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PREFACE 

 

 

   This thesis focuses on the effect of the Rashba and Dresselhaus spin-orbit interactions on the 

hydrogenic impurity in a quantum dot (QD) and the effect of electron-phonon interaction, electron-

electron interaction and quantum dissipation on the electric conductance, Seebeck effect and the 

spin Seebeck effect. A QD is a low-dimensional system in which the motion of the electrons is 

restricted in all three directions. The natural length scale of a QD is the order of a few nm which 

makes these systems highly interesting because at this length scale strong quantum effects are 

expected to appear. The confinement potential is one of the essential parameters one needs to 

consider while studying a QD theoretically. According to the recent experimental findings, the 

confinement potential is anharmonic and has a finite depth. It has been suggested that the Gaussian 

potential is an appropriate model for a QD's confinement potential.  

 

   Generally, we can have two types of spin-orbit interactions in a solid. One is the Rashba spin-

orbit (RSO) interaction (RSOI) which arises when a material loses its structural inversion 

symmetry (SIS), and the other one is the Dresselhaus spin-orbit (DSO) interaction (DSOI) which 

arises from the breaking of the bulk inversion symmetry (BIS).  

 

  The generation of the electric voltage by a temperature gradient is known as the Seebeck effect. 

In Spintronics, the central focus is on spin transport in place of charge transport. Similarly, a spin 

analog of the Seebeck effect has received a lot of attention in recent years. The spin Seebact effect 

refers to the generation of the spin voltage by placing a temperature gradient in a ferromagnet. In 

2008, Uchida et al. reported the possibility of creating a pure spin current by the temperature 

gradient in magnetic metals. The thesis is organized as follows:  

 

   We begin the thesis by presenting an overall introduction to the subject of QDs and spin-orbit 

interactions in Chapter 1. Here, we first give a brief review of some of the basic properties of QDs, 

discuss a few fabrication techniques, highlight some of their important applications and introduce 

the concept of confinement potential. Next, we discuss the donor impurity in the QDs and a brief 

introduction to the spin-orbit interactions. Next, we introduce the single molecular transistor 

(SMT). In SMT device, it is possible to successfully regulate the current by adjusting the gate 

voltage. Investigations have shown that SMTs and molecular electronic devices have tremendous 
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potential for applications in spin filters, switching devices, sensors, etc. Finally, we discuss the 

brief introduction of Seebeck effect and spin Seebeck effect. One of the main objectives of this 

thesis is to study the effect of Rashba and Dresselhaus spin-orbit interactions on the impurity states 

in a QD and the thermal transport properties of a single molecular transistor.  

 

   In Chapter 2, we study the effect of Rashba and Dresselhaus spin-orbit interaction on the bound 

state of an on-centre 𝐷0 hydrogenic impurity in a three-dimensional GaAs GQD in the presence 

of an external magnetic field (B). To deal with the spin-orbit interaction part, we first apply a 

unitary transformation on the Hamiltonian of the system and then use the Rayleigh-Ritz variational 

method to calculate the ground state energy (GS). We obtain the binding energy (BE), magnetic 

moment and the diamagnetic susceptibility. We show that the GS energy of the  𝐷0 system 

increases with decreasing QD size and it decreases with increasing confinement strength. Also, the 

GS energy is found to decrease with increasing RSOI and DSOI. However, the effect of DSOI is 

found to be less than RSOI. So, one may conclude that RSOI is more dominating than DSOI in a 

QD. We also show the variation of binding energy (BE) with respect to both Rashba and 

Dresselhaus parameters. The BE appears to be independent of both Rashba and Dresselhaus 

parameters. The effect of spin-orbit interactions in the presence of a magnetic field, however, turns 

out to be more interesting. In the presence of a magnetic field, the Rashba parameter decreases the 

BE while the Dresselhaus parameter increases it. Finally, we calculate the magnetic moment (M) 

and diamagnetic susceptibility (S) of the 𝐷0 impurity as a function of the magnetic field for a 

different sets of Rashba and Dresselhaus interaction parameters. We show that |𝑀| increases with 

𝐵 and decreases with the reduction in the effective QD radius  𝑅. 𝑆 is also found to increase with 

𝐵. We furthermore show that |𝑆| increases with increasing QD size at small magnetic fields, but 

above a critical magnetic field, it decreases with increasing QD radius. This leads to a crossing 

behaviour in the diamagnetic susceptibility. Finally, we calculate the electron distribution for 

different values of the QD parameters. It is shown that, in general, as the QD size decreases, the 

electron localization becomes stronger. However, the behaviour starts reversing below a certain 

QD size because of the uncertainty principle. 

   

   In Chapter 3, we consider the spin-orbit interaction effects on BE and susceptibility of an off-

centre 𝐷0 impurity in a GQD in the presence of a magnetic field (B). Again we eliminate the spin-

orbit interactions by a unitary transformation. The resulting problem cannot be solved exactly. So 

we use the Ritz variational method. We apply our result to a GQD of GaAs and present the 
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behavior of the GS energy (GSE) (𝐸) of the off-centre 𝐷0 impurity as a function of the impurity 

position D for 𝐵 = 0 and 𝐵 ≠ 0 and for different RSOI and DSOI coefficients  𝛼𝑅 and 𝛽𝐷. As D 

increases, GSE initially increases quite rapidly, but asymptotically saturates to a constant value. 

This can be easily understood from the simple semi-classical argument, which suggests that GS 

corresponds to the minimum of the potential. The RSOI and DSOI effects on GSE are found to be 

low at small values of D and large at higher values of D. GSE decreases in the presence of both 

SOIs at low 𝐵, but the effects of RSOI and DSOI are opposite at higher values of 𝐵. RSOI reduces 

GSE, but DSOI enhances it at higher values of 𝐵. We show that the binding of a 𝐷0 complex is 

strongest for the on-centre complex (𝐷 = 0) and BE decreases with increasing 𝐷 and eventually 

saturates. Our results reveal that the effect of SOIs on the 𝐷-dependence of BE is very small, 

though the magnetic field can influence the 𝐷-dependence of BE at small 𝐷 values. However, if 𝐷 

is large, then none of the parameters  𝑅, 𝐵, 𝛼𝑅, or 𝛽𝐷 would have any effect on the 𝐸𝐵 vs 𝐷 curve. 

We present the contour plots and 3D plots of BE of the system with respect to different system 

parameters. Finally, the susceptibility (𝑆) of the off-centre 𝐷0 in a GQD system is calculated using 

statistical mechanics and is shown to be diamagnetic. With increasing D, |𝑆| initially increases and 

eventually saturates to a constant. We observe that when RSOI is absent, and only DSOI is present, 

|𝑆| decreases both with 𝛽𝐷 and 𝐵. However, in the case when DSOI is absent, and only RSOI is 

present, at small values of 𝐵,  |𝑆| initially increases with increasing 𝛼𝑅, reaches a maximum and 

then decreases with 𝛼𝑅 . But at large 𝐵, |𝑆| increases monotonically with 𝛼𝑅 .   

 

   In Chapter 4, we study the effect of the shape of the confinement potential on 𝐷0 system in a 

GaAs QD in the presence of a magnetic field and spin-orbit interactions. In this problem, we use 

for the confinement potential, a spherically symmetric power exponential potential (PEP) with a 

steepness (or a shape) parameter (𝑝). A QD with PEP will be referred to as a power exponential 

QD (PEQD). By changing the value of 𝑝, we can change the shape of PEQD from a Gaussian 

potential to a rectangle potential. We employ the Ritz variational method and study the variation 

of GSE and BE of a 𝐷0 Centre in a PEQD as a function of the shape parameter 𝑝, the effective QD 

size 𝑅, the Rashba and Dresselhaus spin-orbit interaction constants 𝛼𝑅 and 𝛽𝐷 and the external 

magnetic field 𝐵.  As a function of R, BE shows peaks and the peak height increases as 𝑝 increases. 

After reaching the peak, BE decreases with 𝑅 faster for higher 𝑝 and gives interesting crossing 

behaviour. We explore the behaviour of the magnetic moment and diamagnetic susceptibility with 

respect to the magnetic field for different values of the steepness parameter p. The susceptibility 

(𝑆) increases with 𝑝 at small 𝐵 and at large 𝐵, it decreases with increasing  𝑝. At intermediate 𝐵, 
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𝑆 first decreases with increasing 𝑝, develops a minimum at some value of 𝑝 and then increases 

with further increase in 𝑝. 

 

   In chapter 5, we investigate the behavior of GS binding energy of a hydrogenic donor impurity 

in an asymmetric 3D GQD of GaAs with respect to effective QD size R, confinement potential 

depth V0, magnetic field B, asymmetry parameter b, and RSOI and DSOI coefficients. We also 

examine the dependence of magnetic moment (𝑀) and susceptibility (𝑆) on 𝐵 for different values 

of the asymmetry parameter 𝑏. As expected, the susceptibility is found to be diamagnetic in nature. 

Also the magnitude of 𝑆 is found to decrease with increasing 𝐵. However, it increases as the 

asymmetry increases at small 𝐵 and decreases with increasing asymmetry at large 𝐵.  This gives 

rise to an interesting crossing behavior. The Rashba coupling decreases BE, while Dresselhaus 

coupling increases it and the asymmetry in the confinement potential enhances these effects. 

   

 

   In chapter 6, we study the energetics of a negative hydrogenic impurity 𝐷− in a GaAs GQD in 

the presence of a magnetic field, and the Rashba and Dresselhaus SOIs. The 𝐷0 system studied 

earlier, is spherically symmetric, so there cannot exist any dipole moment.  However, in the case 

of a 𝐷− centre system, the situation is different. Classically, of course, there cannot be any dipole 

moment in this system because the Coulomb correlation would try to force the electrons to lie on 

the diametrically opposite sides of the nucleus giving rise to zero dipole moment. Quantum 

mechanically, however, there would be fluctuations, and because of this quantum fluctuation, 

electron distribution would be such as to minimize the system's energy. We calculate the GS 

energy and BE of the 𝐷− system by the Ritz variational method and obtain the dipole moment as 

a function of the QD size, confinement depth, magnetic field, and the Rashba and Dresselhaus 

parameters. We show that the magnetic field and Dresselhaus interaction decrease the dipole 

moment while the Rashba parameter increases it. We also calculate the susceptibility of the 

negative hydrogenic impurity system and show that the behavior of the susceptibility of 𝐷− is also 

diamagnetic. Interestingly, the susceptibility of  𝐷− system exhibits a deep minimum in the 

presence of RSOI.   

 

   In Chapter 7, we consider an SMT system in which a central QD is coupled to two metallic leads 

which act as a source and a drain respectively. A temperature gradient is applied across the source 

and the drain and electrons can travel from the source to the drain through the QD giving rise to a 
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tunneling current. The entire SMT system is placed on an insulator substrate to which a gate is 

attached. By applying a gate voltage, the tunneling current can be manipulated. The substrate 

contains a large number of uncoupled harmonic oscillators and thus acts as a phonon bath. The 

QD contains a single energy level and a local phonon mode. The QD electrons interact with each 

other by the Hubbard onsite interaction and with the local phonon mode through the Holstein onsite 

el-ph interaction. The substrate phonons can interact with the local QD phonon by a linear 

interaction of the Caldeira-Leggett type which gives rise to a dissipative effect in the phonon 

dynamics of the QD. We describe the entire SMT system by the Anderson-Holstein-Caldeira-

Leggett model and investigate the tunneling conductance, Seebeck effect and the spin Seebeck 

effect in the presence of el-el coupling, el-ph coupling, and quantum dissipation. We treat the 

interaction between the QD phonon and the substrate phonons by using a canonical transformation. 

This renormalizes the frequency of the QD phonon. The el-ph interaction is decoupled using the 

conventional Lang-Firsov transformation followed by a zero-phonon averaging. Finally, using the 

Keldysh approach and the equation of motion method, the transport parameters are determined. In 

particular, we studied the behaviour of the conductance (𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠) with respect to 

different parameters such as the temperature, e-e interaction, e-p interaction, damping parameter, 

magnetic field, quantum dot energy and chemical potential. It is found that the charge conductance 

𝐺𝑐 is maximum while the spin conductance 𝐺𝑠 is zero in the absence of the magnetic field. 

However, as the magnetic field increases, the peak height of 𝐺𝑐 decreases and the peaks split into 

two peaks while the peak height of  𝐺𝑠 increases and shifts towards the right on the chemical 

potential axis. We study the variation of the spin-up and spin-down electric conductance as a 

function of different parameters like temperature, magnetic field, QD energy 𝜖𝑑 and the chemical 

potential 𝜇. We also study the behaviour of the charge Seebeck effect and the spin Seebeck effect 

with respect to the magnetic field and QD energy. We have also shown that temperature, magnetic 

field and the above-mentioned interactions have interesting effects on the thermopowers (𝑆↑, 𝑆↓,

𝑆𝑐 and 𝑆𝑠). As a function 𝜖𝑑, the behaviour of the spin-up and spin-down Seeback coefficients are 

the same, but their amplitudes are slightly different.  The spin-up and spin-down thermopowers 

are the same at zero magnetic field. So the charge Seebeck coefficient is maximum and the spin 

Seebeck coefficient is zero in this case. However, 𝑆𝑐 decreases and 𝑆𝑠 increases at higher values 

of the magnetic field. Thus, as the magnetic field increases, the spin current and the spin Seebeck 

coefficient also increase.  

   Finally, in chapter 7, we summarize the main results of the thesis and make some concluding 

remarks. 
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Chapter -1 
 
 

 

A brief overview of quantum dots and spin-orbit 
Interactions 

 

 

 

1.1  Introduction 

 
  Quantum dots have generated tremendous interest in the last few decades for their role in 

providing a platform to test quantum mechanics at the laboratory scale as well as for their potential 

applications in semiconductor technology at the microscopic level [1-6]. A quantum dot (QD) is a 

low-dimensional system in which electron transport is restricted in all the three directions [7-10]. 

Most of the quantum dots (QDs) that are useful from the point of view of nano-technology, are 

compound semiconductors composed of materials from the periodic groups of II-VI, III-V, or IV-

VI. 

 
  The typical size of a QD is of the order of a few nanometres and can be thought of as a giant 

artificial atom. However, they are much more flexible than atoms because they can be fabricated 

in different shapes and sizes as required depending upon the fabrication process. It is known that 

materials behave differently at very small sizes, a phenomenon known as the quantum size effect, 

and the properties of quantum dots have been found to be in between those of bulk semiconductors 

and discrete atoms or molecules. Additionally, QD structures have an unprecedented tunability 

and hence a tremendous potential for application in microelectronic device technology such as QD 

lasers and super-fast computers [12]. 

 
  Due to quantum confinement, the energy levels of the electrons become discrete with a finite 

separation between them. Some of these energy levels are unoccupied and constitute the band gap. 

Most of the electrons occupy the valence band, which are energy levels below the band gap and 

the levels above constitute the conduction band. When the QD is hit by an incident light of energy 
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higher than that of the band gap of the semiconductor, electrons from the valence band absorb this 

light and go the conduction band producing excitons. These excited electrons (exciton) return to a 

lower energy level resulting in a narrow, symmetric energy band emission [13]. Quantum dots 

confine their charge carriers in a small spatial domain that is of the order of a few nanometres. 

This is known as quantum confinement and can be approximately described by an infinite potential 

having the following energy levels:   

                                                      

                                                                         𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚∗𝐿2
   ,                                                                (1.1) 

 
       

                                                                       𝐸𝑛+1 =
(𝑛 + 1)2𝜋2ℏ2

2𝑚∗𝐿2
  .                                                   (1.2) 

     
                                                   
The energy difference between the (𝑛 + 1) - th level and the 𝑛 - th level in a QD is thus given by 

                                                   

                                                  ∆𝐸 = 𝐸𝑛+1 − 𝐸𝑛 =
(2𝑛 + 1)𝜋2ℏ2

2𝑚∗𝐿2
  ,                                                  (1.3) 

 
                                      
where 𝑚∗ is the Bloch mass of the particle and 𝐿 is the effective length scale of the QD  well.  Eq. 

(1.3) suggests that as a system becomes extremely small, the energy level difference between two 

consecutive levels becomes very large and the system becomes fully quantum.   

 
    Fig. 1 shows how the band gap between the energy levels influences the colours and size of the 

QDs. The QD allows us to control its band gap by adjusting its size hence controlling the output 

wavelength with extreme precision. An immediate optical feature of colloidal QDs is their 

coloration. While the material which makes up a QD defines its intrinsic energy signature, the 

nano-crystals quantum-confined size is more significant at energies near the band gap. Thus QD’s 

of the same material, but with different sizes, can emit light of different colours. The physical 

reason is the quantum confinement effect. The larger the dot, the redder (lower energy) is its 

fluorescence spectrum. Conversely, smaller dots emit bluer (higher energy) light. The coloration 

is directly related to the energy levels of the QD. Quantitatively speaking, the band gap energy that 

determines the energy (and hence colour) of the fluorescent light is inversely proportional to the 

square of the size of the QD. Larger QDs have more energy levels which are also more closely 

spaced. This allows the QD to absorb photons containing less energy, i.e., those closer to the red 
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end of the spectrum. Recent Observations have shown that the shape of the crystal lattice also 

might change the colour [13]. 

                 

 

 

 

 

 

 

 

 

 

    

                          

 

 

 

 

 

                                   

                                  

                               Fig. 1 Size dependence of the QD energy band gap [14]. 

   

 

  The density of states (DOS) function describes the number of states per energy difference and 

determines the distribution of carrier density in a physical system. The DOS is defined by, 

 

                                                                     𝑔(𝐸) =
𝑑𝑁

𝑑𝐸
                                                                           (1.4) 

  

where 𝑑𝑁 = 𝑔(𝐸)𝑑𝐸 is the number of electrons 𝑑𝑁 with an energy 𝐸 lying within a narrow range 

of energy 𝑑𝐸 = 𝐸2 − 𝐸1 and is proportional to the density of state  at E. An overview of quantum 

confinement in nanostructures is shown in Figure 1.2. The DOS behaves as a square root of the 

energy 𝐸1 2⁄  in the 3D bulk system. In this structure, electrons are not confined and they can move 

freely in any direction. In the two-dimensional (2D) quantum well (QW) structure, the DOS 
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behaves like a Heaviside step function and electrons are free to move in two spatial directions and 

their motion is confined in the third direction. Thus in a QW structure, electrons are said to 

constitute a quasi-two-dimensional electron gas (2DEG).  In the 1D quantum wire  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Fig. 2 Quantum confinement behaviour in all three directions. 

 

structure, the DOS is proportional to 𝐸−1 2⁄  and electron’s motion is confined in two directions 

while they have significant freedom to move freely in the other direction. Such a system of 

electrons is called a quasi-one-dimensional electron gas. In the QDs or zero-dimensional materials, 

the DOS is given by a series of Dirac delta functions. In this structure, the electrons do not have 

any free directions and the de Broglie wavelength of the electrons is of the same order as the 

confinement length which makes these systems show astounding quantum effects. If the 

confinement length of the QD is of the same order in all the three directions, it is called a three-

dimensional (3D) QD. If the confinement length in one particular direction happens to be much 

smaller as compared to rest of other two directions, then the resulting system is referred to as a 

quasi-two dimensional (quasi-2D) QD. For the sake of mathematical simplification, sometimes a 

quasi-2D QD is treated as a purely 2D QD theoretically. This approximation would be valid if the 

confinement length in one particular direction say, the z direction is extremely small which may 

be possible if the material is extremely thin in this direction. In the present work, we consider both 

2D and 3D QDs.   
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1.2   Fabrication of the quantum dot 

 
      Quantum dots can be fabricated by several methods. The main aim is to confine the electrons  

or any other charge carriers in a small region. A metal particle can be surrounded by insulators in  

order to achieve this. By providing an electric field [15], we can also restrict the motion of electrons 

inside the semiconductor. With the development of modern fabrication techniques like molecular 

beam epitaxy it is now possible to manufacture a single atomic layer of semiconductor crystal (eg. 

GaAs) at a time. A 2D electron gas can be made by sandwiching a thin layer (roughly 10 nm) of a 

GaAs semiconductor between two thicker layers of a semiconductor with a larger band gap than 

GaAs [16]. Generally, AlGaAs is chosen for this purpose because its crystal structure and lattice 

constant are almost identical to GaAs.  AlGaAs behaves as an insulator whereas in GaAs electrons 

can move freely. It is clear that the steps in energy at the GaAs/AlGaAs interfaces produce a 

potential well and hence discrete energy levels in both the valance and conduction bands. A 2D 

electron gas can now be created if one of the AlGaAs layers is doped with Si donors. Then even 

at low temperatures, electrons of a donor atom can go to the conduction band. Once it does that, it 

can easily land itself into the potential well, where it gets trapped with others to form a 2D electron 

gas. The dopant impurities are usually placed at some distance from the well so that they produce 

a very low scattering of the carriers. This is called modulation doping which gives high mobility 

and large mean free path. The electron gas confined in the GaAs QW is essentially two-

dimensional. The QW is so thin that at low temperatures, only the lowest quantum energy state is 

occupied by the electrons. The electrons have no freedom to move in the perpendicular direction 

of the well, but may only move laterally in it. Now QDs can be made from this QW layered 

structure. One method is to use a mask of resist material defined on top of the layered QW structure 

[16]. This resist is a polymer which is either sensitive to electrons or x-rays depending on the type 

of lithography, which is then performed to define the dot. Another method of achieving lateral 

confinement in a QW structure is to use a metallic gate on its surface. When this gate is negatively 

biased, it causes a depletion in the numbers of electrons in the area below it, leading to the 

formation of the QD.  

 
  There has also been an interest on synthesizing arrays of small QDs with uniform spatial ordering. 

The epitaxial growth of a QW followed by controlled etching does provide the requisite size and 

uniformity. But the etching process apparently produces surface defects and the subsequent 

regrowth introduces interface states which make the quality of these materials unacceptable. It has 
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been claimed that self-organised QDs are the structures that can provide the desired properties 

most satisfactorily.  

 

1.3 Application of quantum dots 

 
  Research on QDs has generated interest in different fields of study [17]. QDs have potential 

applications in quantum information processing and have paved the way for supercomputers called 

quantum computers. They can store information as qubits which are the elementary units of the 

quantum information processes and can be created using the two spin states of the electron. 

Precision measurements of the spin and other properties can be made by controlling the flow of 

electrons through the QD using small voltages applied to the leads. Organic dyes can be  

 

 

      

 

 

 

 

 

                            

 

                                    
                                          Fig. 4 Use of the quantum dot in different sectors [17].  

 

replaced with QDs. QDs can have wide range of biomedical uses in drug delivery, live imaging, 

medical diagnosis and in producing images of cancer tumours [18]. As discussed, semiconductor 

nanoparticles exhibit size and compositionally tunable band gaps. Therefore, QDs of different 

types and sizes engineered to perfectly match and absorb the light of the solar spectrum can be 
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brought together into the same cell. QD-based solar cells include luminescent concentrator cells, 

QD dye sensitized solar cells, multiple exciton generation and intermediate band solar cells. 

 
  Recently, display technology has started to incorporate QD light emitting diodes (QLED). QLED 

displays are getting a lot of attention in the scientific community because of their outstanding 

colour purity, great brightness, low operation voltage, and simple processability. A longer system 

life is made possible by the inorganic QDs' high thermal and air stability. Additionally, recent 

progress in patterning methods has made it possible to create an ultrahigh-resolution QLED array 

with a full colour spectrum. Conventional display technologies are unable to employ the QDs' 

implementation methods [19]. 

 

1.4 Confinement potential 

 
  One of most important parameters for a QD or a QW system from a theorist’s point of view is 

the confinement potential. QDs can be fabricated in different shapes and sizes to have certain 

required properties. One simple choice would be to work with an infinite potential well as the 

confinement potential. However, this model is an over-simplification for the actual confinement 

potential (CP). A more realistic model for the CP could be a finite square well. However, the force 

experienced by an electron within such a model potential is zero, which is a little unrealistic. 

Nevertheless, a finite square well has turned out to be a popular and useful model for the study of 

the behaviour of QD systems.  

 
  Experimental research by Sirkosky and Merkt [20-21] has revealed that the resonance frequency 

in a QD does not depend on the number of electrons in the dot. The independence of the excitation 

energy on the number of electrons indicates that the excitation spectrum of a QD is not influenced 

by the electron-electron (e-e) interaction. The above experimental result together with the 

generalized Kohn theorem suggests that the CP in a QD is more or less parabolic. Motivated by 

this observation, several investigations have been carried out in the past considering the potential 

in QD or QW as parabolic [22-27] and various electronic and other properties of QDs have been 

investigated [28-34]. A QD with a parabolic or harmonic CP is denoted as a parabolic QD (PQD).  

 
  Although in most investigations, harmonic potential model has been used to describe the 

confinement in a QD, some recent experimental results suggest that the actual CP in a QD is 



23 
 

anharmonic in nature and possesses a finite well-like shape with a minimum. Adamowski et al. 

[35] have suggested that a Gaussian potential can describe the experimental results with a good 

amount of accuracy. This potential has a finite depth and is consistent with some realistic 

phenomena like ionization etc... We would like to mention in passing that the Gaussian potential 

has proved to be a useful potential in various branches of physics and has been solved 

approximately for a single-particle problem by several authors [36-37]. In this thesis, we will refer 

to a QD with Gaussian confinement as a Gaussian QD (GQD). Recently, Ciurla [38] has suggested 

a more generalised CP which is known as the power exponential potential. QDs with power 

exponential CP will be referred to as PEQD. One important advantage with the power-exponential 

potential is that it can lead to different CPs in different limiting cases. Jahan et al. [39] have recently 

investigated the effect of the shape of the CP on the electronic, magnetic thermodynamic and 

transport properties of a GaAs QD at finite temperature using the power exponential potential.  

 
 
1.5 Donor impurities in a quantum dot 

 
   It is essentially impossible to have, in reality, a QD without any impurity. A hydrogen-like 

neutral impurity in a QD is normally referred to a donor impurity, for it can easily give away an 

electron to the conduction band. Such a neutral donor impurity is denoted by the symbol 𝐷0, while 

a 𝐷− centre refers to a complex which consists of a single positive ion and two electrons forming 

a negative hydrogen ion  [40].  

 

    Bastard [41] was the first to study the confinement effect on a 𝐷0 impurity in a QD. Many 

researchers have subsequently analysed the energetics of the 𝐷0 impurity in several low-

dimensional systems including QDs [42-43]. Later, several works [44–46] on off-centre impurities 

in QDs, which are more realistic, have also been reported. Movilla and Planelles [47] have 

presented a computational scheme yielding exact (numerical) wave functions and energies of a 

spherical nanocrystallite with a shallow donor impurity located anywhere inside. 

 
   The existence of stable bound states of 𝐷− complexes in bulk semiconductors was suggested 

theoretically by Lampert [48] way back in 1958. A 𝐷− impurity in a low-dimensional system is an 

interesting system because it is a simple two-particle correlated system with a single bound state 

[49]. The experimental confirmation of the existence of bound state of 𝐷−, however, took a long 

time to come primarily because of the very feeble nature of the binding of the system. To our 

knowledge, Huant et al. [50] were the first to observe experimentally the existence of a 𝐷− bound 
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state in a GaAlAs heterostructure from photoionization transitions through far-infrared magneto-

optical experiments. They have reported the binding energy of the  𝐷− impurity in a GaAs- 

multiple QW structure for several values of the magnetic field strength.  

 

 

1.6 Origin of the spin-orbit interaction  

 
   Another interaction of profound significance that has captured the attention of researchers in the 

case of low-dimensional systems is the spin-orbit (SO) interaction, which plays the most crucial 

role in the fascinating area of spintronics. The idea here is to fabricate devices, where spin will be 

the carrier of current rather than the charge [51] and thus in these devices the information will be 

carried by the spins. Recently, the importance of spin-orbit interactions has been investigated quite 

extensively in QD systems and semiconductor nanostructures. According to quantum mechanics, 

the electron spin can couple with the magnetic field generated by the electron’s motion giving rise 

to the SO interaction (SOI). The general form of the SOI can be obtained from the Dirac equation 

[52]. From the Dirac theory, we have  

      

                        (
𝒑2

2𝑚
+ 𝑉 −

𝑝4

8 𝑚3𝑐2
−

ℏ

4𝑚2𝑐2
𝝈. (𝒑 × 𝐄) +

ℏ2

8𝑚2𝑐2
∇2𝑣) 𝜓 = 𝜖𝜓  .                     (1.5) 

 

where the fourth term is known as the Thomas term (𝐻𝑇). This term represents the interaction of 

the moving electron with the electric field and represents the spin-orbit interaction.   

 
 

1.6.1 Rashba spin orbit interaction: 

 
  In 1984, Bychkov and Rashba [53] proposed a simple type of spin-orbit (SO) coupling to explain 

a specific electron spin resonance phenomenon in 2D semiconductors. In crystals that lack 

structure inversion symmetry, a spin-orbit interaction comes into play. This is called the Rashba 

spin-orbit (RSO) interaction (RSOI).  The RSO coupling was first introduced for non-

centrosymetric Wurtizite semiconductors. The zero-field spin-splitting in 𝐼𝐼𝐼 − 𝑉 heterostructures 

also occurs because of RSOI arising from the structure inversion asymmetry (SIA) of the 

heterojunction. Due to the difference in the bandgap, there would be an asymmetry in the space 

charge accumulated on either side of the heterojunction, which creates an electric field 
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perpendicular to the 2DEG leading to RSOI [54-56]. As RSOI can be influenced by an external 

electric field across the junction and it can have many experimental applications. 

                                               

                                         

                                                         Fig.5   Rashba spin-orbit interaction  

  

                 

  As we have already mentioned, one can obtain the form of RSOI Hamiltonian (𝐻𝑅) from the 

Thomas term of the Dirac theory. In the presence of an electric field perpendicular to the 2DEG 

(𝑬 = 𝐸 𝒛̂), the system loses the inversion symmetry at the surface and the Thomas term reads, 

 

                                       𝐻𝑇 = 𝐻𝑅 = −
ℏ𝜎𝑬. (𝒛̂ × 𝒑)

4𝑚2𝑐2
                                                                            (1.6) 

 

                                             =
ℏ

4𝑚2𝑐2
𝑬. (𝝈 × 𝒑)|

𝑧
= 𝛼𝑅(𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥),                                         (1.7) 

 

where 𝛼𝑅(= ℏ 𝐸 4𝑚2𝑐2⁄ ) is the Rashba parameter. It is clear that the breaking of inversion 

symmetry occurs because of the linearity of the electron momentum in the Rashba term.  

Theoretically, the lack of inversion symmetry not only creates an additional electric field but also 

distorts the electron wave function close to nuclei.  The Rashba parameter 𝛼𝑅 can be controlled by 

tuning the confining potential, the external electric field and gate voltage. The application of a gate 

voltage is a well-known method of controlling the structure inversion asymmetry. The study of 

Rashba physics is now at the heart of spintronics, with a focus on manipulating non-equilibrium 

material properties via SO coupling. 
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                        Fig.6 (a) Fermi surface of a 2DEG ;    (b) Structure inversion asymmetry  

 

 

 

1.6 .2 Dresselhaus spin-orbit interaction (DSOI) 

 
  Another type of spin-orbit interaction that may exit in a solid state system is called the Dresselhass 

spin-orbit interaction [57]. This arises due to bulk inversion asy mmetry (BIA). This type of 

asymmetry occurs in zinc blende type semiconductors. The strength of the BIA  

 

 

 

 

 

 

 

                                  Fig.7 zinc blende type diamond and GaAs crystal structure. 

 

parameter depends on crystal field, QD width, temperature and electron density. The Dresselhaus 

Hamiltonian is given by [58],   
 

                                   𝐻𝐷 =
𝛽𝐷

ℏ
(𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦) +

𝛾

ℏ
(−𝑘𝑦

2𝑘𝑥𝜎𝑥 + 𝑘𝑥
2𝑘𝑦𝜎𝑦)                                    (1.8) 
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 where 𝛽𝐷(−𝛾𝑘𝑧

2) is the Dresselhaus parameter, 𝜎𝑥 and 𝜎𝑦 are the pauli matrices. While the Rashba 

term is linear in momentum 𝑘, and the Dresselhauss term consists of both linear and cubic terms 

in 𝑘. However, the cubic interaction term is neglected especially for materials with weak SOI such 

as GaAs semiconductor.   

 

  

1.7   Introduction to Single molecular transistor (SMT)  
 

   Over the last few decades, there has been a shift from bulk systems to nanoscale semiconductors 

and magnetic systems. As evident from the above discussion, quantum phenomena need to be 

taken into account in the study of such systems. Early research has revealed a variety of important 

aspects of nanosystems such as the fascinating physics at the nanoscale, quantum transport 

properties, and device applications. Datta [59] has provided an excellent overview of the field. 

Due to advancements in fabrication techniques and the availability of measurement facilities, 

extensive research of the electrical, optical, transport, and magnetic characteristics of diverse 

nanosystems have been carried out in recent years. Aviram and Ratner [60] have proposed the 

theoretical design of a molecular device based on a single organic molecule in 1974, and found 

that the device's response in an applied field acts as a rectifier. A few research groups later used 

organic molecules to manufacture a single molecular transistor [61, 62]. An SMT device typically 

comprises a core molecule or any nanosystem with discrete energy levels, such as a quantum dot 

(QD). The transport properties of SMT have been investigated by using different theoretical and 

numerical methods like kinetic equation method [63, 64], rate equation approach [65], slave-boson 

mean-field method [66], non-crossing approximation method [67], numerical renormalization 

method [67-69] and non-equilibrium Green’s function approaches [70-73]. In our work, we use a 

non-equilibrium Green function technique to study the thermal transport properties of the single 

molecular transistor.  

 

  We consider an SMT system in which a central QD is coupled to two metallic leads which act as 

a source and a drain respectively. A temperature gradient is applied across the source and the drain 

and electrons can travel from the source to the drain through the QD giving rise to a electric current. 

The entire SMT system is placed on an insulator substrate to which is attached a gate. The substrate 

contains a large number of uncoupled harmonic oscillators which act as a phonon bath. The QD 

contains a single energy level and a local phonon mode. The QD electrons interact with each other 

by the Hubbard onsite interaction and with the local phonon mode through the Holstein onsite el-
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ph interaction. The substrate phonons can interact with the local QD phonon by a linear interaction 

of the Caldeira-Leggett type which gives rise to a dissipative effect in the phonon dynamics of the 

QD. 

 

 

1.8  Seebeck effect and spin-Seebeck effect  

 
  Thermoelectric materials have the ability to convert the waste heat into electricity based on 

Seebeck effects, when temperature gradient is applied across the system. This effect has 

applications in thermal sensing devices such as thermocouples [74]. The efficiency of the Seebeck 

effect is measured by the Seebeck coefficient S, which is defined as:  

 

                                                             𝑆 = −
𝑉

(𝑇2 − 𝑇1)
                                                                           (1.9) 

 

where 𝑉 is the electric voltage and 𝑇2, 𝑇1 are the temperature of the hot (source) region and cold 

(drain) region respectively.  

 

  The spin-Seebeck effect (SSE) generates a spin voltage or current from a temperature difference 

in a ferromagnet. SSE was first discovered by Uchida et al. [75] in a ferromagnetic metal. It has 

also been observed in ferromagnetic insulators [76] and semiconducting materials [77], 

nonmagnetic materials with a magnetic field [78], paramagnetic materials [79], antiferromagnetic 

materials [80], metal-ferromagnet insulators [81] and also in topological insulators [82]. When two 

charge carriers of spin components, 𝑆↑ and 𝑆↓ exhibit equal magnitude of charge but of opposite 

sign, the charge-Seebeck coefficient (𝑆𝑐 ∝ (𝑆↑ + 𝑆↓)) vanishes while the spin-Seebeck coefficient 

becomes finite (𝑆𝑠 ∝ 𝑆↑ − 𝑆↓)) resulting in the net spin voltage with the charge voltage being zero. 

SSE can be described by the spin-resolved Seebeck coefficient (or thermo-power).  

 

 

1.9   Aim of the present thesis 

 
   In this thesis, our main aim is to present our results on the effect of Rashba and Dresselhaus spin 

orbit interactions and magnetic field on 𝐷0 and  𝐷− impurities in a QD.  We shall mostly assume 

that the confinement potential is Gaussian which appears to be a reasonably good assumption as 

has been suggested by serval investigations. For sake of concreteness, we shall apply our results 
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to GaAs QD. We shall also study the thermoelectric properties of a single molecular transistor. The 

organization of the thesis is as follows. 

 

  In Chapter 2, we shall study the effect of both the Rashba and Dresselhaus SOIs on neutral 

hydrogenic donor impurity 𝐷0 complex in a 2D Gaussian QD. To decouple the spin-orbit coupling, 

we apply a unitary transformation that was first given by Aleiner and Falco [83]. To obtain the 

ground state (GS) energy and the binding energy (BE), we use the Rayleigh-Ritz variational 

method [84] and also present our results of magnetisation and susceptibility. In Chapter 3, we 

study the effect of spin-orbit interactions and an external magnetic field on an off-centre impurity 

𝐷0 in a GQD, which is a more realistic system, using an improved variational method [85]. 

 

An exponential power potential is a much more general form of a confinement potential and has 

the advantage that it can lead to different confinement potentials in different limiting cases. In 

Chapter 4, we shall study effect of the shape of the confinement potential on the properties of a 𝐷0 

complex in QD in the presence of RSOI and DSOI and magnetic field [86] using the power 

exponential CP.  

 

In Chapter 5, we shall consider a 𝐷0 system in an asymmetric 3D GQD in a magnetic field in the 

presence of Rashba and Dresselhaus SOIs and present our results of GS energy, BE and 

diamagnetic susceptibility.  

 

  A negative hydrogenic donor 𝐷− in a low-dimensional system is another interesting system 

because it is a simple two-particle correlated system with a single bound state [78]. The 

experimental confirmation of the existence of bound state of 𝐷−, however, took a long time to 

come primarily because of the very feeble nature of the binding of the system. In Chapter 6, we 

shall consider a 𝐷− impurity in a GQD in the presence of a magnetic field and the Rashba and 

Dresselhaus SOIs. We calculate the GS energy and BE by the Ritz variational technique. We shall 

also calculate the resultant dipole moment, magnetisation and susceptibility.  

 

  In Chapter 7, we consider a single molecular transistor (SMT) system in which a central QD is 

coupled to two metallic leads which act as a source and a drain respectively. The QD is considered 

to have a single electron energy level and a single phonon. It also has Hubbard correlation and 

local Holstein electron-phonon interaction. The source is kept at a higher temperature with respect 

to the drain. The entire SMT device is placed on an insulator substrate to which is attached a gate. 
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The substrate contains a large number of uncoupled phonons which can interact with the local 

phonon of the QD through a linear coupling. This gives rise to dissipation in the QD system. We 

also apply a magnetic field across the system. Because of the temperature difference between the 

source and the drain, electrons can tunnel from the source to the drain through the QD leading to 

thermoelectric effects. We analyse the thermoelectric and spintronic transport in this system using 

the non-equilibrium Keldysh Green function technique and calculate quantities like charge, spin 

and thermal conductance, and charge and spin Seebeck coefficients.  

 

Finally, in chapter 8, we present the conclusion of the thesis. 
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Chapter -2 

 

 

Effect of Rashba and Dresselhaus Spin-Orbit Interactions on a 

𝑫𝟎 Impurity in a Gaussian GaAs Quantum Dot in the presence 

of an external Magnetic field  

 

 

 

 

2.1   Introduction 

 
 

   As we have already mentioned in Chapter 1, Quantum dots (QDs) have continued to evoke 

interest over the last four decades for their fully quantum attributes, novel physical properties and 

their potential application in nanotechnology [1]. Indeed, the literature is replete with 

investigations that have unravelled a large number of important and interesting properties of QDs 

[2-7] that have the potential to revolutionize the semiconductor technology. It is hardly possible to 

have a realistic system without an impurity and therefore the study of impurity states and their 

effect on the physical properties of QDs are of utmost practical importance.  

 
    Another issue of profound significance that has captured the attention of researchers in the case 

of low-dimensional systems is the spin-orbit (SO) interaction, which plays the most crucial role in 

the fascinating area of spintronics. The idea here is to fabricate devices where spin will be the 

carrier of current rather than the charge [9] and thus in these devices the information will be carried 

by the spins. Normally two types of SO interactions can originate in a solid material. One is the 

Rashba spin-orbit (RSO) interaction (RSOI) [10] which arises when a material loses its structural 

inversion symmetry (SIS). The other one arises from the breaking of the bulk inversion-symmetry 

(BIS) [11] and is referred to as the Dresselhaus spin-orbit (DSO) interaction (DSOI). While the 

DSO strength largely depends on the QD parameters, the RSO coupling depends both on the QD 

parameters and the external electric and magnetic fields [12]. This particular aspect of RSO is 

actually taken advantage of in the field of spintronics [13]. Understandably, in recent years, 

considerable effort has been made to study the effects of spin-orbit interactions on several 

important properties of low-dimensional systems.  Kumar et al. [14] have examined the role of 

RSOI on the energy levels and magnetic properties of a many-electron harmonic QD taking the 
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Johnson-Payne model potential [15] for the electron-electron interaction. Li et al. [16] have 

explored the role of Rashba SO coupling on the electronic levels of a neutral hydrogenic donor 

centre 𝐷0 in a GaAs/GaAlAs quantum well by effective-mass envelope function theory. Gisi et al. 

[17] have investigated the effect of magnetic field and RSOI on the optical absorption in a 

parabolic quantum wire using the compact-density matrix formalism and iterative scheme. Kumar 

et al. [18] have obtained the GS energy of a 𝐷0 centre in a GaAs QD with Gaussian confinement 

incorporating the RSOI effect by the Ritz variational method.  

 

     To our knowledge, the combined effect of RSO and DSO interactions on the properties of a D0 

centre in a GQD in the presence of a magnetic field has not yet been studied. The primary aim of 

this chapter is to present our work on the role of Rashba and Dresselhaus interactions on the GS 

energy, binding energy, donor distribution, zero-temperature magnetic moment and susceptibility 

in a three-dimensional (3D) GQD of GaAs placed in an externally applied magnetic field. 

 
 
 

2.2   Theory 

 

A 𝐷0 complex placed in a 3D GQD with RSO and DSO interactions in the presence of an 

externally applied magnetic field 𝑩 (0,0, 𝐵) can be modelled by the following Hamiltonian 

                                          

                                                   𝐻 = 𝐻𝐷0 + 𝐻𝑅 + 𝐻𝐷                                                                             (2.1)                                                               

 

with  

 

                                          𝐻𝐷0 = (
1

2𝑚∗
(𝒑 +

𝑒

𝑐
𝑨)2  − 

𝑒2

𝜀𝑟
 −  𝑉0 𝑒

− 
𝑟2

2𝑅2 )  𝐼,                                    (2.2) 

                              

                                            𝐻𝑅 =  
𝛼𝑅

ℏ
[𝝈 × (𝒑 +

𝑒

𝑐
𝑨)]

𝑍
 ,                                                                       (2.3)   

                                                       

                                        𝐻𝐷   =  
𝛽𝐷

ℏ
[𝝈𝑥 (𝒑𝒙 +

𝑒

𝑐
𝑨𝒙) − 𝝈𝑦 (𝒑𝒚 +

𝑒

𝑐
𝑨𝒚)]                                      (2.4) 

,                                     

where  𝐻𝐷0 denotes the Hamiltonian of the  𝐷0 centre in a GQD in an external magnetic field 𝐵,  

𝑒 and 𝑚∗ being respectively to the charge and the Bloch mass of the electron,  𝒓 (x, y, z) its position 

and 𝒑 the canonically conjugate  momentum operator, 𝑨 denoting the vector potential defined by 
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the equation: 𝑩 = 𝛁 × 𝑨, 𝜀 the dielectric constant of the medium, 𝑉0 and 𝑅 representing 

respectively the depth and range of the confinement potential, and 𝐼 the unit matrix of order 2,  𝐻𝑅 

and 𝐻𝐷 are respectively the Rashba and Dressehaus SOI Hamilonians in the presence of the 

magnetic field respectively, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 being the Pauli spin matrices and 𝛼𝑅 and  𝛽𝐷 denoting 

the RSOI and DSOI constants. It may be noted that 𝑅 gives essentially the effective size of the 

GQD. We use the symmetric gauge so that 𝑨 = 𝐵 (− 𝑦/2, 𝑥/2, 0). To proceed further, we have to 

deal with the SOI’s. In order to incorporate the effect of SOI’s, we first apply on 𝐻 a unitary 

transformation 𝑈 = 𝑒𝑆 [19] with 

 

                                       𝑆 = 𝑖 
𝑚∗

ℏ2
 [𝛼𝑅(𝑦𝜎𝑥 − 𝑥𝜎𝑦) +  𝛽𝐷(𝑥𝜎𝑥 − 𝑦𝜎𝑦)].                                        (2. 5) 

 

The Hamiltonian 𝐻 transforma to  

                

                                  𝐻̃ = 𝑒𝑆𝐻𝑒−𝑆 = 𝐻 + [𝑆, 𝐻] +
1

2!
[𝑆, [𝑆, 𝐻]] + ⋯ … … … … … … …               (2.6)                                                          

      

To determine 𝐻̃, we have to calculate the  [𝑆, 𝐻], [𝑆, [𝑆, 𝐻]] etc. We obtain 

                                       

   [𝑆, 𝐻] = −
𝛼𝑅

ℏ
[𝝈𝑥 (𝒑𝒚 +

𝑒

𝑐
𝑨𝒚) − 𝝈𝑦 (𝒑𝒙 +

𝑒

𝑐
𝑨𝒙)] 

 

                  − 
𝛽𝐷

ℏ
[𝝈𝑥 (𝒑𝒙 +

𝑒

𝑐
𝑨𝒙) − 𝝈𝑦 (𝒑𝒚 +

𝑒

𝑐
𝑨𝒚)] −

2𝑚∗𝜎𝑧𝐿𝑧

ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2) 

 

                  − 
2𝑚∗

ℏ2
(𝛼𝑅

2 + ℎ𝐷
2  ) −

𝑚∗

ℏ3
𝜔𝑐𝜎𝑧𝜌2(𝛼𝑅

2 − 𝛽𝐷
2),                                                                    (2.7) 

                                                  

   
1

2
[𝑆, [𝑆, 𝐻]] =

𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2  ) +

𝑚∗

ℏ3
𝐿𝑧𝜎𝑧(𝛼𝑅

2 − 𝛽𝐷
2) +

𝑚∗

2ℏ3
𝜔𝑐𝜎𝑧𝜌2(𝛼𝑅

2 − 𝛽𝐷
2),                      (2.8) 

 

 

where  

 

                                                                       𝜔𝑐 =
𝑒𝐵

𝑚∗𝑐
 ,                                                                         (2.9)  

 

                                                                      𝜌2 = (𝑥2 + 𝑦2),                                                                (2.10) 

 

                                                                      𝐿𝑧 = −𝑖ℏ 
𝜕

𝜕𝜙
.                                                                   (2.11) 
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After substituting Eqs. (2.7) and (2.8) in (2.6), the transformed Hamiltonian 𝐻̃ is expanded in 

powers of 𝛼𝑅 and  𝛽𝐷.  Neglecting terms higher than 𝛼𝑅
2  and 𝛽𝐷

2 , we obtain 

 

ℋ̃ = (
𝑝2

2𝑚∗
+

1

8
𝑚∗𝜔𝑐

2𝜌2 −
𝑒2

𝜀𝑟
− 𝑉0 𝑒

− 
𝑟2

2𝑅2) 𝐼 −
𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2)𝐼 −

𝑚∗

ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜎𝑍𝐿𝑍  

 

                            +
𝜔𝑐

2
𝐿𝑧  −

𝑚∗

2ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜔𝑐𝜎𝑍𝜌2,                                                                         (2.12) 

 

We consider the orbital angular momentum to be zero for the GS. To obtain a variational  GS 

energy of ℋ̃,  we try a function:  
 

 

                                                               𝜓(𝒓) = 𝑁𝑒−𝛼𝑟2−𝛽𝑟−𝑖𝑚𝜑,                                                       (2.13) 

 
 

which is expected to capture the most important features of the GS of (2.9). The variational GS 

energy 𝐸(𝐷0) of the system is given by  

                                                       

                                                      𝐸(𝐷0) =
< 𝜓(𝒓)|ℋ̃|𝜓(𝒓) >

< 𝜓(𝒓)|𝜓(𝒓) >
  .                                                     (2.14) 

                                            

   Let us define 𝐸(𝑒−) and 𝐸(𝐷0) as the GS energies of the electron and the 𝐷0 complex in the 

GQD respectively. The binding energy of the 𝐷0 complex ((𝐸𝐵(𝐷0)) is then defined as:  

 

                                                          𝐸𝐵(𝐷0) = 𝐸(𝑒−) −  𝐸(𝐷0).                                                      (2.15) 

 

   In the presence of a magnetic field (B), the GS energy will always be a function of 𝐵. The change 

of the GS energy with 𝐵 gives the information about the magnetization and susceptibility of the 

system. Study of the magnetic field becomes particularly important if the system has SOIs. Once 

the GS energy is obtained, the magnetic moment (𝑀) and susceptibility (𝑆) can be easily 

determined. The magnetic moment (𝑀) and susceptibility (𝑆) of the 𝐷0complex  are  given  by  
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                                                         𝑀 = − 
𝜕𝐸

𝜕𝐵
;     𝑆 =  − 

𝜕𝑀

𝜕𝐵
 .                                                  (2.16) 

   

 

2.3   Numerical results and discussion 
 
 

  Though our formulation should work for any QD system, we shall implement it in the case of 

GaAs QD for the sake concreteness. All quantities will be expressed in SI units; so the unit of 

energy is chosen as : (𝑚𝑒𝑉) and that of length as: (𝑛𝑚), where, for a GaAs QD, 𝜀 = 12.4 and 

𝑚∗ = 0.06𝑚0,  𝑚0 being the bare electron mass. The magnetic field will be expressed in Tesla 

(𝑇) and the SOI constants in 𝑚𝑒𝑉 − 𝑛𝑚 unless otherwise mentioned. In Fig. 1, we show the 

behavior of the GS energy (𝐸) of the 𝐷0 centre in a GQD of GaAs with respect to the effective 

size of the QD  (𝑅) for 𝐵 = 0 and for two values of  𝑉0  and different sets of values of the SOI 

constants 𝛼𝑅 and 𝛽𝐷. The sharp rise in energy as 𝑅 is reduced below a critical value is clearly 

visible. The figure also shows that the effects of RSO and DSO interactions are same in the case 

of 𝐵 = 0, that is, both the interactions reduce the energy equally. The energy however decreases 

significantly with increasing 𝑉0.  

 

 
   
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

                             

                            

 

 

Fig. 1 GS energy (𝐸) vs the effective dot radius (𝑅) for a 𝐷0 complex in a Gaussian GaAs QD with 𝑉0 =

60, 120 meV , 𝐵 = 0 𝑇 and a few combinations of αR(nm-meV) and βD (nm-meV).  
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   Fig. 2 shows how 𝐸 varies with R for a Gaussian GaAs QD with V0 = 60 nm for different values 

of αR and βD and for B =  5  and 10T.  The figure reveals that, in general, the magnetic field 

enhances the energy which is indeed an expected behaviour. However, the interesting point is that 

in the case of 𝐵 ≠ 0, the energy exhibits a qualitatively different behaviour with the RSO 

interaction. One can see that though for B = 5T, the energy values for βD = 0 and βD = 0.5 are 

almost equal, the energy values for αR = 0.5 are significantly smaller than those for αR = 0. For 

B = 10T, on the other hand, the energy values for βD = 0.5 are marginally higher than those for 

βD = 0 while the energy for αR = 0.5 is again substantially lower than that that for αR = 0. 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

                                                    

 

 

 

                                   

 Fig. 2   𝐸 vs. 𝑅 for a 𝐷0 centre in a Gaussian GaAs QD with  𝑉0 = 60 meV , 𝐵 = 5, 10 𝑇 and a few 

combinations of αR(nm-meV) and βD (nm-meV).  

 

 

     In Figs. 3 and 4, we show the variation of 𝐸 with respect to 𝛼𝑅 and 𝛽𝐷  respectively for 𝐵 =

1 𝑇, 𝑉0 = 60 meV and a few values of 𝑅. The figures demonstrate that 𝐸 is a decreasing function 

of both 𝛼𝑅 and 𝛽𝐷 . Variation with respect to 𝛽𝐷 is rather slow. In other words, the Rashba term 

reduces the energy much more than the Dresselhaus term and thus has a more dominating effect 

in a QD.  
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Fig. 3   𝐸 vs. 𝛼𝑅 for a 𝐷0 centre in a Gaussian GaAs QD with  𝑉0 = 60 meV , 𝐵 = 1 𝑇  and βD = 0 nm 

meV and a few combinations of 𝑅 (nm).  

 

 

 
 

 

 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                 

 

                                            

Fig. 4 𝐸  vs.  𝛽𝐷 for a 𝐷0 centre in a Gaussian GaAs QD with  𝑉0 = 60 meV , 𝐵 = 1 𝑇  and βD = 0 nm 

meV and a few combinations of 𝑅 (nm). 
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Fig. 5  𝐸 vs. 𝐵  for a 𝐷0 centre in a Gaussian GaAs QD with  𝑉0 = 60 meV , 𝑅 =  10 nm and a few 

combinations of αR(nm-meV) and βD (nm-meV).  

 

 

     In Fig. 5, we plot 𝐸 vs. 𝐵 for 𝑉 = 60 𝑚𝑒𝑉  and 𝑅 = 10 nm and for different sets of values of 

𝛼𝑅 and 𝛽𝐷. As expected, 𝐸 increases with increasing 𝐵. However, when 𝐵 is small, the variation 

is very slow while as 𝐵 increases, the variation of 𝐸 with 𝐵 becomes more rapid and almost linear.  

 

   Fig. 6 describes the behavior of the GS BE (𝐸𝐵) of a 𝐷0 complex with respect to 𝑅 for 𝐵 =  5𝑇, 

𝑉0 = 120 nm and in the presence and absence of RSO and DSO interactions. It is clearly evident 

from the positive values of 𝐸𝐵 that the 𝐷0 complex can exist as a stable system in a GaAs QD 

which is indeed an expected result. Also, the binding becomes stronger as the size of the QD 

decreases implying that the quantum confinement enhances the binding. As 𝑅 increases, 𝐸𝐵 

decreases and finally saturates to the bulk limit. Interestingly, one can observe that the RSOI 

lowers the binding energy while DSOI enhances it. However, in the case of 𝐵 = 0, 𝐸𝐵 does not 

show any dependence on SOIs. Fig. 6 also reveals the existence of a critical value of 𝑅 (𝑅𝑐) at 

which the 𝐷0 complex is most stable and as the dot size decreases below 𝑅𝑐, the binding begins to 

decrease very fast. The BE peaks are shown in a magnified way in Fig. 7. The reduction in binding 

energy below 𝑅𝑐 has its genesis in quantum mechanics. When the size of the QD is made very  
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Fig. 6   BE (𝐸𝐵) vs 𝑅 for a 𝐷0 centre in a GQD of GaAs with  𝑉0 = 120 meV , 𝐵 =  5 𝑇 and a few 

combinations of αR(nm-meV) and βD (nm-meV).  

 

 

 

 

     

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

                      

 

Fig. 7   BE peak for a 𝐷0 centre in a GQD of GaAs with  𝑉0 = 120 meV , 𝐵 =  5 𝑇 and a few combinations 

of αR(nm-meV) and βD (nm-meV).  
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small, the uncertainty in the position of the electron which has to be smaller than the QD size, 

becomes concomitantly very small. Obviously the momentum uncertainty would then be very 

large and so the momentum which should be larger than its uncertainty must also be very large. 

This will naturally lead to a very large kinetic energy. Under these circumstances, it would become 

really difficult to localize the electrons within the confines of the QD and as a result the binding 

energy will undergo a substantial reduction.    

 

   In Fig. 8, we show the behaviour of the GS BE (𝐸𝐵) of the D0 complex in a GQD of GaAs with 

respect to the magnetic field for 𝑅 = 10 nm, 𝑉0 = 120 meV  and different sets of values of 𝛼R and 

𝛽D. In Fig. 9, we plot 𝐸𝐵 vs.  𝑉0 for  𝐵 = 5 and 𝑅 = 10 nm . Though the binding of the D0 complex 

is enhanced by both the magnetic field and the confinement potential depth, in the former case the 

behaviour is concave from above while in the latter case it is concave from below. The explicit 

variation of the binding energy with 𝛼𝑅 and  𝛽𝐷 are shown in Figs. 10 and 11. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

                               

                      

 

 
 

 

Fig. 8   𝐸𝐵 vs. 𝐵 for a 𝐷0 centre in a GQD of GaAs with  𝑉0 = 120 meV , 𝑅 =  10 𝑛𝑚 and a few 

combinations of αR(nm-meV) and βD (nm-meV). 
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Fig. 9 𝐸𝐵 vs.  𝑉0 for a 𝐷0 centre in a GQD of GaAs with  B = 5 𝑇 , 𝑅 =  10 𝑛𝑚 and a few combinations 

of αR(nm-meV) and βD (nm-meV). 

 
 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

                             

Fig. 10  𝐸𝐵 vs. 𝛼𝑅 for a 𝐷0 complex in a GQD of GaAs for 𝑅 = 5 nm , 𝑉0 = 120 𝑚𝑒𝑉 , 𝛽𝐷 = 0 mev nm 

and 𝐵 = 0 and 5𝑇.   
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 Fig. 11  𝑬𝑩 vs. 𝛽𝐷 for a 𝐷0 complex in a GQD of GaAs for 𝑅 = 5 𝑛𝑚 , 𝑉0 = 120 𝑚𝑒𝑉, 𝛼𝑅 = 0 𝑚𝑒𝑉 𝑛𝑚  

 and 𝐵 = 0 and 5𝑇.   

 

 

    

 

 
    
 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12   Donor electron distribution in a GQD of GaAs with 𝑉0 = 120 𝑚𝑒𝑉, 𝛼𝑅 = 0.5 𝑚𝑒𝑉 𝑛𝑚, 𝛽𝐷 =

0 𝑚𝑒𝑉 𝑛𝑚, 𝐵 = 0 and 5𝑇  and different values of  𝑅 (nm).  
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   In Figs. 12 and 13 we show the behaviour of the donor electron distribution in a GQD of GaAs 

with 𝑉0 = 120 𝑛𝑚 and different values of 𝑅 in the presence of DSO and RSO interactions 

respectively. Fig. 12 gives the results for DSO interaction while those for RSO interaction are 

shown in Fig. 13. It is evident that the electron localization becomes more and more stronger with 

the reduction in the QD size as can be seen from the curves for 𝑅 = 20, 10, 3, 1 𝑛𝑚 . However the 

figures show that localization for 𝑅 = 10 𝑛𝑚 is less than that for  𝑅 = 3 𝑛𝑚. This is because 

below a certain 𝑅, the kinetic energy becomes so large because of uncertainty principle that 

localization starts reducing. The figures also show that the localization is stronger in the presence 

of DSO interaction. It is also evident that the magnetic field provides an additional localization as 

expected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 13  Donor electron distribution in a GQD of GaAs with 𝑉0 = 120𝑅𝑦
∗  ,  𝛽𝐷 = 0.5 meV-nm 

  𝐵 = 0 and 5𝑇  and different values of  𝑅 (nm).  

 

 

  In Fig. 14 we plot the magnetic moment (𝑀) with respect to 𝐵 for 𝑉0 = 120 𝑚𝑒𝑉, 𝑅 =

10, 20 𝑛𝑚 and for different values of 𝛼R and 𝛽D. The curves clearly reveal that 𝑀 is diamagnetic 

in the D0 complex. One can observe from Fig. 14 that the magnitude of 𝑀 increases with increasing 

𝐵.  Furthermore, |𝑀| increases with 𝑅. However, for both small and very large values of B, the 

magnetic moment depends rather weakly on the QD size. At low values of 𝐵, the RSO interaction 

reduces the diamagnetic moment while DSO enhances it. At large B, the magnetic  
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moment becomes independent of SOI.   

   
 

 

 

 

 

       

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

                                   

                            

 

  Fig. 14   Magnetic moment (𝑀) vs. 𝐵  for a 𝐷0 centre in a GQD of GaAs with  𝑉0 = 120 meV , 𝑅 =
 10 𝑛𝑚 and 20 𝑛𝑚 and a few combinations of αR(nm-meV) and βD (nm-meV). 
 

 
 

 

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Fig. 15   Magnetic susceptibility (𝑆) vs. 𝐵 for a 𝐷0 centre in a GQD of GaAs with  𝑉0 = 120 meV , 𝑅 =
 10 𝑛𝑚 and 20 𝑛𝑚 and a few combinations of αR(nm-meV) and βD (nm-meV). 
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   Fig.15 shows how the magnetic susceptibility (𝑆) of a 𝐷0 system varies with 𝐵. The diamagnetic 

nature of the susceptibility is clearly visible from the figure. Secondly, in the case of a small QD, 

the susceptibility varies rather slowly with 𝐵  at small values of 𝐵. But for a larger QD, the 

susceptibility is found to increase quite rapidly at low values of 𝐵. As 𝐵 increases, the rate of 

increase of 𝑆 with 𝐵 becomes slower beyond a certain value of 𝐵 that is weakly dependent on the 

size of the QD. This leads to a crossing behaviour in 𝑆 as a function of 𝐵. At large 𝐵, 𝑆, however, 

tends to saturate asymptotically to a value which is a constant  independent of 𝑅.  

 
     

2. 4 Conclusion 

 

     In this chapter, we have calculated the GS energy (𝐸) and the GS BE (𝐸𝐵) of a 𝐷0 centre system 

in a GQD of GaAs as a function of the effective QD radius, confinement strength, external 

magnetic field and RSO and DSO interactions. The GS energy of the  𝐷0 system has  been shown 

to increase with decreasing QD size and to decrease with increasing confinement strength. Also 

the GS energy has been shown to decrease with increasing RSOI and DSOI, though the decrease 

in the case of DSOI has been shown to be much slower. It has been furthermore suggested that in 

the case of 𝐵 ≠ 0, the GS BE decreases with increasing RSOI whereas it increases with DSOI.  In 

the case of 𝐵 = 0, however, neither of the SOIs has any effect on the GS BE.  

 

  We have also presented results for the diamagnetic moment (𝑀) and susceptibility  (𝑆) for the 

donor centre at zero temperature (𝑇 = 0). We have shown that |𝑀| increases with 𝐵 and decreases 

with the reduction in 𝑅. 𝑆 has also been shown to increase with 𝐵.  We have furthermore shown 

that |𝑆| increases with increasing QD size at small magnetic fields, but above a critical magnetic 

field, it decreases with increasing QD radius. This leads to a crossing behaviour in the diamagnetic 

susceptibility. Finally, we have calculated the electron distribution for different values of the QD 

parameters.  It has been shown that in general, as the QD size decreases, the electron localization 

becomes stronger. However, the behaviour starts reversing below a certain QD size because of the 

uncertainty principle. 
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Chapter -3 

  
Spin-Orbit Interaction effects on the Binding Energy and 

Susceptibility of an Off-Centre 𝑫𝟎 Impurity in a 2D Gaussian 
Dot in the presence of a Magnetic Field 

 

 

 

3.1   Introduction 

 
   As we discussed in Chapter 2, a large number of investigations have been carried out for an on-

centre 𝐷0 impurity in a QD [1-10]. The off-centre 𝐷0 impurity problem in the QD has also received 

considerable attention by several authors [11-35]. Indeed, the energetics of an off-centre 𝐷0 

impurity have been studied in square well, parabolic and Gaussian QDs using variational method 

[10-25], perturbation method [26-30], effective mass approximation [31], finite element method 

and Arnoldi algorithm [32] and it has been demonstrated that BE of an off-centre 𝐷0 reduces when 

the impurity is shifted away from the dot centre. Many researches [32-35] have been studied the 

effect of magnetic field on BE and susceptibility of an off centre 𝐷0 impurity in the QDs.    

 
  SOIs has become an interesting probe for studying the physical properties of low-dimensional 

structures, from both the theoretical and technical points of view.  In this chapter, we employ a 

variational method to study the effect of Rashba and Dresselhaus SOIs on the GS and binding 

energies of an off centre 𝐷0 impurity in a Gaussian QD in the presence of a magnetic field. We 

apply our theory to obtain results for a GaAs QD.   

 
 

3.2   Model Hamiltonian   
 

 
   The system of an off-centre 𝐷0 centre in a 2D GQD in the presence of RSOI and DSOI and an 

external magnetic field 𝑩 (0,0, 𝐵) is governed by the Hamiltonian:   

 

ℋ = (
1

2𝑚∗
(𝒑 +

𝑒

𝑐
𝑨)2  −  

𝑒2

𝜀|𝝆 − 𝑫|
 −  𝑉0 𝑒

− 
𝜌2

2𝑅2  ) 𝐼 +  
𝛼𝑅

ℏ
[𝝈 × (𝒑 +

𝑒

𝑐
𝑨)]

𝑍
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                          + 
𝛽𝐷

ℏ
[𝝈𝑥 (𝒑𝒙 +

𝑒

𝑐
𝑨𝒙) − 𝝈𝑦 (𝒑𝒚 +

𝑒

𝑐
𝑨𝒚)],                                                              (3.1) 

 

where 𝝆(𝒑) is the coordinate (conjugate momentum) of an electron of effective mass 𝑚∗ and 

charge 𝑒, 𝑨 refers to the vector potential which is defined as: 𝑩 = 𝛁 × 𝑨, 𝜀 is the permittivity of 

the material medium, 𝑫 represents the location of the 𝐷0 impurity, 𝑅 and 𝑉0  stand for the range 

and the depth of the confinement potential, 𝐼 denotes the   unit matrix of order 2, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 

describe the Pauli spin matrices and 𝛼𝑅 and  𝛽𝐷 are respectively the RSOI and DSOI coefficients.  

We work in the symmetric gauge and choose:  𝑨 = 𝐵 (− 𝑦/2, 𝑥/2, 0). 

 

    To deal with SOIs, we apply a transformation 𝑈 = 𝑒𝑆 to ℋ, as in Chapter 2. The generator 𝑆 is 

given by  

   

                                                𝑆 = 𝑖 
𝑚∗

ℏ2
[𝛼𝑅(𝑦𝜎𝑥 − 𝑥𝜎𝑦) +  𝛽𝐷(𝑥𝜎𝑥 − 𝑦𝜎𝑦)]                                 (3.2) 

                         
 

 We expand the transformed Hamiltonian ℋ̃ = 𝑒𝑆ℋ𝑒𝑆in a power series in terms of 𝛼𝑅 and  𝛽𝐷 

and consider terms up to quadratic in 𝛼𝑅 and 𝛽𝐷. This leads to  

 

ℋ̃ = (
𝑝2

2𝑚∗
+

1

8
𝑚∗𝜔𝑐

2𝜌2 −
𝑒2

𝜀|𝜌 − 𝐷|
− 𝑉0 𝑒

− 
𝜌𝑃

2𝑅𝑃) 𝐼 −
𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2)𝐼 −

𝑚∗

ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜎𝑍𝐿𝑍 

                           

                     + 
𝜔𝑐

2
𝐿𝑧 −

𝑚∗

2ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜔𝑐𝜎𝑍𝜌2,                                                                                   (3.3) 

 

where 

 

                                 𝜔𝑐 = (
𝑒𝐵

𝑚∗𝑐
) ,           𝜌2 = (𝑥2 + 𝑦2),         𝐿𝑧 = − 𝑖ℏ (

𝜕

𝜕𝜙
).                          (3.4) 

                                                               

 

3.3 Formulation  

 

  To calculate the GS energy of the electron and 𝐷0 in Gaussian QD we use the Ritz variational  

method and choose a simple variational wave function:  
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                                                    𝜓𝑒−(𝝆) = 𝑒−𝛽𝜌2−𝑖𝑚𝜑 ,                                                                          (3.5) 

 

                                                    𝜓𝐷0(𝝆) = [1 + 𝛾 𝑒−𝛼(𝜌−𝐷)]𝑒−𝛽𝜌2−𝑖𝑚𝜑,                                          (3.6)      

                                  

where 𝛾, 𝛼,  and 𝛽 will be treated as variational parameters. The variational energies of the 𝑒−  

and 𝐷0 system are given by 

                                 

                                                      𝐸𝑆 = 𝑒−, 𝐷0 =
< 𝜓𝑆(𝝆)|ℋ̃|𝜓𝑆(𝝆) >

< 𝜓𝑆(𝝆)||𝜓𝑆(𝝆) >
  ,                                             (3.7) 

                                                        
 

where 𝐸𝑒−   is the GS energy of an electron in GQD and 𝐸 𝐷0 is that of the off-centre 𝐷0 complex 

in GQD. The BE of the off-centre 𝐷0 impurity (𝐸𝐵( 𝐷0)) is given, as usual, by   

 

                                                     𝐸𝐵(𝐷0) = 𝐸(𝑒−) −  𝐸(𝐷0).                                                               (3.8) 

                                                    

We are also interested in the magnetization and susceptibility which are given by: 

 

                                                         𝑀 = −  
𝜕𝐸

𝜕𝐵
;       𝑀 = −  

𝜕𝑀

𝜕𝐵
 .                                                      (3.9) 

 

 

3.3    Numerical results and discussion 

 
   We choose to measure energy in 𝑚𝑒𝑉, length in 𝑛𝑚,  magnetic field in Tesla (T), and SOI 

coefficients in meV-nm. We shall apply our results to GaAs QD for the sake of concreteness for  

which we take 𝜀 = 12.4 and 𝑚∗ = 0.067𝑚0,  𝑚0  being the bare electron mass. In Fig 1, we show 

the GS energy levels for different values of the impurity position D in a GQD with 𝑉0 = 300 meV 

and 𝑅 = 10 𝑛𝑚. The GS energy level rises with increasing D.  Thus one can tune the energy levels 

if one can have a control on the position of the impurity.    

 

   In Fig. 2, we present the behavior of GS energy (GSE) (𝐸) of an off-centre 𝐷0 impurity in a 

GaAs GQD as a function of impurity position D  for 𝐵 = 0 and 𝐵 ≠ 0 and for different RSOI and 
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DSOI coefficients  𝛼𝑅 and 𝛽𝐷. As D increases, GSE initially increases quite rapidly, but 

asymptotically saturates to a constant value. 

 

  This can be easily understood from the simple semi-classical argument, which suggests that GS 

corresponds to the minimum of the potential. The RSOI and DSOI effects on GSE are found to be 

low at small values of D and large at higher values of D. GSE decreases in the presence of both 

SOIs at low 𝐵, but the effects of RSOI and DSOI are opposite at higher values of 𝐵.  RSOI reduces 

GSE but DSOI enhances it at higher values of 𝐵.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

               Fig. 1 GSE levels (E) vs 𝜌 for an off-centre 𝐷0 centre in a GaAs GQD with  𝑉0 = 300 meV  

               and  𝑅 = 10 𝑛𝑚 and for different values of D (nm). 

 

 

    Fig. 3 depicts the behavior of 𝐸 with respect to R for a   GQD of GaAs semiconductor with 

𝑉0 = 60 meV and 𝑉0 = 120 𝑚𝑒𝑉 for a few combinations of 𝛼𝑅 and 𝛽𝐷 and at 𝐵 = 0. With 

increasing 𝑅, GSE falls off initially rapidly, particularly so for a larger 𝑉0, but finally appears to 

saturate to the bulk value. The figure clearly shows that the donor system becomes more confined 

as 𝑉0 increases. This behavior follows from the commonplace notion of quantum mechanics. It is 

also revealed by the figure that RSOI and DSOI have the same effects on GSE at 𝐵 = 0. 

Comparison of the present results with those of [13] reveals that GSE increases with D. 
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               Fig. 2 𝐸 vs D for an off-centre D0  impurity in a Gaussian GaAs QD with 𝑉0 = 300 meV,   

               𝑅 = 10 𝑛𝑚,  𝐵 = 0, 5𝑇 and a few different values of αR  (nm-meV) and βD (nm-meV).  
 
 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

       Fig. 3  𝐸 vs 𝑅  for an off-centre  𝐷0 impurity in a Gaussian GaAs QD with 𝐵 = 0,  𝐷 = 10 nm,  

       𝑉0 = 60 𝑚𝑒𝑉 𝑎𝑛𝑑 120 𝑚𝑒𝑉 and a few different values of 𝛼𝑅 (nm-meV) and 𝛽𝐷 (nm-meV).   
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               Fig. 4 E vs R for an off-centre 𝐷0 impurity in a Gaussian GaAs QD with 𝐷 = 10 nm,  

              𝑉0 = 60 meV, 𝐵 = 5 𝑇, 10𝑇 and for few values of 𝛼𝑅(nm-meV) and  𝛽𝐷 (nm-meV).         

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

    
 
     
 

  

               Fig. 5 E vs R for an off-centre 𝐷0 impurity in a Gaussian GaAs QD with 𝐷 = 10 nm,  

               𝑉0 = 120 mev, 𝐵 = 5 𝑇, 10𝑇 and for a few values of 𝛼𝑅  (nm-meV) and 𝛽𝐷 (nm-meV).   
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                   Fig. 6   E vs. 𝛼𝑅  for an off-centre 𝐷0 in a Gaussian GaAs QD with  𝑉0 = 60 𝑚𝑒𝑉,   

                   R=10 nm,  𝐵 = 0.5 𝑇, 𝛽𝐷 = 0  and for different values of 𝐷 (nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 
 

 

                 Fig. 7  E vs. 𝛽𝐷  for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝐵 = 0.5 𝑇, R=10 nm, 

                 𝑉0 = 60 𝑚𝑒𝑉,  𝛼𝑅 = 0  and for different values of 𝐷 (nm). 
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   We show in Fig. 4 and Fig. 5, the behaviour of 𝐸 with 𝑅 for a 2D GaAs GQD for a few 

combinations of 𝛼𝑅 and 𝛽𝐷 - values at  𝐵 =  5 𝑎𝑛𝑑 𝐵 = 10 𝑇 and 𝑉0 = 60 𝑚𝑒𝑉 and 𝑉0 =

120 𝑚𝑒𝑉 respectively. The figure shows that GSE increases with 𝐵, which is an expected 

behaviour. Furthermore, GSE reduces in value as 𝑅 increases and eventually saturates to the bulk 

limit. This effect is understandable from the point of view of simple quantum mechanics. 

 

  In Figs. 6 and 7, we show the variation of E as a function of αR and βD  respectively with B =

0.5 T, V0 = 60 meV and R=10 nm and for a few values of D. One can see from the figure that the 

value of GSE diminishes with increasing  αR and βD, but the decrease with respect to  αR  is faster. 

Thus the energy is lowered more by the Rashba coupling than by the Dresselhaus interaction and 

the Rashba coupling has a stronger effect in a QD. Fig. 7 suggests that the location of impurity 

plays a more important role at higher values of βD.   

 

  In Fig. 8, we show the plot of 𝐸 vs. 𝐵 with 𝑉 = 300 𝑚𝑒𝑉,  𝑅 = 10 𝑛𝑚, 𝐷 = 5 𝑛𝑚  and for 

different values of 𝛼𝑅 and 𝛽𝐷. In the case of 𝛼𝑅 = 0 = 𝛽𝐷, one can see that 𝐸 is an increasing 

function of  𝐵, which is however is an expected behaviour. When DSOI is switched on, the 𝐸 vs 

𝐵 – curve becomes more steeper and almost linear.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 
                           

 

 

 

 

                

                  Fig. 8 E vs B for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 300 𝑚𝑒𝑉, R=10 nm,    

               𝐷 = 5 𝑛𝑚 and for different values of 𝛼𝑅 (nm-meV) and 𝛽𝐷 (nm-meV).   
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     Fig. 9 𝐸𝐵 vs 𝑅 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 120 𝑚𝑒𝑉, D=10 nm, 

     𝐵 = 5 𝑇 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   

 

Thus in this case, 𝐸 increases with 𝐵  more rapidly but linearly. If RSOI is switched on keeping 

𝛽𝐵 = 0, the behaviour of GSE becomes interesting.  At small 𝐵, it decreases with increasing 𝐵, 

reaches a minimum and then increases monotonically. Now if DSOI is additionally swiched on, E 

shows again an increasing behaviour with 𝐵. Of course the nitty-gritty of the behaviour would be 

determined largely by the relative values of 𝛼𝑅 and 𝛽𝐷.   The bottom-line is that 𝐸 is raised by the 

magnetic field and DSOI.   

   
 

  In Fig. 9, we plot the GS BE (𝐸𝐵) of an off-centre 𝐷0 system as a function of 𝑅 with 𝐵 =  5𝑇, 

𝑉0 = 120 meV, D = 10 and for different combinations of 𝛼𝑅 and 𝛽𝐷. The BE 𝐸𝐵 turns out be 

positive, which means that the system is always stable. Comparison of the results of the present 

work with the corresponding values for the on-centre 𝐷0 complex [13] suggests that the binding 

is weaker in the case of an off-centre 𝐷0 complex than for the corresponding off-centre system. 

 One can see from Fig.9  that the role of SOI on 𝐸𝐵 is more visible at larger values of R. DSOI 

enhances the binding while it is reduced by RSOI.   One can see that the curves for 𝛼𝑅 = 0 = 𝛽𝐷 

and 𝛼𝑅 = 1 = 𝛽𝐷 exactly coincide. This is not fortuitous, but a general trend. The effect of RSOI 

and DSOI are exactly equal and opposite. Fig. 9 also reveals that the BE of an off centre 𝐷0  
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                Fig. 10  𝐸𝐵 vs.  𝑉0 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑅 = 10 𝑛𝑚,  

               𝐷 = 1 nm, 𝐵 = 10 𝑇 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

                   Fig. 11 𝐸𝐵 vs  𝐷 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 360 𝑚𝑒𝑉, 

                   𝛼𝑅 = 1 nm-meV, 𝛽𝐷 = 1 nm-meV, B=1 T and for different values of 𝑅 (nm). 
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               Fig. 12  𝐸𝐵 vs  𝐷 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝐵 = 5 𝑇, R=5 nm,  

               𝑉0 = 300 𝑚𝑒𝑉 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

   

 

 

 

 

                 Fig. 13  𝐸𝐵 vs D for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝛼𝑅 = 1 nm-meV,  

                 𝛽𝐷 = 1 nm-meV, R=10 nm, 𝑉0 = 300 𝑚𝑒𝑉 and for different values of 𝐵(T). 
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becomes stronger as 𝑅 is decreased and it attains a peak at a critical value of 𝑅 (𝑅𝑐) below which 

it decreases very fast The rapid fall in BE below 𝑅𝑐 is purly a quantum mechanical phenomenon 

and has been explained in [13]. In Fig. 10, we plot 𝐸𝐵 vs.  𝑉0 for 𝑅 = 10nm, D = 1nm and 𝐵 =

5T . We can see that BE increases with 𝑉0. Also RSOI decreases BE while DSOI enhances it.  

 

   We plot 𝐸𝐵 vs 𝐷 in Fig. 11 for a few values 𝑅, in Fig. 12 for a few combinations of 𝛼𝑅 and 𝛽𝐷 − 

values and in Fig. 13 for a few values of 𝐵.  Fig. 11 suggests that the binding is strongest when 𝐷0 

is placed at the centre of the QD i. e., when 𝐷 = 0. As D increases, BE decreases and eventually 

saturates.  The figure also shows that QD size influences the 𝐸𝐵 − 𝐷 - curve essentially at small 𝐷 

values only, where BE increases with decreasing QD size 𝑅.   

 

  Fig. 12 reveals that the SOI effect on 𝐷-dependence of BE is rather negligible, while Fig. 13 

suggests that at small 𝐷 values, the magnetic field plays a significant part in deciding the 𝐷-

dependence of BE. However, if 𝐷 is large, then none of  𝑅, 𝐵, 𝛼𝑅, or 𝛽𝐷 has any effect on the 𝐸𝐵 

vs 𝐷 curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                
 

 

 

 

 

 

 

 

 

 

 

 

 

               Fig. 14   BE vs. 𝐵 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑅 = 10 𝑛𝑚, D=1 nm,   

              𝑉0 = 180 𝑚𝑒𝑉 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   
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                    Fig. 15  EB vs. αR  for an off-centre D0 in a Gaussian GaAs QD with  𝑅 = 10 nm,  

                   D = 10 nm, V0 = 120 meV and βD = 0 nm-meV  and for 𝐵 = 0 and B = 10T.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        
  

 

 

 

 

 

 

            Fig. 16  𝐸𝐵 vs. 𝛽𝐷 for an off-centre 𝐷0 in a Gaussian GaAs QD with  R=10 nm, 𝐷 = 10 𝑛𝑚, 𝑉0 = 

            120 𝑚𝑒𝑉 𝑎𝑛𝑑 𝛼𝑅 =  0 nm-meV for  𝐵 = 0 and  𝐵 = 2𝑇. 
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    In Fig. 14, we have shown the behaviour of 𝐸𝐵 of an off-centre D0 impurity in a GaAs GQD 

with respect to 𝐵 for 𝑅 = 10 𝑛𝑚 , D=1  𝑉0 = 180 and different values of 𝛼R and 𝛽D. As expected, 

𝐸𝐵 increases with 𝐵. We also see that DSOI increases 𝐸𝐵 while RSOI increases it, as observed 

earlier. The BE of a system with of 𝛼𝑅 = 𝛽𝐷 is same of a system without SOIs. 

 

    In Figs. 15 and 16, we show directly the variation of BE as a function of 𝛼𝑅 and 𝛽𝐷 for 𝑅 =

10, 𝐷 = 10, 𝑉0 = 120 for both 𝐵 = 0 and 𝐵 ≠ 0 respectively.  It is evident that BE decreases with 

the RSO parameter and increases with the DSO parameter in the presence of B and it is 

independent of  SOIs in the case of 𝐵 = 0.   

 

   Fig. 17 describes the behaviour of the magnetic moment (𝑀) with respect to 𝐵 for 𝑉0 =

300𝑚𝑒𝑉, 𝐷 = 5, 𝑅 = 10 𝑛𝑚 and for a few combinations of 𝛼R and 𝛽D. The figure suggests that 

depending on the value of  𝐵 and SOI constants, 𝑀 can assume positive or negative values. For 

example, in the presence of DSOI alone, 𝑀 is negative for all values of 𝐵. In fact, the negativity 

of 𝑀 increases with the increase in 𝐵. At low 𝐵, 𝑀 is positive in the presence of RSOI alone, but 

𝑀 decreases as 𝐵 is increased and beyond a critical value of 𝐵, 𝑀  undergoes a transition and 

becomes negative. For the same value of 𝛼𝑅 and 𝛽𝐷 , 𝑀 is negative for all values of 𝐵.  

 

   In Fig. 18, we present the susceptibility (𝑆) of an off-centre 𝐷0 system against 𝐵 for different 

combinations of RSOI and DSOI constants. In the absence of SOIs, the diamagnetic effect 

decreases with the increase in magnetic field and |𝑆| reaches zero asymptotically. The behaviour 

is essentially similar in the presence of only DSOI. In the presence of RSOI alone, the magnitude    

of the susceptibility increases at lower magnetic field up to a critical field where    |𝑆| shows a 

minimum and after this the diamagnetic effect starts decreasing monotonically and |𝑆| saturates to 

zero eventually with the rise in the magnetic field.The minimum in |𝑆| occurs at the magnetic field 

where 𝑀 changes sign from positive to negative. It is clearly visible that while DSOI decreases the 

diamagnetic effect, RSOI increases it. When 𝛼𝑅 = 𝛽𝐷 , the opposite effects caused by RSOI and 

DSOI cancel each other and the result becomes same as the case where both RSOI and DSOI are 

absent. The  𝑆 − 𝐵 curve becomes independent of both 𝐵  and SOIs at large 𝐵.  The diamagnetic 

nature of 𝐷0 is understandable from fundamental principles of physics. Indeed, it is easy to see 

that in the case of the ground state of the 𝐷0 complex, if the electron’s spin is not taken into 

account, the only contribution to susceptibility comes from the Larmour or Langevin 

diamagnetism. 
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                  Fig. 17 𝑀 vs 𝐵  for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 300 𝑚𝑒𝑉,  

                  R=10 nm, 𝐷 = 5 𝑛𝑚 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

           Fig. 18  𝑆 vs. 𝐵 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 300 𝑚𝑒𝑉, R=10 nm,   

           𝐷 = 5 𝑛𝑚 for different values of 𝛼𝑅(nm-meV) and 𝛽𝐷 (nm-meV).   
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This is precisely what is happening here. If the spin of the electron is taken into account, the spin-

Zeeman interaction would give rise to a paramagnetic effect which is commonly known as the 

Langevin paramagnetism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

             Fig. 19   𝑆  vs.  𝐷 for an off-centre 𝐷0 in a Gaussian GaAs QD with 𝑉0 = 300 𝑚𝑒𝑉, R=10 nm,   

             𝐵 = 2𝑇 and for different values of 𝛼𝑅 (nm-meV) and 𝛽𝐷 (nm-meV).  
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                   Fig. 20   𝑆  vs   𝛼𝑅  for an off-centre D0 in a Gaussian GaAs QD with  V0 = 300 meV,    

                 D = 5 nm  R = 10 nm and βD= 0 nm-meV for few values of B (T) 
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                  Fig. 21  𝑆  vs.  𝛽𝐷 for an off-centre D0 in a Gaussian GaAs QD with    V0 = 300 meV,   

                   D = 5 nm  R = 10 nm and 𝛼𝑅= 0 nm-meV for few values of B (T). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

          Fig. 22   Contour plot of the BE as a function of 𝛼𝑅 and 𝛽𝐷   for an off-centre 𝐷0 in a Gaussian    

        GaAs QD 
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              Fig. 23 Contour plot of BE as a function of  R and D  for an off-centre 𝐷0 in a Gaussian  

             GaAs QD.  

 

 

Thus in the presence of the electron spin, there would be a competition between the two magnetic 

effects and the ground state magnetic susceptibility would depend on both the magnetic field and 

temperature. 

 

Fig.19 shows how the susceptibility 𝑆 varies with the impurity position 𝐷 for 𝑉0 = 300 𝑚𝑒𝑉, 𝑅 =

10 𝑛𝑚, 𝐵 = 2 𝑇 and for various combinations of Rashba and Dresselhaus parameters. One may 

note that as 𝐷 is increased, |𝑆| increases and finally reaches a saturation value. 

 

  We study the nature of the susceptibility with respect to RSOI and DSOI coefficients in Figs. 20 

and 21 respectively for  𝑉0 = 300 𝑚𝑒𝑉, 𝐷 = 5 𝑛𝑚, 𝑅 = 10 𝑛𝑚 and a few values of 𝐵.  In case of 

𝐵 = 0,  |𝑆| is found to decrease with respect to both 𝛼𝑅 and 𝛽𝐷. However, when the magnetic field 

is switched on, though |𝑆| still decreases monotonically with 𝛽𝐷, with 𝛼𝑅 it has an interesting 

behaviour. At small 𝐵,  it first increases, then develops a broad hump-like structure and finally 

decreases, while at large 𝐵, it increases monotonically with 𝛼𝑅.    
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 In Fig.22, we show the contour plot of BE for different combinations of 𝛼𝑅 and 𝛽𝐷 for 𝑉0 =

300 𝑚𝑒𝑉, 𝑅 = 10 𝑛𝑚, 𝐵 = 1 𝑇 and 𝐷 = 5 𝑛𝑚. Black lines in the plot correspond to constant BE 

values. BE decreases from light blue region to dark blue region. BE is high at large values of  βD 

and small values of  αR. The contour plot of BE as a function of R and D for  𝑉0 = 300 𝑚𝑒𝑉, 𝐵 =

1 𝑇, 𝛼𝑅 = 1 𝑚𝑒𝑣 𝑛𝑚  𝑎𝑛𝑑 𝛽𝐷 = 0 is presented in Fig.23.  BE decreases from the light blue to the 

dark blue region and the black lines are constant energy curves. So in general, for the same R, an 

increase in D decreases BE. The figure also shows that beyond a certain value of R, BE does not 

change much with R if D is fixed. At small R, however, there is a window of D-values for which 

BE is same.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

                 Fig. 24 Contour plot of the BE as a function of B and 𝑉0   for an off-centre 𝐷0 in a  

                Gaussian GaAs QD.  

 

 

   Fig. 24 shows the contour plot of BE with respect to 𝐵 and for 𝑉0 with  𝑅 = 10 𝑛𝑚, 𝐷 = 5 𝑛𝑚, 

𝛼𝑅 = 1 𝑚𝑒𝑣 −  𝑛𝑚 and  𝛽𝐷 = 0. BE increases from dark blue to light blue region and thus it is 

small at small values of B and V0 and large at higher values of B and V0 .  In Figs. 25-27, we present 

the 3D plots of the BE as a function of different system parameters. Fig. 25 shows that BE 

decreases as 𝛼𝑅 increases while it increases as 𝛽𝐷 increases. Thus BE is maximum in a material 

with large 𝛽𝐷 and small 𝛼𝑅 .  It is also observed that at equal values of  αR and βD, BE is same as 

that in the absence of SOIs. 
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                 Fig. 25 3D plot of the BE as a function of 𝛼𝑅(𝑛𝑚 − 𝑚𝑒𝑉) and 𝛽𝐷(𝑛𝑚 − 𝑚𝑒𝑉) for an  

                  off-centre 𝐷0 in a Gaussian GaAs QD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

                 

     Fig. 26  3D plot of the BE as a function of B (T) and D (nm)   for an off-centre 𝐷0 in a  

               Gaussian GaAs QD.  
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It is because in the presence of a magnetic field, the amount of BE enhanced by DSOI is same as 

that reduced by RSOI. Fig. 26 shows the plot of BE as a function of 𝐵 and 𝐷 for  𝑉0 = 300 𝑚𝑒𝑉,

𝑅 = 10 𝑛𝑚, 𝛼𝑅 = 1 𝑚𝑒𝑣 − 𝑛𝑚 and   𝛽𝐷 = 0. The plot shows that BE increases as 𝐵 increases 

and 𝐷 decreases. The 3D curve given by Fig. 27 shows that BE can be large in a window of 𝑅 

values.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

                 Fig. 27  3D plot of the BE as a function of 𝑉0(𝑚𝑒𝑉) and QD size R (nm) for an off-centre 𝐷0  

             in a Gaussian GaAs QD.  

 

     
 

3.4.   Conclusion 
 
 

   In conclusion, an off-centre 𝐷0 impurity is considered in a 2D Gaussian GaAs QD incorporating 

the effects of RSOI and DSOI and an external magnetic field and the GS BE of the system is 

calculated. It is shown that the binding of a 𝐷0 complex is strongest for the on-centre complex 

(𝐷 = 0) and BE decreases with increasing 𝐷 and eventually saturates. Our results reveal that the 

effect of SOIs on the 𝐷-dependence of BE is very small, though magnetic field can influence the 

𝐷-dependence of BE at small 𝐷 values. However, if 𝐷 is large, then none of  𝑅, 𝐵, 𝛼𝑅, or 𝛽𝐷 would 

have any effect on the 𝐸𝐵 vs 𝐷 curve. We have also presented the contour plots and 3D plots of 

BE of the system with respect to different system parameters.  
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   Finally, the susceptibility (𝑆) of the off-centre 𝐷0 in a GQD system is calculated using statistical 

mechanics. It is shown that S is diamagnetic. With increasing D, |𝑆| initially increases and 

eventually saturates to a constant. It is observed that when RSOI is absent and only DSOI is 

present, |𝑆| decreases both with 𝛽𝐷 and 𝐵.  However, in the case when DSOI is absent and only 

RSOI is present, at small values of 𝐵,  |𝑆| initially increases with increasing 𝛼𝑅, reaches a 

maximum and then decreases with 𝛼𝑅,  but at large 𝐵, |𝑆| increases monotonically with 𝛼𝑅 .   
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Chapter -4 

 

 

Effect of confinement potential shape and Spin-Orbit 

Coupling on the 𝑫𝟎 Impurity in a GaAs quantum dot 

placed in a magnetic field 

 

 

 

4.1   Introduction 

 
  One of most important parameters for a quantum dot (QD) system from a theorist’s point of view 

is the confinement potential. QDs can be fabricated in different shapes and sizes to have certain 

required properties. The nature of the confinement potential in a QD depends on the shape of QD, 

gate voltage, lateral voltage and on the fields applied from outside. Motivated by some early 

experiments and generalized Kohn’s theorem, several investigations have been carried out in the 

past considering the potential in QD as parabolic [1]. Later investigations have suggested that the 

confinement potential in a QD is generally anharmonic and has a finite depth. This has led to a 

large number of studies on QDs using Gaussian confinement potential [2]. Such a QD can be called 

a Gaussian QD (GQD).  

 

   Recently, Ciurla et. al. [3] have proposed a more generalized confinement potential namely, the 

power-exponential potential (PEP) given by   

 

                                                                    𝑉(𝝆) = −𝑉0𝑒−(
𝜌
𝑅

)
𝑝

 ,                                                             (4.1) 

 

where 𝑉0 measures the depth of the potential,  R  its range and 𝑝 can be called the steepness  

parameter which describes the hardness of the confinement potential. The higher the value of 𝑝, 

the harder the potential at the boundary. One important advantage with PEP is that it can lead to 
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different confinement potentials in different limits. For 𝑝 = 2, we get the Gaussian potential and 

confinement potential is soft, i.e. the electron can partially penetrate through the potential well. As 

𝑝 increases, the probability of the electron tunneling becomes smaller. For large 𝑝, the PEP mimics 

the rectangular well and becomes hard [3]. Fig. 1 shows the form of PEP for different values of p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

                     Fig.1. Power-exponential potential for 𝑝 = 0.5,2, 5, 30, 100 and comparison with a  

                    parabolic potential.  

 

 

   Ciurla et al. [3] have studied the spectra of this potential and its applicability as a confinement 

potential. Hereafter, QDs with power exponential confinement potential will be referred to as 

PEQD. Xie [4] has studied the effect of the shape of the confinement potential on photoionization 

cross section of a 𝐷0 impurity in a QD using the power-exponential potential (PEP).    Jahan at el. 

[5] have recently investigated the effect of the shape of the confinement potential on the electronic, 

magnetic thermodynamic and transport properties of a GaAs QD at  

finite temperature.  



77 
 

  The spin-orbit interaction (SOI) effects are also important in a QD. Khordad [6] has studied the 

diamagnetic susceptibility of a hydrogenic impurity in a quantum pseudo-dot in the presence of 

SOI with harmonic potential. Kumar at el. [7] have investigated the effect of Rashba SOI on the 

GS energy of a 𝐷0 centre in a GQD of GaAs. Saini et. al. [8] have studied the effect of RSOI and 

DSOI on the susceptiblity of a D0 impurity in GQD placed in an external magnetic field.  In 

previous chapters, we have presented these works.   

 

  In the present chapter, we shall study the effect of the shape of the confinement potential on the 

properties of a 𝐷0 complex in a PEQD the presence of both RSOI and DSOI and an external 

magnetic field. We shall calculate, in particular, the GS energy (GSE), binding energy (BE), 

magnetic moment (MM) and the magnetic susceptibility (MS) of the 𝐷0 complex.   

 
 

4.2  Theory 

 
   The Hamiltonian of a 𝐷0 complex in a 2D  PEQD system with RSOI and DSOI and placed in a 

magnetic field 𝑩 (0,0, 𝐵) can be written as  

 

ℋ = (
1

2𝑚∗
(𝒑 +

𝑒

𝑐
𝑨)2  −  

𝑒2

𝜀𝜌
 −  𝑉0𝑒−(

𝜌
𝑅

)
𝑝

 ) 𝐼 +  
𝛼𝑅

ℏ
[𝝈 × (𝒑 +

𝑒

𝑐
𝑨)]

𝑍
 

 

                                        + 
𝛽𝐷

ℏ
[𝝈𝑥 (𝒑𝒙 +

𝑒

𝑐
𝑨𝒙) − 𝝈𝑦 (𝒑𝒚 +

𝑒

𝑐
𝑨𝒚)],                                                (4.2) 

  

where all the notations have already been defined. 

 
     To eliminate SOIs, we apply as before, the unitary transformation  

                   

                                         𝑈 = 𝑒𝑆    ,         𝑆 = 𝑖
𝑚∗

ℏ2
[𝛼𝑅(𝑦𝜎𝑥 − 𝑥𝜎𝑦) +  𝛽𝐷(𝑥𝜎𝑥 − 𝑦𝜎𝑦)],             (4.3) 

    

on the Hamiltonian. The transformed Hamiltonian can be written as, 

 

                                       ℋ̃ = 𝑒𝑠ℋ𝑒−𝑠 = ℋ + [𝑆, ℋ] +
1

2
[𝑆, [𝑆, ℋ]] + ⋯       .                             (4.4)      

                                                             

Straight-forward calculation yields  
 

 [𝑆, 𝐻] = −
𝛼𝑅

ℏ
[𝜎𝑥 (𝑝𝑦 +

𝑒

𝑐
𝐴𝑦) − 𝜎𝑦 (𝑝𝑥 +

𝑒

𝑐
𝐴𝑥)] − 

2 𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2) 
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                 −
𝛽𝐷

ℏ
[𝜎𝑥 (𝑝𝑥 +

𝑒

𝑐
𝐴𝑥) − 𝜎𝑦 (𝑝𝑦 +

𝑒

𝑐
𝐴𝑦)]  −

𝑚∗

ℏ3
𝜔𝑐𝜎𝑧𝐿𝑧𝜌2(𝛼𝑅

2 − 𝛽𝐷
2) 

 

                 − 
2

ℏ3
𝑚∗𝜎𝑧𝐿𝑧(𝛼𝑅

2 − 𝛽𝐷
2) ,                                                                                                       (4.5) 

 
                        
1

2
[𝑆, [𝑆, ℋ]] =

 𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2) +

𝑚∗

2 ℏ3
𝜔𝑐𝜎𝑧𝐿𝑧𝜌2(𝛼𝑅

2 − 𝛽𝐷
2) +

𝑚∗

ℏ3
𝜎𝑧𝐿𝑧(𝛼𝑅

2 − 𝛽𝐷
2),                  (4.6) 

 

and the transformed Hamiltonian is given by  

 

  ℋ̃ = (
𝑝2

2𝑚∗
+

1

8
𝑚∗𝜔𝑐

2𝜌2 −
𝑒2

𝜀𝑟
− 𝑉(𝜌⃗) ) 𝐼 −

𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2)𝐼 −

𝑚∗

ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜎𝑍𝐿𝑍  +

𝜔𝑐

2
𝐿𝑧 

 

                   − 
𝑚∗

2ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2) 𝜔𝑐𝜎𝑍𝜌2 ,                                                                                               (4.7) 

   
where   𝜔𝑐 = (𝑒𝐵 𝑚∗𝑐)⁄ ,    𝜌2 = (𝑥2 + 𝑦2) and   𝐿𝑧 = −𝑖ℏ(𝜕 𝜕𝜙⁄ ).                                                                

 

       We wish to obtain GSE of 𝐷0 by the Ritz variational principle and choose the trial wave 

function as  

 

                                                             𝜓(𝝆) = 𝑁 𝑒(−𝛼𝜌2−𝛽𝜌−𝑖𝑚𝜑).                                                (4.8) 

                                          

Denoting GSE  of the electron in PEQD by  𝐸(𝑒−), GSE  of the 𝐷0 complex in the same system 

by 𝐸(𝐷0) and  BE  of the 𝐷0 complex by 𝐸𝐵(𝐷0),  we can write, as before,  the  binding energy 

of the 𝐷0 complex as 

 

                                                              𝐸𝐵(𝐷0) = 𝐸(𝑒−) −  𝐸(𝐷0).                                                   (4.9)                                                         

 

The magnetic moment (𝑀) and the magnetic susceptiblity (𝑆) of the of the 𝐷0 complex are given 

by   

 

                                              𝑀 = − 
𝜕𝐸(𝐷0)

𝜕𝐵
;              𝑆 =  

𝜕2𝐸(𝐷0)

𝜕𝐵2
  .                                           (4.10) 
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4.3  Numerical Results and Discussion  
 

 We use  𝑚𝑒𝑉  as the unit of energy,  𝑛𝑚 as the unit of length, and 𝑇 (Tesla) as the unit of magnetic 

field. SOIs are then given in 𝑚𝑒𝑉 − 𝑛𝑚. For concreteness, we shall apply our results to a GaAs 

QD for which 𝑚∗ = 0.067 𝑚0, where 𝑚0 is the bare electron mass and 𝜖 = 12.4 𝜖0  [4,14].  

 

  Fig. 2 shows the behavior of the wave function as a function of 𝜌 for different values of the 

parameter p (with  𝐵 = 1𝑇, 𝑉0 = 120 meV, R=10 nm, 𝛼𝑅 = 1, 𝛽𝐷 = 1). Interestingly, the wave 

functions show a crossing behavior with respect to p.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

     

 
 

 

 
 

                                                       

 

      Fig. 2 The GS Wave-function vs 𝜌  for a 𝐷0 centre in a GaAs GQD with 𝐵 = 1 𝑇, 𝑉0 = 120 meV,      

      R=10 nm,  𝛼𝑅 = 1 meV − nm and 𝛽𝐷 = 1 meV − nm for a few different values of  𝑝. 

 

 

  In Fig.3, we plot GSE of a  𝐷0 donor 𝐸(𝐷0) in a GaAs QD with respect to the steepness parameter 

p in the absence of RSOI and DSOI, in the presence of either of them, and in the presence of both. 

In all cases, GSE decreases as p increases but eventually saturates as p becomes large. One can 

also observe that both RSOI and DSOI lower the energy, DSOI having a larger effect. 
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                    Fig. 3 GSE (E) vs p for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇,    

                     R=10 nm,  for different values of 𝛼𝑅(meV − nm ) and 𝛽𝐷(meV − nm). 

 

 

 

   In Fig. 4, we plot GSE of a  𝐷0 donor 𝐸(𝐷0) in a GaAs QD with respect to the steepness 

parameter p for 𝐵 = 1 𝑇, 𝑉0 = 120 meV, 𝛼𝑅 = 1, 𝛽𝐷 = 1  and for different values of 𝑅. We 

observe that for 𝑅 ≲ 8, GSE  initially increases with  𝑝 but eventually reaches a saturation value 

as 𝑝 becomes sufficiently large, while for 𝑅 ≳ 8, GSE initially decreases with increasing 𝑝 and  

eventually reaches a saturation value for large 𝑝. For 𝑅 ≈ 8, GSE is almost independent of 𝑝.  Fig. 

5 shows the variation of GSE with respect to 𝑅 for different values of 𝑝. It is clearly evident that 

GSE decreases as 𝑅 increases, and saturates to the bulk value as 𝑅 becomes large.  At small 𝑅, 

GSE increases quite rapidly with decreasing 𝑅.  This can of course be easily explained by simple 

quantum mechanics.   
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 Fig. 4 E vs p for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇,   𝛼𝑅 = 1 meV nm   

             and 𝛽𝐷= 1 meV nm for different values of R (nm). 
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                   Fig. 5 E vs 𝑅 for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇,   𝛼𝑅 = 

                   1 meV nm  and 𝛽𝐷= 1 meV nm for different values of 𝑝. 
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           Fig. 6    E  vs   𝛼𝑅 for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇, 𝑅 = 10 nm,   

          and 𝛽𝐷= 1 meV nm for three values of  𝑝.       

 

 

 

 

 

 

 

                                                                                   
 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 
 
                                                                                                                                                                                                                                              

              Fig. 7  E vs 𝛽𝐷 for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇, 𝑅 = 10 nm,   

              and 𝛼𝑅= 1 meV nm for three values of  𝑝.    
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    In Figs. 6 and 7, we show the variation of GSE  𝐸 as a function of  𝛼𝑅 and 𝛽𝐷  respectively for 

a few values of  𝑝 with 𝐵 = 1 𝑇, 𝑉0 = 120 meV and R=10 nm. GSE is found to decrease with 

increase in both 𝛼𝑅 and 𝛽𝐷 . But the decrease in GSE with respect to 𝛽𝐷 is slower than that with 

respect to 𝛼𝑅. In other words, the Rashba term reduces GSE more than the Dresselhaus term and 

thus has a stronger effect in a QD.  

    Fig. 8 depicts the behavior of BE as a function of 𝑝 for different values of  𝑅 with  𝐵 = 1𝑇,   

 𝑉0 = 120 meV, 𝛼𝑅 = 1, and 𝛽𝐷 = 1. According to our result, BE  𝐸𝐵 is positive for 𝐷0  system 

in GaAs which implies that in a GaAs QD, 𝐷0 always exists in a stable bound state,  which is of 

course an expected result.  At small 𝑝, BE is almost linear in 𝑝. One interesting observation that 

one can make from this figure is that for a small QD, BE as a function of  𝑝 shows a peak. The 

peak broadens in width and shifts towards higher values of 𝑝 as 𝑅 increases. Beyond a certain 

values of 𝑅, BE does not exhibit any peak with respect to 𝑝.  For higher values of 𝑅, BE just 

increases with 𝑝 monotonically and eventually saturates.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                       
                              
                     

 

 

                    Fig. 8 BE (𝐸𝐵) vs. 𝑝 for a 𝐷0 centre in GaAs GQD with  𝑉0 = 120 meV,  𝐵 = 1 𝑇,  

                     𝛼𝑅 = 1 meV nm  and 𝛽𝐷= 1 meV nm for different values of 𝑅 (nm).  
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    The behaviour of BE with respect to 𝑅 is shown explicitly in Fig. 9. One can see that BE 

increases as 𝑅 decreases and becomes maximum at a critical value of 𝑅 below which BE rapidly 

decreases  Again this behaviour is consistent with quantum mechanics. If  𝑅 is very small, then 

the uncertainty in position is also small and the uncertainty in momentum as well as in kinetic 

energy must be large. In this case, it would be very difficult to localise the electron inside the QD 

and concomitantly BE would decrease rapidly.  One can see from the figure that the peak height 

of BE increases as 𝑝 incrreases. Also the peak position changes with 𝑝. After the maximum, BE 

decreases with 𝑅 faster for higher 𝑝 giving rise to a crossing behaviour. The BE graph crossing 

each other at different value of p. The reason of that the wavefunction is also crossing each other 

at different value of p. 

 

 

 

 

 

 

 

 

 

 

 
 
                     
                          

                       

 

 

 

                         

                                                                       

 

 

 

 

 

 

 

 

 

 

 
 
                      Fig. 9 𝐸𝐵 vs. 𝑅 for a 𝐷0 centre in GaAs GQD with   𝐵 = 1 𝑇,   𝑉0 = 60 meV,   

                      𝛼𝑅 = 2 meV nm  and 𝛽𝐷= 2 meV nm for different values of 𝑝. 
 

 

   In Fig. 10, we present the variation of our results for the GS BE (𝐸𝐵) with 𝐵. From the figure, 

𝐸𝐵 is found to increase with 𝐵. It is clear that the shape of the confinement potential plays an 

important role at small 𝐵, while at large 𝐵, 𝐸𝐵  does not have much significant dependence on 𝑝.  
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                  Fig. 10  𝐸𝐵 vs. 𝐵 for a 𝐷0 centre in GaAs GQD with   𝑅 = 10 nm,   𝑉0 = 60 meV,   

                  𝛼𝑅 = 2 meV nm  and 𝛽𝐷= 2 meV nm and for different values of 𝑝. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                   

                       Fig. 11  𝐸𝐵 vs. 𝑝 for a 𝐷0 centre in GaAs GQD with   𝑉0 = 120 meV, 𝑅 = 10 nm,  
                        𝛼𝑅 = 1 meV nm  and 𝛽𝐷= 1 meV nm for different values of 𝐵 (T). 
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    In Fig. 11, we plot BE as a function of p for three different value of 𝐵 with  𝑅 = 10𝑛𝑚,  𝑉0 =

120 meV, 𝛼𝑅 = 1 and 𝛽𝐷 = 1 to show the explicit 𝑝-dependence of BE for different values of 𝐵. 

One can see that BE increases rapidly with  p at small 𝑝 and seems to saturate at p increases. Also 

the MF-dependence is significant only low 𝑝.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

          

                                                       

 

                     Fig. 12  𝐸𝐵 vs. 𝑉0 for a 𝐷0 centre in GaAs GQD with   B = 1 T, 𝑅 = 50 nm, 𝛼𝑅 = 

                   2 meV nm  and 𝛽𝐷= 2 meV nm for different values of  𝑝. 

 

  

  Figs. 12 and 13 show the variation of BE as a function of 𝑉0. Fig. 12 gives the results for 𝑅 = 50, 

while the results for 𝑅 = 10 are plotted in Fig. 13. Fig. 12 suggests that the binding increases with 

𝑉0 for 𝑝 = 0.5 and 𝑝 = 2 while for 𝑝 = 10 and 𝑝 = 20, BE is essentially independent of 𝑉0. For 

large 𝑝, the confinment potential becomes more or less like a square well potential and then any 

change in 𝑝 does not change the potential much and therefore in that limit 𝐸𝐵 becomes almost 

independent of 𝑝. Again we observe that the shape of the confinement potential plays a more 

important role for large values of 𝑉0 which is of course an expected behaviour because as the depth 

of the potential increases, binding becomes stronger.  Fig. 13 shows that a decrease in QD size in 

general enhances BE. One can see that even for 𝑝 = 10 and 20, BE now increases with 𝑉0, though 

the 𝐸𝐵 vs 𝑉0 −  curves for these cases coincide.  
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                      Fig. 13  𝐸𝐵 vs. 𝑉0 for a 𝐷0 centre in GaAs GQD with   𝐵 = 1 T, 𝑅 = 10 nm, 𝛼𝑅 = 

                     2 meV nm  and 𝛽𝐷= 2 meV nm for different values of 𝑝.    
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             Fig. 14   𝐸𝐵 vs. 𝛼𝑅 for a 𝐷0 centre in GaAs GQD with 𝑉0 = 120 meV, 𝑅 = 4 nm, 𝐵 = 1 T,  

          and 𝛽𝐷= 2 meV nm for different values 𝑝.  
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     In Figs. 14 and 15 we plot BE  𝐸𝐵 vs 𝛼𝑅 and 𝛽𝐷 respectively for different values of 𝑝 with 𝑉0 =

120, 𝑅 = 4, 𝐵 = 1𝑇. The figures show that BE decreases with increasing 𝛼𝑅 while it increases 

with 𝛽𝐷. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

           

          Fig. 15 𝐸𝐵 vs. 𝛽𝐷 for a 𝐷0 centre in GaAs GQD with 𝑉0 = 120 meV, 𝑅 = 4 nm, 𝐵 = 1 T,  

       and 𝛼𝑅= 0 meV nm for different values 𝑝.   

 

 

   We study the magnetic field dependence of Magnetisation (𝑀) and Susceptibility  (𝑆) in Figs. 

16 and 17 respectively  for different values of 𝑝 with 𝑅 = 10𝑛𝑚, 𝑉0 = 60 meV and 𝛼𝑅=1, 𝛽𝐷=1. 

The magnitude of 𝑀 is found to increse with 𝐵. Furthermore, |M| increses with decreasing 𝑝. Fig. 

17 shows that the susceptibility is diamagnetic in nature. The diamagnetic susceptibility  decreases 

with increasing 𝐵 and it saturates as 𝐵 becomes sufficiently large.  It appears that the diamagnetic 

effect of suceptiblity is more at smaller values of 𝑝.  However, the suceptibility is very weakly 

dependent on the shape of the potential at large 𝐵.  
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 Fig. 16  M vs B for a 𝐷0 centre in GaAs GQD with 𝑅 = 10 nm, 𝑉0 = 60 meV and 𝛼𝑅=1 meV nm, 

𝛽𝐷=1 meV nm for different values of 𝑝. 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 
                                          

 

 

                 Fig. 17  S vs 𝐵 for a 𝐷0 centre in GaAs GQD with 𝑅 = 10 nm, 𝑉0 = 60 meV and  

             𝛼𝑅=1 meV nm, 𝛽𝐷=1 meV nm for different values of 𝑝.  
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                Fig. 18  𝑆 vs p for a 𝐷0 centre in GaAs GQD with 𝑅 = 10 nm, 𝑉0 = 60 meV and 𝛼𝑅=1  

                 meV nm, 𝛽𝐷=1 meV nm for different values of 𝐵 (T). 

 

 

 

  In Fig. 18, we show the behaviour of  𝑆 directly as a function shape of 𝑝 for different values of  

𝐵 with 𝑉0 = 60, 𝑅 = 10, 𝛼𝑅 = 1, 𝛽𝐷 = 1. At low 𝐵, 𝑆  initially increses with increasing 𝑝 and 

eventually saturates at large 𝑝. At larger values of 𝐵, 𝑆 initially decreases with increasing 𝑝 and 

again saturates at large 𝑝 eventually.  

 

 

4.4    Conclusions 

 
  In this chapter, we have calculated the GS energy and BE of a 𝐷0 Centre in PEQD as a function 

of the shape (or the steepness) parameter 𝑝, the effective QD size 𝑅, the Rashba and Dresselhaus 

spin-orbit interaction constants 𝛼𝑅 and 𝛽𝐷 and the external magnetic field 𝐵. We have shown that 

for R ≤ 8 , the GS energy increases with 𝑝 while for R > 8, it decreases. However, in both cases, 

the GS saturates as 𝑝 becomes large. This is because when 𝑝 becomes large, the confinement 

potential hardly changes with 𝑝.  

   

   For a small dot, the GS BE as a function of 𝑝 exhibits a peak at a small value of 𝑝 and saturates  
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to a constant as 𝑝 increases. As the size of the QD increases, the peak becomes flatter though its 

height increases. Furthermore, the peak shifts towards higher values of 𝑝. As 𝑅 becomes still larger, 

the peak disappears and the GS BE just monotonically increases with 𝑝 at small 𝑝 and eventually 

saturates. As a function of 𝑅 too, BE shows peaks and the peak height increases as 𝑝 increases. 

After reaching the peak, BE decreases with 𝑅 faster for higher 𝑝 giving rise to a crossing behaviour.  

 

  As a function of 𝐵, BE increases with 𝐵, as the magnetic field provides an additional confinement. 

It is shown that at small 𝐵, the shape of the confinement potential has a significant influence on 

BE,  while at large 𝐵, 𝐸𝐵  does not depend much on 𝑝. We have also shown that for BE, the shape 

of the confinement potential becomes more important when its depth is large. 

 

  RSOI and DSOI have competing roles on BE of the 𝐷0 system. RSOI is found to reduce the 

binding while DSOI enhances it. Finally we show that the susceptibility of a 𝐷0 impurity in PEQD 

is diamagnetic and this diamagnetic susceptibility (𝑆) increases with p at small 𝐵 and at large 𝐵, 

it decreases with increasing 𝑝. At intermediate 𝐵, 𝑆 first decreases with increasing 𝑝, develops a 

minimum at some value of 𝑝 and then increases with further increase in 𝑝. Eventually, however, 𝑆 

saturates to a constant as 𝑝 becomes large.  
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Chapter -5 
 
 
 

Spin-orbit interaction effect on a hydrogenic 𝑫𝟎    

centre in a three-dimensional asymmetric Gaussian 

GaAs quantum dot in a magnetic field 

 

 

 

 

5.1  Introduction 
 
 In the earlier chapters, we have considered symmetric Gaussian and power exponential potentials 

as the confinement potential for the QD [1-12]. Several investigations have also been carried out 

on asymmetric QDs [13-20]. Shan et al. [14] have studied the temperature and impurity effects on 

the GS energy and the GS binding energy in an asymmetric QD by using the linear combination 

operator method. Chen and Zhang [15] have calculated the first excited state energy of the polaron 

in an asymmetric QD in the presence of magnetic field using the Pekar type variational method. 

Bandyopadhyay et al. [17] have obtained the total spin- splitting energy expression in an 

asymmetric QD (AQD) with ferromagnetic contacts, subjected to a transfer field. They have shown 

that the Zeeman splitting can be tuned with a transfer electric field in the presence of RSO coupling 

in AQD. Zhang et al. [18] has studied the BE of a shallow donor impurity in an asymmetric QW 

by using the variational method. Hao [19] has examined the SOI effect in an asymmetric quantum 

well by varying the internal inversion asymmetry. Singh et al. [20] have studied the magnetic field-

dependence of the spin and tuning dynamics in a double AQD in the presence of RSOI and DSOI.  

 

  In the present chapter, we wish to study the effect of RSOI and DSOI on the GS energy, binding 

energy, susceptibility and magnetic moment of a 𝐷0 complex in a 3D asymmetric GQD (AGQD) 

placed in a magnetic field. To obtain results for a realistic system, we apply our theory to a GaAs 

QD.  

 

 



94 
 

5.2     Model and Formulation 

 
  A 𝐷0 complex in a 3D AGQD with RSOI and DSOI and placed in a magnetic field 𝑩 (0,0, 𝐵) can 

be modelled by the Hamiltonian 

 

 ℋ = (
1

2𝑚∗
(𝒑 +

𝑒

𝑐
𝑨)2  −  

𝑒2

𝜀𝑟 
 −  𝑉0 𝑒

− 
𝑎(𝑥2+𝑦2)+𝑏 𝑧2

2𝑅2  ) 𝐼 +  
𝛼𝑅

ℏ
[𝝈 × (𝒑 +

𝑒

𝑐
𝑨)]

𝑍
 

 

                                                     + 
𝛽𝐷

ℏ
[𝜎𝑥 (𝑝𝑥 +

𝑒

𝑐
𝐴𝑥) − 𝜎𝑦 (𝑝𝑦 +

𝑒

𝑐
𝐴𝑦)],                                        (5.1) 

 

where 𝑎 gives the length scale over which the confinement potential becomes zero in the x-y plane 

and b describes that along the z axis and the rest of the notations have been defined already. To 

eliminate SOIs, we carry out the same transformation as before,   

          

                            𝑈 = 𝑒𝑆    ,         𝑆 = 𝑖
𝑚∗

ℏ2
[𝛼𝑅(𝑦𝜎𝑥 − 𝑥𝜎𝑦) +  𝛽𝐷(𝑥𝜎𝑥 − 𝑦𝜎𝑦)],                          (5.2) 

 

and expand the transformed Hamiltonian in a power series in terms of  𝛼𝑅 and  𝛽𝐷 and neglect 

terms beyond 𝛼𝑅
2  and  𝛽𝐷

2. This gives  

 
 

             ℋ̃ = (
𝑝2

2𝑚∗
+

𝑚∗

8
𝜔𝑐

2𝜌2 −
𝑒2

𝜀𝑟
− 𝑉0 𝑒

− 
𝑎(𝑥2+𝑦2)+𝑏 𝑧2

2𝑅2 ) 𝐼 +
𝜔𝑐

2
𝐿𝑧 −

𝑚∗

ℏ2
(𝛼𝑅

2 + 𝛽𝐷
2) 

 

                               − 
𝑚∗

ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜎𝑍𝐿𝑍  −

𝑚∗

2ℏ3
(𝛼𝑅

2 − 𝛽𝐷
2)𝜔𝑐𝜎𝑍𝜌2,                                                 (5.3)  

  
 where  
  

                                  𝜌2 = 𝑥2 + 𝑦2 ,       𝐿𝑧 = −𝑖ℏ(𝜕 𝜕𝜙⁄ )   ,      𝜔𝑐 = (𝑒𝐵 𝑚∗𝑐).⁄                      (5.4)    

                        
                                                                                                                 
To find the GS energy variationally, we try the function:  

 

                                                                  𝜓(𝒓) =  𝑒−𝛼𝑟2−𝛽𝑟−𝑖𝑚𝜑                                                              (5.5) 
                                                   

where 𝛼 and 𝛽 are treated as variational parameter. As before, we define the BE of the 𝐷0 hydrogenic 

impurity (𝐸𝐵(𝐷0) as  

                                                       𝐸𝐵(𝐷0) = 𝐸(𝑒−) −  𝐸(𝐷0).                                                             (5.6) 
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where 𝐸(𝑒−)  and 𝐸(𝐷0) and are respectively the GS energies of the electron and 𝐷0 impurity in 

the AGQD. The magnetisation and susceptibility are defined, as usual, by 

                                         

                                                  𝑀 = − 
𝜕𝐸(𝐷0)

𝜕𝐵
;              𝑆 =  

𝜕2𝐸(𝐷0)

𝜕𝐵2
  .                                         (5.7) 

                                                                                             

 

5.3 Results and Discussion 

 
    We plot the GS energy (𝐸) in Fig.1 with respect to the effective QD size R for 𝐵 = 1𝑇, 𝑉0 =

60 𝑚𝑒𝑉, 𝛼𝑅 = 1 𝑚𝑒𝑉 − 𝑛𝑚, 𝛽𝐷 = 1 𝑚𝑒𝑉 − 𝑛𝑚 and a few values of the asymmetry parameter 𝑏. 

The GS energy is found to decrease nonlinearly as the effective dot size 𝑅 is increased and to 

eventually saturate to the bulk value. Furthermore, if the material growth is increased in the z 

direction, then the GS energy decreases. Of course, the energy becomes independent of the 

parameters  𝑎 and 𝑏 in the bulk limit. This is expected because when 𝑅 becomes very large, the 

potential becomes essentially constant and the values of 𝑎 and 𝑏 do not affect the energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                      

 

 

 

      Fig.1  GS energy (𝐸) vs. R for a 𝐷0 centre in AGQD with 𝐵 = 1𝑇, 𝑉0 = 60 𝑚𝑒𝑉,  𝛼𝑅 = 1 𝑚𝑒𝑉𝑛𝑚,   

     
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚  and for different values of asymmetric parameter b.  
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   In Fig.2, we display the behaviour of the GS energy with respect to the magnetic field 𝐵 for 𝑅 =

10 𝑛𝑚,  𝑉0 = 60 𝑚𝑒𝑉, 𝛼𝑅 = 1 𝑚𝑒𝑉𝑛𝑚,  𝛽𝐷 = 1 𝑚𝑒𝑉𝑛𝑚. The GS energy increases non-linearly 

with increasing 𝐵. It also increases with the increase in the asymmetry parameter b, as expected.  

    

 

 

 

 

 

 
 

 

 

 

 

  

 

             

           Fig. 2 𝐸 vs. B for a 𝐷0 centre in AGQD with  𝑅 = 10𝑛𝑚,  𝑉0 = 60 𝑚𝑒𝑉 𝛼𝑅 = 1 𝑚𝑒𝑉𝑛𝑚,        

            
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚 and for different values of  the asymmetric parameter b. 

 

     In Fig. 3, we study the behaviour of the GS energy with respect to b for 𝑅 = 50𝑛𝑚, 𝑉0 =

120 𝑚𝑒𝑉, 𝐵 = 1𝑇, 𝑎 = 1 and a few sets of RSOI and DSOI coefficients. As expected, the GS 

energy is lowered by both RSOI and DSOI, while with the increase in the parameter 𝑏, the GS 

energy is found to increase. Fig. 4 presents the variation of the results for the GS binding energy 

(BE) with respect to R for 𝐵 = 1𝑇, 𝑉0 = 60 𝑚𝑒𝑉, 𝛼𝑅 = 0 , 𝛽𝐷 = 1 meV nm and different 𝑏 values.  

BE of 𝐷0 turns out to be positive, as expected.  This implies that the system has a stable bound 

state. The binding is observed to be maximum at a certain value of the QD size 𝑅𝑚.  For 𝑅 > 𝑅𝑚, 

BE  decreases with increase in 𝑅 and eventually reaches a saturation value which is the bulk limit. 

This of course understandable. As 𝑅 is reduced below 𝑅𝑚, BE starts decreasing rapidly. The rapid 

fall in BE below 𝑅𝑚 is solely a quantum phenomenon. As 𝑅 decreases, the uncertainty in position 

also decreases. Concomitantly, the uncertainty in momentum becomes larger leading to an increase 

in the momentum itself and hence the kinetic energy. Thus, if the size of QD is made very small, 

restricting the electron’s motion inside QD would become very  
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difficult. This results in a reduction in BE. The figure reveals that the height of the peak in BE  

decreases and its width increases with increasing asymmetry and furthermore the peak shifts to  

the higher value of 𝑅. 

 

 

 

 

 

 

 

  

 

 

 

 

 
          
                                                 

                       Fig. 3  𝐸 vs. 𝑏 for a 𝐷0 centre in AGQD with   𝑉0 = 120 𝑚𝑒𝑉, 𝐵 = 1 𝑇, 𝑅 = 50𝑛𝑚,   

                  𝑎 = 1  for different values of  𝛼𝑅( 𝑚𝑒𝑉𝑛𝑚) and  𝛽𝐷 ( 𝑚𝑒𝑉𝑛𝑚). 

 

 

 

 

 

 

 

 

 

 

 
                                                                       

 

   
        Fig. 4 GS BE  (𝐸𝐵)  vs. R for 𝐷0 centre in a GaAs AGQD with 𝐵 = 1𝑇,  𝑉0 = 60 𝑚𝑒𝑉 𝛼𝑅 = 0  

         and   
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚 for different values of asymmetric parameters b. 
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        Fig. 5  𝐸𝐵 vs. 𝑏  for  𝐷0  centre  in  a  GaAs  AGQD  with   𝑉0 = 120 𝑚𝑒𝑉,   𝐵 = 1 𝑇,           

        𝑅 = 50𝑛𝑚 and   𝑎 = 1 for different combination of  𝛼𝑅( 𝑚𝑒𝑉𝑛𝑚) and  𝛽𝐷 ( 𝑚𝑒𝑉𝑛𝑚). 

 

 

    

 

 

 

 

 

 

 
                                                                        
 
               Fig. 6  EB vs. b for D0 centre in a GaAs AGQD with  V0 = 120 meV, B = 2 T, R = 10nm  

               and a = 1 for  different combination of  αR( meVnm) and  βD ( meVnm).  
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   Fig. 5 shows explicitly how BE of 𝐷0 varies with the asymmetry parameter 𝑏 of AGQD. The 

figure clearly reveals that BE increases with increasing 𝑏. However, for a small QD, BE reduces 

if 𝑏 is increased. This is shown in Fig. 6. It is also observed from Fig. 5 and 6 that the Rashba 

coupling decreases BE, while Dresselhauss coupling increases it. The presence of asymmetry in 

the confinement potential enhances these effects separately.  

 

   In Fig. 7 we depict the variation of BE of  𝐷0 with respect to a magnetic field 𝐵 in AGQD. BE 

is found to increase with increasing 𝐵. At small 𝐵, BE decreases with increasing 𝑏,  while at high 

𝐵,  BE is essentially independent of 𝑏. In Fig. 8, we show the behavior of BE of  𝐷0 in AGQD 

with respect to 𝑉0 for  𝐵 = 1𝑇, 𝑅 = 50 𝑛𝑚 and a few values of the parameter b. BE increases with 

𝑉0, as would be normally expected and the curve is concave from below. For a small QD also, BE 

increases with 𝑉0, but now the curve is concave from above. This is shown in Fig. 9. Interestingly, 

for 𝑅 ≲ 10, BE decreases with increasing 𝑏 while for 𝑅 ≳ 10, BE increases with b.  

 

 

 

 

 

 

 

 

                 
   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

 

                      Fig. 7  𝐸𝐵 vs. 𝐵 for a 𝐷0 complex in AGQD with  𝑉0 = 60 𝑚𝑒𝑉, 𝑅 = 10 𝑛𝑚 𝛼𝑅 = 2  

                       and 
 
𝛽𝐷

= 2 𝑚𝑒𝑉𝑛𝑚 and for different values of asymmetric parameters b. 
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                         Fig.  8  𝐸𝐵 vs.  𝑉0 for a 𝐷0 complex in AGQD 𝐵 = 1 𝑇, 𝑅 = 50 𝑛𝑚 𝛼𝑅 = 2 and 

                          
 
𝛽𝐷

= 2 𝑚𝑒𝑉𝑛𝑚 and for different values of asymmetric parameters b. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
            

 

                   

       Fig.  9  𝐸𝐵 vs.  𝑉0  for a 𝐷0 complex in AGQD 𝐵 = 1 𝑇, 𝑅 = 5 𝑛𝑚 𝛼𝑅 = 0 and 
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚  

       for different values of asymmetric parameters b. 
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            Fig. 10  𝑀 vs 𝐵 for a 𝐷0 complex in AGQD with  𝑉0 = 60 𝑚𝑒𝑉, 𝑅 = 10 𝑛𝑚 𝛼𝑅 = 1 and   

           
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚  for different values of asymmetric parameters b. 

 
 

                     

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Fig. 11  𝑆 vs 𝐵 for a 𝐷0complex in AGQD with  𝑉0 = 60 𝑚𝑒𝑉, 𝑅 = 10 𝑛𝑚, 𝛼𝑅 = 1 𝑚𝑒𝑉𝑛𝑚  

            and 
 
𝛽𝐷

= 1 𝑚𝑒𝑉𝑛𝑚 for different values of asymmetric parameters b. 
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  We show in Fig. 10, how the magnetic moment (M) of 𝐷0  varies with B for 𝑅 = 10𝑛𝑚, 𝑉0 =

60 𝑚𝑒𝑉,  𝛼𝑅 = 1 𝑛𝑚 𝑚𝑒𝑉, 𝛽𝐷 = 1 𝑛𝑚 𝑚𝑒𝑉 and for three different value of asymmetric parameter 

b. As expected, the nature of 𝑀 is diamagnetic. The diamagnetic moment increases in magnitude 

with the increase in 𝐵. If the asymmetry parameter b is increased, then also |M| increases at smaller 

values of 𝐵. In Fig. 11, we show the behavior of susceptibility with respect to B for 𝑅 = 10𝑛𝑚, 𝑉0 =

60 𝑚𝑒𝑉, 𝛼𝑅 = 1 𝑛𝑚 𝑚𝑒𝑉, 𝛽𝐷 = 1 𝑛𝑚 𝑚𝑒𝑉 and for a few values of b. The behavior of susceptibility 

is found to be diamagnetic.  It increases a little rapidly with 𝐵 at small 𝐵, but as 𝐵 increases, its 

increase slows down and finally it saturates as 𝐵 becomes large. From Fig. 11, one can also see the 

𝑏-dependance of S. At low 𝐵,  𝑆 decreases with increasing b, but as 𝐵 becomes large, S shows a 

slow increase with 𝑏. This gives rise to an interesting crossing behavior.  

 

5.4 Conclusion 

 
   The behavior of GSE (𝐸) and BE (𝐸𝐵) of a hydrogenic donor impurity in an asymmetric 3D 

GQD of GaAs has been studied with respect to effective QD size 𝑅, confinement potential depth 

𝑉0, magnetic field 𝐵, asymmetry  parameter b, and RSOI and DSOI coefficients.  We have shown 

that GSE increases with the increase in the asymmetry parameter b. We have also shown that with 

respect to the QD size 𝑅, GS BE exhibits a peak which shifts towards larger 𝑅 as 𝑏 increases. Also 

BE is found to decrease with increasing b. Finally, we have examined the dependence of magnetic 

moment (𝑀) and susceptibility (𝑆) on 𝐵 for different values of the asymmetry parameter 𝑏. As 

expected, the susceptibility is found to be diamagnetic in nature. Also the magnitude of 𝑆 is found 

to decrease with increasing 𝐵. However, it increases as the asymmetry increases at small 𝐵 and 

decreases with increasing asymmetry at large 𝐵.  This gives rise to an interesting crossing behavior. 

The Rashba coupling decreases BE, while Dresselhauss coupling increases it and the asymmetry 

in the confinement potential enhances these effects. 
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Chapter-6 

 

 

Enhancement in binding of  𝑫− in a GaAs Gaussian 

Quantum Dot in the presence of spin-orbit interactions 
and a magnetic field  

 

 

 

 

6.1 Introduction 

 
  In the earlier chapters, we have studied the effect of spin-orbit interactions on some of the 

properties of hydrogenic D0 impurities confined in QDs. In this chapter, we shall consider a 

negative hydrogenic donor impurity (D−) which consists of a system of two electrons bound to a 

hydrogenic nucleus. The existence of stable bound states in negative donor complexes in bulk 

semiconductors was suggested theoretically by Lampert [1] way back in 1958. A 𝐷− complex 

confined in a low-dimensional material is an interesting system because it is a simple two-particle 

correlated system with a single bound state [2]. The experimental confirmation of the existence of 

a bound state of 𝐷−, however, took a long time to come primarily because of the very feeble nature 

of the binding of the system. To our knowledge, Huant et al. [3] were the first to observe 

experimentally the existence of a bound state in a D− impurity in a GaAlAs heterostructure from 

photoionization transitions through far-infrared magneto-optical experiments. They have reported 

the BE of the  D− impurity in a GaAs- multiple quantum well structure for several values of the 

magnetic field strength. Using a variational method, Phelps and Bajaj [4] have shown that the ratio 

of BE of 𝐷−  to that of 𝐷0 is only about 5.55%. Armistead et al. [5] have studied the D− problem 

in GaAs by far-infrared magneto-optical experiments and reported that a  𝐷− complex forms only 

under metastable conditions. Pang et al. [6] have theoretically calculated BE of a D− centre in a 

GaAs quantum well by diffusion quantum Monte Carlo method. Their results are in good 

agreement with the results of Huant et al. [3]. It is certainly interesting to examine the possibility 

of existence of a D− centre in a QD from the point of view of opto-electronic applications. Several 
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authors have calculated the energy levels of a 𝐷− system in both PQDs and GQDs [6].   Boda et 

al. [7] have considered a 𝐷− impurity in the presence of a magnetic field in a GQD and studied its 

electric and magnetic properties.  

 
     To our knowledge, no investigation has so far been devoted to examine the spin-orbit coupling 

effects on the properties of a  𝐷− system in a GQD.  In the present chapter, we shall make an 

attempt in this direction. We shall calculate the GS energy and binding energy of a 𝐷− system in 

a 3D GQD in the presence of Rashba and Dresselhaus spin-orbit interactions and an external 

magnetic field.  

    
 

6.2  Model and Formulation  
 
   A 𝐷− impurity in a GQD with RSOI and DSOI, placed in a magnetic field can be described by 

the Hamiltonian  

 

                                                                      𝐻 = 𝐻𝐷− + 𝐻𝑅 + 𝐻𝐷  ,                                                       (6.1) 
 
where 
 

                                             𝐻𝐷− = ∑ [
1

2𝑚∗
(𝒑𝑖 +

𝑒

𝑐
𝑨𝑖)

2

− 𝑉0 𝑒
−

𝑟𝑖
2

2 𝑅2 −
𝑒2

𝜖𝑟𝑖
]

2

𝑖=1

+
𝑒2

𝜖𝑟12
 ,                (6.2) 

                             

                                            𝐻𝑅 = ∑
𝛼𝑅

ℏ
[𝜎𝑖 × (𝑝𝑖 +

𝑒

𝑐
𝐴𝑖)

𝑧
]

2

𝑖=1

   ,                                                         (6.3) 

 

                                            𝐻𝐷 = ∑
𝛽𝐷

ℏ
[𝜎𝑖𝑥 (𝑝𝑖𝑥 +

𝑒

𝑐
𝐴𝑖𝑥) − 𝜎𝑖𝑦 (𝑝𝑖𝑦 +

𝑒

𝑐
𝐴𝑖𝑦)]

2

𝑖=1

.                        (6.4) 

 

Here  𝒓𝑖(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) represents the position of the 𝑖-th electron, 𝒑𝑖( 𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝑧) its canonically 

conjugate momentum,  𝑟12 = |𝒓𝟏 − 𝒓𝟐| refers to the distance between the two electrons,  𝑨𝑖   is the 

vector potential experienced by the 𝑖-th electron,  𝜎𝑖𝑘(𝑘 = 𝑥, 𝑦, 𝑧) represent the Pauli matrices and 

𝛼𝑅 and 𝛽𝐷 denote the Rashba and Dreselhaus spin-orbit coupling parameters respectively. We 

choose the symmetric gauge and therefore take:   𝐴𝑖 =
𝐵

2
(−𝑦𝑖, 𝑥𝑖, 0).  

   To eliminate the SOIs, we apply the following unitary transformation  

 

                                            𝑈 = 𝑒𝑖(𝑚∗ ℏ2⁄ )[𝛼𝑅(𝑦𝑖𝜎𝑖𝑥−𝑥𝑖𝜎𝑖𝑦)+ 𝛽𝐷(𝑥𝑖𝜎𝑖𝑥−𝑦𝑖𝜎𝑖𝑦)]                                      (6.5)   
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and express the resulting Hamiltonian in powers of 𝛼𝑅 and 𝛽𝐷  and neglect terms of order higher 

than 𝛼𝑅
2 and 𝛽𝐷

2 . The transformed Hamiltonian then reads in Rydberg units, 

 

ℋ̃ = ∑ [−𝛻𝑟𝑖

2 +
1

16
𝜔𝑐

2𝜌𝑖
2 − 𝑉0 𝑒

−
𝑟𝑖

2

2 𝑅2 −
2

𝑟𝑖
−

1

2
(𝛼𝑅

2 + 𝛽𝐷
2)𝐼 −

1

2
(𝛼𝑅

2 − 𝛽𝐷
2)𝜎𝑍𝐿𝑧𝑖

+
𝜔𝑐

2
𝐿𝑧𝑖

 

2

𝑖=1

−    
1

4
(𝛼𝑅

2 − 𝛽𝐷
2)𝜔𝑐𝜎𝑍𝜌2]   +   

2

𝑟12
                                                                    (6.6) 

                                                                        

where  𝜔𝑐 = 𝑒𝐵/𝑚∗𝑐,       𝜌𝑖
2 = 𝑥𝑖

2 + 𝑦𝑖
2      and    𝐿𝑧𝑖

= −𝑖ℏ(𝜕 𝜕𝜙𝑖⁄ ). We seek a variational 

solution of ℋ̃ and make the following choice for the variational function: 

 

                                       𝜓𝐷−(𝑟1, 𝑟2) = [1 + 𝜆𝑟12
𝑚]𝑒−𝜇(𝑟1

2+𝑟2
2)+𝜄(𝑚1+𝑚2)𝜙                                   (6.7) 

     

where 𝜆, 𝜇 and 𝑚 are variational parameters and  𝑚1 and 𝑚2 denote the magnetic quantum 

numbers. We have included the generalized Jastrow function 𝑟12
𝑚 in the wave function to 

incorporate the effect of Coulomb correlation. We now implement the transformations: 

    

                                                        𝒖 =
𝒓𝟏 + 𝒓𝟐

√𝟐
     ,     𝒗 =

𝒓𝟏 − 𝒓𝟐

√𝟐
  ,                                               (6.8) 

 
 

In terms of 𝒖 and 𝒗, both ℋ̃ and 𝜓𝐷− look simpler and calculation of the energy becomes easier. 

We perform the integration and minimization numerically. The BE of the 𝐷− impurity can be 

written as  

                                               𝐸𝐵(𝐷−) = 𝐸(𝐷0) + 𝐸(𝑒−) − 𝐸(𝐷−)                                             (6.9) 

 

where 𝐸(𝑒−) represents the GS energy of a single-electron-GQD, 𝐸(𝐷0) represents that of a 𝐷0 

impurity in GQD and 𝐸(𝐷−) represents that of a 𝐷− centre in the same QD.  

 
     Because of symmetry, the dipole moment in a 𝐷0 centre is expected to be zero. On the contrary, 

the 𝐷− system has a different scenario. Classically, however, even for a 𝐷− complex, the dipole 

moment is expected to be zero. The explanation is simple. The Coulomb correlation will tend to 

keep the electrons as far away from each other as possible and therefore the GS would correspond 

to a configuration in which the electrons are expected to settle in positions that would be 

diametrically opposite to each other.  According to quantum mechanics, however, one would 
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expect quantum fluctuations in the electrons’ positions and the equilibrium positions of the 

electrons will be such as will lead to the minimum energy. Thus, quantum mechanically, the 

expected electron position vectors will have an angle that is less than 180˚ leading to a finite dipole 

moment. The average distance between the two electrons < 𝑟12 > and the resultant dipole moment 

|P|  are given by  

 
 

 < r12 > = ⟨𝜓𝐷−(𝑟1, 𝑟2)|(𝐫𝟏 − 𝐫𝟐)|𝜓𝐷−(𝑟1, 𝑟2)⟩ = ⟨ψD−|(r1
2 + r2

2 − 2r1r2cosθ)1/2|ψD−⟩, (6.10)  

 

  |𝐏| =  ⟨𝜓𝐷−(𝑟1, 𝑟2)|(𝐫𝟏 + 𝐫𝟐)|𝜓𝐷−(𝑟1, 𝑟2)⟩ = ⟨ψD−|(r1
2 + r2

2 + 2r1r2cosθ)1/2|ψD−⟩  
 

           = √2 ⟨ψD−|𝑢|ψD−⟩                                                                                                        (6.11) 

 

where 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 cos(𝜙1 − 𝜙2), 𝜃 being the angle between 𝒓𝟏 and 𝒓𝟐. At 

zero temperature, the magnetic moment and susceptibility of the system under consideration can 

be defined as  

                                                              𝑀 = −
𝜕𝐸

𝜕𝐵
   ;        𝜒 =

𝜕𝑀

𝜕𝐵
  .                                                  (6.13) 

 
      
                                                   

6.3 Numerical results and discussion 

 
    We compute the energies in Ry

∗ = (𝑚∗𝑒4/𝜀2ℏ2) = 12 𝑚𝑒𝑉, lengths in 𝑎𝐵
∗ = (𝜖ℏ2/𝑚∗𝑒2) =

9.8 𝑛𝑚,  magnetic field in Tesla (T), and SOI constants in Ry
∗ -𝑎𝐵

∗ . We apply our theory to a GaAs 

QD for concreteness and so we choose 𝜀 = 12.4 and 𝑚∗ = 0.067𝑚0, 𝑚0  being the electron bare 

mass.  We show in Fig. 1, the behaviour of the GS energy 𝐸 as a function of QD size R for different 

sets of Rashba and Dresselhaus coefficients 𝛼𝑅 and 𝛽𝐷 with 𝑉0 = 25, 𝐵 = 2. With respect to R, 𝐸 

exhibits a decreasing behaviour. When both RSOI and DSOI are present, the decrease becomes a 

little faster.  The DSO coupling lowers the energy more at small 𝑅 while beyond a certain R, the 

RSO coupling lowers the energy more. Fig. 2 shows how 𝐸 varies with the magnetic field B for 

different sets of 𝛼𝑅 and 𝛽𝐷 with 𝑉0 = 15𝑅𝑦
∗ , 𝑅 = 1𝑎𝐵

∗ . With RSOI alone, as 𝐵 increases from zero, 

𝐸 first displays a slow decrease, reaches a shallow minimum and then increases monotonically 

with further increase in B. However, with DSOI alone, 𝐸 monotonically increases with 𝐵.  When 

both the interactions are present, E becomes again essentially a monotonically increasing function 

of 𝐵.   
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            Fig.1 GS energy (𝐸) of a  𝐷− complex vs.  𝑅 for a GaAs GQD with 𝑉0 = 25 Ry
∗ , 𝐵 = 2 𝑇 

            and for a few combination of 𝛼𝑅 (Ry
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (Ry
∗ -𝑎𝐵

∗ ). 

 

 

 
 

 

   

    

                              

 

 

 

 

 

                  

 

 

               Fig. 2  𝐸  vs. 𝐵 for a  𝐷− system in a GaAs GQD with 𝑉0 = 15 𝑅𝑦
∗ , 𝑅 = 1 𝑎𝐵

∗  for 

               different sets of 𝛼𝑅 (Ry
∗-𝑎𝐵

∗ ) and 𝛽𝐷 (Ry
∗ -𝑎𝐵

∗ ).  
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                                    Fig. 3  𝐸 vs. 𝛼𝑅 .  for a  𝐷− system in a GaAs GQD with 𝑉0 = 15 𝑅𝑦
∗ , 𝑅 = 1 𝑎𝐵

∗ , 

                               βD = 0 Ry
∗ − aB

∗   for different sets of B (T). 

 

 

    

 

 

 

 

 

 

 

 

 

                      

 

   

 

                      

                       Fig. 4  𝐸 vs. 𝛽𝐷 for a D− complex in a GaAs GQD with V0 = 15 Ry
∗ , R = 1 aB

∗ ,  

                       αR = 0 Ry
∗ − aB

∗   for different sets of B (T).   
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  Fig. 3 exhibits the behaviour of 𝐸 with 𝛼𝑅  for a few values of 𝐵 with 𝑉0 = 15𝑅𝑦
∗ , 𝑅 = 1𝑎𝐵

∗  in 

the case of 𝛽𝐷 = 0, while Fig. 4 shows the behaviour with 𝛽𝐷 for 𝛼𝑅 = 0. Though, both the Rashba 

and Dresselhaus interactions reduce  the energy, it is evident that the Rashba effect is more  

dominant than the Dresselhaus one.    

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                        Fig. 5  GS binding energy 𝐸𝐵 vs. 𝑅 for a D0 and  D− complex in a GaAs GQD with 

                         𝐵 = 5 𝑇, 𝑉0 = 15 𝑅𝑦
∗ , 𝑅 = 1 𝑎𝐵

∗  for different sets of 𝛼𝑅 (Ry
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (Ry
∗ -𝑎𝐵

∗ ).  

 

   Fig. 5 displays the behaviour of the BE (𝐸𝐵) of the 𝐷− centres with respect to R for a few sets 

of values of 𝛼𝑅 and 𝛽𝐷. The figure shows that BE of a 𝐷− impurity in a GaAs QD is positive which 

suggests that one can have a stable 𝐷− in this material.  The figure also shows the BE curves for a 

𝐷0 system and it is clear that in a GaAs GQD,  𝐷− has a much weaker binding than 𝐷0, which is 

of course an expected result. In both the systems, however, DSOI increases the binding, while 

RSOI decreases it.  One can see that the stability is maximum at a critical size (𝑅𝑐) of the QD and 

below this size BE falls off rather sharply.  The diminution in the strength of binding at small 𝑅 is 

solely a quantum phenomenon. The critical length 𝑅𝑐 depends on both the Rashba and Dreseelhaus 

interactions. The peak of the BE is increased by DSOI. From BE we can have an estimate of the 

binding temperature (TB) i. e., the temperature above which the D− will become unbound. Fig. 6 

shows the TB versus R plot for certain combinations of αR and βD values and thus the bound and 

the unbound regions.  
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                      Fig. 6 GS binding temperature vs  R for different sets of 𝛼𝑅 (𝑅𝑦
∗ -𝑎𝐵

∗ )  and 𝛽𝐷 (𝑅𝑦
∗ -𝑎𝐵

∗ ). 

   

 

 

 

 

 

 

               

 

           

             

 

 

 

 

 

                        

                        Fig. 7 𝐸𝐵 vs. 𝐵 of a 𝐷− complex in a GaAs GQD with 𝑉0 = 15 𝑅𝑦
∗ , 𝑅 = 2 𝑎𝐵

∗  for  

                        different sets of  𝛼𝑅 (𝑅𝑦
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (𝑅𝑦
∗ -𝑎𝐵

∗ ).  
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   Fig. 7 presents the behaviour of 𝐸𝐵 with B for a few combinations of 𝛼𝑅 and 𝛽𝐷. One may note 

that in the presence of DSOI, BE increases with 𝐵.  As we switch on a small RSOI together with 

DSOI, BE still increases with 𝐵 but the rate of increase decreases. In the presence of RSOI alone, 

BE is essentially independent of 𝐵. We do not have the experimental values of BE of a 𝐷− complex 

in a QD and so we cannot test the veracity of our results, but our results are of the same order of 

magnitude as the ones experimentally found for GaAs/AlGaAs  heterostructure [3].  

 

    

 

 

                                           
 

 

 

 

 

 

 

 

                        

           
 

 

 

 

 

 
                        Fig. 8 Magnetic moment vs B of a  𝐷− system in a GaAs GQD with 𝑉0 = 15 𝑅𝑦

∗ , 

                       𝑅 = 1 𝑎𝐵
∗  for different sets of 𝛼𝑅 (Ry

∗-𝑎𝐵
∗ ) and 𝛽𝐷 (Ry

∗ -𝑎𝐵
∗ ). 

 
 

    In Fig. 8, we plot the magnetic moment 𝑀 as a function of B for the 𝐷− system with 𝑉0 = 15 𝑅𝑦
∗ , 

𝑅 = 1 𝑎𝐵
∗  and for different sets of values of 𝛼𝑅 and 𝛽𝐷. |𝑀| increases with increasing 𝐵. In the 

case of 𝛼𝑅 = 𝛽𝐷 ,  𝑀 exhibits a purely diamagnetic behaviour. In the presence of DSO interaction 

alone, 𝑀 is strongly diamagnetic.  In the presence of RSO interaction alone, the behaviour of 𝑀 is 

more interesting. It shows a paramagnetic behaviour at small 𝐵 and a diamagnetic behaviour above 

a certain value of 𝐵. 

 

     Fig. 9 depicts how in the presence of RSOI and DSOI, the magnetic susceptibility 𝑆 of the 𝐷− 

system varies with 𝐵. One can see that  𝑆 is negative for all values of 𝐵.  Thus we reiterate that 𝐷− 

is diamagnetic like 𝐷0. With DSOI alone, |S| increases with increasing 𝐵. With RSOI alone, the 
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behavior of 𝑆 is more interesting.  As 𝐵 increases from zero, |S| initially decreases, then reaches a 

minimum at a critical 𝐵 and finally increases with a further increase in 𝐵.  When both the SOIs  

are present, |S| shows only an increasing behaviour with 𝐵. .  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 
                 Fig. 9 Magnetic susceptibility vs B of a  𝐷− system in a GaAs GQD with 𝑉0 = 15 𝑅𝑦

∗ ,  

                𝑅 = 1 𝑎𝐵
∗  for   different sets of 𝛼𝑅 (Ry

∗ -𝑎𝐵
∗ ) and 𝛽𝐷 (Ry

∗ -𝑎𝐵
∗ ).  

 

   Because of Coulomb correlation and quantum fluctuations, a 𝐷− centre can develop a dipole 

moment (P). In Fig. 10, we show the variation of P with the Rashba parameter 𝛼𝑅 for a few values 

of 𝐵 in the absence of DSOI. For 𝐵 = 0, P turns out to be independent of 𝛼𝑅 , while for 𝐵 ≠ 0, P 

is found to be an growing function of 𝛼𝑅 , the rate of increase being much larger at higher 𝛼𝑅 . For 

nonzero B, as 𝐵 increases, P decreases at small values of 𝛼𝑅 , while it increases at large 𝛼𝑅 , giving 

rise to a crossing behaviour. The reason is understandable. As 𝐵 increases, the motion of the 

electrons is restricted  in the close proximity of the nucleus because of the confining  effect of the 

field and consequently P reduces.  Thus there is a competition between the effects of the magnetic 

field and RSOI on P.  At small 𝛼𝑅 , the magnetic field wins and dipole moment decreases with 𝐵 

whereas at large 𝛼𝑅 , RSOI wins and the dipole moment increases with 𝐵. Fig.11 describes the 

behaviour of P with respect to 𝛽𝐷 for a few B values in the absence of RSOI. For 𝐵 = 0, P is 

independent of 𝛽𝐷 and for 𝐵 ≠ 0, P is a decreasing function of 𝛽𝐷 . In the  

present case, the magnetic field reduces P for all  𝛽𝐷 .   
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                             Fig. 10 dipole moment (P) vs αR of a  D− system in a GaAs GQD with V0 = 10 Ry

∗ ,  

                           R = 1 aB
∗ , 𝛽𝐷 =0 𝑅𝑦

∗ -𝑎𝐵
∗  for   different sets of B (T). 

 

 

 

 

                          

                              

 

 

 

 

 

 

 

 

                                

 
                          Fig. 11  P vs 𝛽𝐷 of a 𝐷− system in a GaAs GQD with V0 = 10 Ry

∗ , R = 1 aB
∗ ,   

                        𝛼𝑅 =0 𝑅𝑦
∗ -𝑎𝐵

∗   for  different values of B (T). 
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   In Fig.12, we show the variation of the the dipole moment P with respect to B for different sets 

of αR and βD. P decreases almost linearly with respect to B and the reason is again easy to 

understand in view of the confining effect of the field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

               Fig. 12 P vs. B of a 𝐷− complex in a GaAs GQD with 𝑉0 = 10 𝑅𝑦
∗ , 𝑅 = 1 𝑎𝐵

∗  for different  

               sets of 𝛼𝑅 (𝑅𝑦
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (𝑅𝑦
∗ -𝑎𝐵

∗ ).  

 

 
   Fig. 13 provides the plot of P versus R for a few sts of αR and βD.  It is clear from the figure that 

P decreases with decreasing dot size even in the presence of SOIs.  This is again not difficult to 

understand. The upturn in P at an extremely small R seems to be an artefact of the numerics. At 

large R,  P attains the bulk value. One can also see from the figure that RSOI enhances P while 

DSOI reduces it. These observations are consistent with the results shown in Figs.10 and 11.  

   In Fig.14 we show the behaviour of P with respect to the depth of the QD potential (V0) for a 

few combinations of αR and βD. P turns out to be a decreasing function of V0. The explanation for 

this behaviour is rather simple. For a given R, E decreases with increasing V0 and consequently, 

BE increases. In this case, electrons also get closer to the nucleus leading to a reduction in P.   
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           Fig. 13  P vs. 𝑅 of a 𝐷− complex in a GaAs GQD with 𝑉0 = 25 𝑅𝑦

∗ , 𝐵 = 1 𝑇 for different sets  

            of 𝛼𝑅 (𝑅𝑦
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (𝑅𝑦
∗ -𝑎𝐵

∗ ).  

 

 

 

 

 

 

 

 

 

 

 

  

                              

 

 
                               Fig. 14  P vs. 𝑉0 of a 𝐷− complex in a GaAs GQD with 𝐵 = 2 𝑇, 𝑅 = 1 𝑎𝐵

∗  for  

                            different sets of 𝛼𝑅 (𝑅𝑦
∗ -𝑎𝐵

∗ ) and 𝛽𝐷 (𝑅𝑦
∗ -𝑎𝐵

∗ ).  
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6.4   Conclusion 

 
    We have analysed variationally the role of spin-orbit interactions on the GS energy, binding 

energy, susceptibility and the dipole moment of a negative donor centre in a Gaussian QD of GaAs 

placed in a magnetic field.  The Coulomb correlation has been taken into account by using the 

Jastrow method. Our results show unequivocally that a stable bound system of 𝐷− complex can 

exist in a GaAs QD which should be experimentally observable. We have also shown that spin-

orbit interactions play an effective role in this problem. The Dresselhaus interaction enhances the 

binding energy while the Rashba coupling seems to reduce it. The binding becomes stronger with 

increasing magnetic field in the presence of the Dresselhaus interaction while it remains almost 

unaffected by the Rashba coupling.  We have also calculated the susceptibility which has turned 

out to be diamagnetic in character. Interestingly, in the presence Rashba interaction, the 

susceptibility curve exhibits a minimum. Finally we have shown the behaviour of the dipole 

moment of the 𝐷− system as a function of several QD parameters. We have shown that in the 

magnetic fied’s absence, the dipole moment 𝐷− in a GQD is not affected by the spin-orbit 

interactions.  However, if the magnetic field is present, the Rashba coupling enhances the dipole 

moment of the negative donor impurity, while the Dresselhaus coupling reduces it. The strength 

of the dipole moment also rises with the QD size and reduces with the increasing potential depth 

and the magnetic field.  
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Chapter -7 

 

 

Thermoelectric properties of single molecular 

transistor  
 
 
 
 
 
 

7.1 Introduction 
 
 

  With recent advances in molecular scale electronics, areas like Spintronics and Spin caloritronics 

[1-3] have received considerable attention. Controlling electron-spin and consequently the spin 

current is the hallmark of spintronics.  In contrast, in spin caloritronics [4], the spin current is 

primarily controlled and manipulated by thermal bias generated through a temperature gradient 

applied to the system's various ends. This is an area that can be considered as a fusion of 

thermoelectricity and spintronics. Spin transport in semiconductors is expected to give rise to 

dissipation-less information transfer with pure spin currents. For instance, spin-based transistors 

do not rely on the raising or lowering of electrostatic barriers and therefore can bypass scaling 

limitations that occur in charge-based transistors. The spin Seebeck effect (SSE), one of the most 

fascinating phenomena in spin caloritronics, is the formation of a spin current as a result of a 

temperature gradient. In a quantum dot (QD) junction, SSE has lately been the subject of extensive 

investigations. Several materials or heterojunctions including magnetic metals [5], semiconductors 

[6] and insulators [7,8] have shown evidence of SSE and some unique spin-based thermodynamic 

properties. Theoretical investigation shows that SSE can be considerably enhanced by inserting a 

QD between a metal lead and a magnetic insulator. This enhancement happens because of spin 

flipping and quantum resonance. 

 
   SSE was first discovered by Uchida et al. [9] in a ferromagnetic metal. It has also been observed 

in ferromagnetic insulators [10] and semiconducting materials [11], nonmagnetic materials with a 

magnetic field [12], paramagnetic materials [13], antiferromagnetic materials [14], metal-
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ferromagnet insulators [15] and also topological insulators [16]. More recently, antiferromagnetic 

SSE has been predicted and measured in 𝑀𝑛𝐹2. When two charge carriers of spin components, 𝑆↑ 

and 𝑆↓ exhibit equal magnitude of charge but of opposite sign, the charge Seebeck coefficient 

(𝑆𝑐 ∝ (𝑆↑ + 𝑆↓)) vanishes while the spin Seebeck coefficient becomes finite (𝑆𝑠 ∝ 𝑆↑ − 𝑆↓)) 

resulting in the net spin voltage with the charge voltage being zero. SSE can be described by the 

spin-resolved Seebeck coefficient (or thermo-power). 

 
   Recently, there has been an upsurge in the interest in single molecular transistors, which can play 

a crucial role in nano-electronics. A single molecular transistor (SMT) is a nano-device with a 

molecule or QD [17] in its centre that has discrete energy levels and is connected to a source and 

a drain by metallic leads. The conduction electrons in S and D are considered to be free so that 

they can be described by continuous energy levels. The entire arrangement is placed on an 

insulating substrate which is mounted on a gate. The current flowing through the SMT device can 

be effectively manipulated by tuning the gate voltage. The first SMT device was fabricated in 2000 

by linking the source and the drain with a single C60 molecule. A large number of investigations 

have revealed that SMT transport shows low-temperature correlated phenomena such as the 

Coulomb blockade and the Kondo effect [18-20]. However, in polar QDs, the interaction of 

electrons with phonons produces polarons which are electrons dressed with the cloud of virtual 

phonons and are the quasi-particles that participate in the transport process in these systems. Both 

electron-electron (el-el) and electron-phonon (el-ph) interactions affect the transport parameters of 

a correlated polar SMT device in general. 

 
   In the present study, we consider an SMT system placed in an external magnetic field and is 

mounted on an insulating substrate that contains a collection of uncoupled harmonic oscillators 

and acts as a heat bath giving rise to a dissipative effect to the current in SMT. We assume that 

QD has a single phonon mode that interacts with the substrate phonons and also with the QD 

electrons. We use the non-equilibrium Keldysh Green function formalism to study the effect of el-

el and el-ph interactions, magnetic field and dissipation on the thermal transport characteristics of 

the SMT device. In particular, we calculate the charge and spin-Seebeck effect.  

 
 

7.2 The Modal 

 
  We assume that the QD electrons of the SMT system interact with each other through the Hubbard 

onsite Coulomb interaction and with the single QD phonon via Holstein-type el-ph coupling. We 
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model the tunneling of electrons from S to QD and QD to D and vice versa by the Anderson 

Hamiltonian and assume that the QD phonon and the substrate phonons interact with each other 

via a linear Caldeira-Leggett (CL) interaction. This interaction renormalizes the frequency of the 

QD phonon leading to a dissipative effect in the SMT current. An external magnetic field is applied 

to the SMT system as shown in Fig. 1. This magnetic field lifts the spin degeneracies of the 

electronic levels. Due to the lifting of the spin degeneracy, the QD setup acts  

 

 

 

 

 

 

                               

 

             

                                       

 

                                  Fig.1 Schematic representation of an SMT device.    

 

as a spin-filtering device and produces a current that is spin-polarized. The system can be modelled 

by the Anderson-Holstein-Caldeira-Leggett Hamiltonian given by  

 
 

                                                       𝐻 = 𝐻𝑙 + 𝐻𝑄𝐷 + 𝐻𝑡 + 𝐻𝐵 .                                                              (7.1) 

 

The first term 𝐻𝑙 in Eq. (1) denotes the Hamiltonian of the leads, i.e., the source (𝑙 = S) and the 

drain ( 𝑙 = D) and is given by  

 

                                                               𝐻𝑙 = ∑ 𝜀𝑘

𝑘𝜎∈𝑆,𝐷

𝑛𝑘𝜎  ,                                                                      (7.2) 
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where 𝑛𝑘𝜎(= 𝑐𝑘𝜎
† 𝑐𝑘𝜎)  represents the number operator for the conduction electrons with 

momentum 𝒌 and spin 𝜎 in the metallic leads, 𝑐𝑘𝜎
† (𝑐𝑘𝜎) being the creation (annihilation) operator 

for the corresponding electrons. The second term, 𝐻𝑄𝐷 refers to the Hamiltonian of the QD and 

can be written as   

 

𝐻QD = ∑(𝜀𝑑

𝜎

− 𝑒𝑉𝑔)𝑛𝑑𝜎 + 𝑈𝑛𝑑,𝜎𝑛𝑑,−𝜎 +
1

2
𝑔𝜇𝐵𝐵𝑆𝑑

𝑧 + (
𝑝0

2

2𝑚0
+

1

2
𝑚0𝜔0

2𝑥0
2)  

 

                                     + 𝛾 ∑ 𝑛𝑑𝜎

𝜎

𝑥0 ,                                                                                                         (7.3) 

 

where 𝑛𝑑𝜎  (= 𝑐𝑑𝜎
† 𝑐𝑑𝜎) represents the number operator for the QD electrons with energy 𝜀𝑑 and 

spin 𝜎,  𝑐𝑑𝜎
†  (𝑐𝑑𝜎)  being the creation (annihilation) operator of the electrons,  𝑉𝑔  denotes the gate 

voltage,   𝑈 gives the measure of the onsite e-e interaction,  𝑩 (0,0, 𝐵) refers to the magnetic field, 

𝑆𝑑
𝑧 describes the z-component of the QD spin, 𝜇𝐵 is the Bohr magneton, 𝑔 is the gyromagnetic 

ratio, (𝑥0, 𝑝0) are the coordinate and the corresponding canonical momentum of the QD lattice 

mode, 𝜔0 being the mode frequency and  𝛾 is the e-p coupling coefficient. The third term in (1) 

describes the tunneling of electrons from the leads to QD and vice versa and is given by  

 

                                               𝐻𝑡 = ∑ (𝑉𝑘𝑐𝑘𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐),                                               

𝑘𝜎𝜖𝑆,𝐷

      (7.4) 

 

where  𝑉𝑘 is known as the hybridization coefficient, which essentially determines the strength of 

electron tunneling between the QD and the source or drain.  𝐻𝐵 represents the phonon bath and its 

interaction with the local QD phonon mode and is given by  

 

                                            𝐻𝐵 = ∑ [
𝑝𝑗

2

2𝑚𝑗
+

1

2
𝑚𝑗𝜔𝑗

2𝑥𝑗
2 ]

𝑁

𝑗=1

+ ∑ 𝛽𝑗

𝑁

𝑗=1

𝑥𝑗𝑥0 ,                                         (7.5) 

 

where (𝑥𝑗 , 𝑝𝑗)  are the generalized variables of the 𝑗-th substrate oscillator,  𝜔𝑗 its frequency and 

𝛽𝑗 denotes the strength of the CL coupling between the  𝑗-th oscillator of the substrate and the QD 

oscillator. The spectral density of the substrate phonons (𝐽(𝜔)) is described by the function: 
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                                                     𝐽(𝜔) = ∑ [
𝛽𝑗

2

2𝑚𝑗𝜔𝑗
]

𝑁

𝑗=1

𝛿(𝜔 − 𝜔𝑗).                                                      (7.6) 

                                          

 

7.3   Formulation 

 

7.3.1 Decoupling of coupling between QD and bath phonons interaction 

 
    In order to decouple the local QD phonon from the bath phonons partially, we perform the 

unitary transformations,  

                                                              

                                                                      𝑥̃𝑗 = 𝑥𝑗 +
𝛽𝑗𝑥0

𝑚𝑗𝜔𝑗
2    ,                                                               (7.7) 

                                                    

                                                                       𝑝𝑗 = −𝜄ℏ
𝜕

𝜕𝑥̃𝑗
 ,                                                                     (7.8) 

                                                             
 

which renormalize the local phonon frequency to 

                                                                 

                                                                  𝜔̃0 = √(𝜔0
2 − Δ𝜔2),                                                              (7.9) 

                                           

where 

                                                              ∆𝜔 =  (∑
𝛽𝑗

2

𝑚0𝑚𝑗𝜔𝑗
2

𝑁

𝑗=1

)

1/2

.                                                     (7.10) 

  

From now onwards, we will concentrate on SMT only.  Using Eq. (7.6) for the spectral density, 

(∆𝜔)2 can be written as  

 

                                                 (∆𝜔)2 =
2

𝑚0
∫

𝐽(𝜔)

𝜔

∞

0

𝑑𝜔,                                                              (7.11) 

 

In the Ohmic situation, the spectral density 𝐽(𝜔) follows the relationship: 

                                           

                                                                  𝐽(𝜔) = 2𝑚0𝛾𝜔                                                                     (7.12) 
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for all frequencies, where the Ohmic damping coefficient can be expressed as  

                                

                                                   𝛾 =
1

2𝑚0
∑ (

𝛽𝑗
2

2𝑚𝑗𝜔𝑗
2)

𝑁

𝑗=1

𝛿(𝜔 − 𝜔𝑗)  .                                               (7.13) 

 

One can see from Eq. (7.13) that 𝛾 diverges in the limit:  𝜔 → ∞ and therefore the form of 𝛾 given 

by (7.13) is not a realistic expression for a pure Ohmic spectral density. To salvage the situation, 

one introduces a cut-off frequency. In this regard, various forms have been proposed. We employ 

the Lorentz-Drude form [6], which gives 𝐽(𝜔) as follows: 

 

                                                             𝐽(𝜔) =
2𝑚0𝛾𝜔

[1 + (
𝜔
𝜔𝑐

 )
2

]
 ,                                                       (7.14) 

 
where 𝜔𝑐 denotes the cut-off frequency. It is evident that in the limit:  𝜔 → ∞,  𝐽(𝜔) → 0, and in 

the limit: 𝜔 → 0,  one obtains the pure Ohmic spectral density. Finally, we can express the change 

in the frequency of QD phonon as: 

 
                                                                     Δ𝜔2 = 2𝜋𝛾𝜔𝑐 .                                                                   (7.15) 
 
 

The reduction in the frequency of the QD phonon gives rise to a resistive effect which is precisely 

the role of the substrate towards dissipation. We neglect the higher-order dissipative effects. The 

total transformed Hamiltonian is given by 

 

     𝐻̅ = ∑ 𝜀𝑘𝑛𝑘𝜎

𝑘𝜎𝜖𝑆,𝐷

+ ∑(𝜀𝑑 − 𝑒𝑉𝑔)𝑛𝑑𝜎 + ∑ (𝑉𝑘𝑐𝑘𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐)

𝑘𝜎𝜖𝑆,𝐷𝜎

+ 𝑈𝑛𝑑,𝜎𝑛𝑑,−𝜎 + 𝑔𝜇𝐵𝐵𝑆𝑑
𝑧 

  

                                + ℏ𝜔̃0𝑏†𝑏 +  𝜆ℏ𝜔̃0 ∑ 𝑛𝑑𝜎

𝜎

(𝑏† + 𝑏).                                                            (7.16) 

 

where 𝜆 is the renormalized el-ph coupling constant (renormalized by the QD-bath interaction).  

 

7.3.2 Elimination of phonons 

  To decouple this interaction, we apply the celebrated Lang-Firsov transformation (LFT) [43] with 

a unitary operator:  𝑈 = 𝑒𝑠,  where 
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                                                                 𝑆 = 𝜆(𝑏† − 𝑏) ∑ 𝑛𝑑𝜎  .

𝜎

                                                       (7.17) 

 
It is well-known that this transformation works better for in the anti-adiabatic regime. The 

transformed Hamiltonian can be written as 

 

                                                                   𝐻̃ = 𝑒𝑆𝐻𝑒−𝑆   ,                                                              (7.18) 

 
The electron operators of the system are transformed as follows: 
 
 

                                           𝑐̃𝑑𝜎 =  𝑐𝑑𝜎𝜒̂,               𝑐̃𝑑𝜎
† =  𝑐𝑑𝜎

† 𝜒̂†    ,                                               (7.19) 

 
where                               

                                                  𝜒̂  = 𝑒−𝜆(𝑏†−𝑏) ,      𝜒̂† = 𝑒+𝜆(𝑏†−𝑏)   ,                                             (7.20) 

 

and the phonon operators are transformed as: 

 

                                         𝑏̃ = 𝑏 − ∑ 𝜆𝑛𝑑𝜎  

𝜎

, 𝑏̃† = 𝑏† − ∑ 𝜆𝑛𝑑𝜎

𝜎

  .                                (7.21) 

 
Thus the transformed Hamiltonian reads   
 

 

     𝐻̃ = ∑ 𝜀𝑘

𝑘𝜎𝜖𝑆,𝐷

𝑛𝑘𝜎 + ∑ 𝜀𝑑̃𝑛𝑑𝜎

𝜎

+  𝑈̃𝑛𝑑,𝜎𝑛𝑑,−𝜎 + ℏ𝜔̃0𝑏†𝑏 + ∑ (𝑉̃𝑘

𝑘𝜎𝜖𝑆,𝐷

𝑐𝑘𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐),    (7.22) 

 

with 
 

                                             𝜀𝑑̃𝜎 = 𝜀𝑑 − 𝑒𝑉𝑔 − 𝜇𝐵𝜎𝐵 − 𝜆2ℏ𝜔̃0 ,                                                (7.23) 

 

                                                𝑈̃ = 𝑈 − 2ℏ𝜔̃0𝜆2,                                                                            (7.24) 

 

                                              Ṽ𝑘 = 𝑉𝑘𝜒̂ = 𝑉𝑘𝑒𝜆(𝑏−𝑏†)  .                                                                 (7.25) 

 

where 𝜀𝑑̃𝜎 is the QD energy renormalized by the el-ph interaction, 𝑈̃ denotes the modified 

Coulomb correlation strength and 𝑉̃𝑘 represents the phonon-mediated hybridization strength.  
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7.3.3 Tunnelling current: Non-equilibrium Keldysh Green function formalism  

 
  We calculate the expression for the current density employing Keldysh method. We present here 

the derivation of the tunnelling current expression in the presence of the el-el, el-ph interactions 

and quantum dissipation. The current from the source to the QD in SMT can be written as the 

average value of the rate of change of charge operator: 

 

                                                                  𝑄 = − 𝑒𝑁𝑠                                                                       (7.26) 

 

where 𝑁𝑠 is the number operator for the source electrons which is given by 

   

                                                            𝑁𝑠𝜎 = ∑ 𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝑘𝜎∈𝑆

.                                                              (7.27) 

 
Thus the tunnelling charge current flowing through the central interacting QD can be written as:   

 

                                     𝐽𝑆𝜎 = −𝑒 ⟨0|
𝑑𝑁𝑠𝜎

𝑑𝑡
|0⟩  =  −

𝜄 𝑒

ℏ
⟨0|[ 𝐻̃, 𝑁𝑠𝜎]|0⟩  ,                                (7.28) 

 

where  𝐻̃ refers to the transformed Hamiltonian in equation (7.22) and the averaging state |0⟩ is 

the ground state of the whole system i.e., |0⟩ = |0⟩𝑒𝑙 |0⟩𝑝ℎ. Since 𝑁𝑠 commutes with all but the 

hybridization term of  𝐻̃, we obtain   

                                                 𝐽𝑠𝜎 =
𝜄𝑒

ℏ
∑ [ 𝑉̃𝑘 < 𝑐𝑘𝜎

† 𝑐𝑑𝜎 > −ℎ. 𝑐]

𝑘𝜎𝜖𝑠

  ,                                      (7.29) 

 

where 𝑉̃𝑘 is the average of  𝑉̃𝑘 with respect to the phonon state of the system. Eq. (7.29) can be 

written as  

 

                                              𝐽𝑠𝜎 =
2𝑒

ℏ
𝑅𝑒 { ∑ [ 𝑉̃𝑘 𝐺𝒌𝜎,𝑑

< (𝑡, 𝑡)]

𝑘𝜎𝜖𝑠

} ,                                              (7.30) 

 

where  Gkσ,d
< (t, t′) and Gd,kσ

> (t, t′) are the Keldysh lesser and greater tunnelling Green functions 

defined as   
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                                            𝐺𝒌𝜎,𝑑
< (𝑡, 𝑡′) = 𝑖〈0|𝑐𝑑

†(𝑡′)𝑐𝒌𝜎(𝑡)|0〉,                                               (7.31𝑎) 

 

                                            𝐺𝑑,𝒌𝜎
< (𝑡, 𝑡′) = 𝑖〈0|𝑐𝒌𝜎

† (𝑡′)𝑐𝑑(𝑡)|0)〉,                                             (7.31𝑏) 

with the property: 

 

                                               𝐺𝒌𝝈,𝑑
< (𝑡, 𝑡) =  −[𝐺𝒅,𝒌𝝈

< (𝑡, 𝑡)]
∗
   ,                                                      (7.32) 

             

                                                          𝑐𝑑𝜎(𝑡) = 𝑒−𝑖𝐻̃𝑒𝑙𝑡𝑐𝑑𝜎𝑒𝑖𝐻̃𝑒𝑙𝑡  .                                                        (7.33) 

Eq. (7.30) can be written as  

 

                                                   𝐽𝑆 =
2𝑒

ℏ
𝑅𝑒 { ∑ 𝑽̃𝒌 𝐺𝑑,𝑘𝜎

< (𝑡, 𝑡)

𝑘𝜎∈𝑆

}     .                                          (7.34) 

 

𝐺𝑑,𝑘𝜎
< (𝑡) can be obtained through the equation of motion (EOM) method. Due to the structural 

similarity between the non-equilibrium theory and the equilibrium theory, we consider the zero 

temperature time-ordered Green function and its equation of motion.  So, let us define the retarded 

and the advanced tunnelling Green functions as 

 

                                𝐺𝑑,𝑘𝜎
𝑟(𝑎)(𝑡 − 𝑡′) =  ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑(𝑡), 𝑐𝑘

†(𝑡′)}|0〉 ,                             (7.35) 

 

which satisfies the following inhomogeneous equation:  

 

                                (−𝑖
𝜕

𝜕𝑡′
− 𝜀𝑘) 𝐺𝑑,𝑘𝜎

𝑟(𝑎)(𝑡 − 𝑡′)  = 𝑉𝑘
∗𝐺𝑑𝑑

𝑟(𝑎)(𝑡 − 𝑡′)   ,                                   (7.36) 

where the retarded (advanced) QD Green function 𝐺𝑑𝑑
𝑟(𝑎)(𝜏 = 𝑡 − 𝑡′) is defined as  

                  

                                            𝐺𝑑𝑑
𝑟(𝑎)(𝜏) = ∓𝑖 𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑(𝑡), 𝑐̃𝑑

†(𝑡′)}|0〉  .                               (7.37) 

 

Therefore, Eq. (7.36) can be easily solved to give 

 

                                              𝐺𝑑,𝑘𝜎
𝑟(𝑎)(𝜏) = ∫ 𝑑𝜏 𝑉𝑘

∗𝐺𝑑𝑑
𝑟(𝑎)(𝜏)𝑔𝑘𝜎

𝑟(𝑎)(𝜏)  ,                                               (7.38) 

 

where 𝑔𝑘𝜎
𝑟(𝑎)(𝜏) is the non-interacting lead Green function given by  
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                                      𝑔𝑘𝜎
𝑟(𝑎)(𝑡 − 𝑡′) = ∓𝑖𝜃((±𝑡 ∓ 𝑡′))〈{𝑐𝑘𝜎

† (𝑡), 𝑐𝑘𝜎(𝑡′)}〉 

 

                                                             = ∓𝑖𝜃((±𝑡 ∓ 𝑡′))𝑒−𝑖𝜀𝑘(𝑡−𝑡′)  .                                        (7.39) 

where the averaging state is the ground state of the non-interacting electron system. 𝑔𝑘𝜎
𝑟(𝑎)

 satisfies 

the equation 

 

                                                   (−𝑖
𝜕

𝜕𝑡
− 𝜀𝑘) 𝑔𝑘𝜎

𝑟(𝑎)(𝑡)  =  𝛿(𝑡)  .                                                     (7.40) 

 
According to the analytical continuum rule, 𝐶(𝜏) = 𝐴(𝜏)𝐵(𝜏),  which can be explicitly written 

as  

 𝐶(𝑡, 𝑡′) = ∫ 𝑑𝑡1 𝐴(𝑡, 𝑡1)𝐵(𝑡1, 𝑡′)  ,                                               (7.41) 

 

on the real axis, can be written as  

 

                   𝐶<(𝑡, 𝑡′) = ∫[𝐴<(𝑡, 𝑡1)𝐵(𝑎)(𝑡1, 𝑡′) + 𝐴𝑟(𝑡, 𝑡1)𝐵<(𝑡1, 𝑡′)] 𝑑𝑡1 .                        (7.42) 

 

So we can write   

 

           𝐺𝑑,𝑘𝜎
< (𝑡, 𝑡′) = ∫ 𝑑𝑡1 𝑉𝑘

∗[𝐺𝑑𝑑
< (𝑡, 𝑡1)𝑔𝑘𝜎

𝑎 (𝑡1, 𝑡′) + 𝐺𝑑𝑑
𝑟 (𝑡, 𝑡1)𝑔𝑘𝜎

< (𝑡1, 𝑡′)] ,                  (7.43) 

 
where   

 

                                                  𝐺𝑑𝑑
< (𝜏) = 𝑖〈0|𝑐𝑑

†(𝑡′)𝑐𝑑(𝑡)|0〉,                                                            (7.44)    

 

                                                𝐺𝑑𝑑
> (𝜏) = 𝑖〈0|𝑐𝑑(𝑡) 𝑐𝑑

†(𝑡′)|0〉,                                                             (7.45) 
 

                                          𝑔𝑘𝜎
< (𝑡 − 𝑡′) = 𝑖〈𝑐𝑘𝜎

† (𝑡′)𝑐𝑘𝜎(𝑡)〉 = 𝑖 𝑓(𝜀𝑘)𝑒−𝑖𝜀𝑘(𝑡−𝑡′),                         (7.46) 

 

 𝑓(𝜀𝑘) denoting the Fermi-Dirac (FD) distribution function. The Fourier transforms of the different 

Green functions are defined as  

                                               𝐺𝑑,𝑘𝜎
< (𝜏) =  

1

2𝜋
∫ 𝑑𝜀  𝑒−𝑖𝜀𝜏 𝐺𝑑,𝑘𝜎

< (𝜀),                                                  (7.47) 
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                                               𝐺𝑑𝑑
𝑟 (𝜏) =

1

2𝜋
 ∫ 𝑑 𝜀 𝑒−𝑖𝜀𝜏𝐺𝑑𝑑

𝑟 (𝜀) ,                                                     (7.48) 

 

                                          𝐺𝑑𝑑
< (𝜏) =

1

2𝜋
∫ 𝑑𝜀  𝑒−𝑖𝜀𝜏 𝐺𝑑𝑑

< (𝜀),                                                       (7.49) 

 

                                          𝑔𝑘𝜎
𝑎 (𝜏) =

1

2𝜋
∫ 𝑑𝜀  𝑒−𝑖𝜀𝜏 𝑔𝑘𝜎

𝑎 (𝜀) ,                                                      (7.50) 

 

where  𝐺𝑑𝑑
𝑟(𝑎)(𝜀) and  𝐺𝑑𝑑

< (𝜀) represent the retarded (advanced) and lesser Keldysh Green functions 

respectively for the QD electron in the energy space and 𝑔𝑘𝜎
𝑎 (𝜀) refers to the advanced Green 

function for the non-interacting electrons in the 𝜀-space.  The first term of   𝐺𝑑,𝑘𝜎
< (𝑡, 𝑡′)  can be 

calculated as follows. 

 

                                        𝐺𝑑,𝑘𝜎
< (𝑡, 𝑡′) = ∫ 𝑑𝑡1 𝑉𝑘

∗𝐺𝑑𝑑
< (𝑡, 𝑡1)𝑔𝑘𝜎

𝑎 (𝑡1, 𝑡′)                                                    

 

                                         = (
1

2𝜋
)

2

∫ 𝑑𝑡1𝑉𝑘
∗ ∫ 𝑑𝜀 𝑒−𝑖𝜀(𝑡−𝑡1)𝐺𝑑,𝑘𝜎

< (𝜀) ∫ 𝑑𝜀′ 𝑒−𝑖𝜀′(𝑡1−𝑡′)      

  

                                                    =
1

2𝜋
∫ 𝑑𝜀 𝑉𝑘

∗ 𝐺𝑑,𝑘𝜎
< (𝜀)𝑔𝑘𝜎

𝑎 (𝜀) 𝑒−𝑖𝜀(𝑡−𝑡′)   .                                   (7.51) 

 

Similarly, we can calculate the second term of   𝐺𝑑,𝑘𝜎
< (𝑡, 𝑡′) and thus   𝐺𝑑,𝑘𝜎

< (𝑡, 𝑡′) is given by  

 

               𝐺𝑑,𝑘𝜎
< (𝑡, 𝑡′) = ∫

𝑑𝜀

2𝜋
𝑉𝑘

∗[ 𝐺𝑑,𝑘𝜎
< (𝜀)𝑔𝑘𝜎

𝑎 (𝜀) + 𝐺𝑑𝑑
𝑟 (𝜀)𝑔𝑘𝜎

< (𝜀)] 𝑒−𝑖𝜀(𝑡−𝑡′).                 (7.52) 

 

We obtain the expression for the source current as   

 

                               𝐽𝑠𝜎 =
2𝑒

ℏ
∫

𝑑𝜀

2𝜋
𝑅𝑒 {∑ 𝑉̃𝑘𝑉𝑘

∗[𝐺𝑑𝑑
𝑟 (𝜀)𝑔𝑘𝜎

< (𝜀) + 𝐺𝑑𝑑
< (𝜀)𝑔𝑘𝜎

𝑎 (𝜀)]

𝑘

}  ,                (7.53) 

 

where 𝑔𝑘𝜎
< (𝜀) is given by: 

 

     𝑔𝑘𝜎
< (𝜀) = ∫ 𝑑𝜏 𝑒𝑖𝜀𝜏 𝑔𝑘𝜎

< (𝜏) = 2𝜋𝑖 𝑓(𝜀𝑘)𝛿(𝜀 − 𝜀𝑘).                                (7.54) 

We first consider the first term in the current expression (7.54). We denote this term by 𝐽𝑠𝜎(1) . 
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                          𝐽𝑠𝜎(1) =   
2𝑒

ℏ
∫

𝑑𝜀

2𝜋
𝑅𝑒 {∑ 𝑉̃𝑘𝑉𝑘

∗[𝐺𝑑𝑑
𝑟 (𝜀)𝑔𝑘𝜎

< (𝜀)]

𝑘

} .                                    (7.55) 

 

We convert the momentum summation into energy integration and get 

 

                𝐽𝑠𝜎(1) =
2𝑒

ℏ
∫

𝑑𝜀

2𝜋
∫ 𝑑𝜀𝑘 Γ𝑆(𝜀𝑘) 𝑅𝑒[𝐺𝑑𝑑

𝑟 (𝜀)𝑖𝛿(𝜀 − 𝜀𝑘)𝑓𝑆(𝜀𝑘)] ,                 (7.56) 

 

  where 
 

                                              Γ𝑆(𝜀𝑘) = 2𝜋𝜚𝑆(𝜀𝑘)𝑉̃𝑘𝑉𝑘
∗ ,                                                    (7.57) 

 

𝜌𝑆 and 𝑓𝑆(𝜀) being respectively the density of states and the Fermi distribution function of  the 

source. Integration over 𝜀𝑘 gives  

 

         𝐽𝑠(1) =  
2𝑒

ℏ
∫

𝑑𝜀

2𝜋
𝑓𝑆(𝜀)Γ𝑆(𝜀)𝑅𝑒{𝑖𝐺𝑑𝑑

𝑟 (𝜀)} = −
2𝑒

ℏ
∫

𝑑𝜀

2𝜋
𝑓𝑆(𝜀)Γ𝑆(𝜀)𝐼𝑚{𝐺𝑑𝑑

𝑟 (𝜀)} 

 

                                          =
𝑖𝑒

ℏ
∫

𝑑𝜀

2𝜋
𝑓𝑆(𝜀)ΓS(𝜀)[𝐺𝑑𝑑

𝑟 (𝜀) − 𝐺𝑑𝑑
𝑎 (𝜀)]  ,                                       (7.58) 

 

where we have used the relation  

 

                                                           𝐺𝑑𝑑
𝑟 (𝜀) = [𝐺𝑑𝑑

𝑎 (𝜀)]∗  .                                                           (7.59) 

 

The other part of the current expression can be manipulated similarly. Finally, we obtain  

 

                  𝐽𝑆𝜎(𝐷𝜎) =
𝑖𝑒

ℏ
∫

𝑑𝜀

2𝜋
Γ𝑆(𝐷)(𝜀){𝐺𝑑𝑑

< (𝜀) + 𝑓𝑆(𝐷)[𝐺𝑑𝑑
𝑟 (𝜀) − 𝐺𝑑𝑑

𝑎 (𝜀)]},                       (7.60) 

 

where  Γ𝑆(𝐷)(𝜀) measures the hybridization interaction of the QD with the source (drain) and is 

given by  
  

                                                       Γ𝑆,𝐷(𝜀) = 2𝜋𝜚𝑆,𝐷(𝜀)𝑉̃𝑘𝑉𝑘
∗ ,                                                            (7.61) 

 

 In the steady-state, the current will be uniform and we have:  

 

                                                         𝐽
𝜎

= 𝐽𝑆𝜎 = −𝐽𝐷𝜎   ,                                                                      (7.62) 

 

and after symmetrizing, we can write: 



131 
 

                                            

                                                                 𝐽𝜎 =
(𝐽𝑆𝜎 − 𝐽𝐷𝜎)

2
                                                                    (7.63) 

                                                                         

which can be expressed as   

 

                                  𝐽𝜎 =
𝑒

2ℎ
∫[{𝑓𝑠Γ𝑠 − 𝑓𝐷Γ𝐷}A(𝜀) + (Γ𝑆 − Γ𝐷)𝐺𝑑𝑑

< (𝜀)] 𝑑𝜀 ,                               (7.64) 

 

where 𝑓𝑆(𝐷)(𝜀) denotes the Fermi function for the S (D) electrons:  

 

                                                𝑓𝑆(𝐷)(𝜖) =
1

𝑒(𝜖−𝜇𝑆(𝐷))/𝑘𝐵𝑇𝑆(𝐷) + 1
  ,                                                     (7.65) 

 

𝜇𝑆(𝐷) and 𝑘𝐵𝑇𝑆(𝐷) being respectively the chemical potential and the thermal energy of the source 

(drain) and A(𝜀) is the spectral function which describes the excitations and is related to the Green 

functions as 

 

                                         A(𝜀) = 𝑖[𝐺𝑑𝑑
𝑟 (𝜀) − 𝐺𝑑𝑑

𝑎 (𝜀)] =  𝑖[𝐺𝑑𝑑
< (𝜀) − 𝐺𝑑𝑑

> (𝜀)]   .                         (7.66) 

 
 
We assume that the QD is symmetrically coupled to the left and the right leads and so we can 

write:  
 

                                            Γ =  
Γ𝑆(𝜀) + Γ𝐷(𝜀)

2
= 2𝜋𝜌(0)|𝑉𝑘|2𝑒−𝜆2/2 ,                                          (7.67) 

 
and consequently, the expression for the tunnelling charge current reduces to 

 

                                                      𝐽𝜎 =
𝑒𝛤

2ℎ
∫[{𝑓𝑠 − 𝑓𝐷} A(𝜀)] 𝑑𝜀 .                                                      (7.68) 

 

To obtain 𝐴(𝜀) and hence 𝐽𝜎, we need to calculate 𝐺𝑑𝑑
𝑟(𝑎)

(𝜀) or  𝐺𝑑𝑑
<(>)(𝜀). 𝐺𝑑𝑑

𝑟(𝑎)(𝑡, 𝑡′) can be written 

as  
 
 

                  𝐺𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′) = [𝐺̃𝑑𝑑

𝑟(𝑎)(𝑡, 𝑡′)]
𝑒𝑙

〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ = [𝐺̃𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′)]

𝑒𝑙
𝑒−𝜑(𝜏) ,                 (7.69) 

 

where [𝐺̃𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′)]

𝑒𝑙
 is defined as   

 
 

                            [𝐺̃𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′)]

𝑒𝑙
= ∓𝑖 𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐𝑑𝜎(𝑡), 𝑐𝑑𝜎

† (𝑡′)}|0〉𝑒𝑙,                               (7.70) 
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and 〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ is calculated as 

 

                      〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ  =  〈𝑒−𝑖𝐻̃𝑝ℎ𝑡𝜒 ̂𝑒𝑖𝐻̃𝑝ℎ𝑡𝑒−𝑖𝐻̃𝑝ℎ𝑡′
𝜒̂†𝑒𝑖𝐻̃𝑝ℎ𝑡′

〉𝑝ℎ = 𝑒−𝜑(𝜏),                 (7.71) 

 
with   
 

𝜑(𝜏) = 𝜆2 [2𝑓𝑝ℎ + 1 − 2{𝑓𝑝ℎ(1 + 𝑓𝑝ℎ)}
1/2

𝑐𝑜𝑠(ℏ𝜔̃0(𝜏 + 𝑖𝛽/2))] , 

 

where 𝑓𝑝ℎ is the phonon distribution function given by 𝑓𝑝ℎ = [𝑒𝑥𝑝(ℏ 𝜔̃0 𝑘𝐵𝑇⁄ ) − 1]−1. After 

some algebraic manipulation, we obtain  

 

                                                  𝜑(𝜏) = ln [ ∑ 𝐿𝑛(𝑧)

∞

𝑛=−∞

𝑒−𝑖𝑛ℏ𝜔̃0𝜏],                                                   (7.72) 

 

where 𝐿𝑛 is the spectral weight of the 𝑛th phonon side band [24] and is given by  

                                     

                                        𝐿𝑛(𝑧) = 𝑒𝑥𝑝 [−𝜆2(2𝑓𝑝ℎ + 1) + (
𝑛ℏ𝜔̃0

2𝑘𝐵𝑇
)] 𝐼𝑛(𝑧),                                    (7.73) 

 

where 𝑧 = 2𝜆2[𝑓𝑝ℎ(1 + 𝑓𝑝ℎ)]
1/2

, 𝑛 is the number of phonons and  𝐼𝑛  is the Modified Bessel 

function of the second kind. Thus,  𝐺𝑑𝑑
𝑟(𝑎)(𝜀) can be written in the 𝜀-space as  

 

                                            Gdd
r(a)(𝜀) = ∑ Ln(𝑧)

∞

n=−∞

[G̃dd
r(a)(𝜀 ∓ nℏω̃0)]

𝑒𝑙
,                                       (7.74) 

                          

where the Green functions G̃dd
r,a(ε) are defined as 

                                 

                                            G̃dd
r(a)(ε)  = ∫ 𝐺̃𝑑𝑑

𝑟(𝑎)
(𝜏) 𝑒𝑖𝜀𝜏𝑑𝜏  ,                                                               (7.75) 

 

Using the equation of motion technique [19],  G̃dd
r,a(ε) is calculated as  

 
 

                          [ G̃dd
r(a)(𝜀 ∓ nℏω̃0)]

𝑒𝑙
=

1

𝜀 ∓ nℏω̃0 − ε̃dσ − Ũ〈nd,−σ〉 − ∑̃r(a)(𝜀)
,                    (7.76) 
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where n is the phonon number, 〈𝑛𝑑𝜎〉 is the mean electron occupancy in QD and ∑̃r(a)(𝜀) is the 

retarded (advanced) self-energy which can be expressed as  

 

               ∑̃r(a)(𝜀) = lim
η→0

∑ |< Ṽk >|
2

(𝜀 ∓ nℏω̃0 − εk ± iη)−1

kϵS,D

 = Λ̃(𝜀) ∓ iΓ̃(𝜀),                 (7.77) 

 

where the real part of  ∑̃r(a)(𝜀) can be clubbed with the QD energy and the imaginary part 

simplifies to  

 

                                                           Γ̃ =  Γe−λ2(Nph+1 2⁄ ).                                                                   (7.78) 

 

Substituting Eqs. (7.75) and (7.77) in Eq. (7.67), A(𝜀) can be obtained as  

 

                           A(𝜀)  = ∑
2Γ ̃Ln(z)

(𝜀 ∓ nℏω̃0 − ε̃dσ − Ũ〈nd,−σ〉)
2

+ Γ̃2
,

∞

n=−∞

                                        (7.79)  

 

Following the same procedure as above, the mean electron occupancy 〈𝑛𝑑𝜎〉 in the QD of a 

symmetric SMT is obtained as    

  

                                              〈𝑛𝑑𝜎〉    = ∫ dω 
(fs + fD)

2π
 A(𝜀).                                                           (7.80) 

 

𝐴(𝜔) can be determined by solving Eqs. (42) and (43) self-consistently and consequently 𝐽𝜎 can 

be calculated. We consider the temperature difference   ∆𝑇 = 𝑇𝑆 − 𝑇𝐷 = 𝑇𝑆 − 𝑇 and the chemical 

potential difference ∆𝜇 = 𝜇𝑆 − 𝜇𝐷 =  𝜇𝑆 − 𝜇 as small and positive. In this limit, (𝑓𝑠 − 𝑓𝐷) reduces 

to 

 

                          𝑓𝑠(𝜖) − 𝑓𝐷(𝜖) ≈
1

4𝑘𝐵𝑇𝑐𝑜𝑠ℎ2 (
𝜖 − 𝜇
2𝑘𝐵𝑇

)
(𝛥𝜇 +

𝜖 − 𝜇

𝑇
𝛥𝑇),                                    (7.81) 

 

so that Eqs. (7.69) becomes  

 

                         𝐽𝜎 =
𝑒

ℎ
∫ [{

1

4𝑘𝐵𝑇𝑐𝑜𝑠ℎ2 (
𝜖 − 𝜇
2𝑘𝐵𝑇

)
(𝛥𝜇 +

𝜖 − 𝜇

𝑇
𝛥𝑇) } 𝜏𝜎(𝜖)] 𝑑𝜀 .                        (7.82) 

 
In the linear response regime for small values of ∆𝑉 and ∆𝑇 [20,21], we can write 
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                                               𝐽𝜎 = ∑(𝑒𝐾0𝜎∆𝜇 +
𝑒

𝑇
𝐾1𝜎 ∆𝑇

𝜎

)  ,                                                          (7.83) 

 
where  𝐾0𝜎 and  𝐾1𝜎  are known as the kinetic Onsagar coefficients and are given by     

                                                        

                                       𝐾0𝜎 =
𝑒

ℎ
∫ [{ 

1

4𝑘𝐵𝑇𝑐𝑜𝑠ℎ2 (
𝜖 − 𝜇
2𝑘𝐵𝑇

)
} 𝜏𝜎(𝜖)] 𝑑𝜀 .                                      (7.84) 

 

                                       𝐾1𝜎 =
𝑒

ℎ
∫ [{ 

(𝜖 − 𝜇)

4𝑘𝐵𝑇𝑐𝑜𝑠ℎ2 (
𝜖 − 𝜇
2𝑘𝐵𝑇

)
} 𝜏𝜎(𝜖)] 𝑑𝜀 .                                      (7.85) 

 

The charge and spin currents are defined as [19]: 

 

                                                                      𝐽𝑐 = (𝐽↑ + 𝐽↓)  ,                                                                   (7.86) 

 

                                                                      𝐽𝑠 = (𝐽↑ − 𝐽↓)     ,                                                                (7.87) 

                                                                                  

and the energy current is defined as 

 

                                                      𝐽∈ =
𝑒

ℎ
∫ 𝜖{ 𝑓𝑠(𝜖) − 𝑓𝐷(𝜖)}[𝜏𝜎(𝜖)] 𝑑𝜀 .                                        (7.88) 

 
 

7.2.4   Conductance, charge and spin-Seebeck coefficients 
 

  The heat current can be defined as [20]: 

 

                                                𝐽ℎ
𝜎 = 𝐽∈ − 𝜇 𝐽𝜎 = ∑(𝐾1𝜎∆𝜇 −

1

𝑇
𝐾2𝜎 ∆𝑇

𝜎

),                                       (7.89) 

                                                                                     
where 𝐾1𝜎 is defined in (7.86) and 𝐾2𝜎 is given by 

 

                                         𝐾2𝜎 =
𝑒

ℎ
∫ [{ 

(𝜖 − 𝜇)2

4𝑘𝐵𝑇𝑐𝑜𝑠ℎ2 (
𝜖 − 𝜇
2𝑘𝐵𝑇

)
} 𝜏𝜎(𝜖)] 𝑑𝜀 .                                    (7.90) 

 

The kinetic (Onsager) coefficient 𝐾𝑛,𝜎(𝜇) [20,21] can be written in general as:  
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                                      𝐾𝑛,𝜎(𝜇) =
1

ℏ
∫ [−

𝜕𝑓(𝜖, 𝜇)

𝜕𝜀
] (𝜖 − 𝜇)𝑛 𝜏𝜎(𝜀)𝑑𝜀     ,                                    (7.91) 

 

where the transmission coefficient 𝜏𝜎(𝜀) can be written as [23]: 

 

                                                𝜏𝜎(𝜖) =
Γ𝑅Γ𝐿

Γ𝑅+Γ𝐿
[−2 𝐼𝑚Gdd

r (𝜀)] .                                                         (7.92) 

                                                                                                                             
For symmetric leads,    Γ𝑅 = Γ𝐿 = Γ  and we obtain  

 

                                  𝜏𝜎(𝜀) =
Γ2

((𝜖 ± 𝑛ℏ𝜔0) − 𝜀𝑑̃ − 𝑢̃  < 𝑛𝑑,−𝜎 >)
2

+ Γ̃2

    .                              (7.93) 

 
We can relate the Onsager coefficients to the transport parameters like charge conductance and 

spin conductance [22]. For example, the charge conductance 𝐺𝑐 can be written as:  

  

                                                  𝐺𝑐 = 𝐺↑ + 𝐺↓ = 𝑒2(𝐾0↑ + 𝐾0↓) ,                                                       (7.94) 

 

and the Spin conductance is given by      

                                                                          

                                                  𝐺𝑠 = 𝐺↑ − 𝐺↓ = 𝑒2(𝐾0↑ − 𝐾0↓) ,                                                       (7.95) 

                                                                                                              

while the thermal conductance can be written as [24]: 

 

                                                𝜅 =
1

𝑇
(∑ 𝐾2𝜎 −

|∑ 𝐾1𝜎𝜎 |2

∑ 𝐾0𝜎𝜎
𝜎

)    .                                                        (7.96) 

 

The thermo-power 𝑆 is defined as the ratio of the generated voltage ∆𝑉 to the temperature 

difference ∆𝑇 in the absence of charge current:  

 

                                                        𝑆𝜎(𝜇) = −
∆𝑉

∆𝑇
=  −

1

𝑒𝑇

𝐾1,𝜎

𝐾0,𝜎
  .                                                     (7.97) 

 

The charge Seebeck coefficient 𝑆𝑐(𝜇) and the spin Seebeck coefficient 𝑆𝑠(𝜇) are defined as [22]:  

  

                                                               𝑆𝑐(𝜇) = 𝑆↑(𝜇) + 𝑆↓(𝜇)   .                                                      (7.98) 

 

                                                                𝑆𝑠(𝜇) = 𝑆↑(𝜇) − 𝑆↓(𝜇)   .                                                    (7.99)   
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7.3    Results and discussions  
 

  For simplicity, we assume that the QD contains a single level with energy 𝜀𝑑  and is connected 

symmetrically to the source and the drain. From now on, we choose the phonon energy ℏ𝜔0 as the 

unit of energy and set  Γ = 1, eVg = 0, ℏω0 = 1. We also choose the temperature of the left lead 

slightly higher than that of the right lead. To study the effect of temperature, we plot in Fig. 2, the 

spin-resolved electronic conductances (Gσ , σ =↑, ↓), charge (spin) conductance Gc (Gs),  as a 

function of QD energy level ϵd with el-ph coupling constant λ = 1, chemical potential μ = 0, 

oscillator frequency ω0 = 1, magnetic field 𝜇𝐵𝐵 = 1, cyclotron frequency ωc = 3, damping 

factor g = 0.03 and el-el interaction strength U = 1 and for different values of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 vs 𝜖𝑑 for different values of temperature with el-ph coupling constant λ = 1, 

chemical potential μ = 0, oscillator frequency ω0 = 1, magnetic field 𝜇𝐵𝐵 = 1, cyclotron frequency ωc =

3, damping factor γ = 0.03 and el-el interaction strength U = 1. 
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temperature. In general, the qualitative behaviour of  G↑  and G↓  with ϵd are similar. Both exhibit 

a peak structure at a certain value of  ϵd (close to zero) and drop to zero on both sides of ϵd as |ϵd| 

reaches a certain value. As temperature increases, both the spin-up and spin-down conductance 

peaks decrease in height. However, the spin-up conductance peak shifts towards the right, while 

the spin-down conductance peak shifts towards the left. The charge conductance curve also shows 

a peak which decreases in height with increasing temperature, but now the peak position does not 

change with temperature. Fig. 2 (d) shows that the behaviour of the spin conductance is different 

from the other conductances. The spin conductance increases with positive QD energy ϵd and 

exhibits a maximum and decreases with negative QD energy and exhibits a minimum. Here also 

the conductance vanishes as |ϵd| reaches a certain value. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 vs 𝜖𝑑 for different values of el-el interaction strength with el-ph coupling constant 

λ = 0.5, chemical potential μ = 1, oscillator frequency ω0 = 1, magnetic field 𝜇𝐵𝐵 = 1, cyclotron 

frequency ωc = 3, damping factor γ = 0.03 and temperature 𝑘𝐵T = 1. 
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   In Fig. 3, we plot the spin-up (-down) conductance 𝐺↑ (𝐺↓)  and charge (spin) conductance 𝐺𝑐 

(𝐺𝑠) (which is proportional to the Onsager coefficient 𝐾0 ) as a function of 𝜖𝑑 for different values 

of the e-e interaction 𝑈. The figures show that at U = 0, the conductance curves exhibit one 

maximum and as U increases, the number of peaks and also the fluctuation in the conductance 

increase. Also the peaks shift towards left with increasingU. Interestingly again, G↑, G↓ and Gc  

behave qualitatively more or less in a similar way, while Gs displays a maximum- minimum 

structure around ϵd = 0 at U = 0, which splits in many peaks at the presence of el-el interaction. 

 

 

 
              
 

 

 
 
 
 
 
 
 
 
 
  
 

 

 

                                              

 

                                                                                                                            

 

 

 

 

 

 

 

 

 
                      

 

 

 
 

Fig. 4 𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 vs 𝜇 for different values of the magnetic field with el-ph coupling constant λ =

0.5, QD energy 𝜖𝑑 = 1, oscillator frequency ω0 = 1, temperature 𝑘𝐵𝑇 = 1, cyclotron frequency ωc = 3, 

damping factor γ = 0.03 and el-el interaction strength U = 1. 

 

 

      In Figs. 4(a) and 4(b), we show the variation of 𝐺↑  and 𝐺↓ as a function of the chemical 

potential 𝜇 for a few different values of 𝐵. In the absence of the magnetic field, 𝐺↑  and 𝐺↓ show 

the same variation with 𝜇.  For 𝐵 ≠ 0, as 𝐵 increases, the peak of 𝐺↑ shifts towards left ( i. e., 

towards negative 𝜇), while 𝐺↓ peak shifts towards right. However, the maximum height of the peak 
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remains same in both cases. Figs. 4 (c) and 4(d) display the behaviour of 𝐺𝑐 and 𝐺𝑠. In the absence 

of a magnetic field, the charge conductance 𝐺𝑐 as a function of 𝜇, also shows a maximum, while 

the spin conductance 𝐺𝑠 remains zero. As the magnetic field increases, the maximum of Gc 

decreases and splits into two symmetric maxima while 𝐺𝑠 develops a maximum and a minimum 

structure around 𝜇 = 0 which increase in height and width with increasing magnetic field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 vs 𝜇 for different values of el-ph coupling constant with the magnetic field 𝜇𝐵B =

1, QD energy 𝜖𝑑 = 1, oscillator frequency ω0 = 1, temperature 𝑘𝐵𝑇 = 1, cyclotron frequency ωc = 3, 

damping factor γ = 0.03 and el-el interaction strength U = 1. 

 

   In Fig. 5, we show the variation of 𝐺↑ , 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 as a function of 𝜇 for a few values of the 

el-ph interaction strength 𝜆. The conductance peaks in all cases decrease as λ increases and shift 

towards left. At higher values of el-ph interactions, the peak of the conductance splits in multiple 

peaks. Figs. 5(a) and 5(b) suggest that qualitatively, the spin-up and spin-down conductance curves 

behave more or less in the same way, but quantitatively, the magnitude of the spin-up conductance 
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is slightly larger. Figs. 5(c) and 5(d) show that the charge conductance and spin conductance also 

decrease as 𝜆 increases.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6 𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 vs 𝜖𝑑 for different values of damping factor with el-ph coupling constant λ = 1, 

chemical potential 𝜇 = 0, oscillator frequency ω0 = 1, temperature 𝑘𝐵𝑇 = 1, cyclotron frequency ωc =

3, magnetic field 𝜇𝐵B = 1 and el-el interaction strength U = 1. 

 

 

   In Fig. 6, we show the behaviour of 𝐺↑ , 𝐺↓ , 𝐺𝑐 and 𝐺𝑠 with respect to 𝜖𝑑 for a few different 

values of the damping factor. The figures show that the magnitude of the conductance increases 

with increasing damping parameter in all cases.  

 

    In Fig. 7, we plot the thermopowers ((𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠)) as a function of the magnetic field B for a 

few different values of el-ph coupling constant.  The spin-up and spin-down Seebeck coefficients 

exhibit an maximum-minimum structure. Fig. 7(a) shows the behaviour of the spin-up Seebeck 
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coefficient (𝑆↑) and the behaviour of the spin-down (𝑆↓) Seebeck coefficient is shown in Fig.7(b).  

𝑆↑ and 𝑆↓ are equal in the absence of the magnetic field and exhibit  opposite behaviour as a 

function of the magnetic field. The el-ph interaction enhances the magnitude of the both spin-up 

and spin-down Seebeck coefficients.  In Figs. 7 (c) and 7(d), we show the behaviour of the charge 

(spin) Seebeck coefficient 𝑆𝑐 (𝑆𝑠) with respect to the magnetic field for different values of el-ph 

interaction. The magnitude of the spin Seebeck coefficient is higher than the charge Seebeck 

coefficient because the spin-up and spin-down Seebeck coefficients have the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Thermopowers as a function of  magnetic field with QD energy 𝜖𝑑 = 1, oscillator frequency ω0 =

1, temperature 𝑘𝐵𝑇 = 1, cyclotron frequency ωc = 3, damping factor γ = 0.03 and el-el interaction 

strength U = 1 and for a few different values of the el-ph coupling constant 𝜆. 

 

opposite behaviour. According the theory of metals, the thermopower vanishes in a half-filled band 

where the number of filled and empty states is equal which is a particle-hole symmetric condition. 

We have considered the left lead to be at a higher temperature than the right one and because of 
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this temperature gradient, the thermoelectric effect is created. The left lead also has more electrons 

above the chemical potential than the right one and consequently, more holes should exist below 

the chemical potential. The major carriers are holes (electrons) when the energy levels of QDs are 

below (above), and the thermo-power is therefore positive (negative). So the spin Seebeck 

coefficient graph is antisymmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Thermo-power as a function of  QD energy 𝜖𝑑 for few values of el-ph coupling constant 𝜆, oscillator 

frequency ω0 = 1, temperature 𝑘𝐵𝑇 = 1, cyclotron frequency ωc = 3, damping factor γ = 0.03 and el-el 

interaction strength U = 1. 

 

 

  In Fig. 8, we plot the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠) as a function of QD energy for a few different 

values of the el-ph coupling constant. In this case, the behaviour of the spin-up and spin-down 

Seeback coefficients are the same, but their amplitudes are slightly different.  The thermopowers 

(𝑆↑, 𝑆↓, 𝑆𝑐) change their sign at 𝜖𝑑 = 0 due to the compensation of electrons and holes in the case 
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of 𝜆 = 0. the magnitude of the maxima and minima of the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐) increase with 

increasing 𝜆. Also, as 𝜆 increases, the maxima of the thermopowers continue to occur at the same 

value of ϵd but the minima of the  thermopowers shift towards higher values of ϵd . The behaviour 

of spin Seebeck coefficient Ss is completely different from Sc. Ss exhibits a plateau around ϵd = 0 

and as λ increases,  the plateau splits into two peaks.  The magnitude of Ss is very small compared 

to Sc, which implies that the spin current is much smaller than the charge current. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Thermo-power as a function of  chemical potential μ for a few different values of temperature 𝑘𝐵𝑇 

and certain values of other parameters 𝜆 = 1, ω0 = 1, 𝜇𝐵𝐵 = 1, ωc = 3, γ = 0.03, 𝜖𝑑 = 1, and U = 1. 

 

 

   In Fig. 9, we plot the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠) as a function of chemical potential 𝜇 for a 

few values of 𝑇. We observe that in all cases, the themopowers decrease as temperature increases. 

We also observe that the curves for  𝑆↑, 𝑆↓, and 𝑆𝑐  are antisymmetric due to particle-hole 

symmetry and the positive (negative) thermopowers show holes (electrons) as the majority charge 

carriers. Fig. 9(d) shows that 𝑆𝑠, as a function of 𝜇 has a flat plateau that is symmetric around 𝜇 =
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0. Temperature has an interesting effect on the spin Seebeck coefficient 𝑆𝑠. As temperature 

increases, the plateau height of Ss decreases and it splits into two maxima. We again notice that 

the magnitude of 𝑆𝑠 is much smaller than that of 𝑆𝑐.  

   In Fig. 10, we show the results of thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠) as a function of μ for different 

values of el-el interaction 𝑈. The peaks of the thermopowers have the same height for different 

values of  𝑈 and they shift towards left on the μ-axis as 𝑈 increases.  

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Thermopowers as a function of  chemical potential μ for different values of el-el interaction  𝑈 and 

certain values of other parameters 𝜆 = 0.5, ω0 = 1, 𝜇𝐵𝐵 = 1, ωc = 3, γ = 0.03, 𝜖𝑑 = 1, and 𝑘𝐵𝑇 = 1. 

 

   Fig. 11 presents the behaviour of the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠)  with respect to chemical 

potential μ for different values of  𝜆. One can see that as we increase 𝜆, the magnitudes of the 

thermopowers and their peak values increase in all cases.  Also the magnitude of the charge 
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Seebeck coefficient turns out to be larger than the spin Seebeck coefficient. The spin Seebeck 

coefficient peaks are split into two peaks at higher values of 𝜆. 

 

 

 

 

 

 

 

 

 

 

 

 

    

    

 

 

 

 

 

 

 

 

Fig. 11 Thermopowers as a function of  chemical potential μ for different values of el-ph interaction 𝜆 and 

certain values of other parameters 𝑈 = 1, ω0 = 1, 𝜇𝐵𝐵 = 1, ωc = 3, γ = 0.03, 𝜖𝑑 = 1, and 𝑘𝐵𝑇 = 1. 

 

  In Fig. 12, we plot the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐, 𝑆𝑠)  as a function of chemical potential μ for 

different values of the magnetic field 𝐵.  The spin-up and spin-down thermopowers are the same 

at zero magnetic field. So the charge Seebeck coefficient is maximum and the spin Seebeck 

coefficient is zero in this case. Therefore, we will get maximum charge current and zero spin 

current in the absence of the magnetic field.  The thermopowers 𝑆↑ ( 𝑆↓) shift towards left (right) 

at higher values of the magnetic field 𝐵. The maxima of  𝑆↑  and 𝑆↓ are equal for different values 

of 𝐵. However, 𝑆𝑐 decreases and 𝑆𝑠 increases at higher values of the magnetic field. Thus, the 

magnetic field increases the spin current and the spin Seebeck coefficient.   
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Fig. 12 Thermopowers as a function of  chemical potential μ for different values of magnetic field 𝜇𝐵𝐵 and 

certain values of other parameters 𝑈 = 1, ω0 = 1, 𝜆 = 0.5, ωc = 3, γ = 0.03, 𝜖𝑑 = 1, and 𝑘𝐵𝑇 = 1. 

 

 
   In Fig. 13, we present the results of the charge Seebeck coefficient Sc (dotted lines) and spin 

Seebeck coefficient Ss (solid lines) as a function of the QD energy for different values of the 

magnetic field 𝐵. Interestingly, Sc is positive for negative QD energy and negative for positive QD 

energy.  At zero QD energy, Sc is zero and Ss is maximum and it decreases as the QD energy 

increases. In Fig. 14, we plot the charge Seebeck coefficient and the spin Seebeck coefficient with 

respect to the chemical potential μ for different values of the damping factor γ. The effect of 

dissipation on the charge and spin Seebeck coefficients appears to be marginal. 
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Fig. 13  Charge Seebeck coefficient (dotted lines)  and spin Seebeck coefficient (solid lines)  

 vs  QD energy 𝜖𝑑 for different values of magnetic field 𝜇𝐵𝐵. 

 

 

 

 

 

 

 

 

 

 

           

 

           

 
             
            Fig.14 Thermopowers as a function of  μ for different values of dissipation parameters γ. 
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7.4 Conclusion 

  
  In this chapter, we have studied the thermal transport properties of a dissipative SMT device with 

𝑒 − 𝑒 and 𝑒 − 𝑝 interactions and magnetic field. The e-e interaction has been described by the 

Hubbard term and the e-p interaction has been taken care of by the Holstein model. The dissipative 

effect which arises because of the interaction of the substrate phonons with the QD phonon has 

been incorporated by the linear Caldeira-Leggett model. The dissipation has been approximately 

treated by a canonical transformation which reduces the QD frequency which is precisely the 

damping effect. Using the Lang-Firsov transformation followed by a zero-phonon averaging, the 

e-p interaction is eliminated. Finally using the Keldysh method, the effect of magnetic field, 

dissipation, e-e and e-p interactions on thermal parameters has been studied. In particular, we 

studied the behaviour of the conductance conductance (𝐺↑, 𝐺↓ , 𝐺𝑐 and 𝐺𝑠) with respect to different 

parameters such as the temperature, e-e interaction, e-p interaction, damping parameter, magnetic 

field, quantum dot energy and chemical potential. It is found that the charge conductance 𝐺𝑐 is 

maximum while the spin conductance 𝐺𝑠 is zero in the absence of the magnetic field. However, as 

the magnetic field increases, the peak height of 𝐺𝑐 decreases and the peaks split into two peaks 

while the peak height of  𝐺𝑠 increases and shifts towards right on the chemical potential axis. We 

have also shown that temperature, magnetic field and the above-mentioned interactions have 

interesting effects on the thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐 and 𝑆𝑠). As a function 𝜖𝑑 , the behaviour of the 

spin-up and spin-down Seeback coefficients are the same, but their amplitudes are slightly 

different.  The spin-up and spin-down thermopowers are the same at zero magnetic field. So the 

charge Seebeck coefficient is maximum and the spin Seebeck coefficient is zero in this case. 

However, 𝑆𝑐 decreases and 𝑆𝑠 increases at higher values of the magnetic field. Thus, the magnetic 

field increases the spin current and the spin Seebeck coefficient.   

The thermopowers (𝑆↑, 𝑆↓, 𝑆𝑐) change their sign at 𝜖𝑑 = 0 due to the compensation of electrons 

and holes in the case of 𝜆 = 0. the magnitude of the maxima and minima of the thermopowers (𝑆↑, 

𝑆↓, 𝑆𝑐) increase with increasing 𝜆. Also, as 𝜆 increases, the maxima of the thermopowers continue 

to occur at the same value of ϵd but the minima of the  thermopowers shift towards higher values 

of ϵd . The behaviour of spin Seebeck coefficient Ss is completely different from Sc. Ss exhibits a 

plateau around ϵd = 0 and as λ increases,  the plateau splits into two peaks.  The magnitude of Ss 

is very small compared to Sc, which implies that the spin current is much smaller than the charge 

current. The effect of dissipation on the charge and spin Seebeck coefficients appears to be 

marginal. 
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Chapter-8 

 

 

Conclusions 

 

 

 

  In this thesis, we have studied the effect of spin-orbit interactions on electronic states in quantum 

dots and also on the thermo-electric properties of a single molecular transistor. In particular, we 

have studied the effect of spin-orbit interactions on the hydrogenic donor impurity systems in a 

QD and applied our results to a GaAs QD for the sake of concreteness. We have finally studied 

the effect of electron-electron and electron-phonon interactions on the thermopower and spin-

Seebeck effect in a single molecular transistor in the presence of quantum dissipation and an 

external magnetic field.   

 

  We began the thesis with a general overview of QDs in Chapter 1 where we covered some of the 

fundamental characteristics of QDs such as the nature of their energy spectrum, the density of 

states, the confinement potential and briefly mentioned some of their applications. We have next 

presented a brief introduction to the Rashba and Dresselhaus spin-orbit interactions.  Finally, we 

have introduced the subject of single molecular transistor and presented the derivation of 

conductance and thermopower using the non-equilibrium Keldysh Green function technique.   

  

  In Chapter 2, we have considered the combined effect of Rashba and Dresselhaus spin-orbit 

interactions on a 𝐷0 hydrogenic impurity in a Gaussian QD of GaAs in the presence of a magnetic 

field. To decouple the spin-orbit interactions, we have used a unitary transformation and calculated 

the GS energy and the binding energy (𝐸𝐵) of the 𝐷0 impurity using the Ritz variational method. 

We have shown that the Rashba term reduces the GS energy more than the Dresselhaus term in 

the presence of the magnetic field but in the absence of the magnetic field, both the terms reduce 

the GS energy by the same amount. We have also demonstrated that the binding energy reaches 

its maximum at a particular dot size and rapidly decreases below this critical size. Furthermore, in 

the presence of the magnetic field, the GS binding energy increases with decreasing Rashba 

coupling constant (𝛼𝑅) but it increases with the Dresselhaus interaction coefficient (𝛽𝐷), whereas, 
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in the case of zero magnetic field, the GS binding energy remains unaffected by both the Rashba 

and Dresselhaus interactions. Next we have shown that the susceptibility 𝑆 increases with 𝐵.  Also  

|𝑆| increases with increasing QD size at small magnetic fields, but above a critical magnetic field, 

it decreases with increasing QD radius. This leads to a crossing behaviour in the diamagnetic 

susceptibility. Finally, we have shown that in general, as the QD size decreases, the electron 

localization becomes stronger. However, the behaviour starts reversing below a certain QD size 

because of the uncertainty principle. 

 

  In Chapter 3, we have studied the impact of spin-orbit interactions on the binding energy of an 

off-centre 𝐷0 impurity in a 2D Gaussian QD of GaAs in a magnetic field by the Ritz variational 

method. We have shown that the binding of a 𝐷0 complex is strongest for the on-centre complex 

(𝐷 = 0) and binding energy decreases with increasing D and eventually saturates. Our results 

reveal that the effect of spin-orbit interactions on the 𝐷-dependence of the binding energy is rather 

weak, though the magnetic field can influence the 𝐷-dependence at small 𝐷 values. However, if 𝐷 

is large, then none of QD parameters would have any effect on the 𝐸𝐵 vs 𝐷 curve. Finally, we 

determined the susceptibility (𝑆) of the off-centre 𝐷0 complex using statistical mechanics. It turns 

out that S is diamagnetic. With increasing D, |𝑆| initially increases and eventually saturates to a 

constant. It is observed that when Rashba coupling is absent and only Dresselhaus coupling is 

present, |𝑆| decreases both with 𝛽𝐷 and 𝐵.  However, in the case when the Dresselhaus coupling 

is absent and only Rashba coupling present, at small values of 𝐵,  |𝑆| initially increases with 

increasing 𝛼𝑅, reaches a maximum and then decreases with 𝛼𝑅,  but at large 𝐵, |𝑆| increases 

monotonically with 𝛼𝑅 .   

 

  In chapter 4, we have studied the role of spin-orbit interactions on the energetics of an on-centre 

𝐷0 complex in a power-exponential quantum dot (PEQD) in an external magnetic field.  We have 

shown that below a certain QD size, the GS energy increases with the steepness parameter 𝑝, while 

above that critical size, it decreases. However, in both cases, the GS saturates as 𝑝 becomes large. 

This is because when 𝑝 becomes large, the confinement potential hardly changes with 𝑝. For a 

small dot, the binding energy exhibits a peak at a small p and saturates to a constant as p increases. 

As the QD size (𝑅) increases, the peak becomes flatter though its height increases. Furthermore, 

the peak shifts towards higher values of p. As R becomes still larger, the peak disappears and the 

binding energy just monotonically increases with p at small p and eventually saturates. As a 

function of R too, BE shows peaks and the peak height increases as p increases. After reaching the 
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peak, the binding energy decreases with R faster for higher p giving rise to a crossing behavior. 

Finally, we show that the susceptibility of a 𝐷0 impurity in PEQD is diamagnetic and this 

diamagnetic susceptibility (𝑆) increases with p at small 𝐵 and at large 𝐵, it decreases with 

increasing 𝑝. At intermediate 𝐵, 𝑆 first decreases with increasing 𝑝, develops a minimum at some 

value of 𝑝 and then increases with further increase in 𝑝. Eventually, however, 𝑆 saturates to a 

constant as 𝑝 becomes large.  

 

  In Chapter 5, we have considered the 𝐷0 impurity in a 3D asymmetric Gaussian QD. We have 

shown that GS energy increases with the asymmetry parameter 𝑏. We have also shown that with 

respect to the QD size 𝑅, the binding energy exhibits a peak that shifts towards larger 𝑅 as 𝑏 

increases. Furthermore, the binding energy decreases with increasing b. Finally, the magnitude of 

𝑆 (which is diamagnetic) has been shown to decrease with increasing 𝐵. However, it increases as 

the asymmetry increases at small 𝐵 and decreases with increasing asymmetry at large 𝐵.  This 

gives rise to an interesting crossing behavior. The Rashba coupling decreases the binding energy, 

while the Dresselhauss coupling increases it and the asymmetry in the confinement potential 

enhances these effects. 

 

  In Chapter 6, we have studied the spin-orbit interaction effects on the binding energy of a  𝐷− 

complex in a 3D GQD of GaAs in the presence of a magnetic field using a variational method with 

a modified Jastrow-type correlation factor. We have observed that, in general, the Dresselhaus 

coupling enhances the binding energy of D− whereas the Rashba interaction reduces it. Also, as a 

function of the magnetic field, the binding energy increases in the presence of Dresselhaus 

interaction whereas, it remains almost constant in the presence of Rashba interaction. Next we 

have shown that the susceptibility of a D− impurity in a GaAs QD is diamagnetic. Interestingly, in 

the presence Rashba interaction, the susceptibility curve exhibits a minimum. We have shown that 

in the absence of a magnetic field, the dipole moment of 𝐷− remains unaffected by the spin-orbit 

interactions.  However, if the magnetic field is present, the Rashba coupling enhances its dipole 

moment, while the Dresselhaus coupling reduces it. The strength of the dipole moment also rises 

with the QD size and reduces with the increasing potential depth and the magnetic field.  

 

  In chapter 7, we have studied some thermo-electric properties of a correlated polar SMT device 

with dissipation in the presence of a magnetic field using the Holstein-Hubbard-Caldeira-Leggett 

model. The dissipation and electron-phonon interaction have been treated by canonical 

transformations and the charge and spin currents have been calculated using the Keldysh method. 
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In the absence of a magnetic field, the charge conductance 𝐺𝑐 as a function of the chemical 

potential 𝜇, shows a maximum, while the spin conductance 𝐺𝑠 remains zero. As the magnetic field 

increases, the maximum of Gc decreases and splits into two symmetric maxima while 𝐺𝑠 develops 

a maximum and a minimum structure around 𝜇 = 0 which increase in height and width with 

increasing magnetic field. We have observed that at zero magnetic field, the spin-up and spin-

down Seebeck coefficients are equal and therefore at zero field, the charge Seebeck coefficient 

(Sc) is maximum and the spin Seebeck coefficient (Ss) vanishes.  However, as a function of the 

magnetic field, the spin-up and spin-down Seebeck coefficients exhibit an opposite behaviour. We 

have also shown that the el-ph interaction suppresses the charge and spin conductance but 

enhances the thermopower.  Finally, we have shown that the charge and spin Seebeck coefficients 

decrease as the temperature difference between the leads increases.  
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