
Heuristics for Facility Location
Problems

A thesis submitted during 2022 to the University of Hyderabad in
partial fulfillment of the award of a Ph.D. degree in School of

Computer and Information Sciences

by

Edukondalu Chappidi

School of Computer and Information Sciences
University of Hyderabad

P.O. Central University, Gachibowli
Hyderabad – 500 046

Telangana, India

December 2022

CERTIFICATE

This is to certify that the thesis entitled “Heuristics for Facility Location Problems” sub-

mitted by Edukondalu Chappidi bearing Reg. No. 16MCPC05 in partial fulfillment of the

requirements for the award of Doctor of Philosophy in Computer Science is a bonafide work

carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to

this or any other University or Institution for the award of any degree or diploma.

The student has the following publications before submission of the thesis for adjudication

and has produced evidence for the same in the form of acceptance letter or the reprint in the

relevant area of his research:

1. Edukondalu Chappidi, Alok Singh. “Discrete differential evolution-based solution for

anti-covering location problem”. Proceedings of the 10th International Conference on

Soft Computing for Problem Solving (SocProS 2020), Advances in Intelligent Systems

and Computing, 1392: 607-620, 2021, Springer. Work reported in this paper appears in

Chapter 2.

2. Edukondalu Chappidi, Alok Singh and Rammohan Mallipeddi. “Intelligent optimiza-

tion algorithms for disruptive anti-covering location problem”. To appear in Proceedings

of the 19th International Conference on Distributed Computing and Intelligent Technology

(ICDCIT 2023), Lecture Notes in Computer Science, 2023, Springer. Work reported in

this paper appears in Chapter 3.

3. Edukondalu Chappidi, Alok Singh. “Evolutionary approaches for the weighted anti-

covering location problem”. To appear in Evolutionary Intelligence, Springer. Work

reported in this paper appears in Chapter 3.

4. Edukondalu Chappidi, Alok Singh. “An evolutionary approach for obnoxious coopera-

tive maximum covering location problem”. Applied Intelligence, 52: 16651–16666, 2022,

Springer. Work reported in this paper appears in Chapter 4.

and has made the presentation in the following conference:

1. 10th International Conference on Soft Computing for Problem Solving (SocProS 2020),

December 18-20, 2020, Indore, India.

Further, the student has passed the following courses towards fulfillment of coursework

requirement for Ph.D.:

Course Code Name Credits Pass/Fail

CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 810 Metaheuristic Techniques 4 Pass
AI 852 Learning & Reasoning 4 Pass

(Prof. Alok Singh)
Supervisor

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

(Prof. Chakravarthy Bhagavathi)
Dean

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

iii

DECLARATION

I, Edukondalu Chappidi, hereby declare that this thesis entitled “Heuristics for Facility

Location Problems” submitted by me under the guidance and supervision of Prof. Alok Singh

is a bonafide research work which is also free from plagiarism. I also declare that it has not been

submitted previously in part or in full to this University or any other University or Institution

for the award of any degree or diploma. I hereby agree that my thesis can be deposited in

Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Library is enclosed.

Date : Name: Edukondalu Chappidi

Signature of the Student:

Reg. No.: 16MCPC05

Signature of the Supervisor:

Abstract

Facility location problems are concerned with locating facilities over a set of

potential locations subject to some constraints so that a given objective function

is optimized (minimized or maximized). The objective function can be based on

factors such as cost of locating facilities, distance between facilities and customers,

number of facilities that needs to be opened, service time, waiting time, coverage

or a combination of these factors. There are many application domains such as

locating public facilities, commercial facilities, factories, power plants, ware-houses.

To tackle these real-world problems, various facility location models have been

developed as a result of abstraction.

In this thesis, we have worked on three facility location models and variants

thereof, viz. anti-covering location problem (ACLP), obnoxious cooperative maxi-

mum coverage location problem (OCMCLP), reliability p-median problem (RpMP).

We choose these models because these models are under-studied despite several

real-world applications. In addition, choice of latter two models is also governed

in part by their highly complex nature which pose a challenge to anyone trying

to solve them. We have considered six NP-hard facility location problems in this

thesis. Out of these, first three are based on ACLP and its variants. The fourth

problem deals with location of obnoxious facilities under cooperative coverage.

The last two problems are the p-median facility location problems which consider

the reliability and fault tolerance issues. These problems have many practical appli-

cations in diverse fields such as locating garbage dump yards, nuclear power plants,

chemical plants, telecommunication equipments, franchise outlets, liquor stores,

ATMs, military defense units, DNA sequence matching, forest management, supply

chain design, disaster management. As these problems are NP-hard, applicability

of exact methods is limited to small size instances only, and one has to resort to

heuristic approaches to tackle instances beyond a certain maximum size.

v

We have devised heuristic approaches based on genetic algorithm (GA), discrete

differential evolution (DDE), and hyper-heuristics to address the considered facility

location problems. In addition, we have also developed some problem-specific

heuristics for use within these approaches. We have compared the performance

of our proposed approaches with the state-of-the-art approaches available in the

literature on the standard benchmark instances of the respective problems. Com-

putational results show the efficacy of our proposed approaches. The proposed

approaches can be easily extended to solve other related facility location problems.

The ideas presented in the thesis can be used to develop heuristic approaches for

other combinatorial optimization problems also.

vi

To my dear parents,
Mr. Chappidi Kasulu and Mrs. Venkata Ramana

my dear wife and lovely sons,
Rachel, Paul and Ben

without their endless love, support and encouragement, this would not have been

possible.

Acknowledgements

It has been my passion to pursue Ph.D and I am deeply thankful to many people

who are part of this journey and helped me realize this dream. I would like to

express my deep appreciation to all of them.

Above all I am grateful to God Almighty for His blessings and grace on my life

without which nothing would have been possible.

Next, I express my sincere gratitude towards my supervisor Prof. Alok Singh

for his constant support and guidance throughout this Ph.D. I believe it was my

destiny to work under his esteemed guidance to undertake this course while learning

the proper research in the truest sense. His impeccable knowledge and astute

feedback helped me face some of the toughest research problems in the field of

combinatorial optimization and never give up in the process in spite of innumerable

technical difficulties. I am greatly indebted to him for his valuable time, patience,

and insightful guidance offered to me. His attention to detail and striving towards

perfection in each considered task are something I want to imbibe in my journey

ahead.

Next, I would like to thank my doctoral review committee (DRC) members, Dr.

Sobha Rani T. and Dr. Rajendra Prasad Lal for their probing queries, feedback,

and suggestions which helped me to enhance the quality of my research from

various perspectives.

I take this opportunity to thank the Dean of the School Prof. Chakravarthy

Bhagvati for providing all the necessary facilities to pursue my research work. I

would also like to thank other faculty members and staff of the school for their

support. I am thankful for the unstinting support that I received from the research

infrastructure and the effervescent ambiance of the University. Due credit to the

University for building a research oriented School of Computer & Information

Sciences (SCIS), a library rich in a wide range of research books & articles, and

most importantly a healthy campus atmosphere.

I am thankful to my senior lab mate Dr. Venkatesh Pandiri who had helped

me in the initial stages of my Ph.D right from making me comfortable in the lab

to introducing me to the scenic and pleasant locations in the University campus. I

also want to make a special mention about my other senior lab mate Dr. Gaurav

Srivastava for his friendship and engaging technical discussions in the lab. I am

thankful to my fellow lab mates (Kasi Vishwanath, Danish, Sebanti and Preeti)

for stimulating discussions, providing me company for tea/snacks and for all the

fun we had together. I am thankful to all my Ph.D colleagues in SCIS for their

support and encouragement.

I would like to make a special mention about my dear friend and labmate

Mallikarjun whom we lost due to COVID-19. I shared a close, brotherly bond

with him and miss his pleasant smile and presence in the lab.

I am grateful to a number of researchers in my field who shared their research

data and answered my queries regarding their problem formulations and proposed

approaches, especially to Ms. Preeti Ravindranath, Prof. Sohail Chaudhry,

Prof. Averbakh Igor, Dr. Alcaraz Javier, Dr. Maria Albareda-Sambola.

I want to thank my friends and extended family who played an important role

in my life and helped me in my journey so far. I fondly remember my first guru and

our primay school teacher Late. Mr. G Murali Krishna sir and my inspiration

in secondary school Mr. K Edwin sir. I want to make a mention of my uncle Mr.

Cheeti Nagendra Kumar, who first planted the thought of doing Ph.D in my mind

many years ago. I express my sincere gratitude towards Mr. Selvam MPT for

being my mentor and my support system ever since we first met. I want to thank

my all-weather friend Mr. Sai Kumar for the encouragement and being there for

me.

Finally, I could not have achieved anything in life without the unconditional and

constant support of my family. I would like to dedicate this thesis to my parents Mr.

Chappidi Kasulu and Mrs. Venkata Ramana who have been my inspiration and

instilled right values and taught me to work hard from a young age. I would like to

thank a very special person, my wife, Rachel for her continued and unfailing love,

support and understanding during my pursuit of Ph.D. I am thankful to my precious

kids who are the stress busters of my life, Paul and Ben. I want to thank my elder

brothers Venkat and Srinivas and their families for their affection, patience and

encouragement. I want to make a special mention of my in-laws Mr. Vijaya R

and Mrs. Rathnamma for their love and support.

Edukondalu Chappidi

Contents

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Overview of genetic algorithm . 5

1.1.1 Representation of solutions . 8

1.1.2 Selection mechanisms . 9

1.1.3 Crossover . 11

1.1.4 Mutation . 13

1.1.5 Population evolution models . 13

1.2 Overview of differential evolution . 14

1.3 Overview of hyper-heuristics . 16

1.4 Scope of the thesis . 17

2 Anti-covering location problem 22

2.1 Introduction . 22

2.2 Formal problem definition . 23

2.3 Proposed approach for unweighted input graph 25

2.3.1 Solution encoding and fitness . 25

2.3.2 Initial population generation . 25

2.3.3 DDE framework . 25

2.3.4 Mutation . 26

2.3.5 Crossover . 26

2.3.6 Repair . 27

2.3.7 Selection . 27

xi

CONTENTS

2.4 Experimental results . 28

2.5 Conclusions . 33

3 Two ACLP variants 34

3.1 Introduction . 34

3.2 Disruptive ACLP . 35

3.2.1 Problem definition . 36

3.2.2 DDE approach for DACLP . 38

3.2.3 GA approach for DACLP . 39

3.2.4 Experimental results . 43

3.3 Weighted ACLP . 48

3.3.1 Formal problem definition . 48

3.3.2 DDE approach for WACLP . 49

3.3.3 GA approach for WACLP . 51

3.3.4 Local search . 52

3.3.5 Experimental results . 53

3.4 Conclusions . 58

4 Obnoxious cooperative maximum covering location problem 60

4.1 Introduction . 60

4.2 Formal problem definition . 63

4.3 Proposed steady-state genetic algorithm approach 65

4.3.1 Solution encoding . 65

4.3.2 Fitness evaluation . 65

4.3.3 Generating the initial population of solutions 66

4.3.4 SSGA framework . 67

4.3.5 Selection . 67

4.3.6 Crossover . 68

4.3.7 Mutation . 68

4.3.8 Local search . 68

4.3.9 Population replacement model . 69

4.4 Computational results . 70

4.5 Conclusions . 82

xii

CONTENTS

5 Reliability p-median problem 83

5.1 Introduction . 83

5.2 Formal problem definition . 88

5.3 Naive Bayes classifier . 90

5.4 Proposed approach . 91

5.4.1 Solution representation and fitness . 92

5.4.2 Generating the initial solution . 92

5.4.3 Hyper-heuristic framework with naive Bayes classifier 93

5.4.4 Low level heuristics . 95

5.4.5 Local search . 96

5.5 Computational results . 97

5.6 Conclusions . 101

6 Reliable p-median problem with at-facility service 102

6.1 Introduction . 102

6.2 Formal problem definition . 106

6.3 Proposed approach . 108

6.3.1 Solution representation and fitness . 108

6.3.2 Initial solution generation . 108

6.3.3 Hyper-heuristic framework . 110

6.3.4 Low level heuristics . 110

6.3.5 Local search . 112

6.3.6 Selection methodology . 113

6.3.7 Acceptance criteria . 113

6.4 Computational results . 114

6.5 Conclusions . 121

7 Conclusions and directions for future research 122

References 127

List of Publications 145

xiii

List of Figures

1.1 Illustration of 1-point crossover . 12

1.2 Illustration of uniform crossover . 12

1.3 Illustration of bitwise mutation . 13

1.4 Illustration of random reset mutation . 13

1.5 Framework of Hyper-heuristics . 18

2.1 Illustration of ACLP . 24

3.1 DACLP illustration . 37

3.2 Plots of ACLP and DACLP solutions on the eil51 instance having 51 nodes for

different values of R . 47

3.3 Weighted ACLP solutions found by GA for different R values on eil51 instance 57

3.4 Covergence behavior of DDE and GA on 4 different instances 58

4.1 A sample network used for explaining OCMCLP 64

4.2 Convergence behaviour of GA . 81

5.1 Illustration of reliability p-median problem with p = 4 facilities 87

6.1 Illustration of reliable p-median problem with at facility service having p = 5

facilities . 105

xiv

List of Tables

1.1 Frequently used terms in genetic algorithm parlance 6

2.1 Comparison of objective values of GA, ACO and DDE based solutions for

datasets used in [1] . 29

2.2 Comparison of objective values of ACO and DDE based solutions for OR library

datasets . 31

2.3 Comparison of objective values of ACO and DDE based solutions for TSPLIB

datasets . 32

2.4 Comparison Summary: Number of instances on which DDE obtained worse

(<), same (=) and better (>) solutions in comparison to ACO 33

2.5 Wilcoxon Signed-Ranks test of our approach with ACO 33

3.1 Parameters for DDE and GA . 43

3.2 Results on OR-Library dataset for DDE and GA 44

3.3 Results on TSPLIB dataset for DDE and GA 45

3.4 Summary table . 45

3.5 Results of DDE, GA and 4 greedy heuristics on OR library dataset 55

3.6 Results of DDE, GA and 4 greedy heuristics on TSPLIB dataset 56

3.7 Wilcoxon signed-ranks test . 58

4.1 Important notational conventions . 64

4.2 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.1, U% = 0.65 . 71

4.3 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.1, U% = 0.75 . 72

xv

LIST OF TABLES

4.4 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.1, U% = 0.85 . 73

4.5 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.3, U% = 0.65 . 74

4.6 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.3, U% = 0.75 . 75

4.7 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.3, U% = 0.85 . 76

4.8 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.5, U% = 0.7 . 77

4.9 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.5, U% = 0.8 . 78

4.10 Comparison of I1 and I2 interchange heuristics of [2] with GA on instances

with T = 0.5, U% = 0.9 . 79

4.11 Comparison of I1 and I2 interchange heuristics of [2] with GA in the same

format as in [2] . 80

4.12 Wilcoxon Signed-Ranks test of GA with I2 81

4.13 Friedman test of I1, I2 and GA . 82

4.14 Mean ranks for I1, I2 and GA in Friedman test 82

5.1 Summary of key notations . 88

5.2 Sample dataset used for naive Bayes training 92

5.3 Conditional probabilities for different feature values 92

5.4 Comparison of results given by the hyper-heuristic with GA and SS (DLP Library)100

5.5 Comparison of results given by the hyper-heuristic with GA and SS (OR Library:

Instances where CPLEX has reached a feasible solution) 100

5.6 Comparison of results given by the hyper-heuristic with GA and SS (OR Library:

Instances where CPLEX has not reached a feasible solution) 101

6.1 Summary of key notations . 106

6.2 HH_Grd results on Homogeneous Type I instances 116

6.3 HH_Grd results on Homogeneous Type II instances 117

6.4 HH_Grd results on Large Homogeneous instances 118

xvi

LIST OF TABLES

6.5 HH_Grd results on Non-Homogenous instances with n = 20 nodes and p = 4

facilities . 119

6.6 HH_Grd results on Non-Homogenous instances with n = 25 nodes and p = 4

facilities . 119

6.7 Average CPU times for the Non-Homogenous instances 120

xvii

Chapter 1

Introduction

In the field of Operations Research (OR), facility location is an important branch that continues

to attract researchers over the past many decades. Identifying the best locations for facilities

is one of the trickiest and most important decisions to be made in a project due to the high

competition among the companies. These choices are especially crucial for companies because

of the substantial expenditures associated with locating and relocating the facilities. Additionally,

the placements of a company’s facilities with respect to other facilities and its clients play a role

in its capacity to effectively produce and sell its goods or provide high-quality services. Facility

location models find their applications in both public and private sectors for locating a wide

variety of facilities such as schools, fire stations, police stations, banking facilities, restaurants,

medical services, swimming pools, vehicle service centers, shopping malls, hazardous and waste

material disposal.

It is observed that in the facility location problems related to the application fields such as

food service, retail trade and refuelling, the number of facilities that needs to be located is often

fixed. On the other hand, in the facility location problems arising out of other application fields,

the aim is to find the number of facilities to be located and also to decide the locations of the

facilities. It is crucial to determine the precise number of facilities that must be located and

the best location for each one since locating too many or too few facilities or wrongly locating

the facilities will lead to decreased performance and increased costs. In industrial applications,

deploying too many facilities will result in costs that are higher than desired. If fewer facilities

are established, the level of customer service may deteriorate, which may decrease consumer

loyalty. Despite using the appropriate number of facilities, improper facility location will lead

to sub-par performance while increasing the overall cost. In the application fields such as health

1

1. INTRODUCTION

care and social assistance where emergency service facilities like ambulances, fire stations

and police stations are to be located facility location is very crucial. Locating too few of such

emergency facilities or mislocating them can result in adverse consequences in the emergency

scenarios [3].

A facility location problem’s characteristics are mainly dependent on the type of objectives

considered while satisfying the given constraints on the facilities being located. The application

where the facility location problem is applied will determine the optimization criteria. For

example, in the case of locating private facilities like an industrial plant or a retail store the

objectives are to maximize the overall profit and to gain higher market share from the existing

competitors while minimizing the capital expenditure. On the other hand, in the applications

that involve locating public facilities such as schools and hospitals the primary goals are to

establish effective systems with probity of service at minimum cost possible. But for emergency

facilities such as ambulances and fire stations, the objectives are defined based on criteria such

as minimizing the total weighted distance from all the customers to their nearest facilities or

minimizing the distance or travel time of the farthest user from the facility to receive the service

or a combination of both the just mentioned criteria [4]. Usually, facility location problems are

concerned with either minimizing the cost of locating and operating the facilities considering the

facilities provide complete coverage to all the customers or maximizing the customer coverage

that can be achieved given a fixed number of facilities [5].

Facility location problems are concerned with locating facilities over a set of potential

locations subject to some constraints so that a given objective function is optimized (minimized

or maximized). The objective function can be based on factors such as cost of locating facilities,

distance between facilities and customers, number of facilities that needs to be opened, service

time, waiting time, coverage or a combination of these factors. As mentioned earlier, there are

many application domains such as locating public facilities, commercial facilities, factories,

power plants, ware-houses. To tackle these real-world problems, various facility location models

have been developed as a result of abstraction. Any facility location problem typically involves

two decisions where the first decision establishes the location of facilities, and the second one

governs the allocation of customers to facilities in order to meet their respective service demands.

Hence, the facility location problems are also called as location-allocation problems [6].

Different facility location models have been formulated based on criteria such as the number

of candidate facilities, objective function, the problem’s solution space. Considering the

2

problem’s solution space, there are three facility location models, viz. continuous facility

location models, discrete facility location models, and network facility location models.

Continuous facility location models have a continuous space generally determined by a

plane’s coordinates. In these models, we can locate facilities anywhere on the given plane or

in the specified region having infinite number of possible locations. New facilities are located

in the continuous space taking into consideration the already located facilities. Summary of

location theory in continuous space is given in [7], whereas the latest works on continuous

facility location problems are provided in [8, 9]. Survey of various approaches for solving the

continuous facility location problems is given in [10].

In a discrete facility location problem, the solution space has a finite number of locations

for locating facilities. Given a set of possible locations for facilities and a set of constraints,

these problems are concerned with selecting a subset of locations where facilities can be located

while satisfying the given constraints so that a given cost function can be optimized. A detailed

survey of discrete facility location problems is provided in [11]. In [12], Drezner mentioned

various models of discrete facility location problems while discussing their applications. In [13],

Basu et al. provide a survey on applying metaheuristic methods for handling discrete facility

location problems.

Continuous facility location models differ from discrete facility location models in that

they need to select a distance or cost function that determines the distance or cost of a point

from other points in the space. Example distance functions are Manhattan distance function,

Euclidean distance function etc. On the other hand, in discrete facility location models, given

any pair of points the actual travel distance or cost between them may be used. Discrete models

are slower as compared to the continuous models due to the large amount of travel distance

data they require as input and the pre-computations thereof to find the shortest distances. But

they are more precise than continuous models as they use exact distance values as against the

approximate distance values used in continuous models due to the distance function used [10].

Network facility location problems can be considered as a generalization of discrete facility

location problems [14]. In these problems, given a set of nodes and edges connecting those

nodes, facilities can be located either on the nodes or along the edges connecting the nodes.

These problems are concerned with locating facilities anywhere on the network as just mentioned

subject to some constraints while optimizing the given cost function. Based on the problem

under consideration, the network can be either a network of air transport or a network of road

transport or river transport, etc. [15].

3

1. INTRODUCTION

In location problems, generally various types of objective functions are taken into considera-

tion. Here are a few examples of objective functions that are frequently used: Minimizing the

cost of overall set-up, minimizing the total number of facilities that are located, minimizing the

maximum distance a customer has to travel to receive the service, minimizing the waiting time

before a customer receives service after reaching the facility, minimizing the time taken to serve

each customer etc. In the past two decades or so, the study of multi-objective facility location

problems is also gaining popularity [16, 17].

In the field of facility location, covering problems are fascinating models as they are

more suitable to solve several real-world problems particularly those which involve locating

emergency facilities. Church and ReVelle first introduced the concept of coverage objective

in [4]. In these problems, a customer is considered as covered if the distance between the

customer and its closest facility is less than a pre-specified value called coverage distance or

critical distance. This model of coverage where only a single facility decides whether a customer

is covered or not is called individual coverage model. There are also other type of coverage

models where a group of facilities together provide service to customers. The models where

facilities cooperate and serve customers are called cooperative coverage models [18]. Covering

problems find their applicability in solving several real-world problems including but not limited

to locating parks, police stations, hospitals, post offices, radar installations, banks, shopping

malls and dump-yards [19]. [20, 21, 22] give more information on the covering problems. One

can refer to [2, 18, 23, 24] for more details about cooperative coverage models.

Generally covering problems involve locating facilities as near to the customers as possible.

But, when the facilities to be located are undesirable like dump yards, prisons, nuclear power

plants, sewage treatment plants etc., people want these facilities as far from their locations as

possible. Models that deal with locating such undesirable facilities are called obnoxious facility

location models. A review of facility location problems when the facilities are obnoxious is

provided in [25]. The reviews of recent obnoxious models are presented in [26, 27].

There is a rich literature of facility location models and several variants of them that are

considered and tackled using various techniques [16, 19, 28, 29, 30, 31, 32, 33]. In spite of

location theory being regarded as an old field, several of these models are being used to solve

many real-world problems making it a fascinating field of study. To understand more about

facility location models, interested readers are requested to refer to [3, 12, 34, 35, 36, 37, 38, 39,

40]. Since nearly all variants of facility locating problems come under the category of NP-hard

problems, the applicability of exact techniques is limited to instances of a certain maximum

4

1.1 Overview of genetic algorithm

size only. Hence, several authors in the past have devised heuristic and metaheuristic based

approaches to solve the facility location problems [10, 13, 41, 42, 43, 44]. Heuristics are intuitive

methods that find feasible solutions in less time by making use of the structure of the problem

at hand. No guarantee can be given about the solution quality when heuristics are applied.

A heuristic generates better quality solutions when appropriate problem-specific knowledge

is incorporated into the approach. Metaheuristic methods use problem-related information

as components in their framework. The framework of a metaheuristic is independent of the

considered problem. Many of the metaheuristic techniques are stochastic approaches and the

resulting solution obtained after applying a metaheuristic depends on the generated values of

several random variables. For the metaheuristics applied, they typically require the problem

to be represented in a suitable form. Genetic algorithms [45, 46], differential evolution [47],

tabu search [48, 49], ant colony optimization [50, 51], variable neighborhood search [52, 53],

artificial bee colony algorithm [54], etc., are some of the most commonly used metaheuristic

techniques. Metaheuristic-based approaches for solving facility location models have received a

lot of attention of the researchers in the past [43, 44, 55, 56, 57]. It has been demonstrated in

the literature that the approaches based on metaheuristics have outperformed problem-specific

heuristics.

For any particular facility location problem, the solution methods often depend on the

objective function of the problem and the constraints that need to be satisfied. For the facility

location problems considered in this thesis, we have devised approaches based on genetic

algorithm (GA), discrete differential evolution (DDE) and hyper-heuristics. In addition, we

have developed some problem-specific heuristics for use with these approaches. In the next

three sections, we provide overview of the approaches used in this thesis, viz. genetic algorithm

(Section 1.1), differential evolution (Section 1.2) and hyper-heuristics (Section 1.3) respectively.

1.1 Overview of genetic algorithm

Genetic algorithm (GA) is a popular global optimization tool that models based on the principles

of natural genetics and natural selection. It is one among the first few evolutionary algorithms

that were proposed, and it is still widely used to solve optimization problems. John Holland

introduced GA for the first time in 1960s with the intention of simulating evolutionary adaptation

of the natural systems [45]. Later, GA was used to solve diverse problems including the ones

related to optimization and search. Schema Theorem which was proved in [45] describes the

5

1. INTRODUCTION

mechanism involved in the operation of a GA while giving a good theoretical explanation of it.

According to the Schema Theorem, the number of schemata with fitness greater than average

will rise with subsequent generations. The Schema Theorem functions as an analytical tool

for GA and helps to determine which schema has a better probability of surviving the GA

process. Holland also demonstrated GA’s implicit parallelism using this theorem. Over the

last many decades, there have been several variants of GA that were proposed to solve difficult

optimization problems. GA has been a successful approach due to its characteristics such as

simple structure, adaptability to a varied collection of problems and ability to arrive at good

quality solutions because of its better search space exploration [58, 59, 60].

The terminology used in GA is extensively related to the biology, and hence, it helps to

have a brief description of each of those terms in the backdrop of GA prior to diving into further

details. The frequently used terms in GA and their descriptions are provided in Table 1.1.

Table 1.1: Frequently used terms in genetic algorithm parlance

Term Explanation

Phenotype A potential solution to the problem being considered
Chromosome or Geno-
type

The phenotype represented in a form on which GA can be applied

Gene
The smallest constituent in a chromosome and several genes to-
gether form a chromosome

Alleles The set of values that a gene can be assigned with
Population A collection of chromosomes participating in the evolution
Generation A single pass from the current population to the next population

Fitness
A measure of chromosome’s performance on the problem being
considered

Evaluation
The process which gets a phenotype from the given genotype and
determines its fitness

Phenotype Space
The space consisting of all potential solutions to the problem being
considered

Genotype Space
The space consisting of all potential genotypes of the problem
being considered

GA starts with a population of initial solutions or chromosomes for the problem being

considered. These initial solutions can be generated either in a completely random manner or

using some heuristics that make use of the problem-specific knowledge. By using the fitness

function, each individual solution’s fitness is evaluated which also gives a ranking of individual

solutions to identify how one solution fares in comparison to other solutions in the population.

6

1.1 Overview of genetic algorithm

In most cases, the objective function of the problem is considered as the fitness function, but

in some problems, the fitness function may be different from the objective function. After

evaluating each solution in the initial population and assigning the corresponding fitness scores,

GA works in an iterative manner. In every generation, some solutions are selected as parents

according to a selection method. Generally, the selection method picks solutions with higher

fitness to be part of the set of parent solutions due to the fact that better parents have a higher

likelihood of having offspring who are even better. The genetic operators such as mutation

and crossover are applied on the parent solutions to generate child solutions. Crossover is also

referred to as recombination operator. It unites two or more parent solutions and creates one or

more child solutions. As a result, the children produced by crossover have characteristics of

each parent. Typically, just two solutions are recombined to create one or two child solutions

during the crossover. Crossover is applied with a specific probability which is called crossover

rate. Given a crossover rate of 0.7, about 70% of the child solutions will be produced using

crossover. In the cases where crossover is not applied, a child solution is generated by creating

an exact replica of the parent solution. Next, mutation is applied on the newly generated child

solution whether crossover is applied or not. As part of the mutation, the newly generated child

solution is made to go through some random changes. The probability with which mutation is

applied is called mutation rate. Depending on the problem under consideration, mutation and

crossover operators are applied either in a mutually exclusive manner or sequentially. Usually,

both these operators are applied one after the other. In some cases, there may be a chance of

crossover and mutation both being not applied on the parent solutions due to the crossover rate

and mutation rate. In such scenarios, the newly generated child solution will be an exact replica

of the parent solution. Once the required number of child solutions are generated, these newly

generated child solutions compete with the solutions of the existing population to be part of

the next generation. The population replacement policy determines the solutions which are to

be included in the next generation, and then the next generation starts. This iterative process

continues for as long as the termination criteria is not satisfied. There are different termination

criteria that can be employed such as the number of generations or a predetermined amount of

CPU time or the number of solutions produced or the number of iterations in a row without the

best solution’s quality improving.

Pseudo-code of basic GA is provided in Algorithm 1, where ps is the population size, q is

the number of child solutions produced in each generation, and, pc and pm are crossover rate

7

1. INTRODUCTION

Algorithm 1: Pseudo-code of basic GA
Input: Required parameters for GA and the considered problem instance
Output: Best solution returned by GA

Population← φ;
for (i← 1 to ps) do

Xi ← Init_Solution();
Xi.fitness← Evaluate fitness of Solution(Xi);
Population← Population ∪ Xi;

while (the termination criteria is not satisfied) do
Population′ ← φ;
for (i← 1 to q) do

parents← Selection(Population);
// Parents are selected based on a selection mechanism
child_sol← crossover(parents);
// Crossover is applied as per pc
child_sol← mutation(child_sol);
// Mutation is applied as per pm
child_sol.fitness← Evaluate fitness of child solutions;
Population′ ← Population′ ∪ child_sol;

Population← evolution_policy(Population, Population′);

return bestsol;

and mutation rate respectively. The function Init_Solution() produces an initial solution. We

have explained various components of GA in subsequent subsections.

1.1.1 Representation of solutions

In GA, each solution in population of potential solutions is represented as a chromosome. The

way a solution is represented is extremely important because it affects how chromosomes are

manipulated to produce new chromosomes. As given in Table 1.1, actual solution to the problem

is represented in phenotype and a genotype is an encoded form of the phenotype. The genetic

operators of GA are applied on the genotype as part of the evolution. The solutions’ genotypes

should be represented in as natural way as possible such that the genotype space solution

distribution is analogous to that of the phenotype space. The selected representation method

should be able to represent all the solutions by completely avoiding the redundancy or by keeping

it to minimum possible if it can not be avoided. If multiple genotypes correspond to the same

phenotype or in other words if a single solution is represented by more than one chromosome,

that representation method has redundancy. A representation method with redundancy leads to a

larger genotype space for the associated phenotype space. This results in larger search space that

8

1.1 Overview of genetic algorithm

GA has to explore. Consequently, it could lead to poor GA performance [61]. So, the solution

representation has a significant impact on how well GA performs on a given problem.

In the conventional GA, solutions are encoded using binary format often referred to as

bit string representation. In the binary format, a chromosome consists of an array of binary

digits 0s and 1s. The solution representation in binary format is most suitable for problems

involving subset selection like the Knapsack problem where each index corresponds to a specific

item. In the chromosome, if the value at ith index is 1, it means that the corresponding item

is present in the subset. On the other hand, if the value at ith index is 0, it means that the

corresponding item is not present in the subset. For example, consider a Knapsack problem

having six objects and a solution represented in binary format as [0 1 0 0 1 1]. The given

solution indicates that the second, fifth and sixth objects are in the subset. The given binary

array [0 1 0 0 1 1] is the genotype for the phenotype [2 5 6] which is the original solution for

the problem. For the permutation based optimization problems like TSP, the binary format of

solution representation may not be suitable. Integer solution representation suits more for the

permutation based problems to achieve better performance using GA. There are other solution

representations like random-key encoding, real-valued representation etc., that can be applied

depending on the problem under consideration.

1.1.2 Selection mechanisms

GA employs a selection mechanism for selecting the solutions that will participate in breeding

and produce new higher quality solutions. A selection mechanism aims to increase the quality

of solutions in the population by making sure the solutions with higher fitness have higher

probability of reproducing. Different selection mechanisms differ from each other in terms of

selection pressure and the degree of randomization employed in choosing the parent set. As a

result, the selection mechanism plays a vital role in balancing exploration and exploitation. The

success of GA depends on the selection mechanism employed. Various selection mechanisms

are discussed in the literature [62]. Some of the most commonly used selection mechanisms are:

fitness proportionate selection [45], ranking selection [63] and binary tournament selection [64].

1.1.2.1 Fitness proportionate selection

Holland [45] first introduced the fitness proportionate selection mechanism. As part of this

mechanism, the probability of selecting an individual solution i is calculated as the ratio of i’s

9

1. INTRODUCTION

fitness value to the fitness sum of all the solutions in the population. Considering there are n

solutions in the population and fi gives the fitness of ith solution, we can write the probability

of selection of ith solution as

probi = fi∑n
t=1 ft

According to this selection mechanism, a solution with higher fitness has a better probability

of being chosen as a parent several times. From the population of solutions, a particular

solution is selected using sampling methods such as stochastic universal sampling, roulette

wheel approach. In both these sampling methods, each solution of the population is mapped to a

distinct non-overlapping sub-interval of [0, 1] based on its selection probability. Consider an

example with a population of three solutions having the following selection probabilities: 0.1,

0.4, 0.5. We can map these three solutions to following sub-intervals: [0, 0.1], (0.1, 0.5] and

(0.5, 1.0] respectively. As part of the roulette wheel method, a random number in the range of

[0, 1] is generated. In whichever of the three sub-intervals the generated random number falls,

the corresponding solution is selected to be part of the set of parent solutions. This procedure is

iteratively repeated till the required number of solutions are added to the set of parent solutions.

The fitness proportionate selection mechanism has the following two key limitations:

• In the starting phases of GA, there is high fitness gap among candidate solutions in the

population. So, within few generations, the solutions with high fitness can take over the

whole population resulting in the premature convergence of GA.

• After certain number of generations, all the solutions in the population may have similar

fitness values which results in the roughly same selection probabilities for all solutions.

Such a scenario makes the fitness proportionate selection mechanism ineffective.

1.1.2.2 Ranking selection

To overcome limitations of fitness proportionate selection mechanism, ranking selection was

introduced [63]. In the ranking selection mechanism each solution in the population is assigned

a rank based on its relative fitness as opposed to the absolute fitness. Individual solutions are

sorted based on their fitness values and ranks are assigned. Considering ranki is the rank of ith

solution, its probability of selection probi is calculated as

probi = ranki∑n
t=1 rankt

10

1.1 Overview of genetic algorithm

1.1.2.3 Tournament selection

In the tournament selection mechanism, only a subset of solutions of limited size are considered

as the sample for selection, as opposed to the entire population of solutions. A subset of solutions

of size k are randomly selected from the population. From among these k solutions, the solution

having best fitness is chosen for reproduction, either based on a probabilistic method or in a

deterministic manner. The tournament has to be conducted for several rounds to obtain the

requisite number of parent solutions. This selection mechanism is known as binary tournament

selection when only two solutions are selected to participate in the tournament, i.e., k=2. Binary

tournament selection has a similar selection pressure as that of ranking selection though it is

computationally more efficient than the ranking selection [64]. As part of the probabilistic

binary tournament selection, two solutions are chosen uniformly at random from the population.

Between the two selected solutions, the one with better fitness is selected as a parent with a

given probability, pbt. The inferior solution is selected as parent with the remaining probability,

1− pbt.

1.1.3 Crossover

Crossover also known as the recombination operator, combines the genetic information of two

or more parent solutions and generates child solutions. It is predicated on the notion that pairing

together two good parents could result in a child of even higher quality. The offspring that arise

from crossover may occasionally be worse than the parent solution, but repeated applications of

crossover will result in solutions of better quality. While designing the crossover operator care

should be taken so that it recombines the data pertinent to the considered problem. Additionally,

if the two parents involved in the crossover are almost identical, then the child solution must

likewise resemble the parents. This requirement is known as similarity requirement. The proper

design of crossover operator as per the solution representation while making use of the problem

specific knowledge is crucial to GA’s success. We discuss some commonly used crossover

operators in the subsequent subsections.

1.1.3.1 1-point crossover

Holland [45] introduced the 1-point crossover to be used in GA. Even though it can be applied

to all forms of solution representations, it is most commonly applied in the case of binary

and integer solution representations. Given a solution string of length n, the 1-point crossover

11

1. INTRODUCTION

randomly selects a position in the range [0, n− 1]. Then, the portions of the two parents are

swapped from that point onwards thereby generating two child solutions. 1-point crossover is

illustrated in Figure 1.1.

p1 0 1 0 1 0 1 1 0 0 1 c1 0 1 0 0 1 0 0 1 1 0

−→

p2 1 0 1 0 1 0 0 1 1 0 c2 1 0 1 1 0 1 1 0 0 1

Figure 1.1: Illustration of 1-point crossover

By considering N crossover points instead of 1, we can implement an N-point crossover.

Using theN crossover points, each parent is divided intoN+1 different segments. By swapping

every alternate segment between the two parents, we can generate two child solutions.

1.1.3.2 Uniform crossover

In the uniform crossover [65], each location in the child solution is separately considered. For

each location, a uniform random number is generated within the range [0, 1] and is compared

with the given probability value p. If the generated random number is less than or equal to p then

the gene value from the same location in the first parent is copied to the child solution, otherwise

the gene value from the second parent is copied. By switching the two parents’ roles, the second

child is produced. Uniform crossover is illustrated through an example in the Figure 1.2, where

the probability value, p is taken as 0.6.

p1 0 1 0 1 0 1 1 0 0 1 c1 1 1 0 0 0 1 0 0 0 0

−→

p2 1 0 1 0 1 0 0 1 1 0 c2 0 0 1 1 1 0 1 1 1 1

.8 .2 .3 .7 .4 .1 .8 .6 .2 .9 ←− random values generated for each position

Figure 1.2: Illustration of uniform crossover

12

1.1 Overview of genetic algorithm

1.1.4 Mutation

Mutation operator helps in maintaining diversity in the population. It reduces the possibility of

premature convergence, by avoiding a situation where the population’s solutions become too

similar. Additionally, it helps in exploring new areas of the search space. Just like in crossover,

the solution representation mechanism employed by GA greatly influences the way mutation

operator works. There are many mutation operators in the literature, which are designed as per

the solution representation mechanism.

1.1.4.1 Bitwise mutation

Bitwise mutation is appropriate when solutions are represented as sequence of binary digits.

After considering each bit in the solution separately, it is inverted with small uniform probability.

Figure 1.3 provides an illustration of bitwise mutation with an example.

0 0 1 0 1 0 0 1 0 1 → 0 0 1 0 0 0 0 1 0 1

Figure 1.3: Illustration of bitwise mutation

1.1.4.2 Random reset mutation

Random reset mutation can be considered as an extension of bitwise mutation and it is suitable

for integer solution representation. After considering each position in the solution, a different

value from the list of possible values is assigned to it as per the given probability. Consider the

illustration of random reset mutation given in Figure 1.4 with the possible values for a gene

from the set {1, 2, 3, 4, 5, 6 }.

2 4 6 5 2 4 5 2 1 3 → 2 1 6 5 2 4 5 6 1 3

Figure 1.4: Illustration of random reset mutation

1.1.5 Population evolution models

The choice of solutions for the next generation is governed by the population evolution model.

Generational model and steady-state model are the two major population models [66].

13

1. INTRODUCTION

1.1.5.1 Generational model

In generational model, in each generation number of child solutions produced is equal to the

population size. After each generation, the newly generated child solutions replace the whole

population of solutions. Due to this kind of replacement policy, sometimes the newly generated

population of solutions may be worse than the current generation solutions. Hence, some

modifications have been introduced such as an elitist strategy which retains either the overall

best solution or a number of good solutions from the current population and passes them to the

next generation.

1.1.5.2 Steady-state model

In each generation, the steady-state model generates only a small fraction of solutions of the

population size. The newly produced child solutions replace the same numbers of solutions

in the current population as per a replacement policy. In this model, a newly generated child

solution is considered for replacement into the population only if it is unique compared to the

existing population members, otherwise it is discarded. This feature of the steady-state model

makes sure that the population is free from duplicates thereby avoiding premature convergence.

Typically in the steady-state model, only one child is produced per generation and if it is

unique compared to the population members then it will take the place of worst solution in the

population. Another replacement strategy is to select a solution that is most similar to the newly

generated solution and replace it with the new solution.

1.2 Overview of differential evolution

Differential evolution (DE) is another population based metaheuristic technique inspired by

natural evolution. It was proposed by Storn and Price in 1995 [47]. Originally, DE was proposed

for solving continuous optimization problems in which the chromosomes are floating-point

numbers [47, 67]. In the case of unknown problems, the initial population of solutions can be

produced in a completely random manner. If any preliminary solutions are available for the

problem, initial solutions can be generated by extending them by introducing random deviations

which are normally distributed. Like several other evolutionary algorithms, DE also employs

similar computational steps. However, to generate a new solution, it follows a completely

different method. In this method, two distinct solutions from the population are randomly

14

1.2 Overview of differential evolution

selected and their weighted difference is added to a third distinct solution which is also selected

randomly, giving a new child solution. Considering Si, Sj , and Sk as three unique solutions

which are randomly selected from the population and a user defined weighting factor w, we can

mathematically present the step of generating a new child solution as:

SP = Si + w(Sj − Sk)

Owing to its simplicity, generic nature, and robustness, DE has become quite popular. As a

result, there are numerous variations of basic DE in the literature that differ in the strategies used,

such as the number of solutions included in perturbation, the type of mutation and crossover

operators employed. A detailed survey of differential evolution is provided in [68].

As the traditional DE was developed for continuous optimization problems, it can not be

used for solving discrete optimization problems. Tasgetiren et al. devised a novel discrete

differential evolution (DDE) in [69, 70], which deals with solutions having discrete values.

In the DDE approach, the solutions from the population are considered one after the other.

The solution currently being considered is referred to as the target solution. Mutation can

be applied either on the best solution or on a randomly selected candidate solution or on the

current target solution [71] to produce a mutant solution. After the mutation, crossover is

applied with a predefined probability considering the mutant and the target solution as parent

solutions producing a trial solution. After the crossover, the fitness of the resulting trial solution

is compared with that of the target solution. Following a selection mechanism, the trial solution

may replace the target solution to be part of the population for next generation or is discarded.

Algorithm 2 provides the pseudo-code of discrete differential evolution. Here ps is the size

of the population and the function Init_Solution() produces an initial solution.

DDE differs from other evolutionary techniques in selecting parent solutions for the

crossover operator. In other techniques both parent solutions are selected from the popula-

tion. On the other hand, in DDE, one parent solution is from the population, whereas the other

parent is the resulting solution after mutating another solution in the population. Generally,

either the best solution in the population or a randomly selected solution from the population is

considered for perturbation and gives the second parent solution for crossover. Thus, one partic-

ipating member of the crossover or recombination operator is typically a diversified solution. It

has advantages, such as better exploration of search space and thereby mitigating premature

15

1. INTRODUCTION

convergence, and better ability to produce diverse child solutions as one of the parents is always

a perturbed solution.

Algorithm 2: Pseudo-code of DDE
Input: Required parameters for DDE and the considered problem instance
Output: Best solution returned by DDE

for (i=1 to ps) do
Xi ← Init_Solution();

bestsol ← best solution among X1, X2, . . . Xi, . . . , Xps;
while (the termination criteria is not satisfied) do

for (i=1 to ps) do
Mutant←Mutate(X);
// X is either randomly selected from the population or

the best solution
Trialsol ← Crossover(Mutant, Xi);
// Xi is the target solution & Trialsol is the trial solution
if (Trialsol is better than Xi) then

Xi ← Trialsol;
if (Xi is better than bestsol) then

bestsol ← Xi;

return bestsol;

1.3 Overview of hyper-heuristics

In the field of discrete optimization, to solve any NP-hard problem, usually researchers tend to

develop heuristic or metaheuristic methods that make use of the problem specific knowledge.

Even for problems under the same domain, the heuristic or metaheuristic methods require

significant changes depending on the nature of the problem under consideration to be able

to generate solutions of good quality in viable computational times. It is also demonstrated

that the quality of solutions created by methods that properly combine different low-level

heuristics outperforms those generated by each individual low-level heuristic [72, 73]. Hence,

there is a need to develop approaches that can be used for solving problems across domains

without incorporating deep problem specific knowledge to generate solutions of better quality

by properly combining the low-level heuristics [74]. Hyper-heuristics are a suitable alternative

solution methods as compared to the heuristics or metaheuristics due to their ability to adapt to

the specifics of the problem instance under consideration while combining several low-level

heuristics. A hyper-heuristic fundamentally differs from a metaheuristic in that the search space

16

1.4 Scope of the thesis

for a hyper-heuristic is the set of knowledge-poor, easily implementable low-level heuristics,

whereas for a metaheuristic the search space is the set of feasible solutions to the considered

problem [75].

Given their generality in addressing problems, hyper-heuristics have received increased

interest from the research community in the last 10 years or so. For the first time, Denzinger et

al. [76] introduced the term hyper-heuristic to describe a method that combines some artificial

intelligence based approaches to prove theorems in an automated manner. Later in [77], hyper-

heuristics were defined as heuristics that can select the most appropriate heuristics from a set

of low-level heuristics for a given discrete optimization problem. While using the low-level

heuristics at each stage of the search operation, the hyper-heuristics can either choose an existing

heuristic or generate a new heuristic from the components of the already existing heuristics and

then using the chosen or newly generated heuristic to create a new solution. The hyper-heuristics

that select a heuristic from the available low-level heuristics are called selective hyper-heuristics

and those that generate a new heuristic at each step of the search process are called generative

hyper-heuristics. Within the selective hyper-heuristics, there are several selection mechanisms

available, out of which we have used two of them, namely random selection and greedy selection.

In random selection mechanism, one of the low-level heuristics is chosen randomly, whereas in

greedy selection mechanism, all the low level heuristics are used to create new solutions and

best solution among these new solutions is considered for further processing. Figure 1.5 shows

the framework for hyper-heuristics that has the two main components. The first component

is the domain-independent high level strategy and the second component has a repository of

domain specific low-level heuristics. The domain-independent high level strategy is responsible

for collecting and managing information such as the number of low-level heuristics, measuring

the performance of the applied heuristics and keeping track of the selected heuristic, and also

deciding whether to accept or reject a new solution. The other component is responsible for

applying the domain specific low-level heuristics using the knowledge specific to the problem

under consideration.

1.4 Scope of the thesis

In this thesis, we have worked on three facility location models and variants thereof, viz. anti-

covering location problem (ACLP), obnoxious cooperative maximum coverage location problem

(OCMCLP), reliability p-median problem (RpMP). We choose these models because these are

17

1. INTRODUCTION

Domain-independent high level strategy

Collect and manage information such as:
No. of low-level heuristics,
Measuring the performance of the applied heuristics,
Accept/reject a new solution, etc.

Domain Barrier

LH1,
LH2,
LH3,
. . .

Low-level Heuristics

Apply Heuristics

Problem reprsentation,
Problem instance,
Initial Solution,
Evaluation function

Problem Domain

Figure 1.5: Framework of Hyper-heuristics

under-studied models despite having several real-world applications. In addition, choice of latter

two models is also governed in part by their highly complex nature which pose a challenge to

anyone trying to solve them. We have considered six NP-hard facility location problems in

this thesis. Out of these, first three are based on ACLP and its variants. The fourth problem

18

1.4 Scope of the thesis

deals with location of obnoxious facilities under cooperative coverage. The last two problems

are the p-median facility location problems which consider the reliability and fault tolerance

issues. These problems have many practical applications in diverse fields such as locating

garbage dump yards, nuclear power plants, chemical plants, telecommunication equipment,

franchise outlets, liquor stores, ATMs, military defense units, DNA sequence matching, forest

management, supply chain design, disaster management. As these problems are NP-hard,

applicability of exact methods is limited to small size instances only, and one has to resort to

heuristic approaches to tackle instances beyond a certain maximum size. In this thesis, we have

devised heuristic approaches based on genetic algorithm (GA), discrete differential evolution

(DDE), and hyper-heuristics to address these problems. In addition, we have also developed

some problem-specific heuristics for use within these approaches.

We have divided the thesis into seven chapters including this introductory chapter. In the

following, we provide an overview of each of the remaining six chapters:

Chapter 2 deals with the anti-covering location problem (ACLP). Given a set of potential

facility location sites, ACLP seeks a subset of these sites with maximum cardinality for placing

the facilities in such a way that no two placed facilities are inside a specified distance of each

other. ACLP has important applications in fields such as telecommunications equipment siting,

locating military units, locating franchise outlets, forest management. In this chapter, we have

proposed a discrete differential evolution (DDE) algorithm for this NP-hard problem. In addition

to the benchmark instances available in the literature, we have evaluated the performance of

our approach on larger instances with upto 1577 nodes derived from Beasley’s OR-library1 and

the standard TSPLIB2. Computational results show that on most of the instances, our approach

performed as good as or better than the existing approaches.

Chapter 3 is concerned with two variants of the ACLP, viz. disruptive anti-covering location

problem (DACLP) and weighted anti-covering location problem (WACLP). Both DACLP

and WACLP are understudied facility location problems despite having several real-world

applications. Given a set of potential sites for facilities, DACLP seeks to find the minimum

number of facilities that can be located such that no two facilities are closer than a given

distance from each other and no more facilities can be added. In competitive environments

with minimum separation requirements among facilities, DACLP can be used at the minimum

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
2http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

19

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

1. INTRODUCTION

expanse to prevent competitors from opening more facilities in an area. WACLP considers

site-dependent weights associated with all possible facility locations and it is concerned with

locating a maximum weighted set of facilities in such a manner that no two facilities are within

a pre-specified distance of one another.

We have extended our DDE approach for the ACLP from Chapter 2 to solve DACLP and

WACLP. We have also proposed another evolutionary approach based on GA for DACLP and

WACLP. Computational results show the effectiveness of our approaches in solving both the

considered ACLP variants.

Chapter 4 discusses our proposed genetic algorithm (GA) based approach for solving the

obnoxious cooperative maximum covering location problem (OCMCLP) on a network. In

cooperative coverage models, all facilities contribute to the coverage of each demand point. A

demand point is deemed to be covered if the total signal strength received by it from all the

facilities is not less than a given threshold. Given a graph with the set of demand points, the

set of edges between these demand points, and the non-negative real weights associated with

each demand point indicating the total demand at each point, the OCMCLP is concerned with

locating p obnoxious (undesirable) facilities either at the demand points or along the edges in

such a manner that maximizes the uncovered demand. In all of the applications of locating

obnoxious facilities, the nuisance generated by an obnoxious facility decreases over distance

following some signal strength function. Facilities such as nuclear power plants, prisons, dump

yards, military installations and industrial facilities causing pollution are examples of obnoxious

facilities, which even though are required for the society, but produce a negative or undesirable

effect. We have compared the performance of our proposed approach with two interchange

heuristics available in the literature for OCMCLP. On most of the instances, our GA based

approach has obtained solutions of superior quality in comparison to the existing methods.

Chapter 5 addresses the reliability p-median problem (RpMP). In the traditional p-median

problem, it is assumed that once constructed, the facilities will always be available to serve the

customers or demand points. But in reality, facilities may fail at times due to several reasons

like natural disasters such as floods and earthquakes or due to events which are intentional

like terrorist attacks and labor strikes. Sometimes facilities may fail due to unintended events

like sudden power or component failures. When there are facility failures, there will be

disruptions in the services provided to the customers and which force them to seek services

from other functioning facilities. The reliability p-median problem minimizes both the primary

transportation cost without considering the facility failures and also the cost of the expected

20

1.4 Scope of the thesis

failure considering the facility failures. In this chapter, we have proposed a hyper-heuristic based

approach with naive Bayes classifier to solve the RpMP. Ours is a multi-start greedy selection

based hyper-heuristic with four low level heuristics each of which generates a feasible solution

to the RpMP. We have also applied local search to further improve the fitness of the best solution.

We have conducted experiments on existing benchmark instances which demonstrate that our

proposed approach is able to perform better than the state-of-the-art methodologies described in

the literature for RpMP.

Chapter 6 proposes two multi-start hyper-heuristic approaches for the reliable p-median

problem with at-facility service (RpMF). Coming to the nomenclature of reliability p-median

problem of the previous chapter, viz. Chapter 5 and reliable p-median problem of Chapter 6,

we have followed the same names for both these problems as used by the respective previous

authors, even though reliable p-median problem is the correct terminology grammatically. Just

like RpMP, RpMF is also concerned with locating facilities where facilities may be inoperable.

But, RpMF assumes that a customer doesn’t have prior knowledge about the facility status until

he/she reaches the facility and also applies optimized search in order to identify a facility that

can provide the service by keeping track of the path that the customer has taken until he/she

receives the desired service. RpMF finds its applicability in real-world examples such as bank

customers withdrawing cash by visiting their nearest ATM point on regular basis which may not

be servicing customers at a given time due to maintenance of the machine, people visiting petrol

filling stations that have long waiting queues or shortage of petrol, patients visiting hospitals

in emergency condition and are forced to seek treatment elsewhere due to long waiting times

etc. We have proposed two hyper-heuristics based on greedy selection and random selection

mechanisms. We have evaluated our approaches on benchmark instances and compared the

results with state-of-the-art approaches available in the literature for RpMF. Our proposed

approaches are able to obtain solutions of good quality in negligible execution times on majority

of the instances proving the efficacy of our approaches.

Chapter 7 presents the concluding remarks of the thesis by presenting the list of contributions

made in solving the aforementioned six problems. It also provides some suggestions for future

research.

21

Chapter 2

Anti-covering location problem

2.1 Introduction

In the location science, the most common criteria for locating facilities is the interaction between

a facility and the individuals which interact with that facility [78]. Apart from these facility-

individual interactions, facility-facility interactions are also important, since the location of one

facility may impact the location of another facility. The anti-covering location problem (ACLP)

comes under the facility-facility interaction type location problems where the facilities repel

each other. ACLP belongs to the class of facility location problems with minimum separation

requirement between facilities.

Given a set of potential facility location sites, ACLP involves locating facilities at some

of these sites in such a manner that no two facilities are within a specified distance from each

other. ACLP is also referred to as r-separation problem where r is the specified distance. ACLP

belongs to the class of NP-hard problems [79, 80]. ACLP finds its importance in solving many

real world applications. Some of them include but not limited to locating garbage dump yards,

nuclear power plants, telecommunication equipments, franchise outlets, military defence unit

location, DNA sequence matching, forest management [81].

ACLP was first defined by Moon and Chaudhry in 1984 [79] by considering the weighted

variant. However, its unweighted variant received more attention than the weighted one. In the

weighted variant of ACLP, each site has a positive weight associated with it as per its importance,

whereas in the unweighted variant of ACLP, no weight is associated with any site. Unweighted

variant can be considered as a particular case of weighted variant where all sites can be assumed

to have a weight of 1. This chapter is concerned with unweighted variant only. Hereafter,

22

2.2 Formal problem definition

ACLP refers to its unweighted variant only. Many researchers have studied ACLP and proposed

various methods to solve it [1, 79, 81, 82, 83]. In particular, Chaudhry [1] proposed an approach

based on genetic algorithm. Khorjuvenkar and Singh [83] proposed a hybrid swarm intelligence

approach based on Ant Colony Optimization (ACO) to solve ACLP. They have compared their

approach with the approaches available in the literature and found their approach to be superior.

All the approaches in the literature have solved ACLP on datasets ranging from 20 to 152 nodes.

In this chapter, we applied discrete differential evolution algorithm to solve ACLP and tested it

on large data sets with upto 1577 nodes. Results of the proposed approach are compared with

hybrid ant colony optimization approach [83] and genetic algorithm [1].

Rest of this chapter is organized as follows: Section 2.2 formally defines the ACLP. The

proposed approach for the ACLP is described in Section 2.3, and, the computational results

and their analysis are presented in Section 2.4. Finally, Section 2.5 concludes the chapter by

summarizing the contributions.

2.2 Formal problem definition

The ACLP can be formally defined in the following manner: Given a set V = {1, 2, . . . , n} of

n potential facility location sites, i.e., |V | = n, and a distance R, so that no two facilities can be

within distance R of one another. duv is the shortest distance from site u ∈ V to site v ∈ V . The

set of sites within distanceR of site v is denoted byQv, i.e.,Qv = {u|u ∈ V ∧dvu ≤ R∧v 6= u}.
We call the set Qv to be the forbidden set of site v. The objective of ACLP is to find a set

V ′ ⊆ V of maximum cardinality such that Qv ∩ V ′ = ∅ ∀v ∈ V ′. The constraint that no two

facilities can be within distance R of one another is referred to as separating distance constraint

subsequently. By introducing binary variables sv∀v ∈ V to indicate whether site v is chosen for

locating a facility (sv = 1) or not (sv = 0) and taking a large positive integer M , a mathematical

model of ACLP, which is a modification of the formulation provided by Moon and Chaudhry

[79] for the weighted variant of ACLP, is given below:

max Z =
∑
v∈V

sv (2.1)

subject to the following constraints ,

Msv +
∑
u∈Qv

su ≤M, ∀v ∈ V (2.2)

23

2. ANTI-COVERING LOCATION PROBLEM

sv ∈ {0, 1}, ∀v ∈ V (2.3)

Here, equation 2.1 represents the objective function of the ACLP which maximizes the number

of selected sites. Equation 2.2 specifies that if a facility is located at node v (i.e. sv = 1), then

the Msv = M , and, as a result
∑

u∈Qv
su = 0. So, it enforces the constraint that if a site v is

part of the solution, then all the sites u within the distance R of site v, i.e., all sites belonging

to Qv can not be part of the solution. This constraint is called the neighbourhood adjacency

constraint. Clearly, the value of M should be so chosen that it is larger than maxv∈V (|Qv|).

Constraint 2.3 enforces the binary nature of decision variables sv∀v ∈ V . Few alternative

mathematical formulations of ACLP can be found in [81]. Throughout this chapter, we will use

the term node and site interchangeably.

A B

C

D

E

F

G

H

I

J

K

L

Figure 2.1: Illustration of ACLP

To illustrate ACLP, consider the example of Fig. 2.1. It contains n = 12 nodes located at

different points in a plane. The coordinates of each of the nodes are as follows: A(10, 10), B(38,

10), C(30, 30), D(6, 40), E(50, 50), F(40, 40), G(70, 65), H(35, 60), I(10, 70), J(75, 20), K(70,

40) and L(55, 17). The euclidean distances from each node to all the other nodes are calculated

using their respective coordinates. For the minimum separating distance R=35, the set of nodes

{A, F, G, I, J} is a feasible solution, because each of these nodes are separated by minimum

distance 35 from each other. The nodes belonging to this set are marked in red color, whereas

other nodes are marked in blue color in the Fig. 2.1.

24

2.3 Proposed approach for unweighted input graph

2.3 Proposed approach for unweighted input graph

We have developed a DDE based approach for the ACLP. The salient features of our approach

are described in the following subsections.

2.3.1 Solution encoding and fitness

A bit vector of length n is used to represent a solution where a value of 1 at position t indicates

a facility is located at site t. On the other hand, a value of 0 at position t indicates no facility is

located at site t. We have used the objective function (equation 2.1) itself as the fitness function.

2.3.2 Initial population generation

To generate an initial solution, we need to find a subset of nodes such that no two nodes in this

subset are within a distance of R from one another. In the proposed approach, each candidate

solution in the initial population is generated using a randomized greedy approach. Each initial

solution is generated in an iterative manner starting with an empty solution and then nodes are

added to the solution one-by-one. Initially, all nodes are unmarked. During each iteration, we

find ku unmarked nodes having forbidden set of minimum cardinality (forbidden set Qv for a

node v is defined in Section 2.2). Ties are broken arbitrarily. Out of these ku nodes, one node say

v is randomly selected to be part of the solution. Now, v along with all nodes in Qv are marked

and another iteration begins. This process is repeated till no unmarked node remains. The value

of ku during each iteration is either 5 or 3. With probability Pgen, it is set to 5, otherwise it is

set to 3.

2.3.3 DDE framework

Starting with the population of initial solutions, the discrete differential evolution approach for

solving the ACLP follows an iterative process. During each iteration (referred to as generation

in DE jargon), we consider each candidate solution in the population one-by-one. The solution

under consideration is referred to as target solution. In the proposed approach, mutation is

applied with probability Pm (i.e., mutation is not applied with probability 1− Pm) on the best

solution found so far and the solution obtained after mutation (irrespective of whether mutation

is applied or not) is called mutant or donor [71]. Followed by mutation, crossover, repair and

selection procedures are applied. When all the solutions are considered, then next iteration

25

2. ANTI-COVERING LOCATION PROBLEM

begins. This process is repeated for Niters iterations. And the best solution found since the

beginning of algorithm is returned as the final solution found by the algorithm.

2.3.4 Mutation

As part of the mutation operation, every bit of the best solution is flipped with probability Pmut.

For every index i in the solution vector, a uniform random number r in [0,1] is generated. If r

is less than Pmut then the corresponding bit value at index i in the best solution is flipped and

copied to the mutant, otherwise the bit value from the best solution is copied unaltered to the

mutant. Repair operation which is explained in the subsequent subsection (Section 2.3.6) is

applied on the mutant to make it feasible and to improve its fitness.

2.3.5 Crossover

Crossover needs two solutions which act as parents to produce a new child solution. The solution

obtained after mutation, viz. mutant is taken as one parent solution in the crossover and the

target solution is taken as the other parent. The resulting solution after the crossover operation

is called a trial solution. A simple uniform crossover operation is performed, where binary

values from the mutant solution are copied to the trial solution with probability proportional to

its fitness. And the binary values from the target solution are copied to the trial solution with

remaining probability, which is also proportional to the target solution’s fitness. Probability of

copying a binary value from the mutant to the trial solution is Pcopy= f(mutant)
f(mutant)+f(target_solution) ,

and the probability of copying a binary value from the target solution to the trial solution is

1− Pcopy, i.e., f(target_solution)
f(mutant)+f(target_solution) , where f(X) is a function that computes the fitness

of the solution X passed to it as argument. For every index i in the trial solution, a uniform

random number, r1 in [0,1] is generated. If r1 is less than Pcopy, then the binary value at index

i from the mutant is copied to the trial solution at index i, otherwise the target solution’s binary

value at index i is copied to the trial solution at index i. This is repeated for all the n indices. The

crossover is applied with probability Pc when mutation has already been applied. Otherwise, it

is always applied. This is done to prevent the trial solution from being an exact copy of the best

solution.

26

2.3 Proposed approach for unweighted input graph

2.3.6 Repair

As there is no guarantee of the feasibility of the trial solution obtained after the crossover,

repair operation is performed on the trial solution. In addition to transforming an infeasible

solution into a feasible solution, the repair operation also tries to improve the solution. In the

repair operation, first it is checked whether the trial solution is feasible or not by verifying

the separating distance constraint. If the trial solution T is not feasible, then we compute

Q
′
v = {u|u ∈ T ∧ dvu ≤ R∧ v 6= u}∀v ∈ T and a site v with maximum |Q′v| value is removed

from T by setting the corresponding bit in the solution to 0. This entire process is repeated till

the trial solution becomes feasible.

Once the trial solution is made feasible, we make an attempt to increase its fitness if the

latest fitness is within 20% of the best solution’s fitness. To maintain a balance between solution

quality and the execution time, we arrived at this 20% after large number of experiments. To

improve the fitness, we will compute the set Srem of all those remaining sites which can still be

added to the solution without violating the separating distance constraint. Then, we compute

Q
′′
u = Qu∩Srem ∀u ∈ Srem. All those sites v in Srem such thatQ

′′
v = ∅ are added immediately

to the solution by setting the corresponding bits in the solution to 1. If there is no site v ∈ Srem
with Q

′′
v = ∅, then a site v ∈ Srem which has the minimum value of |Q′′v | (ties are broken

arbitrarily) is made part of the solution by marking the corresponding bit in the solution as 1.

The set Srem is updated to reflect the change in configuration of the solution. This process is

repeated till Srem becomes empty.

2.3.7 Selection

After the repair operation, the fitness of trial solution is compared with the fitness of the target

solution. If the trial solution has higher fitness than the target solution, then it replaces the target

solution in the population, otherwise the target solution remains in the population for the next

generation and the trial solution is discarded.

Algorithm 3 provides the pseudo-code for our discrete differential evolution approach where

u01 is a uniform variate in [0, 1]. Mutation, Crossover, Repair and f are four functions that

perform mutation (Section 2.3.4), crossover (Section 2.3.5), repair (Section 2.3.6) and fitness

computation (Section 2.3.1) operations respectively.

27

2. ANTI-COVERING LOCATION PROBLEM

Algorithm 3: Discrete differential evolution algorithm for ACLP
Generate initial population;
best_solution← best solution in initial population;
iter ← 0;
while iter < Niters do

foreach target_solution ∈ population do
if u01 ≤ Pm then

mutant←Mutation(best_solution);
no_mutation← 0;

else
mutant← best_solution;
no_mutation← 1;

if (u01 ≤ Pc) or (no_mutation = 1) then
trial_solution← Crossover(mutant, target_solution);

else
trial_solution← mutant;

trial_solution← Repair(trial_solution);
if f (trial_solution) ≥ f (target_solution) then

target_solution← trial_solution;
if f (trial_solution) ≥ f (best_solution) then

best_solution← trial_solution;

iter ← iter + 1;
return best_solution;

2.4 Experimental results

We have implemented our DDE approach in C. In all our experiments with DDE, we have

used population size (NP) = 50, Pgen = 0.5, Pm = 0.9, Pc = 0.9, and Pmut = 0.02. All these

parameter values are chosen empirically.

We have used three datasets in our experiments. The first dataset was used in [1] to test

the performance of genetic algorithm (GA). Later, it was used in [83] to test the performance

of proposed ant colony optimization (ACO) approach. This dataset consists of 41 instances

with number of nodes either 20 or 30 or 55 and different values of R. Additionally, we have

used two more datasets containing larger instances derived from Beasley’s OR-library1 and

the standard TSPLIB2. The datasets derived from OR library contain 40 ACLP instances and

have number of nodes from the set {50, 100, 250, 500 and 1000} and R from the set {5, 10,

25, 50}. The datasets derived from TSPLIB also contain 40 ACLP instances and have number

of nodes varying from 51 to 1577. For the TSPLIB datasets, we have taken the R values as

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
2http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

28

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

2.4 Experimental results

Table 2.1: Comparison of objective values of GA, ACO and DDE based solutions for datasets used
in [1]

Dataset R Oknown OGA OACO ODDE

20 nodes

50 12 12 12 12
100 12 12 12 12
150 9 9 9 10
200 9 9 9 9
250 8 8 8 8
300 7 7 7 7
350 6 6 6 6
400 6 6 6 6
450 6 6 6 6
500 5 5 5 5
550 5 5 5 5
600 5 5 5 5
650 5 5 5 5
700 3 3 3 3
750 3 3 3 3
800 3 3 3 3
850 3 3 3 3
900 3 3 3 3
950 2 2 2 2

1000 1 1 1 1

30 nodes

35 24 24 24 24
50 21 21 21 21

100 10 10 10 10
150 6 6 6 6
200 4 4 4 4
300 3 3 3 3
400 2 2 2 2

55 nodes

5 36 36 36 36
6 30 30 30 30
7 25 24 25 25
8 21 20 21 21
9 18 17 18 18

10 16 15 16 16
12 13 12 13 13
14 11 10 11 11
15 9 9 9 9
20 7 6 7 7
23 6 5 6 6
27 5 4 5 5
31 4 4 4 4
34 3 3 3 3

5%, 10%, 25% and 50% of the Xmax−Xmin+Ymax−Ymin
2 where Xmax, Xmin, Ymax and Ymin

are respectively the maximum X value, minimum X value, maximum Y value and minimum

Y value over all points in the corresponding base TSPLIB instance. For the first dataset, we

have compared our DDE approach with ACO and GA, whereas for remaining two datasets,

which are created by us, we have compared our DDE approach with ACO only. The reason for

using only ACO for comparison for latter two datasets is availability of the source code of ACO

for execution on these new datasets. Further, this is fair also as superiority of ACO over other

approaches in the literature on first dataset has been shown already in [83].

29

2. ANTI-COVERING LOCATION PROBLEM

We have executed our DDE approach and the ACO approach for the same amount of time

on a Linux based 3.40 GHz Core-i5-7500 system with 8 GB RAM. On all the instances with

number of nodes less than or equal to 100, these two approaches are run for 1 second, on all

the instances with number of nodes greater than 100 and upto 500, these two approaches are

executed for 2 seconds, and on all the instances with more than 500 nodes, these two approaches

are executed for 5 seconds. These two approaches are executed 10 independent times on each

instance like GA. For first dataset, ACO and GA found the same solution in all the 10 runs on

all the 41 instances.

Table 2.1 presents the results of our DDE approach(column ODDE) on 41 instances used

in [1] and compares them with GA (column OGA), ACO (column OACO) and best known

solutions (column Oknown). Comparison among DDE, ACO and GA is done in terms of best

solution obtained over 10 runs to ensure conformity with the results reported in [1]. Data for GA

is taken from [1]. Both DDE and ACO found best known solutions on all 41 instances, whereas

GA fails to find the same on some instances.

Table 2.2 and Table 2.3 present the results of DDE and ACO approaches on OR library and

TSPLIB datasets respectively. Results are reported in terms of best and average solution quality

obtained over 10 runs on each instance. In these tables, best results are in bold font. Table 2.4 is

the summary table listing the number of instances on which DDE obtained worse (<), same (=)

and better (>) solutions in comparison to ACO. This is done for each of the two datasets and

overall. These three tables clearly show the superiority of our DDE approach over ACO. On

most of the instances our approach performed as good as or better than ACO approach. Only on

few instances, our approach performed worse than the ACO approach.

We have also done statistical significance analysis of our approach in comparison to ACO

based approach. We have performed Wilcoxon Signed-Ranks test [84] for N = 80 instances

of the OR library and TSPLIB datasets together, with a significance level α = 0.01. As shown

in Table 2.5 the z value obtained, -3.447, is less than the critical value of z, zc= -2.33 for a

two-tailed test. This proves that the improvement achieved with our approach is significant and

it is due to the algorithmic merit rather than random fluctuations.

30

2.4 Experimental results

Table 2.2: Comparison of objective values of ACO and DDE based solutions for OR library datasets

ACO Solution DDE Solution
Dataset R Best Average Best Average

OR_50.1

5 43 43.00 43 43.00
10 31 31.00 31 31.00
25 12 12.00 12 12.00
50 6 6.00 6 6.00

OR_50.2

5 40 40.00 40 40.00
10 32 32.00 32 32.00
25 12 12.00 12 12.00
50 6 6.00 6 6.00

OR_100.1

5 67 67.00 67 67.00
10 39 39.00 39 39.00
25 13 13.00 13 13.00
50 6 6.00 6 6.00

OR_100.2

5 71 71.00 71 71.00
10 43 43.00 43 43.00
25 15 15.00 15 15.00
50 5 5.00 5 5.00

OR_250.1

5 131 131.00 131 131.00
10 62 61.20 61 60.50
25 17 17.00 17 17.00
50 6 6.00 6 6.00

OR_250.2

5 127 127.00 127 127.00
10 62 62.00 62 62.00
25 17 17.00 17 17.00
50 6 6.00 6 6.00

OR_500.1

5 179 178.90 179 179.00
10 74 73.00 74 73.20
25 19 19.00 19 18.30
50 7 6.90 7 7.00

OR_500.2

5 178 177.60 179 178.40
10 74 73.10 74 72.40
25 18 18.00 18 18.00
50 6 6.00 6 6.00

OR_1000.1

5 217 215.70 227 225.40
10 83 82.60 83 81.90
25 20 19.20 20 19.60
50 7 7.00 7 7.00

OR_1000.2

5 212 211.10 220 217.40
10 81 80.50 82 80.20
25 20 19.10 20 19.70
50 7 7.00 7 7.00

31

2. ANTI-COVERING LOCATION PROBLEM

Table 2.3: Comparison of objective values of ACO and DDE based solutions for TSPLIB datasets

ACO Solution DDE Solution
Dataset R Best Average Best Average

eil51

3 50 50.00 50 50.00
6 39 39.00 39 39.00

15 14 14.00 14 14.00
30 6 6.00 6 6.00

rat99

8 85 85.00 85 85.00
15 47 47.00 47 47.00
38 14 14.00 14 14.00
75 6 6.00 6 6.00

rat195

11 125 125.00 125 125.00
21 59 59.00 60 59.10
52 16 16.00 16 16.00

104 6 6.00 6 6.00

pr299

223 118 118.00 118 118.00
446 57 56.90 58 57.60

1114 16 16.00 16 16.00
2228 6 6.00 6 6.00

d493

170 89 89.00 90 89.10
340 38 37.30 37 37.00
851 10 10.00 10 10.00

1700 4 4.00 4 4.00

u724

111 211 211.00 212 211.10
222 78 76.60 79 77.20
555 18 18.00 18 18.00

1110 6 6.00 6 6.00

pr1002

650 200 195.60 198 197.00
1300 76 76.00 76 74.70
3250 18 18.00 18 18.00
6500 6 6.00 6 6.00

pcb1173

120 254 250.90 258 256.60
240 86 85.30 85 83.80
600 19 19.00 19 19.00

1200 6 6.00 6 6.00

d1291

176 133 132.80 133 132.80
352 50 49.90 50 49.20
879 13 13.00 14 13.20

1760 5 5.00 5 5.00

fl1577

91 98 95.10 99 98.60
182 50 49.10 50 50.00
456 15 15.00 15 15.00
910 6 6.00 6 6.00

32

2.5 Conclusions

Table 2.4: Comparison Summary: Number of instances on which DDE obtained worse (<), same
(=) and better (>) solutions in comparison to ACO

Best Average
Dataset name < = > < = >

OR library 1 35 4 5 27 8
TSPLIB 3 29 8 4 26 10
Overall 4 64 12 9 53 18

Table 2.5: Wilcoxon Signed-Ranks test of our approach with ACO

N W+ W− zc z

80 143 637 -2.33 -3.447

2.5 Conclusions

In this chapter we have proposed a population based solution, viz. a discrete differential

evolution algorithm for the ACLP. We have evaluated and compared our approach with the

state-of-the approaches on the benchmark instances used in [1, 83]. We have also generated

new datasets containing larger number of nodes, and compared our approach with the ACO

approach proposed in [83] on these new datasets. Computational results show that on most of

the instances, our approach performed as good as or better than the ACO approach. Only for

few datasets, the ACO approach performed better than our approach.

33

Chapter 3

Two ACLP variants

3.1 Introduction

In this chapter, we discuss two variants of the anti-covering location problem, viz. disruptive anti-

covering location problem (DACLP) and weighted anti-covering location problem (WACLP).

Both DACLP and WACLP are understudied facility location problems and are related to the anti-

covering location problem (ACLP) discussed in the previous chapter. DACLP was introduced in

the last decade by Niblett and Church [85] while WACLP was introduced by Moon and Chaudhry

[79] for the first time in 1984. Over the past many years there have been several methods devised

for solving ACLP [1, 79, 81, 82, 83]. However, no method exists in the literature to solve

DACLP other than the ILP proposed by Niblett and Church [85] while introducing DACLP.

Similarly, for WACLP, only the ILP proposed by Moon and Chaudhry [79] while introducing

WACLP and the four greedy heuristic approaches [86] exist in the literature. So these two

problems are understudied problems.

Motivated by the understudied nature of DACLP and WACLP as explained in the previous

paragraph, and the very fact that different evolutionary algorithms have already been used

successfully to solve innumerable combinatorial optimization problems (e.g.,[87, 88, 89, 90,

91, 92, 93]), we have proposed two evolutionary approaches to solve DACLP and WACLP.

As our first approach, we have extended our discrete differential evolution (DDE) algorithm

based approach for the ACLP to both the considered problems, and, our second approach is

based on genetic algorithm (GA). Though differential evolution and genetic algorithm both

belong to the broad class of evolutionary algorithms and make use of crossover and mutation,

the solution encoding, crossover and mutation used by our two approaches are entirely different.

34

3.2 Disruptive ACLP

We have evaluated the performance of our approaches on the 80 ACLP instances with upto

1577 nodes which are introduced in Chapter 2. We have used the instances from Chapter 2 in

the same form in the case of DACLP and modified them to have node weights in the case of

WACLP. For DACLP, we have reported the results of the two proposed approaches and presented

the comparative analysis. In the case of WACLP, the results of the proposed approaches are

compared with the four greedy heuristics proposed in [86]. Computational results show the

superiority of our approaches in comparison to these greedy heuristics.

We have decided to devote a single chapter for these two ACLP variants instead of two

separate chapters because of the similar nature of approaches that we have developed for them.

Remainder of this chapter is organized into three sections. Section 3.2 is devoted to DACLP,

whereas Section 3.3 is devoted to WACLP. These two sections have several subsections, each

presenting the details of the proposed approaches. Finally, Section 3.4 wraps up the chapter by

listing the contributions made.

3.2 Disruptive ACLP

The disruptive anti-covering location problem (DACLP) comes under the facility-facility in-

teraction type location problems where no two facilities can be located within a distance of R

from one another. In the DACLP jargon [85], a proper solution is defined as the one in which all

non-facility sites are within the separating distance R from one or more of the selected facilities.

Obviously, no more facilities can be added to a proper solution. So, DACLP is concerned with

finding the minimum number of facilities that can be located on a subset of sites while giving

a proper solution. DACLP is derived from the more commonly known anti-covering location

problem (ACLP) [79], which is concerned with finding a subset of facilities of maximum

cardinality which forms a proper solution. The previous chapter discusses ACLP in detail.

The disruptive anti-covering location problem is so named as it prevents the “best or maximal”

packing solution of the anti-covering location problem from occurring. Node and site have been

used synonymously throughout this chapter.

Niblett and Church [85] introduced DACLP for the first time in 2015 and proposed a

model based on integer linear programming (ILP) for solving this problem. DACLP is an

NP-hard problem [85]. There are many real world applications where DACLP can be used

for finding the minimum number of facilities that can be located with the minimum separating

distance requirement between each pair of facilities. In competitive environments where there

35

3. TWO ACLP VARIANTS

are minimum separation requirements among facilities, DACLP can be used at the minimum

expanse to prevent competitors from opening more facilities in an area. For example, if there is a

minimum separation requirement between any two liquor stores in a city then opening of liquor

stores by a company as per DACLP solution for this city at minimum cost will forbid competitors

from opening any more stores in that city [85, 94]. Also in applications like analyzing policies

impacting potential sex offenders’ residence locations [95], and carrying capacity of a population

of Sandhill Cranes [85] etc., DACLP generates important and informative solutions. Apart from

these, in all the applications of ACLP that involve independent decision making entities, the

solutions found through DACLP are significant in the decision making and policy analysis.

This section is divided into various sub-sections in the following manner: Section 3.2.1 gives

the formal definition of DACLP. Section 3.2.2 presents the proposed DDE approach, whereas

Section 3.2.3 describes the proposed GA approach for the DACLP. The results of the conducted

experiments along with their analysis are presented in 3.2.4.

3.2.1 Problem definition

Considering a set V of n potential sites where facilities can be located, i.e., V = {1, 2, . . . , n}

(|V | = n), and R is the minimum separating distance such that no two facilities are permitted

within distance R from one another, the disruptive anti-covering location problem can be

formally defined as follows: For each site u ∈ V , the shortest distance between site u and

site v ∈ V is given by duv. Qu represents the forbidden set of site u ∈ V , i.e., Qu = {v|v ∈

V ∧ duv ≤ R∧u 6= v}. A solution with set S ⊆ V of facilities is called proper in case facilities

are located in such a manner that no two facilities are located within distanceR from one another

and all non-facility sites are within a distance R from one or more facilities, i.e.,Qu ∩ S = ∅

∀u ∈ S and (∪u∈SQu)∩{v} 6= ∅ ∀v ∈ (V \S). DACLP seeks a proper solution with minimum

number of facilities. Considering binary variables xv∀v ∈ V that have value 1 if a facility is

located at site v (xv = 1) and value 0 when no facility is located at site v (xv = 0) and Y as a

large positive integer, Niblett and Church [85] formulated the following mathematical model of

DACLP:

min Z =
∑
u∈V

xu (3.1)

36

3.2 Disruptive ACLP

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Figure 3.1: DACLP illustration

subject to:

Y xu +
∑
v∈Qu

xv ≤ Y, ∀u ∈ V (3.2)

xu +
∑
v∈Qu

xv ≥ 1, ∀u ∈ V (3.3)

xu ∈ {0, 1}, ∀u ∈ V (3.4)

Here, equation 3.1 minimizes the number of sites where facilities are located and gives the

DACLP’s objective function. According to equation 3.2 if a site u is selected for locating a

facility (i.e. xu = 1), then the Y xu = Y , and, which causes the summation
∑

v∈Qu
xv to be 0,

i.e., it enforces the constraint that no two facilities can be within distance R from one another.

Constraint 3.3 enforces that either site u is selected to locate a facility or a site v ∈ Qu which is

within R distance from u is selected to locate a facility. Together equations 3.2 and 3.3 make

sure that the solution is proper. Constraint 3.4 restricts the variables xu∀u ∈ V to binary values.

When compared with the mathematical formulation of ACLP (Section 2.2) from previous

chapter, the objective function of DACLP is a minimization function as given in Equation 3.1.

Apart from the objective function, DACLP has an additional constraint given in the Equation

3.3 that makes sure that no site is left uncovered.

Consider the Fig. 3.1 which illustrates DACLP with an example. There are a total of 15

nodes having the following coordinates: A(10, 20), B(30, 15), C(20, 6), D(48, 10), E(30, 75),

F(6, 40), G(50, 30), H(65, 35), I(80, 40), J(70, 55), K(28, 60), L(25, 45), M(10, 70), N(15, 55)

37

3. TWO ACLP VARIANTS

and O(75, 20). Considering R = 30, where all the facilities are separated from each other by a

distance of more than R, the subset {C, H, N} forms a feasible, proper solution satisfying the

separating distance constraint. In the Fig. 3.1 we have depicted the nodes selected for facilities

in green color and nodes not selected for facilities are marked in blue color.

3.2.2 DDE approach for DACLP

We have extended our discrete differential evolution (DDE) based approach for ACLP presented

in the previous chapter to the disruptive ACLP by making the required changes in the approach.

Subsequent subsections describe the salient features of our DDE approach for the DACLP.

3.2.2.1 Solution representation and fitness

We have used the bit vector representation to represent a solution just like in the DDE approach

for ACLP from the previous chapter (Section 2.3.1). For the fitness function, we have used the

the objective function of DACLP which is given in equation 3.1.

3.2.2.2 Generating initial population

To generate each member of the initial population, we have used a semi-greedy method which

is an extension of the method used in Chapter 2 (Section 2.3.2). The following are the two

differences for the initial solution generation in DDE approach for DACLP as compared to the

same in DDE approach for ACLP. Since DACLP is minimization problem, nodes with highest

values of |Qu| are given preference whereas in ACLP nodes with least values of |Qu| are given

preference as ACLP is a maximization problem. In DACLP, we always determine 3 unmarked

sites with highest values of |Qu| and out of these 3 sites, we randomly select a site u to be part

of the solution. Whereas in ACLP, ku unmarked nodes with least values of |Qu| are selected

where in each iteration ku is set to 5 with probability Pgen, otherwise it is set to 3. Except for

these aforementioned differences, the method of initial solution generation in the DDE approach

for DACLP is the same as in the DDE for ACLP. In this manner, a population of total POPcnt

candidate solutions are generated.

3.2.2.3 DDE framework

The same DDE framework used for the ACLP in the previous chapter(Section 2.3.3) has been

used for the DACLP also with the modification of using minimization in place of maximization.

38

3.2 Disruptive ACLP

We performed mutation on the global best solution just like in the previous chapter. As part of

the uniform crossover performed on mutant and target solution, we copy bit values from the

mutant to the trial solution with probability pcopy= f(targetsol)
f(mutant)+f(targetsol)

or else bit values are

copied from the target solution. This is different from the policy used in the crossover used in

the previous chapter (Section 2.3.5) to account for the change in nature of the objective of the

problem from maximization to minimization. After the crossover, repair operation is performed

on the trial solution which is explained below. Apart from these just mentioned differences, the

DDE framework for DACLP is the same as in the previous chapter.

3.2.2.4 Repair

In the repair operation, if the solution obtained through mutation/crossover is infeasible because

the separating distance constraint among facility sites is not satisfied, we eliminate some facilities

to make it a feasible solution. A randomized approach is followed for eliminating facilities from

the given solution. We randomly select a site u which is part of the current solution and mark

all the sites which are in its forbidden set Qu as not being part of the solution. We repeat this

step until the trial solution is made feasible.

After the trial solution becomes feasible, we check whether it is a proper solution or not. If

it is not proper, then to add new facilities, we find the set Xrem which contains the sites that can

be part of the solution without making the solution infeasible. Then, a new set Q
′
v = Qv ∩Xrem

∀v ∈ Xrem is computed. After that a site u ∈ Xrem with the highest cardinality of Q
′
u is added

to the solution. Then we update the sets Xrem, Q
′
u ∀u ∈ Xrem according to the latest changes

in the solution. The repair procedure stops once Xrem becomes empty.

The pseudo-code for our DDE approach for DACLP is given in Algorithm 4. The mutation,

crossover, repair (Section 3.2.2.4) and fitness computation (Section 3.2.2.1) operations are

performed by the four functions Mutation, Crossover, Repair and fitness respectively. r01 is a

uniform variate in [0, 1].

3.2.3 GA approach for DACLP

A steady-state genetic algorithm [66] is the other evolutionary approach that we have proposed

for the DACLP. In the remainder of this section, we refer to this approach as GA. The following

subsections present the important features of the proposed GA approach.

39

3. TWO ACLP VARIANTS

Algorithm 4: DDE algorithm for DACLP
Generate initial population;
bestsol ← best solution from the initial population;
while (termination condition remains unsatisfied) do

foreach (targetsol ∈ population) do
if (r01 ≤ pm) then

no_mutation← 0;
mutantsol ←Mutation(bestsol);

else
mutantsol ← bestsol;
no_mutation← 1;

if ((no_mutation = 1) or (r01 ≤ pc)) then
trialsol ← Crossover(targetsol, mutantsol);

else
trialsol ← mutantsol;

trialsol ← Repair(trialsol);
if fitness(trialsol) ≤ fitness(targetsol) then

targetsol ← trialsol;
if fitness(trialsol) ≤ fitness(bestsol) then

bestsol ← trialsol;

return bestsol;

3.2.3.1 Solution representation and fitness

A solution in our GA approach represents the sites selected for locating facilities as an ordered

list. It is an efficient representation compared to bit-vector as it consumes less memory to

store a solution and also requires less computation time in the overall operations. Even though

ordered list causes sorting overhead, such an encoding allows the efficient implementation of

variation operators like crossover and mutation as explained in corresponding subsections. The

chromosome length in this representation is not fixed as in the bit-vector representation, but the

variation operators are designed accordingly.

For our GA approach also, we have taken the objective function as the fitness function in

the same way as in our proposed DDE approach.

3.2.3.2 Initial solution generation

To generate the initial solutions, we have used a method which is a combination of a completely

random method and a semi-greedy method. In this method, to begin with, we consider all the

n sites as unvisited and start with an empty set for the solution, then we follow an iterative

procedure. In each iteration, with probability ρrd, we randomly chose an unvisited site u, and

make it part of the solution. As part of the semi-greedy method, 5 unvisited sites with highest

value of |Qv| are determined and one of these 5 sites is randomly selected and is added to

40

3.2 Disruptive ACLP

the solution. Considering the newly added site as u, we mark the site u and every site in its

forbidden set as visited, and proceed to the next iteration. Till there are no unvisited sites

remaining, this process is repeated. Based on the number of unvisited sites, following are some

exceptions to the aforementioned rules of selecting a site in an iteration. If there is only a single

unvisited site, then it is added directly. If there are two sites which are unvisited, then the one

having highest cardinality of the forbidden set is selected. On the other hand, if there are more

than 2 and less than 6 unvisited sites, we randomly choose one site from among the unvisited

sites. After generating a complete solution, we make it an ordered list by sorting.

3.2.3.3 Selection

The two parent solutions for crossover and a single parent for mutation are chosen using

probabilistic binary tournament selection in which parameter ρpbt gives the probability based on

which the fitter of the two randomly chosen solutions from the population is selected to be a

parent.

3.2.3.4 Crossover

As part of the crossover, we first determine the intersection set of sites present in two parents.

As solutions are represented as ordered lists, time taken to find the intersection of the parent

solutions S1 and S2 is only O(min(|S1|, |S2|)) instead of O(|S1|.|S2|). We copy the sites from

the intersection set to the child, as the sites occurring in both the parents have a higher chance

of being part of several good solutions. After this, in a similar method followed in generating

initial solutions, remaining sites are selected to be part of the child solution one at a time, but

value of ρrd can vary. We set the value of ρrd to zero with probability ρadd, otherwise the same

ρrd value as in initial solution generation is used.

3.2.3.5 Mutation

For every site present in the parent solution, we generated a uniform random number u01 ∈ [0, 1].

Only if u01 is less than ρm, the corresponding site is copied to the mutant, otherwise it is not

copied to the mutant. After repeating this for all the sites in the parent solution, we have followed

the same method as in crossover to add other sites to the mutant.

In our GA approach, we have utilized crossover and mutation in a mutually exclusive manner.

Crossover is utilized with probability ρc, and with the remaining probability of 1− ρc mutation

41

3. TWO ACLP VARIANTS

Algorithm 5: GA for DACLP
Construct ps initial solutions X1, X2, . . . , Xps;
Xbest ← best solution among ps initial solutions;
while (termination condition remains unsatisfied) do

if (u01 < ρc) then
S1 ← BTS(X1, . . . , Xps);
repeat

S2 ← BTS(X1, . . . , Xps);
until (S1 6= S2);
XC ← Cross(S1, S2);

else
S1 ← BTS(X1, . . . , Xps);
XC ←Mutate(S1);

XC ← Localsearch(XC);
Include XC in the population as per replacement policy;
if (XC is better than Xbest) then

Xbest ← XC ;

return Xbest;

is utilized. The reason being, as part of crossover operator, we retain the common sites which

are in both the parent solutions so as to generate even better child solutions using these common

sites. If mutation is applied after the crossover, some of these sites which are common in both

the parents will be deleted.

3.2.3.6 Population replacement model

We have used a steady-state population replacement model in our GA approach. In this model,

every generation produces only a single child solution. The child solution is discarded if it is

found to be same as any of the existing members of the population. Otherwise, it replaces the

member with the worst fitness if its fitness is better than that of the worst fitness member.

3.2.3.7 Local search

After crossover/mutation, to further minimize the child solution fitness, we have performed a

two-one exchange operation as part of the local search. In this local search, we replace a pair of

sites in the solution with a single site only if the resulting solution is proper and feasible.

Algorithm 5 gives the pseudo-code for the proposed GA where the probabilistic binary

tournament selection method (Section 3.2.3.3), crossover operator (Section 3.2.3.4), mutation

operator (Section 3.2.3.5) and local search (Section 3.2.3.7) are carried out by four functions

BTS(),Cross(),Mutate() andLocalsearch() respectively. Further, u01 is a uniform random

variate in [0, 1] and ps is the population size.

42

3.2 Disruptive ACLP

Table 3.1: Parameters for DDE and GA

DDE Parameters GA Parameters
Parameter Value Parameter Value
POPcnt 250 ps 250
pm 0.9 ρrd 0.75
pc 0.9 ρbts 0.8
pmut 0.02 ρc 0.5

ρm 0.75
ρadd 0.9

3.2.4 Experimental results

Both of our proposed approaches, viz. DDE and GA have been implemented in C. Table 3.1

lists the different parameters involved and their corresponding values for DDE and GA based

approaches both. The respective parameter values of both the proposed approaches are chosen

empirically. We have run both our approaches on a Linux system with 8 GB RAM and 3.40 GHz

Core-i5-7500 processor. For each test instance, we have performed 10 independent runs of DDE

and GA. We have fixed the same maximum execution time for each run of both the proposed

approaches. We have executed both DDE and GA for 10 seconds on those instances having

number of nodes upto 100. On those instances having more than 100 and upto 500 nodes, we

have run both the proposed approaches for 60 seconds, and on the remaining instances having

number of nodes greater than 500, we have run the the two approaches for 100 seconds.

We have tested our approaches on two different types of datasets that are derived from

Beasley’s OR-Library1 and the TSPLIB2 which we have first introduced in the previous chapter.

There are 40 instances in the dataset derived from OR library with the number of nodes in the

range of 50 to 1000 and R value in the range of 5 to 50. Similarly, there are 40 instances derived

from TSPLIB with the number of nodes in the range of 51 to 1577 and R values of TSPLIB

instances are considered as mentioned in the previous chapter.

Table 3.2 presents the results obtained by our proposed approaches DDE and GA on OR-

Library instances, while Table 3.3 presents the results obtained by our proposed approaches on

TSPLIB instances. In both the tables 3.2 and 3.3, the 1st column, Instance, is the dataset name.

Column two, R, gives the distance within which no two facilities can be located. The least and

average solution values of the DDE method over 10 independent runs are given in columns 3, 4

and the least and average solution values of the GA method over 10 independent runs are given

in columns 5, 6 respectively. The least objective value across all techniques is highlighted in

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
2http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

3. TWO ACLP VARIANTS

Table 3.2: Results on OR-Library dataset for DDE and GA

DDE GA
Instance R Least Average Least Average

OR_50.1

5 42 42.00 42 42.00
10 26 26.00 26 26.00
25 8 8.00 8 8.00
50 3 3.00 3 3.00

OR_50.2

5 39 39.00 39 39.00
10 26 26.00 26 26.00
25 7 7.00 7 7.00
50 3 3.00 3 3.00

OR_100.1

5 60 60.00 60 60.00
10 29 29.00 29 29.00
25 7 7.00 7 7.00
50 3 3.00 3 3.00

OR_100.2

5 64 64.00 64 64.00
10 31 31.00 31 31.00
25 7 7.00 7 7.00
50 3 3.00 3 3.00

OR_250.1

5 104 104.00 104 104.00
10 34 34.90 35 35.40
25 8 8.00 8 8.00
50 3 3.00 3 3.00

OR_250.2

5 93 93.00 93 93.00
10 33 33.00 33 33.20
25 7 7.00 7 7.90
50 3 3.00 3 3.00

OR_500.1

5 114 114.30 117 117.90
10 35 35.50 37 38.00
25 8 8.00 8 8.40
50 3 3.00 3 3.00

OR_500.2

5 110 110.50 113 114.00
10 35 35.20 37 37.40
25 8 8.00 8 8.00
50 3 3.00 3 3.00

OR_1000.1

5 125 127.20 137 140.40
10 38 39.70 41 42.40
25 8 8.00 8 8.90
50 3 3.00 3 3.00

OR_1000.2

5 123 124.70 133 134.70
10 38 39.60 42 43.20
25 8 8.00 8 8.90
50 3 3.00 3 3.00

bold for easy identification. Table 3.4 provides the summary of results in terms of number of

instances on which DDE obtained better solution (<), same solution (=) and worse solution (>)

when compared with GA. This summary is provided for the least objective values and average

objective values both.

On the OR-Library dataset, for the least objective value over 10 independent runs, out of the

40 instances DDE produced the smaller objective values on 9 instances and the same objective

value as GA on 31 instances. For the average objective values of 10 independent runs on the OR

library dataset, DDE produced the smaller average values as compared to GA on 16 instances

44

3.2 Disruptive ACLP

Table 3.3: Results on TSPLIB dataset for DDE and GA

DDE GA
Instance R Least Average Least Average

eil51

3 50 50.00 50 50.00
6 37 37.00 37 37.00

15 8 8.00 8 8.00
30 3 3.00 3 3.00

rat99

8 82 82.00 82 82.00
15 31 31.00 31 31.00
38 7 7.00 7 7.00
75 2 2.00 2 2.00

rat195

11 106 106.00 106 106.00
21 34 34.00 33 34.10
52 7 7.00 7 7.00

104 2 2.00 2 2.00

pr299

222 84 84.00 84 84.60
445 29 29.90 30 30.20

1114 8 8.00 8 8.00
2228 2 2.00 2 2.00

d493

170 54 54.00 54 55.30
340 18 18.00 18 18.40
851 5 5.00 5 5.00

1700 2 2.00 2 2.00

u724

111 125 126.00 131 132.50
222 37 37.10 37 38.60
555 7 7.00 7 7.20

1110 2 2.00 2 2.00

pr1002

650 111 113.40 118 119.60
1300 35 36.00 36 38.10
3250 7 7.00 7 7.20
6500 2 2.00 2 2.00

pcb1173

120 149 151.30 158 161.30
240 41 42.30 43 44.00
600 7 7.00 7 7.80

1200 2 2.00 2 2.00

d1291

176 71 73.20 75 78.80
352 23 24.00 25 25.30
879 6 6.00 6 6.00

1760 2 2.00 2 2.00

fl1577

91 56 57.30 58 60.00
182 27 27.10 28 28.40
456 8 8.00 8 8.80
910 2 2.00 2 2.00

Table 3.4: Summary table

Least Average
Dataset name < = > < = >
OR-Library dataset 9 31 0 14 26 0
TSPLIB dataset 10 29 1 19 21 0
Overall 19 60 1 33 47 0

and the same average values as the GA on 24 instances. On the TSPLIB dataset, for the least

objective value out of 10 independent runs, out of the 40 instances DDE produced the smaller

objective values on 10 instances and the same objective value as GA on 29 instances and only

45

3. TWO ACLP VARIANTS

on one instance DDE has got a higher objective value than GA. On the same TSPLIB dataset,

coming to the average objective values of 10 independent runs, DDE produced the smaller

average values as compared to GA on 19 instances and the same average values as the GA on 21

instances.

To understand the difference between DACLP solution and ACLP solution, and how this

difference varies with R, Fig. 3.2, provides the plots of DACLP and ACLP solutions for R=6,

R=15 and R=30 respectively on the eil51 instance having 51 nodes. In these plots, the nodes

selected for locating facilities are depicted in yellow color and nodes not chosen for locating

facilities are depicted in brown color. We have not provided the plot for the case with R=3, as

both ACLP and DACLP solutions have the same number of facilities which is 50, and only node

46 is a non-facility node. DACLP solutions are obtained through approaches presented here.

On the other hand, ACLP solutions were obtained by the approach from the previous chapter.

As eil51 instance is a small instance, all the approaches for ACLP/DACLP obtain the same

ACLP/DACLP solutions. As the minimum separating distance R increases, the difference in

number of facilities being located is evident as DACLP gives the lower bound on the number

of facilities and ACLP the upper bound. It can be observed that for the R=30 case on eil51

instance, DACLP solution locates 3 facilities in comparison to 6 facilities located by using

ACLP, which is 50% lesser number of facilities being located. It can also be observed that in

case of ACLP solution, facility nodes tend to be located near the boundaries, whereas in case of

DACLP solution, facility nodes tend to be more centrally located.

46

3.2 Disruptive ACLP

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

ACLP solution with 39 facilities
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

DACLP solution with 37 facilities

(a) R=6

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

ACLP solution with 14 facilities
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

DACLP solution with 8 facilities

(b) R=15

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

ACLP solution with 6 facilities
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

DACLP solution with 3 facilities

(c) R=30

Figure 3.2: Plots of ACLP and DACLP solutions on the eil51 instance having 51 nodes for different
values of R

47

3. TWO ACLP VARIANTS

3.3 Weighted ACLP

Given a set of potential facility location sites along with a positive weight associated each and

every site as per its importance, weighted ACLP consists in locating a maximum weighted

set of facilities in such a manner that no two facilities are within a pre-specified distance of

one another. This section is concerned with the weighted version of ACLP while the previous

chapter is about the unweighted ACLP.

The weighted ACLP finds its importance in solving many real-world applications. Some of

them include but not limited to locating dump yards, nuclear power plants [96, 97], telecommuni-

cation equipments, franchise outlets [98, 99], military defence unit location [86], DNA sequence

matching [100], forest management [101]. When potential facility location sites have the same

importance then unweighted version of ACLP is used, otherwise weighted version of ACLP is

used. In most cases, importance of sites differ and weighted version is more appropriate.

Moon and Chaudhry [79] introduced ACLP for the first time in 1984 considering the

weighted case and presented an integer programming formulation for this problem. Being

the generalization of (unweighted) ACLP considered in previous chapter, the weighted ACLP

also belongs to the class of NP-hard problems [79, 80]. Chaudhry et al. [86] proposed four

greedy heuristics for weighted version of ACLP, and empirically analyzed the behaviour of

these heuristics on instances with upto 50 nodes. It is observed that despite the bad worst-case

behavior, these heuristics performed quite well on randomly generated instances.

This section has following subsections. Section 3.3.1 defines the problem formally. Section

3.3.2 and Section 3.3.3 respectively present the proposed discrete differential evolution and

genetic algorithm based approaches for the weighted ACLP. Experimental results along with

their analysis are presented in Section 3.3.5.

3.3.1 Formal problem definition

Weighted ACLP can be mathematically formulated as an extension of the ACLP presented

in previous chapter (Section 2.2) by considering the node weights. Consider a set V =

{1, 2, . . . , n} of n potential facility location sites, i.e., |V | = n, and a distance R, so that no two

facilities can be within distance R of one another. Each site v ∈ V has an associated positive

weight wv according to the importance of the site and duv is the shortest distance from site

u ∈ V to site v ∈ V . The forbidden set of site v denoted by Qv is the set of sites within distance

R of site v, i.e., Qv = {u|u ∈ V ∧ dvu ≤ R ∧ v 6= u}. The objective of weighted ACLP is to

48

3.3 Weighted ACLP

find a set V ′ ⊆ V that maximizes
∑

v∈V ′ wv such that Qv ∩ V ′ = ∅ ∀v ∈ V ′. By introducing

binary variables sv∀v ∈ V to indicate whether site v is chosen for locating a facility (sv = 1) or

not (sv = 0) and taking a large positive integer M , a mathematical model of weighted ACLP

which is originally formulated by Moon and Chaudhry [79] is given below:

max Z =
∑
v∈V

wvsv (3.5)

subject to the following constraints ,

Msv +
∑
u∈Qv

su ≤M, ∀v ∈ V (3.6)

sv ∈ {0, 1}, ∀v ∈ V (3.7)

Here, equation 3.5 represents the objective function of the weighted ACLP which maximizes

the sum of weights of the selected sites. Equation 3.6 specifies that if a facility is located at

node v (i.e. sv = 1), then the Msv = M , and, as a result
∑

u∈Qv
su = 0. So, it enforces the

constraint that if a site v is part of the solution, then all the sites u within the distance R of site

v, i.e., all sites belonging to Qv can not be part of the solution. This constraint is called the

neighbourhood adjacency constraint. Clearly, the value of M should be so chosen so that it is

larger than maxv∈V (
∑

u∈Qv
su). Constraint 3.7 enforces the binary nature of decision variables

sv∀v ∈ V . Few alternative mathematical formulations of weighted ACLP can be found in [81].

3.3.2 DDE approach for WACLP

We have extended our discrete differential evolution (DDE) based approach for ACLP from the

Chapter 2 to the weighted version of ACLP also by making required changes while incorporating

the weight associated with each node. Subsequent subsections describe the salient features of

our DDE approach for the weighted ACLP.

3.3.2.1 Solution encoding and fitness

We have used the bit vector representation to represent a solution just like in the DDE approach

for ACLP from the previous chapter (Section 2.3.1). We have used the objective function

(equation 3.5) itself as the fitness function.

49

3. TWO ACLP VARIANTS

3.3.2.2 Generating initial population

To generate each member of the initial population of POPcnt candidate solutions, we have

extended the randomized greedy method proposed for the ACLP from the Chapter 2 to the

weighted ACLP. The only difference is that, in WACLP nodes with highest value of the ratio
wv
|Qv | are given preference, where wv is the weight associated with v and Qv is the forbidden set

of node v.

3.3.2.3 DDE framework

The same DDE framework 2.3.3 used for the ACLP has been used for the weighted ACLP also.

The same mutation operation from the previous chapter is used in the weighted ACLP case

as well (Section 2.3.4). The repair operation which is explained in the subsequent subsection

(Section 3.3.2.4) is applied on the mutant to make it feasible and to improve its fitness. In

the repair operation, after making the mutant feasible if the latest fitness is within 20% of the

best solution’s fitness only then we try to improve its fitness. We chose this 20% after large

number of experiments to maintain a balance between solution quality and execution time.

Then a simple uniform crossover operation as in the ACLP case (Section 2.3.5) is performed

between the mutant solution and target solution. Trial solution is repaired and then as per the

selection policy (Section 2.3.7) is considered to replace the target solution. In addition, we have

implemented a local search (Section 3.3.2.5) to further improve the fitness of the best solution.

This process is repeated till the termination criteria is satisfied. And the best solution found over

all the iterations is returned as the final best solution.

3.3.2.4 Repair

Repair operation is performed to convert an infeasible solution obtained through mutation /

crossover into a feasible solution and then if possible improve its fitness. In the repair operation,

first it is checked whether the trial solution is feasible or not by verifying the separating distance

constraint. If the trial solution is not feasible, a site v, which has the least value of the ratio wv
|Qv |

is removed by setting the corresponding bit in the solution to 0. This step is repeated till the trial

solution becomes feasible.

Once the trial solution is made feasible, we make an attempt to increase its fitness. To

improve the fitness, we will compute the set Srem of all those remaining sites which can still be

added to the solution without violating the separating distance constraint. Then, we compute

50

3.3 Weighted ACLP

Q
′
u = Qu∩Srem ∀u ∈ Srem. All those sites v in Srem such thatQ

′
v = ∅ are added immediately

to the solution by setting the corresponding bits in the solution to 1. If there is no site v ∈ Srem
with Q

′
v = ∅, then a site v ∈ Srem which has the highest value of wv

|Q′v |
is made part of the

solution by marking the corresponding bit in the solution as 1. The set Srem and the sets Q
′
u

∀u ∈ Srem are updated to reflect the change in configuration of the solution. This process is

repeated till Srem becomes empty.

3.3.2.5 Local search

Whenever the best solution changes, a one-one exchange local search is performed on the best

solution in an attempt to further improve its fitness. The one-one exchange local search is

applied in an iterative manner. We check for each site v in the best solution whether it can be

replaced with a site u from its forbidden set Qv, u ∈ Qv having more weight than v, wu > wv,

while satisfying the separating distance constraint. When we find a site v in the best solution

which can be replaced with another site u, u ∈ Qv, we mark the position corresponding to new

site u with 1 as being part of the solution and the position corresponding to site v with 0 as

being removed from the solution. This procedure is performed once for each site in the best

solution, and the fitness of the best solution is updated at every such exchange.

Algorithm 6 provides the pseudo-code for our discrete differential evolution approach,

where u01 is an uniform variate in [0, 1]. Mutation, Crossover, Repair, f and Localsearch are

five functions that perform mutation (Section 2.3.4), crossover (Section 2.3.5), repair (Section

3.3.2.4), fitness computation (Section 3.3.2.1) and local search (Section 3.3.2.5) operations

respectively.

3.3.3 GA approach for WACLP

We have also developed a steady-state genetic algorithm [66] based approach for weighted

ACLP, which is on the same lines as the GA for DACLP presented in Section 3.2.3. We

have represented each solution as an ordered list of sites chosen for facility location and the

objective function is directly used as the fitness function like in Section 3.2.3.1. Just like in

Section 3.2.3.2, the initial solution generation method of our GA for WACLP is also a mix of

randomized greedy method used for DDE and purely random method. Only difference is that,

in the WACLP nodes having the highest value of the ratio wv
|Qv | are given preference. We have

utilized probabilistic binary tournament selection method to choose the two parents for crossover

51

3. TWO ACLP VARIANTS

Algorithm 6: DDE algorithm for weighted ACLP
Generate initial population;
best_solution← best solution in initial population;
while (termination condition remains unsatisfied) do

foreach (target_solution ∈ population) do
if (u01 ≤ pm) then

mutant←Mutation(best_solution);
no_mutation← 0;

else
mutant← best_solution;
no_mutation← 1;

if ((u01 ≤ pc) or (no_mutation = 1)) then
trial_solution← Crossover(mutant, target_solution);

else
trial_solution← mutant;

trial_solution← Repair(trial_solution);
if f(trial_solution) ≥ f(target_solution) then

target_solution← trial_solution;
if f(trial_solution) > f(best_solution) then

best_solution← trial_solution;
best_solution←Localsearch(best_solution);

return best_solution;

and a single parent for mutation like in the Section 3.2.3.3. The parameter ρpbt governs the

probability of selection of the more fit individual in the binary tournament. We have applied

crossover and mutation operations in the same manner as in Sections 3.2.3.4, 3.2.3.5 respectively

where the corresponding probabilities in crossover are ρadd, ρrand and mutation probability is

ρm. Crossover is utilized with probability ρc, or else mutation is utilized. Then we perform a

local search operation on the child solution to improve its fitness 3.3.4. The same population

replacement model as in the GA for DACLP 3.2.3.6 has been used where the newly generated

child solution replaces the least fit member of the population subject to the condition that it is

distinct from all the current population members. The child is discarded in case it is found to be

same as any current population member or worse than the least fit member of the population.

3.3.4 Local search

If the child solution obtained through crossover/mutation is within A% of the best solution then

one-one exchange local search is applied iteratively till it is not possible to improve the solution

any further.

52

3.3 Weighted ACLP

The pseudo-code for GA has been provided in Algorithm 7, where BTS(), Cross(),

Mutate() and Localsearch() are four functions implementing probabilistic binary tourna-

ment selection method, crossover operator, mutation operator and local search (Section 3.3.4)

respectively. Further, ps is the population size and u01 is a uniform random variate in [0, 1].

Algorithm 7: GA for weighted ACLP
Construct ps initial solutions S1, S2, . . . , Sps;
Sbest ← Best solution among ps initial solutions;
while (termination condition remains unsatisfied) do

if (u01 < ρc) then
P1 ← BTS(S1, . . . , Sps);
repeat

P2 ← BTS(S1, . . . , Sps);
until (P1 6= P2);
SC ← Cross(P1, P2);

else
P1 ← BTS(S1, . . . , Sps);
SC ←Mutate(P1);

if (SC is within A% of Sbest) then
SC ← Localsearch(SC);

Include SC in the population as per replacement policy;
if (SC is better than Sbest) then

Sbest ← SC ;

return Sbest;

3.3.5 Experimental results

We have implemented both the DDE and GA based approaches for WACLP in C. The parameters

used in DDE and their corresponding values are as follows: population size POPcnt = 50, pm
= 0.9, pc = 0.9, and pmut = 0.02. Likewise, GA parameters and their respective values are as

follows: population size ps = 200, ρrand = 0.75, ρbts = 0.8, ρc = 0.5, ρm = 0.75, ρadd = 0.9, and

A = 10%. All these parameter values for both DDE and GA are chosen empirically. For each

test instance, our approaches are executed 10 times independently on a Linux based 3.40 GHz

Core-i5-7500 system with 8 GB RAM. We have also implemented the four greedy heuristics

described in Chaudhry et al. [86] and compared their results with the proposed approaches. We

denote these four greedy heuristics by H1, H2, H3 and H4 in this chapter. Both DDE and GA

based approaches are executed for the same amount of time. On all the instances with number of

nodes upto to 100, the DDE and GA based approaches are run for 1 second, on all the instances

with number of nodes greater than 100 and upto 500, these two approaches are executed for 2

53

3. TWO ACLP VARIANTS

seconds, and on all the instances with more than 500 nodes, these two approaches are executed

for 5 seconds. The execution times of the four greedy heuristics are negligible, and, hence, not

reported.

We have used two datasets for evaluating the performance of our approaches, which are

derived from Beasley’s OR-library1 and the standard TSPLIB2 with the number of nodes upto

1577. Both these datasets are first introduced in the context of ACLP in Chapter 2, later modified

to include node weights which are random integers between 1 to 10.

The results obtained on the OR library dataset and the TSPLIB dataset are reported in Table

3.5 and Table 3.6 respectively. In these tables the first column, Instance, gives the name of

the instance. Second column, R, represents the minimum separating distance. Columns 3, 4, 5

and 6 represent the best objective value returned by each of the greedy heuristics H1, H2, H3

and H4 respectively. Columns 7 and 8 provide the best and average objective values obtained

with the DDE based approach over 10 independent runs, and the average time taken by the

DDE approach to reach the best solution over 10 independent runs is given in the 9th column.

Similarly columns 10, 11 give the best and average values obtained with the GA based approach

over 10 independent runs, and the 12th column provides the average time taken by the GA

approach to reach the best solution over 10 independent runs. For each instance, the best results

over all the approaches are shown in bold font for easy identification. From these two tables,

it can be clearly seen that for all the instances, our proposed approaches based on DDE and

GA have performed as good as or better than all the four previously proposed greedy heuristics.

Both DDE and GA based approaches obtained the same best and average objective values for

instances with upto 100 nodes. For larger instances, the GA based approach performed better

than or same as the DDE based approach in terms of both best and average solution quality

except for one TSPLIB instance where average solution quality of DDE approach is better. If

we look at average time to reach the best solution of the two approaches, we can clearly see that

GA converges as fast as or faster than DDE on most of the instances (39 instances out of 40

ORLIB instances and 36 instances out of 40 TSPLIB instances).

Figure 3.3 plots the solutions found by GA for different values of R on instance eil51 with

51 nodes. In this figure, the facilities are shown in green, while the non-facility nodes are shown

in blue. This figure clearly show that as the value of R increases, the number of facilities that

can be located decreases.
1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
2http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

54

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

3.3 Weighted ACLP

Table 3.5: Results of DDE, GA and 4 greedy heuristics on OR library dataset

DDE Based Solution GA Based Solution
Instance R H1 H2 H3 H4 Best Average TTB a Best Average TTB a

OR_50.1

5 241 178 238 241 241 241.00 0.00 241 241.00 0.00
10 181 141 177 173 181 181.00 0.00 181 181.00 0.00
25 83 78 69 77 83 83.00 0.00 83 83.00 0.00
50 37 36 36 37 38 38.00 0.00 38 38.00 0.00

OR_50.2

5 245 222 245 245 245 245.00 0.00 245 245.00 0.00
10 209 188 205 190 209 209.00 0.00 209 209.00 0.00
25 83 79 82 73 85 85.00 0.00 85 85.00 0.00
50 44 37 36 44 44 44.00 0.00 44 44.00 0.00

OR_100.1

5 402 318 399 405 407 407.00 0.01 407 407.00 0.00
10 246 240 242 239 252 252.00 0.00 252 252.00 0.00
25 99 104 98 84 104 104.00 0.00 104 104.00 0.00
50 46 38 47 47 47 47.00 0.00 47 47.00 0.00

OR_100.2

5 448 403 448 448 448 448.00 0.01 448 448.00 0.00
10 293 259 293 252 293 293.00 0.01 293 293.00 0.00
25 105 97 99 94 107 107.00 0.00 107 107.00 0.00
50 38 40 38 38 40 40.00 0.00 40 40.00 0.00

OR_250.1

5 852 751 847 805 872 872.00 0.15 872 872.00 0.02
10 403 404 415 405 434 434.00 0.20 434 434.00 0.06
25 121 125 126 121 142 142.00 0.03 142 142.00 0.03
50 46 40 46 46 52 52.00 0.32 52 52.00 0.00

OR_250.2

5 803 709 801 768 813 813.00 0.61 813 813.00 0.03
10 446 417 415 399 459 459.00 0.02 459 459.00 0.01
25 127 115 122 124 132 131.50 0.22 132 132.00 0.02
50 48 40 49 48 56 56.00 0.07 56 56.00 0.00

OR_500.1

5 1215 1079 1179 1090 1229 1227.90 1.11 1229 1229.00 0.22
10 499 477 492 476 541 538.60 0.28 541 540.80 0.09
25 139 126 130 139 159 156.30 0.38 159 159.00 0.13
50 53 40 49 53 59 58.70 0.04 59 59.00 0.01

OR_500.2

5 1203 1130 1185 1095 1246 1242.60 1.35 1246 1246.00 0.46
10 519 501 527 516 564 562.70 0.26 564 562.20 0.07
25 148 138 109 147 156 153.00 0.45 156 156.00 0.59
50 57 40 47 57 59 59.00 0.08 59 59.00 0.00

OR_1000.1

5 1584 1514 1500 1521 1649 1643.60 4.23 1654 1653.80 2.79
10 615 553 575 610 655 651.20 2.13 657 651.20 1.01
25 158 147 145 154 171 168.80 1.11 171 171.00 0.19
50 60 40 56 60 60 60.00 0.02 60 60.00 0.00

OR_1000.2

5 1534 1439 1475 1455 1580 1571.80 4.16 1587 1582.00 2.93
10 613 576 571 566 663 646.20 2.78 663 661.50 1.35
25 155 146 140 141 166 165.30 1.24 166 166.00 0.12
50 59 40 50 57 60 60.00 0.05 60 60.00 0.01

aAverage time to find the best solution in seconds

55

3. TWO ACLP VARIANTS

Table 3.6: Results of DDE, GA and 4 greedy heuristics on TSPLIB dataset

DDE Based Solution GA Based Solution
Instance R H1 H2 H3 H4 Best Average TTBa Best Average TTBa

eil51

3 281 277 281 281 281 281.00 0.00 281 281.00 0.00
6 233 200 233 233 233 233.00 0.00 233 233.00 0.00

15 92 77 90 77 92 92.00 0.01 92 92.00 0.00
30 37 40 40 35 40 40.00 0.00 40 40.00 0.00

rat99

8 501 422 498 498 501 501.00 0.01 501 501.00 0.00
15 305 281 302 277 307 307.00 0.06 307 307.00 0.00
38 104 96 103 94 105 105.00 0.00 105 105.00 0.00
75 43 45 45 40 46 46.00 0.00 46 46.00 0.00

rat195

11 803 733 794 783 803 803.00 0.10 803 803.00 0.01
21 395 360 391 372 417 417.00 0.10 417 417.00 0.01
52 121 104 100 117 130 129.70 0.68 130 130.00 0.00

104 55 56 54 55 56 56.00 0.00 56 56.00 0.00

pr299

223 811 734 790 759 816 813.90 0.38 816 816.00 0.02
446 393 374 367 352 405 404.40 0.57 405 405.00 0.11

1114 117 106 111 98 131 130.40 0.02 131 131.00 0.00
2228 46 39 46 47 55 53.20 0.00 55 55.00 0.00

d493

170 628 578 608 593 651 650.00 0.66 651 650.90 0.57
340 272 227 248 257 285 284.40 0.55 285 285.00 0.09
851 79 59 71 76 81 81.00 0.00 82 82.00 0.10

1700 33 29 33 33 34 34.00 0.00 34 34.00 0.00

u724

111 1409 1296 1369 1280 1464 1459.60 3.98 1465 1464.60 0.81
222 566 567 531 536 603 600.90 1.89 604 601.90 2.18
555 145 125 130 151 157 152.00 1.01 157 157.00 0.35

1110 58 49 56 48 59 59.00 0.01 59 59.00 0.00

pr1002

650 1398 1290 1348 1328 1442 1432.70 4.62 1449 1447.70 2.98
1300 550 497 527 530 592 587.60 4.29 592 592.00 0.75
3250 152 116 132 140 159 156.80 0.77 159 159.00 0.05
6500 54 40 48 54 58 57.80 0.09 58 58.00 0.48

pcb1173

120 1707 1633 1682 1668 1795 1773.30 4.53 1829 1823.50 4.29
240 625 569 595 567 671 666.40 3.81 677 672.70 3.51
600 159 119 134 140 169 166.20 0.59 169 169.00 0.06

1200 57 40 50 49 60 60.00 0.01 60 60.00 0.00

d1291

176 1011 999 972 938 1075 1066.90 3.89 1076 1071.30 2.56
352 388 351 389 338 426 424.00 1.57 427 425.50 0.74
879 121 100 112 112 122 122.00 0.02 122 122.00 0.01

1760 44 40 44 43 46 44.60 0.04 46 46.00 1.07

fl1577

91 790 723 734 683 808 804.80 3.28 818 817.20 2.30
182 404 363 381 367 439 438.60 2.71 444 441.50 1.46
456 130 110 117 107 147 147.00 0.85 147 147.00 0.05
910 58 60 58 49 60 60.00 0.00 60 60.00 0.00

aAverage time to find the best solution in seconds

56

3.3 Weighted ACLP

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

(a) For R=3
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

(b) For R=6

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

(c) For R=15
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50
51

(d) For R=30

Figure 3.3: Weighted ACLP solutions found by GA for different R values on eil51 instance

Figure 3.4 shows the convergence behavior of DDE and GA on 4 different instances. On all

the 4 instances, GA converges faster than DDE. In fact, this is the case on all the instances.

We have conducted the Wilcoxon signed-ranks test [84] to check the statistical significance

of the difference in results obtained by the proposed approaches based on DDE and GA. We

performed the two tailed Wilcoxon signed ranks test with significance level set to 0.01 (i.e.

p-value ≤ 0.01) using the calculator available online1. The test is performed separately on OR

library dataset and the TSPLIB dataset. In the Table 3.7, the column N represents the number

of instances considered, NWT is the number of instances without tie, W+ is the sum of ranks

of the instances where DDE performed better whereas W− is the sum of ranks of the instances

where GA performed better. The test statistic T is the minimum of W+ and W−. For the OR

1https://mathcracker.com/wilcoxon-signed-ranks.php

57

https://mathcracker.com/wilcoxon-signed-ranks.php

3. TWO ACLP VARIANTS

 1160

 1170

 1180

 1190

 1200

 1210

 1220

 1230

 1240

 1250

 0 0.5 1 1.5 2

w
e
ig

h
t

time(in sec)

DDE
GA

(a) OR_500.2 with R = 5

 560

 580

 600

 620

 640

 660

 680

 700

 0 1 2 3 4 5

w
e
ig

h
t

time(in sec)

DDE
GA

(b) OR_1000.2 with R = 10

 560

 570

 580

 590

 600

 610

 620

 0 1 2 3 4 5

w
e
ig

h
t

time(in sec)

DDE
GA

(c) u724 with R = 222

 700

 720

 740

 760

 780

 800

 820

 840

 0 1 2 3 4 5

w
e
ig

h
t

time(in sec)

DDE
GA

(d) fl1577 with R = 91

Figure 3.4: Covergence behavior of DDE and GA on 4 different instances

library dataset the value of T = 2 is less than the corresponding T ∗ value of 12 and for the

TSPLIB dataset T = 0 is less than the corresponding T ∗ value of 62. This shows the better

performance of GA based approach over the DDE approach is statistically significant.

Table 3.7: Wilcoxon signed-ranks test

N NWT W+ W− T T ∗ Significant
OR library 40 13 2 89 2 12 yes
TSPLIB 40 23 0 276 0 62 yes

3.4 Conclusions

Both DACLP and WACLP are understudied problems. In this chapter, we have proposed two

population based metaheuristics for DACLP and WACLP, viz. a discrete differential evolution

(DDE) based approach and a genetic algorithm (GA) based approach. Both DDE and GA

fall under the broad class of evolutionary algorithms. We have tested the performance of our

approaches on a total of 80 instances with upto 1577 sites.

58

3.4 Conclusions

For DACLP, when the least objective value is considered, DDE produced smaller objective

values than GA on 19 instances, same objective values on 60 instances, and a greater objective

value on 1 instance. Similarly, for the average objective value, DDE produced smaller objective

values on 33 instances, equal objective values on 47 instances. Overall, when the comparison is

done with respect to least objective value DDE produced solutions of equal or better quality in

comparison to GA on 79 out of the 80 instances and when the comparison is done with respect

to average objective value on all the 80 instances DDE produced solutions of equal or better

quality in comparison to GA.

For WACLP, computational results show that our metaheuristic approaches performed as

good as or better than the four greedy heuristics available in the literature on all the instances,

and GA based approach performed as good as or better than the DDE based approach on 79 out

of the 80 instances.

In the case of DACLP, a dedicated repair operation applied in DDE contributed to its better

performance by removing additional facilities and that too in a diverse manner while making the

solution proper thereby paving the way for a better exploration of the search space. Hence, DDE

performed better than GA for DACLP. In the case of WACLP, it is a maximization problem with

positive weights associated with each node. In our proposed GA for WACLP, the exhaustive

1-1 exchange local search operation performed on the best solution contributed to its better

performance as compared to the DDE.

59

Chapter 4

Obnoxious cooperative maximum
covering location problem

4.1 Introduction

Solving a location problem involves locating one or more facilities in the given solution space

while optimizing the pre-specified criteria. In location science, considering the facilities and

demand points the most common criteria is the interaction between a facility and the demand

points which interact with that facility. The facilities can be desirable, semi-obnoxious or

obnoxious. Locating facilities such as schools, hospitals, banks, supermarkets are the examples

of desirable facilities where it is beneficial to have these facilities close to the demand points or

customers [4, 102]. On the other hand, facilities such as nuclear power plants, prisons, dump

yards, military installations and industrial facilities causing pollution are examples of obnoxious

facilities, which even though are required for the society, but produce a negative or undesirable

effect[103, 104]. So, the problem of locating the obnoxious facilities also needs to be carefully

addressed.

The cooperative maximum covering location problem (CMCLP) [2, 18, 43] is an example

of cooperative coverage model where all facilities contribute to the coverage of each demand

point and it is concerned with locating a given p number of desirable facilities so as to maximize

the total demand covered. But when the facility location problem is concerned with locating

undesirable or obnoxious facilities under the cooperative coverage model, then the objective

is to maximize the total uncovered demand. This variant of the problem is called obnoxious

cooperative maximum covering location problem (OCMCLP) [2]. CMCLP and OCMCLP are

60

4.1 Introduction

highly complex facility location problems because of the use of the cooperative coverage model

and allowing the facilities to be located along the edges joining the demand points in addition

to demand points themselves. For the CMCLP, a hybrid artificial bee colony approach was

proposed in [43]. However, no metaheuristic approach exists for the OCMCLP.

In all of the applications of locating obnoxious facilities, the nuisance generated by an

obnoxious facility decreases over distance following some signal strength function. When more

than one of such obnoxious facilities are located, the nuisance effect on the demand points is

cumulative. For example, the poor air quality at a community will be a combined effect of

several industrial facilities in the locality which release polluting chemicals into the the air

rather than just due to the nearest industrial facility. Even though the nearest industrial facility

has the higher contribution of the negative effect, the effect of other such industries which are

little farther than the closest facility can’t be ignored. But many of the existing models consider

solving for locating a single obnoxious facility, hence no cumulative effect is taken into account

[105, 106, 107, 108].

Church and Garfinkel [103] first introduced the obnoxious facility location problem in 1978.

It is also a well studied problem in the location literature. We refer the interested readers to

[104, 109, 110, 111, 112]. Melachrinoudis [26] and Drezner, Kalczynski and Salhi [27] present

the reviews of recent obnoxious models.

There are several different ways in which obnoxious facility location models can be formu-

lated. Maximizing the minimum distance of the demand points from the obnoxious facilities is

the most common formulation as presented in [103, 113]. Another formulation is to consider

the negative effect of the facilities declining by the square of the distance between facilities

and demand points [105]. There are single facility locating models [114] and multiple facilities

locating models [27, 115]. Drezner et al. [116] also proposed the Weber obnoxious facility

location model which is formulated from the classic Weber location problem [117, 118, 119] by

adding an additional condition that the facility must be placed at least at a given distance from

the demand point because the facility is obnoxious.

Even though several researchers worked on the obnoxious facility location problem, the

cooperative coverage model of the problem has not received much attention. Averbakh et al.

[2] have used the cooperative coverage model for the obnoxious facility location problem and

formulated the OCMCLP where it is possible to locate the facilities both at the nodes and along

the edges. Two greedy heuristics (G1, G2) and two interchange heuristics (I1, I2) were also

proposed in [2] to solve the OCMCLP. In the first greedy heuristic (G1), beginning with an

61

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

empty solution, at each step a new facility is added to the solution so that a facility which will

cover as few demand points as possible is selected to be part of the solution. In the second

greedy heuristic (G2), at a time a pair of facilities are added to be part of the solution till

the required number of p facilities are located. In G2, if the value of p is odd then a single

facility is added at the end. In the first interchange heuristic I1, the solution generated by G1

is considered as the initial solution S1 and a local search is performed so as to relocate one

facility at a time from S1 till there is no further improvement. If no improvement is possible

with one facility relocation, then they try to relocate two facilities at a time from S1 till no

further improvement is possible. The second interchange heuristic I2 works in the same manner

as I1 except that the solution generated by G2 is considered as the initial solution. These are the

only approaches available in the literature for OCMCLP. After Averbakh et al. [2], Drezner et

al. [120] worked on an obnoxious facility location problem under cooperative coverage model

where locations of facilities were restricted to a finite area, no concept of threshold was used to

consider a demand point as covered/uncovered, and the objective was to minimize the maximum

cumulative nuisance at any demand point. A Voronoi-based heuristic was proposed to solve this

problem.

In this chapter, we have proposed a genetic algorithm (GA) based approach for solving the

OCMCLP as formulated in [2]. Over the last several decades, genetic algorithm (GA) has been

used for solving innumerable combinatorial optimization problems in various domains. Some

recent GA based approaches for addressing combinatorial optimization problems can be found

in [90, 91, 121, 122, 123, 124]. Since there exists no metaheuristic based approaches in the

literature to solve the OCMCLP, this served as the motivation to develop a GA based approach

to solve the OCMCLP. Our approach makes use of appropriate problem specific information in

genetic operators as well as in local search. We have evaluated the performance of the proposed

approach on the same test instances as used in [2] and compared the results obtained with two

interchange heuristics presented in [2]. These comparisons clearly demonstrate our proposed

approach to be superior.

The rest of this chapter is organized as follows: Section 4.2 provides a formal definition of

the OCMCLP. Section 4.3 presents the proposed GA approach for the OCMCLP. Computational

results and their analysis are presented in Section 4.4. The last section, viz. Section 4.5 presents

some concluding remarks.

62

4.2 Formal problem definition

4.2 Formal problem definition

To formally define the OCMCLP, we have used the same notational conventions as used in

[2]. Important notational conventions are also summarized in Table 4.1. Let G = (V,E) be an

undirected graph with V = (1, ..., n) being the set of demand points and E = (e1, ..., em) being

the set of edges connecting various demand points. A non-negative real weight wi associated

with each demand point i is given indicating the total demand at this point. lk is the length of

each edge ek. We need to locate a total of p facilities either at the demand points or along the

edges joining these demand points in order to cover these demand points. No two facilities can

be located at the same point. A demand point is deemed covered if the cumulative signal strength

from all the p facilities received at that point is not less than a threshold T . The OCMCLP is

concerned with the obnoxious facilities and it seeks to find a location vector Xp of p facilities

such that the sum total of the weights of the uncovered demand points is maximized.

f (Xp, T) =
∑

i : Φi(Xp)<T

wi (4.1)

The overall signal strength Φi (Xp) at a demand point i ∈ V is the sum of the signal

strengths of all the signals received by i from the p facilities, i.e.,

Φi (Xp) =

p∑
k=1

φ (di (xk)) (4.2)

Given an edge ek joining demand point j1 with j2 (ek = (j1, j2)), an ordered pair (ek, r)

is used to represent the location x of a facility along ek, where r is the relative distance of x

from j1 with respect to length lk of edge ek, i.e., r ∈ [0, 1]. The distance to this facility from a

demand point i ∈ V can be computed in the following manner

d (i, x) = min {d (i, j1) + r × lk, d (i, j2) + (1− r)× lk} (4.3)

Where d(i, j1) is the length of the shortest path between demand point i and demand point j1.

Likewise, d(i, j2) is the length of the shortest path between demand point i and demand point

j2.

We will now explain OCMCLP with the help of an example. This example uses the network

shown in Figure 4.1. There are a total of 9 demand points and the weight associated with

63

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.1: Important notational conventions

Notation Meaning
n Number of demand points or vertices, i.e., n = |V |
wi Weight of demand point i ∈ V
lk Length of each edge ek ∈ E
X The location space
p Number of facilities that need to be located
Xp Location vector containing locations for p facilities

di (xj) Distance between demand point i ∈ V and facility j
φ (d) Signal strength at distance d from the facility, φ (d) = max {0, 1− d/U}

Φi (Xp) Overall signal strength at demand point i ∈ V
U Distance at which signal strength becomes zero
T Minimum threshold value for coverage

each demand point is mentioned next to the demand point number in the Figure 4.1 and edge

lengths are mentioned along the edges. For the sake of this example, we have taken the signal

strength function φ(d) = max
{

0, 1− d
10

}
, the number of facilities to be located p = 3, and the

minimum threshold value of the overall signal strength for coverage T = 0.3.

(1, Wt=10)

(2, Wt=5)

(3, Wt=8)

(4, Wt=6)

(5, Wt=4)

(6, Wt=7)

(7, Wt=9)

(8, Wt=7)

6

5

6

5
8

5

5

4

10

(9, Wt=4)

4

3

7

Figure 4.1: A sample network used for explaining OCMCLP

One feasible solution for the OCMCLP is X = {(5), ((5, 7), 0.2), ((3, 9), 0.3)}, where first

facility is located at demand point 5, second facility is located at a relative distance of r = 0.2

from demand point 5 on the edge (5, 7), and the third facility is located on edge (3, 9) at a

64

4.3 Proposed steady-state genetic algorithm approach

relative distance of r = 0.3 from demand point 3. So the demand points 3, 4, 5, 6, and 9 are

covered as the cumulative signal strength received at each of these demand points from the three

facilities are greater than the threshold T = 0.3. At the remaining demand points, the sum of

the signal strength received from the three facilities is less than the threshold, hence they are

uncovered. So, this solution produces an objective value of 31, which is the sum of weights of

all the uncovered demand points, viz. 1, 2, 7, and 8. For the sake of illustration, we have picked

the points for locating facilities randomly in this example. There may exist some other solutions

giving better objective values than this solution for this network.

4.3 Proposed steady-state genetic algorithm approach

This section presents our steady state genetic algorithm approach for OCMCLP. Each feature of

our approach has been presented in a separate subsection.

4.3.1 Solution encoding

Each solution is represented as a set of p locations where facilities can be placed. We have

used ordered list representation for sets as it helps in implementing the crossover operator and

uniqueness checking of a solution in an efficient manner.

To facilitate ordered list representation for potential facility locations, we have ordered the

endpoints of an edge by their indices, i.e., if ek is an edge joining demand points j1 and j2 with

j1 < j2 then ek = (j1, j2). This is done so that each location along an edge is represented

uniquely. Now, each potential location on an edge ek = (j1, j2) is represented as a triplet (j1,

j2, r), where r is same as explained in Section 4.2. Each potential location on a demand point

j1 is also represented as a triplet, but in the form (j1, j1, 0). This is done to make representation

of a demand point unique. Now, a location (x1, y1, z1) precedes another location (x2, y2, z2)

only when either (x1 < x2) or ((x1 = x2) and (y1 < y2)) or (((x1 = x2) and (y1 = y2) and

(z1 < z2)

4.3.2 Fitness evaluation

We have utilized two fitness functions like [2] for evaluating the fitness of a solution. Objective

function f (Xp, T) itself (as defined in 4.1) is taken as the primary fitness function. Sum total

of signal strengths at all demand points, i.e.,
∑

i∈V Φi (Xp) is taken as the secondary fitness

65

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

function. The secondary fitness function is required to identify a better solution among solutions

that have the same value for the primary fitness function. We consider a solution S1 to be better

than another solution S2, if the solution S1 either has a larger primary fitness function value, i.e.,

f (S1, T) > f (S2, T) (4.4)

or, if the primary fitness function values of solution S1 and solution S2 are equal, and solution

S1 yields smaller sum total of signal strengths at all demand points, i.e.,

∑
i∈V

Φi (S1) <
∑
i∈V

Φi (S2) (4.5)

Actually, several solutions can have the same primary fitness function value and secondary

fitness function is used to break the tie. Obviously, among the solutions having the same value

of the primary fitness function, a solution having smaller sum total of signal strengths at all

demand points is more likely to produce even better solutions when subjected to crossover and

mutation.

4.3.3 Generating the initial population of solutions

We have used a randomized greedy approach to generate the initial population POP_SIZE

number of solutions. To generate an initial solution a subset of p locations needs to be selected

such that the weighted sum of uncovered demand points is maximized. In the proposed method,

we start with an empty solution Xp and facilities are added one by one till we get the required p

facilities. For this, we find the set of points S which contains all the nodes in V , and also points

along each edge. Points along each edge are considered at intervals of 0.005 relative distance

from one another. On each edge, there are infinitely many possible locations where facilities can

be located. After several experiments, we have empirically chosen the relative distance of 0.005

between possible locations. Let us say x, y ∈ V and (x, y) is an edge in the graph G with edge

length l. We add x, y to the set S and all the points at x+ 0.005 ∗ l, x+ 0.01 ∗ l, x+ 0.015 ∗ l
and so on till x+ 0.995 ∗ l are also added to the set S. For each point in the set S, we calculate

the amount of coverage it provides to the yet uncovered demand points. The objective value

corresponding to each point i ∈ S is calculated as the sum of the weights of all the uncovered

points whose signal threshold requirement T is greater than the signal received from i. After

evaluating all the points in the set S, best Y points are chosen. One point is randomly selected

66

4.3 Proposed steady-state genetic algorithm approach

from the set of Y best points to be added to the partial solution Xp. Once a location from S is

added to the solution Xp, it is deleted from S and the thresholds for all the demand points are

updated using the following equation 4.6.

Ti (Xp) = max {0, T − Φi (Xp)} ∀i ∈ V (4.6)

This iterative procedure is repeated till we get the p facilities in the solution Xp. Once a

solution is generated, we check whether it is a unique solution compared to the already generated

population of initial solutions. The newly generated solution is added to the population of

solutions only if it is unique, otherwise it is discarded. This iterative process continues till

POP_SIZE solutions are generated.

4.3.4 SSGA framework

Given the initial population of solutions, the steady state genetic algorithm based approach

for solving the OCMCLP follows an iterative process. In each iteration, we apply crossover

and mutation in a mutually exclusive manner. Crossover is applied with probability Pc and

mutation is applied with the remaining probability of 1− Pc. On the child solution generated

after crossover or mutation, we have applied a local search to improve its fitness. Following the

local search, population replacement method is applied. Then the next iteration begins. This

is repeated for all the MAX_ITERS iterations. At the end of the MAX_ITERS iterations,

the best solution found since the beginning of the algorithm is returned as the final solution

found by the algorithm.

4.3.5 Selection

We need to select two parents from the population to perform crossover and a single parent to

perform mutation operation. We have used the probabilistic binary tournament selection method

for this. The parameter Pbts governs the probability of selection of the more fit individual in

the binary tournament. Two solutions are selected uniformly at random from the population

and their fitness is compared. The solution with higher fitness between the two is chosen with

the probability Pbts, or else the lower fitness solution between the two is chosen, i.e., the worse

solution between the two is chosen with probability 1-Pbts. In general, probabilistic binary

tournament selection performs better than roulette wheel selection and has the same performance

67

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

as rank selection, while being computationally much less expensive than latter two methods

[125]. This is the reason for using probabilistic binary tournament selection in our approach.

4.3.6 Crossover

In the crossover, we select two solutions which act as parents using binary tournament selection

method. To generate a child solution, common facilities from the two selected parents are

copied to the child. As we have used ordered list representation, common facilities can be

found in O(p) time. Let us say there are c common facilities, they are copied to the child. Since

each solution must have p facilities, therefore, to add the remaining p− c facilities, we follow

the same randomized greedy approach as used in the initial population generation. Using this

method, the remaining facilities are added one by one till we get total p facilities in the resulting

solution.

4.3.7 Mutation

From the population, a solution is selected using binary tournament selection. From this selected

solution, facilities are removed with probability Pm. For each facility under consideration a

uniform random number r is generated between 0 and 1. If r is greater than Pm that facility

is copied to the resulting mutant solution. On the other hand, if r is less than or equal to Pm

that facility is not copied to the mutant. Let us say k facilities are copied to the mutant in this

manner. Since each solution must have p facilities, to add the remaining p − k facilities, we

follow the same randomized greedy approach as used in the initial population generation. Using

this method, the remaining facilities are added one by one till we get total p facilities in the

mutant solution.

Our crossover operator retains the common facilities between the two selected parents

to build a better child solution by making use of these facilities. If mutation is applied after

crossover then some of these facilities may get deleted from the child solution. Hence, crossover

and mutation have been used in a mutually exclusive manner. During each iteration, crossover

is applied with probability Pc, or else mutation is applied.

4.3.8 Local search

On the solution XC generated through crossover or mutation, a one-one exchange local search

operation is applied. This local search is derived from the local search proposed in [43]. As part

68

4.3 Proposed steady-state genetic algorithm approach

of the local search, we have considered each facility t ∈ XC one-by-one in an iterative manner

and a point bt to relocate it is determined. For this also, we followed the randomized greedy

approach as in the initial solution generation where we compute the set of Y best points for

solution (XC \ {t}) and a point bt is randomly selected from these Y points to be part of the

solution. If the solution (XC \ {t}) ∪ {bt} has higher fitness in comparison to XC then XC is

replaced with this new solution. This process is redone for all the facilities t ∈ XC .

4.3.9 Population replacement model

Our GA uses steady state population replacement model. In this model, only a single child

solution is constructed in each generation. If the child solution is unique from the currently

existing members of the population then its fitness is compared with the worst solution in

the population. And the child solution replaces the worst solution of the population if it has

better fitness. On the other hand if the child solution is found to be the same as any current

population member or even though it is unique but its fitness is less than the least fit member of

the population, in both these cases the child solution is discarded.

Algorithm 8 provides the pseudo-code for our genetic algorithm approach where u01 is

a uniform variate in [0, 1]. BTS, Crossover, Mutation, and Local_search are four functions

that perform binary tournament selection (Section 4.3.5), crossover (Section 4.3.6), mutation

(Section 4.3.7), and local search (Section 4.3.8) operations respectively.

Algorithm 8: GA for OCMCLP
Construct POP_SIZE initial solutions X1, X2, . . . , XPOP _SIZE ;
Xbest ← Best solution among POP_SIZE initial solutions;
while (termination condition remains unsatisfied) do

if (u01 < Pc) then
P1 ← BTS(X1, . . . , XPOP _SIZE);
P2 ← BTS(X1, . . . , XPOP _SIZE);
if (P1 == P2) then

P2 ← Get the next solution after P2 (modulo population size) in the population.
XC ← Crossover(P1, P2);

else
P1 ← BTS(X1, . . . , XPOP _SIZE);
XC ←Mutation(P1);

XC ← Local_search(XC);
if (XC is better than Xbest) then

Xbest ← XC ;
Include XC in the population as per replacement policy;

return Xbest;

69

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

4.4 Computational results

We have compared the performance of our GA based approach with the state-of-the-art ap-

proaches available for OCMCLP which are discussed in [2]. For the fairness of comparison, we

have used the same datasets and the same values for various parameters as in [2]. Averbakh et

al. [2] randomly generated five instances of datasets for a given combination of the number of

nodes n and average degree of nodes dgr. The values of n and dgr belong to the following set of

values n ∈ {40, 60, 80, 100, 120, 140, 160, 180, 200} and dgr ∈ {5, 6, 7} respectively. On each

dataset, we have executed our approach with three different values for the number of facilities to

be located, p = 3, 4, 5. And the three different values of threshold value for the signal strength,

T , are considered as T = 0.1, 0.3, 0.5 as in [2]. We have taken the linear signal strength function

of φ (d) = max {0, 1− d/U} and the parameter U was determined as a fraction of the network

diameter where U% = 0.65, 0.75, 0.85 for T = 0.1, 0.3 and U% = 0.7, 0.8, 0.9 for T = 0.5

just as mentioned in [2] .

We have implemented our GA based approach in C and executed it on a Linux based Intel

Core i5 8600 system with 8 GB memory running at 3.10 GHz. The parameters specific to GA

and their corresponding values are as follows: POP_SIZE = 100, MAX_ITERS = 200,

Y = 10, Pc = 0.5, Pm = 0.1, Pbts = 0.7. These parameter values are chosen based on

empirical observations spanning over a number of trials.

In [2], Averbakh et al. proposed two interchange heuristics, I1 and I2, for solving the

OCMCLP. The results of our GA based approach are compared with these two interchange

heuristics I1 and I2. We have reported the results of our GA approach along with I1 and I2

approaches in 9 tables, viz. Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6, Table 4.7,

Table 4.8, Table 4.9, and Table 4.10. Each of these tables present the results for a particular

combination of the parameters T and U%. Within each table, for a given dataset of size n we

have shown the average of objective values obtained for all the three different degrees 5, 6 and

7. We have obtained the data for I1 and I2 via e-mail from the corresponding author of [2]. In

all these nine tables (Table 4.2–Table 4.10), the first column gives the number of facilities being

located, p. The second column gives the number of nodes in the graph, n. Third and fourth

columns give the objective value and time taken by I1 while fifth and sixth columns give the

objective value and time taken by I2 and the seventh and eighth columns give the objective value

and time taken by GA respectively. All times are in seconds.

70

4.4 Computational results

Table 4.2: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.1,
U% = 0.65

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 332.67 0.10 336.60 0.20 337.60 3.06
60 494.93 0.10 496.20 0.20 495.40 6.61
80 658.87 0.20 660.27 0.40 660.27 11.35

100 783.27 0.30 783.53 1.10 799.73 15.55
120 913.87 0.70 920.47 2.00 946.00 21.22
140 1029.00 2.00 1042.40 3.20 1071.13 28.02
160 1141.40 2.90 1146.07 4.60 1185.00 35.58
180 1357.53 3.70 1353.07 5.90 1392.40 45.63
200 1493.73 5.90 1495.53 9.30 1533.33 55.96

p = 4

40 329.20 0.10 332.47 0.30 332.13 3.88
60 488.47 0.10 489.27 0.20 491.73 8.29
80 642.27 0.30 645.13 0.60 647.27 14.18

100 777.07 0.60 777.07 1.30 781.00 19.19
120 907.67 1.20 912.53 2.50 922.60 26.56
140 1023.27 3.70 1037.73 4.80 1056.00 35.52
160 1122.47 3.10 1129.27 6.10 1154.33 44.05
180 1352.00 5.70 1351.00 9.00 1367.00 56.41
200 1478.53 7.90 1490.53 13.40 1507.40 67.78

p = 5

40 326.87 0.20 329.40 0.30 332.13 4.75
60 484.60 0.10 485.20 0.30 489.33 10.02
80 640.47 0.40 641.60 0.70 642.73 17.17

100 773.40 0.90 771.67 1.90 775.60 23.10
120 897.80 1.70 908.00 3.90 915.73 32.03
140 1017.40 4.20 1030.87 6.00 1046.67 42.11
160 1122.47 4.50 1121.93 6.60 1140.53 52.51
180 1342.00 7.30 1337.33 11.60 1359.00 66.96
200 1474.27 10.90 1485.33 15.90 1492.33 81.29

71

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.3: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.1,
U% = 0.75

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 262.07 0.00 266.60 0.10 265.73 2.87
60 358.93 0.00 360.93 0.10 359.53 5.68
80 461.73 0.10 467.60 0.20 457.53 9.70

100 545.20 0.30 545.20 0.50 557.47 13.11
120 593.07 0.40 596.93 0.90 618.00 16.85
140 611.40 1.30 615.87 1.60 664.93 22.06
160 639.67 1.50 640.93 1.80 683.47 26.63
180 746.07 2.00 752.00 3.00 817.33 33.81
200 845.07 2.60 849.53 3.90 909.20 41.44

p = 4

40 257.67 0.00 258.87 0.10 260.67 3.41
60 342.53 0.10 344.53 0.10 347.40 7.06
80 442.27 0.20 444.40 0.30 444.33 11.80

100 529.73 0.40 530.53 0.70 545.20 15.92
120 574.53 0.70 577.00 1.00 594.07 20.29
140 595.47 1.50 598.47 2.00 629.20 25.98
160 628.27 2.00 625.00 2.70 663.67 31.30
180 734.27 2.40 732.20 3.80 780.87 39.68
200 836.20 3.80 835.93 5.80 873.73 48.08

p = 5

40 253.07 0.10 251.07 0.10 258.40 4.16
60 330.87 0.10 332.00 0.10 333.20 8.42
80 425.80 0.20 430.27 0.30 426.47 14.06

100 524.80 0.50 517.20 0.90 530.53 18.74
120 562.33 0.90 556.67 1.40 579.20 24.02
140 585.80 1.80 583.40 2.00 609.20 30.72
160 617.33 2.50 609.33 2.90 637.60 36.73
180 712.33 3.20 712.80 4.40 740.60 46.07
200 816.40 5.20 818.13 6.90 841.33 56.00

72

4.4 Computational results

Table 4.4: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.1,
U% = 0.85

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 175.00 0.00 180.80 0.00 177.60 2.41
60 175.80 0.00 176.87 0.00 171.73 4.84
80 240.13 0.10 240.33 0.10 239.07 8.04

100 244.07 0.10 247.07 0.30 254.73 11.23
120 258.60 0.20 256.93 0.40 273.13 13.94
140 213.67 0.30 223.00 0.70 244.33 17.54
160 223.07 0.50 228.80 0.70 264.87 21.10
180 287.93 0.70 291.00 1.40 328.87 26.31
200 300.47 0.90 301.73 1.70 344.13 32.60

p = 4

40 168.53 0.00 174.27 0.00 173.60 2.99
60 165.00 0.00 167.40 0.10 164.80 5.96
80 224.53 0.10 227.60 0.10 226.27 9.69

100 235.53 0.20 238.27 0.30 245.87 13.26
120 238.60 0.20 239.40 0.40 254.93 17.11
140 207.13 0.50 212.07 0.90 231.00 21.44
160 211.13 0.60 213.53 0.90 229.20 25.50
180 280.53 1.10 284.53 1.90 309.00 31.72
200 290.80 1.50 292.53 2.30 313.00 38.67

p = 5

40 164.60 0.00 168.80 0.00 167.87 3.57
60 157.13 0.00 160.47 0.10 160.80 7.08
80 217.00 0.10 220.33 0.20 217.47 11.45

100 222.00 0.20 223.60 0.40 232.53 15.74
120 227.00 0.40 221.73 0.50 236.67 20.23
140 198.93 0.50 200.33 0.90 218.53 25.26
160 198.73 0.70 204.33 0.90 223.27 30.50
180 266.07 1.30 264.80 1.60 295.47 37.24
200 276.80 2.00 276.53 2.70 303.60 45.69

73

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.5: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.3,
U% = 0.65

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 355.27 0.60 355.13 0.70 354.87 3.16
60 540.80 0.80 540.20 1.30 540.73 6.99
80 718.87 1.70 718.87 2.50 717.47 12.10

100 851.20 2.70 851.20 4.60 877.93 16.79
120 1014.00 3.40 1011.80 7.30 1040.07 23.99
140 1132.60 5.50 1130.73 9.80 1209.53 31.72
160 1234.67 6.60 1250.00 9.50 1331.20 40.78
180 1483.47 8.20 1483.07 11.40 1559.33 52.82
200 1638.33 15.90 1635.73 23.80 1728.73 64.87

p = 4

40 348.33 0.80 348.13 0.90 348.53 4.02
60 520.27 1.50 520.33 1.70 521.33 8.81
80 699.33 1.40 699.67 2.80 699.53 15.12

100 843.47 3.60 843.47 8.80 850.67 20.72
120 990.73 5.40 988.00 8.80 1014.53 29.69
140 1115.53 4.90 1112.40 10.90 1164.87 40.02
160 1207.00 6.10 1226.00 10.80 1287.27 50.33
180 1436.00 7.90 1434.53 18.60 1506.20 64.55
200 1588.40 12.90 1588.87 26.50 1664.60 79.65

p = 5

40 342.20 1.60 342.07 1.90 343.20 4.88
60 511.47 0.90 513.20 2.10 514.07 10.60
80 684.07 1.80 683.07 3.00 681.40 18.21

100 820.07 8.00 819.67 13.10 837.60 24.98
120 969.07 3.80 967.33 11.40 992.53 35.83
140 1095.60 5.90 1091.27 11.10 1134.33 47.48
160 1182.13 8.30 1199.87 13.20 1249.73 59.43
180 1431.27 9.40 1427.13 15.40 1470.07 76.65
200 1572.53 27.50 1572.13 32.70 1631.53 92.84

74

4.4 Computational results

Table 4.6: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.3,
U% = 0.75

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 306.67 0.20 307.73 0.30 308.13 3.00
60 438.27 0.20 437.33 0.40 438.73 6.45
80 575.87 0.40 585.07 0.60 577.07 11.09

100 639.53 0.40 640.93 0.90 686.40 15.25
120 743.20 1.00 740.33 1.90 806.53 20.97
140 754.33 2.10 765.20 2.60 901.07 27.76
160 813.00 2.50 808.93 3.20 955.00 34.71
180 941.80 3.50 937.80 4.70 1153.47 44.89
200 1092.40 4.90 1092.47 7.10 1281.93 54.36

p = 4

40 288.53 0.20 288.40 0.30 290.73 3.72
60 404.80 0.20 404.40 0.40 409.67 7.98
80 530.73 0.30 540.00 0.70 531.73 13.34

100 613.67 0.60 615.33 1.10 636.80 18.36
120 689.93 1.10 685.00 2.10 733.40 24.63
140 706.93 2.80 720.27 3.70 813.07 32.54
160 764.40 2.80 764.13 4.30 872.60 39.78
180 890.80 5.10 887.93 6.70 1017.47 51.13
200 1026.87 8.50 1024.80 12.80 1153.07 61.92

p = 5

40 277.60 0.40 280.73 0.60 281.80 4.59
60 393.27 0.30 393.27 0.40 395.87 9.50
80 497.60 0.40 501.67 0.90 504.87 15.64

100 593.80 0.70 595.47 1.50 615.93 21.30
120 671.80 1.50 666.27 3.00 692.20 28.46
140 686.40 3.10 697.13 4.50 757.60 36.98
160 728.67 4.70 729.47 5.80 796.20 45.39
180 857.93 6.20 854.47 7.10 942.20 58.11
200 973.00 8.10 971.07 9.80 1096.00 71.02

75

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.7: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.3,
U% = 0.85

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 229.60 0.00 233.60 0.10 234.67 2.80
60 273.67 0.10 273.73 0.10 276.40 5.78
80 359.33 0.10 366.13 0.20 358.07 9.84

100 358.27 0.30 360.13 0.40 427.93 13.29
120 382.13 0.50 374.87 0.60 456.53 17.08
140 320.93 0.90 324.87 1.30 468.33 22.05
160 336.80 0.80 349.47 1.40 487.80 27.14
180 416.93 1.70 416.67 2.10 580.00 34.53
200 464.73 2.30 471.73 3.30 638.00 42.77

p = 4

40 207.13 0.00 212.20 0.10 210.07 3.41
60 235.47 0.10 228.80 0.10 235.93 6.92
80 303.07 0.20 301.27 0.30 302.33 11.42

100 323.27 0.30 323.67 0.40 358.33 15.28
120 330.53 0.70 330.67 0.70 374.80 19.39
140 289.67 0.90 290.40 1.20 371.60 24.58
160 304.07 1.20 309.60 1.40 385.87 29.94
180 382.20 1.80 382.40 2.50 463.67 37.89
200 402.73 2.60 407.53 3.70 526.80 45.06

p = 5

40 192.60 0.00 194.53 0.10 200.20 4.10
60 223.87 0.10 214.53 0.10 221.13 8.02
80 279.07 0.20 279.40 0.30 277.73 13.18

100 304.33 0.40 303.27 0.60 322.87 17.91
120 300.33 0.60 302.27 0.90 328.60 22.61
140 276.67 1.00 277.47 1.50 329.13 28.60
160 280.20 1.30 293.00 1.70 343.40 33.77
180 365.60 2.80 363.00 2.90 411.80 41.76
200 381.20 3.20 386.67 4.40 466.20 51.14

76

4.4 Computational results

Table 4.8: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.5,
U% = 0.7

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 360.07 0.70 360.33 0.80 359.07 3.30
60 552.40 1.20 552.53 1.40 551.40 7.17
80 733.53 2.40 733.47 2.80 733.47 12.41

100 845.27 8.60 844.07 6.80 895.07 17.27
120 996.07 5.80 995.07 7.60 1059.93 24.65
140 1078.53 6.70 1084.00 10.80 1232.20 32.79
160 1168.27 7.70 1167.80 11.30 1365.33 42.86
180 1384.80 14.20 1392.60 25.60 1593.53 54.35
200 1548.27 29.60 1548.27 42.70 1760.27 67.85

p = 4

40 346.27 0.90 345.60 1.90 346.73 4.18
60 520.27 1.20 520.47 1.90 520.27 8.94
80 686.60 4.20 688.73 3.90 688.60 15.42

100 800.40 4.10 802.73 8.40 843.60 21.37
120 941.67 6.50 947.87 8.10 991.00 29.97
140 1038.73 6.70 1041.60 12.30 1145.93 40.35
160 1102.27 6.90 1104.13 12.30 1258.73 51.60
180 1326.47 18.50 1334.93 27.70 1474.47 65.59
200 1497.20 30.80 1496.93 33.70 1638.40 81.27

p = 5

40 339.40 1.10 333.93 1.50 338.27 5.01
60 498.40 2.00 498.20 2.00 497.60 10.68
80 662.67 2.30 653.60 3.90 664.00 17.99

100 775.00 3.50 774.67 6.70 798.53 25.05
120 905.80 5.80 914.00 10.50 944.67 35.19
140 1006.93 8.20 1014.33 11.40 1081.00 46.32
160 1069.87 8.00 1069.53 13.40 1176.20 58.74
180 1279.13 14.70 1296.47 15.50 1392.60 75.60
200 1443.53 25.80 1439.33 34.60 1539.87 93.22

77

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.9: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with T = 0.5,
U% = 0.8

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 318.27 0.20 317.87 0.30 317.27 3.13
60 460.20 0.40 460.20 0.60 450.73 6.81
80 604.07 0.60 604.07 0.80 600.73 11.59

100 630.07 0.60 629.93 1.10 705.13 16.08
120 720.40 1.50 726.00 1.90 840.33 22.67
140 681.67 2.50 677.40 3.10 942.93 29.94
160 702.93 2.30 708.13 3.50 1002.13 37.92
180 848.60 4.80 857.47 6.30 1201.13 48.69
200 962.07 5.00 963.53 8.40 1337.80 60.62

p = 4

40 290.33 0.30 291.20 0.30 290.80 3.88
60 405.80 0.30 404.20 1.40 401.13 8.09
80 530.13 0.50 531.33 0.90 520.73 13.76

100 565.00 0.60 567.80 1.00 622.47 18.60
120 627.33 1.50 638.47 2.30 718.20 25.87
140 616.47 2.40 619.93 3.20 782.00 33.68
160 636.87 2.80 640.27 4.30 832.67 41.37
180 756.80 4.90 768.33 5.80 972.40 52.88
200 859.67 5.60 858.67 10.70 1108.07 65.44

p = 5

40 267.53 0.20 271.20 0.30 270.67 4.56
60 366.13 0.20 365.47 0.60 368.33 9.45
80 469.20 0.80 470.40 1.10 472.20 15.72

100 536.67 0.90 536.93 1.30 566.93 21.11
120 581.20 3.10 585.27 4.40 639.47 28.59
140 578.07 2.50 579.27 4.00 680.13 36.90
160 587.87 3.50 594.13 4.60 719.00 45.08
180 695.07 4.70 700.00 6.70 856.27 57.88
200 760.20 8.20 783.53 10.70 968.33 70.75

78

4.4 Computational results

Table 4.10: Comparison of I1 and I2 interchange heuristics of [2] with GA on instances with
T = 0.5, U% = 0.9

I1 I2 GA
n Obj. Time Obj. Time Obj. Time

p = 3

40 252.33 0.10 251.07 0.10 243.60 2.93
60 307.33 0.10 312.33 0.20 305.67 6.18
80 416.40 0.20 412.67 0.30 402.73 10.55

100 351.60 0.30 356.47 0.50 465.87 14.21
120 378.87 0.70 371.00 1.00 512.40 19.47
140 287.87 1.00 287.60 1.20 541.53 25.37
160 299.67 1.20 307.20 1.50 560.47 31.30
180 366.60 1.50 374.27 2.30 655.00 41.16
200 385.13 2.50 396.47 4.00 739.87 49.84

p = 4

40 211.47 0.00 211.27 0.10 207.73 3.53
60 230.87 0.10 236.00 0.10 234.53 7.10
80 303.47 0.20 300.33 0.40 301.53 11.87

100 292.00 0.50 291.53 0.70 353.13 16.20
120 297.13 0.70 290.33 0.90 381.47 20.68
140 232.67 1.00 237.33 1.30 370.73 27.02
160 246.07 0.90 255.73 1.50 395.27 32.51
180 304.67 1.80 315.67 2.50 455.53 41.46
200 324.13 2.30 326.33 4.00 523.40 50.46

p = 5

40 184.80 0.10 184.73 0.10 182.33 4.08
60 184.27 0.10 194.53 0.10 198.47 8.07
80 266.07 0.20 264.20 0.30 258.00 13.36

100 250.53 0.50 248.27 0.80 290.80 18.39
120 256.67 0.50 250.73 0.90 308.07 23.22
140 205.07 0.90 208.47 1.30 295.00 29.48
160 208.07 1.40 217.73 1.80 306.93 36.63
180 266.33 2.00 284.27 2.70 370.67 44.17
200 286.27 3.20 291.33 4.10 396.47 54.09

Our approach has performed better than I1 and I2 on all the instances when the number

of nodes is 100 and above. For the smaller datasets when the number of nodes is 40, 60 and

80, only in some cases our results are worse than I1 or I2 results. Coming to the execution

79

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

times, Averbakh et al. [2] have run the interchange heuristics, I1 and I2, on a AMD Phenom II

processor with 3.31 GHz and 16 GB of RAM. Our approach is executed on a different system

with lower RAM size of 8GB, so we can not directly compare the execution times. But it is

clear that I1 and I2 are faster than our approach. This is also expected as our approach being a

population based metaheuristic approach will require longer execution times.

Table 4.11 presents the comparison of our results with I1 and I2 in the same format as

used in [2]. In Table 4.11, the first column gives the threshold value T and the second column

gives the fraction of the network diameter U%. The third and fourth columns give the average

percentage improvement in solution quality by GA with respect to I1 and I2 respectively over all

the instances with the same T and U% values. Given a particular instance and any two methods

P , Q which are executed on that instance and obtained solutions XP , XQ respectively, we

calculate the percentage improvement in solution quality by method P over method Q on that

instance as 100× φi(XP)−φi(XQ)
φi(XQ) . The average percentage improvements presented in columns

3 and 4 are averaged over 405 instances which have the same T and U% values. The fifth, sixth

and seventh columns in the Table 4.11 give the average execution times over all the 45 instances

which have the maximum number of nodes, i.e. n = 200, for I1, I2 and GA respectively. This

table, which we have provided with the sole purpose of comparing the results in the same format

as in [2], also shows the superiority of GA over I1 and I2 in terms of solution quality.

Table 4.11: Comparison of I1 and I2 interchange heuristics of [2] with GA in the same format as in
[2]

T U% %(GA, I1) %(GA, I2) R(I1) R(I2) R(GA)

0.1 0.65 1.97 1.34 8.3 12.9 68.4
0.1 0.75 4.01 3.85 3.9 5.5 48.5
0.1 0.85 8.66 5.88 1.5 2.3 38.9
0.3 0.65 3.01 2.88 18.8 27.7 79.1
0.3 0.75 9.30 8.75 7.2 9.9 62.4
0.3 0.85 22.19 20.89 2.7 3.8 46.3
0.5 0.7 6.67 6.56 28.8 37.0 80.8
0.5 0.8 19.12 18.13 6.3 10.0 65.6
0.5 0.9 49.41 46.58 2.7 4.0 51.5

To show the convergence behaviour of our GA, we have taken two classes of instances.

Fig. 4.2a and Fig. 4.2b show the convergence behavior of our GA on instances with {n = 200,

80

4.4 Computational results

 1530

 1532

 1534

 1536

 1538

 1540

 20 40 60 80 100 120 140 160 180

O
b

je
ct

iv
e
 v

a
lu

e

No. of iterations

(a) Instances with n = 200, p = 5, T = 0.5, U% =
0.7

 920

 925

 930

 935

 940

 945

 20 40 60 80 100 120 140 160 180

O
b

je
ct

iv
e
 v

a
lu

e

No. of iterations

(b) Instances with n = 200, p = 5, T = 0.5, U% =
0.8

Figure 4.2: Convergence behaviour of GA

p = 5, T = 0.5, U% = 0.7} and {n = 200, p = 5, T = 0.5, U% = 0.8} respectively. In these

two figures, objective value represents the average objective value over 15 instances belonging

to the respective class. We have allowed our GA to execute for 200 iterations only. These figures

show that our GA converges rapidly to high quality solutions within 200 iterations.

Table 4.12: Wilcoxon Signed-Ranks test of GA with I2

N NWT W+ W− z zc Significant
3645 2374 153044 2666081 -37.62 -2.58 Yes

We have conducted two non-parametric statistical tests, viz. Wilcoxon-signed rank test [84]

and Friedman test [126, 127] to check the significance of the results obtained by our approach.

We have performed the two-tailed Wilcoxon-signed rank test by setting the significance criteria

to 1% (i.e. p-value ≤ 0.01) between our GA based approach and I2 which is the better of the

two interchange heuristics proposed in [2]. Table 4.12 presents the outcome of this test. In

this table, the first column N represents the total number of instances considered. The second

column, NWT is the number of instances without a tie. The third column, W+ is the sum of

ranks of the instances where I2 performed better than GA, whereas the fourth column W− gives

the sum of ranks of the instances where GA performed better than I2. The fifth column gives

the z value obtained, −37.62 which is less than the critical value of z, zc = −2.58 presented in

the sixth column of the table. This shows the better performance of GA over I2 is statistically

significant as presented in the last column of the Table 4.12.

Table 4.13 corresponds to Friedman test. In this table, the first column N represents the total

number of instances considered. The second column df gives the degrees of freedom which

81

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.13: Friedman test of I1, I2 and GA

N df α χ2
c χ2 Significant

3645 2 0.01 9.21 1691.64 Yes

Table 4.14: Mean ranks for I1, I2 and GA in Friedman test

I1 I2 GA
1.7 1.7 2.6

is equal to the number of groups in the data minus 1. The third column gives the alpha value

considered which is 0.01, i.e., significance criteria is set to 1%. The fourth column is the critical

value of the χ2
c for the present values of alpha and df . The fifth column χ2 is the test statistic

calculated from the data. The value of χ2 = 1691.64 is greater than the critical value of the

χ2
c = 9.21, which proves that there is significant difference in the performance of the considered

approaches. Table 4.14 presents the mean ranks for I1, I2 and GA in the first column, the second

column and the third column respectively. The mean of the ranks for GA approach is greater

than the means of the ranks for I1 and I2, thereby proving the better performance of GA as

compared to I1 and I2 according to the Friedman test.

All these results show that the performance of our GA approach is better in terms of solution

quality in comparison to the two interchange heuristics, and non-parametric statistical tests

results of the Wilcoxon signed-rank test and the Friedman test also prove that this superior

performance of our approach is due to algorithmic merit.

4.5 Conclusions

In this chapter, we have proposed an evolutionary approach, viz. GA based approach for

the OCMCLP. The results obtained with our approach are compared with two interchange

heuristics available in the literature. On most of the instances, our GA based approach has found

superior quality solutions in comparison to the existing methods. However, our approach needs

more execution time than these methods. Our GA based approach is the maiden metaheuristic

approach that has been developed for OCMCLP.

82

Chapter 5

Reliability p-median problem

5.1 Introduction

Facility location problems deal with identifying suitable locations for a set of facilities that serve

a set of demand points or customers. Among the facility location problems, p-median problem

(pMP) is a well studied problem which was introduced by Hakimi [128] in 1964. The pMP

is concerned with locating p facilities in such a way that the sum total of demand-weighted

distances between each demand point and its respective closest facility is minimized. It is an

NP-hard problem as shown by Kariv and Hakimi [129]. Starting from the first formulation

provided in [130], there have been several different formulations of the pMP over the years as

mentioned in [131, 132, 133]. The capacitated p-median problem (CPMP) is a variant of pMP

in which there is a capacity constraint on each of the possible facilities and each facility can

only serve demand points within its capacity limit. The traditional pMP is an uncapacitated

version where there is no capacity constraint on the facilities. Over the last few decades, several

authors have proposed different methods to solve the pMP and its variants. Jayalakshmi and

Singh [44] proposed a swarm intelligence approach using artificial bee colony algorithm to

solve the pMP. In [132] Domínguez and Muñoz introduced a new reduced formulation for the

pMP and proposed a recurrent neural network to solve this new formulation. In [133], Sourour

proposed a tighter formulation of the pMP by mixed integer linear program and demonstrated

that the standard branch-and-cut algorithm efficiently solves this tighter formulation on the

considered benchmark instances. Keivan and Seyed [134] proposed a genetic algorithm based

approach for the CPMP. Fleszar and Hindi [135] proposed a variable neighbourhood search

based solution for the CPMP. In [136], Canós et al. introduced fuzzy p-median problem that

83

5. RELIABILITY P -MEDIAN PROBLEM

allows some of the demand points to be uncovered if that gives significant lower cost. The

fuzzy p-median problem finds its applications in private sector firms that try to maximize the

profit while providing non-essential services and need not serve all the demand points. Canós

et al. [136] also proposed an exact algorithm to solve this problem. In [137], Cadenas et al.

proposed a two-population genetic algorithm to solve the fuzzy p-median problem. The vector

assignment p-median problem (VAPMP) [138] and distributed p-median problem [139] are the

other variants of pMP in which the demand of a customer is collectively satisfied by different

facilities at various levels and not just the closest facility.

In the p-median problem, it is assumed that once constructed, the facilities will always

operate as planned. But in reality, facilities may fail at times due to several reasons like natural

disasters such as floods and earthquakes. Facilities may also fail due to events which are

intentional like terrorist attacks and labor strikes. Such intentional activity disrupting a system

is called interdiction [140]. Sometimes facilities may fail due to unintended events like sudden

power or component failures. When there are facility failures, there will be disruptions in the

services provided to the customers. Depending on the type and severity of the events that make

the facilities inoperable, the disruptions to the customer service can last for a short duration

or for a longer period of time. In such facility failure cases, a customer who is generally

serviced by the nearest facility now needs to be assigned to a distant functional facility. This

increases the overall cost due to the additional distance the customer has to travel to a new

facility to avail the services. For the first time, Snyder and Daskin [141] proposed the reliability

p-median problem which introduced reliability approach in the facility location model taking

facility failures into consideration. The reliability p-median problem (RpMP) minimizes both

the primary transportation cost without considering the facility failures and also the cost of the

expected failure considering the facility failures. The basic idea behind introducing the RpMP

was to allot each customer to a primary facility which will serve it in normal situations, as well

as to a set of backup facilities which will serve it in the case of failure of the primary facility.

As multiple failures can happen at the same time, each customer requires a first backup facility

when its primary facility fails, a second backup facility when its first backup facility fails, and

so on. However, if a customer is allotted to a nonfailable facility as its kth backup, no more

backups are required. Usually, nonfailable facilities are much less in numbers in comparison

to failable ones owing to higher cost of the former. If all facilities are nonfailable then RpMP

reduces to p-median problem. Owing to the provision of backup facilities at multiple levels,

84

5.1 Introduction

RpMP is a highly complex problem which can be used for modelling critical applications in

different domains such as health care, aviation and defence [141].

Snyder and Daskin [141] while introducing RpMP also proposed an exact method for

solving it based on Lagrangean relaxation. This method was suitable for solving small instances

only. Later Alcaraz et al. [142] proposed eight hybrid metaheuristic approaches for RpMP

based on genetic algorithm (GA) and scatter search (SS). Among these eight hybrid approaches,

four (GA1, GA2, GA3, GA4) were based on GA and four (SS1, SS2, SS3, SS4) were based

on SS. Among these eight approaches, GA2 and SS2 performed better than other approaches

with SS2 performing slightly better than GA2. These are the only approaches available in the

literature for RpMP. However, several problems which consider reliability issues in various kind

of networks have been studied in the literature in the last few decades.

Several authors studied reliability of telecommunication networks and power networks

considering the failure of edges connecting the nodes [143, 144, 145, 146]. These connectivity

reliability theories deal with the probability of the network being connected even when there

are failures along edges. There are several approaches proposed over the years to estimate the

network reliability considering failures along the edges [147, 148, 149, 150]. Not only the edge

failures, taking the facility disruptions also into consideration, there have been several approaches

proposed in the past to deal with network reliability issues [141, 151, 152, 153, 154, 155, 156].

In [141], an equal uniform probability of failure was considered for all the candidate locations.

There are also other models which do not consider the equal uniform probability of failure for

all the candidate locations [152, 157]. In [152], it is shown that in the case of high probability of

failure, the facilities are centrally located or even co-located in some cases. On the other hand,

as the probability of failure decreases and approaching zero, in order to reduce the travel costs,

the facilities typically disperse until they reach the optimal locations suitable for the problem not

considering facility failures. Based on the assumptions made, several variants of the problem

are possible. In [158, 159] the authors have studied interdependent facility failures as compared

to the independent facility failures. Likewise, in [160, 161] the authors have studied capacitated

reliable facility location problems. Lim et al. [162] studied the case of hardening certain

facilities by making them non-failable with an additional cost while the other facilities are prone

to random facility disruptions. In [154] a mixed-integer programming model was presented with

an objective of minimizing operational cost when there are no disruptions and also reducing the

risk of disruption by applying the p-robustness criterion. The p-robustness criterion was used to

limit the cost in the case of disruption. Similarly, [163] dealt with a facility location problem

85

5. RELIABILITY P -MEDIAN PROBLEM

considering the uncertainty regarding future events. The uncertainty of the future events was

modeled by providing different future situations with associated probabilities. A model known

as the α-reliable mean-excess model was introduced in [163] that aims to minimize the expected

regret from a list of worst-case scenarios which will occur with a probability of 1− α. Some

facilities may be highly vulnerable to interdiction due to their geographical locations causing

significant impact in the case of unavailability of such facilities. The interdiction models deal

with identifying most critical failures and take them into consideration [140, 164, 165]. [166]

deals with fortifying some of the facilities within a finite budget.

Unlike the vector assignment p-median problem (VAPMP), in RpMP a customer is served

by a level 2 facility only when the previous facility at level 1 fails. There have been location

models introduced based on queueing of customers waiting to receive service from a facility in

congested scenarios [167, 168]. Consolidating several methods of solving the facility location

problems in systems with congestion, Berman and Krass [169] presented a complex model in

an illustrative manner. RpMP differs from the facility location in congested systems as we deal

with complete failure of a facility in RpMP as compared to a facility being unable to serve

customers due to congestion. Afify et al. [170] and Afify et al. [171] studied the related facility

location problems where there is only one layer of backup and limited budget is available to

fortify a few facilities to make them nonfailable. In comparison to these problems, the model of

RpMP introduced in [141] is way more complex and more relevant for critical applications.

Consider an example network with 22 nodes and 4 facilities as depicted in Figure 5.1. The

nodes selected for facilities are shown in rectangle shape and marked in red color for easy

identification. As shown in the sub-figure 5.1a, nodes {A,B,C,D} are assigned to their nearest

facility E. Nodes {F,G,H, I, J} are assigned to facility K. Similarly nodes {L,M,N,O, P}
are assigned to facility Q and finally nodes {R,S, T, U} are assigned to facility V . When

the facility E fails, out of the nodes assigned to it, {C,D} are now re-assigned to the next

closest functioning facility which is K as shown in sub-figure 5.1b. And the nodes {A,B}
including the facility E is now assigned to facility Q which is the closest functioning facility.

The re-assignment of nodes {A,B,C,D,E} to the new facilities is depicted in dotted lines in

sub-figure 5.1b.

In this chapter, we have proposed a hyper-heuristic based approach with naive Bayes

classifier for solving the reliability p-median problem (RpMP). We have compared the results of

our approach with the state-of-the-art methods available in the literature [142]. The effectiveness

of the proposed approach can be observed from the superior quality of our solutions. Further,

86

5.1 Introduction

use of naive Bayes classifier not only reduces the total execution time but also improves the

solution quality.

The remainder of this chapter is organized as follows: Section 5.2 presents the formal

problem definition of RpMP, Section 5.3 explains functioning of naive Bayes with an example,

Section 5.4 presents the proposed greedy selection based hyper-heuristic approach for RpMP.

Experimental results and their analysis are presented in Section 5.5. Finally, Section 5.6

concludes the chapter by providing a summary of contributions made.

E

C

B

IJ

G

K

D

N

Q

L

M

P

O

H

R

U

V

T

S

A
F

(a) Node assignments when all the four facilities are functioning

E

C

B

IJ

G

K

D

N

Q

L

M

P

O

H

R

U

V

T

S

A
F

(b) Node assignments when one facility fails

Figure 5.1: Illustration of reliability p-median problem with p = 4 facilities

87

5. RELIABILITY P -MEDIAN PROBLEM

Table 5.1: Summary of key notations

Notation Meaning
A Set of demand points or customers
B Set of potential locations for facilities
F Subset of locations of candidate facilities(B) which may fail
NF Subset of locations of candidate facilities(B) which may not fail
hi Demand at each customer i ∈ A
dij Cost of service per unit of demand of customer i ∈ A from facility j ∈ B
θi Cost per unit of demand of customer i ∈ A when i remains unserved
q Uniform probability of failure of each facility j ∈ F
p Total number of facilities to be located

5.2 Formal problem definition

To formally define RpMP, we have followed the notational conventions of [142]. Table 5.1 gives

the summary of key notational conventions.

In the RpMP modeling, each customer i ∈ A is either assigned to a failable facility or to

a non-failable facility. A non-failable facility will never fail, and there is no need to consider

re-assigning customer i to any other facility. But if the customer i is assigned to a failable

facility then it is assigned to different facilities at different levels, viz. to an open facility at level

0, to a different facility at level 1 which will serve the customer i if the facility at level 0 fails,

and i is assigned to yet another facility at level 2 when both the facilities at level 0 & level 1

fail, and so on till all the open facilities are considered. To represent the open facilities and the

assignment of a customer to a facility at a level r, where r = 0, . . . , p− 1, we use two binary

variables, viz. Sj ∈ {0, 1}, Wijr ∈ {0, 1}. Sj , Wijr are referred to as location binary variable

and assignment binary variable respectively. As the name suggests, Sj = 1 if there is an open

facility at j ∈ B, otherwise Sj = 0. Wijr = 1 if customer i ∈ A is assigned to facility j ∈ B at

level r, otherwise Wijr = 0.

Considering α ∈ [0, 1] and R = {0, 1, ..., p− 1}, RpMP can be mathematically formulated

[141] in the following manner:

(RpMP) minimize αc1 + (1− α) c2 (5.1)

subject to

88

5.2 Formal problem definition

∑
j∈B

Wijr +
∑
j∈NF

r−1∑
x=0

Wijx = 1 ∀i ∈ A, r ∈ R (5.2)

Wijr ≤ Sj ∀i ∈ A, j ∈ B, r ∈ R (5.3)

∑
j∈B

Sj = p (5.4)

∑
r∈R

Wijr ≤ 1 ∀i ∈ A, j ∈ B (5.5)

Su = 1 (5.6)

Sj ∈ {0, 1} ∀j ∈ B (5.7)

Wijr ∈ {0, 1} ∀i ∈ A, j ∈ B, r ∈ R (5.8)

where

c1 =
∑
i∈A

∑
j∈B

hidijWij0 (5.9)

c2 =
∑
i∈A

hi

[∑
j∈NF

∑
r∈R

dijq
rWijr +

∑
j∈F

∑
r∈R

dijq
r (1− q)Wijr

]
(5.10)

Equation 5.1 gives the objective function of the problem which is the weighted sum of c1

which is primary cost of serving customers assuming none of the facilities fail, and c2 which is

the expected failure cost considering the facility failures. Constraint in equation 5.2 makes sure

that given a customer i and level r, either i is served by a facility j ∈ B at level r or i is served by

a non-failable facility j ∈ NF at level x < r. Constraint in equation 5.3 ensures that a customer

i can only be assigned to a location where a facility is located. Constraint in equation 5.4 requires

that there are exactly p facilities located. Constraint in equation 5.5 requires that a customer i is

assigned to a facility at one level at most. Constraint in equation 5.6 gives the information of an

emergency facility being opened at an imaginary location u which is non-failable, u ∈ NF . For

each customer i ∈ A, if it remains unserved because it is not connected to any of the facilities or

89

5. RELIABILITY P -MEDIAN PROBLEM

all the facilities have failed then it is considered that the customer i is served by the emergency

non-failable facility u with a transportation cost of diu = θi. Equations 5.7,5.8 give the binary

nature of the location variables and assignment variables. Using equation 5.9, the primary cost

of serving customers assuming none of the facilities fail c1 is calculated, whereas using equation

5.10 the expected failure cost c2 considering the facility failures is calculated.

5.3 Naive Bayes classifier

Naive Bayes classifier is a supervised learning approach. It is a probabilistic model and works

according to the Bayes theorem. In the naive Bayes classifier, it is assumed that the features

which are involved in classification are independent of each other given the class variable. Naive

Bayes is a simple yet computationally efficient classifier which is unaffected by noise. Over

the years, naive Bayes classifier has been extensively used for text classification [172, 173], in

traffic risk management [174], to predict Alzheimer’s disease from genome-wide data [175].

But no one so far applied naive Bayes to solve combinatorial optimization problems so as to

improve the solution quality or reduce the execution time of the approaches. This served as a

motivation for us to incorporate naive Bayes in our proposed hyper-heuristic approach.

Every classifier has two major phases namely training phase and testing phase [176]. As

part of the training phase, a prediction model is generated which correlates different features to

a class label. In the naive Bayes classifier, at the end of the training phase, we calculate the class

probability of each of the classes and we also calculate the conditional probabilities for each of

the feature values given a class. We calculate the conditional probability of each feature value

as ratio of the number of occurrences of that feature value for a given class to the total number

of instances belonging to that class.

Probability of a feature vector s belonging to a particular class Yj is calculated using Bayes

theorem as follows:

p(Yj |s) =
p(Yj)p(s|Yj)

p(s)
(5.11)

Here p(Yj |s) is the posterior probability of Yj given the feature vector s. p(Yj) is the prior

probability of class Yj which is calculated using the training data. p(s|Yj) is the conditional

probability of the feature vector given the class Yj . p(s) is the prior probability of the feature

vector.

90

5.4 Proposed approach

The denominator in the equation 5.11, p(s) has the same value for all the classes j, and

hence, can be ignored in naive Bayes classifier while predicting the most likely class of a test

sample. So, using the different probabilities which are calculated on the training data, the naive

Bayes classifier predicts class label Y for a test sample as below:

Y = argmax
j∈{1,2,...J}

p(Yj)

n∏
i=1

p(si|Yj) (5.12)

For example, consider a dataset of 5 training samples with three binary features (s1, s2, s3)

and a class label Yj with two possible classes Y1, Y2 given in Table 5.2. In the 5 training

samples, 3 samples belong to class Y1 and 2 samples belong to class Y2. At end of naive Bayes

training phase, we calculate the class probabilities p(Y1) and p(Y2) as 0.6 and 0.4 respectively,

which are proportional to the number of training samples belonging to the given class. In

the 3 training samples belonging to class Y1, let the feature value of s1 is 1 in two samples

and s1 is 0 in one sample. Then we calculate the conditional probabilities p((s1 = 1)|Y1)

and p((s1 = 0)|Y1) as 2
3 and 1

3 respectively. Similarly, in the two samples belonging to class

Y2, the feature value of s1 is 1 in one sample and s1 is 0 in the other sample. Then we

calculate conditional probabilities p((s1 = 1)|Y2) and p((s1 = 0)|Y2) as 1
2 and 1

2 respectively.

The conditional probabilities for all the three features s1, s2 and s3 for their corresponding

feature values are given in Table 5.3. Given a test sample s, with naive Bayes we need

to predict whether it belongs to the class Y1 or class Y2 using the conditional probabilities

of its features (s1, s2, s3) and the class probabilities p(Y1), p(Y2). Let us consider a test

sample s = (0, 1, 1). As per naive Bayes classifier, we calculate the posterior probabilities

of the given test sample belonging to class Y1, Y2 as p(Y1|s = (0, 1, 1)), p(Y2|s = (0, 1, 1)),

where p(Y1|s = (0, 1, 1)) = p(Y1) ∗ p(s1 = 0|Y1) ∗ p(s2 = 1|Y1) ∗ p(s3 = 1|Y1) and

p(Y2|s = (0, 1, 1)) = p(Y2) ∗ p(s1 = 0|Y2) ∗ p(s2 = 1|Y2) ∗ p(s3 = 1|Y2). From the

previously computed conditional probabilities and class probabilities using the training data,

we can compute p(Y1|s = (0, 1, 1)) = 0.6 ∗ 1
3 ∗

1
3 ∗

1
3 = 0.022. Similarly we can compute

p(Y2|s = (0, 1, 1)) = 0.4 ∗ 1
2 ∗

1
2 ∗

1
2 = 0.05. Since p(Y2|s = (0, 1, 1)) > p(Y1|s = (0, 1, 1)),

naive Bayes predicts that the given sample belongs to class Y2.

5.4 Proposed approach

This section presents the salient features of our hyper-heuristic approach.

91

5. RELIABILITY P -MEDIAN PROBLEM

Table 5.2: Sample dataset used for naive Bayes training

Feature values Class label
S. No. s1 s2 s3 Y

1 1 1 0 Y1
2 0 1 0 Y2
3 1 0 0 Y1
4 1 0 1 Y2
5 0 0 1 Y1

Table 5.3: Conditional probabilities for different feature values

Class Y1 Class Y2
Feature p(si = 0|Y1) p(si = 1|Y1) p(si = 0|Y2) p(si = 1|Y2)

s1
1
3

2
3

1
2

1
2

s2
2
3

1
3

1
2

1
2

s3
2
3

1
3

1
2

1
2

5.4.1 Solution representation and fitness

We represent each solution as a set of p nodes to locate facilities. The objective function given

in equation 5.1 is used as the fitness function, which is the weighted sum of the cost of serving

customers when there are no facility failures and the expected failure cost which includes the

cost of serving customers when there are facility failures.

5.4.2 Generating the initial solution

We have used two methods to generate the initial solutions, viz. a randomized greedy approach

in the first iteration of the hyper-heuristic and a random generation method for generating the

initial solutions in all the remaining iterations of the hyper-heuristic. In the randomized greedy

approach to generate the initial solution, we have made use of the node connectivity of the given

input network. In a network, which is an incomplete graph where a given node is not connected

to every other node, the facility located at a node can serve only the set of nodes it is connected

to. Making use of this nature of the input network, as part of the randomized greedy approach,

first we select five nodes with the highest number of adjacent nodes and randomly select one

node from these five nodes, and make it part of the solution. The selected node is removed from

the list of nodes available for locating facilities. This previous step is repeated till we select

a total of p nodes to be part of the initial solution. For the remaining restart iterations of the

hyper-heuristic, we generate the initial solutions in a random manner by randomly selecting

p unique nodes to be part of the initial solution. In both the randomized greedy approach and

92

5.4 Proposed approach

the random generation method of generating the initial solution, there may be some customers

which are not connected to any of the p facilities, and hence, remain unserved. For all such

unserved customers i, like [142], we have used a fixed cost θi as the cost of serving while

calculating the fitness value.

5.4.3 Hyper-heuristic framework with naive Bayes classifier

We have implemented a greedy selection based hyper-heuristic approach with multiple starts.

In every start, we generate an initial solution, and then apply four low level heuristics in two

phases namely training phase and testing phase. The training phase and testing phase are part of

the naive Bayes classifier which is deployed in this case to reduce the computation time while

improving the solution quality. The four low level heuristics that we have used are described in

the subsequent subsection (Section 5.4.4). We will refer to our four low level heuristics as LH1,

LH2, LH3, and LH4 subsequently.

In an iteration of the training phase, all the four low level heuristics are applied on the

current solution Xtr one-by-one thereby creating four new solutions. We have used variable

degree of perturbation while applying each of the low level heuristics over many training

iterations which varies from Maxprt, which is the maximum degree of perturbation, to Minprt,

which is the minimum degree of perturbation over the maximum number of training iterations,

Maxtr. To generate good solutions, we need higher perturbation in the initial iterations

and lower perturbation towards the final iterations. In training iteration itertr, the degree of

perturbation is calculated as Degprt =
(
Maxprt−Minprt

Maxtr

)
(Maxtr − itertr) + Minprt [177].

We select the solution with the least objective value among the four resulting solutions after

applying the four heuristics as an input to the next iteration of the training phase. As part of

the naive Bayes classification, we treat each of the four low level heuristics as four different

classes and in one training phase iteration which ever low level heuristic produces least objective

solution, it is considered that the given solution Xtr belongs to that particular class. At the end

of the training phase, we find the class probabilities of each of the four low level heuristics based

on the number of times a low level heuristic generates the solution with least objective value.

We calculate the conditional probabilities of feature values of the solution used for for training,

Xtr, considering a binary value of 1 for all the nodes which are part of the solution and a binary

value of 0 for all the nodes which are not part of the solution. Consider an example scenario of

a network with 50 nodes and number of facilities to be located p = 5. Let a sample solution to

this problem with p = 5 facilities be Xtr = {4, 5, 12, 20, 46}. So we treat this as a data record

93

5. RELIABILITY P -MEDIAN PROBLEM

of 50 binary features where the binary value at index i represents whether node i is part of the

solution or not. In the given example solution, the feature values at indices 4, 5, 12, 20, & 46

are considered as 1s, thereby representing a facility is located at these locations, and in all the

other indices feature values are taken as 0s. With this feature vector, we find the conditional

probabilities for all the features as explained in Section 5.3. We take the resulting solution at the

end of the training phase, Xtr as the input to the testing phase, Xtest and then the testing phase

starts.

In each iteration of the testing phase, for the given solution Xtest, we find the pos-

terior probabilities for each of the four low level heuristics using naive Bayes classifier,

p(LH1|Xtest), p(LH2|Xtest), p(LH3|Xtest), p(LH4|Xtest). We will skip the low level heuris-

tic with the least posterior probability, and apply the remaining three heuristics on the solution

Xtest and the degree of perturbation in a test iteration itertest is calculated as Degprt =(
Maxprt−Minprt

Maxtest

)
(Maxtest − itertest) +Minprt, where Maxtest is the maximum number of

testing phase iterations. Then we select the solution with the least objective value among the

three resulting solutions after applying the three heuristics. Then on the selected solution, we

apply the 1-1 exchange local search operation which is explained the subsequent subsection,

viz. Section 5.4.5. The resulting solution after local search is considered as an input to the next

iteration of the testing phase. If there is no improvement in the best solution objective value for

five consecutive test iterations, we stop the testing phase. Once the testing phase ends, we apply

1-1 exchange on the best solution found so far and then the hyper-heuristic makes a fresh start.

The pseudo-code of our approach is presented in Algorithm 9.

There are several acceptance criteria discussed in the hyper-heuristic literature [74] for

selecting the newly generated solution as current solution in the next iteration. In our proposed

approach, we have experimented with two acceptance criteria namely AA (all acceptance), OI

(only improvement). The AA criterion always selects the newly generated solution, whereas

the OI criterion selects the newly generated solution only if it is better than the current solution.

In our experiments, we have found that the AA criterion provided better results in comparison

to the OI criterion. This can be attributed to the better exploration of the search space as a

result of following the AA criterion due to the selection of a new solution in every iteration.

Hence, we have used the AA criterion in both the training and testing phases of our proposed

hyper-heuristic approach.

94

5.4 Proposed approach

Algorithm 9: Pseudo-code of hyper-heuristic for RpMP
Input: List of parameters for greedy hyper-heuristic and an instance of RpMP
Output: Overall best solution found
Xbest ← ∅ ;
while termination condition remains unsatisfied do

Xinit ← Generate initial solution;
Xtr ← Xinit ;
while (itertr ≤Maxtr) do

Degprt ←
(

Maxprt−Minprt

Maxtr

)
(Maxtr − itertr) +Minprt;

X1 ← LH1(Xtr, Degprt);
X2 ← LH2(Xtr, Degprt);
X3 ← LH3(Xtr, Degprt);
X4 ← LH4(Xtr, Degprt);
Xtr ←MIN(X1, X2, X3, X4);
if (Xtr is better than Xbest) then

Xbest ← Xtr;

Xtest ← Xtr ;
while (itertest ≤Maxtest) do

skip_hr ← Naive_Bayes(Xtest);

Degprt ←
(

Maxprt−Minprt

Maxtest

)
(Maxtest − itertest) +Minprt;

for (i := 1 to 4) do
if (skip_hr! = i) then

Xi ← LHi(Xtest, Degprt);

Fitness(Xskip_hr)← RAND_MAX;
Xtest ←MIN(X1, X2, X3, X4);
Xtest ← Local_search(Xtest);
if (Xtest is better than Xbest) then

Xbest ← Xtest;

Xbest ← Local_search(Xbest);

return Xbest;

5.4.4 Low level heuristics

We have used the following four low level heuristics in our hyper-heuristic approach:

• LH1: Random removal and greedy addition

In the first low level heuristic, from the given solution sol containing p facilities, a given

number NR(= p ∗Degprt) facilities are removed randomly. Now, to again get a feasible

solution with p facilities, we need to add NR nodes back to the solution. These NR

nodes are added in an iterative manner where during each iteration we select a node with

the maximum adjacency count from all the nodes which are not currently part of the

95

5. RELIABILITY P -MEDIAN PROBLEM

solution, and add it to the solution.

• LH2: Random addition and greedy removal

As part of the second low level heuristic, from the list of nodes which are not part of the

given solution sol containing p facilities, a fixed number NA(= p ∗Degprt) of nodes are

randomly selected and added to the current solution. Now, the solution contains p+NA

facilities. To remove the extra NA facilities from sol, we eliminate one facility at a time

from the solution sol in an iterative manner till there are only p facilities remaining. In

each iteration, the facility with minimum adjacency count is chosen for removal.

• LH3: Greedy removal and greedy addition

In the third low level heuristic, from the given solution with p facilities, we iteratively

select a facility with the least adjacency count and remove it from the solution. In this

fashion, a total of NR(= p ∗ Degprt) facilities are removed from the given solution.

Then, from all the locations which are not part of the solution, we select a node with the

maximum adjacency count and add it to the solution. In this manner, nodes are added

iteratively till the total number of facilities in the solution reaches p.

• LH4: Greedy addition and greedy removal

In the fourth low level heuristic, to the given solution having p facilities, we add NA(=

p∗Degprt) new facilities in a greedy manner. This is an iterative procedure where in each

iteration, out of all the locations which are not part of the solution, we select a location

with the maximum adjacency count and add it to the solution. At the end of this iterative

process, the solution contains p+NA facilities. Then, we select a facility with the least

adjacency count and remove it from the solution. This process is repeated and is stopped

when there are only p facilities remaining in the solution.

5.4.5 Local search

As part of the local search, we have implemented a 1-1 exchange where for each facility in the

given solution, we try to find a replacement node from the set of nodes which are not part of

the solution. For this, a facility is considered for replacement with all N − p nodes which are

not part of the solution and is replaced with the node that provides the solution with the least

objective value [178]. A facility which is replaced from the solution with a new node, can be

reintroduced into the solution at a different index. For a facility under consideration if there

96

5.5 Computational results

is no replacement node available whose addition to the solution in place of the given facility

results in a reduction in the objective value, then that facility continues to be part of the solution

and exchange of that facility does not happen. And the next facility in the solution is considered

for replacement. This iterative process is repeated for all p facilities in the solution. Within the

testing phase, we apply the 1-1 exchange for the initial two test iterations and also when the

current solution objective value is less than the current best solution objective value. But for the

cases when the current solution objective value is greater than that of the best solution, we apply

the 1-1 exchange only if the difference is within 20% of the best solution’s objective value. We

have arrived at this 20% after a large number of experiments.

5.5 Computational results

We have implemented the proposed hyper-heuristic approach in C. In all our experiments, we

have taken the maximum number of training iterations, Maxtr = 15 and the maximum number

of test iterations, Maxtest = 10. We have taken the maximum perturbation Maxprt = 0.4, and

minimum perturbation Minprt = 0.1. We have chosen these parameter values empirically after

a large number of experiments. The cost of not serving a customer i by any facility, θi is taken

as 300.0 just as used in [142]. We have also conducted our experiments with two values of α,

0.2 and 0.8. We have considered the same failure probability q = 0.05 and the demand of each

customer hi∀i ∈ A is taken as 1 just like in [142].

We have compared the results of our approach with the state-of-the-art methods for RpMP

proposed in [142]. Just like in [142], we have also executed our approach on the same two

datasets namely Discrete Location Problems Library (DLPL)1 and the OR library2 which

Beasley [179] introduced. We have considered the termination condition of our approach as the

maximum execution time in seconds which is a combination of the number of nodes n and the

number of facilities to be located p and is calculated as 2 ∗ ln
(
n
p

)
, just like in [142]. We have

executed our hyper-heuristic approach on a Linux based 3.10 GHz Core-i5-8600 system with 8

GB RAM. We have reported our results with the naive Bayes classifier and without the naive

Bayes classifier also to show the benefit of former over latter.

As part of the experimentation in [142], they have solved all the instances using CPLEX

executing each instance for a maximum cpu time of 2 hours. In allotted time of two hours,

1http://math.nsc.ru/AP/benchmarks/UFLP/
2http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

97

http://math.nsc.ru/AP/benchmarks/UFLP/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

5. RELIABILITY P -MEDIAN PROBLEM

for some instances CPLEX found the optimal solution, for some CPLEX found a feasible

solution and for some CPLEX even fails to find even any feasible solution. To evaluate the

performance of genetic algorithm and scatter search approaches proposed in [142], they have

calculated the percentage deviation of the objective values of their approaches from the solution

obtained by CPLEX at the end of two hours if CPLEX was able to find any feasible solution.

Otherwise, the deviation is computed from the best solution among all the 8 genetic algorithm

and scatter search based approaches. Out of the total 8 variations of the methods proposed in

[142], they have reported GA2 and SS2 to be the best performing methods. We have obtained the

instance-by-instance results from the first author of [142] through personal communication, and

reported on each instance, the percentage deviation of the objective value of our hyper-heuristic

approach with respect to the objective value of the solution used as reference in [142] for that

instances. We have compared our results with the results of only GA2 and SS2 which are

shown to be the best performing methods. Table 5.4 gives the comparison of results on DLPL

instances, Table 5.5 gives the comparison of results on OR library instances where CPLEX

has reached a feasible solution, and Table 5.6 gives the comparison of results on OR library

instances where CPLEX has not reached a feasible solution. In all of the three tables, viz. Table

5.4, Table 5.5, and Table 5.6, first column N represents the number of nodes in the network,

second column p gives the number of facilities to be located. The values in each column under

the heading %Deviation report the the percentage deviation of the corresponding approach’s

objective value from the objective value of the optimal/best solutions obtained by CPLEX on the

same datasets. The 3rd, 4th, 5th and 6th columns give the percentage deviation of the objective

values obtained by GA2, SS2, hyper-heuristic without naive Bayes and hyper-heuristic with

naive Bayes respectively. The values in columns under the heading CPU Time, i.e., values in the

7th, 8th, 9th and 10th columns provide the time taken in seconds to arrive at the best solution

by the GA2, SS2, hyper-heuristic without naive Bayes and hyper-heuristic with naive Bayes

respectively. In the Table 5.4, the row which starts with TOTAL 50 gives the average deviation

and average CPU time for the instance with 50 nodes for different values of p. Similarly the

row which starts with TOTAL 100 gives the average deviation and average CPU time for the

instance with 100 nodes for different values of p. The last row in the Table 5.4, which starts with

OVERALL gives the average deviation and average CPU time over all the instances calculated

as the average of the values from rows starting with TOTAL 50, TOTAL 100. We have followed

the same method of reporting in the other tables, viz. Table 5.5, and Table 5.6 as well.

98

5.5 Computational results

As shown in Table 5.4, on the DLPL instances our hyper-heuristic with naive Bayes achieved

an average deviation of -1.21% as against the average deviation of 0.32% of GA2 and 0.02% of

SS2 from the CPLEX solution. Even our hyper-heuristic approach without naive Bayes achieved

an average deviation of -1.09% which is better than that of the GA2 and SS2. For instances with

50 nodes our hyper-heuristic without naive Bayes performed better than the hyper-heuristic with

naive Bayes. Overall, on combining the results of instances with 50 nodes and 100 nodes of

DLPL instances, our hyper-heuristic with naive Bayes outperforms our hyper-heuristic without

naive Bayes.

On the OR library instances where CPLEX has reached feasible solution in Table 5.5, our

hyper-heuristic with naive Bayes achieved an average deviation of -7.3% as against the average

deviation of -5.41% of GA2 and -7.06% of SS2 from the CPLEX solution. On the same set

of instances, the deviation achieved by our hyper-heuristic without naive Bayes (-7.05%) is

slightly worse as compared to that of the SS2(-7.06%), but still better than that of the GA2

(-5.41%). Overall, our hyper-heuristic with naive Bayes performed better than GA2, SS2 and

hyper-heuristic without naive Bayes on the instances where CPLEX has reached a feasible

solution. On the OR library instances where CPLEX has not reached a feasible solution in Table

5.6, our hyper-heuristic approach with naive Bayes and without naive Bayes have performed

better than GA2, SS2.

The effectiveness of using naive Bayes can be observed from the improved overall solution

quality and reduced computation time as compared to when there is no naive Bayes classifier

as can be observed from the overall average deviations and CPU times reported in Tables 5.4,

5.5 and 5.6. The system configuration used for executing our approach is different from the

one used in [142] and hence we can’t directly compare the execution times. However, from

the overall execution times it is clear that our proposed hyper-heuristic with naive Bayes and

without naive Bayes are slower in comparison to the existing approaches of GA2 and SS2.

99

5. RELIABILITY P -MEDIAN PROBLEM

Table 5.4: Comparison of results given by the hyper-heuristic with GA and SS (DLP Library)

%Deviation CPU Time
N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)

50 5 0.77 1.01 0 0 0.33 0.29 0.39 0.41
50 10 2.06 0.48 0 0.21 8.21 0.56 3.03 1.96
50 15 0.36 0.36 0.06 0.06 2.27 1.1 5.56 3.76

TOTAL 50 1.07 0.62 0.02 0.09 3.61 0.65 2.99 2.04

100 5 0.37 0.46 -0.53 -1.02 1.82 1.54 1.67 1.05
100 10 -0.43 -1.22 -3.59 -3.55 12.46 6.6 16.00 12.82
100 15 -1.23 -0.95 -2.48 -2.93 20.47 18.4 29.42 33.63

TOTAL 100 -0.43 -0.57 -2.2 -2.5 11.59 8.85 15.70 15.83

OVERALL 0.32 0.02 -1.09 -1.21 7.60 4.75 9.35 8.94

Table 5.5: Comparison of results given by the hyper-heuristic with GA and SS (OR Library:
Instances where CPLEX has reached a feasible solution)

%Deviation CPU Time
N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)

100 5 0 0 0 0 0.08 0.13 0.02 0.01
100 10 0 0.03 0 0 2.3 0.52 1.49 0.92
100 20 0 0.43 1.25 0 45.42 13.62 44.60 23.15
100 20 0.99 0.91 1.31 0.81 45.62 4.36 30.59 30.85
100 33 0.14 0.46 0.02 0.02 33.09 10.18 77.64 72.05

TOTAL 100 0.22 0.37 0.52 0.17 25.30 5.76 30.87 25.4

200 5 0 0 0 0 0.42 0.50 0.05 0.03
200 10 0 0.04 0 0 18.93 6.59 5.42 13.41
200 20 -9.74 -9.88 -9.97 -9.97 103.36 47.32 24.84 14.57
200 40 6.22 1.78 1.56 1.33 174.7 92.76 81.47 95.00
200 67 0.9 0.29 0.38 0.91 206.21 90.94 110.68 113.86

TOTAL 200 -0.52 -1.55 -1.61 -1.55 100.72 47.62 44.49 47.37

300 5 0 0 0 0 0.76 1.11 112.09 0.06
300 10 0 0 0 0 28.69 4.98 52.52 3.33
300 30 -83.74 -84.75 -84.55 -84.54 146.6 135.67 112.09 66.11
300 60 -21.4 -31.67 -31.17 -32.23 238.9 227.32 265.88 257.56
300 100 14.08 0.38 1.92 0.21 334.84 339.61 341.88 370.53

TOTAL 300 -18.21 -23.21 -22.76 -23.31 149.96 141.73 176.89 139.52

400 5 0 0 0 0 3.45 2.05 0.19 0.11
400 10 -0.27 -0.25 -0.26 -0.26 37.1 15.10 11.33 39.78
400 133 -9.98 -11.89 -14.43 -14.92 349.4 559.20 725.89 578.74

TOTAL 400 -3.42 -4.05 -4.90 -5.06 129.98 192.12 245.80 206.21

500 5 0 0 0 0 3.66 3.2 0.29 0.17

OVERALL -5.41 -7.06 -7.05 -7.3 93.34 81.85 105.21 88.43

100

5.6 Conclusions

Table 5.6: Comparison of results given by the hyper-heuristic with GA and SS (OR Library:
Instances where CPLEX has not reached a feasible solution)

%Deviation CPU Time
N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)

400 40 23.57 2.59 5.80 0.95 202.77 211.21 189.09 146.20
400 80 28.83 1.18 0.48 1.08 281.02 375.76 426.81 261.49

TOTAL 400 26.20 1.88 3.14 1.01 241.9 293.48 307.95 203.85

500 10 0.13 0 0.24 0.24 69.35 43.37 75.24 12.38
500 50 10.07 1.52 -0.09 0.04 260.82 311.99 269.57 322.40
500 100 27.25 0.45 -3.33 -1.87 286.73 533.27 651.79 621.57
500 167 6.99 1.82 4.51 4.04 561.21 654.99 1037.61 859.36

TOTAL 500 11.11 0.95 0.33 0.61 294.53 385.9 508.55 453.92

600 5 0 0 0 0 3.48 4.44 1.22 0.48
600 10 0.46 0 -0.01 -0.01 58.20 19.87 24.03 1.52
600 60 14.37 3.13 -0.88 -2.45 264.49 407.79 448.91 311.17
600 120 25.53 1.94 2.49 -1.71 525.04 677.22 754.92 1174.38
600 200 24.91 1.02 -0.24 -0.14 1021.13 977.4 2451.07 2078.27

TOTAL 600 13.05 1.22 0.27 -0.86 374.47 417.34 736.03 713.16

700 5 0 0 0.01 0.01 5.48 6.09 0.58 0.33
700 10 0.2 0 0.26 0.71 72.63 23.66 13.83 87.43
700 70 11.38 4.76 0.95 -0.02 366.20 461.3 603.92 535.99
700 140 30.47 0.82 0.78 0.78 744.83 921.46 1526.23 1227.65

TOTAL 700 10.51 1.39 0.50 0.37 297.28 353.13 536.14 462.85

800 5 0 0 0 0 9.13 7.86 4.31 1.28
800 10 0.34 0.01 0 0 72.55 38.89 9.09 5.34
800 80 23.69 0.9 3.62 -1.99 370.13 590.44 538.19 787.29

TOTAL 800 8.01 0.3 1.21 -0.66 150.6 212.39 183.86 264.64

900 5 0 0 -0.01 -0.01 14.54 11.13 0.94 0.55
900 10 0.45 0.13 0.24 0.22 58.91 70.84 23.22 91.4
900 90 6.53 1.21 -1.04 0.64 453.55 634.3 910.95 680.72

TOTAL 900 2.33 0.45 -0.27 0.28 175.66 238.75 311.70 257.56

OVERALL 11.2 1.02 0.66 0.02 271.53 332.53 474.36 438.44

5.6 Conclusions

In this chapter, we have proposed a hyper-heuristic based approach with naive Bayes classifier

for the reliability p-median problem (RpMP). We have compared the results of our approach with

the state-of-art approaches available in the literature [142]. The effectiveness of our approach

can be observed in terms of the solution quality. However, our approach is slower compared to

the existing approaches. Ours is the maiden hyper-heuristic approach proposed for solving the

RpMP.

101

Chapter 6

Reliable p-median problem with
at-facility service

6.1 Introduction

In this chapter we discuss another variant of the p-median problem which considers the facil-

ity failures, namely reliable p-median problem with at-facility service (RpMF). Just like the

reliability p-median problem (RpMP) which is dicussed in the previous chapter, RpMF is also

concerned with locating p facilities in such a manner that minimizes the total cost while taking

into consideration the cost of facility failures. However, RpMF differs from RpMP in that for

each customer considering the current facility failure, the next closest facility from the failed

facility is considered as the backup facility in RpMF. On the other hand, in RpMP when a

facility assigned to the customer fails, the next closest facility from the customer’s starting

location is considered as the backup facility. Consider the scenarios where the service is given

at the customer’s location or even though the service is at the facility and the customer knows

about the facility failure then in both these cases the customer can be serviced from the next

closest facility from the customer’s starting location. RpMP comes under this category of facility

location models. There can be scenarios where the service is at the facility and the customer

doesn’t know about the facility status until he/she visits it. In such cases, the customer chooses

a new facility with respect to the location of the currently inoperable facility, rather than from

the customer’s starting position. RpMF comes under this latter category of facility location

models. Berman et al. [180] discussed this model of locating facilities where facilities may be

inoperable and the customers don’t have prior knowledge about the facility status.

102

6.1 Introduction

In real world, such scenarios arise in several day-to-day situations. Some of examples of

this model finding its applications in daily life are as follows: bank customers withdrawing cash

by visiting their nearest ATM point on regular basis which may not be servicing customers at a

given time due to maintenance of the machine, people visiting petrol filling stations that have

long waiting queues or shortage of petrol, patients visiting hospitals in emergency condition

and are forced to seek treatment elsewhere due to long waiting times and the other example

being customers visiting retail stores to purchase a necessary item which may not be available

in the store. In all the just mentioned examples, we can assume that the customers do not

have complete information about the facility status, and hence, visit the other facilities in trial

and error method usually based on shortest distance from the current location till successfully

receiving the service at a functioning facility or in some cases even stop visiting facilities after

some unsuccessful attempts. When identifying the next facility to visit after a facility failure,

a customer may either chose the next nearest facility as used in [180] or apply an optimized

search scheme based on the less expected distance to be traveled before receiving the desired

service. As an application of optimized search scheme, consider the case of military operations

in a war situation where due to lack of proper communication military units are wanting to

reach facilities that may be under attack and unable to provide services. In such scenarios, there

should be well thought through contingency plans with an aim to reduce the expected travel

distance of the troops thereby improving the chance of survival of the army personnel. Consider

the other application, the case of natural disasters like earthquake or floods in an area. In such

cases, it is difficult to get the live information due to damage of communication channels or

failure of facilities. And also the emergency facilities located in such places may get damaged.

Hence, there should be contingency plans in place to efficiently carry out the rescue operations.

In [181], Albareda-Sambola et al. worked on the reliable p-median problem with at facility

service (RpMF) with the assumption that the customers do not have complete information

about the facility failures and that the customers follow an optimized search scheme to find a

facility to receive service. Albareda-Sambola et al. came up with two different mathematical

programming formulations for RpMF which are termed F1, F2, and also a network flow model

based matheuristic for the RpMF [181]. The first mathematical formulation, F1, is the general

case where site-dependent failure probabilities of the facilities are considered. The second

mathematical formulation, F2, is termed as ‘binary formulation for the homogeneous case’ and

assumes equal or homogeneous probabilities of failure for all the failable facilities. Hence, F2

is not valid for the case of non-homogeneous probabilities of failure. The other formulation

103

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

considered in [181] is termed as ‘flow approximation to the RpMF’ or ‘formulation FP’. This

formulation, FP, assumes that a customer can revisit any of the opened p facilities, and hence,

doesn’t require to maintain the path of the customer. Between the formulations F1 and F2,

F2 has higher space requirements and generates solutions in reasonable times whereas F1 can

be used to solve larger instances as it has less memory requirements but takes long execution

times. On the other hand, FP generates heuristic solutions to the RpMF and has much less space

requirements than F1 and can be solved in less execution times than F2.

Consider Figure 6.1 that depicts a sample network with the number of nodes n = 25 and

number of facilities p = 5 that illustrates the RpMF model considering a facility failure. We

have shown the facilities in rectangle shape and marked in red color for ease of identification.

The sub-figure 6.1a shows assignment of nodes to their nearest facilities. Nodes B,C,D,E, F

are assigned to their nearest facility A. Nodes G,H, J,K are assigned to facility I . Similarly

nodes L,M,O, P,Q are assigned to facility N and nodes R, T, U, V are assigned to facility S.

Finally, nodes W,Y are assigned to facility X . Suppose, if the facility X fails then all the nodes

that are assigned to it, namely W,Y including the facility X are now re-assigned to the next

closest functioning facility from X which is S as shown in sub-figure 6.1b. The re-assignment

of nodes W,X, Y to the new facility is depicted in dotted lines in sub-figure 6.1b.

In the example of Figure 6.1 between the two functioning facilities A and S, the starting

location of customer W is closer to facility A than facility S. If it were RpMP, then W

would have been re-assigned to A instead of S. So, this illustration explains that even though

RpMF and RpMP are related, they are two different facility location models. The former is

appropriate when service is provided at the facility and a customer can not know the status

(failed/operational) of the facility till he/she visits it. On the other hand, if customer can know

the status of the facility from his/her location or when service is provided at customer’s location

then RpMP is appropriate.

The three mathematical programming based approaches, viz. F1, F2 and FP presented

in [181] are the only approaches available in the literature for RpMF. In spite of its practical

applicability, RpMF remains an understudied problem. No problem-specific heuristic and

metaheuristic approaches exists in the literature for RpMF. This has motivated us to work on

RpMF and develop the approaches presented in this chapter. We have proposed two multi-start

hyper-heuristic based approaches to solve the RpMF and evaluated the performance of our

approaches on the same datasets as used in [181]. We have compared our results with the

optimal or best known solution values reported by [181]. We have shown the effectiveness of

104

6.1 Introduction

our proposed approaches as our approaches obtain high quality solution in much less execution

times for all instances.

The rest of this chapter is organized in the following manner: Section 6.2 gives the formal

mathematical definition of RpMF, Section 6.3 describes the proposed approaches in detail,

Section 6.4 presents the computational results and analyses them. Finally, Section 6.5 concludes

the chapter by presenting the summary of contributions made.

I

K

G

OM

Q

N

J

D

A

F

E

B

C

P

W

X

Y

T

R

S

V

U

H
L

(a) Node assignments when all the five facilities are functioning

I

K

G

OM

Q

N

J

D

A

F

E

B

C

P

W

X

Y

T

R

S

V

U

H
L

(b) Node assignments when one facility fails

Figure 6.1: Illustration of reliable p-median problem with at facility service having p = 5 facilities

105

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.2 Formal problem definition

We have given the formal definition of RpMF using notational conventions similar to the one

used in [181]. We have provided the summary of key notations in Table 6.1.

Table 6.1: Summary of key notations

Notation Meaning
A Set of clients or demand points which is also the set of potential facility locations
F Subset of potential facility locations which may fail
NF Subset of potential facility locations which will never fail
hi Demand associated with each client or demand point i ∈ A
dij Shortest distance between two locations i, j
qj Probability of failure of the facility j ∈ F
p Total number of opened facilities

The other required variables si, xijk and yijk are defined as below,

si =

{
1 if the location i is selected to locate a facility, i ∈ A
0 Otherwise

xijk =

{
1 if customer i passes from location j to location k, i, j, k ∈ A
0 Otherwise

yijk ∈ [0, 1] : probability of the edge (j, k) to be in the path of customer i

Using the notations given in Table 6.1 and the variables si, xijk and yijk, RpMF can be

mathematically formulated [181] as follows:

min
∑
i∈A

hi
∑
j∈A

∑
k∈A

djkyijk (6.1)

subject to ∑
j∈A

sj = p (6.2)

s1 = 1 (6.3)

∑
j∈A

xijk ≤ sk i, k ∈ A (6.4)

106

6.2 Formal problem definition

∑
k∈A

xijk ≤ 1 i, j ∈ A (6.5)

∑
k∈A

yijk = qj
∑
k′∈A

yik′j i ∈ A, j ∈ F, i 6= j (6.6)

∑
j∈A,j 6=i

yiik = (1− si) i ∈ NF (6.7)

∑
j∈A,j 6=i

yiik = 1− (1− qi)si i ∈ F (6.8)

yijk ≤ xijk i, j, k ∈ A (6.9)

sj , xijk ∈ {0, 1} i, j, k ∈ A (6.10)

yijk ∈ [0, 1] i, j, k ∈ A (6.11)

Equation 6.1 represents the objective function of the problem. Constraint in equation 6.2

makes sure that exactly p facilities are located. Equation 6.3 defines a dummy facility being

located at the 1st node which is always non-failable and is used to serve customers which are

not served by any of the original p facilities. By assuming the existence of a dummy facility,

the problem actually becomes the one concerning locating p + 1 facilities in a n + 1-node

network. But, following the traditional representation as mentioned in [181], we don’t include

the dummy facility in both the total number of nodes in the network and the number of facilities

to be located. Constraint in equation 6.4 requires that a customer i can reach a facility k atmost

once. Similarly, the constraint in equation 6.5 requires that a customer i can leave a facility j

atmost once. Constraint 6.6 enforces that the probability of a customer i leaving a facility j is

the product of failure probability of facility j, qj times the probability of customer i reaching

the facility j. Constraints 6.7, 6.8 give the probabilities corresponding to customer i leaving its

home facility when it is non-failable and failabale respectively. Constraint 6.9 makes sure that

the values of the x, y variables are consistent. Constraint 6.10 enforces the binary nature of the

s, x variables, whereas constraint 6.11 provides the range of probability values for the variable

y.

107

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.3 Proposed approach

This section describes our proposed two hyper-heuristic approaches for the RpMF. In the

subsections that follow, we will describe various features of our approaches.

6.3.1 Solution representation and fitness

A solution to the RpMF is represented as a set of p nodes where facilities can be located. We

have directly used the objective function given in equation 6.1 as the fitness function.

6.3.2 Initial solution generation

To generate an initial solution, we have employed the semi greedy method introduced in [182]

for p-center problem which makes use of critical distances. Critical distance is defined as the

maximum distance among all the distances from nodes to their respective nearest facilities. The

node whose distance to its nearest facility gives the critical distance is called the critical node.

Just like in [182], we have done pre-processing on the given input data. The pre-processing is a

two step procedure which is explained below:

• As part of the first step of the pre-processing, we find the shortest distance from each

node to all other nodes using the Floyd–Warshall algorithm, represented by the matrix

M . We sort elements in each row of the distance matrix M , along with their respective

indices in non-decreasing order and generate two new matrices Msort and Mcircles. The

row-wise sorted elements of M are stored in the matrix Msort, while row i in the matrix

Mcircles contains the information on the 1st, 2nd, . . . , nth nearest node to node i. For the

sake of explanation, consider the following example with a total of n = 5 nodes.

M =


0 4 7 9 2
4 0 3 8 1
7 3 0 6 5
9 8 6 0 7
2 1 5 7 0


The matrices Msort and Mcircles corresponding to matrix M above are

108

6.3 Proposed approach

Msort =


0 2 4 7 9
0 1 3 4 8
0 3 5 6 7
0 6 7 8 9
0 1 2 5 7



Mcircles =


1 5 2 3 4
2 5 3 1 4
3 2 5 4 1
4 3 5 2 1
5 2 1 3 4


• As part of the second step of the pre-processing, we calculate a new matrix Mradius. We

set each element in the principal diagonal of Mradius to 1. Every other element (i, j) of

Mradius where i 6= j gives the number of nodes which are at a lesser distance from the

node i than the distance between the nodes i and j. TheMradius matrix for the considered

example is given below:

Mradius =


1 2 3 4 1
3 1 2 4 1
4 1 1 3 2
4 3 1 1 2
2 1 3 4 1


In order to generate an initial solution, the first facility is selected randomly and added to

the initial solution. The remaining p − 1 facilities are added to the initial solution iteratively

one-by-one. To select the next facility, we find the critical distance and also identify the critical

node. Considering the critical distance as radius and the critical node as the center, a circle is

constructed. From all the nodes within this circle, a node is randomly selected and is added to

the initial solution as the next facility. To achieve the just mentioned functionality, we make

use of the matrices constructed in the pre-processing step. For a given pair of critical node x

and its nearest facility y, l = Mradius(x, y) gives the number of nodes which are within the

critical distance from the critical node. These l nodes are the first l elements in the ith row of the

Mcircles matrix. We randomly select a number r between 1, l and make the node Mcircles(i, r)

as the next facility. So, we can summarize that given the critical node x and its nearest facility

y, the new facility y′ is identified as: y′ = Mcircles(x, rand(1,Mradius(x, y))). After adding a

109

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

new facility to the solution, we find the latest critical distance and the corresponding critical

node and proceed to identify the next facility. This procedure is repeated till we get p facilities

in the initial solution.

6.3.3 Hyper-heuristic framework

We have proposed two multi-start hyper-heuristic approaches for the reliability p-median prob-

lem with at-facility service (RpMF). Except for the selection mechanism both the proposed

approaches follow the same framework. In each restart of the hyper-heuristic, we generate an

initial solution which acts as the starting current solution, Solcur and then an iterative process

ensues for Nitrs iterations. In each of the Nitrs iterations, we generate a new solution by making

use of the one or more of the five low-level heuristics which are applied as per the selection

mechanism given in subsection 6.3.6. We have described each of the five low-level heuristics

which we have implemented as part of the proposed approach in subsection 6.3.4. In each of the

low-level heuristics, we have used the same degree of perturbation, Dprt. The newly generated

solution Sol which is obtained using low-level heuristics either replaces the current solution

Solcur or is discarded as per the acceptance criteria mentioned in subsection 6.3.7. We compare

the fitness of the Solcur with that of the best solution found so far. If the fitness of Solcur is

less than that of the best solution Solbest, then Solcur replaces the Solbest. Then, Solcur is

given as input to the next iteration. After applying the low-level heuristics for a total of Nitrs

iterations, at the end of the restart we try to further minimize the fitness of Solbest by performing

local search operation which is explained in subsection 6.3.5. Then one restart iteration of the

hyper-heuristic is complete and the next restart of the hyper-heuristic starts. This procedure

stops after Nrst restarts. At the end of the algorithm, we return the the best solution as the

output of the proposed approach. Algorithm 10 presents the common framework of both our

proposed hyper-heuristics where the function Selection_Mechanism() distinguishes the two

proposed approaches. The function Selection_Mechanism() takes current solution Solcur
and the set of low-level heuristics SLH as inputs and returns a solution Sol.

6.3.4 Low level heuristics

We have used the following five low-level heuristics in our hyper-heuristic approaches:

• LH1: Remove randomly and add greedily

In this low level heuristic, we randomly remove one facility at a time from the given

110

6.3 Proposed approach

Algorithm 10: Hyper-heuristic approach for the RpMF
Input: List of parameters for the hyper-heuristic and an instance of RpMF
Output: Overall best solution found
Solbest ← ∅ ;
while (itrrst ≤ Nrst) do

Solinit ← Generate initial solution;
Solcur ← Solinit;
while (iter ≤ Nitrs) do

Sol← Selection_Mechanism(Solcur, SLH);
if (Sol is better than Solcur) then

Solcur ← Sol;

if (Solcur is better than Solbest) then
Solbest ← Solcur;

Solbest ← Local_search(Solbest);

return Solbest;

solution Sol, till a total of x facilities are removed. The value of x is calculated as a

fraction of the total number of facilities p, x = p ∗ Dprt. After removing x facilities

randomly, we greedily add the same x number of facilities to the solution Sol. Out of all

the non-facility nodes, we select a node whose addition to Sol causes the least increase

in the fitness value and add it to the solution Sol. This aforementioned step is repeated

iteratively till x facilities are added to the solution Sol and there are p facilities at the end

of this heuristic.

• LH2: Add randomly and remove greedily

In the second low level heuristic, from the non-facility nodes, we randomly add x new

facilities to the given solution Sol. x is a fraction of the total number of facilities p,

x = p ∗Dprt. After adding x new facilities, the total number of facilities in Sol is now

equal to p+ x. After this, we greedily remove one facility at a time from Sol till there are

only p facilities remaining. Out of the p+ x facilities in Sol, we select a facility whose

removal causes maximum reduction in the objective value and remove that facility from

Sol. We continue to remove facilities just like in the aforementioned greedy method and

stop once a total of x facilities are removed.

• LH3: Remove greedily and add greedily

As part of the third low level heuristic, from the given solution Sol, we greedily remove

one facility at a time till a total of x facilities are removed. Just like in the other low level

111

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

heuristics, x is calculated as x = p ∗Dprt. From the p facilities in Sol, we select a facility

whose removal causes maximum reduction in the objective value and remove that facility

from Sol. Once the x facilities are removed, we greedily add one facility at a time till

there are p facilities in the resulting solution. For this, from the list of non-facility nodes

we select a node whose addition to Sol causes the least increase in the fitness value and

add it to the solution Sol. We continue to add further facilities to Sol in the same manner

till there are total of p facilities in Sol.

• LH4: Add greedily and remove greedily

As part of the fourth low level heuristic, to the given solution Sol which has p facilities,

we greedily add x additional facilities. In this heuristic also, we take the value of x as a

fraction of total number of facilities p, x = p ∗Dprt. From the list of non-facility nodes

we select a node whose addition to Sol causes the least increase in the current fitness

value and add it to the solution Sol. We add a total of x facilities in this manner. After this,

we iteratively remove the additional x facilities one at a time, in a greedy manner. From

the p+ x facilities in Sol, we select a facility whose removal causes maximum reduction

in the objective value and remove that facility from Sol. We continue to remove further

facilities from Sol in the same manner and stop when there are a total of p facilities

remaining in Sol.

• LH5: Remove randomly and add randomly

As part of the fifth low level heuristic, from the given solution Sol which has p facilities,

we randomly remove x facilities. Similar to other low level heuristics, in this heuristic

also we take the value of x as a fraction of total number of facilities p, x = p ∗ Dprt.

To the resulting solution Sol with p− x facilities, we add x new facilities by randomly

selecting one facility at a time from the non-facility nodes. This procedure stops when

there are a total of p facilities in the solution Sol.

6.3.5 Local search

At the end of every restart of the hyper-heuristic, we apply a local search operation on the best

solution found so far, Solbest. As part of the local search, we have performed a 1-1 exchange

operation. In the 1-1 exchange, we have followed a best replacement strategy where for each

facility i in Solbest, we search for a node from among all the n− p non-facility nodes to replace

i that results in maximum reduction in the objective value of Solbest [178]. Once a facility is

112

6.3 Proposed approach

replaced from the solution Solbest with a new node, it may get reintroduced into the solution at a

later index. For any facility in the solution Solbest, if we are not able to find a replacement node

that reduces the objective value, then such a facility remains in the solution. Then, we consider

the next facility in Solbest for replacement. The local search is complete when each of the p

facilities in Solbest is considered for replacement. If overall best solution remains unchanged

during a restart and previous application of local search then local search is not applied.

6.3.6 Selection methodology

There are many selection methodologies that are proposed in the literature such as random

selection, random gradient selection, random permutation, random permutation gradient, greedy

selection [74]. Random selection method randomly selects one low-level heuristic at each

step of the search process. Random gradient selection is an extension of the random selection

technique which applies the randomly selected heuristic in a loop until there is no improvement.

Random permutation method makes a random ordering of all the available low-level heuristics

and in each step of the search operation applies one low-level heuristic in the newly generated

order. Random permutation gradient selection is an extension of random permutation selection.

Finally, greedy selection is an exhaustive method that applies all the low-level heuristics and

the heuristic that produces the best solution among all the low-level heuristics is considered as

selected. We have used random selection and greedy selection methods as part of our proposed

approach which are suitable for the given less number of low-level heuristics, whereas the other

selection mechanisms are useful when the number of low-level heuristics is large [183]. In

this chapter, we refer to the hyper-heuristic version with random selection as HH_Rnd and

hyper-heuristic version with greedy selection as HH_Grd.

6.3.7 Acceptance criteria

In each step of the search operation, whether to accept the newly generated solution or not is

decided based on the acceptance criteria. Several acceptance criterias have been mentioned in

the literature [74]. We have experimented with two acceptance criterias namely all acceptance

(AA) and only improvement (OI). We obtained better results with the OI criteria which we have

reported in the Section 6.4.

113

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.4 Computational results

We have implemented both our hyper-heuristic based approaches for the RpMF in C and

performed all our experiments on a Linux based Intel Core i5 7500 system with 8 GB memory

running at 3.40 GHz. Following are the various parameters of the hyper-heuristics and their

corresponding values: Nrst = 10, Nitrs = 10, degprt = 0.5. We have empirically picked

these parameter values after a lot of experimentation. We have evaluated the performance of

our two approaches on the same datasets as used in [181] and compared the results obtained

with the optimum or best known objective values reported by state-of-the-art methods used

for solving the RpMF in [181]. The datasets used in [181] are derived from the base instances

used in [141]. The datasets include homogeneous and non-homogeneous instances. In the

homogeneous instances each failable facility has equal, uniform probability of failure q = 0.05.

In the non-homogeneous instances, the probability of failure varies from facility to facility.

Within the homogeneous instances, there are two groups of instances namely Type I and Type

II. Type I instances are derived from the base instances 49UFLP, 88UFLP, 150UFLP which

contain the number of nodes in the set {49, 88, 150}, where each node represents a city in the

United States. The demand associated with each city is taken proportional to the corresponding

city population. The cost of a customer not being served in Type I instances is taken as 104.

In Type I instances, only the dummy facility to which all unserved customers are assigned is

non-failable, and every other facility is considered as failable. Type II instances are derived from

the base instances 50EucUFLP, 100EucUFLP which contain randomly generated datasets with

the number of nodes 50 and 100 located in the range of [0, 1]x[0, 1]. The demand associated

with each node in the Type II instances is a random number in the range [0, 1000]. Similarly,

the cost of a customer not being served in Type II instances is taken as 10.

As part of the experimentation in [181], they have randomly selected subsets of nodes from

the original Type I, Type II instances of [141] and generated smaller instances with the number

of nodes n ∈ {20, 25, 30, 35, 40, 45}. The number of facilities to be located is considered

from the set p ∈ {4, 5, 6}. For every original instance of the original datasets namely 49UFLP,

50EucUFLP, 88UFLP, 100EucUFLP, 150UFLP and the set of (n, p) values, three new instances

are generated accounting to a total of 270 instances which include 162 Type I and 108 Type

II homogeneous instances. Similarly for the non-homogeneous case, three new datasets are

generated from each of the original instances 49UFLP, 50EucUFLP, 88UFLP, 100EucUFLP,

150UFLP with the number of nodes n ∈ {20, 25} and the number of facilities to be located

114

6.4 Computational results

p is fixed as 4. The value of the failure probability q is randomly taken from 4 different

intervals m ± s with m ∈ {0.03, 0.07} and s ∈ {0.003, 0.025} resulting in a total of 120

non-homogeneous instances which include 60 instances each with the number of nodes 20 and

25.

We have obtained instance by instance results from the first author of [181] and utilized

these results for comparisons. For the homogeneous datasets, Table 6.2, and Table 6.3 present

the average percentage deviation of our results from the optimum values for Type I, Type II

instances respectively. In both these tables, the first column named n provides the number of

nodes in the instance. The second column named p gives the number of facilities to be located.

The third column named Dataset represents the original dataset from which the instance is

derived. The fourth column gives the average of the three percentage deviations obtained on

the three instances having the same values of (n, p) by HH_Rnd, whereas the fifth column

gives the similar average deviations obtained by HH_Grd. As mentioned earlier, there are

three instances for each (n, p) dimension, and we have reported the average deviation of all the

three instances of a given (n, p) dimension which are derived from a given original instance.

For example, given the original instance 150UFLP and the (n, p) combination of n = 20 and

p = 4, the three generated instances are: data150UFLP_4_20_1.dat, data150UFLP_4_20_2.dat,

data150UFLP_4_20_3.dat. We have obtained the objective values of our approach on solving

the RpMF on these three instances and found the percentage of deviation from the optimum for

each of these three instances. The averages of these three percentage deviations for HH_Rnd

and HH_Grd are reported in the fourth and and fifth columns of Table 6.2, and Table 6.3. The

sixth, seventh and eighth columns in these two tables report the execution times (in seconds)

taken by the CPLEX for model proposed in [181] and our HH_Rnd, HH_Grd variants

respectively. Both HH_Rnd and HH_Grd obtained the optimal objective values on 125 of

the 162 Type I homogeneous instances. Similarly, we obtained optimal objective values on 101

of the 108 Type II homogeneous instances. Overall, we have obtained the optimal values on 226

out of a total of 270 instances of homogeneous instances combining both the Type I and Type

II instances. Though our approaches are executed on a better computer system compared to

the one used by Albareda-Sambola et al.[181] (A system with 3.16GHz Intel Core Duo E8500

CPU and 3.4GB RAM Vs a system with 3.40GHz Intel Core i5 7500 CPU and 8 GB RAM used

to execute our approaches), it can be observed from the execution times reported in Table 6.2

and Table 6.3 that our approaches take negligible execution times on almost all the instances,

115

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

thereby proving computational efficiency of our proposed HH_Rnd and HH_Grd. Between

HH_Rnd and HH_Grd, HH_Rnd is faster as expected.

Table 6.2: HH_Grd results on Homogeneous Type I instances

n p Dataset %DevHH_Rnd %DevHH_Grd TimeCPLEX TimeHH_Rnd TimeHH_Grd

20

4
150UFLP 0.00 0.00 0.34 0.00 0.01
49UFLP 0.00 0.00 0.56 0.00 0.03
88UFLP 0.10 0.10 0.59 0.00 0.03

5
150UFLP 0.00 0.00 0.44 0.01 0.03
49UFLP 0.00 0.00 1.30 0.01 0.06
88UFLP 0.00 0.00 0.76 0.01 0.06

6
150UFLP 0.00 0.00 0.54 0.01 0.04
49UFLP 0.00 0.00 0.91 0.02 0.09
88UFLP 0.00 0.00 0.94 0.02 0.08

25

4
150UFLP 0.00 0.00 0.70 0.00 0.02
49UFLP 0.01 0.01 3.49 0.01 0.04
88UFLP 0.00 0.00 2.08 0.01 0.04

5
150UFLP 0.09 0.09 1.09 0.01 0.03
49UFLP 0.00 0.00 2.65 0.02 0.08
88UFLP 0.00 0.00 1.65 0.02 0.08

6
150UFLP 0.00 0.00 1.15 0.01 0.04
49UFLP 0.01 0.01 3.05 0.03 0.11
88UFLP 0.00 0.00 2.18 0.02 0.11

30

4
150UFLP 0.00 0.00 1.30 0.01 0.03
49UFLP 0.01 0.01 6.54 0.01 0.05
88UFLP 0.00 0.00 3.05 0.01 0.05

5
150UFLP 0.07 0.07 2.00 0.01 0.04
49UFLP 0.00 0.00 7.61 0.02 0.12
88UFLP 0.00 0.00 3.30 0.02 0.11

6
150UFLP 0.00 0.00 2.23 0.01 0.05
49UFLP 0.00 0.00 8.29 0.03 0.15
88UFLP 0.00 0.00 9.13 0.03 0.16

35

4
150UFLP 0.04 0.04 2.34 0.01 0.03
49UFLP 0.03 0.03 6.19 0.01 0.08
88UFLP 0.00 0.00 15.60 0.01 0.08

5
150UFLP 0.07 0.07 3.19 0.01 0.07
49UFLP 0.01 0.01 22.18 0.04 0.16
88UFLP 0.00 0.00 14.40 0.03 0.14

6
150UFLP 0.07 0.07 4.13 0.02 0.07
49UFLP 0.00 0.00 33.31 0.04 0.20
88UFLP 0.00 0.00 13.54 0.04 0.22

40

4
150UFLP 0.13 0.13 3.78 0.01 0.05
49UFLP 0.05 0.05 31.43 0.02 0.10
88UFLP 0.00 0.00 10.65 0.02 0.09

5
150UFLP 0.13 0.13 6.49 0.01 0.06
49UFLP 0.00 0.00 26.85 0.04 0.17
88UFLP 0.00 0.00 40.54 0.04 0.18

6
150UFLP 0.06 0.06 6.35 0.03 0.07
49UFLP 0.00 0.00 51.68 0.06 0.24
88UFLP 0.00 0.00 26.03 0.05 0.24

45

4
150UFLP 0.07 0.07 12.83 0.01 0.05
49UFLP 0.01 0.01 127.74 0.02 0.10
88UFLP 0.01 0.01 35.48 0.02 0.11

5
150UFLP 0.02 0.02 7.65 0.02 0.08
49UFLP 0.00 0.00 77.54 0.05 0.23
88UFLP 0.00 0.00 105.20 0.05 0.23

6
150UFLP 0.07 0.07 11.59 0.02 0.10
49UFLP 0.00 0.00 108.41 0.07 0.34
88UFLP 0.00 0.00 33.07 0.07 0.34

116

6.4 Computational results

Table 6.3: HH_Grd results on Homogeneous Type II instances

n p Dataset %DevHH_Rnd %DevHH_Grd TimeCPLEX TimeHH_Rnd TimeHH_Grd

20

4
100EuclUFLP 0.00 0.00 0.77 0.01 0.03
50EucUFLP 0.00 0.00 0.63 0.01 0.03

5
100EuclUFLP 0.00 0.00 1.94 0.01 0.07
50EucUFLP 0.00 0.00 1.42 0.01 0.07

6
100EuclUFLP 0.05 0.00 1.29 0.02 0.10
50EucUFLP 0.00 0.00 2.73 0.02 0.11

25

4
100EuclUFLP 0.00 0.00 3.62 0.01 0.05
50EucUFLP 0.00 0.00 9.51 0.01 0.05

5
100EuclUFLP 0.00 0.00 8.24 0.02 0.10
50EucUFLP 0.00 0.00 9.71 0.02 0.11

6
100EuclUFLP 0.00 0.00 3.33 0.03 0.14
50EucUFLP 0.00 0.00 7.63 0.03 0.15

30

4
100EuclUFLP 0.00 0.00 22.57 0.01 0.06
50EucUFLP 0.00 0.00 13.84 0.01 0.06

5
100EuclUFLP 0.00 0.00 22.99 0.02 0.13
50EucUFLP 0.00 0.00 14.48 0.02 0.13

6
100EuclUFLP 0.00 0.00 34.80 0.03 0.18
50EucUFLP 0.00 0.00 15.56 0.04 0.19

35

4
100EuclUFLP 0.00 0.00 26.45 0.01 0.08
50EucUFLP 0.00 0.00 58.58 0.01 0.08

5
100EuclUFLP 0.00 0.00 66.86 0.03 0.16
50EucUFLP 0.01 0.01 74.94 0.03 0.18

6
100EuclUFLP 0.00 0.00 34.42 0.04 0.23
50EucUFLP 0.01 0.01 81.11 0.05 0.25

40

4
100EuclUFLP 0.00 0.00 40.59 0.02 0.11
50EucUFLP 0.00 0.00 154.16 0.02 0.11

5
100EuclUFLP 0.00 0.00 51.39 0.04 0.20
50EucUFLP 0.00 0.00 284.95 0.04 0.21

6
100EuclUFLP 0.00 0.00 32.13 0.06 0.28
50EucUFLP 0.00 0.00 156.18 0.06 0.29

45

4
100EuclUFLP 0.00 0.00 134.06 0.02 0.12
50EucUFLP 0.02 0.02 80.35 0.02 0.13

5
100EuclUFLP 0.00 0.00 115.33 0.05 0.25
50EucUFLP 0.00 0.00 269.34 0.05 0.25

6
100EuclUFLP 0.00 0.00 167.16 0.07 0.35
50EucUFLP 0.00 0.00 395.12 0.07 0.35

Apart from newly generated Type I, Type II homogeneous instances, Albareda-Sambola

et al. [181] have also experimented on large instances which are introduced by Snyder and

Daskin [141]. We have obtained these large instances from the repository provided by [141] and

reported the results obtained by our HH_Rnd and HH_Grd methods on these large instances

in the Table 6.4. For each of these 15 large instances, we generated the objective values using

the solutions which are provided by [181] and compared the solutions and objective values

obtained by our approach. In Table 6.4, first column gives the name of the dataset, second

column, n, is the number of nodes in the instance, third column, p, gives the number of facilities

117

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

to be located and the fourth, fifth columns give the percentage deviation of the results of our

proposed HH_Rnd and HH_Grd methods with respect to the best known solution reported

by [181] on the same instance. Columns six, seven and eight present the execution times (in

seconds) of CPLEX, HH_Rnd and HH_Grd respectively on each instance. As can be seen

from fourth and fifth columns in Table 6.4, out of the 15 instances, HH_Rnd obtained the

same or better objective values on 13 instances, whereas HH_Grd obtained the same or better

objective values on all the 15 instances when compared to the objective values of the best known

solutions reported by [181]. Compared to the proposed HH_Rnd, HH_Grd obtained better

objective values on 3 large instances. Both our proposed HH_Rnd, HH_Grd approaches

take much less execution times in comparison to the CPLEX , while HH_Rnd is the faster

approach between the two proposed approaches.

Table 6.4: HH_Grd results on Large Homogeneous instances

Dataset n p %DevHH_Rnd %DevHH_Grd TimeCPLEX TimeHH_Rnd TimeHH_Grd

49UFLP 49
5 0.00 0.00 94.33 0.06 0.23
10 0.00 0.00 90.44 0.35 1.51
20 0.00 0.00 28.80 4.06 17.39

50EucUFLP 50
5 -0.03 -0.03 174.00 0.06 0.26
10 -0.01 -0.01 59.23 0.40 1.87
20 -0.01 -0.01 26.94 4.81 19.82

88UFLP 88
5 0.00 0.00 7200.00 0.18 0.73
10 -0.30 -0.30 7200.00 1.18 4.44
20 0.00 -0.01 3522.53 12.67 51.50

100EucUFLP 100
5 0.69 0.00 7200.00 0.20 1.02
10 -0.19 -0.19 7200.00 1.39 6.40
20 -0.67 -0.67 7200.00 17.65 75.81

150UFLP 150
5 0.00 0.00 262.83 0.20 0.74
10 0.00 0.00 2044.42 0.52 1.97
20 0.14 0.00 1131.13 1.96 8.39

For the non-homogeneous datasets with the number of nodes, n = 20, the authors of [181]

have provided the optimum values for each instance. Whereas for the non-homogeneous datasets

with the number of nodes, n = 25, they have provided best known solution objective values.

In the Table 6.5 and the Table 6.6, we have presented the percentage deviation of our results

from the optimum and best known solution objective values for the instances with the number

of nodes 20, 25 respectively. In both these tables, first column, Dataset, represents the original

dataset from which the instances are generated. Columns 2, 3 give the average of percentage

deviations of all the three instances generated from the original instance having the probability

of failure q ∈ 0.03± 0.003, which are shown under the column title A that represents the range

of probability of failure. Columns 4, 5 give the results on instances having the probability of

118

6.4 Computational results

failure q ∈ 0.03 ± 0.025, and shown under the column title B. Similarly, columns 6, 7 give

the results on instances having the probability of failure q ∈ 0.07 ± 0.003, and shown under

the column title C. Finally, columns 8, 9 give the results on instances having the probability of

failure q ∈ 0.07± 0.025, that are shown under the column title D. On the non-homogeneous

datasets with 20 nodes and 4 facilities, both our proposed HH_Rnd and HH_Grd achieved

the optimum value on 45 out of 60 instances. Similarly, on the non-homogeneous datasets

with 25 nodes and 4 facilities, out of 60 instances HH_Grd achieved the best known solution

or improved the solution quality on 43 instances, while HH_Rnd achieved the best known

solution or improved the solution quality on 42 instances. Overall, HH_Grd obtained equal or

improved quality solutions as compared to the best known solutions on a total of 88 instances

out of a total of 120 non-homogeneous instances, while HH_Rnd obtained equal or improved

quality solutions as compared to the best known solutions on 87 instances. Table 6.7 presents the

medians of execution times (in seconds) of the proposed approaches HH_Rnd and HH_Grd

with respect to the CPLEX times from [181] for the non-homogeneous datasets. In Table 6.7,

1st column gives the ranges of probability of failure. Columns 2, 3 and 4 present the times of

CPLEX, HH_Rnd and HH_Grd for datasets with 20 nodes, while columns 5, 6, 7 present the

execution times (in seconds) of CPLEX, HH_Rnd and HH_Grd for datasets with 25 nodes.

Table 6.5: HH_Grd results on Non-Homogenous instances with n = 20 nodes and p = 4 facilities

A B C D
Dataset %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd

49UFLP 0.20 0.20 0.03 0.03 0.00 0.00 0.00 0.00
50EucUFLP 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00
88UFLP 0.43 0.43 0.22 0.22 0.18 0.18 0.50 0.50
100EuclUFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
150UFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.6: HH_Grd results on Non-Homogenous instances with n = 25 nodes and p = 4 facilities

A B C D
Dataset %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd %DevHH_Rnd %DevHH_Grd

49UFLP 0.22 0.22 0.16 0.16 -1.40 -1.40 0.00 0.00
50EucUFLP -0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
88UFLP 0.32 0.32 0.08 0.08 -1.94 -1.94 -1.55 -1.55
100EuclUFLP 0.00 0.00 -0.02 -0.02 0.00 0.00 0.02 0.02
150UFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

119

6. RELIABLE P -MEDIAN PROBLEM WITH AT-FACILITY SERVICE

Table 6.7: Average CPU times for the Non-Homogenous instances

n = 20 n = 25

TimeCPLEX TimeHH_Rnd TimeHH_Grd TimeCPLEX TimeHH_Rnd TimeHH_Grd

q ∈ 0.03± 0.003 7.39 0.01 0.02 48 0.01 0.02
q ∈ 0.03± 0.025 4.78 0.01 0.02 29.49 0.01 0.02
q ∈ 0.07± 0.003 112.19 0.01 0.02 1255.88 0.01 0.02
q ∈ 0.07± 0.025 122.92 0.01 0.02 436.06 0.01 0.02

After taking the averages of the deviations of 3 instances with the same (n, p) dimension, we

can observe from the Table 6.2, on Type I homogeneous instances both our proposed HH_Rnd

and HH_Grd obtained the optimal objective values on 34 out of 54 different (n, p) dimension

datasets. In the 20 cases of the Type I homogeneous instances where our approaches did not

achieve the optimal values, the average percentage deviations are very small which are in the

range of 0.01% to 0.13%. And on Type II homogeneous instances, HH_Grd obtained the

optimal values on 33 cases and HH_Rnd obtained the optimal values on 32 cases out of the

total 36 different (n, p) dimension datasets as can be seen in Table 6.3. On the instances with

n = 20 and p = 6 which are derived from original dataset 100EuclUFLP, HH_Rnd has

an average deviation of 0.05% from the optimum but we obtained optimal values using the

HH_Grd on these same instances as reported in the 5th row of Table 6.3. In those cases of

Type II homogeneous instances where we did not achieve the optimal values, the deviations are

very small which are in the range of 0.01% to 0.05%. Similarly in the non-homogeneous case,

for the datasets with 20 nodes and 4 facilities, looking at averages of percentage deviations of 3

instances having the failure probability belonging to the same interval of q ∈ m± s, we can

observe from Table 6.5 that both our approaches HH_Rnd and HH_Grd obtained the optimal

values on 13 out of 20 datasets with different failure probability values q ∈ m ± s. In the 7

cases that our approaches didn’t obtain the optimal values in Table 6.5 the deviations are small

which vary in the range of 0.02% to 0.5%. Also, for the datasets with 25 nodes and 4 facilities,

looking at averages of deviations in Table 6.6, we can observe that on 14 out of 20 datasets both

our approaches HH_Rnd and HH_Grd obtained or improved upon the best known solution.

In the 6 cases that our approaches didn’t achieve the best known solutions in Table 6.6 the

deviations are small which vary in the range of 0.01% to 0.32%. As can be observed from Table

6.7, for all the four failure probability ranges of the non-homogeneous datasets, our approaches

take only negligible execution times to generate the results.

120

6.5 Conclusions

6.5 Conclusions

In this chapter, we have proposed two multi-start hyper-heuristic approaches based on greedy

selection and random selection mechanisms for the reliable p-median problem with at facility

service. We have evaluated our approaches on homogeneous datasets which have an equal

uniform failure probability for all the failable facilities as well as on non-homogeneous datasets

that have facility dependent failure probabilities. The results of the proposed approaches are

compared with the state-of-the-art approaches available in literature for RpMF. Out of the

total 405 instances, our greedy selection based hyper-heuristic achieved the optimal solutions

or improved the best known solutions on 329 instances, while our random selection based

hyper-heuristic achieved the optimal solutions or improved the best known solutions on 326

instances. In all the cases, our proposed approaches obtained solutions of good quality in

negligible execution times proving their computational efficiency.

121

Chapter 7

Conclusions and directions for future
research

In this thesis, we have developed heuristic approaches for six facility location problems which are

all NP-hard problems. We have used two evolutionary approaches, namely discrete differential

evolution (DDE) and genetic algorithm (GA), and hyper-heuristic approaches to solve the

considered facility location problems. While developing our evolutionary approaches and

hyper-heuristics, we have incorporated the problem-specific knowledge wherever possible in the

solution encodings, methods of generating initial solutions, genetic operators and local search

methods for the considered problems. Devising these approaches which have performed as

good as or better than the state-of-the-art approaches on each problem constitutes the major

contribution of this thesis.

The contributions made by our work in each chapter along with possible directions for future

research are described in the following.

In Chapter 2, we have proposed a population based evolutionary approach, namely the

discrete differential evolution algorithm for the ACLP. To represent each solution in the popula-

tion, we have used a simple bit vector of length equal to the number of nodes in the network.

We have used a semi greedy approach to generate the population of initial solutions. Given

the binary nature of solutions, as part of mutation we have flipped binary value associated

with each location of the best solution according to the given mutation probability. We have

deployed a simple uniform crossover. We have implemented a repair operation to check for the

feasibility of the resulting solution after crossover/mutation and to make it feasible if it is not

feasible and also to further improve its fitness. Apart from the benchmark instances used in

122

[1, 83], we have also evaluated our approach on larger instances which we have derived from

Beasley’s OR-library1 and TSPLIB2. Computational results show that on most of the instances,

our approach performed as good as or better than the state-of-the-art approaches for ACLP

[1, 83]. The results of the statistical significance test also prove that the improvement achieved

with our approach is significant and it is due to the algorithmic merit. We have not reported

the comparison of execution times as both our proposed DDE approach and the ACO based

approach are executed for the same amount of time on each instance. Our DDE based approach

for the unweighted ACLP can be extended for solving other variants of ACLP.

In Chapter 3, we have worked on two variants of anti-covering location problem, viz.

disruptive anti-covering location problem (DACLP) and weighted anti-covering location problem

(WACLP). In this chapter, we have proposed two population based metaheuristics for the

considered problems. As our first approach, we have extended our discrete differential evolution

based approach for the ACLP to both DACLP and WACLP, and as our second approach, we

have developed a genetic algorithm based method for solving DACLP and WACLP. Though

both differential evolution and genetic algorithm belong to the broad class of evolutionary

algorithms and make use of crossover and mutation, we have used completely different solution

encodings and devised the crossover and mutation operations quite differently for the two

proposed approaches. In our DDE based approach for DACLP and WACLP, we have used the

solution representation, mutation, crossover and repair operations just like in the DDE approach

for ACLP while incorporating the problem specific information. In our proposed GA approach

for DACLP and WACLP, we have represented the solution as an ordered set of locations and

designed the mutation and crossover operations accordingly. We have used probabilistic binary

tournament selection method to choose the two parents for crossover and a single parent for

mutation in the GA approach. It was proven that the binary tournament selection approach

outperforms the roulette wheel selection method while also being computationally less expensive.

We have applied crossover, mutation operations in a mutually exclusive manner and if the fitness

of the resulting solution obtained after crossover/mutation is within a certain percentage of the

best solution’s fitness, we have also performed a local search to further improve its fitness. Ours

is a steady-state GA that generates a single child solution in each generation that is considered

for replacement. We have evaluated the performance of our approaches for DACLP and WACLP

on the 80 ACLP instances with upto 1577 nodes which are introduced in Chapter 2 and are

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
2http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

123

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

modified to have node weights while solving for WACLP. Computational results show the

effectiveness of our approaches in solving both the considered ACLP variants. Our approaches

are the first metaheuristic approaches for the DACLP. Our metaheuristic approaches will serve

as motivation to other researchers to develop new metaheuristic approaches for the DACLP and

WACLP. Similar approaches can be developed for other related problems such as dominating

set, independent set, and vertex cover variants.

In Chapter 4, we have solved the OCMCLP by using a genetic algorithm based approach.

We have evaluated the performance of our proposed approach on benchmark instances of the

problem and compared the results with two interchange heuristics available in the literature for

OCMCLP. In this approach, we have represented a solution as an ordered set of locations at

which facilities can be located. We have utilized the problem specific knowledge in each of the

operations like initial solution generation, crossover, mutation and local search. On most of the

instances, our GA based approach has obtained solutions of superior quality in comparison to

the existing methods. However, our approach needs more execution time than these methods.

Our GA based approach is the maiden metaheuristic approach that has been developed for

OCMCLP. Averbakh et al. [2] mentioned that even though they have implemented a tabu search

approach and a variable neighborhood search approach, they did not present their results in

[2] because of the observation that there is no significant improvement in the solution quality

by these two metaheuristic approaches over the solution quality obtained by the interchange

heuristics. Hence, population based metaheuristics appear to be better suited for this problem.

Future research could build other metaheuristics techniques for the OCMCLP and can be

compared with our GA approach and two interchange heuristics of [2]. Ideas presented here

can be used in developing other metaheuristic approaches for the OCMCLP or for other similar

problems under cooperative coverage model. Similar approaches can be developed for other

facility location problems also where facilities can be located along the edges.

In Chapter 5, we have proposed a hyper-heuristic based approach with naive Bayes classifier

for the reliability p-median problem. We have compared the results of our approach with

the state-of-art approaches available in the literature [142]. Two methods of initial solution

generation are used in this approach, the first is a randomized greedy approach for the first

iteration of the hyper-heuristic and in all the other restarts, we have employed a random approach

of generating the initial solutions. We have implemented four low level heuristics each of which

generates a feasible solution for the problem and also implemented a local-search operation to

further improve the quality of the best solution. We have made use of the naive Bayes classifier

124

to skip executing one of the four low level heuristics in latter iterations. The effectiveness of our

approach can be observed in terms of the solution quality.

In Chapter 6, we have proposed two multi-start hyper-heuristic approaches based on greedy

selection and random selection for the reliable p-median problem with at facility service. We

have evaluated our approaches on homogeneous datasets as well as on non-homogeneous

datasets. When compared with the state-of-the-art approaches available in literature for RpMF,

our greedy selection based hyper-heuristic achieved the optimal solutions or improved the best

known solutions on 329 out of the total 405 instances, whereas our random selection based

hyper-heuristic achieved the optimal solutions or improved the best known solutions on 326 out

of the total 405 instances. Using the proposed approaches, we could obtain solutions of good

quality in negligible execution times which proves the efficacy of our approaches.

Our hyper-heuristic approaches are the first hyper-heuristic approaches for solving RpMP

and RpMF. While ours are greedy/random selection based hyper-heuristic approaches, these will

serve as a motivation for other researchers to develop other kind of hyper-heuristic approaches

such as generational hyper-heuristic approaches and those based on other selection mechanisms

for RpMP, RpMF and other facility location problems. No approach exists in the literature so

far that combines a machine learning technique with a hyper-heuristic approach for solving

the facility location problems. Our approach for RpMP is the first approach that combines a

hyper-heuristic method with a machine learning technique for a facility location problem. This

paves the way for other researchers to develop analogous methods using other machine learning

techniques including but not limited to naive Bayes classifier, support vector machine (SVM),

reinforcement learning, regression etc. for solving the different variety of facility location

problems.

In all, six facility location problems have been considered in this thesis. Chapter 2 and

Chapter 3 are concerned with anti-covering location problems, whereas Chapter 4 deals with

facility location problem under cooperative coverage model. The last two chapters, namely

Chapter 5 and Chapter 6 are focused on facility location problems that take facility failures into

consideration. The approaches developed for solving these three broad categories of facility

location models considered in this thesis help in gaining useful insights on how to proceed when

solving such problems using heuristic approaches. This knowledge can be utilized while solving

other facility location problems or other similar discrete optimization problems.

The field of facility location problems is an active area of research owing to practical

applications. Not only new and better methods are developed on a regular basis for existing

125

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

problems, but also new facility location problems continue to emerge as a result of progress

in technology and human civilization. These new and better methods are developed either by

discovering and utilizing new problem characteristics or using the already explored problem

characteristics in a new manner or a combination thereof. Sometimes the insights gained while

solving a new problem lead to the development of better methods for existing problems. Hence,

the knowledge in the field of facility location problems is continuously advancing. So, there

remains a possibility of the development of better heuristic approaches in future for the facility

location problems considered here.

126

References

[1] S. S. CHAUDHRY. A genetic algorithm approach to solving the anti-covering lo-

cation problem. Expert Systems, 23(5):251–257, 2006. (xv, 23, 28, 29, 30, 33, 34,

123)

[2] I. AVERBAKH, O. BERMAN, D. KRASS, J. KALCSICS, AND S. NICKEL. Cooperative

covering problems on networks. Networks, 63(4):334–349, 2014. (xv, xvi, 4, 60, 61,

62, 63, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 124)

[3] M.S DASKIN AND L.K DEAN. Location of health care facilities. In Operations

research and health care, pages 43–76. Springer, 2005. (2, 4)

[4] R. CHURCH AND C.R. VELLE. The maximal covering location problem. Papers of

the Regional Science Association, 32(1):101–118, 1974. (2, 4, 60)

[5] V. MARIANOV AND D. SERRA. 4 Location problems in the public sector:In facility

location:applications and theory. Springer, 2002. (2)

[6] L. COOPER. Location-allocation problems. Operations research, 11(3):331–343, 1963.

(2)

[7] F. PLASTRIA. Continuous location problems: research, results and questions. Fa-

cility location: a survey of applications and methods, pages 85–127, 1995. (3)

[8] Z. DREZNER. Continuous Facility Location Problems. In The Palgrave Handbook of

Operations Research, pages 269–306. Springer, 2022. (3)

[9] T. A. HARTMANN, S. LENDL, AND G. J. WOEGINGER. Continuous facility location

on graphs. Mathematical Programming, 192(1):207–227, 2022. (3)

127

REFERENCES

[10] J. BRIMBERG, P. HANSEN, N. MLADENOVIĆ, AND S. SALHI. A survey of solution

methods for the continuous location-allocation problem. International journal of

operations research, 5(1):1–12, 2008. (3, 5)

[11] Z. ULUKAN AND E. DEMIRCIOĞLU. A Survey of discrete facility location problems.

World academy of science, engineering and technology, international journal of social,

behavioral, educational, economic, business and industrial engineering, 9(7):2450–2455,

2015. (3)

[12] Z. DREZNER. Facility location:A survey of applications and methods. Springer, 1995.

(3, 4)

[13] S. BASU, M. SHARMA, AND P.S. GHOSH. Metaheuristic applications on discrete

facility location problems: a survey. OPSEARCH, 52(3):530–561, 2015. (3, 5)

[14] J. CURRENT, M. DASKIN, AND D. SCHILLING. 3 Discrete network location models.

Facility location applications and theory, pages 81–118, 2004. (3)

[15] B.C. TANSEL, R.L. FRANCIS, AND T.J. LOWE. State of the art - location on net-

works: a survey. Part I: the p-center and p-median problems. Management science,

29(4):482–497, 1983. (3)

[16] A. AHMADI-JAVID, P. SEYEDI, AND S. S. SYAM. A survey of healthcare facility

location. Computers & Operations Research, 79:223–263, 2017. (4)

[17] R.Z. FARAHANI, M. STEADIESEIFI, AND N. ASGARI. Multiple criteria facility

location problems: A survey. Applied mathematical modelling, 34(7):1689–1709,

2010. (4)

[18] O. BERMAN, Z. DREZNER, AND D. KRASS. Cooperative cover location problems:

The planar case. IIE Transactions, 42(3):232–246, 2009. (4, 60)

[19] F.R. ZANJIRANI, A. NASRIN, H. NOOSHIN, H. MAHTAB, AND M. GOH. Cover-

ing problems in facility location: A review. Computers & industrial engineering,

62(1):368–407, 2012. (4)

[20] O. BERMAN, Z. DREZNER, AND D. KRASS. Generalized coverage: new develop-

ments in covering location models. Computers & operations research, 37(10):1675–

1687, 2010. (4)

128

REFERENCES

[21] F. PLASTRIA. Continuous covering location problems. Facility location: applications

and theory, 1:37–79, 2002. (4)

[22] J. CURRENT AND M. ÓKELLY. Locating emergency warning sirens. Decision

sciences, 23(1):221–234, 1992. (4)

[23] O. BERMAN, Z. DREZNER, AND D. KRASS. Discrete Cooperative Covering Prob-

lems. J Oper Res Soc, 62(11):2002–2012, Nov 2011. (4)

[24] O. BERMAN. The p maximal cover - p partial center problem on networks. European

Journal of Operational Research, 72(2):432 – 442, 1994. (4)

[25] P. CAPPANERA, G. GALLO, AND F. MAFFIOLI. Discrete facility location and routing

of obnoxious activities. Discrete applied mathematics, 133(1):3–28, 2003. (4)

[26] E. MELACHRINOUDIS. The location of undesirable facilities. In Foundations of

location analysis, pages 207–239. Springer, 2011. (4, 61)

[27] Z. DREZNER, P. KALCZYNSKI, AND S. SALHI. The planar multiple obnoxious

facilities location problem: A Voronoi based heuristic. Omega, 87:105–116, 2019. (4,

61)

[28] A.B. ARABANI AND R.Z. FARAHANI. Facility location dynamics: An overview of

classifications and applications. Computers & industrial engineering, 62(1):408–420,

2012. (4)

[29] R.Z. FARAHANI, M. STEADIESEIFI, AND N. ASGARI. Multiple criteria facility

location problems: A survey. Applied mathematical modelling, 34(7):1689–1709,

2010. (4)

[30] V. VERTER AND A.E. MURAT. S. Nickel and J. Puerto: Location theory: a unified

approach. Mathematical methods of operations research, 66(2):369–371, 2007. (4)

[31] C.S. REVELLE AND H.A. EISELT. Location analysis: a synthesis and survey. Euro-

pean journal of operational research, 165(1):1–19, 2005. (4)

[32] D.B. SHMOYS, É. TARDOS, AND K. AARDAL. Approximation algorithms for facility

location problems. In Proceedings of the twenty-ninth annual ACM symposium on theory

of computing, pages 265–274. ACM, 1997. (4)

129

REFERENCES

[33] D. CELIK TURKOGLU AND M. EROL GENEVOIS. A comparative survey of service

facility location problems. Annals of Operations Research, 292(1):399–468, 2020. (4)

[34] M.S. DASKIN. Network and discrete location: models, algorithms, and applications.

John wiley & sons, 2011. (4)

[35] Z. DREZNER AND H. W. HAMACHER. Facility location: applications and theory.

Springer Science & Business Media, 2004. (4)

[36] R.F. LOVE, J.J.G. MORRIS, AND G.O. WESOLOWSKY. Facilities location: models &

methods. Publications in operations research. North-Holland, 1988. (4)

[37] A. GHOSH AND G. RUSHTON. Spatial analysis and location-allocation models. Van

nostrand reinhold, 1987. (4)

[38] P. HANSEN, J. HENDERSON, M. LABBÉ, J. PEETERS, AND J F THISSE. Systems of

cities and facility location. Taylor & francis, 2013. (4)

[39] J.F THISSE AND H.ZOLLER. Locational analysis of public facilities. Studies in mathe-

matical and managerial economics. Elsevier, 1983. (4)

[40] G. LAPORTE, S. NICKEL, AND F. SALDANHA-DA GAMA. Introduction to location

science. In Location science, pages 1–21. Springer, 2019. (4)

[41] L. COOPER. Heuristic methods for location-allocation problems. Siam review,

6(1):37–53, 1964. (5)

[42] S.K. JACOBSEN. Heuristics for the capacitated plant location model. European

journal of operational research, 12(3):253–261, 1983. (5)

[43] B. JAYALAKSHMI AND A. SINGH. A hybrid artificial bee colony algorithm for the

cooperative maximum covering location problem. International Journal of Machine

Learning and Cybernetics, 8(2):691–697, 2017. (5, 60, 61, 68)

[44] B. JAYALAKSHMI AND A. SINGH. A swarm intelligence approach for the p-median

problem. International Journal of Metaheuristics, 5(2):136–155, 2016. (5, 83)

[45] J.H. HOLLAND. Adaptation in natural and artificial systems: An introductory analysis

with applications in biology, control and artificial intelligence. University of Michigan

Press, Ann Arbor, MI, 1975. (5, 9, 11)

130

REFERENCES

[46] D. GOLDBERG. Genetic algorithm in search, optimization and machine learning. Read-

ing, MA :Addison-Wesley, 1989. (5)

[47] R. STORN AND K. PRICE. Differential evolution - A simple and efficient adaptive

scheme for global optimization over continuous spaces. Journal of Global Optimiza-

tion, 11:341–359, 1997. (5, 14)

[48] F. GLOVER. Tabu search - part 1. ORSA Journal on Computing, 1:190–206, 1989. (5)

[49] F. GLOVER. Tabu search - part 2. ORSA Journal on Computing, 2:4–32, 1990. (5)

[50] M. DORIGO, V. MANIEZZO, AND A. COLORNI. Positive feedback as a search strat-

egy, 1991. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Milan, Italy. (5)

[51] M. DORIGO, V. O. MANIEZZO, AND A. COLORNI. Ant system: Optimization by

a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 26:29–41, 1996. (5)

[52] N. MLADENOVIĆ AND P. HANSEN. Variable neighborhood search. Computers &

operations research, 24(11):1097–1100, 1997. (5)

[53] P. HANSEN AND N. MLADENOVIĆ. Variable neighborhood search: Principles and

applications. European journal of operational research, 130(3):449–467, 2001. (5)

[54] D. KARABOGA. An idea based on honey bee swarm for numerical optimization,

2005. Computer Engineering Department, Erciyes University, Turkey. (5)

[55] M.A. AROSTEGUI, S.N. KADIPASAOGLU, AND B.M. KHUMAWALA. An empirical

comparison of tabu search, simulated annealing, and genetic algorithms for facili-

ties location problems. International journal of production economics, 103(2):742–754,

2006. (5)

[56] N. MLADENOVIĆ, J. BRIMBERG, P. HANSEN, AND J.A. MORENO-PÉREZ. The

p-median problem: a survey of metaheuristic approaches. European journal of

operational research, 179(3):927–939, 2007. (5)

131

REFERENCES

[57] M.G.C. RESENDE AND R.F. WERNECK. A hybrid multistart heuristic for the

uncapacitated facility location problem. European journal of operational research,

174(1):54–68, 2006. (5)

[58] R.C. MARTÍ, P.M. PARDALOS, AND M.G.C. RESENDE. Handbook of heuristics.

Springer, 2018. (6)

[59] R.R. SHARAPOV. Genetic algorithms: basic ideas, variants and analysis. IntechOpen,

2007. (6)

[60] T. BLICKLE AND L. THIELE. A mathematical analysis of tournament selection. In

Proceedings of the Sixth International Conference on Genetic Algorithms, 95, pages

9–15. Citeseer, 1995. (6)

[61] J.D. SCHAFFER, D. WHITLEY, AND L.J. ESHELMAN. Combinations of genetic

algorithms and neural networks: A survey of the state of the art. In [Proceedings]

COGANN-92: International Workshop on Combinations of Genetic Algorithms and

Neural Networks, pages 1–37. IEEE, 1992. (9)

[62] M. MITCHELL. An introduction to genetic algorithms. Bradford Books, 1998. (9)

[63] J.E. BAKER. Reducing bias and inefficiency in the selection algorithm. In Proceed-

ings of the Second International Conference on Genetic Algorithms, pages 14–21, 1987.

(9, 10)

[64] D.E. GOLDBERG AND K. DEB. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Gentic Algorithms, pages 69–93. Morgan

Kaufmann, 1990. (9, 11)

[65] G. SYSWERDA. Uniform crossover in genetic algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, 3, pages 2–9. Morgan Kaufmann, 1989.

(12)

[66] L. DAVIS. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

(13, 39, 51)

[67] S. DAS AND P. N. SUGANTHAN. Differential evolution: a survey of the state-of-the-

art. IEEE Transactions on Evolutionary Computation, 15(1):4–31, 2011. (14)

132

REFERENCES

[68] R. MALLIPEDDI, P.N. SUGANTHAN, Q. K. PAN, AND M.F. TASGETIREN. Differential

evolution algorithm with ensemble of parameters and mutation strategies. Applied

soft computing, 11(2):1679–1696, 2011. (15)

[69] M. F. TASGETIREN, Q. K. PAN, Y. C. LIANG, AND P.N. SUGANTHAN. A discrete

differential evolution algorithm for the total earliness and tardiness penalties with

a common due date on a single-machine. In Proceedings of the 2007 IEEE Symposium

on Computational Intelligence in Scheduling (SCIS’07), pages 271–278. IEEE, 2007.

(15)

[70] Q. K. PAN, M. F. TASGETIREN, AND Y. C. LIANG. A discrete differential evolution

algorithm for the permutation flowshop scheduling problem. Computers & Industrial

Engineering, 55(4):795–816, 2008. (15)

[71] M. F. TASGETIREN, Q.K. PAN, P.N. SUGANTHAN, AND Y. C. LIANG. A discrete

differential evolution algorithm for the no-wait flowshop scheduling problem with

total flowtime criterion. In Proceedings of the 2007 IEEE Symposium on Computational

Intelligence in Scheduling (SCIS’07), pages 251–258. IEEE, 2007. (15, 25)

[72] H. FISHER. Probabilistic learning combinations of local job-shop scheduling rules.

Industrial scheduling, pages 225–251, 1963. (16)

[73] WALLACE B. S. C., FRED W. G., GERALD L. T., AND JOHN D. T. Probabilistic

and parametric learning combinations of local job shop scheduling rules. Technical

Report, Research Memorandum, No. 117, 1963. (16)

[74] E. K. BURKE, M. GENDREAU, M. HYDE, G. KENDALL, G. OCHOA, E. ÖZCAN, AND

R. QU. Hyper-heuristics: A survey of the state of the art. Journal of the Operational

Research Society, 64(12):1695–1724, 2013. (16, 94, 113)

[75] K. CHAKHLEVITCH AND P. COWLING. Hyperheuristics: recent developments. In

Adaptive and multilevel metaheuristics, pages 3–29. Springer, 2008. (17)

[76] J. DENZINGER, M. FUCHS, AND M. FUCHS. High Performance ATP Systems by

Combining Several AI Methods. In Proceedings of the 15th International Joint Con-

ference on Artifical Intelligence - Volume 1, IJCAI’97, pages 102–107, San Francisco,

CA, USA, 1997. Morgan Kaufmann Publishers Inc. (17)

133

REFERENCES

[77] P. COWLING, G. KENDALL, AND E. SOUBEIGA. A hyperheuristic approach to

scheduling a sales summit. In Proceedings of the international conference on the

practice and theory of automated timetabling, pages 176–190. Springer, 2000. (17)

[78] E. CARRIZOSA AND B. G. TÓTH. Anti-covering problems. In Location Science, pages

115–132. Springer, 2015. (22)

[79] I. D. MOON AND S. S. CHAUDHRY. An analysis of network location problems with

distance constraints. Management Science, 30(3):290–307, 1984. (22, 23, 34, 35, 48,

49)

[80] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., USA, 1979. (22, 48)

[81] A. T. MURRAY AND R. L. CHURCH. Solving the anti-covering location problem

using Lagrangian relaxation. Computers & Operations Research, 24(2):127–140,

1997. (22, 23, 24, 34, 49)

[82] B. DIMITRIJEVIĆ, D. TEODOROVIĆ, V. SIMIĆ, AND M. ŠELMIĆ. Bee colony optimiza-

tion approach to solving the anticovering location problem. Journal of Computing in

Civil Engineering, 26(6):759–768, 2011. (23, 34)

[83] P. R. KHORJUVENKAR AND A. SINGH. A Hybrid Swarm Intelligence Approach

for Anti-Covering Location Problem. In Proceedings of the 2019 IEEE International

Conference on Innovations in Power and Advanced Computing Technologies (i-PACT

2019), 1, pages 1–6. IEEE, 2019. (23, 28, 29, 33, 34, 123)

[84] F. WILCOXON, S. K. KATTI, AND R. A. WILCOX. Critical values and probability

levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected

tables in mathematical statistics, 1:171–259, 1970. (30, 57, 81)

[85] M. R. NIBLETT AND R. L. CHURCH. The disruptive anti-covering location problem.

European Journal of Operational Research, 247(3):764–773, 2015. (34, 35, 36)

[86] S. S. CHAUDHRY, S. T. MCCORMICK, AND I. D. MOON. Locating independent

facilities with maximum weight: Greedy heuristics. Omega, 14(5):383–389, 1986.

(34, 35, 48, 53)

134

REFERENCES

[87] G. SRIVASTAVA, A. SINGH, AND R. MALLIPEDDI. A Hybrid Discrete Differential

Evolution Approach for the Single Machine Total Stepwise Tardiness Problem with

Release Dates. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation

(CEC 2021), pages 652–659. IEEE, 2021. (34)

[88] G. SRIVASTAVA, A. SINGH, AND R. MALLIPEDDI. NSGA-II with objective-specific

variation operators for multiobjective vehicle routing problem with time windows.

Expert Systems with Applications, 176:114779, 2021. (34)

[89] G. SRIVASTAVA, P. VENKATESH, AND A. SINGH. An evolution strategy based

approach for cover scheduling problem in wireless sensor networks. International

Journal of Machine Learning and Cybernetics, 11(9):1981–2006, 2020. (34)

[90] V. PANDIRI, A. SINGH, AND A. ROSSI. Two hybrid metaheuristic approaches for the

covering salesman problem. Neural Computing and Applications, 32(19):15643–15663,

2020. (34, 62)

[91] A. ROSSI, A. SINGH, AND M. SEVAUX. Focus distance-aware lifetime maximization

of video camera-based wireless sensor networks. Journal of Heuristics, 27(1-2):5–30,

2021. (34, 62)

[92] S. N. CHAURASIA AND A. SINGH. A hybrid evolutionary algorithm with guided

mutation for minimum weight dominating set. Applied Intelligence, 43(3):512–529,

2015. (34)

[93] A. SINGH, A. ROSSI, AND M. SEVAUX. Matheuristic approaches for Q-coverage

problem versions in wireless sensor networks. Engineering Optimization, 45(5):609–

626, 2013. (34)

[94] T. H. GRUBESIC, A. T. MURRAY, W. A. PRIDEMORE, L. P. TABB, Y. LIU, AND

R. WEI. Alcohol beverage distribution control, privatization and the geographic

distribution of alcohol outlets. BMC Public Health, 12:1015, 2012. (36)

[95] TONY H GRUBESIC AND ALAN T MURRAY. Sex offender residency and spatial

equity. Applied Spatial Analysis and Policy, 1(3):175–192, 2008. (36)

135

REFERENCES

[96] R. L. CHURCH AND J. L. COHON. Multiobjective location analysis of regional

energy facility siting problems. Technical report, Brookhaven National Lab., Upton,

NY (USA), 1976. (48)

[97] R. L. CHURCH AND R. S. GARFINKEL. Locating an obnoxious facility on a network.

Transportation Science, 12(2):107–118, 1978. (48)

[98] E. ERKUT. The discrete p-dispersion problem. European Journal of Operational

Research, 46(1):48–60, 1990. (48)

[99] J. R. CURRENT AND J. E. STORBECK. A multiobjective approach to design franchise

outlet networks. Journal of the Operational Research Society, 45(1):71–81, 1994. (48)

[100] D. JOSEPH, J. MEIDANIS, AND P. TIWARI. Determining DNA sequence similarity

using maximum independent set algorithms for interval graphs. In Scandinavian

Workshop on Algorithm Theory, pages 326–337. Springer, 1992. (48)

[101] F. BARAHONA, A. WEINTRAUB, AND R. EPSTEIN. Habitat dispersion in forest

planning and the stable set problem. Operations Research, 40(1-supplement-1):S14–

S21, 1992. (48)

[102] Z. DREZNER. The p-cover problem. European Journal of Operational Research,

26(2):312 – 313, 1986. (60)

[103] R. L. CHURCH AND R. S. GARFINKEL. Locating an obnoxious facility on a network.

Transportation science, 12(2):107–118, 1978. (60, 61)

[104] E. ERKUT AND S. NEUMAN. Analytical models for locating undesirable facilities.

European Journal of Operational Research, 40(3):275–291, 1989. (60, 61)

[105] P. HANSEN AND J. COHON. On the location of an obnoxious facility. Sistemi urbani

Napoli, (3):299–317, 1981. (61)

[106] Z. DREZNER AND G. O. WESOLOWSKY. Obnoxious facility location in the interior

of a planar network. Journal of Regional Science, 35(4):675–688, 1995. (61)

[107] Z. DREZNER AND A. SUZUKI. The big triangle small triangle method for the solu-

tion of nonconvex facility location problems. Operations Research, 52(1):128–135,

2004. (61)

136

REFERENCES

[108] T. DREZNER, Z. DREZNER, AND C. H. SCOTT. Location of a facility minimizing

nuisance to or from a planar network. Computers & Operations Research, 36(1):135–

148, 2009. (61)

[109] Z. DREZNER AND G. O. WESOLOWSKY. The location of an obnoxious facility with

rectangular distances. Journal of Regional Science, 23(2):241–248, 1983. (61)

[110] M. J. KAISER AND T. L. MORIN. Locating an obnoxious facility. Applied mathematics

letters, 5(3):25–26, 1992. (61)

[111] F. PLASTRIA. Optimal location of undesirable facilities: a selective overview.

JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science,

36(2-3):109–127, 1996. (61)

[112] E. CARRIZOSA AND F. PLASTRIA. Locating an undesirable facility by generalized

cutting planes. Mathematics of operations research, 23(3):680–694, 1998. (61)

[113] M. I. SHAMOS AND D. HOEY. Closest-point problems. In 16th Annual Symposium on

Foundations of Computer Science (SFCS 1975), pages 151–162. IEEE, 1975. (61)

[114] Z. DREZNER, C. H. SCOTT, AND J. TURNER. Mixed planar and network single-

facility location problems. Networks, 68(4):271–282, 2016. (61)

[115] J. M. COLMENAR, P. GREISTORFER, R. MARTÍ, AND A. DUARTE. Advanced greedy

randomized adaptive search procedure for the obnoxious p-median problem. Euro-

pean Journal of Operational Research, 252(2):432–442, 2016. (61)

[116] T. DREZNER, Z. DREZNER, AND A. SCHÖBEL. The Weber obnoxious facility lo-

cation model: A big arc small arc approach. Computers & Operations Research,

98:240–250, 2018. (61)

[117] A. WEBER AND C.J. FRIEDRICH. Alfred Weber’s Theory of the Location of Industries.

Materials for the study of business. University of Chicago Press, 1929. (61)

[118] G. O. WESOLOWSKY. The Weber Problem: History and Perspectives. Computers

& Operations Research, 1(1):5–23, 1993. (61)

[119] R. L. CHURCH. Understanding the Weber location paradigm. In Contributions to

Location Analysis, pages 69–88. Springer, 2019. (61)

137

REFERENCES

[120] T. DREZNER, Z. DREZNER, AND P. KALCZYNSKI. Multiple obnoxious facilities

location: A cooperative model. IISE Transactions, 52(12):1403–1412, 2020. (62)

[121] S. N. CHAURASIA AND A. SINGH. Hybrid evolutionary approaches for the single

machine order acceptance and scheduling problem. Applied Soft Computing, 52:725–

747, 2017. (62)

[122] A. SINGH, A. ROSSI, AND M. SEVAUX. Matheuristic approaches for Q-coverage

problem versions in wireless sensor networks. Engineering Optimization, 45(5):609–

626, 2013. (62)

[123] K. SINGH AND S. SUNDAR. A hybrid genetic algorithm for the degree-constrained

minimum spanning tree problem. Soft Computing, 24(3):2169–2186, 2020. (62)

[124] K. SINGH AND S. SUNDAR. A hybrid steady-state genetic algorithm for the min-

degree constrained minimum spanning tree problem. European Journal of Opera-

tional Research, 276(1):88–105, 2019. (62)

[125] DAVID E. G. AND KALYANMOY D. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Genetic Algorithms, pages 69–93. Morgan

Kaufmann, 1991. (68)

[126] H.Y. KIM. Statistical notes for clinical researchers: Nonparametric statistical meth-

ods: 2. Nonparametric methods for comparing three or more groups and repeated

measures. Restorative Dentistry and Endodontics, 39(4):329–332, 2014. (81)

[127] J. H. MCDONALD. Handbook of biological statistics. sparky house publishing Baltimore,

MD, 2009. (81)

[128] S. L. HAKIMI. Optimum locations of switching centers and the absolute centers

and medians of a graph. Operations research, 12(3):450–459, 1964. (83)

[129] O. KARIV AND S. L. HAKIMI. An algorithmic approach to network location prob-

lems. I: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

(83)

[130] C. S. REVELLE AND R. W. SWAIN. Central facilities location. Geographical analysis,

2(1):30–42, 1970. (83)

138

REFERENCES

[131] G. CORNUEJOLS, G. L. NEMHAUSER, AND L. A. WOLSEY. A canonical repre-

sentation of simple plant location problems and its applications. SIAM Journal on

Algebraic Discrete Methods, 1(3):261–272, 1980. (83)

[132] ENRIQUE D. AND JOSÉ M. A neural model for the p-median problem. Computers &

Operations Research, 35(2):404–416, 2008. (83)

[133] S. ELLOUMI. A tighter formulation of the p-median problem. Journal of combinato-

rial optimization, 19(1):69–83, 2010. (83)

[134] K. GHOSEIRI AND S. F. GHANNADPOUR. An efficient heuristic method for capaci-

tated P-Median problem. International Journal of Management Science and Engineer-

ing Management, 4(1):72–80, 2009. (83)

[135] K. FLESZAR AND K. S. HINDI. An effective VNS for the capacitated p-median

problem. European Journal of Operational Research, 191(3):612–622, 2008. (83)

[136] M.J. CANÓS, C. IVORRA, AND V. LIERN. An exact algorithm for the fuzzy p-median

problem. European Journal of Operational Research, 116(1):80–86, 1999. (83, 84)

[137] J.M. CADENAS, M.J. CANÓS, M.C. GARRIDO, C. IVORRA, AND V. LIERN. Soft-

computing based heuristics for location on networks: The p-median problem. Ap-

plied Soft Computing, 11(2):1540–1547, 2011. (84)

[138] J. R. WEAVER AND R. L. CHURCH. A median location model with nonclosest facility

service. Transportation Science, 19(1):58–74, 1985. (84)

[139] J. BRIMBERG, A. MAIER, AND A. SCHÖBEL. When closest is not always the best:

The distributed p-median problem. Journal of the Operational Research Society,

72(1):200–216, 2021. (84)

[140] R. L. CHURCH, M. P. SCAPARRA, AND R. S. MIDDLETON. Identifying critical

infrastructure: the median and covering facility interdiction problems. Annals of

the Association of American Geographers, 94(3):491–502, 2004. (84, 86)

[141] L. V. SNYDER AND M. S. DASKIN. Reliability models for facility location: the

expected failure cost case. Transportation Science, 39(3):400–416, 2005. (84, 85, 86,

88, 114, 117)

139

REFERENCES

[142] J. ALCARAZ, M. LANDETE, AND J. F. MONGE. Design and analysis of hybrid

metaheuristics for the reliability p-median problem. European Journal of Operational

Research, 222(1):54–64, 2012. (85, 86, 88, 93, 97, 98, 99, 101, 124)

[143] C.J. COLBOURN. The Combinatorics of Network Reliability. Oxford University Press,

New York, 1987. (85)

[144] D. R. SHIER. Network reliability and algebraic structures. Clarendon Press, 1991. (85)

[145] M. L. SHOOMAN. Reliability of computer systems and networks: fault tolerance, analysis,

and design. John Wiley & Sons, 2003. (85)

[146] J. E. MURIEL-VILLEGAS, K. C. ALVAREZ-URIBE, C. E. PATIÑO-RODRÍGUEZ, AND

J. G. VILLEGAS. Analysis of transportation networks subject to natural hazards–

Insights from a Colombian case. Reliability Engineering & System Safety, 152:151–

165, 2016. (85)

[147] H. WAKABAYASHI AND Y. IIDA. Upper and lower bounds of terminal reliability of

road networks: an efficient method with Boolean algebra. Journal of natural disaster

science, 14(1), 1992. (85)

[148] Z. P. DU AND A. NICHOLSON. Degradable transportation systems: sensitivity and

reliability analysis. Transportation Research Part B: Methodological, 31(3):225–237,

1997. (85)

[149] R. KONDO, Y. SHIOMI, AND N. UNO. Network evaluation based on connectivity

reliability and accessibility. In Network reliability in practice, pages 131–149. Springer,

2012. (85)

[150] Y. S. QIAN, M. WANG, H. X. KANG, J. W. ZENG, AND Y. F. LIU. Study on

the road network connectivity reliability of valley city based on complex network.

Mathematical Problems in Engineering, 2012, 2012. (85)

[151] H. A. EISELT, M. GENDREAU, AND G. LAPORTE. Optimal location of facilities on a

network with an unreliable node or link. Information processing letters, 58(2):71–74,

1996. (85)

140

REFERENCES

[152] O. BERMAN, D. KRASS, AND M. B. C. MENEZES. Facility reliability issues in

network p-median problems: Strategic centralization and co-location effects. Op-

erations research, 55(2):332–350, 2007. (85)

[153] L. V. SNYDER, M. S. DASKIN, AND C. P. TEO. The stochastic location model with

risk pooling. European Journal of Operational Research, 179(3):1221–1238, 2007. (85)

[154] P. PENG, L. V. SNYDER, A. LIM, AND Z. LIU. Reliable logistics networks design

with facility disruptions. Transportation Research Part B: Methodological, 45(8):1190–

1211, 2011. (85)

[155] X. WANG AND Y. OUYANG. A continuum approximation approach to competitive

facility location design under facility disruption risks. Transportation Research Part

B: Methodological, 50:90–103, 2013. (85)

[156] S. AN, N. CUI, Y. BAI, W. XIE, M. CHEN, AND Y. OUYANG. Reliable emergency

service facility location under facility disruption, en-route congestion and in-facility

queuing. Transportation research part E: logistics and transportation review, 82:199–

216, 2015. (85)

[157] Y. ZHANG, O. BERMAN, AND V. VERTER. Incorporating congestion in preven-

tive healthcare facility network design. European Journal of Operational Research,

198(3):922–935, 2009. (85)

[158] X. LI, Y. OUYANG, AND F. PENG. A supporting station model for reliable infras-

tructure location design under interdependent disruptions. Procedia-Social and

Behavioral Sciences, 80:25–40, 2013. (85)

[159] O. BERMAN, D. KRASS, AND M. B. C. MENEZES. Location and reliability problems

on a line: Impact of objectives and correlated failures on optimal location patterns.

Omega, 41(4):766–779, 2013. (85)

[160] D. GADE AND E. A. POHL. Sample average approximation applied to the

capacitated-facilities location problem with unreliable facilities. Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(4):259–

269, 2009. (85)

141

REFERENCES

[161] N. AYDIN AND A. MURAT. A swarm intelligence based sample average approxima-

tion algorithm for the capacitated reliable facility location problem. International

Journal of Production Economics, 145(1):173–183, 2013. (85)

[162] M. LIM, M. S. DASKIN, A. BASSAMBOO, AND S. CHOPRA. A facility reliability

problem: Formulation, properties, and algorithm. Naval Research Logistics (NRL),

57(1):58–70, 2010. (85)

[163] G. CHEN, M. S. DASKIN, Z. J. M. SHEN, AND S. URYASEV. The α-reliable mean-

excess regret model for stochastic facility location modeling. Naval Research Logis-

tics (NRL), 53(7):617–626, 2006. (85, 86)

[164] D. AKSEN AND N. ARAS. A bilevel fixed charge location model for facilities under

imminent attack. Computers & Operations Research, 39(7):1364–1381, 2012. (86)

[165] F. LIBERATORE, M. P. SCAPARRA, AND M. S. DASKIN. Analysis of facility protection

strategies against an uncertain number of attacks: The stochastic R-interdiction

median problem with fortification. Computers & Operations Research, 38(1):357–

366, 2011. (86)

[166] Q. LI, B. ZENG, AND A. SAVACHKIN. Reliable facility location design under disrup-

tions. Computers & Operations Research, 40(4):901–909, 2013. (86)

[167] R. C. LARSON. A hypercube queuing model for facility location and redistricting

in urban emergency services. Computers & Operations Research, 1(1):67–95, 1974.

(86)

[168] R. C. LARSON. Approximating the performance of urban emergency service sys-

tems. Operations research, 23(5):845–868, 1975. (86)

[169] O. BERMAN AND D. KRASS. Facility location problems with stochastic demands

and congestion. Facility location: applications and theory, page 329, 2001. (86)

[170] BADR AFIFY, SUJOY RAY, ANDREI SOEANU, ANJALI AWASTHI, MOURAD DEBBABI,

AND MOHAMAD ALLOUCHE. Evolutionary learning algorithm for reliable facility

location under disruption. Expert Systems with Applications, 115:223–244, 2019. (86)

142

REFERENCES

[171] BADR AFIFY, ANDREI SOEANU, AND ANJALI AWASTHI. Separation linearization

approach for the capacitated facility location problem under disruption. Expert

Systems with Applications, 169:114187, 2021. (86)

[172] W. DAI, G. R. XUE, Q. YANG, AND Y. YU. Transferring naive bayes classifiers for

text classification. In AAAI, 7, pages 540–545, 2007. (90)

[173] S. XU. Bayesian Naive Bayes classifiers to text classification. Journal of Information

Science, 44(1):48–59, 2018. (90)

[174] H. CHEN, S. HU, R. HUA, AND X. ZHAO. Improved naive Bayes classification

algorithm for traffic risk management. EURASIP Journal on Advances in Signal

Processing, 2021(1):1–12, 2021. (90)

[175] W. WEI, S. VISWESWARAN, AND G. F. COOPER. The application of naive Bayes

model averaging to predict Alzheimer’s disease from genome-wide data. Journal of

the American Medical Informatics Association, 18(4):370–375, 2011. (90)

[176] X. XIE, J. W. K HO, C. MURPHY, G. KAISER, B. XU, AND T. Y. CHEN. Testing and

validating machine learning classifiers by metamorphic testing. Journal of Systems

and Software, 84(4):544–558, 2011. (90)

[177] V. PANDIRI AND A. SINGH. An artificial bee colony algorithm with variable degree

of perturbation for the generalized covering traveling salesman problem. Applied

Soft Computing, 78:481–495, 2019. (93)

[178] Y. KOCHETOV, T. LEVANOVA, E. ALEKSEEVA, AND M. LORESH. Large neighbor-

hood local search for the p-median problem. Yugoslav Journal of Operations Research,

15(1):53–63, 2005. (96, 112)

[179] J. E. BEASLEY. A note on solving large p-median problems. European Journal of

Operational Research, 21(2):270–273, 1985. (97)

[180] O. BERMAN, D. KRASS, AND M. B. C. MENEZES. Locating facilities in the presence

of disruptions and incomplete information. Decision Sciences, 40(4):845–868, 2009.

(102, 103)

143

REFERENCES

[181] M. ALBAREDA-SAMBOLA, Y. HINOJOSA, AND J. PUERTO. The reliable p-

median problem with at-facility service. European Journal of Operational Research,

245(3):656–666, 2015. (103, 104, 106, 107, 114, 115, 117, 118, 119)

[182] T. DAVIDOVIĆ, D. RAMLJAK, M. ŠELMIĆ, AND D. TEODOROVIĆ. Bee colony opti-

mization for the p-center problem. Computers & Operations Research, 38(10):1367–

1376, 2011. (108)

[183] V. PANDIRI AND A. SINGH. Two multi-start heuristics for the k-traveling salesman

problem. OPSEARCH, 57(4):1164–1204, 2020. (113)

144

List of Publications

[1] EDUKONDALU CHAPPIDI AND ALOK SINGH. Discrete differential evolution-based

solution for anti-covering location problem. Proceedings of the 10th International Con-

ference on Soft Computing for Problem Solving (SocProS 2020), Advances in Intelligent

Systems and Computing, 1392: 607-620, 2021, Springer.

[2] EDUKONDALU CHAPPIDI, ALOK SINGH AND RAMMOHAN MALLIPEDDI. Intelligent

optimization algorithms for disruptive anti-covering location problem. To appear in

Proceedings of the 19th International Conference on Distributed Computing and Intelligent

Technology (ICDCIT 2023), Lecture Notes in Computer Science, 2023, Springer.

[3] EDUKONDALU CHAPPIDI AND ALOK SINGH. Evolutionary approaches for the

weighted anti-covering location problem. To appear in Evolutionary Intelligence,

Springer.

[4] EDUKONDALU CHAPPIDI AND ALOK SINGH. An evolutionary approach for ob-

noxious cooperative maximum covering location problem. Applied Intelligence, 52:

16651–16666, 2022, Springer.

[5] EDUKONDALU CHAPPIDI AND ALOK SINGH. A hyper-heuristic based approach

with naive Bayes classifier for the reliability p-median problem. Communicated to

Applied Intelligence, Springer.

[6] EDUKONDALU CHAPPIDI AND ALOK SINGH. Two multi-start hyper-heuristic ap-

proaches for the reliable p-median problem with at-facility service. Communicated

to Operational Research, Springer.

145

Heuristics for Facility Location
Problems

by Mr. Edukondalu Chappidi

Submission date: 21-Dec-2022 11:44AM (UTC+0530)
Submission ID: 1985379025
File name: 16MCPC05_thesis.pdf (847.41K)
Word count: 49994
Character count: 224760

7 <1%

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

"Location Science", Springer Science and
Business Media LLC, 2019
Publication

eprints.nottingham.ac.uk
Internet Source

Lawrence V. Snyder, Mark S. Daskin.
"Reliability Models for Facility Location: The
Expected Failure Cost Case", Transportation
Science, 2005
Publication

escholarship.org
Internet Source

Javier Alcaraz, Mercedes Landete, Juan F.
Monge. "Design and analysis of hybrid
metaheuristics for the Reliability p-Median
Problem", European Journal of Operational
Research, 2012
Publication

"Handbook of Heuristics", Springer Science
and Business Media LLC, 2018
Publication

Venkatesh Pandiri, Alok Singh. "Two multi-
start heuristics for the k-traveling salesman
problem", OPSEARCH, 2020
Publication

dokumen.pub
Internet Source

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

etheses.whiterose.ac.uk
Internet Source

"Location Science", Springer Science and
Business Media LLC, 2015
Publication

"Simulated Evolution and Learning", Springer
Science and Business Media LLC, 2014
Publication

Sachchida Nand Chaurasia, Alok Singh. "A
hybrid evolutionary approach to the
registration area planning problem", Applied
Intelligence, 2014
Publication

Studies in Computational Intelligence, 2008.
Publication

Data Mining, 2015.
Publication

B. Jayalakshmi, Alok Singh. "Two swarm
intelligence-based approaches for the p-
centre problem", International Journal of
Swarm Intelligence, 2018
Publication

Lecture Notes in Computer Science, 2007.
Publication

Lecture Notes in Computer Science, 2011.
Publication

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

ssli.ee.washington.edu
Internet Source

Sumanta Basu, Megha Sharma, Partha Sarathi
Ghosh. "Metaheuristic applications on
discrete facility location problems: a survey",
OPSEARCH, 2014
Publication

Ting L. Lei, Daoqin Tong. "Hedging against
service disruptions: an expected median
location problem with site-dependent failure
probabilities", Journal of Geographical
Systems, 2012
Publication

Edmund K Burke, Michel Gendreau, Matthew
Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, Rong Qu. "Hyper-heuristics: a survey
of the state of the art", Journal of the
Operational Research Society, 2017
Publication

Preeti Ravindranath Khorjuvenkar, Alok Singh.
"A Hybrid Swarm Intelligence Approach for
Anti-Covering Location Problem", 2019
Innovations in Power and Advanced
Computing Technologies (i-PACT), 2019
Publication

repositorio.unb.br
Internet Source

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

"Computer and Information Sciences",
Springer Science and Business Media LLC,
2016
Publication

"Foundations of Location Analysis", Springer
Science and Business Media LLC, 2011
Publication

Operations Research Proceedings, 2006.
Publication

Sachchida Nand Chaurasia, Shyam Sundar,
Alok Singh. "Hybrid metaheuristic approaches
for the single machine total stepwise
tardiness problem with release dates",
Operational Research, 2016
Publication

Lawrence .V Snyder, Zuo‐Jun Max Shen.
"Fundamentals of Supply Chain Theory",
Wiley, 2019
Publication

C.S. ReVelle, H.A. Eiselt, M.S. Daskin. "A
bibliography for some fundamental problem
categories in discrete location science",
European Journal of Operational Research,
2008
Publication

Gaurav Srivastava, Alok Singh, Rammohan
Mallipeddi. "A Hybrid Discrete Differential

37 <1%

38 <1%

39 <1%

40 <1%

41 <1%

42 <1%

Evolution Approach for the Single Machine
Total Stepwise Tardiness Problem with
Release Dates", 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021
Publication

"Hybrid Metaheuristics", Springer Science and
Business Media LLC, 2010
Publication

Dasari Kasi Viswanath, Pandiri Venkatesh,
Alok Singh. "Multi-Start Heuristics for the
Profitable Tour Problem", Swarm and
Evolutionary Computation, 2021
Publication

hdl.handle.net
Internet Source

ALOK SINGH, ASHOK KUMAR GUPTA. "A
HYBRID HEURISTIC FOR THE MINIMUM
WEIGHT VERTEX COVER PROBLEM", Asia-
Pacific Journal of Operational Research, 2011
Publication

Alcaraz, J.. "Design and analysis of hybrid
metaheuristics for the Reliability p-Median
Problem", European Journal of Operational
Research, 20121001
Publication

Xueping Li, Kaike Zhang. "A sample average
approximation approach for supply chain

43 <1%

44 <1%

45 <1%

46 <1%

47 <1%

48 <1%

49 <1%

network design with facility disruptions",
Computers & Industrial Engineering, 2018
Publication

Parallel Problem Solving from Nature – PPSN
XI, 2010.
Publication

"Swarm, Evolutionary, and Memetic
Computing", Springer Science and Business
Media LLC, 2011
Publication

Alok Singh, Ashok Kumar Gupta. "A hybrid
heuristic for the maximum clique problem",
Journal of Heuristics, 2006
Publication

www.rhsupplies.org
Internet Source

"AI 2018: Advances in Artificial Intelligence",
Springer Science and Business Media LLC,
2018
Publication

"Fuzzy Logic Hybrid Extensions of Neural and
Optimization Algorithms: Theory and
Applications", Springer Science and Business
Media LLC, 2021
Publication

Venkatesh Pandiri, Alok Singh. "A simple
hyper-heuristic approach for a variant of

50 <1%

51 <1%

52 <1%

53 <1%

54 <1%

55 <1%

many-to-many hub location-routing problem",
Journal of Heuristics, 2021
Publication

megplanning.gov.in
Internet Source

Alok Singh, André Rossi, Marc Sevaux. "
Matheuristic approaches for -coverage
problem versions in wireless sensor networks
", Engineering Optimization, 2013
Publication

John H. Drake, Ahmed Kheiri, Ender Özcan,
Edmund K. Burke. "Recent Advances in
Selection Hyper-heuristics", European Journal
of Operational Research, 2019
Publication

Li, Zichuan, and Paul Schonfeld. "Hybrid
simulated annealing and genetic algorithm for
optimizing arterial signal timings under
oversaturated traffic conditions : HYBRID SA
AND GA FOR SIGNAL TIMING OPTIMIZATION",
Journal of Advanced Transportation, 2014.
Publication

Lecture Notes in Computer Science, 2014.
Publication

Murat Oğuz, Tolga Bektaş, Julia A. Bennell.
"Multicommodity flows and Benders
decomposition for restricted continuous

56 <1%

57 <1%

58 <1%

59 <1%

60 <1%

61 <1%

62 <1%

location problems", European Journal of
Operational Research, 2018
Publication

Shyam Sundar, Alok Singh. "A hybrid heuristic
for the set covering problem", Operational
Research, 2010
Publication

Gert W. Wolf. "Solving location‐allocation
problems with professional optimization
software", Transactions in GIS, 2022
Publication

Lecture Notes in Computer Science, 2016.
Publication

Ricardo B. Damm, Mauricio G.C. Resende,
Débora P. Ronconi. "A biased random key
genetic algorithm for the field technician
scheduling problem", Computers &
Operations Research, 2016
Publication

dspace.nwu.ac.za
Internet Source

epdf.pub
Internet Source

riunet.upv.es
Internet Source

63 <1%

64 <1%

65 <1%

66 <1%

67 <1%

68 <1%

"Advances in Natural Computation", Springer
Science and Business Media LLC, 2006
Publication

Branka Dimitrijevic, Milos Nikolic, Katarina
Vukadinovic, Ivana Vukicevic. "Locating
dangerous goods with constant and variable
impact radius", Vojnotehnicki glasnik, 2016
Publication

Damgacioglu, Haluk, Derya Dinler, Nur Evin
Ozdemirel, and Cem Iyigun. "A genetic
algorithm for the uncapacitated single
allocation planar hub location problem",
Computers & Operations Research, 2015.
Publication

Pandiri Venkatesh, Alok Singh. "A Hyper-
Heuristic Based Artificial Bee Colony
Algorithm for k -Interconnected Multi-Depot
Multi-Traveling Salesman Problem",
Information Sciences, 2018
Publication

Shyam Sundar, Alok Singh. "Metaheuristic
Approaches for the Blockmodel Problem",
IEEE Systems Journal, 2015
Publication

researchrepository.wvu.edu
Internet Source

69 <1%

70 <1%

71 <1%

72 <1%

73 <1%

74 <1%

"Operations Research and Health Care",
Springer Science and Business Media LLC,
2004
Publication

"Soft Computing: Theories and Applications",
Springer Science and Business Media LLC,
2019
Publication

Breunig, U., V. Schmid, R.F. Hartl, and T. Vidal.
"A large neighbourhood based heuristic for
two-echelon routing problems", Computers &
Operations Research, 2016.
Publication

Claudio Contardo. " Decremental Clustering
for the Solution of -Dispersion Problems to
Proven Optimality ", INFORMS Journal on
Optimization, 2020
Publication

Paola Garrone, Sergio Mariotti, Francesca
Sgobbi. "Technological Innovation in
Telecommunications: An Empirical Analysis of
Specialisation Paths", Economics of
Innovation and New Technology, 2002
Publication

Patricia Domínguez-Marín. "Heuristic
Procedures for Solving the Discrete Ordered

75 <1%

76 <1%

77 <1%

78 <1%

79 <1%

80 <1%

81 <1%

Median Problem", Annals of Operations
Research, 04/2005
Publication

Taiser Samer Jasim, Esam Taha Yassen, Sudad
H. Abed. "A new competitive travelling
salesmen problem based on metaheuristics",
AIP Publishing, 2022
Publication

library.cuhk.edu.hk
Internet Source

"Evolutionary Computation in Combinatorial
Optimization", Springer Science and Business
Media LLC, 2009
Publication

"Evolutionary Computation in Combinatorial
Optimization", Springer Science and Business
Media LLC, 2013
Publication

"Hybrid Intelligent Systems", Springer Science
and Business Media LLC, 2020
Publication

Berman, O.. "The minimum weighted covering
location problem with distance constraints",
Computers and Operations Research, 200802
Publication

C.N. Vijeyamurthy. "Literature review of
covering problem in operations

82 <1%

83 <1%

84 <1%

85 <1%

86 <1%

87 <1%

management", International Journal of
Services Economics and Management, 2010
Publication

Javier Alcaraz, Mercedes Landete, Juan F.
Monge, José L. Sainz-Pardo. "Strengthening
the reliability fixed-charge location model
using clique constraints", Computers &
Operations Research, 2015
Publication

Juan A. Díaz, Dolores E. Luna. "Primal and
dual bounds for the vertex p-median problem
with balance constraints", Annals of
Operations Research, 2016
Publication

Proceedings of the Institute of Industrial
Engineers Asian Conference 2013, 2013.
Publication

"Contributions to Location Analysis", Springer
Science and Business Media LLC, 2019
Publication

"Handbook of Metaheuristics", Springer
Science and Business Media LLC, 2010
Publication

B. Jayalakshmi, Alok Singh. "A hybrid artificial
bee colony algorithm for the p-median
problem with positive/negative weights",
OPSEARCH, 2016
Publication

88 <1%

89 <1%

90 <1%

91 <1%

92 <1%

Harris, Matthew, Regina Berretta, Mario
Inostroza-Ponta, and Pablo Moscato. "A
memetic algorithm for the quadratic
assignment problem with parallel local
search", 2015 IEEE Congress on Evolutionary
Computation (CEC), 2015.
Publication

Mario Diaz, Hao Wang, Flavio P. Calmon,
Lalitha Sankar. "On the Robustness of
Information-Theoretic Privacy Measures and
Mechanisms", IEEE Transactions on
Information Theory, 2020
Publication

Nasser R. Sabar, Masri Ayob, Graham Kendall,
Rong Qu. "Automatic Design of a Hyper-
Heuristic Framework With Gene Expression
Programming for Combinatorial Optimization
Problems", IEEE Transactions on Evolutionary
Computation, 2015
Publication

Reza Zanjirani Farahani, Nasrin Asgari,
Nooshin Heidari, Mahtab Hosseininia, Mark
Goh. "Covering problems in facility location: A
review", Computers & Industrial Engineering,
2012
Publication

Zhilei Ren, He Jiang, Jifeng Xuan, Yan Hu,
Zhongxuan Luo. "New Insights Into

93 <1%

94 <1%

95 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

Diversification of Hyper-Heuristics", IEEE
Transactions on Cybernetics, 2014
Publication

imentaraddod.com
Internet Source

people.sc.fsu.edu
Internet Source

researchbank.swinburne.edu.au
Internet Source

