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Abstract

We know from the time-temperature history of the universe, at times 10 microseconds
after the Big Bang, with temperature T" > 200 MeV, the universe was in the state
of Quark Gluon Plasma (QGP). QGP is a state of matter where elementary colored
particles(e.g., quarks and gluons) that make up the hadronic matter are deconfined and
can move freely over nuclear distances under extremely high densities and temperatures.
The study of the QGP is important because it can provide insights into the fundamental
nature of matter and the strong nuclear force. In the modern era, we try to recreate
this state of matter in the laboratory for a short period of time by colliding two rel-
ativistic heavy ions in heavy-ion colliders, namely the Relativistic Heavy-Ion Collider
(RHIC) at the Brookhaven National Laboratory and the Large Hadron Collider (LHC)
at CERN. Several theories are developed to describe the QCD phase diagram, which
represents the phase transition from confined and color singlet hadron state to the de-
confined QGP state, namely the QCD phase transition. The lattice QCD predictions
show a crossover transition around 7" = 150 — 170 MeV for an infinitesimal value of up.
There are models which indicate a first-order phase transition at finite pp with different
transition temperatures. The first-order transition line meets the crossover region at the
critical point whose existence is not established experimentally. As the exact boundaries
separating the two phases are unknown, these experiments play a vital role in describ-
ing the QCD phase diagram. The SPS and ongoing BES(Beam Energy Scan) program
at RHIC, as well as the lower-energy facilities, namely Facility for Antiproton and Ion
Research (FAIR) at GSI and Nuclotron-based Ion Collider fAcility (NICA) at JINR, are
developed to map out the QCD phase diagram at finite up.

The study of the rotational properties of the QGP system is important for understanding
the fundamental nature of the QGP. One of the key properties of interest is the vorticity
of the QGP. The study of vorticity in heavy ion collisions has gained significant attention
in recent years, as it is believed to play a crucial role in the generation of the observed
spin polarization. The vorticity of the QGP can also provide insights into the QGP’s
transport properties, such as its viscosity and thermal conductivity. Vorticity can affect

the collective flow of particles in the QGP and can also induce magnetic fields.

We study the vorticity patterns in relativistic heavy ion collisions with respect to the
collision energy. The collision energy is related to the chemical potential used in the
thermal-statistical models that assume approximate chemical equilibrium after the rela-
tivistic collision. We use the multiphase transport model (AMPT) to study the vorticity

in the initial parton phase as well as the final hadronic phase of the relativistic heavy ion



collision. Our results indicate that the viscosity plays a greater role at higher chemical

potential and lower collision energies.

Fluctuation studies play a crucial role in the search for the QCD critical point. Fluc-
tuations in conserved quantities, such as net baryon number, net strangeness, and net
charge, are sensitive probes of the QGP’s properties. The theory predicts that fluctu-
ations in these conserved quantities will be enhanced at the QCD critical point due to
the long-range correlations that develop in the system. Therefore, fluctuation studies
are important in heavy ion collision experiments to obtain information about the QGP’s

properties and to search for the QCD critical point.

We study temperature fluctuations in the initial stages of the relativistic heavy ion
collision using the AMPT model. We use the non-extensive Tsallis statistics to find the
entropic index in the partonic stages of the relativistic heavy ion collisions. We find that
the temperature and the entropic index have a linear relationship during the partonic
stages of the heavy ion collision. We performed a detailed analysis of the dependence of
the entropic index on the system parameters and compared it with the entropic index

obtained from the fitting of transverse momentum spectra.

Signs of turbulence have been observed at the relativistic heavy-ion collision at high col-
lision energies. We study the signatures of turbulence in this system and find that there
are significant departures from isotropic turbulence in the initial and the pre-equilibrium
stages of the collision. The geometrical anisotropy is reflected in the anisotropic turbu-
lence generated in the rotating plasma, and we find that the scaling exponent is differ-
ent in the two planes. We also obtain the temperature spectrum in the pre-equilibrium
stages. The spectrum deviates from the Gaussian spectra expected for isotropic turbu-

lence.

We use supervised Machine Learning (ML) models to predict three important properties
that determine the initial geometry of the heavy-ion collision (HIC) experiments. These
properties are the impact parameter, the eccentricity, and the participant eccentricity.
We study multiple ML algorithms, their error spectrum, and sampling methods using
exhaustive parameter scans and ablation studies to determine a combination of efficient
algorithms and tuned training set that gives a multi-fold improvement in accuracy for
three different heavy-ion collision models. The three models chosen are a transport
model, a hydrodynamic model, and a hybrid model. The motivation for using three
different heavy-ion collision models was to show that even if the model is trained using a
transport model, it gives accurate results for a hydrodynamic model as well as a hybrid
model. We also show how sampling techniques can improve the accuracy of impact

parameter and eccentricity prediction.
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Chapter 1

Introduction

Heavy ion collisions (HIC) are an essential approach for studying the characteristics
of the quark-gluon plasma (QGP), a deconfined state of matter that interacts strongly
and is believed to be created in such collisions. In these experiments, two heavy ions
(atoms with more than one proton and neutron) are accelerated to very high energies
and they are made to collide. These collisions cause the particles within the ions such
as quarks and gluons, to interact with each other and create new particles. This al-
lows us to study the behavior of subatomic particles and the interactions between them.
These experiments are important for understanding the fundamental nature of matter
and energy, as well as the nature of our universe. The QGP exists in extreme conditions
of high temperatures and densities. Thus, these experiments allow us to study how
matter behaves in extreme conditions. They also provide us with data that can be used
to understand the dynamics of the strong nuclear force, which governs the interactions
between particles in the nucleus. This also helps us understand the QCD phase tran-
sition. Additionally, as the QGP state is believed to be present in the early universe,
these experiments help us understand the behavior of matter in conditions that cannot

be recreated in a laboratory, such as the initial stages of the universe.

The collision energy and species of the colliding ions specify the system’s initial state,
while the properties of the particles created by the collision determine the system’s final
state. In these experiments, several initial state and final state variables or observables
are essential for understanding the dynamics of the system. We study several flow-
related characteristics of the QGP system at different phases of system evolution. Flow
is the collective motion of the particles produced in collisions, and it is one of the major
observable to study the QGP properties. Fluctuations measure the deviations from the

average behavior of particles and can be used to learn the system dynamics and the initial
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conditions. The study of fluctuation can also help us locate the critical point (CP) in the
QCD phase transition diagram, as these are likely to diverge close to CP. That is why
various thermodynamic properties, which depend on the fluctuations, are studied in this
area of research. Vorticity is another important phenomenon related to fluid motion, and
this can be used to study the characteristics of the rotating system and the collective
behavior of the particles. Vorticity measures the rotation of the system produced in
the collision, and its strength is used to characterize the degree of its turbulence. We
also study turbulence spectra for velocity and temperature fluctuations. This helps us
understand the energy deposition at different length scales and planes in the collision
region. Furthermore, we use several machine-learning techniques to estimate the initial
state variables of HIC experiments. Before going into the details of our study, let us

start with some of the basic understanding of these experiments.

1.0.1 Units and conventions

In high-energy physics, we consider natural units of measurement that are based on
physical constants. In natural units, we consider the Plank’s constant and speed of light
to be one, ¢ = h = 1. The units of electric charge are also redefined. The energy F is
measured in electronvolt (eV, KeV, MeV, GeV, TeV) unit. As mass and momentum are

related to F by the mass-energy relation, one can get their units.

E? = p?c 4 m?c? (1.1)

Thus, units of momentum is eV/¢, and mass is eV/c?. Considering ¢ = 1, mass and
momentum have units of energy. The mass of a proton and neutron is nearly 1 GeV.
Length and time have units of 1/Energy, which can be deduced from E = hv and from
AxAp > 1, the uncertainty principle. The radius of a proton or neutron is approxi-
mately 1 fm= 107'"m ~ 1/(200 MeV). The temperature is also expressed in energy
units (leV ~ 10*K).

The four-dimensional space-time coordinates are used to describe the positions. This
consists one time dimension ¢ and three spatial dimensions z, y, z, and can be expressed
as z# = (t,x,y, 2), also referred as contravariant 4-vector. It can be transformed to a
covariant vector x, = (t,—x, —y, —z) = (t,—r) by the action of a metric tensor. Here,

we use the Minkowski metric tensor,

g;w :gull :dla’g(la_l7_17_1) (12)
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— v
Hence z, = g

Invariant variables play a crucial role in HIC studies. This allows us to measure quanti-
ties in a frame-independent framework. It is important to work with invariant variables
while working with relativistic velocities, as it allows us to understand how things behave
from the perspective of different observers, i.e., under different frames of reference. The
inner product of any four-vector is invariant (e.g., z,2* = 2% ). The four-momentum
is denoted by p* = (p°,p) = (E, p), where p is 3-momentum(p,, py, p.), and p® is the

particle energy,

P’ =E=+p2+m? (1.3)
The inner product of momentum p*p, = p? = m? = E? — p? is normalized to the rest
mass of the particle. The 3-momentum can be segmented into two components: p, along
the beam direction (z-axis) and the transverse momentum pr = \/Jﬁy2 which is on
the plane perpendicular to the z-axis. The four velocity is defined as u* = (v, —yv).
Here v is the Lorentz factor v = 1/4/1 —v2. The four-velocity is normalized to 1:

ufu,, = 1. v is the velocity vector in 3 dimensions.

We define a new parameter known as rapidity, which is a generalization of the velocity

vector. It is defined as,

]k)illnpz-i-po

= 1.4
Do 2 p.—po (14)

y = arcth(v,) = arcth(

For small velocities it is similar to v,, i.e., y = v,. The reason behind using this new
parameter is it is additive in nature under Lorentz transformation. As a result, under
Lorentz boosts, the particle rapidity distribution is unaffected. Additionally, the differ-
ence in the two particle’s rapidity is invariant under Lorentz boosts in the beam axis.
However, rapidity is hard to determine in experiments; thus, a new parameter is intro-

duced known as pseudorapidity:

1 |p[+p.
n=—-ln—"—

=3 p =) = In(cot(=)) (1.5)

N D

Pseudorapidity provides an extra advantage working with relativistic velocities. As it
only depends on one variable, the particle’s polar angle 6, it can be measured directly in
the experiments. Most particles’ momentum in high-energy experiments is significantly

greater than their rest mass. In that case F = |p| which means, y ~ 7.
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1.0.2 Elementary forces in Nature

Gravitation, electromagnetism, the weak nuclear force, and the strong nuclear force are
the four fundamental forces of nature. The interactions among the elementary particles
are governed by these four forces. Except for gravity, all of these interactions have a
microscopic quantum formulation in the form of local gauge theories. The elementary
matter fields are spin-1/2 fermions that interact through the exchange of spin-1 bosons.
The Higgs spin-0 boson, the single fundamental scalar particle in the standard model,
plays a specific role in this paradigm by providing all other fields with a mass proportional
to their coupling to the Higgs [1]. All predictions made by the standard model have so
far been validated by the 2012 finding of the Higgs boson at the Large Hadron Collider
at CERN by the ATLAS, and CMS experiments [2]. The classical field theory of gravity
(general relativity) has been experimentally verified with a high degree of precision. The
most recent of these verifications was the observation of gravitational waves produced
by the merger of massive compact objects, such as black holes or neutron stars [3].

However, a theory of quantum gravity is still a challenge.

1.0.3 The Theory of Quantum Chromodynamics

QCD was proposed by Gell-mann and Zweig in 1963. It is the theory which governs
strong interactions, liable for the strong force. The EM force describes the interaction
between electric charges and is called quantum electrodynamics (QED). It is mediated
by a boson known as the photon. There are lots of similarities between QCD and QED.
QED has two degrees of freedom, e.g., positive and negative charges, and QCD has
three degrees of freedom called color charges, red, green, and blue. In QED, the overall
system can be charge-neutral if there are same number of positive and negative charges.
Likewise, we only get color-neutral particles in normal conditions (low temperature and
density). They are known as mesons and baryons. A crucial difference between QCD
and QED is confinement, due to which there are no free quarks and gluons in nature,
unlike electric charges and photons. When a color charge is combined with an anticolor
charge of the same type, it forms a color-neutral state. This bound state is a type of
meson. A color-neutral state can also be generated if three different color charges are
combined together with equal proportions, and the bound state is known as a baryon.
Antimatter particles have opposite charges compared to their matter particles. The
same is true for color charges. The charges for antimatter are antired, antiblue, and
antigreen. The strong force is mediated by a gauge boson called the gluon. This is anal-
ogous to photons from QED with the difference that gluons carry color charge, unlike

photons that are chargeless.
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There are six flavors of quarks, e.g., up, down, strange, charm, bottom, and top. This
is in the sequence of mass ordering, where the top quark has the highest mass. It is
175 times more massive than the proton. The up and down quarks are the lightest and
most abundant. To get the correct electric charges of the mesons and the baryons, the
up, down, and strange quarks are given a charge of +2/3e, and the down, strange and

bottom quarks are given a charge of —1/3e.

QED belongs to the U(1) group and the photon that serves as the group’s generator.
With eight different types of gluons acting as generators, QCD belongs to the SU(3)
group. QED is an Abelian gauge theory, and QCD is a non-Abelian gauge theory.

1.0.4 Confinement

The non-Abelian characteristic of QCD emerges physically as confinement. In QED,
photons mediate forces between particles with an electric charge. Similarly, gluons in
QCD transmit forces between particles with color charge. So gluon is the QCD force
carrier. Gluons themselves, however, carry a color charge. Because it has no charge, the
photon has no interactions with photons. This implies that the interaction between two
charged particles weakens with increasing distance. The intensity drops with increasing

distance r because photons spread at all angles.

Vo 1/r? (1.6)

In QCD, as the distance between two quarks increases, the gluons connecting them
interact. As a result, a “color flux tube” is formed. Imagine the quarks are joined
by intense field lines that form a string to gain a qualitative understanding of this. A
color flux tube with a uniform cross-sectional area and fixed energy density are used to
describe the string. This tube has the function of keeping the force between the quarks
constant regardless of distance. The separation of two quarks would theoretically take
an endless amount of force. In reality, though, the flux tube will split and produces
a pair of quark-antiquark once it has enough energy (See the illustration in Fig. 1.1).
The Cornell potential is used to analytically explain confinement. It was introduced in
1970 to account for the relationship between the hadron’s mass and angular momentum
as well as to explain the masses of quarkonium states [4, 5]. The potential appears as

follows:

4o
VCornell = *578 +or (17)
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FIGURE 1.1: a) Electric field lines spread out as the electric charge separated; b) Color
force lines collimated into a tube-like shape and do not spread out as the quarks are
separated

where 7 is the separation between the quarks, o is the string tension, and «; is the
strong coupling constant. With a varied coupling strength, the first term resembles the
Coulomb potential from classical electrodynamics. The second term, which is in charge
of confinement, originates from the non-Abelian portion of QCD. It can be thought
of as the potential energy held within the string, which becomes larger with increasing
distance due to the constant energy density. That is why, for significant quark separation,
the linear part of the potential dominates, and the quarks can never go free. When the
quark separation is relatively small, the Coulomb part leads, and the theory becomes

essentially identical to QED.

1.0.5 Asymptotic Freedom

Analogous to QED, there is a coupling constant in QCD, which is denoted as a;. But
it is not a constant in QCD. The intensity of «s decreases with the decrease in sep-
aration between interacting quarks. Because of the charge screening produced by the
virtual particle’s vacuum fluctuation, the coupling constant, a in QED, decreases with
distance. This is referred to as the running coupling constant. Similar events take place
in QCD; however, gluon self-interaction modifies a;’s behavior. It is also accurate to
argue that the intensity of the coupling constant reduces with energy because examin-
ing the interaction at small distances demands more energy. For strong interactions, the

four momentum transfer (Q?) dependence of o is very strong. This is because the field
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mediator gluons themselves carry color charges and can couple with one another. At

very large Q2, a first order pQCD gives,

127
(22 — 2ny).In(Q*/ Ao p)

as(Q) = (1.8)

Here, the number of quark flavors, ny = 6, and Agcp is the scale parameter of QCD. The
h
o

coupling weakens and asymptotically vanishes for very short distances and high values

distance between quarks in space is expressed as XA = Therefore, the inter-quark

of Q2. This is referred to as asymptotic freedom and is a perturbative-QCD prediction.
Asymptotic freedom was described by Politzer, Gross, and Wilczek in 1973 (Nobel Prize
2004). The fact that QCD is non-Abelian contributes to asymptotic freedom as well. In
fact, any asymptotically free renormalizable quantum field theory requires non-Abelian

gauge fields [6].

1.0.6 QCD Lagrangian

Although there are similarities in the Lagrangian of QCD and QED, the QCD La-

grangian is much more complicated. It can be expressed as,

- . . o - 1 o v
Locp = (Yaiin® [0, +ig(Gpta)ij] es — matbeities) — G, Gl (1.9)
q

Here G, = 0,G —0,G", —gfaﬁ'YGﬁGl, is the color field tensor. G is the four potential
gluon field, t, are 3 x 3 Gell-Mann matrices that are the generators of the SU(3) group,
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fB7 is the structure constants of the SU(3) group (not there in QED), v; is the Dirac
spinor of the quark field where ¢ represent the color charges (red, green, and blue), and
g = V4ma,. The Gell-Mann matrices serve the same purpose in QCD as the Pauli spin
matrices in QED.

A three-dimensional vector space is formed by three color states. A vector in this space
represents the general color state of a quark. The 3 x 3 unitary matrices can rotate a
color state. The Lie group SU(3) consists of all such unitary transformations with a unit

determinant.

The QED Lagrangian is very similar to the QCD Lagrangian
T . - 1
£QED = Peint [aﬂ + ZeAu] e — Meethe — ZF;WFIW (1'1())

with F* = gt AY — 0¥ A*. A crucial difference between the QED and QCD fields is that
there is an additional term in the gluon field tensor G5~ which represents the interaction
between the color-charged gluons. This is because the photons do not interact with one

another.

The helicity is preserved by the QCD Lagrangian for massless quarks. In fact, the
handedness or chirality of a massless quark is independent of the Lorentz frame used for
the study because it moves at the speed of light. The mass term expressly breaks the

chiral symmetry,

Mgty = Mqrqr + MaqrteL (1.11)

However, the primary cause of the chiral symmetry breaking may be explained in terms
of the gluon condensate and quark condensate produced by the non-perturbative action
of the QCD. There is a spontaneous symmetry breaking for the QCD-vacuum state and

it is realized by the non-vanishing chiral condensate,

(qrthqr) x Agep # 0 (1.12)

Effectively, in the chiral phase transition, the chirality is restored in the quark phase. It
is associated with changes in the vacuum expectation values of quark condensates, which
are order parameters for spontaneous chiral symmetry breaking. At high temperatures
and densities, the quark condensate melts, restoring the chiral symmetries of the theory.

This transition is believed to be a key feature of the QCD phase diagram.
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1.0.7 The quark gluon plasma

Matter is composed of protons, neutrons, and electrons at low energy densities. The
system may experience thermal excitation if it is heated. This can produce light-mass
highly interacting particles like the pion. Quarks and gluons are found inside protons,
neutrons, and other strongly interacting particles. If the energy density is high enough,
protons, nucleons, and other particles can be compressed so tightly that they can move
over a larger distance without being contained by hadrons [8]. As there is a deconfine-
ment at these extreme conditions, the system is referred to as quark-gluon plasma. The
quark-gluon interaction weakens as the energy density increases. As the strong inter-

action shows asymptotic freedom behavior, the interactions become weak at close ranges.

The QGP is supposed to have been formed at the Big Bang. Quantum gravity is sig-
nificant when temperatures are of the order T' ~ 10'2GeV. Possibly, there is a grand
unification of all the forces, except for gravity, at slightly lower temperatures. At this
temperature scale of universe evolution, the baryon number is believed to be produced.
Electroweak symmetry breakdown occurs at T' ~ 100 GeV, which is significantly lower.
The universe’s baryon imbalance might have been formed in this epoch. Hadrons are
formed from quarks and gluons when the temperature is below 1 GeV (around T' ~ 200
MeV). The collider experiments at RHIC and the LHC operate to produce matter in
this temperature range. The light elements are created at T' ~ 1 MeV. When the tem-
perature of the universe reaches one electronvolt, it changes from an ionized gas to an
atom-filled gas under lower pressure. This energy corresponds to the electron’s binding

energy in atoms. At this temperature, structures like stars are formed.

At energy densities of the order of 1 GeV/fm3, the QGP is created. The cores of neutron
stars likely contain matter with such energy concentrations. Neutron stars are objects
with exceptionally high energy density materials with a radius of about 10 km. The
energy density typically ranges from 1 GeV/fm? in the core to almost nothing at the
surface. In contrast to the energy of the matter in the Big Bang, this matter is cold and

has a very low temperature. At lower densities, it transforms into a cold gas of nucleons.

1.0.8 QCD Phase Diagram

At roughly the same energy density as the matter inside a proton, a QGP state should
start to form. Given that a proton’s size is approximately 1 fm and its rest mass energy

is about 1 GeV, it has an energy density of around 1GeV/fm?. People in the late 1970s
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speculated that there exists a phase transition between the hadronic phase and a QGP
phase as a result of all such observations. The effects of quark masses could not be
adequately accounted for in the early lattice Monte-Carlo calculations. A true phase
transition does not occur for realistic values of quark masses, according to arguments
that began to arise around the middle of the 1980s. Instead, there is an abrupt but con-
tinuous change in the system’s characteristics at a particular temperature and baryon

chemical potential.

In modern times, we expect that there is a first-order phase transition line in the tem-
perature and pp plane (Ref. Fig. 1.3). The only feasible phase at a high enough
temperature is QGP, as the phase no longer depends on pp. Lattice calculations predict
a smooth transition between the hadron gas phase and the QGP phase with a tran-
sition temperature in the range of 160 — 170 MeV for zero baryon chemical potential,
pp = 0 [10-15]. High energy heavy-ion collision systems are extremely close to vanishing
pp [10]. The phase relies on both the temperature and pp at temperatures below the
critical temperature. There are models which indicate a first-order phase transition at
finite pup with different transition temperatures. Therefore, we expect a critical point
where the crossover region and the first-order transition line meet whose existence is not
established experimentally. Quarks and gluons will combine into hadrons and take the

phase of a hadron gas for low, but non-zero up, below the phase transition line.
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Increasing pp is proportional to increasing density. At very low temperatures and when
pp is close to the nucleon mass (~ 1 GeV), a point is shown in the QCD phase dia-
gram representing the transition to nuclear matter. The density exceeds that of nuclear
matter for pp larger than 1 GeV, and a color superconducting state is formed, which
may possibly exist in the neutron star core. If there is enough center of mass energy in
the collisions, the system will be driven non-adiabatically to a region in the QGP phase.
As collision energy grows, the temperature of this initial state rises, whereas up falls as

collision energy increases.

After the initial QGP state is created in heavy-ion collisions, the system cools and ex-
pands. It follows an isentropic expansion with a trajectory ‘Z‘—g = const., where S is the
entropy. Till the system experiences a phase transition and hadronizes, both the temper-

ature and pp decrease. In the hadronic phase, the system continues to cool isentropically.

1.0.9 Relativistic heavy-ion collision experiments
1.0.9.1 Overview

The program for HIC experiments was started with the intention of studying a novel
sort of matter known as the quark-gluon plasma, which is otherwise only seen soon after
the big bang. The confinement transition occurred in the early universe’s history when
it was only a few microseconds old (T~ 100 — 200 MeV). But as far as we can tell, this
does not have any remnants that are currently detectable by astronomical observations.
The concept of colliding heavy nuclei to create nuclear matter with a high temperature
and density in a laboratory setting, maybe enough to reach and cross the critical line,
first surfaced in the early 1980s. Following that, other operations have dedicated all or
a portion of their science curriculum to studying heavy ion collisions such as AGS (Al-
ternating Gradient Synchrotron) since 1960 at Brookhaven National Laboratory, U.S,
SPS (Super Proton Synchrotron) since 1976 at CERN.

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)
in New York and the Large Hadron Collider (LHC) run by the European Organization for
Nuclear Research (CERN) close to Geneva are now the principal locations for relativistic
heavy-ion collision investigations. Atomic nuclei that have a mass number of more than

three are referred to as “heavy ions”.
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At the CERN SPS, which collided heavy ions at a center of mass energy of 17 GeV,
the first experimental hints of a deconfinement transition were seen [17]. In the subse-
quent experimental programs at higher energies (RHIC, LHC), the attention has moved
from evaluating the production of a quark-gluon plasma towards quantifying some of its

properties [18-31].

In the so-called interaction regions, two beams that are moving anti-parallel to one an-
other at relativistic speeds (RHIC: v > 99%¢; LHC: v > 99.9%¢) around the accelerator
ring are brought to contact. Detectors are incorporated into such contact zones. RHIC
and LHC both contain several detectors. Each detector is a complex engineering work

of art that is built, run, and managed by a huge team of engineers and physicists.

The nucleons of the two heavy nuclei are broken when they collide. For a limited dura-
tion, their constituents, the quarks and gluons flood out and create a new type of matter
called quark-gluon matter. The quarks and gluons rapidly recombine into hadrons while
traveling towards the detectors, meaning that this matter can only exist for a very brief

period of time (1071 — 10715 second) before it hadronizes.

Proton-proton collisions can also breach the strong interaction boundary to release the
quarks and gluons at high enough energies, breaking nucleons into quarks and gluons.
In all such collisions, the quark-gluon matter is produced. One interesting property
related to the QGP matter is it can equilibrate. This means that the particles in the
QGP matter can reach a local thermal equilibrium. Hence it is possible to find the
probability density of finding quarks and gluons with a specific energy. This creates a
locally thermalized QGP state.

In order to understand the characteristics of the QGP, the data on the emitted particles
can be processed to create observables, which will then be compared with various the-
oretical test results. The detectors are used to determine a particle’s species, as well as
to calculate its energy and momentum. The resolution of the measurement is far lesser
than the real scale of the collision area. Thus, from the detector’s point of view, every
collision is point-like and instantaneous. As a result, we do not know the particle’s
production times or decay locations. What we know is different types of observables
in terms of particle distribution in the phase space. One class of observables of special
importance is the anisotropy of the particle emission distribution in the transverse direc-
tion referred to by anisotropic flows v,. These are obtained from the harmonic Fourier

coefficients of the particle distribution.
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1.0.9.2 System Evolution

Figure 1.4 illustrates the progression of a nucleon-nucleon collision during a HIC ex-
periment [32]. Here y-axis is the time axis, and the X-axis represents the longitudinal
expansion. The two approaching nuclei in the diagram approach one another and meet
at t = 0. As t increases, the system grows in size, and the temperature falls. It is
expected that the state of matter we are looking for will happen immediately following

pre-equilibrium but before the hadronization.

Hard processes like fragmentation, quark pair generation, and jet creation take center
stage during the first few fm/c time of a heavy-ion collision. The system develops local
thermal equilibrium through the process of hard scatterings, and a strongly interacting
QGP phase is created. Due to its high temperature and density, the QGP phase ex-
pands and cools very quickly. The QGP hadronizes into hadron gas when the system
approaches the phase transition temperature. This process is termed chemical freeze-
out, and temperature is called chemical freeze-out temperature (T¢;). For the majority
of the energies investigated in the HIC experiments, the shift from QGP to hadron gas is
a smooth crossover. Hence, it should be remembered that various regions of the medium
experience phase transitions at various times. This indicates that there is a stage in the

system’s evolution when the QGP matter is enclosed by a hadron gas.
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The particles continue to communicate kinetically after a chemical freeze-out, and the
created hadrons will disperse off one another elastically. During this stage of the system,
some of the released hadrons will be unstable and decay. When the system reaches
kinetic freeze-out, the elastic scattering stops. Due to the larger volume, the particles
stop interacting. This temperature is known as the kinetic freeze-out temperature (T%,).
The created particles flow into the detectors after the final freeze-out. Their masses,
charges, energy, and other attributes are then determined. We can only access the final
state data from the detectors. Therefore any knowledge about the system’s past states

must be deduced from the particle spectra.

1.0.9.3 Geometry of collision

In heavy ion collisions, geometry is crucial to the analysis of the experimental data.
The outcome of the experiments is highly correlated with the initial state particle dis-
tribution. That is why knowing the geometry parameters to analyze the observables

efficiently is very important.

The impact parameter is one of the most important geometry parameters for studying
heavy ion collision observables. It is a measure of the centrality of a collision event and
is not known a priori. It is the distance between the center of the two colliding nuclei
on a plane perpendicular to the beam axis. The z direction is usually taken as the
beam direction. So, the impact parameter b is calculated on the x — y plane along the
x direction. When the collision between the two nuclei is exactly a head-on collision,
in that case, the impact parameter b = 0 fm. We refer to this type of collision as a
central collision. As the impact parameter becomes larger, we describe those collisions
as peripheral collisions. This can be as large as the diameter of the colliding nuclei. In
the case of Au nuclei, most peripheral collisions can have impact parameters of 14 fm

because 7 fm is roughly the radius of a gold nucleus.

Consider a collision shown in Fig. 1.5(a) that is non-central between two identical spher-
ical nuclei moving in opposing directions along and opposite to the Z axis. In this figure,
AB is the impact parameter along the X axis. Z is the longitudinal direction. The X —Y
plane is the transverse plane (also known as the azimuthal plane) which is perpendicu-
lar to the beam direction (Z-axis). The plane made by the X — Z axis represents the
reaction plane, and the azimuthal angle of the particle is denoted by ¢. The overlap
region is shown by the shaded area. In a real experiment, the impact parameter vector’s

magnitude and direction are unknown and vary from event to event (Fig. 1.5(b)). In
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Fig. 1.5(b), a random event is shown. Here, XY Z is the lab-fixed axis. The impact
parameter of the event is making an angle ®x with the lab X axis. If & # 0, we call
the zz plane the participant plane. This is analogous to the reaction plane when there

is no event-by-event fluctuation.

The distribution of particles in the end state, in particular in the transverse plane,
may be impacted by the initial configuration. Experimentally, it is assumed that more
central collisions have greater multiplicities, and the collision centrality for an event is
calculated using the event’s multiplicity. The centrality dependence of charged particle
multiplicity is shown in Fig. 1.6 for Pb-Pb collisions at /syny = 2.76 TeV. Glauber
Monte-Carlo simulations are performed and fitted to the experimental data to determine

the relationship between observed multiplicities and estimated centralities.
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1.0.9.4 Main Observables
Here we have shown some of the main observables of RHICE.

e Transverse Momentum Spectra:
When examining the QGP state and formation of QGP matter at large energy
densities, spectrum analysis is a crucial resource. Transverse mass spectra provide
information about the created particle’s energy and momentum distribution. The
spectra carry details about the system at kinetic freeze-out. Fig. 1.7 shows the
pr spectra of various hadrons of Au-Au collision at \/syn = 62.4 GeV. The lines
in each figure show the fitting to the experimental data of different centrality bins
from top to bottom, 0 — 5%, 5 — 10%, 10 — 20%, 20 — 30%, 30 — 40%, 40 — 50%,
50 — 60%, 60 — 70%, and 70 — 80%. The greater part of the particles is generated
at low-pp (pr < 1GeV/c) region [35].

The transverse momentum spectra of various particles have both collective and
random characteristics. The random component can be used to get the kinetic
freeze-out temperature. Examining particle spectra in this region also enables the
extraction of bulk properties, e.g., the system’s collectivity and thermalization.
These bulk properties arise due to the density gradient in the initial state from
the center to the edge of the fireball. This is also one of the primary reasons for
the collective flow generation. The equation of state of the expanding QGP sys-
tem has an impact on this collective flow. In Fig. 1.7, the fits shown are used to
extract the model parameters characterizing the collective component defined by
the radial flow velocity (S7) and the random component represented by the kinetic

freeze-out temperature Tty of the system.

e Particle Ratios:

The hadron yield ratios of central Au+Au collisions measured by STAR are com-
pared to statistical model fits in Fig. 1.8. Under the assumption that there exists
a thermal and chemical equilibrium at that point, the observed ratios are used to
estimate the values of system temperature and baryon chemical potential during

chemical freeze-out.

The temperature derived from the fits approaches the Hagedorn limit for a hadron-
resonance gas, which was predicted without taking into account quark and gluon
degrees of freedom. It is roughly comparable to the crucial value of temperature

for a QGP-to-hadron-gas transition indicated by lattice QCD. The inferred value
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of T,y serves as a lower bound on the thermalization temperature, assuming that

the bulk matter does actually reach thermalization before chemical freeze-out.

e The Signatures of QGP: There are various ways to examine the material pro-

duced in a heavy-ion collision. Some of them are given below:

— Correlations and fluctuations Fluctuations are reactive to the degrees of

freedom of the system in concern. The degrees of freedom are higher in the

QGP phase than in the hadronic phase. As a consequence, the signature of

QGP formation could be found by observing the changes in conserved vari-

ables, like charge, energy, temperature, or transverse momentum, around the

transition temperature [38]. In the proximity of the critical point, these fluc-

tuations ought to be extremely strong. Likewise, a deconfined QGP phase
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may also be characterized by the correlation of charges and their correspond-
ing anti-charge generated in later-stage hadronization [39]. As fluctuations
are related to the thesis topic, we have talked more about fluctuations in the

later chapters.

— Photon and dilepton measurements The strong interaction between the
dileptons and photons with the QGP medium is nearly zero. As a result,
they emerge from the medium unaffected by the expanding fireball retaining
knowledge of the originating state. Thermal photons might be used as a
temperature probe, and the reconstructed spectral densities of vector mesons,
such as the p-meson, might suggest that chiral symmetry has been restored
[40].

— Hard probes, jet quenching A jet is created when a parton from one
nucleon scatters off of a parton from another nucleon and generates a parton
shower. The partons are then hadronized and produce a collimated spray of
hadrons. It is possible to estimate jet production from collisions with a high
enough momentum transfer using perturbative theories. In a process known
as jet quenching, partons on their way interact with the quark-gluon plasma
created in high-energy heavy-ion collisions, and in the process, they may lose
energy before the generation of the final hadrons. Recently, there has been
a lot of interest in the jet quenching phenomena as this is one of the direct
evidence of QGP formation [41].

— Strangeness Enhancement The generation of thermal ss pair can happen
at a temperature of more than 300 MeV. So, it is most likely to be created in a
deconfined phase where the temperature is such that a sufficient number of s-
quarks can be produced. Hence the formation of a QGP matter can enhance
the generation of multi-strange particles, which is observed experimentally
[42].

— The J/4¢ particle production It was first thought that color screening hin-
ders c¢ binding, which would explain why the generation of J/1, which is a
cc bound state, is inhibited in the QGP state [43]. In fact, the J/¢ diffuses in
the QGP stage. This suggests rapid formation and quick annihilation. Con-
versely, according to lattice calculations, the J/1 can withstand temperatures
higher than the QGP critical temperature, and because the LHC produces a
huge number of c-quarks, its production may potentially be improved at high

collision energies [44].
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1.0.10 Motivation of the Thesis
1.0.10.1 The study of vorticity

The system created in heavy ion collisions exhibits strong collective effects for a sig-
nificant portion of its lifetime that can be explained by relativistic hydrodynamics. A
strong elliptic flow is seen in such collisions, which indicates that the produced quasi-
macroscopic system is strongly coupled and has an incredibly low viscosity to entropy
density ratio [45]. This indicates that the system may have an extremely high vorticity,
possibly the highest ever created. Peripheral collisions generate huge orbital angular
momenta Jy orthogonal to the reaction plane [12, 46]. For instance, the total initial
angular momentum Jy oc by/syn for a non-central collision, where b is the impact pa-
rameter. Therefore, Jy can be as high as 10° in an Au-Au collision at RHIC energies
with /syny = 200 GeV and 107 for b = 5 fm Pb-Pb collisions at energies of 5.5 TeV at
the LHC (Ref. Fig. 1.9) [48].

After the impact, the spectators fly rapidly far from the collision area, carrying a chunk
of Jo with them. The rest are carried by the QGP matter produced in the collision.
This part of Jy can produce a longitudinal momentum density. Particles with spin
can become polarised due to spin-orbit coupling as the system has global longitudinal
momenta. The spin-orbit coupling in microscopic particle interactions can lead to the
spin-vorticity coupling in a fluid. This is true when we calculate an ensemble average
across randomized incoming momenta of colliding particles in a locally thermalized fluid
[49]. In this manner, the fluid’s spin polarisation and vorticity field are connected. The
term “global polarisation” refers to this particular kind of spin polarisation with respect

to the reaction plane [50].

Global spin polarisation investigations of A and A have been performed for Pb+Pb
collisions at 5.06 TeV and 2.76 TeV[51] by the ALICE collaboration and for Au+Au
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collisions by the STAR collaboration throughout a broad range of collision energy,
VSNN = 7.7GeV—-200 GeV [32, 33]. The average global polarization for A particles
as a function of collision energy is shown in Fig. 1.10. The global spin polarization
is around 2% at the lowest RHIC energy, falls to approximately 0.3% at the highest
RHIC energy (200 GeV), and nearly disappears at higher energy ranges. Thus, looking
at the local vorticity distribution at different stages of system evolution becomes very
important. As viscous characteristics of the medium also affect the vorticity distribu-
tion and average vorticity patterns, it is also interesting to see how these two effects
are correlated. It is also compelling to observe how these two effects influence the QGP

medium at different stages of system evolution.

1.0.10.2 Study of anisotropy through power spectrum

The produced initial medium featured inhomogeneities in the transverse plane because
of the randomness in the phase space distribution of the nucleons in the colliding nu-
clei. It was commonly recognized that there are uncertainties resulting from the errors
in specifying the angle of the event-plane. As a result of all these variabilities, certain
variables, such as anisotropic flow coefficients (vg,vs,...) in a non-central collision en-
counter event-by-event fluctuations [54-57]. In previous studies, the power spectrum
of the flow coefficients is calculated keeping in mind that it can retain the signs of the
fluctuations in the initial stage [58, 59]. It was also noticed that these initial fluctuations

could cause these flow coefficients to have tiny nonzero values even in central collisions.

This is quite similar to the analysis of the power spectrum of anisotropies produced by

fluctuations in the early inflationary universe found in the CMBR (Cosmic Microwave
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Background Radiation). In fact, when discussing HIC, it is sometimes stated in sim-
pler terms that attempts to comprehend the early cosmos from studies of the cosmic
microwave background radiation are akin to attempts to understand the early phases
of QGP matter from observations of finally produced hadrons. The freezeout surface in
heavy ion collisions can therefore be compared to the final scattering surface for CMBR.
The final scattering surface depicts the universe’s neutrality when protons and electrons
have recombined, and photons are free to stream through space. Such qualitative as-
sertions were elaborated in refs. [60, 61] to a more in-depth level of connection between
flow fluctuations in heavy ion collisions and the CMBR disturbances in the universe. As
the power spectrum study of CMBR anisotropy was successful in giving critical details
on first inflationary density fluctuations, power spectrum analysis can become a very

efficient tool for probing the fluctuations in the initial stage.

The existence of vorticity suggests the presence of anisotropic flow components, which
indicates a deviation from the laminar-like flow. The fluctuations in the flow can be
studied in terms of turbulence spectra. The plasma created in these collisions has a
very high Reynolds number, creating an imbalance in the inertial and viscous forces in
the plasma. This makes the fluctuations sustainable, and the Kolmogorov spectra can
be obtained in such cases. In 1941, Kolmogorov hypothesized that real turbulent flows,
despite their inhomogeneities and anisotropy at larger scales, are essentially locally ho-
mogenous and isotropic on small scales. The phenomenological theory K41, which is
regarded as one of the most successful theories of turbulence, is built on the foundation
of the Kolmogorov hypothesis (KH) [62-64]. Because spectral analysis makes it sim-
ple to distinguish between various spatial scales, it is crucial for solving the turbulence
problem. This has been discussed in more detail in chapter III, where we used different
planes to study the turbulence spectra and look for the non-uniformity over the planes

that suggest the anisotropy in the plasma.

1.0.10.3 Study of temperature fluctuation using Tsallis Statistics

As already discussed, all interactions stop at kinetic freeze-out, and the particle ratios
and the spectra of the created particles remain unaltered. Therefore, one of the funda-
mental measurements to determine the kinetic freeze-out phase of the systems generated
in high-energy collisions is the pp spectra of the produced particles. A number of differ-
ent classical statistical models like Boltzmann-Gibbs (BG), Fermi-Dirac, mp-exponential
distribution, Tsallis distribution, and Erlang distribution are often used to characterize
the pr spectra and extract physical parameters. In understanding the thermodynamic

features of various physical systems, the BG statistical model has had great success.
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The BG model, however, is insufficient to explain the large transverse momentum range,
which is primarily characterized by the inverse power-law behavior. With the thermal
blast-wave model, the same is true. Historically, the pr spectra of heavy-ion collisions
have been fitted using the blast-wave model. [65][66-70]. This model makes the basic
assumption that the collision medium freezes out kinetically at temperature Tj;, and
that particles are traveling at a uniform collective radial flow velocity (3,). However, the
spectra at mid to high-pr ranges cannot be described by the blast-wave approach. It has
been demonstrated that the py spectrum is best described by the non-extensive Tsallis
statistics not only in pp collisions but also for heavy ion collisions [71, 72]. Like other
distribution fittings, one can acquire the Tsallis fit parameters, ¢, which represents the
level of departure from the equilibrium state and 7" stands for the effective temperature.

The dependencies of these tuning parameters on the system variables can be studied.

There is another aspect of this story that we are particularly interested in. As has been
discussed earlier, although it is highly probable to attain a local thermal equilibrium
after a certain time in QGP evolution, there are temperature fluctuations in the plasma
in the earlier stage and in the pre-equilibrium state. For systems with temperature
fluctuations or varying energy dissipation, the non-additivity condition of the Tsallis
entropies in non-extensive statistical theory has a clear and concise physical meaning
[73-76]. For a system that can be described formally by a fluctuating S (inverse of
temperature), where 3 is x? distributed, the integration over all possible fluctuating
inverse temperatures results in the generalized distribution functions of non-extensive
statistics. Our motivation is to see whether the temperature states in HIC systems could
be fitted with a x? distribution. If so, then what would be the behavioral changes of the
q parameter found from these temperature fluctuations in the partonic phase, ¢ being
the non-extensive parameter. In chapter IV, we have addressed this in detail, where we
showed how the fitting parameters ¢ and effective temperature 7' in the partonic stage
vary with system parameters like /sy, system size, and centrality. We will also discuss

the similarities of our results with the experimental observations.

1.0.10.4 Obtain Initial state parameters using machine learning

The understanding of various results obtained in HIC experiments is strongly influenced
by the initial geometry overlap zone of two colliding ions. Several parameters are de-
veloped to define initial stage properties like eccentricity, event plane angles, etc. The
impact parameter is one such parameter that plays a crucial role in interpreting the re-
sults, as it is a representation of collision centrality. However, it is practically impossible

to asses these parameter values from experiments as the QGP is created for a very short
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period of time, and almost instantaneously, it hadronizes and produces hadronic matter.
Another reason is that the system created in such collisions is so tiny with dimensions
in fm, that any kind of external probing is impossible. However, theoretical methods
have been designed that allow us to determine such initial state parameters based on
outcomes. One such formalism is the Glauber model, which uses experimental data
and multiple nucleon scattering in nuclear targets to predict impact parameters and the

number of participant nuclei [77-79).

The impact parameter has been calculated using various machine learning (ML) tech-
niques for several years [80-85]. In high energy collisions, ML approaches are generally
employed for problems including classification, clustering, and regression. To predict
the initial state parameters, one needs to use supervised regression models, where the
target variable is a finite numerical value for every set of input data. Each dataset
corresponds to the observables from the final state of a single heavy-ion collision event.
An event generator like AMPT, UrQMD, etc., can be used to create the events. The

models learn from the data and estimate the target variable for every new event dataset.

The use of these ML models in heavy ion collision experiments has two significant lim-
itations. The first one is the training is extremely sensitive to the training data. That
is why it is essential to generate events that are as similar to the experimental data
as possible. Otherwise, the ML model will not perform well while testing experimental
data. This motivates us to try out several different types of heavy ion collision simu-
lation models to train an ML model and see whether it is capable of predicting target

variables for the test data of a different model.

The second issue is related to the distribution of training data with respect to the target
variable. The event distribution is not uniform throughout the range of target variables,
leading to an imbalance in the data. As a result, the prediction accuracy gets largely
affected in certain regions. This inspired us to employ various sampling techniques in
order to create a uniform data distribution and improve prediction accuracy. The details

of our study are given in chapter V.
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Chapter 2

Vorticity distribution and flow
characteristics in relativistic HIC

system

2.1 Introduction

The rotating characteristics of QGP collective motion and the effects it generates have
garnered a lot of curiosity in recent times. In the peripheral collisions, the collision
of heavy ions produce a significant amount of angular momentum. After the initial
collision, the spectator nuclei carry the bulk of this total angular momentum with them,
but a sizeable portion is retained in the generated QGP. This shows a nonzero rotating
motion in the system. This encouraged research on the vorticity in HIC systems. It
is observed that the total angular momentum is proportional to the centrality of the

collision and the collision energy (y/snn) [1],

j o by/snN (2.1)

Here impact parameter is represented as b.. While the vorticity contributes to the study
of the fluid’s viscous characteristics, it has also been hypothesised that it may result
in a number of anomalous phenomena. Anomalous transport effects can result from
the presence of a strong electromagnetic field in the background that can connect to
parity or charge odd regions in the plasma and generate currents. This phenomena is
popularly known as chiral magnetic effect (CME) [2]. The chiral vortical effect (CVE)
[3], which is the vortical equivalent of the CME and denotes the creation of vector and

axial currents along the vorticity, is comparable to this effect. Recent observations by the

29
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STAR Collaboration at RHIC [4] and the ALICE Collaboration at the LHC [5] revealed
characteristics associated with these various effects. Several groups have studied the
observational evidence of the polarisation of A hyperons caused by vorticity [6, 7]. In

this chapter, we do not, however, examine polarisation. We instead study the viscous
effects of QGP.

Although shear stress does not directly contribute to the creation of the plasma vorticity,
it does influence how the vorticity evolves when it interacts with the plasma. The chem-
ical potential up (or baryon density) of the plasma affects the shear viscosity, according
to the hadronic resonance gas (HRG) model. We are interested in assessing how shear
viscosity affects the vorticity patterns observed in the QGP since this determines how
vorticity patterns evolve in a viscous fluid. Therefore, we conduct a systematic anal-
ysis of the vorticity produced in heavy ion collisions at various collision energies. The
chemical potential and thus the baryon density are connected to different \/syn. We
study the average vorticity for various cases by using different definitions of vorticity. In
every situation, as the collision energy rises, the average vorticity changes. The values of
shear viscosity for various collision energies are then calculated using the HRG models.
It is shown that the shear viscosity does not depend heavily on the collision energy and

the chemical potential.

The vorticity is the same as the rotational angular velocity in the case of a rigid-body
rotation with a global angular velocity around an axis. Of course, a rotating fluid differs
greatly from a rigid body, and the vorticity field generally does not remain constant
throughout the fluid. The relationship between angular momentum and vorticity is gen-
erally somewhat complex. There are numerous possible reasons of angular momentum
generation. An example of a potential reason for nonzero angular momentum is an in-
homogeneous distribution of energy density and mass of the fluid which is measured as
the inertia. If we take a scenario where the entire system is flowing at the same speed
but more matter is concentrated on one side than the other, the angular momentum will
not be zero even in the absence of vorticity. However, the angular momentum associated
with a nonzero vorticity is what we are particularly interested in. It would be interesting
to see how the interplay between viscosity and angular momentum affects the nature of

vorticity distribution across the collision energy range.

In section II, we address dissipative hydrodynamics and the reaction plane vorticity.
We go through shear viscosity and the hadron resonance gas models in section ITI. We
present the shear viscosity computation from the HRG model, and also demonstrate
that it is comparable to other calculations that have been given by the hydrodynamic

models in the past. We give the details of our simulations in Section IV, and in Section
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V, we give the results and go over the significance of them. Finally, in section VI, we

talk about our conclusions.

2.2 Different definitions of vorticity

Dissipative hydrodynamics has attracted a lot of attention recently as a result of the
development of several experimental results at lower collision energies [8]. A number
of simulation codes, including ECHO - QGP [9], VISHNU [10, 11] etc., have been used
to analyze it. Multiple types of vorticity have been described, and different aspects of
dissipative dynamics have been examined. Here, we analyze the vorticity patterns in
relation to the fluid’s baryon density that was created after the collisions. A study with
regard to the collision energy would entail a study with regard to the baryon chemical

potential since, as we will describe later, the pup is correlated to the collision energy.

Vorticity in classical fluid dynamics is the curl of the velocity field v. This net vorticity
travels with the fluid and is static for an ideal fluid. The fluid’s rotating motion is largely
reflected by the vorticity. The rotational motion will also produce viscous stress between
the fluid layers for a viscous fluid. Since there are no boundary conditions in heavy ion
collisions, the viscous stress in the layers of the rotating fluid will cause the local vorticity
patterns to form. In several investigations of vorticity, the fluid has been described by
the moment of inertia tensor to give an explanation for the rotating mass. Other times,
the vorticity has been described using relativistic hydrodynamics. However, there are
other approaches to describe vorticities in relativistic hydrodynamics [9]. In our present
simulations, we explore the classical vorticity, the kinematical vorticity, and the thermal

vorticity with the proper weights.

Based on the momentum of the particles involved in the heavy ion collision, we want to
quantify the amount of vorticity they produce. The system’s high Reynolds number is
one of the factors used to compute the vorticity using momentum. The fluid in a heavy
ion collision has an extremely high Reynolds number [12, 13]|. In these conditions, the
majority of the fluid is subject to relatively low viscous stresses. The vorticity’s impact is
then restricted to the thin layers of the rotating fluid. Thus, we will have local vorticity
due to the momentum of the particles. Although vorticity is a three-dimensional object
described by w; = ei’j7kg%’;, it has been demonstrated in a number of earlier simulations
that the angular momentum in the y-direction (or out of plane axis) is significantly bigger
than the angular momentum in the other directions. We first compute the vorticity in
all three dimensions for a given /syxn. We discover that the y-direction component of
vorticity is significantly larger than the x and z direction components. Therefore, we

only compute the vorticity in the reaction plane for all other collision energies. The
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classical vorticity in the reaction plane is given by,
1
Wy = Wgy = 5(821)9: — 0yvy) (2.2)

The three velocity components in this case are v, vy, v,, and factor 1/2 is added to
provide for symmetrization. Though the velocities in these collisions are relativistic, we
have performed the computations for a classical vorticity considering the low fluctuation
scenarios. The general nature is also the same for both the classical and relativistic
instances, as demonstrated in ref. [27]. As a result, we handle both the classical and

relativistic cases.

The vorticity in the relativistic condition is determined by
1
Wy = 5(81,11” — Opuy) (2.3)

where, 0, = (0o, 0z, 0y, 0;) and u,, = (1, —vy, —vy, —v;). As a result, in the reaction

plane, we would obtain,
1 1
Wrz = 5’7(62'032 - axvz) + i(vxaz'}/ - 'Uzaaﬂ/) (2'4)

We would like to talk more in-depth about the relativistic vorticity before getting into
the specifics of the simulation and the outcomes. The relativistic vorticity is always
larger than the classical vorticity [27] due to the presence of the -y coefficient. Therefore,
comparing the sizes of the classical and relativistic vorticities is challenging. If they are
given different weights, as was done in ref. [27], one may be able to compare them. In
reality, we realized that adding some weight function is crucial to get the final vorticities.
So, we consider energy when calculating weight. Both the classical and relativistic
velocities have an average vorticity of,
3 €ijwis

<Wgy > = T% (2.5)
The energy density of the cells on the x — z plane is represented by the ¢;;, where ¢
stands for the = coordinate and j for the z coordinate. The thermal vorticity, in addition
to the kinetic vorticity, is crucial in heavy ion collisions. It is intimately connected to
the particle polarisation. The thermal vorticity is defined by,

W = 308 0,8.) (2.6

In this case, (3, = uT“ Here, T is the local temperature. The energy is used as the weight

factor to extract < wgl, >. The local vorticity changes as the velocity distribution does
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as it is dependent on the velocity field at a specific moment. The average vorticities are

obtained and their relationships to collision energy are plotted.

2.3 Coefficient of Shear viscosity

As previously stated, shear viscosity plays a significant role in viscous flows. The coef-
ficient of shear viscosity can be obtained from the hadron resonance gas models. The

thermodynamic potential in these models is represented by,

tog(Z. Bosm) = [ dmlpn(m)logZy(3. un) + oy (m)logZy(Bp) ()

Here, the hadronic gas occupies volume V at chemical potential up and tempera-
ture 87!, The partition functions of bosons and fermions with mass m are Z;, and
Zy, respectively, and the densities of the bosons and fermions are p, and py. For low
temperatures, these models exhibit an excellent agreement with lattice QCD predic-
tions. This has been shown in a number of models, including the Nambu-Jona-Lasinio
model [15], the quasi particle model [16], and the chiral perturbation theory [17]. The
viscosity co-efficients of the hadron resonance gas model were recently generalised by
Kadam and Mishra to include finite chemical potential effects [18]. They suggest that

the shear viscosity is determined by,

n= Mjgz <l > (2.8)
Here, r is the radius of the particles in question, and n; is the number density of the
i-th particle. We can distinguish between the various particles generated in the AMPT
simulations. We determine the shear viscosity for the neutrons and the protons sepa-
rately rather than taking all the particles. Additionally, we independently determine
the shear viscosity of various other particles, such as pions and A hyperons. The general
characteristics of the shear viscosity change are the same for all of the different particles.
Since the quantity of particles varies greatly, the only difference is the magnitude. The
most widely studied transport coefficient in heavy ion collisions is the coefficient of shear
viscosity. It may have effects on the elliptic flow velocity because it is largely responsi-
ble for stabilizing the momentum anisotropy. We examine the elliptic flow velocity at
various collision energies. The change in shear viscosity will be reflected in the elliptic
flow velocity. Shear viscosity and its relationship with other transport coefficients play

a significant impact here, as we can see from the earlier studies [19].

At various collision energies, the coefficient of shear viscosity is obtained. The chemical

potential can be associated to the various collision energies. It is possible to parameterize
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the energy dependence of the baryon chemical potential by the relation [10],

d

up(V's) = m (2.9)
having e = 0.273 £ 0.008 GeV ! and d = 1.308 4 0.028 GeV. This parameterization is
built on observations from numerous groups across a wide range of energies. Since we
are not utilising this equation to fit any data, we believe it to be adequate for our needs.
Understanding how viscous stress contributes to the formation of vorticity patterns in
the partonic fluid is our primary motivation. This will mostly include a qualitative
explanation rather than a quantitative one of the relationship between the collision

energy and the baryon chemical potential.

There have been other studies of shear viscosities which have been used to show the
dependence of viscosity on the baryon chemical potential (115). However, in these cases,
pp is an input parameter [21]. It is difficult to calculate the chemical potential up,
unless we use Eq. 2.9. Since as mentioned before the relationship between the collision
energy and the baryon chemical potential is not so rigorous, we prefer to calculate the
viscosity coefficient from the particle velocities. The particle velocities for the individual

particles are easily available as an output of the AMPT model.

2.4 Simulations

We employ the free open source AMPT model [22], to generate our initial condition.
This model has been widely used to look into different heavy ion collision transport
properties [23]. The choice of this model was made since it includes both the hadronic
and partonic phases. Both the hadronic and partonic aspects of the particle flow’s
vorticity are of importance to us. Along with the default version, the AMPT model
also features a string melting (SM) version. After studying both variants, only the SM
version’s results have been presented. The settings that we employ in our computations
have already been applied to the AMPT model to investigate the vorticity in the (x —n)
plane [1]. The parameters were employed in a study that successfully replicated the
yields, transverse momentum spectra, and elliptic flow for low-py pions and kaons in
central and mid-central Au + Aw collisions at collision energies of 200 GeV [24]. We
get the data from the AMPT and construct a velocity field since we are interested
in the implications of vorticity. This is achieved by selecting an acceptable volume
and segmenting it into smaller cells. Each cell then constitutes a volume of fluid, and
the fluid’s average momentum is determined by the mean momentum of the particles

within each cell. As a result, the velocity field across the selected volume is smooth.
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In ref. [1, 13], this approach of determining vorticity from AMPT has been applied

previously. We created 10* events to obtain the results for each collision energy.

We focus on the partonic phase first. In the AMPT model, the incoming nucleus is
centred at © = b/2 > 0(x = —b/2 < 0) for positive (negative) longitudinal momentum
where b in the impact parameter. The impact parameter axis is the z-axis and the
beam axis is the z-axis. This indicates that the y-direction is primarily where the initial
total angular momentum is concentrated. As previously stated, this is the reason we are
just focusing on the angular momentum component in the reaction plane. Thousands
of particles are produced by an event in the AMPT simulation, but this number is
insufficient to produce a smooth momentum distribution. A smooth distribution is
crucial to us since we want to calculate the vorticity. We must produce a huge number

of events with the same parameters in order to calculate an average.

The grid or cell size is yet another critical component of our simulation. We must select
the cell size so that there are a lot of particles inside each cell. We start our analysis
with a fixed impact parameter of b = 7 fm and a cell size of 0.5 fm in each direction.
The average momentum and energy for each cell is calculated, and then the velocity is

(7)

obtained from these two quantities by O Reference [1] employed a similar approach.

2.5 Results and Discussion

2.5.1 The initial partonic stage

We measured the vorticity patterns in the reaction plane (z — z) at collision energies
ranging from 20 GeV to 200 GeV. We analyse the vorticity patterns at ¢ =1 fm/c. We
pick this instant because it was demonstrated in [1] that the averaged vorticity peaked
about this time. To demonstrate the differences in the patterns in the low energy
collisions, we provide a few vorticity patterns in this collision energy range. Fig. 2.1
and Fig. 2.2 represent the vorticity patterns at 200 GeV and 100 GeV, respectively.
The vorticity in both plots ranges from —0.06 to 0.08. But as we can see, the vortex
lines show distinct contours surrounding the developed vortices. The vorticity pattern
at 20 GeV is shown in Fig. 2.3. In comparison to the previous two figures, the contours

are much more evenly spread out here.

According to equation 2.9, the chemical potential up rises as \/syny decreases. If the
angular momentum is larger, the vorticity that forms has a tendency to be circular.
The vortices have a tendency to spread out and take on an oval shape when the strain

resulting from the bulk viscous pressure around the fluid grows. Although one should
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FIGURE 2.1: Vorticity distribution in the reaction (z — z) plane at a collision energy
of 200 GeV for partons according to the non-relativistic definition of vorticity. Both z
and z axes are in units of fm
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FIGURE 2.2: Vorticity distribution in the reaction (z — z) plane at a collision energy
of 100 GeV for partons according to the non-relativistic definition of vorticity.
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FIGURE 2.3: Vorticity distribution in the reaction (x — z) plane at a collision energy
of 20 GeV for partons according to the non-relativistic definition of vorticity.
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FIGURE 2.4: Kinetic vorticity distribution in the reaction (z — z) plane at an collision
energy of 200 GeV for relativistic partons.

be cautious when drawing inferences about angular momentum from the vorticity plots
even though the vorticity is meant to be proportional to it. Though the vorticity drops
with increasing \/snn , it has been demonstrated in [12] that the angular momentum
increases with increasing /syn. The moment of inertia is what causes this mismatch.
According to [1], the moment of inertia is what largely determines how much angular
momentum is there. As a result, it seems that the vorticity and angular momentum are
inversely related. We find very low vorticity values at nearly x = 0 and z = 0. This is
comparable to earlier vorticity research by [1] and [12]. In the regions of lower and higher
rapidity, the distribution pattern of vorticity reveals a flipping of the vorticity direction.
Csernai et al. [27] observed flipping of the vorticity in the x — z plane, at finite rapidities
at later times t = 3.56fm/c after QGP formation. Their data show that the vorticity
has far larger fluctuations at later time. The underlying radial velocity profile and the
vorticity profile significantly differ, as can be seen in ref. [1] (Fig. 6 and 10). This
indicates that the angular momentum in the low and high rapidity regions may not have
changed directions only because the vorticity’s sign has changed. We observe a similar
decrease in magnitude in the vorticity displayed in the (x — y) plane in a recent work,
ref. [26]. In our analysis, we only considered the magnitude of vorticity. In regions
of finite rapidity, the magnitude of the vorticity decreases and goes to negative values,
but because the moment of inertia is high in these regions, the angular momentum
may still be positive. Our vorticity patterns cannot be used to interpret the angular
momentum distribution since the moment of inertia has never been taken into account

in our computations.

The same energies are then analyzed for the relativistic vorticity. The patterns of the
relativistic vorticity are shown in Figures 2.4, 2.5 and 2.6 for the values of /syy = 200,
100, and 20 accordingly. The relativistic v factor causes the values of the vorticity to be
significantly greater than the vorticity obtained previously. The relativistic v factor is

typically of the order of 10? as the particles move at speeds close to the speed of light.
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FIGURE 2.5: Kinetic vorticity distribution in the reaction (z — z) plane at a collision
energy of 100 GeV for relativistic partons.
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FIGURE 2.6: Kinetic vorticity distribution in the reaction (z — z) plane at a collision
energy of 20 GeV for relativistic partons.

The vorticity patterns are broadly similar, but there are also a number of differences.
The centre of the pattern is where the greatest significant difference may be seen. The
differences are more pronounced at lower collision energy. The relativistic vorticity is
what causes the fluctuations to be more in this context. Similar results are shown in ref.
[27] for different condition. Larger velocities result in bigger velocity fluctuations. Next,
we display some patterns for the thermal vorticity for the same /syy values in Fig.
2.7, 2.8 and 2.9. To examine the spin-polarisation of the particles, thermal vorticity is
essential. As we move to lower and lower collision energy, we notice that the vorticity
spreads out in all of the cases. Therefore, it can be inferred that the vorticity pattern

becomes increasingly diffuse as collision energies decrease.

The non-relativistic pattern and the relativistic pattern differ in a few areas. At larger
collision energy in the non-relativistic case, the core region has nearly zero vorticity.
The core region has significant fluctuations and finite vorticity in the relativistic case.
This occurs for collisions with higher energies. The relativistic and non-relativistic
patterns appear to be comparable for the collision energy of 20 GeV, but they have

substantially different magnitudes, with the relativistic one having significantly more
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FIGURE 2.7: Thermal vorticity distribution in the reaction (z — z) plane at a collision
energy of 200 GeV for partons.
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FIGURE 2.8: Thermal vorticity distribution in the reaction (z — z) plane at a collision
energy of 100 GeV for partons.

x (fm)
bbb N b orNvwsuL

z (fm)

FIGURE 2.9: Thermal vorticity distribution in the reaction (z — z) plane at a collision
energy of 20 GeV for partons.
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FIGURE 2.10: Vorticity distribution in the reaction (z — z) plane at a collision energy
of 200 GeV for the hadronic phase
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FIGURE 2.11: Vorticity distribution in the reaction (z — z) plane at a collision energy
of 20 GeV for the hadronic phase

fluctuations than the non-relativistic one. The patterns for the thermal vorticity are
similar to those in the non-relativistic situation, but there are more fluctuations. Due
to the wider range of velocities, even little deviations in velocities cause fluctuations to
rise. The general pattern, however, that the vortices are diffused with lower collision

energies is also evident in this instance.

2.5.2 The final hadronic stage

The net vorticity is less in the hadronic stage than in the partonic stage. Given that
the initial fireball made up of partons has a higher angular momentum, this is to be
expected. After the partons stop interacting, the hadronization takes place using a
quark coalescence model in SM version of AMPT model. Although the three momenta
are conserved, hadrons will be heavier than partons. As a result, the hadrons’ net

vorticity decreases.

Compared to the vorticity patterns for the partons, the vorticity pattern that we see
here is spread out at /syny = 200 GeV (Fig. 2.10). Although the spread at 20 GeV (Fig.
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FIGURE 2.12: The specific shear viscosity at different collision energies for neutrons,
protons and their antiparticles.

2.11) and at 200 GeV differ from one another, the difference is not as noticeable as it
is at the partonic stage. However, the vorticity’s size has significantly reduced. The
fluctuations are quite enormous and there is no recognizable regularity in the relativistic

situation.

2.5.3 Shear viscosity dependence on the collision energy

It has been observed in the past that the shear viscosity affects the vorticity patterns in
relativistic heavy ion collisions [27]. With rising baryon chemical potential, the specific
shear viscosity usually stays constant. For different collision energies we determine and
plot the coefficient of shear viscosity. We employ the shear viscosity in the equation 2.8.
Despite the fact that it is mentioned across all particles, we perform the calculations
separately for different particles. As the right-hand side is a summation, unless the
magnitude differ significantly from one another, the average over all of the particles
would be of the same order as the individual particles. We determine the specific shear
viscosity for neutrons, protons, and pions. When determining the magnitude of the
viscosity, the particle’s radius is essential. We use the particle data book’s standard
radius information. The viscosity of neutrons and protons is depicted in Figure 2.12.
Using the values of r based on the limits provided by the particle data group, we find
that the general nature of the graph and the order of magnitude stay the same. The
specific shear viscosity has also been studied in ref.[28]. While we used the definition
from the HRG models, they used the kinetic definition of shear viscosity. They have
analyzed it for higher temperatures than we have, despite the fact that their overall

tendency is fairly similar to ours and ours is for lower temperatures.

The graph (Fig. 2.12) shows that at lower collision energies, which relate to higher

baryon chemical potentials, the specific shear viscosity is at its maximum. Beyond 80
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F1GURE 2.13: The specific shear viscosity at different collision energies for neutrons
and protons, pions, A hyperons and their antiparticles.

GeV, it becomes almost constant. The viscosity coefficient for pions and A hyperons is
also plotted in Fig. 2.13, which further illustrates this.

The pions exhibit a distinct trend compared to the neutron, protons, and A hyperons,
as is evident. Because more pions are created than neutrons, protons, and A hyperons
at all energies. At lower collision energies, the generated pions also differ by an order of
magnitude compared to higher collision energies. This is not noticed in other particles.
The number of neutrons, protons, and A hyperons largely stays the same over the
spectrum of collision energy we have observed. Due to this, the shear viscosity of pions
below 80 GeV changes very little, whereas that of neutrons, protons and A hyperons
show a slightly higher change. The sensitivity of 1/s to baryon chemical potential
has been discussed in earlier works [29]. It is predicted that the physical value of n/s
should rise at lower collision energy because it depends on chemical potential and has
a minimum at zero chemical potential. The effective value of shear viscosity employed
to characterise the experimental data at various collision energies is shown in Figure
No. 12 of ref. [29]. At decreasing collision energy, the shear viscosity’s uncertainty rises.
Additionally, as described in [30, 31], the negative bulk viscous pressure in the expanding
fireball suppresses the grow of the radial flow. Elliptic flow and higher flow harmonics are
typically suppressed by viscosity. It has already been demonstrated that the composition
of the hadronic fireball has a significant impact on how the total momentum anisotropy
is distributed across the various hadrons. The viscosity from the HRG model also relies
on the momentum distribution of the various hadrons. In fact, this distribution heavily
depends on the pion elliptic flow at freeze-out temperature. Although we have not done

it yet, we intend to thoroughly study this.

We are aware that viscous strains cause vorticity to spread across the fluid. Therefore,
the spreading out of the vorticity patterns suggests that for low collision energies and

high baryon chemical potential, the bulk viscous pressure contributes more to the viscous
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F1GURE 2.14: Change of vy with pr for different collision energies

diffusion of the vortices. We also examine the impact of lower /sy on the elliptic flow

to better comprehend this.

2.5.4 The elliptic flow

From earlier studies, it is widely recognized that the elliptic flow is a reliable indicator
of shear viscosities [32]. In comparison to an ideal fluid, the elliptic flow is suppressed
in a viscous non-ideal fluid. We derive the elliptic flow from the hadronic data and
compare it to the publically available data from the STAR collaboration [33] since we

are analysing how collision energy affects shear viscosities.
We obtain elliptic flow by using the following equation.

(0 -py)

— 2.10
= (2.10)

It is widely known that the elliptic flow (v2) depends on the transverse momentum (pr).
We plot the vy vs. pp for several different collision energies since we are curious to know
if the nature of the elliptic flow varies with change in /syy. The graphs representing
the range of collision energies that we have examined are shown in Fig. 2.14. We observe
that at lower pr, the overall pr suppression is greater for lower collision energies, however
the higher py range does not allow for the drawing of such a conclusion. In ref. [28], a
more thorough investigation of the flow coefficients was conducted. Our results are in
agreement with their results for the range value that we have tested. They have also
estimated the higher harmonics at high pr and high /syn but we are more focused in

the vorticity distribution.

For a collision energy of 19.6 GeV, we also plot vy vs. pp. The STAR collaboration
has published data for ve vs. pp. In Fig. 2.15, we present this data along with our own

estimate of vs vs. pr for 19.6 GeV. The elliptic flow results from the AMPT simulations
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FIGURE 2.15: vy with pr at 19.6 GeV from the simulation and from data from the
STAR collaboration. The data is for the 20%-30% centrality of charged particles.
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FIGURE 2.16: Average vorticity (w;.) = (w,) at different collision energies (y/syn) at
a fixed impact parameter of b =7 fm

seem to be rather close to the data produced by the STAR collaborations at a higher
range of pp. Although recent study has indicated that there may be changes when light
nuclei are considered, there did not seem to be a major difference between the various

hadrons and mesons in the collision energy ranges we have considered [34].

The vy vs. pr graph does not significantly change for \/syy between 7.7 GeV and
39 GeV, according to the STAR data. Collision energies are higher in our simulation.
The v9 vs. pr plot, even for 200 GeV, does not differ noticeably from the 20 GeV
plot. Therefore, shear viscosity does not vary considerably when the baryon chemical
potential increases, even if shear viscosity does play a significant part in creating the

elliptic flow. This seems to be consistent with our plot of g VS \/SNN-

2.5.5 Average vorticity dependence on the collision energy

Our final results indicate how the average vorticity depends on collision energy. At

various collision energies, we determine the average vorticity indicated by (wy.).
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FIGURE 2.18: Average thermal vorticity (w,.) = (wy) at different collision energies
(v/Snn) at a fixed impact parameter of b = 7 fm

We find that when collision energy increases, the average kinetic vorticity drops (Fig.
2.16). Our vorticity results appear to be in agreement with ref.[12]. The thermal and
relativistic vorticities give similar plots (Fig. 2.17, 2.18). The vorticity pattern exhibits
significant fluctuations in the relativistic scenario, calculating the average velocity is

therefore very challenging.

However, we have made an effort to compile averages throughout the same span of
collision energy. We can draw the same conclusions as before because the overall nature
is unchanged from the non-relativistic situation. The average vorticity has a slight
decrease below 40 GeV, which is the sole variation for the thermal and relativistic cases

that can be seen.

At /snn greater than 50 GeV, the average vorticity has been studied as a function of
VSN~ [12]. The moment of inertia is the main factor in the calculation of the average
vorticity. It is responsible for the average vorticity to decrease gradually even while the
angular momentum increases. The average vorticity is therefore trending in the opposite

direction from angular momentum. Our findings appear to suggest that at lower energy,
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angular momentum can also play a substantial role. This will result in the dip that is
seen below 40 GeV. We do not believe that the pattern, which is highly noticeable in
both thermal and relativistic vorticities, is purely the result of fluctuations. Although
fluctuations do have an impact, the clear pattern suggests that a closer examination of

the experiment results at lower collision energy is required.

Our graphs show that lower collision energies are better for studying the evolution of
the vorticity pattern because there, both kinetic and thermal vorticity average values
are higher. When compared to the change in the vorticity patterns, the change in shear
viscosity is quite minor. Therefore, it appears that further research on bulk viscosity is

necessary.

2.6 Summary

We have used a hybrid transport model to conduct an in-depth study of viscous effects
on vorticity patterns at various collision energies. We studied the viscous effects and
vorticity structures at lower collision energy. A finite baryon chemical potential is one of
the reasons why lower collision energy are investigated experimentally. At finite baryon
chemical potentials, the quark-gluon plasma has been modelled using hadron resonance
gas models. We are curious to see if these models can explain the vorticity patterns
identified using the hybrid transport models. The coefficient of shear viscosity serves as

our link between these two vastly dissimilar models.

We have analysed two definitions of vorticity, the kinetic vorticity and the thermal vor-
ticity. We show that the local vorticity patterns are circular and clearly characterised at
high collision energy. They seem stretched and elliptical at lower collision energy. The
chemical potential is large at lower collision energies, which causes the viscous tension to
be high as well. These results are shown in the figures as stretched elliptical vortices. It’s
interesting to note that the local vorticity has significantly more fluctuations in the rela-
tivistic situation, and the patterns during collisions with greater energies differ between
the classical and the relativistic cases. The classical and relativistic cases, however,

exhibit comparable patterns at lower impact energies but with differing magnitudes.

To get the average vorticity at various collision energies, we weighted the vorticity. We
observe that when collision energies increase, the average vorticity decreases. The change
in average vorticity with increasing collision energy is opposite to the change in angular
momentum. Although it is anticipated that angular momentum may cause vorticity,
it appears that other factors dominate the average vorticity at high collision energies.

However, for relativistic and thermal vorticity, there is a dip at lower collision energies.
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Another significant result is the estimation of the coefficient of shear viscosity. We
estimated the results at various collision energies using the shear viscosity definition from
the HRG models. The particle momentum affects the coefficient of shear viscosity. When
we change the collision energy, we observe that the change in shear viscosity is very small
at higher collision energies. At lower collision energies, there is a sharp change, but after
that, the change is stagnant. The study of elliptic flow, which is connected to the fluid’s
shear viscosity, also leads to the same result. We see that the elliptic flow is suppressed
at low collision energies, suggesting the effects of viscosity. This is also evident by the
analysis of the STAR data. All these indicate that both angular momentum, viscosity,
and inertia of the fluid play significant roles in the generation of vorticity in heavy ion

collision plasma.

Additionally, we are aware that at these velocities, the Reynolds number is exceedingly
high. As a result, many elements of viscous flow, especially whether or not turbulence
emerges, remain unclear based on our simulations. We will analyse these and other
possibilities in the next chapter in order to comprehend the characteristics of the viscous
quark gluon plasma produced in heavy ion collisions. We anticipate that this research
will direct additional study on the vorticity patterns at lower collision energies. This
could help us understand the transport characteristics of the QGP at finite chemical

potentials.
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Chapter 3

Anisotropic turbulence in

relativistic plasmas

3.1 Introduction

There are a significant amount of fluctuations present in the initial stages after the
heavy ion collision. These fluctuations can be produced at various length scales. There
are number density fluctuations, energy density fluctuations, temperature fluctuations,
and several other types of fluctuations [2]. These fluctuations can develop irregularities
in the flow. There are various origins for the creation of these fluctuations. The authors
of reference [2—4] have demonstrated how the chromo-Weibel instability can develop in
the QGP in the existence of a momentum anisotropy. Because of the presence of momen-
tum anisotropy, the Weibel instability can be observed in plasma that is homogeneous
or nearly homogeneous. The electromagnetic fluctuation of two beams that are moving
opposite to one another can potentially induce this instability. The production of tur-
bulent color fields in relativistic plasma is addressed in ref [5, 6]. In reference [7], the
development of turbulence and its dependency on fluctuations have also been explored.
Here, the authors relate a set of re-scaled coordinates for a non-relativistic Navier Stokes
equation to the relativistic dynamics of fluctuations. As a result, the authors were able
to characterize the flow in the relativistic heavy ion collision using the principles of non-
relativistic turbulence. The authors suggested that the Kolmogorov spectrum for the
correlation functions in the relativistic heavy ion system may not be anticipated, but
the emergence of turbulence can lead to a power law behavior similar to that obtained

for non-relativistic systems.

53
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In heavy ion collision experiments, the collective dynamics of the produced particles
indicate the system’s fluid nature. There are models based on the hydrodynamic equa-
tions that can effectively represent the outcomes of these experiments. At the LHC and
RHIC, we observe similarities in the pattern of elliptic flows and other higher-order col-
lective flows, which is in line with the predictions of the viscous hydrodynamic models
[8-14]. In reality, as shown in ref. [15-18], the ideal fluid dynamics can also explain
the experimental results quite well. Because of the low shear viscosity to entropy den-
sity ratio n/s, the fluid generated is regarded as the most ideal fluid. The value of
n/s ~ % was adversely addressed by the RHIC data from the top energies [19, 20].

The transition from the initial state to the equilibrium state is an intriguing area of
study. The system seeks to attain thermal equilibrium as it evolves. The system ex-
pands during this process, and the temperature of the system drops over time until
equilibrium is established. A lot of energy is dissipated in the system. As was already
said, the QGP’s collective behavior points to the system’s fluid dynamics. The flow
instabilities may cause the plasma to behave like a turbulent flow. By examining the
energy dissipation spectrum of the turbulent system, it is possible to comprehend that
the energy dissipation can occur at various turbulent flow length scales. By studying the
temperature and velocity distribution in the collision region, we are interested in ana-
lyzing the spectra of the initial instabilities. We only examine temperature fluctuations
in the pre-equilibrium stage, where the temperature can be described using the energy
density, and one can assume the local thermal equilibrium in the corresponding length

scales.

Both the transport models and the kinetic theory models are capable of describing col-
lective flows. The final stage hadron scatterings are also incorporated in some transport
models, which provides a more favorable fit to the data [21, 22]. One such kinetic
theory-based model that is effective in simulating experimentally observed collective
flows is the AMPT model [23]. The details about this model is already discussed in
Chapter I. In this work, we analyze the fluid turbulence anisotropies in the initial and
pre-equilibrium stages of the heavy ion collision using the AMPT model. Here, the
state of the system immediately following the collision and prior to parton scattering
is referred to as the initial stage. Pre-equilibrium stage refers to the system’s condi-
tion following parton scattering but before it reaches an equilibrium state. Since we
are employing a grid-based simulation, the local thermal equilibrium is assumed at the

length-scales determined by the grid size in the pre-equilibrium stage.
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Section 2 describes the general overview of the turbulence spectra for the heavy ion
collision system. Section 3 discusses the formulation of the turbulence energy spectra
and the length scales of the system. Here we have shown the range of eddies we can get
and the range of wave numbers associated with the eddy sizes. We display the outcomes
of the numerical simulations in section 4. We have presented the longitudinal and
transverse energy spectra at various initial conditions. We discuss the power spectrum
of temperature fluctuations obtained for the turbulent system in section 5. In section 6,

we present a summary of the results.

3.1.1 Spectral analysis for heavy ion collision system

The geometry of a heavy ion collision is such that a significant amount of angular mo-
mentum is produced in the system. In the early stages of the plasma, this angular
momentum may cause the formation of vortices [24-27]. A substantial proportion of the
incoming nuclei energy is carried by these vortices. Thus, a turbulent low may develop.
The fluid in a turbulent flow consists of continuously interacting swirls forming eddies
or vortices. The size of these eddies can vary. Their length scales can range from as
little as the size of the nuclei to as large as meters at times. Turbulence is characterized
as instabilities in the velocity field in a laminar flow. The field of instabilities has the
potential to rapidly isotropize the system and, as a result, reach equilibrium. This also
implies that the turbulent flow is diffusive, meaning that both energy and momentum
are dispersed throughout the fluid. Additionally, it is dissipative, which means that
it eventually fades away with time. When there is an active energy source present in
the momentum space, a driven stationary turbulence develops. However, we do not
have a continuous energy source in heavy ion collisions. As a result, we obtain a freely

propagating energy cascade, often known as free turbulence.

Scalar field theories [28-31] and Quantum Chromo Dynamics [32-34] are two fields that
have involved the study of turbulent flow in recent times. Most of the time, it is con-
sidered that the turbulence produced in the relativistic heavy ion collision experiments
is isotropic in nature [35]. Some theories suggest that turbulence develops here by an
entropy cascade instead of an energy cascade [36]. They are likewise explored under the
presumptions of homogeneity and isotropy. In contrast to the non-relativistic scenario,
it has been demonstrated that a completely relativistic turbulence has richer dynamics.
Investigations have been done for the tensor-driven turbulent flow in an isotropic, rela-
tivistic fluid. The suggested patterns, however, are challenging to reconstruct in the real

environment. The system in heavy ion collision has anisotropy in its momentum space
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and is also rotating. We are interested in studying the anisotropies produced in turbu-
lence in this chapter. Since there is a large momentum anisotropy in different planes, we
utilize the same planes to analyze the anisotropy in the turbulence spectra. Considering
x as the axis of the impact parameter and z as the beam axis, we find various scaling
exponents of turbulence spectra in both the transverse (z — y) and longitudinal (z — 2)
planes. For different planes, we obtain a different exponent. The exponent is closer to
the Kolmogorov convective range in only one plane. For the non-relativistic context,
the exact scaling relation of the Kolmogorov type typically holds. Even though many
studies have suggested that the conventional interpretation of the energy cascade in the
Kolmogorov case may be misleading, it has been demonstrated that precise scaling out-
comes are possible for relativistic turbulence, which limits to the Kolmogorov relation
for lower velocities [37]. A recent study confirmed the classical definition of a relativistic
energy cascade [38]. This suggests that the energy cascade model can also be used to

study relativistic turbulence.

Kolmogorov proposed the hypothesis that energy in turbulent flows, carried by eddies
of diameter D, tend to gravitate toward D> [39]. However, this is true only in the
inertial subrange, which is a particular set of length scales. Kolmogorov spectra have a

power-law character in this sub-range where the kinetic energy can be expressed as,
E(k) ~ k¥ ~ k53 (3.1)

The transfer of energy from low to high momenta exhibits a power-law behavior with
the exponent v = —5/3, as indicated by the Color Glass Condensate (CGC) lattice sim-
ulation in ref. [40, 41]. The range of acceptability of the exponent v is generally rather
broad. In the case of classically scale invariant renormalizable interactions in QCD, v
has been determined to be —5/3 and —4/3 for energy and particle cascade, respectively
[42].

The distribution of relativistic velocities of the particles produced after the collision is
specified by the AMPT model. The output velocities provided by the simulation can
be used to determine the velocity correlations. Here, we have employed velocity corre-
lation to extract the initial energy spectrum from AMPT simulation. Since it is known
that the initial geometry distribution is anisotropic, we have used the energy cascade to
study anisotropic turbulence. Although the tensor degrees of freedom sometimes exhibit
distinct characteristics for relativistic and non-relativistic velocities, we do not examine

these higher degrees of freedom in this work.
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The temperature fluctuations of a turbulent fluid can also be used to examine anisotropic
turbulence. The temperature at a specific location in a laminar flow is constant during
a steady state. The heat transfer and temperature at a point are both functions of time
in a turbulent flow. Heat flow is comparable to the transfer of momentum in a turbulent
flow where the velocity is time-dependent. So, in a turbulent flow, temperature fluctua-
tions occur along with velocity fluctuations. In this scenario, there will be an extended
momentum and heat transfer in the availability of these fluctuating components. Ref.
[43] discusses the temperature spectrum of a turbulent fluid. The temperature fluctua-
tion spectrum for isotropic turbulence is observed to be Gaussian. If anisotropies exist
in the turbulent system, it is indicated by deviations from the Gaussian spectrum. How-
ever, the temperature fluctuation spectrum has not been addressed in any turbulence
analysis in heavy ion collisions. This temperature spectrum can provide information
about the system’s thermal length scales. The diameter of the smallest eddies is cor-
related with the smallest length scale associated with this spectrum. We study this
during the pre-equilibrium phase of HIC. This is because we derive the temperature
from the energy density keeping the condition of local thermal equilibrium at various
places in the system. Since we can describe the spectrum in three dimensions entirely
in this case, we will take the entire spectrum into account for all temperature fluctua-
tions. This is different from the velocity fluctuations. In order to determine whether
there is any major departure from the Gaussian distribution in the case of the heavy ion
collision, we attempt to obtain a similar Gaussian spectrum. The shortest length scale
of the eddies in the turbulent flow is determined using the spectrum. We are interested

to see how collision energy affects the temperature fluctuation spectrum.

3.2 The turbulence spectra and length scales

The geometry of heavy ion collision makes the velocity flow irregular. In the early stages,
this causes turbulence in the velocity field. In turbulent flow, eddies of varying sizes may
be seen. We must isolate the laminar component from the particle velocity to obtain
the turbulent component of the velocity field. The turbulent component is obtained by

dividing the actual velocity into the laminar flow and the fluctuating component as,

(%) = U(Z) + @ (T) (3.2)
Here, the laminar component is given by U= (@) and the turbulent component is
@ = @ — (@). The position vector at which the velocity is taken into consideration is
given by the vector Z. Since we employ a discretized grid structure in our study to

calculate the average velocity, the position vector in those cases refers to the position
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vector of the cell whose average velocity we are determining. When we talk about the
velocity correlations later in this section, we will go into more detail about this. Any
primed quantity used in the paper will be used to indicate the turbulent component
of the specific field. When studying turbulence, we statistically average the velocity to
determine the laminar flow. In comparison to studying velocity using the Navier-Stokes
equations, this provides a more deterministic solution. To determine average velocity,
two different statistical averages can be used. For the first case, the space average is
derived considering velocities at a specified time and averaging them over the entire
volume V that the system occupies,

ad3x
(@) = lim /v C‘l/ (3.3)

o Az—0

And the other is the time average, which averages across time while maintaining a fixed
point in space.

T ddt
(@) = lim u

4

In the current study, we want to examine if the turbulence spectrum of the collision re-
flects the anisotropy in the initial geometry of the relativistic heavy ion collisions. We
do this by using the velocity correlation tensor for the turbulent velocity component,
which is given by,

Rij(7) = (ul (@)t (7 + 7)) (3.5)

In this case, u, stands for the fluctuating component of velocity. The () signifies the
average over space. This demonstrates the connection between the fluctuating velocities
at the two locations indicated by the variables Z and & + 7. The energy spectrum tensor

Ei;(K) and the R;; are related by,
% 1 —iRFp (= 7=
El]<K) = W (& Rij (r)dr. (36)

If isotropic turbulence is assumed, the final expression of the Fourier transform to the

wave vector K space is E(k),

B(k) = (271r)3 / / / e KR, (r)dadydz. (3.7)

where k is the magnitude of K and the volume element across which the integration is

performed is dxdydz.

The conventional approach is to select a chosen axis and identify the constantly evolv-

ing velocity components parallel to this axis for a lower-dimensional energy spectrum.
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This represents a profile of the entire spectrum. We call this the longitudinal spectra.
The velocity correlation tensor for the velocity fluctuations orthogonal to this axis for
the transverse spectra is obtained. It can be demonstrated that in isotropic turbulence,
the longitudinal and transverse spectra possess the same coefficient in both planes. We
define the beam axis, i.e., the z axis, as the preferred axis for relativistic heavy ion
collisions. Therefore, in order to find the longitudinal spectrum, one must identify the
velocity correlation in the x — z plane, which is parallel to the z axis, and one must

identify the velocity correlation perpendicular to the z axis for the transverse spectra.

The energy spectrum essentially depicts the distribution of kinetic energy among the
various eddy sizes. We address the critical length scales involved in this particular
system before moving on to analyze the turbulent spectra in depth because the length

scales in the system specify the eddy sizes.

In a turbulent flow, the rotating structures can be of various sizes. As a result, our
problem involves many length scales. The distance over which the characteristic gradi-
ents of several variables are present determines the length scale of a system. Thus, the
largest eddy that forms in the system may have the largest length scale. These large
eddies extract kinetic energy from the mean flow to generate angular momentum. The
bulk of the energy in relativistic heavy ion collisions transforms into angular momentum
before dissipating in the smaller eddies. This is referred to as the energy cascade. The
Reynolds number can characterize this energy cascade. The ratio of inertial force to
viscous force is referred to as the Reynolds number [44];

Re— i _rul (3.8)

Fy pad

Here, the inertial force and the viscous force are given as, F; = pl3”72 and F, = ,ud%l?
respectively. The density and length scale are represented by p and [, while the fluid’s
dynamic viscosity is represented by pg. As a result, the onset of turbulence depends
on the fluid’s density, viscosity, size of the medium, and fluid velocity. Large Reynolds
numbers result in greater eddies because the fluid viscosity is less dominant than the fluid
inertia. This is the Kolmogorov spectral regime [45]. In this case, the vortex interaction
explains the mediation of a spectral energy flow which is scale invariant. The energy
is moved from the mean flow to the large eddies, where it is then transferred through
the smaller eddies, as indicated in refs. [46-48]. As RHIC systems usually have high
Reynolds numbers, we anticipate a Kolmogorov-type energy spectrum in this scenario.
As mentioned, the system size determines the largest length-scale in the system. We
used the cell size of 0.3 fm and 48 cells in each direction for the simulations. Thus,

the size of our system is [ = 14.4 fm in both directions. Additionally, the Au nuclei’s
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diameter is about 12 fm. As a result, this eddy size shall be the largest in the system |,

and this gives us the minimum wave number limit ki,

2
Fomin = TW = 0.524 fm ! (3.9)
Impact parameters are chosen in the 0 — 15 fm range for minimum bias Au — Au events.

In such case, kpin approximately equals 0.42 fm ™.

The Kolmogorov length scale is defined as the length scale of the smallest eddy [44].
This is obtained by making the Reynolds number very small in Eq.3.8.

¢= (ﬁc)m (3.10)

€d

Here, pj, represents the kinematic viscosity, while €5 denotes the rate of energy dissipa-
tion. The relationship between the kinematic and dynamic viscosities is pu = %. We
will have the dimension of length scale if we insert the dimensions of uj and €4 in Eq.

3.10 [44]. The Reynolds number is correlated to the smallest length scale by,
¢ =IRe %/ (3.11)

The kinematic viscosity for a QGP system estimated in reference [49] which is,

2
L ~ 10—7% ~ 1.69 GeV ! (3.12)

The energy density in the heavy-ion collision must be greater than the nucleonic density
in order to produce a QGP state. If we use the energy density bound about 2 GeV/fm?,
the Kolmogorov length scale will be 1.24 fm (ref. Eq. 3.10). Since this is the lowest
eddy scale, we may estimate the wave number corresponding to it using an equation
analogous to Eq. 3.9. In this case, kmqe is roughly 5. According to ref. [50], the
Reynolds number for the system produced by RHIC energies is Re 2 8.52. In that case,
kmaz has a minimum value of 3, and ( ~ 2.4 fm, which is derived using Eq. 3.11.
Depending on the choice of planes, the minimum length scale may change. Smaller
eddies can also form for lower Reynolds numbers. To account for every probable length
scale of the Au — Au collisions at RHIC energies, we include the entire energy spectrum

from k = 0.5 to k = 20 in the simulations.
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3.3 Results and Discussions

3.3.1 Longitudinal plane spectra

We start by talking about the scenario of the longitudinal plane. This plane contains the
z-axis. This indicates that we are taking the longitudinal velocity correlation between

two positions on the x — z plane that are separated by d.

Rij =< (7, ), (7 + d, t) > (3.13)

Here, the position of the grid cell with turbulent velocity w] is represented by 7, while
the grid cell with velocity u; is represented by 7+ d. We take into account equal-time
correlators and exclude the ”t” from subsequent equations. This is similar to Eq. 3.5.
The primary reason for explicitly writing out this equation is that when we compute
the velocity correlation in the longitudinal plane, we must account for the Lorentz boost
effect because the particles are colliding with relativistic velocities along the z axis.
Therefore, the z axis is boosted as well as the d. This indicates that in order to account
for the Lorentz boost, the correlation function must be modified. We utilized the formula
from a recently published research [51] to determine the energy spectrum in our context.
This involves the transfer of u(z) to the new reference frame u(x+ Az) which is obtained
using the boost A(Az),

AAz)u(z + Az) = u(zx) (3.14)

In our scenario, we only require to boost the velocities along the boost direction to

get the equal time correlator.
Rij = Md/2)A(—d/2) < uj(r —d/2),u}(r +d/2) > (3.15)

Here, the correlator is boosted to the local reference frame at the midpoint between the
two points. The vector d is now the line connecting the two positions specified in Eq.

3.13. We used the boost given in ref. [51] as
[A(d/2)u], = uy — up(Auw) + Ay (u.u) (3.16)

where Au = u(x + d/2) — u(z). Our outcomes will now be unaffected by the reference
frames we choose. However, this is challenging to accomplish in the grid structure we
are currently using. We put it into practice by presuming that it is an infinitesimal
boost. This is also discussed in detail in ref.[51]. For an infinitesimal boost, we derive

the A(d/2) matrices, and then we calculate R;; for each pair of velocities in the  — 2z
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FIGURE 3.1: Turbulence velocity spectra on the longitudinal plane at /syy = 200
GeV. The range of centrality is 0 — 10%. v= -1.596
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F1cUre 3.2: Turbulence velocity spectra on the longitudinal plane at \/syny = 200
GeV. The range of centrality is 20 — 40%. v= -1.568

plane. The two-dimensional scalar kinetic energy spectrum E(k) is calculated after we
have R;;, which is specified in Equation 3.7. To perform the integration, we use the min-
imum and maximum length scales of two dimensions. The integration is performed for
the location r + % rather than the position r as we have applied the boost. For our

computations, we consider the real component of the exponential.

As previously noted, there is typically a specified axis, and planes are picked parallel and
perpendicular to the chosen axis for evaluating a profile of the entire three-dimensional
spectrum. Thus, the three-dimensional energy spectrum E(k) will be transformed to the
parallel plane energy spectrum, which we represent by Ejon4(k-), and the perpendicular
plane transverse energy spectrum, which we designate by FEy.(ky). After fitting the

graphs for Ejy,4(k.) for various values of k., the exponent v of k. is derived

The turbulence spectra of the velocity field for collision energy (/syn) of 200 GeV for
0 — 10% centrality, 20 — 40% centrality, and 40 — 80% centrality are shown in Fig. 3.1,
Fig. 3.2 and Fig. 3.3. These figures are plotted in log-log scale and are constructed
in the longitudinal plane. The dashed line on it is the one that fits best in the range
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F1GURE 3.3: Turbulence velocity spectra on the longitudinal plane at /syny = 200
GeV. The range of centrality is 40 — 80%. v= -1.663
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FIGURE 3.4: Turbulence velocity spectra on the transverse plane at /syny = 200 GeV.
The range of centrality is 0 — 10%. v=-1.264

of k, considered for our simulation. We determine the exponent v by computing the
slope of the fitted straight line. On every occasion, the exponent is around —1.6 for
the longitudinal plane spectra. This is roughly equivalent to —5/3, which is close to
the Kolmogorov limit. As a result, the spectra in this plane portray the Kolmogorov

spectrum. In this case, the inertial force exceeds the dissipative force.

3.3.2 Transverse plane spectra

We now provide the outcomes for the transverse plane spectrum. Our chosen axis, the
z axis, is perpendicular to the transverse plane. The velocity components perpendicu-
lar to the z-axis remain unchanged because the system is only boosted along one axis.
Therefore, in order to obtain the velocity correlation tensor on the transverse plane,
we do not need to transform the velocities. For each pair of points, we determine the
velocity correlation tensor and record the various values of R;;. We obtain the spectrum
Ey (ki) using these R;;.
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FIGURE 3.5: Turbulence velocity spectra on the transverse plane at /syny = 200 GeV.
The range of centrality is 20 — 40%. v=-1.183
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FI1GURE 3.6: Turbulence velocity spectra on the transverse plane at /syy = 200 GeV.
The range of centrality is 40 — 80%. v= -1.389

The transverse plane turbulence spectrum of the velocity field for 0 —10% centrality and
20 — 40% centrality at the collision energy of 200 GeV is depicted in Fig. 3.4 and Fig.
3.5. Once again, the fitted graphs are used to determine the power-law exponent v. A
power law exponent of —1.26 is found in Fig. 3.4, although a smaller exponent (—1.18)
is observed in Fig. 3.5. The spectrum for the 40 — 80% centrality region is shown in
Fig. 3.6, and the exponent obtained is higher than that of 0 — 10% centrality but lower
than the exponent of the Kolmogorov spectrum. It is interesting to note that in none of
these instances, the power law exponent remains constant. In the presence of significant
dissipative forces, a power law exponent of —4/3 is attained. These numbers seem to
be closer to —4/3 than the Kolmogorov limit. The exponent for collision energies of
19.6 GeV, 62.4 GeV, 100 GeV, and 130 GeV have also been determined. In all of the
planes, the exponents have the same characteristics. It is always closer to —5/3 for the
longitudinal plane and —4/3 for the transverse plane. This appears to suggest that, at

this point, our outcomes are independent of the collision energy.

As a consequence, the coefficients for the longitudinal and transverse spectra are dif-

ferent. We realize that the initial distribution is not spherical. Even if the difference
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may not be substantial, they will result in different Schmidt numbers. The Schmidt
number is defined as the ratio of the kinematic viscosity to the interparticle diffusion
rate [52]. In comparison to the longitudinal spectra, the transverse spectrum leads to
a larger Schmidt number. The entropy density can be thought of as a measure of the
inter-particle distance in heavy-ion collisions. It is widely known that the shear viscos-
ity is a measure of the mean free path of a system. For heavy-ion collision, the shear
viscosity to entropy density ratio g < 1. This implies that the QGP’s spectrum should
approximate a Kolmogorov spectrum. This occurs only in the longitudinal plane but

not in the transverse plane.

The QGP appears "lumpy” in the transverse plane [53] due to the geometry of the
collision. The overlap region in the x — y plane exhibits a significant anisotropic pres-
sure gradient and a very high energy density. Therefore, the particle distribution on
this plane is not uniform. This indicates that on this plane, neither the mean free path
nor the interparticle distance is uniform. This results in different coefficients in the
turbulence spectra. The distinctive power law coefficient in the two planes indicates
that turbulence is not isotropic in the fireball. The spatial anisotropy of the overlap
zone in the two separate planes can be linked to this anisotropy. The discrepancy in the
power law coefficient is caused by the different ratios of the viscous diffusion rate to the

interparticle diffusion rate of the two planes.

We have also observed that for each plot in the transverse plane, the Schmidt number
will have a distinct value depending on how these coefficients differ. Since the Schmidt
number is higher, momentum diffusion is more prevalent in the transverse plane. It
has already been documented in ref. [54] that the collision centrality affects the viscous
effects that lower the elliptic flow’s magnitude. The power law exponent varies at various

centralities, which is represented in our spectrum.

3.4 Power spectrum of temperature fluctuations

The shear stress or Reynolds stress in a turbulent flow can be calculated using the
equation of motion. The tangential stress is determined by the fluid viscosity and the
change in velocity perpendicular to the flow direction.

0vy,

= —p(y+ Em)aiy (3.17)
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where p is the density, €, is the turbulent viscosity coefficient, v is the thermal diffusivity
coeflicient, and v, is the average velocity along the x axis. This equation originates from
the conservation of momentum. Similar to this, the conservation of energy can be used
to determine the total heat flow.

oT

Q= —pcpla+ ep)afy (3.18)

Here, ¢, stands for the specific heat at constant pressure, €, for the coefficient of eddy
diffusivity for heat, o for the thermal conductivity coefficient, and T for the average
temperature. The temperature gradient in the direction perpendicular to the direction
of flow causes the heat flow to develop. The nature of the above two equations is sim-
ilar. The laminar component is in the first term in both equations, and the turbulent
contribution, which is made up of two fluctuating components, is in the second term.
The velocity part we have covered in the earlier sections, whereas this part involves the

temperature. We will now continue our analysis of temperature fluctuations.

In many different conditions, temperature fluctuations in heavy-ion collisions have pre-
viously been described in ref. [3, 17, 55]. Once we are aware of the particle distribution,
we segment the system into smaller cells. These cells each contain a sufficient number of
particles to justify the assumption of local thermal equilibrium. The Gibbs-Boltzmann
formula, which links energy density to temperature, can then be used to determine each
of these cell’s temperatures. We found that the temperature distribution that was thus

obtained have high fluctuations.

One can define the power spectrum of temperature fluctuations for the condition of
isotropic turbulence starting with the heat transfer equation [43],
or or o0*T

_ +/Uk?7

ot 8$k - Vﬁxj(')mj (319)

Here, we have made the assumption that any two points, P and P’, will have tem-
peratures T and 7”. The temperature correlation between the two specified points is
therefore defined as m(r) =< TT' >. If we assume that the temperature variation is a

random function of space, we can represent it as a stochastic Fourier integral.
T(z) = / ¢i0ko (I (3.20)
A

here h(k) is a random function of ky, k2, k3. Here two points in wave-number space are

represented by k and k/. At the same point, the product of their increments is very
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small but not zero. It is described as,
< dh*(k)dh(k) >= ®(k)dk (3.21)

The complex conjugate is denoted by the asterisk in this case. ®(k) in this case only
depends on k, as temperature is a scalar fluctuation. After that, the correlation function

can be obtained by,

. .
m(r) =< TT' >= 477/ (k) 2T g, (3.22)
0 r
Thus, we can obtain the power spectrum as
G(k) = 47k*®(k) (3.23)

The connection between the temperature correlation and the power spectrum is repre-
sented by,
oo
G(k) = f/ m(r)krSinkrdr (3.24)
0

T
As long as we are aware of the temperature at various points, we can derive the power
spectrum of temperature fluctuations. However, unlike the energy fluctuation, it was
not possible to extract the power spectrum of the temperature fluctuations in the two
separate planes. Therefore, we begin by assuming that the temperature fluctuations are
isotropic. But, we will see from the results that the fluctuation spectrum does not end
up being Gaussian contrary to what is predicted for the isotropic case [43]. We deduce
that the temperature fluctuations cannot be isotropic after observing that a Gaussian

cannot fit the fluctuation. Hence, the temperature fluctuation is also anisotropic.

We obtain the energy of the system at various length scales in order to obtain the power

spectrum. The temperature can then be obtained using,

T4
el,y) = 12(4 + 3Np)( ) (3.25)

Here, the number of quark flavors is Ny = 3. The temperature is that of the pre-
equilibrium stage since the energy is estimated from the partons after they have under-
gone scattering. At two distinct times, we plot the power spectrum of the temperature
fluctuations at /s = 200 GeV.

The power spectrum of temperature fluctuations at 7 = 1 fm/c is shown in Fig. 3.7.
This includes all parton scatterings up to 7 = 1 fm/c. We show that it can be roughly
fitted to a Gaussian distribution. We can see that the fit is less adequate at higher k
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FIGURE 3.7: The power spectrum of the temperature fluctuations for 200 GeV Au-Au
central collision events at 7 = 1fm/c. The units of k is in fm~1. Tt is fitted with a
Gaussian function.
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FI1GURE 3.8: The power spectrum of the temperature fluctuations for 200 GeV Au-Au

central collision events at 7 = 6fm/c. The units of k is in fm~!. At later times the

peak of the power spectrum shifts to higher values of k, it is fitted with an asymmetric
Poissonian q -Gaussian distribution.

values, which suggests shorter length scales. We observe that as time progresses, the
peak of the Gaussian shifts to smaller length scales and higher k values. The power
spectrum of temperature fluctuations at 7 = 6 fm/c is shown in Fig. 3.8. Again, this
indicates that in order to determine the spectrum of temperature fluctuation, we have
taken into account all parton scatterings up to 7 = 6 fm/c. It is interesting to note
that this nature is still there at all of the collision energies we have examined. As time
progresses, it appears that energy is shifted to smaller eddies, as indicated by the shift
of the peak to shorter length scales. It is also possible to estimate the scale of the
temperature fluctuations using the following equation,
1 00

Ase = <TQ>avg/o m(r)dr (3.26)

At 7 = 6 fm/c, the scale of the temperature fluctuation is calculated to be 1.16 fm. The

length scale determined for the smallest eddies in the previous section is comparable to
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this one.

Although a Gaussian distribution can roughly fit the power spectrum even at later
times, the g-Gaussian distribution provides a better fit. The g-Gaussian distribution is
a generalization of the standard normal probability density. We employ the asymmetric
Poissonian g-Gaussian distribution [58] to fit the spectra because it becomes asymmetric
later in time. Fig. 3.8 displays the fit to the distribution using an asymmetric q-Gaussian

distribution. The distribution is given by,

Plk) =~ (1 — k2821 <1 +k (3.27)

(8-8)/2
Nga 1— k:)

Here we have,

i—1- (M _ 1) - (3.28)

and the asymmetry parameter is given by,

a= (ﬁ—Tﬂ') (3.29)

Here Ngg is a constant given by,

Ngg = 22710 (B)T(8)/T(B + B). (3.30)

In our case, we use ¢, 3, and 8’ in the distribution as open parameters to fit with our

temperature spectrum.

Though it appears that the temperature fluctuations can be somewhat fitted by a Gaus-
sian, the anisotropy seems to grow over time. Although it was impossible to examine
individual planes for temperature fluctuations, the spectra of temperature fluctuation

shows an overall anisotropy in the temperature spectra as well.

3.5 Summary

To summarise, we have studied the partonic system in the initial and pre-equilibrium
phases of the heavy-ion collision. The energy spectrum for the turbulent flow velocities
has been computed. For the specific system, the wave number range and hence the eddy
sizes are first determined. Then, under various initial conditions, we were able to find the
turbulence spectra both on the heavy-ion collision’s longitudinal plane and transverse

plane. The spectra coefficients, v, for the two separate planes have been determined. We
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showed that the v value for longitudinal spectra is —5/3, which is larger than the value
for transverse plane spectra. The v value for the transverse plane spectrum is around
—4/3. As a result, the longitudinal plane’s v value is nearer to the Kolmogorov spectra.
The energy dissipation is greater for the transverse spectra. We also observed that the
power law coefficient is only affected by the collision’s centrality for the transverse plane.
The anisotropic pressure gradients produced in this plane result in spatial anisotropy
in particle distribution. This may cause asymmetric energy dissipation. Further, the
collective flow in the transverse plane is suppressed by the viscous nature of the fluid.
We observe in chapter II how shear viscosity has an effect on the elliptic flow. Therefore,
the viscosity has a centrality dependence that is represented in the spectrum’s Schmidt
number. This also affects the energy dissipation in the transverse plane for different

centralities, which can be seen in our plots.

In the heavy-ion collision, the energy spectrum analysis showed that energy is trans-
ferred from the flow to the large eddies, which is then dissipated through the smaller
eddies. This is also evident from our temperature spectra, where we have seen the peak
shift to the smaller length scales at later times. Even though the turbulent system might
be overall isotropic, if we divide it into different planes, the power law coefficients will
differ on each plane. We illustrate this difference between the transverse and longitudi-
nal planes in our plots. The turbulence in relativistic heavy-ion systems is assumed to
be isotropic, but if the geometry of the collision is taken into consideration, the turbu-

lence under study is invariably anisotropic. In our analysis, this is firmly shown.

Further, we analyze the temperature spectrum of the turbulent quark-gluon plasma in
the early stages of equilibrium. Although temperature correlations and velocity corre-
lations may be related to one another, they need not always be the same in a given sys-
tem. This is why it is significant to study the temperature spectrum. The thermal length
scales in the underlying condition are explored via the temperature spectrum. We believe
that an understanding of these thermal length-scales is crucial in a high-temperature
plasma. Though the thermal spectrum first looks to be Gaussian, we have observed
that a g-Gaussian distribution fits it better over time. This shows that although the
turbulence seen in relativistic collisions is generally isotropic and homogeneous, it would
be more useful to slice it into planes and examine each plane independently. This will
enable us to comprehend the anisotropies produced in the turbulent plasma on various

planes and different length scales.
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Chapter 4

Temperature fluctuations and
Tsallis statistics in Relativistic

Heavy lon collisions

4.1 Introduction

The understanding of temperature fluctuations in a system is crucial as it provides
knowledge of the thermodynamic characteristics of the underlying system. The study of
fluctuations can also lead us to the phase transition dynamics. In this chapter, we an-
alyze temperature fluctuations that occur during the initial phases of relativistic heavy
ion collision experiments (RHICE). We talk about the non-equilibrium limits of the
system by analyzing temperature fluctuations. We focus on the plasma right after a
collision, before it has a chance to equilibrate. We employ the non-extensive Tsallis
statistics to determine the entropic index in the partonic stages of the RHICE . Previ-
ously, the hadronic phase is taken into consideration when calculating the entropic index
using experimental data fitting of the transverse momenta (pr). In this chapter, we will
illustrate how the behavior of the entropic index during the initial non-equilibrium stage

is remarkably similar to that of the entropic index during the hadronic stage.

In HIC, the conditions are such that the fluid immediately following a collision forms a
non-equilibrium system [1]. Fluctuations in the initial distribution result in specific
features in the final hadronic spectra. The majority of these are number density fluctua-
tions [2]. Although hotspots and coldspots are known to form in spinning fluids [3], it is

challenging to measure something like temperature fluctuations in actual experiments.
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Due to this, the majority of attempts made to analyze the system’s fluid dynamics have

been focused solely on density variations.

There are attempts to perceive the thermodynamic characteristics of strongly interacting
systems using a variety of methods in RHIC and CERN [4, 5]. Recently, some studies
have reported temperature hotspots, and fluctuations in these systems [6]. The tempo-
ral evolution of these temperature fluctuations has been explored in smaller subsystems
resembling canonical ensembles of varying temperatures [7]. The integrated observables
and some of the differential observables have not been proven to be affected by the size of
the hotspots. However, there are certain differential observables that might be responsive
to these variations, such as sub-leading principal components [8]. In this study, we use
a different approach when examining temperature fluctuations. We analyze the temper-
ature instabilities during the early stages of the heavy ion collisions using a multiphase
transport (AMPT) model. Despite being studied in the context of transport models,
temperature fluctuations have primarily been discussed in the Gibbs-Boltzmann statis-
tics. In this analysis, the temperature fluctuations in the partonic stages of HIC are
investigated using the non-equilibrium Tsallis statistics. The extended thermodynamics
of Tsallis has been applied previously to non-equilibrium systems [9]. The Tsallis statis-
tics is a generalized form of the Boltzmann-Gibbs thermodynamics to non-equilibrium
systems [10]. The entropic index, ¢, is used to define the thermodynamic quantities in
this statistics. The Tsallis statistics reduce to the Boltzmann-Gibbs statistics for ¢ = 1.
The entropic index value serves as a measure of how much the system deviates from the
equilibrium statistics. The fluctuation in the temperature distribution can be used to
calculate the entropic index value. In recent years, the relativistic heavy ion collision
experiments have been one of many non-equilibrium systems that have been modeled
using the Tsallis entropy [11]. In all these cases, the entropic index was determined by

fitting the transverse momentum data [12, 13].

The system requires a finite amount of time to reach equilibrium in the HIC system [14].
In order to examine the system before it achieves an equilibrium state, we have applied
the non-equilibrium Tsallis statistics. We do this to comprehend the thermodynamics of
the earliest phases of the collisions. We have used the standard definition of temperature
and applied the Tsallis statistics instead of the BG statistics. The temperature calcula-
tions are thus only relevant within the bounds of local thermal equilibrium. We employ
the AMPT model to determine the particle positions and velocities at 7 = 1 fm/c.
The local thermal equilibrium is typically reached after 1 fm/c. We observe that the
temperature fluctuations measured throughout the evolution are significantly large. We

implement Tsallis statistics to get the entropic index from the temperature fluctuations.
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For the partonic stage, we determine the value of the entropic index for various rapidi-
ties, centralities, and collision energies. The entropic index values obtained are higher
than the values obtained by fitting the transverse momentum data. This is because the
experimental analysis uses the Tsallis statistics in the hadronic phase [12]. They are typ-
ically in the order of ¢ ~ 1.12 while the values of the entropic index we get generally are
more than 1.2. We observe that the overall nature of the change in the entropic index
with various system parameters is consistent with the entropic index obtained by fitting
the Tsallis distribution to the transverse momentum data in the hadronic phase [12].
Therefore, we draw the inference that the entropic index behaves similarly in the par-

tonic and hadronic phases as a function of the system parameters.

In section II, we look at the temperature hotspots observed using AMPT simulations
during the early stages of HIC. The application of Tsallis entropy to temperature profiles
derived from energy density and the computation of the entropic index based on our
simulations are covered in Section III. We quickly describe the Tsallis entropic index
calculation using experimental data and demonstrate that it is rather similar to the
entropic index we found in section IV. In section V, we present a summary and conclusion

of the findings of this chapter.

4.2 Temperature hotspots in the initial stages

The positions and velocities of the particles at the early stages of the collision are
obtained using the AMPT model. We build a grid-based simulation in the x-y plane
with cell sizes that allow us to fit a considerable number of particles into each cell. This
will help us establish the local equilibrium condition as we are interested in analyzing
the temperature fluctuations in the system. From the momentum and energy of every
particle in the cell, we compute the average energy in each cell. It is believed that the
system is not in equilibrium as a whole. We have effectively broken down our entire
system into smaller subsystems, and we will assume local thermodynamic equilibrium in
these smaller subsystems. Given that this is a statistical model, we create many events
using the same parameters and initial conditions, and we then take the average of all
the events to get the end results. So, the energy density distribution can be obtained

from the particle distribution as follows [15],

x— )+ (y — yi)Q}

e(z,y) = Z N;exp[— ( 5,2 (4.1)

We choose a Gaussian having a width of ¢ = 0.5 fm. Additionally, we have N; =

N

ﬁ(T%T)Ei’ where N is the normalization factor. The position coordinates are (x;, y;, 2;) ,
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and E; = y/p? + m? is the energy value of the i-th parton. The sum in equation 4.1
includes all of the particles involved in an event. We have used the rapidity window
—3 <1 < 3, where n = $In!22 is the space-time rapidity and 7 = v/t — 22. The energy

density is obtained using all four components of the energy-momentum tensor.

As previously noted, the entire system has been split into smaller subsystems with
grid sizes of dr = dy = 0.3 fm. We also varied the size of the grid cells and tested
the simulation with values of cell sizes ranging from 0.1 fm to 0.5 fm. Our results are
independent of the grid cell size as long as it falls within this range. In order to determine
the temperature in each of these grid cells, we have assumed local thermal equilibrium

and employed the ideal gas Gibbs- Boltzmann statistics.
T4
e(z,y) =12(4 + 3Nf)(ﬁ) (4.2)

Here Ny is the number of quark flavors; we have taken Ny = 3.

We based our temperature calculation on equilibrium statistical mechanics since there
is still a lack of understanding of the temperature in non-equilibrium systems. This is
because the second and zeroth laws of thermodynamics are difficult to extrapolate to
non-equilibrium systems. In equilibrium thermodynamics, a system at equilibrium can
be broken down into smaller ones, and each subsystem will measure the same tempera-
ture as the main system. However, all of the subsystems might not measure the same
temperature in an out-of-equilibrium scenario. In an out-of-equilibrium state, it is there-
fore challenging to specify a single temperature [16]. The Tsallis statistics that we will
use later to interpret the departure from equilibrium for this system solely depend on
two parameters, the temperature, and the entropic index. If the system’s entropic index
is known, the temperature parameter can be associated with the Gibbs-Boltzmann tem-
perature. The temperature parameter in the Tsallis distribution cannot be computed
because the entropic index of the HIC is unknown a priori. Since the Tsallis statis-
tics approximate the Gibbs-Boltzmann statistics when the entropic index is equal to
one, the Tsallis parametric temperature will be roughly equal to the equilibrium Gibbs-
Boltzmann temperature for entropic index values close to one. We may therefore draw
the conclusion that the temperature considered in the Tsallis entropy calculation will be
roughly equal to the system’s equilibrium temperature. We determine the equilibrium
temperature in each of the previously specified small grid cells. These temperatures
will vary and represent the system’s temperature fluctuations because the system as
a whole is a non-equilibrium system. We obtained the temperature fluctuation in the
x — y plane. Both event-by-event plots and event-averaged plots have been observed.

We begin by analyzing the event-by-event plots, which display the initial variations at



Chapter 4 Temperature fluctuations and Tsallis statistics in Relativistic Heavy Ion
collisions 79

0.4
_ 04 ~
> > 0.2
& 02 8
) = 0
0.4
0.4
> > 0.2
& 0.2 k)
[ 0 [ 0

FIGURE 4.1: Temperature fluctuations at times a) 1 fm/c b) 2 fm/c ¢) 3 fm/c d) 5
fm/c at \/syn =200 GeV and —1 < n < 1 for Au + Au collisions

various collision energy and times.

The temperature distribution is shown in Figure 4.1 at various times. We observe that
the temperature fluctuations are larger initially but become less over time. The temper-
ature fluctuations for various collision energies are shown in Figure 4.2. As can be seen,
regardless of \/sy, the general pattern of the fluctuations do not change. At increasing
V/SNN, the amplitude is the only thing that grows. Such temperature instabilities have
been documented in earlier research [3, 17]. In the first study, temperature fluctua-
tions are addressed in a manner similar to how CMBR (Cosmic Microwave Background
Radiation) temperature variations are investigated for the early universe. The second
study focused on determining the system’s specific heat from temperature fluctuations.
While the temperature hotspots appear to be comparable at different times, we treat the
fluid as a non-equilibrium system and would like to analyze them further to understand

the differences at various collision energies.

4.3 Tsallis entropy and the entropic index

As was previously stated, the Tsallis statistics is distinguished by the non-extensivity

parameter g, with |¢ — 1| being a direct measure of the temperature fluctuations [18].
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FIGURE 4.2: Temperature fluctuations at different /s values a) \/syny = 19.6 GeV b)
VSNN = 62.4 GeV ¢) \/syny = 100 GeV d) /syny =200 GeV at time 7 = 1 fm/c and
—1 <n <1 for Au + Au collisions

Although it was initially utilized to fit the hadron pr spectra at various collision ener-
gies [19, 20], afterwards, it was employed in other scenarios of the relativistic heavy ion
collisions [21]. As described in reference [21], in addition to hadrons, quark matter has
also been studied using Tsallis statistics [22]. Both the hadronic and the quark-gluon
plasma scenarios have been theoretically explored in ref. [23]. The thermodynamics of
the system has also been studied in each of these cases. The partition function of an
ideal gas is typically used to obtain these thermodynamic parameters. The analysis of
the phase diagram reveals that the critical temperature obtained using Tsallis statistics
is generally lower than that obtained using the equivalent Boltzmann-Gibbs statistics
[21]. This is possible because the temperature determined by the equilibrium definition

will always be higher than the temperature determined by any other approach [16].

The Tsallis statistics have also been used to extend the MIT bag model in ref.[22]. In this
case, the Equation of State (EoS) has been established for various bag parameters and
entropic index values. Despite the fact that the shape of the phase diagram is similar for
both approaches, the critical temperature is found to fall with increasing values of the
entropic index in this case. In ref.[24], the Tsallis entropy formula was also developed in
a thermodynamic system comprised of a reservoir and a subsystem. The temperature is
obtained, and the relation between the heat capacity and entropic index is also estab-

lished. We recognize these specific references because we are interested in the connection
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FIGURE 4.3: The plot of f(/) for the temperature fluctuations at a collision energy of

v/s =200 GeV (Au - Au collision, || < 3). The green circles are the fluctuating states.

The value of ¢ is obtained by fitting a x? distribution to the plot. Purple line shows

the fitted curve. The final values of the two parameters ¢ and §y are ¢ = 1.51158 and

Bo = 0.968718GeV !, with the asymptomatic standard error for ¢ being 3.5% and for
Bo being 0.33%.

between temperature and entropic index during the early phases of a heavy ion collision.

The relationship between the Tsallis entropy and the entropic index ¢ in a system with
varying temperatures has already been studied in the literature [25]. The quantity
employed in this context is S, which is the inverse of temperature. The generalized
distribution function of non-extensive Tsallis statistics is a result of integrating over all
conceivable fluctuating 3’s provided that the 3 is x? distributed [25, 26]. This is only true

if a non-equilibrium system is formally characterized by a fluctuating f.

Given that our system also experiences temperature fluctuations, we used a y? dis-
tribution to fit the probability distribution of § (i.e., the temperature inverse). It is
demonstrated in ref. [25] that for any system with fluctuating temperatures, the follow-
ing distribution can be used to determine the relationship between the entropic index

and temperature:

9= (@ —11»60)(;1) e () 43

Here the entropic index ¢ is dimensionless, whereas the function has the temperature

dimension (371).

In Fig. 4.3, we plot the 8 distribution we obtained from our simulations after fitting
it with the x? distribution. We get a good fit for our temperature fluctuations, and

these fits can be used to calculate the entropic index. The average of the fluctuating
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FIGURE 4.4: The plot shows the dependence of the effective temperature T,5; in GeV
on the values of ¢ (dimensionless) at a collision energy of \/syy = 200 GeV for the
Au+Au system, (0 — 10%) centrality with |n| < 1.

B is the constant By. The values of ¢ and By are found to be ¢ = 1.51158 and [y =
0.968718GeV ! | respectively, with an asymptomatic standard error of 3.5% for ¢ and
0.33% for By.

The entropic index has been observed to have some dependence on system parameters
in the majority of physical systems. For instance, it has been found that the value of ¢
is affected by the spatial scale. In the next section, we study how the entropic index or

q value changes with various parameters of the system.

4.4 Results and Discussions

Our first observation is the correlation between temperature and entropic index. We ob-
serve that the temperature and entropic index have a linear relationship that fits nicely
with a straight line shown in Fig. 4.4. In recent times, there have been efforts to extract
the (¢ — 1) values from experimental data [12]. The Ty is defined differently in that
method. For negative pions and antiprotons, the dependency of the effective tempera-
ture T, ¢ on the parameter ¢ has been examined for different processes [18]. In that case,
the slope of the fitted straight lines depends on the selected particles and reactions. This
is seen in reference [27], where the authors analyze data from the p 4+ p, Au + Au, and
D + Au collisions. They obtained entropic index values for positive pions in the range
of 1.12, whereas we obtained entropic index values larger than 1.28. We are working
with the early stages of the heavy ion collisions, which is the fundamental distinction
between our study and the earlier research. We show that a linear dependence on the

q values can be established even in our scenario. A straight line can be used to fit the
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simulation’s data. However, the slope we find is lower than the hadronic particle slope.
The experimental results have already shown that the T, ¢ vs. ¢ dependency may not be
constant across all systems [28]. In ref. [28], it is demonstrated that the p—p collision at
high collision energies has a different slope, whereas the slope we found for Au +Au col-
lisions is similar to ref. [18]. They have found a different slope for the Pb— Pb collision.
Even though we obtain a linear dependency between Ts¢ and (¢ — 1), the slope of the

straight line relies on the individual system being examined as well as the collision energy.

The calculation also relies heavily on the definition of temperature. According to
ref.[18], the effective temperature is the temperature that results from both temperature
fluctuations and the transfer of energy between the source and its surroundings. As a re-
sult, the system’s effective temperature is different from its thermodynamic temperature.
Our system has been split into smaller subsystems, and we have presumed that local
thermal equilibrium exists in each of these smaller areas. Due to its out-of-equilibrium
state, the system as a whole does not have a constant temperature throughout. This
is also due to the non-uniform energy density distribution in the collision region. The
values of the entropic index are larger in our case as compared to the values of the en-
tropic index obtained from prior studies. This could be because the system at this stage
is more out of equilibrium than the system in the hadronic phase [27]. As mentioned
earlier, the Tsallis thermodynamics is incorporated in the MIT bag model in ref.[21],
and the connection between temperature and energy density in that case is,

2 71'2 2

7 T 8 T
=[= — Tty ~(qg—1VT". 4.4
€ [49Q + 9c] 30l + 55 9096g; (¢—1)V (4.4)

The quark and gluon degrees of freedom are represented here by go and gg. Con-
sequently, there is a term that is proportionate to 77 and has the entropic index in
addition to the 7% term. The temperature determined by this equation would differ
. e . 2
from the temperature determined by the equilibrium relation € = [% 9o + gg]g—oT4. As a
result, the entropic index corresponding to various temperatures will differ. Therefore,
the definition of the temperature used in the calculation of the entropic index will deter-
mine the precise value of the entropic index. The entropic index can also be determined
directly from temperature variations,
Var(T)

Here, Var(T) stands for the temperature variance. It can be seen here that the entropic
index is dimensionless. This definition has been used by Wilk et al. in ref. [18], and

they have achieved a similar result to that shown in figure 4.4.
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FIGURE 4.5: The plot shows the variation of ¢ for different space time rapidity (n)
values at different collision energies (1/s)for Au 4+ Au collision in the (0-10%) centrality
range at 7 =1 fm/c.

The change in the ¢ value for various system parameters was then closely examined.
Fig. 4.5 illustrates how ¢ varies with space-time rapidity (1) and collision energy. Here
we observe that our ¢ value increases with increasing values of 7, plateauing for higher
collision energy. The scale of the system grows as the space-time rapidity increases. A
bigger system size will result in a more significant divergence from equilibrium, which
will enhance the entropic index value. We know from previous studies how signifi-
cantly the entropic index depends on the type of system that is colliding. The Tsallis
distribution appears to be challenging to use because the outcomes rely on the created
particles and the colliding particles. In recent research, [29], a thorough analysis was
conducted for a wide range of collision energies, a wide variety of particles, and a wide
range of systems. In addition, the ¢ values appear to be proportional to /s/m, and the

q value also depends on the particle multiplicity.

Our values are different from those found in the hadronic spectrum for two main rea-
sons. The first was also addressed earlier. It is the temperature definition that we have
employed. The temperature values and also entropic index values would be affected if
a different Equation of State (EoS) was applied. We are assessing the partonic system,
which is an additional factor. It is also feasible that the system is more likely to be in a
substantially non-equilibrium condition in the early phases before the phase transition.
As the system develops, equilibrium is reached. The disturbances are reduced after
hadronization, and the system continues its path toward equilibrium. As a result, the ¢
values, representing the system’s departure from the equilibrium state, will be different

in the partonic state than in the hadronic state.
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FIGURE 4.6: This plot shows the variation of ¢ for different \/syn values at different
centralities for Au + Au collisions. Here |n| < 1 and 7 = 1fm/c.

It is also found that the ¢ values depend on the beam energy [30]. Fig. 4.6 displays the
change in ¢ for various /sy values at various centralities. According to Figs. 4.5 and
4.6, the entropic index is lower at lower /syy. But the relationship depends on how
central the collisions are. The ¢ values for most peripheral collisions (60-80%) are less
than the ¢ values for most central collisions (0-10%) below 100 GeV, as can be shown
in Fig. 4.6. The opposite is true above 100 GeV. In a recent study (ref. [31]), the
same outcome was also attained using experimental data. The authors have fitted the
experimental data from the Au + Au collision at RHIC energies [32, 33] as well as data
from the PHENIX collaboration [34]. They have also recognized how the ¢ parameter
is affected by collision energy and centrality. Also, the total change in the ¢ value for
most central and mid-central collisions is significantly less than the overall change in
peripheral collisions. This suggests that the entropic index is not only determined by

the multiplicity alone.

Fig. 4.7 illustrates how ¢ varies with proper time (7) and various collision energies.
However, this only represents the calculation of the entropic index at various intervals
and not a change of the system over time. The plot shows that the ¢ value appears to
peak at roughly 3 fm/c and then declines as 7 increases. Different values of /sy have
little effect on the fundamental nature. A decreasing value of ¢ indicates that the system
is getting close to equilibrium. However, given that we are employing the AMPT model,
the rise and fall in the ¢ value may be attributed to changes in the particle’s energy
density. The energy density of the particles generated by the AMPT model typically
grows up to 3 —4 fm/c and then steadily declines after that [35]. The entropic index

exhibits comparable behavior because it is derived from the energy density.
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FIGURE 4.7: This plot shows the variation of (¢) with proper time (7) at different
collision energies (y/syn) for Au + Au collisions at |n| < 1 and for (0-10%) centrality.

4.5 Summary and Conclusions

In this chapter, we show that it is possible to examine the partonic stages of relativistic
heavy ion collisions by combining a non-extensive formalism with a transport model.
We have demonstrated the partonic phase’s temperature fluctuations. Once the system
has been partitioned into smaller grid cells, the ideal gas energy density - temperature
relation is used to determine the temperature in these smaller subsystems. All the
temperatures in these smaller subsystems should have been the same for an ideal gas
in equilibrium. However, we discover that the system’s overall temperature is not the
same in the smaller grid cells. This suggests that the system is out of equilibrium. We
determine the temperature fluctuations between various grid cells and plot the temper-
ature fluctuations of the system during its early phases. For a system with fluctuating
temperature, if the inverse of the temperature 8 can be fitted with a y? distribution,
the Tsallis statistics can be used to study the temperature fluctuations of an out-of-
equilibrium system. The entropic index ¢ is calculated using the S acquired from our

simulations after it has been fitted with a x? distribution.

In line with earlier studies, we find a linear relationship between the entropic index ¢
and the system’s effective temperature 7,;s. However, the type of particles used to de-
termine the system’s temperature affects the slope of the line. Although this correlation
has been demonstrated in the past, it was in the hadronic phase. We demonstrate that
the partonic phase also exhibits an analogous relationship. The slope is different in the

two cases as the underlying systems are different.



Chapter 4 Temperature fluctuations and Tsallis statistics in Relativistic Heavy Ion
collisions 87

We have analyzed the connection between the entropic index and space-time rapidity,
collision energy, and collision centrality. We observe that as space-time rapidity in-
creases, the entropic index rises as well. This may be related to particle multiplicity,
as a larger particle multiplicity produces a lower ¢ value. But multiplicity alone cannot
account for the variance of the entropic index, as we have seen by considering the other
factors. The entropic index depends on collision energy and centrality. For different
centrality ranges, the relationship is convoluted with the collision energy. For most cen-
tral and mid-central collisions, the range of ¢ is nearly constant between 20 - 200 GeV.
However, for peripheral collisions, the range of ¢ increases in the same collision energy
range. Furthermore, the ¢ values for central and peripheral collisions are almost identical
in the 40 — 80 GeV range. Below this range, the central collision’s ¢ values are greater
than the peripheral collision’s ¢ value. The ¢ value for central collisions is smaller than
the ¢ value for peripheral collisions beyond 80 GeV. These results are in line with more
recent transverse momentum data analysis that used Tsallis statistics for the hadronic
stage. We also study how the temperature fluctuates at different times. In this case,
the change in entropic index corresponds to the variations in energy density from the

AMPT model for relativistic heavy ion collisions.

Finally, we have shown how the entropic index show similar behavior with system pa-
rameters in both the partonic and the hadronic phase. However, it is not easy to obtain
the thermodynamic variables such as temperature for an out-of-equilibrium system. The
assumption of local thermal equilibrium and the correct choice of the equation of state

can make this process more effective in finding the system’s equilibrium limits.
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Chapter 5

Machine Learning model driven
prediction of the initial geometry

parameters

5.1 Introduction

In this chapter, we will give a detailed representation of the use of machine learning
methods in predicting various geometry parameters of heavy ion collision experiments.
By utilizing supervised Machine Learning (ML) techniques, we show excellent prediction
accuracy of three crucial features that affect the initial geometry of the heavy-ion colli-
sion (HIC) studies. These variables are the impact parameter, the participant eccentric-
ity, and the eccentricity. Using thorough parameter scans, we examine various machine
learning (ML) algorithms, their error spectra, and sampling techniques to identify an
effective algorithm and tuned training set that provides multi-fold improvements in ac-
curacy for three different heavy-ion collision simulation models. The three models are a
transport model, a hydrodynamic model, and a hybrid model. Three different HIC mod-
els were used to demonstrate that, even when a model is trained using a transport model,
it can still produce reliable results for hydrodynamic and hybrid models. We show how
the centrality of the collision affects the impact parameter prediction’s accuracy. For
central collisions, prediction accuracy using conventional ML training techniques is very
low. We discuss how errors can be reduced, and accuracy can be greatly increased in all

ranges of impact parameter and eccentricity predictions.

Different collision systems and other initial conditions create different initial parton dis-

tributions, which impact the final particle spectra and anisotropic flows [1]. The primary
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outcomes of these experiments are the transverse momentum (pr) spectra, rapidity (y)
spectra, pseudorapidity (1) spectra, particle-antiparticle ratios, jet momentum distri-
bution, and multiplicity fluctuations. Direct inferences about some phenomena, such
as anisotropic flows, can be derived from these data. However, some parameters are
challenging to determine directly from the experimental results. These include impact
parameter and initial geometry parameters such as eccentricities, event plane angles, etc.
The details about these parameters are described in Chapter I. The collision centrality
is measured by the impact parameter. In experiments, the data is always analyzed with
respect to the collision’s centrality since different collisions with different collision cen-

trality produce different spectra.

The collision centrality significantly influences the final particle spectra. It has been
observed that the distribution of particle multiplicity depends on the centrality of the
collision. The multiplicity fluctuations at various centralities are probed at RHIC en-
ergies in ref. [2, 3], and in ref. [4-6], the same phenomena are addressed at collision
energies of 2.76 TeV, 5.02 TeV, and 5.44 TeV, respectively. Although the centrality can-
not be determined from experiments independently, it can be computed using theoretical
modeling such as the Glauber model (ref. [7]) or other similar models. Other initial state
geometry parameters also suffer from the same issue. Because of this, there are different
methods to establish these parameters. Neural networks have also been considered in
addition to other simulations and methods to calculate the impact parameter from the

experimental data [8].

The impact parameter in the Glauber model is related to the multiplicities of charged
particles created during the heavy ion collision. Hard and soft collision processes con-
tribute to the multiplicity of charged particles. These, in turn, depend on the total
number of participants as well as the number of binary collisions. The charged particle

multiplicity per unit pseudorapidity can be stated as,

dN,,
dn

Nar
= Npp (1 —QT) 172 : +choll (51)

Here, n,, is the multiplicity per unit rapidity in pp collisions, z is the fraction of contri-
bution from hard processes, and ng,y; is the total number of binary NN collisions. The
impact parameter can be used to specify the number of participant nuclei Npqr¢ [7, 9].
If T4(s) is the thickness function of nucleus A, i.e., the probability density function of
finding nucleons in A, then the number of participants in A at the transverse position
s can be found out by multiplying with the probability of binary nuclei-nuclei collision

with the nucleons of the nucleus B at the same position (b — s) where b is the impact
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parameter. So, the total number of participants can be expressed as,

Npart (D) :/TA(S)(I — exp[—a%gTB(b —35)])ds

+ [ T = )1~ copl-olNTA0))ds (5.2)

Here, the contribution from nuclei A and B is combined to determine the total num-
ber of participating nuclei. The impact parameter and corresponding centrality can be
calculated by fitting the multiplicity spectra using Eq.5.1 and Eq.5.2. For each event,
multiplicity fitting must be performed in order to determine its centrality in this method.
Utilizing machine learning models can be a more straightforward method of obtaining
centrality. In several papers [10-12], machine learning has been used to extract the
impact parameter from the experimental data. We can automate the entire procedure
and determine the impact parameter effectively by using machine learning. Machine
learning (ML) has the advantage of requiring less computational time and power. Thus,
the process becomes more efficient. Most of the research in this field uses deep neural
network techniques. Predictions for the impact parameter have also been made using the
convolutional neural network (CNN) [13]. The first research to show the impact of neural
network analysis on enhancing the impact parameter’s accuracy is ref. [14]. However,
these networks need to be tuned for hundreds of different parameters. This increases the
cost of the process in terms of computation. On the other hand, several non-neuronal
ML models, such as SVM, RandomForest, kNN, etc., need fewer parameters to give re-
sults as accurately as the ANN or CNN models. So, various standard machine learning

techniques are also implemented to get the impact parameter in several studies.

In this chapter, we have analyzed various machine learning (ML) algorithms and con-
ducted a thorough comparison of the accuracy and efficiency of these algorithms. This
has been done by using well-defined machine learning methods and to indicate a signif-
icant gap in their prediction accuracy for central collisions. We evaluate the prediction
accuracies and talk about the factors that contributed to them. We find that for the
low-impact parameters, accuracy is lower. This is a well-known issue in computing the
impact parameter using ML methods. We offer a unique sampling technique that signif-

icantly outperforms the standard sample techniques employed by the ML community.

Our study would concentrate on predicting the impact parameter and the eccentricity.
Eccentricity is one of the anisotropy parameters that provide us with the initial geo-
metrical distribution of the collision region. This also impacts the elliptic flow, one of

the key observables used to analyze the collective behavior of the produced particles in



Chapter 5 Machine Learning model driven prediction of the initial geometry parametédd

heavy-ion collisions. The effects of eccentricity fluctuation on the elliptic low are ad-
dressed in ref. [15] at \/syn = 200 GeV for Au-Au and Cu-Cu collisions. In ref. [16],
the effect of various initial anisotropy components on the flow harmonics is studied using

the AMPT model. The initial state anisotropy can be expressed as[9],

_< rcos(ng — ny) >

7«71

€n(b) (5.3)

here r = \/z2 + y2, n = 2 represents the eccentricity, and n = 3 represents the triangu-
larity. The aforementioned eccentricities are observed with respect to the reaction plane.

Additionally, we have trained the algorithm to predict participant plane eccentricity [15],

\J02 — 02 + 402, -

2 2
oy + o0z

€Epart =

here o’s are the variances of the positions of the particles, 02 =< 22 > — < x >2,
05 =<y?’>—<y>2%and Opy =< 2y > — < 2 ><y >. Here < .. > is the average

over the transverse plane.

In this work, the transverse momentum spectra are used as features, and the target
variables that the model must predict are the impact parameter, eccentricity, and the
participant eccentricity. The pr spectra of Au-Au collision events at 200 GeV collision
energy are generated using the AMPT model. In our study, the ML models utilized
the learnings and experiences from impact parameter prediction to estimate eccentric-
ity. We have also examined how the impact parameter’s inclusion as a feature improves

the eccentricity prediction accuracy.

AMPT is a transport model which has been widely utilized to model the various stages
of the HIC. But it has its shortcomings, just like every model. In addition, some
hydrodynamics-based models produce accurate results that are in good agreement with
the data. In this study, we used a particular HIC model for training and two different
HIC models’ data for making predictions. This shows that predictions obtained using
the ML model for the impact parameter for a set of well-defined training data are model-
independent. The two other HIC models that we use in this study are VISH2+1(Viscous
Israel Stewart Hydrodynamics (2+1) dimension) [17] and a hybrid model comprised of a
hydro evolution model, and a hadronic cascade model [18]. The details of these models
are given in Chapter I. The AMPT model, used to train ML algorithms, is very dis-
tinct from these two models. Because of this, the ML models are trained using the
pr spectrum and impact parameter data from AMPT events, and they predict impact

parameters using test pr spectra data from the VISH2+1 and the hybrid model. We
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set up various models with different initial conditions to produce the pp spectra compa-
rable to those obtained in the actual experiments. Therefore, the model independence

only applies to models that produce pr spectra similar to the experimental pp spectrum.

We discuss the ML models utilized in this chapter in section II. We also go over the
criteria used to evaluate the accuracy of various ML models. This section also provides
information on the setting of the hyperparameters as well as the learning process of
various algorithms. To increase the precision of the predictions, we have also employed
rebalancing procedures. This section goes through these balance methods. The results
and forecasts from the ML models of the participant eccentricity and eccentricity are dis-
cussed in Section III. It also talks about the eccentricity ranges where the best accuracy
has been seen. This section discusses the effectiveness of impact parameter prediction
utilizing experimental data and unknown data from several HIC models. Finally, we
show how rebalancing the dataset can enhance the accuracy of the predictions. We then

summarize the study in section IV.

5.2 Machine Learning Methods

5.2.1 ML Algorithms and Tuning of Hyperparameters

As stated in the introduction, we tested several machine learning (ML) methods for
this study, including k-Nearest Neighbors, Gradient Boosting Regression, and Decision
Trees. Reference [19] provides further information on these ML algorithms. Standard
metrics such as R-square, the Root Mean Square Error (RMSE), the Mean Squared
Error (MSE), and the Mean Absolute Error have been used to test the efficiency of
these models (MAE). After testing multiple ML models, we found that while all of
them provide excellent predictions for the impact parameter, only three of them are
effective at predicting the eccentricity. Therefore, we solely focus on these three algo-
rithms. They are the Random Forest Regressor (RF), ExtraTrees Regressor (ET), and
k-Nearest Neighbors (kNN) models. In the kNN model, the target variable is predicted
by performing a local interpolation between the target and its k nearest neighbors in the
training dataset [20]. The other two models are based on ensemble techniques. In RF,
decision trees are created during training, and an ensemble mean is computed [21]. In
ET, randomized decision trees constructed from sub-samples of the training dataset are
taken into consideration [22]. To get a reliable estimate of the parameters, we performed

a 10-fold cross-validation (CV) [23]. Additionally, it provides a bias-variance trade-off.
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As we utilized these ML techniques to analyze the data from three different HIC models,
we standardized the data before processing it. The charged particle pr spectra are used
as features in the dataset for this study. The pr spectra are obtained for a rapidity
window of —0.5 to 0.5. The range of values in each of the pr bins varies. The difference
is more noticeable when we compare a lower pp bin with a higher py bin. Therefore,
it is crucial to standardize them. This allows the model to work with new data from a
different HIC model. In this study, two different scaling methods are employed, i)the
Standard Scaler or Z-score normalization and ii) the Min-Max Scaler [24]. The data is
scaled in the standard scaler or Z-score normalization approach so that every feature

has a mean of 0 and a standard deviation of 1. It is done by using Eq. 5.5,

x — mean(x)

Tstandard = (5~5)

standard deviation(z)

In this case, the original data is x, and the scaled data is zstqndara- When using Min-Max

Scaling, each feature’s distribution is rescaled between 0 and 1.

x — min(z)

(5.6)

Tnormalized = max(x) — mm(x)

We have used Python sklearn.preprocessing package to implement both of these scaling
methods [25]. In most of the examples presented in this study, we find that the Z-score
method gives us an accuracy of 4 — 6% better than that of min-max scaling. Therefore,

we have always applied the Z-score normalization.

Only the pr spectra are used as feature variables when the impact parameter is given as
the target variable. For the other targets, the predicted impact parameter is included in
the dataset as a feature variable, as all the other targets depend on the impact param-
eter. Thus, the pr spectra can be used as the primary input to measure the dependent

variables. The data is separated in the training and test set to evaluate the model.

It is crucial to have a sufficient number of events in order to attain the best accuracy
without using too much computing costs. The learning curve indicates how well the
model is performing. We represent the learning of ML models as a function of events.
The learning curves of a kNN (green circles), ET (orange triangles), and RF (blue stars)
model are given in Fig. 5.1, where the number of event iterations is used to reflect
changes in the CV accuracy. Only the kNN model’s training score curve (sky color cir-
cles) is displayed; it illustrates the model’s accuracy in fitting the training set data. In
the training case, the accuracy reaches saturation around 3000 events relatively quickly.

In contrast, the test data accuracy saturates at 6000 to 8000 events shown by other
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FIGURE 5.1: The learning curve of kNN(green dots), ET (orange triangles), and RF
(blue stars) model. The shaded region is the standard deviations

curves. So, the learning process in this study is obtained over 10000 events.

Model R? MAE RMSE
Gradient Boosting Regressor [27] 0.9709 0.3834 | 0.4819
Light Gradient Boosting Machine [28] | 0.9702 0.3878 | 0.4876
Random Forest Regressor [21] 0.9689 0.3972 | 0.4984
Extra Trees Regressor [22] 0.968 0.4024 | 0.5048
AdaBoost Regressor [29] 0.9676 0.4049 | 0.5079
K Neighbors Regressor [20] 0.9649 0.4226 | 0.5295
Linear Regression [26] 0.9642 0.422 0.5341
Ridge Regression [30] 0.9642 0.422 0.5341
Least Angle Regression [31] 0.9642 0.422 0.5341
Huber Regressor [32] 0.9642 0.4216 | 0.5346
Bayesian Ridge [33] 0.9642 0.422 0.5341
Orthogonal Matching Pursuit [34] 0.9635 0.4272 0.5398
Decision Tree Regressor [35] 0.9405 0.5503 | 0.6888
Passive Aggressive Regressor [36] 0.8849 0.7482 0.9058
Lasso Regression [37] 0.7461 1.1484 1.4246
Elastic Net [38] 0.6253 1.4093 1.7305

TABLE 5.1: 10-Fold cross-validation accuracy of ML models for b predictions of min.
bias Au-Au events at /s = 200 GeV

We show the efficiency of the standard ML models for impact parameter prediction in
Table—5.1. The accuracy plots for impact parameter predictions using the kNN(a),
ET(b), RF(c), and Linear Regression(LR)(d) models are given in Fig.5.2. The charged
particle pr spectra from the AMPT-SM model are used to train the machine learning
models. The linear regression algorithm determines how a dependent variable and one
or more independent variables are linearly related [26]. A test dataset with ppr spectra
from more than 4000 minimum bias Au+Au collision events at 200 GeV is used to make

the prediction. Here, the red line represents the line of optimum accuracy, and the
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FIGURE 5.2: Impact parameter prediction using kNN(a), ET(b), RF(c) and LR(d)

model with their accuracy score 97.11%, 97.03%, 97.05% and 96.53% for events of

Au+Au system at collision energy 200 GeV. These plots are obtained for a random
train and test set split of input events.

blue points represent the model’s predictions. For kNN, ET, RF, and LR, the accuracy
values are 97.11%, 97.03%, 97.05%, and 96.53%, respectively. For a random train-test
dataset split, all of these accuracy results are observed, and the 10-fold cross-validation
scores for these models are 97.04%, 97%, 97.01%, and 96.56% respectively. When the
ML models are trained using the default AMPT model data, we get an accuracy of more
than 95% for the kNN, ET, and RF models. With the exception of some critical impact
parameter regimes, the majority of machine learning methods provide a reasonable level

of accuracy for impact parameter prediction without tuning any of the hyperparameters.

It is well known that hyperparameter choices can impact an ML model’s accuracy. We
do hyperparameter tuning to adjust the parameters with the least amount of error on the
validation set. The variation in a kNN model’s accuracy is represented as a function of
the number of nearest neighbors hyperparameter in Fig. 5.3(a). The impact parameter
is used as the target variable, and the model is trained using 12,000 minimum bias

Au+Au collision events for each configuration. The model’s accuracy is at its maximum



Chapter 5 Machine Learning model driven prediction of the initial geometry parametéd9

1.00 Au+Au(min. bias)
Vs =200 GeV 0.95
0.98
() ()
§ (@) § 0.90 —e— Training Score
v 0.96 0 —e— RF CV Score
- - 0.85
[} [}
€ 504 £ o.80
3 3 (b)
< < 075
0.921 Training Score _
0.90 KNN CV Score 070 o0 ey
2 4 6 8 10 2 4 6 8 10
No. of neighbors Max Depth

FIGURE 5.3: Change in accuracy as a function of hyperparameters. a) kNN model with
the number of nearest neighbors hyperparameter, b)Random Forest with max depth
hyperparameter

when there are 4 — 5 nearest neighbors. The green curve displays the 10-fold cross-
validation score, and the shaded area represents the standard deviation. When the
number of nearest neighbors is 1, the training score shown by the blue line has a score
of 1.00. Overfitting occurs in this situation. For the RF model, the maximum number
of levels of the trees is the key hyperparameter (see Fig. 5.3(b)). We observe that for
the hyperparameter value of 4 — 5, the accuracy saturates. Similar to the RF model,
when the max-depth hyperparameter is 4 — 5, we obtain the highest CV score for the ET
model. Although the aforementioned parameters are the ones that affect accuracy the
most, we adjust the other hyperparameters by using the RandomSearchCV function of

the sklearn library and evaluating accuracy for various combinations of hyperparameters.

As previously mentioned, Fig. 5.4 shows how the impact parameter’s inclusion as a
feature increases the efficiency of eccentricity prediction. As has been found in previous
studies, eccentricity is dependent on the collision’s centrality. We have shown that
adding the impact parameter as a feature improved accuracy across all the centrality

ranges.

By identifying the strongly correlated features in the training data, the errors in the ML
model predictions can be minimized. According to ref. [39], the Principal Component
Analysis (PCA) is the most often used method for reducing the number of features in
a large dataset. In this study, we attempted to eliminate colinearity using the PCA ap-
proach and the ”SelectFromFeature” function from the Sklearn package. We compared
the results to the accuracy that had already been attained utilizing all the features.
We displayed the PCA method’s results here. The accuracy score of a kNN model is
shown in Fig. 5.5(a), and the accuracy score of an ET model is shown in Fig. 5.5(b)
with respect to the number of principal components employed. Here, the accuracy of
b predictions is evaluated using a dataset of 12000 minimal bias Au-Au collision events

at /syn = 200 GeV. For the usage of 7 or more principal components, the accuracy
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FIGURE 5.4: Effect on the eccentricity prediction accuracy by the inclusion of impact

parameter as a feature for different centrality(%), a) 0-10%, b) 10-40%, c) 40-80%, d)

Min. bias events. The orange bar represents accuracy with impact parameter as a
feature and blue bars represent accuracy without impact parameter as a feature.

score reaches saturation in both cases. For impact parameter predictions, a variance
coverage of 95% can be attained with only 7 components. Therefore, it is safe to employ
7 —8 principal components to acquire a good amount of precision without compromising
any significant information. The impact parameter was determined using 7 — 8 prin-
cipal components. We also observed that in order to get an appropriate result for the
eccentricity and participant eccentricity prediction, at least 10 features or 10 princi-
pal components are required. Given that we are using transverse momentum data, this
is to be expected. We require fewer features to achieve a high degree of prediction accu-
racy for the impact parameter than for the eccentricity because the impact parameter
is known to be associated with the transverse momentum data [40]. We will utilize the

PCA function to convert the features in all eccentricity estimations.

5.2.2 Custom resampling for unbalanced training set

The pr spectra datasets that we have employed as a feature for ML model training are
unbalanced. There are fewer events for lower impact parameter values since we have
taken into account the pp spectra of minimal bias events. This results in a left-skewed
event distribution of pp spectra. The eccentricity and impact parameter prediction

accuracy in the lower b region (b < 1 fm) are both impacted by the data imbalance.
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FIGURE 5.5: a) Accuracy of a a) kNN model and b) an ET model as a function of the
number of principal components used

The impact parameter is not immediately accessible to the experiments. However, most
experimental observables depend on the impact parameter, in ref. [41], Bass et al. have
observed that the various methods of impact parameter estimation are often optimized
for the wider impact parameter range. Because of this, the experimental results for
head-on collisions corresponding to the lower impact parameter range will have higher
inaccuracies. We aim to improve the prediction accuracy of the impact parameter in the
lower impact parameter range. This is crucial because there are a lot of experimental
findings from head-on collisions that can be more effectively analyzed with better impact
parameter predictions in the lower b range. Our objective is to balance the data set

suitably in order to increase the prediction accuracy in the lower b range.

A few sampling techniques are used in machine learning to rebalance a dataset, such as
SmoteR, ADASYN, etc. [42, 43]. The minority and majority data classes are increased
(over-sampled) or decreased (under-sampled), respectively, using the nearby data points
in the training dataset. With every feasible set of hyperparameters, we tested both
methods. The results are reported in the following section (Section IV C). We find
that the improvement in accuracy is not adequate. After that, we use a technique
called class weights to rebalance the data set, where different classes represent various
impact parameter regimes. A thorough grid search was conducted to analyze the various
weight and distribution region combinations. The events with an impact parameter of
<= 1.0 fm were chosen to be in category 1 and the others to be in category 2 based
on the test set minimal error. The weights given to the two classes are 4 : 1. This
technique has further helped us reduce errors. The results are presented in the following

section (subsection C).
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5.3 Results and Discussions

5.3.1 Impact parameter and eccentricity prediction

As was previously mentioned, eccentricity is one of the crucial factors in heavy-ion col-
lisions that describes the initial state geometry. However, it is challenging to determine
eccentricity directly from the experiment, just like the impact parameter. The methods
employed in this work for impact parameter prediction are also applied to predict ec-
centricity. The three ML algorithms that perform the best in eccentricity prediction are
ET, kNN, and RF.

Similar to Table- 5.1, a comparison of performances of different models for eccentricity
prediction is shown in Table-5.2. The other remaining models, which are present in
Table- 5.1 but not in Table- 5.2, have R? score less than 60%. The models are again
tuned for the best possible outcome. Most of the hyperparameters remain unchanged

and whatever changes occurred are very near to the previously tuned hyperparameter

value.

Model R? MAE RMSE MSE
K Neighbors Regressor 0.9746 0.0021 0.0028 0
Extra Trees Regressor 0.9503 0.0029 0.0039 0
Random Forest Regressor 0.9143 0.0038 0.0051 0
Light Gradient Boosting Machine 0.8647 0.005 0.0064 0
Decision Tree Regressor 0.7353 0.0052 0.009 0.0001
Gradient Boosting Regressor 0.5855 0.0089 0.0112 0.0001

TABLE 5.2: 10-Fold cross validation accuracy of ML models for eccentricity prediction
of min. bias Au-Au events at 1/s=200 GeV

The prediction plots of eccentricity using the kNN, ET, and RF model are shown in
Fig. 5.6 (a), (b), and (c¢). The accuracy percentages are 97.84%, 95.47% and 91.95%,
respectively. This is seen in a train-test dataset of min. bias Au+Au events that were
randomly split. The models are tested over 2000 events displayed in Fig. 5.6 and trained
using 12000 randomly chosen events. The 10-fold cross-validation scores are 97.52% for
the kNN model and 95.18% for the ET model. These are also closer to the accuracies
obtained using the random train-test split dataset. The 10-fold CV score of the RF
model is 91.95%. When the ML algorithms are trained using the default AMPT model
data, we achieve an accuracy of between 87% and 93% for kNN and ET models.

The prediction plots of eccentricity using the kNN, ET, and RF model are shown in
Fig. 5.7 (a), (b), and (c¢). The accuracy percentages are 98.16%, 96.21% and 93.32%,
respectively. One can observe a similar pattern between Fig. 5.6 and Fig. 5.7. The

points spread away from the red line as the accuracy decreases from kNN to ET to
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FIGURE 5.6: Eccentricity prediction using kNN(a), and ET(b) model with their accu-
racy score 97.84%, and 95.47% for events of Au+Au system at a collision energy 200
GeV. These plots are obtained for a random train and test set split of input events.

RF regression. In this case, the 10-fold CV scores are 97.58% and 95.25% for the kNN
and ET model, respectively, and 93.78% for the RF model. A model comparison is
also given in Table- 5.3 for participant eccentricity predictions using different machine
learning models. The first four models have an accuracy of more than or equal to 90%
among the eight given. The other remaining models which are present in Table-5.1 but

not in Table-5.3, have R? score less than 50%.

Model R? MAE RMSE MSE
K Neighbors Regressor 0.9791 0.0017 0.0023 0
Extra Trees Regressor 0.9571 0.0024 0.0033 0
Random Forest Regressor 0.9293 0.0031 0.0042 0
Light Gradient Boosting Machine 0.8931 0.004 0.0051 0
Decision Tree Regressor 0.7929 0.0043 0.0071 0.0001
Gradient Boosting Regressor 0.6682 0.0073 0.0091 0.0001
AdaBoost Regressor 0.5285 0.009 0.0108 0.0001
Least Angle Regression 0.4907 0.0092 0.0112 0.0001
Linear Regression 0.4906 0.0092 0.0112 0.0001

TABLE 5.3: 10-Fold cross validation accuracy of ML models for participant eccentricity
prediction of min. bias Au-Au events at 1/s=200 GeV

An accuracy comparison for e3 (triangularity) prediction by ML models is presented in
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FIGURE 5.7: Participant eccentricity prediction using kNN(a), and ET(b) model with
their accuracy score 98.16%, and 96.21% for events of Au+Au system at collision energy
200 GeV. These plots are obtained for a random train and test set split of input events.

Table- 5.4. We have computed €3 by using the Eq. 5.3. kNN, ET, and RF models
outperform the other ML models in this instance as well. All three of them are more
than 90% accurate. After 10-fold cross-validation, the LGBM (Light Gradient Boosting

Machine) model also shows an accuracy of over 88%. This machine learning model is

tree-based and grows vertically (leaf-wise) [28].

Model R? MAE RMSE
K Neighbors Regressor 0.9762 0.001 0.0013
Extra Trees Regressor 0.9574 0.0013 0.0017
Random Forest Regressor 0.9216 0.0017 0.0023
Light Gradient Boosting Machine 0.8807 0.0022 0.0029
Decision Tree Regressor 0.7581 0.0024 0.0041
Gradient Boosting Regressor 0.6309 0.004 0.005

TABLE 5.4: 10-Fold cross-validation accuracy of ML models for e3 predictions of min.
bias Au-Au events at /s = 200 GeV

A narrow range of eccentricity (0.22 —0.32) is used for the model fitting and predictions

in the eccentricity prediction figures (ref Fig. 5.7). This region is specifically where

all of the models get their highest estimation accuracy. This is because the eccentricity

distribution over the events is not isotropic. The €4+ distribution is given in Fig. 5.8(a).
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FIGURE 5.8: a) Histogram plot of participant eccentricity distribution and b) Pre-
diction plot of €pq.¢ for higher €4+ range using kNN model of minimum bias Au-Au
collision events at /s = 200 GeV given by the AMPT model

Here, the x-axis indicates the eccentricity range, and the y-axis denotes the normalized
number of events. Eccentricities between 0.15 and 0.25 are observed to have the highest
peak in the distribution. As a result, the distribution is skewed, which makes our dataset
unbalanced. Therefore, the eccentricity of most events falls within a specific range. Since
there are more fitting points, the model fits well in this range of eccentricity. The graph
shows that the eccentricity range can be expanded further from 0.1 to 0.5. An estimation
plot of epqrt using the kNN model is provided for a wider range in Fig. 5.8(b). Here,
events with €,4,+ between 0.1 and 0.5 are taken into consideration. As a result, the range
is now three times wider than in the earlier situations. In comparison to the points in
Fig. 5.7 (a), we see that the points are broader away from the center and the optimum
accuracy line. Additionally, we observe some points that are far and isolated from the
distribution. The accuracy has decreased from its previous value of 98.16% to 78.98%.
The 10-fold CV score, in this case, is 76%, which is also a reasonable level of accuracy
but significantly less than the maximum accuracy. This implies that the accuracy range
can be adjusted to fit the needs of the task. To cover a greater eccentricity range, We

have to compensate with accuracy.

Additionally, we have used various ML methods to get the accuracy of the impact param-
eter, eccentricity, and participant eccentricity predictions at collision energies ranging
from 20 GeV to 200 GeV. Compared to higher collision energy, the number of events
needed to train an ML model is higher for lower collision energies. This is due to the
fact that events with a high multiplicity are produced at higher collision energy. As a

result, the averages over events become stable.

In Fig. 5.9, we display the impact parameter prediction error as a function of the impact
parameter and the €p,,¢ distribution. Here we computed the relative error (RE), and
it is defined as: RE =

bpred—bor . .
Jpred—2ord | where bpred and byrg are the predicted and original

borg



Chapter 5 Machine Learning model driven prediction of the initial geometry parametHd6

4.0
3.5
3.0
25
2.0

Errorin b predictions

1.5
0 1.0
1.0 0.5
0.0

4
/)
’hﬁaq. Psa " 8
)

10
ete,(b)lz 14 00

FIGURE 5.9: Error in the prediction of impact parameter as a function of impact
parameter and eccentricity distribution. This is for 200 GeV Au-Au collisions and the
prediction is obtained using a kNN model

values of b. Except for the region where b < 2 fm, we see that the error is small for all
eccentricity and impact parameter ranges. The majority of the errors in the distribution
are less than 0.5 (shown by the red points) and occasionally less than 1. However, the
difference becomes noticeably higher for the lower range of impact parameters (b < 2
fm). This is also a result of the data imbalance that has been mentioned earlier. For
MC-Glauber model predictions with low-impact parameters, the errors are comparably
significant. Large deviations are also obtained when fitting the MC-Glauber model data
with the data from the UrQMD and AMPT events, as reported in ref. [44]. Large
discrepancies are also found for the fitting of Glauber model data to the ALICE data in
ref. [45]. Our observations are consistent with recent findings from machine learning uti-
lizing other models, such as UrQMD, where it was found that the models are capable of
efficiently determining the impact parameters in all regions, with the exception of the
most central and the very peripheral regions [46]. This is closely represented in Fig.

ref. 5.9, which shows that there is a significant amount of error in the most central region.

5.3.2 Results from the different HIC models

To examine the model dependency, we used data from various HIC models, and pre-
dictions were obtained for the impact parameter. The AMPT model data were used
to train an ML model, and predictions were performed using data from other heavy-
ion collision models. The other HIC models employed in this work are the VISH2+1

model [17], which is a hydrodynamic evolution code, and a hybrid model formed of
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the VISH2+1 and UrQMD models. The UrQMD model is used for final hadronic re-
scatterings in the hybrid model [18]. We employ various models because we want the
test set and training set to be generated by multiple models that produce the same pp
spectra. This would imply that the ML models won’t be able to identify which model
generated the test data. The py spectra of the AMPT model were employed as features
and the impact parameters of the associated AMPT events as targets for training the
ML models. We use the minimum bias Au-Au events with collision energies of 200 GeV.
At the same collision energy and at various centralities, the pr spectra of the VISH2+-1
and hybrid models are produced, with impact parameters ranging from 0.1 fm to 14 fm.
The parameter values of the VISH2+41 model used in this study are identical to those
used in ref. [47]. We have used the Glauber model for initial distribution, /s = 0.16,
and decoupling temperature Tg.. = 160 MeV. The box plot is given for the s95p-PCE
equation of state. We set the /s for the hybrid model to 0.08 and used the s95p-PCE
equation of state with Ty.. = 165 MeV. For each of the impact parameter ranges, we
obtained 5000 events from each of these models, and we fitted the average pr spectra
with the experimentally observed pr spectra [48, 49]. The range of pr considered in
order to fit the experimental spectra is 0.15 to 1.4 GeV/c to train ML models. The
experimental results and VISH2+1 data are well-matched in this range. By doing this,
we are also broadly evaluating how well machine learning models can perform when
experimental data are used as test data for predictions. Different HIC models were
employed to construct the pr spectra since we needed event-by-event experimental data
at various centralities. In this way, the error distribution of the predictions made by

the ML model for a large number of events at different centralities can then be obtained.

All of the ML models used in this analysis, such as kNN, RF, ET, and LR, perform really
well when it comes to impact parameter prediction using test data from an undisclosed
HIC model. Figures 5.10(a) and 5.10(b) present the error plots of impact parameter
predictions by the kNN model for the VISH2+1 and hybrid UrQMD models, respectively.
The box portrays the distribution of relative errors. The median error is shown by the
middle line inside the box, which is located in the center of the box. The top and
bottom lines show the 25th and 75th percentiles of the error distribution. The green
point represents the mean error. The errors show a normal distribution in all boxes or
across all centralities. This indicates that the ML model made an accurate prediction.
The outliers are shown by the end circles, which are fewer in number. In both plots,
we observe that errors decrease for events with higher impact parameters. The errors
are almost negligible above the impact parameter of 2 fm. The errors remained minimal
above b = 10 fm, reflecting the prior trend. The three lines in Fig. 5.10(a) indicate the

mean prediction errors of impact parameters for different Equations of State (EoS). The
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mean errors for the s95p-PCE, EOS L, and SM-EOS Q equations of state are represented
by the green (dashed), blue (solid), and yellow (dotted) lines, respectively. The pattern
of the error distribution is the same for all EoS. However, in Fig. 5.10(a) and (b),
the relative prediction errors for 0.1 and 0.5 fm impact parameter events are more than
three and five times, respectively, than the original impact parameters. We have taken
the impact parameter range of 0 to 3.31 fm for 0 — 5% central Au-Au collision events
[9]. As was mentioned, the Glauber model is used to determine the centrality in the
case of experiments. As a result, it might be challenging to determine a precise impact
parameter value, especially for the most central events. While using the AMPT events,
we saw the same type of error distribution in Fig. 5.9. We used AMPT events for both
the ML model’s training and testing, which itself is an unbalanced dataset. Even though
the nature of the error distribution is similar in all scenarios, we employed the Glauber
initial conditions for the hydro model input. Different py spectra can result from the
Color Glass Condensate model’s initial condition. In that case, the parameters of the
hydro model should be changed so that the produced pr spectra match the experimental

pr spectra in order to test the effectiveness of the ML models.

5.3.3 Results from rebalancing the data set

Due to the imbalance in the impact parameter distribution in the training set, a signifi-
cant error is seen in the prediction in the lower impact parameter region in Fig. 5.9 and
Fig. 5.10. We circumvent this using the unique sample weighing technique described in
Section IIT (B). As previously mentioned in Section III B, we initially employed stan-
dard python packages to rebalance the data. The outcomes are displayed in Fig. 5.11
for smoteR (a) and ADASYN(b) method. Despite the fact that the error is less in the
region of low-impact parameters compared to the errors found in Fig. 5.9, we still obtain

enough errors to produce an inaccurate estimate for the low-impact parameter events.
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FIGURE 5.11: Error distribution of ET model of impact parameter predictions of
Au-Au collisions at /s = 200 GeV. The training set is re-balanced using a) SmoteR
method, and b) a custom method of giving weights to the input data

In Section IIT B, we provided a detailed description of our custom rebalancing approach,
and the result is shown in Fig. 5.11 (¢). As illustrated in Fig. 5.11 (¢), we were able
to reduce the error to less than 1 using our custom balancing technique. Since the pre-
diction performed in this range will always fall in the most central collision category
(0 — 5%) for the Au-Au collisions, this much uncertainty in error is acceptable for this

range of impact parameters.

It is also compelling to observe how the AMPT-trained models estimate eccentricity
when supplied with data from other HIC model simulations. The distribution of ec-
centricity of 200 GeV AMPT collision events with respect to the impact parameter is
shown in Fig. 5.12(a). The color plot shows that the average eccentricity and impact
parameters of collision events are linearly related. We can see that with lower impact
parameter values, the eccentricity range is smaller. The range of eccentricity increases
as we pursue higher impact parameter events. A prior study also shows a similar ob-
servation [50]. We present the distribution of eccentricity predictions for two centrality
ranges for VISH2+1 events in Fig. 5.12(b). The ML model is trained using minimum
bias AMPT events. The orange dots represent event predictions of 40 — 80% centrality,
whereas the blue dots represent event predictions of 0 — 10% centrality. We obtain an
eccentricity distribution in the 0 — 0.15 range for the 0 — 10% centrality range, which is
also within the range of the original distribution presented in Fig. 5.12 (a). In the higher

impact parameter range, we obtain a wider range of eccentricity values, shown by orange
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FIGURE 5.12: a) Distribution of eccentricity with impact parameter of min. bias Au-

Au collision events at /s = 200 GeV, b) Distribution of eccentricity predictions by

kNN model of 0 — 10% and 40 — 80% centrality events of Au-Au collisions at /s = 200
GeV from the VISH2+1 model.

dots. Although this demonstrates how ML model performance is model-independent,
only the Glauber initial conditions of the VISH2+1 model are analyzed. We have not in-
cluded the Color Glass Condensate initial conditions since it is known that they produce
a larger anisotropy. It would be interesting to examine how the model would perform in

such a scenario.

In Fig. 5.8(a), we have demonstrated an imbalance in the €4, distribution. Due to this
unbalanced distribution, we can only estimate eccentricity with an accuracy of more
than 95% when we take a narrow range into account. The CV accuracy was reduced to
76% for a wider range. If the data are rebalanced in an appropriate manner, excellent
accuracy can also be obtained for distributions of eccentricities that span a wider range.
We have tested with a rebalancing method similar in nature to that used for impact
parameter prediction. We trained the model using the same amount of events for each
distribution bin. Fig. 5.13 displays the €,q,+ prediction plot using the rebalanced data. If
we compare the event points to Fig. 5.8(b), which also has the same range of eccentricity,
we see that the event points are substantially nearer to the optimum accuracy line (red
line). The cross-validation score here is 91%. Therefore, one can enhance the accuracy
of these ML, models for the estimation of the impact parameter as well as the eccentricity

by applying these data rebalancing approaches.

5.4 Conclusions

In order to estimate various initial stage properties of a heavy-ion collision system, we
have trained multiple machine learning models using the AMPT model data. We trained
and tested the ML model’s performance using the py spectrum as it is one of the direct

outcomes of heavy-ion collision experiments. We examined how the ML models learned
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FIGURE 5.13: Participant eccentricity predictions of Au-Au collision events at /s =
200 GeV after rebalancing the data using the custom method

and made adjustments to the hyperparameters to achieve the best prediction accuracy.
Four models—kNN, RF, ET, and LR—have been selected from the many tested models
to predict the impact parameter. Most models have exhibited higher than 90% accuracy
in predicting the impact parameter. Three models, the kNN, ET, and RF performed
remarkably well and provided a CV score of more than 90% in the case of the eccen-
tricity and the participant eccentricity prediction. The eccentricity predictions have the
highest accuracy in the 0.2 — 0.32 range of eccentricity. Additionally, a wider range of
eccentricity (0.1 — 0.5) has also been considered. Due to the imbalance in the training
data distribution, we observe that the selection of the eccentricity range has an impact

on the ML model performance.

Additionally, we performed a study of how the model might do in terms of predicting
the centrality classes generated by a different simulation model. We have used two
other heavy-ion collision models that are distinct from the AMPT model used to train
the machine learning models: a viscous hydrodynamic model (VISH2+1) and a hybrid
model (Hydro+UrQMD). For the events of the VISH2+4+1 model and the hybrid model,
the impact parameter predictions of the ML models are produced. Although we have
shown the results of the kNN model, all the ML models correctly predicted the central-
ity classes of these events. Despite the fact that we have found larger errors for 0.5 fm
events in both instances, the errors for other b values are comparatively small. This can
be a result of the unbalanced nature of the data set. When the data set is normalized,
it is noticed that the distribution’s peak is not exactly at the center. This suggests that

the eccentricity and impact parameter distributions across events are not isotropic.
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We have employed a variety of sampling techniques to reduce these errors. After us-
ing multiple common methods that facilitate rebalancing the data, we eventually find
that the accuracy is increased in the lower impact parameter region if we assign various
weights to the data for different ranges of impact parameters. The result is shown for
the ET model, where we have used four times higher weights for the rarer events. As a
result, accuracy in the lower impact parameter range has improved. For a broader range
of eccentricity distribution, our rebalancing method produced a CV accuracy of more
than 90%. This resulted in an overall improvement from an accuracy of 75% before to
an accuracy of 90% afterward. So, according to our study, a rebalanced data set will be

beneficial in making precise predictions for central collisions.
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Chapter 6
Summary and Conclusions

We studied different stages of heavy ion collision systems using various simulation models
and machine learning techniques. One of the primary motivations for conducting these
experiments is to study the deconfined phase of matter, i.e., the quark-gluon plasma
phase. Although the lifetime of the QGP is very short, we find several properties of the
QGP system through various final state spectrum analyses. We also find their effects on
the final outcomes of these experiments. The initial state distribution and fluctuations
majorly impact the final state hadron spectra. In the past, multiple research has shown
how the initial geometry parameters such as eccentricity €9, triangularity es, etc., affect
the collective flow components of finally produced particles. It is also observed that
almost all the final outcomes of heavy ion collision experiments depend on the centrality
of the collision events, which is also an initial geometry parameter. We know that the
collision region’s initial state energy distribution is not uniform. Because of this, and
the spatial density distribution of the initial partonic system a large angular momentum
develops. This causes vorticity-like phenomena in the plasma to arise, and we see its ef-
fect in terms of particle polarization. Along with this, the fields created by the spectator
nucleons are responsible for generating a huge magnetic field which causes transport cur-
rents to develop in the plasma. That is why it becomes crucial to know the initial state
characteristics of heavy ion collisions. In this thesis, we have studied several distribu-
tion and fluctuation-related phenomena and found their connections with the final state
hadron production. This includes the study of vorticity at different stages of the system
evolution in heavy ion collision experiments. This also includes the energy deposition at
different length scales by generating turbulence spectra, and entropic index at different
stages calculated from the temperature fluctuations. As the initial state parameters are
difficult to obtain in the experimental setup, we used several machine learning techniques

to estimate these parameters. We have also focused on carrying out a model-independent
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study in this regard, as the training of the ML models is very sensitive to the input data.

In the second chapter, we have presented our study on vorticity distribution in the initial
partonic stage and the final hadronic state. We use different definitions of vorticity to
see if we can distinguish between the vorticity distributions obtained from different defi-
nitions. Different definitions help us obtain different types of vorticity, which are used to
study various characteristics. For example, thermal vorticity is particularly of interest
as it is used to parameterize the polarization effect found for several finally produced
hadrons, which is one of the observable in heavy ion collision experiments. Although
relativistic and thermal vorticity distributions have more significant fluctuations than
the classical vorticity distribution, there is an overall global similarity. We found distinct
vortex formation at larger collision energies, and as we go lower in collision energy, the
vortices tend to diffuse more. This is observed throughout the collision energy range we
have considered, which is 20 GeV to 200 GeV. We know that vorticity distribution can
be affected by the viscosity of different layers in the medium. We obtained the specific
shear viscosity n/s from the HRG model at different collision energies. We find that
at lower collision energies, n/s is higher, and it starts to go down with increasing colli-
sion energy, and after \/syy = 80 GeV, /s becomes constant. We observed a similar
pattern for various particles. We suspect that the larger angular momentum at high col-
lision energy helps generate these distinct vortices. At the lower collision energies, the
viscosity becomes more effective, and the energy gets diffused more and more at lower
/NN, which causes the formation of elongated vortices. The scenario is different when
we study the average weighted vorticity. We see the average vorticity first increases
and then goes down with collision energy. The maximum vorticity we observed was at
around 60 GeV in all the cases. This behavior is also observed in later studies where
the maximum vorticity is observed at about 27 GeV collision energy. This behavior is
entirely different from the angular momentum change with collision energy. One of the
possible reasons behind this is that angular momentum in a system can be generated
from various sources. The moment of inertia of the system is one of them that we have
not considered in our study. We only focused on the angular momentum responsible for

vorticity production.

The system created in the earlier stages of heavy ion collision experiments has an ex-
ceedingly high Reynolds number. Due to this, several aspects of viscous flow, including
whether or not turbulence develops, are still unknown from the earlier study. As it is
evident that there are fluctuations in the initial plasma, it can constitute turbulence
flow. Hence, turbulence spectra can be obtained in this system. The turbulence spectra

provide insights into the energy dissipation in the system at various length scales. To
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study the spatial anisotropy in energy dissipation, we obtain the turbulence spectra for
velocity fields at different planes of the system. We first found the possible length scales
of the heavy ion collision system, specifically for Au-Au collisions at RHIC energies.
Then we extract the turbulence velocity from the particle flow velocity and calculate
the velocity correlation tensor. Using the velocity correlation tensor, we calculated the
energy spectra. As we work with relativistic velocities, we use a boost matrix to account
for the Lorentz boost effect. This is only done for longitudinal plane spectra as the boost
is only in the z-axis. The isotropic turbulence spectra should resemble the Kolmogorov
spectra, which have a power-law characteristic in the inertial sub-range. For Kolmogorov
spectra, the energy in turbulent flows carried by eddies of diameter D is proportional to
D®/3. Hence, the slope of the Kolmogorov type of spectra is —5/3, which is represented
by v. So any turbulence spectra fitted with a power-law distribution having slope —5/3
will indicate the isotropic energy dissipation. We have found that the v value for longi-
tudinal spectra is —5/3, nearer to the Kolmogorov type of spectra. But the v value for
the transverse plane spectrum is around —4/3. We found that the slope stays closer to
—5/3 for all the collision energies below 200 GeV and all the centralities for longitudinal
spectra. But comparatively, the change in v value is larger with collision centrality for
transverse plane spectra. This indicates anisotropic energy dissipation. The anisotropic
flows are produced in the transverse plane and suppressed due to the viscous nature of
the fluid. This is also a possible reason for anisotropic energy dissipation in the trans-
verse plane. Even though the turbulent system might be overall isotropic, if we divide

it into different planes, we find that the power law coefficients will differ on each plane.

We also analyze the temperature spectrum of the turbulent system in the early stages
and pre-equilibrium stages of QGP evolution. The spectrum is obtained by calculating
the temperature correlation tensor. By studying the temperature spectrum, one can
also understand the thermal length scales of the system. We expect the temperature
spectra to be Gaussian in nature for an isotropic medium. Though the temperature
spectrum first appears to be Gaussian, we have observed that a g-Gaussian distribution
fits it better over time. This also indicates the system anisotropy. All these suggest
that even though the turbulence observed in relativistic collisions is typically isotropic
and uniform, it would be more effective to slice the system into planes and study the

turbulence characteristics at each plane separately.

As discussed in Chapter III, there are significant temperature fluctuations in the sys-
tem. We calculate the temperature of the initial partonic system assuming local ther-
malization. We showed the temperature distribution with respect to the time of plasma
formation and collision energy for randomly selected events. With time, the fluctuations

get diminished. With collision energy, there are no such changes, but the amplitudes
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become higher for higher collision energies. To study the behavior of temperature fluc-
tuations, we parameterize the temperature fluctuations using the Tsallis entropic index.
This Tsallis distribution is a generalization of Boltzmann-Gibbs statistical distribution
with the entropic index characterizing the degree of non-equilibrium. One can obtain
the standard distribution from the Tsallis distribution for the equilibrium system, and in
such case, the entropic index ¢ tends to 1. In experiments, these q values are obtained by
fitting the transverse momentum spectrum of finally produced hadrons with this Tsallis
distribution. We obtained the entropic index for the partonic state using temperature
fluctuations. When a system has temperature fluctuations, then the generalized distri-
bution function of the system with an entropic index can be obtained by integrating
all the fluctuating states provided that the fluctuations are chi-square distributed. We
observe that the distribution of temperature fluctuations can be fitted with a Chi-square
distribution. ¢ serves as an open parameter in the distribution, and it is found out for
appropriate fitting conditions. The ¢ value obtained from the experimental py spectra
are observed to be dependent on various system parameters. We are curious whether the
q values obtained from temperature fluctuations follow a similar behavior with changing

system parameters.

The change in ¢ values is found to be linear with respect to the effective temperature,
which is also true for the experimentally obtained ¢ values. In this case, the only
difference between the ¢ value obtained from the temperature fluctuations and the final
hadron spectra is the slope of the fitted straight line. In experiments also, it is observed
that the slope is different for different collision systems. We also found the dependence
of the ¢ value with changing system parameters like pseudorapidity, collision energy, and
formation time. We find that the ¢ value increases for a larger pseudorapidity range,
plateauing for higher collision energies. In this case, larger rapidity corresponds to a
larger system volume. The behavior is similar to the experimentally obtained ¢ values.
With respect to collision energy, the ¢ value increases; however, there is a centrality
dependence. Below 100 GeV, the g values are lower for peripheral collision compared to
central collision. But above 100 GeV, the trend is reversed. This behavior also matches

with the experimentally obtained g-value with respect to the collision energy.

We also found that ¢ increases with plasma formation time, peaks around 3 fm/c, and
then decreases with increasing proper time. The increase and subsequent decrease of
q values may be attributed to the increase and decrease in the energy density of the
system. The temperature fluctuations also show similar behavior with increasing forma-
tion time. So from our study, it is evident that the ¢ values obtained from temperature
fluctuations behave similarly compared to the g values obtained by fitting the hadron

spectra. Hence one can determine how far the system is from the equilibrium state in
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terms of the entropic index for the partonic stage by studying the temperature fluctua-

tions.

In chapter V, we show how machine learning models can be a more convenient way to
estimate the initial geometry parameters of heavy ion collision experiments. We know
that probing anything in the initial state is difficult as the lifetime of the QGP system
is very small. Also, it is very difficult to calculate the initial state parameters from
the final particle spectra. We use multiple standard ML techniques to predict some
initial state geometry parameters such as impact parameter, eccentricity, triangularity,
and participant eccentricity. We use charged particle transverse momentum spectra of
finally produced hadrons as features to train the ML models. At the same time, the
impact parameter and other initial state parameters are used as target variables for the
training of the ML models. We found that almost all the models perform reasonably
well in impact parameter prediction, but only three models give an accuracy of more
than 90% for other geometry parameter predictions. The three ML models are K nearest
neighbors, extra trees regression, and random forest regression. We also did a detailed
hyperparameter scan through the randomized grid-based search method to maximize
the performance of our data. Also, to prepare the training set, we applied multiple
preprocessing techniques, such as principal component analysis, and standardized the
data set. All these have been done to find a combination of optimized ML model and

tuned training set to improve the performance of these ML models.

Although the overall accuracy was adequate, if you see the error distribution for the
impact parameter predictions, we find that the errors are very high for most central
collisions in the low-impact parameter region. This is because the training data is not
balanced; the event distribution of the impact parameter is skewed, with fewer events
for the low-impact parameter values. Also, we observed that the accuracy decreases
drastically for eccentricity and participant eccentricity prediction when considering the
whole range of eccentricity. This is also because the event distribution of eccentricity is
not a uniform distribution. To overcome this situation, we use standard sampling tech-
niques used by the ML community, such as SmoteR and ADASYN, to make a balanced
dataset. We also used a custom sampling technique where we gave more weightage to
the region where the training data has less number of sample points. We found that our
custom sampling method performs much better than the standard sampling techniques.

This is true for both impact parameter and eccentricity prediction.

We know that the training of the ML models is very sensitive to the training data. We
also studied the performance of ML models in the impact parameter and eccentricity

prediction in a model-independent manner. To do that, we have trained the ML models
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using the transverse momentum spectra generated by the AMPT model, which is a
transport model. We generated the test data from two other heavy ion collision models,
e.g., a hydro model and a hybrid model. We found that the ML models could perform
adequately when the test data came from different models. This is only true when
the data matches well with the experimental data. We have used different conditions,
such as multiple equations of states and different transport coefficients in the hydro and
hybrid models, to check the error distribution of ML model predictions. We found that
the errors are negligible for higher impact parameter values. We get higher errors for
most central collisions. This is exactly similar to the error distribution when the training

and testing are performed using the data of the AMPT model.

Finally, our study shows that only transverse momentum spectra are enough to train
ML models so that they can predict the initial state geometry parameters efficiently.
Also, the performance of the ML model can be improved by some preprocessing of the

input data using sampling techniques.

To summarize, our study is important in the current context of heavy ion collision
experiments. The polarization found in certain finally produced hadrons has already
hinted at global vorticity in the system. It is also essential to know the local vorticity
nature in an out-of-equilibrium system, especially when working with a partonic system.
Our study has shown local vorticity formation in different conditions. It would also be
interesting to see the distribution of local velocity vectors, which would directly show
us the rotational characteristics of the system. In our study, we have discussed how the
viscous effects influence the vorticity distribution. It would also be interesting to study
how vorticity can affect the transport coefficients of the HIC system. This can also
help us to determine the transition temperatures more accurately. Fluctuations and
correlations play significant roles in determining the critical point in the QCD phase
transition. We have studied velocity and temperature fluctuations in terms of power
spectrum analysis and Tsallis statistics. It would be interesting to explore the power
spectrum and the Tsallis entropic index for lower collision energies and small system
collisions. This could lead us closer to the critical point if we found behavior changes
in these parameters. In previous chapters, we have discussed how ML techniques are
being used by the particle physics community in various searches. In our study, we have
shown the uses of data sampling techniques to rebalance a dataset. This has lowered
the errors found in the low-centrality predictions. The type of data that we have used
in our study for training and testing the ML models is one of the primary observable in
HIC experiments. Thus, this will be useful in the future while working with a similar

type of dataset.
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