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Preface 

 

   In this thesis we shall present our works on the nature 

of phase transitions in a dimensional Holstein-Hubbard 

chain and the persistent current in a Holstein-Hubbard 

ring. These works fall under the broad area of strongly 

correlated systems in theoretical condensed matter 

physics. Usually the strongly correlated electron systems 

are narrow-band systems the study of which is based on 

the tight-binding model. In the absence of electron-

electron (e-p) and electron-phonon (e-p) interactions, the 

tight binding model is simple. It contains only a hopping 

term with an overlap integral t, called the hopping 

parameter which essentially measures the kinetic energy 

of the electrons. This model is exactly soluble. 

     Though this model has worked well, it fails to explain 

why some materials like transition metal oxides are 

insulators which are now known as Mott insulators. Mott 

explained that when the onsite e-e correlation is much 

stronger than the hopping kinetic energy, electrons get 

localized at their respective sites leading to an 

antiferromagnetic insulating state. A convincing theory 

for such materials was developed by Hubbard using a 

model known as the Mott-Hubbard model or simply the 

Hubbard model which has in addition to the nearest 

neighbour (NN) hopping term, an onsite correlation term 

which contains a Coulomb repulsive interaction with a 

parameter U that gives the strength of the interaction.  

    One can also have a system of electrons interacting 

with phonons with ignorable electron-electron interaction 

in a narrow-band material. Such a material can have 



 

 

 
 

polarons and bipolarons as quasiparticles. This localized 

electron-phonon (e-p) system can be described by the 

celebrated Holstein model which has a hopping term and 

an onsite e-p interaction term. One can of course have a 

more general system having both e-e and e-p interactions. 

This system can have interesting phase diagrams because 

of the interplay between the e-e and e-p interactions.  A 

suitable model for such a system is the Holstein-Hubbard 

(HH) model which is a combination of the Hubbard 

model and the Holstein model.  The tight-binding 

hopping term of the HH model tries to delocalize the 

electrons, whereas the onsite e-e interaction term induces 

electron localization leading to the formation of local 

moments and the onsite e-p interaction creates lattice 

distortions and hence a polarization potential which can 

localize at a lattice site one or two electrons depending on 

the relative strengths of the e-e and e-p interactions. Thus, 

the HH model can explain a variety of phenomena like 

the formation of polarons and bipolarons, self-trapping 

transition, metal-insulator transitions of Mott or Peierls 

type, high-temperature superconductivity, colossal 

magnetoresistance and so on. 

    It is well known that the pairing mechanism for the 

high-temperature superconductivity (HTCS) is still not 

yet clear.  A group of researchers have advocated the 

electronic mechanism as the cause of superconductivity in 

the cuprates. However, quite a few researchers have also 

suggested the phonon mechanism. Since high-Tc 

materials like cuprates are strongly correlated narrow 

band systems, the HH model should be the suitable model 

to investigate the HTSC in cuprates. Unfortunately, 

however, the explanation of superconductivity using the 



 

 

  
 

HH model runs into a serious difficulty. To understand 

this, one has to look into the nature of the ground states 

provided by the HH model. The HH system can have 

different quantum phases. When the e-p interaction is 

small, the ground state of the HH system is a spin-density 

wave (SDW) state and when the e-p interaction is strong, 

the ground state of the system is a charge density wave 

(CDW) state.  This is not an encouraging scenario from 

the point of view of superconductivity because to achieve 

high transition temperature one needs to have strong e-p 

interaction, while the strong e-p interaction leads the 

system into a CDW insulator. Thus, superconductivity 

looks impossible in the HH model.  Of course, one may 

be curious to study the transition region. In their report, 

Hirsch and Fradkin performed a Monte-Carlo study of the 

HH model and showed that the transition from SDW 

phase to CDW phase is direct so that there is no metallic 

phase in the HH model at all.    

Takada and Chatterjee in 2003 took up the 1D half-filled 

HH model for a more critical investigation and studied 

the SDW-CDW transition in this system using a 

variational method coupled with the Bethe ansatz. Their 

analysis shows that there exists an intervening metallic 

phase at the crossover of the SDW-CDW transition. This 

result was obtained with the harmonic approximation for 

the lattice vibrations which implies that a phonon has an 

infinite life time. So to deal with the real materials we 

need to consider the finite lifetime effect for the phonons. 

This can be done by considering anharmonic phonons. In 

2004, Chatterjee and Takada performed a calculation 

including cubic and quartic anharmonicities in the lattice 



 

 

 
 

potential. Interestingly, their results show that the width 

of the metallic phase widens in the presence of 

anharmonic phonons.  In the present thesis, we will 

present an improved variational calculation to unravel the 

nature of the phase transition in the HH model with a 

Gaussian phonon anharmonicity. We will also present a 

calculation of the persistent current in a HH quantum 

ring.  

The organization of the thesis is as follows. In Chapter 1, 

we introduce the subject of the thesis in general and 

discuss the motivation for carrying out this work. We first 

describe the Tight-Binding model and then introduce 

electron correlation and the Hubbard Model. Thereafter 

we touch upon the concept of phonons and present the 

Holstein model. In this context we discuss polarons and 

bipolarons. Next, we present a brief introduction to the 

HH model and discuss the SDW and CDW phases. 

Finally, we introduce the concept of persistent current. 

   In Chapter 2, we consider the one-dimensional HH 

model with Gaussian phonon anharmonicity to study the 

possible phase transitions in the ground state.  Here we 

consider a better variational phonon state than what was 

considered earlier by Chatterjee and Takada in 2003 and 

obtain an effective Hubbard model which we solve 

exactly using the Bethe ansatz technique to obtain the GS 

energy. Consequently, we calculate the local spin 

moment, the double occupancy, entanglement entropy 

and consider the Mott criterion for all band fillings. Our 

results show the emergence of a metallic phase flanked by 

SDW and CDW insulating ground states confirming the 

predictions of Chatterjee and Takada.  We also show that 



 

 

  
 

the Gaussian anharmonicity increases the width of the 

metallic phase.   

    In Chapter 3, we are interested in studying the effect of 

e-p interaction on the persistent current in a quantum ring 

threaded by a magnetic flux through the center of the 

ring. To study this problem, we use the extended HH 

model in which we consider onsite and nearest-neighbour 

e-p interactions. We eliminate the phonon degrees of 

freedom using a unitary transformation followed by a 

zero-phonon averaging. This leads to an effective 

Hubbard model which we solve exactly by the Bethe 

ansatz technique and also approximately using the 

Hartree-Fock approximation to obtain the ground state 

energy. We study the characteristics of the persistent 

charge and spin currents, Drude weight and effect of e-e 

and e-p interactions on them. We have also studied the 

Mott criteria, local spin moment, double occupancy and 

entanglement entropy of the system to study the phase 

transitions of the system. The phase diagram shows the 

existence of an intermediate metallic phase in the ground 

state when the e-e and e-p interactions are comparable to 

each other. Furthermore, we show that the width of the 

metallic phase increases as the electron density decreases 

from the half-filling.  

   Finally in Chapter 4, we briefly summarize our results 

and make a few comments on our findings. 
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Introduction 

 

 

Materials play a vital role in the development 

of human civilization. Since ancient times, humans 

have been trying to make and use materials in 

ingenious ways to suit their purposes. Human thinking 

has made the impossible possible. For example, before 

the modern era of scientific development, one-

dimensional systems (1D) were almost non-physical. 

But now one-dimensional quantum chains are made in 

the laboratory and have very interesting properties. 

The classification of materials available in nature has 

been well developed. Regardless of the type of bond, 

any solid can be considered a combination of electrons 

and nuclei. Despite the considerable progress made in 

the materials, we still need more advanced research 

methods to raise the quality of human life.   

For scientists, defining a theoretical model to classify 

materials such as metals and insulators has always been 

the most difficult challenge and must be consistent 

with the experimental results. In course of time, 

Chapter 1 
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several materials ranging from simple elements to 

ceramic materials, transition metal oxides, charge 

transfer oxides and other composite materials. Finding 

the energy of any material is an important key to 

meeting the material requirements. In the field of 

Condensed Matter Physics (CMP), we often focus on 

the ground state energy (GS) of the system and the 

factors that affect GS energy. Materials consist of 

electrons and ions and the arrangement, structure and 

rhythm of these particles contribute to the GS energy 

of the material. Both structure and properties depend 

on the configuration of the electrons and ions. In 

general, electrons contain a sizable part of energy in 

any system. It is believed that the metallic properties of 

the system depend only on the electronic properties. 

The energy of a system can be found in several ways. 

Schrödinger came up with his equation using wave 

mechanics to treat a system quantum mechanically for 

finding the GS energy. This equation is widely known 

and well celebrated in quantum mechanics. However, 

the Schrödinger equation could not be solved exactly 

for real systems and therefore approximate methods 

like the perturbation theory, the variational methods 

and the exact diagonalization methods were introduced 

to find the GS energy of a system. Later, these 

methods turned to be inappropriate in several cases 

and more advanced methods were suggested. It was 

discovered that the interactions of electrons with other 
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electrons, and also with other types of particles like 

phonons also change the energy of the system. Hence, 

it is fundamentally relevant to consider electron-

electron (e-e) interactions and electron-phonon (e-p) 

interactions.  

  In the present thesis, we shall present our works on 

the GS phase diagram for a one-dimensional Holstein-

Hubbard model and the persistent current in a 

Holstein-Hubbard ring. It will therefore be pertinent 

to introduce in this introductory chapter some of the 

basic concepts and the necessary models that are 

required to build the theory for the investigation for 

the aforementioned problems.     

1.1 Energy Bands 

   Calculating the electronic band structure of solids is 

very important to understand various physical 

properties of solids. Any theory that has been 

constructed to compute the energy band structure of 

the system is known as the band theory. The 

fundamental problem in the band theory is to solve the 

well-known Schrodinger equation. 

                           

                                𝐻 𝜓(𝑟) = 𝐸 𝜓(𝑟)                      (1.1) 

             

where,  𝜓(𝑟)  is the wave function of the system 

Hamiltonian 𝐻  belonging to the eigenvalue. The 
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system can be a solid crystal, an amorphous material, a 

liquid or a gas. Since any material is composed of 

electrons and nuclei, the Hamiltonian contains the co-

ordinates of both the electrons and ions as well. The 

Born-Oppenheimer approximation facilitates us to 

decouple the motion of electrons and ions individually. 

This approximation is also called the adiabatic 

approximation.  

  The free-electron theory, nearly free electron theory 

and the tight-binding theory are some of the general 

models of the band theory. The free electron theory 

works well in the case of ignorable electron-electron 

interaction and the electrons can be considered 

completely non-interacting. In nearly free electron 

theory, the effect of interactions can be incorporated 

as perturbations. In case of materials in which the 

electron wave functions on neighbouring atoms 

overlap very little or the electron wave functions are 

localized, the free electron model is not a proper 

model. In this thesis, we will use the tight-binding 

model and therefore in the following sub-section, we 

present a discussion on this model. 

 

1.2 Tight Binding Model 

  The Tight binding model (TBM) provides the basis 

for developing well appreciated many-body theories, 
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such as the 𝑡 − 𝐽  model, Anderson impurity model, 

the Hubbard model (HM) and the Holstein Model. 

Slater and Koster [1] were the first to call the TBM as 

Bloch method, and their work provided the meticulous 

calculation for framing TBM.  

  To develop theoretical models, we start with some 

assumptions. In the free-electron theory, the starting 

assumption is that the valance electrons are free from 

the atoms and very much free to move throughout the 

crystal. Whereas in the case of TBM, we start with an 

isolated atom to which an electron is tightly bound. 

Several such atoms come closer to form a crystal. If 

the lattice constant is such that that the electron wave 

functions overlap, then an electron can move by 

hopping from one site to another and system will 

behave like a metal. If the electron wave functions do 

not overlap at all, then an electron will find it difficult 

to hop from one site to the other and in this situation, 

the system behaves like an insulator. If the lattice 

constant is reduced so that a small overlapping of 

electron wave functions occurs, then also the electrons 

will be able to hop from one site to another and the 

system will have a narrow band, but still it can behave 

like a metal. Thus, the tight-binding (TB) model can 

explain the metal-insulator transition. However, there 

is a constraint on this hopping. For hopping, the 

formed bands should be partially filled with the 

electrons. So we can say that the materials with the 

partially filled valence bands are supposed to be the 
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metals and the materials with fully filled or empty filled 

bands are supposed to be insulators.  

The Hamiltonian of the TB model in the second 

quantized notation is as follows 

                        

                                 𝐻 =  − ∑  𝑡𝑖𝑗 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉

              (1.2) 

                

where the notation 〈𝑖, 𝑗〉 implies that the summation is 

over nearest neighbours 𝑖 and 𝑗 only, 𝑡𝑖𝑗 is the nearest-

neighbour hopping integral given by  𝑡𝑖𝑗 ≅

 
1

𝑁
∑  𝜀𝑘 𝑒𝑖𝑘.(𝑟𝑖− 𝑟𝑗)

〈𝑖𝑗〉  , 𝜀𝑘   being the energy of the 

system,  𝑐𝑖𝜎
†

 (𝑐𝑗𝜎) is the creation (annihilation) operator 

for the electron at site i (j) with spin 𝜎 which can be 

either up (↑) or down (↓).  

   The solution can be found by using the Bloch 

theorem since the crystal contains a periodic potential. 

In many systems, 𝑡𝑖𝑗  would be same for all nearest 

neighbours and so we can assume: 𝑡𝑖𝑗 = 𝑡. The energy 

dispersion relation of the system is given by   

                         

                             𝜀𝑘 =  −𝑡 ∑ cos(𝑘. 𝛼)

𝛼

                (1.3) 
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For a 1D chain, there are two nearest neighbour atoms 

and hence 𝛼 =  ±𝑎 and the energy becomes  

                           

                                𝜀𝑘 =  −2𝑡 cos(𝑘𝑎)                  (1.4) 

                   

 

 

Fig. 1. The energy dispersion relation of TBM for the 1D lattice chain. 

According to this model, as the space between the 

atoms is reduced, the system turns from insulator to 

metal as the mobility of the electrons increases due to 

the overlapping of atomic wave functions. Due to the 

partially filled band, the system is metallic whereas the 

system behaves as an insulator for a fully filled band. 

According to this theory, certain substances, such as 

NiO, CuO2, V2O3, Fe3O4  and VnO2 should behave as 

metals, but interestingly they behaved as insulators 

experimentally. Thus, the usual Band theory fails to 

explain the insulating behaviour of the above materials. 
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The insulating behavior in these materials was later 

explained by Mott and Hubbard. It turned out that the 

insulating behaviour in the afore-mentioned materials 

is due to the electron-electron Coulomb correlation 

and these are called Mott insulators. Hubbard 

proposed a model known as the Hubbard model 

which gives the proper framework to deal with the 

correlated systems. 

1.3 The Hubbard Model 

  The Hubbard Model is described by the Hamiltonian  
 
 

𝐻 =  ∑ 𝑡0𝑛𝑖𝜎

𝑖𝜎

− 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

    (1.5) 

  

Here the first term is the site energy and the second 

term is usual tight binding hopping term, 𝑡 being the 

hopping amplitude and it represents the kinetic energy. 

The third term refers to the onsite e-e Coulomb 

interaction,  𝑈 giving the on-site Coulomb correlation 

energy. This model allows the hopping of electrons 

from one site to another and also allows the electrons 

to be localized at the atomic sites. So both possibilities 

are taken care of in this model. This Hamiltonian is 

meant for the on-site electrons only. When the 

correlations of inter-site electrons are incorporated, the 
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resulting model is known as the extended Hubbard-

Model.   

  The Hubbard Model has two limits: (i) 𝑈 → 0, and 

(ii)  𝑡 → 0. In the former, which is known as the band 

limit, the hopping term solely contributes to the GS 

energy of the system. This is nothing but the tight-

binding Hamiltonian. Here, the Bloch wave functions 

are the eigenfunctions of the Hamiltonian. In the 

second limit which is known as the atomic limit, the 

interaction term (𝑈) of the two particles contributes to 

the system’s GS energy. The Hubbard Model admits 

exact solutions in both these limits. But, if we combine 

both the 𝑡 and  𝑈 terms together, it is difficult to solve 

the Hubbard model in general.  

  Lieb and Wu [2] solved the Hubbard model exactly in 

one dimension using the Bethe ansatz technique and 

solving the Fredholm integral equations in the 

thermodynamic limit i.e., for an infinite chain. This 

was for the half-filled case. Later Shiba and Pincus [3] 

solved the same problem for away from half filling. So 

far it has not been possible to solve the Hubbard 

model in higher dimensions.  However, various 

methods have been used to obtain approximate 

solutions of the Hubbard model in higher dimensions. 

  It was explained by Mott [4] and Hubbard [5] that 

due to the presence of e-e interaction in the Hubbard 

Model, the energy bands undergo a splitting into two 

separate sub-bands for each set of spin-up and spin-
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down electrons. The lower sub-band consists of the 

spin-up electrons whereas the upper sub-band consists 

of the spin-down electrons. The gap between these 

sub-bands is equal to the onsite Coulomb correlation 

strength 𝑈. For 𝑈 > 𝑡, the Fermi level lies in between 

the two aforementioned sub-bands leading to an 

insulating state which is the Mott insulating state.  

   Over a period of time, the HM has evolved as a well-

celebrated model that looks simple but deals with 

several beautiful phenomena in CMP. In fact, it has 

emerged as an important model to deal with a sub-

branch of CMP called the strongly correlated systems. 

It can give rise to several interesting ground states like 

magnetic order or superconducting order.  It can also 

predict some interesting quantum phase transitions.  

1.4 Phonons 

  The ions or atoms are considered to be at rest at their 

corresponding equilibrium positions when the 

structural and cohesive properties of solids are 

investigated. This is a reasonably good assumption to 

study their structural as well as binding properties. 

However, for some important properties such as 

thermodynamic properties, this assumption is not 

sufficient and hence, the dynamics of the lattice must 

be taken into account. In reality, at finite temperatures, 

the ions or atoms in solids do not stick to their 
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equilibrium positions but as a matter of fact, they 

vibrate or move back and forth continuously with 

respect to their equilibrium positions. This sort of 

oscillations is called lattice vibrations. These lattice 

vibrations are quantized in the quantum mechanical 

treatment. The quanta of the lattice vibrations are 

called phonons. In this thesis, we consider harmonic 

approximation to deal with the phonons. 

  Phonons can affect the resistivity of metals by 

interacting with electrons. The interaction of phonons 

with conducting electrons can also change the ground 

state of the system. Polaronic effects and 

Superconductivity are the best examples of this. The 

phonons are also responsible for the Peierls instability 

in some of the 1D systems. The phonons can be 

treated both classically and quantum mechanically. In 

this thesis, we are interested in quantum behavior of 

solids and therefore we will consider the quantum 

mechanical way of dealing the lattice vibrations.  

  The quantum mechanical Hamiltonian for the 

interaction of an electron with longitudinal optical 

phonons in polar materials was first given by Fröhlich 

in the continuum approximation. This is the celebrated 

polaron problem. The polaron problem in the tight-

binding model was first rigorously discussed by 

Holstein [6].  
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1.5 Polarons  

  Landau [7] was the first who brought the concept of 

polaron into the limelight with his paper. According to 

him, a charge carrier either an electron or a hole can 

distort (or polarize) the medium around it. The 

induced polarization and the charge carrier together 

can be considered as a single entity which is called a 

polaron [8]. Since the polarization field is made up of 

phonons, it can be considered as a cloud of phonons  

 

 

Fig. 2. A polaron in a square lattice of atoms. The electron is screened 

by a cloud of phonons, the lattices are distorted. 

 

surrounding the charge carrier. Later, Landau and 

Peker [9] calculated the effective mass and the self-

energy of polarons. This analysis corresponds to the 

strong-coupling or the adiabatic regime and the 

resulting polaron is called as the strong-coupling 

polaron or the Peker polaron. Later, Fröhlich [10] 
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came up with a quantum mechanical Hamiltonian to 

describe a polaron. The Fröhlich Hamiltonian can be 

used to deal with polaron for the entire range of the 

coupling constant. In the case when the e-p interaction 

is weak, the distortion in the lattice can occur over a 

large number of lattice points and the corresponding 

polaron is termed as a large polaron. In the strong-

coupling regime, the lattice distortion is confined 

essentially within one lattice spacing and then the 

resulting polaron is known as the small polaron.  A 

weak-coupling large Fröhlich polaron can move almost 

freely through the solid medium. 

   The Fröhlich model is based on the continuum 

approximation and the formulation has been made in 

the momentum space. Holstein [6] considered the case 

of charge carriers in the tight-binding model and 

therefore the polarons conceived by Holstein are 

associated with lattice sites in real space and the 

motion of these polarons happens through hopping 

between lattice sites. Such a polaron is known as the 

Holstein Polaron.  

 

1.6 Holstein Model 

  Holstein [6] gave a new formulation for the polaron 

problem based on the tight-binding model. The 

Hamiltonian of this model is as follows. 
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𝐻 =  −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+  ℏ𝜔0  ∑ 𝑏𝑖
†𝑏𝑖

𝑖

  

  

                                          + 𝑔 ∑ 𝑛𝑖𝜎(𝑏𝑖
†+ 𝑏𝑖)

𝑖𝜎

        (1.6) 

 
Here the first term represents the tight-binding 

hopping term where 𝑐𝑖𝜎
†

 (𝑐𝑗𝜎) is the electron operator 

that creates (annihilates) an electron with spin 𝜎 at site 

𝑖  with .  The second term represents the harmonic 

lattice Hamiltonian, where 𝑏𝑖
†(𝑏𝑖) denotes the phonon 

operator that creates (annihilates) a phonon of 

frequency 𝜔0  at site 𝑖.  The phonon operators 𝑏𝑖 and 

𝑏𝑖
†

satisfy𝑏𝑖
†

 the commutation relation: [𝑏𝑖, 𝑏𝑗
†] = 𝛿𝑖𝑗 . 

The third term gives the e-p interaction, 𝑔 being the e-

p interaction strength. As mentioned already, Holstein 

considered the phonon oscillations to be harmonic.  

  When two polarons interact, they can form a bound 

pair if the phonon-mediated attractive interaction 

between the two electrons can overcome their usual 

Coulomb repulsion. Such a bound pair of two 

polarons is known as a bipolaron [6]. These bipolarons 

are bosons and can undergo Bose-Einstein 

condensation. 
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1.7 Holstein-Hubbard Model (HHM) 

  If the e-e interactions and the e-p interactions are 

considered together in the tight-binding model, then 

the model is called as the Holstein Hubbard Model 

(HHM).  

    The Hamiltonian of the HH Model is given by  

  

 𝐻 =  ∑ 𝑡0𝑛𝑖𝜎

𝑖𝜎

− 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

  

          +ℏ𝜔0  ∑ 𝑏𝑖
†𝑏𝑖

𝑖

+ 𝑔 ∑ 𝑛𝑖𝜎(𝑏𝑖
†+ 𝑏𝑖)

𝑖𝜎

   (1.7) 

 
All terms of this Hamiltonian have already been 

explained in the earlier sections. This Hamiltonian is 

useful to determine the nature of the interplay between 

the e-p coupling and the electron correlation. Based on 

the relative strengths of the different coupling 

parameters, one would expect the HH model to lead 

to a certain type of ground state.  

   Fig.3 describes a one-dimensional (1D) linear atomic 

chain with a hopping term, an e-e interaction term with 

strength U and an e-p interaction term with strength 𝑔. 

Thus, the HH model can be used to study the 

properties of the system in Fig.3. The parameter 𝑡 

gives a measure of electron-hopping and thus 
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describes delocalization of electrons. The Coulomb 

repulsion (𝑈) opposes double occupancy and leads to 

the finite local spin moment in the system. The e-p 

coupling leads to the formation of onsite polarons. If  

𝑔 is sufficiently large as compared to 𝑈, there can be 

double occupancies at the lattice sites.   

 

  

Fig. 3. A One Dimensional (1D) linear atomic chain with hopping 

term, e-e interaction strength U and the e-p interaction strength g. 

 

   The conventional superconductivity is explained by 

the celebrated BCS mechanism [11]. The pairing 

mechanism for the high-temperature superconductivity 

(HTCS) in cuprates has however remained hitherto 

elusive. A group of researchers have advocated the 

electronic mechanism as the cause of 

superconductivity in cuprates. However, quite a few 
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researchers have also suggested the phonon 

mechanism. Since high-𝑇𝑐  materials like cuprates are 

strongly correlated narrow band systems, the HH 

model should be the suitable model to investigate the 

HTSC in cuprates. Unfortunately, however, the 

explanation of superconductivity using the HH model 

runs into a serious problem. To understand the 

problem, it will be good to discuss the nature of the 

ground states provided by the HH model. 

The HH system can have different quantum 

phases. The transitions can also occur within these 

quantum phases. We describe these ground state 

phases below for the half-filled HHM case and finite 

hopping probability 𝑡. 

 
 

(i) Spin Density Wave (SDW) 

If the e-e interaction dominates over the e-p interaction 

(i.e., 𝑈 ≫ 𝑔 ), the electrons, because of their strong 

Coulomb repulsion, cannot hop from one site to 

another (even though the Pauli principle allows two 

electrons to be in same quantum state at a particular 

site with opposite spins). This leads to localization of 

electrons (or more specifically, polarons) at their 

respective sites. Since the system is half-filled, i.e., each 

site is occupied by a single electron; the state looks like 

an antiferromagnetic state in which alternative sites are 
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occupied with opposite spins. This is a spin density 

wave state. As we have already mentioned, in this state,  

 

 

 

 

 

 
 

Fig. 4.   SDW 
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the strong Coulomb interaction forbids the electrons 

from hopping from one site to another. Hence, this is 

an insulating state. This kind of insulator is called a 

Mott insulator. The Brillouin zone, in this case, is 

displayed in Fig. 4 (the bottom panel). Here the 

discontinuity (or the Fermi level) in the dispersion 

relation occurs at Brillouin zone boundaries, i.e., at k = 

±/a.  

 

(ii) Charge Density Wave (CDW) 

 
  If the e-p interaction dominates over the e-e 

interaction (i.e., 𝑔 ≫ 𝑈 ), two electrons can form a 

bound state at a particular site. This is a bipolaronic 

state. At half-filling and in 1D systems, these 

bipolarons are formed at the alternate sites. In this 

case, the charge density varies periodically from site to 

site and therefore this state is called a Charge density 

wave state (middle panel of Fig. 5). Since bound pairs 

form at every other site, the unit cell becomes doubled 

and the phenomenon is referred to as dimerization. As 

a consequence of this dimerization, the Brillouin zone 

is reduced from (−
𝜋

𝑎
,

𝜋

𝑎
) to (−

𝜋

2𝑎
,

𝜋

2𝑎
) opening a gap 

at the Brillouin zone boundaries (bottom panel of Fig. 

8). Due to this gap, the system again becomes 

insulating. This is known as the Peierls Instability and 

these kinds of insulators are referred to as the Peierls 

insulators [12]. 
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   Thus, it is clear from the above discussion that when 

the e-p coupling is small, GS of the HH system is an 
 

 

 
 

 
 

Fig. 5. CDW 

 



Chapter 1: Introduction 

 

 -- 21 --  
 

SDW state and as the e-p coupling strength is 

sufficiently enhanced, the system goes into a CDW 

phase. This is not a good scenario for 

superconductivity because to achieve high transition 

temperature one needs to have strong e-p interaction, 

while strong e-p interaction leads the system into a 

CDW insulator. Thus, superconductivity looks 

impossible in the HH model.  Of course, one may be 

curious to study the transition region. Hirsch and 

Fradkin [13] performed a Monte-Carlo study of the 

HH model and showed that the transition from SDW 

phase to CDW phase is direct.  

   

Later, Takada and Chatterjee (TC) [14] have taken 

up the 1D half-filled HH model for more critical 

investigation and studied the SDW-CDW transition in 

this system using a variational method coupled with 

the Bethe ansatz. Their analysis has revealed that there 

occurs a metallic phase at the crossover of the SDW-

CDW transition. This result was obtained with the 

harmonic approximation for the lattice vibrations. The 

harmonic approximation means that the time period of 

the phonon oscillations is infinite which is the ideal 

condition and is not possible practically. So, to deal 

with the real materials we need to consider the finite 

lifetime effect for the phonons. This can be done by 

considering anharmonic phonons. In a later work [15], 

Chatterjee and Takada have performed their 

calculation including cubic and quartic anharmonicities 

in the lattice potential. Interestingly, their results show 



Phase transitions in one-Dimensional Hol…………… 

 

-- 22 -- 
 

that the width of the MP broadens in the presence of 

anharmonic phonons.   

  In the present thesis, we will present an improved 

variational calculation in order to obtain a more 

accurate nature of the phase transition in the HH 

model with a Gaussian phonon anharmonicity.  Our 

results show that the thickness of the MP near the 

CDW-SDW crossover region is enhanced at the lower 

and moderate values of anharmonicity whereas as the 

anharmonicity is increased, the width of the MP 

eventually saturates. 

 

1.8 Persistent currents 

   The persistent current is an interesting phenomenon 

that occurs at low temperature and in materials of 

mesoscopic dimensions. Persistent current is a current 

that flows continuously for an appreciable long period 

of time without any external source of power. The 

external power source works as a trigger for persistent 

current. Mesoscopic rings have grabbed much 

attention due to their interesting feature of carrying 

persistent currents. Büttiker et al. [16] have predicted 

that the persistent current can be observed 

experimentally in the microscopic rings. They also 

confirmed that the root cause for this kind of 

persistent current is the quantum phenomenon. 
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Fig. 6. A mesoscopic ring with the applied magnetic flux  𝜙 and with 

the terms, t, U and g.  

Applying the magnetic field to the mesoscopic ring 

breaks the symmetry between the clockwise current 

and counter clockwise current. A ring with a diameter 

of 0.6 micrometres below 0.5 k temperature [17] can 

produce a current of 1 nano-ampere. Even the 

resistive materials can produce small persistent 

currents within them under the influence of an 

external magnetic field. Since, this current is of 

quantum origin, one needs to address the phase 

coherence effect of the electron’s motion quantum 

mechanically. Aharonov-Bohm flux can be used to 

obtain persistent currents in a mesoscopic ring. The 

increase in the temperature is detrimental to the 

persistent current in the quantum rings.  

  There are two types of persistent currents. One is 

charge current and the other is the spin current. The 
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charge current is due to the rate of change in charge 

whereas the spin current is due to the rate of change in 

the magnetization.  The spin current is produced when 

the electrons with spin up and that with spin down are 

separated due to a potential. Usually, it occurs in a high 

spin-orbit coupling material.   

1.9 Organization of Thesis 

   In Chapter 1, we introduce the basic concepts and 

the models that are necessary for the investigation of 

the problems presented in this thesis. To be more 

specific, we first presented a discussion on the Tight-

binding model of energy bands and the Hubbard 

model. Then we introduced phonons, polarons and 

the Holstein model. Next we presented the Holstein-

Hubbard model and discussed its spin-density and 

charge density wave phases. Finally we present a brief 

introduction to Persistent currents.     

  In Chapter 2, we present our work on the one-

dimensional Holstein-Hubbard model with Gaussian 

phonon anharmonicity at half filling. We use a 

variational technique based on a series of unitary 

transformations and employ a fairly accurate phonon 

state to average the transformed Holstein-Hubbard 

Hamiltonian to obtain an effective Hubbard model 

which is then solved using the exact Bethe – ansatz 

technique. Using the Mott-Hubbard criterion, local 
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spin moment and the von Neumann entropy, we 

determine the ground state phase diagram and show 

the existence of an intermediate metallic phase flanked 

by the SDW and CDW phases.  

  Mesoscopic rings are interesting due to their property 

of exhibiting charge and spin persistent currents. 

Chapter 3 is dedicated to the calculation of persistent 

charge and spin currents in a finite mesoscopic ring 

with the magnetic flux threading into it. The system is 

modelled by the Holstein-Hubbard Hamiltonian so 

that the effect of interplay of e-e and e-p interactions on 

the persistent currents in mesoscopic rings can be 

studied. The model formulation, method and the 

results are discussed in the Chapter 3 elaborately. 

In chapter 4, we summarize our results and present the 

concluding remarks.  
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Metallicity in a Holstein-Hubbard chain at 
half-filling with Gaussian anharmonicity 

 

 

2.1. Introduction  

  The high-temperature superconductivity (HTS), after 

its discovery in the eighties, has continued to remain as 

one of the most interesting areas of research in the 

field of condensed matter physics. Several theories 

have been propounded to explain the origin of HTS in 

the cuprate superconductors. However no single 

theory has been able to explain all the properties of 

high-temperature superconductors satisfactorily. There 

have been quite a few theories which again advocated 

the e-p interaction as the mechanism for inducing 

pairing in high-temperature superconductors. The 

importance of e-p interaction in HTS has been reported 

Chapter 2 
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in several publications [1-11]. Plakida [5] has suggested 

that the high transition temperature Tc can be acquired 

even at the modest values e-p coupling strength. 

Alexandrov [6] has reported that a reasonable e-p 

coupling may lead to sufficient reduction in the 

polaron band, which may result in high 

superconducting transition temperature. To examine 

superconductivity based on e-p coupling or the 

polaronic mechanism in the strongly correlated 

substances, the HH model appears to be the most 

preferred choice [8, 9, 12]. Later on, Sil et al. [9] and 

Sankar et al. [10] have studied the GS properties along 

with the phases of the extended HH model. However, 

the polaronic mechanism, though looks attractive at 

the first glance, runs into a problem if considered 

critically. It is plausible to assume that in order to have 

high 𝑇𝑐  within the framework of the polaron 

mechanism, the material needs to have strong e-p 

coupling strength which however would push the 

system to the CDW state which is a non-metallic state. 

While in the case of sufficiently small e-p coupling, the 

onsite Coulomb correlation would be the dominant 

interaction and as a result the system then would be 

driven to the SDW phase which is again an insulating 

state. Thus, one expects that as the e-p interaction is 

raised, the system would go from a SDW state to a 

CDW state. Of course, one can still be curious to 

examine the nature of the crossover region. Hirsch and 
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Fradkin [13] studied the nature of the transition region 

using the Monte-Carlo technique and reported that the 

SDW-CDW transition in the HH model is rather 

direct. Understandably, this result was a serious blow 

to the theories of HTS based on the polaronic 

mechanism.  

   In 2003, Takada and Chatterjee (TC) [14] have taken 

up the 1D half-filled HH model to give a critical re-

look at the transition region of this model. Their aim 

has been to examine analytically the nature of the 

transition region of the SDW and CDW phases.   They 

have shown that, interestingly, the SDW-CDW 

transition in the 1D half-filled HH model is not direct 

but goes through an intervening metallic phase. 

Krishna and Chatterjee (KC) [16] have examined the 

same problem with a better variational wave function 

[16,17] and have shown a modified variational analysis 

broadens the width of the intermediate conducting 

phase. Subsequently, a few other investigations have 

also corroborated the existence of this metallic phase 

[17-28]. Sankar and Chatterjee [10] have studied this 

problem by computing theoretically the von Neuman 

entropy that essentially measures the Quantum 

Entanglement (QE). Their calculation confirms the 

existence of the aforementioned intermediate metallic 

phase.  

   The works mentioned above considered the 

phonons to be harmonic which implies infinite lifetime 
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for the phonons. However, the lattice potential is in 

general anharmonic and this anharmonicity introduces 

phonon-phonon interactions which bring in a finite 

life time effect for the phonons.  So, to deal with the 

realistic cases, one needs to consider anharmonic 

phonons. Chatterjee and Takada (CT) [15] have 

examined the behaviour of the SDW-CDW crossover 

in the HH model incorporating the anharmonicity of 

phonons. Their investigation shows that anharmonicity 

broadens the width of intermediate metallic region.    

      The phonon state used by CT is however 

extremely simple. Also the phonon anharmonicity 

considered by them is only up to the fourth power in 

the lattice displacement. Konior [8] has contemplated a 

polaronic model with Gaussian anharmonicity and 

concluded that in this case the band reduction due to  

e-p coupling becomes much less. Furthermore, the 

results provided by Gaussian anharmonicity are 

convergent in all circumstances, a feature that is 

missing in the quartic and cubic anharmonicities [15].  

   In this chapter, we consider the 1D HH model with 

Gaussian anharmonic phonons and  employ a more 

accurate phonon state (than that used by CT) to 

examine the effect of anharmonicity on the metallic 

phase at the SDW-CDW transition region employing 

the Mott criterion, local spin moment, double 

occupancy and the quantum entanglement.   
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2.2. The Model 

The HH Hamiltonian is given by 

                

                           𝐻 =  𝐻𝑒𝑙 +  𝐻𝑝ℎ + 𝐻𝑒𝑙−𝑝ℎ           (2. 1) 

        

with 

      

  𝐻𝑒𝑙  =  −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+  𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 ,         (2.1 𝑎) 

 

𝐻𝑝ℎ = ℏ𝜔0  ∑ 𝑏𝑖
†𝑏𝑖

𝑖

+ 𝜆𝑎𝑝  ∑ 𝑒−𝛾(𝑏𝑖
†

 + 𝑏𝑖)
2

𝑖

, (2.1𝑏) 

                

𝐻𝑒𝑙−𝑝ℎ = 𝑔 ∑ 𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

,                            (2.1𝑐) 

          

where  𝑐𝑖𝜎
†  (𝑐𝑗𝜎)  is the operator that creates 

(annihilates) an electron with spin 𝜎 at site 𝑖, 𝑡 denotes 

the nearest-neighbour hopping parameter, 𝑛𝑖𝜎  (=

𝑐𝑖𝜎
† 𝑐𝑖𝜎) refers to the number operator corresponding 

to the electron of spin 𝜎  at site 𝑖 , 𝑈  is the onsite  

Coulomb correlation energy, 𝑏𝑖
†

  and 𝑏𝑖  are the 

operators corresponding to creation and annihilation 

of phonons with  dispersionless frequency 𝜔0 at site 𝑖,   
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𝜆𝑎𝑝 and 𝛾 are respectively the strength and  range of 

the lattice potential and 𝑔  is the intra-site e-p 

interaction. 

2.3 Formulation 

2.3.1 GS Energy 

The above Hamiltonian contains the electronic and 

phononic terms which are coupled. One needs to 

change the basis to decouple the Hamiltonian. 

Canonical transformation is a way to transfer the 

Hamiltonian from one basis to another so that the 

Hamiltonian can be diagonalized. In the present case, 

however, the separation of electrons and phonons 

cannot be achieved exactly. We carry out a series of 

canonical transformation to approximately accomplish 

this purpose.  

As a first step, we apply the variable-displacement 

Lang-Firsov (VDLF) transformation. The generator of 

this transformation can be written as   

            

                   𝑅1  =  
𝑔′

ℏ𝜔0
 ∑ 𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖

,             (2.2) 

 

where 𝑔′ = 𝑔 𝜂 = √𝛼 𝜂, 𝛼 being the dimensionless e-

p coupling constant and 𝜂 a variational parameter. The 
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transformation (2.2) displaces the origin of the phonon 

oscillator. The conventional Lang-Firsov 

transformation is suitable in the anti-adiabatic regime. 

By considering the VDLF transformation, it is possible 

to treat the problem both in the adiabatic and anti-

adiabatic regions. When 𝜂  is close to 1, the VDLF 

transformation works well for the anti-adiabatic case, 

while for  𝜂 → 0, it is good for the adiabatic regime. 

Thus, by considering the VDLF transformation, we 

can cover the entire range of adiabaticity i.e., both 

adiabatic and anti-adiabatic regions.  

As a result of the VDLF transformation, 𝐻  reduces to  

  

                         𝐻1 = 𝑒𝑅1𝐻𝑒−𝑅1  .                              (2.3) 

The above transformed Hamiltonian can be calculated 

using the Baker-Campbell-Hausdorff (BCH) formula: 

𝑒𝑅𝐴𝑒−𝑅 = 𝐴 +  [𝑅, 𝐴] +  
1

2
 [𝑅, [𝑅, 𝐴]] 

                                +
1

3!
[𝑅, [𝑅, [𝑅, 𝐴]]] + ⋯  (2.4) 

          

Using the BCH formula, we obtain 

 

𝐻1 = −𝑡 ∑ 𝑒(𝑥𝑖𝜎−𝑥𝑖+𝛿,𝜎)𝐶𝑖𝜎
† 𝐶𝑖+𝛿,𝜎

𝑖,𝑖+𝛿,𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

                 +ℏ𝜔0 ∑ 𝑏𝑖
†𝑏𝑖

𝑖

− 𝑔′ ∑(𝑏𝑖
† + 𝑏𝑖)𝑛𝑖𝜎

𝑖𝜎
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             +
(𝑔′)2

ℏ𝜔0

(∑ 𝑛𝑖𝜎
2

𝑖𝜎

+ 2 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

) + 𝑔 ∑ 𝑛𝑖𝜎(𝑏𝑖
† + 𝑏)

𝑖𝜎

 

                −
2𝑔𝑔′

ℏ𝜔0

∑ 𝑛𝑖𝜎
2

𝑖𝜎

−
4𝑔𝑔′

ℏ𝜔0

∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

                                       + 𝜆𝑎𝑝  ∑ 𝑒
−𝛾(𝑏𝑖

†
+𝑏𝑖−

2𝑔′

ℏ𝜔
∑ 𝑛𝑖𝜎𝜎 )

2

 

𝑖𝜎

(2.5) 

 

The transformation (2.2) deals with the displacements 

of the phonon coordinates that depend on the electron 

concentrations at particular sites.  One can also have 

phonon displacements that are independent of 

electron concentration. This feature was captured by 

the Takada-Chatterjee transformation [14]. The 

generator of this transformation is given by: 

             

                         𝑅2 =  ∑[ℎ(𝑏𝑘
† −  𝑏𝑘)]

𝑘

           (2.6) 

                      

where  ℎ  has to be obtained variationally. After 

applying this transformation, the Hamiltonian 

becomes 

 

                                       𝐻2 = 𝑒𝑅2𝐻1𝑒−𝑅2                 (2.7) 
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       𝐻2   = ∑ (2𝑔′ℎ +
(𝑔′)2

ℏ𝜔0

− 2𝑔ℎ −
2𝑔𝑔′

ℏ𝜔0

) 𝑛𝑖𝜎

𝑖𝜎

 

 

                 −𝑡 ∑ 𝑒
𝑔′

ℏ𝜔0
((𝑏𝑖

†
−𝑏𝑖)−(𝑏𝑗

†
−𝑏𝑗))

  𝐶𝑖𝜎
† 𝐶𝑗𝜎 

𝑖𝑗𝜎

 

                  + ∑ (𝑈 +
2(𝑔′)2

ℏ𝜔0

−
4𝑔𝑔′

ℏ𝜔0

)

𝑖

𝑛𝑖↑𝑛𝑖↓ 

                 + ∑(𝑔 − 𝑔′)(𝑏𝑖
† + 𝑏𝑖)𝑛𝑖𝜎

𝑖𝜎

 

                 + ℏ𝜔0 ∑(𝑏𝑖
†𝑏𝑖 − ℎ(𝑏𝑖

† + 𝑏𝑖) + ℎ2)

𝑖

 

                                   + 𝜆𝑎𝑝 ∑ 𝑒
−𝛾(𝑏𝑖

†
+𝑏𝑖−2ℎ−

2𝑔′

ℏ𝜔0
∑ 𝑛𝑖𝜎𝜎 )

2

𝑖𝜎

(2.8) 

 

Next we apply the Squeezing transformation 

[14,15] given by  

          

                  𝑅3 =  𝛼′ ∑(𝑏𝑘𝑏𝑘 −  𝑏𝑘
†𝑏𝑘

† )

𝑘

          (2.9) 

          

When a phonon is emitted by an electron, the 

electron recoils according to the law of 

conservation of linear momentum. If another 

phonon is emitted by the recoiling electron, then 
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there will be a correlation between these two 

successively emitted phonons. The squeezing 

transformation (2.9) is known to capture the effect 

of these   phonon correlations. The squeezing 

transformation also incorporates some effect of 

phonon anharmonicity. Here, 𝛼′  is the variational 

parameter.  

 

After applying the squeezing transformation, the 

transformed Hamiltonian can be written as: 

 

                              𝐻3 = 𝑒𝑅3𝐻2𝑒−𝑅3                      (2.10)                                           

 

𝐻3 = ∑ (−2ℎ(𝑔 − 𝑔′) −
𝑔′

ℏ𝜔0

(2𝑔 − 𝑔′)

𝑖𝜎

   

+(𝑔 − 𝑔′)𝑒2𝛼′

(𝑏𝑖
† + 𝑏𝑖) 

+𝜆𝑎𝑝𝑒
−𝛾{(𝑏𝑖

†
+𝑏𝑖)𝑒2𝛼′

−2ℎ−
2𝑔′

ℏ𝜔0
}

2

    

−𝜆𝑎𝑝𝑒−𝛾{(𝑏𝑖
†

+𝑏𝑖)𝑒2𝛼′
−2ℎ}

2

) 𝑛𝑖𝜎 
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+ ∑ (⋃ −
2𝑔′

ℏ𝜔0

(2𝑔 − 𝑔′)   

𝑖

+ 𝜆𝑎𝑝  𝑒
−𝛾{(𝑏𝑖

†
+𝑏𝑖)𝑒2𝛼′

−2ℎ−
4𝑔′

ℏ𝜔0
}

2

 

− 2𝜆𝑎𝑝𝑒
−𝛾{(𝑏𝑖

†
+𝑏𝑖)𝑒2𝛼′

−2ℎ−
2𝑔′

ℏ𝜔0
}

2

+ 𝜆𝑎𝑝𝑒−𝛾{(𝑏𝑖
†

+𝑏𝑖)𝑒2𝛼′
−2ℎ}

2

) 𝑛𝑖𝑛𝑖 

       − 𝑡 ∑ 𝑒
𝑔′

ℏ𝜔0
{(𝑏𝑖

†
−𝑏𝑖)−(2𝑏𝑗

†
−𝑏𝑗)}𝑒2𝛼′

𝐶𝑖𝜎
†

𝐶𝑗𝜎

〈𝑖,𝑗〉𝜎

 

 

           + ℏ𝜔0 ∑ (
1

4
𝑒4𝛼′

(𝑏𝑖
+ + 𝑏𝑖)

2

𝑖

−
1

4
𝑒−4𝛼′

(𝑏𝑖
+ − 𝑏𝑖)

2 −
1

2

− ℎ(𝑏𝑖
† + 𝑏𝑖)𝑒2𝛼′

+ ℎ2)  

 

                         + 𝜆𝑎𝑝 ∑ 𝑒
−𝛾{(𝑏𝑖

†
+𝑏𝑖)𝑒2𝛼′

−2ℎ}

2

𝑖

(2.11) 
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We assume that after the above three unitary 

transformation, the residual electron-phonon 

interactions have become sufficiently weak so that the 

total wave function of 𝐻3 may be given by the simple 

product of the electronic and phonon functions.  Thus 

we write the total wave function of 𝐻3 as:  

 

                                     |𝜓⟩ = |𝜓𝑝⟩|𝜓𝑒⟩               (2.12)                           

 
Then the energy of the system is given by:  

𝐸 = ⟨𝜓|𝐻3|𝜓⟩ = ⟨𝜓𝑒|  ⟨𝜓𝑝| 𝐻3|𝜓𝑝⟩|𝜓𝑒⟩ 

               = ⟨𝜓𝑒| 𝐻𝑒𝑓𝑓 |𝜓𝑒⟩,                                    (2.13) 

where 

                                𝐻𝑒𝑓𝑓 = ⟨𝜓𝑝| 𝐻3|𝜓𝑝⟩              (2.14) 

 

To calculate  𝐻𝑒𝑓𝑓, we choose |𝜓𝑝⟩ as: 

 

                       |𝜓𝑝⟩ = ∑ 𝑐𝑛|𝜑𝑛(𝑥)⟩

𝑀

𝑛 = 0

,                  (2.15) 

 

where |𝜑𝑛(𝑥)⟩ is the nth excited state eigenfunction of 

a simple harmonic oscillator with the frequency 𝜔0.  
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𝜑𝑛(𝑥) = (
√𝜔0

√𝜋ℏ 2𝑛 𝑛!
)

1
2⁄

𝐻𝑛 (√
𝜔0

ℏ
 𝑥) 𝑒

−  
𝜔0
2ℏ

 𝑥2

,   (2.16) 

 
where 𝐻𝑛 is the Hermite polynomial of order n.  The 

effective electronic Hamiltonian is finally obtained as 

 

 𝐻𝑒𝑓𝑓 = −𝑡𝑒𝑓𝑓 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+ 𝑈𝑒𝑓𝑓 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

              + 𝜀𝑒𝑓𝑓 ∑ 𝑛𝑖𝜎

𝑖𝜎

+  𝑁𝜆𝑎𝑝𝐸1 

          + 𝑁ℏ𝜔0 (
1

4
𝑒4𝛼′

𝑆2 −
1

4
𝑒−4𝛼′

𝑆3 −
1

2
 + ℎ2     

− ℎ𝑒2𝛼′
𝑆1),                                  (2.17) 

with  

𝜀𝑒𝑓𝑓 = −
(2𝑔 − 𝑔′)

ℏ 𝜔0
 + (𝑔 − 𝑔′)(𝑒2𝛼′

𝑆1 − 2ℎ) 

                                        +𝜆𝑎𝑝(𝐸2 − 𝐸1),            (2.17 a) 

  

𝑤ℎ𝑒𝑟𝑒  𝑔′ =  𝑔 𝜂 =  √𝛼 𝜂,    

                                     𝑡𝑒𝑓𝑓  =  𝑡 𝐹2,                   (2.17 b) 

𝑈𝑒𝑓𝑓 = 𝑈 −
2𝑔′

ℏ 𝜔0

(2𝑔 − 𝑔′) 
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                                 +𝜆𝑎𝑝(𝐸3 − 2𝐸2 + 𝐸1), (2.17 c) 

                              

                                                                      

𝑆𝑖 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙 = 0

∫ 𝑒−𝑦2
∞

−∞

𝜉𝑖(𝑦)𝐻𝑘(𝑦)𝐻𝑙(𝑦) 𝑑𝑦, (2.17d) 

 
 

𝐹 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙 = 0

𝑒−𝑎2

4⁄ ∫ 𝑒−𝑦2
∞

−∞

𝐻𝑘 (𝑦 +
𝑎

2
) (𝑦 −

𝑎

2
) 𝑑𝑦, 

                                                                      (2.17 e) 

𝐸𝑖 = ∑ 𝑐𝑘𝑙

𝑀

𝑘,𝑙 = 0

∫ 𝑒−𝑦2− 𝛾(√2 𝑦 𝑒2𝛼′
 − 2ℎ − 𝜁𝑖)

2∞

−∞

 

                                 

×  𝐻𝑘(𝑦)𝐻𝑙(𝑦)𝑑𝑦,         (2.17f) 

       

where 

𝑐𝑘𝑙  =  𝑐𝑘𝑐𝑙 √1/2𝑘+𝑙  𝑘!  𝑙!  𝜋  ,                      (2.17g) 

𝜉1  =  √2 𝑦  ,                                                     (2.17h) 

𝜉2  = 2𝑦2,                                                           (2.17i) 

𝜉3 = 2(𝑦2 − 2𝑙 − 1),                                       (2.17j)  

𝜁1  =  0,                                                              (2.17k) 
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𝜁2  =
2𝑔′

ℏ𝜔0
 ,                                                         (2.17l) 

𝜁3  =
4𝑔′

ℏ𝜔0
   ,                                                     (2.17m) 

for i = 1, 2 and 3.  

    In general, the onsite GS energy, the hopping 

parameter and the onsite Coulomb interaction are 

modified due to the polaronic effect. Because of 

polaron formation, the hopping parameter 𝑡 is scaled 

down by a factor which is called the Holstein 

reduction factor. The polaron formation thus reduces 

the width of the energy band. Besides 𝑡, 𝑈  and 𝑔 , 

several other parameters such as filling factor, size and 

the dimensionality of the system also tend to play a 

vital part in dictating the phases of the HH model. In 

this thesis, we consider only a 1D system.  

 

   As we can see, the parameters 𝜀 , 𝑈  and 𝑡   are 

renormalized as 𝜀𝑒𝑓𝑓, 𝑈𝑒𝑓𝑓  and 𝑡𝑒𝑓𝑓  respectively. The 

Hamiltonian 𝐻𝑒𝑓𝑓  (Eq. (2.17)) represents an effective 

Hubbard Model (with a few constant terms) which can 

be solved by following Lieb and Wu [30] who applied 

the nested Bethe-Ansatz (BA) technique to solve 

exactly the 1D half-filled Hubbard Model. Using the 

BA technique, the exact GS energy per electron (𝜀) 

corresponding to 𝐻𝑒𝑓𝑓 at half filling is obtained as:   
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      𝜀 =
1

4
𝑒4𝛼′

𝑆2 −
1

4
𝑒−4𝛼′

𝑆3 −
1

2
 − ℎ𝑒2𝛼′

𝑆1  

               + ℎ2 + 𝜆𝑎𝑝 𝐸1 −  𝐽 +  
𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|

4
 

  

          − ∫
4 𝑡𝑒𝑓𝑓𝐽0(𝜉)𝐽1(𝜉) 𝑑𝜉

𝜉 [1 +  𝑒𝑥𝑝 (𝜉
|𝑈𝑒𝑓𝑓|
2 𝑡𝑒𝑓𝑓

  )]

∞

0

,   (2.18) 

where  

 
 

       𝐽 = (2𝑔 − 𝑔′)𝑔′ − (𝑔 − 𝑔′)[𝑒2𝛼′
𝑆1 − 2ℎ] 

+ 𝜆𝑎𝑝𝐸1 −  𝜆𝑎𝑝𝐸2.    (2.18𝑎) 

              
We have modified Bethe ansatz by adding a new term 

(𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|)/4  so that the solution is applicable even 

for negative  𝑈𝑒𝑓𝑓.  

 To determine the GS energy, we perform numerical 

minimization of Eq. (2.18) with respect to  𝜂, ℎ  and 

𝛼′. The average lattice displacement (ALD) is given by  

  〈𝑥𝑖〉   =  𝑒2𝛼′
 (𝑆1/√2 −  √2 𝑔′ − √2 ℎ).       (2.19) 
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2.3.2. Local spin moment (LSP) 

Calculating the local spin moment (LSP) will help us in 

determining the quantum phases of the system. If the 

system is in the SDW state, an electron occupying a 

particular site will be unpaired and the local spin 

moment per site will be high. On the other hand, if the 

local spin moment is zero, the sites are either empty or 

doubly occupied. This will correspond to the CDW 

state. The average electron spin moment per site can 

be measured by:  

𝐿0 =  
1

𝑁
 ∑〈𝑆𝑖

2〉 

𝑖

  

 

                            =  
3

4
−  

3

2𝑁
 ∑〈𝑛𝑖↑ 𝑛𝑖↓〉

𝑖

 ,          (2.20) 

which on using the expression for variational GS 

energy yields   

                               

                             𝐿0 =  
3

4
− 

3

2
 
𝑑𝜀

𝑑𝑈
  .           (2.21) 

                   
    It can be shown [14-17] that for completely 

uncorrelated electrons,  𝐿0 is equal to 3/8 (= 0.375). 

Furthermore, it is also known that for the Hubbard 

model,  𝐿0 can vary between 3/8 (which is the band 

limit) and 3/4 (which is the atomic limit).  
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2.3.3. Entanglement Entropy (EE) 

  Quantum Entanglement (QE) is one of the most 

striking phenomena in Quantum Mechanics and is also 

known to be related to Quantum Phase Transition 

(QPT) [31-36] which happens due mainly to quantum 

fluctuations. In this section, we wish to study the 

QPTs that are associated with the HH model using the 

idea of QE which can be measured by calculating the 

Entanglement Entropy (EE) such as the von 

Neumann entropy.  It has been found that the higher 

is the entanglement, the higher is the conduction. 

Hence, one can conclude the existence of a metallic 

state from the calculation of the entanglement entropy. 

In the 1D HH model, one can conceive of four states 

namely, |0〉,  |↑〉,  |↓〉  and  |↑↓〉 . The von Newmann 

entropy is then given by: 

 
                     

𝐸𝜗 =  −𝑇𝑟(𝜌𝑟 𝑙𝑜𝑔2𝜌𝑟),          (2.22) 
             

 

where 𝜌𝑟  represents the reduced density matrix which 

for the present case can be written as:   

𝜌𝑟 =  𝜔𝑒| 0〉 〈0| + 𝜔↑| ↑〉 〈↓| + 𝜔↓| ↓〉 〈↑| 

+ 𝜔↑↓| ↑↓〉 〈↑↓| ,         (2.22a) 
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where 𝜔↑↓ denotes the double occupancy and is given 

by 

𝜔↑↓ = 〈𝑛𝑖↑𝑛𝑖↓〉 ≡ 𝜔           (2.22b) 
  

 

and 𝜔↑, 𝜔↓ and 𝜔𝑒 are given by   
 

𝜔↑ = 𝜔↓ = (𝑛/2) − 𝜔↑↓         (2.22c) 
 

𝜔𝑒 = 1 − 𝜔↑ − 𝜔↓ − 𝜔↑↓.       (2.22d) 
   

The entanglement entropy 𝐸𝜗  can be finally 

determined by exploiting the Hellmann-Feynman 

theorem 

                                
𝜕𝜀

𝜕𝑈
= 〈𝑛𝑖↑𝑛𝑖↓〉.                    (2.23) 

   
 

2.4 Numerical Results and 

Discussion  

For the numerical analysis, we study three cases of 

anharmonicity: Case (i) λap= 0.05, γ = 0.05; Case (ii) 

λap= 0.2, γ = 0.05 and Case (iii) λap= 0.75, γ = 0.5 and 

set the value of ћω0 equal to 1. (i) refers to a small 

anharmonic case, (ii) refers to a moderate anharmonic 

case and (iii) refers to a high anharmonic case. We shall 

work in the anti-adiabatic region and consider 𝑡 =
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 0.2 𝜔0  in this chapter. We have found that M = 3 

gives the convergent result for the GS energy.  

   Fig. 1 displays the behaviour of the GS energy per 

site with respect to the on-site e-e strength (𝑈) for both 

harmonic and anharmonic lattices. At large U, the 

anharmonicity increases the energy while for 𝑈 ≤ 1, it 

appears to have much less influence. The TC results 

[13] are exactly reproduced in the harmonic case 

(𝜆𝑎𝑝 = 𝛾 = 0). 

 

 Fig. 1.  GS energy (ε) vs. onsite Coulomb correlation strength U. 

    Fig. 2(a) shows how  ‹𝑥𝑖› behaves with the variation 

in the e-p coupling strength 𝑔.  The value of  ‹𝑥𝑖› 
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diminishes with rising 𝑔. For the case:  𝜆𝑎𝑝 = 0 = 𝛾, 

the present results agree well with the TC results [14] 

lending credence to the TC results. However, for a 

substantially large anharmonicity, the behaviour of ‹𝑥𝑖› 

is rather complex and appears to be asymmetric in 𝑔. 

Fig. 2(b) describes the behaviour of the optimized 𝜂  

versus 𝑔. We notice that there is an essential qualitative 

difference in the way 𝜂 behaves with respect to 𝑔 for a 

sufficiently high anharmonicity. To be more specific, 𝜂 

first decreases with increasing 𝑔, develops a minimum 

at some critical 𝑔  and then increases with further 

increase in 𝑔 and reaches a saturation value which is 

the strong-coupling limit. Fig. 2(c) reveals that with the 

increase in 𝑔 , the band becomes rapidly and 

continuously narrower.  For strong anharmonicity, the 

band reduction is even more rapid. Fig. 2(d) displays 

the decrease in the effective on-site e-e interaction as 𝑔 

increases. The presence of anharmonicity reduces 𝑈𝑒𝑓𝑓 

much further. One may note that for the harmonic 

case, ‹𝑥𝑖› = −√2𝑔 , with 𝑔 = √𝛼 ,  𝛼  being the 

dimensionless e-p coupling constant.  

  The increase in the anharmonicity causes a deviation 

in the harmonic value of ‹𝑥𝑖› for positive 𝑔. Though 

the deviation is not very systematic, it looks more  

pronounced at higher 𝑔  values. The shift in ‹𝑥𝑖›  is 

accompanied with the reduction in  𝑈𝑒𝑓𝑓, 𝑡𝑒𝑓𝑓/𝑡 and 

𝐿0 which is a consequence of the increase in the  
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Fig. 2.  (a) 〈𝑥𝑖〉 as a variation of 𝑔 for different 𝜆𝑎𝑝  and 𝛾 values.  (b)  𝜂 

versus  𝑔. (c) 𝑡𝑒𝑓𝑓/𝑡 versus 𝑔.  (d) 𝑈𝑒𝑓𝑓  variation with 𝑔. 
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optimized 𝜂 from its value in the harmonic case. As  𝑔 

is increased beyond 1.1, the anharmonicity brings 

down 𝜂 which consequently enhances 𝑡𝑒𝑓𝑓/𝑡   giving 

rise to the creation of polarons that are mobile. The 

decrease in 𝜂 also happens because of the competition 

between the e-e and e-p couplings. For a considerably 

large anharmonicity, the onsite e-p coupling becomes 

strong enough to dominate over the onsite e-e 

Coulomb repulsion.  

   In Fig. 3(a), 𝑡𝑒𝑓𝑓/𝑡  is plotted against U for three 

different anharmonic cases.  The harmonic case, as 

expected, compares well with the TC results.  As 𝑈 is 

made considerably large, 𝑡𝑒𝑓𝑓/𝑡   approaches 1 . The 

graph for the variation of 𝑑𝑡𝑒𝑓𝑓/𝑑𝑈  with 𝑈  in Fig. 

3(b) displays a double-peak structure as observed in 

the case of harmonic lattice, though the peaks are 

higher in the case of larger anharmonicity. 

Furthermore, as the anharmonicity is increased, the 

peaks move to the right. This happens because the 

phonon anharmonicity enhances the e-p interaction 

strength and consequently, a stronger Coulomb 

correlation is needed to bring about the transition 

exhibited by the double-peak structure. 
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Fig. 3 (a) 𝑡𝑒𝑓𝑓/𝑡  vs. 𝑈.  (b) 𝑑𝑡𝑒𝑓𝑓/𝑑𝑈  vs. 𝑈.  
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Fig. 4(a) Phase diagram in  − 𝑈  plane ascertained from the peaks in 

𝑑𝑡𝑒𝑓𝑓/𝑑𝑈 . MR: metallic region (b) Peak-to-peak width( from 𝑑𝑡𝑒𝑓𝑓/

𝑑𝑈- 𝑈-graph) vs   𝜆𝑎𝑝 for two different values of 𝛾. 
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   Fig. 4(a) provides the phase diagram in the 𝛼 − 𝑈 

plane as obtained from the peaks of the 𝑑𝑡𝑒𝑓𝑓/𝑑𝑈 

versus 𝑈 −graph. The role of anharmonicity on MP is 

displayed in Fig. 4(b) for two different cases. For the 

harmonic system, the width of MP is 0.48 (in units of 

𝜔0). As the Gaussian anharmonicity is switched on, 

the width of MP broadens rapidly to the value 0.58 (in 

units of 𝜔0). As the strength of anharmonicity is raised 

further, the width keeps on increasing, reaches a 

maximum value and then becomes thinner as the 

anharmonicity is further increased.  

 

Fig. 5.  A 3-dimensional picture depicting the behavior of |𝑈𝑒𝑓𝑓| (blue) and 

4𝑡𝑒𝑓𝑓 (red) with U and α. 
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   Fig. 5 provides a 3D illustration of MP that occurs at 

the SDW-CDW transition area for a given 𝜆  and γ. 

The red surface flanked by the two surfaces in blue 

satisfies the MP condition: 4teff ≳ |𝑈𝑒𝑓𝑓|  and 

accordingly represents the metallic phase.  We observe 

that the value of 𝑈𝑒𝑓𝑓  is positive on the left side of 

MR and so this region would be in the SDW phase. 

On the right side of MR, however, 𝑈𝑒𝑓𝑓 turns out to 

be negative which implies that the region on the right 

side of MP would be in the CDW phase.  We therefore 

infer that an increase in α leads the system to undergo 

a transition from an insulating antiferromagnetic SDW 

phase to the insulating CDW phase through a 

conducting region. This is indeed an important 

observation because it implies that even when the e-p 

coupling is strong, the system parameters can be 

manipulated to obtain a metallic GS which can go to a 

superconducting phase if temperature is lowered. Fig. 

4(b) suggests that moderate Gaussian anharmonicity is 

most conducive for superconductivity. 

   Fig. 6(a) displays the dependence of LSP (𝐿0) on 𝑔 

for with different sets of 𝜆𝑎𝑝  and 𝛾 . 𝐿0  has a finite 

value at 𝑔 = 0 and remains almost independent of 𝑔 

up to a certain value of 𝑔, after which 𝐿0  drops off 

rather sharply to zero. The reason is easy to 

understand. At small 𝑔, as  
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Fig. 6(a) 𝐿0 versus g (b)  𝐿0 versus 𝑈 for different values of 𝜆𝑎𝑝 and 𝛾. 
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increases, the effective hopping parameter changes 

very slightly and as a result, 𝐿0 shows no perceptible 

change in its value. However, as 𝑔 is increased beyond 

a particular value, 𝐿0  falls off sharply to zero.  The 

reason is again not difficult to understand. For a 

substantially high value of 𝑔 , 𝑈𝑒𝑓𝑓  can become 

negative and consequently a pair of electrons can 

inhabit a single site. This makes 𝐿0 equal to zero.  𝐿0 is 

suppressed considerably in the case of higher 

anharmonicity. On the other hand, in the cases of low 

and moderate anharmonicities, the suppression of  𝐿0    

is only marginal. Fig. 6(b) displays the behaviour of 𝐿0 

with respect to U. As U increases, the electron-

electron repulsion becomes stronger and as a result it 

becomes difficult for two electrons to occupy a 

particular site. This leads to a larger value of 𝐿0 for any 

atomic site. Up to 𝑈  ≈ 1 , no perceptible change is 

observed in 𝐿0  while on the contrary, for 1 ≲ 𝑈 ≲

2.2 , it goes through a monotonic increase. As 𝑈  is 

further increased,  𝐿0  approaches essentially a finite 

saturation value.  

  Fig. 7. displays the 3D surface graph of 𝐿0  with 

respect to U and α, while Fig. 8. shows the contour 

graphs of 𝐿0 in the U-α plane. For an absolutely free 

electron gas which is uncorrelated,  𝐿0= 0.375. It is 

observed that each point in the intermediate phase of 

Fig. 8. corresponds to the value,  𝐿0= 0.375. Thus, this  
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Fig. 7.  L0 versus U for λap = 0.05, γ = 0.05 and t = 0.2 ω0. 

 

Fig. 8.  Contour plots of L0 in α - U plane. 
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Fig. 9. (a) ω versus g. (b) ω versus  U. (c) 3D plot of ω in the (U, α) plane.  

observation gives another evidence which corroborates 

the result that there may exist a metallic state in 

between the SDW and CDW phases.   

   Fig. 9(a). describes the behaviour of the double 

occupancy 𝜔, versus 𝑔 for several values of λap. When 

𝑔  has is small but a positive value, the double 

occupancy 𝜔 turns out to be small. This corresponds 

to an SDW state. A rise in 𝑔 causes a rapid rise in 𝜔 

and above a critical value of λap, 𝜔 reaches a constant 

saturation value implying the formation of bipolarons. 

This corresponds to the CDW state. With increasing 
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anharmonicity, the rise in 𝜔 is rather marginal and that 

too happens at lower values of 𝑔. Fig. 9(b) displays the 

behaviour of 𝜔 versus U. At a sufficiently low value of  

𝑈, 𝑈𝑒𝑓𝑓 has a negative value. This gives rise to a higher 

value of 𝜔, which consequently implies the formation 

of a bipolaron or a CDW state. On the contrary, with 

increase in 𝑈,  𝑈𝑒𝑓𝑓  acquires a positive value.  This 

reduces 𝜔  and with sufficient increase in 𝑈,   𝜔 

approaches zero which represents the SDW state.  Fig. 

9(c) displays the 3-dimensional variation of 𝜔  with 

respect to U and α. 
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Fig. 10.  (a) Eϑ versus g.  (b)  Eϑ versus U. (c) 3-dimensional plot of Eϑ on 

the α-U plane along with its contour graph. 
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    Fig. 10(a) depicts the behaviour of von Neumann 

entropy (𝐸𝜗 ) (which gives the strength of quantum 

entanglement) with respect to 𝑔.  The figures reveal 

that 𝐸𝜗 is symmetric for the case of harmonic lattice 

potential whereas for the anharmonic cases,  𝐸𝜗  is 

asymmetric. As 𝑔 starts from the initial zero value, QE 

rises at a slow rate and reaches a peak and then drops 

off rather rapidly as 𝑔  is further increased.  The 

location of the peak moves towards smaller 𝑔 values,  

as the anharmonicity becomes stronger. The peak in 

the entanglement entropy suggests the existence of a 

metallic phase. Fig. 10(b) displays a peak in the 

quantum entanglement at some value of 𝑈.  This 

reveals the existence of MP at the CDW-SDW 

crossover regime. The peak in the (𝐸𝜗 − 𝑈)- curve 

moves towards a larger value of 𝑈  with increasing 

anharmonicity. Fig. 10(c) illustrates the three-

dimensional plot of  𝐸𝜗 with respect to 𝑈 and  𝛼. The 

quantum entanglement exhibits a broad peak structure 

that satisfies the Mott’s criteria for MP displayed in 

Fig. 5.  

  To understand the role of Gaussian anharmonicity on 

the quantum phase transition, we study in Figs. 11(a, b, 

c) the behaviour of 𝐿0, 𝑡𝑒𝑓𝑓/𝑡, and 𝑈𝑒𝑓𝑓 with respect 

to 𝜆𝑎𝑝. A cursory look at these graphs tells us that the 

values of the aforementioned quantities diminish as the 
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Gaussian anharmonicity is switched on. A closer 

inspection uncovers the following aspects.  

(i) In Fig. 11(a), 𝐿0  continues to be appreciable up to a 

specific value of 𝜆𝑎𝑝  (which is higher for higher 𝑈 ) 

beyond which it sharply falls off to zero. The zero-

value of 𝐿0  implies the formation of bipolarons that 

are immobile and corresponds to the CDW state. 

Based on these observations, it can be inferred that a  
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Fig. 11. (a) LSM (L0) variation with λap. (b) teff/t behaviour with λap. (c) 

the behaviour of Ueff with λap. 
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higher value of 𝑈  increases the width of the SDW 

phase and reduces the width of MP. On the other 

hand, lower values of 𝑈  broaden the MP. For a 

specified value of 𝑈, the e-p interaction suppresses 𝐿0 

(This is illustrated by the dotted curves in Fig. 11(a)).  

(ii) 𝑡𝑒𝑓𝑓/𝑡 in Fig. 11(b) seems to exhibit similar traits 

as 𝐿0  but it remains finite in the considered range of 

𝜆𝑎𝑝. At lower values of anharmonicity, for a specified 

𝑔, 𝑡𝑒𝑓𝑓/𝑡 falls off quiet sharply with decreasing 𝑈. On 

the other hand, for a particular value of 𝑈, 𝑡𝑒𝑓𝑓/𝑡 falls 

off rapidly with 𝑔 at large 𝑔.  

(iii) One can see from Fig. 11(c) that for all sets of 

values of (𝑈, 𝛼) , 𝑈𝑒𝑓𝑓  weakens with the rise in 𝜆𝑎𝑝 

and becomes negative at certain values of 𝜆𝑎𝑝. For a 

specified value of 𝑔 , such values of 𝜆𝑎𝑝  become 

smaller as 𝑈 decreases. Similarly, for a specified value 

of 𝑈,  as 𝑔 is reduced, the value of anharmonicity at 

which 𝑈𝑒𝑓𝑓  becomes negative, increases. It is well 

known that the nature of the GS of a system is decided 

by the relative values of 𝑔 and 𝑈. Here we have shown 

that the phonon anharmonicity also plays an important  

part in deciding the GS of the system by strengthening 

the e-p coupling.  
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2.5 Conclusion 

In conclusion, we have studied in this chapter an 

infinite Holstein-Hubbard chain with Gaussian 

phononic anharmonicity at half-filling. Successive 

application of a number of unitary transformations on 

the system Hamiltonian and many-phonon averaging 

have led to an effective Hubbard Hamiltonian which 

has been finally solved exactly by employing the Bethe 

ansatz method.  The GS energy has been numerically 

computed by minimizing the variational energy with 

respect to the variational parameters.  Using the Mott 

criterion, local spin moment, double occupancy and 

the von Newman entropy we further confirm the 

existence of a metallic phase at the SDW-CDW 

crossover region. We have also shown that the width 

of the metallic phase is broadened in the case of low 

anharmonicity.   
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Persistent Currents in the 1D Holstein-
Hubbard ring by Bethe-ansatz approach 

 

3.1 Introduction 

The subject of mesoscopic rings has received 

significant attention from both theorists and 

experimentalists. One of the most important reasons 

for this is their property of sustaining persistent 

currents. Persistent charge and spin current can be 

generated in mesoscopic rings threaded by magnetic 

flux. 

Both experimental [1-11] and theoretical [12-17] 

studies have been carried out on PC in a mesoscopic 

quantum ring (QR) over the last three decades.  

Another intriguing feature of the PC is that it also 

depends on the spin dependence of the magnetic flux 

applied to the mesoscopic ring. The subject of 

quantum computers [18] has emerged as a very 

exciting area in recent times and quantum technology 

is expected to play a crucial role in future in which 

Chapter 3 
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QRs will have major applications. The Hubbard 

Model, which admits an exact solution in one 

dimension, is the most convenient theoretical model to 

study such quantum rings with interactions. Such type 

of rings shall be referred to as the Hubbard QR 

(HQR). Finite HQR has been studied by Wei et al. [19] 

with the help the Bethe-ansatz method to determine 

the persistent charge current (PCC) as well as the 

persistent spin current (PSC) in it. But the effect of e-p 

interaction has not been incorporated in this study. To 

explore the combined effects of e-e and e-p interactions 

one needs to examine the Holstein-Hubbard (HH) 

model for QR (HHQR). Sankar et al. [20] have made 

an attempt to calculate PC in a one-dimensional (1D) 

HHQR using the mean-field approximation (MFA).  

    The present chapter is devoted to the investigation 

of the e-p interaction effects on PCC and PSC in a 

finite HHQR by exploiting the BA technique which 

gives an exact solution for the 1D Hubbard model. We 

also study the dependence of PCC and PSC on the size 

of HHQR. Finally, the local spin moment, double 

occupancy and entanglement entropy are calculated to 

study the quantum phase transitions in the system. 
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3.2 Hamiltonian and the model 

 
The Hamiltonian for the HHQR system threaded by 

the AB flux can be written as   

                          

𝐻 =  𝐻𝑒𝑙 +  𝐻𝑝ℎ + 𝐻𝑒𝑙−𝑝ℎ ,        (3.1) 

with 

𝐻𝑒𝑙 = −𝑡 ∑ 𝑒
± 𝑖(

𝜙𝜎
𝐿

)
𝑐𝑖𝜎

† 𝑐𝑗𝜎

〈𝑖𝑗〉𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

, (3.1𝑎) 

   

𝐻𝑝ℎ =  ℏ𝜔0  ∑ 𝑏𝑖
†𝑏𝑖

𝑖

 ,                                          (3.1𝑏) 

                   

𝐻𝑒𝑝 = 𝑔0  ∑ 𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

 

                         +𝑔1  ∑ 𝑛𝑖𝜎(𝑏𝑖+𝛿
†  + 𝑏𝑖+𝛿)

𝑖𝜎𝛿

,     (3.1𝑐) 

              

In the above equations, 𝑐𝑖𝜎
†

 (𝑐𝑖𝜎)  represents the 

electron operator that creates (annihilates) an electron   

at site 𝑖, 𝜎representing the electron spin which has two 

possibilities ( 𝜎 = ↑, ↓ ), the bare nearest-neighbour 

(NN) hopping parameter 𝑡 is modified by the Peierl’s 

phase factor,  𝑒±𝑖(𝜙𝜎/𝐿)  (the direction of  hopping 
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deciding the sign),  𝜙𝜎  denoting the spin-dependent 

flux (𝜎 = ↑, ↓) (in units of flux quantum  𝜙0 =  ℎ𝑐 𝑒⁄ ), 

𝑛𝑖𝜎  (= 𝑐𝑖𝜎
† 𝑐𝑖𝜎) is the number operator for an electron 

of spin 𝜎 at site 𝑖, 𝑈 stands for the on-site e-e Coulomb 

interaction energy, 𝑏𝑖
† (𝑏𝑖) stands for the operator that 

creates (annihilates) a phonon at site, 𝜔0 refers to the 

dispersionless frequency and 𝑔0  and 𝑔1 denote 

respectively the onsite and NN e-p interaction 

strengths. Another important parameter which is 

related to the applied magnetic field is the spin-

dependent vector potential (𝐴𝜎 ). This is written as: 

𝐴𝜎 =  (ℎ𝑐 𝑒⁄ ) 𝜙𝜎 𝐿⁄  

 

3.3 Formulation  

3.3.1 GS Energy  

    As a first step, we perform the conventional Lang-

Firsov canonical transformation with the following 

generator:  

   𝑅 =
𝑔0

ℏ𝜔0
 ∑ 𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖

, 

                       

                   +
𝑔1

ℏ𝜔0
 ∑ 𝑛𝑖𝜎(𝑏𝑖+𝛿

†  − 𝑏𝑖+𝛿)

𝑖𝛿

.          (3.2) 
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As a result of the above transformation, the 

Hamiltonian (3.1) is transformed as follows: 

𝐻̃ = 𝑒𝑅𝐻𝑒−𝑅                         (3.3) 

                                                   

𝐻̃ = −𝑡𝑒𝑖𝜙 ∑ 𝐶𝑖𝜎
† 𝐶𝑖+𝛿,𝜎

𝑖𝛿𝜎

  

                    × exp (
𝑔0

′

𝜔0

(𝑏𝑖
+ − 𝑏𝑖) −

𝑔0
′

𝜔0

(𝑏𝑖+𝛿
† − 𝑏𝑖+𝛿)

+  
𝑔1

′

𝜔0

∑(𝑏
𝑖+𝛿′
† − 𝑏𝑖+𝛿′)

𝛿′

−  
𝑔1

′

𝜔0

∑(𝑏
𝑖+𝛿+𝛿′
† − 𝑏𝑖+𝛿+𝛿′)

𝛿′

) 

 +𝑈 ∑ 𝑛𝑖𝑛𝑖

𝑖

+ 𝜔0 ∑ 𝑏𝑖
†𝑏𝑖

𝑖

− 𝑔0
′ ∑ 𝑛𝑖𝜎(𝑏𝑖

+ + 𝑏𝑖)

𝜎

 

 −𝑔1
′ ∑ 𝑛𝑖+𝛿′,𝜎(𝑏𝑖

† + 𝑏𝑖)

𝛿′𝜎

+
(𝑔0

′ )2

𝜔0
∑ 𝑛𝑖𝜎𝑛𝑖𝜎′

𝜎𝜎′

 

+
(𝑔1

′ )2

𝜔0
∑ 𝑛𝑖+𝛿′,𝜎𝑛𝑖+𝛿′′,𝜎′

𝛿′𝛿′′𝜎𝜎′

 

 + 𝑔0 ∑ 𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

 

             + 
𝑔0

′ 𝑔1
′

𝜔0
∑ (𝑛𝑖+𝛿′,𝜎𝑛𝑖𝜎 , +𝑛𝑖𝜎𝑛𝑖+𝛿′,𝜎′)

𝛿′𝜎𝜎′
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− 
2𝑔𝑔′

𝜔0
∑ 𝑛𝑖𝜎𝑛𝑖𝜎′

𝑖𝜎𝜎′

 

−
2𝑔0𝑔1

′

𝜔0
∑ 𝑛𝑖𝜎𝑛𝑖+𝛿′𝜎′

𝑖𝛿′𝜎𝜎′

 

 −
2𝑔1𝑔0

′

𝜔0
∑ 𝑛𝑖𝜎𝑛𝑖+𝛿,𝜎′

𝑖𝛿𝜎𝜎′

 

 −
2𝑔1𝑔1

′

𝜔0
∑ 𝑛𝑖𝜎𝑛𝑖+𝛿+𝛿′,𝜎′

𝑖𝛿𝛿′𝜎𝜎′

 

                 + 𝑔1 ∑ 𝑛𝑖𝜎(𝑏𝑖+𝛿
† + 𝑏𝑖+𝛿)

𝑖𝛿𝜎

 .               (3.4) 

 

The total wave function |Ψ⟩  is now written as the 

product of the state |Ψ𝑒⟩  which is a function of 

electron variables and the state |Ψ𝑝⟩  which contains 

phonon variables i. e.,     

|Ψ⟩ =   |Ψ𝑝⟩|Ψ𝑒⟩.                       (3.5)       

The Energy is then given by:  

𝐸 =  ⟨Ψ| 𝐻̃ |Ψ⟩                         

=  ⟨Ψ𝑒|⟨Ψ𝑝| 𝐻̃ |Ψ𝑝⟩|Ψ𝑒⟩ 
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=  ⟨Ψ𝑒| 𝐻𝑒𝑓𝑓 |Ψ𝑒⟩,                           (3.6) 

 
where    

        

𝐻𝑒𝑓𝑓 =  ⟨Ψ𝑝| 𝐻̃ |Ψ𝑝⟩                (3.7) 

 
For the averaging phonon state, we consider the zero-

phonon state:  |Ψ𝑝⟩ =  |0⟩ = ∏ |0𝑖⟩𝑖  where  𝑐𝑖|0𝑖⟩ =

0. Then  𝐻𝑒𝑓𝑓 reads  

 

𝐻𝑒𝑓𝑓 = −𝜀𝑒𝑓𝑓 ∑ 𝑛𝑖𝜎

𝑖𝜎

− 𝑡𝑒𝑓𝑓 ∑ 𝑒± 𝑖 
𝜙𝜎
𝐿  𝑐𝑖𝜎

† 𝑐𝑖+𝛿,𝜎

𝑖𝛿𝜎

 

                               

+ 𝑈𝑒𝑓𝑓 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

, (3.8) 

 

with 

                    

       𝜀𝑒𝑓𝑓 = −
(𝑔0

2 + 𝑧𝑔1
2)

ℏ𝜔0
,                                    (3.8 a) 

         

      

𝑡𝑒𝑓𝑓  =  𝑡𝑒−((𝑔0− 𝑔1)2+(𝑧−1)𝑔0
2)/(ℏ𝜔0)2

,          (3.8 b) 
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𝑈𝑒𝑓𝑓 =  𝑈 −  2(𝑔0
2  −  𝑧𝑔1

2′
) ℏ𝜔0⁄ .         (3.8 c)  

       

We set  ℏ = 1 =  𝜔0  from here onwards. The 

effective Hamiltonian (3.8) can be solved by using the 

nested Bethe-Ansatz method. Application of the Bethe 

ansatz method to the 1D Hubbard model [19] gives 

rise to a set of following transcendental equations.  

 
      

𝑒𝑖𝑘𝑗𝐿  =  𝑒𝑖𝜙↑ ∏
sin 𝑘𝑗 − Λ𝛽 + 𝑖𝑢

sin 𝑘𝑗 − Λ𝛽 − 𝑖𝑢

𝑀

𝛽=1

 ,                 (3.9a) 

                

𝑒𝑖(𝜙↓−𝜙↑) ∏
Λ𝛼 − sin 𝑘𝑗 + 𝑖𝑢

Λ𝛼 − sin 𝑘𝑗 − 𝑖𝑢

N𝑐

𝑗=1

 

= − ∏
Λ𝛼 − Λ𝛽 + 𝑖𝑢

Λ𝛼 − Λ𝛽 − 𝑖𝑢
 

M

𝛽=1

   (3.9b) 

              

where  𝑗 = 1,2,3, … . . 𝑁 , 𝛼 = 1,2,3, … . . 𝑀 ,  𝑢 =

𝑈𝑒𝑓𝑓 4𝑡𝑒𝑓𝑓⁄  ,  𝑁  being the total number of fermions 

and  𝑀  the number of spin-down fermions. As a 

result, we get two sets of variables namely the quasi-
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momentum {𝑘𝑗}  and the spin rapidities {Λ𝛼} . The 

values of these two sets of variables can be obtained by 

using an iterative numerical method to solve the above 

mentioned coupled transcendental equations (3.9a) and 

(3.9b). Eventually, the energy eigenvalues can be 

expressed as follows: 

     𝜖(𝜙) = −𝜀𝑒𝑓𝑓𝑁 − 2 ∑ cos 𝑘𝑗

𝑁

𝑗=1
 

                                              +
(𝑈𝑒𝑓𝑓 −  |𝑈𝑒𝑓𝑓|)

4
      (3.10) 

The energy per site is given by 

                       𝐸(𝜙) =
𝜖(𝜙)

𝑁
                 (3.11) 

  

3.3.2. Persistent Charge current and 

Persistent Spin Current 

In a usual electronic system, there exists a conventional 

current which is the charge current. In QR, the current 

can be persistent that means it can stay in the system 

for a long time without any external power supply. 

Recently, another kind of current has been found in a 

quantum mesoscopic ring which is PSC.  This current 

is due to the change in the magnetization of the system 

caused by the fluctuations in the spin. In the present 

chapter we consider both spin up and spin down 
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electrons with two different and independent 

parameters 𝜙↑ and 𝜙↓. We use these parameters  𝜙↑ 

and 𝜙↓ in (3.9a) and (3.9b) to calculate PCC and PSC.  

To compute PCC (𝐼𝑐 ), we consider  𝜙↑ = 𝜙↓ = 𝜙 . 

Once we estimate the GS energy of the system, we can 

calculate PCC without any difficulty by employing the 

Hellmann-Feynman theorem [19] as follows: 

                                   

                                 𝐼𝐶 = − 
𝜕𝐸(𝜙)

𝜕𝜙
  .                    (3.12) 

                         

In the same way, using the condition: − 𝜙↑ = 𝜙↓ = 𝜙,  

PSC can be computed from the following equation: 

 

                              𝐼𝑆 = −
1

2

𝜕𝐸(𝜙)

𝜕𝜙
 .                      (3.13) 

 

               

3.4. Results and Discussion  

3.4.1 GS energy  

For convenience in numerical computation, we set 𝑡 =
1 in this work. We study four cases: (i) 〈𝑛〉 = 1/2, (ii) 

〈𝑛〉 = 2/5, (iii) 〈𝑛〉 = 1/3, and 〈𝑛〉 = 1/4, where 〈𝑛〉 
indicates the average number of electrons per site. 
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Fig. 1  GS energy per site vs. magnetic flux 𝜙 (a) for half filling, < 𝑛 > =

 1/2,  (b) for away from half filling < 𝑛 > =  2/5. 

The transcendental equation (3.9a) and (3.9b) are first 

solved and then the energy per site  (𝐸 = 𝜖/𝑁)  is 

determined using Eq. (3.10). This energy is plotted in  
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Fig. 2 . The GS energy vs. on-site e-e interaction for different values of on-site 

e-p interactions for L = 66. (a) At half-filling (< 𝑛 > =  1/2), (b) at 

away from half filling (< 𝑛 > =  1/3) . 

 

Fig. 1(a) as a function of the magnetic flux (𝜙) at half-

filling for the system size 𝐿 = 66 and with 𝑈 = 2 in 
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the absence of e-p interactions i. e., for 𝑔0 = 0 = 𝑔1. 

We would also like to compare the behaviour of 𝐸  

versus 𝑈  at half-filling with that at away from half-

filling. Fig.2 shows this comparison.  

   As stated above, 𝐸 versus 𝑈 is plotted in Fig. 2(a) for 

different values of 𝑔0 at half filling, while the same for 

〈𝑛〉 = 1/3  is plotted in Fig. 2(b). One can see that 

compared to the half-filled case, the energy in the case 

of away from half filling varies much slowly with 

respect to 𝑈 . Consequently, while in general, the 

energy in the half-filled case is lower at small  𝑈, in the 

away from half-filled case, it becomes lower at large 𝑈.     

3.4.2   Persistent charge current (PCC)  

(a) Flux dependence of PCC 

As visible from Eq. (3.12), PCC (𝐼𝑐 ) also exhibits a 

periodic variation with the magnetic flux 𝜙 like the GS 

energy. Fig. 3(a) depicts the behaviour of 𝐼𝑐  with 

respect to 𝜙 for L = 66, 〈𝑛〉 = 1/2,  U = 2 and a set of 

values of 𝑔0. The behavior at away from half- filling is 

depicted in Fig. 3(b).  Two electrons normally repel 

each other and when U is large, the GS is a polaronic 

Mott antiferromagnetic Mott spin-density-wave 
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Fig..  3   PCC  𝐼𝑐  vs magnetic flux 𝜙 for different values of 𝑔0 with  L = 

66 at : (a) < 𝑛 > =  1/2 , (b)  < 𝑛 > =  2/5. 
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(SDW) insulator, whereas two electrons can form an 

onsite bound pair in the case of large e-p interaction, 

and then the GS is a bipolaronic Peierls charge-

density-wave (CDW) insulator. It can be noted from 

Fig. 3(a) that in the case of half filling, the magnetic 

flux brings in a periodic change in the phase which in 

turn gives rise to a sinusoidal behaviour in 𝐼𝑐. One can 

see from the inset of Fig. 3(b) that when when 𝑔0 

increases from zero to 0.5, 𝐼𝑐  does not show any 

perceptible change. But a large change happens when 

𝑔0 approaches 0.9. Though the behaviour is still 

periodic, it does not vary sinusoidally. But now the 

current shows a larger value. The increase in the 

current may be caused by the motion of correlated 

electron-pairs which are bipolarons. This is observed 

only in the case of half-filling. We find from Fig. 3(b) 

that in the case of away from half-filling also,  𝐼𝑐  vs 𝜙  

-  curve is periodic. In this case, the current has a 

higher magnitude than that of the half-filling case. This 

may be because in the case of away from half filling, 

more states are available to the carriers. In a previously 

reported work [19], 𝐼𝑐 exhibits an oscillatory behavior 

in both half-filled and non-half-filled cases.  

  In another recent work [20], the researchers have 

chosen to work with the peak value of PCC (Fig. 3(a)) 

with the corresponding magnetic flux. One can work 

with any non-zero value of 𝜙  because the physical 

analysis is not affected by the choice of 𝜙  as long as 𝜙 
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is nonzero. Here we will work with   𝜙 = − 0.8 𝜋 (a 

value close to the one corresponding to the peak in 

PCC).  

 

(b) PCC and Coulomb Correlation 

  The behaviour of 𝐼𝑐 as a function of U in the half-

filled case is depicted in Fig. 4 with L = 66 and for 

different values of 𝑔0 . 𝐼𝑐  is found to be large at low 

values of U. Therefore, the system will be expected to 

show a conducting behaviour in this region. With 

increasing 𝑈, 𝐼𝑐  undergoes a rapid decrease and falls 

off to zero at some 𝑈 value. Thus, beyond this critical  

𝑈 ,  the system will be expected to behave as an 

insulator. At low 𝑈, 𝐼𝑐 turns out to be large for large 

𝑔0  while at large 𝑈,  𝐼𝑐  does not seem to have any 

dependence on 𝑔0 . These results can be justified on 

physical grounds. The e-p interaction has a 

considerable effect on PC at low 𝑈, while at large 𝑈,  
PC does not have any dependence on e-p interaction.  

Therefore, we conclude here that certain windows of e-

e and e-p couplings are favourable for the occurrence of 

a metallic phase.       
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Fig. 4   𝐼𝑐 vs  𝑈 for different values of  𝑔0 at half filling. 

   It would be interesting to have results on functional 

dependence of 𝐼𝑐  on 𝑈  (for different  𝑔0 values). In 

order to examine this aspect, 𝑙𝑛 𝐼𝑐  is plotted with 

respect to  𝑈2  at half filling in Fig. 5 and an 

appropriate expression is obtained by fitting the data. 

Wei et al. [20] have already made such an attempt. Our 

results for 𝑔0=0 are in agreement with their results. 

We find that for 𝑔0 = 0 − 0.5, the behaviour can be 

approximately fitted to the equation:  𝐼𝑐 =

  𝐼𝑐0 𝑒𝑥𝑝(− 𝑈2 𝜉⁄ ) ,  where √𝜉  gives the energy scale 

over which the persistent current vanishes. It is found 

that  = 1.  For 𝑔0 = 0.9,  however, the data fit the 

equation:  𝐼𝑐 =   𝐼𝑐0 𝑒𝑥𝑝(− 𝑈 𝜉⁄ ) .  
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Fig. 5  𝑙𝑛 𝐼𝑐  vs 𝑈2  at half-filling (<n> = 1/2) for 𝑔0 = 0, 0.2, 0.5,

0.9. 

     

  The results for 𝐼𝑐 vs 𝑈 for 〈𝑛〉 < 1/2 are depicted in 

Figs. 6 (a-c). The interesting point to note in the results 

in these cases is that, 𝐼𝑐  never goes to zero. 

Consequently, one can conclude that a system with less 

than half filling would always be in a metallic state 

irrespective of the value of 𝑈  and one would not 

expect such a system to show any metal-insulator 

transition. To get a deeper understanding of the 

metallic behavior at away from half filling, we again 
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Fig. 6  𝐼𝑐  vs 𝑈   at away from half-filling for 𝑔0 = 0, 0.2, 0.5                

, 0.9. (a) < 𝑛 > =  2/5, (b) < 𝑛 > =  1/3 and (c)  < 𝑛 > =  ¼ 

 

attempt to fit the 𝐼𝑐 − 𝑈  data with an appropriate 

expression. We find that the results can be fitted to the 

equation:  𝐼𝑐 =   𝐴 𝑒𝑥𝑝(− 𝑈𝑚 𝜉⁄ ) + 𝐵 ,  where (𝐴 +

𝐵) is clearly the value of 𝐼𝑐 at 𝑈 = 0 and 𝐵 the value 

of 𝐼𝑐  at large 𝑈.  Comparison of the expressions for 𝐼𝑐 

for the half-filling and non-half-filling cases clearly 

shows that because of the presence of the non-zero 

parameter 𝐵 in the latter case, 𝐼𝑐 never vanishes in this 

case and consequently in this case, the system always 

remains in the metallic state. We find that 𝜉 >

1 and  𝑚 < 2   in the non-half-filled cases More 
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specifically,   turns out to be around 10  and 𝑚 

decreases from 2,  as < 𝑛 > decreases from 1/2. For 

example,  𝑚 =  1.5 for < 𝑛 >=  2/5, 𝑚 = 1.4  for 

< 𝑛 > =  1/3,   and  𝑚 =  1.3 for < 𝑛 > =  1/4.  

 

(c) PCC and e-p interactions 

   Fig. 7 illustrates how  𝐼𝑐  varies with  𝑔0 for  < 𝑛 >

= 1/2 for a few values of  𝑈.  In Fig. 7(a), 𝐼𝑐 vs 𝑔0 − 

graph is shown for a few values of 𝑈 with 𝑔1 = 0 and 

𝑔1 = 0.2. 𝐼𝑐  seems to be symmetric around 𝑔0 = 0. 

For 𝑈 =  0, 𝐼𝑐 shows a broad maximum around 𝑔0 =

0, which indicates the existence of a metallic phase. As 

𝑔0  is increased, 𝐼𝑐   drops and ultimately falls off to 

zero at some value of 𝑔0. Beyond this critical value of 

𝑔0, the system will be naturally in an insulating phase. 

For 𝑈 > 0,however, 𝐼𝑐  shows a different behaviour.  

As 𝑔0  is increased from zero, it first rises with 𝑔0 , 

reaches a maximum at a certain value of 𝑔0 and then 

drops rather rapidly but smoothly to zero. It has been 

observed that as 𝑈 is increased, 𝐼𝑐  also decreases and 

its maximum moves to a higher value of 𝑔0.  For a 

sufficiently large value of 𝑈 , 𝐼𝑐  continues to remain 

zero up to a large value of 𝑔0 and  
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Fig. 7 (a) 𝐼𝑐  versus  𝑔0 ; (b) 𝐼𝑐  versus  𝑔0 . The results of Sankar. et al. 

[21] are also shown for comparison. 
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then exhibits a small maximum and finally again falls 

off to zero. Fig. 7(b) shows the comparison of our 

present results with those obtained by Sankar et el. by 

invoking the mean field approximation [20]. In 

contrast to the mean theory of Sankar et al. [20] which 

shows a kink-like behavior in  𝐼𝑐 before its rapid fall to 

zero, the present results do not indicate any sudden 

transition in the system. This leads to the conclusion 

that at low values of 𝑔0 and 𝑈, the system would like 

to be in a metallic state. The results with respect to  𝑔1 

and  𝑈 lead us to similar conclusion (not shown here).   

   Figs. 8 (a-c) depict the behavior of 𝐼𝑐  with respect to 

𝑔0 for a few values of U and 𝑔1  for 〈𝑛〉 ≠ 1/2. Fig. 

8(a) shows the manner in which 𝐼𝑐 behaves with 𝑔0 for 

〈𝑛〉 = 1/4, while Figs. 8(b) and 8(c) display the case 

for 〈𝑛〉 = 1/3 and 〈𝑛〉 = 2/5, respectively. Unlike in 

the case of  〈𝑛〉 = 1/2,   𝐼𝑐  now turns out to be a 

slowly decreasing function of 𝑔0 . For 𝑔1 = 0 , 𝐼𝑐 

seems to have, in general, a maximum at 𝑔0 = 0. As 

𝑔1  increases, the maximum of  𝐼𝑐  moves in the 

direction of the higher values of 𝑔0, while  𝑈 appears 

to reduce the height of the maximum. Furthermore, 

for intermediate values of 𝑔0, 𝐼𝑐   is enhanced by 𝑔1.   
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Fig.  8  PCC vs 𝑔0 for different combination of 𝑈 and 𝑔1 with  L = 66 at 

away from half –filling ((a) < 𝑛 > =  ¼ , (b ) < 𝑛 > =  1/3  and (c) 

< 𝑛 > =  2/5). 

 

(d) PCC and Phase transitions 

   The condition: 4𝑡𝑒𝑓𝑓 ≥  |𝑈𝑒𝑓𝑓| is a crucial criterion 

that is satisfied by a metallic phase. It is referred to as 

the Mott criterion or the metallicity criterion in this 

thesis and we make use of it to determine the metal-

insulator transition from Eqs. (2b) and (2c) for 

different range 𝑈, 𝑔0  and 𝑔1. In the yellow regions in 

Fig. 9, the condition of metallicity is satisfied and the  
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Fig. 9  Metallicity  criterion (4𝑡𝑒𝑓𝑓 ≥  |𝑈𝑒𝑓𝑓|):  (a) in the (𝑔0 , 𝑔1) plane 

for 𝑈 =  0, 𝑈 =  1, 𝑈 =  2  and 𝑈 =  10 ; (b) in the (𝑔0 , 𝑈) 

plane for 𝑔1 = 0 , 𝑔1 = 1 , 𝑔1 = 2  and 𝑔1 = 3 ; (c) in the (𝑔1 , 𝑈) 

plane for 𝑔0 = 0, 𝑔0 = 1,  𝑔0 = 2, 𝑔0 = 3 

 

blue areas indicate the insulating regions. In the four 

panels in Fig. 9(a), the metallic phases are shown in the  

(𝑔0 − 𝑔1)-plane for 𝑈 =  0, 1, 2 and 10. For 𝑈 =  0, 

the metallic criterion is satisfied for 𝑔0 <  1 and 𝑔1 <

 1. The metallic phase spreads out as 𝑈 is increased 

from 0 to 2.  However, as  𝑈 is increased further, the 

metallicity condition is satisfied at larger values of 𝑔0  

and 𝑔1 . Consequently, the metallic phase becomes 

thinner. In Fig. 9(b), the criterion of metallicity is 

examined in the (𝑈 , 𝑔0) − plane for a few values of 
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𝑔1.   As 𝑔1  is increased, the metallic region shifts 

towards the higher 𝑔0 - values. Finally at some value of 

𝑔1,  the metallic phase ceases to exist. Similarly, we 

study the metallicity criterion in the (𝑈, 𝑔1) − plane 

for a few values of 𝑔0. This is displayed in Fig. 9(c). It 

is observed from the figure that as we increase 𝑔1, 
eventually the metallic phase dies out completely. The 

aforementioned graphs can be used to find the ranges 

of  𝑈 ,  𝑔0 and 𝑔1 which will provide a metallic phase 

that can allow a persistent current to flow. 

   In Fig. 10, PCC is plotted with respect to 𝑔0 and 𝑔1 

at  〈𝑛〉 = 1/2  and 〈𝑛〉 = 1/4  for 𝑈 = 0, 2  and 10 . 

The figures clearly show the metal-insulator 

transitions. Here we can have two types of insulating 

phases. Based on the values of 𝑈,  𝑔0 and 𝑔1, we can 

have a SDW insulator or a CDW insulator. Fig. 10(a) 

describes the nature of PCC in the (𝑔0 − 𝑔1) − plane 

for 𝑈 = 0  at < 𝑛 > =  1/4.   The system is clearly 

metallic at low values of  𝑔0  and 𝑔1 , and it  finally 

becomes insulating as 𝑔0  and 𝑔1  increase. This 

insulating GS would be a CDW state and contain local 

bipolarons due to the strong e-p interactions. In Figs. 

10(b) and 10(c), PCC is plotted in the (𝑔0 − 𝑔1) − 

plane at < 𝑛 > =  1/4  for 𝑈 =  2  and 𝑈 =  10 

respectively. These figures clearly show that in non-

half-filled cases, metallic states can exist at small values 

of 𝑔0  and 𝑔1 even if  𝑈 is large. The existence of this 
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metallicity is understandable because for < 𝑛 > <

 1/4 , the probability for the system to have more 

empty sites is large which will certainly increase the 

mobility.  The metal-insulator transition occurring 

because of the increase in the e-p coupling is obviously 

the Metal-CDW phase transition. The behaviour of 

PCC with respect to 𝑔0  and 𝑔1 is displayed in Fig. 

10(d) at half filling for 𝑈 =  0. The GS again shows a 

metallic behaviour at low values of 𝑔0  and 𝑔1. As the 

values of 𝑔0  and 𝑔1 are increased, the system makes a 

transition into an insulating phase.  However, unlike in  
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Fig. 10  𝐼𝑐  vs 𝑔0  and 𝑔1  for: (a) 𝑈 =  0,  〈𝑛〉 = 1/4; (b) 𝑈 =  2 ,  

〈𝑛〉 = 1/4; (c) 𝑈 =  10,  〈𝑛〉 = 1/4; (d) 𝑈 =  0,  〈𝑛〉 = 1/2; (e) 

𝑈 =  2,  〈𝑛〉 = 1/2; (f) 𝑈 =  10,  〈𝑛〉 = 1/2. 

 

the non-half-filled case, the transition to the insulating 

phase of the system is much faster now.  To be 

precise, compared to the case of < 𝑛 > =  1/4,  the 

system now makes a transition to the insulating phase 

at lower values of e-p coupling constants. The 

incorporation of e-e interaction changes the situation 

significantly. In Fig. 10(e), we show how PCC varies 

with 𝑔0   and 𝑔1  for 𝑈 =  2  at  < 𝑛 > =  1/2 . The 

system now behaves as an insulator even at low values 

of  𝑔0 and 𝑔1 . This insulating state clearly corresponds 

to an SDW state as 𝑈 is finite and positive and the e-p 

interactions are completely absent. This corresponds 

to the Mott insulating phase which is an 

antiferromagnetic phase arising due to Coulomb 

correlation. It is observed that as 𝑔0  and 𝑔1 are made 

very large, PCC drops to zero and hence the system 
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then again behaves as an insulator. In this case, 𝑈𝑒𝑓𝑓 

becomes negative due to large values of 𝑔0   and 𝑔1 

and so the effective force between electrons becomes 

attractive. Consequently, the system becomes unstable 

against Peierls distortion, and as a result bipolarons are 

formed and the system goes into a CDW insulator. 

However, for intermediate values of 𝑔0   and 𝑔1, the 

system prefers to be in a metallic phase. Thus, one 

should observe a metallic phase flanked by two 

insulating phases for moderate values of 𝑔0   and 𝑔1.  
One would thus expect the system to exhibit an SDW-

Metal-CDW transition at half filling, in a certain 

window of 𝑈,  𝑔0   and 𝑔1 , if the e-p couplings are 

increased. As shown in Fig. 10(f), there is a complete 

suppression in the value of PCC at large value of 𝑈 for 

all values of 𝑔0  and 𝑔1  and as a result the system 

behaves as an insulator for all values of 𝑔0  and 𝑔1 .  

Although the transition region is a bit unclear now, it 

seems that in this case, the system makes a direct 

transition from SDW phase to the CDW phase as the 

e-p couplings become stronger.  
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Fig. 11  𝐼𝑐  vs  𝑔0  and 𝑈 for :  (a) 𝑔1 = 0.2 , 〈𝑛〉 = 1/4; (b) 𝑔1 =

2 , 〈𝑛〉 = 1/4;  (c) 𝑔1 = 0.2 , 〈𝑛〉 = 1/2;  (d) 𝑔1 = 2 , 〈𝑛〉 =

1/2 

  To examine the phase transition behaviour more 

critically, we plot PCC versus 𝑈 and 𝑔0 for  𝑔1 = 0.2  

and 𝑔1 = 2  at < 𝑛 > =  1/2  and < 𝑛 > =  1/4  in 

Fig. 11. Fig. 11(a) is plotted for 𝑔1 = 0.2 and < 𝑛 >

 =  1/4. It can be clearly noticed from this figure that 

when the values of 𝑔0  and U are small, GS of the 

system is of course metallic. Furthermore, the system 

continues to be in the metallic phase even at large U at 

low 𝑔0 . This happens probably because of the 

availability of many sites for occupation in the case of 

less-than half-filling. So, at small 𝑔0 , as GS of the 

system is essentially determined by  the e-p interaction, 

even a large Coulomb interaction cannot push it to the 

insulating phase. However, if 𝑔0  is increased, the 

system can be driven to an insulating phase which at 

low 𝑈  would be a CDW phase  owing to bipolaron 

formation. Similarly, if 𝑈 is increased, the system can 
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again be driven into an insulating phase, though this 

insulating phase would be an SDW phase. So, the 

present system can exhibit a Metal-CDW transition at 

small 𝑈 and a Metal-SDW transition at large 𝑈. On the 

other hand, at large 𝑔0, there exists a critical value of 𝑈 

at which the system goes directly from an insulating 

CDW phase to the insulating SDW phase.  In Fig. 

11(b), we consider the behavior of PCC with respect 

to 𝑈 and 𝑔0  for 𝑔1 = 2. In a certain window of (𝑈 , 

𝑔0) – values, the system shows a metallic behaviour.  

As 𝑔1 is increased, we observe suppression in the 

magnitude of PCC. Whether the insulating phase will 

correspond to SDW or CDW depends on the relative 

values of 𝑈  and 𝑔0.  In Fig. 11(c), we show the 

behaviour of PCC with respect to 𝑈 and 𝑔0 for 𝑔1 =

0.2  at < 𝑛 > =  1/2 . The system now shows a 

conducting behaviour at low values of 𝑈 and 𝑔0 . At 

small 𝑔0 , the system however goes from a metallic 

phase to an insulating state at some critical 𝑈 . This 

insulating phase is an SDW state. Similarly, at small 𝑈, 

the system undergoes a metal-insulator transition at 

some critical  𝑔0. This insulating state is a CDW state. 

In Fig. 11(d), we plot PCC with respect to 𝑈 and 𝑔0  

with 𝑔1 = 2 at < 𝑛 > =  1/2 .  In this situation, the 

system remains in the insulating phase for all 𝑈 and 

𝑔0.  Here, too, the system may undergo a CDW-SDW 

transition, but the transition boundary looks obscure. 

We have also examined the nature of variation of  PCC 
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with respect to 𝑈 and 𝑔1  for  𝑔1 = 0.2 and  𝑔1 = 2 

at < 𝑛 > =  1/2  and < 𝑛 > =  1/4 . (Figures have 

not been shown here). The behaviour is more or less 

similar to that shown in Fig. 11.  

(e)  Size dependence of PCC  

   Fig. 12 shows the behaviour of 𝐼𝑐𝐿 (i.e., PCC scaled 

by the system size 𝐿) with respect to the flux 𝜙 for a 

few 𝐿 −  values. The figure demonstrates that 

periodicity of 𝐼𝑐 is independent of 𝐿 at < 𝑛 > =  1/2,  

while for   < 𝑛 > ≠  1/2,  it increases with 𝐿.   

 

   In Fig. 13 (a) we plot 𝑙𝑛(𝐼𝑐𝐿)   with 𝐿  for a few 

values of 𝑈 and e-p interactions at < 𝑛 > =  1/2. One 

may notice that 𝑙𝑛(𝐼𝑐𝐿)  varies more or less linearly 

with  (−𝐿)  i.e. 𝑙𝑛(𝐼𝑐𝐿) decreases linearly with 

increasing 𝐿. Fig. 13 (b) shows the behaviour of 𝑙𝑛(𝐼𝑐) 

with respect to  𝑙𝑛(𝐿) for  < 𝑛 > =  2/5 which is a 

non-half-filled case.   We find that 𝑙𝑛(𝐼𝑐) exhibits a 

linear behaviour with 𝑙𝑛(𝐿)  and furthermore  𝑙𝑛(𝐼𝑐) 

turns out be essentially independent of of 𝑈, 𝑔0  and 

𝑔1.  

 

 



Chapter 3: Persistent Currents in the 1D Holstein….. 

 

 -- 107 --  
 

   

   

 

Fig. 12   𝐼𝑐 vs 𝜙  for different values of  𝐿 with 𝑔0 = 0.2, 𝑔1 = 0, 𝑈 =

2 for (a) < 𝑛 > =  1/2 ; for (b) < 𝑛 > =  2/5 . 

 



Phase transitions in one-Dimensional Hol…………… 

 

-- 108 -- 
 

 

Fig.  13  𝑙𝑛(𝐼𝑐𝐿) vs  L for 〈𝑛〉 = 1/2  and different values of  𝑈: (a) 

𝑔1 = 0, 𝑔0 = 0, 0.2;  (b)  𝑔0 = 0, 𝑔1 = 0, 0.2. 𝑙𝑛(𝐼𝑐𝐿) vs  𝑙𝑛 𝐿 for 

〈𝑛〉 = 2/5  and different values of  𝑈: (b) 𝑔1 = 0, 𝑔0 = 0, 0.2. 
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3.4.3. Persistent spin current (PSC) 

 
(a)   Flux-dependence of PSC 

 

   In Fig. 14, we plot PSC (𝐼𝑠) with respect to flux 𝜙 

for a few values of 𝑔0 at < 𝑛 > =  1/2. We find that 

the spin current is periodic but does not have the 

sinusoidal nature.  

 

 

Fig. 14   𝐼𝑠 vs  𝜙  for different values of  𝑔0. 
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(b)   PSC and Coulomb Correlation 

    In Fig. 15, we study how PSC behaves with respect 

to 𝑈 for a few values of 𝑔0 at < 𝑛 > =  1/2 and also 

at < 𝑛 > ≠  1/2 . The behaviour is found to be, in 

general, concave from above and both Coulomb 

correlation and e-p interaction are found to suppress 𝐼𝑠.  

 

Fig. 15   𝐼𝑐  vs  𝑈  for different values of 𝑔0 and  (a) < 𝑛 > =  1/2;   

(b) < 𝑛 > =  1/3 
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Fig. 16  PSC 𝐼𝑠  as a function of 𝑔0 for different values of 𝑈 and 𝑔1 with  

L = 66 at (a) half filling (< 𝑛 > =  1/2); (b) < 𝑛 > = 1/4 ; (c) <

𝑛 > =  1/3 

 

(c) PSC and e-p interaction 
 

   In Fig. 16, we display the behavior of PSC ( 𝐼𝑠) with 

respect to 𝑔0 for different combinations of the 𝑈 and 

𝑔1 . Fig. 16(a) provides results for < 𝑛 > =  1/2  and 

Figs. 16(b, c) show the results for < 𝑛 > ≠  1/2.  In all 

cases, PSC reduces with increasing  𝑔0.   
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(d) Size dependence of PSC   
 

   Fig. 17 describes the behavior of PSC with respect to 

flux for a few values of  𝐿. It is evident from the figure 

as 𝐿  decreases, 𝐼𝑠 undergoes an enhancement. The 

reason is understandable because the persistent current 

is a quantum phenomenon which arises at a small 

length scale where quantum effects become more 

significant.   

 

 

Fig.  17   𝐼𝑐  vs  𝜙  for different values of  𝐿 𝑔0 = 0.2, 𝑔1 = 0 at  <

𝑛 > =  1/2 . 
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3.5 Summary and Conclusion 
 

   In conclusion, the Holstein-Hubbard model has 

been considered for a finite QR with the Aharonov-

Bohm flux. The conventional canonical Lang-Firsov 

transformation approach is utilized to treat the e-p 

interaction and subsequently the Bethe Ansatz 

technique is employed to deal with the effective 

electronic Hamiltonian. This provides a set of coupled 

transcendental equations which are solved by using an 

iterative computational technique for the half-filled 

and a few non-half-filled cases to obtain the GS 

energy. The persistent charge current and persistent 

spin current are then computed by differentiating the 

GS energy with respect to the AB flux and investigated 

with respect to the system parameters such as the 

onsite e-e strength 𝑈 , onsite e-p strength 𝑔0  and the 

NN e-p interaction strength 𝑔1.  

   We observe that the GS obtained by the exact Bethe 

ansatz technique is higher than that estimated by the 

mean-field approximation.  Also the peaks are much 

sharper now. In both the half-filled and away from 

half-filled cases, the GS energy is periodic in the 

magnetic flux, though in the non-half-filled case, the 

periodicity is, in addition, dependent on the ring size. 

Again, in the half-filled case, low values of  𝑈  are 
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favourable for GS while large values of 𝑈  are more 

conducive for GS for the non-half-filled cases.  

   In the case of half-filling, the periodicity of GS with 

respect to the flux leads to a sinusoidal variation of 

PCC with the flux. As the e-p coupling is raised, though 

the behaviour of PCC no longer remains sinusoidal, it 

still continues to be periodic. The current now 

undergoes an increase. This increase in current my 

happen on account of the motion of correlated 

bipolarons. In the non-half-filled cases, PCC again 

shows a periodic variation with the flux, but the 

periodicity scales linearly with the system size. PSC is 

also periodic but non-sinusoidal. The PCC versus 𝑈 – 

data for both the half-filled and non-half-filled cases 

can be fitted to two different analytical expressions if 

the e-p interaction is absent. The decrease in QR size is 

found to enhance both PCC and PSC. This is an 

understandable result because the persistent currents 

are of quantum mechanical origin and are therefore 

expected to occur when the length scales are 

sufficiently small. It is also observed that both e-e and e-

p interactions suppress the persistent currents for the 

half-filled and non-half-filled cases. It is further shown 

that in the weak e-p coupling regime, the system likes 

to be in a metallic phase at away from half filling, while 

a sufficient increase in the e-p coupling may drive the 

system to an insulating state. This metal-insulator 

transition may be considered as a Metal-CDW 

transition which is little affected by the electron 
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correlation. A half-filled system is however associated 

with interesting quantum phase transitions. While in 

the absence of electron correlation, as the e-p 

interaction strength is increased, a Metal-CDW phase 

transition occurs, in the presence of both e-e and e-p 

interactions, a CDW-Metal-SDW transition takes place 

for certain ranges of the parameter values. A 

substantially large value of e-e coupling strength is 

unfavourable for the metallic phase because it drives 

the system to the SDW state. 
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Summary and 

Conclusions 

 

 

  In this concluding chapter, we present the summary 

of the present thesis.  

  In Chapter 1, we have presented some of the basic 

concepts and the models that have been used in the 

works described in the thesis. We have started with the 

Tight-binding model of the band theory and presented 

the energy dispersion provided by this model because 

in this thesis, we are interested in the narrow-band 

systems with localized states. Since the celebrated 

Hubbard model is one of the most suitable models to 

study the role of e-e interaction in strongly correlated 

systems, we have then presented a brief description of 

this model. Next, we have discussed phonons and the 

polarons and bipolarons and described briefly the 

physics of these quasi-particles and introduced the 

Holstein model. Finally, we have combined the 

Holstein and the Hubbard models and presented the 

Holstein-Hubbard model which can describe the 

physics of a correlated electron system with electron-

phonon interaction. Subsequently, we have discussed 

the ground state phases namely, the SDW and CDW 

Chapter 4 
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phases provided by the Holstein-Hubbard model and 

the possible phase transitions that are possible within 

the framework of this model. Next, we have discussed 

the motivation for studying the GS phases of the 

Holstein-Hubbard model in this thesis. Finally, we 

have given a brief introduction to Persistent current in 

a mesoscopic ring and described our motivation to 

study this phenomenon.  

    One of our main aims in this thesis has been to 

explore the effect of the Gaussian phonon 

anharmonicity on the intermediate metallic phase that 

may exist at the crossover region of the CDW-SDW 

phases in a 1D Holstein-Hubbard system. In Chapter 

2, we have presented our recent investigation on this 

issue. Here we have considered a better variational 

phonon state than in [1] to obtain an effective 

Hubbard model which has been solved exactly by the 

Bethe ansatz technique to obtain the GS energy. We 

have calculated the local spin moment and considered 

the Mott criterion.  We have also calculated the double 

occupancy and the single-site entanglement entropy 

for half and non-half band fillings. We first observe 

that though at small Coulomb correlation strength, the 

phonon anharmonicity does not have much effect on 

the GS energy, at large Coulomb interaction, 

anharmonicity does enhance the GS energy. We find 

that in the presence of anharmonicity, the Holstein 

band reduction factor diminishes rapidly with 
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increasing e-p coupling. We also find that as the e-p 

coupling is increased, the system undergoes a 

transition from the polaronic SDW GS to the 

bipolaronic CDW GS state through an intermediate  

metallic phase. It is shown that anharmonicity widens 

the intermediate metallic phase. Also the present 

calculation provides a broader metallic phase than the 

one predicted by the previous calculation [2]. It has 

been further shown that the broadening of the width 

of the metallic phase is more if the anharmonicity lies 

in a certain window. The calculation of the average 

spin moment per site, the double occupancy and the 

entanglement entropy also provide the evidence that 

an intervening metallic phase exists at the CDW-SDW 

transition region. It is important to note that the 

present improved variational calculation suggests a 

wider metallic phase which reinforces the prediction 

that an intermediate metallic phase exists at the CDW-

SDW crossover region. 

   In Chapter 3 we have presented our calculation of 

the persistent charge and spin currents in a quantum 

ring threaded with magnetic flux in the presence of e-e 

and e-p interactions.  We have used the Holstein-

Hubbard model to study the effect of the interplay of 

the e-e and e-p interactions. The e-p interaction has been 

treated using the standard Lang-Firsov method and the 

effective renormalized electronic system has been 

solved using the Bethe-ansatz technique. It has been 

shown that the Bethe ansatz provides a larger GS 
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energy than the mean-field approximation. For the 

half-filled case, GS corresponds to low e-e interaction 

strength while for the case of away from half filling,  

GS corresponds to larger values of the correlation 

strength. The GS energy and the persistent currents 

are periodic in the magnetic flux both in the half-filling 

and non-half-filling cases.   A decrease in the quantum 

ring size is found to increase the persistent currents. 

This is precisely the quantum effect. Both for half- 

filling and non-half-filling cases, the persistent currents 

are suppressed by the e-e and e-p interactions. 

Interestingly, it is found that in the absence of electron 

correlation, as the e-p coupling is increased, a Metal-

CDW phase transition occurs in the Holstein-Hubbard 

ring, while in the presence of both e-e and e-p 

interactions, a CDW-Metal-SDW transition takes place 

for certain ranges of the parameter values. However, a 

substantially large value of e-e coupling strength turns 

out to be unfavourable for the metallic phase because 

it drives the system to the SDW insulating state.  

  Before we end, we would like to mention that the 

results presented in the present thesis may be 

improved by choosing more improved phonon states.  
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