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PREFACE

This thesis focuses on the effect of the Rashba and Dresselhaus spin-orbit interactions on the
hydrogenic impurity in a quantum dot (QD) and the effect of electron-phonon interaction, electron-
electron interaction and quantum dissipation on the electric conductance, Seebeck effect and the
spin Seebeck effect. A QD is a low-dimensional system in which the motion of the electrons is
restricted in all three directions. The natural length scale of a QD is the order of a few nm which
makes these systems highly interesting because at this length scale strong quantum effects are
expected to appear. The confinement potential is one of the essential parameters one needs to
consider while studying a QD theoretically. According to the recent experimental findings, the
confinement potential is anharmonic and has a finite depth. It has been suggested that the Gaussian
potential is an appropriate model for a QD's confinement potential.

Generally, we can have two types of spin-orbit interactions in a solid. One is the Rashba spin-
orbit (RSO) interaction (RSOI) which arises when a material loses its structural inversion
symmetry (SIS), and the other one is the Dresselhaus spin-orbit (DSO) interaction (DSOI) which
arises from the breaking of the bulk inversion symmetry (BIS).

The generation of the electric voltage by a temperature gradient is known as the Seebeck effect.
In Spintronics, the central focus is on spin transport in place of charge transport. Similarly, a spin
analog of the Seebeck effect has received a lot of attention in recent years. The spin Seebact effect
refers to the generation of the spin voltage by placing a temperature gradient in a ferromagnet. In
2008, Uchida et al. reported the possibility of creating a pure spin current by the temperature
gradient in magnetic metals. The thesis is organized as follows:

We begin the thesis by presenting an overall introduction to the subject of QDs and spin-orbit
interactions in Chapter 1. Here, we first give a brief review of some of the basic properties of QDs,
discuss a few fabrication techniques, highlight some of their important applications and introduce
the concept of confinement potential. Next, we discuss the donor impurity in the QDs and a brief
introduction to the spin-orbit interactions. Next, we introduce the single molecular transistor
(SMT). In SMT device, it is possible to successfully regulate the current by adjusting the gate
voltage. Investigations have shown that SMTs and molecular electronic devices have tremendous



potential for applications in spin filters, switching devices, sensors, etc. Finally, we discuss the
brief introduction of Seebeck effect and spin Seebeck effect. One of the main objectives of this
thesis is to study the effect of Rashba and Dresselhaus spin-orbit interactions on the impurity states
in a QD and the thermal transport properties of a single molecular transistor.

In Chapter 2, we study the effect of Rashba and Dresselhaus spin-orbit interaction on the bound
state of an on-centre D° hydrogenic impurity in a three-dimensional GaAs GQD in the presence
of an external magnetic field (B). To deal with the spin-orbit interaction part, we first apply a
unitary transformation on the Hamiltonian of the system and then use the Rayleigh-Ritz variational
method to calculate the ground state energy (GS). We obtain the binding energy (BE), magnetic
moment and the diamagnetic susceptibility. We show that the GS energy of the D° system
increases with decreasing QD size and it decreases with increasing confinement strength. Also, the
GS energy is found to decrease with increasing RSOl and DSOI. However, the effect of DSOI is
found to be less than RSOI. So, one may conclude that RSOI is more dominating than DSOI in a
QD. We also show the variation of binding energy (BE) with respect to both Rashba and
Dresselhaus parameters. The BE appears to be independent of both Rashba and Dresselhaus
parameters. The effect of spin-orbit interactions in the presence of a magnetic field, however, turns
out to be more interesting. In the presence of a magnetic field, the Rashba parameter decreases the
BE while the Dresselhaus parameter increases it. Finally, we calculate the magnetic moment (M)
and diamagnetic susceptibility (S) of the D® impurity as a function of the magnetic field for a
different sets of Rashba and Dresselhaus interaction parameters. We show that |[M| increases with
B and decreases with the reduction in the effective QD radius R. S is also found to increase with
B. We furthermore show that |S| increases with increasing QD size at small magnetic fields, but
above a critical magnetic field, it decreases with increasing QD radius. This leads to a crossing
behaviour in the diamagnetic susceptibility. Finally, we calculate the electron distribution for
different values of the QD parameters. It is shown that, in general, as the QD size decreases, the
electron localization becomes stronger. However, the behaviour starts reversing below a certain
QD size because of the uncertainty principle.

In Chapter 3, we consider the spin-orbit interaction effects on BE and susceptibility of an off-
centre DO impurity in a GQD in the presence of a magnetic field (B). Again we eliminate the spin-
orbit interactions by a unitary transformation. The resulting problem cannot be solved exactly. So
we use the Ritz variational method. We apply our result to a GQD of GaAs and present the



behavior of the GS energy (GSE) (E) of the off-centre D° impurity as a function of the impurity
position D for B = 0 and B # 0 and for different RSOI and DSOI coefficients ay and . As D
increases, GSE initially increases quite rapidly, but asymptotically saturates to a constant value.
This can be easily understood from the simple semi-classical argument, which suggests that GS
corresponds to the minimum of the potential. The RSOI and DSOI effects on GSE are found to be
low at small values of D and large at higher values of D. GSE decreases in the presence of both
SOIs at low B, but the effects of RSOI and DSOI are opposite at higher values of B. RSOI reduces
GSE, but DSOI enhances it at higher values of B. We show that the binding of a D® complex is
strongest for the on-centre complex (D = 0) and BE decreases with increasing D and eventually
saturates. Our results reveal that the effect of SOIs on the D-dependence of BE is very small,
though the magnetic field can influence the D-dependence of BE at small D values. However, if D
is large, then none of the parameters R, B, ag, or p would have any effect on the Ez vs D curve.
We present the contour plots and 3D plots of BE of the system with respect to different system
parameters. Finally, the susceptibility (S) of the off-centre D° in a GQD system is calculated using
statistical mechanics and is shown to be diamagnetic. With increasing D, |S| initially increases and
eventually saturates to a constant. We observe that when RSOl is absent, and only DSOI is present,
|S| decreases both with B, and B. However, in the case when DSOI is absent, and only RSOI is
present, at small values of B, |S] initially increases with increasing ay, reaches a maximum and

then decreases with ag. But at large B, |S| increases monotonically with aj.

In Chapter 4, we study the effect of the shape of the confinement potential on D° system in a
GaAs QD in the presence of a magnetic field and spin-orbit interactions. In this problem, we use
for the confinement potential, a spherically symmetric power exponential potential (PEP) with a
steepness (or a shape) parameter (p). A QD with PEP will be referred to as a power exponential
QD (PEQD). By changing the value of p, we can change the shape of PEQD from a Gaussian
potential to a rectangle potential. We employ the Ritz variational method and study the variation
of GSE and BE of a D° Centre in a PEQD as a function of the shape parameter p, the effective QD
size R, the Rashba and Dresselhaus spin-orbit interaction constants ap and B, and the external
magnetic field B. As a function of R, BE shows peaks and the peak height increases as p increases.
After reaching the peak, BE decreases with R faster for higher p and gives interesting crossing
behaviour. We explore the behaviour of the magnetic moment and diamagnetic susceptibility with
respect to the magnetic field for different values of the steepness parameter p. The susceptibility

(S) increases with p at small B and at large B, it decreases with increasing p. At intermediate B,
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S first decreases with increasing p, develops a minimum at some value of p and then increases

with further increase in p.

In chapter 5, we investigate the behavior of GS binding energy of a hydrogenic donor impurity
in an asymmetric 3D GQD of GaAs with respect to effective QD size R, confinement potential
depth V,, magnetic field B, asymmetry parameter b, and RSOI and DSOI coefficients. We also
examine the dependence of magnetic moment (M) and susceptibility (S) on B for different values
of the asymmetry parameter b. As expected, the susceptibility is found to be diamagnetic in nature.
Also the magnitude of S is found to decrease with increasing B. However, it increases as the
asymmetry increases at small B and decreases with increasing asymmetry at large B. This gives
rise to an interesting crossing behavior. The Rashba coupling decreases BE, while Dresselhaus
coupling increases it and the asymmetry in the confinement potential enhances these effects.

In chapter 6, we study the energetics of a negative hydrogenic impurity D~ in a GaAs GQD in
the presence of a magnetic field, and the Rashba and Dresselhaus SOIs. The D° system studied
earlier, is spherically symmetric, so there cannot exist any dipole moment. However, in the case
of a D~ centre system, the situation is different. Classically, of course, there cannot be any dipole
moment in this system because the Coulomb correlation would try to force the electrons to lie on
the diametrically opposite sides of the nucleus giving rise to zero dipole moment. Quantum
mechanically, however, there would be fluctuations, and because of this quantum fluctuation,
electron distribution would be such as to minimize the system's energy. We calculate the GS
energy and BE of the D~ system by the Ritz variational method and obtain the dipole moment as
a function of the QD size, confinement depth, magnetic field, and the Rashba and Dresselhaus
parameters. We show that the magnetic field and Dresselhaus interaction decrease the dipole
moment while the Rashba parameter increases it. We also calculate the susceptibility of the
negative hydrogenic impurity system and show that the behavior of the susceptibility of D~ is also
diamagnetic. Interestingly, the susceptibility of D~ system exhibits a deep minimum in the
presence of RSOI.

In Chapter 7, we consider an SMT system in which a central QD is coupled to two metallic leads
which act as a source and a drain respectively. A temperature gradient is applied across the source
and the drain and electrons can travel from the source to the drain through the QD giving rise to a
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tunneling current. The entire SMT system is placed on an insulator substrate to which a gate is
attached. By applying a gate voltage, the tunneling current can be manipulated. The substrate
contains a large number of uncoupled harmonic oscillators and thus acts as a phonon bath. The
QD contains a single energy level and a local phonon mode. The QD electrons interact with each
other by the Hubbard onsite interaction and with the local phonon mode through the Holstein onsite
el-ph interaction. The substrate phonons can interact with the local QD phonon by a linear
interaction of the Caldeira-Leggett type which gives rise to a dissipative effect in the phonon
dynamics of the QD. We describe the entire SMT system by the Anderson-Holstein-Caldeira-
Leggett model and investigate the tunneling conductance, Seebeck effect and the spin Seebeck
effect in the presence of el-el coupling, el-ph coupling, and quantum dissipation. We treat the
interaction between the QD phonon and the substrate phonons by using a canonical transformation.
This renormalizes the frequency of the QD phonon. The el-ph interaction is decoupled using the
conventional Lang-Firsov transformation followed by a zero-phonon averaging. Finally, using the
Keldysh approach and the equation of motion method, the transport parameters are determined. In
particular, we studied the behaviour of the conductance (G, G, , G¢ and G*) with respect to
different parameters such as the temperature, e-e interaction, e-p interaction, damping parameter,
magnetic field, quantum dot energy and chemical potential. It is found that the charge conductance
G¢ is maximum while the spin conductance G* is zero in the absence of the magnetic field.
However, as the magnetic field increases, the peak height of G¢ decreases and the peaks split into
two peaks while the peak height of G* increases and shifts towards the right on the chemical
potential axis. We study the variation of the spin-up and spin-down electric conductance as a
function of different parameters like temperature, magnetic field, QD energy €, and the chemical
potential 1. We also study the behaviour of the charge Seebeck effect and the spin Seebeck effect
with respect to the magnetic field and QD energy. We have also shown that temperature, magnetic
field and the above-mentioned interactions have interesting effects on the thermopowers (S, S|,
Sc and S;). As a function €4, the behaviour of the spin-up and spin-down Seeback coefficients are
the same, but their amplitudes are slightly different. The spin-up and spin-down thermopowers
are the same at zero magnetic field. So the charge Seebeck coefficient is maximum and the spin
Seebeck coefficient is zero in this case. However, S, decreases and S increases at higher values
of the magnetic field. Thus, as the magnetic field increases, the spin current and the spin Seebeck
coefficient also increase.

Finally, in chapter 7, we summarize the main results of the thesis and make some concluding
remarks.
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Chapter -1

A brief overview of quantum dots and spin-orbit
Interactions

1.1 Introduction

Quantum dots have generated tremendous interest in the last few decades for their role in
providing a platform to test quantum mechanics at the laboratory scale as well as for their potential
applications in semiconductor technology at the microscopic level [1-6]. A quantum dot (QD) is a
low-dimensional system in which electron transport is restricted in all the three directions [7-10].
Most of the quantum dots (QDs) that are useful from the point of view of nano-technology, are
compound semiconductors composed of materials from the periodic groups of 1I-VI, I11-V, or V-
VI.

The typical size of a QD is of the order of a few nanometres and can be thought of as a giant
artificial atom. However, they are much more flexible than atoms because they can be fabricated
in different shapes and sizes as required depending upon the fabrication process. It is known that
materials behave differently at very small sizes, a phenomenon known as the quantum size effect,
and the properties of quantum dots have been found to be in between those of bulk semiconductors
and discrete atoms or molecules. Additionally, QD structures have an unprecedented tunability
and hence a tremendous potential for application in microelectronic device technology such as QD
lasers and super-fast computers [12].

Due to quantum confinement, the energy levels of the electrons become discrete with a finite
separation between them. Some of these energy levels are unoccupied and constitute the band gap.
Most of the electrons occupy the valence band, which are energy levels below the band gap and

the levels above constitute the conduction band. When the QD is hit by an incident light of energy
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higher than that of the band gap of the semiconductor, electrons from the valence band absorb this
light and go the conduction band producing excitons. These excited electrons (exciton) return to a
lower energy level resulting in a narrow, symmetric energy band emission [13]. Quantum dots
confine their charge carriers in a small spatial domain that is of the order of a few nanometres.
This is known as quantum confinement and can be approximately described by an infinite potential

having the following energy levels:

n’m?h?
n= Zm*Lz ) (1.1)
(n+ 1)*m?h?
Enii=—F—77— (1.2)

2m*L?
The energy difference between the (n + 1) - th level and the n - th level in a QD is thus given by

(2n + 1D)m?h?

AE = Eny1 —Ep = L2 )

(1.3)
where m™ is the Bloch mass of the particle and L is the effective length scale of the QD well. Eq.
(1.3) suggests that as a system becomes extremely small, the energy level difference between two
consecutive levels becomes very large and the system becomes fully quantum.

Fig. 1 shows how the band gap between the energy levels influences the colours and size of the
QDs. The QD allows us to control its band gap by adjusting its size hence controlling the output
wavelength with extreme precision. An immediate optical feature of colloidal QDs is their
coloration. While the material which makes up a QD defines its intrinsic energy signature, the
nano-crystals quantum-confined size is more significant at energies near the band gap. Thus QD’s
of the same material, but with different sizes, can emit light of different colours. The physical
reason is the quantum confinement effect. The larger the dot, the redder (lower energy) is its
fluorescence spectrum. Conversely, smaller dots emit bluer (higher energy) light. The coloration
is directly related to the energy levels of the QD. Quantitatively speaking, the band gap energy that
determines the energy (and hence colour) of the fluorescent light is inversely proportional to the
square of the size of the QD. Larger QDs have more energy levels which are also more closely
spaced. This allows the QD to absorb photons containing less energy, i.e., those closer to the red
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end of the spectrum. Recent Observations have shown that the shape of the crystal lattice also
might change the colour [13].

Bulk Band Quantum
Structure Dots

Conduction =
Band =—
Band I ‘
Valence
Band

Decreasing Size

Energy

Fig. 1 Size dependence of the QD energy band gap [14].

The density of states (DOS) function describes the number of states per energy difference and
determines the distribution of carrier density in a physical system. The DOS is defined by,

5=
9\ =

(1.4)
where dN = g(E)dE is the number of electrons dN with an energy E lying within a narrow range
of energy dE = E, — E, and is proportional to the density of state at E. An overview of quantum
confinement in nanostructures is shown in Figure 1.2. The DOS behaves as a square root of the
energy E/2 in the 3D bulk system. In this structure, electrons are not confined and they can move
freely in any direction. In the two-dimensional (2D) quantum well (QW) structure, the DOS
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behaves like a Heaviside step function and electrons are free to move in two spatial directions and
their motion is confined in the third direction. Thus in a QW structure, electrons are said to
constitute a quasi-two-dimensional electron gas (2DEG). In the 1D quantum wire

g V/

— Pe—

1
Bulk Quantum well Quantum wire  Quantum dot
D 20 10 oo
" e " | @ | | ) |
O - at | |\ )
G / a8 | al [Ny E'i
Energy Energy Energy Energy

Fig. 2 Quantum confinement behaviour in all three directions.

structure, the DOS is proportional to E~'/2 and electron’s motion is confined in two directions
while they have significant freedom to move freely in the other direction. Such a system of
electrons is called a quasi-one-dimensional electron gas. In the QDs or zero-dimensional materials,
the DOS is given by a series of Dirac delta functions. In this structure, the electrons do not have
any free directions and the de Broglie wavelength of the electrons is of the same order as the
confinement length which makes these systems show astounding quantum effects. If the
confinement length of the QD is of the same order in all the three directions, it is called a three-
dimensional (3D) QD. If the confinement length in one particular direction happens to be much
smaller as compared to rest of other two directions, then the resulting system is referred to as a
quasi-two dimensional (quasi-2D) QD. For the sake of mathematical simplification, sometimes a
quasi-2D QD is treated as a purely 2D QD theoretically. This approximation would be valid if the
confinement length in one particular direction say, the z direction is extremely small which may
be possible if the material is extremely thin in this direction. In the present work, we consider both
2D and 3D QDs.
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1.2 Fabrication of the quantum dot

Quantum dots can be fabricated by several methods. The main aim is to confine the electrons
or any other charge carriers in a small region. A metal particle can be surrounded by insulators in
order to achieve this. By providing an electric field [15], we can also restrict the motion of electrons
inside the semiconductor. With the development of modern fabrication techniques like molecular
beam epitaxy it is now possible to manufacture a single atomic layer of semiconductor crystal (eg.
GaAs) at a time. A 2D electron gas can be made by sandwiching a thin layer (roughly 10 nm) of a
GaAs semiconductor between two thicker layers of a semiconductor with a larger band gap than
GaAs [16]. Generally, AlGaAs is chosen for this purpose because its crystal structure and lattice
constant are almost identical to GaAs. AlGaAs behaves as an insulator whereas in GaAs electrons
can move freely. It is clear that the steps in energy at the GaAs/AlGaAs interfaces produce a
potential well and hence discrete energy levels in both the valance and conduction bands. A 2D
electron gas can now be created if one of the AlGaAs layers is doped with Si donors. Then even
at low temperatures, electrons of a donor atom can go to the conduction band. Once it does that, it
can easily land itself into the potential well, where it gets trapped with others to form a 2D electron
gas. The dopant impurities are usually placed at some distance from the well so that they produce
a very low scattering of the carriers. This is called modulation doping which gives high mobility
and large mean free path. The electron gas confined in the GaAs QW is essentially two-
dimensional. The QW is so thin that at low temperatures, only the lowest quantum energy state is
occupied by the electrons. The electrons have no freedom to move in the perpendicular direction
of the well, but may only move laterally in it. Now QDs can be made from this QW layered
structure. One method is to use a mask of resist material defined on top of the layered QW structure
[16]. This resist is a polymer which is either sensitive to electrons or x-rays depending on the type
of lithography, which is then performed to define the dot. Another method of achieving lateral
confinement in a QW structure is to use a metallic gate on its surface. When this gate is negatively
biased, it causes a depletion in the numbers of electrons in the area below it, leading to the
formation of the QD.

There has also been an interest on synthesizing arrays of small QDs with uniform spatial ordering.
The epitaxial growth of a QW followed by controlled etching does provide the requisite size and
uniformity. But the etching process apparently produces surface defects and the subsequent

regrowth introduces interface states which make the quality of these materials unacceptable. It has
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been claimed that self-organised QDs are the structures that can provide the desired properties

most satisfactorily.

1.3 Application of quantum dots

Research on QDs has generated interest in different fields of study [17]. QDs have potential
applications in quantum information processing and have paved the way for supercomputers called
quantum computers. They can store information as qubits which are the elementary units of the
quantum information processes and can be created using the two spin states of the electron.
Precision measurements of the spin and other properties can be made by controlling the flow of
electrons through the QD using small voltages applied to the leads. Organic dyes can be

m lllumination

Solar cells

Displays
% Z— Electrons
B . LS8 ooNEA
@ 4 T T
Ve OO
Neural interfaces INP quantum dots Holes
Photocatalysis
o, y
o (AR’

Bioimaging \/ Lasers

Luminescent solar concentrators
Fig. 4 Use of the quantum dot in different sectors [17].

replaced with QDs. QDs can have wide range of biomedical uses in drug delivery, live imaging,
medical diagnosis and in producing images of cancer tumours [18]. As discussed, semiconductor
nanoparticles exhibit size and compositionally tunable band gaps. Therefore, QDs of different
types and sizes engineered to perfectly match and absorb the light of the solar spectrum can be
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brought together into the same cell. QD-based solar cells include luminescent concentrator cells,
QD dye sensitized solar cells, multiple exciton generation and intermediate band solar cells.

Recently, display technology has started to incorporate QD light emitting diodes (QLED). QLED
displays are getting a lot of attention in the scientific community because of their outstanding
colour purity, great brightness, low operation voltage, and simple processability. A longer system
life is made possible by the inorganic QDs' high thermal and air stability. Additionally, recent
progress in patterning methods has made it possible to create an ultrahigh-resolution QLED array
with a full colour spectrum. Conventional display technologies are unable to employ the QDs'

implementation methods [19].

1.4 Confinement potential

One of most important parameters for a QD or a QW system from a theorist’s point of view is
the confinement potential. QDs can be fabricated in different shapes and sizes to have certain
required properties. One simple choice would be to work with an infinite potential well as the
confinement potential. However, this model is an over-simplification for the actual confinement
potential (CP). A more realistic model for the CP could be a finite square well. However, the force
experienced by an electron within such a model potential is zero, which is a little unrealistic.
Nevertheless, a finite square well has turned out to be a popular and useful model for the study of
the behaviour of QD systems.

Experimental research by Sirkosky and Merkt [20-21] has revealed that the resonance frequency
in a QD does not depend on the number of electrons in the dot. The independence of the excitation
energy on the number of electrons indicates that the excitation spectrum of a QD is not influenced
by the electron-electron (e-e) interaction. The above experimental result together with the
generalized Kohn theorem suggests that the CP in a QD is more or less parabolic. Motivated by
this observation, several investigations have been carried out in the past considering the potential
in QD or QW as parabolic [22-27] and various electronic and other properties of QDs have been
investigated [28-34]. A QD with a parabolic or harmonic CP is denoted as a parabolic QD (PQD).

Although in most investigations, harmonic potential model has been used to describe the
confinement in a QD, some recent experimental results suggest that the actual CP in a QD is
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anharmonic in nature and possesses a finite well-like shape with a minimum. Adamowski et al.
[35] have suggested that a Gaussian potential can describe the experimental results with a good
amount of accuracy. This potential has a finite depth and is consistent with some realistic
phenomena like ionization etc... We would like to mention in passing that the Gaussian potential
has proved to be a useful potential in various branches of physics and has been solved
approximately for a single-particle problem by several authors [36-37]. In this thesis, we will refer
to a QD with Gaussian confinement as a Gaussian QD (GQD). Recently, Ciurla [38] has suggested
a more generalised CP which is known as the power exponential potential. QDs with power
exponential CP will be referred to as PEQD. One important advantage with the power-exponential
potential is that it can lead to different CPs in different limiting cases. Jahan et al. [39] have recently
investigated the effect of the shape of the CP on the electronic, magnetic thermodynamic and
transport properties of a GaAs QD at finite temperature using the power exponential potential.

1.5 Donor impurities in a quantum dot

It is essentially impossible to have, in reality, a QD without any impurity. A hydrogen-like
neutral impurity in a QD is normally referred to a donor impurity, for it can easily give away an
electron to the conduction band. Such a neutral donor impurity is denoted by the symbol D°, while
a D~ centre refers to a complex which consists of a single positive ion and two electrons forming
a negative hydrogen ion [40].

Bastard [41] was the first to study the confinement effect on a D° impurity in a QD. Many
researchers have subsequently analysed the energetics of the D° impurity in several low-
dimensional systems including QDs [42-43]. Later, several works [44—46] on off-centre impurities
in QDs, which are more realistic, have also been reported. Movilla and Planelles [47] have
presented a computational scheme yielding exact (numerical) wave functions and energies of a
spherical nanocrystallite with a shallow donor impurity located anywhere inside.

The existence of stable bound states of D~ complexes in bulk semiconductors was suggested
theoretically by Lampert [48] way back in 1958. A D~ impurity in a low-dimensional system is an
interesting system because it is a simple two-particle correlated system with a single bound state
[49]. The experimental confirmation of the existence of bound state of D~, however, took a long
time to come primarily because of the very feeble nature of the binding of the system. To our
knowledge, Huant et al. [50] were the first to observe experimentally the existence of a D~ bound
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state in a GaAlAs heterostructure from photoionization transitions through far-infrared magneto-
optical experiments. They have reported the binding energy of the D~ impurity in a GaAs-
multiple QW structure for several values of the magnetic field strength.

1.6 Origin of the spin-orbit interaction

Another interaction of profound significance that has captured the attention of researchers in the
case of low-dimensional systems is the spin-orbit (SO) interaction, which plays the most crucial
role in the fascinating area of spintronics. The idea here is to fabricate devices, where spin will be
the carrier of current rather than the charge [51] and thus in these devices the information will be
carried by the spins. Recently, the importance of spin-orbit interactions has been investigated quite
extensively in QD systems and semiconductor nanostructures. According to quantum mechanics,
the electron spin can couple with the magnetic field generated by the electron’s motion giving rise
to the SO interaction (SOI). The general form of the SOI can be obtained from the Dirac equation
[52]. From the Dirac theory, we have

2

8m?2c2
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2m 8m3c?2 4m?2c? P

V2v>1,b =e) . (1.5)

where the fourth term is known as the Thomas term (H;). This term represents the interaction of
the moving electron with the electric field and represents the spin-orbit interaction.

1.6.1 Rashba spin orbit interaction:

In 1984, Bychkov and Rashba [53] proposed a simple type of spin-orbit (SO) coupling to explain
a specific electron spin resonance phenomenon in 2D semiconductors. In crystals that lack
structure inversion symmetry, a spin-orbit interaction comes into play. This is called the Rashba
spin-orbit (RSO) interaction (RSOI). The RSO coupling was first introduced for non-
centrosymetric Wurtizite semiconductors. The zero-field spin-splitting in 111 — V heterostructures
also occurs because of RSOI arising from the structure inversion asymmetry (SIA) of the
heterojunction. Due to the difference in the bandgap, there would be an asymmetry in the space
charge accumulated on either side of the heterojunction, which creates an electric field
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perpendicular to the 2DEG leading to RSOI [54-56]. As RSOI can be influenced by an external

electric field across the junction and it can have many experimental applications.

A
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Fig.5 Rashba spin-orbit interaction

As we have already mentioned, one can obtain the form of RSOI Hamiltonian (Hg) from the
Thomas term of the Dirac theory. In the presence of an electric field perpendicular to the 2DEG
(E = E ), the system loses the inversion symmetry at the surface and the Thomas term reads,

3 hoE.(Z X p) (1.6)

Hr = Hp = 4m?2c2

(1.7)

h
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where ag(= h E/4m?c?) is the Rashba parameter. It is clear that the breaking of inversion
symmetry occurs because of the linearity of the electron momentum in the Rashba term.
Theoretically, the lack of inversion symmetry not only creates an additional electric field but also
distorts the electron wave function close to nuclei. The Rashba parameter ay can be controlled by
tuning the confining potential, the external electric field and gate voltage. The application of a gate
voltage is a well-known method of controlling the structure inversion asymmetry. The study of
Rashba physics is now at the heart of spintronics, with a focus on manipulating non-equilibrium

material properties via SO coupling.
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1.6.2 Dresselhaus spin-orbit interaction (DSOI)

Another type of spin-orbit interaction that may exit in a solid state system is called the Dresselhass
spin-orbit interaction [57]. This arises due to bulk inversion asy|mmetry (BIA). This type of
asymmetry occurs in zinc blende type semiconductors. The strength of the BIA

(O As atom
@ Ga atom

Fig.7 zinc blende type diamond and GaAs crystal structure.

parameter depends on crystal field, QD width, temperature and electron density. The Dresselhaus
Hamiltonian is given by [58],

B 14
Hp =2 (kxox = kyoy) + =+ (—kjkeoy + kiky0y) (1.8)
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where B, (—ykZ) is the Dresselhaus parameter, o, and g,, are the pauli matrices. While the Rashba

term is linear in momentum k, and the Dresselhauss term consists of both linear and cubic terms
in k. However, the cubic interaction term is neglected especially for materials with weak SOI such
as GaAs semiconductor.

1.7 Introduction to Single molecular transistor (SMT)

Over the last few decades, there has been a shift from bulk systems to nanoscale semiconductors
and magnetic systems. As evident from the above discussion, quantum phenomena need to be
taken into account in the study of such systems. Early research has revealed a variety of important
aspects of nanosystems such as the fascinating physics at the nanoscale, quantum transport
properties, and device applications. Datta [59] has provided an excellent overview of the field.
Due to advancements in fabrication techniques and the availability of measurement facilities,
extensive research of the electrical, optical, transport, and magnetic characteristics of diverse
nanosystems have been carried out in recent years. Aviram and Ratner [60] have proposed the
theoretical design of a molecular device based on a single organic molecule in 1974, and found
that the device's response in an applied field acts as a rectifier. A few research groups later used
organic molecules to manufacture a single molecular transistor [61, 62]. An SMT device typically
comprises a core molecule or any nanosystem with discrete energy levels, such as a quantum dot
(QD). The transport properties of SMT have been investigated by using different theoretical and
numerical methods like kinetic equation method [63, 64], rate equation approach [65], slave-boson
mean-field method [66], non-crossing approximation method [67], numerical renormalization
method [67-69] and non-equilibrium Green’s function approaches [70-73]. In our work, we use a
non-equilibrium Green function technique to study the thermal transport properties of the single
molecular transistor.

We consider an SMT system in which a central QD is coupled to two metallic leads which act as
a source and a drain respectively. A temperature gradient is applied across the source and the drain
and electrons can travel from the source to the drain through the QD giving rise to a electric current.
The entire SMT system is placed on an insulator substrate to which is attached a gate. The substrate
contains a large number of uncoupled harmonic oscillators which act as a phonon bath. The QD
contains a single energy level and a local phonon mode. The QD electrons interact with each other
by the Hubbard onsite interaction and with the local phonon mode through the Holstein onsite el-
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ph interaction. The substrate phonons can interact with the local QD phonon by a linear interaction
of the Caldeira-Leggett type which gives rise to a dissipative effect in the phonon dynamics of the

QD.

1.8 Seebeck effect and spin-Seebeck effect

Thermoelectric materials have the ability to convert the waste heat into electricity based on
Seebeck effects, when temperature gradient is applied across the system. This effect has
applications in thermal sensing devices such as thermocouples [74]. The efficiency of the Seebeck
effect is measured by the Seebeck coefficient S, which is defined as:

5——L (1.9)
- (T,—-T) '

where V is the electric voltage and T,, T; are the temperature of the hot (source) region and cold
(drain) region respectively.

The spin-Seebeck effect (SSE) generates a spin voltage or current from a temperature difference
in a ferromagnet. SSE was first discovered by Uchida et al. [75] in a ferromagnetic metal. It has
also been observed in ferromagnetic insulators [76] and semiconducting materials [77],
nonmagnetic materials with a magnetic field [78], paramagnetic materials [79], antiferromagnetic
materials [80], metal-ferromagnet insulators [81] and also in topological insulators [82]. When two
charge carriers of spin components, S; and S, exhibit equal magnitude of charge but of opposite
sign, the charge-Seebeck coefficient (S, « (S; + S,)) vanishes while the spin-Seebeck coefficient
becomes finite (S; « Sy — S)) resulting in the net spin voltage with the charge voltage being zero.
SSE can be described by the spin-resolved Seebeck coefficient (or thermo-power).

1.9 Aim of the present thesis

In this thesis, our main aim is to present our results on the effect of Rashba and Dresselhaus spin
orbit interactions and magnetic field on D° and D~ impurities in a QD. We shall mostly assume
that the confinement potential is Gaussian which appears to be a reasonably good assumption as

has been suggested by serval investigations. For sake of concreteness, we shall apply our results
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to GaAs QD. We shall also study the thermoelectric properties of a single molecular transistor. The

organization of the thesis is as follows.

In Chapter 2, we shall study the effect of both the Rashba and Dresselhaus SOIs on neutral
hydrogenic donor impurity D° complex in a 2D Gaussian QD. To decouple the spin-orbit coupling,
we apply a unitary transformation that was first given by Aleiner and Falco [83]. To obtain the
ground state (GS) energy and the binding energy (BE), we use the Rayleigh-Ritz variational
method [84] and also present our results of magnetisation and susceptibility. In Chapter 3, we
study the effect of spin-orbit interactions and an external magnetic field on an off-centre impurity
D° ina GQD, which is a more realistic system, using an improved variational method [85].

An exponential power potential is a much more general form of a confinement potential and has
the advantage that it can lead to different confinement potentials in different limiting cases. In
Chapter 4, we shall study effect of the shape of the confinement potential on the properties of a D°
complex in QD in the presence of RSOl and DSOI and magnetic field [86] using the power
exponential CP.

In Chapter 5, we shall consider a D° system in an asymmetric 3D GQD in a magnetic field in the
presence of Rashba and Dresselhaus SOIs and present our results of GS energy, BE and
diamagnetic susceptibility.

A negative hydrogenic donor D~ in a low-dimensional system is another interesting system
because it is a simple two-particle correlated system with a single bound state [78]. The
experimental confirmation of the existence of bound state of D~, however, took a long time to
come primarily because of the very feeble nature of the binding of the system. in Chapter 6, we
shall consider a D~ impurity in a GQD in the presence of a magnetic field and the Rashba and
Dresselhaus SOIs. We calculate the GS energy and BE by the Ritz variational technique. We shall

also calculate the resultant dipole moment, magnetisation and susceptibility.

In Chapter 7, we consider a single molecular transistor (SMT) system in which a central QD is
coupled to two metallic leads which act as a source and a drain respectively. The QD is considered
to have a single electron energy level and a single phonon. It also has Hubbard correlation and
local Holstein electron-phonon interaction. The source is kept at a higher temperature with respect
to the drain. The entire SMT device is placed on an insulator substrate to which is attached a gate.
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The substrate contains a large number of uncoupled phonons which can interact with the local
phonon of the QD through a linear coupling. This gives rise to dissipation in the QD system. We
also apply a magnetic field across the system. Because of the temperature difference between the
source and the drain, electrons can tunnel from the source to the drain through the QD leading to
thermoelectric effects. We analyse the thermoelectric and spintronic transport in this system using
the non-equilibrium Keldysh Green function technique and calculate quantities like charge, spin
and thermal conductance, and charge and spin Seebeck coefficients.

Finally, in chapter 8, we present the conclusion of the thesis.

1.10 References

[1] M.A. Reed, R.T. Bate, K. Bradshaw, W.M. Duncan, W.R. Frensly, J.W. Lee and H.D. Shih, J. Vac.
Sci. Technol. B 4, 358 (1986).

[2] M.A. Reed, Sci. Am. 268 (1993) 118;

[3] D. Loss, D.P. Divicenzo, Phys. Rev. A 57 (1998) 120;

[4] Y.V. Pershin, J.A. Nesteroff, V. Privman, Phys. Rev. B 69 (2004) 121306(R);

[5] B. Vaseghi, R. Khordad, M.M. Golshan, Phys. Stat. Sol. (B) 243 (2006) 2772;

[6] S. Zhang, R. Liang, E. Zhang, L. Zhang, Y. Liu, Phys. Rev. B 73 (2006);

[7] E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, Superlatt. Microstr. 45 (2009) 618;

[8] K. Kash, A. Schrer, J.M. Worlock, H.G. Craighead and M.C. Tamargo, Appl. Phys. Lett. 49, 1043
(1986).

[9] M.A. Reed, J.N. Randall, R.G. Aggewal, J.R. Matyi, T.M. Moore and A.E. Wetsel, Phys. Rev. Lett.
60, 535 (1988).

[10] M.A. Kastner, Phys. Today 46, 24 (1993).
[11] Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989);
[12] W. Kohn, Phys. Rev. 123, 1242 (1963);

[13] Azzazy HME et al. From diagnostic to therapy: Prospects of quantum dots. Clinical Biochemistry, 40
917-927, (207);

[14] Wang HZ et al. Acta Biochimica et Biophysica Sinica. 36, 681-686 2004,

[15] M. A. Kastner, Artificial Atoms, Phys. Today 46, 24 (1993).

[16] D. Heitmann and J. Kotthaus, Phys. Today 46, 56 (1993).
[17] A. A. Abdellatif, M.A. Yonis, M. Alsharidah, O. A. Rugaie, H. M. Tawfeek, Int. J. nanomedicine,

30



17, 1951 (2022).

[18] Moon Kee Choi, Jiwoong Yang, Taeghwan Hyeon and Dae-Hyeong Kim,npj Flexible Electronics 2,
Article No:10 (2018);

[19] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani& A.M. Seifalian, 28 4717 (2007).

[20] Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).

[21] Ch. Sikorski and U. Merkt, Surf. Sci. 229, 282 (1990).

[22] P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65 (1990) 108;

[23] W. Que, Phys. Rev. B 45 (1992) 11036; [b]

[24] U. Merkt, J. Huser, M. Wagner, Phys. Rev. B 43 (1991) 7320;

[25] H. Oh, KJ. Chang, G. Ihm, S.J. Lee, Phys. Rev. B 50 (1994) 15397;

[26] F. Albzoor, M.K. Elsaid, K. llaiwi, J King Saud.University- Science 30, (2017) 1;

[27] S. Tarucha, D.G. Austing, T. Honda, R.J. Vander Hage, L.P. Kouwenhoven, Phys. Rev. Lett. 77
(1996) 3613;

[28] S. Mukhopadhyay & A.Chatterjee, Phys. Rev. B 55, 9279 (1997).

[29] S. Mukhopadhyay & A. Chatterjee, Phys. Rev. B 58, 2088-2093(1998).

[30] S. Mukhopadhyay & A. Chatterjee, Phys. Lett. A 240, 100 (1998).

[31] S. Mukhopadhyay & A. Chatterjee, Phys. Lett. A 242, 355 (1998).

[32] S. Mukhopadhyay & A. Chatterjee, Rev. B 59, R7833 (1999).

[33] M. K. Elsaid, M. Ali, A.A. Shaer, Modern Phys Lett. B 33, 1950422 (2019).

[34] R. Khordad, H. R. Rastegar Sedehi, Optical and Quantum electronics 50, 294 (2018).

[35] J. Adamowski, A. Kwasniowski and B. Szzfran, J. Phys.: Condens. Matter 17, 4489 (2005).

[36] B. Meurer, D. Heitmann and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).

[37] R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Balswin and K.W. West,
Phys. Rev. Lett. 68, 3088 (1992).

[38] M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Physica E 15 (2002) 261.

[39] L. Jahan, B. Boyacioglu, A. Chatterjee, Scintific Report 9, 20109.

[40] M.A. Lamper, Phys. Rev. Lett. 1, 450 (1958).

[41] G. Bastard, Phys. Rev. B 24 (1981) 4714.

[42] D. S. chuu, C. M. Hsiao and W. N. Mai Phys. Rev. B 46, 7 (1992);

31



[43] B. Vaseghi, R. Khordad, M.M. Golshan, Phys. Stat. Sol (B) 243, 2772 (2006);
[44] J.L. Zhu, X. Chen, Phys. Rev. B 50 (1994) 4497.

[45] F.J. Robeiro, A. Latge, Phys. Rev. B 50 (1994) 4913.

[46] W.F. Xie, Physica B 403 (2008) 2828.

[47] J.L. Movilla and J. Planelles, Comput. Phys. Commun.170, 144 (2005).

[48] M.A. Lampert, Phys. Rev. Lett. 1, 450 (1958).

[49] R.N. Hill, Phys. Rev. Lett. 38 643 (1977).
[50] S. Huant, S.P. Najda, B. Etienne, Phys. Rev. Lett. 65, 1486 (1990).

[51] S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665.

[52] J. J. Sakurai, Advance quantum mechenics

[53] E.l. Rashba, Sov. Phys. Solid State 2 (1960) 1109.

[54] E.I. Rashba, V.I. Sheka, New. J. Phys. Phys.-Solid State. 17, 50202, (2015).

[55] Y.A. Bychkov, E.I. Rashba, J. Phys. C Solid State Phys. 17, 6039, (1984).

[56] G. Bihlmayer, O. Rader, R. Winkler, New J. Phys. 17, 050202, (2015).

[57] G. Dresselhaus, Phys. Rev. 100 (1955) 580.

[58] Spintronics in Nanoscale Devices, CRC Press, (2013).

[59] S. Datta (Cambridge University Press, 1997).

[60] A. Aviram, M. A. Ratner. Molecular Rectifiers. Chem. Phys. Lett. 29, 277(1974).
[61] W. Liang, M. P. Shores, M. Bockrath, J. R. Long. & H. Park. Nature 417, 725-729(2002).
[62] H. Park et al. Nature 407, 57-60 (2000).

[63] Boese, D. & Schoeller, H. Europhys. Lett. 54, 668 (2001).

[64] Mitra. A Aleiner. I. & Millis. A. J. Phys. Rev. B 69, 245302-21(2004).

[65] Meir. Y, Wingreen. N. S and Lee. P. A. Phys. Rev. Lett. 70, 2601 (1993).

[66] Wingreen. N. S and Meir.Y. Phys. Rev. B 49, 11 040 (1994).

[67] Hewson. A. C & Meyer. D. J. Phys. Cond. Matter 14, 427 (2002).

32



[68] Khedri. A Costi. T.A, Meden V. Phys. Rev.B 96, 195155 (2017).

[69] Khedri. A Costi. T.A, Meden V. Phys. Rev.B 98, 195138 (2018).

[70] Keldysh. L. V. Sov. Phys. JETP 20, 1018-1026 (1965).

[71] Datta, S. (Cambridge University Press, 2005).

[72] Haug, H. & Jauho, A. P. (Springer, 1996).arXiv:0711.4881v1.

[73] Song. J, Sun. Q. F, Gao. J and Xie. X. C. Phys. Rev B.75, 195320(2007).

[74] Neil W, Ashcroft N and Mermin D 1976 Solid State Physics 1st edn (New York: Thomson Learning)
[74] I.L. Aleiner, V.I. Fal’ko,, Phys. Rev. Lett. 87 (2001) 256801.

[75] K. Uchida, S. Takahashi, K. Harii, J. leda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Na
ture 455, 778 (2008).

[76] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E (2010) Observation of longitudinal
spin-Seebeck effect in magnetic insulators. Appl Phys Lett 97:172505

[77] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, leda J, Ota T, Kajiwara Y, Umezawa H, Kawai H,
Bauer GEW, Maekawa S, Saitoh E (2010) Spin Seebeck insulator. Nat Mater 9:894-897

[78] Jaworski C, Myers R, Halperin JE, Heremans J (2012) Nature (London) 487:210-212
[79] Wu SM, Pearson JE, Bhattacharya A (2015) Phys Rev Lett 114:186602

[80] Wu SM, Zhang W, Kc A, Borisov P, Pearson JE, Jiang JS, Lederman D, Hoffmann A, Bhattacharya
A (2016) Phys Rev Lett 116:097204

[81] Tang GM, Chen XB, Ren J, Wang J (2018) Phys Rev B 97:081407(R)

[82] Chang PH, Mahfouzi F, Nagaosa N, Nikolic BK (2014) Phys Rev B 89:195418

[83] A. Boda and A. Chatterjee, Physica E 45, 36 (2012).
[84] P. Saini, A. Boda, A. Chatterjee, J. Magn. Magn Mater. 485 (2019) 407.

[85] P. Saini, Ashok Chatterjee, Superlattice and microstructure 146, 36 (2020).

[86] R.N. Hill, Phys. Rev. Lett. 38 643 (1977).

33



Chapter -2

Effect of Rashba and Dresselhaus Spin-Orbit Interactions on a
D° Impurity in a Gaussian GaAs Quantum Dot in the presence
of an external Magnetic field

2.1 Introduction

As we have already mentioned in Chapter 1, Quantum dots (QDs) have continued to evoke
interest over the last four decades for their fully quantum attributes, novel physical properties and
their potential application in nanotechnology [1]. Indeed, the literature is replete with
investigations that have unravelled a large number of important and interesting properties of QDs
[2-7] that have the potential to revolutionize the semiconductor technology. It is hardly possible to
have a realistic system without an impurity and therefore the study of impurity states and their
effect on the physical properties of QDs are of utmost practical importance.

Another issue of profound significance that has captured the attention of researchers in the case
of low-dimensional systems is the spin-orbit (SO) interaction, which plays the most crucial role in
the fascinating area of spintronics. The idea here is to fabricate devices where spin will be the
carrier of current rather than the charge [9] and thus in these devices the information will be carried
by the spins. Normally two types of SO interactions can originate in a solid material. One is the
Rashba spin-orbit (RSO) interaction (RSOI) [10] which arises when a material loses its structural
inversion symmetry (SIS). The other one arises from the breaking of the bulk inversion-symmetry
(BIS) [11] and is referred to as the Dresselhaus spin-orbit (DSO) interaction (DSOI). While the
DSO strength largely depends on the QD parameters, the RSO coupling depends both on the QD
parameters and the external electric and magnetic fields [12]. This particular aspect of RSO is
actually taken advantage of in the field of spintronics [13]. Understandably, in recent years,
considerable effort has been made to study the effects of spin-orbit interactions on several
important properties of low-dimensional systems. Kumar et al. [14] have examined the role of
RSOI on the energy levels and magnetic properties of a many-electron harmonic QD taking the
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Johnson-Payne model potential [15] for the electron-electron interaction. Li et al. [16] have
explored the role of Rashba SO coupling on the electronic levels of a neutral hydrogenic donor
centre D° in a GaAs/GaAlAs quantum well by effective-mass envelope function theory. Gisi et al.
[17] have investigated the effect of magnetic field and RSOI on the optical absorption in a
parabolic quantum wire using the compact-density matrix formalism and iterative scheme. Kumar
et al. [18] have obtained the GS energy of a D centre in a GaAs QD with Gaussian confinement
incorporating the RSOI effect by the Ritz variational method.

To our knowledge, the combined effect of RSO and DSO interactions on the properties of a D°
centre in a GQD in the presence of a magnetic field has not yet been studied. The primary aim of
this chapter is to present our work on the role of Rashba and Dresselhaus interactions on the GS
energy, binding energy, donor distribution, zero-temperature magnetic moment and susceptibility
in a three-dimensional (3D) GQD of GaAs placed in an externally applied magnetic field.

2.2 Theory

A D° complex placed in a 3D GQD with RSO and DSO interactions in the presence of an
externally applied magnetic field B (0,0, B) can be modelled by the following Hamiltonian

H = Hpo + Hg + Hp 2.1
with

1 e , € _r*

= - _— = 2R2
Hpo <2m* @+-4° — — = Voe ) I, (2.2)

— 2R €
He=Elox (p+ CA)]Z , (2.3)
Bp e e

Hp = A [ax (px + EAx) — 0y (p}’ + EAJ’)] (2.4)

where H o denotes the Hamiltonian of the D centre in a GQD in an external magnetic field B,
e and m” being respectively to the charge and the Bloch mass of the electron, r (X, Y, z) its position
and p the canonically conjugate momentum operator, A denoting the vector potential defined by
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the equation: B =V X A, ¢ the dielectric constant of the medium, V,, and R representing

respectively the depth and range of the confinement potential, and I the unit matrix of order 2, Hy

and Hp are respectively the Rashba and Dressehaus SOI Hamilonians in the presence of the

magnetic field respectively, gy, g, and g, being the Pauli spin matrices and ag and S, denoting

the RSOI and DSOI constants. It may be noted that R gives essentially the effective size of the

GQD. We use the symmetric gauge so that A = B (— y/2,x/2,0). To proceed further, we have to

deal with the SOI’s. In order to incorporate the effect of SOI’s, we first apply on H a unitary

transformation U = e [19] with

*

m
S=iz7 |ar(vo, — xa,) + Bp(x0, — ya,)].

The Hamiltonian H transforma to

H=eSHe™S = H+ [S,H] +%[S, [S, HI + = oo e e

To determine f, we have to calculate the [S, H], [S, [S, H]] etc. We obtain

[S,H] = — %R lox (py + ;Ay) — oy (px+ gAx)]

— %[Gx (Px + ;Ax> — 0Oy (py + ;Ay)] - %(C(’% — Bp)

* *

2m m
- F(a}% + h% ) - cho-zpz(aizz - ﬁg)'

1 m* m* m*
5 [S.18,H| = 25 (@ + B3) + 55 Looy(af — BB) + 5o weo,p” (af — B3),
where
_ eB
Ve = e
p? = (x* +y%),
0
LZ = —lfl %

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

36



After substituting Egs. (2.7) and (2.8) in (2.6), the transformed Hamiltonian H is expanded in

powers of ag and 3. Neglecting terms higher than aZ and B3 , we obtain

* *

2 2 2
_ p 1 . e - m m
H = ( +—-m a)gpz —;— Voe 2R2>I —F(a,% +ﬁ5)l - 73 (0512? _ﬁlz))O-ZLZ

2m* 8

*

W

m 2 2 2
+— L — o5 (ak — fp)weozp®, (2.12)

We consider the orbital angular momentum to be zero for the GS. To obtain a variational GS
energy of 7, we try a function:

P(r) = N~ —Fr-ime, (2.13)

which is expected to capture the most important features of the GS of (2.9). The variational GS
energy E (D) of the system is given by

<YW)IHP() >
<yPp@Y@E > -

E(D°) = (2.14)

Let us define E(e™) and E(D°) as the GS energies of the electron and the D® complex in the
GQD respectively. The binding energy of the D° complex ((Ez(D?)) is then defined as:

Ez(D%) = E(e”) — E(D°). (2.15)

In the presence of a magnetic field (B), the GS energy will always be a function of B. The change
of the GS energy with B gives the information about the magnetization and susceptibility of the
system. Study of the magnetic field becomes particularly important if the system has SOIs. Once
the GS energy is obtained, the magnetic moment (M) and susceptibility (S) can be easily

determined. The magnetic moment (M) and susceptibility (S) of the D°complex are given by
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2.3 Numerical results and discussion

(2.16)

Though our formulation should work for any QD system, we shall implement it in the case of

GaAs QD for the sake concreteness. All quantities will be expressed in Sl units; so the unit of

energy is chosen as : (mel/) and that of length as: (nm), where, for a GaAs QD, ¢ = 12.4 and

m* = 0.06m,, m, being the bare electron mass. The magnetic field will be expressed in Tesla

(T) and the SOI constants in meV — nm unless otherwise mentioned. In Fig. 1, we show the

behavior of the GS energy (E) of the D° centre in a GQD of GaAs with respect to the effective
size of the QD (R) for B = 0 and for two values of V, and different sets of values of the SOI

constants ap and . The sharp rise in energy as R is reduced below a critical value is clearly

visible. The figure also shows that the effects of RSO and DSO interactions are same in the case

of B = 0, that is, both the interactions reduce the energy equally. The energy however decreases

significantly with increasing V.

- = U =0.5, ﬁD=U
IIR=U, ﬁD=U.5

T S ———

— =0, fp=0

-
ey S S —

R [nm]

Fig. 1 GS energy (E) vs the effective dot radius (R) for a D° complex in a Gaussian GaAs QD with V, =
60,120 meV , B = 0 T and a few combinations of ag(nm-meV) and Bp (hm-meV).
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Fig. 2 shows how E varies with R for a Gaussian GaAs QD with V, = 60 nm for different values
of ag and Bp and for B= 5 and 10T. The figure reveals that, in general, the magnetic field
enhances the energy which is indeed an expected behaviour. However, the interesting point is that
in the case of B # 0, the energy exhibits a qualitatively different behaviour with the RSO
interaction. One can see that though for B = 5T, the energy values for fp = 0 and Bp = 0.5 are
almost equal, the energy values for ag = 0.5 are significantly smaller than those for ag = 0. For
B = 10T, on the other hand, the energy values for Bp = 0.5 are marginally higher than those for

Bp = 0 while the energy for ag = 0.5 is again substantially lower than that that for ag = 0.

-20

- - ag=05, fp=0

-30¢ | | (tp=0, f,=0.5 "

40
W[ N T ]
1 T T
£, _50 =05, fy=0.5 1
1] R=¥. PD=V.
ap=0, fp=0
_60_
-10; Sl
0 20 0 60 8 100

R [nm]

Fig. 2 E vs. R for a D° centre in a Gaussian GaAs QD with V, =60 meV , B =5,10T and a few
combinations of ag(nm-meV) and Bp (NM-meV).

In Figs. 3 and 4, we show the variation of E with respect to ayp and fp respectively for B =
1T, V, =60meV and a few values of R. The figures demonstrate that E is a decreasing function
of both ai and Sp. Variation with respect to S is rather slow. In other words, the Rashba term
reduces the energy much more than the Dresselhaus term and thus has a more dominating effect
ina QD.
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Fig. 3 E vs. ay for a D° centre in a Gaussian GaAs QD with V; =60 meV,B =1T and Bp = 0 nm
meV and a few combinations of R (nm).

1
V=60, B=1, ap=0
-50¢ _
60 ~ - _ _
2> =70 ‘* ~
w -80; RS \h
-90- N
- - R=10 e
-100} ‘
----- R=15
—11 — L L R L . — L P— . 1 P I .
8.0 0.5 1.0 1.5 2.0

Fig. 4 E vs. Bp fora D centre in a Gaussian GaAs QD with Vo =60meV ,B =1T and fp = 0 nm
meV and a few combinations of R (nm).
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Fig. 5 E vs. B for a D° centre in a Gaussian GaAs QD with V, = 60 meV , R = 10 nm and a few
combinations of ag(nm-meV) and Bp (nm-meV).

In Fig. 5, we plot E vs. B for V = 60 meV and R = 10 nm and for different sets of values of
ar and fp. As expected, E increases with increasing B. However, when B is small, the variation

is very slow while as B increases, the variation of E with B becomes more rapid and almost linear.

Fig. 6 describes the behavior of the GS BE (Ej) of a D° complex with respect to R for B = 5T,
Vo = 120 nm and in the presence and absence of RSO and DSO interactions. It is clearly evident
from the positive values of Ep that the D° complex can exist as a stable system in a GaAs QD
which is indeed an expected result. Also, the binding becomes stronger as the size of the QD
decreases implying that the quantum confinement enhances the binding. As R increases, Ep
decreases and finally saturates to the bulk limit. Interestingly, one can observe that the RSOI
lowers the binding energy while DSOI enhances it. However, in the case of B = 0, Ez does not
show any dependence on SOls. Fig. 6 also reveals the existence of a critical value of R (R,) at
which the D® complex is most stable and as the dot size decreases below R_, the binding begins to
decrease very fast. The BE peaks are shown in a magnified way in Fig. 7. The reduction in binding
energy below R, has its genesis in quantum mechanics. When the size of the QD is made very
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- B=5, V=120 —  ag=0,Bp=0

R [nm]

Fig. 6 BE (Eg) vs R for a D° centre in a GQD of GaAs with V, =120 meV , B = 5T and a few
combinations of ag(nm-meV) and Bp (Nm-meV).
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Fig. 7 BE peak for a D° centre in a GQD of GaAs with V, = 120 meV , B = 5 T and a few combinations
of ag(nm-meV) and Bp (NM-meV).
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small, the uncertainty in the position of the electron which has to be smaller than the QD size,
becomes concomitantly very small. Obviously the momentum uncertainty would then be very
large and so the momentum which should be larger than its uncertainty must also be very large.
This will naturally lead to a very large kinetic energy. Under these circumstances, it would become
really difficult to localize the electrons within the confines of the QD and as a result the binding
energy will undergo a substantial reduction.

In Fig. 8, we show the behaviour of the GS BE (Eg) of the D° complex in a GQD of GaAs with
respect to the magnetic field for R = 10 nm, Vy = 120 meV and different sets of values of ag and
Pp. In Fig. 9, we plot Eg vs. V, for B = 5and R = 10 nm . Though the binding of the D° complex
is enhanced by both the magnetic field and the confinement potential depth, in the former case the
behaviour is concave from above while in the latter case it is concave from below. The explicit

variation of the binding energy with ag and [ are shown in Figs. 10 and 11.

?5_ I ! I ] I I ! ] I I I I I 1 T T T T T
S ﬂ'ﬁ=0,ﬁﬂ=0

?0 - """"" GR=U.5,ﬁD=U ]
% 65 ag=08,=05 :
E |
& o ‘ i

ity R=10, V;=120
50 I T T T SR

0 2 4 6 8 10
BI[T]

Fig. 8 Eg vs. B for a D° centre in a GQD of GaAs with V, = 120 meV , R = 10 nm and a few
combinations of ag(nm-meV) and Bp (nM-meV).
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Fig. 9 E5 vs. V, for a D° centre in a GQD of GaAs with B=5T , R = 10 nm and a few combinations
of ag(nm-meV) and Bp (NM-meV).

70—  B=10

200 R=5,V,=120 By=0 _B=0
00 02 04 06 08 10

ap [meV nm]

Fig. 10 Eg vs. ag for a D° complex in a GQD of GaAs for R = 5nm,V, = 120 meV, 5, = 0 mev nm
and B = 0 and 5T.
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Fig. 11 Eg vs. Bp for a D complex in a GQD of GaAs for R = 5 nm,V, = 120 meV, ag = 0 meV nm

and B = 0 and 5T.
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Fig. 12 Donor electron distribution in a GQD of GaAs with Vy, = 120 meV, aiz = 0.5 meV nm, Bp =

0 meV nm, B = 0and 5T and different values of R (nm).
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In Figs. 12 and 13 we show the behaviour of the donor electron distribution in a GQD of GaAs
with ¥, = 120 nm and different values of R in the presence of DSO and RSO interactions
respectively. Fig. 12 gives the results for DSO interaction while those for RSO interaction are
shown in Fig. 13. It is evident that the electron localization becomes more and more stronger with
the reduction in the QD size as can be seen from the curves for R = 20,10, 3, 1 nm . However the
figures show that localization for R = 10 nm is less than that for R = 3 nm. This is because
below a certain R, the kinetic energy becomes so large because of uncertainty principle that
localization starts reducing. The figures also show that the localization is stronger in the presence
of DSO interaction. It is also evident that the magnetic field provides an additional localization as
expected.

o
0

o
o

S
[N

DY Distribution

o
N

Fig. 13 Donor electron distribution in a GQD of GaAs with V, = 120Rj,, fp = 0.5 meV-nm
B = 0and 5T and different values of R (nm).

In Fig. 14 we plot the magnetic moment (M) with respect to B for V, = 120 meV, R =
10, 20 nm and for different values of ag and Sp. The curves clearly reveal that M is diamagnetic
in the D° complex. One can observe from Fig. 14 that the magnitude of M increases with increasing
B. Furthermore, |M| increases with R. However, for both small and very large values of B, the
magnetic moment depends rather weakly on the QD size. At low values of B, the RSO interaction
reduces the diamagnetic moment while DSO enhances it. At large B, the magnetic
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moment becomes independent of SOI.
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Fig. 14 Magnetic moment (M) vs. B for a D° centre in a GQD of GaAs with V, = 120 meV , R =
10 nm and 20 nm and a few combinations of ag(nm-meV) and Bp (NM-meV).
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Fig. 15 Magnetic susceptibility (S) vs. B for a D° centre in a GQD of GaAs with V, = 120 meV ,R =
10 nm and 20 nm and a few combinations of ag(nm-meV) and Bp (NM-meV).
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Fig.15 shows how the magnetic susceptibility (S) of a D° system varies with B. The diamagnetic
nature of the susceptibility is clearly visible from the figure. Secondly, in the case of a small QD,
the susceptibility varies rather slowly with B at small values of B. But for a larger QD, the
susceptibility is found to increase quite rapidly at low values of B. As B increases, the rate of
increase of S with B becomes slower beyond a certain value of B that is weakly dependent on the
size of the QD. This leads to a crossing behaviour in S as a function of B. At large B, S, however,
tends to saturate asymptotically to a value which is a constant independent of R.

2. 4 Conclusion

In this chapter, we have calculated the GS energy (E) and the GS BE (Eg) of a D° centre system
in a GQD of GaAs as a function of the effective QD radius, confinement strength, external
magnetic field and RSO and DSO interactions. The GS energy of the D° system has been shown
to increase with decreasing QD size and to decrease with increasing confinement strength. Also
the GS energy has been shown to decrease with increasing RSOl and DSOI, though the decrease
in the case of DSOI has been shown to be much slower. It has been furthermore suggested that in
the case of B # 0, the GS BE decreases with increasing RSOl whereas it increases with DSOI. In
the case of B = 0, however, neither of the SOIs has any effect on the GS BE.

We have also presented results for the diamagnetic moment (M) and susceptibility (S) for the
donor centre at zero temperature (T = 0). We have shown that |[M| increases with B and decreases
with the reduction in R. S has also been shown to increase with B. We have furthermore shown
that |S| increases with increasing QD size at small magnetic fields, but above a critical magnetic
field, it decreases with increasing QD radius. This leads to a crossing behaviour in the diamagnetic
susceptibility. Finally, we have calculated the electron distribution for different values of the QD
parameters. It has been shown that in general, as the QD size decreases, the electron localization
becomes stronger. However, the behaviour starts reversing below a certain QD size because of the
uncertainty principle.
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Chapter -3

Spin-Orbit Interaction effects on the Binding Energy and
Susceptibility of an Off-Centre D° Impurity in a 2D Gaussian
Dot in the presence of a Magnetic Field

3.1 Introduction

As we discussed in Chapter 2, a large number of investigations have been carried out for an on-
centre D° impurity in a QD [1-10]. The off-centre D° impurity problem in the QD has also received
considerable attention by several authors [11-35]. Indeed, the energetics of an off-centre D°
impurity have been studied in square well, parabolic and Gaussian QDs using variational method
[10-25], perturbation method [26-30], effective mass approximation [31], finite element method
and Arnoldi algorithm [32] and it has been demonstrated that BE of an off-centre D° reduces when
the impurity is shifted away from the dot centre. Many researches [32-35] have been studied the
effect of magnetic field on BE and susceptibility of an off centre D° impurity in the QDs.

SOls has become an interesting probe for studying the physical properties of low-dimensional
structures, from both the theoretical and technical points of view. In this chapter, we employ a
variational method to study the effect of Rashba and Dresselhaus SOIs on the GS and binding
energies of an off centre D° impurity in a Gaussian QD in the presence of a magnetic field. We
apply our theory to obtain results for a GaAs QD.

3.2 Model Hamiltonian

The system of an off-centre D° centre in a 2D GQD in the presence of RSOl and DSOI and an
external magnetic field B (0,0, B) is governed by the Hamiltonian:

3= (ot S = — v )14 Do (p+Sa))
B Zm*(p c) glp — D] 0€ h ax\pP c /1y
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+ 0, (pet 24) — 0y (p, +24,)] (B

where p(p) is the coordinate (conjugate momentum) of an electron of effective mass m* and
charge e, A refers to the vector potential which is defined as: B = V X A, ¢ is the permittivity of
the material medium, D represents the location of the D° impurity, R and V,, stand for the range
and the depth of the confinement potential, I denotes the unit matrix of order 2, oy, o, and o,
describe the Pauli spin matrices and ag and B are respectively the RSOl and DSOI coefficients.
We work in the symmetric gauge and choose: A = B (—y/2,x/2,0).

To deal with SOIs, we apply a transformation U = e to H, as in Chapter 2. The generator S is
given by

*

S =i 2> [an(yo, - x0,) + fo(x0, - yay)] (3.2)

We expand the transformed Hamiltonian 7 = eS# eSin a power series in terms of az and fp

and consider terms up to quadratic in agz and Sp. This leads to

i pz 1 *, .2 2 ez _p_PP m* 2 2 m* 2 2
H=|5~tgmwp —m—Voe 2RE NI = =5 (ak + Bp)l — 55 (ak = B5)ozLs
W m*
+ Ly — oz (@k — BRweozp?, (33)
where
eB 2 2 2 7 (9
W, = (m*c) , pe=(x“+y*), L,=—ih (%> (3.4)

3.3 Formulation

To calculate the GS energy of the electron and D° in Gaussian QD we use the Ritz variational

method and choose a simple variational wave function:
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Pe-(p) = e FPi-ime, (3.5)

Ppo(p) = [1+y e~ ¥P~D)|e=Fp*~ime, (3.6)

where ¥, , and £ will be treated as variational parameters. The variational energies of the e~

and D° system are given by

Eo - 0:<1/Js(p)|fflt/)s(p)>
s=en 0 = Ty s >

(3.7)

where E,- is the GS energy of an electron in GQD and E 5o is that of the off-centre D° complex

in GQD. The BE of the off-centre D® impurity (Ez( poy) is given, as usual, by

Eg(D%) = E(e”) — E(D°). (3.8)

We are also interested in the magnetization and susceptibility which are given by:

= 2 = oM 20
- 9B’ - 9B (3:9)

3.3 Numerical results and discussion

We choose to measure energy in meV, length in nm, magnetic field in Tesla (T), and SOI
coefficients in meV-nm. We shall apply our results to GaAs QD for the sake of concreteness for
which we take e = 12.4 and m* = 0.067m,, m, being the bare electron mass. In Fig 1, we show
the GS energy levels for different values of the impurity position D in a GQD with V; = 300 meV
and R = 10 nm. The GS energy level rises with increasing D. Thus one can tune the energy levels

if one can have a control on the position of the impurity.

In Fig. 2, we present the behavior of GS energy (GSE) (E) of an off-centre D° impurity in a
GaAs GQD as a function of impurity position D for B = 0 and B # 0 and for different RSOI and
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DSOI coefficients ar and [p. As D increases, GSE initially increases quite rapidly, but

asymptotically saturates to a constant value.

This can be easily understood from the simple semi-classical argument, which suggests that GS
corresponds to the minimum of the potential. The RSOI and DSOI effects on GSE are found to be
low at small values of D and large at higher values of D. GSE decreases in the presence of both
SOIs at low B, but the effects of RSOI and DSOI are opposite at higher values of B. RSOI reduces
GSE but DSOI enhances it at higher values of B.

-2000 v,=300, R=10
“220f e,

-240¢

V(o)

~260;

~280;

-300¢

plap

Fig. 1 GSE levels (E) vs p for an off-centre D° centre in a GaAs GQD with V, = 300 meV
and R = 10 nm and for different values of D (nm).

Fig. 3 depicts the behavior of E with respect to R fora GQD of GaAs semiconductor with
Vo = 60 meV and V, = 120 meV for a few combinations of ap and [, and at B = 0. With
increasing R, GSE falls off initially rapidly, particularly so for a larger V,,, but finally appears to
saturate to the bulk value. The figure clearly shows that the donor system becomes more confined
as I increases. This behavior follows from the commonplace notion of quantum mechanics. It is
also revealed by the figure that RSOl and DSOI have the same effects on GSE at B = 0.
Comparison of the present results with those of [13] reveals that GSE increases with D.

55



-260 :*r_ B=5 — ap=0.5, Bp=0
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Fig. 2 E vs D for an off-centre D® impurity in a Gaussian GaAs QD with V, = 300 meV,
R =10nm, B =0, 5T and a few different values of ag (nm-meV) and Bp (nm-meV).

—20' 7
W‘\ B=0, D=10 — — ag=0, Bp=0

"
03
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Fig.3 E vs R for an off-centre D° impurity in a Gaussian GaAs QD with B =0, D = 10 nm,
Vo = 60 meV and 120 meV and a few different values of @z (nm-meV) and B, (hm-meV).



E [meV]

Fig. 4 E vs R for an off-centre D® impurity in a Gaussian GaAs QD with D = 10 nm,
Vo =60 meV, B =5T,10T and for few values of az(nm-meV) and S, (nm-meV).
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Fig. 5 E vs R for an off-centre D° impurity in a Gaussian GaAs QD with D = 10 nm,
Vo =120 mev, B = 5T,10T and for a few values of @iz (nm-meV) and S5 (nm-meV).
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Fig.6 Evs.ay for an off-centre D° in a Gaussian GaAs QD with V, = 60 meV,
R=10nm, B =0.5T, B, = 0 and for different values of D (nm).
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Fig.7 E vs. B, for an off-centre D° in a Gaussian GaAs QD with B = 0.5 T, R=10 nm,
Vo = 60 meV, ar = 0 and for different values of D (hm).
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We show in Fig. 4 and Fig. 5, the behaviour of E with R for a 2D GaAs GQD for a few
combinations of az and fp - values at B = 5and B=10T and V, = 60meV and V, =
120 meV respectively. The figure shows that GSE increases with B, which is an expected
behaviour. Furthermore, GSE reduces in value as R increases and eventually saturates to the bulk

limit. This effect is understandable from the point of view of simple quantum mechanics.

In Figs. 6 and 7, we show the variation of E as a function of ag and Bp respectively with B =
0.5T, V, = 60 meV and R=10 nm and for a few values of D. One can see from the figure that the
value of GSE diminishes with increasing ag and p, but the decrease with respectto ag is faster.
Thus the energy is lowered more by the Rashba coupling than by the Dresselhaus interaction and
the Rashba coupling has a stronger effect in a QD. Fig. 7 suggests that the location of impurity

plays a more important role at higher values of (p.

In Fig. 8, we show the plot of E vs. B with V =300meV, R =10nm, D =5 nm and for
different values of ap and fBp. In the case of ag = 0 = [fp, one can see that E is an increasing
function of B, which is however is an expected behaviour. When DSOI is switched on, the E vs

B — curve becomes more steeper and almost linear.

200 —— S
V,=300,R=10, D=5
210 ; -
=220+
> ) e ag=1, fp=0
£ =230
" — ag=0, fp=0
W _240 -
agr=0, fp=1
=250}
. — ag=1, fp=1
260 SR

5 10 15 20 25 30
BI[T]

Fig. 8 E vs B for an off-centre D in a Gaussian GaAs QD with V, = 300 meV, R=10 nm,
D = 5 nm and for different values of ap (hm-meV) and B, (nm-meV).
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Fig. 9 Eg vs R for an off-centre D° in a Gaussian GaAs QD with V, = 120 meV, D=10 nm,
B = 5T for different values of az(nm-meV) and £, (nm-meV).

Thus in this case, E increases with B more rapidly but linearly. If RSOI is switched on keeping
Ps = 0, the behaviour of GSE becomes interesting. At small B, it decreases with increasing B,
reaches a minimum and then increases monotonically. Now if DSOI is additionally swiched on, E
shows again an increasing behaviour with B. Of course the nitty-gritty of the behaviour would be
determined largely by the relative values of ag and . The bottom-line is that E is raised by the
magnetic field and DSOI.

In Fig. 9, we plot the GS BE (Ejp) of an off-centre D° system as a function of R with B = 5T,
Vo =120 meV, D = 10 and for different combinations of @y and . The BE Ej turns out be
positive, which means that the system is always stable. Comparison of the results of the present
work with the corresponding values for the on-centre D° complex [13] suggests that the binding
is weaker in the case of an off-centre D® complex than for the corresponding off-centre system.
One can see from Fig.9 that the role of SOI on Ez is more visible at larger values of R. DSOI
enhances the binding while it is reduced by RSOI. One can see that the curves for ay = 0 = )
and ag = 1 = [ exactly coincide. This is not fortuitous, but a general trend. The effect of RSOI
and DSOI are exactly equal and opposite. Fig. 9 also reveals that the BE of an off centre D°
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Fig. 10 Eg vs. V, for an off-centre D° in a Gaussian GaAs QD with R = 10 nm,
D =1nm, B = 10T for different values of az(nm-meV) and S, (nm-meV).
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Fig. 11 E5 vs D for an off-centre D° in a Gaussian GaAs QD with V, = 360 meV/,

ag = 1nm-meV, Bp = 1 nm-meV, B=1T and for different values of R (nm).
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Fig. 12 Eg vs D for an off-centre D° in a Gaussian GaAs QD with B = 5 T, R=5 nm,
Vy, = 300 meV for different values of az(nm-meV) and Sp (nm-meV).
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Fig. 13 Ej vs D for an off-centre D in a Gaussian GaAs QD with az = 1 nm-meV,
Bp = 1 nm-meV, R=10 nm, V, = 300 meV and for different values of B(T).
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becomes stronger as R is decreased and it attains a peak at a critical value of R (R,) below which
it decreases very fast The rapid fall in BE below R, is purly a quantum mechanical phenomenon
and has been explained in [13]. In Fig. 10, we plot Ez vs. V, for R = 10nm,D = Inm and B =
5T . We can see that BE increases with /. Also RSOI decreases BE while DSOI enhances it.

We plot E vs D in Fig. 11 for a few values R, in Fig. 12 for a few combinations of ag and p —
values and in Fig. 13 for a few values of B. Fig. 11 suggests that the binding is strongest when D°
is placed at the centre of the QD 1i. e., when D = 0. As D increases, BE decreases and eventually
saturates. The figure also shows that QD size influences the Ez — D - curve essentially at small D

values only, where BE increases with decreasing QD size R.

Fig. 12 reveals that the SOI effect on D-dependence of BE is rather negligible, while Fig. 13
suggests that at small D values, the magnetic field plays a significant part in deciding the D-
dependence of BE. However, if D is large, then none of R, B, ag, or B has any effect on the Ep

vs D curve.

— ag=0, fp=0 |

g5,  R=10,D=1, Vy=180

— ag=0.5, fp=0

ag=0, fp=0.5
50+ — ag=1, fp=1

0 2 4 6 g8 10
BI[T]

Fig. 14 BE vs. B for an off-centre D° in a Gaussian GaAs QD with R = 10 nm, D=1 nm,
Vy, = 180 meV for different values of az(nm-meV) and S, (nm-meV).
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Fig. 15 Eg vs. ag for an off-centre D° in a Gaussian GaAs QD with R = 10 nm,
D =10nm, V, = 120 meV and Bp = 0 nm-meV and for B = 0 and B = 10T.

40————

Fig. 16 Ep vs. Bp for an off-centre D° in a Gaussian GaAs QD with R=10 nm, D = 10nm, V, =
120 meV and agp = 0 nm-meV for B = 0and B = 2T.
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In Fig. 14, we have shown the behaviour of E of an off-centre D° impurity in a GaAs GQD
with respect to B for R = 10 nm , D=1 V,, = 180 and different values of ag and Sp. As expected,
Eg increases with B. We also see that DSOI increases Ez while RSOI increases it, as observed
earlier. The BE of a system with of ay = S, is same of a system without SOls.

In Figs. 15 and 16, we show directly the variation of BE as a function of ai and S, for R =
10,D = 10,V, = 120 for both B = 0 and B # 0 respectively. It is evident that BE decreases with
the RSO parameter and increases with the DSO parameter in the presence of B and it is

independent of SOIs in the case of B = 0.

Fig. 17 describes the behaviour of the magnetic moment (M) with respect to B for V, =
300meV,D = 5, R = 10 nm and for a few combinations of ag and Bp. The figure suggests that
depending on the value of B and SOI constants, M can assume positive or negative values. For
example, in the presence of DSOI alone, M is negative for all values of B. In fact, the negativity
of M increases with the increase in B. At low B, M is positive in the presence of RSOI alone, but
M decreases as B is increased and beyond a critical value of B, M undergoes a transition and
becomes negative. For the same value of ay and S, M is negative for all values of B.

In Fig. 18, we present the susceptibility (S) of an off-centre D° system against B for different
combinations of RSOI and DSOI constants. In the absence of SOls, the diamagnetic effect
decreases with the increase in magnetic field and |S| reaches zero asymptotically. The behaviour
is essentially similar in the presence of only DSOI. In the presence of RSOI alone, the magnitude
of the susceptibility increases at lower magnetic field up to a critical field where |S| shows a
minimum and after this the diamagnetic effect starts decreasing monotonically and |S| saturates to
zero eventually with the rise in the magnetic field. The minimum in |S| occurs at the magnetic field
where M changes sign from positive to negative. It is clearly visible that while DSOI decreases the
diamagnetic effect, RSOI increases it. When a, = 8, the opposite effects caused by RSOl and
DSOI cancel each other and the result becomes same as the case where both RSOl and DSOI are
absent. The S — B curve becomes independent of both B and SOls at large B. The diamagnetic
nature of D° is understandable from fundamental principles of physics. Indeed, it is easy to see
that in the case of the ground state of the D° complex, if the electron’s spin is not taken into
account, the only contribution to susceptibility comes from the Larmour or Langevin
diamagnetism.
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Fig. 17 M vs B for an off-centre D° in a Gaussian GaAs QD with V, = 300 meV,
R=10 nm, D = 5 nm for different values of az(nm-meV) and B, (hm-meV).
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Fig. 18 S vs. B for an off-centre D in a Gaussian GaAs QD with V, = 300 meV, R=10 nm,
D = 5 nun for different values of aip(nm-meV) and B, (nm-meV).




This is precisely what is happening here. If the spin of the electron is taken into account, the spin-
Zeeman interaction would give rise to a paramagnetic effect which is commonly known as the

Langevin paramagnetism.
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Fig. 19 S vs. D for an off-centre D° in a Gaussian GaAs QD with V, = 300 meV, R=10 nm,
B = 2T and for different values of ap (nm-meV) and S, (nm-meV).
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Fig.20 S vs ag for an off-centre D in a Gaussian GaAs QD with V, = 300 meV,

D =5nm R = 10 nm and $p= 0 nm-meV for few values of B (T)
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Fig. 21 S vs. By for an off-centre D° in a Gaussian GaAs QD with V, = 300 meV,
D =5nm R = 10 nm and az= 0 nm-meV for few values of B (T).
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Fig. 22 Contour plot of the BE as a function of ay and 8, for an off-centre D° in a Gaussian
GaAs QD
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Fig. 23 Contour plot of BE as a function of R and D for an off-centre D° in a Gaussian
GaAs QD.

Thus in the presence of the electron spin, there would be a competition between the two magnetic
effects and the ground state magnetic susceptibility would depend on both the magnetic field and
temperature.

Fig.19 shows how the susceptibility S varies with the impurity position D for V, = 300 meV,R =
10 nm,B = 2 T and for various combinations of Rashba and Dresselhaus parameters. One may
note that as D is increased, |S| increases and finally reaches a saturation value.

We study the nature of the susceptibility with respect to RSOl and DSOI coefficients in Figs. 20
and 21 respectively for V, = 300 meV,D = 5nm,R = 10 nm and a few values of B. In case of
B =0, |S] is found to decrease with respect to both ay and ,. However, when the magnetic field
is switched on, though |S] still decreases monotonically with g, with ay it has an interesting
behaviour. At small B, it first increases, then develops a broad hump-like structure and finally
decreases, while at large B, it increases monotonically with aj.
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In Fig.22, we show the contour plot of BE for different combinations of ay and B, for V, =
300 meV,R = 10nm,B = 1T and D = 5 nm. Black lines in the plot correspond to constant BE
values. BE decreases from light blue region to dark blue region. BE is high at large values of fp
and small values of og. The contour plot of BE as a function of R and D for V, = 300 meV, B =
1T, ag = 1 mevnm and Bp = 0 is presented in Fig.23. BE decreases from the light blue to the
dark blue region and the black lines are constant energy curves. So in general, for the same R, an
increase in D decreases BE. The figure also shows that beyond a certain value of R, BE does not
change much with R if D is fixed. At small R, however, there is a window of D-values for which
BE is same.

300/

250 | =

1 |
= D COXOD T
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0 5 10 15 20 25 30
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Fig. 24 Contour plot of the BE as a function of B and V,, for an off-centre D% in a
Gaussian GaAs QD.

Fig. 24 shows the contour plot of BE with respect to B and for I/, with R = 10 nm, D = 5 nm,
arp = 1mev — nm and B, = 0. BE increases from dark blue to light blue region and thus it is
small at small values of B and V,, and large at higher values of B and V,, . In Figs. 25-27, we present
the 3D plots of the BE as a function of different system parameters. Fig. 25 shows that BE
decreases as ay increases while it increases as S, increases. Thus BE is maximum in a material
with large S, and small ag. It is also observed that at equal values of ag and Bp, BE is same as

that in the absence of SOls.
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Fig. 25 3D plot of the BE as a function of aiy (nm — meV) and B (nm — meV) for an
off-centre D in a Gaussian GaAs QD.
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Fig. 26 3D plot of the BE as a function of B (T) and D (nm) for an off-centre D° in a
Gaussian GaAs QD.

71



It is because in the presence of a magnetic field, the amount of BE enhanced by DSOI is same as
that reduced by RSOI. Fig. 26 shows the plot of BE as a function of B and D for V, = 300 meV,
R =10nm, ag = 1 mev —nm and B, = 0. The plot shows that BE increases as B increases
and D decreases. The 3D curve given by Fig. 27 shows that BE can be large in a window of R

values.
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Fig. 27 3D plot of the BE as a function of V,(meV) and QD size R (nm) for an off-centre D°
in a Gaussian GaAs QD.

3.4. Conclusion

In conclusion, an off-centre D® impurity is considered in a 2D Gaussian GaAs QD incorporating
the effects of RSOl and DSOI and an external magnetic field and the GS BE of the system is
calculated. It is shown that the binding of a D® complex is strongest for the on-centre complex
(D = 0) and BE decreases with increasing D and eventually saturates. Our results reveal that the
effect of SOIs on the D-dependence of BE is very small, though magnetic field can influence the
D-dependence of BE at small D values. However, if D is large, then none of R, B, ag, or 8, would
have any effect on the Ez vs D curve. We have also presented the contour plots and 3D plots of

BE of the system with respect to different system parameters.
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Finally, the susceptibility (S) of the off-centre D° in a GQD system is calculated using statistical
mechanics. It is shown that S is diamagnetic. With increasing D, |S| initially increases and
eventually saturates to a constant. It is observed that when RSOI is absent and only DSOI is
present, |S| decreases both with 8, and B. However, in the case when DSOI is absent and only
RSOI is present, at small values of B, |S| initially increases with increasing ay, reaches a

maximum and then decreases with ag, but at large B, |S| increases monotonically with ap.
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Chapter -4

Effect of confinement potential shape and Spin-Orbit
Coupling on the D° Impurity in a GaAs quantum dot
placed in a magnetic field

4.1 Introduction

One of most important parameters for a quantum dot (QD) system from a theorist’s point of view
is the confinement potential. QDs can be fabricated in different shapes and sizes to have certain
required properties. The nature of the confinement potential in a QD depends on the shape of QD,
gate voltage, lateral voltage and on the fields applied from outside. Motivated by some early
experiments and generalized Kohn’s theorem, several investigations have been carried out in the
past considering the potential in QD as parabolic [1]. Later investigations have suggested that the
confinement potential in a QD is generally anharmonic and has a finite depth. This has led to a
large number of studies on QDs using Gaussian confinement potential [2]. Such a QD can be called
a Gaussian QD (GQD).

Recently, Ciurla et. al. [3] have proposed a more generalized confinement potential namely, the
power-exponential potential (PEP) given by

p\P
V(p) = ~Voe ®) (4.1)
where V, measures the depth of the potential, R its range and p can be called the steepness
parameter which describes the hardness of the confinement potential. The higher the value of p,

the harder the potential at the boundary. One important advantage with PEP is that it can lead to
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different confinement potentials in different limits. For p = 2, we get the Gaussian potential and
confinement potential is soft, i.e. the electron can partially penetrate through the potential well. As
p increases, the probability of the electron tunneling becomes smaller. For large p, the PEP mimics
the rectangular well and becomes hard [3]. Fig. 1 shows the form of PEP for different values of p.

(= P60 0000 eeeea parabolic
3 -2 -1 0 1 2 3
plap

Fig.1. Power-exponential potential for p = 0.5,2,5,30, 100 and comparison with a
parabolic potential.

Ciurla et al. [3] have studied the spectra of this potential and its applicability as a confinement
potential. Hereafter, QDs with power exponential confinement potential will be referred to as
PEQD. Xie [4] has studied the effect of the shape of the confinement potential on photoionization
cross section of a D® impurity in a QD using the power-exponential potential (PEP). Jahan at el.
[5] have recently investigated the effect of the shape of the confinement potential on the electronic,
magnetic thermodynamic and transport properties of a GaAs QD at
finite temperature.

76



The spin-orbit interaction (SOI) effects are also important in a QD. Khordad [6] has studied the
diamagnetic susceptibility of a hydrogenic impurity in a quantum pseudo-dot in the presence of
SOI with harmonic potential. Kumar at el. [7] have investigated the effect of Rashba SOI on the
GS energy of a D° centre in a GQD of GaAs. Saini et. al. [8] have studied the effect of RSOI and
DSOI on the susceptiblity of a D° impurity in GQD placed in an external magnetic field. In
previous chapters, we have presented these works.

In the present chapter, we shall study the effect of the shape of the confinement potential on the
properties of a D® complex in a PEQD the presence of both RSOI and DSOI and an external
magnetic field. We shall calculate, in particular, the GS energy (GSE), binding energy (BE),
magnetic moment (MM) and the magnetic susceptibility (MS) of the D° complex.

4.2 Theory

The Hamiltonian of a D® complex ina 2D PEQD system with RSOl and DSOI and placed in a
magnetic field B (0,0, B) can be written as

1 e e? PP a e
_ Ca - & v ® )+ Egx -A
3 (Zm*<p+c R - - v ) + %o (p+2a)]
Bp e e
= o (s + EAx) —ay (py + EAy)], (4.2)
where all the notations have already been defined.
To eliminate SOls, we apply as before, the unitary transformation
— 55 — 3 m’
U=e> , S = ey [aR(yax - xay) + BD(xax — yay)], (4.3)
on the Hamiltonian. The transformed Hamiltonian can be written as,
H=eSHe ™S = + [S,H] +§[S, [S, 7]+ . (4.4)

Straight-forward calculation yields

*

[S:H] = _a_ff[o-x (py +§Ay) — Oy (px +§Ax)] - 2;21 (a}% +Bl%)
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-~ [ax (px + ;Ax) - g, (py + ;Ay)] - Tfrll—;wcazlfzpz(azze — B3)

2 * 2 2
- ﬁm Usz(aR - .BD) ’ (4-5)
1 m* m* m*
P [S; [S, 7{]] Yl (ag +B5) + 553 N E w0, L,p*(ak — B5) + 73 oL, (ag — B5), (4.6)

and the transformed Hamiltonian is given by

2 2 * *
~ p 1 e m w
}f=( +gm wﬁpz—;—V(p))l——(aﬁBD)I — 25 (@& = Dozl +— L,

*

m 2 2 2
— 2—hg(05R — Bp) wcozp”, (4.7)

where w, = (eB/m*c), p?=(x*+y?)and L, = —ih(d/0¢).

We wish to obtain GSE of D° by the Ritz variational principle and choose the trial wave

function as
W(p) = N eap*~Bp=ime) (4.8)

Denoting GSE of the electron in PEQD by E(e™), GSE of the D° complex in the same system
by E(D°) and BE of the D° complex by Ez(D°), we can write, as before, the binding energy
of the D° complex as

Ez(D®) = E(e”) — E(D°). (4.9)

The magnetic moment (M) and the magnetic susceptiblity (S) of the of the D complex are given
by

OE(D°) . 92E(D)
oB '’ - 9B?

(4.10)
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4.3 Numerical Results and Discussion

We use meV as the unit of energy, nm as the unit of length, and T (Tesla) as the unit of magnetic

field. SOls are then given in meV — nm. For concreteness, we shall apply our results to a GaAs
QD for which m* = 0.067 m,, where m, is the bare electron mass and € = 12.4 ¢, [4,14].

Fig. 2 shows the behavior of the wave function as a function of p for different values of the
parameter p (with B = 1T,V, = 120 meV, R=10 nm, ay = 1, Bp = 1). Interestingly, the wave
functions show a crossing behavior with respect to p.
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Fig. 2 The GS Wave-function vs p for a D° centre in a GaAs GQD with B = 1 T, V, = 120 meV,

R=10 nm, azp = 1 meV —nm and p = 1 meV — nm for a few different values of p.

In Fig.3, we plot GSE of a D° donor E(D?) in a GaAs QD with respect to the steepness parameter
p in the absence of RSOl and DSOI, in the presence of either of them, and in the presence of both.

In all cases, GSE decreases as p increases but eventually saturates as p becomes large. One can
also observe that both RSOI and DSOI lower the energy, DSOI having a larger effect.
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Fig. 3 GSE (E) vs p for a D° centre in GaAs GQD with V, = 120 meV, B =1T,
R=10 nm, for different values of az(meV — nm ) and f,(meV — nm).

In Fig. 4, we plot GSE of a D° donor E(D°) in a GaAs QD with respect to the steepness
parameter p for B=1T,V, = 120meV, az =1, fp =1 and for different values of R. We
observe that for R < 8, GSE initially increases with p but eventually reaches a saturation value
as p becomes sufficiently large, while for R = 8, GSE initially decreases with increasing p and
eventually reaches a saturation value for large p. For R ~ 8, GSE is almost independent of p. Fig.
5 shows the variation of GSE with respect to R for different values of p. It is clearly evident that
GSE decreases as R increases, and saturates to the bulk value as R becomes large. At small R,
GSE increases quite rapidly with decreasing R. This can of course be easily explained by simple
quantum mechanics.
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Fig. 4 E vs p for a D° centre in GaAs GQD with V, = 120meV, B=1T, ag = 1 meVnm
and Sp= 1 meV nm for different values of R (nm).
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Fig. 5 E vs R for a D° centre in GaAs GQD with V, = 120meV, B=1T, aiz =
1 meV nm and Sp= 1 meV nm for different values of p.
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Fig.6 E vs ajy fora DO centre in GaAs GQD with V, = 120meV, B =1T,R = 10 nm,
and Bp=1 meV nm for three values of p.
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Fig. 7 E vs Bp for a D? centre in GaAs GQD with V, = 120 meV, B =1T,R = 10 nm,
and az=1 meV nm for three values of p.
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In Figs. 6 and 7, we show the variation of GSE E as a function of ay and fp respectively for
a few values of p with B=1T, V/; = 120 meV and R=10 nm. GSE is found to decrease with
increase in both ap and ;. But the decrease in GSE with respect to S is slower than that with
respect to ag. In other words, the Rashba term reduces GSE more than the Dresselhaus term and

thus has a stronger effect in a QD.

Fig. 8 depicts the behavior of BE as a function of p for different values of R with B = 1T,

Vo = 120 meV, ai = 1, and B, = 1. According to our result, BE Ej is positive for D° system
in GaAs which implies that in a GaAs QD, D° always exists in a stable bound state, which is of
course an expected result. At small p, BE is almost linear in p. One interesting observation that
one can make from this figure is that for a small QD, BE as a function of p shows a peak. The
peak broadens in width and shifts towards higher values of p as R increases. Beyond a certain
values of R, BE does not exhibit any peak with respect to p. For higher values of R, BE just
increases with p monotonically and eventually saturates.

Vi=120, B=1, ag=1, fp=1
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Fig. 8 BE (Ep) vs. p for a D° centre in GaAs GQD with V, = 120meV, B=1T,
ag = 1 meVnm and fp= 1 meV nm for different values of R (nm).
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The behaviour of BE with respect to R is shown explicitly in Fig. 9. One can see that BE
increases as R decreases and becomes maximum at a critical value of R below which BE rapidly
decreases Again this behaviour is consistent with quantum mechanics. If R is very small, then
the uncertainty in position is also small and the uncertainty in momentum as well as in Kinetic
energy must be large. In this case, it would be very difficult to localise the electron inside the QD
and concomitantly BE would decrease rapidly. One can see from the figure that the peak height
of BE increases as p incrreases. Also the peak position changes with p. After the maximum, BE
decreases with R faster for higher p giving rise to a crossing behaviour. The BE graph crossing

each other at different value of p. The reason of that the wavefunction is also crossing each other
at different value of p.

45 - - -
B=1, V=60, ag=2, fp=2---- p=2

H4U 3' —T)
235 :'
T E \'

25F— p=0,§"‘ T,

0 20 40 60 80 100
R[nm]

Fig. 9 E vs. R for a D° centre in GaAs GQD with B =1T, V, = 60 meV,
ag = 2 meVnm and B,= 2 meV nm for different values of p.

In Fig. 10, we present the variation of our results for the GS BE (Eg) with B. From the figure,
Eg is found to increase with B. It is clear that the shape of the confinement potential plays an

important role at small B, while at large B, Ez does not have much significant dependence on p.
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Fig. 10 E vs. B for a D? centre in GaAs GQD with R = 10 nm, V, = 60 meV,
agp = 2meVnm and S,= 2 meV nm and for different values of p.
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Fig. 11 Ej vs. p for a D° centre in GaAs GQD with V, = 120 meV, R = 10 nm,
ar = 1 meVnm and B,= 1 meV nm for different values of B (T).
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In Fig. 11, we plot BE as a function of p for three different value of B with R = 10nm, V, =
120 meV, ap = 1 and B, = 1 to show the explicit p-dependence of BE for different values of B.
One can see that BE increases rapidly with p at small p and seems to saturate at p increases. Also
the MF-dependence is significant only low p.

50,

— p=0.5 B=1, R=50, ag=2, fp=2

p=20 nmnmnn p=1 0
10L 1
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Vo[meV]

Fig. 12 Eg vs. V, for a D centre in GaAs GQD with B=1T, R =50 nm, ag =
2 meV nm and Sp= 2 meV nm for different values of p.

Figs. 12 and 13 show the variation of BE as a function of V,,. Fig. 12 gives the results for R = 50,
while the results for R = 10 are plotted in Fig. 13. Fig. 12 suggests that the binding increases with
V, for p = 0.5 and p = 2 while for p = 10 and p = 20, BE is essentially independent of V,,. For
large p, the confinment potential becomes more or less like a square well potential and then any
change in p does not change the potential much and therefore in that limit Ez becomes almost
independent of p. Again we observe that the shape of the confinement potential plays a more
important role for large values of V,, which is of course an expected behaviour because as the depth
of the potential increases, binding becomes stronger. Fig. 13 shows that a decrease in QD size in
general enhances BE. One can see that even for p = 10 and 20, BE now increases with V,, though
the Eg vs V, — curves for these cases coincide.
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Fig. 13 Eg vs. V, for a D° centre in GaAs GQD with B=1T,R = 10 nm, ag =
2 meV nm and p= 2 meV nm for different values of p.

55, - —— -
Vp=120,R=4, B=1,6p=2

0.5 1.0 1.5 2.0
ag[meV-nmj

Fig. 14 Eg vs. ag for a D° centre in GaAs GQD with V; = 120 meV,R =4nm, B =1T,
and fp= 2 meV nm for different values p.
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In Figs. 14 and 15 we plot BE Ej vs ag and S, respectively for different values of p with V, =
120,R = 4,B = 1T. The figures show that BE decreases with increasing aiz while it increases
with Bp.

5 _-—""‘----"

-
---‘-_------

25 — p=2 .

0.5 1.0 1.5 2.0
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Fig. 15 Eg vs. By, for a D° centre in GaAs GQD with V/; = 120 meV,R =4nm, B =1T,
and az= 0 meV nm for different values p.

We study the magnetic field dependence of Magnetisation (M) and Susceptibility (S) in Figs.
16 and 17 respectively for different values of p with R = 10nm, V;, = 60 meV and az=1, fp=1.
The magnitude of M is found to increse with B. Furthermore, [M| increses with decreasing p. Fig.
17 shows that the susceptibility is diamagnetic in nature. The diamagnetic susceptibility decreases
with increasing B and it saturates as B becomes sufficiently large. It appears that the diamagnetic
effect of suceptiblity is more at smaller values of p. However, the suceptibility is very weakly
dependent on the shape of the potential at large B.
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M [meV/T]

Fig. 16 M vs B for a D° centre in GaAs GQD with R = 10 nm, V;, = 60 meV and az=1 meV nm,

fBp=1 meV nm for different values of p.

S [meV/T?]

BIT]

Fig. 17 Svs B for a D° centre in GaAs GQD with R = 10 nm, V, = 60 meV and

ag=1 meV nm, f,=1 meV nm for different values of p.
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Fig. 18 S vs p for a D° centre in GaAs GQD with R = 10 nm, V, = 60 meV and az=1
meV nm, Bp=1 meV nm for different values of B (T).

In Fig. 18, we show the behaviour of S directly as a function shape of p for different values of
B with V, = 60,R =10, ag = 1,8, = 1. At low B, S initially increses with increasing p and
eventually saturates at large p. At larger values of B, S initially decreases with increasing p and

again saturates at large p eventually.

4.4 Conclusions

In this chapter, we have calculated the GS energy and BE of a D Centre in PEQD as a function
of the shape (or the steepness) parameter p, the effective QD size R, the Rashba and Dresselhaus
spin-orbit interaction constants @z and fp and the external magnetic field B. We have shown that
for R < 8, the GS energy increases with p while for R > 8, it decreases. However, in both cases,
the GS saturates as p becomes large. This is because when p becomes large, the confinement

potential hardly changes with p.

For a small dot, the GS BE as a function of p exhibits a peak at a small value of p and saturates
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to a constant as p increases. As the size of the QD increases, the peak becomes flatter though its
height increases. Furthermore, the peak shifts towards higher values of p. As R becomes still larger,
the peak disappears and the GS BE just monotonically increases with p at small p and eventually
saturates. As a function of R too, BE shows peaks and the peak height increases as p increases.

After reaching the peak, BE decreases with R faster for higher p giving rise to a crossing behaviour.

As a function of B, BE increases with B, as the magnetic field provides an additional confinement.
It is shown that at small B, the shape of the confinement potential has a significant influence on
BE, while at large B, Ez does not depend much on p. We have also shown that for BE, the shape
of the confinement potential becomes more important when its depth is large.

RSOI and DSOI have competing roles on BE of the D° system. RSOI is found to reduce the
binding while DSOI enhances it. Finally we show that the susceptibility of a D° impurity in PEQD
is diamagnetic and this diamagnetic susceptibility (S) increases with p at small B and at large B,
it decreases with increasing p. At intermediate B, S first decreases with increasing p, develops a
minimum at some value of p and then increases with further increase in p. Eventually, however, S

saturates to a constant as p becomes large.
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Chapter -5

Spin-orbit interaction effect on a hydrogenic D°
centre in a three-dimensional asymmetric Gaussian
GaAs quantum dot in a magnetic field

5.1 Introduction

In the earlier chapters, we have considered symmetric Gaussian and power exponential potentials
as the confinement potential for the QD [1-12]. Several investigations have also been carried out
on asymmetric QDs [13-20]. Shan et al. [14] have studied the temperature and impurity effects on
the GS energy and the GS binding energy in an asymmetric QD by using the linear combination
operator method. Chen and Zhang [15] have calculated the first excited state energy of the polaron
in an asymmetric QD in the presence of magnetic field using the Pekar type variational method.
Bandyopadhyay et al. [17] have obtained the total spin- splitting energy expression in an
asymmetric QD (AQD) with ferromagnetic contacts, subjected to a transfer field. They have shown
that the Zeeman splitting can be tuned with a transfer electric field in the presence of RSO coupling
in AQD. Zhang et al. [18] has studied the BE of a shallow donor impurity in an asymmetric QW
by using the variational method. Hao [19] has examined the SOI effect in an asymmetric quantum
well by varying the internal inversion asymmetry. Singh et al. [20] have studied the magnetic field-
dependence of the spin and tuning dynamics in a double AQD in the presence of RSOl and DSOI.

In the present chapter, we wish to study the effect of RSOl and DSOI on the GS energy, binding
energy, susceptibility and magnetic moment of a D® complex in a 3D asymmetric GQD (AGQD)
placed in a magnetic field. To obtain results for a realistic system, we apply our theory to a GaAs

QD.
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5.2 Model and Formulation

A D° complex in a 3D AGQD with RSOl and DSOI and placed in a magnetic field B (0,0, B) can
be modelled by the Hamiltonian

H = (27171*(P+§A)2 - ; - Voe‘w>1+ a—;[ax (p+§A)]Z
+ 2o (0t 2) ~ 0, (y +24,)) 1)

where a gives the length scale over which the confinement potential becomes zero in the x-y plane

and b describes that along the z axis and the rest of the notations have been defined already. To
eliminate SOls, we carry out the same transformation as before,

*

m

U=eS , S= iﬁ[aR(yax —x0y,) + Bp(x0, — yo,)], (5.2)

and expand the transformed Hamiltonian in a power series in terms of ayp and [p and neglect

terms beyond @2 and 3. This gives

_ p? m* ., o2 _ a(x2+y22)+b z? . m* , ,
H = 2m*+?(1)cp _s_r_VOe 2R I+7Lz_ﬁ(aR+ﬁD)
m* m*
— = @k = 3oLy — 5 (@h — BRweozp? (53)
where
p?=x2+y?, L,=—ih(0/d¢) , = (eB/m'c). (5.4)

To find the GS energy variationally, we try the function:

Y(r) = e ~froime (5.5)

where a and f are treated as variational parameter. As before, we define the BE of the D° hydrogenic
impurity (Eg (D) as

Ez(D°) = E(e”) — E(D°). (5.6)
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where E(e™) and E(D?) and are respectively the GS energies of the electron and D° impurity in
the AGQD. The magnetisation and susceptibility are defined, as usual, by

- 0E(D°) o 92E(D%) 5
B 0B ' - 9Bz ©7)

5.3 Results and Discussion

We plot the GS energy (E) in Fig.1 with respect to the effective QD size R for B = 1T, V, =
60 meV,agr = 1 meV —nm, B, = 1 meV —nm and a few values of the asymmetry parameter b.
The GS energy is found to decrease nonlinearly as the effective dot size R is increased and to
eventually saturate to the bulk value. Furthermore, if the material growth is increased in the z
direction, then the GS energy decreases. Of course, the energy becomes independent of the
parameters a and b in the bulk limit. This is expected because when R becomes very large, the
potential becomes essentially constant and the values of a and b do not affect the energy.

60\, " B=1, V=60, ag=1, fo=1 |

W _100/ — a=1, b=5 a=1, b=20 |

eeeee 2=1,b=10 o-one a=1, b=40 |
20 40 60 80 100 120 140
R [nm]

Fig.1 GS energy (E) vs. R for a D? centre in AGQD with B = 1T, V, = 60 meV, az = 1 meVnm,
B, = 1 meVnm and for different values of asymmetric parameter b.
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In Fig.2, we display the behaviour of the GS energy with respect to the magnetic field B for R =
10 nm, V, = 60 meV, agr = 1 meVnm, fp, = 1 meVnm. The GS energy increases non-linearly
with increasing B. It also increases with the increase in the asymmetry parameter b, as expected.

10,
0

T T A T T

V=60, R=10,ar=1,6p=1" .-

E [meV]
s

=0: __ a=1, b=10 a=1, b=40
0 2 4 6 8 10 12 14
B[T]

Fig. 2 E vs. B for a D° centre in AGQD with R = 10nm, V, = 60 meV ap = 1 meVnm,
By = 1 meVnm and for different values of the asymmetric parameter b.

In Fig. 3, we study the behaviour of the GS energy with respect to b for R = 50nm,V, =
120 meV,B = 1T,a = 1 and a few sets of RSOI and DSOI coefficients. As expected, the GS
energy is lowered by both RSOI and DSOI, while with the increase in the parameter b, the GS
energy is found to increase. Fig. 4 presents the variation of the results for the GS binding energy
(BE) with respectto R for B = 1T, V, = 60 meV,air = 0, B, = 1 meV nm and different b values.
BE of D° turns out to be positive, as expected. This implies that the system has a stable bound
state. The binding is observed to be maximum at a certain value of the QD size R,,,. For R > R,,,
BE decreases with increase in R and eventually reaches a saturation value which is the bulk limit.
This of course understandable. As R is reduced below R,,,, BE starts decreasing rapidly. The rapid
fall in BE below R,, is solely a quantum phenomenon. As R decreases, the uncertainty in position
also decreases. Concomitantly, the uncertainty in momentum becomes larger leading to an increase
in the momentum itself and hence the kinetic energy. Thus, if the size of QD is made very small,

restricting the electron’s motion inside QD would become very
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difficult. This results in a reduction in BE. The figure reveals that the height of the peak in BE
decreases and its width increases with increasing asymmetry and furthermore the peak shifts to
the higher value of R.

90—

V=120, B=1, R=50, a=1

“s0f L T ag=1, Bo=1

— ag=0,fp=0 ag=0, fp=1

gl
0 20 30 4 50

Fig. 3 E vs. b for a D° centre in AGQD with V, = 120meV, B=1T, R = 50nm,
a = 1 for different values of az( meVnm) and B, (meVnm).

26.  B=1, V=60, ap=0, fp=1

0 20 40 60 80 100

R[nm]

Fig. 4 GSBE (Eg) vs. R for D° centre in a GaAs AGQD with B = 1T, V, = 60 meV az = 0
and By = 1 meVnm for different values of asymmetric parameters b.
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V=120, B=1, R=50, a=1

Fig.5 Eg vs. b for D° centre in a GaAs AGQD with V, =120meV, B=1T,

R = 50nmand a = 1 for different combination of az( meVnm) and B, ( meVnm).

4 V=120, B=2, R=10, a=1
g, N '
—40
>
c 38
wo e ag=0, fp=0.3
2
—_— aR=0! ﬁD=0 ........ aR:U 5:| ﬁﬂ-o
10 20 30 40 50
b

Fig. 6 Eg vs. b for D° centre in a GaAs AGQD with V, = 120 meV, B=2T, R = 10nm
and a = 1 for different combination of ag( meVnm) and Bp ( meVnm).
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Fig. 5 shows explicitly how BE of D° varies with the asymmetry parameter b of AGQD. The
figure clearly reveals that BE increases with increasing b. However, for a small QD, BE reduces
if b is increased. This is shown in Fig. 6. It is also observed from Fig. 5 and 6 that the Rashba
coupling decreases BE, while Dresselhauss coupling increases it. The presence of asymmetry in
the confinement potential enhances these effects separately.

In Fig. 7 we depict the variation of BE of D with respect to a magnetic field B in AGQD. BE
is found to increase with increasing B. At small B, BE decreases with increasing b, while at high
B, BE is essentially independent of b. In Fig. 8, we show the behavior of BE of D° in AGQD
with respect to V, for B = 1T, R = 50 nm and a few values of the parameter b. BE increases with
V,, as would be normally expected and the curve is concave from below. For a small QD also, BE
increases with 1/, but now the curve is concave from above. This is shown in Fig. 9. Interestingly,
for R < 10, BE decreases with increasing b while for R = 10, BE increases with b.

60l'll|'III|llll|lll'|ll'I
V=60, R=10, ag=2, fp=2

B[T]

Fig. 7 Eg vs. B for a D° complex in AGQD with V, = 60 meV,R = 10 nm ai = 2
and By = 2 meVnm and for different values of asymmetric parameters b.
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Fig. 8 Eg vs. V, fora D° complexin AGQD B = 1T,R = 50 nm ayz = 2 and
B, = 2 meVnm and for different values of asymmetric parameters b.

Vy[meV]

Fig. 9 Eg vs. V, foraD? complexin AGQDB =1T,R =5nmai = 0and By = 1 meVnm
for different values of asymmetric parameters b.
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Fig. 10 M vs B for a D° complex in AGQD with V, = 60 meV,R = 10 nm ay = 1 and
By = 1 meVnm for different values of asymmetric parameters b.
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Fig. 11 S vs B for a D°complex in AGQD with V, = 60 meV,R = 10 nm, ag = 1 meVnm
and By = 1 meVnm for different values of asymmetric parameters b.
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We show in Fig. 10, how the magnetic moment (M) of D° varies with B for R = 10nm,V, =
60 meV, agr = 1 nm meV, fp, = 1 nm meV and for three different value of asymmetric parameter
b. As expected, the nature of M is diamagnetic. The diamagnetic moment increases in magnitude
with the increase in B. If the asymmetry parameter b is increased, then also |M| increases at smaller
values of B. In Fig. 11, we show the behavior of susceptibility with respect to B for R = 10nm,V, =
60 meV,agr = 1 nm meV, fp, = 1 nm meV and for a few values of b. The behavior of susceptibility
is found to be diamagnetic. It increases a little rapidly with B at small B, but as B increases, its
increase slows down and finally it saturates as B becomes large. From Fig. 11, one can also see the
b-dependance of S. At low B, S decreases with increasing b, but as B becomes large, S shows a
slow increase with b. This gives rise to an interesting crossing behavior.

5.4 Conclusion

The behavior of GSE (E) and BE (Ep) of a hydrogenic donor impurity in an asymmetric 3D
GQD of GaAs has been studied with respect to effective QD size R, confinement potential depth
V,, magnetic field B, asymmetry parameter b, and RSOl and DSOI coefficients. We have shown
that GSE increases with the increase in the asymmetry parameter b. We have also shown that with
respect to the QD size R, GS BE exhibits a peak which shifts towards larger R as b increases. Also
BE is found to decrease with increasing b. Finally, we have examined the dependence of magnetic
moment (M) and susceptibility (S) on B for different values of the asymmetry parameter b. As
expected, the susceptibility is found to be diamagnetic in nature. Also the magnitude of S is found
to decrease with increasing B. However, it increases as the asymmetry increases at small B and
decreases with increasing asymmetry at large B. This gives rise to an interesting crossing behavior.
The Rashba coupling decreases BE, while Dresselhauss coupling increases it and the asymmetry
in the confinement potential enhances these effects.
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Chapter-6

Enhancement in binding of D~ in a GaAs Gaussian
Quantum Dot in the presence of spin-orbit interactions
and a magnetic field

6.1 Introduction

In the earlier chapters, we have studied the effect of spin-orbit interactions on some of the
properties of hydrogenic D° impurities confined in QDs. In this chapter, we shall consider a
negative hydrogenic donor impurity (D) which consists of a system of two electrons bound to a
hydrogenic nucleus. The existence of stable bound states in negative donor complexes in bulk
semiconductors was suggested theoretically by Lampert [1] way back in 1958. A D~ complex
confined in a low-dimensional material is an interesting system because it is a simple two-particle
correlated system with a single bound state [2]. The experimental confirmation of the existence of
a bound state of D~, however, took a long time to come primarily because of the very feeble nature
of the binding of the system. To our knowledge, Huant et al. [3] were the first to observe
experimentally the existence of a bound state in a D~ impurity in a GaAlAs heterostructure from
photoionization transitions through far-infrared magneto-optical experiments. They have reported
the BE of the D~ impurity in a GaAs- multiple quantum well structure for several values of the
magnetic field strength. Using a variational method, Phelps and Bajaj [4] have shown that the ratio
of BE of D~ to that of D? is only about 5.55%. Armistead et al. [5] have studied the D~ problem
in GaAs by far-infrared magneto-optical experiments and reported that a D~ complex forms only
under metastable conditions. Pang et al. [6] have theoretically calculated BE of a D™ centre in a
GaAs quantum well by diffusion quantum Monte Carlo method. Their results are in good
agreement with the results of Huant et al. [3]. It is certainly interesting to examine the possibility
of existence of a D~ centre in a QD from the point of view of opto-electronic applications. Several
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authors have calculated the energy levels of a D~ system in both PQDs and GQDs [6]. Boda et
al. [7] have considered a D~ impurity in the presence of a magnetic field in a GQD and studied its
electric and magnetic properties.

To our knowledge, no investigation has so far been devoted to examine the spin-orbit coupling
effects on the properties of a D~ system in a GQD. In the present chapter, we shall make an
attempt in this direction. We shall calculate the GS energy and binding energy of a D~ system in
a 3D GQD in the presence of Rashba and Dresselhaus spin-orbit interactions and an external

magnetic field.

6.2 Model and Formulation

A D~ impurity in a GQD with RSOI and DSOI, placed in a magnetic field can be described by
the Hamiltonian

H=HD_+HR+HD ) (61)
where
H-—i ( -+5A-)2—v R I (6.2)
b= = = 2 c ' 0 ET; €Ty ’ '
i=
2
B ag e
HR = ._17[0'- X (pl + EAL)Z] , (63)
= B
e
_[O-Lx Pix + = Alx) Oiy (piy +2Aiy)]- (6'4)

h

Here r;(x;,y; z;) represents the position of the i-th electron, p;( piy, piy, Diz) its canonically
conjugate momentum, ry, = |rq; — 15| refers to the distance between the two electrons, A; isthe
vector potential experienced by the i-th electron, o;;(k = x,y, z) represent the Pauli matrices and
ar and B, denote the Rashba and Dreselhaus spin-orbit coupling parameters respectively. We

choose the symmetric gauge and therefore take: A; = g(—yi, x;, 0).
To eliminate the SOIs, we apply the following unitary transformation
U = ei(m*/h*)[ar(ioix—xi01y)+ Bp(xi0ix—Yioiy)] (6.5)
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and express the resulting Hamiltonian in powers of @ and S, and neglect terms of order higher

than a and B3. The transformed Hamiltonian then reads in Rydberg units,

2 2
~ 1 _Ti 2 1 1 W
H = ; [—‘7r2i + 1—60)3Pi2 —Voe 2R — . E(“ﬁ + BRI — E(“zze — B5)ozL,, + TCLZL'
1 2 2 2 2
T2 (ag — Bplwcozp®| + E (6.6)
where w, = eB/m’c, p? = x? +y? and L, = —ih(d/d¢;). We seek a variational
solution of H and make the following choice for the variational function:
Yo-(rms) = [14 Arf3le=uEri)rmysmo 67)

where A, u and m are variational parameters and m, and m, denote the magnetic quantum
numbers. We have included the generalized Jastrow function r{} in the wave function to
incorporate the effect of Coulomb correlation. We now implement the transformations:

ry+ry ry—1y
u= , V= , 6.8
7z 7z (68)

In terms of u and v, both H and 1~ look simpler and calculation of the energy becomes easier.
We perform the integration and minimization numerically. The BE of the D~ impurity can be
written as

Ep(D™) = E(D®) + E(e™) — E(D7) (6.9)

where E(e™) represents the GS energy of a single-electron-GQD, E(D°) represents that of a D°
impurity in GQD and E(D™) represents that of a D~ centre in the same QD.

Because of symmetry, the dipole moment in a D° centre is expected to be zero. On the contrary,
the D~ system has a different scenario. Classically, however, even for a D~ complex, the dipole
moment is expected to be zero. The explanation is simple. The Coulomb correlation will tend to
keep the electrons as far away from each other as possible and therefore the GS would correspond
to a configuration in which the electrons are expected to settle in positions that would be
diametrically opposite to each other. According to quantum mechanics, however, one would
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expect quantum fluctuations in the electrons’ positions and the equilibrium positions of the
electrons will be such as will lead to the minimum energy. Thus, quantum mechanically, the
expected electron position vectors will have an angle that is less than 180° leading to a finite dipole
moment. The average distance between the two electrons < r;, > and the resultant dipole moment
|P| are given by

<1y > = (Yp-(ry, )11 — 1) Yp-(ry,12)) = (Yp-|(r% + r5 — 2ryr,c080) /2| Pp-), (6.10)
|P| = (Yp-(ry, m2)|(r1 + 1) |[Yp-(ry,72)) = <‘~|JD-|(F% + 13 + 2ry1,c080) Y% |Yp-)
=2 (Up-lulPp-) (6.11)

where cosd = cos8,cos0, + sinf,sinf, cos(¢, — ¢,), 8 being the angle between r{ and r,. At
zero temperature, the magnetic moment and susceptibility of the system under consideration can
be defined as

(6.13)

6.3 Numerical results and discussion

We compute the energies in R}, = (m*e*/e?A*) = 12 meV, lengths in ap = (eh?*/m*e?) =
9.8 nm, magnetic field in Tesla (T), and SOI constants in Ry-az. We apply our theory to a GaAs
QD for concreteness and so we choose € = 12.4 and m* = 0.067m,, m,, being the electron bare
mass. We show in Fig. 1, the behaviour of the GS energy E as a function of QD size R for different
sets of Rashba and Dresselhaus coefficients a; and B, with Vy = 25,B = 2. With respectto R, E
exhibits a decreasing behaviour. When both RSOI and DSOI are present, the decrease becomes a
little faster. The DSO coupling lowers the energy more at small R while beyond a certain R, the
RSO coupling lowers the energy more. Fig. 2 shows how E varies with the magnetic field B for
different sets of ay and S with V, = 15R}, R = 1ag. With RSOl alone, as B increases from zero,
E first displays a slow decrease, reaches a shallow minimum and then increases monotonically
with further increase in B. However, with DSOI alone, E monotonically increases with B. When
both the interactions are present, E becomes again essentially a monotonically increasing function
of B.
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Fig.1 GSenergy (E) of a D™ complex vs. R fora GaAs GQD with V, = 25Ry,B =2T
and for a few combination of ag (Rj-ag) and Bp (Ry-agp).

50 V=15 R=1

E[Ry7]

Fig.2 E vs. B fora D~ system in a GaAs GQD with V, = 15 R, R = 1 aj for
different sets of ag (Rj-ap) and Bp (Ry-ap).
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Fig. 3 exhibits the behaviour of E with a; for a few values of B with V, = 15R},,R = lag in
the case of 8, = 0, while Fig. 4 shows the behaviour with B, for az = 0. Though, both the Rashba
and Dresselhaus interactions reduce the energy, it is evident that the Rashba effect is more
dominant than the Dresselhaus one.

0 1 2 3 4 5
R[a's]

Fig. 5 GS binding energy Eg vs. R for aD® and D~ complex in a GaAs GQD with
B =5T,Vy, =15 R, R = 1 aj, for different sets of ag (Rj-ap) and B (Rj-ag).

Fig. 5 displays the behaviour of the BE (Ep) of the D~ centres with respect to R for a few sets
of values of ap and . The figure shows that BE of a D~ impurity in a GaAs QD is positive which
suggests that one can have a stable D~ in this material. The figure also shows the BE curves for a
DO system and it is clear that in a GaAs GQD, D~ has a much weaker binding than D°, which is
of course an expected result. In both the systems, however, DSOI increases the binding, while
RSOI decreases it. One can see that the stability is maximum at a critical size (R.) of the QD and
below this size BE falls off rather sharply. The diminution in the strength of binding at small R is
solely a quantum phenomenon. The critical length R, depends on both the Rashba and Dreseelhaus
interactions. The peak of the BE is increased by DSOI. From BE we can have an estimate of the
binding temperature (Tg) i. €., the temperature above which the D™ will become unbound. Fig. 6
shows the Tg versus R plot for certain combinations of ag and 8 values and thus the bound and
the unbound regions.
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Fig. 6 GS binding temperature vs R for different sets of ag (Ry-ap) and B (Ry-ag).

150

Eg [Ry"]
—e
[ X ]
on

1200

- V=16 R=2
1.45¢

140!

125!

BI[T]

Fig. 7 Eg vs. B of a D™ complex in a GaAs GQD with Vo = 15R;,, R = 2 ap, for
different sets of ag (Ry-ap) and Bp (Ry-ag).
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Fig. 7 presents the behaviour of Egz with B for a few combinations of a and 5. One may note
that in the presence of DSOI, BE increases with B. As we switch on a small RSOI together with
DSOI, BE still increases with B but the rate of increase decreases. In the presence of RSOI alone,
BE is essentially independent of B. We do not have the experimental values of BE of a D~ complex
in a QD and so we cannot test the veracity of our results, but our results are of the same order of
magnitude as the ones experimentally found for GaAs/AlGaAs heterostructure [3].

BIT]

Fig. 8 Magnetic moment vs B of a D~ system in a GaAs GQD with I/, = 15 R;,
R =1 aj, for different sets of ag (Rj-ap) and By, (Ry-ap).

In Fig. 8, we plot the magnetic moment M as a function of B for the D~ system with V, = 15 R},
R =1 ay and for different sets of values of ap and Sp. |[M| increases with increasing B. In the
case of agr = fp, M exhibits a purely diamagnetic behaviour. In the presence of DSO interaction
alone, M is strongly diamagnetic. In the presence of RSO interaction alone, the behaviour of M is
more interesting. It shows a paramagnetic behaviour at small B and a diamagnetic behaviour above
a certain value of B.

Fig. 9 depicts how in the presence of RSOl and DSOI, the magnetic susceptibility S of the D~
system varies with B. One can see that S is negative for all values of B. Thus we reiterate that D~
is diamagnetic like D°. With DSOI alone, |S| increases with increasing B. With RSOl alone, the
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behavior of S is more interesting. As B increases from zero, |S| initially decreases, then reaches a
minimum at a critical B and finally increases with a further increase in B. When both the SOls
are present, |S| shows only an increasing behaviour with B. .

0-00"'I"'I"'I"'I"'I"l
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Fig. 9 Magnetic susceptibility vs B of a D~ system in a GaAs GQD with V, = 15 R},
R = 1ap for different sets of ay (Rj-ap) and B (Ry-ap).

Because of Coulomb correlation and quantum fluctuations, a D~ centre can develop a dipole
moment (P). In Fig. 10, we show the variation of P with the Rashba parameter ay for a few values
of B in the absence of DSOI. For B = 0, P turns out to be independent of ag, while for B # 0, P
is found to be an growing function of ay, the rate of increase being much larger at higher ay. For
nonzero B, as B increases, P decreases at small values of ag, while it increases at large ag, giving
rise to a crossing behaviour. The reason is understandable. As B increases, the motion of the
electrons is restricted in the close proximity of the nucleus because of the confining effect of the
field and consequently P reduces. Thus there is a competition between the effects of the magnetic
field and RSOl on P. At small ag, the magnetic field wins and dipole moment decreases with B
whereas at large agz, RSOl wins and the dipole moment increases with B. Fig.11 describes the
behaviour of P with respect to B, for a few B values in the absence of RSOIl. For B =10, P is
independent of B, and for B # 0, P is a decreasing function of Sj. In the
present case, the magnetic field reduces P for all Sp,.
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Fig. 10 dipole moment (P) vs ag of a D™ system in a GaAs GQD with V, = 10 R},
R = 1ag, Bp =0 Ry-ap for different sets of B (T).
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Fig. 11 Pvs 8, of a D~ system in a GaAs GQD with V, = 10 R,,R = 1 ag,
ag =0 R;-ap for different values of B (T).
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In Fig.12, we show the variation of the the dipole moment P with respect to B for different sets
of agr and Bp. P decreases almost linearly with respect to B and the reason is again easy to
understand in view of the confining effect of the field.

6.5
6.
—_ 957
o
O 5
o
4'5- ...... aR=0.5,ﬁD=0 ]
4. — aR=0.5,BD=0.5 i
0 5 10

BI[T]

Fig. 12 P vs. B of a D~ complex in a GaAs GQD with V; = 10 R}, R = 1 ay for different
sets of ag (Ry-ap) and B (Ry-ag).

Fig. 13 provides the plot of P versus R for a few sts of ag and Bp. It is clear from the figure that
P decreases with decreasing dot size even in the presence of SOIs. This is again not difficult to
understand. The upturn in P at an extremely small R seems to be an artefact of the numerics. At
large R, P attains the bulk value. One can also see from the figure that RSOl enhances P while
DSOI reduces it. These observations are consistent with the results shown in Figs.10 and 11.

In Fig.14 we show the behaviour of P with respect to the depth of the QD potential (V,) for a
few combinations of ag and Bp. P turns out to be a decreasing function of V,,. The explanation for
this behaviour is rather simple. For a given R, E decreases with increasing V, and consequently,
BE increases. In this case, electrons also get closer to the nucleus leading to a reduction in P.
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Fig. 13 Pvs. R of a D™ complex in a GaAs GQD with V, = 25 Ry, B = 1 T for different sets
of ag (Ry-ap) and Bp (Ry-ag).
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Fig. 14 Pvs. V, of a D~ complex in a GaAs GQD withB = 2T,R = 1 ay for
different sets of ag (Ry-ap) and B, (R;-ap).
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6.4 Conclusion

We have analysed variationally the role of spin-orbit interactions on the GS energy, binding
energy, susceptibility and the dipole moment of a negative donor centre in a Gaussian QD of GaAs
placed in a magnetic field. The Coulomb correlation has been taken into account by using the
Jastrow method. Our results show unequivocally that a stable bound system of D~ complex can
exist in a GaAs QD which should be experimentally observable. We have also shown that spin-
orbit interactions play an effective role in this problem. The Dresselhaus interaction enhances the
binding energy while the Rashba coupling seems to reduce it. The binding becomes stronger with
increasing magnetic field in the presence of the Dresselhaus interaction while it remains almost
unaffected by the Rashba coupling. We have also calculated the susceptibility which has turned
out to be diamagnetic in character. Interestingly, in the presence Rashba interaction, the
susceptibility curve exhibits a minimum. Finally we have shown the behaviour of the dipole
moment of the D~ system as a function of several QD parameters. We have shown that in the
magnetic fied’s absence, the dipole moment D~ in a GQD is not affected by the spin-orbit
interactions. However, if the magnetic field is present, the Rashba coupling enhances the dipole
moment of the negative donor impurity, while the Dresselhaus coupling reduces it. The strength
of the dipole moment also rises with the QD size and reduces with the increasing potential depth
and the magnetic field.
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Chapter ~7

Thermoelectric properties of single molecular
transistor

7.1 Introduction

With recent advances in molecular scale electronics, areas like Spintronics and Spin caloritronics
[1-3] have received considerable attention. Controlling electron-spin and consequently the spin
current is the hallmark of spintronics. In contrast, in spin caloritronics [4], the spin current is
primarily controlled and manipulated by thermal bias generated through a temperature gradient
applied to the system's various ends. This is an area that can be considered as a fusion of
thermoelectricity and spintronics. Spin transport in semiconductors is expected to give rise to
dissipation-less information transfer with pure spin currents. For instance, spin-based transistors
do not rely on the raising or lowering of electrostatic barriers and therefore can bypass scaling
limitations that occur in charge-based transistors. The spin Seebeck effect (SSE), one of the most
fascinating phenomena in spin caloritronics, is the formation of a spin current as a result of a
temperature gradient. In a quantum dot (QD) junction, SSE has lately been the subject of extensive
investigations. Several materials or heterojunctions including magnetic metals [5], semiconductors
[6] and insulators [7,8] have shown evidence of SSE and some unique spin-based thermodynamic
properties. Theoretical investigation shows that SSE can be considerably enhanced by inserting a
QD between a metal lead and a magnetic insulator. This enhancement happens because of spin
flipping and quantum resonance.

SSE was first discovered by Uchida et al. [9] in a ferromagnetic metal. It has also been observed
in ferromagnetic insulators [10] and semiconducting materials [11], nonmagnetic materials with a
magnetic field [12], paramagnetic materials [13], antiferromagnetic materials [14], metal-
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ferromagnet insulators [15] and also topological insulators [16]. More recently, antiferromagnetic
SSE has been predicted and measured in MnF,. When two charge carriers of spin components, S;
and S, exhibit equal magnitude of charge but of opposite sign, the charge Seebeck coefficient
(S; o< (S; + S;)) vanishes while the spin Seebeck coefficient becomes finite (Sg o< Sy —§)))
resulting in the net spin voltage with the charge voltage being zero. SSE can be described by the
spin-resolved Seebeck coefficient (or thermo-power).

Recently, there has been an upsurge in the interest in single molecular transistors, which can play
a crucial role in nano-electronics. A single molecular transistor (SMT) is a nano-device with a
molecule or QD [17] in its centre that has discrete energy levels and is connected to a source and
a drain by metallic leads. The conduction electrons in S and D are considered to be free so that
they can be described by continuous energy levels. The entire arrangement is placed on an
insulating substrate which is mounted on a gate. The current flowing through the SMT device can
be effectively manipulated by tuning the gate voltage. The first SMT device was fabricated in 2000
by linking the source and the drain with a single C60 molecule. A large number of investigations
have revealed that SMT transport shows low-temperature correlated phenomena such as the
Coulomb blockade and the Kondo effect [18-20]. However, in polar QDs, the interaction of
electrons with phonons produces polarons which are electrons dressed with the cloud of virtual
phonons and are the quasi-particles that participate in the transport process in these systems. Both
electron-electron (el-el) and electron-phonon (el-ph) interactions affect the transport parameters of
a correlated polar SMT device in general.

In the present study, we consider an SMT system placed in an external magnetic field and is
mounted on an insulating substrate that contains a collection of uncoupled harmonic oscillators
and acts as a heat bath giving rise to a dissipative effect to the current in SMT. We assume that
QD has a single phonon mode that interacts with the substrate phonons and also with the QD
electrons. We use the non-equilibrium Keldysh Green function formalism to study the effect of el-
el and el-ph interactions, magnetic field and dissipation on the thermal transport characteristics of
the SMT device. In particular, we calculate the charge and spin-Seebeck effect.

7.2 The Modal

We assume that the QD electrons of the SMT system interact with each other through the Hubbard
onsite Coulomb interaction and with the single QD phonon via Holstein-type el-ph coupling. We
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model the tunneling of electrons from S to QD and QD to D and vice versa by the Anderson
Hamiltonian and assume that the QD phonon and the substrate phonons interact with each other
via a linear Caldeira-Leggett (CL) interaction. This interaction renormalizes the frequency of the
QD phonon leading to a dissipative effect in the SMT current. An external magnetic field is applied
to the SMT system as shown in Fig. 1. This magnetic field lifts the spin degeneracies of the

electronic levels. Due to the lifting of the spin degeneracy, the QD setup acts

B
|

source

Fig.1 Schematic representation of an SMT device.
as a spin-filtering device and produces a current that is spin-polarized. The system can be modelled
by the Anderson-Holstein-Caldeira-Leggett Hamiltonian given by

The first term H; in Eq. (1) denotes the Hamiltonian of the leads, i.e., the source (I = S) and the
drain ([ = D) and is given by

Hl = Z Ex Nko » (72)
ko€S,D
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where ng,(= c,“;,ck(,) represents the number operator for the conduction electrons with
momentum k and spin ¢ in the metallic leads, c,'(ro(ck(,) being the creation (annihilation) operator
for the corresponding electrons. The second term, H,, refers to the Hamiltonian of the QD and

can be written as

1 . (P 1,
HQD = Z(Sd — eVg)ndO— + Und'o—nd‘_a + _g,uBBSd +|—+ 5 MpoWo Xy
2 2my 2
o

+ yz Nag Xo » (7.3)
o

where ng, (= c;acd,,) represents the number operator for the QD electrons with energy ¢, and
spin g, cjw (cas) being the creation (annihilation) operator of the electrons, V;, denotes the gate
voltage, U gives the measure of the onsite e-e interaction, B (0,0, B) refers to the magnetic field,
SZ describes the z-component of the QD spin, up is the Bohr magneton, g is the gyromagnetic
ratio, (xo, po) are the coordinate and the corresponding canonical momentum of the QD lattice
mode, w, being the mode frequency and y is the e-p coupling coefficient. The third term in (1)
describes the tunneling of electrons from the leads to QD and vice versa and is given by

H; = Z (chgacda + h. c), (7.4)
koeS,D

where V, is known as the hybridization coefficient, which essentially determines the strength of
electron tunneling between the QD and the source or drain. Hy represents the phonon bath and its
interaction with the local QD phonon mode and is given by

N
p; 1
HB =Z[2—mj+§mjwj2x]?l +Z,Bjxjx0, (75)

where (x;,p;) are the generalized variables of the j-th substrate oscillator, w; its frequency and
p; denotes the strength of the CL coupling between the j-th oscillator of the substrate and the QD

oscillator. The spectral density of the substrate phonons (J(w)) is described by the function:
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N 52
J(w) = z I d l §(w— a)j). (7.6)
j=1

7.3 Formulation

7.3.1 Decoupling of coupling between QD and bath phonons interaction

In order to decouple the local QD phonon from the bath phonons partially, we perform the
unitary transformations,

Bjxo
%=X + , 7.7
Xj = %j m,w? (7.7)
9]
~. = —_— — 7.
Py =~thaz (7.8)
which renormalize the local phonon frequency to
Dy = (Wi — Aw?), (7.9)
where
N 5 ) 1/2
Aw = —L 1 . (7.10)
= mem;w;

From now onwards, we will concentrate on SMT only. Using Eqg. (7.6) for the spectral density,
(Aw)? can be written as

, 2 (J)
(Aw) —m—o()dew, (7.11)

In the Ohmic situation, the spectral density J(w) follows the relationship:
J(w) = 2myyw (7.12)
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for all frequencies, where the Ohmic damping coefficient can be expressed as

N

1 B?
V= 2mg z <2mja)-2> 6(w Bl wj) ' (7:13)

j=1

One can see from Eq. (7.13) that y diverges in the limit: w — oo and therefore the form of y given
by (7.13) is not a realistic expression for a pure Ohmic spectral density. To salvage the situation,
one introduces a cut-off frequency. In this regard, various forms have been proposed. We employ
the Lorentz-Drude form [6], which gives J(w) as follows:

(@]

where w, denotes the cut-off frequency. It is evident that in the limit: w — o, J(w) = 0, and in

J(w) = , (7.14)

the limit: w — 0, one obtains the pure Ohmic spectral density. Finally, we can express the change
in the frequency of QD phonon as:

Aw? = 2nyw, . (7.15)

The reduction in the frequency of the QD phonon gives rise to a resistive effect which is precisely
the role of the substrate towards dissipation. We neglect the higher-order dissipative effects. The
total transformed Hamiltonian is given by

H= Z E Ny + Z(ed — eV )ng, + z (Viel cao + h.c) + Ungong _, + gusBSE
g

koeS,D koeS,D

+ h@obth + ARG, z ng (bt + b). (7.16)

g

where A is the renormalized el-ph coupling constant (renormalized by the QD-bath interaction).

7.3.2 Elimination of phonons

To decouple this interaction, we apply the celebrated Lang-Firsov transformation (LFT) [43] with
a unitary operator: U = e®, where
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5=A(b*—b)znd0.
ag

(7.17)

It is well-known that this transformation works better for in the anti-adiabatic regime. The

transformed Hamiltonian can be written as

H=eSHe™ S |,

The electron operators of the system are transformed as follows:

~ _ A _ '|'
Cac = CackX, Caic = CacX

where

7 = e~A(bT-b) . qt= e tA(bT-b)

and the phonon operators are transformed as:

Thus the transformed Hamiltonian reads

i:i = Z Ex Nko + Z §dnda + ﬁnd’ond’_a + flaob-l-b + Z (Vk C;O.Cdo- + h. C),
o

koeS,D koeS,D

with

€15 = €q — €V — ugoB — A*hd,
U=U-2h0&,1?

vk = Vk)? = Vkel(b_b-r) .

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

where &, is the QD energy renormalized by the el-ph interaction, U denotes the modified

Coulomb correlation strength and V,, represents the phonon-mediated hybridization strength.
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7.3.3 Tunnelling current: Non-equilibrium Keldysh Green function formalism

We calculate the expression for the current density employing Keldysh method. We present here
the derivation of the tunnelling current expression in the presence of the el-el, el-ph interactions
and quantum dissipation. The current from the source to the QD in SMT can be written as the
average value of the rate of change of charge operator:

Q = —eN; (7.26)
where N is the number operator for the source electrons which is given by

Ny = z c;‘racka. (7.27)

ko€S

Thus the tunnelling charge current flowing through the central interacting QD can be written as:

dN
]So < | —2¢

> - _%<0|[H'Nso]|0)' (7.28)

where H refers to the transformed Hamiltonian in equation (7.22) and the averaging state |0) is
the ground state of the whole system i.e., |0) = |0),; |0),,,. Since Ny commutes with all but the

hybridization term of H, we obtain

Le =
P [V < ckacd(, > —h.c] , (7.29)

koes

]SO‘

where 5,( is the average of 1, with respect to the phonon state of the system. Eq. (7.29) can be
written as

2e
]Sa:='7;}?e

Z [V Giga(t, t)]} , (7.30)

koes

where Glfc’d (t,t") and Gg‘k(r (t,t") are the Keldysh lesser and greater tunnelling Green functions

defined as
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Grya(tt) = 0|l (t)cre (£)]0),

Garo(t,t) = i{0]c], (t)ca(£)]0)),
with the property:

Gk<o"d (tl t) = _[G;‘ka‘(tl t)]* )

Cda(t) = e_lHelthoelHEIt .

Eq. (7.30) can be written as

2e —
Js = 7Re{zz ViGirs(t,t)

ko€S

(7.31a)

(7.31b)

(7.32)

(7.33)

(7.34)

G ro(t) can be obtained through the equation of motion (EOM) method. Due to the structural

similarity between the non-equilibrium theory and the equilibrium theory, we consider the zero

temperature time-ordered Green function and its equation of motion. So, let us define the retarded

and the advanced tunnelling Green functions as

Grl& (-t = Fif(t F t)(0]{ea(®), cf tH}|0),

which satisfies the following inhomogeneous equation:

a T' Tr
(—w— >d$§‘3(t t) =ViGl -t

where the retarded (advanced) QD Green function G|V(z=t—

GO (1) = Fi 0(xt F ')(0|{ca(®), el ()}0) .

Therefore, Eq. (7.36) can be easily solved to give

Gy (1) = J dr Vi GI M () gr@ (1) ,

where g;ga) (1) is the non-interacting lead Green function given by

(7.35)

(7.36)

t') is defined as

(7.37)

(7.38)
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gD —t) = Fio((xt F e, O, cko ()

= Fi0((t F ¢"))eienlt=t) (7.39)

where the averaging state is the ground state of the non-interacting electron system. g,:f,a) satisfies
the equation

0

(<is - &) G = 5 . (7.40)

According to the analytical continuum rule, C(t) = A(t)B(t), which can be explicitly written
as

Cc(t,t') = jdtlA(t, t)B(ty,t") , (7.41)
on the real axis, can be written as
C<(t,t") = f[A<(t, t)B@(t;,t") + AT(¢t,t)B=(t1, t)] dt; . (7.42)

So we can write

Gro(t,t") = j dt; Vi[Gaa(t, t) gks (tr, 1) + Gaa(t, 1) gics (1, €], (7.43)
where
Gaa(™ = i{0]cl(t)ca(®)]0), (7.44)
Gza (1) = i(0]cq(t) c1(£)]0), (7.45)
Gro(t =) = icf (ke (1) = i fgeiex(t=t), (7.46)

f (&) denoting the Fermi-Dirac (FD) distribution function. The Fourier transforms of the different
Green functions are defined as

G5 (T) = if de e €T G5, (¢) (7.47)
d,ko 2T d,ko ’ '
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1 .
Gha() = > f dee TG, (e), (7.48)
< 1 —iet <
Gdd(T) = E dg e Gdd(g)' (74‘9)

1 .
Iro (1) = = f de e 7 gi,(e), (7.50)

where G;fl“) (e) and Gy, (¢) represent the retarded (advanced) and lesser Keldysh Green functions

respectively for the QD electron in the energy space and gg,(¢) refers to the advanced Green
function for the non-interacting electrons in the e-space. The first term of Gg,.(t,t") can be
calculated as follows.

G50 (t,t) = j dty VG (6, 6 g8 (b, ¢)
14\2 . e
= (E) fdt1V1:fdee_lg(t_tl)G;,ka(S)fde’e‘le (t2-t")

1 ) ,
= ﬁj de Vi Gy o () gls () et (7.51)

Similarly, we can calculate the second term of G3,,(t,t") and thus Gz, (t,t") is given by

de

6ot = [ 5V 650 (@08 @) + Gla(@gF @] 0 (752)

We obtain the expression for the source current as

2 d -
Joo =5 | 5-Re {Z Vi G ()95 (&) + Gia ()9 (Y (7.53)

where gr, (&) is given by:
95,(&) = [ dr e g5,0) = 271 F (208 - 2 (7.54)

We first consider the first term in the current expression (7.54). We denote this term by /., (1) .
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2
Js6(1) = 76 —Re {z ViVie Gdd(g)gka(g)]} (7.55)

We convert the momentum summation into energy integration and get

d
Jeo (D) =2 [ &£ f dey Ts(e) RelGra (€)i8 (e — ) s (€] (7.56)

where

T5(er) = 2mos(g) ViV, (7.57)

ps and fs(€) being respectively the density of states and the Fermi distribution function of the
source. Integration over g, gives

2e (d 2e (d
151 = 2 [ S AT @ReliG()) = - 5 [ 52 HETEM{G @)

ie [ de
- f = @TSOI65() — 5] (7.58)

where we have used the relation
Gaa(e) = [Gga(E)]" . (7.59)

The other part of the current expression can be manipulated similarly. Finally, we obtain

Jsoiom = f IO {654 + fror[65a(e) — Ga(N}, (7.60)

where Tspy(e) measures the hybridization interaction of the QD with the source (drain) and is
given by

I5p(e) = 2mosp (S)VkVI: ’ (7.61)
In the steady-state, the current will be uniform and we have:

]g :]Sa = _]DO' ’ (762)

and after symmetrizing, we can write:
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(]SO’ - ]Da)

I, = > (7.63)
which can be expressed as
e
Jo = o | LT = FoTo)AG) + (T = T5)G5(@)] e, (769
where f5p)(e) denotes the Fermi function for the S (D) electrons:
1
fswy(€) = (7.65)

e€~Hs0)/kBTsw) 1 1’

tspy and kgTspy being respectively the chemical potential and the thermal energy of the source

(drain) and A(¢) is the spectral function which describes the excitations and is related to the Green
functions as

A(e) = i[Ggqa(e) — Gga(e)] = i[G;d(E) - G;d(f)] . (7.66)

We assume that the QD is symmetrically coupled to the left and the right leads and so we can
write:

Ic(e) +Tp(e
- w = 21p(0)|V, |2e~**/2, (7.67)

and consequently, the expression for the tunnelling charge current reduces to

el
Jo = 5 [ 105 = fo} @] de. (7.68)

To obtain A(g) and hence J,;, we need to calculate Gr(a) (e) or G<(>) (o). GT(“)(t, t') can be written
as

Ga (6, t)) = |Gag” (6,60] G ORTEpn = |Gag” )] 7@, (7.69)

where [Gr(a)(t, t’)] l is defined as
e

|G t)] = Fi 0T e)(0l{cao (), ¢y ()}[0)er (7.70)
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and (¥ (£) 1 (t")),n is calculated as

O?(t))?-[-(tr))ph = (e~ LthtxeLtht lﬁpht,)?-reiﬁpht,>ph _ e_(p(r)’ (771)
with

0(@) = 2 [2fpn + 1= 2{fyn (1 + fou)} cos(hdo(z + iB/2)),

where f,,, is the phonon distribution function given by f,, = [exp(h@,/kpT) — 1]7*. After

some algebraic manipulation, we obtain

o() = In [ z L,.(2) e-inhﬁofl, (7.72)

n=-—co
where L, is the spectral weight of the n phonon side band [24] and is given by

] 1,(2), (7.73)

L,(2) = exp [—AZ(prh +1)+ (Zk T)

where z = 212 [fph(l + fph)]l/z, n is the number of phonons and 1I,, is the Modified Bessel

function of the second kind. Thus, GT(“) (€) can be written in the e-space as

[ee]

GEO(e) = Z Ln(2) [G56 (e F nho)] (7.74)

n=-—oo

where the Green functions G55 (¢) are defined as
@) = f G (1) eterdr (7.75)

Using the equation of motion technique [19], Gg3(¢) is calculated as

~r@), = o~ _ 1
|G e F nhwo)]el = e T W (7.76)
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where n is the phonon number, {(n4,) is the mean electron occupancy in QD and $7® (¢) is the
retarded (advanced) self-energy which can be expressed as

Sr@ (g) = lirr(l) E |< Vi >|2(8 F na®, — g i)t = A(e) Fil'(e), (7.77)
T]—)
keS,D

where the real part of '@ (e) can be clubbed with the QD energy and the imaginary part
simplifies to

[ = re(Npnt1/2), (7.78)

Substituting Egs. (7.75) and (7.77) in Eq. (7.67), A(¢) can be obtained as

(0]

2T L, (2)
A = , 7.79
) z (e F nady — 845 — U(nd,_(,))2 + 2 7.79)

n=-—oo

Following the same procedure as above, the mean electron occupancy (n,,) in the QD of a
symmetric SMT is obtained as

(fs + fD) A
T

> (e). (7.80)

(na) = [ do
A(w) can be determined by solving Eqgs. (42) and (43) self-consistently and consequently J,; can
be calculated. We consider the temperature difference AT = Tg — T, = Ts — T and the chemical
potential difference Ay = ug — up = ug — w as small and positive. In this limit, (f; — fp) reduces

to
€—u
fi(e) = foe) = e= (8 +——47), (7.81)
4kgTcosh? (Zk T)
B

so that Egs. (7.69) becomes

J ef G+ =Eary Lo o) (7.82)

c= 7 — u+— Ts(€ E. .

h 4kgTcosh? (6 ,u) T

2kgT
In the linear response regime for small values of AV and AT [20,21], we can write
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Jo =) (eKoobtt + 2 Kig AT) |
o

where K,, and K,, are known as the kinetic Onsagar coefficients and are given by

e 1
Ka=—f — 7,(€)| de.
" h { 4kgTcosh? (E ,u)}

2k5T

el e '
fio = hj { 4kpTcosh? (E - ll)} T“(E)_ de.

2kpT
The charge and spin currents are defined as [19]:
Je=Ur+]1),
Js=U—=1)

and the energy current is defined as

Je =1 [ et = fo@Nra (@) de .

7.2.4 Conductance, charge and spin-Seebeck coefficients

The heat current can be defined as [20]:
o 1
Ji = Je = o= ) (Kightt = =Koy AT),

where K; , is defined in (7.86) and K, is given by

e (e —w)?
KZO’ = - — o d .
hJ { 4k Tcosh? (ng#)}T (E)] )

The kinetic (Onsager) coefficient K, ,(u) [20,21] can be written in general as:

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)

(7.88)

(7.89)

(7.90)
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1 af (€,
Ko =3 [ [~ L5 - o erce (7.91)

where the transmission coefficient t, (&) can be written as [23]:

TRIL
[+

75(€) = [—2 ImGgq(e)] . (7.92)

For symmetric leads, Iy =T, =T and we obtain

1"2

T,(e) = (7.93)

2
((6 + nhwy) —&; — 1 <ng_, >) + T2

We can relate the Onsager coefficients to the transport parameters like charge conductance and
spin conductance [22]. For example, the charge conductance G ¢ can be written as:

G¢ = GT + GJ, = ez(Km + KOl) , (7.94)
and the Spin conductance is given by
G° =Gy — G, = e*(Kor — Ko1), (7.95)

while the thermal conductance can be written as [24]:

_ 1 IZO’ Klalz
K = T(Z KZU - m) . (796)

The thermo-power S is defined as the ratio of the generated voltage AV to the temperature
difference AT in the absence of charge current:

AV 1 Ky

S =——=—-— . 7.97
O o (7.97)

The charge Seebeck coefficient S.(u) and the spin Seebeck coefficient S;(u) are defined as [22]:

Sc(w) = 5w + 5. . (7.98)

Ss(u) = $1(w) = Su(w) - (7.99)
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7.3 Results and discussions

For simplicity, we assume that the QD contains a single level with energy &, and is connected
symmetrically to the source and the drain. From now on, we choose the phonon energy Aw, as the
unit of energy and set ' = 1,eV, = 0, Aw, = 1. We also choose the temperature of the left lead
slightly higher than that of the right lead. To study the effect of temperature, we plot in Fig. 2, the
spin-resolved electronic conductances (G, ,o =T,1), charge (spin) conductance G. (Gs), as a
function of QD energy level e4 with el-ph coupling constant A = 1, chemical potential u = 0,
oscillator frequency w, = 1, magnetic field ugzB = 1, cyclotron frequency w. = 3, damping
factor g = 0.03 and el-el interaction strength U = 1 and for different values of

Uv.b
0.6
(@) w =3, A=1, U=1,y=0.03

0.4

4_

o
0.2

Fig. 2 Gy, G, , G¢ and G vs ¢, for different values of temperature with el-ph coupling constant A = 1,
chemical potential u = 0, oscillator frequency w, = 1, magnetic field ugB = 1, cyclotron frequency w. =
3, damping factor y = 0.03 and el-el interaction strength U = 1.
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temperature. In general, the qualitative behaviour of Gy and G; with €4 are similar. Both exhibit
a peak structure at a certain value of €4 (close to zero) and drop to zero on both sides of €4 as |€4|
reaches a certain value. As temperature increases, both the spin-up and spin-down conductance
peaks decrease in height. However, the spin-up conductance peak shifts towards the right, while
the spin-down conductance peak shifts towards the left. The charge conductance curve also shows
a peak which decreases in height with increasing temperature, but now the peak position does not
change with temperature. Fig. 2 (d) shows that the behaviour of the spin conductance is different
from the other conductances. The spin conductance increases with positive QD energy €4 and
exhibits a maximum and decreases with negative QD energy and exhibits a minimum. Here also
the conductance vanishes as |e4| reaches a certain value.

(a) 0.3 0.3 (b)
=1, wu=1, kBT=1
g 0.2 0.2
Nﬂ.‘l
=
O 0.1 0.1
0
-20 20 [_)zn
(c) 04 0.2
__ 03 0.1
&=
@ 0.2 0
(%]
o
0.1 -0.1
0 - -0.2 .
-20 20 -20 0 20
Ed Fd

Fig. 3Gy, Gy, G€ and G* vs €, for different values of el-el interaction strength with el-ph coupling constant
A = 0.5, chemical potential u= 1, oscillator frequency wg = 1, magnetic field uzB = 1, cyclotron
frequency w. = 3, damping factor y = 0.03 and temperature kgT = 1.
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In Fig. 3, we plot the spin-up (-down) conductance G; (G,) and charge (spin) conductance G°¢
(G®) (which is proportional to the Onsager coefficient K, ) as a function of €, for different values
of the e-e interaction U. The figures show that at U = 0, the conductance curves exhibit one
maximum and as U increases, the number of peaks and also the fluctuation in the conductance
increase. Also the peaks shift towards left with increasingU. Interestingly again, G;, G; and G¢
behave qualitatively more or less in a similar way, while G displays a maximum- minimum
structure around €4 = 0 at U = 0, which splits in many peaks at the presence of el-el interaction.

0.3 0.3 .
(a) e =1, w1, k. T=1 ()
0.2 0.2 AT
-
O
0.1 0.1
IJzu 0
-2 20
o0 Qe
0.4!
4]
O
0.2
D - W~ Fes’ N J .5
20 10 0 10 23 -20 0 20

H f

Fig. 4 Gy, G, , G° and G5 vs u for different values of the magnetic field with el-ph coupling constant A =
0.5, QD energy €; = 1, oscillator frequency w, = 1, temperature kzT = 1, cyclotron frequency w. = 3,
damping factor y = 0.03 and el-el interaction strength U = 1.

In Figs. 4(a) and 4(b), we show the variation of G; and G; as a function of the chemical
potential u for a few different values of B. In the absence of the magnetic field, G; and G, show
the same variation with . For B # 0, as B increases, the peak of G; shifts towards left (i. e.,
towards negative u), while G, peak shifts towards right. However, the maximum height of the peak
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remains same in both cases. Figs. 4 (c) and 4(d) display the behaviour of G¢ and G*. In the absence
of a magnetic field, the charge conductance G¢ as a function of y, also shows a maximum, while
the spin conductance G° remains zero. As the magnetic field increases, the maximum of G¢
decreases and splits into two symmetric maxima while G° develops a maximum and a minimum
structure around p = 0 which increase in height and width with increasing magnetic field

0.3 0.3 ™)
(a) ﬁd=1 ] wl]'=1 ] kBT=1 —_— A=0.5
- = = A=t
= 0.2 10,21 mown A=1.5 =
o e A=D o
9, L
i
o 0.1 E o
20
(d)
=
N-"\-h
@
‘-ﬁm
o
20

Fig.5 Gy, Gy, G€ and G* vs u for different values of el-ph coupling constant with the magnetic field uzB =
1, QD energy €4 = 1, oscillator frequency w, = 1, temperature kzT = 1, cyclotron frequency w, = 3,
damping factor y = 0.03 and el-el interaction strength U = 1.

In Fig. 5, we show the variation of Gy, G, , G, and G, as a function of u for a few values of the
el-ph interaction strength A. The conductance peaks in all cases decrease as A increases and shift
towards left. At higher values of el-ph interactions, the peak of the conductance splits in multiple
peaks. Figs. 5(a) and 5(b) suggest that qualitatively, the spin-up and spin-down conductance curves
behave more or less in the same way, but quantitatively, the magnitude of the spin-up conductance
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is slightly larger. Figs. 5(c) and 5(d) show that the charge conductance and spin conductance also
decrease as A increases.

(a) 0.3 0.3 (b)

— y=0.01 = = =
- - - =0.03 12=0, Wy 1, kBT 1
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d

Fig. 6 G, G, , G€ and G~ vs €, for different values of damping factor with el-ph coupling constant A = 1,
chemical potential 4 = 0, oscillator frequency w, = 1, temperature kzT = 1, cyclotron frequency w. =
3, magnetic field ugB = 1 and el-el interaction strength U = 1.

In Fig. 6, we show the behaviour of G;,G, , G, and G, with respect to ¢, for a few different
values of the damping factor. The figures show that the magnitude of the conductance increases
with increasing damping parameter in all cases.

In Fig. 7, we plot the thermopowers ((Sy, Sy, S¢, Ss)) as a function of the magnetic field B for a
few different values of el-ph coupling constant. The spin-up and spin-down Seebeck coefficients
exhibit an maximum-minimum structure. Fig. 7(a) shows the behaviour of the spin-up Seebeck
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coefficient (S;) and the behaviour of the spin-down (S;) Seebeck coefficient is shown in Fig.7(b).
Sy and S, are equal in the absence of the magnetic field and exhibit opposite behaviour as a
function of the magnetic field. The el-ph interaction enhances the magnitude of the both spin-up
and spin-down Seebeck coefficients. In Figs. 7 (c) and 7(d), we show the behaviour of the charge
(spin) Seebeck coefficient S, (Sg) with respect to the magnetic field for different values of el-ph
interaction. The magnitude of the spin Seebeck coefficient is higher than the charge Seebeck
coefficient because the spin-up and spin-down Seebeck coefficients have the

10

w =3, ¢ =1, U=1,~=0.03
c d o’

-20 0 20 -20 0 20

Fig. 7 Thermopowers as a function of magnetic field with QD energy €; = 1, oscillator frequency w, =
1, temperature kT = 1, cyclotron frequency w. = 3, damping factor y = 0.03 and el-el interaction
strength U = 1 and for a few different values of the el-ph coupling constant A.

opposite behaviour. According the theory of metals, the thermopower vanishes in a half-filled band
where the number of filled and empty states is equal which is a particle-hole symmetric condition.
We have considered the left lead to be at a higher temperature than the right one and because of
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this temperature gradient, the thermoelectric effect is created. The left lead also has more electrons
above the chemical potential than the right one and consequently, more holes should exist below
the chemical potential. The major carriers are holes (electrons) when the energy levels of QDs are
below (above), and the thermo-power is therefore positive (negative). So the spin Seebeck
coefficient graph is antisymmetric.

(@ 10 10 (b)

Fig. 8 Thermo-power as a function of QD energy €, for few values of el-ph coupling constant A, oscillator
frequency w, = 1, temperature kzT = 1, cyclotron frequency w. = 3, damping factor y = 0.03 and el-el
interaction strength U = 1.

In Fig. 8, we plot the thermopowers (S, S;, S., Sg) as a function of QD energy for a few different
values of the el-ph coupling constant. In this case, the behaviour of the spin-up and spin-down
Seeback coefficients are the same, but their amplitudes are slightly different. The thermopowers
(S1, S;, S.) change their sign at €; = 0 due to the compensation of electrons and holes in the case
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of A = 0. the magnitude of the maxima and minima of the thermopowers (S, S;, S.) increase with
increasing A. Also, as A increases, the maxima of the thermopowers continue to occur at the same
value of €4 but the minima of the thermopowers shift towards higher values of €4 . The behaviour
of spin Seebeck coefficient Sq is completely different from S.. S¢ exhibits a plateau around €4 = 0
and as A increases, the plateau splits into two peaks. The magnitude of Sy is very small compared
to S which implies that the spin current is much smaller than the charge current.
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Fig. 9 Thermo-power as a function of chemical potential p for a few different values of temperature kzT
and certain values of other parameters A =1, wg =1, ugB =1, w =3,y = 0.03,¢4, = 1,and U = 1.

In Fig. 9, we plot the thermopowers (S;, Sy, S¢, S;) as a function of chemical potential u for a
few values of T. We observe that in all cases, the themopowers decrease as temperature increases.
We also observe that the curves for S;, S;, and S, are antisymmetric due to particle-hole
symmetry and the positive (negative) thermopowers show holes (electrons) as the majority charge
carriers. Fig. 9(d) shows that S, as a function of u has a flat plateau that is symmetric around u =
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0. Temperature has an interesting effect on the spin Seebeck coefficient S;. As temperature
increases, the plateau height of Sg decreases and it splits into two maxima. We again notice that
the magnitude of S, is much smaller than that of S..

In Fig. 10, we show the results of thermopowers (S, Sy, S¢, Ss) as a function of u for different
values of el-el interaction U. The peaks of the thermopowers have the same height for different
values of U and they shift towards left on the p-axis as U increases.
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Fig. 10 Thermopowers as a function of chemical potential p for different values of el-el interaction U and
certain values of other parameters A = 0.5, wyg =1, ugB =1, w. =3,y =0.03,64 = 1,and kzT = 1.

Fig. 11 presents the behaviour of the thermopowers (S;, S;, S.,S;) with respect to chemical
potential u for different values of A. One can see that as we increase 4, the magnitudes of the
thermopowers and their peak values increase in all cases. Also the magnitude of the charge
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Seebeck coefficient turns out to be larger than the spin Seebeck coefficient. The spin Seebeck

coefficient peaks are split into two peaks at higher values of A.
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Fig. 11 Thermopowers as a function of chemical potential p for different values of el-ph interaction A and
certain values of other parameters U =1, wg = 1, ugB =1, w. = 3,y = 0.03,¢4 = 1,and kgT = 1.

In Fig. 12, we plot the thermopowers (S3, S;, S¢, Sg) as a function of chemical potential p for

different values of the magnetic field B. The spin-up and spin-down thermopowers are the same

at zero magnetic field. So the charge Seebeck coefficient is maximum and the spin Seebeck

coefficient is zero in this case. Therefore, we will get maximum charge current and zero spin

current in the absence of the magnetic field. The thermopowers S; ( S;) shift towards left (right)

at higher values of the magnetic field B. The maxima of S; and S, are equal for different values

of B. However, S, decreases and S, increases at higher values of the magnetic field. Thus, the

magnetic field increases the spin current and the spin Seebeck coefficient.
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Fig. 12 Thermopowers as a function of chemical potential u for different values of magnetic field uz B and
certain values of other parameters U = 1, wg = 1,4 =05, 0w, =3,y =0.03,¢4 = 1,and kgT = 1.

In Fig. 13, we present the results of the charge Seebeck coefficient S, (dotted lines) and spin
Seebeck coefficient Sq (solid lines) as a function of the QD energy for different values of the
magnetic field B. Interestingly, S. is positive for negative QD energy and negative for positive QD
energy. At zero QD energy, S is zero and S is maximum and it decreases as the QD energy
increases. In Fig. 14, we plot the charge Seebeck coefficient and the spin Seebeck coefficient with
respect to the chemical potential u for different values of the damping factor y. The effect of
dissipation on the charge and spin Seebeck coefficients appears to be marginal.
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Fig. 13 Charge Seebeck coefficient (dotted lines) and spin Seebeck coefficient (solid lines)
vs QD energy €, for different values of magnetic field ugB.
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Fig.14 Thermopowers as a function of u for different values of dissipation parameters .
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7.4 Conclusion

In this chapter, we have studied the thermal transport properties of a dissipative SMT device with

e — e and e — p interactions and magnetic field. The e-e interaction has been described by the
Hubbard term and the e-p interaction has been taken care of by the Holstein model. The dissipative
effect which arises because of the interaction of the substrate phonons with the QD phonon has
been incorporated by the linear Caldeira-Leggett model. The dissipation has been approximately
treated by a canonical transformation which reduces the QD frequency which is precisely the
damping effect. Using the Lang-Firsov transformation followed by a zero-phonon averaging, the
e-p interaction is eliminated. Finally using the Keldysh method, the effect of magnetic field,
dissipation, e-e and e-p interactions on thermal parameters has been studied. In particular, we
studied the behaviour of the conductance conductance (G, G, , G€ and G®) with respect to different
parameters such as the temperature, e-e interaction, e-p interaction, damping parameter, magnetic
field, quantum dot energy and chemical potential. It is found that the charge conductance G¢ is
maximum while the spin conductance G*° is zero in the absence of the magnetic field. However, as
the magnetic field increases, the peak height of G¢ decreases and the peaks split into two peaks
while the peak height of G* increases and shifts towards right on the chemical potential axis. We
have also shown that temperature, magnetic field and the above-mentioned interactions have
interesting effects on the thermopowers (S, S;, S, and S;). As a function €, the behaviour of the
spin-up and spin-down Seeback coefficients are the same, but their amplitudes are slightly
different. The spin-up and spin-down thermopowers are the same at zero magnetic field. So the
charge Seebeck coefficient is maximum and the spin Seebeck coefficient is zero in this case.
However, S, decreases and S, increases at higher values of the magnetic field. Thus, the magnetic
field increases the spin current and the spin Seebeck coefficient.
The thermopowers (S, Sy, S.) change their sign at €; = 0 due to the compensation of electrons
and holes in the case of 2 = 0. the magnitude of the maxima and minima of the thermopowers (S,
S,, S.) increase with increasing A. Also, as A increases, the maxima of the thermopowers continue
to occur at the same value of €4 but the minima of the thermopowers shift towards higher values
of €4 . The behaviour of spin Seebeck coefficient Sg is completely different from S... S¢ exhibits a
plateau around e4 = 0 and as A increases, the plateau splits into two peaks. The magnitude of Sg
is very small compared to S, which implies that the spin current is much smaller than the charge
current. The effect of dissipation on the charge and spin Seebeck coefficients appears to be
marginal.
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Chapter-8

Conclusions

In this thesis, we have studied the effect of spin-orbit interactions on electronic states in quantum
dots and also on the thermo-electric properties of a single molecular transistor. In particular, we
have studied the effect of spin-orbit interactions on the hydrogenic donor impurity systems in a
QD and applied our results to a GaAs QD for the sake of concreteness. We have finally studied
the effect of electron-electron and electron-phonon interactions on the thermopower and spin-
Seebeck effect in a single molecular transistor in the presence of quantum dissipation and an
external magnetic field.

We began the thesis with a general overview of QDs in Chapter 1 where we covered some of the
fundamental characteristics of QDs such as the nature of their energy spectrum, the density of
states, the confinement potential and briefly mentioned some of their applications. We have next
presented a brief introduction to the Rashba and Dresselhaus spin-orbit interactions. Finally, we
have introduced the subject of single molecular transistor and presented the derivation of
conductance and thermopower using the non-equilibrium Keldysh Green function technique.

In Chapter 2, we have considered the combined effect of Rashba and Dresselhaus spin-orbit
interactions on a D° hydrogenic impurity in a Gaussian QD of GaAs in the presence of a magnetic
field. To decouple the spin-orbit interactions, we have used a unitary transformation and calculated
the GS energy and the binding energy (E) of the D° impurity using the Ritz variational method.
We have shown that the Rashba term reduces the GS energy more than the Dresselhaus term in
the presence of the magnetic field but in the absence of the magnetic field, both the terms reduce
the GS energy by the same amount. We have also demonstrated that the binding energy reaches
its maximum at a particular dot size and rapidly decreases below this critical size. Furthermore, in
the presence of the magnetic field, the GS binding energy increases with decreasing Rashba
coupling constant (ag) but it increases with the Dresselhaus interaction coefficient (8p), whereas,
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in the case of zero magnetic field, the GS binding energy remains unaffected by both the Rashba
and Dresselhaus interactions. Next we have shown that the susceptibility S increases with B. Also
|S| increases with increasing QD size at small magnetic fields, but above a critical magnetic field,
it decreases with increasing QD radius. This leads to a crossing behaviour in the diamagnetic
susceptibility. Finally, we have shown that in general, as the QD size decreases, the electron
localization becomes stronger. However, the behaviour starts reversing below a certain QD size
because of the uncertainty principle.

In Chapter 3, we have studied the impact of spin-orbit interactions on the binding energy of an
off-centre D° impurity in a 2D Gaussian QD of GaAs in a magnetic field by the Ritz variational
method. We have shown that the binding of a D° complex is strongest for the on-centre complex
(D = 0) and binding energy decreases with increasing D and eventually saturates. Our results
reveal that the effect of spin-orbit interactions on the D-dependence of the binding energy is rather
weak, though the magnetic field can influence the D-dependence at small D values. However, if D
is large, then none of QD parameters would have any effect on the Ez vs D curve. Finally, we
determined the susceptibility (S) of the off-centre D° complex using statistical mechanics. It turns
out that S is diamagnetic. With increasing D, |S| initially increases and eventually saturates to a
constant. It is observed that when Rashba coupling is absent and only Dresselhaus coupling is
present, |S| decreases both with 5, and B. However, in the case when the Dresselhaus coupling
is absent and only Rashba coupling present, at small values of B, |S] initially increases with
increasing ap, reaches a maximum and then decreases with ag, but at large B, |S| increases

monotonically with ap.

In chapter 4, we have studied the role of spin-orbit interactions on the energetics of an on-centre
D° complex in a power-exponential quantum dot (PEQD) in an external magnetic field. We have
shown that below a certain QD size, the GS energy increases with the steepness parameter p, while
above that critical size, it decreases. However, in both cases, the GS saturates as p becomes large.
This is because when p becomes large, the confinement potential hardly changes with p. For a
small dot, the binding energy exhibits a peak at a small p and saturates to a constant as p increases.
As the QD size (R) increases, the peak becomes flatter though its height increases. Furthermore,
the peak shifts towards higher values of p. As R becomes still larger, the peak disappears and the
binding energy just monotonically increases with p at small p and eventually saturates. As a

function of R too, BE shows peaks and the peak height increases as p increases. After reaching the
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peak, the binding energy decreases with R faster for higher p giving rise to a crossing behavior.
Finally, we show that the susceptibility of a D° impurity in PEQD is diamagnetic and this
diamagnetic susceptibility (S) increases with p at small B and at large B, it decreases with
increasing p. At intermediate B, S first decreases with increasing p, develops a minimum at some
value of p and then increases with further increase in p. Eventually, however, S saturates to a

constant as p becomes large.

In Chapter 5, we have considered the D° impurity in a 3D asymmetric Gaussian QD. We have
shown that GS energy increases with the asymmetry parameter b. We have also shown that with
respect to the QD size R, the binding energy exhibits a peak that shifts towards larger R as b
increases. Furthermore, the binding energy decreases with increasing b. Finally, the magnitude of
S (which is diamagnetic) has been shown to decrease with increasing B. However, it increases as
the asymmetry increases at small B and decreases with increasing asymmetry at large B. This
gives rise to an interesting crossing behavior. The Rashba coupling decreases the binding energy,
while the Dresselhauss coupling increases it and the asymmetry in the confinement potential
enhances these effects.

In Chapter 6, we have studied the spin-orbit interaction effects on the binding energy of a D~
complex in a 3D GQD of GaAs in the presence of a magnetic field using a variational method with
a modified Jastrow-type correlation factor. We have observed that, in general, the Dresselhaus
coupling enhances the binding energy of D~ whereas the Rashba interaction reduces it. Also, as a
function of the magnetic field, the binding energy increases in the presence of Dresselhaus
interaction whereas, it remains almost constant in the presence of Rashba interaction. Next we
have shown that the susceptibility of a D™ impurity in a GaAs QD is diamagnetic. Interestingly, in
the presence Rashba interaction, the susceptibility curve exhibits a minimum. We have shown that
in the absence of a magnetic field, the dipole moment of D~ remains unaffected by the spin-orbit
interactions. However, if the magnetic field is present, the Rashba coupling enhances its dipole
moment, while the Dresselhaus coupling reduces it. The strength of the dipole moment also rises
with the QD size and reduces with the increasing potential depth and the magnetic field.

In chapter 7, we have studied some thermo-electric properties of a correlated polar SMT device
with dissipation in the presence of a magnetic field using the Holstein-Hubbard-Caldeira-Leggett
model. The dissipation and electron-phonon interaction have been treated by canonical
transformations and the charge and spin currents have been calculated using the Keldysh method.
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In the absence of a magnetic field, the charge conductance G¢ as a function of the chemical
potential u, shows a maximum, while the spin conductance G*° remains zero. As the magnetic field
increases, the maximum of G decreases and splits into two symmetric maxima while G* develops
a maximum and a minimum structure around p = 0 which increase in height and width with
increasing magnetic field. We have observed that at zero magnetic field, the spin-up and spin-
down Seebeck coefficients are equal and therefore at zero field, the charge Seebeck coefficient
(S.) is maximum and the spin Seebeck coefficient (S) vanishes. However, as a function of the
magnetic field, the spin-up and spin-down Seebeck coefficients exhibit an opposite behaviour. We
have also shown that the el-ph interaction suppresses the charge and spin conductance but
enhances the thermopower. Finally, we have shown that the charge and spin Seebeck coefficients
decrease as the temperature difference between the leads increases.
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