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CHAPTER:1 

INTRODUCTION: Part1 

Study of transport properties of an inertially driven Brownian particle 

in a rough periodic potential 

1.1 Historical background 

Diffusion is a universal process that can be seen in many diverse systems. It is essential not 

only on all the scientific disciplines but also in socioeconomic background, when processes 

like the diffusion of ideas or innovations are taking place1. Diffusion, derived from the Latin 

word ‘diffundere’ meaning spreading out, involves movement of particles in a directional way. 

Macroscopically, diffusion leads to the transport of particles from regions of higher to lower 

concentrations. Whereas microscopically, diffusion is a result of random walk of particles. 

Random motion of tiny particles was first observed on pollen grains and was investigated by 

botanist Robert Brown in 1828 and these random motions of microscopically large but 

macroscopically small particles were termed as Brownian motion2. Later Albert Einstein in his 

annus mirabilis 1905, provided a probabilistic explanation of Brownian motion by modelling 

the motion of pollen particles in a liquid based on the molecular kinetic theory of heat3. In his 

theoretical explanation for Brownian motion, he pointed out that the erratic motion indicates 

the molecular nature of fluid and, randomness is due to the thermal fluctuations in the liquid 

itself.  He formulated the diffusion equation for Brownian particles4 which relates the diffusion 

coefficient, 𝐷, of the particles and coefficient of viscosity, 𝜂,of the liquid as given by 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
                           

(1.1) 

where 𝑟 is the radius of the spherical particle, 𝑘𝐵, and 𝑇, are the Boltzmann constant and 

temperature of the system respectively. The Einstein’s relation represents the balance between 

the energy gained by the Brownian particle from the thermal fluctuations and the energy lost 

by it due to the dissipation in a thermodynamically closed system. According to the Stokes’ 

law the dissipation constant, 𝛾, is related to coefficient of viscosity as, 𝛾 = 6𝜋𝜂𝑟. The well-

known fluctuation-dissipation relation is an outgrowth of this energy balance mechanism in a 

closed system. The probability density, 𝜌(𝑥, 𝑡), of the Brownian particles at position, 𝑥, at time, 

𝑡, which satisfies the diffusion equation: 
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𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝜌(𝑥, 𝑡)

𝜕𝑥2
 

(1.2) 

 

Assuming that 𝑁 particles start from the origin at the initial time, 𝑡 = 0, the solution of 

diffusion equation is given by 

𝜌(𝑥, 𝑡) =
𝑁

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡. 
(1.3) 

 

The solution indicate gaussian spread of particle over spread space and the width of the 

distribution increases with time indicating the spread of particle over time. The solution  allows 

one to calculate the moments and the first moment (or mean) is 〈𝑥〉 = 0 and the second moment 

or variance is given as 

 〈∆𝑥2(𝑡)〉   = 2𝐷𝑡 (1.4) 

The linear increase of variance of 𝑥 is known as normal diffusion of particle. Marian 

Smoluchowski carried out independent research on the kinetic theory of Brownian motion. and 

derived the same result as of Einstein5. Smoluchowski also proposed a device called “Brownian 

Ratchet” that can extract energy from random motion of molecules. In 1908, Jean Baptiste 

Perrin6 experimentally verified Einstein’s predictions and confirmed the atomic nature of 

matter and determined the value of Avogadro-Loschmidt number 𝑁𝐴. 

Major drawback of the diffusion model proposed by the Einstein3,4, which he himself noticed 

later is that the inertia of the Brownian particle is completely discarded. This brought to light 

the fact that such an infinite force is required to change the particle's velocity and thereby 

achieving the random walk at all the steps. Then, Paul Langevin7 established a further pillar in 

1908 for the development of the theories of the Brownian motion. 

1.2 Langevin Dynamics: Brownian motion 

In Langevin’s model based on the Brownian motion, the inertial force of the Brownian particle 

is explicitly considered. This model describes the random motion of a particle in a fluid due to 

the collisions with the fluid molecules. In this formulation, the equation of motion for the 

particle is modeled using the Newton’s second law of motion. 

1.2.1 Model 

In this model, we are considering the one-dimensional motion of the spherical particles having 

the mass, 𝑚, position, 𝑥, velocity, 𝑣, and radius, 𝑎, moving in a dense fluid having the 

coefficient of viscosity, 𝜂. Assume that the individual masses of those spherical particles are 
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much greater than that of the mass of fluid particles. Radius of the spherical particle is chosen 

in the range of 10−9𝑚 < 𝑎 < 5 × 10−7𝑚. And these bigger particles, undergo Brownian 

motion in this fluid due to the random collisions with the surrounding fluid molecules. For 

instance, we can think this scene as pumpkins being bombarded with mustard seeds. We 

assume that the concentrations of bigger particles are sufficiently small in the fluid, so that they 

do not interfere with each other. So essentially, we can treat each one of them as an isolated 

system. Due to the collisions of lighter particles with the heavy ones, heavier ones will feel 

drag force as well as the random kicks with all the possible directions. The nature of the force 

exerted by the fluid molecules on the Brownian particle is found to be random over the time.  

In order to write the equation of motion, we are assuming that Brownian particle is in thermal 

equilibrium with the heat bath provided by the fluid molecules. 

 

Fig.1.1: Big Brownian particle of mass, 𝑚, submerged in a fluid of very small particles 

Corresponding equation of motion in one dimension can be written as: 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) 

(1.5) 

𝑚
𝑑𝑣

𝑑𝑡
 = −𝜁𝑣 + 𝜂(𝑡) 

(1.6) 

where 𝜂(𝑡) represents the random force or fluctuating force (noise) which has the physical 

dimensions of force. This force-balanced equation (Eq. (1.6)) is called Langevin equation for 

a Brownian particle, where the first term defines the inertial force experienced by the particle 

of mass, 𝑚. Drag force (−𝜁𝑣)  of the Brownian particle with a frictional coefficient, 𝜁 is 

represented by the second term in the Eq. (1.6). The frictional coefficient is given by Stokes’ 

law, 𝜁 = 6𝜋𝜂𝑎. Both friction and noise arises due to the interaction between the Brownian 

particle and the heat bath. The statistical properties of the random force can be sum up using 

its first and second moment.  

 〈𝜂(𝑡)〉  = 0 (1.7) 
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〈. . . 〉 represents the ensemble average with respect to the distribution of realizations of  𝜂(𝑡). 

The first moment of random force is zero Eq. (1.7), because the average random force exerted 

on this Brownian particle by all other fluid molecules is on average is zero. The second moment 

of the random force is 

                                               〈𝜂(𝑡)𝜂(𝑡′)〉  = 2𝐵𝛿(𝑡 − 𝑡′) (1.8) 

The term 𝐵 measures the strength of the random force. Here, we can see that the individual 

random kicks hitting the Brownian particle is completely uncorrelated. In other words, what 

hits at one time say 𝑡 is very different from what hits at 𝑡′.  The memory between random 

forces at different times gets lost because of the continuous random collisions,. The 

autocorrelation function depends only on the time difference between the two times and its 

future is defined from the present value without considering the past information. It has no 

memory which indicates that it is a Markovian force. Fourier transform of the autocorrelation 

of this noise will give white noise, which is independent of the frequency. In other words, white 

noise has flat power spectrum. The auto correlation function of white noise is delta function.  

Eq. (1.6) is a first order linear, inhomogeneous differential equation and have the solution: 

                                     𝑣(𝑡) = 𝑣(0)𝑒−𝜁𝑡 𝑚⁄ +
1

𝑚
∫ 𝑑𝑡′𝑒−𝜁(𝑡−𝑡′) 𝑚⁄ 𝜂(𝑡′)

𝑡

0
          (1.9) 

The first and second term gives the exponential decay of the initial velocity and the extra 

velocity produced by the random noise respectively. We can use this solution Eq. (1.9), in order 

to get the mean squared velocity 〈𝑣(𝑡)2〉. There are three contributions to 〈𝑣(𝑡)2〉. The first one 

corresponds to:  

𝑒−2𝜁𝑡 𝑚⁄ 𝑣(0)2 (1.10) 

and at longer times it decays to zero. The second one is the cross term which is a first order in 

noise 𝜂(𝑡), Eq. (1.11) which becomes zero on averaging over noise. 

2𝑣(0)𝑒−𝜁𝑡 𝑚⁄
1

𝑚
∫ 𝑑𝑡′

𝑡

0

𝑒−𝜁(𝑡−𝑡′) 𝑚⁄ 𝜂(𝑡′) 
(1.11) 

The third contribution is second order in the noise 𝜂(𝑡):  

∫ 𝑑𝑡′𝑒−𝜁(𝑡−𝑡′) 𝑚⁄ 𝜂(𝑡′)
1

𝑚2
∫ 𝑑𝑡′′𝑒−𝜁(𝑡−𝑡′′) 𝑚⁄ 𝜂(𝑡′′)

𝑡

0

𝑡

0

 
(1.12) 

By making the use of Eq. (1.9), we have the average of the product of the two noise factors: 
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∫ 𝑑𝑡′𝑒−𝜁(𝑡−𝑡′) 𝑚⁄ 𝜂(𝑡′)
1

𝑚2
∫ 𝑑𝑡′′𝑒−𝜁(𝑡−𝑡′′) 𝑚⁄ 2𝐵𝛿(𝑡′ − 𝑡′′)

𝑡

0

𝑡

0

 
(1.13) 

Hence, the mean squared velocity is 

〈𝑣(𝑡)2〉  =  𝑒−2𝜁𝑡 𝑚⁄ 𝑣(0)2 +
𝐵

𝜁𝑚
(1 − 𝑒−2𝜁𝑡 𝑚⁄ ) 

(1.14) 

In the long-time limit,  exponentials drop out and Eq. (1.14) proceeds to 𝐵 𝜁𝑚⁄ . At equilibrium, 

𝑡 → ∞, equipartition theorem, 〈𝑣(𝑡)2〉   = 𝑘𝐵𝑇 𝑚⁄  must hold. Hence the equality:  

lim
𝑡→∞

 〈𝑣(𝑡)2〉 =  
𝐵

𝜁𝑚
=

𝑘𝐵𝑇

𝑚
 

(1.15) 

𝐵 = 𝜁𝑘𝐵𝑇 (1.16) 

The Eq. (1.16)  is named as the fluctuation-dissipation theorem. The magnitude of the random 

or fluctuating force, 𝐵, is balanced by the strength of the dissipation, 𝜁.  Hence, the Langevin’s 

model accurately captures the system's temperature. 

1.5 Numerical method for Langevin equation simulation 

It is often difficult to get an exact solution of Langevin equation analytically. So, we are using 

numerical methods for solving the Langevin equation. The corresponding equations Eq. (1.5) 

and Eq. (1.6) can be solved using Predictor-Corrector method (also known as Heun’s method) 

which is a modified Euler’s method. For solving, initially we discretize time 𝑡 and use 

predictor-corrector method to proceed the Brownian particle from 𝑥(𝑡𝑛) to 𝑥(𝑡𝑛+1) and also 

𝑣(𝑡𝑛) to 𝑣(𝑡𝑛+1) as: 

𝑥1(𝑡𝑛+1) = 𝑥(𝑡𝑛) + 𝑣∆𝑡 (1.17) 

 

𝑣1(𝑡𝑛+1) = 𝑣(𝑡𝑛) − 𝛾𝑣(𝑡𝑛)∆𝑡 − 𝑈′(𝑥(𝑡𝑛)∆𝑡 + (2𝐵∆𝑡)
1

2⁄ 𝑔𝑤 (1.18) 

 

𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) +
1

2
[𝑣(𝑡𝑛) + 𝑣(𝑡𝑛+1)]∆𝑡 

(1.19) 

 

𝑣(𝑡𝑛+1) = 𝑣(𝑡𝑛) −
1

2
[𝛾𝑣(𝑡𝑛) + 𝛾𝑣(𝑡𝑛+1) + 𝑈′(𝑥(𝑡𝑛)) + 𝑈′(𝑥(𝑡𝑛+1))]∆𝑡

+ (2𝐵∆𝑡)
1

2⁄  𝑔𝑤 

(1.20) 
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Eq. (1.18) and Eq. (1.19) represents the predictor step, where the predicted value, 𝑥1(𝑡𝑛+1), 

and 𝑣1(𝑡𝑛+1)  is calculated using Euler’s method and then slopes at the points, 𝑥(𝑡𝑛), and 𝑣(𝑡𝑛)  

is calculated. ∆𝑡 is the step size of each increment. Eq. (1.19) and Eq. (1.20) implies the 

corrector method. Here, the average of the slopes is calculated and added to 𝑥(𝑡𝑛) and 𝑣(𝑡𝑛) 

to calculate the corrected value of 𝑥(𝑡𝑛+1) and 𝑣(𝑡𝑛+1) respectively. 𝑔𝑤 is Gaussian white 

noise and has the properties,  〈𝑔𝑤(𝑡)〉 = 0, and  〈𝑔𝑤(𝑡)𝑔𝑤(𝑠)〉  = 2𝐵𝛿(𝑡 − 𝑠). Box-Muller 

algorithm8 is used to generate Gaussian white noise from two uniformly distributed random 

numbers with unit interval. 

𝑔𝑤 = [−4𝐵∆𝑡 ln(𝑎)]
1

2⁄  cos (2𝜋𝑏), a and b are the random numbers (1.21) 

The theory of Brownian motion was further studied by, Adriaan Daniël Fokker9, Max Planck10 

and Hans Kramers11 which leads to the later development in the field of Brownian motion. 

These studies have sparked numerous important advances in equilibrium and non-equilibrium 

statistical physics12,13. Furthermore, it inspired mathematically the growth of stochastic 

differential equation and probability theory which further fostered the stochastic modelling of 

finance, and stock market14,15. Currently, the dynamics of non-equilibrium systems under 

stochastic influence might well be studied most simply and effectively using the theory of 

Brownian motion.  

Next section, we are discussing about Brownian ratchets, mathematical formulation of ratchet 

and its applications. 

1.2 Introduction to Brownian ratchets  

In the first decade of the twentieth century, Marian Smoluchowski5 designed a thought 

experiment and composed a device called Brownian ratchet. It features a ratchet attached to a 

pawl that allows the ratchet to rotate only in one direction by preventing its rotation in both 

directions. The two ends of the Brownian ratchet device are maintained at two distinct 

temperatures, 𝑇1 and 𝑇2. Ratchet can be compared to a circular saw with asymmetric saw-teeth. 

The ratchet is connected to, via an axel, a small paddle wheel immersed in a liquid at a 

temperature, 𝑇1. Molecules in the liquid exhibit random Brownian motion due to the collisions 

between each other. As the device is considered very small, the impulses coming from the 

random collisions of liquid molecules on the paddle, force it to turn and resulting rotation in 

ratchet at temperature, 𝑇2. Further as the bidirectional motion of the ratchet is prevented by a 

pawl, the random collisions on the paddle lead to the unidirectional motion of ratchet thus 

allowing it to perform net work by lifting a connected load (Fig. 1.1). Therefore, a Brownian 
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ratchet rectify the unbiased fluctuations into a directed way in a thermally equilibrated 

environment. 

 

Fig. 1.1: Schematic representation of the Brownian ratchet 

Although it may appear that this device will be able to generate ‘something’ out of ‘nothing,’ 

however close inspection reflects that this device would violate the second law of 

thermodynamics and create a Maxwell demon like situation. Since both the paddle and ratchet 

are kept in thermal equilibrium, as Richard Feynman highlighted in his renowned ‘Lecture of 

Physics: There’s plenty of room at the bottom16’in 1960 that, this device would not perform 

any work. According to Feynman, the pawl will be susceptible to random collisions from the 

medium, allowing it to move up and down, which make the ratchet teeth slip backward as well 

as it moves forward, thereby preventing the rotation of ratchet in one direction. He also 

proposed that if the paddle and the ratchet, are kept in heat baths having two different 

temperatures, 𝑇1 ≠ 𝑇2 , then net work is possible without violating the second law of 

thermodynamics. The key ingredients of generating net motion are breaking spatial symmetry 

and principle of detailed balance. The pawl mechanism and the temperature difference of two 

heat baths breaks the spatial symmetry and detailed balance, respectively. References [17,18] 

give a critique of the Smoluchowski-Feynman construction. 

The Brownian ratchet device in Fig. 1.1 can be formulated19  in a mathematical way as: 

1. The ratchet (paddle) depicts a spatially periodic system. The potential it represents is 

one that is spatially periodic, 𝑈(𝑥) = 𝑈(𝑥 + 𝐿). 
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2. Since the pawl attached to the ratchet, would move the teeth of it in both the directions, 

the symmetry of ratchet gets broken. This leads to the breaking of the reflection 

symmetry of the periodic potential, 𝑈(𝑥0 + 𝑥) ≠ 𝑈(𝑥0 − 𝑥). 

3. Due to the collision between the molecules in the liquid, the average random force 

exerted on the vanes is found to be zero. This accords the thermal fluctuations to be, on 

average, as zero. 

4. Heat bath with dissimilar temperature is a trivial way of breaking the detailed balance. 

Also, we can drive the system away from its thermal equilibrium state by applying 

driving force (either deterministic or stochastic kind of force) of zero mean.  

1.2.1 Ratchet model - Mathematical formulation 

We will discuss the analytic formulation of the ratchet model using Langevin description of 

the dynamics. Equation of the motion of the particle can be defined  as 

𝑚𝑥̈  = −𝑈′(𝑥) − 𝛾𝑥̇ + 𝜂(𝑡) (1.22) 

𝑈(𝑥) is the periodic potential with, 𝑈(𝑥) = 𝑈(𝑥 + 𝐿), having a periodicity, 𝐿, and barrier 

height, ∆𝑈(= 𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛). The inertial force is represented by the first component on the 

left-hand side of the Eq. (1.22). The force due to friction as described by the second component 

on the right-hand side of the Eq. (1.22), which  is directly proportional to the particle’s velocity, 

𝑥̇.  𝛾 corresponds to frictional coefficient of the described system. The potential force 

represented by,  −𝑈′(𝑥), which is the negative gradient of the potential, has an average value 

over the periodicity, 𝐿.  

〈(−𝑈′(𝑥))〉𝐿 =  −
1

𝐿
∫ 𝑈′(𝑥)

𝑥+𝐿

𝑥

𝑑𝑥 =
1

𝐿
[𝑈(𝑥) − 𝑈(𝑥 + 𝐿)] = 0 

(1.23) 

The stochastic term, 𝜂(𝑡), denotes thermal fluctuations. It can be modeled using  a 

𝛿 −correlated Gaussian white noise has the following characteristics. 

〈𝜂(𝑡)〉 = 0;            〈𝜂(𝑡)𝜂(𝑡′)〉 = 2𝛾𝑘𝐵𝑇𝛿(𝑡 − 𝑡′) (1.24) 

Where 𝑇 is the temperature of the system and 𝑘𝐵 represents Boltzmann constant. 

Fokker-Planck equation, corresponds to Eq. (1.23) is provided by 

𝜕𝑃(𝑥, 𝑥̇, 𝑡)

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝑥̇ +

𝜕

𝜕𝑥̇
(

𝛾

𝑚
𝑥̇ −

𝑓(𝑥)

𝑚
) +

𝛾𝑘𝐵𝑇

𝑚2

𝜕2

𝜕𝑥2
] 𝑃(𝑥, 𝑥̇, 𝑡) , 

(1.25) 

Where 𝑓(𝑥) = −𝑈′(𝑥) is the potential force. Under the stationary state,  Eq. (1.25) can be 

resolved. As shown in Eq. (1.26), stationary probability density is 
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𝑃𝑠𝑡(𝑥, 𝑥̇) = 𝑁 exp [−
𝑚𝑥̇2

2
+ ∫

𝑓(𝑦)

𝑘𝐵𝑇
𝑑𝑦

𝑥

0

] , 
(1.26) 

Where N stands for normalization constant, and can be calculated from the normalization 

condition of the stationary probability distribution  

∫ 𝑑𝑥̇ ∫ 𝑑𝑥𝑃𝑠𝑡(𝑥, 𝑥̇) = 1
𝐿

0

 .
+∞

−∞

 
(1.27) 

The mean velocity can be obtained as  

〈𝑥̇〉𝑠 = ∫ 𝑥̇𝑑𝑥̇ ∫ 𝑑𝑥𝑃𝑠𝑡(𝑥, 𝑥̇)
𝐿

0

 .
+∞

−∞

 
(1.28) 

 It is straightforward to confirm that the mean velocity is zero in a stationary state. According 

to the principle of detailed balance, the Brownian particle in the periodic potential, 𝑈(𝑥) , does 

not move in a directed manner. We need to introduce a non-thermal force in order to induce 

transport.  

In many circumstances, an overdamped condition is of interest. The equation of motion of a 

particle under overdamped dynamics is  

𝛾𝑥̇ = −𝑈′(𝑥) + 𝜂(𝑡) (1.29) 

Probability density function, 𝑃(𝑥, 𝑡),  representing the Eq. (1.29), which is  

𝜕𝑃(𝑥, 𝑡)

𝜕𝑡
= −

𝜕𝐽(𝑥, 𝑡)

𝜕𝑥
 

(1.30) 

Where the probability current is represented by 

𝐽(𝑥, 𝑡) = 𝑓(𝑥)𝑃(𝑥, 𝑡) − 𝐷
𝜕𝑃(𝑥,𝑡)

𝜕𝑥
 . (1.31) 

And 𝐷 = 𝑘𝐵𝑇. The current 𝐽 is kept as a constant, in the stationary state 𝑃(𝑥) = lim
𝑡→∞

𝑃(𝑥, 𝑡) 

and it can be read as  

𝐽 = 𝑓(𝑥)𝑃(𝑥) − 𝐷
𝜕𝑃(𝑥)

𝜕𝑥
 . (1.32) 

The solution of Eq. (1.32) for 𝑃(𝑥) is therefore can be written formally,  

𝑃(𝑥) = −
𝐽

𝐷
exp[−𝜓(𝑥)] ∫ exp[𝜓(𝑦)]𝑑𝑦 + 𝑁 exp[−𝜓(𝑥)]

𝑥

0
 , (1.33) 

Where  

𝜓(𝑥) = − ∫
𝑓(𝑦)

𝐷
𝑑𝑦   ,

𝑥

0
. (1.34) 
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Else as an alternative, 𝜓(𝑥) =
𝑈(𝑥)

𝐷
 , also 𝑁 can be considered as a constant. In line with the 

periodic boundary condition:  

𝜓(𝑥) = 𝜓(𝑥 + 𝐿). (1.35) 

Applying periodic boundary condition on Eq. (1.33) and from Eq. (1.35) and it  follows  

𝐽

𝐷
∫ exp[𝜓(𝑦)]𝑑𝑦 = 0

𝑥+1

𝑥

 . 
(1.36) 

The aforementioned integral cannot be zero, hence the current, 𝐽 = 0, which is given by an 

overdamped Langevin equation having periodic boundary condition. Hence,  

𝑃(𝑥) = 𝑁 exp[−𝜓(𝑥)] (1.37) 

And normalization constant, 𝑁, can be  [∫ exp [∫
𝑓(𝑦)

𝐷
𝑑𝑦

𝑥

0
] 

1

0
]

−1

. The Brownian particle’s zero 

current, 𝐽 = 0, can be physically interpreted as follows. There is no slope for generalized 

potential, 𝜓(𝑥), (Fig. 1.2(a)). This denotes that the rates of transition to both the right and left 

wells from a local minimum state of the generalised potential, 𝜓(𝑥), are the same. The 

difference between rates of transition in both the positive and negative directions, determines 

the stationary mean velocity. Therefore, the current, 𝐽 = 0, indicates the principle of detailed 

balance.  
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Fig. 1.2: Schematic representation of generalized potential,  𝑎) Generalized periodic potential 

with zero slope, Brownian particle’s transition probability from local minima to both the left 

as well as right well are equal, so that there is no directed motion. 𝑏) Periodic potential having 

non zero slope and hence transition probability of particle to left and right well are unequal 

which results in a directed motion. 

The principle of detailed balance should be broken in order to generate directed motion. The 

formulation for generalised potential (Eq. (1.34)) contains the explanation. The quantity, 𝐷,  in 

the Eq.(1.34) must be space-dependent, 𝐷(𝑥), in order for the generalised potential, ∆𝜓 ≠ 0,  

(Fig. 1.2(b)) to have a non-zero slope. So, to initiate a directed motion, the principle of detailed 

balance should be broken. It is possible to achieve this, by adding non - equilibrium fluctuation 

or an external load. Any external non-equilibrium fluctuation that is added to the system will 

not be enough to change the detailed balancing principle and initiate directed transport. Instead, 

in order to make the diffusion coefficient spatially dependent and generate an asymmetric 

generalised potential, the external non-equilibrium fluctuation force must be properly 

correlated. 

1.2.1 Different types of Brownian ratchets  

Inspired from the theme of directed transport from Brownian ratchet leads to several studies in 

statistical and biological physics, in both theoretical19–34 and experimental36–42. There is 

plethora of literatures which cover different classes of ratchet systems. One such example 

includes- pulsating ratchets – where the potential is switched on or off 43–48 (Fig 1.3). Here the 
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potential is not shifting in space over time, that is the spatial periodicity of the potential remains 

intact. Rather, the amplitude of the ratchet potential is modulated with time. In other words, 

these ratchets deliver directed motion through ‘potential oscillations.’  

 

Fig1.3: Graphical representation of pulsating ratchet 

This can experimentally be mimicked in the case of identical colloidal Brownian particles in 

the symmetric periodic potential. Colloidal particles placed like in two parallel straight lines 

forming a one-dimensional channel of locally variable width, with space-dependent oscillation 

periods49. The other examples include tilting ratchet in which the unbiased additive driving 

force will take over the role of non-equilibrium perturbation which will drive the system out of  

thermal equilibrium. When the applied external perturbation is heat, then those ratchet systems 

are categorized as temperature or diffusion ratchet43,50 (Fig 1.4). Here, when the temperature is 

increased, the particles located at the energy-minima of the ratchet potential cross the energy 

barrier (≪ 𝑘𝑇) and diffuse across the surface for a shorter period of time. In an asymmetric 

potential energy surface,  there can be of higher likelihood of the particles getting trapped to 

the right of their original position as temperature is lowered. And this leads to their directional 

transport. This mechanism is similar to the on-off mechanism of pulsating ratchets. 

 

Fig1.4: Graphical representation of temperature or diffusion ratchet 

Another category of ratchets is rocking ratchets51–58, where a periodic directional force is 

applied to a potential surface which is asymmetric, to generate directional transport (Fig 1.5). 

Even though the average of the net directional force is zero, due to having a  asymmetry in the 

potential energy surface, system is able to generate the directed motion.  
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Fig1.5: Graphical representation of rocking ratchet 

Energy ratchets59 are another classes of ratchets. They modulate the potential energy surface's 

peaks and minima regardless of the position of the Brownian particle. Meanwhile, information 

ratchets43,60,61 operate by lifting or lowering the potential energy barrier with respect to the 

location of the particle, which leads to  distribution of particles in a non-equilibrium condition. 

Similar to the famous Maxwell’s demon10, this process requires information handover from the 

particle to the ratchet potential surface. Rotaxane1, which consists of dibenzo-24-crown-8-

based macrocycle is considered as the first example of synthetic molecular information 

ratchet60,61. Other examples of ratchet systems include correlation ratchets62–64 , quantum 

ratchets33 and so on.  

1.2.2 Applications of Brownian ratchets 

The theoretical concept of rectification of noise and converting those unbiased thermal 

fluctuations into a unidirectional motion, by such a device called “Brownian motors” have been 

experimentally realized in several systems. Examples includes cold atoms in a dissipative 

optical lattice65, diffusion of colloidal particles in a cycle of three holographic optical trapping 

patterns66, Josephson Junction arrays67–69, vortex lattice ratchet effect in superconducting films 

with periodic arrays of asymmetric potential70,71, to name only a few. The Brownian ratchet 

model has been used for studying many biological processes which includes intracellular of 

cargo on microtubule networks, metastasis of cancer cells, transport of ions through nanopores 

among many. The functioning of protein-based molecular motors in cell can be explain using 

the ratchet theory. Molecular motors are either natural or synthetic molecular machines, which 

are capable of continuously transforming one form of energy into another. They use random 

thermal motion as their energy input and generate unidirectional motion33,72–79. In biological 

systems, molecular motors are made up of nucleic acids and proteins and they use the chemical 

energy of ATP (adenosine triphosphate) as the energy source. Protein kinesin, an example of 
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biological motor, which uses the energy of ATP hydrolysis to move along the surface of 

microtubule filaments. This can be mapped into the transport of Brownian particles moving in 

an one-dimensional ratchet potential with period of about 8.2nm. Here, the nonequilibrium 

energy is provided by the catabolic reaction process involving the hydrolysis of ATP which 

occur near to kinesin. Myosin80 and dyneins81 are some other examples of ATP-driven 

molecular motors. These motors and also, kinesin82 is responsible for the cellular activities 

such as intracellular transport and muscle contraction.  

Synthetic molecular motors83 are another class of molecular machines which rotate only in one 

direction under an energy input. The concept of synthetic molecular motors was first promoted 

by Richard Feynman’s on his remark that “There’s plenty of room at the bottom”84. After half 

a century, the Nobel Prize in 2016 was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart 

and Bernard L. Feringa for their design and synthesis of molecular machines85–87. Over the past 

decades, both biological and synthetic motors have been topic of intense study. Also, creation 

and understanding as well as engineering of molecular motors is the one of the research topics 

in various disciplines of science79,88.  

Thus, the concept of Brownian motors does provide the concept of noise-induced transport 

from random thermal fluctuations. It  has many potential technological applications in different 

contexts ranging from optimising and controlling transport on the nanoscale26, particle 

separation and trapping at microscale89–91, nanoscale friction92,93 and so on. So, in the context 

of transport of particles rectifying the thermal fluctuations, it is worth to ask the question that 

what will be the nature of diffusive process. In the next section, discussion will be on the types 

of diffusion and their research importance. 

1.3 Anomalous diffusion and research scenario 

Brownian motion, an archetypal example of random walk94 is commonly quantified by the 

trajectory mean squared displacement (MSD), 〈∆𝑥2(𝑡)〉, which linearly increases with time, 𝑡. 

It is also, directly proportional to the diffusion coefficient, 𝐷, of the fluid.  In one dimension, 

with, 𝑥(𝑡), as the position of the random walker at time, 𝑡, then MSD is:  

 < ∆𝑥2(𝑡) >= < [𝑥(𝑡)−< 𝑥(𝑡) >]2 > = 2𝐷𝑡 (1.5) 

Where <. > indicates the ensemble averaging. For Brownian walkers, MSD grows linearly in 

time (𝑀𝑆𝐷 ∝ 𝑡). Deviations from Brownian motion and showing an asymptotic power-law 

dependence (𝑀𝑆𝐷 ∝  𝑡𝛼) are referred to as anomalous diffusion. The exponent 𝛼 indicates 
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the type of diffusion. For normal diffusion, 𝛼 = 1 as in Brownian motion. Sub-diffusion and 

super-diffusion are characterized by the range of values of 𝛼. The value of 𝛼 lies in the range 

of 0 < 𝛼 < 1 for sub-diffusion and for super-diffusion 𝛼 > 1 (Fig.1.6). 

 

Fig1.6: Schematic representation of various types of diffusion from the time dependence of 

MSD.  

There are lot of instances where MSD deviates from linear temporal evolution such as in the 

economic fluctuations of stock market95, anomalous diffusion in the cytoplasm of mammalian 

cells96, dynamics of sleep-wake transitions during sleep97, in the foraging and mating strategies 

of animals98, enhanced diffusion in intracellular transport induced by protein motors99, Levy 

flight facilitated diffusion on DNA polymeric chains100, migratory dynamics of cells in 

monolayers101, inverse-friction expansion for Brownian motion in an inhomogeneous medium 

in the overdamped limit102, transient anomalous diffusion in periodic systems103, crossover 

from sub diffusive motion to diffusive motion in glass forming liquids104, to name a few. There 

are many formalism that describe the mechanistic aspects of anomalous diffusion ranging from 

thermodynamics105–107, fractional derivatives108,109 to generalized Langevin equations110,111. 

1.7 Scope of our chosen problems in the current research background 

The vast majority of all these research studies with this theoretical background, look at the 

overdamped Brownian dynamics of the system in the energy landscapes that are not solely 

periodic but also smooth. However, it is well established that there are numerous circumstances 

when spatial heterogeneity in the potential exists112–118. 
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 Zwanzig first simulated the rough energy landscape by overlaying a rapidly - oscillating 

trigonometric function over the baseline potential energy function in a seminal paper119. There, 

he pointed out the reduction of diffusion coefficient because of the roughness in the periodic 

potential in compared to smooth potential especially at low temperatures, which lead to the 

reduction of thermally activated barrier crossing rate of the particle. He also provides an 

analytical tool to explain the properties of roughness in his model. Recent studies showed that 

roughness hinders current notably in overdamped dynamics120. Ansari developed a robust 

numerical approach to solve the Smoluchowski equation describing diffusion along a spatially 

rough potential121 . Pollak et. al.  used master equation for studying the rate theory for rugged 

energy landscape122. Mondal et. al. calculated directed current and efficiency of a thermal 

ratchet moving in a rough periodic potential and found that roughness holds back the current 

in a ratchet potential in the presence of Gaussian noise120. All these studies showed the adverse 

effect of the spatial heterogeneity in the transport as well diffusive characteristics of the 

Brownian particle. Does roughness always act as a hindrance to the transport of Brownian 

particle, even if it is inertially driven in its dynamical level. The notion of this question directs 

a research gap in the area of transport in driven ratchet systems. So, in this thesis, we looked 

out to the effects of rough periodic potential on the noise-induced directed transport of a ratchet 

system in underdamped dynamics aided by Gaussian noise, in the chapters 2-4.  
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 INTRODUCTION: Part 2 

THERMAL TRANSPORT IN LOW-DIMESNIONAL LATTICE 

1.2.1 Introduction 

One of the persistent problem in statistical thermodynamics, is how to understand heat 

conduction in insulator systems at the microscopic level. According to the Fourier law of heat 

conduction (named after the French Physicist Joseph Fourier), the heat flux,  𝐽, is proportional 

to the negative gradient of temperature, 𝑇, as  

𝐽 = −𝜅∇𝑇 (1.2.1) 

and 𝜅, is the thermal conductivity, which is the proportionality constant. This 

phenomenological equation was proposed by Fourier about almost 200 years ago to understand 

the thermal gradient inside the Earth. One key finding of Fourier's law is that the thermal 

conductivity is an inherent quality of the system and it does not depend on the system size. 

According to the Fourier law, with increasing chain length, the heat flux,  𝐽~𝑁−1, under a

temperature difference. The main problem is, there is yet no first-principle derivation of this 

straightforward law. Also, the validity of Fourier’s law in low dimension is not entirely certain. 

One of the long-standing challenges in nonequilibrium statistical mechanics is to comprehend 

the microscopic dynamical genesis of heat conduction. Numerous investigations have been 

inspired by the heat conductivity of low-dimensional systems1-13. It is still an open and 

challenging problem to understand the macroscopic law of heat conduction and their statistical 

properties in terms of determistic microscopic dynamics. To simulate the transport processes 

in lattices, two heat baths with varying temperatures are combined with the vibrations of the 

atoms in the lattice with nearest neighbour interactions. Based on the numerical modelling of 

lattices, statistical observables from the microscopic Hamiltonians will be obtained, and the 

results will provide essential hints for the formulation of the microscopic theory of heat 

conduction. 

It is important to note that this topic is not just an academic one. Researchers have already been 

able to experimentally quantify the size dependent of the heat conductivity in numerous one- 

14and two-dimensional15–17  microscopic materials due to the rapid progress in nanotechnology. 

Despite the fact that the microscopic mechanism of heat conduction remains uncertain, 

simulations have already been used to investigate the possible uses of nonlinear lattice chains 

for designing thermal devices. Through simulations, solid state thermal diode18–23 and thermal 



28 
 

transistor 24 prototypes have been developed by leveraging the nonlinear characteristics of one-

dimensional lattice models. These thermal devices manage heat current in a manner similar to 

how transistors and semiconductor diodes regulate electric current. The definitions and  

characteristics of lattices model, temperature, heat flux, and heat baths—all of which are 

employed in numerical simulations—will be covered in the section that follows. Later, origin 

of the research problem will be discussed followed by references.  

1.2.2 Basic definitions 

In this thesis, we are discussing one research problem related to heat conduction in one 

dimensional (1D) lattice, which will be in chapter 5. A schematic representation of a 1D lattice 

can be seen in Fig 1.2.1, where a chain of 𝑁 particles are interacting with each other. Terminal 

particles come into contact with heat bath at left and right ends, having two different 

temperatures 𝑇𝐿 and 𝑇𝑅 respectively. 

Fig. 1.2.1: Schematic representation of a one-dimensional (1D) chain attached to heat bath at 

left and right ends with two different temperatures. 

The potential consists of a nearest-neighbour interaction potential, 𝑉(𝑥𝑖 − 𝑥𝑖−1), and an 

external on-site potential, 𝑈(𝑥𝑖), and, thus the corresponding Hamiltonian for a general one-

dimensional lattice model is: 

𝐻 = ∑ [
𝑝𝑖

2

2𝑚𝑖
+ 𝑈(𝑥𝑖)] + ∑ 𝑉(𝑥𝑖 − 𝑥𝑖−1)

𝑁

𝑖=1

𝑁

𝑖=1

 

(1.2.2) 

Where 𝑥𝑖 and 𝑝𝑖 are the displacement from equilibrium position and momentum of the 𝑖th 

particle, respectively. The 𝑚𝑖 and 𝑁 stands for the mass and the number of particles on the 

lattice chain respectively. The general lattice models can be categorised on to two different 

classes based on on-site potential, lattices with on-site potential, 𝑈(𝑥𝑖) ≠ 0,  and without, 

𝑈(𝑥𝑖) = 0. In lattices, without on-site potential, total momentum is conserved, but not in those 

with on-site potential. 

Fermi–Pasta–Ulam (FPU) lattice models are very famous examples for lattices without on-site 

potential25. The one with quadratic plus cubic (𝑘4 = 0) and quadratic plus quartic (𝑘3 = 0) 
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are known as FPU-α and FPU-β models, respectively. The Hamiltonian is for FPU chain is 

represented as 

𝐻 = ∑
𝑝𝑖

2

2𝑚𝑖
+ ∑ 𝑘2

(𝑥𝑖 − 𝑥𝑖−1)2

2
+ 𝑘3

(𝑥𝑖 − 𝑥𝑖−1)3

3
+

𝑁−1

𝑖=1

𝑁

𝑖=1

𝑘4

(𝑥𝑖 − 𝑥𝑖−1)4

4
 

(1.2.3) 

 

Examples for the lattices with on-site potential includes Frenkel–Kontrova (FK) model as well 

as discrete 𝜙4 model. Hamiltonian corresponds to Frenkel–Kontrova model includes: 

𝐻 = ∑ [
𝑝𝑖

2

2𝑚𝑖
+

𝑘

2
(𝑥𝑖 − 𝑥𝑖−1)2 +

𝑉

4𝜋2
(1 − cos 2𝜋𝑥𝑖)]

𝑁

𝑖=1

 

(1.2.4) 

This model 26,27 reflects a chain of particles harmonically connected with their nearest 

neighbours and subjected to a sinusoidal on-site (substrate) potential.  

And Hamiltonian for the discrete 𝜙4 model28 corresponds to: 

𝐻 = ∑ [
𝑝𝑖

2

2𝑚𝑖
+

𝑘

2
(𝑥𝑖 − 𝑥𝑖−1)2 +

𝛽

4
𝑥𝑖

4]

𝑁

𝑖=1

 

(1.2.5) 

This model mimics both the quadratic inter-particle interaction as well as quartic non-linear 

on-site potential.  

1.2.3 Temperature 

According to equilibrium statistical physics, the ensemble average of the particle’s kinetic 

energy defines the system's temperature: 

𝑇 =  〈
∑ 𝑝𝑖

2𝑁
𝑖=1

𝑁𝑚
〉  =  〈

𝑝𝑖
2

𝑚
〉 

(1.2.6) 

Where 〈. 〉 defines canonical ensemble average. The value of Boltzmann constant is chosen as 

one. The averages can be simply determined in simulations, by tracing single trajectories over 

time, which is the time average of the corresponding system. 

𝑇 =  lim
𝑡→∞

∑ 𝑝𝑖
2(𝑡)

𝑁𝑡𝑚
𝑡=1

𝑁𝑡
=

𝑝𝑖
2̅̅ ̅̅

𝑚
 

(1.2.7) 

Here, the systems under examination must be ergodic in order for ensemble average to be 

equivalent to time average.  
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We require a different explanation for the local temperature equilibrium (LTE) in non-

equilibrium situations, which are precisely the situations in which heat conduction occurs with 

a temperature gradient. In simulations, the time averages of the kinetic energy of the particles 

along the lattice chain changes gradually, with an exception of the two ends of the chain coming 

into contact with heat baths. This will make sure that system reaches non-equilibrium steady 

state. The interaction of the system with heat baths leads to contact resistances due to the effect 

of boundary conditions. This can be seen as the jumps in the temperature profile of the system.  

1.2.3 Heat flux 

We require a precise description of heat flux at the microscopic level in order to quantify the 

heat conductivity29. The continuity equation of energy flow in the system can be used to 

describe the heat flux, 𝑗(𝑥, 𝑡), at time, 𝑡, in the position, 𝑥, implicitly as: 

𝑑ℎ(𝑥, 𝑡)

𝑑𝑡
+

𝜕𝑗(𝑥, 𝑡)

𝜕𝑥
= 0 

(1.2.8) 

Where ℎ(𝑥, 𝑡) is the energy density. The energy density for the general one-dimensional lattice 

chains can be defined as the total of the individual contributions situated in the instantaneous 

position of each particle. 

ℎ𝑖 =
𝑝𝑖

2

2𝑚𝑖
+ 𝑈(𝑥𝑖) +

1

2
[𝑉(𝑥𝑖+1 − 𝑥𝑖) + 𝑉(𝑥𝑖 − 𝑥𝑖−1)] 

(1.2.9) 

Both kinetic and potential energy, 𝑈(𝑥𝑖), related to the (possible) interaction with an external 

field are represented by the first two terms on the right hand side of the equation Eq. (1.2.9). 

Half of the potential energy of pairwise interactions with adjacent particles is given by the final 

term in the Eq. (1.2.9).  

In the case of modest oscillations around the equilibrium location, density fluctuations can be 

disregarded, in which case ℎ𝑖 equals the energy density multiplied by the lattice spacing, ′𝑎′. 

Time derivative of the ith particle’s energy contribution, ℎ𝑖  

𝑑ℎ𝑖

𝑑𝑡
= 𝑚𝑖𝑥̇𝑖𝑥̈𝑖 + 𝑥̇𝑖𝑈′(𝑥𝑖)

−
1

2
[(𝑥̇𝑖+1 − 𝑥̇𝑖)𝐹(𝑥𝑖+1 − 𝑥𝑖) + (𝑥̇𝑖 − 𝑥̇𝑖−1)𝐹(𝑥𝑖 − 𝑥𝑖−1)] 

(1.2.10) 

function, 𝐹, can be defined as 𝐹(𝑥) = −𝑉′(𝑥). Equations of motion can be written as  

𝑚𝑖𝑥̈𝑖 = −𝑈′(𝑥𝑖) − 𝐹(𝑥𝑖+1 − 𝑥𝑖) + 𝐹(𝑥𝑖 − 𝑥𝑖−1) (1.2.11) 

 



31 
 

𝑑ℎ𝑖

𝑑𝑡
= −

1

2
[(𝑥̇𝑖+1 + 𝑥̇𝑖)𝐹(𝑥𝑖+1 − 𝑥𝑖) − (𝑥̇𝑖 − 𝑥̇𝑖−1)] 

(1.2.12) 

This equation can be rewritten as, 

𝑑ℎ𝑖

𝑑𝑡
+

𝑗𝑖 − 𝑗𝑖−1

𝑎
= 0 

(1.2.13) 

with the physical significance that heat flux into and out of the particle at the 𝑖𝑡ℎparticle equals 

the rate of change in energy at this particle. By comparing eq. (1.2.12) and Eq. (1.2.13), we 

obtained the following formula for the local heat flux, 𝑗𝑖, in one dimensional lattice chains as 

𝑗𝑖 =
1

2
𝑎(𝑥̇𝑖+1 + 𝑥̇𝑛)𝐹(𝑥𝑖+1 − 𝑥𝑖) 

(1.2.14) 

1.2.3 Heat bath 

The thermal reservoirs connecting to the system's two ends are called heat baths (Thermostats) 

Fig. 1.2.1. They depict how noise and environmental dissipation affect systems from both ends. 

The literatures have discussed a variety of bath models to simulate the mechanism of thermal 

reservoir and in this section, we will discuss one such stochastic heat bath. 

▪ Langevin heat bath 

By including the force terms in the equation of motion of the particles in contact with the baths, 

we may simulate the heat bath. Additional forces include both dissipative as well as a stochastic 

term. Stochastic part will be modeled using Gaussian white noise. So, the corresponding 

equations of motions for the particles 𝑖 = 1and 𝑖 = 𝑁 in the lattice chain connected to Langevin 

reservoirs as: 

𝑝̇1 = 𝑓1 −
𝛾𝐿

𝑚1
𝑝1 + 𝜂𝐿(𝑡) 

                                    𝑝̇𝑖  =  𝑓𝑖  for 𝑖 = 2,3, . . . . . . 𝑁 − 1, 

                                    𝑝̇𝑁  =  𝑓𝑁 −
𝛾𝑅

𝑚𝑁
𝑝𝑁 + 𝜂𝑅(𝑡) 

 

 

              (1.2.15) 

Where 

𝑓 = −
𝜕𝐻

𝜕𝑥𝑖
 

(1.2.16) 

is the Newtonian force on the 𝑖𝑡ℎ particle. The noise 𝜂𝐿,𝑅 is given by Gaussian with zero mean 

and fluctuation-dissipation relation connect them to the dissipation coefficients 𝛾𝐿𝛾,𝑅.  

〈𝜂𝐿(𝑡)𝜂𝐿(𝑡′)〉  =  2𝑘𝐵𝑇𝐿𝛾𝐿𝛿(𝑡 − 𝑡′)  
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                                    〈𝜂𝑅(𝑡)𝜂𝑅(𝑡′)〉  =  2𝑘𝐵𝑇𝑅𝛾𝑅𝛿(𝑡 − 𝑡′) 

                                    〈𝜂𝐿(𝑡)𝜂𝑅(𝑡′)〉  =  0 

(1.2.17) 

Where 𝑇𝐿, 𝑇𝑅  represents the temperature at the left and right heat bath respectively. 

1.2.4 Origin of the research problem 

The primary focus of all the research studies related to heat conduction in low dimensional 

systems has been on the prerequisites and conditions for the validity of Fourier law of heat 

conduction in one-dimensional (1D) systems. Consider a one-dimensional shaped material 

with length , 𝑁,  which is maintained at two different temperatures, 𝑇𝐿 , and 𝑇𝑅 at both ends. 

Now, the Fourier law for one-dimensional chain length, 𝑁, as: 

𝐽 = 𝜅(𝑇𝐿 − 𝑇𝑅) (𝑁 − 1)𝑎⁄  (1.2.18) 

Where 𝑎 is the chain period and 𝑇𝐿,𝑅 is the temperature of the left or right chain end 

respectively. Using Eq. (1.2.18), we can determine how the length, 𝑁 = (𝑁 − 1)𝑎,  affects the 

thermal conductivity and temperature, T, of the one-dimensional chain, for a small temperature 

difference, ∆𝑇 = (𝑇𝐿 − 𝑇𝑅) ≪ 𝑇 = (𝑇𝐿 + 𝑇𝑅) 2⁄ , as: 

𝜅(𝑁, 𝑇) = 𝐽(𝑁 − 1)𝑎 𝑇𝛿𝑇⁄ ,       𝛿 = (𝑇𝐿 − 𝑇𝑅) 𝑇⁄   ≪ 1 (1.2.19) 

The Fourier law Eq. (1.2.18) is satisfied if the given finite limit exists. 

𝜅̅(𝑇) = lim
𝑁→∞

𝜅(𝑁, 𝑇) (1.2.20) 

Thermal conductivity for the chain in this case has a finite value. On the other hand, chain has 

an anomalous thermal conductivity, where it will diverge with the chain length 𝑁,  for 𝜅 → ∞ 

for 𝑁 → ∞. 

To date, a vast number of studies have been carried out on the numerical modelling of heat 

transfer in one-dimensional (1D) lattices. Heat transport anomalies in 1D nonlinear systems 

have been well understood, since the time of the illustrious work of Fermi, Pasta, and Ulam25. 

In integrable systems (such as harmonic chain, Toda chain, and chain of rigid disks) Lebowitz 

et al. 30 shown that no temperature gradient can be formed which leads to divergent thermal 

conductivity and thus Fourier law is not valid. Here, the value of heat flux, 𝐽, is independent on 

the chain length of the lattice, 𝑁,  𝜅(𝑁)~𝑁 for 𝑁 → ∞. Since noninteracting quasiparticles do 

the heat transport in this case, energy transports freely along the chain without any loss (energy 

is not dissipated) and so temperature gradient is not established throughout the heat transfer.  

Presence of temperature gradient in non-integrable systems suggests the existence of scattering. 

The problem is far more challenging with nonintegrable systems, though. Some nonintegrable 
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systems obey the Fourier law, while the others do not. In some non-integrable systems like 

Lorentz gas model4,7, Frenkel-Kontorova (FK) model 11,26,27, the ding -a- ling and alike 

models8,9,31,32, the heat flux, 𝐽, is proportional to 𝑁−1 and thus thermal conductivity, 𝜅, is 

independent of system size, 𝑁, and thereby Fourier’s law is obeyed. While in other non-

integrable systems like Fermi – Pasta – Ulam chain33,34, diatomic Toda chain35, Heisenberg 

spin chain5, the disordered harmonic chain35–37, diatomic 1D gas of colliding particles38–40  and 

so on, it is the other way around. Their heat flux, 𝐽, is proportional to 𝑁𝛼−1, with 𝛼 as the 

divergent exponent and corresponding thermal conductivity is divergent, 𝜅~𝑁𝛼 , as one 

approaches thermodynamic limit 𝑁 → ∞ with 0 < 𝛼 < 1. So, the distinct heat conduction 

behaviours in the two groups of nonintegrable systems suggest that the basic mechanism of 

heat transfer must be different. Also, these observation direct the fact that, although 

nonintegrability is required for a temperature gradient, it is insufficient to ensure that a one-

dimensional lattice will have normal thermal conductivity.  

On the other hand, convergence in  thermal conductivity with the system size was observed for 

chain with on-site potential. Examples include Frenkel-Kontorova chain11,41, chain with 𝜙4 on-

site potential42,43, chain having sine-Gordon on-site potential44, and  the chain of hard disks 

with the substrate potential45 and so on, which have normal thermal conductivity. The external 

potential, which simulates how the chain interacts with the substrate, is the key element of all 

these models. The total momentum is not conserved in these systems, because they lack 

translational invariance. According to Ref. [13], having an external potential may be a crucial 

for the system's thermal conductivity to converge. It was proposed that, all isolated one-

dimensional lattices have an anomalous thermal conductivity in which the absence of an 

external potential results in the total momentum conservation of system. This conjecture was 

invalidated in Refs. [46,47] , which established that the isolated chain of connected rotators (a 

chain with a periodic interparticle potential) has a normal (finite) thermal conductivity. 

In this thesis, we are focussing on the one-dimensional momentum conserving systems, 

especially lattice model with Fermi-Pasta-Ulam (FPU) interaction potential. Both theoretical 

calculations1,48–55 and numerical simulations2,34,42,50,56–59 predicted the anomalous behaviour of 

thermal conductivity, 𝜅, in these models. Even though, the divergence value of the scaling 

exponent,  𝛼,  lies in the range of 0 ≤ 𝛼 ≤ 1, specific values of 𝛼 varies in all the calculations2. 

Generally, three different values, 𝛼 = 1 2⁄  51,52,54,55, 𝛼 = 1 3⁄  32,49,50,53,56,58, and 𝛼 = 2 5⁄  31,53 

have been obtained in different calculations. In the case of FPU- lattices with symmetric double 

– well (DW) neighbouring interaction potential, two different temperature regimes of thermal 
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transport has been observed with, 𝛼 = 0.33, at high temperature and weak divergence was 

observed at low temperature 56.  Similar observation was also made for FPU−𝛼𝛽 lattice with  

divergence exponent, 𝛼 = 0.4, at high temperature and  weak divergence at low temperature 

60. So, with this research scenario, we investigated the temperature dependent divergence in an 

asymmetric double -well potential for nearest neighbour interaction potential using non-

equilibrium simulation method. 
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CHAPTER 2 

Effect of roughness in the periodic potential in the transport of a 

driven inertial ratchet aided by Gaussian noise. 

2.1 Introduction 

Fluctuations and random perturbations have a dominant role on the transport in the microscale 

realm. It is not always true that randomness restrains the transport properties of the particle. 

However, positive role of both equilibrium and non-equilibrium fluctuations can be seen in 

many instances such as in the area of fluctuation-induced transport which includes Brownian 

ratchets 1 stochastic resonance 2, intracellular transport 3, molecular motors 4–6 biochemical and 

genetic regulatory systems 7 and so forth. In which, Brownian ratchets can rectify the unbiased 

random thermal fluctuations and generate directed motion of particle through the mechanism 

of breaking the spatial symmetry of periodic potential as well as the principle of detailed 

balance. In recent years, anomalous transport properties of ratchet systems have been one of 

the research topics in the various disciplines 8–14. In particular, directed transport and diffusion 

anomalies of Brownian particles in a driven ratchet moving in a smooth periodic potential have 

been investigated widely 11,15–20. Most of the Brownian ratchet models, researchers have 

considered the smooth periodic potential. However, it is quite well established that potential 

can have fine structures and these microscopic spatial heterogeneity in the potential energy 

landscape is known as the roughness in the potential. This can be visualized as hills and valleys 

of various heights and widths. Examples includes in the protein folding pathway 21–23, where 

the potential surface of protein have hierarchical structures holding a number of minima and 

maxima revealing spatial heterogeneity of the potential landscape. Rough periodic potential is 

known to exist in many other systems such as diffusion in structural glasses24, activation gating 

of ion channels25,26 and supercooled liquids27,28.  

 

Zwanzig modeled the rough potential by super imposing an oscillating trigonometric function 

in a background of smooth potential function. He studied mean first passage time and found 

that roughness reduces the effective diffusion coefficient at low temperatures and thereby the 

thermally activated barrier crossing rate of the particle29. Ansari developed a robust numerical 

approach to solve the Smoluchowski equation describing diffusion along a spatially rough 

potential30. Pollak et. al.  used master equation for studying the rate theory for rugged energy 

landscape31. Mondal et. al. calculated directed current and efficiency of a thermal ratchet 
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moving in a rough periodic potential and found that roughness holds back the current in a 

ratchet potential in the presence of Gaussian noise32. However, under Lévy noise particle 

exhibits quite different transport characteristics in rough periodic potential. There, roughness 

help to accelerate barrier crossing leading to enhanced current 33–35. Most of the works on rough 

periodic potential considered only overdamped systems leaving the inertial term due to the 

mass of the particle. How spatial heterogeneity in the periodic potential affects the transport in 

a driven inertial ratchet under the Gaussian environment has not been considered yet. This class 

of model dealing with a periodic system has been discussed in several problems including 

Josephson junctions36 dynamics of adatoms under the influence of a time-periodic force37, 

transport of cold and ultracold atoms in optical potentials38, to name but a few. In this chapter 

we discuss the effects of roughness in an asymmetric periodic potential on the diffusion as well 

as the transport of a Brownian particle in a time-based-periodic force driven inertial ratchet 

aided by Gaussian noise.   

 

2.2 Model 

We considered motion of an inertial Brownian particle of mass 𝑀 moving in a spatially 

asymmetric periodic potential, 𝑈(𝑥). The particle is driven by an unbiased time-periodic force 

𝐴 cos(Ω𝑡) with an amplitude 𝐴 and an angular frequency Ω . This force drives the particle away 

from thermal equilibrium and thereby the break the principle of detailed balance. The presence 

of unbiased random thermal fluctuations is modeled by 𝛿-correlated Gaussian white noise 𝜂(𝑡) 

of zero mean 〈𝜂(𝑡)〉  = 0, which satisfy Einstein’s fluctuation-dissipation relation 

〈𝜂(𝑡)𝜂(𝑡′)〉 = 2Γ𝑘𝐵𝑇𝛿(𝑡 − 𝑡′), where 𝑘𝐵, Γ and 𝑇 are the Boltzmann’s constant, frictional 

coefficient and temperature, respectively.  

Dynamics of the driven inertial Brownian particle is described using the Langevin equation,  

 

𝑀𝑥̈ =  −𝑈′(𝑥) −  Γ𝑥̇ + 𝐴 cos(Ω𝑡) + 𝜂(𝑡). (2.1) 

 

The dot and prime represents the derivative with respect to time (𝑡) and position (𝑥), 

respectively. The ratchet potential, 𝑈(𝑥), is a combination of asymmetric smooth 𝑈0(𝑥) and 

rough periodic potential 𝑈1(𝑥).  

𝑈(𝑥) = 𝑈0(𝑥) + 𝑈1(𝑥) (2.2) 

The smooth potential with periodicity 2𝜋𝐿 and barrier height Δ𝑈 has the form, 
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𝑈0(𝑥) = −Δ𝑈 [sin (
𝑥

𝐿
) +

1

4
sin (

2𝑥

𝐿
+ 𝜓 −

𝜋

2
)]. (2.3) 

 

Reflection symmetry of the periodic potential 𝑈0(𝑥0 + 𝑥) =  𝑈0(𝑥0 − 𝑥) is broken by the 

asymmetry parameter 𝜓 of the potential. The rectification of the unbiased nonequilibrium 

fluctuations into a noise-induced directed current requires breaking the spatial symmetry of the 

periodic potential. 𝑈1(𝑥) has the form, 

𝑈1(𝑥) =  𝜀0(𝑐1 sin Λ1𝑥 + 𝑐2 sin Λ2𝑥). (2.4) 

 
𝜀0 measures the amplitude of the roughness in the periodic potential. Λ and 𝑐 terms represent 

the periodicities and relative amplitudes of the two sine components in the rough part of the 

potential, respectively. The periodicity of the rough potential should typically be higher than 

the periodicity of the smooth potential, and the amplitude of the roughness should typically be 

low.  

In order to decrease the number of parameters in the model equation, we nondimensionalized 

the Langevin equation (2.1) using the previous method20 and the nondimensional version of 

the Langevin equation in given  as 

𝑚𝑥̈̂ =  −𝑈̂′(𝑥̂) − 𝑥̇̂ − 𝑎 cos(𝜔𝑡̂) + 𝜂̂(𝑡̂) (2.5) 

 

The hat (∧) symbolises the rescaled variables, where 𝑥̂ = 𝑥 𝐿⁄ , and  𝑡̂ = 𝑡 𝜏0⁄  with 𝜏0 =

Γ𝐿2 ∆𝑈⁄  were used to scale the position and the time, respectively. Rescaled values for the 

particle's mass, the periodic driving's amplitude, and the frequency of the driving are  𝑚 =

𝑀 Γ𝜏0⁄ ,  𝑎 = 𝐴𝐿 Δ𝑈⁄ , and 𝜔 = Ω𝜏0, respectively. The roughness amplitude and rough 

potential periodicity were rescaled as 𝜀 = 𝜖0 Δ𝑈,⁄ 𝜆1 = Λ1 𝐿⁄  , and  𝜆2 = Λ2 𝐿⁄ , respectively. 

The potential was rescaled to have a periodicity of 2𝜋 and in the form of  𝑈̂(𝑥̂) = 𝑈(𝑥) Δ𝑈⁄ =

𝑈(𝐿𝑥̂) Δ𝑈⁄ . The rough portion of the potential has also changed due to the rescaling of the 

variables as 

𝑈̂1(𝑥̂) =  𝜀(𝑐1 sin 𝜆1𝑥̂ + 𝑐2 sin 𝜆2𝑥̂) (2.6) 

 

Throughout the study, 1, 50, 100, 1, and 0.5 were chosen as the values for Δ𝑈, 𝜆1, 𝜆2, 𝑐1 and 𝑐2 

respectively. Fig. 2.1 depicts the asymmetric periodic potential with (𝜀 = 0.1) and without (𝜀 =

0) roughness for the asymmetric parameter 𝜓 = 0.5𝜋.  
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Fig. 2.1: Schematic representation of the asymmetric periodic potential 𝑈(𝑥) without (𝜖 = 0) 

and with roughness (𝜖 = 0.1).  

The fluctuation-dissipation relation has now changed to  〈𝜂̂(𝑡̂)〉 = 0 and 〈𝜂̂(𝑡̂)𝜂̂(𝑡̂′)〉  =

2𝑄𝛿(𝑡̂ − 𝑡̂′), where the thermal noise has been rescaled as 𝜂̂(𝑡̂) = (𝐿 Δ𝑈⁄ )𝜂(𝜏0𝑡̂). The 

dimensionless strength of thermal noise is defined as 𝑄 = 𝑘𝐵𝑇 Δ𝑈⁄ . We used the dimensionless 

Langevin equation (Eq. (2.5)) for all calculations, and for convenience's sake, we do not 

explicitly display the (∧) in the remaining sections of the study.  

The quantifier we used to study the diffusion process of the Brownian particle position 𝑥(𝑡)  

and its spread of trajectories is Mean square displacement (MSD) was used to study the 

diffusion process of the Brownian particle. MSD was calculated by averaging over a set of 

trajectories with random initial positions and velocities and defined as 

〈Δ𝑥2(𝑡)〉  =  〈[ 𝑥(𝑡)−< 𝑥(𝑡) >]2〉. (2.7) 

 

The power-law scaling of the MSD generally be used to depict the nature of the diffusive 

process as  

〈Δ𝑥2(𝑡)〉  ∝  𝑡𝛼  (2.8) 

 

The scaling exponent  𝛼 = 1, 0 < 𝛼 < 1 and 𝛼 > 1 signify normal diffusion, sub-diffusion, 

and super-diffusion of the particle, respectively. As a result, the rate of rise of the MSD is 

greater in the super-diffusive domain of anomalous diffusion than it is in the sub-diffusion 

regime. The ballistic motion of the particle is represented by 𝛼 = 2. Consequently, the time 

dependent diffusion coefficient 𝐷(𝑡) can be expressed as 
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𝐷(𝑡) =
< ∆𝑥2(𝑡) >

2𝑡
 

(2.9) 

 

According to Eq. (2.8) and (2.9), 𝐷(𝑡) for normal diffusion must be time independent, whereas 

𝐷(𝑡) for super- and sub-diffusion must change over time. 

Next, we estimated the time-dependent ensemble- and period- average velocity 𝑣(𝑡) to quantify 

the directed transport of the particle under asymmetric rough potential and it is defined as 

𝑣(𝑡) =
1

𝑇𝑝
∫ 𝑑𝑠〈𝑥̇(𝑠)〉

𝑡+𝑇𝑝

𝑡

 
(2.10) 

 

Where 𝑇 = 2𝜋 𝜔⁄  is the period of the time-periodic force. Using the second-order predictor-

corrector method, we numerically solved the Langevin equation (Eq. (2.5)) in order to quantify 

𝐷(𝑡) and 𝑣(𝑡). The ensemble averaging was carried out over 20,000 trajectories with initial 

conditions of 𝑥 and 𝑥̇, which were uniformly distributed in the ranges [0,2𝜋] and 

[−2,2], respectively. In order to capture the impact of fine structures of roughness in the 

potential, a very small (10−4) integration time step was used. The parameters of  𝑚, 𝑎, 𝜔, and 

were selected as 6.0, 1.899, 0.403, and 0.5𝜋, respectively, in accordance with earlier research 

on the transient anomalous diffusion20.  

2.3 Results and Discussions 

This study mainly presents the effect of roughness in the asymmetric periodic potential on the 

transport properties of a Brownian particle driven by a time-based periodic force. Systematic 

study of time-dependent diffusion coefficient of the same in a smooth periodic potential was 

undertaken in previous studies20. It was shown that diffusion anomalies can be observed in 

finite times. In related work, it was shown that transient anomalous diffusion can occur from 

low to moderate noise intensity19. 
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Fig. 2.2: Impact of roughness on the diffusion process. Time dependent diffusion coefficient 

𝐷(𝑡) for different values of roughness 𝜀 and noise strength 𝑄. 

In order to have an understanding on how roughness affects the diffusive nature of the particle, 

we studied the time-dependent diffusion coefficient, 𝐷(𝑡), (Eq. (2.9)). In Fig. 2.2, we present 

the diffusive behavior of the particle for different amplitudes of roughness ranging from 𝜀 = 0 

to 𝜀 = 0.1 for different values of noise intensity, 𝑄. A considerable change on the diffusive 

behaviour of the particle with roughness is observed, especially at lower noise intensity regime. 

At 𝑄 = 0.00001, 𝐷(𝑡) shows an increasing nature with respect to time 𝑡 for smooth (𝜀 = 0) 

periodic potential. This shows that, the particle is at super-diffusive stage of motion which gets 

gradually change with the introduction of roughness. We noted a crossover from super 

diffusive to sub diffusive motion for 𝜀 > 0.005. Then, for small amplitude of roughness, we 

observed a crossover of three stages of diffusion as reflected like super-diffusion to sub-

diffusion to normal diffusion of driven Brownian particle. So hereby, we infer that intermediate 

range of roughness (0.01 ≤  𝜀 ≤ 0.02) enforces the particle to have normal diffusion at 

asymptotic time limit, where 𝐷(𝑡) is time independent. With higher roughness the particle 

undergoes sub-diffusion. This kind of diffusive behaviour of particle stays till at noise intensity, 

𝑄 = 0.0004. For the intermediate to higher noise intensity, 𝑄 > 0.004, the impact of 
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roughness is negligible in compared to the diffusive nature of the particle in a smooth periodic 

potential. This can be due to the consequence of particle’s own diffusive motion at higher noise 

intensity which over power in compare to the effect of roughness. Normal diffusion is 

established at higher noise intensity irrespective of the amplitude of roughness. 

 

Fig. 2.3: Maximum value of time dependent diffusion coefficient 𝐷(𝑡) as function of amplitude 

of roughness 𝜀 for different values of noise intensity 𝑄.  

In order to find the extent of diffusion, we present, the dependence of the maximum value of 

time dependent diffusion coefficient 𝐷(𝑡) on the amplitude of roughness 𝜀 for different noise 

intensity 𝑄 (Fig.2.3). There, we observed the reduction of 𝐷(𝑡) at weak noise intensity and at 

higher noise intensity, the effect of rough periodic potential on the diffusion process is trivial.  
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Fig. 2.4: Ensemble- and period-averaged velocity, 𝑣(𝑡), as a function of time 𝑡 for different 

values of 𝑄 and 𝜀. 

In Fig. 2.4, we numerically investigate the ensemble- and period-averaged velocity 𝑣(𝑡) 

defined by the Eq. (2.10) in order to have a detailed study on the changes that occur over a 

longer period of time. In smooth periodic potential 𝜀 = 0, the system relaxes to 𝑣(𝑡) ≈ 0  at 

lower noise intensity 𝑄 = 0.00001. On the introduction of roughness (𝜀 ≠ 0), the long-time 

𝑣(𝑡) increases considerably and it shows decreasing trend with the amplitude of roughness. 

This nature of the transport, however, depends on the strength of the noise intensity. At 𝑄 =

0.0004, the particle shows a non-zero steady state velocity of particle even in smooth potential 

(𝜀 = 0) which shows that the particle is having directed transport and the transport gradually 

decreases with the amplitude of roughness. Similar behaviour is followed at higher noise 

strength also. Introduction of roughness makes a considerable changes in the mode of transport 

as well as in the velocity relaxation process. 
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Fig. 2.5: Asymptotic ensemble- and period-averaged asymptotic velocity, 〈𝑣〉,  as a function of  

𝑄 for the indicated values of 𝜀 and two different values of asymmetric parameter, 𝜓. The 

vertical line dashed lines separate the lower and higher noise regimes. 

Now, in order to study the consequences of roughness along with the role of noise intensity on 

the directed transport of the driven Brownian particle, we next studied the asymptotic long-

time velocity, 〈𝑣〉, [= lim
𝑡→∞

𝑣(𝑡)] and the impacts of these two parameters on 〈𝑣〉. In Fig. 2.5, 

we choose two different values of asymmetric parameter 𝜓, and plotted 〈𝑣〉 as a function of 

noise strength 𝑄 for different values of roughness amplitude 𝜀. The particle has very low 

magnitude of asymptotic velocity in smooth periodic potential, below the noise strength  𝑄 <

0.0001. Beyond this 𝑄, we can see the magnitude of 〈𝑣〉 suddenly increase and then decreases 

with the strength of the noise intensity. In the presence of roughness, particle shows altogether 

different behaviour in terms of 〈𝑣〉 at weak noise intensity (𝑄 ≤ 0.0001).  The asymptotic 

velocity increased with the introduction of roughness and then it decreased at large roughness. 

The reversed scenario is observed at higher noise strength, where the 〈𝑣〉 without roughness is 

higher than with roughness. Similar behaviour is observed for higher asymmetric parameter 

𝜓 = 0.8𝜋 (Fig. 2.5 (b)). 
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Fig. 2.6: Ensemble- and period averaged asymptotic velocity 〈𝑣〉  as a function of roughness 

amplitude  𝜀  for different values of noise strength 𝑄 for two different values of 𝜓. Left and 

right column correspond to weak and strong noise limits, respectively.  

In order to better visualize the effect of roughness at the weak and strong noise regime on the 

directed transport, we next studied the asymptotic velocity 〈𝑣〉 as a function of 𝜀 and presented 

in Fig. 2.6. At the weaker noise strength, displayed in panel (a) (𝜓 = 0.5𝜋)  and panel (b) (𝜓 =

0.8𝜋), for two different values of asymmetric parameters, 〈𝑣〉 increases with increasing 

roughness, and after reaching a maximum, it drops. We observed similar behaviour for higher 

asymmetry of the rough periodic potential [Fig. 2.6(a) and (b)]. In comparison to the smooth 

case, the particle transport is noticeably higher in the presence of roughness. For moderate to 

large noise strength, the asymptotic velocity decreases with the roughness in the lower and 

higher asymmetry of the potential [Figs. 2.6(c)-2.6(d)]. These findings demonstrate that in the 

weak noise limit, small to moderate roughness in the potential permits the particle to move 

effectively in one direction, however at the moderate to high noise limit, the roughness hinder 

the directed transport. Small wells due to the spatial heterogeneity in the periodic potential 

serve as steps in a ladder to cross the potential energy barrier. The roughness causes the particle 

to temporarily become caught inside these tiny wells in the weak noise limit, which improves 

the directional motion. The particle trapping is lost in the high noise limit, though, because the 

intensity of noise is greater compared to the depth of these tiny wells. The transport is reduced 

at higher noise strength, because the particles are now trapped in the potential wells for a longer 

time, which reduces their directional mobility. 
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Fig. 2.7 Basins of attraction of asymptotic velocity 〈𝑣〉 from the deterministic dynamics for 

different values of roughness amplitude 𝜀. The colour bar at the top represents the magnitude 

of asymptotic velocity 〈𝑣〉.  

In order to comprehend the behaviour of the system at the weak noise limit, we explored the 

deterministic dynamics of the system by setting 𝑄 = 0. We integrated the Langevin equation 

(Eq. (2.5)) with 𝑄 = 0 with random initial positions and velocities to obtain the particle’s 

steady-state asymptotic velocity. The basins of attraction of the asymptotic velocity change 

significantly due to the spatial heterogeneity in the periodic potential. There are three basins of 

attractors for the particle under smooth periodic potential – two with large positive and negative 

velocities which will be categorized as running states of the particle and one with nearly zero 

velocity where the particle remains in locked states (Fig. 2.7, 𝜀 = 0). The area occupied by the 

positive and negative velocities are almost equal. Small roughness in the periodic potential 

causes tiny positive velocity regions to percolate into the negative velocity regions while 

leaving the positive velocity regions unaffected. When the amplitude of roughness reaches 𝜀 =

0.005, the frequency of these small regions of positive velocity in the negative regions got rise, 

dramatically expanding the region of positive velocity as a whole. These small regions 
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demonstrate the chaotic aspect of the dynamical system, which increase with roughness. The 

majority of the region is covered by zero asymptotic velocity at large roughness (𝜀 ≥ 0.05). 

The reduction of the tiny regions shows that the system is not chaotic at high levels of 

roughness. 

 

Fig. 2.8 Comparison of asymptotic velocity  〈𝑣〉 with 𝜀 from the deterministic (top) and 

stochastic systems with weak noise strength 𝑄 = 0.0001 (bottom) for the different values of 

asymmetric parameter 𝜓.  

The asymptotic condition of the Brownian particle in the weak noise limit is strongly 

influenced by the basins of attraction. In this case, the deterministic forces will greatly 

influence the particle's behaviour. As a result, we determined the particle's asymptotic average 

velocity (〈𝑣〉𝑑) by averaging the velocities from the deterministic calculations. By adjusting 

the asymmetry parameter 𝜓, we can see in how the deterministic dynamics depend on 

roughness in the potential. Across various values of the asymmetric parameter, 𝜓, the average 

asymptotic velocity rises and falls after reaching a maximum with roughness (Fig. 2.8(a)). 

Based on this calculation, we predict that the stochastic system in the weak noise intensity will 

behave similarly to the deterministic system. In Fig. 2.8(b), we plot the ensemble- and period-

averaged asymptotic velocity, 〈𝑣〉, as a function of roughness amplitude 𝜀, with 𝑄 = 0.0001 

for different values of 𝜓.  These calculations imply that, both in deterministic and stochastic 

dynamics, the directed transport of the Brownian particle increases dramatically in the presence 

of roughness.  
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Fig. 2.9: The time series of position (first row) and velocity (second row), phase-space map 

(third row), and the power spectra of velocity (fourth row) in the absence of noise 𝑄 = 0 for 

varying amplitude of roughness, 𝜀. The initial value chosen for position and velocity were 0.1 

and 0, respectively.  

The asymptotic velocity’s basins of attraction (Fig. 2.7) estimated from deterministic dynamics 

suggest that the chaotic dynamics of the system have a significant role in determining the nature 

of the transport of a driven Brownian particle moving under rough periodic potential. In order 

to better understand the physical picture behind enhancement of roughness induced current in 

the weak noise limit, we analysed time series of position and velocity, phase-space map and 

power spectra of the deterministic dynamical system (𝑄 = 0) (Fig. 2.9). When 𝜀 = 0, the 

system displays a running state in which the particle moves with a net negative velocity while 

showing oscillatory dynamics in velocity (first and second rows). The resulting phase-space 

contains the signature of the running state (third row). The velocity power spectrum (fourth 

row) displays a discrete spectrum with sharp peaks at distinct frequencies signifies the purely 
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oscillatory (nonchaotic) behaviour of the system. In the presence of roughness (𝜀 = 0.005), 

the particle switches to the running state in which they are “climbing” in a positive direction 

by overcoming the barrier of the potential well. However, the irregular oscillatory velocity 

profile and phase space indicate the chaotic nature of the dynamical system under roughness. 

The upward and downward spikes in the power spectrum indicates that the attractor might be 

weakly chaotic. The velocity profile of the particle with 𝜀 = 0.02 indicates that it traverses 

from one potential well to another and the spectrum is overwhelmed by downward spikes. 

These two characteristic features clearly indicate the strongly chaotic nature of the system. At 

𝜀 = 0.025, the system stays in locked states, in which particle oscillates inside the potential 

well and average velocity is zero. The phase space maps shows that the trajectory of the particle 

winds arounds in a particular direction and leads to almost a torus-like structure. The spectrum 

for this case consists of sharp peaks at discrete frequencies which contains both upward and 

downward spikes. These findings suggests that system is quasi-periodic at this regime. For 𝜀 =

0.1, the particle stays in one particular well and follows locked state. The time series of both 

position and velocity shows periodic behaviours. The spectrum shows definite peaks at discrete 

frequencies suggesting a periodic attractor for this particular regime. 

 

Fig.2.10 Bifurcation plot as a function of amplitude of 𝜀 for the deterministic system. 

In order to demonstrate the qualitative change in the dynamics, which transitions from strictly 

periodic to chaotic and then back to periodic with the rise in roughness, we plotted the 

bifurcation diagram of the deterministic system (Fig. 2.10). This shows that the probable cause 

of the rise in directed transport with the introduction of modest amplitude of roughness is the 

system's chaotic behaviour.  
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2.4 Conclusion 

Physical and chemical systems often have spatial heterogeneity in the smooth potential. 

Previous studies looked into how roughness affected particle transport32,39  and barrier-crossing 

dynamics29 in overdamped systems. These studies shown that roughness in the potential, 

hinders the dynamics of crossing barriers29 and can play opposing roles in the movement of 

overdamped particles under periodic potential32,39. Here, we looked at diffusion and transport 

of a Brownian particle in a driven inertial ratchet when the spatial periodic potential is rough 

in nature. We demonstrate that the roughness of the potential has a significant impact on the 

nature of diffusion. The phenomenon of transient anomalous diffusion in the driven inertial 

ratchet becomes less under roughness20. Due to the roughness, the particle's transition from a 

super-diffusive to sub-diffusive motion occurs much earlier. The particle which displays 

transient anomalous diffusion under the smooth potential in the weak noise limit, exhibits 

normal diffusion, due to moderate roughness in their periodic potential. We demonstrate that 

the roughness has different kinds of impact on the transport of the particle in the weak and 

moderate-strong noise limits, as measured by the ensemble- and period-averaged asymptotic 

velocity. Small amplitude roughness considerably increases the transport of particles across 

different levels of asymmetry in the periodic potential in the weak noise limit. However, in the 

moderate-strong noise limit, roughness significantly decreases the transport. Therefore, we 

demonstrate here a constructive role of small amplitude roughness in the movement of particle 

in an inertial driven ratchet. Study on the deterministic dynamics of the system, reveals that 

under smooth potential, a nonchaotic system transforms into a chaotic system as roughness 

increases, but in the large roughness limit, the system reverts to its nonchaotic state of 

dynamics. These, results underline the fact that in the situation of driven inertial ratchet in a 

Gaussian heat bath, moderate roughness increase the directed transport due to the chaotic 

dynamics of the system caused by the roughness.  

Previous research has demonstrated that inertial Brownian particles under periodic potential 

controlled by time-periodic forces can exhibit chaotic dynamics depending on the parameter 

space of the system20,40. According to a recent study, driven inertial ratchet systems can exhibit 

chaotic dynamics depending on the form parameter of the smooth periodic potential41. 
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According to these researches, the chaotic dynamics displayed by the particle moving in a 

rough periodic potential are caused by the potential's related parameters.  
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CHAPTER 3 

Effect of roughness in the periodic potential in the transport of a 

driven Brownian ratchet in the presence of external load   

3.1 Introduction 

Among many kinds of anomalous transport properties of the Brownian ratchets,1–5 the 

surprising phenomenon of absolute negative mobility (ANM) of Brownian particles, where the 

particle moves in a direction opposite to the external load has attracted attention of a lot of 

researchers6–15.  Such a physical phenomenon would be in opposition to Newton's equations of 

motion at equilibrium, however in many experimental systems, negative mobility has been 

seen under non-equilibrium condition.  It has been experimentally observed in variety of 

systems such as the non-linear response in p-modulation-doped quantum wells16, absolute 

negative conductance in sequential resonant tunnelling semi-conductor super lattices17,18, 

absolute negative resistance in a three terminal configuration in a two dimensional electron gas 

19, negative absolute resistance in a Josephson junction 20. Additionally, ANM has been seen 

in classical systems such charged colloidal particles in microfluidic channels21,22. Potential 

technological benefits of ANM include particle separation based on mass23–25.  

In this framework of noise-induced transport, the nature of the energy landscape has an 

important role in the dynamics of the driven Brownian ratchets 26–30. In contrast to smooth 

periodic potential, rough energy landscapes stand out in real physical systems such as in protein 

folding pathway31,32, gating of ion channels in bacteria33, slow diffusion in structural 

glasses34,35, super cooled glasses36,37and so on. The spatial heterogeneity thus became a relevant 

factor in the transport properties of Brownian ratchets. We can mimic rough periodic potential 

in simulation by super-imposing a fast-oscillating trigonometric function on background 

potential, where the amplitude and frequency of the imposed function should be smaller and 

higher than the other respectively38. 

The impact of roughness on a thermal ratchet under overdamped dynamics was examined in 

the context of Brownian ratchet, and it was observed that roughness acts as a hinder to the 

transport, supporting an earlier discovery by Zwanzig on the estimation of first passage time 

across rough potential barriers26,38.  Recent studies have shown that roughness enhances 

transport in both the underdamped as well as in the over damped dynamics in the presence of 

Levy noise. Here roughness in the potential surface ladders up the particle over the potential 

barrier27,28,39. In the last chapter, we discussed that small amplitude of roughness in an 
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asymmetric periodic potential enhances transport relative to the smooth potential for inertially 

driven Brownian particle40. 

 

In this chapter, we studied the transport of a driven inertial Brownian particle moving in a 

symmetric rough periodic potential in presence of an external load. Since absolute negative 

mobility (ANM)  has  potential technological applications in the area of mass separation, our 

objective was to determine the fate of ANM under rough potential of a driven Brownian particle 

in its inertial regime. 

 

3.2 Model 

We have examined the Brownian particle of mass, 𝑀, moving in a rough symmetric periodic 

potential, 𝑈(𝑥), driven by a time-periodic force, 𝐴 cos(Ω𝑡), with an amplitude, 𝐴, and an 

angular frequency, Ω, in the presence of an external load, 𝐹.  The dynamics of the particle is 

thus modeled by the Langevin equation and is given by 

𝑀𝑥̈ =  −𝑈′(𝑥) + 𝐹 −  Γ𝑥̇ + 𝐴 cos(Ω𝑡) + 𝜂(𝑡) (3.1) 

 

The dot (·) and prime (´), respectively, represent the derivative with respect to time (𝑡) and the 

position (𝑥). Thermal fluctuations, 𝜂(𝑡), are modeled by Gaussian white noise f zero mean  

〈𝜂(𝑡)〉  = 0, and follows fluctuation-dissipation relation 〈𝜂(𝑡)𝜂(𝑡′)〉 = 2Γ𝑘𝐵𝑇𝛿(𝑡 − 𝑡′) where 

Γ, 𝑘𝐵, and T are dissipation coefficient, Boltzmann constant and temperature, respectively.  

The symmetric potential, 𝑈(𝑥), consists of two parts with a smooth part, 𝑈0(𝑥), and a rough 

part, 𝑈1(𝑥), and given as  

𝑈(𝑥) = 𝑈0(𝑥) + 𝑈1(𝑥). (3.2) 

 

The smooth symmetric periodic potential was taken as 

 

𝑈0(𝑥) = −Δ𝑈 sin (
2𝜋

𝐿
𝑥) 

(3.3) 

 

Where 𝐿 and Δ𝑈 are the period and barrier height, respectively. 𝑈1(𝑥) was chosen as38  

 

𝑈1(𝑥) = Δ𝑈 𝜀0 cos(Λ𝑥) (3.4) 
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Where 𝜀0 and Λ is the amplitude and periodicity of the rough potential, respectively. We 

nondimensionalized Eq. (3.1) to decrease the number of variables, and the dimensionless form 

of the equation of motion is given as15 

 

𝑥̈̂ = −𝑈̂′(𝑥̂) + 𝑓 − 𝛾𝑥̇̂ + 𝑎 cos(𝜔𝑡̂) + 𝜂̂(𝑡̂) (3.5) 

 

We define coordinate 𝑥̂ and time 𝑡̂ for the dimensional analysis as follows:  

 

 

𝑥̂ =
2𝜋𝑥

𝐿
, 𝑡̂ =

𝑡

𝜏0
, with 𝜏0 =

𝐿

2𝜋
√𝑀 ∆𝑈⁄  (3.6) 

 

In the process of nondimensionalization, we rescaled all the parameters as 𝛾 = 𝜏0Γ 𝑀⁄ , 𝑎 =

𝐴𝐿 2𝜋Δ𝑈⁄ , 𝑓 = 𝐹𝐿 2𝜋⁄ Δ𝑈, 𝑄 = 𝑘𝐵𝑇 Δ𝑈⁄ , 𝜀 = 𝜀0 Δ𝑈⁄ , 𝜆 = Λ𝐿 2𝜋⁄ , and 𝜔 = 𝜏0Ω. The 

rescaled thermal noise, 𝜂̂(𝑡̂)=(𝐿 2𝜋Δ𝑈⁄ )𝜂(𝜏0𝑡̂),  follows zero mean, 〈𝜂̂(𝑡̂)〉  = 0, and the 

fluctuation-dissipation relation, 〈𝜂̂(𝑡̂)𝜂̂(𝑡̂′)〉  = 2𝛾𝑄𝛿(𝑡̂ − 𝑡̂′). The rescaled potential is given 

by 𝑈̂(𝑥) = 𝑈((𝐿 2𝜋⁄ )𝑥) ∆𝑈⁄  with the period 𝐿 = 2𝜋. The dimensionless rough symmetric 

potential is given as:  

𝑈̂(𝑥̂) =  − sin(𝑥̂) + 𝜀 cos(𝜆𝑥̂) (3.7) 

 

Where 𝜀 determines the amplitude of roughness. In this work, we set the value of 𝜆 as 50. The 

smooth (𝜀 = 0) and rough (𝜀 = 0.1) periodic potential with (𝑓 = 0.5) and without (𝑓 = 0) 

the external load are shown in Fig. 3.1. 

 

Fig. 3.1: Symmetric periodic potential, 𝑈(𝑥), without and with roughness and the external 

load. 
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As done in the previous chapter, we calculated the asymptotic ensemble and period average 

velocity,  〈𝑣〉,  as41  

〈𝑣〉  =  lim
𝑡→∞

1

𝑇
∫ 𝑑𝑠 〈𝑥̇(𝑠)〉

𝑡+𝑇

𝑡

 
(3.8) 

 

Where 〈∙〉 indicates ensemble averaging over initial conditions for the position and velocity. 

The period average was calculated over one period, 𝑇 =
2𝜋

𝜔
, of the external driving force.  We 

used second-order predictor-corrector approach for numerically integrating the Langevin 

equation (Eq. 3.5). The initial position and velocities were uniformally distributed over the 

range [0,2𝜋] and [−2,2] respectively. We used small step size, 10−4 ×  
2𝜋

𝜔
, in order to accord 

the small fine structures of roughness in the potential. All the numerical calculations involved 

ensemble averaging of 2048 trajectories and the simulations were run for a total time of 

10000 × 𝑇. We calculated 〈𝑣〉 in two ways. In the first method Eq. (3.8) was used where we 

averaged the velocity over a period in the long-time limit and then averaged over an ensemble 

of trajectories. In the second method, we calculated 〈𝑣〉 by subtracting the position of the 

particle at a transient time (𝑡 = 20𝑇) from the position at final time (𝑡 = 10000𝑇) and 

dividing the difference by time interval, and finally averaging it over an ensemble of 

trajectories. We demonstrated that both the approaches provide the same results (Fig 3.2(a) and 

3.2(b)). Here we emphasize that computing the 〈𝑣〉 from the position is computationally less 

costly than the calculating  〈𝑣〉 from the first method, since it demands larger number of 

ensemble averaging to reduce noise. 

 3.3 Results and Discussions 

In the previous chapter, we discussed the effect of rough asymmetric periodic potential on the 

transport of a driven inertial Brownian particle. There, we found smaller amplitude of 

roughness enhances directed transport in the inertial regime. In what follows here, we 

considered the combination of rough symmetric periodic potential along with the presence of 

a constant external load and studied the transport properties of a driven particle. 

Our chosen dynamics of driven inertial ratchet is characterised by a six-dimensional parameter 

space (𝜀, 𝑎, 𝜔, 𝛾, 𝑓, 𝑄) controlling the dynamics of the driven inertial ratchet. Previous research 

has demonstrated the significance of the parameters in determining the nontrivial behaviour of 

the same system under a smooth periodic potential42. We first determined the parameter space 
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related to the anomalous negative mobility (ANM) of the system by numerically scanning each 

parameter independently since our goal is to identify a roughness-induced ANM condition. 

Since our objective is to identify a roughness-induced ANM condition, we first identified a 

parameter space significant to the anomalous negative mobility of the system by quantitatively 

scanning each parameter individually.  

 

Fig. 3.2: Ensemble and period averaged asymptotic velocity, 〈𝑣〉 , calculated from 𝑥(𝑡) (a) and 

𝑥̇(𝑡) (b) as a function of 𝛾 for different values of roughness amplitude 𝜀. The shaded part 

indicates the region of 𝛾 where the system shows ANM. (c) The plot of difference between the 

〈𝑣〉 without and with roughness (〈𝑣〉𝜀=0 − 〈𝑣〉) with 𝛾. The vertical line represents maximum 

difference between the 〈𝑣〉 without and with roughness. Other parameters were 𝑓 = 0.015, 𝑄 =

0.00035, 𝑎 = 1.589, and 𝜔 = 0.559. 

Fig.3.2 (a) illustrates the dependency of  〈𝑣〉, computed from 𝑥(𝑡), on the dissipation constant, 

𝛾, for various degrees of the roughness 𝜀 for the external load 𝑓 = 0.015. In Fig.3.2 (b),  〈𝑣〉 

versus 𝛾 plot, 〈𝑣〉  was computed using Eq. (3.8). The visual comparison of these two plots 

reveals that the results from both methods are nearly identical. The system displays ANM in 

two regions (areas under shaded). The system shows ANM under smooth potential in the region 
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on the left, and as the potential becomes rougher, the extent of ANM decreases. Although both 

the smooth (𝜀 = 0) and the rough (𝜀 ≠ 0) systems display ANM in the region on the right, 

there is a region of where ANM is only caused by the roughness in the potential, where the 

smooth system produces positive values of 〈𝑣〉 against a positive load of f = 0.015. So, there is 

a region of where ANM can only be driven by the rough potential. We evaluated the difference 

of 〈𝑣〉 between the smooth and rough systems (〈𝑣〉𝜖=0 − 〈𝑣〉) and identified the value of 

dissipation constant, 𝛾, corresponding to the maximum difference (Fig. 3.2 (c)).  

 

Fig. 3.3: Parameter scanning for amplitude, 𝑎, (a), frequency, 𝜔, (b), of the external driving 

force. The vertical lines represent the selected values of the respective parameters where the 

difference between the average velocities without and with roughness was maximum. The 

values of 𝛾, 𝑄, and 𝑓 were 0.7710, 0.00035, and 0.015, respectively. In the scans of 𝑎 and 𝜔, 

𝜔 and 𝑎 were chosen to be 0.558 and 1.589, respectively. 

To determine the amplitude (𝑎) and frequency (𝜔) of the external driving force, we used a 

similar technique of parameter scanning (Figs. 3.3(a) and 3. 3(b)). These calculations also 

reveal that the system does not exhibit directed transport for a large range of parameter values, 

indicating that even for normal transport against an external force 𝑓 an optimal combination of 

parameters is required. Based on these calculations, we set the values of 𝛾, 𝑎,and 𝜔 for the 

remaining calculations to be 0.771, 1.589, and 0.558, respectively. 
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Fig. 3.4: The variation of  〈𝑣〉 as a function of external load, 𝑓, for different values of 𝑄 and 𝜀. 

Other parameters were 𝛾 = 0.771, 𝑎 = 1.589, and 𝜔 = 0.558. 

After establishing the parameter space necessary for roughness-driven ANM, we looked into 

how the external load affected the anomalous nature of the transport across various values of 

𝜀. Fig. 3.4(a) displays 〈𝑣〉 as a function of 𝑓 for various values of 𝜀 at a particular value of 𝑄. 

This shows that under the smooth potential (𝜀 = 0), the system does not show anomalous 

transport across a wide range of loads. However, the system exhibits ANM with the addition 

of roughness, and at higher load the particle changes the direction of current from negative to 

positive causing current reversal. Although the system does not exhibit ANM at higher 

roughness, the amount of ANM initially increases with roughness (more negative 〈𝑣〉). 

Anomalous transport and current reversal are the two main features of transport that result from 

the introduction of roughness into the periodic potential. It also makes note of the existence of 

an optimal roughness at which the system exhibits the maximum ANM. Over a range of values 

of 𝜀, the load corresponding to the largest negative 〈𝑣〉 was found to be at 𝑓 = 0.03. Repeating 

these calculations for higher noise intensities reveal that (Figs. 3.4(b-d)) the ANM and current 

reversal are reduced in the presence of high noise. In particular, when 𝑄 rises, the range 𝑓 for 

which the system exhibits ANM shrinks. It is significant to notice that, for varied noise strength 

values, the transport feature of the system with smooth potential is mostly unaffected. As a 
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result, it appears that ANM and current reversal due to the roughness in the potential can be 

observed in the weak noise limit.  

 

Fig 3.5: The plot of 〈𝑣〉as a function of external load 𝑓, at noise intensity 𝑄 = 0.0004 for 

different values of 𝜀. Other parameters were the same as in Fig. 3.4. 

Our calculations demonstrate that roughness-induced ANM occurs at a smaller roughness 

amplitude as well as for smaller range of positive load. Small amplitude of roughness in the 

potential surface may function as a barrier to the particle's movement in the small positive 

range of load, pushing the particle to move in the opposite direction and resulting in negative 

mobility. We calculated 〈𝑣〉 for the same domain of roughness and other parameters in the 

negative range of load to confirm that (Fig. 3.5).  In the negative load region, the current 

direction is exactly opposite to the direction of the external load, suggesting the fact that small 

amplitude roughness force the driven particle to travel against the load direction at smaller 

region of load.  
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Fig. 3.6: The variation of 〈𝑣〉 as a function of roughness amplitude, 𝜀, for different values of 

𝑄. Other parameters were the same as in the Fig. 3.4. 

Following that, we investigated the relationship between the 〈𝑣〉 and  𝜀 at a load corresponding 

to the maximum negative velocity (𝑓 corresponding to the minimum in Fig. 3.4) at various 

values of noise intensity 𝑄 (Fig. 3.6). Across a range of noise intensities, system shows normal 

transport for smooth periodic potential (𝜀 = 0). With increasing amplitude of  roughness, it 

exhibits negative average velocity that dramatically drops with the increase of roughness. As 

the roughness increases further, the value of the negative current decreases, the direction of the 

current changes to positive, then back to negative when it reaches the large roughness limit. As 

a result, system experiences multiple current reversals as roughness in the potential increases. 

ANM is more prominent around the limit of lower noise intensity 𝑄 . We calculated 〈𝑣〉 as a 

function of 𝑄 for various values of 𝜀 (Fig. 3.7) at an external load (𝑓 =  0.03) equivalent to 

the greatest ANM as shown in Fig. 3.4. The system with smooth potential displays ANM in 

the limit of extremely weak noise range (𝑄 < 0.0002). The area of ANM rises with the 

addition of small amplitude of roughness, while large roughness compels the particle to move 

in the direction of the external load, which reduces the ANM. In the intermediate range of noise 

intensity (0.0002 < 𝑄 < 0.003), the rough system only moves in the opposite direction of the 

load exhibiting a significant amount of ANM in compared to the system in smooth potential. 

Therefore, roughness-induced ANM can be observed at the intermediate noise intensity. 
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Fig. 3.7: The variation of 〈𝑣〉 as a function of 𝑄 for the indicated values of 𝜀. The shaded part 

indicates the region of 𝑄 where roughness-driven ANM occurs. Other parameters were the 

same as in the Fig. 3.4.  

 

Fig. 3.8: Temporal oscillation of velocity, 𝑣(𝑡) (a). The average fraction of time with negative 

( 〈𝑡−〉) and positive (〈𝑡+〉) velocity during one-time full period (𝑇) of external driving are 

plotted as a function of 𝜀 for different values of 𝑄 (b, c). The correlation plots of < 𝑣 > with 

〈𝑡−〉 for different values of 𝑄. Other parameters were the same as in the Fig. 3.4. 

The direction of the current was connected to the direction of the trajectory’s running states7,43.  

In running states, 𝑥(𝑡), typically displays a growing (or decreasing) values of 𝑥 over time 𝑡, 
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where the average velocity is nonzero. In Fig 3.8(a) 𝑣(𝑡) oscillates throughout time 𝑡 due to 

the periodic driving force, regardless of the magnitude of the current. We determined the 

average fraction of time the system spends with positive (〈𝑡+〉)  or negative (〈𝑡−〉) velocities 

throughout the course of the external driving period (𝑇) in order to establish a correlation 

between the ANM and the system dynamics. It makes sense that if a system spends more time 

in the negative velocity phase, the sign of 〈𝑣〉 must also be negative. As a result, either 〈𝑡−〉 or 

〈𝑡+〉 must be examined in order to determine the sign of the current. Fig. 3.8(b) presents the 

variation of 〈𝑡−〉 with amplitude of roughness 𝜀 and shows that an increase in 〈𝑡−〉 causes an 

increase in the average negative velocity (Fig.3.6). As a result, variation of 〈𝑡−〉 with the 𝜀 in 

tune with the  〈𝑣〉  versus 𝜀 plot in Fig. 3.5. Accordingly, 〈𝑡+〉 behaves in a complementary 

manner (Fig. 3.8 (c)). Also, large negative 〈𝑣〉 strongly correlates with large 〈𝑡−〉 (Fig. 3.8(d)). 

These indicate that the direction of the average current in the transport is ultimately determined 

by changes in the balance of positive and negative velocity phases in the temporal oscillation 

of 𝑣(𝑡). 

 

Fig. 3.9: Bifurcation diagram (𝑥̇𝑚𝑎𝑥 𝑣𝑠 𝜀 ) of the deterministic dynamical system with 𝑄 = 0 

and 𝑓 = 0.03 (top panel). Representative phase-space plots for the indicated values of 𝜀 

(bottom panel). 

Chaotic dynamics has been proposed as the origin of ANM in earlier studies7,8,44.  We generated 

the bifurcation diagram, where the maximal temporal velocity, 𝑥̇𝑚𝑎𝑥, is plotted against the 

roughness parameter 𝜀, for the deterministic (𝑄 = 0) system, to see whether chaotic dynamics 
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may have had any part in generating ANM (Fig. 3.9). The system's degree of chaos varies 

considerably with the amplitude of roughness 𝜀. The system is relatively chaotic for extremely 

small (𝜀 > 0.0075) and intermediate (0.05 < 𝜀 < 0.07) roughness ranges, and highly chaotic 

for other ranges of roughness. Comparison between the bifurcation diagram and 〈𝑣〉 versus 𝜀 

plot in Fig. 3.6 show a substantial association between the ANM and the system's weak chaotic 

dynamics. We plotted the phase-space diagram of the system for the values of 𝜀 corresponding 

to the maximum ANM (𝜀 = 0.005 and 𝜀 = 0.06) and found that the system is weakly chaotic 

at those values of roughness. On the other hand, it is highly chaotic near the roughness (𝜀 =

0.035), which is where the system exhibits its maximum positive velocity. So, it appears that 

the ANM caused by roughness has its roots in weak chaos. 

  

Fig. 3.10 (a) The plot of mean square displacement, 〈∆𝑥2(𝑡)〉, as a function of time for different 

values of 𝜀. The ballistic diffusion (〈∆𝑥2(𝑡)〉 ∝ 𝑡2) in the early phase and normal diffusion in 

the asymptotic phase (〈∆𝑥2(𝑡)〉 ∝ 𝑡) are indicated by the dashed lines. (b) The plot of time-

dependent diffusion coefficient, 𝐷(𝑡), as a function of time. Parameters were the same as in 

Fig. 3.4. 

It is known that driven inertial Brownian ratchets under smooth periodic potential exhibit 

diffusion anomalies. Previous research has suggested the presence of super- and sub-diffusive 

regimes at various time scales41,45–47. We examined the mean square displacement, 〈∆𝑥2(𝑡)〉(=

〈[𝑥(𝑡) − 〈𝑥(𝑡)〉]2〉), and the time-dependent diffusion coefficient,  𝐷(𝑡)(= 〈∆𝑥2(𝑡)〉 2𝑡)⁄ , to 
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identify the nature of diffusion under roughness of the potential (Fig. 3.10). The system exhibits 

ballistic behaviour in the early period, and normal diffusion is established in the later time (Fig. 

3.10(a)). While normal diffusion is established significantly later in the smooth system, it is 

enforced sooner in the rough system. As roughness increases, the ballistic phase's duration gets 

reduced. The 𝐷(𝑡) plots suggest that the smooth system takes some to achieve normal 

diffusion, where 𝐷(𝑡) becomes time independent in compared to the system in rough periodic 

potential. In light of these findings, it can be concluded that the ANM caused due to the 

roughness is not a by-product of anomalous diffusion.  

Since it becomes essential in breaking the system's spatial symmetry in the absence of an 

external load, the importance of asymmetry in periodic potentials has been thoroughly 

investigated in the context of ratchet models. Hence, we examined how the asymmetry affected 

the ANM when the periodic potential was rough in nature. 𝑈2(𝑥) was added to 𝑈(𝑥) in Eq. 

(3.7) to generate asymmetry into the potential48.  

𝑈2(𝑥) =
∆

2
sin(2𝜋𝑥) 

(3.9) 

Where ∆ is the asymmetry parameter. Asymmetry in the symmetric periodic potential can lead 

to the breaking of reflection symmetry of the potential, while there is no external load40,41. The 

full form of the potential energy now becomes 

𝑈(𝑥) = − sin(𝑥) + 𝜀 cos(𝜆𝑥) +
Δ

2
sin(2𝜋𝑥) 

(3.10) 

 

The impact of asymmetric parameter Δ on the transport of driven Brownian particle moving in 

rough periodic potential is shown in Fig. 3.11 for different values of 𝜀. Roughness induces 

ANM in the range of modest asymmetry (Δ = 0.1). According to the change of 〈𝑣〉 with Δ, 

both smooth and rough systems can experience current reversal due to asymmetry in the 

periodic potential. The system displays multiple current reversals, at small roughness 𝜀 =

0.001. As the asymmetry increases, the current moves in the direction determined by the 

external load. According to these findings, the asymmetric periodic potential can also produce 

an ANM, and the directionality of the current can be adjusted by varying the asymmetric 

parameter of the potential. 
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Fig. 3.11 The plot of  〈𝑣〉 as a function of asymmetry parameter ∆, for the indicated values of 

𝜀 with a load 𝑓 = 0.03. Other parameters were 𝑄 = 0.0004, 𝛾 = 0.771, 𝑎 = 1.589, and 𝜔 =

0.558. 

3.4 Conclusion 

We have numerically studied the impact of roughness in the symmetric periodic potential on 

the transport properties of a driven inertial Brownian ratchet. Our major aim was to look at 

how roughness affected the absolute negative mobility ANM, a type of anomalous nature of 

movement, when the particle is moved in the opposite direction of external load. Given that 

ANM is sensitive to parameter space42, we have identified an ideal parameter space where 

ANM is solely produced by the roughness in the periodic potential. From our findings, we 

established that roughness-driven ANM is a feature of the system especially, in the 

intermediate noise intensity. We observed that the average duration of the negative velocity 

phase is longer than the average duration of the positive velocity phase in the temporal 

oscillation of velocity during a period of external driving, in the presence of roughness. This 

indicates that the shift of balance towards the negative velocity phase in the temporal 

oscillations of velocity which leads to the particle to move in opposite direction of external 

load. Also, we noticed that the system exhibits weak chaos in the roughness regime where 

ANM is found, suggesting a potential link between weak chaos and the roughness-induced 

ANM. Roughness-driven ANM is also feasible for the particle moving in an asymmetric 

periodic potential, where multiple current reversal is generated. 

It has been observed that charged colloidal particles in microfluidic devices with alternating 

large and small gaps can induce ANM in the presence of a periodic external electric field. 
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Periodic physical barriers with intervening gaps can create periodic potential energy landscape.  

The microscopic heterogeneity of the gaps' sizes was theorised to be the source of ANM in 

such systems21,22. We can use our roughness-induced ANM observation as an illustration of 

how such occurrences are theoretically taken into account. The potential energy function's 

involvement in generating ANM in a driven inertial ratchet was also recently highlighted in 

theoretical studies49. Our research on roughness-driven ANM therefore fits under the general 

category of potential energy's role in ANM. Roughness has historically been seen as an 

annoyance since it was thought to hinder with particle transport in ratchet and barrier crossing 

dynamics26,38. Our calculations highlight a constructive role of roughness in the anomalous 

transport properties of Brownian ratchet and thus may play a part in the development of mass 

separation and bioanalytical applications. 
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CHAPTER 4 

Effect of roughness in the periodic potential in the transport of driven 

coupled inertial Brownian particles. 

4.1 Introduction 

Over the past years, there has been a lot of research interest in the study of transport processes 

for nonlinear systems that can derive useful work from unbiased nonequilibrium thermal 

fluctuations1–3. Brownian ratchets are such non-linear systems that can rectify unbiased thermal 

fluctuations and generate directed motion by breaking the spatial symmetry of the periodic 

potential as well as the principle of detailed balance of the system1,3–6. Understanding the 

underlying mechanism of the ratchet effects are of great importance especially in the study of 

molecular motors in biological systems7-18 as well as the transport process in intracellular 

transport of cargo on microtubule networks19, transport of ion through nanopores20, metastasis 

of cancer cells21, Josephson phase in super conductors22–24 and so on.  Also, these spatially 

periodic ratchet systems exhibit various anomalous transport phenomena such as stochastic 

resonance25, anomalous diffusion26–29, absolute negative mobility30–37, current reversal38-48          

and so forth. Among these, absolute negative mobility (ANM) is a form of anomalous transport 

behaviour, in which the particle moves in the direction opposite to the external load. This 

transport phenomena relies on the coexistence of both nonequilibrium and nonlinearity and 

ANM cannot observe in a one-dimensional system without these two characteristics30,49. ANM  

has been experimentally observed in instances such as  current voltage properties of a 

Josephson-Junction device50,51, negative absolute mobility in GaAs quantum wells52, absolute 

negative conductance in semi-conductor super lattices53,54. The separation of particles is one 

possible technical applications based on ANM55–59.  

Mostly all these research studies focussed on the directed transport of particles in periodically 

smooth energy landscapes. However, it is well established that there are several instances 

where we can observe the existence of spatial heterogeneity in the potential such as in protein 

folding pathway60,61, diffusion in structural glasses62,63, supercooled liquids64,65, gating of ion 

channels66,67. So, it will be interesting to study the effects of spatial heterogeneity in the energy 

landscapes in the transport of Brownian ratchets. We studied the effect of roughness in the 

transport of inertially driven Brownian particles in the presence of Gaussian noise. There, we 

found that small amplitude of roughness enhances the transport of Brownian particle in the 



80 
 

weak noise limit in compared to smooth periodic potential68  as well as we found a parameter 

regime where ANM is observed only due to the roughness in the periodic potential69. In both 

these studies, we focused on the directed transport of a single inertially driven Brownian 

particle moving in a rough periodic potential. However, the interaction of the particles may 

also affect the directed transport of particles. So, in this chapter, we investigated how the spatial 

heterogeneity in the potential affects the transport characteristics of inertially driven interacting 

Brownian particles.  

4.2 Model 

We considered a set of  𝑛 Brownian particles of identical mass 𝑀 that interact among each 

other through harmonic interaction moving in a symmetric rough periodic potential, 𝑈(𝑥), in 

the presence of an external load, 𝐹. The system is driven out of equilibrium by an unbiased 

time-periodic force, 𝐴 cos(Ω𝑡), with an amplitude of, 𝐴, and angular frequency, Ω, which will 

break the principle of detailed balance of the system. The equation of motion of the system can 

be described by Langevin equation as 

𝑀𝑥̈𝑖 =  −𝑈′(𝑥𝑖) + 𝐹 + 𝐴 cos(Ω𝑡) −  Γ𝑥̇𝑖 + 𝜉𝑖(𝑡) + ∑ 𝑘(𝑥𝑗 − 𝑥𝑖)𝑗≠𝑖 . (4.1) 

 

Where 𝑖 = 1,2 … , 𝑛. The dot and prime represents the derivative with respect to time (𝑡) and 

co-ordinate (𝑥𝑖) of the i-th particle, respectively. 𝑘, Γ, 𝑘𝐵 , 𝑇 corresponds to the strength of 

nearest-neighbour interaction between the particles, frictional coefficient, Boltzmann constant 

and temperature of the heat bath respectively. The thermal fluctuations, 𝜉(𝑡), are modeled by 

𝛿-correlated Gaussian white noise of zero mean, 〈𝜉𝑖(𝑡) = 0〉, and it follows fluctuation-

dissipation relation, 〈𝜉𝑖(𝑡)𝜉𝑗(𝑡′)〉  = 2Γ𝑘𝐵𝑇𝛿𝑖𝑗(𝑡 − 𝑡′). 

The ratchet potential, 𝑈(𝑥), is a combination of symmetric smooth, 𝑈0(𝑥), and rough periodic 

potential, 𝑈1(𝑥), as  

𝑈(𝑥) = 𝑈0(𝑥) + 𝑈1(𝑥) (4.2) 

 

The smooth symmetric periodic potential was taken35 as 

𝑈0(𝑥) = −Δ𝑈 sin (
2𝜋

𝐿
𝑥) 

(4.3) 

 

Where 𝐿 is the period and Δ𝑈 is the barrier height. The rough potential 𝑈1(𝑥)  was chosen as 

and super imposed70 with the smooth potential 𝑈0(𝑥).  
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𝑈1(𝑥) = Δ𝑈 𝜀0 cos(Λ𝑥) (4.4) 

 

Where 𝜀0 and Λ are the amplitude and periodicity of the rough potential, respectively. In order 

to reduce the number of variables, we nondimensionalized Eq. (4.1), and the dimensionless 

form of the motion equation is given as 

𝑥̈̂𝑖 = −𝑈̂′(𝑥̂𝑖) + 𝑓 + 𝑎 cos(𝜔𝑡̂) − 𝛾𝑥̇̂𝑖 + 𝜉𝑖(𝑡̂) + ∑ 𝑘̂(𝑥̂𝑗 − 𝑥̂𝑖)

𝑗≠𝑖

 
(4.5) 

Where 𝑥̂ =
2𝜋𝑥

𝐿
, 𝑡̂ =

𝑡

𝜏0
 and 𝜏0 =

𝐿

2𝜋
√

𝑀

∆𝑈
.  Other parameters are 𝑎 =

𝐴𝐿

2𝜋∆𝑈
, 𝑓 =

𝐹𝐿

2𝜋∆𝑈
, 𝑘̂ =

𝑘𝐿2

∆𝑈
, 

𝜔 = Ω𝜏0, 𝑄 =
𝑘𝐵𝑇

∆𝑈
, 𝜀 =

𝜀0

∆𝑈
, 𝜆 =

Λ𝐿

2𝜋
, and 𝛾 =

𝜏0Γ

𝑀
. The rescaled thermal noise is 𝜉𝑖(𝑡̂)(=

(𝐿 2𝜋∆𝑈⁄ )𝜉𝑖(𝜏0𝑡̂)) follows zero mean, 〈𝜉𝑖(𝑡̂)〉 = 0 and rescaled fluctuation-dissipation 

relation of 〈𝜉𝑖(𝑡̂)𝜉𝑗(𝑡̂′)〉 = 2𝛾𝑄𝛿𝑖𝑗(𝑡 − 𝑡′).  The dimensionless potential is 𝑈̂(𝑥̂) =

𝑈((𝐿 2𝜋⁄ )𝑥)/∆𝑈 and have the period 𝐿 = 2𝜋. The rescaled version of the entire potential is 

now given as 

𝑈̂(𝑥̂) =  − sin(𝑥̂) + 𝜀 cos(𝜆𝑥̂) (4.6) 

 

Where 𝜀 quantifies the amplitude of roughness in the periodic potential and we set the value of 

rescaled frequency of rough potential 𝜆 as 50 throughout the study. The symmetric rough 

periodic potential is presented in Fig. 4.1. 

 

Fig. 4.1: Schematic representation of two interacting Brownian particles in rough symmetric 

potential. 
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We estimated the asymptotic ensemble average velocity71 〈𝑣𝑖〉 of the i-th particle to get an 

understanding on the effects of roughness in a symmetric periodic potential on the dynamical 

behavior of driven interacting Brownian particle in the presence of an external load.  

〈𝑣𝑖〉 = lim
𝑡→∞

〈
𝑥𝑖(𝑡) − 𝑥𝑖(𝑡0)

𝑡 − 𝑡0

〉 

 

(4.7) 

Where 𝑡0 is the initial time and the angular brackets represent averaging over an ensemble of 

initial position and velocities. Since the dynamics is ergodic, average velocity 𝑣𝑖 is independent 

of initial position 𝑥𝑖(0) as well as particular noise 𝜉(𝑡) realisation72. The particle-average 

asymptotic velocity 〈𝑣〉̅̅ ̅̅   was calculated as  

〈𝑣〉̅̅ ̅̅ =
1

𝑛
∑〈𝑣𝑖〉

𝑛

𝑖=1

 

 

(4.8) 

Where the overline denotes the averaging over the number of coupled particles. We 

numerically integrated the Langevin equation (Eq.(4.5)) using the second-order predictor-

corrector method. The initial values of 𝑥(0) and 𝑥̇(0) were chosen randomly and sampled from 

uniform distributions over the intervals [0,2𝜋] and [−2,2], respectively. We used a relatively 

small step size 10−4 ×
2𝜋

𝜔
 for the calculations due to the small frequency of the rough part of 

the periodic potential. 

4.3 Results and Discussions 

The dynamics of our chosen system is characterized by an eight-dimensional parameter space 

(𝑓, 𝛾, 𝑎, 𝜔, 𝑄, 𝜀, 𝑘, 𝑛).  According to earlier studies, the parameters play a significant role in 

determining the anomalous transport behaviour of similar systems with a smooth periodic 

potential73,74. 
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Fig. 4.2: Asymptotic average velocity 〈𝑣〉̅̅ ̅̅  vs. external load 𝑓 at different values of interaction 

strength, 𝑘, and 𝜀. The other parameters used in this calculation were 𝑄 = 0.0004, 𝑎 =

1.589, 𝜔 = 0.5580, 𝛾 = 0.756,  and 𝑛 = 3. 

Fig. 4.2 shows the dependence of particle average asymptotic velocity, 〈𝑣〉̅̅ ̅̅ , on external load, 

𝑓, for different strength of interaction, 𝑘, as well as for different roughness amplitude, 𝜀, for 

three interacting particles (𝑛 = 3). For the smooth periodic potential (𝜀 = 0), it is found that 

the particle average asymptotic velocity, 〈𝑣〉̅̅ ̅̅ ,  has the same sign as the external load 𝑓, which 

is a characteristic feature of a normal transport behaviour, for every value of interaction 

strength 𝑘. However, the roughness in the periodic potential changes qualitative behaviour of 

the response of the system with respect to external load. For weak interaction between the 

Brownian particles with 𝑘 = 0.0001, the particles move opposite to the direction of external 

load for a range of roughness, (0.005 − 0.01). This is the clear signature of absolute negative 

mobility (ANM). It is also interesting to note that the particle changes the direction of current 

several times with increasing 𝑓 in this regime of 𝜀 and such phenomena is called multiple 

current reversal. However in the regime of larger 𝜀, the multiple current reversal start to 

disappear, and the system shows normal transport. Further the phenomena of multiple current 

reversal are limited in the regime of weakly interacting particles, as with increasing value of 𝑘 

the current reversals disappear. Therefore, it is concluded that particles having weak interaction 
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with small amplitude of roughness in the potential surface undergo multiple current reversal 

for a driven coupled inertial ratchet. 

 

Fig. 4.3: Asymptotic average velocity 〈𝑣〉̅̅ ̅̅  vs. 𝑓 for smooth 𝜀 = 0 as well as rough 𝜀 ≠ 0 

periodic surface for both interacting (𝑘 ≠ 0)  as well as noninteracting (𝑘 = 0) particles.  The 

other parameters used in this calculation are 𝑄 = 0.0004, 𝑎 = 1.589, 𝜔 = 0.5580, 𝛾 =

0.756  and 𝑛 = 3. 

In order to establish the effect of particle-particle interaction and roughness on the transport 

properties, in Fig. 4.3 we compared 〈𝑣〉̅̅ ̅̅  vs. 𝑓 plot for the system without (𝜀 =0) and with (𝜀 

=0.0075) roughness for interacting (𝑘 ≠ 0) as well as non-interacting (𝑘 = 0) particles. As 

shown in the previous chapters, there is a stark difference between the transport properties of 

the noninteracting particles with and without roughness. The roughness induces ANM for the 

noninteracting particles. On the contrary in the case of interacting particles, roughness leads to 

multiple current reversals. Therefore, small amplitude roughness in the potential can lead to 

nontrivial observations both in the noninteracting and interacting systems. 
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Fig4.4: The dependence of the interaction strength, 𝑘, on the transport characteristics of 

coupled inertial ratchet for smooth (𝜀 = 0) (left) and rough periodic potential (𝜀 = 0.0075) 

(right). The other parameters were 𝑄 = 0.0004, 𝑎 = 1.589, 𝜔 = 0.5580, 𝛾 = 0.756,  and 𝑛 =

3. 

Results in the previous chapters have highlighted the importance of parameter space for ANM. 

With this anticipation for multiple current reversal for the interacting system under rough 

potential, we have probed the eight-dimensional parameter space, (𝑓, 𝑘, 𝛾, 𝑎, 𝜔, 𝑄, 𝜀, 𝑛). We 

have performed two-dimensional parameter scanning in order to have a detailed study on the 

influence of each parameter on the transport behaviour. Fig. 4.4 presents the impact of 

interaction strength, 𝑘, on the transport characteristics of the driven coupled inertial ratchet 

under the smooth (𝜀 = 0) and rough (𝜀 = 0.0075) periodic potential. The coupled particles 

under smooth potential does not show any anomalous transport property across a range of 

values of 𝑘. On the contrary, the coupled particles under rough potential show multiple current 

reversals for large range of values of 𝑘. We extended similar two-dimensional scan of 

parameters with other parameters to determine the parameter dependence of multiple current 

reversals.  
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Fig. 4.5: Impact of amplitude (𝑎) and frequency (𝜔) of driving force, dissipation constant (𝛾), 

and noise intensity (𝑄) on the multiple current reversals. The value of the parameters were 𝜀 =

0.0075, 𝑄 = 0.0004, 𝑘 = 0.0001  and 𝑛 = 3. The colour bar represents the magnitude of 

asymptotic velocity 〈𝑣〉̅̅ ̅̅ . 

In Fig. 4.5, we present the two-dimensional scans with respect to  𝑎, 𝛾, 𝜔 and 𝑄. These scans 

indicate that for small values of 𝑓, the disc-like structure indicates the negative velocity regions 

suggesting that multiple current reversals can be achieved for the coupled particles under rough 

potential. The narrow range of parameter values of 𝑎, 𝛾 and 𝜔 indicate that the multiple current 

reversal is highly sensitive to the choice of parameter values. Likewise, in all other parameters, 

the plot corresponds to the impact of noise intensity 𝑄 as a function of external load 𝑓, also 

shows multiple current reversal phenomenon in small range of 𝑓. However, the range of noise 

strength over which multiple current reversal can be observed is significantly large as compared 

to other parameters. 
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Fig. 4.6: Asymptotic average velocity 〈𝑣〉̅̅ ̅̅  vs. external load 𝑓 for smooth 𝜀 = 0 as well as rough 

𝜀 ≠ 0 periodic surface for bonding strength 𝑘 = 0.0001 for different number of interacting 

particles, 𝑛. 

To understand how does the number of interacting particles (𝑛) affects the transport properties 

of the coupled inertial ratchet, we calculated the average asymptotic velocity 〈𝑣〉̅̅ ̅̅  as a function 

of 𝑓 for the indicated values of 𝜀 with the interaction strength 𝑘 = 0.0001. As shown in the 

figure, in the absence of roughness (𝜀 = 0), the direction of the transport is in accordance with 

the external load applied irrespective of the number of interacting particles. However, the 

presence of roughness in the periodic potential makes a drastic change in the transport 

behaviour of the system. The Brownian particles change its direction of transport with 

increasing 𝑓 under roughness. A more striking feature is that the number of times the transport 

direction gets reversed is equal to the number of interacting particles, especially in the small 

range of roughness.  For 𝜀 = 0.005, when there are two Brownian particles interacting, we can 

see one peak above and one peak below the zero velocity line which directs that two current 

reversals happened in that regime. We observed three current reversals for 𝑛 = 3 for the 𝜀 =

0.005. This trend can be seen for 𝑛 = 4 for 𝜀 = 0.0075. For higher amplitude of roughness, 

the multiple current reversal effect gradually disappears. This suggest that the reversal of the 

transport direction can be correlated with the presence of spatial heterogeneity in the periodic 

surface as well as the number of interacting particles. 
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4.4 Conclusion 

In this chapter, we discussed how does the interaction between the driven Brownian particles 

moving in a rough periodic potential affects the directed transport properties. Here we 

considered, a model consisting of driven inertial Brownian particles interacting through 

harmonic potential moving in a rough symmetric periodic potential in the presence of external 

load. We numerically studied the average asymptotic velocity as a function of external load for 

interacting particles moving in a rough potential in order to have a detailed picture on the 

transport behaviour. We observed a normal transport behaviour for both interacting as well as 

non – interacting Brownian particles moving in a smooth periodic potential. We have shown 

the phenomenon of absolute negative mobility, where the particles  are moving in a opposite 

direction of the external load applied, in the case, when the non-interacting Brownian particles 

are in a rough periodic potential. In the presence of interaction between the particles, we found 

a parameter regime where multiple current reversals are observed due to the spatial 

heterogeneity in the potential, in small range of external load. Also, especially in the case of 

weak interaction as well as the small amplitude of roughness, the number of times the transport 

direction gets reversed is equal to the number of interacting particles present in the system. We 

presented results showing that, it is possible to have multiple current reversals for interacting 

driven Brownian particles in the presence of roughness in under-damped dynamics.  
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CHAPTER 5 

Investigation of divergence of thermal conductivity in a momentum-

conserving one-dimensional lattice with asymmetric double-well 

potential 

5.1 Introduction 

Since decades, numerous studies have focused on the heat conduction in low-dimensional 

systems1–10. Studying heat conduction in low dimensional systems, helps to understand the 

macroscopic law of heat conduction (Fourier’s law) in its microscopic basis. Fourier law of 

heat conduction relates the heat flux, 𝐽, to the local temperature, ∇𝑇, gradient as  𝐽 = −𝜅∇𝑇, 

where 𝜅 is the thermal conductivity, and it is considered as an intrinsic property of the material. 

Under a given temperature difference, the Fourier's law predicts that 𝐽 scales as 𝐽 ∝  𝑁−1 with 

increasing system size, 𝑁,. According to Fourier’s law, thermal conductivity is an intrinsic 

property of the system and it does not depend on the system size. In the lattice models of one-

dimensional chain of N particles connected through non-linear interaction potentials, the 

thermal conductivity 𝜅 has been numerically found to diverge with 𝑁 following a power-law 

scaling as 𝜅 ∝ 𝑁𝛼 . There the heat flux scales as 𝐽~𝑁𝛼−1. Divergence exponent, 𝛼, lies in the 

range between 0.33 and 0.5 for different forms of Fermi-Pasta-Ulam (FPU) interaction 

potentials. The divergent exponent values differ from system to system and with the choice of 

parameters. Overall, the thermal conductivity is size dependent and the heat conduction will be 

anomalous heat conduction11–13. It has been a long-standing outstanding issue to find a 

microscopic lattice Hamiltonian that exhibits diffusive normal heat conduction which satisfies 

Fourier's law11,12.  

Experimental realisation of divergent thermal conductivity in low dimensional systems have 

been observed for one dimensional nanotubes14,15 and two dimensional graphene16.  In contrast 

to the momentum-conserving FPU-lattices, non-linear one-dimensional lattices without 

momentum-conservation such as Frenkel-Kontrova lattice and 𝜙4 lattice, show normal heat 

conduction17–20. Likewise, momentum conserving lattice chains with asymmetric potential 

such as Lennard-Jones, Morse potential which allow bond dissociation were shown to follow 

convergent thermal conductivity21–23. Moreover, finite thermal conductivity has been reported 

in momentum-conserving systems with an asymmetric interaction potential24. This finding was 

in contrast to established theoretical and numerical findings in one-dimensional momentum 

conservation systems that has been known for diverging conductivity. Das et al. 25 examined 
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the notion of strong low-temperature finite-size effects and challenged the prediction of normal 

thermal conductivity for an asymmetric lattice in 1D at low temperatures. Further, 𝑁 

dependence of 𝛼 for single-well FPU lattices with asymmetric interparticle interactions in one-

dimension was also estimated by Wang et al. using the equilibrium Green- Kubo approach of 

heat current autocorrelation26. Here, on comparison with lattices with asymmetric interparticle 

interactions with the asymmetric FPU-lattice, 𝛼 approaches its asymptotic thermodynamic 

limit at a considerably longer chain length 𝑁. Thus, 𝛼 becomes a function of N at lower length 

scales.  The dependency of chain length with the divergent exponent can also be affected with 

the temperature of the heat bath as well as the potential parameters. In symmetric double well 

potential, thermal conductivity diverged with divergence exponent 𝛼 = 0.33 at high 

temperature and weak divergence was observed for low temperature27. In FPU-𝛼𝛽 lattice also, 

two different temperature scaling observed as 𝛼 = 0.4 at higher temperature and 𝛼 diverges 

weakly at low temperature21. So, additional systematic research was required to better 

understand the temperature-dependent divergence in an asymmetric momentum-conserving 

lattice.  

In this chapter, we investigated the temperature dependent divergence of thermal conductivity 

in one-dimensional momentum conserving nonlinear lattice with an asymmetric double-well 

nearest-neighbour interaction potential. Using the non-equilibrium simulation method, we 

calculated the thermal conductivity 𝜅 for different lattice sizes 𝑁 by varying heat bath 

temperature for different degree of asymmetry in the interaction potential. Our goal was to 

determine the temperature dependence of the scaling exponent for momentum conserving one-

dimensional systems. 

5.2 Model 

The system considered is a one-dimensional lattice with a nearest-neighbour interaction 

potential, whose Hamiltonian can be represented as 

𝐻 = ∑
𝑝𝑖

2

2𝑚
+ ∑ 𝑉(𝑥𝑖 − 𝑥𝑖−1)

𝑁−1

𝑖=1

𝑁

𝑖=1

 

(5.1) 

Where 𝑥𝑖 is the displacement of the 𝑖th particle from its equilibrium position and 𝑝𝑖 is the 

momentum of the 𝑖th particle. The mass 𝑚 was taken as unity and total number of particles on 

the lattice chain is given by 𝑁. 𝑉(𝑥𝑖 − 𝑥𝑖−1) is the nearest-neighbour interaction between the 

two adjacent particles. Without on-site potential, the lattice becomes momentum conserving 
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lattice. The nearest-neighbour interaction potential chosen for the sudy belongs to the general 

class of the FPU-𝛼𝛽 potential as  

𝑉(𝑥) =  −
1

2
𝑘2𝑥2 +

1

3
𝑘3𝑥3 +

1

4
𝑘4𝑥4 

(5.2) 

 

Where 𝑘2, 𝑘3, and 𝑘4 are three positive constants and we chose the values of  𝑘2 = 0.1 and 

𝑘4 = 0.002. The potential becomes asymmetric [𝑉(𝑥)  ≠ 𝑉(−𝑥)] because of the cubic 

nonlinearity. We show the asymmetry of the double well potential in Fig.5.1 for two different 

values of the 𝑘3, which determines the asymmetry of the potential.  

 

Fig. 5.1: Schematic representation of the double-well nearest-neighbour interaction potential, 

𝑉(𝑥), with different values of asymmetric parameter 𝑘3.The values of two other parameter 

were 𝑘2 = 0.1 and 𝑘4 = 0.002. 

Both ends of the lattice chain are coupled to Langevin heat baths that have differ temperatures 

The equation of motion of the 𝑖th particle in the chain is given by 

𝑥̈𝑖  =  𝑘2(2𝑥𝑖 − 𝑥𝑖+1 − 𝑥𝑖−1) − 𝑘3[(𝑥𝑖 − 𝑥𝑖−1)2 − (𝑥𝑖+1 − 𝑥𝑖)2]

− 𝑘4[(𝑥𝑖 − 𝑥𝑖−1)3 − (𝑥𝑖+1 − 𝑥𝑖)3]  − 𝛾𝑖𝑥̇𝑖 + 𝜂𝑖 

(5.3) 

 

Where the fluctuation (𝜂𝑖) and dissipation (𝛾𝑖) terms are defined as 𝜂𝑖 = 𝜂𝐿𝛿𝑖,1 + 𝜂𝑅𝛿𝑖,𝑁 and 

𝛾𝑖 = 𝛾(𝛿𝑖,1 + 𝛿𝑖,𝑁), respectively. 𝜂𝐿 and 𝜂𝑅 are the thermal noise corresponding to the left and 

right heat baths, respectively. The heat baths are characterized by the fluctuation-dissipation 

relation followed by the two Markovian heat baths, 〈𝜂𝐿(𝑡)𝜂𝐿(𝑡′)〉  =  2𝛾𝑘𝐵𝑇𝐿𝛿(𝑡 − 𝑡′) and 

〈𝜂𝑅(𝑡)𝜂𝑅(𝑡′)〉  =  2𝛾𝑘𝐵𝑇𝑅𝛿(𝑡 − 𝑡′). The 𝑘𝐵 , 𝛾, 𝑇𝐿 , and 𝑇𝑅 are the Boltzmann constant, 



98 
 

dissipation constant, temperature of the left and right heat bath, respectively. The value of 𝛾 

and 𝑘𝐵 were chosen as unity in the whole study. We changed the left and right bath 

temperatures (𝑇𝐿 and 𝑇𝑅), in order to study the effect of temperature on the divergence of 

thermal conductivity. Temperature difference and average temperature is defined as Δ𝑇 = 𝑇𝐿 −

𝑇𝑅 and 𝑇 = (𝑇𝐿 + 𝑇𝑅) 2⁄ , respectively. 

The instantaneous local heat current between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ particle is calculated as 

𝑗𝑖 =
1

2
(𝑥̇𝑖 + 𝑥̇𝑖+1)

𝜕𝐻

𝜕𝑥𝑖
 

(5.4) 

The time-averaged local heat current can be quantified as  

𝐽𝑖 = lim
𝑡→∞

1

𝑡
∫ 𝑗𝑖(𝜏)𝑑𝜏

𝑡

0

 
(5.5) 

At non equilibrium stationary state, global heat current is defined as  

𝐽 = ∑
𝐽𝑖

𝑁 − 1

𝑁−1

𝑖=1

 

(5.6) 

The thermal conductivity with steady state global heat current is defined as 

𝜅 =
𝐽𝑁

Δ𝑇
 

(5.7) 

 

To investigate the heat conduction in one-dimensional lattice with asymmetric double-well 

interaction potential, we simulate the equations of motion (Eq. (5.3)) by integrating them using 

4th order Runge-Kutta method with a step length of 0.01. We typically ran our simulations until 

the system reach the equilibrium ensuring steady heat current along the chain. We used fixed 

boundary condition 𝑥0 = 𝑥𝑁+1 = 0 in our studies. Earlier studies25,28 underlined the 

significance of boundary conditions in the heat conduction in lattice models. We use equations, 

Eq.(5.4) to Eq.(5.6) to calculate the local heat current and thereby thermal conductivity. We 

calculated thermal conductivity for various chain lengths ranging from 𝑁 = 20 to 𝑁 = 50000.  

5.3 Results and discussions 

We first examine the divergence of thermal conductivity for the asymmetric potential with 

various average heat bath temperatures, while keeping the temperature difference of two heat 

bath ∆𝑇 fixed for the asymmetric parameter 𝑘3 = 0.003 as well varied ∆𝑇 for 𝑘3 = 0.006 (Fig. 

5.2). 



99 
 

 

Fig. 5.2: Divergence of thermal conductivity, 𝜅, as a function of chain length, 𝑁. Different 

colored symbols represent simulations with different average bath temperatures with fixed 

temperature difference, (𝑇, Δ𝑇); circle: (1.5,1), triangle: (4.5,1), square: (9.5,1), and star: 

(3.0,4). Solid lines are from power-law fitting (𝜅~𝑁𝛼). The values of 𝛼 are indicated inside 

the plots for (a) 𝑘3 = 0.003 and (b) 𝑘3 = 0.006.  

We have chosen (𝑇, ∆𝑇) pairs for 𝑘3 = 0.003 were (9.5,1.0); (4.5,1.0); (1.5,1.0) and for 

𝑘3 = 0.006, (𝑇, ∆𝑇) were (3.0,4) and (1.5,1). In the case of 𝑘3 = 0.003 (Fig. 5.2(a)), the 

thermal conductivity of the system displays power-law divergence, with the divergence 

exponent lying in the range of 0.31 − 0.35. These simulation results are consistent with the 

𝛼 = 1 3⁄  that has been suggested by renormalization group theory, mode coupling theory, and 

other numerical simulations8,27,29–31. We observed a similar divergence of thermal conductivity 

for the same system with larger asymmetry (𝑘3 = 0.006) in the interaction potential [Fig. 

5.2(b)]. The fact that the system's average temperature is high is a key characteristic of these 

divergence tendencies. Thus, the asymmetric-double well -momentum-conserving system thus 

exhibits behaviour that is comparable to that of the symmetric-FPU-momentum-conserving 

system at the high temperature limit.  
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Fig. 5.3: Divergence of 𝜅 as a function of 𝑁 for different average 𝑇 and Δ𝑇; circle: (1.5,1), 

triangle: (0.3,0.2), square: (0.15,0.1), and diamond: (0.075,0.05). The asymmetric parameter 

𝑘3 was 0.003. The divergence exponent 𝛼 values are indicated the plot.  

By modifying the heat bath temperatures TL and TR, we next studied at the divergence of 

thermal conductivity for a range of average temperature values in the intermediate to low 

temperature range. The divergence of thermal conductivity 𝜅 at various system average 

temperatures 𝑇 with asymmetric parameter k3 = 0.003 is depicted in Fig. 5.3. From Fig. 5.3, it 

was observed that the divergence of thermal conductivity depends on the heat bath properties 

for different average temperature values. At extremely low temperature (T = 0.075), the 

conductivity significantly diverged with 𝛼= 0.49. When the temperature is raised (T = 0.15), 

the divergence becomes small (𝛼 = 0.18), and when temperature is raised further (T = 0.3), the 

thermal conductivity seems to saturate ( 𝛼 = 0.07).  When the temperature is high (T = 1.5), 

thermal conductivity 𝜅 displays its typical divergence behaviour, with = 0.31. The two distinct 

scaling tendencies of 𝜅 at extremely low (𝛼 =0.49) and very high ( 𝛼= 0.31) temperatures are 

the most notable aspect of the temperature-dependent thermal conductivity in this study. 

Additionally, the very small divergence of thermal conductivity 𝜅 (or saturation of with lattice 

size N) in the intermediate temperature raises the chance that Fourier's law may still be true. 

Additionally, in line with other findings21,25, we also notice a weak divergence with fixed 

boundary conditions, despite the fact that fixed boundary conditions in the lattice does not 

facilitate thermal expansion. Usually, chains with lattices with fixed boundary conditions 

allows thermal expansion, and can have normal thermal conductivity due to the phonon 

scatterings in the lattice. Zhong et al. 24 previously observed a similar saturation of thermal 
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conductivity 𝜅 with lattice size N in an asymmetric lattice and suggested that the system obeys 

Fourier's law. The question of whether the saturation in an asymmetric FPU- 𝛼𝛽 potential was 

actually caused by the asymmetry of the interaction potential or not was further addressed 25,26. 

 

Fig. 5.4: Divergence of 𝜅 as a function of 𝑁 for different average 𝑇 and Δ𝑇; circle: (1.5,1), 

triangle:(0.3,0.2), square:(0.15,0.1). The asymmetric parameter 𝑘3 was 0.006. The divergence 

exponent 𝛼 values are indicated the plot.  

 Similar results were obtained by repeating the computations with a larger asymmetric 

parameter 𝑘3  =  0.0006 (Fig. 5.4). Hence, according to the results of our simulation, 

divergence exponent 𝛼 values in the asymmetric double-well interaction potential depend on 

the system's temperature. 
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Fig. 5.5: Temperature dependence of 𝛼 for two different values of asymmetric parameter 𝑘3. 

The sizes of error bars on 𝛼 are nearly the same as the sizes of the markers.  

We showed the divergence exponent 𝛼 as a function of temperature 𝑇 for two distinct values 

of the asymmetric parameter 𝑘3 to establish the temperature dependence of the divergence 

exponent (Fig. 5.5). As the temperature 𝑇 rises,  𝛼 drops considerably and, after going through 

a minimum, it rises to saturate with 𝛼= 0.35 at higher temperature. Both for low and high 

asymmetries of the potential, the intermediate temperature shows the smallest divergence of 𝛼. 

According to recent reports32,33, the 1D anharmonic chain exhibits this kind of turnover 

behaviour. The divergence behaviours of thermal conductivity for two asymmetry values 

(𝑘3=0.0003 and  𝑘3=0.0006) are the same, as shown in Fig. 5.5. Since the two curves for 

different asymmetric parameter are crossing over one another, the saturation of thermal 

conductivity in this system is not an asymmetry induced effect. If so, higher asymmetry would 

have led to saturation at lower number of particles on the lattice chain 𝑁 as opposed to lower 

asymmetry25. There is no evidence of any such asymmetry-induced early saturation of thermal 

conductivity in the comparison of divergence of 𝜅 with 𝑁 profiles for higher and lower 

asymmetry at different temperatures (Fig. 5.6). 
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Fig 5.6: Comparison of the divergence of 𝜅 with 𝑁 for different values of asymmetric parameter 

𝑘3 at various average bath temperatures, 𝑇. Solid line: 𝑇 = 1.5, dotted line: 𝑇 = 0.3, and 

dashed line: 𝑇 = 0.15.   

These findings suggest that the saturation of thermal conductivity 𝜅 may be a finite length 

effect which occurs only at intermediate temperature 𝑇. Our observations based on these 

studies, shows that the nature of the divergence is in fact temperature dependent.   

 

Fig. 5.7: Plot of local divergence exponent 𝛼𝑁 with 𝑁 for different values of asymmetric 

parameter 𝑘3 and at different average bath temperature, 𝑇. The 𝛼𝑁 was estimated by calculating 

the local slope of 𝜅 vs. 𝑁 plots given in Fig. 5.3 and 5.4. Solid line: 𝑇 = 1.5, dotted line: 𝑇 =
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0.3, dashed line: 𝑇 = 0.15, and dashed-dot line: 𝑇 = 0.075. The horizontal dashed line 

represents 𝛼 = 0.33. 

We estimated the local divergence coefficient, 𝛼𝑁, by calculating out the local slope in the 𝜅 

vs. N line in order to figure out the finite-size effect on. We plotted the local divergence 

coefficient, 𝛼𝑁 as a function of lattice size 𝑁 for different temperatures 𝑇 with two asymmetric 

parameter 𝑘3. The well-known thermodynamic limit of 0.33 is reached at the shorter length of 

the chain for high temperature (T = 1.5), and 𝛼𝑁,  settles closely with that value for a larger 

lattice chain length 𝑁. The local divergence coefficient 𝛼𝑁, settles to 𝛼~0.5 for very low 

temperature 𝑇 = 0.075. This shows the two entirely different scaling nature of the system 

which indeed depends on the temperature of the system. In contrast, at intermediate 

temperature 𝑇 = 0.075, as lattice size increases 𝑁, local divergence coefficient decreases 

below the thermodynamic limit (Fig. 5.7: dashed line 𝛼 = 0.33) and after moving through a 

minimum, it exhibits upward tendency for both the values of  𝑘3. For T = 0.15, same trend was 

observed, but the minimum was absent since it was likely placed at a larger chain length N. 

From this observations, we can conclude that at intermediate temperature, the values of 

divergence exponent 𝛼 are not from the thermodynamic limit, since those values does not settle 

to a specific value.  
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Fig. 5.8: (a) Temperature dependence of the order parameter for a chain with 𝑁 = 500. The 

average displacement from the adjacent particle along the chain at 𝑇 = 2.0 (b) and 𝑇 = 0.07 

(c). 

Our chosen lattice system differs slightly from a typical FPU class of single-well interaction 

potentials due to the double well interaction potential's two wells separated by a barrier. The 

system will be able to hop between the two wells at the high temperature domain because of 

the increased thermal noise from the heat baths. But at low temperature domain, the system 

will be confined in one of the wells, based on the system's initial state. We computed an order 

parameter 
1

𝑁−1
∑ |〈𝑥𝑖+1 − 𝑥𝑖〉|𝑁−1

𝑖=1  33 for two values of the asymmetry parameter 𝑘3 at various 

temperatures in order to evaluate the system's dynamic behaviour in relation to temperature 

[Fig. 5.8(a)]. Essentially, this order parameter is the equilibrium average of the absolute 

displacement from the next particle. We observe that at low and high temperatures, the value 

of the order parameter saturates into two separate domains, showing the system's temperature-

dependent different nature. The asymmetry parameter 𝑘3 has no impact on the order 

parameter's qualitative approach. 
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In addition, we plotted the ensemble averaged displacement  〈𝑥𝑖+1 −  𝑥𝑖  〉   of the next particle 

of a lattice chain with N = 500 at high [Fig. 5. 8(b)] and low [Fig.  5.8(c)] temperatures. These 

two figures reflect a dichotomous dynamical nature for the lattice with double well potential 

as the nearest neighbouring interaction potential.  At low temperature, the system is clearly 

contained within the two wells and at higher temperature, the fluctuations are more or less 

homogeneous. As a result, the qualitative differences between the system at low and high 

temperatures account for our observed temperature-dependent divergence features of thermal 

conductivity. 

 

Fig. 5.9: Absolute average contributions of second, third, and fourth order terms in the potential 

for a chain with 𝑁 = 1000 and 𝑘3 = 0.003. The values of temperature are indicated at the top 

of the figure. The system behaves similarly with 𝑘3=0.006 as well. 

The coefficients k2, k3, and k4 in the potential (eq. 5.2) were chosen to have values in the range 

of 1-2 in earlier investigations of the thermal conductivity of nonlinear lattice with double -

well or FPU- interaction potential 21,26,27,33. We used smaller set of 𝑘2, 𝑘3, and 𝑘4 values in our 

computations than the previously reported ones. The values chosen are 𝑘2 = 0.1, 𝑘3 =

0.003/0.006 and 𝑘4 = 0.002. We determined the ensemble average of the second, third, and 

fourth order terms in the chosen asymmetric double-well interaction potential (Fig. 5.9) at 

various temperatures to make sure the contributions from the cubic and quartic terms are not 

insignificant. According to our findings, the cubic and quartic terms' contributions are not 

insignificant when compared to the quadratic term. Also, the values of these coefficients exhibit 
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a non-monotonic temperature dependency that is in well agreement with the scaling of thermal 

conductivity 𝜅 that is temperature dependant. The absolute values of the coefficients in the 

double well potential (2) were 0.05, 0.001/0.002, and 0.0005 based on the chosen values of k2, 

k3, and k4. The Taylor expansion's truncation of the polynomial beyond fourth order is further 

justified by the steadily declining values of these coefficients34.  

5.4 Conclusion 

It has been a long-standing problem to understand the diverging nature of heat conductivity in 

low-dimensional systems. A large number of theoretical and numerical calculations on one-

dimensional momentum conserving systems revealed a power-law divergence of thermal 

conductivity with the chain length 11,12. However there have been variation in the value of the 

divergent exponent in the literature due to the different choice of systems and condition of 

study. We have shown here that from a single model system such variations can be explained. 

The divergent nature of in a 1D asymmetric lattice depends on the heat bath temperature, as 

demonstrated in this study using the nonequilibrium simulation method. The system shows 

exponent values 0.5 and 0.33 in the thermodynamic limit at low and high T, respectively. 

Consequently, based on the system's temperature, our simulations demonstrate two distinct 

scaling behaviour of the same system. Our calculated value of divergence exponent 𝛼 (~ 0.5) 

equals the value previously reported by mode coupling theory at low temperature 30,35–37. At 

high temperature, our calculation produces the exponent of 0.33 as predicted by the 

renormalization group analysis8,38. Additionally, at the intermediate temperature, thermal 

conductivity 𝜅 appears to saturate against N at a relatively low value (𝛼 = 0.07). The validity 

of Fourier's law was established by the asymmetric system in a previous work on a similar 

weak divergence of in the context of a 1D asymmetric momentum conserving lattice 24. But 

later it was found that the saturating behaviour of thermal conductivity might not be connected 

to the system's actual thermodynamic limit21,25. We estimated the local divergence exponent, 

𝛼𝑁, and found that it does not saturate to a constant value in intermediate temperature in the 

length scale of our simulations in order to investigate the weak divergence of in the 

intermediate temperature. In this case, local divergence exponent, 𝛼𝑁 declines with lattice size 

N and exhibits a tendency to climb once more after passing through a minimal. There should 

not have been any more increases in the local divergence exponent 𝛼 if the system had hit its 

thermodynamic limit. In contrast, regardless of the degree of asymmetry in the interaction 

potential, 𝛼𝑁 decreases with chain length 𝑁 and saturates to its respective thermodynamic 

limits at low and high temperatures. Our studies show that the approach to the thermodynamic 
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limit of is certainly temperature dependent. These results are independent of the asymmetry in 

the interaction potential.   
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 CHAPTER 6 

Future Perspectives 

 

Spatial heterogeneity, known as roughness, in the potential landscape and its impact on the 

transport properties of a driven inertial Brownian ratchet driven by a time-periodic force is a 

fascinating research area in the field of non-equilibrium statistical mechanics that has many 

potential future perspectives. These are some of the future directions which we can extend our 

idea of research in the area of role of roughness in the transport characteristics, especially in 

the case of a driven inertial ratchet. 

• Future research could investigate the effect of rough periodic potential on the transport 

properties of coupled driven Brownian particles with different kind of interacting 

potential. 

• Future research could aim to verify the theoretical predictions of constructive role of 

roughness in the periodic potential of a driven inertial ratchet through experimental 

measurements. As an example, how does we can use the effect of roughness in the 

transport properties in the context of mass separation of particles ?. 

Thermal transport in low-dimensional systems has been the subject of extensive investigation 

during the past few decades. One of the chapter in this thesis focused on the temperature 

dependent divergence of thermal conductivity in momentum conserving one -dimensional 

lattices with asymmetric double well potential for nearest interaction. One of the potential 

avenues of exploration in this area of research is, we can extend the same to two-dimensional 

systems. 

• We can extend numerical investigation of heat conduction in two-dimensional systems 

with various non-linear interaction potentials and their effects on the thermal transport. 

Also, we can extend the study to make an understanding about the temperature 

dependence of thermal conductivity with various nature of interaction potentials in two-

dimensional systems. 
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