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ABSTRACT

This thesis consists of six chapters. For the convenience of the reader, we are now

providing a quick summary of the work completed in each chapter.

� Chapter 1: In this chapter, we cover some elementary definitions and

results of number theory and we give the necessary prerequisites which are

important in order to understand the statement of the results and their

proofs.

� Chapter 2: In this chapter, first we recall the recent work done by var-

ious authors which are used in our discussion and then we consider the

behavior of discrete mean square of the nth normalized Fourier coefficients

of symmetric square L-function over certain sequence of positive integers.

� Chapter 3: In this chapter, we consider the higher discrete power moments

of the nth normalized Fourier coefficients of symmetric square L-functions

on the same sequence of positive numbers.

� Chapter 4: In this chapter, we study the average behavior of nth normal-

ized Fourier coefficients of symmetric square L-function (i.e. L(s, sym2f))

on a higher dimension.

� Chapter 5: In this chapter, we improve as well as generalize the result of

previous chapter. We investigate the average behavior of the nth normalized

Fourier coefficients of the jth symmetric power L-function attached to a

primitive holomorphic cusp form of weight k for the full modular group

SL(2,Z) over some sequence of positive integers and give a tightened error

term.

� Chapter 6: In this chapter, we consider the integral power sums of coef-

ficients of the Dedekind zeta-function of a non-normal cubic extension K3
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of rational field Q and prove an asymptotic formula for the partial sum

of coefficients of the kth integral power of Dedekind zeta function for any

integer k ≥ 1.





SYNOPSIS

1 Introduction

The word “modular form” has a fairly broad definition. Although they play

key roles in number theory’s numerous branches and are most naturally found

there, these objects also have a significant impact on other areas of mathematics.

For instance, modular forms might evoke varied ideas like Fermat’s Last The-

orem, the Riemann Hypothesis, the Langlands programme, and applications of

arithmetic or applications to string theory using L-functions and elliptic curves.

Obviously, this is just a small selection, the roles that modular forms play; there

are a plethora of other factors that keep research on modular forms quite current.

The first half of the nineteenth century, during the time of Jacobi and Eisenstein,

is when the definition of modular forms originally appeared. Since then, numer-

ous generalisations have been identified and researched, and when combined with

traditional modular forms, they help to explain many of the impressions that

modular forms have left behind.

However, the history of modular forms starts with elliptic functions, which are

doubly periodic meromorphic complex functions and thus a more distant relative

of Jacobi’s θ-functions. Elliptic functions, which date back to Gauss and were

explored by Weierstrass, naturally led to the study of elliptic curves, which are

closely related to modular forms. When it comes to modular forms for the full

modular group SL(2,Z), a cusp form can be identified by the disappearance of

the constant coefficient c0 in the Fourier series expansion.

The study of Dirichlet series with the form
∞∑
n=1

f(n)
ns

has a long history and dates

to the nineteenth century. This interest was primarily sparked by the prominent

place that these series take in analytic number theory. Among others, Hadamard,

Landau, Hardy, Riesz, and Bohr created the general theory of Dirichlet series.

A natural object to study in light of connections between the modular form

and Dirichlet series formed with the same coefficients is the Fourier coefficients

or Hecke eigenvalues.

Every primitive holomorphic cusp form f(z) of weight k for the full modular

i
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group SL(2,Z) has a Fourier expansion at the cusp ∞ of the type

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e2πinz,

where =(z) > 0. The coefficients λf (n) satisfy the Deligne’s bound, i.e.,

|λf (n)| ≤ d(n)� nε,

where d(n) is the divisor function and ε denotes an arbitrarily small positive

constant.

Understanding the behavior of Hecke eigenvalues λf (n) is a key issue in the

study of classical modular forms. Many authors have contributed in the divisor

problems pertaining to these normalized nth Fourier coefficients of Fourier expan-

sion of f(z) at the cusp ∞, for instance see [Fo 2, Zh]. Each cusp form f has a

symmetric square L-function attached to it being defined as

L(s, sym2f) :=

∞∑
n=1

λsym2f (n)

ns

=
∏
p

(
1− α2(p)

ps

)−1(
1− β2(p)

ps

)−1(
1− 1

ps

)−1
,

where α and β are complex numbers, given by P. Deligne [De 1].

Our aim in this thesis is to investigate the average behavior of the Fourier

coefficients associated to symmetric square L-functions, symmetric jth power L-

functions and Dedekind zeta-function under various interesting situations.

We will now explain a brief structure of our proposed thesis. There are six

chapters in the thesis. In the first chapter, we will recall all the definitions and

lemmas that will be of great essence to the soul of our thesis. Mainly, we will

emphasize on arithmetic functions, characters of finite Abelian groups, modu-

lar and cusp forms, Perron’s formula, Dirichlet L-functions, Dirichlet series and

their convergence, representations of integers as sum of squares and properties

of various L-functions such as symmetric jth power L-functions, Dedekind zeta-

function etc. We have also stated some elementary lemmas related to the bounds

of Riemann zeta function and various L-functions that we are going to use fre-
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quently in the proof of our main theorems. Along with the analytic continuations

of some L-functions, functional equations also have been discussed for the better

understanding of the nature of these L-functions.

Second chapter deals with the discrete mean square of the nth normalized

Fourier coefficients of symmetric square L-function (i.e., L(s, sym2f)) over certain

sequence of positive integers. To be more precise, we will see the average behavior

of these Hecke eigenvalues over r4(n), where r4(n) is defined as the number of

representations on n as sum of four squares. We will establish an asymptotic

formula for the same. First, we prove the following Lemma, which is related to

the decomposition of certain L-functions. From [Ha-Wr, pp. 415], we can write

r4(n) = 8

∑
d|n

χ̃0(d)d

=: 8r(n),

where χ̃0 is a character modulo 4, given by

χ̃0(p
u) :=

χ0(p
u) if p > 2

3 if p = 2
,

and χ0 is the principal character modulo 4.

Lemma 0.0.1 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F2(s) =

∞∑
n=1

λ2sym2f (n)r(n)

ns
,

for <(s) > 2, then

F2(s) = G2(s)H2(s),
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where

G2(s) :=ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)

L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H2(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane <(s) > 3
2
, and H2(s) 6= 0 on <(s) = 2.

With the help of above stated lemma, we will prove the key theorem of this

chapter, i.e.,

Theorem 0.0.2 For x ≥ xo (sufficiently large), we have∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ2sym2f (a
2 + b2 + c2 + d2) = c2x

2 +O
(
x

9
5
+ε
)
,

where c2 is an effective constant defined as

c2 = (−2)ζ(2)L(2, sym2f)L(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)H2(2),

and H2(2) 6= 0, and χ̃0 is a character modulo 4.

Remark 0.0.3 We observe from Lemma 0.0.1 that

F2(s) = G2(s)H2(s),

where G2(s) is a product of certain L-functions and H2(s) has an Euler product,

which is uniformly, and absolutely convergent in σ ≥ 3
2

+2ε for any small positive

constant ε. We also know good amount of analytic properties of G2(s), and

each factor of G2(s) satisfies a functional equation of the Riemann zeta type. It

will be clear from our demonstration of proof that we have only employed the

previously mentioned known analytical features of H2(s). If one can find out

more information of H2(s) in the region <(s) ≥ (1− 10ε) then it may even lead

to the following conjecture.
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Conjecture 0.0.4 For sufficiently large x, we have∑
n=a2+b2+c2+d2≤x

(a,b,c,d)∈Z4

λ2sym2f (a
2 + b2 + c2 + d2) = c̃1x

2 + c̃2x+O(xθ),

where c̃1, c̃2 are effective constants, and θ is some positive constant satisfying

0 < θ < 1.

The higher discrete power moments is covered in the third chapter. More

precisely, we study the behavior of the following sums:∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ3sym2f (a
2 + b2 + c2 + d2)

and ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ4sym2f (a
2 + b2 + c2 + d2).

and establish the Theorem 0.0.5 and Theorem 0.0.6.

Theorem 0.0.5 For x ≥ x0 (sufficiently large), and ε > 0 be any small constant,

we have ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ3sym2f (a
2 + b2 + c2 + d2) = c3x

2 +O
(
x

27
14

+ε
)

where c3 is an effective constant defined as

c3 = (−2)ζ(2)L2(2, sym2f)L2(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)

× L(2, sym2f ⊗ sym4f)L(1, sym2f ⊗ sym4f ⊗ χ̃0)H3(2),

H3(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane <(s) > 3
2
, and H3(s) 6= 0 on <(s) = 2, and χ̃0 is a character modulo 4.

Theorem 0.0.6 For x ≥ x0 (sufficiently large), and ε > 0 be any small constant,
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we have ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ4sym2f (a
2 + b2 + c2 + d2) = c4x

2 log x+O
(
x

160
81

+ε
)
,

where c4 is an effective constant defined as

c4 = ζ2(2)L3(2, sym2f)L3(1, sym2f ⊗ χ̃0)L
3(2, sym4f)

× L3(1, sym4f ⊗ χ̃0)L
2(2, sym2f ⊗ sym4f)L2(1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(2, sym4f ⊗ sym4f)L(1, sym4f ⊗ sym4f ⊗ χ̃0)H4(2).

H4(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane <(s) > 3
2
, and H4(s) 6= 0 on <(s) = 2, and χ̃0 is a character modulo 4.

In order to prove the above stated theorems, we will prove some lemmas re-

lated to the decomposition of corresponding L-functions but here it is much more

complicated than the one we stated in chapter 2.

Lemma 0.0.7 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z) and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F3(s) =

∞∑
n=1

λ3sym2f (n)r(n)

ns
,

for <(s) > 2, then

F3(s) = G3(s)H3(s),

where

G3(s) :=ζ(s)L(s− 1, χ̃0)L
2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H3(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane <(s) > 3
2

and H3(s) 6= 0 on <(s) = 2.
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Lemma 0.0.8 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z) and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F4(s) =

∞∑
n=1

λ4sym2f (n)r(n)

ns

for <(s) > 2, then

F4(s) = G4(s)H4(s),

where

G4(s) :=ζ2(s)L2(s− 1, χ̃0)L
3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)L

3(s, sym4f)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H4(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane <(s) > 3
2

and H4(s) 6= 0 on <(s) = 2.

From the proof of our theorems, we understand that there might be a possi-

bility that the integration line could be shifted to the left of the line <(s) = 1.

This prompts us to suggest:

Conjecture 0.0.9 For sufficiently large x and ε > 0 be any small constant, we

have∑
n=a2+b2+c2+d2≤x

(a,b,c,d)∈Z4

λθsym2f (a
2+b2+c2+d2) =

c̃3(θ)x2 + c̃4(θ)x+O(xµ1(θ)+ε) if θ = 3

ĉ3(θ)x
2 log x+ ĉ4(θ)x log x+O(xµ2(θ)+ε) if θ = 4

.

where c̃3(θ), c̃4(θ), ĉ3(θ), ĉ4(θ) are effective constants and µ1(θ), µ2(θ) are some

positive constants satisfying 0 < µ1(θ), µ2(θ) < 1.

In the fourth chapter, we look into the possibility of enhancing the dimension

from 4 to 6. We shall observe the average behavior of the symmetric square

L-function. To be more specific, we investigate the nature of the following sum:
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∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26).

for sufficiently large x. More specifically, we demonstrate the following.

Theorem 0.0.10 For sufficiently large x, and any ε > 0, we have∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26) = c2x

3 +O
(
x

14
5
+ε
)
.

Here, c2 is an effective constant defined as

c2 =
16

3
L(3, χ)L(1, sym2f)L(3, sym2f ⊗ χ)L(1, sym4f)L(3, sym4f ⊗ χ)H2(3),

and χ is the non-principal Dirichlet character modulo 4. Here, H2(s) is a Dirichlet

series which converges uniformly and absolutely in the half plane <(s) > 5
2
, and

H2(s) 6= 0 on <(s) = 3.

The key idea is that the sum in question is being related to the sum involving

r6(n). The main difference here from our earlier result 0.0.2 related to sum

involving r4(n) is that r6(n) is not multiplicative. However, we will observe that

r6(n) can be split into the sum of two multiplicative functions. Then the sum

in question being split into two sums involving the corresponding multiplicative

functions, and being dealt with independently and then we have to glue them to

obtain our result.

The generalization and improvement of the result obtained in chapter four is

discussed in chapter five. Very recently, Newton and Thorne proved the auto-

morphy of the symmetric power lifting symn(f) for every n ≥ 1, where f is a

cuspidal Hecke eigenform of level 1 (for instance, see [Ne-Th 1, Ne-Th 2]). Due

to these ground breaking results, we were enable to obtain the generalization. We

have also incorporated better average or individual sub convexity bounds for the

concerned L-functions. In this regard, we have proved the following theorem.

Theorem 0.0.11 Let j ≥ 2 be any fixed integer. For sufficiently large x, and
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ε > 0 any small constant, we have∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symjf (a
2
1+a22+a23+a24+a25+a26) = c(j)x3+O

(
x
3− 6

3(j+1)2+1
+ε
)
,

where c(j) is an effective constant defined as

c(j) =
16

3
L(3, χ)

j∏
n=1

L(1, sym2nf)L(3, sym2nf ⊗ χ)Hj(3),

and χ is the non-principal Dirichlet character modulo 4.

The key decomposition is given by the following lemmas. From [Ha-Wr, pp. 415],

we can write

r6(n) = 16

∑
d|n

χ(d)
n2

d2
− 4

∑
d|n

χ(d)d2

=: 16l(n)− 4v(n),

where χ is the non-principal Dirichlet character modulo 4.

Lemma 0.0.12 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsymjf (n) be the nth normalized Fourier coefficient of the

jth symmetric power L-function associated to f . If

Fj(s) =

∞∑
n=1

λ2symjf (n)l(n)

ns
,

for <(s) > 3, then

Fj(s) = Gj(s)Hj(s),

where

Gj(s) := ζ(s− 2)L(s, χ)

j∏
n=1

L(s− 2, sym2nf)L(s, sym2nf ⊗ χ),
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and χ is the non-principal character modulo 4.

Here, Hj(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane <(s) > 5
2
, and Hj(s) 6= 0 on <(s) = 3.

Lemma 0.0.13 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsymjf (n) be the nth normalized Fourier coefficient of the

jth symmetric power L-function associated to f . If

F̃j(s) =

∞∑
n=1

λ2symjf (n)v(n)

ns
,

for <(s) > 3, then

F̃j(s) = G̃j(s)H̃j(s),

where

G̃j(s) :=ζ(s)L(s− 2, χ)

j∏
n=1

L(s, sym2nf)L(s− 2, sym2nf ⊗ χ),

and χ is the non-principal character modulo 4.

Here H̃j(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane <(s) > 5
2
, and H̃j(s) 6= 0 on <(s) = 3.

In our last chapter, we investigate a divisor problem related to a certain

Dedekind zeta-function. It reveals the nature of integral power sums of coefficients

of the Dedekind zeta-function of a non-normal cubic extension K3 of rational field

Q. The kth integral power of Dedekind zeta function is defined as

(ζK3(s))
k =

∞∑
n=1

ak,K3(n)

ns

for <(s) > 1, where ak,K3(n) =
∑

n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

For any integer k ≥ 2, writing,∑
n≤x

ak,K3(n) = Mk,K3(x) + Ek,K3(x),
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where Mk,K3(x) is the main term which is of the form xPk−1(log x), where Pk−1(t)

is a polynomial in t of degree k − 1. We have proved the following theorem.

Theorem 0.0.14 Let ε > 0 (be any small constant) and define λ1 = 3ε, λ2 =

min
(
2µ, 1

4

)
, λ3 = min

(
µ+ 1

2
, 5
8

)
, λ4 = min

(
2µ+ 3

4
, 1
)
, λ5 = min

(
3µ+ 1, 3

2

)
and

λk = µ (k − 6) + k
3

for k ≥ 6.

Then we have for any integer k ≥ 1,

Ek,K3(x)� x
1− 1

2(1+λk)
+3kε

.

At the end of this chapter, we took the liberty to propose a conjecture that

heavily depends on the famous Lindelöf hypothesis, which is yet to be settled.

Conjecture 0.0.15 For any integer k ≥ 2 and any small positive constant ε, we

have

Ek,K3(x)�ε x
1
2
+c(k)ε,

where c(k) is a positive constant depending only on k.
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Remarks on Notation

� The letter p with or without indices will be reserved for prime numbers,

unless otherwise explicitly stated.

� The letter C will denote the complex field, R the field of real numbers, Q
the field of rationals, Z the ring of all rational integers and N the set of

positive integers.

� The cardinality of a set A will be denoted by #A.

� For a function f , we denote its image by Im(f).

� We will denote a complex variable by s = σ + it, σ = <(s) and t = =(s)

being the real and complex part of s, respectively, where i is the fixed square

root of −1.

� δ and ε always denote sufficiently small fixed positive constants.

� The parameters T and x are sufficiently large real numbers and k ≥ 1 is an

integer, except when explicitly stated.

� Let k > 0 be given. For each integer n, the congruence class or equivalence

class of n modulo k is defined as

n̂ = {x : x ≡ n (mod k)}

.

� We will denote the number of divisors of a positive integer n by d(n), i.e.,

d(n) =
∑
kl=n

1.

� We will denote the Riemann-zeta function by ζ(s) (as usual), which is

defined as

ζ(s) :=

∞∑
n=1

1

ns
,
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for <(s) > 1. Also (for <(s) > 1), we can write ζ(s) as Euler product,

namely,

ζ(s) =
∏
p

(
1− 1

ps

)−1
,

where the product runs over all primes p.

� Big O. Let a be any real number including the possibilities ±∞. Let f(x)

and g(x) be two functions defined in some neighborhood of a and suppose

that g(x) > 0. We say that f(x) is ”big O of g(x)” and we write

f(x) = O(g(x)) or f(x)� g(x),

if there exists a constant K > 0 and a neighborhood N(a) of a such that

|f(x)| ≤ Kg(x)

for all x in N(a). In particular, the notation

f(x) = O(1)

means that f(x) is bounded in absolute value in a suitable neighborhood

of a.

Some care must be exercised in its use and interpretation. For example, we

frequently encounter a function f(s) of the complex variable s = σ+ it and

write

f(s) = O(g(t)) (t→∞).

The constant K whose existence is implied by the O is dependent upon

σ, and the dependence may be such that K = K(σ) is unbounded for σ

in some neighborhood. Sometimes the dependence of K on the auxiliary

variables or parameters is explicitly stated and sometimes it is implied by

the context.

To allow for greater flexibility and to use the O symbol as effectively as

possible, it is convenient to define O(g(x)) standing by itself. By O(g(x)),
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we shall mean the class of functions C(g) such that f ∈ C(g) if and only if

f(x) = O(g(x)).

� f(x)� g(x) will mean g(x)� f(x).

� Little o. Suppose that f(x) and g(x) are defined in a neighborhood of a,

and suppose that g(x) > 0. Then we say that f(x) is ”little o of g(x))” and

we write

f(x) = o(g(x))

if

lim
x→a

f(x)

g(x)
= 0.

� Asymptotic equality. If f and g are two functions defined in a neighbor-

hood of a, we say that f is asymptotic to g and write

f ∼ g,

if

lim
x→a

f(x)

g(x)
= 1.

The definition applies to both functions of real or complex variables. The

relation is evidently symmetric and transitive.

� We will use the notation f(s) � g(x) to mean g(x)� f(x)� g(x).

� (Unless stated otherwise) all our constants will be effective. In other words,

they can be calculated explicitly.

� The constants γn are called the Stieltjes constants and can be defined by

the limit

γn := lim
m→∞

[(
m∑
k=1

(log k)n

k

)
− (logm)n+1

n+ 1

]
.

γ0 = γ is called Euler-Mascheroni constant or simply Euler’s constant.





Introduction

Numerous researchers from various scientific fields have studied the L-functions

extensively since it was first discovered. It will be impossible to recall everything

that has been written in mathematics literature due to the vast implications of

such discoveries. Although some of them will be covered in more detail later, we

will only briefly touch on the main points and findings that are pertinent to our

discussion in the latter chapters.

The study of L-functions is one of the central themes in number theory and

the first and perhaps the most well known example is the Riemann zeta-function.

These L-functions typically store fundamental arithmetic information, such as the

distribution of prime numbers, that is not readily apparent from their descrip-

tions and typically necessitates understanding of their poles, zeroes, functional

equations, and other analytic features.

In this thesis, we study problems related to the average behavior of the Fourier

coefficients of cusp forms in various situations and also a divisor problem related

to a certain Dedekind zeta-function. There are six chapters in the thesis. The

first chapter is devoted to a comprehensive study of the topics in number theory

that are pertinent to our goal and, hopefully, reflect our efforts to make this thesis

as self-sufficient as feasible.

In Chapter 1, some elementary definitions and concepts of number theory

like arithmetic functions, characters of finite Abelian groups, modular and cusp

forms, Perron’s formula, Dirichlet L-functions, representations of integers as sum

of Squares and properties of various L-functions etc. that are relevant for our

purpose have been discussed. We have also stated some elementary lemmas re-

lated to the Riemann zeta-function and various L-functions that we are going to

use frequently in the proof of our theorems.

In Chapter 2, we are concerned with the discrete mean square of the nth

5
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normalized Fourier coefficients of symmetric square L-function (i.e. L(s, sym2f))

over certain sequence of positive integers and establish an asymptotic formula for

the same.

In Chapter 3, we consider the higher discrete power moments of the Fourier

coefficients of symmetric square L-functions on the same sequence of positive

numbers.

We shall look into the prospect of the dimension being extended in chapter

4. We will see the average behavior of nth normalized Fourier coefficients of

symmetric square L-function (i.e. L(s, sym2f)) over r6(n) (cf. section 1.4.2).

In Chapter 5, we improve as well as generalize the result of previous chapter,

i.e., we investigate the average behavior of the nth normalized Fourier coefficients

of the jth symmetric power L-function attached to a primitive holomorphic cusp

form of weight k for the full modular group SL(2,Z) over some sequence of

positive integers.

In our last Chapter (cf. chapter 6), we discuss the concept of algebraic number

fields and introduce the tools needed to define a special class of L-function,

namely, the Dedekind zeta-function and then we consider the integral power sums

of coefficients of the Dedekind zeta-function of a non-normal cubic extension K3

of rational field Q given by irreducible polynomial f(x) = x3 + ax2 + bx+ c and

prove asymptotic formula for the sum
∑
n≤x

ak,K3(n) for any integer k ≥ 1, where

ak,K3(n) =

∑
n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

The synopsis provides a more thorough introduction to the thesis, along with

explicit definitions, findings, and statements of theorems. (pp. i).





8 Introduction



Chapter 1

A Flavor of Number Theory

We briefly examine a few number theory fundamentals in this chapter that are

important to our goal. In order to make it as self-sufficient as feasible, we try to

introduce nearly every concept that we will utilise in the next chapters.

We go into great detail regarding the arithmetic function, the relations be-

tween the arithmetic function and the Dirichlet series, and the connections be-

tween the Dirichlet series and cusp forms. In general instance, the Perron’s

formula and its variations have been explored. We also work with integer rep-

resentations expressed as the sum of squares. We also discuss whether or not

all positive integers may be written as sums of squares. In general, we provide

an affirmative response to this query. We also spend some time discussing the

functional equations related to various L-functions, including the symmetric jth

power L-functions. We will express a few key lemmas at the conclusion that we

will refer frequently in the next chapters.

1.1 Elementary definitions

The concept of arithmetic functions is covered in this section along with a few

examples and characteristics.

1.1.1 Number-theoretic functions

Definition 1.1.1 A complex or real valued function defined on the set of positive

integers is known as arithmetical function or number-theoretic function.

9
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Let A = {f : N→ C} denote the set of number-theoretic function. For f, g ∈ A,

we define the (multiplicative) Dirichlet convolution

(f ∗ g)(n) =

∑
d|n

f(d)g
(n
d

)
.

A forms a ring, which is commutative, together with the convolution and point-

wise addition. The null function serves as the identity element with respect to

addition, and the identity element with respect to the Dirichlet multiplication is

e(n) :=

1 if n = 1

0 otherwise
.

Definition 1.1.2 We say that a number-theoretic function f(6= 0) is multiplica-

tive if it satisfies

f(nm) = f(n)f(m),

for all co-prime natural numbers n and m. We say that f is completely multi-

plicative if the relation f(nm) = f(n)f(m) holds for all n,m ∈ N.

Evidently, the values of multiplicative functions on prime powers determine them

entirely.

Definition 1.1.3 The Euler totient function ϕ(n) is an arithmetic function given

by

ϕ(n) :=

∑
1≤k<n

(k,n)=1

1

for all n ∈ N.

Definition 1.1.4 The Möbius function µ(n) is an arithmetic function given by

µ(n) :=


(−1)k if n = p1p2 . . . pk where pi’s are distinct primes

1 if n = 1

0 if p2 | n for some p (prime)

.

Definition 1.1.5 The von Mangoldt-function Λ(n) is an arithmetic function



§1.2. Characters of finite abelian groups 11

given by

Λ(n) :=

log p if n = pl for some prime p and some l ≥ 1

0 otherwise
.

1.2 Characters of finite abelian groups

We now want to go into considerable detail about a few fundamental ideas in

group theory. Knowing some arithmetical operations known as Dirichlet charac-

ters will be necessary for our following chapters. Although it is possible to learn

Dirichlet characters without any prior knowledge of groups.

Definition 1.2.1 Let G be a group (arbitrary). A complex valued function f

defined on G is known as a character of G if f has the multiplicative property

f(ba) = f(b)f(a)

for all b, a ∈ G, and f(c) 6= 0 for some c in G.

Remark 1.2.2 Every group G contains at least one character, namely, the func-

tion which is identically 1 on G. This is referred to as the principal character.

Definition 1.2.3 (Dirichlet characters) LetG be the group of reduced residue

classes modulo k, then corresponding to each character f of G we define an arith-

metical function χ = χf as follows

χ(n) :=

f(n̂) if (n, k) = 1

0 otherwise
,

where n̂ = {x : x ≡ n (mod k)}. The function χ is called a Dirichlet character

modulo k. The principal character χ1 is that which exhibits the property

χ1(n) :=

1 if (n, k) = 1

0 otherwise
.

Remark 1.2.4 There are ϕ(k) distinct Dirichlet characters modulo k, each of



12 §1.2. Characters of finite abelian groups

which is completely multiplicative and periodic with period k, i.e.,

χ(nm) = χ(n)χ(m) for all n,m

and

χ(n+ k) = χ(n) for all n.

Remark 1.2.5 (a) A Dirichlet character modulo k is known as an even Dirich-

let character if χ(−1) = 1.

(b) A Dirichlet character modulo k is known as an odd Dirichlet character if

χ(−1) = −1.

(c) A Dirichlet character modulo k is known as a quadratic Dirichlet character

if χ(n) takes only real values including −1.

Definition 1.2.6 (Induced modulus) Let χ be a Dirichlet character modulo

k and d be any positive divisor of k. The number d is said to be an induced

modulus for χ if we have

χ(a) = 1 whenever (a, k) = 1

and

a ≡ 1 (mod d).

To rephrase it, if the character χ modulo k acts like a character modulo d on

the representatives of the residue class 1̂ modulo d which are relatively prime to k

then d is an induced modulus . Note that, k itself is always an induced modulus

for χ.

Definition 1.2.7 (Primitive character) A Dirichlet character χ modulo k is

known as a primitive modulo k if it has no induced modulus d < k. To put it an

another way, χ is primitive modulo k if and only if for every divisor d (0 < d < k)

of k, there exists an integer a such that

a ≡ 1 (mod d),

(a, k) = 1,
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and

χ(a) 6= 1.

Remark 1.2.8 The principal character, χ1, is not primitive if k > 1 since it has

1 as an induced modulus.

1.3 Modular forms

In this section, we review the definitions and some fundamental properties of

modular forms and Hecke operators. We next talk about how studying a modular

form is not at that different from studying a Dirichlet series.

Since that modular forms are special holomorphic functions by definition,

it is not surprising that they might be used in complex analysis. They also

have connections to many other branches of mathematics, including algebraic

and hyperbolic geometry, number theory, representation theory, mathematical

physics, and combinatorics.

Let H be the upper half plane. There is a group action of SL(2,R) on H. If

τ =

(
a b

c d

)
(where ad− bc = 1), then τ acts by

τz =
az + b

cz + d
.

Clearly, τz ∈ H, since

=
(
az + b

cz + d

)
= =

(
(az + b)(cz̄ + d)

|cz + d|2

)
=

(ad− bc)=(z)

|cz + d|2
.

These are the linear fractional or Möbius transformations. A Möbius transforma-

tions remains unaffected if we multiply all the coefficients a, b, c, d by some non

zero constant. For each Möbius transformations with ad− bc = 1, we link a 2× 2

matrix

A =

(
a b

c d

)
,

Then detA = ad−bc = 1. If A and B are the matrices linked with the Möbius

transformations f and g, respectively, then it is not difficult to see that the matrix
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product AB is linked with the composition f ◦ g, where (f ◦ g)(z) = f(g(z)).

We will focus our attention on a nice subgroup SL(2,Z) of SL(2,R). The set

of Möbius transformations of the form

τ ∗ =
az + b

cz + d
,

where a, b, c, d are all integers with ad − bc = 1, is known as Modular group

and is denoted by Γ. Understanding functions on H that transform well under

SL(2,Z) is our aim . For instance, we might need functions that have the property

that f(γz) = f(z) ∀ γ ∈ SL(2,Z). We might look for C∞, meromorphic, or

holomorphic functions that meet this requirement. We instead ask for f(γz) =

j′(γ, z)f(z) for some multiplier systems j′ because it turns out that there are no

holomorphic functions for which this is true.

Note that we must need j′(γ1γ2, z) = j′(γ1, γ2z)j′(γ2, z), in order to have

f(γ1γ2z) = j′(γ1γ2, z)f(z) = j′(γ1, γ2z)j′(γ2, z)f(z). The first illustration that

we will take into account is j′(γ, z) = (cz + d)k where γ =

(
a b

c d

)
. Clearly, it

satisfies the above relation.

We will now look at holomorphic functions f : H→ C satisfying

f(γz) = (cz + d)kf(z) ∀ γ =

(
a b

c d

)
∈ SL(2,Z).

Observe that, I and −I have the same action on H, so therefore f(−Iz) = f(z).

Definition 1.3.1 (Modular functions) A function f is said to be modular

function if it satisfies the three conditions given below:

� f is meromorphic in the whole upper half plane H.

� f(Aτ) = f(τ) for every A in the modular group Γ, i.e., f is invariant under

all the transformation of Γ.

� The Fourier expansion of f has the form

f(τ) =

∞∑
n=−m

a(n)e2πinτ .
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The full modular group Γ = SL(2,Z) has many subgroups of special interest

in analytic number theory. We will talk about a special class of subgroups known

as congruence subgroups.

Definition 1.3.2 (Congruence subgroups of the modular group) If n ≥
1 is an integer, there is a homomorphism

πn : SL(2,Z)→ SL(2,Z/nZ),

induced by the reduction modulo n morphism Z→ Z/nZ. The principal congru-

ence subgroup of level l in Γ is the kernel of πn, and it is usually denoted by Γ(n).

Explicitly, it is defined as:

Γ(n) =

{(
a b

c d

)
∈ SL(2,Z) : a, d ≡ 1 (mod n) & b, c ≡ 0 (mod n)

}
.

If K is a subgroup contained in Γ then it is called a congruence subgroup if

there exists a natural number n ≥ 1 such that it contains the principal congruence

subgroup Γ(n). The level l of H is then the smallest such n.

From this definition it follows that:

� Congruence subgroups are of finite index in Γ.

� The congruence subgroups of level n are in one-to-one correspondence with

the subgroups of SL(2,Z/lZ).

The subgroups Γ0(n) is known as the Hecke congruence subgroup of level n and

defined as

Γ0(n) :=

{(
a b

c d

)
∈ SL(2,Z) : c ≡ 0 (mod n)

}
.

Clearly Γ(n) is a normal subgroup of finite index in Γ.

Definition 1.3.3 (Modular form of weight k) A function f is said to be an

entire modular form of weight k if it satisfies the following conditions:

� (Regularity) f is analytic in the whole upper half plane H.

� (Modularity) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) whenever

(
a b

c d

)
∈ Γ.
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� (Growth condition) The Fourier expansion of f has the form

f(τ) =

∞∑
n=0

c(n)e2πinτ .

Remark 1.3.4 Suppose τ ∈ H and consider q = e2πiτ ∈ D(0, 1) (open disk with

centre 0 and radius 1). Here, i∞ corresponds to 0, so define ”hole at∞” to mean

”f(e2πiτ ) has a removable singularity at 0”. Equivalently, the third condition

means that f is bounded as =(z)→∞.

Remark 1.3.5 The cusps of Γ are the points of Q∪{∞}. These cusps are finite

in number. If c′ ∈ Q then there is an element σc′ ∈ SL(2,Q) such that σc′ ·c′ =∞.

Therefore, locally all cusps seem to be the cusp at ∞.

The constant term c(0) is called the value of f at i∞, denoted by f(i∞). If

we have c(0) = 0, then the function f is called a cusp form. The smallest r such

that c(r) 6= 0 is called the order of the zero of f at i∞.

In a more general sense a modular form is permitted to have poles at i∞ or in

H. That’s why the forms satisfying our conditions are called entire forms. Some

trivial examples of entire modular forms are:

1. The zero function is a modular form of weight k for every integer k.

2. A non-zero constant function is a modular form of weight k only if k = 0.

We denote by Mk, the space of all entire modular forms of weight k and Sk the

subspace of cusp forms.

Now, we observe a nice growth estimate for cusp forms. Let f(z) ∈ Sk then

we have the Fourier expansion

f(z) =

∞∑
n=1

ane
2πinz,

from which we can obtain

|f(σ + it)| � e−2πt as t→∞,
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uniformly in σ, with similar estimates at any given cusp. Therefore, cusp forms

are rapidly decreasing at all cusps.

1.3.1 The Hecke operators Tn

Hecke obtained all of the entire modular forms with multiplicative coefficients by

using a sequence of linear operators,

Tn : Mk →Mk (n = 1, 2, 3, . . . ).

These operators are known as Hecke operators.

Definition 1.3.6 For any fixed integer k and any n = 1, 2, 3, . . . , the operator

Tn is defined on Mk by the equation

(Tnf)(τ) := nk−1
∑
d|n

d−k

d−1∑
b=0

f

(
nτ + bd

d2

)
,

and when n = p,

(Tpf) = pk−1f(pτ) +
1

p

p−1∑
b=0

f

(
τ + b

p

)
.

Clearly, Tn maps each f in Mk onto an another function in Mk.

Definition 1.3.7 A non-zero function f satisfying a relation of the type

Tnf = λ(n)f

for some scalar (complex) λ(n) is called an eigenfunction (eigenform) of the Hecke

operator Tn and the complex scalar λ(n) is called an eigenvalue of Tn.

Remark 1.3.8 If f is an eigenform, then so is cf for all non-zero constant c.

Definition 1.3.9 If f is an eigenform for every Hecke operator Tn, where n ≥ 1,

then f is called a simultaneous eigenform.
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Remark 1.3.10 An eigenform with the property c(1) = 1 is said to be a nor-

malized eigenform.

Hecke found a remarkable relation between each modular form with Fourier

series

f(τ) = c(0) +

∞∑
n=1

c(n)e2πinτ ,

and the Dirichlet series

F (s) =

∞∑
n=1

c(n)

ns
,

formed with the same coefficients. If f ∈ M2k then c(n) = O(nk) if f is a

cusp form, and c(n) = O(n2k−1) if f is not a cusp form. Thus, F (s) converges

absolutely for

<(s) > k + 1 ,if f is a cusp form,

and for

<(s) > 2k ,if f is not a cusp form.

Remark 1.3.11 For cusp forms, better bounds are available for |c(n)| (by Kloost-

erman, Davenport, Rankin and Selberg (see [Se 2])). It has been shown that

c(n) = O
(
nk−

1
4
+ε
)

if f ∈M2k,0

for every ε > 0.

Conjecture 1.3.12 If f ∈M2k,0 then

c(n) = O
(
nk−

1
2
+ε
)

for every ε > 0.

This conjecture is settled by Deligne [De 1] for f being a holomorphic cusp form.

For maass forms, it is still open.
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1.4 Representations of Integers as Sum of Squares

The representation of positive integers as sums of a fixed numbers of non-negative

sth powers has fascinated several generations of mathematicians, and its gener-

alizations and analogues occupy a central place in number theory today. This

problem is popularly known as Waring’s problem. The following are the primary

issues with representing an integer as a sum of squares:

Question 1.4.1 What positive integers can be represented as the sum of k

squares, given a positive integer k?

Question 1.4.2 How many representations are there if an integer is so repre-

sentable?

For any positive integer n, we define the function rk(n) as

rk(n) := #{(n1, n2, . . . , nk) ∈ Zk : n2
1 + n2

2 + · · ·+ n2
k = n}

(allowing zeros, distinguishing signs, and order).

In this section, we only consider the situations when k = 4 and 6. For k = 4,

the representational problem has been fully resolved using an exciting method

which depends only on the Jacobi’s-triple product identity by M. D. Hirschhorn

[Hi].

1.4.1 Sum of Four Squares

Theorem 1.4.3 [Hi, Jacobi’s four-square theorem] The number of representa-

tions of a positive integer n as the sum of four squares, representations which

differs only in sign or order being counted as distinctive, is eight times the sum

of the divisors of n which are not multiples of 4, i.e.,

r4(n) = 8

∑
d|n,4-d

d.

Equivalently,
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r4(n) =


8
∑
m|n

m if n is odd

24
∑

m|n,m odd

m if n is even
.

Remark 1.4.4 We may also write this as

r4(n) = 8σ(n)− 32σ
(n

4

)
,

where σ(n) =
∑
d|n

d. If n is not divisible by 4, then the second term is to be taken

as 0. In particular, we have the explicit formula r4(p) = 8(p + 1) for a prime

number p.

Some values of r4(n) occur infinitely, since

r4(n) = r4(2
mn),

whenever n is even. The values of r4(n) can be arbitrarily large.

Lemma 1.4.5 For any positive integer n, the function r4(n) is multiplicative.

Proof.The principal character χ0 modulo 4 is defined as

χ0(n) :=

1 if (4, n) = 1

0 otherwise
.

We can rewrite r4(n) = 8r(n), where r(n) is multiplicative and given by

r(pu) :=


1−pu+1

1−p if p > 2

3 if p = 2
.

We write, r4(n) = 8
∑
d|n

χ̃0(d)d, where χ̃0 is a character modulo 4, given by

χ̃0(p
u) :=

χ0(p
u) if p > 2

3 if p = 2
,



§1.4. Representations of Integers as Sum of Squares 21

and χ0 is the principal character modulo 4. We observe, if n has the prime power

factorization, i.e., n = 2a23a3 · · · qaq , then

χ̃0(n) = χ̃0(2
a2)χ̃0(3

a3) · · · χ̃0(q
aq)

= 3χ0(3
a3 · · · qaq).

For any prime number p, we have

r(p) =

∑
d|p

χ̃0(d)d = 1 + pχ̃0(p).

1.4.2 Sum of Six Squares

Now, we divert our attention to the representation of an integer as a sum of 6

squares. When k = 6, Jacobi’s formula for r6(n) states that:

Theorem 1.4.6 [Jacobi’s six-square theorem] For any positive integer n, we have

r6(n) = 16

∑
d|n

χ(d′)d2 − 4

∑
d|n

χ(d)d2, (1.1)

where dd′ = n, and χ is the non-principal Dirichlet character modulo 4, i.e.,

χ(n) =


1 if n ≡ 1 (mod 4)

−1 if n ≡ −1 (mod 4)

0 if n ≡ 0 (mod 2)

.

Although there have been numerous analytical demonstrations of Jacobi’s for-

mula, only one purely arithmetic proof of Jacobi’s formula appears to be known

in the literature, for instance, see [Car]. In his wonderful book on elementary

methods in number theory [[Na], pp. 436-4391], Nathanson presents this argu-

ment.

Here, we furnish a reference [Mc-Wi], in which an entirely different elementary

arithmetic proof of Jacobi’s formula is achieved.
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From [Ha-Wr, pp. 313], we observe that

χ(n) =

0 if 2|n

(−1)
n−1
2 if 2 - n

.

It is clear that χ(n) is the non-principal character modulo 4 and can be defined

as stated.

We can reframe the Equation (1.1) as

r6(n) = 16

∑
d|n

χ(d)
n2

d2
− 4

∑
d|n

χ(d)d2

=: 16l(n)− 4v(n).

We write l1(n) = 16l(n), and v1(n) = 4v(n).

The functions χ(d) and
n2

d2
are completely multiplicative functions. This im-

plies that χ(d)
n2

d2
is multiplicative. If g(d) is any multiplicative function, then∑

d|n
g(d) is also multiplicative. Therefore, l(n) is a multiplicative function. Simi-

larly, v(n) is also multiplicative.

Note that, for a prime number p, we have

l(p) = p2 + χ(p),

l(p2) = p4 + p2χ(p) + χ(p2),

and

v(p) = 1 + p2χ(p),

v(p2) = 1 + p2χ(p) + p4χ(p2).

One can easily see that r6(n) is not a multiplicative function. However, The-

orem 1.4.6 demonstrates that r6(n) can be written as a sum of two multiplicative

functions.



§1.5. A Discussion on Perron’s Formula 23

1.5 A Discussion on Perron’s Formula

A crucial component in proving our theorems is the Perron’s formula. We’ll talk

about its application in this chapter. In order to achieve this, we move away from

simply elementary procedures and instead employ standard analytic techniques

which are helpful across analytic number theory.

1.5.1 Derivation of Perron’s formula

We have seen a lot of sums with a parameter n that goes up to x. Whether n

lies below x or not can be expressed analytically using Perron’s formula, and this

statement opens the door for analysing such sums with the help of associated

Dirichlet series analytic features.

Lemma 1.5.1 Let x and a be two positive real numbers. Then

1

2πi

∫ a+i∞

a−i∞

xs

s
ds = δ :=


1 if x > 1

1
2

if x = 1

0 if x < 1

. (1.2)

where the conditionally convergent integral is to be understood as limT→∞
∫ a+iT
a−iT .

Quantitatively, for x 6= 1,

1

2πi

∫ a+iT

a−iT

xs

s
ds = δ +O

(
xa min

(
1,

1

T | log x|

))
(1.3)

When x < 1, moving the line of integration to the right; i.e., letting a tend

to +∞ and using Cauchy’s theorem to justify that the integral does not change,

formula (1.2) can be validated. By letting a tend to −∞ and taking into account

that we cross a pole at s = 0, which results in a residue of 1, we can shift the

line of integration to the left when x > 1. Though the integral is not absolutely

convergent, this argument can be made accurate with a little caution and it is

standard.
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Lemma 1.5.2 Let x and a be two positive real numbers. Then

1

2πi

∫ a+i∞

a−i∞

xs

s2
ds =

log x if x ≥ 1

0 if x ≤ 1
. (1.4)

Since the above integral is absolutely convergent, proof of (1.4) can be easily

carried out.

Proof of Lemma 1.5.1. For x 6= 1, integration by parts gives∫ a+iT

a−iT

xs

s
ds =

∫ a+iT

a−iT

1

s
d

(
xs

log x

)

=
1

log x

(
xa+iT

a+ iT
− xa−iT

a− iT

)
+

1

log x

∫ a+iT

a−iT

xs

s2
ds.

Since, ∫ a+iT

a−iT

xs

s2
ds =

∫ a+i∞

a−i∞

xs

s2
ds+O

(
xa

T

)
,

using (1.4), we can conclude that for x 6= 1

1

2πi

∫ a+iT

a−iT

xs

s
ds = δ +O

(
xa

T | log x|

)
.

When T | log x| ≥ 1, this establishes (1.3). Now, we consider T | log x| ≤ 1. Here,

1

2πi

∫ a+iT

a−iT

xs

s
ds =

1

2πi

∫ a+iT

a−iT

xa

s
(1 +O(|s| log x))ds

= O(ya),

and thus (1.3) holds again. Upon letting T →∞, the qualitative connection (1.3)

(for x 6= 1) follows from the quantitative version (1.3). The case x = 1 can be

easily checked.

1.5.2 Truncated Perron’s formula

In this subsection, we state the well-known truncated Perron’s formula (see

[Ram-Sa]) that we will frequently use to prove our upcoming theorems.
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Truncated Perron’s formula: Suppose that the series f(s) converges abso-

lutely for σ > 1 and that |an| ≤ M(n), where M(n) > 0 is a monotonically

increasing function and that

∞∑
n=1

|an|
nσ

= O

(
1

(σ − 1)α

)
, α > 0

as σ → 1+. Also, suppose that for any 1 < c ≤ c0, T ≥ 1 and x = N + 1
2
, where

N ∈ N, then we have∑
n≤x

an =
1

2πi

∫ c+iT

c−iT
f(s)

xs

s
ds+O

(
xc

T (c− 1)α

)
+O

(
xM(2x) log x

T

)
,

where the constants in the O symbol depends only on c0.

1.5.3 Perron’s formula

A well-known example is when Λ(n) = f(n) is used to get

ψ(x) =

∑
n≤x

Λ(n) =
1

2πi

∫ c+i∞

c−i∞

(
−ζ ′(s)
ζ(s)

)
xs

s
ds.

The concept behind Riemann’s method of proving the prime number theorem

is to shift the contour to the left and use Cauchy’s residue theorem to precisely

determine the asymptotic nature of ψ(x) in terms of the poles of
(
−ζ′(s)
ζ(s)

)
xs

s
which

contain the zeros of ζ(s). It is challenging to understand the zeros of ζ(s), and

after 150 years, our comprehension is still rather rudimentary. In order to better

grasp the integrand, we shall focus on this contour as well as the contours to the

right of 1.

Because xs = xcxit has a mean value of 0 as t varies through any interval of size
2π

log x
, we anticipate cancellation in the integral.

A(s)

s
must not vary significantly

as t traverses this interval in order for us to acquire significant cancellation. We do

succeed in obtaining the necessary cancellation if we integrate by parts, beginning
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with the xs:∫ c+iT

c−iT
A(s)

xs

s
ds =

∫ c+iT

c−iT
A(s)

xs

s2 log x
ds−

∫ c+iT

c−iT
A′(s)

xs

s log x
ds+

[
A(s)

xs

s log x

]c+iT
c−iT

.

The first and second terms are the results of applying Perron’s formula to deter-

mine the values of
1

log x

∑
n≤x

f(n) log
x

n
and

1

log x

∑
n≤x

f(n) log n, respectively and

the third term is O
( x
T

)
. Therefore, integration (by parts) here corresponds to

the identity

log x = log
x

n
+ log n.

Observe that the first term is O

(
x

log x

)
. Thus, we get

∫ c+iT

c−iT
A(s)

xs

s
ds = − 1

log x

∫ c+iT

c−iT
A′(s)

xs

s
ds+O

(
x

log x

)
.

Therefore, we have∑
n≤x

an = − 1

log x

∫ c+iT

c−iT

A′(s)
A(s)

A(s)
xs

s
ds+O

(
x

log x

)
,

from which we can obtain∑
n≤x

an �
max
|t|≤T

A
(

1 + 1
log x

+ it
)

log x
× x

∫ T

−T

∣∣∣∣A′(c+ iT )

A(c+ iT )

∣∣∣∣ ( 1

1 + |t|

)
dt+

x

log x
.

Now that we have the desired
|A|

log x
, we must bound the integral. The integral

over
A′

A
is actually the main challenge, and we lack a method to approach it for

general A.

1.5.4 Estimation of an interesting asymptotic formula

In this subsection, we use the general method of Perron’s formula to deal with

kth-divisor function dk(n) and find a good asymptotic formula.
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Example 1.5.3 Let dk(n) be the kth divisor function (where k ∈ N), being

defined as

ζk(s) =

∞∑
n=1

dk(n)

ns
.

Since dk(n) � nε for any ε > 0, the above series is absolutely convergent in

<(s) > 1.

We can find
∑
n≤x

dk(n) by estimating

1

2πi

∫ c+i∞

c−i∞
ζk(s)

xs

s
ds,

using Perron’s formula. More precisely, we have∑
n≤x

dk(n) = xPk(log x) +O
(
x1−

1
1+k

+ε
)
,

where the main term is obtained by using the Laurent expansion of ζk(s)
xs

s
and the error term is obtained from combining the contribution of vertical and

horizontal line integrals in absolute value.

Remark 1.5.4 For some better error term estimates, one may refer to [Ti-Ht,

Chapter 12].

1.6 Properties of various L-functions

This chapter studies general properties of the Dirichlet series, Dirichlet L-functions

and finally symmetric power L-functions.

The theory of Dirichlet series, when examined carefully for its own sake, in-

volves many significant questions of convergence. One of the core areas of in-

vestigation in number theory is L-functions. These L-functions typically store

fundamental arithmetic information, such as the distribution of prime numbers,

that is not readily apparent from their descriptions and typically necessitates

understanding of their poles, zeroes, functional equations, and other analytic

properties.
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1.6.1 Generation of arithmetical functions

Now, we provide a class of generating series for arithmetic functions.

Given an arithmetic function f(n), the series

L(s, f) =

∞∑
n=1

f(n)

ns
,

is known as the Dirichlet series connected to f . A Dirichlet series can be viewed

as either a formal infinite series or as a function of the complex variable s, defined

in the region where the series is convergent, where <(s) = σ and =(s) = t.

Dirichlet series play a similar role to regular generating functions in combi-

natorics as a sort of generating function for arithmetic functions, tailored to the

multiplicative structure of the integers. For instance, Dirichlet series can be used

to find and show identities among number-theoretic functions, in the same way

that combinatorial identities can be proved using regular generating functions.

On a more advanced level, it is possible to use the analytical properties of a

Dirichlet series, which is thought of as a function of the complex variable s, to

learn more about the behavior of the partial sum∑
n≤x

f(n)

of arithmetic functions.

The Riemann zeta function ζ(s), often known as the Dirichlet series connected

to the constant function 1, is the most well-known Dirichlet series, i.e.,

L(s, 1) = ζ(s) (<(s) > 1).

Dirichlet series are the ideal technique to examine the behavior of arithmetic

functions because the integers’ multiplicative structure is preserved by Dirichlet

series.

One of the most significant feature of the Dirichlet series of a multiplicative

function is the representation as an infinite product over primes, known as Euler

product.

Lemma 1.6.1 Let f be a multiplicative function and assume that the series
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L(s, f) converges absolutely for some s ∈ C. Then, we’ve

L(s, f) =
∏
p

∞∑
k=0

f(pk)

pks
. (1.5)

Moreover, if f is completely multiplicative then we’ve

L(s, f) =
∏
p

1

1− f(p)p−s
. (1.6)

Proof.Proof of (1.5) follows easily by using the fundamental theorem of arith-

metic and (1.6) follows by the geometric series, noticing that f(pk) = (f(p))k.

1.7 Dirichlet L-functions

The concept of Dirichlet L-functions and symmetric power L-functions are re-

viewed in this section. It has also been discussed how their Dirichlet series and

Euler product are related. While doing so, we discuss how certain series can be

used to express the normalized Fourier coefficients.

Let χ be a Dirichlet character modulo k. The Dirichlet L-function related

with χ is the function

L(s, χ) =

∞∑
n=1

χ(n)

ns
,

where s = σ + it.

Remark 1.7.1 If χ0 is the principal character modulo k, then L(s, χ0) is analytic

in the half-plane σ = <(s) > 1, and if χ is a non-principal character modulo k,

then L(s, χ) is analytic in the half-plane σ = <(s) > 0. Moreover, L(1, χ) is

non-zero.

Theorem 1.7.2 [Na, Theorem 10.3] Let χ be a Dirichlet character modulo k.

Then, in the half-plane <(s) = σ > 1, the function L(s, χ) is analytic and has

the Euler product



30 §1.7. Dirichlet L-functions

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1
.

Moreover, L(s, χ) is non-zero.

Example 1.7.3 If χ0 is the principal character modulo 3. Then, we have

L(s, χ0) =
∏
p≥3

(
1− 1

ps

)−1
.

If χ is the non-principal character modulo 3. Then, we have

L(s, χ) =
∏

p≡1 (mod 3)

(
1− 1

ps

)−1 ∏
p≡2 (mod 3)

(
1 +

1

ps

)−1
.

For principle and non-principal characters, Dirichlet L-functions have different

analytic properties. The Riemann zeta function is represented by the Dirichlet

L-function L(s, χ0) for σ > 1 in the special case when χ0 is the principal character

modulo 1, i.e.,

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
.

Let χ0 be the principal character modulo m. For σ > 1, we can write

L(s, χ0) =
∏
p

(
1− χ0(p)

ps

)−1

=
∏

(p,m)=1

(
1− 1

ps

)−1

=
∏
p

(
1− 1

ps

)−1∏
p|m

(
1− 1

ps

)

= ζ(s)
∏
p|m

(
1− 1

ps

)−1
.
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1.7.1 Character modulo 4

There are two Dirichlet characters, principal and non-principal, when the modulus

is 4. Let χ0 be the principal character modulo 4, i.e.,

χ0(n) =

1 if n is odd

0 if n is even
.

We note that (for <(s) > 1),

L(s, χ0) =

∞∑
n=1

χ0(n)

ns

=
∏
p

(p,4)=1

(
1− 1

ps

)−1

=

(
1− 1

2s

)∏
p

(
1− 1

ps

)−1
=

(
1− 1

2s

)
ζ(s).

But the series

L(1, χ0) = 1 +
1

3
+

1

5
+ · · ·

diverges. Now, let χ be the principal character modulo 4, i.e.,

χ(n) =


1 if n ≡ 1 (mod 4)

−1 if n ≡ −1 (mod 4)

0 if n ≡ 0 (mod 2)

.

We note that for <(s) > 0,

L(s, χ) =

∞∑
n=1

(−1)n−1

(2n− 1)s

=
∏

p≡1 (mod 4)

(
1− 1

ps

)−1 ∏
p≡3 (mod 4)

(
1 +

1

ps

)1

.
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In fact,

L(1, χ) =

(
1− 1

3

)
+

(
1

5
− 1

7

)
+

(
1

9
− 1

11

)
+ · · ·

> 0,

and

L(1, χ) = 1−
(

1

3
− 1

5

)
−
(

1

7
− 1

9

)
− · · ·

< 1.

1.7.2 Symmetric power L-functions

Let χ be the Dirichlet character modulo N . If

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all z ∈ H (upper half plane) and

(
a b

c d

)
∈ Γ0(N), then f is known as a

modular form of weight k and level N with Nebentypus χ. Here, Γ0(N) is the

congruence subgroup, i.e.,

Γ0(N) =

{(
a b

c d

)
∈ SL(2,Z) : c ≡ 0 (mod N)

}
.

In 1974, P. Deligne [De 1] proved (as a consequence of the Riemann hypothesis

for varities over finite field) that for any primitive holomorphic cusp form f and

for any prime p, there exist complex numbers α(p) and β(p) such that

α(p) + β(p) = λf (p), (1.7)

and

|α(p)| = |β(p)| = 1 = α(p)β(p). (1.8)

Then L(s, f) can be written as
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L(s, f) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1
.

Also, |λf (n)| ≤ d(n), where d(n) is the divisor function.

The jth symmetric power L-function is defined as

L(s, symjf) :=

∞∑
n=1

λsymjf (n)

ns

=
∏
p

j∏
i=0

(
1− αj−i(p)βi(p)

ps

)−1
, (1.9)

for <(s) > 1 and j ≥ 1 (an integer), where λsym2f (n) is multiplicative. The

Sato-Tate conjecture is connected to the analytical properties of jth symmetric

power L-functions. Additionally, it is established that the series L(s, symjf) can

be analytically continued to the region <(s) ≥ 1 for each integer j ≥ 1 and it is

non-vanishing in that region.

Now, we would like to mention some results related to the convergence of jth

symmetric power L-function, due to Kumar et al. [Ku-Me-Pu].

Theorem 1.7.4 [Ku-Me-Pu, Theorem 1.2]

Let a(m) (m ≥ 1) be a sequence of complex numbers such that a(m)� mβ+ε

for any positive ε, and the infinite series

∞∑
m=1

|a(m)|2

ms
has a singularity at s = α ≥

0, where β, α are real numbers such that 2β + 1 ≤ α. Then the series

∞∑
m=1

a(m)

ms

has abscissa of absolute convergence β + 1.

Proposition 1.7.5 [Ku-Me-Pu, Proposition 3.1] The series

∞∑
n=1

|λsymjf (n)|2

ns

has a singularity at s = 1.

Using Theorem 1.7.4 and Proposition 1.7.5, the authors Kumar et al. have es-

tablished the following theorem.
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Theorem 1.7.6 Let f ∈ Sk and L(s, symjf) be the jth symmetric power L-

function associated with f , then the series

L(s, symjf) =

∞∑
n=1

λsymjf (n)

ns

has abscissa of absolute convergence 1.

In particular, for j = 2, we have the symmetric square L-function, which is

defined as

L(s, sym2f) :=

∞∑
n=1

λsym2f (n)

ns

=
∏
p

(
1− α2(p)

ps

)−1(
1− β2(p)

ps

)−1(
1− 1

ps

)−1
,

for <(s) > 1, where λsym2f (n) is multiplicative.

The Rankin-Selberg convolution of L-function attached to symif and symjf

(for j ≥ 0, and <(s) > 1) is defined as

L(s, symif × symjf) :=

∞∑
n=1

λsymif×symjf (n)

ns

=
∏
p

i∏
m=0

j∏
u=0

(
1− αi−m(p)βm(p)αj−u(p)βu(p)

ps

)−1
.

(1.10)

Observe that,

λsymjf (p) =

j∑
m=0

αj−m(p)βm(p), (1.11)
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and

λsymif×symjf (p) =

i∑
m=0

j∑
u=0

αi−m(p)βm(p)αj−u(p)βu(p) (1.12)

=


i∑

m=0

αi−m(p)βm(p)




j∑
u=0

αj−u(p)βu(p)


= λsymif (p)λsymjf (p).

Since λsymjf (n) is a multiplicative function, and |λsymjf (n)| ≤ dj+1(n) (from (1.7),

and (1.8)), where dj+1(n) is the number of ways of expressing n as a product of

j + 1 factors), we can write the Euler product of L(s, symjf) as

∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (p
l)

pls
+ · · ·

)
. (1.13)

Comparing (1.9), and (1.13), we get (1.11).

Similarly, λsymif×symjf (n) is a multiplicative function, and

|λsymif×symjf (n)| ≤ d(i+1)(j+1)(n),

(from (1.7), and (1.8)), so we can write the Euler product of L(s, symif × symjf)

as

∏
p

(
1 +

λsymif×symjf (p)

ps
+ · · ·+

λsymif×symjf (p
l)

pls
+ · · ·

)
. (1.14)

Comparing (1.10) and (1.14), we get (1.12).

Theorem 1.7.7 For any positive integers i and j, if

L(s, symif) =

∞∑
n=1

λsymif (n)

ns
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and

L(s, symjf) =

∞∑
n=1

λsymjf (n)

ns
,

then

L(s, symif × symjf)g(s) =

∞∑
n=1

λsymif×symjf (n)

ns
,

where g(s) is an absolutely convergent Dirichlet series in the half plane <(s) > 1
2
.

Proof of Theorem 1.7.7 follows in a similar fashion as of Theorem 6 of [Gu-Mu],

since only Deligne’s bound which is known to be true in the cases of symmetric

power L-functions attached to holomorphic cusp forms is used in Theorem 6 of

[Gu-Mu], not the automorphic properties of L-functions.

Lemma 1.7.8 [Ku-Me-Pu, Lemma 3.3] The series∑
p(prime)

λsymjf×symjf (p)

ps
,

is divergent.

1.8 Functional equations pertaining to some L-

functions

There are numerous approaches to explain why analytic continuation should be

studied. One can use them to derive functional equations. Let us illustrate this

precisely.

1.8.1 Analytic continuation

Establishing the analytic continuation and a functional equation for various sym-

metric power L-functions has garnered a lot of attention recently. In this section,

we will discuss some elementary functional equations associate to L-functions.

First, we provide an integral representation for the Riemann zeta function
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which will be valid in the half-plane <(s) = σ > 0 and gives an analytic continu-

ation of ζ(s) to this half-plane.

Theorem 1.8.1 The Riemann zeta function ζ(s) has an analytic continuation

to a function which is defined on half-plane σ > 0 and is analytic in this half

plane with the exception of a simple pole with residue 1 at s = 1 , defined as

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}x−s−1dx (σ > 0). (1.15)

We get an estimate for ζ(s) close to the point s = 1 as a direct consequence

of the representation (1.15) for ζ(s).

Lemma 1.8.2 We can write

ζ(s) =
1

s− 1
+ γ +O(|s− 1|),

for |s− 1| ≤ 1
2

and s 6= 1, where γ is the Euler’s constant.

Proof.Observe that

ζ(s)− 1

s− 1
=

∞∑
n=0

cn(s− 1)n (|s− 1| < 1),

since the function ζ(s)− 1

s− 1
is analytic in the disk |s− 1| < 1. It implies that

ζ(s)− 1

s− 1
= c0 +O(|s− 1|)

in |s − 1| < 1
2
. In the half plane σ > 0, using the integral representation of ζ(s)

and letting s→ 1, we obtain

c0 = lim
s→1

(
ζ(s)− 1

s− 1

)
= 1−

∫ ∞
1

{x}x−2dx.

From the harmonic sum estimate, we can conclude that

γ = 1−
∫ ∞
1

{x}x−2dx.

Thus, c0 = γ.
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1.8.2 Functional equations

The Riemann-zeta function ζ(s) satisfies the functional equation (see chapter 2

of [Ti-Ht])

π−
s
2 Γ
(s

2

)
ζ(s) = π−(

1−s
2

)Γ

(
1− s

2

)
ζ(1− s),

so, we can write

ζ(s) = ζ(1− s)χ(s),

where χ(s) = πs−
1
2

Γ
(
1−s
2

)
Γ
(
s
2

) .

Using Γ(s) = O
(
e−(

π
2
)|t||t|σ− 1

2

)
(for proof, see pp. 37-38 of [Rad]), we will get

|χ(s)| � |t|
1
2
−σ,

as |t| → ∞, and a ≤ σ ≤ b.

Let Mk be the normalized Hecke basis for the space of holomorphic cusp

forms of weight k. For each f ∈ Mk, the associated L-function admits analytic

continuation to the whole complex plane C as an entire function, and satisfies

the functional equation

(2π)−sΓ

(
k − 1

2
+ s

)
L(s, f) = ik(2π)1−sΓ

(
k − 1

2
+ 1− s

)
L(1− s, f).

The L-function is also connected (analytically) to f(z) by Mellin transform

Γ(s, f) =

(
1

2π

)s
Λ(s, f)L(s, f) =

∫ ∞
0

f(iy)ysdy,

providing an integral representation for the completed L-function, denoted by

Λ(s, f). Hecke was able to deduce the analytical properties of Λ(s, f) from those

of f using this integral representation.

For s =

(
a b

c d

)
∈ Γ, we have

f(sz) = f

(
−1

z

)
= zkf(z)
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or

f

(
i

y

)
= ikykf(iy).

Substituting this expression in the integral representation, we get

Λ(s, f) =

∫ 1

0

f(iy)ysdy +

∫ ∞
1

f(iy)ysdy

=

∫ ∞
1

f

(
i

y

)
y−sdy +

∫ ∞
1

f(iy)ysdy

= ik
∫ ∞
1

f(iy)yk−sdy +

∫ ∞
1

f(iy)ysdy

= ikΛ(k − s, f).

The integral are all bounded in vertical strips and absolutely convergent since

cusp forms are decreasing rapidly.

Theorem 1.8.3 The completed L-function Λ(s, f) is nice, that is, it converges

absolutely in a half plane and

(a) extends to an entire function of s,

(b) bounded in vertical strips,

(c) satisfies the functional equation Λ(s, f) == ikΛ(k − s, f).

Hecke was also successful in proving the converse of this theorem by inverting the

integral representation using the Mellin inversion formula.

Theorem 1.8.4 Suppose A(s) =

∞∑
n=1

an
ns

is absolutely convergent for <(s) � 0

and let

Λ(s) =

(
1

2π

)s
Γ(s)A(s),

where Λ(s) is nice. Then

f(z) =

∞∑
n=1

ane
2πinz
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is a cusp form of weight k for the full modular group SL(2,Z).

Similarly, the symmetric square L-function L(s, sym2f) also admits analytic

continuation to the whole complex plane C as an entire function, and satisfies

the functional equation (see Shimura[Su] and Gelbart-Jacquet[Ge-Ja])

Λ(s, sym2f) =: (π)−
3s
2 Γ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
L(s, sym2f)

= Λ(1− s, sym2f).

Let Hk(Γ0(N), ψ) be the space of cusp forms of weight k, with multiplier ψ, for

the group Γ0(N), where ψ is a Dirichlet character modulo N .

For each f ∈ Hk(Γ0(N), ψ), associated normalized L-function has analytic con-

tinuation, and satisfies a functional equation.

For given f ∈ Hk(Γ0(N), ψ), and a primitive character χ modulo d with (d,N) =

1, the twisted cusp form is

fχ(z) =

∞∑
n=1

anχ(n)e2πinz,

and the associated twisted L-function, i.e., L(s, f ⊗ χ) is defined as

L(s, f ⊗ χ) =

∞∑
n=1

a(n)χ(n)

ns
,

then Hecke proved that fχ(z) ∈ Hk(Γ0(Nd
2), ψχ2), and satisfies the functional

equation

Λ(s, f ⊗ χ) = ω(χ)Λ(1− s, f|ωN ⊗ χ),

where f|ωN = (
√
Nz)−kf

(
−1

Nz

)
, and

Λ(s, f ⊗ χ) =

(√
Nd

2π

)
Γ

(
s+

k − 1

2

)
L(s, f ⊗ χ),

and ω(χ) is a complex number with modulus 1, depending upon k,ψ and χ.

Similar results are also available for the Rankin-Selberg L-functions attached
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to symif and symjf for 0 ≤ i, j ≤ 4 (see [Ja-Sl 1],[Ja-Sl 2],[Ru-Sn],[Sh 1] and

[Sh 2]).

1.9 Some prominent lemmas

In this section, we will introduce some elementary lemmas related to the Riemann

zeta function and various L-functions that we are going to use frequently in the

proof of our theorems.

Lemma 1.9.1 [Ti-Ht, Theorem 7.2]

For any positive number ε, we have∫ T

1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt� T 1+ε,

uniformly for T ≥ 1.

Lemma 1.9.2 [Iv 1, Theorem 5.1]

For any positive number ε, we have∫ T

1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt ∼ T (log T )4

2π
,

uniformly for T ≥ 1.

Lemma 1.9.3 [Ht] For any positive number ε, we have∫ T

1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12 dt� T 2+ε,

uniformly for T ≥ 1.

Lemma 1.9.4 For any positive number ε, we have

ζ(σ + it)�ε (|t|+ 1)
1
3
(1+ε−σ)+ε,

uniformly for 1
2
≤ σ ≤ 1 + ε, and |t| ≥ t0 (where t0 is sufficiently large).

Proof.We get the result when we apply the maximum-modulus principle to

F (w) = ζ(w)e(w−s)
2
xw−s in a suitable rectangle and by using Hardy’s estimate

ζ
(
1
2

+ it
)
� (|t|+ 10)

1
6 . For instance, see [Sa].
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Lemma 1.9.5 [Bo] For any positive number ε, we have

ζ(σ + it)�ε (|t|+ 1)max{ 13
42

(1−σ),0}+ε,

uniformly for 1
2
≤ σ ≤ 1 + ε, and |t| ≥ 1.

Lemma 1.9.6 [Gd] For any positive number ε, we have∫ T

1

∣∣∣∣L(1

2
+ it

)∣∣∣∣2 dt� T log T,

uniformly for T ≥ 1.

Lemma 1.9.7 [Ju] For any positive number ε and for any T ≥ 1 uniformly, we

have ∫ T

1

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6 dt� T 2+ε.

Lemma 1.9.8 For any positive number ε, we have

L(σ + it)�ε (1 + |t|)
1
3
(1+ε−σ)+ε,

uniformly for 1
2
≤ σ ≤ 1 + ε, and |t| ≥ t0 (where t0 is sufficiently large).

Proof.We get the result by using the maximum-modulus principle in a suitable

rectangle. For instance, see [Gd].

Lemma 1.9.9 Let L(s, f) be a Dirichlet series with Euler product of degree m ≥
2, i.e.,

L(s, f) =
∏
p<∞

m∏
i=0

(
1− α(p, i)

ps

)−1
,

where α(p, i) are local parameters of L(s, f) at prime p. If the Euler product

converges absolutely for <(s) > 1, admits a meromorphic continuation to the

whole complex plane C, and satisfies a functional equation of Riemann-zeta type,

then we have ∫ 2T

T

∣∣∣∣L(1

2
+ ε+ it, f

)∣∣∣∣2 dt� T
m
2
+ε, (1.16)
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for T ≥ 1; and for 0 ≤ σ ≤ 1 + ε, we have

|L(σ + it, f)| � (|t|+ 1)
m
2
(1+ε−σ)+ε. (1.17)

Proof.The proof of Equation (1.16) is derived in a similar fashion as in [Lo-Sa,

Theorem 4.1]. Equation (1.17) follows by the maximum-modulus principle.

Lemma 1.9.10 [Ji-Lü] Let χ be a primitive character modulo q and Ldm,n(s, χ)

be a general L-function of degree 2A. For any positive number ε, we have∫ 2T

T

∣∣Ldm,n(σ + it, χ)
∣∣2 dt� (qT )2A(1−σ)+ε,

uniformly for 1
2
≤ σ ≤ 1 + ε, and T ≥ 1. Also,

Ldm,n(σ + it, χ)� (q(|t|+ 1))max{A(1−σ),0}+ε ,

uniformly for −ε ≤ σ ≤ 1 + ε.

Definition 1.9.11 The residue of a complex-valued function f(z) at an isolated

singularity c is the unique complex number s which makes f(z) =
s

(z − c)
the

derivative of a single valued analytic function in an annulus 0 < |z − c| < δ, for

some δ > 0. It is usually denoted by

s = Res
z=c

f(z).

Alternatively, residues can be calculated from Laurent series expansions, and one

can define the residue of a function f(z) at an isolated singularity as the coefficient

c−1 of the Laurent series.

Theorem 1.9.12 [Ah, Theorem 17] Let f(z) be an analytic function except for

isolated singularities aj in a region Ω. Then

1

2πi

∫
γ

f(z)dz =

∑
j

n(γ, aj)Res
z=aj

f(z),

where n(γ, aj) is the index of aj with respect to γ for each j.
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Definition 1.9.13 (Hölder’s Inequalities) Let 1
p

+ 1
q

= 1 with p, q > 1. Then

Hölder’s inequality for integral states that

∫ b

a

|f(x)g(x)|dx ≤
(∫ b

a

|f(x)|pdx
) 1

p
(∫ b

a

|g(x)|qdx
) 1

q

.

Equality holds when

|g(x)| = c|f(x)|p−1.

If p = q = 2, this equality is known as Cauchy-Schwarz’s inequality.

Similarly, Hölder’s inequality for sums states that

n∑
k=1

|akbk| ≤


n∑
k=1

|ak|p


1
p


n∑
k=1

|bk|q


1
q

,

with equality when

|bk| = c|ak|p−1.

Lemma 1.9.14 Let λf (n) be the normalized nth Fourier coefficient of the Fourier

expansion of f(z). Then, we have

λsymjf (p) = λf (p
j). (1.18)

and

λ2f (p
j) = 1 +

j∑
l=1

λf (p
2l), (1.19)

Proof.Equation (1.18) is the famous Hecke’s identity. Now, we begin with the
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proof of Equation (1.19).

λ2f (p
j) =


j∑

m=0

αj−m(p)βm(p)


2

=


j∑

m=0

αj−m(p)βm(p)




j∑
m′=0

αj−m
′
(p)βm

′
(p)


=

j∑
m=0

j∑
m′=0

(
α2j−(m+m′)(p)

)(
β(m+m′)(p)

)
(We put m+m′ = t. Observe that for every fixed integer t in the interval [0, 2l]

and for every fixed integer m in the interval [0, l], there is a unique integer m′

in the interval [0, l] satisfying m+m′ = t and thus,)

=

j∑
l=0


2l∑
t=0

α2j−t(p)βt(p)


=1 +

j∑
l=1


2l∑
t=0

α2j−t(p)βt(p)


=1 +

j∑
l=1

λf (p
2l).
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Chapter 2

Discrete mean square of the

coefficients of the symmetric

square L-function on certain

sequence of positive numbers

2.1 Introduction

The Fourier coefficients of modular forms (cf. Section 1.3) are important and

interesting objects in number theory. In 1927, Hecke [Hec] proved that

∑
n≤x

λf (n)� x
1
2 .

Later, this upper bound was improved by a number of authors (see [Haf-Iv,

Ja-Sl 2]). The best upper bound is due to Wu (see [Wu]), i.e.,

∑
n≤x

λf (n)� x
1
3 logρ x (where ρ ≈ −0.118).

Rankin [Ran] and Selberg [Se 1] considered the square moments of these

Fourier coefficients and independently proved the following asymptotic formula

47
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∑
n≤x

λ2f (n) = cx+O
(
x

3
5

)
, (2.1)

where c is a positive constant. Recently, Huang [Hu] has improved the exponent

in (2.1) to 3
5
− ε, where ε ≤ 1

560
. This seems to be the best known result until

now.

In 1999, Fomenko [Fo 1] established the following estimates for higher mo-

ments (motivated by the work of Moreno and Shahidi [Mo-Sh] concerning the

symmetric power L-functions L(s, symjf) for j = 1, 2, 3, 4),∑
n≤x

λ3f (n)� x
5
6
+ε,

and ∑
n≤x

λ4f (n) = c̃x log x+ ĉx+O
(
x

9
10

+ε
)
,

where c̃ and ĉ are some suitable constants. Later, Lü [Lü 1, Lü 2] improved and

generalized the work of Fomenko by considering higher moments.

In 2011, Lü and Wu [Lü-Wu] proved that (for 3 ≤ j ≤ 8)∑
n≤x

λjf (n) = xPj(log x) +O
(
xθj+ε

)
,

where θj’s and degree of the polynomials Pj’s are given by the following table:

j θj degree of Pj

3
7

10
0

4
151

175
1

5
40

43
0

6
175

181
4

7
176

179
0

8
2933

2957
13
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Under the assumption that L(s, symjf) is automorphic cuspidal for some pos-

itive integer l, Lau and Lü [La-Lü] established some general results for the sum∑
n≤x

λjf (n),

for all j ≥ 2. This is indeed the case, since very recently Newton and Thorne

(see [Ne-Th 1, Ne-Th 2]) proved that L(s, symjf) is automorphic cuspidal for all

j ≥ 1.

In 2013, Zhai [Zh] proved that∑
a2+b2≤x

λjf (a
2 + b2) = xP ′j(log x) +O

(
xθ
′
j+ε
)
,

where θ′j’s and degree of the polynomials P ′j ’s are given by the following table:

j θ′j
degree of

P ′j

2 8

11
0

3 17

20
0

4 43

46
1

5 83

86
0

6 184

187
4

7 355

357
0

8 752

755
13

Using the recent breakthrough of Newton and Thorne [Ne-Th 1, Ne-Th 2] along

with some nice analytic properties of the associated L-functions, Xu [Xu] refined

and generalized the results of Zhai.

In 2006, Fomeko [Fo 2] was able to prove some results for symmetric square
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L-functions. He showed that∑
n≤x

λsym2f (n)� x
1
2 log2 x,

and further he could establish that∑
n≤x

λ2sym2f (n) = cx+O
(
xθ
)
,

where θ < 1. In 2019, Sankaranarayanan et al. [Sa-Si-Ss] proved some interesting

results which are worth mentioning.∑
n≤x

λ3sym2f (n) = c1x+O
(
x

15
17

+ε
)

and ∑
n≤x

λ4sym2f (n) = ĉ1x+O
(
x

12
13

+ε
)
,

where c1 and ĉ1 are positive constants. Lately, Luo et al. [Lu-Lao-Zo] proved the

following asymptotic formula.∑
n≤x

λ2symjf (n) =

cjx+O(xαj+ε) if 3 ≤ j ≤ 6

cjx+O(xαj) if 7 ≤ j ≤ 8
,

where αj’s are given by the following table:

j αj

3 551

635

4 929

1013

5 1391

1475

6 979

1021

7 63

65

8 40

41
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Our first result is motivated by the following question.

Question 2.1.1 Can we find an asymptotic formula for the average behavior of

the Fourier coefficients of cusp forms in the 4-dimension in various situations with

a good error term?

We recall (see subsection 1.7.2) the definition of nth normalized coefficient of

the Dirichlet expansion of the jth symmetric power L-function L(symjf, s) here

for the convenience of the reader. With the help of these preliminaries we now

give an affirmative answer to the question raised above. In this regard we have

the following theorem.

Theorem 2.1.2 For x ≥ xo (sufficiently large), we have∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ2sym2f (a
2 + b2 + c2 + d2) = c2x

2 +O
(
x

9
5
+ε
)
,

where c2 is an effective constant defined as

c2 = (−2)ζ(2)L(2, sym2f)L(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)H2(2),

and H2(2) 6= 0, and χ̃0 is a character modulo 4.

Remark 2.1.3 For <(s) > 1, let

F2(s) :=
∏
p

(
1 +

λ2sym2f (p)r(p)

ps
+ · · ·+

λ2sym2f (p
l)r(pl)

pls
+ · · ·

)
,

and for <(s) > 2,

G2(s) := ζ(s)L(s−1, χ̃0)L(s, sym2f)L(s−1, sym2f⊗χ̃0)L(s, sym4f)L(s−1, sym4f⊗χ̃0).

We point out here that,

H2(s) :=
F2(s)

G2(s)
,

which is a Dirichlet series that converges absolutely, and uniformly in the half

plane <(s) > 3
2
, and H2(s) 6= 0 on <(s) = 2.
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Our main objective in this chapter is to establish Theorem 2.1.2. First, we

develop the notions and tools needed to establish this chapter’s main outcome.

We prove Lemma 2.1.4, which is related to the decomposition of the related L-

functions and will be crucial to the proof of our main theorem 2.1.2. The work

presented in this chapter have already been published in [Sr-Sa 1]. From [Ha-Wr,

pp. 415], we can write

r4(n) = 8

∑
d|n

χ̃0(d)d

=: 8r(n),

where χ̃0 is a character modulo 4, given by

χ̃0(p
u) :=

χ0(p
u) if p > 2

3 if p = 2
,

and χ0 is the principal character modulo 4.

Lemma 2.1.4 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F2(s) =

∞∑
n=1

λ2sym2f (n)r(n)

ns
,

for <(s) > 2, then

F2(s) = G2(s)H2(s),

where

G2(s) :=ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)

L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H2(s) is a Dirichlet series which converges absolutely, and uniformly in the

half plane <(s) > 3
2
, and H2(s) 6= 0 on <(s) = 2.
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2.2 Proof of Lemma 2.1.4

We observe that λ2sym2f (n)r(n) is multiplicative, and hence

F2(s) =
∏
p

(
1 +

λ2sym2f (p)r(p)

ps
+ · · ·+

λ2sym2f (p
l)r(pl)

pls
+ · · ·

)
. (2.2)

Note that,

λ2sym2f (p)r(p) =


2∑

m=0

α2−m(p)βm(p)


2

(1 + χ̃0(p)p)

= (α4(p) + 2α2(p) + 3 + 2β2(p) + β4(p)) (1 + χ̃0(p)p)

= 1 + χ̃0(p)p+ (α2(p) + 1 + β2(p))(1 + χ̃0(p)p)

+ (α4(p) + α2(p) + 1 + β2(p) + β4(p)) (1 + χ̃0(p)p)

= 1 + χ̃0(p)p+ λsym2f (p)(1 + χ̃0(p)p) + λsym4f (p)(1 + χ̃0(p)p)

= 1 + χ̃0(p)p+ λsym2f (p) + pλsym2f (p)χ̃0(p)

+ λsym4f (p) + pλsym4f (p)χ̃0(p)

=: b1(p).

From the structure of b1(p), we define the coefficients b1(n) as

∞∑
n=1

b1(n)

ns
= ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

× L(s− 1, sym4f ⊗ χ̃0),

which is absolutely convergent in <(s) > 2.
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We also note that,∏
p

(
1 +

b1(p)

ps
+ · · ·+ b1(p

m)

pms
+ · · ·

)

= ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)

× L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0)

=: G2(s),

for <(s) > 2. Observe that b1(n)�ε n
1+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 2 + 2ε, we have

∣∣∣∣∣b1(p)ps
+
b1(p

2)

p2s
+ · · ·+ b1(p

m)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(1+ε)m

pmσ

≤

∞∑
m=1

p(1+ε)m

p(2+2ε)m

=

∞∑
m=1

1

p(1+ε)m

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A1 =
λ2sym2f (p)r(p)

ps
+ · · ·+

λ2sym2f (p
m)r(pm)

pms
+ · · · ,

and

B1 =
b1(p)

ps
+ · · ·+ b1(p

m)

pms
+ · · · .

From the above calculations, we observe that |B1| < 1 in <(s) ≥ 2 + 2ε.
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We note that in the half plane <(s) ≥ 2 + 2ε, we have

1 + A1

1 +B1

= (1 + A1)(1−B1 +B2
1 −B3

1 + · · · )

= 1 + A1 −B1 − A1B1 + higher terms

= 1 +
λ2sym2f (p

2)r(p2)− b1(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · · ,

with cm(n)�ε n
1+ε. So, we have (in the half plane <(s) > 3

2
)

∏
p

(
1 + A1

1 +B1

)
=
∏
p

(
1 +

λ2sym2f (p
2)r(p2)− b1(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · ·

)

�ε 1.

Thus, we have (in the half plane <(s) > 3
2
)

H2(s) :=
F2(s)

G2(s)

=
∏
p

(
1 + A1

1 +B1

)

�ε 1,

and also H2(s) 6= 0 on <(s) = 2.

Remark 2.2.1 We observe that the L-functions appearing in G2(s) satisfy a

functional equation of the Riemann-zeta type and its corresponding conversion

factor behaves like � (|t| + 10)m( 1
2
−σ) (where m is the degree of G2(s)) in any

fixed vertical strip a ≤ σ ≤ b and |t| ≥ t0.

Now we are at a stage where we can prove our main Theorem 2.1.2.



56 §2.3. Proof of Theorem 2.1.2

2.3 Proof of Theorem 2.1.2

We note that∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ2sym2f (a
2 + b2 + c2 + d2) =

∑
n≤x

λ2sym2f (n)

∑
n=a2+b2+c2+d2

(a,b,c,d)∈Z4

1

=

∑
n≤x

λ2sym2f (n)r4(n)

= 8

∑
n≤x

λ2sym2f (n)r(n),

where r(n) =
∑
d|n

χ̃0(d)d.

Also,

r(p) =

∑
d|p

χ̃0(d)d = 1 + pχ̃0(p),

where χ̃0 is a character modulo 4.

Now, we begin by applying the Perron’s formula (see section 1.5) to F2(s)

with η = 2 + ε and 10 ≤ T ≤ x. Thus, we have∑
n≤x

λ2sym2f (n)r4(n) = 8

∑
n≤x

λ2sym2f (n)r(n)

=
8

2πi

∫ η+iT

η−iT
F2(s)

xs

s
ds+O

(
x2+2ε

T

)
.
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We note that for <(s) > 2,

L(s− 1, χ̃0) =

∞∑
n=1

χ̃0(n)

ns−1

=
∏
p

(
1− χ̃0(p)

ps−1

)−1

=

(
1− χ̃0(2)

2s−1

)−1∏
p>2

(
1− χ0(p)

ps−1

)−1

=

(
1− 3

2s−1

)−1(
1− 1

2s−1

)∏
p

(
1− χ0(p)

ps−1

)−1

=

(
1− 3

2s−1

)−1(
1− 1

2s−1

)
L(s− 1, χ0)

=

(
1− 3

2s−1

)−1(
1− 1

2s−1

)2

ζ(s− 1),

since

L(s− 1, χ0) =

∞∑
n=1

χ0(n)

ns−1

=
∏

p

(p,4)=1

(
1− 1

ps−1

)−1

=

(
1− 1

2s−1

)∏
p

(
1− 1

ps−1

)−1
=

(
1− 1

2s−1

)
ζ(s− 1).

Thus,

F2(s) := ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

× L(s− 1, sym4f ⊗ χ̃0)H2(s)

= ζ(s)

(
1− 3

2s−1

)−1(
1− 1

2s−1

)2

ζ(s− 1)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)

× L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0)H2(s).
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We move the line of integration to <(s) = 3
2

+ ε. By Cauchy’s residue theorem

there is only one simple pole at s = 2, coming from the factor

ζ(s−1). This contributes a residue, which is c2x
2, where c2 is an effective constant

depending on the values of various L-functions appearing in G2(s) at s = 2.

More precisely,

c2 = 8 lim
s→2

(s− 2)
F2(s)

s

= 8ζ(2)
(−1)

2
L(2, sym2f)L(1, sym2f ⊗ χ̃0)

× L(2, sym4f)L(1, sym4f ⊗ χ̃0)
1

2
H2(2)

= (−2)ζ(2)L(2, sym2f)L(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)H2(2).

So, we obtain∑
n≤x

λ2sym2f (n)r4(n) = c2x
2 +

8

2πi

{∫ 3
2
+ε+iT

3
2
+ε−iT

+

∫ 3
2
+ε−iT

2+ε−iT
+

∫ 2+ε+iT

3
2
+ε+iT

}
F2(s)

xs

s
ds

+O

(
x2+2ε

T

)
=: c2x

2 +
8

2πi
(J

(1)
1 + J

(1)
2 + J

(1)
3 ) +O

(
x2+2ε

T

)
.

The contribution of horizontal line integrals (J
(1)
2 and J

(1)
3 ), in absolute value

(using Lemmas 2.1.4, 1.9.4 and 1.9.9) is

�
∫ 2+ε

3
2
+ε

|ζ(σ − 1 + iT )L(σ − 1 + iT, sym2f ⊗ χ̃0)L(σ − 1 + iT, sym4f ⊗ χ̃0)|
T

xσdσ

�
∫ 1+ε

1
2
+ε

|ζ(σ + iT )L(σ + iT, sym2f ⊗ χ̃0)L(σ + iT, sym4f ⊗ χ̃0)|
T

xσ+1dσ

�
( x
T

)
max

1
2
+ε≤σ≤1+ε

xσT
1
3
(1+ε−σ)T

8
2
(1+ε−σ)

�
(
x1+ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T
13
3

)σ
T

13
3 .
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Clearly
(

x

T
13
3

)σ
is monotonic as a function of σ for 1

2
+ ε ≤ σ ≤ 1 + ε and

hence the maximum is attained at the extremities of the interval
[
1
2

+ ε, 1 + ε
]
.

Thus,

J
(1)
2 + J

(1)
3 � x1+ε

(
x

1
2
+εT

13
6
−1+ε +

x1+ε

T

)
� x

3
2
+2εT

7
6
+ε +

x2+2ε

T
.

The contribution of left vertical line integral (J
(1)
1 ), in absolute value (using

Cauchy-Schwarz inequality, Lemma 2.1.4, 1.9.1 and 1.9.9) is

�
∫ 3

2
+ε+iT

3
2
+ε−iT

|ζ(1
2

+ ε+ it)L(1
2

+ ε+ it, sym2f ⊗ χ̃0)L(1
2

+ ε+ it, sym4f ⊗ χ̃0)|∣∣3
2

+ ε+ it
∣∣ x

3
2
+εdt

� x
3
2
+ε + x

3
2
+ε

(∫
10≤|t|≤T

|ζ(1
2

+ ε+ it)|2

t
dt

) 1
2

×
(∫

10≤|t|≤T

|L(1
2

+ ε+ it, sym2f ⊗ χ̃0)L(1
2

+ ε+ it, sym4f ⊗ χ̃0)|2

t
dt

) 1
2

� x
3
2
+ε + x

3
2
+ε
(
T
ε
2T

3
2
+ ε

2

)

� x
3
2
+2εT

3
2
+2ε.

Note that, 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ2sym2f (n)r4(n) = c2x
2 +O

(
x

3
2
+2εT

3
2
+2ε
)

+O

(
x2+2ε

T

)
.

We choose T such that x
3
2T

3
2 � x2

T
i.e., T

5
2 � x

1
2 . Therefore, T � x

1
5 .
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Thus, we get ∑
n≤x

λ2sym2f (n)r4(n) = c2x
2 +O

(
x

9
5
+ε
)
.

This proves the theorem.

2.3.1 Concluding Remarks

We observe from Lemma 2.1.4 that

F2(s) = G2(s)H2(s),

where

G2(s) := ζ(s)L(s− 1, χ̃0)L(s, sym2f)L(s− 1, sym2f ⊗ χ̃0)

× L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0),

and H2(s) has an Euler product, which is uniformly, and absolutely convergent

in σ ≥ 3
2

+ 2ε for any small positive constant ε. We also know good amount

of analytic properties of G2(s), and each factor of G2(s) satisfies a functional

equation of the Riemann zeta type. From our proof, it is evident that we have

used only the known analytic properties of H2(s) said above. More information

of H2(s) in the region <(s) ≥ (1−10ε) may even lead to the following conjecture.

Conjecture 2.3.1 For sufficiently large x, we have∑
n=a2+b2+c2+d2≤x

(a,b,c,d)∈Z4

λ2sym2f (a
2 + b2 + c2 + d2) = c̃1x

2 + c̃2x+O(xθ),

where c̃1, c̃2 are effective constants, and θ is some positive constant satisfying

0 < θ < 1.

However, currently we do not have any idea how to proceed towards the above

proposed conjecture.



Chapter 3

Higher moments of the Fourier

coefficients of symmetric square

L-functions on certain sequence

3.1 Introduction

In this chapter, we consider the discrete higher power moments of the Fourier

coefficients of symmetric square L-functions on the same sequence of positive

numbers.

More precisely, we study the behavior of the following sums:∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ3sym2f (a
2 + b2 + c2 + d2)

and ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ4sym2f (a
2 + b2 + c2 + d2).

Remark 3.1.1 Very recently, Newton and Thorne proved the automorphy of the

symmetric power lifting symn(f) for every n ≥ 1, where f is a cuspidal Hecke

eigenform of level 1. They also establish the same result for a more general class

of cuspidal Hecke eigenforms, including all those associated to semistable elliptic
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curves over Q, see [Ne-Th 1, Ne-Th 2]. This enables us to study the higher

moments, namely, for an integer l ≥ 3,∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λlsym2f (a
2 + b2 + c2 + d2),

where x ≥ xo (sufficiently large). However, in this chapter, we concentrate on

this sum with symmetric power L-functions for l = 3, 4.

More precisely, we prove the following theorems:

Theorem 3.1.2 For x ≥ x0 (sufficiently large), and ε > 0 be any small constant,

we have ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ3sym2f (a
2 + b2 + c2 + d2) = c3x

2 +O
(
x

27
14

+ε
)

where c3 is an effective constant defined as

c3 = (−2)ζ(2)L2(2, sym2f)L2(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)

× L(2, sym2f ⊗ sym4f)L(1, sym2f ⊗ sym4f ⊗ χ̃0)H3(2),

H3(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane <(s) > 3
2
, and H3(s) 6= 0 on <(s) = 2, and χ̃0 is a character modulo 4.

Theorem 3.1.3 For x ≥ x0 (sufficiently large), and ε > 0 be any small constant,

we have ∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λ4sym2f (a
2 + b2 + c2 + d2) = c4x

2 log x+O
(
x

160
81

+ε
)
,
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where c4 is an effective constant defined as

c4 = ζ2(2)L3(2, sym2f)L3(1, sym2f ⊗ χ̃0)L
3(2, sym4f)

× L3(1, sym4f ⊗ χ̃0)L
2(2, sym2f ⊗ sym4f)L2(1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(2, sym4f ⊗ sym4f)L(1, sym4f ⊗ sym4f ⊗ χ̃0)H4(2).

H4(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane <(s) > 3
2
, and H4(s) 6= 0 on <(s) = 2, and χ̃0 is a character modulo 4.

Our main objective in this chapter is to establish Theorem 3.1.2 and Theorem

3.1.3. The published version of the work discussed in this chapter can be seen in

[Sr-Sa 3].

First we will prove Lemma 3.1.4 which is related to the decomposition of the

relative L-functions but here it is much more complicated than the one we stated

in chapter 2. This lemma is essential in order to prove Theorem 3.1.2.

Lemma 3.1.4 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z) and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F3(s) =

∞∑
n=1

λ3sym2f (n)r(n)

ns
,

for <(s) > 2, then

F3(s) = G3(s)H3(s),

where

G3(s) :=ζ(s)L(s− 1, χ̃0)L
2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H3(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane <(s) > 3
2

and H3(s) 6= 0 on <(s) = 2.
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3.2 Proof of Lemma 3.1.4

We observe that λ3sym2f (n)r(n) is multiplicative, and hence

F3(s) =
∏
p

(
1 +

λ3sym2f (p)r(p)

ps
+ · · ·+

λ3sym2f (p
l)r(pl)

pls
+ . . .

)
. (3.1)

Note that,

λ3sym2f (p)r(p) =


2∑

m=0

α2−m(p)βm(p)


3

(1 + χ̃0(p)p)

= (α6(p) + 2α4(p) + 6α2(p) + 7 + 6β2(p) + 2β4(p) + β6(p)) (1 + χ̃0(p)p)

= (1 + 2α2(p) + 2 + 2β2(p) + α4(p) + α2(p) + 1 + β2(p) + β4(p)

+ α6(p) + α4(p) + 3α2(p) + 3 + 3β2(p) + β4(p) + β6(p)) (1 + χ̃0(p)p)

= (1 + 2(α2(p) + 1 + β2(p)) + (α4(p) + α2(p) + 1 + β2(p) + β4(p))

+ (α6(p) + α4(p) + 3α2(p) + 3 + 3β2(p) + β4(p) + β6(p))) (1 + χ̃0(p)p)

= 1 + χ̃0(p)p+ 2λ2f (p)(1 + χ̃0(p)p) + λsym4f (p)(1 + χ̃0(p)p)

+ λsym2f⊗sym4f (p)(1 + χ̃0(p)p)

= 1 + χ̃0(p)p+ 2λsym2f (p) + 2pλsym2f (p)χ̃0(p) + λsym4f (p)

+ pλsym4f (p)χ̃0(p) + λsym2f⊗sym4f (p) + pλsym2f⊗sym4f (p)χ̃0(p)

=: b2(p).

From the structure of b2(p), we define the coefficients b2(n) as

∞∑
n=1

b2(n)

ns
= ζ(s)L(s− 1, χ̃0)L

2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

× L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0),
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which is absolutely convergent in <(s) > 2. We also note that∏
p

(
1 +

b2(p)

ps
+ · · ·+ b2(p

l)

pls
+ . . .

)

= ζ(s)L(s− 1, χ̃0)L
2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

× L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

=: G3(s),

for <(s) > 2. Observe that b2(n)�ε n
1+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 2 + 2ε, we have

∣∣∣∣∣b2(p)ps
+
b2(p

2)

p2s
+ · · ·+ b2(p

l)

pls
+ . . .

∣∣∣∣∣�
∞∑
l=1

p(1+ε)l

plσ

≤

∞∑
l=1

p(1+ε)l

p(2+2ε)l

=

∞∑
l=1

1

p(1+ε)l

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A2 =
λ3sym2f (p)r(p)

ps
+ · · ·+

λ3sym2f (p
l)r(pl)

pls
+ . . . ,

and

B2 =
b2(p)

ps
+ · · ·+ b2(p

l)

pls
+ . . . .

From the above calculation, we observe that |B2| < 1 in <(s) ≥ 2 + 2ε.
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We note that in the half plane <(s) ≥ 2 + 2ε, we have

1 + A2

1 +B2

= (1 + A2)(1−B2 +B2
2 −B3

2 + . . . )

= 1 + A2 −B2 − A2B2 + higher terms

= 1 +
λ3sym2f (p

2)r(p2)− b2(p2)
p2s

+ · · ·+ cl(p
l)

pls
+ . . . ,

with cl(n)�ε n
1+ε. So, we have (in the half plane <(s) > 3

2
)

∏
p

(
1 + A2

1 +B2

)
=
∏
p

(
1 +

λ3sym2f (p
2)r(p2)− b2(p2)
p2s

+ · · ·+ cl(p
l)

pls
+ . . .

)

�ε 1.

Thus, we have (in the half plane <(s) > 3
2
)

H3(s) :=
F3(s)

G3(s)

=
∏
p

(
1 + A2

1 +B2

)

�ε 1,

and also H3(s) 6= 0 on <(s) = 2.

We can now proceed with proving our main theorem 3.1.2.

First, we note that,∑
a2+b2+c2+d2≤x
(a,b,c,d)∈Z4

λθsym2f (a
2 + b2 + c2 + d2) =

∑
n≤x

λθsym2f (n)

∑
n=a2+b2+c2+d2

(a,b,c,d)∈Z4

1

=

∑
n≤x

λθsym2f (n)r4(n)

= 8

∑
n≤x

λθsym2f (n)r(n)
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where r(n) =
∑
d|n,4-d

d, with θ = 3 or 4.

For the reader’s convenience, we recall some definitions (cf. section 1.4) here. We

note that r(n) is multiplicative and given by

r(pu) :=


1− pu+1

1− p
if p > 2

3 if p = 2

.

We write r4(n) = 8
∑
d|n

χ̃0(d)d, where χ̃0 is a character modulo 4, given by

χ̃0(p
u) :=

χ0(p
u) if p > 2

3 if p = 2
,

and χ0 is the principal character modulo 4.

Note that,

r(p) =

∑
d|p

χ̃0(d)d

= 1 + pχ̃0(p).

3.3 Proof of Theorem 3.1.2

We begin with the Perron’s formula (see section 1.5), applying to F3(s) with

η = 2 + ε and 10 ≤ T ≤ x. Thus, we have∑
n≤x

λ3sym2f (n)r4(n) = 8

∑
n≤x

λ3sym2f (n)r(n)

=
8

2πi

∫ η+iT

η−iT
F3(s)

xs

s
ds+O

(
x2+2ε

T

)
.

We note that for <(s) > 2 (cf. section ref),

L(s− 1, χ̃0) =

(
1− 3

2s−1

)−1(
1− 1

2s−1

)2

ζ(s− 1),
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Thus,

F3(s) = ζ(s)L(s− 1, χ̃0)L
2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)L(s, sym4f)

× L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)H3(s)

= ζ(s)

(
1− 3

2s−1

)−1(
1− 1

2s−1

)2

ζ(s− 1)L2(s, sym2f)L2(s− 1, sym2f ⊗ χ̃0)

× L(s, sym4f)L(s− 1, sym4f ⊗ χ̃0)L(s, sym2f ⊗ sym4f)

× L(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)H3(s).

We move the line of integration to <(s) = 3
2

+ε and by Cauchy’s residue theorem

there is only one simple pole at s = 2 coming from the factor ζ(s − 1). This

contributes a residue, which is c3x
2, where c3 is an effective constant depending

on the values of various L-functions appearing in G3(s) at s = 2.

More precisely,

c3 = 8 lim
s→2

(s− 2)
F3(s)

s

= 8ζ(2)
(−1)

2

1

2
L2(2, sym2f)L2(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)

× L(2, sym2f ⊗ sym4f)L(1, sym2f ⊗ sym4f ⊗ χ̃0)H3(2).

So, we obtain∑
n≤x

λ3sym2f (n)r4(n) = c3x
2 +

8

2πi

{∫ 3
2
+ε+iT

3
2
+ε−iT

+

∫ 3
2
+ε−iT

2+ε−iT
+

∫ 2+ε+iT

3
2
+ε+iT

}
F3(s)

xs

s
ds

+O

(
x2+2ε

T

)
=: c3x

2 +
8

2πi
(J

(2)
1 + J

(2)
2 + J

(2)
3 ) +O

(
x2+2ε

T

)
.

The contribution of horizontal line integrals (J
(2)
2 and J

(2)
3 ) in absolute value

(using Lemmas 1.9.4, 3.1.4 and 1.9.9) is
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�
∫ 2+ε

3
2
+ε

[
|ζ(σ − 1 + iT )L2(σ − 1 + iT, sym2f ⊗ χ̃0)L(σ − 1 + iT, sym4f ⊗ χ̃0)|

T

×|L(σ − 1 + iT, sym2f ⊗ sym4f ⊗ χ̃0)|xσ
]
dσ

�
∫ 2+ε

3
2
+ε

[
|ζ(σ − 1 + iT )L2(σ − 1 + iT, sym2f ⊗ χ̃0)L(σ − 1 + iT, sym4f ⊗ χ̃0)|

T

× |L(σ − 1 + iT, sym2f ⊗ sym4f ⊗ χ̃0)|xσ
]
dσ

�
∫ 1+ε

1
2
+ε

[
|ζ(σ + iT )L2(σ + iT, sym2f ⊗ χ̃0)L(σ + iT, sym4f ⊗ χ̃0)|

T

× |L(σ − 1 + iT, sym2f ⊗ sym4f ⊗ χ̃0)|xσ+1
]
dσ

�
( x
T

)
max

1
2
+ε≤σ≤1+ε

xσT
1
3
(1+ε−σ)T

26
2
(1+ε−σ)

�
(
x1+ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T
40
3

)σ
T

40
3 .

Clearly
(

x

T
40
3

)σ
is monotonic as a function of σ for 1

2
+ ε ≤ σ ≤ 1 + ε and hence

the maximum is attained at the extremities of the interval [1
2

+ ε, 1 + ε]. Thus,

J
(2)
2 + J

(2)
3 � x1+ε

(
x

1
2
+εT

20
3
−1+ε +

x1+ε

T

)
� x

3
2
+2εT

17
3
+ε +

x2+2ε

T
.

The contribution of left vertical line integral (J
(2)
1 ) in absolute value (using

Cauchy-Schwarz inequality, Lemmas 1.9.1, 1.9.2, 3.1.4 and 1.9.9) is
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�
∫ 3

2
+ε+iT

3
2
+ε−iT

[∣∣ζ (1
2

+ ε+ it
)
L2(1

2
+ ε+ it, sym2f ⊗ χ̃0)L(1

2
+ ε+ it, sym4f ⊗ χ̃0)

∣∣
|3
2

+ ε+ it|

×
∣∣∣∣L(1

2
+ ε+ it, sym2f ⊗ sym4f ⊗ χ̃0

)∣∣∣∣x 3
2
+ε

]
dt

� x
3
2
+ε + x

3
2
+ε

(∫
10≤|t|≤T

|ζ(1
2

+ ε+ it)|2

t
dt

) 1
2

×
(∫

10≤|t|≤T

|L2(1
2

+ ε+ it, sym2f ⊗ χ̃0)L(1
2

+ ε+ it, sym4f ⊗ χ̃0)|2

t

×
∣∣∣∣L(1

2
+ ε+ it, sym2f ⊗ sym4f ⊗ χ̃0

)∣∣∣∣ dt) 1
2

� x
3
2
+ε + x

3
2
+ε
(
T
ε
2T

1
2
( 26

2
−1+ε)

)

� x
3
2
+2εT 6+2ε.

Note that 10 ≤ T ≤ x. Thus, we obtain

∑
n≤x

λ3sym2f (n)r4(n) = c3x
2 +O(x

3
2
+2εT 6+2ε) +O

(
x

3
2
+2εT

17
3
+2ε +

x2+2ε

T

)
.

We choose T such that x
3
2T 6 � x2

T
, i.e., T 7 � x

1
2 .

Therefore, T � x
1
14 . Thus, we get∑

n≤x

λ3sym2f (n)r4(n) = c3x
2 +O

(
x

27
14

+2ε
)
,

where

c3 = (−2)ζ(2)L2(2, sym2f)L2(1, sym2f ⊗ χ̃0)L(2, sym4f)L(1, sym4f ⊗ χ̃0)

× L(2, sym2f ⊗ sym4f)L(1, sym2f ⊗ sym4f ⊗ χ̃0)H3(2).
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This proves the theorem 3.1.2.

To establish Theorem 3.1.3, we shall first prove Lemma 3.3.1.

Lemma 3.3.1 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z) and let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated to f . If

F4(s) =

∞∑
n=1

λ4sym2f (n)r(n)

ns

for <(s) > 2, then

F4(s) = G4(s)H4(s),

where

G4(s) :=ζ2(s)L2(s− 1, χ̃0)L
3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)L

3(s, sym4f)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0),

and χ̃0 is a character modulo 4.

Here, H4(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane <(s) > 3
2

and H4(s) 6= 0 on <(s) = 2.

3.4 Proof of Lemma 3.3.1

We observe that λ4sym2f (n)r(n) is multiplicative, and hence

F4(s) =
∏
p

(
1 +

λ4sym2f (p)r(p)

ps
+ · · ·+

λ4sym2f (p
l)r(pl)

pls
+ . . .

)
. (3.2)
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Note that,

λ4sym2f (p)r(p) =


2∑

m=0

α2−m(p)βm(p)


4

(1 + χ̃0(p)p)

= (α4(p) + 2α2(p) + 3 + 2β2(p) + β4(p))2 (1 + χ̃0(p)p)

= (α8(p) + 4α6(p) + 10α4(p) + 4α2(p) + 4β2(p) + 12α2(p) + 19 + β8(p)

+ 4β6(p) + 10β4(p) + 12β2(p)) (1 + χ̃0(p)p)

= 2 + 2χ̃0(p)p+ 3(α2(p) + 1 + β2(p))(1 + χ̃0(p)p)

+ 3(α4(p) + α2(p) + 1 + β2(p) + β4(p)) (1 + χ̃0(p)p)

+ 2(α6(p) + α4(p) + 3α2(p) + 3 + 3β2(p) + β4(p) + β6(p)) (1 + χ̃0(p)p)

+ (α8(p) + 2α6(p) + 3α4(p) + 4α2(p) + 5 + 4β2(p)

+ 3β4(p) + 2β6(p) + β8(p)) (1 + χ̃0(p)p)

= 2 + 2χ̃0(p)p+ 3λsym2f (p)(1 + χ̃0(p)p) + 3λsym4f (p)(1 + χ̃0(p)p)

+ 2λsym2f⊗sym4f (p)(1 + χ̃0(p)p) + λsym4f⊗sym4f (p)(1 + χ̃0(p)p)

=: b3(p).

From the structure of b3(p), we define the coefficients b3(n) as

∞∑
n=1

b3(n)

ns
= ζ2(s)L2(s− 1, χ̃0)L

3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)L
3(s, sym4f)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0),
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which is absolutely convergent in <(s) > 2. We also note that∏
p

(
1 +

b3(p)

ps
+ · · ·+ b3(p

l)

pls
+ . . .

)

= ζ2(s)L2(s− 1, χ̃0)L
3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)L

3(s, sym4f)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0)

=: G4(s),

for <(s) > 2. Observe that b3(n)�ε n
1+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 2 + 2ε, we have

∣∣∣∣∣b3(p)ps
+
b3(p

2)

p2s
+ · · ·+ b3(p

l)

pls
+ . . .

∣∣∣∣∣�
∞∑
l=1

p(1+ε)l

plσ

≤

∞∑
l=1

p(1+ε)l

p(2+2ε)l

=

∞∑
l=1

1

p(1+ε)l

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A3 =
λ4sym2f (p)r(p)

ps
+ · · ·+

λ4sym2f (p
l)r(pl)

pls
+ . . . ,
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and

B3 =
b3(p)

ps
+ · · ·+ b3(p

l)

pls
+ . . . .

From the above calculation, we observe that |B3| < 1 in <(s) ≥ 2 + 2ε.

We note that in the half plane <(s) ≥ 2 + 2ε, we have

1 + A3

1 +B3

= (1 + A3)(1−B3 +B2
3 −B3

3 + . . . )

= 1 + A3 −B3 − A3B3 + higher terms

= 1 +
λ4sym2f (p

2)r(p2)− b3(p2)
p2s

+ · · ·+ c̃l(p
l)

pls
+ . . . ,

with c̃l(n)�ε n
1+ε. So, we have (in the half plane <(s) > 3

2
)

∏
p

(
1 + A3

1 +B3

)
=
∏
p

(
1 +

λ4sym2f (p
2)r(p2)− b3(p2)
p2s

+ · · ·+ c̃l(p
l)

pls
+ . . .

)

�ε 1.

Thus, we have (in the half plane <(s) > 3
2
)

H4(s) :=
F4(s)

G4(s)

=
∏
p

(
1 + A3

1 +B3

)

�ε 1,

and also H4(s) 6= 0 on <(s) = 2.

Now, we proceed to establish our key theorem 3.1.3.
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3.5 Proof of Theorem 3.1.3

We begin with the Perron’s formula (see section 1.5), applying to F4(s) with

η = 2 + ε and 10 ≤ T ≤ x. Thus, we have∑
n≤x

λ4sym2f (n)r4(n) = 8

∑
n≤x

λ4sym2f (n)r(n)

=
8

2πi

∫ η+iT

η−iT
F4(s)

xs

s
ds+O

(
x2+2ε

T

)
.

We note that, for <(s) > 2,

L2(s− 1, χ̃0) =

(
1− 3

2s−1

)−2(
1− 1

2s−1

)4

ζ2(s− 1),

since

L2(s− 1, χ0) =

(
1− 1

2s−1

)2

ζ2(s− 1).

Thus,

F4(s) := ζ2(s)L2(s− 1, χ̃0)L
3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)L

3(s, sym4f)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0)H4(s)

= ζ2(s)

(
1− 3

2s−1

)−2(
1− 1

2s−1

)4

ζ2(s− 1)L3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)

× L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(s, sym4f ⊗ sym4f)L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0)L
3(s, sym4f)H4(s).

We move the line of integration to <(s) =
3

2
+ ε. There is only one second order

pole at s = 2 coming from the factor ζ2(s− 1), so by Cauchy’s residue theorem,
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we obtain∑
n≤x

λ4sym2f (n)r4(n) = 8Res
s=2

{
F4(s)

xs

s

}
+

8

2πi

{∫ 3
2
+ε+iT

3
2
+ε−iT

+

∫ 3
2
+ε−iT

2+ε−iT
+

∫ 2+ε+iT

3
2
+ε+iT

}
F4(s)

xs

s
ds

+O

(
x2+2ε

T

)
= 8Res

s=2

{
F4(s)

xs

s

}
+

8

2πi
(J

(3)
1 + J

(3)
2 + J

(3)
3 ) +O

(
x2+2ε

T

)
.

More precisely,

Res
s=2

{
F4(s)

xs

s

}
= Res

s=2

{
ζ2(s)L2(s− 1, χ̃0)L

3(s, sym2f)L3(s− 1, sym2f ⊗ χ̃0)

×L3(s, sym4f)L3(s− 1, sym4f ⊗ χ̃0)L
2(s, sym2f ⊗ sym4f)

×L2(s− 1, sym2f ⊗ sym4f ⊗ χ̃0)L(s, sym4f ⊗ sym4f)

×L(s− 1, sym4f ⊗ sym4f ⊗ χ̃0)H4(s)
xs

s

}
= ζ2(2)L3(2, sym2f)L3(1, sym2f ⊗ χ̃0)L

3(2, sym4f)

× L3(1, sym4f ⊗ χ̃0)L
2(2, sym2f ⊗ sym4f)L2(1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(2, sym4f ⊗ sym4f)L(1, sym4f ⊗ sym4f ⊗ χ̃0)H4(2)

× Res
s=2

{
L2(s− 1, χ̃0)

xs

s

}
,

where

Res
s=2

{
L2(s− 1, χ̃0)

xs

s

}
=
x2

2

(
1− 3

2

)−2(
1− 1

2

)4

Res
s=2

{(
1

s− 2
+ γ +O(|s− 2|)

)2

xs−2

}

=
x2

2
× 1

4
× Res

s=2

{(
1

s− 2
+ γ +O(|s− 2|)

)2

e(s−2) log x

}

=
x2 log x

8
,
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and γ is Euler’s constant. Hence,

Res
s=2

{
F4(s)

xs

s

}
=ζ2(2)L3(2, sym2f)L3(1, sym2f ⊗ χ̃0)L

3(2, sym4f)

× L3(1, sym4f ⊗ χ̃0)L
2(2, sym2f ⊗ sym4f)L2(1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(2, sym4f ⊗ sym4f)L(1, sym4f ⊗ sym4f ⊗ χ̃0)H4(2)
x2 log x

8
.

The contribution of horizontal line integrals (J
(3)
2 and J

(3)
3 ) in absolute value

(using Lemmas 1.9.4, 3.3.1 and 1.9.9) is

�
∫ 2+ε

3
2
+ε

[
|ζ2(σ − 1 + iT )L3(σ − 1 + iT, sym2f ⊗ χ̃0)L

3(σ − 1 + iT, sym4f ⊗ χ̃0)|
T

× |L2(σ − 1 + iT, sym2f ⊗ sym4f ⊗ χ̃0)L(σ − 1 + iT, sym4f ⊗ sym4f ⊗ χ̃0)|xσ
]
dσ

�
∫ 1+ε

1
2
+ε

[
|ζ2(σ + iT )L3(σ + iT, sym2f ⊗ χ̃0)L

3(σ + iT, sym4f ⊗ χ̃0)|
T

× |L2(σ + iT, sym2 ⊗ sym4f ⊗ χ̃0)L(σ + iT, sym4f ⊗ sym4f ⊗ χ̃0)|xσ+1
]
dσ

�
( x
T

)
max

1
2
+ε≤σ≤1+ε

xσT
2
3
(1+ε−σ)T

79
2
(1+ε−σ)

�
(
x1+ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T
241
6

)σ
T

241
6 .

Clearly
(

x

T
241
6

)σ
is monotonic as a function of σ for 1

2
+ ε ≤ σ ≤ 1 + ε and hence

the maximum is attained at the extremities of the interval [1
2

+ ε, 1 + ε]. Thus,

J
(3)
2 + J

(3)
3 � x1+ε

(
x

1
2
+εT

241
12
−1+ε +

x1+ε

T

)
� x

3
2
+2εT

229
12

+ε +
x2+2ε

T
.

The contribution of left vertical line integral (J
(3)
1 ) in absolute value (using

Cauchy-Schwarz inequality, Lemmas 1.9.1, 1.9.2, 3.3.1 and 1.9.9) is
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�
∫ 3

2
+ε+iT

3
2
+ε−iT

[
|ζ2(1

2
+ ε+ it)L3(1

2
+ ε+ it, sym2f ⊗ χ̃0)L

3(1
2

+ ε+ it, sym4f ⊗ χ̃0)|∣∣3
2

+ ε+ it
∣∣

×
∣∣∣∣L2

(
1

2
+ ε+ it, sym2f ⊗ sym4f ⊗ χ̃0

)
L

(
1

2
+ ε+ it, sym4f ⊗ sym4f ⊗ χ̃0

)∣∣∣∣x 3
2
+ε

]
dσ

� x
3
2
+ε + x

3
2
+ε

{∫
10≤|t|≤T

|ζ(1
2

+ ε+ it)|2

t
dt

} 1
2
{∫

10≤|t|≤T

|L2(1
2

+ ε+ it, sym2f ⊗ χ̃0)|2

t

×
∣∣∣∣L(1

2
+ ε+ it, sym4f ⊗ χ̃0

)
L

(
1

2
+ ε+ it, sym2f ⊗ sym4f ⊗ χ̃0

)∣∣∣∣2

×
∣∣∣∣L(1

2
+ ε+ it, sym4f ⊗ sym4f ⊗ χ̃0

)∣∣∣∣2 dt
} 1

2

� x
3
2
+ε + x

3
2
+ε
(
T
ε
2T

1
2
( 79

2
−1+ε)

)

� x
3
2
+2εT

77
4
+2ε.

Note that 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ4sym2f (n)r4(n) = c4x
2 log x+O

(
x

3
2
+2εT

77
4
+2ε
)

+O

(
x

3
2
+2εT

229
12

+2ε +
x2+2ε

T

)
.

We choose T such that x
3
2T

77
4 � x2

T
i.e., T

81
4 � x

1
2 .

∴ T � x
2
81 .

Thus, we get ∑
n≤x

λ4sym2f (n)r4(n) = c4x
2 log x+O(x

160
81

+2ε),
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where

c4 = ζ2(2)L3(2, sym2f)L3(1, sym2f ⊗ χ̃0)L
3(2, sym4f)

× L3(1, sym4f ⊗ χ̃0)L
2(2, sym2f ⊗ sym4f)L2(1, sym2f ⊗ sym4f ⊗ χ̃0)

× L(2, sym4f ⊗ sym4f)L(1, sym4f ⊗ sym4f ⊗ χ̃0)H4(2).

This proves the theorem.

3.6 Concluding Remarks

From the proof of the theorems above, we observe that if we know some more

analytic properties of H3(s) and H4(s) in the region <(s) ≥ (1− ε) then possibly

we may move the line of integration to the left of line <(s) = 1. This leads us to

propose:

Conjecture 3.6.1 For sufficiently large x and ε > 0 be any small constant, we

have∑
n=a2+b2+c2+d2≤x

(a,b,c,d)∈Z4

λθsym2f (a
2+b2+c2+d2) =

c̃3(θ)x2 + c̃4(θ)x+O(xµ1(θ)+ε) if θ = 3

ĉ3(θ)x
2 log x+ ĉ4(θ)x log x+O(xµ2(θ)+ε) if θ = 4

.

where c̃3(θ), c̃4(θ), ĉ3(θ), ĉ4(θ) are effective constants and µ1(θ), µ2(θ) are some

positive constants satisfying 0 < µ1(θ), µ2(θ) < 1.

Remark 3.6.2 Though the above conjecture seems to be reasonable, we do not

have any idea currently how to tackle and conclude our conjectural estimates.
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Chapter 4

Average behavior of the Fourier

coefficients of the symmetric

square L-function over some

sequence of integers

4.1 Introduction

In this chapter, we will explore the possibility of an extension of the dimension.

It seems natural to ask for similar results related to higher dimensions? We

investigate the following question in this chapter:

Question 4.1.1 Can we come up with an asymptotic formula that adequately

reflects the average behaviour of the Fourier coefficients of cusp form in the 6-

dimension under diverse conditions?

Our main objective in this chapter is to establish Theorem 4.1.2. We first

notice the behavior of these Fourier coefficients of cusp form on r6(n). To be

more specific, we investigate the nature of the following sum:∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26).

for sufficiently large x. More precisely, we prove the following.

81
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Theorem 4.1.2 For sufficiently large x, and any ε > 0, we have∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26) = c2x

3 +O
(
x

14
5
+ε
)
.

Here, c2 is an effective constant defined as

c2 =
16

3
L(3, χ)L(1, sym2f)L(3, sym2f ⊗ χ)L(1, sym4f)L(3, sym4f ⊗ χ)H2(3),

and χ is the non-principal Dirichlet character modulo 4. Here, H2(s) is a Dirichlet

series which converges uniformly and absolutely in the half plane <(s) > 5
2
, and

H2(s) 6= 0 on <(s) = 3.

Remark 4.1.3 The main idea of the proof here is that the sum in Theorem 4.1.2

is being related to the sum involving r6(n). The main difference from our earlier

result (see 2.1.2) related to a sum involving r4(n) is that r6(n) is not multiplicative

(cf. section 1.4.2). However, Theorem 1.4.6 demonstrates that r6(n) can be

written as a sum of two multiplicative functions. The sum in Theorem 4.1.2 is

split into two sums involving the corresponding multiplicative functions, which

are dealt with independently. The two sums are then combined suitably to obtain

the result.

In order to prove Theorem 4.1.2, we need to first prove Lemma 4.1.4 and

Lemma 4.1.5, which will play a pivotal role in the proof. This chapter’s findings

have been published and can be accessed at [Sr-Sa 2]. From [Ha-Wr, pp. 415],

we can write

r6(n) = 16

∑
d|n

χ(d)
n2

d2
− 4

∑
d|n

χ(d)d2

=: 16l(n)− 4v(n),

where χ is the non-principal Dirichlet character modulo 4.

Lemma 4.1.4 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z). Let λsym2f (n) be the nth normalized Fourier coefficient of the
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symmetric square L-function associated with f . If

F2(s) =

∞∑
n=1

λ2sym2f (n)l(n)

ns
,

for <(s) > 3, then

F2(s)(s) = G2(s)H2(s),

where

G2(s) :=ζ(s− 2)L(s, χ)L(s− 2, sym2f)L(s, sym2f ⊗ χ)

× L(s− 2, sym4f)L(s, sym4f ⊗ χ),

and χ is the non-principal character modulo 4. Here, H2(s) is a Dirichlet series

which converges uniformly and absolutely in the half plane <(s) > 5
2
, and H2(s) 6=

0 on <(s) = 3.

Lemma 4.1.5 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z). Let λsym2f (n) be the nth normalized Fourier coefficient of the

symmetric square L-function associated with f . If

F̃2(s) =

∞∑
n=1

λ2sym2f (n)v(n)

ns
,

for <(s) > 3, then

F̃2(s) = G̃2(s)H̃2(s),

where

G̃2(s) :=ζ(s)L(s− 2, χ)L(s, sym2f)L(s− 2, sym2f ⊗ χ)

× L(s, sym4f)L(s− 2, sym4f ⊗ χ),

and χ is the non-principal character modulo 4. Here, H̃2(s) is a Dirichlet series

which converges uniformly and absolutely in the half plane <(s) > 5
2
, and H̃2(s) 6=

0 on <(s) = 3.
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4.2 Proof of Lemma 4.1.4

We observe that λ2sym2f (n)l(n) is multiplicative, and hence

F2(s) =
∏
p

(
1 +

λ2sym2f (p)l(p)

ps
+ · · ·+

λ2sym2f (p
m)l(pm)

pms
+ · · ·

)
.

Note that

λ2sym2f (p)l(p) =


2∑

m=0

α2−m(p)βm(p)


2 (
p2 + χ(p)

)
= (α4(p) + 2α2(p) + 3 + 2β2(p) + β4(p))

(
p2 + χ(p)

)
= p2 + χ(p) + (α2(p) + 1 + β2(p))(p2 + χ(p))

+ (α4(p) + α2(p) + 1 + β2(p) + β4(p))
(
p2 + χ(p)

)
= p2 + χ(p) + λsym2f (p)(p

2 + χ(p)) + λsym4f (p)(p
2 + χ(p))

= p2 + χ(p) + p2λsym2f (p) + χ(p)λsym2f (p)

+ p2λsym4f (p) + χ(p)λsym4f (p)

=: b4(p).

From the structure of b4(p), we define the coefficients b4(n) as

∞∑
n=1

b4(n)

ns
=ζ(s− 2)L(s, χ)L(s− 2, sym2f)L(s, sym2f ⊗ χ)L(s− 2, sym4f)

× L(s, sym4f ⊗ χ),
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which is absolutely convergent in <(s) > 3. We also note that∏
p

(
1 +

b4(p)

ps
+ · · ·+ b4(p

m)

pms
+ · · ·

)

= ζ(s− 2)L(s, χ)L(s− 2, sym2f)L(s, sym2f ⊗ χ)

× L(s− 2, sym4f)L(s, sym4f ⊗ χ)

=: G2(s),

for <(s) > 3. Observe that b4(n)�ε n
2+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 3 + 2ε, we have

∣∣∣∣∣b4(p)ps
+
b4(p

2)

p2s
+ · · ·+ b4(p

m)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(2+ε)m

pmσ

≤

∞∑
m=1

p(2+ε)m

p(3+2ε)m

=

∞∑
m=1

1

p(1+ε)m

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A4 =
λ2sym2f (p)l(p)

ps
+ · · ·+

λ2sym2f (p
m)l(pm)

pms
+ · · · ,

and

B4 =
b4(p)

ps
+ · · ·+ b4(p

m)

pms
+ · · · .
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From the above calculations, we observe that |B4| < 1 in <(s) ≥ 3 + 2ε.

We note that in the half plane <(s) ≥ 3 + 2ε, we have

1 + A4

1 +B4

= (1 + A4)(1−B4 +B2
4 −B3

4 + · · · )

= 1 + A4 −B4 − A4B4 + higher terms

= 1 +
λ2sym2f (p

2)l(p2)− b4(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · · ,

with cm(n)�ε n
2+ε. So, we have (in the half plane <(s) > 5

2
)

∏
p

(
1 + A4

1 +B4

)
=
∏
p

(
1 +

λ2sym2f (p
2)l(p2)− b4(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · ·

)

�ε 1.

Thus, we have (in the half plane <(s) > 5
2
)

H2(s) :=
F2(s)

G2(s)

=
∏
p

(
1 + A4

1 +B4

)
�ε 1,

and also H2(s) 6= 0 on <(s) = 3.

4.3 Proof of Lemma 4.1.5

We observe that λ2sym2f (n)v(n) is multiplicative, and hence

F̃2(s) =
∏
p

(
1 +

λ2sym2f (p)v(p)

ps
+ · · ·+

λ2sym2f (p
m)v(pm)

pms
+ · · ·

)
.
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Note that

λ2sym2f (p)v(p) =


2∑

m=0

α2−m(p)βm(p)


2 (

1 + p2χ(p)
)

= (α4(p) + 2α2(p) + 3 + 2β2(p) + β4(p))
(
1 + p2χ(p)

)
= 1 + p2χ(p) + (α2(p) + 1 + β2(p))(1 + p2χ(p))

+ (α4(p) + α2(p) + 1 + β2(p) + β4(p))
(
1 + p2χ(p)

)
= 1 + p2χ(p) + λsym2f (p)(1 + p2χ(p)) + λsym4f (p)(1 + p2χ(p))

= 1 + p2χ(p) + λsym2f (p) + p2χ(p)λsym2f (p)

+ λsym4f (p) + p2χ(p)λsym4f (p)

=: b5(p).

From the structure of b5(p), we define the coefficients b5(n) as

∞∑
n=1

b5(n)

ns
=ζ(s)L(s− 2, χ)L(s, sym2f)L(s− 2, sym2f ⊗ χ)L(s, sym4f)

× L(s− 2, sym4f ⊗ χ),

which is absolutely convergent in <(s) > 3. We also note that∏
p

(
1 +

b5(p)

ps
+ · · ·+ b5(p

m)

pms
+ · · ·

)

= ζ(s)L(s− 2, χ)L(s, sym2f)L(s− 2, sym2f ⊗ χ)L(s, sym4f)L(s− 2, sym4f ⊗ χ)

=: G̃2(s),
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for <(s) > 3. Observe that b5(n)�ε n
2+ε for any small positive constant ε. Now,

we note that in the half plane <(s) ≥ 3 + 2ε, we have

∣∣∣∣∣b5(p)ps
+
b5(p

2)

p2s
+ · · ·+ b5(p

m)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(2+ε)m

pmσ

< 1.

Let us write

A5 =
λ2sym2f (p)v(p)

ps
+ · · ·+

λ2sym2f (p
m)v(pm)

pms
+ · · · ,

and

B5 =
b5(p)

ps
+ · · ·+ b5(p

m)

pms
+ · · · .

From the above calculations, we observe that |B5| < 1 in <(s) ≥ 3 + 2ε.

We note that in the half plane <(s) ≥ 3 + 2ε, we have

1 + A5

1 +B5

= (1 + A5)(1−B5 +B2
5 −B3

5 + · · · )

= 1 + A5 −B5 − A5B5 + higher terms

= 1 +
λ2sym2f (p

2)v(p2)− b5(p2)
p2s

+ · · ·+ c̃m(pm)

pms
+ · · · ,

with c̃m(n)�ε n
2+ε. So, we have (in the half plane <(s) > 5

2
)

∏
p

(
1 + A5

1 +B5

)
=
∏
p

(
1 +

λ2sym2f (p
2)v(p2)− b5(p2)
p2s

+ · · ·+ c̃m(pm)

pms
+ · · ·

)

�ε 1.
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Thus, we have (in the half plane <(s) > 5
2
)

H̃2(s) :=
F̃2(s)

G̃2(s)

=
∏
p

(
1 + A5

1 +B5

)

�ε 1,

and also H̃2(s) 6= 0 on <(s) = 3.

We are now in a position to prove our core theorem of this chapter.

4.4 Proof of Theorem 4.1.2

We can write ∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26)

=

∑
n≤x

λ2sym2f (n)

∑
n=a21+a22+a23+a24+a25+a26

(a1,a2,a3,a4,a5,a6)∈Z6

1

=

∑
n≤x

λ2sym2f (n)r6(n)

=

∑
n≤x

λ2sym2f (n) (l1(n)− v1(n)) (4.1)

= 16

∑
n≤x

λ2sym2f (n)l(n)− 4

∑
n≤x

λ2sym2f (n)v(n),

where l(n) =
∑
d|n

χ(d)
n2

d2
, and v(n) =

∑
d|n

χ(d)d2.



90 §4.4. Proof of Theorem 4.1.2

From Equation (4.1), we can write∑
n≤x

λ2sym2f (n)r6(n) =

∑
n≤x

λ2sym2f (n)l1(n)−
∑
n≤x

λ2sym2f (n)v1(n).

Firstly, we consider the sum
∑
n≤x

λ2sym2f (n)l1(n). We begin by applying Per-

ron’s formula (see section 1.5) to F2(s) with η = 3 + ε and 10 ≤ T ≤ x. Thus,

we have ∑
n≤x

λ2sym2f (n)l1(n) = 16

∑
n≤x

λ2sym2f (n)l(n)

=
16

2πi

∫ η+iT

η−iT
F2(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2

+ ε. By Cauchy’s residue theorem

there is only one simple pole at s = 3, coming from the factor ζ(s − 2). This

contributes a residue, which is c2x
3, where c2 is an effective constant depending

on the values of various L-functions appearing in G2(s) at s = 3.

More precisely,

c2 = 16 lim
s→3

(s− 3)
F2(s)

s

=
16

3
L(3, χ)L(1, sym2f)L(3, sym2f ⊗ χ)

× L(1, sym4f)L(3, sym4f ⊗ χ)H2(3).

So, we obtain∑
n≤x

λ2sym2f (n)l1(n) = c2x
3 +

16

2πi

{∫ 5
2
+ε+iT

5
2
+ε−iT

+

∫ 5
2
+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2
+ε+iT

}
F2(s)

xs

s
ds

+O

(
x3+3ε

T

)
=: c2x

3 +
16

2πi
(J

(4)
1 + J

(4)
2 + J

(4)
3 ) +O

(
x3+3ε

T

)
.
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The contribution of the horizontal line integrals (using Lemma 1.9.4 and Lemma

1.9.9) is

J
(4)
2 + J

(4)
3 �

∫ 3+ε

5
2
+ε

|ζ(σ − 2 + iT )L(σ − 2 + iT, sym2f)L(σ − 2 + iT, sym4f)|
T

xσdσ

�
∫ 1+ε

1
2
+ε

|ζ(σ + iT )L(σ + iT, sym2f)L(σ + iT, sym4f)|
T

xσ+2dσ

�
(
x2

T

)
max

1
2
+ε≤σ≤1+ε

xσT
1
3
(1+ε−σ)T

8
2
(1+ε−σ)

�
(
x2+2ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T
13
3

)σ
T

13
3 .

Clearly,
(

x

T
13
3

)σ
is monotonic as a function of σ for 1

2
+ ε ≤ σ ≤ 1 + ε, and hence

the maximum is attained at the extremities of the interval [1
2

+ ε, 1 + ε]. Thus,

J
(4)
2 + J

(4)
3 � x2+2ε

(
x

1
2
+εT

13
6
−1+ε +

x1+ε

T

)
� x

5
2
+3εT

7
6
+ε +

x3+3ε

T
.

The contribution of the left vertical line integral (using the Cauchy-Schwarz in-

equality, Lemma 1.9.1, and Lemma 1.9.9) is



92 §4.4. Proof of Theorem 4.1.2

J
(4)
1 �

∫ 5
2
+ε+iT

5
2
+ε−iT

|ζ(1
2

+ ε+ it)L(1
2

+ ε+ it, sym2f)L(1
2

+ ε+ it, sym4f)|
|5
2

+ ε+ it|
x

5
2
+εdt

� x
5
2
+ε + x

5
2
+ε

(∫
10≤|t|≤T

|ζ(1
2

+ ε+ it)|2

t
dt

) 1
2

×
(∫

10≤|t|≤T

|L(1
2

+ ε+ it, sym2f)L(1
2

+ ε+ it, sym4f)|2

t
dt

) 1
2

� x
5
2
+ε + x

5
2
+ε
(
T
ε
2T

3
2
+ ε

2

)

� x
5
2
+2εT

3
2
+2ε.

Note that 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ2sym2f (n)l1(n) = c2x
3 +O

(
x

5
2
+2εT

3
2
+2ε
)

+O

(
x3+3ε

T

)
.

We choose T such that x
5
2T

3
2 � x3

T
i.e., T

5
2 � x

1
2 . Therefore, T � x

1
5 . Thus, we

get ∑
n≤x

λ2sym2f (n)l1(n) = c2x
3 +O(x

14
5
+ε). (4.2)

Similarly, we apply Perron’s formula (see section 1.5) to F̃2(s) with η = 3 + ε

and 10 ≤ T ≤ x. Thus, we have∑
n≤x

λ2sym2f (n)v1(n) = 4

∑
n≤x

λ2sym2f (n)v(n)

=
4

2πi

∫ η+iT

η−iT
F̃2(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2

+ ε. There is no singularity in the
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rectangle obtained and the function F̃2(s)
xs

s
is analytic in this region. Thus,

using Cauchy’s theorem for rectangles pertaining to analytic functions, we get∑
n≤x

λ2sym2f (n)v1(n) =
4

2πi

{∫ 5
2
+ε+iT

5
2
+ε−iT

+

∫ 5
2
+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2
+ε+iT

}
F̃2(s)

xs

s
ds

+O

(
x3+3ε

T

)
=:

4

2πi
(J

(5)
1 + J

(5)
2 + J

(5)
3 ) +O

(
x3+3ε

T

)
.

The contribution of the horizontal line integrals (using Lemma 1.9.8 and

Lemma 1.9.9) is

J
(5)
2 + J

(5)
3 �

∫ 3+ε

5
2
+ε

|L(σ − 2 + iT, χ)L(σ − 2 + iT, sym2f ⊗ χ)L(σ − 2 + iT, sym4f)⊗ χ|
T

xσdσ

�
∫ 1+ε

1
2
+ε

|L(σ + iT, χ)L(σ + iT, sym2f ⊗ χ)L(σ + iT, sym4f ⊗ χ)|
T

xσ+2dσ.

Thus,

J
(5)
2 + J

(5)
3 �

(
x2

T

)
max

1
2
+ε≤σ≤1+ε

xσT
1
3
(1+ε−σ)T

8
2
(1+ε−σ)

�
(
x2+2ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T
13
3

)σ
T

13
3 .

Clearly,
(

x

T
13
3

)σ
is monotonic as a function of σ for 1

2
+ ε ≤ σ ≤ 1 + ε, and

hence the maximum is attained at the extremities of the interval
[
1
2

+ ε, 1 + ε
]
.

Thus,

J
(5)
2 + J

(5)
3 � x2+2ε

(
x

1
2
+εT

13
6
−1+ε +

x1+ε

T

)
� x

5
2
+3εT

7
6
+ε +

x3+3ε

T
.

The contribution of the left vertical line integral (using the Cauchy-Schwarz
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inequality, Lemma 1.9.6, and Lemma 1.9.9) is

J
(5)
1 �

∫ 5
2
+ε+iT

5
2
+ε−iT

|L(1
2

+ ε+ it, χ)L(1
2

+ ε+ it, sym2f ⊗ χ)L(1
2

+ ε+ it, sym4f ⊗ χ)|
|5
2

+ ε+ it|
x

5
2
+εdt

� x
5
2
+ε + x

5
2
+ε

(∫
10≤|t|≤T

|L(1
2

+ ε+ it, χ)|2

t
dt

) 1
2

×
(∫

10≤|t|≤T

|L(1
2

+ ε+ it, sym2f ⊗ χ)L(1
2

+ ε+ it, sym4f ⊗ χ)|2

t
dt

) 1
2

� x
5
2
+ε + x

5
2
+ε
(
T
ε
2T

3
2
+ ε

2

)

� x
5
2
+2εT

3
2
+2ε.

Note that 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ2sym2f (n)v1(n) = O
(
x

5
2
+2εT

3
2
+2ε
)

+O

(
x3+3ε

T

)
.

We choose T such that x
5
2T

3
2 � x3

T
i.e., T

5
2 � x

1
2 . Therefore, T � x

1
5 .

Thus, we get ∑
n≤x

λ2sym2f (n)v1(n) = O
(
x

14
5
+ε
)
. (4.3)

Combining Equations (4.2) and (4.3), we get∑
n≤x

λ2sym2f (n)r6(n) = c2x
3 +O

(
x

14
5
+ε
)
,

where c2 is an effective constant given by

c2 =
16

3
L(3, χ)L(1, sym2f)L(3, sym2f ⊗ χ)L(1, sym4f)L(3, sym4f ⊗ χ)H2(3),
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and χ is the non-principal Dirichlet character modulo 4.

This proves the theorem.
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Chapter 5

On the average behavior of the

Fourier coefficients of jth

symmetric power L-function over

a certain sequences of positive

integers

5.1 Introduction

In the previous chapter, we investigated the average behavior of the nth nor-

malized Fourier coefficients of the symmetric square L-function attached to a

primitive holomorphic cusp form of weight k for the full modular group SL(2,Z)

over some sequence of integers. To be more precise, we proved the following

asymptotic formula:

For sufficiently large x, and any ε > 0, we have∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2sym2f (a
2
1 + a22 + a23 + a24 + a25 + a26) = c2x

3 +O
(
x

14
5
+ε
)
.

Here, c2 is an effective constant defined as

c2 =
16

3
L(3, χ)L(1, sym2f)L(3, sym2f ⊗ χ)L(1, sym4f)L(3, sym4f ⊗ χ)H2(3),

97
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and χ is the non-principal Dirichlet character modulo 4.

Now, our goal is to improve as well as generalize the above result. Generaliza-

tion was possible due to recent celebrated work of Newton and Thorne (see 3.1.1)

and for improvement, we use better average or individual subconvexity bounds

for the related L-functions. The findings presented in this chapter will shortly be

published in [Sr-Sa 5].

Our main aim in this chapter is to establish an asymptotic formula for the

following sum: ∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symjf (a
2
1 + a22 + a23 + a24 + a25 + a26),

where j ≥ 2 be any fixed integer, x is sufficiently large, and ε > 0 any small

constant. We have the following theorem in this regard.

Theorem 5.1.1 Let j ≥ 2 be any fixed integer. For sufficiently large x, and

ε > 0 any small constant, we have∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symjf (a
2
1+a22+a23+a24+a25+a26) = c(j)x3+O

(
x
3− 6

3(j+1)2+1
+ε
)
,

where c(j) is an effective constant defined as

c(j) =
16

3
L(3, χ)

j∏
n=1

L(1, sym2nf)L(3, sym2nf ⊗ χ)Hj(3),

and χ is the non-principal Dirichlet character modulo 4.

From [Ha-Wr, pp. 415], we can write

r6(n) = 16

∑
d|n

χ(d)
n2

d2
− 4

∑
d|n

χ(d)d2

=: 16l(n)− 4v(n),

where χ is the non-principal Dirichlet character modulo 4.
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Lemma 5.1.2 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsymjf (n) be the nth normalized Fourier coefficient of the

jth symmetric power L-function associated to f . If

Fj(s) =

∞∑
n=1

λ2symjf (n)l(n)

ns
,

for <(s) > 3, then

Fj(s) = Gj(s)Hj(s),

where

Gj(s) := ζ(s− 2)L(s, χ)

j∏
n=1

L(s− 2, sym2nf)L(s, sym2nf ⊗ χ),

and χ is the non-principal character modulo 4.

Here, Hj(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane <(s) > 5
2
, and Hj(s) 6= 0 on <(s) = 3.

Lemma 5.1.3 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let λsymjf (n) be the nth normalized Fourier coefficient of the

jth symmetric power L-function associated to f . If

F̃j(s) =

∞∑
n=1

λ2symjf (n)v(n)

ns
,

for <(s) > 3, then

F̃j(s) = G̃j(s)H̃j(s),

where

G̃j(s) :=ζ(s)L(s− 2, χ)

j∏
n=1

L(s, sym2nf)L(s− 2, sym2nf ⊗ χ),

and χ is the non-principal character modulo 4.

Here H̃j(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane <(s) > 5
2
, and H̃j(s) 6= 0 on <(s) = 3.
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Lemma 5.1.2 and Lemma 5.1.3 are crucial in the proof of Theorem 5.1.1 and

are proved before we proceed to the theorem.

5.2 Proof of Lemma 5.1.2

We observe that λ2symjf (n)l(n) is multiplicative, and hence

Fj(s) =

∏
p

(
1 +

λ2symjf (p)l(p)

ps
+ · · ·+

λ2symjf (p
m)l(pm)

pms
+ · · ·

)
.

Using Lemma 1.9.14, we note that,

λ2symjf (p)l(p) = λ2f (p
j)
(
p2 + χ(p)

)
=

1 +

j∑
l=1

λf (p
2l)

(p2 + χ(p)
)

=

1 +

j∑
l=1

λsym2lf (p)

(p2 + χ(p)
)

= p2 + χ(p) +

j∑
l=1

λsym2lf (p)p
2 +

j∑
l=1

λsym2lf (p)χ(p)

=: b6(p).

From the structure of b6(p), we define the coefficients b6(n) as

∞∑
n=1

b6(n)

ns
=ζ(s− 2)L(s, χ)

j∏
n=1

L(s− 2, sym2nf)L(s, sym2nf ⊗ χ),
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which is absolutely convergent in <(s) > 3. We also note that,∏
p

(
1 +

b6(p)

ps
+ · · ·+ b6(p

m)

pms
+ · · ·

)

= ζ(s− 2)L(s, χ)

j∏
n=1

L(s− 2, sym2nf)L(s, sym2nf ⊗ χ)

=: Gj(s),

for <(s) > 3. Observe that b6(n)�ε n
2+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 3 + 2ε, we have

∣∣∣∣∣b6(p)ps
+
b6(p

2)

p2s
+ · · ·+ b6(p

m)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(2+ε)m

pmσ

≤

∞∑
m=1

p(2+ε)m

p(3+2ε)m

=

∞∑
m=1

1

p(1+ε)m

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A6 =
λ2symjf (p)l(p)

ps
+ · · ·+

λ2symjf (p
m)l(pm)

pms
+ · · · ,

and

B6 =
b6(p)

ps
+ · · ·+ b6(p

m)

pms
+ · · · .

From the above calculations, we observe that |B6| < 1 in <(s) ≥ 3 + 2ε.
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We note that in the half plane <(s) ≥ 3 + 2ε, we have

1 + A6

1 +B6

= (1 + A6)(1−B6 +B2
6 −B3

6 + · · · )

= 1 + A6 −B6 − A6B6 + higher terms

= 1 +
λ2symjf (p

2)l(p2)− b6(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · · ,

with cm(n)�ε n
2+ε. So, we have (in the half plane <(s) > 5

2
)

∏
p

(
1 + A6

1 +B6

)
=
∏
p

(
1 +

λ2symjf (p
2)l(p2)− b6(p2)
p2s

+ · · ·+ cm(pm)

pms
+ · · ·

)

�ε 1.

Thus, we have (in the half plane <(s) > 5
2
)

Hj(s) :=
Fj(s)

Gj(s)

=
∏
p

(
1 + A6

1 +B6

)

�ε 1,

and also Hj(s) 6= 0 on <(s) = 3.

Now, we will see the proof of Lemma 5.1.3.

5.3 Proof of Lemma 5.1.3

We observe that λ2symjf (n)v(n) is multiplicative, and hence

F̃j(s) =
∏
p

(
1 +

λ2symjf (p)v(p)

ps
+ · · ·+

λ2symjf (p
m)v(pm)

pms
+ · · ·

)
. (5.1)
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Using Lemma 1.9.14, we note that,

λ2symjf (p)v(p) = λ2f (p
j)
(
1 + p2χ(p)

)
=

1 +

j∑
l=1

λf (p
2l)

(1 + p2χ(p)
)

=

1 +

j∑
l=1

λsym2lf (p)

(1 + p2χ(p)
)

= 1 + p2χ(p) +

j∑
l=1

λsym2lf (p) +

j∑
l=1

λsym2lf (p)p
2χ(p)

=: b7(p).

From the structure of b7(p), we define the coefficients b7(n) as

∞∑
n=1

b7(n)

ns
= ζ(s)L(s− 2, χ)

j∏
n=1

L(s, sym2nf)L(s− 2, sym2nf ⊗ χ),

which is absolutely convergent in <(s) > 3. We also note that,∏
p

(
1 +

b7(p)

ps
+ · · ·+ b7(p

m)

pms
+ · · ·

)

= ζ(s)L(s− 2, χ)

j∏
n=1

L(s, sym2nf)L(s− 2, sym2nf ⊗ χ)

=: G̃j(s),

for <(s) > 3. Observe that b7(n)�ε n
2+ε for any small positive constant ε.
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Now, we note that in the half plane <(s) ≥ 3 + 2ε, we have

∣∣∣∣∣b7(p)ps
+
b7(p

2)

p2s
+ · · ·+ b7(p

m)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(2+ε)m

pmσ

< 1.

Let us write,

A7 =
λ2symjf (p)v(p)

ps
+ · · ·+

λ2symjf (p
m)v(pm)

pms
+ · · · ,

and

B7 =
b7(p)

ps
+ · · ·+ b7(p

m)

pms
+ · · · .

From the above calculations, we observe that |B7| < 1 in <(s) ≥ 3 + 2ε.

We note that in the half plane <(s) ≥ 3 + 2ε, we have

1 + A7

1 +B7

= (1 + A7)(1−B7 +B2
7 −B3

7 + · · · )

= 1 + A7 −B7 − A7B7 + higher terms

= 1 +
λ2symjf (p

2)v(p2)− b7(p2)
p2s

+ · · ·+ c̃m(pm)

pms
+ · · · ,

with c̃m(n)�ε n
2+ε. So, we have (in the half plane <(s) > 5

2
)

∏
p

(
1 + A7

1 +B7

)
=
∏
p

(
1 +

λ2symjf (p
2)v(p2)− b7(p2)
p2s

+ · · ·+ c̃m(pm)

pms
+ · · ·

)

�ε 1.



§5.4. Proof of Theorem 5.1.1 105

Thus, we have (in the half plane <(s) > 5
2
)

H̃j(s) :=
F̃j(s)

G̃j(s)

=
∏
p

(
1 + A7

1 +B7

)

�ε 1,

and also H̃j(s) 6= 0 on <(s) = 3.

Now that we have reached this point, we may demonstrate the chapter’s main

theorem.

5.4 Proof of Theorem 5.1.1

Observe that, ∑
a21+a22+a23+a24+a25+a26≤x

(a1,a2,a3,a4,a5,a6)∈Z6

λ2symjf (a
2
1 + a22 + a23 + a24 + a25 + a26)

=

∑
n≤x

λ2symjf (n)

∑
n=a21+a22+a23+a24+a25+a26

(a1,a2,a3,a4,a5,a6)∈Z6

1

=

∑
n≤x

λ2symjf (n)r6(n)

=

∑
n≤x

λ2symjf (n) (l1(n)− v1(n)) (5.2)

= 16

∑
n≤x

λ2symjf (n)l(n)− 4

∑
n≤x

λ2symjf (n)v(n),

where l(n) =
∑
d|n

χ(d)
n2

d2
, and v(n) =

∑
d|n

χ(d)d2.
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Now, from (5.2), we can write∑
n≤x

λ2symjf (n)r6(n) =

∑
n≤x

λ2symjf (n)l1(n)−
∑
n≤x

λ2symjf (n)v1(n).

Firstly, we consider the sum
∑
n≤x

λ2symjf (n)l1(n). We begin by applying the

Perron’s formula (see section 1.5) to Fj(s) with η = 3 + ε and 10 ≤ T ≤ x. Thus,

we have ∑
n≤x

λ2symjf (n)l1(n) = 16

∑
n≤x

λ2symjf (n)l(n)

=
16

2πi

∫ η+iT

η−iT
Fj(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2

+ε, and by Cauchy’s residue theorem

there is only one simple pole at s = 3, coming from the factor ζ(s− 2). This con-

tributes a residue, which is c(j)x3, where c(j) is an effective constant depending

on the values of various L-functions appearing in Gj(s) at s = 3.

More precisely,

c(j) = 16 lim
s→3

(s− 3)
Fj(s)

s

=
16

3
L(3, χ)

j∏
n=1

L(1, sym2nf)L(3, sym2nf ⊗ χ)Hj(3).

So, we obtain∑
n≤x

λ2symjf (n)l1(n) = c(j)x3 +
16

2πi

{∫ 5
2
+ε+iT

5
2
+ε−iT

+

∫ 5
2
+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2
+ε+iT

}
Fj(s)

xs

s
ds

+O

(
x3+3ε

T

)
=: c(j)x3 +

16

2πi
(J

(6)
1 + J

(6)
2 + J

(6)
3 ) +O

(
x3+3ε

T

)
.

The contribution of horizontal line integrals (J
(6)
2 and J

(6)
3 ) in absolute value
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(using Lemmas 5.1.2, 1.9.3 and 1.9.10) is

�
∫ 3+ε

5
2
+ε

|ζ(σ − 2 + iT )

j∏
n=1

L(σ − 2 + iT, sym2nf)|

T
xσdσ

�
∫ 1+ε

1
2
+ε

|ζ(σ + iT )

j∏
n=1

L(σ + iT, sym2nf)|

T
xσ+2dσ

�
(
x2

T

)
max

1
2
+ε≤σ≤1+ε

xσT

(
(j+1)2

2
− 4

21

)
(1−σ)+ε

�
(
x2+2ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T

(
(j+1)2

2
− 4

21

)
)σ

T

(
(j+1)2

2
− 4

21

)
.

Clearly,

(
x

T

(
(j+1)2

2
− 4

21

)
)σ

is monotonic as a function of σ for 1
2

+ ε ≤ σ ≤

1 + ε, and hence the maximum is attained at the extremities of the interval[
1
2

+ ε, 1 + ε
]
. Thus,

J
(6)
2 + J

(6)
3 � x2+2ε

(
x

1
2
+εT

(
(j+1)2

4
− 2

21
−1

)
+
x1+ε

T

)

� x
5
2
+3εT

(
(j+1)2

4
− 23

21
+ε

)
+
x3+3ε

T
.

The contribution of the left vertical line integral (J
(6)
1 ) in absolute value (using

Lemmas 5.1.2, 1.9.3, 1.9.10 and Hölder’s inequality) is



108 §5.4. Proof of Theorem 5.1.1

�
∫ 5

2
+ε+iT

5
2
+ε−iT

∣∣∣∣∣ζ(1
2

+ ε+ it)

j∏
n=1

L(1
2

+ ε+ it, sym2nf)

∣∣∣∣∣∣∣5
2

+ ε+ it
∣∣ x

5
2
+εdt

� x
5
2
+ε + x

5
2
+ε 1

T

(∫
10≤|t|≤T

∣∣∣∣ζ(
1

2
+ ε+ it)

∣∣∣∣12 dt
) 1

12

×

(∫
10≤|t|≤T

∣∣∣∣L(
1

2
+ ε+ it, sym2f)

∣∣∣∣2 dt
) 1

2

×

 max
10≤|t|≤T

∣∣∣∣∣∣
j∏

n=2

L(
1

2
+ ε+ it, sym2nf)

∣∣∣∣∣∣
2
5

∫
10≤|t|≤T

∣∣∣∣∣∣
j∏

n=2

L(
1

2
+ ε+ it, sym2nf)

∣∣∣∣∣∣
2

dt




5
12

� x
5
2
+ε + x

5
2
+ε
(
T−1+2. 1

12
+3. 1

2
. 1
2
+((j+1)2−4)( 1

2
. 1
2
. 2
5
. 5
12)+((j+1)2−4)( 1

2
. 5
12)
)

� x
5
2
+εT

(
(j+1)2

4
− 13

12
+ε

)
.

Note that 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ2symjf (n)l1(n) = c(j)x3 +O(x
5
2
+εT

(
(j+1)2

4
− 13

12
+ε

)
) +O

(
x3+3ε

T

)
.

We choose T such that x
5
2T

(
(j+1)2

4
− 13

12

)
� x3

T
i.e., T

(
3(j+1)2−1

12

)
� x

1
2 .

Therefore, T � x
6

3(j+1)2−1 .
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Thus, we get∑
n≤x

λ2symjf (n)l1(n) = c(j)x3 +O
(
x
3− 6

3(j+1)2−1
+3ε
)
. (5.3)

Similarly, we apply the Perron’s formula (see section 1.5) to F̃j(s) with η = 3 + ε

and 10 ≤ T ≤ x. Thus, we have∑
n≤x

λ2symjf (n)v1(n) = 4

∑
n≤x

λ2symjf (n)v(n)

=
4

2πi

∫ η+iT

η−iT
F̃j(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2

+ε. Note that, there is no singularity

in the rectangle obtained, and the function F̃j(s)
xs

s
is analytic in this region.

Thus, using Cauchy’s theorem for rectangle pertaining to analytic functions, we

get ∑
n≤x

λ2symjf (n)v1(n) =
4

2πi

{∫ 5
2
+ε+iT

5
2
+ε−iT

+

∫ 5
2
+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2
+ε+iT

}
F̃j(s)

xs

s
ds

+O

(
x3+3ε

T

)
=:

4

2πi
(J

(7)
1 + J

(7)
2 + J

(7)
3 ) +O

(
x3+3ε

T

)
.

The contribution of horizontal line integrals (J
(7)
2 and J

(7)
3 ) in absolute value

(using Lemmas 5.1.3, 1.9.8 and 1.9.10) is
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�
∫ 3+ε

5
2
+ε

|L(σ − 2 + iT )

j∏
n=1

L(σ − 2 + iT, sym2nf ⊗ χ)|

T
xσdσ

�
∫ 1+ε

1
2
+ε

|L(σ + iT )

j∏
n=1

L(σ + iT, sym2nf ⊗ χ)|

T
xσ+2dσ

�
(
x2

T

)
max

1
2
+ε≤σ≤1+ε

xσT

(
(j+1)2

2
− 1

6

)
(1−σ)+ε

�
(
x2+2ε

T

)
max

1
2
+ε≤σ≤1+ε

(
x

T

(
(j+1)2

2
− 1

6

)
)σ

T

(
(j+1)2

2
− 1

6

)
.

Clearly,

(
x

T

(
(j+1)2

2
− 1

6

)
)σ

is monotonic as a function of σ for 1
2

+ ε ≤ σ ≤ 1 + ε,

and hence the maximum is attained at the extremities of the interval [1
2

+ε, 1+ε].

Thus,

J
(7)
2 + J

(7)
3 � x2+2ε

(
x

1
2
+εT

(
(j+1)2

4
− 1

12
−1+ε

)
+
x1+ε

T

)

� x
5
2
+3εT

(
(j+1)2

4
− 13

12
+ε

)
+
x3+3ε

T
.

The contribution of the left vertical line integral (J
(7)
1 ) in absolute value (using

Lemmas 5.1.3, 1.9.7, 1.9.10 and Hölder’s inequality) is
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�
∫ 5

2
+ε+iT

5
2
+ε−iT

∣∣∣∣∣L(1
2

+ ε+ it)

j∏
n=1

L(1
2

+ ε+ it, sym2nf ⊗ χ)

∣∣∣∣∣∣∣5
2

+ ε+ it
∣∣ x

5
2
+εdt

� x
5
2
+ε + x

5
2
+ε 1

T

{∫
10≤|t|≤T

∣∣∣∣L(
1

2
+ ε+ it)

∣∣∣∣6 dt
} 1

6

×

{∫
10≤|t|≤T

∣∣∣∣L(
1

2
+ ε+ it, sym2f ⊗ χ)

∣∣∣∣2 dt
} 1

2

×

 max
10≤|t|≤T

∣∣∣∣∣∣
j∏

n=2

L(
1

2
+ ε+ it, sym2nf ⊗ χ)

∣∣∣∣∣∣
×

∫
10≤|t|≤T

∣∣∣∣∣∣
j∏

n=2

L(
1

2
+ ε+ it, sym2nf ⊗ χ)

∣∣∣∣∣∣
2

dt




1
3

� x
5
2
+ε + x

5
2
+ε
(
T−1+2. 1

6
+3. 1

2
. 1
2
+((j+1)2−4)( 1

2
. 1
2
. 1
3)+((j+1)2−4)( 1

2
. 1
3)
)

� x
5
2
+εT

(
(j+1)2

4
− 11

12

)
.

Note that 10 ≤ T ≤ x. Thus, we obtain∑
n≤x

λ2symjf (n)v1(n) = O

(
x

5
2
+εT

(
(j+1)2

4
− 11

12

))
+O

(
x3+3ε

T

)
.

We choose T such that x
5
2T

(
(j+1)2

4
− 11

12

)
� x3

T
i.e., T

(
(j+1)2

4
+ 1

12

)
� x

1
2 .

Therefore, T � x
6

3(j+1)2+1 .
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Thus, we get ∑
n≤x

λ2symjf (n)v1(n) = O
(
x
3− 6

3(j+1)2+1
+ε
)
. (5.4)

Combining (5.3) and (5.4), we get∑
n≤x

λ2symjf (n)r6(n) = c(j)x3 +O
(
x
3− 6

3(j+1)2+1
+ε
)
,

where c(j) is an effective constant given by

c(j) =
16

3
L(3, χ)

j∏
n=1

L(1, sym2nf)L(3, sym2nf ⊗ χ)Hj(3),

and χ is the non-principal Dirichlet character modulo 4.

This proves the theorem.

Remark 5.4.1 When j = 2, Theorem 5.1.1 gives the error term O
(
x

39
14

+ε
)

,

which improves the error term in 4.1.2.

5.4.1 Concluding Remarks

Note that we have the expected upper bounds, namely,∫ 2T

T

∣∣∣∣ζ (5

7
+ it

)∣∣∣∣12 dt� T 1+ε

and ∫ 2T

T

∣∣∣∣L(5

8
+ it, f

)∣∣∣∣4 dt� T 1+ε,

uniformly for T ≥ 1 (see [Iv 2, Gd]). Even if we move the line of integration to

<(s) = 5
7

and <(s) = 5
8

pertaining to l1(n) and v1(n) respectively, and using the

arguments of this paper, we end up with the same error term as stated in the

Theorem 5.1.1.



Chapter 6

On a divisor problem related to a

certain Dedekind zeta-function

6.1 Introduction

We begin this chapter by discussing algebraic number fields and introduce the

tools needed to define a special class of L-function, namely, the Dedekind zeta-

function.

Definition 6.1.1 An extension field K of a field F is an algebraic extension of F
if every element in K is algebraic over F.

Definition 6.1.2 An extension field K of a field F is said to be a Galois extension

field if every irreducible polynomial over F which has a root in K factors into linear

factors in K. Also, K must be a separable extension.

Definition 6.1.3 A finite field extension of Q is known as algebraic number field.

In other words, a field that includes Q as a sub-field. The fact that an algebraic

number field is a finite-dimensional vector space over the field Q, however, pro-

vides a more thorough explanation. The dimension of this vector space refers to

its degree.

Definition 6.1.4 An algebraic integer is a number that is the root of some monic

polynomial with integer coefficients.

The algebraic integers of a given algebraic number field constitute a ring

within the field, just as the set of rational integers Z forms a ring in Q.

113
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Definition 6.1.5 The collection of algebraic integers of an algebraic number field

K is known as the ring of integers, and denoted by OK.

Definition 6.1.6 An ideal α is a subset of OK, which satisfies the following

properties:

1. if a, b ∈ α then so will a+ b and a.b.

2. for every c ∈ OK and a ∈ α, ca ∈ α.

Now that we have the necessary resources, we can introduce a new L-function.

Let K be an algebraic extension of degree m of rational field Q. Define (for

<(s) > 1)

ζK(s) :=

∑
α

1

N(α)s
,

where the summation is running over all the integral ideals α of K, and norm of

integral ideal α is denoted by N(α).

We demonstrate that Dedekind zeta-function can also be represented as an in-

finite product of the norms of prime ideals p, much like the Riemann zeta-function,

by using the fundamental theorem of ideal theory. For <(s) > 1, we have

ζK(s) =
∏
p⊆OK

1

1−
(

1
N(p)

)s
Remark 6.1.7 When K = Q, the Dedekind zeta-function becomes the Riemann

zeta-function.

One can easily observe that the function ζK(s) can also be written as:

ζK(s) =

∞∑
n=1

aK(n)

ns
,

where aK(n) denotes the number of integral ideals of K with norm m.

Lemma 6.1.8 ζK(s) has an analytic continuation to C\{1} with a simple pole

at s = 1.
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The coefficients aK plays a very vital role in number theory. It is shown (by

Chandrasekharan and Good [Ch-Gd]) that these coefficients are multiplicative

and satisfies the upper bound

aK(n) ≤ d(n)m,

where m is the degree of extension, i.e., m = [K : Q] and d(n) is the number of

divisors of n.

In 1949, Landau [Lan] showed that∑
n≤x

aK(n) = c′x+O
(
x1−

2
m+1

+ε
)
,

where c′ is the residue of ζK(s) at its simple pole at s = 1, which is further

improved to ∑
n≤x

aK(n) = c′x+O
(
x

23
73 log

315
146 x

)
,

for quadratic field by Huxley and Watt [Hx-Wa]. Some further improvement

is also available for cubic fields by Müller [Mü]. In 1993, W.G. Nowak [No]

established that

∑
n≤x

aK(n) = c′′x+


O
(
x1−

2
m
+ 8
m(5m+2) log

10
5m+2 x

)
if 3 ≤ m ≤ 6

O
(
x1−

2
m
+ 3

2m2 log
2
m x
)

if m ≥ 7

.

We also have some significant results (by Chandrasekharan and Narasimhan

[Ch-Nr] and by Chandrasekharan and Good [Ch-Gd]) of
∑
n≤x

aK(n)k for some

higher powers k, if K is the Galois extension of Q.

If h is the class number of K and [K : Q] = r1 + 2r2, where r1 is the number

of real conjugate fields and 2r2 is the number of complex conjugate fields, then



116 §6.1. Introduction

we can write ∑
n≤x

aK(n) = hλx+ E(x),

where

λ :=
2r1+r2πr2R

w|∆| 12
.

Here, w is the number of roots of unity in K; R is the regulator of K and ∆ is

the discriminant of K.

When [K : Q] = m ≥ 10, B. Paul and A. Sankaranarayanan proved that

E(x)� x1−
3

m+6
+ε,

where implied constants depend only on K and ε (see [Pa-Sa]).

Also, if K = Q(ζl), where l is some positive integer and [K : Q] = m ≥ 8, then,

E(x)� x1−
3

m+5
+ε,

where the implied constants depend only on K and ε (see [Pa-Sa]).

It is of great interest to study the L-functions related to primitive holomorphic

cusp forms. For many years, it has been a profound area in which many authors

have contributed.

Let L(s, f) be the L-function connected with the primitive holomorphic cusp

form f of weight w for the full modular group SL(2,Z) and λf (n) are the normal-

ized nth Fourier coefficients of Fourier expansion of f(z) at the cusp ∞. Then,

we can write

Lk(s, f) =

∞∑
n=1

λk,f (n)

ns
,

where

λk,f (n) =

∑
n=n1n2...nk

λf (n1)λf (n2) . . . λf (nk).

In 2012, Kanemitsu, Sankaranarayanan and Tanigawa [Ka-Sa-Tn] proved that
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for k ≥ 2, ∑
n≤x

λk,f (n)� x1−
3

2k+2
+ε,

where implied constant depends only on f and ε, which is further improved by

Lü in [Lü 3].

For such divisor problems connected to holomorphic cusp forms, see the work of

H.F. Liu [Li], [Li-Za] and Lü [Lü 3].

Let K3 be a non-normal cubic extension of a rational field Q. It is natural to

study the kth integral power of Dedekind zeta function, i.e.,

(ζK3(s))
k =

∞∑
n=1

ak,K3(n)

ns

for <(s) > 1, where ak,K3(n) =
∑

n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

In 2012, Lü [Lü 4] was able to refine the previously known results (by Fomenko

[Fo 3]) of mean square and third power of aK3(n) to∑
n≤x

aK3(n)2 = a1 log x+ a2 +O
(
x

23
31

+ε
)

where a1 and a2 are constants and∑
n≤x

aK3(n)3 = xP3(log x) +O
(
x

235
259

+ε
)

where P3(t) is a suitable polynomial in t of degree 4.

Question 6.1.9 Do we have such an asymptotic formula for higher mean values

of aK(n) for any non-normal extension K of Q and for the sum related to the

coefficients of the k-fold generating series of

∞∑
n=1

aK(n)

ns
?

Throughout this chapter, we restrict our attention to non-normal cubic ex-
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tension K3 of rational field Q. Let

ζK3(s) =

∞∑
n=1

aK3(n)

ns

is the Dedekind zeta-function which is absolutely convergent in <(s) > 1, con-

tinuable as a meromorphic function to the whole complex plane C with a pole at

s = 1.

We are interested in the asymptotic formula for the sum∑
n≤x

ak,K3(n),

for any integer k ≥ 1, where

ak,K3(n) =

∑
n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

Note that, a1,K3(n) = aK3(n).

Our primary purpose in this chapter is to investigate the above partial sum and

establish an asymptotic formula for the same, with a tightened error term. In

order to make our discussion somewhat self-sufficient, we will briefly review some

of the essential definitions and associated results that will be referenced frequently

to support our finding.

Definition 6.1.10 For each σ such that 0 ≤ σ ≤ 1, define

µ(σ) := inf{ξ : ζ(σ + it)� |t|ξ}.

As a function of σ, µ(σ) is continuous, non-increasing and convex downwards in

the sense that no arc of the curve y = µ(σ) has any point above its chord. Also,

µ(σ) is never negative. Therefore,

µ(σ) =

0 if σ > 1

1
2
− σ if σ < 0

.
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By continuity of the function µ(σ), we obtain

µ(1) = 0 and µ(0) =
1

2
.

Hypothesis 6.1.11 (Lindelöf hypothesis) For any ε > 0, we have

ζ

(
1

2
+ it

)
� tε.

This is equivalent to saying that

ζ (σ + it)� tε for all ε > 0 and σ ≥ 1

2
,

i.e.,

µ(σ) = 0 for σ ≥ 1

2
.

First, we make the following hypothesis:

Hypothesis 6.1.12 Let |t| ≥ 1 and ε > 0 be any small constant. Then, we have

ζ

(
1

2
+ it

)
� (|t|+ 1)µ+ε,

where µ = µ
(
1
2

)
.

Remark 6.1.13 Phragmén Lindelöf principle leads to

ζ(σ + it)� (|t|+ 1)2µ(1−σ)+ε ,

uniformly for
1

2
≤ σ ≤ 2 , |t| ≥ 1, under the assumption of our hypothesis 6.1.12.

Unconditionally, the hypothesis 6.1.12 is true with µ =
13

84
, see Bourgain [Bo].

For any integer k ≥ 2, writing,∑
n≤x

ak,K3(n) = Mk,K3(x) + Ek,K3(x),

where Mk,K3(x) is the main term which is of the form xPk−1(log x), where Pk−1(t)

is a polynomial in t of degree k − 1. We prove the following theorem.
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Theorem 6.1.14 Let ε > 0 (be any small constant) and define λ1 = 3ε, λ2 =

min
(
2µ, 1

4

)
, λ3 = min

(
µ+ 1

2
, 5
8

)
, λ4 = min

(
2µ+ 3

4
, 1
)
, λ5 = min

(
3µ+ 1, 3

2

)
and

λk = µ (k − 6) + k
3

for k ≥ 6.

Then we have for any integer k ≥ 1,

Ek,K3(x)� x
1− 1

2(1+λk)
+3kε

.

Conjecture 6.1.15 (Strong Artin Conjecture) Let G be the Galois group

of an extension K/F of number fields. Let ρ be an n-dimensional complex rep-

resentation of G. There exists an automorphic representation π of GL(n,AF) ,

such that the L-functions agree almost everywhere, i.e., except at a finite number

of places ν, L(s, ρν) = L(s, πν). Moreover, if ρ is irreducible, then π is cuspidal.

Lemma 6.1.16 For <(s) > 1, we have

ζK3(s) = ζ(s)L(s, f).

Proof.Proof of this lemma is strongly motivated by the fact that the strong Artin

conjecture is true for the group S3 and S3 is the Galois group of normal closure

(i.e. K6) of K3 over Q. Note that, K6 is a non abelian extension of degree 6.

For the sake of completeness we give the details (see [Lü 4]). There are three

conjugacy classes of S3, namely,

ρ1 : (1),

ρ2 : (123)(132) and

ρ3 : (12)(13)(23).

Hence, there are three simple characters: the principal character ϕ1; character

determined by the subgroup ρ2 ∪ ρ3, say ϕ2; and the 2-dimensional character ϕ3.

Let D be the discriminant of f(x) = x3 + ax2 + bx+ c (i.e., D = a2b2 + 18abc−
4b3 − 4a3c − 27c2) and K2 = Q(

√
D). The extensions K2/Q, K6/K2 and K6/K3

are abelian. The Dedekind zeta function satisfies the following relations:

ζK6(s) = Lϕ1Lϕ2Lϕ3 ,

ζK2(s) = Lϕ1Lϕ2 ,
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ζK3(s) = Lϕ1Lϕ3 ,

where

Lϕ1 = ζ(s),

Lϕ2 = L(s, ϕ2,K6/Q),

Lϕ3 = L(s, ϕ3,K6/Q).

Here L(s, ϕ2,K6/Q) and L(s, ϕ3,K6/Q) are Artin L-functions, (see pp. 226-227

of [Cas-Fr]).

Since, the strong Artin conjecture holds true in this situation, the function

L(s, ϕ3,K6/Q) also can be interpreted in another way (see [De 2]). Let

Φ : S3 −→ GL(2,C)

be the irreducible 2-dimensional representation. Then Φ gives a cuspidal repre-

sentation π of GL(2,AQ). Let

L(s, π) =

∞∑
n=1

a(n)

ns
.

In particular, if Φ is odd, i.e., D < 0 then

L(s, π) = L(s, f),

where f is a holomorphic cusp form of weight 1 for the congruence group Γ0(|D|),
i.e.,

f(z) =

∞∑
n=1

a(n)e2πinz.

Thus, we have Lϕ3 = L(s, f) and hence

ζK3(s) = ζ(s)L(s, f).

This proves the lemma.
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Here after we consider only those K3 for which ζK3(s) has such a lift stated in

Lemma 6.1.16.

Now, we have all the necessary tools required to prove the key theorem 6.1.14

of this chapter. The work presented in this chapter will soon appear in [Sr-Sa 4].

6.2 Proof of Theorem 6.1.14

Let k ≥ 1 be an integer. We start with the Perron’s formula (see section 1.5),

applying to (ζK3(s))
k with η = 1 + ε and 1 ≤ T ≤ x. Thus, we obtain∑

n≤x

ak,K3(n) =
1

2πi

∫ η+iT

η−iT
(ζK3(s))

kx
s

s
ds+O

(
x1+ε

T

)
.

Note that (ζK3(s))
k has a pole at s = 1 of order k so that by moving line of

integration to <(s) = 1
2
, we obtain∑

n≤x

ak,K3(n) = Res
s=1

{
(ζK3(s))

kx
s

s

}
+

1

2πi

{∫ 1
2
+iT

1
2
−iT

+

∫ η+iT

1
2
−iT

+

∫ 1
2
−iT

η−iT

}
(ζK3(s))

kx
s

s
ds

+O

(
x1+ε

T

)
=: xPk−1(log x) + J1(k) + J2(k) + J3(k) +O

(
x1+ε

T

)
,

where Pk−1(t) is a polynomial in t of degree k − 1.

Note that, the horizontal lines (J2(k) and J3(k)) contribute (for any fixed integer

k ≥ 1), using Lemma 6.1.16

J2(k) + J3(k)� max
1
2
≤σ≤η

xσT (2kµ+ 2k
3
)(1−σ)+εT−1

� max
1
2
≤σ≤η

(
x

T 2kµ+ 2k
3

)σ
T 2kµ+ 2k

3
−1+ε.

For any fixed k and µ(> 0),
(

x

T 2kµ+2k
3

)σ
is monotonic as a function of σ for

1
2
≤ σ ≤ η and hence the maximum is attained at the extremities of the interval[
1
2
, η
]
.

Thus,
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J2(k) + J3(k)� x1+ε

T
+ x

1
2
+εT

1
2
(2kµ+ 2k

3
)−1.

Vertical line contributions:

0. For k=1,

J1(1) :=
1

2πi

∫ 1
2
+iT

1
2
−iT

ζK3(s)
xs

s
ds.

Using Lemma 6.1.16, Lemma 1.9.6, Lemma 1.9.7 and Cauchy-Schwarz inequality,
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1
2 log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
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2 log T
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2 log T max

1≤U≤T

{
1

U
U

1
2
+εU
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1
2T 3ε.
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Note that, with k = 1,

J2(1) + J3(1)� x1+ε

T
+ x

1
2
+εT

1
2(2µ+ 2

3)−1

� x1+ε

T
+ x

1
2
+εT µ−

2
3

� x1+ε

T
+
x

1
2
+ε

T
1
2

(since µ < 1
6
)

� x1+ε

T
(as long as 10 ≤ T ≤ x).

Thus, J1(1) dominates over J2(1) + J3(1).

Now, ∑
n≤x

a1,K3(n) = xP0(log x) + E1,K3(x),

where E1,K3(x)� x1+ε

T
+ x

1
2 + x

1
2T 3ε , i.e.,

E1,K3(x)� x1+ε

T
+ x

1
2 + x

1
2T λ1 .

We choose T such that
x

T
∼ x

1
2 , i.e., T ∼ x

1
2 .

So finally, we have

E1,K3(x)� x
1− 1

2(1+λ1)
+3ε

.

1. For k=2,

J1(2) :=
1

2πi

∫ 1
2
+iT

1
2
−iT

(ζK3(s))
2x

s

s
ds.
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Using Lemma 6.1.16, hypothesis 6.1.12 and Lemma 1.9.6 and Lemma 1.9.7
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}
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{
1

U
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}
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1
2 + x

1
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Note that, by Lemma 1.9.6 and Lemma 1.9.7,

∫ U
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U
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2
+ it, f

)∣∣∣∣6 dt
) 1

2

� U
3
2
+ε.

Also, we have (using Lemmas 1.9.2, 1.9.3 and above observation)
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Thus, we have

J1(2)� x
1
2 + x

1
2
+4εTmin (2µ, 14).
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Note that, with k = 2,

1

2

(
2kµ+

2k

3

)
− 1 =

1

2

(
4µ+

4

3

)
− 1

= 2µ− 1

3
.

Case (i) If 0 ≤ µ < 1
8
, then min

(
2µ, 1

4

)
= 2µ, so that 2µ− 1

3
≤ 2µ is true.

Case (ii) If µ ≥ 1
8
, then min

(
2µ, 1

4

)
= 1

4
, then 2µ− 1

3
≤ 1

4
happens when

µ ≤ 1

8
+

1

6
=

7

24
,

which is anyway true, since we know µ ≤ 13
84

(≤ 7
24

) (by Bourgain [Bo]).

Thus,

J1(2)� x
1
2 + x

1
2
+4εTmin (2µ, 14)

holds good, which dominates over J2(2) + J3(2).

Now, ∑
n≤x

a2,K3(n) = xP1(log x) + E2,K3(x),

where E2,K3(x)� x1+ε

T
+ x

1
2 + x

1
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E2,K3(x)� x1+ε
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1
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+4εT λ2 .

We choose T such that
x

T
∼ x

1
2T λ2 , i.e., T 1+λ2 ∼ x

1
2 , i.e.,

T ∼ x
1

2(1+λ2) .

So finally, we have
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2(1+λ2)
+6ε

.

2. For k=3,

J1(3) :=
1

2πi

∫ 1
2
+iT

1
2
−iT

(ζK3(s))
3x

s

s
ds.
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Using Lemma 6.1.16, Cauchy-Schwarz Inequality and on the assumption of our

hypothesis 6.1.12,
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Also, we have (using Lemmas 1.9.2, 1.9.3 and above observation)
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Thus, we have

J1(3)� x
1
2 + x

1
2
+5εTmin(µ+ 1

2
, 5
8
).

Note that with k = 3,
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1

2

(
2kµ+

2k

3

)
− 1 =

1

2
(6µ+ 2)− 1

= 3µ.

Case (i) If 0 ≤ µ < 1
8
, then min

(
µ+ 1

2
, 5
8

)
= µ+ 1

2
.

We observe that 3µ ≤ µ+ 1
2

provided 2µ ≤ 1
2
, which is anyway true (by Bourgain

[Bo]).

Case (ii) If µ ≥ 1
8
, then min

(
µ+ 1

2
, 5
8

)
= 5

8
, then 3µ ≤ 5

8
holds only when

µ ≤ 5
24

,

which is anyway true, since we know µ ≤ 13
84

(
≤ 5

24

)
(by Bourgain [Bo]).

Thus,
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1
2 + x

1
2
+5εTmin(µ+ 1

2
, 5
8)

holds good, which dominates over J2(3) + J3(3).

Now, ∑
n≤x

a3,K3(n) = xP2(log x) + E3,K3(x),

where E3,K3(x)� x1+ε

T
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1
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1
2
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2
, 5
8) , i.e.,

E3,K3(x)� x1+ε

T
+ x

1
2 + x

1
2
+5εT λ3 .

We choose T such that
x

T
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1
2T λ3 , i.e., T 1+λ3 ∼ x

1
2 , i.e., T ∼ x

1
2(1+λ3) .

So finally, we have

E3,K3(x)� x
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2(1+λ3)
+9ε
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3. For k=4,

First we observe, (using Lemmas 1.9.2, 1.9.3 and Cauchy-Schwarz inequality)
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Now,

J1(4) :=
1

2πi

∫ 1
2
+iT

1
2
−iT

(ζK3(s))
4x

s

s
ds.

Using Lemma 6.1.16, Lemma 1.9.6, Lemma 1.9.7, Hölder’s inequality and on the

assumption of our hypothesis 6.1.12,
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(using above observation)
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Also, we have (using Lemma 1.9.2, Lemma 1.9.3, Lemma 1.9.6, Lemma 1.9.7 and

Hölder’s inequality)
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Thus, we have

J1(4)� x
1
2 + x

1
2
+5εTmin(2µ+ 3

4
,1).

Note that, with k = 4,
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1
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3
.

Case (i) If 0 ≤ µ < 1
8
, then min
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4
.

We observe that 4µ + 1
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4
provided 2µ ≤ 3
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3
= 5
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, i.e., µ ≤ 5
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,

which is anyway true (see Bourgain [Bo]).

Case (ii) If µ ≥ 1
8
, then min(2µ + 3

4
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3
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when µ ≤ 1
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,

which is anyway true, since we know µ ≤ 13
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(by Bourgain [Bo]).
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4. For k=5,
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ds.

Using Lemma 6.1.16, Hölder’s inequality and on the assumption of our hypothesis
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6.1.12,
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Thus, we have
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Observe that, with k = 5,
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.

Case (i) If 0 ≤ µ < 1
6
, then min(3µ+ 1, 3

2
) = 3µ+ 1.

We observe that 5µ + 2
3
≤ 3µ+ 1 provided 2µ ≤ 1

3
, i.e., µ ≤ 1
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which is any-

way true (see Bourgain [Bo]).
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5. For k ≥ 6,
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Using Lemma 6.1.16, Cauchy-Schwarz Inequality, Lemmas 1.9.2, 1.9.3, 1.9.6 and

1.9.7 we get

J1(k)� x
1
2 + x

1
2 log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣k ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣k dt
}

� x
1
2 + x

1
2
+ε

{
max

1≤U≤T

1

U
U (k−6)(µ+ε)U (k−3)( 1

3
+ε)

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣6 ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣3 dt
}

� x
1
2 + x

1
2
+2kε

 max
1≤U≤T

Uµ(k−6)+ 1
3
(k−3)−1

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12 dt
) 1

2

×

(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6
) 1

2

dt


� x

1
2 + x

1
2
+2kε

{
max

1≤U≤T
Uµ(k−6)+ 1

3
(k−3)−1U

1
2
(2+ε)U

1
2
(2+ε)

}

� x
1
2 + x

1
2
+3kεT µ(k−6)+

k
3 .

Define
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,

for k ≥ 6, then
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Here, we observe that for k ≥ 6,
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We choose T such that
x

T
∼ x

1
2T λk , i.e., T 1+λk ∼ x

1
2 , i.e,. T ∼ x

1
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So finally, we have
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.

This proves the theorem.

6.2.1 Remarks and Conjecture

Remark 6.2.1 From [Bo] of bourgain, we can very well take µ = 13
84

. We notice

that 1
7
< 13

84
< 1

6
. Thus, the theorem is unconditional with µ = 13

84
. However if

we assume the Lindelöf hypothesis for the Riemann zeta function ζ(s), namely

µ = 0, then from this theorem, we obtain the conditional estimates for the error

term Ek,K3(x) for each k = 2, 3, 4, . . . .

It should be pointed out that for k = 1, the estimate in Theorem 6.1.14 is weaker

than the result of Nowak [No] with m = 3.

Conjecture 6.2.2 For any integer k ≥ 2 and any small positive constant ε, we

have

Ek,K3(x)�ε x
1
2
+c(k)ε,

where c(k) is a positive constant depending only on k.

Remark 6.2.3 If we assume the Riemann hypothesis for both the L-functions

ζ(s) and L(s, f) (in turn the growth estimates ζ(1
2

+ it) � (|t| + 10)ε, L(1
2

+

it, f) �f (|t| + 10)ε), then the proof of our theorem suggests that we can even

get

Ek,K3(x)�ε x
1
2
+c(k)ε,

for any fixed integer k ≥ 2 and for any small positive constant ε, where the

constant c(k) depending only on k. However, this seems to be far out of reach

with the current knowledge of the L-function theory and hence we proposed the

above conjecture.
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Conclusion

In this chapter, we will wrap up by briefly addressing the topics that can be

researched in the same spirit as what we tried to study in our thesis.

We have investigated the discrete mean square of the nth normalized Fourier

coefficients of symmetric square L-function over certain sequence of positive in-

tegers and establish an asymptotic formula for the same, in our initial work (cf.

Chapter 2). It is apparent from our argument of the proof that we have only ex-

ploited the previously mentioned known analytical properties of concerned func-

tions. With some additional information, one can even extend the result in a

relatively preponderant region. In this regard we have proposed a conjecture

2.3.1.

In our subsequent work (cf. Chapter 3), we have established an asymptotic

formula for the third and fourth power moments of the nth normalized Fourier

coefficients of symmetric square L-functions over r4(n). At the end of this chapter

an analogous Conjecture 3.6.1 has been proposed, with the same idea in mind.

We have also investigated the possibility of the dimension increasing in Chap-

ter 4 (cf. Chapter 4). Earlier, we were only concerned with r4(n). With some

detailed in-depth analysis, we have developed an asymptotic formula that accu-

rately captures the average behavior of the Fourier coefficients of the cusp form

in the six-dimensional space under various circumstances.

In the very next chapter (cf. Chapter 5), we have generalized our previous

work that we have done in chapter 4. The recent, well-known work of Newton

and Thorne [Ne-Th 1, Ne-Th 2] made it possible. We have also employed better

average or individual sub convexity bounds for the associated L-functions which

lead us to the improvement of our work 4.1.2.

In our last chapter (cf. Chapter 6), we have moved our attention to a special

class of L-function, popularly known as Dedekind zeta-function and worked on

a divisor problem pertaining to Dedekind zeta-function. We have demonstrated
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an asymptotic formula for the same, with a tightened error term. Eventually, we

have demonstrated that if we assume the Riemann hypothesis for both the L-

functions ζ(s) and L(s, f), then we can even settle the problem in question with

much better error terms. With the current knowledge of the L-function theory,

this appears to be very hard, which is why we put forth the conjecture 6.2.2.
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[La-Lü] Y. K. Lau and G. Lü, Sums of Fourier coefficients of cusp forms, Q. J.

Math. 62(3) (2011), 687-716. ↑49
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[Lü 3] G. Lü, On general divisor problems involving Hecke eigenvalues. Acta

Math. Hungar., 135(1-2) (2012), 148-159. ↑117
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(2021), 117-152. ↑viii, ↑49, ↑62, ↑137

[No] W.G. Nowak, On the distribution of integer ideals in algebraic number-

fields. Math. Nachr., 161 (1993), pp.59-74. ↑115, ↑135

[Pa-Sa] B. Paul, and A. Sankaranarayanan, On the error term and zeros of

the Dedekind zeta function. J. Number Theory, 215 (2020), pp.98-119.

↑116

[Rad] H. Rademacher, Topics in analytic number theory, Springer Science &

Business Media 169 (2012). ↑38

[Ram-Sa] K. Ramachandra and A. Sankaranarayanan, Vinogradov’s Three

Primes Theorem., Math. Student 66 (1997), 1-4 and 27-72. ↑24

[Ran] R. A. Rankin, Contributions to the theory of Ramanujan’s function

τ(n) and similar arithmetical functions II. The order of the Fourier

coefficients of the integral modular forms, Proc. Cambridge Philos. Soc.

35 (1939), 357-372. ↑47

[Ru-Sn] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random

matrix theory, Duke Math. J. 81(2) (1996), 269-322. ↑41

[Sa] A. Sankaranarayanan, Zeros of quadratic zeta-functions on the critical

line, Acta Arith. 69 (1995), 21-38. ↑41

[Sa-Si-Ss] A. Sankaranarayanan, S. K. Singh and K. Srinivas, Discrete mean

square estimates for coefficients of symmetric power L-functions, Acta

Arith. 190 (2019), 193-208. ↑50

[Se 1] A. Selberg, Bemerkungen über eine Dirichletsche, die mit der Theorie

der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940),

47-50. ↑47

[Se 2] A. Selberg, On the estimation of Fourier coefficients of modular forms,

Proc. Symp. Pure Math. 8 (1965), 1-5. ↑18

[Sh 1] F. Shahidi, Third symmetric power L-functions for GL(2), Compos.

Math. 70(3) (1989), 245-273. ↑41



144 Bibliography

[Sh 2] F. Shahidi, On certain L-functions, Amer. J. Math. 103(3) (1981),

297-355. ↑41

[Sr-Sa 1] A. Sharma and A. Sankaranarayanan, Discrete mean square of the coef-

ficients of symmetric square L-functions on certain sequence of positive

numbers, Res. Number Theory 8(1) (2022), 1-13. ↑52

[Sr-Sa 2] A. Sharma and A. Sankaranarayanan, Average behavior of the Fourier

coefficients of symmetric square L-function over some sequence of in-

tegers, Integers 22 (2022). ↑82

[Sr-Sa 3] A. Sharma and A. Sankaranarayanan, Higher moments of the Fourier

coefficients of symmetric square L-functions on certain sequence, Rend.

Circ. Mat. Palermo (2) (2022), 1-18. ↑63

[Sr-Sa 4] A. Sharma and A. Sankaranarayanan, On a divisor problem related to

a certain Dedekind zeta-function, (accepted in J. Ramanujan Math.

Soc. on 27-09-2022). ↑122

[Sr-Sa 5] A. Sharma and A. Sankaranarayanan, On the average behavior of the

Fourier coefficients of jth symmetric power L-function over a certain

sequences of positive integers, (accepted in Czechoslovak Math. J. on

02-01-2023). ↑98

[Su] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. Lond.

Math. Soc. (3) 3(1) (1975), 79-98. ↑40

[Ti-Ht] E. C. Titchmarsh and D. R. Heath-Brown, The Theory of the Riemann

Zeta-function, Oxford University Press, New York, 1986. ↑27, ↑38, ↑41

[Wu] J. Wu, Power sums of Hecke eigenvalues and applications, Acta Arith.

137 (2009), 333-344. ↑47

[Xu] C. R. Xu, General asymptotic formula of Fourier coefficients of cusp

forms over sum of two squares, J. Number Theory 236 (2022), 214-229.

↑49

[Zh] S. Zhai, Average behavior of Fourier coefficients of cusp forms over sum

of two squares, J. Number Theory 133(11) (2013), 3862-3876. ↑ii, ↑49




































	Synopsis
	Remarks on Notation
	Introduction
	A Flavor of Number Theory
	Elementary definitions
	Number-theoretic functions

	Characters of finite abelian groups
	Modular forms
	The Hecke operators Tn

	Representations of Integers as Sum of Squares
	Sum of Four Squares
	Sum of Six Squares

	A Discussion on Perron's Formula
	Derivation of Perron's formula
	Truncated Perron's formula
	Perron’s formula
	Estimation of an interesting asymptotic formula

	Properties of various L-functions
	Generation of arithmetical functions

	Dirichlet L-functions
	Character modulo 4
	Symmetric power L-functions

	Functional equations pertaining to some L-functions
	Analytic continuation
	Functional equations

	Some prominent lemmas

	Discrete mean square of the coefficients of the symmetric square L-function on certain sequence of positive numbers
	Introduction
	Proof of Lemma 2.1.4
	Proof of Theorem 2.1.2
	Concluding Remarks


	Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
	Introduction
	Proof of Lemma 3.1.4
	Proof of Theorem 3.1.2
	Proof of Lemma 3.3.1
	Proof of Theorem 3.1.3
	Concluding Remarks

	Average behavior of the Fourier coefficients of the symmetric square L-function over some sequence of integers
	Introduction
	Proof of Lemma 4.1.4
	Proof of Lemma 4.1.5
	Proof of Theorem 4.1.2

	On the average behavior of the Fourier coefficients of jth symmetric power L-function over a certain sequences of positive integers
	Introduction
	Proof of Lemma 5.1.2
	Proof of Lemma 5.1.3
	Proof of Theorem 5.1.1
	Concluding Remarks


	On a divisor problem related to a certain Dedekind zeta-function
	Introduction
	Proof of Theorem 6.1.14
	Remarks and Conjecture


	Conclusion
	Bibliography
	Index

