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Abstract

The main goal of the feature selection algorithms is to select minimal number of features,

while retaining good classification accuracy. The feature subset selection problem is an NP

hard problem since the best feature subset needs to be selected from the original set. There

is a need for computationally efficient algorithms that find near optimal feature subsets.

Scalability and reduction in the number of features are some of the major concerns of the

feature selection algorithms in the literature. Specially when dealing with big data that

contains huge number of redundant and irrelevant features, it becomes a great challenge to

obtain the optimal feature subset while retaining good classifier accuracy.

Different algorithms may give different feature subsets for a dataset which ‘cluster’ or

‘classify’ the data well. In this situation, can a consensus among the different subsets of

features describe the data better? This motivates us to use the idea of consensus clustering

for feature subset selection. The goal of this work is to propose efficient algorithms that

work on small as well as large datasets.

We propose three new approaches based on genetic algorithms (GACC), community

discovery(CDCC) algorithms and feature ranking (FRCC) algorithms that generate feature

subsets. In each of these approaches, Best-of-k(BoK) consensus clustering algorithm is

used to arrive at the final feature subset. To the best of our knowledge, consensus clustering

has not been used for feature subset selection in the literature.

In Genetic algorithm based consensus clustering(GACC), feature subsets are repre-

sented as chromosomes. Consensus clustering is used to identify the best feature subset.

The results obtained on benchmark datasets are on par with the results available in the

literature.

The CDCC approach works on the feature space rather than the original data space.

The feature space is represented as a graph which is partitioned using the community

vii



Abstract viii

discovery algorithms available in the social networks literature. Consensus clustering al-

gorithm is applied on the communities detected by the different community discovery al-

gorithms to obtain the final feature subset. This method is implemented on several bench-

mark datasets. We obtain 50% reduction in the number of features selected and classifier

accuracy is on par when compared to the latest literature.

A fast and scalable approach for feature selection FRCC has been designed using the

available feature ranking algorithms from the literature. The feature weights of each rank-

ing algorithm is treated as a one-dimensional space which is partitioned using K-means

clustering algorithm. The consensus clustering algorithm obtains the best partitioning in

which the top-weighted cluster is taken as the best feature subset which is further pruned

to obtain the optimal feature subset by removing the redundant and irrelevant features. In

addition to the small datasets, FRCC is tested on high-dimensional microarray data sets

and it clearly outperforms many recent algorithms in the literature on small, big and large

dimensional data sets.

FRCC is further extended to design a parallelizable algorithm to address feature reduc-

tion in big data. The algorithm Hybrid feature selection(HFS) has been tested on datasets

with lakhs of instances and dimensionality in hundreds. HFS proves to be very effective

in terms of feature reduction and accuracy in comparison to the results obtained by recent

algorithms in the literature.
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Chapter 1

Introduction

Application domains such as networks, e-commerce and bio-informatics are adding more

and more data to the databases rapidly. The explosion of data is not only in terms of in-

stances but also in the number of dimensions. In general, datasets with large number of

dimensions with a fixed number of data points become increasingly “sparse” as the dimen-

sionality increases [106]. The process of reducing the number of dimensions(or features)

under consideration is called Feature reduction, also called as feature subset selection. This

deals with the extraction of the relevant features from the given data and these approaches

try to find a subset of the features which describes the data effectively [47].

In pattern recognition, it is helpful to choose a feature subset that best discriminates

patterns belonging to different classes. The main goal of feature selection algorithms is

to select minimal number of features, while retaining good classification accuracy. Any

technique for high-dimensional data must deal with the “Curse of dimensionality”, which

is, as the number of dimensions increases, the performance of data analysis techniques will

degrades. Many of the features may be irrelevant and redundant and they greatly affect the

classifier accuracy [10].

Irrelevant features do not contribute to prediction and, may confuse the algorithm dur-

ing classification. And redundant features do not add to the information already avail-

able in other features, thus they do not improve classifier accuracy. So, it is essential to

eliminate irrelevant and redundant features. Thus, feature selection is a pre-processing

technique that attempts to identify a subset of features.

The feature subset selection problem is an NP hard problem since the best feature

1
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subset needs to be selected from the original set. In general, two basic dimensionality

reduction techniques called feature selection and feature extraction are in use. Feature

selection is the process of selecting best feature subset from the original set. The general

approaches like wrapper and filter methods are used for feature subset selection that at-

tempt to improve the classifier accuracy and predictor performance and also helps in better

understanding of data [47].

Filter approach directly operates on the dataset and gives subset of features or ranking

of features as output, where as wrapper approach uses learning algorithm to evaluate the

performance of feature subset. Different learning criteria like classifier accuracy, distance

measures have been used in the literature, to evaluate the feature goodness.

1.0.1 Gaps in the current literature for feature selection problem

Most of the traditional feature selection algorithms are taking significant learning time to

find the best feature subset. Scalability and reduction in number of features are the ma-

jor concerns in recent genetic algorithm based feature selection algorithm, even though

classifier accuracy is high. Parallelizable algorithms like fuzzy rough set approaches are

proposed in the recent literature with the aim of optimal usage of memory while reducing

the run time. Many of these methods do not show much reduction in the number of fea-

tures. Specially when dealing with big data that contains huge number of redundant and

irrelevant features, it becomes a great challenge to obtain the optimal feature subset while

retaining good classifier accuracy.

1.1 Motivation

As feature subset selection is an NP-hard problem, there is a need for an efficient approach

for feature selection. Further, different algorithms may give different feature subsets for a

dataset which ‘cluster/classify’ the data well. In this situation, can a consensus among the

different subsets of features describe the data better? This motivates us to use the idea of

consensus clustering for feature subset selection.

In addition, many features may be irrelevant and redundant. Such features can also

affect the classifier accuracy. Hence, the final feature subset obtained using consensus

clustering may have to be pruned. High dimensional data as well as large data are addi-
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tional challenges for feature subset selection problem. Does working on the feature space

rather than the instance space help in addressing the big data challenge? In this work, con-

sensus clustering is used in each of the proposed algorithms to arrive at a nearly optimal

feature subset.

1.1.1 Consensus clustering

In general, consensus clustering has been used in the literature to find the best clustering

among various input clusterings (generated by different clustering algorithms). Here, we

use this approach to find the best feature subset. There are many approximation algorithms

that have been proposed for consensus clustering in the literature. One of the popular

methods is BoK (Best of k) which chooses the best of the clusterings based on dissimilarity

measures like Symmetric distance difference(SDD), adjusted rank index (ARI) etc. [6].

1.2 Problem statement

The problem is to select core set of features from the original feature set that describes the

dataset well. This statement holds not only for big datasets, but also for small datasets.

1.2.1 Objectives

• To propose an efficient algorithm that works on small and large datasets.

• To propose a scalable approach to feature selection.

• To work on the feature space rather than data space.

• To apply consensus clustering algorithm for feature selection problem.

• To achieve a near optimal solution for the NP-hard problem.

• To achieve reduction in the feature subset.

1.3 Proposed algorithms

We propose three new approaches based on genetic algorithms (GA), community discov-

ery algorithms from the area of social networks and feature ranking algorithms with K-
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means clustering to find the feature subsets. For aggregation, we use a novel approach

called consensus clustering [37, 30, 76, 112] to obtain the final feature subset. To the best

of our knowledge, consensus clustering has not been used for feature subset selection.

1.3.1 Genetic algorithm based feature selection using consensus clus-

tering (GACC)

A novel genetic algorithm based feature selection that uses consensus clustering is pro-

posed. In this method, chromosomes (feature subsets) are produced at random in the

initial population. The dataset is projected along each of the feature subsets specified by

the chromosome, to which K-means algorithm is applied. The technique of consensus

clustering is applied to the different clusterings of the dataset, in order to obtain the best

partitioning of the dataset. The top two chromosomes are retained from each population

based on the best-of-k consensus clustering technique. In the next population, the two best

chromosomes are retained and crossover and mutation operations are applied to the re-

maining chromosomes. The method is continued until the same top chromosome as in the

preceding population is picked. Time complexity for this algorithm is O(N pm), where ‘N’

instances, ‘m’ is the number of generations/populations, ‘p’ is number of chromosomes in

each population.

1.3.2 Community discovery based feature selection using consensus

clustering (CDCC)

Time can be saved by working on feature space rather than original data space, when the

number of features is very small in comparison to the number of data instances. Feature

subset selection methods try to select the most “representative” features that are highly

correlated to the target class. On the basis of this concept, Song et al. developed an

algorithm known as FAST[98]. Instead of using the data space, they used the feature space

to construct a graph. With the inspiration from the FAST algorithm, we developed our

second novel algorithm “Community discovery using consensus clustering” (CDCC).

As there are many graph partitioning algorithms available in the literature, final feature

subset is not robust. To get a stable feature subset, we developed CDCC method which

begins with the construction of a complete graph with features { fi} serving as vertices.
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Pearson’s correlation coefficient(PCC) r between features ( fi, f j) is used to calculate the

edge weight. The graph is partitioned using a few popular community discovery algo-

rithms [31, 18]. Now, a consensus clustering algorithm BoK(Best-of-K) is used to select

the best partitioning for the graph. Optimal feature subset is formed with the representative

features from each cluster of the best partitioning.

1.3.3 Feature ranking based feature selection using consensus clus-

tering (FRCC)

A fast and scalable approach for feature selection can be designed using the available

feature ranking algorithms in the literature. The features are ranked in the order of impor-

tance, with the most significant feature being at the top of the list. Then, with the use of a

threshold value, all the features whose values above a threshold will be treated as relevant

and form the feature subset. But, as there are many feature ranking algorithms available

in the literature and there may be differences in the rankings provided by the algorithms,

making the final result unstable and also threshold selection has an impact on the output.

We propose an approach in which the aggregation is carried out by applying consensus

clustering.

The scalability and efficiency of this approach motivated us to apply this feature rank-

ing method FRCC to feature selection in big data.

1.3.4 Hybrid feature selection (HFS)

Due to the scalability of FRCC algorithm, we apply this consensus method to the large

scale domains like big data. Dataset is divided into samples and on each sample FRCC

is applied to obtain feature subset from each sample. Final feature subset is obtained

by performing union and intersection operations on feature subsets obtained from each

sample.

1.4 Thesis Contributions

• Contribution 1: A genetic algorithm based feature selection using consensus clus-

tering (GACC) is proposed. Genetic algorithm is a randomized approach which
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searches the solution space to obtain a near optimal solution. It can be viewed as a

proof of concept for consensus based feature selection.

• Contribution 2: Community discovery based feature selection using consensus clus-

tering (CDCC) is proposed that eliminates irrelevant and redundant features success-

fully. This works for both numerical and categorical features. This algorithm works

in the feature space rather than data space and hence is more scalable.

• Contribution 3: A scalable feature ranking based feature selection using consensus

clustering (FRCC) is proposed. Due to its scalability, it can be implemented on

high-dimensional datasets.

• Contribution 4: Hybrid feature selection based on consensus clustering technique is

proposed. This is a parallelizable approach and can be successfully implemented on

big-data applications.

1.5 Chapter Organization

Chapter 1 of the thesis is the introduction to feature subset selection problem and its im-

portance in data mining applications. As, we are using consensus clustering for feature

subset selection, fundamentals of consensus clustering are discussed here. Chapter orga-

nization and contributions of the thesis are presented.

Chapter 2 of the thesis presents the related literature of standard feature subset se-

lection methods like Genetic algorithms, subset search methods, Ant-colony optimization

methods etc., as well as the approximation algorithms for consensus clustering. Basic

definitions and heuristics used in the thesis are described here. Time complexity of each

consensus method is presented and justification for choosing BoK(Best-of-K) consensus

method is also explained. A few algorithms for consensus clustering that have been pro-

posed recently are also explained.

Chapter 3 contains our first contribution to feature subset selection. Here, we verified

whether consensus clustering can be applied for feature selection problem by using one

synthetic dataset. As we obtained good results, we developed a genetic algorithm based

feature selection using consensus clustering algorithm(GACC) for feature selection. In
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this chapter we present, a novel GACC algorithm, its time complexity and experiments

conducted on it and finally the results.

Chapter 4 contains our second contribution. A novel community discovery based

feature selection algorithm using consensus clustering is presented here. CDCC algorithm,

its time complexity, and the experimentation set up along with the details of the results are

described in this chapter.

Chapter 5 contains a new scalable feature subset selection algorithm with consensus

clustering based on feature ranking methods(FRCC) is described here. For implementa-

tion, we consider a few challenging high-dimensional micro-array datasets from the litera-

ture. Detailed algorithm, time complexity and results are presented here. Further, a hybrid

feature selection algorithm is proposed which can be applied to big data. Experimentation

is carried out on large scale datasets and presented here.



Chapter 2

Related Literature

Feature selection has gained much importance in the field of data mining which selects a

subset of relevant features for use in predictive model construction. The contributions of

this thesis are all feature selection approaches, so here we mentioned some of the latest and

classical methods available for feature selection in the literature. We compare our methods

with genetic algorithm based methods, graph based methods, feature ranking and ensemble

feature selection methods. Chapter organization is as follows: section 2.1 describes the

basics of dimensionality reduction methods. Methods related to feature selection approach

are explained in section 2.2. section 2.3 describes consensus clustering method and its

related algorithms.

2.1 Dimensionality reduction

Dimensionality reduction techniques are usually divided into two groups. One is feature

extraction and the other is feature selection.

Figure 2.1: Dimensionality reduction methods.

8
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2.1.1 Feature extraction

Feature extraction combines the original features to get reduced new set of features. One

of the most popular methods is Principle Component Analysis(PCA). Principal Compo-

nent Analysis (PCA), first introduced by Pearson [78], is one of the most common linear

method for dimensionality reduction. PCA is a linear projection that minimises the av-

erage projection cost. The goal of this method is to find an orthogonal projection of the

data in a low-dimensional linear subspace with the greatest variance. While PCA may be

effective at reducing dimensionality, it has significant drawbacks.

• It is difficult to interpret new features.

• Data from different clusters may have varying feature correlations, and it may not

always be possible to reduce too many dimensions without losing important infor-

mation.

• Computing eigen vectors for very high-dimensional data is impossible.

2.1.2 Feature selection

Feature selection is a process of selecting important features while discarding the irrelevant

and redundant features. Feature selection can be further classified into three approaches

listed below:

1. Filter approach: Filters use the general features of training data to perform fea-

ture selection as a pre-processing step that is independent of the learning algorithm.

This model is advantageous because of its minimal computational cost and ability

to generalise.

2. Wrapper approach: Wrappers, which use a learning algorithm and evaluate the

usefulness of subsets of features based on its prediction performance. In other words,

the feature selection algorithm calls the learning algorithm as a subroutine to eval-

uate each subset of features, while reducing the computational cost on the learning

process. The involvement of the classifier tends to produce higher performance re-

sults than filters.
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3. Embedded approach: They do feature selection during the training process and are

usually specific to a particular learning machine [33, 65]. As a result, the search for

the best subset of features is embedded into the classifier’s design and can be viewed

as a search in the combined space of feature subsets and hypotheses. This method

captures dependencies at a lower cost of computation than wrappers.

2.2 Feature selection methods

2.2.1 Genetic algorithm based feature selection methods

Since the subset selection problem is exponential in nature, getting the best solution is

indeed very time consuming process. Metaheuristic is a high level framework that can be

used to search for a near optimal solution in case of optimization problems involving subset

selection. There are many metaheuristics available in literarure. Simulated annealing,

Gentic algorithm, Ant colony optimization, particle swarm optimization and Tabu search

are some of the popular metaheuristics.

Genetic algorithm(GA) is one of the popular feature selection methods that have been

implemented successfully[61, 34, 16, 17, 91, 15]. Feature subsets can be formed efficiently

using GAs, with the help of crossover and mutation operations and also it avoids exhaus-

tive search for solution. One of the recent GA based algorithm is TCbGA[61] proposed by

Benteng Ma and Yong Xia. It is a heuristic-guided stochastic and parallel approach. This

method finds a global optimal feature subset by searching through a large number of fea-

ture combinations. Every chromosome in the population encodes a feature selection using

binary encoding, which is then transmitted to the next generation. Fitness is determined

by the accuracy of an SVM classifier obtained through the use of selected features. Ahn et

al.,[34] used a genetic algorithm in the bankruptcy problem for case-based reasoning that

simultaneously optimizes instance selection and feature weighing. A hybrid genetic algo-

rithm is proposed by Kabir et al.[15] that uses specific local search method to find feature

subset. Tsai et al.[16] has provided an extensive study of feature subset selection methods

using genetic algorithms. Yang et al.[109] proposed GARIPPER algorithm, where fitness

function is generated using classifier accuracy of RIPPER algorithm. In order to obtain the

best feature subset the algorithm is repeated for a specific number of generations until the
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expected classifier accuracy is achieved.

2.2.2 Graph based feature selection methods

Representation of feature space using graph and finding the feature groups is one of the

best way to find optimal feature subset as this framework provides the underlying rela-

tionships between features or feature vectors. Laplacian score[38] and Fisher score[32]

are some popular graph based feature selection methods in the literature. Graph clustering

with ant-colony optimization(GCACO) [71] can be used to deal with features that are re-

dundant or irrelevant. There are three steps in this process: i) The construction of a graph

in feature space ii) Organizing the features into groups iii) find the optimal feature subset

using ant-colony optimization. The time complexity increases in direct proportion to the

number of features. Graph clustering with node centrality for feature election(GCNC) [70]

is similar to GCACO, which is comprised of three steps. However, instead of using the

ACO method, it makes use of term variance and node centrality to identify the most rep-

resentative characteristics. Song et al.,[98] proposed FAST algorithm that contains three

steps. In the first step, it removes irrelevant features using Symmetric Uncertainty mea-

sure. Then in the second step it constructs a minimum spanning tree(MST) from fea-

ture graph. Finally the minimum spanning tree is partitioned for selecting the representa-

tive features. The time complexity of the algorithm is O(Mlog2M) where M denotes the

count of features. Unsupervised feature selection method based on ant colony optimiza-

tion(UFSACO) [92] is the Ant Colony Optimization(ACO) method used in this algorithm

to determine the best feature subset. This algorithm falls under the “filter-based multivari-

ate method”. In order to reduce the redundancy among the selected features, UFSACO

does not take into consideration any learning model.

Hypergraph based information theoretic approach for feature selection is proposed by

Zhang et al[113]. In this method, a hypergraph is constructed on feature space and multi-

dimensional interaction between features is used as edge weight. To find the feature subset

hypergraph clustering algorithm is used. A non-redundant feature subset selection based

on graph-theoretic approach is proposed by Mandal et al.[68]. In this method, feature

subset selection is done by finding the in densest subgraph from weighted graph. Corre-

sponding nodes(features of the densest subgraph will form final feature subset with non-

redundant features. But relevancy of the features was not considered. So, they may not
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represent best features. Bandopadhyay et al.[8] proposed an unsupervised feature subset

selection method to overcome this problem by combining densest subgraph with feature

clustering.

2.2.3 Ensemble feature ranking algorithms

There are some popular methods available in the literature based on ensemble approach.

They are EnsRank [80], FRMV[40], EFR[45], FRSD [43] and so on. Ensemble ranking

approach(EnsRank) assembles groups of rankers into a single entity. A single ensemble

list is then constructed from the output of rankers by employing an aggregation function

that assigns a “overall score” to each of the features in the ensemble. The final feature

subset will be selected from the ordered ensemble feature list by applying a predefined

threshold.

The FRMV [40] approach gathers various feature rankings from different views of the

same data set, then combines all of the feature rankings into a single consensus one. FRMV

[40] is typically able to determine a better feature ranking when compared to other feature

ranking algorithms. Jong et al. [45] have proposed EFR method for feature ranking. In

this paper, they use ensemble method for feature ranking, by combining feature rankings

obtained by independent runs of the evolutionary algorithm ROC-based genetic learner.

The random subspace method is combined with the silhouette decomposition scheme

in the FRSD algorithm [43]. The random subspace approach requires randomly sampling

features and then building separate models in each subspace to create a large number of

subspaces. Since the individual models are generated with a minimal number of features,

the random subspace technique performs better when applied to high-dimensional data

sets. The FRSD [43] builds cluster structures in each random subspace and estimates their

average silhouette widths. These average widths are broken down into components that

indicate how each attribute contributes to cluster formation.

Slavkov et al. [97] proposed an approach for analysing feature ranks. The method

combines the concept of prediction model error to the “correctness” of feature ranking. In

addition, the method is used to compare various ranking methodologies as well as various

aggregation approaches like mean, median, min and max for merging feature ranks.
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2.2.4 Feature ranking based approaches

The INTERACT [115] method uses SU measure as FCBF,but it additionally takes into

account the consistency contribution, which is a measure of consistency after removing

a feature. The algorithm is divided into two sections. First, based on their SU values

features are arranged in descending order. Then, starting at the end of the feature rank list,

features are examined one by one. If a feature’s consistency contribution is less than a

predetermined threshold, it is deleted; otherwise, it is selected. According to the authors,

this technique can handle feature interaction and picks relevant features efficiently.

Lei et al. [82], have used symmetric uncertainty(SU) as a metric for finding feature cor-

relation. The algorithm first calculates SU value of each feature and then using predefined

threshold selects relevant features by ordering in decreasing order of SU values. Then, the

ordered list is further processed for filtering redundant features. If M is the feature count

and N is the count of instances then O(NMlogM) represents the complete time complexity

of the algorithm. Another algorithm for finding feature correlations is FAST and it is also

based on symmetric uncertainty measure(SU).

CFS (Correlation-based Feature Selection) [35] is a simple multivariate filter tech-

nique that ranks feature subsets using a heuristic evaluation function based on correlation.

The evaluation function is biased in favour of subsets with attributes that are substantially

correlated with the class but uncorrelated with one another. Irrelevant features will be dis-

carded because their correlation with the class will be low. Further based on the correlation

between the features, redundant features will be eliminated.

2.2.5 Fuzzy roughset neural network based feature selection

Fuzzy rough set approach is one of the populer technique used for feature selection [19,

20, 104]. It is a combination of fuzzy set and rough threory. A cloud computing technique

DFRS [49] is a distributed fuzzy rough set (DFRS) based feature selection strategy that

distributes computing jobs to different nodes. First, each node’s capacity is determined by

solving an optimized problem based on its processing and memory resources. The samples

are then sent with the necessary interconnections using a lightweight data decomposition

algorithm. Instead of doing individual computations, the dispersed nodes pool their re-

sources to integrate global data and produce correct features. The main perspective of this
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is work is to apply distributed technique on fuzzy rough set model.

Fuzzy decision tree(FDT) [96] algorithm starts by arranging the continuous values of

features in the desired order to produce the “cut-point”. In the second step, the cut-point

is ”fuzzified”, which is accomplished through the use of the entropy evaluation function.

This step is performed on all attributes recursively in order to determine the best “cut-point

”. Then, in order to generate additional branches and nodes, the attribute with the lowest

value is chosen. Once the stopping criterion is met, the process stops.

Zhao et al. [114] developed a feature selection approach using Fuzzy Rough Neural

Networks (FRNN). A heuristic backward search approach is used to apply FRNN to fea-

ture selection. It employs both neural networks and feature selection. This algorithm has

a time complexity of O(NlogN).

2.2.6 Methods that deal with irrelevant and redundant features

Traditionally, the focus of feature subset selection method is on search for the relevant

features. A well-known example is Relief [46]. This is a feature weighting algorithm

proposed by Kira and Rendell. It is fast, easy to implement and accurate. But, it deals

only with two-class data. This algorithm can remove only irrelevant features but does not

identify redundant features. This cannot handle noisy data. ReliefF [64] is an extension

of Relief, and can handle multi-class data and also noisy data. But this method cannot

identify redundant features.

However, along with irrelevant features, redundant features also affect speed and accu-

racy of the algorithm. Methods like RRFS [24], FCBF [110], FAST [98], mRMR [79] and

NMIFS [23] can eliminate irrelevant and also redundant features. Relevance-redundancy

feature selection(RRFS) is based on the selection of relevant features and the elimination

of redundant features. It selects a feature subset based on a specific threshold using mu-

tual information based criteria.The time complexity of the RRFS method is log-linear in

proportion to the number of features in the dataset.FCBF algorithm is based on correla-

tion between features [110]. To find the correlation between features Lei et al. [] have

used an entropy based measure symmetric uncertainty(SU). First, it calculates SU value

for each feature, selects relevant features based on predefined threshold and orders them

in descending order according to their SU values. Then, it further processes ordered list to

remove redundant features. If the number of features is M and number of instances is N
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then, the overall time complexity of this algorithm is O(NMlogM).

FAST algorithm also uses symmetric uncertainty measure(SU) to find the correlations.

It consists of three steps [98]. First, it removes irrelevant features using SU measure as

in FCBF. Then, constructs a minimum spanning tree(MST). Finally, partitions MST and

selects representative features. The time complexity of this algorithm is O(Mlog2M) with

M number of features.

mRMR and NMIFS are incremental search algorithms which selects one feature at a

time. mRMR and NMIFS, both use mutual information(MI) measure to find the optimal

feature subset. Given a feature subset F with M features, the goal is to find a subset S with

k features that maximizes MI(C; S) where k < M. Both select first feature fi that has a

maximum MI(C; fi), and selection criteria for remaining features is different.

2.2.7 Other methods

There are many other feature selection algorithms proposed in recent literature [92, 27,

67, 58, 66]. The following are some of the state-of-the-art methods for feature subset

selection.

2.2.7.1 Bayesian Networks

Petri et al. [51] offer a data reduction technique for visualisation of high-dimensional data.

They transform high-dimensional data vectors to low-dimensional data vectors using mul-

tidimensional scaling. They define unsupervised Bayesian distance measure, which is

an extension of supervised Bayesian distance measure, to detect object similarity. The

class-color clarity test and the Naive Bayesian classifier (NBC) are used to validate data

presentation in 2D. However, for data sets where the Naive Bayesian classifier performs

weakly, this test failed.

2.2.7.2 Selective Bayesian Network(SBC)

Ratanamahatana et al. [14] employed this classifier to increase the performance of a Naive

Bayesian classifier when features are irrelevant or redundant. They used C4.5 to create the

decision tree and chose the features that are the most significant in the first three layers of

the decision tree. They did it five times and combined all of the attributes selected in each
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iteration. To check the accuracy, a naive Bayesian classifier is used.

2.2.7.3 NBTree

This is a combination of the decision tree induction and naive Bayesian classifier, which

is used to overcome the limitations of each separately. To improve the accuracy of a naive

Bayesian classifier on high-dimensional datasets, Kohavi [48] proposed the NBTree algo-

rithm. The results showed that the NBTree algorithm outperformed the Naive Bayesian

(NB) and C4.5 decision tree induction algorithms.

2.2.7.4 SBPCA

In [93], Acharya formulated the Supervised Bergman PCA(SBPCA) dimensionality reduc-

tion technique and shown how it directly maximises the goal of prediction with reduced

dimensions. It is also demonstrated that SBPCA outperforms PCA when classes are lin-

early separable.

2.3 Consensus clustering

Clustering is mainly used to group similar elements together. There are many clustering

algorithms available in the literature [37], and different clustering algorithms may cluster

the data differently. Then it is very difficult to judge which way of clustering the data is

the best one.

Consensus clustering, also called aggregation of clustering or cluster ensembling [30],

refers to obtain a single better clustering(consensus) from different clusterings for the same

data set [76, 112]. Consensus clustering is thus the problem of reconciling clustering

information about the same data set coming from different sources or from different runs

of the same algorithm [99, 5], and also is known as median partition [25].

Basically clustering algorithms are sensitive to initial clustering settings, similarity

measures used etc,[69]. To address these issues idea of consensus clustering has been

proposed. Consensus clustering takes as input various clusterings generated by running

the various clustering algorithms [30] or running same algorithm many times by changing

initial input parameters to generate median partition. This method also can be used to

represent the consensus over multiple runs of clustering algorithm with random restart
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points, so as to deal with the problem of sensitivity to initial parameter settings. Since

there can be exponentially many number of input clusterings, finding consensus among

them is an NP-hard problem. Hence, many heuristics are proposed in the literature to

address this problem[6].

2.3.0.1 Approximation algorithms for consensus clustering

Several algorithms are proposed to arrive at a consensus of the clusterings. There are basi-

cally two ways in which this is carried out. First option is to choose one of the clusterings

as the consensus based on some dissimilarity measures. Second is to reorganize clusterings

to arrive at a consensus. In literature, we could find many approximation algorithms like

best-of-k (BoK), majority rule(MR), best one element move(BOEM), CC-Pivot, CCLP-

Pivot, Average Link (AL), Furthest, simulated annealing etc.[6]. Algorithms based on

graph partitioning HGPA, CSPA, MCLA [99] consensus clustering algorithms are based

on graph partitioning [100].

All approximation algorithms in the literature use dissimilarity matrix to find the con-

sensus. But, the time complexities of these approximation algorithms other than BoK are

atleast O(N2). And BoK has linear time complexity of O(k2N), where ’k’ is number of

input clusterings and N is number of instances. It is a 2-approximation algorithm.

CC-Pivot [72] is designed on tournament graphs to solve the feedback arc set problem.

It can also be used for consensus clustering and rank aggregation problems. This recursive

method chooses a random pivot item P repeatedly and separates the objects based on their

relationship with the pivot, similar to Quick sort. CCLP-Pivot is an extension to CC-Pivot

that works for LP-problems. But the complexity of this problem is very high as O(N8) for

‘N’ instances, due to triangle inequality constraints.

A standard agglomerative algorithm proposed by Gionis et al [3] is Average Linkage

algorithm. Every object is placed in its own (singleton) cluster at the start. The two clus-

ters with the shortest average distance between objects in one cluster to other are then

repeatedly merged. This method is repeated until the average distance between each pair

of clusters is at least 1/2. The time complexity of this algorithm is O(N2(logN +M)) with

N veritices and M input clusterings. CSPA is a Cluster-based similarity partitioning al-

gorithm, that uses pairwise similarity to recluster the objects using dissimilarity measure

mentioned in subsubsection 2.3.0.2. HGPA is used to partition the hypergraphs. The ob-
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jective of this method is to attain maximum mutual information. Clusters are represented

with hyperedges. MCLA works by aggregating and collapsing related hyperedges.

2.3.0.2 Dissimilarity Measures

Various measures like dissimilarity measure [6][11], Quality Partition Index(QPI) [102]

and Normalized Mutual Information(NMI) [99] are used in finding consensus clustering

algorithms. Most of the works have used dissimilarity measure.

2.3.0.3 Symmetric distance difference (SDD)

Distance between two clusterings C1 and C2 can be calculated using:

d(C1,C2) = (b+ c) or
(

n
2

)
− (a+d) (2.3.1)

where

a = number of pairs of objects clustered in C1 and C2

b = number of pairs of objects clustered inC1 but not clustered in C2

c = number of pairs of objects clustered in C2 but not clustered in C1

d = number of pairs of objects not clustered in C1 and C2

With given input clusterings (C1, C2, C3,.....Ck) we need to find a partitioning C∗ such

that

C∗ = argminC

k

∑
i=1

d(Ci,C) (2.3.2)

The best clustering is the one which has minimum dissimilarity from all remaining

clusterings. We use best-of-k(BoK) approximation algorithm because of its linear time

complexity of O(k2N)[6], where ‘k’ is number of input clusterings and ‘n’ is number of

instances. It picks best clustering from k- input clusterings. This is a 2-approximation

algorithm [26].
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2.3.0.4 Adjusted Rand Index (API)

This is derived form original rand index [86] measure. If X and Y are the two partitioning

or clusters, ARI can be defined using contingency table of size nXn with each entry [ni j]

represents number of common objects in Xi and Yj.

ARI =
∑i j

(ni j
2

)
− [∑i

(ai
2

)
∑ j

(b j
2

)
]/
(n

2

)
1
2 [∑i

(ai
2

)
+∑ j

(b j
2

)
]− [∑i

(ai
2

)
∑ j

(b j
2

)
]/
(n

2

) (2.3.3)

where ai is the sum of [ni j] row wise, and b j is the sum of [ni j] column wise in contin-

gency table.

2.3.0.5 Normalized Mutual Information (NMI)

It is an entropy based measure [95] used to evaluate the quality of the clustering. From the

given set of input clusterings, the one which has highest NMI score will be selected as best

clustering. If P, C denote labels of class and clusters respectively then NMI can be defined

as follows:

NMI(P,C) =
2× I(P;C)

H(P)+H(C)
(2.3.4)

Where P, C represents class and cluster labels respectively. H(.) denotes entropy. I(P;C)

denotes mutual information between P and C.

2.3.1 Recent consensus clustering algorithms

Recently, Huang el al. [41] proposed weighted consensus clustering algorithms namely

LWEA and LWGP. Banerjee et al. [9] have developed WHAC which is an improved ver-

sion of LWEA and further a new coupled ensemble selection method (CES) is proposed.

Basically, the performance of consensus clustering algorithms depends on reliability of

input clusterings in the ensemble. LWEA and LWGP both deal with this problem using

cluster uncertainty estimation (ECI) and local weighting strategy. LWGP is based on bi-

partite graph formulation and partitioning. Tcut [111] is used to partition the graph into

disjoint sets called clusters. WHAC is a hierarchical consensus clustering algorithm used

to learn the cluster ensemble. To evaluate the merit of the clustering, a cluster-level sur-
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prisal measure is defined. Results shows that WHAC is performing better compared to

LWEA. The time complexity of WHAC is Θ(N2Pk2 +N2logN), where N, P, k are num-

ber of instances, true number of clusters and size of ensemble. Further, CES gives a new

direction for theoretical research in quality ensemble selection.

In this chapter we gave an overview of dimensionality reduction problem and impor-

tance of feature selection. Some of the recent methods for feature selection problem are

mentioned here along with their advantages and disadvantages. As we are addressing

feature subset selection problem using consensus clustering method, it is described in de-

tail in section 2.3 along with approximation algorithms used for consensus clustering and

measures used to find the quality of clustering.



Chapter 3

Genetic algorithm based feature

subset selection

3.1 Introduction

Genetic Algorithm (GA) is a search-based optimization technique generally used to find

optimal or near-optimal solutions to hard problems that may take exponential time. It is

very much used in machine learning to handle optimization problems. Although genetic

algorithms are adequately randomised by nature, they outperform random local search.

They offer excellent parallel capabilities and are particularly beneficial when the search

space is wide and there are many parameters to consider [39]. With this GA concept,

a novel genetic algorithm based feature selection using consensus clustering is proposed

(GACC). A dataset with some random features is represented as a chromosome. Dissim-

ilarity measure is used as ”fitness function” and ”selection” is chosen to retain the best

chromosomes in next population.

3.1.1 Motivation

The cardinality of the ”best” subset of features that ”describes” the data well is referred

to as intrinsic dimensionality of a data collection. By looking at the best features that

‘clusters’ the data well, a subset of features that best characterises the data can be found.

The data is then clustered differently by different clustering techniques. As a result, if

21
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we achieve consensus across these several clusterings, the feature subset that discovers

the consensus is referred to as a ‘optimal subset’ of features. With this motivation, a

randomized approach is proposed to verify the feasibility of applying consensus clustering

to feature selection problem. Further, it motivated us to develop a genetic algorithm based

on consensus clustering algorithm for feature selection (GACC), as GA is proved to be

one of the best search-based optimization technique.

3.2 Related work

Feature subset selection is quite an old problem and method that deals with feature space

is a subset-search method which is more popular. GARIPPER, WBFS are some of the

GA based methods used in literature. GARIPPER generates strings corresponding to fea-

ture subset and uses classifier accuracy of RIPPER algorithm as fitness function [109].

Crossover and mutation operators are used to generate chromosomes in new population.

The algorithm stops after a fixed number of generations or until the desired classifier ac-

curacy is met and gets the best set of features. In paper [56] a wrapper-based feature

selection(WBFS) method is proposed to select the feature subset. This uses genetic algo-

rithm(GA) and K-nearest neighbor(KNN) to rank the importance of features. Other clas-

sical methods for feature selection problem used here for comparison are SBC, FRNN-FS

and SBPCA.

SBC classifier is used [14] to improve the performance of naive bayesian classifier

when features are irrelevant or redundant. SBC uses C4.5 first to generate decision tree

and selects attributes which are at first three levels of decision tree as the most impor-

tant features. Experiment is repeated it for 5 times and the union is performed on all

attributes selected at every iteration. Naive bayesian classifier is used to test the accuracy.

Zhao et al. [114] developed feature selection algorithm based on Fuzzy Rough Neural Net-

works(FRNN). FRNN is applied to feature selection by heuristic backward search strategy.

It is a combination of neural networks and feature selection. The time complexity of this

algorithm is O(NlogN) where ‘N’ is number of features. Acharya in [93] formulated a

dimensionality reduction technique called Supervised Bergman PCA(SBPCA), and have

shown that how this will directly optimizes the goal of prediction using reduced dimen-

sions. It is also shown SBPCA outperforms PCA, provided classes are linearly separable.
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3.2.1 Background

There are many optimization problems in computer science, which are NP-Hard. In this

scenario, genetic algorithms have proved to be efficient in providing near-optimal solutions

in reasonable time. So, GA is chosen here to find solution for feature selection problem.

The basic terminology used in GA is as follows:

• Population: Subset of possible solutions to given problem.

• Chromosome: It is the representation of one solution for the given problem.

• Genetic operators: They are used to generate other set of chromosomes (offspring)

from the existing chromosomes. They include crossover, mutation, selection, oper-

ators etc.

• Fitness function: Used to test the quality of the chromosome while selecting the

best chromosome from the population.

Figure 3.1 shows the flow of steps in general genetic algorithm.

The proposed GACC algorithm uses the following terminology:

• Chromosome creation: It is a random feature subset( ’On’ positions of the chro-

mosome represents features used )

• Fitness function: As every chromosome is clustered using K-means in GACC, to

select the best chromosome from the population, GACC uses dissimilarity measure

as fitness function defined as follows:

d(C1,C2) = (b+ c) or
(

n
2

)
− (a+d) (3.2.1)

where a = number of pairs of objects clustered in C1 and C2

b = number of pairs of objects clustered inC1 but not clustered in C2

c = number of pairs of objects clustered in C2 but not clustered in C1

d = number of pairs of objects not clustered in C1 and C2
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Figure 3.1: Flow of steps performed in genetic algorithm.

Figure 3.2: Chromosome representation in GACC.

The total dissimilarity of a clustering Ci from all the other ‘k-1’ clusterings is calcu-

lated as:

δ (Ci) = ∑
j ̸=i

dCi,C j

The best clustering is the one which has minimum δ value.

• Genetic operators: Crossover and mutation are used to generate the new offspring

from existing chromosomes of previous population with 60% and 5% crossover and

mutation probabilities.
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Figure 3.3: Crossover operation with 80% probability

• Selection criteria: GACC retains the top two best chromosomes in the next popu-

lation.

3.2.1.1 Cluster validity indices

Cluster validity indices are used to verify the compactness of the clusters generated by the

clustering algorithm. There are many such validity indices available in literature like Dunn

Index, Davies-Bouldin(DB), Root-mean-square standard deviation(RMSSDT), Silhouatte

etc[52]. One of the most cited indices is the Dunn index and it identifies clusters which are

well seperated and compact[94]. Now, we validate the results with cluster validity index

Dunn.

Cluster validity verification using Dunn Index (DI)

Dunn =
dmin

dmax
(3.2.2)

Where dmin is the smallest distance between two objects from different clusters and dmax

is the largest distance from same cluster.

Highest Dunn index indicates the better clustering quality.

3.3 Randomized approach

With the motivation of finding “best” feature subset that clusters the data in a well-separated

manner, we tried to partition the dataset by retaining different combinations of feature sub-

sets. To select best feature subset that clusters the data well, consensus clustering algorithm

is used. To verify the application of consensus clustering method for feature subset selec-

tion problem, a feasibility study has been done using a randomized approach. To test this

method, a synthetic dataset is constructed with 200 instances, 6 features and all points are

well separated into four clusters. The six features are namely x, y, z, x2, xy and z2 where

x and y are chosen in such a way that they are independent. Then, a correlation measure

is used to find the correlation between each pair of features. Table 3.1 illustrates the cor-
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relations between features and it can be seen that {x, y} are less correlated as they are

independent and {x,x2} are having high correlation, which means they are redundant.

Table 3.1: Correlation matrix of the synthetic data set

x y z x2 xy z2

x 1.000 0.431 0 .736 0.970 0.873 0.713
y 0.431 1.000 0.559 0.512 0.713 0.556
z 0.736 0.559 1.000 0.768 0.810 0.973
x2 0.970 0.512 0.768 1.000 0 .934 0.758
xy 0.873 0.713 0.81 0.934 1.000 0 .808
z2 0.713 0.556 0.973 0.758 0.808 1.000

3.3.1 Algorithm

The dataset is generated using 6 dimensions (x, y, z, x2, xy and z2) The following steps

have been followed in this approach.

• Step 1: Select a feature subset for size S = 2,3,,5 randomly and project the dataset

along these feature dimensions.

• Step 2: K-means clustering is applied on each sample by varying ‘K’ value.

• Step 3: To find best ‘K’ value, best-of-k consensus clustering is applied.

• Step 4: Then, by considering all partitionings obtained by samples having two fea-

tures (S = 2), best-of-k(Bok) is applied to choose one best partitioning or clustering.

• Step 5: Step 4 is repeated for feature subset of size 3,...M-1. This will generate one

best feature subset per each size S = 2,3,...M-1.

• Step 6: Finally, Bok consensus clustering is applied on all partitionings generated

after Step 4 to find the final best partitioning.

• Step 7: Final feature subset is formed with the features present in the best partition-

ing.

In the Table 3.2 ‘M’ represents size of feature subset and ‘K’ represents number of

clusters in K-means clustering algorithm. F(i, p) is a feature subset of size ‘i’, obtained

using K-means with K = p.
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Table 3.2: Description of randomized method.

K→ 2 3 4 . p .
M ↓

2 consensus row-wise
with fixed ’M’

3 .
. .
i F(i,p) .
. .
. .
. Overall consensus(M,K)

3.3.2 Experiments and results

We have implemented randomized approach on a synthetic dataset having 200 points and

6 dimensions and on four benchmark datasets. The four datasets chosen are Wine that has

less features and less instances; Pima, Breast cancer and WQW having more instances.

3.3.2.1 Synthetic dataset

This data set has 200 points and 6 dimensions. The input points are considered in such a

way that they all are well separated into 4 groups. And dimensions are x, y, z, x2, xy, z2

where z =f(x). Table 3.1 illustrates the correlations between the dimensions. It can be seen

that ‘x’ is correlated with ‘x2’, it means they are redundant, where as ‘x’ and ‘y’ are less

correlated, so they are independent.

The dataset is clustered using K-means algorithm for K = 2, 3, 4, 5, 6 and consensus

among the clusterings is found using best-of-k algorithm (best clustering is the one which

has least dissimilarity value). The results of the dissimilarity values obtained for each of

the clusterings are given in Table 3.3. Each value in the columns of 2-6 of Table 3.3 is

∑
6
j=2d(CK , C j). Last column represents best clustering with minimum dissimilarity value.

After finding the best ‘K’ value for each feature subset, we can find consensus among

2-feature subsets, to find the best one.

In a similar fashion the experiment is carried out to find consensus among 3-feature,

4-feature and 5-feature subsets. In order to find the best feature subset that describes the

original data, a consensus is used among the consensus of the 2, 3, 4 and 5 feature subsets.

This is shown in Table 3.4, and it shows the best feature subset in a highlighted manner.
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For subsets of size 4, {x,y,z, xy} as well as {x,y,xy,z2} are obtained as the optimal feature

subsets by consensus.

Table 3.3: ‘K’= 4 is obtained as the best ‘K’ which gives least dissimilarity value by the
consensus for all feature subsets of sizes 2, 3, 4 and 5.

Feature Dissimilarity values for K clusters
Subset K=2 K=3 K=4 K=5 K=6 Consensus

x,y 30417 15417 12770 13366 15838 (K=4)
x,z 25138 14080 13268 15199 18347 (K=4)
y,z 23507 15284 13153 13432 15184 (K=4)

xy,z2 22512 20859 17925 20558 22274 (K=4)
x,y,z 9133 9011 6487 6977 8688 (K=4)

x, x2, xy 5640 4121 4121 5087 5626 (K=3)
(K=4)

x, y, xy 9626 9156 6774 7349 8867 (K=4)
z, xy, z2 9681 9999 8859 9075 10918 (K=4)
x,y,z,xy 8756 7598 7552 10257 9587 (K=4)
y,z,xy,z2 10214 9875 6788 8977 10586 (K=4)
x,x2,xy,z2 9876 8674 7684 9876 8821 (K=4)

x,y,xy,x2,z2 5575 5025 5025 6547 6678 (K=3)
(K=4)

Table 3.4: Overall consensus among feature subsets of sizes 2,3,4 and 5 with K = 4 high
lighted in Table 3.3

x,y x,z y,z xy,z2 FeatureSubset
(K=4) (K=4) (K=4) (K=4) (Consensus)
12040 13700 15266 16126 x,y
x,y,z x,x2,xy x,y,xy z,xy,z2

(K=4) (K=4) (K=4) (K=4)
8319 12439 8361 15527 x,y,z

x,y,z,xy y,z,xy,z2 x,x2,xy,z2 x,y,xy,z2

(K=4) (K=4) (K=4) (K=4)
5554 10258 11678 5554 x,y,z,xy

x,y,z,x2,xy x,z,x2,xy,z2 y,z,x2,xy,z2 x,y,xy,x2,z2

(K=4) (K=4) (K=4) (K=4)
4109 10321 5803 4109 x,y,xy,x2,z2

From Table 3.5, though 3 feature subsets show minimum dissimilarity value of 294,

dunn index distinguishes {x,y} as the best feature subset with highest value of 0.0769.

Hence, it is clear that x and y can be chosen as features to describe the data set adequately

which confirms that independent features can be identified from the consensus clustering
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method. Based on the solution obtained by the randomized approach, it is proved that

consensus clustering approach can select an optimal feature subset.

Table 3.5: Consensus of the best 2,3,4 and 5-feature subsets.

Feature x,y x,y,z x,y,z,xy x,y,z,x2,xy Consensus
subset

Dissimilarity 294 294 294 494 x,y with K=4
value

Dunn Index 0.0769 0.0625 0.0085 0.0048 x,y with K=4

3.3.2.2 Benchmark datasets

Randomized method is also implemented on benchmark datasets namely Pima, Breast-

cancer (BC), Wine quality white(WQW) and Wine given in Table 3.11. Features selected

using random method based on consensus clustering are presented in Table 3.6, Table 3.7,

Table 3.8 and Table 3.9. The overall results for Pima, BC, WQW and Wine compared to

the literature are presented in Table 3.10. The results obtained are comparable with other

methods in the literature. From these results, it is clear that the reduction in the number of

features is almost 50%.

Table 3.6: Features obtained by random method for Pima Dataset.

Original features: 0-Number of times pregnant, 1-Plasma glucose concentration, 2-BP,
3-triceps skin fold thickness, 4-Serum insulin, 5- BMI, 6-Diabetes pedigree function,

7-Age.
S.No Feature subset Sum of Dissimilarities

1 {3,7}(K=3) 317036
2 {5,6,7}(K=3) 273894
3 {0,1,4,7}(K=3) 220568
4 {0,1,4, 6,7}(K=3) 214378

Consensus { 0,1,4,6,7} with (K=3)

This method suffers from two problems:

1. It requires an exponential time complexity. As the number of dimensions increases,

so the complexity increases.

2. It is inadequate to handle huge dimensions.

The randomized approach is treated as a proof of concept. Therefore, a search-based

optimization technique using genetic algorithm with consensus clustering is proposed for
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Table 3.7: Features selected by random method for Breast cancer dataset.

Original features: 0-Lump thickness, 1-Uniformity of cell size, 2-Marginal Adhesion,
3-Single epithelial cell size, 4-Bare Nuclei, 5- Bland Chromatin, 6-Normal Nuclei,

7-Mitoses, 8-Uniformity of cell shape, 9- Sample coder.
S.No Feature subset Sum of Dissimilarities

1 {1,3,4,6}(K=4) 16473
2 {0,3,4,5,6}(K=4) 7945
3 {0,2,4,5,6,7}(K=4) 8143
4 {0,1,2,3,4,5,6}(K=4) 9037

Consensus {0,3,4,5,6} with (K=4)

Table 3.8: Features selected by random method for Wine quality white dataset

Original features: 0-Fixed acidity, 1- volatilearidity, 2-citric acid, 3-Recidual sugar,
4-Chlorides, 5- Free sulfurdioxide, 6-Total sulfurdioxide, 7-Density, 8-PH, 9- Sulphates,

10-Alcohol.
S.No Feature subset Sum of Dissimilarities

1 {2,3,8,9}(K=6) 13633486
2 {0,4,5,7,9}(K=6) 14020282
3 {1,3,6,7,8,9}(K=7) 12284474
4 {0,2,3,6,7,9,10}(K=7) 12557888
5 {0,1,2,4,5,6,8,10}(K=5) 12912590
6 {0,1,2,3,6,7,8,9,10}(K=6) 12153452

Consensus {0,1,2,3,6,7,8,9,10} with (K=6)

feature selection.

3.4 GA based feature selection using consensus clustering

(GACC)

To perform much better random local search, a novel genetic algorithm based feature se-

lection using consensus clustering is proposed (GACC).

GACC method is described as follows:

• In the initial population, Chromosomes (feature subsets) are produced at random.

• The K-means algorithm is used to cluster each data set projected along the feature

dimensions ( ‘on’ positions of chromosome ) specified by the feature subset.

• Then, to find consensus across all feature subsets, dissimilarity value is used.
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Table 3.9: Features obtained by random method for Wine dataset

Original features: 0-Alcohol,1- MalicAcid,2- Ash, 3-Alcanity of Ash, 4-Magnisium,
5-total Phenols, 6-flavonoids, 7-Non-Flavonoid phenols, 8-Proanthocyanins, 9-Color

intensity, 10-Hue, 11-Diluted of wines, 12-proline.
S.No Feature subset Sum of Dissimilarities

1 {5,7,8,10,11}(K=3) 3676
2 {0,1,5,6,7,9}(K=3) 5974
3 {0,4,5,8,9,10,11}K=3) 3298
4 1,2,4,5,6,9,10,11(K=3) 4108

consensus {0,4,5,8,9,10,11} with (K=3)

Table 3.10: Comparison of randomized approach with methods in the literature.

Dataset #original #reduced best ’K’ Accuracy% Literature
features features value (J48) Accuracy%

(J48)
Pima 8 4 3 72.1 79[14]
BC 10 5 4 94.7 97[14]

WQW 11 9 6 59.62 58
Wine 13 7 3 92.1 94.7[114]

• In the next generation, by using ‘elite’ selection method, the two best chromo-

somes are chosen based on dissimilarity values, and are retained in the population.

The remaining chromosomes are added to the population by generating them using

crossover and mutation operations.

• The algorithm is terminated once the same best chromosome is obtained in two

consecutive generations.

This is described clearly in Algorithm 3.1.

3.4.1 Time complexity

Initially, to perform K-means clustering for each chromosome with ‘K’ number of clusters

with ‘N’ instances it takes O(KNI) time, where ‘I’ is the number of iterations. To find

the best chromosome, best-of-k(BoK) algorithm takes O(k2N) time. Therefore, overall

time complexity of GACC algorithm is O((k2 +KI)N) where ‘k’ is the number of input

clusterings given to besk-of-k algorithm and ‘K’ is the number of clusters used for K-

means algorithm.
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Algorithm 3.1 Genetic algorithm based feature selection using consensus clustering
(GACC)
Input: Dataset of size N and F: Set of all features where |F |= D.
Output: Feature subset selected.

1: chromosome := (bit vector, K), where bit vector is of size D and represents a feature
subset of F, where each bit is randomly chosen to be 0 or 1. ’K’ represents number of
clusters in K-means and chosen randomly between 2 to n.

2: Generate ’P’ a set containing chromosomes in first generation
3: repeat
4: for Each chromosome in P do
5: Apply K-Means clustering algorithm, with ’K’ chosen in the chromosome.
6: end for
7: Compute dissimilarity value for each clustering generated.
8: Pass the clusterings generated by each chromosome in P as input to best-of-

k(BOK) and order them in increasing order of their fitness values. /*Dissimilarity
values are used as fitness values*/

9: Select top two chromosomes C1, C2 from this generation and use them in the next
generation. /*elite selection*/

10: To generate remaining (P-2) chromosomes in the next generation, apply crossover
and mutation operations on the chromosomes to obtain P1.

11: P← P1 U {C1, C2 }
12: until no change in the best chromosome
13: The best feature subset is derived from the ‘on’ positions of the best chromosome.

3.4.2 Experiments and results

3.4.2.1 Datasets used for GACC

Experiments have been conducted on UCI machine learning data sets such as Wine, Wine

quality-white(WQW), breast cancer(BC) and Pima. Wine, Wine quality-white, Lung-

cancer and breast cancer data sets are challenging datasets for classification. In order to

test GACC algorithm, we selected such data sets. Table 3.11 shows the number of features

along with other relevant details of these data sets.

We re-organized the datasets into four groups (i) less instances with less number of

features, (ii) more instances with less number of features, (iii) less instances with more

number of features and (iv) more instances with more number of features which are given

in Table 3.12.
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Table 3.11: Description of datasets

Dataset # Instances # Dimensions #Classes
Seed 210 7 3
Pima 768 8 2

Breast Cancer 699 10 2
WQW 4878 11 11
Wine 178 13 3
Zoo 101 16 7

Ionospere 351 34 2
Lungcancer 32 56 2

Isolet 7797 617 26

Table 3.12: Benchmark data sets chosen from UCI with variation in number of features
and number of instances

Less #Instances More #Instances
Less #features Seed(7, 210) Pima (8, 768)

Wine(8, 178) Breastcancer(10, 699)
Zoo(16, 101) WQW(11, 4878)

More # features Ionosphere(34, 351) Isolet(617,7797)
Lungcancer(56, 32)

Table 3.13: Comparison of results obtained using GACC with FRNN-FS[114],
GAPIPPER[109], SBC[14] and SBPCA[93](# original features mentioned with the dataset
in the first column of the Table).

Dataset GACC Others
Reduced Accuracy Other Reduced Accuracy
Features %(J48) Methods Features %(J48)

Seed(7) 4 92.20 SBC 5 79.12
Wine(13) 7 95.03 FRNN-FS 6 94.77

TCbGA 9 99.6
Zoo(16) 8 96.18 GARIPPER 7 96.00

TCbGA 5 98.03
Pima(8) 4 77.8 SBC 5 79.00
BC(10) 5 96.7 SBC 4 97.00

FRNN-FS 4 93.8
WQW(11) 8 62.68 - - – –
Ionosphere(34) 10 94.40 GARIPPER 10 94.61

TCbGA 14 98.32
Lungcancer(56) 5 79.58 FCBF 5 80.83

TCbGA 9 96.30
Isolet(617) 127 72.45 FCBF 137 80.70

The results obtained using GACC are compared with the methods that are available
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in the literature and are tabulated in Table 3.13. The choice of the methods is based on

the availability of the results for the specific datasets considered for our experimentation.

TCbGA is one of the latest methods that gives better accuracy in most of the cases but

with more features. For datasets of group (i) with less features and less instances, GACC

is performing very well and specially for the seed dataset and gives higher accuracy of

92.20% comapared to the literature. In both the cases of groups (ii) and (iii), the results

are on par with those reported in the literature both in terms of accuracy and reduction

in the number of features. Finally for group (iv) having dataset Isolet, it can be seen that

GACC is not performing very well.

3.4.3 Discussion

There are many methods in the literature for dimensionality reduction. GACC method

is compared with other methods from the literature which have used the same data sets.

Bayesian network method is converting high-dimensional data to 2 or 3 dimensions. They

have used unsupervised Bayesian distance metric to find the pairwise distance between

two vectors. Using unsupervised distance metric requires the prediction of distribution,

which is a difficult problem. Selective Bayesian Classifier algorithm(SBC) always selects

a set of attributes that appear only in the first three levels of simplified decision tree which

was constructed using C4.5. Selecting only from 3 levels may not work always.

The results achieved using GACC method is comparable with methods in the liter-

ature. In GACC method, a genetic algorithm is used to generate feature subsets. With

the experiment of GACC method on Wine dataset in which 95.03% classifier accuracy

is achieved with 7 features(total features are 13). Both the methods are able to pick up

feature subsets which are giving comparable performance reported in the literature. For

wine-quality(white), breast cancer and Pima, GACC performance is better than random

method. From the above experiments it can be concluded that GACC selects the feature

subsets better than random method.

From Table 3.14 it can be observed that most of the features (4 out of 7) are commonly

selected in both of the methods. The results obtained using randomized method and GACC

are plotted as in Figure 3.4.
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Table 3.14: Features selected using the GACC method and random method for Wine
dataset

GACC method:( 7 features) Random method:(7 features)
alchohol alchohol

magnisium magnisium
ash total phenols

proanthocyanis proanthocyanis
color intensity color intensity

malic acid 0D280/0D315 of diluted wines
Flavonoids Hue

95.03% accuracy 92.1% accuracy

Figure 3.4: Comparison of Random method and GACC

3.5 Conclusions

Clustering high dimensional data is a challenging problem in data mining. By reducing the

number of dimensions, we can group the data set into well separated clusters. The most

popular method used for dimensionality reduction is PCA which does not select the feature

subset from whole set of features, instead it constructs new features. This method is not

feasible for very high-dimensional data. With the aim of better visualization of data using

reduced feature subset a novel genetic algorithm based feature selection using consensus

clustering algorithm is proposed (GACC). To prove the feasibility of consensus clustering

for feature selection, initially a random method is proposed. Due to his high computational

complexity, GACC is proposed. Random approach is tested on synthetic dataset of size

200 and results obtained showed that consensus clustering works well for feature selection

problem. Random approach is further implemented on benchmark datasets from UCI

and achieved comparable results with literature. Further GACC is tested on benchmark
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datasets from UCI. GACC is proved to be better than random approach. Dissimilarity

measure is used as a fitness function in GACC which need to be minimized. The stopping

criteria used in GACC is also proved as good one. But, the time taken by this algorithm

is high compared to the methods in the literature and may not be scalable for very high

dimensional datasets.



Chapter 4

Community discovery based

feature selection using consensus

clustering

Graph-based methods have been studied in the field of cluster analysis in recent years. In

general, when using a graph-based method, a graph is constructed on instances as nodes

and defining an ’interaction’ among the instances as edges. For clustering instances, edges

are removed from the graph based on some specific criterion. The end result is a forest,

with each tree in the forest representing a cluster. On the basis of this concept, Song

et al. developed an algorithm known as FAST [98]. Instead of using data instances as

points, FAST creates a minimum spanning tree using well known Prim’s algorithm [83]

based on the feature space using symmetric uncertainty value between the features as edge

weight. Using T-relevance and F-correlation definitions some edges are removed from

the tree. The final output is the forest of trees(clusters). From each cluster, the most

representative feature that is highly correlated to the target class is chosen to form the

feature subset. Since it operates in feature space, this algorithm is extremely fast. On the

basis of this concept, a novel and efficient consensus clustering-based algorithm for feature

subset selection is proposed here.

37
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4.1 Motivation

With the inspiration from the FAST algorithm a new algorithm based on consensus clus-

tering is proposed that works on feature space. The aim of the approach is that time can

be saved by working on feature space rather than original data space, as the number of

features is generally very small in comparison to the number of data instances. Feature

subset selection can be achieved by selecting the most “representative” features that are

highly correlated to the target class. Since different community discovery algorithms give

different partitions of the feature space, consensus among these clusterings may find the

‘best’ subset of features that “describes” the data the well. Further, the subsets can be

pruned further with the correlation between features that can be used to identify redundant

features, and the correlation between a feature and a class variable (class correlation) that

can be used to identify irrelevant features. Using these ideas, a method is proposed by con-

structing a complete graph on feature space using (i) Pearson’s correlation values and (ii)

Symmetric uncertainty as edge weights, and then partitioning the graph using algorithms

from social network literature [31]. These are ultimately reconciled through consensus

clustering to generate a suitable feature selection.

4.2 Background

Many graph partitioning algorithms have been proposed in the literature of social networks

which are also referred to as community discovery algorithms. The problem of detecting

communities in a social network is referred to as community detection. Essentially, the

goal is to partition the graph so that dense edges are there within each group or community

and sparse edges between groups. We present here a few of these algorithms which have

been used in the proposed method for feature subset selection.

4.2.1 Community discovery algorithms

Extensive literature is available on community discovery algorithms in social network

analysis [28]. Community discovery problem is an NP-hard problem. Hence a lot greedy

approaches have been proposed in the literature. A few community discovery algorithms

that are available in the ’igraph’ package of Rstudio[1] have been considered for this work
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which are explained below. For the purpose of evaluating the performance of these algo-

rithms, Newman and Girvan[74] have proposed a quantitative measure known as ”modu-

larity(Q)”.

4.2.1.1 Edge betweenness:

The main idea of the algorithm is based on the Edge betweenness centrality measure [74]

that is defined by the number of shortest paths that are passing through the edge. Many

other centrality measures are given in the book by Freeman [29]. The time complexity of

this algorithm is O(mN) with ‘m’ edges and ‘N’ vertices.

4.2.1.2 Fast greedy:

This method tries to find the dense subgraphs, also called communities, by greedily opti-

mizing the modularity score. This algorithm has linear time complexity with O(MdlogN)

with ‘N’ vertices, ‘M’ edges and ‘d’ depth of dendrogram [2].

4.2.1.3 Leading eigen vector:

This algorithm tries to find communities in a graph by calculating the leading positive

eigenvector of the modularity matrix of the graph. The time complexity is O(N2) with ‘N’

vertices [75].

4.2.1.4 Label propagation:

It works by labelling the vertices with unique labels, which are then updated by majority

voting in the neighbourhood of vertex. This is a fast approach for determining community

structure in networks that runs in almost linear time [85].

4.2.1.5 Spinglass:

Spin-glass model and simulated annealing are used to find communities in graphs. The

network’s community structure is represented by the spin configuration that minimises

energy of the spin glass, with the spin states serving as community indices [88]. This

algorithm takes O(CN2) time to form C number of communities with N vertices.
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4.2.1.6 Multilevel:

The multi-level modularity optimization approach is used to determine community struc-

ture in this method. It is based on a hierarchical method and the modularity metric [103].

4.2.1.7 Optimal:

This function estimates the ideal community structure of a graph, by maximising the mod-

ularity measure over all possible partitions [12].

4.2.1.8 Walktrap:

This method finds the dense subgraphs, also called communities in a graph using random

walks. A measure of similarity between vertices based on random walks is used and the

idea that short random walks tend to stay in the same community [81] is used to discover

communities. The time complexity of this method is O(N2) with ‘N’ vertices.

4.2.1.9 Infomap:

This is an information theoretic technique that shows community structure in weighted and

directed networks. The network is decomposed into modules by compressing a description

of the probability of flow of random walks on a network [89].

4.2.2 Definitions and Heuristics

To find relevant features and redundant features, the following definitions and heuristics

are used from the literature[110].

Definition 1: If a feature is not correlated with class or is weakly correlated with class, it

is said to be irrelevant.

Definition 2: When a feature has a high degree of correlation with one or more other

features, it is referred to as being redundant.

Definition 3: When a feature has a high correlation with a class, it is referred to as being

representative.

Heuristic 1: Redundant and irrelevant features need to be eliminated.

Heuristic 2: Feature subset is formed by a set of representative features.
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Figure 4.1: Example for community discovery in social networks for Wine dataset. Two
communities are discovered here using fastgreedy algorithm.

As per the above definitions, the correlation between features (feature correlation) can

be used to identify redundant features, and the correlation between a feature and a class

variable (class correlation) can be used to identify irrelevant features. There are a variety

of measures available in the literature for determining the relationship between two fea-

tures or between a feature and a target class. Symmetric uncertainty(SU) is a non-linear

correlation measure that has been used in FCBF and FAST. Here, both Pearson’s corre-

lation coefficient abbreviated as r and Symmetric uncertainty(SU) have been used in the

proposed algorithm to measure the correlations.

4.2.2.1 Pearson’s correlation coefficient:

Pearson’s correlation between two variables x and y is defined as follows:

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2 ∑

n
i=1(yi− ȳ)2

(4.2.1)

Here, x and y are two random variables x̄, ȳ denotes mean values of x and y respectively.

This produces a value ranging from -1 to +1, inclusive. The value of -1 indicates total

negative correlation, the value of 0 indicates no correlation, and the value of +1 indicates

total positive correlation. This measure works well if all of the features have numerical
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values associated with them.

In the algorithm edge weights are computed based on the Pearson’s correlation value(r)

between the features. This method has two limitations.

1. r value can be negative, which is not allowed by community discovery algorithms.

2. all features in the dataset must contain numerical values.

To overcome the above limitations, a mutual information(MI) based measure called

Symmetric Uncertainty (SU) [82] is used instead of Pearson’s correlation coefficient r to

compute the edge weights between the features ( fi, f j). The definition of SU is as follows:

4.2.2.2 Symmetric Uncertainty(SU):

It is a correlation measure that is based on the information-theoretic concept of uncertainty

or entropy of a random variable. The entropy of a random variable X can be expressed as

follows:

H(X) =−∑
i

P(xi)log2(P(xi)), (4.2.2)

and after observing the values of another random variable Y, the entropy of X is:

H(X |Y ) =−∑
j

P(y j)∑
i

P(xi|y j)log2(P(xi|y j)), (4.2.3)

where P(xi) is the prior probabilities of variable X, and P(xi|y j) is the posterior proba-

bilities of X given the values of Y. And information gain is defined as

In f oGain(X |Y ) = H(X)−H(X |Y ) (4.2.4)

According to information gain(InfoGain), if In f oGain(X |Y )> In f oGain(Z|Y ), it means

feature Y is more correlated to feature X. Information gain is symmetrical, and values must

be normalised in order to assure compatibility. Now, symmetric uncertainty can be defined

as
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SU(X ,Y ) = 2
In f oGain(X |Y )
H(X)+H(Y )

(4.2.5)

The range of SU is [0, 1], with the number 1 indicating that knowledge of one vari-

able totally predicts the other variable, whereas the value 0 indicates that X and Y are

independent of one another.

4.3 Framework

We propose an algorithm called Community based consensus clustering(CDCC) which

adopts the following framework. The process begins with the construction of a complete

graph with features serving as vertices. The edge weight is calculated using two mea-

sures (i) Pearson’s correlation coefficient r and (ii) Symmeteric uncertainty(SU) between

features ( fi, f j). Then the graph is partitioned using a few popular community discov-

ery algorithms that are available in igraph package of the Rstudio [1] software package,

namely, Fast greedy, Edge betweenness, Label propagation, Leading eigen vector, Multi-

level, Spinglass, Walktrap, Optimal, and Infomap community discovery algorithms. These

algorithms divide the graph into groups or communities of nodes that are connected by

edges in such a way that edges within the community are more dense and edges between

the communities are sparse[18]. The performance of these algorithms is measured by max-

imizing ”modularity(Q)” as proposed by Newman and Girvan [74]. Since different graph

partitioning algorithms partition the graph in different ways, it is necessary to use a con-

sensus clustering algorithm to select the best partitioning for the graph. Here, BoK(Best-

of-k) consensus clustering is used to find the best partitioning, which is a 2-approximation

algorithm [26]. Then choose a representative feature from each community of the best par-

titioning or clustering to form the feature subset and evaluate the accuracy of the classifier.

The algorithm follows a wrapper approach by continuing to take the top representative fea-

tures till the accuracy of the classifier does not decrease. Further, if a feature is correlated

with the already selected features, then it does not get added to the feature subset.
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4.4 Proposed algorithm

Community discovery based consensus clustering(CDCC) algorithm is given in Algorithm

4.2. Three variants using absolute PCC, square PCC and symmetric uncertainty are de-

noted as CDCC-|r|, CDCC-r2 and CDCC-SU respectively.

Algorithm 4.2 Community discovery based consensus clustering(CDCC)
Input: Dataset is X=<x,t>. N: Dataset size and feature set is F, where F={ f1, f2,
f3,....... fM} and t is the target vector, CD={Fast greedy, Edge betweenness, Label prop-
agation, Leading eigen vector, Multilevel, Spinglass, Walktrap, Optimal, and Infomap }.
Result: Feature subset FS.

1: FS← /0
2: Construction of a complete graph G=(V, E) where, V ← F
3: for all i← 1 to M in F do
4: for all j← 1 to M in F do
5: W (ei j)← correlation( fi, f j)
6: end for
7: end for
8: Apply community discovery algorithms to partition graph G
9: for all k← 1 to n in CD do

10: partition(k) = community discovery(G,k)
11: end for
12: Apply BoK algorithm to f ind best partitioning f rom step 6
13: best partition← BoK(partition(1), . . . , partition(n))
14: for all c← 1 to C o f best partition do
15: fr(c)← maxi{correlation( fi, t) : fi ∈ c}
16: FS← FS∪ fr(c)
17: c← c− fr(c)
18: end for
19: for all c← 1 to C o f best partition do
20: while (accuracy is not decreasing) do
21: fr(c)← maxi{correlation( fi, t) AND NOT ((correlation( fi,FS) : fi ∈ c}
22: FS← FS∪ fr(c)
23: c← c− fr(c)
24: end while
25: end for
26: return FS ▷ Final feature subset

4.4.1 Complexity Analysis

Initially, the time required to find the correlation between every pair of features is O(NM2),

where N is the number of instances and M is the number of features. The second part of the

algorithm is the construction of a complete graph, which takes O(M2) time to complete.

It takes O(PM) time to partition a graph using community discovery algorithms, where
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’P’ represents the number of edges in the graph. In the end, the time required to apply

a consensus clustering algorithm best-of-k(BOK) is O(Mk2), where ’k’ is the number of

input clusterings . As a result, the overall complexity of implementing CDCC and CDCC-

SU is O(NM2), which is quadratic in number of features.

4.5 Experiments and Results

4.5.1 Datasets

The CDCC algorithm is implemented on benchmark datasets from UCI machine learning

repository. Here, four types of datasets are considered. Wine and PIMA ( < 15 features),

Zoo and Ionosphere( >15 and < 50 features), Lungcancer( > 50 and < 100 features),

Musk1 and Musk2( > 100 features). Table 4.1 gives the summary of datasets used in

CDCC algorithm experiment. As CDCC-SU can handle categorical data, experiment is

also carried out on other three categorical datasets namely Sonar, Spambase and Waveform

datasets from UCI repository in addition to the datasets mentioned in Table 4.1.

Table 4.1: Benchmark datasets chosen from UCI

Dataset # Features # Instances #Classes
Wine 13 178 3
PIMA 8 768 2
Zoo 16 101 7

Ionophere 34 352 2
Lungcancer 56 32 2

Musk1 168 476 2
Musk2 168 6598 2

Table 4.2: Description of catergorica datasets chosen from UCI to implement CDCC-SU
in addition to datasets mentioned in Table 4.1.

Dataset # Features # Instances #Classes
Sonar 60 500 2

Spambase 57 4601 2
Waveform 21 5000 3



4.5. EXPERIMENTS AND RESULTS 46

4.5.2 Implementation

In CDCC algorithm, Pearson’s correlation(r) value between a pair of features is used as

edge weight. But, as the range of r is [-1, 1], edge weight also may become negative. Many

of the community discovery algorithms do not allow negative edge weights. To make the

edges positive, two ways are considered.

• using square of correlation value as edge weight.

• using absolute value of correlation as edge weight.

.

The results for the small dataset named Wine having 13 features are shown to illustrate

the method. Number of communities generated by CDCC algorithm with square of cor-

relation as edge weight is shown in Table 4.3, and absolute value of correlation as edge

weight is shown in Table 4.4.

Table 4.3: Number of communities generated for Wine data using CDCC-r2 with different
community discovery algorithms.

Algorithm #Communities
Fast Greedy 1

Edge Betweenness 1
Spinglass 3

Leading Eigen Vector 3
Multilevel 3
Optimal 3

Label Propagation 1
Walktrap 13

Consensus(BOK) 3

It can be seen in Table 4.3 that the number of communities generated by different

community discovery algorithms for the Wine dataset ranges from 1 to 13 depending on

the algorithm used. In addition, four out of eight algorithms provide three communities.

The best-of-k(BoK) consensus clustering algorithm is used to find the optimal number of

communities, and it results in three communities being selected. In Table 4.4, majority

of the algorithms produce two communities, and the best-of-k algorithm produces two

communities as well. A ’representative’ feature is selected from each community that has
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Table 4.4: Number of communities generated for Wine data using CDCC-|r|with different
community discovery algorithms.

Algorithm #Communities
Fast Greedy 2

Edge Betweenness 3
Spinglass 2

Leading Eigen Vector 1
Multilevel 2
Optimal 2

Label Propagation 1
Walktrap 2

Consensus(BOK) 2

the highest correlation with the target class, and these features are used to create the final

feature subset.

Let cor(f,c) denote correlation between feature and target class. Highlighted features

in Table 4.5 and Table 4.6 show ‘representative’ features with highest cor(f,c) from each

community.

Table 4.5: Representative features are highlighted from each community for Wine data set
using square of correlation as edge weight.

Community 1 Community 2 Community 3
Feature corr(f,c) Feature corr(f,c) Feature corr(f,c)

Malic acid 0.437 Alcohol 0.32 Total phenols 0.71
Hue 0.61 Ash 0.049 Flavanoids 0.84

Alcanity of ash 0.51 Non flavanoid phenols 0.48
Magnisium 0.209 Proanthocyanins 0.499

Color intensity 0.26 0D280/315 diluted wine 0.265
Proline 0.63

The accuracy of the classifier was first evaluated using a representative feature from

each cluster. In Wine data set initially 2 representative features (one from each cluster)

were selected as shown in Table 4.5, and accuracy with these features is 93.2%.

The next top representative feature from each community, that has a lower correlation

with the previously chosen feature was added to the feature subset. The accuracy of the

classifier slightly improved as a result of this. Whenever there is a reduction in the accuracy

of the classifier, stop adding features to the feature set. By adding one more feature,

accuracy improved to 94.9%, then for 6 features it is 96.16%. After that, it was observed
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Table 4.6: Representative features from each community for Wine data set using absolute
value of correlation as edge weight

Community 1 Community 2
Feature corr(f,c) Feature corr(f,c)

Malic acid 0.437 Alcohol 0.32
Hue 0.61 Ash 0.049

Total phenols 0.71 Alcanity of ash 0.51
Flavanoids 0.84 Magnisium 0.209

Non flavanoid phenols 0.48 Color intensity 0.26
Proanthocyanins 0.499 Proline 0.63

0D280/315 diluted wine 0.265

that there was no change in accuracy and there after accuracy decreased to 93.01%. Same

procedure is used to find the feature subsets from the communities given in Table 4.6 also.

It is observed that 90% of the features are commonly selected using both the correlations.

The experiments are carried out to find representative features for all data sets given in

Table 5.1 using CDCC. The largest data set considered is Musk2 having 167 features and

6598 number of instances. Table 4.7 shows the results obtained using square of correlation

as edge weight. Table 4.8 shows the results obtained using absolute value of correlation

as edge weight. From Table 4.7 and Table 4.8 it can be seen that, the number of features

selected using our method is less compared to the number of features selected by other

methods in literature.

Table 4.7: Results for CDCC-r2.

Dataset Our method Literature
#selected accuracy%#selected accuracy%
features (J48) features

Pima(8) 2 73.9 5 79(SBC)
Wine(13) 6 96.16 7 97.4(GARIPPER)
Zoo(16) 5 92.07 7 96(GARIPPER)

Ionosphere(34) 5 92.3 10 94.6(GARIPPER)
Lung cancer(56) 5 60 5 87(ReliefF)

Musk1(168) 6 76.8 25 74(WBFS)
Musk2(168) 4 93.08 2 91.33(FCBF)

2 94.6(ReliefF)
10 95.5(CFS-SF)
25 96.35(FCBF-P)
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Table 4.8: Results for CDCC-|r|.

Dataset Our method Literature
#selected accuracy%#selected accuracy%
features (J48) features

Pima(8) 4 74.08 5 79(SBC)
Wine(13) 4 94.9 7 97.4(GARIPPER)
Zoo(16) 4 91.08 7 96(GARIPPER)

Ionosphere(34) 5 92.3 10 94.6(GARIPPER)
Lung cancer(56) 5 65.6 5 87(ReliefF)

Musk1(168) 4 75.4 25 74(WBFS)
Musk2(168) 2 91.88 2 91.33(FCBF)

2 94.6(ReliefF)
10 95.5(CFS-SF)
25 96.35(FCBF-P)

4.5.2.1 CDCC with symmetric uncertainty as edge weight (CDCC-SU):

Here, symmetric uncertainty(SU) value is used to compute the edge weight in place of

Pearson’s correlation. Features having categorical values cannot be handled by Pearson’s

correlation and hence Symmetric uncertainty(SU) can be considered. SU is calculated

between each feature and class and also between every pair of features. Using features

as nodes and SU-value between features as edge weights a complete graph is constructed,

then graph is partitioned using community discovery algorithms. BOK is applied to find

the best partitioning.

Table 4.9: Performance of CDCC-SU compared to latest literature TCbGA.

Dataset CDCC-SU TCbGA[61](2017)
Features Accuracy Features Accuracy

Wine(13) 6 96.08 9 99.60
Zoo(16) 5 93.54 5 98.03

Ionosphere(34) 6 92.30 14 98.32
Lungcancer(56) 5 78.10 9 96.30

Musk1(166) 4 75.40 97 94.27
Musk2(166) 4 93.08 86 99.23

Spambase(57) 7 84.72 19 91.85
Sonar(60) 3 75.40 9 84.62

Waveform(40) 13 83.86 18 85.43

Table 4.9 shows that proposed method CDCC-SU is selecting very less number of

features compared to literature. Number of features selected using CDCC-SU method is
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Table 4.10: Number of features selected by CDCC-SU compared to latest literature.

Dataset CDCC-SUGCACOGCNCUFSACORRFS
[71] [70] [92] [24]

(2015) (2015) (2014) (2012)
Wine(13) 6 6 7 5 5

Ionosphere(34) 6 15 17 20 20
Spambase(57) 7 24 27 30 30

Sonar(60) 3 24 25 30 30

Table 4.11: Classifier accuracy of CDCC-SU compared to latest literature.

Dataset CDCC-SUGCACOGCNCUFSACORRFS
[71] [70] [92] [24]

Wine(13) 96.08 95.73 95.08 93.76 94.42
Ionosphere(34) 92.30 90.24 89.91 86.80 89.40
Spambase(57) 84.72 88.22 88.11 86.48 82.71

Sonar(60) 75.40 77.60 74.36 75.34 72.53

Table 4.12: Comparison of CDCC-SU with classical methods SBC, GARIPPER, ReliefF,
FCBF and NMIFS ( Datasets represented with blue colour indicates categorical datasets.

Dataset CDCC-SU Literature
#Features Accuracy%#Features Accuracy%

Pima(8) 4 75.6 5 79(SBC[14])
Wine(13) 6 96.08 7 97.40(GARIPPER[109])
Zoo(16) 5 93.54 7 96(GARIPPER[109])

Ionosphere(34) 6 92.30 10 94.60(GARIPPER[109])
Lung cancer(56) 5 78.10 5 87.00(ReliefF[64])

Musk1(168) 4 75.4 25 74.00(WBFS[56])
Musk2(168) 4 93.08 2 91.33(FCBF[110])

2 94.6(ReliefF[46])
10 95.5(CFS-SF[35])
25 96.35(FCBF-P[110])

Waveform(40) 13 83.86 13 81.52(NMIFS[23])
Spambase(57) 3 84.72 3 75.8(NMIFS[23])

Sonar(60) 7 75.4 11 86.36(NMIFS[23])

very less compared to TCbGA [61] method for Wine, Ionosphere, Lungcancer, Spambase,

Sonar and Musk1, Musk2. Musk1, Mus2 are selecting even less than 10% features com-

pared to TCbGA. Except for Wine dataset, other methods are selecting more than twice the

number of features selected by CDCC-SU and classifier accuracies of TCbGA are slightly

high compared to the proposed methods. This is possible, as CDCC-SU selects very

less number of features compared to TCbGA. From Table 4.10 and Table 4.11 it can be
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seen that, classifier accuracy of Wine and Ionosphere is more compared to GCACO [71],

GCNC [70], UFSACO [92] and RRFS [24] in spite of selecting least number of features.

Classifier accuracies are on par with the results from the literature for Spambase and Wave-

form datasets. Even though TCbGA is achieving slightly more accuracy than CDCC-SU,

computational complexity of TCbGA is very high compared to the proposed method. Time

taken by TCbGA to find optimal feature subset of Sonar dataset having moderate number

of features(i.e,. 60) is in hours where as maximum time taken by CDCC-SU for any high-

dimensional dataset is in minutes.

4.5.3 Robustness of CDCC algorithm

CDCC uses BoK consensus clustering algorithm to find the best partitioning among all

input partitionings. Initially BOK is used due to its linear time complexity. Recently

Huang et al. [41] and Banerjee et al. [9] have proposed new consensus clustering algo-

rithms namely LWEA and WHAC respectively. CDCC-SU has been tested with LWEA

and WHAC also to check the sensitivity of consensus clustering algorithm. It can be seen

from the results presented in Table 4.13, Table 4.14 that BoK, LWEA and WHAC all are

giving nearly the same results.

Table 4.13: Number of Features selected by CDCC-SU, with combination BOK, LWEA
and WHAC consensus clustering algrotihms.

Dataset CDCC-SU+BOK CDCC-SU+LWEA CDCC-SU+WHAC
Wine(13) 6 5 5
Zoo(16) 5 5 5

Ionosphere(34) 6 6 7
Lungcancer(56) 5 5 5

Musk1(166) 4 6 6
Musk2(166) 4 4 4

Waveform(40) 13 9 8
Spambase(57) 7 6 6

Sonar(60) 3 3 3

4.5.4 Discussion

There are many methods in the literature for feature subset selection. CDCC-r, CDCC-r2

and CDCC-SU algorithms are compared with classical methods from the literature. Relief
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Table 4.14: Classifier accuracy of CDCC-SU, with combination BOK, LWEA and WHAC
consensus clustering algrotihms

Dataset CDCC-SU+BOK CDCC-SU+LWEA CDCC-SU+WHAC
Wine(13) 96.08 97.19 97.19
Zoo(16) 93.54 93.54 93.54

Ionosphere(34) 92.30 92.30 93.54
Lungcancer(56) 78.10 78.10 78.10

Musk1(166) 75.40 80.46 80.46
Musk2(166) 93.08 95.30 95.30

Waveform(40) 83.8 84.62 82.56
Spambase(57) 84.72 84.69 84.69

Sonar(60) 75.40 75.40 75.40

and ReliefF are faster to implement, but they do not identify redundant features. FCBF and

FAST both can identify irrelevant and redundant features. But, both are sensitive to initial

parameter θ that is the threshold of feature relevance. Classification results vary with θ

value. Selective Bayesian Classifier algorithm(SBC) always selects a set of attributes that

appear only in the first three levels of simplified decision tree which was constructed using

C4.5. Selecting only from 3 levels may not work always.

In Table 4.7 and Table 4.8, the number of features selected using CDCC method corre-

sponds to the most representative features from each of the communities given by best-of-k

consensus clustering algorithm. The algorithm follows a wrapper approach by continuing

to take the top representative features till the accuracy of the classifier does not decrease.

Further, if a feature is correlated with the already selected features, then it does not get

added to the feature subset. The number of features selected by CDCC-r and CDCC-r2

are different as can be seen in Table 4.7 and Table 4.8. The number of features selected

is more when edge weight is considered as square of correlation value instead of absolute

of correlation value in 4 out of 7 data sets. But, 80% of the features are same in both the

methods. Both the variants of CDCC-PCC could not achieve comparable accuracy of 87%

for lung cancer dataset as reported in the literature. We investigated further by running

ReliefF available in Weka to obtain the top features and tested the accuracy with J48 clas-

sifier. But we found the accuracy to be only 75% not matching with the 87% obtained by

ReliefF as reported in the literature.

CDCC-r is performing better than CDCC-r2. CDCC-SU shows better accuracy with

similar feature reduction. Further, CDCC-SU is compared with classical methods pre-
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sented in Table 5.6 and it is clear that performance of CDCC-SU is high on most of the

UCI repository datasets. Except for Lungcancer, in most of the cases the number of se-

lected features is less compared to literature and classifier accuracies are on par with the

existing methods. Computational complexity of the proposed method is less compared to

the methods in the literature. CDCC-SU achieves good results for Musk 2, Spambase and

Waveform datasets compared to the current literature. For most of the datasets, results are

on par or less but with less number of features. Reason for low accuracy for Musk1 and

Lungcancer datasets could be that the instance to feature ratio is quite low for both the

datasets which implies that the correlations between the features may not be adequately

captured.

Further, the sensitivity of the CDCC algorithm is verified by replacing BoK consensus

clustering algorithm with two recent consensus clustering algorithms namely LWEA and

WHAC. The results obtained establish that the CDCC approach is not sensitive to the

choice of consensus clustering algorithm.

Figure 4.2: Number of features selected by CDCC-SU compared to latest literature.

4.6 Conclusions

In this chapter, an algorithm based on consensus clustering(CDCC) for feature subset se-

lection with different correlation measures is proposed. This method is tested on bench-

mark data sets from UCI. A few selected community discovery algorithms are used from

Rstudio to partition the graph constructed on feature space. To find the best partitioning,

best-of-k(BOK) consensus clustering algorithm is used. Representative features that are

highly correlated to the target class are selected from each community to form the fea-
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Figure 4.3: Classifier accuracy obtained by CDCC-SU compared to latest literature.

ture subset. Number of features selected using CDCC algorithm is less than the number

of features selected by other methods in the literature. Accuracies obtained are on par

with the accuracies obtained in the literature for most of the datasets. Time complexity of

CDCC algorithm depends on the number of features, not on number of instances. Since,

Pearson’s correlation coefficient is used to find the correlation values, this algorithm works

only for numerical data sets. In order to deal with all types of data sets further symmetric

uncertainty(SU) value is used as edge weight.

Contributions in this chapter are summarized as follows: A novel method CDCC for

feature subset selection using consensus clustering is proposed. constructing the commu-

nities based on the features where by features in a community are taken to be more closely

correlated. The highlight of this method is using consensus clustering to retrieve highly

representative features that are in common with the partitionings obtained by various com-

munity discovery algorithms.



Chapter 5

Feature subset selection for

high-dimensional data and big

data

In connection with the rapid development of information technology and internet, the scale

of data that needs to be processed has been continuously increasing, resulting in the emer-

gence of problems such as ”curse of dimensionality”. Feature selection is an essential step

for high-dimensional datasets to achieve a good classification accuracy. Feature selection

is used to reduce overall number of dimensions while simultaneously improving classi-

fication accuracy and efficiency. This can be accomplished by detecting and removing

irrelevant and redundant features.

Feature selection is generally performed in the search space composed of all possible

combinations of data features, using the feature subset search algorithm to identify a subset

of features that are highly correlated with class variable. The dimensionality of the datasets

in real-time applications like gene expression datasets has increased tremendously in last

few years. Finding the best feature subset that describes the original high-dimensional

dataset is very difficult and time consuming.

Feature ranking is a simple technique used for feature subset selection. This method

is preferable over other methods due to less computational complexity, since most of the

feature ranking algorithms use greedy approach. There are a number of different feature

55
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ranking algorithms that are already available and every algorithm generates a ranking of

features, starting with the most significant feature and progresses to the least important

feature in the list. In order to rank the features, each algorithm employs a unique set of

ranking criteria such as feature weight, information theoretic measures, statistical mea-

sures, and so on. As a result, the ranking of features by different algorithms may differ

as well. When features are selected using a variety of ranking algorithms, the issue of

stability or robustness becomes the most critical consideration.

Even though the algorithms presented in Chapter chapter 3 and chapter 4 are robust,

they are not scalable for high-dimensional data. To address this problem, a new robust

scalable feature selection algorithm (FRCC) is presented here which is based on the idea

of consensus clustering.

5.1 Motivation

In large dimensional datasets, many features may be irrelevant and redundant. Such fea-

tures can also affect the classifier performance. There exist many feature ranking algo-

rithms that can be used to pick the top most relevant features. Therefore consensus clus-

tering is applied to obtain the most relevant features and removing redundant features. A

novel approach called FRCC is proposed to implement this idea.

5.2 Background

5.2.1 Feature ranking algorithms

First, a few standard filter-based feature ranking methods from the literature [57], [36],

[42], [64], [60], [50], [87], [82] mentioned below are used to generate feature rankings

along with feature weights.

1. Chi-squared(χ2): This statistic is based on the χ2-statistic, and it evaluates features

in a way that is independent of how they are classified. The greater the value of

the Chi-square, the more relevant the feature is in relation to the class. First, the

feature values must be distributed into a number of intervals using an entropy-based

discretization method, before the rest of the process can begin.
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2. Information Gain(IG): Information Gain (IG) is a metric that is commonly used

in the fields of machine learning and information theory. In the context of class

prediction, IG is defined as the number of bits of information gained about the class

prediction by knowing the value of a given feature when predicting the class. Before

calculating the information gain of a given feature X with respect to a given class

attribute Y, it is necessary to understand both the uncertainty about the value of class

attribute Y and the uncertainty about the value of class attribute Y when the value

of X is known. In the former, the entropy of Y is measured by H(Y), whereas in the

latter, it is measured by H(Y—X), which is the conditional entropy of Y when given

X. Information Gain can be defined as:

IG(X) = H(Y )−H(Y |X) (5.2.1)

3. Gain Ratio(GR): In comparison to Information Gain, the Gain Ratio (GR) is a

refinement. While IG prefers features that have a large number of values, GR’s ap-

proach is to maximise the information gain from a feature while keeping the number

of its values to a bare minimum. The following is a description of the intrinsic value

of X = (X1,X2, . . .XM)

IV (X) =−
M

∑
i=1

(|Xi|/N)log(|Xi|/N) (5.2.2)

where‘M’ is the number of distinct values in X, and N is the total number of in-

stances. Then, Gain Ratio of attribute X is as follows:

GR(X) = IG(X)/IV (X) (5.2.3)

4. OneR: OneR uses Holte’s rule-based classification algorithm to rank the features.

Essentially, the method finds a simple rule for each feature by identifying the major-

ity class for each feature’s value. Then, each rule’s correctness is assessed, and the

features are ranked according to the quality of the related rules.

5. ReliefF: Kononenko et al. suggest a few changes to Relief. To begin, they use the

Manhattan (L1) norm instead of the Euclidean (L2) norm to locate the near-hit and

near-miss, but the rationale is not given. While updating the weight vector, they

found that the absolute differences between xi and near-hiti, as well as xi and near-
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missi, was sufficient (instead of square of those differences). Rather than repeating

the method ’m’ times, complete it for a small number of ‘n’ (up to one thousand).

ReliefF also searches for ‘k’ nearby hits and misses and averages their contributions

to the weights of each feature, rather than identifying the single nearest hit and single

nearest miss, which may cause redundant and noisy features to affect the selection

of the nearest neighbours.

6. Symmetric Uncertainty(SU): It is a correlation measure based on information-

theoretic concept of entropy or uncertainty of a random variable.

5.3 Framework for feature ranking based feature subset

selection

Figure 5.1: Feature ranking based on consensus clustering method.
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K-means clustering is performed with the feature weight considered as the single di-

mension for each ranking algorithm RA. K-means clustering is applied to obtain the cluster

labels for the features. An input file with M rows and n columns is created where M is the

number of features and n is number of ranking algorithms. Each column contains the clus-

ter labels assigned to the features by the K-means algorithm. This matrix is provided as

input to the consensus clustering algorithm. For the purpose of finding the best clustering,

the BOK consensus algorithm is used. Finally, features from the best cluster are chosen

based on the fact that the total of the weights of the features is the greatest. Figure 5.1

reflects the FRCC approach.

5.4 Proposed algorithm

The FRCC algorithm is described in detail in Algorithm 5.3.

Algorithm 5.3 Feature ranking based consensus clustering (FRCC)
Input: Data set is X=<x,t>. Size of the dataset is N and feature set is F, where

F={ f1, f2, f3, . . . , fM} and t is the target vector, W={w1,w2,w3, . . . ,wM}, FRA={Information
gain, Gain ratio, ReleifF, OneR and Symmetric Uncertainty}

Output: Feature subset FS
1: FS← /0;
2: for all k← 1 to n in FRA do ▷ Apply feature ranking algorithms on dataset D
3: (F,W )k = Feature Ranking(F,k);
4: end for
5: Apply K-Means clustering on each ranking output by considering feature weight as one di-

mension.
6: for all i← 1 to |FRA| do
7: partition(i) = K-means(Wi);
8: end for
9: Apply BoK algorithm to find best partitioning.

10: best partition← BoK(partition(1), . . . , partition(|FRA|));
11: Select features from the cluster that has highest weights
12: CB = best cluster(best partition);
13: FS←CB; ▷ Add each feature f from cluster CB

14: return FS; ▷ Final feature subset

5.4.1 Time complexity of FRCC

The time required to compute using n feature rankings for M number of features is equal to

O(nNM). The time required to partition M features using K-means clustering techniques is
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O(KMI), with I representing the number of iterations. Best-of-k (BoK) consensus cluster-

ing will take O(n2M) time to find best partitioning. As a result, the overall time complex-

ity of this approach is in the order of O((nNM+nKMI +n2M)) = O(N +KI +n)nM =

O(NM).

5.4.2 Variations of the FRCC

1. Low-dimensional datasets (fewer than 100 features): The FRCC algorithm is

employed for datasets with dimensions ranging from 8 (Wine) to 60 (Sonar). The

final feature subset is determined by selecting the best cluster (for which the sum of

weights is the greatest).

2. Medium dimensional datasets (100 to 1000 features): For medium dimensional

datasets with features greater than 100, such as Musk1(168) and Musk2(168), ini-

tially algorithm FRCC is applied, and to reduce the subset of features, the K-means

clustering algorithm is applied iteratively on the output cluster of the first iteration.

The accuracy of the classifier is evaluated after each iteration. This step is repeated

until there is no further decrease in the accuracy of the classifier when the selected

features are used.

3. High dimensional datasets(more than 1000 features): In this scenario, variation 1

of the algorithm FRCC yields a feature subset with a significant number of features,

whereas variation 2 of this approach necessitates additional repetitions and, as a re-

sult, increases the complexity of the algorithm. Hence, the top 1% of features from

the best cluster containing all of the top-ranked features after one iteration are cho-

sen. Then delete any features that are redundant. Colon(2000), Lymphoma(4026),

and Leukemia(7129) datasets are used in the implementation of this method.

5.5 Experiments and Results

5.5.1 Datasets for FRCC

The proposed method FRCC is tested on benchmark datasets obtained from the UCI ma-

chine learning repository. PIMA, which has a modest number of features(8), and the
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Table 5.1: Bench-mark data sets chosen from UCI.

Data set # Features # Instances #Classes
PIMA 8 768 2
Wine 13 178 3
Zoo 16 101 7

Ionophere 34 352 2
Waveform 40 5000 3

Lungcancer 56 32 2
Spambase 57 4601 2

Sonar 60 500 2
Musk1 168 476 2
Musk2 168 6598 2

Table 5.2: Microarray high-dimensional datasets.

Data set # Features # Instances #Classes
Colon 2000 62 2

Lymphoma 4026 66 3
Leukemia 7129 72 2

medium-dimensional data sets Musk1 and Musk2, which have a total of 168 dimensions,

are among the data sets picked. Further, additional high-dimensional micro-array gene ex-

pression cancer datasets, such as Colon, which has 2000 features, Lymphoma, which has

4076 features, and Leukemia, which has 7129 features are used. Table 5.1 and Table 5.2

provide a summary of the data sets that are used in this study, respectively.

5.5.2 Implementation of FRCC

Five feature ranking algorithms from Weka are applied to generate different ranking criteria

along with feature weights. These algorithms are InfoGain, Gainratio, ReliefF, OneR,

and Symmetric Uncertainty evaluators. Then, K-means clustering algorithm is used to

partition the features into groups based on their weights. The Dunn Index [52] is used

to determine the optimal number of clusters. BOK is employed in order to determine

the optimal partitioning. The final feature subset is chosen from the cluster that contains

all of the features with the highest weight. 10-fold Cross validation is carried out for

classification with the selected features from the data sets.

Figure 5.2 depicts the implementation of FRCC algorithm on Wine dataset as an ex-
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ample.

Figure 5.2: Steps of FRCC for Wine dataset.

However, for the medium dimensional datasets such as Musk1 and Musk2, the K-

means clustering algorithm is applied repeatedly on the output of the previous iteration,

resulting in a smaller number of features being selected each time. The accuracy of the

classifier is evaluated after each iteration. Since this is a time-consuming process, to apply

to the high dimensional micro-array datasets, only the top 1% of features are chosen from

the output of the first iteration of the process. Further, redundant features are removed from

the top 1% of features, and the accuracy of the classifier is evaluated using the Random

Forest algorithm from Weka.

5.5.3 Results on UCI datasets

Performance of the FRCC method is shown in Table 5.3 and Table 5.4, which are all com-

pared to a few recent methods available in the literature. Blanks in the tables indicate that
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the results are not available for the corresponding data sets using those algorithms.

Table 5.3: Number of features selected by FRCC compared to latest literature

Dataset FRCC GCACO GCNC UFSACO RRFS
[71](2015) [70](2015) [92](2014) [24](2012)

Wine(13) 5 6 7 5 5
Ionosphere(34) 8 15 17 20 20
Spambase(57) 4 24 27 30 30

Sonar(60) 7 24 25 30 30
Colon(2000) 5 40 40 50 50

Table 5.4: Classifier accuracy of FRCC compared to latest literature

Dataset FRCC GCACO GCNC UFSACO RRFS
[71](2015) [70](2015) [92](2014) [24](2012)

Wine(13) 97.19 95.73 95.08 93.76 94.42
Ionosphere(34) 92.30 90.24 89.91 86.80 89.40
Spambase(57) 86.10 88.22 88.11 86.48 82.71

Sonar(60) 75.40 77.60 74.36 75.34 72.53
Colon(2000) 87.02 79.04 82.47 71.44 70.96

In the case of Wine and Ionosphere datasets, FRCC achieves lesser number of features

as well as higher accuracy when compared to GCACO [71], GCNC [70], UFSACO [92],

and RRFS [24] as shown in Table 5.3 and Table 5.4. With the exception of Wine and

Zoo datasets, the number of features selected by other methods is more than twice that of

FRCC. For Spambase and Sonar datasets, since the number of features selected by FRCC

is far lesser, the accuracies are 2% lesser than those obtained by the other methods being

compared.

Also the results are shown in Figure 5.3 and Figure 5.4.

5.5.3.1 Comparison with TCbGA

Table 5.5 shows the comparative performance of FRCC with a competitive GA based al-

gorithm, namely TCbGA. As the results are available for all the datasets chosen by us,

these are shown in a separate table.
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Figure 5.3: Number of features selected by FRCC method compared to literature.

Figure 5.4: Classifier accuracy of FRCC method compared to literature.

Table 5.5: Performance of FRCC compared latest method TCbGA

Dataset FRCC TCbGA[61](2017)
Features Accuracy Features Accuracy

Wine(13) 5 97.19 9 99.60
Zoo(16) 5 97.02 5 98.03

Ionosphere(34) 8 92.30 14 98.32
Lungcancer(56) 5 81.10 9 96.30

Musk1(166) 6 80.46 97 94.27
Musk2(166) 4 95.30 86 99.23

Spambase(57) 4 86.10 19 91.85
Sonar(60) 7 75.40 9 84.62

Waveform(40) 13 83.80 18 85.43

TCbGA is one of the latest algorithms with which we compare the performance of

the proposed algorithm FRCC. When compared to TCBGA, in all cases, FRCC selects

a significantly fewer number of features, as shown in Table 5.5. For low dimensional

datasets like Wine, Ionosphere, Lung cancer, Spambase, Sonar, and medium dimensional
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datasets like Musk1 the number of features selected by FRCC is significantly lesser than

that of TCbGA[61]. For Musk2, number of features selected using FRCC is even lesser

than 10%. Even though the classifier accuracy obtained by TCbGA is slightly higher than

FRCC, as shown in the Table 5.5, the features chosen by FRCC are far fewer in number.

It is to be noted that computational complexity of TCbGA is significantly higher than our

algorithm. For example, when searching for the optimal feature subset of Sonar dataset

with a moderate number of features (i.e. 60), the time taken by TCbGA was in hours,

whereas the maximum time taken by FRCC for any high-dimensional dataset is in minutes.

5.5.3.2 Comparison with classical methods

Table 5.6: Comparison of FRCC with classical methods like SBC, GARIPPER, ReliefF,
FCBF and NMIFS.

Dataset FRCC Literature
#Features Accuracy% #Features Accuracy%

Pima(8) 3 76.80 5 79(SBC[14])
Wine(13) 5 97.19 7 97.40(GARIPPER[109])
Zoo(16) 7 97.02 7 96(GARIPPER[109])

Ionosphere(34) 8 92.30 10 94.60(GARIPPER[109])
Lung cancer(56) 5 81.10 5 87.00(ReliefF[64])

Musk1(168) 2 74.30 25 74.00(WBFS[56])
Musk2(168) 4 95.30 2 91.33(FCBF[110])

2 94.6(ReliefF[64])
10 95.5(CFS-SF[35])
25 96.35(FCBF-P[110])

Waveform(40) 13 83.80 13 81.52(NMIFS[23])
Spambase(57) 4 86.10 3 75.8(NMIFS[23])

Sonar(60) 7 75.40 11 86.36(NMIFS[23])

Table 5.6 gives the comparative results of FRCC with some of the classical feature

subset selection algorithms. With the exception of Lung cancer, the number of selected

features is lower in most cases when compared to the literature, and the classifier accu-

racies are comparable. Further, the computational complexity of the proposed method is

much lower.

In the majority of the datasets, the reduction in the number of features selected is about

50% compared to those reported in the latest literature. Further, the classifier accuracy

obtained with these features is on par with the literature.



5.5. EXPERIMENTS AND RESULTS 66

5.5.4 Results on microarray datasets

Results are available in the latest literature for the high dimensional microarray datasets.

Hence performance of FRCC is compared with some of these latest algorithms and the

results are tabulated in Table 5.7. Also the results are plotted in Figure 5.5 and Figure 5.6.

It can be clearly seen from the results that the proposed FRCC algorithm outperforms

all the other algorithms on micro array datasets. The accuracy of the FRCC classifier is

higher when compared to the literature for the Colon and Leukemia datasets, and it is

nearly the same for the Lymphoma dataset. However, when compared to the literature, the

number of features selected by the FRCC for Colon and Lymphoma cancer is very small.

On Lymphoma dataset, using only 12 features, FRCC was able to achieve nearly the same

accuracy as the ensemble ranking (EnsRank) approach [80] which selects 80 features. In

the case of leukaemia dataset, FRCC selects 26 features, which is higher when compared

to FDT [96] method. To summarize, the number of features obtained is less than 0.5% to

the total features and classifier accuracy is higher than the literature. The computational

complexity of FDT is extremely high when compared to the computational complexity of

FRCC. To summarise, the number of features that were ultimately chosen is very small

when compared to the literature, accounting for less than 1 percent of the total number of

features.

Table 5.7: Number of features selected by FRCC and accuracy on microarray datasets
compared to the latest literature.

Dataset FRCC EnsRank [80] FDT [96]
#F Acc% #F Acc% #F Acc%

Colon(2000) 5 87.02 - - 6 80.20
Lymphoma(4096) 12 96.96 80 97.20 - -
Leukemia(7129) 26 95.83 - - 4 87.50

In terms of competitiveness, the FRCC algorithm outperforms other methods on mi-

croarray data sets. A predefined threshold value is required by the majority of the methods

described in the literature in order to select the final feature subset, and this threshold value

varies depending on the total number of dimensions or features. For FRCC, however, there
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Figure 5.5: Number of features selected by FRCC on microarray datasets compared to
literature.

Figure 5.6: Classification accuracy of FRCC on microarray datasets compared to literature.

is no requirement for a pre-defined threshold value. The algorithm will determine the fi-

nal feature subset to be used. We only use thresholds when dealing with extremely large

datasets. The results clearly demonstrate that the features selected by the FRCC method

are far superior to those found in the literature.

5.5.5 Robustness of FRCC

To verify the robustness of FRCC algorithm with different consensus clustering algo-

rithms, FRCC has been re-implemented using two new recent consensus clustering algo-

rithms namely LWEA and WHAC presented by Huang et al., [41] and Banerjee et al., [9]
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respectively.Results are presented in Table 5.8. It is validated from the results obtained

that FRCC is robust to the choice of the consensus clustering algorithm used.

Table 5.8: Results obtained by FRCC using BoK, LWEA and WHAC consensus clustering
algorithms.

Dataset FRCC+BoK FRCC+LWEA FRCC+WHAC
#Features Accuracy% #Features Accuracy% #Features Accuracy%

Wine(13) 5 97.19 6 98.23 6 98.23
Zoo(16) 5 97.02 5 97.02 5 97.02

Ionosphere(34) 8 93.30 7 93.12 7 93.12
Lung cancer(56) 5 81.10 5 81.10 4 79.87

Musk1(168) 6 80.46 4 80.10 6 84.45
Musk2(168) 4 95.30 4 95.30 4 95.30

Spambase(57) 4 86.10 4 86.10 4 86.10
Sonar(60) 7 75.40 4 75.40 4 75.40

Waveform(40) 13 83.80 8 81.53 8 81.53
Colon(2000) 5 87.02 5 87.02 5 87.02

Lymphoma(4096) 12 96.96 12 96.96 12 96.96
Leukemia(7129) 26 95.83 26 95.83 26 95.83

5.6 Application of FRCC to Big data

Big data has the following three characteristics: a large amount of data, a wide variety of

data, and a rapid change in data [55, 90, 84, 63]. It is important to note that the magnitude

and complexity of the data that constitutes big data evolves over time.

In terms of diversity, it is found that there is a huge data to be mined with a wide variety

of features in a variety of domains, including astronomy [22], Internet [77][13], geo-

informatics [73], biomedicine [59], wireless sensor networks [54], crowdsensing [108]

and the Internet of things [53]. To extract knowledge from a multi-dimensional data set

when dealing with a large amount of data, feature selection becomes essential. However,

the ever-increasing volume of data presents significant issues for feature selection. As a

result, in recent years many feature selection algorithms have been proposed [101][105].

A number of feature selection methods have been developed, including filter, wrapper,

and embedding approaches [4]. Scalability is a major concern for big data processing

systems. The other challenges are due to the massive redundancy or irrelevance, which

not only consumes computing resources but also affects processing performance. If such

features are deleted while valuable features are retained, the dimension of big data will be
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substantially reduced, and as a result, the performance of algorithms on big data will be

enhanced, in addition to achieving computational efficiency. According to Yu et al. [44], a

good feature selection algorithm should select a subset of features that are highly correlated

with class variable and must give optimal classification results. The FRCC algorithm is a

suitable candidate that can be used for big data by incorporating the diversity at both data

level and at the algorithm level leading to a hybrid approach.

5.6.1 Motivation

Due to the scalability of FRCC algorithm, we apply this consensus method to the large

scale domains like big data. As suggested by Barbara Pes[80], in this hybrid feature se-

lection algorithm diversity is incorporated both at data level and algorithm level. Data

level diversity is shown by dividing dataset into samples and algorithm level diversity is

achieved by applying different feature ranking algorithms on each sample. Final feature

subset is obtained by performing union and intersection operations on feature subsets ob-

tained from each sample .

5.6.2 Related work

Recently, Kong et al. [49] proposed a distributed fuzzy rough set (DFRS) method in cloud

computing to meet the growth of big data. The main idea of DFRS is to break down large

amounts of data into smaller partitions, each of which is assigned to a cloud node to process

the fuzzy rough set. The main challenge is to sensibly distribute processing jobs to dif-

ferent nodes while maintaining and sharing global data with separate memory resources.

To solve this problem, they developed a data decomposition algorithm called in DFRS

that dynamically allocates samples based on the processing resources of each distributed

node. The algorithm ensures that all essential interrelations are traversed, which means

that any interrelation inside a sub-dataset is evaluated by at least one distributed node.

Data decomposition module was followed by update positive region and reduct-mergence

modules. They implemented DFRS on 17 datasets from UCI machine learning repository.

Memory and run time are the two major concerns in the experiments to assess the perfor-

mance of the DFRS algorithm. The number of selected features and classifier accuracy are

also used as performance measures and DFRS is compared with non-DFRS(centralized)
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method.

5.6.3 Hybrid feature subset selection (HFS) algorithm for Big data

Step 1: Initially the dataset D with large number of instances(N) and high dimensions(M)

is divided into smaller samples D1, D2,....DP, where every sample contains nearly

same number of instances that covers all classes in the dataset.

Step 2: On each sample Di, FRCC algorithm which is described in detail in section 5.4 is

applied as described below:

• Five popular feature ranking algorithms namely, Information Gain(IG), Gain

Ratio(GR), OneR, ReliefF and Symmetric Uncertainty(SU) are used to get the

ranking of features along with the feature weights.

• Each ranking output is clustered using K-Means clustering algorithm by con-

sidering feature weight as a single dimension (K-value is chosen using Dunn

Index(DI)).

• As different ranking algorithms are applied on the sample, the output clus-

terings may also differ. To find the best clustering from the ensemble of five

clusterings, two experiments have been done with two different consensus clus-

tering algorithms. One is the state of the art algorithm Best-of-K(BoK) and

the other one is latest consensus clustering algorithm WHAC [9] suggested by

Banerjee et al(2021). The optimal and robust feature subset of the sample Di is

selected from the cluster(which has largest total weight) of the best clustering.

Step 3: After generating ‘P’ stable or robust feature subsets FS1, FS2,....FSP from each

sample Di (i≤ P), union or intersection is performed to get the final feature subset.

Figure 5.7 and Figure 5.8 depict the Hybrid feature selection algorithm. Hybrid feature

selection algorithm is given in Algorithm 5.4.

To test the performance of this algorithm with the selected final feature subset, k-

Nearest Neighbour(kNN) classifier is used.
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Figure 5.7: Diagram of Hybrid Feature Selection Algorithm

Algorithm 5.4 Hybrid feature selection algorithm for big data
Input: Data set is X=<x,t>. Size of the dataset is N and feature set is F, where

F={ f1, f2, f3, . . . , fM} and t is the target vector, W={w1,w2,w3, . . . ,wM}, FRCC
Output: Final Feature subset FFS

1: Divide the dataset D into P number of samples with nearly equal number of instances in each
sample Dx

2: FFS← /0;
3: for all x← 1 to P do
4: Apply FRCC(Dx); ▷ returns FS(x)
5: FFS← FFS∪FS(x) ;
6: end for
7: return FFS; ▷ return final feature subset

5.6.4 Complexity analysis

As HFS approach repeats FRCC for P number of times, and the time complexity of FRCC

is O(NM), thus the total time required to implement hybrid feature selection is O(PNM).

5.6.5 Experiments and results for HFS

5.6.5.1 Datasets used to implement HFS

To evaluate the performance of Hybrid Feature Selection algorithm, experiments are con-

ducted on real-world datasets from UCI repository. Datasets are selected with number

of features ranging from 21 to 561 and number instances are ranging between 5000 and

58509. K-Nearest Neighbour classifier is used to evaluate performance of the algorithm.

Table 5.9 gives the information about datasets used in this experiment.
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Figure 5.8: Diagram of Hybrid Feature Selection Method

5.6.5.2 Implementation of HFS

Initially, each dataset D is partitioned into P samples with nearly same number of instances

in each sample. Then, on each sample FRCC is performed. In particular, Waveform dataset

has only 5000 instances, it is divided into two samples, each with 2500 instances. The two

partitions of HAPT dataset have 5465 and 5464 number of instances. Diagnosis dataset is

partitioned into 10 samples, where each sample contains 5851 instances.

FRCC is applied on each partition of the dataset. As the number of features of HAPT

is 561, we adopt the high-dimensional variation of FRCC as given in subsection 5.4.2 by

applying the threshold of 10% of total features is selected from the best cluster. Then union

or intersection is applied on the feature subsets obtained on each partition to get the final

feature subset. The accuracy obtained by k-Nearest Neighbour(kNN) classifier is used to
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Table 5.9: Description of datasets from UCI

S.No Data set # Instances # Features #Classes
1 Waveform 5000 21 3
2 HAPT 10929 561 12
3 Diagnosis 58509 49 11

Table 5.10: Results of HFS-BoK using Union and intersection operations compared to
DFRS

Dataset HFS+Union HFS+Intersection DFRS
#Features Accuracy #Features Accuracy #Features Accuracy

Waveform 12 79.26% 10 78.24% 17 77.78%
HAPT 66 94.30% 42 94.93% 347 94.49%

Diagnosis 24 99.92% 13 99.83% 26 –

test the performance of the algorithm.

Table 5.10 shows the results obtained by HFS algorithm.

Additional experimentation is carried out by replacing BoK with other consensus clus-

tering algorithms in the module of FRCC in HFS. The algorithm is termed as HFS+WHAC.

The results are given in Table 5.11.

The proposed HFS algorithm is applied on three UCI machine learning datasets with

instances varying from 5000 to 58509. Here, hybrid feature selection algorithm is com-

bined with Best-of-K(BoK) consensus algorithm and also with Weighted Hierarchical Ag-

glomerative Clustering(WHAC) consensus algorithm. The results are given in Table 5.10

and Table 5.11. When compared to one of the latest algorithms on big data, namely DFRS

method [49], HFS-BOK and HFS-WHAC are selecting very less number of features for

all the three data sets. Reduction obtained by HFS for Waveform data having 21 features

Table 5.11: Results of HFS-WHAC using Union and intersection operations compared to
DFRS

Dataset (HFS-WHAC)+Union (HFS-WHAC)+Intersection DFRS
#Features Accuracy #Features Accuracy #Features Accuracy

Waveform 13 81.54% 10 78.24% 17 77.78%
HAPT 75 94.56% 48 94.28% 347 94.49%

Diagnosis 24 99.92% 13 99.83% 26 –
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Table 5.12: Results of FRCC compared to DFRS

Dataset FRCC DFRS
#Features Accuracy #Features Accuracy

Waveform(21) 11 78.84% 17 77.78%
HAPT(561) 56 95.83% 347 94.49%

Diagnosis(49) 19 99.92% 26 –

Table 5.13: Result of HFS on Cencus income dataset.

Dataset HFS Complete dataset
Reduced Features Accuracy Full Features Accuracy

Census income(41) 13 (Union) 94.75% 41 94.85%
5 (Intersection) 94.71

is about 50%; for HAPT having 561 features, obtained is as low as 8% and for Diagnosis

data set having 49 features about 25%; And with respect to the literature, the reductions ob-

tained are 60%, 15% and 50% respectively. It is observed from the Table 5.10, Table 5.11

that, there is a significant improvement in the classifier accuracy for Waveform data with

less number of features compared to literature. On the other data sets, the accuracy ob-

tained is on par with the literature. Further it is to be noted that the DFRS algorithm which

adopts a fuzzy rough set approach takes much higher time than our proposed greedy ap-

proach.

FRCC is a scalable approach. Further, is is applied on datasets described in Table 5.9

and the results are compared with latest method DFRS. The results are tabulated in Table 5.12.

The results clearly show that FRCC achieves a significant feature reduction for all the

data sets as compared to DFRS, and also shows a slight improvement in the accuracy.

5.6.6 HFS on large scale dataset

HFS is further implemented on large scale dataset Adult census income dataset [21] which

has 299285 samples and 41 features. This contains numerical and categorical features.

The results obtained by HFS with BoK consensus clustering are shown in Table 5.13.

This is a binary class dataset having 75% Class A (income 50K$) instances and 25%

Class B (income 50K$) instances. We divide the dataset into 50 samples, with each sam-

ple having the number of instances having same class ratio.Then FRCC is applied on each
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sample to obtain feature subset from each sample. Finally union and intersection is per-

formed on all feature subsets to obtain final feature subset. Results from Table 5.13 shows

that, HFS is giving 70% feature reduction and intersection is giving 80% feature reduction

on Cencus income dataset with nearly same classifier accuracy. 10-fold cross validation

is performed using random forest classifier to test the classifier accuracy. Further, results

shows that HFS can be considered as a scalable approach and is applicable to largescale

datasets.

5.7 Conclusions

Two methods are proposed to deal with the problems of high-dimensionality and bigdata.

FRCC is a feature selection algorithm that is working well on datasets having instances

upto 5000 and features upto 7129. FRCC method comes under heterogeneous ensemble

approach (multiple algorithms implemented on same data). FRCC is selecting less num-

ber of features compared to many recent methods in the literature and accuracy is high for

most of the datasets. It is giving significantly better feature reduction as well as accuracy

on the high-dimensional microarray datasets. However, large datasets that are common to

bigdata problems definitely pose a great challenge for feature selection. There is a need

for decomposition of data into smaller samples and to develop a robust and stable feature

selection algorithm. Recent study in the field of big data has revealed that the present algo-

rithms are often insufficient in terms of stability with respect to changes in the input data.

Because of the robustness, it will have practical consequences for distributed applications

in which the algorithm must give reliable results across a large number of different data

samples. To address this problem, we extend FRCC algorithm to a hybrid feature selection

(HFS) algorithm that has diversity at both data level( sampling) and algorithm level. HFS

algorithm shows good performance on three UCI machine learning data sets that are taken

from the literature, namely, Waveform, HAPT and Diagnosis. Feature reduction of HFS

on Census income dataset is very high with HFS-intersection while maintaining nearly

same accuracy as original dataset.



Chapter 6

Conclusions and future scope

6.1 Conclusions

We address the problem of feature subset selection using consensus clustering method. So

far, consensus clustering has been used in the literature to find the best clustering among

various input clusterings. As per our knowledge, we are the first to use consensus cluster-

ing method to find the best feature subset. Based on this idea, we validate that, a robust

feature subset can be obtained by applying consensus among various feature subsets. To

check the feasibility of applying consensus clustering to feature selection problem, a novel

feature selection algorithm called genetic algorithm based feature selection using consen-

sus clustering (GACC) is devised.

Next, to deal with irrelevant and redundant features that greatly affect the classifier

accuracy a graph based approach is proposed. By modeling the feature space as a graph,

we apply community discovery algorithms for graph partitioning in order to obtain relevant

and non-redundant features using consensus clustering (CDCC).

Most of the feature selection algorithms are not scalable for high dimensional datasets.

To address this issue, a fast and scalable approach called feature ranking based feature

selection algorithm using consensus clustering (FRCC) is proposed. This method uses

various feature ranking algorithms to rank the features and then features are clustered

using K-means algorithm in the single dimensional space of feature weights given by each

feature ranking algorithm. The intuition behind this clustering is that all the top ranked

features may form one cluster. Optimal feature subset is selected from the best partitioning

76
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obtained by the consensus clustering.

Among these three approaches FRCC is more scalable. So, we devise an algorithm

for big data by dividing the dataset into manageable samples and applying FRCC on each

sample. Then applying consensus clustering algorithm to obtain an optimal feature set

from all the samples. This leads to a hybrid feature selection algorithm (HFS).

Experimentation using all these approaches is carried out on benchmark datasets from

UCI machine learning repository. To check the performance of our approaches, we divide

the datasets into four categories as follows:

1. Low number of features with low number of instances. Eg: Wine and Zoo.

2. Low number of features with high number of instances. Eg: Pima.

3. High number of features with low number of instances. Eg: Ionosphere and Lung-

cancer.

4. High number of features with high number of instances. Eg: Musk1, Musk2 and

Isolet.

Table 6.1 shows the performance of GACC, CDCC and FRCC. CDCC is implemented

with three variations using |r|, r2 and SU as edge weights. Due to its scalability FRCC is

also implemented on high-dimensional micro-array datasets. Further, HFS is implemented

on big datasets to test the efficiency of the algorithm.

6.2 Comparison of all approaches

From the Table 6.1 it can be concluded that, overall FRCC shows a superior performance

both in terms of feature reduction and classifier accuracy on all the data sets. Specifi-

cally, for category 1 datasets, FRCC is giving better classifier accuracy, but CDCC-|r| is

selecting less number of features with comparable accuracy. In category 2, CDCC-r2 is

giving better reduction in number of features compared to other methods. As FRCC is

selecting more features than CDCC-r2, accuracy is also high. In category 3, CDCC-|r|,

CDCC-r2 and CDCC-SU are giving same result for Ionospere with less features and high

accuracy. FRCC is performing better in case of lungcancer dataset. In category 4, GACC
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Table 6.1: Comparison of all three approaches

Dataset GACC CDCC FRCC
|r| r2 SU

#F Acc #F Acc #F Acc #F Acc #F Acc
Wine(13) 7 95.69 4 94.90 6 96.16 5 96.08 5 97.19
Zoo(16) 8 96.18 4 95.3 5 95.2 5 93.5 7 97.02
Pima(8) 4 75.2 4 76.8 2 75.9 4 75.6 3 76.8

Ionosphere(34) 10 94.4 5 93.3 5 92.3 6 92.3 5 92.3
Lungcancer(56) 8 79.5 5 65.6 5 65 5 78.1 5 81.1

Musk1(168) – – 4 74.4 6 76.8 4 75.4 2 74.3
Musk2(168) – – 2 93.8 4 94.08 4 93.8 4 95.3
Isolet(617) 127 72.45 113 71.85 107 68.36 118 78.1 62 81.1

is selecting very high number of features compare to all methods. FRCC is performing

better compared to all methods.

The effectiveness of FRCC can be seen by its performance on high dimensional mi-

croarray datasets belonging to category 3. For example, on Leukemia dataset having

7129 dimensions, FRCC selects 0.36% of the features and achieves classifier accuracy

of 95.83% which is superior to the accuracies reported in the literature. The scalability

of HFS is demonstrated on a big data set namely, census income with HFS selecting only

12% of the features and achieving an accuracy of 94.7% which is on par with the accuracy

attained when all features are used.

6.3 Future work

In future we want to work on high-dimensional datasets which have large number of in-

stances. Further, feature subset selection using consensus clustering can be used in the

problems like anomaly detection, opinion polling, biclustering etc. In the recent literature,

anomaly detection [7, 107] is addressed using ensemble methods, but they require pre-

defined thresholds and cannot be applied on large scale datasets. Application of HFS on

such datasets may produce more robust results. Biclustering is another area in which HFS

can be applied, as the recent work proposed in this area is not scalable [62].
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