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PREFACE 
 

   The present thesis embodies our work on the role of electron-phonon (e-p), electron-

electron (e-e) and spin-orbit (SO) interactions in low-dimensional systems (LDS). In LDS, 

e.g., quantum dot (QD), quantum well (QW), and quantum ring (QR), the electron is confined 

to one or more dimensions and as a result, the system shows discrete electronic energy levels. 

The shape and size of the confining potential give rise to different electronic properties. In a 

QD system, the commonly used harmonic (parabolic) oscillator potential is considered to be 

the simplest confining potential to start with. However, people have also considered more 

physical potentials with different shapes, such as a Gaussian potential. The size of a QD is of 

the order of nanometres which can contain one to many atoms.  

   The electrons in confined systems can interact with themselves and also with the lattice 

giving rise to e-e and e-p interactions which can influence the electronic properties in LDS. In 

a polar crystal, an extra electron in the conduction band interacts with the vibrating lattice 

(phonons) leading to a distortion in the lattice. This distortion causes a polarization potential 

in which the electron may get trapped. The electron together with the distortion behaves like 

a quasi-particle which is commonly known as a polaron. If the electron is slow, then the 

potential will be shallow and the distortion can spread over many lattice points and as a result 

a large polaron is produced. The polaron of this type is known as Fröhlich polaron and its 

properties are studied in the continuum model. Since impurity is a rule rather than an 

exception for a real physical system, one may also consider a simple hydrogenic impurity in a 

polar QD. In such a case, the electron of the hydrogenic impurity interacts with both the 

impurity ion and the lattice and the resulting polaron is called a bound polaron.  

   The study of polaron becomes important in the presence of an external magnetic field. An 

external magnetic field causes Zeeman splitting in a parabolic QD. It has been seen in the 

context of a magnetopolaron confined in a two-dimensional QD that the Zeeman splitting is 

suppressed and the suppression becomes strongly size dependent when the size of the QD is 

reduced to a few nanometres. Another important interaction which lies at the heart of 

spintronics applications is the spin-orbit (SO) interaction (SOI) through which the spin of the 

electron can be manipulated. The very first spintronic device was proposed in the context of a 

spin field-effect transistor by Datta and Das. During the fabrication of a QD, an asymmetric 

potential is formed at the interface of a QW heterostructure which can be tuned by an 

externally applied gate voltage. Due to this structural inversion asymmetry (SIA), an electric 

field is produced by which an effective magnetic field is generated in the electron’s rest 

frame. This effective magnetic field couples to the spin of the electron giving rise to SOI. The 
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spins can precess around the effective SO magnetic field with a frequency. This type of SOI 

originating from SIA is known as the Rashba SOI (RSOI), whose strength can be tuned by 

the external gate voltage. Interestingly, there exist some crystals which lack inversion 

symmetry in the bulk and the SOI produced by this bulk inversion asymmetry (BIA) is 

known as Dresselhaus SOI (DSOI). The SOI can lead to additional spin-splitting of the 

electronic energy levels which is different from the usual Zeeman splitting that occurs due to 

an external magnetic field. Therefore, it is intriguing to study the interplay of SOI and 

polaronic interaction in the context of the Zeeman splitting of a magnetopolaron in a QD.  

  It is well known that in a mesoscopic QR system where an array of atoms is designed in the 

form of a ring, a magnetic flux of Aharonov-Bohm (A-B) type gives rise to a persistent 

current (PC) that flows through the entire ring caused by the quantum interference effect of 

the electronic wavefunctions. People have studied several interesting mesoscopic effects in 

the presence of interactions in this kind of low-dimensional system. The tunneling junction 

devices such as a single molecular transistor (SMT), which resembles a metal-QD-metal 

structure, show potential applications in the field of charge and spin transport. In such 

systems, especially in a single-electron transport, the e-e interaction in the central QD plays a 

vital role which leads to some exciting phenomena like the Coulomb blockade and the Kondo 

effec. Also, in recent times, many important studies have been witnessed in this area where 

people have studied strongly correlated transport properties in the presence of e-p and SO 

interactions in the SMT systems. 

  The thesis is organized as follows. 

  In Chapter 1 of the thesis, we present the motivations behind the work and introduce the 

continuum and discrete models used in this thesis and the basic formulations of the 

interactions mentioned above. In the continuum model, we describe the Fröhlich polaron, 

bound polaron and magnetopolaron and also Rashba and Dresselhaus SOIs. In the discrete 

model, we present the Hubbard and Holstein models for a narrow-band system. Next, we 

discuss how PC can be generated in a QR. We introduce the Hamiltonians for RSOI and 

DSOI in a QR. Finally, we present the model Hamiltonian for an SMT system and discuss the 

different processes involved in this system.  

   In Chapter 2, we investigate the role of RSO interaction on the polaron Zeeman effect in a 

two-dimensional parabolic QD. We formulate the system Hamiltonian using the well-known 

Fröhlich model and calculate the polaronic corrections to the energy states of the QD by 

employing an all-coupling Lee-Low-Pines-Huybrechts variational method and the second-

order Raleigh-Schrödinger perturbation theory. We also study the interplay between e-p and 

RSO interactions in the context of RSOI-induced Zeeman splitting. 
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   Chapter 3 of the thesis describes the combined effect of both the SOIs on the spin-

transport across a metal-semiconductor interface in the presence of a delta-function scatterer 

at the interface. The tunnelling current, conductance and spin-polarization are calculated 

using appropriate boundary conditions and the effects of RSOI and DSOI on the reflected and 

refracted spin-resolved currents and spin polarizations are studied.  

   In Chapter 4, we study the effect of DSOI on the persistent charge and spin currents in a 

one-dimensional mesoscopic QR threaded by an A-B flux in the presence of e-e and e-p 

interactions. In such a narrow-band system, we have a small polaron which is best described 

by the Holstein model and the e-e interactions can be treated by the Hubbard model. We 

therefore use the Holstein-Hubbard-Dresselhaus model to study the system. After decoupling 

the e-p interaction by the much-celebrated Lang-Firsov transformation and eliminating the 

DSOI by a unitary transformation, we treat the Hubbard correlation at the Hartree-Fock 

mean-field level and finally obtain the energy and current using a self-consistent numerical 

diagonalization method. The effects of temperature and chemical potential on charge and spin 

currents have also been investigated.  

   In Chapter 5, we consider a three-terminal device configured as a metal-QD-metal 

structure placed on an insulating substrate and investigate finite-temperature nonequilibrium 

quantum magneto-transport in the presence of local e-p and onsite Hubbard interactions and 

quantum dissipation. The interaction between substrate phonons and the local QD phonon has 

been incorporated by the linear Caldeira-Leggett model. This interaction is partially 

eliminated by a unitary transformation which produces a dissipative effect in the phonon 

frequency which in turn influences the tunnelling current. The e-p interaction is dealt with the 

Lang-Firsov transformation. The transport properties such as spectral function, tunnelling 

current, conductance and spin-polarization are finally calculated using the nonequilibrium 

Keldysh Green function technique. We study the contrasting effects of temperature and 

magnetic field on the transport properties mentioned above. 

   In Chapter 6, we study the RSOI-induced quantum transport through a QD embedded in a 

two-arm quantum loop of a single molecular transistor at finite temperature in the presence of 

e-p and Hubbard interactions, an external magnetic field and quantum dissipation. The 

electrons from the source can tunnel to the drain following two paths, one through the arm of 

the loop that contains the QD and the other through the other arm of the loop that does not 

contain any QD. Our study focuses on how the Rashba coupling alone causes a zero-field 

spin-splitting in the spin-up and spin-down currents in an SMT system. We have also studied 

the combined effects of polaronic and SO interactions on the transport properties in different 

regimes of temperature and field. The effect of e-e interaction on spin-resolved conductances 

has also been studied. In this study, we have also analyzed the condition required to achieve 



 

 
 

xvii 

the maximum spin-polarization for a particular strength of the RSOI and magnetic field at 

zero temperature in the SMT system. 

Our results may find important applications in the fabrication of efficient spin-filtering 

devices in which the spin-filtering can be tuned by controlling the external magnetic field, 

RSOI and the e-p interaction in different temperature regimes. 

   Finally, in Chapter 7, we summarize and conclude our findings. 
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CHAPTER 1 

INTRODUCTION 
 

The study of modern condensed matter physics provides a suitable ground to investigate the 

electronic and transport properties of quantum materials, both theoretically and 

experimentally. It explores fundamental properties of matter which originate from the 

interactions between atoms and electrons. The exciting phenomena in condensed matter 

physics emerge from the non-trivial quantum mechanical interactions and the interplay 

between them. At one side it deals with the active research areas like strongly correlated 

phenomena, phase transitions and critical phenomena, on the other side, it triggers 

technological inventions which revolutionize modern civilization. 

 

1.1 MOTIVATIONS SO FAR  

    

    A solid containing ions and electrons is a crystalline condensed system where the electrons 

can interact with themselves as well as with the ions. The dynamics of an electron is very 

much modified by these interactions. However, the Born-Oppenheimer approximation (BOA) 

allows the ions to be approximated in many cases as static as they are much heavier than the 

electrons. Usually, the interactions such as electron-electron (e-e) and electron-phonon (e-p) 

interactions can influence many interesting physics in condensed matter systems, e.g., 

quantum phase transitions, high-temperature (𝑇𝑐 ) superconductivity, quantum Hall effects 

and many other phenomena. In the last few decades, investigations on low-dimensional 

systems (LDS) have opened up many intriguing research areas. In LDS, the charge carriers 

are confined to a length scale which is lower than the de Broglie wavelengths of the carriers 

[1, 2]. Low-dimensional semiconducting materials such as two-dimensional (2D) quantum 

wells (QWs), one-dimensional (1D) quantum wires, quantum ring (QR) and zero-dimensional 

(0D) quantum dots (QDs) and also their hybrid structures have potential applications in 

electronic, optoelectronic and flexible devices like field effect transistors, photodiodes, 

photodetectors, high performance data storage devices etc. On the other hand, spintronics 

physics have become an emergent phenomenon which requires the spin manipulation 

mechanisms driven by the spin-orbit (SO) interaction (SOI) [3, 4]. Due to the development of 
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modern fabrication technique, it is possible to fabricate spintronics devices like magnetic 

storage devices, computer nano chips, memory devices, magneto-resistive devices, magnetic 

tunnel junction devices, spin valve etc. The spin Hall effect where an electrical current 

induces a transverse spin current due to the SOI may also open up new functionalities in spin-

torque switching devices. In this thesis, we mainly present our work on the semiconductor 

LDS. To see how efficient the semiconductor nanodevices are, we must take the interactions 

experienced by the carrier with the surroundings into account.  

   It is important to consider e-e interactions in strongly correlated systems for the 

understanding of electronic and magnetic properties like metal-insulator transition (MIT), 

band magnetism, half-metallic behaviour, heavy fermions, high-𝑇𝑐 superconductivity, spin-

charge separation etc. In a many-body interacting system, the free-electron model does not 

provide sufficient information to describe the aforementioned properties. The most successful 

model for this purpose has been the Hubbard model (HM) [5] named after John Hubbard. 

This model introduces an onsite Coulomb energy term 𝑈  to the usual tight-binding 

Hamiltonian. It can produce both a metallic state and an insulating state depending on the 

strength of 𝑈. The HM has been applied to describe the behaviour of transition metal oxides, 

high-𝑇𝑐  cuprates, spin density wave (SDW), p/d-wave superconductor, topological phase 

transitions, spin-liquid and many other ground-breaking phenomena [6]. Another interesting 

area where e-e interactions in LDS (such as in QDs) [7-14] have led to many exciting 

properties is qubits, though, designing qubits including e-e interactions has its own 

challenges, for they are very delicate to control. Silicon (Si) is a good host material to form 

QD-qubits because of their long coherence time. For this reason, Si-QDs can be potentially 

applied to quantum computation. Due to their long spin lifetimes and coherent spin control, 

they have shown promising aspects in spin-based qubits which can operate even at 

moderately high temperature (> 100 mK) [13, 15, 16]. Although, most of the time, the effect 

of long range e-e interactions has not been emphasized in the gate-controlled QD systems, 

they can play an important role in spin-qubits operation. The Kondo effect [17-22] and 

Coulomb blockade [23, 24] are two other important aspects in tunnel junction molecular 

devices such as single molecular transistor (SMT), single electron transistor (SET), spin field 

effect transistor (FET) etc. Coulomb blockade refers to a mesoscopic phenomenon where the 

electrical conductance gets reduced due to the Coulomb repulsion between the electrons 

confined in a mesoscopic device. It can be observed in any tunnel junction device where the 

electrons coming from a source (metallic or superconducting) enter into a QD and then go to 

the drain. The flow of the electrons is governed by a bias voltage. If the size of the device is 

very small (size of a few atoms), then electrons in the QD experience a strong Coulomb 

repulsion which prevents further flow of the electrons from the source. As a result, 
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conductance decreases and current-voltage characteristic does not remain Ohmic, rather it 

shows a staircase like pattern which signifies electric charge quantization. It can be used as 

single electron charging in an SET system. Interestingly, under the application of a magnetic 

field, it provides a suitable ground to study spin blockade [25] and valley blockade [26]. 

Another important phenomenon in low-temperature many-body physics is the Kondo effect. 

Although it was theoretically explained more than fifty years ago [27] by Jun Kondo who 

used higher order perturbation technique in describing the minimum of the resistivity vs 

temperature curve of dilute magnetic alloys, it remains one of the crucial phenomena to be 

looked into in molecular junction devices. In the context of low temperature electron 

transport, it describes a spin-spin exchange interaction between the conduction band (s-band) 

electrons and the localized magnetic impurity (d-band electrons), commonly known as s-d 

exchange interaction. When the coupling between leads and QD in an SMT system increases, 

higher order tunnelling processes also occur where below a certain temperature the s-d 

electron scattering between the conduction electrons of the metallic leads and localized spin 

of the impurity becomes important. This temperature is usually known as Kondo temperature 

𝑇𝐾. These exchange processes cause spin-flip of the impurity state. An impurity containing a 

single electron-energy level with a specific spin orientation (either up or down spin state) 

prevents further accumulation of electrons tunnelling from the metallic lead due to Coulomb 

repulsion 𝑈. But the electron with a particular spin state in the localized impurity energy level 

can tunnel quantum mechanically and go to a virtual energy level outside the impurity 

creating an empty space for the metallic electrons with opposite spin state to enter and fill the 

localized level. It is important to mention that the impurity coexists with the conduction 

electrons of the leads acting like a Fermi-sea with all the states occupied below the Fermi 

energy. Hence, when a few such spin-slip excitations take place, a resonance (Kondo 

resonance) peak appears in the density of state (DOS) with the energy close to the Fermi-

energy which also reflects in the conductance spectrum. As a result of these s-d scattering 

processes, the resistivity increases when the leads are cooled below 𝑇𝐾 . For a very small 

mesoscopic device, both the Coulomb blockade and the Kondo resonance become crucial. 

The Hubbard type of e-e interaction also produces a resistive effect in strongly correlated 

mesoscopic transport systems like a QR structure [28, 29]. Therefore, e-e interaction is an 

essential interaction to be taken into account in the study of LDS. Attempts have indeed been 

made along this direction, but a lot of scope still exists for a better understanding the e-e 

interaction in LDS. In this thesis, we have studied the e-e interaction both in mesoscopic QR 

structure and tunnel junction systems.   

   The e-p interaction is another key element which helps understand many fundamental 

phenomena in condensed matter systems. Mobile electrons get scattered by the vibrating 
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lattice i.e., the phonon modes. Apart from the e-e interaction, it is another scattering process 

which produces resistivity in the system. In an ionic or polar crystal, an extra electron attracts 

the positive ion and repels the negative ions, thereby a distortion in the crystal structure of the 

lattice is created in the vicinity of the electron. This distortion gives rise to polarization in the 

lattice. As a consequence of this interaction between a fermionic-charged particle and a 

bosonic field, a change in the effective mass of the electron occurs. This electron along with 

the lattice distortion can be treated as a quasi-particle which is known as polaron [30-32]. If 

the interaction is weak, the distortion spreads over a few lattice sites, and resulting polaron is 

called a large polaron. On the other hand, if the interaction is strong enough, the distortion 

gets confined within one or two lattice sites. In other words, the electron may get trapped in 

the confining potential well developed in the lattice. We call it a small polaron. The idea of 

polaron was first conceived by Landau a long time ago [33]. Later, Landau and Pekar [34] 

proposed a semi-classical model to study the behaviour of an electron moving in the 

conduction band of an ionic crystal. But the fully quantum mechanical model was introduced 

by Fröhlich [35], who proposed a model Hamiltonian, known as the Fröhlich model (FM) 

which describes the motion of a slow or low-lying electron in a polar or ionic lattice. Under 

the framework of the FM, the lattice can be considered as a continuum as in this limit, the de 

Broglie wavelength of the electron is much larger than the lattice spacing. Consequently, the 

polaron can move throughout the lattice in this limit. Therefore, the Fröhlich-polaron is 

known as a continuum polaron. In the case of strong e-p interaction, the FM is not the 

obvious choice as the structure of the lattice is ignored in this model. The strong coupling 

theory deals with the localization of the polaron where the electron gets trapped in the 

potential well produced due to strong distortion of the static lattice. In this limit, the motion 

of the lattice is much faster than that of the electron. So, in the reference frame of the 

electron, the ionic motion is adiabatic. Fröhlich obtained the Landau-Pekar solution from his 

Hamiltonian using the variational method. Afterwards, attempts have been made to find an 

all-coupling theory which encompasses the entire range of the e-p coupling. Among them, 

Lee-Low-Pines-Huybrechts (LLPH) [36, 37] method has drawn significant attention. This 

method is a modified version of the LLP method. In this dissertation, we will restrict 

ourselves to the polaron problem in a confined geometry. From the experimental point of 

view, it is important to study polaronic cyclotron mass in the presence of an external 

magnetic field. Mukhopadhyay et al. [38, 39] studied the magneto-polaron problem using the 

second-order Raleigh-Schrödinger perturbation theory (RSPT) and all-coupling non-diagonal 

Green’s function method and showed that e-p interaction suppresses Zeeman splitting quite 

significantly when the size of the QD is reduced to a few nanometres. With the recent 

development in modern fabrication techniques like molecular beam epitaxy, etching 
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techniques, and selective ion implantation etc. it is possible to design nano semiconductor 

QD devices with spatial confinement in all directions. As these artificial atoms are of the 

order of a few nanometres, the quantum mechanical treatment of the problem becomes 

essential. In semiconductor QDs, the fast carrier transitions between the confined discrete 

energy levels determine high intensity of luminescence and the QD laser operation. The 

polaron problem has been extensively studied in QDs, QWs, graphene QD and other nano 

systems [40-55]. The transport and other important properties in QDs are also greatly 

influenced by the e-p interaction. The FM is best suited for a large continuum polaron. In this 

thesis, we are also interested in discussing the narrow-band electrons for which the tight-

binding model (TBM) is the most suitable model. Polarons in such systems are best described 

by the celebrated Holstein model [56-57] where the polaron is considered to be tightly bound 

to the lattice sites and may be referred to as a Holstein polaron. To calculate the GS of this 

model, one may perform the well-known Lang-Firsov transformation (LFT) [58] to decouple 

the e-p interaction. Due to the polaron formation, the electronic energy is reduced by a factor 

which is dependent on the strength of the e-p interaction. The hopping amplitude is also 

decreased by a factor dependent on the e-p interaction coefficient, known as the Holstein 

factor. Thus, electronic band narrowing occurs due to the polaron formation. The Holstein 

polaron model in the presence of the Coulomb correlation has shown some promising results 

in narrow-band systems. To study the interplay between the e-p interaction and the e-e 

interaction, the Holstein-Hubbard model (HHM) is believed to be one of the most suitable 

models. If the e-p interaction is strong, the system settles into a bipolaronic charge-density 

wave (CDW) GS that corresponds to a paramagnetic Peierls insulator. On the other hand, if 

the e-p interaction is not so strong to overcome the repulsive e-e Coulomb interaction, the GS 

behaves as a polaronic SDW state, which resembles an antiferromagnetic Mott insulator. 

Therefore, it is interesting to study the SDW-CDW transition driven by the competition 

between the repulsive e-e interaction and the phonon-induced attractive e-e interactions 

which may lead to some intermediate phase. Application of this concept may give rise to 

some interesting results in the field of high-𝑇𝑐 superconductivity. There have been a few quite 

investigations on this issue in recent years by Chatterjee and collaborators and others [59-63]. 

Another phenomenon that can be described by the HHM model is self-trapping transition 

[64-66]. As the e-p coupling increases, the depth of polarization potential created by the 

polaronic interaction also increases and as a result the polaron loses its mobility making the 

electron self-trapped. Hence, due to the increase in the e-p coupling strength it is possible for 

the polaron to undergo a transition from a large (mobile) polaron to a small (self-trapped) 

polaron state.  
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The effect of magnetic field in a TB mesoscopic system is also an important phenomenon to 

study. There have been a large number of investigations on the Aharonov-Bohm (A-B) effect 

in closed confined geometries, for e.g., in a 1D TB QR, where the effect of A-B flux leads to 

a persistent current (PC) in the ring [67-75]. This mesoscopic phenomenon occurs due to a 

quantum interference effect and is greatly affected by the size of the QR, temperature and 

interactions present in the system. Though the e-p interaction has been investigated in LDS 

by several authors, there are still some exciting phenomena that have not been addressed 

before. In this thesis, we study the role of e-p interaction in confined systems and its effects 

on mesoscopic and spintronics transport.    

   The SOI in LDS can be used to manipulate the spin degrees of freedom which is at the 

heart of Spintronics which deals with spin transport, spin dynamics and spin relaxation in 

electronic materials. In Spintronics, we deal with three types of questions: (i) how to polarize 

the spin, (ii) how long the system will remember the spin polarization, (iii) how to detect the 

spin. The spin-polarization can be achieved in many ways, one of them being the spin 

injection from a magnetic electrode to the sample which accumulates the spin-polarized 

electrons (spin accumulation). The rate of spin accumulation is dependent on the spin 

relaxation mechanism which brings back the spins to their equilibrium configuration and the 

timescale of spin relaxation is typically of the order of nanosecond. The SOI becomes 

especially important in the context of spin relaxation mechanism and the detection of spin 

states. It has been suggested in analogy with quantum Hall effect that SOI can generate a 

dissipationless spin current in a hole-doped semiconductor [76]. Also, SOI has a special role 

in topological systems [77-82] where the relativistic SO term induces band inversion 

phenomenon. The study of spintronics has seen an upsurge after the pioneering work done by 

Datta and Das [83] who proposed a spin-FET model where the electrons can enter from the 

source and get collected at the drain giving rise to a current (ON state) if the electron spins 

are parallel to the spins of the drain and zero current (OFF state) if spins are antiparallel to the 

drain spins. This spin-orientation is controlled by a gate voltage connected to the substrate 

which exhibits an effective SO magnetic field arising from the SOI by which the spins 

precess. Hence, modifying the gate voltage one can make the spins either parallel (ON) or 

antiparallel (OFF) at the drain and control the current. However, this model requires various 

techniques of spin injection and accumulation of spin-polarized current through transport 

across different hetero-junctions or optical pumping techniques to polarize the spins and 

mechanisms of spin relaxation. There are several spin relaxation or spin dephasing 

mechanisms in metals or semiconductors. Among these, the D’yakonov-Perel’ mechanism 

[84] is an efficient spin relaxation mechanism that can be realized in systems lacking 

inversion symmetry. Examples of systems with inversion asymmetry are the group III-V zinc 
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blende semiconductors (e.g., GaAs). The inversion asymmetry can also be induced externally 

by forming a heterostructure (such as GaAs/AlGaAs QWs) which produces an asymmetric 

confining potential. Thus, one can classify inversion asymmetries into two types leading to 

two types of SOIs. One is the bulk inversion asymmetry (BIA) and the other is structural 

inversion asymmetry (SIA). The most common example of SOI due to SIA is the Rashba SOI 

(RSOI) [85-87] and the one due to BIA is the Dresselhaus SOI (DSOI) [88]. These two types 

of SOIs will be discussed qualitatively later in the Sec.1.3.2. The subject of spintronics covers 

a vast area of theoretical and experimental research of spin-polarized transport in spin-based 

tunnelling junction systems like ferromagnet-insulator-superconductor interface, magnetic 

tunnel junction, semiconductor FET, bipolar transistor, metal-semiconductor-metal SMT 

systems, SET systems, spin-filters, spin-diodes, spin FET and nanostructure spin qubits 

where tunnelling conductance and spin-polarization are studied for different spin-splitting 

states due to SOIs. These nanostructures are useful to get zero-field splitting [89-91] due to 

RSOI or DSOI, or both SOIs, which gives rise to many interesting phenomena in spin 

polarized mesoscopic transport [89, 92-101]. There are some promising materials which are 

used for high spin-polarization, for e.g., CMR materials, half metallic oxides such as CrO2, 

Fe3O4, ferromagnetic semiconductor such as CrBr3, high carrier density compounds like 

(III,Mn)V compounds, and double perovskites materials. Therefore, it is important to explore 

the effect of SOI in LDS which can lead to exciting applications in spin-based nanodevice 

systems. In a three-terminal structure like SMT, the effects of e-e, e-p and SO interactions 

and their influence on spin-polarized transport phenomena have been studied [17-24, 102-

119]. In this thesis, the role of SOIs in creating zero field spin splitting states and the 

corresponding spin-spilt tunnelling current, conductance and spin-polarization have been 

examined in detail. Also, some interesting competing effects of SOIs and e-p interaction in a 

QD and other spintronics transport system have been studied.     

   We have discussed above the motivation to study certain interactions in quantum systems. 

In Sec.1.2-1.5, we provide an introduction to LDS and the important interactions in the 

continuum and discrete models that will be used in the thesis.  Finally, in Sec.1.6, we present 

the outline of the thesis. 

    

1.2 LOW-DIMENSIONAL STRUCTURES  

 

   Due to advancement in fabrication techniques, the low-dimensional physics has become a 

subject of great interest where the motion of electrons is restricted at least in one direction. 

This is called quantum confinement. Of late, the quantum confinement and size effects in 
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semiconductor or metallic structures have led to many emergent phenomena in the fields of 

mesoscopic physics, cold atom physics and many more. Confining the system is described by 

the characteristic lengths (𝜆) of the systems, for example, mean free path in transport studies 

or Fermi-wavelength for quantization etc. If the dimension of a particular direction (𝑥, 𝑦 or 𝑧) 

is comparable with the characteristic length, 𝜆 of the system, then the motion of the particle is 

restricted fully along that direction, while it is free to move along other available directions. 

Therefore, confinement restricts the degrees of freedom in one or more directions along 

which the quantum effects become strongly pronounced.   

 

1.2.1    TWO-DIMENSIONAL QUANTUM WELL (ONE-DIMENSIONAL 

CONFINEMENT) 

    

   In these kinds of structures, the motion of the particle is confined in one direction 

specifically, the dimension of that particular direction, 𝐿𝑥, 𝐿𝑦 or 𝐿𝑧 is shrunk to a size which 

is comparable to the system’s characteristic length, 𝜆. Here, ‘two’ refers to the number of 

directions available for to particle to move. This can be best described by the two-

dimensional electron gas (2DEG) model or the well-known particle in a box problem in 

quantum mechanics. Here, it should be named as a particle in a 1D box problem. Let’s say, 

the confinement is created along 𝑧 -direction which implies there exists a non-zero 

confinement potential 𝑉(𝑧) along 𝑧-direction, whereas, in 𝑥 and 𝑦 directions, the potential is 

zero as the motion is free along 𝑥 and 𝑦. The Schrödinger equation (SE) for the particle 

confined in such a geometry is given by 

 

[
ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉(𝑧)]𝜓(𝑥, 𝑦, 𝑧) = 𝜀𝜓(𝑥, 𝑦, 𝑧).          (1.1) 

 

The total energy can be divided into two parts as 

 

𝜀 = 𝜀𝑥,𝑦(𝑘𝑥, 𝑘𝑦) + 𝜀𝑧(𝑘𝑧
𝑛𝑧),                                                                (1.2) 

 

where, 𝜀𝑥,𝑦 is the free-particle energy along 𝑥 and 𝑦 with continuous 𝑘𝑥, 𝑘𝑦 values given as  

 

𝜀𝑥,𝑦(𝑘𝑥, 𝑘𝑦) =
ℏ2

2𝑚∗
(𝑘𝑥

2 + 𝑘𝑦
2),                                                   (1.3) 
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where, 𝑚∗  is the effective mass in the band. The quantized 𝑘𝑧
𝑛𝑧 -momentum due to the 

confinement along 𝑧 specified by the quantum number 𝑛𝑧 is given by  

 

𝑘𝑧
𝑛𝑧 =

𝑛𝑧𝜋

𝐿𝑧
, 𝑛𝑧 = 0,1,2, …                                                             (1.4) 

 

   Therefore, all the 𝑘𝑧-values are not allowed along 𝑧. Unlike the continuum energy along 𝑥 

and 𝑦 directions, the quantized energy in the 𝑧-direction for the 𝑛th – sub-band is given by  

 

𝜀𝑧(𝑘𝑧
𝑛) =

ℏ2(𝑘𝑧
𝑛𝑧)2

2𝑚
=  

ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) , 𝑛𝑧 = 0,1,2, …                 (1.5) 

  

   Hence, finite sample size drastically alters the allowed energy levels bringing in gap in the 

energy spectrum. We can also calculate the 2D density of states DOS per unit area within a 

band and below a particular 𝑛th state as  

 

𝑔2𝐷(𝜀) =
𝑚∗

𝜋ℏ2
∑H(𝜀 − 𝜀𝑗)

𝑛

𝑗=1

,                                                        (1.6) 

 

where, H(𝜀 − 𝜀𝑗) is the Heaviside step function given as H(𝜀 − 𝜀𝑗) = 0 for 𝜀 < 𝜀𝑗 and 1 for 

𝜀 > 𝜀𝑗. The practical example of this kind is semiconductor QWs, for e.g., GaAs/AlxGa1-xAs 

hetero-structures system. As the Ga and As have two different band gaps, a potential well can 

be generated and the system exhibits bound states. Metal-oxide-semiconductor is another 

example where 2DEG is formed at the semiconductor-insulator interface. Another known 

example of 2D system is graphene quantum wells where the dimension of the wavefunction 

is of the order of the entire 2D graphene-sheet. One can think of a 2DEG system as almost a 

free-electron system in 2D where the particle has a large mean free path which means the 

scattering with the defects can be ignored.   

 

1.2.2    ONE-DIMENSIONAL QUANTUM WIRE (TWO-DIMENSIONAL 

CONFINEMENT) 

    

   In these structures, the degree of confinement is one-step stronger compared to the quantum 

well structures. When the confinement occurs in two directions, let’s say along 𝑥  and 𝑧 

directions, and another direction i.e., 𝑦-direction is available for the particle to move freely, 

then we refer it to a quantum wire. Here, ‘one’ denotes the number of direction available for 
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the particle to exhibit the free particle nature. As discussed above, in this case, the SE of the 

particle in a 2D box is given by 

 

[
ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉(𝑥, 𝑧)] 𝜓(𝑥, 𝑦, 𝑧) = 𝜀𝜓(𝑥, 𝑦, 𝑧).       (1.7) 

 

   Now, the total energy of the particle 𝜀 with free (continuum) nature in 1D (along 𝑦) and 

confined (discrete) nature in 2D (along 𝑥 and 𝑧 ) can be expressed as  

 

𝜀 = 𝜀𝑦(𝑘𝑦) + 𝜀𝑥,𝑧(𝑘𝑥
𝑛𝑥 , 𝑘𝑧

𝑛𝑧),                                                         (1.8) 

 

where, 𝜀𝑦(𝑘𝑦), the free energy with all-allowed continuum 𝑘𝑦-momentum is written as 

 

𝜀𝑦(𝑘𝑦) =
ℏ2

2𝑚∗
𝑘𝑦
2,                                                                             (1.9) 

 

and the quantized energy 𝜀𝑥,𝑧(𝑘𝑥,𝑧
𝑛𝑥,𝑛𝑧) specified by the two quantum numbers 𝑛𝑥, 𝑛𝑧 is given 

as  

 

𝜀𝑥,𝑧(𝑘𝑥
𝑛𝑥 , 𝑘𝑧

𝑛𝑧) =
ℏ2

2𝑚
(
𝑛𝑥
2𝜋2

𝐿𝑥
2 ) +

ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) ; 𝑛𝑥 , 𝑛𝑧 = 0,1,2, …   (1.10) 

 

Also, the 1D DOS per unit length is given by  

 

𝑔1𝐷(𝜀) =
√𝑚∗

√2𝜋ℏ
𝜀− 

1
2.                                                         (1.11) 

 

1.2.3    ZERO-DIMENSIONAL QUANTUM DOT (THREE-

DIMENSIONAL CONFINEMENT) 
 

   In the extreme case of confinement, the particle can be confined in all possible directions, 

meaning all the three-dimensions of the box 𝐿𝑥 , 𝐿𝑦  and 𝐿𝑧  are typically of the order of 

characteristic length 𝜆 . Therefore, in true sense, this is the ideal confinement where the 

particle has ‘zero’ number of directions available to move freely. In this case, the SE of the 

particle in a 3D box is given by 
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[
ℏ2

2𝑚
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) + 𝑉(𝑥, 𝑦, 𝑧)]𝜓(𝑥, 𝑦, 𝑧) = 𝜀𝜓(𝑥, 𝑦, 𝑧).   (1.12) 

 

By the quantization condition of 𝑘⃗ (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) as expressed in Eq. (1.4), the quantized energy 

of these zero-dimensional objects specified by the three quantum numbers 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 can 

be written as 

 

𝜀(𝑘𝑥
𝑛𝑥 , 𝑘𝑦

𝑛𝑦 , 𝑘𝑧
𝑛𝑧) =

ℏ2

2𝑚
(
𝑛𝑥
2𝜋2

𝐿𝑥
2 ) +

ℏ2

2𝑚
(
𝑛𝑦
2𝜋2

𝐿𝑦
2 ) +

ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) ; 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 = 0,1,2, …  (1.13) 

 

The DOS for the QD can be calculated as 

 

𝑔0𝐷(𝜀) = 2∑𝛿(𝜀 − 𝜀𝑗)

𝑗

.                                                     (1.14) 

 

   Hence, the DOS of the QD shows the sharp Dirac-delta spikes denoting the true confined 

nature. The factor of ‘2’ comes from the spin degrees of freedom. The typical size of a QD 

ranges from 2 to 10 nanometres containing around 100 to 1000 electrons or 10 to 50 atoms 

along diameter. This size is usually less than the quantum coherence length because of which 

the coherence can be achieved throughout at low temperature. The QD can be thought of as a 

mesoscopic analogue of a single atom, often referred as ‘artificial atom’ as confining the 

particle gives rise to quantized states in the energy spectrum.   

 

1.2.3.1     FABRICATION OF QUANTUM DOT  

 

 

 

Fig.1.1 Schematic representation of QD fabrication (Picture courtesy: Tarucha et al. Science 278, 

1788 (1997)). 
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   Normally, one of the known techniques of fabricating QD is the molecular beam epitaxy, 

where the QD gets self-assembled by depositing a semiconductor having a larger lattice 

constant (for example, Ge or InAs) onto another semiconductor having a smaller lattice 

constant (for example, Si or Ga). As it is shown in Fig.1.1, QD can be fabricated 

experimentally by depositing several layers of such different semiconductor hetero-structures 

of different thickness, most commonly a three-layer structure of insulating InGaAs 

sandwiched between two AlGaAs layers and the whole system is connected two n-doped 

GaAs contacts as the source and the drain substrate and a voltage is applied to the substrate. 

The Fermi energy of the GaAs contacts lies above the conduction band of InGaAs and the 

conduction band edge of AlGaAs lies above the InGaAs conduction band edge. This 

configuration creates a sharp confining potential like a double QW potential which allows the 

accumulation of electrons inside the InGaAs region when no voltage is applied. A gate 

voltage is also applied to move the QW structure spatially, which results in a variable number 

of bound states in the dot. When a constant bias voltage is applied, the Fermi energies of the 

contacts shifts and a window of transport opens up. Though the InGaAs layer is insulating, 

but it is thin enough to tunnel the electrons from source to drain which gives rise to sharp 

current peaks in the current-voltage characteristics where each peak corresponds to a single 

electron transport. This was experimentally demonstrated by Tarucha et al. [120] in 1996. 

Theoretically, the QD systems are treated by assuming different confining potentials; 

amongst them harmonic oscillator potential (parabolic QD) is widely used. Although the 

parabolic potential is not physical, it can provide the most useful features of the confined 

system [121-123]. In nanodevice applications, a double QD model resembling a two-level 

system can serve as the most elementary quantum qubits in quantum computation 

applications. Also, it has potential applications in the nano-electronic circuit, where one or a 

few QDs connected to metallic leads (source or drain) controlled by bias and gate voltages 

can be considered a nano-resister or capacitor. These kinds of molecular transistor structures 

can be extremely important to study many exciting phenomena such as Coulomb blockade, 

Kondo effect, resonant tunnelling, Kondo-Fano effect etc.  

   To summarize, we present a table containing the key-points about these low-dimensional 

systems as following 

 

 

 

 

 

 



 

 
 

13   Ch.1| Introduction 

Properties 2D 

 

1D 0D 

Schematic 

diagram* 

*Diagrams are 

taken from T. 

Edvinsson, R. 

Soc. open sci. 5: 

180387 (2018) 

 

 

   

Degrees of 

confinement 

(DOC) 

 

1 2 3 

Degrees of 

delocalization 

 

2 1 0 

 

 

 

Energy 

 

 

 

 

 

𝜀 =
ℏ2

2𝑚∗
(𝑘𝑥

2 + 𝑘𝑦
2) 

+
ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) 

Quantum No. 1: 𝑛𝑧 as 

DOC is 1 

 

𝜀 =
ℏ2

2𝑚∗
𝑘𝑦
2 +

ℏ2

2𝑚
(
𝑛𝑥
2𝜋2

𝐿𝑥
2 ) 

         +
ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) 

Quantum Nos. 2: 𝑛𝑥, 𝑛𝑧 as 

DOC is 2 

 

𝜀 =
ℏ2

2𝑚
(
𝑛𝑥
2𝜋2

𝐿𝑥
2 ) +

ℏ2

2𝑚
(
𝑛𝑦
2𝜋2

𝐿𝑦
2 ) 

                          +
ℏ2

2𝑚
(
𝑛𝑧
2𝜋2

𝐿𝑧
2 ) 

Quantum Nos. 3: 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 as 

DOC is 3 

Density of 

states 
𝒈𝟐𝑫(𝜺) =

𝒎∗

𝝅ℏ𝟐
∑𝐇(𝜺 − 𝜺𝒋)

𝒏

𝒋=𝟏

 𝒈𝟏𝑫(𝜺) =
√𝒎∗

√𝟐𝝅ℏ
𝜺− 

𝟏
𝟐 𝒈𝟎𝑫(𝜺) = 𝟐∑𝜹(𝜺 − 𝜺𝒋)

𝒋

 

 

 

   Next, we would like to present a few theoretical models and basic characteristics of these 

models that have been used in this thesis to describe our work. We start with the continuum 

model and then we will discuss discrete lattice models.  

 

1.3 CONTINUUM MODELS 
 

   In the continuum limit, the discreteness of the lattice becomes unimportant. This model 

would be valid for a slowly moving electron in a lattice. The de Broglie wavelength of a slow 

electron is much bigger than the lattice constant which means the wavefunction associated to 

the electron spreads over many lattice-sites which makes it difficult for the electron to 

distinguish one lattice-site from another. So, the change in the wavefunction over a lattice 

spacing can be approximated to be negligibly small and under this circumstance, the lattice 
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essentially appears as a continuum to the electron. As a result, the momentum vector 𝑘⃗  

becomes continuous and the energy spectrum of the electron looks like a closely spaced band 

just like a free particle case. Although, this is the continuum approximation of lattice model, 

but it serves as a good starting point to study the low-lying states or long-wavelength 

excitations such as electrons in the conduction band of a metal, low-temperature 

phenomenon, transport in low-temperature and small fields etc. We will now discuss the e-p 

interaction, e-e interaction and SO interactions in the continuum limit.  

 

1.3.1     ELECTRON-PHONON INTERACTION:  FRÖHLICH POLARON 

MODEL 

 

  In the simple Bloch picture, electrons experience a periodic potential created by the lattice 

ions in an ideal crystal. In such an ideal scenario, the conduction band electron can be 

approximated as a free electron with an effective Bloch mass 𝑚∗ (different from the bare 

mass of the electron) and the kinetic energy of the electron is given by 𝑝 2/2𝑚∗, where 𝑝   is 

the momentum of the Bloch electron. However, ions oscillate in a real crystal. Therefore, it is 

essential to consider the motion of the ions which produces a displacement of ions from their 

equilibrium positions shown in Fig.1.2. In an ionic crystal or a polar semiconductor, the e-p 

interaction is modelled by the Fröhlich polaron Hamiltonian. In the framework of the FM, the 

ionic displacement gives rise to a time-dependent polarization field which interacts with an 

extra conduction band electron. As the electron is slow, the de Broglie wavelength or the 

wavefunction associated with this low-lying electron spreads over many lattice points, which 

means the discrete nature of the lattice is irrelevant to the electron. Therefore, the radius of 

the polaron is much larger than the lattice spacing, which is why the Fröhlich polaron is 

known as a large polaon. As a result, the lattice essentially seems to be a continuum to the 

electron and the electron dressed with the lattice distortion (a complex or quasi-particle) can 

move throughout the crystal shown in the Fig.1.3. In field theory, an electron can be treated 

as a source of phonons and the interaction between the electron with the oscillating lattice can 

be described by the phonon emission and absorption processes. These processes can be 

explained through Feynman diagrams. Fig.1.4 displays a process in which an electron with a 

momentum 𝑘⃗  emits a phonon with momentum 𝑞  and goes into a state with momentum 𝑘⃗ − 𝑞 . 

This is called one-phonon emission process. Fig.1.5 describes a different process where the 

electron with a momentum 𝑘⃗   absorbs a phonon with momentum 𝑞  and goes into a state with 

momentum 𝑘⃗ + 𝑞 . This is called one-phonon absorption process. The electron and phonon 
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propagators meet at a point, which is called the vertex, where the total momentum should be 

conserved. These processes give rise to scattering phenomena in transport mechanisms.     

     

 

 

Fig.1.2 Displacement of ions in a lattice (picture 

source: internet). 

 

 

Fig.1.3 Movement of polaron in lattice (picture 

source: internet). 

 

 

 

 

Fig.1.4 One-phonon emission process 

 

 

Fig.1.5 One-phonon absorption process  

 

 

The FM is described by the following Hamiltonian:   

 

𝐻 = 𝐻𝑒 + 𝐻𝑝ℎ + 𝐻𝑒−𝑝,                                                              (1.15) 

 

where 𝐻𝑒 , 𝐻𝑝ℎ  and 𝐻𝑒−𝑝  denote respectively the Hamiltonians for a free electron, free 

phonons and the e-p interaction which are written as  

 

𝐻𝑒 = −
ℏ2

2𝑚∗
∇ 𝑟 ˊ
2 ,                                                                             (1.16) 

 

𝐻𝑝ℎ = ℏ𝜔0∑𝑏𝑞⃗ ˊ
† 𝑏𝑞⃗ ˊ

𝑞⃗ ˊ

,                                                                    (1.17) 

 

𝐻𝑒−𝑝 =∑(𝜉ˊ𝑞⃗ ˊ𝑒
−𝑖𝑞⃗ ˊ.𝑟 ˊ𝑏𝑞⃗ ˊ

† + ℎ. 𝑐. )

𝑞⃗ ˊ

.                                            (1.18) 
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   Here all vectors in general can be 𝑁-dimensional (𝑁D) for a 𝑁D lattice.  𝑟 ˊ  is the position 

vector of the electron, 𝑚∗  is the effective mass, 𝜔0  is the dispersionless LO phonon 

frequency, 𝑏𝑞⃗ ˊ
†

  (𝑏𝑞⃗ ˊ) is the creation (annihilation) operator of an LO phonon of wavevector 

𝑞 ˊ, 𝜉ˊ𝑞⃗ ˊ is the electron-phonon interaction coefficient. We shall use the Feynman units (FU) 

[124] in which the energy is scaled by ℏ𝜔0 , length by 𝑟0  which is the inverse of the 

wavevector 𝑞0 i.e., 𝑞0
−1 , 𝑞0 defined by   

ℏ2𝑞0
2

𝑚∗ = ℏ𝜔0, wavevectors by 𝑞0 . Such scalings are 

equivalent to putting  ℏ = 𝑚∗ = 𝜔0 = 1. Hamiltonian (1.15) in this unit can be written as 

 

𝐻 = −
1

2
∇𝑟 
2 +∑𝑏𝑞⃗ 

†𝑏𝑞⃗ 
𝑞⃗ 

+∑(𝜉𝑞⃗  𝑒
−𝑖𝑞⃗ .𝑟 𝑏𝑞⃗ 

† + ℎ. 𝑐. )

𝑞⃗ 

,                   (1.19)  

 

 where 𝜉𝑞⃗  is given as 

 

|𝜉𝑞⃗ |
2 = [

Γ (
𝑁 − 1
2 ) 2𝑁−

3
2 𝜋

𝑁−1
2  

𝑉𝑁𝑞𝑁−1
] 𝛼,                                           (1.20) 

 

where 𝑉𝑁 is the volume of the 𝑁-dimensional lattice and 𝛼 is the dimensionless e-p coupling 

constant given by  

 

𝛼 =
𝑒2

√2𝑟0

1

ℏ𝜔0
(
1

𝜀∞
−
1

𝜀0
).                                                          (1.21) 

 

 

1.3.1.1    BOUND POLARON  

 

    In practice, a crystal is not free from impurities. If the impurity contains electric charge, it 

will interact with the vibrating ions by electrostatic interaction as an electron does. Let us 

consider a hydrogenic impurity (also called a Coulomb impurity). In this case, both the 

electron and the nucleus, interact with the phonons to form a bound polaron. The bound 

polaron problem was formulated in the continuum lattice by extending the FM by Platzman 

[125]. The Platzman model for the bound polaron can be written in the FU as 
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𝐻 = −
1

2
∇𝑟 
2 −

𝛽

|𝑟 − 𝑟̃ |
+∑𝑏̃𝑞⃗ 

† 𝑏̃𝑞⃗ 
𝑞⃗ 

+∑(𝜉𝑞⃗  (𝑒
−𝑖𝑞⃗ .𝑟 − 𝑒−𝑖𝑞⃗ .𝑟̃

 
) 𝑏̃𝑞⃗ 

†   + ℎ. 𝑐. )

𝑞⃗ 

,       (1.22) 

 

where the second term represents the impurity-electron interaction, 𝑟̃  being the position of the 

Coulomb impurity, and 𝛽  the dimensionless impurity-electron coupling strength given by 

𝛽 =
𝑒2

ℏ𝜔0𝑟0𝜀∞
.  The last term represents the e-p and impurity-phonon interactions. For 

simplicity, the impurity can be considered to be located at 𝑟̃ = 0 . The impurity-phonon 

coupling can be eliminated exactly by employing the following canonical transformations 

 

𝑏𝑞⃗ = 𝑏̃𝑞⃗ − 𝜉𝑞⃗ , 𝑏𝑞⃗ 
† = 𝑏̃𝑞⃗ 

† − 𝜉𝑞⃗ 
∗  .                                               (1.23) 

 

Eq. (1.22) is transformed to  

 

𝐻 = −
1

2
∇𝑟 
2 −

𝛽

𝑟
+∑(𝑏𝑞⃗ 

† + 𝜉𝑞⃗ 
∗)

𝑞⃗ 

(𝑏𝑞⃗ + 𝜉𝑞⃗ ) +∑(𝜉𝑞⃗ (𝑒
−𝑖𝑞⃗ .𝑟 − 1) (𝑏𝑞⃗ 

† + 𝜉𝑞⃗ 
∗) + ℎ. 𝑐. )

𝑞⃗ 

              

= −
1

2
∇𝑟 
2 −

𝛽

𝑟
+∑𝑏𝑞⃗ 

†𝑏𝑞⃗ 
𝑞⃗ 

+∑(𝜉𝑞⃗  𝑒
−𝑖𝑞⃗ .𝑟 𝑏𝑞⃗ 

† + ℎ. 𝑐. )

𝑞⃗ 

+∑(|𝜉𝑞⃗ |
2
 𝑒−𝑖𝑞⃗ .𝑟 + ℎ. 𝑐. )

𝑞⃗ 

−∑|𝜉𝑞⃗ |
2

𝑞⃗ 

 

(1.24) 

 

where the 5th term can be calculated by substituting Eq. (1.20) for |𝜉𝑞⃗ |
2 (for 𝑁 = 3) and 

converting the 𝑞 -summation into an integral over 𝑞  as 

 

∑(|𝜉𝑞⃗ |
2
 𝑒−𝑖𝑞⃗ .𝑟 + ℎ. 𝑐. )

𝑞⃗ 

⟶
4√2𝜋

𝑉
𝛼
𝑉

8𝜋3
∫𝑑𝑞 

 𝑒−𝑖𝑞⃗ .𝑟 

𝑞2
=
√2

𝑟
𝛼.                (1.25) 

We can neglect the infinite constant term ∑ |𝜉𝑞⃗ |
2

𝑞⃗ . Therefore, the Hamiltonian for the bound 

polaron becomes  

 

𝐻 = −
1

2
∇𝑟 
2 −

𝛽

𝑟
+∑𝑏𝑞⃗ 

†𝑏𝑞⃗ 
𝑞⃗ 

+∑(𝜉𝑞⃗  𝑒
−𝑖𝑞⃗ .𝑟 𝑏𝑞⃗ 

† + ℎ. 𝑐. )

𝑞⃗ 

,                       (1.26) 

 

where 𝛽 is given as 𝛽 = 𝛽 − √2𝛼. 
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1.3.1.2    POLARON IN THE PRESENCE OF AN EXTERNAL    

MAGNETIC FIELD:  MAGNETOPOLARON  

 

   To observe the polaron formation experimentally, one has to determine two characteristic 

quantities, the polaron radius 𝑟0 = √ℏ/𝑚∗𝜔0  and the e-p coupling constant 𝛼 =

(
𝑒2

√2𝑟0ℏ𝜔0
) (

1

𝜀∞
−

1

𝜀0
). The Bloch band mass 𝑚∗ can be obtained from mobility data and once 

this is obtained, one can determine 𝛼 provided 𝜔0, 𝜀∞ and 𝜀0 are known. To determine the 

polaron mass 𝑚𝑝
∗ , one may require from cyclotron resonance experiments the cyclotron mass 

𝑚𝑐
∗ = 𝑒𝐵/𝜔𝑐

∗ c, where 𝐵  is the magnetic field and 𝜔𝑐
∗  the cyclotron frequency. The 𝑚𝑐

∗ 

essentially gives the measure of 𝑚𝑝
∗ . Therefore, it is important to study the polaron problem 

in the presence of an external magnetic field. 

   The model Hamiltonian of a polaron in an external magnetic field 𝐵⃗  (0,0, 𝐵) can be written 

in the FU as 

 

𝐻 =
1

2
(−𝑖∇𝑟 −

𝑒𝐴 

𝑐
)

2

+∑𝑏𝑞⃗ 
†𝑏𝑞⃗ 

𝑞⃗ 

+∑(𝜉𝑞 𝑒
−𝑖𝑞⃗ .𝑟 𝑏𝑞⃗ 

† + ℎ. 𝑐. )

𝑞⃗ 

,                (1.27) 

 

where 𝐴  is the magnetic vector potential which can be chosen under the Landau gauge as 𝐴 =

(−𝐵𝑦, 0,0). Under this gauge the Hamiltonian () is modified as 

 

𝐻 =
1

2
(𝑝𝑥 + 𝜔̅𝑐𝑦)

2 +
1

2
(𝑝𝑦

2 + 𝑝𝑧
2) +∑𝑏𝑞⃗ 

†𝑏𝑞⃗ 
𝑞⃗ 

+∑(𝜉𝑞 𝑒
−𝑖𝑞⃗ .𝑟 𝑏𝑞⃗ 

† + ℎ. 𝑐. )

𝑞⃗ 

,        (1.28) 

 

where 𝜔̅𝑐 is given by 

 

𝜔̅𝑐 =
𝜔𝑐
𝜔0
,     𝜔𝑐 =

𝑒𝐵

𝑚𝑐
∗𝑐
 .                                                            (1.29) 

 

1.3.2 SPIN-ORBIT INTERACTIONS  

 

   SOI leads to many important phenomena in semiconductor physics. It can be heuristically 

derived from the relativistic Dirac equation. When an electron moves in an electric field it 

experiences an effective magnetic field in its own inertial reference frame which then couples 
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to the spin of the electron giving rise to SOI effect. The full-relativistic Hamiltonian of an 

electron moving in an effective magnetic field is governed as 

 

[
1

2𝑚
 (𝑝 −

𝑒

𝑐
𝐴 )

2

−
𝑒ℏ

2𝑚𝑐
𝜎 . (∇⃗⃗ × 𝐴 ) −

𝑝 4

8𝑚3𝑐3
+

𝑒ℏ2

8𝑚2𝑐2
∇⃗⃗ . ∇⃗⃗ 𝜑 −

𝑒ℏ

4𝑚2𝑐2
𝜎 . (∇⃗⃗ 𝜑 × 𝑝 )]𝜓 

 

= [𝐸𝑁𝑅 − 𝑒𝜑]𝜓,                                                                                                                     (1.30) 

 

where the first term refers to the non-relativistic motion. The interaction between the spin-1/2 

particle (spin operator 𝑠 = ℏ𝜎 /2) and the magnetic field 𝐵⃗ = ∇⃗⃗ × 𝐴   is given by the second 

term. The third term refers to the relativistic mass correction. The fourth term is the Darwin 

term. The fifth term is the contribution coming from the spin-orbit interaction, also known as 

the Thomas term. For a spherically symmetric potential, the electric field is given as ℇ⃗⃗ =

−
𝑑𝜑

𝑑𝑟

𝑟 

𝑟
 and 𝑟 × 𝑝 = 𝑙 , 𝑙  being the angular momentum of the electron. The Thomas term for 

such a case can also be written as 

 

𝐻𝑇 = −
𝑒ℏ

4𝑚2𝑐2
𝜎 . (∇⃗⃗ 𝜑 × 𝑝 ) = −

𝑒

2𝑚2𝑐2
1

𝑟

𝑑𝜑

𝑑𝑟
𝑙 . 𝑠   .                              (1.31) 

 

   The typical value of the SOI energy varies widely in semiconductor materials. The usual 

expression for SOI-energy goes like 𝐸𝑆𝑂~(
𝑧𝑒2

ℏ𝑐
)
2
𝑚𝑒4

ℏ2
∝ 𝑧2, where 𝑧 is the atomic number. 

Therefore, we can say, the bigger the atom, the bigger the SOI strength. Depending on the 

symmetry properties of the solids, the SOI can be classified into two major divisions namely 

(A) symmetry-independent SOI and (B) symmetry-dependent SOI. 

 

1.3.2.1   SYMMETRY-INDEPENDENT SPIN-ORBIT INTERACTION  

       

   This type of SOI is present in all kinds of crystals. It can be discussed without considering 

the special symmetry properties of the lattice which is almost similar to that of atoms. Fig.1.6 

illustrates the band splitting due to the usual SOI in a bulk semiconductor. The conduction 

band (CB) with orbital angular momenta 𝑙 = 0 (𝑠-band) and the valance band (VB) with 𝑙 =

1 (𝑝-band) are separated by a band gap 𝐸g. Each band is two-fold degenerate for spin-up (𝑠 =

1/2) and spin-down (𝑠 = −1/2) states and the total angular momenta quantum number 𝑗 is 

given by 𝑗 = 𝑙 + 𝑠 . The heavy hole (ℎℎ with 𝑗 = 3/2, 𝐽𝑧 = ±3/2) and the light hole (𝑙ℎ with 

𝑗 = 1/2, 𝐽𝑧 = ±1/2) bands are separated intrinsically, but degenerate at Γ8 point.  
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Fig.1.6 Splitting in bulk GaAs semiconductor energy bands vs. 𝑘 near the Γ-point (𝑘 = 0) (picture 

courtesy: Dissertation, V. Lechner, p. 9, 2012). 

 

   Due to SOI (𝑙 . 𝑠  term) the 3-fold degeneracy of the VB (𝑝-band) with projection 𝑚𝑙 =

−1,0, +1 is broken and they are separated by a SO split band gap ∆𝑆𝑂  measured from Γ7 

point to the Γ8 point, although the CB (𝑠-band) does not split. However, all the bands are 2-

fold degenerate for two spin orientations.  

 

1.3.2.2   SYMMETRY-DEPENDENT SPIN-ORBIT INTERACTION  

 

   This kind of SOI may be explained considering the special symmetry of the lattice. To 

discuss this, we first present two most elementary symmetry operations in crystals, which are 

(1) time-reversal symmetry and (2) spatial-inversion symmetry.  

  (1) The former is a theoretical concept where time evolves backwards to describe an event, 

or in physics, all the motions are reversed under a mathematical operation 𝒯: 𝑡 ⟶ −𝑡 , then 

time-reversal symmetry (TRS) is preserved if all the physical properties remain unchanged 

back in time. Under 𝒯-operation, the physical quantities transform as follows 

 

• Position vector, 𝑟 ⟶ 𝑟   as  𝑡 ⟶ −𝑡 (even in TRS). 

• Linear momentum, 𝑘⃗ ⟶ −𝑘⃗   as  𝑡 ⟶ −𝑡 (odd in TRS). 

• Orbital angular momentum, 𝑙 ⟶ −𝑙   as  𝑡 ⟶ −𝑡 (odd in TRS). 

• Spin angular momentum, 𝑠 ⟶ −𝑠   as  𝑡 ⟶ −𝑡 (odd in TRS). 
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   Therefore, 𝑙 . 𝑠  term is even under 𝒯  i.e., TRS is preserved for SOI case and the energy 

dispersion obeys the following relation: 𝐸𝑠 (𝑘⃗ ) = 𝐸−𝑠 (−𝑘⃗ ).   

 

  (2) The other type of symmetry operation is the spatial-inversion symmetry (SIS) which is 

governed by the operation ℛ: 𝑟 ⟶ −𝑟 . Under this operation, if the physical properties remain 

unchanged going backwards in position, then the inversion-symmetry is preserved. The 

physical quantities change under ℛ-operation as follows   

 

•  Linear momentum, 𝑘⃗ ⟶ −𝑘⃗   as  𝑟 ⟶ −𝑟  (odd in SIS). 

• Orbital angular momentum, 𝑙 ⟶ 𝑙   as  𝑟 ⟶ −𝑟  (even in SIS). 

• Spin angular momentum, 𝑠 ⟶ 𝑠   as  𝑟 ⟶ −𝑟  (even in SIS). 

   Therefore, the energy dispersion under SIS satisfies the following relation: 𝐸𝑠 (𝑘⃗ ) =

𝐸𝑠 (−𝑘⃗ ) . In this context, one can bring in the concept of centrosymmetric and non-

centrosymmetric crystals. 

 

1.3.2.2.1    SPIN-ORBIT INTERACTION IN CENTROSYMMETRIC 

CRYSTALS  

 

  This is analogous to the symmetry-independent SOI described above where the bands 

splitting due to atomic 𝑙 − 𝑠  coupling may occur. If the crystal is symmetric i.e., all the 

properties are exactly same with respect to the centre of inversion then it’s known as 

centrosymmetric crystals. In these types of crystals, the energy dispersion holds the following 

identity under 𝒯 and ℛ-symmetry operations  

 

𝐸𝑠 (𝑘⃗ ) =⏟
𝑡⟶−𝑡

𝐸−𝑠 (−𝑘⃗ ) =⏟
𝑟 ⟶−𝑟 

𝐸−𝑠 (𝑘⃗ ) ⇒ 𝐸𝑠 (𝑘⃗ ) = 𝐸−𝑠 (𝑘⃗ )                             (1.32) 

 

  Hence, two different spin states i.e., up-spin (𝑠 , ↑) and down-spin (−𝑠 , ↓) states have same 

energy which means they are degenerate when both TRS and SIS are maintained shown in 

Fig.1.7(a). The degenerate equation 𝐸𝑠 (𝑘⃗ ) = 𝐸−𝑠 (−𝑘⃗ )  as 𝑡 ⟶ −𝑡  is known as Kramer’s 

doublets followed by Kramer’s theorem which states that all the eigenstates are at least 

doubly-degenerate if TRS is preserved. However, the degeneracy can be lifted by applying 

external magnetic field, 𝐵⃗  and then the Kramer’s doublets separate due to the TRS breaking 

as shown in Fig. 1.7(b).  
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TRS + SIS both preserved 

 

 

TRS breaking + SIS preserved 

 

Fig.1.7 (a) Degenerate bands in centrosymmetric case: Both TRS and SIS are preserved. (b)  

Degeneracy lifted by applying external 𝐵⃗ : TRS is broken, but SIS is present. 

   

   The bands will split vertically in 𝐸 -axis. This is known as Zeeman splitting which is 

determined in terms of the effective Landé factor 𝑔∗ which strongly differs from the free-

electron 𝑔-factor which is given by: 𝑔0 = 2. However, it was first shown by Roth et al. [23] 

through 𝑘⃗ . 𝑝  method that this effective 𝑔-factor is greatly influenced by SOI and given by 

[24]:  

𝑔∗

𝑔0
= 1 −

∆𝑆𝑂
3𝐸g + 2∆𝑆𝑂

(
𝑚0

𝑚∗
− 1),                                                (1.33) 

 

where, 𝑚∗ is the effective band mass and 𝑚0 is the bare mass of the free electron. 

 

1.3.2.2.2    SPIN-ORBIT INTERACTION IN NON -CENTROSYMMETRIC 

CRYSTALS  

 

If the crystal loses its symmetry properties when inverted around the centre, then it’s no 

longer symmetric under inversion and it can be called a non-centrosymmetric crystal. For this 

kind of crystals, although the above dispersion satisfies TRS, but does not satisfy the equality 

with respect to SIS and holds a different relation which is given by  

 

𝐸𝑠 (𝑘⃗ ) =⏟
𝑡⟶−𝑡

𝐸−𝑠 (−𝑘⃗ ) ≠ 𝐸−𝑠 (𝑘⃗ ),                                                     (1.34) 

 

(a) (b) 
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which causes additional spin-splitting at 𝑘⃗ ≠ 0  due to SIS breaking, even when external 

magnetic field is zero. This is commonly referred to as ‘𝑧𝑒𝑟o-field splitting’ shown in 

Fig.1.8. This is a left-right splitting along 𝑘-axis owing to removal of spin-degeneracies. 

From the above equation, one can notice that SIS is broken, but TRS is preserved and hence, 

Kramer’s doublets continue to exist at some 𝑘-points. 

 

 

 

 

TRS preserved + SIS breaking 

 

Fig.1.8 Bands split in non-centrosymmetric crystals even when 𝐵⃗ = 0. TRS is present. But SIS is 

broken. 

 

    We will mainly focus on SOI in non-centrosymmetric crystals. These types of SIS 

breaking phenomena can be induced as well as they can be intrinsically present in the crystal 

itself. One can understand it by looking at the Thomas term 𝐻𝑇 = −
𝑒ℏ

4𝑚2𝑐2
𝜎 . (∇⃗⃗ 𝜑 × 𝑝 ). Here, 

the quantity ∇⃗⃗ 𝜑, the gradient of crystal potential can either be made asymmetric externally or 

it can be intrinsically asymmetric in a non-centrosymmetric crystal, which leads to two 

different kinds of SOI in a crystal. One type of SIS breaking can be accomplished by forming 

a heterostructure by combining materials of different band gaps. As a result, this causes an 

asymmetry in the crystal structure specifically at the interface of the hetero junction which 

can be controlled externally. This is known as SIA.  

   The other type is an asymmetry which is intrinsically present in the bulk-crystal due to the 

lack of inversion centre. This is known as BIA. A very common example of this kind of 

crystal is Zinc-blende (ZnS) like semiconductor structure (shown in Fig.1.9) such as GaAs, 

GaSb, GaP, InAs, InSb, ZnSe, CdSe, CdTe etc. Also, SIA can be induced in these structures 

and that will cause additional spin-splitting.  
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Fig.1.9 Diagram of the non-centrosymmetric crystal structure of GaAs semiconductor (picture 

courtesy: internet). 

 

1.3.2.2.2.1     DRESSELHAUS SPIN -ORBIT INTERACTION  

 

   We first like to discuss a few aspects of the SOI due to BIA. The SOI arising due to BIA is 

commonly known as the DSOI. As discussed above, SOI induces splitting in bulk bands of 

GaAs semiconductor (Fig.1.6). But in Fig.1.6, the spin-degeneracy in LH and HH bands is 

still intact. Due to the DSOI present in non-centrosymmetric crystals, there will be an 

additional spin-splitting which will lift the spin-degeneracy of the LH and HH bands along 𝑘-

axis. This effect is more pronounced as we lower the dimension of the material because with 

lowering the dimension, the symmetry also gets reduced. We want to study this effect in a 2D 

QW structure where the electrons are confined along a particular direction giving rise to 

quantization effect in the energy bands. To incorporate the equal spin-splitting along ±𝑘-axis 

around 𝑘⃗ = 0 , one can add a linear spin-dependent term which is the lowest-order 

perturbative term to the Hamiltonian due to SOI in a 2DEG as 

 

𝐻 =
𝑝 2

2𝑚∗
𝕝 + 𝐻𝑆𝑂𝐶 =

𝑝 2

2𝑚∗
𝕝 +

1

ℏ
∑𝛽𝑖𝑗𝜎𝑖𝑝𝑗
𝑖𝑗

,                                  (1.35) 

 

where 𝑝  is the momentum operator, 𝛽𝑖𝑗  in the second term refers to a material-dependent 

pseudo tensor of rank 2, 𝕝 is the 2×2 identity matrix and 𝜎𝑖 is the Pauli matrix. This term can 

be expanded into symmetric and antisymmetric components which gives BIA and SIA 

respectively as  

 

∑𝛽𝑖𝑗𝜎𝑖𝑝𝑗
𝑖𝑗

=∑(𝛽𝑖𝑗
𝑠𝑦𝑚

{𝜎𝑖 , 𝑝𝑗} + 𝛽𝑖𝑗
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚

[𝜎𝑖, 𝑝𝑗])

𝑖𝑗

≡ 𝐻𝑆𝑂𝐶
𝐵𝐼𝐴 + 𝐻𝑆𝑂𝐶

𝑆𝐼𝐴  .           (1.36) 
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The 𝐻𝑆𝑂𝐶 term can also be expressed as following 

 

𝐻𝑆𝑂𝐶 =
ℏ

2
𝜎 . Ω⃗⃗ (𝑘⃗ ),                                                        (1.37) 

 

where Ω⃗⃗ (𝑘⃗ )  is the 𝑘⃗ -dependent effective magnetic field which can be interpreted as the 

effective Larmor frequency with which the spins precess. Therefore, the effective zero-field 

spin-splitting energy between up and down spin states becomes ℏ|Ω⃗⃗ (𝑘⃗ )|. One may also 

notice from Eq. (1.37), that for TRS to be preserved, Ω⃗⃗ (𝑘⃗ ) must satisfy Ω⃗⃗ (−𝑘⃗ ) = −Ω⃗⃗ (𝑘⃗ ). 

Now if SIS is also present in addition, then Ω⃗⃗ (−𝑘⃗ ) = Ω⃗⃗ (𝑘⃗ ) and hence, the only possible 

solution for Ω⃗⃗ (𝑘⃗ ) is Ω⃗⃗ (𝑘⃗ ) = 0. Therefore, for 𝐻𝑆𝑂𝐶 to be non-vanishing, SIS must be broken. 

Here, this term is obviously non-zero as there is no SIS for a non-centrosymmetric crystal, 

but TRS may be preserved as long as we do not apply any external magnetic field.  

   The BIA can be influenced by changing the width of the QW, charge carrier density or 

temperature. In 3D bulk structure, the SOI term can be expressed by the power series 

expansion of 𝑘⃗  as 

 

𝐻𝑆𝑂𝐶
3𝐷 = 𝛾𝑐[𝜎𝑥𝑘𝑥(𝑘𝑦

2 − 𝑘𝑧
2) + 𝜎𝑦𝑘𝑦(𝑘𝑧

2 − 𝑘𝑥
2) + 𝜎𝑧𝑘𝑧(𝑘𝑥

2 − 𝑘𝑦
2)],      (1.38) 

 

where 𝛾𝑐 is a material-dependent parameter. This Hamiltonian gives rise to the 𝑘3 terms in 

the bulk conduction band. The contribution of linear-𝑘 terms seen in the lower dimension (for 

e.g., in 2D) can be derived from the above Hamiltonian. Let us consider a 2DQW structure of 

a zinc-blende crystal which is an ideal candidate for the systems with BIA. One should note 

that in 2DQW, both linear-𝑘 and cubic-𝑘 terms may appear in the conduction band spectrum. 

But we can neglect the 𝑘3 -spin-splitting terms unless the temperature or the carrier 

concentration is too high. Therefore, we mainly focus on linear-𝑘 contribution to the spin-

splitting in low-temperature regime. To obtain this we need to consider the effect of quantum 

confinement. This allows us to make the following tricks considering the crystal growth 

direction along 𝑧-direction ([001]). We can replace 𝑘𝑧  and 𝑘𝑧
2  terms by their expectation 

values as: 〈𝑘𝑧〉 = 0  and 〈𝑘𝑧
2〉 ≠ 0  (as 〈𝑘𝑧

2〉 ≈ 𝜋2/𝑙𝑄𝑊
2 ). Also, we can disregard the terms 

containing 𝑘3-contributions such as 𝜎𝑥𝑘𝑥𝑘𝑦
2 and 𝜎𝑦𝑘𝑦𝑘𝑥

2 as we want to obtain the linear-𝑘 

SOI spectrum. By these approximations, the linear-DSOI Hamiltonian originates from BIA as  

 

𝐻𝐷
2𝐷 = 𝛾𝑐〈𝑘𝑧

2〉 (−𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦) = 𝛽𝐷(𝜎𝑦𝑘𝑦 − 𝜎𝑥𝑘𝑥),                           (1.39) 
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where 𝛽𝐷 is the coefficient of the DSOI. The Hamiltonian for a 2DQW in the presence of 

DSOI can be written as 

 

𝐻 =
𝑝 2

2𝑚∗
𝕝 +

𝛽𝐷
ℏ
(𝜎𝑦𝑝𝑦 − 𝜎𝑥𝑝𝑥),                                      (1.40) 

 

and the 2D eigenstate of this Hamiltonian is given by 

 

𝜓𝑘𝜎(𝑟 ) =
1

2𝜋ℏ√2
(

1

𝜎.
𝑘𝑥 − 𝑖𝑘𝑦

𝑘

)𝑒𝑖𝑘⃗ .𝑟 ,                             (1.41) 

 

where, 𝜎 is the spin-index: 𝜎 = ±1 and 𝑘⃗  stands for the 2D momentum vector: 𝑘⃗ = (𝑘𝑥, 𝑘𝑦). 

The energy spectrum of this system is given by 

 

𝐸±(𝑘) =
ℏ2

2𝑚∗
𝑘2 ± 𝛽𝐷𝑘,                                                      (1.42) 

 

where, 𝑘 is the magnitude of the 2D 𝑘⃗ -vector given by 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2. Hence, we can see a 

zero-field spin-splitting in the energy spectrum where, ‘+’ sign represents the energy of the 

up-spin branch and ‘−’ sign represents that of the down-spin branch. The energy dispersion 

and contours are shown in Fig.1.10.  

 

 

 

Fig.1.10 (a) Energy dispersion of the DSOI Hamiltonian (b) Contours of constant energy i.e., the 

Fermi surface containing two concentric circles of oppositely oriented up and down spins in 𝑘𝑥-𝑘𝑦 

plane (picture courtesy: Dissertation, V. Lechner, p. 13, 2012). 
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1.3.2.2.2.2    RASHBA SPIN-ORBIT INTERACTION  

 

   Next, we discuss the SOI due to SIA in a 2DQW structure. This type of SOI is usually 

referred as the RSOI. The very first experimental observation in this context was studied by 

Stein et al. [126] in 1983, where they observed a zero-field spin-splitting in the electron-spin-

resonance spectra of a 2D GaAs/AlxGa1-xAs heterostructure. In the same year, Störmer et al. 

[127] also reported by combined magneto-transport and cyclotron-resonance experiments that 

the spin-degeneracy is lifted for finite 𝑘⃗  which gives rise to two cyclotron masses in 2D 

GaAs/AlxGa1-xAs heterostructure. Next year, in 1984, Bychkov and Rashba [128] 

theoretically explained the lifting of two-fold spin degeneracy following the SIS-breaking 

theory developed by Rashba in 1960 [86].  

   Before deriving the RSOI Hamiltonian we rewrite the Thomas term (1.31) as 

 

𝐻𝑇 = −
𝑒ℏ

4𝑚2𝑐2
𝜎 . (∇⃗⃗ 𝜑 × 𝑝 ) = − 

𝑒ℏ

4𝑚
𝜎 . 𝐵𝑆𝑂(𝑝 ) = −

1

2
𝜇𝐵𝜎 . 𝐵𝑆𝑂(𝑝 ),                (1.43) 

 

where, 𝐵𝑆𝑂 is the momentum dependent effective magnetic field experienced by the electron 

in its rest frame:  

 

𝐵𝑆𝑂(𝑝 ) =
1

𝑚𝑐2
(∇⃗⃗ 𝜑 × 𝑝 ) = −

1

𝑚𝑐2
(𝑝 × ℇ⃗⃗ ),                      (1.44) 

 

and 𝜇𝐵 is the Bohr magneton which is given by 𝜇𝐵 = 𝑒ℏ/2𝑚. One can see that the potential, 

𝜑 appearing in the above Eq. (1.44) can be made asymmetric by forming a 2DQW structure 

shown in the above Fig.1.11. Here in this diagram, it can be clearly seen that at the interface 

the band-mixing is non-uniform which generates a non-spherically symmetric potential 

(triangular like with left sharp edge and right curved edge) in space and consequently a non-

zero electric field, ℇ⃗⃗  is produced inside the QW.    
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Fig.1.11 Structural inversion asymmetry in a 2DQW heterostructure. 

 

Let us consider that this electric field, ℇ⃗⃗ = −∇⃗⃗ 𝜑 is directed along the crystal growth direction 

𝑧̂, then the Thomas term (1.31) can be expressed as the RSOI Hamiltonian as 

 

𝐻𝑅 = −
𝑒ℏ

4𝑚2𝑐2
𝜎 . (∇⃗⃗ 𝜑 × 𝑝 )                                                                    

 

=
𝑒ℏℇ

4𝑚2𝑐2
𝑧̂. (𝜎 × 𝑝 )                                                                            

 

=
𝛼𝑅
ℏ
(𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥),                                                            (1.45) 

 

where 𝛼𝑅 denotes the coefficient of the RSOI given as 𝛼𝑅 = 𝑒ℏ
2ℇ/4𝑚2𝑐2. The above RSOI 

Hamiltonian is just the second term of Eq. (1.36) originating from SIA. One should note that 

if the asymmetric potential at the interface is formed keeping the sharp edge right and curved 

edge left, then the electric field ℇ𝑧̂ and hence the RSOI strength 𝛼𝑅 flips its sign. This is the 

consequence of the SIA in a 2DQW heterostructure. Importantly, the Rashba parameter 𝛼𝑅 

can be tuned externally by applying a gate voltage. 

The 2DQW Hamiltonian in the presence of the RSOI can be written as 

 

𝐻 =
𝑝 2

2𝑚∗
𝕝 +

𝛼𝑅
ℏ
(𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥).                                           (1.46) 
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The 2D eigenstates and energy spectrum of this Hamiltonian are respectively given by  

 

𝜓𝑘𝜎(𝑟 ) =
1

2𝜋ℏ√2
(

1

−𝜎.
𝑘𝑦 − 𝑖𝑘𝑥

𝑘

)𝑒𝑖𝑘⃗ .𝑟 ,                              (1.47) 

 

and 

𝐸±(𝑘) =
ℏ2

2𝑚∗
𝑘2 ± 𝛼𝑅𝑘 .                                                         (1.48) 

 

Here also we can see a zero-field spin-splitting in the energy spectrum for up (+) and down 

(−) spin states. The contour is shown in Fig.1.12. For each 𝑘, the spin-splitting due to RSOI 

is  ∆= 𝐸+(𝑘) − 𝐸−(𝑘) = 2𝛼𝑅𝑘 .   

 

 

 

Fig.1.12 Fermi contours of two concentric circles of two oppositely oriented spin states for RSOI. 

(Picture courtesy: Dissertation, V. Lechner, p. 13, 2012). 

 

In a 1D quantum wire, the 1D-RSOI Hamiltonian can be written as 

 

𝐻 =
𝑝 2

2𝑚∗
𝕝 −

𝛼𝑅
ℏ
𝜎𝑦𝑝𝑥.                                                             (1.49) 

 

The 1D eigenstates and energies are respectively given as 

 

𝜓𝑘𝑥𝜎(𝑥) =
1

√2𝜋ℏ√2
(
1
−𝑖𝜎

) 𝑒𝑖𝑘𝑥𝑥,                                          (1.50) 

 

𝐸±(𝑘𝑥) =
ℏ2

2𝑚∗
𝑘𝑥
2 ± 𝛼𝑅𝑘𝑥.                                                       (1.51) 
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If both the RSOI and DSOI are present in a 2DQW, such as a zinc-blende semiconductor, the 

Hamiltonian for such system can be written as 

 

𝐻 =
𝑝 2

2𝑚∗
𝕝 +

𝛼𝑅
ℏ
(𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥) +

𝛽𝐷
ℏ
(𝜎𝑦𝑝𝑦 − 𝜎𝑥𝑝𝑥).                    (1.52) 

 

The eigenstates of this Hamiltonian can be expressed as  

 

𝜓𝑘𝜎(𝑟 ) =
1

2𝜋ℏ√2
(

 

1

𝜎
𝛼𝑅(𝑘𝑦 − 𝑖𝑘𝑥) + 𝛽𝐷(𝑘𝑥 − 𝑖𝑘𝑦)

√(𝛼𝑅𝑘𝑥 − 𝛽𝐷𝑘𝑦)
2
+ (𝛼𝑅𝑘𝑦 − 𝛽𝐷𝑘𝑥)

2

)

 𝑒𝑖𝑘⃗ .𝑟 , (1.53) 

 

and the eigenenergies are given by  

 

𝐸±(𝑘) =
ℏ2

2𝑚∗
𝑘2 ±√(𝛼𝑅𝑘𝑥 − 𝛽𝐷𝑘𝑦)2 + (𝛼𝑅𝑘𝑦 − 𝛽𝐷𝑘𝑥)2 .        (1.54) 

 

In polar coordinates the eigenstates and the energy spectrum are respectively written as 

 

𝜓𝑘𝜎(𝑟 ) =
1

2𝜋ℏ√2
(
𝜎
𝑖𝑒𝑖𝜑

) 𝑒𝑖𝑘⃗ .𝑟 ,                                                             (1.55) 

 

𝐸𝜎(𝑘) =
ℏ2

2𝑚∗
[(𝑘 + 𝜎𝜁(𝜂, 𝜃, 𝜙𝑘⃗ ))

2

− (𝜁(𝜂, 𝜃, 𝜙𝑘⃗ ))
2

] ,                (1.56) 

 

where 𝜁(𝜂, 𝜃, 𝜙𝑘⃗ )  is the SOI dependent momentum and is given by 𝜁(𝜂, 𝜃, 𝜙𝑘⃗ ) =

𝜂√1 + sin 2𝜃 sin 2𝜙𝑘⃗   which describes an angular anisotropy of the spin-splitting where 𝜂 

and 𝜃 are respectively given by:  𝜂 = 𝑚∗√𝛼𝑅
2 + 𝛽𝐷

2/ℏ2  and 𝜃 = tan−1(𝛽𝐷/𝛼𝑅). One may 

notice the spinor phase 𝜑 in the wavefunction and energy is related to the RSOI and DSOI 

coefficients as:  𝜑 = 𝐴𝑟𝑔[𝛼𝑅 𝑒𝑥𝑝(𝑖𝜙𝑘⃗ ) + 𝑖𝛽𝐷 𝑒𝑥𝑝(−𝑖𝜙𝑘⃗ )].   

 

1.4   DISCRETE LATTICE MODELS  

 

   So far, we have discussed the interactions in continuum approximation. In reality, the 

discrete lattice models are more suitable for studying the interactions in LDS. The TBM is the 
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most studied models as a lattice model, where the electron is considered to be strongly bound 

to the individual atom and therefore the discrete nature of the lattice becomes important. If 

the wavelength of the electron is greater than a lattice constant, then electronic wavefunctions 

can overlap and as a result the electron can hop to the neighbouring atomic site and then the 

system behaves a metal. However, for such hopping to happen, the bands have to be partially 

filled. On the other hand, if the wavefunctions do not overlap, it is difficult for the electron to 

hop from one site to the other, giving rise to an insulating state of the system. This situation 

results when the electrons belong to completely filled or empty bands. Therefore, the TBM 

provides a suitable ground to explain the MIT in narrow-band systems. In this section, we 

present the models applicable to narrow-band systems under the TB approximation.    

    

1.4.1    THE HOLSTEIN MODEL  

 

Holstein formulated this model based on the TBM which can be written as 

 

𝐻 =  𝐻𝑒 +  𝐻𝑝ℎ +  𝐻𝑒−𝑝ℎ,                                                          (1.57) 

 

where, 

𝐻𝑒 =  𝜖0 ∑𝑐𝑖𝜎
†

𝑖𝜎

𝑐𝑖𝜎 −   𝑡 ∑  𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎  + ℎ. 𝑐. ,                       (1.58) 

 

𝐻𝑝ℎ = ℏ𝜔0 ∑(𝑏𝑖
†𝑏𝑖  +  

1

2
 )

𝑖

,                                                  (1.59) 

 

𝐻𝑒−𝑝 = g1∑𝑛𝑖𝜎(𝑏𝑖 +  𝑏𝑖
†)

𝑖𝜎

.                                                     (1.60) 

 

In Eq. (1.58), the first term represents the total onsite energy, 𝜖0 being the on-site energy per 

site, 𝑐𝑖𝜎
†

(𝑐𝑖𝜎) being the creation (annihilation) operator of an electron at the 𝑖th site with the 

spin-index 𝜎, the second term is the nearest-neighbour (NN) hopping term, 𝑖 and 𝑗 being the 

nearest neighbours and 𝑡  the hopping amplitude. In Eq.(1.59), 𝑏𝑖
†

( 𝑏𝑖 ) is the creation 

(annihilation) operator for a phonon at the 𝑖th site with a dispersionless frequency 𝜔0.  In 

Eq.(1.60), 𝑛𝑖𝜎 (𝑐𝑖𝜎
† 𝑐𝑖𝜎) is the number operator for the electron at site 𝑖 with spin 𝜎, 𝑐𝑖 = (

𝑐𝑖↑
𝑐𝑖↓
) 

and g1 is the e-p coupling strength. 
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1.4.2 THE HUBBARD MODEL  

 

   In 1963, Hubbard used this model to study the electronic correlations in narrow-band 

systems [129, 130]. Around the same time, this model was proposed independently by 

Gutzwiller [131] and Kanamori [132] to study the ferromagnetism in transition metals. Later, 

Hubbard gave an improved solution which could predict that the lattice at half-filling (one 

electron per site) undergoes the Mott MIT which otherwise was understood to be always 

metallic according to the band theory. For the 1D HM, the exact ground state (GS) solution 

using the Bethe ansatz (BA) was first given by Lieb and Wu [133] which predicts the absence 

of the Mott MIT at a non-zero Hubbard strength, 𝑈. Later, Essler et al. [134] have obtained 

the complete solution of 1D HM using the BA. The total Hamiltonian of a solid comprises 

the kinetic energy (KE) and potential energy (PE) parts as 𝐻 = 𝐻𝑘𝑖𝑛 + 𝐻𝑝𝑜𝑡 , where the KE 

part contains electronic and ionic parts which is given as 𝐻𝑘𝑖𝑛 = 𝐻𝑘𝑖𝑛−𝑒 + 𝐻𝑘𝑖𝑛−𝑖𝑜𝑛, and the 

PE part contains the contributions from interaction between electrons, electrons and ions and 

ions which can be written as 𝐻𝑝𝑜𝑡 = 𝐻𝑒−𝑒 +𝐻𝑒−𝑖𝑜𝑛 + 𝐻𝑖𝑜𝑛−𝑖𝑜𝑛. In the limit of the BOA, the 

ionic motions can be neglected and one can write: 𝐻𝑘𝑖𝑛−𝑖𝑜𝑛 ≈ 0  and 𝐻𝑖𝑜𝑛−𝑖𝑜𝑛 ≈constant 

(negligibly small). The total Hamiltonian under these approximations takes the form as  

 

𝐻 = 𝐻𝑘𝑖𝑛−𝑒 + 𝐻𝑒−𝑖𝑜𝑛 + 𝐻𝑒−𝑒 = −
ℏ2

2𝑚
∑∇𝑗

2

𝑗

+∑∑𝑉(𝑅⃗ 𝑛 − 𝑟 𝑗)

𝑗𝑛

+𝐻𝑒−𝑒 ,        (1.61) 

 

where the first term represents the sum of the KEs of the electrons, and the second term 

represents the average potential acting on the 𝑗th electron created by the ions. Combining 

these two terms the above Hamiltonian looks like  

 

𝐻 =∑ℎ𝑗
𝑗

+𝐻𝑒−𝑒 ,                                                       (1.62) 

 

where, ℎ𝑗  represents the single electron operator which can be written as  

 

ℎ𝑗 = −
ℏ2

2𝑚
∇𝑗
2 +∑𝑉(𝑅⃗ 𝑛 − 𝑟 𝑗)

𝑛

.                               (1.63) 

 

In the second quantized notation the first term of the Eq. (1.62) can be expressed as  
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∑ℎ𝑗
𝑗

=∑〈𝑖𝜎| ℎ𝑗|𝑗𝜎〉

𝑖𝑗𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎,                                                  (1.64) 

 

where 〈𝑖𝜎| ℎ𝑗|𝑗𝜎〉 = ∫𝜙𝑖𝜎
† (𝑟 )ℎ𝑗𝜙𝑗𝜎(𝑟 ) = 𝑡𝑖𝑗, where 𝜙𝑖𝜎  is the localized Wannier wave 

function of the electron centred at the 𝑖th site with spin index σ denoting either the up-spin (↑) 

or the down-spin (↓) and 𝑡𝑖𝑗 is the amplitude of the overlap integral between any 𝑖th and 𝑗th 

sites. The e-e interaction can be represented as 

 

𝐻𝑒−𝑒 =
1

2
∑

𝑒2

|𝑟 𝑖 − 𝑟 𝑗|
𝑖≠𝑗

,                                                            (1.65) 

 

where 𝑟 𝑖 denotes the position of the electron at 𝑖th lattice site. In the second quantized notation 

the 𝐻𝑒−𝑒 can be expressed as  

 

𝐻𝑒−𝑒 =
1

2
∑ ∑ 〈𝑖𝜇, 𝑗𝜐 | 

𝑒2

|𝑟 − 𝑟 ′|
| 𝑘𝜎, 𝑙𝜏〉

𝜇𝜐𝜎𝜏𝑖,𝑗,𝑘,𝑙

𝑐𝑖𝜇
† 𝑐𝑗𝜐

† 𝑐𝑙𝜏𝑐𝑘𝜎 ,             (1.66) 

where, 

 

〈𝑖𝜇, 𝑗𝜐 | 
𝑒2

|𝑟 − 𝑟 ′|
| 𝑘𝜎, 𝑙𝜏〉 = 𝑒2∫

𝜙𝑖𝜇
† (𝑟 )𝜙𝑗𝜐

† (𝑟 ′)𝜙𝑙𝜏(𝑟 
′)𝜙𝑘𝜎(𝑟 )

|𝑟 − 𝑟 ′|
𝑑𝑟 𝑑𝑟 ′ = 𝑈𝑖𝑗𝑘𝑙.        (1.67) 

 

As these localized wavefunctions fall off exponentially, 𝑡𝑖𝑗 is most significant when 𝑖 and 𝑗 

are NN sites. Therefore, 𝑡𝑖𝑗 becomes 𝑡𝑖𝑗 = −𝑡 and ∑ ℎ𝑗𝑗  takes the following form  

 

∑ℎ𝑗
𝑗

= −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

,                                                                (1.68) 

 

where < 𝑖𝑗 >  denotes the NN hopping. For the same reason mentioned above, 𝑈𝑖𝑗𝑘𝑙  is 

expected to decrease rapidly as |𝑟 𝑖 − 𝑟 𝑗| increases. Therefore, the most valued contribution 

comes from the on-site term when 𝑖 = 𝑗 = 𝑘 = 𝑙. Then, 𝑈𝑖𝑗𝑘𝑙 becomes 𝑈𝑖𝑗𝑘𝑙 = 𝑈𝑖𝑖𝑖𝑖 ≡ 𝑈. So, 

𝐻𝑒−𝑒 can be written for the on-site Coulomb interaction as 

 

𝐻𝑒−𝑒 =
1

2
𝑈 ∑ 𝑐𝑖,−𝜎

† 𝑐𝑖,𝜎
† 𝑐𝑖,𝜎𝑐𝑖,−𝜎

𝑖𝜎,𝜎=↑,↓
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=
1

2
𝑈 ∑ 𝑐𝑖,−𝜎

† 𝑐𝑖,−𝜎𝑐𝑖,𝜎
† 𝑐𝑖,𝜎

𝑖𝜎,𝜎=↑,↓

                                                                

=
1

2
𝑈 [∑𝑐𝑖,↓

† 𝑐𝑖,↓𝑐𝑖,↑
† 𝑐𝑖,↑

𝑖

+∑𝑐𝑖,↑
† 𝑐𝑖,↑𝑐𝑖,↓

† 𝑐𝑖,↓
𝑖

]                                      

 

= 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

 ,                                                                           (1.69) 

 

where 𝑛𝑖𝜎  is the number operator for the electrons at the 𝑖 th site and is written as  𝑛𝑖𝜎 =

𝑐𝑖𝜎
† 𝑐𝑖𝜎. Combining Eqs. (1.68) and (1.69), we finally get the Hubbard Hamiltonian as  

 

𝐻 = −𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>𝜎

+ 𝑈∑𝑛𝑖↑𝑛𝑖↓
𝑖

.                                                  (1.70) 

 

1.4.3 PERSISTENT CURRENT IN A MESOSCOPIC RING AND 

GEOMETRIC PHASES  

 

   In mesoscopic physics, the system’s size is considered to be in the intermediate regime 

between the microscopic (atoms or molecules) objects and macroscopic ones, where the 

quantum coherence effects play a significant role. There exists a characteristic length 𝐿𝜙 over 

which the charge carrier can travel without the loss of their quantum phase (𝜙) coherence. 

This also corresponds to a finite phase breaking time 𝜏𝜙 . Therefore, the coherence is 

maintained over a length scale or a time scale 𝐿 < 𝐿𝜙 or 𝜏 < 𝜏𝜙 respectively. In mesoscopic 

devices, the phase coherence can be lost leading to a decoherence effect due to the scattering 

processes and high temperature. The typical time and length scale of mesoscopic 

semiconductor devices at a low temperature (sub-Kelvin) are of the order of picoseconds and 

micrometres respectively. Most of the promising mesoscopic effects are seen in LDS such as 

2DEG of semiconductor heterostructures (2DQW), 1D quantum wires and QDs. One of the 

most exciting phenomena in mesoscopic effects is A-B oscillations observed in conductance 

spectrum of a metallic QR [135]. Surprisingly, in a tiny 1D mesoscopic QR, the PCs can 

occur due to the A-B effect even if the ring is non-magnetic. The A-B effect is a quantum 

mechanical effect that arises when electrons move along two different paths of a closed 

contour (such as a QR) and a magnetic flux is made to pierce through the centre of the closed 

contour, then the magnetic field produces a phase (known as the Aharonov-Bohm phase) shift 
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in the wavefunction of the electrons. The phase difference between two paths is proportional 

to the magnetic flux enclosed by the QR and is given by 

 

Δ𝜙𝐴𝐵 =
𝑞

ℏ
∮𝐴 . 𝑑𝑙⃗⃗  ⃗ =

𝑞

ℏ
Φ,                                                         (1.71) 

 

where 𝐴  is the magnetic vector potential and Φ is the magnetic flux (A-B flux) enclosed by 

the QR. The A-B effect in a QR results from a gauge invariance of electromagnetic potential. 

Consider a particle moving through a region where 𝐵⃗ = 0,  𝐴 ≠ 0 and 𝑉 is the electrostatic 

potential. The SE for such case can be written as 

 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [

1

2𝑚
(
ℏ

𝑖
𝛻⃗ −

𝑞𝐴 

𝑐
)

2

+ 𝑉]𝜓.                                           (1.72) 

 

   Now applying a transformation 𝜓 = 𝑈𝜓0 = 𝑒
𝑖𝑔(𝑟 )𝜓0  where 𝑔(𝑟 ) =

𝑞

ℏ
∫  𝐴 (𝑟 ′). 𝑑𝑟⃗⃗⃗⃗ 
𝑟 

0
′  the 

above equation (1.72) can be transformed to  

 

𝑖ℏ
𝜕𝜓0
𝜕𝑡

= [−
ℏ

2𝑚

2

𝛻2 + 𝑉]𝜓0.                                                    (1.73) 

 

   We can see that under the transformation, as 𝜓 ⟶ 𝜓0, the vector potential 𝐴  is gone and 

the above SE (1.73) holds for the wavefunction 𝜓0. The phase factor 𝑔(𝑟 ) is analogous to the 

A-B phase 𝜙𝐴𝐵  which leads to quantum interference effects. To see how quantum 

interference effect gives rise to a current we consider a 1D TB-QR consisting of 𝑁 number of 

identical atomic sites as shown in the figure below (Fig.1.13). 

 

  

Fig.1.13 A 1D QR threaded by an A-B flux Φ. 

 

Fig.1.14 2D lattice hopping with Peierls phase 𝜃. 
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   Consider a 1D QR (in the TB scheme) with periodic boundary condition (PBC): |𝑁 + 1⟩ =

|1⟩  which allows the quantization of the momenta 𝑘 =
2𝜋𝑚

𝑁
, 𝑚 = 0,1,2, … ,𝑁 − 1 . The 

wavefunction 𝜓0  (solution for 𝐴 = 0 ) satisfies 𝜓0(𝜑 + 2𝜋) = 𝜓0(𝜑) , while the new 

wavefunction 𝜓 (𝐴 ≠ 0 solution) satisfies the twisted PBC as  

 

𝜓(𝜑 + 2𝜋) = 𝑒𝑖𝑁𝜃𝜓(𝜑) = 𝑒𝑖𝜙𝐴𝐵𝜓(𝜑) = 𝑒
𝑖
2𝜋Φ
Φ0 𝜓(𝜑),                     (1.74) 

 

where 𝜃 is the Peierls phase factor (PPF) which usually appears in the NN hopping term of a 

TB Hamiltonian of a crystal under the application of an external magnetic field 𝐵⃗  and is 

related to the A-B phase as 𝜙𝐴𝐵 =
2𝜋Φ

Φ0
= 𝑁𝜃, Φ being the A-B flux and Φ0 = ℎ𝑐/𝑒 which is 

the magnetic flux quantum. The hopping term in Eq. (1.58) modifies after the inclusion of the 

Peierls phase factor (without spin) as 

   

−𝑡 ∑ 𝑐𝑖
†𝑐𝑗

<𝑖𝑗>

⟶−𝑡 ∑ 𝑐𝑖
† (𝑒

𝑖 ∫ 𝐴 .𝑑𝑥⃗⃗⃗⃗  ⃗
𝑥⃗⃗ 𝑗

𝑥⃗⃗ 𝑖 ) 𝑐𝑗
<𝑖𝑗>

= −𝑡 ∑ 𝑐𝑖
†𝑒𝑖𝜃(𝑥 )𝑐𝑗

<𝑖𝑗>

,                           (1.75) 

 

where, 𝜃(𝑥 ) = 𝑒
𝑖 ∫ 𝐴 .𝑑𝑥⃗⃗⃗⃗  ⃗

𝑥⃗⃗ 𝑗

𝑥⃗⃗ 𝑖  is the PP which originates when the electron hops from the lattice 

point 𝑥 𝑖 to 𝑥 𝑗 and is proportional to 𝐴 . This phase factor directly determines the A-B phase 

𝜙𝐴𝐵  which is obtained by summing all the PPs over the closed path shown in Fig.1.14. 

Hence, for a 1D QR the A-B phase is the sum of PPs of 𝑁 lattice sites. Eq. (1.74) can be 

achieved by writing the TB Hamiltonian in terms of the PP as 

 

𝐻 = −𝑡 ∑  ( 𝑒𝑖𝜃 𝑐𝑖
†

<𝑖𝑗>

𝑐𝑗  + ℎ. 𝑐. ) = −𝑡 ∑  ( 𝑒𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑖

†

<𝑖𝑗>

𝑐𝑗  + ℎ. 𝑐. )                                     

 

= −𝑡 ∑  ( 𝑒
𝑖
2𝜋Φ
𝑁Φ0  𝑐𝑖

†

<𝑖𝑗>

𝑐𝑗  + ℎ. 𝑐. ),                       (1.76) 

 

 The TB energy for this Hamiltonian (1.76) is obtained as 

 

𝐸 = −2𝑡 cos (𝑘 −
2𝜋Φ

𝑁Φ0
),                                          (1.77) 
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The total PC (𝐼𝑃𝐶 ) in enclosed by the QR can be derived as follows. In the Heisenberg 

picture, the current at 𝑚th site can be defined as  

 

𝑑𝑛𝑚
𝑑𝑡

= −
𝑖

ℏ
[𝑛𝑚, 𝐻],                                                      (1.78) 

 

where 𝑛𝑚  is the number operator of the electron at 𝑚 th site of the QR. Calculating the 

commutation relation, Eq. (1.78) is expressed as 

 

𝑑𝑛𝑚
𝑑𝑡

=
𝑖𝑡

ℏ
(𝑒𝑖

𝜙𝐴𝐵
𝑁  𝑐𝑚

† 𝑐𝑚+1 − 𝑒
−𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑚+1

† 𝑐𝑚 − 𝑒
𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑚−1

† 𝑐𝑚 + 𝑒
−𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑚

† 𝑐𝑚−1).  (1.79) 

 

The continuity equation for 𝑛𝑚 is given in terms of particle current 𝑗𝑚 as  

 

𝑑𝑛𝑚
𝑑𝑡

= −(𝑗𝑚 − 𝑗𝑚−1),                                                   (1.80) 

 

Comparing Eqs. (1.79) and (1.80), we can write   

 

𝑗𝑚 = −
𝑖𝑡

ℏ
(𝑒𝑖

𝜙𝐴𝐵
𝑁  𝑐𝑚

† 𝑐𝑚+1 − 𝑒
−𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑚+1

† 𝑐𝑚),         (1.81) 

 

The total particle current can be obtained as 

 

𝐽 =
1

𝑁
∑ 𝑗𝑚

𝑁

𝑚=1

= −
𝑖𝑡

𝑁ℏ
∑ (𝑒𝑖

𝜙𝐴𝐵
𝑁  𝑐𝑚

† 𝑐𝑚+1 − 𝑒
−𝑖
𝜙𝐴𝐵
𝑁  𝑐𝑚+1

† 𝑐𝑚)

𝑁−1

𝑚=0

=
𝜕𝐻

𝜕𝜙𝐴𝐵
=
Φ0

2𝜋

𝜕𝐻

𝜕Φ
.    (1.82) 

 

For the electric current we can write 𝐽𝑒 = −𝑒𝐽. Therefore, in stationary state the total PC can 

be calculated as 

 

𝐼𝑃𝐶 = −
Φ0

2𝜋
〈𝜓 |

𝜕𝐻

𝜕Φ
|𝜓〉 = −

Φ0

2𝜋

𝜕𝐸

𝜕Φ
 .                                      (1.83) 

 

Therefore, both the energy and current are periodic in A-B flux Φ with period Φ0. 
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1.4.4 SPIN-ORBIT INTERACTIONS IN A QUANTUM RING  

 

   The Rashba and Dresselhaus SOIs in a 1D QR can be incorporated in a TB Hamiltonian as 

𝐻 = 𝐻0 + 𝐻𝑆𝑂, where 𝐻0 represents the TB Hamiltonian (without SOI) and 𝐻𝑆𝑂 is the SO 

Hamiltonian.  𝐻0 and 𝐻𝑆𝑂 are given by 

 

𝐻0 = −𝑡∑  ( 𝑐𝑖
†

𝑖

𝑐𝑖+1  + ℎ. 𝑐. ),                                                         (1.84) 

 

𝐻𝑆𝑂 = −𝑖𝛼𝑅 ∑  [𝑐𝑖
†(𝜎𝑥 𝑐𝑜𝑠 𝜑𝑖,𝑖+1

𝑖

+ 𝜎𝑦 𝑠𝑖𝑛 𝜑𝑖,𝑖+1) 𝑐𝑖+1 + ℎ. 𝑐. ]                           

 

+𝑖𝛽𝐷 ∑  [𝑐𝑖
†(𝜎𝑦 𝑐𝑜𝑠 𝜑𝑖,𝑖+1

𝑖

+ 𝜎𝑥 𝑠𝑖𝑛 𝜑𝑖,𝑖+1) 𝑐𝑖+1 + ℎ. 𝑐. ],              (1.85) 

 

where 𝜑  is the azimuthal coordinate of the ring: 𝜑𝑖,𝑖+1 =
𝜑𝑖+𝜑𝑖+1

2
 where 𝜑𝑖 =

2𝜋(𝑖−1)

𝑁
, 𝑖 =

1,2,3, …𝑁, 𝛼𝑅 and 𝛽𝐷 are respectively the strengths of RSOI and DSOI. Now, we define a 

unitary operator: 𝒰 = (
𝜎𝑥+𝜎𝑦

2
)𝜎𝑧 which transforms the Pauli matrices as 

 

𝒰𝜎𝑥𝒰
† = −𝜎𝑦, 𝒰𝜎𝑦𝒰

† = −𝜎𝑥, 𝒰𝜎𝑧𝒰
† = −𝜎𝑧 .                            (1.86) 

 

   The total Hamiltonian after employing the unitary transformation transforms as 

 

𝐻̃ = 𝒰𝐻𝒰† = 𝒰𝐻0𝒰
† +𝒰𝐻𝑆𝑂𝒰

†                                                                          
 

= −𝑡∑  (𝑐̃𝑖
†

𝑖

𝑐̃𝑖+1  + ℎ. 𝑐. )                                                                                    

 

+𝑖𝛼𝑅 ∑  [𝑐̃𝑖
†(𝜎𝑦 𝑐𝑜𝑠 𝜑𝑖,𝑖+1

𝑖

+ 𝜎𝑥 𝑠𝑖𝑛 𝜑𝑖,𝑖+1) 𝑐̃𝑖+1 + ℎ. 𝑐. ]                         

 

−𝑖𝛽𝐷 ∑  [ 𝑐̃𝑖
†(𝜎𝑥 𝑐𝑜𝑠 𝜑𝑖,𝑖+1

𝑖

+ 𝜎𝑦 𝑠𝑖𝑛 𝜑𝑖,𝑖+1) 𝑐̃𝑖+1 + ℎ. 𝑐. ],           (1.87) 

 

where 𝑐̃𝑖 = 𝒰𝑐𝑖 and 𝑐̃𝑖
† = 𝑐𝑖

†𝒰†. By comparing Eqs. (1.85) and (1.87), we see that the RSOI 

and DSOI strengths are interchanged in the new basis. Therefore, the RSOI and DSOI are 
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unitary conjugate to each other. Interestingly, if 𝛼𝑅 = 𝛽𝐷, 𝐻 and 𝐻̃ become identical which 

means the total Hamiltonian is invariant if the strengths of RSOI and DSOI become equal.  

 

1.5   MOLECULAR JUNCTION TRANSISTOR:  SMT  MODEL 

WITH DISSIPATION  

 

   Molecular junction transistors are interesting for their potential applications in single 

electron charge and spin transport, high gain switching devices, spintronics applications, 

quantum interference phenomena, phenomena related to Kondo effect and Coulomb 

blockade, molecular superconducting devices and so on. In this thesis, we wish to study the 

effect of the interactions discussed earlier and the interplay between these interactions on the 

quantum transport in an SMT system. As shown in Fig.1.15, an SMT system contains at its 

centre a molecule or a QD connected to two conducting leads which act as a source (S) and a 

drain (D). The S-QD-D system is placed on a substrate to which is attached a gate. The 

electrons in S and D can be treated as free electrons with continuous momentum states. The 

central QD contains discrete energy levels and so the QD electrons are described by localized 

states. Because of the application of a bias voltage, electrons from S can travel to D by 

tunnelling through QD which can also be controlled by the gate voltage. The tunneling of 

electrons from S to QD and QD to D and vice versa can be described by a hybridization term. 

The central QD can exhibit e-p, Hubbard and SO interactions and the QD-phonons can 

interact with the substrate phonons which will produce quantum dissipations. The model 

Hamiltonian for such a system can be described by the Anderson-Holstein-Caldeira-Leggett 

(AHCL) Hamiltonian as 

 

 

 

Fig.1.15 Schematic representation of an SMT device. 
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𝐻 = 𝐻𝑆,𝐷 +𝐻𝑄𝐷 + 𝐻𝑇 + 𝐻𝑉 ,                                               (1.88) 

 

where,  

 𝐻𝑆,𝐷  = ∑ 𝜀𝑘
𝑘𝜎∈𝑆,𝐷

𝑛𝑘𝜎  ,                                                                                                             (1.89) 

 

 𝐻QD =∑(𝜀𝑑
𝑑𝜎

− 𝑒𝑉𝑔)𝑛𝑑𝜎 +∑𝑈𝑛𝑑↑𝑛𝑑,↓
𝑑

+ (
𝑝0
2

2𝑚0
+
1

2
𝑚0𝜔0

2𝑥0
2) +  𝑔∑𝑛𝑑𝜎

𝑑𝜎

𝑥0, (1.90) 

 

 𝐻𝑇 =∑[𝑉𝑘(𝑐𝑘𝑆,𝜎
† 𝑐𝑑𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑑𝜎) + ℎ. 𝑐]

𝑘𝑑𝜎

,                                                                       (1.91) 

 

  𝐻𝑉 = 𝐻𝐵𝑂 + 𝐻𝑄𝐷−𝐵 ≡∑[
𝑝𝑖
2

2𝑚𝑖
+ 
1

2
𝑚𝑖𝜔𝑖

2𝑥𝑖
2 ]

𝑁

𝑖=1

+∑𝛽𝑖

𝑁

𝑖=1

𝑥𝑖𝑥0 .                                     (1.92) 

 

   In Eq. (1.89), 𝑛𝑘𝜎(= 𝑐𝑘𝜎
† 𝑐𝑘𝜎) denotes the number operator for free electrons in S and D 

with momentum 𝒌 and spin 𝜎. In QD Hamiltonian (𝐻𝑄𝐷) (Eq.1.90), 𝑛𝑑𝜎(= 𝑐𝑑𝜎
† 𝑐𝑑𝜎) is the 

number operator for the QD electrons in the single localized energy level 𝜀𝑑, 𝑈 refers to the 

onsite correlation energy.  The third term of 𝐻𝑄𝐷 is the Hamiltonian for the local lattice mode 

of QD, where  (𝑥0, 𝑝0) are the coordinate and the corresponding canonical momentum of the 

QD oscillator with mass 𝑚0 and frequency 𝜔0. The fourth term represents the e-p coupling of 

the QD, where 𝑔 gives the strength of the coupling between the electrons and phonon of the 

QD. The tunnelling Hamiltonian (1.91) gives tunneling of electrons from S to QD and QD to 

D, where 𝑉𝑘  refers to the hybridization strength of the coupling between the QD and the 

leads. The Hamiltonian (1.92) is the vibrational part of the SMT system where 𝑥𝑖, 𝑝𝑖, 𝑚𝑖 and 

𝜔𝑖 denote respectively the position, momentum, mass and frequency of the 𝑖th bath-oscillator 

and 𝛽𝑖 gives the measure of coupling strength between the QD phonon and the 𝑖 − 𝑡ℎ bath 

phonon. This term generates dissipation in the QD phonon dynamics which essentially 

increases the tunnelling current as shown by Raju and Chatterjee [116]. 

 

1.6   OUTLINE OF THE THESIS  

 

   The thesis is organized as follows. 
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   In Chapter 1 of the thesis, we present the motivations behind the work and introduce the 

continuum and discrete models used in this thesis and the basic formulations of the 

interactions mentioned above. In the continuum model, we describe the Fröhlich polaron, 

bound polaron and magnetopolaron and also Rashba and Dresselhaus SOIs. In the discrete 

model, we present the Hubbard and Holstein models for a narrow-band system. Next, we 

discuss how PC can be generated in a QR. We introduce the Hamiltonians for RSOI and 

DSOI in a QR. Finally, we present the model Hamiltonian for an SMT system and discuss the 

different processes involved in this system.  

   In Chapter 2, we investigate the role of RSO interaction on the polaron Zeeman effect in a 

two-dimensional parabolic QD. We formulate the system Hamiltonian using the well-known 

Fröhlich model and calculate the polaronic corrections to the energy states of the QD by 

employing an all-coupling Lee-Low-Pines-Huybrechts variational method and the second-

order Raleigh-Schrödinger perturbation theory. It is found that the e-p and RSO interactions 

influence each other in the presence of a magnetic field, while this interplay is missing in the 

absence of the field.  

   Chapter 3 of the thesis describes the combined effect of both the SOIs on the spin-

transport across a metal-semiconductor interface in the presence of a delta-function scatterer 

at the interface. The tunnelling current, conductance and spin-polarization are calculated 

using appropriate boundary conditions and the effects of RSOI and DSOI on the reflected and 

refracted spin-resolved currents and spin polarizations are studied. It is shown that the spin-

polarization is greater when both the SOIs are present as compared to when only RSOI is 

present. The infinite potential across the interface reduces the tunnelling current and 

conductance and also makes the reflected spin-polarization zero. However, the refracted spin-

polarization strongly depends on SOIs strength. We would like to mention that the delta 

potential does not have any effect on the magnitude of spin filtering.  

   In Chapter 4, we study the effect of DSOI on the persistent charge and spin currents in a 

one-dimensional mesoscopic QR threaded by an A-B flux in the presence of e-e and e-p 

interactions. In such a narrow-band system, we have a small polaron which is best described 

by the Holstein model and the e-e interactions can be treated by the Hubbard model. We 

therefore use the Holstein-Hubbard-Dresselhaus model to study the system. After decoupling 

the e-p interaction by the much-celebrated Lang-Firsov transformation and eliminating the 

DSOI by a unitary transformation, we treat the Hubbard correlation at the Hartree-Fock 

mean-field level and finally obtain the energy and current using a self-consistent numerical 

diagonalization method. It is observed that the DSOI enhances both the charge and spin 

currents and hence the spin-polarization significantly, while the e-p interaction reduces them. 
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As the mesoscopic phenomena strongly depend on the electronic number density and 

temperature, the effect of chemical potential and temperature have also been studied. 

   Molecular junction systems such as a single molecular transistor (SMT) show potential 

applications in nano-electronic, nano-photonic and spintronics devices. In Chapter 5, we 

consider a three-terminal device configured as a metal-QD-metal structure placed on an 

insulating substrate and investigate finite-temperature nonequilibrium quantum magneto-

transport in the presence of local e-p and onsite Hubbard interactions and quantum 

dissipation. Following the approach of Raju and Chatterjee [116], the interaction between 

substrate phonons and the local QD phonon has been incorporated by the linear Caldeira-

Leggett model. This interaction is partially eliminated by a unitary transformation which 

produces a dissipative effect in the phonon frequency which in turn influences the tunnelling 

current. The e-p interaction is dealt with the Lang-Firsov transformation. The transport 

properties such as spectral function, tunnelling current, conductance and spin-polarization are 

finally calculated using the nonequilibrium Keldysh Green function technique. It is observed 

that a magnetic field produces a spin-filtering effect in spectral function, tunnelling current 

and conductance while the temperature diminishes the spin-filtering effect.  

   In Chapter 6, we study the RSOI-induced quantum transport through a QD embedded in a 

two-arm quantum loop of a single molecular transistor at finite temperature in the presence of 

e-p and Hubbard interactions, an external magnetic field and quantum dissipation. The 

electrons from the source can tunnel to the drain following two paths, one through the arm of 

the loop that contains the QD and the other through the other arm of the loop that does not 

contain any QD. It is shown that in the absence of the magnetic field, the Rashba coupling 

alone separates the spin-up and spin-down currents which are equal and opposite with respect 

to the RSOI phase, causing a zero-field spin-polarization. Although, the spin-up and spin-

down currents behave differently in the presence of a magnetic field. We have also studied 

the combined effects of polaronic and SO interactions on the transport properties in different 

regimes of temperature and field. There exists a critical value of e-e interaction at which the 

gap between the spin-up and spin-down currents becomes maximum, causing a sharp 

discontinuity in the conductance spectrum. The polaronic interaction enhances the zero-field 

spin-polarization substantially. It is important to mention that the spin-polarization can be 

manipulated by tuning the Rashba strength, magnetic field and temperature. In this study, we 

have also analyzed the condition required to achieve the maximum spin-polarization for a 

particular strength of the RSOI and magnetic field at zero temperature in the SMT system. 

Our results may find important applications in the fabrication of efficient spin-filtering 

devices in which the spin-filtering can be tuned by controlling the external magnetic field, 

RSOI and the e-p interaction in different temperature regimes. 



 

 
 

43   Ch.1| Introduction 

   Finally, in Chapter 7, we summarize and conclude our findings. 
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CHAPTER 2 

ROLE OF RASHBA SPIN-ORBIT INTERACTION ON 

POLARON ZEEMAN EFFECT IN A TWO-DIMENSIONAL 

QUANTUM DOT WITH PARABOLIC CONFINEMENT 

 
 
 

ABSTRACT 

 

We calculate the energies of the ground and the first excited states of a free polaron and that 

of a polaron bound to a Coulomb impurity in a QD with harmonic confinement in the 

presence of RSOI by employing the variation theory of Lee, Low and Pines as modified by 

Huybrechts for an all-coupling range of the e-p interaction and arbitrary confinement length. 

We show that in both cases, the RSOI removes the two-fold spin degeneracy of the first-

excited states even in the absence of any applied magnetic field, though the ground state does 

not show any such spin splitting. The self-energy corrections due to the polaronic effect are 

however not affected by RSOI. We also investigate the combined effect of Rashba and 

polaronic interactions in the presence of an external magnetic field using the Rayleigh-

Schrödinger perturbation theory. Application of our results to GaAs and CdS QDs shows that 

the suppression of the phonon-induced size-dependent Zeeman splitting in a QD is reduced 

by RSOI. 
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2.1   INTRODUCTION 

 

   Of late, the study of spin-physics in LDS has drawn tremendous attention for its application 

in the very important and emerging field of spintronics where the transport and other 

properties of the micro-electronic devices can be tuned by using the phenomenon of spin-

polarization [1-6].  The spin polarization is caused by RSOI [7-10] which originates when the 

confinement potential of the nanostructures lacks the symmetry under the operation of 

structural inversion [11-12]. RSOI removes the spin-degeneracy of the electrons giving rise 

to spin-splitting which is tuneable by an external field [13-14].  In recent times, both 

theoretical and experimental studies have been carried out to explore the effects of SOI in 

quantum systems [15-31].  

   The coupling between electrons and phonons has been shown to have a key contribution in 

understanding electronic and several other important properties of quantum structures [32-40] 

and therefore it would be naturally interesting to investigate the combined effect of e-p 

interaction and SOI in QDs. Attempts have already been made in this direction, but to our 

knowledge, these studies seem to be restricted only to either weak or strong e-p coupling 

regime [41-55]. In the present work, we wish to determine the GS and the first excited state 

(ES) energies of an electron moving in a 2D PQD for all-e-p coupling in the presence of 

RSOI employing the LLPH method [32-39, 56-59]. We also extend our study to the case of a 

bound polaron. Imperfections being a rule rather than the exception, this study is more 

realistic and thus worth investigation. Finally, we examine the combined effect of RSOI and 

e-p interaction on the electron energies in a 2D PQD placed in a magnetic field applied 

perpendicular to the QD plane using the second-order RSPT. Our main goal here is to 

investigate the interplay between the RSOI and e-p interaction in the context of phonon-

induced Zeeman suppression in a polar QD. We consider two specific materials namely, 

GaAs and CdS QDs to which we apply our theory for the sake of concreteness. We observe 

that RSOI enhances the Zeeman splitting and thus opposes the suppressive effect of polaronic 

interaction.  

 

2.2   ANALYTICAL MODELS AND FORMULATIONS  

 

   In this section, we formulate the model Hamiltonian and discuss the analytical techniques 

that we have used. This section comprises two parts. First, we formulate the model of a 2D 

PQD in the presence of e-p interaction and RSOI and calculate the GS and ES energies of the 

system and the polaronic corrections to these energies using LLPH all-coupling variational 
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method in the absence of magnetic field. Next, we consider the system in the presence of an 

external magnetic field and calculate the polaronic corrections to the GS energy using RSPT. 

We also calculate the effective Zeeman splitting modified by the RSOI to see the interplay 

between e-p interaction and RSOI.    

 

2.2.1 2D  POLARON IN THE PRESENCE OF RSOI  WITH 

PARABOLIC CONFINEMENT  

 

   We consider an electron of band mass 𝑚∗ in a 2D PQD in the presence of RSOI. The 

electron also interacts with the longitudinal optical (LO) phonons of dispersionless frequency 

𝜔0 . We shall work in FU [32-39,60] in which ℏ = 𝑚∗ = 𝜔0 = 1.   The system can be 

modelled by the Hamiltonian in FU as 

 

𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝,                                                           (2.1) 

 

where the electronic Hamiltonian 𝐻𝑒 , the phonon Hamiltonian 𝐻𝑝  and the e-p interaction 

Hamiltonian 𝐻𝑒𝑝 are given by  

 

𝐻𝑒 = −
1

2
(
1

𝜌

𝜕

𝜕𝜌
+
𝜕2

𝜕𝜌2
+
1

𝜌2
𝜕2

𝜕𝜑2
) 𝐼 + 𝑉𝑐(𝜌)𝐼 +  𝛼𝑅 𝜎𝑧

𝑑𝑉𝑐(𝜌)

𝑑𝜌
(−

𝑖

𝜌

𝜕

𝜕𝜑
),     (2.2) 

 

𝐻𝑝 =∑𝑏𝑞⃗ 
†𝑏𝑞⃗ 

𝑞⃗ 

 ,                                                                     (2.3) 

 

𝐻𝑒𝑝 =∑(𝜉𝑞⃗  𝑒
−𝑖𝑞⃗ .𝜌⃗⃗ 

𝑞⃗ 

𝑏𝑞⃗ 
† + ℎ. 𝑐. ),                                         (2.4) 

                

where everything is dimensionless and 𝐼 is 2D unit matrix. In Eq. (2.1), 𝝆 (𝜌, 𝜑)  refers to the 

electron position vector, 𝑉𝑐(𝜌)  is the confinement potential of the QD given by 𝑉𝑐(𝜌) =

1

2
𝜔ℎ

2𝜌2, 𝜔ℎ being the frequency of the harmonic dot, and the third term describes RSOI,  𝛼𝑅 

denoting the RSOI coefficient and 𝜎𝑧 the z-component of the Pauli spin matrix. In Eq. (2.2),  

𝑏𝒒
†
 (𝑏𝒒) stands for the creation (annihilation) operator of a LO phonon of wave vector 𝒒 and 

frequency 𝜔0. In Eq. (2.3), 𝜉𝑞 is the e-p interaction coefficient given by:|𝜉𝑞⃗ |
2 = (√2𝜋/𝑉𝑞)𝛼, 

𝑉  being the QD area and 𝛼  the electron-phonon (e-p) coupling constant given by 𝛼 =
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(𝑒2/2ℏ𝜔0)(2𝑚𝜔0/ℏ)
1/2(𝜖∞

−1 − 𝜖0
−1)  [32-39]. We employ the LLPH technique and 

prescribe the variational function as 

 

|𝛹⟩ = 𝑈1𝑈2|0⟩|𝜓
𝑣⟩,                                                                         (2.5) 

 

where the LLPH transformations 𝑈1 and 𝑈2 are respectively given by 

 

𝑈1 = 𝑒𝑆1 = exp [– 𝑖𝑎∑(𝑞 . 𝜌 )

𝑞⃗ 

𝑏𝑞⃗ 
†𝑏𝑞⃗ ],                                        (2.6) 

 

𝑈2 = 𝑒
𝑆2 = exp [ ∑(𝑓𝑞⃗ 

𝑞⃗ 

𝑏𝑞⃗ 
† − 𝑓𝑞⃗ 

∗𝑏𝑞⃗ )].                                        (2.7) 

 

|0⟩ is the zero-phonon state. The choice of the electronic wavefunction |ψ𝑣⟩ depends on the 

binding of the electron. As the confinement potential is a harmonic oscillator potential and 

the system has a cylindrical symmetry, we choose the following form of the trial 

wavefunction 

 

|𝜓𝑣⟩ = (
𝜇2|𝑚|+2

𝜋|𝑚|!
)

1
2

𝑒𝑖𝑚𝜑−
𝜇2𝜌2

2 𝜌|𝑚|𝜒𝜎,                                        (2.8) 

 

where 𝜒𝜎 = ( 
1
0
 ) or ( 

0
1
 ),  𝑚 = 0,±1, ±2,……, and 𝑎, 𝑓𝑞⃗  and 𝜇  as variational parameters. 

The LLPH energy of the 2D PQD is calculated as following  

 

𝐸𝐿𝐿𝑃𝐻 = 〈𝛹|𝐻|𝛹〉,                                                                          (2.9) 

  

Where the wavefunction |Ψ⟩ is given by Eq. (2.5). Therefore, 𝐸𝐿𝐿𝑃𝐻 can be expressed as 

 

𝐸𝐿𝐿𝑃𝐻 = 〈𝜓𝑣| 〈0|𝐻̃̃|0〉 |𝜓𝑣〉,                                                         (2.10) 

 

where 𝐻̃̃ is calculated as 𝐻̃̃ = 𝑈2
−1𝑈1

−1𝐻𝑈1𝑈2 which in other words can be calculated by the 

Baker-Campbell-Hausdorff formula as  
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𝐻̃̃ = 𝑒𝑆𝐻𝑒−𝑆 = 𝐻 + [𝑆, 𝐻] +
1

2!
[𝑆, [𝑆, 𝐻]] + ⋯.                              (2.11) 

 

Therefore, the transformed Hamiltonian 𝐻̃̃ is obtained as 

 

𝐻̃̃ = 𝑒−𝑆2𝑒−𝑆1𝐻𝑒𝑆1𝑒𝑆2                                                                                                     

 

     =  
𝑝 2

2
+
1

2
𝜔ℎ

2𝜌2 +∑(1 +
𝑎2𝑞2

2
− 𝑎𝑝 . 𝑞 )

𝑞⃗ 

(𝑏𝑞⃗ 
† + 𝑓𝑞⃗ 

∗) (𝑏𝑞⃗ + 𝑓𝑞⃗ )               

 

 +
𝑎2

2
∑(𝑞 . 𝑞 ′) (𝑏𝑞⃗ 

† + 𝑓𝑞⃗ 
∗) (𝑏

𝑞⃗ ′
† + 𝑓𝑞⃗ ′

∗ )

𝑞⃗ ,𝑞⃗ ′

(𝑏𝑞⃗ + 𝑓𝑞⃗ )(𝑏𝑞⃗ ′ + 𝑓𝑞⃗ ′)                         

 

+∑(𝜉𝑞⃗ 
𝑞⃗ 

 𝑒−(1−𝑎)𝑞⃗ .𝜌⃗⃗ (𝑏𝑞⃗ 
† + 𝑓𝑞⃗ 

∗) + ℎ. 𝑐. ) + 𝛼𝑅𝜎𝑧
𝑑𝑉𝑐(𝜌)

𝑑𝜌
(−

𝑖

𝜌

𝜕

𝜕𝜑
).    (2.12) 

                                     

   The zero-phonon average of the transformed Hamiltonian is written as 

 

〈0|𝐻̃̃|0〉 = −
1

2
[
1

𝜌

𝜕

𝜕𝜌
+
𝜕2

𝜕𝜌2
+
1

𝜌2
𝜕2

𝜕𝜑2
] +

1

2
𝜔ℎ

2𝜌2                                                                   

 

+∑[1 +
𝑎2𝑞2

2
+ 𝑖𝑎 𝛻⃗ . 𝑞  ] |𝑓𝑞⃗ |

2

𝑞⃗ 

+
𝑎2

2
∑𝑞 . 𝑞 ′|𝑓𝑞⃗ |

2
|𝑓𝑞⃗ ′|

2

𝑞⃗ ,𝑞⃗ ′

                               

 

+∑(𝜉𝑞⃗ 
𝑞⃗ 

 𝑒−(1−𝑎)𝑞⃗ .𝜌⃗⃗ 𝑓𝑞⃗ 
∗ + ℎ. 𝑐. ) + 𝛼𝑅𝜎𝑧

𝑑𝑉𝑐(𝜌)

𝑑𝜌
(−

𝑖

𝜌

𝜕

𝜕𝜑
).                   (2.13) 

 

   The energy 𝐸𝐿𝐿𝑃𝐻  is then calculated by taking the expectation with respect to the trial 

wavefunction |ψ𝑣⟩ as 

 

𝐸𝐿𝐿𝑃𝐻 = 〈𝜓𝑣| 〈0 |𝐻̃̃| 0〉 |𝜓𝑣〉                                                                                             

 

=
1

2
𝜇2(1 + |𝑚|) +

1

2

𝜔ℎ
2

𝜇2
(1 + |𝑚|)                                                                  
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 +∑[1 +
𝑎2𝑞2

2
+ 𝑖𝑎 〈ψ𝑣|𝛻⃗ |ψ𝑣〉. 𝑞 ] |𝑓𝑞⃗ |

2

𝑞⃗ 

+
𝑎2

2
∑𝑞 . 𝑞 ′|𝑓𝑞⃗ |

2
|𝑓𝑞⃗ ′|

2

𝑞⃗ ,𝑞⃗ ′

           

  

  +∑[𝜉𝑞⃗ 〈ψ
𝑣|𝑒−𝑖(1−𝑎)𝑞 ⃗⃗  ⃗.𝜌⃗⃗ |ψ𝑣〉 𝑓𝑞⃗ 

∗ + ℎ. 𝑐. ]

𝑞⃗ 

± 𝛼𝑅𝑚𝜔ℎ
2.                     (2.14) 

 

   Next, we use symmetric QD approximation: ∑ 𝑞 𝑞⃗ |𝑓𝑞⃗ |
2
= 0 . Under this approximation 

𝐸𝐿𝐿𝑃𝐻 becomes 

𝐸𝐿𝐿𝑃𝐻 =
1

2
𝜇2(1 + |𝑚|) +

1

2

𝜔ℎ
2

𝜇2
(1 + |𝑚|) +∑  [1 +  

𝑎2𝑞2

2
]

𝑞⃗ 

 |𝑓𝑞⃗ |
2
                 

 

+∑[𝜉𝑞⃗ 𝜆𝑞⃗ 
∗𝑓𝑞⃗ 

∗ + ℎ. 𝑐.  ] ± 𝛼𝑅𝑚𝜔ℎ
2

𝑞⃗ 

,                                                  (2.15) 

 

where 𝜆𝑞⃗  is given by 

 

𝜆𝑞⃗ = 〈𝜓𝑣|𝑒𝑖(1−𝑎)𝑞 ⃗⃗  ⃗.𝜌⃗⃗ |𝜓𝑣〉.                                                   (2.16) 

 

   To calculate 𝐸𝐿𝐿𝑃𝐻  we must minimize 𝐸𝐿𝐿𝑃𝐻with respect to the variational parameters 

𝑓𝑞⃗  (𝑓𝑞⃗ 
∗), 𝑎 and 𝜇. Minimizing with respect to 𝑓𝑞⃗ 

∗ we obtain 𝑓𝑞⃗  as 

 

𝜕𝐸𝐿𝐿𝑃𝐻
𝜕𝑓𝑞⃗ 

∗ = 0 ⇒   [1 +
𝑎2𝑞2

2
 ] 𝑓𝑞⃗ + 𝜉𝑞⃗  𝜆𝑞⃗ 

∗ = 0 ⇒  𝑓𝑞⃗ = −
𝜉𝑞⃗  𝜆𝑞⃗ 

∗

1 +
𝑎2𝑞2

2  
.             (2.17) 

 

   Substituting this form of 𝑓𝑞⃗  from Eq. (2.17) in Eq. (2.15), we express 𝐸𝐿𝐿𝑃𝐻 as 

 

𝐸𝐿𝐿𝑃𝐻 =
1

2
𝜇2(1 + |𝑚|) +

1

2

𝜔ℎ
2

𝜇2
(1 + |𝑚|) −∑

|𝜉𝑞⃗ |
2
|𝜆𝑞⃗ |

2

1 +
𝑎2𝑞2

2𝑞⃗ 

± 𝛼𝑅𝑚𝜔ℎ
2,     (2.18) 

 

where |𝜆𝑞⃗ |
2
 can be computed by Eq. (2.16) as  
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|𝜆𝑞⃗ |
2
= |𝐿−1−|𝑚| (−

(1 − 𝑎)2𝑞2

4𝜇2
)|

2

.                                       (2.19) 

 

   Hence, substituting Eq. (2.19) in Eq. (2.18), the variational energy of the 2D polaron with a 

parabolic confinement in the presence of RSOI is obtained as 

 

 𝐸𝐿𝐿𝑃𝐻 =
(1 + |𝑚|)

2
𝜇2 +

(1 + |𝑚|)

2𝜇2𝑙0
4  ±   

𝛼𝑅𝑚

𝑙0
4                                                                 

 

−
𝛼

√2
∫ |𝐿−(1+|𝑚|) (−

(1−𝑎)2𝑞2

4𝜇2
)|
2

(1 +
𝑎2𝑞2

2
)
−1

𝑑𝑞
∞

0

,                   ( 2.20) 

 

where, the confinement length 𝑙0 is related to confining harmonic frequency 𝜔ℎ as 𝑙0 = √𝜔ℎ 

which gives the effective size of QD and 𝐿−(1+|𝑚|)(−(1 − 𝑎)
2𝑞2/4𝜇2)  is the Laguerre 

polynomial.  

   Next, we want to discuss two limiting cases for two extreme values of 𝑎. First, 𝑎 = 1 

corresponds to the extended-state (weak coupling) limit and variation of 𝐸𝐿𝐿𝑃𝐻 with respect 

to 𝜇 in this case yields for the GS and ES energies respectively as following 

 

𝐸𝐺𝑆 = 𝑙0
−2 – (

𝜋𝛼

2
),                                                                        (2.21) 

 

𝐸𝐸𝑆 = 2𝑙0
−2 – (

𝜋𝛼

2
) ±  

𝛼𝑅

𝑙0
4 .                                                         (2.22) 

 

   The localized state (strong coupling) limit can be obtained by putting 𝑎 = 0, and following 

the same procedure as above, we obtain: 

 

𝐸𝐺𝑆 = 𝑙0
−2 −

√𝜋𝛼

2𝑙0
,                                                                         (2.23) 

 

 𝐸𝐸𝑆 = 2𝑙0
−2 − 11(

√𝜋𝛼

32𝑙0
).                                                            (2.24) 

 

   The actual variational energy 𝐸 is obtained numerically by varying 𝐸𝐿𝐿𝑃𝐻 with respect to 𝑎 

and 𝜇. The polaronic correction is defined as 
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∆𝐸 = 𝐸 (𝛼) − 𝐸 (𝛼 = 0).                                                    (2.25) 

 

   Thus, the GS and ES polaronic corrections for a 2D PQD can be respectively written as 

 

∆𝐸𝐺𝑆 = 𝐸𝐺𝑆 − 𝑙0
−2,                                                                  (2.26) 

 

and  

∆𝐸𝐸𝑆 = 𝐸𝐸𝑆 − 2𝑙0
−2.                                                                (2.27) 

 

   In the bound polaron case [32-39,59,61], the electronic Hamiltonian 𝐻𝑒 contains an extra 

Coulomb term: −𝛽/𝜌 (see Sec.1.3.1.1 for model Hamiltonian), where 𝛽 = 𝑒2/𝜀∞ , 𝜀∞ 

denoting the permittivity of QD in the high-frequency limit and the energy reads 

 

 𝐸𝛽 = 𝐸𝐿𝐿𝑃𝐻 − [
𝛽𝜇Γ(|𝑚| + 1

2
)

|𝑚|!
].                                            (2.28) 

 

2.2.2  2D  MAGNETOPOLARON IN THE PRESENCE OF RSOI 

 

   In the case of a 2D magnetopolaron in a PQD with RSOI, the effective electronic 

Hamiltonian in Eq. (2.1) is modified by the presence of a magnetic field as 

 

   𝐻𝑒 = −
1

2
( 
1

𝜌

𝜕

𝜕𝜌
+
𝜕2

𝜕𝜌2
+
1

𝜌2
𝜕2

𝜕𝜑2
) 𝐼 +

1

2
𝜔2𝜌2𝐼 −

𝑖𝜔𝑐
2

𝜕

𝜕𝜑
+
1

2
𝜇𝐵𝑔𝑠𝐵𝜎𝑧          

 

+𝛼𝑅𝜎𝑧
𝑑𝑉𝑐(𝜌)

𝑑𝜌
(−

𝑖

𝜌

𝜕

𝜕𝜑
+ 
𝜔𝑐𝜌

2
),                                                         (2.29) 

 

where 𝜔 = (𝜔ℎ
2  +  𝜔𝑐

2/4)1/2,  𝜔𝑐 = 𝑒𝐵/𝑚∗𝑐, 𝐵 being the external magnetic field, 𝜇𝐵 the 

Bohr magneton, 𝑔𝑠  the effective Landé-𝑔  factor and all other symbols have the same 

meaning as defined earlier. Our aim is to study the synergetic effect of e-p interaction and 

RSOI. The Hamiltonian (2.29) is exactly soluble and the eigenstates and eigenvalues [16-

29] of 𝐻𝑒 are given respectively by  

 



 

 
 

56 Chapter 2 

 𝜓𝑛𝑚𝜎
(0) (𝝆, 𝜑) =   [ 

Ω𝜎  𝑛!

𝜋(𝑛 + |𝑚|!)
]
1/2

(Ω𝜎 𝜌
2)
|𝑚|
2 𝑒

𝑖𝑚𝜑−Ω𝜎𝜌
2

2  𝐿𝑛
|𝑚| (Ω𝜎𝜌

2)χ𝜎, (2.30)  

 

𝐸𝑛𝑚𝜎
(0) = (2𝑛 + |𝑚| + 1)Ω𝜎 +

𝑚

2
𝜔𝑐 + 𝜎 ( 

𝑔𝑠
4
𝜔𝑐 + 𝛼𝑅𝑚𝜔ℎ

2),                              (2.31) 

 

where Ω𝜎 is expressed as following 

 

Ω𝜎 = √𝜔ℎ2  +
𝜔𝑐2

4
 +  𝜎𝛼𝑅𝜔ℎ2𝜔𝑐 ,                                    (2.32) 

 

the spin function χ𝜎 in Eq. (2.30) is mentioned earlier where 𝜎 = ±1 correspond to the spin-

polarization in the magnetic field direction and 𝐿𝑛
|𝑚|

 is the associated Laguerre polynomial. 

The polaron self-energy correction to electron energy to second order in RSPT reads  

 

Δ𝐸𝑛𝑚𝜎 = − ∑ ∑
|⟨𝜓

𝑛′𝑚′𝜎

(0) (𝝆, 𝜑)| 𝜉𝑞 𝑒
−𝑖𝒒.𝝆 |𝜓𝑛𝑚𝜎

(0) (𝝆, 𝜑)⟩|
2

 

(𝐸
𝑛′𝑚′𝜎

(0) − 𝐸𝑛,𝑚,𝜎
(0)  +  1 )𝒒𝑛′𝑚′

                           

 

  = −|𝜉𝑞|
2
⟨𝜓𝑛𝑚𝜎

(0) | 𝑒−𝑖𝒒.( 𝝆−𝝆ˊ ) 𝐺 (𝝆, 𝝆′)|𝜓𝑛𝑚𝜎
(0) ⟩,                              (2.33) 

 

where 𝐺 (𝝆, 𝝆′) is the Green function corresponding to Hamiltonian (2.27) and is given by 

[64-66] 

 

𝐺 (𝝆, 𝝆′)  = ∑
𝜓
𝑛′𝑚′𝜎

(0) ∗ (𝝆,𝜑) 𝜓
𝑛′𝑚′𝜎

(0) (𝝆′, 𝜑)

𝐸
𝑛′𝑚′𝜎

(0) − 𝐸𝑛𝑚𝜎
(0)  +  1 

𝑛′𝑚′

                                                                

 

= ∫𝑑𝑡 
Ω𝜎𝑒

− ( 1−𝐸𝑛,𝑚,𝜎
(0)

)𝑡 − 
Ω𝜎
2
 (𝜌2+𝜌′

2
 ) coth(Ω𝜎𝑡 ) − 2 𝝆.𝝆ˊ 

cosh(
𝜔𝑐 𝑡
2
)

sinh(Ω𝜎𝑡 )

2𝜋 sinh(Ω𝜎𝑡 )
𝑒
 − 2𝑖 (𝑥′𝑦−𝑦′𝑥)

sinh(
𝜔𝑐 𝑡
2
)

sinh(Ω𝜎𝑡 ) ,  

     (2.34) 

 

which is valid for the entire range of the magnetic field for GS and for weak magnetic field 

(Ω𝜎 +
𝜔𝑐

2
< 1) for the first two ESs. The perturbed energy of the system can be written as 
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𝐸𝑛,𝑚,𝜎 = 𝐸𝑛,𝑚,𝜎
(0) + Δ𝐸𝑛,𝑚,𝜎,                                                        (2.35) 

 

where the polaronic corrections Δ𝐸𝑛,𝑚,𝜎 for the GS and ESs are respectively given as  

 

 Δ𝐸0,0,𝜎 = − 
𝛼

2
√𝜋 Ω𝜎   ∫ 𝑑𝑡 𝑒−𝑡

∞

0

[1 − 𝑒−Ω𝜎𝑡 cosh (
𝜔𝑐𝑡

2
)]
−1
2

,          (2.36) 

 

Δ𝐸0,±1,𝜎 = −
1

2
𝛼√𝜋Ω𝜎  ∫ 𝑑𝑡

∞

0

𝑒−( 1− Ω𝜎 ∓  
𝜔𝑐
2
)𝑡(1 − 𝑒−2Ω𝜎𝑡 )−1                      

× [ 2𝑓𝜎  ( 𝑔𝜎  ∓  ℎ𝜎) + ℎ𝜎
2  −  𝑓𝜎

2 ][𝑓𝜎 ( 𝑔𝜎𝑓𝜎  +  ℎ𝜎
2)]

−3/2
,     (2.37) 

 

where, 

 

𝑓𝜎 = [1 + coth(Ω𝜎𝑡) − cosh (
𝜔𝑐𝑡

2
) sinh−1(Ω𝜎𝑡 )],             (2.38) 

 

𝑔𝜎 = [1 + coth(Ω𝜎𝑡) + cosh (
𝜔𝑐𝑡

2
) sinh−1(Ω𝜎𝑡 )],             (2.39) 

 

ℎ𝜎 = sinh (
ωc t

2
)  sinh−1(Ωσt ).                                                (2.40) 

 

   We are interested in studying the level splitting as a function of both 𝛼 and  𝑙0. Eqs. (2.36) 

and (2.37) clearly suggest that both the GS and ES polaronic corrections are linear in 𝛼. From 

the experimental point of view, it would be useful to define the renormalized cyclotron 

frequencies as 

 

𝜔𝑐𝜎
± = 𝐸0,±1,𝜎 − 𝐸0,0,𝜎 ,                                                            (2.41) 

 

and the Zeeman (or level) splitting (ZS) as 

 

 ∆𝑍𝑆 = 𝜔𝑐𝜎
+ − 𝜔𝑐𝜎

− .                                                                        (2.42) 

 

   The dipole selection rule allows the transitions 
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𝜔𝑐 +
+ = 𝐸0,1,1 − 𝐸0,0,1,                                                                 (2.43) 

 

𝜔𝑐−
+ = 𝐸0,1,−1 − 𝐸0,0,−1,                                                               (2.44) 

 

 𝜔𝑐−
− = 𝐸0,−1,−1 − 𝐸0,0,−1,                                                             (2.45) 

 

𝜔𝑐 +
− = 𝐸0,−1,1 − 𝐸0,0,1.                                                                  (2.46) 

 

   In the absence of RSOI, 𝜔𝑐 +
+ = 𝜔𝑐−

+ and 𝜔𝑐−
− = 𝜔𝑐 +

− .   But the inclusion of RSOI results in 

a few more Zeeman lines because of an additional splitting due to RSOI. Here we present our 

numerical results for GaAs and CdS QDs. As shown above, one can define four Rashba-

Zeeman (RZ) splittings. We consider, for example, the frequency difference (𝜔𝑐 +
+ − 𝜔𝑐−

− ) 

which we will call ∆𝑅𝑍. Therefore, throughout the numerical analysis we refer ∆𝑅𝑍 as 

 

∆𝑅𝑍 = (𝜔𝑐 +
+ − 𝜔𝑐−

− ).                                                                  (2.47) 

 

2.3   NUMERICAL RESULTS AND DISCUSSIONS  

 

   In this section, we numerically compute the energies of the 2D polaron in the presence of 

RSOI with parabolic confinement both in the absence and presence of the magnetic field. At 

first, we show the results for the 2D polaron in the absence of the external magnetic field. 

Later, we present the same for the magnetopolaron case.  

 

2.3.1   RESULTS FOR 2D  POLARON WITHOUT THE EXTERNAL 

MAGNETIC FIELD  

 

   In the free-polaron case, Eq. (2.20) is minimized with respect to 𝑎 and 𝜇 numerically to get 

the energy for all values of the coupling constant 𝛼. We take the values of  𝛼 from Ref. 

[62,63].   

   Fig.2.1 provides the results for the size-dependence of the GS and the first ES energies of 

the polaron in a GaAs QD for a particular value of the RSOI coefficient 𝛼𝑅 .  It is clear from 

the figure that in the presence of  RSOI, the two-fold spin-degeneracy of the first ES of the 

2D PQD is lifted even in the absence of a magnetic field and as a result, the ES bifurcates 

into two levels corresponding to the two different eigenvalues of the spin operator, though 
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GS does not undergo any such split [16-30]. The splitting becomes more pronounced as the 

size of the QD is reduced. The spin-splitting also occurs in higher excited states in the 𝑚 ≠ 0 

sectors (not shown here).  

   Fig.2.2 shows the plot of GS and ES energies with respect to 𝛼. The splitting of the ES is 

again visible but interestingly, the splitting energy is independent of 𝛼.  

   Figs.2.3(a) and 2.3(b) show the variation of the GS and ES polaronic corrections 

respectively for a 2D PQD of GaAs with respect to 𝑙0 for three 𝛼 values with 𝛼𝑅 = 0 and 

0.05. From the figures, one can see that e-p interaction leads to significantly large polaron 

self-energies (∆𝐸) at small values of effective QD size 𝑙0. As 𝑙0 is increased, ∆𝐸s initially 

decreases very rapidly, but beyond a certain 𝑙0, they decrease very slowly, asymptotically 

reaching the bulk values. Also, the plots for 𝛼𝑅 = 0 are identical to those for 𝛼𝑅=0.05 for 

different values of 𝛼. Thus, we are led to conclude that the polaron self-energies for GS and 

the first ESs of a 2D PQD are unaffected by RSOI for a 2D PQD.  

 

 

 

Fig.2.1 GS and first ES energies (𝐸) of a free polaron (in FU) vs. dot size, 𝑙0 (in FU) with 𝛼𝑅 = 0 and  

0.05 (in FU) for a GaAs QD.  
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Fig.2.2 GS and first ES energies(𝐸) of a free polaron (in FU) vs.  𝛼 with 𝛼𝑅 = 0 and  0.05 (in FU) 

for a GaAs QD. 

 

  

 

Fig.2.3. Polaronic corrections for (a) GS (−∆𝐸𝐺𝑆) (b) ES (−∆𝐸𝐸𝑆) vs. 𝑙0 for 𝛼 = 1, 5, 9 and 𝛼𝑅 =

0, 0.05. 

 

   We define the transition frequencies as 𝜔± = 𝐸𝐸𝑆
± − 𝐸𝐺𝑆 and Rashba spin-splitting energy 

as ∆𝑅= 𝐸𝐸𝑆
+ − 𝐸𝐸𝑆

− = 𝜔+ − 𝜔−. It is observed that spin-splitting energy ∆𝑅 does not depend 

on e-p interaction, 𝛼 (not shown here) which confirms the observations made in Fig.2.3. But 

∆𝑅 indeed depends on the size of the QD which can be seen in Fig.2.4. For small 𝑙0, the effect 

is considerably large and it decreases as 𝑙0 increases and eventually reduces to zero in the 

bulk limit. Thus, this size-dependent spin-splitting is purely a quantum phenomenon that 

arises when the length scale reaches the quantum domain. 
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Fig.2.4   Spin-splitting energy, ∆𝑅 vs. 𝑙0 for a GaAs QD with  𝛼𝑅 = 0.05. 

 

    

 

 

Fig.2.5 Bound polaron energy, 𝐸𝛽 for GS and first ES vs. 𝑙0 in FU for a GaAs QD with 𝛼𝑅 = 0, 0.05. 

 

   Figs.2.5 and 2.6 show the GS and ES energies for a bound polaron case.  The results have 

qualitatively the same nature as those obtained for the free polaron. We have also studied the 

behaviour of the GS and ES polaron self-energies with respect to the effective QD size (not 

shown here). The behaviour is similar to the free polaron case. 
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Fig.2.6  𝐸𝛽 vs. 𝛼 for GS and first ES in a GaAs QD with 𝛼𝑅 = 0 or 0.05 and 𝑙0 = 0.5 in FU. 

 

2.3.2   RESULTS FOR 2D  MAGNETOPOLARON WITH THE EXTERNAL 

MAGNETIC FIELD  

 

 

 

Fig.2.7 GS self-energy correction Δ𝐸0,0,𝜎  (in FU) of a 2D magnetopolaron vs. 𝑙0  (in FU) for two 

values of 𝜔𝑐  (in FU). 

 

   Fig.2.7 displays the behaviour of the GS polaron self-energy, Δ𝐸0,0,𝜎 with respect to 𝑙0 in 

the absence and presence of RSOI for two values of 𝐵. At a large magnetic field, polaronic 
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corrections become different for the spin-up (+) and spin-down (-) electronic states leading to 

a splitting of GS due to RSOI. Similar splitting also occurs for the excited states (not shown 

here). Interestingly enough, the e-p interaction and RSOI get intertwined in the presence of a 

magnetic field. 

  Fig.2.8 shows the dependence of RZ splitting, ∆𝑅𝑍 on  𝛼 for 𝛼𝑅 = 0 and 0.05 with 𝜔𝑐 = 0.3 

and 𝑙0 = 2.0. ∆𝑅𝑍 is found to be a linearly decreasing function of 𝛼 both in the absence and 

presence of RSOI. The suppression of ZS caused by e-p interaction in a QD was predicted to 

be size-dependent by Mukhopadhyay and Chatterjee and Chatterjee and collaborators [67-

69]. Fig.2.8 suggests that in the presence of RSOI, ZS becomes slightly larger for a small 

value of 𝛼𝑅 which implies that RSOI enhances ZS. However, RSOI can be tuned by applying 

an external electric field and RSOI-induced ZS can be increased. Thus, the suppressive effect 

of the polaronic interaction on ZS is reduced because of the interplay between e-p interaction 

and RSOI. 

    

 

 

Fig.2.8  ∆𝑅𝑍 (in FU) vs.  𝛼 for GaAs QD with 𝜔𝑐 = 0.3 (in FU) and 𝑙0 = 2.0 (in FU). 

 

   To see the size-dependence of RZ splitting, we plot in Fig.2.9,  ∆𝑅𝑍  as a function of  𝑙0 for 

GaAs and CdS QDs. The figure unequivocally shows that in the case of 𝛼 = 0 = 𝛼𝑅, ZS is 

independent of 𝑙0.  As was predicted earlier [67-69], in the presence of e-p interaction alone, 

below a certain 𝑙0 , ZS becomes size-dependent and decreases rapidly with decreasing 𝑙0 . 

However, ZS has a weak dependence on RSOI at low 𝑙0 and the splitting increases rather 

slowly as the QD size decreases. Thus, RSOI has an opposite effect on ZS as compared to e-p 

interaction. However, this effect is normally smaller than that due to e-p interaction and 
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therefore, overall ZS will still decrease with decreasing QD size, but the decrease becomes 

less rapid in the presence of RSOI. The important to note is that RSOI can be increased by an 

external electric field and therefore RSOI-induced enhancement of ZS can be tuned. Thus, 

because of the interplay between e-p interaction and RSOI, ZS in a polar semiconductor QD 

can be controlled by tuning both the QD size and the external field and a desired resonant 

transition can be obtained. The interplay of e-p interaction and RSOI in the presence of a 

magnetic field can give rise to some interesting effects. 

     

 

 

Fig.2.9  ∆𝑅𝑍 for GaAs and CdS QDs as a function of  𝑙0 with 𝜔𝑐 = 0.3.  

 

2.3  CONCLUSIONS 

 

   The polaron self-energy corrections for the GS and the first ESs of a 2D polar PQD with an 

arbitrary size have been calculated using an all-coupling variational theory incorporating the 

effect of RSOI. We observe that the two-fold degeneracy of the first ESs with respect to spin 

is lifted by RSOI even in the absence of a magnetic field leading to a discernible splitting of 

the first ESs, GS does not show any such splitting. Similar results are also observed for the 

bound polaron problem. Our calculation, when applied to a GaAs QD, suggests that though 

the polaron self-energies of both free and bound polarons are considerably large for small 

QDs, they remain unaffected by RSOI. 
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    We have next considered the same QD system placed in a magnetic field and obtained the 

polaronic corrections for GS and the first ESs using the 2nd–order RSPT. In contrast to the 

𝐵 = 0 case, the polaronic corrections now depend on RSOI for a sufficiently high magnetic 

field. Application of our theory to GaAs and CdS QDs reveals that the effects of e-p 

interaction and RSOI on ZS are opposite and both are size-dependent. While the e-p 

interaction suppresses ZS, RSOI enhances it, though the enhancement by RSOI is normally 

much small. However, in the presence of an external electron field, RSOI-induced ZS can be 

enhanced.  Thus, in conclusion, the suppression of ZS caused by e-p interaction in a polar QD 

is reduced by RSOI. This interplay between e-p interaction and RSOI can give rise to some 

interesting effects in the presence of a magnetic field. 
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CHAPTER 3 

SPIN-TRANSPORT ACROSS A TWO-DIMENSIONAL METAL 

SEMICONDUCTOR INTERFACE WITH INFINITE POTENTIAL 

IN PRESENCE OF SPIN-ORBIT INTERACTIONS: DOUBLE 

REFRACTION AND SPIN-FILTERING EFFECT 
 

 

 

ABSTRACT 

 

The spin-transport across a 2D metal-semiconductor junction with a Dirac-delta function 

potential at the interface and the RSOI and DSOI in the semiconductor region is studied 

exactly using discontinuous boundary conditions and the spin-polarized reflected and 

refracted current density and differential conductance are calculated. It is shown that in the 

presence of an infinite interface potential, an increase in the incident electron’s energy 

reduces the spin splitting. It is also shown that the reflected and refracted coefficients, the 

spin-polarized currents and the corresponding differential conductance depend strongly on 

the SOIs. The reflected spin polarization, however, becomes zero due to the infinite potential. 

The RSOI enhances the refracted spin polarization while the DSOI reduces it. Thus, the 

maximum in polarization occurs at small values of DSOI and large values RSOI. 

Interestingly, though the presence of delta-potential at the interface does not change the 

magnitude of the spin-filtering, it causes a constant shift in the spin polarization. 
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3.1 INTRODUCTION 

 

The SOI effect which has been studied quite extensively for the last few decades in 

semiconductor heterostructures and several other surface-alloy systems, lies at the heart of 

Spintronics [1,2] which is a new branch of modern condensed matter physics where spin-

splitting due to SOI is used to manipulate properties and fabricate spin-based nano-devices. 

The very first spintronic device was proposed in the context of spin-FET by Datta and Das 

[3]. Due to the wide range of applicability, many research groups have studied the SOI 

effects in LDS [4-15]. Because of the advancement in experimental techniques such as 

electron-spin resonance, spin-resolved photoemission spectroscopy, scanning tunnelling 

microscopy etc., it is now possible to achieve spin-polarized transport in realistic systems like 

ferromagnet-semiconductor-ferromagnet interface [16], ferromagnet-superconductor 

interface [17], graphene spin-filter [18] and so on. But the Schottky barrier [19] across the 

semiconductor-metal interface should be carefully reduced by implementing suitable 

fabrication techniques [20] in order to get high transmissivity. These semiconductors are 

useful to get zero-field splitting [21-23] due to RSOI or DSOI, or both SOIs, which gives rise 

to many interesting phenomena in spin polarized mesoscopic transport [5, 21, 24-32].  

  Spin-filtering phenomenon based on SOI was first studied by Koga et al. [30] in a non-

magnetic tunnelling diode which was a proposed device based on RSOI. Srisongmuang et al. 

[31] have theoretically shown that under certain conditions, the tunnelling conductance in a 

metal-semiconductor junction system can be increased by increasing the spin-flip scattering 

potential at the interface. Very recently, Bandyopadhyay et al. have studied the reflection and 

refraction of an electron spin at a quasi-2D semiconductor (without SOI)-semiconductor 

(with SOI) junction [32] and also separately studied the same at a quasi-2D semiconductor-

topological insulator junction [33]. Khodas et al. [34] have shown that an unpolarized 

electron beam obliquely incident on a heterostructure interface separating two regions with 

different SOI strengths can undergo double refraction leading to two transmitted beams with 

different spin-polarized angles. They have, however, considered only RSOI to achieve this 

double refraction. Recently, Kalla et al. [35] have extended this idea to a 2D metal-

semiconductor junction in the presence of both SOIs and found that the presence of DSOI 

causes a stronger spin-filtering effect. However, they have studied the system in the absence 

of a scattering potential at the interface. In this paper, we consider an infinite Dirac-delta 

potential at the metal-semiconductor interface and investigate the combined effect of RSOI 

and DSOI on doubly-refracted spin polarization using finite discontinuity condition in the 

first derivative of the wave functions at the interface. We show that the presence of delta-
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scatterer has interesting effects on the reflection and transmission of electrons and hence on 

spin-polarized tunnelling current and conductance. We however observe that the infinite 

barrier does not change the angle of the refracted beams. 

 

3.2 ANALYTICAL MODEL AND FORMULATION 

 

The system considered in our study is an infinite 2D model system lying in the x-y plane 

where the region: 𝑥 < 0 (region-I) denotes a metal and the region: 𝑥 > 0 (region-II) denotes 

a semiconductor which has non-zero RSOI and DSOI. We write the Hamiltonian of the 

system as 

 

𝐻 = 𝐻𝛪 + 𝐻𝛪𝛪 + 𝐻∆ .                                                               (3.1) 

 

Here HΙ represents the metallic region and can be written as     

 

𝐻𝛪 =
𝑞𝑥
2

2𝑚
+
𝑞𝑦
2

2𝑚
 , for − ∞ ≤ 𝑥 < 0 ,                            (3.2) 

 

where 𝒒(𝑞𝑥 = 𝑞 𝑐𝑜𝑠 𝜃𝑖 , 𝑞𝑦 = 𝑞 𝑠𝑖𝑛 𝜃𝑖)  is the momentum vector of the free electrons, 𝜃𝑖 

being the incident angle and m is the electronic mass. The Hamiltonian 𝐻𝛪𝛪 describing the 

semiconductor region is written as 

 

𝐻𝐼𝐼 = 
𝑝𝑥
2

2𝑚∗
+
𝑝𝑦
2

2𝑚∗
+ 
𝛼

ℏ
 (𝜎𝑦𝑝𝑥 − 𝜎𝑥𝑝𝑦) +

𝛽

ℏ
(𝜎𝑥𝑝𝑥 − 𝜎𝑦𝑝𝑦) + 𝑉0  , for 0 < 𝑥 ≤ ∞ , (3.3) 

 

where 𝒑(𝑝𝑥, 𝑝𝑦) and 𝑚∗ represent respectively the momentum and the effective mass of the 

electrons in semiconductor region, the third and fourth terms describe respectively RSOI and 

DSOI in the region II with 𝛼 and 𝛽 being the respective strengths of the two interactions and 

𝑉0  gives the barrier height in region-II. 𝐻∆  describes the interface Hamiltonian which is 

modelled by  

 

𝐻∆ = ∆𝛿(𝑥)  ,                                                                     (3.4) 

 

where, δ(x) is the Dirac delta-function, ∆ being the strength of the scattering potential. We 

can write the Schrödinger equation (SE) for the region-I as  



 

 
 

71 

 
Ch.3| Spin-transport across a 2D metal-semiconductor interface with a Dirac-delta potential: Double 

refraction and spin-filtering effect in the prsence of Rashba and Dresselhaus spin-orbit couplings  

 

 

  𝐻𝛪𝜓𝛪 = 𝜀𝑞𝜓𝛪 ,                                                                        (3.5) 

 

where 𝜓𝛪 is the electron wave function for the region-I and 𝜀𝑞 is the corresponding energy 

given by: 𝜀𝑞 = ℏ2(𝑞𝑥
2 + 𝑞𝑦

2)/2𝑚 = ℏ2𝑞2/2𝑚, 𝑚 and 𝒒(𝑞𝑥, 𝑞𝑦) being the Bloch mass and 

wave function of the electron respectively. The wave function ψΙ corresponding to energy 𝜀𝑞 

in the region-I can be expressed as a linear combination of incoming and reflected wave 

functions:  

  

𝜓𝛪(𝑥, 𝑦) = (
1

√2
[
1
1
] 𝑒𝑖𝑞𝑥𝑥 + [

𝑏↑
𝑏↓
] 𝑒−𝑖𝑞𝑥𝑥) 𝑒𝑖𝑞𝑦𝑦   , for − ∞ ≤ 𝑥 < 0,       (3.6) 

 

which has an x-part and a y-part. The x-part contains both the incident wave function and the 

reflected wave function. As the spins are not polarized in the metallic region-I, the x-part of 

the incident wave function consists of equally probable spin-up [
1
0
]  and spin-down [

0
1
] 

configurations. We assume that the x-part of the reflected state is associated with probability 

amplitudes 𝑏↑ and 𝑏↓  for spin-up and spin-down electrons respectively. As the system has 

translational invariance along y-direction, the y-part for both incident and reflected wave 

functions is same. We can write the SE for the region-II as  

 

𝐻𝐼𝐼𝜓𝐼𝐼 = 𝐸𝑘𝜓𝐼𝐼  ,                                                                        (3.7) 

 

where 𝜓𝐼𝐼 can be written as 

 

𝜓𝛪𝛪(𝑥, 𝑦) = ([
𝐴𝛪𝛪

(1)

𝐴𝛪𝛪
(2)
] 𝑒𝑖𝑘𝑥𝑥 + [

𝐵𝛪𝛪
(1)

𝐵𝛪𝛪
(2)
] 𝑒−𝑖𝑘𝑥𝑥)𝑒𝑖𝑘𝑦𝑦  , for 0 < 𝑥 ≤ ∞ , (3.8)   

 

where in general, 𝐴𝛪𝛪
(1) and 𝐴𝛪𝛪

(2) denote the transmission amplitudes of spin-up and spin-

down respectively in region-II and 𝐵𝛪𝛪
(1) and 𝐵𝛪𝛪

(2) denote the same for reflected part. Since 

there is no wave reflecting from region-II we can write 𝐵𝛪𝛪
(1) = 𝐵𝛪𝛪

(2) = 0. Using Eqs.(3.6) 

and (3.8), we obtain the eigen energies of region-II as  

 

𝐸𝑘± = 𝜀𝑘 + 𝑉0 ± 𝑘𝜆(𝜃𝑘) ,                                                         (3.9) 
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where 𝜀𝑘 = ℏ
2(𝑘𝑥

2 + 𝑘𝑦
2)/(2𝑚∗) = ℏ2𝑘2/2𝑚∗  and 𝜆(𝜃𝑘)  being the angle-dependent 

effective SOI strength given by 

 

   𝜆(𝜃𝑘) = √𝛼2 + 𝛽2 + 4𝛼𝛽 𝑠𝑖𝑛 𝜃𝑘 𝑐𝑜𝑠 𝜃𝑘   ,                              (3.10) 

 

where θk is the angle of refraction for the electron in the semiconductor region and is given 

by 𝜃𝑘 = 𝑡𝑎𝑛
−1(𝑘𝑦/𝑘𝑥).  In Eq. (3.9) we can see the energy splitting of the spin-up (+) and 

spin-down (−) states due to SOI. The wavefunction corresponding to 𝐸𝑘±  then becomes 

 

   𝜓𝛪𝛪(𝑥, 𝑦) = (𝐴𝛪𝛪
(1) [

1
−𝑒−𝑖𝜙𝑘+

] 𝑒𝑖𝑘𝑥
+𝑥 + 𝐴𝛪𝛪

(2) [𝑒
𝑖𝜙𝑘−

1
] 𝑒𝑖𝑘𝑥

−𝑥) 𝑒𝑖𝑘𝑦𝑦    (3.11) 

 

where 𝜙𝑘 = 𝑡𝑎𝑛−1 (
𝛼 𝑐𝑜𝑠 𝜃𝑘+𝛽 𝑠𝑖𝑛 𝜃𝑘

𝛼 𝑠𝑖𝑛 𝜃𝑘+𝛽 𝑐𝑜𝑠 𝜃𝑘 
). We also obtain the magnitude of energy-dependent 

momenta, 𝑘±, as  

 

𝑘± = −𝑘𝑆𝑂  + √𝑘𝑆𝑂
2 +

2𝑚(𝐸𝑘± − 𝑉0)

ℏ2
  ,                                           (3.12) 

 

with 𝑘𝑆𝑂 = [𝑚𝜆(𝜃𝑘±)/ℏ
2] , 𝑘𝑥

± = 𝑘± 𝑐𝑜𝑠 𝜃𝑘±  and 𝑘𝑦
± = 𝑘± 𝑠𝑖𝑛 𝜃𝑘± . Due to the 

translational invariance along the y-axis, the projection of the momentum vector should be 

continuous at 𝑥 = 0 i.e., 𝑞𝑦 = 𝑘𝑦
±

 , which leads to 𝜃𝑘±  = 𝑠𝑖𝑛
−1{(𝑞 𝑘±⁄ ) 𝑠𝑖𝑛 𝜃𝑖} , where the 

𝜃𝑘+ and 𝜃𝑘−  denote respectively the spin-up and spin-down splitting angles of the incoming 

wave in the region-II. Using 𝜃𝑘± − equations, we get  𝜆(𝜃𝑘±) from Eq. (3.10) and we get  

𝐸𝑘±  from Eq. (3.9) and then solving Eq. (3.12) self-consistently, we obtain 𝑘±  and 

corresponding energies 𝐸𝑘±. The refractive indices corresponding to the two refracted waves 

are given by 𝑛𝑘± = (𝑘± 𝑞⁄ ) = (𝑠𝑖𝑛 𝜃𝑖 𝑠𝑖𝑛 𝜃𝑘±⁄ ). There will be no transmission of incident 

wave when 𝜃𝑖 > 𝜋 2⁄  . Therefore, there exist two critical angles, 𝜃𝑐
+ and 𝜃𝑐

−,  in the region-II 

for each of the refracted waves which read 

 

𝑛𝑘± = 𝑠𝑖𝑛 𝜃𝑐
± =

𝑚𝜆 (
𝜋
2)

ℏ√2𝑚𝜀𝑞
[
 
 
 

∓1 + (1 +
2ℏ2 (𝐸𝑘± (

𝜋
2) − 𝑉0)

𝑚 (𝜆 (
𝜋
2)
)
2 )

1/2

]
 
 
 

 .  (3.13)  
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To calculate the probability amplitudes 𝐴𝛪𝛪
(1) , 𝐴𝛪𝛪

(2) , 𝑏↑  and 𝑏↓, we employ the following 

boundary conditions [28,31]:  

 

𝜓𝛪(𝑥 = 0, 𝑦) = 𝜓𝐼𝐼(𝑥 = 0, 𝑦) =  𝜓 (𝑥 = 0, 𝑦) ,                           (3.14) 

 

[
𝜕

𝜕𝑥
𝜓𝛪(𝑥, 𝑦)]

𝑥=0
− 

𝑚

𝑚∗
 [
𝜕

𝜕𝑥
𝜓𝐼𝛪(𝑥, 𝑦)]

𝑥=0
= (

2𝑚

ℏ2
∆ + 𝑖

𝑚

𝑚∗
𝑘𝑆𝑂 𝜎𝑦)𝜓 (𝑥 = 0, 𝑦) .   (3.15) 

 

The discontinuity in the 2nd boundary condition arises due to the presence of infinite barrier 

and SOI. We obtain 

  

                𝑏↑ = 𝐴𝛪𝛪
(1) − 𝐴𝛪𝛪

(2)𝑒𝑖𝜙𝑘+ −
1

√2
  ,                                                      (3.16) 

 

 𝑏↓ = 𝐴𝛪𝛪
(1)𝑒−𝑖𝜙𝑘− + 𝐴𝛪𝛪

(2) −
1

√2
 ,                                                     (3.17) 

where,   

 𝐴𝛪𝛪
(1,2) =

√2 [(1 + 𝑝𝑘𝑥
     ±)(1 ± 𝑒±𝑖𝜙𝑘±) + 𝜉(𝑒±𝑖𝜙𝑘± ∓ 1)]

𝑀 + 𝑁
 , (3.18) 

 

with, 𝑀 = (1 + 𝑝𝑘𝑥
    − + 𝜉𝑒−𝑖𝜙𝑘−)(1 + 𝑝𝑘𝑥

   + + 𝜉𝑒𝑖𝜙𝑘+)  and 𝑁 = [𝑒−𝑖𝜙𝑘−(1 + 𝑝𝑘𝑥
    −) −

𝜉][𝑒𝑖𝜙𝑘+(1 + 𝑝𝑘𝑥
   +) − 𝜉], where, 

 

                                         𝑝𝑘𝑥
     ± = 

𝑚

𝑚∗

𝑘𝑥
±

𝑞𝑥
−
2𝑚𝑖

ℏ2
 
∆

𝑞𝑥
   ,                                                     (3.19) 

 

𝜉 =
𝑚

𝑚∗

𝜆(𝜃𝑘±)

𝑞𝑥
.                                                                            (3. 20) 

 

The reflection and transmission coefficients are given by  

 

   𝑅↑,↓ = |𝑏↑,↓|
2
   ,                                                                            (3.21) 
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     𝑇↑,↓ =
𝑚

𝑚∗
|𝐴𝛪𝛪
(1,2)|

2

(
𝑘𝑥
+,− ± 𝑘𝑆𝑂 𝑐𝑜𝑠 𝜃𝑘𝑥+,−

𝑞𝑥
).                      (3.22) 

 

From the second boundary condition (3.15), the current continuity equation at the interface 

(𝑥 = 0) can be expressed as 

 

[
1

𝑚∗
(𝑝̂𝑥 + ℏ𝑘𝑆𝑂𝜎𝑦 −

2𝑖

ℏ
∆ )𝜓𝐼𝛪(𝑥, 𝑦)]

𝑥=0
= [

1

𝑚
𝑝̂𝑥𝜓𝐼(𝑥, 𝑦)]

𝑥=0
,                           (3.23) 

 

where 𝑝̂𝑥 = −𝑖ℏ𝜕/𝜕𝑥. To see the conservation of probability current we multiply Eq. (3.23) 

with the Hermitian conjugate of  𝜓𝐼(𝑥, 𝑦) i.e., 𝜓𝛪
†(𝑥, 𝑦) from the left-hand side which can be 

written at x = 0 as  

 

[𝜓𝐼
†(𝑥, 𝑦)

1

𝑚∗
(𝑝̂𝑥 + ℏ𝑘𝑆𝑂𝜎𝑦 −

2𝑖

ℏ
∆ )𝜓𝐼𝛪(𝑥, 𝑦)]

𝑥=0
= [𝜓𝐼

†(𝑥, 𝑦)
1

𝑚
𝑝̂𝑥𝜓𝐼(𝑥, 𝑦)]

𝑥=0
.    (3.24) 

 

Using the first boundary condition at 𝑥 = 0, the above equation can be re-expressed as 

 

[𝜓𝐼𝐼
†(𝑥, 𝑦)

1

𝑚∗
(𝑝̂𝑥 + ℏ𝑘𝑆𝑂𝜎𝑦 −

2𝑖

ℏ
∆ )𝜓𝐼𝛪(𝑥, 𝑦)]

𝑥=0
= [𝜓𝐼

†(𝑥, 𝑦)
1

𝑚
𝑝̂𝑥𝜓𝐼(𝑥, 𝑦)]

𝑥=0
.  (3.25) 

 

Equating the real parts on both sides of Eq. (3.25), in general, we get the probability current 

continuity equation as 

 

ℏ𝑘𝑥
+

𝑚∗
[|𝐴𝛪𝛪

(1)|
2
−
1

2
𝑅𝑒(𝐴𝛪𝛪

∗(2)𝐴𝛪𝛪
(1))(𝑐𝑜𝑠𝜙𝑘+ − 𝑐𝑜𝑠 𝜙𝑘−) +

1

2
𝐼𝑚(𝐴𝛪𝛪

∗(2)𝐴𝛪𝛪
(1))(𝑠𝑖𝑛 𝜙𝑘+ − 𝑠𝑖𝑛 𝜙𝑘−)]       

 

+
ℏ𝑘𝑥

−

𝑚∗
[|𝐴𝛪𝛪

(2)|
2
−
1

2
𝑅𝑒(𝐴𝛪𝛪

∗(1)𝐴𝛪𝛪
(2))(𝑐𝑜𝑠 𝜙𝑘+ − 𝑐𝑜𝑠 𝜙𝑘−) −

1

2
𝐼𝑚(𝐴𝛪𝛪

∗(1)𝐴𝛪𝛪
(2))(𝑠𝑖𝑛 𝜙𝑘+ − 𝑠𝑖𝑛 𝜙𝑘−)]  

 

+
ℏ𝑘𝑆𝑂
𝑚∗

[|𝐴𝛪𝛪
(1)|

2
𝑠𝑖𝑛 𝜙𝑘+ − |𝐴𝛪𝛪

(2)|
2
𝑠𝑖𝑛 𝜙𝑘−]                                                                                                  

 

−
ℏ𝑘𝑆𝑂
𝑚∗

[
1

2
𝐼𝑚 (𝐴𝛪𝛪

∗(1)𝐴𝛪𝛪
(2)
) +

1

2
𝐼𝑚 (𝐴𝛪𝛪

∗(1)𝐴𝛪𝛪
(2)
) 𝑐𝑜𝑠(𝜙𝑘+ + 𝜙𝑘−) −

1

2
𝑅𝑒 (𝐴𝛪𝛪

∗(1)𝐴𝛪𝛪
(2)
) 𝑠𝑖𝑛(𝜙𝑘+ + 𝜙𝑘−) ]       

 

+
ℏ𝑘𝑆𝑂
𝑚∗

[
1

2
𝐼𝑚 (𝐴𝛪𝛪

∗(2)𝐴𝛪𝛪
(1)
) +

1

2
𝐼𝑚 (𝐴𝛪𝛪

∗(2)𝐴𝛪𝛪
(1)
) 𝑐𝑜𝑠(𝜙𝑘+ +𝜙𝑘−) −

1

2
𝑅𝑒 (𝐴𝛪𝛪

∗(2)𝐴𝛪𝛪
(1)
) 𝑠𝑖𝑛(𝜙𝑘+ + 𝜙𝑘−) ]      
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+
∆

𝑚∗ℏ
[𝐼𝑚(𝐴𝛪𝛪

∗(1)
𝐴𝛪𝛪
(2)
)(𝑐𝑜𝑠 𝜙𝑘+ − 𝑐𝑜𝑠 𝜙𝑘−) − 𝑅𝑒(𝐴𝛪𝛪

∗(1)
𝐴𝛪𝛪
(2)
)(𝑠𝑖𝑛 𝜙𝑘+ − 𝑠𝑖𝑛 𝜙𝑘−)]         

 

+
∆

𝑚∗ℏ
[𝐼𝑚(𝐴𝛪𝛪

∗(2)
𝐴𝛪𝛪
(1)
)(𝑐𝑜𝑠 𝜙𝑘+ − 𝑐𝑜𝑠 𝜙𝑘−) + 𝑅𝑒(𝐴𝛪𝛪

∗(2)
𝐴𝛪𝛪
(1)
)(𝑠𝑖𝑛 𝜙𝑘+ − 𝑠𝑖𝑛 𝜙𝑘−)]         

 

=
ℏ𝑞𝑥
𝑚

[1 − |𝑏↑|
2 − |𝑏↓|

2].                                                                                                  (3.26) 

 

In deriving Eq. (3.26) we have assumed both the angle of refractions θk+ and θk− and hence 

ϕk+ and ϕk− are real. If the region-II does not contain SOCs which means α = 0 = β so that 

ϕk+ = 0 = ϕk− , λ(θk) = 0 , kSO = 0 , θk+ = θk− , kx
+ = kx

− = kx  and AΙΙ
(1) = AΙΙ

(2)
, then 

double refraction does not occur and in that limit with the help of Eqs. (3.21) and (3.22), Eq. 

(3.26) satisfies the usual current continuity equation as following  

 

𝑚

𝑚∗

𝑘𝑥
𝑞𝑥
[|𝐴𝛪𝛪

(1)|
2

+ |𝐴𝛪𝛪
(2)|

2

] ≡ 𝑇↑ + 𝑇↓ = 1 − 𝑅↑ − 𝑅↓.                    (3.27) 

 

Next, we consider the zero-temperature refracted and reflected currents (𝐽↑↓
𝑅𝑒𝑓𝑟

, 𝐽↑↓
𝑅𝑒𝑓𝑙

) which 

can be expressed as a function of bias voltage 𝑉 as  

 

𝐽↑↓
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙(𝑒𝑉) =  

𝑒𝑙2𝑞𝑓

2𝜋ℎ
∫ 𝑑𝜀𝑞

𝑒𝑉

0

∫ 𝑑𝜃𝑖  𝑐𝑜𝑠 𝜃𝑖 √1 + (
𝜀𝑞

𝐸𝑓
)

𝜃𝑚

−𝜃𝑚

(𝑇↑,↓, 𝑅↑↓)  ,     (3.28) 

 

where 𝑙2 is the area of the metal, is the maximum possible angle of the incident wave given 

by 

 

𝜃𝑚 = 𝑠𝑖𝑛−1 (
𝑘−

𝑞
) .                                                                     (3.29) 

 

and 𝐸𝑓 and 𝑞𝑓 are the Fermi energy and Fermi wave vector respectively. We also calculate 

the spin-polarized differential conductance in the region-II as 

 

𝐺↑,↓(𝑉) ≡
𝑑𝐽↑↓(𝑉)

𝑑𝑉
=  
𝑒2𝑙2𝑞𝑓

2𝜋ℎ
 ∫ 𝑑𝜃𝑖  𝑐𝑜𝑠 𝜃𝑖 √1 + (

𝑒𝑉

𝐸𝑓
)

𝜃𝑚

−𝜃𝑚

 𝑇↑,↓ .    (3.30) 
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To understand the spin-dependent tunnelling conductance more concretely, we define the 

spin-polarization of conductance as  

 

𝑃𝐽
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙

=
𝐽↑
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙

− 𝐽↓
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙

𝐽↑
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙

+ 𝐽↓
𝑅𝑒𝑓𝑟,𝑅𝑒𝑓𝑙

  .                                            (3.31) 

 

3.3     NUMERICAL RESULTS AND DISCUSSIONS 

 

   A schematic representation of the system is shown in Fig.3.1. We set 𝑉0=12 meV, 𝑚/

𝑚∗=0.042 and 𝑘𝑆𝑂 = 0.05𝑞𝑓 . One can see for normal incidence i.e., 𝜃𝑖 =0, there is no 

refraction. Due to the presence of RSOI and DSOI, the momenta and the corresponding 

refracting angles split into spin-up (+) and spin-down (-) branches in the semiconductor 

region. We obtain the reflection and transmission coefficients and the spin resolved current 

densities and tunnelling conductance of this system in the presence of the infinite delta 

potential and the SOIs.  

   In Fig.3.2(a), we show the variation of two refracted angles,  𝜃𝑘+ and 𝜃𝑘−  with respect to 

the angle of incidence ( 𝜃𝑖 ) in the presence of delta-function-scatterer at the metal-

semiconductor junction for different strengths of RSOI (𝛼) and DSOI (𝛽). The values of the 

Fermi energy, bias voltage and the incident energy of the electrons are chosen as 𝐸𝑓  =15 

meV, 𝑒𝑉 = 25 meV and 𝜀𝑞 = 20 meV respectively, for the purpose of concreteness. It has 

been observed that RSOI alone can cause spin-splitting of spin-up and spin-down electrons, 

but in the presence of both SOIs the angle of refraction reduces for both spin-up and spin-

down electrons. However, the spin-down refraction angle reduces much more than the spin-

up refraction angle and as a result the gap between the refracted beams of electrons of two 

different spin orientations increases. Thus, the spin-polarization is greater when both RSOI 

and DSOI are present as compared to when only RSOI is present.  One can also observe that 

spin-up electrons can undergo a total internal reflection at a critical angle though the spin-

down electrons do not show any such effect.  This feature was also suggested by Khodas et 

al. [34]. Kalla et al. [35] have studied this behaviour using continuous boundary conditions in 

the absence of the infinite potential at the interface. Here we have studied the system in the 

presence of an infinite delta potential at the metal-semiconductor interface using 

discontinuous boundary conditions. It is interesting to point out that the behaviour of double 

refracted waves for two different spin projections due to SOIs with respect to θi is exactly the 

same for  ∆= 0 and ∆≠ 0. Therefore, the presence of an infinite potential at the junction does 
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not change the path of the spin-up and spin- down refracted electrons   with respect to θi. We 

also plot 𝜃𝑘±  vs. 𝜃𝑖 in Fig.3.2(b) to show the effect of incident energy on the refracted angles 

of the spin-up and spin-down electrons at particular strengths of RSOI and DSOI keeping Ef 

and  eV fixed at 15 meV and 25 meV respectively. It is seen clearly that for  ∆≠ 0, the 

incident energy decreases the refracted angle of the spin-up electrons and increases that of the 

spin- down electrons, while for ∆= 0,  the scenario is completely opposite (inset). 

 

 

 

Fig.3.1 Sketch of the metal-semiconductor junction system.      

    

   The refraction coefficients T↑ and T↓ as a function of the incident angle θi for different α, β 

combinations are shown in Figs.3.3 (a) and (b) respectively at a particular ∆-value. We set Ef 

=15 meV, eV = 25 meV and εq = 20 meV for next few plots. Fig.3.3 (a) shows that for α ≠

0, β = 0, the behaviour of θi with respect to θi=0 is almost symmetric except some kink like 

structures. For the  θi<0 - region, as |θi| increases, T↑ increases from a finite value at θi=0, 

reaches a small maximum and then decreases to zero after going through a kink structure. In 

the θi>0 region, save for the kink structure, T↑ exhibits the same behaviour leading to the 

formation of a dip at θi=0. One may notice that DSOI enhances the refractivity and the peak-

structure becomes much more prominent in the case of α = 0, β ≠ 0. For all the cases i. e.,  

α > β, α < β and α = β, T↑  behaves qualitatively in a similar way with respect to θi . T↑ 

shows a clear maximum at some value of  |θi|  in the range −𝑎 < θi < 𝑎,  where 𝑎  is a 

positive number and falls off to zero as θi increases on either side of normal incidence. For a 

set of set of (α, β),  T↑ is higher for α < β than for α > β. This can be concluded from the 
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figure by comparing the curve for  α =3 meV-nm and β=5 meV-nm with that for α =5 meV-

nm and β =3 meV-nm. It is also evident that the α = β − curve lies in between α > β and 

α < β − curves. One may also notice that the variation of T↑  is not fully symmetric with 

respect to θi=0 except for the α = β - case.  

 

 
  
 

Fig.3.2 (a)  θk± as a function of θi for different α, β combinations at ∆= 20 meV.  Inset: at ∆= 0. (b) 

θk± as a function of θi for εq = 20 meV and εq = 26 meV at α=β =5 mev-nm. Inset: at ∆= 0.  

                    

 

                                  

 

 

Fig.3.3 (a) 𝑇↑ (b) 𝑇↓ as a function of θi for different 𝛼, 𝛽 combinations at ∆= 20 meV. 
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Fig.3.4 (a) R↑ (b) R↓ as a function of β for different α values at ∆= 15 meV.  Insets: at ∆= 0 meV.   

 

   In Fig.3.3(b), we show T↓  as a function of θi  for the same set of values of α,β and ∆. 

Interestingly, for α ≠ 0, and β = 0, T↓  decreases rapidly, essentially in a linearly way on 

both sides of θi = 0 as |θi| increases from zero giving rise to a sharp kink-like peak at θi = 0.  

T↓ finally becomes zero as |θi| attains a certain value. The peak height in T↓ for the case of  

α ≠ 0 and β = 0 is almost equal to the corresponding peak for T↑. Also, for  T↓ as a function 

of θi,  the peak in the case of α ≠ 0, β = 0 is higher than that for other combinations of  α 

and β. As we can see, the Gaussian-like pattern of the T↑-θi-variation turns into a triangular 

structure in T↓ plots for α > β and α < β. In the case of  T↓, there exists a region: |θi| ≤ θ∗, 

θ∗ being close to 1, where the variations are symmetric for α ≠ 0, β = 0 , α = 0, β ≠ 0  and 

α = β. Beyond that region i.e., |θi| ≥ θ∗,  the refractivities die out to zero. For α = 0, β ≠ 0, 

T↓ develops a double-peak structure symmetrically within the |θi| ≤ θ∗ − region, whereas for 

α = β − case, T↓ shows a single peak. It can be seen that DSOI alone decreases T↓. Here also, 

α = β curve lies between α > β and α < β curves, but the  α > β - curves lie higher than the 

α < β- curves which is an opposite behaviour compared to the case of  T↑  for the same set of 

α, β values. Therefore, the effect of RSOI and DSOI on T↑ and T↓ are opposite in nature. One 

can see for example,  T↑,max > T↓,max for α > β, α < β, α = β and α = 0, β ≠ 0, but for α ≠

0, β = 0, T↑,max ≈ T↓,max. Thus, in the presence of a finite ∆, the variations of T↑ and T↓ are 

very much different from those for ∆= 0 considered by Kalla et al. [35].  

  To see the effect of SOIs on reflection coefficients of spin-polarized electrons we plot R↑ 

and R↓ in Fig.3.4(a) and Fig.3.4(b) respectively with β for different values of α and a non-

zero value of ∆. The ∆= 0 results are shown in the insets. The insets show that if we consider 

the non-zero α-cases, both R↑ and R↓ increase as α increases and the behaviour of  R↑ and R↓ 

are also qualitatively the same. For non-zero α values, both R↑ and R↓ initially decrease with 
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increasing β, go through a dip and then increase β is further increased. But for α = 0, they 

monotonically increase with β essentially in a linear way. One can notice clearly that at a 

finite ∆ value, R↑ and R↓  are independent of both α and β .We find that the variations of R↑,↓ 

with α are similar to that with 𝛽 (not shown here). Next, we study in Fig. 3.5, the effect of 

SOIs on the refraction coefficients T↑  and T↓ . The ∆= 0 – cases are shown in insets. Fig. 

3.5(a) shows that at ∆≠ 0, T↑ has a finite discontinuity at a certain α (𝛼𝑐) for small values of 

β. At large β, however, it decreases monotonically with α.  Also, the  β = 0 − behaviour  is 

qualitatively different from the  β ≠ 0 - behaviour for α < 𝛼𝑐 .  

 

  

 

Fig.3.5 (a) T↑ (b) T↓ as a function of α for different β values at ∆= 15 meV.  Insets: at ∆=0 meV. 

 

  Another point to be observed is that 𝛼𝑐  decreases as β  increases. At ∆= 0  (inset), T↑ 

decreases monotonically as α increases for all β except for β = 0 for which it shows a slow 

but linearly increasing behaviour over the entire α-range. Thus, the discontinuity in T↑ (which 

is completely absent at ∆= 0) appears to be directly related to the presence of the delta-

potential at the metal-semiconductor junction. One can also see that the magnitude of T↑ 

increases with increasing β, though β = 0 curve lies on top of the β = 1 and β = 2 meV-nm 

curves for the intermediate range of α . Fig.3.5(b) shows a similar behaviour of T↓  as a 

function of α for different values of β. Here also a discontinuity exits at ∆≠ 0. But in the case 

of T↓, it always increases with increasing β. Overall, the value of T↑ is greater than that of T↓ 

for the same range of α and β. Interestingly enough, T↑ and T↓ do not show any discontinuity 

for ∆≠ 0  when we plot them with β  for different values of α . Also, the behaviour is 

qualitatively similar for both ∆= 0 and ∆≠ 0. We have not shown these plots here as they are 

well explained by Kalla et al. [35] for ∆= 0. It is evident from Fig.4 and Fig.5 that for plots at 

α = β = 0 and ∆= 15 meV, the refraction (T↑,↓) and reflection (R↑,↓) coefficients satisfy: 
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T↑ + T↓ + R↑ + R↓ ≈ 1 which is precisely Eq. (3.27). Also, for the other combinations of α 

and β, T↑,↓ and R↑,↓ satisfy Eq. (3.26) for which one has to solve k± self consistently to get 

θk± and hence ϕk±. 

  As spin-resolved current densities are directly dependent on refraction coefficients, we plot 

spin-up current (J↑) and spin-down current (J↓) as a function of α for several values of  β in 

Fig.3.6 (a) and (b) respectively at a finite value of ∆. J0 stands for the normalization constant 

which is given by: J0 = el
2qf/2πh. As expected, J↑ (J↓) behaves with α qualitatively almost 

in a similar way as T↑ (T↓). Of course, quantitatively, they differ by orders of magnitudes.  

The plots of  J↑, and J↓ exhibit the same signature of discontinuity at a particular α-value for 

∆≠ 0 , which clearly has its genesis in the infinite scattering potential at the metal-

semiconductor junction. ∆= 0 variations are shown in the insets where, as expected, we do 

not see any discontinuity. 

 

  

 

 

Fig.3.6 (a) J↑ (b) J↓ as a function of α for different β values at ∆= 15 meV.  Insets: at ∆=0 meV. 

    

   We show the variation of  J↑ and J↓ with β for different values of α in Fig.3.7(a) and (b) 

respectively. As discussed earlier in the case of T↑  and T↓ , J↑  and J↓  do not exhibit any 

discontinuity when drawn as a function of β. In Fig.3.7(a), one can see that for α = 0, J↑ 

shows a linear monotonic increase with β. However, for α ≠ 0, the behaviour is different. As 

β increases from zero,  J↑ first decreases, goes through a minimum and then increases with 

further increase in β. For α ≠ 0,  J↑ increases with increasing α in the weak-β regime while, 

for higher values of β, J↑ decreases as α increases. Fig.3.7(b) displays J↓ as a function of β for 

the same set of α values. It can be seen that for α ≠ 0,  J↓ initially increases with  β but finally 

saturates as β becomes large. However, for α = 0,  J↓ shows a slow, linear and monotonically 
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decreasing behaviour with β.  For α ≠ 0,  J↓ shows a decreasing behaviour with increasing α 

for the entire range of β. Comparison with the insets shows that the ∆= 0 variations that are 

qualitatively similar to the ∆≠ 0 curves. Quantitatively, however, that the magnitudes of the 

current densities at ∆≠ 0  are much smaller compared to those at ∆= 0 . Thus, one can 

conclude that the presence of a delta-potential scattering potential at the interface reduces the 

transmission current.    

 

  
 

Fig.3.7 (a) 𝐽↑ (b) 𝐽↓ as a function of 𝛽 for different 𝛼 values at ∆= 15 meV.  Insets: at ∆=0 meV.   

 

Next, we wish to study in Figs.3.8 and 3.9, the variations of J↑ and J↓ with respect to the 

applied voltage V for different α, β combinations at a certain Fermi energy Ef (=15 meV) and 

incident energy εq( = 20 meV). Figs.3.8 (a-c) suggest that for all combinations of α and β, J↑ 

increases in a similar fashion with increasing V. In Fig.3.8(a), we can see that the presence of 

DSOI alone, J↑ is much larger than in the presence of RSOI alone at a finite ∆. This effect is 

completely opposite to the ∆=0 case studied by Kalla et al. [35]. Fig.3.8(b) shows that J↑ 

components for α > β , are much higher than those for α < β  at a particular ∆ -value. 

Therefore, RSOI dominates over DSOI when both the SOIs are present. In Fig.3.8(c), we 

show the variations of J↑ for equal strengths of RSOI and DSOI. In this case, J↑ increases 

much faster than the case for  α < β. So, RSOI enhances J↑ more compared to DSOI when 

both the interactions are present and are of equal strengths. Fig.3.9(a) suggests that when 

considered separately, RSOI increases J↓ more than DSOI at a particular ∆, which is quite 

opposite to the observations shown in Fig.3.8(a). Fig.3.9 (b) and (c) also reveal the same 

effect at a finite value of ∆. It is clear from both the Figs.3.8 and 3.9 that the presence of ∆ 

reduces J↑ and J↓ significantly for any combination of α and β. 
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Fig.3.8  J↑  as a function of eV/Ef  for different ∆ values with different α, β combinations: (a) α ≠

0, β = 0 ; α = 0, β ≠ 0, (b) α > β;  α < β, (c) α = β. 
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Fig.3.9  J↓  as a function of eV/Ef  for different ∆ values with different α, β combinations: (a) α ≠

0, β = 0 ; α = 0, β ≠ 0, (b) α > β;  α < β, (c) α = β. 

 

   Figs.3.10 and 3.11 display the variations of spin polarized differential conductance G↑ and 

G↓ respectively as a function of Fermi energy Ef for different combinations of α and β at a 

fixed applied voltage eV= 25 meV. We plot G↑ and G↓ in units of G0 which is given by G0 =

e2l2qf/2πh. Fig.3.10(a) shows that G↑ decreases rapidly as we increase Ef and saturates after 

a certain Ef . Here also we can see that at a finite ∆ , when considered separately, G↑  is 

increased more by DSOI than by RSOI. This observation is completely opposite to ∆= 0 − 

case studied by Kalla et al. [35] where they have shown G↑ is enhanced more by RSOI than 

by DSOI. Fig.3. 10(b) shows the same pattern of G↑ with Ef/eV, but now G↑ is found to be 

much larger for α > β than for α < β  at a fixed ∆. This feature is similar to that observed in 

Fig.3.8(b). Interestingly, G↑ for 𝛼 = 3 and 𝛽 = 5 at ∆=20 meV has the same value as G↑ for  

𝛼 = 5, 𝛽 = 3 at ∆=30 meV over the entire range of  Ef/eV. We wish to mention that for a 

particular set of  Ef and ∆, G↑-values are higher for the case of : α > β than for: α ≠ 0, β = 0, 

while they are lower for the case of  α < β case than for:  α = 0, β ≠ 0. The same conclusion 

can also be drawn from Figs.3.8(a-b). Thus, we can conclude that when both the SOIs are 

considered together, the RSOI dominates over DSOI in increasing G↑ at a fixed value of ∆. 

Fig.3.10(c) shows the G↑-variations for the equal strength of α and β for different values of ∆. 

In this case, the decrease in conductance with increasing Ef is slower in comparison with the 

case of α ≠ 0, β = 0, but is faster compared to the case of  α = 0, β ≠ 0. As expected, the 

presence of ∆ decreases conductance significantly for all the aforementioned cases. Figs.3.11 

(a-c) reveal that with Ef,  G↓  decreases qualitatively in a similar way as G↑ , though the 

quantitative behaviour is different from G↑ (shown in Fig.3.10). Fig.3.11(a) shows that when 

considered separately, G↓  is enhanced more by RSOI than by DSOI. According to 
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Fig.3.11(b), G↓, as a function of Ef, increases more in the case of  α > β than in the case of  

α < β. This is consistent with Fig.3.9. The other observations in Fig.3.11 can also be easily 

understood from Fig.3.9. For example, ∆ suppresses G↓ quite significantly. At a fixed ∆, the 

values of J↓ and G↓ are much lower than those of J↑ and G↑ for a particular combination of  α 

and β. 

 

  

 

 

 

Fig.3.10  𝐺↑ as a function of 𝐸𝑓/𝑒𝑉 for different ∆ values with different 𝛼, 𝛽 combinations: (a) 𝛼 ≠

0, 𝛽 = 0 ; 𝛼 = 0, 𝛽 ≠ 0, (b) 𝛼 > 𝛽;  𝛼 < 𝛽, (c) 𝛼 = 𝛽. 

 

   In Figs.3.12 and 3.13, we study the effect of SOIs directly on G↑ and G↓ at a fixed value of 

∆ (=15 meV). We set henceforth Ef =15 meV, eV = 25 meV and εq = 20 meV. Fig.3.12(a) 

shows that for certain values of β, G↑ increases with α, though it can have a non-smooth 

behaviour at several values of α. This non-smooth behaviour in G↑ reduces as β increases and 

G↑ becomes essentially smooth. Interestingly, in the case of 𝛽 = 0, G↑ becomes completely 
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smooth and increases monotonically with α in a linear way. One can see from Fig.3.12(b) 

that for non-zero values of β, G↓ also exhibits a non-smooth behaviour at several values of α. 

In fact, G↓  has more non-smoothness than G↑ . For β =0, G↓  is also found to increase 

monotonically with α in a linear way. It is important to mention that unlike G↑-curves, the 

non-smoothness in G↓  does not go away as β  increases, especially for lower β  values. 

However, if β increases further, this non-smoothness in G↓ also disappears slowly (not shown 

here). Thus, the non-smooth behaviour in G↑ and G↓ arises at a non-zero ∆ in the presence of 

reasonable values of SOIs. 

 

  

 

 

 

Fig.3.11  𝐺↓ as a function of 𝐸𝑓/𝑒𝑉 for different ∆ values with different 𝛼, 𝛽 combinations: (a) 𝛼 ≠

0, 𝛽 = 0 ; 𝛼 = 0, 𝛽 ≠ 0, (b) 𝛼 > 𝛽;  𝛼 < 𝛽, (c) 𝛼 = 𝛽. 

 

    Figs.3.13(a) and 3.13(b) respectively show the dependence of G↑ and G↓ on β for different 

values of α . It is seen that G↑  and G↓  increase with β  as β  increases from zero, show a 

bending at a certain β and finally appear to saturate as β increases further. How the increase 
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in G↑ and G↓ is only discernible at lower values of β. The figure also shows that G↑ increases 

with increasing value of α. For 𝛼 = 0 , G↑  decreases extremely slowly with increasing β . 

G↑ −curve also shows some non-smoothness with respect to β at higher values of α. The 

observations in Fig.3.13(b) are similar to Fig.3.13(a) except for the 𝛼 = 0 case, where G↓ , 

unlike G↑, increases monotonically with β . From Figs.3.13(a) and 3.13(b), we can also 

conclude that the magnitudes of G↓ components are smaller than those of the G↑ components. 

 

  

 

Fig.3.12 (a) G↑ (b) G↓ as a function of α for different β values at ∆= 15 meV.  

 

  

 

Fig.3.13 (a) G↑ and (b) G↓ as a function of β for different α values at ∆= 15 meV. 

  



   Chapter 3       

 
 

88  

 

 

Fig.3.14 Reflected spin polarization  PJ
 Refl as a function of α for different values of β at ∆= 20 meV. 

Inset: PJ
 Refl as a function of β for different values of α at ∆= 20 meV. 

 

   As the spin-polarization is an important quantity in the context of spin-filtering, we plot 

reflected spin-polarization (PJ
 Refl) and refracted spin-polarization (PJ

 Refr) with α and β in 

Figs. 3.14 and 3.15 respectively. We can clearly see that at a finite ∆,  PJ
 Refl remains zero 

over the entire α-axis for any value of β. The inset shows PJ
 Refl remains zero also over the 

entire β-axis for any value of α.  This can be understood from Fig.3.4 where the spin-up and 

spin—down reflection coefficients are constant with respect to SOIs in the presence of a 

finite ∆ and hence, the spin-polarization becomes zero for any values of SOIs. Fig.3.15(a) 

shows that  PJ
 Refr increases as α increases at a finite ∆ (∆= 20) meV and the behaviour is 

slightly nonlinear for non-zero values of β.  Comparison with the inset suggests that the 

nonlinearity is more for the case of  ∆= 0. Fig.3.15(b) shows that for 𝛼 ≠ 0, PJ
 Refr initially 

decreases with increasing β, makes a broad valley in the intermediate region of β and then 

increases again as β increases. For 𝛼 = 0 ,  however, PJ
 Refr  is a monotonically increasing 

function of β, though at small β, the variation is rather slow. Therefore, the effects of RSOI 

and DSOI on PJ
 Refr are opposite to each other. The presence of ∆ appears to cause a constant 

shift in PJ
 Refr with respect to SOIs. 

    Figs.3.16 and 3.17 display the contour plots of refracted spin polarization PJ
 Refr . In 

Fig.3.16, we show the contour of  PJ
 Refr in α- β space at a finite value of ∆. Light yellow 

colour denotes the maximum value of PJ
 Refr. We notice that PJ

 Refr remains maximum over a 

finite region of α (2 ≤  𝛼 ≤ 5.2) and in a small region close to 𝛼 = 0, but decreases along the 
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β-axis. It decreases significantly if we decrease α below α = 2 , though the variations of 

PJ
 Refr are different in different α-β regimes. For example, when α is close to zero, we find a 

small region where PJ
 Refris maximum for small a but non-zero value of β (i.e., for α = 0,

β ≠ 0 case). For the case of  α < β, as α approaches to α = 2, it is seen that PJ
 Refr becomes 

maximum (light yellow colour) at a higher value of β(≈ 5) and PJ
 Refr takes intermediate 

values for 1 ≤  α ≤ 2  and 4 ≤  β ≤ 5.2 . PJ
 Refr attains a minimum (deep blue colour) at 

sufficiently small values of α and with β in the intermediate range (1 ≤  β ≤ 4) and with β 

beyond 5.2. For α > β, PJ
 Refr  increases as α increases, develops a maximum in the range  

2 ≤  α ≤ 5.2 , but drops beyond α = 5.2.  Therefore, for ∆ ≠ 0,  when both the SOIs are 

present, either of the two should be higher than the other but restricted to a particular window 

to lead to maximum PJ
 Refr. However, interestingly, DSOI alone can make PJ

 Refr significantly 

large, when RSOI is almost zero. 

 

 
 

 

Fig.3.15 (a) Refracted spin polarization   PJ
 Refr as a function of α for different values of β at ∆= 20 

meV. (b) PJ
 Refr as a function of β for different values of α at ∆= 20 meV. 

 

   We plot PJ
 Refr in ∆ − 𝛽 space for a particular value of α in Fig.3.17(a), and the same in 

Fig.3.17(b) in ∆-α astronomical for a particular value β. In these plots, one can notice that 

PJ
 Refr shows a constant shift in its value as we increase ∆ and furthermore, it decreases along 

the increasing value of β. It acquires a maximum in a narrow region around 𝛽 = 4 meV-nm 

at a certain α-value. The same behaviour with respect to ∆ is also visible in Fig.3.17(b). Here, 

however, PJ
 Refr  decreases along the decreasing α  value, but it remains maximum over a 
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broader regime of α at a certain finite β-value. Thus, the effects of RSOI and DSOI on PJ
 Refr 

are opposite and the presence of infinite delta-scatterer makes a change in the magnitude of 

PJ
 Refr . The present results for the maxima in 𝑃𝐽

 𝑅𝑒𝑓𝑟
  for ∆≠ 0  may be useful for the 

determination of the values of 𝛼 and 𝛽. 

 

 

 

Fig.3.16 Contour plot of PJ
 Refr in α- β space at ∆= 20 meV. 

 

  

 

Fig.3.17 Contour plot of PJ
 Refr in (a)  ∆-β space at α = 5 meV-nm (b) ∆-α space at β = 5 meV-nm. 

 

3.4 CONCLUSIONS 

 

In conclusion, we have studied the effect of both RSOI and DSOI on the electron transport 

across a metal-semiconductor junction with a delta-function interface potential by calculating 

the reflection and transmission coefficients and the experimentally measurable quantities like 
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spin-polarized current densities and differential conductance using discontinuous boundary 

conditions.  In the presence of both SOIs, DSOI reduces the angle of refraction of the spin-up 

and spin-down electrons while RSOI increases the same, but the reduction due to DSOI is 

much larger than the increase due to RSOI and hence the spin-splitting angle increases in the 

presence of DSOI. We have shown that the increase in the incident electron energy decreases 

the angle of refraction of the spin-up electrons, while it increases that of the spin-down 

electrons which is completely opposite to the ∆= 0  case. The effect of delta-scatterer 

becomes particularly important when we consider the spin-up refraction coefficients T↑ and 

T↓ with respect to incident angle θi and the coefficients α and β. The variations of  T↑ and  T↓ 

with respect to α show some discontinuities at non-zero ∆ and at lower values of β and this 

discontinuity effect also reflects in the variations of J↑ and J↓ at finite ∆. The presence of the 

finite jumps in the refracted coefficients and currents is a direct consequence of the infinite 

potential at the metal-semiconductor interface, as these discontinuities are completely absent 

for ∆ = 0 . Interestingly, the discontinuities disappear when J↑ and  J↓ are plotted with respect 

to β.  Also, the qualitative behaviour of J↑ and J↓ with respect β  for ∆ ≠ 0  turns out to be the 

same as in the case of ∆ = 0. As expected, the presence of ∆  decreases T↑ , T↓ , J↑  and J↓ 

significantly. Next, we have studied the variations of  J↑, J↓ and G↑, G↓ with respect to the 

Fermi energy (Ef) and applied voltage (V) for different combinations of  α and β at a finite ∆. 

It is observed that the current densities and hence the conductances increase as a function of 

V and decrease as a function of Ef. As observed with respect to Ef and V, the current density 

and differential conductance show qualitatively a similar behaviour, though they differ in 

their quantitative values. We have shown that spin-up current and conductance with respect 

to Ef  and V are increased more by DSOI than by RSOI for ∆ ≠ 0. Here also, the infinite 

interface potential causes a significant reduction in the current and conductance. G↑ and G↓ 

increase as α increases, but the presence of β suppresses them. The non-smooth behaviour of 

G↑ and G↓ are seen at low β and high α when ∆≠ 0. It is important to mention that in the 

presence of delta-potential, the reflection coefficients R↑  and R↓  become constant 

independent of α and β and consequently, reflected spin polarization PJ
 Refr  becomes zero as 

a function of SOIs. The refracted spin polarization PJ
 Refr , however, has a strong dependence 

on SOIs at finite ∆. We have shown that in the presence of both SOIs, PJ
 Refr is considerably 

large at large α and small β. One of the important observations of this investigation is that the 

presence of delta potential does not have any effect in changing the path of the refracted 

waves of the two different spin orientations, though it makes a constant shift in the PJ
 Refr 

spectrum with respect to SOIs. Also, in the case of ∆≠ 0,  PJ
 Refr  develops maxima in a 

narrow window of  𝛼, 𝛽. This result may be useful for the determination of the SOI strengths.  
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CHAPTER 4 

PERSISTENT CURRENTS IN A CORRELATED MESOSCOPIC 

HOLSTEIN-HUBBARD RING IN THE PRESENCE OF BULK 

INVERSION ASYMMETRY 

 

 

ABSTRACT 

 

The effect of e-p coupling, onsite repulsive Coulomb interaction and temperature on the PC 

in a quantum ring is studied in the presence of DSOI. The 1D QR threaded by the A-B flux is 

modelled by the Holstein-Hubbard-Dresselhaus Hamiltonian. The e-p interaction and DSOI 

are decoupled by respectively employing the standard Lang-Firsov coherent transformation 

and a unitary transformation. Thereafter, a mean-field-Hartree-Fock-self-consistent 

diagonalization technique is performed numerically to obtain the effective electronic energy 

and current. It is shown that the intrinsic DSOI enhances the persistent charge and spin 

currents significantly. On the other hand, the PC is effectively reduced by the onsite and 

nearest-neighbour e-p interaction and Coulomb interaction. The behaviour of the currents 

gets modified by temperature. The spin-splitting of persistent spin current is enhanced 

considerably by DSOI and this splitting is tuneable in different regimes of magnetic flux, 

temperature, chemical potential and the interactions present in the system. 
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4.1    INTRODUCTION 

 

   The study of the A-B effect in a mesoscopic ring has been in the focus of attention over the 

past few decades. There exists a PC in the QR which is generated by a magnetic flux Φ 

piercing through the ring. This novel phenomenon was first addressed by Büttiker et al. [1] 

and then several theoretical [2-8] and experimental [9-15] studies have come up to confirm 

the existence of PC in LDS. People have investigated the effect of e-e interaction on PC in a 

QR under the framework of the well-known HM [16-21]. But, to our knowledge, most of the 

studies have been performed in the absence of e-p interaction which can be crucial in 

mesoscopic systems. The effect of this interaction on PC is often dealt with using the 

Holstein-Hubbard (H-H) model. Recently, Monisha et al. [22] have studied the PC in an H-H 

ring under the influence of the RSOI. They have shown an enhancement of PC due to RSOI 

and investigated the effect of e-p interaction, onsite Coulomb repulsion and chemical 

potential on PC. In another study, Chatterjee et al. have studied the behaviour of PC in a 

chain of two H-H rings in the presence of the RSOI [23]. 

 

 

 

Fig.4.1 Schematic representation of a quantum ring threaded by an A-B flux Φ. 

    

   We present in Fig. 1, a schematic diagram of a mesoscopic ring threaded by a magnetic flux 

Φ. The A-B effect is a quantum mechanical phenomenon which causes a phase shift by 𝜃 =

2𝜋Φ/𝑁Φ0 in the wavefunctions of the electrons lying on the circumference of the ring. It is 

observed that the energy spectrum and thus the PC are periodic in Φ with period Φ0 = ℎ𝑐/𝑒 

which is the magnetic flux quantum. Since the DSOI is an intrinsic phenomenon for the 

materials having zinc blende structure that lacks inversion symmetry, it may be intriguing to 

study the effect of this interaction on PC in a ring-shaped nano-structure. Therefore, in this 

paper, we wish to study the behaviour of PC in a correlated QR in the presence of the onsite 

and NN e-p interaction, onsite e-e Coulomb interaction and DSOI. As the temperature very 
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much affects the distributions of the electronic energy levels, we also wish to investigate the 

role of temperature on the system considered.  

 

4.2    ANALYTICAL MODEL AND FORMULATION 

 

   The model Hamiltonian for an H-H ring pierced through an A-B flux Φ in the presence of 

DSOI can be written as 

 

𝐻 =  𝐻𝑒 +  𝐻𝑝ℎ +  𝐻𝑒−𝑝ℎ +  𝐻𝑠𝑜 ,                                            (4.1) 

 

where 𝐻𝑒  represents the electronic Hamiltonian, 𝐻𝑝  refers to the unperturbed phonon 

Hamiltonian, 𝐻𝑒−𝑝ℎ describes the e-p interaction and  𝐻𝑠𝑜 denotes the SOI.  𝐻𝑒 is given by 

 

𝐻𝑒 =  𝜖0 ∑𝑐𝑖𝜎
†

𝑖𝜎

𝑐𝑖𝜎 −   𝑡 ∑  (𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎  𝑒
𝑖𝜃𝜎 + ℎ. 𝑐. ) +  𝑈∑𝑛𝑖↑𝑛𝑖↓

𝑖

, (4.2) 

 

where 𝜖0 is the single-electron energy per site, 𝑐𝑖𝜎
†

(𝑐𝑖𝜎) is the electron’s creation(annihilation) 

operator at the 𝑖 th site with the spin-index 𝜎, 𝑖 = 1,2,3, …𝑁 , 𝑁  being the total number of 

identical sites in the system and  𝑐𝑖 = (
𝑐𝑖↑
𝑐𝑖↓
),  𝑡 is the NN hopping integral, 𝑒𝑖𝜃𝜎 is  the Peierls 

phase factor originating from the A-B flux, 𝑈 measures the onsite e-e repulsive Coulomb 

correlation and 𝑛𝑖𝜎 (𝑐𝑖𝜎
† 𝑐𝑖𝜎) is the electron’s number operator at site 𝑖 with spin 𝜎. In general, 

the phase 𝑒𝑖𝜃𝜎 can be represented by the spin-dependent magnetic vector potential 𝐴𝜎 [24] as: 

𝜃𝜎 = ∫ 𝐴𝜎⃗⃗⃗⃗  ⃗. 𝑑𝑙⃗⃗  ⃗
𝑖+1

𝑖
 = 2𝜋Φσ /NΦ0 , where Φ𝜎 is the spin-dependent A-B flux [20, 21]. 𝐻𝑝ℎ  is 

given by 

 

𝐻𝑝ℎ = ℏ𝜔0 ∑(𝑏𝑖
†𝑏𝑖  +  

1

2
 )

𝑖

,                                                    (4.3) 

 

where 𝑏𝑖
†

(𝑏𝑖 ) is the creation (annihilation) operator for a phonon at the 𝑖 th site with a 

dispersionless frequency 𝜔0. 𝐻𝑒−𝑝ℎ is given by 

 

𝐻𝑒−𝑝ℎ = g1∑𝑛𝑖𝜎(𝑏𝑖 +  𝑏𝑖
†)

𝑖𝜎

 +  g2 ∑ 𝑛𝑖𝜎(𝑏𝑗 +  𝑏𝑗
†)

<𝑖𝑗>𝜎

, (4.4) 
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where g1 denotes the strength of the onsite e-p interaction and g2 denotes that at the NN sites. 

The e-p interactions beyond NN are considered small and therefore neglected.  𝐻𝑠𝑜 is given 

by 

 

𝐻𝑠𝑜 = − ∑ 𝑡𝑠𝑜 (𝑐𝑖𝜎
†

<𝑖𝑗>𝜎

𝑐𝑗𝜎𝑒
𝑖𝜃𝜎 + ℎ. 𝑐. ),                                     (4.5) 

 

where 𝑡𝑠𝑜 can be written, in general, as 

 

𝑡𝑠𝑜 = 𝑖𝛼(𝜎𝑥 𝑐𝑜𝑠 𝜑𝑖𝑗 + 𝜎𝑦 𝑠𝑖𝑛 𝜑𝑖𝑗) − 𝑖𝛽 (𝜎𝑦 𝑐𝑜𝑠 𝜑𝑖𝑗 + 𝜎𝑥 𝑠𝑖𝑛 𝜑𝑖𝑗), (4.6) 

 

with 𝛼 and  𝛽 being the RSOI and DSOI strength respectively, 𝜎𝑥 and 𝜎𝑦 being the Pauli spin 

matrices, 𝜑  the azimuthal coordinate of the ring: 𝜑𝑖𝑗 = (𝜑𝑖 + 𝜑𝑗)/2 = 2𝜋(𝑖 − 1/2)/𝑁 , 

where 𝜑𝑖 = 2𝜋(𝑖 − 1)/𝑁 . In this work, we consider the effect of DSOI only and therefore 

we keep 𝛼 = 0.  

   First, we perform the celebrated LFT, 𝑒𝑆 where 𝑆 is the generator of the transformation: 

 

𝑆 =
1

ℏ𝜔0
[g1∑𝑛𝑖𝜎(𝑏𝑖

† − 𝑏𝑖)

𝑖𝜎

+  g2∑𝑛𝑖𝜎(𝑏𝑖+𝛿
† − 𝑏𝑖+𝛿)

𝑖𝛿𝜎

].               (4.7) 

 

This is essentially a coherent state transformation which eliminates the phonons from the 

system and gives an effective electronic Hamiltonian. We next employ a unitary 

transformation 𝑈𝑙 given by  

 

𝑈𝑙 =
1

√2
[

1 −1

𝑒− 
2𝜋𝑖(𝑙−

1
2
)

𝑁          𝑒− 
2𝜋𝑖(𝑙−

1
2
)

𝑁   
],                                      (4.8) 

 

with site index 𝑙 , to diagonalize the spin degrees of freedom. These two transformations 

together transform the Hamiltonian 𝐻 to 𝐻𝑒𝑓𝑓. 

 

𝐻𝑒𝑓𝑓 = 𝜖0
𝑒𝑓𝑓∑𝑛̃𝑖𝜎 −

𝑖𝜎

∑ [𝑐̃𝑖𝜎
†  {𝑡𝑒𝑓𝑓ℱ + 𝑖𝛽𝑒𝑓𝑓 ℊ}𝑐̃𝑗𝜎 𝑒𝑖(𝜃𝜎+

𝜋
𝑁
) +  ℎ. 𝑐. ]

<𝑖𝑗>𝜎

                

 

+𝑈𝑒𝑓𝑓 ∑[𝑛̃𝑖↑𝑛̃𝑖↓ +  
𝑛̃𝑖
4

 (𝑐̃𝑖↑
†  𝑐̃𝑖↓ +  𝑐̃𝑖↓

†  𝑐̃𝑖↑ ) − (𝑐̃𝑖↑
†  𝑐̃𝑖↓ +  𝑐̃𝑖↓

†  𝑐̃𝑖↑ )
𝑛̃𝑖
4
] ,

𝑖

   (4.9) 
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where,   

 

𝜖0
𝑒𝑓𝑓 = 𝜖0 −

1

ℏ𝜔0
(g1
2 + 𝑧g2

2),       [𝑧 = No. of  NNs]       (4.10) 

 

 𝑡𝑒𝑓𝑓 = 𝑡 𝑒
− 

1
(ℏ𝜔0)2

[(g1−g2)
2 +(𝑧−1)g2

2 ]
,                                    (4.11) 

 

𝛽𝑒𝑓𝑓 = 𝛽 𝑒
− 

1
(ℏ𝜔0)2

[(g1−g2)
2 +(𝑧−1)g2

2 ]
,                                   (4.12) 

 

𝑈𝑒𝑓𝑓 = 𝑈 −
2

ℏ𝜔0
(g1
2 + 𝑧g2

2).                                                  (4.13) 

 

ℱ = (
𝑐𝑜𝑠 (

𝜋

𝑁
) −𝑖𝑠𝑖𝑛 (

𝜋

𝑁
)

−𝑖𝑠𝑖𝑛 (
𝜋

𝑁
) 𝑐𝑜𝑠 (

𝜋

𝑁
)
),                                          (4.14) 

 

ℊ = (
𝑠𝑖𝑛 (

𝜋

𝑁
) 𝑖𝑐𝑜𝑠 (

𝜋

𝑁
)

−𝑖𝑐𝑜𝑠 (
𝜋

𝑁
) −𝑠𝑖𝑛 (

𝜋

𝑁
)
).                                            (4.15) 

 

   To deal with the e-e interaction we now apply Hartree-Fock mean-field approximation (HF-

MFA) which works well in the weak-coupling regime. The resulting Hamiltonian reads  

 

𝐻𝑒𝑓𝑓
 𝑀 =∑𝑐̃𝑖

†

𝑁

𝑖=1

[ℙ + (−1)𝑗ℚ]𝑐̃𝑖 − [𝑒
𝑖(𝜃𝜎+

𝜋
𝑁
) ∑ 𝑐̃𝑖

† {𝑡𝑒𝑓𝑓ℱ + 𝑖𝛽𝑒𝑓𝑓 ℊ}𝑐̃𝑗  +  ℎ. 𝑐.

𝑁

<𝑖𝑗>

] + 𝐾 , (4.16) 

 

where we have divided the total number of sites 𝑁 (which, for simplicity, is considered as an 

even number) into even-numbered sites (𝐴  sub-system) and odd-numbered sites (𝐵  sub-

system) and introduced the charge density 𝑛 , CDW parameter 𝑐  and SDW parameter 𝑠 

respectively as  

 

𝑛 =
1

2
[(𝑛𝐴↑ + 𝑛𝐴↓) + (𝑛𝐵↑ + 𝑛𝐵↓)],                                   (4.17) 
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𝑐 =
1

2
[(𝑛𝐴↑ + 𝑛𝐴↓) − (𝑛𝐵↑ + 𝑛𝐵↓)],                                   (4.18) 

  

𝑠 =
1

2
[(𝑛𝐴↑ − 𝑛𝐴↓) − (𝑛𝐵↑ − 𝑛𝐵↓)].                                   (4.19) 

 

and the notations  ℙ, ℚ as 

 

 

ℙ = (

𝜖𝐴↑ + 𝜖𝐵↑
2

0

0
𝜖𝐴↓ + 𝜖𝐵↓

2

),                                            (4.20) 

 

ℚ = (

𝜖𝐴↑ − 𝜖𝐵↑
2

0

0
𝜖𝐴↓ − 𝜖𝐵↓

2

),                                           (4.21)  

 

where,  

𝜖𝐴↑ = 𝜖0
𝑒𝑓𝑓

+
𝑈𝑒𝑓𝑓

2
 (𝑐 − 𝑠),                                                  (4.22) 

 

𝜖𝐵↑ = 𝜖0
𝑒𝑓𝑓

−
𝑈𝑒𝑓𝑓

2
 (𝑐 − 𝑠),                                                  (4.23) 

 

𝜖𝐴↓ = 𝜖0
𝑒𝑓𝑓

+
𝑈𝑒𝑓𝑓

2
 (𝑐 + 𝑠),                                                  (4.24) 

 

𝜖𝐵↓ = 𝜖0
𝑒𝑓𝑓

−
𝑈𝑒𝑓𝑓

2
 (𝑐 + 𝑠),                                                  (4.25) 

 

𝐾 =
𝑈𝑒𝑓𝑓

4
𝑁 (𝑛2 − 𝑐2 +  𝑠2).                                              (4.26) 

 

   Next, we perform Fourier transformation: 𝑐̃𝑙 =  
1

√𝑁
 ∑ 𝑒𝑖𝑘𝑙𝑎𝑘  𝑐̃𝑘 , 𝑎  being the lattice 

constant and obtain after some algebra,  the following Hamiltonian in the momentum space:  
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𝐻𝑒𝑓𝑓
 𝑀 = ∑ 𝑐𝑘

†

𝜋/𝑎

𝑘 =−𝜋/𝑎

ℝ 𝑐𝑘 + ∑ 𝑐𝑘
†

𝜋/𝑎

𝑘 =−𝜋/𝑎

ℚ 𝑐𝑘+𝜋/𝑎  + 𝐾,                          (4.27) 

 

where 𝑐̃† (𝑐̃) are redefined as 𝑐†(𝑐) and the matrix ℝ is obtained as 

 

 ℝ = (

𝜖𝐴↑ + 𝜖𝐵↑
2

+ 𝛼11(𝑘) 𝛼12(𝑘)

𝛼21(𝑘)
𝜖𝐴↓ + 𝜖𝐵↓

2
+ 𝛼22(𝑘)

) ,                                (4.28) 

 

where 𝛼𝑚𝑛 (𝑚, 𝑛 = 1,2) are given by  

 

𝛼11(𝑘) = −2𝑡𝑒𝑓𝑓 𝑐𝑜𝑠 (𝑘𝑎 + 𝜃𝜎 −
𝜋

𝑁
) 𝑐𝑜𝑠 (

𝜋

𝑁
) + 2𝛽𝑒𝑓𝑓 𝑠𝑖𝑛 (𝑘𝑎 + 𝜃𝜎 −

𝜋

𝑁
) 𝑠𝑖𝑛 (

𝜋

𝑁
) , (4.29) 

 

𝛼12(𝑘) = −2𝑡𝑒𝑓𝑓 𝑠𝑖𝑛 (𝑘𝑎 + 𝜃𝜎 −
𝜋

𝑁
) 𝑠𝑖𝑛 (

𝜋

𝑁
) + 2𝛽𝑒𝑓𝑓 𝑐𝑜𝑠 (𝑘𝑎 + 𝜃𝜎 −

𝜋

𝑁
) 𝑐𝑜𝑠 (

𝜋

𝑁
) , (4.30) 

 

𝛼12(𝑘) = −2𝑡𝑒𝑓𝑓 𝑠𝑖𝑛 (𝑘𝑎 + 𝜃𝜎 −
𝜋

𝑁
) 𝑠𝑖𝑛 (

𝜋

𝑁
) − 2𝛽𝑒𝑓𝑓 𝑐𝑜𝑠 (𝑘𝑎 + 𝜃𝜎 −

𝜋

𝑁
) 𝑐𝑜𝑠 (

𝜋

𝑁
) , (4.31) 

 

𝛼22(𝑘) = −2𝑡𝑒𝑓𝑓 𝑐𝑜𝑠 (𝑘𝑎 + 𝜃𝜎 −
𝜋

𝑁
) 𝑐𝑜𝑠 (

𝜋

𝑁
) − 2𝛽𝑒𝑓𝑓 𝑠𝑖𝑛 (𝑘𝑎 + 𝜃𝜎 −

𝜋

𝑁
) 𝑠𝑖𝑛 (

𝜋

𝑁
) . (4.32)   

 

   Our calculation is performed in the reduced Brillouin zone (RBZ) i.e., 𝑘 lies in the range: 

−𝜋/2𝑎 ≤ 𝑘 ≤ + 𝜋/2𝑎  and  𝛼 satisfies the relation: 𝛼𝑖𝑗  (𝑘 + 𝜋/𝑎) =  −  𝛼𝑖𝑗  (𝑘). Therefore, 

the effective MF Hamiltonian in the RBZ can be written as 

 

𝐻𝑒𝑓𝑓
 𝑀 =  ∑

[
 
 
 
 

(𝑐𝑘↑
† 𝑐𝑘↓

† 𝑐
𝑘+
𝜋
𝑎
,↑
† 𝑐

𝑘+
𝜋
𝑎
,↓
†
)  𝕎  

(

 
 

𝑐𝑘↑
𝑐𝑘↓
𝑐
𝑘+
𝜋
𝑎
,↑

𝑐
𝑘+
𝜋
𝑎
,↓
)

 
 

]
 
 
 
 

 

𝜋/𝑎

𝑘=0

  +  𝐾  ,         (4.33) 

 

where the matrix 𝕎 is given by  
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𝕎 =

(

 
 
 
 
 

𝜖𝐴↑ + 𝜖𝐵↑

2
+ 𝛼11(𝑘) 𝛼12(𝑘)

𝜖𝐴↑ − 𝜖𝐵↑

2
0

𝛼21(𝑘)
𝜖𝐴↓ + 𝜖𝐵↓

2
+ 𝛼22(𝑘) 0

𝜖𝐴↓ − 𝜖𝐵↓

2
𝜖𝐴↑ − 𝜖𝐵↑

2
0

 𝜖𝐴↑ + 𝜖𝐵↑

2
− 𝛼11(𝑘) −𝛼12(𝑘)

0
𝜖𝐴↓ − 𝜖𝐵↓

2
−𝛼21(𝑘)

𝜖𝐴↓ + 𝜖𝐵↓

2
− 𝛼22(𝑘))

 
 
 
 
 

 

(4.34) 

 

   To calculate the GS energy of the system, we perform a self-consistent numerical 

diagonalization technique which generates the energy spectrum 𝐸𝑖  with the corresponding 

Fermi distribution function: 𝑓(𝐸𝑖) = [𝑒(𝐸𝑖−𝜇)/𝑘𝐵𝑇]
−1

, 𝜇 being the chemical potential, 𝑘𝐵 the 

Boltzman’s constant and 𝑇 the temperature. Thus, the GS energy can be expressed as 

 

𝐸𝐺𝑆 =∑𝐸𝑖  𝑓(𝐸𝑖)

𝑖

+ 𝐾,                                                         (4.35) 

 

and following Ref. [20], the persistent charge current (PCC), 𝐼𝑃𝐶 can be computed from the 

relation 

 

𝐼𝑃𝐶 = −
1

2𝜋
 (
𝜕𝐸𝐺𝑆
𝜕Φ𝜎

) , where,  Φ↑ = Φ↓ = Φ.          (4.36) 

 

    As there exist two types of particles namely, the spin-up and spin-down particles, we can 

also calculate persistent spin current (PSC), 𝐼𝑃𝐶
𝜎  for two different spin-orientations in the 1/2-

spin current unit [20].  𝐼𝑃𝐶
𝜎  is given by  

 

𝐼𝑃𝐶
𝜎 = −

1

2𝜋

𝜕𝐸𝐺𝑆
𝜕Φ𝜎

 ,           where,Φ↑ = −Φ↓ = Φ ,          (4.37) 

 

which can equivalently be expressed as 

 

𝐼𝑃𝐶
𝜎 = −

1

2𝜋
(
𝜕𝐸𝐺𝑆
𝜕Φ

)𝜎.                                                             (4.38) 
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4.3    Numerical results and discussions 

 

   For convenience, we scale all energies in units of ℏ𝜔0  and set 𝑡 = 1 . We discuss the 

numerical results of PCC and PSC in following sections. 

 

4.3.1   Results for persistent charge current 

 

 
 

 

Fig.4.2 (a) GS energy and (b) PCC as a function of magnetic flux Φ/Φ0 for different values of DSOI 

strength 𝛽 at 𝑈 = g1 = g2 = 𝑘𝐵𝑇 = 𝜇 = 0.  

 

   In Fig.4.2a and 4.2b we plot respectively the GS energy (𝐸𝐺𝑆) and PCC (𝐼𝑃𝐶) as a function 

of magnetic flux Φ which is an integral multiple of magnetic flux quantum Φ0 = ℎ𝑐/2𝑒. The 

periodicity with Φ in both the figures is clearly visible. Fig.4.2a shows the variation of GS 

energy for different values of the DSOI strength 𝛽 and we can see that 𝐸𝐺𝑆 increases with 𝛽 

when all other interactions are absent. In general, the value of 𝛽 cannot be changed for a 

particular material as it originated from the internal BIA of the material. Therefore, our 

results are applicable to different materials whose 𝛽  lies in the range considered here. 

Fig.4.2b shows that PCC increases with increasing DSOI, but the shape of the variation gets 

altered after a critical 𝛽  (𝛽𝑐 = 1 ), though remains symmetrical with respect to Φ = 0 . 

Monisha et al. [22] have studied the same in the presence of RSOI alone. We would like to 

mention that DSOI can give rise to a greater enhancement of PCC compared to RSOI (not 

shown here).  

a 

b 
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   To see the variation with 𝛽 explicitly, we have plotted Fig.4.3 both for zero and non-zero 

temperature. We observe that 𝐼𝑃𝐶  increases monotonically with 𝛽  and the effect of 

temperature is significant for higher values of 𝛽. 

 

 

 

 

Fig.4.3 PCC vs. 𝛽 for 𝑘𝐵𝑇 = 0 & 𝑘𝐵𝑇 = 0.09 at 𝑈 = g1 = g2 = 𝜇 = 0. 

 

  
 

Fig.4.4 PCC vs. onsite e-e interaction 𝑈  for 𝛽 = 0  (inset) and 𝛽 = 3  at g1 = g2 = 𝜇 = 0  for (a) 

𝑘𝐵𝑇 = 0 and (b) 𝑘𝐵𝑇 = 0.09. 

 

    Fig.4.4a shows the variation of  𝐼𝑃𝐶 with onsite Coulomb interaction strength 𝑈 with and 

without DSOI at 𝑇 = 0. In the chosen energy scale ℏ𝜔0 = 1, the range of 𝑈 (0 ≤ 𝑈 ≤ 4) 

provides a weak-coupling regime where MFA is considered to be a plausible approximation. 

a b 
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The inset is drawn for 𝛽 = 0. There exists a qualitative difference between 𝛽 = 0 and  𝛽 ≠ 0 

plots. For 𝛽 = 0, the behaviour of PCC is primarily constant up to a certain value of 𝑈 and 

after that it falls sharply and becomes zero at 𝑈 = 2. The reason can be explained simply by 

the competition between hopping, 𝑡 and onsite repulsion due to Coulomb interaction, 𝑈. The 

electron can go from one site to the other unless 𝑈 reaches a critical limit 𝑈𝑐 = 1.3 which 

prevents further hopping. Beyond 𝑈𝑐, 𝑈 reduces PCC extremely rapidly. However, the notion 

of critical 𝑈 is not so prominent for = 3 , though for small values of 𝑈, PCC falls slowly. 

Here also, PCC decreases with 𝑈 rapidly, especially for higher values of 𝑈, in a smooth 

fashion. In Fig.4.4b the effect of temperature is displayed for both 𝛽 = 0 (inset) and 𝛽 = 3. 

The PCC reduces much faster with 𝑈 at a finite temperature for 𝛽 = 3. The nature of PCC 

with 𝑈 at 𝛽 = 0 does not change much in the presence of temperature.  

 

  
 

Fig.4.5 The effect of onsite e-p interaction, g1  on PCC at 𝑈 = g2 = 𝜇 = 0  for 𝑘𝐵𝑇 = 0  and (b) 

𝑘𝐵𝑇 = 0.09. 

 

   To see the effect of onsite e-p interaction we plot 𝐼𝑃𝐶 as a function g1 in Fig.4.5. We look 

into the effect of temperature on 𝐼𝑃𝐶 vs. g1 behaviour in Fig.4.5b while in 4.5a, we consider 

the zero-temperature behaviour. In Fig.4.5a, one may notice that PCC drops as g1 increases. 

This happens because of the polaronic effect. As g1 increases, the e-p interaction distorts the 

lattice more giving rise to a deeper polarization potential in which the electron gets self-

trapped or localized at that particular site [24-26]. This causes a reduction in mobility of the 

electron and as a result PCC decreases. It is obvious that the variation is enhanced for 𝛽 = 3 

which is also suggested by Fig.4.3. Fig.4.5b gives the behaviour at finite temperature (which 

a 
b 
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is more realistic). It is evident from the figure that at a finite temperature, PCC increases 

initially with g1 , attains a peak, then declines and becomes zero as g1  increases. The 

behaviour is same for 𝛽 = 0 and 𝛽 = 3.  

 

  
 

Fig.4.6 𝐼𝑃𝐶 as a function of Φ at 𝑈 = g1 = 𝑘𝐵𝑇 = 𝜇 = 0 for different values of g2 at (a) 𝛽 = 0 and 

(b) 𝛽 = 3. 

 

  
 

Fig.4.7 𝐼𝑃𝐶 as a function of Φ at 𝑈 = 𝑘𝐵𝑇 = 𝜇 = 0, g1 = 0.4 for different g2 values at (a) 𝛽 = 0 and 

(b) 𝛽 = 3. 

 

   We study in Fig.4.6, the effect of NN e-p interaction (g2) on the Φ−dependence of  𝐼𝑃𝐶 

with g1 = 0. In Fig. 4.6a, we consider 𝛽 = 0 while 𝛽 = 3-case is studied in Fig. 4.6b.  The 

figures clearly display that PCC gets reduced as g2 increases, though the magnitude of 𝐼𝑃𝐶 

gets increased when 𝛽 ≠ 0  (Fig.4.6b). Next, in Figs.4.7, we study the effect of NN e-p 

interaction (g2) on the 𝐼𝑃𝐶 versus Φ – curves in the presence of onsite e-p interaction. It is 

a 

b 
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evident from Figs.4.7a and 4.7b that the reduction of PC due to polaronic effect is more 

significant when g1 ≠ 0. Interestingly, it can be seen in Figs.4.7 that 𝐼𝑃𝐶 vanishes completely 

at a particular combination of g1 and g2. 

   In Figs.4.8a and 4.8b it is explicitly shown how PCC declines as g2 increases. The insets 

are drawn for 𝛽 = 0. Comparison of Fig. 4.8 with 4.5 shows that PCC dies out faster with g2 

than with g1  This is understandable from the effective hopping term, 

𝑡𝑒𝑓𝑓 ~𝑒
−[(g1−g2)

2 +(𝑧−1)g2
2 ]/(ℏ𝜔0)

2
. In 𝑡𝑒𝑓𝑓, there is an additional contribution in the exponent 

entirely dependent on  g2 which sets off a more pronounced reduction in PCC than due to g1 

alone. The effect of temperature on 𝐼𝑃𝐶 with g2 is plotted in Fig.4.8b. Here also, PCC exhibits 

a peak-like structure, but again the suppression of PCC is stronger in the case of g2. One may 

also notice that the resistive effect on PCC due to e-p interaction is much more prominent 

than due to e-e interaction. 

 

  

Fig.4.8 Effect of N-N e-p interaction, g2 on 𝐼𝑃𝐶 as a function of Φ at 𝑈 = g1 = 𝜇 = 0 for (a) 𝑘𝐵𝑇 =

0 and (b) 𝑘𝐵𝑇 = 0.09. 

 

   To show the impact of temperature, we plot PCC directly with 𝑘𝐵𝑇 in Figs. 4.9(a-c) for 

different combinations of  g1 and  g2 and 𝛽 = 3. Fig.4.9a is shown for g1 = g2 = 0.  (The 

𝛽 = 0 case is shown in the inset). Fig.4.9b and 4.9c are plotted for g1 = 0.5 & g2 = 0 and 

g1 = 0 & g2 = 0.5 respectively. The PCC not only reduces with increasing temperature (as 

was suggested by Büttiker et al. [28]), but it also exhibits peak at a low temperature. In the 

presence of  g1 or g2,  PCC starts from zero at 𝑇 = 0, whereas it starts from a finite value at 

𝑇 = 0 when both  g1 and g2 are zero. The peak-like pattern is more noticeable when either g1 

or g2 is nonzero. 

 

a b 
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Fig.4.9 Effect of temperature, 𝑇  on PCC at 𝛽 = 3.0 , 𝑈 = 𝜇 = 0  for: (a) g1 = g2 = 0 ; (b) g1 =

0.5 & g2 = 0; (c) g2 = 0.5 & g1 = 0. 

 

   As the change of number of particles may have some effect on PCC, we also study the 

variation of PCC with chemical potential 𝜇. In Fig.4.10a, we plot 𝐼𝑃𝐶  versus Φ for several 

values of  𝜇  at  𝛽 = 0 with other interactions switched off. Fig.4.10b shows the explicit 

dependence of 𝐼𝑃𝐶 on 𝜇 for 𝛽 ≠ 0 and 𝛽 = 0 (inset). These two plots are at 𝑇 = 0. We can 

notice clearly that PCC decreases montonically with increasing 𝜇 at 𝑇 = 0. Interestingly, in 

Fig.4.9c it is seen that PCC increases with 𝜇 at a finite temperature. 

a 

b 

c 
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Fig.4.10 (a) 𝐼𝑃𝐶  vs. Φ/Φ0  for different values of  𝜇  at 𝑈 = g1 = g2 = 𝑘𝐵𝑇 = 𝛽 = 0. PC vs. 𝜇  for 

different 𝛽 values at g1 = g2 = 𝑈 = 0 for (b) 𝑘𝐵𝑇 = 0 & (c) 𝑘𝐵𝑇 = 0.09. 

 

4.3.2   Results for persistent spin current 

 

    Here we wish to investigate PSC ( 𝐼𝑃𝐶
𝜎 ) in the A-B ring. In Fig. 4.11(a), we plot 𝐼𝑃𝐶

𝜎  as a 

function of A-B flux Φ  for a fixed DSOI strength 𝛽  when all the other interactions and 

temperature have been taken equal to zero. The blue solid curve represents PSC for spin-up 

electrons and the red dotted curve denotes the same for the spin-down electrons. We can 

clearly see that the variations of spin-up PC, 𝐼𝑃𝐶
↑  and spin-down PC, 𝐼𝑃𝐶

↓  are completely 

opposite with respect to Φ/Φ0 . They represent two circulating spin-currents moving in 

opposite directions in the A-B ring. Both IPC
↑  and IPC

↓  are periodic in Φ/Φ0 with period 1 i.e., 

𝜋. Interestingly, 𝐼𝑃𝐶
↑  and 𝐼𝑃𝐶

↓  meet each other at Φ/Φ0 = 0,±0.5. But for these values of 

a b 
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Φ/Φ0, there exists clear separation between 𝐼𝑃𝐶
↑  and 𝐼𝑃𝐶

↓  which demonstrates a spin-current 

splitting at a fixed value of Φ/Φ0. One should notice that this splitting between two spin 

currents is an effective splitting arising from the combined effect of A-B flux Φ/Φ0 and 

DSOI. The inset represents the PSCs in the absence of DSOI i.e., for 𝛽 = 0. Here, the 

splitting in spin-currents is solely determined by magnetic flux Φ. It can be seen that PSC not 

only changes qualitatively, but it also reduces significantly at 𝛽 = 0  and hence one can 

expect that the splitting reduces as 𝛽 reduces. As mentioned earlier, both 𝐼𝑃𝐶
↑  and 𝐼𝑃𝐶

↓  equally 

exhibit a sharp discontinuity at Φ/Φ0 = 0 when all other interactions are zero. To see the 

polaronic effects on 𝐼𝑃𝐶
𝜎 , we plot 𝐼𝑃𝐶

𝜎  as a function of Φ/Φ0 for different combinations of g1 

and g2  in Fig.4.11(b) for 𝛽 = 3  and 𝑈 = 𝑘𝐵𝑇 = 𝜇 = 0 . We observe that the qualitative 

behaviour of 𝐼𝑃𝐶
𝜎  changes with respect to Φ/Φ0 in the presence of e-p interaction, although 

the periodicity of 𝐼𝑃𝐶
𝜎  is still preserved. Furthermore, 𝐼𝑃𝐶

↑  and 𝐼𝑃𝐶
↓  have an opposite behaviour 

with respect to Φ/Φ0. In g1 = 0.2, g2 = 0 case, we notice that unlike Fig.4.11(a), the sharp 

discontinuity at Φ/Φ0 = 0 vanishes. As expected, the onsite e-p interaction reduces 𝐼𝑃𝐶
𝜎 . For 

g1 = 0, g2 = 0.2 case (inset(i)), the pattern of 𝐼𝑃𝐶
𝜎  changes and it reduces by the presence of 

g2. Interestingly, 𝐼𝑃𝐶
↑  and 𝐼𝑃𝐶

↓  coincide also at Φ/Φ0 = ±1 in addition to at Φ/Φ0 = 0,±0.5 

points when either of g1  and g2  is non-zero. Therefore, one would expect spin-current 

splitting becoming zero at half-integral multiples of Φ/Φ0  if  g1  or g2  is non-zero. The 

existence of these additional crossing points is entirely caused by e-p interaction.  

Surprisingly, the degeneracy at Φ/Φ0 = ±1 is lifted again when g1 = g2 = 0.2 (inset (ii)) 

 

  

 

Fig.4.11 PSC 𝐼𝑃𝐶
𝜎  vs. A-B flux Φ/Φ0  for 𝛽 = 3.0, 𝑈 = 𝑘𝐵𝑇 = 𝜇 = 0 at (a) g1 = g2 = 0. (Inset: at 

𝛽 = 0), (b) g1 = 0.2, g2 = 0. (Insets: (i) g1 = 0, g2 = 0.2, (ii) g1 = g2 = 0.2). 
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resembling the observation in Fig.4.11(a), although the behaviour is very much different now. 

Hence, the splitting does not go to zero at Φ/Φ0 = ±1  when g1  and g2  become equal. 

Another point to be observed in the inset (ii) is that the sharp discontinuity reappears at 

Φ/Φ0 = 0 when g1 equals g2.  

   To see how the spin-current splitting varies for different DSOI and e-p interaction strengths 

explicitly, we show splitting gap ∆𝐼𝑃𝐶
𝜎  as a function of A-B flux Φ/Φ0 in Fig.4.12 in the 

absence of other interactions. Here we define the spin-current splitting gap as: ∆𝐼𝑃𝐶
𝜎 = 𝐼𝑃𝐶

↑ −

𝐼𝑃𝐶
↓ . Essentially, it gives the total PSC, 𝐼𝑆. However, in Fig.4.12 we show the modulus of ∆𝐼𝑃𝐶

𝜎  

i.e., |∆𝐼𝑃𝐶
𝜎 | as we want to study the splitting gap with respect to Φ/Φ0. In Fig.4.12(a), it is 

shown that periodicity of |∆𝐼𝑃𝐶
𝜎 |  with Φ/Φ0  remains intact which is expected. More 

interestingly, |∆IPC
σ |  additionally shows a symmetric behaviour. However, |∆𝐼𝑃𝐶

𝜎 |  changes 

considerably with Φ and 𝛽. Thus, one can tune the splitting gap by changing the flux and the 

SOI parameters. One may notice that |∆𝐼𝑃𝐶
𝜎 | can be enhanced significantly by increasing 

DSOI strength, 𝛽 . This is also expected as 𝛽  enhances individual spin-currents shown in 

Fig.4.11(a). We want to mention that |∆𝐼𝑃𝐶
𝜎 | becomes zero at Φ/Φ0 = ±0.5. At Φ/Φ0 = 0, it 

becomes maximum suggesting a large splitting at zero A-B flux caused entirely due to DSOI. 

One can evaluate the strength of DSOI experimentally by measuring the zero-flux splitting. 

This zero-flux splitting arises due to the discontinuity of 𝐼𝑃𝐶
𝜎  at Φ/Φ0 = 0. We can see that 

the extrema of |∆𝐼𝑃𝐶
𝜎 | occur at half-integral multiples of Φ/Φ0 as suggested by Fig.4.11(a) 

when 𝑈 = g1 = g2 = 0 . Fig.4.12(b) displays |∆𝐼𝑃𝐶
𝜎 |  as a function of Φ/Φ0  for different 

combinations of g1 and g2. Here also, |∆𝐼𝑃𝐶
𝜎 | is periodic with respect to Φ/Φ0 even in the 

presence of e-p interaction as suggested by Fig.4.11(b), showing more oscillations especially 

when g2 ≠ 0. It is important to mention that the maximum of splitting gap |∆𝐼𝑃𝐶
𝜎 | decreases 

substantially as we turn on g1 or g2 or both. This can be understood from the resistive effect 

of polaronic interaction on 𝐼𝑃𝐶
𝜎  which reduces 𝐼𝑃𝐶

↑  and 𝐼𝑃𝐶
↓  individually and hence |∆𝐼𝑃𝐶

𝜎 | 

reduces as e-p interaction increases. It can be seen that unlike in Fig.4.12(a), when either g1 

(blue solid curve) or g2 (red dotted curve) is present, |∆𝐼𝑃𝐶
𝜎 | becomes almost zero at Φ/Φ0 =

±1 and at Φ/Φ0 = 0 it reaches its minimum (but not exactly zero). However, |∆𝐼𝑃𝐶
𝜎 | is non-

zero and finite at Φ/Φ0 = 0,±1 when g1 = g2 and 𝑈 = 0 as suggested by Fig.4.11. Due to 

the combined effect of g1 and g2, the curve for g1 = g2 = 0.2 is much lower than that for the 

case of  g1 = g2 = 0. But in all cases, |∆𝐼𝑃𝐶
𝜎 | vanishes at Φ/Φ0 = ±0.5. Thus, spin-splitting 

gap is very much dependent on different regimes of A-B flux and e-p interaction strengths. 

These findings also follow from Fig.4.11(b). 
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Fig.4.12 Absolute spin-current splitting gap |∆𝐼𝑃𝐶
𝜎 | vs. Φ/Φ0 at 𝑈 = 𝑘𝐵𝑇 = 𝜇 = 0 for (a) different 

values of at g1 = g2 = 0, (b) different g1 and g2 combinations at 𝛽 = 3. 

 

 

Fig.4.13 |∆𝐼𝑃𝐶
𝜎 | vs. Φ/Φ0  for different 𝑈-values at 𝑘𝐵𝑇 = 𝜇 = g1 = g2 = 0 for 𝛽 = 3. Inset: at 

g1 = g2 = 0.2. 

 

    Fig.4.13 shows the variation of the magnitude of the spin-splitting gap |∆𝐼𝑃𝐶
𝜎 | as a function 

of Φ/Φ0 for different values of Coulomb strength 𝑈 with a fixed 𝛽-value and g1 = 0 = g2, 

whereas, the inset shows the same nonzero g1 and g2. It is clearly shown that the shape and 

the value of |∆𝐼𝑃𝐶
𝜎 | change very much as we switch on 𝑈, but |∆𝐼𝑃𝐶

𝜎 | maintains periodicity and 

symmetry over the entire range of Φ/Φ0 for any value of 𝑈.  One can observe that 𝑈 reduces 

the maximum of splitting-gap, |∆𝐼𝑃𝐶
𝜎 |  because of the resistive effect produced by the 

Coulomb interaction. Also, it is interesting to mention that at equal intervals of half-flux, 

|∆𝐼𝑃𝐶
𝜎 | reaches zero giving rise to zero splitting for a finite 𝑈 , whereas, at 𝑈 = 0, |∆𝐼𝑃𝐶

𝜎 | 

becomes zero only at Φ/Φ0 = ±0.5. These additional zero-splitting points at a finite 𝑈 occur 
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purely due to Coulomb correlation as we have set other interactions as zero. However, |∆𝐼𝑃𝐶
𝜎 | 

remains zero over entire Φ-range beyond a particular 𝑈. Here, we can see this feature at 𝑈 =

2. To study the interplay of Coulomb and e-p interactions, we plot |∆𝐼𝑃𝐶
𝜎 | in the inset at g1 =

g2 = 0.2. We can notice that at a non-zero 𝑈, |∆𝐼𝑃𝐶
𝜎 | reduces further because of the combined 

resistive effects of both the interactions. Interestingly, for a given 𝑈 -value, |∆𝐼𝑃𝐶
𝜎 |  also 

becomes zero at Φ/Φ0 = 0,±1 even when g1 = g2 = 0.2 which is completely opposite to 

what we observe in Fig.4.12(b) for the g1 = g2 case. Hence, 𝑈 makes the splitting zero at 

half-integral multiples of A-B flux including Φ/Φ0 = 0 point for any combinations of g1 and 

g2 . At 𝑈 = 2 and g1 = g2 = 0.2, |∆𝐼𝑃𝐶
𝜎 | remains zero throughout the Φ-axis, but it shows 

some spikes at Φ/Φ0 = 0,±1 unlike in the g1 = g2 = 0 case. From Fig.4.12 and 4.13 we 

can comment that the interactions present in the system generate a greater number of crossing 

points for spin-up and spin-down currents where spin-current splitting gap becomes zero even 

in the presence of DSOI.    

 

 

 

Fig.4.14 |∆𝐼𝑃𝐶
𝜎 | vs. Φ/Φ0 for different 𝜇-values for 𝛽 = 3 at 𝑈 = 𝑘𝐵𝑇 = g1 = g2 = 0. 

     

    In Fig. 14, we study the variation of |∆𝐼𝑃𝐶
𝜎 | with Φ for a fixed value of  𝛽 and for different 

values of chemical potential 𝜇 at 𝑇 = 0 and in the absence of all other interactions. As the 

number of particles influences the current in the ring, this study should be important. We 

observe that the maximum of |∆𝐼𝑃𝐶
𝜎 |  decreases with increasing 𝜇 . |∆𝐼𝑃𝐶

𝜎 |  shows more 

oscillations at around Φ/Φ0 = 0,±1. It appears that  |∆𝐼𝑃𝐶
𝜎 | may approach zero at large 𝜇. 

   Finally, in Fig.4.15, we plot |∆𝐼𝑃𝐶
𝜎 | versus Φ  for different values of 𝑇 with 𝛽 = 3 in the 

absence of all other interactions. 𝛽 . The periodicity and symmetry of |∆𝐼𝑃𝐶
𝜎 |   are well-

maintained even at a finite 𝑇, but both the qualitative and quantitative variations get affected. 
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The central peak of |∆𝐼𝑃𝐶
𝜎 | at Φ/Φ0 = 0 splits into two less sharp peaks located at around 

Φ/Φ0 = ±0.25 for a non-zero 𝑇  and other peaks appear close to Φ/Φ0 = ±0.75 values. 

More importantly, |∆𝐼𝑃𝐶
𝜎 | becomes zero at Φ/Φ0 = 0,±1 in the presence of 𝑇. Hence |∆𝐼𝑃𝐶

𝜎 | 

exhibits alternate minima and maxima at half-integral multiples of Φ/Φ0 . It is worth 

mentioning that |∆𝐼𝑃𝐶
𝜎 | decreases significantly as 𝑇 increases and becomes vanishingly small 

after a certain 𝑇-value. 

 

 

 

Fig.4.15 |∆𝐼𝑃𝐶
𝜎 | vs. Φ/Φ0 for different 𝑇-values for 𝛽 = 3 at 𝑈 = 𝑘𝐵𝑇 = 𝜇 = g1 = g2 = 0. 

 

4.4    CONCLUSIONS 

 

    In conclusion, we have studied the behaviour of PCs in a mesoscopic QR threaded by an 

externally applied A-B flux in the presence of e-p interaction, onsite Coulomb interaction and 

DSOI. We have performed LFT to eliminate the e-p coupling and then applied a unitary 

transformation to treat the SOI. Finally, to treat the onsite e-e interaction, we have employed 

HF-MFA on the effective electronic Hamiltonian and performed a self-consistent numerical 

diagonalization method to calculate the GS energy and PCC. It is shown that the periodicity 

with the magnetic flux is obeyed both in the GS energy and in PCC. PCC is enhanced 

significantly by the DSOI. For large values of DSOI strength, the PCC changes its pattern. 

Both the e-e and e-p interactions reduce PCC significantly leading to a resistive effect. But 

the e-p interaction inhibits the conduction process more than e-e interaction. In the presence 

of temperature, the PCC falls more rapidly with e-e interaction.  We have furthermore shown 

that PCC is suppressed more by the NN e-p interaction compared to the onsite e-p interaction. 
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At a finite temperature, PCC as a function of e-p interaction exhibits a peak. For nonzero g1 

or g2, a prominent peak in the low-to-intermediate temperature regime occurs, though in the 

absence of e-p interactions, PCC decreases with temperature. We have also shown that PCC 

decreases monotonically with increasing 𝜇 at zero temperature, but the behaviour is quite 

opposite at finite temperature. 

     We have also studied PSC in the A-B ring where two oppositely directed periodic spin 

currents for two different spin orientations are generated both in the absence and presence of 

DSOI. DSOI enhances spin-up and spin-down currents much more than the A-B flux does. In 

the presence of e-p interaction, a considerable change in the pattern and magnitude of spin-

currents occur. The spin-current splitting gap (∆𝐼𝑃𝐶
𝜎 ) is increases very much by DSOI. At 𝑈 =

0, the up and down PSCs cross over at every half-integral multiples of A-B flux excluding 

Φ/Φ0 = 0, leading to zero spin-current splitting even in the presence of DSOI when either of 

g1  is g2  is present, whereas splitting becomes zero only at Φ/Φ0 = ±0.5 when g1 = g2 . 

However, at 𝑈 ≠ 0, ∆𝐼𝑃𝐶
𝜎  turns out to be zero precisely at every half-integral multiples of 

Φ including Φ/Φ0 = 0. Therefore, number of zero-splitting points increases as we turn on 

the interactions. A notable reduction in ∆𝐼𝑃𝐶
𝜎  happens in the presence of all the interactions, 

chemical potential and temperature. The interesting fact is that the spin-splitting is highly 

tunable by DSOI, A-B flux, temperature and all the other interactions present in the system. 

We can also determine the value of DSOI strength experimentally by measuring the splitting 

∆𝐼𝑃𝐶
𝜎  at Φ = 0.  
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CHAPTER 5 

TEMPERATURE DEPENDENT NONEQUILIBRIUM 

MAGNETO-TRANSPORT IN A CORRELATED POLAR 

SINGLE MOLECULAR TRANSISTOR WITH QUANTUM 

DISSIPATION 
 

 

 

ABSTRACT 

 

Quantum magneto-transport in a dissipative SMT is investigated at finite temperature in the 

presence of electron correlation and electron-phonon interaction within the framework of the 

Anderson-Holstein-Caldeira-Leggett Hamiltonian. The e-p interaction and dissipation are 

dealt with by canonical transformations and the Coulomb correlation is treated at the mean-

field level. The transport properties such as spectral function, tunnelling current, differential 

conductance and spin polarization are determined using the Keldysh method. 
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5.1 INTRODUCTION 

 

  Lately, the subject of nano-electronics has emerged as a promising area of research for 

technological advancement. In this context, Molecular electronics or moletronics [1-2] has 

received particular attention. The first molecular transistor device was fabricated by Aviram 

et al. [3]. Recently, a large number of investigations have been carried out on SMT [4-7] 

which essentially consists of a QD or a nano-molecule that is placed in the middle region of 

the device and connected on either side to two conducting electrodes, one acting as the source 

and the other drain.  Park et al. [8] were the first to configure such a device with 𝐶60 as the 

central transistor. Subsequently, several investigations followed because of the potential 

applications of these devices [1,2,4-7,9-11]. Several groups have also studied low 

temperature transport through an SMT system which incorporates correlation effects, for 

example, Coulomb blockade [12] and Kondo effect [13-16]. In the presence of e-e and e-p 

interactions, the transport in SMT devices is found to exhibit quantum features [17-23].  

  The effect of a magnetic field and e-p interaction on the transport properties of an SMT 

device have been investigated by Chen et al. [24]. They have calculated the spectral function 

(SF), tunneling current and differential conductance employing the non-equilibrium Green 

function (NEGF) technique due to Keldysh and observed that the e-p interaction generates 

side bands in the spectral density. It has also been revealed that the polaronic effect causes a 

considerable decrease in the tunneling current and differential conductance. Recently, Raju 

and Chatterjee (RC) [25] have analyzed the role of e-p coupling on electron transport in an 

SMT device placed on a substrate that can be considered as a phonon reservoir. The local 

phonon of QD can in this case interact with the substrate phonons giving rise to quantum 

dissipation. RC have incorporated this dissipation effect using the Caldeira-Leggett (CL) 

model in the presence of both e-p coupling and Coulomb correlation and used the Anderson-

Holstein-Caldeira-Leggett (AHCL) model to describe the whole system and studied the effect 

of all interactions with the help of the Keldysh method. As expected, the polaron formation 

has been found to diminish the tunneling current and the differential conductance, while the 

substrate-induced damping effect has been found to enhance the tunneling current. Later, 

Kalla et al. [26] have investigated the external magnetic field-induced non-equilibrium 

transport in the same SMT system and have shown that the applied field breaks the spin 

degeneracy of the strongly coupled QD-electron energy level leading to a spin filtering effect.   

  The effect of temperature on the SMT devices has been studied experimentally in recent 

times [27, 28], but to our knowledge, theoretical investigations on this aspect have been 

rather scarce [29]. Kalla et al. [30] have examined the temperature effect on the tunneling 

current density in an SMT device. Very recently, Kalla et al. have studied the transient 
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dynamics in a dissipative SMT with e-p and e-e interactions [31]. In the present work, we 

shall consider the combined effect of both temperature and magnetic field on the current in a 

dissipative SMT device. We include the Coulomb correlation between the QD electrons and 

consider the polaronic interactions in the Holstein regime. We model the system by the 

AHCL Hamiltonian and use the Keldysh finite-temperature Green function formalism to 

examine the interplay of temperature and magnetic field on the transport mechanisms.   

 

5.2 ANALYTICAL MODEL AND FORMULATION 

 

    A schematic diagram of the SMT device is shown in Fig.5.1. The figure shows that a 

central non-magnetic polar semiconducting QD is connected to the source (S) and drain (D) 

and a bias voltage, Vb and a gate voltage, Vg are applied to the leads and the QD respectively. 

One can control the transport through the SMT channel by tuning Vg [32,33]. B denotes the 

externally applied magnetic field. The whole arrangement is placed on an insulating substrate 

that plays the role of a bath of phonons. The model Hamiltonian is given by  

 

𝐻 = 𝐻𝑆,𝐷 + 𝐻𝑄𝐷 + 𝐻𝑇 + 𝐻𝑉  ,                                                       (5.1) 

 

Here, the Hamiltonian HS,D describes S and D and can be written as 

 

 

 

Fig.5.1 Schematic representation of an SMT device  

                                                                                                                                                

𝐻𝑆,𝐷  = ∑ 𝜀𝑘
𝑘𝜎∈𝑆,𝐷

𝑛𝑘𝜎  ,                                                 (5.2) 
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where n𝐤σ(= c𝐤σ
† c𝐤σ)  denotes the number operator for free electrons in S and D with 

momentum 𝐤 and spin σ. HQD is the Hamiltonian of the QD and is given by 

 

 𝐻𝑄𝐷 =∑(𝜀𝑑
𝜎

− 𝑒𝑉𝑔)𝑛𝑑𝜎 + 𝑈𝑛𝑑,𝜎𝑛𝑑,−𝜎 − 𝑔
∗𝜇𝐵𝐵𝑆𝑑

𝑧 + (
𝑝0
2

2𝑚0
+
1

2
𝑚0𝜔0

2𝑥0
2) +  𝑔∑𝑛𝑑𝜎

𝜎

𝑥0, 

(5.3) 

 

where ndσ(= cdσ
† cdσ) is the number operator for the QD electrons in the single localized 

energy level εd,  cdσ
†

 and cdσ denote respectively the creation and annihilation operator of the 

QD electrons,  U  refers to the onsite correlation energy, 𝐁(0,0, B)  is the magnetic field 

applied along ẑ, Sd
z  is the z-component of the total spin of the QD electrons which can be 

written as Sd
z =

ℏ

2
∑ σcdσ

† cdσdσ , 𝑔∗ is the gyromagnetic ratio and 𝜇𝐵  is the Bohr magneton. 

The fourth term of HQD is the Hamiltonian for the local lattice mode of QD, where  (x0, p0) 

are the coordinate and the corresponding canonical momentum of the QD oscillator with 

mass m0  and frequency ω0  which are respectively given by 𝑥0 = (ℏ/2𝑚0𝜔0)
1/2(𝑏† + 𝑏) 

and 𝑝0 = 𝑖(ℏ𝑚0𝜔0/2)
1/2(𝑏† − 𝑏). The fifth term represents the e-p coupling of the QD, 

where 𝑔 gives the strength of the coupling between the electrons and phonon of the QD. The 

quantum tunneling of electrons from S to QD and QD to D can be described by the 

Hamiltonian 

 

        𝐻𝑇 = ∑ (𝑉𝑘𝑐𝑘𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐),

𝑘𝜎𝜖𝑆,𝐷

                                       (5.4) 

 

where Vk refers to the strength of the coupling between the QD and the leads.  

   The Hamiltonian HV is the vibrational part of the SMT system and comprises two pieces, 

HBO and Hvib−B, where HBO describes the Hamiltonian for the bath oscillators and is given by 

 

    𝐻𝐵𝑂 =∑[
𝑝𝑖
2

2𝑚𝑖
+ 
𝑚𝑖

2
𝜔𝑖
2𝑥𝑖

2 ]

𝑁

𝑖=1

,                                           (5.5) 

 

where xi, pi, mi and ωi denote respectively the position, momentum, mass and the 𝑖th bath-

oscillator frequency and  Hvib−B stands for the coupling between the QD phonon and the bath 

phonons which we describe by the C-L Hamiltonian [34]  
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  𝐻𝑣𝑖𝑏−𝐵 =∑𝛽𝑖

𝑁

𝑖=1

𝑥𝑖𝑥0 ,                                                       (5.6) 

 

where x0 refers to the QD oscillator position, xi refers to 𝑖th bath-oscillator position and βi 

gives the measure of coupling strength between the QD phonon and the bath phonon.  This 

interaction causes the dissipation effect in the QD phonon dynamics.  

    First of all, we partially eliminate the interaction between the QD oscillator and the 

substrate oscillators by applying a canonical transformation [25, 26]:  

 

       𝑥̃𝑖 = [𝑥𝑖 + (
𝛽𝑖

𝑚𝑖𝜔𝑖
2)  𝑥0],                                               (5.7) 

 

𝑝𝑖 = −𝑖ℏ (
𝜕

𝜕𝑥̃𝑖
).                                                               (5.8) 

 

which incorporates the most important aspect of the effect of the bath phonons which is 

dissipation. This renormalizes the frequency ω0  of the local QD phonon to ω̃0 =

(ω0
2 − ∆ω2)1 2⁄ , where ∆ω2 is given by 

 

   ∆𝜔2 =∑
𝛽𝑖
2

𝑚0𝑚𝑖 𝜔𝑖2

𝑁

𝑖=1

 ,                                                    (5.9) 

 

For large N, ∆ω2 can be written in an integral form over ω as 

 

  ∆𝜔2 = 2∫
𝐼(𝜔)

𝑚0𝜔

∞

0

 𝑑𝜔,                                                    (5.10) 

 

where I(ω) stands for the spectral density of the phonon bath which is given by 

 

   𝐼(𝜔) =∑
𝛽𝑖
2

2𝑚𝑖𝜔𝑖

𝑁

𝑖=1

𝛿(𝜔 − 𝜔𝑖),                                     (5.11) 

 

which can be taken in the Lorentz-Drude model as 

 



 

 
 

121 Ch.5| Temperature dependent non-equilibrium magneto-transport in a correlated polar SMT system  

  𝐼(𝜔) =    
2𝑚0𝛾𝜔

[1 + (
𝜔
𝜔𝑐
)
2

]
,                                                   (5.12) 

 

where γ denotes the dissipation rate and ωc is the cut-off frequency. As ωc is considerably 

larger than other SMT frequencies, the deviation in the QD phonon frequency essentially 

becomes 

 

𝛥𝜔2 = 2𝜋𝛾𝜔𝑐 .                                                                (5.13) 

 

After the canonical transformations (7, 8), the transformed Hamiltonian reads  

 

𝐻 = 𝐻𝑆,𝐷 +∑(𝜀𝑑
𝜎

− 𝑒𝑉𝑔 −
1

2
𝑔∗𝜇𝐵𝐵𝜎𝑧)𝑛𝑑𝜎 + 𝑈𝑛𝑑,𝜎𝑛𝑑,−𝜎  + ℏ𝜔̃0𝑏

†𝑏           

 

+∑(
𝑝𝑖
2

2𝑚𝑖
+
𝑚𝑖

2
 𝜔𝑖

2𝑥̃𝑖
2)

𝑁

𝑖=1

+ 𝜆ℏ𝜔̃0(𝑏
† + 𝑏)∑𝑛𝑑𝜎

𝜎

  + 𝐻𝑇 ,        (5.14) 

 

where 𝑔 and all the multiplicative factors are clubbed into λ = 𝑔(1/2𝑚0ℏ𝜔0𝜔̃0
2)
1/2

 which 

we can call as renormalized e-p interaction coefficient.  

  Next, we tackle the e-p interaction term of QD by performing the well-known LFT: 𝑒𝑆 =

𝑒𝜆(𝑏
†−𝑏)∑ 𝑛𝑑𝜎𝜎  [35]. After this transformation, the effective Hamiltonian 𝐻̃(≡ 𝑒−𝑆𝐻𝑒𝑆) reads  

 

𝐻̃ = ∑ 𝜀𝑘
𝑘𝜎𝜖𝑆,𝐷

𝑛𝑘𝜎 +∑𝜀𝑑̃𝜎𝑛𝑑𝜎
𝜎

+ 𝑈̃𝑛𝑑,𝜎𝑛𝑑,−𝜎 + ℏ𝜔̃0𝑏
†𝑏 + ∑ (𝑉̃𝑘

𝑘𝜎𝜖𝑆,𝐷

𝑐𝑘𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐), (5.15) 

 

 with 

𝜀𝑑̃𝜎 = 𝜀𝑑 − 𝑒𝑉𝑔 − 𝜎𝜇𝐵𝐵 − 𝜆
2ℏ𝜔̃0  ,                             (5.16) 

 

𝑈̃ = 𝑈 − 2𝜆2ℏ𝜔̃0 ,                                                          (5.17) 

 

           𝑉̃𝑘 = 𝑒−𝜆(𝑏
†−𝑏)𝑉𝑘 = 𝜒 ̂𝑉𝑘 ,                                             (5.18) 

 

where ε̃dσ is the effective energy of the QD, Ũ is the modified Coulomb strength and Ṽk is the 

renormalized hybridization strength.  
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5.2.1    THE KELDYSH FORMALISM: SPECTRAL FUNCTION, TUNNELING 

CURRENT AND DIFFERENTIAL CONDUCTANCE 

 

   The tunneling current [36-38] through QD connected to two leads is given by   

 

 𝐽 =
𝑒

2ℎ
∫[(𝑓𝑠𝛤𝑠 − 𝑓𝐷𝛤𝐷)𝐴(𝜔) + (𝛤𝑆 − 𝛤𝐷)𝐺

<(𝜔)]𝑑𝜔.                  (5.19) 

 

Here fS(ε) and fD(ε) refer to the source (S) and the drain (D) Fermi distributions which can 

be written as 

𝑓𝑆,𝐷(𝜀) = [𝑒
(
𝜇𝑆,𝐷−𝜀
𝑘𝐵𝑇

)
+ 1]

−1

 ,                                            (5.20) 

 

where μS and μD are respectively the chemical potentials of S and D which are connected to 

the mid-voltage Vm and the bias voltage, Vb by the relations  

 

𝑒𝑉𝑏 = 𝜇𝑆 − 𝜇𝐷;   𝑒𝑉𝑚 =
𝜇𝑆 + 𝜇𝐷
2

 ,                                   (5.21) 

 

ΓS and ΓD are defined as 

 

𝛤𝑆,𝐷(𝜀𝑖) = 2𝜋𝜌𝑆,𝐷(𝜀𝑖)𝑉̅̃𝑘𝑉𝑘
∗,                                                 (5.22) 

 

where V̅̃k is the expectation value of Ṽk with respect to the relevant phonon state, ρS and ρD 

are the density of states of S and D respectively and A(ω) represents the SF which describes 

the excitations and is given by  

 

𝐴(𝜔) = 𝑖[𝐺𝑑𝑑
𝑟 (𝜔) − 𝐺𝑑𝑑

𝑎 (𝜔)] =  𝑖[𝐺𝑑𝑑
> (𝜔) − 𝐺𝑑𝑑

< (𝜔)],             (5.23) 

 

where Gdd
r (ω) and Gdd

a (ω)  denote the retarded and advanced Green functions of the QD 

electrons which are obtained by taking the Fourier transform (FT) of Gdd
r(a)(τ = t − t′) 

defined by 

 

𝐺𝑑𝑑
𝑟(𝑎)(𝜏 = 𝑡 − 𝑡′) = ∓𝑖 𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐̃𝑑𝜎

† (𝑡′)}|0〉,        (5.24) 
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and  Gdd
< (ω) and  Gdd

> (ω) are the lesser and greater Keldysh Green functions for the QD 

electrons in the energy space which can be obtained by taking the FT of the corresponding 

time-dependent Keldysh Green functions Gdd
< (τ) and Gdd

> (τ) [39] which are given by 

 

𝐺𝑑𝑑
< (𝜏)  = 𝑖〈0|𝑐̃𝑑𝜎

† (0)𝑐̃𝑑𝜎(𝜏)|0〉,                                      (5.25) 

 

and 

𝐺𝑑𝑑
> (𝜏) = −𝑖〈0|𝑐̃𝑑𝜎(𝜏) 𝑐̃𝑑𝜎

† (0)|0〉.                                   (5.26) 

 

where,  

 

𝑐𝑑𝜎(𝑡) = 𝑒−𝑖𝐻̃𝑒𝑙𝑡𝑐𝑑𝜎𝑒
𝑖𝐻̃𝑒𝑙𝑡 ,                                                (5.27) 

 

𝑐̃𝑑𝜎(𝑡) = 𝜒 ̂𝑐𝑑𝜎(𝑡),                                                             (5.28) 

 

and  |0⟩ refers to the actual ground state of SMT i.e.,  

 

      |0⟩ = |0⟩𝑒𝑙|0⟩𝑝ℎ .                                                              (5.29) 

 

For mathematical simplicity, we consider the interaction of QD with S and D to be symmetric 

which implies  

 

   𝛤(𝜔) =
1

2
[𝛤𝑆(𝜔) + 𝛤𝐷(𝜔)],                                          (5.30) 

 

 which after the n-phonon averaging becomes   

 

𝛤𝑆,𝐷 = 2𝜋𝜌(0)|𝑉𝑘|
2𝑒

[−𝜆2 (𝑓𝑝ℎ+
1
2
)]
,                                               (5.31) 

 

fph being the phonon distribution function given by 

 

  𝑓𝑝ℎ = [𝑒
ℏ𝜔̃0 𝑘𝐵𝑇⁄ − 1]

−1
 .                                                             (5.32) 

 

Thus, the tunneling current for a symmetric SMT simplifies to  
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     𝐽 =
𝑒

2ℎ
𝛤∫(𝑓𝑠 − 𝑓𝐷) 𝐴(𝜔) 𝑑𝜔,                                                   (5.33) 

 

where A(ω) can be obtained by substituting the expressions of Gdd
r (ω) and Gdd

a (ω) in Eq. 

(5.23) which can be calculated by taking FT of Gdd
r(a)(t, t′) which can be written as  

 

𝐺𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′) = [𝐺̃𝑑𝑑

𝑟(𝑎)(𝑡, 𝑡′)]
𝑒𝑙
〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ = [𝐺̃𝑑𝑑

𝑟(𝑎)(𝑡, 𝑡′)]
𝑒𝑙
𝑒−𝜑(𝜏),              (5.34) 

 

where  G̃dd
r(a)(t, t′) is defined as  

 

 [𝐺̃𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′)]

𝑒𝑙
= ∓𝑖 𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐𝑑𝜎(𝑡), 𝑐𝑑𝜎

† (𝑡′)}|0〉,                  (5.35) 

 

and 〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ is calculated as 

  

            〈𝜒 ̂(𝑡)𝜒̂†(𝑡′)〉𝑝ℎ  = 〈𝑒−𝑖𝐻̃𝑝ℎ𝑡𝜒 ̂𝑒𝑖𝐻̃𝑝ℎ𝑡𝑒−𝑖𝐻̃𝑝ℎ𝑡
′
𝜒̂†𝑒𝑖𝐻̃𝑝ℎ𝑡

′
〉𝑝ℎ = 𝑒

−𝜑(𝜏),    (5.36) 

 

with  

 

𝜑(𝜏) = 𝜆2 [2𝑓𝑝ℎ + 1 − 2{𝑓𝑝ℎ(1 + 𝑓𝑝ℎ)}
1/2
𝑐𝑜𝑠(ℏ𝜔̃0(𝜏 + 𝑖𝛽/2))],        (5.37) 

  

where 𝑓𝑝ℎ is the phonon distribution function given by Eq. (5.32). After some algebraic 

manipulation, we obtain  

 

𝜑(𝜏) = − ln [ ∑ 𝐿𝑛(𝑧)

∞

𝑛=−∞

𝑒−𝑖𝑛ℏ𝜔̃0𝜏],                                        (5.38) 

 

where  𝐿𝑛 is the spectral weight of the 𝑛th phonon side band [24] and is given by  

 

𝐿𝑛(𝑧) = 𝑒𝑥𝑝 [−𝜆2(2𝑓𝑝ℎ + 1) + (
𝑛ℏ𝜔̃0
2𝑘𝐵𝑇

)] 𝐼𝑛(𝑧),                    (5.39) 

 

where, 𝑧 = 2𝜆2[𝑓𝑝ℎ(1 + 𝑓𝑝ℎ)]
1

2 , 𝑛 is the number of phonons and  𝐼𝑛  is the Modified Bessel 

function of second kind. 
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Gdd
r(a)(ω) can be written in the ω-space as  

 

𝐺𝑑𝑑
𝑟(𝑎)(𝜔) = ∑ 𝐿𝑛(𝑧)

∞

𝑛=−∞

[𝐺̃𝑑𝑑
𝑟(𝑎)(𝜔 − 𝑛ℏ𝜔̃0)]

𝑒𝑙
 ,                        (5.40) 

 

where the Green functions [𝐺̃𝑑𝑑
𝑟,𝑎(𝜔)]

𝑒𝑙
  are the FTs of [𝐺̃𝑑𝑑

𝑟(𝑎)(𝑡, 𝑡′)]
𝑒𝑙

 in the 𝜔 − space. 

G̃dd
r(a)(ω) is calculated by the equation of motion approach [39] and is given by the following 

expression in 𝜔 − space as 

 

𝐺̃𝑑𝑑
𝑟(𝑎)(𝜔 ∓ 𝑛ℏ𝜔̃0)   =

1

𝜔 ∓ 𝑛ℏ𝜔̃0 − 𝜀𝑑̃𝜎 − 𝑈̃〈𝑛𝑑,−𝜎〉 − ∑̃𝑟
(𝑎)(𝜔)

, (5.41) 

 

where n is the phonon number, 〈𝑛𝑑,−𝜎〉 is the mean electron occupancy in QD and ∑̃r(a)(ω) 

is the retarded (advanced) self-energy which can be expressed as  

 

∑̃𝑟(𝑎)(𝜔) = 𝑙𝑖𝑚
𝜂→0

∑ (
|< 𝑉̃𝑘 >|

2

(𝜔 ∓ 𝑛ℏ𝜔̃0 − 𝜀𝑘 ± 𝑖𝜂)
)

𝑘𝜖𝑆,𝐷

= 𝛬̃(𝜔) ∓ 𝑖𝛤̃(𝜔), (5.42)  

 

where the real part of  ∑̃r(a)(ω) can be clubbed with the QD energy and the imaginary part 

assumes the following expression  

 

𝛤̃ =  𝛤𝑒−𝜆
2(𝑓𝑝ℎ+

1
2
).                                                        (5.43) 

 

Substituting Eqs. (5.40) and (5.41) in Eq. (5.23), SF can be obtained as 

  

𝐴(𝜔)  = ∑ 𝑖𝐿𝑛(𝑧)

∞

𝑛=−∞

[𝐺̃𝑑𝑑
𝑟 (𝜔 ∓ 𝑛ℏ𝜔̃0) − 𝐺̃𝑑𝑑

𝑎 (𝜔 ∓ 𝑛ℏ𝜔̃0)] 

 

= ∑
2𝛤 ̃𝐿𝑛(𝑧)

(𝜔 ∓ 𝑛ℏ𝜔̃0 − 𝜀𝑑̃𝜎 − 𝑈̃〈𝑛𝑑,−𝜎〉)
2
+ 𝛤̃2

,

∞

𝑛=−∞

                            (5.44) 

 

The mean electron occupancy in QD is given by   
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〈𝑛𝑑,𝜎〉 = ∫𝑑𝜔 
(𝑓𝑠 + 𝑓𝐷)

2𝜋
 𝐴(𝜔).                                     (5.45) 

 

Eqs. (5.44) and (5.45) can be solved self consistently to obtain A(ω) and hence the tunneling 

current can be calculated.  

  The expression of A(ω) can also be obtained by calculating the lesser and greater Keldysh 

Green functions which assume, after some algebraic manipulations, the following expressions   

 

  𝐺𝑑𝑑
< (𝜏) = 𝑖⟨0|𝑐𝑑

†(0)𝑐𝑑(𝜏)|0⟩𝑒𝑙
〈𝜒̂†(0)𝜒 ̂(𝜏)〉𝑝ℎ = 𝐺̃𝑑𝑑

< (𝜏)𝑒𝑙 ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒𝑖𝑛ℏ𝜔̃0𝜏,           (5.46) 

 

      𝐺𝑑𝑑
> (𝜏) = −𝑖⟨0|𝑐𝑑(𝜏)𝑐𝑑

†(0)|0⟩
𝑒𝑙
〈𝜒 ̂(𝜏)𝜒̂†(0)〉𝑝ℎ = 𝐺̃𝑑𝑑

> (𝜏)𝑒𝑙 ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒−𝑖𝑛ℏ𝜔̃0𝜏,      (5.47) 

 

where  

 

   𝐺̃𝑑𝑑
< (𝜏) = 𝑖⟨0|𝑐𝑑

†(0)𝑐𝑑(𝜏)|0⟩𝑒𝑙 = 𝑖⟨0|𝑐𝑑
†(0)𝑒−𝑖𝐻̃𝑒𝑙𝜏𝑐𝑑𝑒

𝑖𝐻̃𝑒𝑙𝜏 |0⟩
𝑒𝑙
,                              (5.48) 

 

 𝐺̃𝑑𝑑
> (𝜏) = −𝑖⟨0|𝑐𝑑(𝜏)𝑐𝑑

†(0)|0⟩
𝑒𝑙
= −𝑖⟨0|𝑒−𝑖𝐻̃𝑒𝑙𝜏𝑐𝑑𝑒

𝑖𝐻̃𝑒𝑙𝜏𝑐𝑑
†(0) |0⟩

𝑒𝑙
,                        (5.49) 

 

and 

 

         〈𝜒̂†(0)𝜒 ̂(𝜏)〉𝑝ℎ = 〈𝜒̂
†(0)𝑒−𝑖𝐻̃𝑝ℎ𝜏𝜒 ̂𝑒𝑖𝐻̃𝑝ℎ𝜏〉𝑝ℎ = ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒𝑖𝑛ℏ𝜔̃0𝜏 ,                (5.50) 

        〈𝜒 ̂(𝜏)𝜒̂†(0)〉𝑝ℎ = 〈𝑒−𝑖𝐻̃𝑝ℎ𝜏𝜒 ̂𝑒𝑖𝐻̃𝑝ℎ𝜏𝜒̂†(0)〉𝑝ℎ = ∑ 𝐿𝑛

∞

𝑛=−∞

𝑒−𝑖𝑛ℏ𝜔̃0𝜏,              (5.51) 

 

𝐺𝑑𝑑
< (𝜔) and 𝐺𝑑𝑑

> (𝜔) are now obtained as  

 

𝐺𝑑𝑑
< (𝜔) = ∑ 𝐿𝑛

∞

𝑛=−∞

𝐺̃𝑑𝑑
< (𝜔 + 𝑛ℏ𝜔̃0),                                (5.52) 

 

𝐺𝑑𝑑
> (𝜔) = ∑ 𝐿𝑛

∞

𝑛=−∞

𝐺̃𝑑𝑑
> (𝜔 − 𝑛ℏ𝜔̃0).                                (5.53) 
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where 𝐺̃𝑑𝑑
< (𝜔)  and 𝐺̃𝑑𝑑

> (𝜔)  are the FTs of  𝐺̃𝑑𝑑
< (𝜏)  and  𝐺̃𝑑𝑑

> (𝜏)  respectively, in the 𝜔 − 

space. Thus, in the Fourier space (ω), the SF of the SMT system reads  

 

𝐴(𝜔) = ∑ 𝑖𝐿𝑛(𝑧)[𝐺̃
>(𝜔 − 𝑛ℏ𝜔̃0) − 𝐺̃

<(𝜔 + 𝑛ℏ𝜔̃0)]

∞

𝑛=−∞

.             (5.54) 

 

   Applying the Langreth’s analytical continuation rule to the Dyson equations for  G̃>(<)(ω) , 

we obtain 

 

 𝐺̃>(<)(𝜔) = 𝐺̃𝑑𝑑
𝑟 (𝜔) 𝛴̃>(<)(𝜔) 𝐺̃𝑑𝑑

𝑎 (𝜔),                             (5.55) 

 

where  Σ̃<(>)(ω) can be written as 

 

                   𝛴̃<(𝜔) = 𝑖 𝛤̃[𝑓𝑆(𝜔) + 𝑓𝐷(𝜔)],                                               (5.56) 

 

                   𝛴̃>(𝜔) = −𝑖 𝛤̃ [2 − (𝑓𝑆(𝜔) + 𝑓𝐷(𝜔))].                                (5.57) 

 

   Substituting the expressions of G̃dd
r(a)

 from Eq. (5.41) and the expressions of  Σ̃>(<)(ω) from 

(5.56) and (5.57) in Eq. (5.55), we can obtain the lesser and greater Keldysh Green functions 

G̃>(<) and hence the SF and the tunneling current.   

   To obtain the Differential conductance, we calculate dJ dVb⁄  which gives 

 

    𝐺 =
𝑑𝐽

𝑑𝑉𝑏
=
𝑒2𝛤

2ℎ
∑ 𝐿𝑛

∞

𝑛=−∞

∫ 𝑑𝜔𝐹𝑛

∞

−∞

(𝜔)𝐴(𝜔 − 𝑛ℏ𝜔̃0) ,                  (5.58) 

 

where Fn(ω) is given by 

 

𝐹𝑛(𝜔) =  
1

2𝑘𝐵𝑇
{𝑓𝑠(𝜔)[1 − 𝑓𝑠(𝜔)] + 𝑓𝐷(𝜔)[1 − 𝑓𝐷(𝜔)]} {1 +

1

2
 (𝑒

− 
𝑛ℏ𝜔̃0
𝑘𝐵𝑇 − 1) (𝑋𝑆 + 𝑋𝐷)} 

  + 
1

4𝑘𝐵𝑇
(𝑒

− 
𝑛ℏ𝜔̃0
𝑘𝐵𝑇 − 1) (𝑓𝑆(𝜔) − 𝑓𝐷(𝜔)){𝑋𝑆(1 − 𝑋𝑆) − 𝑋𝐷(1 − 𝑋𝐷)},         (5.59) 

where,  

 

 𝑋𝑆 = 𝑓𝑆(𝜔 − 𝑛ℏ𝜔̃0)    ;    𝑋𝐷 = 𝑓𝐷(𝜔 − 𝑛ℏ𝜔̃0).                  (5.60) 
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Finally, we determine the spin polarization from the relation: 

 

𝑃𝜎,−𝜎 =
𝐽𝜎 − 𝐽−𝜎
𝐽𝜎 + 𝐽−𝜎

.                                                                       (5.61) 

 

5.3    NUMERICAL RESULTS AND DISCUSSIONS 

 

      We choose the phonon energy, ħω0 = 1 to set the energy scale of the system and take Γ 

= 0.2, eVg = 0, εd = 0. We also consider the electronic density of states for the conduction 

electrons in S and D are constant (independent of energy). For concreteness, we consider 

eVb = 0.1, eVm = 0.5  and U = 5  and evaluate the normalized spectral density A/A0 , 

normalized tunneling current J/J0, differential conductance G/G0 and spin polarization Pσ,−σ 

as functions of different parameters of the SMT system at different temperature(T) and 

external magnetic field (B).  

     In Fig.5.2(a) we show the behavior of the normalized spectral function A with energy (ω) 

incorporating the effects of e-e interaction U, e-p interaction λ and dissipation (measured by 

the coefficient γ) at different temperature T, while in Fig.5.2(b) we display the same for 

different values of the magnetic field B. Here we choose other parameters of the system as 

eVb = 0.5, eVm = 0.1, U = 5, λ = 0.6, γ = 0.02. A is calculated in the units of A0 = 2/Γ. 

We observe interesting peak structure in these plots. Fig.5.2(a) reveals that at constant B, as T 

increases, these peaks decrease in height and shift to the right, while Fig.5.2(b) shows that at 

constant (finite) T, the peaks increase in height with increasing B. Both the plots exhibit side 

bands which arise because of emission or absorption of phonons by the tunneling electron 

due to the polaronic effect. At T = 0 , as higher-order phonon scattering becomes less 

probable, the heights of the side-band peaks reduce with increasing ω, while as T increases, 

the overall spectrum shifts towards right and the side-peaks diminish as temperature has a 

debilitating effect on the side bands. The inset (a) of Fig.5.2(a) shows that the distance 

between the peaks increases as B increases. This spin separation is completely absent at B =

0 (Inset (b) of Fig.5.2(a)). We notice from Fig.5.2(b) that as B increases, two spin-resolved 

peaks appear, the heights and the separation between them increasing with B. The left peak 

refers to the up-spin electrons and the right peak the down-spin electrons. This happens 

because of the breaking of spin-degeneracy in the QD energy spectrum. This character is also 

visible in Fig.5.2(a), though it becomes less prominent in the presence of temperature which 

impedes this effect. The inset of Fig.5.2(b) shows that at a higher temperature, the peaks shift 
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towards right and splitting of the peaks reduces. 

 

 

 

 

 

Fig.5.2 A/A0 as a function of ω (a) for different values of kBT at μBB = 0.5 (Insets: at μBB = 1.0 & 

B = 0.0) and (b) for different  μBB values at kBT = 0.5 (Inset: at  kBT = 1.0). 

 

   To understand the effects of polaronic interaction and dissipation, we study the variation of 

the spectral density as a function of ω for different values of e-p coupling constant λ and 

dissipation factor γ  in Fig.5.3 and Fig.5.4 respectively. Fig.5.3 demonstrates that as we 

increase λ, the central peak reduces in height and starts developing side bands. We have also 

observed (not shown here) that with increasing λ, peaks become shorter in height and shift to 

the left if μBB > kBT, while for kBT > μBB, the heights and the number of peaks increase. 
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When both T  and B  are equally large, the peaks get sharper and taller in height with 

increasing λ and they shift toward right. Fig.5.4 exhibits that at low B and T, the peaks of the 

spectral function diminish and get more stretched with increasing γ reducing the occupancy 

of phonon side bands, but it sharply increases with increasing γ for μBB > kBT , kBT > μBB 

or at high  μBB & kBT (not shown here).  This signifies a stronger correlation between QD 

and bath phonons at higher temperature or magnetic field. 

 

 

 

Fig.5.3 A/A0  vs. ω  for different λ  values with 

μBB =  kBT = 0.5,  eVb = 0.5 , eVm = 0.1 , U =

5, γ = 0.02. 

 

 

Fig.5.4 A/A0  vs. ω for different  γ values with 

μBB =  kBT = 0.5 ,  eVb = 0.5 , eVm = 0.1 , 

U = 5, λ = 0.6. 

 

   Next, we wish to understand the response of the tunnelling current J to magnetic field, e-p 

interaction and damping at different temperature. J is measured in the units of J0 = e/2h. 

Fig.5.5 displays the variation of current density J with Vb at different  T and B respectively. 

For comparison, we also show the plots for zero (lower bunch) and nonzero (upper bunch) B. 

We observe that  J initially increases linearly with Vb  showing an Ohmic nature and then 

saturates. The explanation goes as follows. On application of Vb, the Fermi level of S shifts 

up and that of the right lead goes down. Due to this non-uniform alignment of the Fermi 

levels electrons enter from S-lead into QD giving rise to a nonzero tunnelling current. But as 

the QD is able to accommodate only a limited number of electrons, the current gets saturated 

if Vb is raised beyond a certain value. In the B ≠ 0 case, the spin degeneracy of QD’s energy 

level is lifted and as result, the spin-up level moves up and spin-down level moves down. 

Now either of the two levels can be much closer to the Fermi level of the leads which causes 

a hike in the current for B ≠ 0  (upper bunch). However, it is clear from Fig.5.5 that J 

decreases with increasing T for given values of B and the SMT parameters. The inset shows 
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the scenario for T = 0. The response of J at low temperatures is not so significant unless the 

bias voltage is sufficiently high to match the spin levels with the Fermi levels of S and D 

leads. 

 

 

 

Fig.5.5  J/J0  vs.  eVb for different values of  kBT at λ = 0.6,  eVm0.1, γ = 0.02 for μBB = 0 & μBB =

0.5. Inset: Results at  T = 0. 

    

  

 

Fig.5.6 (a) J↑/J0  and (b) J↓ /J0   vs. eVb  for different B values at λ = 0.6,  eVm = 0.1, γ = 0.02  for 

kBT = 0.5. Insets: Results at  T = 0.  

 

   To see the effect separately in up and down-spin current densities, we draw in Fig.5.6,  J 

versus  Vb at a finite T for several B values. The insets in Fig.5.6 give the zero-temperature 

behaviour. One may notice from the figures that at finite temperature, both J↑ and J↓  grow in 
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the Ohmic fashion from Vb = 0 (unlike in the case of T = 0) till some finite Vb beyond which 

they grow at a slower rate and finally reach saturation values. Also, the behviour of J↑ at large 

B is non-ohmic. At finite temperature, J↑  and J↓  become smaller than their corresponding 

zero-temperature values. This is consistent with Fig.5.5.  We also see that the current 

decreases on increasing B. The decrease in the spin-up current is more than that in the spin-

down current. This happens because the spin-splitting becomes stronger as B increases and as 

a result, the spin-up level shifts down more resulting in a lesser tunnelling probability through 

QD to D. Interestingly, the staircase-like behavior observed at T = 0  disappears as T  is 

increased. The behavior of  J↑ and  J↓ with respect to Vb at T = 0 has been explained by Kalla 

et al. [26].  

   The combined effect of magnetic field and polaronic interaction on J↑ and  J↓  is studied in      

Fig.5.7 for a non-zero value of T and a set of λ values. One may notice from Fig.5.7(a) that at 

nonzero  T and a very small value of λ, the spin-up current density J↑ first rises with B and 

quickly reaches a maximum and then decreases as B increases further. For larger λ values, J↑ 

however reduces monotonically as B rises. The behavior of down-spin current J↓ is however 

more interesting. The effect of λ  is also interesting here. At a finite temperature, e-p 

interaction reduces J↑  for the entire range of B. This is because the polaronic interactions 

restrict the flow of current. In the case of J↓, for not too small λ,  J↓ first rises with B, reaches a 

maximum and then monotonically decreases as B increases further. Interestingly, at low B, J↓ 

decreases with increasing λ while at high B, it increases with λ. This gives rise to a crossing 

behaviour and the crossover point is right shifted as we increase λ. This can be explained by 

the help of Fig.5.6. The external field splits the spin-degenerate electron states, the spin-down 

state being shifted above the Fermi level and the spin-down state below the Fermi level. As 

the spin-up state is lowered in energy, it becomes more difficult for an electron in this state to 

leave QD. Thus J↑ may decrease because of lesser availability of tunneling electrons through 

the channel. On the other hand, the down-spin state is raised and this favours the flow of 

tunneling electrons from QD causing an enhancement in current for low and intermediate 

value of B.  Above a certain value of B, however, two effects may come into play. First, the 

availability of unoccupied states in QD may become less or probability of having tunneling 

electrons through QD channel becomes small and as a result J↓ reduces. This scenario holds 

good even at a higher T (insets). It is important to note that the peaks occurring in the current 

densities at T = 0 (inset (i)) for small values of λ become much flatter and also smaller in 

height as temperature increases. The plot of  J↑,↓ vs. λ clearly shows this (not shown here). 
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Fig.5.7 (a)  J↑/J0 (b) J↓/J0 vs. μBB for a few λ values at eVb  = 0.5,  eVm = 0.1, γ = 0.02 for kBT =

0.6 & kBT = 1.0. Insets: Results at (i)  T = 0, (ii)  T = 1.0. 

 

   In Fig.5.8, we plot  J↑ and J↓  as a function of B for different values γ at a finite value of T. 

The insets display the variations at T = 0. Fig.5.8(a) reveals that  J↑ dies out monotonically as 

B increases while it increases with γ. Here we have considered λ = 0.6, because of which J↑ 

decreases from the beginning itself i.e., from B = 0. Interestingly, Fig.5.8(b) suggests that 

initially J↓ increases with B and also gets enhanced by dissipation but then beyond a critical B 

it falls off monotonically. In this range it also decreases due to damping. This gives rise to a 

crossing behaviour which however disappears as T is increased. At these temperatures, J↓ is 
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always enhanced by dissipation, though changes are marginal for the considered parameters. 

It is also clear that the current densities are lower at higher T values at small magnetic field. 

At large magnetic field, however, the T-dependence becomes more complicated giving rise to 

some interesting crossing behaviour. Also, the rate of decrease in J↑,↓ with B slows down as T 

increases.  

 

 

 

 

 

Fig.5.8 (a) J↑/J0 (b) J↓/J0  vs. μBB for several  γ values at eVb  = 0.5,  eVm = 0.1, λ = 0.6 for kBT =

0.2, 5 & 1.0 . Insets: at  T = 0. 

 

    The contrasting nature of both J↓  and J↑  at high B  values with respect to λ  and γ  is 

noticeable in Fig.5.7 and Fig.5.8. This can be understood from the effective QD-energy: 

𝜀𝑑̃𝜎 = 𝜀𝑑 − 𝑒𝑉𝑔 − 𝜎𝜇𝐵𝐵 − 𝜆
2ℏ𝜔̃0. For up-spin case, the energy looks like 𝜀𝑑̃,+ = 𝜀𝑑 − 𝑒𝑉𝑔 −
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𝜇𝐵𝐵 − 𝜆
2ℏ𝜔̃0 while for the down-spin case, the same becomes: 𝜀𝑑̃,− = 𝜀𝑑 − 𝑒𝑉𝑔 + 𝜇𝐵𝐵 −

𝜆2ℏ𝜔̃0 . Thus, for the down-spin case, there exists a competition between the relative 

strengths of the  B and λ or γ-terms leading to the crossover behaviour.     

 

 

 

 

 

Fig.5.9 J/J0 vs.  eVm for a few values of T and B at eVb = 3.6,  λ = 1.0 : (a) U=0,γ = 0 (b) U=6,γ =

0.02. 

  Fig.5.9 shows the nature of J as a function of mid-voltage, Vm for different kBT and μBB 

combinations at a fixed λ  and eVb  for 𝛾 = 𝑈 = 0  and 𝛾 = 0.02 , 𝑈 = 6  in Fig.5.9(a) and 

Fig.5.9(b) respectively. The behaviour in Fig.5.9(a) turns out to be symmetric with respect to 

Vm = 0 at 𝛾 = 𝑈 = 0. In this plot we notice that for B = 0, T = 0, as Vm increases from the 
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negative side, initially J  increases with Vm  and later exhibits a symmetric structure of 

shoulder, peak and valley and finally falls off very rapidly at as Vm increases further. This 

behaviour has also been observed by Chen et al. [24] (red solid curve) who suggest that this 

pattern corresponds to the phonon-assisted conduction peaks. Now as we turn on the 

magnetic field (blue solid curve), some of the shoulders also turn into peaks increasing the 

total number of conduction peaks, but the height of the peaks decreases. Our figure however 

shows that at a finite temperature (black dotted curve), the shoulders disappear making it 

more like a Gaussian curve. It is also shown that at this low temperature if we increase 

magnetic field to sufficiently high value, a clear double peak structure with less peak-height 

and a valley at around Vm = 0  appears corresponding to two spin-resolved (up-down) 

conduction peaks, but multiple peak-valley structure seems to disappear. Here, the spin-

resolved current peaks show a broad maximum. This suggests that although the magnetic 

field reduces current, but the spin-splitting is favourable at large B and low T. In Fig.5.9(b), 

we show the effect of U and γ with the same set of other parameters. It can be seen that the 

presence of γ enhances the current. Here the variations in the presence of U and γ become 

slightly right-shifted with respect to Vm = 0 . However, the qualitative behaviour of the 

variations is almost same as Fig.5.9(a). Fig.5.10 displays how the normalized differential 

conductance, G/G0 changes with Vb at different T value.G conductance is computed in units 

of G0 = e2/2h. The double-peak structure was already observed in [30] at T=0 in the absence 

of a magnetic field. An introduction of a magnetic field brings about a splitting in the peaks. 

This was observed in [26]. As the temperature is increased in the 𝐵 ≠ 0 case, the splitting in 

the peaks disappears and the peaks also come down in value. As the temperature is further 

increased, the double-peak configuration vanishes and in place of it, a single wide maximum 

appears. Thus, at a high temperature, the behaviour in the case of 𝐵 ≠ 0 is qualitatively same 

as in the case of 𝐵 = 0.   The behaviour at B = 0 is shown in the inset. Fig.5.11 shows the 

nature of G versus Vb at a finite T for a few values of B. The behaviour at T = 0 is shown in 

the inset. At B = 0, G displays a peak structure. As B is increased from zero (to say μBB =

0.4), the peak structure continues to show up, but the value of G increases for the range of Vb 

considered and consequently, the peak value of G also becomes higher. This increase at a 

nonzero B  is suggested by Fig.5.5. As B  is increased beyond a certain value, G  starts 

decreasing because of the localizing effect of B. Also, it is evident that the double-peak 

structure occurring in G at T = 0 due to spin-splitting (shown in the inset) vanishes at finite T 

as expected until B is made sufficiently strong (μBB ≥ 0.8) when the double-peak structure 

reappears.  
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Fig.5.10  G/G0  vs.  eVb for several T values at 

λ = 0.6,  eVm = 0.1, γ = 0.02  for  μBB = 0.5 . 

Inset: Results at  B = 0. 

 

 

Fig.5.11 G/G0 vs. eVb  for several B values at 

λ = 0.6,  eVm = 0.1, γ = 0.02 for kBT = 0.5 . 

Inset: Results  at  T = 0.  

 

 

 

Fig.5.12 G/G0  vs. Vb  for several λ   values at 

eVm = 0.1 , 𝑈 = 5 ,  γ = 0.02,  kBT = 0.2,  

μBB = 0.5. Inset: G at (a) T = 0,  μBB = 0.5;  (b) 

 kBT = 0.5,  μBB = 0.5. 

 

 

Fig.5.13 G/G0  vs. Vb  for several  γ  values at 

eVm = 0.1 , U=5, λ = 0.6 ,  kBT = 0.2 , μBB =

0.5 . Insets: G at (a) T = 0,  μBB = 0.5 ; (b) 

 kBT = 0.5, μBB = 0.5. 

     

   In Fig.5.12, we show the effect of e-p interaction (λ) on the (G − Vb) − plots at a fixed 

temperature  kBT = 0.2 and magnetic field μBB = 0.5. Insets (a) and (b) show the behaviour 

for μBB = 0.5  at T = 0  and T = 0.5   respectively. The main plot shows that for λ = 0 

(central blue curve), as Vb is increased from zero, G decreases till Vb acquires some critical 

value where it develops a shoulder. After this G again decreases with the further increase in 
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Vb. The figure shows a bit of asymmetry around  Vb = 0. Interestingly, at λ = 0.6, the central 

peak of G splits into a double-peak structure with a little asymmetry around Vb = 0.  At 

higher values of λ (λ = 0.8,   1.0), G shows more structures. Thus, the splitting also depends 

on the strength of the e-p interaction. Interestingly, at low values of  T and high values of  λ, 

small side peaks are fund to occur in G.  Of course, as expected, G  is reduced by e-p 

interaction. The double-peak structure due to B at T = 0 is shown in the inset (a). Inset (b) 

shows that both the double-peak structure and the side peaks observed in G at low 

temperature due to polaron formation disappear at higher temperature. This is because at high 

temperature, real phonons are excited which impede the polaron formation. One can see that 

the reduction in G by e-p interaction is pronounced only at a lower T. Also, the temperature in 

general reduces the peak height of G making them more Lorentzian-like.  

   Fig.5.13 shows how damping ( γ ) influences the G  vs. Vb − behaviour at a non-zero 

temperature ( kBT = 0.2)  and in the presence of both e-p interaction (λ = 0.6)  and an 

external magnetic field (μBB = 0.5). The zero-temperature effect is shown in inset (a) and 

the effect at high temperature  (kBT = 0.5) is shown in inset (b). One can see a double-peak 

structure, the minimum occurring at Vb = 0. As Vb increases, G falls off to zero. At T = 0 

(inset (a)), a sharp double-peak structure is seen (at λ = 0.6) and the peak values are higher 

for larger values of γ. But we notice that as T increases, the sharpness in the peaks decreases 

and above a certain value of T, the double-peak nature of G vanishes completely and G 

exhibits a solitary wide maximum which looks like a Lorentzian (inset (b)). We can see that 

G has only a marginal dependence of γ at finite temperature. Also, at low T, the dependence 

is different in different ranges of Vb. Therefore, we conclude that the behavior of G at a fixed 

B with respect to λ and γ changes qualitatively in different temperature regimes.  

   As the interactions affect the spin-resolved conductivities differently, we plot G↑ and G↓ 

separately with  λ 𝑇 ≠ 0 and 𝐵 ≠ 0 in Fig.5.14. The insets in Fig.5.14(a) and Fig.5.14(b) 

show the behaviour at T = 0, and B = 0. Both G↑ and G↓ show almost a similar behaviour. 

They first decrease as  λ increases from zero and then exhibit a shoulder-like feature and 

finally again decrease to zero. As temperature is increased, the shoulder disappears and G↑,↓ 

monotonically decreases to zero. Fig.5.14(a) shows that for 𝐵 ≠ 0, G↑ dies out quite rapidly 

with increasing λ. As we increase T, still G decreases with increasing λ but now the rate of 

decrease is much slower. In fact, the decrease in G with increase in λ becomes slower with 

increasing T. As can be seen from Fig.5.14(b), the behaviour of G↓ with respect to λ is more 

interesting for 𝐵 ≠ 0. At T = 0,  G↓, in the case of 𝐵 ≠ 0, develops a peak at a certain λ and a 

shorter side-peak at a higher λ value. At temperature rises, this peak-structures disappear and 

G↓ shows a broad maximum and on further increase in T, G↓ shows a monotonic decrease. 
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This can be explained as follows. As mentioned earlier, the magnetic field and the e-p 

interaction have competing effects on the spin-down component and this gives rise to a non-

monotonic behaviour at a low temperature. The polaronic effect is mainly controlled by 

λ2e−λ
2
. Therefore, in the small-λ regime, the behavior is dominated by λ2 while in the large-λ 

regime, the behaviour is Gaussian resulting into peaks at T = 0 . Higher temperature 

minimizes this effect.      

    

  

 

Fig.5.14 (a) G↑/G0 (b) G↓/G0  vs. λ for a few T values at eVb = 0.5,  eVm = 0.1, γ = 0.02 for μBB =

0.5. (Inset:  B = 0). 

 

   Fig.5.15 describes the variation of G with Vm  for a few values of B at kBT = 0.6 with λ =

0.6 and  γ = 0.02.  Multiple peaks appear in G due to e-p interaction and these peaks are 

spread equally over ±Vm axis. Also, the peak heights reduce with increasing B. One may 

notice that at a certain temperature, each peak splits into two as a magnetic field is switched 

on. Similarly, in Fig.5.16 also, one can see the spin-splitting at a nonzero B.  Also, we see 

that at nonzero  T  and  B,  the heights of the peak in G decrease as λ increases. 

   Fig.5.17 displays the variation of the spin polarization P↑↓ with Vb at few values of 𝑇 and 𝐵.  

P↑↓  decreases with increasing Vb  at all T except at T = 0,  where it initially rises with Vb , 

shows a peak and finally falls sharply with additional increase in Vb. It is also visible from 

Fig.5.17 that at nonzero T,  P↑↓ decreases with increasing T. This is however the behaviour at 

low B (μBB = 0.5). At a comparatively higher B (μBB = 2.5) (inset),  P↑↓ is generally large 

at low T and reaches maximum polarization (P↑↓,max = 1.0) at a certain critical value of Vb. 

At higher T, P↑↓ remains negligibly small up to a certain Vb above which it sharply rises with 

Vb and reaches a saturation. In general, high B (μBB ≥ 2.5) and low T (kBT = 0.5) may be 
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considered as the good criteria for a reasonably good spin-polarization for a given set of SMT 

constants. Fig.5.18 shows the effect of e-p interaction, λ on the variation of  P↑↓ with Vb at 

high B  and low T . We can see that the phonon-induced spin-polarization increases with 

increasing λ even at a higher T (inset), although a relatively high T (inset) suppresses P↑↓. 

 

 

 

Fig.5.15 G/G0  vs. eVm for a few B values at λ =

0.6,  eVb = 0.5, γ = 0.02 for  kBT = 0.6. 

 

 

Fig.5.16 G/G0  vs. eVm  for a few λ  values at 

 μBB = 1.0, kBT = 0.5,  eVb = 0.5, γ = 0.02.  

Inset: Results at B = 0. 

 

 

 

Fig.5.17 P↑↓  vs. eVb  for a few T  values at λ = 0.6,  eVm = 0.1, γ = 0.02  for μBB = 0.5 . Inset: 

Results at μBB = 2.5. 

 



 

 
 

141 Ch.5| Temperature dependent non-equilibrium magneto-transport in a correlated polar SMT system  

 

 

Fig.5.18 P↑↓ vs. eVb for a few λ values at  eVm = 0.1,γ = 0.02 for μBB = 3.0, kBT = 0.5. Inset: 

Results at kBT = 1.0. 

 

 

 

Fig.5.19 P↑↓ vs. μBB for a few γ values at  eVm =

0.1 ,eVb = 0.5 , λ = 0.6  for kBT = 0.5 . Inset: at 

kBT = 1.0. 

 

 

Fig.5.20 P↑↓ vs. kBT for a few B values at  eVm =

0.1, eVb = 0.5, γ = 0.02, λ = 0.6. 

  

   In Fig.5.19, we describe the effect of damping, γ on the variation of P↑↓ with B at a given T.  

Understandably, P↑↓  is zero at B = 0 for all γ. As B increases from zero, P↑↓  increases and 

reaches a maximum and then falls off to zero at around μBB = 1.5.  As B is further increased, 

P↑↓ also increases and now the increase becomes more rapid.  However, above a certain B, the 

growth in P↑↓  slows down and finally P↑↓  reaches saturation. We thus observe a structure 

resembling a swan-neck. At a higher value of T (see inset), however, the swan-structure 
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disappears and  P↑↓ shows a monotonic increase with B until it saturates at a critical B.  With 

increase in γ , P↑↓ gets reduced and right-shifted. Fig.5.20 shows the behavior of P↑↓ directly 

with respect to  T at different B.  As expected, at B = 0, P↑↓ = 0 for all T. At a low magnetic 

field (μBB = 0.5),  we observe that P↑↓  first decreases monotonically with increasing T , 

reaches zero at some critical T and then grows with further rise in T and finally saturates. 

Here the neck-part develops a broad maximum and shows a down-turn or a saturation 

depending on the value of B.   When B  becomes sufficiently large, P↑↓  becomes 1.0  in 

conformity with Fig.5.19 and continues to have this value till a certain T after which it falls 

slowly.  This again shows that temperature causes lower polarization, but a magnetic field 

increases it. 

 

 
 

 

Fig.5.21 3D plots of J↑ with respect to B and λ at eVm = 0.1, eVb = 0.5, U = 5, γ = 0.02 for (a) T =

0, (b) T ≠ 0. 

 

  

 

Fig.5.22 3D plots of J↓ with respect to B and λ at eVm = 0.1, eVb = 0.5, U = 5, γ = 0.02 for (a) T =

0, (b) T ≠ 0. 

    

   In Figs.5.21-22, we display the nature of the surface plots of J↑ and J↓ in terms of B and λ 

for kBT = 0  and 0.5 and a set of SMT parameters. The dark red and the blue denote 
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respectively the maximum and minimum values of the current densities. We can see from 

Fig.5.21 that as T is increased from zero, J↑ acquires the maximum at low values of 𝜆 and 𝐵 

and it decreases rather slowly as λ or 𝐵 increases in contrast to what happens at 𝑇 = 0. The 

scenario is quite similar in the case of  J↓, but the maximum of J↓ is now found slightly shifted 

towards higher values of λ values. Thus, the e-p interaction acts differently upon J↑ and J↓. 

This is in agreement with the observations in Fig.5.7. Similar plots can also be drawn for the 

conductance. 

   The surface plots of G are plotted in Fig.5.23 for a few values of 𝐵.  One can see that as 𝐵 is 

increased from zero to a small finite value, G does not drop to zero with increasing λ in 

contrast to its behaviour at 𝐵 = 0,  while with increasing  T, it drops faster and reduces to 

almost zero which is again a behaviour different from that at 𝐵 = 0.  If 𝐵 is increased more, 

the decrease of 𝐺 with 𝑇 again turns slower and it does not drop to zero. 

 

            

 

             

 

Fig.5.23 3D plots of G with respect to T and λ for a few B values with  eVm = 0.1, eVb = 0.5, U = 5, 

γ = 0.02. 

 

   Figs.5.24-25 show the temperature effect on the contour maps of J and G in the  Vm − Vb 

plane for a given set of SMT parameters and a fixed magnetic field. In Fig.5.24, the darker 
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red and the darker blue represent the higher values of J↑  and J↓  respectively in upper and 

lower halves of the graphs. One can notice that in the presence of an external magnetic field, 

the behaviour of the spin-up current turns out to be opposite to that of the sin-down one and 

both of them get reduced and smoothened on increasing T. The colours fade as 𝑉𝑏 approaches 

zero indicating that the current densities decrease as 𝑉𝑏  decreases. The differential 

conductance G also shows the similar nature. Here also the darker red represents the higher 

G values, but darker blue represents the lower G values. We can see from Fig.5.25 that, at 

𝑇 = 0, there exists two channels on each side with respect to  Vm and  Vb axes meeting at 

 Vm =  Vb = 0. These channels represent two spin-resolved parts of G. This can also be seen 

from dark blue solid curve of Fig.5.10.  One can see from Fig.5.25 (b-c) that as T increases, 

the channels become broader indicating the suppression of spin splitting.  This can be 

understood from Fig.5.10 as well. It is also shown that at a non-zero T and B the G values are 

higher at lower  Vm − Vb values. 

 

  

 

 

 

 

Fig.5.24 Contour plots of J in Vm − Vb  plain at λ = 0.6, U = 5 , γ = 0.02 , μBB = 0.5 for (a)  T =

0,(b) kBT = 0.4, (c) kBT = 0.8. 
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   In Figs.5.26-27 we depict the dependence of the contour plot of J and G on λ and U in the 

Vm − Vb  plane for finite T  and  B  and a given set of SMT parameters. The presence of 

Coulomb correlation, U modifies the variation of both J and G at finite T and B in the  Vm −

Vb space. From Fig.5.26, the spin splitting with respect to Vb = 0 in the J-plots is clearly 

visible at U = 0 even at a finite T. As the onsite Coulomb repulsion opposes a further flow of 

conduction electrons from the S-lead, U reduces both the spin-resolved components of J and 

makes them chaotic for large values of  Vm. One can see that the higher values of J↑ and J↓ lie 

in the higher  Vm and Vb  regions denoted by dark red and dark blue colours. This can be 

explained as follows. At low temperature, we can write: (fs − fD) ≈ (exp (−
μS

kBT
) −

exp (−
μD

kBT
)), where μS = e(Vm +

1

2
Vb) , μD =  e (Vm −

1

2
Vb) and thus |(fs − fD)| increases 

with increasing Vm and Vb values and consequently the higher values of  J lie in the high Vm-

Vb  (Vb > Vm ) region. One can make the same observation for the variations of G  from 

Fig.5.27.   

 

  

 

 

 

Fig.5.25 Contour plots of G in the  Vm − Vb plain at λ = 0.6,U = 5,γ = 0.02 , μBB = 0.5 for (a) T =

0 (b) kBT = 0.4 (c) kBT = 0.8. 
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Fig.5.26 Contour plots of J in  Vm − Vb  plain at λ = 0.6,  γ = 0.02  , kBT = 0.6, μBB = 0.5 for (a) 

U = 0 and (b) U = 5.   

 

  

 

Fig.5.27 Contour plots of G in  Vm − Vb  space at  λ = 0.6,  γ = 0.02  , kBT = 0.6, μBB = 0.5 for (a) 

U = 0 and (b) U = 5. 

 

5.4    CONCLUSIONS 

 

  In conclusion, we have studied the combined effect of magnetic field B and temperature T 

on the quantum transport in SMT in the presence of e-p interaction, e-e correlation and 

dissipation. The interaction of the QD phonon and the substrate phonons which causes 

dissipation is incorporated by a linear model following Caldeira and Leggett and this 

interaction is treated approximately by a canonical transformation which introduces the main 

effect of the dissipation namely, the reduction in the frequency of the QD phonon which is 

precisely the damping effect. The e-p interaction is decoupled by the conventional Lang-

Firsov approach and the onsite e-e interaction is treated by the Hartree-Fock mean-field 

approximation and finally the Keldysh method is used to investigate the effect of dissipation, 
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e-p interaction and e-e interaction on the spectral function, tunneling current and the 

differential conductance. We find that magnetic field and temperature have contrasting roles 

on current. Temperature not only reduces the spectral density, current and differential 

conductance but also decreases the spin splitting, while the magnetic field increases the 

height of the spectral function and broadens the separation between the spin-up and the spin-

down peaks. The magnetic field, of course, reduces the current and the conductance.  

  The effects of e-p coupling and dissipation on the transport properties are greatly influenced 

by magnetic field and temperature.  Also, these effects depend on the range of T and B. We 

have shown that the spectral function is reduced by the e-p interaction and damping at low T 

and low B while at high T and high B, it is enhanced by polaronic interaction strength and 

damping. The spectral function peak is shifted by the magnetic field towards left on the 𝑉𝐵-

axis and towards right by the temperature. It is also shown that due to polaronic effect, side 

peaks develop in the spectral function which become shorter as T rises, but at high T and high 

B, they again reappear.  At 𝑇 ≠ 0,  the e-p interaction reduces the tunneling current much 

more in the presence of a magnetic field than in the absence of it. On the other hand, though 

the enhancement of the tunneling current by damping becomes more pronounced at a non-

zero B, a sufficiently high field suppresses this effect. The differential conductance is reduced 

by damping and e-p coupling at 𝑇 ≠ 0 and 𝐵 ≠ 0. This reduction becomes more prominent at 

high temperature. The temperature and magnetic field have contrasting effects on spin 

resolved current densities, conductance and spin-polarization with respect to the interactions. 

It is important to mention that finally the temperature effect dominates over the magnetic 

field. 

   Finally, the spin-resolved current density and the conductance are studied as a function of 

different SMT parameters through surface and contour plots. This work can have potential 

application as a spin-filter which can be tuned by temperature and magnetic field. 
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CHAPTER 6 

SPIN-FILTERING BY RASHBA COUPLING IN A 

CORRELATED POLAR DISSIPATIVE MOLECULAR 

TRANSISTOR AT FINITE TEMPERATURE AND IN A 

MAGNETIC FIELD 
 

 

ABSTRACT 

 

The RSOI induced quantum transport through a QD embedded in a two-arm quantum loop of 

an SMT is studied at finite temperature in the presence of e-p and Hubbard interactions, an 

external magnetic field and quantum dissipation. The Anderson-Holstein-Caldeira-Leggett-

Rashba model is used to describe the system and several unitary transformations are 

employed to decouple some of the interactions and the transport properties are calculated 

using the Keldysh technique.  It is shown that RSOI alone separates the spin-up and spin-

down currents causing zero-field spin-polarization. The gap between the up and down-spin 

currents and conductances can be changed by tuning the Rashba strength. In the absence of a 

field, the spin-up and spin-down currents show an opposite behaviour with respect to spin-

orbit interaction phase. The spin-polarization increases with increasing e-p interaction at zero 

magnetic field. In the presence of a magnetic field, the tunneling conductance and spin-

polarization change differently with the polaronic interaction, SOI and dissipation in different 

temperature regimes. This study predicts that for a given Rashba strength and magnetic field, 

the maximum spin-polarization in a single molecular device occurs at zero temperature. 
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6.1 INTRODUCTION 

 

   Spintronics has emerged in the last few decades as a very fascinating area of modern 

condensed matter physics due to its potential use in manipulating electron spin [1,2] to 

control spin current. The SOI which is one of the key elements of low-dimensional 

spintronics physics has been studied by many research groups [3-14]. These studies have 

been motivated by the pioneering work of Datta and Das on spin field-effect-transistor [14]. 

Molecular transistor is another branch which has received so much attention thanks to 

Aviram et al. [15] who fabricated the first model of SMT. A molecular junction transistor 

contains at its centre a molecule or a QD connected to two conducting leads which act as a 

source (S) and a drain (D). The S-QD-D system is placed on a substrate to which is attached 

gate. The electrons in S and D can be treated as free electrons with continuous momentum 

states. The central QD contains discrete energy levels and so the QD electrons are described 

by localized states. Because of the application of a bias voltage, electrons from S can travel to 

D through QD giving rise to a tunneling current which can also be controlled by the gate 

voltage. The tunneling of electrons from S to QD and QD to D and vice versa can be 

described by a hybridization term. Several transport properties have been studied in SMT 

systems [16-20] which show potential for promising applications in nano-devices. There have 

also been investigations on correlation effects in a SMT system namely, the Coulomb 

blockade and Kondo effect [21-25]. It has also been observed that the e-e and local e-p 

interactions play a crucial role on the non-equilibrium quantum transport through SMT 

structures [26-31]. The effect of e-p interaction on the transport properties in an SMT system 

has been studied by Chen et al [30]. They have shown that phonon-assisted conductance is 

reduced significantly in the presence of e-p coupling. Recently, Khedri et al. [31] have shown 

the phononic responses in the bias-voltage-dependent electric currents in a vibrating 

molecular transistor. The effect of quantum dissipation on the tunneling conductance of an 

SMT system has been investigated by RC [32]. They have assumed that QD contains a single 

localized lattice mode which interacts with the QD electrons through a coupling of Holstein 

type. They have further assumed that the insulating substrate contains a large number of 

uncoupled harmonic oscillator modes and thus acts as a phonon-reservoir. In the RC picture, 

the substrate phonons can interact with the local QD phonon through the linear CL interaction 

giving rise to dissipation. They have formulated the whole system by AHCL model and used 

the Keldysh NEGF technique to calculate the tunneling current and differential conductance. 

It has been shown that dissipation renormalizes the QD phonon frequency and consequently 

the polaronic effect decreases leading to an increase in the tunneling current. Later, Kalla et 

al. [33] have studied the transport properties of the same set-up in the presence of an external 
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magnetic field. This work has useful applications for a spin-filtering device. The SOI is 

another important characteristic feature that can lead to spin-dependent transport [34-44]. Sun 

et al. [44] have given a derivation of the Rashba SO (RSO) interaction in second quantized 

notation and have shown how RSOI and magnetic flux together can polarize the transport 

properties of a QD in an A-B ring. Some experimental studies [45, 46] have shown that 

temperature can also play a significant role on the non-equilibrium transport. Kalla et al. have 

theoretically analysed the effect of between the source and the drain temperature in an SMT 

system [47]. Very recently, Kalla et al. have studied the transient dynamics in a dissipative 

SMT with e-p and e-e interaction [48].  

   In this study, we wish to investigate the effect of RSOI on the non-equilibrium quantum 

transport in a dissipative SMT device. We consider an SMT system in which a two-arm 

quantum loop containing a QD in one of its arms is sandwiched between the source and the 

drain (Fig.6.1(a)). Thus, the electrons from S can tunnel to D following two paths, one 

through the arm of the loop that contains the QD and the other through the arm of the loop 

that does not contain any QD. We assume that the QD electrons can interact with each other 

through a Hubbard-like interaction and with the local phonon through an e-p interaction of 

Holstein type. Following the approach of Sun et al. [44] we incorporate the RSOI-phase and 

model the system by AHCL Hamiltonian and employ the finite Keldysh NEGF technique 

[49] to calculate the phonon-induced magneto-transport properties in a correlated dissipative 

SMT structure in the presence of RSOI.  

 

6.2 ANALYTICAL MODEL AND FORMULATION 

 

   The standard model of an SMT with a QD embedded in a two-arm loop that is attached to 

two metallic leads namely Source (S) and Drain (D) is depicted in Fig.6.1(a) where the QD 

placed on one arm of the loop contains RSO, e-p and Hubbard interactions and the other arm 

(which does not contain RSOI) directly connects S and D with a coupling strength 𝑡𝑆𝐷 . A 

schematic diagram for the realization of the QD used in Fig.6.1(a) is shown in Fig.6.1(b). It is 

evident that the heterostructure geometry of Fig.6.1(b) would lead to a band-bending at the 

GaAs-AlGaAs interfaces giving rise to a structural inversion asymmetry (shown in 

Fig.6.1(c)) which produces the RSO coupling in the GaAs QD. The red part of Fig.6.1(b) is 

considered as the central GaAs QD which is attached to S on one side and to D on the other 

side. A given number of electrons can be accumulated in the QD by using the voltage 𝑉0. The 

whole system is mounted on an insulating substrate that contains non-interacting phonons 

behaving as a phonon-bath which can interact with the QD-phonon giving rise to a quantum 
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damping effect. The bias voltage 𝑉𝑏 and the gate voltage 𝑉g are applied as shown in the Fig. 

6.1(a). Because of the bias voltage, electrons can travel from S to D by tunnelling through the 

QD and also by hopping through the other path. It may be noted that the current channel is in 

the x-direction and a magnetic field 𝑩(0,0, 𝐵) is applied in the z-direction.  In general, a QD 

may have many discrete energy levels, but it may still behave like an SMT system at a 

sufficiently small size, as the higher energy levels in that case can be disregarded. 

 

 
 

 

Fig.6.1 Schematic diagram (a) of an SMT device with a QD containing RSOI embedded in a two-

arm loop; (b) for experimental realization of a QD; (c) showing structural inversion asymmetry at the 

GaAs-AlGaAs interface.   

 

The system can be described, in general, by the following AHCL-RSO Hamiltonian 

 

𝐻 = 𝐻𝑆,𝐷 +𝐻𝑄𝐷 + 𝐻𝑇 + 𝐻𝑉 ,                                                                 (6.1) 

 

where,  

 𝐻𝑆,𝐷  = ∑ 𝜀𝑘
𝑘𝜎∈𝑆,𝐷

(𝑐𝑘𝑆,𝜎
† 𝑐𝑘𝑆,𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑘𝐷,𝜎) + 𝑡𝑆𝐷 ∑ (𝑐𝑘𝑆,𝜎
† 𝑐𝑘𝐷,𝜎 + ℎ. 𝑐. )

𝑘𝜎∈𝑆,𝐷

  ,                 (6.2) 

 

 𝐻QD =∑(𝜀𝑑
𝑑𝜎

− 𝑒𝑉𝑔 −
1

2
𝑔∗𝜇𝐵𝐵𝜎𝑧)𝑛𝑑𝜎 +∑𝑈𝑛𝑑↑𝑛𝑑,↓

𝑑

+ (
𝑝0
2

2𝑚0

+
1

2
𝑚0𝜔0

2𝑥0
2) +  𝑔∑𝑛𝑑𝜎

𝑑𝜎

𝑥0 

+ 𝐻𝑅 ,                                                                                                                                   (6.3) 
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 𝐻𝑇 =∑ [𝑉𝑘(𝑐𝑘𝑆,𝜎
† 𝑐𝑑𝜎 + 𝑐𝑘𝐷,𝜎

† 𝑐𝑑𝜎) + ℎ. 𝑐]

𝑘𝑑𝜎

,                                                                              (6.4) 

 

  𝐻𝑉 = 𝐻𝐵𝑂 + 𝐻𝑄𝐷−𝐵 ≡∑[
𝑝𝑖
2

2𝑚𝑖
+ 
1

2
𝑚𝑖𝜔𝑖

2𝑥𝑖
2 ]

𝑁

𝑖=1

+∑𝛽𝑖

𝑁

𝑖=1

𝑥𝑖𝑥0 .                                             (6.5) 

 

Eq. (6.2) represents the lead Hamiltonian 𝐻𝑆,𝐷 . The first term of 𝐻𝑆,𝐷 gives the total energy of 

the conduction electros in S (D), where 𝑛𝑘𝑆(𝐷),𝜎 (= 𝑐𝑘𝑆(𝐷),𝜎
† 𝑐𝑘𝑆(𝐷),𝜎)  denotes the number 

operator for the S (D) electrons with momentum 𝒌 and spin 𝜎, 𝑐𝑘𝑆(𝐷),𝜎
†  (𝑐𝑘𝑆(𝐷),𝜎) being the 

corresponding creation (annihilation) operator and the second term of 𝐻𝑆,𝐷  represents the 

coupling between the two leads with the hopping strength 𝑡𝑆𝐷 . Eq. (5.3) gives  the 

Hamiltonian (𝐻QD) for the QD which in general can contain many localized energy levels 𝑑 

with energy 𝜀𝑑. The first term of 𝐻QD  shows that the QD energy is modified by the gate 

voltage 𝑉𝑔 and the magnetic field 𝐵𝑧̂, where  𝑛𝑑𝜎(= 𝑐𝑑𝜎
† 𝑐𝑑𝜎) denotes the number operator for 

the QD electrons, 𝑐𝑑𝜎
†  (𝑐𝑑𝜎) being the corresponding creation (annihilation) operator of the 𝑑-

th energy level, 𝜎𝑧 is the z-component of the Pauli matrices 𝝈, 𝑔∗ is the gyromagnetic ratio 

and 𝜇𝐵 is the Bohr magneton. The second term of 𝐻QD represents the Hubbard interaction 

with 𝑈 as the Coulomb correlation strength. The third term of 𝐻QD is the Hamiltonian for the 

local lattice mode of QD, where (𝑥0, 𝑝0) are the coordinate and the corresponding canonical 

momentum of the QD oscillator with mass 𝑚0 and frequency 𝜔0. The fourth term of 𝐻QD 

represents the interaction of the QD electrons with the local QD phonon with 𝑔 giving the 

strength of the coupling.  The fifth term of 𝐻QD represents the RSOI which, in general, can be 

written in the 𝑥 − 𝑧 plane as 

 

𝐻𝑅 = 𝑦̂.
𝛼𝑅
ℏ
[𝜎 × (𝑝 +

𝑒𝐴 

𝑐
)],                                                          (6.6) 

 

where 𝛼𝑅 is the strength of RSOI. Choosing the Landau gauge: 𝐴 = (0, 𝐵𝑥, 0), we can write 

𝐻𝑅 in the second quantized notation in the chosen basis |𝑑𝜎⟩ ≡ 𝜑𝑑(𝑟 ) (
1
0
) as  

 

𝐻𝑅 =
𝛼𝑅
ℏ
∑[𝑡𝑑′𝑑

𝑥 (𝑐
𝑑′𝜎
† 𝑐𝑑𝜎 − 𝑐𝑑′,−𝜎

† 𝑐𝑑,−𝜎) + 𝑡𝑑′𝑑
𝑧 (𝑐

𝑑′,−𝜎
† 𝑐𝑑𝜎 − 𝑐𝑑,−𝜎

† 𝑐𝑑′𝜎)] + ℎ. 𝑐.

𝑑𝑑′

,   (6.7) 



 

 
 

155             Ch.6| Spin-filtering by Rashba coupling in a correlated polar dissipative molecular transistor at finite 

temperature and in a magnetic field 

 

where 𝑡
𝑑′𝑑

𝑥(𝑧)
= ∫𝑑𝑟  𝜑𝑑′

∗ (𝑟 ) 𝑝𝑥(𝑧) 𝜑𝑑(𝑟 ). The first term of Eq. (6.7) denotes the inter-level 

hopping between the same spin state and the second term denotes the between a spin-flip 

state. Eq. (6.4) represents the tunneling Hamiltonian 𝐻𝑇  which describes the tunneling of 

electrons from S to D through the QD and that of the reverse process, 𝑉𝑘  being the 

hybridization strength. Eq. (6.5) represents the substrate Hamiltonian 𝐻𝑉 which contains two 

pieces, 𝐻𝐵𝑂 and 𝐻𝑄𝐷−𝐵 . 𝐻𝐵𝑂  describes a collection of 𝑁  uncoupled bath oscillators where 

(𝑥𝑖, 𝑝𝑖) refer to the generalized coordinates and momenta of the 𝑖-th bath oscillator of mass 

𝑚𝑖 and frequency 𝜔𝑖  and 𝐻𝑄𝐷−𝐵 gives the linear interaction between the QD-phonon and the 

𝑖-th bath-phonon with the coupling strength 𝛽𝑖. 𝐻𝑄𝐷−𝐵 is chosen in the spirit of the Caldeira-

Leggett model [50]. 

   To decouple SOI, we apply a transformation [44] to 𝐻 by a unitary operator 𝑈𝑅 so that 𝐻 

transforms to 𝐻̅ = 𝑈𝑅
†𝐻 𝑈𝑅 .  𝑈𝑅 is chosen as 

 

𝑈𝑅 =

{
 
 

 
 
1                                         for   𝑥 < 𝑥𝑆,         
1

√2
𝑒−𝑖𝑘𝑅(𝑥−𝑥𝑆)𝜎𝑧               for   𝑥𝑆 < 𝑥 < 𝑥𝐷 ,

1

√2
𝑒−𝑖𝑘𝑅(𝑥𝐷−𝑥𝑆)𝜎𝑧             for   𝑥𝐷 < 𝑥.          

                                (6.8) 

 

where, 𝑘𝑅 = (𝛼𝑅𝑚
∗/ℏ2).  Defining a new set of operators: 𝑐̅ = 𝑈𝑅

†𝑐 and 𝑐̅ † = 𝑐†𝑈𝑅 , we can 

express 𝐻̅ as  

 

  𝐻̅ = ∑ 𝜀𝑘
𝑘𝜎∈𝑆,𝐷

(𝑐𝑘̅𝑆,𝜎
† 𝑐𝑘̅𝑆,𝜎 + 𝑐𝑘̅𝐷,𝜎

† 𝑐𝑘̅𝐷,𝜎) + 𝑡𝑆𝐷 ∑ (𝑐𝑘̅𝑆,𝜎
† 𝑐𝑘̅𝐷,𝜎 + ℎ. 𝑐. )

𝑘𝜎∈𝑆,𝐷

                        

 

  +∑𝜀𝑑̅
𝑑𝜎

𝑛̅𝑑𝜎 +∑𝑈𝑛̅𝑑↑𝑛̅𝑑↓
𝑑

+ (
𝑝0
2

2𝑚0
+
1

2
𝑚0𝜔0

2𝑥0
2) +  𝑔∑𝑛̅𝑑𝜎

𝑑𝜎

𝑥0                       

 

+
𝛼𝑅
ℏ
∑[𝑡𝑑′𝑑

𝑥 (𝑐
𝑑̅′𝜎
† 𝑐𝑑̅𝜎 − 𝑐𝑑̅′,−𝜎

† 𝑐𝑑̅,−𝜎) + 𝑡𝑑′𝑑
𝑧 (𝑐

𝑑̅′,−𝜎
† 𝑐𝑑̅𝜎 − 𝑐𝑑̅,−𝜎

† 𝑐𝑑̅′𝜎)] + ℎ. 𝑐.

𝑑𝑑′

    

 

+∑[
𝑝𝑖
2

2𝑚𝑖
+ 
1

2
𝑚𝑖𝜔𝑖

2𝑥𝑖
2 ]

𝑁

𝑖=1

+∑𝛽𝑖

𝑁

𝑖=1

𝑥𝑖𝑥0                                                                           
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  +∑  [𝑉𝑘(𝑐𝑘̅𝑆,𝜎
† 𝑐𝑑̅𝜎𝑒

−𝑖𝜎𝑘𝑅(𝑥−𝑥𝑆)  + 𝑐𝑘̅𝐷,𝜎
† 𝑐𝑑̅𝜎𝑒

−𝑖𝜎𝑘𝑅(𝑥−𝑥𝐷)) + ℎ. 𝑐]

𝑘𝑑𝜎

,                (6.9) 

 

where 𝜀𝑑̅ = (𝜀𝑑 − 𝑒𝑉𝑔 −
1

2
𝑔∗𝜇𝐵𝐵𝜎𝑧) . For simplicity, we assume that the QD contains 

effectively a single localized level and a single lattice mode which allows us to neglect the 

terms involving inter-level hopping and spin-flip term in the transformed Hamiltonian (9). 

Also, we choose 𝑥 = 0 and redefine: 𝑒𝑖𝜎𝑘𝑅𝑥𝑆𝑐𝑑̅𝜎 as 𝑐𝑑𝜎.  The Hamiltonian 𝐻̅ then reads  

  

  𝐻 = 𝐻𝑆,𝐷 +∑𝜀𝑑̅𝑛𝑑𝜎
𝜎

+ 𝑈𝑛𝑑𝜎𝑛𝑑,−𝜎 + (
𝑝0
2

2𝑚0
+
1

2
𝑚0𝜔0

2𝑥0
2) +  𝑔∑𝑛𝑑𝜎

𝜎

𝑥0  + 𝐻𝑉         

 

      + ∑[(𝑉𝑘𝑐𝑘𝑆,𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐) + (𝑉𝑘𝑐𝑘𝐷,𝜎

† 𝑐𝑑𝜎𝑒
−𝑖𝜎𝜙𝑆𝑂 + ℎ. 𝑐)],

𝑘𝜎

                         (6.10) 

 

which shows that the RSOI generates a spin-induced phase factor −𝜎𝜙𝑆𝑂  in the tunneling 

Hamiltonian for the (QD –D) - sector, where 𝜙𝑆𝑂 ≡ 𝑘𝑅𝑙 = 𝑘𝑅(𝑥𝑆 − 𝑥𝐷), 𝑙 = (𝑥𝑆 − 𝑥𝐷) being 

the length scale over which 𝛼𝑅 is non-zero and 𝜎 = +1 and 𝜎 = −1 correspond to spin-up 

and spin-down electrons respectively.  

  Next, we proceed to decouple the interaction between the QD phonon and the substrate 

phonons as we have done in Ch.5. After applying the canonical transformations (Eqs. (5.7) 

and (5.8)) and eliminating the substrate phonons partially followed by the algebra mentioned 

in Ch.5, the relevant SMT Hamiltonian reads  

 

𝐻 = 𝐻𝑆,𝐷 +∑𝜀𝑑̅𝑛𝑑𝜎
𝜎

+ 𝑈𝑛𝑑,𝜎𝑛𝑑,−𝜎 + ℏ𝜔̃0𝑏
†𝑏 + 𝜆ℏ𝜔̃0(𝑏

† + 𝑏)∑𝑛𝑑𝜎
𝜎

                     

 

+∑[(𝑉𝑘𝑐𝑘𝑆,𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐) + (𝑉𝑘𝑐𝑘𝐷,𝜎

† 𝑐𝑑𝜎𝑒
−𝑖𝜎𝜙𝑆𝑂 + ℎ. 𝑐)],

𝑘𝜎

                         (6.11) 

 

where 𝑔 together with all the multiplicative factors are clubbed into 𝜆 which we can refer to 

as the renormalized e-p interaction coefficient. The renormalized frequency is given as 𝜔̃0 =

(𝜔0
2 − ∆𝜔2)1 2⁄  and 𝛥𝜔2 = 2𝜋𝛾𝜔𝑐  defined in Eq. (5.13) where 𝛾  is the dissipation 

coefficient. 
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   The next interaction to be dealt with is the e-p interaction. The e-p coupling can be removed 

by the well-known LFT [51]: 𝑒𝑆 = 𝑒𝑥𝑝{𝜆 ∑ 𝑛𝑑𝜎𝜎 (𝑏† − 𝑏)}. The transformed Hamiltonian 

can be expressed as  

 

𝐻̃ = 𝐻𝑆,𝐷 +∑𝜀𝑑̃𝜎𝑛𝑑𝜎
𝜎

+ 𝑈̃𝑛𝑑,𝜎𝑛𝑑,−𝜎  + ℏ𝜔̃0𝑏
†𝑏                                                 

 

+∑[(𝑉̃𝑘
𝑘𝜎

𝑐𝑘𝑆,𝜎
† 𝑐𝑑𝜎 + ℎ. 𝑐) + (𝑉̃𝑘 𝑐𝑘𝐷,𝜎

† 𝑐𝑑𝜎𝑒
−𝑖𝜎𝜙𝑆𝑂 + ℎ. 𝑐)] , (6.12) 

   

where the phonon-mediated renormalized energy, modified Hubbard strength and the 

effective QD-lead coupling are respectively defined in Eqs. (5.16), (5.17) and (5.18). 

 

6.2.1    RASHBA INDUCED SPIN-RESOLVED TUNNELING VIA KELDYSH 

METHOD 

 

  Following Refs. [28, 29], the tunneling current from S to D through the QD embedded in the 

ring can be written as 

  

    𝐽𝑆(𝐷) = −𝑒 〈
𝑑𝑁𝑆(𝐷)

𝑑𝑡
〉 = −

𝑖𝑒

ℏ
〈[𝐻̃,∑𝑐𝑘𝑆(𝐷),𝜎

† 𝑐𝑘𝑆(𝐷),𝜎
𝑘𝜎

]〉,                              (6.13) 

 

where 𝑐𝑘𝑆(𝐷),𝜎(𝑡) = 𝑒−𝑖𝐻𝑡𝑐𝑘𝑆(𝐷),𝜎𝑒
𝑖𝐻𝑡  and the averaging is to be done with respect to the 

actual ground state of the system |0⟩ which is defined as |0⟩ = |0⟩𝑒𝑙|0⟩𝑝ℎ. In the steady state,  

𝐽 = 𝐽𝑆 = −𝐽𝐷 and after symmetrizing, we can write the tunneling current as      

 

  𝐽𝜎 =
𝐽𝑆 − 𝐽𝐷
2

≡
𝑒

ℏ
  𝑅𝑒 {∑〈𝑉̃𝑘〉 𝐺𝑑𝜎,𝑘𝑆

<  (𝑡, 𝑡)

𝑘

−∑〈𝑉̃𝑘
𝜎
〉 𝐺𝑑𝜎,𝑘𝐷

<  (𝑡, 𝑡)

𝑘

},       (6.14) 

 

where 𝑉̃𝑘 has been defined earlier,  𝑉̃𝑘
𝜎
= 𝑉̃𝑘𝑒

−𝑖𝜎𝜙𝑆𝑂 ,  〈… 〉 denotes the expectation value of 

… with respect to 𝑛 th-phonon state i. e., 〈𝑉̃𝑘〉  = 〈𝑛|𝑉̃𝑘|𝑛〉  and 〈𝑉̃𝑘
𝜎
〉  = 〈𝑛|𝑉̃𝑘

𝜎
|𝑛〉   and 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
< (𝑡, 𝑡′) and  𝐺𝑑𝜎,𝑘𝑆(𝐷)

> (𝑡, 𝑡′)  are respectively the lesser and the greater (tunneling) 

Keldysh Green functions defined as  

 

          𝐺𝑑𝜎,𝑘𝑆(𝐷)
< (𝑡, 𝑡′) = 𝑖〈0|𝑐𝑘𝑆(𝐷)

† (𝑡′)𝑐𝑑𝜎(𝑡)|0〉,                                   (6.15) 
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𝐺𝑑𝜎,𝑘𝑆(𝐷)
> (𝑡, 𝑡′) = −𝑖〈0|𝑐𝑑𝜎(𝑡

′)𝑐𝑘𝑆(𝐷)
† (𝑡)|0〉.                               (6.16) 

 

Now, we define the retarded (𝑟) and advanced (𝑎) tunneling Green functions  𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)

 (𝑡, 𝑡′) 

as  

 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎)

 (𝑡, 𝑡′) = ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐̃𝑑𝜎(𝑡), 𝑐𝑘𝑆,𝜎
† (𝑡′)}|0〉,           (6.17) 

 

where 𝑐𝑑𝜎(𝑡) = 𝑒−𝑖𝐻̃𝑒𝑙𝑡𝑐𝑑𝜎𝑒
𝑖𝐻̃𝑒𝑙𝑡  and 𝑐̃𝑑𝜎(𝑡) = 𝜒 ̂𝑐𝑑𝜎(𝑡),  Using the equation of motion of 

𝐺𝑑𝜎,𝑘𝑆(𝐷)
𝑟(𝑎) (𝑡, 𝑡′)  and applying the analytical continuation rule of Langreth, we get the 

expression for 𝐺𝑑𝜎,𝑘𝑆(𝐷)
< (𝑡, 𝑡′) as 

 

𝐺𝑑𝜎,𝑘𝑆
< (𝑡, 𝑡′) = ∫

𝑑𝜔

2𝜋
[𝑉𝑘

∗ + 𝑉𝑘
𝜎∗𝑡𝑆𝐷][𝐺𝑑𝑑

< (𝜔)𝑔𝑘𝑆
𝑎 (𝜔) + 𝐺𝑑𝑑

𝑟 (𝜔)𝑔𝑘𝑆
< (𝜔)]𝑒−𝑖𝜔(𝑡−𝑡

′) , (6.18) 

 

𝐺𝑑𝜎,𝑘𝐷
< (𝑡, 𝑡′) = ∫

𝑑𝜔

2𝜋
[𝑉𝑘

𝜎∗ + 𝑉𝑘
∗𝑡𝑆𝐷][𝐺𝑑𝑑

< (𝜔)𝑔𝑘𝐷
𝑎 (𝜔) + 𝐺𝑑𝑑

𝑟 (𝜔)𝑔𝑘𝐷
< (𝜔)]𝑒−𝑖𝜔(𝑡−𝑡

′) , (6.19) 

 

where 𝑔𝑘𝑆(𝐷)
𝑟(𝑎) (𝜔) and 𝑔𝑘𝑆(𝐷)

< (𝜔) are the lead Green functions in the energy space which are 

related by Fourier transformation (FT) to the corresponding time-dependent Green functions 

𝑔𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′) and 𝑔𝑘𝑆(𝐷)

<  (𝑡, 𝑡′) defined by   

 

𝑔𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′) = ∓𝑖𝜃(±𝑡 ∓ 𝑡′)〈0|{𝑐𝑘𝑆(𝐷),𝜎(𝑡), 𝑐𝑘𝑆(𝐷),𝜎

† (𝑡′)}|0〉,                          (6.20) 

 

   𝑔𝑘𝑆(𝐷)
<  (𝑡, 𝑡′) = 𝑖 〈𝑐𝑘𝑆(𝐷),𝜎

† (𝑡′)𝑐𝑘𝑆(𝐷),𝜎(𝑡)〉,                                                              (6.21) 

 

𝐺𝑑𝑑
𝑟(𝑎)(𝜔)  and 𝐺𝑑𝑑

<(>)(𝜔) are the energy-dependent retarded (advanced) and the Keldysh 

lesser(greater) Green functions of the QD which can be obtained by Fourier transforming the 

corresponding time-dependent Green functions 𝐺𝑑𝑑
𝑟(𝑎)(𝑡, 𝑡′)  and 𝐺𝑑𝑑

<(>)(𝜏 = 𝑡 − 𝑡′)  defined 

respectively by (5.24), (5.25) and (5.26). 

   Substituting Eqs. (6.18) and (6.19) together with (6.20) and (6.21) in Eq. (6.14), we get an 

expression of  𝐽𝜎 which after some algebraic manipulations becomes  

 



 

 
 

159             Ch.6| Spin-filtering by Rashba coupling in a correlated polar dissipative molecular transistor at finite 

temperature and in a magnetic field 

𝐽𝜎 =
𝑒

2ℎ
𝛤[(1 + 𝑡𝑆𝐷 cos(𝜎𝜙𝑆𝑂))∫

𝑑𝜔

2𝜋
 (𝑓𝑆(𝜔) − 𝑓𝐷(𝜔))𝐴(𝜔)                                      

 

−𝑡𝑆𝐷 𝑠𝑖𝑛(𝜎𝜙𝑆𝑂)∫
𝑑𝜔

2𝜋
 (𝑓𝑆(𝜔) + 𝑓𝐷(𝜔)) (𝐺𝑑𝑑

𝑟 (𝜔) + 𝐺𝑑𝑑
𝑎 (𝜔))                           

 

−4𝑡𝑆𝐷 𝑠𝑖𝑛(𝜎𝜙𝑆𝑂)∫
𝑑𝜔

2𝜋
 𝑅𝑒{ 𝐺𝑑𝑑

< (𝜔)}],                                                           (6.22) 

 

where 𝑓𝑆,𝐷(𝜀) = (𝑒𝑥𝑝 [(𝜇𝑆,𝐷 − 𝜀)/𝑘𝐵𝑇] + 1 )
−1

 are the Fermi functions for S and D,  𝜇𝑆,𝐷 

being the corresponding chemical potentials which are related through 𝑉𝑏 and 𝑉𝑚 as:  𝑒𝑉𝑏 =

(𝜇𝑆 − 𝜇𝐷), 𝑒𝑉𝑚 = (𝜇𝑆 + 𝜇𝐷)/2,  𝛤 = (𝛤𝑆 + 𝛤𝐷)/2, where 𝛤𝑆  and 𝛤𝐷  are defined as:  𝛤𝑆,𝐷 =

𝛤 = 2𝜋𝜌𝑆,𝐷〈𝑉̃𝑘〉 𝑉𝑘
∗, 𝜌𝑆,𝐷 being the density of states of leads and 𝐴(𝜔) is the spectral function 

(SF) of the SMT system which can be calculated by Eq. (5.23). We would like to mention 

that the derivations of Eqs. (6.18) and (6.19) are made under the assumptions: 

[𝑔𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′)]

2

≈ 𝑔𝑘𝑆(𝐷)
𝑟(𝑎)  (𝑡, 𝑡′) and 𝑡𝑆𝐷 ≪ 𝑉𝑘,  so that the terms of order higher than 

𝑡𝑆𝐷𝑔𝑘𝑆(𝐷)
𝑟(𝑎)

 can be neglected. As we have already mentioned earlier, there exist two different 

paths for the metallic electrons to tunnel from S to D, one through a QD with SOI and the 

other directly by hopping from S to D. Thus, the SO phase 𝜙𝑆𝑂 in Eq. (6.22) is essentially the 

phase difference between two paths. 

  To calculate SF 𝐴(𝜔) and hence spin-resolved current 𝐽𝜎 , we need to calculate 𝐺𝑑𝑑
𝑟(𝑎)(𝜔) 

and 𝐺𝑑𝑑
<(>)(𝜔). The derivation of 𝐴(𝜔) using 𝐺𝑑𝑑

𝑟(𝑎)(𝜔) is not shown here as it is already 

calculated in detail in Ch.5. We would want the reader to follow Sec. (5.2) from Eqs. (5.34) 

to (5.45) to see the calculation of 𝐴(𝜔). To obtain  𝐽𝜎, we also need to calculate 𝐺𝑑𝑑
<(>)(𝜔). It 

is also calculated in Ch.5. One may follow the Eqs. (5.46) to (5.57) to see the calculation of 

𝐺𝑑𝑑
<(>)(𝜔). 

  We finally calculate the Rashba induced spin-resolved differential conductance 𝐺𝜎 and the 

spin-polarization 𝑃𝜎,−𝜎 respectively by Eq. (5.58) and (5.61). 

 

6.3 NUMERICAL RESULTS AND DISCUSSIONS 

 

   In this section, we calculate numerically the spin-resolved tunneling current, conductance 

and spin-polarization in the presence of e-p interaction, Coulomb interaction and quantum 

dissipation and show its behaviour as a function of a few tunable parameters. We normalize 
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the energy scale of the system by the phonon-energy, ℏ𝜔0. For convenience, we set 𝛤 = 0.2,  

𝑒V𝑔 = 0, 𝑚∗ =0.036𝑚𝑒, 𝑒𝑉𝑚 = 0.1, 𝑈 = 5 and 𝜀𝑑 =0.  

    

 

 

Fig.6.2 Spin-resolved current  𝐽𝜎/𝐽0  vs.  𝑒𝑉𝑏  for different values of 𝜙𝑆𝑂  for 𝑘𝐵𝑇 = 0.5 , 𝜆 =

0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02 at 𝐵 = 0. 

 

   In Fig.6.2, we present the variation of the spin-resolved normalized tunneling current 𝐽𝜎 at 

finite temperature 𝑇 as a function of the bias voltage 𝑉𝑏 for a given set of SMT parameters 

and different RSOI strengths 𝜙𝑆𝑂 = 𝛼𝑅
𝑚∗

ℏ2
𝑙. 𝐽𝜎 is measured in the units of 𝐽0 = 𝑒/2ℎ. One 

can observe that  𝐽𝜎 initially increases with increasing 𝑉𝑏 in a nonlinear way, then shows an 

Ohmic nature in the middle region and finally saturates after a certain value of 𝑉𝑏. This can 

be explained as follows. On application of Vb, the Fermi level of S shifts up and that of the 

right lead goes down. This causes electrons to enter from the S-lead into QD giving rise to a 

nonzero tunneling current. But as the QD is able to accommodate only a limited number of 

electrons, the current gets saturated if Vb is raised beyond a certain value. One may notice 

that the tunneling is not significant unless 𝑉𝑏 is high enough. As mentioned above, for a non-

zero 𝑉𝑏, S- and D-Fermi levels shift respectively up and down equally and electrons from S-

Fermi level jump into the spin-up (spin-down) level of the QD and then go to the D-Fermi 

level causing a non-zero spin-up (spin-down) current. So, a substantial strength of the bias 

voltage is required for this tunnelling to happen.  However, the more interesting phenomenon 

here is the splitting of 𝐽𝜎 and 𝐽−𝜎 for a nonzero value of  𝜙𝑆𝑂 even at 𝐵 = 0. At 𝜙𝑆𝑂 ≠ 0, the 

spin degeneracy is removed due to the RSOI and the single degenerate QD energy level splits 
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into spin-up and spin-down levels leading to the separation of the spin-up and spin-down 

currents  𝐽↑ and  𝐽↓. As this separation between 𝐽↑ and  𝐽↓ is entirely due to RSOI, the graphs 

for 𝐽𝜎 and 𝐽−𝜎 obviously merge with each other for 𝜙𝑆𝑂 = 0 in the absence of 𝐵.      

 

 

 

Fig.6.3 Spin-resolved current  𝐽𝜎/𝐽0  vs.  𝜙𝑆𝑂 for 𝑘𝐵𝑇 = 0.5, 𝜆 = 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝑒𝑉𝑏 = 0.5 

at 𝐵 = 0. 

 

   To study the SOI-induced splitting more specifically, we plot 𝐽↑ and  𝐽↓, in Fig.6.3, as a 

function of 𝜙𝑆𝑂  at 𝐵 = 0  and 𝑇 ≠ 0 . The periodic behaviour with a period 2𝜋  is clearly 

visible. At 𝜙𝑆𝑂 = 0,   𝐽↑  is zero and as 𝜙𝑆𝑂  increases,  𝐽↑  also increases and exhibits a 

maximum at 𝜙𝑆𝑂 = 𝜋/2, and then it continues to decrease with further increase in  𝜙𝑆𝑂 and 

shows a minimum at 𝜙𝑆𝑂 = 3𝜋/2 after which it again rises and becomes zero at 𝜙𝑆𝑂 = 2𝜋. 

Though both 𝐽↑ and  𝐽↓ have the same period 2𝜋, they have the opposite phase. This gives an 

interesting crossing behaviour in the 𝐽↑ and  𝐽↓ - curves.  The crossing occurs at those values 

of  𝜙𝑆𝑂 that are even multiples of 𝜋/2. Obviously, the phase difference between  𝐽↑ and  𝐽↓ in 

the case of 𝐵 = 0, is caused entirely due to the RSOI.  It is important to mention that the spin 

gap (𝐽↑ − 𝐽↓)  can be controlled by varying the RSOI parameter 𝛼𝑅  which can be 

accomplished by tuning the gate voltage. The spin gap shows maxima at odd-integral 

multiple values of  𝜙𝑆𝑂 and vanishes at even integral values of  𝜙𝑆𝑂 including zero.  
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Fig.6.4 (a) 𝐽↑/𝐽0  and (b) 𝐽↓/𝐽0  vs.  𝑒𝑉𝑏 for different values of 𝜆 at a fixed 𝜙𝑆𝑂 for 𝑘𝐵𝑇 = 0.5 and 𝐵 =

0. Insets at  𝜇𝐵𝐵 = 1.0. 

 

   In Fig.6.4, we plot 𝐽↑ and 𝐽↓ with respect to 𝑉𝑏 for different values of 𝜆 at a finite 𝑇 to see 

the effect of e-p interaction on 𝐽↑  and 𝐽↓  in the presence of RSOI. Fig.6.4(a) shows the 

behaviour of 𝐽↑ while Fig.6.4(b) presents the behaviour of 𝐽↓.  One may notice that for a given 

𝜙𝑆𝑂, the qualitative behaviour of 𝐽↑ and 𝐽↓ is similar at 𝐵 = 0. Both 𝐽↑ and 𝐽↓ decrease with 

increasing 𝜆  for positive 𝑉𝑏 . This can be understood from the mechanism of polaron 

formation which impedes the flow of the tunneling of conduction electrons. In the insets we 

show the variations at 𝜇𝐵𝐵 = 1.0. These figures show that the qualitative variations of 𝐽↑ and 

𝐽↓ at a finite value of the magnetic field are different, particularly for higher values of 𝜆. This 

implies that, in the presence of a magnetic field, the effect of RSOI on 𝐽↑  and J↓  is 

qualitatively different. This can be explained from Eq. 20, which shows that the effective dot-

energy 𝜀𝑑̃𝜎  is different for spin-up and spin-down electrons. The expression of 𝜀𝑑̃𝜎  also 

shows that for the spin-down electrons, there exists a competition between the polaronic 

energy and the magnetic energy, whereas no such competition exists for the spin-up 

electrons. One may also observe that the changes in current densities in the presence of 

magnetic field for lower values of 𝜆 are minimal for the chosen set of parameters.  

   Fig.6.5 describes the effect of quantum dissipation (parameterized by 𝛾) on spin current 

densities in the presence of 𝜙𝑆𝑂 at a finite value of 𝑇.  It is evident that for positive 𝑉𝑏, 𝐽↑ and 

𝐽↓ increase as 𝛾 increases. This can be explained as follows. The coupling of the bath phonons 

with the QD phonon reduces the frequency of the phonon 𝜔0 to 𝜔̃0 = (𝜔0
2 − ∆𝜔2)1 2⁄  which 

apparently means that the QD lattice mode undergoes a frictional effect which is precisely the 

effect of dissipation. This effect reduces the e-p interaction and consequently increases the 
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tunneling current. Here, again the insets suggest that at finite 𝐵, the variations of  𝐽↑ and 𝐽↓  

with 𝛾 are different, though 𝛾 enhances both  𝐽↑ and 𝐽↓. At  𝐵 ≠ 0 , the variations of  𝐽↓ are 

much more prominent than those of  𝐽↑. 

 

  

 

Fig.6.5 (a) 𝐽↑/𝐽0  and (b) 𝐽↓/𝐽0  vs.  𝑒𝑉𝑏 for different values of 𝛾 at a fixed 𝜙𝑆𝑂 for 𝑘𝐵𝑇 = 0.5 and 𝐵 =

0. Insets at  𝜇𝐵𝐵 = 1.0. 

 

  

 

Fig.6.6 Spin-resolved current 𝐽𝜎/𝐽0  vs. 𝜙𝑆𝑂 at 𝜆 = 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02,  𝑒𝑉𝑏 = 0.5 for different 

values of : (a) 𝐵 at 𝑘𝐵𝑇 = 0.5;  (b) 𝑇 at 𝜇𝐵𝐵 = 0.5. 

 

  In Fig.6.6, we study how 𝐽𝜎 changes with 𝜙𝑆𝑂 at different values of the magnetic field and 

temperature in a particular window of the SMT parameters. In Fig.6.6(a), we present the 

effect of the magnetic field and in Fig.6.6(b) the effect of temperature. We observe that, in 
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general, 𝐽𝜎 reduces with the increase in both 𝑇 and 𝐵. From Fig.6.6(a), we see that though the 

change in 𝐽↑  with 𝐵  is only marginal, 𝐽↓  exhibits a visible change with 𝐵,   especially for 

higher values of SO coupling (for 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋). This again suggests that because of the 

magnetic field, SOI effects in 𝐽↑ and 𝐽↓ become different. Mathematically, Eq. (35) shows that 

the change in 𝐽𝜎 is mostly dependent on 𝐺̃𝑑𝑑
𝑟(𝑎)

 and the denominator for 𝐽↑ (𝜎 = +1) is greater 

than that of 𝐽↓ (𝜎 = −1) for a given set of parameters. This makes the gap between the 𝐽↓-

curves for two values of 𝐵  larger than that of the corresponding  𝐽↑  curves. Thus, the 

localizing effect of  𝐵 is stronger in the case of  𝐽↓ than in the case of  𝐽↑. We can explain the 

reduction in the current densities with increasing 𝐵 in the following way. The presence of 𝐵 

gives rise to an additional spitting of the QD’s energy level, the spin-down level rising up and 

the spin-up level shifting down. As B increases, the splitting also increases and for a given 

ϕSO, it may so happen that the rise in the spin-down level becomes more than the downshift 

in the spin-up level. This can cause a large mismatch between the S-Fermi level of the source 

and the spin-down of the QD giving rising to a lesser probability of S-electrons to tunnel and 

consequently 𝐽↓ decreases with increasing field. Fig.6.6(b) shows the variation of 𝐽𝜎 with 𝑇. 

As the phonon excitations increase with increasing 𝑇, 𝐽𝜎 reduces as 𝑇 increases, but unlike in 

the case of Fig.6.6(a), here 𝐽↑ and 𝐽↓ will be affected equally at a particular temperature.   

          

  

 

Fig.6.7 (a) 𝐽↑/𝐽0  and (b) 𝐽↓/𝐽0  vs.  𝑒𝑉𝑚 for different 𝜙𝑆𝑂 at 𝑇 = 0, 𝜆 = 1.0,𝑈 = 0, 𝛾 = 0.02, 𝑒𝑉𝑏 =

3.6  for 𝐵 = 0 and 𝐵 ≠ 0.  

 

   In Fig.6.7, we study the variation of 𝐽𝜎 with respect to the mid-voltage 𝑉𝑚 both for 𝐵 = 0 

and 𝐵 ≠ 0 at 𝑇 = 0. One can notice that 𝐽𝜎 exhibits multiple plateaus and shows a maximum 

around 𝑉𝑏 = 0. Chen et al. [30] have studied this variation at zero temperature for 𝜆 = 0 and 
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𝜆 = 1 in the absence of a magnetic field, Coulomb correlation, SOI and dissipation and have 

obtained plateaus in the current density for 𝜆 = 1 . We observe similar plateaus in the 

presence of SOI and dissipation, although the value of the current density is much larger in 

our case. The figures also suggest that the current at 𝜙𝑆𝑂 = 𝜋/2  is larger than that at 𝜙𝑆𝑂 =

𝜋/4.  Interestingly, at non-zero 𝐵, 𝐽↑ undergoes a rigid shift towards left on the 𝑉𝑚 axis while 

𝐽↓ shifts towards right.    

 

  

 

Fig.6.8 Spin-resolved differential conductance 𝐺𝜎/𝐺0  vs.  𝑒𝑉𝑏 for different values of 𝜙𝑆𝑂 at 𝑘𝐵𝑇 =

0.5 (a) 𝐵 = 0, (b) 𝜇𝐵𝐵 = 1.0. 

 

   Next, we numerically calculate the differential conductance in the presence of e-p 

interaction, Coulomb correlation and quantum dissipation. The conductance is calculated in 

units of 𝐺0 = 𝑒
2/2ℎ.  

   We investigate in Figs.6.8, the behaviour of the spin-resolved differential conductance 𝐺𝜎 

as a function of the bias voltage 𝑉𝑏 for different values of 𝜙𝑆𝑂 and a set of SMT parameters 

both in the absence and presence of a magnetic field 𝐵. Fig.6.8(a) provides the results for 

𝐵 = 0 while Fig.6.8(b) gives the results for 𝐵 ≠ 0.  Fig.6.8(a) shows that variation of  𝐺𝜎 

with 𝑉𝑏  is Gaussian-like with a maximum ( 𝐺𝜎,𝑚𝑎𝑥 ) at 𝑉𝑏 = 0.  The variation is also 

symmetric with respect to 𝑉𝑏 = 0. As expected, 𝐺𝜎 splits into 𝐺↑ and 𝐺↓ as we switch on 𝜙𝑆𝑂 

at 𝐵 = 0. The solid lines describe the variations for 𝜙𝑆𝑂 = 𝜋/4  and the dotted lines for 

𝜙𝑆𝑂 = 𝜋/2. The peak height of 𝐺↑ is greater than that of 𝐺↓. It can be seen that for |𝑉𝑏| <2.8, 

𝐺↑ (𝐺↓) is larger (smaller) for 𝜙𝑆𝑂 = 𝜋/2 than for 𝜙𝑆𝑂 = 𝜋/4, but for |𝑉𝑏| >2.8, the situation 

reverses. 𝐺↑ and 𝐺↓ cross each other at  𝑉𝑏 = ±2.8. The inset shows no splitting at 𝜙𝑆𝑂 = 0 

which implies 𝐺↑ = 𝐺↓ in this case. Fig.6.8(b) shows that the variations are a little different in 

the presence of a magnetic field. Interestingly, the graphs now exhibit a central minimum at 
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𝑉𝑏 = 0  with two more minima, one on each side of  𝑉𝑏 = 0, placed symmetrically at higher 

value of |𝑒𝑉𝑏|. The curves for 𝐺↑ and 𝐺↓ do not cross each other at any value of the bias 

voltage. It is clearly evident that the gap between the 𝐺↑ and 𝐺↓- curves increase as 𝜙𝑆𝑂 is 

changed from 𝜋/4  to 𝜋/2 . The gap between 𝜙𝑆𝑂 = 𝜋/2  and 𝜙𝑆𝑂 = 𝜋/4  curves also 

increases in the case of 𝐵 ≠ 0. As mentioned earlier, this splitting between 𝐺↑ and 𝐺↓ caused 

by 𝜙𝑆𝑂 can be manipulated by tuning the gate voltage which alters 𝜙𝑆𝑂(∝ 𝛼𝑅).  The inset 

shows that in the case of  𝜙𝑆𝑂 = 0, splitting still occurs due to the magnetic field.  

 

 

 

Fig.6.9 Spin-resolved differential conductance  𝐺𝜎/𝐺0 vs. 𝑒𝑉𝑚 for  𝜙𝑆𝑂 = 𝜋/4 at 𝑇 = 𝑈 = 𝛾 = 0, 

𝜆 = 1.0, 𝑒𝑉𝑏 = 3.6  for 𝐵 = 0 and 𝐵 ≠ 0: comparison with the Chen et al. [30] result. 

    

   In Fig.6.9, we study the behaviour of the differential conductance Gσ as a function of mid-

voltage Vm in the presence of RSOI 𝜙𝑆𝑂  for both 𝐵 = 0 and 𝐵 ≠ 0 with 𝜆 = 1.0. We also 

compare our results with those of Chen et al. [30] who have studied the same in the absence 

of RSOI and magnetic field. They have observed a few satellite peaks in the conductance 

along with two zero-phonon peaks (taller peaks) symmetrically distributed (solid light green 

curve at 𝐵 = 𝜙𝑆𝑂 = 0) with respect to 𝑉𝑚 = 0 and suggested that these satellite peaks occur 

because of the phonon-assisted tunnelling. We like to see the effects of the RSOI and 

magnetic field on 𝐺𝜎for the same parameter values considered by Chen et al. In the presence 

of RSOI (𝜙𝑆𝑂 = 𝜋/4) alone, it can be clearly seen that the solid light green curve splits into 

two curves (shown in the inset (a)) corresponding to the up-spin (𝐺↑, solid blue) and down-

spin (𝐺↓, solid red) spin-resolved conductances respectively. One can also see that the zero-

phonon peaks and the satellite peaks generated by the e-p interaction are symmetric with 

respect to Vm = 0. We would like to mention that the conductance peak heights increase and 
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become sharper in the presence of RSOI, although the zero-phonon up and down-spin peaks 

merge at a particular 𝑉𝑚. The inset (b) shows that the  𝐺↓- peaks (solid blue) are higher than 

the 𝐺↑- peaks (solid blue).  As we turn on 𝐵 (𝜇𝐵𝐵 = 1.0) in addition to RSOI, 𝐺↑ undergoes a 

rigid shift towards left and 𝐺↓ towards right equally and as a result the zero-phonon up-spin 

(dashed blue curve) and down-spin (dashed red curve) conductance peaks split, though the 

heights of the peaks remain the same as in the case of 𝐵 = 0. Thus, the RSOI enhances the 

phonon-assisted conductance by increasing the peak heights and the magnetic field splits the 

peaks. This signature of the peak pattern in spin-resolved conductances can also be 

understood from Fig.6.7, where one can see the boundary lines before and after the plateaus 

associated with the phonon-mediated conductance peaks. The left-right shift at 𝐵 ≠ 0 can 

also be seen in Fig.6.7. Here we have shown results in the absence of quantum dissipation. 

Similar studies can also be carried out in the presence of dissipation.        

 

         

 

Fig.6.10 (a) Spin-resolved differential conductance 𝐺𝜎/𝐺0  vs. 𝜙𝑆𝑂 for different values of dot energy 

𝜀𝑑 at 𝜆 = 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝑒𝑉𝑏 = 0.5 (a) for 𝐵 = 0 (b) 𝜇𝐵𝐵 = 0.5.  

 

   Fig.6.10 displays the nature of 𝐺𝜎 with respect to 𝜙𝑆𝑂 for different values of dot energy. 

Fig.6.10(a) provides results for 𝐵 = 0 and Fig.6.10(b) gives results for non-zero values of 𝐵. 

From Fig.6.10(a), we see that the variation of 𝐺𝜎 with 𝜙𝑆𝑂 is 2𝜋-periodic, though 𝐺↑ and 𝐺↓ 

are out of phase by 𝜋 in conformity with the plots of  𝐽𝜎 vs 𝜙𝑆𝑂 shown in Figs.6.3 and 6.6. As 

the dot energy 𝜀𝑑 can be varied by tuning the gate voltage Vg, we consider three values of 𝜀𝑑 

namely, 𝜀𝑑 = −1, 𝜀𝑑 = 0 and 𝜀𝑑 = 1. It is clear from Fig.6.10(a) that as 𝜀𝑑  increases,  𝐺↑ 

increases in the range, 0≤ 𝜙𝑆𝑂 ≤ 𝜋, and decreases in the range, 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋, and shows 

extrema at 𝜙𝑆𝑂 = 𝑝𝜋/2, 𝑝 = 0,1,2, … . The behaviour of  𝐺↓ with 𝜀𝑑 is just the opposite to 

that of 𝐺↑  versus 𝜀𝑑  and can be obtained from the results of  𝐺↑  by giving a 𝜋 shift. The 

quantitative difference between the results of  𝐺↑ and 𝐺↓ is particularly significant for positive 
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𝜀𝑑. One can see in Fig.6.10(b) that in the case of 𝐵 ≠ 0, 𝐺↑ and 𝐺↓ behave differently from 

those at 𝐵 = 0 and the constant phase correlation between 𝐺↑ and 𝐺↓ is absent except for the 

case of  𝜀𝑑 = 1,  where again 𝐺↑ and 𝐺↓ as a function of 𝜙𝑆𝑂 have a phase difference of 𝜋. 

 

  

 

Fig.6.11 𝐺𝜎/𝐺0  vs. 𝜙𝑆𝑂 for different 𝜆 values at 

𝑘𝐵𝑇 = 0.5  𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝑒𝑉𝑏 = 0.5  for 

𝐵 = 0. Inset: at 𝜇𝐵𝐵 = 0.5. 

 

 

Fig.6.12 Total 𝐺 vs. 𝜙𝑆𝑂 for different 𝑡𝑆𝐷 values at 

𝑘𝐵𝑇 = 0.5,𝜆 = 0.6, 𝛾 = 0.02, 𝑒𝑉𝑏 = 0.5  for 𝐵 =

0. Inset: at  𝜇𝐵𝐵 = 1.0. 

    

   To study the effects of polaronic interaction on spin-resolved conductance 𝐺𝜎 , we plot, in 

Fig.6.11, 𝐺𝜎 as a function of 𝜙𝑆𝑂 for different values of e-p interaction strength 𝜆 at 𝐵 = 0 

for a given set of SMT parameters. As discussed above, 𝐺↑ and 𝐺↓ as a function of 𝜙𝑆𝑂 are 

opposite in phase. For  0 ≤ 𝜙𝑆𝑂 ≤ 𝜋, the peak-height of 𝐺↑ decreases with increasing 𝜆 while 

that of 𝐺↓  increases. The behaviour becomes just opposite in the region: 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋. 

Thus, the e-p interaction which induces the formation of polarons, does not always reduce 𝐺𝜎, 

rather the effect of e-p interaction also depends on the strength of 𝜙𝑆𝑂. This implies that there 

exists an interesting interplay between the Rashba and e-p interactions that has a significant 

and decisive effect on the transport process. The inset shows the variations at a finite 𝐵 where 

the phase correlation between 𝐺↑  and 𝐺↓ disappears and the variations of 𝐺↑  and 𝐺↓with 

respect to 𝜙𝑆𝑂 become very different. As a magnetic field is switched on, the maxima and 

minima in 𝐺↑  as a function of 𝜙𝑆𝑂  exchange their positions. Interestingly, at 𝐵 ≠ 0 , 𝐺↑ 

always decreases with increasing 𝜆, though the rate of decrease changes as 𝜙𝑆𝑂  increases. 

However, the variation of 𝐺↓ does not change much for the set of parameters used in this 

work. This can again be understood from the fact that in 𝐽↓  , there exists a competition 

between the magnetic and polaronic energies which is however absent in 𝐽↑.  As a result, 𝐽↑ 

varies monotonically with 𝜆 for a given value of 𝐵, whereas for the same value of 𝐵, 𝐽↓ may 
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not change much with 𝜆 and consequently, the variations of 𝐺↑ and 𝐺↓ become different. We 

wish to mention that as we turn on the magnetic field, one can see a clear separation between 

𝐺↑ and 𝐺↓ curves vertically like the Zeeman splitting for a given 𝜙𝑆𝑂 which can, of course, be 

tuneable. This can also be observed in Figs.6.8(b) and 6.10(b). 

    As the SOI phase contains the hopping parameter 𝑡𝑆𝐷 , it would be interesting to study the 

behaviour of the total conductance 𝐺(=∑ 𝑑𝐽𝜎/𝑑𝜎 𝑉𝑏) as a function of 𝜙𝑆𝑂 for different values 

of 𝑡𝑆𝐷 . The results are presented in Fig.6.12. Let us first describe the results for 𝐵 = 0.  The 

figure shows that for 𝑡𝑆𝐷 = 0, 𝐺  is independent of  𝜙𝑆𝑂 . At a finite value of 𝑡𝑆𝐷 , as 𝜙𝑆𝑂 

increases from zero, 𝐺  initially decreases, then forms a minimum at 𝜙𝑆𝑂 = 𝜋  and finally 

increases with the further increase in  𝜙𝑆𝑂 . It is clear from the plot that 𝐺  increases with 

increasing 𝑡𝑆𝐷 for 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋/2  and 3𝜋/2 ≤ 𝜙𝑆𝑂 ≤ 2𝜋 , while in the window 𝜋/2 ≤

𝜙𝑆𝑂 ≤ 3𝜋/2, it decreases as 𝑡𝑆𝐷  increases. In the inset, we show the variations at 𝐵 ≠ 0, 

where one can notice that 𝐺 reduces with increasing 𝑡𝑆𝐷  in the region 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋, while it 

decreases with 𝑡𝑆𝐷  in the other half i.e., in the region 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋. Interestingly, for 𝑡𝑆𝐷 =

0, 𝐺 remains zero over the entire range of  𝜙𝑆𝑂.  

 

 

 

Fig.6.13 𝐺𝜎/𝐺0 vs. 𝜙𝑆𝑂  for different 𝑈  values 

at 𝑘𝐵𝑇 = 0.5 , 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝜆 =

0.6, 𝑒𝑉𝑏 = 0.5  for 𝐵 = 0. 

 

 

Fig.6.14 𝐺𝜎/𝐺0 vs. 𝑈  for different 𝜙𝑆𝑂  values at 

𝑘𝐵𝑇 = 0.5 , 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝜆 = 0.6, 𝑒𝑉𝑏 =

0.5  for 𝐵 = 0. 

 

   Fig.6.13 displays the variation of spin-polarized conductance 𝐺𝜎  with 𝜙𝑆𝑂  for different 

values of 𝑈 at 𝐵 = 0. 𝐺𝜎 exhibits an interesting behaviour with respect to 𝑈. For 𝑈 = 0 and 

2 , 𝐺↑  has a minimum at around 𝜙𝑆𝑂 = 𝜋/2  and a maximum at around 𝜙𝑆𝑂 = 3𝜋/2 . 

However, for 𝑈 > 2, 𝐺↑  changes its phase by around 𝜋, showing maximum and minimum at 

𝜙𝑆𝑂 = 𝜋/2 and 𝜙𝑆𝑂 = 3𝜋/2 respectively. It is interesting to see that 𝐺↓ and 𝐺↑are opposite in 

phase with respect to 𝜙𝑆𝑂 for all values of 𝑈. Thus, there exists a critical value of 𝑈 at which 

the phase of 𝐺𝜎 reverses with respect to 𝜙𝑆𝑂. To explore this critical behaviour, we plot 𝐺𝜎 as 



   Chapter 6 

 
 

170 

a function of 𝑈 for different values of 𝜙𝑆𝑂 at 𝐵 = 0 in Fig.6.14. As our main interest is to 

locate the transition point, we consider only a particular window of  𝜙𝑆𝑂. In particular, we 

choose 𝜙𝑆𝑂 = 0, 𝜋/4 and 𝜋/2.  One can clearly see that for both 𝜙𝑆𝑂 = 𝜋/4 and 𝜋/2, 𝐺↑ 

and 𝐺↓ have an inverted behaviour as a function of 𝑈. For 𝜙𝑆𝑂 = 0, we find  𝐺↑ = 𝐺↓ which 

is, of course, an expected result. At around 𝑈𝑐 = 2.6, 𝐺𝜎 has a discontinuity with respect to 𝑈 

and with respect to 𝜙𝑆𝑂 , its sign reverses. To understand the discontinuity, we consider the 

second derivative of 𝐽𝜎 with respect to 𝜙𝑆𝑂. 

 

𝜕2𝐽↑

𝜕𝜙𝑆𝑂
2 = ℱ1(𝜙𝑆𝑂)𝒢1(𝜙𝑆𝑂 , 𝑈) + {ℱ2(𝜙𝑆𝑂)𝒢2(𝜙𝑆𝑂 , 𝑈) + ℱ3(𝜙𝑆𝑂)𝒢3(𝜙𝑆𝑂 , 𝑈)}, 

 

𝜕2𝐽↓

𝜕𝜙𝑆𝑂
2 = ℱ1(𝜙𝑆𝑂)𝒢1(𝜙𝑆𝑂 , 𝑈) − {ℱ2(𝜙𝑆𝑂)𝒢2(𝜙𝑆𝑂 , 𝑈) + ℱ3(𝜙𝑆𝑂)𝒢3(𝜙𝑆𝑂 , 𝑈)}, 

 

where ℱ′s are periodic functions of 𝜙𝑆𝑂 and  𝒢′s are functions of Green’s functions. It may be 

noted that the Green functions appearing in the above equations change sign at a critical 

value of 𝑈 (𝑈𝑐) causing an overall change in both 𝜕2𝐽↑/𝜕𝜙𝑆𝑂
2  and 𝜕2𝐽↓/𝜕𝜙𝑆𝑂

2  at 𝑈 = 𝑈𝑐 . 

Also, at 𝑈 = 𝑈𝑐,  the positions of maxima and minima of 𝐽↑  and 𝐽↓  (with respect to 𝜙𝑆𝑂) 

interchange. Hence, the gap between 𝐽↑  and 𝐽↓  at 𝑈 = 𝑈𝑐 , becomes maximum. As 𝐺𝜎  is 

directly related to 𝐽𝜎 , the interchange of maxima and minima of 𝐽↑  and 𝐽↓  causes a 

discontinuity at 𝑈𝑐 in the 𝐺𝜎-spectrum. 

 

 

 

Fig.6.15 Spin-polarization 𝑃↑,↓ vs. 𝜙𝑆𝑂  for 

different 𝜇𝐵𝐵 values for 𝜆 = 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 =

0.02, 𝑒𝑉𝑏 = 0.5 at 𝑘𝐵𝑇 = 0.5. Inset: at 𝑇 = 0. 

 

 

Fig.6.16 Spin-polarization 𝑃↑,↓ vs. 𝜙𝑆𝑂  for 

different 𝑘𝐵𝑇 values for 𝜆 = 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 =

0.02, 𝑒𝑉𝑏 = 0.5 at 𝜇𝐵𝐵 = 1.0. Inset: at 𝐵 = 0. 
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   We study in this section the behaviour of the spin-polarization 𝑃↑,↓ (defined in Eq. 61) of a 

dissipative SMT system at finite temperature as a function of 𝜙𝑆𝑂  in the presence of a 

magnetic field, e-p interaction, Coulomb correlation and quantum dissipation. 𝑃↑,↓  gives a 

measure of the spin-filtering effect that originates owing to the RSOI.  

   Fig.6.15 describes the behaviour of 𝑃↑,↓ as a function of 𝜙𝑆𝑂 for different values of 𝐵 with 

= 0.6, 𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝑒𝑉𝑏 = 0.5,  𝑘𝐵𝑇 = 0.5 . 𝑃↑,↓  shows a 2𝜋 -periodic pattern. 𝑃↑,↓  is 

positive in the region, 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋 and negative in the region, 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋 and is zero at 

𝜙𝑆𝑂 = 0 , 𝜋  and 2𝜋.  Furthermore, |𝑃↑,↓|  increases as magnetic field increases. Thus, the 

magnetic field favours spin-polarization. Also, the spin-polarization can be tuned by varying 

the strength of RSOI. At 𝑇 = 0 (see the inset), in the absence of the magnetic field, 𝑃↑,↓ 

remains essentially constant with 𝜙𝑆𝑂. As 𝐵 increases, however, 𝑃↑,↓ does show a significant 

variation with 𝜙𝑆𝑂 .  The behaviour is again periodic, 𝑃↑,↓  exhibiting a maximum at 𝜙𝑆𝑂 =

𝜋/2  (𝑃↑,↓,𝑚𝑎𝑥 = 1 at 𝜇𝐵𝐵 = 1) and a minimum at𝜙𝑆𝑂 = 3𝜋/2 (𝑃↑,↓,𝑚𝑖𝑛 = −1 approximately 

at 𝜇𝐵𝐵 = 1). Therefore, it is possible to achieve a fully-polarized spin transport at 𝑇 = 0 with 

the help of a sufficiently high field. Once the maximum polarization is achieved at a 

particular 𝜙𝑆𝑂, one can experimentally determine 𝛼𝑅 for a given set of SMT parameters. 

 

 

 

Fig.6.17 Spin-polarization  𝑃↑,↓  vs. 𝜙𝑆𝑂  for 

different 𝜆  values at 𝑘𝐵𝑇 = 0.5  𝑡𝑆𝐷 = 0.2, 𝛾 =

0.02, 𝑒𝑉𝑏 = 0.5  for 𝐵 = 0. Inset: at 𝜇𝐵𝐵 = 1.0. 

 

 

Fig.6.18 Spin-polarization  𝑃↑,↓  vs. 𝜙𝑆𝑂  for 

different 𝛾  values at 𝑘𝐵𝑇 = 0.5  𝑡𝑆𝐷 = 0.2, 𝜆 =

0.6, 𝑒𝑉𝑏 = 0.5  for 𝐵 = 0. Inset: at 𝜇𝐵𝐵 = 1.0. 

 

    In Fig.6.16, 𝑃↑,↓ is varied with 𝜙𝑆𝑂 at a finite magnetic field in the regions 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋 

and 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋   for different temperature values. In the region, 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋 , the 
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polarization decreases with increasing temperature, while in the region 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋, the 

magnitude of 𝑃↑,↓  decreases with increasing 𝑇  except for 𝑘𝐵𝑇 = 0.8 . Hence, a non-zero 

magnetic field can make the 𝑃↑,↓  variations non-monotonic with respect to 𝑇  for different 

𝜙𝑆𝑂. The inset show the plots for 𝐵 = 0. It is clear that, with respect to 𝜙𝑆𝑂, |𝑃↑,↓| has a 2𝜋-

periodic variation for different values of  𝑇 and the behaviour is perfectly antisymmetric 

around 𝜙𝑆𝑂 = 𝜋.  Interestingly, in contrast to 𝐵 ≠ 0, at 𝐵 = 0, temperature enhances  |𝑃↑,↓|, 

though the values of |𝑃↑,↓| are less than those at 𝐵. One may notice from the inset that 𝑃↑,↓, =

1  cannot be achieved even at 𝑇 = 0  in the absence of the magnetic field. So, both the 

conditions of: 𝐵 ≠ 0 and 𝑇 = 0 are required to complete polarization.   

   In Fig.6.17, we study the effect of e-p interaction on 𝑃↑,↓ both in the absence and presence 

of a magnetic field. It is observed that 𝑃↑,↓ shows a periodic pattern with a period 2𝜋 It is 

important to point out that the polaronic interaction increases the spin-polarization. The inset 

shows the behaviour at 𝐵 ≠ 0. As mentioned earlier, the magnetic field influences the spin-

up and spin-down oppositely and therefore, the contrast in the variations of 𝑃↑,↓  is 

understandable. For completeness, we show the effect of dissipation on 𝑃↑,↓  in Fig.6.18. 

Although 𝛾 increases the tunneling spin currents 𝐽↑ and 𝐽↓ , 𝑃↑,↓ reduces with increasing γ in 

both the regions: 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋 and 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋. The presence of a magnetic field (inset) 

makes the variations different both qualitatively and quantitatively. |(𝑃↑,↓)𝑚𝑎𝑥|  becomes 

larger in both the regions: 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋  and 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋 . Though the nature of the 

variations in the region: 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋 remains essentially the same, in the region: 𝜋 ≤ 𝜙𝑆𝑂 ≤

2𝜋, 𝑃↑,↓ seems to be independent of 𝛾.       

 

  

 

Fig.6.19 Surface plots of (a) 𝐽↑/𝐽0 (b) 𝐽↓/𝐽0  in  𝜆 − 𝜙𝑆𝑂 plane at 𝑒𝑉𝑏 = 0.5,𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝜆 =

0.6, 𝑘𝐵𝑇 = 0.5,𝑈 = 5 & 𝐵 = 0. 

 

   Fig.6.19 describes two-dimensional surface plots of spin-polarized current densities 𝐽↑ and 

𝐽↓ in the 𝜆 − 𝜙𝑆𝑂 plane at 𝐵 = 0. Red (blue) and blue (red) colours denote the maxima and 
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minima of 𝐽↑ (𝐽↓) respectively. It is clearly visible that 𝐽𝜎 is zero at 𝜙𝑆𝑂 = 0 and 𝜆 = 0 and 𝐽↑ 

(𝐽↓) has a maximum (minimum) at a particular 𝜙𝑆𝑂  value. The surface plots show more 

vividly that 𝐽↑  and 𝐽↓  are completely in opposite phase with respect to 𝜙𝑆𝑂  which again 

confirms that 𝐽↑ and 𝐽↓ are separated entirely by RSOI at 𝐵 = 0. 

  We show in Fig.6.20, the contour plot of the total differential conductance 𝐺 at a finite 𝑇 

and a fixed set of SMT parameters in the (𝐵 − 𝜙𝑆𝑂) − plane in the absence and presence of 

e-p interaction. There exists a qualitative difference between the plots for 𝜆 = 0 and for 𝜆 ≠

0. For 𝜆 = 0  (Fig.6.20(a)), 𝐺𝑚𝑎𝑥  (deep red) is concentrated at low 𝜙𝑆𝑂  and low 𝐵  and 𝐺 

starts decreasing as 𝜙𝑆𝑂 and 𝐵 increase showing a minimum (deep blue) at a particular region 

of 𝜙𝑆𝑂 and 𝐵. Interestingly, Fig.6.20(b) suggests that for 𝜆 ≠ 0, 𝐺 goes from a positive to a 

negative value at a certain critical value of B. The figure also shows an approximately equal 

distribution of red and blue colours separated into two halves indicating two different spin-

polarized conductances. However, the number of contour lines in the two halves are not 

equal, which again suggests that the external magnetic field acts on the spin-up and spin-

down electron transport differently. The splitting between the spin-up and spin-down 

conductance becomes much more prominent in the presence of e-p interaction. This 

observation is supported by Fig.6.17 where we can see that the e-p interaction increases the 

spin-polarization. 

 

  

 

Fig.6.20 Contour plots of total differential conductance 𝐺 (=∑ 𝑑𝐽𝜎/𝑑𝜎 𝑉𝑏 ) in 𝜇𝐵𝐵 − 𝜙𝑆𝑂  space at 

𝑒𝑉𝑏 = 0.5,𝑡𝑆𝐷 = 0.2, 𝛾 = 0.02, 𝑘𝐵𝑇 = 0.5, 𝑈 = 5 for (a) 𝜆 = 0 and (b) 𝜆 = 1.0.  

 

   Finally, the surface plots of spin-polarization 𝑃↑,↓  are shown in the 𝜇𝐵𝐵 − 𝜙𝑆𝑂  plane in 

Fig.6.21. Fig.6.21(a) gives results for 𝑇 ≠ 0 and 6.21(b) provides those for 𝑇 = 0. We choose 

𝑘𝐵𝑇 = 0.5 in Fig.6.21(a), as we have used this value for most of our graphs. The figure 

reveals that 𝑃↑,↓ has a maximum at a particular set of  𝜙𝑆𝑂 and 𝐵. Fig.6.21(b) shows that  𝑃↑,↓ 

is more significant at 𝑇 = 0. At 𝑇 = 0, 𝑃↑,↓ exhibits a sharp peak at a certain combination of 
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𝜙𝑆𝑂  and 𝐵  and the peak value is 𝑃↑,↓,𝑚𝑎𝑥 = 1. This can be understood from the inset of 

Fig.6.15 where we observe the same behaviour at 𝑇 = 0.    

 

  

 

Fig.6.21 Surface plots of spin-polarization  𝑃↑,↓  in  𝜇𝐵𝐵 − 𝜙𝑆𝑂  plane at 𝑒𝑉𝑏 = 0.5 ,𝑡𝑆𝐷 = 0.2, 𝛾 =

0.02, 𝜆 = 0.6, , 𝑈 = 5 (a)𝑘𝐵𝑇 = 0.5 and (b) 𝑇 = 0. 

   

6.4 CONCLUSIONS 

 

   To summarize, we have studied the effects of RSOI (measured by 𝜙𝑆𝑂)  on the non-

equilibrium transport of a dissipative single molecular transistor system where a single-level 

QD is embedded in a closed loop connected to two metallic leads so that transport occurs 

through two paths, one of which contains the QD. We consider the QD electrons to have the 

Holstein-Hubbard interactions and also the Rashba coupling. To reduce the effect of e-p 

coupling we introduce a dissipation term which can arise from the interaction of the QD 

phonon with the substrate phonons. This coupling is modelled by the linear Caldeira-Leggett 

Hamiltonian and the whole system is modelled by the Anderson-Holstein-Caldeira-Leggett 

Hamiltonian together with the RSOI and transport properties are calculated at finite 

temperature by Keldysh method. It is shown that without any external field, tunneling current 

gets decoupled completely by RSOI into spin-up and spin-down currents that are opposite in 

phase with respect to RSOI strengths. They are also 2𝜋-periodic with respect to 𝜙𝑆𝑂 both in 

the absence and presence of the magnetic field. This SO interaction induced splitting between 

spin-up and spin-down currents and conductances can be tuned through the external gate 

voltage and a spatial magnetic field. We observe that the magnetic field influences the effects 

of e-p and RSO interactions on the spin-up and spin-down components differently. It also 

wipes out the phase correlation between the spin-up and spin-down conductances leading to 

complete separation of spin-up and spin-down spectra with no crossover. We also show that 

the dissipation originating from the QD-bath phonons interaction enhances the spin-resolved 
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current, but the spin-polarization with respect to RSOI decreases with increasing dissipation 

in the absence of an external magnetic field. However, the change in the variations of spin-

polarization is not significant as we turn on the magnetic field for the given set of parameters.   

    Though the e-p interaction usually restricts the flow of conduction electron owing to 

polaron formation, in the presence of RSOI, the spin-polarized conductances (𝐺↑ and 𝐺↓) do 

not always decrease with increasing 𝜆 in the absence of the magnetic field. 𝐺↑ (𝐺↓) decreases 

(increases) with increasing 𝜆  in the window: 0 ≤ 𝜙𝑆𝑂 ≤ 𝜋  and increases (decreases) with 

increasing 𝜆 in the window: 𝜋 ≤ 𝜙𝑆𝑂 ≤ 2𝜋. There exists a phase correlation between 𝐺↑ and 

𝐺↓  at zero magnetic field. Interestingly, in the presence of a magnetic field, this phase 

correlation is broken and 𝐺↑ reduces as 𝜆 increases for all values of RSOI, but 𝐺↓ does not 

change much which again confirms that magnetic field acts differently on spin-up and spin-

down components. This suggests that the effects of RSO and e-p interactions on spin-

transport get correlated through the external magnetic field. The spin resolved conductance is 

also 2π-periodic with respect to 𝜙𝑆𝑂.  

     Finally, we have studied the variation of spin-polarization 𝑃↑,↓ as a function of RSOI for 

different ranges of the magnetic field, temperature, and e-p interaction. Like currents and 

conductances, the spin-polarization is also 2𝜋-periodic with respect to 𝜙𝑆𝑂. We have shown 

that |𝑃↑,↓| increases with the external magnetic field at a finite temperature while it reduces 

with increasing temperature at a finite field. The polaronic interaction enhances the 

phenomenon of separation of up and down spins and consequently  |𝑃↑,↓|  increases 

significantly in the presence of e-p interaction. Our study predicts that though RSOI alone 

can produce a spin-filtering effect (without any external field), a fully spin-polarized (i.e., 

𝑃↑,↓,𝑚𝑎𝑥 = 1) transport can be achieved only at 𝑇 = 0 and a reasonably large magnetic field 

for a particular strength of RSOI. From the above conditions, one can determine 

experimentally the value of RSOI strength at which the maximum spin-polarization can 

occur.  

   Our results may find important applications in the fabrication of stronger spin-filtering 

devices in which the spin-filtering can be tuned by controlling the external magnetic field, 

RSOI and the e-p interaction in different temperature regimes.    
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
 

To summarize, we have studied in this thesis, the effects of e-e, e-p and SO interactions in 

different LDS such as QDs, QR, Metal-Semiconductor interface and SMT.   

   In Chapter 1, we have introduced the basic concepts relevant to the studies undertaken in 

the thesis and also different models used in our work. For example, we have discussed the 

subject of LDS, polarons, the Fröhlich and Holstein models, Persistent current in LDS,  e-e 

interaction and the Hubbard model, the Rashba and Dresselhaus spin-orbit interactions and 

SMT. 

  In Chapter 2, we have studied the effect of RSOI on the polaron self-energy corrections for 

the GS and the first ESs of a 2D polar PQD with an arbitrary size using an all-coupling 

variational theory. It is observed that the two-fold spin degeneracy of the first ESs is 

substantially lifted by RSOI in the absence of a magnetic field (𝐵). However, the GS does not 

show any such splitting. Similar results are also seen for the bound polaron problem. 

Application of our theory to a GaAs QD suggests that the self-energies of both free and 

bound polarons and spin-splitting are considerably large for small QDs making them a pure 

quantum effect. However, polaronic self-energies remain unaffected by RSOI. To study the 

interplay of RSOI and e-p interaction, we next studied the same system in the presence of a 

magnetic field 𝐵 and obtained the polaronic corrections for GS and the first ESs using the 

2nd–order RSPT. In contrast to the 𝐵 = 0 case, we see a strong influence of RSOI on the 

polaronic corrections in a sufficiently high magnetic field. In GaAs and CdS QDs, it is found 

that the effects of e-p interaction and RSOI on Zeeman splitting (ZS) are opposite and both 

are size-dependent. While the e-p interaction suppresses ZS, RSOI enhances it. Although, the 

enhancement of ZS by RSOI is much small for the chosen set of parameters, but it can be 

enhanced by increasing the RSOI strength through a gate voltage. Thus, in summary, RSOI 

prevents the suppression of ZS caused by e-p interaction in a polar QD. Our theory can be 

applied to magneto-optical experiments to observe some interesting effects.   

  In Chapter 3, we have studied the electron transport across a metal-semiconductor junction 

with a delta-function interface potential (Δ𝛿(𝑥)) in the presence of both RSOI and DSOI. We 

have calculated the reflection and transmission coefficients and the experimentally 

measurable quantities like spin-polarized current densities and differential conductance using 
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discontinuous boundary conditions.  In the presence of both SOIs, DSOI reduces the angle of 

refraction of the spin-up and spin-down electrons while RSOI increases the same, but the 

reduction due to DSOI is much larger than the increase due to RSOI and hence the spin-

splitting angle increases in the presence of DSOI. We have shown that the increase in the 

incident electron energy decreases the angle of refraction of the spin-up electrons, while it 

increases that of the spin-down electrons which is completely opposite to the ∆ = 0 case. In 

the ∆≠ 0 case, the variations of spin-up (𝑇↑) and spin-down (𝑇↓) refraction coefficients and 

correspondingly the currents 𝐽↑  and 𝐽↓  with respect to RSOI show some discontinuities at 

lower values of DSOI which are absent at ∆= 0. RSOI and DSOI have contrasting effects on 

𝐺↑  and 𝐺↓ ; while RSOI increases 𝐺↑  and 𝐺↓ , DSOI suppresses them. The presence of the 

infinite interface potential causes a significant reduction in 𝑇↑ , 𝑇↓ , 𝐽↑ , 𝐽↓ , 𝐺↑  and 𝐺↓ . It is 

important to mention that in the presence of delta-potential, the reflection coefficients 𝑅↑ and 

𝑅↓  become independent of 𝛼  and 𝛽  and consequently, reflected spin polarization 𝑃𝐽
 𝑅𝑒𝑓𝑟

 

becomes zero as a function of SOIs. The refracted spin polarization 𝑃𝐽
 𝑅𝑒𝑓𝑟

, however, has a 

strong dependence on SOIs at a finite ∆. We have shown that in the presence of both SOIs, 

𝑃𝐽
 𝑅𝑒𝑓𝑟

 is considerably large at large 𝛼 and small 𝛽. One of the important observations of this 

study is that the presence of delta potential does not have any effect on the magnitude of spin 

filtering. 

  In Chapter 4, the role of DSOI on the PCs in a mesoscopic QR threaded by an externally 

applied A-B flux in the presence of the e-p interaction and onsite Coulomb interaction has 

been studied. It is shown that both the GS and PCC (𝐼𝑃𝐶) are periodic with respect to A-B 

flux. PCC is enhanced significantly by DSOI. Both the e-e interaction and e-p interaction 

participate in reducing PCC leading to a resistive effect. But the e-p interaction inhibits the 

conduction more strongly than the e-e interaction. In the presence of temperature 𝑇, the PCC 

falls more rapidly with e-e interaction than at 𝑇 = 0 . We have also shown that the 

suppression of PCC by the NN e-p interaction is stronger than that by the onsite e-p 

interaction. The PCC exhibits as a function of e-p interaction (g1 or g2) a peak at a finite 

temperature. In the case of PSC (𝐼𝑃𝐶
𝜎 ), DSOI enhances spin-up and spin-down currents and 

the hence the spin-current splitting gap (∆𝐼𝑃𝐶
𝜎 ) considerably. The spin currents change both 

quantitatively and qualitatively in the presence of interactions. Interestingly, as we turn on the 

interactions and temperature, ∆𝐼𝑃𝐶
𝜎  reduces and number of zero-splitting points increases. 

However, the spin-splitting can be enhanced in a material with large DSOI strength and can 

be tuned by the A-B flux, temperature and all the other interactions present in the system.  

  In Chapter 5, the combined effect of magnetic field (𝐵 ) and temperature (𝑇 ) on the 

quantum transport in an SMT system has been investigated by the Keldysh method in the 
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presence of e-p interaction, e-e correlation and dissipation. It is found that magnetic field (𝐵) 

and temperature (𝑇) have contrasting roles on transport properties. While the magnetic field 

increases the height of the spectral function and broadens the separation between the spin-up 

and the spin-down peaks, temperature reduces the spectral density and the spin splitting. Both 

𝐵  and 𝑇  reduce the current and the conductance as expected. The e-p coupling and 

dissipation have interesting effects on the transport properties in different regimes of the 

magnetic field and temperature. Interestingly, the spectral function is reduced by the e-p 

interaction and damping at low 𝑇 and low 𝐵 while at high 𝑇 and high 𝐵, it is enhanced by 

polaronic interaction and damping. It is also shown that due to polaronic effect, side peaks 

develop in the spectral function which become shorter as 𝑇 rises, although at high 𝑇 and high 

𝐵 , they again reappear. At 𝑇 ≠ 0 , the e-p interaction reduces the tunneling current and 

conductance much more in the presence of a magnetic field than in the absence of it. 

Although the enhancement of the tunneling current by damping becomes more pronounced at 

a non-zero 𝐵, a sufficiently high field suppresses this effect.  The differential conductance is 

reduced by damping at 𝑇 ≠ 0 (more prominently at high 𝑇) and 𝐵 ≠ 0. It is also shown that 

e-p interaction increases the spin-polarization up to a certain 𝑇. In general, magnetic field 

favours the spin-polarization and temperature reduces it. It is important to mention that the 

temperature effect dominates over the magnetic field.  This work can have potential 

application as a spin-filter which can be tuned by temperature and magnetic field. 

  In Chapter 6, we have extended our work of Chapter 5 by incorporating RSOI to study the 

zero-field spin-filtering effect in SMT. Instead of considering a linear metal-QD-metal 

structure, we have considered a closed loop in which QD is embedded in one path of the loop 

and the other path is directly connected to the other metallic leads. The QD electrons 

experience the Holstein-Hubbard interactions and RSOI. The metallic electrons travel 

through two different paths and give rise to a RSOI-phase 𝜙𝑆𝑂 while going through the QD. 

We have shown that the tunneling current gets decoupled by RSOI into spin-up (𝐽↑) and spin-

down (𝐽↓ ) currents even in the absence of any external magnetic field. The currents are 

opposite and 2𝜋 -periodic with respect to 𝜙𝑆𝑂  both in the absence and presence of the 

magnetic field. We have also shown that the dissipation originating from the interaction 

between the QD phonon and the bath phonons enhances both 𝐽↑ and 𝐽↓. It is observed that the 

magnetic field influences the effects of e-p and RSO interactions on the spin-up and spin-

down components differently and also wipes out the phase correlation between the spin-up 

(𝐺↑) and spin-down (𝐺↓) conductances leading to complete separation of spin-up and spin-

down conductance with no crossover. Though the e-p interaction usually restricts the flow of 

conduction electron owing to polaron formation, in the presence of RSOI, the spin-polarized 

conductances do not always decrease with increasing 𝜆 in the absence of the magnetic field. 
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Interestingly, in the presence of a magnetic field, 𝐺↑ reduces as 𝜆 increases for all values of 

RSOI, but 𝐺↓ does not change much which again confirms that magnetic field acts differently 

on spin-up and spin-down components. This suggests that the effects of RSO and e-p 

interactions on spin-transport get correlated through the external magnetic field. The SOI 

induced splitting between spin-up and spin-down currents and conductances can be tuned 

through the external gate voltage and magnetic field. Like currents and conductances, the 

spin-polarization 𝑃↑,↓  is also 2𝜋 -periodic with respect to 𝜙𝑆𝑂 . We have shown that |𝑃↑,↓| 

increases with the external magnetic field at a finite temperature while it reduces with 

increasing temperature at a finite field. The polaronic interaction enhances |𝑃↑,↓| significantly. 

Our study predicts that although RSOI alone can produce a spin-filtering effect (without any 

external field), a fully spin-polarized (i.e., 𝑃↑,↓,𝑚𝑎𝑥 = 1) transport can be achieved only at 𝑇 =

0 and a reasonably large magnetic field for a particular strength of RSOI. From the above 

conditions, one can determine experimentally the value of RSOI strength at which the 

maximum spin-polarization can occur. Our results may find important applications in the 

fabrication of stronger spin-filtering devices in which the spin-filtering can be tuned by 

controlling the external magnetic field, RSOI and the e-p interaction in different temperature 

regimes.
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