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Preface

In this thesis we shall present our works on the nature
of phase transitions in a dimensional Holstein-Hubbard
chain and the persistent current in a Holstein-Hubbard
ring. These works fall under the broad area of strongly
correlated systems in theoretical condensed matter
physics. Usually the strongly correlated electron systems
are narrow-band systems the study of which is based on
the tight-binding model. In the absence of electron-
electron (e-p) and electron-phonon (e-p) interactions, the
tight binding model is simple. It contains only a hopping
term with an overlap integral t, called the hopping
parameter which essentially measures the kinetic energy
of the electrons. This model is exactly soluble.

Though this model has worked well, it fails to explain
why some materials like transition metal oxides are
insulators which are now known as Mott insulators. Mott
explained that when the onsite e-e correlation is much
stronger than the hopping kinetic energy, electrons get
localized at their respective sites leading to an
antiferromagnetic insulating state. A convincing theory
for such materials was developed by Hubbard using a
model known as the Mott-Hubbard model or simply the
Hubbard model which has in addition to the nearest
neighbour (NN) hopping term, an onsite correlation term
which contains a Coulomb repulsive interaction with a
parameter U that gives the strength of the interaction.

One can also have a system of electrons interacting
with phonons with ignorable electron-electron interaction
in a narrow-band material. Such a material can have



polarons and bipolarons as quasiparticles. This localized
electron-phonon (e-p) system can be described by the
celebrated Holstein model which has a hopping term and
an onsite e-p interaction term. One can of course have a
more general system having both e-e and e-p interactions.
This system can have interesting phase diagrams because
of the interplay between the e-e and e-p interactions. A
suitable model for such a system is the Holstein-Hubbard
(HH) model which is a combination of the Hubbard
model and the Holstein model. The tight-binding
hopping term of the HH model tries to delocalize the
electrons, whereas the onsite e-e interaction term induces
electron localization leading to the formation of local
moments and the onsite e-p interaction creates lattice
distortions and hence a polarization potential which can
localize at a lattice site one or two electrons depending on
the relative strengths of the e-e and e-p interactions. Thus,
the HH model can explain a variety of phenomena like
the formation of polarons and bipolarons, self-trapping
transition, metal-insulator transitions of Mott or Peierls
type, high-temperature  superconductivity, colossal
magnetoresistance and so on.

It is well known that the pairing mechanism for the
high-temperature superconductivity (HTCS) is still not
yet clear. A group of researchers have advocated the
electronic mechanism as the cause of superconductivity in
the cuprates. However, quite a few researchers have also
suggested the phonon mechanism. Since high-T.
materials like cuprates are strongly correlated narrow
band systems, the HH model should be the suitable model
to investigate the HTSC in cuprates. Unfortunately,
however, the explanation of superconductivity using the



HH model runs into a serious difficulty. To understand
this, one has to look into the nature of the ground states
provided by the HH model. The HH system can have
different quantum phases. When the e-p interaction is
small, the ground state of the HH system is a spin-density
wave (SDW) state and when the e-p interaction is strong,
the ground state of the system is a charge density wave
(CDW) state. This is not an encouraging scenario from
the point of view of superconductivity because to achieve
high transition temperature one needs to have strong e-p
interaction, while the strong e-p interaction leads the
system into a CDW insulator. Thus, superconductivity
looks impossible in the HH model. Of course, one may
be curious to study the transition region. In their report,
Hirsch and Fradkin performed a Monte-Carlo study of the
HH model and showed that the transition from SDW
phase to CDW phase is direct so that there is no metallic
phase in the HH model at all.

Takada and Chatterjee in 2003 took up the 1D half-filled
HH model for a more critical investigation and studied
the SDW-CDW transition in this system using a
variational method coupled with the Bethe ansatz. Their
analysis shows that there exists an intervening metallic
phase at the crossover of the SDW-CDW transition. This
result was obtained with the harmonic approximation for
the lattice vibrations which implies that a phonon has an
infinite life time. So to deal with the real materials we
need to consider the finite lifetime effect for the phonons.
This can be done by considering anharmonic phonons. In
2004, Chatterjee and Takada performed a calculation
including cubic and quartic anharmonicities in the lattice



potential. Interestingly, their results show that the width
of the metallic phase widens in the presence of
anharmonic phonons. In the present thesis, we will
present an improved variational calculation to unravel the
nature of the phase transition in the HH model with a
Gaussian phonon anharmonicity. We will also present a
calculation of the persistent current in a HH quantum
ring.

The organization of the thesis is as follows. In Chapter 1,
we introduce the subject of the thesis in general and
discuss the motivation for carrying out this work. We first
describe the Tight-Binding model and then introduce
electron correlation and the Hubbard Model. Thereafter
we touch upon the concept of phonons and present the
Holstein model. In this context we discuss polarons and
bipolarons. Next, we present a brief introduction to the
HH model and discuss the SDW and CDW phases.
Finally, we introduce the concept of persistent current.

In Chapter 2, we consider the one-dimensional HH
model with Gaussian phonon anharmonicity to study the
possible phase transitions in the ground state. Here we
consider a better variational phonon state than what was
considered earlier by Chatterjee and Takada in 2003 and
obtain an effective Hubbard model which we solve
exactly using the Bethe ansatz technique to obtain the GS
energy. Consequently, we calculate the local spin
moment, the double occupancy, entanglement entropy
and consider the Mott criterion for all band fillings. Our
results show the emergence of a metallic phase flanked by
SDW and CDW insulating ground states confirming the
predictions of Chatterjee and Takada. We also show that



the Gaussian anharmonicity increases the width of the
metallic phase.

In Chapter 3, we are interested in studying the effect of
e-p interaction on the persistent current in a quantum ring
threaded by a magnetic flux through the center of the
ring. To study this problem, we use the extended HH
model in which we consider onsite and nearest-neighbour
e-p interactions. We eliminate the phonon degrees of
freedom using a unitary transformation followed by a
zero-phonon averaging. This leads to an effective
Hubbard model which we solve exactly by the Bethe
ansatz technique and also approximately using the
Hartree-Fock approximation to obtain the ground state
energy. We study the characteristics of the persistent
charge and spin currents, Drude weight and effect of e-e
and e-p interactions on them. We have also studied the
Mott criteria, local spin moment, double occupancy and
entanglement entropy of the system to study the phase
transitions of the system. The phase diagram shows the
existence of an intermediate metallic phase in the ground
state when the e-e and e-p interactions are comparable to
each other. Furthermore, we show that the width of the
metallic phase increases as the electron density decreases
from the half-filling.

Finally in Chapter 4, we briefly summarize our results
and make a few comments on our findings.
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Chapter 1

Introduction

Materials play a vital role in the development

of human civilization. Since ancient times, humans
have been trying to make and use materials in
ingenious ways to suit their purposes. Human thinking
has made the impossible possible. For example, before
the modern era of scientific development, one-
dimensional systems (1D) were almost non-physical.
But now one-dimensional quantum chains are made in
the laboratory and have very interesting properties.
The classification of materials available in nature has
been well developed. Regardless of the type of bond,
any solid can be considered a combination of electrons
and nuclei. Despite the considerable progress made in
the materials, we still need motre advanced research
methods to raise the quality of human life.

For scientists, defining a theoretical model to classify
materials such as metals and insulators has always been
the most difficult challenge and must be consistent
with the experimental results. In course of time,
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several materials ranging from simple elements to
ceramic materials, transition metal oxides, charge
transfer oxides and other composite materials. Finding
the energy of any material is an important key to
meeting the material requirements. In the field of
Condensed Matter Physics (CMP), we often focus on
the ground state energy (GS) of the system and the
factors that affect GS energy. Materials consist of
electrons and ions and the arrangement, structure and
rhythm of these particles contribute to the GS energy
of the material. Both structure and properties depend
on the configuration of the electrons and ions. In
general, electrons contain a sizable part of energy in
any system. It is believed that the metallic properties of
the system depend only on the electronic properties.
The energy of a system can be found in several ways.
Schrodinger came up with his equation using wave
mechanics to treat a system quantum mechanically for
finding the GS energy. This equation is widely known
and well celebrated in quantum mechanics. However,
the Schrédinger equation could not be solved exactly
for real systems and therefore approximate methods
like the perturbation theory, the variational methods
and the exact diagonalization methods were introduced
to find the GS energy of a system. Later, these
methods turned to be inappropriate in several cases
and more advanced methods were suggested. It was
discovered that the interactions of electrons with other
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Chapter 1: Introduction

electrons, and also with other types of particles like
phonons also change the energy of the system. Hence,
it is fundamentally relevant to consider electron-
electron (e-¢) interactions and electron-phonon (e-p)
interactions.

In the present thesis, we shall present our works on
the GS phase diagram for a one-dimensional Holstein-
Hubbard model and the persistent current in a
Holstein-Hubbard ring. It will therefore be pertinent
to introduce in this introductory chapter some of the
basic concepts and the necessary models that are
required to build the theory for the investigation for
the aforementioned problems.

1.1 Energy Bands

Calculating the electronic band structure of solids is
very important to understand various physical
properties of solids. Any theory that has been
constructed to compute the energy band structure of
the system is known as the band theory. The
fundamental problem in the band theory is to solve the
well-known Schrodinger equation.

Hy(r) = Ey(r) (1.1)

where, Y(r) is the wave function of the system
Hamiltonian H belonging to the eigenvalue. The

-3



Phase transitions in one-Dimensional Hol...............

system can be a solid crystal, an amorphous material, a
liquid or a gas. Since any material is composed of
electrons and nuclei, the Hamiltonian contains the co-
ordinates of both the electrons and ions as well. The
Born-Oppenheimer approximation facilitates us to
decouple the motion of electrons and ions individually.
This approximation is also called the adiabatic
approximation.

The free-clectron theory, nearly free electron theory
and the tight-binding theory are some of the general
models of the band theory. The free electron theory
works well in the case of ignorable electron-electron
interaction and the electrons can be considered
completely non-interacting. In neatrly free electron
theory, the effect of interactions can be incorporated
as perturbations. In case of materials in which the
electron wave functions on neighbouring atoms
overlap very little or the electron wave functions are
localized, the free electron model is not a proper
model. In this thesis, we will use the tight-binding
model and therefore in the following sub-section, we
present a discussion on this model.

1.2 Tight Binding Model

The Tight binding model (TBM) provides the basis
for developing well appreciated many-body theories,

-4 -



Chapter 1: Introduction

such as the t —J model, Anderson impurity model,
the Hubbard model (HM) and the Holstein Model.
Slater and Koster [1] were the first to call the TBM as
Bloch method, and their work provided the meticulous
calculation for framing TBM.

To develop theoretical models, we start with some
assumptions. In the free-electron theory, the starting
assumption is that the valance electrons are free from
the atoms and very much free to move throughout the
crystal. Whereas in the case of TBM, we start with an
isolated atom to which an electron is tightly bound.
Several such atoms come closer to form a crystal. If
the lattice constant is such that that the electron wave
functions overlap, then an electron can move by
hopping from one site to another and system will
behave like a metal. If the electron wave functions do
not overlap at all, then an electron will find it difficult
to hop from one site to the other and in this situation,
the system behaves like an insulator. If the lattice
constant is reduced so that a small overlapping of
electron wave functions occurs, then also the electrons
will be able to hop from one site to another and the
system will have a narrow band, but still it can behave
like a metal. Thus, the tight-binding (IB) model can
explain the metal-insulator transition. However, there
is a constraint on this hopping. For hopping, the
formed bands should be partially filled with the
electrons. So we can say that the materials with the
partially filled valence bands are supposed to be the

-5
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metals and the materials with fully filled or empty filled
bands are supposed to be insulators.

The Hamiltonian of the TB model in the second
quantized notation is as follows

H= —2 ty ch e (1.2)
a7

where the notation (i, j) implies that the summation is
over nearest neighbours I and j only, t;; is the nearest-
neighbour  hopping integral given by {;; =
%Z(ij) &k etkri=Tj) & being the energy of the
system, CiTa (Cjg) 1s the creation (annihilation) operator
for the electron at site 7 (j) with spin ¢ which can be
either up (1) or down (|).

The solution can be found by using the Bloch
theorem since the crystal contains a periodic potential.
In many systems, t;; would be same for all nearest
neighbours and so we can assume: t;; = t. The energy
dispersion relation of the system is given by

& = —tz cos(k.a) (1.3)

a
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Chapter 1: Introduction

For a 1D chain, there are two nearest neighbour atoms

and hence @ = +a and the energy becomes

g, = —2t cos(ka) (1.4)

Fig. 1. The energy dispersion relation of TBM for the 1D lattice chain.

According to this model, as the space between the
atoms is reduced, the system turns from insulator to
metal as the mobility of the electrons increases due to
the overlapping of atomic wave functions. Due to the
partially filled band, the system is metallic whereas the
system behaves as an insulator for a fully filled band.
According to this theory, certain substances, such as
NiO, CuOs,, V,0s, Fe;O4 and VnO, should behave as
metals, but interestingly they behaved as insulators
experimentally. Thus, the usual Band theory fails to
explain the insulating behaviour of the above materials.

-7 -
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The insulating behavior in these materials was later
explained by Mott and Hubbard. It turned out that the
insulating behaviour in the afore-mentioned materials
is due to the electron-electron Coulomb correlation
and these are called Mott insulators. Hubbard
proposed a model known as the Hubbard model
which gives the proper framework to deal with the
correlated systems.

1.3 The Hubbard Model

The Hubbard Model is described by the Hamiltonian

H = Z tonw —t Z C;Cja +U Z nin;y (15)
io i

(ij)o

Here the first term is the site energy and the second
term is usual tight binding hopping term, t being the
hopping amplitude and it represents the kinetic energy.
The third term refers to the onsite e¢-¢ Coulomb
interaction, U giving the on-site Coulomb correlation
energy. This model allows the hopping of electrons
from one site to another and also allows the electrons
to be localized at the atomic sites. So both possibilities
are taken care of in this model. This Hamiltonian is
meant for the on-site electrons only. When the
correlations of inter-site electrons are incorporated, the
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resulting model is known as the extended Hubbard-
Model.

The Hubbard Model has two limits: (i) U — 0, and
(i) t — 0.In the former, which is known as the band
limit, the hopping term solely contributes to the GS
energy of the system. This is nothing but the tight-
binding Hamiltonian. Here, the Bloch wave functions
are the eigenfunctions of the Hamiltonian. In the
second limit which is known as the atomic limit, the
interaction term (U) of the two patticles contributes to
the system’s GS energy. The Hubbard Model admits
exact solutions in both these limits. But, if we combine
both the t and U terms together, it is difficult to solve
the Hubbard model in general.

Lieb and Wu [2] solved the Hubbard model exactly in
one dimension using the Bethe ansatz technique and
solving the Fredholm integral equations in the
thermodynamic limit ie., for an infinite chain. This
was for the half-filled case. Later Shiba and Pincus [3]
solved the same problem for away from half filling. So
far it has not been possible to solve the Hubbard
model in higher dimensions.  However, various
methods have been used to obtain approximate
solutions of the Hubbard model in higher dimensions.

It was explained by Mott [4] and Hubbard [5] that
due to the presence of e-¢ interaction in the Hubbard
Model, the energy bands undergo a splitting into two
separate sub-bands for each set of spin-up and spin-
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down electrons. The lower sub-band consists of the
spin-up electrons whereas the upper sub-band consists
of the spin-down electrons. The gap between these
sub-bands is equal to the onsite Coulomb correlation
strength U. For U > t, the Fermi level lies in between
the two aforementioned sub-bands leading to an
insulating state which is the Mott insulating state.

Over a period of time, the HM has evolved as a well-
celebrated model that looks simple but deals with
several beautiful phenomena in CMP. In fact, it has
emerged as an important model to deal with a sub-
branch of CMP called the strongly correlated systems.
It can give rise to several interesting ground states like
magnetic order or superconducting order. It can also
predict some interesting quantum phase transitions.

1.4 Phonons

The ions or atoms are considered to be at rest at their
corresponding  equilibrium  positions when  the
structural and cohesive properties of solids are
investigated. This is a reasonably good assumption to
study their structural as well as binding properties.
However, for some important properties such as
thermodynamic properties, this assumption is not
sufficient and hence, the dynamics of the lattice must
be taken into account. In reality, at finite temperatures,
the ions or atoms in solids do not stick to their
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equilibrium positions but as a matter of fact, they
vibrate or move back and forth continuously with
respect to their equilibrium positions. This sort of
oscillations is called lattice vibrations. These lattice
vibrations are quantized in the quantum mechanical
treatment. The quanta of the lattice vibrations are
called phonons. In this thesis, we consider harmonic
approximation to deal with the phonons.

Phonons can affect the resistivity of metals by
interacting with electrons. The interaction of phonons
with conducting electrons can also change the ground
state  of the system. Polaronic effects and
Superconductivity are the best examples of this. The
phonons are also responsible for the Peierls instability
in some of the 1D systems. The phonons can be
treated both classically and quantum mechanically. In
this thesis, we are interested in quantum behavior of
solids and therefore we will consider the quantum
mechanical way of dealing the lattice vibrations.

The quantum mechanical Hamiltonian for the
interaction of an electron with longitudinal optical
phonons in polar materials was first given by Frohlich
in the continuum approximation. This is the celebrated
polaron problem. The polaron problem in the tight-
binding model was first rigorously discussed by
Holstein [6].

—-11 --
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1.5 Polarons

Landau [7] was the first who brought the concept of
polaron into the limelight with his paper. According to
him, a charge carrier either an electron or a hole can
distort (or polarize) the medium around it. The
induced polarization and the charge carrier together
can be considered as a single entity which is called a
polaron [8]. Since the polarization field is made up of
phonons, it can be considered as a cloud of phonons

Fig. 2. A polaron in a square lattice of atoms. The electron is screened
by a cloud of phonons, the lattices are distorted.

surrounding the charge carrier. Later, Landau and
Peker [9] calculated the effective mass and the self-
energy of polarons. This analysis corresponds to the
strong-coupling or the adiabatic regime and the
resulting polaron is called as the strong-coupling
polaron or the Peker polaron. Later, Frohlich [10]

—-12 -
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came up with a quantum mechanical Hamiltonian to
describe a polaron. The Frohlich Hamiltonian can be
used to deal with polaron for the entire range of the
coupling constant. In the case when the ¢-p interaction
is weak, the distortion in the lattice can occur over a
large number of lattice points and the corresponding
polaron is termed as a large polaron. In the strong-
coupling regime, the lattice distortion is confined
essentially within one lattice spacing and then the
resulting polaron is known as the small polaron. A
weak-coupling large Frohlich polaron can move almost
freely through the solid medium.

The Frohlich model is based on the continuum
approximation and the formulation has been made in
the momentum space. Holstein [6] considered the case
of charge carriers in the tight-binding model and
therefore the polarons conceived by Holstein are
associated with lattice sites in real space and the
motion of these polarons happens through hopping
between lattice sites. Such a polaron is known as the
Holstein Polaron.

1.6 Holstein Model

Holstein [6] gave a new formulation for the polaron
problem based on the tight-binding model. The
Hamiltonian of this model is as follows.

~-13 -
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H= —t Z c;rocja + hw Zb;rbi
i

(ij)o

+9 ) niglbi+b)  (16)
io

Here the first term represents the tight-binding
hopping term where Citr (Cjo) is the electron operator

that creates (annihilates) an electron with spin o at site

i with . The second term represents the harmonic

lattice Hamiltonian, where bz- (b;) denotes the phonon
operator that creates (annihilates) a phonon of
frequency wg at site i. The phonon operators b;and
bl-T satisfyblT the commutation relation: [bi, b]-T] = 8.
The third term gives the e-p interaction, g being the e-

p interaction strength. As mentioned already, Holstein
considered the phonon oscillations to be harmonic.

When two polarons interact, they can form a bound
pair if the phonon-mediated attractive interaction
between the two electrons can overcome their usual
Coulomb repulsion. Such a bound pair of two
polarons is known as a bipolaron [6]. These bipolarons
are bosons and can undergo Bose-Einstein
condensation.
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1.7 Holstein-Hubbard Model (HHM)

If the e-¢ interactions and the ¢-p interactions are
considered together in the tight-binding model, then
the model is called as the Holstein Hubbard Model

The Hamiltonian of the HH Model is given by

H = z tonie — t Z c;racja +U Z Nyt
io i

(ij)o

+hag Z bib; +g Z (b +b) (L7
i io

All terms of this Hamiltonian have already been
explained in the earlier sections. This Hamiltonian is
useful to determine the nature of the interplay between
the ¢-p coupling and the electron correlation. Based on
the relative strengths of the different coupling
parameters, one would expect the HH model to lead
to a certain type of ground state.

Fig.3 describes a one-dimensional (1D) linear atomic
chain with a hopping term, an ¢-¢ interaction term with
strength U and an e-p interaction term with strength g.
Thus, the HH model can be used to study the
properties of the system in Fig.3. The parameter ¢
gives a measure of electron-hopping and thus
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describes delocalization of electrons. The Coulomb
repulsion (U) opposes double occupancy and leads to
the finite local spin moment in the system. The ep
coupling leads to the formation of onsite polarons. If
g is sufficiently large as compared to U, there can be
double occupancies at the lattice sites.

<a> 71

U

Fig. 3. A One Dimensional (1D) linear atomic chain with hopping
term, e-e interaction strength U and the e-p interaction strength g.

The conventional superconductivity is explained by
the celebrated BCS mechanism [11]. The pairing
mechanism for the high-temperature superconductivity
(HTCS) in cuprates has however remained hitherto
elusive. A group of researchers have advocated the
electronic =~ mechanism  as  the  cause  of
superconductivity in cuprates. However, quite a few
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researchers have also suggested the phonon
mechanism. Since high-T, materials like cuprates are
strongly correlated narrow band systems, the HH
model should be the suitable model to investigate the
HTSC in cuprates. Unfortunately, however, the
explanation of superconductivity using the HH model
runs into a serious problem. To understand the
problem, it will be good to discuss the nature of the
ground states provided by the HH model.

The HH system can have different quantum
phases. The transitions can also occur within these
quantum phases. We describe these ground state
phases below for the half-filled HHM case and finite

hopping probability t.

(i) Spin Density Wave (SDW)

If the e-e interaction dominates over the e-p interaction
(.e., U>» g), the electrons, because of their strong
Coulomb repulsion, cannot hop from one site to
another (even though the Pauli principle allows two
electrons to be in same quantum state at a particular
site with opposite spins). This leads to localization of
electrons (or more specifically, polarons) at their
respective sites. Since the system is half-filled, i.e., each
site is occupied by a single electron; the state looks like
an antiferromagnetic state in which alternative sites are
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occupied with opposite spins. This is a spin density
wave state. As we have already mentioned, in this state,

Fig. 4. SDW
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the strong Coulomb interaction forbids the electrons
from hopping from one site to another. Hence, this is
an insulating state. This kind of insulator is called a
Mott insulator. The Brillouin zone, in this case, is
displayed in Fig. 4 (the bottom panel). Here the
discontinuity (or the Fermi level) in the dispersion
relation occurs at Brillouin zone boundaries, i.e., at k =

tm/a.
(ii) Charge Density Wave (CDW)

If the e interaction dominates over the e-e
interaction (i.e.,g > U), two electrons can form a
bound state at a particular site. This is a bipolaronic
state. At half-filling and in 1D systems, these
bipolarons are formed at the alternate sites. In this
case, the charge density varies periodically from site to
site and therefore this state is called a Charge density
wave state (middle panel of Fig. 5). Since bound pairs
form at every other site, the unit cell becomes doubled
and the phenomenon is referred to as dimerization. As
a consequence of this dimerization, the Brillouin zone
. T T v s .
is reduced from (— Z’Z) to (— Z’Z) opening a gap
at the Brillouin zone boundaries (bottom panel of Fig.
8). Due to this gap, the system again becomes
insulating. This is known as the Peierls Instability and
these kinds of insulators are referred to as the Peietls
insulators [12].
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Thus, it is clear from the above discussion that when
the e-p coupling is small, GS of the HH system is an

4

T
E AThe Fermi level is at 2_

F 3
v

Fig. 5. CDW
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SDW state and as the e¢p coupling strength is
sufficiently enhanced, the system goes into a CDW
phase. This is not a good scenario for
superconductivity because to achieve high transition
temperature one needs to have strong e-p interaction,
while strong e-p interaction leads the system into a
CDW insulator. Thus, superconductivity looks
impossible in the HH model. Of course, one may be
curious to study the transition region. Hirsch and
Fradkin [13] performed a Monte-Carlo study of the
HH model and showed that the transition from SDW
phase to CDW phase is direct.

Later, Takada and Chatterjee (T'C) [14] have taken
up the 1D half-filled HH model for more critical
investigation and studied the SDW-CDW transition in
this system using a variational method coupled with
the Bethe ansatz. Their analysis has revealed that there
occurs a metallic phase at the crossover of the SDW-
CDW transition. This result was obtained with the
harmonic approximation for the lattice vibrations. The
harmonic approximation means that the time period of
the phonon oscillations is infinite which is the ideal
condition and is not possible practically. So, to deal
with the real materials we need to consider the finite
lifetime effect for the phonons. This can be done by
considering anharmonic phonons. In a later work [15],
Chatterjee and Takada have performed their
calculation including cubic and quartic anharmonicities
in the lattice potential. Interestingly, their results show
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that the width of the MP broadens in the presence of
anharmonic phonons.

In the present thesis, we will present an improved
variational calculation in order to obtain a more
accurate nature of the phase transition in the HH
model with a Gaussian phonon anharmonicity. Our
results show that the thickness of the MP near the
CDW-SDW crossover region is enhanced at the lower
and moderate values of anharmonicity whereas as the
anharmonicity is increased, the width of the MP
eventually saturates.

1.8 Persistent currents

The persistent current is an interesting phenomenon
that occurs at low temperature and in materials of
mesoscopic dimensions. Persistent current is a current
that flows continuously for an appreciable long period
of time without any external source of power. The
external power source works as a trigger for persistent
current. Mesoscopic rings have grabbed much
attention due to their interesting feature of carrying
persistent currents. Bittiker et al. [16] have predicted
that the persistent current can be observed
experimentally in the microscopic rings. They also
confirmed that the root cause for this kind of
persistent current is the quantum phenomenon.
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Fig. 6. A mesoscopic ring with the applied magnetic flux ¢ and with
the terms, t, U and g.

Applying the magnetic field to the mesoscopic ring
breaks the symmetry between the clockwise current
and counter clockwise current. A ring with a diameter
of 0.6 micrometres below 0.5 k temperature [17] can
produce a current of 1 nano-ampere. Even the
resistive materials can produce small persistent
currents within them under the influence of an
external magnetic field. Since, this current is of
quantum origin, one needs to address the phase
coherence effect of the electron’s motion quantum
mechanically. Aharonov-Bohm flux can be used to
obtain persistent currents in a mesoscopic ring. The
increase in the temperature is detrimental to the
persistent current in the quantum rings.

There are two types of persistent currents. One is
charge current and the other is the spin current. The
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charge current is due to the rate of change in charge
whereas the spin current is due to the rate of change in
the magnetization. The spin current is produced when
the electrons with spin up and that with spin down are
separated due to a potential. Usually, it occurs in a high
spin-orbit coupling material.

1.9 Organization of Thesis

In Chapter 1, we introduce the basic concepts and
the models that are necessary for the investigation of
the problems presented in this thesis. To be more
specific, we first presented a discussion on the Tight-
binding model of energy bands and the Hubbard
model. Then we introduced phonons, polarons and
the Holstein model. Next we presented the Holstein-
Hubbard model and discussed its spin-density and
charge density wave phases. Finally we present a brief
introduction to Persistent currents.

In Chapter 2, we present our work on the one-
dimensional Holstein-Hubbard model with Gaussian
phonon anharmonicity at half filling. We use a
variational technique based on a series of unitary
transformations and employ a fairly accurate phonon
state to average the transformed Holstein-Hubbard
Hamiltonian to obtain an effective Hubbard model
which is then solved using the exact Bethe — ansatz
technique. Using the Mott-Hubbard criterion, local
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spin moment and the von Neumann entropy, we
determine the ground state phase diagram and show
the existence of an intermediate metallic phase flanked
by the SDW and CDW phases.

Mesoscopic rings are interesting due to their property
of exhibiting charge and spin persistent currents.
Chapter 3 is dedicated to the calculation of persistent
charge and spin currents in a finite mesoscopic ring
with the magnetic flux threading into it. The system is
modelled by the Holstein-Hubbard Hamiltonian so
that the effect of interplay of e-¢ and e-p interactions on
the persistent currents in mesoscopic rings can be
studied. The model formulation, method and the
results are discussed in the Chapter 3 elaborately.

In chapter 4, we summarize our results and present the
concluding remarks.
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Chapter 2

2.1. Introduction

The high-temperature superconductivity (HTS), after
its discovery in the eighties, has continued to remain as
one of the most interesting areas of research in the
field of condensed matter physics. Several theories
have been propounded to explain the origin of HTS in
the cuprate superconductors. However no single
theory has been able to explain all the properties of
high-temperature superconductors satisfactorily. There
have been quite a few theories which again advocated
the e-p interaction as the mechanism for inducing
pairing in high-temperature superconductors. The
importance of ¢-p interaction in HTS has been reported
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in several publications [1-11]. Plakida [5] has suggested
that the high transition temperature T. can be acquired
even at the modest values e¢-p coupling strength.
Alexandrov [6] has reported that a reasonable e-p
coupling may lead to sufficient reduction in the
polaron  band, which may result in high
superconducting transition temperature. To examine
superconductivity based on ep coupling or the
polaronic mechanism in the strongly correlated
substances, the HH model appears to be the most
preferred choice [8, 9, 12]. Later on, Sil et al. [9] and
Sankar et al. [10] have studied the GS properties along
with the phases of the extended HH model. However,
the polaronic mechanism, though looks attractive at
the first glance, runs into a problem if considered
critically. It is plausible to assume that in order to have
high T, within the framework of the polaron
mechanism, the material needs to have strong ep
coupling strength which however would push the
system to the CDW state which is a non-metallic state.
While in the case of sufficiently small ¢-p coupling, the
onsite Coulomb correlation would be the dominant
interaction and as a result the system then would be
driven to the SDW phase which is again an insulating
state. Thus, one expects that as the e-p interaction is
raised, the system would go from a SDW state to a
CDW state. Of course, one can still be curious to
examine the nature of the crossover region. Hirsch and
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Fradkin [13] studied the nature of the transition region
using the Monte-Carlo technique and reported that the
SDW-CDW transition in the HH model is rather
direct. Understandably, this result was a serious blow
to the theories of HTS based on the polaronic
mechanism.

In 2003, Takada and Chatterjee (TC) [14] have taken
up the 1D half-filled HH model to give a critical re-
look at the transition region of this model. Their aim
has been to examine analytically the nature of the
transition region of the SDW and CDW phases. They
have shown that, interestingly, the SDW-CDW
transition in the 1D half-filled HH model is not direct
but goes through an intervening metallic phase.
Krishna and Chatterjee (KC) [16] have examined the
same problem with a better variational wave function
[16,17] and have shown a modified variational analysis
broadens the width of the intermediate conducting
phase. Subsequently, a few other investigations have
also corroborated the existence of this metallic phase
[17-28]. Sankar and Chatterjee [10] have studied this
problem by computing theoretically the von Neuman
entropy that essentially measures the Quantum
Entanglement (QE). Their calculation confirms the
existence of the aforementioned intermediate metallic
phase.

The works mentioned above considered the
phonons to be harmonic which implies infinite lifetime
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for the phonons. However, the lattice potential is in
general anharmonic and this anharmonicity introduces
phonon-phonon interactions which bring in a finite
life time effect for the phonons. So, to deal with the
realistic cases, one needs to consider anharmonic
phonons. Chatterjee and Takada (CT) [15] have
examined the behaviour of the SDW-CDW crossover
in the HH model incorporating the anharmonicity of
phonons. Their investigation shows that anharmonicity
broadens the width of intermediate metallic region.

The phonon state used by CT is however
extremely simple. Also the phonon anharmonicity
considered by them is only up to the fourth power in
the lattice displacement. Konior [8] has contemplated a
polaronic model with Gaussian anharmonicity and
concluded that in this case the band reduction due to
e-p coupling becomes much less. Furthermore, the
results provided by Gaussian anharmonicity are
convergent in all circumstances, a feature that is
missing in the quartic and cubic anharmonicities [15].

In this chapter, we consider the 1D HH model with
Gaussian anharmonic phonons and employ a more
accurate phonon state (than that used by CT) to
examine the effect of anharmonicity on the metallic
phase at the SDW-CDW transition region employing
the Mott criterion, local spin moment, double
occupancy and the quantum entanglement.
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2.2. The Model

The HH Hamiltonian is given by

H = Hel + th + Hel—ph (2 1)

H,; = —t Z c;racja + U Enimil, (21a)
i

(ij)o

Hop = hog Zb by + Aap z v(of+0)" (21p)
Horopn = g an(bj +by), 2.1¢)
io

where Clj-o (cjo) is the operator that creates
(annihilates) an electron with spin o at site i, t denotes
the neatest-neighbour hopping parameter, N, (=
Clj-O'CiO') refers to the number operator corresponding
to the electron of spin o at site i, U is the onsite
Coulomb correlation energy, b;r and b; are the
operators corresponding to creation and annihilation

of phonons with dispersionless frequency wy at site i,
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Agp and y are respectively the strength and range of

the lattice potential and g is the intra-site e-p
interaction.

2.3 Formulation

2.3.1 GS Energy

The above Hamiltonian contains the electronic and
phononic terms which are coupled. One needs to
change the basis to decouple the Hamiltonian.
Canonical transformation is a way to transfer the
Hamiltonian from one basis to another so that the
Hamiltonian can be diagonalized. In the present case,
however, the separation of electrons and phonons
cannot be achieved exactly. We carry out a seties of
canonical transformation to approximately accomplish
this purpose.

As a first step, we apply the variable-displacement
Lang-Firsov (VDLF) transformation. The generator of
this transformation can be written as

R, = -2

= ha)o nia(bj _bi)’ (22)

i

where g’ = gn =+an, a being the dimensionless -
p coupling constant and 1) a variational parameter. The
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transformation (2.2) displaces the origin of the phonon
oscillator. The conventional Lang-Firsov
transformation is suitable in the anti-adiabatic regime.
By considering the VDLF transformation, it is possible
to treat the problem both in the adiabatic and anti-
adiabatic regions. When 7 is close to 1, the VDLF
transformation works well for the anti-adiabatic case,
while for 1 — 0, it is good for the adiabatic regime.
Thus, by considering the VDLF transformation, we
can cover the entire range of adiabaticity i.e., both
adiabatic and anti-adiabatic regions.

As a result of the VDLF transformation, H reduces to

H, = efiHe R, (2.3)

The above transformed Hamiltonian can be calculated
using the Baker-Campbell-Hausdorff (BCH) formula:

1
eRAe™® = A+ [R A] + > [R, R, A]]

1
o [R[R.[RA]]| + - 24
Using the BCH formula, we obtain

Hi=—t Y el sssa)Cl,Cuugg U Y mm,

i,i+6,0 i

+haw, Z bib — g’ Z(biT + b
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(9"’ ) +
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—y(pf+p,-29 )
Fg 3 e IRE Zomis) (2 5)

io

The transformation (2.2) deals with the displacements
of the phonon coordinates that depend on the electron
concentrations at particular sites. One can also have
phonon displacements that are independent of
electron concentration. This feature was captured by
the Takada-Chatterjee transformation [14]. The
generator of this transformation is given by:

R, = Z[h(b,‘[ - b)) @6

k

where h has to be obtained vatiationally. After
applying this transformation, the Hamiltonian
becomes

H, = eR2H e Rz (2.7)
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E : . (g)? 299’
H2 = <2gh+ ha)o —Zgh—h—w() Nig

io

9" (ot —(pT—p.
_tze"‘“"’((”" 2)-071) ¢t

ijo

2: 2(9")?  4g9'
+ <U+ ha)o __ha)o npn;,

i

£ (9= g)b] + b
ioc

+ hw, Z(b?bi — h(b} + b)) + 1)
i

' 2
z (bt +p;—2n-29_ .
+Aap e y(bl +bi=2h—p Zanw) (28)

io

Next we apply the Squeezing transformation
[14,15] given by

R, = a'Z(bkbk ~bib}) (29
k

When a phonon is emitted by an electron, the
electron recoils according to the law of
conservation of linear momentum. If another
phonon is emitted by the recoiling electron, then
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there will be a correlation between these two
successively emitted phonons. The squeezing
transformation (2.9) is known to capture the effect
of these  phonon correlations. The squeezing
transformation also incorporates some effect of
phonon anharmonicity. Here, a' is the variational
parameter.

After applying the squeezing transformation, the
transformed Hamiltonian can be written as:

H3 == €R3H26_R3 (2.10)

H; = z <—2h(g -9) - hg—%(Zg -9)

io

+(g — g"e* (b] + b))

712

a 2
—y{(bﬁbi)ez —2h—hgo}

+Agpe

2
e T
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+ Agp €
2

’ 29’
—y{(b;f+bi)e2“ —2h—hgo}

— 2qpe

+ /1ape"’{(”iT “’i)ez"‘l_zh}Z) nn;

!
. Z ATl

(i,j)o

E 1,
+ hw, (Z e*® (b + b;)?

i
1 / 1
—16_4“ (bi" = by)? —3

— h(b] +b,)e?* + hz)

, 2
+ Aoy Ze—y{(bi’ubi)ez —zn} 2.11)

i
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We assume that after the above three unitary
transformation,  the  residual  electron-phonon
interactions have become sufficiently weak so that the
total wave function of Hz may be given by the simple
product of the electronic and phonon functions. Thus

we write the total wave function of Hj as:

|l/)> = |l/)p>|1/)e> (2.12)

Then the energy of the system is given by:
E = (llJlellli) = <l/)e| (lppl H3|l/}p>|l/}e)
= (el Heff [Pe), (2.13)

where

Hepp = (d’pl H3|¢p) (2.14)

To calculate Hesp, we choose |l/Jp) as:

M

|vp) = Z Cnlon (X)), (2.15)

n=0

where |@,(x)) is the n™ excited state eigenfunction of

a simple harmonic oscillator with the frequency wy.
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1
/2
_ 1/(1)0 (1)0 _ ﬂXZ
(Pn(x) = <\/_7Tfl—2n Tl!) Hn< T X)e 27, (2.16)

where H,, is the Hermite polynomial of order n. The
effective electronic Hamiltonian is finally obtained as

Hepp = —tegy z ol cio + Ueffz NNy,

(ij)o i

+ Sefonia + NlapEl

io

1, 1 , 1
+ Nhw, (Ze‘*“ S, ——e S, —— +h?

4 2
— heZ“'Sl), (2.17)
with
(29-9) , '
e = T hwg T (9 —9)(e** 51— 2h)
+Aap (B2 — ), (2.17 a)

where g' = gn = VJan,

29’ ,
Uerr = U—h—%(ZQ—g)
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+Aap(E3 - 2E2 + El)’ (2.17 C)

(00)

Si= ) | e GO dy, (217d)
kl=0 B

M

F = Z ckle‘a2/4fwe‘y2 H; (y+%) (y—%) dy,
kl=0 et

(2.17 €)

2

u * 2 NG 2a’
—y2—y(+2 —2h-(;
E; = E Csz eV - r(V2ye %)
kl=0 -®

X H()H,(y)dy,  (2.17f)

where
Cri = ckcl\/m, (2.17g)
& =2y, (2.17h)
& =2y% (2.171)
& =2(y2—21—1), (2.17))
4 =0, (2.17k)
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29’

(2 = hwg” (2.171)
49’

{3 = hwg (2.17m)

fori=1,2and 3.

In general, the onsite GS energy, the hopping
parameter and the onsite Coulomb interaction are
modified due to the polaronic effect. Because of
polaron formation, the hopping parameter t is scaled
down by a factor which is called the Holstein
reduction factor. The polaron formation thus reduces
the width of the energy band. Besides t,U and g,
several other parameters such as filling factor, size and
the dimensionality of the system also tend to play a
vital part in dictating the phases of the HH model. In
this thesis, we consider only a 1D system.

As we can see, the parameters €, U and t are
renormalized as &5, Ugrr and tofs respectively. The
Hamiltonian Hefrr (Eq. (2.17)) represents an effective
Hubbard Model (with a few constant terms) which can
be solved by following Lieb and Wu [30] who applied
the nested Bethe-Ansatz (BA) technique to solve
exactly the 1D half-filled Hubbard Model. Using the

BA technique, the exact GS energy per electron (&)
corresponding to Hyr s at half filling is obtained as:
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1 / 1 / 1 12
£ = Ze““ S, —Ze_““ S3 —5 = he?®' S,
U, — U
+hE+ Ay By — ] + WTleff'
_f dterrlo(§)]1(6) dE 2.18)
1 |Uess]
0 &1 + exp EZteff

where

J=@2g-g)g —(g—9g)[e*™S; —2h]
+ AapEl - AapEz. (218(1)
We have modified Bethe ansatz by adding a new term

(Uers — |Uess|)/4 so that the solution is applicable even
for negative Ugyy.

To determine the GS energy, we perform numerical
minimization of Eq. (2.18) with respect to 7, h and
@'. The average lattice displacement (ALD) is given by

(x;) = e* (V2 = V2g' —VZh). (2.19)
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2.3.2. Local spin moment (LSP)

Calculating the local spin moment (LSP) will help us in
determining the quantum phases of the system. If the
system is in the SDW state, an electron occupying a
particular site will be unpaired and the local spin
moment per site will be high. On the other hand, if the
local spin moment is zero, the sites are either empty or
doubly occupied. This will correspond to the CDW
state. The average electron spin moment per site can

Ly = %Z“‘E)

be measured by:

3 3
= 2= 50 D min),  (220)
i
which on using the expression for variational GS
energy yields
Lo 3 3 de 221
7 4 24U (221)

It can be shown [14-17] that for completely
uncorrelated electrons, Ly is equal to 3/8 (= 0.375).
Furthermore, it is also known that for the Hubbard

model, Lq can vary between 3/8 (which is the band
limit) and 3/4 (which is the atomic limit).
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2.3.3. Entanglement Entropy (EE)

Quantum Entanglement (QE) is one of the most
striking phenomena in Quantum Mechanics and is also
known to be related to Quantum Phase Transition
(QPT) [31-36] which happens due mainly to quantum
fluctuations. In this section, we wish to study the
QPTs that are associated with the HH model using the
idea of QE which can be measured by calculating the
Entanglement Entropy (EE) such as the von
Neumann entropy. It has been found that the higher
is the entanglement, the higher is the conduction.
Hence, one can conclude the existence of a metallic
state from the calculation of the entanglement entropy.

In the 1D HH model, one can conceive of four states
namely, |0), |T), [{) and |T!). The von Newmann
entropy is then given by:

Ey = _Tr(pr lngPr)' (2.22)

where p, represents the reduced density matrix which
for the present case can be written as:

pr = we| 0) (0] + wr| T) (U] + o | L) (T
+on| NN, (2.223)
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where w1, denotes the double occupancy and is given

by
w = () = w (2.22b)

and wy, wy and w, are given by
wr=w;, =M/2) —wyy (2.22¢)
We =1—wy—w, —wy. (2.22d)

The entanglement entropy Ey can be finally
determined by exploiting the Hellmann-Feynman
theorem

de
3= (nirmy). (2.23)

2.4 Numerical Results and
Discussion

For the numerical analysis, we study three cases of
anharmonicity: Case (i) A= 0.05, y = 0.05; Case (ii)
Ap= 0.2, y = 0.05 and Case (iii) A,= 0.75, y = 0.5 and
set the value of Awy equal to 1. (1) refers to a small
anharmonic case, (i) refers to a moderate anharmonic
case and (iii) refers to a high anharmonic case. We shall

work in the anti-adiabatic region and consider t =
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0.2 wg in this chapter. We have found that M = 3
gives the convergent result for the GS energy.

Fig. 1 displays the behaviour of the GS energy per
site with respect to the on-site ¢-¢ strength (U) for both
harmonic and anharmonic lattices. At large U, the
anharmonicity increases the energy while for U < 1, it
appears to have much less influence. The TC results
[13] are exactly reproduced in the harmonic case

(Aep =7 =0).

-0.6 —
osl g =o'\ PN
t-02
€ 10F 4=038 . o TC results
12k — lap=0,'y=0
| eseee b =0.2,1=0.05
14 ——1._=0.05,=0.05
1.6 . — liu=_0.75,7_=0.5
0.0 05 10 15 20 25 3.0
U

Fig. 1. GS energy (¢) vs. onsite Coulomb correlation strength U.

Fig. 2(a) shows how «x;> behaves with the variation
in the ep coupling strength g. The value of «xp
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diminishes with rising g. For the case: Agqp =0 =1,
the present results agree well with the TC results [14]
lending credence to the TC results. However, for a
substantially large anharmonicity, the behaviour of «<x;»
is rather complex and appears to be asymmetric in g.
Fig. 2(b) describes the behaviour of the optimized n
versus g. We notice that there is an essential qualitative
difference in the way 1 behaves with respect to g for a
sufficiently high anharmonicity. To be more specific, 1)
first decreases with increasing g, develops a minimum
at some critical g and then increases with further
increase in g and reaches a saturation value which is
the strong-coupling limit. Fig. 2(c) reveals that with the
increase in g , the band becomes rapidly and
continuously narrower. For strong anharmonicity, the
band reduction is even more rapid. Fig. 2(d) displays
the decrease in the effective on-site e-¢ interaction as g
increases. The presence of anharmonicity reduces U,y s
much further. One may note that for the harmonic
case, <X = —\/Eg , with g = Va , a being the

dimensionless ¢-p coupling constant.

The increase in the anharmonicity causes a deviation
in the harmonic value of <> for positive g. Though
the deviation is not very systematic, it looks more
pronounced at higher g values. The shift in <xp is
accompanied with the reduction in Ugsf, ters/t and

Lo which is a consequence of the increase in the
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Fig. 2. (a) (x;) as a variation of g for different g, andy values. (b) 1
versus g. (c) tepp [t versus g. (d) Uggy variation with g.
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optimized 7 from its value in the harmonic case. As g
is increased beyond 1.1, the anharmonicity brings
down 7 which consequently enhances tofr/t  giving
rise to the creation of polarons that are mobile. The
decrease in 1) also happens because of the competition
between the e-¢ and e-p couplings. For a considerably
large anharmonicity, the onsite ¢-p coupling becomes
strong enough to dominate over the onsite ¢-e
Coulomb repulsion.

In Fig. 3(a), tess/t is plotted against U for three
different anharmonic cases. The harmonic case, as
expected, compares well with the TC results. As U is
made considerably large, trr/t approaches 1. The
graph for the variation of dt.fs/dU with U in Fig.
3(b) displays a double-peak structure as observed in
the case of harmonic lattice, though the peaks are
higher in the case of larger anharmonicity.
Furthermore, as the anharmonicity is increased, the
peaks move to the right. This happens because the
phonon anharmonicity enhances the ¢-p interaction
strength and consequently, a stronger Coulomb
correlation is needed to bring about the transition
exhibited by the double-peak structure.
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Fig. 3 (a) ters/t vs. U. (b) dtgss/dU vs. U.
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Fig. 4(a) provides the phase diagram in the ¢ — U
plane as obtained from the peaks of the dt.rr/dU
versus U —graph. The role of anharmonicity on MP is
displayed in Fig. 4(b) for two different cases. For the
harmonic system, the width of MP is 0.48 (in units of
wp). As the Gaussian anharmonicity is switched on,
the width of MP broadens rapidly to the value 0.58 (in
units of wg). As the strength of anharmonicity is raised
further, the width keeps on increasing, reaches a
maximum value and then becomes thinner as the
anharmonicity is further increased.

/I =
ap = 0.05
*rs
0,05

Metallic Phase

|U

effI

4.

U, ?
(Cuo)

Fig. 5. A 3-dimensional picture depicting the bebavior of | Uer fl (blue) and
Atesr (red) with U and a.
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Fig. 5 provides a 3D illustration of MP that occurs at
the SDW-CDW transition area for a given A and y.
The red surface flanked by the two surfaces in blue
satisfies the MDP condition: 4tgep = |Ue ffl and
accordingly represents the metallic phase. We observe
that the value of Ugfs is positive on the left side of
MR and so this region would be in the SDW phase.
On the right side of MR, however, Ugs turns out to
be negative which implies that the region on the right
side of MP would be in the CDW phase. We therefore
infer that an increase in o leads the system to undergo
a transition from an insulating antiferromagnetic SDW
phase to the insulating CDW phase through a
conducting region. This is indeed an important
observation because it implies that even when the e-p
coupling is strong, the system parameters can be
manipulated to obtain a metallic GS which can go to a
superconducting phase if temperature is lowered. Fig.
4(b) suggests that moderate Gaussian anharmonicity is
most conducive for superconductivity.

Fig. 6(a) displays the dependence of LSP (Lg) on g
for with different sets of Agqp and y. Ly has a finite
value at g = 0 and remains almost independent of g
up to a certain value of g, after which Ly drops off
rather sharply to zero. The reason is easy to
understand. At small g, as
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Fig. 6(a) Lo versus g (b) Lo versus U for different values of Aqyy andy .
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increases, the effective hopping parameter changes
very slightly and as a result, Ly shows no perceptible
change in its value. However, as g is increased beyond
a particular value, Ly falls off sharply to zero. The
reason is again not difficult to understand. For a
substantially high value of g, Ugss can become
negative and consequently a pair of electrons can
inhabit a single site. This makes Lg equal to zero. Ly is
suppressed considerably in the case of higher
anharmonicity. On the other hand, in the cases of low
and moderate anharmonicities, the suppression of L
is only marginal. Fig. 6(b) displays the behaviour of Lg
with respect to U. As U increases, the electron-
electron repulsion becomes stronger and as a result it
becomes difficult for two electrons to occupy a
particular site. This leads to a larger value of Ly for any
atomic site. Up to U = 1, no perceptible change is
observed in Ly while on the contrary, for 1 S U <
2.2, it goes through a monotonic increase. As U is
further increased, L approaches essentially a finite
saturation value.

Fig. 7. displays the 3D surface graph of Ly with
respect to U and «, while Fig. 8. shows the contour
graphs of Ly in the U-a plane. For an absolutely free
electron gas which is uncorrelated, Lo= 0.375. It is
observed that each point in the intermediate phase of
Fig. 8. corresponds to the value, Ly= 0.375. Thus, this
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Fig. 7. Lo versus U for Ay = 0.05, y = 0.05 and t = 0.2 w.

A, = 0.05,7=0.05
t=0.2

Fig. 8. Contour plots of L in a - U plane.
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= N oW
L

Double Occugangy w

o

Fig. 9. (a) w versus g. (b) w versus U. (c) 3D plot of w in the (U, a) plane.

observation gives another evidence which corroborates
the result that there may exist a metallic state in
between the SDW and CDW phases.

Fig. 9(a). describes the behaviour of the double
occupancy w, versus g for several values of A,,. When
g has is small but a positive value, the double
occupancy @ turns out to be small. This corresponds
to an SDW state. A rise in g causes a rapid rise in @
and above a critical value of Ay, W reaches a constant
saturation value implying the formation of bipolarons.
This corresponds to the CDW state. With increasing
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anharmonicity, the rise in w is rather marginal and that
too happens at lower values of g. Fig. 9(b) displays the
behaviour of w versus U. At a sufficiently low value of
U, Ugsy has a negative value. This gives rise to a higher
value of w, which consequently implies the formation
of a bipolaron or a CDW state. On the contrary, with
increase in U, Ugss acquires a positive value. This
reduces w and with sufficient increase in U,
approaches zero which represents the SDW state. Fig.
9(c) displays the 3-dimensional variation of w with
respect to U and a.

o o 3,=0.0,7=00
w— ), = 0,05,y =0.05
L} ap

/

t=0.2 u-u}_ap=[}.2!~r =0.05
u=2 ™ x:p= 0.75,y = 0.5
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Fig. 10. (a) Eo versus g. (b) Eo versus U. (c) 3-dimensional plot of Es on
the a-U plane along with its contour graph.
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Fig. 10(a) depicts the behaviour of von Neumann
entropy (Ey) (which gives the strength of quantum
entanglement) with respect to g. The figures reveal
that Ey is symmetric for the case of harmonic lattice
potential whereas for the anharmonic cases, Ey is
asymmetric. As g starts from the initial zero value, QE
rises at a slow rate and reaches a peak and then drops
off rather rapidly as g is further increased. The
location of the peak moves towards smaller g values,
as the anharmonicity becomes stronger. The peak in
the entanglement entropy suggests the existence of a
metallic phase. Fig. 10(b) displays a peak in the
quantum entanglement at some value of U. This
reveals the existence of MP at the CDW-SDW
crossover regime. The peak in the (Ey — U)- cutrve
moves towards a larger value of U with increasing
anharmonicity. Fig. 10(c) illustrates the three-
dimensional plot of Ey with respect to U and a. The
quantum entanglement exhibits a broad peak structure
that satisties the Mott’s criteria for MP displayed in
Fig. 5.

To understand the role of Gaussian anharmonicity on
the quantum phase transition, we study in Figs. 11(a, b,
¢) the behaviour of Ly, ters/t, and U sy with respect
to Agp- A cursory look at these graphs tells us that the
values of the aforementioned quantities diminish as the
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Gaussian anharmonicity is switched on. A closer
inspection uncovers the following aspects.

(i) In Fig. 11(a), Ly continues to be appreciable up to a
specific value of Agp (which is higher for higher U)
beyond which it sharply falls off to zero. The zero-
value of Ly implies the formation of bipolarons that
are immobile and corresponds to the CDW state.
Based on these observations, it can be inferred that a
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higher value of U increases the width of the SDW
phase and reduces the width of MP. On the other
hand, lower values of U broaden the MP. For a
specified value of U, the e interaction suppresses Lg
(This is illustrated by the dotted curves in Fig. 11(a)).

(i) tepr/t in Fig. 11(b) seems to exhibit similar traits
as Ly but it remains finite in the considered range of
Aap- At lower values of anharmonicity, for a specified
g, tess/t falls off quiet sharply with decreasing U. On
the other hand, for a particular value of U, tors/t falls
off rapidly with g at large g.

(i) One can see from Fig. 11(c) that for all sets of
values of (U,a), Uyrs weakens with the rise in Agy,
and becomes negative at certain values of Agp. For a
specified value of g, such values of A4y, become
smaller as U decreases. Similarly, for a specified value
of U, as g is reduced, the value of anharmonicity at
which Ugss becomes negative, increases. It is well
known that the nature of the GS of a system is decided
by the relative values of g and U. Here we have shown
that the phonon anharmonicity also plays an important
part in deciding the GS of the system by strengthening
the e-p coupling.
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2.5 Conclusion

In conclusion, we have studied in this chapter an
infinite Holstein-Hubbard chain with Gaussian
phononic anharmonicity at half-filling. Successive
application of a number of unitary transformations on
the system Hamiltonian and many-phonon averaging
have led to an effective Hubbard Hamiltonian which
has been finally solved exactly by employing the Bethe
ansatz method. The GS energy has been numerically
computed by minimizing the variational energy with
respect to the variational parameters. Using the Mott
criterion, local spin moment, double occupancy and
the von Newman entropy we further confirm the
existence of a metallic phase at the SDW-CDW
crossover region. We have also shown that the width
of the metallic phase is broadened in the case of low
anharmonicity.
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Chapter 3

3.1 Introduction

The subject of mesoscopic rings has received
significant attention from both theorists and
experimentalists. One of the most important reasons
for this is their property of sustaining persistent
currents. Persistent charge and spin current can be
generated in mesoscopic rings threaded by magnetic
flux.

Both experimental [1-11] and theoretical [12-17]
studies have been carried out on PC in a mesoscopic
quantum ring (QR) over the last three decades.
Another intriguing feature of the PC is that it also
depends on the spin dependence of the magnetic flux
applied to the mesoscopic ring. The subject of
quantum computers [18] has emerged as a very
exciting area in recent times and quantum technology
is expected to play a crucial role in future in which
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QRs will have major applications. The Hubbard
Model, which admits an exact solution in one
dimension, is the most convenient theoretical model to
study such quantum rings with interactions. Such type
of rings shall be referred to as the Hubbard QR
(HQR). Finite HQR has been studied by Weti et al. [19]
with the help the Bethe-ansatz method to determine
the persistent charge current (PCC) as well as the
persistent spin current (PSC) in it. But the effect of ¢-p
interaction has not been incorporated in this study. To
explore the combined effects of ¢-¢ and e-p interactions
one needs to examine the Holstein-Hubbard (HH)
model for QR (HHQR). Sankar et al. [20] have made
an attempt to calculate PC in a one-dimensional (1D)
HHQR using the mean-field approximation (MFA).

The present chapter is devoted to the investigation
of the e¢-p interaction effects on PCC and PSC in a
finite HHQR by exploiting the BA technique which
gives an exact solution for the 1D Hubbard model. We
also study the dependence of PCC and PSC on the size
of HHQR. Finally, the local spin moment, double
occupancy and entanglement entropy are calculated to
study the quantum phase transitions in the system.
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3.2 Hamiltonian and the model

The Hamiltonian for the HHQR system threaded by
the AB flux can be written as

H= Hel + th + Hel—ph ) (31)

with
(%) o1
H, =—t Z e \L cmc]a +U Znnnll,(?) la)
(ij)o
Hon = hao z bib; , (3.1b)

Hep =90 znia(bg‘ + bi)

io

+g, z nio(bls + biss),  (3.10)

iocd

, t
In the above equations, ¢;,;

electron operator that creates (annihilates) an electron

(cis) tepresents the

at site [, orepresenting the electron spin which has two
possibilities (0 =T,l), the bare nearest-neighbour
(NN) hopping parameter t is modified by the Peiet]’s
phase factor, eti(@a/L) (the direction of hopping
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deciding the sign), ¢, denoting the spin-dependent
flux (0 = T,1) (in units of flux quantum ¢4 = hc/e),
Ny (= C;rgcia) is the number operator for an electron

of spin o at site i, U stands for the on-site ¢-e Coulomb

interaction energy, b;r (b;) stands for the operator that
creates (annihilates) a phonon at site, wg refers to the
dispersionless frequency and go and g; denote
respectively the onsite and NN ep interaction
strengths. Another important parameter which is
related to the applied magnetic field is the spin-
dependent vector potential (As). This is written as:

As; = (hc/e) (nba/L

3.3 Formulation

3.3.1 GS Energy

As a first step, we perform the conventional Lang-
Firsov canonical transformation with the following

generator:
Yo

4

g
+b Z nio(blos — bivs).  (32)
©o 43
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As a result of the above transformation, the
Hamiltonian (3.1) is transformed as follows:

H=eRHe ™R (3.3)

ido
+ go
X exp( (b — b)) — (bz+8 biss)
Z(bl+5’ - bi""sl)
Z(bl+5+8’ - 1+s+5’)>

+U2 nn; + Wy z bl-l-bl - g(l)z nia-(bl'-‘- + bL)
i i o

: (90)?
_glz L+(S’cr(bJr + b; ) + 00 Znianicr'

!

§'o oo

N (91)

n: r N "o _r
wo i+6',0'ti+6" 0

8'6"oo’

+ 9o Z N (b + b;)

io

! !
9oI1
+ (ni+5’,anim +ni0ni+6’,a')
wWo
8'oo’
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_ 299

Wy &
oo

29041
Wo

iocNig!

NigNits's’
is'oa’

29190
- Z NigNit+ 5,6
0)0 ’

isoo’

29191

NisN; [y
wo ic'ti+6+6 0

i68'c0’

+ g, z nio(blys + biss) - (3.4)

ido

The total wave function |W) is now written as the
product of the state |¥,) which is a function of

electron variables and the state |‘Pp) which contains
phonon variables 1. e.,

[Py = [w,)Ie). (3.5)
The Energy is then given by:
E= (Y| H|¥)

= (lpe|<lpp| H |lpp>|qje)
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= (Y| Heff |¥e ), (3.6)

where
Hefy = (qul H |qu> (3.7)
For the averaging phonon state, we consider the zero-

phonon state: |‘Pp> = |0) =[1;]0;) where c;|0;) =
0. Then Hefs reads

oy
+ Tro
Hepp = _geffznia - teffz e” "'l C;rgCi+6,a

io ido

Uepy ) mny,  (38)
i

with
(g8 + z97)
Eoff = _h—wo' (3.8a)
ters = te~(@omg0*+G-Dg))/(hwo) (38 )
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Uys= U — 2(g3 — zg%)/hwy. (3.8¢)

We set h=1= wy from here onwards. The
effective Hamiltonian (3.8) can be solved by using the
nested Bethe-Ansatz method. Application of the Bethe
ansatz method to the 1D Hubbard model [19] gives
rise to a set of following transcendental equations.

M .

pikiL _ it sink; — Ag +iu (3.92)
I Isinkj — Ap—iu’

=1

NC - -
oi(B1—0) l—IAa —sink; +iu
| 1Aa—sinkj —iu
]:
1—[ —Ag +iu (3.9b)
Ay — g — '

where j=123,....N, a=123,.....M
Uerr/4tesr, N being the total number of fermions

u =

b

and M the number of spin-down fermions. As a
result, we get two sets of variables namely the quasi-

--80 --



Chapter 3: Persistent Currents in the 1D Holstein.....

momentum {kj} and the spin rapidities {Ay}. The
values of these two sets of variables can be obtained by
using an iterative numerical method to solve the above
mentioned coupled transcendental equations (3.92) and
(3.9b). Eventually, the energy eigenvalues can be
expressed as follows:

N
€(¢) = —ggpfN — ZZ cos k;
j=1

4 (Uess —4 Uess)

(3.10)

The energy per site is given by

E(¢) = % (3.11)

3.3.2.Persistent Charge current and
Persistent Spin Current

In a usual electronic system, there exists a conventional
current which is the charge current. In QR, the current
can be persistent that means it can stay in the system
for a long time without any external power supply.
Recently, another kind of current has been found in a
quantum mesoscopic ring which is PSC. This current
is due to the change in the magnetization of the system
caused by the fluctuations in the spin. In the present
chapter we consider both spin up and spin down

-81--



Phase transitions in one-Dimensional Hol...............

electrons with two different and independent
parameters ¢y and ¢ ;. We use these parameters ¢
and ¢, in (3.9a) and (3.9b) to calculate PCC and PSC.
To compute PCC (I;), we consider ¢y = ¢, = ¢.
Once we estimate the GS energy of the system, we can
calculate PCC without any difficulty by employing the
Hellmann-Feynman theorem [19] as follows:

_OE(@)

In the same way, using the condition: — ¢y = ¢, = ¢,
PSC can be computed from the following equation:

__10E(¢)
s==375¢ (3.13)

3.4. Results and Discussion

3.4.1 GS energy

For convenience in numerical computation, we set t =
1 in this work. We study four cases: (i) (n) = 1/2, (ii)
(n) = 2/5, (i) (n) = 1/3, and (n) = 1/4, where (n)

indicates the average number of electrons per site.
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Fig. 1 GS energy per site vs. magnetic fluxc @ (a) for half filling, < n > =
1/2, (b) for away from half filling < n > = 2/5.
The transcendental equation (3.92) and (3.9b) are first

solved and then the energy per site (E = €/N) is
determined using Eq. (3.10). This energy is plotted in
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Fig. 2. The GS energy vs. on-site e-e interaction for different values of on-site
ep interactions for L = 66. (a) At half-filling (<K n>= 1/2), (b) at
away from half filling (<K n>= 1/3).

Fig. 1(a) as a function of the magnetic flux (¢) at half-
filling for the system size L = 66 and with U = 2 in
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the absence of ¢-p interactions i. e., for go = 0 = g;.
We would also like to compare the behaviour of E
versus U at half-filling with that at away from half-
filling. Fig.2 shows this comparison.

As stated above, E versus U is plotted in Fig. 2(a) for
different values of gy at half filling, while the same for
(n) = 1/3 is plotted in Fig. 2(b). One can see that
compared to the half-filled case, the energy in the case
of away from half filling varies much slowly with
respect to U. Consequently, while in general, the
energy in the half-filled case is lower at small U, in the
away from half-filled case, it becomes lower at large U.

3.4.2 Persistent charge current (PCC)
(a) Flux dependence of PCC

As visible from Eq. (3.12), PCC (I;) also exhibits a
periodic variation with the magnetic flux ¢ like the GS
energy. Fig. 3(a) depicts the behaviour of I, with
respect to ¢ for L = 66, (n) = 1/2, U = 2 and a set of
values of gg. The behavior at away from half- filling is
depicted in Fig. 3(b). Two electrons normally repel
each other and when U is large, the GS is a polaronic
Mott antiferromagnetic Mott spin-density-wave
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(SDW) insulator, whereas two electrons can form an
onsite bound pair in the case of large e-p interaction,
and then the GS is a bipolaronic Peierls charge-
density-wave (CDW) insulator. It can be noted from
Fig. 3(a) that in the case of half filling, the magnetic
flux brings in a periodic change in the phase which in
turn gives rise to a sinusoidal behaviour in I.. One can
see from the inset of Fig. 3(b) that when when g
increases from zero to 0.5, I. does not show any
perceptible change. But a large change happens when
9o approaches 0.9. Though the behaviour is still
periodic, it does not vary sinusoidally. But now the
current shows a larger value. The increase in the
current may be caused by the motion of correlated
electron-pairs which are bipolarons. This is observed
only in the case of half-filling. We find from Fig. 3(b)
that in the case of away from half-filling also, I, vs ¢
- curve is periodic. In this case, the current has a
higher magnitude than that of the half-filling case. This
may be because in the case of away from half filling,
more states are available to the carriers. In a previously
reported work [19], I, exhibits an oscillatory behavior
in both half-filled and non-half-filled cases.

In another recent work [20], the researchers have
chosen to work with the peak value of PCC (Fig. 3(a))
with the corresponding magnetic flux. One can work
with any non-zero value of ¢ because the physical
analysis is not affected by the choice of ¢ as long as ¢
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is nonzero. Here we will work with ¢ = —0.81 (a
value close to the one corresponding to the peak in

PCC).

(b) PCC and Coulomb Correlation

The behaviour of I, as a function of U in the half-
filled case is depicted in Fig. 4 with I. = 66 and for
different values of gq. I is found to be large at low
values of U. Therefore, the system will be expected to
show a conducting behaviour in this region. With
increasing U, I. undergoes a rapid decrease and falls
off to zero at some U value. Thus, beyond this critical
U, the system will be expected to behave as an
insulator. At low U, I, turns out to be large for large
go while at large U, I, does not seem to have any
dependence on gq. These results can be justified on
physical grounds. The ¢p interaction has a
considerable effect on PC at low U, while at large U,
PC does not have any dependence on e-p interaction.
Therefore, we conclude here that certain windows of -
e and e-p couplings are favourable for the occurrence of
a metallic phase.
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A 91_0 go 0.2
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0.00
1

Fig. 4 1. vs U for different values of o at half filling.

It would be interesting to have results on functional
dependence of I, on U (for different gq values). In
order to examine this aspect, Inl; is plotted with
respect to U? at half filling in Fig. 5 and an
appropriate expression is obtained by fitting the data.
Wei et al. [20] have already made such an attempt. Our

results for go=0 are in agreement with their results.
We find that for gg = 0 — 0.5, the behaviour can be
approximately  fitted to the equation: [, =

I exp(—U?/&), where \/E gives the energy scale

over which the persistent current vanishes. It is found
that & = 1. For go = 0.9, however, the data fit the
equation: I, = I gexp(—U/&).
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9000000000000000000000000000000 aa
AU 0 o * Wei's results —gn = 0.0 -
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U
Fig. 5 Inl, vsU? at halffilling (<n> = 1/2) for go = 0,0.2, 0.5,

0.9.

The results for I, vs U for (n) < 1/2 are depicted in

Figs. 6 (a-c). The interesting point to note

in the results

in these cases is that, I, never goes to zero.

Consequently, one can conclude that a system with less

than half filling would always be in a metallic state

irrespective of the value of U and one would not

expect such a system to show any metal-insulator

transition. To get a deeper understanding of the

metallic behavior at away from half filling, we again
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Fig. 6 1. vs U at away from halffilling for go = 0,0.2, 0.5
,09. ()<n>=2/5B<n>= 1/3amdl) <n>= %

attempt to fit the I, — U data with an appropriate
expression. We find that the results can be fitted to the
equation: I, = Aexp(—U™/&)+ B, where (A+
B) is cleatly the value of I; at U = 0 and B the value
of I, at large U. Comparison of the expressions for I,
for the half-filling and non-half-filling cases clearly
shows that because of the presence of the non-zero
parameter B in the latter case, I, never vanishes in this
case and consequently in this case, the system always
remains in the metallic state. We find that & >
land m <2 in the non-half-filled cases More
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specifically, & turns out to be around 10 and m
decreases from 2, as < n > decreases from 1/2. For
example, m = 1.5 for<n>= 2/5,m =14 for
<n>=1/3, and m= 13 for<n>= 1/4.

(c) PCC and e-p interactions

Fig. 7 illustrates how [, varies with ggo for <n >
= 1/2 for a few values of U. In Fig. 7(a), I vs go —
graph is shown for a few values of U with g; = 0 and
g1 = 0.2. I, seems to be symmetric around go = 0.
For U = 0, I, shows a broad maximum around gy =
0, which indicates the existence of a metallic phase. As
9o is increased, I, drops and ultimately falls off to
zero at some value of go. Beyond this critical value of
9o, the system will be naturally in an insulating phase.
For U > 0,however, I, shows a different behaviour.
As go is increased from zero, it first rises with gg,
reaches 2 maximum at a certain value of gy and then
drops rather rapidly but smoothly to zero. It has been
observed that as U is increased, I, also decreases and
its maximum moves to a higher value of gy. For a
sufficiently large value of U, I, continues to remain

zero up to a large value of gq and

-93 -



<n>=1/2 X
L=66..-"
0.02p .-

0.00} Sankar et al's | present
U=0 | U=2 [u=0[U=2
g1=0 eense — e 9
0.06p g1=0.2 & A o —
_U reey

0.03f FHHE S

t=1 €38 p
p o °% o
0.00MEIE_ e I

0.0 0.5 1.0 1.5

g,

Fig. 7 (a) I, versus gq ; (b) I, versus gq . The results of Sankar. et al.
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then exhibits a small maximum and finally again falls
off to zero. Fig. 7(b) shows the comparison of our
present results with those obtained by Sankar et el. by
invoking the mean field approximation [20]. In
contrast to the mean theory of Sankar et al. [20] which
shows a kink-like behavior in I, before its rapid fall to
zero, the present results do not indicate any sudden
transition in the system. This leads to the conclusion
that at low values of gg and U, the system would like
to be in a metallic state. The results with respect to gy
and U lead us to similar conclusion (not shown here).

Figs. 8 (a-c) depict the behavior of I, with respect to
go for a few values of U and g, for (n) # 1/2. Fig.
8(a) shows the manner in which I, behaves with gq for
(n) = 1/4, while Figs. 8(b) and 8(c) display the case
for (n) = 1/3 and (n) = 2/5, respectively. Unlike in
the case of (n) =1/2, I, now turns out to be a
slowly decreasing function of go. For g1 =0, I,
seems to have, in general, a maximum at gy = 0. As
g1 increases, the maximum of [, moves in the
direction of the higher values of go, while U appears
to reduce the height of the maximum. Furthermore,

for intermediate values of gg, I, is enhanced by g;.
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T |__Juso [0=2]u=3
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9
Fig. 8 PCC vs gy for different combination of U and g1 with 1. = 66 at
away from half —filling ((a) <M >= Y, (b )<n>= 1/3 and (;)
<n>= 2/5).

(d) PCC and Phase transitions

The condition: 4t,rr = |Ugsr| is a crucial criterion
that is satisfied by a metallic phase. It is referred to as
the Mott criterion or the metallicity criterion in this
thesis and we make use of it to determine the metal-
insulator transition from Egs. (2b) and (2¢) for
different range U, gy and g;. In the yellow regions in
Fig. 9, the condition of metallicity is satisfied and the
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Fig. 9 Metallicity criterion (Aterr = \Uepr|): (a) in the (o , G1) plane
JorU =0,U=1U=2and U = 10; (b) in the (go,U)
plane forg, = 0,91 =1,9, =2 and g, = 3 ; () in the (g1, U)
Plane for go = 0, go =1, go =2, 9o =3

blue areas indicate the insulating regions. In the four
panels in Fig. 9(a), the metallic phases are shown in the
(go — g1)-plane for U = 0,1,2 and 10. For U = 0,
the metallic criterion is satisfied for go < 1and g4 <
1. The metallic phase spreads out as U is increased
from O to 2. However, as U is increased further, the
metallicity condition is satisfied at larger values of gq
and g;. Consequently, the metallic phase becomes
thinner. In Fig. 9(b), the criterion of metallicity is
examined in the (U, gg) — plane for a few values of
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g1- As gp is increased, the metallic region shifts
towards the higher gq - values. Finally at some value of
g1, the metallic phase ceases to exist. Similarly, we
study the metallicity criterion in the (U, gq) — plane
for a few values of gq. This is displayed in Fig. 9(c). It
is observed from the figure that as we increase g,
eventually the metallic phase dies out completely. The
aforementioned graphs can be used to find the ranges
of U, go and g; which will provide a metallic phase
that can allow a persistent current to flow.

In Fig. 10, PCC is plotted with respect to gg and g,
at (n) =1/2 and (n) =1/4 for U =0, 2 and 10.
The figures clearly show the metal-insulator
transitions. Here we can have two types of insulating
phases. Based on the values of U, gq and gq, we can
have a SDW insulator or a CDW insulator. Fig. 10(a)
desctibes the natute of PCC in the (gg — g1) — plane
for U=0at <n>= 1/4. The system is cleatly
metallic at low values of gy and g, and it finally
becomes insulating as go and g; increase. This
insulating GS would be a CDW state and contain local
bipolarons due to the strong e-p interactions. In Figs.
10(b) and 10(c), PCC is plotted in the (go — g1) —
plane at <n>= 1/4 for U = 2 and U = 10
respectively. These figures clearly show that in non-
half-filled cases, metallic states can exist at small values
of go and g, even if U is large. The existence of this
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metallicity is understandable because for <n > <
1/4, the probability for the system to have more
empty sites is large which will certainly increase the
mobility.  The metal-insulator transition occurring
because of the increase in the e-p coupling is obviously
the Metal-CDW phase transition. The behaviour of
PCC with respect to gy and g;is displayed in Fig.
10(d) at half filling for U = 0. The GS again shows a
metallic behaviour at low values of gy and g4. As the
values of gy and g, are increased, the system makes a
transition into an insulating phase. However, unlike in
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Fig. 10 1. vs gg and gy for: (0 U = 0, (n) =1/4; ) U = 2,
(n) = 1/4 (U = 10, (W)= 1/4 @ U = 0, (n) = 1/2; (o
U=2 n=1/2;, U = 10, (n) =1/2.

the non-half-filled case, the transition to the insulating
phase of the system is much faster now. To be
precise, compared to the case of <n>= 1/4, the
system now makes a transition to the insulating phase
at lower values of ¢p coupling constants. The
incorporation of e-¢ interaction changes the situation
significantly. In Fig. 10(e), we show how PCC varies
with go and g4 for U = 2 at <n>= 1/2. The
system now behaves as an insulator even at low values
of go and g, . This insulating state clearly corresponds
to an SDW state as U is finite and positive and the ¢-p
interactions are completely absent. This corresponds
to the Mott insulating phase which 1is an
antiferromagnetic phase arising due to Coulomb
correlation. It is observed that as gy and g4 are made
very large, PCC drops to zero and hence the system
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then again behaves as an insulator. In this case, Ugsy

becomes negative due to large values of gy and g,
and so the effective force between electrons becomes
attractive. Consequently, the system becomes unstable
against Peierls distortion, and as a result bipolarons are
formed and the system goes into a CDW insulator.
However, for intermediate values of gy and g4, the
system prefers to be in a metallic phase. Thus, one
should observe a metallic phase flanked by two
insulating phases for moderate values of gg and g;.
One would thus expect the system to exhibit an SDW-
Metal-CDW transition at half filling, in a certain
window of U, gg and g;, if the ¢ couplings are
increased. As shown in Fig. 10(f), there is a complete
suppression in the value of PCC at large value of U for
all values of go and g, and as a result the system
behaves as an insulator for all values of gg and gq.
Although the transition region is a bit unclear now, it
seems that in this case, the system makes a direct
transition from SDW phase to the CDW phase as the
e-p couplings become stronger.
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Fig 11 1. vs gg and U for : (a) g, = 0.2, {(n) =1/4; (b) g, =
2, m=1/4% © g.=02, (N)=1/2; @ g1=2, (n)=
1/2

To examine the phase transition behaviour more
critically, we plot PCC versus U and gq for g; = 0.2
and gy =2 at <n>= 1/2 and <n>= 1/4 in
Fig. 11. Fig. 11(a) is plotted for g; = 0.2 and <n >
= 1/4. It can be clearly noticed from this figure that
when the values of gy and U are small, GS of the
system is of course metallic. Furthermore, the system
continues to be in the metallic phase even at large U at
low go . This happens probably because of the
availability of many sites for occupation in the case of
less-than half-filling. So, at small gy, as GS of the
system is essentially determined by the ¢-p interaction,
even a large Coulomb interaction cannot push it to the
insulating phase. However, if gy is increased, the
system can be driven to an insulating phase which at
low U would be a CDW phase owing to bipolaron
formation. Similarly, if U is increased, the system can
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again be driven into an insulating phase, though this
insulating phase would be an SDW phase. So, the
present system can exhibit a Metal-CDW transition at
small U and a Metal-SDW transition at large U. On the
other hand, at large g, there exists a critical value of U
at which the system goes directly from an insulating
CDW phase to the insulating SDW phase. In Fig.
11(b), we consider the behavior of PCC with respect
to U and g, for g; = 2. In a certain window of (U,
go) — values, the system shows a metallic behaviour.
As gqis increased, we observe suppression in the
magnitude of PCC. Whether the insulating phase will
correspond to SDW or CDW depends on the relative
values of U and go. In Fig. 11(c), we show the
behaviour of PCC with respect to U and g for g; =
0.2 at <n>= 1/2. The system now shows a
conducting behaviour at low values of U and g,. At
small gg, the system however goes from a metallic
phase to an insulating state at some critical U. This
insulating phase is an SDW state. Similarly, at small U,
the system undergoes a metal-insulator transition at
some critical gy. This insulating state is a CDW state.
In Fig. 11(d), we plot PCC with respect to U and gq
with gg =2 at<n >= 1/2. In this situation, the
system remains in the insulating phase for all U and
go- Here, too, the system may undergo a CDW-SDW
transition, but the transition boundary looks obscure.
We have also examined the nature of variation of PCC
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with respect to U and g; for g =0.2and g, =2
at <n>= 1/2 and <n>= 1/4. (Figures have
not been shown here). The behaviour is more or less
similar to that shown in Fig. 11.

(e) Size dependence of PCC

Fig. 12 shows the behaviour of I L (i.e., PCC scaled
by the system size L) with respect to the flux ¢ for a
few L — wvalues. The figure demonstrates that
petiodicity of I, is independent of Lat<n >= 1/2,
while for <n ># 1/2, itincreases with L.

In Fig. 13 (a) we plot In(I;.L) with L for a few
values of U and e interactions at <n >= 1/2. One
may notice that n(I L) varies more or less linearly
with  (=L) ie. In(I L) decreases lineatly with
increasing L. Fig. 13 (b) shows the behaviour of In(1;)
with respect to [n(L) for <n >= 2/5 which is a
non-half-filled case. We find that [n(l,) exhibits a
linear behaviour with In(L) and furthermore In(l.)
turns out be essentially independent of of U, go and

g1-
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Fig. 13 In(I.L) vs L for(n) = 1/2 and different values of U': (a)
91=0,90=0,02; b) go=0,9, =0,0.2. In(I.L) vs InL for
(n) = 2/5 and different values of U: (b) g, = 0, go = 0,0.2.
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3.4.3.Persistent spin current (PSC)

(a) Flux-dependence of PSC

In Fig. 14, we plot PSC (I5) with respect to flux ¢
for a few values of gg at <n >= 1/2. We find that

the spin current is periodic but does not have the
sinusoidal nature.

0.04

0.02
_m

0.00

-0.02

sesee go =0.9
oodh L L
-1.0 -0.5 0.0 0.5 1.0

o/

Fig. 14 I vs @ for different values of gy.
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(b) PSC and Coulomb Correlation

In Fig. 15, we study how PSC behaves with respect
to U for a few values of gy at <n >= 1/2 and also
at <n>+#* 1/2. The behaviour is found to be, in
general, concave from above and both Coulomb
correlation and e-p interaction are found to suppress .

“»
0-02'g1=0 <y

<n>=1/2 - -
L =66 (a)
0.00t—s 4 -
2 4 6 8 10
U

0.00

Fig. 15 1. vs U for different values of go and (a) <n >= 1/2;
b)<n>=1/3
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Fig. 16 PSC s as a function of G for different values of U and gy with
L =66 at (a) half filling (K n>= 1/2); () <n>=1/4; ()<
n>= 1/3

(c) PSC and e-p interaction

In Fig. 16, we display the behavior of PSC (I;) with
respect to go for different combinations of the U and
g1. Fig. 16(a) provides results for <n >= 1/2 and
Figs. 16(b, c) show the results for <n >+ 1/2. In all
cases, PSC reduces with increasing go.
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(d)Size dependence of PSC

Fig. 17 describes the behavior of PSC with respect to
flux for a few values of L. It is evident from the figure
as L decreases, I undergoes an enhancement. The
reason is understandable because the persistent current
is a quantum phenomenon which arises at a small
length scale where quantum effects become more

significant.
0.4 v v v
seese | =10
0.2f"°-, - e | =30,

— b e, =—L=90
0.0“*1
=0.2 % T =

go_ : U=2 °®e.
-0.2} g1=0

t=1 .°o.o

4 <n>= 1[2- .
1.0 -0.5 0.0 0.5 1.0
¢/

Fig. 17 I, vs @ for different values of L gy = 0.2, g1 =0 at <
n>= 1/2.
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3.5 Summary and Conclusion

In conclusion, the Holstein-Hubbard model has
been considered for a finite QR with the Aharonov-
Bohm flux. The conventional canonical Lang-Firsov
transformation approach is utilized to treat the e-p
interaction and subsequently the Bethe Ansatz
technique is employed to deal with the effective
electronic Hamiltonian. This provides a set of coupled
transcendental equations which are solved by using an
iterative computational technique for the half-filled
and a few non-half-filled cases to obtain the GS
energy. The persistent charge current and persistent
spin current are then computed by differentiating the
GS energy with respect to the AB flux and investigated
with respect to the system parameters such as the
onsite e-¢ strength U, onsite e-p strength gy and the
NN e¢-p interaction strength g;.

We observe that the GS obtained by the exact Bethe
ansatz technique is higher than that estimated by the
mean-field approximation. Also the peaks are much
sharper now. In both the half-filled and away from
half-filled cases, the GS energy is periodic in the
magnetic flux, though in the non-half-filled case, the
periodicity is, in addition, dependent on the ring size.
Again, in the half-filled case, low values of U are
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favourable for GS while large values of U are more
conducive for GS for the non-half-filled cases.

In the case of half-filling, the periodicity of GS with
respect to the flux leads to a sinusoidal variation of
PCC with the flux. As the e-p coupling is raised, though
the behaviour of PCC no longer remains sinusoidal, it
still continues to be periodic. The current now
undergoes an increase. This increase in current my
happen on account of the motion of correlated
bipolarons. In the non-half-filled cases, PCC again
shows a periodic variation with the flux, but the
periodicity scales linearly with the system size. PSC is
also periodic but non-sinusoidal. The PCC versus U —
data for both the half-filled and non-half-filled cases
can be fitted to two different analytical expressions if
the ¢-p interaction is absent. The decrease in QR size is
found to enhance both PCC and PSC. This is an
understandable result because the persistent currents
are of quantum mechanical origin and are therefore
expected to occur when the length scales are
sufficiently small. It is also observed that both e-¢ and e-
p interactions suppress the persistent currents for the
half-filled and non-half-filled cases. It is further shown
that in the weak e-p coupling regime, the system likes
to be in a metallic phase at away from half filling, while
a sufficient increase in the ¢-p coupling may drive the
system to an insulating state. This metal-insulator
transition may be considered as a Metal-CDW
transition which is little affected by the electron
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correlation. A half-filled system is however associated
with interesting quantum phase transitions. While in
the absence of electron correlation, as the ep
interaction strength is increased, a Metal-CDW phase
transition occurs, in the presence of both e¢-¢ and ep
interactions, a CDW-Metal-SDW transition takes place
for certain ranges of the parameter values. A
substantially large value of e¢-¢ coupling strength is
unfavourable for the metallic phase because it drives
the system to the SDW state.
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Chapter 4

Summary and
Conclusions

In this concluding chapter, we present the summary
of the present thesis.

In Chapter 1, we have presented some of the basic
concepts and the models that have been used in the
works described in the thesis. We have started with the
Tight-binding model of the band theory and presented
the energy dispersion provided by this model because
in this thesis, we are interested in the narrow-band
systems with localized states. Since the celebrated
Hubbard model is one of the most suitable models to
study the role of e-¢ interaction in strongly correlated
systems, we have then presented a brief description of
this model. Next, we have discussed phonons and the
polarons and bipolarons and described briefly the
physics of these quasi-particles and introduced the
Holstein model. Finally, we have combined the
Holstein and the Hubbard models and presented the
Holstein-Hubbard model which can describe the
physics of a correlated electron system with electron-
phonon interaction. Subsequently, we have discussed
the ground state phases namely, the SDW and CDW
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phases provided by the Holstein-Hubbard model and
the possible phase transitions that are possible within
the framework of this model. Next, we have discussed
the motivation for studying the GS phases of the
Holstein-Hubbard model in this thesis. Finally, we
have given a brief introduction to Persistent current in
a mesoscopic ring and described our motivation to
study this phenomenon.

One of our main aims in this thesis has been to
explore the effect of the Gaussian phonon
anharmonicity on the intermediate metallic phase that
may exist at the crossover region of the CDW-SDW
phases in a 1D Holstein-Hubbard system. In Chapter
2, we have presented our recent investigation on this
issue. Here we have considered a better variational
phonon state than in [1] to obtain an effective
Hubbard model which has been solved exactly by the
Bethe ansatz technique to obtain the GS energy. We
have calculated the local spin moment and considered
the Mott criterion. We have also calculated the double
occupancy and the single-site entanglement entropy
for half and non-half band fillings. We first observe
that though at small Coulomb correlation strength, the
phonon anharmonicity does not have much effect on
the GS energy, at large Coulomb interaction,
anharmonicity does enhance the GS energy. We find
that in the presence of anharmonicity, the Holstein
band reduction factor diminishes rapidly with
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increasing e¢-p coupling. We also find that as the ep
coupling is increased, the system undergoes a
transition from the polaronic SDW GS to the
bipolaronic CDW GS state through an intermediate
metallic phase. It is shown that anharmonicity widens
the intermediate metallic phase. Also the present
calculation provides a broader metallic phase than the
one predicted by the previous calculation [2]. It has
been further shown that the broadening of the width
of the metallic phase is more if the anharmonicity lies
in a certain window. The calculation of the average
spin moment per site, the double occupancy and the
entanglement entropy also provide the evidence that
an intervening metallic phase exists at the CDW-SDW
transition region. It is important to note that the
present improved variational calculation suggests a
wider metallic phase which reinforces the prediction
that an intermediate metallic phase exists at the CDW-
SDW crossover region.

In Chapter 3 we have presented our calculation of
the persistent charge and spin currents in a quantum
ring threaded with magnetic flux in the presence of e-¢
and e-p interactions. We have used the Holstein-
Hubbard model to study the effect of the interplay of
the e-¢ and e¢-p interactions. The e-p interaction has been
treated using the standard Lang-Firsov method and the
effective renormalized electronic system has been
solved using the Bethe-ansatz technique. It has been
shown that the Bethe ansatz provides a larger GS
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energy than the mean-field approximation. For the
half-filled case, GS corresponds to low e-¢ interaction
strength while for the case of away from half filling,
GS corresponds to larger values of the correlation
strength. The GS energy and the persistent currents
are periodic in the magnetic flux both in the half-filling
and non-half-filling cases. A decrease in the quantum
ring size is found to increase the persistent currents.
This is precisely the quantum effect. Both for half-
filling and non-half-filling cases, the persistent currents
are suppressed by the e and ep interactions.
Interestingly, it is found that in the absence of electron
correlation, as the e-p coupling is increased, a Metal-
CDW phase transition occurs in the Holstein-Hubbard
ring, while in the presence of both ee and ep
interactions, a CDW-Metal-SDW transition takes place
for certain ranges of the parameter values. However, a
substantially large value of e-¢ coupling strength turns
out to be unfavourable for the metallic phase because
it drives the system to the SDW insulating state.

Before we end, we would like to mention that the
results presented in the present thesis may be
improved by choosing more improved phonon states.
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