-section. The number of maxima and minima further increases if the quantum
number (i.e. the nodes in the wave function of the scatterer) increases. We set N =
10* to show a significant difference between the particle scattering by a Bose gas and
that by a Fermi gas in a harmonic trap. The later one shifts towards the classical limit
if N increases.
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Here, we have considered only elastic scattering. Elementary excitations over
the BEC leads to inelastic scattering involving inelastic processes where the trapped
particles in scattering out-states are found in different harmonic oscillator states than
those in the scattering in-states. Hence, inelastic scattering is less probabilistic at fi-
nite temperatures. Moreover, differential scattering cross-section in inelastic chan-
nels decays exponentially with the number of scatterers beyond a certain value [4].

Particle scattering by weakly interacting harmonically trapped BEC was already
studied, for T — 0, by Idziaszek et al with consideration of the first Born approxi-
mation for ¢6°(r) potential [4]. One may suspect their result, as, ¢6°(r) can not truly
scatter a ‘particle” except in 1-D [31, 32]. However, the first Born approximation, for
¢0%(r) interaction, surprisingly gives correct result for ka; — 0.

Within the last two decades, a lot of experimental observations have been done
on harmonically trapped ultracold Bose and Fermi gases. Our prediction of the scat-
tering amplitudes or differential scattering cross-sections in Eqns. (2.13) to (2.18) (or
that represented in figures 3.4, 2.8 and 2.9 may open interests to the experimental-
ists to study temperature dependence in particle scattering by harmonically trapped
Bose and Fermi gases.

Our theory can be generalized, without much difficulty, for scatterer(s) in box ge-
ometry with further consideration of scattering (diffraction) by the aperture [13], and
for weakly interacting scatterers within perturbative formalism. Our work can be
further extended with the consideration of the elementary excitations as prescribed
in Ref.[4] specially for the condensates in a double well and optical lattice not only
for elastic collisions but also for inelastic collisions. However, how to generalize
our result for strongly interacting scatterers, e.g. atoms in Feshbach resonance, is
an open problem. We consider condensates to be well separated in both the cases
of double well and optical lattice. Generalization of results for the Josephson os-
cillations [42, 43] and superfluid phase specially around superfluid-Mott insulator
transition [46, 17] are kept as open problems. In quantum theory, refraction can be
thought of a quantum scattering of a ‘particle’. In future, our theory can be extended
towards the quantum theory of refractive index of a medium of quantum fluid.
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Chapter 3

Particle scattering by rotating
trapped quantum gases at finite
temperatures

3.1 Introduction

There have been many experimental observations of the collective properties of ro-
tating harmonically trapped ultracold Bose [1, 2, 3, 4] and Fermi [5] gases in their
respective condensate or superfluid state since 1999 [6, 7]. Interestingly, an electri-
cally neutral particle in a rotating trapped condensate/superfluid resembles a pos-
itively charged particle exposed to a constant magnetic field, say along the z-axis,
if the angular trap-frequency (w ) of oscillation in the x — y plane approaches the
angular speed of the rotation (()) about the z-axis [8, 6]. Consequently, a number
of interesting aspects of Landau level physics [9, 10], have been observed in the
rotating trapped quantum gases of electrically neutral bosons/fermions. The resem-
blance has been further achieved for quantum gases in artificial magnetic/gauge
fields [11, 12]. All this experimental evidence has motivated immense theoretical
progress in the field [13, 14, 15, 16, 17, 18, 19, 20].

Surprisingly, the de Haas-van Alphen effect [21] which belongs to the Landau
level physics [22], has not been observed so far in the rotating trapped quantum
gas of the neutral fermions, though the effect was theoretically proposed for both
the rotating trap and the artificial gauge field [23, 24]. Here, we are proposing how
an alternative method, say particle scattering, can be taken up for observing the
de Haas-van Alphen effect in the rotating trap. Particle scattering by the rotating
trapped quantum gas has not been studied so far, though a number of experimen-
tal [25] and theoretical [26, 27, 28, 29, 30, 31, 32, 33, 34] works have been reported
for the same in non-rotating traps. Hence, we take up the challenge of studying the
particle scattering by the rotating harmonically trapped quantum gases from a theo-
retical point of view. The particle scattering would be an important tool for probing
the collective properties of the rotating trapped Bose and Fermi gases of electrically

neutral particles, in particular, the Bose-Einstein condensation [16], vortices in the
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rapidly rotating Bose-Einstein condensate [1, 15], and the de Haas-van Alphen effect
[23, 24].

Our theoretical study essentially takes up the discussion on particle scattering to
introduce quantum scattering by the Bose or Fermi gas of electrically neutral scatter-
ers in thermal equilibrium for the Fermi-Huang géf, [35] interactions (among the in-
cident “particle’! and the scatterers) in the quantized levels of the rotating harmonic
trap. Here, the Fermi-Huang interactions act as a probe potential which although is
easy to deal with, has huge applications in the field of ultra-cold atoms [36, 6, 37, 38].
We are especially interested in the temperature dependence of differential scattering
cross-section for the rotating trapped Bose or Fermi gas in this regard because ther-
modynamic properties of ultra-cold gases in rotating traps are of growing interest
[39, 16, 40].

It is well known that a spherical wave (Yot = i) goes out of the scatter with
a scattering amplitude (f(6, ¢)) to a particular direction (6, ¢) with respect to the
initial direction of incidence (k = 2) if a plane wave (;, = e**) associated with
a free particle (‘particle’) of a given momentum (p = 7ikk) is scattered by a fixed
scatterer (at r = 0) [41]. If the scatterer is not fixed, say, the scatterer is a parti-
cle in a 3-D simple harmonic trap which is rotating at a constant angular velocity
Ok, then according to the superposition principle, the “particle’ would be scattered
coherently from all the positions of the scatterer with the respective probability den-
sity. This brings the quantum state of the scatterer into the description of the net
scattering amplitude. We further have to consider scattering by many-particle scat-
terers of bosonic or fermionic type at a finite temperature. We must mention in
this regard that we have already explored tem-
perature dependence of the differential scatter- ‘ z
ing cross-section for the particle scattering by the
same systems without considering the rotation

[34]. However, particle scattering by rotating

. wilheangular
quantum gases has not been studied so far, and .

(Wz:the angular trap

the study of the same would be useful for prob- e

z-axis

ing orbital /artificial magnetism of the electrically

neutral bosons and fermions.
This article begins with a brief description of

the quantum theory of particle scattering by a iL—I—F e

quantum scatterer in the rotating 3-D harmonic

trap for the Fermi-Huang potential (i.e. regular- FIGURE 3.1: A schematic diagram

ized &3 potential: Vi, (r) = g53 (r) = g53(r) a@ , for particle scattering by a rotating
: F ’ harmonically trapped BEC.

[34]). Then we generalize the theory for quantum

gas of scatterers. Then we obtain differential scat-

tering cross-sections and their temperature and angular speed dependencies for both

the slow rotation and the fast rotation of the trapped systems. Then we generalize

Here, by ‘particle’ we mean- the wave associated with the incident particle.
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our theoretical results for the weakly interacting rotating Bose gases in the harmonic
traps. We also discuss the finite-size effect especially on the interacting rotating Bose
system in this regard. Then we theoretically probe the lattice-pattern of the vor-
tices in a rapidly rotating weakly interacting Bose-Einstein condensate by the par-
ticle scattering method. We also obtain de Haas-van Alphen-like oscillation in the
differential scattering cross-section of the ultracold ideal Fermi gas in the rotating
trap. Finally, we conclude.

3.2 Particle scattering by a single scatterer in a rotating har-

monic trap

Let us consider the rotation of a 3-D harmonically trapped scatterer by a constant
angular velocity () = Qk along the z-axis. If we consider a frame, having the same
origin as with the lab-fixed frame, same z-axis and rotating with the same angular
velocity O = Ok with respect to the lab-fixed frame, then the time-independent
Schrodinger equation for the wavefunction . (r')
for the particle scattering in the rotating frame
would be recast, as [16, 39]

2
( B %VQ Q-+ Vim(r’)> Pi(Y) = E'gl(r)(3.1)

where not only ' represents the position vector

of the particle but also all other primed quanti-

ties including the angular momentum operator Harmonic Potential

I/ and energy E’ represent respective quantities X

with respect to the rotating frame. From now on- e Zﬁ
ward, we will be considering only the rotating
frame for our analyses by replacing the primed
quantities by unprimed quantities such as ¢, — Y
¢s, f' = f,Y -1, E - EL - L0 -0,

¢’ — ¢, etc. Thus, we get solution to Eqn. (3.1) in FIGURE 3.2: Rotating harmonic os-

L cillatar quontum gas
the radiation zone (kr > 1), as

ikrq . Lz

s (1) = Ps(r,0,¢) ~ Al +f(9,q>)e7 el n (3.2)

where L, is the z-component of the angular momentum of the scatterer with respect

to the rotating frame. Since the phase part 47# % is common to both the incident plane

wave and the outgoing spherical wave in Eqn. (3.2), as the Fermi-Huang potential is
spherically symmetric, the form of the scattering amplitude remains unaltered with

its form in the non-rotating frame.
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The Fermi-Huang 5’?; interaction between the incident particle at r and the scat-
terer atrg = xof + Yo f + zolAc can be expressed, as

Vint(r) = g6, (r — 19). (3.3)

The scattering amplitude with respect to the rotating frame takes the form for the
pseudo-potential as in Eqn.(3.3), as [34]

M8k ir, (K k) kz]
0,¢) =— e Lo 3.4
f(0,9) Py (3.4)
where 1, = xoi + yoj is the position vector for the scatterer in the x — y plane,
(k' — k) -k = klcos(#) — 1] = —2ksin?(0/2) is the momentum-transfer in units of
hi along the z-axis in the process of the elastic scattering (|k'| = |k| = k), g&x =

8 = mM
Trikasm/fi’ B = m+M
= —(/m)limy_,o f(6, ) = 2” ?‘12 is the s-wave scattering length for the scattering
[34]. Here, the wave-vector k' makes an angle 6 with the z-axis, the projection of k'’

is the reduced mass of the incident particle and the scatterer, and

makes an angle ¢ + ¢y with the x-axis once it rotates ¢y with respect to the z-axis, and
consequently, the projection of k' makes an angle 71/2 — (¢ + ¢o) with the y-axis.
Let us now consider the quantized motion of the scatterer into the theory of
quantum scattering [42, 26, 34] by the scatterer in the 3-D rotating harmonic trap.
Let the scatterer be vibrating simple harmonically along the z-axis with the angular
frequency w; in addition to the uniform rotation with the angular velocity Qk about
the same axis and the simple harmonic motion in the x — y plane with the angular
frequency wy = wy, = w,. The normalized energy eigenstate of the scatterer, in
this case, is given in terms of the cylindrical polar coordinates within the symmetric
20k ' = 1) [39)

gauge (for the artificial vector potential A = —1r x Bk = -1
by [43, 44]

, _ 12 (n—([m|+m]/2)! g,
Pmj(ro) = \/Mli(n—l—Hm]—m]/Z)!e !

|m|

L\ 2 ,,220 Im| r
m
( 0) e 2 L?l m+m<120>
“\ v \/27 Hj(zo/1:)e 4/ (35)

where 19 = (7, ¢o,20) represents the position of the scatterer in the cylindrical
coordinate system of the rotating frame, H; represents the Hermite polynomial of
degree j = 0,1,2,...,00 [41], I, = /Ii/ Mws is the confining length scale of the scat-
terer along the z-axis, L‘ ‘m wtjnl represents the associated Laguerre polynomial in the
usual notation [43, 44], n = 0 1,2, ...,00 represents the Landau level when w; = (),
m=mnn—1n-—2,.. —c0 represents the magnetic quantum number for a given
n,1, = v/i/Mw, is the confining length scale of the scatterer in the x — i plane.
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Energy eigenvalue of the scatterer corresponding to the state 9, ,,j(r0) would be
[44, 39]

€nmj = (M+1/2h(w, +Q)+(n—m+1/2)h(w; —Q)
+(j+1/2)hw, (3.6)

Radial distance (r |, in the xgp — yo plane) and azimuthal angle (¢o) parts of the state
$u,m,j(10) are together called as the Fock-Darwin state [45, 44] which becomes Lan-
dau state [46] of infinite degeneracy for w; = (). The symmetric axis (zg) part of
the state, on the other hand, is called as the simple harmonic oscillator state [41].
It is clear from the energy eigenvalues that the Fock-Darwin states are unstable for
w; — O < 0. Hence, we restrict the angular speed to be (3 < w, for our entire
analysis.

Let us now consider the quantum scattering of the incident ‘particle’ (Ae*?) by
the scatterer as described in Eqn. (3.5) for the rotating harmonically trapped system.
Now, the particle scattering is taking place from all possible positions {ry} of the
scatterer (i.e. for0 < r; < 00,0 < ¢pp < 27t and —oco < zg < o0) simultaneously with
respective probability densities |9y, j(ro)|*} for a given energy eigenstate (|1hy,m,j))-
Thus the net scattering amplitude for the scatterer in the quantum state [, ,, ;) can
be written by applying the superposition principle on the Eqn. (3.4) for the energy
eigenstate 1y, ,, (ro) of the Eqn. (3.5), as [47]

mgk 27 o 00
n,m,j 9/ = - / / / dr | dg¢pdz
f ’ ,]( (P> 27'(7’12 $o=0 rLOZO Zp=—00 Lo 4)0 0

) R .A
P 1y | W (x0) [2e ™ I Ta + (k) kzo]

= me FEL(27212)

xe ML, (3 3) Lum(A13) (37)
where a; = —;?Tgh"z = —%, g, = ksin(0)/2, §. = k[1 — cos(6)]/2, and

Lj(2[7§l§) [34] is the Laguerre polynomial of degree j. The right-hand side of Eqn.
(3.7) by the definition appears as the Fourier transform of the probability density
of the energy eigenstate ¢, ,,;(ro). The net scattering amplitude f, ,, ;(6, ¢) can be
called as the form factor for the quantum state of the scatterer |¢n,m,j> [48, 47]. It is
clear from Eqn. (3.7) that the scattering amplitude f;, ,,;(6, ¢) is independent of the
azimuthal angle (¢) because of the radial symmetry of the Fermi-Huang interaction
potential and the rotational symmetry of the probability density (|, ,j(ro)|?) of the
scatterer about the z-axis. However, the translation symmetry along the z-axis is

broken because of the harmonic potential 3 Mw?z3.
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FIGURE 3.3: Net differential scattering cross-section (Dn,m,]-(G, 0)) for
the scattering of a ‘particle’ (Ae’*?) by the 3-D rotating harmonic os-
cillator for as as unit length, Q@ — w_, kas =5,1, /as =1,1;/as =1
and m/M = 0.1. Both the solid line and the dotted line follow Eqn.
(3.8) for the bound states |¢510) and [¢0,0), respectively. Both the
solid line (|451,0)) and the dotted line (|¢,0,0)) in the inset represent
plots of these bound states with respect to the radial coordinate and
follow Eqn. (3.5).
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The net differential scattering cross-section for the scatterer in the rotating har-
monic trap can be obtained from Eqn. (3.7), as

_ 7272 _!
Dn,m,j(effp) = ‘fn,m,j(9/¢)|2 = ‘ake quZLj(qulf)
xe P L (2 B ) Loem (2 12| (3.8)

It is to be noted that this result though is independent? of the angular speed (), it is
not the same as that obtained for the scatterer in a 3-D non-rotating anisotropic har-
monic trap where there is a ¢-dependence [34]. If we average over ¢ with the same
axial symmetry of vibration (wy = w, = w ) for the non-rotating case [34], then only
we get the same result as we have in Eqn. (3.8). We plot the right-hand side of Eqn.
(3.8) in figure 3.3 for two bound states |51 ) (solid line) and |¢0,0) (dotted line) of
the scatterer. We also plot the bound states in the inset of figure 3.3. While the num-
ber of nodes of the bound state wavefunction ¢, ,,,;(7 1, o, 20) is n — [m 4 |m|] /2 on
the radial axis (r9), the same on the zg axis is j. The ‘particle’ (Aeikz) interferes with
itself while being scattered from different internodal regions of the scatterer. This
causes appearance of 21 — m + j zeros® on the 0-axis of the net differential scattering
cross-section (D, ,,,(0,¢)). State of the scatterer can not, however, be fully probed
in terms of the zeros of the net differential scattering cross-section by any value of
the wavevector (k) of the “particle’. It needs a large value of the wavevector to probe
all the nodes of the bound state of the scatterer. We consider two special cases of
the same in figure 3.3. All the zeros of D51 (6,0) are not apparent in figure 3.3 for
the value of k chosen for it. Parameters taken for plotting this figure, however, are
not specific to a particular scattering problem. We set m/M = 0.1 which would
be appropriate for “°K atom as a fermionic scatterer and “He as the scattered par-
ticle or the projectile. The ratio of m/M though would be even less (0.046) for the
combination of Rb atom (bosonic scatterer) and “*He (scattered particle), our result
would not change much, as 77/ ji for both the cases are approximately 0.91 and 0.96,
respectively [34].

Here we have considered the energy eigenstate |1, ,, ;) to be unaltered in the pro-
cess of scattering. The energy eigenstate would be altered in the process of inelastic
scattering [42]. We will discuss the inelastic scattering in the concluding section for
justifying its low probability in the context of thermal and many-body effects [26].
However, role of the angular speed (()) is not absolutely redundant, and would be
important for determining the net differential scattering cross-section at a temper-
ature T for the scatterer in equilibrium with a thermal bath because the statistical
probability of the state ¢, ,,j(ro) depends on the energy eigenvalue €,,,;. Role of
the angular speed would also be important in determining the degeneracy of the

2The independence follows from the rotational symmetry of the system along the z-axis.
3Number of the zeros follows from Eqn. (3.8).
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Landau level for (O — w . A large value of the wavenumber, however, is not neces-
sarily needed to probe the collective properties of a system of scatterers. The collec-
tive property, of course, needs each scattering effect, like the one in figure 3.3, to be
taken into account. Our main focus on the article would be on probing the collective
properties of systems of scatterers at finite temperatures by the particle scattering
method.

The incident particles can be treated as impurity atoms which can propagate at
different velocities through the gas of scatterers (atoms/molecules) [25]. The impu-
rity atoms can be produced using a stimulated Raman transition [25]. The Fermi-
Huang delta potential can be realized for a low wavenumber of the incident ‘par-
ticle” so that the de Broglie wavelength of the incident “particle’ can be larger than
the linear dimension of the scatterer. The incident particle can not feel the actual po-
tential of the scatterer in such a case. Fermi-Huang delta potential, however, would
be a good model potential for a low energy scattering involving only the s-wave
scattering length [37]. Low energy scattering also makes the recoil effects on the gas
(or modifications on the internal structure of the atoms) irrelevant. If the scattered
particles are indistinguishable from the scatterers, then the statistics of the scattered
particles should be taken into consideration. We are not considering such a case in
our analysis.

3.3 Particle scattering by Bose and Fermi gases in rotating

harmonic traps

Let us now consider an ideal gas of identical bosonic or fermionic scatterers in the
rotating 3-D harmonic trap [39, 6, 16] as described in the previous section. Let 1o, be
the position of the ith scatterer. The scatterer, in this case, scatters the incident “parti-
cle’ by the Fermi-Huang delta potential Vi (r) = g6, (r —1o,). Let us further consider
the ideal gas of scatterers to be in the thermodynamic equilibrium with its surround-
ings at a temperature T and a chemical potential y. The net differential scattering
cross-section for the particle scattering by the many-body system can be obtained
from Eqn. (3.8) within the superposition principle with the proper statistical weight
of each of the Fock-Darwin states, as

Dr(6,¢) = |axe 2L+EE] «

i (73 12) Lo (43 13) L (22212) 7
e(en,n—m/,j_y)/kBT :F 1

n=0,m'=0,j=0
(3.9

where m' is defined as m’ = n — m and the factor —— 1;4) 77— represents the sta-

e nn—n'j 1
tistical weight i.e. the average number of Bose (upper sign) or Fermi (lower sign)
scatterers (7, ;) in the single-particle state ¢, . ;(ro) [37]. The above three summa-

tions can be evaluated by expanding the Bose /Fermi factor about
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el (wsthw-+hw:)/21/ksT — () and using the generating function formula for the La-
A
e 1-eb

guerre polynomials Y5 e /L, (x) =

1 7 as
—1+eb

Dr(6,¢) = |Nay|2e 2 A +EE] »

- 212 22
I SR st 2212
shw shw_ T shwg
oo e e kpT 4 e e kpT 4 e e kgT 4 (il)SHZS
ZS:l ~ shwy ~ shw_ _ shwz 1
1-e BT 1-¢ kBT 1-e FBT (3.10)
o 1 1 1 (E)Hz :
s=1 ~ shwy ~ shw_ _ shwz 1
1-e %7 1—¢ k8T 1—e FBT

where w, = w, + O, w_ = w, —Qand z = elt~ (W +hw+1w:)/2/ksT jg the fugacity
of the system of the scatterers, and N is the total average number of scatterers in the
system. The fugacity can be determined from the normalization of the net differen-
tial scattering cross-section for the forward scattering, Dt (0, ) = |Nai|?, so that the
average number of scatterers takes the form

N = Z shw shw_ _ shwy 1 :
Sl e 1o BT 1—e hl

(3.11)

This form of N can also be resulted from summing the average occupation numbers
{fipm;} in the single-particle states over the quantum numbers n,m’, and j. Eqn.
(3.10) can be directly used to get the temperature dependence of the net differential
scattering cross-section once we know temperature dependence of the fugacity. The
fugacity in Eqn. (3.10) can be determined from Eqn. (3.11) in the thermodynamic
limit (N — oo, wy,w_,w, — 0, Nwyw_w, = constant) for the given number of
scatterers N and the given temperature T by following the method as described in
Ref.[49]. While the fugacity of the rotating trapped Bose gas below the condensa-

37(3)T,
BT/ T—1]

1/3 -
Mwww w2 (N )P is ] andis z ~ e ¢

kg 46)]

condensation point, it is Z ~ e F1=(7/3)(T/T)’] wyell below the Fermi temperature
_ hwiw-w,]? 1/3 . .

Tp = ==——~—(6N)"/" for the rotating Fermi gas [49].

We plot Eqn. (3.10) by applying the above temperature dependence of the fu-

tion point (T, = just above the

gacity with the proper care for the condensation fraction to show the temperature
dependence of the net differential scattering cross-section for the rotating 3-D har-
monically trapped ideal Bose gas for () = w, /3 and to compare the same with the
one obtained for the non-rotating case in figure 3.4. The parameters N = 3 x 10° and
w1 /10 = w; = 207t Hz used for plotting this figure are taken from the experimental
data for rotating trapped Bose-Einstein condensate [39]. It is clear from figure 3.4
that the differential scattering cross-section decreases as the temperature increases.
This is possible because the coherence in the particle scattering gets reduced if the
scatterers are found in different energy eigenstates other than the ground state at a
finite temperature [34].
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The net differential scattering cross-section (Eqn. (3.10)) for the slow rotating
system (0 < QO < Q) * looks similar to that of the non-rotating system [34] with
the substantial change of the condensation point for bosons as long as no transfer of
angular momentum to the gas of the scatterers is concerned [39].

We have discussed the case of the slow rotation for ideal rotating trapped Bose
gas of scatterers. However, the net differential scattering cross-section would be
quite different for the fast rotation (0 T Q < w) especially for O — w, of the
ideal trapped Bose gas. The Fock-Darwin states, as described in Eqn. (3.5), become
the Landau states which have infinity large degeneracy each for the case of the ultra-
fast rotation (2 = w . In this situation w, becomes the (angular) cyclotron frequency
(we = 20), w_ goes to zero, and the cross-sectional area (A’) in the x — y plane
of the system of scatterers goes to infinity in the thermodynamic limit such that
w;N /A" = constant. Since the thermodynamic properties of a system do not depend
on the choice of the gauge, degeneracy of the Landau level would be same as that

(q;‘i;lB = MZ“;;/ [22, 50]) in the Landau gauge. Thus the magnetic quantum number

m, though varies from n to —oo, can be taken from n (with unit interval) to — (s, —

1) = —|( 1\/12(4;;;:4’ —n) | in the thermodynamic limit. Thus each of the Landau level
has sp = (Mz‘;”f/l degeneracy. The net differential scattering cross-section for the

particle scattering can be obtained from Eqn. (3.9), for Q = w, as®

= 2
Dr(6,¢) = |axLs,_1(q111)]" x
e MWLAHEEIL, (¢ 13)L;(2422) 12
(n+1/2)hwe+(j+1/2)hwz —p :
nj e kT F1

(3.12)

It is clear from Eqn. (3.12) that infinitely large amount of degeneracy (sgp = [Mz‘jrf{‘, )

of each Landau level washes out the coherence in the net scattering even for T —
0. A quantum phase transition, however, takes place due to quantum fluctuations
in the strongly interacting Bose gas once the condensate is destroyed for () = w
[51, 52].

3.3.1 The case of inter-scatterer interactions for the Bose gas at a finite
temperature

We have discussed the case of the rotating trapped ideal Bose gas of scatterers at
a finite temperature. Let us now discuss the weak inter-scatterer interactions ef-
fect along with the finite temperature effect for the particle scattering by interacting
Bose scatterers in the 3-D rotating harmonic trap. We are considering the weak inter-
scatterer interactions in the form of the interacting potential energy U = 4”;\22 fe Yij<i 5; (roi —

1o;) where 4s is the s-wave scattering length for the inter-scatterer collisions.

4Here Q). is the critical value of Q) for single vortex nucleation in the system of scatterers. Experi-
mentally value of ) for rotating trapped Bose-Einstein condensate is Q. ~ 0.7w [2, 16].

5Here we have used the relation Z]n:O Ly(x) = L} (x).
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FIGURE 3.4: Temperature dependence of the net differential scatter-
ing cross-section for the rotating 3-D harmonically trapped ideal Bose
gas for 0 = /16, m/M = 0.1, kas = 1,1, = a5, w; /10 = w,; =
207t Hz, and N = 3 x 10°. Both the plots follow from Eqn. (3.10)
with proper care of the condensation fraction for () = w, /3 (solid
line) and () = 0 (dotted line). The plot in the inset-a represents finite
temperature scaling (I — ¢ = vl) of I for the rotating trapped system
for @ = 90ag = 0.0056 [54] and N = 3 x 10° [39] for the & Rb atom
scatterers. The dashed line in the inset-b represents finite-size and
inter-scatterer effects on the rotating system within the H-F approxi-
mation over the solid line which represents the ideal case (75 = 0) for
the same set of parameters except ds.

The case of slow rotation

Temperature dependence of the net differential scattering cross-section for the Bose
gas in the 3-D rotating trap (0 < w,) comes from the Eqn. (3.10). The effective
length scale of the slow rotating Bose system for T — 0 is given by [ = /ii/ M.
It has been shown in Ref. [34] for the non-rotating trapped Bose scatterers that the
inter-scatterer interactions do not greatly modify the temperature dependence of the
net differential scattering cross-section as long as the weak inter-scatterer interac-
tions (NV/¢4,/I < 1) are concerned. The weak inter-scatterer interactions, apart
from substantially modifying the condensate fraction, can substantially change the
temperature dependence for the slow rotating (0 < ),) Bose gas. Thus Eqn. (3.10)
would be primarily unaltered due to the weak interaction effect except for the scal-
ing of the lengths /| and /;to ¢, = vl, and ¢, = vl, (v > 1 for repulsive interactions),
respectively. The scaling parameter is the same for both the length scales (I, and [)
because the inter-scatterer interactions are isotropic. Further substantial change of

the condensation point arises due to the finite-size effect [55, 56].
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The condensate fraction of a non-rotating Bose gas, for the finite-size of the trap

2.
and weak inter-scatterer interactions (4”5’4 =Y j<i (52(r0i — 19;)), takes the form % =

1—(T/T.)°— i;;gg% [ZWLEWZVB kr;“_T’c — 4'1?335(23)?5 %}T within the Hartree-Fock (H-F) ap-

proximation to the lowest order in the s-wave scattering length a; [37, 57, 56]. This

form of the condensate fraction would not change for the slow rotating (O 3 w )
Bose gas, though its values of T, geometric mean of the angular frequencies (v =
Ywiw_w:) and the effective length scale [ = \S/liTz would substantially change.
The condensate part contributes in the temperature dependence of the differential
scattering cross-section according to its weightage % = 1-(T/T.)®. The weak
interactions and slow rotation, apart from modifying the condensate fraction, can
substantially scale the typical confining length scales I, — vl,, I, — vl, so as
[ — ¢ = vl at the first exponent in Eqn. (3.10) keeping its form unaltered. Finite

temperature scaling of [ has been prescribed in Ref. [53] for the weak attractive in-

teractions (s < 0) corresponding to the potential energy 4”1?/12&5 Yij<i & (xo; — xoj) for
ultracold bosons in a harmonic trap. We adopt the method prescribed in Ref. [53]
for the finite temperature scaling of I for the weak repulsive interactions (4s > 0) of
the same system under rotation. This scaling theory with a single scaling parameter
v is useful for both the cases of the zero temperature and the finite temperature, es-
pecially for 0 < T < T,, because the linear dimensions of the condensate (/) and the
thermal cloud (I\/kgT /@ [37]) are proportional to each other. Inset-a of figure 3.4
represents finite temperature scaling (I — ¢ = v]) of I for a weakly interacting rotat-
ing harmonically trapped Bose gas within the 4th order in #/I — 1 in its H-F energy
functional®. Thus we show correction due to the finite-size and the inter-scatterer
interactions effects to the temperature dependence of Dt (0, ¢) especially for a small-
angle scattering below T in the inset-b of figure 3.4. However, the dashed line in the
inset-b represents finite-size and inter-scatterer effects on the rotating system within
the H-F approximation over the solid line which represents the ideal case for the
same set of parameters. One can neglect the effect of interactions from the trend set
for T > T.. The effect of the interactions, however, may not necessarily be perturba-
tive for T — 0 and can be better described within the Thomas-Fermi approximation
[26].

The repulsive interactions lead to narrowing of the profile of the net differential
scattering cross-section because the condensate broadens up at around 6 = 0 due to
the repulsive interactions and the scattering amplitude is Fourier decomposed at all
the source points of the particle scattering [34]. However, if temperature increases,
the occupation probability of the excited states of the scatterers increases which, in
turn, leads to large-angle scattering. Coherence is reduced, on the other hand, as

The definition of the H-F energy functional can be found for the harmonically trapped Bose gas
for the &% interactions in Refs. [37, 53]. The form of the H-F energy functional does not change under
rotation except the modification on the geometric mean (@) of the angular frequencies w4, w_ and w;.
Minimization of the H-F energy functional is further needed to determine the scaling parameter v [53].
Minimization of the grand free energy, however, is not necessarily required to determine the scaling
parameter v for the case of finite temperature because the entropy of the system, which depends on
the number distribution of particles, does not change under scaling [53].
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the scatterers are found in different energy eigenstates other than the ground state
at a finite temperature. Thus reduction of the scattering cross-section is resulted for
the increase of the temperature [34]. The temperature, interactions, and finite-size
dependencies of the differential scattering cross-section for the particle scattering by
the rotating trapped Bose scatterers as described in this sub-section are quite similar
to that described in Ref. [34] for the non-rotating case. This is true only for the very
slow rotating case (0 < Q < (). The description would be dramatically different

for the fast-rotating case (QO. 5 Q0 < w ) of the interacting scatterers in quasi 2-D.

The case of rapid rotation with the formation of the vortex lattice

Abrikosov lattice of vortices [58] has been experimentally observed on the cross-
sectional plane (i.e. xgp — yo plane) of the fast rotating ((0; 5 Q < w ) Bose-Einstein
condensate (BEC) [2, 3]. The lattice-pattern becomes equilateral triangular with
the area of the unit cell 7t[l, /+/2]? in the limiting case of the ultra-fast rotation
(@ = w,) of the BEC [51]. The number of vortices (N,) becomes comparable to
the number of particles in the condensate (Np) keeping the surface density of vor-
tices (n, = MQ)/th [59]) constant in this situation [39, 52]. Melting of the vortices
takes place due to the quantum fluctuations in the fast rotating condensate, espe-
cially if the boson filling factor (19 = Ny/N,) goes below the critical number ~ 8
[60, 51]. However, if () is not very close to w , then the number of vortices becomes
much smaller (vp 5 8) than the number of particles [52]. The rotating BEC falls into
the mean-field quantum Hall regime in this situation [61, 62], and obeys the Gross-

Pitaevskii equation [39]
(-35%% - oL+ G i, +ai)
+g\¢o<ro>|2)¢o<ro> — 1po(n0) (3.13)

where y is the chemical potential of the interacting BEC, the z-axis is chosen to be the
symmetric axis of rotation, § = % is the coupling constant for hard-core inter-
scatterer interactions as mentioned before, and ¢y (ro) is the many-body ground-state
wavefunction for the rapidly rotating BEC. It should be mentioned in this regard that
the Gross-Pitaevskii equation though can not capture any finite temperature effect,
it is the heart of the description of the rotating trapped BEC [16].

We assume p < fiw;, so that the zp motion is frozen to its ground state ¢o(zo) =
\/%ezﬁ/ 22 [39]. The coupling constant, however, takes the form § = 2%2&75 in the

case of quasi 2-D (I, > I, > as) [52]. The theory simplifies in the quasi 2-D, rapid

rotation () > q/wi — 0?) and weak-interaction ($nyp < hw; and gnop < 2hw )
limit [51]. The radial part (i.e the xo — yo part) of the many-body wavefunction in

this situation, takes the form of the linear superposition of the single-particle states

"Here nyp is the areal number density of bosons at the center of the trap while it was not rotating.
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FIGURE 3.5: Net differential scattering cross-section (solid line) for
the scattering of a “particle’ (Ae’*?) by the rapidly rotating quasi 2-
D weakly interacting trapped Bose-Einstein condensate. The solid
line follows Eqn. (3.16) for m/M = 01, as = I, I, = 201,

- 2 = -
kl, = 3/2) /A2 and R = 5/,. Inset-a represents zoom of
the same around 0 = /4. Inset-b follows from modulus square

of the rh.s. of Eqn. (3.14), and represents the Contour plot for the

symmetric-axis integrated probability distribution of bosons as well

as the distribution of vortices in the xg — o plane for the same pa-

rameters. The dotted line follows Eqn. (3.10) and represents the net

differential scattering cross-section for the same parameters except
for the change s = 0and T — 0.
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(Yrrrs(ry,) [62]) in the lowest Landau level (LLL), so that the many-body ground
state (within the symmetric gauge in the cylindrical coordinate system) takes the

form ¢o(ro) = Prirs(ri,)do(z0), where [52]

Flr , 2 2
Yris(ry,) = v Nof(i%)e e/ (3.14)
&2
_ S \_ 2 J ((P0+ ) RZ
o /
S (710 40) == lm T gy \ 2T

o / 12
(—1)“2”Hm,<\/ dad (2]+1)) S

= \//2 & ~ 1.1596 (for triangular lattice), B = Nog/[I2 h(w, — Q)] and R =
\/ u/h(w, —Q)]l, = (2aB/m)41, is the Thomas-Fermi radius of the rotating
BEC [52]. It should be mentioned in this regard that the Thomas-Fermi approxima-

(3.15)

tion can give rise to effective densities of the harmonically trapped BEC for T — 0
[36, 37]. The Thomas-Fermi approximation can also be applicable to the slow ro-
tating harmonically trapped BEC. The global density profile of the rapidly rotating
harmonically trapped BEC is of the Thomas-Fermi form if the number of vortices is
very large [62]. The Thomas-Fermi approximation, however, is not directly useful
to determine the local density profiles around the vortices in the rapidly rotating
harmonically trapped BEC [52]. Hence we have avoided direct use of the Thomas-
Fermi approximation in Eqn. (3.14). This equation can, of course, be applicable for
T — 0, but not for T > 0.

We represent the distribution of the probability density of bosons (as well as the
pattern of the Abrikosov vortex lattice) in the xo — yo plane by the Contour-plot in

figure 3.5 (inset b). The net scattering amplitude (— 285 [ |y(rp)|?e~ i r1 + (K —k)-kzol 43y, 0)

2nh?
for the macroscopic scatterer (i.e. for the rapidly rotating interacting quasi 2-D

trapped BEC) can now be evaluated, as
| &

1 T

— - (21/ 7 —q212 1
f0(9’ (P) = A IXIB ]_ZOOJ/ZOO MZ Zm’ mll)Z
2 o Sl
« “{2 B m'] (_1)1(121) (_1)] (=1 %
1

Hm/<ﬁ(2]+1)>H <\/?(2] +1)>

/e w2 +1)2
xXe 4 e 4 X

Al (14 m')L_ g (=42 17). (3.16)
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The first exponent in Eqn. (3.16) is coming from the frozen motion along the zy axis
and is negligible for [, < ;. While the radial (r ) part of the integration results
in the Laguerre polynomial in Eqn. (3.16), the angular (¢o) part of the integration
results in ¢-independence in fy(6,¢) even for the discrete symmetry in the lattice
structure. We plot the net differential scattering cross-section Dy (0, ¢) = |fo(6, ¢)|?
(solid line) in figure 3.5 for the scattering of the ‘particle’ (Ae'?) by the rapidly ro-
tating BEC for parameters as shown in the figure caption. The Thomas-Fermi radius
R = 51, of the rotating condensate is taken to be smaller (R = 5/, ) than the one
observed for ultra-fast rotation [63] for plotting figure 3.4. However, the triangular
lattice of vortices for such a small Thomas-Fermi radius of the rotating BEC, was also
experimentally observed [2]. We also compare the same with the one (dotted line)
having no inter-scatterer interactions into account. It is clear from figure 3.4 (inset-
b) that the repulsive interaction lowers the differential scattering cross-section near
around the forward direction. This causes substantial narrowing of the scattering-
intensity distribution as clear in figure 3.5. It can also be qualitatively explained
from the fact that the repulsive interactions flattens the many-body wavefunction at
the center of the trap [37]. However, the “particle” can pass through the vortices and
interfere thereafter causing significant increment of the forward differential scatter-
ing cross-section and significant narrowing of the scattering-intensity distribution.
The first zero of the scattering-intensity distribution can be qualitatively obtained
from the diffraction-grating’s intensity distribution formula, and is expected to be at
around the polar-angle 6;, such that Ny,dsin(6;) ~ 127” where d = /4 //31, /2

is the lattice constant [51] and Ny, = 3 is the number of vortices in a row along
2 27

5 V 47T/\/§li

chosen in such a way that at least one scattering-intensity minimum with zero in-

the xp axis as shown in figure 3.5 (inset b). The wave-number k = is
tensity takes place in the domain 0 < ¢; < 7t especially at 6; ~ 0.785 which is close
to the actual minimum in the inset-a of figure 3.5. The dotted line, which follows
Eqn. (3.10) for T — 0, however, does not have such a minimum with zero inten-
sity as shown in figure 3.5 because the lattice of vortices is absent for the ideal case
of the rotating BEC. Both the curves in figure 3.5 have appeared symmetric around
6 = 71/2 because we have taken a small value for the wavenumber of the incident
‘particle’. Such a symmetry would not have been apparent if we had taken a large
value of the wavenumber. In such a case the magnitude of the momentum transfer
—k[1 — cos(0)], which is associated with the term 4, in Eqns. (3.16) and (3.10), would
reduce the probability of the backscattering.

Purpose of plotting figure 3.5 was to theoretically probe the lattice-pattern of
the vortices in a rapidly rotating Bose-Einstein condensate by the particle scattering
method. We have taken large wavelength® of the incident ‘particle’ for this purpose.
Incident “particle” of smaller wavelength could better probe the lattice-pattern result-
ing in more maxima and more minima of the net differential scattering cross-section

on the 6-axis due to the interference of the ‘particle’ with itself while passing through

8Here large wavelength means wavelength comparable to the lattice constant.
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FIGURE 3.6: The angular speed dependence of the net differential
scattering cross-section for the scattering of a ‘particle’ (Ae’**) by the
ideal Fermi gas of rotating 3-D harmonic oscillators (*°K atoms) for
T—0K m/M=01,ka; =2,1 =as;,w; /10 = w, = 20t Hz, and
N = 0.5 x 10°. The plot follows Eqn. (3.17). The plot in the inset-a
represents zooming of the same for 0.9 < 3/w; < 1. The plot in
the inset-b follows Eqn. (3.10) for the same parameters except for the
temperature T = 0.88 Tf,.

the vortices. Probability of the large-angle scattering by the vortex lattice, however,
is low for the small wavelength of the incident “particle’. For this reason, we have
not considered the small wavelength for plotting figure 3.5. However, Fermi gas can
also form an Abrikosov lattice [5] and therefore one can expect similar scattering

results.

3.4 Probing artificial de Haas-van Alphen effect by elastic

particle scattering

Artificial de Haas-van Alphen effect [23, 24] can be theoretically probed by the par-
ticle scattering method for a gas of uncharged fermions (at a temperature T and
chemical potential y) in the rotating trap because the Lorentz force is analogous to
the Coriolis force in the rotating frame. To use the particle scattering method, let
us consider the ideal case of a rotating harmonically trapped Fermi gas of identical
uncharged particles, each with spin s, = 1/2 and mass M. Weak inter-scatterer in-

47t isn(0)
M

teractions ( < kpTr?) will again not lead to any significant change as long

as the Fermi gas is concerned [37].

9Here 1(0) is the number density of fermions at the center of the trap.
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We need to study the angular velocity dependence of the net differential scatter-
ing cross-section for probing the artificial de Haas-van Alphen effect at a low tem-
perature, say, zero temperature. The net differential scattering cross-section, for both
the slow rotation and the fast rotation (0 < 2 < w,) of the Fermi system, can be
obtained by following Eqn. (3.9), for T — 0, as

Llw = (4312)
= (,()3
Droo(6,9) = rNak\Zezwiliw%lax{ Ve

3

6N@?
V o2 |
212)

L! 212y Lt 23
(Sﬁ%_ﬂ(‘h_ 1) (3/761\]?371}( qz )
(U+ WZ
T

where V6N@3 = ef is the Fermi energy of the system and wlf : Lo w% is the

w-—

X

(3.17)

ratio of the occupation numbers of the Fermi-scatterers distributed to the quantum
numbers 1, m and j of the single-participle states {|n,m, j)}.

We plot Eqn. (3.17) in figure 3.6 for the parameters as shown in the figure cap-
tion. The plot (solid line) in figure 3.6 (so as that in the inset-a) represents the angular
speed dependence of the net differential scattering cross-section for the scattering of
a “particle’ (Aet*?) by the Fermi gas of rotating 3-D indistinguishable harmonic os-
cillators (*°K atoms). Fermi temperature is varying in figure 3.6 as it depends on
). However, the Fermi temperature of the system in the non-rotating situation is a
fixed quantity, say Tr, = 2.70976 x 107K, for the parameters as mentioned in the
figure caption. Zeros of the differential scattering cross-section in figure 3.6 is com-
ing from the zeros of associated Laguerre polynomial (le (y)) for fixed argument
in Eqn. (3.17). Since the zeros are appearing in the quasi-regular interval of the in-
verse of the angular speed of rotation ((2) and the angular speed ((2) corresponds
to the magnetic field B for the analogy of the Coriolis force and the Lorentz force,
the appearance of the zeros in the quasi-regular interval of 7 of the net differential
scattering cross-section corresponds to the artificial de Haas-van Alphen effect. The
zeros appear in the regular interval of the inverse of the external magnetic field in the
actual de Haas-van Alphen effect on a homogeneous Fermi system of charged par-
ticles [50]. The quasi-periodicity is appearing for the inhomogeneity of the system
of our consideration. Thus one can probe the artificial de Haas-van Alphen effect
by the particle scattering method in the ultra-cold situation with the experimentally
achievable parameters as mentioned in the caption of figure 3.6. This was the main
purpose of plotting figure 3.6. The artificial de Haas-van Alphen effect would be
prominent at a lower temperature [50]. We plot Eqn. (3.10) in the inset-b of figure
3.6 for comparing the same effect at a higher temperature with that at absolute zero.
The discontinuities in the differential scattering cross-section are coming due to the

shifts of population to the higher energy eigenstates as the angular speed is lowered
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FIGURE 3.7: Net differential scattering cross-section variation with

angular speed for the inelastic particle scattering by rotating har-

monic oscillator at temperature T — 0 K with N = 3 x 10°,and
/M = 0.1.

from O = w, for T — 0 K. The discontinuities in the de Haas-van Alphen-like
oscillations are coming in singlets, doublets and triplets because of the shifts of the
occupation from the quantum numbers j; j, m’; and j, m’, n, respectively, in single-
particle energy eigenstate |¢,, ,_,v ;). These discontinuities would be disappeared at
a non-zero finite temperature, as all the energy levels {en,n,m/,]-} are now populated
due to thermal excitations in the system [50]. The de Haas-van Alphen-like oscilla-
tions would be further disappeared at a higher temperature (T 2 Tr), as clear from
the inset-b of figure 3.6 [50].

3.5 Probing artificial de Haas-van Alphen effect by inelastic
particle scattering

This section contributes an intuitive explanation of the oscillatory behavior of net in-
elastic differential scattering cross-section at low temperatures. The inelastic scatter-
ing of a particle by a rotating harmonic trap has been explained in detail in Ref.[64].
Let us consider the case of a rotating trapped spin s, = 1/2 identical charge-less
non-interacting particles each mass M at T = 0. The figure. 3.7 represents the net
differential scattering cross-section as a function of the angular speed of rotation .
We have shown the possibility of observing similar de Haas-van Alphen oscillation
effects for ultra-cold fermionic gas(*’K atoms), by placing the gas in rotation. As
shown in the figure 3.7 the slow-rotating region differential scattering cross-sections
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show oscillations with a small amplitude. The quasi-periodicity appears in the fig-
ure) due to the inhomogeneity of the system. In the fast-rotating region in figure 3.7,
differential scattering cross-sections show the most pronounced oscillations with a
large amplitude. The oscillation becomes less pronounced with increasing temper-
ature. This happens due to the loss of the sharpness of the Fermi surface. So, one
can say, quantum oscillations are controlled by the sharpness of the Fermi surface.
Inelastic scattering takes part crucial role near the Fermi surface. The trapped scat-
terers are disturbed by the fermi-energy level n* — 1. Some remarkable properties
like electric, transport properties of solid, and optical properties are closely related
to the Fermi surface. Those properties are analogous to the dHVAE oscillations of
the magnetization in the solid-state context.

3.6 Conclusions

To conclude, we have presented the quantum theory of particle scattering by quan-
tum scatterers in their quantized bound states in rotating harmonically trapped ge-
ometry for Fermi-Huang 52 [35] interaction (between the incident particle and a scat-
terer) which, though is easy to deal with, has huge applications in the field of ultra-
cold systems [65, 37]. We have obtained results for all possible values of the angular
speed of rotation ((2 < w ) so as for the slow and the fast rotations. We have theo-
retically probed the lattice-pattern of the vortices in a rapidly rotating Bose-Einstein
condensate by the particle scattering method. Particle scattering by the quantum
scatterers in thermal equilibrium in the rotating geometry of optical traps has not
been investigated before us. The particle scattering would be an important tool for
probing the collective properties of the rotating trapped Bose and Fermi gases, in
particular, the Bose-Einstein condensation [16], vortices in the rapidly rotating Bose-
Einstein condensate [1, 15], and the artificial Haas-van Alphen effect on the rotating
gas of neutral atomic fermions [23, 24].

The discontinuity in the slope of the net differential scattering cross-section at
T = T. for the nonzero polar angle, as shown in figure 3.4, can be used to detect
the onset of the Bose-Einstein condensation by the particle scattering method. Our
result in figure 3.5 can be used to study scalar diffraction by the Abrikosov vortex
lattices. We have proposed how an alternative method, say the particle scattering
method as resulted in figures 3.6, 3.7, can be taken up for observing the artificial de
Haas-van Alphen effect on the rotating trapped Fermi gas of neutral scatterers. Our
predictions can be tested within the present-day experimental setups.

Parameters taken for plotting figures 3.4, 3.5 and 3.6 are not specific to a partic-
ular scattering problem. Some of the parameters though are taken from available
experimental data, question still comes — whether the results we have obtained in
these figures are really observable in the particle scattering experiments. While most
of the Bose scatterers are found in the single-particle ground state and scatter the in-
cident particle coherently at a low temperature, the Fermi scatterers are distributed
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among the single-particle states and scatter the incident particle incoherently even
at the low temperature. This has caused a lowering of the net differential scattering
cross-section for the Fermi systems with respect to that for the Bose systems. While
the increase of the number of scatterers (N) would ease experimentalists to verify
our results on the Bose systems, choosing an optimal number!? of scatterers would
ease experimentalists to verify our results on the Fermi systems.

Here, we have considered only elastic scattering. Inelastic scattering has a low
probability at a finite temperature. Moreover, differential scattering cross-section
in inelastic channels decays exponentially with the number of scatterers beyond a
certain value [26]. Inelastic scattering at a low temperature, however, would be im-
portant and experimentally observable [25] in the resonance condition i.e. when the
energy of the incident particle matches with the energy gap of the two consecutive
energy levels of a single scatterer.

Here, we have considered only repulsive interactions among the Bose scatterers.
The behaviour of Bose gases with attractive interactions differs significantly from
those with repulsive interactions. Attractively interacting Bose gas is metastable
below a critical number of particles and it undergoes a collapse beyond the critical
number [66, 67, 68, 53]. However, as long as the Bose gas is metastable, the attractive
interactions lead to broadening up of the profile of the net differential scattering
cross-section around 6 = 0 because the condensate narrows down around the center
of the trap due to the attractive interactions.

A large number of experimental observations have been made on the harmoni-
cally trapped ultracold Bose and Fermi gases within the last two decades. Coherent
scattering by the rotating trapped Bose or Fermi gas in the finite geometry gives rise
to a tool of probing its quantum statistical properties [34]. Our prediction of the
net differential scattering cross-sections, especially those in Eqns. (3.10), (3.17), and
(3.16) (or those represented in figures 3.4, 3.5, and 3.6) may open interests to the ex-
perimentalists for studying the temperature dependence in particle scattering by the
slow and fast rotating trapped Bose and Fermi systems.

It needs generalization of Sommerfeld asymptotic expansion for analysing the
de Haas-van Alphen-like oscillations at a low-temperature (T' < Tr). We have done
the same for T — 0 as shown in figure 3.6. Derivation of the Sommerfeld asymptotic
expansion for the net differential scattering cross-section at a non-zero low temper-
ature is kept as an open problem.

Our work on the temperature dependence of the net differential scattering cross-
section can be extended for weakly interacting rotating trapped Fermi scatterers,
in particular, for attractive interactions which lead to the formation of the Cooper
pairs [38, 69]. The s-wave scattering length (is) of such a Fermi system, however,
changes its sign across the BCS-BEC crossover and the two-body interactions be-
come strongly attractive [70]. Eventually, there emerge two kinds of “bound" states,

10We are talking about an optimal number about the Fermi scatterers because the differential scat-
tering cross-section according to Eqn. (3.17) increases as N2 and decreases as ~ e~*N'" [34].
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such as the Cooper pairs (in the BCS regime) and the diatomic molecules formed
by the pairs of the Fermi atoms (in the BEC regime) [38, 69, 70]. Further study of
the particle scattering on the same system under rapid rotation across the BCS-BEC
crossover would be even more interesting because (i) the elementary excitation spec-
tra are different in the BCS and BEC regimes [38, 69] and (ii) number of vortices,
which form Abrikosov lattice in the system, changes across the BCS-BEC crossover
[5]. Our work can also be extended for both the elastic scattering and inelastic scat-
tering of particles by the Bose-Einstein condensates or Fermi superfluids in a rotating
double-well [71] or optical lattice [72].

Scaling theory can not, however, be applied to the study of the particle scatter-
ing for the attractively interacting rotating trapped Fermi gas because the excitation
spectrum of the Cooper pairs, which form bound states, look completely different
from that of the free particle spectrum [69]. Scaling theory can, of course, be applied
to the repulsively interacting rotating trapped Fermi gas because the fermions don’t
form bound states and the number density of the fermions decreases at the centre of
the trap due to its expansion for the repulsive interactions [38, 73]. The issue with
the scaling theory for the repulsively interacting rotating trapped Fermi gas is kept
as an open problem.
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Chapter 4

Particle scattering by harmonically
trapped quantum gases exposed to
an artificial magnetic field

4.1 Introduction

The role of magnetic fields on the nature of physical systems is important in the
study of problems in plasma physics, astrophysics, and solid-state physics, where
magnetic fields play an important role in their properties [1, 2]. There are several
existing works that have been reported on the structure of matter in the presence
of a magnetic field [1, 2]. The electron gas subjected to an artificial magnetic field
has been of interest since the early days of quantum mechanics and is connected
with several interesting consequences of the quantum origin. The Fermi system has
connected with it several interesting phenomena, such as de Haas-van Alphen oscil-
lations, the integer and fractional quantum Hall effect and the fractal energy spec-
trum of the Hofstadter butterfly, etc. The de Haas - van Alphen (dHvA) effect[3, 4],
which is concerned with the oscillation in the magnetic moment with a varying
magnetic field, is one of them. It was predicted long before by Landau and has
played an important role ever since. There are a few excellent examples where trap-
ping is required, the Bose-Einstein condensate has been reached in various atomic
species[5],molecules formed with the support of light [6, 7], threshold scattering
characteristics have been investigated [8], and quantum phase transitions has been
observed using optical lattices [9]. In most of these phenomena’s, atomic collisions
are crucial. In the context of ultra-cold atom traps, the experimental observation of
scattered light at very narrow angles has already been done. Coherently diffracted
light was used to capture the thrilling images of condensation into an atomic trap
ground state. The Bragg scattering has been investigated for identifying the phase
singularity of a single vortex [10]. There are some existing works related to particle
scattering by trapped quantum gases [11, 12, 13]have been reported before. There is
some theoretical evidence related to the dHVA effect for neutral atomic Fermions in
an artificial magnetic field [14]. But they did not study the particle scattering method
to show the dHVA effect. The electron scattering from atomic gases trapped in a
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magneto-optical trap (MOT) has been investigated experimentally [15]. All those
evidences encourage us to continue our theoretical progress. In the existing litera-
ture, we have seen scattering is the only method one can obtain some information
about the structure and properties of metal. Theoretical investigations of particle
scattering from trapped scatterer in an artificial gauge field plays a crucial role since
the scattering spectra can contributes the trapped scatter thermodynamic, magnetic
properties, etc. A synthetic magnetic field is formed by the gradient of a real mag-
netic field [16] and is called for having the same effect on neutral particles as a true
magnetic field has on a charged particles. The synthetic magnetic field can be gener-
ated for atoms trapped in an optical lattice by inducing an asymmetry in the atomic
tunnelling between the lattice sites [17, 18]. Without trapping in lattice, an artifi-
cial magnetic field for cold atoms can be created. This case, several laser beams
are used to create position-dependent transitions between distinct atomic internal
states [14, 19]. Mainly, Juzelitinas et al [14] demonstrated how a degenerate gas of
electrically neutral Fermionic atom can be used to generate an artificial magnetic
field using slow light having an orbital angular momentum. The synthetic magnetic
fields can be created in a laboratory, by hitting two counterpropagating laser beams
on an ultracold gas cloud of Rb atoms[20]. In a synthetic magnetic field, the neu-
tral atoms are manipulated in such a way;, as if they behave as charged particles in
a real magnetic field [16]. It is then necessary to know how neutral particles inter-
act in the presence of a homogeneous magnetic field at low energy. The major goal
of our study is to figure out how the trapped neutral Bose and Fermi scatterers are
influenced by the magnetic field. To our knowledge, there is no theoretical progress
of this problems. This article gives a very intriguing path to investigate several fun-
damental physical problems such as the artificial dHvA effect, atomic optics, phase
transition, and various statistical topics in condensed matter physics.

We assume that the incident particle’s beam spreads the entire trap uniformly.
We show how confinement affects scattering and calculate the total scattering am-
plitude associated with collision-induced transitions between scatterer states in the
confining potential. We study the temperature dependence of the differential cross-
section of scattering for a plane wave incident on a harmonic trap containing N
number of non-interacting scatterers in an artificial magnetic field. We find that scat-
tered particle intensity can exhibit oscillatory and this oscillatory behaviour looks at
zero Kelvin temperature, and the intensity depends on geometric shapes of trapped
fermionic cloud. All of our calculations are obtained at finite temperatures, but
the thermodynamic properties of the Fermi scatterer are greatly important at low-
temperature (say zero Kelvin temperature). In this paper, we employed Born ap-
proximation scattering for a plane wave of the particle in an in-homogeneous medium
of Bosonic and Fermionic scatterers as a function of scattering angle and tempera-
ture. The quantum statistics of trapped scatterers have a big impact on small angle
particle scattering from a quantum gas of degenerate cloud. A transition between
trap states of recoiling scatterers characterize the scattering of an incident incoming
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particle. The scatterer’s trap state remains unaltered in an elastic scattering process,
and the scattered particle’s momentum is equal to the incoming particle’s momen-
tum. For inelastic scattering process |k| # |k’| which means that the incident particle
gives up some of its kinetic energy to the confined scatterer, and the internal states

of the both scatterers are not equal. For this rea-

son the energy being transformed into vibrations o 7
that can be interpreted as heat, waves (sound), or il ©
vibrations between the component particles be- K tJnscattered
: . Scattered eam
tween the particles of the two collision partners. bg:mere Y
However, in both elastic and inelastic scattering, L /‘
momentum is conserved. 9
,r’,\
- X
4.2  Scattering by trapped quan- 3}3}&
tum gases in an artificial magnetic Incident beam

field at finite temperatures .
FIGURE 4.1: A schematic scatter-

ing geometry for the scattering of
a particle by the 3-D harmonically
the differential cross sections for the elastic scat- trapped scatterers in an artificial
magnetic field. The incident direc-

i ] i tion defines the Z-axis in a Carte-
the trapped scatterers. The differential scattering gjan coordinate system. The scat-

cross-section is an essential physical quantity to tering plane is defined by the inci-
dent direction and scattering direc-
tion. k' is the scattered wave vector
ing point in our study, we consider a system of makes an angle 6 with the Z-axis.

In this section, we will show the expressions of

tering as well as the inelastic particle scattering by

explain the scattering characteristics. The start-

non-interacting neutral quantum gases in an arti-
ficial magnetic field. The Hamiltonian for single
non-interacting particle can be represented as

H = (p_Z;Z/IIA)Z + %M(wiri + w?z?) 4.1)
where M is the mass of a harmonically trapped particle. The charge ¢’ feeling an
external applied magnetic field and the linear momentum of the particle is p. 7| =
\/x2 + 2 is the radius in the transverse plane. We have applied the magnetic field
along the z-axis and considering the symmetric gauge A = 3B( —y,x,0). In our
discussion, we have neglected all static atom-atom interaction effects. While the
properties of a magnetic system are gauge independent. We consider the Zeeman
spin splitting is neglected. It is well known that the solution of Eqn. (4.1) can be
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written in the from at position rg [21, 22]

oy = | L2 (lml 4+ m]/2)! g,
Yium(10) = \/27'(12 i Il =2

2\ |ml/2 2 2
r ~Hom| r
X <120> e 22 Lni‘m\;m <lzo>
1 1 2 2
X ——Hj(zo/1,)e %/%E. (4.2)
\ vl 27t

h h
——————and [, = /+—, for the transverse and
\/ My/? +Q2 z Mw:”

the axial direction respectively. L}'(x) is associated Laguerre polynomial of order

There are two length scales | =

n and Hj(z) is the Hermite polynomial of order j. Neutral particle (cold scatterer)
does not feel a force from the external magnetic field and does not have cyclotron
frequency. Here we have defined parametrize the synthetic field strength :q/ﬁB = 2Q0).

The corresponding single-particle energies of the scatterer are [21, 23]
1 L1 1
en,nfm’,j = (7’1 + E)hQ-F + (m + E)hQ— + (] + E)hwz (43)

where QO_ = /w? + 2 - Q, Q) = \/w? + O? + Q. The quantum number n > 0
is known as Fock- Darwin level index [24, 25]. The quantum number m > 0 is the
azimuthal quantum number. Hence, m’ = n — m varies from 0 to co. When % —0
the single-particle energies reduce to Landau-level energies E,, ,, = (1 + 1)Q. The
contributions of all energy levels are included in thermodynamics. With the increas-
ing magnetic field, the neutral particle behaviour prevails over the confinement. For
high magnetic field QO > w,, then in x — y plane the energy — (2n + 1)hw, for
positive m. For B = 0 one get usually spaced spectrum of 3-D symmetric harmonic
oscillator, where the degeneracy goes larger with higher energies. We consider the
incident particle beam is propagating along the z-direction which is orthogonal to
the x — y plane of confinement of the scatterer. The Fermi-Huang interaction de-
scribes the short-range interaction between the incident particle and the scatterer

Vint(r) = g6, (r — 19). (4.4)

Here, r is the incident particle position such that the scattere’s center trapped poten-
tial is at r = 0 and scatterer position is at rp. We chose the above potential because
it is short enough to distinguish between the scattered and unscattered states. To
introduce the scattering theory, let us start the quantize motion of the scatterers in
a harmonically trap geometry in the presence of artificial magnetic field. The par-
ticle scattering occurs at all the possible positions {ry} of the scatterer inside a har-
monically trap geometry i.e 0 < 75, < 00, —00 < zp < +00,and 0 < ¢y < 27
The probability of finding the scatterers inside the trap in elementary volume dr

is \gbn/mlj(ro)\zdg’ro for the given state ¢, ,,; w.r.t initial state of momentum k. The
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Coulomb interactions between the particle and the scatterer in a quantum dot are
negligible when we take the harmonic oscillator confinement length is small enough
compared with the effective Bohr radius. When evaluating the scattered amplitude
from two atoms, there will be a phase difference because the atoms are spatially
distributed. The phase factor is fully independent of the scattering potential and is
determined only by the position of the atoms. The key matrix element that deter-
mines the elastic scattering amplitude relating the trap state ‘lpn,m,]’> [11] for a single
scatterer the following expression

1’?[ —ilK ¥ _1/\.%
fn,m,j(g, (P) - —%ﬁpnmﬂe ik LOJF(k k') k20]|l/7n,m,j> (45)

= Are 21 Ly (2 )Ly (2 12)e L (2212)

where Ay = —% = —% [11], g1 = ksin(0)/2, G, = k[1 — cos(6)]/2, and
k — k' is the momentum transfer in the direction of the magnetic field. However,the
scattering amplitude always depends on the chosen gauge and all the physical ob-
servables are gauge invariant. For inelastic scattering case, the transition amplitude
denoting an excitation of the final trap state from the state initial trap state. This
means that any change of its momentum in the direction of the magnetic field is as-
sociated with the transition between Landau levels. The scatterer gas is assumed to
be formed by either Bose or Fermi atoms which initially are considered to be ideal.
Effects of the statistics of the scattered particle are considered irrelevant. The scat-
tering amplitude is presented by the Fourier transform of the mean atomic density
distribution. The elastic scattering processes differential cross sections for the single

atom can be expressed explicitly by
Dymi(0,4) = |Ae T Ly )Ly w(gd e FELQERP.  (46)

The above expression for the coherent spectrum taken for the case of non-interacting
atoms. From the scattering amplitude expression Eqn. (4.5), the node of oscilla-
tion can be determined along the 0-axis after counting the sum of quantum number
2n —m + j. As we can see, all that is required to evaluate the coherent spectrum
is knowledge of the mean atomic density at equilibrium. For the purpose of figure
plotting, we set 71/ M = 0.1, which is suitable for a Fermionic scatterer with 4K
atom and *He scattered particle or projectile. Although the ratio of 11/ M for the
combination of 8Rb atom (Bosonic scatterer) and *He (scattered particle) would be
even lower (0.046), our result would not alter significantly [11]. For the elastic scat-
tering process figure 4.2 shows, we get the central maximum peak at zero incident
scattering angle and broadened as a consequence of the finite transverse and axial
size of the atomic cloud. The scattering cross-section quickly decays due to the ex-
ponential factor in Eqn. (4.6) far from the central maximum peak. At higher values
of the 0 the scattering contribution to the diffraction pattern almost vanishes.

Of course, the scattering cross-section and its thermal properties may themselves
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FIGURE 4.2: The elastic differential cross section as a function of the
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FIGURE 4.4: The inelastic differential cross section as a function of the
scattering angle 6. The value of {(n,h1), (m’,h2),(j,h3)} are taken
{(2,1),(2,3),(2,4)} respectively.

be profoundly dependent on quantum statistics. Let us imagine all the ideal scatter-
ers remain in the thermodynamic equilibrium with its surroundings at temperature
T having the chemical potential ;.. Now consider the many body case, the tempera-
ture dependence elastic cross-section of scattering for ideal scatterers can be denoted
as

e fn,m,j (6, 4’) 2

Dr(6,¢) = ) 2 ) 4.7)
n=0,m'=0,j=0 elSmnnt~1/k8T £ q

The strong magnetic field situation at low temperature is special interest in quantum
dots. A quantum dot is usually defined as an artificial atom, in which a confinement
potential substitutes the attractive potential of the nucleus and the extended length
scale allows access to experiments that are not usable on real atoms [26, 27]. An-
other interesting phenomenon dHvA effect be observed only in high magnetic fields
and at low temperatures. With the increase of magnetic field the oscillation of cross-
section increases. Now we are esspecially interested to study thermodynamic prop-
erties of neutral Fermi scatterers in particular at low temperatures. The Fermionic
system has many stacked energy levels at low temperatures [28, 29]. The Bosonic
system, on the other hand, condenses nicely to a few of the lowest energy levels.
At zero temperature limit, there are n = 0,1,...n* —1 Landau levels completely
occupied, n* level only occupied partially. n* is the principal quantum number cor-
responds to the Fermi surface. When kT falls below the Fermi energy Er, phase
matching becomes less significant. Then the importance of quantum statistics of
gases grow. When kgT is less than one-half of Er, quantum statistics kick in, which

is compatible with evaporative cooling [30] and experimental study [31]. As a result,
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FIGURE 4.5: The differential cross section for the inelastic scattering

of neutral scatterers as a function of the scattering angle 6 for the

different values of synthetic magnetic strength parameter. The blue
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ferential scattering cross-sections D(3_;15_,12,1) for % ratio % and 0
respectively.

Eqn. (4.7) in the zero-temperature limit one can reduce to the simple expression

DT—>0(9/ (P)

1 212
L[Wﬂ (qu )
_ ‘NAk‘2e72(q212+¢7§l§) Qi
TEa
a7

1 2712y 711 52712
Lo o _pp (01! )L[S Era (2712) |
] . (48)

o3

R [

The Eqn. (4.8) has been given by making use of recursion relations for Laguerre

polynomials } % Lﬁ(x) = Lﬁ:l(x). At zero Kelvin temperature, the Fermi energy
of the harmonic trap is #vV6NQ3 [32] with =y, O_w,. The Fermi energy is de-
termined by the number of fermionic scatterers in the trap. The oscillations of elastic
cross section occur at low temperature due to the shell effects. There is the shift of
cross-section due to the elastic scattering process depends on the Fermi surface at
T = 0. For the inelastic scattering process, the c.m. and internal states of a scatterer
can be excited simultaneously or separately. In the inelastic scattering process, the
kinetic energy of the incident particle is transferred to the trapped Fermionic scat-
terer and this leads to the excitation of the scatter internal state or the c.m. state.
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The inelastic-collision cross-section strongly depends on the incident scattering an-
gle. We obtain the expression for the inelastic scattering cross-section for a single
scatterer is given by

D;u(6,¢) = |Ak G

P L R )

< e PP R )

< L R RER) @)
where h1l = n' —n,h2 = m" —m,h3 = j' — j. Here, h is an integer w.r.t a single-
scatterer excitation of the harmonic oscillator. The total scattering amplitude due to
transition for initial state to final state as a function of magnetic field strength. Con-
sider the many body effects at zero Kelvin temperature, the inelastic cross-sections
is given bellow the following expression

D 92 127272
DinTﬁ0(9/¢) — ’NA ’2 Z[q ! +qzlz]

N n! 227l 2 12
Y R e
n=max{Ny—h1,0}
N m'! 2 2\h2 (7 h2 (2 12\12
X 2 (m/+h2)|(QJ_Z ) [Lm’(qj_l )]
m’:max{Nyth,O} '
N,—1

<Yl eRnPLReRRr| @)
j=max{N;—h3,0} (] + h3)
where Ny, Ny, N, are the maximum allowed value for the quantum number n,m,
respectively. From figure 4.4, the inelastic particle scattering process we do not ob-
tain the central peak for incident angle 6 = 0. The inelastic scattering cross-section
is much weaker than the elastic scattering cross-section. Thus, if we plot the inelas-
tic scattering cross-sections vs magnetic field strength, we get clear oscillation be-
haviour. We have taken in figure 4.6 along the x-axis level the parameter 2. Where

the parameter a = 2mw

. The period of the oscillations in figure 4.6 is thought to
be mainly determined by the energy level spacing between two energy states of the
scatterers. Consider the many body effect, the normalized form of elastic cross sec-

tion of scattering can be written bellow after transforming a triple sum in Eqn. (4.7)

o o PG PG ey
Y1 oy . w(il) Z 2
) 2 l-e "B l—e "B 1—e B
Dr(6,¢) = [NAY O — S| 6
Zi:l fiZom [iom lhu)z ( )

1—e KT 1_¢ KgT 1—e kT
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FIGURE 4.6: Magnetic field dependence of the net inelastic differ-

ential cross-section of scattering of a ‘particle’ by 3-D harmonically

trapped ideal Fermi gases (“°K atoms) in an artificial magnetic field
forT — 0K, /M =0.1and N = 3. x 10°.

_n
(#1=3(04++0-+@2)) N7 i< the total number

where the fugacity of the system is Z = et
of scatterer in the trap. At N — co Eqn. (4.11) can only be suitable for T > T,. It can
theoretically be employed at any temperature for finite N, but as T — 0, the conver-
gence of the series in Eqn. (4.11) turns quite slow. Above the Eqn. (4.11) provides
the exact differential scattering cross-section for an ideal, harmonically trapped 3D
Fermi scatterer at arbitrary temperature and magnetic field strength. The sharpness
of the Fermi surface is decreased as temperature rises, resulting in less pronounced
oscillations. Of course, at very high temperatures limit the quantum effects are to-
tally washed out. From the figure 4.8, we conclude that the scatterers behave like
a classical particle and the Eqn. (4.11) can be described by the Boltzmann’s kinetic
theory. The scattering cross-section becomes broader as the temperature falls. One
can except for a narrow cone in the forward scattering direction, phase matching
effects display dominant at high-temperature regime for light scattering situation,
when destructive interference attenuates scattering. As T drops, more terms in the
sum over i in Eqn. (4.11) involve, resulting in a large number of particles being emit-
ted. At T = 0 K temperature, figures 4.6 and show that the scattering cross-section
behaves oscillatory behavious with artificial magnetic field strength and intensity
becomes less with higher magnetic field strength. The jumps occur in Dr_,o(6, ¢)
.As the artificial magnetic field is increased the figures 4.6 and 4.7 show, the peaks
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FIGURE 4.7: Magnetic field dependence of the net elastic differential

cross-section of scattering of a “particle’ by 3-D harmonically trapped

ideal Fermi gases (*°K atoms) in an artificial magnetic field for T —
0K,m/M=01and N =3 x10°.

become more and more spaced. For the small numbers of scatterer quantum statisti-
cal effect is not clear. But, for huge scatterer numbers quantum statistical outcomes
can be more clearly explained in terms of the cross-section of scattering. The inten-
sity for inelastic scattering is discrete due to the external harmonic confinement. But
it can be approximated as a continuum in the limit at O >> w,,w,. Notably, the
oscillations period of the cross section is controlled by the magnetic field strength.
With the system parameters, the amplitude of the oscillations will vary significantly.
The oscillations are most reasonable when there are enough particle numbers. The
oscillation of the cross-section is observable due to its strong dependency on the
sharpness of the Fermi surface. The cross-section of scattering figure 4.7 exhibits os-
cillations with varying the synthetic magnetic field strength. It's worth noting that
effects like the Schubnikw-van Alphen and de Haas-van Alphen have identical be-
haviour for electric resistivity and magnetic susceptibility [34]. The oscillation of the
magnetic moment of the atoms as a function of the static magnetic field is known
as de Hass-van Alphen oscillation. One observes this for the specimens at low tem-
perature and high magnetic field. Due to the existence of finite Landau sub-levels,
one observes the de Haas-van Alphen oscillations at low temperature. The inelastic
cross-section of scattering at finite temperature with the presence of a magnetic field
for the Bosons is given by
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The inelastic scattering spectrum for the Fermion z < 1 is retrieved as

s 1ol ! ad 1+ /R ~
DTN 0,9) = |Av P Y (~9)"'"D.D-D. (413)
i1,ip=1

This limit applies only at high temperatures, when the average energy per atom
is significantly higher than the Fermi temperature. Both elastic and inelastic scat-
tering spectra reflect quantum statistical features of atoms because they are com-
pletely reliant on 7,,, which is represented by Bose-Einstein and Fermi-Dirac distri-
butions for Bosons and Fermions, respectively. In the limiting case when O = 0

and Oy = Q- = w; = w, then the simplified form of the many-body net inelastic
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cross-section at finite temperature can be expressed as
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where the form of L and q are explicitly mentioned in the following section.

4.3 Scattering properties of Bose gases in an artificial mag-
netic field

A plot of an elastic cross-section of scattering as a function of (T/T.) for different
values of the magnetic field strength B and particle number N is shown in figure 4.9.
The figure 4.9 shows that, the case when N — oo, the condensate fraction reduce
to (1 — %) then the change of magnetic field B will not affect the cross-section of
scattering. While in the finite Bose scatterers case, it is obvious that when the value
of N decreases or B increases, the value of cross-section of scattering will be lowered
as shown in figure.4.9. As the magnetic field increases, the density of the scatterers
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in the centre of the trap becomes flatter. For this reason, the value of the conden-
sate temperature shifts towards the origin with the increase of the magnetic field.
The elastic differential scattering cross section for Bose scatterer are proportionate to
the square of the number of the condensed atoms. This dramatic behaviour of the
scattering cross-section is due to the coherence nature of the condensate. The dif-
ferential scattering cross-sections decrease with increase of temperatures at T > T
because of coherency reduces. At higher temperatures the particle exist higher ex-
cited states rather than the ground state. At T > T. the large angle scattering
is more suitable. But bellow condensate temperatures the particle always ground
state. Due to coherent nature of the scattering bellow the T, the differential scatter-
ing cross-sections increase. The small angle scattering is more preferable bellow the
Tc. Itis possible to achieve external field control of contact inter-particle interactions,
for example, by manipulating the scattering length via Feshbach resonance, where
the magnetic field, the optical fields [36, 37] can be applied to trap ultracold gases.
The experimental realization of fundamental quantum phase transitions, such as the
Berezinskii-Kosterlitz-Thuless transition [38] for cold Bosonic atoms confined to 2D
and the BEC-BCS crossover in atomic Fermi gases [39], requires this control over
interactions and confinement. The fluctuations of the scattering length play a signif-
icant role in quantum technologies in association with BEC’s as evidenced from the

recent theoretical advancement [40].

4.4 Conclusions

In summary, we study the elastic and inelastic scattering processes of an incoming
particle by a harmonically trapped neutral 3D Fermi or Bose scatterer in the pres-
ence of a synthetic magnetic field. At finite temperature and arbitrary magnetic field
strength, we have obtained an exact expression for the differential scattering cross-
section. As T becomes less than T, intensity distributions of scattered Bosons as
well as their numbers vary dramatically. The role of the magnetic field is to control
the net differential scattering cross-section for the scattered atoms. The scattering
would occur without the magnetic field, as evidenced by recent theoretical progress
[11]. The elastic scattering process has an intrinsic coherent property of the atomic
BEC. However, the trapped Fermionic scatterer does not have this property. When
the number of atoms becomes large enough, the coherent scattering dominates. This
kind of method was used to investigate electron impact ionization utilizing ¥ Rb
atoms trapped in MOT as a target[41]. The temperature dependency of the scattered
spectrum shows significant changes. At zero Kelvin temperature, we have illus-
trated the characteristic oscillations of the differential cross section with magnetic
field strength. We have obtained that the atomic gas shows a dHVA type behavior
where oscillations in thermodynamic properties depend on magnetic field strength.
Incoherent scattering dominates at smaller numbers of atoms and has a weak tem-

perature dependence. When the total number of atoms in a confined Fermi gas is
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large enough, temperature-dependent qualitative changes in the differential cross-
section can be used to investigate quantum degeneracy. The oscillatory behavior
of scattering cross-section is especially interesting due to its temperature sensitiv-
ity. The elastic scattering of particles (electrons) from atomic nuclei is used to in-
vestigate the nuclear charge distribution and the tunability of the elastic scattering
cross-section in an optically trapped spin mixture of lithium atoms at high magnetic
fields[42], etc.
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Chapter 5

Conclusions and future scopes

5.1 Conclusions

Chapter-1 contains the basic elements of the works done in this thesis. Conclusions
have already been mentioned at the end of the other chapters. However, brief con-
clusions of the Ph.D. works, especially the summaries, can be described chapter-wise
as follows.

In chapter 2, we have analytically explored the quantum phenomenon of parti-
cle scattering by harmonically trapped Bose and Fermi gases for the short ranged
Fermi-Huang ((52) interactions between the incident particle and the scatterers. We
have considered elastic scattering. We have predicted differential scattering cross-
sections and their temperature dependence in this regard. The coherent scattering
even by a single boson or fermion in the finite geometry gives rise to a new tool
for determining the energy eigenstates of the scatterer. Our predictions on the dif-
ferential scattering cross-sections can be tested within the present day experimental
setups, specially, for (i) 3-D harmonically trapped interacting Bose-Einstein conden-
sate (BEC), (ii) BECs in a double well, and (iii) BECs in an optical lattice.

In chapter 3, we have analytically explored the quantum phenomena of parti-
cle scattering by rotating trapped quantum gases of electrically neutral bosons and
fermions for the short-ranged Fermi-Huang interactions between the incident par-
ticle and the scatterers. We have considered rotating co-moving frame for all our
analyses. We also have considered elastic scattering. We have predicted differential
scattering cross-sections and their temperature and angular velocity dependencies
in this regard, in particular, for an ideal Bose gas in a rotating harmonic trap, an
ideal Fermi gas in a rotating harmonic trap, and a weakly interacting Bose gas in a
slow rotating harmonic trap. We have theoretically probed the lattice-pattern of the
vortices in a rapidly rotating strongly interacting Bose-FEinstein condensate by the
particle scattering method. We also have obtained de Haas-van Alphen-like oscil-
lations in the differential scattering cross-section for an ideal ultracold Fermi gas in
a rotating harmonic trap for T — 0. Our predictions on the differential scattering
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cross-sections can be tested within the present-day experimental setups.

In chapter 4, we have analytically explored the quantum phenomena of particle
scattering by harmonically trapped trapped quantum (Bose or Fermi) gases of elec-
trically neutral atoms exposed to a uniform artificial magnetic field for the short-
ranged Fermi-Huang interactions between the incident particle and the scatterers.
We have considered elastic scattering. For the bosonic scatterers, we have obtained
the differential scattering cross-section around the Bose-Einstein condensation point.
For the fermionic scatterers, we have obtained artificial magnetic field dependent
differential scattering cross-section exhibiting de Haas-van Alphen like oscillations
for T — 0. Here, the main difference from the theoretical study mentioned in chapter
2 is coming from the centrifugal force in the rotating frame. The difference has also
been further made by the consideration of the inelastic scattering for all the above

cases.

5.2 Future Scopes

The future scopes of the Ph.D. works can be described chapter-wise as follows.

In chapter 2, we have obtained differential scattering cross-section for the Fermi-
Huang interaction between an incident particle and a quantum harmonic oscillator
at a finite temperature. We have obtained the differential scattering cross-section for
a Bose or Fermi gas of quantum harmonic oscillators at a finite temperature. Our
study [1] would be important to know about the scatterer(s), in particular, (i) the en-
ergy eigenstate of a single scatterer in a harmonic trap, (ii) onset of the Bose-Einstein
condensate of a harmonically trapped Bose gas. The differential scattering cross-
section for the gas of quantum harmonic oscillator depends on the temperature and
the quantum (Bose/Fermi) statistics involved in the gas. Thus,our study would also
be important to distinguish the bosonic or fermionic character of a gas of scatterers
as their collective property. The angular distribution of the scattering cross-section
allows to estimate the size of the condensate, and its intensity makes it possible to
determine the number of particles trapped in the condensate. Our results on dif-
ferential scattering cross-section can be tested within the present-day experimental
setups for weakly interacting trapped ultra-cold Bose and Fermi gases, Bose-Einstein
condensates (BECs) for haromically trapped bose gas, and BECs in an optical lattice
and double well potential, etc.

In chapter 3, we have theoretically obtained the differential scattering cross-
section for a rotating harmonically trapped Bose and Fermi gas. The differential
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scattering cross-section depends on the vortex structure of the rapidly rotating Bose-
Einstein condensate. Our study [2] would be important to know about the scat-
terer(s), in particular, (i) the energy eigenstate of a single scatterer in a rotating
harmonic trap, (ii) onset of the Bose-Einstein condensate of a harmonically rotating
trapped Bose and Fermi gas, (iii) vortex structure of a rapidly rotating harmonically
Bose-Einstein condensate, and (iii) de Haas-van Alphen like effect on a rotating har-
monically trapped Fermi gas [2, 3].

In chapter 4, we have obtained theoretical results for differential scattering cross-
section for a harmonically trapped Bose or Fermi gas exposed to a uniform artificial
magnetic field [4]. The Hamiltonian of an uncharged harmonic oscillator exposed
to an artificial magnetic field in a rest frame differs from the Hamiltonian of a rotat-
ing uncharged harmonic oscillator in the rotating frame by the centrifugal potential.
This leads to a significant difference in the collective property as well as in the dif-
ferential scattering cross-section for the harmonically trapped Bose or Fermi gas in
artificial magnetic field from that of the rotating harmonically trapped Bose or Fermi
gas. Above all, the differential scattering cross-section, as well as the scattering cross-
section, would appear as a thermodynamic property for the harmonically trapped
ultracold Bose or Fermi gas from our study.
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