Heuristics for Facility Location
Problems

A thesis submitted during 2022 to the University of Hyderabad in
partial fulfillment of the award of a Ph.D. degree in School of
Computer and Information Sciences

by

Edukondalu Chappidi

School of Computer and Information Sciences
University of Hyderabad
P.O. Central University, Gachibowli

Hyderabad - 500 046
Telangana, India

December 2022

CERTIFICATE

This is to certify that the thesis entitled “Heuristics for Facility Location Problems” sub-
mitted by Edukondalu Chappidi bearing Reg. No. 16MCPCO0S in partial fulfillment of the
requirements for the award of Doctor of Philosophy in Computer Science is a bonafide work

carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to

this or any other University or Institution for the award of any degree or diploma.

The student has the following publications before submission of the thesis for adjudication
and has produced evidence for the same in the form of acceptance letter or the reprint in the

relevant area of his research:

1. Edukondalu Chappidi, Alok Singh. “Discrete differential evolution-based solution for
anti-covering location problem”. Proceedings of the 10" International Conference on
Soft Computing for Problem Solving (SocProS 2020), Advances in Intelligent Systems
and Computing, 1392: 607-620, 2021, Springer. Work reported in this paper appears in
Chapter 2.

2. Edukondalu Chappidi, Alok Singh and Rammohan Mallipeddi. “Intelligent optimiza-
tion algorithms for disruptive anti-covering location problem”. To appear in Proceedings
of the 19" International Conference on Distributed Computing and Intelligent Technology
(ICDCIT 2023), Lecture Notes in Computer Science, 2023, Springer. Work reported in
this paper appears in Chapter 3.

3. Edukondalu Chappidi, Alok Singh. “Evolutionary approaches for the weighted anti-
covering location problem”. To appear in Evolutionary Intelligence, Springer. Work

reported in this paper appears in Chapter 3.

4. Edukondalu Chappidi, Alok Singh. “An evolutionary approach for obnoxious coopera-
tive maximum covering location problem”. Applied Intelligence, 52: 1665116666, 2022,
Springer. Work reported in this paper appears in Chapter 4.

and has made the presentation in the following conference:

1. 10™ International Conference on Soft Computing for Problem Solving (SocProS 2020),
December 18-20, 2020, Indore, India.

Further, the student has passed the following courses towards fulfillment of coursework

requirement for Ph.D.:

Course Code Name Credits Pass/Fail
CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 810 Metaheuristic Techniques 4 Pass
Al 852 Learning & Reasoning 4 Pass
(Prof. Alok Singh) (Prof. Chakravarthy Bhagavathi)
Supervisor Dean
School of Computer and Information Sciences School of Computer and Information Sciences
University of Hyderabad University of Hyderabad

Hyderabad — 500 046, India Hyderabad — 500 046, India

1ii

DECLARATION

I, Edukondalu Chappidi, hereby declare that this thesis entitled “Heuristics for Facility
Location Problems” submitted by me under the guidance and supervision of Prof. Alok Singh
is a bonafide research work which is also free from plagiarism. I also declare that it has not been
submitted previously in part or in full to this University or any other University or Institution
for the award of any degree or diploma. I hereby agree that my thesis can be deposited in

Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Library is enclosed.

Date : Name: Edukondalu Chappidi

Signature of the Student:

Reg. No.: 16MCPCO05

Signature of the Supervisor:

Abstract

Facility location problems are concerned with locating facilities over a set of
potential locations subject to some constraints so that a given objective function
is optimized (minimized or maximized). The objective function can be based on
factors such as cost of locating facilities, distance between facilities and customers,
number of facilities that needs to be opened, service time, waiting time, coverage
or a combination of these factors. There are many application domains such as
locating public facilities, commercial facilities, factories, power plants, ware-houses.
To tackle these real-world problems, various facility location models have been

developed as a result of abstraction.

In this thesis, we have worked on three facility location models and variants
thereof, viz. anti-covering location problem (ACLP), obnoxious cooperative maxi-
mum coverage location problem (OCMCLP), reliability p-median problem (RpMP).
We choose these models because these models are under-studied despite several
real-world applications. In addition, choice of latter two models is also governed
in part by their highly complex nature which pose a challenge to anyone trying
to solve them. We have considered six NP-hard facility location problems in this
thesis. Out of these, first three are based on ACLP and its variants. The fourth
problem deals with location of obnoxious facilities under cooperative coverage.
The last two problems are the p-median facility location problems which consider
the reliability and fault tolerance issues. These problems have many practical appli-
cations in diverse fields such as locating garbage dump yards, nuclear power plants,
chemical plants, telecommunication equipments, franchise outlets, liquor stores,
ATMs, military defense units, DNA sequence matching, forest management, supply
chain design, disaster management. As these problems are NP-hard, applicability
of exact methods is limited to small size instances only, and one has to resort to

heuristic approaches to tackle instances beyond a certain maximum size.

We have devised heuristic approaches based on genetic algorithm (GA), discrete
differential evolution (DDE), and hyper-heuristics to address the considered facility
location problems. In addition, we have also developed some problem-specific
heuristics for use within these approaches. We have compared the performance
of our proposed approaches with the state-of-the-art approaches available in the
literature on the standard benchmark instances of the respective problems. Com-
putational results show the efficacy of our proposed approaches. The proposed
approaches can be easily extended to solve other related facility location problems.
The ideas presented in the thesis can be used to develop heuristic approaches for

other combinatorial optimization problems also.

vi

To my dear parents,
Mr. Chappidi Kasulu and Mrs. Venkata Ramana
my dear wife and lovely sons,
Rachel, Paul and Ben
without their endless love, support and encouragement, this would not have been

possible.

Acknowledgements

It has been my passion to pursue Ph.D and I am deeply thankful to many people
who are part of this journey and helped me realize this dream. I would like to

express my deep appreciation to all of them.

Above all I am grateful to God Almighty for His blessings and grace on my life

without which nothing would have been possible.

Next, I express my sincere gratitude towards my supervisor Prof. Alok Singh
for his constant support and guidance throughout this Ph.D. I believe it was my
destiny to work under his esteemed guidance to undertake this course while learning
the proper research in the truest sense. His impeccable knowledge and astute
feedback helped me face some of the toughest research problems in the field of
combinatorial optimization and never give up in the process in spite of innumerable
technical difficulties. I am greatly indebted to him for his valuable time, patience,
and insightful guidance offered to me. His attention to detail and striving towards
perfection in each considered task are something I want to imbibe in my journey

ahead.

Next, I would like to thank my doctoral review committee (DRC) members, Dr.
Sobha Rani T. and Dr. Rajendra Prasad Lal for their probing queries, feedback,
and suggestions which helped me to enhance the quality of my research from

various perspectives.

I take this opportunity to thank the Dean of the School Prof. Chakravarthy
Bhagvati for providing all the necessary facilities to pursue my research work. I
would also like to thank other faculty members and staff of the school for their
support. I am thankful for the unstinting support that I received from the research
infrastructure and the effervescent ambiance of the University. Due credit to the

University for building a research oriented School of Computer & Information

Sciences (SCIS), a library rich in a wide range of research books & articles, and

most importantly a healthy campus atmosphere.

I am thankful to my senior lab mate Dr. Venkatesh Pandiri who had helped
me in the initial stages of my Ph.D right from making me comfortable in the lab
to introducing me to the scenic and pleasant locations in the University campus. I
also want to make a special mention about my other senior lab mate Dr. Gaurav
Srivastava for his friendship and engaging technical discussions in the lab. I am
thankful to my fellow lab mates (Kasi Vishwanath, Danish, Sebanti and Preeti)
for stimulating discussions, providing me company for tea/snacks and for all the
fun we had together. I am thankful to all my Ph.D colleagues in SCIS for their

support and encouragement.

I would like to make a special mention about my dear friend and labmate
Mallikarjun whom we lost due to COVID-19. I shared a close, brotherly bond

with him and miss his pleasant smile and presence in the lab.

I am grateful to a number of researchers in my field who shared their research
data and answered my queries regarding their problem formulations and proposed
approaches, especially to Ms. Preeti Ravindranath, Prof. Sohail Chaudhry,
Prof. Averbakh Igor, Dr. Alcaraz Javier, Dr. Maria Albareda-Sambola.

I want to thank my friends and extended family who played an important role
in my life and helped me in my journey so far. I fondly remember my first guru and
our primay school teacher Late. Mr. G Murali Krishna sir and my inspiration
in secondary school Mr. K Edwin sir. I want to make a mention of my uncle Mr.
Cheeti Nagendra Kumar, who first planted the thought of doing Ph.D in my mind
many years ago. I express my sincere gratitude towards Mr. Selvam MPT for
being my mentor and my support system ever since we first met. I want to thank
my all-weather friend Mr. Sai Kumar for the encouragement and being there for

me.

Finally, I could not have achieved anything in life without the unconditional and
constant support of my family. I would like to dedicate this thesis to my parents Mr.
Chappidi Kasulu and Mrs. Venkata Ramana who have been my inspiration and
instilled right values and taught me to work hard from a young age. I would like to

thank a very special person, my wife, Rachel for her continued and unfailing love,

support and understanding during my pursuit of Ph.D. I am thankful to my precious
kids who are the stress busters of my life, Paul and Ben. I want to thank my elder
brothers Venkat and Srinivas and their families for their affection, patience and
encouragement. I want to make a special mention of my in-laws Mr. Vijaya R

and Mrs. Rathnamma for their love and support.

Edukondalu Chappidi

Contents

List of Figures xiv]
List of Tables XV
1 Introduction 1l
1.1 Overview of genetic algorithm
1.1.1 Representation of solutions g

1.1.2 Selection mechanisms, 9

L1330 CrOSSOVET . . o v v vt i e e e e e e e e e (1l

114 Mutation ot

1.1.5 Population evolutionmodels 13

1.2 Overview of differential evolution 14

1.3 Overview of hyper-heuristics 16l

1.4 Scopeofthethesis 17

2 Anti-covering location problem
2.1 Introduction 22

2.2 Formal problem definition 23

2.3 Proposed approach for unweighted input graph oL
2.3.1 Solution encoding and fitness 25|

2.3.2 Initial population generation 235

233 DDEframework

234 Mutation e 26|

2.3.5 CrossOVer vt i e e e e 26

23.6 Repair 27

2377 Selection 27

X1

CONTENTS

24
2.5

Experimental results

Conclusions e e

3 Two ACLP variants

3.1
3.2

33

34

Introduction e

Disruptive ACLP

Weighted ACLP

3.2.1 Problem definition
3.2.2 DDE approach for DACLP .
3.2.3 GA approach for DACLP . .
3.24 Experimental results
3.3.1 Formal problem definition . .
3.3.2 DDE approach for WACLP .
3.3.3 GA approach for WACLP . .
334 Localsearch
3.3.5 Experimental results

Conclusions e

4 Obnoxious cooperative maximum covering location problem

4.1
4.2
4.3

4.4
45

Introduction
Formal problem definition
Proposed steady-state genetic algorithm approach
43.1 Solutionencoding
43.2 Fitnessevaluation L L
4.3.3 Generating the initial population of solutions
434 SSGAframework Lo
435 Selection e
4.3.6 CrOSSOVET . . . v v v v vt ettt e e e e
437 Mutation e e

4.3.8 Local search

4.3.9 Population replacement model

Computational results

Conclusions e e e

Xii

CONTENTS

5 Reliability p-median problem 83
51 Introduction e e 83

5.2 Formal problem definition 88

5.3 Naive Bayesclassifier 90

54 Proposedapproach 1]
5.4.1 Solution representation and fitness L. 92|

5.4.2 Generating the initial solution L. 92

5.4.3 Hyper-heuristic framework with naive Bayes classifier 93|

544 Lowlevel heuristics O3

545 Localsearch 96

5.5 Computationalresults L L 97]

56 Conclusions [101]

6 Reliable p-median problem with at-facility service 102
6.1 Introduction L 102]

6.2 Formal problem definition, 106}

6.3 Proposedapproach 108}
6.3.1 Solution representation and fitness 108}

6.3.2 Initial solution generation

6.3.3 Hyper-heuristic framework oo

6.3.4 Lowlevel heuristics [L10]

6.3.5 Localsearch 112l

6.3.6 Selection methodology

6.3.7 Acceptancecriteriao e

6.4 Computational results 14

6.5 Conclusions 1211

7 Conclusions and directions for future research 122
References 127
List of Publications [143]

xiii

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

3.1
3.2

33
34

4.1
4.2

5.1

6.1

Ilustration of 1-pointcrossover. v v v v v v v v 12
IMlustration of uniform crossover 12
IMlustration of bitwise mutation
Ilustration of random reset mutation
Framework of Hyper-heuristics 18
Mlustration of ACLP 24
DACLP illustration v v i 37
Plots of ACLP and DACLP solutions on the eil51 instance having 51 nodes for

different values of R 47
Weighted ACLP solutions found by GA for different R values on eil51] instance [57]
Covergence behavior of DDE and GA on 4 different instances 58
A sample network used for explaining OCMCLP 64
Convergence behaviourof GA L oL, 8 1]
[lustration of reliability p-median problem with p = 4 facilities 87
Illustration of reliable p-median problem with at facility service having p = 5

facilities o

X1V

List of Tables

1.1

2.1

2.2

23

24

2.5

3.1
32
33
34
3.5
3.6
3.7

4.1
4.2

4.3

Frequently used terms in genetic algorithm parlance

Comparison of objective values of GA, ACO and DDE based solutions for
datasetsusedin [1l]
Comparison of objective values of ACO and DDE based solutions for OR library
datasets
Comparison of objective values of ACO and DDE based solutions for TSPLIB
datasets
Comparison Summary: Number of instances on which DDE obtained worse
(<), same (=) and better (>) solutions in comparisonto ACO

Wilcoxon Signed-Ranks test of our approach with ACO

Parameters for DDEand GA
Results on OR-Library dataset for DDEand GA
Results on TSPLIB dataset for DDEand GA
Summarytable
Results of DDE, GA and 4 greedy heuristics on OR library dataset
Results of DDE, GA and 4 greedy heuristics on TSPLIB dataset

Wilcoxon signed-ranks test oL Lo

Important notational conventions
Comparison of I1 and I2 interchange heuristics of [2] with GA on instances
withT =0.1,Uq =0.65
Comparison of I1 and 12 interchange heuristics of [2] with GA on instances
withT =0.1,Ugp =075 o o oo

XV

LIST OF TABLES

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

5.1
52
53
54
5.5

5.6

6.1
6.2
6.3
6.4

Comparison of I1 and I2 interchange heuristics of [2]] with GA on instances
withT =0.1,Uy =085
Comparison of I1 and 12 interchange heuristics of [2] with GA on instances
withT =03, Uy =065
Comparison of I1 and I2 interchange heuristics of [2] with GA on instances
withT =0.3,Uq =075
Comparison of I1 and I2 interchange heuristics of [2]] with GA on instances
withT =03,Uqp =085o
Comparison of I1 and I2 interchange heuristics of [2] with GA on instances
withT =0.5,Uq =07 o e
Comparison of I1 and I2 interchange heuristics of [2]] with GA on instances
withT =0.5,Up =08 o o
Comparison of I1 and I2 interchange heuristics of [2]] with GA on instances
withT =0.5,Up =0.9
Comparison of 11 and 12 interchange heuristics of [2] with GA in the same
formatasin [2]
Wilcoxon Signed-Ranks testof GAwithI2
Friedman testof I1, 12 and GA

Mean ranks for I1, I2 and GA in Friedmantest.

Summary of key notations oL L
Sample dataset used for naive Bayes training

Conditional probabilities for different feature values

Comparison of results given by the hyper-heuristic with GA and SS (DLP Library)I00]

Comparison of results given by the hyper-heuristic with GA and SS (OR Library:
Instances where CPLEX has reached a feasible solution)
Comparison of results given by the hyper-heuristic with GA and SS (OR Library:

Instances where CPLEX has not reached a feasible solution)

Summary of key notations
HH_Grd results on Homogeneous Type linstances
HH_Grd results on Homogeneous Type Il instances

HH_Grd results on Large Homogeneous instances

XVi

6.5

6.6

6.7

LIST OF TABLES

HH_Grd results on Non-Homogenous instances with n = 20 nodes and p = 4

facilities e [[19]
HH_Grd results on Non-Homogenous instances with n = 25 nodes and p = 4

facilities L [L19]
Average CPU times for the Non-Homogenous instances 120

XVvil

Chapter 1

Introduction

In the field of Operations Research (OR), facility location is an important branch that continues
to attract researchers over the past many decades. Identifying the best locations for facilities
is one of the trickiest and most important decisions to be made in a project due to the high
competition among the companies. These choices are especially crucial for companies because
of the substantial expenditures associated with locating and relocating the facilities. Additionally,
the placements of a company’s facilities with respect to other facilities and its clients play a role
in its capacity to effectively produce and sell its goods or provide high-quality services. Facility
location models find their applications in both public and private sectors for locating a wide
variety of facilities such as schools, fire stations, police stations, banking facilities, restaurants,
medical services, swimming pools, vehicle service centers, shopping malls, hazardous and waste
material disposal.

It is observed that in the facility location problems related to the application fields such as
food service, retail trade and refuelling, the number of facilities that needs to be located is often
fixed. On the other hand, in the facility location problems arising out of other application fields,
the aim is to find the number of facilities to be located and also to decide the locations of the
facilities. It is crucial to determine the precise number of facilities that must be located and
the best location for each one since locating too many or too few facilities or wrongly locating
the facilities will lead to decreased performance and increased costs. In industrial applications,
deploying too many facilities will result in costs that are higher than desired. If fewer facilities
are established, the level of customer service may deteriorate, which may decrease consumer
loyalty. Despite using the appropriate number of facilities, improper facility location will lead

to sub-par performance while increasing the overall cost. In the application fields such as health

1. INTRODUCTION

care and social assistance where emergency service facilities like ambulances, fire stations
and police stations are to be located facility location is very crucial. Locating too few of such
emergency facilities or mislocating them can result in adverse consequences in the emergency
scenarios [3]].

A facility location problem’s characteristics are mainly dependent on the type of objectives
considered while satisfying the given constraints on the facilities being located. The application
where the facility location problem is applied will determine the optimization criteria. For
example, in the case of locating private facilities like an industrial plant or a retail store the
objectives are to maximize the overall profit and to gain higher market share from the existing
competitors while minimizing the capital expenditure. On the other hand, in the applications
that involve locating public facilities such as schools and hospitals the primary goals are to
establish effective systems with probity of service at minimum cost possible. But for emergency
facilities such as ambulances and fire stations, the objectives are defined based on criteria such
as minimizing the total weighted distance from all the customers to their nearest facilities or
minimizing the distance or travel time of the farthest user from the facility to receive the service
or a combination of both the just mentioned criteria [4]. Usually, facility location problems are
concerned with either minimizing the cost of locating and operating the facilities considering the
facilities provide complete coverage to all the customers or maximizing the customer coverage
that can be achieved given a fixed number of facilities [15].

Facility location problems are concerned with locating facilities over a set of potential
locations subject to some constraints so that a given objective function is optimized (minimized
or maximized). The objective function can be based on factors such as cost of locating facilities,
distance between facilities and customers, number of facilities that needs to be opened, service
time, waiting time, coverage or a combination of these factors. As mentioned earlier, there are
many application domains such as locating public facilities, commercial facilities, factories,
power plants, ware-houses. To tackle these real-world problems, various facility location models
have been developed as a result of abstraction. Any facility location problem typically involves
two decisions where the first decision establishes the location of facilities, and the second one
governs the allocation of customers to facilities in order to meet their respective service demands.
Hence, the facility location problems are also called as location-allocation problems [6].

Difterent facility location models have been formulated based on criteria such as the number

of candidate facilities, objective function, the problem’s solution space. Considering the

problem’s solution space, there are three facility location models, viz. continuous facility
location models, discrete facility location models, and network facility location models.

Continuous facility location models have a continuous space generally determined by a
plane’s coordinates. In these models, we can locate facilities anywhere on the given plane or
in the specified region having infinite number of possible locations. New facilities are located
in the continuous space taking into consideration the already located facilities. Summary of
location theory in continuous space is given in [[7], whereas the latest works on continuous
facility location problems are provided in [8, 9]. Survey of various approaches for solving the
continuous facility location problems is given in [10]].

In a discrete facility location problem, the solution space has a finite number of locations
for locating facilities. Given a set of possible locations for facilities and a set of constraints,
these problems are concerned with selecting a subset of locations where facilities can be located
while satisfying the given constraints so that a given cost function can be optimized. A detailed
survey of discrete facility location problems is provided in [11]. In [12], Drezner mentioned
various models of discrete facility location problems while discussing their applications. In [[13],
Basu et al. provide a survey on applying metaheuristic methods for handling discrete facility
location problems.

Continuous facility location models differ from discrete facility location models in that
they need to select a distance or cost function that determines the distance or cost of a point
from other points in the space. Example distance functions are Manhattan distance function,
Euclidean distance function etc. On the other hand, in discrete facility location models, given
any pair of points the actual travel distance or cost between them may be used. Discrete models
are slower as compared to the continuous models due to the large amount of travel distance
data they require as input and the pre-computations thereof to find the shortest distances. But
they are more precise than continuous models as they use exact distance values as against the
approximate distance values used in continuous models due to the distance function used [10].

Network facility location problems can be considered as a generalization of discrete facility
location problems [14]]. In these problems, given a set of nodes and edges connecting those
nodes, facilities can be located either on the nodes or along the edges connecting the nodes.
These problems are concerned with locating facilities anywhere on the network as just mentioned
subject to some constraints while optimizing the given cost function. Based on the problem
under consideration, the network can be either a network of air transport or a network of road

transport or river transport, etc. [15]].

1. INTRODUCTION

In location problems, generally various types of objective functions are taken into considera-
tion. Here are a few examples of objective functions that are frequently used: Minimizing the
cost of overall set-up, minimizing the total number of facilities that are located, minimizing the
maximum distance a customer has to travel to receive the service, minimizing the waiting time
before a customer receives service after reaching the facility, minimizing the time taken to serve
each customer etc. In the past two decades or so, the study of multi-objective facility location
problems is also gaining popularity [[16, [17].

In the field of facility location, covering problems are fascinating models as they are
more suitable to solve several real-world problems particularly those which involve locating
emergency facilities. Church and ReVelle first introduced the concept of coverage objective
in [4]. In these problems, a customer is considered as covered if the distance between the
customer and its closest facility is less than a pre-specified value called coverage distance or
critical distance. This model of coverage where only a single facility decides whether a customer
is covered or not is called individual coverage model. There are also other type of coverage
models where a group of facilities together provide service to customers. The models where
facilities cooperate and serve customers are called cooperative coverage models [18]. Covering
problems find their applicability in solving several real-world problems including but not limited
to locating parks, police stations, hospitals, post offices, radar installations, banks, shopping
malls and dump-yards [[19]. [20, 21} 22]] give more information on the covering problems. One
can refer to [2, [18}, 23] 24] for more details about cooperative coverage models.

Generally covering problems involve locating facilities as near to the customers as possible.
But, when the facilities to be located are undesirable like dump yards, prisons, nuclear power
plants, sewage treatment plants etc., people want these facilities as far from their locations as
possible. Models that deal with locating such undesirable facilities are called obnoxious facility
location models. A review of facility location problems when the facilities are obnoxious is
provided in [25]. The reviews of recent obnoxious models are presented in [26}, [27]].

There is a rich literature of facility location models and several variants of them that are
considered and tackled using various techniques [16} (19, 28] [29] 30, 131} [32], 33]]. In spite of
location theory being regarded as an old field, several of these models are being used to solve
many real-world problems making it a fascinating field of study. To understand more about
facility location models, interested readers are requested to refer to (13 12,134} 35136} 37,138,139,
40]. Since nearly all variants of facility locating problems come under the category of NP-hard

problems, the applicability of exact techniques is limited to instances of a certain maximum

1.1 Overview of genetic algorithm

size only. Hence, several authors in the past have devised heuristic and metaheuristic based
approaches to solve the facility location problems [[10,13,/41,142,!43|144]. Heuristics are intuitive
methods that find feasible solutions in less time by making use of the structure of the problem
at hand. No guarantee can be given about the solution quality when heuristics are applied.
A heuristic generates better quality solutions when appropriate problem-specific knowledge
is incorporated into the approach. Metaheuristic methods use problem-related information
as components in their framework. The framework of a metaheuristic is independent of the
considered problem. Many of the metaheuristic techniques are stochastic approaches and the
resulting solution obtained after applying a metaheuristic depends on the generated values of
several random variables. For the metaheuristics applied, they typically require the problem
to be represented in a suitable form. Genetic algorithms [45] 46], differential evolution [47]],
tabu search [48, |49], ant colony optimization [50, 51]], variable neighborhood search [52} [53]],
artificial bee colony algorithm [54], etc., are some of the most commonly used metaheuristic
techniques. Metaheuristic-based approaches for solving facility location models have received a
lot of attention of the researchers in the past [43| 144, 55156, |57]]. It has been demonstrated in
the literature that the approaches based on metaheuristics have outperformed problem-specific
heuristics.

For any particular facility location problem, the solution methods often depend on the
objective function of the problem and the constraints that need to be satisfied. For the facility
location problems considered in this thesis, we have devised approaches based on genetic
algorithm (GA), discrete differential evolution (DDE) and hyper-heuristics. In addition, we
have developed some problem-specific heuristics for use with these approaches. In the next
three sections, we provide overview of the approaches used in this thesis, viz. genetic algorithm

(Section[I.1)), differential evolution (Section [I.2) and hyper-heuristics (Section [I.3) respectively.

1.1 Overview of genetic algorithm

Genetic algorithm (GA) is a popular global optimization tool that models based on the principles
of natural genetics and natural selection. It is one among the first few evolutionary algorithms
that were proposed, and it is still widely used to solve optimization problems. John Holland
introduced GA for the first time in 1960s with the intention of simulating evolutionary adaptation
of the natural systems [45]. Later, GA was used to solve diverse problems including the ones

related to optimization and search. Schema Theorem which was proved in [45] describes the

1. INTRODUCTION

mechanism involved in the operation of a GA while giving a good theoretical explanation of it.
According to the Schema Theorem, the number of schemata with fitness greater than average
will rise with subsequent generations. The Schema Theorem functions as an analytical tool
for GA and helps to determine which schema has a better probability of surviving the GA
process. Holland also demonstrated GA’s implicit parallelism using this theorem. Over the
last many decades, there have been several variants of GA that were proposed to solve difficult
optimization problems. GA has been a successful approach due to its characteristics such as
simple structure, adaptability to a varied collection of problems and ability to arrive at good
quality solutions because of its better search space exploration [58 59, 60].

The terminology used in GA is extensively related to the biology, and hence, it helps to
have a brief description of each of those terms in the backdrop of GA prior to diving into further
details. The frequently used terms in GA and their descriptions are provided in[Table 1.1}

Table 1.1: Frequently used terms in genetic algorithm parlance

Term Explanation
Phenotype A potential solution to the problem being considered
h - . . .
tCypreomosome or Geno The phenotype represented in a form on which GA can be applied
The smallest constituent in a chromosome and several genes to-
Gene
gether form a chromosome
Alleles The set of values that a gene can be assigned with
Population A collection of chromosomes participating in the evolution
Generation A single pass from the current population to the next population
. A measure of chromosome’s performance on the problem being
Fitness .
considered
Evaluation The process which gets a phenotype from the given genotype and
determines its fitness
Phenotype Space The space consisting of all potential solutions to the problem being
considered
Genotype Space The space consisting of all potential genotypes of the problem

being considered

GA starts with a population of initial solutions or chromosomes for the problem being
considered. These initial solutions can be generated either in a completely random manner or
using some heuristics that make use of the problem-specific knowledge. By using the fitness
function, each individual solution’s fitness is evaluated which also gives a ranking of individual

solutions to identify how one solution fares in comparison to other solutions in the population.

1.1 Overview of genetic algorithm

In most cases, the objective function of the problem is considered as the fitness function, but
in some problems, the fitness function may be different from the objective function. After
evaluating each solution in the initial population and assigning the corresponding fitness scores,
GA works in an iterative manner. In every generation, some solutions are selected as parents
according to a selection method. Generally, the selection method picks solutions with higher
fitness to be part of the set of parent solutions due to the fact that better parents have a higher
likelihood of having offspring who are even better. The genetic operators such as mutation
and crossover are applied on the parent solutions to generate child solutions. Crossover is also
referred to as recombination operator. It unites two or more parent solutions and creates one or
more child solutions. As a result, the children produced by crossover have characteristics of
each parent. Typically, just two solutions are recombined to create one or two child solutions
during the crossover. Crossover is applied with a specific probability which is called crossover
rate. Given a crossover rate of 0.7, about 70% of the child solutions will be produced using
crossover. In the cases where crossover is not applied, a child solution is generated by creating
an exact replica of the parent solution. Next, mutation is applied on the newly generated child
solution whether crossover is applied or not. As part of the mutation, the newly generated child
solution is made to go through some random changes. The probability with which mutation is
applied is called mutation rate. Depending on the problem under consideration, mutation and
crossover operators are applied either in a mutually exclusive manner or sequentially. Usually,
both these operators are applied one after the other. In some cases, there may be a chance of
crossover and mutation both being not applied on the parent solutions due to the crossover rate
and mutation rate. In such scenarios, the newly generated child solution will be an exact replica
of the parent solution. Once the required number of child solutions are generated, these newly
generated child solutions compete with the solutions of the existing population to be part of
the next generation. The population replacement policy determines the solutions which are to
be included in the next generation, and then the next generation starts. This iterative process
continues for as long as the termination criteria is not satisfied. There are different termination
criteria that can be employed such as the number of generations or a predetermined amount of
CPU time or the number of solutions produced or the number of iterations in a row without the
best solution’s quality improving.

Pseudo-code of basic GA is provided in Algorithm [I} where ps is the population size, g is

the number of child solutions produced in each generation, and, p. and p,, are crossover rate

1. INTRODUCTION

Algorithm 1: Pseudo-code of basic GA

Input: Required parameters for GA and the considered problem instance
Output: Best solution returned by GA

Population < ¢;

for (i < I to ps) do

X; < Init_Solution();

X, fitness <— Evaluate fitness of Solution(Xj;);
Population < Population U X;;

while (the termination criteria is not satisfied) do
Population’ < ¢;

for (i < 1 to q) do

parents <— Selection(Population);

// Parents are selected based on a selection mechanism
child_sol < crossover(parents);

// Crossover is applied as per p
child_sol +— mutation(child_sol);

// Mutation is applied as per pm
child_sol.fitness <— Evaluate fitness of child solutions;
Population’ < Population’ U child_sol,

Population < evolution_policy(Population, Population’);

return best,;;

and mutation rate respectively. The function Init_Solution() produces an initial solution. We

have explained various components of GA in subsequent subsections.

1.1.1 Representation of solutions

In GA, each solution in population of potential solutions is represented as a chromosome. The
way a solution is represented is extremely important because it affects how chromosomes are
manipulated to produce new chromosomes. As given in[Table 1.1] actual solution to the problem
is represented in phenotype and a genotype is an encoded form of the phenotype. The genetic
operators of GA are applied on the genotype as part of the evolution. The solutions’ genotypes
should be represented in as natural way as possible such that the genotype space solution
distribution is analogous to that of the phenotype space. The selected representation method
should be able to represent all the solutions by completely avoiding the redundancy or by keeping
it to minimum possible if it can not be avoided. If multiple genotypes correspond to the same
phenotype or in other words if a single solution is represented by more than one chromosome,
that representation method has redundancy. A representation method with redundancy leads to a

larger genotype space for the associated phenotype space. This results in larger search space that

1.1 Overview of genetic algorithm

GA has to explore. Consequently, it could lead to poor GA performance [61]. So, the solution
representation has a significant impact on how well GA performs on a given problem.

In the conventional GA, solutions are encoded using binary format often referred to as
bit string representation. In the binary format, a chromosome consists of an array of binary
digits Os and 1s. The solution representation in binary format is most suitable for problems
involving subset selection like the Knapsack problem where each index corresponds to a specific
item. In the chromosome, if the value at i*" index is 1, it means that the corresponding item
is present in the subset. On the other hand, if the value at it" index is 0, it means that the
corresponding item is not present in the subset. For example, consider a Knapsack problem
having six objects and a solution represented in binary format as [0 1 0 0 1 1]. The given
solution indicates that the second, fifth and sixth objects are in the subset. The given binary
array [0 1 00 1 1] is the genotype for the phenotype [2 5 6] which is the original solution for
the problem. For the permutation based optimization problems like TSP, the binary format of
solution representation may not be suitable. Integer solution representation suits more for the
permutation based problems to achieve better performance using GA. There are other solution
representations like random-key encoding, real-valued representation etc., that can be applied

depending on the problem under consideration.

1.1.2 Selection mechanisms

GA employs a selection mechanism for selecting the solutions that will participate in breeding
and produce new higher quality solutions. A selection mechanism aims to increase the quality
of solutions in the population by making sure the solutions with higher fitness have higher
probability of reproducing. Different selection mechanisms differ from each other in terms of
selection pressure and the degree of randomization employed in choosing the parent set. As a
result, the selection mechanism plays a vital role in balancing exploration and exploitation. The
success of GA depends on the selection mechanism employed. Various selection mechanisms
are discussed in the literature [62]. Some of the most commonly used selection mechanisms are:

fitness proportionate selection [45], ranking selection [63] and binary tournament selection [64].

1.1.2.1 Fitness proportionate selection

Holland [45] first introduced the fitness proportionate selection mechanism. As part of this

mechanism, the probability of selecting an individual solution ¢ is calculated as the ratio of 7’s

1. INTRODUCTION

fitness value to the fitness sum of all the solutions in the population. Considering there are n
solutions in the population and f; gives the fitness of i* solution, we can write the probability

of selection of 7" solution as

prob; = Tffl 7

According to this selection mechanism, a solution with higher fitness has a better probability
of being chosen as a parent several times. From the population of solutions, a particular
solution is selected using sampling methods such as stochastic universal sampling, roulette
wheel approach. In both these sampling methods, each solution of the population is mapped to a
distinct non-overlapping sub-interval of [0, 1] based on its selection probability. Consider an
example with a population of three solutions having the following selection probabilities: 0.1,
0.4, 0.5. We can map these three solutions to following sub-intervals: [0, 0.1], (0.1, 0.5] and
(0.5, 1.0] respectively. As part of the roulette wheel method, a random number in the range of
[0, 1] is generated. In whichever of the three sub-intervals the generated random number falls,
the corresponding solution is selected to be part of the set of parent solutions. This procedure is
iteratively repeated till the required number of solutions are added to the set of parent solutions.

The fitness proportionate selection mechanism has the following two key limitations:

o In the starting phases of GA, there is high fitness gap among candidate solutions in the
population. So, within few generations, the solutions with high fitness can take over the

whole population resulting in the premature convergence of GA.

e After certain number of generations, all the solutions in the population may have similar
fitness values which results in the roughly same selection probabilities for all solutions.

Such a scenario makes the fitness proportionate selection mechanism ineffective.

1.1.2.2 Ranking selection

To overcome limitations of fitness proportionate selection mechanism, ranking selection was
introduced [63]]. In the ranking selection mechanism each solution in the population is assigned
a rank based on its relative fitness as opposed to the absolute fitness. Individual solutions are
sorted based on their fitness values and ranks are assigned. Considering rank; is the rank of 5"

solution, its probability of selection prob; is calculated as

— rank;
prObZ T > rank:

10

1.1 Overview of genetic algorithm

1.1.2.3 Tournament selection

In the tournament selection mechanism, only a subset of solutions of limited size are considered
as the sample for selection, as opposed to the entire population of solutions. A subset of solutions
of size k are randomly selected from the population. From among these & solutions, the solution
having best fitness is chosen for reproduction, either based on a probabilistic method or in a
deterministic manner. The tournament has to be conducted for several rounds to obtain the
requisite number of parent solutions. This selection mechanism is known as binary tournament
selection when only two solutions are selected to participate in the tournament, i.e., k=2. Binary
tournament selection has a similar selection pressure as that of ranking selection though it is
computationally more efficient than the ranking selection [64]. As part of the probabilistic
binary tournament selection, two solutions are chosen uniformly at random from the population.
Between the two selected solutions, the one with better fitness is selected as a parent with a

given probability, py;. The inferior solution is selected as parent with the remaining probability,

1 — pp.

1.1.3 Crossover

Crossover also known as the recombination operator, combines the genetic information of two
or more parent solutions and generates child solutions. It is predicated on the notion that pairing
together two good parents could result in a child of even higher quality. The offspring that arise
from crossover may occasionally be worse than the parent solution, but repeated applications of
crossover will result in solutions of better quality. While designing the crossover operator care
should be taken so that it recombines the data pertinent to the considered problem. Additionally,
if the two parents involved in the crossover are almost identical, then the child solution must
likewise resemble the parents. This requirement is known as similarity requirement. The proper
design of crossover operator as per the solution representation while making use of the problem
specific knowledge is crucial to GA’s success. We discuss some commonly used crossover

operators in the subsequent subsections.

1.1.3.1 1-point crossover

Holland [435]] introduced the 1-point crossover to be used in GA. Even though it can be applied
to all forms of solution representations, it is most commonly applied in the case of binary

and integer solution representations. Given a solution string of length n, the 1-point crossover

11

1. INTRODUCTION

randomly selects a position in the range [0, n — 1]. Then, the portions of the two parents are

swapped from that point onwards thereby generating two child solutions. 1-point crossover is

illustrated in

poloftfofrfofrfrfofoft] «foftfofofujojoju]rjo]

p[iToT 1ol ifofol o] e [iToli 1]l i[o]o]1]

Figure 1.1: Illustration of 1-point crossover

By considering IV crossover points instead of 1, we can implement an N-point crossover.
Using the NV crossover points, each parent is divided into [V + 1 different segments. By swapping

every alternate segment between the two parents, we can generate two child solutions.

1.1.3.2 Uniform crossover

In the uniform crossover [[63]], each location in the child solution is separately considered. For
each location, a uniform random number is generated within the range [0, 1] and is compared
with the given probability value p. If the generated random number is less than or equal to p then
the gene value from the same location in the first parent is copied to the child solution, otherwise
the gene value from the second parent is copied. By switching the two parents’ roles, the second
child is produced. Uniform crossover is illustrated through an example in the where

the probability value, p is taken as 0.6.

w[olilo[o]l ololi| o [x]ilofololilololo]o]

po A [0TTJ0] i[OO T[i]0] e [o[o i 1] o]t 1]1]1]

‘ .8 ‘ 2 ‘ 3 ‘ v ‘ 4 ‘ d 8 ‘ .6 ‘ 2 ‘ 9 ’ <— random values generated for each position

Figure 1.2: Illustration of uniform crossover

12

1.1 Overview of genetic algorithm

1.1.4 Mutation

Mutation operator helps in maintaining diversity in the population. It reduces the possibility of
premature convergence, by avoiding a situation where the population’s solutions become too
similar. Additionally, it helps in exploring new areas of the search space. Just like in crossover,
the solution representation mechanism employed by GA greatly influences the way mutation
operator works. There are many mutation operators in the literature, which are designed as per

the solution representation mechanism.

1.1.4.1 Bitwise mutation

Bitwise mutation is appropriate when solutions are represented as sequence of binary digits.
After considering each bit in the solution separately, it is inverted with small uniform probability.

[Figure I.3]|provides an illustration of bitwise mutation with an example.

Figure 1.3: Illustration of bitwise mutation

1.1.4.2 Random reset mutation

Random reset mutation can be considered as an extension of bitwise mutation and it is suitable
for integer solution representation. After considering each position in the solution, a different
value from the list of possible values is assigned to it as per the given probability. Consider the
illustration of random reset mutation given in with the possible values for a gene
from the set {1, 2,3,4,5,6 }.

Figure 1.4: Illustration of random reset mutation

1.1.5 Population evolution models

The choice of solutions for the next generation is governed by the population evolution model.

Generational model and steady-state model are the two major population models [66].

13

1. INTRODUCTION

1.1.5.1 Generational model

In generational model, in each generation number of child solutions produced is equal to the
population size. After each generation, the newly generated child solutions replace the whole
population of solutions. Due to this kind of replacement policy, sometimes the newly generated
population of solutions may be worse than the current generation solutions. Hence, some
modifications have been introduced such as an elitist strategy which retains either the overall
best solution or a number of good solutions from the current population and passes them to the

next generation.

1.1.5.2 Steady-state model

In each generation, the steady-state model generates only a small fraction of solutions of the
population size. The newly produced child solutions replace the same numbers of solutions
in the current population as per a replacement policy. In this model, a newly generated child
solution is considered for replacement into the population only if it is unique compared to the
existing population members, otherwise it is discarded. This feature of the steady-state model
makes sure that the population is free from duplicates thereby avoiding premature convergence.
Typically in the steady-state model, only one child is produced per generation and if it is
unique compared to the population members then it will take the place of worst solution in the
population. Another replacement strategy is to select a solution that is most similar to the newly

generated solution and replace it with the new solution.

1.2 Overview of differential evolution

Differential evolution (DE) is another population based metaheuristic technique inspired by
natural evolution. It was proposed by Storn and Price in 1995 [47]]. Originally, DE was proposed
for solving continuous optimization problems in which the chromosomes are floating-point
numbers [47,167]]. In the case of unknown problems, the initial population of solutions can be
produced in a completely random manner. If any preliminary solutions are available for the
problem, initial solutions can be generated by extending them by introducing random deviations
which are normally distributed. Like several other evolutionary algorithms, DE also employs
similar computational steps. However, to generate a new solution, it follows a completely

different method. In this method, two distinct solutions from the population are randomly

14

1.2 Overview of differential evolution

selected and their weighted difference is added to a third distinct solution which is also selected
randomly, giving a new child solution. Considering S;, S;, and S}, as three unique solutions
which are randomly selected from the population and a user defined weighting factor w, we can

mathematically present the step of generating a new child solution as:

Sp = S; —I—w(Sj — Sk)

Owing to its simplicity, generic nature, and robustness, DE has become quite popular. As a
result, there are numerous variations of basic DE in the literature that differ in the strategies used,
such as the number of solutions included in perturbation, the type of mutation and crossover
operators employed. A detailed survey of differential evolution is provided in [68].

As the traditional DE was developed for continuous optimization problems, it can not be
used for solving discrete optimization problems. Tasgetiren et al. devised a novel discrete
differential evolution (DDE) in [69, [70], which deals with solutions having discrete values.
In the DDE approach, the solutions from the population are considered one after the other.
The solution currently being considered is referred to as the target solution. Mutation can
be applied either on the best solution or on a randomly selected candidate solution or on the
current target solution [71] to produce a mutant solution. After the mutation, crossover is
applied with a predefined probability considering the mutant and the target solution as parent
solutions producing a trial solution. After the crossover, the fitness of the resulting trial solution
is compared with that of the target solution. Following a selection mechanism, the trial solution
may replace the target solution to be part of the population for next generation or is discarded.

Algorithm [2] provides the pseudo-code of discrete differential evolution. Here ps is the size
of the population and the function Init_Solution() produces an initial solution.

DDE differs from other evolutionary techniques in selecting parent solutions for the
crossover operator. In other techniques both parent solutions are selected from the popula-
tion. On the other hand, in DDE, one parent solution is from the population, whereas the other
parent is the resulting solution after mutating another solution in the population. Generally,
either the best solution in the population or a randomly selected solution from the population is
considered for perturbation and gives the second parent solution for crossover. Thus, one partic-
ipating member of the crossover or recombination operator is typically a diversified solution. It

has advantages, such as better exploration of search space and thereby mitigating premature

15

1. INTRODUCTION

convergence, and better ability to produce diverse child solutions as one of the parents is always

a perturbed solution.

Algorithm 2: Pseudo-code of DDE

Input: Required parameters for DDE and the considered problem instance
Output: Best solution returned by DDE

for (i=1 to ps) do
L X; < Init_Solution();

bestsor <— best solution among Xy, Xo, ... X;, ..., Xps;
while (the termination criteria is not satisfied) do
for (i=1 to ps) do
Mutant < Mutate(X);
// X is either randomly selected from the population or
the best solution
Trialsy < Crossover(Mutant, X;);
// X; is the target solution & Trials, is the trial solution
if (T'rials, is better than X;) then
X; < Trialgy;
if (X; is better than best ;) then
L bestsor — X

return best,;;

1.3 Overview of hyper-heuristics

In the field of discrete optimization, to solve any NP-hard problem, usually researchers tend to
develop heuristic or metaheuristic methods that make use of the problem specific knowledge.
Even for problems under the same domain, the heuristic or metaheuristic methods require
significant changes depending on the nature of the problem under consideration to be able
to generate solutions of good quality in viable computational times. It is also demonstrated
that the quality of solutions created by methods that properly combine different low-level
heuristics outperforms those generated by each individual low-level heuristic [[72,[73]. Hence,
there is a need to develop approaches that can be used for solving problems across domains
without incorporating deep problem specific knowledge to generate solutions of better quality
by properly combining the low-level heuristics [74]. Hyper-heuristics are a suitable alternative
solution methods as compared to the heuristics or metaheuristics due to their ability to adapt to
the specifics of the problem instance under consideration while combining several low-level

heuristics. A hyper-heuristic fundamentally differs from a metaheuristic in that the search space

16

1.4 Scope of the thesis

for a hyper-heuristic is the set of knowledge-poor, easily implementable low-level heuristics,
whereas for a metaheuristic the search space is the set of feasible solutions to the considered
problem [75].

Given their generality in addressing problems, hyper-heuristics have received increased
interest from the research community in the last 10 years or so. For the first time, Denzinger et
al. [[76] introduced the term hyper-heuristic to describe a method that combines some artificial
intelligence based approaches to prove theorems in an automated manner. Later in [77]], hyper-
heuristics were defined as heuristics that can select the most appropriate heuristics from a set
of low-level heuristics for a given discrete optimization problem. While using the low-level
heuristics at each stage of the search operation, the hyper-heuristics can either choose an existing
heuristic or generate a new heuristic from the components of the already existing heuristics and
then using the chosen or newly generated heuristic to create a new solution. The hyper-heuristics
that select a heuristic from the available low-level heuristics are called selective hyper-heuristics
and those that generate a new heuristic at each step of the search process are called generative
hyper-heuristics. Within the selective hyper-heuristics, there are several selection mechanisms
available, out of which we have used two of them, namely random selection and greedy selection.
In random selection mechanism, one of the low-level heuristics is chosen randomly, whereas in
greedy selection mechanism, all the low level heuristics are used to create new solutions and
best solution among these new solutions is considered for further processing. Figure [I.5]shows
the framework for hyper-heuristics that has the two main components. The first component
is the domain-independent high level strategy and the second component has a repository of
domain specific low-level heuristics. The domain-independent high level strategy is responsible
for collecting and managing information such as the number of low-level heuristics, measuring
the performance of the applied heuristics and keeping track of the selected heuristic, and also
deciding whether to accept or reject a new solution. The other component is responsible for
applying the domain specific low-level heuristics using the knowledge specific to the problem

under consideration.

1.4 Scope of the thesis

In this thesis, we have worked on three facility location models and variants thereof, viz. anti-
covering location problem (ACLP), obnoxious cooperative maximum coverage location problem

(OCMCLP), reliability p-median problem (RpMP). We choose these models because these are

17

1. INTRODUCTION

Domain-independent high level strategy

Collect and manage information such as:

No. of low-level heuristics,

Measuring the performance of the applied heuristics,
Accept/reject a new solution, etc.

T

l

Domain Barrier

Apply Heuristics

Low-level Heuristics)
Problem reprsentation,

Problem instance,
Initial Solution,
Evaluation function

Problem Domain

Figure 1.5: Framework of Hyper-heuristics

under-studied models despite having several real-world applications. In addition, choice of latter
two models is also governed in part by their highly complex nature which pose a challenge to
anyone trying to solve them. We have considered six NP-hard facility location problems in

this thesis. Out of these, first three are based on ACLP and its variants. The fourth problem

18

1.4 Scope of the thesis

deals with location of obnoxious facilities under cooperative coverage. The last two problems
are the p-median facility location problems which consider the reliability and fault tolerance
issues. These problems have many practical applications in diverse fields such as locating
garbage dump yards, nuclear power plants, chemical plants, telecommunication equipment,
franchise outlets, liquor stores, ATMs, military defense units, DNA sequence matching, forest
management, supply chain design, disaster management. As these problems are NP-hard,
applicability of exact methods is limited to small size instances only, and one has to resort to
heuristic approaches to tackle instances beyond a certain maximum size. In this thesis, we have
devised heuristic approaches based on genetic algorithm (GA), discrete differential evolution
(DDE), and hyper-heuristics to address these problems. In addition, we have also developed
some problem-specific heuristics for use within these approaches.

We have divided the thesis into seven chapters including this introductory chapter. In the

following, we provide an overview of each of the remaining six chapters:

deals with the anti-covering location problem (ACLP). Given a set of potential
facility location sites, ACLP seeks a subset of these sites with maximum cardinality for placing
the facilities in such a way that no two placed facilities are inside a specified distance of each
other. ACLP has important applications in fields such as telecommunications equipment siting,
locating military units, locating franchise outlets, forest management. In this chapter, we have
proposed a discrete differential evolution (DDE) algorithm for this N‘P-hard problem. In addition
to the benchmark instances available in the literature, we have evaluated the performance of
our approach on larger instances with upto 1577 nodes derived from Beasley’s OR—libraryﬂ and
the standard TSPLIBEI Computational results show that on most of the instances, our approach
performed as good as or better than the existing approaches.

is concerned with two variants of the ACLP, viz. disruptive anti-covering location
problem (DACLP) and weighted anti-covering location problem (WACLP). Both DACLP
and WACLP are understudied facility location problems despite having several real-world
applications. Given a set of potential sites for facilities, DACLP seeks to find the minimum
number of facilities that can be located such that no two facilities are closer than a given
distance from each other and no more facilities can be added. In competitive environments

with minimum separation requirements among facilities, DACLP can be used at the minimum

"http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
Zhttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

19

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

1. INTRODUCTION

expanse to prevent competitors from opening more facilities in an area. WACLP considers
site-dependent weights associated with all possible facility locations and it is concerned with
locating a maximum weighted set of facilities in such a manner that no two facilities are within
a pre-specified distance of one another.

We have extended our DDE approach for the ACLP from [Chapter 2] to solve DACLP and
WACLP. We have also proposed another evolutionary approach based on GA for DACLP and
WACLP. Computational results show the effectiveness of our approaches in solving both the
considered ACLP variants.

discusses our proposed genetic algorithm (GA) based approach for solving the
obnoxious cooperative maximum covering location problem (OCMCLP) on a network. In
cooperative coverage models, all facilities contribute to the coverage of each demand point. A
demand point is deemed to be covered if the total signal strength received by it from all the
facilities is not less than a given threshold. Given a graph with the set of demand points, the
set of edges between these demand points, and the non-negative real weights associated with
each demand point indicating the total demand at each point, the OCMCLP is concerned with
locating p obnoxious (undesirable) facilities either at the demand points or along the edges in
such a manner that maximizes the uncovered demand. In all of the applications of locating
obnoxious facilities, the nuisance generated by an obnoxious facility decreases over distance
following some signal strength function. Facilities such as nuclear power plants, prisons, dump
yards, military installations and industrial facilities causing pollution are examples of obnoxious
facilities, which even though are required for the society, but produce a negative or undesirable
effect. We have compared the performance of our proposed approach with two interchange
heuristics available in the literature for OCMCLP. On most of the instances, our GA based
approach has obtained solutions of superior quality in comparison to the existing methods.

addresses the reliability p-median problem (RpMP). In the traditional p-median
problem, it is assumed that once constructed, the facilities will always be available to serve the
customers or demand points. But in reality, facilities may fail at times due to several reasons
like natural disasters such as floods and earthquakes or due to events which are intentional
like terrorist attacks and labor strikes. Sometimes facilities may fail due to unintended events
like sudden power or component failures. When there are facility failures, there will be
disruptions in the services provided to the customers and which force them to seek services
from other functioning facilities. The reliability p-median problem minimizes both the primary

transportation cost without considering the facility failures and also the cost of the expected

20

1.4 Scope of the thesis

failure considering the facility failures. In this chapter, we have proposed a hyper-heuristic based
approach with naive Bayes classifier to solve the RpMP. Ours is a multi-start greedy selection
based hyper-heuristic with four low level heuristics each of which generates a feasible solution
to the RpMP. We have also applied local search to further improve the fitness of the best solution.
We have conducted experiments on existing benchmark instances which demonstrate that our
proposed approach is able to perform better than the state-of-the-art methodologies described in
the literature for RpMP.

proposes two multi-start hyper-heuristic approaches for the reliable p-median
problem with at-facility service (RpMF). Coming to the nomenclature of reliability p-median
problem of the previous chapter, viz. and reliable p-median problem of
we have followed the same names for both these problems as used by the respective previous
authors, even though reliable p-median problem is the correct terminology grammatically. Just
like RpMP, RpMF is also concerned with locating facilities where facilities may be inoperable.
But, RpMF assumes that a customer doesn’t have prior knowledge about the facility status until
he/she reaches the facility and also applies optimized search in order to identify a facility that
can provide the service by keeping track of the path that the customer has taken until he/she
receives the desired service. RpMF finds its applicability in real-world examples such as bank
customers withdrawing cash by visiting their nearest ATM point on regular basis which may not
be servicing customers at a given time due to maintenance of the machine, people visiting petrol
filling stations that have long waiting queues or shortage of petrol, patients visiting hospitals
in emergency condition and are forced to seek treatment elsewhere due to long waiting times
etc. We have proposed two hyper-heuristics based on greedy selection and random selection
mechanisms. We have evaluated our approaches on benchmark instances and compared the
results with state-of-the-art approaches available in the literature for RpMF. Our proposed
approaches are able to obtain solutions of good quality in negligible execution times on majority
of the instances proving the efficacy of our approaches.

[Chapter 7|presents the concluding remarks of the thesis by presenting the list of contributions
made in solving the aforementioned six problems. It also provides some suggestions for future

research.

21

Chapter 2

Anti-covering location problem

2.1 Introduction

In the location science, the most common criteria for locating facilities is the interaction between
a facility and the individuals which interact with that facility [78]. Apart from these facility-
individual interactions, facility-facility interactions are also important, since the location of one
facility may impact the location of another facility. The anti-covering location problem (ACLP)
comes under the facility-facility interaction type location problems where the facilities repel
each other. ACLP belongs to the class of facility location problems with minimum separation
requirement between facilities.

Given a set of potential facility location sites, ACLP involves locating facilities at some
of these sites in such a manner that no two facilities are within a specified distance from each
other. ACLP is also referred to as r-separation problem where r is the specified distance. ACLP
belongs to the class of NP-hard problems [[79,[80]. ACLP finds its importance in solving many
real world applications. Some of them include but not limited to locating garbage dump yards,
nuclear power plants, telecommunication equipments, franchise outlets, military defence unit
location, DNA sequence matching, forest management [81]].

ACLP was first defined by Moon and Chaudhry in 1984 [79] by considering the weighted
variant. However, its unweighted variant received more attention than the weighted one. In the
weighted variant of ACLP, each site has a positive weight associated with it as per its importance,
whereas in the unweighted variant of ACLP, no weight is associated with any site. Unweighted
variant can be considered as a particular case of weighted variant where all sites can be assumed

to have a weight of 1. This chapter is concerned with unweighted variant only. Hereafter,

22

2.2 Formal problem definition

ACLP refers to its unweighted variant only. Many researchers have studied ACLP and proposed
various methods to solve it [[1,[79} 81} [82] [83]]. In particular, Chaudhry [1]] proposed an approach
based on genetic algorithm. Khorjuvenkar and Singh [83] proposed a hybrid swarm intelligence
approach based on Ant Colony Optimization (ACO) to solve ACLP. They have compared their
approach with the approaches available in the literature and found their approach to be superior.
All the approaches in the literature have solved ACLP on datasets ranging from 20 to 152 nodes.
In this chapter, we applied discrete differential evolution algorithm to solve ACLP and tested it
on large data sets with upto 1577 nodes. Results of the proposed approach are compared with
hybrid ant colony optimization approach [83] and genetic algorithm [[1]].

Rest of this chapter is organized as follows: Section formally defines the ACLP. The
proposed approach for the ACLP is described in Section[2.3] and, the computational results
and their analysis are presented in Section[2.4] Finally, Section [2.5|concludes the chapter by

summarizing the contributions.

2.2 Formal problem definition

The ACLP can be formally defined in the following manner: Givenaset V = {1,2,...,n} of
n potential facility location sites, i.e., |V'| = n, and a distance R, so that no two facilities can be
within distance R of one another. d,,, is the shortest distance from site © € V to site v € V. The
set of sites within distance R of site v is denoted by Q,, i.e., Q, = {ulu € VAdy, < RAv # u}.
We call the set (), to be the forbidden set of site v. The objective of ACLP is to find a set
V! C V of maximum cardinality such that @, N V' = () Vv € V’. The constraint that no two
facilities can be within distance R of one another is referred to as separating distance constraint
subsequently. By introducing binary variables s, Vv € V' to indicate whether site v is chosen for
locating a facility (s, = 1) or not (s, = 0) and taking a large positive integer M, a mathematical
model of ACLP, which is a modification of the formulation provided by Moon and Chaudhry
[79]] for the weighted variant of ACLP, is given below:

max Z =Y s, 2.1)

veV

subject to the following constraints ,

Msy,+ Y sy <M, VoeV (2.2)
’U,EQU

23

2. ANTI-COVERING LOCATION PROBLEM

sy €{0,1}, Yo e V (2.3)

Here, equation [2.T|represents the objective function of the ACLP which maximizes the number
of selected sites. Equation [2.2] specifies that if a facility is located at node v (i.e. s, = 1), then
the M s, = M, and, as a result Zuer su. = 0. So, it enforces the constraint that if a site v is
part of the solution, then all the sites u within the distance R of site v, i.e., all sites belonging
to @, can not be part of the solution. This constraint is called the neighbourhood adjacency
constraint. Clearly, the value of M should be so chosen that it is larger than max,cy (|Qy])-
Constraint enforces the binary nature of decision variables s,Vv € V. Few alternative
mathematical formulations of ACLP can be found in [81]]. Throughout this chapter, we will use

the term node and site interchangeably.

/\

L
=

S

Figure 2.1: Illustration of ACLP

To illustrate ACLP, consider the example of Fig. It contains n = 12 nodes located at
different points in a plane. The coordinates of each of the nodes are as follows: A(10, 10), B(38,
10), C(30, 30), D(6, 40), E(50, 50), F(40, 40), G(70, 65), H(35, 60), I(10, 70), J(75, 20), K(70,
40) and L(55, 17). The euclidean distances from each node to all the other nodes are calculated
using their respective coordinates. For the minimum separating distance R=35, the set of nodes
{A, F, G, I, J} is a feasible solution, because each of these nodes are separated by minimum
distance 35 from each other. The nodes belonging to this set are marked in red color, whereas

other nodes are marked in blue color in the Fig. [2.1]

24

2.3 Proposed approach for unweighted input graph

2.3 Proposed approach for unweighted input graph

We have developed a DDE based approach for the ACLP. The salient features of our approach

are described in the following subsections.

2.3.1 Solution encoding and fitness

A bit vector of length n is used to represent a solution where a value of 1 at position ¢ indicates
a facility is located at site . On the other hand, a value of 0 at position ¢ indicates no facility is

located at site ¢. We have used the objective function (equation [2.1)) itself as the fitness function.

2.3.2 Initial population generation

To generate an initial solution, we need to find a subset of nodes such that no two nodes in this
subset are within a distance of R from one another. In the proposed approach, each candidate
solution in the initial population is generated using a randomized greedy approach. Each initial
solution is generated in an iterative manner starting with an empty solution and then nodes are
added to the solution one-by-one. Initially, all nodes are unmarked. During each iteration, we
find k&, unmarked nodes having forbidden set of minimum cardinality (forbidden set @, for a
node v is defined in Section[2.2)). Ties are broken arbitrarily. Out of these k,, nodes, one node say
v is randomly selected to be part of the solution. Now, v along with all nodes in (),, are marked
and another iteration begins. This process is repeated till no unmarked node remains. The value
of k,, during each iteration is either 5 or 3. With probability Py, it is set to 5, otherwise it is

set to 3.

2.3.3 DDE framework

Starting with the population of initial solutions, the discrete differential evolution approach for
solving the ACLP follows an iterative process. During each iteration (referred to as generation
in DE jargon), we consider each candidate solution in the population one-by-one. The solution
under consideration is referred to as target solution. In the proposed approach, mutation is
applied with probability P, (i.e., mutation is not applied with probability 1 — P,,,) on the best
solution found so far and the solution obtained after mutation (irrespective of whether mutation
is applied or not) is called mutant or donor [71]]. Followed by mutation, crossover, repair and

selection procedures are applied. When all the solutions are considered, then next iteration

25

2. ANTI-COVERING LOCATION PROBLEM

begins. This process is repeated for Nj.,s iterations. And the best solution found since the

beginning of algorithm is returned as the final solution found by the algorithm.

2.3.4 Mutation

As part of the mutation operation, every bit of the best solution is flipped with probability P,;,;.
For every index ¢ in the solution vector, a uniform random number r in [0,1] is generated. If r
is less than P,,,,,; then the corresponding bit value at index ¢ in the best solution is flipped and
copied to the mutant, otherwise the bit value from the best solution is copied unaltered to the
mutant. Repair operation which is explained in the subsequent subsection (Section [2.3.6) is

applied on the mutant to make it feasible and to improve its fitness.

2.3.5 Crossover

Crossover needs two solutions which act as parents to produce a new child solution. The solution
obtained after mutation, viz. mutant is taken as one parent solution in the crossover and the
target solution is taken as the other parent. The resulting solution after the crossover operation
is called a trial solution. A simple uniform crossover operation is performed, where binary
values from the mutant solution are copied to the trial solution with probability proportional to
its fitness. And the binary values from the target solution are copied to the trial solution with

remaining probability, which is also proportional to the target solution’s fitness. Probability of

_ f(mutant)
OPY™ f(mutant)+ f (target_solution)’

copying a binary value from the mutant to the trial solution is P,

and the probability of copying a binary value from the target solution to the trial solution is

f(target_solution)
mutant)+ f (target_solution)’

1 — Peopy. ie., i where f(X) is a function that computes the fitness
of the solution X passed to it as argument. For every index ¢ in the trial solution, a uniform
random number, 71 in [0,1] is generated. If r1 is less than P, then the binary value at index
¢ from the mutant is copied to the trial solution at index ¢, otherwise the target solution’s binary
value at index 7 is copied to the trial solution at index <. This is repeated for all the indices. The
crossover is applied with probability P. when mutation has already been applied. Otherwise, it

is always applied. This is done to prevent the trial solution from being an exact copy of the best

solution.

26

2.3 Proposed approach for unweighted input graph

2.3.6 Repair

As there is no guarantee of the feasibility of the trial solution obtained after the crossover,
repair operation is performed on the trial solution. In addition to transforming an infeasible
solution into a feasible solution, the repair operation also tries to improve the solution. In the
repair operation, first it is checked whether the trial solution is feasible or not by verifying
the separating distance constraint. If the trial solution 7' is not feasible, then we compute
Q. = {ulu € T ANdy, < RAv # u}¥v € T and a site v with maximum |Q, | value is removed
from T by setting the corresponding bit in the solution to 0. This entire process is repeated till
the trial solution becomes feasible.

Once the trial solution is made feasible, we make an attempt to increase its fitness if the
latest fitness is within 20% of the best solution’s fitness. To maintain a balance between solution
quality and the execution time, we arrived at this 20% after large number of experiments. To
improve the fitness, we will compute the set Sy, of all those remaining sites which can still be
added to the solution without violating the separating distance constraint. Then, we compute
Q;: = QuNSrem YU € Spepm. All those sites v in Sy, such that QZ = () are added immediately
to the solution by setting the corresponding bits in the solution to 1. If there is no site v € Syem,
with QZ = (), then a site v € Sy, Which has the minimum value of \QZ\ (ties are broken
arbitrarily) is made part of the solution by marking the corresponding bit in the solution as 1.
The set Syen, is updated to reflect the change in configuration of the solution. This process is

repeated till Sy.,, becomes empty.

2.3.7 Selection

After the repair operation, the fitness of trial solution is compared with the fitness of the target
solution. If the trial solution has higher fitness than the target solution, then it replaces the target
solution in the population, otherwise the target solution remains in the population for the next
generation and the trial solution is discarded.

Algorithm 3] provides the pseudo-code for our discrete differential evolution approach where
u01 is a uniform variate in [0, 1]. Mutation, Crossover, Repair and f are four functions that
perform mutation (Section[2.3.4), crossover (Section [2.3.5)), repair (Section[2.3.6)) and fitness

computation (Section [2.3.T)) operations respectively.

27

2. ANTI-COVERING LOCATION PROBLEM

Algorithm 3: Discrete differential evolution algorithm for ACLP

Generate initial population;
best_solution < best solution in initial population;
iter < 0;
while iter < Njiers do
foreach target_solution € population do
if u01 < P,, then
mutant < Mutation(best_solution);
L no_mutation < 0;

else
mutant < best_solution;
no_mutation < 1;
if (u01 < P,) or (no_mutation = 1) then
| trial_solution < Crossover(mutant, target_solution);
else
| trial_solution < mutant;
trial_solution < Repair(trial_solution);
if f(trial_solution) > f(target_solution) then
target_solution < trial_solution;
if f(trial_solution) > f(best_solution) then
| best_solution < trial_solution;

| dter « iter + 1;
return best_solution;

2.4 Experimental results

We have implemented our DDE approach in C. In all our experiments with DDE, we have
used population size (N P) =50, Pye, = 0.5, Py, =0.9, P, =0.9, and P, = 0.02. All these
parameter values are chosen empirically.

We have used three datasets in our experiments. The first dataset was used in [[1] to test
the performance of genetic algorithm (GA). Later, it was used in [83] to test the performance
of proposed ant colony optimization (ACO) approach. This dataset consists of 41 instances
with number of nodes either 20 or 30 or 55 and different values of R. Additionally, we have
used two more datasets containing larger instances derived from Beasley’s OR—libraryE] and
the standard TSPLIBH The datasets derived from OR library contain 40 ACLP instances and
have number of nodes from the set {50, 100, 250, 500 and 1000} and R from the set {5, 10,
25, 50}. The datasets derived from TSPLIB also contain 40 ACLP instances and have number
of nodes varying from 51 to 1577. For the TSPLIB datasets, we have taken the R values as

"http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
Zhttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

28

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

2.4 Experimental results

Table 2.1: Comparison of objective values of GA, ACO and DDE based solutions for datasets used
in 1]

Dataset R Oknown Ocga Oaco Oppr
50 12 12 12 12
100 12 12 12 12
150 9 9 9 10
200 9 9 9 9
250 8 8 8 8
300 7 7 7 7
350 6 6 6 6
400 6 6 6 6
450 6 6 6 6
500 5 5 5 5
20 nodes 550 5 5 5 5
600 5 5 5 5
650 5 5 5 5
700 3 3 3 3
750 3 3 3 3
800 3 3 3 3
850 3 3 3 3
900 3 3 3 3
950 2 2 2 2
1000 1 1 1 1
35 24 24 24 24
50 21 21 21 21
100 10 10 10 10
30 nodes 150 6 6 6 6
200 4 4 4 4
300 3 3 3 3
400 2 2 2 2
5 36 36 36 36

6 30 30 30 30

7 25 24 25 25

8 21 20 21 21

9 18 17 18 18

10 16 15 16 16
12 13 12 13 13
55 nodes 14 11 10 11 11
15 9 9 9 9
20 7 6 7 7
23 6 5 6 6
27 5 4 5 5
3] 4 4 4 4
34 3 3 3 3

5%, 10%, 25% and 50% of the Xmaz=Xmint¥mee=Ymin where X050, Ximins Yinae and Yiin
are respectively the maximum X value, minimum X value, maximum Y value and minimum
Y value over all points in the corresponding base TSPLIB instance. For the first dataset, we
have compared our DDE approach with ACO and GA, whereas for remaining two datasets,
which are created by us, we have compared our DDE approach with ACO only. The reason for
using only ACO for comparison for latter two datasets is availability of the source code of ACO
for execution on these new datasets. Further, this is fair also as superiority of ACO over other

approaches in the literature on first dataset has been shown already in [83].

29

2. ANTI-COVERING LOCATION PROBLEM

We have executed our DDE approach and the ACO approach for the same amount of time
on a Linux based 3.40 GHz Core-i5-7500 system with 8 GB RAM. On all the instances with
number of nodes less than or equal to 100, these two approaches are run for 1 second, on all
the instances with number of nodes greater than 100 and upto 500, these two approaches are
executed for 2 seconds, and on all the instances with more than 500 nodes, these two approaches
are executed for 5 seconds. These two approaches are executed 10 independent times on each
instance like GA. For first dataset, ACO and GA found the same solution in all the 10 runs on

all the 41 instances.

Table @ presents the results of our DDE approach(column Oppg) on 41 instances used
in [1] and compares them with GA (column O¢g4), ACO (column O4c0) and best known
solutions (column Opy, o). Comparison among DDE, ACO and GA is done in terms of best
solution obtained over 10 runs to ensure conformity with the results reported in [[1]. Data for GA
is taken from [[1]]. Both DDE and ACO found best known solutions on all 41 instances, whereas

GA fails to find the same on some instances.

Table[2.2] and Table [2.3|present the results of DDE and ACO approaches on OR library and
TSPLIB datasets respectively. Results are reported in terms of best and average solution quality
obtained over 10 runs on each instance. In these tables, best results are in bold font. Table|2.4]is
the summary table listing the number of instances on which DDE obtained worse (<), same (=)
and better (>) solutions in comparison to ACO. This is done for each of the two datasets and
overall. These three tables clearly show the superiority of our DDE approach over ACO. On
most of the instances our approach performed as good as or better than ACO approach. Only on

few instances, our approach performed worse than the ACO approach.

We have also done statistical significance analysis of our approach in comparison to ACO
based approach. We have performed Wilcoxon Signed-Ranks test [84] for N = 80 instances
of the OR library and TSPLIB datasets together, with a significance level a = 0.01. As shown
in Table [2.5] the z value obtained, -3.447, is less than the critical value of z, z.= -2.33 for a
two-tailed test. This proves that the improvement achieved with our approach is significant and

it is due to the algorithmic merit rather than random fluctuations.

30

2.4 Experimental results

Table 2.2: Comparison of objective values of ACO and DDE based solutions for OR library datasets

ACO Solution DDE Solution
Dataset R Best Average Best Average
5 43 43.00 43 43.00
10 31 31.00 31 31.00
OR_50.1
25 12 12.00 12 12.00
50 6 6.00 6 6.00
5 40 40.00 40 40.00
10 32 32.00 32 32.00
OR_50.2
25 12 12.00 12 12.00
50 6 6.00 6 6.00
5 67 67.00 67 67.00
10 39 39.00 39 39.00
OR_100.1
25 13 13.00 13 13.00
50 6 6.00 6 6.00
5 71 71.00 71 71.00
10 43 43.00 43 43.00
OR_100.2
25 15 15.00 15 15.00
50 5 5.00 5 5.00
5 131 131.00 131 131.00
10 62 61.20 61 60.50
OR_250.1
25 17 17.00 17 17.00
50 6 6.00 6 6.00
5 127 127.00 127 127.00
10 62 62.00 62 62.00
OR_250.2
25 17 17.00 17 17.00
50 6 6.00 6 6.00
5 179 178.90 179 179.00
10 74 73.00 74 73.20
OR_500.1
25 19 19.00 19 18.30
50 7 6.90 7 7.00
5 178 177.60 179 178.40
10 74 73.10 74 72.40
OR_500.2
25 18 18.00 18 18.00
50 6 6.00 6 6.00
5 217 215.70 227 22540
10 83 82.60 83 81.90
OR_1000.1
25 20 19.20 20 19.60
50 7 7.00 7 7.00
5 212 211.10 220 21740
10 81 80.50 82 80.20
OR_1000.2
25 20 19.10 20 19.70
50 7 7.00 7 7.00

31

2. ANTI-COVERING LOCATION PROBLEM

Table 2.3: Comparison of objective values of ACO and DDE based solutions for TSPLIB datasets

ACO Solution DDE Solution
Dataset R Best Average Best Average
50 50.00 50 50.00
. 39 39.00 39 39.00
eil51
15 14 14.00 14 14.00
30 6 6.00 6 6.00
8 85 85.00 85 85.00
15 47 47.00 47 47.00
rat99
38 14 14.00 14 14.00
75 6 6.00 6 6.00
11 125 125.00 125 125.00
21 59 59.00 60 59.10
rat195
52 16 16.00 16 16.00
104 6 6.00 6 6.00
223 118 118.00 118 118.00
446 57 56.90 58 57.60
pr299
1114 16 16.00 16 16.00
2228 6 6.00 6 6.00
170 89 89.00 90 89.10
340 38 37.30 37 37.00
d493
851 10 10.00 10 10.00
1700 4 4.00 4 4.00
111 211 211.00 212 211.10
222 78 76.60 79 77.20
u724
555 18 18.00 18 18.00
1110 6 6.00 6 6.00
650 200 195.60 198 197.00
1300 76 76.00 76 74.70
pr1002
3250 18 18.00 18 18.00
6500 6 6.00 6 6.00
120 254 250.90 258 256.60
240 86 85.30 85 83.80
pcb1173
600 19 19.00 19 19.00
1200 6 6.00 6 6.00
176 133 132.80 133 132.80
352 50 49.90 50 49.20
d1291
879 13 13.00 14 13.20
1760 5 5.00 5 5.00
91 98 95.10 929 98.60
182 50 49.10 50 50.00
11577
456 15 15.00 15 15.00
910 6 6.00 6 6.00

32

2.5 Conclusions

Table 2.4: Comparison Summary: Number of instances on which DDE obtained worse (<), same

(=) and better (>) solutions in comparison to ACO

Best Average
Dataset name < = > < = >
OR library 1 35 4 5 27 8
TSPLIB 329 8 4 26 10
Overall 4 64 12 9 53 18

Table 2.5: Wilcoxon Signed-Ranks test of our approach with ACO

N | Wt | w—

Zc

z

80 143 637

-2.33

3.447

2.5 Conclusions

In this chapter we have proposed a population based solution, viz. a discrete differential

evolution algorithm for the ACLP. We have evaluated and compared our approach with the

state-of-the approaches on the benchmark instances used in [[1} [83]]. We have also generated

new datasets containing larger number of nodes, and compared our approach with the ACO

approach proposed in [83]] on these new datasets. Computational results show that on most of

the instances, our approach performed as good as or better than the ACO approach. Only for

few datasets, the ACO approach performed better than our approach.

33

Chapter 3

Two ACLP variants

3.1 Introduction

In this chapter, we discuss two variants of the anti-covering location problem, viz. disruptive anti-
covering location problem (DACLP) and weighted anti-covering location problem (WACLP).
Both DACLP and WACLP are understudied facility location problems and are related to the anti-
covering location problem (ACLP) discussed in the previous chapter. DACLP was introduced in
the last decade by Niblett and Church [85]] while WACLP was introduced by Moon and Chaudhry
[79] for the first time in 1984. Over the past many years there have been several methods devised
for solving ACLP [, [79} 81} 182, [83]]. However, no method exists in the literature to solve
DACLP other than the ILP proposed by Niblett and Church [85]] while introducing DACLP.
Similarly, for WACLP, only the ILP proposed by Moon and Chaudhry [79] while introducing
WACLP and the four greedy heuristic approaches [86] exist in the literature. So these two
problems are understudied problems.

Motivated by the understudied nature of DACLP and WACLP as explained in the previous
paragraph, and the very fact that different evolutionary algorithms have already been used
successfully to solve innumerable combinatorial optimization problems (e.g.,[[87, 188, (89} 190,
911, 192 93]), we have proposed two evolutionary approaches to solve DACLP and WACLP.
As our first approach, we have extended our discrete differential evolution (DDE) algorithm
based approach for the ACLP to both the considered problems, and, our second approach is
based on genetic algorithm (GA). Though differential evolution and genetic algorithm both
belong to the broad class of evolutionary algorithms and make use of crossover and mutation,

the solution encoding, crossover and mutation used by our two approaches are entirely different.

34

3.2 Disruptive ACLP

We have evaluated the performance of our approaches on the 80 ACLP instances with upto
1577 nodes which are introduced in We have used the instances from [Chapter 2]in
the same form in the case of DACLP and modified them to have node weights in the case of
WACLP. For DACLP, we have reported the results of the two proposed approaches and presented
the comparative analysis. In the case of WACLP, the results of the proposed approaches are
compared with the four greedy heuristics proposed in [86]]. Computational results show the
superiority of our approaches in comparison to these greedy heuristics.

We have decided to devote a single chapter for these two ACLP variants instead of two
separate chapters because of the similar nature of approaches that we have developed for them.

Remainder of this chapter is organized into three sections. Section[3.2]is devoted to DACLP,
whereas Section [3.3]is devoted to WACLP. These two sections have several subsections, each
presenting the details of the proposed approaches. Finally, Section [3.4 wraps up the chapter by

listing the contributions made.

3.2 Disruptive ACLP

The disruptive anti-covering location problem (DACLP) comes under the facility-facility in-
teraction type location problems where no two facilities can be located within a distance of I?
from one another. In the DACLP jargon [[83]], a proper solution is defined as the one in which all
non-facility sites are within the separating distance R from one or more of the selected facilities.
Obviously, no more facilities can be added to a proper solution. So, DACLP is concerned with
finding the minimum number of facilities that can be located on a subset of sites while giving
a proper solution. DACLP is derived from the more commonly known anti-covering location
problem (ACLP) [79], which is concerned with finding a subset of facilities of maximum
cardinality which forms a proper solution. The previous chapter discusses ACLP in detail.
The disruptive anti-covering location problem is so named as it prevents the “best or maximal”
packing solution of the anti-covering location problem from occurring. Node and site have been
used synonymously throughout this chapter.

Niblett and Church [85]] introduced DACLP for the first time in 2015 and proposed a
model based on integer linear programming (ILP) for solving this problem. DACLP is an
NP-hard problem [85]]. There are many real world applications where DACLP can be used
for finding the minimum number of facilities that can be located with the minimum separating

distance requirement between each pair of facilities. In competitive environments where there

35

3. TWO ACLP VARIANTS

are minimum separation requirements among facilities, DACLP can be used at the minimum
expanse to prevent competitors from opening more facilities in an area. For example, if there is a
minimum separation requirement between any two liquor stores in a city then opening of liquor
stores by a company as per DACLP solution for this city at minimum cost will forbid competitors
from opening any more stores in that city [85, 94]. Also in applications like analyzing policies
impacting potential sex offenders’ residence locations [93]], and carrying capacity of a population
of Sandhill Cranes [85] etc., DACLP generates important and informative solutions. Apart from
these, in all the applications of ACLP that involve independent decision making entities, the
solutions found through DACLP are significant in the decision making and policy analysis.
This section is divided into various sub-sections in the following manner: Section[3.2.1] gives
the formal definition of DACLP. Section [3.2.2] presents the proposed DDE approach, whereas
Section describes the proposed GA approach for the DACLP. The results of the conducted

experiments along with their analysis are presented in [3.2.4

3.2.1 Problem definition

Considering a set V' of n potential sites where facilities can be located, i.e., V = {1,2,...,n}
(IV] = n), and R is the minimum separating distance such that no two facilities are permitted
within distance R from one another, the disruptive anti-covering location problem can be
formally defined as follows: For each site u € V, the shortest distance between site u and
site v € V is given by d,. @, represents the forbidden set of site u € V, i.e., Q, = {v|v €
V ANdyy < RAu # v}. Asolution with set S C V of facilities is called proper in case facilities
are located in such a manner that no two facilities are located within distance R from one another
and all non-facility sites are within a distance R from one or more facilities, i.e.,Q, NS = 0
Vu € S and (UyesQqy)N{v} # 0 Vo € (V'\S). DACLP seeks a proper solution with minimum
number of facilities. Considering binary variables x,Vv € V that have value 1 if a facility is
located at site v (z, = 1) and value 0 when no facility is located at site v (z, = 0)and Y as a
large positive integer, Niblett and Church [85] formulated the following mathematical model of

DACLP:

min 4 = Z Ty 3.1)

36

3.2 Disruptive ACLP

N

Figure 3.1: DACLP illustration

subject to:
You+ Y 2, <Y, VueV (3.2)
VEQu
Tut Y w21, VuevV (3.3)
VEQY
xy €{0,1}, Vu eV (3.4)

Here, equation [3.1] minimizes the number of sites where facilities are located and gives the
DACLP’s objective function. According to equation if a site w is selected for locating a
facility (i.e. =, = 1), then the Yz, =Y, and, which causes the summation ZUGQU T, to be 0,
i.e., it enforces the constraint that no two facilities can be within distance R from one another.
Constraint[3.3]enforces that either site u is selected to locate a facility or a site v € Q,, which is
within R distance from u is selected to locate a facility. Together equations and[3.3| make
sure that the solution is proper. Constraint[3.4]restricts the variables z,,Vu € V to binary values.

When compared with the mathematical formulation of ACLP (Section[2.2) from previous
chapter, the objective function of DACLP is a minimization function as given in Equation [3.1]
Apart from the objective function, DACLP has an additional constraint given in the Equation
[3.3lthat makes sure that no site is left uncovered.

Consider the Fig. [3.1| which illustrates DACLP with an example. There are a total of 15
nodes having the following coordinates: A(10, 20), B(30, 15), C(20, 6), D(48, 10), E(30, 75),
F(6, 40), G(50, 30), H(65, 35), I(80, 40), J(70, 55), K(28, 60), L(25, 45), M(10, 70), N(15, 55)

37

3. TWO ACLP VARIANTS

and O(75, 20). Considering R = 30, where all the facilities are separated from each other by a
distance of more than R, the subset {C, H, N} forms a feasible, proper solution satisfying the
separating distance constraint. In the Fig. [3.T] we have depicted the nodes selected for facilities

in green color and nodes not selected for facilities are marked in blue color.

3.2.2 DDE approach for DACLP

We have extended our discrete differential evolution (DDE) based approach for ACLP presented
in the previous chapter to the disruptive ACLP by making the required changes in the approach.
Subsequent subsections describe the salient features of our DDE approach for the DACLP.

3.2.2.1 Solution representation and fitness

We have used the bit vector representation to represent a solution just like in the DDE approach
for ACLP from the previous chapter (Section [2.3.1). For the fitness function, we have used the
the objective function of DACLP which is given in equation|3.1

3.2.2.2 Generating initial population

To generate each member of the initial population, we have used a semi-greedy method which
is an extension of the method used in (Section [2.3.2)). The following are the two
differences for the initial solution generation in DDE approach for DACLP as compared to the
same in DDE approach for ACLP. Since DACLP is minimization problem, nodes with highest
values of |@),,| are given preference whereas in ACLP nodes with least values of |@,,| are given
preference as ACLP is a maximization problem. In DACLP, we always determine 3 unmarked
sites with highest values of |@,,| and out of these 3 sites, we randomly select a site u to be part
of the solution. Whereas in ACLP, k,, unmarked nodes with least values of |Q,,| are selected
where in each iteration k,, is set to 5 with probability P, otherwise it is set to 3. Except for
these aforementioned differences, the method of initial solution generation in the DDE approach
for DACLP is the same as in the DDE for ACLP. In this manner, a population of total PO P,,;

candidate solutions are generated.

3.2.2.3 DDE framework

The same DDE framework used for the ACLP in the previous chapter(Section [2.3.3)) has been

used for the DACLP also with the modification of using minimization in place of maximization.

38

3.2 Disruptive ACLP

We performed mutation on the global best solution just like in the previous chapter. As part of

the uniform crossover performed on mutant and target solution, we copy bit values from the

f(targetsor)
mutant)+f(targetso)

mutant to the trial solution with probability p.op,= T or else bit values are
copied from the target solution. This is different from the policy used in the crossover used in
the previous chapter (Section [2.3.5) to account for the change in nature of the objective of the
problem from maximization to minimization. After the crossover, repair operation is performed
on the trial solution which is explained below. Apart from these just mentioned differences, the

DDE framework for DACLP is the same as in the previous chapter.

3.2.2.4 Repair

In the repair operation, if the solution obtained through mutation/crossover is infeasible because
the separating distance constraint among facility sites is not satisfied, we eliminate some facilities
to make it a feasible solution. A randomized approach is followed for eliminating facilities from
the given solution. We randomly select a site u which is part of the current solution and mark
all the sites which are in its forbidden set (),, as not being part of the solution. We repeat this
step until the trial solution is made feasible.

After the trial solution becomes feasible, we check whether it is a proper solution or not. If
it is not proper, then to add new facilities, we find the set X,..,,, which contains the sites that can
be part of the solution without making the solution infeasible. Then, a new set Q; = QuvNXyem
Vv € Xyem 1s computed. After that a site u € X,.¢,, with the highest cardinality of Q;L is added
to the solution. Then we update the sets X, ¢, qu Yu € Xyem according to the latest changes
in the solution. The repair procedure stops once X,..,, becomes empty.

The pseudo-code for our DDE approach for DACLP is given in Algorithm] The mutation,
crossover, repair (Section [3.2.2.4) and fitness computation (Section [3.2.2.1)) operations are
performed by the four functions Mutation, Crossover, Repair and fitness respectively. 701 is a

uniform variate in [0, 1].

3.2.3 GA approach for DACLP

A steady-state genetic algorithm [66] is the other evolutionary approach that we have proposed
for the DACLP. In the remainder of this section, we refer to this approach as GA. The following

subsections present the important features of the proposed GA approach.

39

3. TWO ACLP VARIANTS

Algorithm 4: DDE algorithm for DACLP

Generate initial population;
bests,; < best solution from the initial population;
while (termination condition remains unsatisfied) do
foreach (targets,; € population)do
if (r01 < py,) then

no_mutation <— 0;

mutantg,; <— Mutation(best,;);

else
mutantsy; <— bestsor;
no_mutation < 1;
if ((no_mutation = 1) or (r01 < p.)) then
| trialse; < Crossover(targetsor, mutantser);
else
| trialse; < mutantger;
trialso; <— Repair(trialseo;);
if fitness(trialsy;) < fimess(targets,;) then
targetso; < trialsors
if fitness(trialso;) < fitness(best,;) then
L bestgo; < trialgor;

return bestg,;;

3.2.3.1 Solution representation and fitness

A solution in our GA approach represents the sites selected for locating facilities as an ordered
list. It is an efficient representation compared to bit-vector as it consumes less memory to
store a solution and also requires less computation time in the overall operations. Even though
ordered list causes sorting overhead, such an encoding allows the efficient implementation of
variation operators like crossover and mutation as explained in corresponding subsections. The
chromosome length in this representation is not fixed as in the bit-vector representation, but the
variation operators are designed accordingly.

For our GA approach also, we have taken the objective function as the fitness function in

the same way as in our proposed DDE approach.

3.2.3.2 Initial solution generation

To generate the initial solutions, we have used a method which is a combination of a completely
random method and a semi-greedy method. In this method, to begin with, we consider all the
n sites as unvisited and start with an empty set for the solution, then we follow an iterative
procedure. In each iteration, with probability p,4, we randomly chose an unvisited site «, and
make it part of the solution. As part of the semi-greedy method, 5 unvisited sites with highest

value of |@,| are determined and one of these 5 sites is randomly selected and is added to

40

3.2 Disruptive ACLP

the solution. Considering the newly added site as u, we mark the site v and every site in its
forbidden set as visited, and proceed to the next iteration. Till there are no unvisited sites
remaining, this process is repeated. Based on the number of unvisited sites, following are some
exceptions to the aforementioned rules of selecting a site in an iteration. If there is only a single
unvisited site, then it is added directly. If there are two sites which are unvisited, then the one
having highest cardinality of the forbidden set is selected. On the other hand, if there are more
than 2 and less than 6 unvisited sites, we randomly choose one site from among the unvisited

sites. After generating a complete solution, we make it an ordered list by sorting.

3.2.3.3 Selection

The two parent solutions for crossover and a single parent for mutation are chosen using
probabilistic binary tournament selection in which parameter p,; gives the probability based on
which the fitter of the two randomly chosen solutions from the population is selected to be a

parent.

3.2.3.4 Crossover

As part of the crossover, we first determine the intersection set of sites present in two parents.
As solutions are represented as ordered lists, time taken to find the intersection of the parent
solutions S and Ss is only O(min(|S1],|Sz2|)) instead of O(|S1].|S2]). We copy the sites from
the intersection set to the child, as the sites occurring in both the parents have a higher chance
of being part of several good solutions. After this, in a similar method followed in generating
initial solutions, remaining sites are selected to be part of the child solution one at a time, but
value of p,q can vary. We set the value of p,.4 to zero with probability p,44, otherwise the same

prq value as in initial solution generation is used.

3.2.3.5 Mutation

For every site present in the parent solution, we generated a uniform random number v01 € [0, 1].
Only if ©01 is less than p,,, the corresponding site is copied to the mutant, otherwise it is not
copied to the mutant. After repeating this for all the sites in the parent solution, we have followed
the same method as in crossover to add other sites to the mutant.

In our GA approach, we have utilized crossover and mutation in a mutually exclusive manner.

Crossover is utilized with probability p., and with the remaining probability of 1 — p. mutation

41

3. TWO ACLP VARIANTS

Algorithm 5: GA for DACLP

Construct ps initial solutions X1, X2, ..., Xps;
Xpest < best solution among ps initial solutions;
while (termination condition remains unsatisfied) do
if (u01 < pc) then

S1 4+ BTS(X1,...,Xps);

repeat

| Se <« BTS(X1,...,Xps);

until (S1 # S2);

| X¢ < Cross(S1,852);

else

S1+ BTS(X1,...,Xps);
| Xc¢ ¢ Mutate(S1);
X ¢ <+ Localsearch(X ¢);
Include X in the population as per replacement policy;
if (X ¢ is better than Xpes¢) then
L Xbest <~ XC;

return Xpcq;;

is utilized. The reason being, as part of crossover operator, we retain the common sites which
are in both the parent solutions so as to generate even better child solutions using these common
sites. If mutation is applied after the crossover, some of these sites which are common in both

the parents will be deleted.

3.2.3.6 Population replacement model

We have used a steady-state population replacement model in our GA approach. In this model,
every generation produces only a single child solution. The child solution is discarded if it is
found to be same as any of the existing members of the population. Otherwise, it replaces the

member with the worst fitness if its fitness is better than that of the worst fitness member.

3.2.3.7 Local search

After crossover/mutation, to further minimize the child solution fitness, we have performed a
two-one exchange operation as part of the local search. In this local search, we replace a pair of
sites in the solution with a single site only if the resulting solution is proper and feasible.
Algorithm [5] gives the pseudo-code for the proposed GA where the probabilistic binary
tournament selection method (Section [3.2.3.3)), crossover operator (Section[3.2.3.4)), mutation
operator (Section [3.2.3.5)) and local search (Section are carried out by four functions
BTS(), Cross(), Mutate() and Localsearch() respectively. Further, 401 is a uniform random

variate in [0, 1] and ps is the population size.

42

3.2 Disruptive ACLP

Table 3.1: Parameters for DDE and GA

DDE Parameters GA Parameters

Parameter | Value Parameter | Value

POP.p: 250 ps 250

Pm 0.9 Prd 0.75

Pc 0.9 Pbts 0.8

Pmut 0.02 Pe 0.5

Pm 0.75

Padd 0.9

3.2.4 Experimental results

Both of our proposed approaches, viz. DDE and GA have been implemented in C. Table [3.1]
lists the different parameters involved and their corresponding values for DDE and GA based
approaches both. The respective parameter values of both the proposed approaches are chosen
empirically. We have run both our approaches on a Linux system with § GB RAM and 3.40 GHz
Core-i5-7500 processor. For each test instance, we have performed 10 independent runs of DDE
and GA. We have fixed the same maximum execution time for each run of both the proposed
approaches. We have executed both DDE and GA for 10 seconds on those instances having
number of nodes upto 100. On those instances having more than 100 and upto 500 nodes, we
have run both the proposed approaches for 60 seconds, and on the remaining instances having
number of nodes greater than 500, we have run the the two approaches for 100 seconds.

We have tested our approaches on two different types of datasets that are derived from
Beasley’s OR-LibraryE] and the TSPLIBE] which we have first introduced in the previous chapter.
There are 40 instances in the dataset derived from OR library with the number of nodes in the
range of 50 to 1000 and R value in the range of 5 to 50. Similarly, there are 40 instances derived
from TSPLIB with the number of nodes in the range of 51 to 1577 and R values of TSPLIB
instances are considered as mentioned in the previous chapter.

Table [3.2] presents the results obtained by our proposed approaches DDE and GA on OR-
Library instances, while Table [3.3] presents the results obtained by our proposed approaches on
TSPLIB instances. In both the tables[3.2]and [3.3] the 1st column, Instance, is the dataset name.
Column two, R, gives the distance within which no two facilities can be located. The least and
average solution values of the DDE method over 10 independent runs are given in columns 3, 4
and the least and average solution values of the GA method over 10 independent runs are given

in columns 5, 6 respectively. The least objective value across all techniques is highlighted in

"http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
Zhttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

3. TWO ACLP VARIANTS

Table 3.2: Results on OR-Library dataset for DDE and GA

DDE GA

Instance R Least Average Least Average
5 42 42.00 42 42.00

10 26 26.00 26 26.00

OR_50.1 25 8 8.00 8 8.00
50 3 3.00 3 3.00

5 39 39.00 39 39.00

10 26 26.00 26 26.00

OR_502 25 7 7.00 7 7.00
50 3 3.00 3 3.00

5 60 60.00 60 60.00

10 29 29.00 29 29.00

OR_I00.1 o5 7 7.00 7 7.00
50 3 3.00 3 3.00

5 64 64.00 64 64.00

10 31 31.00 31 31.00

OR_100.2 25 7 7.00 7 7.00
50 3 3.00 3 3.00

5 104 104.00 104 104.00

10 34 34.90 35 35.40

OR_250.1 s § 800 8§ 800
50 3 3.00 3 3.00

5 93 93.00 93 93.00

10 33 33.00 33 33.20

OR_250.2 25 7 7.00 7 7.90
50 3 3.00 3 3.00

5 114 114.30 117 117.90

10 35 35.50 37 38.00

OR_500.1 25 8 8.00 8 8.40
50 3 3.00 3 3.00

5 110 110.50 113 114.00

10 35 35.20 37 37.40

OR_500.2 25 8 8.00 8 8.00
50 3 3.00 3 3.00

5 125 127.20 137 140.40

10 38 39.70 41 42.40

OR_1000.1 25 8 8.00 8 8.90
50 3 3.00 3 3.00

5 123 124.70 133 134.70

10 38 39.60 42 43.20

OR_1000.2 s § 800 8§ 890
50 3 3.00 3 3.00

bold for easy identification. Table [3.4] provides the summary of results in terms of number of
instances on which DDE obtained better solution (<), same solution (=) and worse solution (>)
when compared with GA. This summary is provided for the least objective values and average
objective values both.

On the OR-Library dataset, for the least objective value over 10 independent runs, out of the
40 instances DDE produced the smaller objective values on 9 instances and the same objective
value as GA on 31 instances. For the average objective values of 10 independent runs on the OR

library dataset, DDE produced the smaller average values as compared to GA on 16 instances

44

3.2 Disruptive ACLP

Table 3.3: Results on TSPLIB dataset for DDE and GA

DDE GA
Instance R Least Average Least Average
3 50 50.00 50 50.00
cilS1 [§ 37 37.00 37 37.00
15 8 8.00 8 8.00
30 3 3.00 3 3.00
8 82 82.00 82 82.00
rai99 15 31 31.00 31 31.00
38 7 7.00 7 7.00
75 2 2.00 2 2.00
11 106 106.00 106 106.00
rat195 21 34 34.00 33 34.10
52 7 7.00 7 7.00
104 2 2.00 2 2.00
222 84 84.00 84 84.60
pr299 445 29 29.90 30 30.20
1114 8 8.00 8 8.00
2228 2 2.00 2 2.00
170 54 54.00 54 55.30
340 18 18.00 18 18.40
d493 851 5 500 5 500
1700 2 2.00 2 2.00
111 125 126.00 131 132.50
w724 222 37 37.10 37 38.60
555 7 7.00 7 7.20
1110 2 2.00 2 2.00
650 111 113.40 118 119.60
prl002 1300 35 36.00 36 38.10
3250 7 7.00 7 7.20
6500 2 2.00 2 2.00
120 149 151.30 158 161.30
240 41 42.30 43 44.00
PebIIT3 600 7 7.00 7 7.80
1200 2 2.00 2 2.00
176 71 73.20 75 78.80
352 23 24.00 25 25.30
d29t 879 6 6.00 6 6.00
1760 2 2.00 2 2.00
91 56 57.30 58 60.00
182 27 27.10 28 28.40
HISTT 456 § 800 8§ 880
910 2 2.00 2 2.00
Table 3.4: Summary table
Least Average
Dataset name < = > < = >
OR-Library dataset 9 31 0 14 26 0
TSPLIB dataset 10 29 1 19 21 0
Overall 19 60 1 33 47 0

and the same average values as the GA on 24 instances. On the TSPLIB dataset, for the least
objective value out of 10 independent runs, out of the 40 instances DDE produced the smaller

objective values on 10 instances and the same objective value as GA on 29 instances and only

45

3. TWO ACLP VARIANTS

on one instance DDE has got a higher objective value than GA. On the same TSPLIB dataset,
coming to the average objective values of 10 independent runs, DDE produced the smaller
average values as compared to GA on 19 instances and the same average values as the GA on 21
instances.

To understand the difference between DACLP solution and ACLP solution, and how this
difference varies with R, Fig. provides the plots of DACLP and ACLP solutions for k=6,
R=15 and R=30 respectively on the eil5] instance having 51 nodes. In these plots, the nodes
selected for locating facilities are depicted in yellow color and nodes not chosen for locating
facilities are depicted in brown color. We have not provided the plot for the case with R=3, as
both ACLP and DACLP solutions have the same number of facilities which is 50, and only node
46 is a non-facility node. DACLP solutions are obtained through approaches presented here.
On the other hand, ACLP solutions were obtained by the approach from the previous chapter.
As eil5] instance is a small instance, all the approaches for ACLP/DACLP obtain the same
ACLP/DACLP solutions. As the minimum separating distance R increases, the difference in
number of facilities being located is evident as DACLP gives the lower bound on the number
of facilities and ACLP the upper bound. It can be observed that for the R=30 case on eil51/
instance, DACLP solution locates 3 facilities in comparison to 6 facilities located by using
ACLP, which is 50% lesser number of facilities being located. It can also be observed that in
case of ACLP solution, facility nodes tend to be located near the boundaries, whereas in case of

DACLP solution, facility nodes tend to be more centrally located.

46

3.2 Disruptive ACLP

®

@
@
)

@
&)
@

|®

®

¢ D,
@

| @

ACLP solution with 14 facilities

1 ®
| @
&)

| @

ACLP solution with 6 facilities

(a) R=6

(b) R=15

(c) R=30

|

®

®e

@
@0

&
..

@

.

@
e

DACLP solution

with 3 facilities

Figure 3.2: Plots of ACLP and DACLP solutions on the eil5/ instance having 51 nodes for different

values of R

47

3. TWO ACLP VARIANTS

3.3 Weighted ACLP

Given a set of potential facility location sites along with a positive weight associated each and
every site as per its importance, weighted ACLP consists in locating a maximum weighted
set of facilities in such a manner that no two facilities are within a pre-specified distance of
one another. This section is concerned with the weighted version of ACLP while the previous
chapter is about the unweighted ACLP.

The weighted ACLP finds its importance in solving many real-world applications. Some of
them include but not limited to locating dump yards, nuclear power plants [96,97], telecommuni-
cation equipments, franchise outlets [98,, [99]], military defence unit location [86], DNA sequence
matching [[100], forest management [[101l]. When potential facility location sites have the same
importance then unweighted version of ACLP is used, otherwise weighted version of ACLP is
used. In most cases, importance of sites differ and weighted version is more appropriate.

Moon and Chaudhry [79] introduced ACLP for the first time in 1984 considering the
weighted case and presented an integer programming formulation for this problem. Being
the generalization of (unweighted) ACLP considered in previous chapter, the weighted ACLP
also belongs to the class of N'P-hard problems [79] [80]. Chaudhry et al. [86] proposed four
greedy heuristics for weighted version of ACLP, and empirically analyzed the behaviour of
these heuristics on instances with upto 50 nodes. It is observed that despite the bad worst-case
behavior, these heuristics performed quite well on randomly generated instances.

This section has following subsections. Section [3.3.1|defines the problem formally. Section
[3.3.2] and Section [3.3.3] respectively present the proposed discrete differential evolution and
genetic algorithm based approaches for the weighted ACLP. Experimental results along with
their analysis are presented in Section[3.3.5]

3.3.1 Formal problem definition

Weighted ACLP can be mathematically formulated as an extension of the ACLP presented
in previous chapter (Section [2.2) by considering the node weights. Consider a set V' =
{1,2,...,n} of n potential facility location sites, i.e., |V| = n, and a distance R, so that no two
facilities can be within distance R of one another. Each site v € V' has an associated positive
weight w, according to the importance of the site and d,,, is the shortest distance from site
u € V tosite v € V. The forbidden set of site v denoted by @, is the set of sites within distance
R of site v, i.e., Q, = {u|u € V A dy, < RA v # u}. The objective of weighted ACLP is to

48

3.3 Weighted ACLP

find a set V' C V' that maximizes), .y w, such that Q, NV’ = () Vv € V'. By introducing
binary variables s, Vv € V to indicate whether site v is chosen for locating a facility (s, = 1) or
not (s, = 0) and taking a large positive integer M, a mathematical model of weighted ACLP
which is originally formulated by Moon and Chaudhry [79]] is given below:

max 4 = Z Wy Sy (3.5
veV

subject to the following constraints ,

Msy+ Y sy <M, YoeV (3.6)
UEQ’U
sy €{0,1}, Yo eV 3.7)

Here, equation [3.5|represents the objective function of the weighted ACLP which maximizes
the sum of weights of the selected sites. Equation [3.6] specifies that if a facility is located at
node v (i.e. s, = 1), then the Ms,, = M, and, as a result Zuer su = 0. So, it enforces the
constraint that if a site v is part of the solution, then all the sites « within the distance R of site
v, i.e., all sites belonging to (), can not be part of the solution. This constraint is called the
neighbourhood adjacency constraint. Clearly, the value of M should be so chosen so that it is
larger than maXveV(Zue Qv Sw)- Constraintenforces the binary nature of decision variables

syVv € V. Few alternative mathematical formulations of weighted ACLP can be found in [81].

3.3.2 DDE approach for WACLP

We have extended our discrete differential evolution (DDE) based approach for ACLP from the
[Chapter 2]to the weighted version of ACLP also by making required changes while incorporating
the weight associated with each node. Subsequent subsections describe the salient features of
our DDE approach for the weighted ACLP.

3.3.2.1 Solution encoding and fitness

We have used the bit vector representation to represent a solution just like in the DDE approach
for ACLP from the previous chapter (Section [2.3.1). We have used the objective function
(equation [3.5)) itself as the fitness function.

49

3. TWO ACLP VARIANTS

3.3.2.2 Generating initial population

To generate each member of the initial population of PO P,,; candidate solutions, we have
extended the randomized greedy method proposed for the ACLP from the to the
weighted ACLP. The only difference is that, in WACLP nodes with highest value of the ratio

Wy

Qo]
of node v.

are given preference, where w,, is the weight associated with v and @, is the forbidden set

3.3.2.3 DDE framework

The same DDE framework [2.3.3] used for the ACLP has been used for the weighted ACLP also.
The same mutation operation from the previous chapter is used in the weighted ACLP case
as well (Section[2.3.4). The repair operation which is explained in the subsequent subsection
(Section [3.3.2.4) is applied on the mutant to make it feasible and to improve its fitness. In
the repair operation, after making the mutant feasible if the latest fitness is within 20% of the
best solution’s fitness only then we try to improve its fitness. We chose this 20% after large
number of experiments to maintain a balance between solution quality and execution time.
Then a simple uniform crossover operation as in the ACLP case (Section [2.3.3) is performed
between the mutant solution and target solution. Trial solution is repaired and then as per the
selection policy (Section is considered to replace the target solution. In addition, we have
implemented a local search (Section to further improve the fitness of the best solution.
This process is repeated till the termination criteria is satisfied. And the best solution found over

all the iterations is returned as the final best solution.

3.3.2.4 Repair

Repair operation is performed to convert an infeasible solution obtained through mutation /
crossover into a feasible solution and then if possible improve its fitness. In the repair operation,

first it is checked whether the trial solution is feasible or not by verifying the separating distance

Wy

Qv
is removed by setting the corresponding bit in the solution to 0. This step is repeated till the trial

constraint. If the trial solution is not feasible, a site v, which has the least value of the ratio

solution becomes feasible.
Once the trial solution is made feasible, we make an attempt to increase its fitness. To
improve the fitness, we will compute the set Sy, of all those remaining sites which can still be

added to the solution without violating the separating distance constraint. Then, we compute

50

3.3 Weighted ACLP

Q/u = QuN Srem YU € Spem. All those sites v in S,.;,, such that Q; = () are added immediately
to the solution by setting the corresponding bits in the solution to 1. If there is no site v € Syep,
with Q;j = (), then a site v € Sye;, Which has the highest value of IZJ?ZI is made part of the
solution by marking the corresponding bit in the solution as 1. The set Sy, and the sets Q;

Yu € Srem are updated to reflect the change in configuration of the solution. This process is

repeated till .S,..,,, becomes empty.

3.3.2.5 Local search

Whenever the best solution changes, a one-one exchange local search is performed on the best
solution in an attempt to further improve its fitness. The one-one exchange local search is
applied in an iterative manner. We check for each site v in the best solution whether it can be
replaced with a site u from its forbidden set),,, u € Q, having more weight than v, w,, > w,,
while satisfying the separating distance constraint. When we find a site v in the best solution
which can be replaced with another site u, u € @), we mark the position corresponding to new
site u with 1 as being part of the solution and the position corresponding to site v with 0 as
being removed from the solution. This procedure is performed once for each site in the best
solution, and the fitness of the best solution is updated at every such exchange.

Algorithm [] provides the pseudo-code for our discrete differential evolution approach,
where 101 is an uniform variate in [0, 1]. Mutation, Crossover, Repair, f and Localsearch are
five functions that perform mutation (Section[2.3.4), crossover (Section [2.3.5]), repair (Section
[3.3.2.4), fitness computation (Section [3.3.2.1) and local search (Section [3.3.2.5)) operations

respectively.

3.3.3 GA approach for WACLP

We have also developed a steady-state genetic algorithm [66] based approach for weighted
ACLP, which is on the same lines as the GA for DACLP presented in Section 3.2.3] We
have represented each solution as an ordered list of sites chosen for facility location and the
objective function is directly used as the fitness function like in Section [3.2.3.1] Just like in
Section[3.2.3.2] the initial solution generation method of our GA for WACLP is also a mix of
randomized greedy method used for DDE and purely random method. Only difference is that,
in the WACLP nodes having the highest value of the ratio IIQL:)\ are given preference. We have

utilized probabilistic binary tournament selection method to choose the two parents for crossover

51

3. TWO ACLP VARIANTS

Algorithm 6: DDE algorithm for weighted ACLP

Generate initial population;
best_solution < best solution in initial population;
while (termination condition remains unsatisfied) do
foreach (target_solution € population) do
if (u01 < p,,,) then
mutant < Mutation(best_solution);
no_mutation < 0;

else
mutant < best_solution;

no_mutation <+ 1;
if ((u01 < p.) or (no_mutation = 1)) then
| trial_solution < Crossover(mutant, target_solution);
else
| trial_solution < mutant;
trial_solution < Repair(trial_solution);
if f{trial_solution) > fltarget_solution) then
target_solution < trial_solution;
if f{trial_solution) > f(best_solution) then
L best_solution < trial_solution;
best_solution +Localsearch(best_solution);

return best_solution;

and a single parent for mutation like in the Section The parameter py,; governs the
probability of selection of the more fit individual in the binary tournament. We have applied
crossover and mutation operations in the same manner as in Sections [3.2.3.4] [3.2.3.5]respectively
where the corresponding probabilities in crossover are puq4, Prand and mutation probability is
pm.- Crossover is utilized with probability p., or else mutation is utilized. Then we perform a
local search operation on the child solution to improve its fitness [3.3.4] The same population
replacement model as in the GA for DACLP [3.2.3.6 has been used where the newly generated
child solution replaces the least fit member of the population subject to the condition that it is
distinct from all the current population members. The child is discarded in case it is found to be

same as any current population member or worse than the least fit member of the population.

3.3.4 Local search

If the child solution obtained through crossover/mutation is within A% of the best solution then
one-one exchange local search is applied iteratively till it is not possible to improve the solution

any further.

52

3.3 Weighted ACLP

The pseudo-code for GA has been provided in Algorithm |7, where BT'S(), Cross(),
Mutate() and Localsearch() are four functions implementing probabilistic binary tourna-
ment selection method, crossover operator, mutation operator and local search (Section |3.3.4))

respectively. Further, ps is the population size and u01 is a uniform random variate in [0, 1].

Algorithm 7: GA for weighted ACLP

Construct ps initial solutions S1, Sa, .. ., Sps;
Spest <— Best solution among ps initial solutions;
while (termination condition remains unsatisfied) do
if (u01 < p.) then

P+ BTS(Sl, ey Sps);

repeat

| Py BTS(S1,...,5ps);

until (Pl # PQ);

| Sc < Cross(Py, Py);

else

P+ BTS(Sl, ey Sps);
| Sc ¢+ Mutate(Py);
if (S¢ is within A% of Spes:) then
| Sc < Localsearch(S¢);
Include S¢ in the population as per replacement policy;
if (S¢ is better than Sp.s;) then

L Sbest <~ SC’;

return Spes;

3.3.5 Experimental results

We have implemented both the DDE and GA based approaches for WACLP in C. The parameters
used in DDE and their corresponding values are as follows: population size PO FP.,,; = 50, py,
=0.9, p. = 0.9, and py,,¢+ = 0.02. Likewise, GA parameters and their respective values are as
follows: population size ps = 200, p,qng = 0.75, ppes = 0.8, pc = 0.5, pm = 0.75, pagqd = 0.9, and
A =10%. All these parameter values for both DDE and GA are chosen empirically. For each
test instance, our approaches are executed 10 times independently on a Linux based 3.40 GHz
Core-i5-7500 system with 8 GB RAM. We have also implemented the four greedy heuristics
described in Chaudhry et al. [86] and compared their results with the proposed approaches. We
denote these four greedy heuristics by H1, H2, H3 and H4 in this chapter. Both DDE and GA
based approaches are executed for the same amount of time. On all the instances with number of
nodes upto to 100, the DDE and GA based approaches are run for 1 second, on all the instances

with number of nodes greater than 100 and upto 500, these two approaches are executed for 2

53

3. TWO ACLP VARIANTS

seconds, and on all the instances with more than 500 nodes, these two approaches are executed
for 5 seconds. The execution times of the four greedy heuristics are negligible, and, hence, not
reported.

We have used two datasets for evaluating the performance of our approaches, which are
derived from Beasley’s OR—libraryﬂ and the standard TSPLIBE] with the number of nodes upto
1577. Both these datasets are first introduced in the context of ACLP in[Chapter 2] later modified
to include node weights which are random integers between 1 to 10.

The results obtained on the OR library dataset and the TSPLIB dataset are reported in Table
[3.5] and Table [3.6] respectively. In these tables the first column, Instance, gives the name of
the instance. Second column, R, represents the minimum separating distance. Columns 3, 4, 5
and 6 represent the best objective value returned by each of the greedy heuristics H1, H2, H3
and H4 respectively. Columns 7 and 8 provide the best and average objective values obtained
with the DDE based approach over 10 independent runs, and the average time taken by the
DDE approach to reach the best solution over 10 independent runs is given in the 9th column.
Similarly columns 10, 11 give the best and average values obtained with the GA based approach
over 10 independent runs, and the 12th column provides the average time taken by the GA
approach to reach the best solution over 10 independent runs. For each instance, the best results
over all the approaches are shown in bold font for easy identification. From these two tables,
it can be clearly seen that for all the instances, our proposed approaches based on DDE and
GA have performed as good as or better than all the four previously proposed greedy heuristics.
Both DDE and GA based approaches obtained the same best and average objective values for
instances with upto 100 nodes. For larger instances, the GA based approach performed better
than or same as the DDE based approach in terms of both best and average solution quality
except for one TSPLIB instance where average solution quality of DDE approach is better. If
we look at average time to reach the best solution of the two approaches, we can clearly see that
GA converges as fast as or faster than DDE on most of the instances (39 instances out of 40
ORLIB instances and 36 instances out of 40 TSPLIB instances).

Figure 3.3| plots the solutions found by GA for different values of R on instance eil51 with
51 nodes. In this figure, the facilities are shown in green, while the non-facility nodes are shown
in blue. This figure clearly show that as the value of R increases, the number of facilities that

can be located decreases.

"http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
Zhttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

54

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

3.3 Weighted ACLP

Table 3.5: Results of DDE, GA and 4 greedy heuristics on OR library dataset

DDE Based Solution GA Based Solution
Instance R H1 H2 H3 H4 Best Average TTB [”—I Best Average TTB@
5 241 178 238 241 241 241.00 0.00 241 241.00 0.00
10 181 141 177 173 181 181.00 0.00 181 181.00 0.00

OR_50.1 25 83 78 69 77 83 83.00 0.00 83 83.00 0.00
50 37 36 36 37 38 38.00 0.00 38 38.00 0.00

5 245 222 245 245 245 245.00 0.00 245 245.00 0.00

OR 502 10 209 188 205 190 209 209.00 0.00 209 209.00 0.00
- 25 83 79 82 73 85 85.00 0.00 85 85.00 0.00

50 44 37 36 44 44 44.00 0.00 44 44.00 0.00

5 402 318 399 405 407 407.00 0.01 407 407.00 0.00

OR 100.1 10 246 240 242 239 252 252.00 0.00 252 252.00 0.00
- 25 99 104 98 84 104 104.00 0.00 104 104.00 0.00

50 46 38 47 47 47 47.00 0.00 47 47.00 0.00

5 448 403 448 448 448 448.00 0.01 448 448.00 0.00

OR 1002 10 293 259 293 252 293 293.00 0.01 293 293.00 0.00
- 25 105 97 99 94 107 107.00 0.00 107 107.00 0.00

50 38 40 38 38 40 40.00 0.00 40 40.00 0.00

5 82 751 847 805 872 872.00 0.15 872 872.00 0.02

OR 250.1 10 403 404 415 405 434 434.00 0.20 434 434.00 0.06
- 25 121 125 126 121 142 142.00 0.03 142 142.00 0.03

50 46 40 46 46 52 52.00 0.32 52 52.00 0.00

5 803 709 801 768 813 813.00 0.61 813 813.00 0.03

OR 250.2 10 446 417 415 399 459 459.00 0.02 459 459.00 0.01
- 25 127 115 122 124 132 131.50 0.22 132 132.00 0.02

50 48 40 49 48 56 56.00 0.07 56 56.00 0.00

5 1215 1079 1179 1090 1229 1227.90 1.11 1229 1229.00 0.22

OR 5001 10 499 477 492 476 541 538.60 0.28 541 540.80 0.09
- 25 139 126 130 139 159 156.30 0.38 159 159.00 0.13
50 53 40 49 53 59 58.70 0.04 59 59.00 0.01

5 1203 1130 1185 1095 1246 1242.60 1.35 1246 1246.00 0.46

OR 500.2 10 519 501 527 516 564 562.70 0.26 564 56220 0.07
- 25 148 138 109 147 156 153.00 0.45 156 156.00 0.59

50 57 40 47 57 59 59.00 0.08 59 59.00 0.00

5 1584 1514 1500 1521 1649 1643.60 4.23 1654 1653.80 2.79

OR 1000.1 10 615 553 575 610 655 651.20 2.13 657 651.20 1.01
- 25 158 147 145 154 171 168.80 1.11 171 171.00 0.19
50 60 40 56 60 60 60.00 0.02 60 60.00 0.00

5 1534 1439 1475 1455 1580 1571.80 4.16 1587 1582.00 2.93

OR_1000.2 10 613 576 571 566 663 646.20 2.78 663 661.50 1.35

25 155 146 140 141 166 165.30 1.24 166 166.00 0.12
50 59 40 50 57 60 60.00 0.05 60 60.00 0.01

“Average time to find the best solution in seconds

55

3. TWO ACLP VARIANTS

Table 3.6: Results of DDE, GA and 4 greedy heuristics on TSPLIB dataset

DDE Based Solution GA Based Solution
Instance R H1 H2 H3 H4 Best Average TT Best Average TTB@
3 281 277 281 281 281 281.00 0.00 281 281.00 0.00
cil51 6 233 200 233 233 233 233.00 0.00 233 233.00 0.00
15 92 77 90 77 92 92.00 0.01 92 92.00 0.00
30 37 40 40 35 40 40.00 0.00 40 40.00 0.00
8 501 422 498 498 501 501.00 0.01 501 501.00 0.00
£at99 15 305 281 302 277 307 307.00 0.06 307 307.00 0.00
38 104 9% 103 94 105 105.00 0.00 105 105.00 0.00
75 43 45 45 40 46 46.00 0.00 46 46.00 0.00
11 803 733 794 783 803 803.00 0.10 803 803.00 0.01
rat195 21 395 360 391 372 417 417.00 0.10 417 417.00 0.01
52 121 104 100 117 130 129.70 0.68 130 130.00 0.00
104 55 56 54 55 56 56.00 0.00 56 56.00 0.00
223 811 734 790 759 816 81390 0.38 816 816.00 0.02
pr299 446 393 374 367 352 405 40440 0.57 405 405.00 0.11
1114 117 106 111 98 131 13040 0.02 131 131.00 0.00
2228 46 39 46 47 55 5320 0.00 55 55.00 0.00
170 628 578 608 593 651 650.00 0.66 651 65090 0.57
4493 340 272 227 248 257 285 28440 0.55 285 285.00 0.09
851 79 59 71 76 81 81.00 0.00 82 82.00 0.10
1700 33 29 33 33 34 34.00 0.00 34 34.00 0.00
111 1409 1296 1369 1280 1464 1459.60 3.98 1465 1464.60 0.81
w724 222 566 567 531 536 603 600.90 1.89 604 60190 2.18
555 145 125 130 151 157 152.00 1.01 157 157.00 0.35
1110 58 49 56 48 59 59.00 0.01 59 59.00 0.00
650 1398 1290 1348 1328 1442 143270 4.62 1449 1447.70 298
pri002 1300 550 497 527 530 592 587.60 4.29 592 592.00 0.75
3250 152 116 132 140 159 156.80 0.77 159 159.00 0.05
6500 54 40 48 54 58 57.80 0.09 58 58.00 048
120 1707 1633 1682 1668 1795 1773.30 4.53 1829 1823.50 4.29
peb1173 240 625 569 595 567 671 666.40 3.81 677 67270 3.51
600 159 119 134 140 169 16620 0.59 169 169.00 0.06
1200 57 40 50 49 60 60.00 0.01 60 60.00 0.00
176 1011 999 972 938 1075 106690 3.89 1076 1071.30 2.56
41291 352 388 351 389 338 426 424.00 1.57 427 42550 0.74
879 121 100 112 112 122 122.00 0.02 122 122.00 0.01
1760 44 40 44 43 46 44.60 0.04 46 46.00 1.07
91 790 723 734 683 808 804.80 3.28 818 817.20 2.30
1577 182 404 363 381 367 439 438.60 2.71 444 44150 146
456 130 110 117 107 147 147.00 0.85 147 147.00 0.05
910 58 60 58 49 60 60.00 0.00 60 60.00 0.00

“Average time to find the best solution in seconds

56

3.3 Weighted ACLP

(¢) For R=15 (d) For R=30

Figure 3.3: Weighted ACLP solutions found by GA for different R values on eil5/ instance

Figure 3.4] shows the convergence behavior of DDE and GA on 4 different instances. On all
the 4 instances, GA converges faster than DDE. In fact, this is the case on all the instances.

We have conducted the Wilcoxon signed-ranks test [84]] to check the statistical significance
of the difference in results obtained by the proposed approaches based on DDE and GA. We
performed the two tailed Wilcoxon signed ranks test with significance level set to 0.01 (i.e.
p-value < 0.01) using the calculator available onlineﬂ The test is performed separately on OR
library dataset and the TSPLIB dataset. In the Table[3.7] the column N represents the number
of instances considered, NWT is the number of instances without tie, W is the sum of ranks
of the instances where DDE performed better whereas W~ is the sum of ranks of the instances

where GA performed better. The test statistic 7" is the minimum of W and W ~. For the OR

'nttps://mathcracker.com/wilcoxon-signed-ranks.php

57

https://mathcracker.com/wilcoxon-signed-ranks.php

3. TWO ACLP VARIANTS

1250 T T T 700

1240 - 680

1230 -

1220 -

1210 -

weight
weight

1200 -

1190 -

1180

DDE —— DDE ——
GA —— B GA —
560

1170

1160

0 05 A 15 2 0 A 2 5 ‘ :
time(in sec) time(in sec)
(a) OR_500.2 withR =5 (b) OR_1000.2 withR =10

620 840

610 -

600 -

weight

590

weight

580

740

570 | DDE —— + DDE
GA — 720 GA ——

560 700 L L L L
0 1 2 3 4 5 0 1 2 3 4 5
time(in sec) time(in sec)

(c) u724 with R =222 (d) 11577 with R =91

Figure 3.4: Covergence behavior of DDE and GA on 4 different instances

library dataset the value of T' = 2 is less than the corresponding 7™ value of 12 and for the
TSPLIB dataset 7' = 0 is less than the corresponding 7™ value of 62. This shows the better
performance of GA based approach over the DDE approach is statistically significant.

Table 3.7: Wilcoxon signed-ranks test

N | NWT | W* | W= | T | T* | Significant
OR library | 40 | 13 2 89 2 12 | yes
TSPLIB 40 | 23 0 276 0 62 | yes

3.4 Conclusions

Both DACLP and WACLP are understudied problems. In this chapter, we have proposed two
population based metaheuristics for DACLP and WACLP, viz. a discrete differential evolution
(DDE) based approach and a genetic algorithm (GA) based approach. Both DDE and GA
fall under the broad class of evolutionary algorithms. We have tested the performance of our

approaches on a total of 80 instances with upto 1577 sites.

58

3.4 Conclusions

For DACLP, when the least objective value is considered, DDE produced smaller objective
values than GA on 19 instances, same objective values on 60 instances, and a greater objective
value on 1 instance. Similarly, for the average objective value, DDE produced smaller objective
values on 33 instances, equal objective values on 47 instances. Overall, when the comparison is
done with respect to least objective value DDE produced solutions of equal or better quality in
comparison to GA on 79 out of the 80 instances and when the comparison is done with respect
to average objective value on all the 80 instances DDE produced solutions of equal or better
quality in comparison to GA.

For WACLP, computational results show that our metaheuristic approaches performed as
good as or better than the four greedy heuristics available in the literature on all the instances,
and GA based approach performed as good as or better than the DDE based approach on 79 out
of the 80 instances.

In the case of DACLP, a dedicated repair operation applied in DDE contributed to its better
performance by removing additional facilities and that too in a diverse manner while making the
solution proper thereby paving the way for a better exploration of the search space. Hence, DDE
performed better than GA for DACLP. In the case of WACLP, it is a maximization problem with
positive weights associated with each node. In our proposed GA for WACLP, the exhaustive
1-1 exchange local search operation performed on the best solution contributed to its better

performance as compared to the DDE.

59

Chapter 4

Obnoxious cooperative maximum
covering location problem

4.1 Introduction

Solving a location problem involves locating one or more facilities in the given solution space
while optimizing the pre-specified criteria. In location science, considering the facilities and
demand points the most common criteria is the interaction between a facility and the demand
points which interact with that facility. The facilities can be desirable, semi-obnoxious or
obnoxious. Locating facilities such as schools, hospitals, banks, supermarkets are the examples
of desirable facilities where it is beneficial to have these facilities close to the demand points or
customers [4} [102]. On the other hand, facilities such as nuclear power plants, prisons, dump
yards, military installations and industrial facilities causing pollution are examples of obnoxious
facilities, which even though are required for the society, but produce a negative or undesirable
effect[[103},[104]]. So, the problem of locating the obnoxious facilities also needs to be carefully
addressed.

The cooperative maximum covering location problem (CMCLP) [2, 18], 143]] is an example
of cooperative coverage model where all facilities contribute to the coverage of each demand
point and it is concerned with locating a given p number of desirable facilities so as to maximize
the total demand covered. But when the facility location problem is concerned with locating
undesirable or obnoxious facilities under the cooperative coverage model, then the objective
is to maximize the total uncovered demand. This variant of the problem is called obnoxious

cooperative maximum covering location problem (OCMCLP) [2]]. CMCLP and OCMCLP are

60

4.1 Introduction

highly complex facility location problems because of the use of the cooperative coverage model
and allowing the facilities to be located along the edges joining the demand points in addition
to demand points themselves. For the CMCLP, a hybrid artificial bee colony approach was
proposed in [43]. However, no metaheuristic approach exists for the OCMCLP.

In all of the applications of locating obnoxious facilities, the nuisance generated by an
obnoxious facility decreases over distance following some signal strength function. When more
than one of such obnoxious facilities are located, the nuisance effect on the demand points is
cumulative. For example, the poor air quality at a community will be a combined effect of
several industrial facilities in the locality which release polluting chemicals into the the air
rather than just due to the nearest industrial facility. Even though the nearest industrial facility
has the higher contribution of the negative effect, the effect of other such industries which are
little farther than the closest facility can’t be ignored. But many of the existing models consider
solving for locating a single obnoxious facility, hence no cumulative effect is taken into account
[LOSL 106} 107, [108]].

Church and Garfinkel [103] first introduced the obnoxious facility location problem in 1978.
It is also a well studied problem in the location literature. We refer the interested readers to
(104,109, 110} 111} [112]. Melachrinoudis [26] and Drezner, Kalczynski and Salhi [27] present
the reviews of recent obnoxious models.

There are several different ways in which obnoxious facility location models can be formu-
lated. Maximizing the minimum distance of the demand points from the obnoxious facilities is
the most common formulation as presented in [103}|[113]. Another formulation is to consider
the negative effect of the facilities declining by the square of the distance between facilities
and demand points [105]]. There are single facility locating models [[114] and multiple facilities
locating models [27, [115]. Drezner et al. [116] also proposed the Weber obnoxious facility
location model which is formulated from the classic Weber location problem [[117, 118} [119] by
adding an additional condition that the facility must be placed at least at a given distance from
the demand point because the facility is obnoxious.

Even though several researchers worked on the obnoxious facility location problem, the
cooperative coverage model of the problem has not received much attention. Averbakh et al.
[2] have used the cooperative coverage model for the obnoxious facility location problem and
formulated the OCMCLP where it is possible to locate the facilities both at the nodes and along
the edges. Two greedy heuristics (G1, G2) and two interchange heuristics (I1, I2) were also

proposed in [2]] to solve the OCMCLP. In the first greedy heuristic (G1), beginning with an

61

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

empty solution, at each step a new facility is added to the solution so that a facility which will
cover as few demand points as possible is selected to be part of the solution. In the second
greedy heuristic (G2), at a time a pair of facilities are added to be part of the solution till
the required number of p facilities are located. In G2, if the value of p is odd then a single
facility is added at the end. In the first interchange heuristic 11, the solution generated by G1
is considered as the initial solution S1 and a local search is performed so as to relocate one
facility at a time from S1 till there is no further improvement. If no improvement is possible
with one facility relocation, then they try to relocate two facilities at a time from S1 till no
further improvement is possible. The second interchange heuristic I2 works in the same manner
as I1 except that the solution generated by G2 is considered as the initial solution. These are the
only approaches available in the literature for OCMCLP. After Averbakh et al. [2], Drezner et
al. [120] worked on an obnoxious facility location problem under cooperative coverage model
where locations of facilities were restricted to a finite area, no concept of threshold was used to
consider a demand point as covered/uncovered, and the objective was to minimize the maximum
cumulative nuisance at any demand point. A Voronoi-based heuristic was proposed to solve this
problem.

In this chapter, we have proposed a genetic algorithm (GA) based approach for solving the
OCMCLP as formulated in [2]. Over the last several decades, genetic algorithm (GA) has been
used for solving innumerable combinatorial optimization problems in various domains. Some
recent GA based approaches for addressing combinatorial optimization problems can be found
in [90, 91} 121} 122} [123] [124]. Since there exists no metaheuristic based approaches in the
literature to solve the OCMCLP, this served as the motivation to develop a GA based approach
to solve the OCMCLP. Our approach makes use of appropriate problem specific information in
genetic operators as well as in local search. We have evaluated the performance of the proposed
approach on the same test instances as used in [2] and compared the results obtained with two
interchange heuristics presented in [2]. These comparisons clearly demonstrate our proposed
approach to be superior.

The rest of this chapter is organized as follows: Section .2 provides a formal definition of
the OCMCLP. Section4.3|presents the proposed GA approach for the OCMCLP. Computational
results and their analysis are presented in Section[d.4] The last section, viz. Section[.5|presents

some concluding remarks.

62

4.2 Formal problem definition

4.2 Formal problem definition

To formally define the OCMCLP, we have used the same notational conventions as used in
[2]. Important notational conventions are also summarized in Table[4.1] Let G = (V, E)) be an
undirected graph with V' = (1, ..., n) being the set of demand points and E = (eq, ..., €,,) being
the set of edges connecting various demand points. A non-negative real weight w; associated
with each demand point ¢ is given indicating the total demand at this point. I, is the length of
each edge e;. We need to locate a total of p facilities either at the demand points or along the
edges joining these demand points in order to cover these demand points. No two facilities can
be located at the same point. A demand point is deemed covered if the cumulative signal strength
from all the p facilities received at that point is not less than a threshold 7. The OCMCLP is
concerned with the obnoxious facilities and it seeks to find a location vector X, of p facilities

such that the sum total of the weights of the uncovered demand points is maximized.

XD = > ow (4.1)
i i (Xp)<T
The overall signal strength ®; (X),) at a demand point ¢ € V is the sum of the signal

strengths of all the signals received by ¢ from the p facilities, i.e.,

P
O (Xp) =Y 6 (d; (w1)) (4.2)
k=1

Given an edge ey, joining demand point j; with jo (e, = (j1, j2)), an ordered pair (eg, r)

is used to represent the location x of a facility along e, where r is the relative distance of x
from j; with respect to length [, of edge eg, i.e., 7 € [0, 1]. The distance to this facility from a

demand point ¢ € V' can be computed in the following manner

d(i,z) =min{d (i,51) +r X lx,d (i,j2) + (L —r) X I} 4.3)

Where d(i, j1) is the length of the shortest path between demand point ¢ and demand point j;.
Likewise, d(i, jo) is the length of the shortest path between demand point 7 and demand point
Jo2-

We will now explain OCMCLP with the help of an example. This example uses the network

shown in Figure 4.1l There are a total of 9 demand points and the weight associated with

63

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.1: Important notational conventions

Notation | Meaning

n Number of demand points or vertices, i.e., n = |V|

W; Weight of demand point ¢ € V'

li Length of each edge e, € E

X The location space

P Number of facilities that need to be located

Xp Location vector containing locations for p facilities
d; (xj) | Distance between demand point ¢ € V' and facility j

(d) Signal strength at distance d from the facility, ¢ (d) = max {0,1 —d/U}
®; (X,,) | Overall signal strength at demand point i € V'

U Distance at which signal strength becomes zero

T Minimum threshold value for coverage

each demand point is mentioned next to the demand point number in the Figure .1 and edge
lengths are mentioned along the edges. For the sake of this example, we have taken the signal
strength function ¢(d) = max {0, 1— % }, the number of facilities to be located p = 3, and the

minimum threshold value of the overall signal strength for coverage 7' = 0.3.

(2, Wt=5)

(3, Wt=8)

(8, Wt=7)

(6, Wt=7)

(7, Wt=9) (4, Wt=6)

(5, Wt=4)

Figure 4.1: A sample network used for explaining OCMCLP

One feasible solution for the OCMCLP is X = {(5), ((5,7),0.2),((3,9),0.3)}, where first
facility is located at demand point 5, second facility is located at a relative distance of » = 0.2

from demand point 5 on the edge (5,7), and the third facility is located on edge (3,9) at a

64

4.3 Proposed steady-state genetic algorithm approach

relative distance of » = 0.3 from demand point 3. So the demand points 3,4, 5,6, and 9 are
covered as the cumulative signal strength received at each of these demand points from the three
facilities are greater than the threshold 7" = 0.3. At the remaining demand points, the sum of
the signal strength received from the three facilities is less than the threshold, hence they are
uncovered. So, this solution produces an objective value of 31, which is the sum of weights of
all the uncovered demand points, viz. 1,2, 7, and 8. For the sake of illustration, we have picked
the points for locating facilities randomly in this example. There may exist some other solutions

giving better objective values than this solution for this network.

4.3 Proposed steady-state genetic algorithm approach

This section presents our steady state genetic algorithm approach for OCMCLP. Each feature of

our approach has been presented in a separate subsection.

4.3.1 Solution encoding

Each solution is represented as a set of p locations where facilities can be placed. We have
used ordered list representation for sets as it helps in implementing the crossover operator and

uniqueness checking of a solution in an efficient manner.

To facilitate ordered list representation for potential facility locations, we have ordered the
endpoints of an edge by their indices, i.e., if ey is an edge joining demand points j; and j» with
j1 < ja then ey, = (j1,j2). This is done so that each location along an edge is represented
uniquely. Now, each potential location on an edge e, = (j1, j2) is represented as a triplet (51,
J2,), where 7 is same as explained in Section.2] Each potential location on a demand point
71 is also represented as a triplet, but in the form (j1, 71, 0). This is done to make representation
of a demand point unique. Now, a location (x1, y1, 1) precedes another location (2, y2, 22)
only when either (z; < x2) or ((x1 = =z32) and (y; < y2)) or (((z1 = x2) and (y; = y2) and
(z1 < 22)

4.3.2 Fitness evaluation

We have utilized two fitness functions like [2] for evaluating the fitness of a solution. Objective
function f (X, T') itself (as defined in is taken as the primary fitness function. Sum total

of signal strengths at all demand points, i.e., > ;i ®; (X)) is taken as the secondary fitness

65

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

function. The secondary fitness function is required to identify a better solution among solutions
that have the same value for the primary fitness function. We consider a solution S to be better

than another solution S, if the solution .57 either has a larger primary fitness function value, i.e.,
f(Sl, T) > f(SQ, T) (4.4)

or, if the primary fitness function values of solution S; and solution S2 are equal, and solution

S1 yields smaller sum total of signal strengths at all demand points, i.e.,

D 2 (S1) <D P (S2) (4.5)
2% eV
Actually, several solutions can have the same primary fitness function value and secondary
fitness function is used to break the tie. Obviously, among the solutions having the same value
of the primary fitness function, a solution having smaller sum total of signal strengths at all
demand points is more likely to produce even better solutions when subjected to crossover and

mutation.

4.3.3 Generating the initial population of solutions

We have used a randomized greedy approach to generate the initial population POP_SIZE
number of solutions. To generate an initial solution a subset of p locations needs to be selected
such that the weighted sum of uncovered demand points is maximized. In the proposed method,
we start with an empty solution X, and facilities are added one by one till we get the required p
facilities. For this, we find the set of points S which contains all the nodes in V, and also points
along each edge. Points along each edge are considered at intervals of 0.005 relative distance
from one another. On each edge, there are infinitely many possible locations where facilities can
be located. After several experiments, we have empirically chosen the relative distance of 0.005
between possible locations. Let us say =,y € V and (x, y) is an edge in the graph G with edge
length . We add z, y to the set S and all the points at z 4+ 0.005 * [, 4+ 0.01 * [, + 0.015 = [
and so on till z + 0.995 * [are also added to the set S. For each point in the set .S, we calculate
the amount of coverage it provides to the yet uncovered demand points. The objective value
corresponding to each point ¢ € S is calculated as the sum of the weights of all the uncovered
points whose signal threshold requirement 7" is greater than the signal received from 7. After

evaluating all the points in the set S, best Y points are chosen. One point is randomly selected

66

4.3 Proposed steady-state genetic algorithm approach

from the set of Y best points to be added to the partial solution X;,. Once a location from S is
added to the solution X, it is deleted from S and the thresholds for all the demand points are
updated using the following equation {.6|

T; (X,) = maz {0, T — ®; (X,)}Vie V (4.6)

This iterative procedure is repeated till we get the p facilities in the solution X,. Once a
solution is generated, we check whether it is a unique solution compared to the already generated
population of initial solutions. The newly generated solution is added to the population of
solutions only if it is unique, otherwise it is discarded. This iterative process continues till

POP_SIZFE solutions are generated.

4.3.4 SSGA framework

Given the initial population of solutions, the steady state genetic algorithm based approach
for solving the OCMCLP follows an iterative process. In each iteration, we apply crossover
and mutation in a mutually exclusive manner. Crossover is applied with probability P. and
mutation is applied with the remaining probability of 1 — F,. On the child solution generated
after crossover or mutation, we have applied a local search to improve its fitness. Following the
local search, population replacement method is applied. Then the next iteration begins. This
is repeated for all the M AX_ITERS iterations. At the end of the M AX _ITFERS iterations,
the best solution found since the beginning of the algorithm is returned as the final solution

found by the algorithm.

4.3.5 Selection

We need to select two parents from the population to perform crossover and a single parent to
perform mutation operation. We have used the probabilistic binary tournament selection method
for this. The parameter Pp;s governs the probability of selection of the more fit individual in
the binary tournament. Two solutions are selected uniformly at random from the population
and their fitness is compared. The solution with higher fitness between the two is chosen with
the probability Py, or else the lower fitness solution between the two is chosen, i.e., the worse
solution between the two is chosen with probability 1-FPys. In general, probabilistic binary

tournament selection performs better than roulette wheel selection and has the same performance

67

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

as rank selection, while being computationally much less expensive than latter two methods

[125]]. This is the reason for using probabilistic binary tournament selection in our approach.

4.3.6 Crossover

In the crossover, we select two solutions which act as parents using binary tournament selection
method. To generate a child solution, common facilities from the two selected parents are
copied to the child. As we have used ordered list representation, common facilities can be
found in O(p) time. Let us say there are c common facilities, they are copied to the child. Since
each solution must have p facilities, therefore, to add the remaining p — c facilities, we follow
the same randomized greedy approach as used in the initial population generation. Using this
method, the remaining facilities are added one by one till we get total p facilities in the resulting

solution.

4.3.7 Mutation

From the population, a solution is selected using binary tournament selection. From this selected
solution, facilities are removed with probability P,,. For each facility under consideration a
uniform random number r is generated between 0 and 1. If r is greater than P, that facility
is copied to the resulting mutant solution. On the other hand, if r is less than or equal to P,
that facility is not copied to the mutant. Let us say k facilities are copied to the mutant in this
manner. Since each solution must have p facilities, to add the remaining p — k facilities, we
follow the same randomized greedy approach as used in the initial population generation. Using
this method, the remaining facilities are added one by one till we get total p facilities in the
mutant solution.

Our crossover operator retains the common facilities between the two selected parents
to build a better child solution by making use of these facilities. If mutation is applied after
crossover then some of these facilities may get deleted from the child solution. Hence, crossover
and mutation have been used in a mutually exclusive manner. During each iteration, crossover

is applied with probability P, or else mutation is applied.

4.3.8 Local search

On the solution X generated through crossover or mutation, a one-one exchange local search

operation is applied. This local search is derived from the local search proposed in [43]]. As part

68

4.3 Proposed steady-state genetic algorithm approach

of the local search, we have considered each facility ¢ € X one-by-one in an iterative manner
and a point b, to relocate it is determined. For this also, we followed the randomized greedy
approach as in the initial solution generation where we compute the set of Y best points for
solution (X¢ \ {t}) and a point b, is randomly selected from these Y points to be part of the
solution. If the solution (X¢ \ {t}) U {b;} has higher fitness in comparison to X¢ then X is

replaced with this new solution. This process is redone for all the facilities t € X¢.

4.3.9 Population replacement model

Our GA uses steady state population replacement model. In this model, only a single child
solution is constructed in each generation. If the child solution is unique from the currently
existing members of the population then its fitness is compared with the worst solution in
the population. And the child solution replaces the worst solution of the population if it has
better fitness. On the other hand if the child solution is found to be the same as any current
population member or even though it is unique but its fitness is less than the least fit member of
the population, in both these cases the child solution is discarded.

Algorithm [§] provides the pseudo-code for our genetic algorithm approach where 101 is
a uniform variate in [0, 1]. BTS, Crossover, Mutation, and Local_search are four functions
that perform binary tournament selection (Section [4.3.5)), crossover (Section 4.3.6), mutation

(Section4.3.7), and local search (Section {4.3.8) operations respectively.

Algorithm 8: GA for OCMCLP

Construct POP_SIZFE initial solutions X1, Xo, ..., Xpop s1zE;
Xpest < Best solution among PO P_SIZF initial solutions;
while (termination condition remains unsatisfied) do
if (u01 < P,) then
P, BTS(Xl, ey XPOP_SIZE);
Py <~ BTS(X1,...,Xpopr_s1zE);
if (P, == P,) then
| P> < Get the next solution after P» (modulo population size) in the population.
Xc¢ + Crossover(Py, Py);

else
P, <+ BTS(Xy,...,Xpopr_sizE):

| X¢ < Mutation(Py);
X¢ + Local_search(X);
if (X is better than Xy) then

L Xbest — XC;
| Include X¢ in the population as per replacement policy;
return X .:;

69

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

4.4 Computational results

We have compared the performance of our GA based approach with the state-of-the-art ap-
proaches available for OCMCLP which are discussed in [2]. For the fairness of comparison, we
have used the same datasets and the same values for various parameters as in [2]. Averbakh et
al. [2] randomly generated five instances of datasets for a given combination of the number of
nodes n and average degree of nodes dgr. The values of n and dgr belong to the following set of
values n € {40, 60, 80, 100, 120, 140, 160, 180,200} and dgr € {5, 6, 7} respectively. On each
dataset, we have executed our approach with three different values for the number of facilities to
be located, p = 3,4, 5. And the three different values of threshold value for the signal strength,
T, are considered as T = 0.1, 0.3, 0.5 as in [2]. We have taken the linear signal strength function
of ¢ (d) = max {0,1 — d/U} and the parameter U was determined as a fraction of the network
diameter where Uy, = 0.65,0.75,0.85 for T' = 0.1,0.3 and Uy, = 0.7,0.8,0.9 for T' = 0.5
just as mentioned in [2] .

We have implemented our GA based approach in C and executed it on a Linux based Intel
Core 15 8600 system with 8 GB memory running at 3.10 GHz. The parameters specific to GA
and their corresponding values are as follows: POP_SIZFE = 100, MAX_ITERS = 200,
Y =10, P, = 0.5, P, = 0.1, Py = 0.7. These parameter values are chosen based on
empirical observations spanning over a number of trials.

In [2], Averbakh et al. proposed two interchange heuristics, I1 and 12, for solving the
OCMCLP. The results of our GA based approach are compared with these two interchange
heuristics I1 and 12. We have reported the results of our GA approach along with I1 and 12
approaches in 9 tables, viz. Table [4.2] Table 4.3 Table [4.4] Table .5] Table [4.6] Table 4.7]
Table 4.8] Table [4.9] and Table .10} Each of these tables present the results for a particular
combination of the parameters 7" and Ug,. Within each table, for a given dataset of size n we
have shown the average of objective values obtained for all the three different degrees 5, 6 and
7. We have obtained the data for I1 and 12 via e-mail from the corresponding author of [2]. In
all these nine tables (Table {.2}-Table [4.10), the first column gives the number of facilities being
located, p. The second column gives the number of nodes in the graph, n. Third and fourth
columns give the objective value and time taken by I1 while fifth and sixth columns give the
objective value and time taken by 12 and the seventh and eighth columns give the objective value

and time taken by GA respectively. All times are in seconds.

70

4.4 Computational results

Table 4.2: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.1,
Uy, = 0.65

1l 2 GA
n Obj. Time Obj. Time Obj. Time

40 332.67 0.10 336.60 0.20 337.60 3.06

60 49493 0.10 496.20 0.20 49540 6.61

80 658.87 0.20 660.27 0.40 660.27 11.35

100 783.27 0.30 783.53 1.10 799.73 15.55

p=3 120 913.87 0.70 920.47 2.00 946.00 21.22
140 1029.00 2.00 1042.40 3.20 1071.13 28.02

160 1141.40 2.90 1146.07 4.60 1185.00 35.58

180 1357.53 3.70 1353.07 5.90 139240 45.63

200 149373 5.90 1495.53 9.30 1533.33 55.96

40 32920 0.10 33247 0.30 332.13 3.88

60 488.47 0.10 489.27 0.20 491.73 8.29

80 642.27 0.30 645.13 0.60 647.27 14.18

100 777.07 0.60 777.07 1.30 781.00 19.19

p=4 120 907.67 1.20 912.53 2.50 922.60 26.56
140 102327 3.70 1037.73 4.80 1056.00 35.52

160 112247 3.10 1129.27 6.10 1154.33 44.05

180 1352.00 5.70 1351.00 9.00 1367.00 56.41

200 1478.53 7.90 1490.53 13.40 1507.40 67.78

40 326.87 0.20 329.40 0.30 33213 4.5

60 484.60 0.10 485.20 030 489.33 10.02

80 640.47 0.40 641.60 0.70 642.73 17.17

100 773.40 0.90 771.67 1.90 775.60 23.10

p=5 120 897.80 1.70 908.00 3.90 915.73 32.03
140 1017.40 4.20 1030.87 6.00 1046.67 42.11

160 112247 4.50 112193 6.60 1140.53 5251

180 1342.00 7.30 1337.33 11.60 1359.00 66.96

200 147427 10.90 1485.33 15.90 1492.33 81.29

71

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.3: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.1,
Uy, =0.75

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 262.07 0.00 266.60 0.10 26573 2.87
60 358.93 0.00 36093 0.10 359.53 5.68
80 461.73 0.10 467.60 0.20 457.53 9.70
100 54520 0.30 54520 0.50 55747 13.11
p=3 120 593.07 0.40 596.93 0.90 618.00 16.85
140 611.40 1.30 615.87 1.60 664.93 22.06
160 639.67 1.50 640.93 1.80 683.47 26.63
180 746.07 2.00 752.00 3.00 817.33 33.81
200 845.07 2.60 849.53 3.90 909.20 41.44
40 257.67 0.00 258.87 0.10 260.67 3.41
60 34253 0.10 34453 0.10 34740 7.06
80 44227 0.20 444.40 0.30 44433 11.80
100 529.73 0.40 530.53 0.70 545.20 15.92
p=4 120 57453 0.70 577.00 1.00 594.07 20.29
140 595.47 1.50 598.47 2.00 629.20 25.98
160 628.27 2.00 625.00 2.70 663.67 31.30
180 73427 2.40 73220 3.80 780.87 39.68
200 836.20 3.80 835.93 5.80 873.73 48.08
40 253.07 0.10 251.07 0.10 25840 4.16
60 330.87 0.10 332.00 0.10 333.20 8.42
80 425.80 0.20 430.27 0.30 42647 14.06
100 524.80 0.50 517.20 0.90 530.53 18.74
p=5 120 562.33 0.90 556.67 1.40 579.20 24.02
140 585.80 1.80 583.40 2.00 609.20 30.72
160 61733 2.50 609.33 2.90 637.60 36.73
180 712.33 3.20 712.80 4.40 740.60 46.07
200 816.40 5.20 818.13 6.90 841.33 56.00

72

4.4 Computational results

Table 4.4: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.1,
Uy = 0.85

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 175.00 0.00 180.80 0.00 177.60 2.41
60 175.80 0.00 176.87 0.00 171.73 4.84
80 240.13 0.10 240.33 0.10 239.07 8.04
100 244.07 0.10 247.07 0.30 25473 11.23
p=3 120 258.60 0.20 256.93 040 27313 1394
140 213.67 0.30 223.00 0.70 24433 17.54
160 223.07 0.50 228.80 0.70 264.87 21.10
180 287.93 0.70 291.00 1.40 328.87 26.31
200 300.47 0.90 301.73 1.70 344.13 32.60
40 168.53 0.00 174.27 0.00 173.60 2.99
60 165.00 0.00 167.40 0.10 164.80 5.96
80 22453 0.10 227.60 0.10 226.27 9.69
100 23553 0.20 238.27 0.30 245.87 13.26
p=4 120 238.60 0.20 239.40 040 25493 17.11
140 207.13 0.50 212.07 0.90 231.00 21.44
160 211.13 0.60 213.53 0.90 229.20 25.50
180 280.53 1.10 284.53 1.90 309.00 31.72
200 290.80 1.50 29253 2.30 313.00 38.67
40 164.60 0.00 168.80 0.00 167.87 3.57
60 157.13 0.00 160.47 0.10 160.80 7.08
80 217.00 0.10 22033 0.20 217.47 11.45
100 222.00 0.20 223.60 0.40 232.53 15.74
p=5 120 227.00 0.40 221.73 0.50 236.67 20.23
140 19893 0.50 200.33 0.90 218.53 25.26
160 198.73 0.70 204.33 0.90 223.27 30.50
180 266.07 1.30 264.80 1.60 29547 37.24
200 276.80 2.00 276.53 2.70 303.60 45.69

73

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.5: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.3,
Uy, = 0.65

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 355.27 0.60 355.13 0.70 35487 3.16
60 540.80 0.80 540.20 1.30 540.73 6.99
80 718.87 1.70 718.87 2.50 717.47 12.10
100 851.20 2.70 851.20 4.60 87793 16.79
p=3 120 1014.00 3.40 1011.80 7.30 1040.07 23.99
140 1132.60 5.50 1130.73 9.80 1209.53 31.72
160 1234.67 6.60 1250.00 9.50 1331.20 40.78
180 148347 8.20 1483.07 11.40 1559.33 52.82
200 1638.33 15.90 1635.73 23.80 1728.73 64.87
40 34833 0.80 348.13 0.90 348.53 4.02
60 520.27 1.50 52033 1.70 521.33 8.81
80 699.33 1.40 699.67 2.80 699.53 15.12
100 843.47 3.60 843.47 8.80 850.67 20.72
p=4 120 990.73 5.40 988.00 8.80 1014.53 29.69
140 1115.53 490 1112.40 10.90 1164.87 40.02
160 1207.00 6.10 1226.00 10.80 1287.27 50.33
180 1436.00 7.90 1434.53 18.60 1506.20 64.55
200 1588.40 12.90 1588.87 26.50 1664.60 79.65
40 34220 1.60 342.07 1.90 343.20 4.88
60 511.47 0.90 51320 2.10 514.07 10.60
80 684.07 1.80 683.07 3.00 681.40 18.21
100 820.07 8.00 819.67 13.10 837.60 24.98
p=5 120 969.07 3.80 967.33 11.40 992.53 35.83
140 1095.60 5.90 1091.27 11.10 1134.33 47.48
160 1182.13 8.30 1199.87 13.20 1249.73 59.43
180 1431.27 9.40 1427.13 1540 1470.07 76.65
200 1572.53 27.50 1572.13 32.70 1631.53 92.84

74

4.4 Computational results

Table 4.6: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.3,
Uy, =0.75

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 306.67 0.20 307.73 0.30 308.13 3.00
60 438.27 0.20 43733 0.40 438.73 6.45
80 575.87 0.40 585.07 0.60 577.07 11.09
100 639.53 0.40 64093 0.90 686.40 15.25
p=3 120 743.20 1.00 74033 1.90 806.53 20.97
140 75433 2.10 76520 2.60 901.07 27.76
160 813.00 2.50 808.93 3.20 955.00 34.71
180 941.80 3.50 937.80 4.70 1153.47 44.89
200 1092.40 4.90 1092.47 7.10 1281.93 54.36
40 288.53 0.20 288.40 0.30 290.73 3.72
60 404.80 0.20 404.40 0.40 409.67 7.98
80 530.73 0.30 540.00 0.70 531.73 13.34
100 613.67 0.60 61533 1.10 636.80 18.36
p=4 120 689.93 1.10 685.00 2.10 733.40 24.63
140 70693 2.80 720.27 3.70 813.07 32.54
160 76440 2.80 764.13 430 872.60 39.78
180 890.80 5.10 887.93 6.70 101747 51.13
200 1026.87 8.50 1024.80 12.80 1153.07 61.92
40 277.60 0.40 280.73 0.60 281.80 4.59
60 393.27 0.30 393.27 040 39587 9.50
80 497.60 0.40 501.67 0.90 504.87 15.64
100 593.80 0.70 59547 1.50 61593 21.30
p=5 120 671.80 1.50 666.27 3.00 692.20 28.46
140 686.40 3.10 697.13 4.50 757.60 36.98
160 728.67 4.70 729.47 5.80 796.20 45.39
180 857.93 6.20 854.47 7.10 942.20 58.11
200 973.00 8.10 971.07 9.80 1096.00 71.02

75

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.7: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.3,
Uy, = 0.85

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 229.60 0.00 233.60 0.10 234.67 2.80
60 273.67 0.10 273.73 0.10 27640 5.78
80 35933 0.10 366.13 0.20 358.07 9.84
100 358.27 0.30 360.13 0.40 42793 13.29
p=3 120 382.13 0.50 374.87 0.60 456.53 17.08
140 32093 0.90 32487 1.30 468.33 22.05
160 336.80 0.80 34947 140 487.80 27.14
180 41693 1.70 416.67 2.10 580.00 34.53
200 464.73 2.30 471.73 3.30 638.00 42.77
40 207.13 0.00 212.20 0.10 210.07 3.41
60 23547 0.10 228.80 0.10 23593 692
80 303.07 0.20 301.27 0.30 30233 11.42
100 323.27 0.30 323.67 040 358.33 15.28
p=4 120 330.53 0.70 330.67 0.70 374.80 19.39
140 289.67 0.90 290.40 1.20 371.60 24.58
160 304.07 1.20 309.60 1.40 385.87 29.94
180 382.20 1.80 38240 2.50 463.67 37.89
200 402.73 2.60 407.53 3.70 526.80 45.06
40 192.60 0.00 194.53 0.10 200.20 4.10
60 223.87 0.10 21453 0.10 221.13 8.02
80 279.07 0.20 27940 0.30 27773 13.18
100 304.33 0.40 303.27 0.60 322.87 1791
p=5 120 300.33 0.60 302.27 0.90 328.60 22.61
140 276.67 1.00 27747 1.50 329.13 28.60
160 280.20 1.30 293.00 1.70 343.40 33.77
180 365.60 2.80 363.00 2.90 411.80 41.76
200 381.20 3.20 386.67 4.40 466.20 51.14

76

4.4 Computational results

Table 4.8: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.5,
Uy, =0.7

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 360.07 0.70 360.33 0.80 359.07 3.30
60 55240 1.20 552,53 1.40 55140 7.17
80 73353 2.40 733.47 2.80 733.47 12.41
100 845.27 8.60 844.07 6.80 895.07 17.27
p=3 120 996.07 5.80 995.07 7.60 1059.93 24.65
140 1078.53 6.70 1084.00 10.80 1232.20 32.79
160 1168.27 7.70 1167.80 11.30 1365.33 42.86
180 1384.80 14.20 1392.60 25.60 1593.53 54.35
200 1548.27 29.60 1548.27 42.70 1760.27 67.85
40 346.27 0.90 345.60 1.90 346.73 4.18
60 520.27 1.20 52047 190 520.27 894
80 686.60 4.20 688.73 3.90 688.60 15.42
100 800.40 4.10 802.73 8.40 843.60 21.37
p=4 120 941.67 6.50 94787 8.10 991.00 29.97
140 1038.73 6.70 1041.60 12.30 1145.93 40.35
160 1102.27 6.90 1104.13 12.30 1258.73 51.60
180 132647 18.50 133493 27.70 147447 65.59
200 1497.20 30.80 1496.93 33.70 1638.40 81.27
40 33940 1.10 33393 1.50 338.27 5.01
60 49840 2.00 498.20 2.00 497.60 10.68
80 662.67 2.30 653.60 3.90 664.00 17.99
100 775.00 3.50 774.67 6.70 798.53 25.05
p=5 120 905.80 5.80 914.00 10.50 944.67 35.19
140 1006.93 8.20 101433 11.40 1081.00 46.32
160 1069.87 8.00 1069.53 13.40 1176.20 58.74
180 1279.13 14.70 1296.47 15.50 1392.60 75.60
200 1443.53 25.80 1439.33 34.60 1539.87 93.22

77

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.9: Comparison of I1 and 12 interchange heuristics of [2] with GA on instances with 7" = 0.5,
Uy, =0.8

Il 12 GA
n Obj. Time Obj. Time Obj. Time
40 318.27 0.20 317.87 0.30 317.27 3.13
60 460.20 0.40 460.20 0.60 450.73 6.81
80 604.07 0.60 604.07 0.80 600.73 11.59
100 630.07 0.60 62993 1.10 705.13 16.08
p=3 120 72040 1.50 726.00 190 840.33 22.67
140 681.67 2.50 677.40 3.10 942.93 29.94
160 70293 2.30 708.13 3.50 1002.13 37.92
180 848.60 4.80 857.47 6.30 1201.13 48.69
200 962.07 5.00 963.53 8.40 1337.80 60.62
40 290.33 0.30 291.20 0.30 290.80 3.88
60 405.80 0.30 40420 1.40 401.13 8.09
80 530.13 0.50 531.33 090 520.73 13.76
100 565.00 0.60 567.80 1.00 622.47 18.60
p=4 120 627.33 1.50 638.47 2.30 718.20 25.87
140 616.47 2.40 61993 3.20 782.00 33.68
160 636.87 2.80 640.27 4.30 832.67 41.37
180 756.80 4.90 768.33 5.80 97240 52.88
200 859.67 5.60 858.67 10.70 1108.07 65.44
40 267.53 0.20 271.20 0.30 270.67 4.56
60 366.13 0.20 365.47 0.60 36833 9.45
80 469.20 0.80 47040 1.10 47220 15.72
100 536.67 0.90 53693 1.30 566.93 21.11
p=>5 120 581.20 3.10 585.27 4.40 639.47 28.59
140 578.07 2.50 579.27 4.00 680.13 36.90
160 587.87 3.50 594.13 4.60 719.00 45.08
180 695.07 4.70 700.00 6.70 856.27 57.88
200 760.20 8.20 783.53 10.70 968.33 70.75

78

4.4 Computational results

Table 4.10: Comparison of I1 and I2 interchange heuristics of [[2] with GA on instances with
T=0.5Uy=0.9

I 12 GA
n Obj. Time Obj. Time Obj. Time
40 25233 0.10 251.07 0.10 243.60 293
60 307.33 0.10 31233 0.20 305.67 6.18
80 416.40 0.20 412.67 0.30 402.73 10.55
100 351.60 0.30 356.47 0.50 465.87 14.21
p=3 120 378.87 0.70 371.00 1.00 512.40 1947
140 287.87 1.00 287.60 1.20 541.53 25.37
160 299.67 1.20 307.20 1.50 560.47 31.30
180 366.60 1.50 37427 2.30 655.00 41.16
200 385.13 2.50 396.47 4.00 739.87 49.84
40 21147 0.00 211.27 0.10 207.73 3.53
60 230.87 0.10 236.00 0.10 23453 7.10
80 30347 0.20 300.33 0.40 301.53 11.87
100 292.00 0.50 291.53 0.70 353.13 16.20
p=4 120 297.13 0.70 290.33 0.90 381.47 20.68
140 232.67 1.00 23733 1.30 370.73 27.02
160 246.07 0.90 25573 1.50 395.27 3251
180 304.67 1.80 315.67 2.50 455.53 41.46
200 32413 2.30 32633 4.00 523.40 50.46
40 184.80 0.10 184.73 0.10 182.33 4.08
60 18427 0.10 19453 0.10 198.47 8.07
80 266.07 0.20 26420 0.30 258.00 13.36
100 250.53 0.50 248.27 0.80 290.80 18.39
p=5 120 256.67 0.50 250.73 0.90 308.07 23.22
140 205.07 0.90 208.47 1.30 295.00 29.48
160 208.07 1.40 217.73 1.80 306.93 36.63
180 26633 2.00 284.27 2.0 370.67 44.17
200 286.27 3.20 291.33 4.10 396.47 54.09

Our approach has performed better than 11 and I2 on all the instances when the number
of nodes is 100 and above. For the smaller datasets when the number of nodes is 40, 60 and

80, only in some cases our results are worse than I1 or 12 results. Coming to the execution

79

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

times, Averbakh et al. [2] have run the interchange heuristics, I1 and 12, on a AMD Phenom II
processor with 3.31 GHz and 16 GB of RAM. Our approach is executed on a different system
with lower RAM size of 8GB, so we can not directly compare the execution times. But it is
clear that I1 and 12 are faster than our approach. This is also expected as our approach being a
population based metaheuristic approach will require longer execution times.

Table [.11] presents the comparison of our results with I1 and 12 in the same format as
used in [2]. In Table the first column gives the threshold value 7" and the second column
gives the fraction of the network diameter Uy,. The third and fourth columns give the average
percentage improvement in solution quality by GA with respect to I1 and 12 respectively over all
the instances with the same 7" and Uy, values. Given a particular instance and any two methods
P, @ which are executed on that instance and obtained solutions X p, X respectively, we

calculate the percentage improvement in solution quality by method P over method () on that

$i(Xp)—¢i(Xq)
#i(XqQ)

3 and 4 are averaged over 405 instances which have the same 7' and Uy, values. The fifth, sixth

instance as 100 X . The average percentage improvements presented in columns
and seventh columns in the Table give the average execution times over all the 45 instances
which have the maximum number of nodes, i.e. n = 200, for I1, I2 and GA respectively. This
table, which we have provided with the sole purpose of comparing the results in the same format
as in [2], also shows the superiority of GA over I1 and 12 in terms of solution quality.

Table 4.11: Comparison of I1 and 12 interchange heuristics of [2] with GA in the same format as in

(2]

T | Uy | %(GA,11) | %(GA,12) | RAD) | RA2) | R(GA)
0.1 | 0.65 1.97 1.34 83 | 129 | 684
0.1 | 0.75 4.01 3.85 39 | 55 | 485
0.1 | 0.85 8.66 5.88 15 | 23 | 389
0.3 | 0.65 3.01 2.88 188 | 27.7 | 79.1
0.3 | 0.75 9.30 8.75 72 | 99 | 624
03085| 2219 20.89 27 | 3.8 | 463
05| 0.7 6.67 6.56 288 | 37.0 | 80.8
05| 08 19.12 18.13 63 | 100 | 656
05| 09 | 49.41 46.58 27 | 40 | 515

To show the convergence behaviour of our GA, we have taken two classes of instances.

Fig. [4.2a) and Fig. [4.2b|show the convergence behavior of our GA on instances with {n = 200,

80

4.4 Computational results

1540 T T T T T T T T T T T T T T T
—

1538 J . -
940 f ————

1536
935 | |

1534

Objective value
Objective value

— 1

1532 4 925 |-

2‘0 4‘0 (;0 8‘0 1‘00 1‘20 1110 1‘60 1‘80 %20 2‘0 4‘0 6‘0 8‘0 1‘00 1‘20 1‘40 1‘60 1‘80
No. of iterations No. of iterations

(a) Instances with n = 200, p = 5, T = 0.5, Uy, = (b) Instances with n = 200, p = 5,T = 0.5, Uy, =

0.7 0.8

1530

Figure 4.2: Convergence behaviour of GA

p=25,T=0.5,Uy =0.7} and {n = 200, p =5, T = 0.5, Uy, = 0.8} respectively. In these
two figures, objective value represents the average objective value over 15 instances belonging
to the respective class. We have allowed our GA to execute for 200 iterations only. These figures

show that our GA converges rapidly to high quality solutions within 200 iterations.

Table 4.12: Wilcoxon Signed-Ranks test of GA with 12

N NWT wt W— z Zc Significant
3645 2374 153044 | 2666081 | -37.62 | -2.58 Yes

We have conducted two non-parametric statistical tests, viz. Wilcoxon-signed rank test [84]
and Friedman test [126, [127] to check the significance of the results obtained by our approach.
We have performed the two-tailed Wilcoxon-signed rank test by setting the significance criteria
to 1% (i.e. p-value < 0.01) between our GA based approach and 12 which is the better of the
two interchange heuristics proposed in [2]. Table i.12] presents the outcome of this test. In
this table, the first column N represents the total number of instances considered. The second
column, NWT is the number of instances without a tie. The third column, W is the sum of
ranks of the instances where 12 performed better than GA, whereas the fourth column W™ gives
the sum of ranks of the instances where GA performed better than I2. The fifth column gives
the z value obtained, —37.62 which is less than the critical value of z, z. = —2.58 presented in
the sixth column of the table. This shows the better performance of GA over 12 is statistically
significant as presented in the last column of the Table [4.12]

Table 4.13|corresponds to Friedman test. In this table, the first column /N represents the total

number of instances considered. The second column df gives the degrees of freedom which

81

4. OBNOXIOUS COOPERATIVE MAXIMUM COVERING LOCATION PROBLEM

Table 4.13: Friedman test of I1, I2 and GA

N df a X2 X2 Significant
3645 | 2 | 0.01 | 9.21 | 1691.64 Yes

Table 4.14: Mean ranks for I1, I2 and GA in Friedman test

I Io | GA
1.7 1 1.7 | 26

is equal to the number of groups in the data minus 1. The third column gives the alpha value
considered which is 0.01, i.e., significance criteria is set to 1%. The fourth column is the critical
value of the x% for the present values of alpha and df. The fifth column y? is the test statistic
calculated from the data. The value of x? = 1691.64 is greater than the critical value of the
x2 = 9.21, which proves that there is significant difference in the performance of the considered
approaches. Table d.14] presents the mean ranks for I1, 12 and GA in the first column, the second
column and the third column respectively. The mean of the ranks for GA approach is greater
than the means of the ranks for I1 and 12, thereby proving the better performance of GA as
compared to I1 and 12 according to the Friedman test.

All these results show that the performance of our GA approach is better in terms of solution
quality in comparison to the two interchange heuristics, and non-parametric statistical tests
results of the Wilcoxon signed-rank test and the Friedman test also prove that this superior

performance of our approach is due to algorithmic merit.

4.5 Conclusions

In this chapter, we have proposed an evolutionary approach, viz. GA based approach for
the OCMCLP. The results obtained with our approach are compared with two interchange
heuristics available in the literature. On most of the instances, our GA based approach has found
superior quality solutions in comparison to the existing methods. However, our approach needs
more execution time than these methods. Our GA based approach is the maiden metaheuristic
approach that has been developed for OCMCLP.

82

Chapter 5

Reliability p-median problem

5.1 Introduction

Facility location problems deal with identifying suitable locations for a set of facilities that serve
a set of demand points or customers. Among the facility location problems, p-median problem
(pMP) is a well studied problem which was introduced by Hakimi [128] in 1964. The pMP
is concerned with locating p facilities in such a way that the sum total of demand-weighted
distances between each demand point and its respective closest facility is minimized. It is an
NP-hard problem as shown by Kariv and Hakimi [129]]. Starting from the first formulation
provided in [130], there have been several different formulations of the pMP over the years as
mentioned in [[131} 1132} [133]]. The capacitated p-median problem (CPMP) is a variant of pMP
in which there is a capacity constraint on each of the possible facilities and each facility can
only serve demand points within its capacity limit. The traditional pMP is an uncapacitated
version where there is no capacity constraint on the facilities. Over the last few decades, several
authors have proposed different methods to solve the pMP and its variants. Jayalakshmi and
Singh [44] proposed a swarm intelligence approach using artificial bee colony algorithm to
solve the pMP. In [132]] Dominguez and Muiioz introduced a new reduced formulation for the
pMP and proposed a recurrent neural network to solve this new formulation. In [133], Sourour
proposed a tighter formulation of the pMP by mixed integer linear program and demonstrated
that the standard branch-and-cut algorithm efficiently solves this tighter formulation on the
considered benchmark instances. Keivan and Seyed [[134] proposed a genetic algorithm based
approach for the CPMP. Fleszar and Hindi [[135] proposed a variable neighbourhood search
based solution for the CPMP. In [136]], Cands et al. introduced fuzzy p-median problem that

83

5. RELIABILITY P-MEDIAN PROBLEM

allows some of the demand points to be uncovered if that gives significant lower cost. The
fuzzy p-median problem finds its applications in private sector firms that try to maximize the
profit while providing non-essential services and need not serve all the demand points. Cands
et al. [136] also proposed an exact algorithm to solve this problem. In [137]], Cadenas et al.
proposed a two-population genetic algorithm to solve the fuzzy p-median problem. The vector
assignment p-median problem (VAPMP) [138]] and distributed p-median problem [[139] are the
other variants of pMP in which the demand of a customer is collectively satisfied by different
facilities at various levels and not just the closest facility.

In the p-median problem, it is assumed that once constructed, the facilities will always
operate as planned. But in reality, facilities may fail at times due to several reasons like natural
disasters such as floods and earthquakes. Facilities may also fail due to events which are
intentional like terrorist attacks and labor strikes. Such intentional activity disrupting a system
is called interdiction [[140]. Sometimes facilities may fail due to unintended events like sudden
power or component failures. When there are facility failures, there will be disruptions in the
services provided to the customers. Depending on the type and severity of the events that make
the facilities inoperable, the disruptions to the customer service can last for a short duration
or for a longer period of time. In such facility failure cases, a customer who is generally
serviced by the nearest facility now needs to be assigned to a distant functional facility. This
increases the overall cost due to the additional distance the customer has to travel to a new
facility to avail the services. For the first time, Snyder and Daskin [[141]] proposed the reliability
p-median problem which introduced reliability approach in the facility location model taking
facility failures into consideration. The reliability p-median problem (RpMP) minimizes both
the primary transportation cost without considering the facility failures and also the cost of the
expected failure considering the facility failures. The basic idea behind introducing the RpMP
was to allot each customer to a primary facility which will serve it in normal situations, as well
as to a set of backup facilities which will serve it in the case of failure of the primary facility.
As multiple failures can happen at the same time, each customer requires a first backup facility
when its primary facility fails, a second backup facility when its first backup facility fails, and
so on. However, if a customer is allotted to a nonfailable facility as its k™ backup, no more
backups are required. Usually, nonfailable facilities are much less in numbers in comparison
to failable ones owing to higher cost of the former. If all facilities are nonfailable then RpMP

reduces to p-median problem. Owing to the provision of backup facilities at multiple levels,

84

5.1 Introduction

RpMP is a highly complex problem which can be used for modelling critical applications in
different domains such as health care, aviation and defence [141].

Snyder and Daskin [[141]] while introducing RpMP also proposed an exact method for
solving it based on Lagrangean relaxation. This method was suitable for solving small instances
only. Later Alcaraz et al. [142] proposed eight hybrid metaheuristic approaches for RpMP
based on genetic algorithm (GA) and scatter search (SS). Among these eight hybrid approaches,
four (GA1, GA2, GA3, GA4) were based on GA and four (SS1, SS2, SS3, SS4) were based
on SS. Among these eight approaches, GA2 and SS2 performed better than other approaches
with SS2 performing slightly better than GA2. These are the only approaches available in the
literature for RpMP. However, several problems which consider reliability issues in various kind
of networks have been studied in the literature in the last few decades.

Several authors studied reliability of telecommunication networks and power networks
considering the failure of edges connecting the nodes [[143] (144, (145! [146l. These connectivity
reliability theories deal with the probability of the network being connected even when there
are failures along edges. There are several approaches proposed over the years to estimate the
network reliability considering failures along the edges [147, (148, 149, [150]]. Not only the edge
failures, taking the facility disruptions also into consideration, there have been several approaches
proposed in the past to deal with network reliability issues [141, [151} 152} [153) 154} 155} [156]].
In [141], an equal uniform probability of failure was considered for all the candidate locations.
There are also other models which do not consider the equal uniform probability of failure for
all the candidate locations [152,[157]). In [152], it is shown that in the case of high probability of
failure, the facilities are centrally located or even co-located in some cases. On the other hand,
as the probability of failure decreases and approaching zero, in order to reduce the travel costs,
the facilities typically disperse until they reach the optimal locations suitable for the problem not
considering facility failures. Based on the assumptions made, several variants of the problem
are possible. In [[158] [159]] the authors have studied interdependent facility failures as compared
to the independent facility failures. Likewise, in [160, [161]] the authors have studied capacitated
reliable facility location problems. Lim et al. [162] studied the case of hardening certain
facilities by making them non-failable with an additional cost while the other facilities are prone
to random facility disruptions. In [154] a mixed-integer programming model was presented with
an objective of minimizing operational cost when there are no disruptions and also reducing the
risk of disruption by applying the p-robustness criterion. The p-robustness criterion was used to

limit the cost in the case of disruption. Similarly, [163]] dealt with a facility location problem

85

5. RELIABILITY P-MEDIAN PROBLEM

considering the uncertainty regarding future events. The uncertainty of the future events was
modeled by providing different future situations with associated probabilities. A model known
as the a-reliable mean-excess model was introduced in [[163]] that aims to minimize the expected
regret from a list of worst-case scenarios which will occur with a probability of 1 — «. Some
facilities may be highly vulnerable to interdiction due to their geographical locations causing
significant impact in the case of unavailability of such facilities. The interdiction models deal
with identifying most critical failures and take them into consideration [[140, 164, [165]]. [[166]
deals with fortifying some of the facilities within a finite budget.

Unlike the vector assignment p-median problem (VAPMP), in RpMP a customer is served
by a level 2 facility only when the previous facility at level 1 fails. There have been location
models introduced based on queueing of customers waiting to receive service from a facility in
congested scenarios [167,168]]. Consolidating several methods of solving the facility location
problems in systems with congestion, Berman and Krass [[169] presented a complex model in
an illustrative manner. RpMP differs from the facility location in congested systems as we deal
with complete failure of a facility in RpMP as compared to a facility being unable to serve
customers due to congestion. Afify et al. [170] and Afify et al. [[171] studied the related facility
location problems where there is only one layer of backup and limited budget is available to
fortify a few facilities to make them nonfailable. In comparison to these problems, the model of
RpMP introduced in [141]] is way more complex and more relevant for critical applications.

Consider an example network with 22 nodes and 4 facilities as depicted in Figure The
nodes selected for facilities are shown in rectangle shape and marked in red color for easy
identification. As shown in the sub—ﬁgure nodes {A, B, C, D} are assigned to their nearest
facility . Nodes {F, G, H, I, J} are assigned to facility K. Similarly nodes {L, M, N, O, P}
are assigned to facility @) and finally nodes {R,S,T,U} are assigned to facility V. When
the facility E fails, out of the nodes assigned to it, {C, D} are now re-assigned to the next
closest functioning facility which is K as shown in sub-figure And the nodes {A, B}
including the facility F is now assigned to facility () which is the closest functioning facility.
The re-assignment of nodes { A, B, C, D, E'} to the new facilities is depicted in dotted lines in
sub-figure

In this chapter, we have proposed a hyper-heuristic based approach with naive Bayes
classifier for solving the reliability p-median problem (RpMP). We have compared the results of
our approach with the state-of-the-art methods available in the literature [142]. The effectiveness

of the proposed approach can be observed from the superior quality of our solutions. Further,

86

5.1 Introduction

use of naive Bayes classifier not only reduces the total execution time but also improves the

solution quality.

The remainder of this chapter is organized as follows: Section [5.2] presents the formal
problem definition of RpMP, Section [5.3]explains functioning of naive Bayes with an example,
Section [5.4] presents the proposed greedy selection based hyper-heuristic approach for RpMP.
Experimental results and their analysis are presented in Section [5.5] Finally, Section [5.6]

concludes the chapter by providing a summary of contributions made.

(b) Node assignments when one facility fails

Figure 5.1: Illustration of reliability p-median problem with p = 4 facilities

87

5. RELIABILITY P-MEDIAN PROBLEM

Table 5.1: Summary of key notations

Notation | Meaning

A Set of demand points or customers
B Set of potential locations for facilities
F Subset of locations of candidate facilities(5) which may fail

NF Subset of locations of candidate facilities(3) which may not fail

h; Demand at each customer ¢ € A

d;j Cost of service per unit of demand of customer ¢ € A from facility j € B
0; Cost per unit of demand of customer i € A when 7 remains unserved
q Uniform probability of failure of each facility j € F'
P Total number of facilities to be located

5.2 Formal problem definition

To formally define RpMP, we have followed the notational conventions of [[142]]. Table[5.1| gives
the summary of key notational conventions.

In the RpMP modeling, each customer i € A is either assigned to a failable facility or to
a non-failable facility. A non-failable facility will never fail, and there is no need to consider
re-assigning customer ¢ to any other facility. But if the customer ¢ is assigned to a failable
facility then it is assigned to different facilities at different levels, viz. to an open facility at level
0, to a different facility at level 1 which will serve the customer ¢ if the facility at level O fails,
and ¢ is assigned to yet another facility at level 2 when both the facilities at level 0 & level 1
fail, and so on till all the open facilities are considered. To represent the open facilities and the
assignment of a customer to a facility at a level r, where r = 0,...,p — 1, we use two binary
variables, viz. S; € {0,1}, W;;, € {0,1}. S;j, W;j, are referred to as location binary variable
and assignment binary variable respectively. As the name suggests, S; = 1 if there is an open
facility at j € B, otherwise S; = 0. W;;, = 1 if customer ¢ € A is assigned to facility j € B at
level r, otherwise W, = 0.

Considering o € [0,1] and R = {0, 1, ...,p — 1}, RpMP can be mathematically formulated

[141] in the following manner:

(RpMP) minimize aci+ (1 —a)co (5.1)

subject to

88

5.2 Formal problem definition

r—1
> Wir+ Y. Y Wiya=1VicAreR (5.2)
jEB JENF z=0
Wijp <S; Vic A, jeB,re€ R (5.3)
Y Si=p (5.4)
JEB
> Wi <1VicAjeB (5.5)
reR
S, =1 (5.6)
S;e{0,1} VjeB (5.7)
Wijr €{0,1} Vie A,je B,re R (5.8)

where

€= Z Z hid;;Wijo (5.9)

icA jeB

cr = Zhl{ Do D did Wi+ > digd" (1—q) Wiy (5.10)

i€A LjENFreR JjEFTER

Equation [5.1] gives the objective function of the problem which is the weighted sum of ¢;
which is primary cost of serving customers assuming none of the facilities fail, and co which is
the expected failure cost considering the facility failures. Constraint in equation [5.2] makes sure
that given a customer ¢ and level r, either 7 is served by a facility j € B at level r or 7 is served by
a non-failable facility j € N F' atlevel z < r. Constraint in equation [5.3|ensures that a customer
i can only be assigned to a location where a facility is located. Constraint in equation [5.4|requires
that there are exactly p facilities located. Constraint in equation [5.5|requires that a customer 1 is
assigned to a facility at one level at most. Constraint in equation [5.6] gives the information of an
emergency facility being opened at an imaginary location u which is non-failable, w € N F'. For

each customer i € A, if it remains unserved because it is not connected to any of the facilities or

89

5. RELIABILITY P-MEDIAN PROBLEM

all the facilities have failed then it is considered that the customer ¢ is served by the emergency
non-failable facility « with a transportation cost of d;,, = 6;. Equations give the binary
nature of the location variables and assignment variables. Using equation[5.9] the primary cost
of serving customers assuming none of the facilities fail c; is calculated, whereas using equation

[5.10] the expected failure cost ca considering the facility failures is calculated.

5.3 Naive Bayes classifier

Naive Bayes classifier is a supervised learning approach. It is a probabilistic model and works
according to the Bayes theorem. In the naive Bayes classifier, it is assumed that the features
which are involved in classification are independent of each other given the class variable. Naive
Bayes is a simple yet computationally efficient classifier which is unaffected by noise. Over
the years, naive Bayes classifier has been extensively used for text classification [[172} [173]], in
traffic risk management [174], to predict Alzheimer’s disease from genome-wide data [[175]].
But no one so far applied naive Bayes to solve combinatorial optimization problems so as to
improve the solution quality or reduce the execution time of the approaches. This served as a
motivation for us to incorporate naive Bayes in our proposed hyper-heuristic approach.

Every classifier has two major phases namely training phase and testing phase [176l]. As
part of the training phase, a prediction model is generated which correlates different features to
a class label. In the naive Bayes classifier, at the end of the training phase, we calculate the class
probability of each of the classes and we also calculate the conditional probabilities for each of
the feature values given a class. We calculate the conditional probability of each feature value
as ratio of the number of occurrences of that feature value for a given class to the total number
of instances belonging to that class.

Probability of a feature vector s belonging to a particular class Y; is calculated using Bayes

theorem as follows:

p(Y3)p(s|Y;)

pls) = PRI

(5.11)

Here p(Yj|s) is the posterior probability of Y; given the feature vector s. p(Y;) is the prior
probability of class Y; which is calculated using the training data. p(s|Y;) is the conditional
probability of the feature vector given the class Y;. p(s) is the prior probability of the feature

vector.

90

5.4 Proposed approach

The denominator in the equation |5.11] p(s) has the same value for all the classes j, and
hence, can be ignored in naive Bayes classifier while predicting the most likely class of a test
sample. So, using the different probabilities which are calculated on the training data, the naive

Bayes classifier predicts class label Y for a test sample as below:

n

Y = argmax p(V;) [[p(sil¥7) (5.12)
je{1,2,..J} i1

For example, consider a dataset of 5 training samples with three binary features (s1, s2, 53)
and a class label Y; with two possible classes Y7, Y2 given in Table @ In the 5 training
samples, 3 samples belong to class Y; and 2 samples belong to class Y. At end of naive Bayes
training phase, we calculate the class probabilities p(Y7) and p(Y2) as 0.6 and 0.4 respectively,
which are proportional to the number of training samples belonging to the given class. In
the 3 training samples belonging to class Y7, let the feature value of s; is 1 in two samples
and s; is 0 in one sample. Then we calculate the conditional probabilities p((s; = 1)|Y7)
and p((s; = 0)|Y7) as % and % respectively. Similarly, in the two samples belonging to class
Y5, the feature value of s; is 1 in one sample and s; is O in the other sample. Then we
calculate conditional probabilities p((s; = 1)|Y2) and p((s1 = 0)|Y2) as % and 3 respectively.
The conditional probabilities for all the three features s, s3 and sg for their corresponding
feature values are given in Table [5.3] Given a test sample s, with naive Bayes we need
to predict whether it belongs to the class Y; or class Y5 using the conditional probabilities
of its features (s, s2, s3) and the class probabilities p(Y71), p(Y2). Let us consider a test
sample s = (0,1,1). As per naive Bayes classifier, we calculate the posterior probabilities
of the given test sample belonging to class Y7, Y2 as p(Yi|s = (0,1,1)), p(Ya|s = (0,1, 1)),
where p(Yi|s = (0,1,1)) = p(Y1) * p(s1 = 0[Y1) * p(s2 = 1|Y1) = p(s3 = 1]|Y1) and
p(Yals = (0,1,1)) = p(Ya) * p(s1 = 0]Y2) * p(sa = 1]|Y2) x p(s3 = 1|Y3). From the
previously computed conditional probabilities and class probabilities using the training data,
we can compute p(Yi[s = (0,1,1)) = 0.6 % § x 1 x £ = 0.022. Similarly we can compute
p(Yals = (0,1,1)) = 0.4 % § = £ = L = 0.05. Since p(Ya|s = (0,1,1)) > p(Y1|s = (0,1,1)),

naive Bayes predicts that the given sample belongs to class Ya.

5.4 Proposed approach

This section presents the salient features of our hyper-heuristic approach.

91

5. RELIABILITY P-MEDIAN PROBLEM

Table 5.2: Sample dataset used for naive Bayes training

Feature values Class label
S. No. S1 52 83 Y
1 1 1 0 Y1
2 0 1 0 Ys
3 1 0 0 Y1
4 1 0 1 Y2
5 0 0 1 Y1

Table 5.3: Conditional probabilities for different feature values

Class Y1 Class Y2
Feature p(s; =0]Y1) p(s; =1|Y1) p(s; =0]Y2) p(s; = 1|Y2)
T 7 T T
51 3 3 2 2
2 1 1 1
52 3 3 2 2
2 1 1 1
53 3 3 2 2

5.4.1 Solution representation and fitness

We represent each solution as a set of p nodes to locate facilities. The objective function given
in equation [5.1]is used as the fitness function, which is the weighted sum of the cost of serving
customers when there are no facility failures and the expected failure cost which includes the

cost of serving customers when there are facility failures.

5.4.2 Generating the initial solution

We have used two methods to generate the initial solutions, viz. a randomized greedy approach
in the first iteration of the hyper-heuristic and a random generation method for generating the
initial solutions in all the remaining iterations of the hyper-heuristic. In the randomized greedy
approach to generate the initial solution, we have made use of the node connectivity of the given
input network. In a network, which is an incomplete graph where a given node is not connected
to every other node, the facility located at a node can serve only the set of nodes it is connected
to. Making use of this nature of the input network, as part of the randomized greedy approach,
first we select five nodes with the highest number of adjacent nodes and randomly select one
node from these five nodes, and make it part of the solution. The selected node is removed from
the list of nodes available for locating facilities. This previous step is repeated till we select
a total of p nodes to be part of the initial solution. For the remaining restart iterations of the
hyper-heuristic, we generate the initial solutions in a random manner by randomly selecting

p unique nodes to be part of the initial solution. In both the randomized greedy approach and

92

5.4 Proposed approach

the random generation method of generating the initial solution, there may be some customers
which are not connected to any of the p facilities, and hence, remain unserved. For all such
unserved customers i, like [142]], we have used a fixed cost 6; as the cost of serving while

calculating the fitness value.

5.4.3 Hyper-heuristic framework with naive Bayes classifier

We have implemented a greedy selection based hyper-heuristic approach with multiple starts.
In every start, we generate an initial solution, and then apply four low level heuristics in two
phases namely training phase and testing phase. The training phase and testing phase are part of
the naive Bayes classifier which is deployed in this case to reduce the computation time while
improving the solution quality. The four low level heuristics that we have used are described in
the subsequent subsection (Section [5.4.4). We will refer to our four low level heuristics as LH,
LH5, LH3, and LH, subsequently.

In an iteration of the training phase, all the four low level heuristics are applied on the
current solution Xy, one-by-one thereby creating four new solutions. We have used variable
degree of perturbation while applying each of the low level heuristics over many training
iterations which varies from M ax ¢, which is the maximum degree of perturbation, to Min,,,
which is the minimum degree of perturbation over the maximum number of training iterations,
Maxy,.. To generate good solutions, we need higher perturbation in the initial iterations
and lower perturbation towards the final iterations. In training iteration itery,, the degree of
perturbation is calculated as Degy,+ = (W) (Mazxy, — itery,) + Ming [177).
We select the solution with the least objective value among the four resulting solutions after
applying the four heuristics as an input to the next iteration of the training phase. As part of
the naive Bayes classification, we treat each of the four low level heuristics as four different
classes and in one training phase iteration which ever low level heuristic produces least objective
solution, it is considered that the given solution X;, belongs to that particular class. At the end
of the training phase, we find the class probabilities of each of the four low level heuristics based
on the number of times a low level heuristic generates the solution with least objective value.
We calculate the conditional probabilities of feature values of the solution used for for training,
Xy, considering a binary value of 1 for all the nodes which are part of the solution and a binary
value of 0 for all the nodes which are not part of the solution. Consider an example scenario of
a network with 50 nodes and number of facilities to be located p = 5. Let a sample solution to

this problem with p = 5 facilities be X, = {4,5,12,20,46}. So we treat this as a data record

93

5. RELIABILITY P-MEDIAN PROBLEM

of 50 binary features where the binary value at index ¢ represents whether node ¢ is part of the
solution or not. In the given example solution, the feature values at indices 4, 5,12, 20, & 46
are considered as 1s, thereby representing a facility is located at these locations, and in all the
other indices feature values are taken as Os. With this feature vector, we find the conditional
probabilities for all the features as explained in Section[5.3] We take the resulting solution at the
end of the training phase, X, as the input to the testing phase, Xy, and then the testing phase
starts.

In each iteration of the testing phase, for the given solution X5, we find the pos-
terior probabilities for each of the four low level heuristics using naive Bayes classifier,
p(LH1|Xiest), P(LH2| Xiest)s D(LH3| Xtest), P(LH4| Xiest). We will skip the low level heuris-
tic with the least posterior probability, and apply the remaining three heuristics on the solution

Xtest and the degree of perturbation in a test iteration iters.s is calculated as Degpry =

(Mazm —Ming,

Mazress) (Maxiest — iteriest) + Ming,, where Maxieg is the maximum number of
es

testing phase iterations. Then we select the solution with the least objective value among the
three resulting solutions after applying the three heuristics. Then on the selected solution, we
apply the 1-1 exchange local search operation which is explained the subsequent subsection,
viz. Section[5.4.5] The resulting solution after local search is considered as an input to the next
iteration of the testing phase. If there is no improvement in the best solution objective value for
five consecutive test iterations, we stop the testing phase. Once the testing phase ends, we apply
1-1 exchange on the best solution found so far and then the hyper-heuristic makes a fresh start.
The pseudo-code of our approach is presented in Algorithm 9]

There are several acceptance criteria discussed in the hyper-heuristic literature [74] for
selecting the newly generated solution as current solution in the next iteration. In our proposed
approach, we have experimented with two acceptance criteria namely AA (all acceptance), OI
(only improvement). The AA criterion always selects the newly generated solution, whereas
the OI criterion selects the newly generated solution only if it is better than the current solution.
In our experiments, we have found that the AA criterion provided better results in comparison
to the OI criterion. This can be attributed to the better exploration of the search space as a
result of following the AA criterion due to the selection of a new solution in every iteration.
Hence, we have used the AA criterion in both the training and testing phases of our proposed

hyper-heuristic approach.

94

5.4 Proposed approach

Algorithm 9: Pseudo-code of hyper-heuristic for RpMP

Input: List of parameters for greedy hyper-heuristic and an instance of RpMP
Output: Overall best solution found

Xpest 0

while termination condition remains unsatisfied do

Xinit < Generate initial solution;

Xtr — Xinit N

while (iter;, < Maxy,.) do

Degpri < (w) (Maxy, —itery,) + Minp,;

Maxy
Xl < LHl(XtryDegprt);
X2 < LH2(Xtr7D€gprt);
X3 — LHS(XtmDegprt);
X4 — LH4<Xtr7Dengt);
Xtr — MIN(Xl,X27X3,X4);
if (X, is better than Xp.s:) then
L Xbest — Xtr;

Xtest <~ Xtr 5
while (itertest < Maa:test) do
skip_hr < Naive_Bayes(Xiest);

Mazxyri—Ming,t

Degpry (T) (Maico = iterica) + Minpr:
for (i :=1104)do
if (skip_hr! = i) then
| X + LH;i(Xiest, Degyre):

Fitness(Xogip_nr) +— RAND_MAX;
KXiest — MIN (X1, Xo, X3, X4);
KXiest < Local_search(Xiest);
if (Xiest is better than Xpes:) then

L Xbest — Xtest;

| Xbest Local_search(Xpest);

return X .:;

5.4.4 Low level heuristics

We have used the following four low level heuristics in our hyper-heuristic approach:

e [H;: Random removal and greedy addition
In the first low level heuristic, from the given solution sol containing p facilities, a given
number N R(= p * Degp,) facilities are removed randomly. Now, to again get a feasible
solution with p facilities, we need to add N R nodes back to the solution. These NR
nodes are added in an iterative manner where during each iteration we select a node with

the maximum adjacency count from all the nodes which are not currently part of the

95

5. RELIABILITY P-MEDIAN PROBLEM

solution, and add it to the solution.

e [H>: Random addition and greedy removal
As part of the second low level heuristic, from the list of nodes which are not part of the
given solution sol containing p facilities, a fixed number N A(= p * Deg,,) of nodes are
randomly selected and added to the current solution. Now, the solution contains p + N A
facilities. To remove the extra N A facilities from sol, we eliminate one facility at a time
from the solution sol in an iterative manner till there are only p facilities remaining. In

each iteration, the facility with minimum adjacency count is chosen for removal.

e [Hj3: Greedy removal and greedy addition
In the third low level heuristic, from the given solution with p facilities, we iteratively
select a facility with the least adjacency count and remove it from the solution. In this
fashion, a total of NR(= p * Degy) facilities are removed from the given solution.
Then, from all the locations which are not part of the solution, we select a node with the
maximum adjacency count and add it to the solution. In this manner, nodes are added

iteratively till the total number of facilities in the solution reaches p.

e L H,: Greedy addition and greedy removal
In the fourth low level heuristic, to the given solution having p facilities, we add N A(=
p* Degpy¢) new facilities in a greedy manner. This is an iterative procedure where in each
iteration, out of all the locations which are not part of the solution, we select a location
with the maximum adjacency count and add it to the solution. At the end of this iterative
process, the solution contains p + N A facilities. Then, we select a facility with the least
adjacency count and remove it from the solution. This process is repeated and is stopped

when there are only p facilities remaining in the solution.

5.4.5 Local search

As part of the local search, we have implemented a 1-1 exchange where for each facility in the
given solution, we try to find a replacement node from the set of nodes which are not part of
the solution. For this, a facility is considered for replacement with all N — p nodes which are
not part of the solution and is replaced with the node that provides the solution with the least
objective value [178]]. A facility which is replaced from the solution with a new node, can be

reintroduced into the solution at a different index. For a facility under consideration if there

96

5.5 Computational results

is no replacement node available whose addition to the solution in place of the given facility
results in a reduction in the objective value, then that facility continues to be part of the solution
and exchange of that facility does not happen. And the next facility in the solution is considered
for replacement. This iterative process is repeated for all p facilities in the solution. Within the
testing phase, we apply the 1-1 exchange for the initial two test iterations and also when the
current solution objective value is less than the current best solution objective value. But for the
cases when the current solution objective value is greater than that of the best solution, we apply
the 1-1 exchange only if the difference is within 20% of the best solution’s objective value. We

have arrived at this 20% after a large number of experiments.

5.5 Computational results

We have implemented the proposed hyper-heuristic approach in C. In all our experiments, we
have taken the maximum number of training iterations, M axy = 15 and the maximum number
of test iterations, M axiess = 10. We have taken the maximum perturbation M axp,; = 0.4, and
minimum perturbation Min,,; = 0.1. We have chosen these parameter values empirically after
a large number of experiments. The cost of not serving a customer ¢ by any facility, 6; is taken
as 300.0 just as used in [142]]. We have also conducted our experiments with two values of «,
0.2 and 0.8. We have considered the same failure probability ¢ = 0.05 and the demand of each
customer h;Vi € A is taken as 1 just like in [142].

We have compared the results of our approach with the state-of-the-art methods for RpMP
proposed in [[142]. Just like in [[142], we have also executed our approach on the same two
datasets namely Discrete Location Problems Library (DLPLﬂ and the OR libraryﬂ which
Beasley [179] introduced. We have considered the termination condition of our approach as the
maximum execution time in seconds which is a combination of the number of nodes n and the
number of facilities to be located p and is calculated as 2 * In (Z), just like in [142]. We have
executed our hyper-heuristic approach on a Linux based 3.10 GHz Core-i5-8600 system with 8
GB RAM. We have reported our results with the naive Bayes classifier and without the naive
Bayes classifier also to show the benefit of former over latter.

As part of the experimentation in [[142], they have solved all the instances using CPLEX

executing each instance for a maximum cpu time of 2 hours. In allotted time of two hours,

"http://math.nsc.ru/AP/benchmarks/UFLP/
2http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

97

http://math.nsc.ru/AP/benchmarks/UFLP/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

5. RELIABILITY P-MEDIAN PROBLEM

for some instances CPLEX found the optimal solution, for some CPLEX found a feasible
solution and for some CPLEX even fails to find even any feasible solution. To evaluate the
performance of genetic algorithm and scatter search approaches proposed in [142]], they have
calculated the percentage deviation of the objective values of their approaches from the solution
obtained by CPLEX at the end of two hours if CPLEX was able to find any feasible solution.
Otherwise, the deviation is computed from the best solution among all the 8 genetic algorithm
and scatter search based approaches. Out of the total 8 variations of the methods proposed in
[142], they have reported GA2 and SS2 to be the best performing methods. We have obtained the
instance-by-instance results from the first author of [142] through personal communication, and
reported on each instance, the percentage deviation of the objective value of our hyper-heuristic
approach with respect to the objective value of the solution used as reference in [[142]] for that
instances. We have compared our results with the results of only GA2 and SS2 which are
shown to be the best performing methods. Table[5.4] gives the comparison of results on DLPL
instances, Table [5.5] gives the comparison of results on OR library instances where CPLEX
has reached a feasible solution, and Table [5.6] gives the comparison of results on OR library
instances where CPLEX has not reached a feasible solution. In all of the three tables, viz. Table
[5.4] Table[5.5] and Table[5.6] first column N represents the number of nodes in the network,
second column p gives the number of facilities to be located. The values in each column under
the heading %Deviation report the the percentage deviation of the corresponding approach’s
objective value from the objective value of the optimal/best solutions obtained by CPLEX on the
same datasets. The 3rd, 4th, 5th and 6th columns give the percentage deviation of the objective
values obtained by GA2, SS2, hyper-heuristic without naive Bayes and hyper-heuristic with
naive Bayes respectively. The values in columns under the heading CPU Time, i.e., values in the
7th, 8th, 9th and 10th columns provide the time taken in seconds to arrive at the best solution
by the GA2, SS2, hyper-heuristic without naive Bayes and hyper-heuristic with naive Bayes
respectively. In the Table[5.4] the row which starts with TOTAL 50 gives the average deviation
and average CPU time for the instance with 50 nodes for different values of p. Similarly the
row which starts with TOTAL 100 gives the average deviation and average CPU time for the
instance with 100 nodes for different values of p. The last row in the Table[5.4] which starts with
OVERALL gives the average deviation and average CPU time over all the instances calculated
as the average of the values from rows starting with TOTAL 50, TOTAL 100. We have followed
the same method of reporting in the other tables, viz. Table[5.5] and Table[5.6]as well.

98

5.5 Computational results

As shown in Table[5.4] on the DLPL instances our hyper-heuristic with naive Bayes achieved
an average deviation of -1.21% as against the average deviation of 0.32% of GA2 and 0.02% of
SS2 from the CPLEX solution. Even our hyper-heuristic approach without naive Bayes achieved
an average deviation of -1.09% which is better than that of the GA2 and SS2. For instances with
50 nodes our hyper-heuristic without naive Bayes performed better than the hyper-heuristic with
naive Bayes. Overall, on combining the results of instances with 50 nodes and 100 nodes of
DLPL instances, our hyper-heuristic with naive Bayes outperforms our hyper-heuristic without

naive Bayes.

On the OR library instances where CPLEX has reached feasible solution in Table[5.3] our
hyper-heuristic with naive Bayes achieved an average deviation of -7.3% as against the average
deviation of -5.41% of GA2 and -7.06% of SS2 from the CPLEX solution. On the same set
of instances, the deviation achieved by our hyper-heuristic without naive Bayes (-7.05%) is
slightly worse as compared to that of the SS2(-7.06%), but still better than that of the GA2
(-5.41%). Overall, our hyper-heuristic with naive Bayes performed better than GA2, SS2 and
hyper-heuristic without naive Bayes on the instances where CPLEX has reached a feasible
solution. On the OR library instances where CPLEX has not reached a feasible solution in Table
5.6 our hyper-heuristic approach with naive Bayes and without naive Bayes have performed

better than GA2, SS2.

The effectiveness of using naive Bayes can be observed from the improved overall solution
quality and reduced computation time as compared to when there is no naive Bayes classifier
as can be observed from the overall average deviations and CPU times reported in Tables [5.4]
[5.5]and [5.6] The system configuration used for executing our approach is different from the
one used in [142]] and hence we can’t directly compare the execution times. However, from
the overall execution times it is clear that our proposed hyper-heuristic with naive Bayes and

without naive Bayes are slower in comparison to the existing approaches of GA2 and SS2.

99

5. RELIABILITY P-MEDIAN PROBLEM

Table 5.4: Comparison of results given by the hyper-heuristic with GA and SS (DLP Library)

%Deviation

CPU Time

N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)
50 5 0.77 1.01 0 0 0.33 0.29 0.39 0.41
50 10 2.06 0.48 0 0.21 8.21 0.56 3.03 1.96
50 15 036 0.36 0.06 0.06 227 1.1 5.56 3.76
TOTAL 50 1.07 0.62 0.02 0.09 3.61 0.65 2.99 2.04
100 5 037 0.46 -0.53 -1.02 1.82 1.54 1.67 1.05
100 10 -043 -1.22 -3.59 -3.55 1246 6.6 16.00 12.82
100 15 -1.23 -0.95 -2.48 -2.93 2047 184 29.42 33.63
TOTAL 100 -0.43 -0.57 2.2 -2.5 11.59 8.85 15.70 15.83
OVERALL 032 0.02 -1.09 -1.21 7.60 4.75 9.35 8.94

Table 5.5: Comparison of results given by the hyper-heuristic with GA and SS (OR Library:

Instances where CPLEX has reached a feasible solution)

%Deviation CPU Time
N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)
100 5 0 0 0 0 0.08 0.13 0.02 0.01
100 10 0 0.03 0 0 2.3 0.52 1.49 0.92
100 20 0 0.43 1.25 0 4542 13.62 44.60 23.15
100 20 0.99 0.91 1.31 0.81 45.62 4.36 30.59 30.85
100 33 0.14 0.46 0.02 0.02 33.09 10.18 77.64 72.05
TOTAL 100 0.22 0.37 0.52 0.17 25.30 5.76 30.87 25.4
200 5 0 0 0 0 0.42 0.50 0.05 0.03
200 10 0 0.04 0 0 18.93 6.59 542 13.41
200 20 974 -9.88 -9.97 -9.97 103.36 47.32 24.84 14.57
200 40 6.22 1.78 1.56 1.33 1747 92.76 81.47 95.00
200 67 0.9 0.29 0.38 0.91 206.21 90.94 110.68 113.86
TOTAL 200 -0.52 -1.55 -1.61 -1.55 100.72 47.62 44.49 47.37
300 5 0 0 0 0 0.76 1.11 112.09 0.06
300 10 0 0 0 0 28.69 4.98 52.52 3.33
300 30 -83.74 -84.75 -84.55 -84.54 146.6 135.67 112.09 66.11
300 60 214 -31.67 -31.17 -32.23 2389 227.32 265.88 257.56
300 100 14.08 0.38 1.92 0.21 334.84 339.61 341.88 370.53
TOTAL 300 -18.21 -23.21 -22.76 -23.31 149.96 141.73 176.89 139.52
400 5 0 0 0 0 3.45 2.05 0.19 0.11
400 10 -0.27 -0.25 -0.26 -0.26 37.1 15.10 11.33 39.78
400 133 998 -11.89 -14.43 -14.92 3494 559.20 725.89 578.74
TOTAL 400 -3.42 -4.05 -4.90 -5.06 129.98 192.12 245.80 206.21
500 5 0 0 0 0 3.66 32 0.29 0.17
OVERALL =541 -7.06 -7.05 -7.3 93.34 81.85 105.21 88.43

100

5.6 Conclusions

Table 5.6: Comparison of results given by the hyper-heuristic with GA and SS (OR Library:
Instances where CPLEX has not reached a feasible solution)

%Deviation CPU Time
N p GA2 SS2 HH(without NB) HH(with NB) GA2 SS2 HH(without NB) HH(with NB)
400 40 23.57 2.59 5.80 0.95 202.77 211.21 189.09 146.20
400 80 28.83 1.18 0.48 1.08 281.02 375.76 426.81 261.49
TOTAL 400 2620 1.88 3.14 1.01 2419 293.48 307.95 203.85
500 10 0.13 0 0.24 0.24 69.35 43.37 75.24 12.38
500 50 10.07 1.52 -0.09 0.04 260.82 311.99 269.57 322.40
500 100 2725 045 -3.33 -1.87 286.73 533.27 651.79 621.57
500 167 6.99 1.82 4.51 4.04 561.21 654.99 1037.61 859.36
TOTAL 500 11.11 095 0.33 0.61 29453 3859 508.55 453.92
600 5 0 0 0 0 3.48 4.44 1.22 0.48
600 10 0.46 0 -0.01 -0.01 58.20 19.87 24.03 1.52
600 60 1437 3.13 -0.88 -245 264.49 407.79 448.91 311.17
600 120 2553 1.94 2.49 -1.71 525.04 677.22 754.92 1174.38
600 200 2491 1.02 -0.24 -0.14 1021.13 9774 2451.07 2078.27
TOTAL 600 13.05 1.22 0.27 -0.86 37447 417.34 736.03 713.16
700 5 0 0 0.01 0.01 5.48 6.09 0.58 0.33
700 10 0.2 0 0.26 0.71 72.63 23.66 13.83 87.43
700 70 11.38 4.76 0.95 -0.02 366.20 461.3 603.92 535.99
700 140 3047 0.82 0.78 0.78 744.83 921.46 1526.23 1227.65
TOTAL 700 10.51 1.39 0.50 0.37 297.28 353.13 536.14 462.85
800 5 0 0 0 0 9.13 7.86 4.31 1.28
800 10 0.34 0.01 0 0 72.55 38.89 9.09 5.34
800 80 23.69 09 3.62 -1.99 370.13 590.44 538.19 787.29
TOTAL 800 8.01 0.3 1.21 -0.66 150.6 212.39 183.86 264.64
900 5 0 0 -0.01 -0.01 1454 11.13 0.94 0.55
900 10 045 0.13 0.24 0.22 5891 70.84 23.22 91.4
900 90 6.53 1.21 -1.04 0.64 453.55 6343 910.95 680.72
TOTAL 900 233 045 -0.27 0.28 175.66 238.75 311.70 257.56
OVERALL 112 1.02 0.66 0.02 271.53 332.53 474.36 438.44

5.6 Conclusions

In this chapter, we have proposed a hyper-heuristic based approach with naive Bayes classifier
for the reliability p-median problem (RpMP). We have compared the results of our approach with
the state-of-art approaches available in the literature [142]]. The effectiveness of our approach
can be observed in terms of the solution quality. However, our approach is slower compared to
the existing approaches. Ours is the maiden hyper-heuristic approach proposed for solving the
RpMP.

101

Chapter 6

Reliable p-median problem with
at-facility service

6.1 Introduction

In this chapter we discuss another variant of the p-median problem which considers the facil-
ity failures, namely reliable p-median problem with at-facility service (RpMF). Just like the
reliability p-median problem (RpMP) which is dicussed in the previous chapter, RpMF is also
concerned with locating p facilities in such a manner that minimizes the total cost while taking
into consideration the cost of facility failures. However, RpMF differs from RpMP in that for
each customer considering the current facility failure, the next closest facility from the failed
facility is considered as the backup facility in RpMF. On the other hand, in RpMP when a
facility assigned to the customer fails, the next closest facility from the customer’s starting
location is considered as the backup facility. Consider the scenarios where the service is given
at the customer’s location or even though the service is at the facility and the customer knows
about the facility failure then in both these cases the customer can be serviced from the next
closest facility from the customer’s starting location. RpMP comes under this category of facility
location models. There can be scenarios where the service is at the facility and the customer
doesn’t know about the facility status until he/she visits it. In such cases, the customer chooses
a new facility with respect to the location of the currently inoperable facility, rather than from
the customer’s starting position. RpMF comes under this latter category of facility location
models. Berman et al. [180] discussed this model of locating facilities where facilities may be

inoperable and the customers don’t have prior knowledge about the facility status.

102

6.1 Introduction

In real world, such scenarios arise in several day-to-day situations. Some of examples of
this model finding its applications in daily life are as follows: bank customers withdrawing cash
by visiting their nearest ATM point on regular basis which may not be servicing customers at a
given time due to maintenance of the machine, people visiting petrol filling stations that have
long waiting queues or shortage of petrol, patients visiting hospitals in emergency condition
and are forced to seek treatment elsewhere due to long waiting times and the other example
being customers visiting retail stores to purchase a necessary item which may not be available
in the store. In all the just mentioned examples, we can assume that the customers do not
have complete information about the facility status, and hence, visit the other facilities in trial
and error method usually based on shortest distance from the current location till successfully
receiving the service at a functioning facility or in some cases even stop visiting facilities after
some unsuccessful attempts. When identifying the next facility to visit after a facility failure,
a customer may either chose the next nearest facility as used in [180] or apply an optimized
search scheme based on the less expected distance to be traveled before receiving the desired
service. As an application of optimized search scheme, consider the case of military operations
in a war situation where due to lack of proper communication military units are wanting to
reach facilities that may be under attack and unable to provide services. In such scenarios, there
should be well thought through contingency plans with an aim to reduce the expected travel
distance of the troops thereby improving the chance of survival of the army personnel. Consider
the other application, the case of natural disasters like earthquake or floods in an area. In such
cases, it is difficult to get the live information due to damage of communication channels or
failure of facilities. And also the emergency facilities located in such places may get damaged.
Hence, there should be contingency plans in place to efficiently carry out the rescue operations.
In [181]], Albareda-Sambola et al. worked on the reliable p-median problem with at facility
service (RpMF) with the assumption that the customers do not have complete information
about the facility failures and that the customers follow an optimized search scheme to find a
facility to receive service. Albareda-Sambola et al. came up with two different mathematical
programming formulations for RpMF which are termed F1, F2, and also a network flow model
based matheuristic for the RpMF [181]]. The first mathematical formulation, F1, is the general
case where site-dependent failure probabilities of the facilities are considered. The second
mathematical formulation, F2, is termed as ‘binary formulation for the homogeneous case’ and
assumes equal or homogeneous probabilities of failure for all the failable facilities. Hence, F2

is not valid for the case of non-homogeneous probabilities of failure. The other formulation

103

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

considered in [181] is termed as ‘flow approximation to the RpMF’ or ‘formulation FP’. This
formulation, FP, assumes that a customer can revisit any of the opened p facilities, and hence,
doesn’t require to maintain the path of the customer. Between the formulations F1 and F2,
F2 has higher space requirements and generates solutions in reasonable times whereas F1 can
be used to solve larger instances as it has less memory requirements but takes long execution
times. On the other hand, FP generates heuristic solutions to the RpMF and has much less space
requirements than F1 and can be solved in less execution times than F2.

Consider Figure [6.1] that depicts a sample network with the number of nodes n = 25 and
number of facilities p = 5 that illustrates the RpMF model considering a facility failure. We
have shown the facilities in rectangle shape and marked in red color for ease of identification.
The sub-figure [b.Ta] shows assignment of nodes to their nearest facilities. Nodes B, C, D, E, F
are assigned to their nearest facility A. Nodes G, H, J, K are assigned to facility /. Similarly
nodes L, M, O, P, () are assigned to facility IV and nodes R,T’, U,V are assigned to facility S.
Finally, nodes WY are assigned to facility X. Suppose, if the facility X fails then all the nodes
that are assigned to it, namely W, Y including the facility X are now re-assigned to the next
closest functioning facility from X which is .S as shown in sub-figure[6.1b] The re-assignment
of nodes W, X, Y to the new facility is depicted in dotted lines in sub-figure

In the example of Figure between the two functioning facilities A and .S, the starting
location of customer W is closer to facility A than facility S. If it were RpMP, then W
would have been re-assigned to A instead of S. So, this illustration explains that even though
RpMF and RpMP are related, they are two different facility location models. The former is
appropriate when service is provided at the facility and a customer can not know the status
(failed/operational) of the facility till he/she visits it. On the other hand, if customer can know
the status of the facility from his/her location or when service is provided at customer’s location
then RpMP is appropriate.

The three mathematical programming based approaches, viz. F1, F2 and FP presented
in [181]] are the only approaches available in the literature for RpMF. In spite of its practical
applicability, RpMF remains an understudied problem. No problem-specific heuristic and
metaheuristic approaches exists in the literature for RpMF. This has motivated us to work on
RpMF and develop the approaches presented in this chapter. We have proposed two multi-start
hyper-heuristic based approaches to solve the RpMF and evaluated the performance of our
approaches on the same datasets as used in [181]. We have compared our results with the

optimal or best known solution values reported by [181]]. We have shown the effectiveness of

104

6.1 Introduction

our proposed approaches as our approaches obtain high quality solution in much less execution
times for all instances.

The rest of this chapter is organized in the following manner: Section [6.2] gives the formal
mathematical definition of RpMF, Section [6.3] describes the proposed approaches in detail,
Section [6.4] presents the computational results and analyses them. Finally, Section[6.5]concludes

the chapter by presenting the summary of contributions made.

J
H
K
G
B
F
C

W

E D

(a) Node assignments when all the five facilities are functioning

(b) Node assignments when one facility fails

Figure 6.1: Illustration of reliable p-median problem with at facility service having p = 5 facilities

105

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.2 Formal problem definition

We have given the formal definition of RpMF using notational conventions similar to the one

used in [181]]. We have provided the summary of key notations in Table

Table 6.1: Summary of key notations

Notation | Meaning

A Set of clients or demand points which is also the set of potential facility locations
F Subset of potential facility locations which may fail

NF Subset of potential facility locations which will never fail
h; Demand associated with each client or demand point ¢ € A

d;; Shortest distance between two locations ¢, j
qj Probability of failure of the facility j € F
D Total number of opened facilities

The other required variables s;, x;;; and y; ;. are defined as below,

) 1 if the location ¢ is selected to locate a facility, i € A
*)0 Otherwise

1 if customer ¢ passes from location j to location k, 4,5,k € A
Tijk = :
0 Otherwise

yijk € [0, 1]: probability of the edge (7, k) to be in the path of customer ¢

Using the notations given in Table @ and the variables s;, x;;; and y;;x, RpMF can be

mathematically formulated [[181]] as follows:

min Z hi Z Z djkyijk (6-1)

i€A jEAKkEA

subject to

» si=p (6.2)

JEA
s1=1 (6.3)
> wyr < sk ik€A (6.4)

JjeEA

106

6.2 Formal problem definition

dagr<lijeA (6.5)
keA
S ik =a; Y vy i€ AjEFi#] (6.6)
keA k'eA
Z Yik = (1 —s;) i€ NF (6.7)
JEA,jF#
S yi=1-(1-q)si icF 6.8)
JEAjFL
Yijk < Tijr 4, J,k € A (6.9)
Sy Tijk € {O, 1} 1,7, ke A (6.10)
Yijk € [0, 1] i,j,ke A (6.11)

Equation [6.1| represents the objective function of the problem. Constraint in equation[6.2]
makes sure that exactly p facilities are located. Equation [6.3] defines a dummy facility being
located at the 1st node which is always non-failable and is used to serve customers which are
not served by any of the original p facilities. By assuming the existence of a dummy facility,
the problem actually becomes the one concerning locating p + 1 facilities in a n + 1-node
network. But, following the traditional representation as mentioned in [[181]], we don’t include
the dummy facility in both the total number of nodes in the network and the number of facilities
to be located. Constraint in equation [6.4]requires that a customer 4 can reach a facility & atmost
once. Similarly, the constraint in equation [6.5]requires that a customer ¢ can leave a facility j
atmost once. Constraint[6.6enforces that the probability of a customer 7 leaving a facility j is
the product of failure probability of facility j, ¢; times the probability of customer ¢ reaching
the facility j. Constraints give the probabilities corresponding to customer ¢ leaving its
home facility when it is non-failable and failabale respectively. Constraint [6.9 makes sure that
the values of the x, y variables are consistent. Constraint [6.10]enforces the binary nature of the

s, x variables, whereas constraint[6.11] provides the range of probability values for the variable
Y.

107

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.3 Proposed approach

This section describes our proposed two hyper-heuristic approaches for the RpMF. In the

subsections that follow, we will describe various features of our approaches.

6.3.1 Solution representation and fitness

A solution to the RpMF is represented as a set of p nodes where facilities can be located. We

have directly used the objective function given in equation[6.]as the fitness function.

6.3.2 Initial solution generation

To generate an initial solution, we have employed the semi greedy method introduced in [[182]
for p-center problem which makes use of critical distances. Critical distance is defined as the
maximum distance among all the distances from nodes to their respective nearest facilities. The
node whose distance to its nearest facility gives the critical distance is called the critical node.
Just like in [[182], we have done pre-processing on the given input data. The pre-processing is a

two step procedure which is explained below:

e As part of the first step of the pre-processing, we find the shortest distance from each
node to all other nodes using the Floyd—Warshall algorithm, represented by the matrix
M. We sort elements in each row of the distance matrix M, along with their respective
indices in non-decreasing order and generate two new matrices Moy and M ;pcres. The
row-wise sorted elements of M are stored in the matrix My,,-+, while row ¢ in the matrix

th

M_;rcies contains the information on the 15¢, 2”d, ..., n" nearest node to node <. For the

sake of explanation, consider the following example with a total of n = 5 nodes.

04 7 9 2
4 0 3 81
M=|73 06 5
9 8 6 07
215 70

The matrices Mg+ and M ;;.cjes corresponding to matrix M above are

108

6.3 Proposed approach

02479

01 3 4 8

Mgyt =10 3 5 6 7
06 789
01257
1 5 2 3 4
2531 4

Meircies = 3 25 41
4 3 5 21
5 2 1 3 4

e As part of the second step of the pre-processing, we calculate a new matrix M,.qq;,s. We
set each element in the principal diagonal of M, ,4;us to 1. Every other element (i, j) of
M,.qqius Where i # j gives the number of nodes which are at a lesser distance from the
node ¢ than the distance between the nodes ¢ and j. The M,.q4;,,s matrix for the considered

example is given below:

Mradius =

N B B W
— W = =N
W = = N W
N e S
NN ==

In order to generate an initial solution, the first facility is selected randomly and added to
the initial solution. The remaining p — 1 facilities are added to the initial solution iteratively
one-by-one. To select the next facility, we find the critical distance and also identify the critical
node. Considering the critical distance as radius and the critical node as the center, a circle is
constructed. From all the nodes within this circle, a node is randomly selected and is added to
the initial solution as the next facility. To achieve the just mentioned functionality, we make
use of the matrices constructed in the pre-processing step. For a given pair of critical node x
and its nearest facility y, | = M,qq4ius(,y) gives the number of nodes which are within the
critical distance from the critical node. These I nodes are the first [elements in the i*" row of the
M ircles matrix. We randomly select a number r between 1, [and make the node M ;ycles (i, 1)
as the next facility. So, we can summarize that given the critical node = and its nearest facility

y, the new facility ¢/ is identified as: ¢’ = M jpeies(z, rand(1, Myqgius(2,v))). After adding a

109

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

new facility to the solution, we find the latest critical distance and the corresponding critical
node and proceed to identify the next facility. This procedure is repeated till we get p facilities

in the initial solution.

6.3.3 Hyper-heuristic framework

We have proposed two multi-start hyper-heuristic approaches for the reliability p-median prob-
lem with at-facility service (RpMF). Except for the selection mechanism both the proposed
approaches follow the same framework. In each restart of the hyper-heuristic, we generate an
initial solution which acts as the starting current solution, Sol.,, and then an iterative process
ensues for NV, s iterations. In each of the Ny, s iterations, we generate a new solution by making
use of the one or more of the five low-level heuristics which are applied as per the selection
mechanism given in subsection[6.3.6] We have described each of the five low-level heuristics
which we have implemented as part of the proposed approach in subsection [6.3.4] In each of the
low-level heuristics, we have used the same degree of perturbation, D,,;. The newly generated
solution Sol which is obtained using low-level heuristics either replaces the current solution
Soleyr or is discarded as per the acceptance criteria mentioned in subsection We compare
the fitness of the Sol.,, with that of the best solution found so far. If the fitness of Sol.,; is
less than that of the best solution Solpest, then Sole,, replaces the Solpes:. Then, Soley, is
given as input to the next iteration. After applying the low-level heuristics for a total of N5
iterations, at the end of the restart we try to further minimize the fitness of Solyes; by performing
local search operation which is explained in subsection [6.3.5] Then one restart iteration of the
hyper-heuristic is complete and the next restart of the hyper-heuristic starts. This procedure
stops after N, restarts. At the end of the algorithm, we return the the best solution as the
output of the proposed approach. Algorithm [10]presents the common framework of both our
proposed hyper-heuristics where the function Selection_M echanism() distinguishes the two
proposed approaches. The function Selection_M echanism/() takes current solution Sol.,,

and the set of low-level heuristics Sy 7 as inputs and returns a solution Sol.

6.3.4 Low level heuristics

We have used the following five low-level heuristics in our hyper-heuristic approaches:

e [Hi: Remove randomly and add greedily

In this low level heuristic, we randomly remove one facility at a time from the given

110

6.3 Proposed approach

Algorithm 10: Hyper-heuristic approach for the RpMF

Input: List of parameters for the hyper-heuristic and an instance of RpMF
Output: Overall best solution found
Solpest 0
while (itr,.s; < N,.g) do
Sol;n;: < Generate initial solution;
SOlcur — SOlinit;
while (iter < N;4.) do

Sol + Selection_Mechanism(Soleyr, SLu);

if (Sol is better than Sol.,,) then

L S0l oy < Sol;

if (Sol.yr is better than Soly. ;) then
L SOlbest — SOlcur;

| Solpest < Local_search(Solpest);

return Solpeg;

solution Sol, till a total of z facilities are removed. The value of x is calculated as a
fraction of the total number of facilities p, x = p * Dp,;. After removing x facilities
randomly, we greedily add the same = number of facilities to the solution Sol. Out of all
the non-facility nodes, we select a node whose addition to Sol causes the least increase
in the fitness value and add it to the solution Sol. This aforementioned step is repeated
iteratively till facilities are added to the solution Sol and there are p facilities at the end

of this heuristic.

e [Hs: Add randomly and remove greedily
In the second low level heuristic, from the non-facility nodes, we randomly add z new
facilities to the given solution Sol. z is a fraction of the total number of facilities p,
x = p* Dy After adding = new facilities, the total number of facilities in Sol is now
equal to p + . After this, we greedily remove one facility at a time from Sol till there are
only p facilities remaining. Out of the p 4 « facilities in Sol, we select a facility whose
removal causes maximum reduction in the objective value and remove that facility from
Sol. We continue to remove facilities just like in the aforementioned greedy method and

stop once a total of z facilities are removed.

e [H3: Remove greedily and add greedily
As part of the third low level heuristic, from the given solution Sol, we greedily remove

one facility at a time till a total of x facilities are removed. Just like in the other low level

111

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

heuristics, x is calculated as x = p * D,,+. From the p facilities in Sol, we select a facility
whose removal causes maximum reduction in the objective value and remove that facility
from Sol. Once the x facilities are removed, we greedily add one facility at a time till
there are p facilities in the resulting solution. For this, from the list of non-facility nodes
we select a node whose addition to Sol causes the least increase in the fitness value and
add it to the solution Sol. We continue to add further facilities to Sol in the same manner

till there are total of p facilities in Sol.

e [H,: Add greedily and remove greedily
As part of the fourth low level heuristic, to the given solution Sol which has p facilities,
we greedily add x additional facilities. In this heuristic also, we take the value of x as a
fraction of total number of facilities p, x = p * D,,;. From the list of non-facility nodes
we select a node whose addition to Sol causes the least increase in the current fitness
value and add it to the solution Sol. We add a total of x facilities in this manner. After this,
we iteratively remove the additional z facilities one at a time, in a greedy manner. From
the p + « facilities in Sol, we select a facility whose removal causes maximum reduction
in the objective value and remove that facility from Sol. We continue to remove further
facilities from Sol in the same manner and stop when there are a total of p facilities

remaining in Sol.

e [Hs5: Remove randomly and add randomly
As part of the fifth low level heuristic, from the given solution Sol which has p facilities,
we randomly remove z facilities. Similar to other low level heuristics, in this heuristic
also we take the value of x as a fraction of total number of facilities p, x = p * Dy.
To the resulting solution Sol with p — z facilities, we add = new facilities by randomly
selecting one facility at a time from the non-facility nodes. This procedure stops when

there are a total of p facilities in the solution Sol.

6.3.5 Local search

At the end of every restart of the hyper-heuristic, we apply a local search operation on the best
solution found so far, Solp.s. As part of the local search, we have performed a 1-1 exchange
operation. In the 1-1 exchange, we have followed a best replacement strategy where for each
facility ¢ in Solpest, We search for a node from among all the n — p non-facility nodes to replace

i that results in maximum reduction in the objective value of Solpes: [178]. Once a facility is

112

6.3 Proposed approach

replaced from the solution Soly.s; with a new node, it may get reintroduced into the solution at a
later index. For any facility in the solution Solp.g, if we are not able to find a replacement node
that reduces the objective value, then such a facility remains in the solution. Then, we consider
the next facility in Solp.s for replacement. The local search is complete when each of the p
facilities in Solp.s; is considered for replacement. If overall best solution remains unchanged

during a restart and previous application of local search then local search is not applied.

6.3.6 Selection methodology

There are many selection methodologies that are proposed in the literature such as random
selection, random gradient selection, random permutation, random permutation gradient, greedy
selection [74]. Random selection method randomly selects one low-level heuristic at each
step of the search process. Random gradient selection is an extension of the random selection
technique which applies the randomly selected heuristic in a loop until there is no improvement.
Random permutation method makes a random ordering of all the available low-level heuristics
and in each step of the search operation applies one low-level heuristic in the newly generated
order. Random permutation gradient selection is an extension of random permutation selection.
Finally, greedy selection is an exhaustive method that applies all the low-level heuristics and
the heuristic that produces the best solution among all the low-level heuristics is considered as
selected. We have used random selection and greedy selection methods as part of our proposed
approach which are suitable for the given less number of low-level heuristics, whereas the other
selection mechanisms are useful when the number of low-level heuristics is large [[183]]. In
this chapter, we refer to the hyper-heuristic version with random selection as H H_Rnd and

hyper-heuristic version with greedy selection as H H_Grd.

6.3.7 Acceptance criteria

In each step of the search operation, whether to accept the newly generated solution or not is
decided based on the acceptance criteria. Several acceptance criterias have been mentioned in
the literature [[74]]. We have experimented with two acceptance criterias namely all acceptance
(AA) and only improvement (OI). We obtained better results with the OI criteria which we have
reported in the Section [6.4]

113

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

6.4 Computational results

We have implemented both our hyper-heuristic based approaches for the RpMF in C and
performed all our experiments on a Linux based Intel Core i5 7500 system with 8 GB memory
running at 3.40 GHz. Following are the various parameters of the hyper-heuristics and their
corresponding values: N, = 10, Nys = 10, degy+ = 0.5. We have empirically picked
these parameter values after a lot of experimentation. We have evaluated the performance of
our two approaches on the same datasets as used in [181]] and compared the results obtained
with the optimum or best known objective values reported by state-of-the-art methods used
for solving the RpMF in [181]]. The datasets used in [[181]] are derived from the base instances
used in [141]]. The datasets include homogeneous and non-homogeneous instances. In the
homogeneous instances each failable facility has equal, uniform probability of failure ¢ = 0.05.
In the non-homogeneous instances, the probability of failure varies from facility to facility.
Within the homogeneous instances, there are two groups of instances namely Type I and Type
II. Type I instances are derived from the base instances 49UFLP, S8SUFLP, 150UFLP which
contain the number of nodes in the set {49, 88, 150}, where each node represents a city in the
United States. The demand associated with each city is taken proportional to the corresponding
city population. The cost of a customer not being served in Type I instances is taken as 10%.
In Type I instances, only the dummy facility to which all unserved customers are assigned is
non-failable, and every other facility is considered as failable. Type II instances are derived from
the base instances SOEucUFLP, 100EucUFLP which contain randomly generated datasets with
the number of nodes 50 and 100 located in the range of [0, 1]x[0, 1]. The demand associated
with each node in the Type II instances is a random number in the range [0, 1000]. Similarly,
the cost of a customer not being served in Type II instances is taken as 10.

As part of the experimentation in [[181], they have randomly selected subsets of nodes from
the original Type I, Type II instances of [141] and generated smaller instances with the number
of nodes n € {20,25,30,35,40,45}. The number of facilities to be located is considered
from the set p € {4, 5,6}. For every original instance of the original datasets namely 49UFLP,
50EucUFLP, 88UFLP, 100EucUFLP, 150UFLP and the set of (n, p) values, three new instances
are generated accounting to a total of 270 instances which include 162 Type I and 108 Type
II homogeneous instances. Similarly for the non-homogeneous case, three new datasets are
generated from each of the original instances 49UFLP, 50EucUFLP, 88UFLP, 100EucUFLP,
150UFLP with the number of nodes n € {20,25} and the number of facilities to be located

114

6.4 Computational results

p is fixed as 4. The value of the failure probability ¢ is randomly taken from 4 different
intervals m + s with m € {0.03,0.07} and s € {0.003,0.025} resulting in a total of 120
non-homogeneous instances which include 60 instances each with the number of nodes 20 and
25.

We have obtained instance by instance results from the first author of [181] and utilized
these results for comparisons. For the homogeneous datasets, Table[6.2] and Table [6.3|present
the average percentage deviation of our results from the optimum values for Type I, Type 11
instances respectively. In both these tables, the first column named n provides the number of
nodes in the instance. The second column named p gives the number of facilities to be located.
The third column named Dataset represents the original dataset from which the instance is
derived. The fourth column gives the average of the three percentage deviations obtained on
the three instances having the same values of (n,p) by HH _Rnd, whereas the fifth column
gives the similar average deviations obtained by H H_Grd. As mentioned earlier, there are
three instances for each (n, p) dimension, and we have reported the average deviation of all the
three instances of a given (n, p) dimension which are derived from a given original instance.
For example, given the original instance 150UFLP and the (n, p) combination of n = 20 and
p = 4, the three generated instances are: datal SOUFLP_4_20_1.dat, datal 5S0UFLP_4_20_2.dat,
datal 50UFLP_4_20_3.dat. We have obtained the objective values of our approach on solving
the RpMF on these three instances and found the percentage of deviation from the optimum for
each of these three instances. The averages of these three percentage deviations for H H_Rnd
and H H_Grrd are reported in the fourth and and fifth columns of Table and Table The
sixth, seventh and eighth columns in these two tables report the execution times (in seconds)
taken by the CPLEX for model proposed in [181] and our HH_Rnd, HH_Grd variants
respectively. Both H H_Rnd and H H_Grd obtained the optimal objective values on 125 of
the 162 Type I homogeneous instances. Similarly, we obtained optimal objective values on 101
of the 108 Type II homogeneous instances. Overall, we have obtained the optimal values on 226
out of a total of 270 instances of homogeneous instances combining both the Type I and Type
II instances. Though our approaches are executed on a better computer system compared to
the one used by Albareda-Sambola et al.[181] (A system with 3.16GHz Intel Core Duo E8500
CPU and 3.4GB RAM Vs a system with 3.40GHz Intel Core i5 7500 CPU and 8 GB RAM used
to execute our approaches), it can be observed from the execution times reported in Table [6.2]

and Table[6.3]that our approaches take negligible execution times on almost all the instances,

115

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

thereby proving computational efficiency of our proposed H H_Rnd and H H_Grd. Between

HH_Rndand HH_Grd, HH_Rnd is faster as expected.

Table 6.2: HH_Grd results on Homogeneous Type I instances

n P Dataset %Devhy rna %DevhH Grd Timecprex Timexgn pna Timegn Grd
150UFLP 0.00 0.00 0.34 0.00 0.01
4 49UFLP 0.00 0.00 0.56 0.00 0.03
88UFLP 0.10 0.10 0.59 0.00 0.03
150UFLP 0.00 0.00 0.44 0.01 0.03
20 5 49UFLP 0.00 0.00 1.30 0.01 0.06
88UFLP 0.00 0.00 0.76 0.01 0.06
150UFLP 0.00 0.00 0.54 0.01 0.04
6 49UFLP 0.00 0.00 0.91 0.02 0.09
88UFLP 0.00 0.00 0.94 0.02 0.08
150UFLP 0.00 0.00 0.70 0.00 0.02
4 49UFLP 0.01 0.01 3.49 0.01 0.04
88UFLP 0.00 0.00 2.08 0.01 0.04
150UFLP 0.09 0.09 1.09 0.01 0.03
25 5 49UFLP 0.00 0.00 2.65 0.02 0.08
88UFLP 0.00 0.00 1.65 0.02 0.08
150UFLP 0.00 0.00 1.15 0.01 0.04
6 49UFLP 0.01 0.01 3.05 0.03 0.11
88UFLP 0.00 0.00 2.18 0.02 0.11
150UFLP 0.00 0.00 1.30 0.01 0.03
4 49UFLP 0.01 0.01 6.54 0.01 0.05
88UFLP 0.00 0.00 3.05 0.01 0.05
150UFLP 0.07 0.07 2.00 0.01 0.04
30 5 49UFLP 0.00 0.00 7.61 0.02 0.12
88UFLP 0.00 0.00 3.30 0.02 0.11
150UFLP 0.00 0.00 2.23 0.01 0.05
6 49UFLP 0.00 0.00 8.29 0.03 0.15
88UFLP 0.00 0.00 9.13 0.03 0.16
150UFLP 0.04 0.04 2.34 0.01 0.03
4 49UFLP 0.03 0.03 6.19 0.01 0.08
88UFLP 0.00 0.00 15.60 0.01 0.08
150UFLP 0.07 0.07 3.19 0.01 0.07
35 5 49UFLP 0.01 0.01 22.18 0.04 0.16
88UFLP 0.00 0.00 14.40 0.03 0.14
150UFLP 0.07 0.07 4.13 0.02 0.07
6 49UFLP 0.00 0.00 33.31 0.04 0.20
88UFLP 0.00 0.00 13.54 0.04 0.22
150UFLP 0.13 0.13 3.78 0.01 0.05
4 49UFLP 0.05 0.05 3143 0.02 0.10
88UFLP 0.00 0.00 10.65 0.02 0.09
150UFLP 0.13 0.13 6.49 0.01 0.06
40 5 49UFLP 0.00 0.00 26.85 0.04 0.17
88UFLP 0.00 0.00 40.54 0.04 0.18
150UFLP 0.06 0.06 6.35 0.03 0.07
6 49UFLP 0.00 0.00 51.68 0.06 0.24
88UFLP 0.00 0.00 26.03 0.05 0.24
150UFLP 0.07 0.07 12.83 0.01 0.05
4 49UFLP 0.01 0.01 127.74 0.02 0.10
88UFLP 0.01 0.01 35.48 0.02 0.11
150UFLP 0.02 0.02 7.65 0.02 0.08
45 5 49UFLP 0.00 0.00 77.54 0.05 0.23
88UFLP 0.00 0.00 105.20 0.05 0.23
150UFLP 0.07 0.07 11.59 0.02 0.10
6 49UFLP 0.00 0.00 108.41 0.07 0.34
88UFLP 0.00 0.00 33.07 0.07 0.34

116

6.4 Computational results

Table 6.3: HH_Grd results on Homogeneous Type II instances

n P Dataset %Devigy rna %oDevnn Gra Timecprex Timegn pna Timenn Grd
4 100EuclUFLP 0.00 0.00 0.77 0.01 0.03
S50EucUFLP 0.00 0.00 0.63 0.01 0.03
20 5 100EuclUFLP 0.00 0.00 1.94 0.01 0.07
S50EucUFLP 0.00 0.00 1.42 0.01 0.07
6 100EuclUFLP 0.05 0.00 1.29 0.02 0.10
S50EucUFLP 0.00 0.00 2.73 0.02 0.11
4 100EuclUFLP 0.00 0.00 3.62 0.01 0.05
S50EucUFLP 0.00 0.00 9.51 0.01 0.05
55 5 100EuclUFLP 0.00 0.00 8.24 0.02 0.10
S50EucUFLP 0.00 0.00 9.71 0.02 0.11
6 100EuclUFLP 0.00 0.00 3.33 0.03 0.14
S50EucUFLP 0.00 0.00 7.63 0.03 0.15
4 100EuclUFLP 0.00 0.00 22.57 0.01 0.06
S50EucUFLP 0.00 0.00 13.84 0.01 0.06
30 5 100EuclUFLP 0.00 0.00 22.99 0.02 0.13
S0EucUFLP 0.00 0.00 14.48 0.02 0.13
6 100EuclUFLP 0.00 0.00 34.80 0.03 0.18
50EucUFLP 0.00 0.00 15.56 0.04 0.19
4 100EuclUFLP 0.00 0.00 26.45 0.01 0.08
5S0EucUFLP 0.00 0.00 58.58 0.01 0.08
35 5 100EuclUFLP 0.00 0.00 66.86 0.03 0.16
S0EucUFLP 0.01 0.01 74.94 0.03 0.18
6 100EuclUFLP 0.00 0.00 34.42 0.04 0.23
5S0EucUFLP 0.01 0.01 81.11 0.05 0.25
4 100EuclUFLP 0.00 0.00 40.59 0.02 0.11
50EucUFLP 0.00 0.00 154.16 0.02 0.11
40 5 100EuclUFLP 0.00 0.00 51.39 0.04 0.20
50EucUFLP 0.00 0.00 284.95 0.04 0.21
100EuclUFLP 0.00 0.00 32.13 0.06 0.28
6 50EucUFLP 0.00 0.00 156.18 0.06 0.29
4 100EuclUFLP 0.00 0.00 134.06 0.02 0.12
S50EucUFLP 0.02 0.02 80.35 0.02 0.13
45 5 100EuclUFLP 0.00 0.00 115.33 0.05 0.25
S50EucUFLP 0.00 0.00 269.34 0.05 0.25
6 100EuclUFLP 0.00 0.00 167.16 0.07 0.35
S50EucUFLP 0.00 0.00 395.12 0.07 0.35

Apart from newly generated Type I, Type II homogeneous instances, Albareda-Sambola

et al. [[181] have also experimented on large instances which are introduced by Snyder and

Daskin [[141]]. We have obtained these large instances from the repository provided by [[141] and

reported the results obtained by our H H_Rnd and H H_Grd methods on these large instances

in the Table For each of these 15 large instances, we generated the objective values using

the solutions which are provided by [181]] and compared the solutions and objective values

obtained by our approach. In Table [6.4] first column gives the name of the dataset, second

column, n, is the number of nodes in the instance, third column, p, gives the number of facilities

117

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

to be located and the fourth, fifth columns give the percentage deviation of the results of our
proposed HH_Rnd and H H_Grd methods with respect to the best known solution reported
by [181]] on the same instance. Columns six, seven and eight present the execution times (in
seconds) of CPLEX, H H_Rnd and H H_Grd respectively on each instance. As can be seen
from fourth and fifth columns in Table [6.4] out of the 15 instances, H H Rnd obtained the
same or better objective values on 13 instances, whereas H H_Grd obtained the same or better
objective values on all the 15 instances when compared to the objective values of the best known
solutions reported by [[181]]. Compared to the proposed H H_Rnd, H H_Grd obtained better
objective values on 3 large instances. Both our proposed HH_Rnd, HH_Grd approaches
take much less execution times in comparison to the C PLFE X, while H H_Rnd is the faster

approach between the two proposed approaches.

Table 6.4: HH_Grd results on Large Homogeneous instances

Dataset n P %Devpy pna %Devgn cra Timecprex Timegn rna Timenn Grd
5 0.00 0.00 94.33 0.06 0.23
49UFLP 49 10 0.00 0.00 90.44 0.35 1.51
20 0.00 0.00 28.80 4.06 17.39
5 -0.03 -0.03 174.00 0.06 0.26
50EucUFLP 50 10 -0.01 -0.01 59.23 0.40 1.87
20 -0.01 -0.01 26.94 4.81 19.82
5 0.00 0.00 7200.00 0.18 0.73
88UFLP 88 10 -0.30 -0.30 7200.00 1.18 4.44
20 0.00 -0.01 3522.53 12.67 51.50
5 0.69 0.00 7200.00 0.20 1.02
100EucUFLP 100 10 -0.19 -0.19 7200.00 1.39 6.40
20 -0.67 -0.67 7200.00 17.65 75.81
5 0.00 0.00 262.83 0.20 0.74
150UFLP 150 10 0.00 0.00 2044.42 0.52 1.97
20 0.14 0.00 1131.13 1.96 8.39

For the non-homogeneous datasets with the number of nodes, n = 20, the authors of [181]]
have provided the optimum values for each instance. Whereas for the non-homogeneous datasets
with the number of nodes, n = 25, they have provided best known solution objective values.
In the Table [6.5]and the Table [6.6] we have presented the percentage deviation of our results
from the optimum and best known solution objective values for the instances with the number
of nodes 20, 25 respectively. In both these tables, first column, Dataset, represents the original
dataset from which the instances are generated. Columns 2, 3 give the average of percentage
deviations of all the three instances generated from the original instance having the probability
of failure ¢ € 0.03 4= 0.003, which are shown under the column title A that represents the range

of probability of failure. Columns 4, 5 give the results on instances having the probability of

118

6.4 Computational results

failure ¢ € 0.03 £ 0.025, and shown under the column title B. Similarly, columns 6, 7 give
the results on instances having the probability of failure ¢ € 0.07 £ 0.003, and shown under
the column title C. Finally, columns 8, 9 give the results on instances having the probability of
failure ¢ € 0.07 4 0.025, that are shown under the column title D. On the non-homogeneous
datasets with 20 nodes and 4 facilities, both our proposed H H_Rnd and H H_Grd achieved
the optimum value on 45 out of 60 instances. Similarly, on the non-homogeneous datasets
with 25 nodes and 4 facilities, out of 60 instances H H_Grd achieved the best known solution
or improved the solution quality on 43 instances, while H H_Rnd achieved the best known
solution or improved the solution quality on 42 instances. Overall, H H_Grd obtained equal or
improved quality solutions as compared to the best known solutions on a total of 88 instances
out of a total of 120 non-homogeneous instances, while H H _Rnd obtained equal or improved
quality solutions as compared to the best known solutions on 87 instances. Table[6.7]presents the
medians of execution times (in seconds) of the proposed approaches H H_Rnd and HH _Grd
with respect to the CPLEX times from [[181] for the non-homogeneous datasets. In Table
1st column gives the ranges of probability of failure. Columns 2, 3 and 4 present the times of
CPLEX, HH_Rnd and H H_Grd for datasets with 20 nodes, while columns 5, 6, 7 present the

execution times (in seconds) of CPLEX, H H_Rnd and H H_Grd for datasets with 25 nodes.

Table 6.5: HH_Grd results on Non-Homogenous instances with n = 20 nodes and p = 4 facilities

A B C D
Dataset % Devyn_pna %oDevyn_Gra %Devyy_gna %Devgn_crd Y%Devyy_gnd %oDevyn_gra %oDevyp_pna %oDevyn_gra
49UFLP 0.20 0.20 0.03 0.03 0.00 0.00 0.00 0.00
50EucUFLP 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00
88UFLP 043 0.43 0.22 0.22 0.18 0.18 0.50 0.50
100EuclUFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
150UFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.6: HH_Grd results on Non-Homogenous instances with n = 25 nodes and p = 4 facilities

A B C D
Dataset %oDevin_rnd VoDevin_gra %Deviig_pnd %Devin_gra %Deviin_rnd %oDevin_Gra %Devin_rnd YoDevhn_gra
49UFLP 0.22 0.22 0.16 0.16 -1.40 -1.40 0.00 0.00
50EucUFLP -0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
88UFLP 0.32 0.32 0.08 0.08 -1.94 -1.94 -1.55 -1.55
100EuclUFLP 0.00 0.00 -0.02 -0.02 0.00 0.00 0.02 0.02
150UFLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

119

6. RELIABLE P-MEDIAN PROBLEM WITH AT-FACILITY SERVICE

Table 6.7: Average CPU times for the Non-Homogenous instances

n =20 n =25
Timecprex Timena rna Timemn Grd Timecprex Timena rna Timenn Grd
q € 0.03£0.003 7.39 0.01 0.02 48 0.01 0.02
q €0.03£0.025 4.78 0.01 0.02 29.49 0.01 0.02
q € 0.07£0.003 112.19 0.01 0.02 1255.88 0.01 0.02
q € 0.07£0.025 122.92 0.01 0.02 436.06 0.01 0.02

After taking the averages of the deviations of 3 instances with the same (7, p) dimension, we
can observe from the Table on Type I homogeneous instances both our proposed H H_Rnd
and H H_Grd obtained the optimal objective values on 34 out of 54 different (n, p) dimension
datasets. In the 20 cases of the Type I homogeneous instances where our approaches did not
achieve the optimal values, the average percentage deviations are very small which are in the
range of 0.01% to 0.13%. And on Type II homogeneous instances, H H_Grd obtained the
optimal values on 33 cases and H H _Rnd obtained the optimal values on 32 cases out of the
total 36 different (n, p) dimension datasets as can be seen in Table[6.3] On the instances with
n = 20 and p = 6 which are derived from original dataset 100EuclUFLP, H H_Rnd has
an average deviation of 0.05% from the optimum but we obtained optimal values using the
HH_Grd on these same instances as reported in the 5th row of Table In those cases of
Type II homogeneous instances where we did not achieve the optimal values, the deviations are
very small which are in the range of 0.01% to 0.05%. Similarly in the non-homogeneous case,
for the datasets with 20 nodes and 4 facilities, looking at averages of percentage deviations of 3
instances having the failure probability belonging to the same interval of ¢ € m =+ s, we can
observe from Table [6.3]that both our approaches HH_Rnd and H H_Grd obtained the optimal
values on 13 out of 20 datasets with different failure probability values ¢ € m £ s. In the 7
cases that our approaches didn’t obtain the optimal values in Table [6.5]the deviations are small
which vary in the range of 0.02% to 0.5%. Also, for the datasets with 25 nodes and 4 facilities,
looking at averages of deviations in Table[6.6] we can observe that on 14 out of 20 datasets both
our approaches H H_Rnd and H H_Grd obtained or improved upon the best known solution.
In the 6 cases that our approaches didn’t achieve the best known solutions in Table [6.6] the
deviations are small which vary in the range of 0.01% to 0.32%. As can be observed from Table
for all the four failure probability ranges of the non-homogeneous datasets, our approaches

take only negligible execution times to generate the results.

120

6.5 Conclusions

6.5 Conclusions

In this chapter, we have proposed two multi-start hyper-heuristic approaches based on greedy
selection and random selection mechanisms for the reliable p-median problem with at facility
service. We have evaluated our approaches on homogeneous datasets which have an equal
uniform failure probability for all the failable facilities as well as on non-homogeneous datasets
that have facility dependent failure probabilities. The results of the proposed approaches are
compared with the state-of-the-art approaches available in literature for RpMF. Out of the
total 405 instances, our greedy selection based hyper-heuristic achieved the optimal solutions
or improved the best known solutions on 329 instances, while our random selection based
hyper-heuristic achieved the optimal solutions or improved the best known solutions on 326
instances. In all the cases, our proposed approaches obtained solutions of good quality in

negligible execution times proving their computational efficiency.

121

Chapter 7

Conclusions and directions for future
research

In this thesis, we have developed heuristic approaches for six facility location problems which are
all N'P-hard problems. We have used two evolutionary approaches, namely discrete differential
evolution (DDE) and genetic algorithm (GA), and hyper-heuristic approaches to solve the
considered facility location problems. While developing our evolutionary approaches and
hyper-heuristics, we have incorporated the problem-specific knowledge wherever possible in the
solution encodings, methods of generating initial solutions, genetic operators and local search
methods for the considered problems. Devising these approaches which have performed as
good as or better than the state-of-the-art approaches on each problem constitutes the major
contribution of this thesis.

The contributions made by our work in each chapter along with possible directions for future
research are described in the following.

In we have proposed a population based evolutionary approach, namely the
discrete differential evolution algorithm for the ACLP. To represent each solution in the popula-
tion, we have used a simple bit vector of length equal to the number of nodes in the network.
We have used a semi greedy approach to generate the population of initial solutions. Given
the binary nature of solutions, as part of mutation we have flipped binary value associated
with each location of the best solution according to the given mutation probability. We have
deployed a simple uniform crossover. We have implemented a repair operation to check for the
feasibility of the resulting solution after crossover/mutation and to make it feasible if it is not

feasible and also to further improve its fitness. Apart from the benchmark instances used in

122

[, 183]], we have also evaluated our approach on larger instances which we have derived from
Beasley’s OR—libraryE] and TSPLIBH Computational results show that on most of the instances,
our approach performed as good as or better than the state-of-the-art approaches for ACLP
[L}183]]. The results of the statistical significance test also prove that the improvement achieved
with our approach is significant and it is due to the algorithmic merit. We have not reported
the comparison of execution times as both our proposed DDE approach and the ACO based
approach are executed for the same amount of time on each instance. Our DDE based approach
for the unweighted ACLP can be extended for solving other variants of ACLP.

In we have worked on two variants of anti-covering location problem, viz.
disruptive anti-covering location problem (DACLP) and weighted anti-covering location problem
(WACLP). In this chapter, we have proposed two population based metaheuristics for the
considered problems. As our first approach, we have extended our discrete differential evolution
based approach for the ACLP to both DACLP and WACLP, and as our second approach, we
have developed a genetic algorithm based method for solving DACLP and WACLP. Though
both differential evolution and genetic algorithm belong to the broad class of evolutionary
algorithms and make use of crossover and mutation, we have used completely different solution
encodings and devised the crossover and mutation operations quite differently for the two
proposed approaches. In our DDE based approach for DACLP and WACLP, we have used the
solution representation, mutation, crossover and repair operations just like in the DDE approach
for ACLP while incorporating the problem specific information. In our proposed GA approach
for DACLP and WACLP, we have represented the solution as an ordered set of locations and
designed the mutation and crossover operations accordingly. We have used probabilistic binary
tournament selection method to choose the two parents for crossover and a single parent for
mutation in the GA approach. It was proven that the binary tournament selection approach
outperforms the roulette wheel selection method while also being computationally less expensive.
We have applied crossover, mutation operations in a mutually exclusive manner and if the fitness
of the resulting solution obtained after crossover/mutation is within a certain percentage of the
best solution’s fitness, we have also performed a local search to further improve its fitness. Ours
is a steady-state GA that generates a single child solution in each generation that is considered
for replacement. We have evaluated the performance of our approaches for DACLP and WACLP
on the 80 ACLP instances with upto 1577 nodes which are introduced in and are

"http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
Zhttp://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

123

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

modified to have node weights while solving for WACLP. Computational results show the
effectiveness of our approaches in solving both the considered ACLP variants. Our approaches
are the first metaheuristic approaches for the DACLP. Our metaheuristic approaches will serve
as motivation to other researchers to develop new metaheuristic approaches for the DACLP and
WACLP. Similar approaches can be developed for other related problems such as dominating
set, independent set, and vertex cover variants.

In we have solved the OCMCLP by using a genetic algorithm based approach.
We have evaluated the performance of our proposed approach on benchmark instances of the
problem and compared the results with two interchange heuristics available in the literature for
OCMCLP. In this approach, we have represented a solution as an ordered set of locations at
which facilities can be located. We have utilized the problem specific knowledge in each of the
operations like initial solution generation, crossover, mutation and local search. On most of the
instances, our GA based approach has obtained solutions of superior quality in comparison to
the existing methods. However, our approach needs more execution time than these methods.
Our GA based approach is the maiden metaheuristic approach that has been developed for
OCMCLP. Averbakh et al. [2] mentioned that even though they have implemented a tabu search
approach and a variable neighborhood search approach, they did not present their results in
[2] because of the observation that there is no significant improvement in the solution quality
by these two metaheuristic approaches over the solution quality obtained by the interchange
heuristics. Hence, population based metaheuristics appear to be better suited for this problem.

Future research could build other metaheuristics techniques for the OCMCLP and can be
compared with our GA approach and two interchange heuristics of [2]]. Ideas presented here
can be used in developing other metaheuristic approaches for the OCMCLP or for other similar
problems under cooperative coverage model. Similar approaches can be developed for other
facility location problems also where facilities can be located along the edges.

In[Chapter 5 we have proposed a hyper-heuristic based approach with naive Bayes classifier
for the reliability p-median problem. We have compared the results of our approach with
the state-of-art approaches available in the literature [142]]. Two methods of initial solution
generation are used in this approach, the first is a randomized greedy approach for the first
iteration of the hyper-heuristic and in all the other restarts, we have employed a random approach
of generating the initial solutions. We have implemented four low level heuristics each of which
generates a feasible solution for the problem and also implemented a local-search operation to

further improve the quality of the best solution. We have made use of the naive Bayes classifier

124

to skip executing one of the four low level heuristics in latter iterations. The effectiveness of our
approach can be observed in terms of the solution quality.

In we have proposed two multi-start hyper-heuristic approaches based on greedy
selection and random selection for the reliable p-median problem with at facility service. We
have evaluated our approaches on homogeneous datasets as well as on non-homogeneous
datasets. When compared with the state-of-the-art approaches available in literature for RpMF,
our greedy selection based hyper-heuristic achieved the optimal solutions or improved the best
known solutions on 329 out of the total 405 instances, whereas our random selection based
hyper-heuristic achieved the optimal solutions or improved the best known solutions on 326 out
of the total 405 instances. Using the proposed approaches, we could obtain solutions of good
quality in negligible execution times which proves the efficacy of our approaches.

Our hyper-heuristic approaches are the first hyper-heuristic approaches for solving RpMP
and RpMF. While ours are greedy/random selection based hyper-heuristic approaches, these will
serve as a motivation for other researchers to develop other kind of hyper-heuristic approaches
such as generational hyper-heuristic approaches and those based on other selection mechanisms
for RpMP, RpMF and other facility location problems. No approach exists in the literature so
far that combines a machine learning technique with a hyper-heuristic approach for solving
the facility location problems. Our approach for RpMP is the first approach that combines a
hyper-heuristic method with a machine learning technique for a facility location problem. This
paves the way for other researchers to develop analogous methods using other machine learning
techniques including but not limited to naive Bayes classifier, support vector machine (SVM),
reinforcement learning, regression etc. for solving the different variety of facility location
problems.

In all, six facility location problems have been considered in this thesis. [Chapter 2| and
are concerned with anti-covering location problems, whereas deals with
facility location problem under cooperative coverage model. The last two chapters, namely

Chapter 5] and [Chapter 6]are focused on facility location problems that take facility failures into

consideration. The approaches developed for solving these three broad categories of facility
location models considered in this thesis help in gaining useful insights on how to proceed when
solving such problems using heuristic approaches. This knowledge can be utilized while solving
other facility location problems or other similar discrete optimization problems.

The field of facility location problems is an active area of research owing to practical

applications. Not only new and better methods are developed on a regular basis for existing

125

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

problems, but also new facility location problems continue to emerge as a result of progress
in technology and human civilization. These new and better methods are developed either by
discovering and utilizing new problem characteristics or using the already explored problem
characteristics in a new manner or a combination thereof. Sometimes the insights gained while
solving a new problem lead to the development of better methods for existing problems. Hence,
the knowledge in the field of facility location problems is continuously advancing. So, there
remains a possibility of the development of better heuristic approaches in future for the facility

location problems considered here.

126

References

[1] S. S. CHAUDHRY. A genetic algorithm approach to solving the anti-covering lo-

cation problem. Expert Systems, 23(5):251-257, 2006.
123)

[2] 1. AVERBAKH, O. BERMAN, D. KRASS, J. KALCSICS, AND S. NICKEL. Cooperative
covering problems on networks. Networks, 63(4):334-349, 2014. M1 (60} [6 11

[62}[631 65} [70} [711 [72} [73} [74 [75} [76} [77 [78} [79} [B0 81} [T24)

[3] M.S DASKIN AND L.K DEAN. Location of health care facilities. In Operations
research and health care, pages 43—76. Springer, 2005. (2] [4)

[4] R. CHURCH AND C.R. VELLE. The maximal covering location problem. Papers of
the Regional Science Association, 32(1):101-118, 1974. (2 {4 [60)

[5] V. MARIANOV AND D. SERRA. 4 Location problems in the public sector:In facility

location:applications and theory. Springer, 2002. (2)

[6] L. CooPER. Location-allocation problems. Operations research, 11(3):331-343, 1963.

@

[7]1 F. PLASTRIA. Continuous location problems: research, results and questions. Fu-

cility location: a survey of applications and methods, pages 85127, 1995. (3)

[8] Z. DREZNER. Continuous Facility Location Problems. In The Palgrave Handbook of
Operations Research, pages 269-306. Springer, 2022. (3))

[9] T. A. HARTMANN, S. LENDL, AND G. J. WOEGINGER. Continuous facility location
on graphs. Mathematical Programming, 192(1):207-227, 2022.

127

REFERENCES

[10] J. BRIMBERG, P. HANSEN, N. MLADENOVIC, AND S. SALHI. A survey of solution
methods for the continuous location-allocation problem. International journal of
operations research, 5(1):1-12, 2008. (3| [5)

[11] Z. ULUKAN AND E. DEMIRCIOGLU. A Survey of discrete facility location problems.
World academy of science, engineering and technology, international journal of social,

behavioral, educational, economic, business and industrial engineering, 9(7):2450-2455,
2015. (3

[12] Z. DREZNER. Facility location:A survey of applications and methods. Springer, 1995.

[13] S. BASU, M. SHARMA, AND P.S. GHOSH. Metaheuristic applications on discrete
facility location problems: a survey. OPSEARCH, 52(3):530-561, 2015. (3 3)

[14] J. CURRENT, M. DASKIN, AND D. SCHILLING. 3 Discrete network location models.

Facility location applications and theory, pages 81-118, 2004. (3)

[15] B.C. TANSEL, R.L. FRANCIS, AND T.J. LOWE. State of the art - location on net-

works: a survey. Part I: the p-center and p-median problems. Management science,
29(4):482-497, 1983.

[16] A. AHMADI-JAVID, P. SEYEDI, AND S. S. SYAM. A survey of healthcare facility
location. Computers & Operations Research, 719:223-263, 2017.

[17] R.Z. FARAHANI, M. STEADIESEIFI, AND N. ASGARI. Multiple criteria facility
location problems: A survey. Applied mathematical modelling, 34(7):1689—-1709,
2010. @)

[18] O. BERMAN, Z. DREZNER, AND D. KrRASS. Cooperative cover location problems:
The planar case. I/E Transactions, 42(3):232-246, 2009.

[19] F.R. ZANJIRANI, A. NASRIN, H. NOOSHIN, H. MAHTAB, AND M. GOH. Cover-

ing problems in facility location: A review. Computers & industrial engineering,
62(1):368-407, 2012. (@)

[20] O. BERMAN, Z. DREZNER, AND D. KRASS. Generalized coverage: new develop-

ments in covering location models. Computers & operations research, 37(10):1675—
1687, 2010. @)

128

REFERENCES

[21] F. PLASTRIA. Continuous covering location problems. Facility location: applications
and theory, 1:37-79, 2002. (@)

[22] J. CURRENT AND M. OKELLY. Locating emergency warning sirens. Decision
sciences, 23(1):221-234, 1992. @)

[23] O. BERMAN, Z. DREZNER, AND D. KRASS. Discrete Cooperative Covering Prob-
lems. J Oper Res Soc, 62(11):2002-2012, Nov 2011.

[24] O. BERMAN. The p maximal cover - p partial center problem on networks. European
Journal of Operational Research, T2(2):432 — 442, 1994.

[25] P. CAPPANERA, G. GALLO, AND F. MAFFIOLI. Discrete facility location and routing
of obnoxious activities. Discrete applied mathematics, 133(1):3-28, 2003. (@)

[26] E. MELACHRINOUDIS. The location of undesirable facilities. In Foundations of
location analysis, pages 207-239. Springer, 2011. @] [6I)

[27] Z. DREZNER, P. KALCZYNSKI, AND S. SALHI. The planar multiple obnoxious
facilities location problem: A Voronoi based heuristic. Omega, 87:105-116, 2019.
01)

[28] A.B. ARABANI AND R.Z. FARAHANI. Facility location dynamics: An overview of

classifications and applications. Computers & industrial engineering, 62(1):408-420,
2012. @

[29] R.Z. FARAHANI, M. STEADIESEIFI, AND N. ASGARI. Multiple criteria facility
location problems: A survey. Applied mathematical modelling, 34(7):1689-1709,

2010. @)

[30] V. VERTER AND A.E. MURAT. S. Nickel and J. Puerto: Location theory: a unified
approach. Mathematical methods of operations research, 66(2):369-371, 2007.

[31] C.S. REVELLE AND H.A. EISELT. Location analysis: a synthesis and survey. Euro-
pean journal of operational research, 165(1):1-19, 2005.

[32] D.B. SHMOYS, E. TARDOS, AND K. AARDAL. Approximation algorithms for facility

location problems. In Proceedings of the twenty-ninth annual ACM symposium on theory
of computing, pages 265-274. ACM, 1997. ()

129

REFERENCES

[33] D. CELIK TURKOGLU AND M. EROL GENEVOIS. A comparative survey of service
facility location problems. Annals of Operations Research, 292(1):399-468, 2020.

[34] M.S. DASKIN. Network and discrete location: models, algorithms, and applications.
John wiley & sons, 2011. (@)

[35] Z. DREZNER AND H. W. HAMACHER. Facility location: applications and theory.
Springer Science & Business Media, 2004. ()

[36] R.F. LOVE, J.J.G. MORRIS, AND G.O. WESOLOWSKY. Facilities location: models &
methods. Publications in operations research. North-Holland, 1988. (@)

[37] A. GHOSH AND G. RUSHTON. Spatial analysis and location-allocation models. Van
nostrand reinhold, 1987. (@)

[38] P. HANSEN, J. HENDERSON, M. LABBE, J. PEETERS, AND J F THISSE. Systems of
cities and facility location. Taylor & francis, 2013. ()

[39] J.F THISSE AND H.ZOLLER. Locational analysis of public facilities. Studies in mathe-

matical and managerial economics. Elsevier, 1983.

[40] G. LAPORTE, S. NICKEL, AND F. SALDANHA-DA GAMA. Introduction to location

science. In Location science, pages 1-21. Springer, 2019. ()

[41] L. CoOPER. Heuristic methods for location-allocation problems. Siam review,
6(1):37-53, 1964.

[42] S.K. JACOBSEN. Heuristics for the capacitated plant location model. European
Jjournal of operational research, 12(3):253-261, 1983. (3]

[43] B. JAYALAKSHMI AND A. SINGH. A hybrid artificial bee colony algorithm for the

cooperative maximum covering location problem. International Journal of Machine
Learning and Cybernetics, 8(2):691-697, 2017.

[44] B. JAYALAKSHMI AND A. SINGH. A swarm intelligence approach for the p-median
problem. International Journal of Metaheuristics, 5(2):136-155, 2016. (5]

[45] J.H. HOLLAND. Adaptation in natural and artificial systems: An introductory analysis
with applications in biology, control and artificial intelligence. University of Michigan
Press, Ann Arbor, MI, 1975. (3] 9} [L1))

130

REFERENCES

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

D. GOLDBERG. Genetic algorithm in search, optimization and machine learning. Read-

ing, MA :Addison-Wesley, 1989. (5)

R. STORN AND K. PRICE. Differential evolution - A simple and efficient adaptive
scheme for global optimization over continuous spaces. Journal of Global Optimiza-
tion, 11:341-359, 1997. (5] [14)

F. GLOVER. Tabu search - part 1. ORSA Journal on Computing, 1:190-206, 1989. (5)
F. GLOVER. Tabu search - part 2. ORSA Journal on Computing, 2:4-32, 1990. @

M. DORIGO, V. MANIEZZO, AND A. COLORNI. Positive feedback as a search strat-
egy, 1991. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,
Milan, Italy. (5)

M. DORIGO, V. O. MANIEZZO, AND A. COLORNI. Ant system: Optimization by
a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 26:29-41, 1996. (9)

N. MLADENOVIC AND P. HANSEN. Variable neighborhood search. Computers &
operations research, 24(11):1097-1100, 1997.

P. HANSEN AND N. MLADENOVIC. Variable neighborhood search: Principles and
applications. European journal of operational research, 130(3):449-467, 2001.

D. KARABOGA. An idea based on honey bee swarm for numerical optimization,

2005. Computer Engineering Department, Erciyes University, Turkey. (5)

M.A. AROSTEGUI, S.N. KADIPASAOGLU, AND B.M. KHUMAWALA. An empirical
comparison of tabu search, simulated annealing, and genetic algorithms for facili-
ties location problems. International journal of production economics, 103(2):742-754,
2006. (B)

N. MLADENOVIC, J. BRIMBERG, P. HANSEN, AND J.A. MORENO-PEREZ. The
p-median problem: a survey of metaheuristic approaches. FEuropean journal of

operational research, 179(3):927-939, 2007. (5)

131

REFERENCES

[57] M.G.C. RESENDE AND R.F. WERNECK. A hybrid multistart heuristic for the

uncapacitated facility location problem. European journal of operational research,
174(1):54-68, 2006. (5)

[58] R.C. MARTIi, P.M. PARDALOS, AND M.G.C. RESENDE. Handbook of heuristics.
Springer, 2018. (6)

[59] R.R. SHARAPOV. Genetic algorithms: basic ideas, variants and analysis. IntechOpen,
2007. (6

[60] T. BLICKLE AND L. THIELE. A mathematical analysis of tournament selection. In

Proceedings of the Sixth International Conference on Genetic Algorithms, 95, pages
9-15. Citeseer, 1995. (6)

[61] J.D. SCHAFFER, D. WHITLEY, AND L.J. ESHELMAN. Combinations of genetic
algorithms and neural networks: A survey of the state of the art. In [Proceedings]
COGANN-92: International Workshop on Combinations of Genetic Algorithms and
Neural Networks, pages 1-37. IEEE, 1992. (9)

[62] M. MITCHELL. An introduction to genetic algorithms. Bradford Books, 1998. (9)

[63] J.E. BAKER. Reducing bias and inefficiency in the selection algorithm. In Proceed-

ings of the Second International Conference on Genetic Algorithms, pages 14-21, 1987.

@l [0

[64] D.E. GOLDBERG AND K. DEB. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Gentic Algorithms, pages 69—93. Morgan
Kaufmann, 1990. (9] [TT))

[65] G. SYSWERDA. Uniform crossover in genetic algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, 3, pages 2-9. Morgan Kaufmann, 1989.

@

[66] L. DAVIS. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

(I3 B9 BT

[67] S. DAS AND P. N. SUGANTHAN. Differential evolution: a survey of the state-of-the-
art. IEEE Transactions on Evolutionary Computation, 15(1):4-31, 2011.

132

REFERENCES

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

R. MALLIPEDDI, P.N. SUGANTHAN, Q. K. PAN, AND M.F. TASGETIREN. Differential

evolution algorithm with ensemble of parameters and mutation strategies. Applied
soft computing, 11(2):1679-1696, 2011. (15))

M. F. TASGETIREN, Q. K. PAN, Y. C. LIANG, AND P.N. SUGANTHAN. A discrete
differential evolution algorithm for the total earliness and tardiness penalties with
a common due date on a single-machine. In Proceedings of the 2007 IEEE Symposium
on Computational Intelligence in Scheduling (SCIS’07), pages 271-278. IEEE, 2007.

(1K)

Q. K. PAN, M. F. TASGETIREN, AND Y. C. LIANG. A discrete differential evolution

algorithm for the permutation flowshop scheduling problem. Computers & Industrial
Engineering, 55(4):795-816, 2008.

M. F. TASGETIREN, Q.K. PAN, P.N. SUGANTHAN, AND Y. C. LIANG. A discrete
differential evolution algorithm for the no-wait flowshop scheduling problem with
total flowtime criterion. In Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (SCIS’07), pages 251-258. IEEE, 2007. (I5] 25))

H. FISHER. Probabilistic learning combinations of local job-shop scheduling rules.
Industrial scheduling, pages 225-251, 1963. (16)

WALLACE B. S. C., FRED W. G., GERALD L. T., AND JOHN D. T. Probabilistic
and parametric learning combinations of local job shop scheduling rules. Technical
Report, Research Memorandum, No. 117, 1963.

E. K. BURKE, M. GENDREAU, M. HYDE, G. KENDALL, G. OCHOA, E. OZCAN, AND
R. Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society, 64(12):1695-1724, 2013. 113

K. CHAKHLEVITCH AND P. COWLING. Hyperheuristics: recent developments. In
Adaptive and multilevel metaheuristics, pages 3—29. Springer, 2008.

J. DENZINGER, M. FucHS, AND M. FucHsS. High Performance ATP Systems by
Combining Several AI Methods. In Proceedings of the 15th International Joint Con-
ference on Artifical Intelligence - Volume 1, IJCAI’97, pages 102—-107, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

133

REFERENCES

[77] P. COWLING, G. KENDALL, AND E. SOUBEIGA. A hyperheuristic approach to
scheduling a sales summit. In Proceedings of the international conference on the

practice and theory of automated timetabling, pages 176-190. Springer, 2000.

[78] E. CARRIZOSA AND B. G. TOTH. Anti-covering problems. In Location Science, pages
115-132. Springer, 2015. (22)

[79] 1. D. MOON AND S. S. CHAUDHRY. An analysis of network location problems with
distance constraints. Management Science, 30(3):290-307, 1984.
49)

[80] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1979. (22] 48)

[81] A. T. MURRAY AND R. L. CHURCH. Solving the anti-covering location problem

using Lagrangian relaxation. Computers & Operations Research, 24(2):127-140,

1997. (22} 23] 24} 34 A9)

[82] B.DIMITRIEVIC, D. TEODOROVIC, V. SIMIC, AND M. SELMIC. Bee colony optimiza-
tion approach to solving the anticovering location problem. Journal of Computing in
Civil Engineering, 26(6):759-768, 2011.

[83] P. R. KHORJUVENKAR AND A. SINGH. A Hybrid Swarm Intelligence Approach
for Anti-Covering Location Problem. In Proceedings of the 2019 IEEE International

Conference on Innovations in Power and Advanced Computing Technologies (i-PACT

2019), 1, pages 1-6. IEEE, 2019. (23] [28] [29] 33| [34] [123)

[84] F. WILCOXON, S. K. KATTI, AND R. A. WILCOX. Critical values and probability
levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected
tables in mathematical statistics, 1:171-259, 1970.

[85] M. R. NIBLETT AND R. L. CHURCH. The disruptive anti-covering location problem.
European Journal of Operational Research, 247(3):764-773, 2015. (34} 35} 36)

[86] S. S. CHAUDHRY, S. T. MCCORMICK, AND I. D. MOON. Locating independent

facilities with maximum weight: Greedy heuristics. Omega, 14(5):383-389, 1986.

(G4 B3B8 53)

134

REFERENCES

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

G. SRIVASTAVA, A. SINGH, AND R. MALLIPEDDI. A Hybrid Discrete Differential
Evolution Approach for the Single Machine Total Stepwise Tardiness Problem with
Release Dates. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation
(CEC 2021), pages 652-659. IEEE, 2021. (34)

G. SRIVASTAVA, A. SINGH, AND R. MALLIPEDDI. NSGA-II with objective-specific
variation operators for multiobjective vehicle routing problem with time windows.

Expert Systems with Applications, 176:114779, 2021.

G. SRIVASTAVA, P. VENKATESH, AND A. SINGH. An evolution strategy based
approach for cover scheduling problem in wireless sensor networks. International

Journal of Machine Learning and Cybernetics, 11(9):1981-2006, 2020. (34)

V. PANDIRI, A. SINGH, AND A. RosSI. Two hybrid metaheuristic approaches for the

covering salesman problem. Neural Computing and Applications, 32(19):15643-15663,

2020. (34, 62)

A.RoOSSI, A. SINGH, AND M. SEVAUX. Focus distance-aware lifetime maximization

of video camera-based wireless sensor networks. Journal of Heuristics, 27(1-2):5-30,

2021. (34, [62)

S. N. CHAURASIA AND A. SINGH. A hybrid evolutionary algorithm with guided

mutation for minimum weight dominating set. Applied Intelligence, 43(3):512-529,

2015. (34)

A. SINGH, A. ROSSI, AND M. SEVAUX. Matheuristic approaches for Q-coverage
problem versions in wireless sensor networks. Engineering Optimization, 45(5):609—
626, 2013.

T. H. GRUBESIC, A. T. MURRAY, W. A. PRIDEMORE, L. P. TABB, Y. L1U, AND
R. WEIL Alcohol beverage distribution control, privatization and the geographic

distribution of alcohol outlets. BMC Public Health, 12:1015, 2012.

ToNY H GRUBESIC AND ALAN T MURRAY. Sex offender residency and spatial
equity. Applied Spatial Analysis and Policy, 1(3):175-192, 2008.

135

REFERENCES

[96] R. L. CHURCH AND J. L. COHON. Multiobjective location analysis of regional
energy facility siting problems. Technical report, Brookhaven National Lab., Upton,
NY (USA), 1976.

[97] R. L. CHURCH AND R. S. GARFINKEL. Locating an obnoxious facility on a network.
Transportation Science, 12(2):107-118, 1978.

[98] E. ERKUT. The discrete p-dispersion problem. FEuropean Journal of Operational
Research, 46(1):48-60, 1990.

[99] J.R. CURRENT AND J. E. STORBECK. A multiobjective approach to design franchise
outlet networks. Journal of the Operational Research Society, 45(1):71-81, 1994.

[100] D. JOSEPH, J. MEIDANIS, AND P. TIWARI. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In Scandinavian

Workshop on Algorithm Theory, pages 326-337. Springer, 1992. (48)

[101] F. BARAHONA, A. WEINTRAUB, AND R. EPSTEIN. Habitat dispersion in forest
planning and the stable set problem. Operations Research, 40(1-supplement-1):S14—
S21, 1992. (@)

[102] Z. DREZNER. The p-cover problem. FEuropean Journal of Operational Research,
26(2):312 - 313, 1986.

[103] R. L. CHURCH AND R. S. GARFINKEL. Locating an obnoxious facility on a network.
Transportation science, 12(2):107-118, 1978.

[104] E. ERKUT AND S. NEUMAN. Analytical models for locating undesirable facilities.
European Journal of Operational Research, 40(3):275-291, 1989.

[105] P. HANSEN AND J. COHON. On the location of an obnoxious facility. Sistemi urbani
Napoli, (3):299-317, 1981. (61)

[106] Z. DREZNER AND G. O. WESOLOWSKY. Obnoxious facility location in the interior
of a planar network. Journal of Regional Science, 35(4):675-688, 1995.

[107] Z. DREZNER AND A. SUZUKI. The big triangle small triangle method for the solu-

tion of nonconvex facility location problems. Operations Research, 52(1):128-135,

2004. (6T)

136

REFERENCES

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

T. DREZNER, Z. DREZNER, AND C. H. SCOTT. Location of a facility minimizing

nuisance to or from a planar network. Computers & Operations Research, 36(1):135—

148, 2009.

Z.. DREZNER AND G. O. WESOLOWSKY. The location of an obnoxious facility with
rectangular distances. Journal of Regional Science, 23(2):241-248, 1983.

M. J. KAISER AND T. L. MORIN. Locating an obnoxious facility. Applied mathematics
letters, 5(3):25-26, 1992.

F. PLASTRIA. Optimal location of undesirable facilities: a selective overview.

JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science,
36(2-3):109-127, 1996. (61)

E. CARRIZOSA AND F. PLASTRIA. Locating an undesirable facility by generalized
cutting planes. Mathematics of operations research, 23(3):680-694, 1998.

M. I. SHAMOS AND D. HOEY. Closest-point problems. In /6th Annual Symposium on
Foundations of Computer Science (SFCS 1975), pages 151-162. IEEE, 1975.

Z. DREZNER, C. H. SCOTT, AND J. TURNER. Mixed planar and network single-
facility location problems. Networks, 68(4):271-282, 2016.

J. M. COLMENAR, P. GREISTORFER, R. MARTi, AND A. DUARTE. Advanced greedy

randomized adaptive search procedure for the obnoxious p-median problem. Euro-
pean Journal of Operational Research, 252(2):432-442, 2016. (61)

T. DREZNER, Z. DREZNER, AND A. SCHOBEL. The Weber obnoxious facility lo-

cation model: A big arc small arc approach. Computers & Operations Research,
98:240-250, 2018.

A. WEBER AND C.J. FRIEDRICH. Alfred Weber’s Theory of the Location of Industries.
Materials for the study of business. University of Chicago Press, 1929.

G. O. WESOLOWSKY. The Weber Problem: History and Perspectives. Computers
& Operations Research, 1(1):5-23, 1993. (61)

R. L. CHURCH. Understanding the Weber location paradigm. In Contributions to
Location Analysis, pages 69-88. Springer, 2019. (61)

137

REFERENCES

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

T. DREZNER, Z. DREZNER, AND P. KALCZYNSKI. Multiple obnoxious facilities
location: A cooperative model. /ISE Transactions, 52(12):1403-1412, 2020.

S. N. CHAURASIA AND A. SINGH. Hybrid evolutionary approaches for the single
machine order acceptance and scheduling problem. Applied Soft Computing, 52:725—
747, 2017. (62)

A. SINGH, A. R0OSSI, AND M. SEVAUX. Matheuristic approaches for Q-coverage

problem versions in wireless sensor networks. Engineering Optimization, 45(5):609—
626, 2013. (62)

K. SINGH AND S. SUNDAR. A hybrid genetic algorithm for the degree-constrained
minimum spanning tree problem. Soft Computing, 24(3):2169-2186, 2020. (62)

K. SINGH AND S. SUNDAR. A hybrid steady-state genetic algorithm for the min-

degree constrained minimum spanning tree problem. European Journal of Opera-
tional Research, 276(1):88-105, 2019.

DAVID E. G. AND KALYANMOY D. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Genetic Algorithms, pages 69-93. Morgan
Kaufmann, 1991.

H.Y. KiM. Statistical notes for clinical researchers: Nonparametric statistical meth-
ods: 2. Nonparametric methods for comparing three or more groups and repeated
measures. Restorative Dentistry and Endodontics, 39(4):329-332, 2014.

J. H. McDONALD. Handbook of biological statistics. sparky house publishing Baltimore,
MD, 2009. (81)

S. L. HAKiMI. Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations research, 12(3):450-459, 1964.

O. KARIV AND S. L. HAKIMI. An algorithmic approach to network location prob-
lems. I: The p-centers. SIAM Journal on Applied Mathematics, 37(3):513-538, 1979.

@3

C. S. REVELLE AND R. W. SWAIN. Central facilities location. Geographical analysis,
2(1):30-42, 1970.

138

REFERENCES

[131] G. CORNUEJOLS, G. L. NEMHAUSER, AND L. A. WOLSEY. A canonical repre-
sentation of simple plant location problems and its applications. SIAM Journal on
Algebraic Discrete Methods, 1(3):261-272, 1980. (83))

[132] ENRIQUE D. AND JOSE M. A neural model for the p-median problem. Computers &
Operations Research, 35(2):404-416, 2008. (83)

[133] S. ELLOUMI. A tighter formulation of the p-median problem. Journal of combinato-
rial optimization, 19(1):69-83, 2010. (83)

[134] K. GHOSEIRI AND S. F. GHANNADPOUR. An efficient heuristic method for capaci-

tated P-Median problem. International Journal of Management Science and Engineer-

ing Management, 4(1):72-80, 2009. (83))

[135] K. FLESZAR AND K. S. HINDI. An effective VNS for the capacitated p-median
problem. European Journal of Operational Research, 191(3):612-622, 2008. (83)

[136] M.J. CANOS, C. IVORRA, AND V. LIERN. An exact algorithm for the fuzzy p-median
problem. European Journal of Operational Research, 116(1):80-86, 1999. (83] [84)

[137] J.M. CADENAS, M.J. CANOS, M.C. GARRIDO, C. IVORRA, AND V. LIERN. Soft-
computing based heuristics for location on networks: The p-median problem. Ap-
plied Soft Computing, 11(2):1540-1547, 2011.

[138] J. R. WEAVER AND R. L. CHURCH. A median location model with nonclosest facility
service. Transportation Science, 19(1):58-74, 1985.

[139] J. BRIMBERG, A. MAIER, AND A. SCHOBEL. When closest is not always the best:

The distributed p-median problem. Journal of the Operational Research Society,
72(1):200-216, 2021.

[140] R. L. CHURCH, M. P. SCAPARRA, AND R. S. MIDDLETON. Identifying critical
infrastructure: the median and covering facility interdiction problems. Annals of
the Association of American Geographers, 94(3):491-502, 2004.

[141] L. V. SNYDER AND M. S. DASKIN. Reliability models for facility location: the
expected failure cost case. Transportation Science, 39(3):400-416, 2005.

B8 [L14 [T17)

139

REFERENCES

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

J. ALCARAZ, M. LANDETE, AND J. F. MONGE. Design and analysis of hybrid

metaheuristics for the reliability p-median problem. European Journal of Operational

Research, 222(1):54-64, 2012. 10T} [124)

C.J. COLBOURN. The Combinatorics of Network Reliability. Oxford University Press,
New York, 1987. (83)

D. R. SHIER. Network reliability and algebraic structures. Clarendon Press, 1991. (85))

M. L. SHOOMAN. Reliability of computer systems and networks: fault tolerance, analysis,
and design. John Wiley & Sons, 2003. (85)

J. E. MURIEL-VILLEGAS, K. C. ALVAREZ-URIBE, C. E. PATINO-RODRIGUEZ, AND
J. G. VILLEGAS. Analysis of transportation networks subject to natural hazards—
Insights from a Colombian case. Reliability Engineering & System Safety, 152:151—
165, 2016. (83)

H. WAKABAYASHI AND Y. IIDA. Upper and lower bounds of terminal reliability of

road networks: an efficient method with Boolean algebra. Journal of natural disaster
science, 14(1), 1992.

Z.P. DU AND A. NICHOLSON. Degradable transportation systems: sensitivity and

reliability analysis. Transportation Research Part B: Methodological, 31(3):225-237,

1997. (83)

R. KONDO, Y. SHIOMI, AND N. UNO. Network evaluation based on connectivity

reliability and accessibility. In Network reliability in practice, pages 131-149. Springer,

2012. (®3)

Y. S. QIAN, M. WANG, H. X. KANG, J. W. ZENG, AND Y. F. L1U. Study on
the road network connectivity reliability of valley city based on complex network.
Mathematical Problems in Engineering, 2012, 2012.

H. A. EISELT, M. GENDREAU, AND G. LAPORTE. Optimal location of facilities on a

network with an unreliable node or link. Information processing letters, 58(2):71-74,

1996. (83)

140

REFERENCES

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

O. BERMAN, D. KrRASS, AND M. B. C. MENEZES. Facility reliability issues in
network p-median problems: Strategic centralization and co-location effects. Op-
erations research, 55(2):332-350, 2007.

L. V. SNYDER, M. S. DASKIN, AND C. P. TEO. The stochastic location model with
risk pooling. European Journal of Operational Research, 179(3):1221-1238, 2007.

P. PENG, L. V. SNYDER, A. LIM, AND Z. L1U. Reliable logistics networks design
with facility disruptions. Transportation Research Part B: Methodological, 45(8):1190-
1211, 2011. (83)

X. WANG AND Y. OUYANG. A continuum approximation approach to competitive
facility location design under facility disruption risks. Transportation Research Part
B: Methodological, 50:90-103, 2013. (85)

S. AN, N. Cur, Y. BAI, W. XIE, M. CHEN, AND Y. OUYANG. Reliable emergency
service facility location under facility disruption, en-route congestion and in-facility

queuing. Transportation research part E: logistics and transportation review, 82:199—

216, 2015. (83)

Y. ZHANG, O. BERMAN, AND V. VERTER. Incorporating congestion in preven-
tive healthcare facility network design. European Journal of Operational Research,
198(3):922-935, 2009.

X. LI, Y. OUYANG, AND F. PENG. A supporting station model for reliable infras-
tructure location design under interdependent disruptions. Procedia-Social and
Behavioral Sciences, 80:25-40, 2013.

O. BERMAN, D. KrRASS, AND M. B. C. MENEZES. Location and reliability problems
on a line: Impact of objectives and correlated failures on optimal location patterns.
Omega, 41(4):766-779, 2013.

D. GADE AND E. A. POHL. Sample average approximation applied to the
capacitated-facilities location problem with unreliable facilities. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(4):259—
269, 2009. (83)

141

REFERENCES

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

N. AYDIN AND A. MURAT. A swarm intelligence based sample average approxima-
tion algorithm for the capacitated reliable facility location problem. International
Journal of Production Economics, 145(1):173-183, 2013.

M. LM, M. S. DASKIN, A. BASSAMBOO, AND S. CHOPRA. A facility reliability

problem: Formulation, properties, and algorithm. Naval Research Logistics (NRL),
57(1):58-70, 2010.

G. CHEN, M. S. DASKIN, Z. J. M. SHEN, AND S. URYASEV. The a-reliable mean-

excess regret model for stochastic facility location modeling. Naval Research Logis-
tics (NRL), 53(7):617-626, 2006.

D. AKSEN AND N. ARAS. A bilevel fixed charge location model for facilities under
imminent attack. Computers & Operations Research, 39(7):1364-1381, 2012.

F. LIBERATORE, M. P. SCAPARRA, AND M. S. DASKIN. Analysis of facility protection
strategies against an uncertain number of attacks: The stochastic R-interdiction
median problem with fortification. Computers & Operations Research, 38(1):357—
366, 2011. (86)

Q. L1, B. ZENG, AND A. SAVACHKIN. Reliable facility location design under disrup-
tions. Computers & Operations Research, 40(4):901-909, 2013.

R. C. LARSON. A hypercube queuing model for facility location and redistricting

in urban emergency services. Computers & Operations Research, 1(1):67-95, 1974.

(K9

R. C. LARSON. Approximating the performance of urban emergency service sys-

tems. Operations research, 23(5):845-868, 1975.

O. BERMAN AND D. KRASS. Facility location problems with stochastic demands

and congestion. Facility location: applications and theory, page 329, 2001.

BADR AFIFY, SUJOY RAY, ANDREI SOEANU, ANJALI AWASTHI, MOURAD DEBBABI,
AND MOHAMAD ALLOUCHE. Evolutionary learning algorithm for reliable facility
location under disruption. Expert Systems with Applications, 115:223-244, 2019.

142

REFERENCES

[171] BADR AFIFY, ANDREI SOEANU, AND ANJALI AWASTHI. Separation linearization
approach for the capacitated facility location problem under disruption. Expert
Systems with Applications, 169:114187, 2021.

[172] W. DAI, G. R. XUE, Q. YANG, AND Y. YU. Transferring naive bayes classifiers for
text classification. In AAAI, 7, pages 540-545, 2007.

[173] S. XU. Bayesian Naive Bayes classifiers to text classification. Journal of Information
Science, 44(1):48-59, 2018.

[174] H. CHEN, S. Hu, R. HUA, AND X. ZHAO. Improved naive Bayes classification
algorithm for traffic risk management. EURASIP Journal on Advances in Signal
Processing, 2021(1):1-12, 2021.

[175] W. WEI, S. VISWESWARAN, AND G. F. COOPER. The application of naive Bayes
model averaging to predict Alzheimer’s disease from genome-wide data. Journal of
the American Medical Informatics Association, 18(4):370-375, 2011.

[176] X. XIE,J. W. K HO, C. MURPHY, G. KAISER, B. XU, AND T. Y. CHEN. Testing and
validating machine learning classifiers by metamorphic testing. Journal of Systems
and Software, 84(4):544-558, 2011.

[177] V. PANDIRI AND A. SINGH. An artificial bee colony algorithm with variable degree
of perturbation for the generalized covering traveling salesman problem. Applied
Soft Computing, 78:481-495, 2019.

[178] Y. KOCHETOV, T. LEVANOVA, E. ALEKSEEVA, AND M. LORESH. Large neighbor-

hood local search for the p-median problem. Yugoslav Journal of Operations Research,

15(1):53-63, 2005. (96, [[12)

[179] J. E. BEASLEY. A note on solving large p-median problems. European Journal of
Operational Research, 21(2):270-273, 1985.

[180] O. BERMAN, D. KRASS, AND M. B. C. MENEZES. Locating facilities in the presence

of disruptions and incomplete information. Decision Sciences, 40(4):845-868, 2009.

(102 [T03)

143

REFERENCES

[181] M. ALBAREDA-SAMBOLA, Y. HINOJOSA, AND J. PUERTO. The reliable p-

median problem with at-facility service. European Journal of Operational Research,

245(3):656-666, 2015. (103 [104] [T06} [T07} [T14} [113] [T17] [TT8}[T19)

[182] T. DAVIDOVIC, D. RAMLIAK, M. SELMIC, AND D. TEODOROVIC. Bee colony opti-

mization for the p-center problem. Computers & Operations Research, 38(10):1367—

1376, 2011. (T08)

[183] V. PANDIRI AND A. SINGH. Two multi-start heuristics for the k-traveling salesman
problem. OPSEARCH, 57(4):1164—1204, 2020. (113)

144

List of Publications

[1]

(3]

[4]

[6]

EDUKONDALU CHAPPIDI AND ALOK SINGH. Discrete differential evolution-based
solution for anti-covering location problem. Proceedings of the 10" International Con-
ference on Soft Computing for Problem Solving (SocProS 2020), Advances in Intelligent
Systems and Computing, 1392: 607-620, 2021, Springer.

EDUKONDALU CHAPPIDI, ALOK SINGH AND RAMMOHAN MALLIPEDDI. Intelligent
optimization algorithms for disruptive anti-covering location problem. To appear in
Proceedings of the 19" International Conference on Distributed Computing and Intelligent
Technology (ICDCIT 2023), Lecture Notes in Computer Science, 2023, Springer.

EDUKONDALU CHAPPIDI AND ALOK SINGH. Evolutionary approaches for the
weighted anti-covering location problem. To appear in Evolutionary Intelligence,

Springer.

EDUKONDALU CHAPPIDI AND ALOK SINGH. An evolutionary approach for ob-
noxious cooperative maximum covering location problem. Applied Intelligence, 52:
16651-16666, 2022, Springer.

EDUKONDALU CHAPPIDI AND ALOK SINGH. A hyper-heuristic based approach
with naive Bayes classifier for the reliability p-median problem. Communicated to

Applied Intelligence, Springer.

EDUKONDALU CHAPPIDI AND ALOK SINGH. Two multi-start hyper-heuristic ap-
proaches for the reliable p-median problem with at-facility service. Communicated

to Operational Research, Springer.

145

euristics for Facility Location
Problems

by Mr. Edukondalu Chappidi

Submission date: 21-Dec-2022 11:44AM (UTC+0530)
Submission ID: 1985379025

File name: 16MCPCO5_thesis.pdf (847.41K)

Word count: 49994

Character count: 224760

<y "& e *54' >e. ‘\: JL\'\Q. W‘L &’(’ e A\emis - L.XLQ-NAJ\V\&
Heuristics for FaC|I|ty Locatlon Problems

ORIGlNALlTY REPORT

‘VT?_/‘IG“Z_L

Qs ey STAS ﬁ"’s
32 23 32 e
% % % e@ T,?fgm atinn Sciences

School of Co

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS i demltg'g%&la%i\%gﬁfgﬂ India.

PRIMARY SOURCES

link.springer.com

InternetSE))urceg 1 1%

"Soft Computlng for Problem Solvmg 7%
Springer Science and Business Media LLC,

2021

Publication

Edukondalu Chappidi, Alok Singh. "An 5
evolutionary approach for obnoxious
cooperative maximum covering location
problem", Applied Intelligence, 2022

Publication

Edukondalu Chappidi, Alok Singh. 20/
"Evolutionary approaches for the weighted ’
anti-covering location problem", Evolutionary
Intelligence, 2022

Publication

Submitted to University of Hyderabad, ‘I o
Hyderabad | 0

Student Paper

n upcommons.upc.edu <1 "
0

Internet Source

"Location Science", Springer Science and <1 y
Business Media LLC, 2019 °
Publication
eprints.nottingham.ac.uk

B IntFe)rnet Source g <1 %

n Lawrence V. Snyder, Mark S. Daskin. <1 .

Reliability Models for Facility Location: The
Expected Failure Cost Case", Transportation
Science, 2005
Publication
escholarship.or

Internet Source p g <1 %

Javier Alcaraz, Mercedes Landete, Juan F. <1 o
Monge. "Design and analysis of hybrid °
metaheuristics for the Reliability p-Median
Problem", European Journal of Operational
Research, 2012
Publication

"Handbook of Heuristics", Springer Science <1 o
and Business Media LLC, 2018 °
Publication

Venkatesh Pandiri, Alok Singh. "Two multi- <1 o
start heuristics for the k-traveling salesman °
problem", OPSEARCH, 2020
Publication
dokumen.pub

Internet Source p <1 %

etheses.whiterose.ac.uk
Internet Source <1 %
"Lo;ation Sciehce", Springer Science and <1 %
Business Media LLC, 2015
Publication
"Simulated Evolution and Learning", Springer <1 o
Science and Business Media LLC, 2014 °
Publication
Sachchida Nand Chaurasia, Alok Singh. "A <1
. . %
hybrid evolutionary approach to the
registration area planning problem", Applied
Intelligence, 2014
Publication
PSutbt#gtlfns in Computational Intelligence, 2008. <1 o
Data Mining, 2015.
Publication g <1 %
B. Jayalakshmi, Alok Singh. "Two swarm <1 .
. . %o
intelligence-based approaches for the p-
centre problem", International Journal of
Swarm Intelligence, 2018
Publication
Lecture Notes in Computer Science, 2007.
Publication p <1 %
. Lecture Notes in Computer Science, 2011. <1
Publication %

afe[kgseo.ﬂgshlngton.edu <1 o

Sumanta Basu, Megha Sharma, Partha Sarathi <1 o
Ghosh. "Metaheuristic applications on °
discrete facility location problems: a survey",
OPSEARCH, 2014
Publication

Ting L. Lei, Daoqgin Tong. "Hedging against <1 o
service disruptions: an expected median °
location problem with site-dependent failure
probabilities", Journal of Geographical
Systems, 2012
Publication

Edmund K Burke, Michel Gendreau, Matthew <1 o
Hyde, Graham Kendall, Gabriela Ochoa, Ender °
Ozcan, Rong Qu. "Hyper-heuristics: a survey
of the state of the art", Journal of the
Operational Research Society, 2017
Publication

Preeti Ravindranath Khorjuvenkar, Alok Singh. <1 o
"A Hybrid Swarm Intelligence Approach for °
Anti-Covering Location Problem", 2019
Innovations in Power and Advanced
Computing Technologies (i-PACT), 2019
Publication

eposioro-unber <7«

"Computer and Information Sciences", <1 o
Springer Science and Business Media LLC, °
2016
Publication

"Foundations of Location Analysis", Springer <1 o
Science and Business Media LLC, 2011 °
Publication

ggiceazilntlons Research Proceedings, 2006. <1 o

Sachchida Nand Chaurasia, Shyam Sundar, <1 o
Alok Singh. "Hybrid metaheuristic approaches °
for the single machine total stepwise
tardiness problem with release dates",

Operational Research, 2016
Publication

Lawrence .V Snyder, Zuo -Jun. Max Shen. <1 o
"Fundamentals of Supply Chain Theory",

Wiley, 2019
Publication
C.S. ReVelle, H.A. Eiselt, M.S. Daskin. "A

> <l
bibliography for some fundamental problem
categories in discrete location science",

European Journal of Operational Research,
2008
Publication
Gaurav Srivastava, Alok Singh, Rammohan <1 o

Mallipeddi. "A Hybrid Discrete Differential

Evolution Approach for the Single Machine
Total Stepwise Tardiness Problem with
Release Dates", 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021

Publication

"Hybrid Metaheuristics", Springer Science and

Business Media LLC, 2010

Publication

<1%

Dasari Kasi Viswanath, Pandiri Venkatesh,
Alok Singh. "Multi-Start Heuristics for the
Profitable Tour Problem", Swarm and
Evolutionary Computation, 2021

Publication

<1%

W
O

hdl.handle.net

Internet Source

<1%

B
o

ALOK SINGH, ASHOK KUMAR GUPTA. "A
HYBRID HEURISTIC FOR THE MINIMUM
WEIGHT VERTEX COVER PROBLEM", Asia-
Pacific Journal of Operational Research, 2011

Publication

<1%

Alcaraz,].. "Design and analysis of hybrid
metaheuristics for the Reliability p-Median
Problem", European Journal of Operational
Research, 20121001

Publication

<1%

Xueping Li, Kaike Zhang. "A sample average
approximation approach for supply chain

<1%

network design with facility disruptions”,
Computers & Industrial Engineering, 2018

Publication

Parallel Problem Solving from Nature - PPSN <1 o
XI, 2010.
Publication

Swarm,. Evoluthnary, an Memetic | <1 o
Computing", Springer Science and Business
Media LLC, 2011
Publication

Alok Singh, Ashok Kumar Gupta. "A hybrid <1

_ . . %

heuristic for the maximum clique problem",
Journal of Heuristics, 2006
Publication
www.rhsupplies.or

Internet Source pp g <1 %
"Al 2018: Advances in Artificial Intelligence",

. . . . <|%
Springer Science and Business Media LLC,
2018
Publication

"Fuzzy Logic Hybrid Extensions of Neural and <1 o
Optimization Algorithms: Theory and °
Applications", Springer Science and Business
Media LLC, 2021
Publication

Venkatesh Pandiri, Alok Singh. "A simple <1 o

hyper-heuristic approach for a variant of

many-to-many hub location-routing problem",
Journal of Heuristics, 2021

Publication

megplanning.gov.in
Intern%tEource g g <1 %
Alok Singh, André Rossi, Marc Sevaux. " <1
-y %
Matheuristic approaches for -coverage
problem versions in wireless sensor networks
", Engineering Optimization, 2013
Publication
John H. Drake, Ahmed Kheiri, Ender Ozcan, <1 y
Edmund K. Burke. "Recent Advances in °
Selection Hyper-heuristics", European Journal
of Operational Research, 2019
Publication
Li, Zichuan, and Paul Schonfeld. "Hybrid <1 o
simulated annealing and genetic algorithm for °
optimizing arterial signal timings under
oversaturated traffic conditions : HYBRID SA
AND GA FOR SIGNAL TIMING OPTIMIZATION",
Journal of Advanced Transportation, 2014.
Publication
Lecture Notes in Computer Science, 2014.
Publication p <1 0/0
Murat Oguz, Tolga Bektas, Julia A. Bennell. <1 o

"Multicommodity flows and Benders
decomposition for restricted continuous

location problems", European Journal of
Operational Research, 2018

Publication

Shyam Sundar, Alok Singh. "A hybrid heuristic <1 o
for the set covering problem", Operational °
Research, 2010

Publication

Gert W. Wolf. "Solving location - allocation <1 o
problems with professional optimization °
software", Transactions in GIS, 2022

Publication

Lecture Notes in Computer Science, 2016.

Publication p <1 %
Ricardo B. Damm, Mauricio G.C. Resende, <1 o
Débora P. Ronconi. "A biased random key °
genetic algorithm for the field technician
scheduling problem", Computers &

Operations Research, 2016
Publication
dspace.nwu.ac.za

m InterEetSource <1 %
epdf.pub

IntErnetg)urce <1 %
riunet.upv.es

. InternetSourcF: <1 %

"Advances in Natural Computation", Springer <1 o
Science and Business Media LLC, 2006 °
Publication

Brankg Dimitrijevic, IVIins Nikolic, Ka.tarina <1 o
Vukadinovic, lvana Vukicevic. "Locating
dangerous goods with constant and variable
impact radius", Vojnotehnicki glasnik, 2016
Publication

DamgaFioqu, Haluk, Dgrya Dinler, Ngr Evin <1 o
Ozdemirel, and Cem lyigun. "A genetic
algorithm for the uncapacitated single
allocation planar hub location problem",

Computers & Operations Research, 2015.
Publication

E Pandiri Venkatesh, Alok Singh. "A Hyper- <1 o
Heuristic Based Artificial Bee Colony °
Algorithm for k -Interconnected Multi-Depot
Multi-Traveling Salesman Problem",

Information Sciences, 2018
Publication

Shyam Sundar, Alok Singh. "Metaheuristic <1 o
Approaches for the Blockmodel Problem", °
IEEE Systems Journal, 2015
Publication
researchrepository.wvu.edu

E Internet Source p y <1 %

E "Operations Research and Health Care", <1 o
Springer Science and Business Media LLC,
2004
Publication

"Soft Computing: Theories and Applications", <1 o
Springer Science and Business Media LLC,
2019
Publication

Breunig, U., V. Schmid, R.F. Hartl, and T. Vidal. <1 o
"A large neighbourhood based heuristic for °
two-echelon routing problems", Computers &
Operations Research, 2016.
Publication

Claudio Contardo. " Decremental Clustering <1 o
for the Solution of -Dispersion Problems to
Proven Optimality ", INFORMS Journal on
Optimization, 2020
Publication

Paola Qarrone, Sergio Mariotti,. Fra.ncesca <1 o
Sgobbi. "Technological Innovation in
Telecommunications: An Empirical Analysis of
Specialisation Paths", Economics of
Innovation and New Technology, 2002
Publication

Patricia Dominguez-Marin. "Heuristic <1 o

Procedures for Solving the Discrete Ordered

Median Problem", Annals of Operations
Research, 04/2005

Publication

Taiser Samer Jasim, Esam Taha Yassen, Sudad <1 o
H. Abed. "A new competitive travelling °
salesmen problem based on metaheuristics",

AIP Publishing, 2022
Publication
library.cuhk.edu.hk

Internets)éurce <1 %

"Evolutionary Computation in Combinatorial <1 o
Optimization", Springer Science and Business °
Media LLC, 2009
Publication

"Evolutionary Computation in Combinatorial <1 o
Optimization", Springer Science and Business °
Media LLC, 2013
Publication
"Hybrid Intelligent Systems", Springer Science

. . <l
and Business Media LLC, 2020
Publication

m Berman, O.. "The minimum weighted covering <1 o
location problem with distance constraints”, °
Computers and Operations Research, 200802
Publication

C.N. Vijeyamurthy. "Literature review of <1 %

covering problem in operations

management", International Journal of
Services Economics and Management, 2010

Publication

Javier Alcaraz, Mercedes Landete, Juan F. <1 o
Monge, José L. Sainz-Pardo. "Strengthening °
the reliability fixed-charge location model
using clique constraints", Computers &

Operations Research, 2015

Publication

Juan A. Diaz, Dolores E. Luna. "Primal and <1 o
dual bounds for the vertex p-median problem °
with balance constraints"”, Annals of
Operations Research, 2016

Publication

] Proceedings of the Institute of Industrial <1 o
Engineers Asian Conference 2013, 2013. °

Publication

"Contributions to Location Analysis", Springer <1 .
Science and Business Media LLC, 2019 L

Publication

El
Ul

"Handbook of Metaheuristics", Springer <1)
Science and Business Media LLC, 2010 &

Publication

B. Jayalakshmi, Alok Singh. "A hybrid artificial
bee colony algorithm for the p-median

problem with positive/negative weights",
OPSEARCH, 2016

Publication

<1%

87

Harris, Matthew, Regina Berretta, Mario
Inostroza-Ponta, and Pablo Moscato. "A
memetic algorithm for the quadratic
assignment problem with parallel local
search", 2015 IEEE Congress on Evolutionary
Computation (CEC), 2015.

Publication

<1%

Mario Diaz, Hao Wang, Flavio P. Calmon,
Lalitha Sankar. "On the Robustness of
Information-Theoretic Privacy Measures and
Mechanisms", IEEE Transactions on
Information Theory, 2020

Publication

<1%

Nasser R. Sabar, Masri Ayob, Graham Kendall,
Rong Qu. "Automatic Design of a Hyper-
Heuristic Framework With Gene Expression
Programming for Combinatorial Optimization
Problems", IEEE Transactions on Evolutionary
Computation, 2015

Publication

<1%

Reza Zanijirani Farahani, Nasrin Asgari,
Nooshin Heidari, Mahtab Hosseininia, Mark
Goh. "Covering problems in facility location: A
review", Computers & Industrial Engineering,
2012

Publication

<1%

Zhilei Ren, He Jiang, Jifeng Xuan, Yan Hu,
Zhongxuan Luo. "New Insights Into

<1%

Diversification of Hyper-Heuristics", IEEE
Transactions on Cybernetics, 2014

Publication
imentaraddod.com 1
Internet Source < %

people.sc.fsu.edu <1 0%

Internet Source

O
B

researchbank.swinburne.edu.au <1 o

Internet Source

Exclude quotes On Exclude matches < 14 words

Exclude bibliography On

