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1.1 Cancer

Cancer is one of the most dreaded disease caused when normal cells transform into tumour
cells leading to abnormal cell growth or division through a multi-stage process. It especially
arises from a pre-cancerous lesion to form a malignant tumour (Roy & Saikia 2016;
WHO). Cancer cells continue unregulated proliferation instead of responding appropriately to
the signals which control normal cell behaviour, and they simultaneously invade surrounding
normal tissues and consequently migrating to other body parts (metastasize) through the blood
vascular system (Cooper, 2000). Cancer can arise as a result of abnormal proliferation of cells
from different parts of the body, and based on the originating cell types, there are more than a
hundred distinct types of cancer, which generally differ in their behaviour and responses to
applied treatments. Tumors are classified into benign and malignant tumors based on their
characteristics. Benign tumors remain confined in their primary location without invading the
surrounding normal tissues of the body and also do not spread to distant body part. Benign
tumors are known to grow slowly and have distinct borders. However, malignant tumors have
characteristics of both invading the surrounding normal tissues and spreading throughout the
body (metastasis) through the circulatory or lymphatic systems. Malignant tumors are
classified as cancer because they are significantly more harmful than benign tumors due to their
capacity to infiltrate and metastasis. While benign tumors can be removed surgically, it is tough
to treat malignant tumors due to their frequent relapse and spreading to distant body sites

(Cooper, 2000; Kumar et al., 2015; Patel, 2020).

1.2 How cancer arises?

Cancer development and progression is a complex process which arises due to the aggregation
of numerous genetic alterations, suggesting that cancer is a genetic disease which involves a
host of functional and genetic abnormalities (He et al. 2007; Semi & Yamada 2015; Vogelstein

& Kinzler 2004). These abnormalities can include various genetic and epigenetic modifications
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which induces chromosomal instability leading to the initiation and promotion of cancer
development (Semi & Yamada 2015). For instance, overall changes in degrees of DNA
methylation (Feinberg & Vogelstein 1983), and also site-specific DNA hyper- methylation at
promoters of certain genes are one of the most frequently analysed epigenetic alterations
associated with increased cancer frequency (Feinberg & Tycko 2004; Ushijima 2005).
Alterations in the pattern of histone modification, which includes acetylation, methylation and
phosphorylation plays a significant role in tumorigenesis (Nowacka-Zawisza & Wisnik 2017),
as well as in the development of genomic mutations (He et al. 2007) and other insults that can
be conductive to the expression or suppression of target genes in tumors. Genomic and
epigenetic abnormalities increases oncogenic signals that alters the regulation of downstream
target genes transcriptionally, thereby resulting in changes in the transcriptional regulatory
networks. The transcriptional changes caused by oncogenic signals could be a secondary effect
of the genetic and epigenetic alterations (Semi & Yamada 2015).

1.2.1 Risk factors associated with genetic and epigenetic changes in cancer

A cancer risk factor can be anything that increases the feasibility of growth of cancer in human
body. Cancer risk factors may incorporate exposure to chemical carcinogens, or other
substances and life style etc. Risk factors associated with cancer also include things like age
and family history which people cannot control. Family history of some cancers can be an
indication of a possible inherited form of cancer (13). These risk factors mainly grouped into

two mutually exclusive modules: intrinsic and non-intrinsic risk factors (Wu et al. 2018).

I.  Intrinsic cancer risk factors: It is an inevitable natural mutations that arises because of
random errors during DNA replication and confers specific attribute to the human being.
Intrinsic risk of cancer occurs in all dividing cells due to the basal mutation rate. Intrinsic

risk factors are unmodifiable and unavoidable.
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b)

Non-intrinsic cancer risk factors: Owing to their versatile mechanism, non-intrinsic
factors include two groups, as exogenous and endogenous risk factors.

Exogenous factors are chemical carcinogens (mutagen), xenobiotic, viruses and lifestyle

associated factors (e.g. smoking, nutrient intake, hormone therapy and physical activity)
which are exogenous (extrinsic) to the host. Tobacco smoke for lung cancer, UV radiation
for skin cancer, and viruses for cervical and liver cancer have been identified as exogenous
cancer risk factors (Wu et al., 2018). These factors are modifiable non-intrinsic factors.

Endogenous factors are known as partially modifiable factors and associated with the

features of an individual (e.g., immune and DNA damage response, hormone levels) and
impact on the control of cell growth and genomic integrity.

Exogenous (environment) and endogenous (hereditary/genetic) risk factor direct to
complex endogenous activity such as ageing, inflammation and obesity, these processes
also influence the steroid hormones level in an individual, which could have a role in breast

cancer.

1.3 Worldwide cancer statistics

Cancer is a serious worldwide public health issue and one of the leading cause of morbidity

and mortality in the world. With about 10 million deaths reported in 2020 (Fig.1B), one among

the six deaths was from cancer. The most frequent cancer incidence reported globally are;

breast, lung, colon, rectum and prostate cancers (WHO; Ferlay et al. 2020; Sung et al. 2021).

Almost 1.3 million new cases and 8.5 lakh deaths were reported in India in the year 2020 (Fig.

1E).
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Figure 1: Global cancer statistics. A) Worldwide cancer incidence, B) Worldwide death due to
cancer, C) Most prevalent cancer worldwide, D) Cancer incidence in India, E) Top 10 cancer incidence

and mortality in India.
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1.4 History and origin of cancer
A Greek physician Hippocrates (also known as “Father of Medicine” 460-370 BC) for the first

time called cancer as a disease of uncontrolled cell division. He coined the terms ‘carcinoma’
(meaning crab in Greek) and ‘carcinos’ and to narrate cancer-forming and non-cancer forming
tumors, respectively. The description of disease was named after the crab whose finger-like
projections resembled the spreading from a cancer called to mind imitated the shape of a crab.
A Roman physician, Celsus (28-50 BC), translated the crab (Greek term) into cancer. Later
Galen (130-200 AD), another Greek physician stated tumors by using the word oncos (Greek
for swelling). Today, the terminology coined by Galens (oncos) is widely used to designate
cancer specialists (oncologists) while the malignant tumors are still designated by the crab
(carcinos) analogy proposed by Hippocrates and Celsus (18).Though cancer has been a cause
of great pain for humanity since time immemorial, its incidences have substantially increased
in recent times because of factors like; an ageing population, rise in number of exogenous

carcinogens, risky health behaviours, etc (Faguet, 2015).

1.5 Cancer treatment strategies

Cancer is one of the most dominating disease in the world and in the past, many therapies have
come into existence for cancer treatment. Currently, there are various methods being used for
cancer therapy. The kinds of treatment that a patient receive depend on what type of cancer
they contains and its stage. The most common cancer therapies are chemotherapy, targeted,
surgery, and radiation. Other therapies include hormonal therapy, immunotherapy, laser, etc

(19-21).

Chemotherapy: In chemotherapy, drugs may be given orally or intravenously to kill
cancerous cells. Two different drugs can be given together at the same time or one after the
other at different time points. Chemotherapy is being used to cure cancer by shrinking it to
stop or slow down its growth and thereby preventing cancer from spreading. Chemotherapy
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IS being used to treat a variety of cancers worldwide. For some cancer patients,
chemotherapy may be the only option for cancer treatment that they can receive. But most
often, patients also receive other treatments along with chemotherapy. The types of therapy
that patients need its depends on the type of cancer they have, if the cancer has spread or

migrated, and if they have other health issues (19-21).

Targeted therapy: This is a target-specific therapy for some cancers, where most cancer
patients carry a target for a certain drug, so they can be treated with that drug. Targeted
therapy is a method of cancer treatment that could use either small-molecule drugs
or monoclonal antibodies that targets proteins to stop the process of growth, division, and
spread of cancer by triggering cancer cells to undergo cell death on their own or kill cancer
cells directly in the body. This therapy has also become the foundation of precision
medicine. As in the case of targeted therapy, the specific targets within the cancer cells are
attacked, and little to no harm is caused to the normal cell. These targeted protein molecules
play a pivotal role in the growth and survival of cancer. Using these targets, the drug

molecules paralyzed the spreading of cancer cells (19-21).

Surgery: It is a commonly used therapy for a variety of cancers. This therapy works best
for solid tumors that are contained in one area. Surgeons remove out the bulk of cancerous
cells (tumors) and also some of the adjacent normal tissue from the patient's body through
the surgical operation. Sometimes, surgery is also done to relieve the consequences or side
effects caused by a tumor. Surgery is not applicable for blood cancer such as leukemia or

for metastasized cancers (19-21).

Radiation therapy: Itis also known as radiotherapy and is being used for cancer treatment
that applies a heavy dose (high frequency) of radiation to kill or slows down the growth of

cancerous cells by damaging their DNA and thus shrink tumors. Cancer cells stop growing
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or die whose DNA is damaged from where it cannot be repaired, they are broken down and
eliminated by the body. Mostly x-rays or radioactive seeds have been used in radiotherapy
to destroy the cancer cells. Cancer cells grow and divide quicker in compare to healthy cells
in the human body. Radiotherapy destroys or kills cancer cells more than normal healthy
cells because radiation is more harmful or susceptible to fast-growing/dividing cells. This
type of therapy arrests the growth and division of cancer cells and then directs to cell death
instead of killing cancer cells right away. This type of therapy may take days or weeks
before causing enough damage in the DNA of cancer cells to die. Radiation therapy is
categorized into two major groups: External beam is the most frequent form of radiotherapy
that uses X-ray radiation or particles projected at the tumor tissue from the outside of the
body to kill cancer cells. Internal beam radiotherapy delivers radiation inside the body via
radioactive seeds (pills or liquid) placed within or near the tumor through a vein

(intravenous).

Hormonal therapy: It is a type of treatment used to treat majorly those cancers which are
fuelled by hormones and are also called endocrine therapy. Surgery and drugs help in the
stoppage or slowing down the cancer growth, are being used to stop the natural endocrine
hormones from functioning on the organs which acquires hormones to grow. The surgery
involves the removal of hormone-making organs, like ovaries and testes. Endocrine therapy
is primarily used to treat cancer, where it decreases the chances of relapse of cancer and
blocks or slows down its growth and survival, and eases cancer symptoms that mostly used
to bring down or restrict symptoms of men’s prostate cancer who are incapable of
having surgery or radiotherapy. Endocrine therapy is being used to treat mainly prostate,
ovarian, and breast cancers which uses steroid hormones to grow. Along with other cancer

treatments, hormone therapy is one of the most frequently used therapy.
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Vi.

Immunotherapy: Immunotherapy is another type of treatment to cure cancer that boosts
the immune system to fight against cancer. Immunotherapy basically depends on the ability
of the human body to fight against infection and other diseases. It uses immune cells, e.g.,
white blood cells and tissues of the lymph system in the body, to promote a stronger
immune system to work in a more powerful manner or attacking way to fight against cancer.
Immunotherapy is used to stop or slow down the cancer cell's growth, preventing from
metastasizing of cancer cells to distant parts of the human body and remove the cancer cells
by boosting the ability of the immune system. Immunotherapy is a form of biological
therapy that uses substances (immune cells) made in living organisms to cure cancer.
Various type of immunotherapies is being used for cancer treatment which includes;
immune checkpoint inhibitor, immune system modulators, T-cell transfer therapy and
monoclonal antibody. Immunotherapy can be given orally (pills or capsules), intravenously
(directly into a vein), topical (through cream rub on the skin) and intravesical (directly
injected into the bladder). Even though the immune system is well designed to stop or
reduce the growth of cancer, however, the cancer cells find ways to avoid destruction by
the immune system through different genetic modifications, thereby decreasing their
visibility, having inconspicuous surface proteins, or by changing the biochemistry of the

normal cells around them (19-21).

Despite these advances in treatment and also being a promising option to cure cancer, currently,
about 90% of chemotherapy failures happen during the invasion and migration of cancers and
these failures are majorly due to the occurrence of drug resistance in cancer cells (Mansoori et

al. 2017; Longley & Johnston 2005).
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1.6 Drug resistance in cancer

Drug resistance is a widely-known incident which develops due to the inability of anticancer
drugs to cure cancer because of restricted effectiveness (Holohan et al. 2013). The concept of
drug resistance was initially observed in microbes when bacteria were observed to show
resistance to some particular antibiotics, but later, a similar type of mechanisms have been
found in several other diseases, including cancer (Housman et al. 2014). Furthermore, various
major cancer treatments, including chemotherapy, surgery, radiotherapy, immunotherapy and
a combination of therapy, are being used as promising cancer treatments as selective therapies
based on the stronger laws and principles of biology and molecular genetics in the tumor
development (Urruticoechea et al. 2010; Baskar et al. 2012; Damin & Lazzaron 2014; Khalil
et al. 2016). A large number of malignant tumor cells become resistant to the drug in the
chemotherapy and later the administration of a certain drug. So, drug resistance in the field of
cancer remains a major problem and is also responsible for most relapses and death due to
cancer (Mansoori et al. 2017). There is a diverse range of possible factors and mechanisms
involved in cancer drug resistance, including genetic mutations, epigenetic changes, alteration
in drug metabolism, increased rate of drug efflux, and several other cellulars and molecular

mechanisms (Wang et al. 2019; Holohan et al. 2013).

1.6.1 Type of drug resistance
Resistance to chemotherapeutic treatment is mainly categorized into two broad groups, which

are the following. (Fig. 2).

a) Intrinsic drug resistance (IDR): Drug resistance primarily or naturally present before
receiving chemotherapy and which is mediated by pre-existing elements in the bulk of
malignant tumor cells that make the therapy ineffective is referred to as intrinsic drug
resistance (Holohan et al. 2013). Intrinsic resistance, also defined as innate resistance,
arises because of naturally present (first-line) mutation, tumors heterogeneity, and

activation of various intrinsic pathways against anticancer drugs, and this type of drug
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b)

resistance generally exist in cancer before treatment due to mutation in drug target genes
having a crucial role in tumor growth or apoptosis (Wang et al. 2019). For example, Snail
and Slug suppressed p53-mediated apoptosis in ovarian cancer to induce radioresistance
and chemoresistance (Kurrey et al. 2009).

Acquired drug resistance (ADR): ADR may arise during or post chemotherapeutic drug
treatment of cancer cells that were sensitive in the beginning, as well as through many other
adaptive responses (Holohan et al. 2013). It can be because of secondary proto-oncogene
activation, altered expression of drug targets, or mutations in target protein and tumor
microenvironment changes in the latter part of treatment (Wang et al. 2019). Acquired
resistance appears in cancer when an advance mutation in drug targets alters their molecular
structures; as an example, gatekeeper mutation in the oncogenic kinase domain of BCR-
ABL1 (T315) developed imatinib (STI-571) resistance in chronic myeloid leukaemia
(CML) patients (Gorre et al. 2001), combined loss of function of TP53 and RB1 induces
enzalutamide resistance and increase cellular plasticity in prostate cancer (Mu et al. 2017).
Although, there are various other mechanisms which can promote drug resistance in human

cancer, and it could be intrinsic or acquired resistance.
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Figure 2: Drug resistance mechanism in cancer. Intrinsic drug resistance and acquired drug
resistance. (Dai et al., 2020)

1.6.2 Mechanisms induce drug- resistance in cancer

i.  Drug Efflux: It is one of the most widely known processes to induce drug resistance in
cancer by enhancing drug efflux, which involves the reduction in drug accumulation.
Transmembrane transporter proteins from the ATP-binding cassette (ABC) transporter
family are known to license drug efflux and are crucial regulators at the plasma membranes
of non-tumor cells. Apart from human cells, ABC transporter family proteins are also
present in other phyla, where they play a key role in the transport of a variety of substances
over cell membranes (Housman et al. 2014). For example, ABCC2 and ABCC3 are
transporter proteins which transport a variety of chemotherapeutic agents, such as
etoposide, cisplatin and doxorubicin, and their overexpression induces multidrug resistance
in cancer (Folmer et al. 2007; Balaji et al. 2016).

ii. DNA damage repair: A variety of anticancer drugs induce DNA damage, and it could be
either directly or indirectly that causes cancer drug resistance, such as platinum-based drugs
and topoisomerase inhibitors, respectively. Upon DNA damage by drugs, the cells respond
either by the function of repair or cell death. Therefore, the efficiency of DNA-damaging
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drugs extensively depends on the capacity of DNA damage repair by cancer cells (Holohan
et al. 2013). For example, many genes, such as FEN1, FANCG and RAD23B, upregulated
in human colon cancer resistant to 5-FU, involved in DNA repair (De Angelis et al. 2004).
A tumor suppressor protein p53 expression induced by 5-FU treatment in response to DNA
damage leads to either repair or induced cell death (De Angelis et al. 2006). A mutation in
tumor suppressor protein P53 induced drug resistance by disrupting DNA-damage-induced
cell cycle arrest (Fan et al., 1994).

Cell death inhibition: As the apoptosis and autophagy are two central regulatory
mechanisms that cause cell death. Wherein these activities are hostile to each other, and
both of them contribute to programmed cell death. Apoptosis is known to have two well-
established pathways: an intrinsic pathway where caspase-9, Akt and B-cell lymphoma 2
(BCL-2) protein family members play a key role, facilitated by the mitochondria activation,
whereas the presence of death receptors on the cellular surface facilitates extrinsic pathway.
Both intrinsic and extrinsic pathways finally merge and guide to apoptosis through the
activation of downstream protein caspase-3 (Housman et al. 2014). Mutations,
amplifications, overexpression and chromosomal translocation of these protein-coding
genes have been widely associated with a diverse group of malignant tumors and
chemotherapy and targeted therapy resistance (Holohan et al. 2013). Earlier studies
demonstrate that BCL-2 overexpression induces resistance to the cytotoxic
chemotherapeutic agent in human small-cell lung cancer (Sartorius & Krammer et al.
2002). In contrast, autophagy is a lysosomal degradation process to maintain cellular
biosynthesis, where cellular organelles and protein degradation take place (Holohan et al.
2013). Autophagy arises in an acidic pH of lysosome due to phagolysosomal death. Drugs

such as chloroquine and its derivatives increase the pH of lysosome to inactivate its
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digestive enzymes to avert this process and play an important role in inhibiting autophagy-
dependent resistance to chemotherapy (Sasaki et al. 2010).
Epigenetic Alterations caused drug resistance: Epigenetic alterations are an emerging
and important mechanism that contributes to cancer drug resistance during chemotherapy.
Growing evidence of epigenetic modifications engaged in the evolution of cancer drug
resistance brought people’s attention to it, which includes the rise in drug efflux, increased
DNA repair, and altered cell death (Wang et al. 2019). Epigenetic modifications include
alterations related to DNA methylation, histone modification through acetylation or
methylation, chromatin remodeling, and non-coding RNA. For instance, the demethylation
of an oncogene at the promoter region of DNA would induce gene expression that caused
drug resistance in cancer. A previous study suggests that a G-actin monomer binding
protein, thymosin B4 (TP4), aberrantly expressed due to demethylation and active
modification of histone H3 at the promoter region, is responsible for antiangiogenic therapy
resistance by the acquisition of characteristics like stem cell in a hepatocellular carcinoma
cell line (Ohata et al. 2017).
Tumor cell heterogeneity in cancer: Apart from the drug resistance development in
cancer cells by the various vital mechanisms discussed above, heterogeneity of the tumor
cell population is another aspect that may cause therapeutic resistance in cancer by
extending cancer relapse. Studies reveal that within the heterogeneous population of cancer
cells, a fraction of cells possess stem cell-like characteristics that are generally drug
resistant. Along with that, a small proportion of some adult malignant cells also have the
potency to feature drug resistance.

In cancer treatment, a drug kills only those cancer cells which are drug-sensitive, and drug-

resistant cancer cells remain alive and may expand cancer. A few of these drug-resistant cancer

cells may migrate via the vascular system and be able to form a new tumor in a distant part of
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the body. However, the heterogeneous population of cancer cells can be seen while in
circulation or even in solid tumors (Housman et al. 2014). For example, an early study
determined two coexisting dominant clones of acute myeloid leukemia (AML), where one
clone of AML was sensitive to the drug while the other clone was resistant. So, there is a
possibility that relapse of this AML disease in patients later in drug treatment may be the result
of the cancer cell growth due to the presence of drug-resistant clones (Parkin et al. 2013).

In order to conquer drug resistance, a large number of cancer genomic biomarkers have been
identified in cancer, which is strongly associated with the effectiveness of an anticancer drug
in cancer cell lines (Garnett et al. 2012). High throughput screening of anticancer drugs against
established cancer cell lines for therapeutic drug sensitivity and resistance patterns anticipate
an approach to pinpoint proper cancer subtypes and key biomarkers that may direct to the initial
phase of clinical trials for a variety of novel therapeutic compounds to undergo for drug
development. To reveal clinically relevant gene-drug interactions, a large number of new
anticancer drug molecules have been used in screening at a massive amount against a broad
range of human cancer cell lines (lorio et al. 2016; O'Driscoll & Clynes 2006). Due to the
limitation of an imperfect understanding of the landscape of driver genes in cancer, earlier
screening of drugs was laborious work. But now, it is possible to view drug effectiveness in
such models through the lens of clinically meaningful oncogenic alterations. Such kind of
studies on gene/protein-drug associations is key in identifying and rectifying the complication
of acquired drug resistance in cancer and in proposing novel therapeutic gene/protein
biomarkers.

Based on these findings of biomarkers in different types of drug-resistant cancers, we aim to
study and identify predictive biomarkers in mutant NRAS pan-cancer systems, for which no

common biomarkers have been identified.
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1.7 RAS and NRAS (Neuroblastoma RAS viral oncogene homolog) protein

An intensive search for the key genes found to be frequently involved in cancer drug resistance
led us to the RAF-RAS family of genes. Among the proto-oncogenes, RAS proto-oncogenes
(HRAS, KRAS and NRAS) are a family of GDP/GTP-regulated switches that play a significant
role in controlling the activity of various key signaling pathways required for survival and cell
growth (Houben et al. 2004; Irahara et al. 2010;). RAS proto-oncogenes are frequently
expressed in human cancer and remain constitutively activated due to point mutations, while
mutated RAS family genes are present in 20% of human cancers and widely contribute to tumor
growth, programmed cell death, invasion, and induce the formation of new blood vessels and
also involved in inducing the drug resistance (Downward 2003; Irahara et al. 2010). In human
cancer, KRAS accounts for about 85% of all RAS mutations, NRAS cover about 15%
and HRAS holds for less than 1% of mutations, and RAS family genes mutations are highly
tumor-specific (Downward 2003). KRAS is reported to be highly mutated in lung, pancreatic,
endometrial, colorectal, biliary tract, cervical and colon cancer, while the highest incidence of
NRAS mutation is found in myeloid leukaemia, melanoma, bladder, neuroblastoma and thyroid
cancer, etc. (Schubbert et al. 2007; Lau & Haigis 2009). The most frequent oncogenic
mutation in RAS family genes (including NRAS) occurs at codons G12, G13 and Q61

(Schubbert et al. 2007).

1.7.1 NRAS signaling pathway

NRAS proteins bind with GTP to initiate the signal by activating various downstream
“effector” pathways, such as RAF—-MEK—ERK and PI3K—AKT cascades (Fig. 3) (Bertoli
et al. 2019; Irahara et al. 2010). Protein kinases encoded by the RAF family genes mediate

cellular responses to growth signals and are regulated by activated RAS (Houben et al. 2004).
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Figure 3: Schematic representation of NRAS signaling pathway. NRAS protein is activated
(NRAS-GTP) by guanine nucleotide exchange factors and inactivated (NRAS-GDP) by GTPase-
activating proteins. NRAS gene/protein mutation impairs the GTPase activity and remains in a
constitutively activated state. Active NRAS activates downstream molecules, in turn, Ral/GEF,
MEK/ERK and PI3K/AKT pathways (Modified from Bertoli et al., 2019).

A previous study suggests that mutations in NRAS or BRAF are highly associated with the
significantly declined survival rate of patients with metastatic cancer (Houben et al. 2004).
While NRAS secondary mutation is linked with the mechanisms directly involved in cancer
drug resistance (Le et al. 2013). Le et al. found that acquired Vemurafenib-resistance mediated
by a secondary mutation in NRAS in melanoma cells harbouring BRAF mutation, where PB04
inhibited ERK1/2 phosphorylation. Experiments with NRAS mutant cells showed apoptotic
stress, which suppresses apoptosis and also induces drug resistance in growing cancer (\Wang
et al. 2013; Haigis et al. 2008; Le et al. 2013). RAS-targeted therapy has long been elusive

(Healy et al. 2021). Because of the immensely high affinity of NRAS toward nucleotides like
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GTP and GDP and the high intracellular concentrations of GTP, mutated NRAS remains
constitutively active; hence it’s very difficult to directly target mutant NRAS protein. Hence,
the development of drugs for mutant NRAS is largely unsuccessful, and currently, there is no
targeted therapy that has been approved for NRAS- mutant protein in cancer (Johnson &
Puzanov 2015). Some drugs have been developed with the potential to treat NRAS-mutant
cancers, such as the MEK inhibitor binimetinib was used for NRAS-mutant melanoma, went
under phase 111 trial but due to no difference in overall survival, did not get approval for NRAS-
mutant melanoma treatment (Dummer et al. 2017; Garcia-Alvarez et al. 2021), LXH254 is a
pan-RAF inhibitor which has antitumor activity in preclinical NRAS-mutant models and
completed Phase I clinical trial study by February 2022 in patients with solid tumors harboring

MAPK pathway alterations (https://clinicaltrials.gov/ct2/show/NCT02607813). At present, to

the best of our understanding, there is no targeted drug therapy that has yet been approved for
the cancers harbouring NRAS mutation, and several therapeutic inhibitors are currently under
investigation. Even after years of extensive research, several candidates under investigation,
and vast knowledge of signaling and associated drug-kinase interactions, not a single targeted
therapy has been found to be supportive for NRAS-mutant cancers (Boespflug et al. 2017;

Garcia-Alvarez et al. 2021).

It is widely known that the binding of RAS effector proteins to the RAS-GTP complex initiates
the signal by activating a variety of downstream pathways that act as an effector, such as the
MAPK and PI3K signaling cascades (Rajalingam et al. 2007). Hence, in order to screen for
druggable targets, we proposed our hypothesis that the genes/proteins other than NRAS
associated with the MAPK signaling pathway and are in direct or indirect linked with NRAS
might be serve as promising targets. Further, understanding the regulatory environment of
such druggable targets would be crucial to circumvent the effects of refractory mutant NRAS

in cancer drug resistance.
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Towards this, to understand the regulation of biomarkers in mutant NRAS-harbouring drug-
resistant pan-cancer systems. Further, we focused on the identification of newly emerging key
regulators, such as long non-coding RNAs (IncRNAs), to pinpoint key master regulators of
selected coding biomarkers genes, apart from the omnipresent proteins. LncRNAs are known
as new molecular players in cancer, acting as key regulators of coding gene expression.
LncRNAs may directly or indirectly regulate pan-cancer drug sensitivity and resistance through

their actions on such predictive biomarker targets.

This study aimed to probe the possible functional roles of predictive coding biomarkers as well
as their regulatory mechanisms in the drug-resistant pan-cancer system by employing
microarray data and drug response (sensitivity) data from the updated database Genomics of
Drug Sensitivity in Cancer (GDSC) and The Cancer Genome Atlas (TCGA). We also
constructed various biological networks such as gene co-expression, protein-protein
interaction, and regulatory networks and analyzed the network using methods both

qualitatively and quantitatively (Mishra, 2014) to pinpoint probable biomarkers.

Further, comprehensive studies on the regulation of these druggable targets by INCRNAs at the
MRNA level. This provides a new insights into their regulatory pattern and mechanisms of
these INcRNAs. These insights are highly expected to help in improving the pan-cancer drug
sensitivity to these selected drugs and are also useful in drug repurposing studies utilizing our

chosen target.
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2.1 Databases
A. Genomics of drug sensitivity in cancer

The GDSC is a wellcome funded joint collaborative project of The Cancer Genome Project at
the Wellcome Sanger Institute and the Center for Molecular Therapeutics, Massachusetts
General Hospital Cancer Center. The expertise from both places in this collaboration has
focused toward the aim of identifying cancer biomarkers which can be used to identify

genetically elucidated groups of patients in response to cancer treatment.

The GDSC database (www.cancerRxgene.orq) is established to provide an information on the

molecular properties of cancer cells that control drug response. GDSC carry and annotates
massive amount of datasets related to drug sensitivity in cancer cell lines, and especially these
data are linked with genomic information in detail to facilitate the molecular biomarkers
discovery of drug response. The GDSC database basically describes three types of datasets are

following;

Drug sensitivity data in cancer cell lines: The drug sensitivity (ICso) data of cancer cell
lines are generated from an ongoing high-throughput drug screened against a collection of
>1000 cell lines at the Wellcome Trust Sanger Institute (WTSI) by the Cancer Genome
Project and at Massachusetts General Hospital by the Center for Molecular Therapeutics.
Anticancer therapeutics compounds that are selected for screening include both cytotoxic
chemotherapeutics and targeted agents. These compounds are either approved for clinical
use, under clinical development and investigation, or experimental drugs in the early phase
of development (Yang et al. 2013).

Genomics datasets for cancer cell lines: The total collection available for drug screening
includes around 1000 cancer cell lines from different tissue types. These cell lines have
been selected to constitute the frequent and rare types of cancers in adult and childhood

derived from the haematopoietic, epithelial and mesenchymal cells. These cell lines in
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GDSC have been widely characterized genomically and are part of a project on the cancer
cell line from the Cancer Genome Project. The GDSC contains genomic datasets for many
different types of cancer cell lines. The datasets include huge amounts of information on
somatic mutations for cancer-related genes, genome-wide copy numbers for amplification
and deletion of the gene, markers of microsatellite instability, and pan-tissue type, along
with transcriptional data. All these information regarding genomic alteration and others
directly available in the Catalogue of Somatic Mutations in Cancer (COSMIC) database, a
publically available open-source for the annotation and presentation of somatic gene
mutations in cancer (Yang et al. 2013).

Analysis of genomic features of drug sensitivity: The systematic incorporation of a wide
range of genomic and drug sensitivity data is a crucial element of the GDSC database.
There are two complementary analytical approaches have been used to spot genomic
markers of drug sensitivity in cancer. An analysis of variance (ANOVA) is used to correlate
genomic alterations with drug sensitivity (IC50 values) in cancer, such as somatic
mutations, gene deletions and amplifications of common cancer-related genes,
rearrangements of genes and microsatellite instability. The ANOVA analysis point outs
particular genomic alteration linked with drug sensitivity and also describe a size effect and
calculate statistical significance for each drug-gene association. Other hand, elastic net
regression has been used, a penalized linear regression modeling approach, to identify a
variety of relevant genomic features which influences drug effectiveness. Elastic net
regression analysis includes all of those genomic data used in the ANOVA analysis and
also integrates the transcriptional profiles of the genome and pan-cancer tissue type (Yang

et al. 2013).
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B. TCGA and CancerRx Tissue

TCGA is a landmark cancer genomics collaborative program between the National Cancer
Institute (NCI), Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) and the National Human Genome Research Institute (NHGRI). This database
provided molecularly characterized high-quality 20,000 primary cancer tissue samples and
matched normal samples derived from 33 cancer types. Over the years, TCGA has produced
more than 2.5 petabytes of genomic, transcriptomic, and epigenetic data along with proteomic
data. To study the genomic and proteomic profiles of tissue samples from patients, TCGA has
used various genomic approaches. It integrates clinical information about patients, metadata
about sample information, and molecular information about coding and non-coding gene

sequence, DNA methylation, somatic mutation and copy number variation.

The CancerRx tissue database was created for public users to visualize and download the
predicted drug sensitivity (ICso) data of 272 drugs in cancer tissue. Predictive models were
built for 272 drugs using the gene expression data from the CCLE database in cancer cell
lines and drug sensitivity (ICsp) data for cancer cell lines from GDSC by applying the genetic
algorithm (GA) and k-nearest neighbours (KNN) algorithm. Subsequently, the same predictive
models were applied to predict drug response (ICso values) for ~17,000 samples, including both
normal and tumor tissues, using RNA-seq gene expression profile data for the tissues
from TCGA and GTEX. Predicted cancer tissue drug sensitivity (ICso) data is available at the

following link: https://manticore.niehs.nih.gov/cancerRxTissue (Li et al. 2021).

C. GeneCodis4:

GeneCodis is an online web server for functional enrichment analysis. Researchers from
worldwide uses this tools to combine various sources of annotations. It retrieves sets of
meaningful simultaneous annotations and allocates a valid statistical score to asses those

outcomes that are remarkably enriched from the set of input genes/proteins list. In order to
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elucidate the fundamental cellular and biological mechanisms, GeneCodis4 has been
extensively used to investigate sets of genes/proteins. This web server supports functional
annotations for genes, proteins, miRNA, CpG sites and TFs identifiers extracted from 16
different organisms, including Homo sapiens. However, GeneCodis4 categorizes annotations
into three leading groups by integrating 19 various collections: functional, regulatory and
perturbation annotations. The first functional group overspreads the following databases: Gene
Ontology (GO) and its three subgroups (Biological Process, Molecular Function and Cellular
Component) and pathway include; KEGG Pathways, Reactome, WikiPathways, and Mouse
Genome Informatics database Panther Pathways. The second regulatory group holds two
curated associations; TF-gene and miRNA-gene interactions. And finally, the perturbation
group collects two types of associations, which encompasses gene-chemicals and gene-
phenotype associations (Garcia-Moreno et al. 2021). GeneCodis 4 can accepts various Kinds
of input ID/name lists: genes/proteins, TFs, CpG sites and miRNAs. GeneCodis4 web server

is publically available at https://genecodis.genyo.es.

D. GeneMANIA

It is a user-friendly, freely available web interface, generally used for gene function predictions,
comprising a widely adaptive algorithm. It is a simple interactive, intuitive interface and
extendable database and also a Cytoscape plugin application. GeneMANIA collects network
data from databases resource which are publicly available for users, such as Gene Expression
Omnibus (GEQO) database provides gene co-expression network data, BioGRID database
provides physical and genetic interaction data and predicted protein-protein interaction data
based on orthology from 12D, etc. These network data obtain from different sources like
BioGRID, Human Protein Reference Database, IntAct, MINT and Reactome, etc., across the
eight organisms like; Homo sapiens, Arabidopsis thaliana, Mus musculus, Caenorhabditis

elegans, Drosophila melanogaster, Danio rerio, Rattus norvegicus and Saccharomyces
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cerevisiae. GeneMANIA also collects individual data from organism-specific genomic datasets
(Warde-Farley et al. 2010). It generates networks from a set of gene lists and categorizes them
as gene co-expression, gene fusion, shared domain proteins, physically interacted genes, and
predicted interactions and pathway genes. Users can download gene network data available at

the following link http://www.genemania.org.

E. STRING

It is a database that provides experimentally validated and predicted protein-protein
interactions. This database integrates direct (physical) and indirect (functional) interactions of
protein obtained from in silico prediction, from knowledge conveyed between organisms, and
interactions collected from other (primary) databases. Protein-protein interactions data in the
STRING database are extracted from various sources, including genomic context predictions,
high-throughput experimentally determined, co-expression, automated text-mining,
computational prediction and curated database. STRING database version 11.5 currently
contains data for approximately 24,584,628 proteins from 14,000 organisms. The database user
can query the PPI network from STRING directly within Cytoscape apart from the online
website. All protein-protein interaction evidence in the database that incorporates a given
network is benchmarked and scored and these scores are included in a final ‘consolidated
score.” These scores mapped between zero to one and approximate STRING’s confidence in
whether a presented association is biologically significant, given all the contributing
corroboration. Protein-protein interaction networks data available in the STRING database can

be exported from the following link: https://string-db.org/.

F. Open-access Repository Transcription factors interactions (ORTI)
It is a huge and freely accessible database for transcriptional; transcription factor-target gene

(TF-TG) interactions in the human and mouse, experimentally validated using high-throughput

methods. It is followed by tools that can identify and anticipate transcriptional (TF-TG)
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interactions. The ORTI database was created by combining several open-access databases and,
from extensive literature searches to bring about a cluster of TF-TG interactions. Transcription
factors (TFs) are known to have key roles in biological and cellular pathways. These TFs are
the end target activated by various external stimuli through the cascade of intermediate
molecules. These transcription factors, along with complex proteins, activate or suppress the
transcription of specific target genes, which shows an impact on biological and cellular
functions in the cells. The data for TF-TG interaction was retrieved from various database
sources, including HTRI, TRED, TFactS, TRRD, PAZAR, and NFI-Regulome, and also from
a literature search to construct an ORTI database. This database includes 20146 genes, 660
TFs, and 72,817 TF-TG interaction data. ORTI serves as an asset for unrevealing the context-
specific topology of interaction networks. The interaction data flat file for TF-TG is available

at the following link: https://orti.sydney.edu.au/index.html. This web portal also allows public

users to search for TF or TG names, and the database provides suggestions when it comes to
queries based content.

G. Harmonizome

It is a publically accessible web portal that lays out a pictorial user interface, a web service for
browsing and downloading all of the accumulated data. The Harmonizome database was built
by using a collection of various processed data assembled to provide and extract information
about humans and mice, genes and proteins from 125 unique datasets hosted by 72 major open-
access web resources. This database extracted and abstracted around 72 million functional
consortiums between genes/proteins and arranged these data systematically. These gathered
datasets cover information about mammalian genes or proteins, mainly divided into six broad
categories, which include; transcriptomic profiles, genomic profiles, proteomic profiles,
structural or functional annotations, disease and phenotype associations, and physical

interactions. The Harmonizome home page features a search bar that can be used to enter any
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key search term and system autocomplete search for users by autocomplete capabilities. The
system searches for matching datasets, genes and attributes that may contain metadata and
deliver various views (Rouillard et al. 2016). The data is available on the database at the

following link: http://amp.pharm.mssm.edu/Harmonizome.

H. RCSB PDB

The Protein Data Bank (PDB) is a publicly available open-access database for the three-
dimensional crystal structure data of macro biomolecules, which include primarily proteins,
nucleic acids (DNA & RNA), and associated small molecules such as drugs, cofactors and
inhibitors. PDB database was created in the year 1971 at Brookhaven National Laboratories
(BNL) as an archive for macromolecular 3D structures, typically determined by X-ray
crystallography and nuclear magnetic resonance (NMR) spectrometry and submitted by
biologists and biochemists from different parts of the globe. The PDB database is supervised
by an international consortium called ‘Worldwide Protein Data Bank (wwPDB),” a
collaboration among three countries; United States, Europe, and Japan. This database provides
a tool for searching and exploring the data from PDB, including an interactive interface that
lets users explore how chemical interactions affect the stability of macromolecules and leads
to play key roles in their interactions and functions (Berman et al. 2000; Christine et al. 2016).
I. ZINC database

ZINC is an open-access database and tool set which is basically developed to enable ready
access to compounds for virtual screening. It has become widely used for ligand discovery,
pharmacophore screens and other aspects of drug discovery. ZINC is used by investigators in
pharmaceutical companies, biotechnology companies and research universities. ZINC15
(current version) currently holds more than 120 million purchasable “drug-like” compounds
effectively all of which are organic molecules. ZINC15 retrieves drug data from various other

database sources such as ChEMBL, DrugBank, HMDB and https://ClinicalTrials.gov to
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annotate the compounds with detailed information which are active in, or naturally originated,
including FDA-approved drugs, pre-clinical drugs, experimental or investigational
compounds, natural products, and metabolites, and others (Irwin & Shoichet 2005; Sterling &
Irwin 2015). This database provides drug-like compounds in the form of several common file
formats SMILES, mol2, 3D SDF, and DOCK Flexi base file format. These all are freely

available at the following link: http://zinc15.docking.org.

2.2 Tools

A. MultiExperiment Viewer (MeV)
MeV is a cloud-based, freely available multifaceted software application. It supports advanced

bioinformatics tools for combined data analysis, visualization and stratification of massive
genomic data in the hands of bench biologists. MeV is a tool primarily used to analyze
microarray and RAN-Seq data consolidating advanced algorithms for statistical analysis for
differential expression, visualization, classification, clustering, and functional representation
through a graphical approach.

B. RStudio and R programming

RStudio is an integrated development environment and open tools for R. R is a programming
language used for data miners and statistical analysis, generating graphical representations and
developing statistical tools. R is publically available on the GNU General Public License, and
binary versions work for various operating systems like Linux, Windows and Mac. Various

packages and code used for plot generation in R is freely available.

. We used R code to generate the volcano plot given below:

library ("ggplot2")

>mydata<-read.csv("filename.farmet”, header=T, sep=",")

>mydata$threshold = as.factor(mydata$Adj.p.value < 0.05)

>mydata$threshold = as.factor(abs(mydata$logFC) > 2 & mydata$Adj.p.value < 0.05)

>g <- ggplot(data=mydata, aes(x=logFC, y =-log10(Adj.p.value), colour=threshold))
+ geom_point(alpha=0.4, size=1.75)
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+ ggtitle("plot_title")
+ xlim(c(-6, 6))
+ xlab(""log2 fold change™) + ylab(*-log10 Adj p-value™) +

theme_bw() + theme(legend.position="none", plot.title = element_text(size = rel(1.5), hjust
= 0.5), axis.title = element_text(size = rel(1.25)))

o’
ii. R code used to generate bubble plot:
>mydata<-read.csv("filename.farmet”, header=T, sep=",")
>p = ggplot(mydata,aes(Rich.factor,Biological.process))
>p=p + geom_point()
>p=p + geom_point(aes(size=Gene.number))
>pbubble = p+ geom_point(aes(size=Gene.number,color=-1*log10(pval_adj)))
>pr = pbubble+scale_color_gradient(low="green",high = "red")

>pr = pr+labs(color=expression(-log[10] (p-value)),size="Gene  number" ,x="Rich
factor",y="Biological process" title="Top GO or KEGG terms
enrichment")+theme(plot.title=element_text(hjust=0.5))

>pr=pr + theme_bw()
>pr
iii. R code used to generate balloon plot:
library ("ggplot2")
library (ggpubr)
>mydata<-read.csv(“filename.farmet”, header =T, sep =",", row.names = "Gene")
>ggballoonplot(mydata)
>ggballoonplot(mydata, fill = "value",color = "lightgray",size = 5, show.label = F)+

gradient_fill(c("white", "white", "red")) + theme(axis.text.x = element_text(face="bold",
color="black", size=10, angle=45), axis.text.y = element_text(face="bold", color="black",
size=7, angle=360))

C. GenePattern and Comparative marker selection

GenePattern is a powerful, user-friendly, and freely available web interface that provides
access to a variety of computational tools used to analyze genomic data, such as gene
expression profile data (RNA-seq and microarray), sequence variation, and copy number, and

network data analysis. These tools are all available (on the following link:
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required. The comparative marker selection (CMS), a module of the GenePattern web interface,
is used to analyze data derived from high-throughput experiments such as microarray or RNA-
seq data. CMS uses a test statistic to calculate the relative changes in the gene expression that
can discriminate between the two classes of the samples (such as drug-sensitive vs resistance)
and assess the significance (p-value) of the test statistic score. CMS identifies marker genes by
calculating the expression value for each profiled gene which assesses the correlation of the
gene’s expression profile in distinct classes. The test statistics values are calculated by CMS
for each gene, which determines the differentially expressed genes between classes that are
expected to be marker genes. The CMS takes two files as input: one for gene expression data
from a different sample belonging to two classes and another file that specifies the class of each
sample. CMS produces a structured output file with significance values that include several
test statistic scores, such as p-value, logFC, FDR (BH), Q-value, maxT, and FWER for each
gene. The results generated from the CMS algorithm are visualized as a heatmap using a
comparative marker selection viewer, which accepts the output file and represents the results
collectively (Kuehn et al. 2008).

D. Cytoscape

It (https://cytoscape.org) is one of the most frequently used open-source computational tools

for visualizing and studying the molecular interaction networks as well as integrating with high
throughput gene expression and metabolic data. Although the study of molecular elements and
interactions is applicable to any model system, Cytoscape is extensively used in combination
with many large databases that contain data of protein-protein, protein-DNA, and genetic
interactions and are broadly available for humans as well as for other model organisms. It
provides basic functionality that helps to import and query the networks and allows to visualize

networks which come integrated with expression data from different phenotypes. In Cytoscape,
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nodes represent biological molecules (genes or proteins) and edges are the connection between
two nodes, which depict the kind of relationship or interaction between the nodes, such as
inhibition or activation (Shannon et al. 2003; Kohl et al. 2011). Cytoscape provides a network
Analyzer tool to compute comprehensive topological parameters for directed or undirected
networks.

E. Open Babel

Open Babel is a designed toolbox for users which can read and speak the many different
languages of chemical data. It is an open and publicly available platform used to search,
convert, and analyze data from various areas, such as molecular modeling, chemistry, solid-
state materials, and biochemistry. Open babel can read and interconvert more than 110
molecular file formats and also generates 2D and 3D coordinates for various file formats such
as SDF, mol files (O'Boyle et al. 2011). It is freely available for users under a free license from

the following web link: http://openbabel.org.

F. Swiss-PDB Viewer
Swiss-PdbViewer (DeepView) is a software platform that provides an easy-to-use interface so

that users can analyze multiple proteins simultaneously. The proteins can be superimposed so
that the positions of their active sites can be compared and deduce structural alignments.
Mutation of amino acid residues in a protein, hydrogen bond interactions, angles and distances
between atoms may also be observed. Swiss-PdbViewer was developed by Nicolas Guex in
1994. It was initially associated with SWISS-MODEL, an automated homology modeling
server designed by the Structural Bioinformatics Group at the Swiss Institute of
Bioinformatics (SIB), Biozentrum in Basel (Guex & Peitsch 1997). In our study, SPDBV was
used for energy minimization. SPDBV is available on the web link:

http://www.expasy.orq/spdbv.
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G. AutoDock Tools
AutoDock Tools (ADT) is a graphical user interface for setting up and running a computerized

docking application program which used to predict the binding of small molecules, such as
drug candidates, to a receptor of a known 3D structure. AutoDock Tools simplifies the process
of configuring the input molecule files used for molecular docking. It provides with an array
of methods that leads the user through molecule protonation, calculating various charges, and
specifying rotatable bonds in the protein and ligand. ADT allows the user to identify the active
site and find out visually the volume of space occupied by molecules in the docking simulation.
It also allows users to view results from molecular docking experiments using a variety of
methods, such as clustering and analyzing data (Morris et al. 2009). For our study, we used the
AutoDock tool to prepare protein, ligand molecules and grid box generation for molecular
docking.

H. AutoDock Vina

AutoDock Vina is a user-friendly program for molecular docking as well as virtual screening
(Trott & Olson 2010). It was originally developed and launched at The Scripps Research
Institute by Dr. Oleg Trott in the Molecular Graphics Lab. AutoDock Vina is one of the docking
engines of the AutoDock Suite. Vina significantly predicts the binding mode with average
accuracy, efficient optimization and multithreading. It calculates the grid maps and clusters the
docking results automatically, which is transparent to the researchers. Vina uses the same
.pdbqt file format for its input and also gives the .pdbqt file format as the results output. Vina

is freely available on the following link: https://vina.scripps.edu.

36| Page


https://vina.scripps.edu/

I. PyMOL
PyMOL is a cloud-based tool for molecular visualization interface developed by Warren

Lyford DeLano. Currently, it is maintained and distributed by Schroédinger (16). It is a globally
used tool in the field of research in structural biology that became globally available to
scientific and educational groups. PyMOL can generate high-quality three-dimensional images
of small molecules and macromolecules, such as proteins. For our research, PyMol has been
used to analyze the docking of protein-ligand complexes and to convert from pdbqt to PDB

format.

J. Discovery Studio
This software was developed and distributed by Dassault Systems BIOVIA, with multiple

applications. Discovery Studio Visualizer is one of the leading visualization tools for viewing
and analyzing proteins and modeling molecular structures, simulations including molecular
mechanics, molecular dynamics, and quantum mechanics, and other data of relevance to life
science researchers in structural biology. This BIOVIA product provides features for viewing
and editing data, as well as basic data analysis tools. It also provides a huge platform for
displaying plots and representations of 3D graphics of data. For our research, Discovery studio
has been used to study protein-ligand interactions analysis post-virtual screening through

molecular docking.

K. PockDrug
PockDrug is an online pocket druggability prediction tool that predicts the possible

druggability of the pockets present in a protein. This web-based tool uses geometry,
hydrophobicity, and aromaticity of pocket residues or atoms of a protein to predict possible
druggable pockets that can be targeted by drugs. PockDrug uses two different methods for the
estimation of pocket druggability, first is prox4 and prox5.5 estimation methods predict

druggability by using the information about ligand position to guide its extraction of protein
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atoms located within two fixed distance point thresholds of 4 and 5.5 A from the bound ligand,
respectively. The second is the fpocket estimation method, which is an automated geometry-
based method. It is not guided by the position of a ligand to predict pocket druggability. This
method uses the VVoronoi polyhedral decomposition of a 3D protein to extract all the pockets
volume from the apo- or holo-protein using spheres of varying diameters (Hussein et al. 2015).

PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr.
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Chapter-3

Objective-1: Computational analysis of drug-dose
responses from a panel of mutant NRAS pan-cancer
cell lines to identify drug-sensitive and -resistant cell

lines from the GDSC database.
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3.1 Introduction

Drug sensitivity is one of the main reasons for individualized cancer chemotherapy since past
experiments have shown that certain drugs work better with some people. Oncologists made
therapeutic conclusions based on their patients' experiences, based on the pathological features
of the tumor, prior to the appearance of drug sensitivity testing, rather than relying on their
assessment and understanding of tumor responses to therapeutic drugs in clinics. Since the
arrival of drug-sensitivity testing in cancer, oncologists have played a crucial role in the cure
of cancer. Prediction of drug sensitivity has become quite accessible due to the development
of computational approaches that can promote precision anticancer therapeutics (Tang et al.
2021). However, due to the high prevalence of drug resistance in cancer demand further, more
research and development of new therapeutic treatments as the potency of cancers to develop

resistance to conventional therapies are now day’s increased.

Precision or personalized medicine is intended to provide the most appropriate treatment for
each individual patient of cancer. In the development of advanced oncology techniques such
as next-generation sequencing (NGS), transcriptome (RNA-sequencing), ChIP-sequencing,
and mass spectrometry are extensively used to perform full molecular profiling for each cancer
patient. However, because of some of the high degrees of tumor heterogeneity, it is quite
challenging to suggest an appropriate treatment for a cancer patient on the basis of high-
throughput molecular profiling. To be able to define the drug-sensitivity and -resistance of each
individual cancer, an in vitro test can be carried out on cancer cells or tissue samples derived

from a patient with a panel of therapeutic drugs (Popova et al. 2020).

The origin of advanced technology like; proteomics, microarray and targeted therapies provide
new insight into conquering drug resistance in cancer. Although new chemotherapeutic agents

are being designed in large numbers, still an effective chemotherapy agent is yet to be
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uncovered for cancer in the advanced stage. There may be several factors, including genetic
differences of the individual, especially in somatic cells of the tumor, which might be driving

cancer cell resistance to anticancer agents (Mansoori et al. 2017).

Currently, large-scale of biological data is being generated at an economical cost by using
advanced high-throughput technologies to investigate drug sensitivity and resistance in cancer
(Pouryahya et al. 2022). There are some databases available, such as the NCI-60, GDSC and
CCLE, which are pioneers of such datasets (Shoemaker 2006; lorio et al. 2016; Barretina et
al. 2012). Owverall, studies from these different databases have illustrated that
pharmacogenomics profiling of cancer cell lines derived from clinical tumor tissue samples
can be used as a platform for biomarker discovery that could lead to the development of a new
method for cancer treatment (Yang et al. 2013; Garnett et al. 2012). The NCI-60 database is
one of the earliest established studies to screen drugs in vitro among these drug sensitivity
databases. It has remarkably improved the philosophy and research on anticancer drugs

(Shoemaker 2006; Chabner 2016).

The NCI-60 cell line panel and screened drugs link cell lines' drug sensitivity with genotype
data which has guided to several key findings, including a general understanding of the basic
phenomenon of drug sensitivity or resistance in cancer (Shoemaker 2006; Weinstein 2004).
However, the NCI-60 database, although a good starting point for developing predictive

models, is limited in its use because the panel contains only 60 cell lines.

By contrast, our study focused on the GDSC database, which annotates a comprehensive
landscape of drug response data of around thousand (~1000) of human cancer cell lines from
different tissue types for 265 anticancer drugs. Above all, the cancer cell lines involved in
GDSC for drug screening are genomically and transcriptomically well characterized as a part

of the COSMIC cell line project (CCLP, https://cancer.sanger.ac.uk). These resources provided
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a platform for the new development of significant molecular biomarkers when it is used in
conjunction with powerful analytical tools to deal with the high-dimensional and complex
nature of cancer data. And these tools have the potential to link the drug sensitivity of cancer

cell lines to their genomic feature.

Furthermore, several computational regression approaches have been designed to predict the
sensitivity (IC50) of cancer cell lines toward the screened anti-cancer drugs (Ahmadi

Moughari & Eslahchi 2021).

GDSC holds a large amount of drug sensitivity data of human pan-cancer cell lines. These data
from the GDSC database facilitate the identification of novel biomarkers of drug response by
linking the detailed genomic information of cell lines. The GDSC database was built to help
researchers for a better understanding of the molecular features which influences drug efficacy
in cancer cells and can empower the plan of advanced strategy for cancer treatment. This
website is created to give direct access to browse the database and to provide easily
interpretable summaries of data and analyses by using interactive graphical interfaces (Yang et

al. 2013).

3.2 Materials and Methods

3.2.1 Cancer cell lines and drug data acquisition from the GDSC database

GDSC database (https://www.cancerrxgene.org) is one of the biggest publicly available open
sources for detailed information on thousands of cancer cell lines that are drug sensitive with
their molecular markers of drug response from various tissues along with gene expression, and
copy number variation. Currently, this database carries data of around 2,12,774 drug dose-
response toward drug sensitivity, describing 265 drugs screened against almost thousands of
cancer cell lines originating from primary cells of pan-cancer tissues, which includes; CNS (58
cell lines), lung (179 cell lines), skin (62 cell lines), breast (52 cell lines) and hematopoietic &
lymphoid tissues (175 cell lines) (Fig. 1A) (Yang et al. 2012; lorio et al. 2016). These screened
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anticancer compounds include clinical used drugs (n=48), pre-clinical drugs (n=76), and

experimental compounds (n=141). These 265 compounds are targeted agents (n = 242) and

cytotoxic drugs (n = 19) targeting a wide range of biomarkers and 20 key biological and cellular

pathways such as protein kinases, transcription regulation, apoptosis, DNA repair, and cellular

processes in cancer biology (Fig. 1B).
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Figure 1: Cancer cell lines and drugs screened against cell lines. (A) Classification of cancer cell

lines derived from different tissue types.

(B) Anticancer drugs (265 drugs) are used in screening

categories based on their therapeutic targets, and role in biological and cellular pathways/functions. A

single drug may target multiple molecules.
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3.2.2 NRAS mutant cancer drug sensitivity data acquisition from the GDSC

The GDSC database contains a huge amount of genomics and drug sensitivity datasets for
NRAS mutant cancer cell lines. To reveal the drug-gene interactions for drug sensitivity and
resistance in cancer cell lines harbouring NRAS gene mutation, an analysis of variance
(ANOVA) test has been performed using drug ICso value. The ANOVA analysis between
NRAS-mutant vs. NRAS-wild type cancer cell lines revealed 12 drugs which were significantly
associated (threshold p<0.001) with drug sensitivity or resistance (Fig. 2) and were enlisted
(Table 1). In the cell lines with NRAS mutation, treatment with BRAF, MEK1/2, MAP4K2
and TAK inhibitors (p values = 3.38x10* for PLX4720, p=3.04x10"° for PD0325901,
p=1.55x10" for NG-25 and p=1.05x10" for TL-1-85), respectively significantly attenuated cell
viability. However, cancer cell lines harbouring NRAS mutation were significantly resistant to
Foretinib, a MET inhibitor (p-value =2.61x10™) and also were resistant to Cabozantinib (p-
value =1.61x10*) and Ponatinib (p-value =2.99x107), where these two drugs are known to

multiple target inhibitors.
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Figure 2: Volcano plot of ANOVA analysis result retrieved from GDSC database. Each circle in
the volcano plot represents gene-drug interaction, where the green circle indicates drug sensitivity &
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the red circle indicates drug resistance. The position of the circle shows how significant the interaction
is, and the circle size is proportional to the number of cell lines altered. (https://www.cancerrxgene.org)

Table 1:- ANOVA analysis result from GDSC. Compounds with their targets showing effect size
and number of altered cell lines against a target-specific drug. (https://www.cancerrxgene.org)

Sr. Effect No. of altered
no | Drug Drug Target size P-value cell lines
1 | PD0325901 MEK1, MEK2 -0.901 1.51E-10 54
2 | RDEA119 MEK1, MEK2 -0.916 4.75E-10 54
3 Trametinib MEK1, MEK2 -0.75 5.36E-07 55
4 | Selumetinib MEK1, MEK2 -0.798 8.74E-07 57
5 | TL-1-85 TAK -0.0932 7.33E-06 58
6 | RDEA119 MEK1, MEK2 -0.797 8.08E-06 53
7 | CI-1040 MEK1, MEK2 -0.853 8.77E-06 56
8 | NG-25 TAK1, MAP4K?2 -0.00937 | 9.73E-06 58
9 ABL, PDGFRA, VEGFR2,

Ponatinib FGFR1, SRC, TIE2, FLT3 0.101 2.74E-05 58
10 VEGFR, MET, RET, KIT,

FLT1, FLT3, FLT4,

Cabozantinib | TIE2,AXL 0.168 0.000132 58
11 | Foretinib MET 0.189 0.000261 57
12 | PLX-4720 BRAF -0.041 0.000297 55

3.2.3 Drug sensitivity (IC50) data analysis

Drug IC50 (Inhibitory concentration) values for 265 anticancer drugs that are frequently used
to assess drug efficacy are available in the GDSC database. We chose only NRAS-mutant
cancer cell lines that were present and responsive in the case of all 10 drugs. Drug-sensitivity
(log normalized IC50) data was downloaded for these selected 10 drugs across the 41 pan-
cancer cell lines harbouring NRAS mutation. Due to contradictory drug LN_1Csg values for the
drug RDEA119 deposited twice in GDSC database, it was eliminated from our downstream
analysis. From the GDSC database it was suggested that the cancer cell lines regarded as a
drug-sensitive having LN_ICso value smaller than the maximum concentration of a drug, and
cell lines with value greater than the maximum concentration of a drug are regarded to be drug-
resistant. We used a hierarchical clustering module in the online tool GenePattern v11 to

generate clustered heatmap (unsupervised clustering) with distance measure uncentered
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correlation and clustering method pair-wise average linkage using LN_ICso (cancer cell lines)
value. TreeView version 1.1 was used to visualize it.

Further, to correlate drug sensitivity and resistance of NRAS-mutant cancer cell line with that
of cancer tissue for the same selected drugs, we were able to collect the predicted drug 1Cso
value for 8 drugs (Foretinib, Ponatinib, Selumetinib, Trametinib, PD-0325901, PLX4720, TL-
1-85 and CI-1040) from the cancerRxTissue database, for NRAS mutation harbouring cancer
tissue samples. The predicted drug sensitivity (ICso value) data for two drugs (Cabozantinib
and NG-25) were not available in the database, and we found the NRAS mutation information
from TCGA database. Using the above method as used for cancer cell lines, we generated a

clustered heatmap for cancer tissue also.

3.3 Results

3.3.1 Identification of pan-cancer drug-sensitive and -resistant NRAS mutant cell lines

To distinguish individual drug-sensitive and resistant cancer cell lines for each drug, we studied
and analyzed the drug response of all present drugs retrieved from GDSC. We observed that
41 pan-cancer cell lines harbouring NRAS mutations were commonly responsive to 10 drugs
[Selumetinib, PD-0325901, TL-1-85, Trametinib, NG-25, PLX4720, CI-1040, Foretinib, XI-
184 (Cabozantinib) and AP-24534 (Ponatinib)]. We performed uncentered hierarchical
clustering by using the log normalized drug ICso values of these 41 pan-cancer cell lines
harbouring NRAS-mutation to distinguish the drug-sensitive and resistant cell lines and
generated a clustered heatmap. The heatmap color represented dose response in terms of the
drug-sensitivity and resistant (ICso value) cell lines to a particular drug. The normalized 1Cso
value of cancer cell lines greater than zero were selected as drug-resistant cell lines, while
LN_ICso value of cell lines less than zero were attributed as sensitive cell lines to the drug
(Jianting et al. 2015) (Fig. 3A). Each rows in the heatmap indicates the 1Cso score for a

screened compound and each column represents cancer cell lines in the generated heatmap.
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From the heatmap, highly drug-sensitive (ICso<-1) and resistant (ICso>1) NRAS mutant cancer
cell lines were selected based on 1Cso value and color intensity (enlisted in Table 2). In case of
four drugs (Cabozantinib, NG-25, TL-1-85, and PLX4720) there were no individual drug-
sensitive cell lines observed, on the other hand, we found only one drug-resistant cell line for
PD-0325901 as shown in the heatmap. All these cancer cell lines employed in GDSC were
originated from different tissue types of primary tumor and classified at the TCGA matching

label (Table 3).
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Figure 3: - Clustered heatmap for drug dose-response in cell lines and cancer tissues. Rows are
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for cancer cell lines, (B) heatmap for cancer tissue sample.
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Table 2: Number of drug-sensitive and -resistant cancer cell lines identified by normalized ICso score

for 10 drugs.
Sr No. Drug name No. of drug-resistant cell | No. of drug-sensitive cell
lines lines
1 Selumetinib 16 10
2 Cl-1040 21 3
3 PD-0325901 1 31
4 Trametinib 5 24
5 TL-1-85 39 0
6 NG-25 36 0
7 Cabozantinib 40 0
8 PLX4720 41 0
9 Foretinib 12 3
10 Ponatinib 14 4

Table 3: Names of 41 cell lines studied similar to cancer types as identified from TCGA.

TCGA Classification

Cancer cell lines

ALL P12-ICHIKAWA, DND-41, KE-37, MOLT-4, PF-382,
HAL-01.

BLCA HT-1197, KU-19-19, BFTC-905,

DLBC OCI-LY-19

LIHC C3A

LUAD NCI-H2347, NCI-H2087.

LUSC HCC-15

LAML THP-1, ME-1, KY821, OCI-AML3, HL-60, KMOE-2

MB ONS-76

MM L-363, JIN-3

NB GOTO

SCLC SW1271

THCA ASH-3

SKCM IPC-298, LB373-MEL-D, GAK, MEL-JUSO, LB2518-
MEL, CP66-MEL, SK-MEL-2, MZ2-MEL

Unclassified MFH-ino, SJISA-1, HT-1080, TYK-nu, NCI-H2135,

HD-MY-Z, 697
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3.3.2 Correlation and validation of cell lines with cancer tissue drug-sensitivity status

Further, we wanted to investigate if there are any similarities in the pattern of drug-sensitivity
and resistance in cell lines and cancer tissue samples. From the heatmap (Fig. 3B) of cancer
tissue drug response, we have observed that almost all NRAS-mutant cancer tissue were
showing resistance to drugs (C1-1040, Foretinib, Ponatinib, Selumetinib), while few of skin
cutaneous melanoma (SKCM) cancer tissue were sensitive to drug Selumetinib. Most of the
cancer tissue samples from SKCM were sensitive to the drug Trametinib and other cancer types
were less responsive to the Trametinib. Correlating drug response of cancer cell lines with
cancer tissue, we have observed that cancer cell lines from BLCA, LUSC, SKCM, and THCA
cancer tissue were highly resistant and from LUAD cancer tissues were highly sensitive to
Ponatinib, while all cancer tissues were resistant to Ponatinib. Cell lines from cancer BLCA,
LIHC, SKCM, THCA and cancer tissue as well, were resistant to Foretinib. SKCM cancer cell
lines and cancer tissue both were sensitive to Trametinib, while cell lines from BLCA, LIHC,
LUAD and LUSC were sensitive to Trametinib, but cancer tissue samples were very less
responsive. In the case of drug CI1-1040 some cell lines from SKCM were resistant, as well as
some were sensitive, while all SKCM cancer tissue samples were resistant. However, cell lines
and cancer tissue samples from LIHC and LUAD were both resistant to CI-1040. Further, in
the case of Selumetinib, some BLCA cell lines were resistant, while cell lines from BLCA,
LUAD, LUSC, and SKCM were sensitive to Selumetinib. Whereas all cancer tissue samples
from these cancers were resistant to Selumetinib except a few SKCM samples, which were
observed as sensitive to Selumetinib. A similar correlation pattern between cell line and cancer
tissue would depict a similarity in gene expression pattern that might be causing drug-
sensitivity or drug-resistance. Cancer tissue samples for NRAS-mutant; LAML, ALL, MM,

MB, NB, DLBC, and SCLC cancer types were not available in TCGA.
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Chapter-4

Objective-2: Identification of differentially expressed
genes (DEGs) between identified drug-sensitive and -
resistant cancer cell lines to serve as possible
biomarkers
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4.1 Introduction

Protein-coding genes are defined as gene sequences which are transcribed into mMRNA and later
on translated into a protein. These sequences share a tiny fraction, close to 2%, of the entire
human genome. The basic structure of protein-coding genes includes a promoter followed by
a coding sequence that codes for mRNA, which is then translated into a protein and eventually,
all of these are followed by a terminator which specifies the end of the mRNA transcript (Fig.

1).

m"‘?ﬂr
4 RNAP —>

e CODING REGION TERMINATION
3 5"

Figure 1: Schematic representation of promoter sequence, coding region and termination sequence on

protein-coding gene sequence (Modified from: https://en.wikipedia.org/wiki/Coding_region).

Carcinogenesis, as well as chemoresistance, are driven by the accumulation of scores of
alterations affecting the structure and function of the human genome where in this process,
both genetic and epigenetic changes are equally important. Genomic defects play a critical role
in cancer by influencing cell proliferation, growth and survival through the direct or indirect
alterations of gene expression, a variety of protein activities, and molecular signaling pathways
(Hanahan & Weinberg 2011; Watson et al. 2013). There are several computational strategies
have been developed to identify so-called driver mutations using a diverse range of somatic
mutations characteristics, which includes generative conserved mutation sites in multiple
species (Reva et al. 2011), and the influence of mutations on transcriptome (Hou & Ma 2014),

among others. Generally, insertion or deletion of DNA segments during biological processes
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such as DNA replication, evolution, junctional diversity, and development of immune systems
and particularly in cancer development, can lead to mutations. Among all, some mutations
introduce premature stop codons, which can bring down the expression of a gene's
corresponding mMRNA transcript, and some affect protein activity by changing the sequence of
the amino acid residues in encoded protein (Jia & Zhao 2017). Cancer-related gene mutations
result in altered expression of particular genes/proteins and often produce a distinct phenotype
in different cancers. Alteration in the genes’ expression that encodes for a protein may
encourage the initiation or progression of a tumor, as oncogenes do or may suppress its growth,
as do tumor suppressor genes. Traditionally, only mutated genes/proteins are considered as a
candidate for cancer-related genes/proteins. However, the relationship between mutated genes
and cancer phenotypes is not always clear-cut since cancer phenotypes result from abnormal
gene expression rather than direct mutations in DNA (Sager 1997). In cancer, some genes are
identified as driver genes. These genes are oncogenes, tumor suppressors, proto-oncogenes,

and anti-apoptotic genes that may be involved in cancer development and chemoresistance.

For instance, cancer genes such as myc (oncogene) and p53 (tumor suppressor) encode
transcription factors that transcriptionally regulate the expression of several downstream genes.
(Dang 2012; Sullivan et al. 2018). Since the function of Myc protein is crucial for the
maintenance of tumors, it is possible that tumors might resist treatments by engaging a variety
of resistance mechanisms (LIombart & Mansour 2022). Cancer cells harbouring p53 mutations
are commonly characterized by a high rate of metastasis as well as genomic instability (Liu et
al. 2010). This characteristic has important implications for the treatment of many cancers and

also has been linked to drug resistance and mitogenic defects (Hientz et al. 2017).

Similarly, Mutations of the RAS proto-oncogenes are one of the widely known common genetic
alterations observed in a variety of human cancers. They are encoded by three genes that are

expressed ubiquitously: HRAS, KRAS and NRAS (Prior et al. 2012). These proteins are
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GTPases that switch various pathways on and off, controlling proliferation and cell survival
and also influencing drug resistance in cancer by altering gene expression. Among the RAS
family members, NRAS is the second most mutated protein after KRAS mutation in human
cancers (Prior et al. 2012). Most of these mutations involve codons 12, 13, and 61 and the
mutation status is useful in guiding therapy for certain cancers (Mufioz-Couselo et al. 2017).
Genetic mutation in the NRAS gene/protein is extensively associated with the biological or
cellular mechanisms that involved in drug resistance (Le et al. 2013; Nazarian et al. 2010).
Apart from these mutations, the overexpression of certain tyrosine kinase receptors, such as
EGFR and hepatocyte growth factor receptor (HGFR/c-Met), also contributes to RAS

hyperactivation (Kawauchi et al. 2018).

Genetic changes can occur not only in the genes but also in epigenetic regulators, which are
involved in the regulation of histone modifications and DNA methylation to modulate the
chromatinization of chromosomes (Huether et al. 2014; Veitia et al. 2017). This can affect
gene expression by affecting metabolic factors, as well as genetic and epigenetic factors.
Abnormalities or changes in these factors lead to genomic instability and abnormal gene
expression in drug-resistant cancer. Biomarker genes are examples of possible drug targets,
and they have been identified in individual cancer types. These genes have alterations in cancer
at the genomic, transcript, and protein levels. They are also linked to drug resistance and may

serve as potential drug targets for cancer treatment.

Microarray technology has been widely used to analyze gene expression and identify genetic
variations such as mutation and single nucleotide polymorphism (SNP). Specifically, massive-
amount microarray gene expression data analysis enables researchers to identify significant
patterns in thousands of genes and analyze simultaneous changes in those genes. Because
genome-wide expression profile data analysis in drug-resistant pan-cancer cell lines has not yet
been done. We have used the latest Affymetrix human genome U219 array data for our analysis
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of global gene expression into an analytical model to improve the potential to identify

predictive biomarkers of drug response.

Integrative and comprehensive GDSC data analysis has identified and characterized (or
profiled) molecular subtypes, possible driver biological processes, and pathways in mutant

NRAS-harbouring drug-resistant pan-cancer systems.

4.2 Materials and Methods

4.2.1 Gene expression data collection from GDSC

In our study, we have used gene expression profile data generated using high-throughput
technique microarray, downloaded from GDSC. Basal transcriptional profile raw data (E-
MTAB-3610) deposited to GDSC for the 1000 cell lines generated using the latest mMRNA
expression array Affymetrix human genome U219 along with processed gene expression data.
The gene expression data of around 17417 genes were normalized using a robust multi-array
average (RMA) algorithm and deposited in GDSC. Gene expression data were taken and

analyzed for drug-sensitive and resistant cell lines from GDSC for five drugs.

4.2.2 Significant differential gene expression analysis

To check the association between drug sensitivity and resistance of cell lines and gene
expression, combined datasets were examined and statistical tests were performed for
significant differential gene expression. The basal gene expression profile data were
downloaded from the GDSC database. It was filtered to exclude the expression values that were
missing gene names from the column. An unpaired t-test was performed using a cloud based
tool Multi Experiment Viewer (MeV) version 4.9.0 with threshold cut-off p-value <0.05 with
unequal group variance (Welch approximation) between two groups (drug-sensitive and -
resistant cancer cell lines). We studied and analysed microarray gene expression profile data

of 17417 genes in each cancer cell lines with NRAS mutation. A total of 68 drug-resistant and
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44 drug-sensitive NRAS mutant cancer cell lines from our drug sensitivity heatmap, belonging
to 5 out of 10 drugs were analysed. We were not able to classify cancer cell lines clearly into
resistant/sensitive classes in the case of the rest 5 of these drugs. A volcano plot to visualize
up-and down-regulated genes (identified differentially expressed genes, DEGs) between two
groups was generated using the R package “ggplot2” with double filtration cut-off p-value
<0.05 and logrFC>2.

4.2.3 Heatmap to discriminate up- and down-regulated DEGs in drug-sensitive and

resistant cell lines

To identify DEGs by their names and visualize their expression pattern in each drug-sensitive
and -resistant cell line, we used the module (Comparative Marker Selection) in Gene Pattern
version 11 (https://cloud.genepattern.org) to generate a heatmap with default parameters, at
10,000 permutations and to visualized them as a heatmap, we used “Comparative Marker
Selection Viewer v9.1.

Further, to identify genes that were differentially expressed across multiple drugs, we imported
DEG’s list of all five drugs in an online web tool «called BiolnfoRX

(http://apps.bioinforx.com/bxaf6/tools). Then we generated a bubble plot using the R package

“ggplot2 & ggpubr” to visualize overlapping DEGs to multiple drugs (minimum for three

drugs).

4.2.4 Functional gene enrichment annotation analysis

To investigate the functional implication of identified DEGs in drug-resistant/sensitive cancer
cell lines, a gene enrichment analysis was carried out in the context of 5 drugs using a web-
accessible bioinformatics tool GeneCodis version 4 to characterize their functions. In order to
detect a significant functional enrichment of genes, the threshold hypergeometric p-value <0.05

(Benjamini-adjusted Fisher’s exact test p-value) was used by default.
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4.3 Results

4.3.1 Differentially expressed gene analysis between drug-sensitive and resistant cancer
cell lines

Several studies have revealed that gene expression data is one of the important predictive
biomarkers of molecular profile in drug-sensitivity and resistance studies (Wildey et al., 2014).
We have analysed the basal gene expression data which are log normalized, retrieved from the
GDSC database widely associated with pan-cancer drug sensitivity and resistance. We
identified several hundreds of differentially expressed genes (DEGs) between drug-sensitive
and resistant pan-cancer cell lines (harbouring NRAS-mutation) using Welch’s t-test (unequal
group variance) for 5 drugs and listed the number of DEGs (threshold p<0.05). We did not
perform a statistical test for differential expression analysis in case of other 5 drugs because,
as seen from table 1 of chapter 3, all of the chosen cancer cell lines were either uniformly
resistant (NG-25, TL-1-85, Cabozantinib, PLX4720) or uniformly sensitive (PD-0325901) to
these mentioned drugs. Further, volcano plots were generated for each drug by applying (p
value<0.05, log2FC >2) double filtration to statistically validate the results (Fig. 2A-E). The
number of significantly DEGs varies from 38 DEGs for CI-1040 to 467 DEGs Foretinib, in
case of each drug (Table 1). Significantly DEGs are shown in volcano plots as top blue dots
and represented as down-regulated at the left side and up-regulated genes right side position,

in resistant cancer cell lines (p<0.05, log2FC>2). As the volcano plot shows,
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Figure 2: Volcano plot for significantly differentially expressed genes between drug-sensitive and
—resistant cancer cell lines. (A to E) blue dots at the top represent significantly differentially expressed
genes, bottom dots (red) represent non-significant differentially expressed genes. The x-axis shows fold
change in gene expression (magnitude of change, logFC > 2), and the y-axis (p-value) shows
statistically significant genes (threshold p-value <0.05) for each drug.
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Table 1: Number of significantly DEGs (up- and down-regulated) in drug-sensitive and resistant pan-
cancer cell lines.

Sr no. | Drugs Up-regulated genes in | Down-regulated genes Total no. of
drug-resistant cells in drug-resistant cells | DEGs genes
1 Selumetinib 60 189 249
2 CI1-1040 25 13 38
3 Trametinib 23 122 145
4 Ponatinib 90 44 134
5 Foretinib 236 231 467

4.3.2 Heatmap of DEGs between drug-sensitive and resistant cancer cell lines

Further, to visualize the pattern of identified DEG expression in individual cancer cell lines
and to discriminate between up- and down-regulated DEGs in resistant/sensitive cell lines, a
heatmap was generated using a comparative marker selection module in the online web tool
GenePattern (Fig. 3A-E). From the heatmap, we observed that the results were more or less
coinciding with volcano plots. Further, these predictive microarray gene expression data
analyses uncovered key DEGs as being strongly associated with either drug resistance or

sensitivity.
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Figure 3: Heatmap of identified DEGs. (A-E) Identified DEGs expression pattern in drug- sensitive
and resistant cancer cell lines for five drug. Up-regulated genes represented by Red color, down-
regulated genes represented by blue color.

62| Page



4.3.3 Functional enrichment analysis for gene ontology (GO) and KEGG pathway

The following step is to determine the functional enrichment analyses of the given set of DEGs
across multiple drugs, for biological processes and KEGG pathways. To annotate the possible
biological processes and the KEGG pathway we used GeneCodis4, which is a web-accessible
tool with a default hypergeometric cut-off p-value<0.05. DEGs significantly enriched in GO
terms for biological processes for the drug Ponatinib are; GO: 0006508 proteolysis, GO:
0007165- signal transduction, GO: 0008285-cell cycle, GO: 0006915-apoptotic process, and
GO: 0006355-regulation of transcription, DNA-dependent and cell division (Fig. 4A). In
addition, KEGG pathway analyses stipulate that DEGs significantly enriched in,
hsa04151:PI3K-Akt signaling pathway, hsa01100: Metabolic pathway, hsa05200: Pathway in

cancer and has04510: Focal adhesion (Fig. 4A).

Interestingly, in the case of the other four drugs we also observed that the DEGs were
significantly enriched in biological processes and KEGG pathways were more or less similar.
GO terms such as GO: 0007165 signal transduction, GO: 0006508 proteolysis, GO: 0006915
apoptotic processes, GO: 0007155 cell adhesion, and KEGG pathways are hsa05205
proteoglycans in cancer, hsa05200: Pathway in cancer, hsa01100: Metabolic pathway and

has04510: Focal adhesion, and (Fig. 4A-E).
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(D) Trametinib
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Figure 4: Functional enrichment analysis of DEGs. Balloon plot for Gene Ontology and KEGG
pathway analysis of DEGs for five drugs, A) Ponatinib, B) Foretinib, C) Selumetinib, D) Trametinib,
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E) CI-1040. Top 15 GO terms enriched for the biological process and top 5 KEGG pathway enrichment
at a default hypergeometric p-value cut off < 0.05.

4.3.4 Common DEGs across multiple drugs

Further, we looked for the common DEGs across these selected 5 drugs. Interestingly, we found
DEGs for multiple drugs but not for all drugs. Among these DEGs, nine coding genes, were
found to be significantly differentially expressed across four drugs, including CD44, FN1, and
TIMP3. Similarly, SPARC, SNAI2 and TIMP1, including other 34 genes are observed to be
overlapped in the case of three drugs (Fig. 5). These genes might be associated with pan-cancer

drug sensitivity and resistance.
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Figure 5: Bubble plot to identify common DEGs across five drugs. Genes are identified as
differentially expressed gene (reddish-brown bubble) in the case of multiple drugs.
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Chapter-5

Objective-3: Network analysis of the differentially
expressed genes between drug-sensitive and -resistant
cancer cell lines in order to identify key hub
biomarkers.

I. Gene co-expression network analysis
1. Protein-protein interaction analysis
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5.1 Introduction

Networks are a common part of the actual world and the usual approach of representing
biological systems as they represent a different combination of binary interactions or relations
between heterogeneous or homogeneous elements. With the interactive visualization of data
and integration of multiple datasets for analysis, it enables a more comprehensive study of

different systems in nature. For example, biological networks, food webs, or hierarchies in a

systematic organization. A network or graph is a collection of nodes connected by edges which

represent a relationship between the nodes (Toor & Chana 2021).

5.1.1 Biological Network

Basically, nearly all biological entities interact with one another, from the molecular level to
the ecosystem level. Using a variety of networks, like those that are used to study ecological,
metabolic, or molecular interaction and neurological networks, allows us to study biology.
Even though heterogeneous properties of cancer present serious challenges for prevention,
treatment, and a detailed understanding of the pathological mechanisms; thus it is important to
discover an effective biomarker that is necessary and prime importance (Yan et al. 2016).
Recent decades have seen a surge of research into identifying molecular biomarkers for pre-
symptomatic diagnosis, stratification by cancer subtype, evaluation of cancer growth,
prediction of cancer patient response to therapies and diagnosis of cancer relapses (Sawyers
2008; Bolton et al. 2014). However, biomarkers of the oncogenic process are not effective at

predicting outcomes, so they are too unreliable to be used in clinical applications.

The biological network has been studied and used extensively to represent, quantify and design
intracellular interactions in order to understand the cellular mechanisms in cancer (Kreeger &

Lauffenburger 2010). These insights have led to the discovery of cancer-related biomarkers.
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The network-based integrated analysis incorporates multifaceted high-throughput omics
profiling data, including expression array, SNP array, CGH array, etc., from cancerous tissues,
blood samples, and other samples have extensively increased the understanding of the
molecular basis of carcinogenesis and identification of novel biomarkers (Wang et al. 2015;

Zhang et al. 2009).

5.1.2 Types of biological networks

Different types of data create different general characteristics of a network, including
connectivity, complexity and structure, where multiple layers of information can be conveyed
through edges and nodes in the networks. Some most common types of biological networks
are; the gene co-expression network (GCNs), protein-protein interaction (PPI) network,
gene/transcriptional regulatory network, microRNA-mRNA network, metabolic network, and
cell signalling network. We are providing a brief introduction about the co-expression and PPI
networks as we have analyzed these two networks in our study.

Gene co-expression network: Gene co-expression networks (GCNSs) are transcript—transcript
expression-based association networks used for various purposes, such as annotation of genes
with unknown biological functions or processes, categorizing candidate genes related to
disease and determining transcriptional regulatory mechanisms. These networks are
constructed using data from transcriptomics (microarray data) and next-generation sequencing.
With the recent advances in these fields, it is now possible to infer functions and disease
associations for non-coding genes and splice variants. GCNs are networks that connect genes
with similar expression patterns across all over the samples. Various types of correlation
measures have been used to construct and analyse GCNs, including Pearson and Spearman

correlations (Van Dam et al. 2018).
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Protein-protein interaction network (PPIl): PPl networks are physical and functional
interactions between proteins and they carry information about how different proteins work
together within a cell to enable a biological process. In the human interactome, there are
approximately 40,000 to 200,000 protein-protein interactions available. These protein-protein
interactions play an important role in most of the biological and cellular processes, such as
signal transduction pathways, gene transcription, cell-to-cell communication, metabolism, and
proliferation. Furthermore, these interactions are key in every step of the central dogma of
molecular biology, thereby playing an important role in transmitting genetic information that
is significantly extrapolated in cancer as drug targets and in immunotherapy (Garner & Janda

2011).

With advanced strategies for the construction, analysis, and interpretation of various biological
networks, we can discover reliable and accurate molecular biomarkers that can be used to
monitor cancer progression, treatment, and diagnosis. These biomarkers may lead toward the
development of personalized/precision medicine against cancer (Yan et al. 2016). The surge of
omics data has led to the creation of a variety of freely available databases that provides an
extensive amount of gene, protein interaction, biological pathway and network information,
which are being established so that biologists can analyze these data from the complex system
using valuable tools. These databases include interactions from BioGRID, STRING, IntAct,
PID, MINT, KEGG, GeneMANIA, and REACTOME provide extremely useful qualitative
data on the physical and functional relation between important elements in canonical cellular

pathways (Wang et al. 2012).

A biological network consists of two essential elements, which are nodes and edges. In a
network, nodes represent genes or proteins. Edges, on the other hand, represent the type of

interaction or relationship that exists between individual nodes. These relationships may
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represent either protein-protein interaction or promoter interaction or gene expression
regulation, or metabolic responses and can also validate genetic evidence.

5.1.3 Topological parameters of network: To measure the locations of nodes in a network, it
has been a set of defined topological parameters to describe their properties and centrality or
functionality (Fig. 1). There are some most commonly used topological parameters are the

following-

a) Node degree: The degree of nodes is the sum of all it has. If a node that has a degree of n
refers to the number of other nodes that have a connection with it.

b) Betweenness centrality (BC): It is a measurement of centrality to assess the significance
of independent nodes in a network. BC is a value that represents the number of all the
shortest paths between nodes divided by the total number of the shortest paths between all
nodes.

c) Closeness centrality is the reciprocal of its average shortest path length in the network and
measures of how fast information passes from one node to the other reachable nodes in the

network.
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Figure 1: Diagrammatic representation shows the node degree, betweenness centrality closeness
centrality, and clustering coefficient in the hypothetical network. (Modified from Peng Zhang et al.
2016)

Systems biology aims to understand complex biological entities at a systems level, looking not
only at the individual components but also at how they interact and affect one another and using
tools derived from graph theory to represent and analysis of biological systems. We have
studied and analyzed gene co-expression and PPI network to identify probable biomarkers
related to drug-resistant cancer using both qualitative and quantitative approaches by

integrating data at genomic, transcriptomic and proteomic levels.

5.2 Materials and Methods

5.2.1 Generation and acquisition of gene co-expression network

We constructed a co-expression network to study the interaction between the DEGs in finer
details. We subjected the set of DEGs list to an online web interface GeneMANIA program to
query and construct the gene co-expression network of DEGs identified. It provides a
meaningful gene-gene interaction network of DEGs, and as well as some predicted genes from
GeneMANIA are automatically included to the network by default if it is found to be
interacting with the presented DEGs list. We downloaded the co-expression network data from

GeneMANIA.
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5.2.2 Visualization and analysis of gene co-expression network

To visualize and analyze the gene co-expression network, we imported network data into
Cytoscape 3.8.2. The co-expression network was analyzed by using a plugin of Cytoscape
network analyzer to identify hub genes. Based on their node degree distribution top hub nodes
were selected. A gene node considered as key/hub node that has higher number of edges with
interacting gene nodes. To cluster the networks, we used a Cytoscape plugin app Glay
(community cluster) from the clusterMaker module for network clustering (undirected edges),

based on densely interacting nodes and functional relevance.

5.2.3 Generation and acquisition of PPl network

The PPI network analysis allows us to assess the corresponding protein interactions while gene-
gene interaction network is only useful for identifying key hub genes. The PPI network was
generated using a well validated online STRING v11.0 database, which provides physical
(direct) and functional (indirect) protein association network data determined by experimental
and computational methods. This database provides information about functional associations
derived from various sources, including experimental, database, co-expression, co-occurrence
text mining, neighborhood, etc., with a significant confidence score. We subjected the list of
DEGs from co-expression network clusters into the STRING database to discern the physical
and functional interaction among them. PPI network was generated with the cut-off interaction
score for the network set to >0.400 (medium confidence), which implies that only interactions

with a medium confidence score in the network were considered as reliable interactions.

5.2.4 Visualization and analysis of PPl network
We imported retrieved PPI network data into Cytoscape software (version 3.8.2) to visualize
and analyze. Cytoscape Plugin Network Analyzer was used to analyze the PPI network. From

the PPI network of each cluster we identified hub proteins based on highest node degree, which
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IS a measure of the protein's centrality in terms of its connection to other proteins nodes with
key biological functions. To carry out GO and KEGG pathways analysis of the proteins in the

PPI network, an online web server GeneCodis4 was used.

5.3 Results

5.3.1 Gene co-expression network analysis and identification of hub genes

In order to examine the potential molecular interactions at the gene level and to undertake a
deeper functional analysis of the identified DEGs in drug-resistant cancer cell lines, for the five
drugs co-expression network was constructed and analyzed using DEGs enlisted from the
above analysis. The generated co-expression networks of DEGs are shown in Fig 2A-E. The
number of nodes (genes) and edges for the each networks was also enlisted (Table 2). From
the network analyses using quantitative method, we were able to identify the top 34 hub genes
in the case of Ponatinib, having highest node connectivity (node degree) (Table 1A). Similarly,
top 35, 48, 52, and 13 hub nodes were identified for Trametinib, Selumetinib, Foretinib, and

CI-1040, respectively (Table 1B-E).

5.3.2 Clustering analysis of co-expression network

Glay, a Cytoscape plugin was used to cluster the gene co-expression network into modules. In
case of Ponatinib, the generated clusters 1, 2, and 3 contained 35 nodes, 40 nodes, and 77 nodes,
respectively (Fig. 3A). Then, different number of clusters were generated through the network
clustering, in the case of the other four drugs: 3 clusters for CI-1040, 4 clusters for each
Trametinib and Selumetinib, and 6 clusters for Foretinib (Fig. 3B-E). After our co-expression
networks analysis, further, we proceeded to generate PPI networks from clustered network
genes in order to assess whether the same hub genes can be found as a hub node in the PPI

network at the protein level.
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Figure 2. Co-expression network of DEGs. This network consists up- (red nodes) and down-
regulated genes (green nodes) and genes predicted from GeneMANIA (blue nodes), hub genes were
selected baesed on node degree (A) Ponatinib (B) Foretinib, (C) Selumetinib, (D) Trametinib, (E) ClI-

1040.

Table 1: List of identified hub genes from the co-expression network. (A) Ponatinib, (B) Foretinib,
(C) Selumetinib, (D) Trametinib, (E) CI-1040.

(A) Ponatinib

S No. | Name Degree | logFC S No. | Name Degree | logFC

1 SPARC 63 2.942045 | 18 TWIST1 35 3.171716
2 SRPX 59 3.861324 | 19 PROCR 35 3.053009
3 PTPRM 51 2.360718 | 20 CNRIP1 35 3.17705
4 PIR 48 3.213295 | 21 BCL2A1 34 2.995919
5 EDNRB 47 2.455901 | 22 SERPINE2 | 33 3.398535
6 FN1 45 248735 |23 TYR 32 2.257251
7 VEGFC 44 2.159631 | 24 S100B 32 2.763242
8 TMEM158 | 42 2.762151 | 25 CTSL1 32 3.748661
9 PLP1 42 2.206968 | 26 CD44 32 3.355082
10 HTRA1 41 2.316941 | 27 SLC6A15 32 2.225731
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11 SNAI2 41 3.26492 | 28 IL13RA2 31 2.086026
12 DDR2 40 2.261463 | 29 LMNB1 31 -2.29481
13 TIMP3 39 3.235401 | 30 PLK2 31 2.1479
14 SGK1 39 3.038964 | 31 STC1 31 2.149369
15 TIMP1 39 3.35654 | 32 PMEL 30 2.537572
16 MLANA 38 2.430249 | 33 MYB 30 -3.87657
17 MMP1 38 3.262725 | 34 MMP14 30 2.718661
(B) Foretinib

S No. | Name Degree | LogFC S No. | Name Degree | LogFC

1 LAPTM5 145 -5.75001 | 27 CAV1 111 5.248772
2 SPARC 139 3.390596 | 28 SYK 111 -3.71093
3 S100A11 139 5.453968 | 29 LRMP 111 -6.19717
4 EVI2B 138 -3.34125 | 30 LAMB1 108 2.433101
5 CORO1A 132 -3.54753 |31 TNFAIP8 | 106 -2.02497
6 GMFG 132 -5.60287 | 32 AEBP1 106 -3.25478
7 CD52 129 -6.07568 | 33 LYL1 106 -2.32261
8 PTPRCAP | 128 -3.81623 | 34 EPS8 105 2.493185
9 CXCR4 128 -5.94196 | 35 CD63 105 2.180637
10 EVI2A 126 -2.75744 | 36 CD38 105 -3.94811
11 FLI1 125 -2.78249 | 37 SRPX 105 3.465235
12 TGFBI 124 3.527154 |38 CD44 105 3.602315
13 RAB31 124 2.781301 |39 LGALS3 105 6.130637
14 BTK 120 -3.43982 | 40 LCP1 105 -3.46115
15 CD53 120 -3.95217 |41 MYOF 105 4.486707
16 VAV1 120 -2.10008 | 42 FN1 104 4.286871
17 NCF4 120 -4.28818 |43 FAM65B | 104 -2.17044
18 SASH3 120 -2.69993 | 44 GLRX 103 -2.23624
19 ARHGDIB | 119 -4.13565 | 45 CD19 103 -3.10301
20 AHR 117 2.449523 | 46 CCND3 103 -3.1296
21 MEF2C 117 -3.81352 | 47 NCKAPI1L | 103 -2.59252
22 LCP2 115 -2.74972 | 48 WWTR1 102 3.119242
23 TIMP1 113 4.218703 | 49 CD79B 100 -2.09659
24 CTSL1 113 4.007319 |50 KIAA0922 | 100 -4.13033
25 HLA-DPAL1 | 112 -3.7146 51 CD72 100 -3.79728
26 CD79A 112 -3.436 52 PLEKHO1 | 100 -2.59832
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(C) Selumetinib

S No. Name Degree | logFC S No. | Name Degree | logFC
1 S100A11 |60 -2.66948 | 25 FYB 35 2.21787
2 LGALS1 58 -3.61629 | 26 CHI3L2 35 2.042024
3 CTSL1 50 -3.01495 | 27 FAIM3 34 -2.67386
4 SRPX 48 -3.6649 28 GPR137B 34 -2.10542
5 AHR 48 -2.01913 | 29 PMP22 34 -2.85202
6 TIMP1 46 -2.65478 | 30 ITM2A 34 3.022547
7 PLAT 45 -3.21702 | 31 PTGS2 34 -2.0082
8 RND3 43 -2.33281 | 32 PRKACB 33 -3.26241
9 FN1 42 -3.3788 33 SNAI2 33 -2.70462
10 | PYGL 41 -2.95357 |34 CD44 33 -3.02248
11 | IL7R 41 -2.00598 |35 CXCL2 33 -2.27643
12 | CORO1A |41 3.689428 | 36 ME1 32 -2.32413
13 | TIMP3 41 -3.97979 | 37 TRIB2 32 -2.00256
14 | CAV1 40 -4.37341 | 38 FHL2 31 -2.98132
15 | DKK1 39 -2.62356 | 39 MCAM 31 -2.06399
16 | CCND1 39 -2.67084 |40 TNC 31 -2.25594
17 | ITGB5 39 -3.20911 |41 ARHGDIB 31 3.13521
18 | WWTR1 39 -3.10919 | 42 GZMA 31 -2.40187
19 | CD38 38 2.785901 |43 LTBR 31 -2.41978
20 | LCP2 38 2.685341 |44 PLS3 30 -3.18165
21 | CNN3 36 -2.60362 | 45 LGALS3BP 30 -2.65608
22 | DCBLD2 |36 -2.7906 46 CAV2 30 -3.34135
23 | PLA2G4A | 35 -2.80208 | 47 ST6GALNAC2 | 30 -2.22252
24 | QPCT 35 -3.21769 | 48 CD9 30 -2.7278

(D) Trametinib

S No. Name Degree | LogFC | S No. Name Degree | LogFC

1 LGALS1 |87 -4.62733 | 19 ITGB5 58 -3.19813

2 SPARC 80 -2.73628 | 20 SRPX 57 -3.53466

3 ANXA1 74 -4.16594 | 21 LAMC1 57 -3.09847

4 CAV1 73 -4.98208 | 22 PPAP2B 56 -2.06307

5 MYOF 71 -4.2814 | 23 PPIC 56 -2.17838

6 TGFBI 70 -4.0868 | 24 HTRA1 56 -2.91928

7 TIMP3 67 -3.70926 | 25 LMNA 55 -2.75874

8 AHR 66 -2.20746 | 26 ANXA4 54 -2.73862

9 FN1 66 -3.07716 | 27 ITGA2 54 -3.38568

10 CD59 64 -2.16905 | 28 CAV2 54 -3.86202
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11 CTGF 64 -3.92276 | 29 CCL2 53 -2.45051
12 WWTR1 |63 -3.14903 | 30 PDLIM1 53 -2.31412
13 TM4SF1 | 62 -6.48639 | 31 CYR61 52 -3.52746
14 CEBPD |60 -2.86032 | 32 BHLHE40 |51 -2.29155
15 PLOD2 |59 -3.14062 | 33 CALD1 51 -3.0044
16 IFITM3 |59 -3.75116 | 34 CD44 50 -3.60438
17 PLAT 58 -3.24524 | 35 PTPRM 50 -2.16834
18 SGK1 58 -2.06759
(E) CI1-1040

S No. Name Degree LogFC

1 KRT19 20 2.553488

2 KRT8 17 2.47259

3 MGST2 16 -2.06881

4 VAMP8 15 -2.12426

5 GATA3 14 2.268906

6 SERPINB1 14 -2.82802

7 RARRES3 13 2.195455

8 IFITM2 13 -2.71822

9 EPCAM 13 2.417885

10 S100A4 12 -3.19585

11 GCH1 12 2.156811

12 SMAGP 12 2.135293

13 KRT7 10 2.262705

Table 2: List of number of nodes and hub nodes in gene co-expression network for all five drugs.

Drug name | Number of Number of Number of hub | Lowest node degree

nodes in network | edges in nodes for hub node
network selection

Ponatinib 152 1826 34 30

Foretinib 483 14156 52 100

Selumetinib 256 2410 48 30

Trametinib 165 3019 35 50

Cl-1040 49 211 13 10
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Figure 3: Co-expression network cluster generated by fast gready (Glay) Cytoscape plugin
clustering algorithm. Clusters for five drugs (A) Ponatinib, (B) Foretinib, (C) Selumetinib, (D)
Trametinib, and (E) CI-1040. Red nodes: upregulated protein-coding genes, Green nodes: down-
regulated protein-coding genes, Blue nodes: GeneMANIA predicted protein-coding genes.
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5.3.3 PPI network analysis and identification of hub proteins

The identification of key proteins in the network of proteins encoded by DEGs in drug-resistant
cancer furnishes an important insight to understand the regulatory mechanisms that may cause
cancer drug resistance. Genes/proteins significantly linked with drug resistance in cancer may
act as a hub gene/protein. To study the same interactions at protein level, the PPI network was
constructed by taking the genes from each cluster from the gene co-expression network in case
of the selected drugs. We used a cut-off score 0.400, which is a median confidence score,
quantifies the reliability of generated PPI network with corroborative evidence for the reported
interactions (between two proteins) (Bozhilova et al. 2019). The PPI network for drug
Ponatinib is shown in Fig. 4A, and for other four drugs are shown in Fig. 4B-E. Top hub
proteins identified from all generated PPI networks are mentioned in table 3A-E. Only four
hub protein nodes were identified for drug CI-1040 from PPI networks, whereas top 10 hub
proteins node were identified for other four drugs (Table 4). We were not able to acquire a
PPI network for some of the clusters from the STRING database because of a lack of interaction

data in STRING database.

5.3.4 Functional analysis of proteins from the PPI network

The functional enrichment analysis of these proteins are enriched in various biological
processes term and KEGG pathways. Notably, the protein nodes from the PPI networks of the
studied drugs were enriched in biological processes, such as signal transduction, proteolysis,
melanogenesis, cell adhesion, cytokine-mediated signaling, cell population proliferation, and
cell migration. From KEGG pathways analysis, we observed proteoglycans, and PI3K-Akt

signaling pathways in cancer, etc. (Fig. 5A-E).
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Figure 4: Protein-protein interaction network of cluster. PPI network of DEGs from the co-
expression network clusters for four drugs and selection of hub proteins by analyzing node degree. (A)
Ponatinib, (B) Foretinib, (C) Selumetinib, (D) Trametinib, (E) CI-1040. Red nodes: upregulated
protein-coding genes, Green colored nodes: down-regulated protein-coding genes, Blue colored nodes:

GeneMANIA predicted protein-coding genes. Node degree represented by circle size.

Table 3: List of identified hub proteins from the PPI network. (A) Ponatinib, (B) Foretinib, (C)
Selumetinib, (D) Trametinib, (E) CI-1040.

(A)Ponatinib

Cluster 1
Hub protein Degree logFC
NDC80 20 -2.06481
AURKB 20 -2.26034
KIF15 19 -2.45912
FBXO5 18 -2.07972
CDT1 18 -2.22891
ATAD?2 17 -2.45525
NCAPH 17 -2.2146
MND1 16 -2.43927
CDCA7 15 -2.21104
E2F8 15 -2.69675
Cluster 2
Hub protein | Degree logFC
DCT 8 2.248641
TYR 8 2.257251
TYRP1 7 2.658401
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PMEL 7 2.537572
MLANA 6 2.430249
PRAME 5 3.920346
EDNRB 5 2.455901

Cluster 3
Hub protein | Degree | logFC
FN1 24 2.48735
CD44 15 3.355082
MMP1 15 3.262725
TIMP1 15 3.35654
MMP14 14 2.718661
SPARC 13 2.942045
SNAI2 12 3.26492
VEGFC 10 2.159631
TIMP3 10 3.235401
FOS 7 2.148925

(B) Foretinib

Cluster 2

Hub protein | Degree LogFC
FN1 66 4.286871
CCND1 42 3.398118
IL8 40 3.455896
JUN 38 2.687192
TIMP1 37 4.218703
CD44 37 3.602315
SPP1 36 2.925569
KIF11 36 -2.28524
AURKB 33 -2.06155
SERPINE1 30 2.088228

(C) Selumetinib

Cluster 2

Hub protein Degree | logFC
LCP2 13 2.685341
FYB 10 2.21787
IL7R 10 -2.00598
CD48 9 2.679745
CCR5 8 -2.93984
CD38 7 2.785901
H2AFX 7 -2.10786
GZMA 6 -2.40187
APBBL1IP 5 2.105772
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| UBE2V2 B | 2.212951
Cluster 3
Hub protein | Degree logFC
LCP2 13 2.685341
FYB 10 2.21787
IL7R 10 -2.00598
CD48 9 2.679745
CCR5 8 -2.93984
CD38 7 2.785901
H2AFX 7 -2.10786
GZMA 6 -2.40187
APBB1IP |5 2.105772
UBE2V?2 5 2.212951
(D) Trametinib
Cluster 1
Hub protein | Degree LogFC
IL1B 17 -2.48654
IL8 16 -3.99662
CD44 15 -3.60438
CCL2 14 -2.45051
CTSB 14 -2.65337
ANXA1 13 -4.16594
SPP1 12 -2.39734
AHR 9 -2.20746
ANXA2 9 -3.23904
CD68 9 -2.74891
Cluster 2
Hub protein | Degree | LogFC
FN1 31 -3.07716
ITGB1 22 -2.38848
SPARC 21 -2.73628
CYR61 18 -3.52746
CTGF 18 -3.92276
ITGBS 17 -3.19813
LAMCL1 13 -3.09847
TGFBI 12 -4.0868
ACTN1 11 -2.7235
CAV1 11 -4.98208
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(E) CI1-1040

Cluster 2

Hub protein Degree [LogFC
KRT7 8 2.262705
KRT8 8 2.47259
KRT19 8 2.553488
EPCAM 6 2.417885

Table 4: Number of top hub protein nodes identified from each PPI network cluster in the case of all
five drugs.

Drug name | Clusters Number of hub Number of nodes in | Number of edges
protein nodes from | the PPI network in the PPI network
the PPI network

Ponatinib Cluster 1 10 25 179

Cluster 2 7 22 39
Cluster 3 10 59 155
Foretinib Cluster 2 10 254 1174
Selumetinib | Cluster 2 10 47 87
Cluster 3 10 67 179
Trametinib | Cluster 1 10 54 152
Cluster 2 10 47 205
CI1-1040 Cluster 2 4 15 34
(A) Ponatinib
Cluster 1

GO ID Biological processes genes_found P-value

G0O:0007049 cell cycle 13 1.29E-17

G0:0051301 cell division 10 3.33E-14

G0:0000278 mitotic cell cycle 5 2.45E-07

G0O:0000086 G2/M transition of mitotic cell cycle 4 1.19E-05

G0:0008283 cell population proliferation 4 1.25E-05

(G0:0006355 regulation of transcription, DNA-templated 4 0.00333

KEGGID KEGG Pathways genes_found P-value

hsa05169 Epstein-Barr virus infection 2 0.009102

hsa04110 Cell cycle 2 0.009265

hsa05203 Viral carcinogenesis 2 0.011292

hsa05200 Pathwaysin cancer 2 0.040845
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Cluster 2

GO ID Biological processes genes_found P-value
G0:0042438 melanin biosynthetic process 5 1.13E-12
G0:0043473 pigmentation 4 8.79E-08
GO:0007165  signal transduction 4 0.009021
G0:0032438 melanosome organization 3 5.74E-06
G0O:0008284 positive regulation of cell population proliferation 3 0.006307
G0:0007399 nervous system development 3 0.006463
G0:0006583 melanin biosynthetic process from tyrosine 2 7.53E-06
GO:0006726  eye pigment biosynthetic process 2 1.81E-05
G0:0009637 response to blue light 2 5.02E-05
G0:0048066 developmental pigmentation 2 0.000236
KEGG ID KEGG Pathways genes_found  P-value
hsa04916 Melanogenesis 4 1.02E-07
hsa00350 Tyrosine metabolism 3 6.03E-07
hsa01100 Metabolic pathways 3 0.006029
hsa05014 Amyotrophic lateral sclerosis 2 0.007357
Pathways of neurodegeneration - multiple

hsa05022 diseases 2 0.012748

Cluster 3
GOID Biological processes genes_found P-value
G0:0030198 extracellular matrix organization 12 8.64E-15
GO:0007165 signal transduction 12 2.75E-06
G0:0022617 extracellular matrix disassembly 8 9.83E-13
G0:0019221 cytokine-mediated signaling pathway 8 1.05E-07
GO:0006508 proteolysis 8 3.10E-06
GO:0007155 cell adhesion 7 5.26E-05
G0:0034097 response to cytokine 6 6.97E-09
G0:0030199 collagen fibril organization 6 8.84E-08
G0:0030335 positive regulation of cell migration 6 9.52E-06
G0:0008285 negative regulation of cell population proliferation 6 0.000155
KEGG ID KEGG Pathways genes_found pval_adj
hsa05205 Proteoglycansin cancer 10 2.84E-14
hsa04510 Focal adhesion 6 2.13E-07
hsa05200 Pathways in cancer 6 2.24E-05
hsa04151 P13K-Akt signaling pathway 5 3.35E-05
hsa04926 Relaxin signaling pathway 5 6.79E-07
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(B) Foretinib

Cluster 2
GOID Biological processes genes_found P-value
G0:0007165 signal transduction 31 1.69E-10
G0:0045944 positive regulation of transcription by RNA polymerase Il 27 3.83E-11
GO:0007155 cell adhesion 26 3.12E-16
G0O:0043066 negative regulation of apoptotic process 25 2.95E-16
G0:0000122 negative regulation of transcription by RNA polymerase 1l 21 3.44E-09
GO:0030154 cell differentiation 21 5.00E-08
G0:0030198 extracellular matrix organization 20 1.00E-16
G0:0006915 apoptotic process 20 1.80E-09
G0:0043312 neutrophil degranulation 19 5.06E-11
G0:0007049 cell cycle 19 4.20E-09
KEGG ID KEGG Pathways genes_found P-value
hsa01100 Metabolic pathways 23 1.17E-14
hsa05200 Pathways in cancer 21 8.42E-16
hsa04510 Focal adhesion 17 3.50E-18
hsa05205 Proteoglycansin cancer 17 7.89E-18
hsa04151 PI13K-Akt signaling pathway 13 4.99E-10

(C) Selumetinib

Cluster 2
GOID Biological processes genes_found P-value
GO:0007165 signal transduction 9 0.000456
G0O:0007049 cell cycle 6 0.000472
G0:0006915 apoptotic process 6 0.000513
G0:0006955 immune response 5 0.000501
G0:0045944 positive regulation of transcription by RNA polymerase I1 5 0.012815

double-strand break repair via nonhomologous end

G0:0006303 joining 4 5.16E-05
GO:0050852 T cell receptor signaling pathway 4 0.000594
GO:0007166 cell surface receptor signaling pathway 4 0.00126
GO:0008380 RNA splicing 4 0.001276
G0:0006397 mRNA processing 4 0.002943
KEGG ID KEGG Pathways genes_found P-value
hsa05200 Pathways in cancer 6 2.08E-05
hsa04640 Hematopoietic cell lineage 5 2.63E-07
hsa05169 Epstein-Barr virus infection 5 4.75E-06
hsa04015 Rap1 signaling pathway | 0.00014
hsa05163 Human cytomegalovirus infection 4 0.000146
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Cluster 3

GO ID Biological processes genes_found P-value
G0:0007155 cell adhesion 15 5.35E-14
G0:0007165 signal transduction 11 4.47E-05
G0:0030198 extracellular matrix organization 9 3.04E-09
G0:0008285 negative regulation of cell population proliferation 9 2.41E-07
G0:0043066 negative regulation of apoptotic process 9 6.06E-07
G0:0019221 cytokine-mediated signaling pathway 8 2.66E-07
G0:0002576 platelet degranulation 7 2.31E-08
G0:0044267 cellular protein metabolic process 7 6.32E-08
G0O:0016477 cell migration 7 1.13E-06
G0O:0001525 angiogenesis 7 1.14E-06
KEGG ID KEGG Pathways genes_found P-value
hsaD5205 Proteoglycansin cancer 11 1.26E-15
hsa04510 Focal adhesion 8 1.32E-10
hsaD5165 Human papillomavirus infection 8 9.11E-10
hsa01100 Metabolic pathways 8 3.35E-06
hsa05200 Pathways in cancer 7 3.40E-06
(D) Trametinib
Cluster 1
GOID Biological processes genes_found P-value
G0:0006954 inflammatory response 12 1.21E-12
G0:0043312 neutrophil degranulation 12 3.93E-12
G0:0019221 cytokine-mediated signaling pathway 10 5.47E-11
G0:0008285 negative regulation of cell population proliferation 10 1.42E-09
G0:0007165 signal transduction 10 3.84E-05
G0:0006955 immune response 8 2.27E-07
G0:0045944 positive regulation of transcription by RNA polymerase Il 8 0.000133
G0:0071222 cellular response to lipopolysaccharide 7 3.40E-08
G0:0010628 positive regulation of gene expression 7 2.22E-05
GO:0043066 negative regulation of apoptotic process 7 2.24E-05
KEGG ID KEGG pathways genes_found  P-value
hsa05323 Rheumatoid arthritis 8 4.83E-14
hsa04640 Hematopoietic cell lineage 8 6.32E-14
hsa05164 Influenza A 7 1.92E-10
hsa05321 Inflammatory bowel disease 6 1.73E-10
hsa04142 Lysosome 6 1.75E-10
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Cluster 2

GO ID Biological processes genes_found P-value
G0:0007155 cell adhesion 16 1.07E-18
G0:0030198 extracellular matrix organization 15 2.97E-22
G0:0001525 angiogenesis 11 1.87E-14
G0:0044267 cellular protein metabolic process 7 4,02E-09
G0:0016477 cell migration 7 7.38E-08
G0:0043687 post-translational protein modification 7 1.79E-07
G0:0007165 signal transduction 7 0.001849
G0:0007229 integrin-mediated signaling pathway 6 2.15E-08
G0:0002576 platelet degranulation 6 4.34E-08
G0:0030335 positive regulation of cell migration 6 1.99E-06
KEGG ID KEGG pathways genes_found P-value
hsa04510 Focaladhesion 14 5.36E-25
hsa04512 ECM-receptor interaction 9 7.62E-19
hsa05165  Human papillomavirus infection 9 3.73E-13
hsa04151  PI3K-Aktsignaling pathway 9 1.63E-12
hsa05205  Proteoglycansin cancer 8 2.26E-12

(E) CI-1040

Cluster 2

GOID Biological process genes_found P-value
G0:0070268 cornification 5 1.14E-09
G0:0031424 keratinization 5 1.16E-09
G0:0065003 protein-containing complex assembly 3 0.000124
G0:0050852 T cell receptor signaling pathway 3 0.000185
G0:0043066 negative regulation of apoptotic process 3 0.001989
G0:0002376 immune system process 3 0.002215
G0:0045944 positive regulation of transcription by RNA polymerase Il 3 0.005357
KEGGID KEGG pathways genes_found P-value
hsa05150 Staphylococcus aureus infection 3 2.54E-06
hsa04659 Th17 cell differentiation 3 5.89E-06
hsa04658 Th1 and Th2 cell differentiation 3 6.04E-06
hsa04915 Estrogen signaling pathway 3 6.73E-06

Figure 5: GO and KEGG pathways analysis of proteins from the PPI network. Gene ontology
and KEGG pathway analysis using GeneCodis4 for five drugs. (A) Ponatinib, (B) Foretinib, (C)
Selumetinib, (D) Trametinib, (E) CI-1040.

5.3.5 Selection of common hub nodes between co-expression and PPI network

Upon further analysis, combining hub node list from both PPl and gene co-expression
networks, some common hub protein-coding genes were chosen. In case of Ponatinib there

were nine hub proteins from clusters 3 and four hub proteins from cluster2, the hub genes
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shared in common with the hub gene list from the gene co-expression network as well as with
STRING-generated top hub proteins. Similarly, for the other four drugs also, common hub
nodes were selected (Table 5). Through chronological analyses, the identified key hub
proteins, common between co-expression and PPl network hub nodes, are enlisted as KRT7,
KRT8, KRT19 and EPCAM for the drug CI-1040, TYR, MLANA, PMEL, EDNRB, FN1,
CD44, MMP1, MMP14, TIMP1, SPARC, TIMP3, SNAI2, and VEGFC for Ponatinib, CD44,
AHR, CCL2, ANXAL, FN1, CYR61, CTGF, SPARC, ITGB5, TGFB1 and LAMC1 for
trametinib, Similarly, for other drugs, LCP2, FYB, IL7R, FN1, CD38, CD44, CCND1, TIMP1,
PTGS2, CAV1, SNAI2 and LGALS1 for selumetinib, FN1, TIMP1 and CD44 for foretinib,
were identified as driver proteins common between both co-expression and PPI network hub

node list.

5.3.6 Common hub protein-coding genes across multiple drugs

Further, we intended to find out common hub proteins coding genes across all the drugs studied.
Among the hub protein coding nodes from co-expression networks and PPI, as mentioned
above, SPARC was common for two drugs (Trametinib and Ponatinib), TIMP1 was common
across the three drugs (Ponatinib, Selumetinib, Foretinib), while CD44 and FN1 were found to
be common for 4 drugs; Foretinib, Trametinib, Ponatinib, and Selumetinib (Fig. 6). These hub
proteins might induce drug-resistant in cancer through various divergent pathways, including
PI3K-Akt signaling pathways, proteoglycans pathway in cancer, metabolic, and focal adhesion
pathway as these pathways are widely investigated to play a role in cancer. Therefore, targeting
these hub proteins could be one possible approach for targeting the up/downstream pathways
and biological processes and overcome pan-cancer drug resistance. The two important key hub

proteins, FN1 and CD44, have interconnectivity with RAS and PI3K/Akt signaling pathways,
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taken from KEGG Pathways database (https://www.genome.jp/kegg/pathway.html), shown in

(Fig. 7) which might induce drug resistance.

Our big data analyses corroborate the same, albeit with a different drug and functioning in a
pan-cancer context. This study of gene co-expression and PPl network might provide key
driver protein-coding genes, which may be useful in further studies to improve drug sensitivity

in pan-cancer therapy.

Table 5: List of hub nodes common between gene co-expression and PPI network for selected

five drugs.
Drug name Cluster Common hub nodes between gene co-
expression and cluster PPI network
Ponatinib Cluster 1 -NA-
Cluster 2 TYR, PMEL, MLANA, EDNRB
Cluster 3 FN1, CD44, MMP1, TIMP1, MMP14,
SPARC, SNAI2, VEGFC, TIMP3
Foretinib Cluster 2 FN1, TIMP1, CD44
Selumetinib Cluster 2 LCP2, FYB, IL7R, CD38
Cluster 3 FN1, CD44, TIMP1, CCND1, CAV1,
PTGS2, SNAI2, LGALS1
Trametinib Cluster 1 CD44, CCL2, ANXAL, AHR
Cluster 2 FN1, SPARC, CYRG61, CTGF, ITGBS5,
LAMC1, TGFB1
CI1-1040 Cluster 2 KRT7, KRT8, KRT19, EPCAM
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Figure 6: Venn diagram representing common hub protein-coding genes identified across the drugs.
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Chapter-6

Objective-4: LncRNAs-TFs-Hub genes (at mRNA
level) interaction regulatory network analysis in order
to identify likely master regulators of our identified
biomarkers
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6.1 Introduction

Genomes are transcribed extensively, which leads to the creation of more than thousands of
non-coding RNAs, including IncRNAs. LncRNAs are described as RNAs extended with more
than 200 nucleotides without having a significant open reading frame and therefore do not have
the ability to translate (encode) into functional proteins. This broad definition includes many
different types of transcripts, but each differs in their biogenesis and genomic origin (Statello
et al. 2021). A Human Genome Project (GENCODE) database suggests that more than 16,000
INcRNA genes are present in the human genome; however, other database estimates indicate
that there could be more than 100,000 human IncRNAs (Uszczynska-Ratajczak et al. 2018;
Statello et al. 2021). Most of these INcRNAs mainly generated by RNA polymerase Il (RNA
Pol 11), whereas some are by other RNA polymerases. These INcCRNAs are transcribed from
various region of genome, such as intergenic (lincRNAs) and intronic regions of genes. They
can also be either sense or antisense transcripts that may coincide with other coding or non-
coding genes. It is important to note that some of promoter and enhancer regions are also
transcribed into promoter upstream transcripts and enhancer RNAs (eRNAS), respectively. The
resulting IncRNAs are often capped at 5’ region by 7-methyl guanosine (m’G), polyadenylated
at 3' region and spliced in similar manner as mRNAs (Fig. 1) (Fang & Fullwood 2016). The
majority of INCcRNAs are tended to be localized in the cytoplasm. However, some of the
IncRNAs can be reside in both cytoplasm as well as nucleus to which they seem to be

predominantly localized (Banfai et al. 2012; Derrien et al. 2012).

6.1.1 Functional role of LncRNAs

The number of characterized INcRNAs is growing and they play a major role in negative or
positive gene expression regulation in development and human disease, including cancer. In
malignant tumors, INCRNAs mostly play a crucial role in regulating biological and cellular

processes, such as cell proliferation, migration, invasion, metastasis, epithelial-mesenchymal
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transition (EMT), cell apoptotic death, cell cycle, invasion and also in drug resistance (Lecerf
et al. 2019; Taniue & Akimitsu 2021). LncRNAs are an emerging new molecular players in
the cancer paradigm with potential roles in both tumor-suppressive and oncogenic pathways.
These novel non-coding genes frequently show altered expression in human cancers, although
the biological functions of the majority of IncRNAs are not fully understood (Gibb et al. 2011).
LncRNAs are widely involved in nearly all the steps of a life cycle of genes and modulate
through a variety of mechanisms that rely on interactions with multiple molecules. Several
IncRNAs function to regulate gene expression through different molecular actions, including
chromatin remodeling, transcriptional regulation, and posttranscriptional processing such as
mRNA splicing, stability and translation or microRNA (miRNA) sponging (Fig. 2)

(Hauptman & Glavaé 2013).
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Figure 1: Diagrammatic representation of general characteristics of INcRNA (Modified from Fang &

Fullwood, 2016)

107 |Page



Cancer cell Cancer tissue

Proliferation ( N B\ e

Metastasis

£ = IncRNA

Translation control of protein

Inhibition of miRNA function
/\ Ribosome
AAA p - Ty ,\
AAA %

miRNA mRNA ~N AAA

Stabilization of mRNA

tssnnnanat

o ot

AAA_“

emesannan,

“~— mRNA

4y

S - s \ Cytosol

Gem of histone modifier ucte! \
/ &\ b J? Enhancer action

Nascent RNA

/ g

Alternative splicing

N

Figure 2: LncRNA molecular function in gene expression and the regulation mechanism. (Modified
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6.1.2 LncRNA's role in drug-resistant cancer

LncRNAs widely alter gene expression in a wide range of human cancer types (Bermudez et
al. 2019, Clark & Mattick 2011; Saleembhasha & Mishra, 2018). Many IncRNAs, including
PVT1, SNHG11 and MIR22HG are deduced to be vital regulatory molecules, have been
implicated to function as master regulators of overexpressed several common coding genes,
and are widely involved in primary pan-cancer development (Saleembhasha & Mishra 2019).
Further, it was recently reported that many IncRNAs have a significant impact on cancer drug
resistance in many cancer types like liver, breast, bladder, gastric, prostate, lung, and colorectal
cancer (Bermudez et al. 2019; Zinovieva et al. 2018). There are some reported LncRNAs, such
as TP73-AS1, that induce Temazolamide (TZM) resistance in glioblastoma cancer stem cells
by altering ALDH1A1 expression (Mazor et al. 2019), while HOTAIR1 promotes tamoxifen
resistance in breast cancer through the activation of estrogen receptor (ER) signaling (Xue et
al. 2015). However, the exact molecular mechanism of INcRNAs on cancer drug resistance has
not been fully characterized.

In order to understand the molecular mechanism of IncRNA function in the drug-resistant pan-
cancer system, we constructed and analyzed a comprehensive IncRNA-TFs-hub gene
interaction regulatory network to deduce key master regulators (IncRNAs) of our identified

coding hub genes (biomarkers) in mutant NRAS-harbouring drug-resistant pan-cancer systems.

6.1.3 Regulatory network Properties

Besides their high connectivity, hub genes/proteins are often described as being designated by
other properties of the network, including degree and centrality being the most important,
which refers to their central position in relationship to other proteins in the network
(Vandereyken et al. 2018). To understand the global gene regulatory interaction pattern in a
cell, topological parameters such as betweenness centrality, clustering coefficient,
neighborhood connectivity and node-degree help us to estimate a node's degree and also assess
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the network dynamics by adding or subtracting nodes (genes) in a different biological context.
Regulatory gene networks are used to understand how genes work as a network in biological

pathways (Fig. 3).

@ O

transcription factor O = gene

-
—

regulatory interactions

Figure 3: Schematic representation of gene regulatory network. Nodes represent genes or proteins
(bluef/yellow color circles) in the gene regulatory network and lines (edges) between them indicate

regulatory interactions (Modified from Vandereyken et al., 2018).

6.2 Materials and Methods

6.2.1 LncRNAs, TFs, Driver genes, interaction regulatory network data collection

We retrieved interaction data from the ORTI database to construct a TF-Driver genes
interaction regulatory network, which consists transcriptional interactions data validated by
experimental methods and text mining data from human and mouse source. ORTI database
derived data from the high throughput ChlP-sec data and other database sources as well as from
the literature, which harbours TF-TG (driver genes) interactions with data. Another data of
IncRNAs- driver genes and IncRNAs-TFs regulatory interaction data have been retrieved from

the extensive literature search. These regulatory interactions data were widely included in the
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regulatory network, and it has a collection of IncRNA-target regulatory interaction validated

from high throughput and low throughput experimental methods.

6.2.2 Analysis of regulatory network

To construct and analyze the regulatory interaction network, data from these two types of
interaction were imported into Cytoscape 3.8.2 and then merged into a comprehensive/master
network. Network analyses was done using quantitative directed method on the InCRNAs-TFs-
MRNA regulatory interaction network, and IncRNAs/TFs are used as a source to target
identified hub genes. We identified critical non-coding regulators (bottleneck hub node) of our
identified coding biomarkers using topological network parameters; betweenness centrality
and node degree (outdegree).

6.2.3 Sub-network analysis

From the master regulatory network we further generated a regulatory subnetwork to assess
direct or indirect regulation of coding biomarker genes through the identified key regulator
InNcRNA. We also predicted INcRNA-driver genes’ mRNA interaction by using a RNA-RNA
interaction database, which contains huge data on INncRNA-IncRNA and IncRNA-mRNA
interactions. This database provides information about the IncRNA interaction site on coding

gene mRNA along with their binding energy.
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6.3 Results

6.3.1 Gene-regulatory modules: LncRNA, Transcription factor (TF), protein-coding gene

(hub genes) interaction regulatory network

During the identification of druggable targets (genes/proteins) in drug resistance,
understanding the regulatory mechanisms occurring to regulate these druggable genes/proteins
is important for further development as a drug target. Besides proteins, IncRNAs are imminent
regulatory mechanisms in cancer drug resistance. During the investigation of key INCRNAs
modulating our driver genes/proteins found across the multiple drugs that are typical for co-
expression and PPl network, an interaction network between IncRNA-TF-hub genes was
designed and analyzed. The interaction data for TFs and identified key driver genes were
retrieved from the ORTI database. An extensive literature search was conducted for INCRNAs
interacting with hub genes (CD44, FN1, TIMP1, SPARC and SNAI2) and TFs. A complex
regulatory interaction network was generated which has a total of 91 nodes (genes/proteins)
and 125 edges, together with 5 hub protein-coding genes, 38 TFs and 48 IncRNAs (Fig. 4).
Two topological parameters, betweenness centrality and out-degree, were set as criteria for the
selection of hub node from the regulatory network. By examining the regulatory network, we
established that MALAT1 possessed the highest node outdegree and betweenness centrality
among the IncRNAs. YBX1, EGR1 and AR were the TFs with the highest out-degree and
among these top three EGR1 possessed the highest betweenness centrality . The other INcCRNAs
such as lincRNA-p21 and HOTAIR were found to have the highest betweenness centrality and
out-degree, respectively (Table 1). From our regulatory network analysis, we also observed
that AR, YBX1, and EGR1 may regulate FN1 and CD44; AR and YBX1 may regulate SPARC;

YBX1 and EGR1 may regulate TIMP1.
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Figure 4: A master regulatory network of LncRNA-TF-Driver genes. Different types of regulatory

interaction between IncRNAs, TFs and driver genes are depicted in this integrated network.

Table 1: LncRNAs-TFs-Genes (hub genes) regulatory network directed quantitative analyses result

based on outdegree and betweenness centrality.

SrNo. | Gene name | Outdegree SrNo. | Gene name BetweennessCentrality
MALAT1 8 1 MALAT1 0.336730123
2 EGR1 4 2 HIF1A 0.274132139
3 AR 4 3 TP53 0.205823068
4 YBX1 4 4 EGR1 0.174412094
5 NFKB1 3 5 YBX1 0.168868981
6 FOS 3 6 lincRNA-p21 | 0.138969765
7 ETS1 3 7 ETS1 0.063493841
8 HOTAIR 3 8 CTNNB1 0.051175812
9 H19 3 9 SLNCR 0.044456887
10 HIF1A 2 10 SP1 0.039193729
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6.3.2 EGR1 and MALAT1 sub-network analysis
Further, from the regulatory sub-network, we observed that two of the driver genes, including

SPARC and SNAIZ2, and six transcription factors, including EGR1 might be directly regulated
by IncRNA MALATL. It was also observed that three driver genes, including FN1, CD44, and
TIMP1 were indirectly regulated by MALAT1 through EGR1 (Fig. 5A). MALAT1 and EGR1
regulate each other through a two-way (mutual) interaction as depicted from the ENCODE
dataset retrieved from the harmonozome database. It was shown that MALATL is a
transcriptional target of EGR1. And the interaction between EGR1 and MALAT1 was
determined by ChIP-Seq data.

We were interested to check if MALATL directly interacted with the above transcripts.
Therefore, we used RNA-RNA interaction database and predicted these interactions (Fig. 5B).
We found that MALAT1 and hub genes’ interactions occur at different sites in mMRNAS, such
as 5’'UTR, 3'UTR and CDS region. For example, MALAT1 was observed to interact with
TIMP1 and SNAI2 at the CDS region, FN1 at the 5"UTR, and at the 3"UTR regions of CD44

and SPARC (Table 2).
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Figure 5: EGR1 and MALAT1 subnetwork from the master regulatory network. (A) EGR1, which
regulates FN1, CD44 and TIMP1, being controlled by MALAT1. (B) MALAT1-mRNA interaction (hub
genes, green-colored edge) and EGR1-MALAT1 interaction (red-colored edge) were obtained from the
IncRNA-mRNA interaction database and harmonizome database, respectively.

Table 2: Predicted IncRNA interaction site on mRNA of coding hub genes.

LncRNA Hub genes Interaction site
FN1 5’UTR
CD44 3’UTR
MALAT1 TIMP1 CDS
SPARC 3’UTR
SNAI2 CDS

6.3.3 Cis and trans-regulatory action of MALAT1 on key driver genes
In order to illustrate the cis and trans-regulatory action of MALAT1 on the target hub genes,
we tried to investigate the genomic coordinates of the coding hub genes and MALAT1 from the

NCBI Gene database (https://www.ncbi.nlm.nih.qgov/gene/). It was observed that, due to their
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same chromosomal location (Table 3), MALATI might regulate CD44 in the cis-regulatory
mode of action. While due to their different genomic location, MALATI may regulate FNI,

TIMP1, SNAI2 and SPARC in the trans-regulatory mode of action.

Table 3: Genes with their chromosomal location.

Genes Chromosomal location = Gene ID
MALAT1 11913.1 378938
FN1 2035 2335
CD44 11p13 960
TIMP1 Xpl11.3 7076
SNAI2 8011.2 6591
SPARC 5033.1 6678
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Chapter-7

Objective-5: Database search of FDA-approved
drugs targeting the identified hub gene/s for drug
repurposing studies and in silico virtual screening

of drugs against target protein
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7.1 Introduction

Despite the many improvements in cancer treatment that have been made over the years, cancer
still remains one of the leading causes of death in the world. It is one of the most common and
severe health issues worldwide due to its high mortality and incidence rates (Sung et al. 2021).
The development of drug resistance increases the mortality rate among cancer patients, which
is one of the biggest challenges to getting better cancer treatment. Although there are many
therapeutic strategies are available to treat cancer, the currently used therapeutic schemes are
sometimes accompanied by drug-resistance development in the malignant tumor cells,
resulting in a decline in the effectiveness of the therapeutic agents (Falvo et al. 2021; Bukowski
et al. 2020). In order to overcome this phenomenon, it is necessary to develop new therapies
or new anti-cancer drugs to overcome it. Developing new drugs is a lengthy and costly process
involving clinical trials that often fail in the early phases of development. Developing new
drugs is a long, expensive process, and clinical trials are often rejected in the early stages of
development. An approach to encounter these disadvantages is known as drug repurposing,
which involves finding a drug that has been approved for another purpose but still meets its

original criteria (Rodrigues et al. 2022).

7.1.1 Drug repurposing strategies

Due to the potential for discovering new uses for existing drugs, the concept of drug
repurposing has attracted considerable attention, it primarily includes approved, pre-clinical,
discontinued, abandoned and experimental or investigational drugs. In the pharmaceutical
research and industry for developing new drugs uses the repurposing method due to its high
efficiency in saving time and economic over the conventional de novo approaches (Rudrapal
et al. 2020). Drug repurposing is also known as drug repositioning, drug reprofiling and
therapeutic switching (Jarada, et al. 2020). In recent years, several successes of repurposing

drugs have brought worldwide attention to the old drug space for their potential off-target
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effects that may be advantageous to certain kinds of diseases, such as cancer. Since existing
drugs have well-established dose regimens and have already been used in humans with
favourable pharmacodynamics (PD) and pharmacokinetics (PK) properties along with
tolerable side effects, making old drugs are valuable sources of new therapeutic drug discovery
(Shim & Liu 2014). There are two approaches of drug repurposing; activity based
(experimental) and in silico (computational) approaches (Oprea & Overington 2015). And the
computational approach has been categorized into ligand-based, target-based, and machine
learning-based approaches. However, in silico based methods identify potential bioactive

molecules based on the molecular interaction of drug and protein molecules.

7.1.2 Repurposed drug for cancer

There are some previously repurposed drugs for cancer, such as; Metformin was approved for
type 2 diabetes which is currently in trial phase 111/1V for cancer (Zhe Zhang et al. 2020).
Rapamycin is an inhibitor of mTORC1 used as an immunosuppressant, but due to
ineffectiveness, it was repurposed and approved for renal cell carcinoma treatment in 2007
(Malizzia & Hsu 2008). Itraconazole, an antifungal drug also repurposed as an anticancer agent
by using in silico approach (Dhorje et al. 2020; Rudrapal et al. 2020). In recent years, during
the coronavirus disease 2019 (COVID-19) pandemic, several drugs have been repurposed
against SARS-CoV-2 due to which many drugs were approved for the COVID-19 patient’s

treatment (Chakraborty et al. 2021; EImezayen et al. 2021).

Therefore, we were interested and aimed to target these key biomarker (CD44) through in silico
drug repurposing approach to improve drug sensitivity in pan-cancer and to identify important

residues of protein interacting with drug molecules.

From our previous objectives (chapter 5), we identified CD44, FN1, TIMP1, SNAI2, and

SPARC (Fig. 6) as biomarkers in mutant NRAS-harbouring pan-cancer drug resistance across
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multiple drugs from gene co-expression and protein-protein interaction network study and we
detected CD44 and FN1 as our major key biomarkers across four drugs. Expression of both of
these key biomarkers results in a multitude of cellular functions such as migration,
proliferation, tumor microenvironment, adhesion, and also induced drug-resistant in cancers.
Identified biomarkers have been reported to be highly expressed in most of the tumors and also
expressed in drug-resistant cancer to support various biological processes and signaling
pathways involved signal transduction, proteolysis, cell adhesion, proteoglycans in cancer and
PI3K/Akt-signaling pathway. In our study, we also have observed that these biomarkers genes

were significantly up-regulated in drug-resistant pan-cancer.
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Figure 1: CD44 role in signaling pathways. HA binding to the extracellular domain of CD44
activates various downstream signaling pathways, including MAPK and PI3K/Akt pathways through
the cytoplasmic domain to regulate several biological and cellular processes. (Modified from Cortes-
Dericks et al., 2017).
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7.1.3 Cluster of differentiation 44

Cluster of differentiation 44 (CD44; 90 kDa) is a widely distributed cell surface non-kinase
transmembrane protein, an integral part of the extracellular matrix that is involved mostly in
cell adhesion, migration, metastasis and also activates various signaling pathways, including
RAS-MAPK and PI3k/Akt signaling and also induces chemoresistance in cancer (Fig. 1)
(Jamison et al. 2010; Herishanu et al. 2011; Cortes-Dericks et al. 2017). It is activated by the
binding of hyaluronic acid (HA) at the N-terminal region of the extracellular domain and HA
is the most common activating endogenous (linear polysaccharide) ligand molecule of CD44
(Cortes-Dericks et al. 2017). CD44, a proteoglycan, is also functionally involved in the binding
and presentation of growth factor and chemokine. The extracellular region of CD44 gene
contains 20 exons, 10 types of alternative splicing variants give rise to multiple CD44 isoforms
such as CD44s and CD44v (Fig. 2A&B) (Bajorath et al., 1998). Exon 1-17 form the
extracellular domain (exons 1-5 are HA binding domain conserved across CD44s and their
variants), exon 18 give rise transmembrane domain, and exons 19-20 are responsible for

forming the cytoplasmic domain (Xu et al. 2015).
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Figure 2: CD44 gene illustration and alternatively spliced variants isoforms and key protein
domain structure. (A) CD44 gene contains 20 exons, out of which some exons form a constant region
in every CDA44 variants exons (red bars) and protein (green bars) and are selected by alternative splicing.
CD44v protein isoforms are the result of alternative splicing. (B) CD44 glycoprotein is composed of
extracellular domains; HA binding domain (green), a variable domain (grey), a transmembrane domain
(red), and a cytoplasmic tail (blue). (Modified from Chen et al., 2018; Xu et al., 2015)

7.2 Materials and methods

7.2.1 hCD44 and mCD44 protein sequence and structure alignment

As the 3D crystal complex structure of hCD44 with HA is not available in the PDB database,
we retrieved the human CD44 protein sequence from UniprotKB (code: P16070) in FASTA
format. We performed a pairwise protein sequence similarity search using the NCBI BLASTp
server to determine the HA binding domain similarity with CD44 protein sequence available
in the PDB database. We also assessed the structural similarity between human and mouse

CD44 HABD (hCD44 PDB ID- 4PZ4 & mCD44 PDB ID- 2JCQ) using PyMol.

7.2.2 Protein preparation

Human CD44 protein HABD (PDB ID- 4PZ4) with resolution 1.60 A was retrieved from the
RCSB-PDB database and all heteroatoms and water molecules in the PDB file were removed

manually. Energy-minimization of the protein structure was done using the Swiss-PDB viewer
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tool to get the stable and low-energy conformation state of the protein. Protein was prepared
using AutoDock Tools v1.5.6, in which water molecules were removed, hydrogens (only polar)
were added and Kollman charges were assigned to the protein. The prepared protein was saved
in pdbqt file format. The Druggability of ligand binding pocket was predicted using the online
server PockDrug by estimation methods Prox 5.5, where it used holo-protein for pocket

druggability prediction.

7.2.3 Ligand preparation

A library of 1615 chemical structures (only FDA-approved drugs) was retrieved from the
ZINC15 database in 3D SDF file format and converted into PDB format and then split into
individual drug PDB files using an open Babel suite. All the ligands were prepared using Auto-
DockTools v1.5.6. Hydrogens and Gasteiger charges were added to the ligands and the

nonpolar hydrogens were merged. The prepared ligands were saved in pdbqt file format.
7.2.4 Virtual screening through molecular docking

Grid box was set at 60, 60, and 60 and center with x= 12.143, y=-6.510, and z=6.243, with
default spacing 0.375A to include all the present amino acid residues of ligand-binding pockets
of the receptor. Virtual screening through molecular docking was performed in the Autodock
vina program using Perl script. Final docked conformations were obtained using the AutoDock
vina. The obtained lowest energy docking conformations and orientations were subjected to
energy minimization. The resultant protein-ligand complexes were visualized and analyzed by

using PyMol and Discovery studio4 (BIOVIA).
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7.3 Results

7.3.1 hCD44 and mCD44 similarity assessment to identify HA binding cavity residues

With no hCD44 protein (in complex with) bound hyaluronic acid, we performed HABD protein
sequence and structural similarity analysis of the mCD44 protein. Pairwise sequence alignment
showed that hCD44 protein HABD shares around 87%b sequence identity with mCD44 HABD
protein (PDB ID- 2JCQ) (Fig. 3A) and structural alignment showed significant similarity
between human and mouse CD44 protein with RMSD value 0.311 within an acceptable value
for protein similarity due to the presence of conserved amino acids residues in human and
mouse HABD. From this similarity assessment, we observed that hCD44 and mCD44 have the
same binding site for hyaluronic acid at the N-terminal domain (Fig. 3B). Some previous
mutagenesis studies have identified Arg4l, Tyrd2, Arg78 and Tyr79 are, as crucial residues in
hCD44 for HA interaction stabilization (Peach et al. 1993; Bajorath et al. 1998). We further

used HA binding pocket residues coordinates for grid box generation.
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Figure 3: CD44 HABD protein sequence and structure alignment. (A) hCD44 HABD protein sequence
similarity with mCD44 HABD. Highlighted (red) amino acid residues are key for HA binding to CD44.
(B) hCD44 and mCD44 protein HABD 3D structure alignment, hCD44 (green) and mCD44 (magenta)
and red circled portion is HA binding pocket.

7.3.2 HA binding pocket druggability prediction

We further assessed the pocket druggability of the HA binding pocket of hCD44 using the
Prox5.5 method in the online PockDrug server and the HA binding pocket showed 0.89
druggability, suggesting that HA binding pocket is highly druggable with high affinity. The

volume hull of the pocket was 5488.22 (Fig. 4).
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Figure 4: Schematic illustration of pocket druggability. Red covered volume is HA binding pocket
in CD44.

7.3.3 Ligand binding site analysis through molecular docking

For the in silico virtual screening of 1615 FDA-approved drug molecules against our selected
target protein CD44 through molecular docking, we utilized the AutoDockVina, which is one
of the most commonly used docking software with an effective scoring function. After
molecular docking, we selected top 16 protein-drug complexes with high binding affinity for
further analysis (Table 1). Among these 16, only seven drugs bind to HA binding pocket of
hCD44 (Table 2). As there is no known allosteric binding site at CD44 protein and other 9
drugs were binding at different sites than HA binding cavity, they were excluded from further

analysis.

Further, we analyzed seven protein-drug complexes. Fig 5A shows the docked drug molecule
binding at HA binding cavity (e.g., Glecaprevir) and HA docked with hCD44 protein and

binding in the cavity with binding affinity -7.6 kcal/mol (Fig. 5B).
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Table 1: Top 16 drugs selected from in silico virtual screening of 1615 drugs with their binding

affinity.
Sr.No | ZINCID Name Binding energy (kcal/mol)
1 ZINC000003813047 [Oxandrolone -9.3
2 ZINC000164528615 | Glecaprevir -9.3
3 ZINC000003860453 | Ak-Fluor -9.1
4 ZINC000052955754 | Ergotamine 9.0
5 ZINC000100378061 |Naldemedine -9.0
6 ZINC000252286875 -9.0
7 ZINC000203757351 | Paritaprevir -8.9
8 ZINC000004212851 |Lokara -8.7
9 ZINC000003978005 | Dihydroergotamine -8.6
10 ZINC000000968264 |Cyproheptadine -8.6
11 ZINC000100013130 |Midostaurin -8.5
12 ZINC000004097308 |Cordran -8.5
13 ZINC000005764759 | Methylnaltrexone -85
14 ZINC000169289767 | Trypan Blue -85
15 ZINC000003874185 |Mefloquine -8.5
16 ZINC000252286876 -8.5

Table 2: List of top 16 selected drug molecules binding at HA binding cavity or alternate cavity of

CD44.

Drug molecules bind at HA binding
pocket

Drug molecules bind at the alternate
binding pocket

Glecaprevir, Ergotamine, Naldemedine,
Midostaurin, Trypan Blue,
ZINC000252286875,
ZINC000252286876

Oxandrolone, Ak-Fluor, Paritaprevir,
Lokara, Dihydroergotamine,
Cyproheptadine, Cordran,
Methylnaltrexone, Mefloquine
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(A) (B)

Figure 5: Docked drug molecule and HA in the cavity of CD44. (A) 3D structure of binding site of
protein (CD44) showing the orientation of Glecaprevir (magenta) in HA binding groove of CD44 (B)

Hyaluronic acid (green).

7.3.4 Protein-ligand interaction analysis

The docking results showed the different binding poses of virtually screened drugs at HA
binding pocket (Fig. 6) showed interaction with various residues from CD44. Among these
seven, four drugs, Glecaprevir and Ergotamine with high binding affinity -9.3 kcal/mol, -9.0
kcal/mol, respectively and both Midostaurin and Trypan Blue with binding affinity -8.5
kcal/mol formed no unfavourable interaction, and three drugs (Naldemedine with Arg150,
ZINC000252286875 with Cys77 and ZINC000252286876 with Arg90) formed unfavorable
interaction with CD44 residues (Table 3). HA binding pocket residue Argl50 from CD44
showed frequent H-bond as well as hydrophobic interactions with three drugs (Glecaprevir,
Midostaurin and Naldemedine) and only H-bond interaction with Trypan Blue and
ZINC000252286876, while with Ergotamine form only hydrophobic interaction. Other pocket
residues Asn25, Thr27, Phe30, His35, Phe74, Thr76, Cys77, and Arg78, were commonly

involved in non-bonded contacts with most of these 7 drugs via van der Waals interactions.
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Ans25 was also observed to be interacting with Glecaprevir through halogen bond interaction.
Cys77, previously observed to be essential for stabilizing the HA binding groove (Kellett-Clark
et al. 2015), also shows hydrophobic interaction with two drugs (Glecaprevir and Midostaurin)
and H-bond interaction with the drug ZINC000252286875 and van der Waals interaction with
multiple drugs.

It was observed that among these small molecule drugs, Trypan blue formed the highest
number of H-bond as well as van der Waals interactions (8 and 14, respectively) and
Midostaurin formed more number of hydrophobic (6) interactions with CD44. At the same
time, Ergotamine showed the second-highest number of H-bond (5) interactions with CD44

(Table 4).
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Figure 6: 3D representation of protein-ligand interactions of CD44 for seven drugs. (A-G) Ligand
molecules are shown in the stick model in magenta color, and CD44 protein amino acid residues are in
blue color.

Table 3: List of protein residues involved in various types of interaction with the top seven drugs.

Drug ID or name Unfavorable ' H-bond Hydrophobic | Van der Waals
interaction | interaction interaction interaction
Glecaprevir Argl150 Phe30, Phe74, | His35, Glu37, Thr76,
Cys77, Argl50 | Arg78,
Ergotamine Glu37, Glu75, Phe30, His35, Asn25, Thr27, Phe74,
Glul27 Arg150 Thr76, Cys77, Arg78
Midostaurin Argl150 Cys28, Cys77, Asn25, Thr27, Phe30,
Arg78, Argl50 | His35, Phe74, Thr76
Naldemedine Arg150 Arg150 Thr27, Phe30, His35, Phe74, Thr76,
Arg150 Cys77
Trypan Blue Asn25, lul27, Phe30, Vall148 @ Thr27, Phe30, His35,
Arg150, Phe74, Thr76, Cys77,
Gly73
ZINC000252286875 @ Cys77 Cys77, Gly73 Asn25, Thr27, Phe30,
His35, Phe74, Thr76,
Arg78,
ZINC000252286876 = Arg90 Argl150 Asn25, Thr27, Phe30,
His35, Thr76, Cys77,
Arg78,
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Table 4: Number of different types of interaction between protein and ligands.

: : No. of H-bond | No. of hydrophobic No. of van der Waals
Ligand-protein complex

interaction bond interaction interaction
Glecaprevir-CD44 3 4 11
Ergotamine-CD44 5 3 7
Midostaurin-CD44 1 6 8
Naldemedine-CD44 1 4 14
Trypan Blue-CD44 8 3 15
ZINC000252286875-
CD44 4 ) 14
ZINC000252286876- 1 i 14
CD44

From a previous in vitro study, it was observed that small fragment molecules show inhibitory
action on CD44 by binding at HA binding pocket (Liu & Finzel 2014). The comparison of
fragment similarity with our screened drug shows some similarity in a part of the drugs. So our
top selected drugs binding at HA binding cavity may show a similar mode of inhibitory action;

however, this needs to be assessed further and validated experimentally.
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8.1 Discussion

Mutant NRAS protein can be very difficult to target directly but it has frequently been found
to be closely involved in drug resistance in a variety of cancer types. Utilizing NRAS-mutant
pan-cancer cells lines, we performed an extensive data analysis of coding genes to enlist
signaling molecules directly or indirectly connected to NRAS signaling pathway and possibly
involved in pan-cancer drug sensitivity or resistance using drug dose-response of five select
drugs. We also analyzed regulatory network to understand their regulation by long non-coding

RNAs apart from proteins.

Crucial DEGs identified between drug-sensitive and resistant cancer cell lines, were observed
to be significantly enriched in signal transduction, cell adhesion, apoptotic process, proteolysis
and cell cycle biological processes observed using GO; and in proteoglycans pathway in cancer,
focal adhesion pathway, PI3K/Akt signaling pathway, and metabolic pathway observed using
KEGG Pathways. Since these pathways are found widely involved in cancers, these enriched
DEGs likely play a more significant role in drug resistance development in cancer. Lee et al.
2015 found signaling pathways involved in drug resistance, while our studies pinpointed these
key DEGs, which are also involved in some of these pathways. Further analyses utilizing gene
co-expression and PPI network of the clusters confirmed that similarity in functional modules

of biological processes, as well as the KEGG pathway.

In order to identify an effective therapeutic biomarker, it is important that the mRNA
concentration and protein abundance profiles should be correlated. In addition to a gene co-
expression network analyses, the construction and analyses of a PPI network allows us to assess
the functional roles. For common drugs, hub (driver) proteins were identified from the PPI
network similar to the co-expression network hub gene list. Our study found that FN1, CD44,

TIMP1, SPARC and SNAI2 are common protein-coding hub genes, which are frequently
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associated with most of the drug-resistant cancer conditions. Further, it was seen that all of
these protein-coding hub genes were up-regulated in the case of Ponatinib-resistant cancer cell
lines and FNI, CD44 and TIMPI were up-regulated in Foretinib-resistant cancer cell lines.
FNI and CD44 were down-regulated in Selumetinib- and Trametinib-resistant cancer cell lines,
TIMP1 and SNAI2 were down-regulated only in Selumetinib-, while SPARC was down-
regulated in the case of Trametinib-resistant cancer cell lines. Some of these identified key hub
genes function as biomarkers in several cancer types (Amundson et al. 2010; Cheon et al.
2014). It has been shown that overexpression of FN1 induces drug-resistance in breast cancer
(Saatci et al. 2020) and activates Akt signaling pathway (Yoshihara et al. 2020). CD44 is a
non-kinase transmembrane proteoglycan (Jalkanen et al. 1992). Higher expression of CD44s
isoform, is known to induce acquired drug-resistance in cancer through multiple signaling
pathways (Chen et al. 2018). TIMP1 is a secretory protein that plays a crucial role in cancer
progression and invasion in MMPs independent manner (Park et al. 2015) and is reported to
mediate chemoresistance in NSCLC (Xiao et al. 2019). SNAI2 is observed to be highly
expressed in fulvestrant-resistant and tamoxifen-resistant breast cancer and also known to have
an involvment in human malignancies (Cobaleda et al. 2007; Alves et al. 2018). Similarly,
SPARC is a cysteine-rich secreted protein known to be associated with highly aggressive
cancer; however, in less aggressive cancer, it is reported to act as a tumor suppressor (Tai

&Tang 2008).

Further, our studies also focused on identifying non-coding RNA (e.g., IncRNAs) as master
regulators of these hub biomarker genes involved in drug resistance, apart from proteins
regulators. LncRNAs have been associated with drug resistance (Corra et al. 2018; Barth et
al. 2020; Pandya et al. 2020; Liu et al. 2020). Therefore, we wanted to identify key IncRNAs
that could regulate our key driver genes identified from both co-expression and PPI network

studies, to alter their expression in drug-resistant cancer.
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From the directed regulatory interaction network analyses of IncRNA, TFs and mRNA
(biomarker genes), we have identified MALATI among the IncRNAs, to be the major
interacting component (node) based on two important topological network parameters
(outdegree and betweenness centrality). MALATI regulates driver genes by interacting with
mRNAs at 5° UTR of FN1; CDS of TIMP1, SNAI2; and 3° UTR of CD44 and SPARC. In drug-
resistant cancer, MALAT1 could regulate hub genes expressions through the processes such as
MRNA splicing, stability and degradation (Amodio et al. 2018; Bhat et al. 2016). Moreover,
MALATI is a widely studied IncRNA in a variety of cancers and was originally reported to be
associated with metastasis in the early stage of non-small cell lung cancer (Yoshimoto et al.
2016; Amodio et al. 2018). MALAT1 transcripts are localized to the nuclear speckles, which is
a site for the pre-mRNA splicing process, after being transcribed from human chromosome
11913.1 (Arun et al. 2020; Yoshimoto et al., 2016; Jadaliha et al. 2016; Gordon et al. 2019).
The initial studies of MALAT1 overexpression were shown to be associated with tumor growth,
metastasis, cell adhesion, migration, and poor prognosis in cancer (Yoshimoto et al. 2016).
From our gene regulatory interaction network study, driver genes SPARC and SNAI2
interacting with MALAT1 were corroboratively found to be down-regulated in MALAT1-
depleted breast cancer reported by Jadaliha et al. 2016. Further, studies suggest that MALAT1
also positively modulates the expression of EGR1 (Spreafico et al. 2018) while results from
our studies using harmonizome ChIP-Seq data from ENCODE dataset shows that EGR1 could
transcriptionally regulate MALAT1. EGR1 and MALAT1 might be possibly regulating each
other through a positive feedback loop regulatory system. Many studies have reported that the
mechanism of MALAT1 action on mRNA splicing could serve as decoy processing (Bhat et al.
2016; Nguyen et al. 2020), and apart from interacting with mRNAs of driver genes at different
MRNA regions, MALAT1 could also be interacting with their respective proteins. MALAT1

might be regulating CD44 in a cis-regulatory manner because both MALAT1 and protein-
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coding gene CD44 are located on the same chromosome 11, while with respect to other driver
coding genes (FN1, TIMP1, SNAI2, SPARC), MALAT1 could be regulating, in a trans-
regulatory manner as other genes are located on different chromosomes than MALATL1. This
study further confirms that two possible scenarios might exist. First, that several IncRNAs may
interact with one coding gene at a time, and second, that one or multiple InCcRNAs may

interact/regulate many coding genes simultaneously at the transcriptional level.

From our above studies, we came up with a working model of the mechanisms of driver genes
regulation, specifically, FN1, CD44, TIMP1, SPARC, and SNAI2, by EGR1-MALAT1
regulatory axis, which has been identified from our network analysis study using genes
involved in NRAS-mutant pan-cancer drug resistance (Fig. 1). A few coding as well as non-
coding genes (INcRNAs) can function as key targets replacing recalcitrant NRAS as a drug

target.

Taken together, our data suggest that these identified driver genes’ expression may be induced
or suppressed via direct interaction with MALAT1, which leads to context-dependent drug

resistance/sensitivity, corroborated by literature studies.

Key insights gained from these findings may improve our understanding of drug resistance
development in pan-cancer systems. Further studies are needed to assess the clinical relevance
of these findings as therapeutic targets in the cancer types harbouring NRAS mutation as we
have used experiments conducted on cell lines, whereas tumor microenvironment is found to
play a crucial role in regulating the overall cancer phenotypes, so some deviations from our
study may be observed. Enlisted few driver genes/IncRNAs can be further studied for their
specific expression in drug-resistant cancer cell lines, alongwith transcriptional dysregulation

and its implications on regulatory activity.
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Figure 1: MALATI may regulate driver genes associated with drug-resistance in cancer. EGR1 may
bind to the promoter region of MALATI to transcriptionally regulate it. After transcription, MALATI
may regulate driver genes by binding at 5’UTR, CDS, and 3’UTR regions of key genes.

Drug repurposing

A structure-based in silico virtual screening was done to discover novel inhibitary candidates
of CD44, by using a drug repurposing approach. In summary, 1615 FDA-approved drugs from
the ZINC15 database were screened against CD44 to discover potent inhibitors with a high
binding affinity toward the target protein. Sixteen ligands showed a high binding affinity with
CD44, and 7 of them were found to bind at the HA binding cavity of the target protein (CD44)
with high affinity. Among these seven drugs, three drugs (Naldemedine, ZINC000252286875,
and ZINC000252286876) showed unfavorable interaction with CD44 due to steric clashes and
unfavorable donor—donor interaction between atoms. Other four drugs (Glecaprevir,
Ergotamine, Midostaurin, and Trypan blue) displayed strong molecular interaction with
residues of CD44, involving in the HA binding (Argl50 and Arg78) and also including some

essential residues, without any unfavorable interaction. Protein residues Asn25, Glu37, and

141 |Page



Arg78 are interacting with drug molecules and were previously reported to induce
conformational changes that are in direct contact with the loop of Arg41, which create a high-
affinity HA-bound form of the HABD (Liu & Finzel 2014). Among the identified four residues
(Argdl, Tyr42, Arg78 and Tyr79) from CD44 crucial HA interaction (Peach et al. 1993;
Bajorath et al. 1998), Arg78 is the only residue observed to show interaction with multiple
drugs in our drug repurposing study. Argl50 is important for HABD affinity to HA, and a
previous study suggests that mutation at Argl50 reduced HABD affinity toward HA binding

(Banerji et al. 2007).

Unlike the oligomeric carbohydrate, which extended across a large and exposed binding cavity,
the drug molecules induce conformational changes that allow them to bind with high ligand
potency, which is much higher than HA. So, the interaction of CD44 protein residues with
virtually screened drug molecules might abolish the binding of HA at the HABD of the CD44.
Based on our extensive observations, Glecaprevir, Ergotamine, Midostaurin, and Trypan blue
could be potential therapeutic inhibitors of CD44 with high binding affinity and without any
unfavorable interactions with CD44. These four drugs may elicit a blocking effect on HA-
binding to CD44 by competitive inhibition.

8.2 Conclusions

In our study, we analyzed basal gene expression using microarray data set from pan-cancer
drug-sensitive and resistant cell lines from GDSC. From the significant differential gene
expression analyses, gene co-expression and PPI networks; FN1, CD44, TIMP1, SPARC and
SNAI2, were identified as common driver genes in drug-resistant cancer that might provide
new biomarkers in NRAS-mutant pan-cancer drug resistance. MALAT1, as a key regulator of
these coding biomarker genes in drug resistance, could be a master biomarker to regulate these
driver genes' expression and provide key insights to improve drug sensitivity in a pan-cancer

context.
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In silico approach of drug repurposing can be used to discover new drug molecules that might
be able to improve drug-sensitivity in the mutant NRAS pan-cancer system by inhibiting CD44.
FDA-approved drugs Glecaprevir, Ergotamine, Midostaurin, and Trypan Blue, may be
potential therapeutic inhibitors of identified hub node CD44 with high binding affinity with a
view of repurposing these drugs. Drug molecules that have the potential to inhibit CD44 may
serve as a lead molecules to improve drug-sensitivity and fight against mutant NRAS-

harbouring pan-cancer.
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In the context of recalcitrant NRAS
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NRAS, a protein mutated in several cancer types, is involved in key drug resistance mechanisms

and is an intractable target. The development of drug resistance is one of the major impediments in
targeted therapy. Currently, gene expression data is used as the most predictive molecular profile in
pan-cancer drug sensitivity and resistance studies. However, the common regulatory mechanisms that
drive drug sensitivity/resistance across cancer types are as yet, not fully understood. We fooused on
GDSE data on MRAS-mutant pan-cancer cell lines, to pinpoint key signaling targets in direct or indirect
associations with NRAS, in order to identify other dreggable targets involved in drug resistance.
Large-scale gene expression, comparative gene co-expression and protein—protein interaction
network analyses were performed on selected dregs inducing dreg sensitivity/resistance. We validated
our data from cell lines with those obtained from primary tissuves from TCGA. From our big data studies
validated with independent datasets, protein-coding hub genes FNI1, CD44, TIMPI, SNAIZ, and SPARC
were found significantly enriched in signal transduction, proteolysis, cell adhesion and protecglycans
pathways in cancer as well as the PI3KjAkt-signaling pathway. Further studies of the regulation of
these hub/driver genes by IncRMAs revealed several IncRMNAs as prominent regulators, with MALATI
as a possible master regulator. Transcription factor EGR1 may centrol the transcription rate of MALATI
transcript. Synergizing these studies, we zeroed in on a pan-cancer regulatory axis comprising EGR1-
MALAT1-driver coding genes playing a role. These identified gene regulators are bound to provide new
paradigms in pan-cancer targeted therapy, a foundation for precision medicine, throwgh the targeting
of these key driver genes in the improvement of multi-drug sensitivity or resistance.

Cancer Is a serious health 1ssue and the second leading cause of death worldwide as estimated by World Health
Organization'. Drug resistance which can be acquired or intrinsic, develops due to the fallure of chemothera-
peutic drugs to treat cancer cells because of imited effectiveness™. While intrinsic antibiotic/drug resistance
15 a naturally occurring phenomencn primartly present before chemotherapy™*, acquired drug reststance arises
after the chemotherapeutic treatment of cancer”.

Intrinstc drug resistance may arise due to existential mutations in cructal genes, intrinstc heterogenetty of
turmors, and/or activation of certain molecular pathways against anti-cancer drugs®. In one study, transcriptional
repressors Snail and Slug were observed to induce radioresistance and chemoresistance in ovartan cancer through
the antagonism of p53-medtated apoptosts”. Acquired drug resistance may be the result of activation of second-
ary proto-oncogenes, mutations or altered expression of drug targets and post-treatment changes in the tumor
microenvironment. Retterating, there are several posstble mechanisms involved in cancer drug resistance, includ-
ing altered expression and mutation in target oncogenes, compensatory activation of the downstream signaling
pathways, epigenetic abnormalities and histological transformattons®®, Drug reststance can also ocour due to
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Structural exploration

with AlphaFold2-generated
STAT3a structure reveals selective
elements in STAT3a-GRIM-19
Interactions involved in negative
regulation

Seema Mishra", Santosh Kumar, Kesaban Sankar Roy Choudhuri, Imliyangla Longkumer,
Praveena Koyyada & Euphinia Tiberius Kharsyiemiong

STAT3, an impoertant transcription factor constitutively activated in cancers, is bound specifically

by GRIM-15 and this interaction inhibits STAT3-dependent gene expression. GRIM-1% is therefore,
considered as an inhibitor of STAT3 and may be an effective anti-cancer therapeutic target. While
STAT3 exists in a dimeric form in the cytoplasm and nucleus, it is mostly present in a monomeric

form in the mitochondria. Although GRIM-13-binding domains of STAT3 have been identified in
independent experiments, yet the identified domains are not the same, and hence, discrepancies
exist. Human STAT3-GRIM-153 complex has not been arystallised yet. Dictated by fundamental
biophysical principles, the binding region, interactions and effects of hotspot mutations can provide
us a chue to the negative regulatory mechanisms of GRIM-19. Prompted by the very nature of STAT3
being a challenging melecule, and to vnderstand the structural basis of binding and interactions

in STAT3a-GRIM-1% complex, we performed homaology modelling and ab-initic modelling with
evolutienary infermation using I-TASSER and avant-garde AlphaFold2, respectively, to generate
monemeric, and subsequently, dimeric STAT3a structures. The dimeric form of STAT3a structure was
observed to potentially exist in an anti-parallel orientation of monomers. We demonstrate that during
the interactions with both unphosphorylated and phosphorylated STAT3a, the NTD of GRIM-15 binds
miost strengly to the NTD of STAT3e, in direct contrast to the earlier works. Key arginine residues

at positions 57, 58 and 68 of GRIM-15 are mainly involved in the hydrogen-bonded interactions. An
intriguing feature of these arginine residves is that these display a consistent interaction pattern
across unphosphorylated and phosphorylated monomers as well as unphosphorylated dimers

in STAT3a-GRIM-1% complexes. MD studies verified the stability of these complexes. Analysing

the binding affinity and stability through free energy changes vpon mutation, we found GRIM-15
mutations ¥33P and Q811 and among GRIM-19 arginines, RE3P and R57M, to be one of the top-most
major and miner disrwptors of binding, respectively. The proportionate increase in average change in
binding affinity vpon mutation was inclined more towards GRIM-13 mutants, leading to the surmise
that GRIM-19 may play a greater rolein the complex formation. These studies propound a novel
structvral perspective of STAT3e-GRIM-19 binding and inhibitory mechanisms in beth the monomeric
and dimeric forms of STAT3a as compared to that observed from the earlier experiments, these
experimental observations being inconsistent among each other.

... the structure of every organic being is related, in the most essential yet ofien hidden manner, o that of
all the other organic beings ...
—Charles Darwin, The Origin of Species.
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Probing of biomarkers predictive of pan-cancer drug sensitivity and
resistance

Santosh Kumar”, Seema Mishra*
Department of Biochemistry, School of Life Sciences, University of
Hyderabad, India
*skp2259@gmail.com

In the recent years, gene expression data has been extensively used to
identify biomarkers as the most predictive molecular profile in pan-
cancer drug sensitivity and resistance studies. We have studied and
analysed basal gene expression data in context at systems scale using
data from the GDSC database. Since NRAS is difficult to target in
cancers, using NRAS-mutant cancer types and samples, we aimed to
identify other suitable biomarkers that can serve as a potential drug
targets which are involved directly or indirectly in the NRAS signaling
pathway. At cut off p <0.01 and logFC>2, we have identified significantly
differentially expressed genes (DEGs) that vary between drug-sensitive
and drug-resistant cell lines for each drug (7drugs) studied in GDSC.
Functional annotation of identified DEGs revealed that these genes
plays major role in signal transduction, apoptotic process and cell
adhesion processes among others. We have identified four hub genes
common in both gene co-expression network and PPl network: CXCR4,
CAV1, TIMP1, and CD48. These genes might play an important roles in
drug-resistant NRAS-mutant cancers and provide a new molecular

markers as therapeutic target in cancer therapy to improve drug
sensitivity.
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