
A Rule-based Dependency Parser for Telugu

A thesis submitted to the University of Hyderabad

for the award of the degree of

Doctor of Philosophy

in

Applied Linguistics

by

P. Sangeetha

Reg. No: 18HAPH01

Supervisor

Dr. K. Parameswari

Centre for Applied Linguistics and Translation Studies

School of Humanities, University of Hyderabad, Hyderabad, India

December, 2022

Center for Applied Linguistics and Translation Studies
School of Humanities

University of Hyderabad

CERTIFICATE

Dated - 30/12/2022

This is to certify that P. Sangeetha has carried out the research-work embodied

in the present thesis entitled “A Rule-based Dependency Parser for Telugu”

at the Centre for Applied Linguistics and Translation Studies, University of

Hyderabad. The thesis represents her independent work and has not been

submitted for any research degree of this university or any other university.

This thesis is free from plagiarism and has not been submitted in part or in full to

this University or any other university or institution for the award of any degree or

diploma.

The following papers were published during this period:

1. P. Sangeetha, K. Parameswari, Amba Kulkarni. 2021. A Rule-Based

Dependency Parser for Telugu - An Experiment with Simple Sentences. In

‘Translation Today’. Vol-15, Issue-1. Pg-[124-144]. ISSN-0972-8740,

e-ISSN-0972-8090 [UGC-CARE].

2. P. Sangeetha. 2021. yaMtrānuvādaMlō vākyavíslesana akkara (Importance of

parser in machine translation). In the journal ‘ammanud. i ’. Pg-[16-18]. ISSN

NO: 2582-8738 (UGC-CARE)

3. P. Sangeetha, K. Parameswari, Amba Kulkarni.2021. Parsing subordinate

constructions in Telugu using rule- based dependency parser. In Proceedings

of ICON 2021. Association of Computational Linguistics Indexed.

i

Further, the student has passed the following courses towards the fulfilment of

the coursework requirement for Ph.D.:

Course Course Name Credits Pass/Fail

AL801 Research Methodology 4.00 Pass

AL821 Readings in Applied Linguistics(Research Oriented) 4.00 Pass

AL824 Advanced Topics in core Linguistics 4.00 Pass

Dr. K. Parameswari

Supervisor

Centre for Applied Linguistics and Translation Studies

School of Humanities

Head of the Department Dean

CALTS School of Humanities

˙ University of Hyderabad

ii

Center for Applied Linguistics and Translation Studies
School of Humanities

University of Hyderabad

DECLARATION

I hereby declare that the work embodied in this thesis entitled “A Rule-based

Dependency Parsing for Telugu” is carried out by me under the supervision of

Dr.K.Parameswari, Centre for Applied Linguistics and Translation Studies,

University of Hyderabad, Hyderabad, and has not been submitted for any degree

in part or in full to this university or any other university. I hereby agree that my

thesis can be deposited in Shodhganga/INFILBNET.

A report of plagiarism statistics from the Indira Gandhi Memorial Library,

University of Hyderabad is enclosed.

P.Sangeetha

18HAPH01

Dated:

Dr. K. Parameswari

Supervisor

Centre for Applied Linguistics and Translation Studies

School of Humanities

iii

Acknowledgement

When I started out, I never thought Ph.D. is a big deal. I was full of

enthusiasm and zeal to work. However, as time passed, it seemed quite daunting.

If not for my supervisor, Dr. Parameswari Krishnamurthy, I would never be able

to finish this. Over a span of 5 years, I realised, she is my biggest strength and my

biggest cheerleader. I did not come across a person who re-innovates oneself every

day and is always taking up new challenges. Beginning from choosing the topic of

research to correcting my final draft, she taught me immensely. I will always be

grateful for things (both professional and personal), she taught me on a daily basis.

Secondly, Prof. Amba Kulkarni has been one of the driving forces for me to

finish this thesis. I thank her for her insights in choosing the topic of my research,

for hosting multiple meetings to discuss my research progress, for readily lending a

helping hand whenever in need. I will never fail to be in awe of Prof. Kulkarni’s

selfless nature, hard work and perseverance.

I express my deepest gratitude to Prof. Uma Maheshwara Rao for constanly

checking on my research progress and encouraging me to give my best. I am

thankful for his valuable feedback on the final draft of my thesis.

I thank Prof. K. Rajyarama for her insightful comments during my RAC

meetings. I thank her for all the support she rendered as my RAC member. I

thank Dr. Gracious Mary Temsen for always believing in me right from my IMA

days. I am immensely thankful the department of CALTS and the faculty of

CALTS, Prof. Bhimrao Bhosale, Prof. Arulmozi, Prof. Shivarama Padikkal, Prof.

Panchanan Mohanty, Prof. Subramaniam, Dr. Deepak Morey Tryambak (who

used to always address me as Dr.Sangeetha even during my MA days), Prof.

Prabhakar Rao and Dr. Sriparna.

I thank the non-teaching staffs Mr. Murthy, Mr. Mallesh, Ms. Chandrakala,

Ms. Anuradha and Ms.Swati for their cooperation and support all through my

Ph.D. days.

I express my deepest gratitude to University Grants Commission for their

financial support through UGC-JRF for 5yrs of my Ph.D. I thank the fellowship

section, UoH for their timely disbursement of the fellowship.

iv

I am indebted to my dear friends from the University, Dr. Nivea Thomas (for

being my biggest moral support), Prakash anna(my confidant), Madhukar (for all

the selfless support and discussions on my drafts), Sowjanya (for cheering me up

during tough days), Dr. Anakha Ajith (for always encouraging me to stay positive

during this journey), Bhavani (for being my biggest cheerleader), Albin Rico

Xalxo, Sushmita, Prabhakar, Keerthana.B, Koyyada Mahender, Lathasri, Ramya,

Jaita Venu, Naveen Gadicharla, Shreelaxmi, Pranav, Gouthama, Bapuji anna,

Sreenu for directly or indirectly helping me. My special thanks to Bhagya for

staying with me through thick and thin.

Special thanks to my friends from Sanskrit department, Saee, Amrutha,

Shriram and Malay. I render my special thanks to Sanal Vikram for all his

technical help.

I thankfully acknowledge LTRC, IIIT-H for their support directly and

indirectly.

I thank the cutest twins pat.t.u and cit.t.u for bearing with us while we had long

discussions with their ammā. I extend my thanks to Mr. Sakthivel for his kindness

and generosity during our untimely visits.

I thank my father for always believing in me. I thank my brother, pratāp, for

being there always. And my sister, surēkha for having faith in everything I do. My

special thanks and love to bangāraM, my little niece who showered immense love

and lifted up my spirits during difficult times. I am indebted to my fiance, Ashok

and his family who always pushed me to do better work.

This thesis is as much my amma’s as it is mine. I owe a lot to her for going

through this journey along with me and kept me sane all this while. If there is one

person I would like to dedicate this thesis to, it should be to her, for I know you will

be the happiest to witness your daughter become Dr. Sangeetha.

v

Transliteration Schema

vi

Abbreviations
ACC Accusative

ADJ Adjectivalizer

ADV Adverbializer

AGR Agreement

ASS Associative

AUX Auxiliary

CAT Category

CAUS Causative Marker

CCG Combinatory Categorical Grammar

CM Case Marker

COMP Complementizer

CONC Concessive

COND Conditional

CONJ Conjunction

COP Copula

CP Conjunctive Participial

CRF Conditional Random Fields

DAT Dative

DG Dependency Grammar

DOM Differential Object Marking

DUR Durative

DUB Dubitative

EMPH Emphatic

EXCL Exclusive

F Feminine

FUT Future Tense

GEN Genitive

GERUN Gerund

GNP Gender-Number-Person

GPSG Generalised Phrase Structure Grammar

GUI Graphical User Interface

HAB Habitual

HON Honorific

HORT Hortative

HPSG Head-Driven Phrase Structure Grammar

HyDT Hyderabad Dependency Treebank

IMP Imperative

INCL Inclusive

INF Infinitive

INS Instrumental

IIIT-H International Institute of Information Technology-Hyderabad

LAS Labelled Attachment Score

LDC Linguistic Data Consortium

vii

LFG Lexical Functional Grammar

LA Labelled Accuracy

LOC Locative

LSP Lexicalized and Statistical Parsing

M Masculine

MALT Models and Algorithms for Language Technology

MT Machine Translation

MWE Multi-Word Expressions

N Neuter

NEG Negative

NLP Natural Language Processing

NLU Natural Language Understanding

NOM Nominative

NP Noun Phrase

NST Nouns of Space and Time

NUM Number

NV Noun-Verb

OBL Oblique

PASS Passive

PCFG Probabilistic Context-Free Grammar

PL Plural

POS Parts Of Speech

POSS Possessive

PS Phrase Structure

PSP Postposition

PST Past Tense

PG Pān. inian Grammar

QUOT Quotative

RBP Rule-based Parser

REDUP Reduplication

RP Relative Participle

SG Singular

SOV Subject Object Verb

STAT Stative

SVM Support Vector Method

TAG Tree Adjoining Grammar

TDG Tesniere’s Dependency Grammar

TEMP Temporal

UD Universal Dependencies

UAS Unlabelled Attachment Score

VREC Verbal Reciprocal

VREF Verbal Reflexive

viii

Abstract

Parsing natural languages has been gaining popularity in recent years and

attracted the interest of Natural Language Processing (NLP) researchers around

the world. It is challenging when the language under study is a free-word order

language and morphologically rich like Telugu, the south-central Dravidian

language. Parsing refers to the process of syntactic analysis of a specific language

text. A parser is an automated tool that dissects sentences to provide

syntactic/syntactico-semantic analysis of relations of words in a sentence. Parsing

is useful in the downstream analysis and applications of NLP such as machine

translation, document classification, dialogue modelling, etc..,

This study adopts a knowledge-driven approach, i.e. a rule-based technique for

building parser for Telugu using linguistic cues as rules. The present research

adopts the Indian grammatical tradition i.e. Pān. ini’s Grammatical (PG) tradition

as the dependency model to parse sentences. A detailed description of mapping

semantic relations to vibhaktis (case suffixes and postpositions) using linguistic

cues in Telugu is presented.

An enhanced annotation scheme for Telugu dependency relations is introduced.

Challenges faced in parsing ambiguous structures are elaborated alongside

providing enhanced tags to handle them. The study describes the parsing

algorithm and the linguistic knowledge employed while developing the parser. The

research further provides results, which suggest that enriching the current parser

with linguistic inputs can increase the accuracy and tackle ambiguity better than

existing data-driven methods. Results are encouraging and this parser proves to be

efficient for languages like Telugu which can be later extended to other

morphologically-rich languages.

Contents

Certificate . i

Transliteration Schema . vi

1 Introduction 1

1.1 What is Parsing? . 1

1.2 Aim and Scope of the Study . 3

1.3 A Brief Note on Telugu . 4

1.4 Overview of Parsing . 6

1.4.1 Grammar Formalisms . 6

1.4.1.1 Phrase Structure Grammar (PS) 7

1.4.1.2 Dependency Grammar(DG) 7

1.4.1.3 Combinatory Categorical Grammar(CCG) 9

1.4.1.4 Lexical Functional Grammar(LFG) 10

1.4.1.5 Generalised Phrase Structure Grammar(GPSG) . . . 10

1.4.1.6 Head-Driven Phrase Structure Grammar(HPSG) . . 11

1.4.1.7 Tree Adjoining Grammar(TAG) 11

1.4.2 Methods of Parsing . 11

1.4.2.1 Grammar-Driven Parsing 12

1.4.2.2 Data-Driven Parsing 12

1.4.2.3 Hybrid Parsing . 13

1.4.2.4 Neural Network based Parsing 13

1.4.3 Parsing Strategies . 14

1.4.3.1 Top-Down or Goal-Oriented 14

1.4.3.2 Bottom-up or Data-Directed 14

1.4.4 Review of Annotation Schema 15

1.4.4.1 Penn Treebank Syntactic Tagset 15

1.4.4.2 Stanford Dependency Tagset 16

1.4.4.3 Chinese Dependency Tagset 17

1.4.4.4 Universal Dependencies Tagset 17

1.4.4.5 Anncora Tagset . 18

i

CONTENTS

1.4.4.6 saMsādhani Tagset 18

1.4.5 Review of Parsers . 19

1.4.5.1 Review of Foreign Language Parsers 19

1.4.5.2 Review of Indian Language Parsers 20

1.4.5.3 Review of Telugu Parsers 23

1.5 Methodology . 24

1.5.1 Theoretical Framework . 25

1.5.2 Implementation Technique . 25

1.5.2.1 Why a Rule-based Parser? 25

1.5.2.2 Rule-Based Parser for Telugu 26

1.5.2.3 Architecture of RBP 26

1.5.3 Corpus Used for the Study . 28

1.5.3.1 Corpus to Build the Rules 28

1.5.3.2 Corpus for Testing 29

1.6 Organization of the Thesis . 29

2 Dependency Framework - A Review 30

2.1 Introduction . 30

2.2 Dependency Grammar . 30

2.3 What is a Dependency Structure? . 31

2.3.1 The Constraint of Projectivity 33

2.4 Dependency vs Non-dependency Relation 33

2.5 Grammatical frameworks - A Comparison 34

2.5.1 Differences Between Phrase Structure and Dependency

Grammar . 35

2.5.2 Dependency frameworks - A Comparison 37

2.5.3 Pān. inian Dependency framework - Indian Grammatical

Tradition . 37

2.5.3.1 ākaMks. ā ‘Expectancy’ 38

2.5.3.2 yōgyata ‘Compatibility’ 39

2.5.3.3 sannidhi ‘Proximity’ 40

2.5.4 Tesniere’s Dependency Framework 40

2.6 Is Dependency Grammar Adequate for Computational Purposes? . . 43

2.7 Existing Tagsets: A Discussion . 44

2.8 Universal Dependencies . 44

2.9 AnnCorra . 45

2.10 Comparison of Tagsets . 46

2.10.1 Head Projection . 46

ii

CONTENTS

2.10.1.1 Nominal Predicate 46

2.10.1.2 Coordinating Conjuncts 47

2.10.1.3 Complement Clause 48

2.10.2 Subject . 48

2.10.2.1 Agentive Subject . 48

2.10.2.2 Experiencer Subjects 49

2.10.2.3 Possessive Subjects 50

2.10.3 Causative Agent . 50

2.10.4 Secondary Patient . 51

2.11 Enhanced Anncorra for Rule-based Parsing 51

2.11.1 Representation of Coordination in Enhanced AnnCorra 52

2.11.1.1 Tesniere - elements de structurale syntax 52

2.11.1.2 Melcuk - Meaning-text Theory 53

2.11.1.3 Hudson - Word Grammar 53

2.11.1.4 Timothy Osborne . 53

2.11.1.5 Hyderabad Dependency Treebank for Hindi (HyDT) 54

2.11.1.6 Representation of Coordination in RBP 54

2.11.2 Complement Clauses in Enhanced AnnCorra 56

2.12 Conclusion . 56

3 Dependency Relations in Telugu 58

3.1 Introduction . 58

3.2 Types of Dependency Relations . 58

3.3 kāraka Relations . 59

3.3.1 kartā (k1) - ‘Roughly subject’ 61

3.3.1.1 kartā in Copula Constructions 62

3.3.1.2 kartā in Intransitive and Transitive Constructions . . 65

3.3.1.3 kartā in Passive Constructions 67

3.3.1.4 kartā in Causative Constructions 68

3.3.1.5 Clausal kartā- ‘Clausal Subject’ 69

3.3.1.6 katr.u samānādhikaran. a (k1s) - ‘Subject Equivalence’ 71

3.3.2 karma(k2)- ‘Roughly Object’ 72

3.3.2.1 karma in Double Object Constructions -

gaun. a karma(k2g) (Secondary karma) 74

3.3.2.2 karma in Passive Constructions 75

3.3.2.3 karma in Causative Constructions 76

3.3.2.4 karma in Reflexive/Reciprocal Constructions 76

3.3.2.5 Goal/Destination as karma(k2p) 77

iii

CONTENTS

3.3.2.6 Clausal karma -‘Clausal object’ 78

3.3.2.7 karma samānādhikaran. a (k2s) - ‘Object Equivalence’ 79

3.3.3 karan. a(k3) - ‘Instrument’ . 80

3.3.4 sampradāna(k4) - ‘Beneficiary/Recipient’ 80

3.3.4.1 kartā in Non-Nominative Subject Constructions (k4a) 82

3.3.5 apādāna(k5) - ‘Source’ . 84

3.3.5.1 prakruti apādāna -‘Source Material’ (k5prk) 86

3.3.6 adhikaran. a(k7) - ‘Locus’ . 86

3.3.6.1 kālādhikaran. a(k7t) - ‘Location in time’ 86

3.3.6.2 deśādhikaran. a(k7p) - ‘Location in space’ 87

3.3.6.3 vis.ayādhikaran. a(k7) - ‘Location elsewhere’ 88

3.3.7 sādrísya (k*u) - ‘Similarity & Comparison’ 88

3.4 Non-kāraka Relations . 91

3.4.1 hētu(rh)-‘Reason or Cause’ 91

3.4.2 tādarthya (rt) - ‘Purpose’ . 94

3.4.3 prati (rd) - ‘Direction’ . 95

3.4.4 upapada sahakārakatva (ras-k*) - ‘Associative’ 96

3.4.5 s.as. t.ı̄sambandhah. (r6)- ‘Genitive’ 97

3.4.6 Duratives (rsp) . 100

3.5 Other Dependency Relations . 100

3.5.1 Noun Modifier(nmod) . 101

3.5.1.1 Noun as nmod . 101

3.5.1.2 Demonstratives as nmod 103

3.5.1.3 Adverbial Nouns as nmod 103

3.5.1.4 nmod wq - ‘Question words’ 104

3.5.1.5 Quantifiers as Noun modifiers nmod quant 104

3.5.1.6 nmod relc - Relative Clause 105

3.5.1.7 Adjectives as nmod adj 107

3.5.2 Verb modifier (vmod) . 108

3.5.2.1 Conjunctive Participle - Serial Action

(vmod:cp serial) 108

3.5.2.2 Conjunctive Participle - Simultaneous Action

(vmod:cp simul) . 109

3.5.2.3 Conjunctive Participle - Manner (vmod:cp manner) . 109

3.5.2.4 Conjunctive Participle - Cause (vmod:cp cause) . . . 111

3.5.2.5 Conditional Clauses - Condition (vmod:cond) 111

iv

CONTENTS

3.5.2.6 Conditional Clauses - Serial Action

(vmod:cond serial) 111

3.5.2.7 Concessive Clauses(vmod:conc) 112

3.5.2.8 Infinitive Clauses (vinf:k1) 113

3.5.2.9 Verbal Modifier - Temporal (vmod:temp) 114

3.5.3 Adverbs (adv) . 115

3.5.4 Sentential Adverbs (sent-adv) 117

3.6 Non-Dependency Relations . 117

3.6.1 Coordination(cc,conj) . 118

3.6.2 Part of Relation (pof) . 119

3.6.2.1 Part of Relation - Reduplication (pof redup) 120

3.7 Miscellaneous Relations . 121

3.7.1 Subordination (mark) . 121

3.7.2 Intensifier(intf) . 124

3.7.3 Negation (neg) . 125

3.7.4 Particles (rp) . 125

3.7.5 Interjection(uh) . 126

3.7.6 Fragment of (fragof) . 126

3.7.7 Address terms (rad) . 126

3.7.8 Enumerator (enm) . 127

3.7.9 Symbols (rsym) . 128

4 Architecture of the Rule-Based Dependency Parser 129

4.1 Introduction . 129

4.2 Rule-based Parser for Telugu . 129

4.2.1 Why a Rule-based Parser? . 130

4.3 Architecture of the parser . 131

4.3.1 The Cleaning Phase . 131

4.3.1.1 Input Sentence Cleaning 131

4.3.1.2 Normalization . 133

4.3.1.3 Conversion of UTF-8 to WX 133

4.3.2 The Pre-processing Phase . 133

4.3.2.1 Tokenization . 134

4.3.2.2 Morphological Analysis 134

4.3.2.3 POS Tagger . 135

4.3.2.4 Pruning Morph Analysis 135

4.3.2.5 Conversion of Input to RBP Format 136

4.3.2.6 Null-verb Insertion 136

v

CONTENTS

4.3.3 The parsing Phase . 137

4.3.3.1 Algorithm of the parser 137

4.4 An elaboration of the algorithm . 138

4.4.1 Step-1 - Define Nodes . 138

4.4.2 Step-2 - Directed Edges . 138

4.4.2.1 Theoretical Perspective 138

4.4.2.2 Computational Perspective 141

4.5 Define Constraints . 142

4.6 Use of Semantic Constraints . 142

4.7 Use of Lexical Semantics of Nouns and Verbs 143

4.7.1 Relational Disambiguation - [-∅] suffix 144

4.7.2 Relational Disambiguation - [ni/nu] suffix 146

4.7.3 Relational Disambiguation - [-ki/ku] suffix 146

4.7.4 Relational Disambiguation - [-tō] suffix 148

4.7.5 Relational Disambiguation- -lō 149

4.7.6 Relational Disambiguation- -nuMd. i/nuMci/niMci 149

4.8 Implementation . 149

4.8.1 Rules . 150

4.8.2 Database . 152

4.8.2.1 Filter Module . 152

4.8.2.2 Filtering . 152

4.8.2.3 Generating trees . 154

4.8.3 Parser Rules . 154

4.8.3.1 Rules for kartā (k1) 155

4.8.3.2 Rules for karma(k2) 157

4.8.3.3 Rule for gauna karma (k2g) 158

4.8.3.4 Rules for karana(k3) 158

4.8.3.5 Rule for sampradāna(k4) 159

4.8.3.6 Rule for apādāna (k5) 159

4.8.3.7 Rule for prakruti apādāna (k5prk) 160

4.8.3.8 Rule forkāladhikarana (k7t) 160

4.8.3.9 Rule for deshādhikarana (k7p) 160

4.8.3.10 Rule for vishyādhikarana (k7) 161

4.8.3.11 Rule for Goal/Destination (k2p) 161

4.8.3.12 Rule for kartā samānādhikarana(k1s) 161

4.8.3.13 Rule for anubhava kartā(k4a) 162

4.8.3.14 Rule for k*u . 162

vi

CONTENTS

4.8.3.15 Rules for rh . 163

4.8.3.16 Rules for rt . 163

5 Evaluation of the Parser and Error Analysis 164

5.1 Introduction . 164

5.2 Metrics to Evaluate a Parser . 164

5.2.1 Attachment Scores . 165

5.2.2 Precision and Recall . 165

5.2.3 Relation-based Performance Index 166

5.2.4 Confusion Matrix . 166

5.3 Evaluation of Pre-processing tools . 166

5.4 Evaluation of Rule-Based Parser for Telugu 166

5.4.1 Data . 167

5.4.2 Results . 167

5.4.3 Relation-based Performance Index 169

5.5 Error Analysis and Observations . 171

5.5.1 Pre-Processing Errors . 171

5.5.1.1 Tokenization and Sandhi Split Errors 171

5.5.1.2 Morphological Errors 172

5.5.1.3 Unknown Words . 172

5.5.1.4 Lexical Category, Gender, Number, Person Errors . . 173

5.5.1.5 Incorrect Root Errors 173

5.5.1.6 Pruning errors . 173

5.5.2 Database Issues . 174

5.5.3 Issues with rules . 174

5.5.4 Dummy verb Insertion . 175

5.5.5 Over-generation . 176

5.6 Confusion Matrix - A Discussion . 176

5.6.1 Dependency relation k2 wrongly marked as k1 177

5.6.2 Dependency relation k2p wrongly marked as k1 179

5.6.3 Dependency relation k7t wrongly marked as k1 180

5.6.4 Dependency relation k7p wrongly marked as k7 180

5.6.5 Dependency relation k1 wrongly Marked as k1s 181

5.6.6 Dependency Relation pof Wrongly Marked as k1 181

5.6.7 Dependency Relation k1 Wrongly Marked as nmod 181

5.6.8 Dependency Relation ras Wrongly Marked as adv 182

5.7 Sample RBP Graphs . 183

5.8 Observations . 184

vii

CONTENTS

5.8.1 Agreement and Ambiguous Relations 184

6 Conclusion 187

6.1 Major Contributions . 189

6.2 Significance of the Study . 189

6.3 Some Challenges . 190

6.4 Future Work . 190

References 206

viii

List of Tables

2.1 A comparison of UD and Anncorra 57

3.1 kāraka relations and default vibhaktis in Telugu. 60

3.2 kārakā relations and their tags . 60

3.3 Agreement marking on predicative nouns 71

3.4 Non-kāraka relations . 91

3.5 List of other dependency relations . 102

3.6 Quantifiers list . 105

3.7 Dependency Tags for Subordinate Clauses in Telugu 109

3.8 Verb paradigm of temporal verb modifiers 114

3.9 Non-Dependency Relations . 117

3.10 Miscellaneous relations . 122

4.1 kāraka relations and default vibhaktis in Telugu. 140

4.2 Relational Ambiguity -∅ Suffix . 145

4.3 Relational Ambiguity -ni/nu Suffix 146

4.4 Relational Ambiguity -ki/ku . 147

4.5 Relational Ambiguity -tō . 148

4.6 Relational Ambiguity -lō suffix . 149

4.7 Relational Ambiguity -nuMd. i/nuMci/niMci suffix 149

4.8 Installation pipeline . 151

4.9 Statistics of database . 153

5.1 Module-wise evaluation of pre-processing tools 166

5.2 Types of sentences in the test data 167

5.3 Length of sentences and distribution of test data 168

5.4 Precision and Recall . 168

5.5 Attachment Scores . 169

5.6 Relation-based Performance Index . 186

0

Chapter 1

Introduction

1.1 What is Parsing?

Parsing is a process of syntactic analysis of a specific language text. A parser is

an automated tool that dissects sentences to provide

syntactic/syntactico-semantic/morpho-syntactic analysis of the relations of words

in a sentence. Parsing is useful in the downstream analysis and applications of

Natural Language Processing (NLP) such as Machine Translation (MT),

Document Classification, and Dialogue Modelling. Also, parsing is a significant

module in Natural Language Understanding (NLU) to capture the structure of a

sentence, thereby, understanding the meaning of the text. Parsing is an interesting

yet challenging task as it involves resolving language ambiguities like the

attachment and the scope ambiguities 1. The present research aims to build a

high-quality parser for Telugu using a rule-based method adopting dependency

grammar formalism.

Parsing, a word derived from Latin pars orations which means ‘parts of speech’

was used in elementary schools for grammatical explication of sentences (Nivre,

2006). Over the years, word parsing acquired a specific definition in NLP. Bunt

et al. (2005) defines parsing as “the decomposition of complex structures into their

constituent parts and parsing technology as the methods, the tools and the software

to parse automatically”. Alternatively, a sentence [S] is said to be parsed if one

or all of its derivative trees are known (Aho and Ullman, 1972). For instance, if

a grammar[G] and a sentence[S] are provided, the parsing problem provides the

answers for: (1) whether or not a sentence(s) ∈ L(G). (2) If s ∈ L(G), the answer

to this question may be either a parse tree or a derivation (Jeuring and Swierstra,

2001). Let us comprehend the phenomenon of parsing using examples from

English and Telugu. Consider example (1.1) and its structural representation in the

dependency framework. In figure (1.14), a linear structure of words is converted into

a hierarchical structure that represents relations between words (Kulkarni, 2021a).

1The classic examples of attachment and scope ambiguities include ’I saw the elephant with

binoculars’ and ’The old men and women’ respectively

1

1.1 What is Parsing?

(1.1) John saw Mary

saw

John

subject

Mary

Object

Figure 1.1: Structural Representation for (1.1)

In figure (1.14), the higher node ‘saw’ is the root or head node which dominates

the other two nodes ‘John’, and ‘Mary’. ‘John’ is related to the root node as the

subject and ‘Mary’ as the object. This information about the subject and object

in an English sentence is elicited using the position of words. However, this is not

true of all languages, especially for free-order languages like Telugu. Other syntactic

cues must be used to parse sentences for such languages. Consider (1.2)

(1.2) nēnu
I.NOM

sinimā
cinema

cūs-ā-nu
see-PST-1.SG.

‘I saw a movie’

cūsānu

nēnu

subject

sinimā

object

Figure 1.2: Structural Representation for (1.2)

In the example (1.2), the root node cūs-ā-nu ‘saw’ has nēnu ‘I’, sinimā ‘cinema’

as the subject and object respectively. But the position of words does not determine

the syntactic role of words in free word-order languages like Telugu. This calls out

for a different identification strategy to elicit such structural information. Here,

we consider agreement and ontological properties of nouns (animacy in specific) to

2

1.2 Aim and Scope of the Study

parse the Telugu sentence(1.2) which is discussed in detail through the course of this

thesis.

Each language requires different linguistic cues like position, agreement, case,

ontological features etc. to parse sentences. In case of Telugu, major syntactic

information is coded in words in the form of suffixes. This study exploits morpho-

syntactic features of Telugu to show how simple linguistic cues can ease the parsing

process and cut out the cumbersome task of annotating huge corpus for building

treebanks. Treebank, a term coined by Geoffrey Leech (Brdar et al., 2003, cf.)

refers to a repository of annotated corpus with syntactically/syntactico-semantically

labelled trees based on grammatical analysis of languages. This study, instead of

building treebanks, creates linguistic approximation of Telugu syntax to build a

parser.

1.2 Aim and Scope of the Study

This study attempts to build an efficient parser for Telugu in the dependency

framework using a rule-based method. In the process of building the

aforementioned parser, this thesis envisages the following aims and scopes:

• To critically examine the existing grammar formalisms and choose an

appropriate framework that rightly captures the language information under

study

• To explore and understand various parsing techniques used for languages

around the world, thereby, enabling the suitable technique selection for

Telugu parsing

• To understand the syntactic properties of Telugu from a parsing perspective,

in order to encode syntactic information in the form of rules to automate the

parsing process

• To review and compare the existing tagsets available for labelling dependency

relations subsequently enhancing or building new guidelines.

• To integrate linguistic cues as rules for each dependency relation and develop

databases wherever necessary so as to build the rule-based parser

• To collect a corpus comprising of various sentences available in Telugu for the

evaluation

3

1.3 A Brief Note on Telugu

• To evaluate and analyse the output of the parser to find efficient ways to

improve the accuracy

Eventually, the Telugu parser can be plugged in NLP applications such as

Machine Translation (MT,henceforth) to validate its contribution to NLU.

1.3 A Brief Note on Telugu

Telugu is a south-central Dravidian language (Krishnamurti, 2003a, p.19) spoken

in the states of Telangana and Andhra Pradesh. According to the census of India

2011, Telugu is the fourth most spoken language of India with approximately

8,11,27,740 speakers which constitute 6.7% of total population (India, 2011).

Telugu has four regional dialects 1, viz. i). Northern dialect of Telugu popularly

called the Telangana dialect spoken by the people of Telangana state (formed as a

separate state in 2014), ii). Southern dialect of Telugu popularly known as the

Rayalaseema dialect spoken in 4 districts (Kurnool, Kadapa, Anantapur, Chitoor)

including 2 coastal districts (Nellore and Prakasm), iii). Eastern dialect of Telugu

is spoken by northeast districts (Vishakapatnam, Vijayanagaram, Srikakulam), iv).

Central dialect of Telugu popularly known as the standard Telugu dialect spoken

in central districts (Krishna, Guntur, East and West Godavari). In this study, we

focus on building a parser for written variety of Telugu which is available widely in

Central dialect of Telugu.

Telugu is a head-final and left-branching language with Subject Object Verb

(SOV) word order. Though the verb is a central component of sentences, verbless

sentences are quite prevalent in Telugu. A sentence can be headed by a verb

(verbal predicate) or a nominal (nominal predicate). Telugu is a

nominative-accusative language. Simple sentences in Telugu consist of nominal

arguments/adjuncts and a verbal or nominal predicate. Complex sentences include

a subordinate clause (usually non-finite clauses) and a matrix clause. Compound

or co-ordinate sentences are also constructed through morphological inflections in

Telugu and a ‘the part of function of compound sentences has been taken over by

participial clauses‘ (Ramarao, 2017). Arguments of the verb are nominal entities

wherein subject argument is expressed using nominative/ non-nominative case.

Some structural features of Telugu are listed below:

1The classification of dialects and the districts discussed here is before 2014 when Telangana

and Andhra Pradesh are part of a single state. However, Andhra Pradesh and Telangana expanded

the number of districts now which are not included here

4

1.3 A Brief Note on Telugu

• Telugu is an agglutinative language which stores linguistic information in the

form of affixes. Affixes in agglutinative languages are glued together to

represent complex linguistic features. Eg. pād. -iMcu-konn-ā-d. u

‘sing-CAUS-REF-PST-3.SG.M ‘he made(someone) to sing’

• Telugu is a pro-drop language that allows subject-less sentences. Pro-drop

languages allow pro-drop to an extent that the φ - features (gender, number,

person, etc) are reflected on the verb for the local recovery of the dropped

arguments (Biberauer, 2008, p.331). In Telugu, the verbs often carry gender,

number and person agreement with the subject. As the subject information

is encoded on the verb, subject can often be dropped. Example - annaM

tiMt.unnād. u - ‘He is eating food’.

• The copula verb is almost absent in equative affirmative constructions in

Telugu. Equative constructions with the absence of copula is realised with

either nominal or adjectival predicates. Eg - nēnu parísōdaka vidyartini ‘I am

a research scholar’

• Case syncretism (Comrie, 1991), a case marker with multiple functions, is

prominently available in the Telugu case system. A single case marker serving

multiple case functions leads to several analysis in a parser. Eg. ravi iMt.iki

vel.l.ād. u ‘Ravi went home’, raviki kōpaM vacciMdi ‘Ravi is angry’, amma raviki

annaM pet.t.iMdi ‘Mother served food to Ravi’

• Non-nominative or quirky subjects in Telugu are common in certain domains

(Bhaskararao and Subbarao, 2004), where the structure is different from

regular nominative constructions. Dative subject constructions, in particular

are quite prevalent. Eg. nāku dabbulu kāvāli ‘I need money’

• Predicates consisting of Noun-Verb (NV) compounds are productive in Telugu.

Example: snānaM cēyu ‘to bath’

• The use of participles in complex construction is the unique feature of Telugu

including other Dravidian languages. Participial constructions are used to

express conditionality, cause/reason etc. Eg - ravi hōMvark rāsi bad. iki vel.l.ād. u

‘Ravi went to school after writing his homework’

• Relative clauses occur before noun phrases which they modify, unlike English.

Eg- pāt.a pād. ina sunita vacciMdi - ‘Sunita who sang the song came’

5

1.4 Overview of Parsing

• Multi-token words such as word forms with clitics expressing conjunction,

disjunction, questions, dubitativeness and emphasis are part of morphology

which require syntactic status in parsing. Eg. vastād. ō lēdō - ‘whether he will

come or not’ clitic ‘ō’ expressing dubitativeness

• Conditional and concessive clauses manifest morphologically as inflection on

verbs

As shown above, wordforms in Telugu are rich with grammatical information which

can be used as cues while developing a rule-based parser.

1.4 Overview of Parsing

Parsing as a sub-field of NLP had emerged several decades ago. Over these

decades, a repository of knowledge on automation of syntactic analysis has been

compiled. Nevertheless, Parsing NL text is still a complex NLP task. Parsing open-

ended unrestricted NL text is far more complicated when compared to parsing formal

grammars. Building robust, efficient and accurate parsers for NLs are still considered

a challenge. Parsing is considered a central part in several NLP tasks due to its

utility in larger applications like information retrieval, Machine Translation (MT),

text summarization, question answering system etc (Clark et al., 2013). Building a

parser requires an appropriate grammar formalism, parsing strategy, implementation

technique and customised annotation schema (tagset) for the language under study.

These criteria are briefly discussed in the further subsections.

1.4.1 Grammar Formalisms

Grammatical understanding of the language and selecting a suitable formalism for

syntactic representation are a pre-requisite for parsing. The most commonly used

grammatical frameworks for parsing include Constituency and Dependency

approaches. However, other grammatical formalisms are also in practice viz.

Categorical Grammar (CG), Generalised Phrase Structure Grammar(GPSG),

Lexical Functional Grammar(LFG), Tree-Adjoining grammar(TAG), Head-Driven

Phrase structure Grammar(HPSG), and several others.

6

1.4 Overview of Parsing

1.4.1.1 Phrase Structure Grammar (PS)

Constituency or phrase structure has arrived as an avalanche to the linguistic

community with Noam Chomsky’s work (1957, 1965, 1981 & 1995). Since then,

constituency has been the prominent linguistic theory both in theoretical and

computational linguistics (Nivre, 2006).

Constituents are the prime elements of grammar as assumed by Consituency

grammar. ‘Constituents are groups of words that function as units with respect

grammatical processes’ (Carnie, 2008). Osborne (2013) defined constituents as

‘node plus all the nodes that that node dominates’. Constituency is a grammatical

framework which describes the structure of a sentence in-terms of these

constituents. Constituency parse trees provide richer linguistic structures. A

constituency sentence tree has terminal and non-terminal nodes. Terminal nodes

are the ones which do not have any branches underneath (usually the actual words

of a sentence). Non-terminal nodes are all the other nodes other than the terminal

nodes. Non-terminal nodes consist of root nodes and intermediate

nodes/pre-terminals. These pre-terminal nodes provide the lexical category of

words. Due to its constituent structure, it is well-suited for positional languages

than free word-order languages. Consider the constituency parse tree of (1.3):

[john]NP [went]VP [to the school]PP :

(1.3) ‘John went to the school’

1.4.1.2 Dependency Grammar(DG)

Dependency Grammar is one of the theoretical frameworks, like phrase-structure,

used to describe a natural language. This can be viewed as one of the methods of

language analysis in general and syntactic analysis in particular. Dependency

grammar is one of the earliest grammars which is often traced back to Pān. ini, who

postulated the grammar of Sanskrit. The term dependency was first used by Hays

(1964) as reported in Jurafsky (2000).DG is popularly in use in European linguistic

tradition with the work of Mel’cuk et al. (1988). Though dependency framework

was in use to describe languages, it is with the work of Tesnière (1959) that

dependency as a grammatical framework was introduced to analyse languages.

Tesniere who devoted major part of his life in teaching French, later, using his

experiences in teaching, worked on developing a grammar to describe French and

other Slavic languages that he taught. Tesniere’s work ‘Eléments de syntaxe

7

1.4 Overview of Parsing

S

NP VP

N

John

V PP

Went P NP1

To det N1

the school

Figure 1.3: Constituent Structure for Ex-1.3

structurale’ (1959) originally published in French is much later translated to

English by Timothy Osborne & Sylvain Kahane in 2015. Tesniere’s work stands as

a pioneering work in the history of dependency grammar. Apart from Tesnière

(1959), other theories of dependency grammar include Functional Generative

Description, Meaning-Text Theory (Mel’cuk et al., 1988), Lexicase, Word

Grammar, Constraint Dependency Grammar, Functional Dependency Grammar

and several other theories.

Dependency formalism assigns relations to words in a sentence based on

modifier(víses.an. a) and modified(víses.ya) relations. There exists one word which

acts as a root of the sentence called the“chief qualificand” (mukhya-víses.ya)

(Kulkarni, 2021a). Dependency formalism is tested and proved to be suitable for

free word-order languages. Dependency advocates verb-centrality and rejects the

subject-verb distinction. In addition to this, dependency trees are not very

complex, they have nodes equal to the number of words in a sentence. Consider

the dependency tree of (1.3)

From the figure, it can be seen that dependency tree is a labelled directed acyclic

graph. It has a single root node (go). All dependency nodes except the root node

has one incoming node.

8

1.4 Overview of Parsing

went

John

subject

school

goal/destination

to

case

the

det

Figure 1.4: Dependency Structure for Ex-1.3

1.4.1.3 Combinatory Categorical Grammar(CCG)

One of the oldest lexicalized grammatical formalisms is said to be the Categorical

Grammar(CG) (Ajdukiewicz, 1935) and the extended form of CG is the

Combinatory Categorical Grammar (CCG). CCG is a framework developed by

Steedman and Baldridge (2011). CCG is a kind of lexicalized grammar which

frames syntactic rules solely on the category of the input text given. No syntactic

rule is structure or derivation dependent. CCG is different from traditional notions

of constituency in that it allows flexible surface structure. The potential

constituents are the most continuous substrings of a well-formed sentence. The

grammatical/syntactic rules are applied further with compositional semantic

interpretation.

Several treebanks were developed using CCG namely, English CCGbank

(Hockenmaier and Steedman, 2007), Chinese CCGbank (Tse and Curran, 2012).

CCG is also used in improving the existing dependency treebanks using CCG

categories for Telugu. (Ambati et al., 2013, 2014).

Figure 1.5: Sample CCG representation retrieved from (Hockenmaier and

Steedman, 2007)

9

1.4 Overview of Parsing

1.4.1.4 Lexical Functional Grammar(LFG)

LFG is a grammatical theory introduced by Bresnan (1978), a former student of

Chomsky who disagreed with Chomsky’s idea of transformations. Later, Bresnan

collaborated with Kaplan (1972) and developed this grammatical framework called

LFG (Kaplan and Bresnan, 1982). LFG is a generative, non-derivational, constraint-

based grammar in which lexicon plays a major role (Falk, 2001, pg-9). LFG was

applied in parsing the UPenn Wall Street Journal (WSJ) treebank (Riezler et al.,

2002) reporting the f-score of 76.1%. Several other works related to parsing were

made using LFG (Eisele and Dorre, 1986; Güngördü and Oflazer, 1995; Kim, 1993;

Salloum et al., 2016). However, some earlier works (Joshi and Mathur, 2012) stated

that they had great difficulty in associating features with constituent structures and

its incomprehensibility in implementing it.

1.4.1.5 Generalised Phrase Structure Grammar(GPSG)

GPSG is a variant of context-free phrase structure grammar developed by Gazdar

et al. (1985a). This framework was developed to show that natural languages are

context-free and can be described using context-free grammatical frameworks.

GPSG is framed on three types of rules (Phillips, 1992), namely, (i)

Immediate-Dominance (ID) rules, (ii) Linear Precedence(LP) rules and (iii)

metarules. ID rules specify which categories(grammatical constituents) can

combine in-order to produce other categories,for example, a Noun Phrase(NP) can

have an adjective phrase. LP rules specify the linear order of the constituent

elements of a category, for example, an NP precedes a Verb Phrase(VP). metarules

state that if a language grammar contains rules that affirm to one specified

pattern, it also contains rules that match some other derived pattern (Shieber

et al., 1983). All these rules combined together define the syntax of a language.

Every node of a tree should conform to these rules in order to form an acceptable

syntactic tree.

GPSG is used to implement grammars for various languages like Persian (Bahrani

et al., 2011), English (Gawron et al., 1982), French (Bès and Baschung, 1985), and

several other languages. GPSG analysis for a sample sentence is provided below:

(1.4) She went to the park

GPSG output- ((NP-she (N)))((VP-went (V)))((PP- to (P))((NP-the (DET) park

(N)))

10

1.4 Overview of Parsing

1.4.1.6 Head-Driven Phrase Structure Grammar(HPSG)

Head Driven Phrase Structure Grammar(HSPG) is a work developed by Pollard

and Sag (1987). HPSG has two main components namely, (1) representation of

grammatical categories(words) using feature structures and (2) a description of

constraints stating linguistic generalizations of a language. These constraints

usually include a lexicon, lexical rules of derived words, ID of words in a sentence,

LP. Any given sentence is grammatical if and only if it abides by the rules of these

two components and the constraints (Levine and Meurers, 2006).

HPSG is proved to be useful in understanding various phenomena in languages like

Slavic, Romance, German and several other languages (Levine and Meurers, 2006).

Among Indian languages, HPSG is implemented for Bangla (Khan and Khan,

2006), Hindi (Goyal et al., 2003), etc.

Figure 1.6: Sample HPSG representation retrieved from (Pollard and Sag, 1994b)

1.4.1.7 Tree Adjoining Grammar(TAG)

Tree-adjoining grammar was developed by Joshi et al. (1975) initially started as

Tree adjunct grammar. This grammar is an attempt to prove that formal

mathematical grammars can still be used to describe natural languages (Kroch and

Joshi, 1985). TAG is defined as ‘both weakly and strongly equivalent to

Grammar’. Let G = (1,A) where I and A are finite sets of elementary trees. The

trees in ’I’ will be called the initial trees and the trees in ’A’, the auxiliary trees”

(Kroch and Joshi, 1985). TAG is used for English (Group et al., 1998), Hindi (Jain

et al., 2018), Tamil (Menon et al., 2016) and several other languages.

1.4.2 Methods of Parsing

Based on an appropriate grammar formalism, an implementation technique is

adopted to parse the given language text. There are various methods of parsing

11

1.4 Overview of Parsing

(Nivre, 2006, p.20) that has been in practice for several decades, among four

prominent methods (Nivre, 2006) are discussed in detail in this section :

1. Grammar-Driven Parsing

2. Data-Driven Parsing

3. Hybrid Parsing

4. Neural Network based Parsing

1.4.2.1 Grammar-Driven Parsing

Grammar-driven approach also known as rule-based parsing is one of the widely

used parsing methods. In grammar-driven parsing, it is assumed that a natural

language can be to an extent approximated to a formal language (Nivre, 2006). A

given language’s grammar is analysed to form generalisations which in-turn are

converted to formal language rules. Based on these formal language rules, a

language text is parsed. (Baud et al., 1999), (Haverinen et al., 2009), (Ramasamy

and Žabokrtskỳ, 2011), (Anchiêta and Pardo, 2018), and several others adopted a

grammar-driven technique for parsing and stressed its importance in parsing

natural language texts.

However, it is a known fact that all of natural language content cannot be

approximated to a formal language due to the novelty and richness of natural

languages. This stands as the biggest drawback of grammar-driven approaches.

Problems of robustness, coverage, over/under generation of parsing analysis can be

few issues related to grammar-driven parsing approach.

1.4.2.2 Data-Driven Parsing

In data-driven parsing, parsers are build by employing treebank grammars.

Treebanks are a collection of correctly/manually parsed sentences of a given

language. Data-driven parsing is also called statistical parsing. Probabilistic

Context-Free Grammar (PCFG) is the commonly used grammar formalism in

building statistical parsers. Any sentence provided as an input is considered as a

valid grammatical sentence and is attempted to be parsed. Data-driven

dependency parsing is sub-classified into two types: transition-based dependency

parsing and graph-based dependency parsing. Models and Algorithms for

Language Technology (MALT) is considered the best example for statistical parser.

Like other parsers, statistical parser also has some disadvantages like lack of lexical

12

1.4 Overview of Parsing

conditioning and poor independence assumptions which can be improved by

annotating larger data (Jurafsky, 2000).

1.4.2.3 Hybrid Parsing

Hybrid parsing is a combination of both grammar-driven and probabilistic methods.

In this type of parsing, a treebank is required with correctly parsed sentences and

also a set of grammatical rules for further disambiguation. This proved to be an

effective kind of parsing as it provides multi-layered filtering and analysis of the text.

Consider fig-1.7 that shows the convergence of grammar and data-driven methods

and the approaches that adopt them.

Figure 1.7: Convergence of Grammar and data-driven parsing proposed by (Nivre,

2006)

1.4.2.4 Neural Network based Parsing

In his seminal paper, McCulloch and Pitts (1943) introduced a simple

mathematical model of a single neuron. Using the neuron analogy, they proved

that neural networks can be used for universal computing. Neural network based

parsers are a new development and is widely used currently. Neural network is a

paradigm that processes information which consists of numerous neurons working

towards solving a specific problem.“An artificial neural network (or simply neural

network) consists of an input layer of neurons (or nodes, units), one or two (or

even three) hidden layers of neurons, and a final layer of output neurons” (Wang,

2003). Neural networks work in transition-based and graph-based methods for

parsing purposes. Chen and Manning (2014) developed a neural network based

schema for depending parser purposes. Consider the figure for the schema

proposed by (Chen and Manning, 2014):

13

1.4 Overview of Parsing

Figure 1.8: Architecture of neural network schema proposed by Chen and Manning

(2014)

1.4.3 Parsing Strategies

Most parsers have underlying parsing strategies namely Top-down or goal-oriented

search and Bottom up or data-directed search strategies (Jurafsky, 2000).

1.4.3.1 Top-Down or Goal-Oriented

Top-down or goal-oriented parsing strategy builds parse trees from the top root node

or S node to leaf nodes. Starting from the root node, trees are build downward till

they reach the parts of speech categories at the bottom. In this kind of parsing, all

the trees lead to the root node, hence not wasting time in generating non-sentences.

Nevertheless, analysing output which is inconsistent with the input can be considered

as a disadvantage.

1.4.3.2 Bottom-up or Data-Directed

This parsing strategy builds trees starting from leaves and projecting to root node.

Here, the words from the lexicon are first considered and looked for any ambiguous

interpretations that affect the tree. Later, based on the grammar rules each step

of the tree is built. This strategy ensures that the trees are in connection with the

input. The disadvantage of this method is that it cannot ensure that all bottom-up

trees lead to the root node.

The present study follows a bottom-up strategy to provide the syntactico-semantic

relations among wordforms in a given input.

14

1.4 Overview of Parsing

1.4.4 Review of Annotation Schema

Annotation schema refers to guidelines using which parsing relations are labelled.

Guidelines ensure a uniform pattern across languages. Various annotation

guidelines have been proposed by several researchers based on the syntactic

features of particular languages. Here, we review the popular tagsets in use.

Tagsets which we discuss include Penn tagset, Stanford tagset, Universal

Dependencies tagset, Anncora tagset and samsādhani tagset.

1.4.4.1 Penn Treebank Syntactic Tagset

Penn tagset 1 is proposed as bracketing guidelines for treebanks under Penn

Treebank Project by Linguistic Data Consortium(LDC), University of

Pennsylvania (Bies et al., 1995). Since 1989, Penn treebank project produced a

repository of around 7M words of POS tagged text, 3M words of parsed corpus,

approximately 2 million words of text parsed for predicate-argument structure, and

1.6 million words of transcribed speech text annotated for speech disfluencies. The

annotated material includes genres such as nursing notes, IBM computer manuals,

transcribed telephone conversations, Wall Street Journal articles among

others(Taylor et al., 2003). The penn treebank syntactic tagset is provided below:

Figure 1.9: Penn tagset retrieved from Taylor et al. (2003)

1https://www.ldc.upenn.edu/

15

https://www.ldc.upenn.edu/

1.4 Overview of Parsing

1.4.4.2 Stanford Dependency Tagset

Stanford dependency tagset 1 originally developed for English began in 2005. A

group of linguistic researchers attempted to develop a ’linguistically sound, surface-

syntax oriented dependency representation’ for English which progressed as Stanford

dependencies till the development of Universal dependencies. Stanford dependency

tagset contains around 50 grammatical relations which are binary relations that

hold between a governor and the dependent (De Marneffe and Manning, 2008).

Stanford dependencies is also available for Chinese, Italian, Bulgarian and several

other languages.

Figure 1.10: sample of syntactic tags of Stanford tagset in hierarchy retrieved from

(De Marneffe and Manning, 2008)

1https://nlp.stanford.edu/software/stanford-dependencies.shtml

16

https://nlp.stanford.edu/software/stanford-dependencies.shtml

1.4 Overview of Parsing

1.4.4.3 Chinese Dependency Tagset

Chinese Dependency Treebank 1 1.0 was proposed by the Harbin Institute of

Technologies Research Center for Social Computing and Information Retrieval

(HIT-SCIR) in 2012. It contains 49,996 (902,191 words) Chinese sentences

annotated with syntactic dependency structures selected randomly from Peoples

Daily news wire stories published from 1992 to 1996. Currently, Chinese Treebank

8.0 consists of approximately 1.5 million words of corpus annotated for parsing

purposes. Liu and Huang (2006) states that Chinese dependency tagset contains

around 34 dependency tags and 13 word classes.

1.4.4.4 Universal Dependencies Tagset

Universal Dependencies (UD) 2, is a platform initiated to facilitate cross-linguistic

morphosyntactic treebank annotation. UD is originally stanford dependencies

which evolved to accommodate world languages. UD annotation schema has 37

universal dependency tags and around 198 language-specific tags which can be

used whenever necessary. UD is fast-growing in terms of number of treebanks. UD

currently contains 200 treebanks contributed by 300 language specialists for

around 100 languages. Consider fig-1.13 to see the classification of syntactic

relations in UD.

Figure 1.11: Syntactic relations of Universal dependencies (retrieved from

https://universaldependencies.org/u/dep/index.html)

1https://catalog.ldc.upenn.edu/LDC2012T05
2https://universaldependencies.org/guidelines.html

17

https://universaldependencies.org/u/dep/index.html
https://catalog.ldc.upenn.edu/LDC2012T05
https://universaldependencies.org/guidelines.html

1.4 Overview of Parsing

1.4.4.5 Anncora Tagset

Based on these syntactico-semantic relations, (Bharati et al., 2012) has developed

a dependency tagset known as Anncora tagset which can be used for almost all

major Indian languages. Anncora, an abbreviated form of ‘annotated corpora’ is

an initiative taken up by IIIT-H1 as part of ‘Workshop on Lexical Resources for

Natural Language Processing’ to develop linguistic resources for Indian language

in electronic form. As part of this initiative, they developed guidelines for tagging

dependency relations initially for Hindi (Bharati et al., 2012) which was further used

for other languages. Indian languages being free-order languages are quite efficiently

modelled using Pān. inian framework. The dependency relations formed henceforth

are popularly called the kāraka relations. kāraka relations are not just the syntactic

relations of words in a sentence but they correspond to semantic roles too.

Figure 1.12: Syntactico-semantic relations anncora tagset (retrieved from (Bharati

et al., 2012))

1.4.4.6 saMsādhani Tagset

saMsādhani2 is another dependency based annotation framework based on

Pān. inian dependency framework. saMsādhani is the Sanskrit computational

toolkit, exclusively used for Sanskrit Kulkarni (2016). K V

Ramakrishnamacharyulu, , a renowned sanskrit scholar, complied around 89

1International Institute of Information Technology-Hyderabad
2https://sanskrit.uohyd.ac.in/scl/

18

https://sanskrit.uohyd.ac.in/scl/

1.4 Overview of Parsing

dependency relations after a thorough research on Pān. inian’s work on Sanskrit

grammar. However, all these 89 relations are not used in building a parser for

Sanskrit. Among those 89 relations, 38 relations are identified as useful for parsing

task. These 38 tags are fine-grained and involves semantics heavily. saMsādhani is

considered as a separate annotation schema here because it differs from Anncora in

certain aspects. Anncora has customised original Pān. inian tags to be suitable for

Indian languages in general. But saMsādhani retains the original tags.

Figure 1.13: Syntactico-semantic relations (retrieved from Kulkarni (2021a))

1.4.5 Review of Parsers

Parsing as a process evolved when the pioneers in machine translation systems in

early 90’s found some lacunae in the output due to multiple meaning problems.

Subsequently, it was identified that this multiple meaning problem is driven by

multiple structural representation of the text. It is then that the need for syntactic

intervention in machine translation was first identified in 1955 by Yngve (Hutchins,

2000). Since then, parser was considered as a crucial module in machine translation.

Over the years, several works were carried out in the field of parsing and parsers

for several languages are developed. In this section, a review of parsers is divided

into three sections based on the work carried out in parsing in languages. Firstly, a

review of parsers in foreign language (excluding Indian languages) is made. Secondly,

a review of Indian languages (excluding Telugu) is attempted. Finally, a thorough

review of work on parsing in Telugu is provided.

1.4.5.1 Review of Foreign Language Parsers

In this section, a review of seminal works of parsers that were developed for world

languages is provided.

19

1.4 Overview of Parsing

• Magerman and Marcus (1994) developed a probabilistic chart parser named

Pearl which is one of earliest parsers based on stochastic models. Pearl is a

bottom-up parser consistent with the then existing grammar formalisms and

parsing designs developed for English. The system is 88% accurate in

providing parse outputs and efficient in resolving Prepositional Phrase

attachment ambiguity.

• Charniak (1997) proposed a parsing system based on then existing model for

English to which probabilities are assigned. This is one of the earliest works

in the field of parsing following constituency grammar formalism. This system

proved to yield an Labelled Attachment Score(LAS) of 89.1%. Charniak (2000)

also developed a maximum-entropy parser for English.

• Collins et al. (1999) investigates statistical parsing method for Czech which

is a highly inflectional language with free order which is quite different from

English. In this study, the parsing model of (collins 97) is adopted for Czech.

The accuracy of 80% is reported for this system.

• The most popular parsers available using constituency-based approach

include: Parser for English by Charniak (2000), the bikel parser developed

for Chinese Bikel and Chiang (2000), Berkeley parser proposed by Petrov

et al. (2006), Stanford parser for English based on the Probabilistic Context

Free Grammars(PCFG) (Klein and Manning, 2002). Also, the most popular

parsers using dependency framework include MALT parser by Nivre et al.

(2006), Ensemble MALT (Hall et al., 2010), Maximum Spanning Tree (MST)

parser by McDonald et al. (2005), Relation extration(RelEx) by Fundel et al.

(2007), easy-first parser by Goldberg and Elhadad (2010).

• Currently, the most popular project for parsing is the Universal Dependencies

(De Marneffe et al., 2021) project initiated by Joakim Nivre to provide a

common parsing platform for all the languages of the world. At present, UD

consists of around 100 languages, 200 treebanks.

1.4.5.2 Review of Indian Language Parsers

This section provides an elaborate review of existing parsers for Indian languages.

This survey primarily focuses on significant projects involving parsing starting from

early 20s.

20

1.4 Overview of Parsing

• Nivre (2009) in his paper titled ’Parsing Indian languages using MALT

parser’ attempted to parse Bangla, Hindi and Telugu language data as part

of the NLP Tools Contest at ICON, 2009. MALT is a transition-based

system that maps sentences to dependency trees. MALT parser is optimized

for the above mentioned languages and trained the system with a dataset of

1651 sentences for Hindi, 1130 sentences for Bangla and 1615 sentences for

Telugu. For evaluation, a corpus of 150 sentences was considered. The

Unlabelled Attachment Score (UAS) was reported as 89% for Bangla, 89.4%

Hindi and 86.3% for Telugu . Labelled Attachment Score (LAS) for Bangla is

76.1%, for Hindi it is 78.2% and 62.4% for Telugu. These results are for

coarse-grained dependency labels.

• For Tamil, Selvam et al. (2008) developed a parser using the hybrid approach

that combine phrase structure grammar and dependency grammar with

Lexicalized and Statistical Parsing(LSP). A corpus of 3261 sentences was

used to train the model and the system was tested with 600 new data. The

system was claimed to be 65% accurate. Secondly, Sureka et al. (2014)

adopted a hybrid approach using rule-based and machine learning methods

(Conditional Random Fields (CRF)). The system is trained with 150

sentences and tested with a new 150 sentence dataset. The system was

repoted to have a precison of 82.78%, recall of 93.67% , and a f-score of

87.89%. Also, Muralidaran and Misra Sharma (2016) proposed a

construction grammar based dependency approach to parse Tamil data. A

corpus of 935 sentences is trained and trained using the MALT parser. For

testing, a corpus of 354 sentences is used and an accuracy of 82.21% is

claimed

• Bharati et al. (2008a) present experiments on Hindi dependency treebank using

two features which enchances the accuracy of the parser greatly. Two features

namely: Gender, Number,Person (GNP) and minimal semantics have been

incorporated to the Hindi treebank which was claimed to provide an LAS of

89.03% and UAS of 70.93% respectively

• Bharati et al. (2009a) developed a simple dependency parser for Indian

languages using a grammar-driven approach. Though it claims to be

functional for all the Indian languages, the system is tested only for Hindi.

The parser was tested for 5 different intra-chunk relations namely, modified

word, modified constraints, modifier word, modifier constraints, dependency

relation. Precision is reported as 96.2% and recall as 82.6%

21

1.4 Overview of Parsing

• Ghosh et al. (2009) reports the work on dependency parser for Bengali which

was developed as a part of NLP tools Contest at ICON, 2009. A statistical

CRF based model coupled with rule-based post-processing technique is

adopted for this study. This system is trained with a dataset of 980 sentences

which reported the LAS of 53.90%, UAS of 74.09%. It was reported that the

accuracy of the system after applying rule-based post-processing increased by

5%.

• Yeleti and Deepak (2009) describe a two stage constraint based approach to

dependency parsing for Hindi as part of ICON, 2009. This parser processes

syntactic information in 2 levels: firstly, in stage-1 the sentence is parsed for

its intra-chunk relations and in stage-2, more complex sentences are

considered for parsing. Stage-1 and stage-2 uses hard and soft constraints

which correspond to grammatical information and weights from annotated

treebanks respectively. UAS is reported to be 85.55%, LAS as 62.20% and

LA as 65.88%

• Antony et al. (2010) developed a Penn treebank based syntactic parser for

Kannada and Malayalam. For this study, a corpus of 1000 diverse Kannada

and Malayalam sentences was construed which were annotated using the Penn

treebank guidelines which follows the constituency framework. The treebank

thus built was trained using the Support Vector Method (SVM) algorithm.

The system was tested using 100 sentences from the same training corpus.

The results are encouraging.

• Universal dependencies (https://universaldependencies.org/) currently

consists of 8 Indian language treebanks viz., Bhojpuri treebank (Ojha and

Zeman, 2020) consisting of 357 sentences, Hindi contains two tree banks:

Parallel Universal Dependencies(PUD) (Zeman et al., 2017) hindi treebank

and Hindi Dependency Treebank (HDTB) consisting of 1000 and 16,647

sentences respectively, Marathi treebank (Ravishankar, 2017) consisting of

466 sentences, Sanskrit has two treebanks one consists of 233 sentences from

Pañcatantra and the other consisting of 4000 sentences from vedic sanskrit

(Biagetti et al., 2020), Tamil also contains two treeebanks: Modern Written

Tamil Treebank(MWTT) (Krishnamurthy and Sarveswaran, 2021) consisting

of 534 sentences from ‘A Grammar of Modern Tamil by Thomas Lehmann

(1993)’ and Tamil Dependency Treebank (TDT) consisting of 600 sentences

(Ramasamy, 2012) and Telugu treebank (Rama and Vajjala, 2018) consisting

of 1151 sentences. The other languages that are to be part of the UD

22

https://universaldependencies.org/

1.4 Overview of Parsing

repository include Assamese, Kannada, Magahi (Raj et al., 2022), Mandyali,

Odia (Parida et al., 2022), Prakrit (Farris and Arora, 2021), Punjabi and

Pnar.

1.4.5.3 Review of Telugu Parsers

Few attempts were made in developing Telugu dependency parser using data-driven

approaches which are briefed below:

• Vempaty et al. (2010a) in the article titled ‘Issues in Analyzing Telugu

Sentences towards Building a Telugu Treebank’ describes the then ongoing

effort in developing a Telugu dependency treebank which is annotated using

the Hyderabad Dependency Treebank (HyDT). In addition to this, the

authors discussed issues in parsing various linguistic constructions like

copula, genitive, implicit and explicit conjunct and complementizer

constructions. A corpus of 1487 sentences is annotated as part of this study

• Garapati et al. (2012a) in the work on ‘Dative Case in Telugu: A Parsing

Perspective’ analysed the dative case (-ki) elaborately and exhaustively with

several examples from a parser perspective. This study show that by

providing a semantic environment of verbs and nouns, the dative case

markers disambiguated for computational purposes

• Kesidi et al. (2013) implemented a 2 stage constraint-based dependency parser

following hybrid approach for Telugu which was earlier used for languages like

Hindi. This parser deals with relations in two different stages wherein stage-1

handles intra-clausal relations and stage-2 handles inter-clausal relations. Both

stage-2 and stage-2 further goes through H-constraints (structural and lexical

knowledge of Telugu)and S-constraints (weights taken from treebanks). The

training data consists of 1300 sentences and the testing data consists of 150

sentences. LAS of the system is repoted to be 65.33% , UAS to be 84.14% and

LS to be 66.60%

• Kumari and Rao (2015) had developed combinatory categorial grammar

supertags for Telugu using which they claim the enhancement of

identification of verbal arguments. Using maximum entropy features, a

supertagger has be developed. With the intergration of supertagger, the

results show an improvement of 1.8% in the UAS and 2.2% in the LAS. This

study claims that an MST parser’s output can be enchanced using CCG

supertags.

23

1.5 Methodology

• Nagaraju et al. (2016), Kumari and Rao (2017), Kanneganti et al. (2016)

worked on various statistical approaches of parsers like MaltParser, ZPar

TurboParser, MSTParser, and Easy-First Parser respectively. These studies

provide results using small datasets.

• Rama and Vajjala (2018) developed a Telugu treebank using Universal

Dependency (UD) tagset with an addition of language-specific tags like

nsubj:nc, compound:svc/lvc, nmod:cmp/poss/tmod, obl:tmod/cau, etc for

Telugu. A treebank consisting of 1328 sentences is developed and a LAS ,

UAS of 78.50% , 89.74% is reported

• Gatla (2019) developed a manually annotated treebank for Telugu consisting

of 2424 sentences consisting various sentences using Paninian grammatical

framework. The training data is used to experiment using data-driven

parsers, namely, MST and MALT. MST provides a LAS of 73.62%, UAS of

91.44% and Labelled Accuracy(LA) of 76.30%.

• Nallani et al. (2020b) expanded the existing Telugu treebank of 1600

sentences that is part of ICON 2009 dataset by adding language-specific

intra-chunk tags. To the existing annotation guidelines based on the

Paninian framework, intra-chunk tags like nmod wq for question words

modifying noun phrases, intensifiers, pof cv etc have been added. In addition

to improving the existing tagset, annotated corpus of 2000 sentences has been

added to the existing treebank. The enchanced treebank is tested with a new

dataset of 106 sentences resulting in a LAS of 93.7% and UAS of 95.8%.

• Nallani et al. (2020c) in the article named ‘A Simple and Effective

Dependency parser for Telugu’ attempted to train a BERT model, a

contextual vector representation using Telugu wikipedia data. The system is

trained of 2400 sentences and tested on 240 sentences which yielded in a UAS

of 90.89%, LS of 72.11% and LAS of 70.60%.

1.5 Methodology

Inthis section, methodology adopted for this study is discussed briefly. The following

three aspects of methodology are discussed.

1. Theoretical Framework

24

1.5 Methodology

2. Implementation Technique

3. Corpus used for the study

1.5.1 Theoretical Framework

This study adopts the dependency grammatical framework in general and the

Pān. inian grammatical tradition in particular. Pān. inian dependency focuses

primarily on how information is coded and how it can be retrieved. The parser is

built following the Indian theories of verbal cognition where three factors viz.

ākāṅks̄ā (expectancy), yogyatā (meaning compatibility) and sannidhi (proximity)

are used. This framework is discussed in detail in chapter-2 of the thesis.

1.5.2 Implementation Technique

To implement the parser, a grammar-driven or rule-based approach is chosen. It is

observed that for languages like Telugu rule-based algorithm yields the desired

results on par with the other statistical/neural network parser due to the

agglutinative morphology of Telugu. The following advantages stands as a

rationale to choose a grammar-driven approach:

1.5.2.1 Why a Rule-based Parser?

1. One of the important reasons to choose rule-based parser is the agglutinative

nature of Telugu which encodes prominent syntactic information in the form

of suffixes. Syntactic cues are evident on the words of a sentence.

2. Rule-based parser allows wide-coverage of language structures

3. Rule-based does not require huge-corpus annotation.

4. Any error in the output can be easily rectified with some manipulation in the

rules

5. Accuracy of the system can be further improved using the inclusion of lexical

database

6. Analysis of the sentences are not inconsistent in rule-based parser like in data-

driven approach as the sentences are based on the grammatical information

of the language. Whereas in data-driven approach analysis purely depends on

the annotators. Inter-annotator agreement is not an issue for rule-based parser

25

1.5 Methodology

7. All the ambiguous structures are retrieved unlike data-driven approaches where

one input-one output is possible

1.5.2.2 Rule-Based Parser for Telugu

The parser takes input from sentences which are morphologically analysed, POS

tagged and processed through pick-one morph. Telugu shallow parsing tools 1

Uma Maheshwara et al. (2011b) are used as pre-processing tools.

We model the parser as a tree where the nodes of a tree correspond to a word and

the edges between nodes correspond to a relation between the corresponding

words. For instance, the parsed tree of example-(1.1) is provided as below:

saw

John

subject

Mary

Object

Figure 1.14: Structural Representation for (1.1)

1.5.2.3 Architecture of RBP

The parser under study adopts the dependency grammatical framework to parse

the Telugu text. Guidelines to mark dependency relations are build in accordance

with the structure of Telugu and the dependency framework that best represents

it. The input sentence is parsed using a rule-based implementation technique

wherein language-specific rules are provided to the parser. Each stage of the parser

is described in detail below. The architecture of the parser can be seen in fig:(1.15):

(i) Morphological Analysis: The morphological configuration of Telugu

encodes information like number, gender, case, agreement, tense, aspect, modality,

emphasis, dubitativeness, etc. Hence, morphology stands as the prominent

component in building a parser. RBP solely depends on morphological

understanding of words. Morphemes on words are used to mark relations between

1http://calts.uohyd.ac.in/calts

26

http://calts.uohyd.ac.in/calts

1.5 Methodology

Telugu Sentence

Morphological analysis

Select one morph

Apply rules

Convert to graphs

If
 multiple relations

Filter

Dependency tree

Telugu RBP rules

Database

POS tagging

Pruning
Pickone morph

Yes

No

Figure 1.15: Architecture of the Rule-based Dependency Parser

words. Open category of word like nouns, adjectives and verbs and closed class of

words such as pronouns, number words and nouns of space and time are studied to

thoroughly understand their internal structure and the functions of morphemes.

Other categories like indeclinables, compounds, clitics etc are also explored

in-detail for marking relations between words.

(ii) Pick one Morph: At this stage, disambiguation happens at the

word-level. When a word contains multiple morphological analysis, one candidate

analysis has to be picked for further processing. This module automatically picks

the morphological analysis of a candidate that best suits the context

(iii) Application of Rules: Compiling rules for each dependency relation is

the primary task of this model. Rules are written based on the morphological

analysis and the pick one morph of the input sentence. Once the input sentence is

separated as token and their respective morph analysis is provided, the complied

rules are applied. After the rules are applied, each words gets related to other word

27

1.5 Methodology

in a sentence using the relations of the annotation guidelines.

(iv) Disambiguation: The next stage in the parser is relational

disambiguation. After the application of rules, dependency relations are assigned

to each word with respect to other word in a sentence. However, sometimes

multiple relations can be assigned to a pair of words. In such cases, a filter is

applied to disambiguate the relation. This module makes sure that a pair of words

is always assigned a single relation and is free from ambiguity.

(v) Dependency Trees Once the dependency relations are assigned and

disambiguated, every sentence from a linear structure is converted to a hierarchical

structure. A GUI depiction of each tree is provided using this parser.

1.5.3 Corpus Used for the Study

In this study, corpus is used at two different levels. Firstly, corpus used to build

parser rules which acts as a theoretical base to the parser. Secondly, corpus for

testing the accuracy of the parser.

1.5.3.1 Corpus to Build the Rules

- This study being grammar-driven, requires a model corpus generalising the

properties of language under study. For this purpose, corpus from Telugu grammar

books has been collected. The following books were used as reference to frame

rules:

1. telugu vākyaM (Ramarao, 1975)

2. bālavyākaran. aM (Chinnaya Suri, 1855)

3. A grammar of Modern Telugu (Krishnamurti and Gwynn, 1985)

4. Non-Nominative Subjects (Bhaskararao and Subbarao, 2004)

5. The Dravidian Languages (Krishnamurti, 2003b)

6. Experiencer Subject in South Asian Languages (Verma and Mohanan, 1990)

7. A Reference Grammar of Modern Telugu (Ramarao, 2017)

28

1.6 Organization of the Thesis

1.5.3.2 Corpus for Testing

For testing the parser, 1000 sentences from Telugu corpus (3 million words

CALTS)) are considered. Finally, the evaluation is based on the following

parameters:

1. Labelled Attachment Score(LAS)

2. Unlabelled Attachment Score(UAS)

3. Labelled Accuracy

4. Relation-based Performance Index

5. Confusion Matrix

1.6 Organization of the Thesis

Chapter 1 outlines the introduction of the thesis with objectives, reviews,

methodology and scope of the current study. It explores the parsing trends,

theoretical frameworks, treebanks, tagsets available for parsing.

Chapter 2 provides a detailed description of dependency structures, a critical

review of dependency grammar , types of dependency frameworks and comparison

of dependency with other grammatical frameworks. In addition to this, popular

tagsets used for Indian languages are compared for their relevance in parsing Telugu

sentences.

Chapter 3 presents the tagset used to label dependency relations in Telugu for

Rule-based parser. Every relation as part of a sentence is discussed in detail.

Chapter 4 provides the architecture/implementation of the Rule-based parser

including pre-processing tools, components of the parser, algorithm and parser rules.

Chapter 5 titled ‘Evaluation and error analysis’ evaluates the appropriateness of

the parser providing an elaborate error analysis for further improvements

Chapter 6 concludes the thesis, states the limitations and discusses the future

perspectives of the study.

29

Chapter 2

Dependency Framework - A

Review

2.1 Introduction

Dependency framework is the widely employed framework in building parsers. In

this chapter, the discussion on dependency grammar, its use in computational

analysis of language and reviews on the most used dependency frameworks are

attempted. Certain crucial questions like what makes a structure a dependency

structure?, what are the types of dependency relations? Are all relations in a

sentence dependency? are explored in this chapter. In addition to the grammatical

frameworks, a comparison of various existing tagsets has also been made. As the

current study aims at developing a rule-based parser, the existing frameworks and

the tagsets are reviewed and the most suitable one is adopted with required

revision for Telugu.

2.2 Dependency Grammar

Though dependency framework was in use to describe languages, it is with the

work of Tesnière (1959) that dependency as a grammatical framework to analyse

languages is introduced. Tesniere who devoted major part of his life in teaching

French, later, using his experiences in teaching, worked on developing a grammar to

describe French and other Slavic languages that he taught. Tesniere’s work ‘Eléments

de syntaxe structurale’ (1959) originally published in French is much later translated

to English by Timothy Osborne & Sylvain Kahane in 2015.

Tesniere’s work stands as a pioneering work in the history of dependency

grammar.Though Tesniere pioneered the study of dependency framework, several

varieties of dependency emerged from all over the world. DG is also popularly in

use in European linguistic tradition with work of Mel’cuk et al. (1988). Functional

Generative Grammar by Sgall and Hajičová (1971), Word grammar by Hudson

(1984), Meaning-Text theory by Mel’cuk et al. (1988) are some of the varieties of

30

2.3 What is a Dependency Structure?

dependency grammars. In spite of several dependency frameworks, the core of

dependency grammar advocates that a dependency structure is an

asymmetric acyclic graph build based on dependency relations between words in

a sentence.

Dependency grammar, currently, is the most popular and widely used framework

in natural language processing (Nivre, 2006). This is due to the wide range of

advantages that this framework offers.

2.3 What is a Dependency Structure?

A sentence is a collection of words that combine together to convey a specified

idea. This grouping of words is not a random process, but is aided by several

linguistic mechanisms. Each word in a sentence should be related to another word

to convey this collective idea. For example, in a simple sentence ‘Radha walks’, the

words ‘Radha’ and ‘walks’ are two individual morphological entities when combined

together provides a collective idea. The abstract bond that joins these two words in a

sentence is the syntactic bond. Syntactic bond between words is defined in multiple

ways by various grammarians over decades. However, the common conception is

that there exists a hierarchy between words in a sentence which is driven by syntax.

Dependency grammatical tradition describes this bond between words as the bond

between a head and dependent or modified and modifier/governor1 and subordinate

bond.

The dependency grammatical model represents the relation between head and its

dependents through directed arcs and arc labels. These are called the dependencies.

Dependencies are defined as the binary asymmetric relations between words in

a sentence (Nivre, 2006, pp-10). These relations between content words are marked

by dependency relations; functional words attach to the content words they modify.

The parse thus generated is a tree, where the nodes of the parse tree stand for words

in an utterance and the link between words represent the relation between pair of

words.

As the dependency structure is a hierarchical representation, system of ranking

between words exists. The word/group of words that constitutes the core of the

sentence, often a verb, occupies the top-most rank in the structure. All the other

dependencies are attached to the root, that occupies the top-rank in the tree.

All the dependencies in a sentence can either be argument dependencies (subject,

1The relations are expressed in various terms in dependency such as the head-dependent,

modified-modifier, governor-subordinate

31

2.3 What is a Dependency Structure?

object, indirect object, etc.) or modifier dependencies (determiner, noun modifier,

verb modifier, etc.). Consider the example-(2.1):

(2.1) Albert adopted a child

In fig-(2.1), the top-most rank is occupied by the verb ‘adopted’ which is the head of

the sentence and dominates every node under it. The arguments ‘Albert’ and ‘child’

are at the same level in the tree occupying the same rank. Nextly, the determiner

‘a’ modifying the noun ‘child’ is placed lower in the hierarchy than the child as it is

dominated by it.

adopted

albert

Subject

child

object

a

determiner

Figure 2.1: Tree for (2.1)

Using the structure of the dependency tree in figure-(2.1), some criteria to

identify a dependency structure are discussed below (de Marneffe and Nivre, 2019):

1. ‘Head determines the syntactic category of structure which can often replace

that structure. For example, in the figure-2.1, ‘Child’ is the head of the phrase

‘a child’. ‘child’ determines that the phrase is a noun phrase and stands as an

obligatory element

2. Head determines the semantic category of sentence; dependent provides

semantic specification.

3. Head is obligatory; dependent may be optional.

4. Head selects dependent and determines whether dependent is obligatory or

optional.

32

2.4 Dependency vs Non-dependency Relation

5. The form of dependent depends on head.

6. The linear position of dependent in a sentence is specified with respect to

head’.

Another important criteria of dependency is the constraint of projectivity.

2.3.1 The Constraint of Projectivity

Projectivity is a concept dealing with dependency tree and the word order.

Dependency grammars consider ‘projectivity’ as a norm. A dependency tree is

projective if every relation from a head to dependent and a node(n), ‘n’ occurs

between head and dependent in the linear order if ‘n’ is dominated by head.

Alternatively, “a dependency tree is projective if the yield of every subtree forms a

contiguous substring of the linear order” (de Marneffe and Nivre, 2019). A simple

way to identify non-projectivity in a dependency tree is to check for arcs that cross

one over other. Though dependency grammar advocates projectivity, there are

structures in a sentence which are non-projective. These non-projective trees occur

due to long-distance dependencies where-in words are not in linear order. Telugu,

having free-word order, may tend to have non-projective trees. However, Bhat and

Sharma (2012), in their paper titled ‘Non-projective structures in Indian language

treebanks’ states that non-projective trees are almost absent in Telugu. It is also

observed as part of our study that non-projective trees are a rare phenomenon in

Telugu. For example, a phrase pramukha nat.i ‘famous actress’ is possible but nat.i

pramukha is not possible. This information of grammaticality is coded in Telugu

morphologically. This study exploits all such morphological information to

prune-out ungrammatical and non-projective constructions.

2.4 Dependency vs Non-dependency Relation

A dependency relation is between two words that are in modified-modifier relation.

It entails that the modifier requires a modified which has an expectancy and cannot

exist without it. Each such pair of words get into a dependency relation. The

modified word is higher in the hierarchy than the modifier. Words like verb-noun,

noun-adjective, verb-adverb etc. are examples of dependency relations. In a verb-

noun relation, verb is the modified and noun is the modifier. Verb has an expectancy

of the noun and a noun does not exist without a verb. Hence, there is a dependency

of a noun on the verb, thus a dependency relation is established.

33

2.5 Grammatical frameworks - A Comparison

It is not always the case that every word in a sentence is related to other only

based on a modifier-modified relation. There are also words which do not modify

any other word but are still part of the sentence. Words like address terms, words

that are conjoined using a conjunct, parts of words that are written separately in

orthography are all such words that are not part of a hierarchical structure. Hence,

they occupy the same rank in the dependency tree. These structures fall under

the category of non-dependency structures. These are marked horizontally in a

dependency structure. Consider (2.2)

(2.2) nēnū
I.NOM.CONJ

rāmū
Ram.NOM.CONJ

vacc-ā-mu
come-PST.3.PL

‘I and Ram came’

Figure 2.2: Dependency tree for the sentence-(2.2)

In the example-(2.2) and the dependency tree in figure-(2.2), ‘nēnu’ and ‘rāmu’

are conjoints which is expressed with lengthening of the final vowel in Telugu i.e.

nēnu and rām=u. In this case, they serve the same function i.e. conjoined subject

to the verb ‘came’. Hence, they are placed at the same rank in the tree. These

conjoints are not dependent on one another, leading to a non-dependent arc position

in the dependency structure. Other such relations include light verb constructions,

negative particles, and so on.

2.5 Grammatical frameworks - A Comparison

In this section, we attempt to compare the widely used grammatical frameworks

of dependency and constituency. Constituency or phrase structure grammar has

taken over the field of linguistics since 1957 (Chomsky, 1957). However, it could not

attract attention in the field of natural language processing. Both dependency and

constituency frameworks have their own advantages and disadvantages. Hence, we

compare phrase structure grammar to dependency framework to gauge their viability

34

2.5 Grammatical frameworks - A Comparison

for parsing purposes. Initially we compare dependency and constituency and later,

compare two frameworks within dependency grammatical framework.

2.5.1 Differences Between Phrase Structure and

Dependency Grammar

1. Structural representations in Phrase Structure(henceforth PS) can be viewed

as indirect links between units of sentence structures as intermediary groupings

of nodes called constituents are formed. But structural representations in DG

can be viewed as a direct connect between words. (Osborne, 2019, pp-33).

2. Word to node ratio

In PS, number of words in a sentence is not equal to number of nodes in the

tree. Because of the phrasal nodes, the number of nodes are higher in PS.

Hence, it is one-one or more mapping between words and nodes. However, in

DG, number of words in a sentence is equal to number of nodes1.

3. Dependency Structure(DS) does not have too many layers of

linguistic analysis like in phrase-structure

A dependency structure is a tree spanning all the words in a sentence. It

represents relation between words in a sentence. It does not add any other

entities in-order to analyse a sentence. But for most constructions, DS solely

analyses words in a sentence and nothing beyond. Contrary to this,

phrase-structure grammar or other grammars based on phrase-structure

grammar contains multiple linguistic layers in a tree which are not of interest

from computational perspective, especially for building parsers in NLP

applications.

4. Subject-Predicate division

PS advocates the binary subject-predicate division and places the noun

phrase and the verb phrase at the same level. Whereas DG rejects the

subject-predicate division and adopts verb-centrality.

5. Linear Contiguity

PS grammar dictates its words to be part of a constituents which ensures the

linear contiguity of words in a sentence. However, in DG, words need not

1As mentioned in the earlier sections, often so in PDG, in verbless equative constructions, a

null-verb is introduced which leads to the increase in number of nodes. Some such constructions

remain as exception to this statement

35

2.5 Grammatical frameworks - A Comparison

necessarily attach to their parent node de-emphasizing its focus on word-order

and shifting focus on hierarchy. This is one of the reasons for DG to be best-

suited for free-word order languages (Osborne, 2019, pp-69).

6. Linearisation

A dependency graph converts the linear order of words into structural order.

Sub-trees in DS mostly yield in linear order of words in a sentence. In such

cases, the order of heads and their dependents is important. Tesnière (1959)

states two important points

1). A dependent usually follows or precedes the head depending on the

word-order of particular language.

2). If they are far from each other morphological devices like agreement

provides the connection between them.

Dependency grammar focuses on projectivity. But it is not always true that

trees are projective. For example, coordinate structures are non-projective.

7. Linguistic generalizations - word order

“Dependency trees are not sensitive to the order of the words in a sentence, in

contrast to phrase-structure trees” (de Marneffe and Nivre, 2019). Dependency

tree does not change according to the word-order of the language or order of

words in a sentence. For example, sentences like ‘When I am tired, I take a

nap’ and ‘I take a nap, when I am tired’ have different structural representation

in PS whereas in DS both of them have the same structure. This makes

dependency more adaptable for languages with flexible word order yielding in

a single analysis.

8. Transparency of trees

Dependency trees are transparent in the sense that it is easier to comprehend

the hierarchies in a sentence. For example, in a dependency tree, the

modified-modifier or head-dependent relation can be easily identified.

However, in phrase structure tree, it is quite difficult as the trees are intricate

and has several extra elements apart from words in a sentence.

From all the above discussion on theoretical frameworks, dependency grammatical

frameworks have many advantages when compared to the popular

phrase-structure. Telugu, having a flexible-word order can be best modelled using

dependency grammatical framework.

36

2.5 Grammatical frameworks - A Comparison

2.5.2 Dependency frameworks - A Comparison

As dependency frameworks are popular in both Indian and western traditions, we

provide a review of Pān. inian and Tesniere’s dependency and draw a comparison.

2.5.3 Pān. inian Dependency framework - Indian

Grammatical Tradition

Pān. ini’s ‘Ashtadhyayi ’ which translates to ‘The eight chapters’ deals with the

grammar of Sanskrit. Eventually, this grammar is popularly established as the

Pān. inian Grammatical (PG) Model which was used by major Indian languages.

Many Indian language grammars were framed based on Sanskrit terminology.

Pān. ini’s grammar is described using meta-rules, unlike other descriptive grammars.

For instance, grammatical rules to decide any semantic role of a noun is given in a

more general manner than in terms of grammar. Using these generic instances,

Sanskrit grammar is interpreted. Special terminology or metalanguage is coined for

ease of explanation. Several sections on word and sentence formation from roots

and rules on structural transformations are part of this grammar. Pān. ini’s concept

of recursion to repeat elements of earlier rules in later rules is a novel idea which

later is considered a norm in computer science. A finite set of rules is sufficient for

Pān. ini’s system to generate an infinite number of sentences. The algebraic

character of Pān. ini’s rule was not appreciated in the west until recently when

similar generative structures were discussed by Noam Chomsky (Chomsky, 2013)

and other proponents of Chomsky’s idea. Previously, in the 19th century, Pānini’s

analysis of roots and suffixes in Sanskrit, later, is considered a prototype for

computational analysis of other Indian languages. Especially in parsing, Pān. inian

understanding of sentence formation, constraints imposed on words in a sentence,

analysis of roots and suffixes etc is an invaluable resource. This grammar is useful

for both analysis and generation alike. In this section, we describe some key

concepts in PG framework that are relevant to parsing.

Firstly, PG model is the oldest dependency traditions available that discards

the idea of constituents. In this model, dependency structure is considered to be

a relation which is expressed as víses.ya-víses.ana ‘modified-modifier’ relation. For

example, consider a phrase ‘happy child’ in which the adjective ‘happy’ requires a

host to attribute its quality of ’happiness’. And the word ‘child’ acts as a host and

gets modified by the adjective. The host that gets modified is the head and the

modifier that attributes some value to the host is the dependent. Hence, the word

‘happy’ is the modifier or víses.ana and ‘child’ is the modified or víses.ya.

37

2.5 Grammatical frameworks - A Comparison

The entity that occupies the top-most rank in the dependency tree is called the

‘mukhya víses.ya’(primary modified) or primary head of the sentence. All the other

elements are directly/indirectly dependent on the primary head. It should be noted

that a dependency structure can have multiple heads but only a single primary head.

A sentence is formed when a group of meaningfully compatible words combine

to provide a collective sense. The point of curiosity lies in understanding how each

word in a sentence is related to each other. The theories of śābdabodha1 of Indian

grammatical tradition is a knowledge-resource that define rules in parsing.

śābdabodha has three essential factors for words to form a structurally and

semantically meaning sentence, these factors are to be fulfilled (Kulkarni, 2021a).:

(i) ākaMks. ā ‘Expectancy’

(ii) yōgyata ‘Compatibility’

(iii) sannidhi ‘Proximity’

2.5.3.1 ākaMks. ā ‘Expectancy’

According to the PG framework, every word in a sentence has a desire or

expectancy for some other word in the same sentence, which is termed as ākaMks. ā.

This expectancy among words is one of the three primary features in formation of

sentences. This is due to the fact that there is an expectancy/desire among words

to form a meaningful and a complete sentence. Expectancy, in western

grammatical traditions, is often noted to be observed between verb and a noun

which is termed as sub-categorization frames (in Chomskian tradition) of verbs or

valency of verbs (in Tesniere dependency). However, expectancy can be between

any category of words in a sentence. An expectancy of verb for its participants

(often nouns) is the most common and dominant expectancy in a sentence.

Nevertheless, expectancy between noun and a noun, modified noun and modifier

adjectives, modified verbs and modifier adverbs, expectancy between indeclinables

etc are also quite prevalent in languages. Consider the example (2.3):

(2.3) pilla-lu
kid-PL

vacc-ā-ru
come-PST-3.PL

1The term śābdaboda translates to śabda - ‘sentence/language string’ and bodha - cognition.

The theory of śābdaboda deals with the cognition derived from a language string and the processes

involving in forming a meaningful & complete sentence

38

2.5 Grammatical frameworks - A Comparison

’Kids came’

In the above phrase, the verb vaccāru ‘come’ has an expectancy of a noun which is

fulfilled by the noun pillalu ‘kids’.

Though this appears simple on the outset, it gets complicated when this information

has to be programmed to build a parser. The information of expectancy is encoded

in a sentence in various forms like suffixes, agreement on words, properties of words

like transitivity for verbs, position, semantic properties of nouns etc. For instance,

the oblique form of illu ‘house’, ’iMt.i has an expectancy of either a case marker/a

nominal entity. Similarly, when a verb like ivvu ‘give’ occurs in a sentence, it has an

expectancy for a subject, object and an indirect object. It should be observed that

in morphologically rich languages, morphemes carry numerous information about

the syntax and semantics of the sentence. All possible linguistic cues which are

overtly present on surface are to be utilized in building parsers. However, certain

expectancies might also require extra-linguistic information which might not always

be possible to provide it in the form of rules.

PG framework extensively discusses expectancies in various extra-linguistic (world

knowledge) and linguistic environments which proved to be useful for many Indian

languages including Telugu.

2.5.3.2 yōgyata ‘Compatibility’

The concept of yōgyata refers to mutual compatibility between words in a

sentence. Each word in a sentence should be mutually compatible to each other.

This idea of compatibility is related to the Noam Chomsky’s (Chomsky, 1957)

famous construction ’colorless green ideas sleep furiously ’. It shows that though

the mutual expectancy feature is fulfilled, words are not compatible with each

other giving rise to a meaningless construction. Hence, compatibility or yōgyata

among words is a requisite for a meaningful sentence.

The concept of yōgyata is synonymous to semantic restriction/constraints in

western linguistics. Semantic restriction refers to the selection of contextually

appropriate words in the specified slots in a sentence. As the term suggests,

semantic features including ontological properties of words are considered in

building semantic frames of words. For example, the verb tinu ‘eat’ requires a

noun[+edible] feature to form a meaningful entity. yōgyata ensures that every

word’s semantic restriction is fulfilled by its modifier.

39

2.5 Grammatical frameworks - A Comparison

2.5.3.3 sannidhi ‘Proximity’

Another important factor of sentential analysis is the sannidhi ‘proximity’ of each

word to another word in a sentence. There must not be an intervention or distance

among the words which obstructs the comprehensibility of a sentence. Proximity is

closely related to the priniciple of projectivity, that we discussed earlier. If the nodes

of a dependency tree reflects the linear order of words that represents the surface

structure of the sentence, then the tree is projective. If there is any cross-over

between words in a sentence that might lead to non-projective trees. The constraint

of proximity is important to avoid ambiguous interpretations of the sentences.

Pān. inian grammatical framework provides a wholesome understanding of

sentence analysis especially for free-word languages that function heavily on

morpheme information. The morpheme information on words carry a specific

syntactic and semantic identity in the sentence, that is utilized in the theories of

śābdabōda. These insights can be used for Telugu which is rich in the use of

morphemes.

2.5.4 Tesniere’s Dependency Framework

Lucien Tesniere, a French linguist, is considered the father of the dependency

tradition. Lucien Tesniere’s ’Eléments de syntaxe structurale’ (1959) marks as the

starting point of DG which is most prevalent in modern computational tasks. His

work on dependency has been overlooked due to the immense influence of phrase

structure grammar then. But Tesniere’s work released just two years after Noam

Chomsky’s seminal work, Syntactic Structures (1957).

Tesniere’s Dependency Grammar (henceforth TDG) considers syntax as a

relation between the units of syntactic structures, words. TDG considers words as

the minimal units of sentence structures. TDG provides analysis for converting a

linear order of words to a structural order which is multidimensional. This

grammar is designed to be suitable for most of the natural languages as it contains

examples from over 50 languages unlike constituency framework which is majorly

described from English language perspective. TDG considers connection, junction

and transfer as the main components of syntactic analysis. It discards the idea of

subject and predicate which is borrowed to linguistics from logic which does not

serve any purpose in syntactic analysis.

Here, key concepts introduced by Tesniere as part of his dependency grammar is

discussed:

40

2.5 Grammatical frameworks - A Comparison

• Connection: Connection is defined as the link between words in a sentence.

Tesniere states that a sentence is not merely a collection of morphological

units(words) but also a link that joins these words together. Connection

establishes a dependency between words. For example, in a sentence ‘Sita

sings’, apart from the two morphological words, ‘sita’ and ‘sing’, there is an

abstract link that holds them together which Tesniere calls a connection

which can be seen in the figure-2.3

sings

sita

connection

Figure 2.3: Connection

• Governor and subordinate: When a connection between two words is

established, one word can be superior to the other. Sometimes, connection

can be established between words of similar rank. However, when a

connection happens between a superior and subordinate words, the superior

word is called the governor and the word that is dependent on the governor is

called the subordinate. In the sentence, ‘Sita sings’, ‘sings’ is the governor

and ‘sita’ is the subordinate that can be seen in fig-2.3.

• Stemma: The graphical representation of a link between words and the

hierarchy is what Tesniere calls a Stemma. Stemma contains words and the

links driven by their syntactic relations. Stemmas are directed as there exists

a non-uniform relation between words. A relation between a governor and a

subordinate is depicted using a vertical line. Stemmas are equivalent to

modern dependency trees consisting of various relations.

• Junction: Conjunction, which Tesniere calls junction is the concept that

most dependency grammarians differ in. The structural representation of

coordination has been controvertial across dependency grammars and

Tesniere provides an insightful discussion in this matter. According to TDG,

junction unlike other phenomenons like subordination is not a vertical

relation but is a horizontal relation where the elements joined by

41

2.5 Grammatical frameworks - A Comparison

junctive(conjunction) are placed on the same level. TDG differentiates

between partial and full junction. Tesniere’s understanding of coordination is

one of the best representations employed.

• Transfer : Transfer is another important concept in syntax that Tesniere

discussed extensively. Transfer refers to the syntactic phenomenon of using

the same word in another syntactic position. This is one of the most

productive tools of language. Tesniere classified words into content and

function words. Function words are referred in TDG as translatives.

Translatives are considered as the tools to transfer as they convert content

words into other syntactic categories.

Tesniere postulated dependency grammar based on the above key concepts.

However, TDG was questioned for its capability to analyze coordinating

structures. This is when some grammarians expressed the need for constituency

analysis and included constituency. However, (Hudson, 1980) argues and proves

that dependency in itself is sufficient to address the issues in syntactic analysis of

natural languages using illustrations. He further argues as to why constituency

analysis is not an appropriate framework for syntactic analysis. Later in this

chapter, we attempt a comparison of analysis of coordination in TDG and other

related frameworks.

It is interesting to note that, though Chomsky and Tesniere described similar

topics, the terminology used by both of them is quite different with subtle conceptual

differences. Basic concepts like valency, subcategorization frames, trees, stemma etc

are defined differently by both Tesniere and Pān. ini.

Likewise, both TDG and PG deal with dependency yet there are certain differences.

Here, we discuss the differences and similarities between them briefly.

1. Subject-predicate distinction is rejected by both the frameworks. Both PDG

and TDG did not agree on placing the subject on the equal ground as the

predicate in the graphical representation. They acknowledge verb centrality

and consider the verb as the head by placing the actants (arguments) below

the verb. This brings in symmetry.

2. Both frameworks advocate verb-centrality. PG & TDG positions verb as the

root of all sentence structures. In both the frameworks, main verb is usually

placed as the root of the dependency tree. However, in PG “verb” is always

considered as the central node even in the absence of a verb in the sentence

i.e. a null/dummy verb is inserted in case the verb is absent. But in TDG,

42

2.6 Is Dependency Grammar Adequate for Computational Purposes?

if the verb is not overtly present, adjectival/nominal/adverbial nodes are still

considered the central nodes. “In a simple sentence, the central node is not

necessarily a verb, but when there is a verb, this verb is always the central

node of the sentence” (Tesnière, 1959, pp-98). Hence, an introduction of a

null-verb is not necessarily made in TDG.

3. Function words along with content words are considered as heads in TDG

(translatives (auxiliary verbs, prepositions, subordinators)), auxiliary verbs

are enclosed in a nucleus circle , no syntactic autonomy for function words,

they are equi-level to the content words (Tesnière, 1959). Whereas PDG treats

auxiliary and the main verb together. In PDG, only content words are the

considered as heads.

4. Dependency representations of coordination is different in both the

frameworks. But both the frameworks agrees on the idea that conjoints

should be in a horizontal relation and the conjunction is not the head.

It is observed that both PDG and TDG aligns well in majority of the concepts

and keeps the core of dependency in-tact. The major difference lies in the coinage

of concepts. Except the minute differences, both frameworks advocates the key

concepts of dependencies alike. Osborne (2019) expresses that Tesniere’s coinage of

new and complicated terminology is one of the reasons for not having wide attention

of dependency grammar.

2.6 Is Dependency Grammar Adequate for

Computational Purposes?

Descriptive grammars are composed by linguists several years ago without

considering the massive technological applications of NLP. But now, NLP has

taken a big leap forward. This required a concrete grammar which describes

natural language grammar and also computationally parsed the language. In this

section, we examine if dependency grammar adequately describes and parses

language computationally.

The utmost important feature of a grammar as described by Jarvinen and

Tapanainen (1998) is ’descriptive adequacy’. If a grammar is described adequately

then it is empirically suitable for other NLP tasks. Tesnière (1959) describes his

dependency framework from the perspective of major world languages and

typologically different languages. Osborne (2019) in his book ’Dependency

43

2.7 Existing Tagsets: A Discussion

grammar for English’ makes an attempt to describe grammar of English using

dependency grammar which is fairly a fruitful attempt. Osborne (2019) has

comprehensively stated the advantages of describing a grammar in dependency

framework. Hence, it is proved that a language can be adequately described using

dependency grammar. Also, advantages of using Pān. inian dependency grammar

for computational purposes has also been proven by Sangal et al. (1995), Kiparsky

(2007), Kulkarni (2021b) and many others. The main advantages of dependency

pertaining to parsing task are the following as stated by Covington (2001):

• Dependency relations are equivalent to the semantic relationships that are

needed for the next stage of interpretation; ‘it is not necessary to “read off”

head-modifier or head-complement relations from a tree that does not show

them directly’.

• The dependency tree contains one node per word. Because the parser’s purpose

is only to connect existing nodes, not to postulate new ones, the task of parsing

is in some sense more straightforward.

• Dependency parsing lends itself to word-at-a-time operation, i.e., parsing by

accepting and attaching words one at a time rather than by waiting for

complete phrases.

2.7 Existing Tagsets: A Discussion

Over the period of time, with increasing demand for language technology,

dependency grammar has been applied in building various language tools. For

parsing purposes, tagsets are a pre-requisite. In this section, we discuss the most

popular tagsets available for marking dependency relations viz., 1) Universal

Dependencies and 2) AnnCora (Hyderabad Dependency Treebank tagset (HyDT)).

We have considered the above two tagsets as they are widely used for Indian

languages. After drawing a comparison, we choose the most appropriate tagset for

marking dependency relations in Telugu.

2.8 Universal Dependencies

Universal Dependencies (UD) 1, is a platform initiated to facilitate cross-linguistic

morphosyntactic treebank annotation. The rationale behind this initiative is to

1https://universaldependencies.org/guidelines.html

44

https://universaldependencies.org/guidelines.html

2.9 AnnCorra

provide a consistent annotation schema for all the world languages in order to

support higher NLP applications. UD currently consists of 200 treebanks

contributed by 300 language specialists for around 100 languages. UD is originally

stanford dependencies 1 which evolved to accommodate world languages.

UD annotation schema has 37 universal dependency tags and around 198

language-specific tags which are added whenever necessary. Universal tags are

shallow whereas language-specific tags often provide fine-grained information

about the relations. UD is fast-growing in terms of number of treebanks, it

currently consists of around 180 treebanks for various world languages. In addition

to this, around 65 new language treebanks are also part of future extension.

UD concentrates more on syntactic parsing in order to be suitable for

downstream applications like question-answering, relation extraction, text

summarization etc. However, language-specific tags often add semantic

information wherever necessary. The dependency relations in UD are simple and

mostly taken from traditional grammar labels like subject, object, indirect object

and the like. This familiarity with tags makes it easier for both linguists and

non-linguists (computer scientists, data engineers etc) who are working on

language processing to work with treebanks.

UD is a syntactic parser that provides syntactic analysis of the sentence. UD

utilizes Google universal part-of-speech tags (Petrov and McDonald, 2012) for the

morphological analysis with a revised version of morphological features from the

Inter-set interlingua for morphosyntactic tag sets (Zeman, 2008).

2.9 AnnCorra

This tagset follows the Pān. ini‘s dependency tradition. The peculiar feature of

Pān. inian dependency is to provide syntactico-semantic relations. Based on these

syntactico-semantic relations, (Bharati et al., 2012) has developed a dependency

tagset known as AnnCorra tagset which can be used for almost all major Indian

languages. AnnCorra, an abbreviated form of ’annotated corpora’ is an initiative

taken up by IIIT-H2 as part of ’Workshop on Lexical Resources for Natural

Language Processing’ to develop linguistic resources for Indian language in

electronic form. As part of this initiative, they developed guidelines for tagging

dependency relations initially for Hindi (Bharati et al., 2012) which was further

used for other languages. Indian languages being free-order languages are quite

1https://nlp.stanford.edu/software/stanford-dependencies.html
2International Institute of Information Technology-Hyderabad

45

https://nlp.stanford.edu/software/stanford-dependencies.html

2.10 Comparison of Tagsets

efficiently modelled using Pān. inian framework. The dependency relations formed

henceforth are popularly called the kāraka relations. kāraka relations are not just

the syntactic relations of words in a sentence but they correspond to semantic roles

too.

This tagset originally consists of around 19 fine-grained tags for kāraka (K)

relations and 25 fine-grained tags for non-kāraka /(r) relations. kāraka relations

are used to express the dependencies between noun-verb and non-kāraka relations

are used to capture noun-noun and other dependencies/non-dependencies. Nallani

et al. (2020c) added inter-chunk tags for the existing AnnCora tagset. In total, 68

inter-chunk dependency relations are identified for Hindi as part of this scheme. The

present study aims to expand the current AnnCora tagset for Telugu.

2.10 Comparison of Tagsets

In this section, two dependency based annotation schemata namely, Universal

Dependencies(UD) version-(2.7) and AnnCorra version-(2.6) are compared for its

suitability and an enhanced tagset is proposed for tagging relations in a rule-based

parsers (RBP) for Telugu. Treebanks are automatically generated using the RBP.

If necessary, output can be converted into any tagset. The aforementioned tagsets

are dependency-based, however they differ in representation of certain

constructions. This section focuses exclusively on major structural differences in

certain special constructions like non-nominative subject constructions, verb-less

constructions, constructions with coordination. After the comparison, the most

appropriate tagset and representation of such special constructions in Telugu are

described. If necessary, a special tagset for Telugu parsing is framed.

We focus the comparison on two major aspects - head projection and subject

representation in both the frameworks.

2.10.1 Head Projection

The head of the sentence in dependency relation is generally called as ’root’ and

other dependent nodes are projected by connecting with the root. The handling of

’root’ in Anncorra & UD show considerable differences in the following instances:

2.10.1.1 Nominal Predicate

The occurrence of copula in nominal predicates is covert in Telugu in affirmative

constructions. In UD, the predicate nominal is projected as the root i.e. the head

46

2.10 Comparison of Tagsets

and copula as a dependent. Whereas, in AnnCorra, the copula is the head and in

case of absence of copula, a NULL node is established and conceived as the head/root

and the nominal predicate is tagged as k1s (kartā samānadhikaran as seen in the

following example1.

nēn
¯
u manis.ini null root

I human

nsubj

k1

k1s

Figure 2.4: ’I am a human’

2.10.1.2 Coordinating Conjuncts

While tagging coordinating conjuncts in UD, the head-first approach is followed,

and the first noun is projected as the head, whereas in Anncorra the conjunction is

given the status of head.

kumār mariyu kamalā vaccāru
Kumar and Kamala came

nsubj

cc

conj

ccof ccof

k1

Figure 2.5: ’Kumar and Kamala came’

In Telugu, the coordinating conjunctions are canonically expressed by

lengthening the final vowel of the coordinated phrases or by the conjunction

mariyu (Krishnamurti and Gwynn, 1985).

Section (3.6.1) explains how these sentences are handled in the Rule-based

Parsing.

1In the following dependency trees, examples with edge above relations are UD and edge below

are marked with AnnCorra relations

47

2.10 Comparison of Tagsets

2.10.1.3 Complement Clause

In complement clause, the complementizer is tagged as ’mark’ in UD as dependent

to the subordinate clause. However, the complementizer is projected as head and

given the appropriate dependency relation in AnnCorra.

kumār rēpu vastānuu ani ceppād. u
Kumar tomorrow will come that told

nsubj

obl

ccomp

mark

k1

ccofk7t k2

Figure 2.6: ‘Kumar told that he will come tomorrow’

2.10.2 Subject

Subjects are marked for different relations in UD and Anncorra. This section

explains the agentive subjects, experiencer subjects, possessive subjects.

2.10.2.1 Agentive Subject

A noun phrase that serves as a proto-agent or as a subject of a sentence is tagged as

‘nsubj’ in UD (De Marneffe et al., 2014). Further, in passive construction, the noun

phrase which is the proto-agent is tagged as ‘obl:agent’ and the proto-patient as

‘nsubj:pass’. In annCorra, kartā, roughly an agent of an action is tagged as ‘k1’

either in the active or passive constructions. The corresponding ‘nsubj:pass’ of UD

is tagged as ‘k2’ i.e. karmā, roughly the patient.

48

2.10 Comparison of Tagsets

kumār kamala bomma gīsād. u
Kumar Kamala picture drew

nsubj

nmod obj

k1

nmod k2

Figure 2.7: ‘Kumar drew Kamala’s Picture’

kumārcēta kamala bomma gīyabad. iMdi
Kumar by Kamala painting was drawn

obl:agent

nmod nsubj:pass

k1

nmod k2

Figure 2.8: ‘Kamala’s Picture was drawn by Kumar’

2.10.2.2 Experiencer Subjects

An experiencer subject is usually marked by the dative case marker in Telugu.

Verma and Mohanan (1990) describes that “In the so-called experiencer subject

constructions in South Asian languages, the thematically prominent argument,

which we expect to be a grammatical subject, is quite often an experiencer, and is

marked with the case otherwise associated with indirect objects” . The dative

marked subject acting as an experiencer subject is the most widespread in

Dravidian languages (Subbārāo, 2012).

kamala-ki kumāri naccād. ui
Kamala-DAT Kumar.NOM like

obj

nsubj

k1

k4a

Figure 2.9: ‘Kamala likes Kumar’

49

2.10 Comparison of Tagsets

2.10.2.3 Possessive Subjects

While expressing possessive subjects with the verb ’have’, the dative and locative

case markers are used in Telugu to express inalienable and alienable possessions

respectively. Possession is not marked for any case marker, thus realized in the

nominative case. The verb to show the possession is expressed by ’be’ form as

Telugu do not have any form that corresponds to the verb ’have’. The tagging of

possessive construction is as follows:

kumāru deggara d. abbulu unnāyi
Kumar-DAT money have

obj

nsubj

k1

k7

Figure 2.10: ‘Kumar has money (i.e. Kumar is wealthy)’

In this construction, the marking of ’obj’ in UD does not conform to the selection

of intransitive verb ‘to be’. However, in annCorra, the possession is marked using

k1 and the locative case marked subject is marked using k7.

2.10.3 Causative Agent

Causatives in Telugu is realized as a morphological process. In Telugu, the

pheriphrastic causative marker -iMcu is attached with the verb. In AnnCorra, the

causer is marked as pk1 (prayojaka karta ‘causer’) and the causee as jk1 (prayojya

karta ‘causee’). On the other hand, in UD pk1 is marked as as nsubj and jk1 as obl

or with the language specific tag obl:agent. Here, the information on ’causer’ and

’causee’ are clearly marked in Anncorra.

ammā pillāiki. pālu tāgiMciMdi
mother child-ACC milk drink-CAUS-3.SG.F

nsubj

obl:agent

obj

pk1

jk1

k2

Figure 2.11: ‘Mother makes the child drink milk’

50

2.11 Enhanced Anncorra for Rule-based Parsing

2.10.4 Secondary Patient

Tagging the secondary patients in ditransitive verbs differ in Anncorra and UD. In

Telugu, the objects in ditransitive communicative verb such as ’ask’ are marked with

the accusative case marker. However, the entity from which the information has to

be elicited is marked as k2g as it functions as the secondary object (Bharati et al.,

2009b), where as in UD, the secondary patient is given the tag ’iobj’.

nēnu atani-ni oka praśna ad. igānu
I he-ACC/ LOC one question-ACC asked

nsubj

iobj

nummod obj

k1

k2g

nummod k2

Figure 2.12: ‘I asked him a question’

After a thorough comparison, it was observed that certain relations like

causative subjects, passive subjects, experiencer subjects are

syntactico-semantically well-expressed in annCorra than UD. Further, complement

noun/predicative adjective in verbless constructions being the root of the

construction is also not a convincing representation in UD. But certain tags in UD

like the obl tag is a generic tag for adjuncts given when the exact relation cannot

be identified. However, in annCorra, every relation has a specific tag and is quite

fine-grained when compared to UD. In addition to this, annCora having tested and

proved to be suitable for free-word order Indian languages,is chosen to mark

relations in the present study.

Nevertheless, annCora tagset is not adopted as it is. It is modified for certain

constructions and also new fine-grain tags are added wherever necessary. The

tagset used for this study is enhanced for Telugu and henceforth called as

enhanced AnnCorra.

2.11 Enhanced Anncorra for Rule-based Parsing

The Anncorra-v-2.7 guidelines are enhanced to account for Telugu when we built

the Rule-based parser (RBP) with 51 relations for Telugu. RBP guidelines differ

51

2.11 Enhanced Anncorra for Rule-based Parsing

from the original anncorra in following ways:

• In RBP enchanced anncorra guidelines, no functional element/indeclinable

is marked as the head. Hence, conjunction in coordination construction or

complementizer in complement clauses is not the head.

• vmod is an under specified tag which is used for wide variety of relations in

anncorra guidelines. Therefore, vmod tag is further divided into several sub-

tags.

• A null verb is introduced in case of verbless equative constructions in Telugu.

2.11.1 Representation of Coordination in Enhanced

AnnCorra

Representation of coordinate structures in languages has been the topic of discussion

since Tesniere’s dependency grammar was introduced. Many scholars differ in their

analysis of coordinate constructions. Here, we present a brief review of various

analysis and examine which analysis best suits Telugu coordinate constructions. we

present the work of Tesniere (Tesnière, 1959), Melcuk (Mel’cuk et al., 1988), Hudson

(Hudson, 1984), Rosta (Rosta et al., 2005) and Timothy Osborne (Osborne, 2019)

2.11.1.1 Tesniere - elements de structurale syntax

Tesniere used the term ‘junction’ to refer to conjunction. Tesniere states that

junction is a horizontal relationship unlike other dependency relations. In junction,

there is no hierarchy between conjoints. Consider the example (2.4) and Tesniere’s

analysis in fig-(2.13):

(2.4) nēnū
I.NOM.CONJ

mariyu
and

rāmū
Ram.NOM.CONJ

vacc-ā-mu
come-PST.3.PL

‘I and Ram came’

nēnu mariyu rāmū vaccāmu
I.NOM and ram come-PST-3.PL

root
subject

subjectconj conj

Figure 2.13: Tesniere’s representation of coordination

52

2.11 Enhanced Anncorra for Rule-based Parsing

2.11.1.2 Melcuk - Meaning-text Theory

Melcuk in his Meaning-Text Theory(MTT) (Mel’cuk et al., 1988), provides a

representation of coordinate structures. He do not show any symmetry in the

dependency tree for conjuncts. He argues that coordination symmetry is only at

the semantic level not at syntactic level. Hence, the MTT’s representation of

coordination looks like any other dependency tree without any symmetry. He

further argues that the first conjunct is governed by the root and the second or all

the other conjuncts are dependent on the first conjunct. Consider the following

fig-2.14:

nēnu mariyu rāmu vaccāmu
I.NOM and ram come-PST-3.PL

root
subject

conj conj

Figure 2.14: ‘Melcuk’s representation of coordination’

2.11.1.3 Hudson - Word Grammar

Word Grammar’s analysis of coordination does not connect directly to the conjuncts

but the proxy conjunction is introduced and is considered the head of the coordinate

construction. Though both the conjuncts are placed on the same level, it is facilitated

through the introduction of a proxy conjunction. (Hudson, 1984, pg-178).

nēnu mariyu rāmu -∅ vaccāmu
I.NOM and ram come-PST-3.PL

root

conj conj subject

[

[

Figure 2.15: ‘Hudson’s representation of cocordination’

2.11.1.4 Timothy Osborne

In a paper titled ‘Major constituents and two dependency grammar constraints

on sharing in coordination’ (2008), Timothy Osborne argues that unlike Tesniere’s

representation, both conjunts cannot be the head. He argues that only one conjunct

(the left -most) is the head which is governed by the root. Hence, he connects only

53

2.11 Enhanced Anncorra for Rule-based Parsing

the left-most element to the root and the other conjunct is connected through the

conjunction as in the fig-2.16.

nēnu mariyu rāmu vaccāmu
I.NOM and ram come-PST-3.PL

root
subject

conj conj

Figure 2.16: ‘Timothy Osborne’s representation’

2.11.1.5 Hyderabad Dependency Treebank for Hindi (HyDT)

HyDT (Bharati et al., 2012) makes the conjunction the head that is governed by the

root node. Unlike all the above representations, conjunction is directly connected to

the root. There is a subtle difference between HyDT and Hudson’s representation

in that Word Grammar introduces a proxy element whereas HyDT does not. This

representation is similar to the one presented by Rosta et al. (2005). Consider the

figure-(2.17):

nēnu mariyu rāmu vaccāmu
I.NOM and ram come-PST-3.PL

root

subject

conj conj

Figure 2.17: HyDT’s representation of coordination’

2.11.1.6 Representation of Coordination in RBP

In Telugu, coordination is expressed through the conjunction ‘mariyu’ and an

elongation of the last vowels of the conjuncts is often observed. But the use of

conjunction is optional in Telugu. Sometimes, special characters like ‘,’ is used but

is still optional. The elongation of vowel after the conjuncts is often omitted in

modern Telugu. In addition to this, when a coordinate construction has two

conjuncts, the case suffixes are often observed only on the right-most element

closer to the verb. Case markers are often omitted on the first conjunct.

Panchal and Kulkarni (2019)’s work on dependency analysis of coordination in

Sanskrit provides insights for Telugu coordinate structures too. Taking insights from

54

2.11 Enhanced Anncorra for Rule-based Parsing

the theories of Indian grammatical tradition the authors provide three features of

coordination:

• There is no mutual expectancy between the conjuncts in the coordinate

structure

• Any conjunct in the coordinate structure can be the head or both conjuncts

headed by the conjunction can also be considered as the head of the coordinate

structure

• conjunctive even if it functions as the head does not govern or governed by

any element in the sentence

Based on the above observations, some observations about coordination in Telugu

are made: (1). In Telugu, conjunction is almost always absent. Conjunction is

expressed morphologically through elongation. (2). It is also observed that when

nouns occur in coordinate construction, the right-most element which is the closest

to the verb often take the case-suffix. For instance, vād. u hēmā lalitalatō bajāruki

vel.l.ād. u ‘He went to the market with hema and lalita’. From these observations, it

is decided to mark the right-most conjunct with overt morphological markers as the

head of the coordinate constructions. In RBP, coordination is represented like in

fig-(??)

(2.5) nēnū(mariyu)
I.NOM

nā
I-POSS

tammud. u
brother

sinimā-ki
cinema-DAT

vel.l.-ā-mu
go-PST-1.PL

’I and my brother went to a movie’

tammuḍu nēnu
conj

mariyu

cc

nā

r6

veḷḷāmu

k1

sinimāki

k2p

Figure 2.18: Dependency trees for (2.5)

55

2.12 Conclusion

2.11.2 Complement Clauses in Enhanced AnnCorra

Like in coordinate constructions, complementizer is not the head of complement

clauses. ani in Telugu is the complementizer. In anncora, complementizer is

considered as the head. However, as mentioned above, in RBP no functional

elements can be the heads. So, in complement clauses, complementizer is just

marked with the tag ‘mark’ to the finite verb similar to UD representation

(De Marneffe et al., 2021). Consider the example (2.6):

(2.6) rājeśwari
rajeshwari.NOM

vacc-iM-di
come-PST-3.SG.F

ani
QUO

vimala
vimala.NOM

grahiMc-iM-di
realise-PST-3.SG.F

’Vimala realised that Rajeshwari came’

grahiMciMdi

vimala

k1

vacciMdi

k2

Rājēśvari

k1

ani

mark

Figure 2.19: Dependency trees for (2.6)

2.12 Conclusion

This study adopts AnnCorra tags majorly but taking insights from Indian

grammatical tradition and Universal Dependencies, changes in the tagset are

made. For certain relations like coordination, verb-less sentences and complement

constructions, the most suitable representation has been taken. We needed a

tagset which represented major tags syntactico-semantically and do not heavily

rely on semantics. Hence, we developed a tagset which is an amalgamation of the

above mentioned tagsets. The detailed guidelines of dependency relations in

Telugu are discussed in-detail in the next chapter.

56

2.12 Conclusion

Universal Dependencies AnnCorra

nsubj k1, pk1

nsubj:nc k4a, r6v

nsubj:pass k2

obj k2

iobj k4

csubj k1

ccomp k2

xcomp vmod

obl mk1,k2s,k2g,k2p,k3,k5,k5prk,k7,k7p,k7a,rd,rh,rt

ras-k*,ras-neg,rsp

obl:caus jk1

obl:tmod k7t

obl:agent k1

vocative rad

dislocated fragof

advcl vmod, rh, rt

advl:cond vmod

advmod adv, rd, rsp, lwg intf, vmod adv,jjmod intf,

jjmod

discourse sent adv

aux lwg vaux

cop root

mark ccof,lwg particle

nmod nmod

nmod:poss r6

nmod:cmp k*u

nummod enm

acl nmod relc, rs

amod nmod adj

det nmod, nmod wq

case lwg psp

conj ccof

compound:svc pof cv

compound:lvc pof

compound pof nn

compound:redup pof redup

list -

parataxis

orphan/ellipses mrel

goeswith -

punct rsym

dep -

Table 2.1: A comparison of UD and Anncorra

57

Chapter 3

Dependency Relations in Telugu

3.1 Introduction

In this chapter, we discuss the dependency relations that exist in a sentence in

Telugu. This study frames guidelines that are best suited for marking dependency

relations based on the syntax of Telugu. AnnCorra guidelines (Bharati et al.,

2012), originally, framed for Hindi are taken as a base and Telugu-specific

guidelines are compiled. This chapter discusses dependency relations in Telugu

with explanations and their respective dependency trees. An attempt to explain

and explicate dependency relations for parsing Telugu sentences. Though most of

the relations and the hierarchy in dependency trees provided here are in

accordance with AnnCorra guidelines, we have modified these guidelines for

certain constructions like coordination, subordination, verbal modifiers, etc based

on Telugu syntax. We have taken insights from the existing descriptive grammars

of Telugu (Krishnamurti and Gwynn, 1985; Ramarao, 1975; Subbārāo, 2012).

3.2 Types of Dependency Relations

It is obvious that words in a sentence are related to other words in it. The relation

between words are called dependencies in dependency grammar. Various kinds of

dependency relations exist between different categories of words. These key

relations are primarily divided into kāraka and Non-kāraka relations in Pān. inian

dependency tradition.

The word kāraka literally translates to ‘a thing that gets or makes an action done

or accomplished’ (Kulkarni and Sharma, 2019). This can be referred to as

participants of an action. The Kāraka theory was developed by Pān. ini in his

seminal work, As.ht.ādhyāȳı which is considered the oldest among the Indian

grammatical theories. Case markers i.e. vibhaktis serve the purpose of marking

relationships between a noun and a verb or another noun in a sentence. The

relations hence marked can be purely syntactic or morpho-syntactic or

syntactico-semantic. Pān. ini’s theory can be considered as a connect between

58

3.3 kāraka Relations

syntax and semantics based on the structural constraints imposed by a language.

In a dependency structure, the ‘verb’ is considered as the vital element. The

concept of verb centrality is a key component in dependency grammar(DG)

wherein every dependency structure is solely dependent on the verb of a sentence1.

The verb in a sentence represents an action carried out by various participants.

These participants are of two types. Type-1 denotes participants which are

directly involved in the action. Direct participants are necessary for the sentence to

be meaningful and act as a complete entity. Type-2 includes participants which

are indirectly involved in the action and provide extra, often more specific details.

Type-1 relations are called as kāraka relations and type-2 are non-kāraka relations.

In addition to kāraka and non-kāraka relations, there are other dependency

and non-dependency relations in a sentence. Relations between noun-adjective,

verb-adverb, verb-verb etc are the other dependency relations and relations

between conjunction and conjoined element, noun and verb in light-verb

constructions etc are some of the non-dependency relations. In addition to this,

some miscellaneous relations between indeclinables are also part of the guidelines.

In this chapter, relations pertaining to the structure of Telugu namely, kāraka,

non-kāraka relations, other dependency, non-dependency relations and

miscellaneous relations are discussed in detail.

3.3 kāraka Relations

The type-1 relations or direct participants are classified as kāraka relations in

Pan. inian dependency framework. kāraka relations are syntactico-semantic

relations expressed through vibhaktis ‘case-suffixes/post-positions’ to capture

dependencies between nouns and their corresponding verbs. The verb has an

expectancy for its arguments which are typically nouns2. The Pān. inian treatment

of kāraka relations consider a system of default vibhakti for each relation. kāraka

relations in Telugu include kartā ‘roughly subject’, karma ‘roughly object’, karan. a

‘instrument’, sampradāna ‘receipient/beneficiary’, apādāna ‘source’ and

adhikaran. a ‘locus’. These relations do have default vibhaktis in Telugu and its

dependency relations are provided in table-(3.1).

1It should be noted that there are copula sentences which occur without overt verb in Telugu
2Here, nouns refer to any nominals including the lexical category of nouns, pronouns and

number words

59

3.3 kāraka Relations

S.No kāraka relations default vibhaktis

1 kartā ‘roughly subject’ ∅
2 karma ‘roughly object’ -ni/-nu

3 karan. a ‘instrument’ -tō

4 sampradāna recipient/beneficiary’ -ki/-ku

5 apādāna ‘source’ nuMd. i/niMci/nuMci

6 adhikaran. a ‘locus’ -lō

Table 3.1: kāraka relations and default vibhaktis in Telugu.

However, apart from these 6 prominent kāraka relations, other kāraka-related

sub-relations are part of k-relations. The sub-relation to express comparison and

similarity can occur with the existing kāraka relations and is called as sādrísya. It

expresses with the tag k*u, here * can be replaced by kāraka relations as k1u, k2u

etc. The list of kāraka relations and their sub-relations are provided in Table-3.2:

Sl.No. kāraka Relations Tag English Equivalent

1. kartā k1 Roughly equivalent to subject

2. prayōjaka kartā pk1 Causer

3. prayojya kartā jk1 Causee

4. madhyasta kartā mk1 Mediator causer

5. kartā samānādhikaran. a k1s Subject complement

6. karma k2 Roughly equivalent to object

7. gaun. a karma k2g Secondary object

8. Place as karma k2p Goal/Destination

9. karma samānādhikaran. a k2s Object complement

10. karan. a k3 Instrument

11. sampradāna k4 Indirect object/Beneficiary

12. anubhava kartā k4a Experiencer subject

13. apādāna k5 Source of separation

14. prakruti apādāna k5prk Source material

15. adhikaran. a k7 Location elsewhere

16. kālādhikaran. a k7t Location in time

17. des. ādhikaran. a k7p Location in space

18. sādrísya k*u Similarity/comparison

Table 3.2: kārakā relations and their tags

60

3.3 kāraka Relations

3.3.1 kartā (k1) - ‘Roughly subject’

The kartā is a relation which roughly corresponds to the subject that expresses an

agent/doer/subject/experiencer etc., but cannot be concretely given any one of

these tags. Kulkarni and Sharma (2019) provided illustrates as to why kartā is not

just a ‘subject’ as popularly quoted in modern linguistics. It is argued that kartā

performs various other functions like a doer, agent, instrument, experiencer

depending on the verb of the sentence. An action is performed with the help of

multiple participants and multiple sub-events. Among the participants, Pān. ini

describes kartā as the most important and independent participant irrespective of

the function it serves in a sentence (Kulkarni and Sharma, 2019).

Telugu is a nominative-accusative language which marks its subject in the

nominative case. Typically, the nominative case is not marked explicitly on nouns

and is null-marked -∅ in Telugu. However, in passive constructions, subject takes

the post-position cēta. kartā agrees with the finite verb in Gender, Number and

Person(GNP) in active construction1.

kartā, is not just a syntactic relation, it is a syntactico-semantic relation which is

determined by the mukhya vis.es.ya i.e. the ‘root’ of the sentence. Though by

default, kartā is shown with -∅ marker(as shown in table-3.1), it occurs with non-∅
marker in certain constructions. Consider for instance, the following pair of

sentences in Telugu,

(3.1) a. rāmud. u
ram.NOM

rāvanud. i-ni
ravan-ACC

caMp-ā-d. u
kill-PST.3.SG.M

‘Ram killed Ravan’

b. rāmud. i
ram

cēta
by

rāvanud. u
ravan-NOM

campa-bad. -ād. u
kill-PASS-3.SG.M

‘Ravan was killed by Ram.

The sentence-(3.1-a) is in active voice with the null-marked subject whereas in

sentence(3.1-b) which is in passive voice, the subject is marked with the vibhakti

‘cēta’. In sentence((3.1-b)), the agent, kartā is identified taking into consideration

the semantics of the verb. Similarly, there are other instances where kartā occurs

in Telugu with different vibhaktis. kartā in various constructions like copula,

transitive, ditransitive, passive and causative constructions are discussed in this

section.

1In passive constructions, the semantic object agrees with the finite verb

61

3.3 kāraka Relations

3.3.1.1 kartā in Copula Constructions

Telugu is productive in copula construction. The verb uM ‘to be/to exist’ constitutes

the copula verb in Telugu. The negation of copula is lē ‘not to be’. In the copula

constructions expressing equative sense, the verb is often dropped. The elements

of a simple equational sentence are two noun phrases (one in subject and the other

in predicative positions) or a noun phrase in the subject and an adjective in the

predicative position. when the noun phrase in the subject position is in either

first/second person, the agreement markers -ni/nu, -vi/vu, -mu, -lu/ru for the first

person singular, second person singular, first person plural, second person plural are

used respectively on the noun in the predicative position. These agreement markers

are used to identify the equational relation in the parser. Example (3.2) consists of

two noun phrases with subject in the third person and a noun phrase occurring in

the predicative position. When an adjective occurs in the predicative position, third

person agreement marker is reflected on the adjective.

As shown in examples-(3.2), (3.3), (3.4), the verb is absent. In such verbless

constructions, a null-verb is introduced. The introduction of null-verb is the key to

Pān. inian dependency framework as dependency, in general, is verb-centric. Also,

because negative equative constructions consist of a verb, we choose to introduce a

null-root in case of verb-less affirmative equative constructions. The noun phrase

with -∅ vibhakti in equative constructions in the subject position is marked as k1 to

the null verb, the predicate noun as k1s. See the example (3.2) and its respective

dependency tree1 in (3.1):

(3.2) jayalalita
jayalalitha.NOM

pramukha
popular

nat.i
actress

‘Jayalalitha is a popular actress’

Example (3.3) is an equative construction with a noun phrase and an adjective

phrase in the predicative position but in Telugu even the adjective phrase also

requires an agreement. Predicative adjective takes the agreement of the noun

phrase it describes. Here, it is -di suffix which denotes ‘third person, singular,

non-masculine’ marker. Consider (3.3) and its dependency tree in figure (3.2):

(3.3) jamuna
jamuna.NOM

teliv-aina-di
smart-ADJ-3.SG.F

‘Jamuna is smart’

Consider (3.4) for an example of equative construction describing the quality of

the subject (Ramarao, 2017) and its dependency tree in figure 3.3:

1In dependency trees, a fixed word order is not followed, however, a strict modifier-modified

order is not violated

62

3.3 kāraka Relations

null-verb

jayalalita

k1

naṭi

k1s

pramukha

nmod

Figure 3.1: Dependency tree for the example-(3.2)

null root

jamuna

k1

telivainadi

k1s

Figure 3.2: Dependency tree for 3.3

63

3.3 kāraka Relations

(3.4) ā
that

vajraM
diamond

viluva
value

padi
ten

kōt.-lu
crore-PL

‘The value of that diamond is 10 crores’

null root

viluva

k1

Kōṭlu

k1s

vajraM

nmod

padi

nummod

ā

nmod

Figure 3.3: Dependency structure for the sentence- 3.4

Copula in Telugu also denotes three meanings, namely, existential, stative and

possessive. In existential constructions, a noun and a noun represents ‘the state of

being’. In constructions denoting possession, a noun of possession and possessor are

present. Noun denoting possession is in the nominative case.

In all these constructions, the noun with nominative case marker that agrees with

the verb in GNP is considered the kartā.

Existence

(3.5) vād. u
I-NOM

haidarābādu-lō
hyderabad

unn-ā-d. u
be-PST-3.SG.M

‘He is in Hyderabad’

Possession

(3.6) nā-ku
I-DAT

illu-∅
house

uM-di
be-3.SG.M

‘I have a house’

Stative

(3.7) pratāp
pratap-NOM

saMtōs.aM-gā
happy-ADV

unn-ā-d. u
be-PST-3.SG.M

64

3.3 kāraka Relations

‘Pratap is happy’

In above illustrations, nēnu, illu and pratāp in examples-3.5, 3.6, 3.7 respectively,

with -∅ suffix exhibiting GNP agreement with the copula verb are marked as kartā.

Copula is not always overt in Telugu. Copula verb can be dropped leading to

verbless sentences. Verbless constructions are quite prevalent in Telugu. Copula

verb is optionally dropped in existential sentences when the ‘existence’ is known

(Krishnamurti and Gwynn, 1985). Verb is also dropped in equational sentences

(Ramarao, 2017).

3.3.1.2 kartā in Intransitive and Transitive Constructions

Intransitive verbs which are also called 1akarmaka verbs contain a single obligatory

kārakā. The noun phrase that occurs in intransitive constructions with -∅ suffix2

which agrees with the verb in GNP is the typical case of kartā. Consider the following

example-(3.8) for a typical instance of kartā

(3.8) iMdira
iMdira.-∅

nēla
floor-OBL

mı̄da
on

pad. uku-M-di
sleep-PST-3.SG.F

‘Indira slept on the floor’

‘iMdira’ in the example-3.8 has a -∅ suffix and a GNP agreement with the verb

‘sleep’. Hence, it is given a tag ‘kartā(k1)’.

paḍukuMdi

iMdira

k1

nēla

k7p

mīda

psp

Figure 3.4: Dependency structure for the sentence- 3.8

Transitive verbs in active voice require an obligatory object in a sentence. In

such constructions, typically, two kārakās can occur, a kartā and a karma. The

1A Sanskrit term for intransitive verbs
2Note: There may be other noun phrases in the sentence with -∅ suffix in the sentence, which

may not be the kartā. Then, GNP agreement must be considered as the primary cue.

65

3.3 kāraka Relations

karma kārakā occurs with default vibhakti ‘-ni/nu’, however, with certain nouns,

they occur with null-marking. This phenomenon called ‘differential object marking’

(for more discussion, see (3.3.2). In cases where a noun phrase with -∅ vibhakti and

-ni/nu vibhakti occur in an active voice construction, a noun phrase with -∅ null-

marker and GNP agreement with the verb is considered as the kartā. In case, both

noun-phrases have null suffix, the noun phrase higher in animacy scale which agrees

with the verb in GNP is given the kartā relation . Consider the example-(3.9)

(3.9) sādhana
sadhana.NOM

pillā-d. i-ni
child-M-ACC

tit.t.-iM-di
scold-PST-3.SG.F

‘Sadhana scolded the child’

tiṭṭiMdi

sādhana

k1

pillāḍini

k2

Figure 3.5: Dependency structure for the sentence- (3.9)

In (3.9), sādhana is a null-marked noun phrase that agrees with the verb

tit.t.u‘scold’. Hence, the tag ‘k1’ is marked in the figure-(3.5).

Miscellaneous cases:

(3.10) nuvvu
I.NOM

pāt.a
song

pād. -āli
sing-HORT

‘You have to sing a song’

(3.11) vād. u
He.NOM

ı̄rōju
today

rā-vacc-ēmo
come--DUB

‘He may come today’

(3.12) nuvvu
you

mā
our

ūri-ki
village-DAT

rā
come-IMP

‘You come to our village’

(3.13) nā-ku
I-DAT

ā
that

vis.ayaM
matter

telusu
know-STAT

‘I know that fact’

(3.14) vād. u
He.NOM

pani-ki
work-DAT

vel.l.avalasi-vacciMdi
go-OBL-PST-3.SG.N

‘He had to go to work’

66

3.3 kāraka Relations

In the above mentioned examples, agreement with the kartā kāraka is absent. Hence,

the position of the noun phrase and the semantics of nouns(hierarchy) (See chapter-4

for a detailed explanation) is considered as the kartā . Based on the canonical word

order of Telugu, noun phrase with -∅ which is not the closest to the verb is marked

as the kartā.

3.3.1.3 kartā in Passive Constructions

In positional languages, subject and object interchange occurs for passive

constructions. In free-order languages like Telugu, the active form of the verb form

changes to passive by adding the suffix bad. u. However, subject and object are not

always interchanged for position but the case marker cēta/cē is added to the

subject and the accusative case-marker on object is dropped. This noun phrase

with post-position ‘cēta’ is considered the kartā in passive constructions. In

passive constructions, kartā does not agree with the finite verb in GNP. Observe

the set of examples in (3.15) and the dependency tree in figure (3.6):

(3.15) a. cēkūri
cekuri.HON

telugu
telugu

vākyaM
sentence-ACC

rās-ā-ru
write-PST-3.SG.HON

‘Mr.Cekuri wrote the Telugu vākyaM ’

b. telugu
telugu

vākyaM
sentence

cēkuri
cekuri

cēta
by

rāya-bad. -iM-di
write-PASS-PST-3.SG.N

‘Telugu vākyaM was written by Cekuri’

rāyabaḍiMdi

cēkūri

k1

vākhyaM

k2

cēta

psp

telugu

nmod

Figure 3.6: Dependency structure for the sentence- (3.15-b)

67

3.3 kāraka Relations

3.3.1.4 kartā in Causative Constructions

In Telugu, causative verb stem is formed by a adding the suffix -iMcu to a transitive

verb. Causative constructions requires three arguments, namely, the causer agent,

the actor agent (causee) and an object (Krishnamurti and Gwynn, 1985). In addition

to this, mediator agent also occurs occasionally. Hence, the causer , the causee and

the mediator causer are all marked with three different tags viz., prayojaya kartā

(pk1), prayojya kartā (jk1), madhyasta kartā (mk1) respectively.

1. prayojaka karta(pk1) -‘Causer’ & prayojya kartā (jk1) - ‘Causee’

The causer in the causative constructions is marked with prayojaka kartā.

The agent in causative construction that causes the action to be done is pk1.

Typical features of kartā like the agreement with the main verb, -∅ case

marking can be observed. Consider the set of examples in (3.16). In (3.16-a),

lalita is the kartā. However, in (3.16-b), lalita is the causer and is given the

pk1 relation to the verb & kamala is the causee.

(3.16) a. lalita
lalita.NOM

hōMvark
homework.ACC

cēs-iM-di
do-PST-3.SG.F

‘Lalita did her homework’

b. lalita
lalita.NOM

kamala
kamala

cēta
by

hōMwark
homework.ACC

cē-iMc-iM-di
do-CAU-PST-3.SG.F

‘Lalitha made Kamala do her homework’

The causee in causative constructions is marked as the prayojya kartā. The

actual doer of the activity or the action agent is jk1. In (3.16-b), kamala is

the actual doer of the activity cēyu ‘do’. Causee is marked with cēta

post-position in Telugu.

Ramarao (1975) illustrates instances of cēta replaced by -ni/nu suffix.

Consider (3.17)

(3.17) nā
I.POSS

snehitu-rālu
friend-F

nan-nu
I-ACC

cadiv-iMc-iM-di
read-CAU-PST-3.SG.F

‘My friend made me study’

68

3.3 kāraka Relations

cēiMciMdi

lalita

pk1

kamala

jk1

hōMvark

k2

cēta

psp

Figure 3.7: Dependency structure for the sentence- (3.16-b)

As shown in (3.17), the actual action is performed by nēnu ‘I’ and the activity

is caused by snehiturālu ‘friend’. It is observed that semantic ambiguity occurs

in this sentence, this sentence can either mean ‘my friend helped me study’ or

‘my friend help me financially for my education’ (Ramarao, 1975). However,

this is not the concern of this study. The -ni/nu marked nominal is given the

tag k2 considering the marker.

2. madhyasta kartā(mk1)- ‘Mediator causer’

In some cases, along with the primary causer, a mediator causer ‘madhyasta

kartā’ (mk1) also occurs.

(3.18) ramēś
ramesh.NOM

pillād. i
child-OBL

dvārā
through

rān. i-cēta
rani.INS

uttaraM rāyiMcād.u
letter write-CAUS-PST-3.SG.M

‘Ramesh made the child to make Rani write the letter’

Hence, rameś is pk1, pillād. iki is mk1 and rāni. is jk1.

3.3.1.5 Clausal kartā- ‘Clausal Subject’

The kartā in Telugu is sometimes realised as a clause and is also marked as ‘k1’.

Consider for the example of clausal kartā (3.19):

(3.19) nēnu
I.NOM

caduvu-kōv-ad. aM
study-REF-GERUN

vād. i-ki
he-DAT

is.t.aM-lēdu
like-NEG

‘He does not like me studying’

As shown in figure (3.9) , caduvukāvad. aM is tagged as k1 to the main verb.

69

3.3 kāraka Relations

rāyiMcāḍu

ramēṣ

pk1

pillāḍi

mk1

rāṇitō

jk1

uttaraM

k2

dvārā

psp

Figure 3.8: Dependency structure for the sentence- (3.18)

iṣṭaMlēdu

vāḍiki

k4a

caduvukōvaḍaM

k1

nēnu

k1

Figure 3.9: Dependency structure for the sentence- (3.19)

70

3.3 kāraka Relations

3.3.1.6 katr.u samānādhikaran. a (k1s) - ‘Subject Equivalence’

The kāraka relation of samānādhikaran. a indicates ‘equal to a locus of something’.

When a noun phrase complements/equals any other relation in the sentence, this

relation is used. This is of typically two types : katr.u samānādhikaran. a (k1s) and

karma samānādhikaran. a (k2s).

The relation k1s is used to mark the complement that correspond to the

subject in the same sentence. In Telugu, this is expressed using a predicative

adjective/noun. A noun phrase in the subject and an adjective in the predicative

position. when the noun phrase in the subject position is in either first/second

person, the agreement markers -ni/nu, -vi/vu, -mu, -lu/ru for the first person

singular, second person singular, first person plural, second person plural are used

respectively on the noun in the predicative position. These agreement markers are

used to identify the equational relation in the parser. Example (3.20) consists of

two noun phrases with subject in the third person and an adjective phrase

occurring in the predicative position. When an adjective occurs in the predicative

position, third person agreement marker is reflected on the adjective k1s is usually

observed in equative constructions with the absence of copula verb in Telugu.

Copula verb is absent in affirmative constructions whereas it is present in negative

constructions. In the absence of copula, a ‘null verb’ is introduced. See table-(3.3)

for agreement pattern on predicative adjective or noun.

Person Marker Example

First person, singular -ni nēnu ād. apillanu ‘I am a girl’

First person, Plural -Inclusive/Exclusive -mu mēmu ād. apillalamu ‘We are girls’

Second Person, singular -vi/vu nuvvu ād. apillavi ‘You are a girl’

Second person, plural -∅ mı̄ru ād. apillalu ‘You are girls’

Third person, singular -∅ āme ād. apilla ‘She is a girl’

Third person, plural -∅ vāl.l.u ād. apillalu ‘They are girls’

Table 3.3: Agreement marking on predicative nouns

Consider the example- (3.20) for an example of katru samānadhikarana.

(3.20) s̄ıta
sita.NOM

maMci-di
good-3.SG.F

‘Sita is a good human’

In (3.20), maMcidi ‘good human’ is considered as k1s as it is the complement of

kartā ‘sita’. Both k1 & k1s are connected to the null verb.

71

3.3 kāraka Relations

null verb

sīta

k1

maMcidi

k1s

Figure 3.10: Dependency structure for the sentence- (3.20)

(3.21) jayalalita
jayalalitha.NOM

pramukha
popular

nat.i
actress

‘Jayalalitha is a popular actress’

3.3.2 karma(k2)- ‘Roughly Object’

In Pān. inian grammatical tradition, karma is defined as the ‘most desired participant

by the kartā’. The relation karma roughly corresponds to a patient/theme in modern

linguistic theories. It is used to mark the direct object relation of the transitive

verb. The accusative case suffix -ni/nu is used to mark the direct object in Telugu.

However, direct object also occurs with -∅ in certain contexts.

Accusative marker is obligatorily used for animate objects whereas it is optional

for inanimate objects in Telugu. This phenomenon of marking objects differently is

called the differential object marking (DOM). DOM is a phenomenon first noted by

(Bossong, 1985). DOM depends on factors like animacy, specificity and definiteness

of the object (Aissen, 2003; Lidz, 2006; Subbārāo, 2012). Here, we provide examples

according to the order of the animacy scale:

• Case-1

When the object is a noun[+animate, +human, +definite], it is marked overtly

with accusative marker(-ni/nu) in Telugu. In the example (3.22), the object

ravi obligatorily takes the -ni/nu suffix.

(3.22) s̄ıta
she.NOM

ravi-ni
ravi-ACC

cūs-iM-di
see-PST-3.SG.F

‘She saw Ravi’

Similarly, when the object is noun[+animate, -human, +definite], accusative

case is obligatorily used. In the example (3.23), kukka is overtly marked with

accusative case ‘-ni ’.

72

3.3 kāraka Relations

cūsiMdi

āme

k1

ravini

k2

Figure 3.11: Dependency structure for the sentence- 3.22

(3.23) s̄ıta
sita

oka
one

kukka-ni
dog-ACC

cūs-iM-di
see-PST-3.SG.F

‘Sita saw the dog’

• Case-2

When the object is noun[-animate, -definite] it is not marked with the

accusative case (-ni/nu) in Telugu. The marker -∅ is used in such contexts

(see example-3.24).

(3.24) s̄ıta sinimā cūs-iM-di
Sita.NOM cinema-ACC see-PST-3.SG.F

‘He read a book’

(3.25) vād. u ı̄ pustakān-ni cadiv-ā-d. u
he.he this book-ACC read-PST-3.SG.M

‘He read this book’

In Telugu, the accusative case marker can be used to denote a sense of

specificity. Hence, when accusative case is marked with objects of [-animate]

feature, it indicates specificity (see 3.25).

• Case-3

Nouns with [-animate] objects are obligatorily marked with accusative case

when the object denotes higher cultural terms (Ramarao, 2017, pg-35) as in

(3.26), (3.27)

(3.26) nēnu
I.NOM

nā
my

deśān-ni
country-ACC

prēmis-tunn-ā-nu
love-PROG-1.SG

‘I love the country’

(3.27) āme
I.NOM

nāt.ya
dance

kal.a-nu
art-ACC

kāpād. u-tuM-di
save-HAB-3.SG.F

‘She saves the art of dance’

73

3.3 kāraka Relations

cadivāḍu

vāḍu

k1

pustakānni

k2

I

nmod

Figure 3.12: Dependency structure for the sentence- (3.25)

When the verb belong to a specific verb type like [+hit] (e.g. kick, beat, hit)

or [+positive admire] (eg. love, like, appreciate) (Levin, 1993, pg-69), the

object of such constructions, inspite of being [-animate], obligatorily takes an

accusative case marker. See (3.28) & 3.29:

(3.28) ēnugu
elephant.NOM

cet.t.u-ni
tree-ACC

viric-iM-di
break-PST-3.SG.N

‘The elephant the tree’

(3.29) kit.t.u
kittu.NOM

vād. i
he.POSS

udyōgānni
job-ACC

prēmis-tunn-ā-d. u
love-PST-3.SG.M

‘Kittu loves his job’

3.3.2.1 karma in Double Object Constructions -

gaun. a karma(k2g) (Secondary karma)

In double object constructions, two arguments act as objects. One among the two

objects is marked with -ni/nu suffix and the other with the -∅ suffix. The argument

which has undergone the effect of action is marked as the karma whereas the other

who is benefited is marked as gaun. a karma(k2g) (Kulkarni, 2021b). The relation

gauna karma is observed with noun[+animate] andmukhya karma is noun[-animate].

Double objects occur with communication verbs (Levin, 1993) like ‘ceppu’, ‘ivvu’,

‘anu’, ‘māt.lād. u, etc,. See example-.

(3.30) ramya
ramya.NOM

raghava-ni
raghava-ACC

praśna
question-ACC

ad. ig-iM-di
ask-PST-3.SG.F

‘Ramya asked Raghava a question’

74

3.3 kāraka Relations

In the construction (3.30), both raghava and pra’sna are marked for accusative case

(one overt (raghava-ni) and the other covert (-∅)).It should be noted that mukhya

karma is [-animate] and gaun. a karma is [+animate]. Animacy is used as an extra-

linguistic cue to mark k2g.

aḍigiMdi

ramya

k1

rāghavani

k2g

praśna

k2

Figure 3.13: Dependency structure for the sentence- (3.30)

3.3.2.2 karma in Passive Constructions

In passive constructions, the noun phrase with -∅ marker that agrees in gender,

number, person (GNP) with the verb is tagged as the karma(k2) (see 3.3.1.3 for

more details). Consider (3.31)

(3.31) s̄ita
sita

cēta
by

vād. u
he.NULL

kot.t.a-bad. d. -ā-d. u
beat-PASS-PST-3.SG.M

‘He was beaten by Sita’

koṭṭabaḍḍāḍu

sīta

k1

vāḍu

k2

cēta

psp

Figure 3.14: Dependency structure for the sentence- (3.31)

75

3.3 kāraka Relations

3.3.2.3 karma in Causative Constructions

In causative constructions, as mentioned in section-(3.3.1.4), three arguments viz.,

active subject, causative subject and an object occurs. The noun phrase in the

object position with -ni/nu/-∅ without GNP agreement with the verb is marked as

k2 .

(3.32) prajalu
people.NOM

nāyakula
leaders-OBL

cēta
by

panulu
work-PL

cēy-iMc-āru
do-CAU-PST-3.PL

‘People made leaders do the work’

In sentence-(3.32), panulu is considered the karma of the verb cēyiMcu. Consider

the dependency tree 3.15:

cēyin̄cāru

prajalu

pk1

nāyakula

jk1

panulu

k2

cēta

psp

Figure 3.15: Dependency structure for the sentence- 3.32

3.3.2.4 karma in Reflexive/Reciprocal Constructions

Reflexive constructions in Telugu are formed using a verbal reflexive/reciprocal

verbal stem ‘-konu’ obligatorily and a nominal reflexive optionally.

The nominal reflexive occur in the bipartite1 structure as in ‘pronoun+case marker

pronoun’ (eg. tana-ni (tānu)) in which the second part of the pronoun can also be

optional. The nominal reflexive cannot occur in the subject position. The first part

of the reflexive pronoun takes the case marker of the object or indirect object

depending on the position it occurs. The second part of the reduplicated nominal

copies case of the subject. This phenomenon of taking the case of the subject is

called as case-copying (Subbarao and Murthy, 2000).

1having or consisting of two parts

76

3.3 kāraka Relations

(3.33) prēma
prema.NOM

tana-ni
she-ACC

tānu
she.NOM

meccu-kuM-di
praise-REF-3.SG.F

‘Prema praised herself’

(3.34) nēnu
I.NOM

nan-nu
I-ACC

nēnu
I.NOM

addaM-lō
mirror-LOC

cūsu-konn-ā-nu
see-REF-PST-1.SG

‘I saw myself in the mirror’

In reflexive constructions like (3.33, 3.34), the reduplicated reflexive pronoun is given

the tag pof redup and the one marked with accusative case is marked as karma.

meccukuMdi

prēma

k1

tanani

k2

tānū

pof_redup

Figure 3.16: Dependency structure for the sentence- (3.16)

3.3.2.5 Goal/Destination as karma(k2p)

The case relation k2p indicates the place which functions as a goal or destination

with motion verbs (eg: vaccu ‘come’, vel.l.u’,‘go’ cērukonu ‘reach’, bayaludēru ‘start’,

pō ‘go’). This is a special case of karma that takes a dative marker -ki/ku when

occurs exclusively with motion verbs. Hence, it is considered a special kind of karma

and sub-categorized under it with the tag k2p.

(3.35) aśok
ashok.NOM

āf̄ısu-ku
office-DAT

vel.l.-ā-d. u
go-PST-3.SG.M

‘Ashok went to office’

In sentence-(3.35), āf̄ısu-ku ‘to the office’ has a -ku suffix and functions as a

destination of the verb ‘go’. Hence, the tag k2p tag is given.

(3.36) nēnu
I.NOM

sāyaMtrāniki
evening-DAT

illu
home

cērukuM-tā-nu
reach-PST-1.SG

‘I reach home by evening’

77

3.3 kāraka Relations

veḷḷāḍu

aśōk

k1

āfīsuku

k2p

Figure 3.17: Dependency structure for the sentence- (3.35)

However, in the example-(3.36), illu functions as the destination but occurs with a

null marker. Here, the semantics of the verb is taken as a cue to tag k2p.

cērukuMṭānu

nēnu

k1

sāyantrāniki

k7t

illu

k2p

Figure 3.18: Dependency structure for the sentence- (3.35)

Also, verbs consisting of inherent motion like board, climb etc. the case suffix

-ni/nu used to indicate location. Consider (3.37):

(3.37) ādya
Aadya

ēnugu-nu
elephant-ACC

ekk-iM-di
climb-PST-3.SG.F

‘Aadya climbed the elephant’

In 3.37, ‘ēnugu’ is the locus of the activity climbing (a motion verb). Hence, it is

marked with k2p1.

3.3.2.6 Clausal karma -‘Clausal object’

A clause can function as a karma in Telugu. In certain constructions, the finite verb

of a subordinate clause can serve the object function of the matrix clause. This is a

usual phenomenon in complement clauses.

When the subordinate verb functions as an object, the root of the clause is connected

to the finite verb which expects the karma. Consider the example-(3.38):

(3.38) pranav
pranav

pāpā-ni
child--MAS-ACC

cadavam-ani
study-QUOT

cepp-ā-d. u
tell-PST-3.SG.M

‘Pranav told the child to study’

1This can still be a topic of discussion as ēnugu-nu can act as just a karma of the verb ekku

78

3.3 kāraka Relations

Example-(3.38) is a complement clause construction consisting of two clauses. The

matrix clause ‘ceppu’ ‘tell’ has ‘Pranav ’ as k1 and the verb ‘caduvu’ as the karma.

Hence, the verb of the clause is taken as the head and connected to the matrix verb

with the relation k2. The internal argument within a clause is connected to the

head. Here, pāpani functions as a karma to the verb caduvu.

Figure 3.19: Dependency structure for the sentence- (3.38)

3.3.2.7 karma samānādhikaran. a (k2s) - ‘Object Equivalence’

The relation refers to the complement of karma. In a sentence, when a word

refers/corresponds to the object, this relation is used. The tag k2s is used to mark

this relation. Object complement is marked using -ni/-∅ suffix in Telugu. In object

complement constructions, the order of object and its complement is very

important. Whatever comes first in a second remains the object and the later one

is treated as the complement.

(3.39) rāmud. u
Ram-∅

rāyi-ni
stone-ACC

manísi-ni
man-ACC

cēs-ā-d. u
do-PST-3.SG.M

‘Ram turned a stone into a human’

As shown in (3.39), the object complement manísi ‘human’ is marked with the suffix

-ni, preceded by a karma of the verb ‘ceyyi ’ i.e. rāyi with the similar suffix and is

tagged k2s.

79

3.3 kāraka Relations

cēsāḍu

rāmuḍu

k1

rāyini

k2

maniśini

k2s

Figure 3.20: Dependency structure for the sentence- (3.39)

3.3.3 karan. a(k3) - ‘Instrument’

In Pān. inian grammatical tradition, karan. a is defined as ‘the participant which is

most instrumental in the accomplishment of the action’. It is a karaka relation

referring to a noun phrase that acts as an instrument in carrying out the action

intended by the verb. The tag k3 is used to mark this relation. In Telugu, -tō

marker is used to indicate the relation of instrument.

(3.40) l̄ıla
leela.NOM

peMsil-tō
pencil-INS

bomma
picture.ACC

ḡıs-tuM-di
draw-PROG-3.SG.F

‘Leela is drawing a picture with a pencil’

The word peMsil ‘pencil’ in the example-(3.40) acts as an instrument and is

tagged with k3 relation to its head. Consider the figure-(3.21):

gīsindi

līla

k1

bomma

k2

pensiltō

k3

Figure 3.21: Dependency structure for the sentence- (3.40)

3.3.4 sampradāna(k4) - ‘Beneficiary/Recipient’

The indirect object of the ditransitive verb is marked using the sampradāna relation.

The kāraka relation of sampradāna denotes the recipient/beneficiary of the verb and

80

3.3 kāraka Relations

is marked with the tag k4. In Telugu, the default sampradāna marker is -ki/ku.

Consider the example-(3.41):

(3.41) amma
mother.NOM

atani-ki
he-DAT

annaM
rice-ACC

pet.t.-iM-di
keep-PST-3.SG.F

‘Mother served him rice’

peṭṭiMdi

amma

k1

annaM

k2

ataniki

k4

Figure 3.22: Dependency structure for the sentence- (3.41)

In certain cases, the sampradāna relation is realised with the case marker -tō

in Telugu. Communicative verbs like ceppu ‘to tell’, māt.lādu ‘to talk’ optionally

assigns either vibhakti -ki or -tō to express k4. See example-(3.42).

(3.42) nēnu
I.NOM

atani-tō/atani-ki
he-ASS/he-DAT

ā
that

vis.ayaM
matter

cepp-ā-nu
say-PST-1.SG

‘I told him that matter’

ceppānu

nēnu

k1

atanitō

k4

viṣayaM

k2

ā

nmod

Figure 3.23: Dependency structure for the sentence- (3.42)

81

3.3 kāraka Relations

3.3.4.1 kartā in Non-Nominative Subject Constructions (k4a)

Telugu is productive in non-nominative subject constructions (Subbārāo, 2012).

The most commonly used non-nominative subject is the dative subject

construction. Other non-nominative subject constructions include locative and

instrumental case marked subjects. Though, the case marker is in dative (with

case-suffix -ki/ku) or locative, it serves various functions in a sentence. In

non-nominative subject constructions, Subbārāo (2012), argues that the verb is

usually intransitive. Hence, the noun that agrees with the verb is marked as the

actual kartā 1 and the other subject which is not in nominative is marked

according to the dependency relation it corresponds to. Examples of each type is

provided below:

(i). Dative subject

A noun phrase with the dative suffix -ki/ku exhibits the most ambiguous nature in

Telugu. Dative subjects as illustrated by Subbārāo (2012) serves various functions

depending on the verb as exemplified below:

• Psychological state

(3.43) sr̄ınu-ku
srinu.DAT

kōpaM
anger.NOM

vacc-iM-di
come-PST-3.SG.N

‘Srinu is angry’

• Kinship

(3.44) nā.ku
I.DAT

iddaru
two

akka-lu
sister-PL.NOM

unnāru
be-PST-3.PL

‘I have two sisters’

• Physiological state

(3.45) atani-ki
he.DAT

kālu
leg.NOM

virig-iM-di
break-PST-3.sg.N

‘His leg broke’

• verbs of cognition

(3.46) ravi-ki
ravi-DAT

kamala
kamala.NOM

telusu
know

‘Ravi knows Kamala’

1Here, in this guidelines, we consider the nominal that agrees with the verb as the kartā.

However, it can be observed in the examples that it is not that independent kāraka but still is

considered as the kartā. This can be further discussed and must be given an appropriate tag in

the future study

82

3.3 kāraka Relations

• Part-whole relationship

(3.47) vād. i-ki
he.DAT

āru
six

vēl.l.u
fingers

unnāyi
be-PRS-3.PL

‘He has six fingers’

In the above illustrations, the experiencer who semantically subjects

dative-marked. They are tagged as k4a. The theme is nominative marked and

agrees with the finite verb. They are marked as k1. The other noun-phrase with

-ki/ku suffix is given a different relation (Here, experiencer subject) based on the

verb.

1. anubhava kartā(k4a)- ‘Experiencer subject’

The relation of anubhava kartā was originally not part of the Pān. inian framework,

but is a special relation introduced for Indian languages (Bharati et al., 2012).

This is usually used for non-nominative subject constructions. These constructions

are prominently observed with verbs of experience, cognition, kinship relations,

possession etc. The examples (3.43) to (3.47) constitute anubhava karta with

-ki/ku suffix. These case relations are dependent on the semantic properties of the

nouns and verbs involved in it. Consider various examples of dative-subject

constructions given below. Also observe the dependency tree for 3.43 in figure 3.24

to see how anubhava kartā is represented in a tree:

unnāru

nāku

k4a

akkalu

k1

iddaru

nmod

Figure 3.24: Dependency structure for the sentence- 3.44

It is observed from the above examples that dative marker in Telugu is quite

ambiguous and require number of linguistic ques to identify the correct relation

83

3.3 kāraka Relations

between the verb and the noun carrying dative case. Some nouns with dative suffix

can also be possessors but to maintain consistency non-nominative constructions

with -ki/ku suffix are marked as k4a. It will be helpful in higher level applications

like MT.

(ii). Locative subject

(3.48) nā
I-POSS

deggara
near

paMd. lu
fruits

unn-ā-yi
be-PST-3.PL.N

‘I have fruits’

(3.49) atani-ki
he.DAT

illu
house.NOM

uM-di
be.3.SG.N

‘He has a house’

In 3.48, the noun phrase that agrees with the verb having the -∅ is considered the

kartā. So, paMd. lu ‘fruits’ is considered the kartā in (3.48). Likewise, in 3.49, illu is

the kartā.

uMdi

ataniki

k4a

illu

k1

Figure 3.25: Dependency structure for the sentence- 3.49

3.3.5 apādāna(k5) - ‘Source’

Pān. ini defines apādāna as the ‘participant which is fixed when there is a movement

away’. The ablative case marker nuMd. i/niMci/nuMci ‘from’ in Telugu carries the

dependency relation of apādāna to the verb. This relation denotes the semantic role

of ‘a source of separation’.

(3.50) rāju
Raju.NOM

maisuru
mysore

nuMd. i
from

ninna
yesterday

vacc-ā-d. u
come-PST-3.SG.M

‘Raju came from Mysore yesterday’

In the example-3.50, mysore nuMd. i is place from which the agent is separated.

Hence, the tag k5 is given to mysore. Note that maMdi is written separately in

84

3.3 kāraka Relations

Telugu, hence it is attached with the tag postposition(psp).

vaccāḍu

Rāju

k1

maisōre

k5

ninna

k7t

nuṇḍi

psp

Figure 3.26: Dependency structure for the sentence- 3.50

The postposition nuMd. i ‘from’ also occurs with non-place nouns.

(3.51) cet.t.u
tree.NOM

nuMd. i
from

ākulu
leaves.ACC

rālāyi
fall-PST-3.PL.N

‘Leaves fell from the tree’

‘cet.t.u nuMd. i ’ is considered the source of separation and the tag is k5 is given as in

the dependency tree shown in figure-(3.27): Observe the dependency trees in figure

3.27:

rālāyi

ākulu

k1

ceṭṭu

k5

nuMḍi

psp

Figure 3.27: Dependency structure for the sentence- (3.51)

85

3.3 kāraka Relations

3.3.5.1 prakruti apādāna -‘Source Material’ (k5prk)

The relation of prakruti apādana can be considered a sub-tag of apādāna which

refers to the source material. The tag k5prk is used to tag this relation. The default

case marker, nuMd. i or the case marker -tō is used to represent this relation. The

verb ‘do’ or ‘make’ are typical examples of verbs that can occur in this type of a

sentence.

(3.52) a. kobbari
coconut

ākula
leaves

nuMd. i
from

c̄ıpuru
broom

tayāru
make

cēst-ā-ru
do-PST-3.PL

‘Brooms are made up of coconut leaves’

b. kobbari
coconut

ākula-tō
leaves-with

c̄ıpuru
broom

tayāru
make

cēst-ā-ru
do-PST-3.PL

‘Brooms are made up of coconut leaves’

3.3.6 adhikaran. a(k7) - ‘Locus’

The kāraka relation adhikaran. a indicates the locus of the kartā/karma (Kulkarni

and Sharma, 2019). It denotes the space or location of the kartā/karma. There are

three kinds of adhikaran. a observed in Telugu, namely, kālādhikaran. a(k7t),

deśādhikaran. a(k7p), vis.ayadhikaran. a(k7) which are described further in this

section.

3.3.6.1 kālādhikaran. a(k7t) - ‘Location in time’

The relation kālādhikaran. a which translates to ‘location in time’ is a dependency

relation which refers to the noun phrase indicating time information. The tag k7t

is used to mark this relation. The default case suffix for kālādhikaran. a is -ki/ku

or -lō. There can be more than one time expression in the same sentence, which

means there may be more than one k7t in a dependency tree. Instances of k7t are

illustrated (3.53).

(3.53) prakāś
prakash.NOM

ninna
yesterday

sāyaMtraM
evening

5
5’o

gaMt.ala-ku
clock

nā-ku kanipiMc-ā-d. u
I-DAT see-PST-3.SG.M

’I saw prakash at 5’o clock yesterday evening’.

In (3.53), it can be observed that only the time expression 5 gaMt.ala-ku ‘5’o

clock’ is marked with -ki suffix but the other two expressions ninna ‘yesterday’

and sāyaMtraM ‘evening’ are zero-marked but marked as k7t as they indicate time

information.

86

3.3 kāraka Relations

kanipiMcādu

prakāṣ

k1

ninna

k7t

sāyantraM

k7t

gaMṭalaku

k7t

nāku

k4

5

enm

Figure 3.28: Dependency structure for the sentence- 3.53

(3.54) vēsavi
summer

kālaM-lō
time-LOC

māmid. ikāyalu
mangoes

meMd. ugā
many

doruku-tā-yi
find-HAB-3.PL.N

‘Mangoes are abundant in summer season’

In 3.54, the suffix lō suffix indicates time. It usually occurs with specific time

expressions like ‘evening time’, ‘vacation time’ etc.

3.3.6.2 deśādhikaran. a(k7p) - ‘Location in space’

The kāraka relation deśādhikaran. a indicates ‘location in space’ and is marked with

the tag k7p. This relation is used to mark a noun phrase indicating a concrete

location. The case-markers -lō, mı̄da, -ki in Telugu with the noun[+place] may

indicate k7p. Consider (3.55)

(3.55) kalpana
kalpana

svitjarlāMd. u-lo
Switzerland-LOC

caduvu-kuM-t.uM-di
study-REF-PROG-3.SG.F

‘Kalpana is studying in Switzerland’

caduvukuMṭuMdi

sviṭjarlāMḍlō

k7p

Kalpana

k1

Figure 3.29: Dependency structure for the sentence- 3.55

87

3.3 kāraka Relations

In sentence-(3.55), svitjarlāMd. u-lo ‘Switzerland’ is case-marked with -lō and

identified with the tag k7p.

(3.56) ramēs.
ramesh.NOM

kurci
chair

mı̄da
on

kūrcunnād. u
sit-PST-3.SG.M

‘Ramesh sat on the chair’

Another case suffix -“na” is also used to determine location. This marker has a

restrictive use, it is usually used with [-animate] nouns as observed by Arden(1873)

(Ramarao, 2017, pp-43). Examples for the same are illustrated below:

(3.57) nadi
river

od. d. u-na
bank-LOC

pad. avalu
boats

āgāyi
halt-PST-3.PL.N

‘Boats halted at the river bank’

(3.58) ann̄ı
all

panulu
works

nā
I-POSS

netti-na
head-LOC

pad. d. āyi
fall-PST-3.PL.N

‘All the work was assigned to me’

3.3.6.3 vis.ayādhikaran. a(k7) - ‘Location elsewhere’

This tag is used when there is no concrete location that one can define. This tag

roughly translates to ‘location elsewhere’ which means the location which is other

than concrete time and space. Such relations are marked with k7. In Telugu, the

default case suffix for vis.ayādhikaran. a is lō.

(3.59) mukhya
chief

maMtri
minister

navarātri
navaratri

saMbarāllō
celebrations-LOC

pālgonn-ā-ru
participate-PST-3.SG.HON

‘The chief minister participated in the navaratricelebrations’

In (3.59) saMbarāllō ‘in the celebrations’ is not a concrete location, hence is marked

with K7. See dependency tree-(3.59)

3.3.7 sādriśya (k*u) - ‘Similarity & Comparison’

The kāraka relation of sādrísya is used for both comparison and similarity. The

tag k*u is used to tag this relation. This tag is given to the noun phrase that is

compared to another kāraka relation in the sentence. The * is used to replace any

kāraka that the noun phrase is compared with. Any noun phrase can be compared

with any other kāraka relation in a sentence. Hence, relations like k1u, k2u, k3u,

k4u and so on are possible.

The post-positions used for similarity are lāgā, lāMt.i, lā, vaMt.i. Also, the post-

positions used for comparison is kaMt.e/kanna. Consider (3.60)

88

3.3 kāraka Relations

pālgonnāru

mukhya maMtri

k1

sambarāllō

k7

navarātri

nmod

Figure 3.30: Dependency structure for the sentence- (3.59)

• k1u - Similarity

(3.60) nēnu
I.NOM

aMdari-laMt.i
all-like

ād. apillan-e
girl-EMPH

‘I am like other girls’

null verb

nēnu

k1

āḍapillanē

k1s

aMdarilāṇṭi

k1u

Figure 3.31: Dependency structure for the sentence- (3.60)

• k1u - comparison

(3.61) nēnu
I.NOM

atani
he.OBL

kaMt.e
than

pedda-vād. i-ni
elder-MAS-1.SG

‘I am elder to him’

• k2u - Similarity

(3.62) nēnu
I.NOM

lalita-ni
lalita-ACC

nā
I-POSS

kūturi
daughter

lāgaā
like

89

3.3 kāraka Relations

null verb

nēnu

k1

atani

k1u

peddavāḍini

k1s

kaMṭē

psp

Figure 3.32: Dependency structure for the sentence- 3.62

cūsukuMt.ānu
see-REF-PST-1.SG
’I take care of lalitha like my own daughter’

cūsukuMṭānu

nēnu

k1

lalitāni

k2

kūturi

k2u

nā

r6

lāgā

psp

Figure 3.33: Dependency structure for the sentence- 3.62

• k2u - Comparison

(3.63) nēnu
I-NOM

kūragāyala
vegetables-OBL

kaMt.e
than

paMd. la-nu
fruits-ACC

ekkuva
more

íst.apad. atānu
like- HAB-1.SG

‘I prefer fruits over vegetables’

90

3.4 Non-kāraka Relations

The above illustrated examples show the relations of ‘k1u’ and ‘k2u’. Similarly, k4u,

k3u and so on are possible.

3.4 Non-kāraka Relations

Non-kāraka relations are not part of the obligatory relations in a sentence. They

are the indirect participants of the action of the verb. All such indirect participants,

named as ‘r’ relations in Pān. inian framework, are part of the non-kāraka relations.

They are adjuncts in a sentence that add often add extra, more-detailed information

to the sentence. The relations like hētu ‘reason or cause’, tādrtya ‘purpose’, etc come

under non-kāraka relations. See the table-(3.4) for non-kāraka relations:

Sl.No. Non-kāraka relations Tag English Equivalent

1. hētu rh Reason or cause

2. tādarthya rt Purpose

3. prati rd Direction

4. upapada sahakārakatva ras k* Association

5. s.as. t.ı̄sambaMdhah. r6 Genitive

6. Relation between noun and verb r6v Relation between noun and verb

7. Duratives rsp Duratives

Table 3.4: Non-kāraka relations

3.4.1 hētu(rh)-‘Reason or Cause’

The kāraka relation expressing the semantic role of reason or cause is tagged using

the hētu relation. The arc indicating noun phrase describing the cause or reason of

activity is attached to the verb using the ‘rh’ relation. The default post-position

used to express reason or cause in Telugu is valla/valana as in (3.64).

• (i) Reason

(3.64) vars.aM
rain

valla
because

kāryakramaM
program

vāyidā
postpone

pad. -iM-di
fall-PST-3.SG.N

‘Program got postponed due to rain’

In (3.64), vars.aM valla ‘due to the rain’ is expressing the reason for the

postponement of the program. Hence, vars.aM ‘rain’ is marked as rh to the

verb.

91

3.4 Non-kāraka Relations

paḍiMdi vāyidā
pof

VarṣaM

rh

kāryakramaM

k1

valla

psp

Figure 3.34: Dependency structure for the sentence-(3.64)

• (ii) Cause

(3.65) ı̄gala
flies

valana
due-to

kalara
cholera

sōku-tuM-di
transmit-HAB-3.SG.N

‘Cholera is transmitted by flies’

As illustrated in 3.65, ı̄galu ‘flies’ are the cause of cholera. Hence, it is given

the tag rh.

sōkutuMdi

īgala

rh

kalarā

k1

valana

psp

Figure 3.35: Dependency structure for the sentence-(3.65)

Apart from the default case marker, valla/valana, reason can be expressed

using other case markers like -ki/ku, nuMd. i, tō.

92

3.4 Non-kāraka Relations

(i). Consider example with the suffix -ki/ku

(3.66) gāliki
wind-DAT

ākulu
leavePL

rālā-yi
fell-PST-3.PL.N

‘Leaves fell due to the wind’

rālāyi

ākulu

k1

gāliki

rh

Figure 3.36: Dependency structure for the sentence-(3.66)

(ii). With the suffix -tō

(3.67) kārti
karti.NOM

jvaraM-tō
fever-ASS

vanuku-tunnā-d. u
shiver-PROG-3.SG.M

‘Karti is shivering due to fever’

(3.68) mā
we-POSS

amma
mother

rōgaM-tō
disease-INS

maMcaM
bed

pat.t.-iM-di
hold-PST-3.SG.F

‘My mother is bed-ridden with disease’

(iii). With the suffix nuMd. i

Ramarao (2017) shows an instance of ‘nuMd. i’ functioning as a ‘reason marker’.

Consider the example-(3.69):

(3.69) n̄ı
you-OBL

nuMd. i
from

nāku
I-DAT

ı̄
this

kas.t.aM
problem

‘I had to face this difficulty because of you’

Another instance of causal interpretation is an infinitive verb with bat.t.i suffix in the

subordinate clause expressing the cause and effect phenomenon of the main clause.

Example-(3.70) exemplifies the cause and effect phenomenon:

(3.70) manaM
we.NOM.INCL

tondaragā
fast-ADV

cērukō-bat.t. i
reach-

railu
train

ekkāmu
board-PST.1.PL

‘Because we reached fast, we boarded the train’

‘Reason’ can also be expressed using the verbal noun formative ‘ad. aM/at.aM’

followed by -tō/valla/valana case suffix. See (3.71):

93

3.4 Non-kāraka Relations

(3.71) ārōgyaM
Health

ced. ad. aM-tō/valla
spoil-GERU-INS

atanu
he.NOM

udyōgaM
job

mānēs-ā-d. u
stop-PST-3.SG.M

‘He quit his job due to this ill-health’

In the above example, ‘ced. ad. aMtō’ functions as a reason to the action of ‘quitting

the job’.

3.4.2 tādarthya (rt) - ‘Purpose’

The non-kāraka relation, tādarthya, which translates to ‘purpose’ is a dependency

relation used to denote the purpose expressed through nouns intended by the activity

of the verb. This, as other non-kāraka relations is also an adjunct relation. The

postpositions kōsaM/koraku/-ki are the default markers used to express purpose in

Telugu. -ki case suffix being highly ambiguous in Telugu is identified as tādarthya

when a case-suffix -ki is interchangeable with -kōsaM/koraku. Such noun phrases

expressing purpose is attached to the verb using ‘rt’ relation.

(3.72) pavan
pavan.NOM

udyōgaM
job

kōsaM
for

haidarābād
hyderabad

vacc-ā-d. u
come-PST-3.SG.M

‘Pavan came to hyderabad for a job’

vaccāḍu

pavan

k1

udyōgaM

rt

haidarābādu

k7p

kōsaM

psp

Figure 3.37: Dependency structure for the sentence- (3.72)

In (3.72), udyōgaM kōsaM is the purpose of the verb vaccu. Hence, it is tagged

with the dependency relation tadārtya(rt).

This relation can also be expressed using the gerundival marker ad. aM followed by

kōsaM/koraku/ki, like in (3.73):

94

3.4 Non-kāraka Relations

(3.73) bhāgya
bhagya

lā
law

cadavad. aM
study

kōsaM
for

kanad. a
canada

vel.l.-iM-di
go-PST-3.SG.F

‘Bhagya left to Canada to study law’

In the above example-(3.73), cadavad. aM kōsaM, is the purpose of the action ‘vel.l.u’

‘go’.

(3.74) rāju
raju

bhojanaM
food

cēy-ad. āni-ki/cēyad. aM kōsaM
do-GER-DAT/for

iMt.i-ki vacc-ā-d. u
home-DAT come-PST-3.SG.M

‘Raju came home to have food’

’cēyad. āniki ’ in the above example denotes the tādarthya or the purpose of the

activity of ‘coming home’. In such cases, ki is replaceable with kōsaM or koraku.

Consider the tree below:

bhōjaMcēyaḍāniki
pof

vaccāḍu

rt

rāju

k1

iMṭiki

k2p

Figure 3.38: Dependency structure for the sentence-(3.74)

3.4.3 prati (rd) - ‘Direction’

The prati relation is used to mark a dependency relation indicating direction. The

tag rd is used to mark the relation prati ‘direction’ in this guidelines. The default

postposition used for direction is vaipu in Telugu. Other postposition denoting

side/direction include pakka. Other words indicating direction like up, down, above,

below are also be part of this relation. This relation is also a non-kāraka relation

and is hierarchically dominated by the verb.

(3.75) nēha
neha.NOM

iMt.i
house-OBL

vaipu
towards

parugulu
run-PL

t̄ısiMdi
take-PST-3.SG.F

‘Neha ran towards the house’

95

3.4 Non-kāraka Relations

tīsiMdi parugulu
pof

nēhā

k1

iMṭi

rd

vaipu

psp

Figure 3.39: Dependency structure for the sentence- (3.75)

In (3.75), iMti vaipu is marked with ‘rd’ to the verb as shown in the figure-3.42

3.4.4 upapada sahakārakatva (ras-k*) - ‘Associative’

The relation of association is expressed through upapada sahakārakatva relation with

the tag ras-k*. The ‘*’ in the tag indicates kāraka it is associated with. The default

case marker used for this relation in Telugu is -tō/tō pāt.u. The other markers

include -tō pāt.u/veMta. . Associative marker is synonymous to instrumental marker

in Telugu. Association can be with any kāraka in a sentence. So, when a noun

phrase is associated with kartā the relation is ras-k1. Likewise, if it is with karma,

it is ras-k2 and so on. Consider (3.76):

(3.76) pārvati
parvati.NOM

vinay-tō
vinay-ASS

pel.l.i-ki
wedding-DAT

vel.l.-iM-di
go-PST-3.SG.F

‘Parvathi went to the wedding with Vinay’.

Here, in (3.76), vinaytō ‘with vinay’ is related to pārvati as ras-k1 as it is associated

with the karta

(3.77) rāmud. i
Ram.OBL

veMta.
along

s̄ıta
sita

vel.l.-iM-di
go-PST-3.SG.F

‘Sita went along with Ram’

(3.78) nānna
father.NOM

ravi-ni
ravi-ACC

krísna-tō
krishna-ASS

pāt.u
along

vel.l.u-ani
go-QUO

ceppād.u
say-PST-3.sg.M
‘Father told ravi to go along with krishna’

However, in 3.78, krísnatō is related to ravini ‘ravi’ as ras-k2.

96

3.4 Non-kāraka Relations

veḷḷiMdi

sīta

k1

rāmuḍi

ras-k1

veMṭa

psp

Figure 3.40: Dependency structure for the sentence- 3.76

(3.79) amma
mother.NOM

cutt. āla-tō
relatives-ASS

pāt.e
along-EMPH

pillala-ki
children-DAT

annaM pett. -iM-di
food.ACC keep-PST-3.SG.F

‘Mother served food to the kids along with the relatives’

In (3.79), cut.t.alatō ‘with relatives’ is related to pillaki ‘to the children’ as ras-k4.

And pāt.e is related to the noun before it as the ‘psp’(used for postpositions).

peṭṭiMdi

amma

k1

annaM

k2

pillalaki

k4

cuṭṭalatō

ras-k4

pāṭē

psp

Figure 3.41: Dependency structure for the sentence- (3.79)

3.4.5 s.as.t.ı̄sambandhah. (r6)- ‘Genitive’

s.as. t.ı̄sambandhah. or the genitive relation is the sixth case denoting a possessive

relation between two noun phrases. In Telugu, genitive is morphologically realised

97

3.4 Non-kāraka Relations

using the yokka postposition. However, this has become obsolete in modern Telugu

and is omitted in most cases. Alternatively, noun in its oblique form when followed

by another noun phrase expresses genitive case. In Telugu, some nouns do not

distinguish between direct and oblique case morphologically. Genitive case can

occur with such nouns as well. Genitive relation is tagged using the tag r6.

The tag r6 is used to denote a typical kind of genitive relation like ‘vād. i yokka

pustakaM ’ ‘his book’ or relationship like ‘rāmud. i yokka tammud. u’ ‘Ram’s brother’

or the part-whole relation like ‘cet.t.u yokka pand. lu’ ‘tree’s fruits’ fall under this

category. Genitive relation can be identified using the overt postposition yokka or

when a noun is preceded by a pronoun in its oblique form or when a noun is

preceded by a proper noun.

In the absence of genitive postposition, distinction between a noun modifier

and genitive relation can be made by inserting yokka between two noun phrases to

observe if it results in a genitive relation. When the post-position yokka cannot be

inserted between two noun phrases, it cannot fall under genitive relation.

Consider (3.80) example with both -yokka/-∅ :

(3.80) r̄ima
reema.OBL

(yokka)
Genitive

pustakaM
book

dorik-iM-di
find-PST-3.SG.N

‘Reema’s book is found’

In the example-3.80, the phrase ’r̄ıma yokka pustkaM is in genitive relation. yokka is

tagged to r̄ıma as psp (the relation ‘psp’ is discussed in further sections) and r̄ıma as

r6 to the following noun. In 3.80, pustakaM is related to r̄ıma as s.as. t.ı̄sambandhah. .

(3.81) prakāś
Prakash.OBL

prajala
people.NOM

manísi
man

‘Prakash is people’ man’

As explicated in example-(3.81), yokka is absent. However, prajala ‘people’ is in

oblique case and is related to manísi with s.as. t.ı̄sambandhah.

(3.82) bālasubraman. yaM
balasubramanyam

pāt.alaku
songs-DAT

janālu
people

maMtramugdulu
enchant-PL

ayyāru
become-3.PL
‘People got enchanted by Balasubramanyam’s songs’

In (3.82), the noun phrase bālasubraman. yaM, a proper noun, does not change its

form in oblique form. However, it is followed by a noun phrase pāt.alaku and yokka

can be inserted between them. Hence, the relation between bālasubraman.yaM &

pāt.alaku is s.as. t.ı̄sambandhah. and tagged as r6 to the following noun.

98

3.4 Non-kāraka Relations

dorikiMdi

pustakaM

k1

rīmā

r6

yokka

psp

Figure 3.42: Dependency structure for the sentence- (3.80)

null root

prakāṣ

k1

maniṣi

k1s

prajala

r6

Figure 3.43: Dependency structure for the sentence- (3.81)

99

3.5 Other Dependency Relations

ayyāru

janālu

k1

maMtramugdulu

k1s

pāṭalaku

rh

BālasubramaṇyaM

r6

Figure 3.44: Dependency structure for the sentence-(3.82)

3.4.6 Duratives (rsp)

Duratives span over a period of time/distance and have a starting and an end point.

The start and end points are usually indicated using two different postpositions. In

Telugu, postpositions ‘nuMd. i......dākā , varaku, -ku’ are used to indicate duration

of a time/distance from a start point to an end point. To the mark the start point

psp ‘nuMd. i’ and the end point is marked with various markers such as dākā, varaku

& -ku etc.

This is a relation that is used to connect two elements in the duratives. It does

not connect a modifier and a modified relation but it connects two post-positions

denoting duration. Consider (3.83):

(3.83) nidhi
Nidhi.NOM

haidarābād
hyderabad

nuMd. i
from

tirupati
Tirupati

varaku/dākā
to/till

railu-lō prayānaM cēstuMdi
railway-LOC travel do-PROG-3.SG.F

‘Nidhi is travelling from Hyderabad to Tirupati by rail’

The duration of travel from ‘Hyderabad to Tirupati’ is expressed through the

postpositions ‘nuMd. ivaraku/dākā/-ku’. Hence, the arc connecting these

postpositions is marked using the relation ‘rsp’. Consider the dependency tree

below:

3.5 Other Dependency Relations

In this section, other dependency relation apart from kāraka and non-kāraka

relations are discussed. Relations between modifiers of nouns & verbs are discussed

100

3.5 Other Dependency Relations

cēsiMdi

prayāṇaM

pof

railulō

k7p

nidhi

k1

haidarābād

k5

tirupati

k7p

rsp

nuMḍi

psp

varaku/dākā

psp

Figure 3.45: Dependency structures for the sentence- (3.83)

here. Table-(3.4) lists the tags that are discussed as part of this section.

3.5.1 Noun Modifier(nmod)

The relation ‘nmod ’ indicates a noun modifier and is used for nouns or any other

particles/elements modifying a noun. This tag is used typically for nouns, proper

nouns, demonstratives, adverbial nouns and quantifiers that modify nouns. There

can be any number of noun modifiers in a sentence. There is no restriction on the

number of noun modifiers. Here, we discuss various word categories that function

as noun modifiers:

3.5.1.1 Noun as nmod

When nominals modify other nominals in a sentence, nmod tag can be used.

Examples include the following:

(3.84) gōd. a
hand

gadiyāraM.
watch

‘Wall clock’

(3.85) iMt.i
house- OBL

pani
work

‘House work’

(3.86) prapaMca
world

stāyi
level

sadhupāyālu
facilities

101

3.5 Other Dependency Relations

Sl.No. Other Dependency Relations Tag

1. Noun Modifier nmod

2. Question Words nmod wq

3. Quantifiers nmod quant

4. Relative clause Modifying a noun nmod relc

5. Adjective Modifying Nouns nmod adj

6. Post-positions psp

7. verb Modifier vmod

8. serial Action vmod:cp serial

9. Simultaneous Action vmod:cp simul

10. Cause vmod:cp cause

11. Conditional vmod:cond

12. Conditional: Serial Action vmod:cond serial

13. Conditional: Cause vmod:cond cause

14. Concessive Clause vmod:conc

15. Infinitive Clause vinf:k1

16. with Temporal Particles vmod:temp

17. Manner Adverbs adv

18. Sentential Adverbs sent adv

Table 3.5: List of other dependency relations

‘world class facilities’

In the above examples, the nouns gōd. a, iMt.i and prapaMca stāyi modify the other

nouns following them. Hence, they are given the tag nmod

sadupāyālu

sthāyi

nmod

prapaMca

nmod

Figure 3.46: Dependency structure for the sentence- 3.86

102

3.5 Other Dependency Relations

3.5.1.2 Demonstratives as nmod

Demonstratives can also modify nouns when they occur before them. In Telugu, ā,

ı̄ are frequently used before nouns to indicate deixis. Consider (3.87):

(3.87) ā
that

rōd. d. u
road

‘That road’

(3.88) ı̄
those

parvatālu
mountains

‘Those Mountains’

As seen in ex-3.88, even demonstratives when preceded by nouns is considered as part

of noun modifiers. Demonstratives can also occur with adverbs as in ‘̄ı vidhaMga’

‘like this’.

parvatālu

ā

nmod

Figure 3.47: Dependency structure for the sentence- 3.88

3.5.1.3 Adverbial Nouns as nmod

Adverbial nouns in Telugu indicate time and space. They occur as nouns but indicate

adverbial information. When such nouns precede a noun/pronoun, they function as

nmod. Words like appud. u‘then’, ippud. u ‘now’ in their oblique form followed by a

noun function as modifiers. Consider (3.89):

(3.89) appat.i
then

sinima
cinema

‘Cinema of those times’

(3.90) akkad. i
there

paMt.alu
crops

‘The crops there’

103

3.5 Other Dependency Relations

3.5.1.4 nmod wq - ‘Question words’

The tag nmod wq is used for question words modifying nouns. This is a language

specific tag specially used for Indian languages (Nallani et al., 2020a) .

(3.91) s̄ıta
sita.NOM

kōsaM
for

evar-ō
who-DUB

ammāyi
girl

vacc-iM-di
come-PST-3.SG.F

‘Some girl came looking for sita’

(3.92) ē
which

taragati
class

‘which class’

(3.93) mēku
you-SG.HON

enni
how

bhāśalu
many

vaccu?
languages come

‘How many languages do you know?’

vacciMdi

ammāyi

k1

sīta

rt

evarō

nmod_wq

kōsaM

psp

Figure 3.48: Dependency structure for the sentence- 3.91

3.5.1.5 Quantifiers as Noun modifiers nmod quant

In Telugu, quantifiers also function as modifiers of nouns. Quantifiers precede the

nouns as well as follow them. When quantifiers follow nouns, typically the final vowel

is lengthened (see 3.95). In whichever case, they typically function as modifiers of

nouns. Consider the table-3.6 for quantifiers that can function as nouns as well as

noun modifiers.

(3.94) koMdaru
some

ammāyilu
girls

‘Some girls’

(3.95) ammāyilu
girls

aMdarū
everyone

‘All girls’

104

3.5 Other Dependency Relations

Quantifiers English Equivalent

Human

aMdaru ‘everyone’

koMdaru ‘some people’

iMdaru ‘these many’

Non-human singular

aMta ‘that much’

iMta ‘this much’

koMta ‘some (indicating quantity) ’

Non-human plural

anni ‘that number’

inni ‘this number’

konni ‘some (number)’

Table 3.6: Quantifiers list

ammāyilu

koMdaru

nmod_quant

Figure 3.49: Dependency structure for the sentence- 3.94

Other quantifiers indicating numeric quantity like acre, half, 3/4th etc are also

marked using this relation.

(3.96) ekarā
acre

bhūmi
land

‘An acre land’

3.5.1.6 nmod relc - Relative Clause

nmod relc is a special tag used for relative clauses. A simple sentence in Telugu can

be changed into a relative clause by replacing its finite verb by a relative participle

(or verbal adjective) in the corresponding tense-mode and shifting the noun that

it qualifies as head of the construction (Krishnamurti and Gwynn, 1985). Relative

participle clauses occur immediately before nouns which they qualify. In Telugu,

they show the distinction in tense in affirmative construction whereas in negative

105

3.5 Other Dependency Relations

they do not show the tense.

Relative participles are tagged as nmod:relcl in RBP. nmod:relcl is added with

the argument relation of the noun which is relativized. In the sentence 3.97, the

relativized nouns holds the object (k2) relation with the relative participle whereas

the sentence 3.98 with the subject (k1) relation. There are tagged as nmod:relcl k2

and nmod:relcl k1 respectively in Figures (3.50) and (3.51).

(3.97) nēnu
I.NOM

cūs-ina
see-RP.PST

manis. i
man

iMt.i-ki
home-DAT

vacc-ā-d. u
came-PST-3.SG.M

‘The man whom I saw came home’

(3.98) nan-nu
I-ACC

cūsina
see-RP.PST

manis. i
man

iMt.i-ki
home-DAT

vacc-ād. u
come-PST-3.SG.M

‘The man who saw me came home’

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k2

nēnu

k1

Figure 3.50: Dependency tree for 3.97

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k1

nannu

k2

Figure 3.51: Dependency tree for 3.98

Relative participle clause constructions are ambiguous when the noun in the

106

3.5 Other Dependency Relations

relative clause has the potential to be an agent followed by the relative participle

form of the verb which is transitive.

(3.99) nēnu
I.NOM

tin-ina
eat-RP.PST plate

kaMcaM
old-3.SG.N

pāta-di

‘The plate in which I ate is old‘/‘The plate which I ate is old’

root

kaMcaM

k1

pātadi

k1s

tinina

nmod:relc_k2/k7

nēnu

k1

Figure 3.52: Dependency tree for 3.99

The token kaMcaM ‘plate’ can be interpreted with the tag nmod:relc k2 as

well as k7 (location) as in figure 3.52. However, selectional restriction rules will be

operated and one tag is preserved. Here, in this case, kaMcaM ‘plate’ with the tag

nmod:relc k2 is semantically not possible as it is not the object in relative clause.

3.5.1.7 Adjectives as nmod adj

Adjectives are a syntactic class of words that modify nouns. nmod adj relation is

for adjectives modifying nouns. In Telugu, the adjectives when they occur before

nouns, certain sufffixes as -∅ (as in ??∅ in 3.100), -ti suffix as shown in ??, -ni as

explicated in 3.102. And when adjectives derive from nouns (as in 3.103), the suffix

-aina is added.

Adjectives in Telugu precede nouns when occurred pronominally. However, there

are also predicative adjectives which usually take GNP suffixes and take a different

relation (k1s/k2s).

(3.100)pāta
old

baMd. i
vehicle

‘old vehicle’

(3.101)nalla-t.i
black-ish

purugu
insect

‘Black insect’

107

3.5 Other Dependency Relations

(3.102)pacca-ni
green-ish

cēnu
field

‘Green fields’

(3.103)aMdam-aina
beautiful

ammāyi
girl

‘Beautiful girl’

baMḍi

pāta

nmod_adj

purugu

nallaṭi

nmod_adj

cēnu

paccani

nmod_adj

ammāyi

aMdamaina

nmod_adj

Figure 3.53: Dependency structures for the sentence- 3.100-3.103

3.5.2 Verb modifier (vmod)

Another most commonly occurring dependency relation is between a verb and a verb.

The relations that exist between a verb and a verb are mainly between subordinate

clause verb and the verb of matrix clause in Telugu. Anncora (Bharati et al., 2012)

guidelines use the tag vmod for all relations between a verb and a verb.

Subordinate clauses (non-finite/participial constructions) in Telugu which

function as modifiers are realized by verbs in their conjunctive, conditional,

concessive and infinitive forms. It is observed that vmod is an underspecified tag

and covers a wide range of relations. Hence, vmod is further divided into several

subtags including clausal information. Consider the table-(3.7) for all the

language-specific vmod tags included as part of this study:

3.5.2.1 Conjunctive Participle - Serial Action (vmod:cp serial)

The conjunctive participle clause occurs as a subordinate clause and modifies the

matrix clause. This conjunctive participle clause can be used to express verbal

modifier (vmod) functions such as serial action, manner, cause and simultaneous

action in Telugu. Example (3.104) explicates conjunctive participle as a serial verb.

The figure-(3.54) is shown with the tag vmod:cp serial for the sentence (3.104)

with conjunctive participle expressing serial action.

108

3.5 Other Dependency Relations

Subordinate Clause Type Enhanced Tag for Telugu

conjunctive participle vmod

serial action vmod:cp serial

simultaneous action vmod:cp simul

Manner vmod:cp manner

Cause vmod:cp cause

conditional clauses

Condition vmod:cond

Serial action vmod:cond serial

Cause vmod:cond cause

Concessive clause vmod:conc

Infinitive clause vinf:*

with temporal particles vmod:temp

Table 3.7: Dependency Tags for Subordinate Clauses in Telugu

(3.104)rāmud. u
Ram.NOM

annaM
food.ACC

tin-i
eat-CP.PST

pad. ukunn-ā-d. u
sleep-PST-3.SG.M

‘Ram ate food and slept’

3.5.2.2 Conjunctive Participle - Simultaneous Action (vmod:cp simul)

The conjunctive participles express simultaneous action when the participle is

durative as in the sentence-(3.104).

(3.105)prakāsh.∅
prakash.NOM

sinimā
cinema

cūs-tū
watch-CP.DUR

cūldriMk
cool-drink

tāg-ā-d. u
drink-PST-3.SG.M

‘Prakash drank cool drink while watching a cinema’

3.5.2.3 Conjunctive Participle - Manner (vmod:cp manner)

The conjunctive participle can express manner as explicated in the sentence-(3.106)

with the figure-(3.58). Here, the type of verb class i.e. motion class is used as a cue

to identify the manner in the verb modification with the tag vmod:cp manner.

(3.106)vimala.∅
vimala.NOM

āph̄ısu-ku
office-DAT

nadic-i
walk-CP.PST

vel.t-uM-di
go-HAB-3.SG.F

‘Vimala goes to office by walk’

109

3.5 Other Dependency Relations

paḍukunnāḍu

rāmuḍu

k1

tini

vmod:cp_serial

annaM

k2

Figure 3.54: Dependency structure for the sentence- 3.104

tāgāḍu

Prakāṣ

k1

kūl ḍriMk

k2

cūstū

vmod:cp_simul

sinimā

k2

Figure 3.55: Dependency structure for the sentence- 3.105

veḷḷiMdi

vimala

k1

āphīsuku

k2p

naḍici

vmod:cp_manner

Figure 3.56: Dependency structure for the sentence- 3.106

110

3.5 Other Dependency Relations

3.5.2.4 Conjunctive Participle - Cause (vmod:cp cause)

There is an instance of conjunctive participle expressing a causal sense. But it is

difficult to capture causal information using syntax. Hence, the verb semantics may

be used. However, a tag vmod:cp cause can be used for sentences like-(3.107).

(3.107)pāmu
snake

karic-i
bite.CP.PST

pillā-d. u
child-SG.M

canipōy-ā-d. u
die-PST-3.SG.M

‘The child died due to snake bite’

3.5.2.5 Conditional Clauses - Condition (vmod:cond)

Conditional clauses in Telugu not only express conditional sense but also show other

interpretations leading to several parsing analyses. Such constructions are identified

and tagged with language-specific tags in RBP.

In sentence (3.108), if the finite verb of a complex sentence is in non-past tense,

it is considered as a conditional clause and is tagged with vmod:cond.

(3.108)rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

pad. u-tuM-di
fall-NON.PST-3.N.SG

‘If you hit with a stone, the fruit falls’

paḍutuMdi

rāyitō

k3

kāya

k2

kiMda

k7p

koḍitē

vmod:cond

Figure 3.57: Dependency structure for the sentence- 3.108

3.5.2.6 Conditional Clauses - Serial Action (vmod:cond serial)

Conditional clauses can also express serial action in Telugu. In such cases, the finite

verb is realised with past tense unlike the case in vmod:cond(3.108). When the

matrix verb is in the past tense, the conditional verb expresses the serial action and

is given the tag vmod:cond serial as the sentence 3.109.

(3.109)rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

pad. -iM-di
fall-PST-3.N.SG

‘The fruit fell when hit with a stone’

111

3.5 Other Dependency Relations

paḍiMdi

rāyitō

k3

kāya

k2

kiMda

k7p

koḍitē

vmod:cond_serial

Figure 3.58: Dependency structure for the sentence- 3.108

3.5.2.7 Concessive Clauses(vmod:conc)

Concessive clauses in Telugu are formed by adding the suffix -inā to the verb stem

and express the meaning ‘even if/even though’. It functions as adverbial modifiers

to the matrix verb. The negative concessive form is formed by the suffix

‘akapoyinā’. In such cases, this clause is tagged as vmod:conc in RBP.

(3.110)nēnu
I-NOM

cadiv-inā
study-CONC

pāsu
pass

avva-lēdu
become-NEG

‘Even after studying, I did not pass (the examination)’

avvalēdu

pāsu

pof

nēnu

k1

cadivinā

vmod:conc

Figure 3.59: Dependency tree for 3.110

It is interesting that a temporal particle appud. u + -k̄ı suffix when added to

adjectival participial form of the verb results in a concessive form. Consider the

example (3.111):

(3.111)āmē
she.NOM

twaragā
quickly

vel.l.in-appat.i-kī
go-TEMP-DAT

railu
train

dorak-alēdu
get-NEG

‘She came early, even then, did not catch the train’

112

3.5 Other Dependency Relations

dorakalēdu

railu

k1

veḷḷinappaṭikī

vmod:conc

āme

k1

tvaragā

advmod

Figure 3.60: Dependency tree for 3.111

3.5.2.8 Infinitive Clauses (vinf:k1)

Infinitive clauses are not very common in Telugu. The infinitive suffix in Telugu is

-an and the tag vinf:k1 is used in tagging infinite clauses when they occur in the

subject position as in the sentence-(3.112) and the respective dependency tree in

figure- 3.61.

(3.112)mı̄ru
You-HON

nā-tō
I-INST

ā
that

vis.ayaM
matter

cepp-an
tell-INF

akkar-lēdu
need-NEG

‘You need not tell me that matter’

lēdu

ceppan

vinf:k1

akkara

pof

mīru

k1

nātō

k4

viṣayaM

k2

ā

det

Figure 3.61: Dependency tree for 3.112

113

3.5 Other Dependency Relations

3.5.2.9 Verbal Modifier - Temporal (vmod:temp)

Relativized form of a verb when added to time particles indicates temporal

information. For instance, the verb tinu in its relativized form tine+appud. u results

in tinet.appudu. vmod:temp is a dependency relation used for verbs denoting

temporal information. Temporal particles like appud. u, lōpu, taruvāta, veMt.anē,

dākā, muMdu, aMtavaraku, aMtadākā, aMtasēpu etc., to the verb in its relativized

form. The following verb paradigm of ‘eat’ tinu when added with temporal

particles will result in the following forms:

Verb + Temporal particles English Equivalent

nēnu tinet.appud. u ‘When I eat’

nēnu tinēlōpu ‘By the time I eat’

nēnu tinnaveMt.ane ‘As soon as I eat’

nēnu tinnataruvāta ‘After I eat’

nēnu tinēdākā ‘Till I eat’

nēnu tinēaMta-varaku/dākā/sēpu ‘up to the point I eat’

nēnu tinnamat.uku ‘To the extent I ate’

nēnu tinekoddi ‘The more I eat’

nēnu tinesariki ‘By the time I eat’

nēnu tinet.appat.iki ‘By the time I eat’

nēnu tinnappud. aMtā ‘Whenever I eat’

Table 3.8: Verb paradigm of temporal verb modifiers

(3.113)nēnu
I.NOM

caduvu-kunēt.-appud. u
study-REF-TEMP

nannu
I-ACC

pilav-a-kaMd. i
call-NEG-2.PL

‘Do not call me when I am studying’

pilavakaMḍi

nannu

k2

caduvukunēṭappuḍu

vmod:temp

nēnu

k1

Figure 3.62: Dependency tree for 3.113

114

3.5 Other Dependency Relations

In addition to this, the infinitive form of the verb with -gā suffix also provides

temporal information (See (3.114)). When this gā suffix is followed by an emphatic

ē, it refers to ‘as soon as...’. For instance, vād. u rāgānē nāku ceppaMd. i ‘Tell me as

soon as he comes’.

(3.114)mēmu
I-NOM.EXC

goa
goa

vel.-tūMd. a-gā
go-be-

pramādaM
accident

jarigiMdi
happen-PST.3.SG.N

‘We met with an accident while going to Goa’

Hence, vel.tūMd. agā ‘while going’ in (3.114) is attached to the finite verb with

vmod:temp.

3.5.3 Adverbs (adv)

Adverbs are an open syntactic class of words that occur as the modifiers of the verbs.

Adverbs express three semantic functions namely time, place and manner. Time and

place information in Telugu is expressed using nouns which are called as adverbial

nouns of place and time (Krishnamurti and Gwynn, 1985). In the previous sections

of k7p and k7t, it is mentioned that place or time information is part of those tags.

Hence, adverbs here only mean manner adverbs.

Manner adverbs in Telugu are formed typically by adding a -gā suffix to

adjectives. Consider example-3.115

(3.115)vēt. ūri
Veturi.NOM

adbhutangā
amazing-ADV

pāta
song

rās-ā-ru
write-PST-3.SG.HON

‘Veturi wrote the song amazingly’

In addition to this, -gā when added to predicative nominals also result in adverbs

when followed by verbs like uMd. u/kanabad. u/nat.iMcu etc. When the -gā suffix

is added to the predicative nouns expressing physical or psychological states, such

words also function as adverbs. Consider example-?? below that show adverb with

-gā suffix expressing psychological state:

(3.116)nāku
I.DAT

talanoppigā
headache-ADV

uM-di
be-3.SG.N

‘I have headache’

Other instances of adverbs without -gā suffix include the following:

(3.117)āme
she.NOM

kaMt.i-niMd. ā
eyes-full

nidrapoi
sleep-CONJ

chālā
many

rōjulu
days

ayy-iM-di
be-PST-3.SG.N

‘Its been many days since he slept peacefully’

In the example-3.117, kaMt.iniMd. ā ‘lit. eye-fully’ functions as an adverb. Other

examples include kal.l.ārā ‘lit. eye-fully’, kad. upuniMd. ā ‘stomachful’, etc.

Other onomatopoeic words like gaba gaba, jala jala, gala gala, tala tala when

followed by a verb function as adverbs.

115

3.5 Other Dependency Relations

rāśāru

pāṭa

k2

vēṭūri

k1

adbutaMgā

adv

Figure 3.63: Dependency structure for the sentence- 3.115

Further, a noun phrase with -tō suffix can also indicate manner in Telugu

(Ramarao, 2017). Consider (3.118)

(3.118)āme
she.NOM

bhakti-tō
devotion-INS

pūja
worship

cēs-iM-di
do-PST-3.SG.F

‘She worshipped with devotion’

‘bhaktitō’ ‘with devotion’ in example-3.118 indicates the manner of the action done

by the verb.

The -lō suffix also modifies the verb in certain constructions. Consider

(3.119)amarēś
amaresh.NOM

kōpaM-lō
angry-LOC

arust-ā-d. u
shout-HAB-3.S.M

‘Amaresh shouts when he is angry’

arustāḍu

amarēṣ

k1

kōpaMlō

adv

Figure 3.64: Dependency structure for the sentence- 3.119

(3.120)nijāni-ki
true-DAT

nēnu
I.NOM

rān-u
come-NEG-2.SG

ani
COMP

vāddiki
he.DAT

telusu
know

‘Indeed, he knows that I will not come’

116

3.6 Non-Dependency Relations

3.5.4 Sentential Adverbs (sent-adv)

Some adverbs function as modifiers of the whole sentence. They occur as connectors

to the previous and the current sentence. All such adverbs that function as modifiers

of the sentence are tagged using the tag sent-adv.

(3.121)aMduvallana
due-to-which

kumār
kumar-DAT

pel.l.iki
marriage-DAT

come-be-NEG-GO-PST-3.SG.M

rā-l-ēk-apōy-ā-d. u

‘Therefore, Kumar could not attend the wedding’

‘aMduvallana’ ‘due to which’ is considered as sent-adv because it modifies the whole

sentence.

Figure 3.65: Dependency trees for 3.122

Some connectors like idē kāka, mari, ayitē, etc, when their scope is the whole

sentence, are given the tag sent-adv.

3.6 Non-Dependency Relations

Relations between words in a sentence do not always comprise of dependency

relations. Some relations can also be non-dependency relation where one words is

not dominated by the other and are hierarchically at the same level. Relation

between conjoints in a coordinate constructions, relation between light verb (NV

compounds), reduplicated elements fall under this category.

Sl.No. Non-Dependency Relations Tag

1. Conjunction and conjunct cc,conj

2. Part of Relation pof

3. Part of relation-Reduplication pof redup

Table 3.9: Non-Dependency Relations

117

3.6 Non-Dependency Relations

3.6.1 Coordination(cc,conj)

coordination is a much debated concept among the linguistics and computational

linguistics. Both theoretically and computationally, dealing with coordination has

been a challenge. Many theoretical frameworks within dependency differ from each

other in describing coordination as discussed in chapter-2. (Hudson, 1984; Mel’cuk

et al., 1988; Tesnière, 1959).

Coordination can be defined as grouping of similar category words or sometimes

clauses to provide a sense of collection. This can be formed between two or more

noun, adjectives, verbs, adverbs etc. It should be noted that coordination is not a

dependency relation. There is no mutual expectancy between words in a coordinate

structure nor they are dependent on each other. Hence, coordination is not an

asymmetric structure. There is no hierarchy between words.This relation is used

to connect arcs between two words. However, providing a symmetric coordinate

structure is quite a task. Symmetric structure can be achieved using two ways: 1)

Considering the conjunction as a head and the conjuncts as the dependents like in

(Bharati et al., 2012). 2) Placing the conjuncts at the same level and they are joined

using a conjunction horizontally like in (Tesnière, 1959).

In Telugu, coordination is expressed through the conjunction ‘mariyu’ and an

elongation of the last vowels of the conjuncts is often observed. But the use of

conjunction is optional in Telugu. Sometimes, special characters like ‘,’ is used but

is still optional. The elongation of vowel after the conjuncts is often omitted in

modern Telugu. In such cases, marking a coordinate relation gets complicated as

this is a rule-based parser. A rule-based parser requires morpho-syntactic cues in-

order to parse a structure. In cases where a conjunction, lengthening of vowels and

special characters are absent, the system relies on ‘agreement’ on the verb to identify

conjunction in Telugu.

For the conjunct, we use the tag ‘conj’ and for the conjunction we use ‘cc’ like

in nivre-2016.

Consider the sentences below:

(3.122)nēnū
I.NOM

nā
I-POSS

tammud. u
brother

sinimā-ki
cinema-DAT

vel.l.-ā-mu
go-PST-1.PL

‘I and my brother went to a movie’

In (3.66), it can be observed that the conjunct which is closer to the verb is

marked as ‘kartā’ and the other conjunct is marked as ‘conj’ to the conjunct closer

to the verb. This way, both the conjuncts are placed at the same level not dominating

each other.

118

3.6 Non-Dependency Relations

tammuḍu nēnu
conj

mariyu

cc

nā

r6

veḷḷāmu

k1

sinimāki

k2p

Figure 3.66: Dependency trees for 3.122

3.6.2 Part of Relation (pof)

POF expands to parts of relation/units of certain categories. When multiple

fragments of a unit together functions as a single syntactic unit, we link those

fragments using POF tag.

POF is not a dependency relation as mentioned in table ??. These relations are

used to mark two relations which do not have a head-modifier relation. This is

especially used for Noun + Verb compounds in Telugu. Light verb/conjunct verb

constructions are noun+verb compounds which function as a single unit in

languages. Light verb constructions are very common in Indian languages. Noun

carries the major meaning in such constructions and the verb acts as a verbalizer.

Observe the data from Telugu :

(3.123)sahāyaM
help

cēyu
do

‘to help’

(3.124)pūrti
complete

cēyu
do

‘to complete’

(3.125)pel.l.i
marriage

cēsu-konu
do-REF-

‘To marry’

(3.126)pett. ubad̄i
investment

pet.t.u
take

‘to invest’

(3.127)lekka
count

pet.t.u
take

119

3.6 Non-Dependency Relations

‘to count’

cēyi

sahāyamu

pof

cēyu

pūrtī

pof

cēsukōnu

peḷḷi

pof

peṭṭi

peṭṭubaḍi

pof

peṭṭu

lekka

pof

Figure 3.67: Dependency structures for the sentence- 3.123 -??

In examples [3.123-3.127], the verb ‘cēyu/pett. u’ do not actually have the meaning

intented by the verb but their sense is bleached. The meaning of these verbs is drawn

from the noun preceding it. Hence these fragments jointly renders the meaning of

the verb. In (3.123), it is not about doing but it is about helping.

In all the cases like above, noun is linked to the verb using the tag pof.

3.6.2.1 Part of Relation - Reduplication (pof redup)

This non-dependency relation is used to tag reduplicated compounds. Many verb-

verb compounds are reduplicated to render a certain sense in languages. This is

true of Telugu too. Reduplication can happen on nouns, adverbs verbs. Consider

examples of reduplication of nouns below:

(3.128)talupulu
doors

kit.a
ONOM

kit. ā
ONOM

kot.t.ukunnāyi
bear-PST-3.PL

‘Doors slammed with a bang’

(3.129)caMt.ipāpa
infant

kila
ONOM

kilā
ONOM

navv-iM-di
laugh-PST.3.SG.F

‘The child smiled’

(3.130)nagalu
nagalu

daga
ONOM

dagā
ONOM

merisāyi
shine-PST-3.PL.N

‘The jewellery shined bright’

There can be both full and partial reduplicatives. The above illustrated examples

are fully reduplicated. Consider (3.131) for partial reduplication:

(3.131)tiMd. i
food

giMd. i
REDUP

‘food’

(3.132)nagā nat.ra
‘jewellery’

120

3.7 Miscellaneous Relations

koṭṭukunnāyi

talupulu

k1

kiṭa

adv

kiṭā

pof_redup

navviMdi

caMṭipāpa

k1

kila

adv

kilā

pof_redup

merisāyi

nagalu

k1

daga

adv

dagā

pof_redup

Figure 3.68: Dependency structures for the sentence- 3.128 -3.130

(3.133)vād. u
He.NOM

navvanē
REDUP

navv-a-d. u
laugh-NEG-3.SG.M

‘He never laughs’

For all such cases above, the tag pof redup is to be used.Consider the dependency

tree of the same.

Figure 3.69: Dependency trees for 3.122

3.7 Miscellaneous Relations

Miscellaneous include all such relations that are functions either as connectors,

particles or any other functional elements that are part of the sentence.

3.7.1 Subordination (mark)

This tag is used for ‘complementizer’ in complement structures. Complementizer in

Telugu is ‘ani’. Complementizer is obligatory in all structures except when the verb

121

3.7 Miscellaneous Relations

Sl.No. Miscellaneous Tag

1. Subordination mark

2. Intensifier intf

3. Negation neg

4. Particle rp

5. Interjection uh

6. Fragment of fragof

7. Address terms rad

8. Enumerator enm

9. Symbols rsym

Table 3.10: Miscellaneous relations

‘say’ occurs in a sentence. Other elements that are included as part of this relation

is ant.ē. Consider (3.134) in which ‘ani’ is present:

(3.134)rājeśwari
rajeshwari.NOM

vacc-iM-di
come-PST-3.SG.F

ani
QUO

vimala
vimala.NOM

grahiMc-iM-di
realise-PST-3.SG.F

‘Vimala realised that Rajeshwari came’

grahiMciMdi

vimala

k1

vacciMdi

k2

Rājēśvari

k1

ani

mark

Figure 3.70: Dependency trees for 3.134

consider (3.135) in which ‘ani’ is absent.In this study, we do not supply any null

element as a complementizer, this is out of the scope of this study.

(3.135)abhi
abhi.NOM

javābu
answer-ACC

ivva-ddu
give-NEG

annā-d. u
say-PST-3.SG.M

‘Abhi asked me to not to give an answer’

122

3.7 Miscellaneous Relations

annāḍu

abhi

k1

ivvaddu

k2

rāvaḷini

k2g

javābu

k2

Figure 3.71: Dependency trees for 3.135

(i) ‘ani’ as a reason marker

(3.136)mā
our

nāyana
father

ostād. -emō
come-DUB

ani
QUOT

jadusu-kun-ēdi
scare-REF-HAB-3.SG.F

‘She is scared that my father will come’

jaḍusukunēdi

vastāḍēmō

rh

nāyana

k1

ani

mark

mā

r6

Figure 3.72: Dependency trees for 3.136

123

3.7 Miscellaneous Relations

3.7.2 Intensifier(intf)

Intensifiers are elements that intensify/modify the adverbs/adjectives. Elements like

ati, mar̄ı, cālā etc are used as intensifiers in Telugu. Intensifiers in Telugu occur

before adjectives like in (3.137). And also occur before adverbs as in 3.138.

(3.137)ati
most

madhuramaina
delicious

t. i
tea

‘The most delicious tea’

ṭī

madhuramaina

adjmod

ati

intf

Figure 3.73: Dependency structure for the sentence- 3.137

(3.138)cālā
very

t̄ıvraMgā
intense-ADV

śramiMcād. u
work-PST-3.SG.M

‘He worked very intensely’

śramiMcāru

tīvraMgā

advmod

cālā

intf

Figure 3.74: Dependency structure for the sentence- 3.138

124

3.7 Miscellaneous Relations

3.7.3 Negation (neg)

This is used for negative words like kāka, lēka, lēkuMd. a, lēdu etc, that occur with

both nouns and verbs.

(3.139)hēma
hema

kākuMd. ā
without/excluding

‘Excluding hema’

hēma

kākuMḍā

neg

Figure 3.75: Dependency structures for the sentence- 3.139

3.7.4 Particles (rp)

rp is used for particles of all kinds to be attached to its respective head. Classifiers,

Honorific words, etc are to be marked using this relation. Words like gāru, kūd. ā,

etc are to be tagged with this.

(3.140)nēnu
I.NOM

kūd. ā
also

sinimā-ki
cinema-DAT

vas-tā-nu
come-PST-1.SG

‘I will also come with you’

In 3.140, kūd. ā ‘also’ is linked to nēnu ‘I’ as rp.

vastānu

nēnu

k1

sinimāki

k2p

kūḍā

rp

Figure 3.76: Dependency structures for the sentence- 3.140

125

3.7 Miscellaneous Relations

3.7.5 Interjection(uh)

This relation is used for interjection expressions like ayyō!, pāpaM!, cha cha! in

Telugu.

(3.141)ayyō!
Interjection!

ippud. u
now

em
what

cēyāli?
do-POSS

ayyo! what to do now! In such cases, interjections are attached to the

immediate word using uh relation.

cēyāli

emi

k2

ippuḍu

k7t

ayyō

uh

Figure 3.77: Dependency structures for the sentence- 3.141

3.7.6 Fragment of (fragof)

’fragof’ is another non-dependency relation which is used to mark a fragments of a

phrase which are either separated/bracketed abbreviations/particles of phrases that

are separated etc. All such fragments which are related to other phrases are part of

the ‘fragof’ relation.

(3.142)telugu
telugu

deśaM
Desam

pārti
party

[te.de.pa]
[TDP]

ennikalalō
elections-LOC

ōd. ipōiMdi
defeat-PST-3.SG.N

‘Telugu Desam Party (TDP) was defeated in the last elections’

The bracketed abbreviation is related to the preceding full form before it. The

abbreviation ‘TDP’ is related to the element before it using ‘fragof’.

3.7.7 Address terms (rad)

This is another non-dependency relation which is used to tag address terms.

Words like ‘ayyā’, ‘amma’, ‘̄’srimati’, etc are annotated using this relation. ‘rad’ is

connected to the root.

126

3.7 Miscellaneous Relations

ōḍipōyiMdi

pārṭī

k1

ennikallō

dēśaṁ

nmod

(te.de.pa)

fragof

telugu

nmod

Figure 3.78: Dependency structures for the sentence- 3.142

3.7.8 Enumerator (enm)

‘enm’ is a tag used to annotate any numbers/number words found in a sentence.

For example, see below:

(3.143)vād. i-ki
he.DAT

16
16

ēll. u
years

vacc-ā-yi
come-PST-3.PL

‘He is 16years old now’

vaccāyi

vāḍiki

k4a

ēḷḷu

k1

16

enm

Figure 3.79: Dependency structures for the sentence- 3.143

127

3.7 Miscellaneous Relations

3.7.9 Symbols (rsym)

This non-dependency relation is used to mark any special symbols that occured in

a sentence like ‘.’, ‘*’, ‘/’, ‘%’, ‘$’etc. These symbols were directed towards the root

with the ‘rsym’ relation.

(3.144)puvvulu
flowers

,
,

paMd. lu
fruits

gud. iki
temple-DAT

t̄ısukuni
take

vell. -āM
go-PST-3.PL

‘We took flowers, fruits to the temple’

puvvulu paMḍlu
conj

veḷḷāmu

guḍiki

k2p

tīsukuni

vmod:cp_serial

,

rsym

k2

Figure 3.80: Dependency structures for the sentence- 3.144

128

Chapter 4

Architecture of the Rule-Based

Dependency Parser

4.1 Introduction

In this chapter, we present a detailed architecture of the Rule-Based Parser (RBP)

which is attempted to be utilized for Telugu. The parser exploits the Indian

grammatical theories (discussed in chapter-2) in order to parse the sentence.

Indian grammatical theories enabled the modelling of Indian languages over the

years. The rule-based parser under study considers grammar as a set of constraints

wherein parsing problem can be viewed as a constraint solving problem. The

parsing problem in rule-based systems are solved by eliminating the structures that

violate the constraints until we arrive at a single analysis. The currently available

Indian language rule-based parser’s algorithm for Sanskrit (Kulkarni, April 2021) is

adopted for this study. Here, an attempt is made to adapt the algorithm of

Sanskrit and enrich it with rules to parse Telugu sentences. Each component of the

parser is explained in this chapter using illustrations wherever necessary.

4.2 Rule-based Parser for Telugu

Parsers, majorly, are modelled in two ways viz., grammar-driven or data-driven.

Data-driven parsers use a collection of correctly parsed sentences called treebanks to

train the parser using supervised machine learning algorithms. Popular approaches

to data-driven dependency parsing include the graph-based and transition-based

dependency approaches. On the other hand, grammar-driven or rule-based parsers

use language generalizations to model the parser. Data-driven parsers are the state-

of-the-art parsers. The number of treebanks for languages around the world has

increased dramatically. But grammar-driven parsers have their own advantages.

This study adopts the rule-based approach to parsing considering the advantages it

provides for Telugu.

129

4.2 Rule-based Parser for Telugu

4.2.1 Why a Rule-based Parser?

To begin with, the advantages of rule-based parser are outlined which are also

discussed in chapter-1(Pp-24) of this thesis as well:

1. One of the important reasons to opt for a rule-based parser is the agglutinative

nature of Telugu which encodes prominent syntactic information in the form

of suffixes as a morphological manifestation.

2. Rule-based parser allows wide-coverage of language structures. Data-driven

parsers heavily rely on the corpus that is considered for annotation. If the

corpus does not contain certain type of construction, the system developed

henceforth also does not parse such constructions. This problem does not

arise in grammar-driven approaches as the majority of sentence structures are

covered in language grammars as rules.

3. Rule-based parsers does not require huge-corpus annotation. Corpus size

starting from 5k is considered the minimal amount to build a reasonably

good parser using data-driven approach. Building a corpus of 5k is a highly

tedious task and requires skilled annotators. In rule-based parsers, a single

rule can easily parse a specific relation in all the sentences with the inclusion

of certain exceptions wherever required

4. Error identification and correction are possible in rule-based parsers. Accuracy

of the system can be further improved using the inclusion of extra rules, lexical

databases & linguistic cues

5. Analysis of the sentences will not be inconsistent in rule-based parser like in

data-driven approach as the sentences are based on the grammatical

information of the language. Whereas data-driven approach analysis purely

depends on the annotators. Inter-annotator agreement is not a concern for

rule-based parsers

6. In the context of ambiguous structures, all possible analysis can be shown in

rule-based parsers whereas in data-driven parsers, one analysis for the given

sentence is provided.

Considering all the above advantages of rule-based approaches, the current

research attempts to build a rule-based parser for Telugu.

Th parser is built following the Indian theories of verbal cognition including three

factors viz. ākāMksā (expectancy), yōgyatā (meaning compatibility), and sannidhi

130

4.3 Architecture of the parser

(proximity) discussed in chapter-(2) of this thesis. The most common way of

depicting syntactic analysis is through trees or graphs. We model the parser as a

tree where the nodes of a tree correspond to words in the sentence and the edges

between nodes correspond to the semantic relation between the corresponding

words.

4.3 Architecture of the parser

The architecture of the parser is divided into 4 phases viz.,.

1. The Cleaning Phase

2. The Pre-processing Phase

3. The Parsing Phase

4. The Post-processing Phase

Parsing being a higher-level (syntactic level) analysis requires an adequate

amount of pre-processing before the parsing module begins. For RBP, we require

an input which is pre-processed till tokens with appropriate morphological

analysis. Each step of the parser is presented in-detail like visualized in the

fig-(4.1). This study uses CALTS lab tools for pre-processing the input sentences.

Each step of pre-processing is illustrated using the following example-(4.1):

(4.1) nā
I.POSS

kadha
story

aMdari
everyone-POSS

ād. apillala
girls-POSS

kadh-e
story-EMP

‘My story is similar to the story of all other girls’

4.3.1 The Cleaning Phase

In the cleaning phase, the input sentence is made free from any unwanted junk

information which is later normalized and converted to WX1 notation.

4.3.1.1 Input Sentence Cleaning

Cleaning is the preliminary step of the corpus pre-processing. One of the major

problems in creating an analyzable corpus is the unwanted pieces of information like

logos, headers, HTML tags, other navigational symbols especially if one works on

1wx notation is provided as part of the transliteration schema

131

4.3 Architecture of the parser

Figure 4.1: Architecture of the Rule-based Dependency Parser

132

4.3 Architecture of the parser

web-based corpus. Cleaning refers to steps that one takes to standardise the text

and to remove the text and characters that are not relevant for the study.

4.3.1.2 Normalization

Normalization involves spelling normalization and Unicode normalization. In

spelling normalization, non-standard spellings are converted to standard ones.

Spelling normalization is one of the components of normalization which corrects

the wrong spelling. For example, the following words are normalized before

parsing.

saduvu = caduvu ‘read’

prakkana = pakkana ‘beside’

In unicode normalization, the unicode character encoding is normalized. A single

unicode value may be canonically equivalent to a sequence of code points. In texts,

both these types of unicode values may occur. In such cases, the sequence of

unicode values is normalized here to a single value (Uma Maheshwar Rao, 1999).

4.3.1.3 Conversion of UTF-8 to WX

Conversion involves converting the input text from Unicode (here, Telugu script)

to WX format and vice versa. The WX transliteration schema can be seen in

page-?? of this thesis. The sentence-(4.1) is given in UTF-8 format which is

converted into WX notation as given below:

UTF-8 Format

WX format

4.3.2 The Pre-processing Phase

Pre-processing phase stands as a crucial phase for the current parser. This includes

tokenization, Parts of Speech (POS) tagging, morphological analysis, pruning morph

analysis and conversion of input to RBP format.

133

4.3 Architecture of the parser

4.3.2.1 Tokenization

Tokenization is a process in which text is converted into tokens. Tokens refer to

each individual occurrence of words, punctuations, symbols, numbers, acronyms

etc. in the text. Tokenizer segments a text into words and sentences before any

processing can be done. Texts are taken as input by tokenizer and output is given in

Shakti Standard Format(SSF). ‘Shakti Standard Format (SSF) is a highly readable

representation for storing language analysis. It is designed to be used as a common

format or common representation on which all modules of a system operate’ (Bharati

et al., 2007). The output of example-(4.1) is given below:

Figure 4.2: Tokenized output

4.3.2.2 Morphological Analysis

A morphological analyzer is a computational device to analyze a word into its root,

category and morpho-syntactic information in terms of its constituent morphemes.

This analyzer takes the word as the input and produces the root and its grammatical

features as the output. The CALTS morphological analyzer uses word paradigm

model (Hockett, 1954) to analyze the words. The sample output of example-(4.1)

for the morphological analyzer is given below (Rao et. al., 2010):

134

4.3 Architecture of the parser

Figure 4.3: Morphological Analysis

The morph analysis is given in the fourth column of SSF format. It consists of

feature structure(fs) with attributed features(af) in eight fields of information as

output. They consist of root, lexical category, gender, number, person,

case(direct/oblique), case marker and Tense Aspect Mood(TAM) suffix.

4.3.2.3 POS Tagger

Parts of Speech tagger is a device which assigns unique parts of speech to a word.

In this study, BIS POS tag 1 set based POS tagger is used which is developed

in CALTS. These POS tagged output is given in the third column of SSF. Based

on POS output, token with multiple catgeory is disambiguated by removing the

unmatched POS category with morphological analysis category.

Figure 4.4: POS tagged output

4.3.2.4 Pruning Morph Analysis

In the case of a token with same category, the previous and the following tokens’

morphological analysis is used and the unwanted morph analysis is pruned out.

When the system comes across some such entities, system chooses one candidate

analysis at random and predicts this to be the correct morphological analysis for the

given word. The existing CALTS pruner is used for this study.

1http://tdil-dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standard.pdf

135

http://tdil-dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standard.pdf

4.3 Architecture of the parser

Later, based on the context, at pruning stage, the system selects appropriate

morphological analyzer’s output where there is more than one analysis for a given

word. Rules to prune out analyses are identified and provided as a database.

Figure 4.5: Pruning morph output

4.3.2.5 Conversion of Input to RBP Format

The format provided from all the modules in the pipeline, mentioned earlier, align

the data in SSF. SSF is converted to RBP i.e. input with specific format including

important features viz., the actual word (word), word’s root (rt), lexical

category(lcat), gender(gen), number(num), person(per), case(case),

vibhakti(viBakwi), suffix(suff) in brackets delimited by spaces. In this stage, POS

information is removed. A token with morph analysed(morphana) information

consists of a specific id(token number), word(actual token), rt(root), lcat(lexical

category), gen(gender), num(number), per(person), case(direct/oblique case),

vibhakti(case suffix), suff(any other suffixes).

However, the parser is not programmed based on this output. It requires the

input to be converted to a Consider the converted output below:

Figure 4.6: RBP Format

4.3.2.6 Null-verb Insertion

In verbless sentences, i.e. nominal or adjectival predicate sentences, a null verb is

introduced as the parser required a verb to be a head of the sentences as discussed

in chapter-2. At this stage, after the conversion of the input is done, the system

checks each input for its availability of the verb. Hence, if the input lacks a verb

like in the following example, the system provides a null verb in-order to make sure

136

4.3 Architecture of the parser

the trees are headed by the verb. Consider the fig-4.7

Figure 4.7: Null verb insertion

4.3.3 The parsing Phase

In this section, a detailed algorithm of the parser using illustrations is presented.

Algorithm consists of multiple stages and each stage is described theoretically and

computationally.

4.3.3.1 Algorithm of the parser

The basic algorithm for parsing is as follows: Kulkarni (2021a)

1. “Define one node each corresponding to every word in a sentence

2. Establish directed edges between the nodes, if there is either a mutual or

unilateral expectancy (ākāṅks. ā) between the corresponding words. In order to

hypothesize a possible edge between two words, we refer to the expectancies

of the verbs and the corresponding vibhaktis and then postulate a possible

relation

3. Define constraints, both local on each node as well as global on the graph

as a whole. One of these constraints corresponds to sannidhi (proximity)

4. Use semantic constraints to filter out the meaning-wise non-congruent

solutions

5. Extract all possible trees from this graph that satisfy both local and global

constraints

6. Produce the most probable solution as the first solution by defining an

appropriate cost function. The cost C associated with a solution tree is

defined as C =
∑

e de × rk, where e is an edge from a word wj to a word wi

with label k, de = |j − i|, rk is the rank1 of the role with label k.

1All the roles are ranked, on the basis of heuristics, from 1 to 99.

137

4.4 An elaboration of the algorithm

Then the problem of parsing, a sentence may be modeled as the task of

finding a sub-graph T of G such that T is a Directed Tree (or a Directed

Acyclic Graph)”.

4.4 An elaboration of the algorithm

The steps mentioned in (4.3.3.1) is elaborated in this section.

4.4.1 Step-1 - Define Nodes

Step-1 of the algorithm is the preliminary step wherein each word of the sentence

will be assigned a specific node as part of the graph. For instance, for a sentence

nāku ī ūru kotta ‘I am new to this village’, 4 nodes corresponding to each word will

be defined at this stage. Number of nodes in a graph will be equal to number of

words in a sentence.

4.4.2 Step-2 - Directed Edges

Step-2 of the algorithm deals with the expectancies of verbs and the

corresponding vibhaktis which enable the parser to postulate a possible relation.

Once the verbs’ expectancies are fulfilled, a directed edge will be formed between

them. Expectancy, as discussed in chapter-2, can be between any

modified-modifier pairs. Here, we discuss how expectancies are identified by RBP

using rules and how directed edges are established between the words.

In order to establish edges, it is important to understand how expectancies

between words are expressed in language grammars and how it can be modelled in

NLP. We will look into this phenomenon from two perspectives viz., theoretical

and computational.

4.4.2.1 Theoretical Perspective

Pān. ini, theoretically, discusses assigning case-markers to each relation. However,

Computationally, parser uses a reverse process viz., assigning a relation using case-

markers.

Pān. inian treatment of kāraka relations consider a system of default vibhakti for

each relation. This vibhakti assignment is independent of verb semantics. (Table-

4.1) provides the default vibhakti for kāraka relations in Telugu. Apart from these

default vibhaktis, there exists cases of deviation in Telugu. These deviations arise

138

4.4 An elaboration of the algorithm

when verbs do not follow linguistic generalizations or when a structure is out of scope

of linguistic generalization. In order to handle these deviations, Pān. ini discusses a

model wherein he proposes two methods to handle deviation (Preeti K, 2010):

1. Assigning a different vibhakti

2. Imposing a new kāraka relation.

Preeti K (2010) summarizes the ways of mapping semantic relations to vibhaktis

through kārakas in Pān. inian Grammar(PG). Classification of mapping of semantic

relations to case suffixes can be observed in fig-(4.8). All the kāraka and non-kāraka

relations fall under the categories mentioned in the mapping. Using this classification

as a theoretical base, rules for RBP are framed, thereby, establishing directed arcs.

However, establishing directed edges are not a straightforward task as case suffixes

as small as 7 in number exhibit around 40 relations which need adequate information

about the expectancies of verbs and certain features of the nouns. Based on the fig-

(4.8), the semantic relations between noun-verb are divided into the following types

and illustrations are provided:

Figure 4.8: Semantic relations-vibhakti mapping

139

4.4 An elaboration of the algorithm

Type-A: Default Marking

The first type of semantic relation is when the language follows the linguistic

generalisation and takes a default kāraka as listed in (Table-4.1). In example (4.2)

as explicated, kartā (k1) and karma (k2) are marked with the default vibhakti i.e

-∅ and -ni respectively.

(4.2) nēnu-∅
I.NOM

ravi-ni
Ravi-ACC

cūs-ā-nu
see-PST-1.SG

‘I saw Ravi’

In this type of mapping, the system do not require any kind of semantic information

or in case of non-availability of semantic cues, the parser considers in the default

vibhakti and provides the relation. Consider the (Table 4.1) for default case-marking

in Telugu. we provide a table as to how each type in the semantic mapping will be

programmed in the Rule-based parser.

Sl.no kāraka relation vibhakti

1 kartā ‘Roughly subject’ ∅
2 karman ‘Roughly object’ -ni/-nu

3 karan. a ‘instrument’ -tō

4 sampradhāna Recipient/beneficiary’ -ki/-ku

5 apādāna ‘source’ nuMd. i/niMci/nuMci

6 adhikaran. a ‘locus’ -lō, -ki/ku

Table 4.1: kāraka relations and default vibhaktis in Telugu.

Type-B: Optional Marking

In certain relations, there exist instances of verbs in addition to the default case

marking which deviates from the default case marking and assign optionally other

case-suffixes as in (Table 4.3) and (Example 4.4).

The verb ceppu ‘to tell’ assigns either vibhakti -ki or -tō to express the relation

sampradana (k4) i.e the recipient of an action as in (Example 4.3).

(4.3) nēnu-∅
I.NOM

prakās-ki/-tō
Prakash-DAT/ASS

ā
that

viSayaM
matter

cepp-ā-nu
tell-PST-1.SG

‘I told that matter to Prakash.’

Similarly, the verb ekku ‘to climb’ in Telugu, has an expectancy of a noun expressing

the location ‘to climb‘. In this case, the noun is marked either with the vibhakti -nu

or mīda as in (4.4).

(4.4) nēnu-∅
I-NOM

ēnugu-nu/mı̄da
elephant-ACC/on

ekk-ā-nu
climb-PST-1.SG

140

4.4 An elaboration of the algorithm

‘I climbed the elephant.’

Type-C: Different Marking

In certain cases, it is found that a different vibhakti is assigned instead of the default

one to indicate a particular semantic relation. For instance, the default vibhakti to

indicate the source of separation, apādāna i.e. the ablative case as in (Example 4.5).

However, in the case of mental separation as in (Example 4.6) where the kartā, vād. u

‘he’ separates himself mentally due to the fear of sim. haM ‘lion’ which is considered

as apādāna in PG but it is realized by the different vibhakti i.e. -ki, not -nuMd. i.

(4.5) cet.t.u
tree

nuMd. i
from

āku-lu-∅
leave-PL-NOM

rāl-ā-yi
fall-PST-3.PL

‘Leaves fell from the tree.’

(4.6) vād. u-∅
He.NOM

sim. hāni-ki
lion-DAT

Bayapad. a-tā-d. u
scare-HAB-3.SG.M

‘He is scared of a lion.’

Type-D: Imposition of a new kāraka

In certain exceptional cases, it is found that a new kāraka is imposed using a default

vibhakti. This can be due to the extension of the case relation as explicated in (

Example 4.7) where il.l.u ‘home’ is the karma to the verb vel.l.u as per PG, however

it is marked with the vibhakti ‘-ki’.

(4.7) nēnu-∅
I.NOM

iMt.i-ki
home-DAT

vel.l.-ā-nu
go-PST-1.SG

‘I went home.’

From the above classification, it can be observed that single case-marker can serve

different roles based on the context. Here, context refers to the properties of verbs

and nouns. For example, a noun with ‘-ki’ suffix when occurs with a verb of

[+motion] property serves a different role in a sentence. Whereas a noun with ‘-ki’

having the properties of [+time] serves a different role. This leads us to the main

process of the step-2 which is the use of ’lexical semantics of nouns and verbs’.

4.4.2.2 Computational Perspective

In the theoretical perspective, we have observed that case-markers are assigned

to each relation. Based on the above types, computationally, a reverse process is

employed wherein each relation is assigned using case markers. However, this is not

a straightforward process. The fact that each relation is not marked using a unique

case-marker makes the process of building a parser tedious. This leads to ambiguity

in marking relations. Hence, other linguistic cues like semantics of nouns and verbs

141

4.5 Define Constraints

coupled with case-suffixes are considered to parse sentences. An elaborate on how

relational disambiguation happens in the parser is discussed in the section-4.7.

4.5 Define Constraints

The step-3 of the algorithm is to define local and global constraints. The local

constraints used in the parser to postulate the best possible result using local

information. Kulkarni (2021b). The properties of local constraints are given below:

1. A node can have one and only one incoming edge.

2. There cannot be more than one outgoing edges with the same label from the

same node, if the relation corresponds to a kāraka relation.

3. There cannot be self loops in a graph.

In addition to the local constraints, we also use global constraints like sannidhi

‘proximity’ which is a constraint. The important property of it is to restrict the

crossing of edges.

4.6 Use of Semantic Constraints

The use of semantic constraints is dealt in step-4 of the algorithm. It is quite

important to include semantic constraints in a parser to arrive at correct solution.

For instance, the sentence colorless green ideas sleep furiously is a syntactically

well-formed sentence but semantically ill-formed. The natural language feature

which enables the use of semantically well-formed constructions is termed as

yōgyatā in PG or the selectional restriction in western terminology. Selectional

restriction is defined as the semantic constraint imposed on the arguments of

verbs. We use selectional restriction of arguments of the verb to prune out the

non-congruent solutions and arrive at a single parse. Let us consider the following

examples-(4.8) & (4.9):

(4.8) tūPānu-∅
storm.NOM

il.l.u-∅
house-ACC

kūlc-iM-di
destroy-PST-3.SG.N

‘The storm destroyed houses.’

142

4.7 Use of Lexical Semantics of Nouns and Verbs

(4.9) il.l.u-∅
house.NOM

tūPānu-∅
storm-ACC

kūlc-ā-yi
destroy-PST-3.SG.N

’Houses destroyed the storm.’

Both the examples (4.8) and (4.9) are syntactically well-formed sentences, when

yōgyatā is applied, the example (4.9) stands semantically ill-formed because of the

fact that ‘Houses destroying the storm’ is a semantically unacceptable sentence. In

order to solve such issues, the canonical word order of a language is used as a cue.

The other instance in which we use selectional restriction is to disambiguate kartā

and karma in Telugu. When the karma is [-animate], the vibhakti ∅ is used which is

synonymous with the marker for kartā. In such cases, two ontological features [+/-

animate] and [+/- human] could resolve the ambiguity in Telugu as well as in other

Indian languages as examined by Bharati et al. (2008b). Kartā is considered to be

higher in its hierarchical order in comparison with karma. Consider the following

example:

(4.10) nēnu.∅
I-NOM

pāt.a.∅
song.ACC

pād. -āli
sing-HOR

‘I should sing a song’

Here, the verb pād. u ‘sing’ is in hortative mood and does not agree with the kartā.

However, the verb pād. u ‘sing’ expects kartā with a semantic feature of [+human]

thus, (nēnu) ‘I’ is prioritized over a [-animate] entity (i.e. pāt.a) ‘song’. These

two semantic features proved to be quite helpful in resolving the most ambiguous

relation of kartā and karma. As seen earlier, this parser exploits various linguistic

information which stands crucial in disambiguating certain cases.

4.7 Use of Lexical Semantics of Nouns and Verbs

The lexical semantics of verbs provides cues in certain cases to disambiguate

vibhaktis and their corresponding semantic relation. Relational disambiguation is a

challenging task as a single case suffix can result in several relational

interpretations without the interference of semantics. For instance, -ki/-ku is the

highly ambiguous case marker in Telugu. It can serve many semantic roles in a

sentence based on the features of the respective verbs and nouns. All the semantic

information regarding various classes of verbs and nouns is stored as part of the

database (see table-(4.9)) to disambiguate relations. Database is augmented with

RBP rules in-order to produce the correctly parsed trees. Here, we discuss various

143

4.7 Use of Lexical Semantics of Nouns and Verbs

case markers and their respective ambiguous relations1 along with the technique

adopted by RBP to resolve them. Consider the figure-(4.9) of default vibhaktis and

the number of case relations it can exhibit:

Figure 4.9: vibhakti-kāraka Mapping

4.7.1 Relational Disambiguation - [-∅] suffix

A nominal with null suffix, ‘-∅’, can exhibit several case relations in Telugu like

kartā, karma, kartā samānadhikarana, can indicate goal or destination,

kālādhikarana, deśādhikarana. In RBP, ambiguous sentences are disambiguated

using syntactic and database cues. Consider the table-(4.7) that include the

syntactic cues, lexical semantics and case-suffixes used to mark the probable

semantic relation. Reference examples are also provided 2.

To illustrate consider (4.11)

1It should be noted that providing all possible semantic relations or an exhaustive list of

semantic relations for each case-marker can be a highly tedious task and does not fall under the

scope of this study. However, most common ambiguous relations are mentioned in this section
2All the reference example numbers mentioned in tables-4.7, are part of chapter-3

144

4.7 Use of Lexical Semantics of Nouns and Verbs

Sl.No.

Case

Suffix

Lexical

Semantics

Linguistic

Cues

Semantic

Relation

Example

Reference

1. -∅ • Noun[-Time] GNP agreement

with finite verb

k1 (3.8)

2. -∅ • Verb[+Transitive]

• Verb[+Ditransitive]

• Noun[-Animate]

• Verb[-Passive]

attached to the

nearest verb

k2 3.24

3. -∅ • Verb[+Passive]

• Noun[-Time]

• Noun[-Place]

-abad̄u suffix on

verb

k2 (3.31)

4. -∅ • Verb[+Motion]

• Noun[+Place]

k2p (3.36)

5. -∅ • Noun[+Time] k7t (3.53)

6. -∅ • Verb[+Copula]

• Noun[-Time]

Nearest nominal

before finite verb

k1s (3.21)

Table 4.2: Relational Ambiguity -∅ Suffix

(4.11) paigā
moreover

mā
our

iMt.lō
house-LOC

aMdarū.∅
everyone

polaM-∅
field

pōv-ā-li
go-HAB-HORT

‘Moreover, everyone in our house must go to the field’

In the example-(4.11), words aMdaru ‘everyone’ and polaM ‘field’ are null-marked.

However, they exhibit two different relations, namely, kartā and k2p

‘’goal/destination. In order to differentiate between this relations, RBP uses the

two databases viz., (1) Motion verbs & (2) Place nouns. Hence, if a null-marked

noun is part of the place nouns and is followed by a motion verb, it is tagged as

k2p is not the kartā.

Likewise, when a nominal with -∅ case suffix occurs but is part of the [+time]

nouns [eg. sāyaMtraM ‘evening’]. It will be given the tag k7t.

When a nominal is null marked and occurs with the copula verb or occurs in a

verbless sentence. RBP marks both kartā and kartā samānadhikarana which will

be later filtered out.

The same technique is followed for disambiguating all case-suffixes.

145

4.7 Use of Lexical Semantics of Nouns and Verbs

4.7.2 Relational Disambiguation - [ni/nu] suffix

The -ni/nu suffix is as ambiguous as the null marker in Telugu. It expresses mutliple

case relations. Consider the table-(4.3)

Sl.No.

Case

Suffix

Lexical

Semantics

Syntactic

Cue

Semantic

Relation

Example

Reference

1. -ni/nu • Verb[+Transitive]

• Verb[+Ditransitive]

k2 (3.22)

2. -ni/nu • Verb[+Transitive]

• Verb[+Create]

Immediately followed

by k2

k2s (3.39)

3. -ni/nu • Noun[+Place]

• Verb[+Motion]

k2p (3.37)

4. -ni/nu • Verb[+Causative] jk1 (3.17)

5. -ni/nu • Noun[+Animate]

• Verb[+communication]

Usually followed by a

Noun[-animate]

k2g (3.30)

Table 4.3: Relational Ambiguity -ni/nu Suffix

For disambiguating -ni/nu suffix, databases of transitive verbs, ditransitive

verbs and causative verbs proved to be very useful. These lists should be improved

whenever a new verb is encountered.

4.7.3 Relational Disambiguation - [-ki/ku] suffix

-ki/ku suffix in Telugu is the most ambiguous among all the case suffixes. Consider

the following set of examples:

(4.12) nēnu-∅
I-NOM

vād. i-ki
he-DAT

pustakaM-∅
book-ACC

icc-ā-nu
give-PST-1.SG

‘I gave a book to him.’

(4.13) nēnu-∅
I-NOM

bad. i-ki
school-DAT

vel.l.-ā-nu
go-PST-1.SG

‘I went to the school’

(4.14) nāku
I-DAT

telugu
telugu

telusu
know-PST-3.SG.N

‘I know Telugu’

146

4.7 Use of Lexical Semantics of Nouns and Verbs

Sl.No.

Case

Suffix

Lexical

Semantics

Semantic

Relation

Example

Reference

1. -ki/ku • Verb[+Ditransitive] k4

(3.41)

2. -ki/ku • Verb[+Experience]

• Noun[+Animate]

k4a (3.43)

3. -ki/ku • Verb[+Experience]

• Verb[-Ditransitive]

rt (3.73)

4. -ki/ku rh (3.66)

5. -ki/ku r6 (3.6)

6. -ki/ku • Noun[+Time] k7t (3.53)

7. -ki/ku • Verb[+copula]

• Noun[-time]

k*u

8. -ki/ku adv (3.120)

9. -ki/ku • Noun[+place]

• Verb[+motion]

k2p (3.35)

Table 4.4: Relational Ambiguity -ki/ku

(4.15) ravi-∅
ravi-NOM

padi-∅
10

gaṁt.ala-ku
hour-DAT

haidarābādu-ku
Hyderabad-DAT

cērukuMt.-ā-d. u

reach-PST-3.SG.M

‘Ravi will reach Hyderabad at 10 O‘clock.’

The vibhakti -ki is used to express different relations viz. sampradāna (k4) as in

4.12 and goal/destination (k2p) as in 4.13, anubhava kartā as in 4.14,

kāladhikarana & dēśādhikarana as in 4.15. In such cases, the semantics of verb is

considered to disambiguate the vibhakti. In example-4.13, the verb belongs to the

class of [+motion] hence it has a requirement of k2p unlike the example-4.12. The

other verbs in the class of [+motion] verbs include vaccu ’come’, parigettu ’run’,

bayaluderu ’start’, etc. This semantic information is augmented with syntactic

rules in order to mark the appropriate relation.

Now, when we compare 4.12, 4.13, 4.14, it can be observed that all the three

sentences contains a nominal phrase with the -ki suffix. However, it is evident that

three nominal phrases represent different relations. In order to differentiate the above

two from this, we utilize the semantics of verbs. In 4.14, the verb telusu requires an

147

4.7 Use of Lexical Semantics of Nouns and Verbs

experience subject. This information of verbs requiring experience subjects is stored

as part of the database.

4.7.4 Relational Disambiguation - [-tō] suffix

Sl.No.

Case

Suffix

Lexical

Semantics

Semantic

Relation

Example

Reference

1. -tō • Noun[+Instrument] k3 (3.40)

2. -tō • Verb[+Communicate] k4 (3.42)

3. -tō • Noun[+Animate] ras* (3.76)

4. -tō Noun[+Abstract] adv (3.118)

5. -tō • Verb[+Create] k5prk ((3.52-b))

6. -tō rh (3.67)

Table 4.5: Relational Ambiguity -tō

(4.16) s̄ita
sita.NOM

atani-tō
he-INS

nijaM
truth

cepp-iM-di
tell-PST-3.SG.F

‘sita told him the truth’

(4.17) s̄ita
sita-NOM

atani-tō
he-ASS

bājāruku
market

velliMdi
go-PST-3.SG.F

‘Sita went to the market with him’

(4.18) s̄ita
sita-NOM

kal.l.a-tō
eyes

saiga
gesture

cēsiMdi
do-PST-3.SG.F

‘Sita made a gesture using her eyes’

In the examples-(4.16-4.18), one can notice a nominal with -tō marker. -tō in all

the instances serve a different semantic role.

In order to deduce the relation of ’k4’ in 4.16, verbal features are taken into

consideration. It so happens that with a verb of [+communication] (Levin, 2015),

the beneficiary/receipient of the action of communication verb, the default case

marker(-ki) can often be replaced with -tō. Hence, [+communication] verbs like

ceppu ’to tell’, sambhāśiMcu ’converse’, māt.lād̄u, etc will be stored in the

database. Thus, when a nominal phrase with a -tō marker occurs along with

[+communication] verb, it will be provided the tag

sampradāna/beneficiary/recipient.

The second instance with -tō -4.17, is a relation of association which presumes

a [+human] nominal to be part of the action. This cue about animacy of the noun

is considered to decide if the relation is association (ras*). Any nominal that is

148

4.8 Implementation

[+animate] and does not contain [+communication] verb, can be given the tag of

’upapada sahakārakatva(ras *)/associative’.

Likewise, another instance that exploits the animacy feature of nouns is the

role of instrument. Currently, the system considers [+neuter] nouns and

[-communication] verbs as the checkpoints to mark the relation of

instrument(karan. a).

4.7.5 Relational Disambiguation- -lō

Sl.No.

Case

Suffix

Lexical

Semantics

Semantic

Relation

Example

Reference

1. -lō • Noun[+place] k7p (3.55)

2. -lō • Noun[+Time] k7t (3.54)

3. -lō Noun[+Abstract] k7 (3.59)

5. -lō • Noun[+abstract] adv (3.119)

Table 4.6: Relational Ambiguity -lō suffix

4.7.6 Relational Disambiguation- -nuMd. i/nuMci/niMci

Sl.No.

Case

Suffix

Lexical

Semantics

Semantic

Relation

Example

Reference

1. -nuMd. i/nuMci/niMci • -Verb[Create] k5 (3.50)

2. -nuMd. i/nuMci/niMci • Verb[+Create] k5prk ((3.52-b))

3. -nuMd. i/nuMci/niMci rh (3.69)

Table 4.7: Relational Ambiguity -nuMd. i/nuMci/niMci suffix

4.8 Implementation

Rule-based parser is programmed using Ocaml1. It is a general purpose programming

language efficient in language modelling as well. The run-time is simple and its

1https://ocaml.org/

149

https://ocaml.org/

4.8 Implementation

portable. Here, we begin with pre-requisites for the installation process of the system

and then discuss its components. The installation process of Ocaml version used to

build this parser and various packages required to run the parser are provided 1.

The following commands are used for Installation:

Pre-requisites:

apache HTTP server

bash

bison

flex

graphviz

gcc

g++

lttoolbox

make

perl

python

default-jdk

timeout

4.8.1 Rules

This section explains the rules formulated for analyzing Telugu sentences. The rules

are written in Ocaml language. A sample rule is provided below-4.10. All the other

rules are given as part of the appendix-2.

Figure 4.10: Sample Rules

1For any further installation procedure follow the instructions provided in SCL repository at

https://github.com/samsaadhanii

150

https://github.com/samsaadhanii

4.8 Implementation

Installation commands for Pre-requisites

sudo apt-get install apache2 bash bison flex graphviz gcc lttoolbox

make perl python xsltproc default-jdk timeout g++

Install Objective Caml (ocaml-4.07.1.tar.gz) available at

http://ocaml.org/releases/

./configure

make world.opt

sudo make install

Install Ocamlbuild from (ocamlbuild-0.13.0.tar.gz) available at

https://github.com/ocaml/ocamlbuild/releases

make configure

./configure

make

sudo make install

Then install Camlp4 (camlp4-4.07-1.tar.gz)

https://github.com/ocaml/camlp4/releases

./configure

make all sudo make install

Install Zen (zen-master.tar.gz) available at

https://gitlab.inria.fr/huet/Zen.git

cd Zen/ML

make

sudo a2enmod cgid

sudo systemctl restart apache2

Table 4.8: Installation pipeline

Rule-based parser consists of rules for various relations in Telugu. This is not

an exhaustive list, however, can be improved whenever a new relation is

encountered. Sample rules along with their algorithm will be provided in the

section-(4.8.3) of this chapter. Rules of the parser are based on the descriptive

grammar of Telugu which cover almost all types of constructions, exceptions and

probable structures in the language. Hence, grammar books were referred to frame

the rules (Also, mentioned in chapter-1 of this thesis) viz.., telugu vākhyaM

(Ramarao, 1975), A reference grammar of modern Telugu (Ramarao, 2017),

bālavyākaran. aM (Chinnaya Suri, 1855), A grammar of Modern Telugu

(Krishnamurti and Gwynn, 1985), Non-Nominative Subjects (Bhaskararao and

Subbarao, 2004), The Dravidian Languages (Krishnamurti, 2003b), Experiencer

151

http://ocaml.org/releases/
https://github.com/ocaml/ocamlbuild/releases
https://github.com/ocaml/camlp4/releases
https://gitlab.inria.fr/huet/Zen.git

4.8 Implementation

Subject in South Asian Languages (Verma and Mohanan, 1990).

4.8.2 Database

Database is the lexical reserve for the parser to provide a required environment to

parse the sentence and mark exceptions. This component of the parser consists of

lists of noun classes, verb classes, indeclinables, specific semantic features of lexical

categories and the like. These lists stand as cues for disambiguating certain

relations. Database is augmented with RBP rules in-order to produce the correctly

parsed trees. Efficiency of the parser depends on the richness of database for which

a continuous updation is needed. The role of database in a rule-based parser is

emphasized throughout this thesis. Table-(4.9) provides the list of databases used

in RBP:

4.8.2.1 Filter Module

Rule-based parsers are affected by over-generation and this parser is no exception.

Hence, a filter module is introduced to facilitate pruning out of extra, unwanted

relations between words after all other rules & databases have been applied. This

will be explicated in detail as part of section-(4.19).

4.8.2.2 Filtering

In this step, if two words are joined by more than one directed arc, filtering is

evoked. This step ensures the pruning out of impossible edges. For instance, when a

sentence(consisting of a single verb) is marked for two kartas, filtering program filters

out the edge which is least probable. After filtering, graphs are free from ambiguity.

In case of a Telugu parser, filtering was used for majorly for certain relations like

karta(k1) vs karma(k2), karta(k1) vs karta samānadhikarana(k1s), karma vs karma

samānadhikarana etc. Let us consider an example to understand filtering:

(4.19) āyana
He.NOM

mā
our

nānna
father

‘He is my father’

Step-1

Each word in the sentence āyana, mā, nānna are considered as separate nodes. As

there is no verb in the sentence, a null verb is inserted in the pre-processing stage.

Step-2

If the noun contains a -∅ suffix & the verb is part of the copula list, then the noun

152

4.8 Implementation

Sl.No Name of the database No. of words

1 Transitive verbs 2478

2 Ditransitive verbs 18

3 Experience verbs 25

4 Motion verbs 18

5. Create verbs 20

6. Light verbs 112

7. Quantifiers 168

8. Question words 271

9. Interjections 15

10. Place nouns 25

11. Time nouns 35

12. Animate nouns 5263

Male nouns 4120

Female nouns 1143

14. Abstract nouns 65

15. Adjectives 360

16. Nouns of Place and Time 559

17. Post-positions 107

18. Intensifiers 12

19. avyaya 134

avyaya vmod

avyaya particles

avyaya determiners

Table 4.9: Statistics of database

immediately preceding the verb is the karta samānādhikarana.

Step-3

Though this rule works for ”k1s”, a noun with -∅ suffix, can also be a karta leading

to two interpretations. The graph for the above sentence will be provided like seen

in the figure-(4.11).

Step-4

In the figure-(4.19), we can see that there are two incoming nodes from the root verb

and nānna. Also, karta is marked twice. Filtering works on such input by filtering

out the redundant tags. Hence, if k1 is already available in the input text, it prunes

out karta that has more than one directed arc. Consider the final parsed output

153

4.8 Implementation

Figure 4.11: Parser analysis of 4.19

after filtering stage: Similarly, other relations are also pruned-out using this process.

Figure 4.12: Parser analysis after filtering of 4.19

4.8.2.3 Generating trees

After the filtering stage, when every node in the tree is connected to only one edge,

the parser generates the trees.

4.8.3 Parser Rules

In this section, each rule in the parser program (coded in wx notation) will be

listed with a rule description followed by its algorithm. Rules are framed looking

at input sentence and their disambiguated morphological information. A verb is

identified and it’s corresponding relations are marked based on various linguistic

cues. To identify kāraka and non-kāraka(both dependency and non-dependency)

relation; root, and other morphological features such as lexical category, gender,

number, person, case marker and other suffixes are marked with expectancy of the

154

4.8 Implementation

Figure 4.13: Sample generated trees from the parser

word

In the program, we frame rules at two levels: In the first level, rules will be based

on only two words in the sentence. One of which is mandatorily a verb for kārakā

relations. The other one include the noun. However, in other modifier relations like

nmod, r6, psp etc., a pair of noun and noun will be considered and other

categories wherever necessary. It depends on the type of relation under study.

However,sometimes, it requires more than two words to form a relation. For

example, mēmu haidarābādu nuMd. i vaccāmu ’we came from Hyderabad’,

haidarābādu nuMd. i together should be an apādāna to the verb vaccāmu. This

analysis requires three words to form a relation. In such circumstances, next level

of rules are formed. It involves three words.

4.8.3.1 Rules for kartā (k1)

kartā in Telugu is identified with null case marking on the lexical category of

nominal1 in active voice. In passive voice, kartā takes the suffix cē/cēta.

Rule-1

Cue 1: The token with the category (lcat) noun/pronoun (N/PN) with the case

[-∅], when its gender-number-person(GNP) matches with the finite verb(V)’s GNP.

AND

Cue 2: When the verb is not in passive voice i.e. the suffix in the TAM2 slot is

not equal to “a bad.u”,i.e., the infinitive form followed by the passive suffix.

AND

Cue 3: The noun (ROOT) is not a part of temporal noun list N[+time]

Code

1Nominal can be a noun/pronoun/proper noun/place noun and the like
2Tense, Aspect, Mode

155

4.8 Implementation

1. [cat == N || PN] && vib =="-∅”;
2. if:
3. N[GNP] == V[GNP]
4. N[ROOT] != N[+time];
5. V[TAM] != ”a badu”;
6. then:
7. tag = ”k1”

Rule-2

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

cē/cēwa, when its gender-number-person(GNP) does not match with the finite

verb(V)’s GNP.

AND

Cue 2: Verb must be part of [+transitive] verb list. And when the verb is in

passive voice i.e. the suffix in the TAM slot is equal to “a bad.u”

AND

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

Code
1. [lcat == N || PN] && [vib == "-ce/cewa];
2. if:
3. N[GNP] != V[GNP];
4. N[ROOT] != N[+time];
5. V[ROOT] = V[+transitive];
6. V[TAM] = "a badu";
7. then:
8. tag = "k1"

Rule-3

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

suffix ad. aM, when its gender-number-person(GNP) matches with the finite

verb(V)’s GNP.

AND

Cue 2: Verb must be part of [-transitive] verb list.

AND

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

Code
1. [lcat == N || PN] && [suffix == "ad.aM];
2. if:
3. N[GNP] = V[GNP];
4. N[ROOT] != N[+time];
5. V[ROOT] = V[-transitive];
6. then:
8. tag = "k1"

156

4.8 Implementation

4.8.3.2 Rules for karma(k2)

A combination of two words in a sentence, one of which is mandatorily a verb.

And a noun/pronoun with the case marking -ni/nu is marked as k2 when it

satisfies the following cues:

Rule-1

Cue 1: The token with the category (lcat) of noun/pronoun (N) with the vibhakti

-ni/nu. Or when the vibhakti is -∅ and gender(GEN) of the noun is equal to neuter

N[+neuter] or token with lcat verb and suffix=ad.aM/ad. aM nu

AND

Cue 2: When the verb is not in passive voice i.e. the suffix in the TAM slot

”a bad.u”, the infinitive form the passive suffix & verb is in transitive verb list

AND

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

Code
1.[lcat == N||PN && [suffix =="-ni/nu/ "] ||[lcat == N||PN] && [suffix
=="-∅"] || [lcat == v && [suffix =="-ad.aM nu/ni "] ;
2. if:
3. N[GNP] != V[GNP];
4. N[ROOT] != N[+time]
5. V[ROOT]== [+transitive];
5. V[TAM] != "a badu";
6. then:
7. tag = "k2"
8. elif:
9. lcat == N || PN && suffix =="-∅";
10. if:
11. N[GNP] != V[GNP];
12. N[GEN] == N[+neuter];
13. N[ROOT] != N[+time];
14. V[ROOT] ==[+transitive];
15. V[TAM] !="a badu";
16. then:
17. tag = "k2"

Rule-2

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

[-∅], when its GNP does match with the finite verb(V)’s GNP.

AND

Cue 2: Verb must be a part of [+transitive] verb list. And when the verb is in

passive voice i.e. the suffix in the TAM slot is equal to “a bad.u”, the infinitive

form of the passive suffix.

AND

157

4.8 Implementation

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

Code
1. lcat == N || PN && vib == "-∅";
2. if:
3. N[GNP] = V[GNP];
4. N[ROOT] != N[+time];
5. V[ROOT] = V[+transitive];
6. V[TAM] = "a badu";
7. then:
8. tag = "k2"

4.8.3.3 Rule for gauna karma (k2g)

Rule-1

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

[-ni/nu], when its GNP does match with the finite verb(V)’s GNP.

AND

Cue 2: Verb must be a part of [+Communicative verbs] verb list.

AND

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

AND

Cue-4: A noun with vib=ni/nu should precede it

Code
1. lcat == N || PN && vib == "-ni/nu";
2. if:
3. N[GNP]! = V[GNP];
4. N[ROOT] != N[+time];
5. V[ROOT] = V[+communicative] || V[+Transitive];
6. then:
7. tag = "k2"

4.8.3.4 Rules for karana(k3)

Rule-1

A noun/pronoun with the case marking -tō/dwārā is marked as k3 when it satisfies

the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

-tō/dwārā and gender(GEN) is N[+neuter]

158

4.8 Implementation

Code
1. lcat == N || PN && suffix == "-wo/XvArA";
2. if:
3. N[GEN] = N[+neuter];
4. V[ROOT] != V[+copula];
5. then:
6. tag = "k3"

4.8.3.5 Rule for sampradāna(k4)

A noun/pronoun with the case marking --ki/ku is marked as k4 when it satisfies the

following cues:

Rule-1

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

--ki/-ku

AND

Cue 2: Verb is verb[+ditransitive]

Rule-2

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

--ki/-ku/tō

AND

Cue : When the verb is part of the communicative verb list

Code
1. lcat == N || PN && suffix == "-ki/-ku";
2. if:
3. V[ROOT] = V[+ditransitive];
4. then:
5. tag = "k4"

Code
1. lcat == N || PN && suffix == "-ki/-ku/wo";
2. if:
3. V[ROOT] = V[+communicative];
4. then:
5. tag = "k4"

4.8.3.6 Rule for apādāna (k5)

A noun/pronoun with the vib-nuMd. i/nuMci/niMci is marked as k5 to the nearest

verb it encounters.

Code
1. lcat == N || PN] && vib == "nuMd.i/nuMci/niMci";
2. then:
3. tag = "k5"

159

4.8 Implementation

4.8.3.7 Rule for prakruti apādāna (k5prk)

Cue-1

A noun/pronoun with the case marking -nuMd. i/nuMci/niMci is marked as k5 to

the nearest verb it encounters.

AND

Cue-2

Verb belong to V[+create] list of verbs.

Code
1. lcat == N || PN && vib == "nuMd.i/nuMci/niMci";
2. if:
3. V[ROOT] = V[+create]
2. then:
3. tag = "k5prk"

4.8.3.8 Rule forkāladhikarana (k7t)

Rule-1 A noun/pronoun with the case marking --lō/ki/ku/-∅/-∅ e is marked as

k7t when it satisfies the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

-ki/ku/-lō/-∅/-∅ e

AND

Cue 2: Noun is part of the N[+Time] list

Code
1. lcat == N || PN && (vib == "-ki/ku/ || vib=lo ||vib=-∅/;)
2. if:
3. N[ROOT] = N[+time];
4. then:
5. tag = "k7t"

4.8.3.9 Rule for deshādhikarana (k7p)

Rule-1 A noun/pronoun with the case marking --lō/ki/ku/pai/mīda/lōpala is

marked as k7t when it satisfies the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

--lō/ki/ku/pai/mīda/lōpala

AND

Cue 2: Noun is part of the N[+place] list && verb is not part of the V[+motion]

list

160

4.8 Implementation

Code
1. lcat == N || PN && (vib == ‘‘--lō"|| vib=‘‘ki" || vib= ’’ku" || vib =
"pai" || vib=‘‘mīda" || vib=‘‘lōpala");
2. if:
3. N[ROOT] = N[+place];
4. V[ROOT] != V[+motion]
5. then:
6. tag = "k7p"

4.8.3.10 Rule for vishyādhikarana (k7)

Rule-1 A noun/pronoun with the case marking --lō/lōni/ is marked as k7 when it

satisfies the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

--lō/lōni

AND

Cue 2: Noun is not part of the N[+place] or N[+time] list

Code
1. lcat == N || PN && vib == "--lō/lōni";
2. if:
3. N[ROOT] != N[+place];
4. N[ROOT] != N[+time]
5. then:
6. tag = "k7"

4.8.3.11 Rule for Goal/Destination (k2p)

A noun/pronoun with the case marking --ki/ku/∅ is marked as k2p when it

satisfies the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

--ki/ku/∅
AND

Cue 2: Noun is part of the N[+place] && V[+motion] list of verbs

Code
1.[lcat == N || PN] && [suffix == ‘‘-ki/ku"] || vib=‘‘∅";
2. if:
3. N[ROOT] = N[+place];
4. V[ROOT] = V[+Motion]
5. then:
6. tag = "k2p"

4.8.3.12 Rule for kartā samānādhikarana(k1s)

Cue 1: The word with the category (lcat) noun/pronoun/adjective (N/PN/ADJ)

with suffix (number person) [-∅/ni/nu/mu/vu/vi/gāru/ni e], when its GNP does

161

4.8 Implementation

not match with the finite verb(V)’s GNP.

AND

Cue 2: Verb must be a part of [+copula] verb list.

AND

Cue 3: When the root noun (ROOT) is not a part of temporal noun list

(N[+time)]

Code
1. lcat == N || PN || ADJ && suffix == "--∅/ni/nu/mu/vu/vi/gāru/ni e";
2. if:
3. N[GNP] != V[GNP];
4. N[ROOT] != N[+time];
5. V[ROOT] = V[+Copula];
6. ID of verb = ID of noun + 1;
6. then:
7. tag = "k1s"

4.8.3.13 Rule for anubhava kartā(k4a)

Cue 1: The word with the category (lcat) noun/pronoun (N/PN) with the case

[-ki/ku], when its GNP does not match with the finite verb(V)’s GNP.

AND

Cue 2: Verb must be a part of [+experience] verb list.

AND

Cue 3: When the root noun (ROOT) is not a part of animate noun list

(N[+animate)]

Code
1. lcat == N || PN && suffix == "-ki/ku";
2. if:
3. N[GNP] != V[GNP];
4. N[ROOT] != N[+animate];
5. V[ROOT] = V[+experience];
6. then:
7. tag = "k4a"

4.8.3.14 Rule for k*u

Cue 1: The word with the category (lcat) noun/pronoun (N/PN/ADJ) with the

case [-kaMt.e/ki/kanna], when its GNP does not match with the finite verb(V)’s

GNP.

Code

162

4.8 Implementation

1. lcat == N || PN && vib == "kaMt.e/ki/kanna";
2. if:
3. N[GNP] != V[GNP];
4. N[ROOT] != N[+animate];
5. V[ROOT] = V[+experience];
6. then:
7. tag = "k4a"

4.8.3.15 Rules for rh

Rule-1

A noun/pronoun with the case marking -vala/valana is marked as rh to the

nearest verb it occurs with.
Algorithm
1. lcat == N|PN && case =="-valla/valana "
2. tag = "rh"

4.8.3.16 Rules for rt

Rule-1

A noun/pronoun with the case marking -kōsaM/koraku/ad. aM ki/koM ad. aMki/ki

is marked as rt when it satisfies the following cues:

Cue 1: The word with the category (lcat) noun/pronoun (N) with the case

-kōsaM/koraku/ad. aM ki/koM ad. aMki/ki

AND

Cue 2: When the verb is not part of experience verb list or ditransitive verb list

Code
1. lcat == N|PN && case =="-kōsaM/koraku/ad.aM ki/koM ad.aMki/ki "
2. V!== member of experience verbs ||member of ditranisitive verbs
2. tag = "rt"

Other dependency relations (as shown in table-3.5) and non-dependency

relations(see table 3.10) and miscellaneous relations are identified using the default

markers in Telugu. Mapping the marker with the dependency label is attempted to

identify them like the rules mentioned earlier.

163

Chapter 5

Evaluation of the Parser and Error

Analysis

5.1 Introduction

Evaluation of the system is one of the crucial phases of any language technology

tool. As NLP involves with different tasks on language automation, different

evaluation techniques are used. Parsers are evaluated using a defined metrics. In

this chapter, an in-detail evaluation of rule-based parser for Telugu as well as the

evaluation of each dependency relation is provided. In addition to this, confusion

matrix pertaining to each relation is outlined thereby deducing the sources of

errors. Further, errors sources involving pre-processing tools, databases and parser

algorithm are explicated.

5.2 Metrics to Evaluate a Parser

The correctness of parser output can be measured using various metrics. One

common method employed for almost all computational modules is to compare the

system generated output with the gold-data created by human annotators.

However, this does not provide a complete evaluation of the parser as this looks for

an exact (0-1 metric) or word-word mapping (here, relation to relation mapping).

Hence, other metrics are used for evaluating the parser. This parser considers the

following metrics:

1. Attachment Scores

2. Precision and Recall

3. Relation-based Performance Index

4. Confusion Matrix.

164

5.2 Metrics to Evaluate a Parser

5.2.1 Attachment Scores

Attachment scores (Nivre, 2009, pp-4) primarily include, Labelled Attachment Score

(LAS) and Unlabelled Attachment Score (UAS). LAS is a metric that considers

both the relation label and edges of the relations (directed edges from the head to

the dependent). In other words, LAS evaluates the ‘proportion of words that are

assigned the correct head and a correct dependency relation’. LAS requires both

edges and labels to be correctly parsed and to match the total number of edges in

the actual tree. For instance, if a sentence contains 4 words, typically, it should

contain 3 relations. The sentence with 4 words has an LAS of 100% if the 3 labels

along with their edges are correctly parsed.

In UAS, only the edges are considered not the relation label. Hence, if 3 words are

correctly connected to their heads, irrespective their labels, UAS is 100%.

Another metric include the Label Accuracy (LA) in which only the label irrespective

of the edge correctness is calculated.

In addition to this, One Wrong Attachment Score (OWAS) is also employed when

necessary. OWAS constitutes sentences that are wrong only with respect to one

attachment. There are also other metrics like Dependency Accuracy (DA), Root

Accuracy (RA) and Complete Match (CP) which are not considered for this study.

5.2.2 Precision and Recall

The other common evaluation metric used to evaluate the performance of the

parser is the precision and recall (Jurafsky, 2000). Precision measures the total

number of correct relations that are identified by the system. Whereas recall

measures the correct relations identified by the system with respect to the total

number of relations in the input sentence. The formulae of precision and recall are

as follows:

• Precision

Number of correct relations marked by the system

Total number of relations identified by the system

• Recall
Number of correct relations marked by the system

Total number of relations

165

5.3 Evaluation of Pre-processing tools

5.2.3 Relation-based Performance Index

Relation-based performance index is an evaluation of each relation in order to

identify which relation performs better and which performs poorly. Each relation is

evaluated for its precision & recall or LAS & UAS. This metric enables to further

improve the performance of relation that performs poorly.

5.2.4 Confusion Matrix

Confusion matrix attempts to evaluate the system for the number of times a

relation is confused with some other relation. This metric is useful in predicting

the frequently confused relations as well as designing strategies for further

improvements.

5.3 Evaluation of Pre-processing tools

Parser, as discussed in the earlier chapter, being a higher-level application requires

a number of pre-processing tools for its functioning. Hence, we begin with the

evaluation of pre-processing tools. For RBP, we have used a tokeniser, morphological

analyser, POS tagger and Pruning modules. The evaluation of pre-processing tools

is as shown in the table-(5.1):

Sl.No. Pre-Processing Tool Precision Recall

1. Tokenizer 100% 97.2%

2. Morphological Analyser 99.66% 99.22%

3. POS tagger 98.68% 98.66%

4. Pruning 98.23% 97.87%

Table 5.1: Module-wise evaluation of pre-processing tools

5.4 Evaluation of Rule-Based Parser for Telugu

In this section, the data used for evaluating parsers is presented followed by the

results. Based on the results, we present the error analysis and some observations.

166

5.4 Evaluation of Rule-Based Parser for Telugu

5.4.1 Data

The present study selects 1000 sentences to test the Telugu rule-based parser. The

test corpus is extracted from Telugu corpus (3 million words CALTS1 corpus). The

corpus consists of the following sentence types:

Sentence Type No. of sentences

Simple Sentences 448

Verbless

Intransitive

Transitive

Ditransitive

Passive

Causative

Non-nominative

Interrogative

Complex Sentences 489

Complement Clauses

participial clauses

conditional clauses

concessive clauses

Compound 63

Coordination

Total Number 1000

Table 5.2: Types of sentences in the test data

Table-(5.3) shows the number of words in each sentences in the test data. The

average length of the sentence is around 5 words per sentence.

5.4.2 Results

This section presents the results of the parser using the above discussed evaluation

metrics. It is found that the test data contains a total of 3867 relations. The

precision and recall of the system is calculated as below:

• Precision & Recall

• Attachment Scores

1Centre for Applied Linguistics and Translation Studies, University of Hyderabad

167

5.4 Evaluation of Rule-Based Parser for Telugu

Number of words No. of Sentences

Two words 93

Three words 191

Four words 220

Five words 198

Six words 151

Seven words 70

Eight words 47

Nine words 6

Ten words 8

Eleven words 9

Twelve words 7

Total number of tokens 4967

Table 5.3: Length of sentences and distribution of test data

Figure 5.1: Sentence Statistics

Total number of relations 3867

Total number of identified relations 3601

Total number of correctly marked relations 3255

Precision 90.3%

Recall 84.1%
.

Table 5.4: Precision and Recall

168

5.4 Evaluation of Rule-Based Parser for Telugu

LAS UAS LA

84.1% 90.3% 86.2%

Table 5.5: Attachment Scores

• Comparison of existing Telugu Parsers

Gatla (2019) in the paper titled ‘Dependency Parsing for Telugu Using Data-

driven Parsers’ provided following results of the dataset using MST & MALT:

Figure 5.2: Results (retrived from http://languageinindia.com/jan2019/

praveengatladependencyteluguparser1.pdf)

Other work on Telugu dependency parsing include the work by Rama and

Vajjala (2018) titled ‘A Dependency Treebank for Telugu’. The results are as

follows:

Figure 5.3: Results (retrieved from https://aclanthology.org/W17-7616.pdf)

Work on dependency parsing for Telugu by Nallani et al. (2020c) is provided

in the following table-(5.4):

5.4.3 Relation-based Performance Index

For Relation-based performance index, we considered almost all the dependency

relations encountered in the test data. Some minor relations like the negative

particles, address terms, etc are calculated as part of miscellaneous relations. A

total of 35 relations including the miscellaneous relations are included in the table

(5.6). The statistics of occurrence of each relation is provided in the bar

graph-(5.5).

169

http://languageinindia.com/jan2019/praveengatladependencyteluguparser1.pdf
http://languageinindia.com/jan2019/praveengatladependencyteluguparser1.pdf
https://aclanthology.org/W17-7616.pdf

5.4 Evaluation of Rule-Based Parser for Telugu

Figure 5.4: Results (retreived from

https://aclanthology.org/2020.acl-srw.19.pdf)

Figure 5.5: Statistics of Relations in Test Data

170

https://aclanthology.org/2020.acl-srw.19.pdf

5.5 Error Analysis and Observations

5.5 Error Analysis and Observations

In this section, we discuss the cases where the rule-based parser fails to provide the

appropriate results. We present the reasons for failure of the rule-based parser in

certain cases. We also show how rule-based parser proves to be better in solving with

language ambiguities than the existing data-driven parsers. We divide this section

into three stages:

(1). Pre-processing Errors

(2). Database Errors

(3). Issues with Rules

5.5.1 Pre-Processing Errors

It is found that in certain cases, reasons for the failure of the parser in certain cases

is due to the wrong output from the pre-processing tools. The following sections

discuss the pre-processing:

5.5.1.1 Tokenization and Sandhi Split Errors

Sandhi Split errors contribute to the system errors to an extent. Sometimes, sandhi

splitter leads to errors that cannot even generate a sentence. Consider the following

error from the test data:

(5.1) (morphana (id 4) (mid 1) (word appulapAlayyAru)

(rt appulapAlayyAru) (lcat unk) (gen X) (num X) (per 3)

(case X) (viBakwi Z) (suff Z))

In (5.1), appulapāluayyāru ‘to make debt’, should be split into two words viz.,

appulapālu & ayyāru. However, because the sandhi splitter fails to do so, the

category of the word is not identified. Some such instances included the

un-identification of the finite verb which is the root of the graph. So, the sentence

do not get generated.

(5.2) (morphana (id 1) (mid 1) (word ippudalAkAxu)

(rt ippudalAkAxu) (lcat unk) (gen X) (num X) (per 3) (case X)

(viBakwi Z) (suff Z))

171

5.5 Error Analysis and Observations

The sandhi splitter fails to split the word ippud. alākādu ‘It is not so now’ into three

words ippud. u ‘now’, alā ‘like that’, kādu ‘not’.

5.5.1.2 Morphological Errors

Morphological errors affects the output of the parser the most. This is due the fact

that rule-based parser requires correctly morphologically analysed analysis. Hence,

a minor error in this analysis can lead to multiple parser errors. In this section, we

discuss words which are not identified for the lexical category, wrong GNP analysis

and incorrect roots.

5.5.1.3 Unknown Words

Morphological analyser fails to provide the lexical category of certain words like

proper nouns and when the sandhi splitter does not split the words into its respective

constituents. Consider the following instances of unknown lexical category.

(5.3) (morphana (id 3) (mid 1) (word akRaraxIpaM) (rt akRaraxIpaM)

(lcat unk) (gen X) (num X) (per 3) (case X) (viBakwi Z)

(suff Z))

(5.4) (morphana (id 1) (mid 1) (word parAyixAnnilA)

(rt parAyixAnnilA) (lcat unk) (gen X) (num X) (per 3) (case X)

(viBakwi Z) (suff Z))

(5.5) (morphana (id 2) (mid 1) (word pacciwAgubowu)

(rt pacciwAgubowu) (lcat unk) (gen X) (num X) (per 3)

(case X)(viBakwi Z) (suff Z))

In ex-(5.3), akśaradīpaM is a proper noun and the system could not identify the

lexical category leading to the unidentified relation. Likewise, examples-(5.4),(5.5)

words ‘parāyidānilā’ ‘as an outsider’ & paccitāgubōtu ‘drunkyard’ also are unknown

words and are classified as part of unknown word errors. All such unknown word

errors contribute to the decreased recall rate.

172

5.5 Error Analysis and Observations

5.5.1.4 Lexical Category, Gender, Number, Person Errors

Morphological analysis constitute 8 levels of analysis viz. root, lexical category,

gender, plural, person, case, vibhakti and suffix. All these categories are considered

for building the parser. Error in any of these information will lead to parsing errors.

The following examples include errors and some missing information.

(5.6) oVkati [fs af=’oVkati,n,,sg,,d,0,0’]

In example-(5.6), lexical category is expected as a number(num). But it is marked

as a noun.

(5.7) pattinavAru [fs af=’pattu,pn,,pl,,,ina vAru,ina vAru 0’]

Likewise in (5.7), lexical category for the root word is ‘verb’, but the category for

the derived word is given.

In order to mark several relations, gender information is utmost important. For

instance, to mark k2 gender information is a must. If the morphological analyser

fails to mark gender information, it contributes to wrong relations thereby decreasing

the precision.

5.5.1.5 Incorrect Root Errors

Incorrect root errors indirectly contribute to the database issues. In the database,

words are stored in the form of respective roots and are retrieved accordingly.

However, when the root is incorrectly marked by the system, system cannot

retrieve the correct information. Hence, this leads to wrong relations. In

example-(5.8), the English word ‘cars’ is incorrectly given its root as kārl.

(5.8) (morphana (id 1) (mid 1) (word kArlu) (rt kArl) (lcat n)

(gen X) (num sg) (per 3) (case d) (viBakwi Z) (suff Z))

5.5.1.6 Pruning errors

Different lexical categories are disambiguated by POS. However, if the token has

same lexical category, POS does not distinguish between them. For this reason,

pruning analysis is required. So, when a word does not show any difference in its

direct or oblique form, pruning analysis randomly picks one of them for further

processing. This also might lead to wrong analysis. Consider (5.9):

173

5.5 Error Analysis and Observations

Figure 5.6: Pruning error

In (5.6), pel.l.i bhayaM ‘the fear of marriage’ is a noun phrase in which pel.l.i

‘marriage’ is in oblique form. However, the pruning analysis marks its case as direct

case. Hence, the relation of nmod is not identified leading to a wrong relation.

Figure 5.7: Error in parsed output due to pruning errors

5.5.2 Database Issues

Database issues give rise to ambiguity in relation marking. When the required item

is missing from the database, the parser cannot identify the relation or marks wrong

relations. Consider (5.9):

(5.9) mā
we-POSS

amma
mother

kōpaM-tō
anger-INS

vād. ini
he.ACC

kot.t.-iM-di
beat-PST-3.SG.F

‘My mother beat him in anger’

Here, kōpaMtō ‘in anger’ functions as a manner adverb. The only way to mark is

relation is to list kōpaM as part of the abstract nouns. However, when it is missing

from the list, there is a possibility of marking it either as a k3 or ras.

Likewise, for k2 relation, if the input contains [-animate] noun as part of the object

and if it is missing from the database, it will be marked as k1. There are many

such cases where database plays a crucial role in marking correct relation. Hence,

database issues contribute immensely to the increase in wrong relations. Consider

the wrongly parsed (5.8) graph below:

5.5.3 Issues with rules

It so happens that when there is no environment to mark a relation, words will not

be connected to the root or their respective heads. This can happen due to issues

with rules as well as database issues. Consider (5.10):

174

5.5 Error Analysis and Observations

Figure 5.8: Error in parsed output due to database issues

(5.10) ippud. u
now

nā
I-POSS

kaMt.iki
eyes-DAT

pedda
big

ayipōyād. u
become-PST.3.SG.M

‘Now, he seems big to my eyes’

Figure 5.9: Rule issue

In the figure-(5.9), nā kaMt.iki ‘my eyes’ is not connected to the root. This

happens when there is no appropriate rule that matches this relation. These also

contribute to unidentified relations leading to less recall.

5.5.4 Dummy verb Insertion

The importance of verb for RBP has been emphasized in the previous chapters. For

a parse to generate in RBP, a finite verb is a pre-requisite. However, for verb-less

sentences, RBP automatically adds a dummy verb. This process gets difficult when

a word with POS tag ‘verb’ already exists in a sentence which is not a finite verb.

In such cases, system provides a wrong analysis. Consider (5.11):

(5.11) adi
that

cūd. ad. aM
see-GER

nāku
I-DAT

bāgā
more

gurtu
remember

‘I remember seeing it profoundly’

In the above example, a gerund cūd. ad. aM ‘seeing’ is present. POS tagger marks

it as verb with ad. aM suffix. In such cases, when a verb is already present, RBP

might not insert a dummy verb leading to missing root. Hence, the rules are further

improved.

175

5.6 Confusion Matrix - A Discussion

5.5.5 Over-generation

In certain cases, rule-based parsers affect from over-generation. Over-generation can

increase the load on the filter module to arrive at a single parse output. However,

overgeneration also proves to be beneficial for constructions like shared argument

constructions, pro-drop constructions etc.

(5.12) mā
we-POSS

nāyana
father

vād. ini
he-ACC

t̄icaru-ku
teacher-DAT

appagiMci
handover

vacc-ē-vād. u
go-HAB-3.SG.M

‘My father used to handover him to the teacher’

Like in example-(5.12), nāyana ‘father’ is the subject shared between the subordinate

clause verb and the matrix verb. In such cases, rule-based parser parser marks the

kartā onto both verbs.

(5.13) tellāri
early

lēci
morning

illū
wakeup

vākili
house

ūd. vāli
sweep-HORT

‘One should wake up early morning and clean the house’

In the example-(5.13), the subject is absent and the verb do not carry any agreement.

In such cases, rule-based parser provides all possible relation which can be further

filtered out. Consider the figure-(5.10):

Figure 5.10: Over-generation-1

In the above figure, the relation of k7t is marked onto both verbs. This is an

example of over-generation. Secondly, when the sentence is ellipsed for its subject,

both k1 & k2 are marked.

5.6 Confusion Matrix - A Discussion

Confusion matrix is created in order to identify the frequently wrongly marked

relations. The following observations were made:

• The kartā (k1) relation is wrongly marked as k1s and k2 for about 4.6 % and

8.3% respectively. The probable reason for the failure is missing database or

filtering of relations.

176

5.6 Confusion Matrix - A Discussion

Figure 5.11: Confusion Matrix-2

• The kartā samānadhikarana (k1s) relation is incorrectly marked as kartā (k1)

15.5% of the time. However, in most cases, both k1 & k1s are marked. Later,

using filtering module, we prune-out the incorrect relation. But the filter

module could have failed in some instances leading to incorrect relations.

• karma (k2) relation is incorrectly marked as kartā for 7.94% and 4.56% as

gauna karma (k2g). This because of the fact that karma can also be null-

marked and the parser can easily mark incorrect relations when the database

does not complement the rules.

• The most commonly mismatched relations include k7t, k7p, r6, nmod & pof

marked as k1 for 5.04%, 4.94%, 4.3%, 8.64% and 19.04% respectively. These

wrong relations contribute to the decrease in precision.

Here, we will present some mismatched graphs in the test data. We present

issues with (k2 vsk1), (k2p vs k1), (k7t vs k1), (k7p vs k7), (k1 vs k1s), (pof vs

k1).

5.6.1 Dependency relation k2 wrongly marked as k1

It is observed that in many cases, k2 is marked as k1 in the test data. This happens

due to reasons like missing morphological cues, database issues or pro-drop cases.

• Missing morphological Information

In example-(5.14), pāt.alu is marked with both k1 & k2 tags. The verb pād. u

177

5.6 Confusion Matrix - A Discussion

mandatorily requires a noun[+animate], however, animacy information is

missing on the noun pāt.alu ‘songs’ which made the parser provide both the

analysis.

(5.14) picci
mad

pāt.alu
songs

pād. u-kuM-t.ā-nu
sing-REF-HAB-1.SG

‘I sing crazy songs’

Figure 5.12: k2 vs k1

• Pro-drop

Pro-drop cases are difficult for any parser to come up with unambiguous

interpretation. Especially when the finite verb lacks agreement with the

subject. In ex-(5.15), finite verb is in the hortative mood and does not show

any agreement with the subject and the subject is dropped as well. Hence,

the rule-based parser provides both the interpretations of k1 & k2

(5.15) annaM
food-null

tinip-iMc-ā-li
eat-CAUS-PST-1.SG

‘I made him eat food’

Figure 5.13: k2 vs k1

(5.16) vād. iki
he.DAT

kotta
new

gud. d. alu
clothes

kut.t.-iMc-ā-ru
stitch-CAU-PST-3.PL

‘They got him new clothes stitched’

178

5.6 Confusion Matrix - A Discussion

Figure 5.14: k2 vs k1

Example-(5.16) also has a pro-drop and is interpreted with both relations which

can be pruned out later.

5.6.2 Dependency relation k2p wrongly marked as k1

Another case of case misinterpretation occurred with k2p & k1 in the test data. This

primarily happens because destination can also be null-marked in Telugu. Secondly,

the information of place does not exist in the database of noun[+place]. Hence, the

following error occurs in the test data.

(5.17) paigā
moreover

mā
our

iMt.lō
house-LOC

aMdarU
everyone

polaM
field

pōvāli
go-HORT

‘Moreover, everyne should go to the fields in our house’

Figure 5.15: k2p vs k1

polaM in ex-(5.17) is null-marked and is apparently absent from the list of

noun[+place]. Hence, it is marked as k1.

179

5.6 Confusion Matrix - A Discussion

5.6.3 Dependency relation k7t wrongly marked as k1

The output of the test data also includes mismatches between k7t and k1. This

is also because of the fact that time nouns can also be null-marked sometimes and

their absence in the respective lists of database can result in wrong relation marking.

(5.18) appud. ē
already

nēnu
I

baruv-aipōy-ā-nu
burden-become-PST-1.SG

‘I became a burden already’

Figure 5.16: k2 vs k1

In ex-(5.18), appud. ē ‘then only(lit.)’ is a time expression which do not contain

any overt case-marker. However, it must be missing in the list of time expressions

which resulted in the wrong relation marking.

5.6.4 Dependency relation k7p wrongly marked as k7

Other relation that is often confused is k7p and k7. It has been discussed in earlier

chapters as well that k7 is used when the location is not a concrete location and

refers to an abstract elsewhere location. However, in the following example, though

bad. ilō ‘school’ is a location/place, it is marked with k7.

(5.19) rātri
night

bad. ula-lō
school-LOC

ād. avāl.l.u
women

vipar̄itaM-gā
extreme-ADV

cēr-ā-ru
join-PST-3.PL

‘Women joined night schools in large numbers’

Figure 5.17: k7p vs k7

180

5.6 Confusion Matrix - A Discussion

5.6.5 Dependency relation k1 wrongly Marked as k1s

Subject complement is also null-marked in certain constructions in Telugu. Then,

the parser marks it with both the relations viz., k1 and k1s. Consider (5.20) and

its respective parsed dependency tree:

(5.20) nā
I.POSS

kadha
story

aMdari
everyone-POSS

ād. pillala
girls-POSS

kadh-e
story-EMP

‘My story is similar to the story of all other girls’

Figure 5.18: k1s vs k1

5.6.6 Dependency Relation pof Wrongly Marked as k1

pof is marked as k1/k2 when the database does not have the respective noun-verb

compound. In the figure below, purud. u is marked as k1 because purud. u pōsukonu

‘conceive’ is absent in the database.

(5.21) mal.l.i
again

mā
our

amma
mother

purud. u
concieved

pōsukuMdi

‘My mother conceived again’

5.6.7 Dependency Relation k1 Wrongly Marked as nmod

As discussed in error analysis before, when two nouns occur in adjacency, if the first

noun does not show any difference in oblique form, system mismatches it as k1.

Consider ((5.22)):

181

5.6 Confusion Matrix - A Discussion

Figure 5.19: pov vs k1

(5.22) nāku
I-DAT

pel.l.i
marriage

bhayaM
fear

pat.t.uk-uM-di
catch-PST-3.SG.F

‘I am afraid of marriage’

Figure 5.20: k1 vs nmod

5.6.8 Dependency Relation ras Wrongly Marked as adv

In (5.23), adverb is marked as ras or associative relation.

(5.23) ā
that

kōpaM-tō
anger-INS

mā
our

amma
mother

mīda
on

maMd. ipad. -ē-vād. u
fire-HAB-3.SG.M

‘He shouted at my mom in anger’

Figure 5.21: ras vs adv

182

5.7 Sample RBP Graphs

5.7 Sample RBP Graphs

In this section, we present some sample parsed graphs generated by RBP from the

test data. Input sentence with gloss and parsed graphs are provided.

(5.24) vāl.l.a
their

ayya-tō
father-ASS

koMta
some

maMdi
people

bad. ilō
school-LOC

cērāru
cērāru

‘Some people joined school accompained by their fathers’

Figure 5.22: RBP generated output-1

(5.25) nad. irātri
midnight

iMt.iki
home-DAT

vastunn-ā-ru
come-PROG-3.PL

‘They are coming home at midnight’

Figure 5.23: RBP generated output-2

(5.26) nēnu
I.NOM

pedda-manis. ini
elder-human-AGR

ayyānu
become-PST.1.SG

‘I reached adolescence’

Figure 5.24: RBP generated output-3

183

5.8 Observations

(5.27) mā
our

akkala
sisters-OBL

pel.l.ilaki
marriages-DAT

mā
acre

nānna ekarā

polaM ammād.u
land sell-PST-3.SG.M

‘My father sold an acre for my sisters’ marriages’

Figure 5.25: RBP generated output-4

5.8 Observations

Based on the evaluation results and error analysis, the following observation were

made:

• Pre-processing errors contribute to the decrease in recall rate by 11%. Whereas

issues with rules further decreases the recall by another 4%

• Secondly, database issues highly contribute to the wrong relations thereby

decreasing the precision rate by 5%. Morphological analyser errors add up to

the further reduction of precision by 4%.

5.8.1 Agreement and Ambiguous Relations

Certain verbs in Telugu do not show agreement with the kartā. Such verbs include

hortative, permissive, probabilitative, etc. In such cases, when the kartā is pro-

dropped, the system identified the karma which is [-animate] and zero-marked as

in (5.28). The problem with certain pro-drop constructions is due to the absence of

the agreement between the subject and the verb. Consider the following example:

184

5.8 Observations

(5.28) cēpa-lu-∅
fish-PL.NOM/ACC

tinn-occu
eat-CAP

‘can eat fish/fish can eat‘

It can be observed that the subject of the (5.28) is missing and there exists no

agreement between the subject and the verb. It is highly difficult for the system to

resolve such issues.

Consider another example of over-generation (5.29):

(5.29) vaccet.appud. u
while

kat.t.elu
coming

pullalu
sticks

ērukuni
pick-CONJP

rāvāli
come-HORT

‘While coming one have to pick sticks’

Figure 5.26: Over-generation-2

185

5.8 Observations

Relation Occurrences Precision(%) Recall(%)

k1 628 87.1% 84.3%

k1s 50 84% 76%

k2 521 87.5% 84.6%

k2p 89 84.2% 72%

k2g 8 62.5% 62.5%

k3 43 83.8% 72.1%

k4 50 97.9% 94 %

k4a 111 93% 84.7%

k5 64 93.7% 93.7%

k5prk 28 88% 78.5%

k7 67 93.6% 88.5%

k7t 123 94.9% 91.8%

k7p 87 95 % 88.5%

k*u 33 86.2% 75.7%

r6 362 92.9% 91.1%

rt 122 84.6% 81%

jk1 8 75% 75%

pk1 7 85% 85%

rh 83 89.7% 84.3%

ras 22 61.1% 50%

psp 76 92% 90.7%

adv 117 95.6% 94.0%

nmod 108 80.9% 78.7%

nmod wq 22 95% 86.3%

nmod quant 78 93.5% 92.3%

nmod adj 26 85% 65.4%

nummod 39 94.3% 84.6%

vmod 489 87.5% 78.93%

pof 89 81.5% 74.15%

pof redup 17 81.25% 76.47%

conj 44 93.3% 63.63%

cc 15 100% 93.3%

uh 17 80% 70.5%

mark 65 96.9% 90%

rp 77 94.52% 89.6%

sent adv 72 95.45% 87.5%

Other tags 28 89.4% 68%

Table 5.6: Relation-based Performance Index

186

Chapter 6

Conclusion

The present research explores the framework of dependency framework coupled with

rule-based parsing as a methodology for efficient parsing of Telugu structures. A

rule-based parser that serves the basic requirements of a parser viz. robustness and

disambiguation is developed as part of this study. In this chapter, we provide some

concluding remarks, major contributions of the study, significance of the current

research and some future directions.

Firstly, as part of introduction chapter, basic theoretical understanding of parser

including the terminology, theoretical & computational frameworks, types of parsing,

kinds of parsers & a review of annotation schemata are presented. In addition to

this, structural features of Telugu are outlined for an overview of the language under

study. A brief methodology is also presented to set the tone of the thesis.

In chapter-2, the theoretical understanding of various frameworks popularly

adopted to parsing are discussed in detail. Conceptual understanding of dependency

and constituency framework is provided. A thorough distinction of dependency to

constituency framework is attempted. In order to adopt the best-suited framework

for Telugu, popularly used dependency frameworks viz Tesniere’s dependency and

Pān. inian dependency are compared. Pān. inian dependency model or the Indian

grammatical tradition outweighed the advantages in comparison to other models.

Hence, it is chosen as a theoretical framework for this study. It proved to be highly

precise for representing Indian language analysis. Through this study, the claim

that Indian grammatical theories are mechanical and enable the programming of

any natural language is re-emphasized.

Furthermore, selecting an appropriate annotation schema was a challenge. For

this study, the commonly used tagsets for Indian languages i.e. universal

dependencies and AnnCorra tagsets are explored. Universal Dependencies was

observed to be shallow when compared to Anncorra tagset with respect to certain

relations. Therefore, AnnCorra tagset is chosen to represent dependency relations

in Telugu. Nevertheless, AnnCorra tagset is modified to be adaptable to Telugu.

Major modifications include the marking of coordinate constructions and

subordinate clauses.

187

AnnCorra guidelines is quite established for Hindi, but for other major Indian

languages, a well-defined guidelines is still a rarity. Each dependency relation

pertaining to Telugu syntax is presented as part of chapter-3. Every relation

in-terms of its sentence types is explicated. Around 54 relations are discussed in

detail including examples and exceptional cases. Guidelines are framed, taking

insights from several Telugu grammar books. Several language-specific tags

introduced as part of this study, are also discussed.

Implementation of RBP follows immediately after the guidelines. There are

three important differences between the data-driven parsers and the present RBP

that makes it unique :

1. Treebank annotation is absent.

2. Pre-processing does not include chunking. It only includes morphological

analysis and pick-one morph output. The striking difference between RBP

and other data-driven approaches is its non-usability of a chunker. In

data-driven parsers consisting of a chunker, the head of the chunk is usually

given the tag and intra-chunk tags are given to the other words in the chunk.

However, in RBP every word in the input sentence will be provided with a

specific dependency tag.

3. Produces multiple interpretations/graphs of the same sentence, in-case of

ambiguity. All possible analysis of a sentence are provided by RBP.

Implementation of the parser beginning from cleaning, pre-processing, parsing

and post-processing phases are described. The process of disambiguation of

case-markers for their semantic relations is set out. Parser rules for default kārakā

relations are also sketched.

Another prominent aspects of building any computational tool is its evaluation.

The parser hence built as part of this study is evaluated for its precision & recall,

UAS/LAS/LA, relation-based performance index and confusion matrix. Precision

and recall are found to be 90.3% and 84.1% respectively. Whereas LAS & UAS &

LA is reported to be 84.1%, 90.3%, 86.2% respectively. The performance of each

relation also proves the efficiency of RBP to solve the parsing problem for Telugu.

However, like any other computational tool, RBP also fails to provide the correct

relation for certain constructions. These cases include relations like k2, k1s, k7t, r6,

nmod etc mismatched as k1. A detailed error analysis is also presented. The reasons

for failure of parser in certain cases are clearly outlined along with the methods to

improve the results further.

188

6.1 Major Contributions

6.1 Major Contributions

• This thesis contributes to the theoretical understanding of dependency

grammar and its existing frameworks in comparison to the popular

constituency framework. This study re-emphasizes the importance of Indian

grammatical traditions in programming Indian as well as any other natural

language text. This thesis stands as a testament for the robustness of Indian

dependency traditions.

• A detailed comparison of Universal Dependency tagset and AnnCorra tagset

is provided in addition to guaging the advantages and disadvantages of each

schemata.

• This study contributes in enriching the existing version of the AnnCorra tagset

for certain relations for Telugu that can be further utilized for major Dravidian

languages. An in-detail guidelines for marking dependency relations for Telugu

including illustrations and exceptions are presented.

• An open source Rule-based dependency parser exploiting the morphological

features of Telugu is developed.

• A rich lexical reserve for Telugu that aligns with the parser modules is created.

• The parser developed as part of this study can also be adapted to other

Dravidian languages with minimal effort.

6.2 Significance of the Study

• The rule-based parser developed as part of this study provides a considerably

good recall and precision rate performing on par with the data-driven parsers.

• It can be highly useful in generating treebanks and reduces the herculean task

of annotating the corpus. Parsing being a challenging task requires ample time

to annotate the corpus.

• Using the parse output generated by RBP, we can generate treebanks that can

be further post-edited by annotators instead of building a treebank from the

scratch.

• RBP provides fine-grained dependency parsing that will be quite relevant in

semantic role labelling as well. RBP stands relevant in language teaching

modules for Telugu syntax.

189

6.3 Some Challenges

• Unlike the data-driven parsers, RBP provides several interpretations of the

single sentence leading to multiple analysis. This eases the disambiguation

process. For example, Tagging of Shared arguments in participial clauses. In

case of shared arguments, RBP typically marks the subject twice, for both

subordinate and matrix verb. Like, the shared subject will be marked k1 on

both the verbs. This will be quite useful for further NLP processing like the

question-answering systems etc.

• For low-resource languages like Telugu, the availabilty of large annotated

corpus is a challenge. Hence, RBP can be integrated to higher NLP and

downstream applications involving Telugu for further levels of analysis.

• RBP can be easily adaptable to languages of the Dravidian language family

6.3 Some Challenges

Building an exhaustive list of lexical reserve remains as an on-going process which

betters the output of the parser. As RBP heavily relies on pre-processing tools and

lexical databases. The failure of which can be the biggest hindrance for RBP. As the

language is ever-evolving, database requires regular updation without which RBP

cannot be updated.

Another issue with RBP is the problem of over-generation. Often, multiple

relations are marked which have to be pruned out in filtering stage. Hence, filtering

module requires a special focus. Filtering process is also a continuous task.

Improvement of pre-processing tools stand crucial to the better performance of

RBP. Failure in each pre-processing module contributes to the decrease in recall and

precision.

6.4 Future Work

• This study stands as a first stage of experimenting with rule-based parsers.

Further, a synthesis of the current RBP and data-driven approach can be the

future direction.

• Future research involves a full-fledged implementation of RBP for all the

complex sentence structures pertaining to Telugu.

• Another important future work is the inclusion of database for Multi-Word

Expressions (MWE).

190

6.4 Future Work

• Dealing with ellipses is another arena for future research. In Telugu, ellipses

can be observed in pro-drop constructions, Genitive marker yokka is almost

always absent, Conjunction mariyu is dropped and is expressed

morphologically, Complementizer ani is omitted with certain verbs, the main

verb is absent in copula constructions. Currently, RBP does not supply any

ellided elements except for the dummy verb in this guidelines. All the other

elements are usually retrieved using the morphological information. Further

research can be carried on such ellided constructions.

• Integration of additional linguistic knowledge & ontological information is

another crucial aspect that requires further focus.

• Converting the RBP output into other tagsets is also part of the future work.

As Universal Dependency is gaining popularity, conversion of the current tags

to UD tags can be highly beneficial.

• To gain better understanding of unrestricted natural language text, it is

important to expand the current RBP to other Dravidian languages thereby

proving to what extent the current methodology is language-independent.

• Evaluation metrics can be further explored to get a wholesome

understanding of the machine. The metrics should include semantically

inclined evaluation that enables predicate-argument structure. As RBP

focuses on fine-grained analysis, semantics is to an extent included as part of

the tags. Hence, exploring other evaluation strategies can be beneficial.

191

Bibliography

Aho, Alfred V. and Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation

and Compiling, volume 1. Prentice-Hall, Englewood Cliffs, NJ. 1

Aissen, Judith. 2003. Differential object marking: Iconicity vs. economy. Natural

Language & Linguistic Theory, 21(3):435–483. 72

Ajdukiewicz, Kazimierz. 1935. Die syntaktische konnexitat. Studia philosophica,

pages 1–27. 9

Ambati, Bharat Ram, Tejaswini Deoskar, and Mark Steedman. 2013. Using ccg

categories to improve hindi dependency parsing. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers), pages 604–609. 9

Ambati, Bharat Ram, Tejaswini Deoskar, and Mark Steedman. 2014. Improving

dependency parsers using combinatory categorial grammar. In Proceedings of the

14th Conference of the European Chapter of the Association for Computational

Linguistics, volume 2: Short Papers, pages 159–163. 9

Ambati, Bharat Ram, Phani Gadde, and Karan Jindal. 2009. Experiments in indian

language dependency parsing. Proceedings of the ICON09 NLP Tools Contest:

Indian Language Dependency Parsing, pages 32–37.

American Psychological Association. 1983. Publications Manual. American

Psychological Association, Washington, DC.

Anchiêta, Rafael Torres and Thiago Alexandre Salgueiro Pardo. 2018. A rule-

based amr parser for portuguese. In Ibero-American Conference on Artificial

Intelligence, pages 341–353. Springer. 12

Ando, Rie Kubota and Tong Zhang. 2005. A framework for learning predictive

structures from multiple tasks and unlabeled data. Journal of Machine Learning

Research, 6:1817–1853.

192

BIBLIOGRAPHY

Andrew, Galen and Jianfeng Gao. 2007. Scalable training of L1-regularized log-

linear models. In Proceedings of the 24th International Conference on Machine

Learning, pages 33–40.

Antony, PJ, Nandini J Warrier, and KP Soman. 2010. Penn treebank-based

syntactic parsers for south dravidian languages using a machine learning approach.

International Journal of Computer Applications, 7(8):14–21. 22

Bahrani, Mohammad, Hossein Sameti, and Mehdi Hafezi Manshadi. 2011. A

computational grammar for persian based on gpsg. Language Resources and

Evaluation, 45(4):387–408. 10

Baud, Robert H, Anne-Marie Rassinoux, Patrick Ruch, Christian Lovis, and Jean-

Raoul Scherrer. 1999. The power and limits of a rule-based morpho-semantic

parser. In Proceedings of the AMIA symposium, page 22. American Medical

Informatics Association. 12

Bès, Gabriel G and Karine Baschung. 1985. Feasibility of a GPSG French Grammar.

Ph.D. thesis, Université Blaise-Pascal, Clermont-Ferrand. 10

Bharati, Akshar, Vineet Chaitanya, Rajeev Sangal, and K. V.

Ramakrishnamacharyulu. 1995. Natural language processing: a Paninian

perspective. Prentice-Hall of India, New Delhi.

Bharati, Akshar, Mridul Gupta, Vineet Yadav, Karthik Gali, and Dipti Misra

Sharma. 2009a. Simple parser for indian languages in a dependency framework.

In Proceedings of the Third Linguistic Annotation Workshop (LAW III), pages

162–165. 21

Bharati, Akshar, Samar Husain, Bharat Ambati, Sambhav Jain, Dipti Sharma, and

Rajeev Sangal. 2008a. Two semantic features make all the difference in parsing

accuracy. Proc. of ICON, 8. 21

Bharati, Akshar, Samar Husain, Bharat Ambati, Sambhav Jain, Dipti Sharma, and

Rajeev Sangal. 2008b. Two semantic features make all the difference in parsing

accuracy. In Proceedings of ICON 8. 143

Bharati, Akshar, Rajeev Sangal, and Dipti M Sharma. 2007. Ssf: Shakti standard

format guide. Language Technologies Research Centre, International Institute of

Information Technology, Hyderabad, India, pages 1–25. 134

193

BIBLIOGRAPHY

Bharati, Akshar, Dipti Misra Sharma, Samar Husain, Lakshmi Bai, Rafiya Begum,

and Rajeev Sangal. 2009b. Anncorra: Treebanks for indian languages, guidelines

for annotating hindi treebank. LTRC, IIIT Hyderabad, India. Version 2. 51

Bharati, Akshara, Dipti Misra Sharma, Samar Husain, Lakshmi Bai, Rafiya Begam,

and Rajeev Sangal. 2012. Anncorra: Treebanks for indian languages, guidelines

for annotating hindi treebank. 18, 45, 54, 58, 83, 108, 118

Bhaskararao, Peri and Karumuri Venkata Subbarao. 2004. Non-nominative subjects,

volume 1. John Benjamins Publishing. 5, 28, 151

Bhat, Riyaz Ahmad and Dipti Misra Sharma. 2012. Non-projective structures in

indian language treebanks. In Proceedings of the 11th workshop on treebanks and

linguistic theories (TLT11), pages 25–30. Citeseer. 33

Biagetti, Erica, Salvatore Scarlata, Elia Ackermann, Oliver Hellwig, and Paul

Widmer. 2020. Annotation guidelines for the vedic treebank, v. 2. sn, (sn).

22

Biberauer, Theresa. 2008. The limits of syntactic variation, volume 132. John

Benjamins Publishing. 5

Bies, Ann, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria Tredinnick,

Grace Kim, Mary Ann Marcinkiewicz, and Britta Schasberger. 1995. Bracketing

guidelines for treebank ii style penn treebank project. University of Pennsylvania,

97:100. 15

Bikel, Daniel M and David Chiang. 2000. Two statistical parsing models applied to

the chinese treebank. In Second Chinese Language Processing Workshop, pages

1–6. 20

Bossong, Georg. 1985. Differentielle objektmarkierung in den neuiranischen

sprachen. Tübingen: Gunter Narr Verlag. 72

Brdar, Mario et al. 2003. Andrew wilson, paul rayson and tony mcenery, eds.: Corpus

linguistics by the lune. a festschrift for geoffrey leech. Jezikoslovlje, 4(2):296–303.

3

Bresnan, Joan. 1978. A realistic transformational grammar. Linguistic theory and

psychological reality. 10

Bresnan, Joan. 1982. Control and complementation. Linguistic inquiry, 13(3):343–

434.

194

BIBLIOGRAPHY

Bunt, Harry, John Carroll, and Giorgio Satta. 2005. New developments in parsing

technology, volume 23. Springer Science & Business Media. 1

Carnie, Andrew. 2008. Constituent structure. OUP Oxford. 7

Chandra, Ashok K., Dexter C. Kozen, and Larry J. Stockmeyer. 1981. Alternation.

Journal of the Association for Computing Machinery, 28(1):114–133.

Charniak, Eugene. 1997. Statistical parsing with a context-free grammar and word

statistics. AAAI/IAAI, 2005(598-603):18. 20

Charniak, Eugene. 2000. A maximum-entropy-inspired parser. In 1st Meeting of the

North American Chapter of the Association for Computational Linguistics. 20

Chen, Danqi and Christopher D Manning. 2014. A fast and accurate dependency

parser using neural networks. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 740–750. 13, 14

Chinnaya Suri, Paravastu. 1855. Balavyakaranam. Madras: Vavilla & Sons. 28, 151

Chomsky, Noam. 1957. Syntactic Structures. Mouton and co.: The Hague. 34, 39

Chomsky, Noam. 2013. Topics in the theory of generative grammar. In Topics in

the Theory of Generative Grammar. De Gruyter Mouton. 37

Clark, Alexander, Chris Fox, and Shalom Lappin. 2013. The handbook of

computational linguistics and natural language processing. John Wiley & Sons.

6

Collins, Michael, Jan Hajic, Lance Ramshaw, and Christoph Tillmann. 1999. A

statistical parser for czech. In Proceedings of the 37th annual meeting of the

Association for Computational Linguistics, pages 505–512. 20

Comrie, Bernard. 1991. Form and function in identifying cases. Paradigms: The

economy of inflection, pages 41–55. 5

Covington, Michael A. 2001. A fundamental algorithm for dependency parsing. In

Proceedings of the 39th annual ACM southeast conference, volume 1. Citeseer. 44

De Marneffe, Marie-Catherine, Timothy Dozat, Natalia Silveira, Katri Haverinen,

Filip Ginter, Joakim Nivre, and Christopher D Manning. 2014. Universal

stanford dependencies: A cross-linguistic typology. In Proceedings of the Ninth

International Conference on Language Resources and Evaluation (LREC’14),

pages 4585–4592. 48

195

https://doi.org/10.1145/322234.322243

BIBLIOGRAPHY

De Marneffe, Marie-Catherine and Christopher D Manning. 2008. Stanford typed

dependencies manual. Technical report, Technical report, Stanford University. 16

De Marneffe, Marie-Catherine, Christopher D Manning, Joakim Nivre, and Daniel

Zeman. 2021. Universal dependencies. Computational linguistics, 47(2):255–308.

20, 56

De Marneffe, Marie-Catherine and Joakim Nivre. 2019. Dependency grammar.

Annual Review of Linguistics, 5:197–218.

Eisele, Andreas and Jochen Dorre. 1986. A lexical functional grammar system

in prolog. In Coling 1986 Volume 1: The 11th International Conference on

Computational Linguistics. 10

Falk, Yehuda N. 2001. Lexical Functional Grammar . Center for the Study of

Language and Information - CSLI Lecture Notes 126. CSLI Publications. 10

Farris, Adam and Aryaman Arora. 2021. For the purpose of curry: A ud treebank

for ashokan prakrit. arXiv preprint arXiv:2111.12783. 23

Fundel, Katrin, Robert Küffner, and Ralf Zimmer. 2007. Relex—relation extraction

using dependency parse trees. Bioinformatics, 23(3):365–371. 20

Garapati, Umamaheshwar Rao, Rajyarama Koppaka, and Srinivas Addanki. 2012a.

Dative case in telugu: a parsing perspective. In Proceedings of the Workshop on

Machine Translation and Parsing in Indian Languages, pages 123–132. 23

Garapati, Umamaheshwar Rao, Rajyarama Koppaka, and Srinivas Addanki. 2012b.

Dative case in telugu: a parsing perspective. In Proceedings of the Workshop on

Machine Translation and Parsing in Indian Languages, pages 123–132.

Gatla, Praveen. 2019. Dependency parsing for telugu using data-driven parsers.

Language in India, 19(1). 24, 169

Gawron, Jean Mark, Jonathan King, John Lamping, Egon Loebner, E Anne Paulson,

Geoffrey K Pullum, Ivan A Sag, and Thomas Wasow. 1982. Processing english

with a generalized phrase structure grammar. In 20th Annual Meeting of the

Association for Computational Linguistics, pages 74–81. 10

Gazdar, Gerald, Ewan Klein, Geoffrey K Pullum, and Ivan A Sag. 1985a. Generalized

phrase structure grammar. Harvard University Press. 10

196

libgen.li/file.php?md5=db84486abf6662c3d8523a6d05768638

BIBLIOGRAPHY

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985b.

Generalized phrase structure grammar. Harvard University Press.

Ghosh, Aniruddha, A Das, P Bhaskar, and Sivaji Bandyopadhyay. 2009. Dependency

parser for bengali: the ju system at icon 2009. NLP tool contest ICON, 2009:87–91.

22

Goldberg, Yoav and Michael Elhadad. 2010. An efficient algorithm for easy-first

non-directional dependency parsing. In Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 742–750. 20

Goyal, P, Manav R Mital, A Mukerjee, Achla M Raina, D Sharma, P Shukla,

and K Vikram. 2003. A bilingual parser for hindi, english and code-switching

structures. In 10th Conference of The European Chapter, page 15. 11

Group, XTAG Research et al. 1998. A lexicalized tree adjoining grammar for english.

arXiv preprint cs/9809024. 11

Güngördü, Zealal and Kemal Oflazer. 1995. Parsing turkish using the lexical

functional grammar formalism. Machine Translation, 10(4):293–319. 10

Gusfield, Dan. 1997. Algorithms on Strings, Trees and Sequences. Cambridge

University Press, Cambridge, UK.

Hall, Johan, Jens Nilsson, and Joakim Nivre. 2010. Single malt or blended? a study

in multilingual parser optimization. Trends in Parsing Technology, pages 19–33.

20

Haverinen, Katri, Filip Ginter, Veronika Laippala, and Tapio Salakoski. 2009.

Parsing clinical finnish: Experiments with rule-based and statistical dependency

parsers. In Proceedings of the 17th Nordic Conference of Computational

Linguistics (NODALIDA 2009), pages 65–72. 12

Hays, David G. 1964. Dependency theory: A formalism and some observations.

Language, 40(4):511–525. 7

Hockenmaier, Julia and Mark Steedman. 2007. Ccgbank: a corpus of ccg derivations

and dependency structures extracted from the penn treebank. Computational

Linguistics, 33(3):355–396. 9

Hudson, Richard A. 1980. Constituency and dependency. 42

197

BIBLIOGRAPHY

Hudson, Richard A. 1984. Word grammar. Blackwell Oxford. 30, 52, 53, 118

Husain, Samar. 2009. Dependency parsers for indian languages. In Proceedings of

ICON09 NLP Tools Contest: Indian Language Dependency Parsing.

Hutchins, John W. 2000. Early years in machine translation. Early Years in Machine

Translation, pages 1–411. 19

India, POMPI. 2011. Census of india 2011, paper1 of 2018, language. New Delhi:

Office of the Registrar General and Census Commissioner. 4

Jain, Priyanka, Ram Bhavsar, Ajai Kumar, BV Pawar, Hemant Darbari, and

Virendrakumar C Bhavsar. 2018. Tree adjoining grammar based parser for a

hindi text-to-scene conversion system. In 2018 3rd International Conference for

Convergence in Technology (I2CT), pages 1–7. IEEE. 11

Jarvinen, Timo and Pasi Tapanainen. 1998. Towards an implementable dependency

grammar. arXiv preprint cmp-lg/9809001. 43

Jeuring, Johan T and S Doaitse Swierstra. 2001. Grammars and parsing. 1

Joshi, Aravind K, Leon S Levy, and Masako Takahashi. 1975. Tree adjunct

grammars. Journal of computer and system sciences, 10(1):136–163. 11

Joshi, Nisheeth and Iti Mathur. 2012. Evaluation of computational grammar

formalisms for indian languages. CoRR, abs/1209.1301. 10

Jurafsky, Dan. 2000. Speech & language processing. Pearson Education India. 7, 13,

14, 165

Kanneganti, Silpa, Himani Chaudhry, and Dipti Misra Sharma. 2016. Comparative

error analysis of parser outputs on telugu dependency treebank. In International

Conference on Intelligent Text Processing and Computational Linguistics, pages

397–408. Springer. 24

Kaplan, Ronald M. 1972. Augmented transition networks as psychological models

of sentence comprehension. Artificial Intelligence, 3:77–100. 10

Kaplan, Ronald M and Joan Bresnan. 1982. Lexical-functional grammar: A

formal system for grammatical representation. The Mental Representation of

Grammatical Relations, pages 173–281. 10

198

http://arxiv.org/abs/1209.1301
http://arxiv.org/abs/1209.1301

BIBLIOGRAPHY

Kesidi, Sruthilaya Reddy, Prudhvi Kosaraju, Meher Vijay, and Samar Husain. 2011.

A constraint based hybrid dependency parser for telugu. International Journal of

Computational Linguistics and Applications, 2(1-2):53.

Kesidi, Sruthilaya Reddy, Prudhvi Kosaraju, Meher Vijay, and Samar Husain. 2013.

Constraint-based hybrid dependency Parser for Telugu. Ph.D. thesis, Ph. D. thesis,

International Institute of Information Technology Hyderabad. 23

Khan, Naira and Mumit Khan. 2006. Developing a computational grammar for

bengali using the hpsg formalism. 11

Kim, Jeong-Ryeol. 1993. Parsing light verb constructions in lexical-functional

grammar. . 10

Kiparsky, Paul. 2007. On the architecture of pān. ini’s grammar. In Sanskrit

computational linguistics, pages 33–94. Springer. 44

Klein, Dan and Christopher D Manning. 2002. Fast exact inference with a factored

model for natural language parsing. Advances in neural information processing

systems, 15. 20

Krishnamurthy, Parameswari and Kengatharaiyer Sarveswaran. 2021. Towards

building a modern written tamil treebank. In Proceedings of the 20th International

Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2021), pages

61–68. 22

Krishnamurti, Bhadriraju. 2003a. The dravidian languages. Cambridge University

Press. 4

Krishnamurti, Bhadriraju. 2003b. The dravidian languages. Cambridge University

Press. 28, 151

Krishnamurti, Bhadriraju and John Peter Lucius Gwynn. 1985. A grammar of

modern Telugu. Oxford University Press, USA. 28, 47, 58, 65, 68, 105, 115, 151

Kroch, Anthony S and Aravind K Joshi. 1985. The linguistic relevance of tree

adjoining grammar. Technical Reports (CIS), page 671. 11

Kulkarni, A. 2021a. Sanskrit Parsing: Based on the Theories of Śābdabodha. D.K.

Printworld. 1, 8, 19, 38, 137

Kulkarni, Amba. 2016. Samsaadhanii: A sanskrit computational toolkit. 18

199

https://books.google.co.in/books?id=ErQgEAAAQBAJ

BIBLIOGRAPHY

Kulkarni, Amba. 2021b. Sanskrit Parsing: Based on the Theories of Śābdabodha.

DK Printworld (P) Ltd. 44, 74, 142

Kulkarni, Amba. April 2021. Sanskrit parsing following indian theories of verbal

cognition. ACM Transactions on Asian and Low-Resource Language Information

Processing, 20:1–38. 129

Kulkarni, Amba and Dipti Misra Sharma. 2019. Pān. inian syntactico-semantic

relation labels. Depling 2019, page 198. 58, 61, 86

Kulkarni, Amba, Sanal Vikram, and K Sriram. 2019. Dependency parser for sanskrit

verses. In Proceedings of the 6th International Sanskrit Computational Linguistics

Symposium, pages 14–27.

Kumari, B Venkata Seshu and Ramisetty Rajeshwara Rao. 2015. Improving

telugu dependency parsing using combinatory categorial grammar supertags.

ACM Transactions on Asian and Low-Resource Language Information Processing

(TALLIP), 14(1):1–10. 23

Kumari, B Venkata Seshu and Ramisetty Rajeshwara Rao. 2017. Telugu dependency

parsing using different statistical parsers. Journal of King Saud University-

Computer and Information Sciences, 29(1):134–140. 24

Levin, Beth. 1993. English verb classes and alternations: A preliminary

investigation. University of Chicago press. 74

Levin, Beth. 2015. 39. verb classes within and across languages. In Volume 2 Case

Studies from Austronesia, the Pacific, the Americas, and Theoretical Outlook,

pages 1627–1670. De Gruyter Mouton. 148

Levine, Robert D and Walt Detmar Meurers. 2006. Head-driven phrase

structure grammar: Linguistic approach, formal foundations, and computational

realization. Encyclopedia of language and linguistics, 2. 11

Lidz, Jeffrey. 2006. The grammar of accusative case in kannada. Language, pages

10–32. 72

Liu, Haitao and Wei Huang. 2006. A chinese dependency syntax for treebanking.

In Proceedings of the 20th Pacific Asia Conference on Language, Information and

Computation, pages 126–133. 17

Magerman, David M and Mitchell P Marcus. 1994. Pearl: A probabilistic chart

parser. arXiv preprint cmp-lg/9405005. 20

200

https://doi.org/10.1145/3418061
https://doi.org/10.1145/3418061

BIBLIOGRAPHY

de Marneffe, Marie-Catherine and Joakim Nivre. 2019. Dependency grammar.

Annual Review of Linguistics, 5(1):197–218. 32, 33, 36

McCulloch, Warren S and Walter Pitts. 1943. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133. 13

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-

projective dependency parsing using spanning tree algorithms. In Proceedings

of human language technology conference and conference on empirical methods in

natural language processing, pages 523–530. 20

Mel’cuk, Igor Aleksandrovic et al. 1988. Dependency syntax: theory and practice.

SUNY press. 7, 8, 30, 52, 53, 118

Menon, Vijay Krishna, S Rajendran, M Anand Kumar, and KP Soman. 2016. A new

tag formalism for tamil and parser analytics. arXiv preprint arXiv:1604.01235.

11

Muralidaran, Vigneshwaran and Dipti Misra Sharma. 2016. Construction grammar

based annotation framework for parsing tamil. In International Conference

on Intelligent Text Processing and Computational Linguistics, pages 378–396.

Springer. 21

Murthy, K Narayana. 1996. Parsing telugu in the ucsg formalism. In Proc. Indian

Congress on Knowledge and Language, volume 2, pages 1–16.

Nagaraju, G, N Mangathayaru, and B Padmaja Rani. 2016. Dependency parser

for telugu language. In Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies, pages 1–

5. 24

Nallani, Sneha, Manish Shrivastava, and Dipti Sharma. 2020a. A fully expanded

dependency treebank for Telugu. In Proceedings of the WILDRE5– 5th Workshop

on Indian Language Data: Resources and Evaluation, pages 39–44, Marseille,

France. European Language Resources Association (ELRA). 104

Nallani, Sneha, Manish Shrivastava, and Dipti Misra Sharma. 2020b. A fully

expanded dependency treebank for telugu. In Proceedings of the WILDRE5–5th

Workshop on Indian Language Data: Resources and Evaluation, pages 39–44. 24

201

https://doi.org/10.1146/annurev-linguistics-011718-011842
https://aclanthology.org/2020.wildre-1.8
https://aclanthology.org/2020.wildre-1.8

BIBLIOGRAPHY

Nallani, Sneha, Manish Shrivastava, and Dipti Misra Sharma. 2020c. A simple and

effective dependency parser for telugu. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics: Student Research Workshop,

pages 143–149. 24, 46, 169

Nivre, Joakim. 2006. Inductive dependency parsing. Springer. 1, 7, 12, 13, 31

Nivre, Joakim. 2009. Parsing indian languages with maltparser. Proceedings of the

ICON09 NLP Tools Contest: Indian Language Dependency Parsing, pages 12–18.

21, 165

Nivre, Joakim, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe,

Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth

Augustinus, et al. 2017. Universal dependencies 2.1.

Nivre, Joakim, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan

Hajic, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,

Natalia Silveira, et al. 2016. Universal dependencies v1: A multilingual treebank

collection. In Proceedings of the Tenth International Conference on Language

Resources and Evaluation (LREC’16), pages 1659–1666.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2006. Maltparser: A data-driven

parser-generator for dependency parsing. In LREC, volume 6, pages 2216–2219.

20

Nivre, Joakim and Mario Scholz. 2004. Deterministic dependency parsing of english

text. In COLING 2004: Proceedings of the 20th International Conference on

Computational Linguistics, pages 64–70.

Ojha, Atul Kr and Daniel Zeman. 2020. Universal dependency treebanks for low-

resource indian languages: The case of bhojpuri. In Proceedings of the WILDRE5–

5th workshop on Indian language data: resources and evaluation, pages 33–38. 22

Osborne, Timothy. 2013. A look at tesnière’s éléments through the lens of modern

syntactic theory. In Proceedings of the Second International Conference on

Dependency Linguistics (DepLing 2013), pages 262–271. 7

Osborne, Timothy. 2019. A dependency grammar of English: An introduction and

beyond. John Benjamins Publishing Company. 35, 36, 43, 44, 52

Panchal, Sanjeev and Amba Kulkarni. 2019. Co-ordination in sanskrit. Indian

Linguistics, 80(1-2):59–176. 54

202

BIBLIOGRAPHY

Parida, Shantipriya, Kalyanamalini Sahoo, Atul Kr Ojha, Saraswati Sahoo,

Satya Ranjan Dash, and Bijayalaxmi Dash. 2022. Universal dependency treebank

for odia language. arXiv preprint arXiv:2205.11976. 23

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning

accurate, compact, and interpretable tree annotation. In Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual Meeting

of the Association for Computational Linguistics, pages 433–440. 20

Petrov, Slav and Ryan McDonald. 2012. Overview of the 2012 shared task on parsing

the web. 45

Phillips, John D. 1992. A computational representation for generalised phrase-

structure grammars. Linguistics and Philosophy, 15(3):255–287. 10

Pollard, C. and I. A. Sag. 1994a. Head-Driven Phrase Structure Grammar. University

of Chicago Press, US.

Pollard, Carl and Ivan Sag. 1987. Information-based syntax and semantics, vol. 1,

csli. 11

Pollard, Carl and Ivan A Sag. 1994b. Head-driven phrase structure grammar.

University of Chicago Press. 11

Preeti K, Patel. 2010. Vibhakti Divergence between Sanskrit and Hindi. Unpublished

MPhil. dissertation, University of Hyderabad,Hyderabad. 139

Raj, Mohit, Shyam Ratan, Deepak Alok, Ritesh Kumar, and Atul Kr Ojha. 2022.

Developing universal dependency treebanks for magahi and braj. arXiv preprint

arXiv:2204.12633. 23

Rama, Taraka and Sowmya Vajjala. 2018. A dependency treebank for telugu. In

English Conference Papers, Posters and Proceedings, 8, pages 119–128. 22, 24,

169

Ramarao, C. 1975. Telugu vākhyam. A.P. Sahitya Academy. 28, 58, 68, 69, 151

Ramarao, Chekuri. 2017. A reference grammar of modern Telugu. EMESCO books

Pvt. ltd., Hyderabad. 4, 28, 62, 65, 73, 88, 93, 116, 151

Ramasamy, Loganathan. 2012. Prague dependency style treebank for tamil. 22

203

https://lib.dr.iastate.edu/engl_conf/8/

BIBLIOGRAPHY

Ramasamy, Loganathan and Zdeněk Žabokrtskỳ. 2011. Tamil dependency parsing:

results using rule based and corpus based approaches. In International Conference

on Intelligent Text Processing and Computational Linguistics, pages 82–95.

Springer. 12

Rao, G. Uma Maheshwar. 1999. A Morphological Analyzer for Telugu. (electronic

form). Hyderabad: University of Hyderabad. Accessible at.

Rasooli, Mohammad Sadegh and Joel R. Tetreault. 2015. Yara parser: A fast and

accurate dependency parser. Computing Research Repository, arXiv:1503.06733.

Version 2.

Ravishankar, Vinit. 2017. A universal dependencies treebank for marathi. In

Proceedings of the 16th international workshop on treebanks and linguistic theories,

pages 190–200. 22

Riezler, Stefan, Tracy Holloway King, Ronald M Kaplan, Richard Crouch, John T

Maxwell III, and Mark Johnson. 2002. Parsing the wall street journal using

a lexical-functional grammar and discriminative estimation techniques. In

Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, pages 271–278. 10

Rosta, Andrew, Kensei Sugayama, and Richard Hudson. 2005. Structural and

distributional heads. Word Grammar: New perspectives on a theory of language

structure, pages 171–203. 52, 54

Salloum, Said A, Mostafa Al-Emran, and Khaled Shaalan. 2016. A survey of lexical

functional grammar in the arabic context. International Journal of Computing

and Network Technology, 4(03). 10

Sangal, rajeev, Vineet Chaitanya, and Akshar Bharati. 1995. Natural language

processing: a Paninian perspective. PHI Learning Pvt. Ltd. 44

Sangeetha, P, Parameswari K., and Amba Kulkarni. 2021. A rule-based dependency

parser for telugu: An experiment with simple sentences. Translation Today, 15(1).

Selvam, M, AM Natarajan, and R Thangarajan. 2008. Structural parsing of natural

language text in tamil using phrase structure hybrid language model. International

Journal of Computer, Information and Systems Science, and Engineering, 2:4. 21

Sgall, Petr and Eva Hajičová. 1971. A
”
functional” generative description:

background and framework. 30

204

http://caltslab.uohyd.ac.in/Telugu-Morphological-Analyser.html
http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733
0.46623/tt/2021.15.1.ar5
0.46623/tt/2021.15.1.ar5

BIBLIOGRAPHY

Shieber, Stuart, Susan U Stucky, Hans Uszkoreit, and Jane J Robinson. 1983.

Formal constraints on metarules. In Proceedings of the 21st Annual Meeting

of the Association for Computational Linguistics. Association for Computational

Linguistics. 10

Steedman, Mark and Jason Baldridge. 2011. Combinatory categorial grammar.

Non-Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-

Blackwell, pages 181–224. 9

Subbārāo, Kārumūri V. 2012. South Asian languages: A syntactic typology.

Cambridge University Press. 49, 58, 72, 82

Subbarao, Karumuri Venkata and B Lalitha Murthy. 2000. Lexical anaphors and

pronouns in telugu. Lust et al (ed.), Lexical Anaphors and Pronouns in Selected

South Asian Languages: A Principled Typology, pages 217–276. 76

Sureka, K, KG Srinivasagan, and S Suganthi. 2014. An efficiency dependency parser

using hybrid approach for tamil language. arXiv preprint arXiv:1403.6381. 21

Suryachandra, Palli and P Venkata Subba Reddy. 2016. Statistical approaches in

parsing for telugu language. In 2016 International Conference on Communication

and Electronics Systems (ICCES), pages 1–5. IEEE.

Taylor, Ann, Mitchell Marcus, and Beatrice Santorini. 2003. The penn treebank: an

overview. Treebanks, pages 5–22. 15

Tesnière, L. 1959. èlèments de syntaxe structurale, editions klincksieck edition. 7, 8,

30, 36, 43, 52, 118

Tse, Daniel and James R Curran. 2012. The challenges of parsing chinese with

combinatory categorial grammar. In Proceedings of the 2012 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 295–304. 9

Uma Maheshwar Rao, Garapati. 1999. Morphological analyzer for telugu.(electronic

form). Hyderabad: University of Hyderabad. 133

Uma Maheshwara, Rao, Amba P. Kulkarni, and M. Christopher. 2011b. A

telugu morphological analyzer. In Proceedings of International Telugu Internet

Conference. 26

205

http://caltslab.uohyd.ernet.in/Telugu-Morphological-Analyser.html.
http://caltslab.uohyd.ernet.in/Telugu-Morphological-Analyser.html.

BIBLIOGRAPHY

Vempaty, Chaitanya, Viswanatha Naidu, Samar Husain, Ravi Kiran, Lakshmi Bai,

Dipti M Sharma, and Rajeev Sangal. 2010a. Issues in analyzing telugu sentences

towards building a telugu treebank. In International Conference on Intelligent

Text Processing and Computational Linguistics, pages 50–59. Springer. 23

Vempaty, Chaitanya, Viswanatha Naidu, Samar Husain, Ravi Kiran, Lakshmi Bai,

Dipti M Sharma, and Rajeev Sangal. 2010b. Issues in analyzing telugu sentences

towards building a telugu treebank. In International Conference on Intelligent

Text Processing and Computational Linguistics, pages 50–59. Springer.

Verma, Mahendra K and Karuvannur Puthanveettil Mohanan. 1990. Experiencer

subjects in South Asian languages. Center for the Study of Language (CSLI). 28,

49, 152

Vikram, Sanal and Amba Kulkarni. 2020. Free word order in sanskrit and well-

nestedness. In Proceedings of the 17th International Conference on Natural

Language Processing (ICON), pages 308–316.

Wang, Sun-Chong. 2003. Artificial neural network. In Interdisciplinary computing

in java programming, pages 81–100. Springer. 13

Yeleti, Meher Vijay and Kalyan Deepak. 2009. Constraint based hindi dependency

parsing. ICON09 NLP Tools Contest: Indian Language Dependency Parsing.

Hyderabad, India. 22

Zeman, Daniel. 2008. Reusable tagset conversion using tagset drivers. In LREC,

volume 2008, pages 28–30. 45

Zeman, Daniel, Martin Popel, Milan Straka, Jan Hajic, Joakim Nivre, Filip

Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, et al.

2017. Conll 2017 shared task: Multilingual parsing from raw text to universal

dependencies. In CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text

to Universal Dependencies, pages 1–19. Association for Computational Linguistics.

22

Zhou, Junru and Hai Zhao. 2019. Head-driven phrase structure grammar parsing

on penn treebank. arXiv preprint arXiv:1907.02684.

206

DOI: 10.46623/tt/2021.15.1.ar5 Translation Today, Volume 15, Issue 1

A Rule-based Dependency Parser for Telugu: An

Experiment with Simple Sentences

SANGEETHA P., PARAMESWARI K.
& AMBA KULKARNI

Abstract

This paper is an attempt in building a rule-based dependency

parser for Telugu which can parse simple sentences. This

study adopts Pāṇini’s Grammatical (PG) tradition i.e., the

dependency model to parse sentences. A detailed description of

mapping semantic relations to vibhaktis (case suffixes and

postpositions) in Telugu using PG is presented. The paper

describes the algorithm and the linguistic knowledge employed

while developing the parser. The research further provides

results, which suggest that enriching the current parser with

linguistic inputs can increase the accuracy and tackle

ambiguity better than existing data-driven methods.

1. Introduction

Parsing is a challenging task especially when languages under

investigation are morphologically rich and have relatively free-

word order. A parser is an automated Natural Language

Processing (NLP) tool that analyses the input sentences based

on the grammar formalism adopted in implementation and

provides the output in constructed parse trees. The most

frequently adopted grammar formalisms include constituency

and dependency models. This study adopts the dependency

model that has proved to be an efficient model for Indian

languages that are morphologically rich with free-word order

(Bharati & Sangal 1993; Kulkarni 2013; Kulkarni &

Ramakrishnamacharyulu 2013; Kulkarni 2019).

Telugu is a South-central Dravidian language with

agglutinating morphology and with relatively free word order.

Hence, dependency grammar formalism was adopted for this

Sangeetha P., Parameswari K. & Amba Kulkarni

124

study which proved to be useful for other free-word order

languages. Apart from grammar formalism, the technique used

for the implementation of a parser also stands as equally

important. The implementation techniques majorly include

grammar-driven or data-driven. The present study uses a

grammar-driven technique that handles a wide range of

language ambiguities.

This paper discusses various problematic cases in parsing

Telugu simple sentence structures which consist of a clause

that includes covering constructions such as copula,

imperative, passive, dubitative, interrogative, non-nominative

subjects, reflexive, and coordinating noun phrases. This paper

is the first attempt (to the authors' best knowledge) in building

a rule-based parser for Telugu using a dependency framework.

This paper is organized as follows: Section-2 provide the

literature survey of parsing in Telugu; section-3 describes the

theoretical background for the study involving a discussion on

the mapping from kāraka to vibhakti in Telugu, taking insights

from PG; Section-4 provides a detailed description on building

the current parser, algorithm, and constraints (both local and

global); Section-5 provides the evaluation of the rule-based

parser and Knowledge-based parser, further discussing the

error analysis and some observations; finally, Section-6

concludes and explores the future scope of the study.

2. Brief Survey

A few attempts were made in developing a Telugu dependency

parser based on data-driven approaches. Some of them include

Vempaty Chaitanya, Viswanatha Naidu, Samar Husain, Ravi

Kiran, Lakshmi Bai, Dipti Mishra Sharma & Rajeev Sangal

(2010) who discussed issues in parsing various linguistic

constructions like copula, genitive, implicit and explicit

conjunct, and complementizer constructions. Garapati, Uma

Maheshwar Rao, Rajyarama Koppaka & Srinivas Addanki

A Rule-based Dependency Parser for Telugu:…

125

(2012) analysed dative case marker (-ki) with various functions

in Telugu in parsing perspective. Kesidi, Sruthilaya Reddy,

Prudhvi Kosaraju, Meher Vijay & Samar Husain (2013)

implemented a constraint-based dependency parser for Telugu

which was earlier used for languages like Hindi. This parser

deals with relations in two different stages wherein stage-1

handles intra-clausal relations and stage-2 handles inter-clausal

relations. Kumari, B. V. S., & Ramisetty Rajeshwara Rao

(2015) had developed combinatory categorial grammar

supertags using which they claim the enhancement of

identification of verbal arguments. Nagaraju, B, N.

Mangathayaru & B. Padmaja Rani 2016), Kumari B. V. S. &

Ramisetty Rajeshwara Rao 2017, Kanneganti S., Himani

Chaudhry & Dipti Misra Sharma (2018) worked on various

statistical approaches of parsers. Rama, Taraka & Sowmya,

Vajjala (2018) developed a Telugu treebank using Universal

Dependency (UD) tagset with an addition of language-specific

tags to handle compound and conjunct verb phrases for

Telugu. Gatla (2019) developed a treebank for Telugu which

was trained using data-driven parsers, namely, Minimum-

Spanning Tree (MST) parser and Models and Algorithms for

Language Technology (MALT) parser. Nallani, Sneha, Manish

Shrivastava & Dipti Mishra Sharma (2020) expanded treebank

by adding language-specific intra-chunk tags to the existing

annotation guidelines based on the Pāṇinian framework. In

addition to improving the existing tagset, Nallani, Sneha,

Manish Shrivastava & Dipti Mishra Sharma (2020b), also

developed a Telugu parser using a minimal feature

Bidirectional Encoder Representations from Transformers

(BERT) model providing considerable results. The highest

Label Attachment Score (LAS) reported so far has been 93.7%

(Nallani, Sneha, Manish Shrivastava & Dipti Mishra Sharma

2020) and the approaches have been data-driven. However,

the results of the above-mentioned systems prove that there

https://dl.acm.org/profile/99658770899
https://dl.acm.org/profile/99658770899
https://dl.acm.org/profile/81508689898

Sangeetha P., Parameswari K. & Amba Kulkarni

126

should be continuous improvement in the annotated corpus

size to improve the results further in data-driven approaches.

Hence, the effort in building the parser for Telugu using

grammar-driven approaches is attempted in this paper to study

its feasibility and advantages.

3. Theoretical Background

The dependency model follows the grammatical tradition of

dependency, tracing back to Pāṇini`s grammar. The

dependency grammatical model represents the relation

between the head and its dependents through directed arcs and

arc labels. The relation between content words is marked by

dependency relations; functional words are attached to the

content words they modify. The parse thus generated is a tree,

where the nodes of the parse tree stand for words in an

utterance and the link between words represents the relation

between pairs of words. All such dependencies in a sentence

can either be argument dependencies (subject, object, indirect

object, etc.) or modifier dependencies (determiner, noun

modifier, verb modifier, etc.). The peculiar feature of the

dependency model is to provide syntactico-semantic relations,

unlike the other grammar formalisms, which are purely

syntactic (Bresnan 1982; Gazdar Gerald, Ewan Klein,

Geoffrey k. Pullum, & Ivan A. Sag, 1985). Based on these

syntactico-semantic relations, Bharati Akshar, Dipti Misra

Sharma, Samar Husain, Lakshmi Bai, Rafiya Begum & Rajeev

Sangal (2009) have developed a dependency tagset known as

Anncora tagset which can be used for almost all major Indian

languages. This tagset consists of around 19 fine-grained tags

for karaka (K) relations and 25 fine-grained tags for non-

kāraka (r) relations. This study adopts the Anncora tagset in

order to label dependency relations.

 The most common dependency relation in a simple sentence

structure includes the dependency between a noun and a verb

A Rule-based Dependency Parser for Telugu:…

127

or a noun and a noun. PG uses syntactico-semantic relations

called kāraka relations expressed through vibhaktis to capture

dependencies between noun-verb and non-kāraka relations to

capture noun-noun dependencies. The pāṇinian treatment of

kāraka relations considers a system of default vibhakti for each

relation. This vibhakti assignment is independent of verb

semantics. Table-1 provides the default vibhakti for kāraka

relations in Telugu. In addition to this, the other tags used for

the current parser are listed as part of the Appendix.

Sl.No kāraka Relation Vibhakti
1 kartā (k1) -0
2 karma (k2) -ni/-nu
3 karaṇa (k3) -tō
4 sampradāna (k4) -ki/ku
5 apādāna (k5) nuM i/nuMci/niMci
6 ṣaṣṭhī (r6) Yokka
7 viṣaya-adhikaraṇam (k7) -lō

Table-1: kāraka relations and default vibhaktis in Telugu

Apart from these default vibhaktis, there exist cases of

deviation in Telugu in which there is no one-one mapping

between the vibhakti and kāraka relation. These deviations

arise when the verbs do not follow linguistic generalizations or

when a structure is out of the scope of linguistic generalisation.

In order to handle these deviations, Panini employs a model

wherein he proposes two methods (Preeti 2010) viz.

1. Assigning a different vibhakti

2. Imposing a new kāraka relation

Preeti (2010) summarizes the ways of mapping semantic

relations to vibhaktis through kārakas in PG. Consider the

following figure:

Sangeetha P., Parameswari K. & Amba Kulkarni

128

Figure-1 Semantic Relations

Based on fig-1, the semantic relations between noun-verb are

divided into the following types:

3.1. Type-A

The first type of semantic relation is when the language

follows the linguistic generalisation and takes a default kāraka

as listed in Table-1. In example (1) as explicated, kartā (k1)

and karma (k2) are marked with the default vibhakti i.e ∅ and -

ni respectively.

1. n nu.∅ ravi-ni c s-ā-nu.

 I.NOM Ravi-ACC do-PST-1.SG.

 ‘I saw Ravi’

3.2. Type-B

In certain relations, there exist instances of verbs in addition to

the default case marking which deviate from the default case

marking and assign optionally other case-suffixes as in (2) and

(3). The verb ceppu ‘to tell’ assigns either vibhakti -ki or –tō to

A Rule-based Dependency Parser for Telugu:…

129

express the relation sampradāna (k4) i.e the recipient of an

action as in (2).

2. n nu.∅ prakās-ki / -tō ā viSayaM cepp-ā-nu

 I.NOM Prakash-DAT/ASS that matter tell-PST-1.SG
 ‘I told that matter to Prakash’

Similarly, the verb ekku ‘to climb’ in Telugu, has an

expectancy of a noun expressing the location ‘to climb‘. In this

case, the noun is marked either with the vibhakti -nu or mīda as

in (3).

3. n nu nugu- a ekk-ā-nu.
 I.NOM elephant- ACC/on climb up-PST-1.SG.
 ‘I climbed an elephant’

3.3. Type-C

In certain cases, it is found that a different vibhakti is assigned

instead of the default one to indicate a particular semantic

relation. For instance, the default vibhakti indicates the source

of separation, apādānā i.e. the ablative case as in example (4).

However, in the case of mental separation as in (5) where the

kartā,vā u ‘he’ separates himself mentally due to the fear of

siMhaM ‘lion’ which is considered as apadānā in PG but it is

realized by the different vibhakti i.e. -ki, not by –nuM i

4. Cettu nuM i ākulu rālā-yi
 Tree From Leaves fall-3.PL
 ‘Leaves fell from the tree’

5. vā u siMhāni-ki bhayapa atā- u
 He lion- scare-3.SG.M
 ‘He is scared of a lion’

Sangeetha P., Parameswari K. & Amba Kulkarni

130

3.4. Type-D

In certain exceptional cases, it is found that a new kāraka is

imposed using a default vibhakti. This can be due to the

extension of the case relation as explicated in (6) where iḷḷu

‘home’ is the karma to the verb veḷḷu as per PG, however it is

marked with the vibhakti -ki.

6. n nu iMti-ki veḷḷ-ā-nu
 I.NOM house-DAT go-PST-1.SG.

 ‘I went home’

The other case as shown in Figure-1 is when the sentence does

not follow linguistic generalizations and a new kāraka is

assigned. We have not come across such cases so far in

Telugu; hence no explanation is provided in this paper.

When the semantic relationship is found between noun-noun,

non-kāraka relation i.e. ṣaṣṭhī (the tag ‘r6‘) is expressed by

yokka or the default oblique marker or by the vibhakti-ki in

certain cases in Telugu as in (7) i.e vādi-ki ‘his’.

7. vādi-ki kāli-ki debba tagil-iM-di

 He-DAT Leg-DAT Wound-NOM Hit-PST-3.SG.N
 ‘He got a wound on his leg”

4. Parser and Algorithm

The parser takes input from sentences that are morphologically

analysed and Parts of Speech (POS) tagged. Telugu

morphological analyzer and POS tagger (Garapati 1999) are

used as pre-processing tools. POS tagger helps in selecting the

best possible morphological analysis of each word. The parser

is built following the Indian theories of verbal cognition where

three factors viz. ākānksā (expectancy), yōgyatā (meaning

compatibility), and sannidhi (proximity) are used. We model

the parser as a tree where the nodes of a tree correspond to a

A Rule-based Dependency Parser for Telugu:…

131

word and the edges between nodes correspond to a relation

between the corresponding words. For instance, the parsed tree

of the example (1) is provided as below:

Fig-2 Parsed tree for example (1)

The basic algorithm for parsing which is followed is given

below (Kulkarni 2019)

1. Define one node each corresponding to every word in a

sentence

2. Establish directed edges between the nodes, if there is

either a mutual or unilateral expectancy (ākānksā)

between the corresponding words. In order to

hypothesize a possible edge between two words, we

refer to the expectancies of the verbs and the

corresponding vibhaktis and then postulate a possible

relation

3. Define constraints, both local on each node as well as

global on the graph as a whole. One of these constraints

corresponds to sannidhi (Proximity)

4. Use semantic constraints to filter out the meaning-wise

non-congruent solutions

5. Extract all possible trees from this graph that satisfy both

local and global constraints

Sangeetha P., Parameswari K. & Amba Kulkarni

132

6. Produce the most probable solution as the first solution

by defining an appropriate cost function. The cost C

associated with a solution tree is defined as C = ∑e de ×

rk an edge from a word wj to a word wi with label k, de =

|j-i|, rk rank of the role with label k. Then the problem of

parsing a sentence may be modelled as the task of

finding a sub-graph T of G such that T is a Directed Tree

(or a Directed Acyclic Graph).

4.1 Algorithm: An Elaboration

In this section, we explain steps 2, 3, and 4 of the algorithms in

detail. The step-2 corresponds to the use of lexical semantics

of nouns and verbs, step-3 is the use of constraints, and step-4

is the use of selectional restriction or mutual congruity.

The step-2 of the algorithm deals with the expectancies of

verbs and the corresponding vibhaktis which enable the parser

to postulate a possible relation. We notice that the mapping of

semantic relations to vibhaktis is one-one except for the

optional case marking (see Section 2.2), however the reverse

mapping viz. vibhakti to semantic relation is not one-one.

Case-suffixes as small as 7 (see table-1 and ṣaṣṭhī) in number

are used to express around 40 case relations which lead to

ambiguity. Ambiguities hence occurred are resolved by

augmenting linguistic information such as the lexical

semantics of verbs and nouns. (i) Lexical semantics of verbs.

The lexical semantics of verbs provides cues in certain cases to

disambiguate vibhaktis with their corresponding semantic

relation. Consider the examples (8) & (9)

8. n nu-∅ vā i-ki pustakaṁ icc-ā-nu

 I.NOM He-DAT Book-ACC Give-PST-1.SG
 “I gave a book to him”.

A Rule-based Dependency Parser for Telugu:…

133

9. n nu-∅ ba i-ki veḷl-ā-nu

 I-NOM School-DAT Go-PST-1.SG.
 “I went to the school”

The vibhakti -ki is used to express two different relations viz.

sampradānā (k4) as in (8) and goal/destination (k2p) as in (9).

In such cases, the semantics of the verb is considered to

disambiguate the vibhakti. In example (9), the verb belongs to

the class of [+motion] hence it has a requirement of k2p unlike

the example (8). This semantic information is augmented with

syntactic rules in order to mark the appropriate relation.

(ii) Lexical Semantics of Nouns

In some cases, it is the lexical choice of nouns that helps in

resolving the ambiguity. For instance, when the vibhakti-ki/-ku

is marked with kāla-adhikaraṇam (k7t) or deśa-adhikaraṇam

(k7p) relation, corresponding nouns should be either place or

time denoting terms as in example (10).

10. ravi-∅ padi-

∅
gaMṭalaku haidarabādu-

ku
c rukuṇ-ṭā- u

 Ravi-

NOM
10 Hour-

DAT
Hyderabad-

DAT
Reach-FUT-

3.SG.M

 “Ravi will reach Hyderabad at 10’o’clock”

Here, the noun expressing time i.e. padi gaMtalu ‘10 ‘o clock’,

and the place i.e. haidarabādu ‘Hyderabad’ are marked with -

ku, however, they are marked as k7p and k7t respectively

based on their semantics. In such cases, a list of these terms is

maintained as linguistic cues to access the information.

The step-3 of the algorithm is to define local and global

constraints. The local constraints used in the parser to postulate

the best possible result are given below (Kulkarni 2019):

Sangeetha P., Parameswari K. & Amba Kulkarni

134

1. A node can have one and only one incoming edge.

2. There cannot be more than one outgoing edge with the same

label from the same node if the relation corresponds to a

kāraka relation.

3. There cannot be self-loops in a graph. In addition to the

local constraints, we also use global constraints like sannidhi

‘proximity’ which is a constraint that restricts crossing of

edges. The sample graph satisfying all the above local and

global constraints is provided below:

11

.
n nu-

∅
prasādu

-tō
r pu madrāsu

-lō
telugu sinimā

-ki
veḷ-

tā-nu

 I-

NO

M

Prasad-

ASS
tomorro

w
Madras-

LOC
Telug

u
Movie-

DAT
Go-

FUT

-

1.SG

 ‘I will go to a Telugu movie with Prasad in Madras tomorrow.’

Figure-2 Sample graph for the example (11)

The use of semantic constraints is dealt with in step4 of the

algorithm. It is quite important to include semantic constraints

in a parser to arrive at the correct solution. For instance, the

sentence colourless green ideas sleep furiously (Chomsky

1957) is a syntactically well-formed sentence but semantically

ill-formed. The natural language feature which enables the use

A Rule-based Dependency Parser for Telugu:…

135

of semantically well-formed constructions is termed as yōgyatā

in PG or the selectional restriction in western terminology. The

selectional restriction is defined as the semantic constraint

imposed on the arguments of verbs. We use selectional

restriction of arguments of the verb to prune out the non-

congruent solutions and arrive at a single parse. Let us

consider the following examples:

12. t phānu-∅ illu-∅ k lc-iM-di

 Storm-NOM House-ACC destroy-PST-3.SG.N

 “The storm destroyed the houses”

*13. illu-∅ t phānu-∅ k lc-iM-di

 house-NOM storm-ACC destroy-PST-3.SG.N

 “Houses destroyed the storm”

Both examples (12) and (13) are syntactically well-formed

sentences, when yōgyatā is applied, the example (13) stands

semantically ill-formed because ‘Houses destroying the storm’

is a semantically unacceptable sentence. In order to solve such

issues, the canonical word order of a language is used as a cue.

The other instance in which we use selectional restriction is to

disambiguate kartā and karma in Telugu. When karma is [-

animate], the vibhakti ∅ is used which is synonymous with the

marker for kartā. In such cases, two ontological features [+/-

animate] and [+/- human] could resolve the ambiguity in

Telugu as well as in other Indian languages as examined by

(Bharati, Akshar; Samar, Husain; Bharat, Ambati; Sambhav,

Jain; Dipti, Sharma; & Rajeev, Sangal 2008). kartā is

considered to be higher in its animacy hierarchical order in

comparison with karma. Consider the following example:

Sangeetha P., Parameswari K. & Amba Kulkarni

136

14. n nu-∅ pāta-∅ pā -ā-nu

 I.NOM Song. ACC sing-PST-3.SG.N

 “I sang a song”

Here, the verb pā u ‘sing’ expects kartā with a semantic

feature of [+human] thus, (n nu) ‘I’ is prioritized over a [-

animate] entity (i.e. patā) ‘song’. These two semantic features

proved to be quite helpful in resolving the most ambiguous

relation of kartā and karma. As seen earlier, this parser

exploits various linguistic information which stands crucial in

disambiguating certain cases. In the next section, we present

the results, which show the impact of linguistic information

used in the parser.

5. Evaluation of the System

The parser is evaluated for its Labelled Attachment Score

(LAS) and Unlabelled Attachment Score (UAS). In this

section, the data used for evaluating parsers is presented

followed by the results. Finally, we also present the error

analysis and some observations.

5.1. Data

The present study selects 453 sentences to test parsers which

are extracted from various sources such as (i) Telugu Grammar

books viz. telugu vākhyam (Ramarao 1885) and A grammar of

modern Telugu (Krishnamurti & Gwynn 1985) (ii) Random

sentences from Telugu corpus (3 million words (CALTS
1
)

corpus). The corpus contains sentences with intransitive verbs

(223 sentences), transitive verbs (197 sentences), and

ditransitive verbs (33 sentences). The sentences covering

constructions such as copula, imperative, passive, dubitative,

1 Centre for Applied Linguistics and Translation Studies

A Rule-based Dependency Parser for Telugu:…

137

interrogative, non-nominative subjects, reflexive and

coordinating noun phrases are noticed.

5.2. Results

The results consist of the Unlabelled Attachment Score (UAS)

where the dependency tree produced by the parser matches

exactly with the tree from the gold data without considering

the labels and the Labelled Attachment Score (LAS) which

checks if the two relations and labels are correctly matched.

Out of 453 sentences, 1043 relations are manually identified

and annotated for the evaluation. MALT parser is developed

with the data annotated. The rule-based parser produces correct

dependency trees for 1001 relations and 969 correct labelled

trees. Whereas MALT parser produces 928 relations, out of

which 739 relations are correctly labelled. The results are

provided in the table-2.

Parser type UAS LAS
Rule-Based Parser 96.5% 92.9%

MALT parser 89% 70.85%
Table 2: Results

Further, the rule-based parser output is analysed with different

sentence structures as given in Table-3. The exact match and

partial match of sentences are also identified.

Sentence Type No. of

sentences

exact

match

partial

match

UAS LAS

Intransitive 223 208 18 97.6% 95.5%

Transitive 197 152 40 97% 92.4%

Ditransitive 33 20 11 86.6% 80%

Copula

constructions

87 68 16 92.5% 80%

Sangeetha P., Parameswari K. & Amba Kulkarni

138

Imperative

constructions

25 15 8 68% 52%

Dubitative

constructions

56 36 18 64% 56%

Passive

constructions

33 28 3q 90% 81%

Non-nominative

subject

constructions

66 38 25 48% 41%

Reflexive

constructions

17 8 7 46% 33%

Interrogative

constructions

62 48 10 85% 77%

Table-3 Simple sentence structures and results

The parsing errors in these simple sentence structures are

studied which help in improving further the rules in the rule-

based parser for Telugu.

5.2. Error Analysis and Observations

In this section, we discuss certain cases where the rule-based

parser fails to provide the appropriate results. The current

rule-based parser has a difficulty in dealing with the

coordinating noun phrases and with certain pro-drop

constructions. As seen in the example (15), the noun phrases

gāli nīru ‘air and water’ are co-ordinating noun phrases, but

the linguistic cue to express them as coordination such

as either comma (,) (i.e., gāli nīru) or the vowel-length in the

end (gālī nīr) are not present. This makes the system identify

them wrongly as separate relations.

A Rule-based Dependency Parser for Telugu:…

139

15. ā prāMtaM-lō gāli nīru l vaṭa

 that place-LOC water air be-NEG-QUO
 “There is no water or air in that place”

Certain verbs in Telugu do not show agreement with the kartā.

In example (16), when the verb expresses the mood of

possibility with the auxiliary verb vaccu, it does not show

agreement with the verb. When the kartā is pro-dropped, the

system identifies the karma (i.e. c pa ‘fish’), the zero-marked

as kartā. Consider the example below:

16. c pa.∅ tin-a-vaccu

 Fish.ACC eat-INF-POSS

 “(subject) can eat fish”

The other two reasons for the failure of the parser in certain

cases are due to the wrong output from the pre-processing

tools and the lack of a database for the parser. These are

handled by correcting the pre-processing output and improving

the database (vocabulary). Whereas, in data-driven parsers like

MALT, it is difficult to improve the accuracy unless a huge

annotated corpus is trained again.

6. Conclusion

 This paper deals with building a rule-based parser for Telugu

experimenting with simple sentences. A discussion on the

application of the Pāṇinian grammatical model to Telugu and

the algorithm is provided. This paper explains how the use of

two semantic features viz. animacy and humanity enables the

unambiguous marking of kartā and karma relations. The

Sangeetha P., Parameswari K. & Amba Kulkarni

140

results show that the rule-based parser proves to be better than

the data-driven parser due to the inclusion of linguistic

information. Further, the study aims to improve the accuracy

of the pre-processing tools and also build the required database

for Telugu parsing. The next phase of the study will focus on

implementing the rule-based parser for all the sentence

structures in Telugu and extending this algorithm to other

Indian languages.

Appendix - List of tags used in the Telugu Parser

k1 (kartā ‘Agent’)

k2 (karma

‘patient/goal’)

k3 (karaṇa

‘instrument’)

k4(sampradāna’bene

ficiary’)

k4a (anubhavāı kartā

‘Experiencer’)

 k5 (apādāna

‘Source’)

 k7 (viṣaya-

adhikaraṇam

‘location elsewhere’)

k7t (kāla-

adhikaraṇam location

in time)

k7p (deśa-

adhikaraṇam

‘location in space’)

k2g(gounakarma‘sec

ondary karma’)

r6(ṣaṣṭhī karma ‘genitive’)

rh (hetuḥ ‘reason’)

rt (tātparya ‘purpose’)

k1s(kartṛsamānādhikaraṇam’c

omplement of a kartā’)

k2s (karmasamānādhikaraṇam

‘complement of a karma’)

adv (kriyāviśeṣaṇnam adverbs)

 k*u(sādrishya ‘similarity’)

rd (‘direction’)

ras-k*
(upapada sahak

ārakatwa

‘associative’)

case (‘for

postpositions’)

 det
(‘determiner’)

enm(enumerato

r (number

words))

jjmod(‘adjectiv

e modifier’

 lwg(‘local

word grouping)

nmod (‘noun

modifier’)

r6v (‘verb and

noun relation’)

rsym
(‘symbols)

title (‘titles of

names’)

vmod (‘verb

modifier’)

A Rule-based Dependency Parser for Telugu:…

141

References

AMBATI, BHARAT RAM; PHANI GADDE & KARAN JINDAL. 2009.

Experiments in Indian Language Dependency

Parsing. Proceedings of the ICON09 NLP Tools Contest:

Indian Language Dependency Parsing. 32-37.

BHARATI, AKSHAR & RAJEEV SANGAL. 1993. Parsing Free

Word Order Languages in the Paninian Framework. 31st

Annual Meeting of the Association for Computational

Linguistics. 105-111.

BHARATI, AKSHAR, VINEET CHAITANYA, RAJEEV SANGAL & K.

V. RAMAKRISHNAMACHARYULU. 1995. Natural Language

Processing: A Paninian Perspective. New Delhi: Prentice

Hall of India.
BHARATI, AKSHAR, SAMAR HUSAIN, BHARAT AMBATI,

SAMBHAV JAIN, DIPTI SHARMA & RAJEEV SANGAL. 2008.

Two Semantic Features Make All the Difference in Parsing

Accuracy. Proceedings of ICON 8.

BHARATI, AMBATI, DIPTI MISRA SHARMA, SAMAR HUSAIN,

LAKSHMI BAI, RAFIYA BEGUM & RAJEEV SANGAL. 2009.

AnnCorra: TreeBanks for Indian Languages, Guidelines for

Annotating Hindi TreeBank (version–2.0). LTRC.

Hyderabad: IIIT Hyderabad.
BRESNAN, JOAN. 1982. Control and

Complementation. Linguistic Inquiry 13(3). 343-434.

http://www.jstor.org/stable/4178286 (Accessed 2nd June

2021).

CHOMSKY, NOAM. 1957. Syntactic Structures (2
nd

 edition).

Mouton de Gruyter: The Hague.

GARAPATI, UMA MAHESHWAR RAO. 1999. Morphological

Analyzer for Telugu. (Electronic form). Hyderabad:

University of Hyderabad.
GARAPATI, UMA MAHESHWAR RAO., RAJYARAMA KOPPAKA &

SRINIVAS ADDANKI. 2012. Dative case in Telugu: A Parsing

http://www.jstor.org/stable/4178286

Sangeetha P., Parameswari K. & Amba Kulkarni

142

Perspective. Proceedings of the Workshop on Machine

Translation and Parsing in Indian Languages. 123-132.
GATLA, PRAVEEN. 2019. Dependency Parsing for Telugu

Using Data-driven Parsers. Language in India 19(1). 185-

197.

GAZDAR, GERALD, EWAN KLEIN, GEOFFREY K. PULLUM, &

IVAN A. SAG. 1985. Generalized Phrase Structure

Grammar. Cambridge, MA: Harvard University Press.
HUSAIN, SAMAR. 2009. Dependency Parsers for Indian

Languages. Proceedings of ICON09 NLP Tools Contest:

Indian Language Dependency Parsing.
KRISHNAMURTI, BH. & J. P. L. GWYNN. 1985. A Grammar of

Modern Telugu. New Delhi: Oxford University Press.
KANNEGANTI, SILPA, HIMANI CHAUDHRY & DIPTI MISRA

SHARMA. 2018. Comparative Error Analysis of Parser

Outputs on Telugu Dependency Treebank. In Gelbukh A.

(ed.), Computational Linguistics and Intelligent Text

Processing. CICLing 2016. Lecture Notes in Computer

Science 9623. Springer Cham. https://doi.org/10.1007/978-

3-319-75477-2_28.
KESIDI, SRUTHILAYA REDDY, PRUDHVI KOSARAJU, MEHER

VIJAY & SAMAR HUSAIN. 2013. Constraint based Hybrid

Dependency Parser for Telugu. Hyderabad: International

Institute of Information Technology Hyderabad doctoral

dissertation.
KUMARI, B. VENKATA SESHU & RAMISETTY RAJESHWARA

RAO. 2015. Improving Telugu Dependency Parsing Using

Combinatory Categorial Grammar Supertags. ACM

Transactions on Asian and Low-Resource Language

Information Processing (TALLIP) 14(1), 1-10.
KUMARI, B. VENKATA SESHU & RAMISETTY RAJESHWARA

RAO. 2017. Telugu Dependency Parsing Using Different

Statistical Parsers. Journal of King Saud University-

Computer and Information Sciences 29(1). 134-140.

A Rule-based Dependency Parser for Telugu:…

143

KULKARNI, AMBA SHEETAL POKAR & DEVANAND SHUKL.

2010. Designing a Constraint-based Parser for Sanskrit.

International Sanskrit Computational Linguistics

Symposium. 70-90.

KULKARNI, AMBA., & K. V. RAMAKRISHNAMACHARYULU.

2013. Parsing Sanskrit Texts: Some Relation Specific

Issues. Proceedings of the 5th International Sanskrit

Computational Linguistics Symposium.
KULKARNI, AMBA. 2013b. A Deterministic Dependency Parser

with Dynamic Programming for Sanskrit. Proceedings of

the Second International Conference on Dependency

Linguistics (DepLing 2013). 157-166.

KULKARNI, AMBA. 2019. Sanskrit Parsing Based on the

Theories of Sabdabodha. Indian Institute of Advanced

Study, Shimla and DK Publishers (P) Ltd.

NAGARAJU, B., N. MANGATHAYARU & B PADMAJA RANI. 2016.

Dependency Parser for Telugu Language. ICTCS '16:

Proceedings of the Second International Conference on

Information and Communication Technology for

Competitive Strategies. 1-5.
NALLANI, SNEHA, MANISH SHRIVASTAVA, M., & DIPTI MISHRA

SHARMA. 2020. A Fully Expanded Dependency Treebank

for Telugu. Proceedings of the WILDRE5–5th Workshop on

Indian Language Data: Resources and Evaluation. 39-44.

NALLANI, SNEHA, MANISH SHRIVASTAVA, M., & DIPTI MISHRA

SHARMA. 2020b. A Simple and Effective Dependency

Parser for Telugu. Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics: Student

Research Workshop. 143-149.
NIVRE, JOAKIM .2000. Statistical Parsing. Handbook of Natural

Language Processing 2. 525–543.
PATEL PREETI K. 2010. Vibhakti Divergence Between Sanskrit

and Hindi. Hyderabad: University of Hyderabad

dissertation.

https://dl.acm.org/profile/99658770899
https://dl.acm.org/profile/81508689898

Sangeetha P., Parameswari K. & Amba Kulkarni

144

POLLARD, CARL JESSE & IVAN A. SAG. 1994. Head-driven

Phrase Structure Grammar. Chicago: University of

Chicago Press.
RAMA, TARAKA & SOWMYA, VAJJALA. 2018. A Dependency

Treebank for Telugu. English Conference Papers, Posters

and Proceedings 8. https://lib.dr.iastate.edu/engl_conf/8.
RAMARAO, CHEKURI. 1885. Telugu Vākyaṁ. Hyderabad: AP

Sahitya Academy.
VEMPATY CHAITANYA, VISWANATHA NAIDU, SAMAR

HUSAIN, RAVI KIRAN, LAKSHMI BAI, DIPTI MISHRA

SHARMA & RAJEEV SANGAL. 2010. Issues in Analyzing

Telugu Sentences towards Building a Telugu Treebank. In

Gelbukh A. (ed.), Computational Linguistics and Intelligent

Text Processing. CICLing 2010. Lecture Notes in Computer

Science 6008. Berlin, Heidelberg: Springer.

https://doi.org/10.1007/978-3-642-12116-6_5.

Cite This Work:

P., SANGEETHA, PARAMESWARI K. & AMBA KULKARNI. A

Rule-based Dependency Parser for Telugu: An Experiment

with Simple Sentences. Translation Today, Vol. 15(1). 123-

144. DOI:10.46623/tt/2021.15.1.ar5

https://lib.dr.iastate.edu/engl_conf/8
https://lib.dr.iastate.edu/engl_conf/8

Proceedings of the ICON 2021 Workshop on Parsing and its Applications for Indian Languages (PAIL) , pages 12–19
December 16, 2021. Silchar, India. ©2021 NLP Association of India (NLPAI)

12

Parsing Subordinate Clauses in Telugu using Rule-based Dependency
Parser

1Sangeetha Perugu, 2Parameswari Krishnamurthy, 3Amba Kulkarni
1,2Centre for Applied Linguistics and Translation Studies, 3Centre for Sanskrit Studies

University of Hyderabad
1geethanjali.sheldon@gmail.com, {2pksh, 3ambakulkarni}@uohyd.ac.in

Abstract

Parsing has been gaining popularity in recent
years and attracted the interest of NLP re-
searchers around the world. It is challenging
when language under study is a free-word or-
der language which allows ellipsis like Tel-
ugu. In this paper, an attempt is made to parse
subordinate clauses especially, non-finite verb
clauses and relative clauses in Telugu which
are highly productive and constitute a large
chunk in parsing task. This study adopts a
knowledge-driven approach to parse subordi-
nate structures using linguistic cues as rules.
Challenges faced in parsing ambiguous struc-
tures are elaborated alongside providing en-
hanced tags to handle them. Results are en-
couraging and this parser proves to be efficient
for Telugu.

1 Introduction

Parsing, the word derived from Latin (pars ora-
tionis), was originally used in elementary schools
for grammatical explication of sentences (Nivre,
2006). Currently, parsing is a well-known and
well-researched area in natural language processing
(NLP) which involves analyzing sentences syntac-
tically or syntactico-semantically. Building parsers
and treebanks have attracted several researchers
for its utility in various larger NLP applications.
An efficient and ready-to-use parser for languages
like Telugu, one of the most widely spoken Dravid-
ian languages is still under development, though a
handful of resources are traced.

Telugu is a south-central Dravidian language
with free-word order and well-known for its ag-
glutinating morphology. Agglutination allows car-
rying multiple grammatical information on words
in Telugu. This grammatical information is quite
helpful in parsing and stands as a rationale be-
hind building the rule-based parser, despite mul-
tiple challenges. Parsing free-word order and ag-

glutinating languages like Telugu is particularly
challenging as they allow pro-drops, ellipsis and
complex constructions. Earlier attempts in devel-
oping Telugu dependency parsers include mostly
data-driven approaches (Ambati et al., 2009; Hu-
sain, 2009; Bharati et al., 2009; Kesidi et al., 2013;
Kanneganti et al., 2016; Gatla, 2019; Nallani et al.,
2020; Rama and Vajjala, 2018). Among the at-
tempts made, UDPipe for Telugu1 which is trained
using Telugu-MTG UD treebank (Rama and Vaj-
jala, 2018) is the only publicly accessible parser.
There is an attempt in developing a rule-based
parser with linguistic knowledge-driven approach
(Sangeetha et al., 2021) for simple sentences. In
this paper, we present our experiment in parsing
subordinate clauses, particularly, non-finite verb
clauses and relative participle clauses in Telugu
using rule-based dependency parser.

2 A Rule-Based Dependency Parser

This study uses a rule-based parser (RBP) which
takes input from sentences that are morphologically
analysed. Telugu POS tagger, pruning and pick-
one-morph modules are used to select one analysis
per token (Rao, 1999). The RBP follows depen-
dency approach based on the Indian theories of ver-
bal cognition where three factors viz. ākānksā (ex-
pectancy), yōgyata (meaning compatibility), and
sannidhi (proximity) are used and implemented ini-
tially for Sanskrit (Kulkarni, 2019). Telugu RBP is
adopted from Sanskrit RBP and modified for Tel-
ugu parsing (Sangeetha et al., 2021). We model
the parser as a tree where the nodes of a tree cor-
respond to a word and the edges between nodes
correspond to a relation between the corresponding
words. Parser is implemented using the functional
programming language Ocaml 2 to write rules and

1http://lindat.mff.cuni.cz/services/
udpipe/

2https://ocaml.org/

http://lindat.mff.cuni.cz/services/udpipe/
http://lindat.mff.cuni.cz/services/udpipe/
https://ocaml.org/

13

Perl to generate dependency trees as graphs. The
figure 1 explains the architecture of the RBP.

Telugu Sentence

Morphological analysis

Select one morph

Apply rules

Convert to graphs

If
 multiple relations

Filter

Dependency tree

Telugu RBP rules

Database

POS tagging

Pruning
Pickone morph

Yes

No

Figure 1: Architecture

In parsing simple sentences, 29 dependency labels
are used and they are divided into kāraka(K) re-
lations (for example, kartā (roughly equivalant to
subject) (k1), karmā (object) (k2) etc.) and non-
kāraka (for example, genitive (r6), associative(ras)
etc.) labels. The dependency tree for the sentence
(1) is seen in figure 2.

(1) mā
our

nānna
father

rēpu
tomorrow

ūri
village

nuMci
from

vas-tā-ru
come-FUT-3.SG.HON.
‘My father will come from village tomor-
row’

3 Subordinate Clauses in Telugu

Subordinate clauses in Telugu include non-finite
verb clauses, relative participle clauses and com-
plementizer clauses. Subordinate clauses in Tel-
ugu do express ambiguity with different syntactico-
semantic relations.

Non-finite verb clauses are highly productive

vastāru

nānna

k1

rēpu

k7t

ūru

k5

mā

r6

nuMci

psp

Figure 2: Dependency tree for sentence(1)

in the formation of sentences in Telugu and they
constitute a large chunk in parsing task. They
are dependent clauses which cannot stand alone
in a sentence. They are realised as subordinate
clauses which are derived from simple sentences
with certain structural changes and precede the
matrix clause by occurring to their left side. The
verb of subordinate clause is syntactically the head
of the clause but does not exhibit person-number-
gender agreement with respective subjects, how-
ever it is marked for appropriate tense, aspect and
mood. They are classified into conjunctive partici-
ples, conditionals, concessives and infinitives in
Telugu (Krishnamurti and Gwynn, 1985). Conjunc-
tive participles are divided into past, durative and
negative. Conditionals and concessives clauses can
have both affirmative and negative forms whereas
infinitives can have only affirmative form.

Relative participle clauses are primarily noun
phrases which are further divided into past, dura-
tive, future/habitual and negative participles. Nega-
tive participles do not differentiate for tense. Com-
plementizer clauses are formed by the quotative
form i.e. ani ‘that’ which links both finite clauses.
Figure 3 provides the classification of subordinate
clauses in Telugu. Examples of various types of
subordinate clauses are provided in the table 1.

In this paper, we present challenges in pars-
ing non-finite verb clauses and relative participle
clauses using rule-based parsing. We use the an-
ncora tagset for tagging the dependency relations
(Version 2.5) (Bharati et al., 2009). There is a great
requirement for the enhancement of tags for Telugu
to disambiguate various functions of subordinate
clauses. An attempt is made to build enhanced tags
and implemented using linguistic cues as rules in
RBP.

14

Subordinate Clauses

Non-finite verb
 clauses

Relative Participle
 clauses

Complementizer
 clauses

Conjunctive
 Participles Conditional Concessive Infinitive

 (-an)
Past
 (-inā)

Durative
 (-tunna)

Fub/hab
 (-ē)

Negative
 (-ani)

Past
 (-i)

Durative
 (-tū)

Negative
 (-aka/-akuMḍā)

Affirmative
 (-tē)

Negative
 (-akapōtē)

Affirmative
 (-ina)

Negative
 (-akapōinā)

Figure 3: Types of non-finite clauses in Telugu

Type of subordinate clause Example
I. Non-finite verb clauses
Conjunctive Participle
Past tin-i ‘having eaten‘
Durative tin-t.ū ‘along with eating‘
Negative 1 (-akuMd. a) tina-kuMd. ā ‘not having eaten‘
Negative 2 (-aka) tin-aka ‘due to not having eaten‘
Conditional
Affirmative tin-tē ‘if one eats‘
Negative tin-akapōtē ‘if one does not eat‘
Concessive
Affirmative tin-inā ‘inspite of having eaten‘
Negative tin-akapōinā ‘inspite of not having eaten‘
Infinitive tin-(an) ‘to eat‘
II. Relative Participle
Past tin-ina abbāyi ‘the boy who ate‘
Durative tin-tunna abbāyi ‘the boy who is eating‘
Future-habitual tin-ē abbāyi‘the boy who will eat‘
Negative tin-ani abbāyi ‘the boy who did not eat‘

Table 1: Examples of subordinate clauses
.

4 Challenges in Parsing Subordinate
Clauses

Subordinate clauses in Telugu are ambiguous
across certain sub-types. These ambiguous con-
structions pose various parsing challenges mainly
due to multiple functions or interpretations of a
non-finite marker which causes ambiguity. Cer-
tain ambiguous constructions with non-finite verb
clauses and relative participle clauses in Telugu are
discussed in this section.

4.1 Conjunctive participle clause

The conjunctive participle clause occurs as a subor-
dinate clause and modifies the matrix clause. This
conjunctive participle clause can be used to express
verbal modifier (vmod) functions such as serial ac-
tion, manner and simultaneous action in Telugu.
Example (2) explicates conjunctive participle as
a serial verb. The figure 4 is shown with the tag
vmod:cp serial for the sentence (2) with con-

junctive participle expressing serial action.

(2) rāmud.u.∅
Ram.NOM

annaM.∅
food.ACC

tin-i
eat-CP.PST

pad.ukunn-ā-d. u
sleep-PST-3.SG.M
‘Ram ate food and slept’

paḍukunnāḍu

rāmuḍu

k1

tini

vmod:cp_serial

annaM

k2

Figure 4: Dependency tree for (2)

The conjunctive participle can express manner as
explicated in the sentence (3) with the Figure 5.
Here, the verb class i.e. motion verbs is used as a
cue to identify the manner in the verb modification
with the tag vmod:cp manner.

(3) vimala.∅
vimala.NOM

āphı̄su-ku
office-DAT

nadic-i
walk-CP.PST

vel.t-uM-di
go-HAB-3.SG.F
‘Vimala goes to office by walk’

The conjunctive participles express simultane-
ous action when the participle is durative as in the
sentence (4).

15

veḷḷiMdi

vimala

k1

āphīsuku

k2p

naḍici

vmod:cp_manner

Figure 5: Dependency tree for (3)

(4) prakāsh.∅
prakash.NOM

sinimā
cinema

cūs-tū
watch-CP.DUR

cūldriMk
cool-drink

tāg-ā-d. u
drink-PST-3.SG.M

‘Prakash drank cool drink while watching a
cinema’

Figure 6 shows a dependency tree of the sentence
(4) adding a new tag vmod:cp simul.

tāgāḍu

Prakāṣ

k1

kūl ḍriMk

k2

cūstū

vmod:cp_simul

sinimā

k2

Figure 6: Dependency tree for (4)

However, when the active form of conjunctive
participle verb is followed by the passive matrix
verb, it renders an ambiguous interpretation. Con-
sider example (5) from (Ramarao, 2017, pg. 116)
and its dependency tree in the Figure 7.

(5) sujāta
sujata.NOM

tiraskariMc-i
reject-CP.PST

avamāniMc-a-bad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata rejected (someone) and was insulted’
or ‘Sujata got rejected and was insulted’.

Example (5) is ambiguous due to argument ellipsis.
This can be interpreted in two different ways by
supplying either a passive subject (as in (6)) or
the object (as in (7)) in the non-finite clause. This
ambiguity is represented in Figure 7.

(6) sujāta
sujata.NOM

vād. i
he

cēta
by

tiraskariMc-(abad̄)i
reject-(PASS).CP.PST

avamāniMc-abad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata got rejected by him and was insulted’

(7) sujāta
sujata.NOM

vād. i-ni
he-ACC

tiraskariMc-i
reject-CP.PST

avamāniMc-abad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata rejected him and was insulted’

avamānin̄cabaḍindi

sujāta

k2:pass tiraskariMc(abaḍi)i

vmod:cp_serial

k1/k2:pass

Figure 7: Dependency tree for (5)

Other cases include constructions with negative ma-
trix verb percolating its features to the conjunctive
participle resulting in ambiguity as in the sentence
(8).

(8) ravi.∅
Ravi.NOM

kāphı̄.∅
coffee.ACC

tāgi
drink-CP.PST

skūl-ki
school-DAT

vel.l.-a-lēdu
go-PST-NEG

‘Ravi drank coffee but he did not go to
school/ It is not coffee that Ravi drank (but
something else) and went to school’

Since disambiguating senses in (8) is not in the
scope of parsing and it requires deep semantic anal-
ysis, the dependency tree does not show the differ-
ence in meaning as in the figure 8.

However, the occurrence of the particle kūd. a
‘also’ after the participle form helps in disambiguat-
ing and the negative percolation from the matrix to
subordinate clause is prevented.

(9) ravi.∅
Ravi.NOM

kāphı̄.∅
coffee.ACC

tāg-i
drink-CP.PST

kūd
¯
a

also
skūl-ki
school-DAT

vel.l.-a-lēdu
go-PST-NEG

‘Ravi drank coffee but he did not go to
school’

16

veḷḷalēdu

ravi

k1

skūlki

k2p

tāgi

vmod:cp_serial

kāphī

k2

Figure 8: Dependency tree for (8)

4.2 Conditional clauses

Conditional clauses in Telugu not only express con-
ditional sense but also show other interpretations
leading to several parsing analyses. Such construc-
tions are identified and tagged differently in the
RBP.

Sentences (10) and (11) differ with the use of
tense in finite verb and render different senses. If
the finite verb of a complex sentence is in non-past
tense, it is considered as a conditional clause and
will be tagged with vmod:cond. Whereas, if the
matrix verb is in the past tense, the conditional
verb expresses the serial action and is given the tag
vmod:cond serial as the sentence (11).

(10) rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

padu-tuM-di
fall-NON.PST-3.N.SG
‘If you hit with a stone, the fruit falls’

(11) rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

pad-iM-di
fall-PST-3.N.SG
‘The fruit fell when hit with a stone’

Other exceptional case of conditional suffix ren-
dering non-conditional sense include the causal
meaning. In the sentence (12) (Ramarao, 2017,
pg. 129), the verb of non-finite clause tiM-tē ex-
presses the cause for the main action and can be
alternated with conjuctive participle form tini ‘hav-
ing eaten’. The subject subbārāvu ‘Subbarao’ is
shared with both non-finite and matrix clauses.
Shared subject constraint is used as a syntactic
cue in order to parse these constructions and tag

vmod:cond cause is attached in the depen-
dency tree as in 9.

(12) subbārāvu
Subbarao-NOM

gud. lu
eggs

tiMt.e
eat-NF-COND

balis.-ā-d. u
fat-become-PST-3.SG.M
‘Subbarao became strong by eating eggs’

balisāḍu

subbārāvu

k1 tiMṭē

vmod:cond_cause

k1

guḍlu

k2

kōḍi

nmod

Figure 9: Dependency tree for (12)

4.3 Concessive clauses

Concessive clauses in Telugu are formed by adding
the suffix -inā to the verb stem and express the
meaning ‘even if/even though’. It functions as
adverbial modifiers to the matrix verb. The neg-
ative concessive form is formed by the suffix
‘akapoyinā’. This clause is tagged as vmod:conc
in the rule-based parser.

(13) nēnu
I-NOM

cadiv-inā
study-NF-CONC

pāsu

avva-lēdu
become-NEG
‘Even after studying, I did not pass (the examina-
tion)’

4.4 Infinitive clauses

Infinitive clauses are not very common in Telugu.
The infinitive suffix in Telugu is -an and the tag
vinf:k1 is used in tagging infinite clauses when
they occur in the subject position as in the sentence
(14) and the respective dependency tree in Figure
11.

17

avvalēdu

pāsu

pof

nēnu

k1

cadivinā

vmod:conc

Figure 10: Dependency tree for (13)

(14) mı̄ru
I-HON

nā-tō
I-INST

ā
that

vis.ayaM
matter

cepp-an
tell-INF

akkar-lēdu
need-NEG
‘You need not tell me that matter’

lēdu

ceppan

vinf:k1

akkara

pof

mīru

k1

nātō

k4

viṣayaM

k2

ā

det

Figure 11: Dependency tree for (14)

4.5 Relative Participle Clauses

A simple sentence can be changed into a relative
clause by replacing its finite verb by a relative
participle (or verbal adjective) in the correspond-
ing tense-mode and shifting the noun that it quali-
fies as head of the construction (Krishnamurti and
Gwynn, 1985). Relative participle clauses occur
immediately before nouns which they qualify. In
Telugu, they show the distinction in tense in affir-
mative construction whereas in negative they do
not show the tense.Relative participles are tagged
as nmod:relcl in RBP. nmod:relcl is added
with the argument relation of the noun which is
relativized. In the sentence (15), the relativized
nouns holds the object (k2) relation with the rel-
ative participle whereas the sentence (16) with
the subject (k1) relation. There are tagged as

nmod:relcl k2 and nmod:relcl k1 respec-
tively in Figures 12 and 13.

(15) nēnu
I.NOM

cūs-ina
see-RP.PST

manis.i
man

iMt.i-ki
home-DAT

vacc-ā-d. u
came-PST-3.SG.M
‘The man whom I saw came home’

(16) nan-nu
I-ACC

cūsina
see-RP.PST

manis.i
man

iMt.i-ki
home-DAT

vacc-ād. u
come-PST-3.SG.M
‘The man who saw me came home’

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k2

nēnu

k1

Figure 12: Dependency tree for (15)

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k1

nannu

k2

Figure 13: Dependency tree for (16)

Relative participle clause constructions are am-
biguous when the noun in the relative clause has
the potential to be an agent followed by the relative

18

participle form of the verb which is transitive.

(17) nēnu
I.NOM

tin-ina
eat-RP.PST

kaMcaM
plate

pāta-di
old-3.SG.N

‘The plate in which I ate is old‘/‘The plate
which I ate is old’

root

kaMcaM

k1

pātadi

k1s

tinina

nmod:relc_k2/k7

nēnu

k1

Figure 14: Dependency tree for (17)

The token kaMcaM ‘plate’ can be inter-
preted with the tag k7 (location) as well as
nmod:relc k2 as in figure 14. However, we
use selectional restriction rules to rule out one of
the analysis as eating kaMcaM ‘plate’ with the tag
nmod:relc k2 is semantically not possible.

5 Enhanced Anncora Tagset

Anncora guidelines (Bharati et al., 2009) suggest
the tag vmod for conjunctive participles, conces-
sives, conditionals and nmod for relative participles.
In this study, we have used multiple linguistic cues
and enhanced subordinate clause tags as shown in
the table 2. Around 41 rules with linguistic cues
have been used to parse both simple and subordi-
nate clauses in Telugu.

6 Evaluation

Rules of RBP are framed based on the model
sentences collected from various Telugu grammar
books Krishnamurti and Gwynn (1985), Ramarao
(1975), Krishnamurti (2003) & (Ramarao, 2017).
The purpose of choosing grammar texts for build-
ing rules is due to the wide-range of exceptions
that are covered. These exceptions enabled us to
segregate several cases of subordinate clause oc-
currences and providing fine-grain tags. Around

Subordinate clause Enhanced Tag for Telugu
conjunctive participle vmod
serial action vmod:cp serial
simultaneous action vmod:cp simul
Manner vmod:cp manner
conditional clauses
condition vmod:cond
serial action vmod:cond serial
cause vmod:cond cause
concessive clause vmod:conc
infinitive clause vinf:k1
Relative participle clause
relativization of subject nmod:relcl k1
relativization of object nmod:relcl k2
relativization of location nmod:relcl k7

Table 2: Dependency Tags for Subordinate Clauses in
Telugu

250 sentences were collected from news paper data
for testing subordinate clauses. The labelled attach-
ment score (LAS) is 72% and unlabelled attach-
ment score is 81%. The Table 3 shows the LAS
and UAS various sub-type of subordinate clauses.

Type of clauses LAS UAS
Conjunctive participle clauses 77.7% 86.2%
Conditional clauses 70.5% 82%
Concessive clauses 69.6% 80%
Infinitive clauses 64% 64%
Relative participle clauses 66.7% 73.2%

Table 3: Results of various subordinate clauses

RBP works on the linguistic cues (ver-
bal/nominal databases, grammatical information)
provided to it. RBP fails when these linguistic
cues are not included as part of database or when
it encounters an exception. But these cues can be
updated as and when RBP encounters a new cor-
pus. Another case in which RBP fails to deliver
a correct parse is when pre-processing tools like
morphological analyser, POS, pruning, pick-one
morph provide an erroneous output.

7 Conclusion

Parsing of non-finite verb clauses and relative par-
ticiple constructions in Telugu is attempted in this
paper using a rule-based parser. It is observed that
knowledge-driven parser works better for agglu-
tinating languages like Telugu as many linguistic
cues can be seen in the structure. Parsing of sub-
ordinate clauses is challenging due to its diverse
interpretations and usage. Various ambiguous con-
structions are considered in this paper alongside

19

adding enhanced/fine-grain tags to the existing An-
ncora tagset. These tags are beneficial as the tag
vmod is quite under-specified. Results prove that
RBP serves as an efficient parser for Telugu and
addition of linguistic cues can improve the perfor-
mance further. Parsing of other complex structures
will be carried out in the future work.

Acknowledgments

We thank the reviewers for their critical comments
which immensely helped us in improving this
paper.

References
Bharat Ram Ambati, Phani Gadde, and Karan Jin-

dal. 2009. Experiments in indian language depen-
dency parsing. Proceedings of the ICON09 NLP
Tools Contest: Indian Language Dependency Pars-
ing, pages 32–37.

Akshar Bharati, Dipti Misra Sharma, Samar Husain,
Lakshmi Bai, Rafiya Begum, and Rajeev Sangal.
2009. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank. LTRC, IIIT
Hyderabad, India. Version 2.

Praveen Gatla. 2019. Dependency parsing for telugu
using data-driven parsers. Language in India, 19(1).

Samar Husain. 2009. Dependency parsers for indian
languages. In Proceedings of ICON09 NLP Tools
Contest: Indian Language Dependency Parsing.

Silpa Kanneganti, Himani Chaudhry, and Dipti Misra
Sharma. 2016. Comparative error analysis of parser
outputs on telugu dependency treebank. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 397–408.
Springer.

Sruthilaya Reddy Kesidi, Prudhvi Kosaraju, Meher Vi-
jay, and Samar Husain. 2013. Constraint-based hy-
brid dependency Parser for Telugu. Ph.D. thesis, Ph.
D. thesis, International Institute of Information Tech-
nology Hyderabad.

Bhadriraju Krishnamurti. 2003. The dravidian lan-
guages. Cambridge University Press.

Bhadriraju Krishnamurti and John Peter Lucius Gwynn.
1985. A grammar of modern Telugu. Oxford Univer-
sity Press, USA.

Amba Kulkarni. 2019. Sanskrit Parsing: Based on the
Theories of Śābdabodha. DK Printworld (P) Ltd.

Sneha Nallani, Manish Shrivastava, and Dipti Misra
Sharma. 2020. A simple and effective dependency

parser for telugu. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 143–
149.

Joakim Nivre. 2006. Inductive dependency parsing.
Springer.

Taraka Rama and Sowmya Vajjala. 2018. A depen-
dency treebank for telugu. In English Conference
Papers, Posters and Proceedings, 8, pages 119–128.

C Ramarao. 1975. Telugu vākhyam. A.P. Sahitya
Academy.

Chekuri Ramarao. 2017. A reference grammar of mod-
ern Telugu. EMESCO books Pvt. ltd., Hyderabad.

G. Uma Maheshwar Rao. 1999. A Morphological Ana-
lyzer for Telugu. (electronic form). Hyderabad: Uni-
versity of Hyderabad. Accessible at.

P Sangeetha, Parameswari K., and Amba Kulkarni.
2021. A rule-based dependency parser for telugu:
An experiment with simple sentences. Translation
Today, 15(1).

https://lib.dr.iastate.edu/engl_conf/8/
https://lib.dr.iastate.edu/engl_conf/8/
http://caltslab.uohyd.ac.in/Telugu-Morphological-Analyser.html
http://caltslab.uohyd.ac.in/Telugu-Morphological-Analyser.html
0.46623/tt/2021.15.1.ar5
0.46623/tt/2021.15.1.ar5

≥̀Å∞QÆ∞*Ïu Ñ̈„uHõ J=∞‡#∞_ç 38[#=i–2021

Ü«∞O„`å#∞"å Œ̂OÖ’ "åHõºqâı¡+̈HõO JHȭ ~°

Ü«∞O„̀ å#∞"å Œ̂O

1. Ñ̈iK«Ü«∞O
Q Æ` « ^ Œâß| Ì HÍÅOÖ’, ã ¨OQ Æ}H õ É è Ïëêâß „ã ¨ ÎO

„Ñ̈Ñ̈OK«"åºÑ̈ÎOQÍ Ñ̈iâ’ è̂Œ‰õΩÅ ̂ Œ$+≤ìx PHõi¬OzOk. POQÆ¡OÖ’<ÕQÍHõ
W`«~ ° ÉèÏ+¨ÅÖ’ ã¨OQÆ}Hõ ã¨Ç¨Ü«∞H õ ÉèÏëê ™ê^è Œ<åÅ∞
~°∂á⁄OkOKÕO Œ̂∞‰õΩ Ñ¨iâ’ è̂Œ‰õΩÅ∞ "≥ÚQÆ∞æK«∂Ñ¨Ù «̀∞<åfl~°∞. D ÉèÏëê
™ê^èŒ<åÅÖ’ Ü«∞O„`å#∞"å^ŒO J`«ºO`« Pã¨H˜ÎHõ~°"≥∞ÿ# =∞iÜ«Ú
Hõ+¨ì™ê^èŒº"≥∞ÿ#kQÍ ¿Ñ~˘¯#|_çOk. „Ñ¨Ñ¨OK« ÉèÏ+¨ÅÖ’ U ÉèÏ+¨
#∞O_≥·<å =∞#‰õΩ HÍ=Åã≤# ÉèÏ+¨‰õΩ ã¨∞Å∞=ÙQÍ, ̀ «‰õΩ¯= ã¨=∞Ü«∞OÖ’
J#∞"å^ ŒO K Õã ¨ ∞‰ õ Ω< ÕO^ Œ ∞‰ õ Ω Ü « ∞O„`å#∞"å^ ŒO ZO`À
^ÀÇ¨Ï^ŒÑ¨_»∞`«∞Ok. Ü«∞O„`å#∞"å^ŒOÖ’ "åHõºqâı¡+¨HõO (áê~°û~ü)
J «̀ºO «̀ P=â◊ºHõO. áê~°û~ü J<Õk "åHÍºxfl "åºHõ~°}Ñ¨~°OQÍ#∂
J~°÷Ñ¨~°OQÍ#∂ qâı¡+≤OKÕO^Œ∞‰õΩ LÑ¨Ü≥∂yOKÕ ™ê^èŒ#O. D
"åºã¨OÖ’ "åHõºqâı¡+¨HõO QÆ∞iOz ^•x P=â◊ºHõ̀ « QÆ∞iOz "Õ∞=Ú
~°∂á⁄OkOz# `≥Å∞QÆ∞ "åHõºqâı ¡+ ¨H õO QÆ∞iOz ‰õΩ ¡Ñ ¨ ÎOQÍ
q=iã¨∞Î<åfl#∞.
2. "åHõºqâı¡+¨} - Ñ¨iK«Ü«∞O

"åHõºOÖ’ L#fl „Ñ¨u Ñ¨̂ •xH© J Õ̂ "åHõºOÖ’ L#fl W «̀~°
Ñ¨^•Å‰õÄ =∞^èŒºQÆÅ JO`«~°æ`« ã¨O|O^è•xfl "åºHõ~°}Ñ¨~°OQÍ/
"åHõºx~å‡}Ñ¨~°OQÍ (syntactically) ÖË̂ • J~°÷Ñ¨~°OQÍ (seman-

tically) qâı¡+≤OK«_®xfl áêiûOQ∑ JO\Ï~°∞. Ñ¨^•Å =∞^èŒº L#fl
ã̈O|O è̂•Å∞ Hõ#∞Q˘x „Ñ̈u ã̈O|O è̂•xH© XHõ „Ñ̈ Õ̀ºHõ \ÏQ∑#∞ W=fi_»O
áêiûOQ∑ „Ñ¨„H˜Ü«∞ „Ñ¨̂ è•# L Õ̂Ìâ◊ºO. XHõ "åHõºO Ü≥ÚHȭ qâı¡+¨}Ö’
(parse), <å_çHõÅ∞ (nodes), "åHõºOÖ’x Ñ̈^•Å‰õΩ \©HõÅ∂ (ã̈O=~°æ
zÇ¨flÅ∂) Ñ¨̂ •Å =∞ è̂Œº ˆ~YÅ∂ "å\˜ =∞ è̂Œº# L#fl ã¨O|O è̂•xfl
`≥eÜ«∞*Ë™êÎ~Ú („H˜Ok ÉÁ=∞‡Å#∞ K«∂_»O_ç). D áêiûOQ∑
„Ñ¨„H˜Ü«∞‰õΩ LÑ¨HõiOKÕ ™ê è̂Œ<åxfl áê~°û~ü/"åHõºqâı¡+¨HõO JO\Ï~°∞.
U "åHõºOÖ’<≥·<å =ÚYº"≥∞ÿ#k „H˜Ü«∞. J~Ú`Õ „H˜Ü«∞, "åHõº
x~å‡}OÖ’ H©ÅHõ"≥∞ÿ# áê„`«#∞ á⁄+≤OK«_®xH˜ KåÖÏ HÍ~°}ÏÅ∞
L#flÑ¨Ê\˜H© P JOâßxfl =∞#O WHȭ _» qÑ¨ÙÅOQÍ K«iÛOK«_»O ÖË̂ Œ∞.
"åHõºOÖ’ L#fl Ñ¨̂ Œã¨O|O è̂•Å∞ Jhfl ‰õÄ_» „H˜Ü«∞#∞ J è̂•~°OQÍ
KÕã¨∞‰õΩx U~°Ê_ç#"Õ Hõ#∞Hõ, "åHõºqâı¡+¨HõO x~å‡}OÖ’ „H˜Ü«∞
«̀Ñ̈Êxã̈iQÍ „Ñ̈ è̂•#áê„ «̀ áÈ+≤ã̈∞ÎOk. J~Ú Õ̀ „Ñ̈u™ês „H̃Ü«∂ã̈Ç≤Ï «̀

"åHÍºÖË HÍHõ H˘xfl™ê~°∞¡ „H˜Ü«∂~°Ç≤Ï «̀ "åHÍºÅ∞ ™ê è̂•~°}OQÍ ‰õÄ_®
LÑ¨Ü≥∂yOK«_»O [~°∞QÆ∞ «̀∞Ok (L.^•. ''<Õ#∞ "≥·̂ Œ∞º_çx——). WÖÏO\˜
„H˜Ü«∂~°Ç≤Ï`« "åHÍºÅ‰õΩ =∂„`«O "Õ∞=Ú ~°∂á⁄Okã¨∞ Î#fl
"åHõºqâı¡+¨HõOÖ’ JO`«~°OQÆx~å‡}OÖ’ ã¨Ç¨Ü«∞Hõ „H˜Ü«∞#∞ KÕiÛ
ÉÏÇ¨Ïºx~å‡}OÖ’ `˘ÅyOK«_»O [~°∞QÆ∞`«∞O^Œx ÉèÏqOK«_»O
[iyOk.

™ê^è•~ °}OQÍ "åHõºOÖ’ U~°Ê_ç# x~å‡}Ï`«‡H õ" ≥∞ ÿ#
ã̈OkQÆú̀ «(structural ambiguity)x ̀ ˘ÅyOK«\ÏxH̃ "åHõºqâı¡+̈HÍxfl
LÑ¨Ü≥∂yOK«_»O [~°∞QÆ∞`«∞Ok. "åHõºqâı¡+¨} KÕ¿ãO^Œ∞‰õΩ J<ÕHõ
"åºHõ~°} ã≤̂ •úO`åÅ∞ JO Œ̂∞ÉÏ@∞Ö’ L<åfl ‰õÄ_® "å\˜Ö’ ã¨OQÆ}Hõ
„Ñ¨„H˜Ü«∞Å‰õΩ Z‰õΩ¯=QÍ LÑ¨Ü≥∂yOKÕq Ñ¨̂ Œ x~å‡} P è̂•i «̀ (de-

pendency) =∞iÜ«Ú Ñ¨^Œ =~°æ (constituency) "åºHõ~°}
ã≤^•úO`åÅ∞. Ñ¨^Œ x~å‡} P^è•i`« (Dependency) "åºHõ~°}

ã≤̂ •úO «̀O áê}̃hÜ«∞ "åºHõ~°} ™êO„Ñ̈^•Ü«∞O #∞O_ç fã̈∞HÀ|_ç#k.
D ã≤^•úO`«O ÉèÏ~°fÜ«∞ ÉèÏ+¨Å‰õΩ J#∞"≥·#k Jx „Ñ¨=ÚY
ÉèÏëêâß„ãÎ̈ Ñ¨iâ’ è̂Œ‰õΩÅ Jaè„áêÜ«∞O. D Ñ¨„ «̀OÖ’ Ñ¨̂ Œ x~å‡}
P è̂•i «̀ "åºHõ~°} ã≤̂ •úO`åxfl LÑ¨Ü≥∂yOK«_»O [iyOk.

P^è Œ ∞xH õ Ñ ¨^ Œ x~å‡} P^è•i`« ã ≤^• úO`«O „ ÃÑ ¶OKü
ÉèÏëêâß„ãÎ̈"Õ̀ «Î Å∂ã≤Ü«∞<£ ̀ ≥¿ãfl~ü (1959) „Ñ¨uáêkOKå~°∞. PÜ«∞#
~åã≤# ''ZÖˇ"≥∞O\òû JÑ¶π „ãì̈HõÛ~°Öò ã≤O\ÏH±û (Elements of struc-

tural syntax)—— J<Õ Ñ¨ÙãÎ̈HõOÖ’ D "åºHõ~°} ã≤̂ •úO «̀O QÆ∞iOz
ã¨Ê+¨ì"≥∞ÿ# suÖ’ q=iOz, Wk U ÉèÏ+¨#∞ qâı¡+≤OKÕO^Œ∞ÔH·<å
J#∞"≥·#k Jx ¿Ñ~˘¯<åfl~°∞.

"åHõºqâı¡+¨HõO ~°∂á⁄OkOKÕ „Hõ=∞OÖ’ \©HÍã¨q∞u (tagset)
ZOÑ≤Hõ J<Õk KåÖÏ =ÚYº"≥∞ÿ# JOâ◊O. Ñ¨^•Å =∞^èŒº QÆÅ
ã¨O|O^è•xfl `≥eÜ«∞*ËÜ«∞_®xH˜ „Ñ¨u ã¨O|O^è•xH˜ „Ñ¨`ÕºHõ"≥∞ÿ#
¿Ñ~°∞ QÆÅ \©HÍ ã¨q∞u J=ã¨~°O J=Ù`«∞Ok. „Ñ¨ã¨∞Î`«O J<ÕHõ
~°HÍÅ \©HÍ ã¨q∞ «̀∞Å∞ "å_»∞HõÖ’ L#flÑ¨Ê\˜H© "å\˜Ö’ ÃÑ<£ (penn)
\©HÍã¨q∞u, „¿ÑQ∑ \©HÍã¨q∞u, ™êì<ÀÊù~ü¤ \ ©HÍã¨q∞u, UCREL

\©HÍã¨q∞u, P<£HÀ~å (anncora) \©HÍã¨q∞`«∞Å∞ „Ñ¨^è•#"≥∞ÿ#q.
D "åH õ ºqâ ı ¡+ ¨HÍxH ˜ P< £HÀ~å (anncora) \ ©HÍã ¨q∞u
LÑ¨Ü≥∂yOK«_»O [iyOk. P<£HÀ~å (anncora) \ ©HÍã¨q∞u
áê}˜x "åºHõ~°}O P è̂•~°OQÍ ~°∂á⁄OkOK«|_çOk. D \©HÍã¨q∞u
"åHõºOÖ’x Ñ¨̂ •Å =∞ è̂Œº L#fl HÍ~°Hõ =∞iÜ«Ú PHÍ~°Hõ ã¨O|O è̂•Å
QÆ∞iOz q=iã¨∞ÎOk. J~Ú Õ̀ HÍ~°Hõ ã¨O|O è̂•Å∞ „H˜Ü«∞‰õΩ =∞iÜ«Ú
W`«~° <å=∞"åK«HÍÅ‰õÄ =∞^èŒº U~°Ê_Õ ã¨O|O^è•Å QÆ∞iOz
`≥eÜ«∞*Ë¿ãÎ, JHÍ~°Hõ ã¨O|O^è•Å∞ =∂„`«O „H˜Ü«∞`À HÍ‰õΩO_®
"åHõºOÖ’x W «̀~° ÉèÏQÍÅ`À U~°Ê_Õ ã¨O|O è̂•Å (L^•. ~°q Ü≥ÚHȭ
WÅ∞¡ - D Ñ¨̂ Œ|O è̂ŒOÖ’ ''~°q——H˜ =∞iÜ«Ú ''WÅ∞¡——H˜ =∞ è̂Œº QÆÅ
ã¨O|O è̂ŒO JHÍ~°Hõ ã¨O|O è̂ŒO) QÆ∞iOz ≥̀eÜ«∞*Ë™êÎ~Ú. P<£HÀ~å
(anncora) \©HÍã¨q∞uÖ’ „Ñ¨ã¨∞Î̀ «O 19 ~°HÍÅ HÍ~°Hõ ã¨O|O è̂•Å∞
JO Œ̂∞ÉÏ@∞Ö’ L<åfl~Ú. Jq: Hõ~°Î (k1), Hõ~°‡ (k2), „Ñ¨Ü≥∂[Hõ
Hõ~°Î (pk1), Hõ~°Î ã¨=∂<åkèHÍ~°} (k1s) "≥Ú Œ̂ÅQÆ∞ ã¨O|O è̂•Å∞
L<åfl~Ú. D \ÏQ∑ Ãã\ò Ö’ L#fl ã¨O|O^è•ÖËQÍHõ H˘`«Î "åHõº
ã¨O|O^è•Å∞ HÍ=Åã≤=zÛ#Ñ¨ÙÊ_»∞ H˘`«Î ¿Ñ~°∞¡ D \©HÍã¨q∞uÖ’
KÕ~°Û_»O [~°∞QÆ∞`«∞Ok.

D „H˜Ok qÉèÏQÆOÖ’ ≥̀Å∞QÆ∞ "åHõºqâı¡+¨} ZO Œ̂∞‰õΩ Hõ+ì̈O,
ZÖÏO\˜ ã¨=∞ã¨ºÅ∞ «̀Öˇ̀ «∞Î̀ åÜ≥∂ J#flJOâßÅ∞ K«iÛOK«|_®¤~Ú.
3. qÉèí‰õΩÎÅ∞ - "åHõºqâı¡+¨}

`≥Å∞QÆ∞Ö’ qÉèí‰õΩ ÎÅ∞ qq^èŒ ~°HÍÅ „Ñ¨`«ºÜ«∂Å ^•fi~å
ã¨∂zOÑ¨|_»`å~Ú. J~Ú`Õ XHõ qÉèíH˜ÎH˜ XˆH „Ñ¨`«ºÜ«∞O Hõ#∞Hõ
"å_ç#@ì~Ú Õ̀ "åHõº qâı¡+¨}O KåÖÏ ã¨∞Å∞=ÙQÍ LO_Õk. HÍh
≥̀Å∞QÆ∞Ö’ XˆH qÉèíHÎ̃H˜ J<ÕHõ „Ñ῭ «ºÜ«∂Å∞, XˆH „Ñ῭ «ºÜ«∂xH˜ J<ÕHõ

qÉèí‰õΩÎÅ∞ "å_Õ ã¨̂ Œ∞áêÜ«∞O ÉèÏ+¨Ö’ LO_»@O =Å¡ "åHõº qâı¡+¨}
Hõ+¨ì`«~°"≥∞ÿ# „Ñ¨„H˜Ü«∞QÍ =∂~°∞`«∞Ok.
3.1. XˆH „Ñ῭ «ºÜ«∞O - J<ÕHõ qÉèí‰õΩÎÅ∞

≥̀Å∞QÆ∞ "åHõºOÖ’x <å=∞"åK«Hõ Ñ¨̂ •Å∞ KåÖÏ=~°‰õΩ qÉèíHÎ̃

Ñ≤. ã̈Ow «̀
98480 84364

≥̀Å∞QÆ∞*Ïu Ñ̈„uHõ J=∞‡#∞_ç 39[#=i–2021

„Ñ῭ «ºÜ«∂Å∞ Hõey LO\Ï~Ú. „Ñ¨̂ äŒ=∂qÉèíHÎ̃H˜-0 („Ñ῭ «ºÜ«∞O Ug∞
ÖËHõáÈ=_»O), kfifÜ«∂qÉèíH˜ ÎH˜-x/#∞, +¨+‘ªqÉèíH˜ Î -Ü≥ÚHõ¯-0
„Ñ῭ «ºÜ«∂Å∞ «̀~°K«∞QÍ LÑ¨Ü≥∂y™êÎ~°∞. J~Ú Õ̀ KåÖÏ ã¨O Œ̂~åƒùÖ’¡
XˆH „Ñ῭ «ºÜ«∞O J<ÕHõ qÉèí‰õΩÎÅ#∞ =ºHõÎÑ¨~°∞ã¨∞ÎOk. L^•Ç¨Ï~°}‰õΩ:

1. ~°qH˜ [Å∞|∞ KÕã≤Ok.
2. <Õ#∞ ~°qH˜ Ñ¨ÙãÎ̈HõO WKåÛ#∞.
ÃÑ· Ô~O_»∞ "åHÍºÖ’¡ ''~°q—— <å=∞"åK«HÍxH˜ ''-‰õΩ/H˜ ''

„Ñ῭ «ºÜ«∞O KÕ~°Û|_çOk. HÍh H˜Ok Ô~O_»∞ "åHÍºÖ’¡ "å_ç# ''-H˜/
‰õΩ—— „Ñ̈ «̀ºÜ«∂xH̃ "Õ̂~fi~°∞ J~å÷Å∞ L<åfl~Ú. WÖÏO\ ̃qÉèíH̃Î ã̈OkQÆú̀ «
`˘ÅyOKÕO^Œ∞‰õΩ "åHõºqâı¡+¨} KåÖÏ LÑ¨Ü≥∂QÆÑ¨_»∞`«∞Ok.

3.2. XˆH qÉèíHÎ̃ - J<ÕHõ „Ñ῭ «ºÜ«∂Å∞
JO Õ̀HÍ‰õΩO_® XˆH qÉèíHÎ̃, "Õ̂~fi~°∞ „Ñ῭ «ºÜ«∂Å ^•fi~å ‰õÄ_®

=ºHõ ÎO HÍ=_»O ÉèÏ+¨Ö’ KåÖÏ `«~ °K «∞QÍ [~°∞Q Æ∞` «∞Ok.
L^•Ç¨Ï~°}‰õΩ,

3. <Õ#∞ ~°qx K«∂âß#∞
4. <Õ#∞ ã≤x=∂(0) K«∂âß#∞
J<Õ Ô~O_»∞ "åHÍºÅ#∞ fã¨∞‰õΩO^•O. "≥Ú^Œ\˜ "åHõºOÖ’

''<Õ#∞—— J<Õ Ñ̈ Œ̂O ''K«∂âß#∞—— J#fl „H̃Ü«∂Ñ̈^•xH̃ Hõ~°ÎQÍ =º=Ç̈Ïi¿ãÎ,
''~°qx—— J<Õ Ñ¨^ŒO "åHõºOÖ’ Hõ~°‡QÍ =º=Ç¨Ïi™ÈÎOk. JÖÏˆQ
Ô~O_»= "åHõºOÖ’ ''<Õ#∞—— Hõ~°ÎQÍ =º=Ç¨Ïi¿ãÎ, ''ã≤x=∂—— Hõ~°‡QÍ
=º=Ç¨Ïi™ÈÎOk. D Ô~O_»∞ "åHÍºÅ#∂ Ñ¨ije¿ãÎ "≥Ú Œ̂\˜ "åHõºOÖ’
Hõ~°‡‰õΩ ''-x—— J<Õ „Ñ῭ «ºÜ«∞O KÕ~°Û|_çOk. HÍh Ô~O_»= "åHõºOÖ’
Hõ~°‡‰õΩ ''-x—— „Ñ῭ «ºÜ«∞O KÕ~°Û|_»ÖË̂ Œ∞. Ô~O_»∞ "åHÍºÖ’¡ XˆH ~°Hõ"≥∞ÿ#
„H˜Ü«∞#∞ LÑ¨Ü≥∂yOz#Ñ¨Ê\ ˜H© qÉèí‰õΩÎÅÖ’ `Õ_®Å∞ L<åfl~Ú.
W@∞=O\˜ Õ̀_®Å∞ ã¨Ç¨Ï[OQÍ Hõ~°‡ Ü≥ÚHȭ KÕ̀ «# (animate),
JKÕ̀ «# (inanimate) ÅHõ∆}ÏÅ HÍ~°}OQÍ U~°Ê_»∞`å~Ú. J~Ú Õ̀
"åHõºqâı¡+¨HõO D Ô~O_»∞ "åHÍºÅ#∞ „H˜O Œ̂ ÉÁ=∞‡Ö’¡ K«∂Ñ≤Oz#
q^èŒOQÍ qâı¡+≤ã¨∞ÎOk.

"åHõºqâı¡+¨}x WOH˘xfl L^•Ç¨Ï~°}Å`À J~°÷O KÕã¨∞‰õΩ<Õ
„Ñ¨Ü«∞ «̀flO KÕ̂ •ÌO. ''<Õ#∞ ~°q-H˜/`À P q+¨Ü«∞O K≥áêÊ#∞—— J<Õ
"åHõºOÖ’ ''-H˜/`À—— „Ñ¨`«ºÜ«∂Å∞ Ô~O_»∂ `«$fÜ«∂ qÉèíH˜ Îx

ã¨∂zã¨∞Î<åfl~Ú.

ÃÑ·# wã≤# K≥@¡ Ñ¨\ÏÅ#∞ Ñ¨ije¿ãÎ ''H˜—— / ''`À—— „Ñ῭ «ºÜ«∂Å∞
Ô~O_»∂ XˆH ã¨O|O è̂•xfl ã¨∂zã¨∞Î<åfl~Ú. HÍh L^•Ç¨Ï~°}‰õΩ ''~°q
HõuÎ̀ À =∂q∞_çÑ¨O_»∞#∞ HÀâß_»∞—— J<Õ "åHÍºxfl fã¨∞‰õΩO>Ë ''`À——
„Ñ¨`«ºÜ«∞O ''HõuÎ——`À LÑ¨Ü≥∂yOz#Ñ¨Ê\˜H© ''~°q`À/HõuÎ`À—— J<Õ
Ô~O_»∞ <å=∞"åK«HÍÅ∞ X̂H ã̈O|O è̂•xfl K«∂Ñ≤OK«_»O ÖË̂ Œ∞. WÖÏO\˜
"åºHõ~°} ã¨OkQÆú`«Å#∞ f~°∞Û`«∂ "åHÍºÅ#∞ ã¨fiÜ«∞OKåÅHõOQÍ
qâı¡+≤OK«_»OÖ’ ã¨OQÆ}Hõ qâı¡+¨HõO áê„`« ZO`≥·<å J=ã¨~°O
J=Ù`«∞Ok.

D Ñ¨„ «̀OÖ’ ˆH=ÅO qâı¡+¨HÍxfl Ñ¨iK«Ü«∞O KÕ¿ã „Ñ¨Ü«∞ «̀flO
=∂„`«"Õ∞ [iyOk. JO^Œ∞HÀã¨O ^•xH˜ `«y# KåÖÏ ã¨∞Å∞"≥·#
"åHÍºÅ#∞ ÃÑ·# L^•Ç¨Ï~°}Å∞QÍ q=iOK«_»O [iyOk.
JO^Œ∞=Å¡ qâı ¡+¨HÍxH˜ ã¨O|OkèOz# =∞ixfl =ÚYº"≥∞ ÿ#
JOâßÅ#∞, qq è̂Œ "åHõº x~å‡}ÏÅ#∞ qâı¡+¨HõO ZÖÏ qâı¡+≤ã¨∞ÎO^À
q=~°OQÍ Éèíq+¨º «̀∞Î Ñ¨iâ’ è̂Œ#Ö’¡ J è̂ŒºÜ«∞#O KÕã≤ g∞ =ÚO Œ̂∞‰õΩ
fã¨∞‰õΩ=KÕÛ „Ñ¨Ü«∞`«flO [~°∞QÆ∞`«∞Ok.
4. Ü«∞O„`å#∞"å Œ̂OÖ’ "åHõºqâı¡+¨HõO Ü≥ÚHȭ áê„ «̀:

Ü«∞O„`å#∞"å Œ̂OÖ’ "åHõºqâı¡+¨HõO H©ÅHõ áê„ «̀ =Ç≤Ïã¨∞ÎOk
J#_»OÖ’ UÖÏO\˜ ã¨O Õ̂Ç¨ÏO ÖË̂ Œ∞. ≥̀Å∞QÆ∞ ÉèÏ+¨Ö’x ~°K«#Å#∞
W «̀~° ÉèÏ+¨ÅÖ’H˜ J#∞"å Œ̂O KÕÜ«∞_»OÖ’ ≥̀Å∞QÆ∞ "åHõºqâı¡+¨HõO
KåÖÏ =ÚYº"≥∞ÿ#k. Ü«∞O„`å#∞"å Œ̂OÖ’ qâı¡+¨HõO XHõ qÉèÏQÆOQÍ
KÕ~°Û|_çOk. nx ã¨Ç¨Ü«∞O`À "åHõº x~å‡}Ïxfl ‰õ∆Ω}‚OQÍ qâı¡+≤Oz
Ñ¨̂ Œ ã¨O|O è̂Œ ã¨=∂Kå~°O ¿ãHõiOK«=K«∞Û. JÖÏO\˜ ã¨=∂Kå~°O
P ÉèÏ+¨ J#∞"å^Œ „Ñ¨„H˜Ü«∞ [iˆQ@Ñ¨ÙÊ_»∞ KåÖÏ J=ã¨~°O
J=Ù «̀∞Ok. =ÚYºOQÍ, XHõ ÉèÏëê ‰õΩ@∞O|O #∞O_ç W «̀~° ÉèÏëê
‰õΩ@∞OÉÏÅ‰õΩ J#∞=kOKÕ@Ñ¨Ù_»∞ JO Œ̂∞Ö’ «̀Öˇ̀ ÕÎ "åHõº x~å‡}
ã¨OkQÆú̀ «x (structural ambiguity) `˘ÅyOK«@OÖ’ "åHõºqâı¡+¨HõO
KåÖÏ ã¨Ç¨Ü«∞Ñ¨_»∞`«∞Ok. „Ñ¨ã¨∞Î`« HÍÅOÖ’ "åHõºqâı¡+¨HÍÅÃÑ·
Ñ¨iâ’ è̂Œ# áÈ\ÏáÈ\©QÍ ™êQÆ∞ «̀∞#fl «̀~°∞}OÖ’, KåÖÏ ™êOˆHuHõ
ã¨Oã÷̈Å∞, ÉèÏ+¨ âß„ãÎ̈"Õ̀ «ÎÅ∞ g\˜ x~å‡}ÏÖ’¡ x=∞QÆfl"≥∞ÿ L<åfl~°∞.
Ü«̧ x=~°ûÖò _çÃÑO_≥hû (universal dependency) J<Õ ã¨Oã÷̈
"å~°∞ =ÚYº"≥∞ÿ# „Ñ¨Ñ¨OK« ÉèÏ+¨ÅxflO\˜Ö’#∂ "åHõºqâı¡+¨HÍÅ#∞
xi‡OKÕO^Œ∞‰õΩ \ ©HÍã¨Ç≤Ï`« (annotated corpus) áê~îåÅ#∞
`«Ü«∂~°∞KÕã¨∞Î<åfl~°∞. `≥Å∞QÆ∞Ö’ 1023 "åHÍºÅ \ ©HÍã¨Ç≤Ï`«
áê~îåÅ#∞ (annotated corpus) "åi *ÏÅKÀ@∞Ö’ (website)
á⁄O^Œ∞Ñ¨~°K«_»O [iyOk.

~°K«~Ú`« Ñ¨iâ’^èŒHõ q^•ºi÷
ÃÇ·Ï^Œ~åÉÏ^Œ∞ qâ◊fiq^•ºÅÜ«∞O,

	Certificate
	Transliteration Schema
	1 Introduction
	1.1 What is Parsing?
	1.2 Aim and Scope of the Study
	1.3 A Brief Note on Telugu
	1.4 Overview of Parsing
	1.4.1 Grammar Formalisms
	1.4.1.1 Phrase Structure Grammar (PS)
	1.4.1.2 Dependency Grammar(DG)
	1.4.1.3 Combinatory Categorical Grammar(CCG)
	1.4.1.4 Lexical Functional Grammar(LFG)
	1.4.1.5 Generalised Phrase Structure Grammar(GPSG)
	1.4.1.6 Head-Driven Phrase Structure Grammar(HPSG)
	1.4.1.7 Tree Adjoining Grammar(TAG)

	1.4.2 Methods of Parsing
	1.4.2.1 Grammar-Driven Parsing
	1.4.2.2 Data-Driven Parsing
	1.4.2.3 Hybrid Parsing
	1.4.2.4 Neural Network based Parsing

	1.4.3 Parsing Strategies
	1.4.3.1 Top-Down or Goal-Oriented
	1.4.3.2 Bottom-up or Data-Directed

	1.4.4 Review of Annotation Schema
	1.4.4.1 Penn Treebank Syntactic Tagset
	1.4.4.2 Stanford Dependency Tagset
	1.4.4.3 Chinese Dependency Tagset
	1.4.4.4 Universal Dependencies Tagset
	1.4.4.5 Anncora Tagset
	1.4.4.6 saMsādhani Tagset

	1.4.5 Review of Parsers
	1.4.5.1 Review of Foreign Language Parsers
	1.4.5.2 Review of Indian Language Parsers
	1.4.5.3 Review of Telugu Parsers

	1.5 Methodology
	1.5.1 Theoretical Framework
	1.5.2 Implementation Technique
	1.5.2.1 Why a Rule-based Parser?
	1.5.2.2 Rule-Based Parser for Telugu
	1.5.2.3 Architecture of RBP

	1.5.3 Corpus Used for the Study
	1.5.3.1 Corpus to Build the Rules
	1.5.3.2 Corpus for Testing

	1.6 Organization of the Thesis

	2 Dependency Framework - A Review
	2.1 Introduction
	2.2 Dependency Grammar
	2.3 What is a Dependency Structure?
	2.3.1 The Constraint of Projectivity

	2.4 Dependency vs Non-dependency Relation
	2.5 Grammatical frameworks - A Comparison
	2.5.1 Differences Between Phrase Structure and Dependency Grammar
	2.5.2 Dependency frameworks - A Comparison
	2.5.3 Pāninian Dependency framework - Indian Grammatical Tradition
	2.5.3.1 ākaMksā `Expectancy'
	2.5.3.2 yōgyata `Compatibility'
	2.5.3.3 sannidhi `Proximity'

	2.5.4 Tesniere's Dependency Framework

	2.6 Is Dependency Grammar Adequate for Computational Purposes?
	2.7 Existing Tagsets: A Discussion
	2.8 Universal Dependencies
	2.9 AnnCorra
	2.10 Comparison of Tagsets
	2.10.1 Head Projection
	2.10.1.1 Nominal Predicate
	2.10.1.2 Coordinating Conjuncts
	2.10.1.3 Complement Clause

	2.10.2 Subject
	2.10.2.1 Agentive Subject
	2.10.2.2 Experiencer Subjects
	2.10.2.3 Possessive Subjects

	2.10.3 Causative Agent
	2.10.4 Secondary Patient

	2.11 Enhanced Anncorra for Rule-based Parsing
	2.11.1 Representation of Coordination in Enhanced AnnCorra
	2.11.1.1 Tesniere - elements de structurale syntax
	2.11.1.2 Melcuk - Meaning-text Theory
	2.11.1.3 Hudson - Word Grammar
	2.11.1.4 Timothy Osborne
	2.11.1.5 Hyderabad Dependency Treebank for Hindi (HyDT)
	2.11.1.6 Representation of Coordination in RBP

	2.11.2 Complement Clauses in Enhanced AnnCorra

	2.12 Conclusion

	3 Dependency Relations in Telugu
	3.1 Introduction
	3.2 Types of Dependency Relations
	3.3 kāraka Relations
	3.3.1 kartā (k1) - `Roughly subject'
	3.3.1.1 kartā in Copula Constructions
	3.3.1.2 kartā in Intransitive and Transitive Constructions
	3.3.1.3 kartā in Passive Constructions
	3.3.1.4 kartā in Causative Constructions
	3.3.1.5 Clausal kartā- `Clausal Subject'
	3.3.1.6 katru samānādhikarana (k1s) - `Subject Equivalence'

	3.3.2 karma(k2)- `Roughly Object'
	3.3.2.1 karma in Double Object Constructions - gauna karma(k2g) (Secondary karma)
	3.3.2.2 karma in Passive Constructions
	3.3.2.3 karma in Causative Constructions
	3.3.2.4 karma in Reflexive/Reciprocal Constructions
	3.3.2.5 Goal/Destination as karma(k2p)
	3.3.2.6 Clausal karma -`Clausal object'
	3.3.2.7 karma samānādhikarana (k2s) - `Object Equivalence'

	3.3.3 karana(k3) - `Instrument'
	3.3.4 sampradāna(k4) - `Beneficiary/Recipient'
	3.3.4.1 kartā in Non-Nominative Subject Constructions (k4a)

	3.3.5 apādāna(k5) - `Source'
	3.3.5.1 prakruti apādāna -`Source Material' (k5prk)

	3.3.6 adhikarana(k7) - `Locus'
	3.3.6.1 kālādhikarana(k7t) - `Location in time'
	3.3.6.2 deśādhikarana(k7p) - `Location in space'
	3.3.6.3 visayādhikarana(k7) - `Location elsewhere'

	3.3.7 sādriśya (k*u) - `Similarity & Comparison'

	3.4 Non-kāraka Relations
	3.4.1 hētu(rh)-`Reason or Cause'
	3.4.2 tādarthya (rt) - `Purpose'
	3.4.3 prati (rd) - `Direction'
	3.4.4 upapada sahakārakatva (ras-k*) - `Associative'
	3.4.5 sastīsambandhah(r6)- `Genitive'
	3.4.6 Duratives (rsp)

	3.5 Other Dependency Relations
	3.5.1 Noun Modifier(nmod)
	3.5.1.1 Noun as nmod
	3.5.1.2 Demonstratives as nmod
	3.5.1.3 Adverbial Nouns as nmod
	3.5.1.4 nmod_wq - `Question words'
	3.5.1.5 Quantifiers as Noun modifiers nmod_quant
	3.5.1.6 nmod_relc - Relative Clause
	3.5.1.7 Adjectives as nmod_adj

	3.5.2 Verb modifier (vmod)
	3.5.2.1 Conjunctive Participle - Serial Action (vmod:cp_serial)
	3.5.2.2 Conjunctive Participle - Simultaneous Action (vmod:cp_simul)
	3.5.2.3 Conjunctive Participle - Manner (vmod:cp_manner)
	3.5.2.4 Conjunctive Participle - Cause (vmod:cp_cause)
	3.5.2.5 Conditional Clauses - Condition (vmod:cond)
	3.5.2.6 Conditional Clauses - Serial Action (vmod:cond_serial)
	3.5.2.7 Concessive Clauses(vmod:conc)
	3.5.2.8 Infinitive Clauses (vinf:k1)
	3.5.2.9 Verbal Modifier - Temporal (vmod:temp)

	3.5.3 Adverbs (adv)
	3.5.4 Sentential Adverbs (sent-adv)

	3.6 Non-Dependency Relations
	3.6.1 Coordination(cc,conj)
	3.6.2 Part of Relation (pof)
	3.6.2.1 Part of Relation - Reduplication (pof_redup)

	3.7 Miscellaneous Relations
	3.7.1 Subordination (mark)
	3.7.2 Intensifier(intf)
	3.7.3 Negation (neg)
	3.7.4 Particles (rp)
	3.7.5 Interjection(uh)
	3.7.6 Fragment of (fragof)
	3.7.7 Address terms (rad)
	3.7.8 Enumerator (enm)
	3.7.9 Symbols (rsym)

	4 Architecture of the Rule-Based Dependency Parser
	4.1 Introduction
	4.2 Rule-based Parser for Telugu
	4.2.1 Why a Rule-based Parser?

	4.3 Architecture of the parser
	4.3.1 The Cleaning Phase
	4.3.1.1 Input Sentence Cleaning
	4.3.1.2 Normalization
	4.3.1.3 Conversion of UTF-8 to WX

	4.3.2 The Pre-processing Phase
	4.3.2.1 Tokenization
	4.3.2.2 Morphological Analysis
	4.3.2.3 POS Tagger
	4.3.2.4 Pruning Morph Analysis
	4.3.2.5 Conversion of Input to RBP Format
	4.3.2.6 Null-verb Insertion

	4.3.3 The parsing Phase
	4.3.3.1 Algorithm of the parser

	4.4 An elaboration of the algorithm
	4.4.1 Step-1 - Define Nodes
	4.4.2 Step-2 - Directed Edges
	4.4.2.1 Theoretical Perspective
	4.4.2.2 Computational Perspective

	4.5 Define Constraints
	4.6 Use of Semantic Constraints
	4.7 Use of Lexical Semantics of Nouns and Verbs
	4.7.1 Relational Disambiguation - [-] suffix
	4.7.2 Relational Disambiguation - [ni/nu] suffix
	4.7.3 Relational Disambiguation - [-ki/ku] suffix
	4.7.4 Relational Disambiguation - [-tō] suffix
	4.7.5 Relational Disambiguation- -lō
	4.7.6 Relational Disambiguation- -nuMdi/nuMci/niMci

	4.8 Implementation
	4.8.1 Rules
	4.8.2 Database
	4.8.2.1 Filter Module
	4.8.2.2 Filtering
	4.8.2.3 Generating trees

	4.8.3 Parser Rules
	4.8.3.1 Rules for kartā (k1)
	4.8.3.2 Rules for karma(k2)
	4.8.3.3 Rule for gauna karma (k2g)
	4.8.3.4 Rules for karana(k3)
	4.8.3.5 Rule for sampradāna(k4)
	4.8.3.6 Rule for apādāna (k5)
	4.8.3.7 Rule for prakruti apādāna (k5prk)
	4.8.3.8 Rule forkāladhikarana (k7t)
	4.8.3.9 Rule for deshādhikarana (k7p)
	4.8.3.10 Rule for vishyādhikarana (k7)
	4.8.3.11 Rule for Goal/Destination (k2p)
	4.8.3.12 Rule for kartā samānādhikarana(k1s)
	4.8.3.13 Rule for anubhava kartā(k4a)
	4.8.3.14 Rule for k*u
	4.8.3.15 Rules for rh
	4.8.3.16 Rules for rt

	5 Evaluation of the Parser and Error Analysis
	5.1 Introduction
	5.2 Metrics to Evaluate a Parser
	5.2.1 Attachment Scores
	5.2.2 Precision and Recall
	5.2.3 Relation-based Performance Index
	5.2.4 Confusion Matrix

	5.3 Evaluation of Pre-processing tools
	5.4 Evaluation of Rule-Based Parser for Telugu
	5.4.1 Data
	5.4.2 Results
	5.4.3 Relation-based Performance Index

	5.5 Error Analysis and Observations
	5.5.1 Pre-Processing Errors
	5.5.1.1 Tokenization and Sandhi Split Errors
	5.5.1.2 Morphological Errors
	5.5.1.3 Unknown Words
	5.5.1.4 Lexical Category, Gender, Number, Person Errors
	5.5.1.5 Incorrect Root Errors
	5.5.1.6 Pruning errors

	5.5.2 Database Issues
	5.5.3 Issues with rules
	5.5.4 Dummy verb Insertion
	5.5.5 Over-generation

	5.6 Confusion Matrix - A Discussion
	5.6.1 Dependency relation k2 wrongly marked as k1
	5.6.2 Dependency relation k2p wrongly marked as k1
	5.6.3 Dependency relation k7t wrongly marked as k1
	5.6.4 Dependency relation k7p wrongly marked as k7
	5.6.5 Dependency relation k1 wrongly Marked as k1s
	5.6.6 Dependency Relation pof Wrongly Marked as k1
	5.6.7 Dependency Relation k1 Wrongly Marked as nmod
	5.6.8 Dependency Relation ras Wrongly Marked as adv

	5.7 Sample RBP Graphs
	5.8 Observations
	5.8.1 Agreement and Ambiguous Relations

	6 Conclusion
	6.1 Major Contributions
	6.2 Significance of the Study
	6.3 Some Challenges
	6.4 Future Work

	References

