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1.1 Cancer 

Cancer is one of the most dreaded disease caused when normal cells transform into tumour 

cells leading to abnormal cell growth or division through a multi-stage process. It especially 

arises from a pre-cancerous lesion to form a malignant tumour (Roy & Saikia 2016; 

WHO).  Cancer cells continue unregulated proliferation instead of responding appropriately to 

the signals which control normal cell behaviour, and they simultaneously invade surrounding 

normal tissues and consequently migrating to other body parts (metastasize) through the blood 

vascular system (Cooper, 2000). Cancer can arise as a result of abnormal proliferation of cells 

from different parts of the body, and based on the originating cell types, there are more than a 

hundred distinct types of cancer, which generally differ in their behaviour and responses to 

applied treatments. Tumors are classified into benign and malignant tumors based on their 

characteristics. Benign tumors remain confined in their primary location without invading the 

surrounding normal tissues of the body and also do not spread to distant body part. Benign 

tumors are known to grow slowly and have distinct borders. However, malignant tumors have 

characteristics of both invading the surrounding normal tissues and spreading throughout the 

body (metastasis) through the circulatory or lymphatic systems. Malignant tumors are 

classified as cancer because they are significantly more harmful than benign tumors due to their 

capacity to infiltrate and metastasis. While benign tumors can be removed surgically, it is tough 

to treat malignant tumors due to their frequent relapse and spreading to distant body sites 

(Cooper, 2000; Kumar et al., 2015; Patel, 2020). 

1.2 How cancer arises? 

Cancer development and progression is a complex process which arises due to the aggregation 

of numerous genetic alterations, suggesting that cancer is a genetic disease which involves a 

host of functional and genetic abnormalities (He et al. 2007; Semi & Yamada 2015; Vogelstein 

& Kinzler 2004). These abnormalities can include various genetic and epigenetic modifications 
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which induces chromosomal instability leading to the initiation and promotion of cancer 

development (Semi & Yamada 2015). For instance, overall changes in degrees of DNA 

methylation (Feinberg & Vogelstein 1983), and also site-specific DNA hyper- methylation at 

promoters of certain genes are one of the most frequently analysed epigenetic alterations 

associated with increased cancer frequency (Feinberg & Tycko 2004; Ushijima 2005). 

Alterations in the pattern of histone modification, which includes acetylation, methylation and 

phosphorylation plays a significant role in tumorigenesis (Nowacka-Zawisza & Wiśnik 2017), 

as well as in the development of genomic mutations (He et al. 2007) and other insults that can 

be conductive to the expression or suppression of target genes in tumors. Genomic and 

epigenetic abnormalities increases oncogenic signals that alters the regulation of downstream 

target genes transcriptionally, thereby resulting in changes in the transcriptional regulatory 

networks. The transcriptional changes caused by oncogenic signals could be a secondary effect 

of the genetic and epigenetic alterations (Semi & Yamada 2015). 

1.2.1 Risk factors associated with genetic and epigenetic changes in cancer 

A cancer risk factor can be anything that increases the feasibility of growth of cancer in human 

body. Cancer risk factors may incorporate exposure to chemical carcinogens, or other 

substances and life style etc. Risk factors associated with cancer also include things like age 

and family history which people cannot control. Family history of some cancers can be an 

indication of a possible inherited form of cancer (13). These risk factors mainly grouped into 

two mutually exclusive modules: intrinsic and non-intrinsic risk factors (Wu et al. 2018). 

i. Intrinsic cancer risk factors: It is an inevitable natural mutations that arises because of 

random errors during DNA replication and confers specific attribute to the human being. 

Intrinsic risk of cancer occurs in all dividing cells due to the basal mutation rate. Intrinsic 

risk factors are unmodifiable and unavoidable. 
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ii. Non-intrinsic cancer risk factors: Owing to their versatile mechanism, non-intrinsic 

factors include two groups, as exogenous and endogenous risk factors. 

a) Exogenous factors are chemical carcinogens (mutagen), xenobiotic, viruses and lifestyle 

associated factors (e.g. smoking, nutrient intake, hormone therapy and physical activity) 

which are exogenous (extrinsic) to the host. Tobacco smoke for lung cancer, UV radiation 

for skin cancer, and viruses for cervical and liver cancer have been identified as exogenous 

cancer risk factors (Wu et al., 2018). These factors are modifiable non-intrinsic factors. 

b) Endogenous factors are known as partially modifiable factors and associated with the 

features of an individual (e.g., immune and DNA damage response, hormone levels) and 

impact on the control of cell growth and genomic integrity.  

Exogenous (environment) and endogenous (hereditary/genetic) risk factor direct to 

complex endogenous activity such as ageing, inflammation and obesity, these processes 

also influence the steroid hormones level in an individual, which could have a role in breast 

cancer. 

1.3 Worldwide cancer statistics 

Cancer is a serious worldwide public health issue and one of the leading cause of morbidity 

and mortality in the world. With about 10 million deaths reported in 2020 (Fig.1B), one among 

the six deaths was from cancer. The most frequent cancer incidence reported globally are; 

breast, lung, colon, rectum and prostate cancers (WHO; Ferlay et al. 2020; Sung et al. 2021). 

Almost 1.3 million new cases and 8.5 lakh deaths were reported in India in the year 2020 (Fig. 

1E). 
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Figure 1: Global cancer statistics. A) Worldwide cancer incidence, B) Worldwide death due to 

cancer, C) Most prevalent cancer worldwide, D) Cancer incidence in India, E) Top 10 cancer incidence 

and mortality in India. 
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1.4 History and origin of cancer 

A Greek physician Hippocrates (also known as “Father of Medicine” 460-370 BC) for the first 

time called cancer as a disease of uncontrolled cell division. He coined the terms ‘carcinoma’ 

(meaning crab in Greek) and ‘carcinos’ and to narrate cancer-forming and non-cancer forming 

tumors, respectively. The description of disease was named after the crab whose finger-like 

projections resembled the spreading from a cancer called to mind imitated the shape of a crab. 

A Roman physician, Celsus (28-50 BC), translated the crab (Greek term) into cancer. Later 

Galen (130-200 AD), another Greek physician stated tumors by using the word oncos (Greek 

for swelling). Today, the terminology coined by Galens (oncos) is widely used to designate 

cancer specialists (oncologists) while the malignant tumors are still designated by the crab 

(carcinos) analogy proposed by Hippocrates and Celsus (18).Though cancer has been a cause 

of great pain for humanity since time immemorial, its incidences have substantially increased 

in recent times because of factors like; an ageing population, rise in number of exogenous 

carcinogens, risky health behaviours, etc (Faguet, 2015). 

1.5 Cancer treatment strategies 

Cancer is one of the most dominating disease in the world and in the past, many therapies have 

come into existence for cancer treatment. Currently, there are various methods being used for 

cancer therapy. The kinds of treatment that a patient receive depend on what type of cancer 

they contains and its stage. The most common cancer therapies are chemotherapy, targeted, 

surgery, and radiation. Other therapies include hormonal therapy, immunotherapy, laser, etc 

(19-21). 

i. Chemotherapy: In chemotherapy, drugs may be given orally or intravenously to kill 

cancerous cells. Two different drugs can be given together at the same time or one after the 

other at different time points. Chemotherapy is being used to cure cancer by shrinking it to 

stop or slow down its growth and thereby preventing cancer from spreading. Chemotherapy 
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is being used to treat a variety of cancers worldwide. For some cancer patients, 

chemotherapy may be the only option for cancer treatment that they can receive. But most 

often, patients also receive other treatments along with chemotherapy. The types of therapy 

that patients need its depends on the type of cancer they have, if the cancer has spread or 

migrated, and if they have other health issues (19-21). 

ii. Targeted therapy: This is a target-specific therapy for some cancers, where most cancer 

patients carry a target for a certain drug, so they can be treated with that drug. Targeted 

therapy is a method of cancer treatment that could use either small-molecule drugs 

or monoclonal antibodies that targets proteins to stop the process of growth, division, and 

spread of cancer by triggering cancer cells to undergo cell death on their own or kill cancer 

cells directly in the body. This therapy has also become the foundation of precision 

medicine. As in the case of targeted therapy, the specific targets within the cancer cells are 

attacked, and little to no harm is caused to the normal cell. These targeted protein molecules 

play a pivotal role in the growth and survival of cancer. Using these targets, the drug 

molecules paralyzed the spreading of cancer cells (19-21).  

iii. Surgery: It is a commonly used therapy for a variety of cancers. This therapy works best 

for solid tumors that are contained in one area. Surgeons remove out the bulk of cancerous 

cells (tumors) and also some of the adjacent normal tissue from the patient's body through 

the surgical operation. Sometimes, surgery is also done to relieve the consequences or side 

effects caused by a tumor. Surgery is not applicable for blood cancer such as leukemia or 

for metastasized cancers (19-21). 

iv. Radiation therapy:  It is also known as radiotherapy and is being used for cancer treatment 

that applies a heavy dose (high frequency) of radiation to kill or slows down the growth of 

cancerous cells by damaging their DNA and thus shrink tumors. Cancer cells stop growing 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045671&version=Patient&language=English
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or die whose DNA is damaged from where it cannot be repaired, they are broken down and 

eliminated by the body. Mostly x-rays or radioactive seeds have been used in radiotherapy 

to destroy the cancer cells. Cancer cells grow and divide quicker in compare to healthy cells 

in the human body. Radiotherapy destroys or kills cancer cells more than normal healthy 

cells because radiation is more harmful or susceptible to fast-growing/dividing cells. This 

type of therapy arrests the growth and division of cancer cells and then directs to cell death 

instead of killing cancer cells right away. This type of therapy may take days or weeks 

before causing enough damage in the DNA of cancer cells to die. Radiation therapy is 

categorized into two major groups: External beam is the most frequent form of radiotherapy 

that uses X-ray radiation or particles projected at the tumor tissue from the outside of the 

body to kill cancer cells. Internal beam radiotherapy delivers radiation inside the body via 

radioactive seeds (pills or liquid) placed within or near the tumor through a vein 

(intravenous). 

v. Hormonal therapy: It is a type of treatment used to treat majorly those cancers which are 

fuelled by hormones and are also called endocrine therapy. Surgery and drugs help in the 

stoppage or slowing down the cancer growth, are being used to stop the natural endocrine 

hormones from functioning on the organs which acquires hormones to grow. The surgery 

involves the removal of hormone-making organs, like ovaries and testes. Endocrine therapy 

is primarily used to treat cancer, where it decreases the chances of relapse of cancer and 

blocks or slows down its growth and survival, and eases cancer symptoms that mostly used 

to bring down or restrict symptoms of men’s prostate cancer who are incapable of 

having surgery or radiotherapy. Endocrine therapy is being used to treat mainly prostate, 

ovarian, and breast cancers which uses steroid hormones to grow. Along with other cancer 

treatments, hormone therapy is one of the most frequently used therapy. 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045022&version=Patient&language=English
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vi. Immunotherapy: Immunotherapy is another type of treatment to cure cancer that boosts 

the immune system to fight against cancer. Immunotherapy basically depends on the ability 

of the human body to fight against infection and other diseases. It uses immune cells, e.g., 

white blood cells and tissues of the lymph system in the body, to promote a stronger 

immune system to work in a more powerful manner or attacking way to fight against cancer. 

Immunotherapy is used to stop or slow down the cancer cell's growth, preventing from 

metastasizing of cancer cells to distant parts of the human body and remove the cancer cells 

by boosting the ability of the immune system. Immunotherapy is a form of biological 

therapy that uses substances (immune cells) made in living organisms to cure cancer. 

Various type of immunotherapies is being used for cancer treatment which includes; 

immune checkpoint inhibitor, immune system modulators, T-cell transfer therapy and 

monoclonal antibody. Immunotherapy can be given orally (pills or capsules), intravenously 

(directly into a vein), topical (through cream rub on the skin) and intravesical (directly 

injected into the bladder). Even though the immune system is well designed to stop or 

reduce the growth of cancer, however, the cancer cells find ways to avoid destruction by 

the immune system through different genetic modifications, thereby decreasing their 

visibility, having inconspicuous surface proteins, or by changing the biochemistry of the 

normal cells around them (19-21). 

Despite these advances in treatment and also being a promising option to cure cancer, currently, 

about 90% of chemotherapy failures happen during the invasion and migration of cancers and 

these failures are majorly due to the occurrence of drug resistance in cancer cells (Mansoori et 

al. 2017; Longley & Johnston 2005). 
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1.6 Drug resistance in cancer 

Drug resistance is a widely-known incident which develops due to the inability of anticancer 

drugs to cure cancer because of restricted effectiveness (Holohan et al. 2013). The concept of 

drug resistance was initially observed in microbes when bacteria were observed to show 

resistance to some particular antibiotics, but later, a similar type of mechanisms have been 

found in several other diseases, including cancer (Housman et al. 2014). Furthermore, various 

major cancer treatments, including chemotherapy, surgery, radiotherapy, immunotherapy and 

a combination of therapy, are being used as promising cancer treatments as selective therapies 

based on the stronger laws and principles of biology and molecular genetics in the tumor 

development (Urruticoechea et al. 2010; Baskar et al. 2012; Damin & Lazzaron 2014; Khalil 

et al. 2016). A large number of malignant tumor cells become resistant to the drug in the 

chemotherapy and later the administration of a certain drug. So, drug resistance in the field of 

cancer remains a major problem and is also responsible for most relapses and death due to 

cancer (Mansoori et al. 2017). There is a diverse range of possible factors and mechanisms 

involved in cancer drug resistance, including genetic mutations, epigenetic changes, alteration 

in drug metabolism, increased rate of drug efflux, and several other cellulars and molecular 

mechanisms (Wang et al. 2019; Holohan et al. 2013). 

1.6.1 Type of drug resistance 

Resistance to chemotherapeutic treatment is mainly categorized into two broad groups, which 

are the following. (Fig. 2). 

a) Intrinsic drug resistance (IDR): Drug resistance primarily or naturally present before 

receiving chemotherapy and which is mediated by pre-existing elements in the bulk of 

malignant tumor cells that make the therapy ineffective is referred to as intrinsic drug 

resistance (Holohan et al. 2013). Intrinsic resistance, also defined as innate resistance, 

arises because of naturally present (first-line) mutation, tumors heterogeneity, and 

activation of various intrinsic pathways against anticancer drugs, and this type of drug 
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resistance generally exist in cancer before treatment due to mutation in drug target genes 

having a crucial role in tumor growth or apoptosis (Wang et al. 2019). For example, Snail 

and Slug suppressed p53-mediated apoptosis in ovarian cancer to induce radioresistance 

and chemoresistance (Kurrey et al. 2009). 

b) Acquired drug resistance (ADR): ADR may arise during or post chemotherapeutic drug 

treatment of cancer cells that were sensitive in the beginning, as well as through many other 

adaptive responses (Holohan et al. 2013). It can be because of secondary proto-oncogene 

activation, altered expression of drug targets, or mutations in target protein and tumor 

microenvironment changes in the latter part of treatment (Wang et al. 2019). Acquired 

resistance appears in cancer when an advance mutation in drug targets alters their molecular 

structures; as an example, gatekeeper mutation in the oncogenic kinase domain of BCR-

ABL1 (T315) developed imatinib (STI-571) resistance in chronic myeloid leukaemia 

(CML) patients (Gorre et al. 2001), combined loss of function of TP53 and RB1 induces 

enzalutamide resistance and increase cellular plasticity in prostate cancer (Mu et al. 2017).  

Although, there are various other mechanisms which can promote drug resistance in human 

cancer, and it could be intrinsic or acquired resistance. 
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Figure 2: Drug resistance mechanism in cancer. Intrinsic drug resistance and acquired drug 

resistance. (Dai et al., 2020) 

1.6.2 Mechanisms induce drug- resistance in cancer 

i. Drug Efflux: It is one of the most widely known processes to induce drug resistance in 

cancer by enhancing drug efflux, which involves the reduction in drug accumulation. 

Transmembrane transporter proteins from the ATP-binding cassette (ABC) transporter 

family are known to license drug efflux and are crucial regulators at the plasma membranes 

of non-tumor cells. Apart from human cells, ABC transporter family proteins are also 

present in other phyla, where they play a key role in the transport of a variety of substances 

over cell membranes (Housman et al. 2014). For example, ABCC2 and ABCC3 are 

transporter proteins which transport a variety of chemotherapeutic agents, such as 

etoposide, cisplatin and doxorubicin, and their overexpression induces multidrug resistance 

in cancer (Folmer et al. 2007; Balaji et al. 2016). 

ii. DNA damage repair: A variety of anticancer drugs induce DNA damage, and it could be 

either directly or indirectly that causes cancer drug resistance, such as platinum-based drugs 

and topoisomerase inhibitors, respectively. Upon DNA damage by drugs, the cells respond 

either by the function of repair or cell death. Therefore, the efficiency of DNA-damaging 
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drugs extensively depends on the capacity of DNA damage repair by cancer cells (Holohan 

et al. 2013). For example, many genes, such as FEN1, FANCG and RAD23B, upregulated 

in human colon cancer resistant to 5-FU, involved in DNA repair (De Angelis et al. 2004). 

A tumor suppressor protein p53 expression induced by 5-FU treatment in response to DNA 

damage leads to either repair or induced cell death (De Angelis et al. 2006). A mutation in 

tumor suppressor protein P53 induced drug resistance by disrupting DNA-damage-induced 

cell cycle arrest (Fan et al., 1994). 

iii. Cell death inhibition: As the apoptosis and autophagy are two central regulatory 

mechanisms that cause cell death. Wherein these activities are hostile to each other, and 

both of them contribute to programmed cell death. Apoptosis is known to have two well-

established pathways: an intrinsic pathway where caspase-9, Akt and B-cell lymphoma 2 

(BCL-2) protein family members play a key role, facilitated by the mitochondria activation, 

whereas the presence of death receptors on the cellular surface facilitates extrinsic pathway. 

Both intrinsic and extrinsic pathways finally merge and guide to apoptosis through the 

activation of downstream protein caspase-3 (Housman et al. 2014). Mutations, 

amplifications, overexpression and chromosomal translocation of these protein-coding 

genes have been widely associated with a diverse group of malignant tumors and 

chemotherapy and targeted therapy resistance (Holohan et al. 2013). Earlier studies 

demonstrate that BCL-2 overexpression induces resistance to the cytotoxic 

chemotherapeutic agent in human small-cell lung cancer (Sartorius & Krammer et al. 

2002). In contrast, autophagy is a lysosomal degradation process to maintain cellular 

biosynthesis, where cellular organelles and protein degradation take place (Holohan et al. 

2013). Autophagy arises in an acidic pH of lysosome due to phagolysosomal death. Drugs 

such as chloroquine and its derivatives increase the pH of lysosome to inactivate its 
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digestive enzymes to avert this process and play an important role in inhibiting autophagy-

dependent resistance to chemotherapy (Sasaki et al. 2010). 

iv. Epigenetic Alterations caused drug resistance: Epigenetic alterations are an emerging 

and important mechanism that contributes to cancer drug resistance during chemotherapy. 

Growing evidence of epigenetic modifications engaged in the evolution of cancer drug 

resistance brought people’s attention to it, which includes the rise in drug efflux, increased 

DNA repair, and altered cell death (Wang et al. 2019). Epigenetic modifications include 

alterations related to DNA methylation, histone modification through acetylation or 

methylation, chromatin remodeling, and non-coding RNA. For instance, the demethylation 

of an oncogene at the promoter region of DNA would induce gene expression that caused 

drug resistance in cancer. A previous study suggests that a G-actin monomer binding 

protein, thymosin β4 (Tβ4), aberrantly expressed due to demethylation and active 

modification of histone H3 at the promoter region, is responsible for antiangiogenic therapy 

resistance by the acquisition of characteristics like stem cell in a hepatocellular carcinoma 

cell line (Ohata et al. 2017).  

v. Tumor cell heterogeneity in cancer: Apart from the drug resistance development in 

cancer cells by the various vital mechanisms discussed above, heterogeneity of the tumor 

cell population is another aspect that may cause therapeutic resistance in cancer by 

extending cancer relapse. Studies reveal that within the heterogeneous population of cancer 

cells, a fraction of cells possess stem cell-like characteristics that are generally drug 

resistant. Along with that, a small proportion of some adult malignant cells also have the 

potency to feature drug resistance.  

In cancer treatment, a drug kills only those cancer cells which are drug-sensitive, and drug-

resistant cancer cells remain alive and may expand cancer. A few of these drug-resistant cancer 

cells may migrate via the vascular system and be able to form a new tumor in a distant part of 
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the body. However, the heterogeneous population of cancer cells can be seen while in 

circulation or even in solid tumors (Housman et al. 2014). For example, an early study 

determined two coexisting dominant clones of acute myeloid leukemia (AML), where one 

clone of AML was sensitive to the drug while the other clone was resistant. So, there is a 

possibility that relapse of this AML disease in patients later in drug treatment may be the result 

of the cancer cell growth due to the presence of drug-resistant clones (Parkin et al. 2013). 

In order to conquer drug resistance, a large number of cancer genomic biomarkers have been 

identified in cancer, which is strongly associated with the effectiveness of an anticancer drug 

in cancer cell lines (Garnett et al. 2012). High throughput screening of anticancer drugs against 

established cancer cell lines for therapeutic drug sensitivity and resistance patterns anticipate 

an approach to pinpoint proper cancer subtypes and key biomarkers that may direct to the initial 

phase of clinical trials for a variety of novel therapeutic compounds to undergo for drug 

development. To reveal clinically relevant gene-drug interactions, a large number of new 

anticancer drug molecules have been used in screening at a massive amount against a broad 

range of human cancer cell lines (Iorio et al. 2016; O'Driscoll & Clynes 2006). Due to the 

limitation of an imperfect understanding of the landscape of driver genes in cancer, earlier 

screening of drugs was laborious work. But now, it is possible to view drug effectiveness in 

such models through the lens of clinically meaningful oncogenic alterations. Such kind of 

studies on gene/protein-drug associations is key in identifying and rectifying the complication 

of acquired drug resistance in cancer and in proposing novel therapeutic gene/protein 

biomarkers. 

Based on these findings of biomarkers in different types of drug-resistant cancers, we aim to 

study and identify predictive biomarkers in mutant NRAS pan-cancer systems, for which no 

common biomarkers have been identified. 
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1.7 RAS and NRAS (Neuroblastoma RAS viral oncogene homolog) protein 

An intensive search for the key genes found to be frequently involved in cancer drug resistance 

led us to the RAF-RAS family of genes. Among the proto-oncogenes, RAS proto-oncogenes 

(HRAS, KRAS and NRAS) are a family of GDP/GTP-regulated switches that play a significant 

role in controlling the activity of various key signaling pathways required for survival and cell 

growth (Houben et al. 2004; Irahara et al. 2010;). RAS proto-oncogenes are frequently 

expressed in human cancer and remain constitutively activated due to point mutations, while 

mutated RAS family genes are present in 20% of human cancers and widely contribute to tumor 

growth, programmed cell death, invasion, and induce the formation of new blood vessels and 

also involved in inducing the drug resistance (Downward 2003; Irahara et al. 2010). In human 

cancer, KRAS accounts for about 85% of all RAS mutations, NRAS cover about 15% 

and HRAS holds for less than 1% of mutations, and RAS family genes mutations are highly 

tumor-specific (Downward 2003). KRAS is reported to be highly mutated in lung, pancreatic, 

endometrial, colorectal, biliary tract, cervical and colon cancer, while the highest incidence of 

NRAS mutation is found in myeloid leukaemia, melanoma, bladder, neuroblastoma and thyroid 

cancer, etc. (Schubbert et al. 2007; Lau & Haigis 2009). The most frequent oncogenic 

mutation in RAS family genes (including NRAS) occurs at codons G12, G13 and Q61 

(Schubbert et al. 2007). 

 

1.7.1 NRAS signaling pathway 

NRAS proteins bind with GTP to initiate the signal by activating various downstream 

“effector” pathways, such as RAF→MEK→ERK and PI3K→AKT cascades (Fig. 3) (Bertoli 

et al. 2019; Irahara et al. 2010). Protein kinases encoded by the RAF family genes mediate 

cellular responses to growth signals and are regulated by activated RAS (Houben et al. 2004).  
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Figure 3: Schematic representation of NRAS signaling pathway. NRAS protein is activated 

(NRAS-GTP) by guanine nucleotide exchange factors and inactivated (NRAS-GDP) by GTPase-

activating proteins. NRAS gene/protein mutation impairs the GTPase activity and remains in a 

constitutively activated state. Active NRAS activates downstream molecules, in turn, Ral/GEF, 

MEK/ERK and PI3K/AKT pathways (Modified from Bertoli et al., 2019).  

 

A previous study suggests that mutations in NRAS or BRAF are highly associated with the 

significantly declined survival rate of patients with metastatic cancer (Houben et al. 2004). 

While NRAS secondary mutation is linked with the mechanisms directly involved in cancer 

drug resistance (Le et al. 2013). Le et al. found that acquired Vemurafenib-resistance mediated 

by a secondary mutation in NRAS in melanoma cells harbouring BRAF mutation, where PB04 

inhibited ERK1/2 phosphorylation.  Experiments with NRAS mutant cells showed apoptotic 

stress, which suppresses apoptosis and also induces drug resistance in growing cancer (Wang 

et al. 2013; Haigis et al. 2008; Le et al. 2013). RAS-targeted therapy has long been elusive 

(Healy et al. 2021). Because of the immensely high affinity of NRAS toward nucleotides like 
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GTP and GDP and the high intracellular concentrations of GTP, mutated NRAS remains 

constitutively active; hence it’s very difficult to directly target mutant NRAS protein. Hence, 

the development of drugs for mutant NRAS is largely unsuccessful, and currently, there is no 

targeted therapy that has been approved for NRAS- mutant protein in cancer (Johnson & 

Puzanov 2015). Some drugs have been developed with the potential to treat NRAS-mutant 

cancers, such as the MEK inhibitor binimetinib was used for NRAS-mutant melanoma, went 

under phase III trial but due to no difference in overall survival, did not get approval for NRAS-

mutant melanoma treatment (Dummer et al. 2017; Garcia-Alvarez et al. 2021), LXH254 is a 

pan-RAF inhibitor which has antitumor activity in preclinical NRAS-mutant models and 

completed Phase I clinical trial study by February 2022 in patients with solid tumors harboring 

MAPK pathway alterations (https://clinicaltrials.gov/ct2/show/NCT02607813). At present, to 

the best of our understanding, there is no targeted drug therapy that has yet been approved for 

the cancers harbouring NRAS mutation, and several therapeutic inhibitors are currently under 

investigation. Even after years of extensive research, several candidates under investigation, 

and vast knowledge of signaling and associated drug-kinase interactions, not a single targeted 

therapy has been found to be supportive for NRAS-mutant cancers (Boespflug et al. 2017; 

Garcia-Alvarez et al. 2021). 

It is widely known that the binding of RAS effector proteins to the RAS-GTP complex initiates 

the signal by activating a variety of downstream pathways that act as an effector, such as the 

MAPK and PI3K signaling cascades (Rajalingam et al. 2007). Hence, in order to screen for 

druggable targets, we proposed our hypothesis that the genes/proteins other than NRAS 

associated with the MAPK signaling pathway and are in direct or indirect linked with NRAS 

might be serve as promising targets.  Further, understanding the regulatory environment of 

such druggable targets would be crucial to circumvent the effects of refractory mutant NRAS 

in cancer drug resistance.  

https://clinicaltrials.gov/ct2/show/NCT02607813
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Towards this, to understand the regulation of biomarkers in mutant NRAS-harbouring drug-

resistant pan-cancer systems. Further, we focused on the identification of newly emerging key 

regulators, such as long non-coding RNAs (lncRNAs), to pinpoint key master regulators of 

selected coding biomarkers genes, apart from the omnipresent proteins. LncRNAs are known 

as new molecular players in cancer, acting as key regulators of coding gene expression. 

LncRNAs may directly or indirectly regulate pan-cancer drug sensitivity and resistance through 

their actions on such predictive biomarker targets.  

This study aimed to probe the possible functional roles of predictive coding biomarkers as well 

as their regulatory mechanisms in the drug-resistant pan-cancer system by employing 

microarray data and drug response (sensitivity) data from the updated database Genomics of 

Drug Sensitivity in Cancer (GDSC) and The Cancer Genome Atlas (TCGA). We also 

constructed various biological networks such as gene co-expression, protein-protein 

interaction, and regulatory networks and analyzed the network using methods both 

qualitatively and quantitatively (Mishra, 2014) to pinpoint probable biomarkers.  

Further, comprehensive studies on the regulation of these druggable targets by lncRNAs at the 

mRNA level. This provides a new insights into their regulatory pattern and mechanisms of 

these lncRNAs. These insights are highly expected to help in improving the pan-cancer drug 

sensitivity to these selected drugs and are also useful in drug repurposing studies utilizing our 

chosen target. 
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2.1 Databases 

A. Genomics of drug sensitivity in cancer  

The GDSC is a wellcome funded joint collaborative project of The Cancer Genome Project at 

the Wellcome Sanger Institute and the Center for Molecular Therapeutics, Massachusetts 

General Hospital Cancer Center. The expertise from both places in this collaboration has 

focused toward the aim of identifying cancer biomarkers which can be used to identify 

genetically elucidated groups of patients in response to cancer treatment. 

The GDSC database (www.cancerRxgene.org) is established to provide an information on the 

molecular properties of cancer cells that control drug response. GDSC carry and annotates 

massive amount of datasets related to drug sensitivity in cancer cell lines, and especially these 

data are linked with genomic information in detail to facilitate the molecular biomarkers 

discovery of drug response. The GDSC database basically describes three types of datasets are 

following;  

i. Drug sensitivity data in cancer cell lines: The drug sensitivity (IC50) data of cancer cell 

lines are generated from an ongoing high-throughput drug screened against a collection of  

>1000 cell lines at the Wellcome Trust Sanger Institute (WTSI)  by the Cancer Genome 

Project and at Massachusetts General Hospital by the Center for Molecular Therapeutics. 

Anticancer therapeutics compounds that are selected for screening include both cytotoxic 

chemotherapeutics and targeted agents. These compounds are either approved for clinical 

use, under clinical development and investigation, or experimental drugs in the early phase 

of development (Yang et al. 2013). 

ii. Genomics datasets for cancer cell lines: The total collection available for drug screening 

includes around 1000 cancer cell lines from different tissue types. These cell lines have 

been selected to constitute the frequent and rare types of cancers in adult and childhood 

derived from the haematopoietic, epithelial and mesenchymal cells. These cell lines in 

http://www.cancerrxgene.org/
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GDSC have been widely characterized genomically and are part of a project on the cancer 

cell line from the Cancer Genome Project. The GDSC contains genomic datasets for many 

different types of cancer cell lines. The datasets include huge amounts of information on 

somatic mutations for cancer-related genes, genome-wide copy numbers for amplification 

and deletion of the gene, markers of microsatellite instability, and pan-tissue type, along 

with transcriptional data. All these information regarding genomic alteration and others 

directly available in the Catalogue of Somatic Mutations in Cancer (COSMIC) database, a 

publically available open-source for the annotation and presentation of somatic gene 

mutations in cancer (Yang et al. 2013). 

iii. Analysis of genomic features of drug sensitivity: The systematic incorporation of a wide 

range of genomic and drug sensitivity data is a crucial element of the GDSC database. 

There are two complementary analytical approaches have been used to spot genomic 

markers of drug sensitivity in cancer. An analysis of variance (ANOVA) is used to correlate 

genomic alterations with drug sensitivity (IC50 values) in cancer, such as somatic 

mutations, gene deletions and amplifications of common cancer-related genes, 

rearrangements of genes and microsatellite instability. The ANOVA analysis point outs 

particular genomic alteration linked with drug sensitivity and also describe a size effect and 

calculate statistical significance for each drug-gene association. Other hand, elastic net 

regression has been used, a penalized linear regression modeling approach, to identify a 

variety of relevant genomic features which influences drug effectiveness. Elastic net 

regression analysis includes all of those genomic data used in the ANOVA analysis and 

also integrates the transcriptional profiles of the genome and pan-cancer tissue type (Yang 

et al. 2013).  
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B. TCGA and CancerRx Tissue 

TCGA is a landmark cancer genomics collaborative program between the National Cancer 

Institute (NCI), Therapeutically Applicable Research to Generate Effective Treatments 

(TARGET) and the National Human Genome Research Institute (NHGRI). This database 

provided molecularly characterized high-quality 20,000 primary cancer tissue samples and 

matched normal samples derived from 33 cancer types. Over the years, TCGA has produced 

more than 2.5 petabytes of genomic, transcriptomic, and epigenetic data along with proteomic 

data. To study the genomic and proteomic profiles of tissue samples from patients, TCGA has 

used various genomic approaches. It integrates clinical information about patients, metadata 

about sample information, and molecular information about coding and non-coding gene 

sequence, DNA methylation, somatic mutation and copy number variation. 

The CancerRx tissue database was created for public users to visualize and download the 

predicted drug sensitivity (IC50) data of 272 drugs in cancer tissue. Predictive models were 

built for 272 drugs using the gene expression data from the CCLE database in cancer cell 

lines and drug sensitivity (IC50) data for cancer cell lines from GDSC by applying the genetic 

algorithm (GA) and k-nearest neighbours (KNN) algorithm. Subsequently, the same predictive 

models were applied to predict drug response (IC50 values) for ~17,000 samples, including both 

normal and tumor tissues, using RNA-seq gene expression profile data for the tissues 

from TCGA and GTEx. Predicted cancer tissue drug sensitivity (IC50) data is available at the 

following link: https://manticore.niehs.nih.gov/cancerRxTissue (Li et al. 2021). 

C. GeneCodis4:  

GeneCodis is an online web server for functional enrichment analysis. Researchers from 

worldwide uses this tools to combine various sources of annotations. It retrieves sets of 

meaningful simultaneous annotations and allocates a valid statistical score to asses those 

outcomes that are remarkably enriched from the set of input genes/proteins list. In order to 

https://manticore.niehs.nih.gov/cancerRxTissue
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elucidate the fundamental cellular and biological mechanisms, GeneCodis4 has been 

extensively used to investigate sets of genes/proteins. This web server supports functional 

annotations for genes, proteins, miRNA, CpG sites and TFs identifiers extracted from 16 

different organisms, including Homo sapiens. However, GeneCodis4 categorizes annotations 

into three leading groups by integrating 19 various collections: functional, regulatory and 

perturbation annotations. The first functional group overspreads the following databases: Gene 

Ontology (GO) and its three subgroups (Biological Process, Molecular Function and Cellular 

Component) and pathway include; KEGG Pathways, Reactome, WikiPathways, and Mouse 

Genome Informatics database Panther Pathways. The second regulatory group holds two 

curated associations; TF-gene and miRNA-gene interactions. And finally, the perturbation 

group collects two types of associations, which encompasses gene-chemicals and gene-

phenotype associations (García-Moreno et al. 2021). GeneCodis 4 can accepts various kinds 

of input ID/name lists: genes/proteins, TFs, CpG sites and miRNAs. GeneCodis4 web server 

is publically available at https://genecodis.genyo.es. 

D. GeneMANIA 

It is a user-friendly, freely available web interface, generally used for gene function predictions, 

comprising a widely adaptive algorithm. It is a simple interactive, intuitive interface and 

extendable database and also a Cytoscape plugin application. GeneMANIA collects network 

data from databases resource which are publicly available for users, such as Gene Expression 

Omnibus (GEO) database provides gene co-expression network data, BioGRID database 

provides physical and genetic interaction data and predicted protein-protein interaction data 

based on orthology from I2D, etc. These network data obtain from different sources like 

BioGRID, Human Protein Reference Database, IntAct, MINT and Reactome, etc., across the 

eight organisms like; Homo sapiens, Arabidopsis thaliana, Mus musculus, Caenorhabditis 

elegans, Drosophila melanogaster, Danio rerio, Rattus norvegicus and Saccharomyces 

https://genecodis.genyo.es/
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cerevisiae. GeneMANIA also collects individual data from organism-specific genomic datasets 

(Warde-Farley et al. 2010). It generates networks from a set of gene lists and categorizes them 

as gene co-expression, gene fusion, shared domain proteins, physically interacted genes, and 

predicted interactions and pathway genes. Users can download gene network data available at 

the following link http://www.genemania.org. 

E. STRING 

It is a database that provides experimentally validated and predicted protein-protein 

interactions. This database integrates direct (physical) and indirect (functional) interactions of 

protein obtained from in silico prediction, from knowledge conveyed between organisms, and 

interactions collected from other (primary) databases. Protein-protein interactions data in the 

STRING database are extracted from various sources, including genomic context predictions, 

high-throughput experimentally determined, co-expression, automated text-mining, 

computational prediction and curated database. STRING database version 11.5 currently 

contains data for approximately 24,584,628 proteins from 14,000 organisms. The database user 

can query the PPI network from STRING directly within Cytoscape apart from the online 

website. All protein-protein interaction evidence in the database that incorporates a given 

network is benchmarked and scored and these scores are included in a final ‘consolidated 

score.’ These scores mapped between zero to one and approximate STRING’s confidence in 

whether a presented association is biologically significant, given all the contributing 

corroboration. Protein-protein interaction networks data available in the STRING database can 

be exported from the following link: https://string-db.org/.  

F. Open-access Repository Transcription factors interactions (ORTI) 

 It is a huge and freely accessible database for transcriptional; transcription factor-target gene 

(TF-TG) interactions in the human and mouse, experimentally validated using high-throughput 

methods. It is followed by tools that can identify and anticipate transcriptional (TF-TG) 

http://www.genemania.org/
https://string-db.org/
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interactions. The ORTI database was created by combining several open-access databases and, 

from extensive literature searches to bring about a cluster of TF-TG interactions. Transcription 

factors (TFs) are known to have key roles in biological and cellular pathways. These TFs are 

the end target activated by various external stimuli through the cascade of intermediate 

molecules. These transcription factors, along with complex proteins, activate or suppress the 

transcription of specific target genes, which shows an impact on biological and cellular 

functions in the cells. The data for TF-TG interaction was retrieved from various database 

sources, including HTRI, TRED, TFactS, TRRD, PAZAR, and NFI-Regulome, and also from 

a literature search to construct an ORTI database. This database includes 20146 genes, 660 

TFs, and 72,817 TF-TG interaction data. ORTI serves as an asset for unrevealing the context-

specific topology of interaction networks. The interaction data flat file for TF-TG is available 

at the following link: https://orti.sydney.edu.au/index.html. This web portal also allows public 

users to search for TF or TG names, and the database provides suggestions when it comes to 

queries based content. 

G. Harmonizome 

 It is a publically accessible web portal that lays out a pictorial user interface, a web service for 

browsing and downloading all of the accumulated data. The Harmonizome database was built 

by using a collection of various processed data assembled to provide and extract information 

about humans and mice, genes and proteins from 125 unique datasets hosted by 72 major open-

access web resources. This database extracted and abstracted around 72 million functional 

consortiums between genes/proteins and arranged these data systematically. These gathered 

datasets cover information about mammalian genes or proteins, mainly divided into six broad 

categories, which include; transcriptomic profiles, genomic profiles, proteomic profiles, 

structural or functional annotations, disease and phenotype associations, and physical 

interactions. The Harmonizome home page features a search bar that can be used to enter any 

https://orti.sydney.edu.au/index.html
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key search term and system autocomplete search for users by autocomplete capabilities. The 

system searches for matching datasets, genes and attributes that may contain metadata and 

deliver various views (Rouillard et al. 2016). The data is available on the database at the 

following link: http://amp.pharm.mssm.edu/Harmonizome. 

H. RCSB PDB 

The Protein Data Bank (PDB) is a publicly available open-access database for the three-

dimensional crystal structure data of macro biomolecules, which include primarily proteins, 

nucleic acids (DNA & RNA), and associated small molecules such as drugs, cofactors and 

inhibitors.  PDB database was created in the year 1971 at Brookhaven National Laboratories 

(BNL) as an archive for macromolecular 3D structures, typically determined by X-ray 

crystallography and nuclear magnetic resonance (NMR) spectrometry and submitted by 

biologists and biochemists from different parts of the globe. The PDB database is supervised 

by an international consortium called ‘Worldwide Protein Data Bank (wwPDB),’ a 

collaboration among three countries; United States, Europe, and Japan. This database provides 

a tool for searching and exploring the data from PDB, including an interactive interface that 

lets users explore how chemical interactions affect the stability of macromolecules and leads 

to play key roles in their interactions and functions (Berman et al. 2000; Christine et al. 2016). 

I. ZINC database 

ZINC is an open-access database and tool set which is basically developed to enable ready 

access to compounds for virtual screening. It has become widely used for ligand discovery, 

pharmacophore screens and other aspects of drug discovery. ZINC is used by investigators in 

pharmaceutical companies, biotechnology companies and research universities. ZINC15 

(current version) currently holds more than 120 million purchasable “drug-like” compounds 

effectively all of which are organic molecules. ZINC15 retrieves drug data from various other 

database sources such as ChEMBL, DrugBank, HMDB and https://ClinicalTrials.gov to 

http://amp.pharm.mssm.edu/Harmonizome
https://clinicaltrials.gov/
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annotate the compounds with detailed information which are active in, or naturally originated, 

including FDA-approved drugs, pre-clinical drugs, experimental or investigational 

compounds, natural products, and metabolites, and others (Irwin & Shoichet 2005; Sterling & 

Irwin 2015). This database provides drug-like compounds in the form of several common file 

formats SMILES, mol2, 3D SDF, and DOCK Flexi base file format. These all are freely 

available at the following link: http://zinc15.docking.org.  

2.2 Tools 

A. MultiExperiment Viewer (MeV) 

 MeV is a cloud-based, freely available multifaceted software application. It supports advanced 

bioinformatics tools for combined data analysis, visualization and stratification of massive 

genomic data in the hands of bench biologists. MeV is a tool primarily used to analyze 

microarray and RAN-Seq data consolidating advanced algorithms for statistical analysis for 

differential expression, visualization, classification, clustering, and functional representation 

through a graphical approach. 

B. RStudio and R programming 

RStudio is an integrated development environment and open tools for R. R is a programming 

language used for data miners and statistical analysis, generating graphical representations and 

developing statistical tools. R is publically available on the GNU General Public License, and 

binary versions work for various operating systems like Linux, Windows and Mac. Various 

packages and code used for plot generation in R is freely available. 

i. We used R code to generate the volcano plot given below: 

library ("ggplot2") 

>mydata<-read.csv("filename.farmet", header=T, sep=",") 

>mydata$threshold = as.factor(mydata$Adj.p.value < 0.05) 

>mydata$threshold = as.factor(abs(mydata$logFC) > 2 & mydata$Adj.p.value < 0.05) 

>g <- ggplot(data=mydata, aes(x=logFC, y =-log10(Adj.p.value), colour=threshold))  
+ geom_point(alpha=0.4, size=1.75)  

http://zinc15.docking.org/
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+ ggtitle("plot_title") 

+ xlim(c(-6, 6))  

+ xlab("log2 fold change") + ylab("-log10 Adj p-value") + 

  theme_bw() + theme(legend.position="none", plot.title = element_text(size = rel(1.5), hjust 

= 0.5), axis.title = element_text(size = rel(1.25))) 

>g 

ii. R code used to generate bubble plot: 

>mydata<-read.csv("filename.farmet", header=T, sep=",") 

>p = ggplot(mydata,aes(Rich.factor,Biological.process)) 

>p=p + geom_point()   

>p=p + geom_point(aes(size=Gene.number)) 

>pbubble = p+ geom_point(aes(size=Gene.number,color=-1*log10(pval_adj))) 

>pr = pbubble+scale_color_gradient(low="green",high = "red") 

>pr = pr+labs(color=expression(-log[10](p-value)),size="Gene number",x="Rich 

factor",y="Biological process",title="Top  GO or KEGG terms 

enrichment")+theme(plot.title=element_text(hjust=0.5)) 

>pr=pr + theme_bw() 

>pr 

iii. R code used to generate balloon plot: 

library ("ggplot2") 

library (ggpubr) 

>mydata<-read.csv("filename.farmet", header = T, sep = ",", row.names = "Gene") 

>ggballoonplot(mydata) 

>ggballoonplot(mydata, fill = "value",color = "lightgray",size = 5, show.label = F)+ 

gradient_fill(c("white", "white", "red")) + theme(axis.text.x = element_text(face="bold", 

color="black",  size=10, angle=45), axis.text.y = element_text(face="bold", color="black",  

size=7, angle=360)) 

 

C. GenePattern and Comparative marker selection 

GenePattern is a powerful, user-friendly, and freely available web interface that provides 

access to a variety of computational tools used to analyze genomic data, such as gene 

expression profile data (RNA-seq and microarray), sequence variation, and copy number, and 

network data analysis. These tools are all available (on the following link: 
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https://www.genepattern.org/) through a software package with no programming knowledge 

required. The comparative marker selection (CMS), a module of the GenePattern web interface, 

is used to analyze data derived from high-throughput experiments such as microarray or RNA-

seq data. CMS uses a test statistic to calculate the relative changes in the gene expression that 

can discriminate between the two classes of the samples (such as drug-sensitive vs resistance) 

and assess the significance (p-value) of the test statistic score. CMS identifies marker genes by 

calculating the expression value for each profiled gene which assesses the correlation of the 

gene’s expression profile in distinct classes. The test statistics values are calculated by CMS 

for each gene, which determines the differentially expressed genes between classes that are 

expected to be marker genes. The CMS takes two files as input: one for gene expression data 

from a different sample belonging to two classes and another file that specifies the class of each 

sample. CMS produces a structured output file with significance values that include several 

test statistic scores, such as p-value, logFC, FDR (BH), Q-value, maxT, and FWER for each 

gene. The results generated from the CMS algorithm are visualized as a heatmap using a 

comparative marker selection viewer, which accepts the output file and represents the results 

collectively (Kuehn et al. 2008). 

D. Cytoscape 

It (https://cytoscape.org)  is one of the most frequently used open-source computational tools 

for visualizing and studying the molecular interaction networks as well as integrating with high 

throughput gene expression and metabolic data. Although the study of molecular elements and 

interactions is applicable to any model system, Cytoscape is extensively used in combination 

with many large databases that contain data of protein-protein, protein-DNA, and genetic 

interactions and are broadly available for humans as well as for other model organisms. It 

provides basic functionality that helps to import and query the networks and allows to visualize 

networks which come integrated with expression data from different phenotypes. In Cytoscape, 

https://www.genepattern.org/
https://cytoscape.org/
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nodes represent biological molecules (genes or proteins) and edges are the connection between 

two nodes, which depict the kind of relationship or interaction between the nodes, such as 

inhibition or activation (Shannon et al. 2003; Kohl et al. 2011). Cytoscape provides a network 

Analyzer tool to compute comprehensive topological parameters for directed or undirected 

networks.  

E. Open Babel 

Open Babel is a designed toolbox for users which can read and speak the many different 

languages of chemical data. It is an open and publicly available platform used to search, 

convert, and analyze data from various areas, such as molecular modeling, chemistry, solid-

state materials, and biochemistry. Open babel can read and interconvert more than 110 

molecular file formats and also generates 2D and 3D coordinates for various file formats such 

as SDF, mol files (O'Boyle et al. 2011). It is freely available for users under a free license from 

the following web link: http://openbabel.org. 

F. Swiss-PDB Viewer 

Swiss-PdbViewer (DeepView) is a software platform that provides an easy-to-use interface so 

that users can analyze multiple proteins simultaneously. The proteins can be superimposed so 

that the positions of their active sites can be compared and deduce structural alignments. 

Mutation of amino acid residues in a protein, hydrogen bond interactions, angles and distances 

between atoms may also be observed.  Swiss-PdbViewer was developed by Nicolas Guex in 

1994. It was initially associated with SWISS-MODEL, an automated homology modeling 

server designed by the Structural Bioinformatics Group at the Swiss Institute of 

Bioinformatics (SIB), Biozentrum in Basel (Guex & Peitsch 1997). In our study, SPDBV was 

used for energy minimization. SPDBV is available on the web link: 

http://www.expasy.org/spdbv. 

 

http://openbabel.org/
http://www.expasy.org/spdbv
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G. AutoDock Tools 

AutoDock Tools (ADT) is a graphical user interface for setting up and running a computerized 

docking application program which used to predict the binding of small molecules, such as 

drug candidates, to a receptor of a known 3D structure. AutoDock Tools simplifies the process 

of configuring the input molecule files used for molecular docking. It provides with an array 

of methods that leads the user through molecule protonation, calculating various charges, and 

specifying rotatable bonds in the protein and ligand. ADT allows the user to identify the active 

site and find out visually the volume of space occupied by molecules in the docking simulation. 

It also allows users to view results from molecular docking experiments using a variety of 

methods, such as clustering and analyzing data (Morris et al. 2009). For our study, we used the 

AutoDock tool to prepare protein, ligand molecules and grid box generation for molecular 

docking. 

H. AutoDock Vina  

AutoDock Vina is a user-friendly program for molecular docking as well as virtual screening 

(Trott & Olson 2010). It was originally developed and launched at The Scripps Research 

Institute by Dr. Oleg Trott in the Molecular Graphics Lab. AutoDock Vina is one of the docking 

engines of the AutoDock Suite. Vina significantly predicts the binding mode with average 

accuracy, efficient optimization and multithreading. It calculates the grid maps and clusters the 

docking results automatically, which is transparent to the researchers. Vina uses the same 

.pdbqt file format for its input and also gives the .pdbqt file format as the results output. Vina 

is freely available on the following link: https://vina.scripps.edu.  

 

 

 

https://vina.scripps.edu/
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I. PyMOL 

PyMOL is a cloud-based tool for molecular visualization interface developed by Warren 

Lyford DeLano. Currently, it is maintained and distributed by Schrödinger (16). It is a globally 

used tool in the field of research in structural biology that became globally available to 

scientific and educational groups. PyMOL can generate high-quality three-dimensional images 

of small molecules and macromolecules, such as proteins. For our research, PyMol has been 

used to analyze the docking of protein-ligand complexes and to convert from pdbqt to PDB 

format. 

J. Discovery Studio 

This software was developed and distributed by Dassault Systems BIOVIA, with multiple 

applications. Discovery Studio Visualizer is one of the leading visualization tools for viewing 

and analyzing proteins and modeling molecular structures, simulations including molecular 

mechanics, molecular dynamics, and quantum mechanics,  and other data of relevance to life 

science researchers in structural biology. This BIOVIA product provides features for viewing 

and editing data, as well as basic data analysis tools. It also provides a huge platform for 

displaying plots and representations of 3D graphics of data. For our research, Discovery studio 

has been used to study protein-ligand interactions analysis post-virtual screening through 

molecular docking. 

 

K. PockDrug 

PockDrug is an online pocket druggability prediction tool that predicts the possible 

druggability of the pockets present in a protein. This web-based tool uses geometry, 

hydrophobicity, and aromaticity of pocket residues or atoms of a protein to predict possible 

druggable pockets that can be targeted by drugs. PockDrug uses two different methods for the 

estimation of pocket druggability, first is prox4 and prox5.5 estimation methods predict 

druggability by using the information about ligand position to guide its extraction of protein 
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atoms located within two fixed distance point thresholds of 4 and 5.5 Å from the bound ligand, 

respectively. The second is the fpocket estimation method, which is an automated geometry-

based method. It is not guided by the position of a ligand to predict pocket druggability. This 

method uses the Voronoi polyhedral decomposition of a 3D protein to extract all the pockets 

volume from the apo- or holo-protein using spheres of varying diameters (Hussein et al. 2015). 

PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. 
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Chapter-3 

Objective-1: Computational analysis of drug-dose 

responses from a panel of mutant NRAS pan-cancer 

cell lines to identify drug-sensitive and -resistant cell 

lines from the GDSC database. 
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3.1 Introduction 

Drug sensitivity is one of the main reasons for individualized cancer chemotherapy since past 

experiments have shown that certain drugs work better with some people. Oncologists made 

therapeutic conclusions based on their patients' experiences, based on the pathological features 

of the tumor, prior to the appearance of drug sensitivity testing, rather than relying on their 

assessment and understanding of tumor responses to therapeutic drugs in clinics. Since the 

arrival of drug-sensitivity testing in cancer, oncologists have played a crucial role in the cure 

of cancer. Prediction of drug sensitivity has become quite accessible due to the development 

of computational approaches that can promote precision anticancer therapeutics (Tang et al. 

2021). However, due to the high prevalence of drug resistance in cancer demand further, more 

research and development of new therapeutic treatments as the potency of cancers to develop 

resistance to conventional therapies are now day’s increased. 

Precision or personalized medicine is intended to provide the most appropriate treatment for 

each individual patient of cancer. In the development of advanced oncology techniques such 

as next-generation sequencing (NGS), transcriptome (RNA-sequencing), ChIP-sequencing, 

and mass spectrometry are extensively used to perform full molecular profiling for each cancer 

patient. However, because of some of the high degrees of tumor heterogeneity, it is quite 

challenging to suggest an appropriate treatment for a cancer patient on the basis of high-

throughput molecular profiling. To be able to define the drug-sensitivity and -resistance of each 

individual cancer, an in vitro test can be carried out on cancer cells or tissue samples derived 

from a patient with a panel of therapeutic drugs (Popova et al. 2020). 

The origin of advanced technology like; proteomics, microarray and targeted therapies provide 

new insight into conquering drug resistance in cancer. Although new chemotherapeutic agents 

are being designed in large numbers, still an effective chemotherapy agent is yet to be 
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uncovered for cancer in the advanced stage. There may be several factors, including genetic 

differences of the individual, especially in somatic cells of the tumor, which might be driving 

cancer cell resistance to anticancer agents (Mansoori et al. 2017). 

Currently, large-scale of biological data is being generated at an economical cost by using 

advanced high-throughput technologies to investigate drug sensitivity and resistance in cancer 

(Pouryahya et al. 2022). There are some databases available, such as the NCI-60, GDSC and 

CCLE, which are pioneers of such datasets (Shoemaker 2006; Iorio et al. 2016; Barretina et 

al. 2012). Overall, studies from these different databases have illustrated that 

pharmacogenomics profiling of cancer cell lines derived from clinical tumor tissue samples 

can be used as a platform for biomarker discovery that could lead to the development of a new 

method for cancer treatment (Yang et al. 2013; Garnett et al. 2012). The NCI-60 database is 

one of the earliest established studies to screen drugs in vitro among these drug sensitivity 

databases. It has remarkably improved the philosophy and research on anticancer drugs 

(Shoemaker 2006; Chabner 2016).  

The NCI-60 cell line panel and screened drugs link cell lines' drug sensitivity with genotype 

data which has guided to several key findings, including a general understanding of the basic 

phenomenon of drug sensitivity or resistance in cancer (Shoemaker 2006; Weinstein 2004). 

However, the NCI-60 database, although a good starting point for developing predictive 

models, is limited in its use because the panel contains only 60 cell lines.    

By contrast, our study focused on the GDSC database, which annotates a comprehensive 

landscape of drug response data of around thousand (~1000) of human cancer cell lines from 

different tissue types for 265 anticancer drugs. Above all, the cancer cell lines involved in 

GDSC for drug screening are genomically and transcriptomically well characterized as a part 

of the COSMIC cell line project (CCLP, https://cancer.sanger.ac.uk). These resources provided 

https://cancer.sanger.ac.uk/
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a platform for the new development of significant molecular biomarkers when it is used in 

conjunction with powerful analytical tools to deal with the high-dimensional and complex 

nature of cancer data. And these tools have the potential to link the drug sensitivity of cancer 

cell lines to their genomic feature. 

Furthermore, several computational regression approaches have been designed to predict the 

sensitivity (IC50) of cancer cell lines toward the screened anti-cancer drugs (Ahmadi 

Moughari & Eslahchi 2021).  

GDSC holds a large amount of drug sensitivity data of human pan-cancer cell lines. These data 

from the GDSC database facilitate the identification of novel biomarkers of drug response by 

linking the detailed genomic information of cell lines. The GDSC database was built to help 

researchers for a better understanding of the molecular features which influences drug efficacy 

in cancer cells and can empower the plan of advanced strategy for cancer treatment. This 

website is created to give direct access to browse the database and to provide easily 

interpretable summaries of data and analyses by using interactive graphical interfaces (Yang et 

al. 2013). 

3.2 Materials and Methods 

3.2.1 Cancer cell lines and drug data acquisition from the GDSC database 

GDSC database (https://www.cancerrxgene.org) is one of the biggest publicly available open 

sources for detailed information on thousands of cancer cell lines that are drug sensitive with 

their molecular markers of drug response from various tissues along with gene expression, and 

copy number variation. Currently, this database carries data of around 2,12,774 drug dose-

response toward drug sensitivity, describing 265 drugs screened against almost thousands of 

cancer cell lines originating from primary cells of pan-cancer tissues, which includes; CNS (58 

cell lines), lung (179 cell lines), skin (62 cell lines), breast (52 cell lines) and hematopoietic & 

lymphoid tissues (175 cell lines) (Fig. 1A) (Yang et al. 2012; Iorio et al. 2016). These screened 

https://www.cancerrxgene.org/
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anticancer compounds include clinical used drugs (n=48), pre-clinical drugs (n=76), and 

experimental compounds (n=141). These 265 compounds are targeted agents (n = 242) and 

cytotoxic drugs (n = 19) targeting a wide range of biomarkers and 20 key biological and cellular 

pathways such as protein kinases, transcription regulation, apoptosis, DNA repair, and cellular 

processes in cancer biology (Fig. 1B).   

 

 

Figure 1: Cancer cell lines and drugs screened against cell lines. (A) Classification of cancer cell 

lines derived from different tissue types.  (B) Anticancer drugs (265 drugs) are used in screening 

categories based on their therapeutic targets, and role in biological and cellular pathways/functions. A 

single drug may target multiple molecules. 

(A) 

(B) 
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3.2.2 NRAS mutant cancer drug sensitivity data acquisition from the GDSC  

The GDSC database contains a huge amount of genomics and drug sensitivity datasets for 

NRAS mutant cancer cell lines. To reveal the drug-gene interactions for drug sensitivity and 

resistance in cancer cell lines harbouring NRAS gene mutation, an analysis of variance 

(ANOVA) test has been performed using drug IC50 value. The ANOVA analysis between 

NRAS-mutant vs. NRAS-wild type cancer cell lines revealed 12 drugs which were significantly 

associated (threshold p<0.001) with drug sensitivity or resistance (Fig. 2) and were enlisted 

(Table 1). In the cell lines with NRAS mutation, treatment with BRAF, MEK1/2, MAP4K2 

and TAK inhibitors (p values = 3.38x10-4 for PLX4720, p=3.04x10-10 for PD0325901, 

p=1.55x10-5 for NG-25 and p=1.05x10-5 for TL-1-85), respectively significantly attenuated cell 

viability. However, cancer cell lines harbouring NRAS mutation were significantly resistant to 

Foretinib, a MET inhibitor (p-value =2.61x10-4) and also were resistant to Cabozantinib (p-

value =1.61x10-4) and Ponatinib (p-value =2.99x10-5), where these two drugs are known to 

multiple target inhibitors. 

 

Figure 2:  Volcano plot of ANOVA analysis result retrieved from GDSC database. Each circle in 

the volcano plot represents gene-drug interaction, where the green circle indicates drug sensitivity & 
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the red circle indicates drug resistance. The position of the circle shows how significant the interaction 

is, and the circle size is proportional to the number of cell lines altered. (https://www.cancerrxgene.org) 

 

Table 1:- ANOVA analysis result from GDSC. Compounds with their targets showing effect size 

and number of altered cell lines against a target-specific drug. (https://www.cancerrxgene.org)  

 

Sr. 

no Drug Drug Target 

Effect 

size P-value 

No. of altered 

cell lines 

1 PD0325901 MEK1, MEK2 -0.901 1.51E-10 54 

2 RDEA119 MEK1, MEK2 -0.916 4.75E-10 54 

3 Trametinib MEK1, MEK2 -0.75 5.36E-07 55 

4 Selumetinib MEK1, MEK2 -0.798 8.74E-07 57 

5 TL-1-85 TAK -0.0932 7.33E-06 58 

6 RDEA119 MEK1, MEK2 -0.797 8.08E-06 53 

7 CI-1040 MEK1, MEK2 -0.853 8.77E-06 56 

8 NG-25 TAK1, MAP4K2 -0.00937 9.73E-06 58 

9 

Ponatinib 

ABL, PDGFRA, VEGFR2, 

FGFR1, SRC, TIE2, FLT3 0.101 2.74E-05 58 

10 

Cabozantinib 

VEGFR, MET, RET, KIT, 

FLT1, FLT3, FLT4, 

TIE2,AXL 0.168 0.000132 58 

11 Foretinib MET 0.189 0.000261 57 

12 PLX-4720 BRAF -0.041 0.000297 55 

 

3.2.3 Drug sensitivity (IC50) data analysis 

Drug IC50 (Inhibitory concentration) values for 265 anticancer drugs that are frequently used 

to assess drug efficacy are available in the GDSC database. We chose only NRAS-mutant 

cancer cell lines that were present and responsive in the case of all 10 drugs. Drug-sensitivity 

(log normalized IC50) data was downloaded for these selected 10 drugs across the 41 pan-

cancer cell lines harbouring NRAS mutation. Due to contradictory drug LN_IC50 values for the 

drug RDEA119 deposited twice in GDSC database, it was eliminated from our downstream 

analysis. From the GDSC database it was suggested that the cancer cell lines regarded as a 

drug-sensitive having LN_IC50 value smaller than the maximum concentration of a drug, and 

cell lines with value greater than the maximum concentration of a drug are regarded to be drug-

resistant. We used a hierarchical clustering module in the online tool GenePattern v11 to 

generate clustered heatmap (unsupervised clustering) with distance measure uncentered 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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correlation and clustering method pair-wise average linkage using LN_IC50 (cancer cell lines) 

value. TreeView version 1.1 was used to visualize it.  

Further, to correlate drug sensitivity and resistance of NRAS-mutant cancer cell line with that 

of cancer tissue for the same selected drugs, we were able to collect the predicted drug IC50 

value for 8 drugs (Foretinib, Ponatinib, Selumetinib, Trametinib, PD-0325901, PLX4720, TL-

1-85 and CI-1040) from the cancerRxTissue database, for NRAS mutation harbouring cancer 

tissue samples. The predicted drug sensitivity (IC50 value) data for two drugs (Cabozantinib 

and NG-25) were not available in the database, and we found the NRAS mutation information 

from TCGA database. Using the above method as used for cancer cell lines, we generated a 

clustered heatmap for cancer tissue also. 

3.3 Results 

3.3.1 Identification of pan-cancer drug-sensitive and -resistant NRAS mutant cell lines  

To distinguish individual drug-sensitive and resistant cancer cell lines for each drug, we studied 

and analyzed the drug response of all present drugs retrieved from GDSC. We observed that 

41 pan-cancer cell lines harbouring NRAS mutations were commonly responsive to 10 drugs 

[Selumetinib, PD-0325901, TL-1-85, Trametinib, NG-25, PLX4720, CI-1040, Foretinib, Xl-

184 (Cabozantinib) and AP-24534 (Ponatinib)]. We performed uncentered hierarchical 

clustering by using the log normalized drug IC50 values of these 41 pan-cancer cell lines 

harbouring NRAS-mutation to distinguish the drug-sensitive and resistant cell lines and 

generated a clustered heatmap. The heatmap color represented dose response in terms of the 

drug-sensitivity and resistant (IC50 value) cell lines to a particular drug. The normalized IC50 

value of cancer cell lines greater than zero were selected as drug-resistant cell lines, while 

LN_IC50 value  of cell lines less than zero were attributed as sensitive cell lines to the drug 

(Jianting et al. 2015) (Fig. 3A). Each rows in the heatmap indicates the IC50 score for a 

screened compound and each column represents cancer cell lines in the generated heatmap. 
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From the heatmap, highly drug-sensitive (IC50<-1) and resistant (IC50>1) NRAS mutant cancer 

cell lines were selected based on IC50 value and color intensity (enlisted in Table 2). In case of 

four drugs (Cabozantinib, NG-25, TL-1-85, and PLX4720) there were no individual drug-

sensitive cell lines observed, on the other hand, we found only one drug-resistant cell line for 

PD-0325901 as shown in the heatmap. All these cancer cell lines employed in GDSC were 

originated from different tissue types of primary tumor and classified at the TCGA matching 

label (Table 3). 

 

           

 

 

Figure 3: - Clustered heatmap for drug dose-response in cell lines and cancer tissues. Rows are 

drugs and columns are cell lines/cancer tissue sample. Drug-sensitive cell lines/cancer tissue sample are 

shown in green and drug-resistant cell lines/cancer tissue sample are shown in red color. (A) Heatmap 

for cancer cell lines, (B) heatmap for cancer tissue sample. 

 

 

 

 

A 

B 
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Table 2: Number of drug-sensitive and -resistant cancer cell lines identified by normalized IC50 score 

for 10 drugs. 

Sr No. Drug name No. of drug-resistant cell 

lines 
No. of drug-sensitive cell 

lines 

1 Selumetinib 16 10 

2 CI-1040 21 3 

3 PD-0325901 1 31 

4 Trametinib 5 24 

5 TL-1-85 39 0 

6 NG-25 36 0 

7 Cabozantinib 40 0 

8 PLX4720 41 0 

9 Foretinib 12 3 

10 Ponatinib 14 4 

 

Table 3: Names of 41 cell lines studied similar to cancer types as identified from TCGA. 

TCGA Classification Cancer cell lines 

ALL P12-ICHIKAWA, DND-41, KE-37, MOLT-4, PF-382, 

HAL-01. 

BLCA HT-1197, KU-19-19, BFTC-905, 

DLBC OCI-LY-19 

LIHC C3A 

LUAD NCI-H2347, NCI-H2087. 

LUSC HCC-15 

LAML THP-1, ME-1, KY821, OCI-AML3, HL-60, KMOE-2 

MB ONS-76 

MM L-363, JJN-3 

NB GOTO 

SCLC SW1271 

THCA ASH-3 

SKCM IPC-298, LB373-MEL-D, GAK, MEL-JUSO, LB2518-

MEL, CP66-MEL, SK-MEL-2, MZ2-MEL 

Unclassified MFH-ino, SJSA-1, HT-1080, TYK-nu, NCI-H2135, 

HD-MY-Z, 697 
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3.3.2 Correlation and validation of cell lines with cancer tissue drug-sensitivity status 

Further, we wanted to investigate if there are any similarities in the pattern of drug-sensitivity 

and resistance in cell lines and cancer tissue samples. From the heatmap (Fig. 3B) of cancer 

tissue drug response, we have observed that almost all NRAS-mutant cancer tissue were 

showing resistance to drugs (CI-1040, Foretinib, Ponatinib, Selumetinib), while few of skin 

cutaneous melanoma (SKCM) cancer tissue were sensitive to drug Selumetinib. Most of the 

cancer tissue samples from SKCM were sensitive to the drug Trametinib and other cancer types 

were less responsive to the Trametinib. Correlating drug response of cancer cell lines with 

cancer tissue, we have observed that cancer cell lines from BLCA, LUSC, SKCM, and THCA 

cancer tissue were highly resistant and from LUAD cancer tissues were highly sensitive to 

Ponatinib, while all cancer tissues were resistant to Ponatinib. Cell lines from cancer BLCA, 

LIHC, SKCM, THCA and cancer tissue as well, were resistant to Foretinib. SKCM cancer cell 

lines and cancer tissue both were sensitive to Trametinib, while cell lines from BLCA, LIHC, 

LUAD and LUSC were sensitive to Trametinib, but cancer tissue samples were very less 

responsive. In the case of drug CI-1040 some cell lines from SKCM were resistant, as well as 

some were sensitive, while all SKCM cancer tissue samples were resistant. However, cell lines 

and cancer tissue samples from LIHC and LUAD were both resistant to CI-1040. Further, in 

the case of Selumetinib, some BLCA cell lines were resistant, while cell lines from BLCA, 

LUAD, LUSC, and SKCM were sensitive to Selumetinib. Whereas all cancer tissue samples 

from these cancers were resistant to Selumetinib except a few SKCM samples, which were 

observed as sensitive to Selumetinib. A similar correlation pattern between cell line and cancer 

tissue would depict a similarity in gene expression pattern that might be causing drug-

sensitivity or drug-resistance. Cancer tissue samples for NRAS-mutant; LAML, ALL, MM, 

MB, NB, DLBC, and SCLC cancer types were not available in TCGA. 
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4.1 Introduction 

Protein-coding genes are defined as gene sequences which are transcribed into mRNA and later 

on translated into a protein. These sequences share a tiny fraction, close to 2%, of the entire 

human genome. The basic structure of protein-coding genes includes a promoter followed by 

a coding sequence that codes for mRNA, which is then translated into a protein and eventually, 

all of these are followed by a terminator which specifies the end of the mRNA transcript (Fig. 

1). 

 

Figure 1: Schematic representation of promoter sequence, coding region and termination sequence on 

protein-coding gene sequence (Modified from: https://en.wikipedia.org/wiki/Coding_region). 

 

Carcinogenesis, as well as chemoresistance, are driven by the accumulation of scores of 

alterations affecting the structure and function of the human genome where in this process, 

both genetic and epigenetic changes are equally important. Genomic defects play a critical role 

in cancer by influencing cell proliferation, growth and survival through the direct or indirect 

alterations of gene expression, a variety of protein activities, and molecular signaling pathways 

(Hanahan & Weinberg 2011; Watson et al. 2013). There are several computational strategies 

have been developed to identify so-called driver mutations using a diverse range of somatic 

mutations characteristics, which includes generative conserved mutation sites in multiple 

species (Reva et al. 2011), and the influence of mutations on transcriptome (Hou & Ma 2014), 

among others. Generally, insertion or deletion of DNA segments during biological processes 
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such as DNA replication, evolution, junctional diversity, and development of immune systems 

and particularly in cancer development, can lead to mutations. Among all, some mutations 

introduce premature stop codons, which can bring down the expression of a gene's 

corresponding mRNA transcript, and some affect protein activity by changing the sequence of 

the amino acid residues in encoded protein (Jia & Zhao 2017). Cancer-related gene mutations 

result in altered expression of particular genes/proteins and often produce a distinct phenotype 

in different cancers. Alteration in the genes’ expression that encodes for a protein may 

encourage the initiation or progression of a tumor, as oncogenes do or may suppress its growth, 

as do tumor suppressor genes. Traditionally, only mutated genes/proteins are considered as a 

candidate for cancer-related genes/proteins. However, the relationship between mutated genes 

and cancer phenotypes is not always clear-cut since cancer phenotypes result from abnormal 

gene expression rather than direct mutations in DNA (Sager 1997). In cancer, some genes are 

identified as driver genes. These genes are oncogenes, tumor suppressors, proto-oncogenes, 

and anti-apoptotic genes that may be involved in cancer development and chemoresistance. 

For instance, cancer genes such as myc (oncogene) and p53 (tumor suppressor) encode 

transcription factors that transcriptionally regulate the expression of several downstream genes. 

(Dang 2012; Sullivan et al. 2018). Since the function of Myc protein is crucial for the 

maintenance of tumors, it is possible that tumors might resist treatments by engaging a variety 

of resistance mechanisms (Llombart & Mansour 2022). Cancer cells harbouring p53 mutations 

are commonly characterized by a high rate of metastasis as well as genomic instability (Liu et 

al. 2010). This characteristic has important implications for the treatment of many cancers and 

also has been linked to drug resistance and mitogenic defects (Hientz et al. 2017). 

Similarly, Mutations of the RAS proto-oncogenes are one of the widely known common genetic 

alterations observed in a variety of human cancers. They are encoded by three genes that are 

expressed ubiquitously: HRAS, KRAS and NRAS (Prior et al. 2012). These proteins are 
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GTPases that switch various pathways on and off, controlling proliferation and cell survival 

and also influencing drug resistance in cancer by altering gene expression.  Among the RAS 

family members, NRAS is the second most mutated protein after KRAS mutation in human 

cancers (Prior et al. 2012). Most of these mutations involve codons 12, 13, and 61 and the 

mutation status is useful in guiding therapy for certain cancers (Muñoz-Couselo et al. 2017). 

Genetic mutation in the NRAS gene/protein is extensively associated with the biological or 

cellular mechanisms that involved in drug resistance (Le et al. 2013; Nazarian et al. 2010). 

Apart from these mutations, the overexpression of certain tyrosine kinase receptors, such as 

EGFR and hepatocyte growth factor receptor (HGFR/c-Met), also contributes to RAS 

hyperactivation (Kawauchi et al. 2018). 

Genetic changes can occur not only in the genes but also in epigenetic regulators, which are 

involved in the regulation of histone modifications and DNA methylation to modulate the 

chromatinization of chromosomes (Huether et al. 2014; Veitia et al. 2017). This can affect 

gene expression by affecting metabolic factors, as well as genetic and epigenetic factors. 

Abnormalities or changes in these factors lead to genomic instability and abnormal gene 

expression in drug-resistant cancer. Biomarker genes are examples of possible drug targets, 

and they have been identified in individual cancer types. These genes have alterations in cancer 

at the genomic, transcript, and protein levels. They are also linked to drug resistance and may 

serve as potential drug targets for cancer treatment. 

Microarray technology has been widely used to analyze gene expression and identify genetic 

variations such as mutation and single nucleotide polymorphism (SNP). Specifically, massive-

amount microarray gene expression data analysis enables researchers to identify significant 

patterns in thousands of genes and analyze simultaneous changes in those genes. Because 

genome-wide expression profile data analysis in drug-resistant pan-cancer cell lines has not yet 

been done. We have used the latest Affymetrix human genome U219 array data for our analysis 
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of global gene expression into an analytical model to improve the potential to identify 

predictive biomarkers of drug response.  

Integrative and comprehensive GDSC data analysis has identified and characterized (or 

profiled) molecular subtypes, possible driver biological processes, and pathways in mutant 

NRAS-harbouring drug-resistant pan-cancer systems. 

4.2 Materials and Methods 

4.2.1 Gene expression data collection from GDSC 

In our study, we have used gene expression profile data generated using high-throughput 

technique microarray, downloaded from GDSC. Basal transcriptional profile raw data (E-

MTAB-3610) deposited to GDSC for the 1000 cell lines generated using the latest mRNA  

expression array Affymetrix human genome U219 along with processed gene expression data. 

The gene expression data of around 17417 genes were normalized using a robust multi-array 

average (RMA) algorithm and deposited in GDSC. Gene expression data were taken and 

analyzed for drug-sensitive and resistant cell lines from GDSC for five drugs. 

4.2.2 Significant differential gene expression analysis  

To check the association between drug sensitivity and resistance of cell lines and gene 

expression, combined datasets were examined and statistical tests were performed for 

significant differential gene expression. The basal gene expression profile data were 

downloaded from the GDSC database. It was filtered to exclude the expression values that were 

missing gene names from the column. An unpaired t-test was performed using a cloud based 

tool Multi Experiment Viewer (MeV) version 4.9.0 with threshold cut-off p-value <0.05 with 

unequal group variance (Welch approximation) between two groups (drug-sensitive and -

resistant cancer cell lines). We studied and analysed microarray gene expression profile data 

of 17417 genes in each cancer cell lines with NRAS mutation. A total of 68 drug-resistant and 
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44 drug-sensitive NRAS mutant cancer cell lines from our drug sensitivity heatmap, belonging 

to 5 out of 10 drugs were analysed. We were not able to classify cancer cell lines clearly into 

resistant/sensitive classes in the case of the rest 5 of these drugs. A volcano plot to visualize 

up-and down-regulated genes (identified differentially expressed genes, DEGs)  between two 

groups was generated using the R package “ggplot2” with double filtration cut-off p-value 

<0.05 and logFC>2. 

4.2.3 Heatmap to discriminate up- and down-regulated DEGs in drug-sensitive and 

resistant cell lines 

To identify DEGs by their names and visualize their expression pattern in each drug-sensitive 

and -resistant cell line, we used the module (Comparative Marker Selection) in Gene Pattern 

version 11 (https://cloud.genepattern.org) to generate a heatmap with default parameters, at 

10,000 permutations and to visualized them as a heatmap, we used “Comparative Marker 

Selection Viewer v9.1. 

Further, to identify genes that were differentially expressed across multiple drugs, we imported 

DEG’s list of all five drugs in an online web tool called BioInfoRX 

(http://apps.bioinforx.com/bxaf6/tools). Then we generated a bubble plot using the R package 

“ggplot2 & ggpubr” to visualize overlapping DEGs to multiple drugs (minimum for three 

drugs). 

4.2.4 Functional gene enrichment annotation analysis 

To investigate the functional implication of identified DEGs in drug-resistant/sensitive cancer 

cell lines, a gene enrichment analysis was carried out in the context of 5 drugs using a web-

accessible bioinformatics tool GeneCodis version 4 to characterize their functions. In order to 

detect a significant functional enrichment of genes, the threshold hypergeometric p-value <0.05 

(Benjamini-adjusted Fisher’s exact test p-value) was used by default. 

https://cloud.genepattern.org/
http://apps.bioinforx.com/bxaf6/tools
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4.3 Results 

4.3.1 Differentially expressed gene analysis between drug-sensitive and resistant cancer 

cell lines 

Several studies have revealed that gene expression data is one of the important predictive 

biomarkers of molecular profile in drug-sensitivity and resistance studies (Wildey et al., 2014). 

We have analysed the basal gene expression data which are log normalized, retrieved from the 

GDSC database widely associated with pan-cancer drug sensitivity and resistance. We 

identified several hundreds of differentially expressed genes (DEGs) between drug-sensitive 

and resistant pan-cancer cell lines (harbouring NRAS-mutation) using Welch’s t-test (unequal 

group variance) for 5 drugs and listed the number of DEGs (threshold p<0.05). We did not 

perform a statistical test for differential expression analysis in case of other 5 drugs because, 

as seen from table 1 of chapter 3, all of the chosen cancer cell lines were either uniformly 

resistant (NG-25, TL-1-85, Cabozantinib, PLX4720) or uniformly sensitive (PD-0325901) to 

these mentioned drugs. Further, volcano plots were generated for each drug by applying (p 

value<0.05, log2FC >2) double filtration to statistically validate the results (Fig. 2A-E). The 

number of significantly DEGs varies from 38 DEGs for CI-1040 to 467 DEGs Foretinib, in 

case of each drug (Table 1). Significantly DEGs are shown  in volcano plots as top blue dots 

and represented as down-regulated at the left side and up-regulated genes right side position, 

in resistant cancer cell lines (p<0.05, log2FC>2). As the volcano plot shows, 
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Figure 2: Volcano plot for significantly differentially expressed genes between drug-sensitive and 

–resistant cancer cell lines. (A to E) blue dots at the top represent significantly differentially expressed 

genes, bottom dots (red) represent non-significant differentially expressed genes. The x-axis shows fold 

change in gene expression (magnitude of change, logFC > 2), and the y-axis (p-value) shows 

statistically significant genes (threshold p-value <0.05) for each drug. 
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Table 1: Number of significantly DEGs (up- and down-regulated) in drug-sensitive and resistant pan-

cancer cell lines. 

Sr no. Drugs Up-regulated genes in 

drug-resistant cells 
Down-regulated genes 

in drug-resistant cells 
Total no. of 

DEGs genes 

1 Selumetinib 60 189 249 

2 CI-1040 25 13 38 

3 Trametinib 23 122 145 

4 Ponatinib 90 44 134 

5 Foretinib 236 231 467 

 

4.3.2 Heatmap of DEGs between drug-sensitive and resistant cancer cell lines 

Further, to visualize the pattern of identified DEG expression in individual cancer cell lines 

and to discriminate between up- and down-regulated DEGs in resistant/sensitive cell lines, a 

heatmap was generated using a comparative marker selection module in the online web tool 

GenePattern (Fig. 3A-E). From the heatmap, we observed that the results were more or less 

coinciding with volcano plots. Further, these predictive microarray gene expression data 

analyses uncovered key DEGs as being strongly associated with either drug resistance or 

sensitivity.  
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Figure 3: Heatmap of identified DEGs. (A-E)  Identified DEGs expression pattern in drug- sensitive 

and resistant cancer cell lines for five drug. Up-regulated genes represented by Red color, down-

regulated genes represented by blue color.  
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4.3.3 Functional enrichment analysis for gene ontology (GO) and KEGG pathway 

The following step is to determine the functional enrichment analyses of the given set of DEGs 

across multiple drugs, for biological processes and KEGG pathways. To annotate the possible 

biological processes and the KEGG pathway we used GeneCodis4, which is a web-accessible 

tool with a default hypergeometric cut-off p-value<0.05. DEGs significantly enriched in GO 

terms for biological processes for the drug Ponatinib are; GO: 0006508 proteolysis, GO: 

0007165- signal transduction, GO: 0008285-cell cycle, GO: 0006915-apoptotic process, and 

GO: 0006355-regulation of transcription, DNA-dependent and cell division (Fig. 4A). In 

addition, KEGG pathway analyses stipulate that DEGs significantly enriched in, 

hsa04151:PI3K-Akt signaling pathway, hsa01100: Metabolic pathway, hsa05200: Pathway in 

cancer and has04510: Focal adhesion (Fig. 4A). 

Interestingly, in the case of the other four drugs we also observed that the DEGs were 

significantly enriched in biological processes and KEGG pathways were more or less similar.  

GO terms such as GO: 0007165 signal transduction, GO: 0006508 proteolysis, GO: 0006915 

apoptotic processes, GO: 0007155 cell adhesion, and KEGG pathways are hsa05205 

proteoglycans in cancer, hsa05200: Pathway in cancer, hsa01100: Metabolic pathway and 

has04510: Focal adhesion, and (Fig. 4A-E). 
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(A)  Ponatinib 
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(B) Foretinib 
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(C)  Selumetinib  
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(D)  Trametinib  
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(E) CI-1040 

 

 

Figure 4: Functional enrichment analysis of DEGs. Balloon plot for Gene Ontology and KEGG 

pathway analysis of DEGs for five drugs, A) Ponatinib, B) Foretinib, C) Selumetinib, D) Trametinib, 
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E) CI-1040. Top 15 GO terms enriched for the biological process and top 5 KEGG pathway enrichment 

at a default hypergeometric p-value cut off < 0.05. 

4.3.4 Common DEGs across multiple drugs 

Further, we looked for the common DEGs across these selected 5 drugs. Interestingly, we found 

DEGs for multiple drugs but not for all drugs. Among these DEGs, nine coding genes, were 

found to be significantly differentially expressed across four drugs, including CD44, FN1, and 

TIMP3.  Similarly, SPARC, SNAI2 and TIMP1, including other 34 genes are observed to be 

overlapped in the case of three drugs (Fig. 5). These genes might be associated with pan-cancer 

drug sensitivity and resistance. 

 

Figure 5: Bubble plot to identify common DEGs across five drugs. Genes are identified as 

differentially expressed gene (reddish-brown bubble) in the case of multiple drugs. 
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Chapter-5 

Objective-3: Network analysis of the differentially 

expressed genes between drug-sensitive and -resistant 

cancer cell lines in order to identify key hub 

biomarkers. 

I. Gene co-expression network analysis 

II. Protein-protein interaction analysis 
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5.1 Introduction 

Networks are a common part of the actual world and the usual approach of representing 

biological systems as they represent a different combination of binary interactions or relations 

between heterogeneous or homogeneous elements. With the interactive visualization of data 

and integration of multiple datasets for analysis, it enables a more comprehensive study of 

different systems in nature. For example, biological networks, food webs, or hierarchies in a 

systematic organization. A network or graph is a collection of nodes connected by edges which 

represent a relationship between the nodes (Toor & Chana 2021).  

5.1.1 Biological Network 

Basically, nearly all biological entities interact with one another, from the molecular level to 

the ecosystem level. Using a variety of networks, like those that are used to study ecological, 

metabolic, or molecular interaction and neurological networks, allows us to study biology. 

Even though heterogeneous properties of cancer present serious challenges for prevention, 

treatment, and a detailed understanding of the pathological mechanisms; thus it is important to 

discover an effective biomarker that is necessary and prime importance (Yan et al. 2016). 

Recent decades have seen a surge of research into identifying molecular biomarkers for pre-

symptomatic diagnosis, stratification by cancer subtype, evaluation of cancer growth, 

prediction of cancer patient response to therapies and diagnosis of cancer relapses (Sawyers 

2008; Bolton et al. 2014). However, biomarkers of the oncogenic process are not effective at 

predicting outcomes, so they are too unreliable to be used in clinical applications. 

The biological network has been studied and used extensively to represent, quantify and design 

intracellular interactions in order to understand the cellular mechanisms in cancer (Kreeger & 

Lauffenburger 2010). These insights have led to the discovery of cancer-related biomarkers. 

 



74 | P a g e  
 

The network-based integrated analysis incorporates multifaceted high-throughput omics 

profiling data, including expression array, SNP array, CGH array, etc., from cancerous tissues, 

blood samples, and other samples have extensively increased the understanding of the 

molecular basis of carcinogenesis and identification of novel biomarkers (Wang et al. 2015; 

Zhang et al. 2009). 

5.1.2 Types of biological networks 

Different types of data create different general characteristics of a network, including 

connectivity, complexity and structure, where multiple layers of information can be conveyed 

through edges and nodes in the networks. Some most common types of biological networks 

are; the gene co-expression network (GCNs), protein-protein interaction (PPI) network, 

gene/transcriptional regulatory network, microRNA–mRNA network, metabolic network, and 

cell signalling network. We are providing a brief introduction about the co-expression and PPI 

networks as we have analyzed these two networks in our study. 

i. Gene co-expression network: Gene co-expression networks (GCNs) are transcript–transcript 

expression-based association networks used for various purposes, such as annotation of genes 

with unknown biological functions or processes, categorizing candidate genes related to 

disease and determining transcriptional regulatory mechanisms. These networks are 

constructed using data from transcriptomics (microarray data) and next-generation sequencing. 

With the recent advances in these fields, it is now possible to infer functions and disease 

associations for non-coding genes and splice variants. GCNs are networks that connect genes 

with similar expression patterns across all over the samples. Various types of correlation 

measures have been used to construct and analyse GCNs, including Pearson and Spearman 

correlations (Van Dam et al. 2018). 
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ii. Protein-protein interaction network (PPI): PPI networks are physical and functional 

interactions between proteins and they carry information about how different proteins work 

together within a cell to enable a biological process. In the human interactome, there are 

approximately 40,000 to 200,000 protein-protein interactions available. These protein-protein 

interactions play an important role in most of the biological and cellular processes, such as 

signal transduction pathways, gene transcription, cell-to-cell communication, metabolism, and 

proliferation. Furthermore, these interactions are key in every step of the central dogma of 

molecular biology, thereby playing an important role in transmitting genetic information that 

is significantly extrapolated in cancer as drug targets and in immunotherapy (Garner & Janda 

2011).  

With advanced strategies for the construction, analysis, and interpretation of various biological 

networks, we can discover reliable and accurate molecular biomarkers that can be used to 

monitor cancer progression, treatment, and diagnosis. These biomarkers may lead toward the 

development of personalized/precision medicine against cancer (Yan et al. 2016). The surge of 

omics data has led to the creation of a variety of freely available databases that provides an 

extensive amount of gene, protein interaction, biological pathway and network information, 

which are being established so that biologists can analyze these data from the complex system 

using valuable tools. These databases include interactions from BioGRID, STRING, IntAct, 

PID, MINT, KEGG, GeneMANIA, and REACTOME provide extremely useful qualitative 

data on the physical and functional relation between important elements in canonical cellular 

pathways (Wang et al. 2012). 

A biological network consists of two essential elements, which are nodes and edges. In a 

network, nodes represent genes or proteins. Edges, on the other hand, represent the type of 

interaction or relationship that exists between individual nodes. These relationships may 
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represent either protein-protein interaction or promoter interaction or gene expression 

regulation, or metabolic responses and can also validate genetic evidence. 

5.1.3 Topological parameters of network: To measure the locations of nodes in a network, it 

has been a set of defined topological parameters to describe their properties and centrality or 

functionality (Fig. 1). There are some most commonly used topological parameters are the 

following- 

a) Node degree: The degree of nodes is the sum of all it has. If a node that has a degree of n 

refers to the number of other nodes that have a connection with it. 

b) Betweenness centrality (BC): It is a measurement of centrality to assess the significance 

of independent nodes in a network. BC is a value that represents the number of all the 

shortest paths between nodes divided by the total number of the shortest paths between all 

nodes. 

c) Closeness centrality is the reciprocal of its average shortest path length in the network and 

measures of how fast information passes from one node to the other reachable nodes in the 

network. 
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Figure 1: Diagrammatic representation shows the node degree, betweenness centrality closeness 

centrality, and clustering coefficient in the hypothetical network. (Modified from Peng Zhang et al. 

2016) 

Systems biology aims to understand complex biological entities at a systems level, looking not 

only at the individual components but also at how they interact and affect one another and using 

tools derived from graph theory to represent and analysis of biological systems. We have 

studied and analyzed gene co-expression and PPI network to identify probable biomarkers 

related to drug-resistant cancer using both qualitative and quantitative approaches by 

integrating data at genomic, transcriptomic and proteomic levels. 

5.2 Materials and Methods 

5.2.1 Generation and acquisition of gene co-expression network  

We constructed a co-expression network to study the interaction between the DEGs in finer 

details. We subjected the set of DEGs list to an online web interface GeneMANIA program to 

query and construct the gene co-expression network of DEGs identified. It provides a 

meaningful gene-gene interaction network of DEGs, and as well as some predicted genes from 

GeneMANIA are automatically included to the network by default if it is found to be 

interacting with the presented DEGs list. We downloaded the co-expression network data from 

GeneMANIA. 



78 | P a g e  
 

5.2.2 Visualization and analysis of gene co-expression network  

To visualize and analyze the gene co-expression network, we imported network data into 

Cytoscape 3.8.2. The co-expression network was analyzed by using a plugin of Cytoscape 

network analyzer to identify hub genes. Based on their node degree distribution top hub nodes 

were selected. A gene node considered as key/hub node that has higher number of edges with 

interacting gene nodes.  To cluster the networks, we used a Cytoscape plugin app Glay 

(community cluster) from the clusterMaker module for network clustering (undirected edges), 

based on densely interacting nodes and functional relevance.  

5.2.3 Generation and acquisition of PPI network 

The PPI network analysis allows us to assess the corresponding protein interactions while gene-

gene interaction network is only useful for identifying key hub genes.  The PPI network was 

generated using a well validated online STRING v11.0 database, which provides physical 

(direct) and functional (indirect) protein association network data determined by experimental 

and computational methods. This database provides information about functional associations 

derived from various sources, including experimental, database, co-expression, co-occurrence 

text mining, neighborhood, etc., with a significant confidence score. We subjected the list of 

DEGs from co-expression network clusters into the STRING database to discern the physical 

and functional interaction among them. PPI network was generated with the cut-off interaction 

score for the network set to >0.400 (medium confidence), which implies that only interactions 

with a medium confidence score in the network were considered as reliable interactions. 

5.2.4 Visualization and analysis of PPI network 

We imported retrieved PPI network data into Cytoscape software (version 3.8.2) to visualize 

and analyze. Cytoscape Plugin Network Analyzer was used to analyze the PPI network. From 

the PPI network of each cluster we identified hub proteins based on highest node degree, which 
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is a measure of the protein's centrality in terms of its connection to other proteins nodes with 

key biological functions. To carry out GO and KEGG pathways analysis of the proteins in the 

PPI network, an online web server GeneCodis4 was used. 

5.3 Results 

5.3.1 Gene co-expression network analysis and identification of hub genes 

In order to examine the potential molecular interactions at the gene level and to undertake a 

deeper functional analysis of the identified DEGs in drug-resistant cancer cell lines, for the five 

drugs co-expression network was constructed and analyzed using DEGs enlisted from the 

above analysis. The generated co-expression networks of DEGs are shown in Fig 2A-E. The 

number of nodes (genes) and edges for the each networks was also enlisted (Table 2). From 

the network analyses using quantitative method, we were able to identify the top 34 hub genes 

in the case of Ponatinib, having highest node connectivity (node degree) (Table 1A). Similarly, 

top 35, 48, 52, and 13 hub nodes were identified for Trametinib, Selumetinib, Foretinib, and 

CI-1040, respectively (Table 1B-E).  

5.3.2 Clustering analysis of co-expression network 

Glay, a Cytoscape plugin was used to cluster the gene co-expression network into modules. In 

case of Ponatinib, the generated clusters 1, 2, and 3 contained 35 nodes, 40 nodes, and 77 nodes, 

respectively (Fig. 3A). Then, different number of clusters were generated through the network 

clustering, in the case of the other four drugs: 3 clusters for CI-1040, 4 clusters for each 

Trametinib and Selumetinib, and 6 clusters for Foretinib (Fig. 3B-E). After our co-expression 

networks analysis, further, we proceeded to generate PPI networks from clustered network 

genes in order to assess whether the same hub genes can be found as a hub node in the PPI 

network at the protein level. 
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(C) Selumetinib 

 

 

(D) Trametinib 
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(E) CI-1040  

 

Figure 2: Co-expression network of DEGs. This network consists up- (red nodes) and down-

regulated genes (green nodes) and genes predicted from GeneMANIA (blue nodes), hub genes were 

selected baesed on node degree (A) Ponatinib (B) Foretinib, (C) Selumetinib, (D) Trametinib, (E) CI-

1040. 

 

Table 1: List of identified hub genes from the co-expression network. (A) Ponatinib, (B) Foretinib, 

(C) Selumetinib, (D) Trametinib, (E) CI-1040. 

(A)  Ponatinib 

S No. Name Degree logFC S No. Name Degree logFC 

1 SPARC 63 2.942045 18 TWIST1 35 3.171716 

2 SRPX 59 3.861324 19 PROCR 35 3.053009 

3 PTPRM 51 2.360718 20 CNRIP1 35 3.17705 

4 PIR 48 3.213295 21 BCL2A1 34 2.995919 

5 EDNRB 47 2.455901 22 SERPINE2 33 3.398535 

6 FN1 45 2.48735 23 TYR 32 2.257251 

7 VEGFC 44 2.159631 24 S100B 32 2.763242 

8 TMEM158 42 2.762151 25 CTSL1 32 3.748661 

9 PLP1 42 2.206968 26 CD44 32 3.355082 

10 HTRA1 41 2.316941 27 SLC6A15 32 2.225731 
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11 SNAI2 41 3.26492 28 IL13RA2 31 2.086026 

12 DDR2 40 2.261463 29 LMNB1 31 -2.29481 

13 TIMP3 39 3.235401 30 PLK2 31 2.1479 

14 SGK1 39 3.038964 31 STC1 31 2.149369 

15 TIMP1 39 3.35654 32 PMEL 30 2.537572 

16 MLANA 38 2.430249 33 MYB 30 -3.87657 

17 MMP1 38 3.262725 34 MMP14 30 2.718661 

 

(B) Foretinib 

S No. Name Degree LogFC S No. Name Degree LogFC 

1 LAPTM5 145 -5.75001 27 CAV1 111 5.248772 

2 SPARC 139 3.390596 28 SYK 111 -3.71093 

3 S100A11 139 5.453968 29 LRMP 111 -6.19717 

4 EVI2B 138 -3.34125 30 LAMB1 108 2.433101 

5 CORO1A 132 -3.54753 31 TNFAIP8 106 -2.02497 

6 GMFG 132 -5.60287 32 AEBP1 106 -3.25478 

7 CD52 129 -6.07568 33 LYL1 106 -2.32261 

8 PTPRCAP 128 -3.81623 34 EPS8 105 2.493185 

9 CXCR4 128 -5.94196 35 CD63 105 2.180637 

10 EVI2A 126 -2.75744 36 CD38 105 -3.94811 

11 FLI1 125 -2.78249 37 SRPX 105 3.465235 

12 TGFBI 124 3.527154 38 CD44 105 3.602315 

13 RAB31 124 2.781301 39 LGALS3 105 6.130637 

14 BTK 120 -3.43982 40 LCP1 105 -3.46115 

15 CD53 120 -3.95217 41 MYOF 105 4.486707 

16 VAV1 120 -2.10008 42 FN1 104 4.286871 

17 NCF4 120 -4.28818 43 FAM65B 104 -2.17044 

18 SASH3 120 -2.69993 44 GLRX 103 -2.23624 

19 ARHGDIB 119 -4.13565 45 CD19 103 -3.10301 

20 AHR 117 2.449523 46 CCND3 103 -3.1296 

21 MEF2C 117 -3.81352 47 NCKAP1L 103 -2.59252 

22 LCP2 115 -2.74972 48 WWTR1 102 3.119242 

23 TIMP1 113 4.218703 49 CD79B 100 -2.09659 

24 CTSL1 113 4.007319 50 KIAA0922 100 -4.13033 

25 HLA-DPA1 112 -3.7146 51 CD72 100 -3.79728 

26 CD79A 112 -3.436 52 PLEKHO1 100 -2.59832 
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(C)  Selumetinib 

S No. Name Degree logFC S No. Name Degree logFC 

1 S100A11 60 -2.66948 25 FYB 35 2.21787 

2 LGALS1 58 -3.61629 26 CHI3L2 35 2.042024 

3 CTSL1 50 -3.01495 27 FAIM3 34 -2.67386 

4 SRPX 48 -3.6649 28 GPR137B 34 -2.10542 

5 AHR 48 -2.01913 29 PMP22 34 -2.85202 

6 TIMP1 46 -2.65478 30 ITM2A 34 3.022547 

7 PLAT 45 -3.21702 31 PTGS2 34 -2.0082 

8 RND3 43 -2.33281 32 PRKACB 33 -3.26241 

9 FN1 42 -3.3788 33 SNAI2 33 -2.70462 

10 PYGL 41 -2.95357 34 CD44 33 -3.02248 

11 IL7R 41 -2.00598 35 CXCL2 33 -2.27643 

12 CORO1A 41 3.689428 36 ME1 32 -2.32413 

13 TIMP3 41 -3.97979 37 TRIB2 32 -2.00256 

14 CAV1 40 -4.37341 38 FHL2 31 -2.98132 

15 DKK1 39 -2.62356 39 MCAM 31 -2.06399 

16 CCND1 39 -2.67084 40 TNC 31 -2.25594 

17 ITGB5 39 -3.20911 41 ARHGDIB 31 3.13521 

18 WWTR1 39 -3.10919 42 GZMA 31 -2.40187 

19 CD38 38 2.785901 43 LTBR 31 -2.41978 

20 LCP2 38 2.685341 44 PLS3 30 -3.18165 

21 CNN3 36 -2.60362 45 LGALS3BP 30 -2.65608 

22 DCBLD2 36 -2.7906 46 CAV2 30 -3.34135 

23 PLA2G4A 35 -2.80208 47 ST6GALNAC2 30 -2.22252 

24 QPCT 35 -3.21769 48 CD9 30 -2.7278 

 

(D) Trametinib 

S No. Name Degree LogFC S No. Name Degree LogFC 

1 LGALS1 87 -4.62733 19 ITGB5 58 -3.19813 

2 SPARC 80 -2.73628 20 SRPX 57 -3.53466 

3 ANXA1 74 -4.16594 21 LAMC1 57 -3.09847 

4 CAV1 73 -4.98208 22 PPAP2B 56 -2.06307 

5 MYOF 71 -4.2814 23 PPIC 56 -2.17838 

6 TGFBI 70 -4.0868 24 HTRA1 56 -2.91928 

7 TIMP3 67 -3.70926 25 LMNA 55 -2.75874 

8 AHR 66 -2.20746 26 ANXA4 54 -2.73862 

9 FN1 66 -3.07716 27 ITGA2 54 -3.38568 

10 CD59 64 -2.16905 28 CAV2 54 -3.86202 
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11 CTGF 64 -3.92276 29 CCL2 53 -2.45051 

12 WWTR1 63 -3.14903 30 PDLIM1 53 -2.31412 

13 TM4SF1 62 -6.48639 31 CYR61 52 -3.52746 

14 CEBPD 60 -2.86032 32 BHLHE40 51 -2.29155 

15 PLOD2 59 -3.14062 33 CALD1 51 -3.0044 

16 IFITM3 59 -3.75116 34 CD44 50 -3.60438 

17 PLAT 58 -3.24524 35 PTPRM 50 -2.16834 

18 SGK1 58 -2.06759     

 

(E) CI-1040 

S No. Name Degree LogFC 

1 KRT19 20 2.553488 

2 KRT8 17 2.47259 

3 MGST2 16 -2.06881 

4 VAMP8 15 -2.12426 

5 GATA3 14 2.268906 

6 SERPINB1 14 -2.82802 

7 RARRES3 13 2.195455 

8 IFITM2 13 -2.71822 

9 EPCAM 13 2.417885 

10 S100A4 12 -3.19585 

11 GCH1 12 2.156811 

12 SMAGP 12 2.135293 

13 KRT7 10 2.262705 

 

 

Table 2: List of number of nodes and hub nodes in gene co-expression network for all five drugs. 

Drug name Number of 

nodes in network 
Number of 

edges in 

network 

Number of hub 

nodes 
Lowest node degree 

for hub node 

selection 

Ponatinib 152 1826 34 30 

Foretinib 483 14156 52 100 

Selumetinib 256 2410 48 30 

Trametinib 165 3019 35 50 

CI-1040 49 211 13 10 
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(E)  CI-1040 

 

 

Figure 3: Co-expression network cluster generated by fast gready (Glay) Cytoscape plugin 

clustering algorithm. Clusters for five drugs (A) Ponatinib, (B) Foretinib, (C) Selumetinib, (D) 

Trametinib, and (E) CI-1040. Red nodes: upregulated protein-coding genes, Green nodes: down-

regulated protein-coding genes, Blue nodes: GeneMANIA predicted protein-coding genes.  
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5.3.3 PPI network analysis and identification of hub proteins 

The identification of key proteins in the network of proteins encoded by DEGs in drug-resistant 

cancer furnishes an important insight to understand the regulatory mechanisms that may cause 

cancer drug resistance. Genes/proteins significantly linked with drug resistance in cancer may 

act as a hub gene/protein. To study the same interactions at protein level, the PPI network was 

constructed by taking the genes from each cluster from the gene co-expression network in case 

of the selected drugs. We used a cut-off score 0.400, which is a median confidence score, 

quantifies the reliability of generated PPI network with corroborative evidence for the reported 

interactions (between two proteins) (Bozhilova et al. 2019). The PPI network for drug 

Ponatinib is shown in Fig. 4A, and for other four drugs are shown in Fig. 4B-E. Top hub 

proteins identified from all generated PPI networks are mentioned in table 3A-E. Only four 

hub protein nodes were identified for drug CI-1040 from PPI networks, whereas top 10 hub 

proteins node were identified for other four drugs (Table 4).  We were not able to acquire a 

PPI network for some of the clusters from the STRING database because of a lack of interaction 

data in STRING database.  

5.3.4 Functional analysis of proteins from the PPI network 

The functional enrichment analysis of these proteins are enriched in various biological 

processes term and KEGG pathways. Notably, the protein nodes from the PPI networks of the 

studied drugs were enriched in biological processes, such as signal transduction, proteolysis, 

melanogenesis, cell adhesion, cytokine-mediated signaling, cell population proliferation, and 

cell migration. From KEGG pathways analysis, we observed proteoglycans, and PI3K-Akt 

signaling pathways in cancer, etc. (Fig. 5A-E).  
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(E) CI-1040 

 

Figure 4: Protein-protein interaction network of cluster. PPI network of DEGs from the co-

expression network clusters for four drugs and selection of hub proteins by analyzing node degree. (A) 

Ponatinib, (B) Foretinib, (C) Selumetinib, (D) Trametinib, (E) CI-1040. Red nodes: upregulated 

protein-coding genes, Green colored nodes: down-regulated protein-coding genes, Blue colored nodes: 

GeneMANIA predicted protein-coding genes. Node degree represented by circle size. 

 

 

Table 3: List of identified hub proteins from the PPI network. (A) Ponatinib, (B) Foretinib, (C) 

Selumetinib, (D) Trametinib, (E) CI-1040. 

(A) Ponatinib 

Cluster 1 

Hub protein Degree logFC 

NDC80 20 -2.06481 

AURKB 20 -2.26034 

KIF15 19 -2.45912 

FBXO5 18 -2.07972 

CDT1 18 -2.22891 

ATAD2 17 -2.45525 

NCAPH 17 -2.2146 

MND1 16 -2.43927 

CDCA7 15 -2.21104 

E2F8 15 -2.69675 

 

Cluster 2 

Hub protein Degree logFC 

DCT 8 2.248641 

TYR 8 2.257251 

TYRP1 7 2.658401 

Cluster 2 
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PMEL 7 2.537572 

MLANA 6 2.430249 

PRAME 5 3.920346 

EDNRB 5 2.455901 

 

Cluster 3 

Hub protein Degree logFC 

FN1 24 2.48735 

CD44 15 3.355082 

MMP1 15 3.262725 

TIMP1 15 3.35654 

MMP14 14 2.718661 

SPARC 13 2.942045 

SNAI2 12 3.26492 

VEGFC 10 2.159631 

TIMP3 10 3.235401 

FOS 7 2.148925 

 

(B) Foretinib 

Cluster 2 

Hub protein Degree LogFC 

FN1 66 4.286871 

CCND1 42 3.398118 

IL8 40 3.455896 

JUN 38 2.687192 

TIMP1 37 4.218703 

CD44 37 3.602315 

SPP1 36 2.925569 

KIF11 36 -2.28524 

AURKB 33 -2.06155 

SERPINE1 30 2.088228 

 

(C) Selumetinib 

Cluster 2 

Hub protein Degree logFC 

LCP2 13 2.685341 

FYB 10 2.21787 

IL7R 10 -2.00598 

CD48 9 2.679745 

CCR5 8 -2.93984 

CD38 7 2.785901 

H2AFX 7 -2.10786 

GZMA 6 -2.40187 

APBB1IP 5 2.105772 
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UBE2V2 5 2.212951 

 

Cluster 3 

Hub protein Degree logFC 

LCP2 13 2.685341 

FYB 10 2.21787 

IL7R 10 -2.00598 

CD48 9 2.679745 

CCR5 8 -2.93984 

CD38 7 2.785901 

H2AFX 7 -2.10786 

GZMA 6 -2.40187 

APBB1IP 5 2.105772 

UBE2V2 5 2.212951 

 

(D) Trametinib 

Cluster 1 

Hub protein Degree LogFC 

IL1B 17 -2.48654 

IL8 16 -3.99662 

CD44 15 -3.60438 

CCL2 14 -2.45051 

CTSB 14 -2.65337 

ANXA1 13 -4.16594 

SPP1 12 -2.39734 

AHR 9 -2.20746 

ANXA2 9 -3.23904 

CD68 9 -2.74891 

 

Cluster 2 

Hub protein Degree LogFC 

FN1 31 -3.07716 

ITGB1 22 -2.38848 

SPARC 21 -2.73628 

CYR61 18 -3.52746 

CTGF 18 -3.92276 

ITGB5 17 -3.19813 

LAMC1 13 -3.09847 

TGFBI 12 -4.0868 

ACTN1 11 -2.7235 

CAV1 11 -4.98208 
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(E) CI-1040 

Cluster 2 

Hub protein  Degree LogFC 

KRT7 8 2.262705 

KRT8 8 2.47259 

KRT19 8 2.553488 

EPCAM 6 2.417885 

 

 

Table 4: Number of top hub protein nodes identified from each PPI network cluster in the case of all 

five drugs. 

Drug name Clusters Number of hub 

protein nodes from 

the PPI network 

Number of nodes in 

the PPI network 

Number of edges 

in the PPI network 

Ponatinib Cluster 1 10 25 179 

Cluster 2 7 22 39 

Cluster 3 10 59 155 

Foretinib Cluster 2 10 254 1174 

Selumetinib Cluster 2 10 47 87 

Cluster 3 10 67 179 

Trametinib Cluster 1 10 54 152 

Cluster 2 10 47 205 

CI-1040 Cluster 2 4 15 34 
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Cluster 3 

 
 

(D) Trametinib  

Cluster 1 
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Cluster 2 

 
 

(E)  CI-1040  

Cluster 2 

 

Figure 5: GO and KEGG pathways analysis of proteins from the PPI network. Gene ontology 

and KEGG pathway analysis using GeneCodis4 for five drugs. (A) Ponatinib, (B) Foretinib, (C) 

Selumetinib, (D) Trametinib, (E) CI-1040. 

 

5.3.5 Selection of common hub nodes between co-expression and PPI network 

Upon further analysis, combining hub node list from both PPI and gene co-expression 

networks, some common hub protein-coding genes were chosen. In case of Ponatinib there 

were nine hub proteins from clusters 3 and four hub proteins from cluster2, the hub genes 
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shared in common with the hub gene list from the gene co-expression network as well as with 

STRING-generated top hub proteins. Similarly, for the other four drugs also, common hub 

nodes were selected (Table 5). Through chronological analyses, the identified key hub 

proteins, common between co-expression and PPI network hub nodes, are enlisted as KRT7, 

KRT8, KRT19 and EPCAM for the drug CI-1040, TYR, MLANA, PMEL, EDNRB, FN1, 

CD44, MMP1, MMP14, TIMP1, SPARC, TIMP3, SNAI2, and VEGFC for Ponatinib, CD44, 

AHR, CCL2, ANXA1, FN1, CYR61, CTGF, SPARC, ITGB5, TGFB1 and LAMC1 for 

trametinib, Similarly, for other drugs, LCP2, FYB, IL7R, FN1, CD38, CD44, CCND1,  TIMP1, 

PTGS2,  CAV1, SNAI2 and LGALS1 for selumetinib, FN1, TIMP1 and CD44 for foretinib, 

were identified as driver proteins common between both co-expression and PPI network hub 

node list. 

 

5.3.6 Common hub protein-coding genes across multiple drugs 

Further, we intended to find out common hub proteins coding genes across all the drugs studied. 

Among the hub protein coding nodes from co-expression networks and PPI, as mentioned 

above, SPARC was common for two drugs (Trametinib and Ponatinib),  TIMP1 was common 

across the three drugs (Ponatinib, Selumetinib, Foretinib), while CD44 and FN1 were found to 

be common for 4 drugs; Foretinib, Trametinib, Ponatinib, and Selumetinib (Fig. 6). These hub 

proteins might induce drug-resistant in cancer through various divergent pathways, including 

PI3K-Akt signaling pathways, proteoglycans pathway in cancer, metabolic, and focal adhesion 

pathway as these pathways are widely investigated to play a role in cancer. Therefore, targeting 

these hub proteins could be one possible approach for targeting the up/downstream pathways 

and biological processes and overcome pan-cancer drug resistance. The two important key hub 

proteins, FN1 and CD44, have interconnectivity with RAS and PI3K/Akt signaling pathways, 
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taken from KEGG Pathways database (https://www.genome.jp/kegg/pathway.html), shown in 

(Fig. 7) which might induce drug resistance. 

 Our big data analyses corroborate the same, albeit with a different drug and functioning in a 

pan-cancer context. This study of gene co-expression and PPI network might provide key 

driver protein-coding genes, which may be useful in further studies to improve drug sensitivity 

in pan-cancer therapy. 

 

Table 5: List of hub nodes common between gene co-expression and PPI network for selected 

five drugs. 

Drug name Cluster Common hub nodes between gene co-

expression and  cluster PPI network 

Ponatinib Cluster 1 -NA- 

Cluster 2 TYR, PMEL, MLANA, EDNRB 

Cluster 3 FN1, CD44, MMP1, TIMP1, MMP14, 

SPARC, SNAI2, VEGFC, TIMP3 

Foretinib Cluster 2 FN1, TIMP1, CD44 

Selumetinib Cluster 2 LCP2, FYB, IL7R, CD38 

Cluster 3 FN1, CD44, TIMP1, CCND1, CAV1, 

PTGS2, SNAI2, LGALS1 

Trametinib Cluster 1 CD44, CCL2, ANXA1, AHR 

Cluster 2 FN1, SPARC, CYR61, CTGF, ITGB5, 

LAMC1, TGFB1 

CI-1040 Cluster 2 KRT7, KRT8, KRT19, EPCAM 

https://www.genome.jp/kegg/pathway.html
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Figure 6: Venn diagram representing common hub protein-coding genes identified across the drugs. 
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Figure 7: Schematic representation key genes CD44 and FN1 involved in RAS and PI3K/Akt 

signaling pathways to induce pan-cancer drug resistance. Several other intermediate proteins involved 

in the signaling cascade denoted by dashed arrows. 
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Objective-4: LncRNAs-TFs-Hub genes (at mRNA 

level) interaction regulatory network analysis in order 

to identify likely master regulators of our identified 

biomarkers 
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6.1 Introduction 

Genomes are transcribed extensively, which leads to the creation of more than thousands of 

non-coding RNAs, including lncRNAs. LncRNAs are described as RNAs extended with more 

than 200 nucleotides without having a significant open reading frame and therefore do not have 

the ability to translate (encode) into functional proteins. This broad definition includes many 

different types of transcripts, but each differs in their biogenesis and genomic origin (Statello 

et al. 2021). A Human Genome Project (GENCODE) database suggests that more than 16,000 

lncRNA genes are present in the human genome; however, other database estimates indicate 

that there could be more than 100,000 human lncRNAs (Uszczynska-Ratajczak et al. 2018; 

Statello et al. 2021). Most of these lncRNAs mainly generated by RNA polymerase II (RNA 

Pol II), whereas some are by other RNA polymerases. These lncRNAs are transcribed from 

various region of genome, such as intergenic (lincRNAs) and intronic regions of genes. They 

can also be either sense or antisense transcripts that may coincide with other coding or non-

coding genes. It is important to note that some of promoter and enhancer regions are also 

transcribed into promoter upstream transcripts and enhancer RNAs (eRNAs), respectively. The 

resulting lncRNAs are often capped at 5′ region by 7-methyl guanosine (m7G), polyadenylated 

at 3′ region and spliced in similar manner as mRNAs (Fig. 1) (Fang & Fullwood 2016). The 

majority of lncRNAs are tended to be localized in the cytoplasm. However, some of the 

lncRNAs can be reside in both cytoplasm as well as nucleus to which they seem to be 

predominantly localized (Bánfai et al. 2012; Derrien et al. 2012). 

6.1.1 Functional role of LncRNAs 

The number of characterized lncRNAs is growing and they play a major role in negative or 

positive gene expression regulation in development and human disease, including cancer. In 

malignant tumors, lncRNAs mostly play a crucial role in regulating biological and cellular 

processes, such as cell proliferation, migration, invasion, metastasis, epithelial-mesenchymal 
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transition (EMT), cell apoptotic death, cell cycle, invasion and also in drug resistance (Lecerf 

et al. 2019; Taniue & Akimitsu 2021). LncRNAs are an emerging new molecular players in 

the cancer paradigm with potential roles in both tumor-suppressive and oncogenic pathways. 

These novel non-coding genes frequently show altered expression in human cancers, although 

the biological functions of the majority of lncRNAs are not fully understood (Gibb et al. 2011). 

LncRNAs are widely involved in nearly all the steps of a life cycle of genes and modulate 

through a variety of mechanisms that rely on interactions with multiple molecules. Several 

lncRNAs function to regulate gene expression through different molecular actions, including 

chromatin remodeling, transcriptional regulation, and posttranscriptional processing such as 

mRNA splicing, stability and translation or microRNA (miRNA) sponging (Fig. 2) 

(Hauptman & Glavač 2013). 

 

 

Figure 1: Diagrammatic representation of general characteristics of lncRNA (Modified from Fang & 

Fullwood, 2016) 
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Figure 2: LncRNA molecular function in gene expression and the regulation mechanism. (Modified 

from Joshi et al., 2019) 
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6.1.2 LncRNA's role in drug-resistant cancer 

LncRNAs widely alter gene expression in a wide range of human cancer types (Bermudez et 

al. 2019, Clark & Mattick 2011; Saleembhasha & Mishra, 2018). Many lncRNAs, including 

PVT1, SNHG11 and MIR22HG are deduced to be vital regulatory molecules, have been 

implicated to function as master regulators of overexpressed several common coding genes, 

and are widely involved in primary pan-cancer development (Saleembhasha & Mishra 2019). 

Further, it was recently reported that many lncRNAs have a significant impact on cancer drug 

resistance in many cancer types like liver, breast, bladder, gastric, prostate, lung, and colorectal 

cancer (Bermudez et al. 2019; Zinovieva et al. 2018). There are some reported LncRNAs, such 

as TP73-AS1, that induce Temazolamide (TZM) resistance in glioblastoma cancer stem cells 

by altering ALDH1A1 expression (Mazor et al. 2019), while HOTAIR1 promotes tamoxifen 

resistance in breast cancer through the activation of estrogen receptor (ER) signaling (Xue et 

al. 2015). However, the exact molecular mechanism of lncRNAs on cancer drug resistance has 

not been fully characterized. 

In order to understand the molecular mechanism of lncRNA function in the drug-resistant pan-

cancer system, we constructed and analyzed a comprehensive lncRNA-TFs-hub gene 

interaction regulatory network to deduce key master regulators (lncRNAs) of our identified 

coding hub genes (biomarkers) in mutant NRAS-harbouring drug-resistant pan-cancer systems. 

6.1.3 Regulatory network Properties 

Besides their high connectivity, hub genes/proteins are often described as being designated by 

other properties of the network, including degree and centrality being the most important, 

which refers to their central position in relationship to other proteins in the network 

(Vandereyken et al. 2018). To understand the global gene regulatory interaction pattern in a 

cell, topological parameters such as betweenness centrality, clustering coefficient, 

neighborhood connectivity and node-degree help us to estimate a node's degree and also assess 
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the network dynamics by adding or subtracting nodes (genes) in a different biological context. 

Regulatory gene networks are used to understand how genes work as a network in biological 

pathways (Fig. 3). 

 

Figure 3: Schematic representation of gene regulatory network. Nodes represent genes or proteins 

(blue/yellow color circles) in the gene regulatory network and lines (edges) between them indicate 

regulatory interactions (Modified from Vandereyken et al., 2018). 

6.2 Materials and Methods 

6.2.1 LncRNAs, TFs, Driver genes, interaction regulatory network data collection 

We retrieved interaction data from the ORTI database to construct a TF-Driver genes 

interaction regulatory network, which consists transcriptional interactions data validated by 

experimental methods and text mining data from human and mouse source. ORTI database 

derived data from the high throughput ChIP-sec data and other database sources as well as from 

the literature, which harbours TF-TG (driver genes) interactions with data. Another data of 

lncRNAs- driver genes and lncRNAs-TFs regulatory interaction data have been retrieved from 

the extensive literature search. These regulatory interactions data were widely included in the 
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regulatory network, and it has a collection of lncRNA-target regulatory interaction validated 

from high throughput and low throughput experimental methods.  

6.2.2 Analysis of regulatory network  

To construct and analyze the regulatory interaction network, data from these two types of 

interaction were imported into Cytoscape 3.8.2 and then merged into a comprehensive/master 

network. Network analyses was done using quantitative directed method on the lncRNAs-TFs-

mRNA regulatory interaction network, and lncRNAs/TFs are used as a source to target 

identified hub genes. We identified critical non-coding regulators (bottleneck hub node) of our 

identified coding biomarkers using topological network parameters; betweenness centrality 

and node degree (outdegree).  

6.2.3 Sub-network analysis 

From the master regulatory network we further generated a regulatory subnetwork to assess 

direct or indirect regulation of coding biomarker genes through the identified key regulator 

lncRNA. We also predicted lncRNA-driver genes’ mRNA interaction by using a RNA-RNA 

interaction database, which contains huge data on lncRNA-lncRNA and lncRNA-mRNA 

interactions. This database provides information about the lncRNA interaction site on coding 

gene mRNA along with their binding energy. 
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6.3 Results 

6.3.1 Gene-regulatory modules: LncRNA, Transcription factor (TF), protein-coding gene 

(hub genes) interaction regulatory network  

During the identification of druggable targets (genes/proteins) in drug resistance, 

understanding the regulatory mechanisms occurring to regulate these druggable genes/proteins 

is important for further development as a drug target. Besides proteins, lncRNAs are imminent 

regulatory mechanisms in cancer drug resistance. During the investigation of key lncRNAs 

modulating our driver genes/proteins found across the multiple drugs that are typical for co-

expression and PPI network, an interaction network between lncRNA-TF-hub genes was 

designed and analyzed. The interaction data for TFs and identified key driver genes were 

retrieved from the ORTI database. An extensive literature search was conducted for lncRNAs 

interacting with hub genes (CD44, FN1, TIMP1, SPARC and SNAI2) and TFs. A complex 

regulatory interaction network was generated which has a total of 91 nodes (genes/proteins) 

and 125 edges, together with 5 hub protein-coding genes, 38 TFs and 48 lncRNAs (Fig. 4).  

Two topological parameters, betweenness centrality and out-degree, were set as criteria for the 

selection of hub node from the regulatory network. By examining the regulatory network, we 

established that MALAT1 possessed the highest node outdegree and betweenness centrality 

among the lncRNAs. YBX1, EGR1 and AR were the TFs with the highest out-degree and 

among these top three EGR1 possessed the highest betweenness centrality .The other lncRNAs 

such as lincRNA-p21 and HOTAIR were found to have the highest betweenness centrality and 

out-degree, respectively (Table 1). From our regulatory network analysis, we also observed 

that AR, YBX1, and EGR1 may regulate FN1 and CD44; AR and YBX1 may regulate SPARC; 

YBX1 and EGR1 may regulate TIMP1.  



113 | P a g e  
 

 

Figure 4: A master regulatory network of LncRNA-TF-Driver genes. Different types of regulatory 

interaction between lncRNAs, TFs and driver genes are depicted in this integrated network.  

Table 1: LncRNAs-TFs-Genes (hub genes) regulatory network directed quantitative analyses result 

based on outdegree and betweenness centrality. 

Sr No. Gene name Outdegree Sr No. Gene name BetweennessCentrality 

 MALAT1 8 1 MALAT1 0.336730123 

2 EGR1 4 2 HIF1A 0.274132139 

3 AR 4 3 TP53 0.205823068 

4 YBX1 4 4 EGR1 0.174412094 

5 NFKB1 3 5 YBX1 0.168868981 

6 FOS 3 6 lincRNA-p21 0.138969765 

7 ETS1 3 7 ETS1 0.063493841 

8 HOTAIR 3 8 CTNNB1 0.051175812 

9 H19 3 9 SLNCR 0.044456887 

10 HIF1A 2 10 SP1 0.039193729 
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6.3.2 EGR1 and MALAT1 sub-network analysis 

Further, from the regulatory sub-network, we observed that two of the driver genes, including 

SPARC and SNAI2, and six transcription factors, including EGR1 might be directly regulated 

by lncRNA MALAT1. It was also observed that three driver genes, including FN1, CD44, and 

TIMP1 were indirectly regulated by MALAT1 through EGR1 (Fig. 5A). MALAT1 and EGR1 

regulate each other through a two-way (mutual) interaction as depicted from the ENCODE 

dataset retrieved from the harmonozome database. It was shown that MALAT1 is a 

transcriptional target of EGR1. And the interaction between EGR1 and MALAT1 was 

determined by ChIP-Seq data. 

We were interested to check if MALAT1 directly interacted with the above transcripts. 

Therefore, we used RNA-RNA interaction database and predicted these interactions (Fig. 5B). 

We found that MALAT1 and hub genes’ interactions occur at different sites in mRNAs, such 

as 5´UTR, 3´UTR and CDS region. For example, MALAT1 was observed to interact with 

TIMP1 and SNAI2 at the CDS region, FN1 at the 5´UTR, and at the 3´UTR regions of CD44 

and SPARC (Table 2). 
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Figure 5: EGR1 and MALAT1 subnetwork from the master regulatory network. (A) EGR1, which 

regulates FN1, CD44 and TIMP1, being controlled by MALAT1. (B) MALAT1-mRNA interaction (hub 

genes, green-colored edge) and EGR1-MALAT1 interaction (red-colored edge) were obtained from the 

lncRNA-mRNA interaction database and harmonizome database, respectively. 

 

Table 2: Predicted lncRNA interaction site on mRNA of coding hub genes. 

LncRNA Hub genes  Interaction site 

  

  

MALAT1 

FN1 

CD44 

TIMP1 

SPARC 

SNAI2 

5’UTR 

3’UTR 

CDS 

3’UTR 

CDS 

 

6.3.3 Cis and trans-regulatory action of MALAT1 on key driver genes 

In order to illustrate the cis and trans-regulatory action of MALAT1 on the target hub genes, 

we tried to investigate the genomic coordinates of the coding hub genes and MALAT1 from the 

NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene/). It was observed that, due to their 

(A) (B) 

https://www.ncbi.nlm.nih.gov/gene/
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same chromosomal location (Table 3), MALAT1 might regulate CD44 in the cis-regulatory 

mode of action. While due to their different genomic location, MALAT1 may regulate FN1, 

TIMP1, SNAI2 and SPARC in the trans-regulatory mode of action. 

Table 3: Genes with their chromosomal location. 

Genes Chromosomal location Gene ID 

MALAT1 11q13.1 378938 

FN1 2q35 2335 

CD44 11p13 960 

TIMP1 Xp11.3 7076 

SNAI2 8q11.2 6591 

SPARC 5q33.1 6678 
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Chapter-7 

Objective-5: Database search of FDA-approved 

drugs targeting the identified hub gene/s for drug 

repurposing studies and in silico virtual screening 

of drugs against target protein 
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7.1 Introduction 

Despite the many improvements in cancer treatment that have been made over the years, cancer 

still remains one of the leading causes of death in the world. It is one of the most common and 

severe health issues worldwide due to its high mortality and incidence rates (Sung et al. 2021). 

The development of drug resistance increases the mortality rate among cancer patients, which 

is one of the biggest challenges to getting better cancer treatment. Although there are many 

therapeutic strategies are available to treat cancer, the currently used therapeutic schemes are 

sometimes accompanied by drug-resistance development in the malignant tumor cells, 

resulting in a decline in the effectiveness of the therapeutic agents (Falvo et al. 2021; Bukowski 

et al. 2020). In order to overcome this phenomenon, it is necessary to develop new therapies 

or new anti-cancer drugs to overcome it. Developing new drugs is a lengthy and costly process 

involving clinical trials that often fail in the early phases of development. Developing new 

drugs is a long, expensive process, and clinical trials are often rejected in the early stages of 

development. An approach to encounter these disadvantages is known as drug repurposing, 

which involves finding a drug that has been approved for another purpose but still meets its 

original criteria (Rodrigues et al. 2022). 

7.1.1 Drug repurposing strategies 

Due to the potential for discovering new uses for existing drugs, the concept of drug 

repurposing has attracted considerable attention, it primarily includes approved, pre-clinical, 

discontinued, abandoned and experimental or investigational drugs. In the pharmaceutical 

research and industry for developing new drugs uses the repurposing method due to its high 

efficiency in saving time and economic over the conventional de novo approaches (Rudrapal 

et al. 2020). Drug repurposing is also known as drug repositioning, drug reprofiling and 

therapeutic switching (Jarada, et al. 2020). In recent years, several successes of repurposing 

drugs have brought worldwide attention to the old drug space for their potential off-target 
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effects that may be advantageous to certain kinds of diseases, such as cancer. Since existing 

drugs have well-established dose regimens and have already been used in humans with 

favourable pharmacodynamics (PD) and pharmacokinetics (PK) properties along with 

tolerable side effects, making old drugs are valuable sources of new therapeutic drug discovery 

(Shim & Liu 2014). There are two approaches of drug repurposing; activity based 

(experimental) and in silico (computational) approaches (Oprea & Overington 2015). And the 

computational approach has been categorized into ligand-based, target-based, and machine 

learning-based approaches. However, in silico based methods identify potential bioactive 

molecules based on the molecular interaction of drug and protein molecules. 

7.1.2 Repurposed drug for cancer 

There are some previously repurposed drugs for cancer, such as; Metformin was approved for 

type 2 diabetes which is currently in trial phase III/IV for cancer (Zhe Zhang et al. 2020). 

Rapamycin is an inhibitor of mTORC1 used as an immunosuppressant, but due to 

ineffectiveness, it was repurposed and approved for renal cell carcinoma treatment in 2007 

(Malizzia & Hsu 2008). Itraconazole, an antifungal drug also repurposed as an anticancer agent 

by using in silico approach (Dhorje et al. 2020; Rudrapal et al. 2020). In recent years, during 

the coronavirus disease 2019 (COVID-19) pandemic, several drugs have been repurposed 

against SARS-CoV-2 due to which many drugs were approved for the COVID-19 patient’s 

treatment (Chakraborty et al. 2021; Elmezayen et al. 2021). 

Therefore, we were interested and aimed to target these key biomarker (CD44) through in silico 

drug repurposing approach to improve drug sensitivity in pan-cancer and to identify important 

residues of protein interacting with drug molecules. 

From our previous objectives (chapter 5), we identified CD44, FN1, TIMP1, SNAI2, and 

SPARC (Fig. 6) as biomarkers in mutant NRAS-harbouring pan-cancer drug resistance across 
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multiple drugs from gene co-expression and protein-protein interaction network study and we 

detected CD44 and FN1 as our major key biomarkers across four drugs. Expression of both of 

these key biomarkers results in a multitude of cellular functions such as migration, 

proliferation, tumor microenvironment, adhesion, and also induced drug-resistant in cancers. 

Identified biomarkers have been reported to be highly expressed in most of the tumors and also 

expressed in drug-resistant cancer to support various biological processes and signaling 

pathways involved signal transduction, proteolysis, cell adhesion, proteoglycans in cancer and 

PI3K/Akt-signaling pathway. In our study, we also have observed that these biomarkers genes 

were significantly up-regulated in drug-resistant pan-cancer. 

  

 

Figure 1: CD44 role in signaling pathways. HA binding to the extracellular domain of CD44 

activates various downstream signaling pathways, including MAPK and PI3K/Akt pathways through 

the cytoplasmic domain to regulate several biological and cellular processes. (Modified from Cortes-

Dericks et al., 2017). 
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7.1.3 Cluster of differentiation 44 

Cluster of differentiation 44 (CD44; 90 kDa) is a widely distributed cell surface non-kinase 

transmembrane protein, an integral part of the extracellular matrix that is involved mostly in 

cell adhesion, migration, metastasis and also activates various signaling pathways, including 

RAS-MAPK and PI3k/Akt signaling and also induces chemoresistance in cancer (Fig. 1) 

(Jamison et al. 2010; Herishanu et al. 2011; Cortes-Dericks et al. 2017). It is activated by the 

binding of hyaluronic acid (HA) at the N-terminal region of the extracellular domain and HA 

is the most common activating endogenous (linear polysaccharide) ligand molecule of CD44 

(Cortes-Dericks et al. 2017). CD44, a proteoglycan, is also functionally involved in the binding 

and presentation of growth factor and chemokine. The extracellular region of CD44 gene 

contains 20 exons, 10 types of alternative splicing variants give rise to multiple CD44 isoforms 

such as CD44s and CD44v (Fig. 2A&B) (Bajorath et al., 1998). Exon 1-17 form the 

extracellular domain (exons 1-5 are HA binding domain conserved across CD44s and their 

variants), exon 18 give rise transmembrane domain, and exons 19-20 are responsible for 

forming the cytoplasmic domain (Xu et al. 2015). 

 

 

(A) 
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Figure 2: CD44 gene illustration and alternatively spliced variants isoforms and key protein 

domain structure. (A)  CD44 gene contains 20 exons, out of which some exons form a constant region 

in every CD44 variants exons (red bars) and protein (green bars) and are selected by alternative splicing. 

CD44v protein isoforms are the result of alternative splicing. (B) CD44 glycoprotein is composed of 

extracellular domains; HA binding domain (green), a variable domain (grey), a transmembrane domain 

(red), and a cytoplasmic tail (blue). (Modified from Chen et al., 2018; Xu et al., 2015) 

 

7.2 Materials and methods 

7.2.1 hCD44 and mCD44 protein sequence and structure alignment 

As the 3D crystal complex structure of hCD44 with HA is not available in the PDB database, 

we retrieved the human CD44 protein sequence from UniprotKB (code: P16070) in FASTA 

format. We performed a pairwise protein sequence similarity search using the NCBI BLASTp 

server to determine the HA binding domain similarity with CD44 protein sequence available 

in the PDB database. We also assessed the structural similarity between human and mouse 

CD44 HABD (hCD44 PDB ID- 4PZ4 & mCD44 PDB ID- 2JCQ) using PyMol. 

7.2.2 Protein preparation 

Human CD44 protein HABD (PDB ID- 4PZ4) with resolution 1.60 Å was retrieved from the 

RCSB-PDB database and all heteroatoms and water molecules in the PDB file were removed 

manually. Energy-minimization of the protein structure was done using the Swiss-PDB viewer 

(B) 
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tool to get the stable and low-energy conformation state of the protein. Protein was prepared 

using AutoDock Tools v1.5.6, in which water molecules were removed, hydrogens (only polar) 

were added and Kollman charges were assigned to the protein. The prepared protein was saved 

in pdbqt file format. The Druggability of ligand binding pocket was predicted using the online 

server PockDrug by estimation methods Prox 5.5, where it used holo-protein for pocket 

druggability prediction. 

7.2.3 Ligand preparation 

A library of 1615 chemical structures (only FDA-approved drugs) was retrieved from the 

ZINC15 database in 3D SDF file format and converted into PDB format and then split into 

individual drug PDB files using an open Babel suite. All the ligands were prepared using Auto-

DockTools v1.5.6. Hydrogens and Gasteiger charges were added to the ligands and the 

nonpolar hydrogens were merged. The prepared ligands were saved in pdbqt file format.  

7.2.4 Virtual screening through molecular docking 

Grid box was set at 60, 60, and 60 and center with x= 12.143, y=-6.510, and z=6.243, with 

default spacing 0.375Å to include all the present amino acid residues of ligand-binding pockets 

of the receptor. Virtual screening through molecular docking was performed in the Autodock 

vina program using Perl script. Final docked conformations were obtained using the AutoDock 

vina. The obtained lowest energy docking conformations and orientations were subjected to 

energy minimization. The resultant protein-ligand complexes were visualized and analyzed by 

using PyMol and Discovery studio4 (BIOVIA). 
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7.3 Results 

7.3.1 hCD44 and mCD44 similarity assessment to identify HA binding cavity residues 

With no hCD44 protein (in complex with) bound hyaluronic acid, we performed HABD protein 

sequence and structural similarity analysis of the mCD44 protein. Pairwise sequence alignment 

showed that hCD44 protein HABD shares around 87% sequence identity with mCD44 HABD 

protein (PDB ID- 2JCQ) (Fig. 3A) and structural alignment showed significant similarity 

between human and mouse CD44 protein with RMSD value 0.311 within an acceptable value 

for protein similarity due to the presence of conserved amino acids residues in human and 

mouse HABD. From this similarity assessment, we observed that hCD44 and mCD44 have the 

same binding site for hyaluronic acid at the N-terminal domain (Fig. 3B). Some previous 

mutagenesis studies have identified Arg41, Tyr42, Arg78 and Tyr79 are, as crucial residues in 

hCD44 for HA interaction stabilization (Peach et al. 1993; Bajorath et al. 1998). We further 

used HA binding pocket residues coordinates for grid box generation. 

 

(A) 
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Figure 3: CD44 HABD protein sequence and structure alignment. (A) hCD44 HABD protein sequence 

similarity with mCD44 HABD. Highlighted (red) amino acid residues are key for HA binding to CD44. 

(B) hCD44 and mCD44 protein HABD 3D structure alignment, hCD44 (green) and mCD44 (magenta) 

and red circled portion is HA binding pocket. 

7.3.2 HA binding pocket druggability prediction 

We further assessed the pocket druggability of the HA binding pocket of hCD44 using the 

Prox5.5 method in the online PockDrug server and the HA binding pocket showed 0.89 

druggability, suggesting that HA binding pocket is highly druggable with high affinity. The 

volume hull of the pocket was 5488.22 (Fig. 4). 

(B) 



127 | P a g e  
 

 

Figure 4: Schematic illustration of pocket druggability. Red covered volume is HA binding pocket 

in CD44. 

7.3.3 Ligand binding site analysis through molecular docking 

For the in silico virtual screening of 1615 FDA-approved drug molecules against our selected 

target protein CD44 through molecular docking, we utilized the AutoDockVina, which is one 

of the most commonly used docking software with an effective scoring function. After 

molecular docking, we selected top 16 protein-drug complexes with high binding affinity for 

further analysis (Table 1). Among these 16, only seven drugs bind to HA binding pocket of 

hCD44 (Table 2). As there is no known allosteric binding site at CD44 protein and other 9 

drugs were binding at different sites than HA binding cavity, they were excluded from further 

analysis. 

Further, we analyzed seven protein-drug complexes. Fig 5A shows the docked drug molecule 

binding at HA binding cavity (e.g., Glecaprevir) and HA docked with hCD44 protein and 

binding in the cavity with binding affinity -7.6 kcal/mol (Fig. 5B).  
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Table 1: Top 16 drugs selected from in silico virtual screening of 1615 drugs with their binding 

affinity. 

Sr. No ZINC ID Name  Binding energy (kcal/mol) 

1 ZINC000003813047  Oxandrolone  -9.3 

2 ZINC000164528615 Glecaprevir  -9.3 

3 ZINC000003860453  Ak-Fluor  -9.1 

4 ZINC000052955754  Ergotamine  -9.0 

5 ZINC000100378061  Naldemedine  -9.0 

6 ZINC000252286875   -9.0 

7 ZINC000203757351 Paritaprevir  -8.9 

8 ZINC000004212851  Lokara  -8.7 

9 ZINC000003978005  Dihydroergotamine  -8.6 

10 ZINC000000968264  Cyproheptadine  -8.6 

11 ZINC000100013130  Midostaurin  -8.5 

12 ZINC000004097308  Cordran  -8.5 

13 ZINC000005764759  Methylnaltrexone  -8.5 

14 ZINC000169289767  Trypan Blue  -8.5 

15 ZINC000003874185  Mefloquine  -8.5 

16 ZINC000252286876   -8.5 

 

Table 2: List of top 16 selected drug molecules binding at HA binding cavity or alternate cavity of 

CD44. 

Drug molecules bind at HA binding 

pocket 

Drug molecules bind at the alternate 

binding pocket 

Glecaprevir, Ergotamine, Naldemedine,  

Midostaurin, Trypan Blue,  

ZINC000252286875, 

ZINC000252286876 

Oxandrolone, Ak-Fluor, Paritaprevir,  

Lokara, Dihydroergotamine, 

Cyproheptadine, Cordran, 

Methylnaltrexone, Mefloquine 
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Figure 5: Docked drug molecule and HA in the cavity of CD44. (A) 3D structure of binding site of 

protein (CD44) showing the orientation of Glecaprevir (magenta) in HA binding groove of CD44 (B) 

Hyaluronic acid (green). 

 

7.3.4 Protein-ligand interaction analysis 

The docking results showed the different binding poses of virtually screened drugs at HA 

binding pocket (Fig. 6) showed interaction with various residues from CD44. Among these 

seven, four drugs, Glecaprevir and Ergotamine with high binding affinity -9.3 kcal/mol, -9.0 

kcal/mol, respectively and both Midostaurin and Trypan Blue with binding affinity -8.5 

kcal/mol formed no unfavourable interaction, and three drugs (Naldemedine with Arg150, 

ZINC000252286875 with Cys77 and ZINC000252286876 with Arg90) formed unfavorable 

interaction with CD44 residues (Table 3). HA binding pocket residue Arg150 from CD44 

showed frequent H-bond as well as hydrophobic interactions with three drugs (Glecaprevir, 

Midostaurin and Naldemedine) and only H-bond interaction with Trypan Blue and 

ZINC000252286876, while with Ergotamine form only hydrophobic interaction. Other pocket 

residues Asn25, Thr27, Phe30, His35, Phe74, Thr76, Cys77, and Arg78, were commonly 

involved in non-bonded contacts with most of these 7 drugs via van der Waals interactions. 

(A) (B) 
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Ans25 was also observed to be interacting with Glecaprevir through halogen bond interaction. 

Cys77, previously observed to be essential for stabilizing the HA binding groove (Kellett-Clark 

et al. 2015), also shows hydrophobic interaction with two drugs (Glecaprevir and Midostaurin) 

and H-bond interaction with the drug ZINC000252286875 and van der Waals interaction with 

multiple drugs.  

It was observed that among these small molecule drugs, Trypan blue formed the highest 

number of H-bond as well as van der Waals interactions (8 and 14, respectively) and 

Midostaurin formed more number of hydrophobic (6) interactions with CD44. At the same 

time, Ergotamine showed the second-highest number of H-bond (5) interactions with CD44 

(Table 4).  

 

 
 

 

 

 

 

 

 

 

 

 

(A) Glecaprevir (B) Ergotamine 
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(C) Midostaurin (D) Naldemedine 

(E) Trypan blue 
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Figure 6: 3D representation of protein-ligand interactions of CD44 for seven drugs. (A-G) Ligand 

molecules are shown in the stick model in magenta color, and CD44 protein amino acid residues are in 

blue color. 

 

Table 3: List of protein residues involved in various types of interaction with the top seven drugs. 

 

Drug ID or name Unfavorable 

interaction 

H-bond 

interaction 

Hydrophobic 

interaction 

Van der Waals 

interaction 

Glecaprevir  Arg150 Phe30, Phe74, 

Cys77, Arg150 

His35, Glu37, Thr76, 

Arg78,  

Ergotamine  Glu37, Glu75, 

Glu127 

Phe30, His35, 

Arg150 

Asn25, Thr27, Phe74, 

Thr76, Cys77, Arg78 

Midostaurin  Arg150 Cys28, Cys77, 

Arg78, Arg150 

Asn25, Thr27, Phe30, 

His35, Phe74, Thr76 

Naldemedine Arg150 Arg150 Thr27, Phe30, 

Arg150 

His35, Phe74, Thr76, 

Cys77 

Trypan Blue  Asn25, lu127, 

Arg150, 

Gly73 

Phe30, Val148 Thr27, Phe30, His35, 

Phe74, Thr76, Cys77,  

ZINC000252286875 Cys77 Cys77, Gly73  Asn25, Thr27, Phe30, 

His35, Phe74, Thr76, 

Arg78,  

ZINC000252286876 Arg90 Arg150  Asn25, Thr27, Phe30, 

His35, Thr76, Cys77, 

Arg78,  

 

 

 

(F) ZINC000252286875 

 

(G) ZINC000252286876 
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Table 4: Number of different types of interaction between protein and ligands. 

Ligand-protein complex 
No. of H-bond 

interaction 

No. of hydrophobic 

bond interaction 

No. of van der Waals 

interaction 

Glecaprevir-CD44 3 4 11 

Ergotamine-CD44 5 3 7 

Midostaurin-CD44 1 6 8 

Naldemedine-CD44 1 4 14 

Trypan Blue-CD44 8 3 15 

ZINC000252286875-

CD44 
4 - 14 

ZINC000252286876-

CD44 
1 - 14 

 

From a previous in vitro study, it was observed that small fragment molecules show inhibitory 

action on CD44 by binding at HA binding pocket (Liu & Finzel 2014). The comparison of 

fragment similarity with our screened drug shows some similarity in a part of the drugs. So our 

top selected drugs binding at HA binding cavity may show a similar mode of inhibitory action; 

however, this needs to be assessed further and validated experimentally. 
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8.1 Discussion 

Mutant NRAS protein can be very difficult to target directly but it has frequently been found 

to be closely involved in drug resistance in a variety of cancer types. Utilizing NRAS-mutant 

pan-cancer cells lines, we performed an extensive data analysis of coding genes to enlist 

signaling molecules directly or indirectly connected to NRAS signaling pathway and possibly 

involved in pan-cancer drug sensitivity or resistance using drug dose-response of five select 

drugs. We also analyzed regulatory network to understand their regulation by long non-coding 

RNAs apart from proteins. 

Crucial DEGs identified between drug-sensitive and resistant cancer cell lines, were observed 

to be significantly enriched in signal transduction, cell adhesion, apoptotic process, proteolysis 

and cell cycle biological processes observed using GO; and in proteoglycans pathway in cancer, 

focal adhesion pathway, PI3K/Akt signaling pathway, and metabolic pathway observed using 

KEGG Pathways. Since these pathways are found widely involved in cancers, these enriched 

DEGs likely play a more significant role in drug resistance development in cancer. Lee et al. 

2015 found signaling pathways involved in drug resistance, while our studies pinpointed these 

key DEGs, which are also involved in some of these pathways. Further analyses utilizing gene 

co-expression and PPI network of the clusters confirmed that similarity in functional modules 

of biological processes, as well as the KEGG pathway.  

In order to identify an effective therapeutic biomarker, it is important that the mRNA 

concentration and protein abundance profiles should be correlated. In addition to a gene co-

expression network analyses, the construction and analyses of a PPI network allows us to assess 

the functional roles. For common drugs, hub (driver) proteins were identified from the PPI 

network similar to the co-expression network hub gene list. Our study found that FN1, CD44, 

TIMP1, SPARC and SNAI2 are common protein-coding hub genes, which are frequently 
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associated with most of the drug-resistant cancer conditions. Further, it was seen that all of 

these protein-coding hub genes were up-regulated in the case of Ponatinib-resistant cancer cell 

lines and FN1, CD44 and TIMP1 were up-regulated in Foretinib-resistant cancer cell lines. 

FN1 and CD44 were down-regulated in Selumetinib- and Trametinib-resistant cancer cell lines, 

TIMP1 and SNAI2 were down-regulated only in Selumetinib-, while SPARC was down-

regulated in the case of Trametinib-resistant cancer cell lines. Some of these identified key hub 

genes function as biomarkers in several cancer types (Amundson et al. 2010; Cheon et al. 

2014). It has been shown that overexpression of FN1 induces drug-resistance in breast cancer 

(Saatci et al. 2020) and activates Akt signaling pathway (Yoshihara et al. 2020). CD44 is a 

non-kinase transmembrane proteoglycan (Jalkanen et al. 1992). Higher expression of CD44s 

isoform, is known to induce acquired drug-resistance in cancer through multiple signaling 

pathways (Chen et al. 2018). TIMP1 is a secretory protein that plays a crucial role in cancer 

progression and invasion in MMPs independent manner (Park et al. 2015) and is reported to 

mediate chemoresistance in NSCLC (Xiao et al. 2019). SNAI2 is observed to be highly 

expressed in fulvestrant-resistant and tamoxifen-resistant breast cancer and also known to have 

an involvment in human malignancies (Cobaleda et al. 2007; Alves et al. 2018). Similarly, 

SPARC is a cysteine-rich secreted protein known to be associated with highly aggressive 

cancer; however, in less aggressive cancer, it is reported to act as a tumor suppressor (Tai 

&Tang 2008).  

Further, our studies also focused on identifying non-coding RNA (e.g., lncRNAs) as master 

regulators of these hub biomarker genes involved in drug resistance, apart from proteins 

regulators. LncRNAs have been associated with drug resistance (Corrà et al. 2018; Barth et 

al. 2020; Pandya et al. 2020; Liu et al. 2020). Therefore, we wanted to identify key lncRNAs 

that could regulate our key driver genes identified from both co-expression and PPI network 

studies, to alter their expression in drug-resistant cancer.  
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From the directed regulatory interaction network analyses of lncRNA, TFs and mRNA 

(biomarker genes), we have identified MALAT1 among the lncRNAs, to be the major 

interacting component (node) based on two important topological network parameters 

(outdegree and betweenness centrality). MALAT1 regulates driver genes by interacting with 

mRNAs at 5’ UTR of FN1; CDS of TIMP1, SNAI2; and 3’ UTR of CD44 and SPARC. In drug-

resistant cancer, MALAT1 could regulate hub genes expressions through the processes such as 

mRNA splicing, stability and degradation (Amodio et al. 2018; Bhat et al. 2016). Moreover, 

MALAT1 is a widely studied lncRNA in a variety of cancers and was originally reported to be 

associated with metastasis in the early stage of non-small cell lung cancer (Yoshimoto et al. 

2016; Amodio et al. 2018). MALAT1 transcripts are localized to the nuclear speckles, which is 

a site for the pre-mRNA splicing process, after being transcribed from human chromosome 

11q13.1 (Arun et al. 2020; Yoshimoto et al., 2016; Jadaliha et al. 2016; Gordon et al. 2019). 

The initial studies of MALAT1 overexpression were shown to be associated with tumor growth, 

metastasis, cell adhesion, migration, and poor prognosis in cancer (Yoshimoto et al. 2016). 

From our gene regulatory interaction network study, driver genes SPARC and SNAI2 

interacting with MALAT1 were corroboratively found to be down-regulated in MALAT1-

depleted breast cancer reported by Jadaliha et al. 2016. Further, studies suggest that MALAT1 

also positively modulates the expression of EGR1 (Spreafico et al. 2018) while results from 

our studies using harmonizome ChIP-Seq data from ENCODE dataset shows that EGR1 could 

transcriptionally regulate MALAT1. EGR1 and MALAT1 might be possibly regulating each 

other through a positive feedback loop regulatory system. Many studies have reported that the 

mechanism of MALAT1 action on mRNA splicing could serve as decoy processing (Bhat et al. 

2016; Nguyen et al. 2020), and apart from interacting with mRNAs of driver genes at different 

mRNA regions, MALAT1 could also be interacting with their respective proteins. MALAT1 

might be regulating CD44 in a cis-regulatory manner because both MALAT1 and protein-
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coding gene CD44 are located on the same chromosome 11, while with respect to other driver 

coding genes (FN1, TIMP1, SNAI2, SPARC), MALAT1 could be regulating,  in a trans-

regulatory manner as other genes are located on different chromosomes than MALAT1. This 

study further confirms that two possible scenarios might exist. First, that several lncRNAs may 

interact with one coding gene at a time, and second, that one or multiple lncRNAs may 

interact/regulate many coding genes simultaneously at the transcriptional level. 

From our above studies, we came up with a working model of the mechanisms of driver genes 

regulation, specifically, FN1, CD44, TIMP1, SPARC, and SNAI2, by EGR1-MALAT1 

regulatory axis, which has been identified from our network analysis study using genes 

involved in NRAS-mutant pan-cancer drug resistance (Fig. 1). A few coding as well as non-

coding genes (lncRNAs) can function as key targets replacing recalcitrant NRAS as a drug 

target. 

Taken together, our data suggest that these identified driver genes’ expression may be induced 

or suppressed via direct interaction with MALAT1, which leads to context-dependent drug 

resistance/sensitivity, corroborated by literature studies.  

Key insights gained from these findings may improve our understanding of drug resistance 

development in pan-cancer systems. Further studies are needed to assess the clinical relevance 

of these findings as therapeutic targets in the cancer types harbouring NRAS mutation as we 

have used experiments conducted on cell lines, whereas tumor microenvironment is found to 

play a crucial role in regulating the overall cancer phenotypes, so some deviations from our 

study may be observed. Enlisted few driver genes/lncRNAs can be further studied for their 

specific expression in drug-resistant cancer cell lines, alongwith transcriptional dysregulation 

and its implications on regulatory activity. 
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Figure 1: MALAT1 may regulate driver genes associated with drug-resistance in cancer. EGR1 may 

bind to the promoter region of MALAT1 to transcriptionally regulate it. After transcription, MALAT1 

may regulate driver genes by binding at 5’UTR, CDS, and 3’UTR regions of key genes. 

 

Drug repurposing 

A structure-based in silico virtual screening was done to discover novel inhibitary candidates 

of CD44, by using a drug repurposing approach. In summary, 1615 FDA-approved drugs from 

the ZINC15 database were screened against CD44 to discover potent inhibitors with a high 

binding affinity toward the target protein. Sixteen ligands showed a high binding affinity with 

CD44, and 7 of them were found to bind at the HA binding cavity of the target protein (CD44) 

with high affinity. Among these seven drugs, three drugs (Naldemedine, ZINC000252286875, 

and ZINC000252286876) showed unfavorable interaction with CD44 due to steric clashes and 

unfavorable donor–donor interaction between atoms. Other four drugs (Glecaprevir, 

Ergotamine, Midostaurin, and Trypan blue) displayed strong molecular interaction with 

residues of CD44, involving in the HA binding (Arg150 and Arg78) and also including some 

essential residues, without any unfavorable interaction. Protein residues Asn25, Glu37, and 
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Arg78 are interacting with drug molecules and were previously reported to induce 

conformational changes that are in direct contact with the loop of Arg41, which create a high-

affinity HA-bound form of the HABD (Liu & Finzel 2014). Among the identified four residues 

(Arg41, Tyr42, Arg78 and Tyr79) from CD44 crucial HA interaction (Peach et al. 1993; 

Bajorath et al. 1998), Arg78 is the only residue observed to show interaction with multiple 

drugs in our drug repurposing study. Arg150 is important for HABD affinity to HA, and a 

previous study suggests that mutation at Arg150 reduced HABD affinity toward HA binding 

(Banerji et al. 2007).  

Unlike the oligomeric carbohydrate, which extended across a large and exposed binding cavity, 

the drug molecules induce conformational changes that allow them to bind with high ligand 

potency, which is much higher than HA. So, the interaction of CD44 protein residues with 

virtually screened drug molecules might abolish the binding of HA at the HABD of the CD44. 

Based on our extensive observations, Glecaprevir, Ergotamine, Midostaurin, and Trypan blue 

could be potential therapeutic inhibitors of CD44 with high binding affinity and without any 

unfavorable interactions with CD44. These four drugs may elicit a blocking effect on HA-

binding to CD44 by competitive inhibition. 

8.2 Conclusions 

In our study, we analyzed basal gene expression using microarray data set from pan-cancer 

drug-sensitive and resistant cell lines from GDSC. From the significant differential gene 

expression analyses, gene co-expression and PPI networks; FN1, CD44, TIMP1, SPARC and 

SNAI2, were identified as common driver genes in drug-resistant cancer that might provide 

new biomarkers in NRAS-mutant pan-cancer drug resistance. MALAT1, as a key regulator of 

these coding biomarker genes in drug resistance, could be a master biomarker to regulate these 

driver genes' expression and provide key insights to improve drug sensitivity in a pan-cancer 

context. 
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In silico approach of drug repurposing can be used to discover new drug molecules that might 

be able to improve drug-sensitivity in the mutant NRAS pan-cancer system by inhibiting CD44. 

FDA-approved drugs Glecaprevir, Ergotamine, Midostaurin, and Trypan Blue, may be 

potential therapeutic inhibitors of identified hub node CD44 with high binding affinity with a 

view of repurposing these drugs. Drug molecules that have the potential to inhibit CD44 may 

serve as a lead molecules to improve drug-sensitivity and fight against mutant NRAS-

harbouring pan-cancer. 
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