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Abstract

In the computing world, multimedia forensics is an exciting and chal-
lenging field, which is basically a branch of digital forensics. With the
rapid increase in the use of digital technology, crimes today are com-
mitted using contemporary techniques that do not involve physical
contact. As a result, forensic specialists are unable to examine and
analyze the data at the crime scene. A change in the investigation
techniques is necessary to achieve effective investigation of crimes in-
volving advanced technology. This thesis focuses on image and video
forgery analysis from a multimedia forensics perspective.
Forgeries of digital images compromise the authenticity and integrity
of the images. We focus on two frequently used image forgery attacks
i.e., copy-move and image splicing. The use of deep learning-based
approaches in image recognition tasks inspired us to develop a model
that can detect and locate manipulated regions in an image. We pro-
pose an LSTM-CNN based hybrid model for the generation of binary
masks and detect the forged region with an improved SIFT algorithm.
The SIFT algorithm helps the model invariant to detect and localize
forged objects. Then generate the bounding box around the forged
region to classify the image tampering as copy-move or image splicing.
Video forgery has become an easy and on-going task for the users of
smart devices since easily available software tools made the task of a
naive user effortless for video forgery. The impact of video forgery is
critical when it is used to defame a personality and hide (or forge)
important information to prove innocent in a crime scene and escape
from legal action. The traces left behind after the forgery can be
used to distinguish between genuine and manipulated videos. Us-
ing passive approaches, we can detect any unauthorized manipula-
tion, whether it’s done within a frame (intra-frame level) or between
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frames (inter-frame level). The investigation of inter-frame video forg-
eries is the main emphasis of our work. We propose, a deep learning
based 3 Dimensional Convolutional Neural Network (3DCNN) model
for detecting video inter-frame forgery and localize the same using
multi-scale structural similarity (MS-SSIM) index measurement algo-
rithm. The proposed model outperforms existing models in various
post-processing operations and compression rates.
Video forensics faces new obstacles in recognizing unethical human
actions in video surveillance systems, human-computer interactions,
etc. that requires multiple activity recognition systems. Existing deep
learning methods solve the problems of unethical human action recog-
nition which are effective in learning low-level temporal and spatial
features but struggle from learning high-level features that affect the
feature learning capability of the model. Due to this problem, deep
learning methods suffer from poor performance and learning ability.
We propose, a deep learning-based hybrid model for unethical human
action recognition using two-stream inflated 3D ConvNet(I3D) and
spatio-temporal attention (STA) modules. The I3D model improves
the performance of 3DCNN architecture and STA increases the learn-
ing capability of the model. The proposed model is compared with
the existing models using unique and multi-action datasets to show
better performance capability.
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Chapter 1

Introduction

Forensic science refers to the scientific methods used to obtain proof or evidence
that is proven true in criminal investigations. The term forensics derives from the
Latin word ‘forum’, which means ‘main square’, an ancient location where public
court hearings were held.

The definition of digital forensic science was first introduced at Digital Foren-
sics Research Workshop (DFRWS) in 2001 by academic researchers as “The use
of scientifically derived and proven methods towards the preservation, collection,
validation, identification, analysis, interpretation, documentation, and presenta-
tion of digital evidence derived from digital sources for the purpose of facilitating
or furthering the reconstruction of events found to be criminal, or helping to an-
ticipate unauthorized actions shown to be disruptive to planned operations”[6].

The NIST (National Institute of Standards and Technology) definition of dig-
ital forensics is: “Digital forensics, also known as computer forensics and network
forensics, is the application of science to the identification, collection, examina-
tion, and analysis of data while maintaining the information’s integrity and a
strict chain of custody”[7]. With the fast evolution of digital technology, digital
forensics has branched out into new fields such as computer forensics, multime-
dia forensics, network forensics, disk forensics, mobile forensics, cloud forensics,
IoT forensics, and so on. Our focus of research is on multimedia forensics. The
emergence of multimedia forensics as a subset of digital forensics is due to the
widespread use of social networks (Facebook, Instagram, Twitter, and so on) that
share approximately 1.2 billion multimedia contents per day, which we now refer
to as Bigdata. Multimedia forensics allows testing the multimedia contents to
authenticate and identify any forgeries that have occurred in the files.
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1.1 Multimedia Forensics

1.1 Multimedia Forensics
Multimedia forensics is one of the exciting and challenging fields in the computing
world which is basically the branch of digital forensics. Multimedia forensics deals
with audio, image, and video analysis using various methods to authenticate and
test the integrity of a digital source for the purpose of detecting forgery. Due to
the widespread adoption of mobile devices, lower storage costs and faster transfer
speeds, online customers are generating massive amount of data. The effect of
rapid increase in the usage of digital technology, crimes today is adopted with
modern techniques that involve no physical communication. This has surpassed
the forensics specialists’ abilities to successfully examine and analyze the data at
a crime scene. There is a need to change the investigation techniques to achieve
effective investigation of crimes involving advanced technology.

Multimedia forensics is evidence based strategy that will be used to investi-
gate and analyze the extracted digital evidence from multimedia files to combat
Cybercrimes or any other incident involving data misuse. The purpose of analyz-
ing digital evidence is to maintain the integrity and authenticity. “In the forensics
domain, multimedia forensics is concerned with evaluating digital multimedia el-
ements such as images, videos, and audio to produce digitally legal evidence”[6].
Multimedia forensics strategies include: 1. Revealing the historical background
of digital content, 2. Validating the content’s integrity, 3. Source device iden-
tification, 4.Retrieving data from multimedia signals, 5. Recognizing unethical
human actions from the videos, 6. Identifying forgeries in the image/video files,
etc.

1.1.1 Multimedia Forensics Authentication Process
Multimedia forensics strives to analyze the multimedia content such as video, im-
age or audio to generate forensic evidences. Our goal is to detect and localize the
forgeries in images and videos from the multimedia forensics perspective. Two ap-
proaches are used in image/video forensics analysis to determine the genuineness
files: a) active authentication and b) passive authentication.

(a) Active authentication: In this technique, a known authentication code is
embedded into the generated image/video by the source device for assess-
ing the integrity of the files at the receiver end. The active authentication
techniques require a watermark or a digital signature as an authentication

2



1.2 Digital Image Forensics

code. The authentication technique faces certain disadvantages as the au-
thentication technique needs to be embedded with extra code at the time
of generating the multimedia contents using a hardware device and many
of the multimedia files found on the Internet are not included with a water-
mark or a digital signature, such files need additional techniques to verify
the authenticity and integrity.

(b) Passive authentication: In these methods, no extra code like a digital water-
mark or digital signature is embedded within the image/video for assessing
authenticity and integrity. The passive or blind authentication methods
work by considering the traces or clues that are left during the creation
of digital forgeries mainly the statistical characteristics of the image/video
that are disturbed during the forgery operations.

1.2 Digital Image Forensics

1.2.1 Definition
Digital image forensics is a scientific field that identifies, validates, analyses, and
interprets images as a shred of eventual digital evidence. Image manipulation
changes the information of the original image and creates forgery images that
are not easily identified by human eyes. In digital image forgery, original im-
ages are manipulated to create forged images. Digital image manipulation can
be used for a variety of purposes, including entertainment, hiding evidence of
image tampering, disseminating false information, generating child pornography,
and producing fake image evidence in a court of law, etc. The process of digital
image forgery results in the loss of authenticity and integrity of the images. Cre-
ating a forgery typically involves some processing steps, which leave statistical
traces that can be utilized in the image forensic analysis process. Image tamper-
ing can be carried out through a variety of different image processing operations,
such as compression, adding noise, scaling, filtering, rotation, upsampling, down-
sampling, resizing, cropping, retouching, and blurring [8]. Original images have
certain characteristics like noise variation, brightness/contrast, smoothness etc.
The modification of an image content results in the alteration of these character-
istics, which causes inconsistency in the image. These inconsistencies obtained
from the image characteristics can be calculated in order to detect image forgery.
Figure 1.1 shows a typical image tampering example.
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Figure 1.1: Typical digital image tampering.[1].

The image of General Sherman with his generals was captured by Matthew
Brady at Circa in 1865. The photograph of General Francis P. Blair (sitting
far right) was inserted (above image), as he was not present in the original shot
(below image). Digital image forgery detection techniques are being developed to
prove the identity and integrity of such image tampering.

1.2.2 Image Forgery Types and Characteristics
The tampering of images changes a region or multiple regions of an image to
generate fake content and hide the facts of the original image. The common tam-
pering operations are: deleting, adding, and modifying the contents present in the
image. There is a variety of image manipulation types that are carried out on the
images and videos. The various image forgery attacks are copy-move, resampling,
noise variations, image splicing, retouching, JPEG compression, etc.[2] The most
commonly used image forgeries are shown in the Figure 1.2
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Figure 1.2: Common image forgery types.

The focus of our research is on two frequently used image forgery attacks i.e.,
copy-move and image-splicing (examples are shown in Figure 1.3).

Figure 1.3: Tampered images: from left to right are the examples showing
manipulations of image-splicing(Changing a person) and Copy-move(Copying the
fountain)[2].

The act of copying and pasting certain segments of an image onto other parts
of the same image, commonly known as the copy-move attack, is the most fre-
quently employed method of image tampering. The primary goal is to detect and
locate such types of copy and move.
Resampling forgery is carried out by modifying the geometrical transformation
of the digital image such as resizing, rotation and stretching, etc. However, the
transformations applied in an image basically leave some traces that are not
present in original images. The techniques for detecting the traces that are left
during resampling are discussed by Peng et al.[9], showing better results in terms
of accuracy.

5



1.2 Digital Image Forensics

Image splicing “is generally used as, a substitute for cut-paste in which a com-
posite image is made by cutting and joining the multiple images”[10]. It denotes
the region duplication between two images. Image splicing forgery is achieved by
merging two or more foreign images to change the original image meaning and
generate a forged image. If the image is altered with a malevolent intent, the
doctored images can lead to serious social and legal problems.
Retouching the image basically will not completely change the original image;
rather it is an enhancement or reducing certain features in the original image.
Retouching image forgery is considered as a post-processing operation where only
a few properties and characteristics of the image are modified.
The need for image manipulation types can be both beneficial and detrimental.
Image manipulation can also be used for commercial objectives, such as creat-
ing realistic visual effects in movies, glamorizing an image with image filters for
entertainment, or sharing creative ideas. Today image tampering is extremely
effective and difficult to detect because of the advanced software tools which are
freely available over the Internet. Image tampering operations are not limited
to single operations due to advance software tools, images are manipulated in
multiple locations using different manipulation types to create realistic views.

1.2.3 Gaps in existing image forgery (copy-move and
image-splicing) detection techniques.

Digital image forensic plays an important role in analyzing, maintaining the au-
thenticity and integrity of the digital images. 70% of images that are found over
the Internet are forged images and are distributed for some fraudulent gain or to
misrepresent the information among the society. There are many research chal-
lenges that need to be focused in image forgery (copy-move and image-splicing)
detection.

1. Major challenges to be addressed include the authentication, validation,
computation complexity, robustness of the post-processing operations, and
dimensionality of the features. Localizing forgery in images that have been
manipulated do not exhibit visual hints which is also a difficult and time-
consuming operation to identify and locate forgeries.

2. There is a need for deep forensic analysis in images which is essential to
rebuild trust lost in multimedia contents by using forgery detection tech-
niques.
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3. The major problem in digital image forensics is, the accurate detection and
localization of image forgeries (copy-move and image-splicing).

4. Many handcrafted feature extraction approaches developed in the literature
for the detection of copy-move and image splicing forgery have shown better
results on single tampered locations and cannot locate multiple tampered
locations with different attacks like copy-move and image splicing etc.

5. To be effective in practical situations, techniques designed to identify image
tampering must be capable of detecting any type of modified images, rather
than concentrating solely on a particular format type.

6. In image forgery (copy move), there is more importance for identifying effec-
tive features and utilizing feature-matching approaches to locate correlation
regions (sections).

7. In digital image forensics, detecting copy-move and image-splicing forgeries
is a major challenge using deep learning-based methods.

1.3 Digital Video Forensics
In the fast-progressing era of digital technology, video forgery has become an easy
and on-going task for users of smart devices. Easily available software tools and
smartphones made the task of a naive user effortless for video tampering that may
happen in the field of entertainment, crime, social media, medical, political world
or intentionally damaging the credibility of an individual. A video forgery can
have a significant impact when applied to disparage an individual, cover essential
data to prove innocence at crime scenes or escape from legal action. Digital video
forensics is a branch of digital forensics that aims to provide tools and techniques
that support digital video authentication and integrity verification. Digital video
forensics is divided into three categories: a. Source device identification, b. Dif-
ferentiating forged (or tampered) videos from the original, and c. Video forgery
detection. Our main focus of the research is on video forgery detection.

1.3.1 Definition
Video forensic analysis involves scientific investigation, comparison, and/or as-
sessment of video files that are considered as proof in the court of law. The
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detection of forgery in videos aims to locate artifacts of tampering thereby eval-
uating the authenticity and verifying the contents of the video files. Videos that
are manipulated affect the authenticity and integrity of the video files because
the statistical characteristics of the videos are modified and abnormalities are
introduced. The statistical analysis when deeply carried out ensures easy identi-
fication of the artifacts or footprints left during the tampering process.
Similar to image forgery detection methods, video forgery detection methods are
also classified into active and passive (blind) methods. Passive video forgery de-
tection methods depend on the traces of tampering left during the forgery oper-
ations. Active video forgery detection methods are straightforward methods that
depend on the advanced information (digital watermark or electronic signature)
embedded in the initial stages of video file creation. This results in the reduced
quality of the video file and requires specialized hardware to process. In addition,
the existing active video forgery detection methods address limited solutions for
video forgery operations. Passive video forgery detection methods are improved
techniques that can be used to detect various video forgery operations accurately
without relying on previously embedded information.

1.3.2 Video Forgery Types and Characteristics
A video is composed of a series of sequential image frames that appear to be
identical to one another. The tools and techniques used in digital video forensics
prove the authenticity and integrity of the videos. Video tampering is classified
into 1. Temporal tampering, 2. Spatial tampering, and 3. Spatial-temporal tam-
pering.
Temporal tempering: Temporal tampering is performed on the sequence of frames.
These attacks are mainly affecting time sequence of visual information. Common
attacks are frame removal, addition, shuffling, and duplication. Temporal tam-
pering can be at the frame, scene, and shot level
Spatial tampering: Tampering is performed on the frame’s content (x-y axis),
which shows the changes in the content of the video. The operations in spatial
tampering are morphing, cropping, inpainting, replacement, modifying, content
addition, and removal. Spatial tampering can be performed at the pixel level or
block level. In both cases, the contents of video frames are modified.
Spatial temporal tampering: In this type of tampering, spatial and temporal tam-
pering are both involved. In the same video, frame sequences and visual contents
are modified. It is done at the scene level. This tampering involves manipulating
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both the visual information along with the time sequences.
The video tampering that occurs in the spatial or the spatial-temporal domain
is categorized as intra-frame video forgery and the video tampering that occurs
in the temporal domain is categorized as inter-frame video forgery. Fig.1.4 de-
picts various categories of video forgery operations. The main focus of inter-

Figure 1.4: Categories of video forgery [1].

frame video forgery is tampering with the sequence of frames within a video. In
this type of forgery, the order of the frames is manipulated by means of insert-
ing, deleting, duplicating, and shuffling. Inter-frame video forgeries exploit the
temporal-correlations of the video frames and the properties of the traces that
are left during forgery operations determine the detection techniques employed.
Inter-frame video forgery distorts the sequence of frames in four different ways as
shown in Fig.1.5:

1. Frame insertion: In this type, a set of frames from foreign videos are inserted
at random locations for false actions or evidence. In Fig.1.5b, frames a, b,
and c are inserted replacing frames at locations 4, 5, and 6.

2. Frame deletion: In frame deletion, a set of frames are intentionally removed
from certain locations to prove false evidence in the court. In Fig.1.5c,
frames 4, 5, and 6 are dropped from the series of frames.

3. Frame duplication: In the case of frame duplication, some frames of the
same video are replicated in different locations. Frame duplication is one
form of frame mirroring. In Fig.1.5d, frames 7, 8, and 9 are replicated and
inserted after frame 3.

4. Frame shuffling: To modify the information in the original video, the series
of the video frames are modified or scrambled. In Fig.1.5e, frames 3, 4, and
5 are shuffled to change the order of frame sequence.
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Figure 1.5: Types of inter-frame forgery in the video.

The video intra-frame forgery occurs in the spatial or in the spatial-temporal
domain and individual frames are analyzed at an instant of time. Intra-frame
video forgery is classified into various categories as 1. Pixel-level, 2. Object-level,
and 3. Frame-level. In pixel-level forgery, the visible contents are modified using
copy-move, splicing, and re-sampling techniques. In Object-level forgery, a part
or object of the video frame is copied from one position to another position within
a frame. In frame-level forgery, the manipulation of the frame takes place on the
whole frame.
The general forgery operations in intra-frame video forgeries are copy-paste/copy-
move, splicing, or by up-scale cropping. In copy-paste, a small section of the
frame is copied and pasted into another location of the same video. Copy-move
forgery involves copying and moving a particular part of a frame to another part.
Splicing forgery in videos involves inserting foreign content or copying video frame
contents from another video and pasting them into the current video frames.
Splicing video forgery detection is a difficult and challenging task compared to
copy-move/copy-paste. The upscale-crop forgery enlarges and crops an original
video frame to hide some important content of a crime scene. Considering the
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relevance types of video forgeries in cybercrimes, our research work focuses on
detecting and localizing inter-frame video forgeries (particularly frame insertion
and frame deletion). We assume that frame replication and shuffling do not play
a significant role in cybercrimes related to video files.

1.3.3 Gaps in existing video forgery (inter-frame) detec-
tion and localization techniques.

Digital videos submitted as evidence in the court are very hard to be trusted, due
to the rapid increase in advanced technology, low-cost gadgets, and easy avail-
ability of tampering tools. Any layman can manipulate the videos and produce
forged evidence in a court of law. There are various challenges in video inter-frame
forgery detection and localization that need to be analyzed and addressed.

1. Traditional methods to evaluate inter-frame forged videos (high quality and
lengthy) have demonstrated poor performance and lower efficiency.

2. Deep learning (DL) based 2DCNN models are best in extracting spatial
features but suffer from temporal feature extraction and result in high com-
putational costs when used to detect inter-frame video forgery.

3. The techniques developed so far for detecting inter-frame video forgery
works well on fixed GoP structure and fails to detect forgery which has
variable and multiple GoP structure.

4. To identify and localize video processing and manipulation, universal video
forgery detection and localization is essential.

5. Techniques that detect forgeries in static backgrounds will not work in dy-
namic background videos, and methods that detect forgeries in slow-action
videos are not able to detect forgeries in fast-action videos.

6. Methods which are designed for the detection of a single type of inter-frame
video forgery are not capable to detect forgeries involving multiple types.

7. Many of the video inter-frame forgery detection techniques have limited the
number of frame counts in the operation of frame insertion, deletion, or
duplication.
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8. The existing techniques for detecting and localizing video forgery work only
on minimum video length and low-resolution videos.

9. The inter-frame video forgery techniques suffer from the availability of stan-
dard datasets to carry out the comparative analysis of forgery operations.

10. To detect and locate forgeries in videos efficiently, the researchers need to
address the robustness and computational complexity of the forgery detec-
tion and localization techniques.

1.4 Objectives of the Research
The goals of the research work are as following:

1. To develop an image forgery recognition model from the digital image foren-
sics perspective.

2. To identify and locate forgeries in the inter-frame video files (insertion and
deletion forgery).

3. To recognize unethical human actions in the videos from digital video foren-
sics perspective.

1.5 Scope and problem definition
Multimedia forensics uses the scientific approaches to analyze the multimedia
contents to prove the authenticity and integrity of the files. The major focus is
on the analysis of forgery in image and video contents. Multimedia forensics tools
are essential due to increase in the multimedia contents generated from various
advanced multimedia software tools, digital devices, and social media websites.
The growth of massive data have challenged the forensic investigators to analyze
and process the data effectively. Many of the approaches for multimedia forgery
detection techniques focus on unique forgery detection techniques but in real
world multiple image/video forgery operations are carried out to hide the details
of forgery from the human visual system. So, there is a need of universal forgery
detection techniques.
The proposed models are beneficial to the law enforcement agency in developing
forensic tools to process image/video forgery analysis on huge amount of data.
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It also helps the forensic analyst to investigate the forgery in crimes related to
unethical human action, and pornographic images. Our proposed models are
tested on benchmark datasets which are collection of numerous images/videos of
multiple types of forgery operations. To develop the proposed model, a fusion of
recent approaches in deep learning are utilized.

1.6 Contribution of the thesis
The contributions of this work can be organized into four aspects. The first
approach is to analyze images that are forged with easily available software. There
are image forensic tools which help the forensic investigator for analyzing forged
images, but are not convincing in detecting the type of forgery and forged region.
A pre-trained hybrid LSTM-CNN based model is proposed for the generation of
binary masks and detect the forged region with improved SIFT algorithm. The
bounding box around the forged region classifies the image tampering as copy-
move or image splicing.

The image manipulation due to specific intentions like cyber bullying, extor-
tion etc. has increased rapidly in recent times. The need of pornographic image
analysis is essential to rebuild the trust on the images by using pornographic
forgery detection technique proposed in the second aspect. A three steps process
is used in the analysis of porn image forensics. A pre-trained ResNet50 model
is used to classify porn images. To detect porn forgery an image, we have used
LSTM-CNN model. Finally, the forged object is classified as copy-move or image
splicing using template matching with SIFT algorithm.

In the third aspect, we have proposed inter-frame video forgery detection and
localization with respect to frame insertion and deletion forgeries. To confirm
the integrity and authenticity of the video contents, inter-frame video forgery
detection and localization are essential for the forensic investigator from digi-
tal video forensics perspective. A deep learning based 3DCNN (3 Dimensional
Convolutional Neural Network) model is designed for detecting video inter-frame
forgery and to localize the forgery, we have used multi-scale structural SIMilarity
(MS-SSIM) index measurement algorithm.

In the fourth aspect, we discuss deep analysis of video files that has become
a prerequisite in human action recognition methods concerning to cyber-crime
investigation and prevention. A Deep Learning based hybrid model is proposed for
unethical human action recognition using two-stream inflated 3D ConvNet (I3D)
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and spatio-temporal attention (STA). The I3D model improves the performance
of the 3D CNN architecture by inflating 2D convolution kernels into 3D kernels
and STA increases the learning capability by giving attention to each frame’s
spatial and temporal information.

1.7 Outline of the thesis
This thesis focuses on image and video forgery analysis from a multimedia foren-
sics perspective. The thesis is divided into six chapters including an introductory
chapter and a concluding chapter. The following is the outline of each of these
chapters:
Chapter 1 is the introductory chapter. This chapter provides the necessary back-
ground and the motivation for the work reported in this thesis. The chapter
begins with an introduction to multimedia forensics and the role of the authenti-
cation process (forgery of images and videos). The impact of digital forensics on
images and videos is discussed with image/video forgery types. The research gaps
in image forgeries (copy-move and image-splicing) and video forgeries (insertion
and deletion) were identified from the literature and defined the scope along with
the problem definition. Finally, the Chapter concludes with the contributions
and outline of the thesis.

Chapter 2 discusses the background and literature survey of image and video
forgery detection techniques, as well as the challenges and limitations of forgery
detection. Image forgery detection techniques for copy-move and image-splicing
are discussed with respect to handcrafted and deep learning-based methods with
their limitations. Inter-frame video forgery detection techniques for forgeries such
as frame insertion and deletion are discussed from feature engineering and deep
learning-based methods.

In Chapter 3, we propose the image forgery detection and localization ap-
proach to copy-move and image-splicing forgeries. The objective of our work is to
analyze images that are intentionally forged with copy-move and image-splicing
to cover the crime scene. The forensics tools available today may help the forensic
investigator to analyze the forged images, but they lack in identifying the type
and region of forgery[11]. Our objective in this Chapter is to categorize the forged
images (copy-move or image-splicing) and locate the areas that were forged. We
propose a pre-trained LSTM-CNN[12] based hybrid model to identify forgeries
(copy-move and image-splicing) in complex images. The output of this model is
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a binary mask. The template matching along with the SIFT algorithm[13] uses
the binary mask and the input image to generate the forged object. Then, we gen-
erate bounding boxes to show the classification of forgery. The proposed model
classified image forgery on benchmark datasets resulting in better performance
compared to existing models.

In Chapter 4, we proposed a model for inter-frame video forgery (insertion
and deletion) detection and localization from a cybercrime analysis perspective.
Extracting efficient features from videos is a significant challenge. In the litera-
ture, there are various techniques proposed for the detection of inter-frame video
forgeries[1, 14]. We proposed a deep learning-based 3DCNN model[15, 16] to
extract high-dimensional features and detect inter-frame video forgeries. Local-
ization of inter-frame forgeries (insertion and deletion) in the video is carried
out by spatial-temporal analysis using a multi-scale structural similarity(MS-
SSIM)[17, 18] index measurement algorithm for which the original source is not
available. The proposed model learns more relevant characteristics to detect
video inter-frame forgeries with high classification accuracy and outperforms the
existing models in both still and background moving videos without limiting post-
processing operations, compression rates, and video length.

In Chapter 5, we explore the recognition of unethical human actions from a
video forensic perspective using a hybrid model (deep learning based). We ad-
dressed the problem of complex unethical human action recognition by improv-
ing the high-level feature learning capability using the fusion of spatio-temporal
attention(STA)[4] and two-stream inflated 3D ConvNet(I3D)[3]. The I3D im-
proves the performance of 3DCNN architecture by inflating 2D convolution ker-
nels into 3D kernels and STA increases the learning capability by giving attention
to each frame’s spatial and temporal information. From the video forensics per-
spective, the proposed model is unique and is the first experimental demonstration
of STA+I3D hybrid model for intelligent unethical human action recognition of
complex video files.

Chapter 6 summarizes the contributions made to address the aforementioned
three problems. Furthermore, the chapter suggests some research directions for
future work.
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1.8 Summary
The discussion on digital forensics began in the 1970s when the US Federal Rules
on digital evidence were initially introduced. In the mid-to-late 1980s, actual
digital forensics investigations commenced as federal agents had to devise meth-
ods to examine computers for digital evidence. Arch. group for digital forensic
research was started in Utica, NY (August 2001) and named DFRWS (Digital
Forensic Research Workshop).
The term Multimedia forensics first appeared in early 2000. By utilizing multi-
media forensics techniques, it is possible to verify authenticity, integrity verifica-
tion/tempering detection, enhancement/restoration, interpretation and content
analysis, and source identification. In this chapter, we introduce the concept of
digital forensics and multimedia forensics. The impact of digital image/video
forensics is discussed along with image/video forgery types. The research gaps
in image and video forensics were identified from the literature and defined the
scope and the problem definition. Finally, we include the contributions made and
gave the outline of the thesis. In chapter 2, we discuss the background and the
related work with respect to this research.
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Chapter 2

Background and Literature
Survey

In Chapter 1, we discussed about multimedia forensics in regard to image and
video forgery and then identified the gaps in image forgery and video forgery
(inter-frame) detection. In Chapter 2, we go into more detail about its back-
ground and related research. Numerous survey papers have been published in
recent years on image and video forgery detection. Syed tufael nabi et al.[19],
carried out a comprehensive survey on image and video forgery detection tech-
niques, their challenges and future directions which gives a clear understanding
to carry out further research in this area. Akhtar et al.[14], provided a systematic
and detailed explanation of passive video forgery (intra and inter-frame) detec-
tion techniques and elaborated the research work carried out to date with pros
and cons. The problems of the proposed methods and datasets are systematically
discussed along with future research directions. Judith A. Redi et al.[8] discussed
about a collection of tools that can be used to examine the sources of image forg-
eries and verify the authenticity of the devices used to capture images. Also, the
authors have emphasized on the major challenges that are yet to be overcome
by the community of researchers working in the field of digital image forensics
(i.e., 1. robustness of the existing forgery detection tools and 2. lack of publicly
available standard datasets).
According to Qureshi et al.[20], image forensics is a major research topic in se-
curity applications, focusing on detecting and authenticating image forgery. In
addition, the paper gives a comprehensive overview of different methods for de-
tecting forgery in images, complementing the limitations of existing approaches.
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Xiang Lin et.al (X. Lin et al., 2018) provided a brief review on recent advances
in passive digital image security forensics and categorized image forensics ap-
proaches based on various kinds of traces (1. traces left in image acquisition, 2.
traces left in image storage and 3. traces left in image editing).

2.1 Image Forgery detection techniques
The goal of digital image forensics is to identify authentic and forged images. It
attempts to restore trust in images by employing forgery detection techniques.
Forensic analysis of digital images is critical and is a major topic in multimedia
security research. Digital image forgery detection techniques mainly focus on
detecting forgery by using various properties of the tampering process. Passive
or blind digital image forgery detection techniques are categorized into five types:
1. Pixel-based, 2. Compression-based, 3. Camera-based, 4. Physics-based, and
5. Geometric-based[20].
In practice, pixel-based techniques are generally used and these are grouped into
four techniques: copy-move, image-splicing, resampling, and retouching. We limit
our study to pixel-based image forgery (copy-move and image-splicing) detection
techniques. In pixel-based techniques, the pixels are taken into consideration
while detecting the tampering, since the statistical irregularities are occurred
during manipulating the images at pixel level. These techniques work on the
analysis of inter-pixel correlations that exits from the tampering process directly
or indirectly. The copy-move and image-splicing forgery detection techniques can
be divided into handcrafted-based techniques and deep learning-based techniques.

2.1.1 Handcrafted based techniques
Image forgery (Copy-move) detection techniques
In the process of copy-move forgery, an area of the image is duplicated and then
inserted into a different location within the same image. During the forgery
operation of copy-move, correlation within the copied region exists. This corre-
lation artefact are used in various detection methods for detecting copy-move
image forgery. The general structure of the copy-move forgery detection is shown
in Fig. 2.1. The copy-move forgery detection techniques can be classified into
block-based, key point-based, and hybrid-based techniques. The pre-processing
stage is common in block-based and key-point based approaches. In block-based
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Figure 2.1: General structure of copy-move forgery detection.

techniques, the forged image is divided into overlapping or non-overlapping
blocks. This division is followed by feature extraction from each block and
these features are matched within the block pairs. During the feature mapping
stage, suitable data structures are employed to arrange or organize block-based
features, and the determination of forgery is based on the matching of feature
pairs of neighboring blocks. Various matching techniques such as radix sort,
lexicographical sorting, k-d tree, hash value, and Euclidean distance can be
employed in block-based techniques [21].
Local features such as corners, edges, and blobs are extracted from tampered
images using key-point-based techniques. A group of descriptors is utilized
to enhance the reliability of each feature. Then, each descriptor is matched
with another descriptor to find forged regions. In key-point-based techniques,
matching techniques are explored using best-bin-first, 2-nearest neighbors (2NN),
generalized 2NN (g2NN), Broad First Search Neighbors (BFSN), clustering etc.
Further filtering is included for removing spurious matches and an optional
post-processing step is carried out that follows a transformation pattern.
The block-based or keypoint-based approaches are used to extract the features,
and pairs of similar feature points were matched and then filtered. The two
distinct regions are categorized as duplicates if they are densely matched pairings.
Both approaches use diverse feature extraction techniques. For block-based
method, one can use Discrete cosine transform (DCT)[22], local binary pattern
(LBP)[23], Discrete wavelet transform (DWT)[24], Singular value decompo-
sition (SVD)[25], and Principal component analysis (PCA)[26], etc., while
the keypoint-based method uses scale-invariant feature transform(SIFT)[27],
Mirror-reflection Invariant Feature Transformation (MIFT)[28], speed up robust
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features (SURF)[29], and ORB[30] etc. to extract features from an image.
A large number of copy-move forgery detection methods have been reported in the
literature. From the block-based copy-move image forgery detection techniques,
Wang et al. [31] applied discrete cosine transform (DCT) as a feature extraction
technique with package clustering algorithm as feature matching method. The
model can locate irregular and tampered regions, but resist in adding white
Gaussian noises and suffers from detecting contrast ratio, luminance and color
intensity forged images. The DCT and cellular automata were used as a feature
extraction technique for copy-move image forgery detection and Kd-tree based
nearest neighbor searching algorithm was used as an feature matching technique
by Gulnawaz and Qadir [32]. This approach works well even when copy-move
forged image is heavily affected by post-processing attacks. The overall detection
accuracy achieved is better but, the time complexity issue needs to be addressed
in the proposed model. The block-based techniques are good in detecting forged
regions with higher accuracy but are affected by high computational complexity
and are not robust in detecting various post-processing attacks in copy-move
forgery.
In Key point-based techniques, image key points are detected and matched
in the whole image for the detection of duplicated regions. These techniques
are applied to entire images with high entropy regions (high disorder and low
energy). The key point-based techniques are classified into Scale Invariant
Feature Transform (SIFT) and Speed Up Robust Features (SURF). Scale
Invariant Feature Transform (SIFT) is invariant to forged images which are
geometrical and illumination transform.
The authentic image region and the copied region are correlated in copy-move
image forgery. This correlation is used as a basis to detect the forgery. With
the SIFT algorithm, the precision of detection can be improved and robustness
against post-image processing can be increased. SIFT algorithm is the best
feature-based matching algorithm that can match post-processing operations like
rotation, noise, and scale variation [27]. The SURF algorithm is fast and robust
since it works on similarity invariant representation for comparing forged images.
The feature descriptor used by SURF is 64-D for every key point and compared
to SIFT, SURF is easy to compute. SURF image feature points detector has
appeared as an alternative to SIFT. Its main advantage is, it is fastest in
computation while keeping a high descriptive power (including repeatability,
robustness and distinctiveness)[31]. SURF techniques are better than SIFT
in rotation invariant, blur and warp transform. SIFT is better than SURF
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in case of different scaling of forged images. Key point-based approaches are
computationally efficient when it comes to image compression, Gaussian noise,
illumination, and rotation as compared to block-based techniques. However,
Key point-based approaches do not work well in smooth background areas that
are used to hide small smooth regions, which cannot be extracted effectively
resulting in low detection accuracy.
Hybrid-based methods are used to solve the differences of block-based and
key-point-based techniques[21]. To make the copy-move forgery detection more
efficient and accurate, two or.. or more methods of block-based and key-point
based methods are combined to have a hybrid approach. The hybrid-based
techniques overcome the limitation of key point-based and block-based meth-
ods. Zheng H et al.[33], have proposed an efficient algorithm to detect image
forgery (copy-move) using moments of Zernike and SIFT with g2NN feature
matching. Results from the experiment revealed that the technique is reliable
in detecting smooth regions and post-processing operations when compared
to key point-based and block-based techniques. To improve the detection of
copy-move images that are forged with varying scale and JPEG compression,
feature extraction techniques like Fourier-Mellin and SIFT techniques are used
and feature matching methods like g2NN and Patch match algorithm are used
by K Bihari et al.[34]. The model results in the less computational time and
better performance.
Image-splicing forgery detection
Image-splicing forgery is the image tampering operation of cutting and pasting
objects from one or more images generating a new forged image. To make
the image-splicing forgery indistinguishable some post-processing operations
are carried out on a spliced region of the forgery image. Image-splicing is also
called image composition and there is no region duplication in image-splicing.
In contrast to copy-move, locating forged regions is a difficult task in image
splicing. The detection of image-splicing forgery depends on statistical clues
like discontinuity in edges, inconsistency in lighting, disturbances in image
bi-spectrum, resampling features, compression etc. The discontinuity in the
edges arises when a replicated portion leaves irregular sides in the altered region.
The two images don’t have the same illumination since there might be some
illumination variances between the tampered area and the rest of the image.
Johnson and Farid[35] presented a technique that measures the difference in the
image illumination path. A change in the computed path is an indication that
the image has been tampered. Poly spectral analysis, sometimes referred to as
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bi-spectral analysis or bi-coherence is introduced as a result of the non-linearity
of the signal co-relations in signals that can be used to formulate the issue of
detecting image splicing forgeries. When used for image splicing detection, the
bi-coherence magnitude and phase characteristics showed enhanced detection
accuracy[36].
In a digital composite image (image splicing), lighting conditions are often
difficult to match. Lighting conditions can reveal traces of digital tampering
that can be utilized to detect forgeries in image splicing. Johnson, M. K et al[35]
discussed how to estimate the direction of a point light source from a single
image to detect image tampering.
The resampling feature is best suited for capturing compression, resampling, and
shearing artifacts. Due to interpolation, resampling induces periodic correlations
among the pixels. Forgeries involving image splicing and resampling are detected
by resampling detection algorithms, while cloning and region removal are
detected by copy-move detection algorithms.
Hilbert-Huang Transform (HHT) method was used to exploit the non-stationarity
and non-linearity of image-splicing forgery. Furthermore, the moments of wavelet
sub-bands were calculated as features to detect image-splicing forgery with
high detection accuracy[20]. For image-splicing forgery detection, He et al.[37]
used Markov features. Based on DCT’s Transition Probability Matrix, these
features are derived. The technique achieves detection accuracy of over 91%.
An enhanced Markov model is applied in the Block Discrete Cosine Transform
(BDCT) domain as well as in Discrete Meyer Wavelet Transform (DMWT)
domain for feature extraction[38]. To classify the spliced image from an authentic
image, the role of discriminative features for SVM classifier is applied. The
experimental results show that the proposed method perform better than existing
methods.

2.1.2 Methods based on Deep learning
Early detection methods of image forgery were limited to detecting a single type
of forgery since the image forgery type used was unique and the clues left af-
ter forgery are also unique. A feature extraction technique and a classifica-
tion method used were unique in a single type of image forgery detection[10].
The handcrafted feature extraction methods used for detecting single-type image
forgery, in which the input image is preprocessed and features are extracted, then
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thresholding criteria is applied on the features extracted from the image to map
and classify the image as forgery or authentic. In a realistic scenario, a single
image is altered by various image tampering operations using advanced software
tools. In these forgeries, it is very difficult to detect and locate the traces that
are left during multiple forgery operations. Thus, using handcrafted feature ex-
traction methods, it is difficult to detect such multiple manipulations[39]. So,
a universal image forgery detection approach is essential that can automatically
learn traces left by image manipulation. The use of advanced deep learning (DL)
techniques aid to solve the problems of computer vision that motivated to apply
deep learning models to detect image forgeries. Deep learning (DL) models have
outperformed traditional methods in feature extraction and detection accuracy.
The features that are extracted from a picture determine how well the classifi-
cation system performs. Higher the quality of the features extracted, the higher
will be the accuracy. Forgery detection and localization in images are the two
important areas of research in digital forensics which have received a lot of atten-
tion.
Given an adequate amount of input data, DL-based models can extract features
(both complex and abstract ) from the manipulated image. However, deep neural
network (DNN) training is a challenging task and demands a large quantity of
data and high processing capability.
Recently, deep learning architecture is popularly used to solve the problems of
hand-engineering-based methods and has shown significant results in many com-
plex cognitive tasks. The major benefit of deep learning is, it can learn complex
and massive amount of data. Convolutional neural network (CNN) is one of
the most popular deep learning networks for handling image classification using
convolutional layers. Feature maps are created for an input image using convo-
lutional filters. Feature maps holds the important features present in the input
image. Deep convolutional neural networks are applied in image classification,
image forensic, image hashing retrieval, etc., and have shown better performance
than the traditional methods.
In [40], convolutional neural networks (CNNs) are used to automatically learn
hierarchical representations from RGB color input images for detecting forgeries
in image-splicing and copy-move. The experiments carried out on several publicly
available datasets demonstrated that the proposed CNN model performed better
and more accurate when compared to the other existing models. Wu Y et al.
[41], introduced end-to-end deep neural network-based forgery masks and used
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a CNN to extract block-like features from an image to detect copy-move forg-
eries. The experimental results demonstrated that the proposed method achieves
better forgery detection performance than classic approaches relying on different
features and matching schemes. Junlin Quyang et al.[42] proposed a copy-move
forgery detection method based on a convolutional neural network that uses an
existing trained model using a large database such as ImageNet. Even though
the authors obtained good experimental results, the method is not robust to real
scenario of copy-move image forgery detection.
To eliminate the laborious feature engineering process, a Convolutional neural
network was used as a way of learning directly from the available training data
[43]. The proposed method detects photographic splicing and locates forgery re-
gions yielding a classification accuracy of more than 95%. The convolutional neu-
ral network-based detection methods explored the differences of image attributed
between un-tampered and tampered regions in an image. The ringed residual
U-Net (RRU-Net) with CNN was used for image splicing forgery detection [44]
to strengthen the learning procedure. The results of the method were promising
as compared to other splicing forgery detection methods. Semantic segmentation
in deep learning models has shown good performance results by learning hierar-
chical features of different objects in an image[45]. But, semantic segmentation
techniques segment only the meaningful objects within the images and could not
segment objects of different image manipulation operations. To overcome the
problems of deep learning with low robustness and complexity in image-splicing
forgery detection, a multiscale lightweight image-splicing forgery detection model
was proposed [46]. The MobilenetV2 model is used as the backbone network for
improving the image-splicing forgery detection performance through skip connec-
tions. In comparison to other detection techniques, the experimental outcomes
indicate that the suggested model exhibits commendable performance. The model
needs to ensure better accuracy and capability to handle the complexity of the
datasets.

2.2 Video Forgery Detection Techniques
Passive forgery detection techniques do not use the video metadata, instead they
use the traces of forged content that are left during the generation of the fake
video. By extracting features from video frames, passive inter-frame forgery de-
tection techniques can be used to verify the authenticity of video files. Video
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editing will dispense some traces of forgery that can be used to verify its authen-
ticity. These traces can be: 1. More prediction errors, 2. High frame intensity
values between temporal and spatial correlation, 3. Motion residues and noise,
4. Optical flow abnormalities, 5. Motion vectors, 6. Frame quality, 7. Variation
of prediction footprint (VPF), and 8. Motion-compressed edge artifact (MCEA).
Figure1.5 shows four different types of tampering attacks that can be detected
by passive inter-frame video forgery detection methods. The typical process for
creating video forgeries involves, breaking the video into individual frames, and
then manipulating them through actions such as deletion, insertion, and replica-
tion. Finally, recompressing the altered video. There have been many different
methods suggested in the literature for identifying inter-frame forgery in video
sequences [14]. Most of the techniques are based on manual feature extraction to
identify the artifacts of forgery and these features are sensitive to post-processing
operations (light inconsistencies, noise, compression, blurring, etc.)[47]. Many au-
thors have earlier suggested various methods to detect digital inter-frame video
forgery for video forensics. We divide these methods into two groups as, 1. Fea-
ture engineering-based video inter-frame forgery detection methods and 2. Deep
learning-based video inter-frame forgery detection methods.

2.2.1 Feature engineering-based video inter-frame forgery
detection methods

Stamm et al. [48], presented an approach for detecting frame deletion or insertion
operated by an increase in motion prediction error in P-frame and this method
was used to design as an anti-forensic technique to make digital forgeries (deletion
or insertion) undetectable by forensic techniques. The proposed model fails to
locate deleted frames and only works with fixed group of pictures (GoP) sizes.
A novel detection scheme for video inter-frame forgery is suggested by Chao et
al.[49]. The insertion forgeries were detected using local feature-based (window-
based) and logarithmic search (binary search) based methods. Optical flows and
double adaptive thresholds were used frame-by-frame to identify deletion forg-
eries. The model performs well in insertion forgery detection as compared to
deletion forgery detection. Wang et al. [50], proposed optical flow analysis to au-
thenticate and identify inter-frame forgeries (insertion, deletion, and duplication)
in digital videos. The proposed technique was robust to some degree on MPEG
compression but had limits with respect to computational cost.
A double encoding detection method called the Variation of Prediction Footprint
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(VPF) was used by Gironi et al.[51] to detect frame insertion. The proposed
method cannot detect frame alterations when the attacker deletes an entire GoP
and it was also unable to locate accurately the deletion and insertion forgeries.
Sitara et al. [52], identified the abnormalities in video inter-frame forgeries (in-
sertion, deletion, shuffling, and duplication) using inconsistency in velocity field
and VPF, achieving a detection accuracy of 92.3%. The model was not tested on
videos with different quantization scale and on videos with a moving background.
Inter-frame forgery detection in MPEG-2 and H.264 encoding was proposed by
Kingara et al. [53] by utilizing the footprints from motion, brightness gradi-
ent features, optical flow coefficients and prediction residual. The performance
of the method suffers when used on videos with strong light source, dynamic
videos and variable GoPs. Based on the similarity analysis, a passive-blind ap-
proach for detecting video forgery (inter-frame) was proposed by Zhao et al.[54].
In this, HSV(Hue-Saturation-Value) color histogram matching method and the
SURF(Speeded Up Robust Features) technique was used for feature extraction.
These two features are combined with Fast library for approximate nearest neigh-
bors(FLANN) algorithm for detecting forgery. However, the method requires
source videos to be correctly obtained. This technique was not capable of detect-
ing complex inter-frame forgeries of videos containing many video shots.
V Kumar et al.[55], proposed inter-frame video forgery detection using correlation
coefficient distance between the video frames by calculating minimum distance
score and used dual-threshold to differentiate the type of forgery (insertion or
deletion). The proposed model could achieve 97% accuracy, but had a limitation
with the number of videos to process.
Video frame tampering is a common forgery operation today, where the frames
are inserted or removed to modify the information in the videos. To detect forgery
artifacts generated during the compression were explored by Xiao Jin et al.[56]
based on high-frequency features of reconstructed DCT coefficients. The proposed
algorithm detects tampering of frames in videos and locates the frame tamper-
ing point in the series of video frames. The problem of noises in illumination
and jitterness occurring in real-time videos was explored by Han Pu et al.[57]
using a robust optical flow algorithm that uses noises from jitterness and severe
brightness of inter-frame forgery videos. The proposed optical-flow algorithm
extracts features that have changes in the frame texture and the videos having
more jitterness were detected with motion entropy of variable thresholds. The
performance results of the method were compared with existing methods on 200
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videos obtaining accurate and robust results. The feature engineering-based anal-
ysis methods work well on videos with less number of frames and cannot handle
the videos when the number of frames are more. In addition, these methods are
computationally complex and consume a lot of duration in processing, affecting
the performance evaluation metrics.

2.2.2 Deep learning-based video inter-frame forgery de-
tection methods

Deep neural networks have the ability to extract complex high-dimension features
from the input image patches and make efficient representations to identify videos
that are tampered with. Deep learning encourages researchers to use the models
of machine learning and deep learning to investigate forgeries in the field of digital
video forensics. Deep learning is the subset of machine learning that can extract
the features automatically without an external feature engineering process. Many
deep learning-based algorithms are proposed for forensic analysis in the image and
video forgery till date[19]. The deep-learning-based methods, particularly CNNs
have exceptionally achieved better results in many computer vision problems,
specifically in large-scale image classification. Recently, efficient CNN models are
used for detecting video inter-frame forgeries. Long C et al.[58] were the first
to use CNN model for detecting frame duplication forgery using a coarse-to-fine
deep convolutional neural network. In this model, when a video contains multiple
sequences of duplicated frames, the model’s performance degrades. Kaur et al.
[59], proposed a highly efficient method to detect an inter-frame forgery in videos
using in-depth CNN that utilizes spatial and temporal correlation between the
frames and identifies the abnormalities within the frames. CNN models using a
transfer learning approach were suggested by Xuan Hau et al. [60] for detecting
video forgeries in inter-frame category. However, the approach was unable to
extract the temporal features accurately. The authors proposed a Video Inter-
Frame Forgery Dataset (VIFFD) that includes insertion, deletion, and duplication
forgeries for experimental analysis. Neetu Singla et al. [61], proposed a feature
engineering-based machine learning approach for detecting frame deletion forgery.
In this, to predict the authenticity of video shots, three machine learning models
were used: Support Vector Machine (SVM), Multilayer Perceptron (MLP), and
Convolution Neural Network (CNN). The results of this approach reveal that the
CNN model is more accurate than SVM and MLP in distinguishing genuine and
fake sequences. Mamtora et al.[62], used LSTM framework to identify and localize
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spatial and temporal alterations in video. The experimental results were validated
using the REWIND dataset, which included 10 forged and 10 authentic videos.
The model’s efficacy was shown at the pixel, frame, and video levels. Jhonston el
al.[63] used Convolutional Neural Network as a framework for detecting features
from H.264 video sequence. The features extracted were used for localizing the
key frames of tampered areas in the forged video with better accuracy. However,
the model proposed was limited to a single type of video forgery with a fixed GoP
size and static background.

2.2.3 Summary
In this Chapter, we have explained the background details of image and video
forgery detection techniques and their related works that exist in the literature.
Image forgery detection techniques for copy-move and image-splicing are dis-
cussed with respect to handcrafted and deep learning-based methods with their
limitations. Video forgery detection techniques for inter-frame forgery (insertion
and deletion) approaches are discussed from feature engineering (feature extrac-
tion) and deep learning-based methods. The first objective of our work will be
discussed in Chapter 3, i.e., detecting and locating forgery in images with respect
to copy-move and image-splicing forgeries.
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Chapter 3

LSTM-CNN based hybrid model
for image forgery detection and
localization

In Chapter 2, we discussed the background and literature survey of image and
video forgery detection techniques and identified the challenges and limitations
of forgery detection. In this Chapter, we design a model for image forgery (copy-
move and image-splicing) detection and localization. Multimedia forensics is es-
sential to analyze multimedia contents to produce authentic, and integrity reports
as evidence in the court. One of the objectives of our work is to analyze images
that are intentionally forged with cloning and cut-paste to cover the crime scene.
The tampering of images is done using advanced and freely available software
tools. The main idea is, forged images shouldn’t be distinguishable from normal
human eyes and generate fake content to cover up historical facts. Image tamper-
ing techniques can be beneficial for creating visual effects in movies, glamorizing
an image with image filters for entertainment, or sharing creative ideas. At the
same time, forged images can be used to humiliate the female gender by creating
fake porn images and can also be used to provoke individual emotions causing
serious problems. The forensics tools available today may help the forensic in-
vestigator to analyze the forged images, but they lack in identifying the type and
region of forgery.
Digital image forensics aim is to detect forgeries in images and to build the trust
lost in images and videos due to sophisticated image forgery tools. Image tam-
pering refers to a distinct forgery type that alters or distorts a region or more
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than one region of the image by applying multiple forgery operations. The most
prevalent image forgery operations are image-splicing and copy-move. In copy-
move, particular portions from the image are copied and pasted onto other parts
of the current image. Finding more than two comparable areas within a single
image is the main task of the copy-move image forgery detection technique.
Image-splicing “is a substitute for cut-paste in which a composite image is made
by cutting and joining the multiple images”[64]. The detection of image-splicing
forgery is more complex compared to copy-move forgery since, objects copied in
the same image have similar contours with size, texture, transitions, etc. But, in
image-splicing, external image content is added with different sizes, transitions,
textures, etc., which makes it more difficult to detect the forgery. Various image-
splicing forgery detection methods have been put forth by different researchers
in the literature[11]. Image forgery detection techniques based on Handcrafted
feature extraction are generally used but they are limited in detecting multiple
forgery regions and are generally hard to detect the location and type of image
forgery.
Recently, deep learning-based approaches have outperformed handcrafted fea-
ture extraction techniques, as they are better at extracting features and have
shown high accuracy in forgery detection. The image forgery detection accuracy
is higher when the quality of the image feature extraction is higher. Detect-
ing image forgery and localizing the forged region in images have received more
emphasis in the digital image forensics area. Among the various deep learning-
based methods Convolutional Neural Networks (CNN)[65] and Recurrent Neural
Networks (RNN)[66] have shown better results in pattern recognition of images.
Semantic segmentation in deep learning models has also shown good results by
learning the hierarchical features of various objects within an image. But, this
technique segment only the meaningful objects within the images and could not
segment objects of different image manipulation operations[45]. The artifacts
generated during the image tampering operations like compression, resampling,
and shearing are better captured by resampling features. The interpolation that
occurs during forgery operations induces some periodic correlations among the
pixels. The CNN approach is highly effective in producing spatial feature maps
for distinct regions within the image and resampling features can be useful for
capturing certain forgery artifacts. The spatial feature maps and resampling fea-
tures can be combined and utilized to locate tampered regions.
To identify forgery in images, many conventional methods have been devised over
time. Sami Bourouis et al.[10] contributed to the taxonomy and a review of the
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current developments in the area of multimedia forensics. In addition, the au-
thors investigated the way discrepancies affect the characteristics of the forgery
image. A doubly stochastic model (DSM) based technique was proposed by Dua
et al.[67] to differentiate original images from the copy-move and image splicing
attacks and localize tampered regions. To localize a copy-move attack, features of
each block are identified using phase congruency, and to localize a splicing attack
block-wise correlation maps of dequantized DCT coefficients were used. Due to
multiple techniques, the complexity and overhead of the model was increased. To
identify fake image regions, Anuj R et al.[68] suggested an improved SURF and
template matching technique. The advanced SURF technique detects copy-move-
based image forgeries, and template matching identifies the spliced and cloned
portions of the input image. When images are scaled differently or have smooth
background areas, the SURF approach fails.
Deep learning-based image forgery detection techniques perform better than tra-
ditional image forgery detection techniques and have been applied in various
categories like image classification, digital image forensics, object detection in
images, etc. Junlin Quyang et al.[42] proposed a convolutional neural network
for detecting copy-move forgery. The model uses the parameters from the exist-
ing trained model on ImageNet database, then the network structure is adjusted
using copy-move training samples to test the forgery images. The model is not
robust to real-world forgery images. The effectiveness of forgery detection in
image-splicing and resampling forgeries is achieved by using resampling detection
algorithms. Mohammed et al.[69] demonstrated better detection accuracy when
combining resampling and copy-move algorithms. The algorithms of resampling
are effective in detecting resampling and image-splicing forgeries. Peng et al.[70],
used CNN as a dual filtering network structure for extracting the resampling fea-
tures from the images. The proposed network was proved effective in capturing
resampling artifacts for classifying the images but is limited only to uncompressed
images. For the detection and localization of image manipulations, Bunk et al.[71]
proposed methods with a combination of resampling features and CNNs. First, a
Radon transform was employed to compute resampling features on image patches.
Radon Walker segmentation technique is used to locate tampered regions. Next, a
forged heat map was generated by utilizing a hybrid model comprising of a Gaus-
sian conditional random field model and a deep-learning CNN model. Finally, to
classify tampered regions, resampling features were given to LSTM network.
By combining resampling features, long short-term memory (LSTM) cells, and
an encoder-decoder network, Bappy et al.[12] proposed a high-confidence image
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manipulation detection and localization method. The encoder network exploits
spatial feature maps and the LSTM network analyses the correlation between
the manipulated and non-manipulated image patches in the frequency domain.
For image tampering localization, the decoder network learns how to map low-
resolution feature maps to pixel-wise predictions. The dataset employed was
simple and involved a complex procedure for creating synthesized data for image
manipulations. Furthermore, the model demonstrates segmentation of manipu-
lated regions while ignoring forged object features such as multi-scale, rotation,
illumination, image noise, and affine variations. The hybrid model (LSTM-CNN)
that we proposed is a generalized one to train complex datasets such as NPDI,
CASIAv1.0, CASIAv2.0, Columbia, COVERAGE, CoMoFoD, and MICC-F600.
We apply template matching with an improved SIFT algorithm to make the
model invariant and tolerant to detect and localize forged objects (copy-move or
image-splicing) under various post-processing operations.

3.1 Challenges in image forgery detection
Digital image tampering has become extremely popular in recent years due to
the availability of easy-to-use software enabling users to edit, copy, and resize
images. Thus, it is challenging to authenticate and validate the integrity of im-
ages. Identifying forgeries in manipulated images that do not exhibit visual hints
is a challenging and time-consuming process. The deep learning-based methods
used for image classification tasks inspire us to design a deep learning model that
can detect and locate manipulated regions in an image. Convolutional neural
networks (CNN) is one of the popular deep learning algorithms that exhibit high
performance while analyzing areas of images in various image recognition tasks
like object detection, image classification, semantic segmentation, etc. Using only
CNN to detect and locate tampered regions may not be the most effective strat-
egy. In image manipulation, objects are removed, copied, or inserted into the
image in different locations. In addition, the use of modern image tampering
tools hide the artifacts and make it difficult to differentiate between fake and
original image.

3.2 Contribution
The major contributions of our work include:
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• We propose an LSTM-CNN based technique to detect and localize image
forgery attacks (copy-move and image-splicing) in complex images.

• To test the proposed model on pornographic images, we used the NPDI
database[72]. From this dataset, we have manually forged porn images
with an image splicing attack. In addition, we have generated ground-truth
masks for the forged images.

• To localize forged objects, we have used the template matching with an
improved SIFT algorithm. We, then generate bounding boxes to show the
classification of forgery.

The ground-truth masks aid us in back-propagating the error and hence resulting
in learning the network parameters easily. In our proposed model, we train deep
neural networks using a large dataset for image classification and localization
tasks. Forgeries of more than one type (copy-move or image-splicing) can be
detected and localized using the proposed model. Forensic analysts can use the
proposed model to detect porn image forgeries in cybercrime investigations.

3.3 Methodology
In this work, our aim is to detect, localize, and classify images that have been
modified (copy-move, or image splicing). LSTM network and CNN-based archi-
tectures are combined with resampling techniques to detect complicated manipu-
lations in images and locate tampered regions. It is possible to effectively capture
image manipulation footprints such as down-sampling, up-sampling, JPG quality
loss, and image shear using resampling features. LSTM models are frequently
employed to acquire knowledge of the temporal context present within a video or
any other form of sequential data. A pre-trained hybrid LSTM-CNN model[12]
is used by our network architecture to generate binary masks. The binary mask
generated is used to crop the tampered object and match it with the input image.
An image is classified as a copy-move forgery if there is more than one similar
object in the image otherwise, the image is classified as image splicing. Bounding
boxes are generated to show the classification of the forged region. The approach
we propose shows promising results in pixel-level localization of manipulated re-
gions on difficult and complex datasets (CASIA V1.0, CASIA V2.0, and NPDI
pornography). Figure3.1 depicts the overview of the proposed methodology which
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is divided into three stages: 1. Hybrid LSTM-CNN, 2. Forged object detection,
and 3. Classification of forgeries.

Hybrid
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Crop images
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Figure 3.1: Overview of the proposed model for detection, localization, and clas-
sification of image forgeries.

3.3.1 Hybrid LSTM-CNN
Hybrid LSTM-CNN uses images divided into patches or blocks as input informa-
tion. Resampling features undergo Radon transform computation on blocks of
images. and are provided to the LSTM network as input for learning the relation-
ships between various sub-groups[71]. LSTM is typically used when information
is sequential. In order to maximize LSTM performance, patches should be or-
dered in a specific sequence, e.g., keeping the sequence of extracted patches. In
order to preserve the spatial location of the extracted patches and their original
shape, we use the Hilbert curve[73] along with the extracted resampling features.
This is done to identify the sequence of patches that are fed to the LSTM cells.
In the frequency domain, LSTM cells acquire the ability to comprehend the tran-
sition between modified and unmodified patches. A set of resampling feature
maps is generated by the LSTM network. The encoder network generates the
spatial features from the input image to detect modified areas. Encoder networks
are created using convolutional layers, which enable the network to understand
the appearance, shape, and spatial relationships between manipulated and non-
manipulated classes. The feature maps’ spatial resolution, however, is lost during
the convolution process. By substituting the fully connected layer with the de-
coder network, losses can be compensated. The encoder output (spatial feature
maps) and LSTM output (resampled feature maps) are combined together and
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used as inputs to the decoder network in order to determine the nature of manipu-
lation. Segmenting tampered areas is the major function of the decoder network,
and each decoder performs specific tasks such as increasing spatial resolution,
batch normalization, and convolutions. The decoder network generates a binary
mask indicating the forged region pixel-wise. The finer details of each pixel ma-
nipulated or non-manipulated are learned and classified through the decoders.
To estimate the modified pixels against non-manipulated pixels, a softmax layer
is used to convert a vector of K real values that follows a probability distri-
bution over distinct classes as τ(Yk) from an input K real value. We can get
the predicted label by Y = argmax τ(Yk). The process of end-to-end training is
employed to classify individual pixels, utilizing ground-truth masks of modified
regions. A cross-entropy loss is calculated and utilized to learn parameters via
the back-propagation algorithm. The loss is determined by:

L(t) = − 1
P

P∑
p=1

Q∑
q=1

f(Y p = q)log(yp = q | yp; t)

where, P and Q are the image matrix and the set of instances respectively. The
input element is defined by y, and the function f(.) is an indicating variable that
implies 1 if, p = q else corresponds to zero (0)[71]. Weights have been adjusted
from 0 to 1. To reduce network loss, the adaptive moment estimation (Adam)
technique is applied. In each iteration, a small group of batches is computed to
modify the network variables. After the model has learned the optimal parame-
ters, it will be used to estimate the pixel-by-pixel categorization of a specific test
picture.

3.3.2 Forged Object Detection
The forged object in the original input image is found using the binary mask
generated. Segmentation operation is carried out to group pixels into more
meaningful regions. We apply the background subtraction method cvAbsDiff(sr1,
sr2, otp) to segment an image by just performing an image difference that results
in a forged region, where, sr1 and sr2 are the image sources and otp is given
by output otp = sr1 – sr2 [74]. The threshold function is used to mark all the
details of the background to black pixels by setting it to zero. Next, we convert
this image to a gray-scale image. The image which is in grayscale contains a
forged area with pixel values within the range 1-255 and a non-forged area with
a value of 0. We apply the threshold function which is a low-level vision for the
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spatial domain that calculates the image output based on the threshold value
“q”. The threshold function is given by:

doublecvThreshold(sr,otp,q,mx,typ) :

where sr is the image source, the otp is the image output, q is the value of
threshold, mx is the maximum value and the typ parameter specifies how the
output image is computed. We used

CV THRESHBINARY : otp = maximum,

otherwise 0 as the threshold value. The output is a threshold image in which the
pixel values are allocated depending on the state of the pixels. The threshold
values over q = 100 are allocated a value of 0 and the remaining are allocated a
value of 255. Finally, we crop the forged object from the results obtained using
the threshold function and background subtraction. Hence, we can recognize the
forged object and trim the forged area.

3.3.3 Forgery Classification
In forgery classification, the main goal is to classify the forged object as copy-
move or splicing. The forged object obtained is compared with the whole input
image and find if there exist any other patterns of the same forged object. Pattern
recognition is used to determine whether a given image contains a known pattern.
Matching an image involves locating a similar pattern in the given image. “Tem-
plate matching technique is the simplest way to do pattern recognition, in which
the process makes an exhaustive search of the template in the source image and
marks each position where the pattern is found”[74]. Matching of the template
is performed using:

cvMatchTemplate(sr, temp,result,meth);

where sr is the image source, the pattern to be located is referred to as temp,
and the result is an output of image for matching. The meth describes the way
template matching is carried out. We use the CV TM CCOEFF NORMED

method as the template matching function. This method is known as correlation
constant value matching that subtract the correlation between the source image
and the template from their average value at each point, taking the size of the
template into account. The results may not be good when the energy of the
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image,∑f2(a,b) changes with location. The correlation value is calculated using
equation 3.1.

Rc coeff =
∑
kl

[
(t(k, l)− t)∗ (f(a+k,b+ l)−f)

]2
(3.1)

To work the method well even if there are changes among the source picture and
template, the normalized aspect is considered using equation 3.2.

NORM =
√∑

kl

t2(k, l)∗f2(a+k,b+ l) (3.2)

Using the template matching function, it is possible to locate all the objects that
are equal in shape and direction. However, it is difficult to locate the forged areas
that are in different directions and rescaled. To locate the forged area that is
rescaled and rotated, an improved SIFT[13] algorithm is used which is incorpo-
rated with ORB(Oriented FAST and Rotated BRIEF) and RANSAC (Random
Sample Consensus) algorithms. SIFT generally performs better than the SURF
in terms of computational cost and is more accurate than SURF when it comes
to rotation, scale, illumination, and image noise. In SURF (Speeded-up Robust
Features), more features are detected than in SIFT, but they are dispersed over
the image, which makes it more computationally thirsty.
The SIFT algorithm generates the set of features from an image by 1. construct-
ing the difference of Gaussian (DoG) in scale space, 2. finding local extrema
(removing unstable feature points), 3. finding accurate keypoint localization, 4.
determining the direction of keypoints (orientation assignment), and 5. gener-
ating local image descriptor[13]. SIFT algorithm generates feature points and
passes only the interest points to the ORB algorithm. In the ORB algorithm,
interest points are matched using Hamming distance to produce an ORB de-
scriptor. ORB detects the features that are more concentrated on corners and is
computationally faster and more efficient than SURF and SIFT[75]. ORB uses
the rBRIEF(Binary Robust Independent Elementary Features) algorithm[76] as
rotation invariant by converting the image patch as a binary vector. The BRIEF
works at the pixel level and is highly profound to noise. It flattens the image
by Gaussian kernel to reduce the sensitivity and increase the steadiness of the
descriptors.
RANSAC algorithm[77] is considered as post-quality enhancement stage for re-
moving redundant key points. It removes the image noise on both inliers and
outliers drastically and considerably reduces the matching time. The RANSAC
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algorithm has proven highly effective at removing unmatched sets of points. The
major goal of combining the ORB and RANSAC algorithms with SIFT is to
obtain good matching, increased efficiency, and better accuracy in feature point
matching.
With the improved SIFT algorithm, all the patterns of the forged object can be
detected accurately with scale and rotation invariance. The bounding boxes are
shown over the manipulated area. If bounding boxes are more than one then
the tampering type is copy-move else, it is the image-splicing type. With the
experimental results, we observed that the model obtains forged objects with ap-
proximately around 85% of overlaying the binary mask with a ground-truth mask.
The workflow of the proposed model is shown in Figure 3.2.

Input Image

Hybrid LSTM-
CNN

Generate Binary
Mask

Forged Object
Detection

Crop the image as
per mask generated

Template matching
with SIFT

Generate bounding
box in forged
region/regions

If more than one
bounding
box with

similar pixels ? 

Image Splicing
forgery

Copy-move
forgery

No

Yes

Figure 3.2: Workflow of the proposed model.

3.3.4 Result and analysis
We have conducted the experiments to demonstrate the efficiency of our pro-
posed method on tempering detection, localization, and classification. We eval-
uate our proposed model on benchmark datasets- Columbia[78], CASIA[79],
CoMoFoD[80], COVERAGE[81], and NPDI[72].
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3.3.5 Datasets

3.3.5.1 Dataset Preparation:

CASIA Image Tampering Detection Evaluation Database[79] includes color im-
ages in versions 1.0 and 2.0. The details of the CASIA datasets are shown in
Table 3.1. “The v2.0 database is more challenging and comprehensive compared
to v1.0”. The tampered images in v2.0 are more realistic to human eyes. We have

Table 3.1: Details of the CASIA dataset.

Dataset Authentic Tampered Total
CASIA v1.0 800 921 1721
CASIA v2.0 7200 5123 12323

selected 5526 forged images from CASIAv1.0 and CASIAv2.0 datasets.
From a porn image forgery database perspective, we have used NPDI [72]
dataset which is a pornography database that contains pornographic and non-
pornographic images and videos. For our experimental analysis, we used images
only. The NPDI image dataset consists of three sections, i.e., 1. The non-porn
difficulty, 2. Non-porn easy, and 3. Porn. A total of 16727 images are present
in the NPDI image dataset. The dataset does not contain porn-forged images
which are essential from our proposed model’s perspective and research. So, we
have selected 200 porn images (from non-porn and porn categories) and applied
the FaceSwap algorithm to generate forged images. Thus, generating 3596 porn-
forged images.
The datasets CASIA and NPDI do not have ground-truth masks for the detection
of image tampering. We manually generated the ground truth masks for these
datasets based on the correlation that exists between the authentic and forged
image. These are mentioned within the filenames of the images. The dataset de-
tails of CASIA and NPDI forged images with corresponding ground-truth masks
used in the proposed model are shown in Table 3.2. A total number of 18244
images are used for training our proposed model. During the data preparation,
the dataset is subdivided into a ratio of 80:20 (80% training and 20% testing).
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Table 3.2: Details of CASIA and NPDI datasets.

CASIA1.0 CASIA2.0 NPDI
Forged images 869 4657 3596
Ground-Truth Mask 869 4657 3596
Total images 1738 9314 7192

3.3.6 Experimental analysis
We use python, Keras 2.6 with Tensorflow 1.13 to implement our proposed model.
To speed up the data training in our model, we used a system setup that consists
of NVIDIA GeForce GTX 2080 Ti with 8GB memory, and Intel Core CPU i7-
9700K with 16GB RAM.
Evaluation metrics:
The model’s capability is evaluated based on each image by pixel level, which
is done by categorizing each pixel into four types. True Negative (TN), True
Positive (TP), False Negative(FN), and False Positive (FP). These are used for
evaluating our proposed model’s accuracy, precision, recall, and F1 score. The
actual pixel vs predicted pixel is shown as a confusion matrix in Figure 3.3.

Figure 3.3: Actual pixel vs predicted pixel

TP indicates how many pixels were classified as true positives, FN indicates
how many pixels were classified as false negatives, the forged pixel is incorrectly
classified as authentic, FP indicates how many pixels were classified as false pos-
itive, the authentic pixel is incorrectly classified as forged, and TN indicates how
many pixels were classified as true negative.
The ground truth masks contain the following pixel values:
0–Nonforged pixel and
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1–Forged pixel.
The model’s accuracy is measured by the percentage of authentic and forged pix-
els correctly detected from a mixed dataset. It is the ratio based on the number
of correct predictions to the overall predictions.

Accuracy = TP +TN

TP +FP +FN +TN

Precision is a metric that evaluates how accurate a model is at categorizing an
example as positive. The precision is the ratio based on the number of accurately
identified positive examples to the overall positive examples (either correct or
incorrect).

Precision = TP

TP +FP

The model’s ability to recognize positive samples is measured by recall. The
higher the recall, the more positive samples are detected. The recall is higher
when many positive patterns are detected.

Recall = TP

TP +FN

The balanced F-score or F-measure is also known as the F1 score. The F1 score
can be considered as a weighted average of precision and recall, with the best
score being 1 and the worst score being 0.

F1 = 2∗ precision∗ recall

precision+ recall

Training and Testing Results:
The proposed model is evaluated for its effectiveness on both the CASIA and
NPDI datasets on the same training and testing split (i.e., 80% and 20%) as
shown in Table 3.3 & Table 3.4. The model’s train Vs test accuracy and loss on
CASIA and NPDI datasets are shown in Figure 3.4a, 3.4b, 3.5a and 3.5b.

Table 3.3: Proposed model’s training performance accuracy, precision, recall,
and F1 score.

Dataset Accuracy Precision Recall F1 score
CASIA 0.987 0.948 0.843 0.8
NPDI 0.984 0.925 0.80 0.76
Overall 0.985 0.936 0.821 0.78
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Table 3.4: Proposed model’s testing performance accuracy, precision, recall, and
F1 score.

Dataset Accuracy Precision Recall F1 score
CASIA 0.962 0.915 0.853 0.783
NPDI 0.977 0.88 0.73 0.68
Overall 0.969 0.897 0.791 0.731

(a) Training vs. testing accuracy. (b) Training vs. Testing loss.

Figure 3.4: CASIA dataset training vs. testing accuracy and loss.

(a) Training vs. testing accuracy. (b) Training vs. Testing loss.

Figure 3.5: NPDI dataset training vs. testing accuracy and loss.
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The forgery detection and localization results of the proposed model are shown
in Figure 3.6.

Figure 3.6: Forgery detection and localization: Column 1, manipulated images;
Column 2, ground-truth masks; Column 3, binary mask generation; and Column

4, probability of heat map.

The images in Figure 3.6 are from the CASIA and NPDI datasets, where first
two rows are copy-move forgery images with their corresponding ground-truth
and binary mask generated on the manipulated region. Row 3 is the forged porn
image from the NPDI dataset with its corresponding results. Row 4 and 5 are
the image splicing forgery images with their corresponding results. The binary
mask results of column 3 are predicted to be similar to the ground-truth mask in
column 2. Column 4 depicts the heat map of the forged images.
Once the binary mask is generated, the forged object is extracted and is used for
classification as copy-move or splicing forgery types. The results of the forged
object are shown in Figure 3.7.
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Figure 3.7: Forged object detection: Row 1, Copy-move forged object; and Row
2, image-splicing forged object.

Row 1 shows the forged object using copy-move and row 2 shows the forged
object result using image-splicing. However, the forged object may be rescaled
or rotated while performing the tampering operations on the images and a sim-
ple template matching technique may not detect such forged images. Therefore,
template matching with an improved SIFT algorithm is applied for identifying
such forged images. The classification of image forgery is based on the bounding
boxes generated. The copy-move forgery will have two or more boxes if the same
region is copied multiple times and pasted in the same image. The image splicing
forgery will have only one bounding box where the forged object is copied and
pasted from another image. The classification results are shown in Figure 3.8.
Row 1 and 2 are the classification results of copy-move forgery, where the forged
object is copied multiple times. Row 3 shows the image splicing forgery on porn
images and rows 4 and 5 are the results of image splicing forgery. The template
matching function with an improved SIFT algorithm locates the forged regions
without affecting the process of training and improves the classification accuracy.
The proposed model which was already trained on CASIAv1.0, CASIAv2.0
and NPDI datasets was tested on four benchmark datasets (Columbia[78],
CoMoFoD[80], MICC-F600[82]and COVERAGE[81]) having forgery images of
copy-move and image splicing, provided with their corresponding ground-truth
masks. The Columbia dataset has image splicing forgery images with 183 authen-
tic and 180 forged images. The CoMoFoD dataset includes copy-move forgery
images with 5200 authentic and 5200 forged images. The MICC-F600 dataset
has copy-move forgery images with 440 authentic and 160 forged images. The
COVERAGE dataset includes copy-move forgery images with 100 authentic and
100 forged images.
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Figure 3.8: Forgery classification of copy-move and image splicing: Column 1,
forged images; and Column 2, forgery detection.

Table 3.5: The proposed model’s performance on benchmark datasets (pixel-wise
accuracy and F1 score).

Dataset Accuracy F1 score
Columbia 0.968 0.78
CoMoFod 0.976 0.81
MICC-F600 0.96 0.79
COVERAGE 0.965 0.756
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The proposed model learned the larger context of the tampering attacks on
various datasets and showed better performance results on benchmark datasets.
The results are shown in Table 3.5.
Comparison with existing models:
Our proposed model is compared with the existing methods ELA[83], NOI[84],
CFA[2], J-LSTM[85], RGB-N[86], MR-CNN[87], and MantraNet[88] on the three
benchmark datasets as shown in Table 3.6. We use accuracy and F1 score for
comparison against existing forgery detection methods. From feature extraction

Table 3.6: Performance evaluation with existing methods (using Accuracy and
F1 score) on 3 benchmark datasets. ‘-’denotes that the result is not available in
the literature.

Method Columbia COVERAGE CASIA
ACC F1 ACC F1 ACC F1

ELA[83] 0.581 0.47 0.583 0.222 0.613 0.214
NOI[84] 0.546 0.574 0.587 0.26 0.612 0.263
CFA[2] 0.72 0.467 0.485 0.190 0.522 0.207
J-CNN-LSTM[85] 0.74 0.56 0.80 0.59 0.75 0.43
RGB-N[86] 0.858 0.697 0.817 0.437 0.795 0.408
MR-CNN[87] 0.978 - 0.936 - - -
MantraNet[88] 0.824 0.483 0.819 - 0.817 -
Proposed Model 0.982 0.77 0.973 0.75 0.96 0.78

through detection and localization of forged regions, our proposed model outper-
forms the existing models. On the Columbia[78], Coverage[81], and CASIA[79]
datasets, the proposed model outperforms the ManTraNet[88] by over 10% in
terms of accuracy. The model also has the advantage of effectively detecting
and localizing in multi-scale, rotation invariant, low illumination with variation
in resolution and noise. The proposed model outperformed other methods which
are fine-tuned setups like J-LSTM[6] and RGB-N[51]. J-LSTM uses spatial and
context information extracted from CNN and LSTM networks to detect forgeries
in input images that have been divided into patches. However, It cannot correlate
between different blocks of a patch. We achieved better results compared to tradi-
tional models like ELA[83], NOI[84], and CFA[2]. Based on the study of existing
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approaches, our suggested model performs better than conventional methods by
a wide margin. It is also comparable to deep neural network methods, achieving
consistent performance across all the datasets, demonstrating that the model is
robust and generalizable. We explored the effectiveness of the proposed model by
conducting ablation studies using four standard benchmark datasets as shown in
Table 3.7.

Ablation studies. In this study, we explored the existing LSTM-CNN mod-

Table 3.7: Comparison of the proposed model with LSTM-CNN variants.

Method Columbia COVERAGE CASIA NPDI

J-LSTM[85] 0.74 0.80 0.75 0.68
LSTM-CNN[12] 0.81 0.88 0.89 0.73
Proposed model 0.98 0.97 0.96 0.97

els and implemented them to analyze how well they perform on forgery images
to compare with the performance of our proposed model. The proposed model
performs better when compared to J-LSTM with a good margin in terms of accu-
racy by learning the large context of correlation between the image patches. The
proposed model is capable to learn better image manipulations over LSTM-CNN
by using an improved SIFT algorithm while localizing forged objects that are ro-
tated and multi-scaled. The use of resampling features, LSTM, and convolution-
deconvolution with an improved SIFT algorithm enhance the overall architec-
ture’s ability to learn image manipulations better.

3.4 Summary
Modern technology advancements have led to the use of digital images in all fields,
including medicine, entertainment, forensic science, digital media, social media,
and many more. There has been a tremendous increase in the production and ex-
change of images which has led to the fabrication of images that can misrepresent
the information among the community. Humans tend to believe what they see
compared to verbal communication. Hence, there is a need to authenticate the
images to build trust among the community. Our objective in this Chapter was to
categorize the forged images (copy-move or image-splicing) and locate the areas
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that were forged. To detect and localize image forgeries (copy-move and image-
splicing), a hybrid model LSTM-CNN is proposed that combines SIFT algorithm
with ORB and RANSAC techniques. In Chapter 4, we focus on inter-frame video
forgery detection and localization using deep learning techniques.
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Chapter 4

Deep learning-based forgery
identification and localization in
videos

In Chapter 3, we focused on copy-move and image-splicing forgery detection and
localization. The proposed model classified image forgery on benchmark datasets
resulting in better performance compared to existing models. In this Chapter,
we propose a model for inter-frame video forgery (frame insertion and deletion)
detection and localization from cybercrime analysis perspective. A video forensic
analysis consists of examining, comparing, and assessing video files that are used
as evidence in court. In terms of applicability, active forensic schemes are limited
in performance. Hence, passive forensic schemes were developed. Using passive
or blind video forgery approaches, specific artifacts could be analyzed either stat-
ically or temporally. These approaches do not need prior information to analyze
the forgery in videos, since they depend on the traces of forgery present in the
video. Identification of video forgeries carried out using passive video forgery
methods is a challenging task for the researcher. The traces left behind after the
forgery can be used to distinguish between genuine and manipulated videos. Us-
ing passive approaches, we can detect any unauthorized manipulation, whether
it’s done within a frame (intra-frame level) or between frames (inter-frame level).
Intra-frame tampering manipulates a frame at the object level or block level of
a video. On the other hand, inter-frame tampering involves manipulating a set
of frames (removal, insertion, replication, or shuffling) within a video. The inves-
tigation of inter-frame video forgeries, specifically the detection and localization

49



of frame insertion and deletion is the main emphasis of our work. In the litera-
ture, there are various techniques proposed for the detection of inter-frame video
forgeries[1]. Most of the techniques are based on manual feature extraction to
identify the artifacts for detecting and localizing inter-frame forgery operations.
These features are sensitive in extracting post-processing operations (light incon-
sistencies, noise, compression, blurring, etc.). In addition, these techniques are
unable to perform efficiently in detecting video forgeries as they are trained and
tested on the same datasets.
Deep learning provides a combined service of extracting features and classification.
DL-based methods have performed better in various application domains like ac-
tion recognition[15], image classification[89], and object recognition[90]. The two
most popular deep learning algorithms that perform well in pattern recognition
of images are convolutional neural network (CNN) [65] and recurrent neural net-
work (RNN)[66]. Many deep learning-based algorithms are proposed for forensic
analysis in the image and video forgery to date[91]. CNN models were put for-
ward by Nguyen et al.[92] for detecting inter-frame video forgeries by retraining
the available CNN model trained on ImageNet dataset. The proposed model
fails to extract temporal features accurately from forged videos but works well
in extracting spatial features. From the analysis point, the authors created their
own database known as the video inter-frame forgery dataset (VIFFD) involv-
ing inserting, duplicating, and replicating forgery videos. A deep learning-based
CNN model and SSIM algorithm was proposed by Fadl et al.[93] for detecting
video inter-frame forgeries. The forgery classification was carried out using RBF
multi-class support vector machine (RBF-MSVM). But, the evaluation cost of the
proposed model was very high and no cross-dataset evaluation was done. Bakas
et al.[94] proposed a video forgery (inter-frame) detection method based on pre-
diction footprint variation (PFV) and forgery localization was carried out using
a range of motion vectors. The method fails to detect forgeries for videos with
GoPs inserted or deleted in a video frame sequence. We propose, a 3D convo-
lutional neural network (3DCNN) model to overcome the drawbacks of existing
methods and detect inter-frame video forgeries. In addition, we use inherent
temporal abnormalities to locate the amount of tampered video frames based
on the temporal disparity between neighboring video frames. The multi-scale
structural similarity (MS-SSIM) index measurement analysis algorithm is used to
localize video inter-frame forgery (insertion and deletion) for which the original
source is not available. The experimental outcome depicts that the suggested
model performs better in video inter-frame forgery detection and localization on
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test videos without limiting to post-processing operations, compression rates, and
video length.

4.1 Challenges in video forgery (inter-frame)
detection

Deep learning (DL) based 2DCNN models are most effective in extracting spa-
tial features from images but fail to extract temporal features from videos and
have high computational costs. One of the significant challenges in processing
videos is to extract efficient features. The traditional methods used to evalu-
ate inter-frame forged videos (high quality and lengthy) have demonstrated poor
performance and low processing speed on large datasets is a challenging task.
To address these issues, we use the deep learning-based 3DCNN model[15] to
extract high-dimensional features from video files. Furthermore, 3DCNN has
acquired high prominence in the development of a successful and reasonably ac-
curate methodology for video classification on a wide range of large datasets. The
temporal correlations across consecutive frames should be carefully examined to
improve video forensics analysis.

4.2 Contributions
The main contributions of the work are:

1. Our approach involves designing a 3DCNN model based on Conv3D layers
to learn high-dimensional features from video frames to detect inter-frame
forgeries.

2. Unlike the normal 3DCNN model, we propose an absolute difference algo-
rithm to evaluate the difference of successive frames that minimizes tem-
poral redundancy among the frames and exposes the artifacts of forgery
operation in videos.

3. Localization of inter-frame forgery (insertion and deletion) in the video
is carried out by spatial-temporal analysis using a multi-scale structural
similarity(MS-SSIM) index measurement algorithm.
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4. Creation of inter-frame video forgery(insertion and deletion) dataset using
UCF-101 action classes.

4.3 Methodology
Inter-frame video forgery detection carried out using hand-crafted feature extrac-
tion techniques and classifiers like k-nearest neighbor(k-NN)[95], support vector
machine (SVM)[96], etc. Inter-frame video forgery detection carried out using
hand-crafted feature extraction techniques and classifiers like k-nearest neighbour
(k-NN)[95], support vector machine (SVM)[96], etc. have restrictions in terms of
dataset processing, limited solution, and computational complexity. This implies
that the performance of the model is affected when hand-crafted feature extrac-
tion techniques are used. To extract important features from the video frames,
deep learning techniques are popularly used. DL-based 3DCNN technique is
used for extracting prominent features from training datasets and solving vari-
ous computer vision problems. Hence, we propose a 3DCNN model for detecting
inter-frame video forgery. The 3DCNN model has the advantage of extracting
spatio-temporal features more accurately, making it capable of detecting inter-
frame video forgery. The model proposed is divided into inter-frame video forgery
detection and inter-frame video forgery localization as shown in Fig.4.1.

Figure 4.1: A model for detecting and localizing inter-frame video forgeries.

4.3.1 Inter-frame video forgery detection
In this section, we discuss the process of inter-frame video forgery detection by
dividing it into video frame pre-processing and 3DCNN model.
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4.3.1.1 Video frame pre-processing

A video is a composition of sequential image frames that appear to be identical
to one another. To differentiate the video frames from each other, an absolute
difference layer is added at the beginning of the 3D CNN model. The equation
5.1 computes the pixel-wise discrepancy between frame f and the adjacent frame
f + 1. Fig.4.2 shows a sequence of frames for sky-diving action class from UCF-
101 database. The 3DCNN model is fed with the output deviation from the frame
heap.

Pf (x,y) = |Kf (x,y)−Kf+1(x,y)| (4.1)

1 ≤ m ≤ w,1 ≤ n ≤ h

Where, Pf (x,y) is the difference frame, Kf (x,y) is the intensity of pixel (x,y) in
the f th frame, w and h are the width and height of the video frames. During

Figure 4.2: Absolute frame difference of skydiving action from UCF-101 dataset.

the process of inter-frame video tampering some discernible artifacts obligatorily
exist and to detect such artifacts, we evaluate the absolute disparity among the
sequential frames for minimizing the temporal redundancy. In addition to the
absolute difference layer, the video frames are pre-processed to construct a group
of frames to deal with large video files, improve accuracy, and reduce computa-
tions. Consider an input video V1 consisting of F frames with dimensions W ×H

pixels. The frame sequence of video V1 is grouped into group-of-frames Gf with
length F frames. The stream of video in every frame group is represented by 3D
frames. The mathematical equation 4.2 is stated below:

V1 =
F⋃

f=1
Gf (4.2)

Where, Gf is the f th group-of-frames, F is the overall frames of the input video.
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4.3.1.2 3-Dimensional Convolutional Neural Network(3DCNN)
model

Three Conv3D layers are used in the proposed model for inter-frame video forgery
detection followed by ReLU, MaxPooling, Batch Normalization, dropout, dense,
softmax, and output class as shown in Fig.4.3. Inter-frame forgery attacks are
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Figure 4.3: The Proposed 3DCNN for detecting video inter-frame forgery.

performed in the temporal domain, and the 3DCNN model applies convolutions
in the 3D space that are optimal for extracting features from the temporal and
spatial domains. A 3D convolution is a type of convolution operation in which,
a 3D-filter is convolved in the three dimensions by adding multiple adjoining
frames to generate a 3D cube. The following equation 5.3[16] corresponds to 3D
convolution for the value at point (x,y,z) on the jth feature map in the ith layer.

vxyz
ij = ReLU

bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ti−1∑
t=0

W pqt
ijmv

(x+p)(y+q)(z+t)
(i−1)m

 (4.3)

Where Ti is the 3D-filter kernel size along the temporal dimensions. W pqt
ijm is the

feature map connected to the mth value of the kernel in the previous layer. The
Conv3D kernel sizes are stated as no.of kernels×(height×width× inputs). The
feature maps size among the layers is given as no. of feature maps × (height ×
width). We apply padding in all the layers to maintain the shape of the frames.
To aggregate the max/mean of a certain feature over a specific region, we use the
MaxPooliing operation. MaxPooling downsamples the input along its spatial and
temporal dimensions (depth, width, and height) by taking the maximum value
over the input block for each channel of the input. The MaxPooling layer not
only reduces the pixel density of the source images but also makes the network
stable to changes in frame difference. To ensure the performance of the output
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activations, the batch normalization [97] method is used that helps the 3DCNN
model in handling overfitting issues by achieving a well-balanced generalization as
part of the regularisation process. After several successive fully-connected layers,
a softmax layer for multi-class classification is used, to produce the desired output.
The output feature map of the convolution layer is evaluated as follows:

output featuremap = [(W −k +2p)/s]+1 (4.4)

where input shape is W , kernel size is k, padding is p and stride is s. With the aid
of fully connected layers and a softmax layer, the feature vectors are transformed
into 3D probabilities. Finally, the results classified are shown based on the 3D
probabilities.

4.3.2 Inter-frame video forgery localization
We use multi-scale structural similarity to localize the inter-frame video forgery,
which is discussed in the following sections.

4.3.2.1 Multi-scale structural similarity index measurement

Multi-scale structural similarity (MS-SSIM) index measurement is used to exam-
ine the dissimilarity of video frames and also to measure the duration of video
inter-frame forgery (insertion and deletion). Multiple-scale modeling of visual
intensity (luminance), contrast, and structure serves as the basis for the MS-
SSIM[17]. The primary goal of MS-SSIM is to assess the quality of video frames
and to achieve improved detection accuracy while processing in real-time. The
MS-SSIM starts the process of locating inter-frame video forgery by using a ref-
erential frame and comparing with succeeding frames. The succeeding frame is
then considered as a reference frame, and the procedure is repeated with the next
succeeding frames. The MS-SSIM achieves better accuracy and faster processing
speed than the normal Structural Similarity (SSIM) index measure.

4.3.2.2 Structural similarity index measurement

The structural similarity assessment is a measure for comparing two images’ struc-
tural similarity. The method attempts to measure the visibility of defects (dis-
crepancies) between an inconsistent and a reference image in order to evaluate
perceptual image quality. The human vision system can easily and quickly identify
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through structural information of the images by differentiating the information
obtained from a similar reference image. The metric that simulates this behavior
will outperform on tasks to detect inter-frame video forgeries (insertion and dele-
tion) that require distinguishing between a sample frame and a reference frame.
The Structural Similarity (SSIM)[18] extracts three main features from a video
frame: luminance, contrast and structure. The SSIM is calculated as follows:

SSIx,y = (2µxµy +K1)(2σxy +K2)
(µ2

x +µ2
y +K1)(σ2

x +σ2
y +K2) (4.5)

where µx,µy,σx and σy are the mean and standard deviation of both the reference
frame and sample frame. K1 &K2 are constants.
Luminance
The luminance is obtained by the pixel values average. It is denoted as µ and is
expressed as:

µx = 1
N

N∑
i=1

xi (4.6)

where xi is the image’s ith pixel value of image x. N is the overall pixel values.
The function L(x,y) is comparing luminance of µx and µy.
Contrast
All the pixel values standard deviations are utilized to evaluate and extract con-
trast features denoted as σ. The contrast function is formulated by:

σx =
 1

N −1

N∑
i=1

(xi −µx)2

1/2

(4.7)

The pixel values of the frame is given by mean µ. The contrast function C(x,y)
is a comparison function of σx and σy.
Structure
The input signal is divided by its standard deviation, resulting in a unit standard
deviation and allowing a more robust comparison.

(x−µx)/σx (4.8)

where x is the input image.
The following comparison function compares the two given video frames on the
aforementioned variables. Finally, a combined function is defined that aims to
combine and generate the similarity index value. The luminance comparison
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function L(x,y) is given by µ representing the mean of a given frame formulated
as:

L(x,y) = 2µxµy +K1
µ2

xµ2
y +K1

(4.9)

The two video frames being compared are x and y. K1 is a constant that en-
sures stableness when the divisor approaches zero. C(x,y) defines the contrast
comparison function, which is written as:

C(x,y) = 2σxσy +K2
σ2

x +σ2
y +K2

(4.10)

σ denotes the standard deviation of given video frame.
The function S(x,y) defines the structural comparison, which is formulated as:

S(x,y) = σxy +K3
σxσy +K3

(4.11)

where σ(xy) is defined as,

σxy = 1
N −1

N∑
i−1

(xi −µx)(yi −µy)

The final score is evaluated by:

SSIM(x,y) = [L(x,y)]α . [C(x,y)]β . [S(x,y)]γ (4.12)

where α, β, γ define the weight given to each model of luminance L(x,y), contrast
C(x,y), and structure S(x,y).

4.3.2.3 MS-SSIM algorithm

1. Consider only one frame at a time ft.

2. At time t+1, acquire the next frame ft+1.

3. Calculate the multi-scale structural similarity of two consecutive frames ft

and ft+1.

4. A frame forgery is identified with reference to insertion or deletion if the
similarity value is below the pre-determined threshold θ = 0.8 between two
consecutive frames. As per the algorithm, a change in the threshold value
beyond 0.8 will not drastically affect the accuracy rate of localizing frame
insertion or frame deletion, but a threshold value below 0.8 will affect the
accuracy rate of localization.
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4.4 Result and analysis

4.4.1 Datasets
The proposed model is evaluated on UCF-101[98] and VIFFD[99] datasets. There
are currently no standard datasets dedicated to video inter-frame forgeries[93].
For our experiments, we selected 700 videos of different actions from the UCF-101
dataset and generated inter-frame forgery (insertion and deletion) using ffmpeg
tool[100].
In the creation of frame insertion and deletion forgery videos, we varied the num-
ber of frames from 10 to 150 frames. The selected videos are compressed with
H.264 and MPEG-4 using libraries libx264 and libavcodec of the ffmpeg tool with
an adaptive group-of-pictures (AGoP) structure. The videos have frame rates
ranging from 25 to 30 frames per second. We chose 60 videos and applied post-
processing operations such as Gaussian blurring, Gaussian noise, and brightness
variations to analyze inter-frame video forgery detection under different condi-
tions.
The VIFFD dataset has 392 videos with a combination of authentic, insertion,
deletion, and duplication videos collected from five surveillance cameras of real-
life scene shots with different lighting conditions. For the experimental analysis,
we chose 30 authentic videos, 30 insertion forgery videos, and 30 deletion forgery
videos. The inter-frame video forgery is differentiated into multi-class classifica-
tions namely insertion, deletion, and authentic with a total of 2190 videos. The
details of the datasets are shown in Table 4.1. Fig.4.4 shows the sample video from

Table 4.1: Multi-class dataset details

Dataset Authentic Insertion Deletion Total
UCF-101 700 videos 700 videos 700 videos 2100
VIFFD 30 videos 30 videos 30 videos 90
Total 2190

UCF-101 dataset showing authentic and forged (insertion and deletion) video.

4.4.2 Details of Implementation
In our implementation, we used an 8GB GPU (NVIDIA RTX 2080) with 32GB
RAM and a 2.20GHz Intel i7 processor. In order to develop a high-level deep

58



4.4 Result and analysis

Figure 4.4: UCF-101 sample video showing a. authentic, b. insertion forgery,
and c. deletion forgery.

learning model, we used Python 3.0, OpenCV, FFMPEG, and Keras 2.6.0 with
the Tensorflow 2.6.0 framework.
Implementation using a GUI
A GUI-based sample application that can assist video forensic investigators in
analyzing video files is shown in Fig.4.5. A user interface for the application

Figure 4.5: GUI-based sample application showing video forensic analysis.

consists of three sections (left, right, and bottom). All video forgery categories
(Authentic, Forgeries) are presented in the left section in a tree view. With the
forgery detection, the video files will be placed in the appropriate category. When
we select a category in the left section, the right section will display all of the
videos in that category, along with meta-data. The bottom section is used to
play the video for analyzing the content of a video forgery listed under the right
section.
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4.4.3 Experimental analysis
The evaluation criteria and experimental analysis of our model are discussed in
this section. To evaluate the proposed model’s performance, we consider detection
accuracy (Acc), which is defined as:

Accuracy(Acc) = TP +TN

TP +FP +FN +TN

where the true positive rate (TP) is the percentage of video forgeries that are
accurately identified.
The False positive rate (FP) is the percentage of video forgeries that are incor-
rectly identified.
The true negative rate (TN) is the percentage of video forgeries that are accu-
rately identified as original videos.
The False negative rate (FN) is the percentage of video forgeries that are incor-
rectly identified as original videos.
The model’s effectiveness is satisfactory when the evaluation parameters precision
rate, recall rate, and F1 score are achieved better.

Precision = TP

TP +FP

Recall = TP

TP +FN

F1 = 2∗ precision∗ recall

precision+ recall

The video clips are denoted with a size of n×fm ×wd ×ht, where n specifies the
number of filters used to capture the video, fm is the group of frame count in the
video shot, wd and ht are the width and height of each frame in pixels. The kernel
size is expressed as dp×k ×k, where dp specifies the kernel’s temporal depth and
k denotes the spatial size of the pooling and 3D convolution layers.
The proposed 3DCNN model takes video shots as inputs and divides them without
overlapping into 49-frame segments that are sent into the network’s absolute
difference layer. The input dimensions are 3 × 49 × 112 × 112 and the output of
the difference layer 3×48×112×112 is given to the first convolution layer. The
three convolution layers use 64 filters. The kernel size used is 3×3×3 with stride
1. We minimize the output size by a factor of 8 when compared to the input
size by using the MaxPooling3D kernel with 2 × 2 × 2 size. The network starts
the learning process with a learning rate of 0.01 and a weight decay of 0.005.
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Adam (adaptive moment estimation) is used as the loss function to optimize the
3DCNN-based model. We chose a batch size of 16 for training. After the 40
epochs, we obtain the trained weights and parameters .
We use VIFFD as a testing dataset to validate the trained model’s performance.
The pre-processing for the testing dataset is the same as the training dataset. The
input to the trained 3DCNN model is the test dataset and the class labels for
each video clip are obtained. If any one of the classes is predicted with insertion
or deletion forgery then the frame is marked as a tampered frame. The video
frame is authentic when the class is predicted with authentic.
Training and testing results with UCF-101 dataset
The proposed 3DCNN model is evaluated on the UCF-101 dataset which is split
randomly in a ratio of 75:25 for training and testing, with a batch-size of 16,
and the number of epochs carried out is 40. The categorical cross-entropy is
utilized as a loss function to assess the efficiency of a multi-class classification
model with probability values as its output. The resulting evaluation metric used
is accuracy, precision, recall, and F1 score. Fig.4.6a and Fig.4.6b show accuracy
and loss results after training and testing the proposed model on the UCF-101
dataset. The graph depicts the variance in accuracy and loss. After 40 epochs,
the loss begins to decrease as the learning improves. As the proposed model’s
training progresses, its precision reaches the highest level.

(a) Training vs. testing accuracy. (b) Training vs testing loss.

Figure 4.6: UCF-101 dataset training vs. testing accuracy and loss.

Furthermore, the suggested model’s prediction accuracy in detecting insertion
and deletion forgery reveals that it is suitable for practical and realistic videos.
Along with a large number of frame forgeries (insertion and deletion), the pro-
posed method even detects a small number of frame forgeries. Also, the model
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is tested on video forgeries in a static scene and dynamic scenes with multiple
forgeries within the same video. This leads to the robustness of the proposed
method. Once the model was trained, we tested and predicted the model with
the VIFFD dataset. The predicted evaluation matrix gives a recovery implication
about the errors that our trained model is making during testing and examines
the performance of the classification process. The predicted rate of evaluation
matrix in Table 4.2 shows a predictive test on the VIFFD dataset. The above

Table 4.2: Performance evaluation showing predictive test on VIFFD dataset.
Support - This attribute indicates the total number of groups.

Precission Recall f1-score support
FrameDeletion 1.0 0.92 0.96 75
FrameInsertion 0.95 1.00 0.98 119
Authentic 1.00 1.00 1.00 124

Accuracy 0.98 318
Macro avg. 0.98 0.97 0.98 318
Weighted avg. 0.98 0.98 0.98 318

results show that the proposed model accurately distinguishes authentic videos
from inter-frame forgeries.
Localizing insertion forgery in videos. During localization of insertion
forgery, every video frame is matched with the adjacent frames both temporally
and spatially to generate the MS-SSIM score. If the MS-SSIM score of the frames
in the inserted position is substantially smaller than the actual value (0.8), there
will be two discontinuities in insertion forgery with a dropping peak value where
the functionalities of consecutive frames differ significantly. In Fig.4.7, the vi-
sual output shows frame insertion video forgery where the frames 100 to 150 are
inserted from other videos which are indicated by two falling peak values. The
values of similarity in the locations where the frames are inserted are significantly
lower than the normal values. Inter-frame insertion forgeries will show two dis-
tinct declining peak values, indicating that they come from different videos.
Localizing deletion forgery in videos. A sequence of video frames are re-
moved from the authentic videos in order to hide the truth. Generally, two
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Figure 4.7: Frame insertion localization based on MS-SSIM.

adjacent video frames have a similarity of a high degree in authentic video and
this similarity may immediately change with lower scores at the number of frames
deleted location resulting in frame deletion forgery. The MS-SSIM score results
in a lower value in frame deletion video forgery resulting in a single falling peak
value. The frame deletion operation results in a greater interval between two sim-

Figure 4.8: Frame deletion localization based on MS-SSIM.

ilar frames, resulting in a dropping peak value. In Fig.4.8, the inter-frame video
deletion forgery results in a single falling peak value where 50 frames are deleted
(75 to 125 frames). Based on the similarity curve, we know that the suspicious
video was forged by frame deletion.
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4.4.4 Existing inter-frame video forgery methods
The existing methods that are available in the literature for the detection of
inter-frame(insertion and deletion) video forgery are shown in Table4.3 with their
performances. All these listed methods including their datasets are not publicly

Table 4.3: Existing inter-frame video forgery methods. ‘-’ denotes that the
result is not available in the literature.

Method Forgery No.of Accuracy Precision Recall F1-score
operationVideos

QoCCLB[101] Insertion, 599 - 0.95 0.92 0.93
Deletion

PR&MB[102] Deletion 770 - 0.72 0.66 0.699
ZOCMCFA[103] Insertion, 60 - 0.83 0.85 -

Deletion
CNN[104] Insertion, 128 0.85 - - -

Deletion

available. To check the performance of their methods, the researchers have created
their own datasets which have inter-frame video forgeries (insertion and deletion).

4.4.5 Comparison
We tested our proposed model with the dataset created for the MO-BWO[5]
method achieving better accuracy, precision, recall, and F1-score as shown in
Table 4.4. The proposed model 3DCNN-MS-SSIM performed better on unseen

Table 4.4: Comparison of the proposed model with MO-BWO[5]. ‘-’ denotes
that the result is not available in the literature.

Method Forgery No.of Accuracy Precision Recall F1-score
operationVideos

MO-BWO[5] Insertion, 18 0.85 0.825 - 0.826
Deletion

Proposed Insertion, 18 0.952 0.923 0.90 0.945
Model Deletion
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data, resulting in a generalized model.
Ablation study: We chose 60 videos and applied post-processing operations
like compression rates, varying video length, Gaussian noise, Gaussian blurring,
and brightness variations. These videos were trained and tested on our proposed
model with and without applying difference algorithm. The results achieved
were compared with existing methods[103] and [54] under insertion and deletion
forgery. The accuracy of these methods is 0.7478 and 0.7724 respectively. We
achieved an accuracy of 0.8234 without the difference algorithm and 0.9817 with
the difference algorithm. A comparison between the proposed approach and ex-
isting methods is presented in Table 4.5 under insertion and deletion forgery.

Table 4.5: Comparison of the proposed method with existing methods under
insertion and deletion forgery.

Method Post-processing operations Difference Accuracy
Algorithm

Liu[103] Compression, Gaussian noise, No 0.7478
Gaussian blur, brightness.

Zhao[54] Compression, Gaussian noise, No 0.7724
Gaussian blur, brightness.

Proposed Method Compression, Gaussian noise, No 0.8234
Gaussian blur, brightness.

Proposed Method Compression, Gaussian noise, Yes 0.9817
Gaussian blur, brightness.

4.5 Summary
Digital video forensics plays a crucial role in analyzing cybercrime since video
editing software makes it easier to tamper videos for illegitimate gain and pro-
duce tampered evidence in court. Existing methods for inter-frame video forgery
detection do not fully assist forensic investigators in detecting video forgery when
no source video is available and only the forged video is provided. In this Chap-
ter, we proposed a 3-dimensional CNN model for detecting inter-frame forgery
in video and used MS-SSIM approach to localize the forgeries. The proposed
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model learns more relevant characteristics to detect video inter-frame forgeries
with high classification accuracy and outperforms the existing models in both
static and dynamic videos. In Chapter 5, we explore the recognition of unethi-
cal human actions from a video forensic perspective using a deep learning-based
hybrid model.
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Chapter 5

Unethical human action
recognition using deep learning
based hybrid model for video
forensics

In Chapter 4, we proposed a 3DCNN model for inter-frame video forgery (frame
insertion and deletion) detection and applied the MSSIM approach to localize
the forgeries. The proposed model results were better compared to existing
inter-frame video forgery detection techniques. In this Chapter, we automate
the modeling of human action to recognize unethical human activities in videos
saving substantial time in multimedia forensics investigation. Due to the
widespread adoption of mobile devices, lower storage costs, and faster transfer
speeds, multimedia users are generating massive amounts of data, which has
surpassed the forensic specialist’s abilities to successfully examine and analyze
multimedia content.
Unethical human action recognition methods are required for video forensic
investigation in order to prevent cybercrime and devious actions from occurring
in the first place. Recognizing unethical behavior is a key subject in video
forensics which may curtail the analysis time of the digital evidence in video files.
Videos are normally considered 3-dimensional signals to represent human actions
and 3-Dimensional Convolutional Neural Network(3DCNN) is significantly used
to extract spatio-temporal features for identifying human actions. 3DCNN is
an extension to 2-Dimensional Convolutional Neural Network(2DCNN) that
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learns features from both spatial as well as temporal signals present in video
files whereas 2DCNN learns features from the spatial signal of still images. Deep
neural networks, such as Convolutional Neural Networks (CNN), Deep Belief
Networks, and Deep auto-encoder have shown their ability to extract complex
statistical dependencies from high dimensional sensory inputs and efficiently
learn hierarchical representations to generalize well across a wide variety of
computer vision(CV) tasks like image classification, speech recognition, object
detection, human action recognition, etc.
Human action recognition plays a key role in applications such as automated
surveillance, elderly behavior monitoring, human-computer interaction, ambient
assisted living, intelligent driving, content-based video retrieval, pornography
action recognition, etc. Many algorithms for Human Action Recognition(HAR)
have recently been proposed using deep learning techniques but, they are unable
to effectively learn complicated features and are computationally heavy, resulting
in incorrect action recognition. Action recognition is a method of assigning
action labels to video frames, such as hopping, dancing, fighting, running,
walking, and so on. This allows the system to identify various human actions
efficiently and automatically[105]. In recent years, a variety of action recognition
methodologies have been deployed, including wireless sensor network-based,
wearable sensor-based, and video-based approaches. Video-based approaches
have become increasingly popular due to their high action recognition rate and
ease of use.
In video forensic analysis, HAR can be used to identify unethical human actions
in video files. A politician in Karnataka (an Indian state) was recently involved
in a controversy after a social activist approached police with false evidence
allegedly depicting the minister in a compromising posture with a woman. The
video was released to the media showing the woman in the video clips was
enticed by the minister with a government job offer. The social activist requested
a detailed investigation into the minister’s alleged sex scandal[106]. As a
consequence, there is a risk of propagating incorrect information and conspiracies
through the Internet, leading to major disinformation in the community.
To investigate such cases, unethical human action recognition in video files
would expedite the analysis. Due to multiple factors like having many inter
and intra-class variances, changes in the background, lightning, angle variability,
ambient noise, and the speed of activities, correctly identifying human action in
videos remains a difficult challenge[105]. To address these issues, hand-crafted
feature extraction methods such as the histogram of oriented gradients (HOG)
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and the histogram of optical flow (HOF) were used but they only covered a small
portion of the human action recognition and perform poorly on large, complex
datasets. The classic approach of examining, segmenting, and classifying human
activity begins with the extraction of human silhouettes from chaotic and shadow
ambient regions, allowing action recognition[107]. But, occlusion and varied
viewpoints affect Silhouette features resulting in poor performance.
The main objective of this research is to perform an analysis of video files
(including Pornography) and improve learning ability for accurate recognition of
unethical human actions in complex videos. In this direction, we first focused on
the analysis of human action by extracting deep action features from large video
action datasets using two-stream inflated 3D ConvNet(I3D)[3] and then improv-
ing the learning capability of the model by learning small discriminative features
among spatial and temporal regions using Spatio-Temporal Attention(STA)[4]
module. We proposed a fusion of the STA+I3D model by adding STA on top
of I3D to achieve good results in recognizing complex unethical human actions.
Then, we created a multi-action dataset with normal, unethical, and porn actions
using benchmark datasets like Weizmann[108], HMDB51[109], UCF-101[110],
NPDI[111], and UCF-Crime[112]. From the video forensics perspective, the
proposed model is unique and is the first experimental demonstration of the
fusion of STA+I3D for intelligent unethical action recognition in complex video
files.
3DCNN can recognize complex human actions in videos using spatio-temporal
features and does not rely on manual identifications. In addition, 3DCNN auto-
matically adapts and learns hierarchical features from lower to higher patterns.
Video frames are input to the 3DCNN model, which generates numerous channels
of information, and a final output score for each human action is generated
based on the feature maps representation [87]. A. Karpathy et al.[113] proposed
a multi-resolution architecture to speed up model training and described the
performance of neural networks in large-scale video classification. The authors
explored the ways to use temporal data with single-stream 2DCNN and tested
on different fusion architectures including single frame, late fusion, early fusion,
and slow fusion using benchmark video datasets.
Karen Simonyan et al.[114] proposed two-stream Convolutional Net-
works(ConvNets) for action recognition in the videos by processing spatial
and temporal networks separately. The class score generated by the two streams
is combined by late fusion. The major drawback of this network is, training the
two networks separately induces more training time and cost.
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5.1 Challenges in human action recognition

A very deep 3DCNN model was proposed by Du Tran et al.[115] for training
large-scale video action datasets using spatio-temporal feature learning and
demonstrated that 2DCNN based models are not suitable to learn 3-dimensional
data. The proposed model learns the appearances spatially in the initial frames
and learns action information in later frames of the video clips. The model has
shown better performance on larger datasets.
It has been discovered in the literature that a pre-trained CNN model on large-
scale annotated datasets can be transferred directly to an action recognition task
with a minimal training dataset[79]. The pre-trained model improves the clas-
sification accuracy and performs well on small datasets but needs improvement
when used on complex datasets such as UCF-50, UCF-101, IXMAS, HMDB51,
and so on.
The most important capability of the human action recognition architecture is
the extraction of massive features from spatio-temporal regions that can map
with final output channels and make accurate predictions over videos. Joao
Carreira et al. presented a novel two-stream Inflated 3D ConvNet(I3D)[3] using
2D ConvNet inflation. Convolution filters and pooling kernels of very deep
image classification ConvNets are expanded into 3D in order to learn more
spatio-temporal features. 2D filters are inflated across the temporal dimensions
to create a 3-dimensional kernel filter from 2D images(NxNxN from NxN 2D).
The majority of existing 3DCNN models treat all input video frames equally,
ignoring spatial and temporal differences between video frames. Several studies
have shown that 3DCNN learning functionality can be improved by using
discrete modules since many of the existing works have ignored improving
the 3DCNN learning capability during action recognition in videos due to
lack of learning discriminative features in spatial and temporal regions. This
motivates us to develop a hybrid model (STA+I3D) to increase the learning
capability as well as improve the performance of unethical human action recogni-
tion in complex/large action datasets without affecting the number of parameters.

5.1 Challenges in human action recognition
There are several existing architectures like two-stream with optical-flow, LSTM-
CNNs, 3DCNN, etc. used for human action recognition and classifications. These
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models require high training, storage cost, and layer-by-layer stacking of 3D con-
volutions, which is critical for high-level action recognition tasks. The learning
capability of the model is also affected since 3DCNN model ignores the spatial
and temporal differences across the video frames.
In the proposed model, unethical human action recognition is performed by
3DCNN with the fusion of STA and I3D models’ weights through transfer learn-
ing, fine-tuning, and optimization techniques.

5.2 Contributions
The major contributions of our work are:

1. For unethical human action recognition function, we proposed an efficient
3DCNN model for video forensics analysis.

2. For deep spatio-temporal feature extraction, we integrate a pre-trained I3D
architecture with a discriminative feature extractor like STA, which out-
performs several existing architectures in terms of accuracy and works on
fewer computational resources.

3. Our proposed method is evaluated using various challenging benchmark
datasets to showcase the novelty of the work. We achieved superior re-
sults than existing human action recognition methods by using pre-trained
2DCNN weights to initialize the model parameters and adding convolutional
and deconvolutional operations for discriminative feature learning through-
out the temporal dimension.

5.3 Methodology
The overall framework of the proposed method is presented in this section based
on the fusion of STA and I3D as shown in Figure 5.1. There are five sections
in this framework: 1. Data Preprocessing and Augmentation, 2. 3D ConvNets
for learning spatio-temporal features, 3. Two-stream inflated ConvNet (I3D), 4.
Spatio-Temporal Attention (STA), and 5. STA + I3D.
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Figure 5.1: Proposed hybrid model of human action recognition using I3D and
STA.

5.3.1 Data Preprocessing and Augmentation
To meet the requirements of deep learning algorithms, the raw input data needs
to be transformed into structured data. Data preprocessing includes cleaning the
data and making it suitable for training which includes frame extraction, resizing,
reshaping, and data augmentation of the video files. A video is a collection of
frames that are displayed in a specific order and move in real-time. The time di-
mension produces a series of images that appear to be moving when they are put
together as frames. To work with deep learning video applications, it is difficult
to process multiple frames which leads to the complexity of the system. So, we
need to extract the individual frames of the video with a fixed number of frames
and store them in a list-like data structure for further processing. The input to
the model is a combination of fixed-size successive frames.
All the video frames are resized and reshaped to (58,224x224x3) frames denoting
58 frames, 224 height, 224 width,s and 3 channel RGB depth. In addition, all
the frames’ pixel values always have to be scaled between 0 to 1 to ensure that
they are on the same scale and when dealing with small datasets, every frame of
the class is normalized and data augmented. Data augmentation is applied when
small datasets are used for deep learning tasks to prevent overfitting and increase
the variance of data. Data augmentation is a method of increasing the variance
of the dataset and artificially expanding the size of the training set by creating
modified data from the existing data.
Using the 3DCNN architecture, we observed that the training model was faster,
but was unable to generalize well when evaluating over-testing data. To solve
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overfitting problems, there are various techniques available in the literature such
as regularization, data augmentation, and adding dropout layers in the network.
In the proposed work, we apply data augmentation on a video dataset by first
converting each video into a fixed sequence of frames then each frame is aug-
mented comprising of the transforms involving: RandomCrop, HorizontalClip,
VerticalClip, RandomFlip, GaussianBlur, and RandomRotate.

5.3.2 3D ConvNets for learning spatio-temporal features
Convolutional Neural Networks(CNN) have made significant contributions in the
area of computer vision (image and video processing). CNN can learn features
from multiple layers hierarchically and generate a high-level representation of the
raw inputs automatically. The performance of CNN is improved by empirical
testing on large-scale video datasets, in which the networks must access not only
the appearance information provided in single static images, but also needs to
access complex temporal variations[113]. The 3D Convolutional Neural Network
is a popular convolutional neural network for human action recognition in videos
since a 3DCNN can convolve two-dimensional images and time dimensions.
A 2DCNN is the best for extracting spatial features from images, but may not be
used for processing video data that are in continuous frames. In video sequences,
human action recognition is a 3D signal composed of adjacent time dimension
information that varies over time. 2DCNN computes features from the spatial
dimensions by applying convolutions on 2D feature maps and hence is suitable for
extracting features from images. However, in extracting features from video files
it is necessary to capture the motion information from consecutive frames. To
extract the features from both spatial and temporal dimensions 3D convolutions
are applied in the convolution stages. A 3D Convolution is a kind of convolution
in which the kernel slides in three dimensions rather than in 2D convolutions.
The 3D convolution equation is expressed as follows[116]:

vxyz
ij = ReLU

bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ti−1∑
t=0

W pqt
ijmv

(x+p)(y+q)(z+t)
(i−1)m

 (5.1)

where vxyz
ij represents the convolution result at the position i of the j feature

map(x,y,z) of the layer; ReLU() is the activation function; bij is the deviation of
the feature map; m is the index of the feature map in the layer (i-1); W pqt

ijm is
the value at the position (p,q, t) of the feature map; t is the time dimension that
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is unique to 3D convolution; Pi, Qi, Ti are the width, height and depth of the
convolution kernel respectively. Figure 5.2 shows the proposed 3D CNN model
which is composed of four Conv3D layers with a depth size of 32, followed by
Leaky ReLu layers.

Figure 5.2: The architecture of 3D CNN model for unethical human action recog-
nition

3DCNN is composed of many pairs of layers including 3D convolution kernels,
MaxPooling, Dropouts, Dense and Output layers. To obtain the desired output, a
softmax layer for multiclass classification is used after the various successive fully
connected layers. The output shape of the layers after convolution is represented
as:

output shape = [(N −k +2p)/s]+1 (5.2)

where input shape is N , kernel size is k, padding is p and stride is s. The equation
5.2[117] is used during the convolution operations. The first and third convolution
uses a kernel size of 11x11, second and fourth convolution uses a kernel size of
5x5. All the convolutions use a depth size of 32 which denotes frame depth for
video inputs. To perform downsampling progressively across the layers during
training MaxPool of kernel size 2x2 with depth 2 is used. This allows to reduce
the representation size and speeds up the computations. To prevent overfitting
during training process, Dropout layers are used with a rate of 0.25. In order
to perform classification on the features extracted by the Conv3D layers and
down-sampled by the MaxPool layers, one Dense (or fully connected) layer is
used. The Dense layer has output size fixed to 1, which represents the number of
classes to recognize. The output of the dense layer is passed to the final activation
function SoftMax, holding the output classes and predicting output from an array.

74



5.3 Methodology

Consider a task with K classes, the SoftMax function[118] is expressed as:

Softmax(y)i = exp(yi)∑n
j=1 exp(yj)

for j = 1,2, ..n (5.3)

where, y is input vector to fucntion softmax, yi is the ith element of input
vector, exp(yi) is standard exponential function applied on yi. SoftMax gives
the predicted probability that class i will be selected by the model. In a model
with a softmax activation function, the class with the highest probability is
selected as the final prediction. 3DCNN architecture can be very useful in
recognizing human actions without the need of feature engineering. However,
it needs to enhance the training parameters by exploring transfer learning and
data augmentation techniques. The following issues were found during the
implementation of 3DCNN.

• 3DCNN requires a large number of labeled examples.

• In comparison to 2DCNN, 3DCNN has a lot more parameters resulting in
overfitting on small datasets.

• The computational time is more, as it needs to train the parameters from
scratch.

• There is a need for more hyper-parameter tuning, which consumes more
time.

• The 3DCNN architectures are unable to build deeper layers due to the
complex structure of the 3D convolution kernel.

To overcome the aforementioned issues, we determine the appropriate initial-
ization parameters and then fine-tune the model using a pre-trained model on
the available labeled dataset to obtain transfer knowledge from a 2DCNN to a
3DCNN.

5.3.3 Two-stream inflated Convnet (I3D)
Carreira, J et al.[3] introduced Two-stream inflated Convnet (I3D) based on 2D
ConvNet inflation. The I3D model inflates the filters and pooling kernels (op-
tionally their parameters) with state-of-the-art image classification architectures,
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Figure 5.3: Two-Stream Inflated 3D ConvNets[3].

resulting in highly deep spatio-temporal classifier.
The architecture of I3D is depicted in the Figure 5.3, which shows the way 3D
ConvNets benefit from ImageNet 2D ConvNet. I3D employs parameters from
the ImageNet 2D pre-trained weights, which can be used to obtain a suitable
bootstrap initialization value and get the time dimension 3D filter by repeating ‘t’
times. In the 3D implementation, the parameters are employed from a 2D model
and trained on a large dataset, such as ImageNet. The 2D inflated procedure not
only constructs the structure of 3D ConvNets but also pre-train the 3D filters.
Hence, I3D is an efficient step towards creating powerful 3D ConvNets using
two-dimensional pre-trained weights. I3D has been built on the basis of a 3D
Convolution Network (C3D)[115], which is briskly and more precise at detecting
and classifying unethical behavior. I3D model uses Inception-v1[72] architecture,
which offers better performance than existing methods after pre-training on
Kinetics-400 datasets[119]. Inception expands “Wide” rather than “In Depth”. In
addition, it aggregates outcomes by combining spatial and temporal information.
If pl

m is the pre-trained 2D filter of the mth channel in the lth layer, then P l
m

denotes the corresponding filter in 3D ConvNet[120]. The 2D-Inflated operation
can be described as:

P l
m =

[
pl

m,pl
m,pl

m

]
(5.4)

P l = Cl

(
P l

0,P l
1, ......,P l

m−1
)

(5.5)

where P l denotes 3D kernel of the lth layer, and the operation of merging all filters
into one kernel is denoted by Cl. Each 3D filter is basically comprised of three 2D
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filters. In Imagenet’s pre-trained 2D ConvNet, the 2D filters are replicated from
the same channel of the appropriate layer. Then, a 3D kernel is created from each
lth cubic filter. The pooling kernel can be simply converted from square to cubic.
With the use of transfer learning from an existing pre-trained 2D CNN model,
there is improved performance on large-scale video action recognition tasks and
bootstrapping from pre-trained 2D CNN makes the model learn fast resulting in
better performance. In addition, I3D also improves the model’s performance and
prevents overfitting issues. I3D is best at learning low-level temporal and spatial
information, while it struggles with higher-level features[121].

5.3.4 Spatio-Temporal Attention (STA)
I3D and 3DCNN architectures extract feature from spatial and temporal regions
of video but, they are unable to distinguish between the frames. In reality, differ-
ent frames convey different information to action recognition. Understanding each
frame separately in a video recognition task and giving them attention according
to the need helps in improving video classification and recognition capabilities.
Thus, to improve the power of understanding and learning each frame separately
by giving attention, we use a spatio-temporal attention (STA) module[4] that
needs to be appended to the later convolutional layers without increasing much
computational cost.
The STA module is divided into three functional modules:

• Temporal Attention function

• Spatial Attention function

• Spatio-Temporal Attention function

5.3.4.1 Temporal Attention function

In the temporal attention function, features in video frames are distinguished
by learning frame-wise weight matrices Wt using the transform function τt. The
variance data gets lowered during the extraction of information from the input
frames. This information is further reduced in the operations of convolution
leading to losing significant information required for action recognition. The
temporal function τt is used to overcome this situation. First Deconvolution
(DeConv) operation is applied using τt to expand the temporal dimension for
preserving more temporal information. Later, the Convolution layer is used to
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squeeze the dimension back to its original dimensions. The temporal attention
function[4] is expressed mathematically as:

τt = δt ◦St ◦0t ◦ ϵt (5.6)

where St and ϵt are the squeezing and expanding operations respectively. ◦
denotes the composition operation over multiple functions, generating the
compound function. 0t and δt are the ReLU and sigmoid non-linear activation
functions respectively.

5.3.4.2 Spatial Attention function

The spatial attention function τs(.) works similar to the temporal attention func-
tion, but the spatial attention function differentiates meaningful channels and
designates a score for each channel at the channel level. The spatial attention
function[4] is mathematically expressed as:

τs = δs ◦ ϵs ◦0s ◦Ss (5.7)

Where ϵs and Ss are the expanding and squeezing operations respectively. δs and
0s are sigmoid and ReLU activation function respectvely. The spatial attention
function uses spatial convolution and channel-level deconvolution operations
to focus on the spatial dimension of the video file to extract essential information.

5.3.4.3 Spatial-Temporal Attention function

The spatial and temporal attention functions are combined together to get spatial-
temporal attention (STA) module that can continue to work on frame-wise and
channel-wise weights. The architecture of the STA network module is shown in
Figure 5.4, which is embedded in the 3DCNN model.
The STA module attempts to learn the attention (W = wij , i = 1 to l, j = 1 to c)
weighting the frames(i = 1 to l) and channels(j = 1 to c) in temporal and spatial
dimension.
The spatial-temporal attention extracting process includes one channel squeezing
operation Ss and one expanding operation ϵs. In order to enhance the repre-
sentational power of the model, both sigmoid and ReLU activation functions are
essential. Input feature maps are weighted by W which is output from the STA
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Figure 5.4: The architecture of STA network module [4].

module. An element-wise multiplication of the input feature map and weights is
indicated by ⊕.
A spatio-temporal attention (STA) is composed of spatial attention and temporal
attention given as:

τ = δ ◦ (St ◦ ϵs)◦0◦ (ϵt ◦Ss)◦P (5.8)

where P is the Cartesian product of the squeezing function in the spatial and
temporal attention function. P can be expressed as

P = Ps ×Pt (5.9)

The transformation τ denotes both linear compres-
sion(convolution)/expansion(deconvolution) operations and a non-linear
activation functions ReLU and Sigmoid. The layers of the STA module shown in
Figure 5.4, depict the following functionality:

• Conv1 layer denotes a function that combines and operates along spatial
and temporal squeeze operations.

• Deconv denotes the Deconvolution function that operates by squeezing and
expanding the dimensions.

• Conv2 reduces the dimensions in the temporal field and decreases the pa-
rameters for faster training.
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5.3.5 STA+I3D
The STA module, which is combined with I3D improves the spatio-temporal fea-
ture representation in 3DCNN for effective unethical human action recognition
in video enhancing the accuracy and non-linear learning capability. I3D uses
pre-trained 2D image model weights through bootstrapping and using Inception
architecture, creates a very deep architecture for human action recognition. On
the other hand, STA gives correct weightage to relevant features in both the tem-
poral and spatial regions, increasing learning ability over a wide range of datasets.
We introduce a novel architecture that combines I3D (which is already trained on
large datasets such as Kinetics-400, ImageNet) and STA (with attention capabil-
ity in spatial and temporal regions). The proposed hybrid model (a fusion of STA
and I3D)is applied to large and complex benchmark video action datasets. The
equation 5.10 for the proposed hybrid model can be mathematically formulated
using equation 5.8 and equation 5.5.

STA+ I3D = τ
⊕

P l (5.10)

The symbol ⊕ denotes concatenation. Videos are pre-processed and fed into the
I3D model, which is trained on ImageNet and Kinetics-400 datasets to create a
fine-tuned I3D model. Using the STA module, we can boost learning capability
and improve accuracy in unethical human action recognition by integrating it into
a 3DCNN architecture. If the proposed model performs better than the existing
models, we save the model and deploy it as the better model else we use I3D
fine-tuned model. In the results and analysis section, we analyse the performance
of our proposed methodology over a different set of datasets and compare the
same with existing models in the literature.

5.4 Results and analysis
The proposed action recognition method is evaluated using six publically available
datasets: KTH[122], Weizmann[108], HMDB51[109], UCF-101[110], NPDI[111],
and UCF-Crime[112]. The subset of action classes from the Weizmann, HMDB51,
UCF-101, NPDI, and UCF-Crime datasets are combined to generate a new multi-
action dataset. We considered accuracy and loss as the most essential performance
criterion while analysing the action recognition. Experiments are conducted on a
variety of datasets using several architectures, including 1. 3DCNN, 2. 3DCNN
discriminator, 3. I3D, and 4. STA+I3D.
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5.4.1 Datasets
KTH video database contains six types of human actions (walking, jogging, run-
ning, boxing, hand waving, and hand clapping). Currently, the database contains
2391 video sequences[122].
The Weizmann dataset is introduced by Blank in 2005 and consists of 10 actions
such as: bending, jumping jack, jumping, jumping in place, running, galloping
sideways, skipping, walking, one-hand-waving, and two-hand-waving. Each of
these actions is performed by 9 actors resulting in 90 videos[108].
HMDB51 dataset is collected from various sources mostly from movies and a
small proportion from public databases such as YouTube and Google videos. The
dataset contains 6849 clips divided into 51 action categories, each containing a
minimum of 101 clips[109].
UCF-101 is a dataset of real action videos obtained from YouTube for action
recognition. The dataset contains 13320 videos with 101 action classes. The
dataset is broad and complex containing action videos with a wide range of vari-
ations such as cluttered backgrounds, camera motion, object appearance and
posture, viewpoint, object scale, illumination conditions, and so on[110].
The NPDI pornographic dataset is one of the largest publicly available dataset
used for research purposes. This dataset consists of around 80 hours of 400
adults and 400 non-adult videos[111]. In our experiments, we use pornographic-
easy and non-pornographic-difficulty video clips for identifying the pornographic
actions using the proposed model.
The UCF-Crime dataset includes a massive 128-hour video collection. It includes
1900 lengthy and uncut real-world surveillance videos with 13 actual anomalies
such as Abuse, Arson, Arrest, Assault, Burglary, Explosion, Fighting, Robbery,
Road accident, Shooting, Stealing, Shoplifting, and Vandalism[112].
Figure 5.5 shows various action classes from benchmark datasets like KTH,
Weizmann, HMDB51, UCF-101, NPDI, and UCF-Crime. We select 24 sub-
sets of classes for training and testing from benchmark datasets like Weizmann,
HMDB51, UCF-Crime, UCF-101, and NPDI to build a multi-action dataset. The
number of action classes is limited to 24 with 2938 video clips due to a lack of
computational resources. The three classes of actions are differentiated as follows:
normal, unethical, and porn as shown in Table 5.1. The deep learning-based hy-
brid model that we proposed is capable of accurately learning features of 24 classes
and recognizing diverse activities along with prediction.
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Figure 5.5: Examples of an action frame from benchmark datasets.

5.4.1.1 Implementation details

According to Deep Learning standards, the selected datasets are split randomly
in a ratio of 75:25 for training and testing. The proposed unethical human action
recognition system is implemented using Python3, deep learning libraries Keras
(with Tensorflow backend), and OpenCV, which provide high-level building blocks
for deep learning model development. We conducted numerous tests to verify the
way network parameters are initialized, such that our model can learn and classify
properly. We have used Intel i7, 2.20GHz processor with 8GB GPU(NVIDIA RTX
2080) and 32 GB RAM for our experimental evaluation.

5.4.1.2 Results

3DCNN model trained with KTH dataset
The 3DCNN model is evaluated on the KTH dataset, with a setup using 16-frame
depth as input. The original input frames of 160 x 120 are reduced to 120 x 120
resolutions. The 3DCNN architecture as shown in Figure 5.2, consists of 120
x 120 x 11 inputs. In each layer, the kernel size and the number of filters are
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Table 5.1: Multi-action dataset classes

Number of classes Number
of video
clips

Normal 15 (climb stairs, dive, eat,
flic-flac, hug, catch, jump,
laugh, pushup, ride bike,
stand, walk, wave, apply-
makeup, playing-tabla)

1446

Unethical 07 (hit, punch, shoot gun,
smoke, sword-fighting, ar-
rest, assault)

692

Porn 02 (porn easy, non-porn dif-
ficulty)

800

defined. In 3DCNN, the two convolutional layers use kernel filter of sizes 11 x 11
x 32 and 5 x 5 x 32, and two layers of 2 x 2 max pooling are used to reduce the
training parameters. The fully connected layer has activations in the previous
layer which is transformed into 6400-dimensional feature vectors. The softmax
layer consists of output units that result in the number of action classes. The
configuration details of the model are presented in Table 5.2. The categorical

Table 5.2: Configuration details for the 3DCNN

Batch size 16
Number of epochs 250
Loss function Categorical cross entropy
Optimizer Adam
Evaluation metric Accuracy

cross-entropy is a loss function that evaluates the performance of a multi-class
classification model with a probability value as its output. The loss is increased
when the predicted probability varies from the actual label. Cross-entropy loss is
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estimated using equation 5.11 in multi-class classification.

lossfunction = −
n∑

i=1
tilog(pi) (5.11)

The parameter ti is the truth label, pi is the softmax probability for the ith

classes, and n is the number of classes. Figure 5.6 depicts the training and test
accuracy of the 3DCNN model on KTH dataset with respect to the number
of epochs. Figure 5.7 shows the loss curve during training and testing. The

Figure 5.6: Train vs. test accuracy. Figure 5.7: Train vs. test loss.

3DCNN model is unable to learn minor features across the video frames and is
also unable to create additional trainable parameters due to the smaller datasets.
Hence, the normal 3D CNN model is showing an overfitting issue.
3DCNN discriminator trained with Weizmann dataset.
The 3D convolution layer added with batch normalization and activations is
used as a discriminator layer in the 3DCNN model to improve the classification
accuracy trained with the Weizmann dataset. Figure 5.8 and Figure 5.9 shows
the progress in accuracy and loss respectively. The configuration details of the
model are presented in Table 5.3. Figure 5.8 and Figure 5.9 shows improvement

Table 5.3: Configuration information for 3DCNN discriminator

Batch size 8
Number of epochs 400
Loss function Categorical cross entropy
Optimizer Adam
Evaluation metric Accuracy
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Figure 5.8: Training vs. testing accuracy. Figure 5.9: Training vs. testing loss.

in accuracy and loss. The model configuration information is presented in Table
5.3. Due to fewer features being learned and small dataset, the model still faces
an overfitting issue. The variety of dataset types can influence the complexity
of the networks. Single-view point datasets such as Weizmann and KTH use a
single camera to capture human actions in confined spaces. Figure 5.10 shows
human action video sequences of the Weizmann dataset for hand-waving action
where actors in the video clips show simple identical action.

Figure 5.10: Human action video sequences of hand-waving from Weizmann
dataset.

I3D model trained with multi-action dataset.
With a pre-trained Kinetics-400 dataset, the I3D model significantly improves
human action classification eliminating the overfitting problem as shown in Fig-
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ure 5.11 and Figure 5.12. Also, the training accuracy increased to 95.6% on the
multi-action dataset. The details of the model configuration are shown in Ta-
ble 5.4. I3D models based on Inception-v1 have better performance on small

Figure 5.11: Train vs. test accuracy. Figure 5.12: Train vs. test loss.

Table 5.4: I3D model configuration information.

Batch size 8
Number of epochs 50
Loss function Categorical cross entropy
Optimizer SGD
Evaluation metric Accuracy

benchmark datasets after pre-training on Kinetics human action video dataset.
However, the I3D model is unable to distinguish small features among the adja-
cent frames resulting in low learning capability on complex datasets. Figure 5.13
shows complex human action video sequences of the Assault action class from the
UCF-crime dataset.
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Figure 5.13: Human action video sequences of Assault from UCF-crime dataset.

Training STA+I3D on multi-action dataset.
By providing weightage to specific spatial and temporal features, the proposed
model STA+I3D provides a solution to 3DCNN and I3D models. The model is
efficient and robust in handling diverse human action video datasets. Figure 5.14
and Figure 5.15 shows the accuracy and loss for a multi-action dataset after 50
iterations of STA+I3D. It can be seen that we have achieved an average training
accuracy rate of 98.03% with the multi-action dataset. The configuration details
of the model are shown in Table 5.5.

Figure 5.14: Train vs. test accuracy. Figure 5.15: Train vs. test loss.

The confusion matrix of STA+I3D on a multi-action dataset over a subset of
five classes (considered only 5 due to space constraint) is shown in Figure 5.16.
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Table 5.5: Details of the STA+I3D configuration.

Batch size 4
Number of epochs 50
Loss function Categorical cross entropy
Optimizer SGD
Evaluation metric Accuracy

The model’s excellence positivity rate is determined by the predicted and actual
values of the confusion matrix, indicating good classification accuracy.

Figure 5.16: Confusion matrix on a multi-action dataset for five classes.

The model predicts incorrectly jumping as cycling in the confusion matrix,
indicating that similar features of cycling and jumping are misunderstood by the
model, and there is a need for extra hyper-parameter tuning. The multi-action
test data prediction results are shown in Figure 5.17. The predictions are sorted
in decreasing order of confidence.

5.4.1.3 Comparison

The values of the parameters in deep learning models determine how accurately
the model accomplishes the task for a specific architecture. Deep neural networks
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Figure 5.17: Multi-action test data predictions. The actual label is shown in the
blue bar (first row). The green and yellow bars distinguish percentage-wise correct
and incorrect predictions.

thrive with a large number of parameters, allowing the model to represent more
complex features. The number of parameters is defined by the number of layers
in the network, the number of units in every layer, and the dimensionality of
the input and the output. When compared to other models, our proposed model
STA+I3D obtained the maximum number of parameters as shown in Table 5.6.

Table 5.6: Parameters of different models.

Model No. of Param-
eters

Normal 3DCNN 9,57,990
3DCNN with
Discriminator

8,090,279

I3D Fine tuned
model

12,704,544

STA+I3D
model

13,079,162

Comparative analysis is presented in Table 5.7 against the state-of-the-art
approaches for recognizing human actions. Our proposed model, STA+I3D, em-
ploys a multi-action dataset that requires less computational time and performs
well during training and testing, learning complex features in videos.
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Table 5.7: Performance comparison of STA+I3D model with existing models using
benchmark datasets. ‘-’denotes that the result is not available in the literature.

Architecture HMDB51 UCF-
101

NPDI UCF-
Crime

Multi-
action
dataset

(a)AGNet[123] – – 93.8 – –
(b)MiCTNet[124] 63.8 – – – –
(c)VGGC3D[125] – – 95.1 – –
(d)I3D+LSTM[121] – 95.1 – – –
(e)Motion+TCNN[126]– – – 31 –
(f)FineTuned
3DCNN[127]

– – – 45 –

(g)I3D[3] – – – – 78.2
(h)STA+I3D 81.4 96.3 97.2 62.2 82.2

From the analysis and experimental results of 3DCNN, I3D, and STA+I3D
models, we have identified some of the advantages and drawbacks as depicted in
Table 5.8.
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Table 5.8: Advantages and drawbacks of 3DCNN, I3D, and STA+I3D.

Drawbacks Advantages
3DCNN 1. This approach

fails to recognize
complex actions in
videos.

1. Used to extract
spatio-temporal
features.

2. Need more
hyper-parameter
tuning compared to
other techniques.

2. It works bet-
ter with larger
datasets.

I3D 1. It is not pow-
erful in extracting
high level features.

1. I3D improves
action recognition
performance by in-
flating 2D filters to
3D filters.

2. It is unable
to distinguish small
features among ad-
jacent frames.

2. It provides
pre-trained ac-
tion classification
weights as it is
trained with large
dataset of Kinetics-
400.

STA+I3D 1. Fails to differ-
entiate multiple ac-
tions within video
frames as it does
not provide any lo-
calization of ob-
jects inside a video.

1. STA+I3D
provides appropri-
ate weightage to
relevant features
of temporal and
spatial regions.

2. STA may not
be compatible with
all the deep learn-
ing architectures.

2. It is robust to
handle diverse ac-
tion recognition in
existing benchmark
datasets.
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From the literature study, we found that various action recognition models
are designed and trained with unique datasets to show the model’s performance.
In our proposed model, we have used unique and multi-action datasets to show
human action recognition accuracy in large and complex video actions categorized
into normal, unethical, and porn as shown in Table 5.1. We were able to obtain
better action recognition accuracy and improved learning capability in complex
actions of spatio-temporal features present in videos.

5.5 Summary
Human Action Recognition (HAR) is a task that involves monitoring human
activity in a variety of environments like visual surveillance, elderly behavior
monitoring, unethical activity recognition, etc. Cybercrimes using videos are in-
creasing drastically and there is a need for unethical human action recognition in
these files to minimize the forensic analysis time. In this Chapter, we addressed
the problem of complex unethical human action recognition and improved the
high-level feature learning capability by using the fusion of STA and I3D. The ex-
perimental results compared with the state-of-the-art 3D CNN approaches using
unique and multi-action datasets, have shown that STA+I3D provides better per-
formance in unethical human action recognition by learning accurately complex
spatio-temporal features in videos. In the future, we look forward to extending
the proposed model to other applications like video surveillance, video forgery
recognition (i.e., video object localization, video object detection), semantic seg-
mentation, human-computer interaction, etc.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions
Multimedia forensics deals with analyzing multimedia content to have the legality
of evidence in the court for proving its authenticity and integrity. In recent
times, many methods (active and passive) have been proposed in the literature to
analyze multimedia content. Passive forensic approaches have a direct impact on
multimedia forensics and have proven better approaches to combat cybercrimes
compared to active forensic approaches. Due to the growth of massive amounts
of multimedia data, forensic investigators face enormous challenges in analyzing
and processing the same. We focused on image as well as video forgery analysis
from a multimedia forensics perspective and tried to minimize the gaps in existing
detection techniques.

In terms of detecting and localizing image forgery, we used a pre-trained
LSTM-CNN based hybrid model to detect (copy-move and image splicing) forgery
operations. We classify the forgery operations (copy-move or image splicing)
by template matching with an improved SIFT algorithm to achieve better effi-
ciency and make feature point matching more accurate with scale and rotation
invariance. The proposed model was tested on benchmark datasets resulting
in better performance accuracy compared to existing models. The use of deep
learning-based methods for image/video tampering detection could help in faster
processing speed, handling a large amount of data, increased stability, better
identification and classification, and getting optimal accuracy.

We designed a video forgery detection technique using deep learning-based
methods by proposing a 3-dimensional CNN model for detecting inter-frame forg-
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eries (insertion and deletion) and MS-SSIM approach for localizing the forgeries.
The proposed model learns more relevant characteristics to detect video inter-
frame forgeries with high classification accuracy and localize the number of frames
forged. The model outperforms when compared to existing models in both static
and dynamic videos.

Unethical human action recognition methods are required for surveillance and
security, cyber forensic investigation, human rights protection, workplace safety,
and social media moderation. It is important to note that the design of such a
recognition system needs to address complex actions and high-level features. The
problem of complex unethical human action recognition and high-level feature
learning capability is addressed using the fusion of STA and I3D. As compared to
existing human action recognition methods, the novel model STA+I3D provides
better performance by learning accurately complex spatio-temporal features.

6.2 Future Work
Deep learning and artificial intelligence are important knowledge areas that have
provided solutions allowing the successful resolution of complex problems. Our
research focused on image forgery (copy-move, image-splicing) detection as well
as localization and video forgery (insertion and deletion) detection with localiza-
tion. In the future, we look forward to working on other distinct forms of image
and video forgery detection. A universal image and video forgery detection tech-
nique with localization is the future research that should be robust and efficient
in handling several post-processing operations. Advanced deep learning-based
architecture like transformers can be applied for inter-frame video forgery detec-
tion since transformers use a self-attention mechanism to weigh different parts of
the input sequence and make predictions. Advances in AI, especially deep neu-
ral networks (DNN) and Generative adversarial networks (GAN), make deepfake
images and videos much easier, cheaper, and simpler to generate deepfake. Our
future work is to progress in deep learning and transformer-based approaches for
deepfake image and video detection. Some of the ways in which deep learning
and transformers can be used for deepfake detection include. 1. Image analy-
sis, 2. Video analysis, 3. Deep feature extraction, 4. Adversarial training, and
5. Multi-modal analysis. These approaches have shown promising results in the
detection of deepfakes, but the field is still evolving, and much research is needed
to improve the performance analysis of deepfake detection methods.
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