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Abstract

We know from the time-temperature history of the universe, at times 10 microseconds

after the Big Bang, with temperature T ≥ 200 MeV, the universe was in the state

of Quark Gluon Plasma (QGP). QGP is a state of matter where elementary colored

particles(e.g., quarks and gluons) that make up the hadronic matter are deconfined and

can move freely over nuclear distances under extremely high densities and temperatures.

The study of the QGP is important because it can provide insights into the fundamental

nature of matter and the strong nuclear force. In the modern era, we try to recreate

this state of matter in the laboratory for a short period of time by colliding two rel-

ativistic heavy ions in heavy-ion colliders, namely the Relativistic Heavy-Ion Collider

(RHIC) at the Brookhaven National Laboratory and the Large Hadron Collider (LHC)

at CERN. Several theories are developed to describe the QCD phase diagram, which

represents the phase transition from confined and color singlet hadron state to the de-

confined QGP state, namely the QCD phase transition. The lattice QCD predictions

show a crossover transition around T ≈ 150− 170 MeV for an infinitesimal value of µB.

There are models which indicate a first-order phase transition at finite µB with different

transition temperatures. The first-order transition line meets the crossover region at the

critical point whose existence is not established experimentally. As the exact boundaries

separating the two phases are unknown, these experiments play a vital role in describ-

ing the QCD phase diagram. The SPS and ongoing BES(Beam Energy Scan) program

at RHIC, as well as the lower-energy facilities, namely Facility for Antiproton and Ion

Research (FAIR) at GSI and Nuclotron-based Ion Collider fAcility (NICA) at JINR, are

developed to map out the QCD phase diagram at finite µB.

The study of the rotational properties of the QGP system is important for understanding

the fundamental nature of the QGP. One of the key properties of interest is the vorticity

of the QGP. The study of vorticity in heavy ion collisions has gained significant attention

in recent years, as it is believed to play a crucial role in the generation of the observed

spin polarization. The vorticity of the QGP can also provide insights into the QGP’s

transport properties, such as its viscosity and thermal conductivity. Vorticity can affect

the collective flow of particles in the QGP and can also induce magnetic fields.

We study the vorticity patterns in relativistic heavy ion collisions with respect to the

collision energy. The collision energy is related to the chemical potential used in the

thermal-statistical models that assume approximate chemical equilibrium after the rela-

tivistic collision. We use the multiphase transport model (AMPT) to study the vorticity

in the initial parton phase as well as the final hadronic phase of the relativistic heavy ion



collision. Our results indicate that the viscosity plays a greater role at higher chemical

potential and lower collision energies.

Fluctuation studies play a crucial role in the search for the QCD critical point. Fluc-

tuations in conserved quantities, such as net baryon number, net strangeness, and net

charge, are sensitive probes of the QGP’s properties. The theory predicts that fluctu-

ations in these conserved quantities will be enhanced at the QCD critical point due to

the long-range correlations that develop in the system. Therefore, fluctuation studies

are important in heavy ion collision experiments to obtain information about the QGP’s

properties and to search for the QCD critical point.

We study temperature fluctuations in the initial stages of the relativistic heavy ion

collision using the AMPT model. We use the non-extensive Tsallis statistics to find the

entropic index in the partonic stages of the relativistic heavy ion collisions. We find that

the temperature and the entropic index have a linear relationship during the partonic

stages of the heavy ion collision. We performed a detailed analysis of the dependence of

the entropic index on the system parameters and compared it with the entropic index

obtained from the fitting of transverse momentum spectra.

Signs of turbulence have been observed at the relativistic heavy-ion collision at high col-

lision energies. We study the signatures of turbulence in this system and find that there

are significant departures from isotropic turbulence in the initial and the pre-equilibrium

stages of the collision. The geometrical anisotropy is reflected in the anisotropic turbu-

lence generated in the rotating plasma, and we find that the scaling exponent is differ-

ent in the two planes. We also obtain the temperature spectrum in the pre-equilibrium

stages. The spectrum deviates from the Gaussian spectra expected for isotropic turbu-

lence.

We use supervised Machine Learning (ML) models to predict three important properties

that determine the initial geometry of the heavy-ion collision (HIC) experiments. These

properties are the impact parameter, the eccentricity, and the participant eccentricity.

We study multiple ML algorithms, their error spectrum, and sampling methods using

exhaustive parameter scans and ablation studies to determine a combination of efficient

algorithms and tuned training set that gives a multi-fold improvement in accuracy for

three different heavy-ion collision models. The three models chosen are a transport

model, a hydrodynamic model, and a hybrid model. The motivation for using three

different heavy-ion collision models was to show that even if the model is trained using a

transport model, it gives accurate results for a hydrodynamic model as well as a hybrid

model. We also show how sampling techniques can improve the accuracy of impact

parameter and eccentricity prediction.
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Chapter 1

Introduction

Heavy ion collisions (HIC) are an essential approach for studying the characteristics

of the quark-gluon plasma (QGP), a deconfined state of matter that interacts strongly

and is believed to be created in such collisions. In these experiments, two heavy ions

(atoms with more than one proton and neutron) are accelerated to very high energies

and they are made to collide. These collisions cause the particles within the ions such

as quarks and gluons, to interact with each other and create new particles. This al-

lows us to study the behavior of subatomic particles and the interactions between them.

These experiments are important for understanding the fundamental nature of matter

and energy, as well as the nature of our universe. The QGP exists in extreme conditions

of high temperatures and densities. Thus, these experiments allow us to study how

matter behaves in extreme conditions. They also provide us with data that can be used

to understand the dynamics of the strong nuclear force, which governs the interactions

between particles in the nucleus. This also helps us understand the QCD phase tran-

sition. Additionally, as the QGP state is believed to be present in the early universe,

these experiments help us understand the behavior of matter in conditions that cannot

be recreated in a laboratory, such as the initial stages of the universe.

The collision energy and species of the colliding ions specify the system’s initial state,

while the properties of the particles created by the collision determine the system’s final

state. In these experiments, several initial state and final state variables or observables

are essential for understanding the dynamics of the system. We study several flow-

related characteristics of the QGP system at different phases of system evolution. Flow

is the collective motion of the particles produced in collisions, and it is one of the major

observable to study the QGP properties. Fluctuations measure the deviations from the

average behavior of particles and can be used to learn the system dynamics and the initial

1
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conditions. The study of fluctuation can also help us locate the critical point (CP) in the

QCD phase transition diagram, as these are likely to diverge close to CP. That is why

various thermodynamic properties, which depend on the fluctuations, are studied in this

area of research. Vorticity is another important phenomenon related to fluid motion, and

this can be used to study the characteristics of the rotating system and the collective

behavior of the particles. Vorticity measures the rotation of the system produced in

the collision, and its strength is used to characterize the degree of its turbulence. We

also study turbulence spectra for velocity and temperature fluctuations. This helps us

understand the energy deposition at different length scales and planes in the collision

region. Furthermore, we use several machine-learning techniques to estimate the initial

state variables of HIC experiments. Before going into the details of our study, let us

start with some of the basic understanding of these experiments.

1.0.1 Units and conventions

In high-energy physics, we consider natural units of measurement that are based on

physical constants. In natural units, we consider the Plank’s constant and speed of light

to be one, c = ~ = 1. The units of electric charge are also redefined. The energy E is

measured in electronvolt (eV, KeV, MeV, GeV, TeV) unit. As mass and momentum are

related to E by the mass-energy relation, one can get their units.

E2 = p2c2 +m2c4 (1.1)

Thus, units of momentum is eV/c, and mass is eV/c2. Considering c = 1, mass and

momentum have units of energy. The mass of a proton and neutron is nearly 1 GeV.

Length and time have units of 1/Energy, which can be deduced from E = hν and from

∆x∆p ≥ 1, the uncertainty principle. The radius of a proton or neutron is approxi-

mately 1 fm= 10−15m ≈ 1/(200 MeV ). The temperature is also expressed in energy

units (1eV ≈ 104K).

The four-dimensional space-time coordinates are used to describe the positions. This

consists one time dimension t and three spatial dimensions x, y, z, and can be expressed

as xµ = (t, x, y, z), also referred as contravariant 4-vector. It can be transformed to a

covariant vector xµ = (t,−x,−y,−z) = (t,−r) by the action of a metric tensor. Here,

we use the Minkowski metric tensor,

gµν = gµν = diag(1,−1,−1,−1) (1.2)
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Hence xµ = gµνx
ν

Invariant variables play a crucial role in HIC studies. This allows us to measure quanti-

ties in a frame-independent framework. It is important to work with invariant variables

while working with relativistic velocities, as it allows us to understand how things behave

from the perspective of different observers, i.e., under different frames of reference. The

inner product of any four-vector is invariant (e.g., xµx
µ = x2 ). The four-momentum

is denoted by pµ = (p0,p) = (E,p), where p is 3-momentum(px, py, pz), and p0 is the

particle energy,

p0 = E =
√

p2 +m2 (1.3)

The inner product of momentum pµpµ = p2 = m2 = E2 − p2 is normalized to the rest

mass of the particle. The 3-momentum can be segmented into two components: pz along

the beam direction (z-axis) and the transverse momentum pT =
√
x2 + y2 which is on

the plane perpendicular to the z-axis. The four velocity is defined as uµ = (γ,−γv).

Here γ is the Lorentz factor γ = 1/
√

1− v2. The four-velocity is normalized to 1:

uµuµ = 1. v is the velocity vector in 3 dimensions.

We define a new parameter known as rapidity, which is a generalization of the velocity

vector. It is defined as,

y = arcth(vz) = arcth(
pz
p0

) =
1

2
ln
pz + p0

pz − p0
(1.4)

For small velocities it is similar to vz, i.e., y ≈ vz. The reason behind using this new

parameter is it is additive in nature under Lorentz transformation. As a result, under

Lorentz boosts, the particle rapidity distribution is unaffected. Additionally, the differ-

ence in the two particle’s rapidity is invariant under Lorentz boosts in the beam axis.

However, rapidity is hard to determine in experiments; thus, a new parameter is intro-

duced known as pseudorapidity:

η =
1

2
ln
|p|+ pz
|p| − pz

= ln(cot(
θ

2
)) (1.5)

Pseudorapidity provides an extra advantage working with relativistic velocities. As it

only depends on one variable, the particle’s polar angle θ, it can be measured directly in

the experiments. Most particles’ momentum in high-energy experiments is significantly

greater than their rest mass. In that case E ≈ |p| which means, y ≈ η.
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1.0.2 Elementary forces in Nature

Gravitation, electromagnetism, the weak nuclear force, and the strong nuclear force are

the four fundamental forces of nature. The interactions among the elementary particles

are governed by these four forces. Except for gravity, all of these interactions have a

microscopic quantum formulation in the form of local gauge theories. The elementary

matter fields are spin-1/2 fermions that interact through the exchange of spin-1 bosons.

The Higgs spin-0 boson, the single fundamental scalar particle in the standard model,

plays a specific role in this paradigm by providing all other fields with a mass proportional

to their coupling to the Higgs [1]. All predictions made by the standard model have so

far been validated by the 2012 finding of the Higgs boson at the Large Hadron Collider

at CERN by the ATLAS, and CMS experiments [2]. The classical field theory of gravity

(general relativity) has been experimentally verified with a high degree of precision. The

most recent of these verifications was the observation of gravitational waves produced

by the merger of massive compact objects, such as black holes or neutron stars [3].

However, a theory of quantum gravity is still a challenge.

1.0.3 The Theory of Quantum Chromodynamics

QCD was proposed by Gell-mann and Zweig in 1963. It is the theory which governs

strong interactions, liable for the strong force. The EM force describes the interaction

between electric charges and is called quantum electrodynamics (QED). It is mediated

by a boson known as the photon. There are lots of similarities between QCD and QED.

QED has two degrees of freedom, e.g., positive and negative charges, and QCD has

three degrees of freedom called color charges, red, green, and blue. In QED, the overall

system can be charge-neutral if there are same number of positive and negative charges.

Likewise, we only get color-neutral particles in normal conditions (low temperature and

density). They are known as mesons and baryons. A crucial difference between QCD

and QED is confinement, due to which there are no free quarks and gluons in nature,

unlike electric charges and photons. When a color charge is combined with an anticolor

charge of the same type, it forms a color-neutral state. This bound state is a type of

meson. A color-neutral state can also be generated if three different color charges are

combined together with equal proportions, and the bound state is known as a baryon.

Antimatter particles have opposite charges compared to their matter particles. The

same is true for color charges. The charges for antimatter are antired, antiblue, and

antigreen. The strong force is mediated by a gauge boson called the gluon. This is anal-

ogous to photons from QED with the difference that gluons carry color charge, unlike

photons that are chargeless.
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There are six flavors of quarks, e.g., up, down, strange, charm, bottom, and top. This

is in the sequence of mass ordering, where the top quark has the highest mass. It is

175 times more massive than the proton. The up and down quarks are the lightest and

most abundant. To get the correct electric charges of the mesons and the baryons, the

up, down, and strange quarks are given a charge of +2/3e, and the down, strange and

bottom quarks are given a charge of −1/3e.

QED belongs to the U(1) group and the photon that serves as the group’s generator.

With eight different types of gluons acting as generators, QCD belongs to the SU(3)

group. QED is an Abelian gauge theory, and QCD is a non-Abelian gauge theory.

1.0.4 Confinement

The non-Abelian characteristic of QCD emerges physically as confinement. In QED,

photons mediate forces between particles with an electric charge. Similarly, gluons in

QCD transmit forces between particles with color charge. So gluon is the QCD force

carrier. Gluons themselves, however, carry a color charge. Because it has no charge, the

photon has no interactions with photons. This implies that the interaction between two

charged particles weakens with increasing distance. The intensity drops with increasing

distance r because photons spread at all angles.

V ∝ 1/r2 (1.6)

In QCD, as the distance between two quarks increases, the gluons connecting them

interact. As a result, a “color flux tube” is formed. Imagine the quarks are joined

by intense field lines that form a string to gain a qualitative understanding of this. A

color flux tube with a uniform cross-sectional area and fixed energy density are used to

describe the string. This tube has the function of keeping the force between the quarks

constant regardless of distance. The separation of two quarks would theoretically take

an endless amount of force. In reality, though, the flux tube will split and produces

a pair of quark-antiquark once it has enough energy (See the illustration in Fig. 1.1).

The Cornell potential is used to analytically explain confinement. It was introduced in

1970 to account for the relationship between the hadron’s mass and angular momentum

as well as to explain the masses of quarkonium states [4, 5]. The potential appears as

follows:

VCornell = −4

3

αs
r

+ σr (1.7)
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Figure 1.1: a) Electric field lines spread out as the electric charge separated; b) Color
force lines collimated into a tube-like shape and do not spread out as the quarks are

separated

where r is the separation between the quarks, σ is the string tension, and αs is the

strong coupling constant. With a varied coupling strength, the first term resembles the

Coulomb potential from classical electrodynamics. The second term, which is in charge

of confinement, originates from the non-Abelian portion of QCD. It can be thought

of as the potential energy held within the string, which becomes larger with increasing

distance due to the constant energy density. That is why, for significant quark separation,

the linear part of the potential dominates, and the quarks can never go free. When the

quark separation is relatively small, the Coulomb part leads, and the theory becomes

essentially identical to QED.

1.0.5 Asymptotic Freedom

Analogous to QED, there is a coupling constant in QCD, which is denoted as αs. But

it is not a constant in QCD. The intensity of αs decreases with the decrease in sep-

aration between interacting quarks. Because of the charge screening produced by the

virtual particle’s vacuum fluctuation, the coupling constant, α in QED, decreases with

distance. This is referred to as the running coupling constant. Similar events take place

in QCD; however, gluon self-interaction modifies αs’s behavior. It is also accurate to

argue that the intensity of the coupling constant reduces with energy because examin-

ing the interaction at small distances demands more energy. For strong interactions, the

four momentum transfer (Q2) dependence of αs is very strong. This is because the field
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Figure 1.2: Strong intraction coupling constant [7]

mediator gluons themselves carry color charges and can couple with one another. At

very large Q2, a first order pQCD gives,

αs(Q
2) =

12π

(22− 2nf ).ln(Q2/Λ2
QCD)

(1.8)

Here, the number of quark flavors, nf = 6, and ΛQCD is the scale parameter of QCD. The

distance between quarks in space is expressed as λ̄ = ~√
Q2

. Therefore, the inter-quark

coupling weakens and asymptotically vanishes for very short distances and high values

of Q2. This is referred to as asymptotic freedom and is a perturbative-QCD prediction.

Asymptotic freedom was described by Politzer, Gross, and Wilczek in 1973 (Nobel Prize

2004). The fact that QCD is non-Abelian contributes to asymptotic freedom as well. In

fact, any asymptotically free renormalizable quantum field theory requires non-Abelian

gauge fields [6].

1.0.6 QCD Lagrangian

Although there are similarities in the Lagrangian of QCD and QED, the QCD La-

grangian is much more complicated. It can be expressed as,

LQCD =
∑

q

(
ψ̄qiiγ

µ
[
δij∂µ + ig(Gαµtα)ij

]
ψqj −mqψ̄qiψqi

)
− 1

4
GαµνG

µν
α (1.9)

Here Gαµν = ∂µG
α
ν −∂νGαµ−gfαβγGβµGγν , is the color field tensor. Gµα is the four potential

gluon field, tα are 3× 3 Gell-Mann matrices that are the generators of the SU(3) group,
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fαβγ is the structure constants of the SU(3) group (not there in QED), ψi is the Dirac

spinor of the quark field where i represent the color charges (red, green, and blue), and

g =
√

4παs. The Gell-Mann matrices serve the same purpose in QCD as the Pauli spin

matrices in QED.

A three-dimensional vector space is formed by three color states. A vector in this space

represents the general color state of a quark. The 3 × 3 unitary matrices can rotate a

color state. The Lie group SU(3) consists of all such unitary transformations with a unit

determinant.

The QED Lagrangian is very similar to the QCD Lagrangian

LQED = ψ̄eiγ
µ [∂µ + ieAµ]ψe −meψ̄eψe −

1

4
FµνF

µν (1.10)

with Fµν = ∂µAν−∂νAµ. A crucial difference between the QED and QCD fields is that

there is an additional term in the gluon field tensor Gµνα which represents the interaction

between the color-charged gluons. This is because the photons do not interact with one

another.

The helicity is preserved by the QCD Lagrangian for massless quarks. In fact, the

handedness or chirality of a massless quark is independent of the Lorentz frame used for

the study because it moves at the speed of light. The mass term expressly breaks the

chiral symmetry,

mqψ̄qψq = mqψ̄qLψqR +mq
¯ψqRψqL (1.11)

However, the primary cause of the chiral symmetry breaking may be explained in terms

of the gluon condensate and quark condensate produced by the non-perturbative action

of the QCD. There is a spontaneous symmetry breaking for the QCD-vacuum state and

it is realized by the non-vanishing chiral condensate,

〈ψ̄qLψqR〉 ∝ ΛQCD 6= 0 (1.12)

Effectively, in the chiral phase transition, the chirality is restored in the quark phase. It

is associated with changes in the vacuum expectation values of quark condensates, which

are order parameters for spontaneous chiral symmetry breaking. At high temperatures

and densities, the quark condensate melts, restoring the chiral symmetries of the theory.

This transition is believed to be a key feature of the QCD phase diagram.
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1.0.7 The quark gluon plasma

Matter is composed of protons, neutrons, and electrons at low energy densities. The

system may experience thermal excitation if it is heated. This can produce light-mass

highly interacting particles like the pion. Quarks and gluons are found inside protons,

neutrons, and other strongly interacting particles. If the energy density is high enough,

protons, nucleons, and other particles can be compressed so tightly that they can move

over a larger distance without being contained by hadrons [8]. As there is a deconfine-

ment at these extreme conditions, the system is referred to as quark-gluon plasma. The

quark-gluon interaction weakens as the energy density increases. As the strong inter-

action shows asymptotic freedom behavior, the interactions become weak at close ranges.

The QGP is supposed to have been formed at the Big Bang. Quantum gravity is sig-

nificant when temperatures are of the order T ∼ 1019GeV. Possibly, there is a grand

unification of all the forces, except for gravity, at slightly lower temperatures. At this

temperature scale of universe evolution, the baryon number is believed to be produced.

Electroweak symmetry breakdown occurs at T ∼ 100 GeV, which is significantly lower.

The universe’s baryon imbalance might have been formed in this epoch. Hadrons are

formed from quarks and gluons when the temperature is below 1 GeV (around T ∼ 200

MeV). The collider experiments at RHIC and the LHC operate to produce matter in

this temperature range. The light elements are created at T ∼ 1 MeV. When the tem-

perature of the universe reaches one electronvolt, it changes from an ionized gas to an

atom-filled gas under lower pressure. This energy corresponds to the electron’s binding

energy in atoms. At this temperature, structures like stars are formed.

At energy densities of the order of 1 GeV/fm3, the QGP is created. The cores of neutron

stars likely contain matter with such energy concentrations. Neutron stars are objects

with exceptionally high energy density materials with a radius of about 10 km. The

energy density typically ranges from 1 GeV/fm3 in the core to almost nothing at the

surface. In contrast to the energy of the matter in the Big Bang, this matter is cold and

has a very low temperature. At lower densities, it transforms into a cold gas of nucleons.

1.0.8 QCD Phase Diagram

At roughly the same energy density as the matter inside a proton, a QGP state should

start to form. Given that a proton’s size is approximately 1 fm and its rest mass energy

is about 1 GeV, it has an energy density of around 1GeV/fm3. People in the late 1970s
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Figure 1.3: The diagram of QCD phase transition with various QCD matter states.
Adapted from Ref. [9]

speculated that there exists a phase transition between the hadronic phase and a QGP

phase as a result of all such observations. The effects of quark masses could not be

adequately accounted for in the early lattice Monte-Carlo calculations. A true phase

transition does not occur for realistic values of quark masses, according to arguments

that began to arise around the middle of the 1980s. Instead, there is an abrupt but con-

tinuous change in the system’s characteristics at a particular temperature and baryon

chemical potential.

In modern times, we expect that there is a first-order phase transition line in the tem-

perature and µB plane (Ref. Fig. 1.3). The only feasible phase at a high enough

temperature is QGP, as the phase no longer depends on µB. Lattice calculations predict

a smooth transition between the hadron gas phase and the QGP phase with a tran-

sition temperature in the range of 160 − 170 MeV for zero baryon chemical potential,

µB = 0 [10–15]. High energy heavy-ion collision systems are extremely close to vanishing

µB [10]. The phase relies on both the temperature and µB at temperatures below the

critical temperature. There are models which indicate a first-order phase transition at

finite µB with different transition temperatures. Therefore, we expect a critical point

where the crossover region and the first-order transition line meet whose existence is not

established experimentally. Quarks and gluons will combine into hadrons and take the

phase of a hadron gas for low, but non-zero µB, below the phase transition line.



Chapter 1 Introduction 11

Increasing µB is proportional to increasing density. At very low temperatures and when

µB is close to the nucleon mass (∼ 1 GeV), a point is shown in the QCD phase dia-

gram representing the transition to nuclear matter. The density exceeds that of nuclear

matter for µB larger than 1 GeV, and a color superconducting state is formed, which

may possibly exist in the neutron star core. If there is enough center of mass energy in

the collisions, the system will be driven non-adiabatically to a region in the QGP phase.

As collision energy grows, the temperature of this initial state rises, whereas µB falls as

collision energy increases.

After the initial QGP state is created in heavy-ion collisions, the system cools and ex-

pands. It follows an isentropic expansion with a trajectory dµB
dS = const., where S is the

entropy. Till the system experiences a phase transition and hadronizes, both the temper-

ature and µB decrease. In the hadronic phase, the system continues to cool isentropically.

1.0.9 Relativistic heavy-ion collision experiments

1.0.9.1 Overview

The program for HIC experiments was started with the intention of studying a novel

sort of matter known as the quark-gluon plasma, which is otherwise only seen soon after

the big bang. The confinement transition occurred in the early universe’s history when

it was only a few microseconds old (T ≈ 100− 200 MeV). But as far as we can tell, this

does not have any remnants that are currently detectable by astronomical observations.

The concept of colliding heavy nuclei to create nuclear matter with a high temperature

and density in a laboratory setting, maybe enough to reach and cross the critical line,

first surfaced in the early 1980s. Following that, other operations have dedicated all or

a portion of their science curriculum to studying heavy ion collisions such as AGS (Al-

ternating Gradient Synchrotron) since 1960 at Brookhaven National Laboratory, U.S,

SPS (Super Proton Synchrotron) since 1976 at CERN.

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)

in New York and the Large Hadron Collider (LHC) run by the European Organization for

Nuclear Research (CERN) close to Geneva are now the principal locations for relativistic

heavy-ion collision investigations. Atomic nuclei that have a mass number of more than

three are referred to as “heavy ions”.
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At the CERN SPS, which collided heavy ions at a center of mass energy of 17 GeV,

the first experimental hints of a deconfinement transition were seen [17]. In the subse-

quent experimental programs at higher energies (RHIC, LHC), the attention has moved

from evaluating the production of a quark-gluon plasma towards quantifying some of its

properties [18–31].

In the so-called interaction regions, two beams that are moving anti-parallel to one an-

other at relativistic speeds (RHIC: v > 99%c; LHC: v > 99.9%c) around the accelerator

ring are brought to contact. Detectors are incorporated into such contact zones. RHIC

and LHC both contain several detectors. Each detector is a complex engineering work

of art that is built, run, and managed by a huge team of engineers and physicists.

The nucleons of the two heavy nuclei are broken when they collide. For a limited dura-

tion, their constituents, the quarks and gluons flood out and create a new type of matter

called quark-gluon matter. The quarks and gluons rapidly recombine into hadrons while

traveling towards the detectors, meaning that this matter can only exist for a very brief

period of time (10−10 − 10−15 second) before it hadronizes.

Proton-proton collisions can also breach the strong interaction boundary to release the

quarks and gluons at high enough energies, breaking nucleons into quarks and gluons.

In all such collisions, the quark-gluon matter is produced. One interesting property

related to the QGP matter is it can equilibrate. This means that the particles in the

QGP matter can reach a local thermal equilibrium. Hence it is possible to find the

probability density of finding quarks and gluons with a specific energy. This creates a

locally thermalized QGP state.

In order to understand the characteristics of the QGP, the data on the emitted particles

can be processed to create observables, which will then be compared with various the-

oretical test results. The detectors are used to determine a particle’s species, as well as

to calculate its energy and momentum. The resolution of the measurement is far lesser

than the real scale of the collision area. Thus, from the detector’s point of view, every

collision is point-like and instantaneous. As a result, we do not know the particle’s

production times or decay locations. What we know is different types of observables

in terms of particle distribution in the phase space. One class of observables of special

importance is the anisotropy of the particle emission distribution in the transverse direc-

tion referred to by anisotropic flows vn. These are obtained from the harmonic Fourier

coefficients of the particle distribution.



Chapter 1 Introduction 13

Figure 1.4: Heavy ion collision system evolution diagram

1.0.9.2 System Evolution

Figure 1.4 illustrates the progression of a nucleon-nucleon collision during a HIC ex-

periment [32]. Here y-axis is the time axis, and the X-axis represents the longitudinal

expansion. The two approaching nuclei in the diagram approach one another and meet

at t = 0. As t increases, the system grows in size, and the temperature falls. It is

expected that the state of matter we are looking for will happen immediately following

pre-equilibrium but before the hadronization.

Hard processes like fragmentation, quark pair generation, and jet creation take center

stage during the first few fm/c time of a heavy-ion collision. The system develops local

thermal equilibrium through the process of hard scatterings, and a strongly interacting

QGP phase is created. Due to its high temperature and density, the QGP phase ex-

pands and cools very quickly. The QGP hadronizes into hadron gas when the system

approaches the phase transition temperature. This process is termed chemical freeze-

out, and temperature is called chemical freeze-out temperature (Tch). For the majority

of the energies investigated in the HIC experiments, the shift from QGP to hadron gas is

a smooth crossover. Hence, it should be remembered that various regions of the medium

experience phase transitions at various times. This indicates that there is a stage in the

system’s evolution when the QGP matter is enclosed by a hadron gas.
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The particles continue to communicate kinetically after a chemical freeze-out, and the

created hadrons will disperse off one another elastically. During this stage of the system,

some of the released hadrons will be unstable and decay. When the system reaches

kinetic freeze-out, the elastic scattering stops. Due to the larger volume, the particles

stop interacting. This temperature is known as the kinetic freeze-out temperature (Tfo).

The created particles flow into the detectors after the final freeze-out. Their masses,

charges, energy, and other attributes are then determined. We can only access the final

state data from the detectors. Therefore any knowledge about the system’s past states

must be deduced from the particle spectra.

1.0.9.3 Geometry of collision

In heavy ion collisions, geometry is crucial to the analysis of the experimental data.

The outcome of the experiments is highly correlated with the initial state particle dis-

tribution. That is why knowing the geometry parameters to analyze the observables

efficiently is very important.

The impact parameter is one of the most important geometry parameters for studying

heavy ion collision observables. It is a measure of the centrality of a collision event and

is not known a priori. It is the distance between the center of the two colliding nuclei

on a plane perpendicular to the beam axis. The z direction is usually taken as the

beam direction. So, the impact parameter b is calculated on the x − y plane along the

x direction. When the collision between the two nuclei is exactly a head-on collision,

in that case, the impact parameter b = 0 fm. We refer to this type of collision as a

central collision. As the impact parameter becomes larger, we describe those collisions

as peripheral collisions. This can be as large as the diameter of the colliding nuclei. In

the case of Au nuclei, most peripheral collisions can have impact parameters of 14 fm

because 7 fm is roughly the radius of a gold nucleus.

Consider a collision shown in Fig. 1.5(a) that is non-central between two identical spher-

ical nuclei moving in opposing directions along and opposite to the Z axis. In this figure,

AB is the impact parameter along the X axis. Z is the longitudinal direction. The X−Y
plane is the transverse plane (also known as the azimuthal plane) which is perpendicu-

lar to the beam direction (Z-axis). The plane made by the X − Z axis represents the

reaction plane, and the azimuthal angle of the particle is denoted by φ. The overlap

region is shown by the shaded area. In a real experiment, the impact parameter vector’s

magnitude and direction are unknown and vary from event to event (Fig. 1.5(b)). In
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Figure 1.5: Schematic diagram of system geometry of HIC experiments

Figure 1.6: Centrality dependence charged particle multiplicity of produced hadrons
in Pb-Pb collision at

√
sNN = 2.76 TeV, ref. [34]

Fig. 1.5(b), a random event is shown. Here, XY Z is the lab-fixed axis. The impact

parameter of the event is making an angle ΦR with the lab X axis. If ΦR 6= 0, we call

the xz plane the participant plane. This is analogous to the reaction plane when there

is no event-by-event fluctuation.

The distribution of particles in the end state, in particular in the transverse plane,

may be impacted by the initial configuration. Experimentally, it is assumed that more

central collisions have greater multiplicities, and the collision centrality for an event is

calculated using the event’s multiplicity. The centrality dependence of charged particle

multiplicity is shown in Fig. 1.6 for Pb-Pb collisions at
√
sNN = 2.76 TeV. Glauber

Monte-Carlo simulations are performed and fitted to the experimental data to determine

the relationship between observed multiplicities and estimated centralities.



Chapter 1 Introduction 16

1.0.9.4 Main Observables

Here we have shown some of the main observables of RHICE.

• Transverse Momentum Spectra:

When examining the QGP state and formation of QGP matter at large energy

densities, spectrum analysis is a crucial resource. Transverse mass spectra provide

information about the created particle’s energy and momentum distribution. The

spectra carry details about the system at kinetic freeze-out. Fig. 1.7 shows the

pT spectra of various hadrons of Au-Au collision at
√
sNN = 62.4 GeV. The lines

in each figure show the fitting to the experimental data of different centrality bins

from top to bottom, 0− 5%, 5− 10%, 10− 20%, 20− 30%, 30− 40%, 40− 50%,

50− 60%, 60− 70%, and 70− 80%. The greater part of the particles is generated

at low-pT (pT < 1GeV/c) region [35].

The transverse momentum spectra of various particles have both collective and

random characteristics. The random component can be used to get the kinetic

freeze-out temperature. Examining particle spectra in this region also enables the

extraction of bulk properties, e.g., the system’s collectivity and thermalization.

These bulk properties arise due to the density gradient in the initial state from

the center to the edge of the fireball. This is also one of the primary reasons for

the collective flow generation. The equation of state of the expanding QGP sys-

tem has an impact on this collective flow. In Fig. 1.7, the fits shown are used to

extract the model parameters characterizing the collective component defined by

the radial flow velocity (βT ) and the random component represented by the kinetic

freeze-out temperature Tf0 of the system.

• Particle Ratios:

The hadron yield ratios of central Au+Au collisions measured by STAR are com-

pared to statistical model fits in Fig. 1.8. Under the assumption that there exists

a thermal and chemical equilibrium at that point, the observed ratios are used to

estimate the values of system temperature and baryon chemical potential during

chemical freeze-out.

The temperature derived from the fits approaches the Hagedorn limit for a hadron-

resonance gas, which was predicted without taking into account quark and gluon

degrees of freedom. It is roughly comparable to the crucial value of temperature

for a QGP-to-hadron-gas transition indicated by lattice QCD. The inferred value
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Figure 1.7: Midrapidity (|y| < 0.1) identified particle spectra in Au+Au collisions at
62.4 GeV [36].

Figure 1.8: Ratios of pT−integrated mid-rapidity yields for different hadron species
measured in STAR for central Au + Au collisions at

√
sNN = 200 GeV [37].

of Tch serves as a lower bound on the thermalization temperature, assuming that

the bulk matter does actually reach thermalization before chemical freeze-out.

• The Signatures of QGP: There are various ways to examine the material pro-

duced in a heavy-ion collision. Some of them are given below:

– Correlations and fluctuations Fluctuations are reactive to the degrees of

freedom of the system in concern. The degrees of freedom are higher in the

QGP phase than in the hadronic phase. As a consequence, the signature of

QGP formation could be found by observing the changes in conserved vari-

ables, like charge, energy, temperature, or transverse momentum, around the

transition temperature [38]. In the proximity of the critical point, these fluc-

tuations ought to be extremely strong. Likewise, a deconfined QGP phase
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may also be characterized by the correlation of charges and their correspond-

ing anti-charge generated in later-stage hadronization [39]. As fluctuations

are related to the thesis topic, we have talked more about fluctuations in the

later chapters.

– Photon and dilepton measurements The strong interaction between the

dileptons and photons with the QGP medium is nearly zero. As a result,

they emerge from the medium unaffected by the expanding fireball retaining

knowledge of the originating state. Thermal photons might be used as a

temperature probe, and the reconstructed spectral densities of vector mesons,

such as the ρ-meson, might suggest that chiral symmetry has been restored

[40].

– Hard probes, jet quenching A jet is created when a parton from one

nucleon scatters off of a parton from another nucleon and generates a parton

shower. The partons are then hadronized and produce a collimated spray of

hadrons. It is possible to estimate jet production from collisions with a high

enough momentum transfer using perturbative theories. In a process known

as jet quenching, partons on their way interact with the quark-gluon plasma

created in high-energy heavy-ion collisions, and in the process, they may lose

energy before the generation of the final hadrons. Recently, there has been

a lot of interest in the jet quenching phenomena as this is one of the direct

evidence of QGP formation [41].

– Strangeness Enhancement The generation of thermal ss̄ pair can happen

at a temperature of more than 300 MeV. So, it is most likely to be created in a

deconfined phase where the temperature is such that a sufficient number of s-

quarks can be produced. Hence the formation of a QGP matter can enhance

the generation of multi-strange particles, which is observed experimentally

[42].

– The J/ψ particle production It was first thought that color screening hin-

ders cc̄ binding, which would explain why the generation of J/ψ, which is a

cc̄ bound state, is inhibited in the QGP state [43]. In fact, the J/ψ diffuses in

the QGP stage. This suggests rapid formation and quick annihilation. Con-

versely, according to lattice calculations, the J/ψ can withstand temperatures

higher than the QGP critical temperature, and because the LHC produces a

huge number of c-quarks, its production may potentially be improved at high

collision energies [44].
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Figure 1.9: impact parameter dependence of the angular momenta [12]

1.0.10 Motivation of the Thesis

1.0.10.1 The study of vorticity

The system created in heavy ion collisions exhibits strong collective effects for a sig-

nificant portion of its lifetime that can be explained by relativistic hydrodynamics. A

strong elliptic flow is seen in such collisions, which indicates that the produced quasi-

macroscopic system is strongly coupled and has an incredibly low viscosity to entropy

density ratio [45]. This indicates that the system may have an extremely high vorticity,

possibly the highest ever created. Peripheral collisions generate huge orbital angular

momenta J0 orthogonal to the reaction plane [12, 46]. For instance, the total initial

angular momentum J0 ∝ b
√
sNN for a non-central collision, where b is the impact pa-

rameter. Therefore, J0 can be as high as 105 in an Au-Au collision at RHIC energies

with
√
sNN = 200 GeV and 107 for b = 5 fm Pb-Pb collisions at energies of 5.5 TeV at

the LHC (Ref. Fig. 1.9) [48].

After the impact, the spectators fly rapidly far from the collision area, carrying a chunk

of J0 with them. The rest are carried by the QGP matter produced in the collision.

This part of J0 can produce a longitudinal momentum density. Particles with spin

can become polarised due to spin-orbit coupling as the system has global longitudinal

momenta. The spin-orbit coupling in microscopic particle interactions can lead to the

spin-vorticity coupling in a fluid. This is true when we calculate an ensemble average

across randomized incoming momenta of colliding particles in a locally thermalized fluid

[49]. In this manner, the fluid’s spin polarisation and vorticity field are connected. The

term “global polarisation” refers to this particular kind of spin polarisation with respect

to the reaction plane [50].

Global spin polarisation investigations of Λ and Λ̄ have been performed for Pb+Pb

collisions at 5.06 TeV and 2.76 TeV[51] by the ALICE collaboration and for Au+Au
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Figure 1.10: Average polarization(global) of Λ hyperons with collision energy
√
s.

collisions by the STAR collaboration throughout a broad range of collision energy,
√
sNN = 7.7GeV−200 GeV [32, 33]. The average global polarization for Λ particles

as a function of collision energy is shown in Fig. 1.10. The global spin polarization

is around 2% at the lowest RHIC energy, falls to approximately 0.3% at the highest

RHIC energy (200 GeV), and nearly disappears at higher energy ranges. Thus, looking

at the local vorticity distribution at different stages of system evolution becomes very

important. As viscous characteristics of the medium also affect the vorticity distribu-

tion and average vorticity patterns, it is also interesting to see how these two effects

are correlated. It is also compelling to observe how these two effects influence the QGP

medium at different stages of system evolution.

1.0.10.2 Study of anisotropy through power spectrum

The produced initial medium featured inhomogeneities in the transverse plane because

of the randomness in the phase space distribution of the nucleons in the colliding nu-

clei. It was commonly recognized that there are uncertainties resulting from the errors

in specifying the angle of the event-plane. As a result of all these variabilities, certain

variables, such as anisotropic flow coefficients (v2, v3, ...) in a non-central collision en-

counter event-by-event fluctuations [54–57]. In previous studies, the power spectrum

of the flow coefficients is calculated keeping in mind that it can retain the signs of the

fluctuations in the initial stage [58, 59]. It was also noticed that these initial fluctuations

could cause these flow coefficients to have tiny nonzero values even in central collisions.

This is quite similar to the analysis of the power spectrum of anisotropies produced by

fluctuations in the early inflationary universe found in the CMBR (Cosmic Microwave
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Background Radiation). In fact, when discussing HIC, it is sometimes stated in sim-

pler terms that attempts to comprehend the early cosmos from studies of the cosmic

microwave background radiation are akin to attempts to understand the early phases

of QGP matter from observations of finally produced hadrons. The freezeout surface in

heavy ion collisions can therefore be compared to the final scattering surface for CMBR.

The final scattering surface depicts the universe’s neutrality when protons and electrons

have recombined, and photons are free to stream through space. Such qualitative as-

sertions were elaborated in refs. [60, 61] to a more in-depth level of connection between

flow fluctuations in heavy ion collisions and the CMBR disturbances in the universe. As

the power spectrum study of CMBR anisotropy was successful in giving critical details

on first inflationary density fluctuations, power spectrum analysis can become a very

efficient tool for probing the fluctuations in the initial stage.

The existence of vorticity suggests the presence of anisotropic flow components, which

indicates a deviation from the laminar-like flow. The fluctuations in the flow can be

studied in terms of turbulence spectra. The plasma created in these collisions has a

very high Reynolds number, creating an imbalance in the inertial and viscous forces in

the plasma. This makes the fluctuations sustainable, and the Kolmogorov spectra can

be obtained in such cases. In 1941, Kolmogorov hypothesized that real turbulent flows,

despite their inhomogeneities and anisotropy at larger scales, are essentially locally ho-

mogenous and isotropic on small scales. The phenomenological theory K41, which is

regarded as one of the most successful theories of turbulence, is built on the foundation

of the Kolmogorov hypothesis (KH) [62–64]. Because spectral analysis makes it sim-

ple to distinguish between various spatial scales, it is crucial for solving the turbulence

problem. This has been discussed in more detail in chapter III, where we used different

planes to study the turbulence spectra and look for the non-uniformity over the planes

that suggest the anisotropy in the plasma.

1.0.10.3 Study of temperature fluctuation using Tsallis Statistics

As already discussed, all interactions stop at kinetic freeze-out, and the particle ratios

and the spectra of the created particles remain unaltered. Therefore, one of the funda-

mental measurements to determine the kinetic freeze-out phase of the systems generated

in high-energy collisions is the pT spectra of the produced particles. A number of differ-

ent classical statistical models like Boltzmann-Gibbs (BG), Fermi-Dirac, mT -exponential

distribution, Tsallis distribution, and Erlang distribution are often used to characterize

the pT spectra and extract physical parameters. In understanding the thermodynamic

features of various physical systems, the BG statistical model has had great success.
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The BG model, however, is insufficient to explain the large transverse momentum range,

which is primarily characterized by the inverse power-law behavior. With the thermal

blast-wave model, the same is true. Historically, the pT spectra of heavy-ion collisions

have been fitted using the blast-wave model. [65][66–70]. This model makes the basic

assumption that the collision medium freezes out kinetically at temperature Tkin and

that particles are traveling at a uniform collective radial flow velocity (βr). However, the

spectra at mid to high-pT ranges cannot be described by the blast-wave approach. It has

been demonstrated that the pT spectrum is best described by the non-extensive Tsallis

statistics not only in pp collisions but also for heavy ion collisions [71, 72]. Like other

distribution fittings, one can acquire the Tsallis fit parameters, q, which represents the

level of departure from the equilibrium state and T stands for the effective temperature.

The dependencies of these tuning parameters on the system variables can be studied.

There is another aspect of this story that we are particularly interested in. As has been

discussed earlier, although it is highly probable to attain a local thermal equilibrium

after a certain time in QGP evolution, there are temperature fluctuations in the plasma

in the earlier stage and in the pre-equilibrium state. For systems with temperature

fluctuations or varying energy dissipation, the non-additivity condition of the Tsallis

entropies in non-extensive statistical theory has a clear and concise physical meaning

[73–76]. For a system that can be described formally by a fluctuating β (inverse of

temperature), where β is χ2 distributed, the integration over all possible fluctuating

inverse temperatures results in the generalized distribution functions of non-extensive

statistics. Our motivation is to see whether the temperature states in HIC systems could

be fitted with a χ2 distribution. If so, then what would be the behavioral changes of the

q parameter found from these temperature fluctuations in the partonic phase, q being

the non-extensive parameter. In chapter IV, we have addressed this in detail, where we

showed how the fitting parameters q and effective temperature T in the partonic stage

vary with system parameters like
√
sNN , system size, and centrality. We will also discuss

the similarities of our results with the experimental observations.

1.0.10.4 Obtain Initial state parameters using machine learning

The understanding of various results obtained in HIC experiments is strongly influenced

by the initial geometry overlap zone of two colliding ions. Several parameters are de-

veloped to define initial stage properties like eccentricity, event plane angles, etc. The

impact parameter is one such parameter that plays a crucial role in interpreting the re-

sults, as it is a representation of collision centrality. However, it is practically impossible

to asses these parameter values from experiments as the QGP is created for a very short
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period of time, and almost instantaneously, it hadronizes and produces hadronic matter.

Another reason is that the system created in such collisions is so tiny with dimensions

in fm, that any kind of external probing is impossible. However, theoretical methods

have been designed that allow us to determine such initial state parameters based on

outcomes. One such formalism is the Glauber model, which uses experimental data

and multiple nucleon scattering in nuclear targets to predict impact parameters and the

number of participant nuclei [77–79].

The impact parameter has been calculated using various machine learning (ML) tech-

niques for several years [80–85]. In high energy collisions, ML approaches are generally

employed for problems including classification, clustering, and regression. To predict

the initial state parameters, one needs to use supervised regression models, where the

target variable is a finite numerical value for every set of input data. Each dataset

corresponds to the observables from the final state of a single heavy-ion collision event.

An event generator like AMPT, UrQMD, etc., can be used to create the events. The

models learn from the data and estimate the target variable for every new event dataset.

The use of these ML models in heavy ion collision experiments has two significant lim-

itations. The first one is the training is extremely sensitive to the training data. That

is why it is essential to generate events that are as similar to the experimental data

as possible. Otherwise, the ML model will not perform well while testing experimental

data. This motivates us to try out several different types of heavy ion collision simu-

lation models to train an ML model and see whether it is capable of predicting target

variables for the test data of a different model.

The second issue is related to the distribution of training data with respect to the target

variable. The event distribution is not uniform throughout the range of target variables,

leading to an imbalance in the data. As a result, the prediction accuracy gets largely

affected in certain regions. This inspired us to employ various sampling techniques in

order to create a uniform data distribution and improve prediction accuracy. The details

of our study are given in chapter V.





Bibliography

[1] S.L. Glashow Nucl. Phys. 22 (4) , 579 (1961); S. Weinberg, Phys. Rev. Lett.

19, 1264 (1967); A. Salam N. Svartholm (Ed.), Proceedings of the Eighth Nobel

Symposium, Almqvist & Wiksell (1968), 367 (1968); G. ’t Hooft, M. Veltman,

Nucl. Phys. B 44, 189 (1972).

[2] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1, 1-29 (2012).

[3] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration),

Phys. Rev. Lett. 116, 061102 (2016).

[4] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. -M. Yan,

Phys. Rev. Lett. 34, 369 (1975).

[5] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. -M. Yan Phys. Rev.

D. 17, 3090 (1978).

[6] Sidney Coleman and David J. Gross. Price of asymptotic freedom. Phys. Rev.

Lett. 31, 851–854, (1973).

[7] The European Physical Journal Conferences 95, 04015 (2015).

[8] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[9] STAR Collaboration, Studying the Phase Diagram of QCD Matter at RHIC,

https://drupal.star.bnl.gov/STAR/files/BES WPII ver6.9 Cover.pdf

[10] A. Bazavovi et al., Phys. Rev. D 85, 054503, (2012).

[11] C. Bernard, T. Burch, C. DeTar et al., Phys. Rev. D 71, 034504, (2005).
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[81] F. Li, Y. Wang, H. Lü, P. Li, Q. Li, and F. Liu, J. Phys. G 47, 115104 (2020).

[82] C. David, M. Freslier, and J. Aichelin, Phys. Rev. C 51, 1453 (1995).

[83] S. A. Bass, A. Bischoff, J. A. Maruhn, H. Stoecker, and W. Greiner, Phys. Rev.

C 53, 2358 (1996).

[84] F. Haddad, K. Hagel, J. Li, N. Mdeiwayeh, J. B. Natowitz, R. Wada, B. Xiao,

C. David, M. Freslier, and J. Aichelin, Phys. Rev. C 55, 1371 (1997).

[85] J. De Sanctis, M. Masotti, M. Bruno, M. D’Agostino, E. Geraci, G. Vannini, and

A. Bonasera, J. Phys. G 36, 015101 (2009).



Chapter 2

Vorticity distribution and flow

characteristics in relativistic HIC

system

2.1 Introduction

The rotating characteristics of QGP collective motion and the effects it generates have

garnered a lot of curiosity in recent times. In the peripheral collisions, the collision

of heavy ions produce a significant amount of angular momentum. After the initial

collision, the spectator nuclei carry the bulk of this total angular momentum with them,

but a sizeable portion is retained in the generated QGP. This shows a nonzero rotating

motion in the system. This encouraged research on the vorticity in HIC systems. It

is observed that the total angular momentum is proportional to the centrality of the

collision and the collision energy (
√
sNN ) [1],

j ∝ b√sNN (2.1)

Here impact parameter is represented as b.. While the vorticity contributes to the study

of the fluid’s viscous characteristics, it has also been hypothesised that it may result

in a number of anomalous phenomena. Anomalous transport effects can result from

the presence of a strong electromagnetic field in the background that can connect to

parity or charge odd regions in the plasma and generate currents. This phenomena is

popularly known as chiral magnetic effect (CME) [2]. The chiral vortical effect (CVE)

[3], which is the vortical equivalent of the CME and denotes the creation of vector and

axial currents along the vorticity, is comparable to this effect. Recent observations by the

29
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STAR Collaboration at RHIC [4] and the ALICE Collaboration at the LHC [5] revealed

characteristics associated with these various effects. Several groups have studied the

observational evidence of the polarisation of Λ hyperons caused by vorticity [6, 7]. In

this chapter, we do not, however, examine polarisation. We instead study the viscous

effects of QGP.

Although shear stress does not directly contribute to the creation of the plasma vorticity,

it does influence how the vorticity evolves when it interacts with the plasma. The chem-

ical potential µB (or baryon density) of the plasma affects the shear viscosity, according

to the hadronic resonance gas (HRG) model. We are interested in assessing how shear

viscosity affects the vorticity patterns observed in the QGP since this determines how

vorticity patterns evolve in a viscous fluid. Therefore, we conduct a systematic anal-

ysis of the vorticity produced in heavy ion collisions at various collision energies. The

chemical potential and thus the baryon density are connected to different
√
sNN . We

study the average vorticity for various cases by using different definitions of vorticity. In

every situation, as the collision energy rises, the average vorticity changes. The values of

shear viscosity for various collision energies are then calculated using the HRG models.

It is shown that the shear viscosity does not depend heavily on the collision energy and

the chemical potential.

The vorticity is the same as the rotational angular velocity in the case of a rigid-body

rotation with a global angular velocity around an axis. Of course, a rotating fluid differs

greatly from a rigid body, and the vorticity field generally does not remain constant

throughout the fluid. The relationship between angular momentum and vorticity is gen-

erally somewhat complex. There are numerous possible reasons of angular momentum

generation. An example of a potential reason for nonzero angular momentum is an in-

homogeneous distribution of energy density and mass of the fluid which is measured as

the inertia. If we take a scenario where the entire system is flowing at the same speed

but more matter is concentrated on one side than the other, the angular momentum will

not be zero even in the absence of vorticity. However, the angular momentum associated

with a nonzero vorticity is what we are particularly interested in. It would be interesting

to see how the interplay between viscosity and angular momentum affects the nature of

vorticity distribution across the collision energy range.

In section II, we address dissipative hydrodynamics and the reaction plane vorticity.

We go through shear viscosity and the hadron resonance gas models in section III. We

present the shear viscosity computation from the HRG model, and also demonstrate

that it is comparable to other calculations that have been given by the hydrodynamic

models in the past. We give the details of our simulations in Section IV, and in Section
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V, we give the results and go over the significance of them. Finally, in section VI, we

talk about our conclusions.

2.2 Different definitions of vorticity

Dissipative hydrodynamics has attracted a lot of attention recently as a result of the

development of several experimental results at lower collision energies [8]. A number

of simulation codes, including ECHO - QGP [9], VISHNU [10, 11] etc., have been used

to analyze it. Multiple types of vorticity have been described, and different aspects of

dissipative dynamics have been examined. Here, we analyze the vorticity patterns in

relation to the fluid’s baryon density that was created after the collisions. A study with

regard to the collision energy would entail a study with regard to the baryon chemical

potential since, as we will describe later, the µB is correlated to the collision energy.

Vorticity in classical fluid dynamics is the curl of the velocity field v. This net vorticity

travels with the fluid and is static for an ideal fluid. The fluid’s rotating motion is largely

reflected by the vorticity. The rotational motion will also produce viscous stress between

the fluid layers for a viscous fluid. Since there are no boundary conditions in heavy ion

collisions, the viscous stress in the layers of the rotating fluid will cause the local vorticity

patterns to form. In several investigations of vorticity, the fluid has been described by

the moment of inertia tensor to give an explanation for the rotating mass. Other times,

the vorticity has been described using relativistic hydrodynamics. However, there are

other approaches to describe vorticities in relativistic hydrodynamics [9]. In our present

simulations, we explore the classical vorticity, the kinematical vorticity, and the thermal

vorticity with the proper weights.

Based on the momentum of the particles involved in the heavy ion collision, we want to

quantify the amount of vorticity they produce. The system’s high Reynolds number is

one of the factors used to compute the vorticity using momentum. The fluid in a heavy

ion collision has an extremely high Reynolds number [12, 13]. In these conditions, the

majority of the fluid is subject to relatively low viscous stresses. The vorticity’s impact is

then restricted to the thin layers of the rotating fluid. Thus, we will have local vorticity

due to the momentum of the particles. Although vorticity is a three-dimensional object

described by ωi = εi,j,k
∂vk
∂xj

, it has been demonstrated in a number of earlier simulations

that the angular momentum in the y-direction (or out of plane axis) is significantly bigger

than the angular momentum in the other directions. We first compute the vorticity in

all three dimensions for a given
√
sNN . We discover that the y-direction component of

vorticity is significantly larger than the x and z direction components. Therefore, we

only compute the vorticity in the reaction plane for all other collision energies. The
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classical vorticity in the reaction plane is given by,

ωy = ωxz =
1

2
(∂zvx − ∂xvz) (2.2)

The three velocity components in this case are vx, vy, vz, and factor 1/2 is added to

provide for symmetrization. Though the velocities in these collisions are relativistic, we

have performed the computations for a classical vorticity considering the low fluctuation

scenarios. The general nature is also the same for both the classical and relativistic

instances, as demonstrated in ref. [27]. As a result, we handle both the classical and

relativistic cases.

The vorticity in the relativistic condition is determined by

ωµν =
1

2
(∂νuµ − ∂µuν) (2.3)

where, ∂µ = (∂0, ∂x, ∂y, ∂z) and uµ = γ(1,−vx,−vy,−vz). As a result, in the reaction

plane, we would obtain,

ωxz =
1

2
γ(∂zvx − ∂xvz) +

1

2
(vx∂zγ − vz∂xγ) (2.4)

We would like to talk more in-depth about the relativistic vorticity before getting into

the specifics of the simulation and the outcomes. The relativistic vorticity is always

larger than the classical vorticity [27] due to the presence of the γ coefficient. Therefore,

comparing the sizes of the classical and relativistic vorticities is challenging. If they are

given different weights, as was done in ref. [27], one may be able to compare them. In

reality, we realized that adding some weight function is crucial to get the final vorticities.

So, we consider energy when calculating weight. Both the classical and relativistic

velocities have an average vorticity of,

< ωxz > =

∑
εijω

ij
xz∑

εij
(2.5)

The energy density of the cells on the x − z plane is represented by the εi,j , where i

stands for the x coordinate and j for the z coordinate. The thermal vorticity, in addition

to the kinetic vorticity, is crucial in heavy ion collisions. It is intimately connected to

the particle polarisation. The thermal vorticity is defined by,

ωTµν =
1

2
(∂νβµ − ∂µβν) (2.6)

In this case, βµ =
uµ
T . Here, T is the local temperature. The energy is used as the weight

factor to extract < ωTµν >. The local vorticity changes as the velocity distribution does
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as it is dependent on the velocity field at a specific moment. The average vorticities are

obtained and their relationships to collision energy are plotted.

2.3 Coefficient of Shear viscosity

As previously stated, shear viscosity plays a significant role in viscous flows. The coef-

ficient of shear viscosity can be obtained from the hadron resonance gas models. The

thermodynamic potential in these models is represented by,

log(Z, β, µB) =

∫
dm(ρb(m)logZb(β, µB) + (ρf (m)logZf (β, µB)) (2.7)

Here, the hadronic gas occupies volume V at chemical potential µB and tempera-

ture β−1. The partition functions of bosons and fermions with mass m are Zb and

Zf , respectively, and the densities of the bosons and fermions are ρb and ρf . For low

temperatures, these models exhibit an excellent agreement with lattice QCD predic-

tions. This has been shown in a number of models, including the Nambu-Jona-Lasinio

model [15], the quasi particle model [16], and the chiral perturbation theory [17]. The

viscosity co-efficients of the hadron resonance gas model were recently generalised by

Kadam and Mishra to include finite chemical potential effects [18]. They suggest that

the shear viscosity is determined by,

η =
5

64
√

8r2
Σi < |p| >

ni
n

(2.8)

Here, r is the radius of the particles in question, and ni is the number density of the

i-th particle. We can distinguish between the various particles generated in the AMPT

simulations. We determine the shear viscosity for the neutrons and the protons sepa-

rately rather than taking all the particles. Additionally, we independently determine

the shear viscosity of various other particles, such as pions and Λ hyperons. The general

characteristics of the shear viscosity change are the same for all of the different particles.

Since the quantity of particles varies greatly, the only difference is the magnitude. The

most widely studied transport coefficient in heavy ion collisions is the coefficient of shear

viscosity. It may have effects on the elliptic flow velocity because it is largely responsi-

ble for stabilizing the momentum anisotropy. We examine the elliptic flow velocity at

various collision energies. The change in shear viscosity will be reflected in the elliptic

flow velocity. Shear viscosity and its relationship with other transport coefficients play

a significant impact here, as we can see from the earlier studies [19].

At various collision energies, the coefficient of shear viscosity is obtained. The chemical

potential can be associated to the various collision energies. It is possible to parameterize
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the energy dependence of the baryon chemical potential by the relation [10],

µB(
√
s) =

d

(1 + e
√
s)

(2.9)

having e = 0.273± 0.008 GeV −1 and d = 1.308± 0.028 GeV . This parameterization is

built on observations from numerous groups across a wide range of energies. Since we

are not utilising this equation to fit any data, we believe it to be adequate for our needs.

Understanding how viscous stress contributes to the formation of vorticity patterns in

the partonic fluid is our primary motivation. This will mostly include a qualitative

explanation rather than a quantitative one of the relationship between the collision

energy and the baryon chemical potential.

There have been other studies of shear viscosities which have been used to show the

dependence of viscosity on the baryon chemical potential (µB). However, in these cases,

µB is an input parameter [21]. It is difficult to calculate the chemical potential µB,

unless we use Eq. 2.9. Since as mentioned before the relationship between the collision

energy and the baryon chemical potential is not so rigorous, we prefer to calculate the

viscosity coefficient from the particle velocities. The particle velocities for the individual

particles are easily available as an output of the AMPT model.

2.4 Simulations

We employ the free open source AMPT model [22], to generate our initial condition.

This model has been widely used to look into different heavy ion collision transport

properties [23]. The choice of this model was made since it includes both the hadronic

and partonic phases. Both the hadronic and partonic aspects of the particle flow’s

vorticity are of importance to us. Along with the default version, the AMPT model

also features a string melting (SM) version. After studying both variants, only the SM

version’s results have been presented. The settings that we employ in our computations

have already been applied to the AMPT model to investigate the vorticity in the (x−η)

plane [1]. The parameters were employed in a study that successfully replicated the

yields, transverse momentum spectra, and elliptic flow for low-pT pions and kaons in

central and mid-central Au + Au collisions at collision energies of 200 GeV [24]. We

get the data from the AMPT and construct a velocity field since we are interested

in the implications of vorticity. This is achieved by selecting an acceptable volume

and segmenting it into smaller cells. Each cell then constitutes a volume of fluid, and

the fluid’s average momentum is determined by the mean momentum of the particles

within each cell. As a result, the velocity field across the selected volume is smooth.
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In ref. [1, 13], this approach of determining vorticity from AMPT has been applied

previously. We created 104 events to obtain the results for each collision energy.

We focus on the partonic phase first. In the AMPT model, the incoming nucleus is

centred at x = b/2 > 0(x = −b/2 < 0) for positive (negative) longitudinal momentum

where b in the impact parameter. The impact parameter axis is the x-axis and the

beam axis is the z-axis. This indicates that the y-direction is primarily where the initial

total angular momentum is concentrated. As previously stated, this is the reason we are

just focusing on the angular momentum component in the reaction plane. Thousands

of particles are produced by an event in the AMPT simulation, but this number is

insufficient to produce a smooth momentum distribution. A smooth distribution is

crucial to us since we want to calculate the vorticity. We must produce a huge number

of events with the same parameters in order to calculate an average.

The grid or cell size is yet another critical component of our simulation. We must select

the cell size so that there are a lot of particles inside each cell. We start our analysis

with a fixed impact parameter of b = 7 fm and a cell size of 0.5 fm in each direction.

The average momentum and energy for each cell is calculated, and then the velocity is

obtained from these two quantities by 〈
−→p 〉
〈ε〉 . Reference [1] employed a similar approach.

2.5 Results and Discussion

2.5.1 The initial partonic stage

We measured the vorticity patterns in the reaction plane (x − z) at collision energies

ranging from 20 GeV to 200 GeV. We analyse the vorticity patterns at t = 1 fm/c. We

pick this instant because it was demonstrated in [1] that the averaged vorticity peaked

about this time. To demonstrate the differences in the patterns in the low energy

collisions, we provide a few vorticity patterns in this collision energy range. Fig. 2.1

and Fig. 2.2 represent the vorticity patterns at 200 GeV and 100 GeV, respectively.

The vorticity in both plots ranges from −0.06 to 0.08. But as we can see, the vortex

lines show distinct contours surrounding the developed vortices. The vorticity pattern

at 20 GeV is shown in Fig. 2.3. In comparison to the previous two figures, the contours

are much more evenly spread out here.

According to equation 2.9, the chemical potential µB rises as
√
sNN decreases. If the

angular momentum is larger, the vorticity that forms has a tendency to be circular.

The vortices have a tendency to spread out and take on an oval shape when the strain

resulting from the bulk viscous pressure around the fluid grows. Although one should
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Figure 2.1: Vorticity distribution in the reaction (x − z) plane at a collision energy
of 200 GeV for partons according to the non-relativistic definition of vorticity. Both x

and z axes are in units of fm
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Figure 2.2: Vorticity distribution in the reaction (x − z) plane at a collision energy
of 100 GeV for partons according to the non-relativistic definition of vorticity.
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Figure 2.3: Vorticity distribution in the reaction (x − z) plane at a collision energy
of 20 GeV for partons according to the non-relativistic definition of vorticity.
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Figure 2.4: Kinetic vorticity distribution in the reaction (x− z) plane at an collision
energy of 200 GeV for relativistic partons.

be cautious when drawing inferences about angular momentum from the vorticity plots

even though the vorticity is meant to be proportional to it. Though the vorticity drops

with increasing
√
sNN , it has been demonstrated in [12] that the angular momentum

increases with increasing
√
sNN . The moment of inertia is what causes this mismatch.

According to [1], the moment of inertia is what largely determines how much angular

momentum is there. As a result, it seems that the vorticity and angular momentum are

inversely related. We find very low vorticity values at nearly x = 0 and z = 0. This is

comparable to earlier vorticity research by [1] and [12]. In the regions of lower and higher

rapidity, the distribution pattern of vorticity reveals a flipping of the vorticity direction.

Csernai et al. [27] observed flipping of the vorticity in the x−z plane, at finite rapidities

at later times t = 3.56fm/c after QGP formation. Their data show that the vorticity

has far larger fluctuations at later time. The underlying radial velocity profile and the

vorticity profile significantly differ, as can be seen in ref. [1] (Fig. 6 and 10). This

indicates that the angular momentum in the low and high rapidity regions may not have

changed directions only because the vorticity’s sign has changed. We observe a similar

decrease in magnitude in the vorticity displayed in the (x − y) plane in a recent work,

ref. [26]. In our analysis, we only considered the magnitude of vorticity. In regions

of finite rapidity, the magnitude of the vorticity decreases and goes to negative values,

but because the moment of inertia is high in these regions, the angular momentum

may still be positive. Our vorticity patterns cannot be used to interpret the angular

momentum distribution since the moment of inertia has never been taken into account

in our computations.

The same energies are then analyzed for the relativistic vorticity. The patterns of the

relativistic vorticity are shown in Figures 2.4, 2.5 and 2.6 for the values of
√
sNN = 200,

100, and 20 accordingly. The relativistic γ factor causes the values of the vorticity to be

significantly greater than the vorticity obtained previously. The relativistic γ factor is

typically of the order of 102 as the particles move at speeds close to the speed of light.



Chapter 2 Vorticity distribution and flow characteristics in relativistic HIC system 38

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

z (fm)

-6

-4

-2

 0

 2

 4

 6

 8

x
 (

fm
)

-15

-10

-5

 0

 5

 10

 15

Figure 2.5: Kinetic vorticity distribution in the reaction (x − z) plane at a collision
energy of 100 GeV for relativistic partons.
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Figure 2.6: Kinetic vorticity distribution in the reaction (x − z) plane at a collision
energy of 20 GeV for relativistic partons.

The vorticity patterns are broadly similar, but there are also a number of differences.

The centre of the pattern is where the greatest significant difference may be seen. The

differences are more pronounced at lower collision energy. The relativistic vorticity is

what causes the fluctuations to be more in this context. Similar results are shown in ref.

[27] for different condition. Larger velocities result in bigger velocity fluctuations. Next,

we display some patterns for the thermal vorticity for the same
√
sNN values in Fig.

2.7, 2.8 and 2.9. To examine the spin-polarisation of the particles, thermal vorticity is

essential. As we move to lower and lower collision energy, we notice that the vorticity

spreads out in all of the cases. Therefore, it can be inferred that the vorticity pattern

becomes increasingly diffuse as collision energies decrease.

The non-relativistic pattern and the relativistic pattern differ in a few areas. At larger

collision energy in the non-relativistic case, the core region has nearly zero vorticity.

The core region has significant fluctuations and finite vorticity in the relativistic case.

This occurs for collisions with higher energies. The relativistic and non-relativistic

patterns appear to be comparable for the collision energy of 20 GeV, but they have

substantially different magnitudes, with the relativistic one having significantly more
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Figure 2.7: Thermal vorticity distribution in the reaction (x− z) plane at a collision
energy of 200 GeV for partons.
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Figure 2.8: Thermal vorticity distribution in the reaction (x− z) plane at a collision
energy of 100 GeV for partons.
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Figure 2.9: Thermal vorticity distribution in the reaction (x− z) plane at a collision
energy of 20 GeV for partons.
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Figure 2.10: Vorticity distribution in the reaction (x− z) plane at a collision energy
of 200 GeV for the hadronic phase
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Figure 2.11: Vorticity distribution in the reaction (x− z) plane at a collision energy
of 20 GeV for the hadronic phase

fluctuations than the non-relativistic one. The patterns for the thermal vorticity are

similar to those in the non-relativistic situation, but there are more fluctuations. Due

to the wider range of velocities, even little deviations in velocities cause fluctuations to

rise. The general pattern, however, that the vortices are diffused with lower collision

energies is also evident in this instance.

2.5.2 The final hadronic stage

The net vorticity is less in the hadronic stage than in the partonic stage. Given that

the initial fireball made up of partons has a higher angular momentum, this is to be

expected. After the partons stop interacting, the hadronization takes place using a

quark coalescence model in SM version of AMPT model. Although the three momenta

are conserved, hadrons will be heavier than partons. As a result, the hadrons’ net

vorticity decreases.

Compared to the vorticity patterns for the partons, the vorticity pattern that we see

here is spread out at
√
sNN = 200 GeV (Fig. 2.10). Although the spread at 20 GeV(Fig.
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Figure 2.12: The specific shear viscosity at different collision energies for neutrons,
protons and their antiparticles.

2.11) and at 200 GeV differ from one another, the difference is not as noticeable as it

is at the partonic stage. However, the vorticity’s size has significantly reduced. The

fluctuations are quite enormous and there is no recognizable regularity in the relativistic

situation.

2.5.3 Shear viscosity dependence on the collision energy

It has been observed in the past that the shear viscosity affects the vorticity patterns in

relativistic heavy ion collisions [27]. With rising baryon chemical potential, the specific

shear viscosity usually stays constant. For different collision energies we determine and

plot the coefficient of shear viscosity. We employ the shear viscosity in the equation 2.8.

Despite the fact that it is mentioned across all particles, we perform the calculations

separately for different particles. As the right-hand side is a summation, unless the

magnitude differ significantly from one another, the average over all of the particles

would be of the same order as the individual particles. We determine the specific shear

viscosity for neutrons, protons, and pions. When determining the magnitude of the

viscosity, the particle’s radius is essential. We use the particle data book’s standard

radius information. The viscosity of neutrons and protons is depicted in Figure 2.12.

Using the values of r based on the limits provided by the particle data group, we find

that the general nature of the graph and the order of magnitude stay the same. The

specific shear viscosity has also been studied in ref.[28]. While we used the definition

from the HRG models, they used the kinetic definition of shear viscosity. They have

analyzed it for higher temperatures than we have, despite the fact that their overall

tendency is fairly similar to ours and ours is for lower temperatures.

The graph (Fig. 2.12) shows that at lower collision energies, which relate to higher

baryon chemical potentials, the specific shear viscosity is at its maximum. Beyond 80
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GeV, it becomes almost constant. The viscosity coefficient for pions and Λ hyperons is

also plotted in Fig. 2.13, which further illustrates this.

The pions exhibit a distinct trend compared to the neutron, protons, and Λ hyperons,

as is evident. Because more pions are created than neutrons, protons, and Λ hyperons

at all energies. At lower collision energies, the generated pions also differ by an order of

magnitude compared to higher collision energies. This is not noticed in other particles.

The number of neutrons, protons, and Λ hyperons largely stays the same over the

spectrum of collision energy we have observed. Due to this, the shear viscosity of pions

below 80 GeV changes very little, whereas that of neutrons, protons and Λ hyperons

show a slightly higher change. The sensitivity of η/s to baryon chemical potential

has been discussed in earlier works [29]. It is predicted that the physical value of η/s

should rise at lower collision energy because it depends on chemical potential and has

a minimum at zero chemical potential. The effective value of shear viscosity employed

to characterise the experimental data at various collision energies is shown in Figure

No. 12 of ref. [29]. At decreasing collision energy, the shear viscosity’s uncertainty rises.

Additionally, as described in [30, 31], the negative bulk viscous pressure in the expanding

fireball suppresses the grow of the radial flow. Elliptic flow and higher flow harmonics are

typically suppressed by viscosity. It has already been demonstrated that the composition

of the hadronic fireball has a significant impact on how the total momentum anisotropy

is distributed across the various hadrons. The viscosity from the HRG model also relies

on the momentum distribution of the various hadrons. In fact, this distribution heavily

depends on the pion elliptic flow at freeze-out temperature. Although we have not done

it yet, we intend to thoroughly study this.

We are aware that viscous strains cause vorticity to spread across the fluid. Therefore,

the spreading out of the vorticity patterns suggests that for low collision energies and

high baryon chemical potential, the bulk viscous pressure contributes more to the viscous
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Figure 2.14: Change of v2 with pT for different collision energies

diffusion of the vortices. We also examine the impact of lower
√
sNN on the elliptic flow

to better comprehend this.

2.5.4 The elliptic flow

From earlier studies, it is widely recognized that the elliptic flow is a reliable indicator

of shear viscosities [32]. In comparison to an ideal fluid, the elliptic flow is suppressed

in a viscous non-ideal fluid. We derive the elliptic flow from the hadronic data and

compare it to the publically available data from the STAR collaboration [33] since we

are analysing how collision energy affects shear viscosities.

We obtain elliptic flow by using the following equation.

v2 =
〈p2
x − p2

y〉
〈p2
x + p2

y〉
(2.10)

It is widely known that the elliptic flow (v2) depends on the transverse momentum (pT ).

We plot the v2 vs. pT for several different collision energies since we are curious to know

if the nature of the elliptic flow varies with change in
√
sNN . The graphs representing

the range of collision energies that we have examined are shown in Fig. 2.14. We observe

that at lower pT , the overall pT suppression is greater for lower collision energies, however

the higher pT range does not allow for the drawing of such a conclusion. In ref. [28], a

more thorough investigation of the flow coefficients was conducted. Our results are in

agreement with their results for the range value that we have tested. They have also

estimated the higher harmonics at high pT and high
√
sNN but we are more focused in

the vorticity distribution.

For a collision energy of 19.6 GeV, we also plot v2 vs. pT . The STAR collaboration

has published data for v2 vs. pT . In Fig. 2.15, we present this data along with our own

estimate of v2 vs. pT for 19.6 GeV. The elliptic flow results from the AMPT simulations



Chapter 2 Vorticity distribution and flow characteristics in relativistic HIC system 44

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  0.2  0.4  0.6  0.8  1

� sNN = 19.6 GeV

v
2

pT (GeV/c)

AMPT default
AMPT string melting

STAR

Figure 2.15: v2 with pT at 19.6 GeV from the simulation and from data from the
STAR collaboration. The data is for the 20%-30% centrality of charged particles.

3.0×10-3

3.5×10-3

4.0×10-3

4.5×10-3

 20  40  60  80  100  120  140  160  180  200

<
-�

y
>

 (
fm

-1
)

� SNN (GeV)

Figure 2.16: Average vorticity 〈ωxz〉 ≡ 〈ωy〉 at different collision energies (
√
sNN ) at

a fixed impact parameter of b = 7 fm

seem to be rather close to the data produced by the STAR collaborations at a higher

range of pT . Although recent study has indicated that there may be changes when light

nuclei are considered, there did not seem to be a major difference between the various

hadrons and mesons in the collision energy ranges we have considered [34].

The v2 vs. pT graph does not significantly change for
√
sNN between 7.7 GeV and

39 GeV, according to the STAR data. Collision energies are higher in our simulation.

The v2 vs. pT plot, even for 200 GeV, does not differ noticeably from the 20 GeV

plot. Therefore, shear viscosity does not vary considerably when the baryon chemical

potential increases, even if shear viscosity does play a significant part in creating the

elliptic flow. This seems to be consistent with our plot of η
s vs

√
sNN .

2.5.5 Average vorticity dependence on the collision energy

Our final results indicate how the average vorticity depends on collision energy. At

various collision energies, we determine the average vorticity indicated by 〈ωxz〉.
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We find that when collision energy increases, the average kinetic vorticity drops (Fig.

2.16). Our vorticity results appear to be in agreement with ref.[12]. The thermal and

relativistic vorticities give similar plots (Fig. 2.17, 2.18). The vorticity pattern exhibits

significant fluctuations in the relativistic scenario, calculating the average velocity is

therefore very challenging.

However, we have made an effort to compile averages throughout the same span of

collision energy. We can draw the same conclusions as before because the overall nature

is unchanged from the non-relativistic situation. The average vorticity has a slight

decrease below 40 GeV, which is the sole variation for the thermal and relativistic cases

that can be seen.

At
√
sNN greater than 50 GeV, the average vorticity has been studied as a function of

√
sNN [12]. The moment of inertia is the main factor in the calculation of the average

vorticity. It is responsible for the average vorticity to decrease gradually even while the

angular momentum increases. The average vorticity is therefore trending in the opposite

direction from angular momentum. Our findings appear to suggest that at lower energy,
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angular momentum can also play a substantial role. This will result in the dip that is

seen below 40 GeV. We do not believe that the pattern, which is highly noticeable in

both thermal and relativistic vorticities, is purely the result of fluctuations. Although

fluctuations do have an impact, the clear pattern suggests that a closer examination of

the experiment results at lower collision energy is required.

Our graphs show that lower collision energies are better for studying the evolution of

the vorticity pattern because there, both kinetic and thermal vorticity average values

are higher. When compared to the change in the vorticity patterns, the change in shear

viscosity is quite minor. Therefore, it appears that further research on bulk viscosity is

necessary.

2.6 Summary

We have used a hybrid transport model to conduct an in-depth study of viscous effects

on vorticity patterns at various collision energies. We studied the viscous effects and

vorticity structures at lower collision energy. A finite baryon chemical potential is one of

the reasons why lower collision energy are investigated experimentally. At finite baryon

chemical potentials, the quark-gluon plasma has been modelled using hadron resonance

gas models. We are curious to see if these models can explain the vorticity patterns

identified using the hybrid transport models. The coefficient of shear viscosity serves as

our link between these two vastly dissimilar models.

We have analysed two definitions of vorticity, the kinetic vorticity and the thermal vor-

ticity. We show that the local vorticity patterns are circular and clearly characterised at

high collision energy. They seem stretched and elliptical at lower collision energy. The

chemical potential is large at lower collision energies, which causes the viscous tension to

be high as well. These results are shown in the figures as stretched elliptical vortices. It’s

interesting to note that the local vorticity has significantly more fluctuations in the rela-

tivistic situation, and the patterns during collisions with greater energies differ between

the classical and the relativistic cases. The classical and relativistic cases, however,

exhibit comparable patterns at lower impact energies but with differing magnitudes.

To get the average vorticity at various collision energies, we weighted the vorticity. We

observe that when collision energies increase, the average vorticity decreases. The change

in average vorticity with increasing collision energy is opposite to the change in angular

momentum. Although it is anticipated that angular momentum may cause vorticity,

it appears that other factors dominate the average vorticity at high collision energies.

However, for relativistic and thermal vorticity, there is a dip at lower collision energies.
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Another significant result is the estimation of the coefficient of shear viscosity. We

estimated the results at various collision energies using the shear viscosity definition from

the HRG models. The particle momentum affects the coefficient of shear viscosity. When

we change the collision energy, we observe that the change in shear viscosity is very small

at higher collision energies. At lower collision energies, there is a sharp change, but after

that, the change is stagnant. The study of elliptic flow, which is connected to the fluid’s

shear viscosity, also leads to the same result. We see that the elliptic flow is suppressed

at low collision energies, suggesting the effects of viscosity. This is also evident by the

analysis of the STAR data. All these indicate that both angular momentum, viscosity,

and inertia of the fluid play significant roles in the generation of vorticity in heavy ion

collision plasma.

Additionally, we are aware that at these velocities, the Reynolds number is exceedingly

high. As a result, many elements of viscous flow, especially whether or not turbulence

emerges, remain unclear based on our simulations. We will analyse these and other

possibilities in the next chapter in order to comprehend the characteristics of the viscous

quark gluon plasma produced in heavy ion collisions. We anticipate that this research

will direct additional study on the vorticity patterns at lower collision energies. This

could help us understand the transport characteristics of the QGP at finite chemical

potentials.
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Chapter 3

Anisotropic turbulence in

relativistic plasmas

3.1 Introduction

There are a significant amount of fluctuations present in the initial stages after the

heavy ion collision. These fluctuations can be produced at various length scales. There

are number density fluctuations, energy density fluctuations, temperature fluctuations,

and several other types of fluctuations [2]. These fluctuations can develop irregularities

in the flow. There are various origins for the creation of these fluctuations. The authors

of reference [2–4] have demonstrated how the chromo-Weibel instability can develop in

the QGP in the existence of a momentum anisotropy. Because of the presence of momen-

tum anisotropy, the Weibel instability can be observed in plasma that is homogeneous

or nearly homogeneous. The electromagnetic fluctuation of two beams that are moving

opposite to one another can potentially induce this instability. The production of tur-

bulent color fields in relativistic plasma is addressed in ref [5, 6]. In reference [7], the

development of turbulence and its dependency on fluctuations have also been explored.

Here, the authors relate a set of re-scaled coordinates for a non-relativistic Navier Stokes

equation to the relativistic dynamics of fluctuations. As a result, the authors were able

to characterize the flow in the relativistic heavy ion collision using the principles of non-

relativistic turbulence. The authors suggested that the Kolmogorov spectrum for the

correlation functions in the relativistic heavy ion system may not be anticipated, but

the emergence of turbulence can lead to a power law behavior similar to that obtained

for non-relativistic systems.
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In heavy ion collision experiments, the collective dynamics of the produced particles

indicate the system’s fluid nature. There are models based on the hydrodynamic equa-

tions that can effectively represent the outcomes of these experiments. At the LHC and

RHIC, we observe similarities in the pattern of elliptic flows and other higher-order col-

lective flows, which is in line with the predictions of the viscous hydrodynamic models

[8–14]. In reality, as shown in ref. [15–18], the ideal fluid dynamics can also explain

the experimental results quite well. Because of the low shear viscosity to entropy den-

sity ratio η/s, the fluid generated is regarded as the most ideal fluid. The value of

η/s ≈ 1
8π was adversely addressed by the RHIC data from the top energies [19, 20].

The transition from the initial state to the equilibrium state is an intriguing area of

study. The system seeks to attain thermal equilibrium as it evolves. The system ex-

pands during this process, and the temperature of the system drops over time until

equilibrium is established. A lot of energy is dissipated in the system. As was already

said, the QGP’s collective behavior points to the system’s fluid dynamics. The flow

instabilities may cause the plasma to behave like a turbulent flow. By examining the

energy dissipation spectrum of the turbulent system, it is possible to comprehend that

the energy dissipation can occur at various turbulent flow length scales. By studying the

temperature and velocity distribution in the collision region, we are interested in ana-

lyzing the spectra of the initial instabilities. We only examine temperature fluctuations

in the pre-equilibrium stage, where the temperature can be described using the energy

density, and one can assume the local thermal equilibrium in the corresponding length

scales.

Both the transport models and the kinetic theory models are capable of describing col-

lective flows. The final stage hadron scatterings are also incorporated in some transport

models, which provides a more favorable fit to the data [21, 22]. One such kinetic

theory-based model that is effective in simulating experimentally observed collective

flows is the AMPT model [23]. The details about this model is already discussed in

Chapter I. In this work, we analyze the fluid turbulence anisotropies in the initial and

pre-equilibrium stages of the heavy ion collision using the AMPT model. Here, the

state of the system immediately following the collision and prior to parton scattering

is referred to as the initial stage. Pre-equilibrium stage refers to the system’s condi-

tion following parton scattering but before it reaches an equilibrium state. Since we

are employing a grid-based simulation, the local thermal equilibrium is assumed at the

length-scales determined by the grid size in the pre-equilibrium stage.
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Section 2 describes the general overview of the turbulence spectra for the heavy ion

collision system. Section 3 discusses the formulation of the turbulence energy spectra

and the length scales of the system. Here we have shown the range of eddies we can get

and the range of wave numbers associated with the eddy sizes. We display the outcomes

of the numerical simulations in section 4. We have presented the longitudinal and

transverse energy spectra at various initial conditions. We discuss the power spectrum

of temperature fluctuations obtained for the turbulent system in section 5. In section 6,

we present a summary of the results.

3.1.1 Spectral analysis for heavy ion collision system

The geometry of a heavy ion collision is such that a significant amount of angular mo-

mentum is produced in the system. In the early stages of the plasma, this angular

momentum may cause the formation of vortices [24–27]. A substantial proportion of the

incoming nuclei energy is carried by these vortices. Thus, a turbulent flow may develop.

The fluid in a turbulent flow consists of continuously interacting swirls forming eddies

or vortices. The size of these eddies can vary. Their length scales can range from as

little as the size of the nuclei to as large as meters at times. Turbulence is characterized

as instabilities in the velocity field in a laminar flow. The field of instabilities has the

potential to rapidly isotropize the system and, as a result, reach equilibrium. This also

implies that the turbulent flow is diffusive, meaning that both energy and momentum

are dispersed throughout the fluid. Additionally, it is dissipative, which means that

it eventually fades away with time. When there is an active energy source present in

the momentum space, a driven stationary turbulence develops. However, we do not

have a continuous energy source in heavy ion collisions. As a result, we obtain a freely

propagating energy cascade, often known as free turbulence.

Scalar field theories [28–31] and Quantum Chromo Dynamics [32–34] are two fields that

have involved the study of turbulent flow in recent times. Most of the time, it is con-

sidered that the turbulence produced in the relativistic heavy ion collision experiments

is isotropic in nature [35]. Some theories suggest that turbulence develops here by an

entropy cascade instead of an energy cascade [36]. They are likewise explored under the

presumptions of homogeneity and isotropy. In contrast to the non-relativistic scenario,

it has been demonstrated that a completely relativistic turbulence has richer dynamics.

Investigations have been done for the tensor-driven turbulent flow in an isotropic, rela-

tivistic fluid. The suggested patterns, however, are challenging to reconstruct in the real

environment. The system in heavy ion collision has anisotropy in its momentum space



Chapter 3 Anisotropic turbulence in relativistic plasmas 56

and is also rotating. We are interested in studying the anisotropies produced in turbu-

lence in this chapter. Since there is a large momentum anisotropy in different planes, we

utilize the same planes to analyze the anisotropy in the turbulence spectra. Considering

x as the axis of the impact parameter and z as the beam axis, we find various scaling

exponents of turbulence spectra in both the transverse (x− y) and longitudinal (x− z)
planes. For different planes, we obtain a different exponent. The exponent is closer to

the Kolmogorov convective range in only one plane. For the non-relativistic context,

the exact scaling relation of the Kolmogorov type typically holds. Even though many

studies have suggested that the conventional interpretation of the energy cascade in the

Kolmogorov case may be misleading, it has been demonstrated that precise scaling out-

comes are possible for relativistic turbulence, which limits to the Kolmogorov relation

for lower velocities [37]. A recent study confirmed the classical definition of a relativistic

energy cascade [38]. This suggests that the energy cascade model can also be used to

study relativistic turbulence.

Kolmogorov proposed the hypothesis that energy in turbulent flows, carried by eddies

of diameter D, tend to gravitate toward D5/3 [39]. However, this is true only in the

inertial subrange, which is a particular set of length scales. Kolmogorov spectra have a

power-law character in this sub-range where the kinetic energy can be expressed as,

E(k) ≈ kν ≈ k−5/3 (3.1)

The transfer of energy from low to high momenta exhibits a power-law behavior with

the exponent ν = −5/3, as indicated by the Color Glass Condensate (CGC) lattice sim-

ulation in ref. [40, 41]. The range of acceptability of the exponent ν is generally rather

broad. In the case of classically scale invariant renormalizable interactions in QCD, ν

has been determined to be −5/3 and −4/3 for energy and particle cascade, respectively

[42].

The distribution of relativistic velocities of the particles produced after the collision is

specified by the AMPT model. The output velocities provided by the simulation can

be used to determine the velocity correlations. Here, we have employed velocity corre-

lation to extract the initial energy spectrum from AMPT simulation. Since it is known

that the initial geometry distribution is anisotropic, we have used the energy cascade to

study anisotropic turbulence. Although the tensor degrees of freedom sometimes exhibit

distinct characteristics for relativistic and non-relativistic velocities, we do not examine

these higher degrees of freedom in this work.
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The temperature fluctuations of a turbulent fluid can also be used to examine anisotropic

turbulence. The temperature at a specific location in a laminar flow is constant during

a steady state. The heat transfer and temperature at a point are both functions of time

in a turbulent flow. Heat flow is comparable to the transfer of momentum in a turbulent

flow where the velocity is time-dependent. So, in a turbulent flow, temperature fluctua-

tions occur along with velocity fluctuations. In this scenario, there will be an extended

momentum and heat transfer in the availability of these fluctuating components. Ref.

[43] discusses the temperature spectrum of a turbulent fluid. The temperature fluctua-

tion spectrum for isotropic turbulence is observed to be Gaussian. If anisotropies exist

in the turbulent system, it is indicated by deviations from the Gaussian spectrum. How-

ever, the temperature fluctuation spectrum has not been addressed in any turbulence

analysis in heavy ion collisions. This temperature spectrum can provide information

about the system’s thermal length scales. The diameter of the smallest eddies is cor-

related with the smallest length scale associated with this spectrum. We study this

during the pre-equilibrium phase of HIC. This is because we derive the temperature

from the energy density keeping the condition of local thermal equilibrium at various

places in the system. Since we can describe the spectrum in three dimensions entirely

in this case, we will take the entire spectrum into account for all temperature fluctua-

tions. This is different from the velocity fluctuations. In order to determine whether

there is any major departure from the Gaussian distribution in the case of the heavy ion

collision, we attempt to obtain a similar Gaussian spectrum. The shortest length scale

of the eddies in the turbulent flow is determined using the spectrum. We are interested

to see how collision energy affects the temperature fluctuation spectrum.

3.2 The turbulence spectra and length scales

The geometry of heavy ion collision makes the velocity flow irregular. In the early stages,

this causes turbulence in the velocity field. In turbulent flow, eddies of varying sizes may

be seen. We must isolate the laminar component from the particle velocity to obtain

the turbulent component of the velocity field. The turbulent component is obtained by

dividing the actual velocity into the laminar flow and the fluctuating component as,

~u(~x) = ~U(~x) + ~u
′
(~x) (3.2)

Here, the laminar component is given by ~U = 〈~u〉 and the turbulent component is

~u
′

= ~u − 〈~u〉. The position vector at which the velocity is taken into consideration is

given by the vector ~x. Since we employ a discretized grid structure in our study to

calculate the average velocity, the position vector in those cases refers to the position



Chapter 3 Anisotropic turbulence in relativistic plasmas 58

vector of the cell whose average velocity we are determining. When we talk about the

velocity correlations later in this section, we will go into more detail about this. Any

primed quantity used in the paper will be used to indicate the turbulent component

of the specific field. When studying turbulence, we statistically average the velocity to

determine the laminar flow. In comparison to studying velocity using the Navier-Stokes

equations, this provides a more deterministic solution. To determine average velocity,

two different statistical averages can be used. For the first case, the space average is

derived considering velocities at a specified time and averaging them over the entire

volume V that the system occupies,

〈~u〉 = lim
∆x→0

∫

V

~ud3x

V
(3.3)

And the other is the time average, which averages across time while maintaining a fixed

point in space.

〈~u〉 = lim
∆T→∞

∫ T

0

~udt

T
(3.4)

In the current study, we want to examine if the turbulence spectrum of the collision re-

flects the anisotropy in the initial geometry of the relativistic heavy ion collisions. We

do this by using the velocity correlation tensor for the turbulent velocity component,

which is given by,

Rij(~r) =
〈
u′i(~x)u′j(~x+ ~r)

〉
(3.5)

In this case, u′i stands for the fluctuating component of velocity. The 〈〉 signifies the

average over space. This demonstrates the connection between the fluctuating velocities

at the two locations indicated by the variables ~x and ~x+~r. The energy spectrum tensor

Eij( ~K) and the Rij are related by,

Eij( ~K) =
1

(2π)3

∫ ∫ ∫
e−i

~K.~rRij(~r)d~r. (3.6)

If isotropic turbulence is assumed, the final expression of the Fourier transform to the

wave vector ~K space is E(k),

E(k) =
1

(2π)3

∫ ∫ ∫
e−i

~K.~rRij(r)dxdydz. (3.7)

where k is the magnitude of ~K and the volume element across which the integration is

performed is dxdydz.

The conventional approach is to select a chosen axis and identify the constantly evolv-

ing velocity components parallel to this axis for a lower-dimensional energy spectrum.
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This represents a profile of the entire spectrum. We call this the longitudinal spectra.

The velocity correlation tensor for the velocity fluctuations orthogonal to this axis for

the transverse spectra is obtained. It can be demonstrated that in isotropic turbulence,

the longitudinal and transverse spectra possess the same coefficient in both planes. We

define the beam axis, i.e., the z axis, as the preferred axis for relativistic heavy ion

collisions. Therefore, in order to find the longitudinal spectrum, one must identify the

velocity correlation in the x − z plane, which is parallel to the z axis, and one must

identify the velocity correlation perpendicular to the z axis for the transverse spectra.

The energy spectrum essentially depicts the distribution of kinetic energy among the

various eddy sizes. We address the critical length scales involved in this particular

system before moving on to analyze the turbulent spectra in depth because the length

scales in the system specify the eddy sizes.

In a turbulent flow, the rotating structures can be of various sizes. As a result, our

problem involves many length scales. The distance over which the characteristic gradi-

ents of several variables are present determines the length scale of a system. Thus, the

largest eddy that forms in the system may have the largest length scale. These large

eddies extract kinetic energy from the mean flow to generate angular momentum. The

bulk of the energy in relativistic heavy ion collisions transforms into angular momentum

before dissipating in the smaller eddies. This is referred to as the energy cascade. The

Reynolds number can characterize this energy cascade. The ratio of inertial force to

viscous force is referred to as the Reynolds number [44];

Re =
Fi
Fv

=
ρul

µd
(3.8)

Here, the inertial force and the viscous force are given as, Fi = ρl3 u
2

l and Fv = µd
u
l l

2

respectively. The density and length scale are represented by ρ and l, while the fluid’s

dynamic viscosity is represented by µd. As a result, the onset of turbulence depends

on the fluid’s density, viscosity, size of the medium, and fluid velocity. Large Reynolds

numbers result in greater eddies because the fluid viscosity is less dominant than the fluid

inertia. This is the Kolmogorov spectral regime [45]. In this case, the vortex interaction

explains the mediation of a spectral energy flow which is scale invariant. The energy

is moved from the mean flow to the large eddies, where it is then transferred through

the smaller eddies, as indicated in refs. [46–48]. As RHIC systems usually have high

Reynolds numbers, we anticipate a Kolmogorov-type energy spectrum in this scenario.

As mentioned, the system size determines the largest length-scale in the system. We

used the cell size of 0.3 fm and 48 cells in each direction for the simulations. Thus,

the size of our system is l = 14.4 fm in both directions. Additionally, the Au nuclei’s
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diameter is about 12 fm. As a result, this eddy size shall be the largest in the system ,

and this gives us the minimum wave number limit kmin,

kmin =
2π

l
= 0.524 fm−1 (3.9)

Impact parameters are chosen in the 0− 15 fm range for minimum bias Au−Au events.

In such case, kmin approximately equals 0.42 fm−1.

The Kolmogorov length scale is defined as the length scale of the smallest eddy [44].

This is obtained by making the Reynolds number very small in Eq.3.8.

ζ =

(
µ3
k

εd

)1/4

(3.10)

Here, µk represents the kinematic viscosity, while εd denotes the rate of energy dissipa-

tion. The relationship between the kinematic and dynamic viscosities is µk = µd
ρ . We

will have the dimension of length scale if we insert the dimensions of µk and εd in Eq.

3.10 [44]. The Reynolds number is correlated to the smallest length scale by,

ζ = lRe−3/4 (3.11)

The kinematic viscosity for a QGP system estimated in reference [49] which is,

µk ≈ 10−7m
2

s
≈ 1.69 GeV −1 (3.12)

The energy density in the heavy-ion collision must be greater than the nucleonic density

in order to produce a QGP state. If we use the energy density bound about 2 GeV/fm3,

the Kolmogorov length scale will be 1.24 fm (ref. Eq. 3.10). Since this is the lowest

eddy scale, we may estimate the wave number corresponding to it using an equation

analogous to Eq. 3.9. In this case, kmax is roughly 5. According to ref. [50], the

Reynolds number for the system produced by RHIC energies is Re = 8.52. In that case,

kmax has a minimum value of 3, and ζ ≈ 2.4 fm, which is derived using Eq. 3.11.

Depending on the choice of planes, the minimum length scale may change. Smaller

eddies can also form for lower Reynolds numbers. To account for every probable length

scale of the Au−Au collisions at RHIC energies, we include the entire energy spectrum

from k = 0.5 to k = 20 in the simulations.
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3.3 Results and Discussions

3.3.1 Longitudinal plane spectra

We start by talking about the scenario of the longitudinal plane. This plane contains the

z-axis. This indicates that we are taking the longitudinal velocity correlation between

two positions on the x− z plane that are separated by ~d.

Rij =< u′i(~r, t), u
′
j(~r + ~d, t) > (3.13)

Here, the position of the grid cell with turbulent velocity u′i is represented by ~r, while

the grid cell with velocity u′j is represented by ~r + ~d. We take into account equal-time

correlators and exclude the ”t” from subsequent equations. This is similar to Eq. 3.5.

The primary reason for explicitly writing out this equation is that when we compute

the velocity correlation in the longitudinal plane, we must account for the Lorentz boost

effect because the particles are colliding with relativistic velocities along the z axis.

Therefore, the z axis is boosted as well as the ~d. This indicates that in order to account

for the Lorentz boost, the correlation function must be modified. We utilized the formula

from a recently published research [51] to determine the energy spectrum in our context.

This involves the transfer of u(x) to the new reference frame u(x+∆x) which is obtained

using the boost Λ(∆x),

Λ(∆x)u(x+ ∆x) = u(x) (3.14)

In our scenario, we only require to boost the velocities along the boost direction to

get the equal time correlator.

Rij = Λ(d/2)Λ(−d/2) < u′i(r − d/2), u′j(r + d/2) > (3.15)

Here, the correlator is boosted to the local reference frame at the midpoint between the

two points. The vector ~d is now the line connecting the two positions specified in Eq.

3.13. We used the boost given in ref. [51] as

[Λ(d/2)u]µ = uµ − uµ(∆u.u) + ∆uµ(u.u) (3.16)

where ∆u = u(x + d/2) − u(x). Our outcomes will now be unaffected by the reference

frames we choose. However, this is challenging to accomplish in the grid structure we

are currently using. We put it into practice by presuming that it is an infinitesimal

boost. This is also discussed in detail in ref.[51]. For an infinitesimal boost, we derive

the Λ(d/2) matrices, and then we calculate Rij for each pair of velocities in the x − z
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Figure 3.1: Turbulence velocity spectra on the longitudinal plane at
√
sNN = 200

GeV. The range of centrality is 0− 10%. ν= -1.596
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Figure 3.2: Turbulence velocity spectra on the longitudinal plane at
√
sNN = 200

GeV. The range of centrality is 20− 40%. ν= -1.568

plane. The two-dimensional scalar kinetic energy spectrum E(k) is calculated after we

have Rij , which is specified in Equation 3.7. To perform the integration, we use the min-

imum and maximum length scales of two dimensions. The integration is performed for

the location r + d
2 rather than the position r as we have applied the boost. For our

computations, we consider the real component of the exponential.

As previously noted, there is typically a specified axis, and planes are picked parallel and

perpendicular to the chosen axis for evaluating a profile of the entire three-dimensional

spectrum. Thus, the three-dimensional energy spectrum E(k) will be transformed to the

parallel plane energy spectrum, which we represent by Elong(kz), and the perpendicular

plane transverse energy spectrum, which we designate by Etr(ktr). After fitting the

graphs for Elong(kz) for various values of kz, the exponent ν of kz is derived

The turbulence spectra of the velocity field for collision energy (
√
sNN ) of 200 GeV for

0− 10% centrality, 20− 40% centrality, and 40− 80% centrality are shown in Fig. 3.1,

Fig. 3.2 and Fig. 3.3. These figures are plotted in log-log scale and are constructed

in the longitudinal plane. The dashed line on it is the one that fits best in the range
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Figure 3.3: Turbulence velocity spectra on the longitudinal plane at
√
sNN = 200

GeV. The range of centrality is 40− 80%. ν= -1.663
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Figure 3.4: Turbulence velocity spectra on the transverse plane at
√
sNN = 200 GeV.

The range of centrality is 0− 10%. ν=-1.264

of kz considered for our simulation. We determine the exponent ν by computing the

slope of the fitted straight line. On every occasion, the exponent is around −1.6 for

the longitudinal plane spectra. This is roughly equivalent to −5/3, which is close to

the Kolmogorov limit. As a result, the spectra in this plane portray the Kolmogorov

spectrum. In this case, the inertial force exceeds the dissipative force.

3.3.2 Transverse plane spectra

We now provide the outcomes for the transverse plane spectrum. Our chosen axis, the

z axis, is perpendicular to the transverse plane. The velocity components perpendicu-

lar to the z-axis remain unchanged because the system is only boosted along one axis.

Therefore, in order to obtain the velocity correlation tensor on the transverse plane,

we do not need to transform the velocities. For each pair of points, we determine the

velocity correlation tensor and record the various values of Rij . We obtain the spectrum

Etr(ktr) using these Rij .



Chapter 3 Anisotropic turbulence in relativistic plasmas 64

100 101

ktr(fm 1)

108

109

E t
r(k

tr
)

Au-Au  20-40%

Etr(ktr),  s=200 GeV

= 1.183
 2/dof = 0.416

Figure 3.5: Turbulence velocity spectra on the transverse plane at
√
sNN = 200 GeV.

The range of centrality is 20− 40%. ν=-1.183
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Figure 3.6: Turbulence velocity spectra on the transverse plane at
√
sNN = 200 GeV.

The range of centrality is 40− 80%. ν= -1.389

The transverse plane turbulence spectrum of the velocity field for 0−10% centrality and

20 − 40% centrality at the collision energy of 200 GeV is depicted in Fig. 3.4 and Fig.

3.5. Once again, the fitted graphs are used to determine the power-law exponent ν. A

power law exponent of −1.26 is found in Fig. 3.4, although a smaller exponent (−1.18)

is observed in Fig. 3.5. The spectrum for the 40 − 80% centrality region is shown in

Fig. 3.6, and the exponent obtained is higher than that of 0− 10% centrality but lower

than the exponent of the Kolmogorov spectrum. It is interesting to note that in none of

these instances, the power law exponent remains constant. In the presence of significant

dissipative forces, a power law exponent of −4/3 is attained. These numbers seem to

be closer to −4/3 than the Kolmogorov limit. The exponent for collision energies of

19.6 GeV, 62.4 GeV, 100 GeV, and 130 GeV have also been determined. In all of the

planes, the exponents have the same characteristics. It is always closer to −5/3 for the

longitudinal plane and −4/3 for the transverse plane. This appears to suggest that, at

this point, our outcomes are independent of the collision energy.

As a consequence, the coefficients for the longitudinal and transverse spectra are dif-

ferent. We realize that the initial distribution is not spherical. Even if the difference
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may not be substantial, they will result in different Schmidt numbers. The Schmidt

number is defined as the ratio of the kinematic viscosity to the interparticle diffusion

rate [52]. In comparison to the longitudinal spectra, the transverse spectrum leads to

a larger Schmidt number. The entropy density can be thought of as a measure of the

inter-particle distance in heavy-ion collisions. It is widely known that the shear viscos-

ity is a measure of the mean free path of a system. For heavy-ion collision, the shear

viscosity to entropy density ratio η
s < 1. This implies that the QGP’s spectrum should

approximate a Kolmogorov spectrum. This occurs only in the longitudinal plane but

not in the transverse plane.

The QGP appears ”lumpy” in the transverse plane [53] due to the geometry of the

collision. The overlap region in the x − y plane exhibits a significant anisotropic pres-

sure gradient and a very high energy density. Therefore, the particle distribution on

this plane is not uniform. This indicates that on this plane, neither the mean free path

nor the interparticle distance is uniform. This results in different coefficients in the

turbulence spectra. The distinctive power law coefficient in the two planes indicates

that turbulence is not isotropic in the fireball. The spatial anisotropy of the overlap

zone in the two separate planes can be linked to this anisotropy. The discrepancy in the

power law coefficient is caused by the different ratios of the viscous diffusion rate to the

interparticle diffusion rate of the two planes.

We have also observed that for each plot in the transverse plane, the Schmidt number

will have a distinct value depending on how these coefficients differ. Since the Schmidt

number is higher, momentum diffusion is more prevalent in the transverse plane. It

has already been documented in ref. [54] that the collision centrality affects the viscous

effects that lower the elliptic flow’s magnitude. The power law exponent varies at various

centralities, which is represented in our spectrum.

3.4 Power spectrum of temperature fluctuations

The shear stress or Reynolds stress in a turbulent flow can be calculated using the

equation of motion. The tangential stress is determined by the fluid viscosity and the

change in velocity perpendicular to the flow direction.

Π = −ρ(γ + εm)
∂v̄x
∂y

(3.17)
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where ρ is the density, εm is the turbulent viscosity coefficient, γ is the thermal diffusivity

coefficient, and v̄x is the average velocity along the x axis. This equation originates from

the conservation of momentum. Similar to this, the conservation of energy can be used

to determine the total heat flow.

Q = −ρcp(α+ εp)
∂T̄

∂y
(3.18)

Here, cp stands for the specific heat at constant pressure, εp for the coefficient of eddy

diffusivity for heat, α for the thermal conductivity coefficient, and T̄ for the average

temperature. The temperature gradient in the direction perpendicular to the direction

of flow causes the heat flow to develop. The nature of the above two equations is sim-

ilar. The laminar component is in the first term in both equations, and the turbulent

contribution, which is made up of two fluctuating components, is in the second term.

The velocity part we have covered in the earlier sections, whereas this part involves the

temperature. We will now continue our analysis of temperature fluctuations.

In many different conditions, temperature fluctuations in heavy-ion collisions have pre-

viously been described in ref. [3, 17, 55]. Once we are aware of the particle distribution,

we segment the system into smaller cells. These cells each contain a sufficient number of

particles to justify the assumption of local thermal equilibrium. The Gibbs-Boltzmann

formula, which links energy density to temperature, can then be used to determine each

of these cell’s temperatures. We found that the temperature distribution that was thus

obtained have high fluctuations.

One can define the power spectrum of temperature fluctuations for the condition of

isotropic turbulence starting with the heat transfer equation [43],

∂T

∂t
+ vk

∂T

∂xk
= γ

∂2T

∂xj∂xj
(3.19)

Here, we have made the assumption that any two points, P and P ′, will have tem-

peratures T and T ′. The temperature correlation between the two specified points is

therefore defined as m(r) =< TT ′ >. If we assume that the temperature variation is a

random function of space, we can represent it as a stochastic Fourier integral.

T (x) =

∫

λ
eixpkpdh(k) (3.20)

here h(k) is a random function of k1, k2, k3. Here two points in wave-number space are

represented by k and k′. At the same point, the product of their increments is very
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small but not zero. It is described as,

< dh∗(k)dh(k) >= Φ(k)dk (3.21)

The complex conjugate is denoted by the asterisk in this case. Φ(k) in this case only

depends on k, as temperature is a scalar fluctuation. After that, the correlation function

can be obtained by,

m(r) =< TT ′ >= 4π

∫ ∞

0
k2Φ(k)

Sinkr

kr
dr (3.22)

Thus, we can obtain the power spectrum as

G(k) = 4πk2Φ(k) (3.23)

The connection between the temperature correlation and the power spectrum is repre-

sented by,

G(k) =
2

π

∫ ∞

0
m(r)krSinkrdr (3.24)

As long as we are aware of the temperature at various points, we can derive the power

spectrum of temperature fluctuations. However, unlike the energy fluctuation, it was

not possible to extract the power spectrum of the temperature fluctuations in the two

separate planes. Therefore, we begin by assuming that the temperature fluctuations are

isotropic. But, we will see from the results that the fluctuation spectrum does not end

up being Gaussian contrary to what is predicted for the isotropic case [43]. We deduce

that the temperature fluctuations cannot be isotropic after observing that a Gaussian

cannot fit the fluctuation. Hence, the temperature fluctuation is also anisotropic.

We obtain the energy of the system at various length scales in order to obtain the power

spectrum. The temperature can then be obtained using,

ε(x, y) = 12(4 + 3Nf )(
T 4

π2
) (3.25)

Here, the number of quark flavors is Nf = 3. The temperature is that of the pre-

equilibrium stage since the energy is estimated from the partons after they have under-

gone scattering. At two distinct times, we plot the power spectrum of the temperature

fluctuations at
√
s = 200 GeV.

The power spectrum of temperature fluctuations at τ = 1 fm/c is shown in Fig. 3.7.

This includes all parton scatterings up to τ = 1 fm/c. We show that it can be roughly

fitted to a Gaussian distribution. We can see that the fit is less adequate at higher k
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Figure 3.7: The power spectrum of the temperature fluctuations for 200 GeV Au-Au
central collision events at τ = 1fm/c. The units of k is in fm−1. It is fitted with a

Gaussian function.
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Figure 3.8: The power spectrum of the temperature fluctuations for 200 GeV Au-Au
central collision events at τ = 6fm/c. The units of k is in fm−1. At later times the
peak of the power spectrum shifts to higher values of k, it is fitted with an asymmetric

Poissonian q -Gaussian distribution.

values, which suggests shorter length scales. We observe that as time progresses, the

peak of the Gaussian shifts to smaller length scales and higher k values. The power

spectrum of temperature fluctuations at τ = 6 fm/c is shown in Fig. 3.8. Again, this

indicates that in order to determine the spectrum of temperature fluctuation, we have

taken into account all parton scatterings up to τ = 6 fm/c. It is interesting to note

that this nature is still there at all of the collision energies we have examined. As time

progresses, it appears that energy is shifted to smaller eddies, as indicated by the shift

of the peak to shorter length scales. It is also possible to estimate the scale of the

temperature fluctuations using the following equation,

λsc =
1

< T 2 >avg

∫ ∞

0
m(r)dr (3.26)

At τ = 6 fm/c, the scale of the temperature fluctuation is calculated to be 1.16 fm. The

length scale determined for the smallest eddies in the previous section is comparable to
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this one.

Although a Gaussian distribution can roughly fit the power spectrum even at later

times, the q-Gaussian distribution provides a better fit. The q-Gaussian distribution is

a generalization of the standard normal probability density. We employ the asymmetric

Poissonian q-Gaussian distribution [58] to fit the spectra because it becomes asymmetric

later in time. Fig. 3.8 displays the fit to the distribution using an asymmetric q-Gaussian

distribution. The distribution is given by,

P (k) =
c

Nββ′
(1− k2)((β+β′)/2)−1

(
1 + k

1− k

)(β−β′)/2
(3.27)

Here we have,

q = 1−
(

(β + β′)
2

− 1

)−1

(3.28)

and the asymmetry parameter is given by,

a =
(β − β′)

2
(3.29)

Here Nββ′ is a constant given by,

Nββ′ = 2β+β′−1Γ(β)Γ(β′)/Γ(β + β′). (3.30)

In our case, we use c, β, and β′ in the distribution as open parameters to fit with our

temperature spectrum.

Though it appears that the temperature fluctuations can be somewhat fitted by a Gaus-

sian, the anisotropy seems to grow over time. Although it was impossible to examine

individual planes for temperature fluctuations, the spectra of temperature fluctuation

shows an overall anisotropy in the temperature spectra as well.

3.5 Summary

To summarise, we have studied the partonic system in the initial and pre-equilibrium

phases of the heavy-ion collision. The energy spectrum for the turbulent flow velocities

has been computed. For the specific system, the wave number range and hence the eddy

sizes are first determined. Then, under various initial conditions, we were able to find the

turbulence spectra both on the heavy-ion collision’s longitudinal plane and transverse

plane. The spectra coefficients, ν, for the two separate planes have been determined. We
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showed that the ν value for longitudinal spectra is −5/3, which is larger than the value

for transverse plane spectra. The ν value for the transverse plane spectrum is around

−4/3. As a result, the longitudinal plane’s ν value is nearer to the Kolmogorov spectra.

The energy dissipation is greater for the transverse spectra. We also observed that the

power law coefficient is only affected by the collision’s centrality for the transverse plane.

The anisotropic pressure gradients produced in this plane result in spatial anisotropy

in particle distribution. This may cause asymmetric energy dissipation. Further, the

collective flow in the transverse plane is suppressed by the viscous nature of the fluid.

We observe in chapter II how shear viscosity has an effect on the elliptic flow. Therefore,

the viscosity has a centrality dependence that is represented in the spectrum’s Schmidt

number. This also affects the energy dissipation in the transverse plane for different

centralities, which can be seen in our plots.

In the heavy-ion collision, the energy spectrum analysis showed that energy is trans-

ferred from the flow to the large eddies, which is then dissipated through the smaller

eddies. This is also evident from our temperature spectra, where we have seen the peak

shift to the smaller length scales at later times. Even though the turbulent system might

be overall isotropic, if we divide it into different planes, the power law coefficients will

differ on each plane. We illustrate this difference between the transverse and longitudi-

nal planes in our plots. The turbulence in relativistic heavy-ion systems is assumed to

be isotropic, but if the geometry of the collision is taken into consideration, the turbu-

lence under study is invariably anisotropic. In our analysis, this is firmly shown.

Further, we analyze the temperature spectrum of the turbulent quark-gluon plasma in

the early stages of equilibrium. Although temperature correlations and velocity corre-

lations may be related to one another, they need not always be the same in a given sys-

tem. This is why it is significant to study the temperature spectrum. The thermal length

scales in the underlying condition are explored via the temperature spectrum. We believe

that an understanding of these thermal length-scales is crucial in a high-temperature

plasma. Though the thermal spectrum first looks to be Gaussian, we have observed

that a q-Gaussian distribution fits it better over time. This shows that although the

turbulence seen in relativistic collisions is generally isotropic and homogeneous, it would

be more useful to slice it into planes and examine each plane independently. This will

enable us to comprehend the anisotropies produced in the turbulent plasma on various

planes and different length scales.
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Chapter 4

Temperature fluctuations and

Tsallis statistics in Relativistic

Heavy Ion collisions

4.1 Introduction

The understanding of temperature fluctuations in a system is crucial as it provides

knowledge of the thermodynamic characteristics of the underlying system. The study of

fluctuations can also lead us to the phase transition dynamics. In this chapter, we an-

alyze temperature fluctuations that occur during the initial phases of relativistic heavy

ion collision experiments (RHICE). We talk about the non-equilibrium limits of the

system by analyzing temperature fluctuations. We focus on the plasma right after a

collision, before it has a chance to equilibrate. We employ the non-extensive Tsallis

statistics to determine the entropic index in the partonic stages of the RHICE . Previ-

ously, the hadronic phase is taken into consideration when calculating the entropic index

using experimental data fitting of the transverse momenta (pT ). In this chapter, we will

illustrate how the behavior of the entropic index during the initial non-equilibrium stage

is remarkably similar to that of the entropic index during the hadronic stage.

In HIC, the conditions are such that the fluid immediately following a collision forms a

non-equilibrium system [1]. Fluctuations in the initial distribution result in specific

features in the final hadronic spectra. The majority of these are number density fluctua-

tions [2]. Although hotspots and coldspots are known to form in spinning fluids [3], it is

challenging to measure something like temperature fluctuations in actual experiments.
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Due to this, the majority of attempts made to analyze the system’s fluid dynamics have

been focused solely on density variations.

There are attempts to perceive the thermodynamic characteristics of strongly interacting

systems using a variety of methods in RHIC and CERN [4, 5]. Recently, some studies

have reported temperature hotspots, and fluctuations in these systems [6]. The tempo-

ral evolution of these temperature fluctuations has been explored in smaller subsystems

resembling canonical ensembles of varying temperatures [7]. The integrated observables

and some of the differential observables have not been proven to be affected by the size of

the hotspots. However, there are certain differential observables that might be responsive

to these variations, such as sub-leading principal components [8]. In this study, we use

a different approach when examining temperature fluctuations. We analyze the temper-

ature instabilities during the early stages of the heavy ion collisions using a multiphase

transport (AMPT) model. Despite being studied in the context of transport models,

temperature fluctuations have primarily been discussed in the Gibbs-Boltzmann statis-

tics. In this analysis, the temperature fluctuations in the partonic stages of HIC are

investigated using the non-equilibrium Tsallis statistics. The extended thermodynamics

of Tsallis has been applied previously to non-equilibrium systems [9]. The Tsallis statis-

tics is a generalized form of the Boltzmann-Gibbs thermodynamics to non-equilibrium

systems [10]. The entropic index, q, is used to define the thermodynamic quantities in

this statistics. The Tsallis statistics reduce to the Boltzmann-Gibbs statistics for q = 1.

The entropic index value serves as a measure of how much the system deviates from the

equilibrium statistics. The fluctuation in the temperature distribution can be used to

calculate the entropic index value. In recent years, the relativistic heavy ion collision

experiments have been one of many non-equilibrium systems that have been modeled

using the Tsallis entropy [11]. In all these cases, the entropic index was determined by

fitting the transverse momentum data [12, 13].

The system requires a finite amount of time to reach equilibrium in the HIC system [14].

In order to examine the system before it achieves an equilibrium state, we have applied

the non-equilibrium Tsallis statistics. We do this to comprehend the thermodynamics of

the earliest phases of the collisions. We have used the standard definition of temperature

and applied the Tsallis statistics instead of the BG statistics. The temperature calcula-

tions are thus only relevant within the bounds of local thermal equilibrium. We employ

the AMPT model to determine the particle positions and velocities at τ = 1 fm/c.

The local thermal equilibrium is typically reached after 1 fm/c. We observe that the

temperature fluctuations measured throughout the evolution are significantly large. We

implement Tsallis statistics to get the entropic index from the temperature fluctuations.
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For the partonic stage, we determine the value of the entropic index for various rapidi-

ties, centralities, and collision energies. The entropic index values obtained are higher

than the values obtained by fitting the transverse momentum data. This is because the

experimental analysis uses the Tsallis statistics in the hadronic phase [12]. They are typ-

ically in the order of q ∼ 1.12 while the values of the entropic index we get generally are

more than 1.2. We observe that the overall nature of the change in the entropic index

with various system parameters is consistent with the entropic index obtained by fitting

the Tsallis distribution to the transverse momentum data in the hadronic phase [12].

Therefore, we draw the inference that the entropic index behaves similarly in the par-

tonic and hadronic phases as a function of the system parameters.

In section II, we look at the temperature hotspots observed using AMPT simulations

during the early stages of HIC. The application of Tsallis entropy to temperature profiles

derived from energy density and the computation of the entropic index based on our

simulations are covered in Section III. We quickly describe the Tsallis entropic index

calculation using experimental data and demonstrate that it is rather similar to the

entropic index we found in section IV. In section V, we present a summary and conclusion

of the findings of this chapter.

4.2 Temperature hotspots in the initial stages

The positions and velocities of the particles at the early stages of the collision are

obtained using the AMPT model. We build a grid-based simulation in the x-y plane

with cell sizes that allow us to fit a considerable number of particles into each cell. This

will help us establish the local equilibrium condition as we are interested in analyzing

the temperature fluctuations in the system. From the momentum and energy of every

particle in the cell, we compute the average energy in each cell. It is believed that the

system is not in equilibrium as a whole. We have effectively broken down our entire

system into smaller subsystems, and we will assume local thermodynamic equilibrium in

these smaller subsystems. Given that this is a statistical model, we create many events

using the same parameters and initial conditions, and we then take the average of all

the events to get the end results. So, the energy density distribution can be obtained

from the particle distribution as follows [15],

ε(x, y) =
∑

Niexp[−
(x− xi)2 + (y − yi)2

2σ2
] (4.1)

We choose a Gaussian having a width of σ = 0.5 fm. Additionally, we have Ni =
N
2π ( 1

σ2τ
)Ei, where N is the normalization factor. The position coordinates are (xi, yi, zi) ,
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and Ei =
√
p2
i +m2

i is the energy value of the i-th parton. The sum in equation 4.1

includes all of the particles involved in an event. We have used the rapidity window

−3 < η < 3, where η = 1
2 ln

t+z
t−z is the space-time rapidity and τ =

√
t2 − z2. The energy

density is obtained using all four components of the energy-momentum tensor.

As previously noted, the entire system has been split into smaller subsystems with

grid sizes of dx = dy = 0.3 fm. We also varied the size of the grid cells and tested

the simulation with values of cell sizes ranging from 0.1 fm to 0.5 fm. Our results are

independent of the grid cell size as long as it falls within this range. In order to determine

the temperature in each of these grid cells, we have assumed local thermal equilibrium

and employed the ideal gas Gibbs- Boltzmann statistics.

ε(x, y) = 12(4 + 3Nf )(
T 4

π2
) (4.2)

Here Nf is the number of quark flavors; we have taken Nf = 3.

We based our temperature calculation on equilibrium statistical mechanics since there

is still a lack of understanding of the temperature in non-equilibrium systems. This is

because the second and zeroth laws of thermodynamics are difficult to extrapolate to

non-equilibrium systems. In equilibrium thermodynamics, a system at equilibrium can

be broken down into smaller ones, and each subsystem will measure the same tempera-

ture as the main system. However, all of the subsystems might not measure the same

temperature in an out-of-equilibrium scenario. In an out-of-equilibrium state, it is there-

fore challenging to specify a single temperature [16]. The Tsallis statistics that we will

use later to interpret the departure from equilibrium for this system solely depend on

two parameters, the temperature, and the entropic index. If the system’s entropic index

is known, the temperature parameter can be associated with the Gibbs-Boltzmann tem-

perature. The temperature parameter in the Tsallis distribution cannot be computed

because the entropic index of the HIC is unknown a priori. Since the Tsallis statis-

tics approximate the Gibbs-Boltzmann statistics when the entropic index is equal to

one, the Tsallis parametric temperature will be roughly equal to the equilibrium Gibbs-

Boltzmann temperature for entropic index values close to one. We may therefore draw

the conclusion that the temperature considered in the Tsallis entropy calculation will be

roughly equal to the system’s equilibrium temperature. We determine the equilibrium

temperature in each of the previously specified small grid cells. These temperatures

will vary and represent the system’s temperature fluctuations because the system as

a whole is a non-equilibrium system. We obtained the temperature fluctuation in the

x − y plane. Both event-by-event plots and event-averaged plots have been observed.

We begin by analyzing the event-by-event plots, which display the initial variations at
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Figure 4.1: Temperature fluctuations at times a) 1 fm/c b) 2 fm/c c) 3 fm/c d) 5
fm/c at

√
sNN = 200 GeV and −1 < η < 1 for Au + Au collisions

various collision energy and times.

The temperature distribution is shown in Figure 4.1 at various times. We observe that

the temperature fluctuations are larger initially but become less over time. The temper-

ature fluctuations for various collision energies are shown in Figure 4.2. As can be seen,

regardless of
√
sNN , the general pattern of the fluctuations do not change. At increasing

√
sNN , the amplitude is the only thing that grows. Such temperature instabilities have

been documented in earlier research [3, 17]. In the first study, temperature fluctua-

tions are addressed in a manner similar to how CMBR (Cosmic Microwave Background

Radiation) temperature variations are investigated for the early universe. The second

study focused on determining the system’s specific heat from temperature fluctuations.

While the temperature hotspots appear to be comparable at different times, we treat the

fluid as a non-equilibrium system and would like to analyze them further to understand

the differences at various collision energies.

4.3 Tsallis entropy and the entropic index

As was previously stated, the Tsallis statistics is distinguished by the non-extensivity

parameter q, with |q − 1| being a direct measure of the temperature fluctuations [18].
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Figure 4.2: Temperature fluctuations at different
√
s values a)

√
sNN = 19.6 GeV b)√

sNN = 62.4 GeV c)
√
sNN = 100 GeV d)

√
sNN = 200 GeV at time τ = 1 fm/c and

−1 < η < 1 for Au + Au collisions

Although it was initially utilized to fit the hadron pT spectra at various collision ener-

gies [19, 20], afterwards, it was employed in other scenarios of the relativistic heavy ion

collisions [21]. As described in reference [21], in addition to hadrons, quark matter has

also been studied using Tsallis statistics [22]. Both the hadronic and the quark-gluon

plasma scenarios have been theoretically explored in ref. [23]. The thermodynamics of

the system has also been studied in each of these cases. The partition function of an

ideal gas is typically used to obtain these thermodynamic parameters. The analysis of

the phase diagram reveals that the critical temperature obtained using Tsallis statistics

is generally lower than that obtained using the equivalent Boltzmann-Gibbs statistics

[21]. This is possible because the temperature determined by the equilibrium definition

will always be higher than the temperature determined by any other approach [16].

The Tsallis statistics have also been used to extend the MIT bag model in ref.[22]. In this

case, the Equation of State (EoS) has been established for various bag parameters and

entropic index values. Despite the fact that the shape of the phase diagram is similar for

both approaches, the critical temperature is found to fall with increasing values of the

entropic index in this case. In ref.[24], the Tsallis entropy formula was also developed in

a thermodynamic system comprised of a reservoir and a subsystem. The temperature is

obtained, and the relation between the heat capacity and entropic index is also estab-

lished. We recognize these specific references because we are interested in the connection
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Figure 4.3: The plot of f(β) for the temperature fluctuations at a collision energy of√
s = 200 GeV (Au - Au collision, |η| < 3). The green circles are the fluctuating states.

The value of q is obtained by fitting a χ2 distribution to the plot. Purple line shows
the fitted curve. The final values of the two parameters q and β0 are q = 1.51158 and
β0 = 0.968718GeV −1, with the asymptomatic standard error for q being 3.5% and for

β0 being 0.33%.

between temperature and entropic index during the early phases of a heavy ion collision.

The relationship between the Tsallis entropy and the entropic index q in a system with

varying temperatures has already been studied in the literature [25]. The quantity

employed in this context is β, which is the inverse of temperature. The generalized

distribution function of non-extensive Tsallis statistics is a result of integrating over all

conceivable fluctuating β’s provided that the β is χ2 distributed [25, 26]. This is only true

if a non-equilibrium system is formally characterized by a fluctuating β.

Given that our system also experiences temperature fluctuations, we used a χ2 dis-

tribution to fit the probability distribution of β (i.e., the temperature inverse). It is

demonstrated in ref. [25] that for any system with fluctuating temperatures, the follow-

ing distribution can be used to determine the relationship between the entropic index

and temperature:

f(β) =
1

Γ( 1
q−1)

(
1

(q − 1)β0

)( 1
q−1

)

β
1
q−1
−1
exp

( −β
(q − 1)β0

)
(4.3)

Here the entropic index q is dimensionless, whereas the function has the temperature

dimension (β−1).

In Fig. 4.3, we plot the β distribution we obtained from our simulations after fitting

it with the χ2 distribution. We get a good fit for our temperature fluctuations, and

these fits can be used to calculate the entropic index. The average of the fluctuating
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√
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β is the constant β0. The values of q and β0 are found to be q = 1.51158 and β0 =

0.968718GeV −1 , respectively, with an asymptomatic standard error of 3.5% for q and

0.33% for β0.

The entropic index has been observed to have some dependence on system parameters

in the majority of physical systems. For instance, it has been found that the value of q

is affected by the spatial scale. In the next section, we study how the entropic index or

q value changes with various parameters of the system.

4.4 Results and Discussions

Our first observation is the correlation between temperature and entropic index. We ob-

serve that the temperature and entropic index have a linear relationship that fits nicely

with a straight line shown in Fig. 4.4. In recent times, there have been efforts to extract

the (q − 1) values from experimental data [12]. The Teff is defined differently in that

method. For negative pions and antiprotons, the dependency of the effective tempera-

ture Teff on the parameter q has been examined for different processes [18]. In that case,

the slope of the fitted straight lines depends on the selected particles and reactions. This

is seen in reference [27], where the authors analyze data from the p + p, Au + Au, and

D + Au collisions. They obtained entropic index values for positive pions in the range

of 1.12, whereas we obtained entropic index values larger than 1.28. We are working

with the early stages of the heavy ion collisions, which is the fundamental distinction

between our study and the earlier research. We show that a linear dependence on the

q values can be established even in our scenario. A straight line can be used to fit the
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simulation’s data. However, the slope we find is lower than the hadronic particle slope.

The experimental results have already shown that the Teff vs. q dependency may not be

constant across all systems [28]. In ref. [28], it is demonstrated that the p−p collision at

high collision energies has a different slope, whereas the slope we found for Au +Au col-

lisions is similar to ref. [18]. They have found a different slope for the Pb−Pb collision.

Even though we obtain a linear dependency between Teff and (q − 1), the slope of the

straight line relies on the individual system being examined as well as the collision energy.

The calculation also relies heavily on the definition of temperature. According to

ref.[18], the effective temperature is the temperature that results from both temperature

fluctuations and the transfer of energy between the source and its surroundings. As a re-

sult, the system’s effective temperature is different from its thermodynamic temperature.

Our system has been split into smaller subsystems, and we have presumed that local

thermal equilibrium exists in each of these smaller areas. Due to its out-of-equilibrium

state, the system as a whole does not have a constant temperature throughout. This

is also due to the non-uniform energy density distribution in the collision region. The

values of the entropic index are larger in our case as compared to the values of the en-

tropic index obtained from prior studies. This could be because the system at this stage

is more out of equilibrium than the system in the hadronic phase [27]. As mentioned

earlier, the Tsallis thermodynamics is incorporated in the MIT bag model in ref.[21],

and the connection between temperature and energy density in that case is,

ε = [
7

4
gQ + gG]

π2

30
T 4 +

8π2

30
gQgG

π2

90
(q − 1)V T 7. (4.4)

The quark and gluon degrees of freedom are represented here by gQ and gG. Con-

sequently, there is a term that is proportionate to T 7 and has the entropic index in

addition to the T 4 term. The temperature determined by this equation would differ

from the temperature determined by the equilibrium relation ε = [7
4gQ + gG]π

2

30T
4. As a

result, the entropic index corresponding to various temperatures will differ. Therefore,

the definition of the temperature used in the calculation of the entropic index will deter-

mine the precise value of the entropic index. The entropic index can also be determined

directly from temperature variations,

q = 1 +
V ar(T )

< T >2
(4.5)

Here, V ar(T ) stands for the temperature variance. It can be seen here that the entropic

index is dimensionless. This definition has been used by Wilk et al. in ref. [18], and

they have achieved a similar result to that shown in figure 4.4.
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Figure 4.5: The plot shows the variation of q for different space time rapidity (η)
values at different collision energies (

√
s)for Au + Au collision in the (0-10%) centrality

range at τ = 1 fm/c.

The change in the q value for various system parameters was then closely examined.

Fig. 4.5 illustrates how q varies with space-time rapidity (η) and collision energy. Here

we observe that our q value increases with increasing values of η, plateauing for higher

collision energy. The scale of the system grows as the space-time rapidity increases. A

bigger system size will result in a more significant divergence from equilibrium, which

will enhance the entropic index value. We know from previous studies how signifi-

cantly the entropic index depends on the type of system that is colliding. The Tsallis

distribution appears to be challenging to use because the outcomes rely on the created

particles and the colliding particles. In recent research, [29], a thorough analysis was

conducted for a wide range of collision energies, a wide variety of particles, and a wide

range of systems. In addition, the q values appear to be proportional to
√
s/m, and the

q value also depends on the particle multiplicity.

Our values are different from those found in the hadronic spectrum for two main rea-

sons. The first was also addressed earlier. It is the temperature definition that we have

employed. The temperature values and also entropic index values would be affected if

a different Equation of State (EoS) was applied. We are assessing the partonic system,

which is an additional factor. It is also feasible that the system is more likely to be in a

substantially non-equilibrium condition in the early phases before the phase transition.

As the system develops, equilibrium is reached. The disturbances are reduced after

hadronization, and the system continues its path toward equilibrium. As a result, the q

values, representing the system’s departure from the equilibrium state, will be different

in the partonic state than in the hadronic state.
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Figure 4.6: This plot shows the variation of q for different
√
sNN values at different

centralities for Au + Au collisions. Here |η| < 1 and τ = 1fm/c.

It is also found that the q values depend on the beam energy [30]. Fig. 4.6 displays the

change in q for various
√
sNN values at various centralities. According to Figs. 4.5 and

4.6, the entropic index is lower at lower
√
sNN . But the relationship depends on how

central the collisions are. The q values for most peripheral collisions (60-80%) are less

than the q values for most central collisions (0-10%) below 100 GeV, as can be shown

in Fig. 4.6. The opposite is true above 100 GeV. In a recent study (ref. [31]), the

same outcome was also attained using experimental data. The authors have fitted the

experimental data from the Au + Au collision at RHIC energies [32, 33] as well as data

from the PHENIX collaboration [34]. They have also recognized how the q parameter

is affected by collision energy and centrality. Also, the total change in the q value for

most central and mid-central collisions is significantly less than the overall change in

peripheral collisions. This suggests that the entropic index is not only determined by

the multiplicity alone.

Fig. 4.7 illustrates how q varies with proper time (τ) and various collision energies.

However, this only represents the calculation of the entropic index at various intervals

and not a change of the system over time. The plot shows that the q value appears to

peak at roughly 3 fm/c and then declines as τ increases. Different values of
√
sNN have

little effect on the fundamental nature. A decreasing value of q indicates that the system

is getting close to equilibrium. However, given that we are employing the AMPT model,

the rise and fall in the q value may be attributed to changes in the particle’s energy

density. The energy density of the particles generated by the AMPT model typically

grows up to 3 − 4 fm/c and then steadily declines after that [35]. The entropic index

exhibits comparable behavior because it is derived from the energy density.
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Figure 4.7: This plot shows the variation of (q) with proper time (τ) at different
collision energies (

√
sNN ) for Au + Au collisions at |η| < 1 and for (0-10%) centrality.

4.5 Summary and Conclusions

In this chapter, we show that it is possible to examine the partonic stages of relativistic

heavy ion collisions by combining a non-extensive formalism with a transport model.

We have demonstrated the partonic phase’s temperature fluctuations. Once the system

has been partitioned into smaller grid cells, the ideal gas energy density - temperature

relation is used to determine the temperature in these smaller subsystems. All the

temperatures in these smaller subsystems should have been the same for an ideal gas

in equilibrium. However, we discover that the system’s overall temperature is not the

same in the smaller grid cells. This suggests that the system is out of equilibrium. We

determine the temperature fluctuations between various grid cells and plot the temper-

ature fluctuations of the system during its early phases. For a system with fluctuating

temperature, if the inverse of the temperature β can be fitted with a χ2 distribution,

the Tsallis statistics can be used to study the temperature fluctuations of an out-of-

equilibrium system. The entropic index q is calculated using the β acquired from our

simulations after it has been fitted with a χ2 distribution.

In line with earlier studies, we find a linear relationship between the entropic index q

and the system’s effective temperature Teff . However, the type of particles used to de-

termine the system’s temperature affects the slope of the line. Although this correlation

has been demonstrated in the past, it was in the hadronic phase. We demonstrate that

the partonic phase also exhibits an analogous relationship. The slope is different in the

two cases as the underlying systems are different.
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We have analyzed the connection between the entropic index and space-time rapidity,

collision energy, and collision centrality. We observe that as space-time rapidity in-

creases, the entropic index rises as well. This may be related to particle multiplicity,

as a larger particle multiplicity produces a lower q value. But multiplicity alone cannot

account for the variance of the entropic index, as we have seen by considering the other

factors. The entropic index depends on collision energy and centrality. For different

centrality ranges, the relationship is convoluted with the collision energy. For most cen-

tral and mid-central collisions, the range of q is nearly constant between 20 - 200 GeV.

However, for peripheral collisions, the range of q increases in the same collision energy

range. Furthermore, the q values for central and peripheral collisions are almost identical

in the 40− 80 GeV range. Below this range, the central collision’s q values are greater

than the peripheral collision’s q value. The q value for central collisions is smaller than

the q value for peripheral collisions beyond 80 GeV. These results are in line with more

recent transverse momentum data analysis that used Tsallis statistics for the hadronic

stage. We also study how the temperature fluctuates at different times. In this case,

the change in entropic index corresponds to the variations in energy density from the

AMPT model for relativistic heavy ion collisions.

Finally, we have shown how the entropic index show similar behavior with system pa-

rameters in both the partonic and the hadronic phase. However, it is not easy to obtain

the thermodynamic variables such as temperature for an out-of-equilibrium system. The

assumption of local thermal equilibrium and the correct choice of the equation of state

can make this process more effective in finding the system’s equilibrium limits.
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Chapter 5

Machine Learning model driven

prediction of the initial geometry

parameters

5.1 Introduction

In this chapter, we will give a detailed representation of the use of machine learning

methods in predicting various geometry parameters of heavy ion collision experiments.

By utilizing supervised Machine Learning (ML) techniques, we show excellent prediction

accuracy of three crucial features that affect the initial geometry of the heavy-ion colli-

sion (HIC) studies. These variables are the impact parameter, the participant eccentric-

ity, and the eccentricity. Using thorough parameter scans, we examine various machine

learning (ML) algorithms, their error spectra, and sampling techniques to identify an

effective algorithm and tuned training set that provides multi-fold improvements in ac-

curacy for three different heavy-ion collision simulation models. The three models are a

transport model, a hydrodynamic model, and a hybrid model. Three different HIC mod-

els were used to demonstrate that, even when a model is trained using a transport model,

it can still produce reliable results for hydrodynamic and hybrid models. We show how

the centrality of the collision affects the impact parameter prediction’s accuracy. For

central collisions, prediction accuracy using conventional ML training techniques is very

low. We discuss how errors can be reduced, and accuracy can be greatly increased in all

ranges of impact parameter and eccentricity predictions.

Different collision systems and other initial conditions create different initial parton dis-

tributions, which impact the final particle spectra and anisotropic flows [1]. The primary
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outcomes of these experiments are the transverse momentum (pT ) spectra, rapidity (y)

spectra, pseudorapidity (η) spectra, particle-antiparticle ratios, jet momentum distri-

bution, and multiplicity fluctuations. Direct inferences about some phenomena, such

as anisotropic flows, can be derived from these data. However, some parameters are

challenging to determine directly from the experimental results. These include impact

parameter and initial geometry parameters such as eccentricities, event plane angles, etc.

The details about these parameters are described in Chapter I. The collision centrality

is measured by the impact parameter. In experiments, the data is always analyzed with

respect to the collision’s centrality since different collisions with different collision cen-

trality produce different spectra.

The collision centrality significantly influences the final particle spectra. It has been

observed that the distribution of particle multiplicity depends on the centrality of the

collision. The multiplicity fluctuations at various centralities are probed at RHIC en-

ergies in ref. [2, 3], and in ref. [4–6], the same phenomena are addressed at collision

energies of 2.76 TeV, 5.02 TeV, and 5.44 TeV, respectively. Although the centrality can-

not be determined from experiments independently, it can be computed using theoretical

modeling such as the Glauber model (ref. [7]) or other similar models. Other initial state

geometry parameters also suffer from the same issue. Because of this, there are different

methods to establish these parameters. Neural networks have also been considered in

addition to other simulations and methods to calculate the impact parameter from the

experimental data [8].

The impact parameter in the Glauber model is related to the multiplicities of charged

particles created during the heavy ion collision. Hard and soft collision processes con-

tribute to the multiplicity of charged particles. These, in turn, depend on the total

number of participants as well as the number of binary collisions. The charged particle

multiplicity per unit pseudorapidity can be stated as,

dNch

dη
= npp

[
(1− x)

Npart

2
+ xNcoll

]
(5.1)

Here, npp is the multiplicity per unit rapidity in pp collisions, x is the fraction of contri-

bution from hard processes, and ncoll is the total number of binary NN collisions. The

impact parameter can be used to specify the number of participant nuclei Npart [7, 9].

If TA(s) is the thickness function of nucleus A, i.e., the probability density function of

finding nucleons in A, then the number of participants in A at the transverse position

s can be found out by multiplying with the probability of binary nuclei-nuclei collision

with the nucleons of the nucleus B at the same position (b − s) where b is the impact
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parameter. So, the total number of participants can be expressed as,

Npart(b) =

∫
TA(s)(1− exp[−σNNinelTB(b− s)])ds

+

∫
TB(b− s)(1− exp[−σNNinelTA(b)])ds (5.2)

Here, the contribution from nuclei A and B is combined to determine the total num-

ber of participating nuclei. The impact parameter and corresponding centrality can be

calculated by fitting the multiplicity spectra using Eq.5.1 and Eq.5.2. For each event,

multiplicity fitting must be performed in order to determine its centrality in this method.

Utilizing machine learning models can be a more straightforward method of obtaining

centrality. In several papers [10–12], machine learning has been used to extract the

impact parameter from the experimental data. We can automate the entire procedure

and determine the impact parameter effectively by using machine learning. Machine

learning (ML) has the advantage of requiring less computational time and power. Thus,

the process becomes more efficient. Most of the research in this field uses deep neural

network techniques. Predictions for the impact parameter have also been made using the

convolutional neural network (CNN) [13]. The first research to show the impact of neural

network analysis on enhancing the impact parameter’s accuracy is ref. [14]. However,

these networks need to be tuned for hundreds of different parameters. This increases the

cost of the process in terms of computation. On the other hand, several non-neuronal

ML models, such as SVM, RandomForest, kNN, etc., need fewer parameters to give re-

sults as accurately as the ANN or CNN models. So, various standard machine learning

techniques are also implemented to get the impact parameter in several studies.

In this chapter, we have analyzed various machine learning (ML) algorithms and con-

ducted a thorough comparison of the accuracy and efficiency of these algorithms. This

has been done by using well-defined machine learning methods and to indicate a signif-

icant gap in their prediction accuracy for central collisions. We evaluate the prediction

accuracies and talk about the factors that contributed to them. We find that for the

low-impact parameters, accuracy is lower. This is a well-known issue in computing the

impact parameter using ML methods. We offer a unique sampling technique that signif-

icantly outperforms the standard sample techniques employed by the ML community.

Our study would concentrate on predicting the impact parameter and the eccentricity.

Eccentricity is one of the anisotropy parameters that provide us with the initial geo-

metrical distribution of the collision region. This also impacts the elliptic flow, one of

the key observables used to analyze the collective behavior of the produced particles in
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heavy-ion collisions. The effects of eccentricity fluctuation on the elliptic flow are ad-

dressed in ref. [15] at
√
sNN = 200 GeV for Au-Au and Cu-Cu collisions. In ref. [16],

the effect of various initial anisotropy components on the flow harmonics is studied using

the AMPT model. The initial state anisotropy can be expressed as[9],

εn(b) =
< rncos(nφ− nψ) >

rn
(5.3)

here r =
√
x2 + y2, n = 2 represents the eccentricity, and n = 3 represents the triangu-

larity. The aforementioned eccentricities are observed with respect to the reaction plane.

Additionally, we have trained the algorithm to predict participant plane eccentricity [15],

εpart =

√
σ2
y − σ2

x + 4σ2
xy

σ2
y + σ2

x

(5.4)

here σ’s are the variances of the positions of the particles, σ2
x =< x2 > − < x >2,

σ2
y =< y2 > − < y >2 and σxy =< xy > − < x >< y >. Here < .. > is the average

over the transverse plane.

In this work, the transverse momentum spectra are used as features, and the target

variables that the model must predict are the impact parameter, eccentricity, and the

participant eccentricity. The pT spectra of Au-Au collision events at 200 GeV collision

energy are generated using the AMPT model. In our study, the ML models utilized

the learnings and experiences from impact parameter prediction to estimate eccentric-

ity. We have also examined how the impact parameter’s inclusion as a feature improves

the eccentricity prediction accuracy.

AMPT is a transport model which has been widely utilized to model the various stages

of the HIC. But it has its shortcomings, just like every model. In addition, some

hydrodynamics-based models produce accurate results that are in good agreement with

the data. In this study, we used a particular HIC model for training and two different

HIC models’ data for making predictions. This shows that predictions obtained using

the ML model for the impact parameter for a set of well-defined training data are model-

independent. The two other HIC models that we use in this study are VISH2+1(Viscous

Israel Stewart Hydrodynamics (2+1) dimension) [17] and a hybrid model comprised of a

hydro evolution model, and a hadronic cascade model [18]. The details of these models

are given in Chapter I. The AMPT model, used to train ML algorithms, is very dis-

tinct from these two models. Because of this, the ML models are trained using the

pT spectrum and impact parameter data from AMPT events, and they predict impact

parameters using test pT spectra data from the VISH2+1 and the hybrid model. We
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set up various models with different initial conditions to produce the pT spectra compa-

rable to those obtained in the actual experiments. Therefore, the model independence

only applies to models that produce pT spectra similar to the experimental pT spectrum.

We discuss the ML models utilized in this chapter in section II. We also go over the

criteria used to evaluate the accuracy of various ML models. This section also provides

information on the setting of the hyperparameters as well as the learning process of

various algorithms. To increase the precision of the predictions, we have also employed

rebalancing procedures. This section goes through these balance methods. The results

and forecasts from the ML models of the participant eccentricity and eccentricity are dis-

cussed in Section III. It also talks about the eccentricity ranges where the best accuracy

has been seen. This section discusses the effectiveness of impact parameter prediction

utilizing experimental data and unknown data from several HIC models. Finally, we

show how rebalancing the dataset can enhance the accuracy of the predictions. We then

summarize the study in section IV.

5.2 Machine Learning Methods

5.2.1 ML Algorithms and Tuning of Hyperparameters

As stated in the introduction, we tested several machine learning (ML) methods for

this study, including k-Nearest Neighbors, Gradient Boosting Regression, and Decision

Trees. Reference [19] provides further information on these ML algorithms. Standard

metrics such as R-square, the Root Mean Square Error (RMSE), the Mean Squared

Error (MSE), and the Mean Absolute Error have been used to test the efficiency of

these models (MAE). After testing multiple ML models, we found that while all of

them provide excellent predictions for the impact parameter, only three of them are

effective at predicting the eccentricity. Therefore, we solely focus on these three algo-

rithms. They are the Random Forest Regressor (RF), ExtraTrees Regressor (ET), and

k-Nearest Neighbors (kNN) models. In the kNN model, the target variable is predicted

by performing a local interpolation between the target and its k nearest neighbors in the

training dataset [20]. The other two models are based on ensemble techniques. In RF,

decision trees are created during training, and an ensemble mean is computed [21]. In

ET, randomized decision trees constructed from sub-samples of the training dataset are

taken into consideration [22]. To get a reliable estimate of the parameters, we performed

a 10-fold cross-validation (CV) [23]. Additionally, it provides a bias-variance trade-off.
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As we utilized these ML techniques to analyze the data from three different HIC models,

we standardized the data before processing it. The charged particle pT spectra are used

as features in the dataset for this study. The pT spectra are obtained for a rapidity

window of −0.5 to 0.5. The range of values in each of the pT bins varies. The difference

is more noticeable when we compare a lower pT bin with a higher pT bin. Therefore,

it is crucial to standardize them. This allows the model to work with new data from a

different HIC model. In this study, two different scaling methods are employed, i)the

Standard Scaler or Z-score normalization and ii) the Min-Max Scaler [24]. The data is

scaled in the standard scaler or Z-score normalization approach so that every feature

has a mean of 0 and a standard deviation of 1. It is done by using Eq. 5.5,

xstandard =
x−mean(x)

standard deviation(x)
(5.5)

In this case, the original data is x, and the scaled data is xstandard. When using Min-Max

Scaling, each feature’s distribution is rescaled between 0 and 1.

xnormalized =
x−min(x)

max(x)−min(x)
(5.6)

We have used Python sklearn.preprocessing package to implement both of these scaling

methods [25]. In most of the examples presented in this study, we find that the Z-score

method gives us an accuracy of 4− 6% better than that of min-max scaling. Therefore,

we have always applied the Z-score normalization.

Only the pT spectra are used as feature variables when the impact parameter is given as

the target variable. For the other targets, the predicted impact parameter is included in

the dataset as a feature variable, as all the other targets depend on the impact param-

eter. Thus, the pT spectra can be used as the primary input to measure the dependent

variables. The data is separated in the training and test set to evaluate the model.

It is crucial to have a sufficient number of events in order to attain the best accuracy

without using too much computing costs. The learning curve indicates how well the

model is performing. We represent the learning of ML models as a function of events.

The learning curves of a kNN (green circles), ET (orange triangles), and RF (blue stars)

model are given in Fig. 5.1, where the number of event iterations is used to reflect

changes in the CV accuracy. Only the kNN model’s training score curve (sky color cir-

cles) is displayed; it illustrates the model’s accuracy in fitting the training set data. In

the training case, the accuracy reaches saturation around 3000 events relatively quickly.

In contrast, the test data accuracy saturates at 6000 to 8000 events shown by other
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Figure 5.1: The learning curve of kNN(green dots), ET (orange triangles), and RF
(blue stars) model. The shaded region is the standard deviations

curves. So, the learning process in this study is obtained over 10000 events.

Model R2 MAE RMSE

Gradient Boosting Regressor [27] 0.9709 0.3834 0.4819

Light Gradient Boosting Machine [28] 0.9702 0.3878 0.4876

Random Forest Regressor [21] 0.9689 0.3972 0.4984

Extra Trees Regressor [22] 0.968 0.4024 0.5048

AdaBoost Regressor [29] 0.9676 0.4049 0.5079

K Neighbors Regressor [20] 0.9649 0.4226 0.5295

Linear Regression [26] 0.9642 0.422 0.5341

Ridge Regression [30] 0.9642 0.422 0.5341

Least Angle Regression [31] 0.9642 0.422 0.5341

Huber Regressor [32] 0.9642 0.4216 0.5346

Bayesian Ridge [33] 0.9642 0.422 0.5341

Orthogonal Matching Pursuit [34] 0.9635 0.4272 0.5398

Decision Tree Regressor [35] 0.9405 0.5503 0.6888

Passive Aggressive Regressor [36] 0.8849 0.7482 0.9058

Lasso Regression [37] 0.7461 1.1484 1.4246

Elastic Net [38] 0.6253 1.4093 1.7305

Table 5.1: 10-Fold cross-validation accuracy of ML models for b predictions of min.
bias Au-Au events at

√
s = 200 GeV

We show the efficiency of the standard ML models for impact parameter prediction in

Table—5.1. The accuracy plots for impact parameter predictions using the kNN(a),

ET(b), RF(c), and Linear Regression(LR)(d) models are given in Fig.5.2. The charged

particle pT spectra from the AMPT-SM model are used to train the machine learning

models. The linear regression algorithm determines how a dependent variable and one

or more independent variables are linearly related [26]. A test dataset with pT spectra

from more than 4000 minimum bias Au+Au collision events at 200 GeV is used to make

the prediction. Here, the red line represents the line of optimum accuracy, and the
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Figure 5.2: Impact parameter prediction using kNN(a), ET(b), RF(c) and LR(d)
model with their accuracy score 97.11%, 97.03%, 97.05% and 96.53% for events of
Au+Au system at collision energy 200 GeV. These plots are obtained for a random

train and test set split of input events.

blue points represent the model’s predictions. For kNN, ET, RF, and LR, the accuracy

values are 97.11%, 97.03%, 97.05%, and 96.53%, respectively. For a random train-test

dataset split, all of these accuracy results are observed, and the 10-fold cross-validation

scores for these models are 97.04%, 97%, 97.01%, and 96.56% respectively. When the

ML models are trained using the default AMPT model data, we get an accuracy of more

than 95% for the kNN, ET, and RF models. With the exception of some critical impact

parameter regimes, the majority of machine learning methods provide a reasonable level

of accuracy for impact parameter prediction without tuning any of the hyperparameters.

It is well known that hyperparameter choices can impact an ML model’s accuracy. We

do hyperparameter tuning to adjust the parameters with the least amount of error on the

validation set. The variation in a kNN model’s accuracy is represented as a function of

the number of nearest neighbors hyperparameter in Fig. 5.3(a). The impact parameter

is used as the target variable, and the model is trained using 12, 000 minimum bias

Au+Au collision events for each configuration. The model’s accuracy is at its maximum
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Figure 5.3: Change in accuracy as a function of hyperparameters. a) kNN model with
the number of nearest neighbors hyperparameter, b)Random Forest with max depth

hyperparameter

when there are 4 − 5 nearest neighbors. The green curve displays the 10-fold cross-

validation score, and the shaded area represents the standard deviation. When the

number of nearest neighbors is 1, the training score shown by the blue line has a score

of 1.00. Overfitting occurs in this situation. For the RF model, the maximum number

of levels of the trees is the key hyperparameter (see Fig. 5.3(b)). We observe that for

the hyperparameter value of 4 − 5, the accuracy saturates. Similar to the RF model,

when the max-depth hyperparameter is 4−5, we obtain the highest CV score for the ET

model. Although the aforementioned parameters are the ones that affect accuracy the

most, we adjust the other hyperparameters by using the RandomSearchCV function of

the sklearn library and evaluating accuracy for various combinations of hyperparameters.

As previously mentioned, Fig. 5.4 shows how the impact parameter’s inclusion as a

feature increases the efficiency of eccentricity prediction. As has been found in previous

studies, eccentricity is dependent on the collision’s centrality. We have shown that

adding the impact parameter as a feature improved accuracy across all the centrality

ranges.

By identifying the strongly correlated features in the training data, the errors in the ML

model predictions can be minimized. According to ref. [39], the Principal Component

Analysis (PCA) is the most often used method for reducing the number of features in

a large dataset. In this study, we attempted to eliminate colinearity using the PCA ap-

proach and the ”SelectFromFeature” function from the Sklearn package. We compared

the results to the accuracy that had already been attained utilizing all the features.

We displayed the PCA method’s results here. The accuracy score of a kNN model is

shown in Fig. 5.5(a), and the accuracy score of an ET model is shown in Fig. 5.5(b)

with respect to the number of principal components employed. Here, the accuracy of

b predictions is evaluated using a dataset of 12000 minimal bias Au-Au collision events

at
√
sNN = 200 GeV. For the usage of 7 or more principal components, the accuracy
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Figure 5.4: Effect on the eccentricity prediction accuracy by the inclusion of impact
parameter as a feature for different centrality(%), a) 0-10%, b) 10-40%, c) 40-80%, d)
Min. bias events. The orange bar represents accuracy with impact parameter as a

feature and blue bars represent accuracy without impact parameter as a feature.

score reaches saturation in both cases. For impact parameter predictions, a variance

coverage of 95% can be attained with only 7 components. Therefore, it is safe to employ

7−8 principal components to acquire a good amount of precision without compromising

any significant information. The impact parameter was determined using 7 − 8 prin-

cipal components. We also observed that in order to get an appropriate result for the

eccentricity and participant eccentricity prediction, at least 10 features or 10 princi-

pal components are required. Given that we are using transverse momentum data, this

is to be expected. We require fewer features to achieve a high degree of prediction accu-

racy for the impact parameter than for the eccentricity because the impact parameter

is known to be associated with the transverse momentum data [40]. We will utilize the

PCA function to convert the features in all eccentricity estimations.

5.2.2 Custom resampling for unbalanced training set

The pT spectra datasets that we have employed as a feature for ML model training are

unbalanced. There are fewer events for lower impact parameter values since we have

taken into account the pT spectra of minimal bias events. This results in a left-skewed

event distribution of pT spectra. The eccentricity and impact parameter prediction

accuracy in the lower b region (b ≤ 1 fm) are both impacted by the data imbalance.
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Figure 5.5: a) Accuracy of a a) kNN model and b) an ET model as a function of the
number of principal components used

The impact parameter is not immediately accessible to the experiments. However, most

experimental observables depend on the impact parameter, in ref. [41], Bass et al. have

observed that the various methods of impact parameter estimation are often optimized

for the wider impact parameter range. Because of this, the experimental results for

head-on collisions corresponding to the lower impact parameter range will have higher

inaccuracies. We aim to improve the prediction accuracy of the impact parameter in the

lower impact parameter range. This is crucial because there are a lot of experimental

findings from head-on collisions that can be more effectively analyzed with better impact

parameter predictions in the lower b range. Our objective is to balance the data set

suitably in order to increase the prediction accuracy in the lower b range.

A few sampling techniques are used in machine learning to rebalance a dataset, such as

SmoteR, ADASYN, etc. [42, 43]. The minority and majority data classes are increased

(over-sampled) or decreased (under-sampled), respectively, using the nearby data points

in the training dataset. With every feasible set of hyperparameters, we tested both

methods. The results are reported in the following section (Section IV C). We find

that the improvement in accuracy is not adequate. After that, we use a technique

called class weights to rebalance the data set, where different classes represent various

impact parameter regimes. A thorough grid search was conducted to analyze the various

weight and distribution region combinations. The events with an impact parameter of

<= 1.0 fm were chosen to be in category 1 and the others to be in category 2 based

on the test set minimal error. The weights given to the two classes are 4 : 1. This

technique has further helped us reduce errors. The results are presented in the following

section (subsection C).
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5.3 Results and Discussions

5.3.1 Impact parameter and eccentricity prediction

As was previously mentioned, eccentricity is one of the crucial factors in heavy-ion col-

lisions that describes the initial state geometry. However, it is challenging to determine

eccentricity directly from the experiment, just like the impact parameter. The methods

employed in this work for impact parameter prediction are also applied to predict ec-

centricity. The three ML algorithms that perform the best in eccentricity prediction are

ET, kNN, and RF.

Similar to Table- 5.1, a comparison of performances of different models for eccentricity

prediction is shown in Table-5.2. The other remaining models, which are present in

Table- 5.1 but not in Table- 5.2, have R2 score less than 60%. The models are again

tuned for the best possible outcome. Most of the hyperparameters remain unchanged

and whatever changes occurred are very near to the previously tuned hyperparameter

value.

Model R2 MAE RMSE MSE

K Neighbors Regressor 0.9746 0.0021 0.0028 0

Extra Trees Regressor 0.9503 0.0029 0.0039 0

Random Forest Regressor 0.9143 0.0038 0.0051 0

Light Gradient Boosting Machine 0.8647 0.005 0.0064 0

Decision Tree Regressor 0.7353 0.0052 0.009 0.0001

Gradient Boosting Regressor 0.5855 0.0089 0.0112 0.0001

Table 5.2: 10-Fold cross validation accuracy of ML models for eccentricity prediction
of min. bias Au-Au events at

√
s=200 GeV

The prediction plots of eccentricity using the kNN, ET, and RF model are shown in

Fig. 5.6 (a), (b), and (c). The accuracy percentages are 97.84%, 95.47% and 91.95%,

respectively. This is seen in a train-test dataset of min. bias Au+Au events that were

randomly split. The models are tested over 2000 events displayed in Fig. 5.6 and trained

using 12000 randomly chosen events. The 10-fold cross-validation scores are 97.52% for

the kNN model and 95.18% for the ET model. These are also closer to the accuracies

obtained using the random train-test split dataset. The 10-fold CV score of the RF

model is 91.95%. When the ML algorithms are trained using the default AMPT model

data, we achieve an accuracy of between 87% and 93% for kNN and ET models.

The prediction plots of eccentricity using the kNN, ET, and RF model are shown in

Fig. 5.7 (a), (b), and (c). The accuracy percentages are 98.16%, 96.21% and 93.32%,

respectively. One can observe a similar pattern between Fig. 5.6 and Fig. 5.7. The

points spread away from the red line as the accuracy decreases from kNN to ET to
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Figure 5.6: Eccentricity prediction using kNN(a), and ET(b) model with their accu-
racy score 97.84%, and 95.47% for events of Au+Au system at a collision energy 200
GeV. These plots are obtained for a random train and test set split of input events.

RF regression. In this case, the 10-fold CV scores are 97.58% and 95.25% for the kNN

and ET model, respectively, and 93.78% for the RF model. A model comparison is

also given in Table- 5.3 for participant eccentricity predictions using different machine

learning models. The first four models have an accuracy of more than or equal to 90%

among the eight given. The other remaining models which are present in Table-5.1 but

not in Table-5.3, have R2 score less than 50%.

Model R2 MAE RMSE MSE

K Neighbors Regressor 0.9791 0.0017 0.0023 0

Extra Trees Regressor 0.9571 0.0024 0.0033 0

Random Forest Regressor 0.9293 0.0031 0.0042 0

Light Gradient Boosting Machine 0.8931 0.004 0.0051 0

Decision Tree Regressor 0.7929 0.0043 0.0071 0.0001

Gradient Boosting Regressor 0.6682 0.0073 0.0091 0.0001

AdaBoost Regressor 0.5285 0.009 0.0108 0.0001

Least Angle Regression 0.4907 0.0092 0.0112 0.0001

Linear Regression 0.4906 0.0092 0.0112 0.0001

Table 5.3: 10-Fold cross validation accuracy of ML models for participant eccentricity
prediction of min. bias Au-Au events at

√
s=200 GeV

An accuracy comparison for ε3 (triangularity) prediction by ML models is presented in
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Figure 5.7: Participant eccentricity prediction using kNN(a), and ET(b) model with
their accuracy score 98.16%, and 96.21% for events of Au+Au system at collision energy
200 GeV. These plots are obtained for a random train and test set split of input events.

Table- 5.4. We have computed ε3 by using the Eq. 5.3. kNN, ET, and RF models

outperform the other ML models in this instance as well. All three of them are more

than 90% accurate. After 10-fold cross-validation, the LGBM (Light Gradient Boosting

Machine) model also shows an accuracy of over 88%. This machine learning model is

tree-based and grows vertically (leaf-wise) [28].

Model R2 MAE RMSE

K Neighbors Regressor 0.9762 0.001 0.0013

Extra Trees Regressor 0.9574 0.0013 0.0017

Random Forest Regressor 0.9216 0.0017 0.0023

Light Gradient Boosting Machine 0.8807 0.0022 0.0029

Decision Tree Regressor 0.7581 0.0024 0.0041

Gradient Boosting Regressor 0.6309 0.004 0.005

Table 5.4: 10-Fold cross-validation accuracy of ML models for ε3 predictions of min.
bias Au-Au events at

√
s = 200 GeV

A narrow range of eccentricity (0.22−0.32) is used for the model fitting and predictions

in the eccentricity prediction figures (ref Fig. 5.7). This region is specifically where

all of the models get their highest estimation accuracy. This is because the eccentricity

distribution over the events is not isotropic. The εpart distribution is given in Fig. 5.8(a).
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Figure 5.8: a) Histogram plot of participant eccentricity distribution and b) Pre-
diction plot of εpart for higher εpart range using kNN model of minimum bias Au-Au

collision events at
√
s = 200 GeV given by the AMPT model

Here, the x-axis indicates the eccentricity range, and the y-axis denotes the normalized

number of events. Eccentricities between 0.15 and 0.25 are observed to have the highest

peak in the distribution. As a result, the distribution is skewed, which makes our dataset

unbalanced. Therefore, the eccentricity of most events falls within a specific range. Since

there are more fitting points, the model fits well in this range of eccentricity. The graph

shows that the eccentricity range can be expanded further from 0.1 to 0.5. An estimation

plot of εpart using the kNN model is provided for a wider range in Fig. 5.8(b). Here,

events with εpart between 0.1 and 0.5 are taken into consideration. As a result, the range

is now three times wider than in the earlier situations. In comparison to the points in

Fig. 5.7 (a), we see that the points are broader away from the center and the optimum

accuracy line. Additionally, we observe some points that are far and isolated from the

distribution. The accuracy has decreased from its previous value of 98.16% to 78.98%.

The 10-fold CV score, in this case, is 76%, which is also a reasonable level of accuracy

but significantly less than the maximum accuracy. This implies that the accuracy range

can be adjusted to fit the needs of the task. To cover a greater eccentricity range, We

have to compensate with accuracy.

Additionally, we have used various ML methods to get the accuracy of the impact param-

eter, eccentricity, and participant eccentricity predictions at collision energies ranging

from 20 GeV to 200 GeV. Compared to higher collision energy, the number of events

needed to train an ML model is higher for lower collision energies. This is due to the

fact that events with a high multiplicity are produced at higher collision energy. As a

result, the averages over events become stable.

In Fig. 5.9, we display the impact parameter prediction error as a function of the impact

parameter and the εpart distribution. Here we computed the relative error (RE), and

it is defined as: RE =
∣∣∣ bpred−borgborg

∣∣∣, where bpred and borg are the predicted and original
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Figure 5.9: Error in the prediction of impact parameter as a function of impact
parameter and eccentricity distribution. This is for 200 GeV Au-Au collisions and the

prediction is obtained using a kNN model

values of b. Except for the region where b < 2 fm, we see that the error is small for all

eccentricity and impact parameter ranges. The majority of the errors in the distribution

are less than 0.5 (shown by the red points) and occasionally less than 1. However, the

difference becomes noticeably higher for the lower range of impact parameters (b < 2

fm). This is also a result of the data imbalance that has been mentioned earlier. For

MC-Glauber model predictions with low-impact parameters, the errors are comparably

significant. Large deviations are also obtained when fitting the MC-Glauber model data

with the data from the UrQMD and AMPT events, as reported in ref. [44]. Large

discrepancies are also found for the fitting of Glauber model data to the ALICE data in

ref. [45]. Our observations are consistent with recent findings from machine learning uti-

lizing other models, such as UrQMD, where it was found that the models are capable of

efficiently determining the impact parameters in all regions, with the exception of the

most central and the very peripheral regions [46]. This is closely represented in Fig.

ref. 5.9, which shows that there is a significant amount of error in the most central region.

5.3.2 Results from the different HIC models

To examine the model dependency, we used data from various HIC models, and pre-

dictions were obtained for the impact parameter. The AMPT model data were used

to train an ML model, and predictions were performed using data from other heavy-

ion collision models. The other HIC models employed in this work are the VISH2+1

model [17], which is a hydrodynamic evolution code, and a hybrid model formed of
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the VISH2+1 and UrQMD models. The UrQMD model is used for final hadronic re-

scatterings in the hybrid model [18]. We employ various models because we want the

test set and training set to be generated by multiple models that produce the same pT

spectra. This would imply that the ML models won’t be able to identify which model

generated the test data. The pT spectra of the AMPT model were employed as features

and the impact parameters of the associated AMPT events as targets for training the

ML models. We use the minimum bias Au-Au events with collision energies of 200 GeV.

At the same collision energy and at various centralities, the pT spectra of the VISH2+1

and hybrid models are produced, with impact parameters ranging from 0.1 fm to 14 fm.

The parameter values of the VISH2+1 model used in this study are identical to those

used in ref. [47]. We have used the Glauber model for initial distribution, η/s = 0.16,

and decoupling temperature Tdec = 160 MeV. The box plot is given for the s95p-PCE

equation of state. We set the η/s for the hybrid model to 0.08 and used the s95p-PCE

equation of state with Tdec = 165 MeV. For each of the impact parameter ranges, we

obtained 5000 events from each of these models, and we fitted the average pT spectra

with the experimentally observed pT spectra [48, 49]. The range of pT considered in

order to fit the experimental spectra is 0.15 to 1.4 GeV/c to train ML models. The

experimental results and VISH2+1 data are well-matched in this range. By doing this,

we are also broadly evaluating how well machine learning models can perform when

experimental data are used as test data for predictions. Different HIC models were

employed to construct the pT spectra since we needed event-by-event experimental data

at various centralities. In this way, the error distribution of the predictions made by

the ML model for a large number of events at different centralities can then be obtained.

All of the ML models used in this analysis, such as kNN, RF, ET, and LR, perform really

well when it comes to impact parameter prediction using test data from an undisclosed

HIC model. Figures 5.10(a) and 5.10(b) present the error plots of impact parameter

predictions by the kNN model for the VISH2+1 and hybrid UrQMD models, respectively.

The box portrays the distribution of relative errors. The median error is shown by the

middle line inside the box, which is located in the center of the box. The top and

bottom lines show the 25th and 75th percentiles of the error distribution. The green

point represents the mean error. The errors show a normal distribution in all boxes or

across all centralities. This indicates that the ML model made an accurate prediction.

The outliers are shown by the end circles, which are fewer in number. In both plots,

we observe that errors decrease for events with higher impact parameters. The errors

are almost negligible above the impact parameter of 2 fm. The errors remained minimal

above b = 10 fm, reflecting the prior trend. The three lines in Fig. 5.10(a) indicate the

mean prediction errors of impact parameters for different Equations of State (EoS). The
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Figure 5.10: Error plot of impact parameter predictions by kNN model of different
centrality events of a) VISH2+1 and b) UrQMD simulations. The 3 lines in (a) show

the mean errors in impact parameter prediction for different EoS

mean errors for the s95p-PCE, EOS L, and SM-EOS Q equations of state are represented

by the green (dashed), blue (solid), and yellow (dotted) lines, respectively. The pattern

of the error distribution is the same for all EoS. However, in Fig. 5.10(a) and (b),

the relative prediction errors for 0.1 and 0.5 fm impact parameter events are more than

three and five times, respectively, than the original impact parameters. We have taken

the impact parameter range of 0 to 3.31 fm for 0 − 5% central Au-Au collision events

[9]. As was mentioned, the Glauber model is used to determine the centrality in the

case of experiments. As a result, it might be challenging to determine a precise impact

parameter value, especially for the most central events. While using the AMPT events,

we saw the same type of error distribution in Fig. 5.9. We used AMPT events for both

the ML model’s training and testing, which itself is an unbalanced dataset. Even though

the nature of the error distribution is similar in all scenarios, we employed the Glauber

initial conditions for the hydro model input. Different pT spectra can result from the

Color Glass Condensate model’s initial condition. In that case, the parameters of the

hydro model should be changed so that the produced pT spectra match the experimental

pT spectra in order to test the effectiveness of the ML models.

5.3.3 Results from rebalancing the data set

Due to the imbalance in the impact parameter distribution in the training set, a signifi-

cant error is seen in the prediction in the lower impact parameter region in Fig. 5.9 and

Fig. 5.10. We circumvent this using the unique sample weighing technique described in

Section III (B). As previously mentioned in Section III B, we initially employed stan-

dard python packages to rebalance the data. The outcomes are displayed in Fig. 5.11

for smoteR (a) and ADASYN(b) method. Despite the fact that the error is less in the

region of low-impact parameters compared to the errors found in Fig. 5.9, we still obtain

enough errors to produce an inaccurate estimate for the low-impact parameter events.
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Figure 5.11: Error distribution of ET model of impact parameter predictions of
Au-Au collisions at

√
s = 200 GeV. The training set is re-balanced using a) SmoteR

method, and b) a custom method of giving weights to the input data

In Section III B, we provided a detailed description of our custom rebalancing approach,

and the result is shown in Fig. 5.11 (c). As illustrated in Fig. 5.11 (c), we were able

to reduce the error to less than 1 using our custom balancing technique. Since the pre-

diction performed in this range will always fall in the most central collision category

(0 − 5%) for the Au-Au collisions, this much uncertainty in error is acceptable for this

range of impact parameters.

It is also compelling to observe how the AMPT-trained models estimate eccentricity

when supplied with data from other HIC model simulations. The distribution of ec-

centricity of 200 GeV AMPT collision events with respect to the impact parameter is

shown in Fig. 5.12(a). The color plot shows that the average eccentricity and impact

parameters of collision events are linearly related. We can see that with lower impact

parameter values, the eccentricity range is smaller. The range of eccentricity increases

as we pursue higher impact parameter events. A prior study also shows a similar ob-

servation [50]. We present the distribution of eccentricity predictions for two centrality

ranges for VISH2+1 events in Fig. 5.12(b). The ML model is trained using minimum

bias AMPT events. The orange dots represent event predictions of 40− 80% centrality,

whereas the blue dots represent event predictions of 0 − 10% centrality. We obtain an

eccentricity distribution in the 0− 0.15 range for the 0− 10% centrality range, which is

also within the range of the original distribution presented in Fig. 5.12 (a). In the higher

impact parameter range, we obtain a wider range of eccentricity values, shown by orange
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Figure 5.12: a) Distribution of eccentricity with impact parameter of min. bias Au-
Au collision events at

√
s = 200 GeV, b) Distribution of eccentricity predictions by

kNN model of 0− 10% and 40− 80% centrality events of Au-Au collisions at
√
s = 200

GeV from the VISH2+1 model.

dots. Although this demonstrates how ML model performance is model-independent,

only the Glauber initial conditions of the VISH2+1 model are analyzed. We have not in-

cluded the Color Glass Condensate initial conditions since it is known that they produce

a larger anisotropy. It would be interesting to examine how the model would perform in

such a scenario.

In Fig. 5.8(a), we have demonstrated an imbalance in the εpart distribution. Due to this

unbalanced distribution, we can only estimate eccentricity with an accuracy of more

than 95% when we take a narrow range into account. The CV accuracy was reduced to

76% for a wider range. If the data are rebalanced in an appropriate manner, excellent

accuracy can also be obtained for distributions of eccentricities that span a wider range.

We have tested with a rebalancing method similar in nature to that used for impact

parameter prediction. We trained the model using the same amount of events for each

distribution bin. Fig. 5.13 displays the εpart prediction plot using the rebalanced data. If

we compare the event points to Fig. 5.8(b), which also has the same range of eccentricity,

we see that the event points are substantially nearer to the optimum accuracy line (red

line). The cross-validation score here is 91%. Therefore, one can enhance the accuracy

of these ML models for the estimation of the impact parameter as well as the eccentricity

by applying these data rebalancing approaches.

5.4 Conclusions

In order to estimate various initial stage properties of a heavy-ion collision system, we

have trained multiple machine learning models using the AMPT model data. We trained

and tested the ML model’s performance using the pT spectrum as it is one of the direct

outcomes of heavy-ion collision experiments. We examined how the ML models learned
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Figure 5.13: Participant eccentricity predictions of Au-Au collision events at
√
s =

200 GeV after rebalancing the data using the custom method

and made adjustments to the hyperparameters to achieve the best prediction accuracy.

Four models—kNN, RF, ET, and LR—have been selected from the many tested models

to predict the impact parameter. Most models have exhibited higher than 90% accuracy

in predicting the impact parameter. Three models, the kNN, ET, and RF performed

remarkably well and provided a CV score of more than 90% in the case of the eccen-

tricity and the participant eccentricity prediction. The eccentricity predictions have the

highest accuracy in the 0.2 − 0.32 range of eccentricity. Additionally, a wider range of

eccentricity (0.1 − 0.5) has also been considered. Due to the imbalance in the training

data distribution, we observe that the selection of the eccentricity range has an impact

on the ML model performance.

Additionally, we performed a study of how the model might do in terms of predicting

the centrality classes generated by a different simulation model. We have used two

other heavy-ion collision models that are distinct from the AMPT model used to train

the machine learning models: a viscous hydrodynamic model (VISH2+1) and a hybrid

model (Hydro+UrQMD). For the events of the VISH2+1 model and the hybrid model,

the impact parameter predictions of the ML models are produced. Although we have

shown the results of the kNN model, all the ML models correctly predicted the central-

ity classes of these events. Despite the fact that we have found larger errors for 0.5 fm

events in both instances, the errors for other b values are comparatively small. This can

be a result of the unbalanced nature of the data set. When the data set is normalized,

it is noticed that the distribution’s peak is not exactly at the center. This suggests that

the eccentricity and impact parameter distributions across events are not isotropic.
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We have employed a variety of sampling techniques to reduce these errors. After us-

ing multiple common methods that facilitate rebalancing the data, we eventually find

that the accuracy is increased in the lower impact parameter region if we assign various

weights to the data for different ranges of impact parameters. The result is shown for

the ET model, where we have used four times higher weights for the rarer events. As a

result, accuracy in the lower impact parameter range has improved. For a broader range

of eccentricity distribution, our rebalancing method produced a CV accuracy of more

than 90%. This resulted in an overall improvement from an accuracy of 75% before to

an accuracy of 90% afterward. So, according to our study, a rebalanced data set will be

beneficial in making precise predictions for central collisions.
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Chapter 6

Summary and Conclusions

We studied different stages of heavy ion collision systems using various simulation models

and machine learning techniques. One of the primary motivations for conducting these

experiments is to study the deconfined phase of matter, i.e., the quark-gluon plasma

phase. Although the lifetime of the QGP is very short, we find several properties of the

QGP system through various final state spectrum analyses. We also find their effects on

the final outcomes of these experiments. The initial state distribution and fluctuations

majorly impact the final state hadron spectra. In the past, multiple research has shown

how the initial geometry parameters such as eccentricity ε2, triangularity ε3, etc., affect

the collective flow components of finally produced particles. It is also observed that

almost all the final outcomes of heavy ion collision experiments depend on the centrality

of the collision events, which is also an initial geometry parameter. We know that the

collision region’s initial state energy distribution is not uniform. Because of this, and

the spatial density distribution of the initial partonic system a large angular momentum

develops. This causes vorticity-like phenomena in the plasma to arise, and we see its ef-

fect in terms of particle polarization. Along with this, the fields created by the spectator

nucleons are responsible for generating a huge magnetic field which causes transport cur-

rents to develop in the plasma. That is why it becomes crucial to know the initial state

characteristics of heavy ion collisions. In this thesis, we have studied several distribu-

tion and fluctuation-related phenomena and found their connections with the final state

hadron production. This includes the study of vorticity at different stages of the system

evolution in heavy ion collision experiments. This also includes the energy deposition at

different length scales by generating turbulence spectra, and entropic index at different

stages calculated from the temperature fluctuations. As the initial state parameters are

difficult to obtain in the experimental setup, we used several machine learning techniques

to estimate these parameters. We have also focused on carrying out a model-independent
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study in this regard, as the training of the ML models is very sensitive to the input data.

In the second chapter, we have presented our study on vorticity distribution in the initial

partonic stage and the final hadronic state. We use different definitions of vorticity to

see if we can distinguish between the vorticity distributions obtained from different defi-

nitions. Different definitions help us obtain different types of vorticity, which are used to

study various characteristics. For example, thermal vorticity is particularly of interest

as it is used to parameterize the polarization effect found for several finally produced

hadrons, which is one of the observable in heavy ion collision experiments. Although

relativistic and thermal vorticity distributions have more significant fluctuations than

the classical vorticity distribution, there is an overall global similarity. We found distinct

vortex formation at larger collision energies, and as we go lower in collision energy, the

vortices tend to diffuse more. This is observed throughout the collision energy range we

have considered, which is 20 GeV to 200 GeV. We know that vorticity distribution can

be affected by the viscosity of different layers in the medium. We obtained the specific

shear viscosity η/s from the HRG model at different collision energies. We find that

at lower collision energies, η/s is higher, and it starts to go down with increasing colli-

sion energy, and after
√
sNN = 80 GeV, η/s becomes constant. We observed a similar

pattern for various particles. We suspect that the larger angular momentum at high col-

lision energy helps generate these distinct vortices. At the lower collision energies, the

viscosity becomes more effective, and the energy gets diffused more and more at lower
√
sNN , which causes the formation of elongated vortices. The scenario is different when

we study the average weighted vorticity. We see the average vorticity first increases

and then goes down with collision energy. The maximum vorticity we observed was at

around 60 GeV in all the cases. This behavior is also observed in later studies where

the maximum vorticity is observed at about 27 GeV collision energy. This behavior is

entirely different from the angular momentum change with collision energy. One of the

possible reasons behind this is that angular momentum in a system can be generated

from various sources. The moment of inertia of the system is one of them that we have

not considered in our study. We only focused on the angular momentum responsible for

vorticity production.

The system created in the earlier stages of heavy ion collision experiments has an ex-

ceedingly high Reynolds number. Due to this, several aspects of viscous flow, including

whether or not turbulence develops, are still unknown from the earlier study. As it is

evident that there are fluctuations in the initial plasma, it can constitute turbulence

flow. Hence, turbulence spectra can be obtained in this system. The turbulence spectra

provide insights into the energy dissipation in the system at various length scales. To
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study the spatial anisotropy in energy dissipation, we obtain the turbulence spectra for

velocity fields at different planes of the system. We first found the possible length scales

of the heavy ion collision system, specifically for Au-Au collisions at RHIC energies.

Then we extract the turbulence velocity from the particle flow velocity and calculate

the velocity correlation tensor. Using the velocity correlation tensor, we calculated the

energy spectra. As we work with relativistic velocities, we use a boost matrix to account

for the Lorentz boost effect. This is only done for longitudinal plane spectra as the boost

is only in the z-axis. The isotropic turbulence spectra should resemble the Kolmogorov

spectra, which have a power-law characteristic in the inertial sub-range. For Kolmogorov

spectra, the energy in turbulent flows carried by eddies of diameter D is proportional to

D5/3. Hence, the slope of the Kolmogorov type of spectra is −5/3, which is represented

by ν. So any turbulence spectra fitted with a power-law distribution having slope −5/3

will indicate the isotropic energy dissipation. We have found that the ν value for longi-

tudinal spectra is −5/3, nearer to the Kolmogorov type of spectra. But the ν value for

the transverse plane spectrum is around −4/3. We found that the slope stays closer to

−5/3 for all the collision energies below 200 GeV and all the centralities for longitudinal

spectra. But comparatively, the change in ν value is larger with collision centrality for

transverse plane spectra. This indicates anisotropic energy dissipation. The anisotropic

flows are produced in the transverse plane and suppressed due to the viscous nature of

the fluid. This is also a possible reason for anisotropic energy dissipation in the trans-

verse plane. Even though the turbulent system might be overall isotropic, if we divide

it into different planes, we find that the power law coefficients will differ on each plane.

We also analyze the temperature spectrum of the turbulent system in the early stages

and pre-equilibrium stages of QGP evolution. The spectrum is obtained by calculating

the temperature correlation tensor. By studying the temperature spectrum, one can

also understand the thermal length scales of the system. We expect the temperature

spectra to be Gaussian in nature for an isotropic medium. Though the temperature

spectrum first appears to be Gaussian, we have observed that a q-Gaussian distribution

fits it better over time. This also indicates the system anisotropy. All these suggest

that even though the turbulence observed in relativistic collisions is typically isotropic

and uniform, it would be more effective to slice the system into planes and study the

turbulence characteristics at each plane separately.

As discussed in Chapter III, there are significant temperature fluctuations in the sys-

tem. We calculate the temperature of the initial partonic system assuming local ther-

malization. We showed the temperature distribution with respect to the time of plasma

formation and collision energy for randomly selected events. With time, the fluctuations

get diminished. With collision energy, there are no such changes, but the amplitudes



Chapter 6 Summary and Conclusions 120

become higher for higher collision energies. To study the behavior of temperature fluc-

tuations, we parameterize the temperature fluctuations using the Tsallis entropic index.

This Tsallis distribution is a generalization of Boltzmann-Gibbs statistical distribution

with the entropic index characterizing the degree of non-equilibrium. One can obtain

the standard distribution from the Tsallis distribution for the equilibrium system, and in

such case, the entropic index q tends to 1. In experiments, these q values are obtained by

fitting the transverse momentum spectrum of finally produced hadrons with this Tsallis

distribution. We obtained the entropic index for the partonic state using temperature

fluctuations. When a system has temperature fluctuations, then the generalized distri-

bution function of the system with an entropic index can be obtained by integrating

all the fluctuating states provided that the fluctuations are chi-square distributed. We

observe that the distribution of temperature fluctuations can be fitted with a Chi-square

distribution. q serves as an open parameter in the distribution, and it is found out for

appropriate fitting conditions. The q value obtained from the experimental pT spectra

are observed to be dependent on various system parameters. We are curious whether the

q values obtained from temperature fluctuations follow a similar behavior with changing

system parameters.

The change in q values is found to be linear with respect to the effective temperature,

which is also true for the experimentally obtained q values. In this case, the only

difference between the q value obtained from the temperature fluctuations and the final

hadron spectra is the slope of the fitted straight line. In experiments also, it is observed

that the slope is different for different collision systems. We also found the dependence

of the q value with changing system parameters like pseudorapidity, collision energy, and

formation time. We find that the q value increases for a larger pseudorapidity range,

plateauing for higher collision energies. In this case, larger rapidity corresponds to a

larger system volume. The behavior is similar to the experimentally obtained q values.

With respect to collision energy, the q value increases; however, there is a centrality

dependence. Below 100 GeV, the q values are lower for peripheral collision compared to

central collision. But above 100 GeV, the trend is reversed. This behavior also matches

with the experimentally obtained q-value with respect to the collision energy.

We also found that q increases with plasma formation time, peaks around 3 fm/c, and

then decreases with increasing proper time. The increase and subsequent decrease of

q values may be attributed to the increase and decrease in the energy density of the

system. The temperature fluctuations also show similar behavior with increasing forma-

tion time. So from our study, it is evident that the q values obtained from temperature

fluctuations behave similarly compared to the q values obtained by fitting the hadron

spectra. Hence one can determine how far the system is from the equilibrium state in
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terms of the entropic index for the partonic stage by studying the temperature fluctua-

tions.

In chapter V, we show how machine learning models can be a more convenient way to

estimate the initial geometry parameters of heavy ion collision experiments. We know

that probing anything in the initial state is difficult as the lifetime of the QGP system

is very small. Also, it is very difficult to calculate the initial state parameters from

the final particle spectra. We use multiple standard ML techniques to predict some

initial state geometry parameters such as impact parameter, eccentricity, triangularity,

and participant eccentricity. We use charged particle transverse momentum spectra of

finally produced hadrons as features to train the ML models. At the same time, the

impact parameter and other initial state parameters are used as target variables for the

training of the ML models. We found that almost all the models perform reasonably

well in impact parameter prediction, but only three models give an accuracy of more

than 90% for other geometry parameter predictions. The three ML models are K nearest

neighbors, extra trees regression, and random forest regression. We also did a detailed

hyperparameter scan through the randomized grid-based search method to maximize

the performance of our data. Also, to prepare the training set, we applied multiple

preprocessing techniques, such as principal component analysis, and standardized the

data set. All these have been done to find a combination of optimized ML model and

tuned training set to improve the performance of these ML models.

Although the overall accuracy was adequate, if you see the error distribution for the

impact parameter predictions, we find that the errors are very high for most central

collisions in the low-impact parameter region. This is because the training data is not

balanced; the event distribution of the impact parameter is skewed, with fewer events

for the low-impact parameter values. Also, we observed that the accuracy decreases

drastically for eccentricity and participant eccentricity prediction when considering the

whole range of eccentricity. This is also because the event distribution of eccentricity is

not a uniform distribution. To overcome this situation, we use standard sampling tech-

niques used by the ML community, such as SmoteR and ADASYN, to make a balanced

dataset. We also used a custom sampling technique where we gave more weightage to

the region where the training data has less number of sample points. We found that our

custom sampling method performs much better than the standard sampling techniques.

This is true for both impact parameter and eccentricity prediction.

We know that the training of the ML models is very sensitive to the training data. We

also studied the performance of ML models in the impact parameter and eccentricity

prediction in a model-independent manner. To do that, we have trained the ML models
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using the transverse momentum spectra generated by the AMPT model, which is a

transport model. We generated the test data from two other heavy ion collision models,

e.g., a hydro model and a hybrid model. We found that the ML models could perform

adequately when the test data came from different models. This is only true when

the data matches well with the experimental data. We have used different conditions,

such as multiple equations of states and different transport coefficients in the hydro and

hybrid models, to check the error distribution of ML model predictions. We found that

the errors are negligible for higher impact parameter values. We get higher errors for

most central collisions. This is exactly similar to the error distribution when the training

and testing are performed using the data of the AMPT model.

Finally, our study shows that only transverse momentum spectra are enough to train

ML models so that they can predict the initial state geometry parameters efficiently.

Also, the performance of the ML model can be improved by some preprocessing of the

input data using sampling techniques.

To summarize, our study is important in the current context of heavy ion collision

experiments. The polarization found in certain finally produced hadrons has already

hinted at global vorticity in the system. It is also essential to know the local vorticity

nature in an out-of-equilibrium system, especially when working with a partonic system.

Our study has shown local vorticity formation in different conditions. It would also be

interesting to see the distribution of local velocity vectors, which would directly show

us the rotational characteristics of the system. In our study, we have discussed how the

viscous effects influence the vorticity distribution. It would also be interesting to study

how vorticity can affect the transport coefficients of the HIC system. This can also

help us to determine the transition temperatures more accurately. Fluctuations and

correlations play significant roles in determining the critical point in the QCD phase

transition. We have studied velocity and temperature fluctuations in terms of power

spectrum analysis and Tsallis statistics. It would be interesting to explore the power

spectrum and the Tsallis entropic index for lower collision energies and small system

collisions. This could lead us closer to the critical point if we found behavior changes

in these parameters. In previous chapters, we have discussed how ML techniques are

being used by the particle physics community in various searches. In our study, we have

shown the uses of data sampling techniques to rebalance a dataset. This has lowered

the errors found in the low-centrality predictions. The type of data that we have used

in our study for training and testing the ML models is one of the primary observable in

HIC experiments. Thus, this will be useful in the future while working with a similar

type of dataset.
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