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ABSTRACT

This thesis consists of six chapters. For the convenience of the reader, we are now

providing a quick summary of the work completed in each chapter.

e Chapter 1: In this chapter, we cover some elementary definitions and
results of number theory and we give the necessary prerequisites which are
important in order to understand the statement of the results and their

proofs.

e Chapter 2: In this chapter, first we recall the recent work done by var-
ious authors which are used in our discussion and then we consider the
behavior of discrete mean square of the n'* normalized Fourier coefficients

of symmetric square L-function over certain sequence of positive integers.

e Chapter 3: In this chapter, we consider the higher discrete power moments
of the n*® normalized Fourier coefficients of symmetric square L-functions

on the same sequence of positive numbers.

e Chapter 4: In this chapter, we study the average behavior of n'" normal-
ized Fourier coefficients of symmetric square L-function (i.e. L(s,sym?f))

on a higher dimension.

e Chapter 5: In this chapter, we improve as well as generalize the result of
previous chapter. We investigate the average behavior of the n'® normalized
Fourier coefficients of the j*' symmetric power L-function attached to a
primitive holomorphic cusp form of weight k for the full modular group
SL(2,7Z) over some sequence of positive integers and give a tightened error

term.

e Chapter 6: In this chapter, we consider the integral power sums of coef-

ficients of the Dedekind zeta-function of a non-normal cubic extension Ks
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of rational field Q and prove an asymptotic formula for the partial sum
of coefficients of the k' integral power of Dedekind zeta function for any

integer k£ > 1.







SYNOPSIS

1 INTRODUCTION

The word “modular form” has a fairly broad definition. Although they play
key roles in number theory’s numerous branches and are most naturally found
there, these objects also have a significant impact on other areas of mathematics.
For instance, modular forms might evoke varied ideas like Fermat’s Last The-
orem, the Riemann Hypothesis, the Langlands programme, and applications of
arithmetic or applications to string theory using L-functions and elliptic curves.
Obviously, this is just a small selection, the roles that modular forms play; there
are a plethora of other factors that keep research on modular forms quite current.
The first half of the nineteenth century, during the time of Jacobi and Eisenstein,
is when the definition of modular forms originally appeared. Since then, numer-
ous generalisations have been identified and researched, and when combined with
traditional modular forms, they help to explain many of the impressions that
modular forms have left behind.

However, the history of modular forms starts with elliptic functions, which are
doubly periodic meromorphic complex functions and thus a more distant relative
of Jacobi’s #-functions. Elliptic functions, which date back to Gauss and were
explored by Weierstrass, naturally led to the study of elliptic curves, which are
closely related to modular forms. When it comes to modular forms for the full
modular group SL(2,7Z), a cusp form can be identified by the disappearance of
the constant coefficient ¢y in the Fourier series expansion.

The study of Dirichlet series with the form Z% has a long history and dates

n=1
to the nineteenth century. This interest was primarily sparked by the prominent

place that these series take in analytic number theory. Among others, Hadamard,
Landau, Hardy, Riesz, and Bohr created the general theory of Dirichlet series.

A natural object to study in light of connections between the modular form
and Dirichlet series formed with the same coefficients is the Fourier coefficients
or Hecke eigenvalues.

Every primitive holomorphic cusp form f(z) of weight k for the full modular
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group SL(2,7Z) has a Fourier expansion at the cusp oo of the type

)= ) AT,

where 3(z) > 0. The coefficients Af(n) satisfy the Deligne’s bound, i.e.,
Ar(n)] < d(n) <%,

where d(n) is the divisor function and ¢ denotes an arbitrarily small positive
constant.

Understanding the behavior of Hecke eigenvalues Af(n) is a key issue in the
study of classical modular forms. Many authors have contributed in the divisor
problems pertaining to these normalized n'® Fourier coefficients of Fourier expan-
sion of f(z) at the cusp oo, for instance see [Fo 2, Zh]. Each cusp form f has a

symmetric square L-function attached to it being defined as

L(s, sym?f ZASymW
SN EONEN

where o and 8 are complex numbers, given by P. Deligne [De 1].

Our aim in this thesis is to investigate the average behavior of the Fourier
coefficients associated to symmetric square L-functions, symmetric j** power L-
functions and Dedekind zeta-function under various interesting situations.

We will now explain a brief structure of our proposed thesis. There are six
chapters in the thesis. In the first chapter, we will recall all the definitions and
lemmas that will be of great essence to the soul of our thesis. Mainly, we will
emphasize on arithmetic functions, characters of finite Abelian groups, modu-
lar and cusp forms, Perron’s formula, Dirichlet L-functions, Dirichlet series and
their convergence, representations of integers as sum of squares and properties
of various L-functions such as symmetric j** power L-functions, Dedekind zeta-
function etc. We have also stated some elementary lemmas related to the bounds

of Riemann zeta function and various L-functions that we are going to use fre-
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quently in the proof of our main theorems. Along with the analytic continuations
of some L-functions, functional equations also have been discussed for the better

understanding of the nature of these L-functions.

Second chapter deals with the discrete mean square of the n'® normalized
Fourier coefficients of symmetric square L-function (i.e., L(s,sym?f)) over certain
sequence of positive integers. To be more precise, we will see the average behavior
of these Hecke eigenvalues over r4(n), where r4(n) is defined as the number of
representations on n as sum of four squares. We will establish an asymptotic
formula for the same. First, we prove the following Lemma, which is related to

the decomposition of certain L-functions. From [Ha-Wr, pp. 415], we can write

ry(n) = SZ”)ZO(d)d

dln

=: 8r(n),
where X is a character modulo 4, given by

S Xo(p*) ifp>2
Xo(p") = ,
3 ifp=2

and g is the principal character modulo 4.

Lemma 0.0.1 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,7Z), and let Ayym2s(n) be the n'™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

- A2 (n)r(n
B = Y )
n=1

for R(s) > 2, then
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where

Go(s) :=C(s)L(s — 1,X0)L(s, sym®f)L(s — 1, sym*f @ Xo)
L(s,sym*f)L(s — 1, sym* f @ Xo),

and Xo s a character modulo 4.
Here, Hs(s) is a Dirichlet series which converges uniformly, and absolutely in the

half plane R(s) > 2, and Ho(s) # 0 on N(s) = 2.

2

With the help of above stated lemma, we will prove the key theorem of this

chapter, i.e.,

Theorem 0.0.2 For x > x, (sufficiently large), we have

E X2 (@° + 07+ + d%) = c2” + O (:E%JrE) :
a2+b2+c2+d2§a:

(a,b,c,d)eZ?

where co 18 an effective constant defined as
co = (—2)C(2)L(2, sym? f)L(1, sym? f @ Xo)L(2, sym* )L (1, sym* f @ Xo) H2(2),

and Hy(2) # 0, and Xy is a character modulo 4.

Remark 0.0.3 We observe from Lemma 0.0.1 that
FQ(S) == GQ(S)HQ(S),

where Ga(s) is a product of certain L-functions and Hs(s) has an Euler product,
which is uniformly, and absolutely convergent in o > %+25 for any small positive
constant . We also know good amount of analytic properties of G5(s), and
each factor of Gy(s) satisfies a functional equation of the Riemann zeta type. It
will be clear from our demonstration of proof that we have only employed the
previously mentioned known analytical features of Hy(s). If one can find out
more information of Hs(s) in the region R(s) > (1 — 10¢) then it may even lead

to the following conjecture.




Conjecture 0.0.4 For sufficiently large x, we have

E Mo (a® + 02+ A+ dP) = Ea? + G + O(a?),

sym? f

n:a2+b2+02+d2 <z
(a,b,c,d)eZ*

where ¢, ¢ are effective constants, and 6 is some positive constant satisfying
0<6b<1.

The higher discrete power moments is covered in the third chapter. More

precisely, we study the behavior of the following sums:

E Adme (@ + 02 4+ + dP)
a2+b2+02+d2§m
(a,b,c,d)eZ?

and

E Aggmzp(a® + 0% + & + dP).
a2+b2+02+d2§z
(a,b,c,d)eZ?

and establish the Theorem 0.0.5 and Theorem 0.0.6.

Theorem 0.0.5 Forx > xg (sufficiently large), and e > 0 be any small constant,

we have

g Ay (0% + 2 4+ & + d?) = 32”4+ O (x%)
a?+b2+c2+d? <
(a,b,c,d)eZ?
where c3 1s an effective constant defined as
cs = (—2)C(2) LA (2, sym* f)L*(1, sym® f @ Xo)L(2, sym* f)L(1, sym* f @ Xo)
x L(2, sym* f @ sym*f)L(1, sym*f @ sym* f @ Xo)H3(2),

Hs(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane R(s) > 2, and Hj(s) # 0 on R(s) = 2, and Xy is a character modulo 4.

Theorem 0.0.6 Forx > zy (sufficiently large), and € > 0 be any small constant,
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we have

E N oi(a® b+ dP) = eyt logr + O (z%“) ,

sym? f

a2+b2+c2+d2 <z
(a,b,c,d)eZ*

where ¢4 18 an effective constant defined as

Cy = C‘2(2)L3(2, smef)L?’(l, sym* f ® 550)[13(2, sym4f)
X L3(1, sym* f & 5{0)L2(2, sym’f ® sym4f)L2(1, sym>f @ sym* f @ Xo)
x L(2, sym*f @ sym* f)L(1, sym* f @ sym* f @ Xo)Ha(2).

Hy(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane R(s) > 2, and Hy(s) # 0 on R(s) = 2, and Xy is a character modulo 4.

In order to prove the above stated theorems, we will prove some lemmas re-
lated to the decomposition of corresponding L-functions but here it is much more

complicated than the one we stated in chapter 2.

Lemma 0.0.7 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z) and let Agym2(n) be the n'™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

= A2 (n)r(n
By = Y S
n=1

for R(s) > 2, then
F3(s) = G5(s)Hs(s),

where

Gs(s) :=C(s)L(s — 1,%0)L*(s, sym*f)L*(s — 1, sym* f @ Xo)L(s, sym*f)
L(s — 1, sym® f @ Xo)L(s, sym® f @ sym* f)L(s — 1, sym® f @ sym* f @ Xo),

and Xo s a character modulo 4.
Here, Hs(s) is a Dirichlet series which converges uniformly and absolutely in the
half plane R(s) > 3 and Hs(s) # 0 on R(s) = 2.
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Lemma 0.0.8 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z) and let Ngym2s(n) be the n'™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

= M (n)r(n
F4(S) :Z sym fés) ( )
n=1

for R(s) > 2, then
Fy(s) = Ga(s)Ha(s),

where

Gu(s) :=C*(s)L*(s — 1,X0)L*(s, sym® f)L?(s — 1, sym*f @ Xo)L*(s, sym* f)

X L3(s — 1, sym*f @ S{O)Lz(s, sym*f ® 3ym4f)L2(s — 1, sym’f @ sym* f @ Xo)

x L(s, sym" f @ sym® f)L(s — 1, sym* f @ sym* f @ Xo),

and Xo s a character modulo 4.

Here, Hy(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane R(s) > 3 and Hy(s) # 0 on R(s) = 2.

From the proof of our theorems, we understand that there might be a possi-
bility that the integration line could be shifted to the left of the line R(s) = 1.
This prompts us to suggest:

Conjecture 0.0.9 For sufficiently large = and £ > 0 be any small constant, we

have

55(0)22 + E4(0)x + O(am O+

: : /\gmef(a2+b2+C2+d2) =
¢3(0)22log x + ¢4(0)z log z + O(xr2(O)+€)

n:a2+b2+c2+d2§z
(a,b,c,d)eZ?
where ¢3(0), ¢c4(0), ¢3(0),¢4(0) are effective constants and p1(0), po(f) are some

positive constants satisfying 0 < py(6), u2(0) < 1.

In the fourth chapter, we look into the possibility of enhancing the dimension
from 4 to 6. We shall observe the average behavior of the symmetric square

L-function. To be more specific, we investigate the nature of the following sum:

ifo=3
=4
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E )\zymgf(af+a§+a§+ai+a§+a§).

a%+a%+a§+ai+a%+a%§r
6
(alaa2aa/3aa47a5aa6)ez

for sufficiently large x. More specifically, we demonstrate the following.

Theorem 0.0.10 For sufficiently large x, and any € > 0, we have
E A2 (03 4 a3 4 a3 + af + a3 + ag) = ¢,z + O (:c%+5> :
a%+a%+a§+ai+ag+a%§m

6
(a1,a2,03,04,05,06)EZL

Here, ¢, is an effective constant defined as

€2 = o LB XL sy )L, sy f @ X)L, sym f)L(3, sym* F © x)9.(3),

and x is the non-principal Dirichlet character modulo 4. Here, $,(s) is a Dirichlet

series which converges uniformly and absolutely in the half plane R(s) > %, and

$,(s) #0 on R(s) = 3.

The key idea is that the sum in question is being related to the sum involving
r¢(n). The main difference here from our earlier result 0.0.2 related to sum
involving 74(n) is that r¢(n) is not multiplicative. However, we will observe that
r¢(n) can be split into the sum of two multiplicative functions. Then the sum
in question being split into two sums involving the corresponding multiplicative
functions, and being dealt with independently and then we have to glue them to
obtain our result.

The generalization and improvement of the result obtained in chapter four is
discussed in chapter five. Very recently, Newton and Thorne proved the auto-
morphy of the symmetric power lifting sym”(f) for every n > 1, where f is a
cuspidal Hecke eigenform of level 1 (for instance, see [Ne-Th 1, Ne-Th 2]). Due
to these ground breaking results, we were enable to obtain the generalization. We
have also incorporated better average or individual sub convexity bounds for the

concerned L-functions. In this regard, we have proved the following theorem.

Theorem 0.0.11 Let j > 2 be any fized integer. For sufficiently large x, and
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e > 0 any small constant, we have

___6__
E Ny (4 a3+ 03+ a3 +ad+ad) = () +0 (a” Pt

a%+a%+a§+ai+a§+a%§m
6
(al , a2 aa3aa47a57a6)€Z

where c(7) is an effective constant defined as

J
) = 5 DB O] [E sym? 1)L, sy § )5 (3)

n=1
and x is the non-principal Dirichlet character modulo 4.
The key decomposition is given by the following lemmas. From [Ha-Wr, pp. 415],

) =16 (@) 1) ()

d|n dln

we can write

=:16l(n) — 4v(n),
where Y is the non-principal Dirichlet character modulo 4.

Lemma 0.0.12 Let f be a normalized primitive holomorphic cusp form of weight

k for SL(2,Z), and let Agymif(n) be the n™ normalized Fourier coefficient of the

Gt symmetric power L-function associated to f. If

oo

o 3 )
for R(s) > 3, then

where

G,(s) :==C((s —2)L(s, X)HL(S — 2, sym*" f)L(s, sym®™ f @ x),

n=1




and x s the non-principal character modulo 4.
Here, H;(s) is a Dirichlet series which converges uniformly, and absolutely in the
half plane R(s) > 2, and H;(s) #0 on R(s) = 3.

27

Lemma 0.0.13 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z), and let Agymif(n) be the n'™ normalized Fourier coefficient of the

Gt symmetric power L-function associated to f. If

oo

_ A2 (n)v(n
F’](S):Z symﬂf( ) ( )7

ns
n=1

for R(s) > 3, then

where

G,(s) :=C(s)L(s — 2, X)HL(S, sym* fYL(s — 2, sym*" f @ x),

n=1

and x is the non-principal character modulo 4.
Here ﬁj(s) 15 a Dirichlet series which converges uniformly, and absolutely in the

half plane R(s) > 2, and ﬁj(s) #0 on R(s) = 3.

27

In our last chapter, we investigate a divisor problem related to a certain
Dedekind zeta-function. It reveals the nature of integral power sums of coefficients
of the Dedekind zeta-function of a non-normal cubic extension K3 of rational field

Q. The k' integral power of Dedekind zeta function is defined as

(Crs(8))F = Z ak,igs(n)

n=1

for R(s) > 1, where apx,(n) = Z ag,(n1)ax,(n2) . . . ax, (ng).
n=ning...ng

For any integer k > 2, writing,

Zak,Ks (n) = Myx, () + Epx,(2),

n<zx
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where Mj, k, () is the main term which is of the form zP;_;(logx), where Py_;(¢)

is a polynomial in ¢ of degree kK — 1. We have proved the following theorem.

Theorem 0.0.14 Let € > 0 (be any small constant) and define A\; = 3¢, Ay =
min (Z,u, i), A3 = min (u + %, g), A4 = min (2u + %, 1), A5 = min (3,u +1, %) and
i =p(k—6)+ % for k> 6.

Then we have for any integer k > 1,

N S
Ek,K3<fL’> <<J,’1 2(1+>\k)+3k’8.

At the end of this chapter, we took the liberty to propose a conjecture that
heavily depends on the famous Lindel6f hypothesis, which is yet to be settled.

Conjecture 0.0.15 For any integer £ > 2 and any small positive constant e, we
have

Ek,]Kg, ([L’) <. x%—i—c(k)s?

where c(k) is a positive constant depending only on k.
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Remarks on Notation

The letter p with or without indices will be reserved for prime numbers,

unless otherwise explicitly stated.

The letter C will denote the complex field, R the field of real numbers, Q
the field of rationals, Z the ring of all rational integers and N the set of

positive integers.
The cardinality of a set A will be denoted by #A.
For a function f, we denote its image by Im(f).

We will denote a complex variable by s = o +it, 0 = R(s) and t = (s)
being the real and complex part of s, respectively, where i is the fixed square

root of —1.
0 and ¢ always denote sufficiently small fixed positive constants.

The parameters T and x are sufficiently large real numbers and k£ > 1 is an

integer, except when explicitly stated.

Let k > 0 be given. For each integer n, the congruence class or equivalence

class of n modulo k is defined as

n={z:x=n (modk)}

We will denote the number of divisors of a positive integer n by d(n), i.e.,

dn) =) 1

kl=n

We will denote the Riemann-zeta function by ((s) (as usual), which is

defined as

)=
n=1
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for R(s) > 1. Also (for R(s) > 1), we can write ((s) as Euler product,

namely,

where the product runs over all primes p.

Big O. Let a be any real number including the possibilities +oo. Let f(x)
and g(z) be two functions defined in some neighborhood of a and suppose
that g(x) > 0. We say that f(x) is "big O of g(x)” and we write

f(x) = O(g(x)) or flz) <g(x),

if there exists a constant K > 0 and a neighborhood N (a) of a such that

|f(@)] < Kg(x)

for all x in N(a). In particular, the notation

means that f(z) is bounded in absolute value in a suitable neighborhood

of a.

Some care must be exercised in its use and interpretation. For example, we
frequently encounter a function f(s) of the complex variable s = o 4 it and

write
f(s)=0(g(t)) ([t — o0).

The constant K whose existence is implied by the O is dependent upon
o, and the dependence may be such that K = K(o) is unbounded for o
in some neighborhood. Sometimes the dependence of K on the auxiliary
variables or parameters is explicitly stated and sometimes it is implied by

the context.

To allow for greater flexibility and to use the O symbol as effectively as

possible, it is convenient to define O(g(x)) standing by itself. By O(g(z)),
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we shall mean the class of functions C'(g) such that f € C(g) if and only if

e f(z)> g(x) will mean g(z) < f(z).

e Little o. Suppose that f(z) and g(z) are defined in a neighborhood of a,
and suppose that g(z) > 0. Then we say that f(x) is "little o of g(x))” and

we write

f(x) = o(g(x))
! f(a)

i =

e Asymptotic equality. If f and g are two functions defined in a neighbor-

hood of a, we say that f is asymptotic to g and write
f~ug,

if
f(z)

lim —= =1.
a=a g(x)

The definition applies to both functions of real or complex variables. The

relation is evidently symmetric and transitive.
e We will use the notation f(s) =< g(z) to mean g(z) < f(z) < g(x).

e (Unless stated otherwise) all our constants will be effective. In other words,

they can be calculated explicitly.
e The constants v, are called the Stieltjes constants and can be defined by

the limit
L ™ (log k)" (logm)"*!
%-—ALH;OKZ el

k=1

Yo = 7 is called Euler-Mascheroni constant or simply Euler’s constant.







Introduction

Numerous researchers from various scientific fields have studied the L-functions
extensively since it was first discovered. It will be impossible to recall everything
that has been written in mathematics literature due to the vast implications of
such discoveries. Although some of them will be covered in more detail later, we
will only briefly touch on the main points and findings that are pertinent to our

discussion in the latter chapters.

The study of L-functions is one of the central themes in number theory and
the first and perhaps the most well known example is the Riemann zeta-function.
These L-functions typically store fundamental arithmetic information, such as the
distribution of prime numbers, that is not readily apparent from their descrip-
tions and typically necessitates understanding of their poles, zeroes, functional

equations, and other analytic features.

In this thesis, we study problems related to the average behavior of the Fourier
coefficients of cusp forms in various situations and also a divisor problem related
to a certain Dedekind zeta-function. There are six chapters in the thesis. The
first chapter is devoted to a comprehensive study of the topics in number theory
that are pertinent to our goal and, hopefully, reflect our efforts to make this thesis

as self-sufficient as feasible.

In Chapter 1, some elementary definitions and concepts of number theory
like arithmetic functions, characters of finite Abelian groups, modular and cusp
forms, Perron’s formula, Dirichlet L-functions, representations of integers as sum
of Squares and properties of various L-functions etc. that are relevant for our
purpose have been discussed. We have also stated some elementary lemmas re-
lated to the Riemann zeta-function and various L-functions that we are going to

use frequently in the proof of our theorems.

In Chapter 2, we are concerned with the discrete mean square of the n'®

5
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normalized Fourier coefficients of symmetric square L-function (i.e. L(s,sym?f))
over certain sequence of positive integers and establish an asymptotic formula for

the same.

In Chapter 3, we consider the higher discrete power moments of the Fourier
coefficients of symmetric square L-functions on the same sequence of positive

numbers.

We shall look into the prospect of the dimension being extended in chapter
4. We will see the average behavior of n'® normalized Fourier coefficients of

symmetric square L-function (i.e. L(s,sym?f)) over r¢(n) (cf. section 1.4.2).

In Chapter 5, we improve as well as generalize the result of previous chapter,
i.e., we investigate the average behavior of the n'" normalized Fourier coefficients
of the j*" symmetric power L-function attached to a primitive holomorphic cusp
form of weight &k for the full modular group SL(2,Z) over some sequence of

positive integers.

In our last Chapter (cf. chapter 6), we discuss the concept of algebraic number
fields and introduce the tools needed to define a special class of L-function,
namely, the Dedekind zeta-function and then we consider the integral power sums
of coefficients of the Dedekind zeta-function of a non-normal cubic extension Kj
of rational field Q given by irreducible polynomial f(z) = z* + ax? + bz + ¢ and
prove asymptotic formula for the sum Zak& (n) for any integer k > 1, where

n<x
ak7K3 (n) = E aK, (nl)aK3 (ng) . ARy (nk)
n=ning..ng

The synopsis provides a more thorough introduction to the thesis, along with

explicit definitions, findings, and statements of theorems. (pp. i).
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Chapter 1

A Flavor of Number Theory

We briefly examine a few number theory fundamentals in this chapter that are
important to our goal. In order to make it as self-sufficient as feasible, we try to
introduce nearly every concept that we will utilise in the next chapters.

We go into great detail regarding the arithmetic function, the relations be-
tween the arithmetic function and the Dirichlet series, and the connections be-
tween the Dirichlet series and cusp forms. In general instance, the Perron’s
formula and its variations have been explored. We also work with integer rep-
resentations expressed as the sum of squares. We also discuss whether or not
all positive integers may be written as sums of squares. In general, we provide
an affirmative response to this query. We also spend some time discussing the
functional equations related to various L-functions, including the symmetric ;"
power L-functions. We will express a few key lemmas at the conclusion that we

will refer frequently in the next chapters.

1.1 Elementary definitions

The concept of arithmetic functions is covered in this section along with a few

examples and characteristics.

1.1.1 Number-theoretic functions

Definition 1.1.1 A complex or real valued function defined on the set of positive

integers is known as arithmetical function or number-theoretic function.

9
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Let 2 = {f : N — C} denote the set of number-theoretic function. For f, g € 2,

we define the (multiplicative) Dirichlet convolution

(Fro)m) = > 1 (%),

d|n

20 forms a ring, which is commutative, together with the convolution and point-
wise addition. The null function serves as the identity element with respect to

addition, and the identity element with respect to the Dirichlet multiplication is

1 ifn=1
e(n) == .
0 otherwise

Definition 1.1.2 We say that a number-theoretic function f(# 0) is multiplica-

tive if it satisfies
f(nm) = f(n)f(m),

for all co-prime natural numbers n and m. We say that f is completely multi-
plicative if the relation f(nm) = f(n)f(m) holds for all n,m € N.

Evidently, the values of multiplicative functions on prime powers determine them

entirely.

Definition 1.1.3 The Euler totient function ¢(n) is an arithmetic function given

by
p(n) == E 1
1<k<n
(kn)=1
for all n € N.

Definition 1.1.4 The Mdobius function pu(n) is an arithmetic function given by

(—=1)* if n = pips...p where p;’s are distinct primes
pu(n) =<1 ifn=1

0 if p? | n for some p (prime)

Definition 1.1.5 The von Mangoldt-function A(n) is an arithmetic function
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given by

logp if n = p' for some prime p and some [ > 1
A(n) =

0 otherwise

1.2 Characters of finite abelian groups

We now want to go into considerable detail about a few fundamental ideas in
group theory. Knowing some arithmetical operations known as Dirichlet charac-
ters will be necessary for our following chapters. Although it is possible to learn

Dirichlet characters without any prior knowledge of groups.

Definition 1.2.1 Let G be a group (arbitrary). A complex valued function f
defined on G is known as a character of G if f has the multiplicative property

f(ba) = f(b)f(a)

for all b,a € G, and f(c) # 0 for some ¢ in G.

Remark 1.2.2 Every group G contains at least one character, namely, the func-

tion which is identically 1 on G. This is referred to as the principal character.

Definition 1.2.3 (Dirichlet characters) Let G be the group of reduced residue
classes modulo k, then corresponding to each character f of G we define an arith-

metical function x = x as follows

o) $G0) it () =1

0 otherwise

where 7 = {z : © = n (mod k)}. The function y is called a Dirichlet character

modulo k. The principal character x; is that which exhibits the property

1 if(n,k)=1
xi(n) = .
0 otherwise

Remark 1.2.4 There are (k) distinct Dirichlet characters modulo k, each of
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which is completely multiplicative and periodic with period k, i.e.,
x(nm) = x(n)x(m) forall n,m

and
x(n+k)=x(n) forall n.

Remark 1.2.5 (a) A Dirichlet character modulo k is known as an even Dirich-
let character if xy(—1) = 1.

(b) A Dirichlet character modulo k is known as an odd Dirichlet character if
x(=1) =-1

(c¢) A Dirichlet character modulo & is known as a quadratic Dirichlet character

if x(n) takes only real values including —1.

Definition 1.2.6 (Induced modulus) Let x be a Dirichlet character modulo
k and d be any positive divisor of k. The number d is said to be an induced

modulus for x if we have
x(a) =1 whenever (a,k)=1

and

a=1 (mod d).

To rephrase it, if the character y modulo k& acts like a character modulo d on
the representatives of the residue class 1 modulo d which are relatively prime to k
then d is an induced modulus . Note that, k itself is always an induced modulus

for x.

Definition 1.2.7 (Primitive character) A Dirichlet character y modulo k is
known as a primitive modulo k if it has no induced modulus d < k. To put it an
another way, y is primitive modulo £ if and only if for every divisor d (0 < d < k)

of k, there exists an integer a such that
a=1 (mod d),

(aa k) =1,
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and

x(a) # 1.

Remark 1.2.8 The principal character, y1, is not primitive if £ > 1 since it has

1 as an induced modulus.

1.3 Modular forms

In this section, we review the definitions and some fundamental properties of
modular forms and Hecke operators. We next talk about how studying a modular
form is not at that different from studying a Dirichlet series.

Since that modular forms are special holomorphic functions by definition,
it is not surprising that they might be used in complex analysis. They also
have connections to many other branches of mathematics, including algebraic
and hyperbolic geometry, number theory, representation theory, mathematical
physics, and combinatorics.

Let H be the upper half plane. There is a group action of SL(2,R) on H. If

b
T= <a J (where ad — be = 1), then 7 acts by
c

az+b
cz+d

Tz =
Clearly, 72 € H, since
S az+b _ 5 (az+b)(cz + d)
cz+d lcz + d|?
_ (ad —bc)3(z)
ez +d)?

These are the linear fractional or Mobius transformations. A Mdbius transforma-
tions remains unaffected if we multiply all the coefficients a, b, ¢, d by some non

zero constant. For each Mobius transformations with ad —bc = 1, we link a 2 x 2

= (a b) 7
c d
Then detA = ad—bc = 1. If A and B are the matrices linked with the Mobius

transformations f and g, respectively, then it is not difficult to see that the matrix

matrix
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product AB is linked with the composition f o g, where (f o g)(z) = f(g(z)).
We will focus our attention on a nice subgroup SL(2,Z) of SL(2,R). The set

of Mobius transformations of the form

., az+b
T = ,
cz+d

where a,b,c,d are all integers with ad — bc = 1, is known as Modular group
and is denoted by I'. Understanding functions on H that transform well under
SL(2,7Z) is our aim . For instance, we might need functions that have the property
that f(vz) = f(2) Vv € SL(2,Z). We might look for C*°, meromorphic, or
holomorphic functions that meet this requirement. We instead ask for f(yz) =
J'(7,2) f(2) for some multiplier systems j' because it turns out that there are no
holomorphic functions for which this is true.

Note that we must need j'(v172,2) = 5'(71,722)5 (72, 2), in order to have

f(n22) = 7'(nmye, 2) f(2) = 7/ (n,722)5 (72, 2) f(2). The first illustration that

we will take into account is j'(7, 2) = (cz + d)* where v = ¢ nE Clearly, it
c

satisfies the above relation.

We will now look at holomorphic functions f : H — C satisfying

J(r2) = (ez + ) f(2) ¥ v:<“

C

b
) € SL(2,Z).
d
Observe that, I and —I have the same action on H, so therefore f(—1z) = f(z).

Definition 1.3.1 (Modular functions) A function f is said to be modular

function if it satisfies the three conditions given below:
e f is meromorphic in the whole upper half plane H.

e f(A71) = f(7) for every A in the modular group I', i.e., f is invariant under

all the transformation of I'.

e The Fourier expansion of f has the form




1.3. Modular forms 15
§

The full modular group I' = SL(2,Z) has many subgroups of special interest
in analytic number theory. We will talk about a special class of subgroups known

as congruence SUng'OUpS.

Definition 1.3.2 (Congruence subgroups of the modular group) If n >

1 is an integer, there is a homomorphism
Tt SL(2,Z) — SL(2,Z/nZ),

induced by the reduction modulo n morphism Z — Z/nZ. The principal congru-
ence subgroup of level [ in T is the kernel of 7, and it is usually denoted by I'(n).
Explicitly, it is defined as:

C

F(n)z{(a Z)GSL(Q,Z):a,dEI (mod n) & b,c=0 (modn)}.

If K is a subgroup contained in I'" then it is called a congruence subgroup if
there exists a natural number n > 1 such that it contains the principal congruence
subgroup I'(n). The level [ of H is then the smallest such n.

From this definition it follows that:

e Congruence subgroups are of finite index in I'.

e The congruence subgroups of level n are in one-to-one correspondence with

the subgroups of SL(2,Z/IZ).

The subgroups I'g(n) is known as the Hecke congruence subgroup of level n and

defined as
Lo(n) := { (a Z) € SL(2,Z):¢c=0 (mod n)} .

Clearly I'(n) is a normal subgroup of finite index in I

Definition 1.3.3 (Modular form of weight k) A function f is said to be an

entire modular form of weight k if it satisfies the following conditions:
e (Regularity) f is analytic in the whole upper half plane H.

ar +b
ct +d

e (Modularity) f <
c

) = (er + d)* f(7) whenever (a Z) el
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e (Growth condition) The Fourier expansion of f has the form

Remark 1.3.4 Suppose 7 € H and consider ¢ = €™ € D(0, 1) (open disk with
centre 0 and radius 1). Here, ico corresponds to 0, so define "hole at co” to mean
7 f(e*™™) has a removable singularity at 0”. Equivalently, the third condition

means that f is bounded as $(z) — 0.

Remark 1.3.5 The cusps of I' are the points of QU {oo}. These cusps are finite
in number. If ¢ € Q then there is an element o € SL(2,Q) such that o.-¢ = 0.

Therefore, locally all cusps seem to be the cusp at oo.

The constant term ¢(0) is called the value of f at ico, denoted by f(ico). If
we have ¢(0) = 0, then the function f is called a cusp form. The smallest r such
that ¢(r) # 0 is called the order of the zero of f at ico.

In a more general sense a modular form is permitted to have poles at ico or in
H. That’s why the forms satisfying our conditions are called entire forms. Some

trivial examples of entire modular forms are:
1. The zero function is a modular form of weight k£ for every integer k.
2. A non-zero constant function is a modular form of weight k& only if £ = 0.

We denote by My, the space of all entire modular forms of weight £ and Sy the
subspace of cusp forms.
Now, we observe a nice growth estimate for cusp forms. Let f(z) € Sy then

we have the Fourier expansion

o0
f(Z) — E &n€27rinz’
n=1

from which we can obtain

|f(o +it)| < e 2™ as t— oo,




§1.3. Modular forms 17

uniformly in o, with similar estimates at any given cusp. Therefore, cusp forms

are rapidly decreasing at all cusps.

1.3.1 The Hecke operators T,

Hecke obtained all of the entire modular forms with multiplicative coefficients by

using a sequence of linear operators,
T, : My — My (n=1,2,3,...).
These operators are known as Hecke operators.

Definition 1.3.6 For any fixed integer k£ and any n = 1,2,3,..., the operator
T,, is defined on M} by the equation

(T)(r) = nzdi (),

d|n b=0

and when n = p,

p—1
B0 = sem 1y (T,
b=0
Clearly, T,, maps each f in M) onto an another function in M.
Definition 1.3.7 A non-zero function f satisfying a relation of the type
Tof =An)f

for some scalar (complex) A\(n) is called an eigenfunction (eigenform) of the Hecke

operator T, and the complex scalar A(n) is called an eigenvalue of T,,.
Remark 1.3.8 If f is an eigenform, then so is cf for all non-zero constant c.

Definition 1.3.9 If f is an eigenform for every Hecke operator T},, where n > 1,

then f is called a simultaneous eigenform.
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Remark 1.3.10 An eigenform with the property ¢(1) = 1 is said to be a nor-

malized eigenform.

Hecke found a remarkable relation between each modular form with Fourier

Fr) = cl0) + Y elme,

series

n=1
and the Dirichlet series
00
c(n)
=)
k)=
n=1

formed with the same coefficients. If f € My, then c(n) = O(n*) if f is a
cusp form, and c(n) = O(n?*~1) if f is not a cusp form. Thus, F(s) converges
absolutely for

R(s) > k+1 ,if fis a cusp form,

and for

R(s) > 2k ,if f is not a cusp form.

Remark 1.3.11 For cusp forms, better bounds are available for |¢(n)| (by Kloost-
erman, Davenport, Rankin and Selberg (see [Se 2])). It has been shown that

c(n) =0 (nk_%ﬁ) it fe My

for every ¢ > 0.

Conjecture 1.3.12 If f € My then

for every ¢ > 0.

This conjecture is settled by Deligne [De 1] for f being a holomorphic cusp form.

For maass forms, it is still open.
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1.4 Representations of Integers as Sum of Squares

The representation of positive integers as sums of a fixed numbers of non-negative
s'h powers has fascinated several generations of mathematicians, and its gener-
alizations and analogues occupy a central place in number theory today. This
problem is popularly known as Waring’s problem. The following are the primary

issues with representing an integer as a sum of squares:

Question 1.4.1 What positive integers can be represented as the sum of k

squares, given a positive integer k7

Question 1.4.2 How many representations are there if an integer is so repre-

sentable?
For any positive integer n, we define the function r(n) as
re(n) == #{(ny,ng,...,np) €EZF 02+ n3+ - +ni =n}

(allowing zeros, distinguishing signs, and order).

In this section, we only consider the situations when k£ = 4 and 6. For k = 4,
the representational problem has been fully resolved using an exciting method
which depends only on the Jacobi’s-triple product identity by M. D. Hirschhorn
[Hi].

1.4.1 Sum of Four Squares

Theorem 1.4.3 [Hi, Jacobi’s four-square theorem] The number of representa-
tions of a positive integer n as the sum of four squares, representations which
differs only in sign or order being counted as distinctive, is eight times the sum

of the divisors of n which are not multiples of 4, i.e.,

Equivalently,
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SZm if n is odd

mln
ry(n) = )
24 E m if n is even

m|n,m odd

Remark 1.4.4 We may also write this as
n
ra(n) = 80 (n) — 320 <Z) ,

where o(n) = Zd. If n is not divisible by 4, then the second term is to be taken

dln
as 0. In particular, we have the explicit formula r4(p) = 8(p + 1) for a prime

number p.

Some values of r4(n) occur infinitely, since
ry(n) = ry(2™n),

whenever n is even. The values of r4(n) can be arbitrarily large.

Lemma 1.4.5 For any positive integer n, the function r4(n) is multiplicative.

Proof. The principal character xo, modulo 4 is defined as

1 if (4,n) =1
Xo(n) := )
0 otherwise

We can rewrite r4(n) = 8r(n), where r(n) is multiplicative and given by

l_pu+l

=4 v P
3 ifp=2

ifp>2

We write, r4(n) = SZXO(d)d, where Y is a character modulo 4, given by
dn

. Xo(p*) ifp>2
XO(p ) = )
3 ifp=2
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and Y is the principal character modulo 4. We observe, if n has the prime power

factorization, i.e., n = 2%23% ... g% then

To(n) = To(2)%0(3™) - Xolq™)
= 3xp(3% - q").

For any prime number p, we have

r(p) = Z%o(d)d =1+ pXo(p)-

dlp

1.4.2 Sum of Six Squares

Now, we divert our attention to the representation of an integer as a sum of 6

squares. When k = 6, Jacobi’s formula for r¢(n) states that:

Theorem 1.4.6 [Jacobi’s siz-square theorem/] For any positive integer n, we have

re(n) = 162)((d/)d2 - 4ZX(d>d2’ (1.1)
dln

dn

where dd' = n, and x is the non-principal Dirichlet character modulo 4, i.e.,

1  ifn=1 (mod4)
x(n) =9 -1 ifn=-1 (mod 4).
0 #n=0 (mod?2)

Although there have been numerous analytical demonstrations of Jacobi’s for-
mula, only one purely arithmetic proof of Jacobi’s formula appears to be known
in the literature, for instance, see [Car]. In his wonderful book on elementary
methods in number theory [[Na], pp. 436-4391], Nathanson presents this argu-
ment.

Here, we furnish a reference [Mc-Wi], in which an entirely different elementary

arithmetic proof of Jacobi’s formula is achieved.
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From [Ha-Wr, pp. 313], we observe that

0 if 2|n
if24n

It is clear that x(n) is the non-principal character modulo 4 and can be defined

as stated.

We can reframe the Equation (1.1) as

) =16 x(d)s 4 y(ap

dln dln

=:16l(n) — 4v(n).

We write l1(n) = 16l(n), and v1(n) = 4v(n).

The functions x(d) and Z—z are completely multiplicative functions. This im-
plies that X(d)Z—z is multiplicative. If g(d) is any multiplicative function, then
>~ g(d) is also multiplicative. Therefore, I(n) is a multiplicative function. Simi-
iig;ly, v(n) is also multiplicative.

Note that, for a prime number p, we have
l(p) =p* + x(p),

l(p*) = p* + p*x(p) + x(»*),
and
v(p) =1+ p°x(p),

v(p®) =1+ p’x(p) + p*x(¥°).

One can easily see that rg(n) is not a multiplicative function. However, The-
orem 1.4.6 demonstrates that rg(n) can be written as a sum of two multiplicative

functions.




§1.5. A Discussion on Perron’s Formula 23

1.5 A Discussion on Perron’s Formula

A crucial component in proving our theorems is the Perron’s formula. We’'ll talk
about its application in this chapter. In order to achieve this, we move away from
simply elementary procedures and instead employ standard analytic techniques

which are helpful across analytic number theory.

1.5.1 Derivation of Perron’s formula

We have seen a lot of sums with a parameter n that goes up to x. Whether n
lies below x or not can be expressed analytically using Perron’s formula, and this
statement opens the door for analysing such sums with the help of associated

Dirichlet series analytic features.

Lemma 1.5.1 Let x and a be two positive real numbers. Then

. 1 ifz>1
1 a+zooxs ) .
pal A AL A (12)
0 fr<1

where the conditionally convergent integral is to be understood as limp_, faajTT
Quantitatively, for x # 1,

L 540w win (1, (1.3)
b —as = T 1min —_— .
21 Jo_ir S "T|log z|

When z < 1, moving the line of integration to the right; i.e., letting a tend
to +00 and using Cauchy’s theorem to justify that the integral does not change,
formula (1.2) can be validated. By letting a tend to —oo and taking into account
that we cross a pole at s = 0, which results in a residue of 1, we can shift the
line of integration to the left when x > 1. Though the integral is not absolutely
convergent, this argument can be made accurate with a little caution and it is

standard.
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Lemma 1.5.2 Let x and a be two positive real numbers. Then

1 a+ico .5 logz ifx>1
— w s = Jlosr 4 (1.4)

270 Joico S° 0 ifz<1l

Since the above integral is absolutely convergent, proof of (1.4) can be easily
carried out.

Proof of Lemma 1.5.1. For x # 1, integration by parts gives

a+iT s a+iT s
1
/ L ds = / Zd ( z >
a—iT S a—iT S log x
1 xa+iT xa—iT 1 a+iT s
logz \a+¢T a—iT logz J,_i7 $?

a+iT Is a+100 xs xa
Zds = Zds+0 (%),
a—iT S a—ico S T

using (1.4), we can conclude that for x # 1

1 a+iT _.s a
— x—d5:5+0( ” )

270 Jyir S T|log x|

Since,

When T'|log x| > 1, this establishes (1.3). Now, we consider T'|log x| < 1. Here,

1 a+iT s 1 a+iT 20

o —ds = 5— —(1+0O(|s|1 d

271 a—iT S s 2711 wiT 8( + (|S| Og{L‘)) S
= O0(y"),

and thus (1.3) holds again. Upon letting " — oo, the qualitative connection (1.3)
(for z # 1) follows from the quantitative version (1.3). The case z = 1 can be

easily checked.

1.5.2 Truncated Perron’s formula

In this subsection, we state the well-known truncated Perron’s formula (see

[Ram-Sal) that we will frequently use to prove our upcoming theorems.
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Truncated Perron’s formula: Suppose that the series f(s) converges abso-
lutely for ¢ > 1 and that |a,| < M(n), where M(n) > 0 is a monotonically

increasing function and that

o

|an|_ 1
n”_O G190 a>0

n=1

as 0 — 17, Also, suppose that for any 1 <c¢<c¢y, T >1and x = N + %, where
N € N, then we have

I '’ x¢ xM(2x)logx
D =g [, 1050 (g ) vo (),

n<x

where the constants in the O symbol depends only on ¢y.

1.5.3 Perron’s formula
A well-known example is when A(n) = f(n) is used to get

s =3 am =g [ () 2y

—100
n<x

The concept behind Riemann’s method of proving the prime number theorem

is to shift the contour to the left and use Cauchy’s residue theorem to precisely

determine the asymptotic nature of ¢)(z) in terms of the poles of <—§(’£)s )) % which
contain the zeros of ((s). It is challenging to understand the zeros of ((s), and
after 150 years, our comprehension is still rather rudimentary. In order to better
grasp the integrand, we shall focus on this contour as well as the contours to the
right of 1.

Because 2° = z°z" has a mean value of 0 as t varies through any interval of size

A(s)

, we anticipate cancellation in the integral. ——= must not vary significantly
s

log x
as t traverses this interval in order for us to acquire significant cancellation. We do

succeed in obtaining the necessary cancellation if we integrate by parts, beginning
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with the z°:
c+iT s c+iT s c+iT s o c+iT
Als)—ds = A ds— A’ d A .
/c—iT (S) S ’ /c—iT (S> s?logx ’ /c—iT (S> slogx o [ (8) slog x] c—iT

The first and second terms are the results of applying Perron’s formula to deter-

1 1
Zf(n) log % and @Zf(n) log n, respectively and

log x
n<lz n<x

mine the values of

x
the third term is O (?> Therefore, integration (by parts) here corresponds to
the identity
x
log x = log — + logn.
n

Observe that the first term is O (1 v

ogT

c+iT s c+iT s
1
/ A(s)x—ds =— / A’(s)x—ds +o(—).
e—iT s logx J._ir s log x

Therefore, we have

1 c+iT A/(S) s T
=— A(s)—d
Zan log /CiT A(s) (5) P +0 (loga:) ’

n<x

>. Thus, we get

from which we can obtain

A (1 L 't) :
. max T fogz T2 ) /T Al(c+iT) 1 » $
E ap x , —.
log x _r | Alc+1dT) | \ 1+ |t log x

n<x

A
Now that we have the desired 1'—‘, we must bound the integral. The integral

ogw

/
over — is actually the main challenge, and we lack a method to approach it for

A
general A.
1.5.4 Estimation of an interesting asymptotic formula

In this subsection, we use the general method of Perron’s formula to deal with

k*B-divisor function dj(n) and find a good asymptotic formula.
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Example 1.5.3 Let di(n) be the k'™ divisor function (where k € N), being
defined as

i)

ns

) =

n=1
Since di(n) < nf for any ¢ > 0, the above series is absolutely convergent in

R(s) > 1.
We can find de(n) by estimating
n<x

1 ctioco s
a_- gk(S)—dS,

21 Joino s

using Perron’s formula. More precisely, we have

E dp(n) = zPy(logz) + O (Ilfﬁﬁﬂ ,

n<x

.CES

where the main term is obtained by using the Laurent expansion of ¢*(s)—
and the error term is obtained from combining the contribution of vertical and

horizontal line integrals in absolute value.

Remark 1.5.4 For some better error term estimates, one may refer to [Ti-Ht,
Chapter 12].

1.6 Properties of various L-functions

This chapter studies general properties of the Dirichlet series, Dirichlet L-functions
and finally symmetric power L-functions.

The theory of Dirichlet series, when examined carefully for its own sake, in-
volves many significant questions of convergence. One of the core areas of in-
vestigation in number theory is L-functions. These L-functions typically store
fundamental arithmetic information, such as the distribution of prime numbers,
that is not readily apparent from their descriptions and typically necessitates
understanding of their poles, zeroes, functional equations, and other analytic

properties.




28 §1.6. Properties of various L-functions

1.6.1 Generation of arithmetical functions

Now, we provide a class of generating series for arithmetic functions.

Given an arithmetic function f(n), the series

nS
n=1

is known as the Dirichlet series connected to f. A Dirichlet series can be viewed
as either a formal infinite series or as a function of the complex variable s, defined
in the region where the series is convergent, where R(s) = o and J(s) = t.
Dirichlet series play a similar role to regular generating functions in combi-
natorics as a sort of generating function for arithmetic functions, tailored to the
multiplicative structure of the integers. For instance, Dirichlet series can be used
to find and show identities among number-theoretic functions, in the same way
that combinatorial identities can be proved using regular generating functions.
On a more advanced level, it is possible to use the analytical properties of a
Dirichlet series, which is thought of as a function of the complex variable s, to

learn more about the behavior of the partial sum

of arithmetic functions.
The Riemann zeta function ((s), often known as the Dirichlet series connected

to the constant function 1, is the most well-known Dirichlet series, i.e.,

L(s,1) =((s) (R(s) > 1).

Dirichlet series are the ideal technique to examine the behavior of arithmetic
functions because the integers’ multiplicative structure is preserved by Dirichlet
series.

One of the most significant feature of the Dirichlet series of a multiplicative
function is the representation as an infinite product over primes, known as Euler

product.

Lemma 1.6.1 Let f be a multiplicative function and assume that the series
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L(s, f) converges absolutely for some s € C. Then, we’ve

ve.n =121 L5)

p k=0

Moreover, if f is completely multiplicative then we’ve

Ls, f) = HW' (1.6)

p

Proof.Proof of (1.5) follows easily by using the fundamental theorem of arith-

metic and (1.6) follows by the geometric series, noticing that f(p*) = (f(p))*.

1.7 Dirichlet L-functions

The concept of Dirichlet L-functions and symmetric power L-functions are re-
viewed in this section. It has also been discussed how their Dirichlet series and
Euler product are related. While doing so, we discuss how certain series can be
used to express the normalized Fourier coefficients.

Let x be a Dirichlet character modulo k. The Dirichlet L-function related

with x is the function

L(s,x) = zoo:xg),

n=1

where s = o + it.

Remark 1.7.1 If xq is the principal character modulo k, then L(s, o) is analytic
in the half-plane o = R(s) > 1, and if x is a non-principal character modulo £,
then L(s,x) is analytic in the half-plane 0 = R(s) > 0. Moreover, L(1,x) is

non-zero.

Theorem 1.7.2 [Na, Theorem 10.3] Let x be a Dirichlet character modulo k.
Then, in the half-plane R(s) = o > 1, the function L(s,x) is analytic and has
the Euler product
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M&Xy:II<1—3§2>A.

p

Moreover, L(s,x) is non-zero.

Example 1.7.3 If xq is the principal character modulo 3. Then, we have

M&MQ:II<L—é)1.

p=>3

If x is the non-principal character modulo 3. Then, we have

s T 02 I (42

p=1 (mod 3) p=2 (mod 3)

For principle and non-principal characters, Dirichlet L-functions have different
analytic properties. The Riemann zeta function is represented by the Dirichlet
L-function L(s, xo) for ¢ > 1 in the special case when Yy is the principal character

modulo 1, i.e.,
o0

T3

Let xo be the principal character modulo m. For o > 1, we can write

L5, x0) = 1:{ (1 B X(;)(Sp))_l
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1.7.1 Character modulo 4

There are two Dirichlet characters, principal and non-principal, when the modulus

is 4. Let xo be the principal character modulo 4, i.e.,

1 if nis odd
Xo(n) = )
0 1if nis even

We note that (for £(s) > 1),

Xo(n)
nS
1

L(&Xo):i
ey

=1
p
A4)=1

)

1—

/N /7 N

3]
N—

—_
|
2=
A
—
VA
N~——

But the series

1 1
Llyxg)=1+4=4=+4---
(1, x0) ot

diverges. Now, let x be the principal character modulo 4, i.e.,

1 ifn=1 (mod4)
x(n) =9 —1 ifn=—1 (mod 4).
0 ifn=0 (mod2)

We note that for R(s) > 0,

p=1 (mod 4) p=3 (mod 4)
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In fact,
1 1 1 1 1
L(1 =(1—-= - — = - — — .
a=(1-3)+(5-7)+(5-7)
> 0,
and
1 1 1 1
L(1 =]1—-|===)=-==—=| -
<1

1.7.2 Symmetric power L-functions

Let x be the Dirichlet character modulo N. If

P57 v i)

b
for all z € H (upper half plane) and ¢ J € I'o(N), then f is known as a
c

modular form of weight k and level N with Nebentypus x. Here, T'o(N) is the

congruence subgroup, i.e.,
a b
FO(N):{< d) € SL(2,Z):c=0 (modN)}.

In 1974, P. Deligne [De 1] proved (as a consequence of the Riemann hypothesis
for varities over finite field) that for any primitive holomorphic cusp form f and

for any prime p, there exist complex numbers a(p) and [(p) such that

a(p) + B(p) = As(p), (1.7)

and

la(p)| = |B(p)| = 1 = a(p)B(p) (1.8)

Then L(s, f) can be written as
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) ()"

p
Also, |Af(n)| < d(n), where d(n) is the divisor function.

The j** symmetric power L-function is defined as

:Hﬁ(l_w)‘i (1.9)

for ¥(s) > 1 and j > 1 (an integer), where Agm2s(n) is multiplicative. The
Sato-Tate conjecture is connected to the analytical properties of j** symmetric
power L-functions. Additionally, it is established that the series L(s,sym’ f) can
be analytically continued to the region R(s) > 1 for each integer j > 1 and it is
non-vanishing in that region.

Now, we would like to mention some results related to the convergence of j™*

symmetric power L-function, due to Kumar et al. [Ku-Me-Pu].

Theorem 1.7.4 [Ku-Me-Pu, Theorem 1.2]

Let a(m) (m > 1) be a sequence of complex numbers such that a(m) < mP+e

[e.e]
2
a(m
for any positive €, and the infinite series E M has a singularity at s = o >
m
m=1

a(m)

0, where B, a are real numbers such that 26 + 1 < «. Then the series E
mS
m=1
has abscissa of absolute convergence 3+ 1.

Proposition 1.7.5 [Ku-Me-Pu, Proposition 3.1] The series

00

E :|Asymjf<n)|2
nS

n=1

has a singularity at s = 1.

Using Theorem 1.7.4 and Proposition 1.7.5, the authors Kumar et al. have es-

tablished the following theorem.
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Theorem 1.7.6 Let f € S, and L(s,sym’f) be the j* symmetric power L-

function associated with f, then the series

E :)\s
(s, sym’ f) = o (7

has abscissa of absolute convergence 1.

In particular, for j = 2, we have the symmetric square L-function, which is
defined as
o0
L(s,sym®f) := ZAsyn:!(n)

%) (28 ()

for R(s) > 1, where Agymzs(n) is multiplicative.

The Rankin-Selberg convolution of L-function attached to sym'f and sym’ f
(for j > 0, and R(s) > 1) is defined as

>\sm’ symJ
L(s,sym’f x sym’ f) : E Y ny s

“T1 H H <1 N O/m(p)ﬁm(;soé] “(p)B (p ))

p m=0u=0

(1.10)

Observe that,

.

Aymif(P) = Y o/ (p)B™(p), (1.11)
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and
i
Asymi fcsymi £ (P) = E g o' " (p) " (p)e? " (p) 5" (p) (1.12)
m=0 u=0
{ J
= ( E a' =" (p) 8" (p) E a’™(p)B"(p)
m=0 u=0
= )‘symlf<p> smef< )
Since Agymi ¢(n) is a multiplicative function, and |Agymir(n)| < djy1(n) (from (1.7),

and (1.8)), where d;;1(n) is the number of ways of expressing n as a product of

J + 1 factors), we can write the Euler product of L(s,sym’f) as

ps pls

H(1+M+...+M+...>, (1.13)

p

Comparing (1.9), and (1.13), we get (1.11).

Similarly, A (n) is a multiplicative function, and

sym® f xsymJ f
|>‘symif><symjf(n)| < d(i+1)(j+1) (TL),

(from (1.7), and (1.8)), so we can write the Euler product of L(s,sym’f x sym/ f)

as

H (1 + )\symifxs:mjf(p) + L. + )\Symlfxsl};mjf(pl) + . ) . (114)
p p p

Comparing (1.10) and (1.14), we get (1.12).

Theorem 1.7.7 For any positive integers v and j, if

A 3
L(s, sym'f) = E Symf n)
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and

0.0}
L(s, sym f) = E Ma
ns
n=1

then

o0
L(s, sym' f x sym/ f)g(s) = E sym fx;ijm]f(n)a
n=1

where g(s) is an absolutely convergent Dirichlet series in the half plane R(s) > 3.

Proof of Theorem 1.7.7 follows in a similar fashion as of Theorem 6 of [Gu-Mu],
since only Deligne’s bound which is known to be true in the cases of symmetric
power L-functions attached to holomorphic cusp forms is used in Theorem 6 of

[Gu-Mu], not the automorphic properties of L-functions.
Lemma 1.7.8 [Ku-Me-Pu, Lemma 3.3] The series

)\symﬁfxsymjf(p)
Z p* ’
)

p(prime

is divergent.

1.8 Functional equations pertaining to some [L-

functions

There are numerous approaches to explain why analytic continuation should be
studied. One can use them to derive functional equations. Let us illustrate this

precisely.

1.8.1 Analytic continuation

Establishing the analytic continuation and a functional equation for various sym-
metric power L-functions has garnered a lot of attention recently. In this section,
we will discuss some elementary functional equations associate to L-functions.

First, we provide an integral representation for the Riemann zeta function
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which will be valid in the half-plane R(s) = o > 0 and gives an analytic continu-
ation of ((s) to this half-plane.

Theorem 1.8.1 The Riemann zeta function ((s) has an analytic continuation
to a function which is defined on half-plane o > 0 and is analytic in this half

plane with the exception of a simple pole with residue 1 at s =1 , defined as

S

((s) = o s/loo{as}x_s_ld:z: (¢ >0). (1.15)

We get an estimate for (s) close to the point s = 1 as a direct consequence
of the representation (1.15) for ((s).

Lemma 1.8.2 We can write

(s) = — +7+0lfs — 1)),

for|s —1| < 3 and s # 1, where 7 is the Buler’s constant.

Proof.Observe that

)= =D als-1" (s—1l<1),

n=0

1
. is analytic in the disk |s — 1| < 1. It implies that

since the function ((s) —

(s) =~ = o+ Olls — 1)

in |s — 1| < 1. In the half plane o > 0, using the integral representation of ((s)
and letting s — 1, we obtain

co = LI_IE (C(s) — S—Ll) =1- /loo{x}xde.

From the harmonic sum estimate, we can conclude that

y=1- / {x}a2dx.
1

Thus, ¢y = 7.
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1.8.2 Functional equations

The Riemann-zeta function ((s) satisfies the functional equation (see chapter 2

of [Ti-Ht])
w3 () ¢(s) = (T (1 . ) (- ),

2

SO, we can write

where x(s) =7

Using I'(s) = O (6_(5)‘t||t|0_%> (for proof, see pp. 37-38 of [Rad]), we will get

Lo
() = [t277,

as |t| — oo, and a < o <.

Let Mj be the normalized Hecke basis for the space of holomorphic cusp
forms of weight k. For each f € My, the associated L-function admits analytic
continuation to the whole complex plane C as an entire function, and satisfies
the functional equation

(2m)~°T <% + 3> L(s, f) = i*(2m)' =T (% +1- s) L(1—s,f).

The L-function is also connected (analytically) to f(z) by Mellin transform

5. = (50) A nBen) = [ stannran

providing an integral representation for the completed L-function, denoted by
A(s, f). Hecke was able to deduce the analytical properties of A(s, f) from those

of f using this integral representation.

a b
Fors:< ) e I', we have
c d
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or ,
f (é) = i*y" f(iy).

Substituting this expression in the integral representation, we get

A(S;f)z/0 f(iy)ysder/loof(iy)ysdy

= i —s * ; s
—/1 f(g)y dy+/1 fliy)y*dy
:~k > . k—sd > . sd

2/1 f(iy)y y+/1 f(iy)y*dy

= i*A(k — s, f).
The integral are all bounded in vertical strips and absolutely convergent since

cusp forms are decreasing rapidly.

Theorem 1.8.3 The completed L-function A(s, f) is nice, that is, it converges
absolutely in a half plane and

(a) extends to an entire function of s,

(b) bounded in vertical strips,

(c) satisfies the functional equation A(s, f) == i*A(k — s, f).
Hecke was also successful in proving the converse of this theorem by inverting the
integral representation using the Mellin inversion formula.
Theorem 1.8.4 Suppose A(s) = Z% is absolutely convergent for R(s) > 0
and let "

A6 = (52) 946

2

o0
f(Z) — E an62ﬂ'inz
n=1

where A(s) is nice. Then
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is a cusp form of weight k for the full modular group SL(2,7Z).

Similarly, the symmetric square L-function L(s,sym?f) also admits analytic
continuation to the whole complex plane C as an entire function, and satisfies

the functional equation (see Shimura[Su] and Gelbart-Jacquet|Ge-Jal)

A(s,sym?f) =: (W)_%F (S —; 1) r (S i ]; — 1) r (S —iQ_ k) L(s,sym?f)

= A(1 — s,sym?f).

Let Hy(To(N),v) be the space of cusp forms of weight k, with multiplier ¢, for
the group ['o(NV), where 9 is a Dirichlet character modulo N.

For each f € Hp(I'o(IV), ), associated normalized L-function has analytic con-
tinuation, and satisfies a functional equation.

For given f € H(I'o(IV),v), and a primitive character x modulo d with (d, N) =

1, the twisted cusp form is

P = Y an(men,

n=1

and the associated twisted L-function, i.e., L(s, f ® x) is defined as

L@f@ﬁz}jﬁ%éﬁ,
n=1

then Hecke proved that fX(z) € Hy(To(Nd?),vx?), and satisfies the functional
equation
Als, f@x) = wOO)A = s, fluny @X),

where f,nv = (VNz)7Ff (;[—i) , and

A(s, f@x) = (@) r (S—I—%) L(s, f ®x),

and w(x) is a complex number with modulus 1, depending upon k) and .

Similar results are also available for the Rankin-Selberg L-functions attached
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to sym’f and sym?f for 0 < i,5 < 4 (see [Ja-Sl 1],[Ja-SI 2],[Ru-Sn],[Sh 1] and
[Sh 2]).

1.9 Some prominent lemmas

In this section, we will introduce some elementary lemmas related to the Riemann
zeta function and various L-functions that we are going to use frequently in the

proof of our theorems.

Lemma 1.9.1 [Ti-Ht, Theorem 7.2]

For any positive number €, we have

T 1 2
/ ¢ (— + it) dt < T,
1 2
uniformly for T > 1.
Lemma 1.9.2 [Iv 1, Theorem 5.1]
For any positive number €, we have
T 4 4
1 T(logT
/ C(—+it> dt ~ &’
1 2 2m

uniformly for T > 1.

Lemma 1.9.3 [Ht] For any positive number ¢, we have
T
1
[ leGaee)

Lemma 1.9.4 For any positive number €, we have

12
dt < T,

uniformly for T > 1.

(o +it) <. ([t] + 1)s0Fe=a)te,

uniformly for 3 <o <1+e¢, and |t| >ty (where ty is sufficiently large).

Proof We get the result when we apply the maximum-modulus principle to
F(w) = ((w)e™=*°z%~* in a suitable rectangle and by using Hardy’s estimate
C(3+1t) < (Jt] + 10)s. For instance, see [Sa).
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Lemma 1.9.5 [Bo] For any positive number €, we have
C(o +it) <. (t] + mediE-o ke,

uniformly for 3 <o <1+e¢, and |t| > 1.

Lemma 1.9.6 [Gd] For any positive number ¢, we have

[

2
dt <TlogT,

uniformly for T > 1.

Lemma 1.9.7 [Ju] For any positive number € and for any T > 1 uniformly, we

/ITL<%+z't,f)

Lemma 1.9.8 For any positive number €, we have

have

6
dt < T**e.

L(o +it) <. (1 + |t])s0Feo)te
uniformly for L <o < 1+¢, and |t| >ty (where ty is sufficiently large).
2

Proof.We get the result by using the maximum-modulus principle in a suitable

rectangle. For instance, see [Gd].

Lemma 1.9.9 Let L(s, f) be a Dirichlet series with Euler product of degree m >

2 i,
s h =TI (1 - “(]f;“)_l,

p<oo =0

where a(p,i) are local parameters of L(s, f) at prime p. If the Euler product
converges absolutely for R(s) > 1, admits a meromorphic continuation to the

whole complex plane C, and satisfies a functional equation of Riemann-zeta type,

/2T
T

then we have

2
dt < T3, (1.16)

1
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forT > 1; and for 0 < o <1+ ¢, we have
|L(o +it, f)] < (|t] +1)2AFema)te, (1.17)

Proof.The proof of Equation (1.16) is derived in a similar fashion as in [Lo-Sa,

Theorem 4.1]. Equation (1.17) follows by the maximum-modulus principle.

Lemma 1.9.10 [Ji-Li] Let x be a primitive character modulo q and £, (s, X)

be a general L-function of degree 2A. For any positive number €, we have

2T
/ el (o +it,x)|" dt < (¢T)*A0=)+,
T

uniformly for % <o<l+4e¢,andT >1. Also,

an,n(a + it, X) < (q(m + 1))max{A(1_U),0}+€ ,

uniformly for —e <o <1+4e¢.

Definition 1.9.11 The residue of a complex-valued function f(z) at an isolated
s

th

(=o °

derivative of a single valued analytic function in an annulus 0 < |z — ¢| < 4, for

singularity c¢ is the unique complex number s which makes f(z) =

some ¢ > 0. It is usually denoted by
s = Resf(z).

Alternatively, residues can be calculated from Laurent series expansions, and one
can define the residue of a function f(z) at an isolated singularity as the coefficient

c_; of the Laurent series.

Theorem 1.9.12 [Ah, Theorem 17] Let f(z) be an analytic function except for

isolated singularities a; in a region Q0. Then
= [z = ) ntnaRest)
— 2)dz = n(vy,a;) Resf(z
27Ti v - g J z=a; ’
J

where n(v,a;) is the index of a; with respect to v for each j.
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Definition 1.9.13 (Ho6lder’s Inequalities) Let %—k% =1 with p,¢g > 1. Then
Hoélder’s inequality for integral states that

[ 1w < ([ \f(x)\pd:vf (f ,g@)\qu); |

Equality holds when
lg(x)] = el f(2)["~.

If p = q = 2, this equality is known as Cauchy-Schwarz’s inequality.

Similarly, Holder’s inequality for sums states that
1 1
n n P n q
E |agbe| < g |ax|” E [
k=1 k=1 k=1
with equality when

|bk| = c|ak|p_1.

Lemma 1.9.14 Let A;(n) be the normalized n'" Fourier coefficient of the Fourier

expansion of f(z). Then, we have

Asymi £ (P) = Af (D). (1.18)

and

J
M) =1+ 3 A, (119
=1

Proof.Equation (1.18) is the famous Hecke’s identity. Now, we begin with the
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proof of Equation (1.19).

J
N = [ o))
m=0

J J

1> e | [ D we )

J J
:ZZ (O<2j_(m+m')(p)) (/3(’"“”/)(29))

m=0m'=0

(We put m + m/ = t. Observe that for every fixed integer ¢ in the interval [0, 2{]
and for every fixed integer m in the interval [0, (], there is a unique integer m’

in the interval [0, ] satisfying m +m' =t and thus,)
J 21

:Z Zagj (B (p)

=0 t=0
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Chapter 2

Discrete mean square of the
coefficients of the symmetric
square L-function on certain

sequence of positive numbers

2.1 Introduction

The Fourier coefficients of modular forms (cf. Section 1.3) are important and

interesting objects in number theory. In 1927, Hecke [Hec] proved that

Z/\f(n) <L 7.

n<x

Later, this upper bound was improved by a number of authors (see [Haf-Iv,
Ja-S1 2]). The best upper bound is due to Wu (see [Wu]), i.e.,

E Ar(n) < 23 log” x (where p ~ —0.118).

n<zx

Rankin [Ran] and Selberg [Se 1] considered the square moments of these

Fourier coefficients and independently proved the following asymptotic formula

47
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Z)\2 =cx+ 0O ( %> (2.1)

n<g

where c is a positive constant. Recently, Huang [Hu] has improved the exponent

n (2.1) to 2 — ¢, where ¢ < =. This seems to be the best known result until

0
now.

In 1999, Fomenko [Fo 1] established the following estimates for higher mo-
ments (motivated by the work of Moreno and Shahidi [Mo-Sh] concerning the

symmetric power L-functions L(s,sym? f) for j = 1,2,3,4),

E Ai(n) < zote

n<x

E M(n) = éxloga + éx + O (x%+6> ,

n<x

and

where ¢ and ¢ are some suitable constants. Later, Lii [Lil 1, Lii 2] improved and
generalized the work of Fomenko by considering higher moments.
In 2011, Lii and Wu [Lii-Wu] proved that (for 3 < j < 8)

Z)\J = logx)—i-O( 9+5) ,

n<x

where 60;’s and degree of the polynomials P;’s are given by the following table:

J 0; degree of P;
7
3| — 0
10
4 151 ]
175
40
5| — 0
43
175
— 4
0 181
176
7T — 0
179
2933
— 1
8 2957 3
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Under the assumption that L(s,sym’ f) is automorphic cuspidal for some pos-

itive integer [, Lau and Lii [La-Lii] established some general results for the sum

> i),

n<z

for all 7 > 2. This is indeed the case, since very recently Newton and Thorne
(see [Ne-Th 1, Ne-Th 2]) proved that L(s,sym?f) is automorphic cuspidal for all
j=>1

In 2013, Zhai [Zh] proved that

E Xi(a® 4+ b*) = zP{(logx) + O (x93+5> :
a?+b2<x

where ¢’s and degree of the polynomials P’s are given by the following table:

. degree of
J o’
’ bj

9 8 0
11

3 17 0
20

4 43 1
16

5 83 0
86

6 184 4
187

7 355 0
357

8 752 13
755

Using the recent breakthrough of Newton and Thorne [Ne-Th 1, Ne-Th 2] along
with some nice analytic properties of the associated L-functions, Xu [Xu] refined

and generalized the results of Zhai.

In 2006, Fomeko [Fo 2] was able to prove some results for symmetric square
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L-functions. He showed that

E Agym2f(n) < 27 log? z,

n<x

and further he could establish that

Z)\Symzf =cx+0 (2%,

n<x

where 6 < 1. In 2019, Sankaranarayanan et al. [Sa-Si-Ss| proved some interesting

results which are worth mentioning.

E )\gymzf(n> =T+ O (ZE%J’_E)
E )\;lymzf(n) = 6113 +0 (ZE%+€> s

where ¢; and ¢ are positive constants. Lately, Luo et al. [L.u-Lao-Zo] proved the

and

following asymptotic formula.

Z/\ et O(zte) if3<5<6
o cjx + O(x) if7<;<8

n<x

where «;’s are given by the following table:

J a;
3 551
635
L 929
1013
- 1301
1475
; 979
1021
7 63
65
8 40
1
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§

Our first result is motivated by the following question.

Question 2.1.1 Can we find an asymptotic formula for the average behavior of
the Fourier coefficients of cusp forms in the 4-dimension in various situations with

a good error term?

We recall (see subsection 1.7.2) the definition of n'® normalized coefficient of
the Dirichlet expansion of the j*® symmetric power L-function L(sym?f,s) here
for the convenience of the reader. With the help of these preliminaries we now
give an affirmative answer to the question raised above. In this regard we have

the following theorem.

Theorem 2.1.2 For xz > x, (sufficiently large), we have

E Az p(0% + 02 4 +d°) = cp2* + O (:z%*) :

a2 +b24c24d%<x
(a,b,c,d)eZ*

where co 18 an effective constant defined as
ca = (=2)(2)L(2, sym® f)L(1, sym* f @ Xo) L(2, sym" f) L(1, sym" f @ Xo) H2(2),
and Hy(2) # 0, and Yo is a character modulo 4.

Remark 2.1.3 For R(s) > 1, let

Fg(s) ::H<1+M+...+/\sym2f(p>r<p)_|_...>’

ps pl s
p

and for R(s) > 2,
Ga(s) := ((s)L(s—1,%0)L(s,sym?f)L(s—1,sym® f®Yo) L(s,sym®* f)L(s—1, sym* f®¥).

We point out here that,

Hals) = g

which is a Dirichlet series that converges absolutely, and uniformly in the half

plane R(s) > 2, and Hy(s) # 0 on R(s) = 2.

2
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Our main objective in this chapter is to establish Theorem 2.1.2. First, we
develop the notions and tools needed to establish this chapter’s main outcome.
We prove Lemma 2.1.4, which is related to the decomposition of the related L-
functions and will be crucial to the proof of our main theorem 2.1.2. The work

presented in this chapter have already been published in [Sr-Sa 1]. From [Ha-Wr,

ry(n) = SZXO(d)d

dln

pp. 415], we can write

=: 8r(n),
where Yy is a character modulo 4, given by

. Xo(p") ifp>2
XO(p ) = )
3 ifp=2

and Y is the principal character modulo 4.

Lemma 2.1.4 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z), and let Agym2(n) be the n™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

= A2 (n)r(n
B = Y S
n=1

for R(s) > 2, then
Fy(s) = Gay(s)Ha(s),

where

Gy(s) :=C(s)L(s — 1,X0)L(s, sym®f)L(s — 1, sym*f @ Xo)
L(s, sym* f)L(s — 1, sym*f ® Xo),

and Xo s a character modulo 4.

Here, Hy(s) is a Dirichlet series which converges absolutely, and uniformly in the
half plane R(s) > 2, and Hy(s) # 0 on R(s) = 2.

2
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2.2 Proof of Lemma 2.1.4

We observe that \2

sym? f

R =] (1 g Qo DI@) L A OI) ) NCY)

(n)r(n) is multiplicative, and hence

ps pl s
p

Note that,

9 2

Ay (D)) = (Za”@)ﬁwm) 1+ o(p)p)

m=0
= (a'(p) +20°(p) + 3+ 26%(p) + 5 (p)) (1 + Xo(p)p)
=1+ Xo(p)p+ (@*(p) + 1+ F%(p))(1 + Xo(p)p)
+ (2 (p) + ®(p) + 1+ B2(p) + 5*(p)) (1 + Xo(p)p)
=14 Xo(P)P + Aymzr () (1 + Xo(P)P) + Asyme (P) (1 + Xo(p)p)
=14 Xo(P) + Asym £ (D) + PAsym2 £ (P) X0 (P)
+ Asymi £ (P) + PAsyma s (P)Xo (P)

= bl(p)

From the structure of by(p), we define the coefficients by(n) as

oo

D) _ ()L — 1L X)L, sy P)L(s — Lsym?f @ ) Ls, sym )
n=1

X L(s — 1,sym4f ® Xo),

which is absolutely convergent in R(s) > 2.
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We also note that,

g(1+¥+...+%+m)

= C(S)L(S - 17 SCJO)L(S7Sym2f)L(S - 1a Sym2f & %0)
x L(s,sym*f)L(s — 1,sym*f ® Xo)
= GQ(S),

for R(s) > 2. Observe that b;(n) <. n'™ for any small positive constant e.

Now, we note that in the half plane R(s) > 2 + 2¢, we have

00
b b 2 b m (1+e)m
1(59) 4 1(55) L 1(58) NI E :p —
p p p p
m=1
00
(1+e)m
<D
— p(2+2€)m
m=1
00
B 1
o p(l—l-a)m
m=1
1
p1+5
- 1
L= p1+s
B 1
- p1+€ _ 1
<1
Let us write
Al _ )‘sym2f(sp)r(p) . Asymzf(]?::)r(pm) Foe
p p
and ; (o
B — 1(p) 1(p™)

S —"_ T —"_ ms
p p
From the above calculations, we observe that |B;| < 1 in R(s) > 2 + 2¢.
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We note that in the half plane £(s) > 2 + 2¢, we have

1+ A
1+Bl:(1+A1)(1—Bl+BE—B§+~-)
=1+ A, — By — A, B; + higher terms
)\2 27, 2 —b 2 m
:1+ symzf(p><p) 1(p)+'..+cﬂ’7/<p)+‘_ ’

p2.s pms

with ¢, (n) <. n'*e. So, we have (in the half plane R(s) > 2)

1 A2 (PP)r(P?) — b1 (p?) e (p™
H(igJ:H(H ;P pi ) p(rfs)ﬂ“')

< 1.

Thus, we have (in the half plane R(s) > 2)

and also Ha(s) # 0 on R(s) = 2.

Remark 2.2.1 We observe that the L-functions appearing in Ga(s) satisfy a
functional equation of the Riemann-zeta type and its corresponding conversion
factor behaves like =< (|t| + 10)’”(%7") (where m is the degree of Ga(s)) in any
fixed vertical strip a < o < b and |t| > t,.

Now we are at a stage where we can prove our main Theorem 2.1.2.
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2.3 Proof of Theorem 2.1.2

We note that

E Az p(@® + 02 4+ +d°) = E A2z (10 E 1

a2+b2+c2+d2§m n§$ 71_a2+b2+c2+d2
(a,b,c,d)eZ* (a,b,c,d)eZ*
= E Agmef(n)r‘l(n)
n<x
=38 E )\gymzf(n)r(n)
n<x

where r( Z Xo(d

dn

Also,

o) = ) _Told)d =1+ pRo(r),
dlp

where Yy is a character modulo 4.

Now, we begin by applying the Perron’s formula (see section 1.5) to Fy(s)
with n =24 ¢ and 10 < T < z. Thus, we have

E Asym2f 7’4 — 8 E )\sym2f

n<x n<x

n+iT s 24-2¢
5 F2<5)“”—ds+o<“’ )

2w Sy S T
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We note that for R(s) > 2,

L(s —1,Xo0) = zoo:%s(ﬁ)

3\ 1
~(1-55) (1-35) w-.
since
L(s —1,x0) = Z)f;)s(ﬁ)
n=1
1\ !
- U (1 - ps‘l)
(p,4)=1
1 1\
- (1) (- 55)
1
= <1 - 251) C(s—1).
Thus,
Fy(s) :=((s)L(s — 1,X0)L(s,sym*f)L(s — 1,sym*f ® Xo)L(s, sym*f)

x L(s — 1,sym'f ® Xo)Ha(s)

—1 2
= ((s) (1 — 2531) (1 — 2311) C(s —1)L(s,sym?f)L(s — 1,sym*f ® Xo)

x L(s,sym*f)L(s — 1,sym*f ® Xo)Ha(s).
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We move the line of integration to R(s) = 3 + e. By Cauchy’s residue theorem
there is only one simple pole at s = 2, coming from the factor
((s—1). This contributes a residue, which is coz?, where ¢, is an effective constant

depending on the values of various L-functions appearing in G5(s) at s = 2.

More precisely,

o Fy(s)
2 =8 Pi%(s —2) s
= s 1z s L1y )

x L(2,sym*f)L(1,sym*f ® 5{0)%Hz(2)

= (=2)¢(2)L(2, sym* f) L(1,sym® f @ Xo) L(2, sym" ) L(1,sym* f & Xo) Ha(2).

So, we obtain

8 3te+iT S4e—iT 24e+4T s

2 2 v

> s =et+ ot [ [T [ R ) D
210 | S8 et 24e—iT 3 el §

n<x
[E2+25
O
o)

et b (0 4 D 4 ) 1o (T
' 2mi ! 20 T )

The contribution of horizontal line integrals (Jg(l) and Jél)), in absolute value
(using Lemmas 2.1.4, 1.9.4 and 1.9.9) is

2te —14+4iTL(oc — 1 +iT 2 Yo)L(oc —1+iT 4 %
<</ |((c =1 +4T)L(oc — 1+ iT,sym*f ® Xo)L(c — 1 +iT,sym f®XO)|x(’dU
3

+e T

anrldO_

< /1+5 C(o +iT) Lo + T, sym*f @ Xo)L(0 + iT, sym*f ® Xo)|
e g

< (E) max xaT%(1+€fU)T%(1+€fU)
T lte<o<ite

I1+5 T 4 13
< max = | 1T3.
T ) l4e<o<ive \T73




§2.3. Proof of Theorem 2.1.2 59

g
Clearly <T%> is monotonic as a function of o for % +e<og<1+¢eand
3

hence the maximum is attained at the extremities of the interval [% +e, 1+ 5].
Thus,

(1) (1) 1+¢ Liemid 14 x1+€
Js '+ J3 <Lz 276 + T
2+42¢
< prtETEE 4 _xT

The contribution of left vertical line integral (J\"), in absolute value (using

Cauchy-Schwarz inequality, Lemma 2.1.4, 1.9.1 and 1.9.9) is

ratedt

< /3“*” IC(3 +e+it)L(E + e +it,sym*f ® Xo)L(3 + & + it,sym? f @ Yo)|
8 emiT |5+ +it]

1=

) 1 +)|2 2
L xote 4 opate </ CG+e+it)] dt)
10<[H<T t

1
y </ |L(3 + e+ it,sym® f @ Xo)L(5 + & + it,sym*f ® %0)’2dt) 2
10<|¢|<T t

< x%+€ —|— x%+5 (T%T%"‘%)

< $%+2ET%+2E

Note that, 10 < T < x. Thus, we obtain

A2 _ a2 3 r2epdt2e a?r
aymzp(M)ra(n) = cor” + O (22772 +0 il

n<x

2

3,3 . 5 1 1
We choose T such that z2T2 < % i.e., T2 < x2. Therefore, T' < z5.
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Thus, we get
E /\symzf ) = CQIZ + @) (I%+6> .
n<x

This proves the theorem.

2.3.1 Concluding Remarks

We observe from Lemma 2.1.4 that

Fy(s) = Ga(s)Ha(s),

where

Gy(s) = ((s)L(s — 1,Xo)L(s,sym? f)L(s — 1,sym*f & Xo)
x L(s,sym*f)L(s — 1,sym*f ® Xo),

and Hs(s) has an Euler product, which is uniformly, and absolutely convergent
ino > % + 2¢ for any small positive constant €. We also know good amount
of analytic properties of G5(s), and each factor of Ga(s) satisfies a functional
equation of the Riemann zeta type. From our proof, it is evident that we have
used only the known analytic properties of Hy(s) said above. More information

of Hy(s) in the region R(s) > (1 —10e) may even lead to the following conjecture.

Conjecture 2.3.1 For sufficiently large x, we have

g A2 (@ + 0+ + d*) = &a” + G + O(2f),

a +b2+c +d2<x
(a,b,c,d)eZ*

n=

where ¢, ¢y are effective constants, and 6 is some positive constant satisfying
0<0<1.

However, currently we do not have any idea how to proceed towards the above

proposed conjecture.




Chapter 3

Higher moments of the Fourier
coefficients of symmetric square

L-functions on certain sequence

3.1 Introduction

In this chapter, we consider the discrete higher power moments of the Fourier
coefficients of symmetric square L-functions on the same sequence of positive
numbers.

More precisely, we study the behavior of the following sums:

E Az p(@® + 0% + &+ d)
a2+62+c2+d2 <z
(a,b,c,d)eZ*

and

Z Agme (@ +0° + & + ).
a? 42 +? +d%<a
(a,b,c,d)€Z*
Remark 3.1.1 Very recently, Newton and Thorne proved the automorphy of the
symmetric power lifting sym™(f) for every n > 1, where f is a cuspidal Hecke
eigenform of level 1. They also establish the same result for a more general class

of cuspidal Hecke eigenforms, including all those associated to semistable elliptic
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curves over @Q, see [Ne-Th 1, Ne-Th 2]. This enables us to study the higher

moments, namely, for an integer [ > 3,

g Noymep(@® + 0%+ + d°),
a2+b2+(12+d2§x

(a,b,c,d)eZ*

where = > x, (sufficiently large). However, in this chapter, we concentrate on

this sum with symmetric power L-functions for [ = 3, 4.

More precisely, we prove the following theorems:

Theorem 3.1.2 Forx > xg (sufficiently large), and € > 0 be any small constant,

we have

g Ay (02 + 02 4 &+ d?) = c32® + O (ﬁ*‘f)

a2 +b2+62+d2 <z
(a,b,c,d)eZ*

where c3 is an effective constant defined as

C3 = (_2)C<2)L2(27 Sym2f>L2(17 Sym2f & S(JO)L(Z Sym4f)L(17 Sym4f & %0)
x L(2, sym*f @ sym*f)L(1, sym*f @ sym* f @ Xo)H3(2),

Hs(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane R(s) > 2, and Hj(s) # 0 on R(s) = 2, and Xy is a character modulo 4.

Theorem 3.1.3 Forx > xq (sufficiently large), and ¢ > 0 be any small constant,

we have

a2+b2+02+d2§m
(a,b,c,d)eZ?
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where ¢4 18 an effective constant defined as

Cy = C2(2)L3(2, smef)L?’(l, sym* f ® )?o)L:S(Q, sym4f)
X L3(1, sym* f & )AZO)LQ(2, sym’f ® 3ym4f)L2(1, sym’f @ sym* f @ Xo)
x L(2, sym*f @ sym* f)L(1, sym* f @ sym* f @ Xo)H(2).

Hy(s) is a Dirichlet series that converges uniformly, and absolutely in the half

plane R(s) > 2, and Hy(s) # 0 on R(s) = 2, and Xy is a character modulo 4.

Our main objective in this chapter is to establish Theorem 3.1.2 and Theorem
3.1.3. The published version of the work discussed in this chapter can be seen in
[Sr-Sa 3].

First we will prove Lemma 3.1.4 which is related to the decomposition of the
relative L-functions but here it is much more complicated than the one we stated

in chapter 2. This lemma is essential in order to prove Theorem 3.1.2.

Lemma 3.1.4 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z) and let Agym2(n) be the n'™™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

= A2 (n)r(n
B = Y S
n=1

for R(s) > 2, then
F5(s) = G5(s)Hs(s),

where

Gs(s) :=C(s)L(s — 1,%0)L*(s, sym*f)L*(s — 1, sym* f @ Xo)L(s, sym*f)
L(s — 1, sym* f ® Xo)L(s, sym®f @ sym* f)L(s — 1, sym® f ® sym® f & Xo),

and Xo s a character modulo 4.
Here, Hs(s) is a Dirichlet series which converges uniformly and absolutely in the
half plane R(s) > 3 and Hs(s) # 0 on R(s) = 2.
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3.2 Proof of Lemma 3.1.4

We observe that A3, (n)r(n) is multiplicative, and hence

sym? f
B Mm@ (P) Ny ()r(2)
Fy(s) = 1:[ (1 P T +. ) L (3.
Note that,
2 3
Ny (0)r(0) = (Zam(pwm(m) 1+ Xolp)p)
m=0

= (a®(p) + 2a*(p) + 60 (p) + 7+ 65%(p) + 28*(p) + B°(p)) (1 + Xo(p)p)

(14 2a%(p) + 24 258%(p) + a*(p) + &*(p) + 1 + 5*(p) + 5*(p)

+a%(p) + a'(p) +30°(p) + 3+ 36%(p) + £4(p) + °(p) (1 + Xo(p)p)
= (1+2(a(p) + 1+ 5(p)) + (a*(p) + a®(p) + L+ 5*(p) + B*(p))

+(@%(p) + a'(p) + 3a*(p) + 3+ 35%(p) + B (p) + 8°(p))) (1 + Xo(p)p)
=14 Xo(p)p + 2X2£(P)(1 4+ Xo(P)P) + Asyma s (P) (1 + Xo(p)p)

+ Asym? f@symt s (P) (1 + Xo(p)p)
=14 Xo(P)P + 2Am27 (P) + 2PAsymz2 (P)Xo(P) + Asyma 7 (P)

+ PAymt £ (P)X0(P) + Asym2fosymt £ (P) + PAsym2 fosyme £ (2) Xo(P)

=: by(p).

From the structure of by(p), we define the coefficients by(n) as

o0
ba(n)
/rLS
n=1

= ((s)L(s — 1,%Xo)L*(s,sym?f)L*(s — 1,sym®f ® Xo)L(s,sym®f)

X L(s—1, Sym4f ® Xo)L(s, Smef X sym4f)L(s — 1,sym2f X Sym4f ® Xo),
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which is absolutely convergent in $(s) > 2. We also note that

H(1+172p(—?+---+62]§—£l)+...>
= ((s)L(s — 1, Xo)L*(s,sym? f)L*(s — 1,sym® f @ Xo) L(s, sym"[)
x L(s — 1,sym*f @ Xo)L(s,sym?f @ sym*f)L(s — 1,sym’f @ sym*f @ o)
=: G5(s),

for R(s) > 2. Observe that by(n) <. n'*™ for any small positive constant .
Now, we note that in the half plane R(s) > 2 + 2¢, we have

bg bg 2 bQ !
(p) (p?) <£)+...

S 2s tee Tt
p p p

<<§P

1

p

oo

o~

(1
o0
- Z p(1+5)l
— p(2+28
=1
1
Zp(l‘|r
=1
1
p1+a

= ——

+e)l
lo
)1
e)l

p1+€

1
p1+6 _ 1

< 1.

Let us write

o Aywes @) N (P)r (0
2 ps pls

and

b
B2:Lf))_.|_.+ P
p p

From the above calculation, we observe that |By| < 1 in R(s) > 2 + 2¢.
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We note that in the half plane £(s) > 2 + 2¢, we have

1+ A,
1+ By

=(1+A)(1—-By+B;—Bj+...)

=1+ Ay — By — Ay By + higher terms

3 2 2
o )\smef( ) (QZ: ) - bQ(p ) NI cl(il)
p p

with ¢(n) <. n'™. So, we have (in the half plane R(s) > 2)

I (ng) ] (1 N )\gym2f(p2);(2222) ) Cl;il) +>

p p

< 1.

Thus, we have (in the half plane R(s) > 2)

and also H3(s) # 0 on R(s) =
We can now proceed with proving our main theorem 3.1.2.

First, we note that,

E Ame (@ + 02+ + d°) = E A 2 (n E 1

46242 +d%<a n<z a2 b2 42 42
(a,b,c,d) €Z4 (a,b,c,d)€Z4
_ g 0
- /\smef(n)r4 (n)
n<x

—8) M ()r(n)

n<x
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where 7(n) = Z d, with 6 = 3 or 4.

For the reader’s convenience, we recall some definitions (cf. section 1.4) here. We

note that r(n) is multiplicative and given by

We write r4(n) = SZZO(d)d, where Xy is a character modulo 4, given by

dn
Xo(p") ifp>2

Xo(p") == :
3 if p=2

and g is the principal character modulo 4.

Note that,
r(p) = E Xo(d)d

dlp

=1+ pXo(p).

3.3 Proof of Theorem 3.1.2

We begin with the Perron’s formula (see section 1.5), applying to F3(s) with

n=24+¢and 10 <T < z. Thus, we have

D Ny mra(n) =8 )Xo ()rn)

n<x n<w
8 n+iT s iL‘2+2€
= — F5(s)—d @) .
21 Sy i 3(s) s * < T )

We note that for R(s) > 2 (cf. section ref),

o-1m=(1-5) (1-5m) -,
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Thus,
Fy(s) = ((s)L(s — 1,Xo) L*(s,sym? ) L*(s — 1,sym*f @ Xo) L(s, sym" f)
x L(s — 1,sym* f @ Xo)L(s, sym®f @ sym*f)L(s — 1,sym® f @ sym* f @ Xo) H(s)
-1 2
= ((s) (1 — 2531) (1 — 2511) C(s — 1)L*(s,sym?* f)L*(s — 1,sym*f ® Xo)

x L(s,sym*f)L(s — 1,sym*f ® Xo)L(s,sym*f @ sym*f)
x L(s — 1,sym?f @ sym*f ® Xo)Hs(s).

We move the line of integration to R(s) = % + ¢ and by Cauchy’s residue theorem
there is only one simple pole at s = 2 coming from the factor ((s — 1). This
contributes a residue, which is c3x?, where c3 is an effective constant depending
on the values of various L-functions appearing in G3(s) at s = 2.

More precisely,

Fg(S)

S

c3 = 8£1_r>r%(s —2)

= 8((2)%%[/2(2, sym?f)L2(1,sym? f @ Xo)L(2,sym®* f)L(1,sym* f ® Xo)

x L(2,sym?f @ sym*f)L(1,sym? f ® sym* f ® Xo)H3(2).

So, we obtain

N , ) StetiT S4e—iT 24e+iT - xsd
E smef(n)r‘l(n) = C3% +% /g +/2 +/§ 3(3); S

+e—iT +e—1iT +e+iT
n<x

8 2+42¢
= ey + _¢<J1(2) +JP + I+ 0 (xT ) .

The contribution of horizontal line integrals (JQ(Z) and Jéz)) in absolute value
(using Lemmas 1.9.4, 3.1.4 and 1.9.9) is
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< /2+€ l|¢(a —14+4iT) L2 (0 — 1 +iT,sym?f @ Xo)L(o — 1 +4T,sym*f @ Xo)|
3 T
2

+e

X|L(o — 1+iT,sym®f ® sym*f @ Yo)|27] do

< /2+€ {\g(a —14+4iT) L2 (0 — 1 +iT,sym?f @ Xo)L(o — 1 +4T,sym*f @ Xo)|
3 T
2

+e

x |L(c — 14T, sym*f @ sym*f ® %0)|:v"] do

<</1+€ PC(U—I—Z‘T)LQ(U+iT,Sym2f®5€0)L(U+iT’Sym4f®5€O>’
f T
2

+e

X |L(o — 1 +4T,sym” f @ sym* f @ Xo)|z7""] do

< (2) max xaT%(lﬂsz)T%(lJrsfa)
T %—&—sgagl—i—a

l,lJrs T o m
< max — | T3.
T ) lye<o<ite \T3

ag

Clearly (Tﬁio> is monotonic as a function of o for % +¢e <0 <1+ ¢ and hence
3

the maximum is attained at the extremities of the interval [§ + ¢,1 4 ¢]. Thus,

1+e
I 4+ 5 <t (x%%T%‘)—”E + )
x2+26

3 17
< :L,5+2€T§+e +
T

The contribution of left vertical line integral (J*) in absolute value (using
Cauchy-Schwarz inequality, Lemmas 1.9.1, 1.9.2, 3.1.4 and 1.9.9) is
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- /§+€+iT ¢ (3 +e+it) L2 + e +it,sym*f @ Xo)L(3 + € + it, sym? f ® Xo)|
5 eir |2 + e+ it

X

1 ~
L (5 +e+it,sym’f @ sym? f ® XO) :ESJ“E} dt

1
1 )12 3
P (/ (G +e+ )] dt)
10<|¢|<T t

y (/ |L2(% +e+it,sym?’f ® )”ZO)L(% + e +it,sym*f @ Xo)|?
10<t]<T

t

X

1 , ~
L (5 +€+zt,sym2f®sym4f®)(o>‘dt)
< pite y i (TgTé(?—He))
< pat2ehile

Note that 10 < T < x. Thus, we obtain

24-2¢
Y Ny (m)ra(n) = caa® + 0T .0 (T " T) |

n<x

2

We choose T such that 22T° =< £,

: 1
ie, T" < x2.

1

Therefore, T' < x14. Thus, we get
E Adm2p(n)r4(n) = e3> + O (:B%J'_QE) :
n<x

where

c3 = (=2)¢(2)L*(2,sym® f)L*(1,sym® f @ Xo)L(2, sym® f) L(1, sym* f @ Xo)
x L(2,sym?f @ sym" f)L(1, sym® f @ sym* f @ Xo) H3(2).




3.4. Proof of Lemma 3.3.1 71
§

This proves the theorem 3.1.2.

To establish Theorem 3.1.3, we shall first prove Lemma 3.3.1.

Lemma 3.3.1 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z) and let Ngym2s(n) be the n'™ normalized Fourier coefficient of the

symmetric square L-function associated to f. If

oo

A (n)r(n
Py = 3 s

nS
n=1

for R(s) > 2, then
Fiy(s) = Ga(s)Ha(s),

where

G4(s) ::C2(3)L2(s -1, ZO)L?’(S, sym2f)L3(s — 1, sym*f @ 5{0)L3(s, sym4f)
x L3(s — 1, sym*f @ Xo)L*(s, sym* f @ sym®* f)L*(s — 1, sym*f @ sym*f & Xo)
x L(s,sym'f @ sym' f)L(s — 1, sym® f @ sym®* f & Xo),

and Xo s a character modulo 4.

Here, Hy(s) is a Dirichlet series which converges uniformly and absolutely in the

half plane R(s) > 3 and Hy(s) # 0 on R(s) = 2.

3.4 Proof of Lemma 3.3.1

We observe that Agymz s(n)r(n) is multiplicative, and hence

o - ( o N O0) | K ) ) 62

ps pls

p
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Note that,

4

2
Ny (D)) = (Za2m<p>ﬁm<p>) (1+%o(o)p)

m=0
= (a*(p) +20%(p) + 3+ 26%(p) + B'(p))* (1 + Xo(p)p)
= (@®(p) + 4a5(p) + 10a’(p) + 4a®(p) + 48%(p) + 12a°(p) + 19 + B3(p)
+44°%(p) +108%(p) +125%(p)) (1 + Xo(p)p)
=2+ 2Xo(p)p + 3(a®(p) + 1+ £(p))(1 + Xo(p)p)
+3(a(p) + o®(p) + 1+ B%(p) + B*(p) (1 + Xo(p)p)
+2(a%(p) + a'(p) + 30*(p) + 3+ 35%(p) + B (p) + B°(p)) (1 + Xo(p)p)
+ (%(p) +2a°(p) + 3’ (p) + 40’ (p) + 5 +45%(p)
+36%(p) +26°(p) + B°(p)) (1 + Xo(p)p)
=2+ 2X0(p)p + 3Asym2s () (1 + Xo(P)P) + 3Asymar (p)(1 + Xo(p)p)
+ 2 qym2 fasymd £ (P) (1 + Xo(P)P) + Asymi fosymi ¢ (P) (1 + Xo(p)P)

=: b3(p).

From the structure of b3(p), we define the coefficients b3(n) as

o
bs(n)
/rLS
n=1

= C*(s)L*(s — 1,%0)L*(s,sym?* f)L3(s — 1,sym®f ® Xo)L?(s, sym*f)

X L3(s -1, sym4f X S('O)LZ(S, smef % sym4f)L2(s -1, symzf ® sym4f ® Xo)

X L(s,sym4f ® sym4f)L(s — 1,sym4f X sym4f ® Xo),
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which is absolutely convergent in $(s) > 2. We also note that

b bs(p!
H(1+iﬁ+---+$+...>
p p
p

= CQ(S)LZ(S -1, XO)L?’(S, sym2f)L3(s —1,sym*f ® %(])L?’(S, sym4f)
X L?’(s —1,sym*f® %O)LQ(S, sym’f @ Sym4f)L2(s —1,sym?f @ sym? f ® Xo)
x L(s,sym*f @ sym* f)L(s — 1,sym*f ® sym*f @ X,)

=: Gy4(s),

for R(s) > 2. Observe that b3(n) <. n'*® for any small positive constant .

Now, we note that in the half plane R(s) > 2 + 2¢, we have
+e)l
lo
)
e)l

bo(p) | bop®) | ()

P p*s p

o~

IN

2
p(2+25
l
0
l:

-2

o0
14e)l

1
<<§p

p

1

00
(
=1
(
1
1

1
plt

1
p1+€

1
p1+a —1

< 1.

Let us write
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and

S +o Tt ls
p p
From the above calculation, we observe that |Bs| < 1 in R(s) > 2 + 2¢.

We note that in the half plane £(s) > 2 + 2¢, we have

1+ Aq

= (1+ A3)(1 — B3 +B?— B3+ ...
1+ B, (14 As)( 3+ D3 54 ..)

=14 A3z — B3 — A3B3 + higher terms

4 2 2 2 ~
. )‘smef(p )r(p ) - b3(p ) 4t cl(pl) +

=1 p25 s

g!

with &(n) <. n'™. So, we have (in the half plane R(s) > 32)

H(iigz) —H(l—l—)\smef(p );(;:)—53(17)+.H+’5l]§il)+'”>

p p

<. 1.

Thus, we have (in the half plane R(s) > 2)

and also Hy(s) # 0 on R(s) = 2.

Now, we proceed to establish our key theorem 3.1.3.
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3.5 Proof of Theorem 3.1.3

We begin with the Perron’s formula (see section 1.5), applying to Fy(s) with
n=2+c¢cand 10 <T < x. Thus, we have

D N () =8> N ()r(n)

n<x n<w
8 n+iT s £IZ’2+26
= — Fy(s)—d @) .
2mi J, i a(s)ds + ( T )

We note that, for £(s) > 2,
- 3\~ I
21t = (1-55) (1-55) Ce-1,

L*(s —1,x0) = <1 - 28_1)2<2(S —1).

since

Thus,

Fy(s) :== C2(S)L2(S -1, XO)L?’(S, sym2f)L3(5 —1,sym’*f ® 5{0)[/3(3, sym4f)
X L3(s —1,sym*f® )N(O)LQ(s,symzf ® sym4f)L2(s —1,sym?f ® sym* f @ Xo)
x L(s,sym*f @ sym*f)L(s — 1,sym*f @ sym*f ® Xo) Hy(5s)

—2 4
= (%(s) (1 — 253_1) (1 — 251_1> C*(s —1)L3(s,sym? f)L*(s — 1,sym*f ® Xo)

x L*(s — 1,sym* f @ Xo)L*(s,sym? f ® sym® f)L?*(s — 1,sym?f ® sym®* f ® Xo)
x L(s,sym*f @ sym*f)L(s — 1,sym*f ® sym*f @ Xo)L*(s, sym® f) Hy(s).

3
We move the line of integration to $(s) = = + €. There is only one second order

pole at s = 2 coming from the factor (?(s — 1), so by Cauchy’s residue theorem,
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we obtain

Z A e ] 3+e+iT 34e—iT 24e+iT e
Aoz p(n)ra(n) = 8Res {F4(3)—} + — / —I—/ —I—/ Fy(s)—ds
i s=2 s 210 | J3 et 2e—iT 3 fetiT s

n<x
1,2—&-25
O
ro (")

_ z® 8 3, /3, O at?
—853;{]74(8)8 }+27ri(J1 + 7+ 37+ 0 7 |

More precisely,

R_e2s {F4(S)%} = R_eés {CQ(S)LQ(S —1,%0)L3(s,sym?f)L*(s — 1,sym*f ® Xo)
><L3(s, sym4f)L3(s —1,sym*f ® )zo)Lz(s, sym’f ® sym4f)
x L*(s — 1,sym*f ® sym*f ® Xo)L(s,sym*f @ sym*f)
<L~ Loy ] @ sy ] © T Halo) -
= C*(2)L3(2,sym? f)L3(1,sym? f @ Xo)L?(2,sym* f)
X L3(1, sym? f ® XO)LQ(Q, sym?f ® sym4f)L2(1, sym?f @ sym*f ® Xo)
x L(2,sym* f @ sym" f)L(1,sym" f @ sym* f ® Xo)H4(2)
2e 1 0%
xfsi:e;{ﬂ (s = 1,X0)~ }

where

Res {2205 - 150" L = (123 T (1YY Resd (1 sy ogs— ) e
A P B 2 2) Y \s—277 ° v

22 1 1 2
=5 <Ry { (— 4 0(s - 2|>) <>}

s=2 s — 2




§3.5. Proof of Theorem 3.1.3 77

and v is Euler’s constant. Hence,

x® -
Res {F4<s>;} — ()L, sy ) (L sy f © §0) L2, sym* )
X L3(1, sym? f ® XO)LQ(Q, sym’f ® sym4f)L2(1, sym?f @ sym'f ® Xo)
2% logx
T

x L(2,sym" f @ sym® ) L(1, sym" f @ sym" f & Xo) Ha(2)

The contribution of horizontal line integrals (J2(3) and J§3)) in absolute value
(using Lemmas 1.9.4, 3.3.1 and 1.9.9) is

< /2+E [|§2(a —1+4T)L3 (0 — 1 +4T,sym?f @ Xo)L3(0 — 1 + 4T, sym* f @ Xo)|
3 T
2

+e

X |L*(o — 14T, sym*f @ sym* f ® Xo)L(0 — 1+ iT,sym* f ® sym" f @ Xo)|2?] do

< / 3 {lc% +iT) L3 (0 +iT, sym?f © %) L* (0 +iT, sym’ f © %))
. T
2

+e

x |L2(U + 4T, sym® @ sym' f ® Xo)L(o + T, sym* f ® sym* f ® )zo)lxoﬂ] do

< (E) max xO'T%(l'FE—O')T?(l'FE—O')
T %—i—sgogl—&-e

Z'H_E T o 241
< max —= | T¢.
T ) lie<o<ite \T76

g
Clearly (ﬁi) is monotonic as a function of o for % +¢ <0 <1+ ¢ and hence
6

the maximum is attained at the extremities of the interval [% +e,1+¢]. Thus,

@), 1) o ave [ dreqiogye T
J2 +J3 <<ZL' .172 T12 _’_T

24-2¢

T

T

3 229
< [L‘5+26Tﬁ+6 +

The contribution of left vertical line integral (J\*) in absolute value (using
Cauchy-Schwarz inequality, Lemmas 1.9.1, 1.9.2, 3.3.1 and 1.9.9) is
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- /§+€+iT []CQ(% + e 4 at)L3(5 + e + it, sym?f ® Xo)L*(3 + € + it, sym* f ® Xo)|
3
2

et |3+ e+ it

X
2

1 _ 1 - :
L? (5 +e+it,sym’f @ sym? f ® Xo) L (— +e+it,sym? f @ sym? f ® Xo) xgﬁ} do

1
1 V12 3 2(1 ‘ 2 ~ N2
<<x3+5+x3+5{/ C(5 +¢e+1at)] dt} {/ |L*(5 + & +it,sym®f @ Xo)|
10<]¢|<T t 10<]t|<T t

2
X

1 . 1 . ~
L (§+e+it,sym4f®x()) L<—+5+zt,sym2f®sym4f®x())

2
2
dt}

N|=

X

1 ~
L (§+5+it,sym4f®sym4f®x()>

< phte g gite (T%T%(?fl+5)>

< x%—&-QeT%-‘rQE

Note that 10 < 7T < x. Thus, we obtain

ZAiym%(n)u(n) = ey’ logz+0 <$%+26T¥+2g> 4O ($§+28T212§’+2a . ﬁ) |
n<x

We choose T such that 2377 = :v% ie., T8 o b

T = g,

Thus, we get

Z)\;lynﬂf(n)?%(n) = C4x2 1ng + O<x%+2s)’

n<x
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where

Cy = C2(2)L3(2, symzf)L3(1, sym? f ® )ZO)L3(2, sym4f)
X L3(1, sym4f X )ZO)LQ(Z, sym’f ® sym4f)L2(1, sym’f ® sym4f ® Xo)
x L(2,sym*f @ sym*f)L(1,sym*f @ sym* f ® Xo) H4(2).

This proves the theorem.

3.6 Concluding Remarks

From the proof of the theorems above, we observe that if we know some more
analytic properties of Hs(s) and Hy(s) in the region R(s) > (1 —¢) then possibly
we may move the line of integration to the left of line $(s) = 1. This leads us to

propose:

Conjecture 3.6.1 For sufficiently large z and € > 0 be any small constant, we

have

E N (PP d) = C3(0)2% + E4(0)x + O(x(O)+e)

sym?f
n:a2+b2+c2+d2§m
(a,b,c,d)eZ*
where ¢3(0), ¢4(0),3(0),¢4(0) are effective constants and p1(0), po(0) are some

positive constants satisfying 0 < py(6), u2(0) < 1.

Remark 3.6.2 Though the above conjecture seems to be reasonable, we do not

have any idea currently how to tackle and conclude our conjectural estimates.

ifg=3

e3(0)x?logx + ¢4()x logx + O(xH2+e) if § =4 '
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Chapter 4

Average behavior of the Fourier
coefficients of the symmetric
square L-function over some

sequence of integers

4.1 Introduction

In this chapter, we will explore the possibility of an extension of the dimension.
It seems natural to ask for similar results related to higher dimensions? We

investigate the following question in this chapter:

Question 4.1.1 Can we come up with an asymptotic formula that adequately
reflects the average behaviour of the Fourier coefficients of cusp form in the 6-

dimension under diverse conditions?

Our main objective in this chapter is to establish Theorem 4.1.2. We first
notice the behavior of these Fourier coefficients of cusp form on r¢(n). To be

more specific, we investigate the nature of the following sum:

E Azymzf(a%+a§+a§+ai+a§+a§).

a%+a%+a§+ai+a%+a%§m
6
(alaa23a3aa47a5)a6)ez

for sufficiently large x. More precisely, we prove the following.

81
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Theorem 4.1.2 For sufficiently large x, and any € > 0, we have
14
§ /\gmef(a% + a% + CL?, + ai + ag + ag) =624+ 0 (x?“) ,
a%+a§+a§+ai+a§+a%§z

6
(al 7a2,a37a47a57a6)€Z

Here, ¢, is an effective constant defined as

¢, = ?L(z%, X)L (1L, sym?® f)L(3, sym? f @ x)L(1, sym® f)L(3, sym" f @ x)$.(3),

and x 1s the non-principal Dirichlet character modulo 4. Here, $),(s) is a Dirichlet

5

series which converges uniformly and absolutely in the half plane R(s) > 3, and

$,(s) #0 on R(s) = 3.

Remark 4.1.3 The main idea of the proof here is that the sum in Theorem 4.1.2
is being related to the sum involving 7(n). The main difference from our earlier
result (see 2.1.2) related to a sum involving r4(n) is that r¢(n) is not multiplicative
(cf. section 1.4.2). However, Theorem 1.4.6 demonstrates that r¢(n) can be
written as a sum of two multiplicative functions. The sum in Theorem 4.1.2 is
split into two sums involving the corresponding multiplicative functions, which
are dealt with independently. The two sums are then combined suitably to obtain

the result.

In order to prove Theorem 4.1.2, we need to first prove Lemma 4.1.4 and
Lemma 4.1.5, which will play a pivotal role in the proof. This chapter’s findings
have been published and can be accessed at [Sr-Sa 2]. From [Ha-Wr, pp. 415],

we can write
n? )
r6(n) = 16 E X(d)ﬁ —4 E x(d)d

d|n dln

=:16l(n) — 4v(n),

where y is the non-principal Dirichlet character modulo 4.

Lemma 4.1.4 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z). Let Agym2(n) be the n'™ normalized Fourier coefficient of the
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symmetric square L-function associated with f. If

- A2 L (n)l(n
s = 3 V)

nS

for R(s) > 3, then

where

&,(s) :=C(s — 2)L(s,x)L(s — 2, sym® f) L(s, sym* f @ X)
x L(s — 2, sym*f)L(s, sym* f ® x),

and x is the non-principal character modulo 4. Here, $),(s) is a Dirichlet series
which converges uniformly and absolutely in the half plane R(s) > g, and $,(s) #
0 on R(s) = 3.

Lemma 4.1.5 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z). Let Agym2¢(n) be the n'™ normalized Fourier coefficient of the

symmetric square L-function associated with f. If

o

~ A2, (n)v(n
= S )

nS
n=1

for R(s) > 3, then
§2(5) = (’N52($)52(3)7

where

Ba(s) :=C(s)L(s — 2, X)L(s, sym*f) L(s — 2, sym* f @ x)
x L(s, sym' f)L(s — 2, sym* f @ X),

and x 18 the non-principal character modulo 4. Here, 52(5) 18 a Dirichlet series
which converges uniformly and absolutely in the half plane R(s) > 2, and 52(3) =+
0 on R(s) = 3.
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4.2 Proof of Lemma 4.1.4

We observe that /\zym2 ;(n)l(n) is multiplicative, and hence

5.0 =] (1 M OUP) N 0P ) |

pS pms

p

Note that

2

2
A2 (D)L(p) = (Zagm(p)ﬁm(p)) (r* + x(p))

m=0
= (a(p) +20°(p) + 3 +26%(p) + 5*(p)) (P + x())
=p* +x(p) + (@*(p) + 1+ B (p) (" + x(p))

+ (' (p) + 2(p) + 1+ B2(p) + 8'(p)) (* + x(p))
="+ X(D) + A (D) (07 + X (D)) + Ay £ (0) (0° + X (1))
="+ X(P) + P"Aymz () + X(P) Asyra2 (P)

+ P Aqymt £ (1) + X(2) Asyme 5 (P)

=: by(p)-

From the structure of by(p), we define the coefficients by(n) as

Z%? =C(s = 2)L(s,X)L(s = 2, sym* f) L(s, sym®f @ x) L(s — 2, sym’ f)

n=1

x L(s,sym*f @ x),
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which is absolutely convergent in $(s) > 3. We also note that

g<1+%+...+%+...)

= ((s = 2)L(s, x)L(s — 2,sym*f) L(s, sym*f ® )
x L(s — 2,sym*f)L(s,sym*f ® )

=: B,(s),

for R(s) > 3. Observe that by(n) <. n*™ for any small positive constant e.

Now, we note that in the half plane R(s) > 3 + 2¢, we have

0
(24+e)m
< E r_
p ag
m=1
0
(24+e)m
<D
- p(3+25)m

m=1

1
p(l—l-s)m

m=1
1
p1+e

ba(p) | 0aP?) L ba(P™)

ps p2s pms

Let us write

Ay (P)U(P) . ALz (0™L(P™)
pS pms

Ay

and
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From the above calculations, we observe that |By| < 1 in R(s) > 3 + 2¢.
We note that in the half plane £(s) > 3 + 2¢, we have

1+ Ay
1+ By

=(1+A)(1—By+Bj—Bj+---)

=14 Ay — By — A4B, + higher terms
)\2 ) 2[ 2 —b 2 m
:1+ sym f(p )])(i) 4(p>+...+cn;(338 )

with ¢, (n) <. n**5. So, we have (in the half plane R(s) > 3)

4 )‘gym2(2)l( 2)—b4( 2) Ccm (p™
H<1124)=H<1+ s\P pi p +___+%+...>

p p

<. 1.

Thus, we have (in the half plane R(s) > 2)

and also 9,(s) # 0 on R(s) = 3.

4.3 Proof of Lemma 4.1.5

We observe that /\zym2 s(n)v(n) is multiplicative, and hence

S =]] (1 4 Do O0®) - e ) > .

pS pms

p
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Note that

9 2

Ay (P)0(0) = (Za2m<p>ﬁm<p>) (1 + ()

m=0
= (a'(p) +20%(p) + 3+ 26%(p) + B'(p)) (1 + *x(p))
=1+p°x(p) + (@*(p) + 1+ B%(p)) (1 + p*x(p))
+ (*(p) + ®(p) + 1+ 52(p) + 5'(p)) (1 + *x(p))
=1+ p*X(P) + Aymz (0) (1 + P*X(P)) + Aqymr (p) (1 + p*x(p))
=14 p"x(p) + Az () + P*X () Asymz 5 (P)
+ Aymif () + 2°X (D) Asyme (D)

=: b5(p).

From the structure of b5(p), we define the coefficients bs(n) as

oo

bSr(L?) =C(8)L(s = 2, x) L(s, sym* f) L(s — 2, sym’ f ® x) L(s, sym’ f)
n=1

X L(s — 2,sym* f @ ),

which is absolutely convergent in f(s) > 3. We also note that

H(1+l%;_gﬂ+...+%+...)

p

= ((s)L(s — 2,x)L(s,sym*f)L(s — 2,sym® f @ x)L(s,sym"f)L(s — 2,sym"f ® x)

=: By(s),
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for R(s) > 3. Observe that bs(n) <. n**¢ for any small positive constant . Now,
we note that in the half plane R(s) > 3 4 2¢, we have

o0
b bs (p? b= (p™ (24e)m
5(f)+ 5(i)+...+ 5(£S)+m <<§ :p _
p p p p
m=1
<1
Let us write
gy = MO0 N 000
p b
and ; . (om
Bs — 5(p) 5(p™)

S + T —"_ ms
p p
From the above calculations, we observe that |Bs| < 1 in R(s) > 3 + 2¢.

We note that in the half plane $(s) > 3 + 2¢, we have

1+ As
1JFB5:(1+A5)(1—B5+B§—Bgi;"+~~)
=14 A5 — Bs — A5B5 + higher terms
)\2 21) 2 —b 2 ~ m
oy N PO b507) ") |

p2s pms
with ¢,,(n) <. n**=. So, we have (in the half plane R(s) > 2)

5 A2z (PP)0(P?) — bs(p?) G (p™
H(iigJ:H(H s pi ) p(rfs)+_”>

p p

<. 1.
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Thus, we have (in the half plane R(s) > 2)
~ Fols
Bals) = 29
G,(s)
B 14 A;
N 1+ Bs
p
< 1,
and also 52(5) # 0 on R(s) =
We are now in a position to prove our core theorem of this chapter.
4.4 Proof of Theorem 4.1.2
We can write
E )\Symzf(af + a5+ a3+ ai +ai + al)
a%+a%+a%+ai+ag+a%§m
(a13a2;a37a47a57a6)ez6
ngx n:a%+a%+a§+ai+a%+a%
(a1,a2,a3,04,05,06) EZ°
n<x
= § A2 (1) (li(n) — v1(n)) (4.1)
n<x
=16 E )\symzf —4 E A?ynﬁf(”)”(”)’
n<x n<x

where [(n ZX d2’ and v( ZX
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From Equation (4.1), we can write

E )\sym2f TG E Asyme E Asmef )

n<x n<x n<x

Firstly, we consider the sum Z)\ n)li(n). We begin by applying Per-

n<x

ron’s formula (see section 1.5) to §,(s) with n = 3 4+ and 10 < T < z. Thus,

we have
D N () =16 X (i)

sym2f

n<x n<x
16 n+iT’ s x3+35
—ds+ O .
" 2mi T 82(s) s o ( T )

We move the line of integration to R(s) = 3 +e. By Cauchy’s residue theorem
there is only one simple pole at s = 3, coming from the factor ((s — 2). This
contributes a residue, which is ¢,2?, where ¢, is an effective constant depending

on the values of various L-functions appearing in &,(s) at s = 3.

More precisely,

¢, = 16 lim(s — 3)32—(8)

s—3 S
16

= 5 LB WL, sym® ) L(3,sym’f © x)

x L(1,sym" f)L(3,sym" f ® x)$.(3).

So, we obtain

Z)\Q l 16 SteiT Ste—iT 3tetil e y
§ n =02’ + — + + s)—as
bym2f( ) 1( ’ 2mi /g-‘ra—iT /3+5—iT \A i SIZ( ) S

P i-l—e—i-zT
n<x
x3+35
(@)
o)
(4)
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The contribution of the horizontal line integrals (using Lemma 1.9.4 and Lemma
1.9.9) is

194 < /3+€ (0 —2+iT)L(oc — 2 +iT,sym%f)L(oc — 2 +iT, sym4f)\xadg

%Jrs T

2°2do

< /1+€ (0 +4T) Lo + iT, sym? f) L(o + iT', sym" f)|
) T
2Te

2
< - max 203 (He=o) 3 (14e—0)
T %+€§O’§1+E

.’IZ‘2+2€ T o 13
< max — | I3.
T %—i—sgogl—&-e T35

g
Clearly, (;"’“ﬁ) is monotonic as a function of o for % +e <0 <1+¢, and hence
3

the maximum is attained at the extremities of the interval [5 + ¢,1 4 ¢]. Thus,

J2(4) + J§4) < p2t2e <$é+ET?1+5 n ;p;E)

3+3
< $g+3sT%+e 4 z o
T
The contribution of the left vertical line integral (using the Cauchy-Schwarz in-

equality, Lemma 1.9.1, and Lemma 1.9.9) is
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ratedt

7o < /3+E+ZT C(3 + e +it)L(3 + & + it sym?f)L(3 + ¢ + it, sym* )]
: 3 be—iT 12 + &+ it]

1
, 1 R\ 3
Lzt 4 it (/ ¢z + e+ it) dt)
10<t|<T t

=

y (/ \L(%+5—|—it,sym2f)L(%+e+it,sym4f)\2dt)2
10<|¢|<T t
< Q;ngE + ngrE <T%T%+%>

< $g+ZET%+ZE

Note that 10 < T < x. Thus, we obtain

3+3¢
2 — 3 g 2¢ % 2e x
E )‘smef(n)h(n) =2 +0 (I’ et ) + 0 ( T ) .

n<x

3

5,13 . 5 1 1
We choose T' such that 2272 =< 7% ie., T2 < x2. Therefore, T' < x5. Thus, we

get

Zx\zymgf(n)ll(n) =c,2° + O(x%“). (4.2)

n<x

Similarly, we apply Perron’s formula (see section 1.5) to o(s) with n =3+
and 10 < T < x. Thus, we have

D N moa(n) = 4> Ny (n)o(n)

n<x n<x
4 n+il s w3+35
= —d O :
21 Sy §2(s) s s+ < T )

5

We move the line of integration to R(s) = 5 + ¢. There is no singularity in the
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~ s
rectangle obtained and the function §o(s)— is analytic in this region. Thus,
s

using Cauchy’s theorem for rectangles pertaining to analytic functions, we get

4 StetiT S4e—iT 34eriT) _ o
E N2 e p(n)oy(n) = / +/ +/ $a(s)—ds
2mi 3 femiT 34e—iT S petiT s

n<x
x3+35
@)
; ( )

4 3+3e
—(JO 4+ I I+ 0 (xT ) .

' omi

The contribution of the horizontal line integrals (using Lemma 1.9.8 and
Lemma 1.9.9) is

2%do

(5) (5) 3te |L(c —2+iT,x)L(c — 2+ 1T, sym?f ® X)L(o — 2 +iT, sym4f) ® x|

IO+ I <« =
S4e

2

2’ 2do.

- /1+€ |L(o +iT, x)L(o + iT,sym?f @ x)L(o + iT,sym’ f @ )|
1 T
§+E

Thus,

2
IV 4D « (L) max  2oTs0reopiiteo)
T ) 1ie<o<ite

l‘2+2€ T o 13
< ( > max < = ) 1.
T lie<o<ite \ T3

ag
Clearly, < 13) is monotonic as a function of o for % +e<o0<1+4¢, and

hence the maximum is attained at the extremities of the interval [% +e,1+ 5].
Thus,

J (5) + J(5) < 72t ($2+6T13_1+€ n ;1;;5)

x3+38

5 7
< x§+3€T€+E I
T

The contribution of the left vertical line integral (using the Cauchy-Schwarz
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inequality, Lemma 1.9.6, and Lemma 1.9.9) is

ratedt

3 peti . . .
70 < /2+ HT L, 4 e+ it, )L + e+ it, sym?f @ X)L(L + & + it sym' f @ )|
1 §e—iT 12 + e+ it

1

1 ; 2 3

& p3tE 4 gate (/ LG +e+it Xl dt>
10<|t|<T t

1
(J LG+ + it sym?f © )L +e+it,sym4f®x>|2dt>2
10<[¢|<T t

<< :L‘g+6 —+ x%+6 (T%T%"‘%)
< I’g+2€T%+2€,

Note that 10 < T < x. Thus, we obtain

2 St2epdtoe x?te
Aymep(n)vi(n) = O (x? T > +0 7

n<x

5,43 3 . 5 1 1
We choose T such that 272 < % i.e., T2 < x2. Therefore, T' < x5.

Thus, we get
E A2 p(n)vi(n) = O (x%“) : (4.3)
n<x
Combining Equations (4.2) and (4.3), we get
E )\gymgf(n)rﬁ(n) =622+ 0 <:c1?4+€> ,
n<x
where ¢, is an effective constant given by

¢, = ?L(& X)L(1, sym?® f)L(3, sym® f @ x) L(1,sym* f) L(3,sym™* f @ x)$.(3),
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and y is the non-principal Dirichlet character modulo 4.

This proves the theorem.
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Chapter 5

On the average behavior of the
Fourier coeflicients of jth
symmetric power L-function over
a certain sequences of positive

integers

5.1 Introduction

In the previous chapter, we investigated the average behavior of the n'® nor-
malized Fourier coefficients of the symmetric square L-function attached to a
primitive holomorphic cusp form of weight k for the full modular group SL(2,7Z)
over some sequence of integers. To be more precise, we proved the following
asymptotic formula:

For sufficiently large x, and any € > 0, we have

Z Aomep(al + a5 + a3+ af + a2+ af) = c.2° + O <$1?>4+5> :
a?+a3+ad+a+ad+ai<a
(a1,a2,a3,a4,a5,a6)EZ0

Here, ¢, is an effective constant defined as

€2 = ?L(?»X)L(l’Smef)L(&sym?f @) L1 sym* f)L(3, sym" f @ x) Ha(3),

97
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and y is the non-principal Dirichlet character modulo 4.

Now, our goal is to improve as well as generalize the above result. Generaliza-
tion was possible due to recent celebrated work of Newton and Thorne (see 3.1.1)
and for improvement, we use better average or individual subconvexity bounds
for the related L-functions. The findings presented in this chapter will shortly be
published in [Sr-Sa 5].

Our main aim in this chapter is to establish an asymptotic formula for the

following sum:

E Ao p(a] + a5 + a3 + af + a2 + af),

a%+a%+a§+ai+ag+a%§x
6
(al , @2 aa37a47a57a6)€Z

where j > 2 be any fixed integer, x is sufficiently large, and ¢ > 0 any small

constant. We have the following theorem in this regard.

Theorem 5.1.1 Let j > 2 be any fized integer. For sufficiently large x, and

e > 0 any small constant, we have

§ 6
)\gymjf(a%%—a%%—agjtaijta%jtag) =c(j)x*+0 <x3 3<j+1)2+1+5> :

a%+a%+a%+ai+a%+a%§z
6
(al , a2 7a37a47a57a’6)€Z

where c(7) is an effective constant defined as

16

i) = 5 LGB [EQ sym® £)L(, sym® £ 0 ) Hy(3),

n=1
and x 15 the non-principal Dirichlet character modulo 4.

From [Ha-Wr, pp. 415], we can write

) =16 x(d)% ~ 4D x(d)a?

d|n dln

=:16l(n) — 4v(n),

where Y is the non-principal Dirichlet character modulo 4.
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Lemma 5.1.2 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z), and let Agymif(n) be the n'™ normalized Fourier coefficient of the

Gt symmetric power L-function associated to f. If

oo

A2 (n)l(n
FJ(S)IZM’

nS
n=1

for R(s) > 3, then
where

G,(s) :==C((s —2)L(s, X)HL(S — 2, sym*" f)L(s, sym®™ f @ x),

n=1

and x 15 the non-principal character modulo 4.

Here, H;(s) is a Dirichlet series which converges uniformly, and absolutely in the
half plane R(s) > 2, and H;(s) # 0 on R(s) = 3.

27
Lemma 5.1.3 Let f be a normalized primitive holomorphic cusp form of weight
k for SL(2,Z), and let Agymif(n) be the n'™ normalized Fourier coefficient of the

Gt symmetric power L-function associated to f. If

~ - A2 (n)v(n
= 3 matotn)
n=1

for R(s) > 3, then
where

Gi(5) =C(5)L(s — 2.0 | [ Ls, sym® 1) L(s — 2. sym® f %),

n=1

and x 1s the non-principal character modulo 4.
Here I:Tj(s) is a Dirichlet series which converges uniformly, and absolutely in the
half plane R(s) > 2, and ﬁj(s) # 0 on RN(s) = 3.

27
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Lemma 5.1.2 and Lemma 5.1.3 are crucial in the proof of Theorem 5.1.1 and

are proved before we proceed to the theorem.

5.2 Proof of Lemma 5.1.2

We observe that )\zymj s(n)l(n) is multiplicative, and hence

Fi(s) = H (1 g Qo D) A PR ) .

pS pms

p

Using Lemma 1.9.14, we note that,

2o f (D)D) = N2(07) (0* + x(p))

j
=1+ Zkf(p”) (P +x(p)
=1

J
=11+ Z)\Symmf(p) (p2 + X(p))
=1

J J
=p* + x(p) + E Asym2tf(P)P” + E Asym2t £ (P) X (P)
=1 =1
=: bg(p).

From the structure of bg(p), we define the coefficients bg(n) as

> j
bﬁé?) =((s = 2)L(s, X)HL(S —2,sym™ f) L(s, sym™ f ® x),
n=1 n=1
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which is absolutely convergent in R(s) > 3. We also note that,
b b (p™
H(H#)*'*%*“)
., p D

= (s = 2)Ls, 0| [ £Gs — 2, 59m™ £ L(s, sym® f & x)

n=1

= Gj (8)7

for R(s) > 3. Observe that bg(n) <. n?* for any small positive constant .
Now, we note that in the half plane R(s) > 3 + 2¢, we have

I
[
S,
7
o
3

Let us write

My OI@) A 070

As
ps pms

and
bo(p) ... bo(p™)

S + ms
p p
From the above calculations, we observe that |Bs| < 1 in R(s) > 3 + 2¢.

Bg =
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We note that in the half plane £(s) > 3 + 2¢, we have

1+ Ag

1+Bﬁ:(1+A6)(1—BG+B§—B§’+-~)

=14 Ag — Bg — AgBg + higher terms
)\2 ; 2[ 2 —b 2 m
P Symf(p)p(i) 6<p)+”.+cn;(i)s)

with ¢, (n) <. n***. So, we have (in the half plane R(s) > 2)

1 GigZ) T <1+ Agymjf@z);(iz) ) ") +)

p

<. 1.

Thus, we have (in the half plane R(s) > 3)

1+ Ag
- (1+B6)
< 1,

and also H,(s) # 0 on R(s) = 3.

Now, we will see the proof of Lemma 5.1.3.

5.3 Proof of Lemma 5.1.3

We observe that \2

(n)v(n) is multiplicative, and hence
symJ f

Fys) =11 (1 g Qo DVO) L A PR ) SNGRY

pS pms
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Using Lemma 1.9.14, we note that,

A i (P)v(p) = X3(7) (14 p°x(p))

j

_ 1+fo(p”) (1+p°x(p))
=1
j

=1+ ZASymmf(p) (1+p°x(p))
=1

J J
=1 +p2X(p) + E )‘symzlf(p) + E )‘symmf(p)pQX(p)
=1 =1

= b7(p)

From the structure of b7(p), we define the coefficients b;(n) as

> j
= (5)L(s — 2.0 | [ s, sym® £ L(s — 2,sym®" f @ ),

n=1

b7 (n)
nS
n=1

which is absolutely convergent in R(s) > 3. We also note that,

T (12 )

p

= ¢(s)L(s — 2,0 | [ L (s sym™ £) L(s — 2, 5ym* f @ x)

n=1

=: G;(s),

for R(s) > 3. Observe that b;(n) <. n*™ for any small positive constant e.
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Now, we note that in the half plane R(s) > 3 + 2¢, we have

o0
b b-(p? b-(p™ (24+e)m
7(§)+ 7(§S)+...+ 7(§L8)+... < g p —
p p p p
m=1
<1
Let us write,
2 ; v )\2 ; Yy (™
Ay = Symf(f)) (p) o symf(pms) (p )+” ’
b p
and ) b
B, — 7(19) 7(]? )

+ . e +
pS pmS
From the above calculations, we observe that |B;| < 1 in R(s) > 3 + 2¢.

We note that in the half plane R(s) > 3 + 2, we have

1+ A;

1+B7:(1+A7)(1—B7+1_f3$—B§>+---)

=1+ A; — B; — A;B7 + higher terms
A2 i ¢ (0P)0(9?) = br(p°) o (D™
:1+ el p2s ot p(ffs)

with ¢, (n) <. n**<. So, we have (in the half plane R(s) > 2)

Ay Agymi s (P2)0(p%) — br(p*) Cn(p"™
e L

< 1.
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and also H;(s) # 0 on R(s) =

Now that we have reached this point, we may demonstrate the chapter’s main
theorem.

5.4 Proof of Theorem 5.1.1

Observe that,

E Ao p(af + a3 + a3 + af + a3 + af)

al +a2+a3+a4+a5+a6<a:
6
(a1,a2,a3,a4,05,06)€Z

E )\sme 7 E 1

n<x n= a%—‘—a%—&-a%—&-ai—&-a%—!—a%

6
(a1,a2,03,04,05,06)EZ

n<x
= X ) () — v () (5.2)
n<x
= 162)\§ymjf(n)l(n) - 4ZA§ymjf(n)v(n),
n<x n<x

where [(n) = Zx(d)%, and v(n) = Zx(d)dQ.
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Now, from (5.2), we can write

2
E )\sym7f E )\sym7f E )\symff )

n<x n<x n<x

Firstly, we consider the sum Z)\Symj ;(n)li(n). We begin by applying the

n<x

Perron’s formula (see section 1.5) to Fj(s) with n = 3+¢ and 10 < T < z. Thus,

E )\smef ll =16 : :)\symjf

we have

n<x n<x
16 n+iT’ s p313e
e F;(s)—ds + O .
21 Sy 5(5) s N < T )

We move the line of integration to R(s) = 2 +¢, and by Cauchy’s residue theorem
there is only one simple pole at s = 3, coming from the factor (s —2). This con-
tributes a residue, which is ¢(j)z?3, where c(j) is an effective constant depending

on the values of various L-functions appearing in G,(s) at s = 3.

More precisely,

c(j) = 16111%(8 — 3)F](S)

S

_ ?L 3, %) HL 1, sym®" f)L(3,sym®" f @ x) H;(3).

n=1

So, we obtain

) 16 Stetil Ste—iT 3+e+iT 5
d Rssmh(n) =c(a® 504 [ [T [ ) s
Ste—iT 34+e—iT Ste+iT S
.133+38
O
o ()

16 LL’3+38
e ()3 (6) (6) (6)
=: c(j)x +2m,(J1 +Jy 7+ J5 )+O< 7 )

The contribution of horizontal line integrals (JQ(G) and J?EG)) in absolute value
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(using Lemmas 5.1.2, 1.9.3 and 1.9.10) is

J
C(o = 2+4T) [ [L(o — 2+ 4T, sym>"f)]

3+¢ i
<</ o= 2%do
g—&-s T
J
. . 2n
e [6lo DI +iT sy )
n= o‘+2d
< [ﬁ T x o
2

) .
< (l‘—) max l‘UT( 2
T ) lie<o<ite

2+2¢ 7 G+n2_ 4
’ max | ——0 | P\ 2
G+D2 4 )
T %“'ESUSI“"E T<jT_ﬁ)

g
T . . . )
W is monotonic as a function of o for 5 +¢ < o <
2 21

Clearly,

1+ ¢, and hence the maximum is attained at the extremities of the interval
[3+¢e,1+4¢]. Thus,

G+D2 2 1+e
J2(6) _|_J§6) < p2t% (xé—i-eT( 1 31 1) i x >

12
(J-Zl) —%—i—e) x3+3€
+

T

< x%+35T<

The contribution of the left vertical line integral (J) in absolute value (using

Lemmas 5.1.2, 1.9.3, 1.9.10 and Hélder’s inequality) is
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J
C(3+e+ zt)HL(% + & +it,sym?" f)
n=1

2te+iT .
< / = : w2 *edt
5 peiT |2 + ¢+ it|

1

12 i3
dt>

C(1 + e +it)
2
dt>

5
2 2
5 2 12

i
1
/ HL(—+5+it,sym2”f) dt
<p<T [T 2

<<31:g+‘€~|—9c%+5l /
T\ Jio<pu<r

>< /
10<[t<T

[NIES

1
L(= + ¢ +it,sym*f)

J

1

X L(= it n

wlgzztéT H (2+8+Z ,sym*" f)
n=2

< pite g pte <T71+2.ﬁ+3.%.%+((j+1)274)(%.%%.1—5‘2)+((j+1)2—4)(%.%))

G+1? 13
<<$%+ET( : _ﬁ+6)

Note that 10 < T < x. Thus, we obtain

5 G+D? 13, 3+3e
E )‘zymff(nﬂl(n)_C(j)$3+0(372+6T< ! 12+))+O(xT >

G+D?% 13

3(j+1>271>
5 o 3 . 1
We choose T such that xET( ! 12) =% ie, T( 2 = x2.

6
Therefore, T' =< x36G+12-1,
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Thus, we get

E )\gymjf(n)ll(n) =c(j)x* + O <x3*3(j+f>42_1+35> _ (5.3)

Similarly, we apply the Perron’s formula (see section 1.5) to ﬁj(s) withn =3+¢
and 10 < T < z. Thus, we have

E )\symﬂf vl =4 : :)\symjf

n<w n<x
4 n+iT s ZE3+35
= — Fi(s)—ds+ O i
210 Sy 5(5) s ¢ * ( T )

We move the line of integration to R(s) = g+5. Note that, there is no singularity
S

~
in the rectangle obtained, and the function Fj(s)— is analytic in this region.
s

Thus, using Cauchy’s theorem for rectangle pertaining to analytic functions, we

. o) 4 /§+s+iT /3+sz‘T /3+s+z’T f( )xsd
E 2 irmvi(n) = — + + \§)——as
ymJ f 211 3 el 34e—iT StetiT J S
1‘3+3€
+0
()

4 ) 7 [L’3+3€
= 2m(‘]1 + '+ J37)+ O 7 |-

get

The contribution of horizontal line integrals (J2(7) and J:g?)) in absolute value
(using Lemmas 5.1.3, 1.9.8 and 1.9.10) is
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Clearly, (

J
L(oc = 2+iT) [ [L(o — 2 +iT, sym® f @ x)|

3+e .
< / = x%do
Be g

;
. . 2n
L Lo+ zT)Hle +iT,sym? f @ y))|
n= o+2
< [H T 27 do

2

2 G+D% 1) o
< (x_) max x"T< 2 6)(1 *e

T ) Lie<o<i+e

22 . 7 ((121)2_;)
< max |\ —ge oy ) T -

T ) l4e<o<i+e T(fog)
o

T . . . .
m is monotonic as a function of o for ;te<o<1+e,
U7 7%

and hence the maximum is attained at the extremities of the interval [5+¢, 14-¢].

Thus,

G+n%_ 1 1+e
J2(7) +J?E7) < 2t (:JcéJ“ET( 1 1 1+€) + QCT )

G+D?% 13 343¢
< x%+3€T< T 75%) v
T

The contribution of the left vertical line integral (") in absolute value (using
Lemmas 5.1.3, 1.9.7, 1.9.10 and Hélder’s inequality) is
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J
L3 +e+it) [ [L(} +e +it,sym®f @ X)

n=1

S+e+iT .
< / = , x2tedt
5 pemiT |2 + e +it]

6 6
dt}
2

dt}

j
1
X { max HL(§ + & +it, sym*" f @ x)
n=2

-

1

P L igs e /
T | Jro<py<r

>< /
10< [t <T

[NIES

1
L(5 + e +it,sym*f ® x)

10<[¢[<T
1
2 3

j
1

X L(= +e+it,sym* f @ x)| dt
/IOStIST g 2

< pite g gite (T—1+2~é+3~%~%+(<ﬂ'+1>2—4)(%-%-%)+(<J‘+1>2—4)(%%)>

s ((j+1)2 11)
<<x§+5T 1 12 .

Note that 10 < T < z. Thus, we obtain

) 5y, ((j+41)2_%) 3+
E Agymi f()v1(n) = O | z2 T —1—0( T )

n<x

G+1?% 11

(j+1)2+i)
We choose T" such that IE%T( ot ) = Ts ie., T< TTE) g,

6
Therefore, T < x3G+12+1,
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Thus, we get
: )\zymjf(n>vl<n) =0 <I37m+5> . (54>
Combining (5.3) and (5.4), we get
E Azymjf(n)TG(n) = c(j)z® + O (ﬁ‘ﬁﬂ) :

n<x

where ¢(j) is an effective constant given by

16

(i) = 3 LB [Ltsym® )L sym £ © ) H;(3)

n=1

and Y is the non-principal Dirichlet character modulo 4.

This proves the theorem.

Remark 5.4.1 When j = 2, Theorem 5.1.1 gives the error term O <x%+5),

which improves the error term in 4.1.2.

5.4.1 Concluding Remarks

Note that we have the expected upper bounds, namely,

2T 5 .
/T C <? + Zt>
2T 5
(24
/T (8 + 1t, f)

uniformly for 7> 1 (see [Iv 2, Gd]). Even if we move the line of integration to

12
dt < T'F*

and
4

dt < T,

R(s) = 2 and R(s) = 2 pertaining to l;(n) and v;(n) respectively, and using the

arguments of this paper, we end up with the same error term as stated in the

Theorem 5.1.1.




Chapter 6

On a divisor problem related to a

certain Dedekind zeta-function

6.1 Introduction

We begin this chapter by discussing algebraic number fields and introduce the
tools needed to define a special class of L-function, namely, the Dedekind zeta-

function.

Definition 6.1.1 An extension field K of a field F is an algebraic extension of F

if every element in K is algebraic over F.

Definition 6.1.2 An extension field K of a field IF is said to be a Galois extension
field if every irreducible polynomial over [F which has a root in K factors into linear

factors in K. Also, K must be a separable extension.

Definition 6.1.3 A finite field extension of Q is known as algebraic number field.

In other words, a field that includes Q as a sub-field. The fact that an algebraic
number field is a finite-dimensional vector space over the field Q, however, pro-
vides a more thorough explanation. The dimension of this vector space refers to

its degree.

Definition 6.1.4 An algebraic integer is a number that is the root of some monic

polynomial with integer coefficients.

The algebraic integers of a given algebraic number field constitute a ring

within the field, just as the set of rational integers Z forms a ring in Q.

113
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Definition 6.1.5 The collection of algebraic integers of an algebraic number field

K is known as the ring of integers, and denoted by Ok.

Definition 6.1.6 An ideal « is a subset of Ok, which satisfies the following

properties:
1. if a,b € « then so will a + b and a.b.
2. for every ¢ € Ok and a € «, ca € a.

Now that we have the necessary resources, we can introduce a new L-function.

Let K be an algebraic extension of degree m of rational field Q. Define (for

R(s) > 1) 1
(k(s) = ZW7

«
where the summation is running over all the integral ideals a of K, and norm of
integral ideal « is denoted by N(«).
We demonstrate that Dedekind zeta-function can also be represented as an in-
finite product of the norms of prime ideals p, much like the Riemann zeta-function,

by using the fundamental theorem of ideal theory. For $(s) > 1, we have
)= [[—+—=
PCO0x N(p)

Remark 6.1.7 When K = Q, the Dedekind zeta-function becomes the Riemann

zeta-function.

One can easily observe that the function (k(s) can also be written as:

oo

Gel) = Y=,

n=1

where ax(n) denotes the number of integral ideals of K with norm m.

Lemma 6.1.8 (x(s) has an analytic continuation to C\{1} with a simple pole

at s = 1.
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The coefficients ax plays a very vital role in number theory. It is shown (by
Chandrasekharan and Good [Ch-Gd]) that these coefficients are multiplicative

and satisfies the upper bound

ag(n) < d(n)™,

where m is the degree of extension, i.e., m = [K : Q] and d(n) is the number of

divisors of n.

In 1949, Landau [Lan] showed that
E ag(n) =dx + O (mlfmiH%) :
n<x
where ¢ is the residue of (x(s) at its simple pole at s = 1, which is further

E ag(n) =dz+ 0 <x% log 116 :U) :

n<x

improved to

for quadratic field by Huxley and Watt [Hx-Wa]. Some further improvement
is also available for cubic fields by Miiller [Mii]. In 1993, W.G. Nowak [No]
established that

2 8
O <x1_ﬁ+m(5m+2) logSn}L(-)l—Q J;) if 3 S m S 6

E ax(n) = "z +
2 3

n<x O <x1_5+2m72 log% x) tfm>7

We also have some significant results (by Chandrasekharan and Narasimhan
[Ch-Nr] and by Chandrasekharan and Good [Ch-Gd]) of ZaK(n)k for some

n<x

higher powers k, if K is the Galois extension of Q.

If h is the class number of K and [K : Q] = r; 4+ 215, where 71 is the number

of real conjugate fields and 27y is the number of complex conjugate fields, then
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we can write
E ag(n) = hAx + E(z),
n<x

where
T +r2 T2 R

C wlAfZ
Here, w is the number of roots of unity in K; R is the regulator of K and A is

the discriminant of K.
When [K: Q] =m > 10, B. Paul and A. Sankaranarayanan proved that

E(r) < gt

where implied constants depend only on K and ¢ (see [Pa-Sal).
Also, if K= Q((;), where [ is some positive integer and [K : Q] = m > 8, then,

E(r) < gt ms e,
where the implied constants depend only on K and ¢ (see [Pa-Sal).

It is of great interest to study the L-functions related to primitive holomorphic
cusp forms. For many years, it has been a profound area in which many authors
have contributed.

Let L(s, f) be the L-function connected with the primitive holomorphic cusp
form f of weight w for the full modular group SL(2,Z) and A¢(n) are the normal-
ized n'™ Fourier coefficients of Fourier expansion of f(z) at the cusp oo. Then,

we can write

where

/\k,f(n) = Z )xf(nl)/\f(ng))\f(nk)

n=ning...Ng

In 2012, Kanemitsu, Sankaranarayanan and Tanigawa [Ka-Sa-Tn| proved that
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for k > 2,

Z/\k’f(n) < xl_Ti?%,

n<x
where implied constant depends only on f and e, which is further improved by
Li in [Li 3.
For such divisor problems connected to holomorphic cusp forms, see the work of
H.F. Liu [Li], [Li-Za] and Li [Li 3].

Let K3 be a non-normal cubic extension of a rational field Q. It is natural to

study the k' integral power of Dedekind zeta function, i.e.,

(Crs(8))F = Zak%i(n)

n=1

for R(s) > 1, where apx,(n) = Z ag,(n1)axs(ne) . . . ax, (ng).
n=ning...ng

In 2012, Li [Lii 4] was able to refine the previously known results (by Fomenko

[Fo 3]) of mean square and third power of ak,(n) to
2 E-‘,—g
E ag,(n)” =aylogz +as+ O <x31 )
n<x
where a; and ay are constants and
3 235 1 ¢
ag,(n)” = xPs3(logz) + O <x259 >
n<x

where Pj(t) is a suitable polynomial in ¢ of degree 4.

Question 6.1.9 Do we have such an asymptotic formula for higher mean values

of ag(n) for any non-normal extension K of Q and for the sum related to the

coefficients of the k-fold generating series of ZM ?
nS

n=1

Throughout this chapter, we restrict our attention to non-normal cubic ex-
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tension K3 of rational field Q. Let

(0.9]

n=1

is the Dedekind zeta-function which is absolutely convergent in R(s) > 1, con-
tinuable as a meromorphic function to the whole complex plane C with a pole at
s =1.

We are interested in the asymptotic formula for the sum

Z%,Kg (n),

n<x

for any integer k£ > 1, where

apx,(n) = Z ag,(n1)axs(ne) . . . ax, (ng).

n=ninz..ng

Note that, a1 x,(n) = ak,(n).

Our primary purpose in this chapter is to investigate the above partial sum and
establish an asymptotic formula for the same, with a tightened error term. In
order to make our discussion somewhat self-sufficient, we will briefly review some
of the essential definitions and associated results that will be referenced frequently

to support our finding.

Definition 6.1.10 For each o such that 0 < ¢ < 1, define

p(o) = inf{¢: ((o +it) < [t}

As a function of o, u(o) is continuous, non-increasing and convex downwards in
the sense that no arc of the curve y = p(o) has any point above its chord. Also,

p(o) is never negative. Therefore,

0 ifo>1

plo) =9, , :
53— 0 ifo<0
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By continuity of the function u(c), we obtain

u(l)=0 and p(0)= %
Hypothesis 6.1.11 (Lindel6f hypothesis) For any ¢ > 0, we have
¢ (% + it) <t
This is equivalent to saying that

1
((oc+it)<t® forall >0 and 025,

ie.,

N | —

(o) =0 for o>

First, we make the following hypothesis:

Hypothesis 6.1.12 Let |t| > 1 and € > 0 be any small constant. Then, we have

g(%+u><qu+mwa

where = p (%)
Remark 6.1.13 Phragmén Lindelof principle leads to
((o +it) < (|t + 1)1

1
uniformly for 5 <o <2, |t| > 1, under the assumption of our hypothesis 6.1.12.

13
Unconditionally, the hypothesis 6.1.12 is true with u = a1 5ee Bourgain [Bo].

For any integer k > 2, writing,

Za’k,KS (n) = Myx, () + Ejx,(2),

n<x

where My, k, () is the main term which is of the form zP;_;(logz), where Py_;(¢)

is a polynomial in t of degree kK — 1. We prove the following theorem.
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Theorem 6.1.14 Let £ > 0 (be any small constant) and define A\; = 3¢, Ay =
min (Z,u, i), A3 = min (u + %, g), A4 = min (2u + %, 1), A5 = min (B,u +1, %) and
Ao =p(k—6)+% fork>6.

Then we have for any integer k > 1,

1
Er,(z) < o'~ o ok

Conjecture 6.1.15 (Strong Artin Conjecture) Let G be the Galois group
of an extension K/F of number fields. Let p be an n-dimensional complex rep-
resentation of G. There exists an automorphic representation m of GL(n, Ap) ,
such that the L-functions agree almost everywhere, i.e., except at a finite number

of places v, L(s, p,) = L(s,m,). Moreover, if p is irreducible, then 7 is cuspidal.
Lemma 6.1.16 For R(s) > 1, we have
Cks(s) = C(s)L(s, f).

Proof.Proof of this lemma is strongly motivated by the fact that the strong Artin
conjecture is true for the group S5 and Sj is the Galois group of normal closure
(i.e. Kg) of K3 over Q. Note that, Kg is a non abelian extension of degree 6.
For the sake of completeness we give the details (see [Lii 4]). There are three

conjugacy classes of S3, namely,

P (1)7
ps ¢ (123)(132)  and

ps + (12)(13)(23).

Hence, there are three simple characters: the principal character ¢;; character
determined by the subgroup ps U p3, say ¢s; and the 2-dimensional character ¢s.
Let D be the discriminant of f(z) = 23 + az® + bz + ¢ (i.e., D = a*b* + 18abc —
4b% — 4a*c — 27¢?) and Ky = Q(v/D). The extensions K, /Q, Kg/Ky and Kg/Ks

are abelian. The Dedekind zeta function satisfies the following relations:

(ke (8) = Ly Ly Lig,,

CKz (S) = LsO1 L<p27
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CKs (S) = Lsol L<P37

where

L<p1 - <(8)7
Ly, = L(s, 02, Ks/Q),
LSO:S == L(S, ©s3, KG/Q)

Here L(s, pq,Kg/Q) and L(s, 3, Ke/Q) are Artin L-functions, (see pp. 226-227
of [Cas-Fr]).
Since, the strong Artin conjecture holds true in this situation, the function

L(s, ¢3,Ke/Q) also can be interpreted in another way (see [De 2]). Let
O:S; — GL(2,C)

be the irreducible 2-dimensional representation. Then ® gives a cuspidal repre-
sentation 7 of GL(2,Ag). Let

L(s,m) = i CL?(;L) :
n=1

In particular, if ® is odd, i.e., D < 0 then

L(s,m) = L(s, f),
where f is a holomorphic cusp form of weight 1 for the congruence group I'y(|D|),

f(z) = Za(n)e%mz.

n=1

Thus, we have Ly, = L(s, f) and hence

ie.,

(ks (s) = C(s)L(s, f).

This proves the lemma.
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Here after we consider only those Kz for which (x,(s) has such a lift stated in
Lemma 6.1.16.

Now, we have all the necessary tools required to prove the key theorem 6.1.14

of this chapter. The work presented in this chapter will soon appear in [Sr-Sa 4].

6.2 Proof of Theorem 6.1.14

Let & > 1 be an integer. We start with the Perron’s formula (see section 1.5),
applying to ((k,(s))* with n =1+ and 1 < T < x. Thus, we obtain

1 n+iT LT plite
D st = g [ Gt S0 ().

n<x

Note that ((x,(s))* has a pole at s = 1 of order k so that by moving line of

integration to R(s) = 3, we obtain

27

> sty =t (i o g {1 [ [ st

n<x

wo('7)

LEH_E

where P,_1(t) is a polynomial in ¢ of degree k — 1.
Note that, the horizontal lines (J5(k) and J3(k)) contribute (for any fixed integer
k > 1), using Lemma 6.1.16

Jo(k) + J3(k) < max gfT@kwtE)A—o)tep-1

1
3<0<n

g
xr 2k
2kpu+5—1+e
< max o ZE T 3 .
350<n TR

For any fixed k& and p(> 0), (ﬁ) is monotonic as a function of o for
T nt 5

% < o < n and hence the maximum is attained at the extremities of the interval

[2:m]-
Thus,

s
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14€

Jo(k) + Js(k) < | pater @kt -1,

Vertical line contributions:

0. For k=1,

1 3T

Ji(1) == — (s (s)—ds.

2mi 1 S

Using Lemma 6.1.16, Lemma 1.9.6, Lemma 1.9.7 and Cauchy-Schwarz inequality,

L 1 (v
Ji(1) < z2 + 22 logT{ max —/
UJy

1<U<T

(el
Q(%Jrz’t) 2dt>é ([JU L<%+it,f)

1
<L z? gt log T" max {—U%EU;“}
<ot | U

L I
L x? 4+x2logT { max —/

<<t U u
2

1
2 2
dt)

< $% + $%T3E.
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Note that, with k£ =1,

Jo(1) + J5(1) <

(since p < ¢)

(as long as 10 < T < z).

Thus, J1(1) dominates over J,(1) + J5(1).

Now,

E a1k, (n) = xPy(logz) + Ey k. (2),

n<x

JZ1+E

where Fi g, (z) < +az 4z e,

1+e

Ei,(r) < i+ 2T,

x
We choose T" such that T~ x%, ie., T ~ T3,

So finally, we have

____1
By (z) < 2! 70w,

1. For k=2,
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Using Lemma 6.1.16, hypothesis 6.1.12 and Lemma 1.9.6 and Lemma 1.9.7
¢ 1—1—’15 L 1+'tf 2dt
2 ! 2 T

1
< 77 + 72 log T max {ﬁUQ’”QEUlog U}

11 1 v 2
J1(2) € 22 —i—x?logT{lganz(T i .

1<U<T

< x7 4 g A

Note that, by Lemma 1.9.6 and Lemma 1.9.7,

U 4 U
AL(%Jrit,f) dt«(é L(%H‘t,f)

< Uste,

1 1
2 2 U 6 2
W (f n
5

I
L(é—‘—lt,f)

Also, we have (using Lemmas 1.9.2, 1.9.3 and above observation)

2

1 1 (v
J1(2) < z2 —i—wﬂogT{lrSnUag(T 5[]

1 .
¢ (5 —|—Zt>
1
<(§ —|—2t)

< 2% + 2} log T max {1U5+€U5(3+5)}
i<u<t | U

L (% Lt f)
) (L

2
q
I
L (5 + Zt,f)

[N

1 1 1 v
L x2 +2x2logT lranaécT ﬁ(é

4
dt)

< x7 2Tt

Thus, we have
Jl(Q) <K x% + x%+4aTmin (2“&)‘

N
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Note that, with £ = 2,

2k 1 4
Up+ ) —1==(dp+-]—1
(200 5 ) 15 (4 5)

N | —

Case (i) If 0 < p < 4, then min (2, 1) = 24, so that 2p — 5 < 2u is true.

Case (ii) If p > %, then min (Z,u, }1) = }1, then 2u — % < % happens when
LT
H=876" a1

which is anyway true, since we know 1 < £2(< 7;) (by Bourgain [Bo]).
Thus,
J1(2) < 2% + griepmin(2n3)

holds good, which dominates over J,(2) 4+ J5(2).

Now,

E ask,(n) = zP(logx) + Eyk, (),

n<x

14 .
where By, (2) < A 4 xE 4 griemin (20.3) e,

1+¢ 1 1
+ 22 4 gatieTAe,

E2,K3($) <
x L - 14\ 1.
We choose T" such that 7 2T e, T2 ~ 22, ie.,
_ 1
T ~ 20+x2)

So finally, we have

1
Esx, (z) < o3y TO

2. For k=3,
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Using Lemma 6.1.16, Cauchy-Schwarz Inequality and on the assumption of our

hypothesis 6.1.12,
3
dt}

1 1 1 v s
J1(3) < x2 +x210gT{lrSn(}a§XT T .

1
C(§+Zt)
((%Jrz’t)

L
L(§+Zt,f)

4 2
dt)

1 U
<77+ 32logT{ max —UHe (/

1<u<r U y
1
U 1 6 3
X (/ L(——l—it,f) dt>
u 2

< 1% + 32 log T max {lU““Ué(Hs)Ué(“@}
<<t | U

1 1 1
& x2 + grHierts

Also, we have (using Lemmas 1.9.2, 1.9.3 and above observation)

12 1
¢ (% -+ it) dt)

1 e
J;
11 Lolierr3(24e)
L r2 4+ 22 logT max UU? Ua\z

U
J1(3) < 27 + z2log T { max —</

1<u<T U U

L (%ﬂ't,f)

2
1<U<T

< x2 4 p2 TS,

Thus, we have

Note that with k = 3,

4
dt)

oo
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1 2k 1
“(okptr ) —1== 2) — 1
2<ku—|—3) 2(6u—l—)
= 3.
Case (i)If0§u<%,thenmin(u+%,g):u+%.

We observe that 3u < pu + % provided 2u < %, which is anyway true (by Bourgain
[Bo]).

Case (ii) If p > 4, then min (u+
p< o,
which is anyway true, since we know p < £ (< 2) (by Bourgain [Bo]).

Thus,

2) = 2, then 3u < 2 holds only when

?

D=

J1(3) < ZL‘% + $%+56Tmin<.“+%7%)

holds good, which dominates over J»(3) + J3(3).

Now,

E asx,(n) = xPy(logx) + Esx, (),

n<x
1+e
1 1 H 15
5 5+5epmin( p+35,3 :
T 4+ 2 4+ 27T ( 28),1.6.7

where F3k,(7) <

1+¢ 1 1
+ 2% 4 22T,

Esg, () <
r Lag 14+A 1 T
We choose T" such that T~ 2T e, T8 ~ a2z e, T ~ x2033),

So finally, we have

1
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3. For k=4,

First we observe, (using Lemmas 1.9.2, 1.9.3 and Cauchy-Schwarz inequality)

U 8 U 4 % U 12 %
[éﬁ(%%—it) dt<<<[J C(%—i—it) dt) (ﬁ; ((%4—7;75) dt)

2
< [3(+e) r3(2+e)

< Utte,

Now,

U
[I
2

N

4dt>é (/UU

2

C<%+it>

6 U
dt < ([] C(%Ht)

< U%(l-i-e)T%(%-i-e)

o

8
dt>

< Uite,

Now,
1, .
1 §+1T $s
Ji(4) == — 1= ds.
=g ], Gl
Using Lemma 6.1.16, Lemma 1.9.6, Lemma 1.9.7, Holder’s inequality and on the
assumption of our hypothesis 6.1.12,
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4
dt}

1 4

U
J1(4) < 12 +mélogT{ max —/

C(%-f-it)
C(%—H’t)

L (% + it f)
6
dt)

1<u<r U Ju
2

ol

1 U
<224+ 32logT{ max —U+ee (/

1<u<rT U U
U
X
U

) 6 \3
L (5 + it, f) dt)

1
< 2?2 + 72 log T11<nUa§T {EU2“+2€U§(Z+5)U§(2+€)} (using above observation)

1 1 3
L 12 4 x2 T

Also, we have (using Lemma 1.9.2, Lemma 1.9.3, Lemma 1.9.6, Lemma 1.9.7 and

1 . 12 % U 1 -
C(§+zt) dt) (é L(§+zt,f>

< z? gl log T" max {lU'}%(Hs)Ui(HE)}
<<t | U

Holder’s inequality)

L 1 (Y
Ji(4) < x2 +x2logT { max —(/

i<u<r U U

< T2 + 2T

Thus, we have
Ji(4) < gt +$%+55Tmin(2,u+%,1).

Note that, with £ = 4,

6
dt>

wln
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1 2k 1 8
— | 2k — | —-1=={(8 !
() g ()
1
=4 —.
H+ 3
Case (i) If 0 < p < £, then min (2 + 2,1) =2 + 3.
We observe that 4pu +% < 2,u+% provided 2p < %—% = %, ie, pu < %,

which is anyway true (see Bourgain [Bo)).

Case (ii) If © > §, then min(2u + 2,1) = 1, then 4u 4+ 5 < 1 holds only

when p < %7
which is anyway true, since we know p < ﬁ (by Bourgain [Bo]).
Thus,

J1(4) < x% + x%+5€Tmin(2M+%’1)

holds good, which dominates over J5(4) + J3(4).

Now,

E asx,(n) = xP3(logx) + Eyx, (),

n<x
e 1 1.5 min(2 +3 1) .
where By, (r) < 7 et 2 PRI e,
1+¢ 1 1
E47K3 (27) < +x2 + I’§+5ET/\4.

T

T 1 . 1, -
We choose T such that T~ r2T™M ie., TVM ~ 22 de., T ~ 22009

So finally, we have

o
By, () < o' 7ot

4. For k=5,

1,
1 5+ 5 s

1(5) = / (G, ()" Z s

2mi 1T

Using Lemma 6.1.16, Holder’s inequality and on the assumption of our hypothesis
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6.1.12,

PRt 1 v °
J1(5) < 2 —i—x?logT{lganz(T 7 .

¢ (% +it)
IR
C(§ +Zt)

L(Lris)

12 5
dt)

5
dt}

<<t U U

1 U
<27 +27logT{ max —Uts (/

5

1 . 6 6
L (5 + 1, f) dt)

< 17 4+ 2 log T' max 1U3“+35Ué(2+5)U%(2+5)
<<t | U

1 1
& x2 + gatéeintl

Also, we have

1 1 ].
J1(5) < x2 +x2logT { max <

<t +attopt { max pURCRUREE L]

< r3 + 25T

Thus, we have
L(5) < 27 + p3+oemin(3u+1.3)
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Observe that, with & = 5,

Case (i) If 0 < p < ¢, then min(3u +1,3) = 3u + 1.

We observe that 5u + % < 3u+ 1 provided 2pu < %, ie.,

way true (see Bourgain [Bo).

< = which is any-

=

Case (ii) If p > %, then min (3u +1, %) = %, then bu + % < g holds

only when 5u < 2 i.e., u < £, which is anyway true (Bourgain [Bo]).

— 6

Therefore,
J1(5) < ZL‘% + $%+56Tmin<3l‘+17%)

holds good, which dominates over J5(5) + J3(5).

Now,

E asx,(n) = xPy(logx) + Esx, (),

n<x
1+e N N . 13
where E5,]K3 (Q;) < 7 +xz + x§+5€Tm1n(3u+ :5)’ i.e.,
1+¢ 1 1
Bsx,(7) < 422 4 g2 T,

T 1 . 1. 1
We choose T such that T z2TY e, TV ~ g2 de., T ~ 2200

So finally, we have

1
Es (1) < ot~ T,
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5. For k > 6,

%—l—iT s
B = o [ (G s

2mi 1

Using Lemma 6.1.16, Cauchy-Schwarz Inequality, Lemmas 1.9.2, 1.9.3, 1.9.6 and

1 AN
C(§+zt) L(§+zt,f> dt}

1 v 1 6 1
<<x%”%+g{12% gt [He (i) e (5 vins)
1

12 2
dt)

1.9.7 we get
1 v g

Ji(k) < 22 + 22 logT {11;%&2% i .

3
dt}

2

(5+it)

U
< 3 +x%+2kza max Up(k—6)+§(k—3)—1 </

1<U<T U
2

1

6\ 2
(L] (Gras)[) a

< 17 4 pat2e ) max  UHE-6)+3(kh=3) =175 (24e) 73 (2+4e)
1<ULT

< 3 + l,%JereTu(kfﬁ)Jr%'

Define N
A= u(k —6) + 3

for k > 6, then

Ji(k) < o2 + 2tk

Here, we observe that for k£ > 6,
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i 1 . 1. S
We choose T" such that T r2TM qe., T ~z2 ie,. T ~ 220+

So finally, we have

-1
Ek,K3 (:U) < xl 2(1+>\k)+3k5.

This proves the theorem.

6.2.1 Remarks and Conjecture

Remark 6.2.1 From [Bo] of bourgain, we can very well take y = g. We notice

that % < ﬁ < %. Thus, the theorem is unconditional with p = ﬁ.

we assume the Lindelof hypothesis for the Riemann zeta function ((s), namely

However if

i = 0, then from this theorem, we obtain the conditional estimates for the error
term Ejg,(x) for each k =2,3,4,....

It should be pointed out that for k£ = 1, the estimate in Theorem 6.1.14 is weaker
than the result of Nowak [No| with m = 3.

Conjecture 6.2.2 For any integer £ > 2 and any small positive constant e, we
have
EkJK:s (x) <e x%—i—c(k)a’

where ¢(k) is a positive constant depending only on k.

Remark 6.2.3 If we assume the Riemann hypothesis for both the L-functions
((s) and L(s, f) (in turn the growth estimates ((5 + it) < ([t| + 10)%, L(3 +
it, f) <y (|t| + 10)), then the proof of our theorem suggests that we can even
get

Epg, (1) <. x2te0e,

for any fixed integer £ > 2 and for any small positive constant ¢, where the
constant ¢(k) depending only on k. However, this seems to be far out of reach
with the current knowledge of the L-function theory and hence we proposed the

above conjecture.




136 §6.2. Proof of Theorem 6.1.14




Conclusion

In this chapter, we will wrap up by briefly addressing the topics that can be
researched in the same spirit as what we tried to study in our thesis.

We have investigated the discrete mean square of the n'" normalized Fourier
coefficients of symmetric square L-function over certain sequence of positive in-
tegers and establish an asymptotic formula for the same, in our initial work (cf.
Chapter 2). It is apparent from our argument of the proof that we have only ex-
ploited the previously mentioned known analytical properties of concerned func-
tions. With some additional information, one can even extend the result in a
relatively preponderant region. In this regard we have proposed a conjecture
2.3.1.

In our subsequent work (cf. Chapter 3), we have established an asymptotic
formula for the third and fourth power moments of the n'" normalized Fourier
coefficients of symmetric square L-functions over r4(n). At the end of this chapter
an analogous Conjecture 3.6.1 has been proposed, with the same idea in mind.

We have also investigated the possibility of the dimension increasing in Chap-
ter 4 (cf. Chapter 4). Earlier, we were only concerned with r4(n). With some
detailed in-depth analysis, we have developed an asymptotic formula that accu-
rately captures the average behavior of the Fourier coefficients of the cusp form
in the six-dimensional space under various circumstances.

In the very next chapter (cf. Chapter 5), we have generalized our previous
work that we have done in chapter 4. The recent, well-known work of Newton
and Thorne [Ne-Th 1, Ne-Th 2] made it possible. We have also employed better
average or individual sub convexity bounds for the associated L-functions which
lead us to the improvement of our work 4.1.2.

In our last chapter (cf. Chapter 6), we have moved our attention to a special
class of L-function, popularly known as Dedekind zeta-function and worked on

a divisor problem pertaining to Dedekind zeta-function. We have demonstrated

137
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an asymptotic formula for the same, with a tightened error term. Eventually, we
have demonstrated that if we assume the Riemann hypothesis for both the L-
functions ((s) and L(s, f), then we can even settle the problem in question with
much better error terms. With the current knowledge of the L-function theory,

this appears to be very hard, which is why we put forth the conjecture 6.2.2.
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