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PREFACE

The present thesis embodies our work on the role of electron-phonon (e-p), electron-
electron (e-e) and spin-orbit (SO) interactions in low-dimensional systems (LDS). In LDS,
e.g., quantum dot (QD), quantum well (QW), and quantum ring (QR), the electron is confined
to one or more dimensions and as a result, the system shows discrete electronic energy levels.
The shape and size of the confining potential give rise to different electronic properties. In a
QD system, the commonly used harmonic (parabolic) oscillator potential is considered to be
the simplest confining potential to start with. However, people have also considered more
physical potentials with different shapes, such as a Gaussian potential. The size of a QD is of
the order of nanometres which can contain one to many atoms.

The electrons in confined systems can interact with themselves and also with the lattice
giving rise to e-e and e-p interactions which can influence the electronic properties in LDS. In
a polar crystal, an extra electron in the conduction band interacts with the vibrating lattice
(phonons) leading to a distortion in the lattice. This distortion causes a polarization potential
in which the electron may get trapped. The electron together with the distortion behaves like
a quasi-particle which is commonly known as a polaron. If the electron is slow, then the
potential will be shallow and the distortion can spread over many lattice points and as a result
a large polaron is produced. The polaron of this type is known as Frohlich polaron and its
properties are studied in the continuum model. Since impurity is a rule rather than an
exception for a real physical system, one may also consider a simple hydrogenic impurity in a
polar QD. In such a case, the electron of the hydrogenic impurity interacts with both the
impurity ion and the lattice and the resulting polaron is called a bound polaron.

The study of polaron becomes important in the presence of an external magnetic field. An
external magnetic field causes Zeeman splitting in a parabolic QD. It has been seen in the
context of a magnetopolaron confined in a two-dimensional QD that the Zeeman splitting is
suppressed and the suppression becomes strongly size dependent when the size of the QD is
reduced to a few nanometres. Another important interaction which lies at the heart of
spintronics applications is the spin-orbit (SO) interaction (SOI) through which the spin of the
electron can be manipulated. The very first spintronic device was proposed in the context of a
spin field-effect transistor by Datta and Das. During the fabrication of a QD, an asymmetric
potential is formed at the interface of a QW heterostructure which can be tuned by an
externally applied gate voltage. Due to this structural inversion asymmetry (SIA), an electric
field is produced by which an effective magnetic field is generated in the electron’s rest
frame. This effective magnetic field couples to the spin of the electron giving rise to SOI. The



spins can precess around the effective SO magnetic field with a frequency. This type of SOI
originating from SIA is known as the Rashba SOI (RSOI), whose strength can be tuned by
the external gate voltage. Interestingly, there exist some crystals which lack inversion
symmetry in the bulk and the SOI produced by this bulk inversion asymmetry (BIA) is
known as Dresselhaus SOI (DSOI). The SOI can lead to additional spin-splitting of the
electronic energy levels which is different from the usual Zeeman splitting that occurs due to
an external magnetic field. Therefore, it is intriguing to study the interplay of SOI and
polaronic interaction in the context of the Zeeman splitting of a magnetopolaron in a QD.

It is well known that in a mesoscopic QR system where an array of atoms is designed in the
form of a ring, a magnetic flux of Aharonov-Bohm (A-B) type gives rise to a persistent
current (PC) that flows through the entire ring caused by the quantum interference effect of
the electronic wavefunctions. People have studied several interesting mesoscopic effects in
the presence of interactions in this kind of low-dimensional system. The tunneling junction
devices such as a single molecular transistor (SMT), which resembles a metal-QD-metal
structure, show potential applications in the field of charge and spin transport. In such
systems, especially in a single-electron transport, the e-e interaction in the central QD plays a
vital role which leads to some exciting phenomena like the Coulomb blockade and the Kondo
effec. Also, in recent times, many important studies have been witnessed in this area where
people have studied strongly correlated transport properties in the presence of e-p and SO
interactions in the SMT systems.

The thesis is organized as follows.

In Chapter 1 of the thesis, we present the motivations behind the work and introduce the
continuum and discrete models used in this thesis and the basic formulations of the
interactions mentioned above. In the continuum model, we describe the Frohlich polaron,
bound polaron and magnetopolaron and also Rashba and Dresselhaus SOls. In the discrete
model, we present the Hubbard and Holstein models for a narrow-band system. Next, we
discuss how PC can be generated in a QR. We introduce the Hamiltonians for RSOl and
DSOI in a QR. Finally, we present the model Hamiltonian for an SMT system and discuss the
different processes involved in this system.

In Chapter 2, we investigate the role of RSO interaction on the polaron Zeeman effect in a
two-dimensional parabolic QD. We formulate the system Hamiltonian using the well-known
Frohlich model and calculate the polaronic corrections to the energy states of the QD by
employing an all-coupling Lee-Low-Pines-Huybrechts variational method and the second-
order Raleigh-Schrodinger perturbation theory. We also study the interplay between e-p and
RSO interactions in the context of RSOI-induced Zeeman splitting.



Chapter 3 of the thesis describes the combined effect of both the SOIs on the spin-
transport across a metal-semiconductor interface in the presence of a delta-function scatterer
at the interface. The tunnelling current, conductance and spin-polarization are calculated
using appropriate boundary conditions and the effects of RSOl and DSOI on the reflected and
refracted spin-resolved currents and spin polarizations are studied.

In Chapter 4, we study the effect of DSOI on the persistent charge and spin currents in a
one-dimensional mesoscopic QR threaded by an A-B flux in the presence of e-e and e-p
interactions. In such a narrow-band system, we have a small polaron which is best described
by the Holstein model and the e-e interactions can be treated by the Hubbard model. We
therefore use the Holstein-Hubbard-Dresselhaus model to study the system. After decoupling
the e-p interaction by the much-celebrated Lang-Firsov transformation and eliminating the
DSOI by a unitary transformation, we treat the Hubbard correlation at the Hartree-Fock
mean-field level and finally obtain the energy and current using a self-consistent numerical
diagonalization method. The effects of temperature and chemical potential on charge and spin
currents have also been investigated.

In Chapter 5, we consider a three-terminal device configured as a metal-QD-metal
structure placed on an insulating substrate and investigate finite-temperature nonequilibrium
quantum magneto-transport in the presence of local e-p and onsite Hubbard interactions and
quantum dissipation. The interaction between substrate phonons and the local QD phonon has
been incorporated by the linear Caldeira-Leggett model. This interaction is partially
eliminated by a unitary transformation which produces a dissipative effect in the phonon
frequency which in turn influences the tunnelling current. The e-p interaction is dealt with the
Lang-Firsov transformation. The transport properties such as spectral function, tunnelling
current, conductance and spin-polarization are finally calculated using the nonequilibrium
Keldysh Green function technique. We study the contrasting effects of temperature and
magnetic field on the transport properties mentioned above.

In Chapter 6, we study the RSOI-induced quantum transport through a QD embedded in a
two-arm quantum loop of a single molecular transistor at finite temperature in the presence of
e-p and Hubbard interactions, an external magnetic field and quantum dissipation. The
electrons from the source can tunnel to the drain following two paths, one through the arm of
the loop that contains the QD and the other through the other arm of the loop that does not
contain any QD. Our study focuses on how the Rashba coupling alone causes a zero-field
spin-splitting in the spin-up and spin-down currents in an SMT system. We have also studied
the combined effects of polaronic and SO interactions on the transport properties in different
regimes of temperature and field. The effect of e-e interaction on spin-resolved conductances
has also been studied. In this study, we have also analyzed the condition required to achieve



the maximum spin-polarization for a particular strength of the RSOl and magnetic field at
zero temperature in the SMT system.
Our results may find important applications in the fabrication of efficient spin-filtering
devices in which the spin-filtering can be tuned by controlling the external magnetic field,
RSOI and the e-p interaction in different temperature regimes.

Finally, in Chapter 7, we summarize and conclude our findings.

Kuntal Bhattacharyya
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CHAPTER 1

INTRODUCTION

The study of modern condensed matter physics provides a suitable ground to investigate the
electronic and transport properties of quantum materials, both theoretically and
experimentally. It explores fundamental properties of matter which originate from the
interactions between atoms and electrons. The exciting phenomena in condensed matter
physics emerge from the non-trivial quantum mechanical interactions and the interplay
between them. At one side it deals with the active research areas like strongly correlated
phenomena, phase transitions and critical phenomena, on the other side, it triggers
technological inventions which revolutionize modern civilization.

1.1 MOTIVATIONS SO FAR

A solid containing ions and electrons is a crystalline condensed system where the electrons
can interact with themselves as well as with the ions. The dynamics of an electron is very
much modified by these interactions. However, the Born-Oppenheimer approximation (BOA)
allows the ions to be approximated in many cases as static as they are much heavier than the
electrons. Usually, the interactions such as electron-electron (e-e) and electron-phonon (e-p)
interactions can influence many interesting physics in condensed matter systems, e.g.,
quantum phase transitions, high-temperature (T,) superconductivity, quantum Hall effects
and many other phenomena. In the last few decades, investigations on low-dimensional
systems (LDS) have opened up many intriguing research areas. In LDS, the charge carriers
are confined to a length scale which is lower than the de Broglie wavelengths of the carriers
[1, 2]. Low-dimensional semiconducting materials such as two-dimensional (2D) quantum
wells (QWSs), one-dimensional (1D) quantum wires, quantum ring (QR) and zero-dimensional
(0D) quantum dots (QDs) and also their hybrid structures have potential applications in
electronic, optoelectronic and flexible devices like field effect transistors, photodiodes,
photodetectors, high performance data storage devices etc. On the other hand, spintronics
physics have become an emergent phenomenon which requires the spin manipulation
mechanisms driven by the spin-orbit (SO) interaction (SOI) [3, 4]. Due to the development of
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modern fabrication technique, it is possible to fabricate spintronics devices like magnetic
storage devices, computer nano chips, memory devices, magneto-resistive devices, magnetic
tunnel junction devices, spin valve etc. The spin Hall effect where an electrical current
induces a transverse spin current due to the SOl may also open up new functionalities in spin-
torque switching devices. In this thesis, we mainly present our work on the semiconductor
LDS. To see how efficient the semiconductor nanodevices are, we must take the interactions
experienced by the carrier with the surroundings into account.

It is important to consider e-e interactions in strongly correlated systems for the
understanding of electronic and magnetic properties like metal-insulator transition (MIT),
band magnetism, half-metallic behaviour, heavy fermions, high-T, superconductivity, spin-
charge separation etc. In a many-body interacting system, the free-electron model does not
provide sufficient information to describe the aforementioned properties. The most successful
model for this purpose has been the Hubbard model (HM) [5] named after John Hubbard.
This model introduces an onsite Coulomb energy term U to the usual tight-binding
Hamiltonian. It can produce both a metallic state and an insulating state depending on the
strength of U. The HM has been applied to describe the behaviour of transition metal oxides,
high-T, cuprates, spin density wave (SDW), p/d-wave superconductor, topological phase
transitions, spin-liquid and many other ground-breaking phenomena [6]. Another interesting
area where e-e interactions in LDS (such as in QDs) [7-14] have led to many exciting
properties is qubits, though, designing qubits including e-e interactions has its own
challenges, for they are very delicate to control. Silicon (Si) is a good host material to form
QD-qubits because of their long coherence time. For this reason, Si-QDs can be potentially
applied to quantum computation. Due to their long spin lifetimes and coherent spin control,
they have shown promising aspects in spin-based qubits which can operate even at
moderately high temperature (> 100 mK) [13, 15, 16]. Although, most of the time, the effect
of long range e-e interactions has not been emphasized in the gate-controlled QD systems,
they can play an important role in spin-qubits operation. The Kondo effect [17-22] and
Coulomb blockade [23, 24] are two other important aspects in tunnel junction molecular
devices such as single molecular transistor (SMT), single electron transistor (SET), spin field
effect transistor (FET) etc. Coulomb blockade refers to a mesoscopic phenomenon where the
electrical conductance gets reduced due to the Coulomb repulsion between the electrons
confined in a mesoscopic device. It can be observed in any tunnel junction device where the
electrons coming from a source (metallic or superconducting) enter into a QD and then go to
the drain. The flow of the electrons is governed by a bias voltage. If the size of the device is
very small (size of a few atoms), then electrons in the QD experience a strong Coulomb
repulsion which prevents further flow of the electrons from the source. As a result,
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conductance decreases and current-voltage characteristic does not remain Ohmic, rather it
shows a staircase like pattern which signifies electric charge quantization. It can be used as
single electron charging in an SET system. Interestingly, under the application of a magnetic
field, it provides a suitable ground to study spin blockade [25] and valley blockade [26].
Another important phenomenon in low-temperature many-body physics is the Kondo effect.
Although it was theoretically explained more than fifty years ago [27] by Jun Kondo who
used higher order perturbation technique in describing the minimum of the resistivity vs
temperature curve of dilute magnetic alloys, it remains one of the crucial phenomena to be
looked into in molecular junction devices. In the context of low temperature electron
transport, it describes a spin-spin exchange interaction between the conduction band (s-band)
electrons and the localized magnetic impurity (d-band electrons), commonly known as s-d
exchange interaction. When the coupling between leads and QD in an SMT system increases,
higher order tunnelling processes also occur where below a certain temperature the s-d
electron scattering between the conduction electrons of the metallic leads and localized spin
of the impurity becomes important. This temperature is usually known as Kondo temperature
Tx. These exchange processes cause spin-flip of the impurity state. An impurity containing a
single electron-energy level with a specific spin orientation (either up or down spin state)
prevents further accumulation of electrons tunnelling from the metallic lead due to Coulomb
repulsion U. But the electron with a particular spin state in the localized impurity energy level
can tunnel quantum mechanically and go to a virtual energy level outside the impurity
creating an empty space for the metallic electrons with opposite spin state to enter and fill the
localized level. It is important to mention that the impurity coexists with the conduction
electrons of the leads acting like a Fermi-sea with all the states occupied below the Fermi
energy. Hence, when a few such spin-slip excitations take place, a resonance (Kondo
resonance) peak appears in the density of state (DOS) with the energy close to the Fermi-
energy which also reflects in the conductance spectrum. As a result of these s-d scattering
processes, the resistivity increases when the leads are cooled below Ty. For a very small
mesoscopic device, both the Coulomb blockade and the Kondo resonance become crucial.
The Hubbard type of e-e interaction also produces a resistive effect in strongly correlated
mesoscopic transport systems like a QR structure [28, 29]. Therefore, e-e interaction is an
essential interaction to be taken into account in the study of LDS. Attempts have indeed been
made along this direction, but a lot of scope still exists for a better understanding the e-e
interaction in LDS. In this thesis, we have studied the e-e interaction both in mesoscopic QR
structure and tunnel junction systems.

The e-p interaction is another key element which helps understand many fundamental
phenomena in condensed matter systems. Mobile electrons get scattered by the vibrating
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lattice i.e., the phonon modes. Apart from the e-e interaction, it is another scattering process
which produces resistivity in the system. In an ionic or polar crystal, an extra electron attracts
the positive ion and repels the negative ions, thereby a distortion in the crystal structure of the
lattice is created in the vicinity of the electron. This distortion gives rise to polarization in the
lattice. As a consequence of this interaction between a fermionic-charged particle and a
bosonic field, a change in the effective mass of the electron occurs. This electron along with
the lattice distortion can be treated as a quasi-particle which is known as polaron [30-32]. If
the interaction is weak, the distortion spreads over a few lattice sites, and resulting polaron is
called a large polaron. On the other hand, if the interaction is strong enough, the distortion
gets confined within one or two lattice sites. In other words, the electron may get trapped in
the confining potential well developed in the lattice. We call it a small polaron. The idea of
polaron was first conceived by Landau a long time ago [33]. Later, Landau and Pekar [34]
proposed a semi-classical model to study the behaviour of an electron moving in the
conduction band of an ionic crystal. But the fully quantum mechanical model was introduced
by Frohlich [35], who proposed a model Hamiltonian, known as the Fréhlich model (FM)
which describes the motion of a slow or low-lying electron in a polar or ionic lattice. Under
the framework of the FM, the lattice can be considered as a continuum as in this limit, the de
Broglie wavelength of the electron is much larger than the lattice spacing. Consequently, the
polaron can move throughout the lattice in this limit. Therefore, the Fréhlich-polaron is
known as a continuum polaron. In the case of strong e-p interaction, the FM is not the
obvious choice as the structure of the lattice is ignored in this model. The strong coupling
theory deals with the localization of the polaron where the electron gets trapped in the
potential well produced due to strong distortion of the static lattice. In this limit, the motion
of the lattice is much faster than that of the electron. So, in the reference frame of the
electron, the ionic motion is adiabatic. Frohlich obtained the Landau-Pekar solution from his
Hamiltonian using the variational method. Afterwards, attempts have been made to find an
all-coupling theory which encompasses the entire range of the e-p coupling. Among them,
Lee-Low-Pines-Huybrechts (LLPH) [36, 37] method has drawn significant attention. This
method is a modified version of the LLP method. In this dissertation, we will restrict
ourselves to the polaron problem in a confined geometry. From the experimental point of
view, it is important to study polaronic cyclotron mass in the presence of an external
magnetic field. Mukhopadhyay et al. [38, 39] studied the magneto-polaron problem using the
second-order Raleigh-Schrédinger perturbation theory (RSPT) and all-coupling non-diagonal
Green’s function method and showed that e-p interaction suppresses Zeeman splitting quite
significantly when the size of the QD is reduced to a few nanometres. With the recent
development in modern fabrication techniques like molecular beam epitaxy, etching
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techniques, and selective ion implantation etc. it is possible to design nano semiconductor
QD devices with spatial confinement in all directions. As these artificial atoms are of the
order of a few nanometres, the quantum mechanical treatment of the problem becomes
essential. In semiconductor QDs, the fast carrier transitions between the confined discrete
energy levels determine high intensity of luminescence and the QD laser operation. The
polaron problem has been extensively studied in QDs, QWSs, graphene QD and other nano
systems [40-55]. The transport and other important properties in QDs are also greatly
influenced by the e-p interaction. The FM is best suited for a large continuum polaron. In this
thesis, we are also interested in discussing the narrow-band electrons for which the tight-
binding model (TBM) is the most suitable model. Polarons in such systems are best described
by the celebrated Holstein model [56-57] where the polaron is considered to be tightly bound
to the lattice sites and may be referred to as a Holstein polaron. To calculate the GS of this
model, one may perform the well-known Lang-Firsov transformation (LFT) [58] to decouple
the e-p interaction. Due to the polaron formation, the electronic energy is reduced by a factor
which is dependent on the strength of the e-p interaction. The hopping amplitude is also
decreased by a factor dependent on the e-p interaction coefficient, known as the Holstein
factor. Thus, electronic band narrowing occurs due to the polaron formation. The Holstein
polaron model in the presence of the Coulomb correlation has shown some promising results
in narrow-band systems. To study the interplay between the e-p interaction and the e-e
interaction, the Holstein-Hubbard model (HHM) is believed to be one of the most suitable
models. If the e-p interaction is strong, the system settles into a bipolaronic charge-density
wave (CDW) GS that corresponds to a paramagnetic Peierls insulator. On the other hand, if
the e-p interaction is not so strong to overcome the repulsive e-e Coulomb interaction, the GS
behaves as a polaronic SDW state, which resembles an antiferromagnetic Mott insulator.
Therefore, it is interesting to study the SDW-CDW transition driven by the competition
between the repulsive e-e interaction and the phonon-induced attractive e-e interactions
which may lead to some intermediate phase. Application of this concept may give rise to
some interesting results in the field of high-T, superconductivity. There have been a few quite
investigations on this issue in recent years by Chatterjee and collaborators and others [59-63].
Another phenomenon that can be described by the HHM model is self-trapping transition
[64-66]. As the e-p coupling increases, the depth of polarization potential created by the
polaronic interaction also increases and as a result the polaron loses its mobility making the
electron self-trapped. Hence, due to the increase in the e-p coupling strength it is possible for
the polaron to undergo a transition from a large (mobile) polaron to a small (self-trapped)
polaron state.
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The effect of magnetic field in a TB mesoscopic system is also an important phenomenon to
study. There have been a large number of investigations on the Aharonov-Bohm (A-B) effect
in closed confined geometries, for e.g., in a 1D TB QR, where the effect of A-B flux leads to
a persistent current (PC) in the ring [67-75]. This mesoscopic phenomenon occurs due to a
quantum interference effect and is greatly affected by the size of the QR, temperature and
interactions present in the system. Though the e-p interaction has been investigated in LDS
by several authors, there are still some exciting phenomena that have not been addressed
before. In this thesis, we study the role of e-p interaction in confined systems and its effects
on mesoscopic and spintronics transport.

The SOI in LDS can be used to manipulate the spin degrees of freedom which is at the
heart of Spintronics which deals with spin transport, spin dynamics and spin relaxation in
electronic materials. In Spintronics, we deal with three types of questions: (i) how to polarize
the spin, (ii) how long the system will remember the spin polarization, (iii) how to detect the
spin. The spin-polarization can be achieved in many ways, one of them being the spin
injection from a magnetic electrode to the sample which accumulates the spin-polarized
electrons (spin accumulation). The rate of spin accumulation is dependent on the spin
relaxation mechanism which brings back the spins to their equilibrium configuration and the
timescale of spin relaxation is typically of the order of nanosecond. The SOI becomes
especially important in the context of spin relaxation mechanism and the detection of spin
states. It has been suggested in analogy with quantum Hall effect that SOI can generate a
dissipationless spin current in a hole-doped semiconductor [76]. Also, SOI has a special role
in topological systems [77-82] where the relativistic SO term induces band inversion
phenomenon. The study of spintronics has seen an upsurge after the pioneering work done by
Datta and Das [83] who proposed a spin-FET model where the electrons can enter from the
source and get collected at the drain giving rise to a current (ON state) if the electron spins
are parallel to the spins of the drain and zero current (OFF state) if spins are antiparallel to the
drain spins. This spin-orientation is controlled by a gate voltage connected to the substrate
which exhibits an effective SO magnetic field arising from the SOI by which the spins
precess. Hence, modifying the gate voltage one can make the spins either parallel (ON) or
antiparallel (OFF) at the drain and control the current. However, this model requires various
techniques of spin injection and accumulation of spin-polarized current through transport
across different hetero-junctions or optical pumping techniques to polarize the spins and
mechanisms of spin relaxation. There are several spin relaxation or spin dephasing
mechanisms in metals or semiconductors. Among these, the D’yakonov-Perel” mechanism
[84] is an efficient spin relaxation mechanism that can be realized in systems lacking
inversion symmetry. Examples of systems with inversion asymmetry are the group I11-V zinc
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blende semiconductors (e.g., GaAs). The inversion asymmetry can also be induced externally
by forming a heterostructure (such as GaAs/AlGaAs QWs) which produces an asymmetric
confining potential. Thus, one can classify inversion asymmetries into two types leading to
two types of SOls. One is the bulk inversion asymmetry (BIA) and the other is structural
inversion asymmetry (SIA). The most common example of SOI due to SIA is the Rashba SOI
(RSOI) [85-87] and the one due to BIA is the Dresselhaus SOI (DSOI) [88]. These two types
of SOIs will be discussed qualitatively later in the Sec.1.3.2. The subject of spintronics covers
a vast area of theoretical and experimental research of spin-polarized transport in spin-based
tunnelling junction systems like ferromagnet-insulator-superconductor interface, magnetic
tunnel junction, semiconductor FET, bipolar transistor, metal-semiconductor-metal SMT
systems, SET systems, spin-filters, spin-diodes, spin FET and nanostructure spin qubits
where tunnelling conductance and spin-polarization are studied for different spin-splitting
states due to SOIls. These nanostructures are useful to get zero-field splitting [89-91] due to
RSOI or DSOI, or both SOls, which gives rise to many interesting phenomena in spin
polarized mesoscopic transport [89, 92-101]. There are some promising materials which are
used for high spin-polarization, for e.g., CMR materials, half metallic oxides such as CrOo,
Fe304, ferromagnetic semiconductor such as CrBrs, high carrier density compounds like
(1M1,Mn)V compounds, and double perovskites materials. Therefore, it is important to explore
the effect of SOI in LDS which can lead to exciting applications in spin-based nanodevice
systems. In a three-terminal structure like SMT, the effects of e-e, e-p and SO interactions
and their influence on spin-polarized transport phenomena have been studied [17-24, 102-
119]. In this thesis, the role of SOIs in creating zero field spin splitting states and the
corresponding spin-spilt tunnelling current, conductance and spin-polarization have been
examined in detail. Also, some interesting competing effects of SOls and e-p interaction in a
QD and other spintronics transport system have been studied.

We have discussed above the motivation to study certain interactions in quantum systems.
In Sec.1.2-1.5, we provide an introduction to LDS and the important interactions in the
continuum and discrete models that will be used in the thesis. Finally, in Sec.1.6, we present
the outline of the thesis.

1.2 LOW-DIMENSIONAL STRUCTURES

Due to advancement in fabrication techniques, the low-dimensional physics has become a
subject of great interest where the motion of electrons is restricted at least in one direction.
This is called quantum confinement. Of late, the quantum confinement and size effects in
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semiconductor or metallic structures have led to many emergent phenomena in the fields of
mesoscopic physics, cold atom physics and many more. Confining the system is described by
the characteristic lengths (1) of the systems, for example, mean free path in transport studies
or Fermi-wavelength for quantization etc. If the dimension of a particular direction (x, y or z)
is comparable with the characteristic length, A of the system, then the motion of the particle is
restricted fully along that direction, while it is free to move along other available directions.
Therefore, confinement restricts the degrees of freedom in one or more directions along
which the quantum effects become strongly pronounced.

1.2.1 TWO-DIMENSIONAL QUANTUM WELL (ONE-DIMENSIONAL
CONFINEMENT)

In these kinds of structures, the motion of the particle is confined in one direction
specifically, the dimension of that particular direction, L,, L,, or L, is shrunk to a size which
is comparable to the system’s characteristic length, A. Here, ‘two’ refers to the number of
directions available for to particle to move. This can be best described by the two-
dimensional electron gas (2DEG) model or the well-known particle in a box problem in
quantum mechanics. Here, it should be named as a particle in a 1D box problem. Let’s say,
the confinement is created along z -direction which implies there exists a non-zero
confinement potential V (z) along z-direction, whereas, in x and y directions, the potential is
zero as the motion is free along x and y. The Schrédinger equation (SE) for the particle
confined in such a geometry is given by

hz (9% 9% 9%

The total energy can be divided into two parts as
£= sx,y(kx, ky) + sz(kgz), (1.2)
where, &, ,, is the free-particle energy along x and y with continuous k,, k,, values given as

hZ
exy(ka ky) = 5— (K + k3), (1.3)
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where, m* is the effective mass in the band. The quantized k,Z-momentum due to the
confinement along z specified by the quantum number n, is given by

n,m
k1 = L—n =0,1,2, .. (1.4)

Z

Therefore, all the k,-values are not allowed along z. Unlike the continuum energy along x
and y directions, the quantized energy in the z-direction for the n™ — sub-band is given by

N hZ(k;lz)Z hz n§n2
Ez(kz) = T = % ? N, = 0,1,2, (15)
z

Hence, finite sample size drastically alters the allowed energy levels bringing in gap in the
energy spectrum. We can also calculate the 2D density of states DOS per unit area within a
band and below a particular n'" state as

gap(€) = -

";12 z H(e —¢), (1.6)
j=1

where, H(e — ¢;) is the Heaviside step function given as H(e — ¢;) = 0 for & < ¢; and 1 for
€ > ¢g;. The practical example of this kind is semiconductor QWs, for e.g., GaAs/AlxGaixAs
hetero-structures system. As the Ga and As have two different band gaps, a potential well can
be generated and the system exhibits bound states. Metal-oxide-semiconductor is another
example where 2DEG is formed at the semiconductor-insulator interface. Another known
example of 2D system is graphene quantum wells where the dimension of the wavefunction
is of the order of the entire 2D graphene-sheet. One can think of a 2DEG system as almost a
free-electron system in 2D where the particle has a large mean free path which means the
scattering with the defects can be ignored.

1.2.2 ONE-DIMENSIONAL QUANTUM WIRE (TWO-DIMENSIONAL
CONFINEMENT)

In these structures, the degree of confinement is one-step stronger compared to the quantum
well structures. When the confinement occurs in two directions, let’s say along x and z
directions, and another direction i.e., y-direction is available for the particle to move freely,

then we refer it to a quantum wire. Here, ‘one’ denotes the number of direction available for
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the particle to exhibit the free particle nature. As discussed above, in this case, the SE of the
particle in a 2D box is given by

hZ 62 az az
l% (axz + dy2 + 622> +V(x,2)|Y(x,y,2) =ep(x,y,2z). (1.7)

Now, the total energy of the particle € with free (continuum) nature in 1D (along y) and
confined (discrete) nature in 2D (along x and z ) can be expressed as

£ = sy(ky) + sx,z(k;lx, k;z), (1.8)

where, ¢, (k,,), the free energy with all-allowed continuum k,,-momentum is written as

hZ
Sy(ky) = %kfy (19)

and the quantized energy exlz(k,ﬁ’;’”z) specified by the two quantum numbers n,, n, is given

as

2 n2n2 hz nznz
£z (ki k)7) = ﬂ( Lx . ) +%<LZ—2>; nen, =0,1,2,... (1.10)
X Z

Also, the 1D DOS per unit length is given by

)= -3
E) = & .
9ip N

(1.11)

1.2.3 ZERO-DIMENSIONAL QUANTUM DOT (THREE-
DIMENSIONAL CONFINEMENT)

In the extreme case of confinement, the particle can be confined in all possible directions,
meaning all the three-dimensions of the box L,, L, and L, are typically of the order of
characteristic length A. Therefore, in true sense, this is the ideal confinement where the
particle has ‘zero’ number of directions available to move freely. In this case, the SE of the

particle in a 3D box is given by
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h? [ 92 02 02
l% (axz + ayZ + 622> + V(x, Y, Z) 1/J(x, Y, Z) = Sl/)(x, Y, Z)' (112)

By the quantization condition of E(kx, k,, k,) as expressed in Eq. (1.4), the quantized energy
of these zero-dimensional objects specified by the three quantum numbers n,, n, and n, can

be written as

h? (n2m? A% (nim? h? (n2m?
e(kyr k) ky?) = ﬁ< L" > ) + —( d ) + —(L—2> ne,ny,n, = 0,1,2,.. (1.13)
X Z

The DOS for the QD can be calculated as

Gop (&) = 2 Z 5 —g). (1.14)
;

Hence, the DOS of the QD shows the sharp Dirac-delta spikes denoting the true confined
nature. The factor of ‘2’ comes from the spin degrees of freedom. The typical size of a QD
ranges from 2 to 10 nanometres containing around 100 to 1000 electrons or 10 to 50 atoms
along diameter. This size is usually less than the quantum coherence length because of which
the coherence can be achieved throughout at low temperature. The QD can be thought of as a
mesoscopic analogue of a single atom, often referred as ‘artificial atom’ as confining the

particle gives rise to quantized states in the energy spectrum.

1.2.3.1 FABRICATION OF QUANTUM DOT

N\
N

N /
g _~AlGaAs [
e~ InGads 1
i AlGaAs 1 +
I
v
L]

n-Gaks

Source|

Fig.1.1 Schematic representation of QD fabrication (Picture courtesy: Tarucha et al. Science 278,
1788 (1997)).
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Normally, one of the known techniques of fabricating QD is the molecular beam epitaxy,
where the QD gets self-assembled by depositing a semiconductor having a larger lattice
constant (for example, Ge or InAs) onto another semiconductor having a smaller lattice
constant (for example, Si or Ga). As it is shown in Fig.1.1, QD can be fabricated
experimentally by depositing several layers of such different semiconductor hetero-structures
of different thickness, most commonly a three-layer structure of insulating InGaAs
sandwiched between two AlGaAs layers and the whole system is connected two n-doped
GaAs contacts as the source and the drain substrate and a voltage is applied to the substrate.
The Fermi energy of the GaAs contacts lies above the conduction band of InGaAs and the
conduction band edge of AlGaAs lies above the InGaAs conduction band edge. This
configuration creates a sharp confining potential like a double QW potential which allows the
accumulation of electrons inside the InGaAs region when no voltage is applied. A gate
voltage is also applied to move the QW structure spatially, which results in a variable number
of bound states in the dot. When a constant bias voltage is applied, the Fermi energies of the
contacts shifts and a window of transport opens up. Though the InGaAs layer is insulating,
but it is thin enough to tunnel the electrons from source to drain which gives rise to sharp
current peaks in the current-voltage characteristics where each peak corresponds to a single
electron transport. This was experimentally demonstrated by Tarucha et al. [120] in 1996.
Theoretically, the QD systems are treated by assuming different confining potentials;
amongst them harmonic oscillator potential (parabolic QD) is widely used. Although the
parabolic potential is not physical, it can provide the most useful features of the confined
system [121-123]. In nanodevice applications, a double QD model resembling a two-level
system can serve as the most elementary quantum qubits in quantum computation
applications. Also, it has potential applications in the nano-electronic circuit, where one or a
few QDs connected to metallic leads (source or drain) controlled by bias and gate voltages
can be considered a nano-resister or capacitor. These kinds of molecular transistor structures
can be extremely important to study many exciting phenomena such as Coulomb blockade,
Kondo effect, resonant tunnelling, Kondo-Fano effect etc.

To summarize, we present a table containing the key-points about these low-dimensional
systems as following
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Next, we would like to present a few theoretical models and basic characteristics of these
models that have been used in this thesis to describe our work. We start with the continuum
model and then we will discuss discrete lattice models.

1.3 CONTINUUM MODELS

In the continuum limit, the discreteness of the lattice becomes unimportant. This model
would be valid for a slowly moving electron in a lattice. The de Broglie wavelength of a slow
electron is much bigger than the lattice constant which means the wavefunction associated to
the electron spreads over many lattice-sites which makes it difficult for the electron to
distinguish one lattice-site from another. So, the change in the wavefunction over a lattice
spacing can be approximated to be negligibly small and under this circumstance, the lattice
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essentially appears as a continuum to the electron. As a result, the momentum vector k
becomes continuous and the energy spectrum of the electron looks like a closely spaced band
just like a free particle case. Although, this is the continuum approximation of lattice model,
but it serves as a good starting point to study the low-lying states or long-wavelength
excitations such as electrons in the conduction band of a metal, low-temperature
phenomenon, transport in low-temperature and small fields etc. We will now discuss the e-p
interaction, e-e interaction and SO interactions in the continuum limit.

1.3.1 ELECTRON-PHONON INTERACTION: FROHLICH POLARON
MODEL

In the simple Bloch picture, electrons experience a periodic potential created by the lattice
ions in an ideal crystal. In such an ideal scenario, the conduction band electron can be
approximated as a free electron with an effective Bloch mass m* (different from the bare
mass of the electron) and the kinetic energy of the electron is given by p?/2m*, where p is
the momentum of the Bloch electron. However, ions oscillate in a real crystal. Therefore, it is
essential to consider the motion of the ions which produces a displacement of ions from their
equilibrium positions shown in Fig.1.2. In an ionic crystal or a polar semiconductor, the e-p
interaction is modelled by the Frohlich polaron Hamiltonian. In the framework of the FM, the
ionic displacement gives rise to a time-dependent polarization field which interacts with an
extra conduction band electron. As the electron is slow, the de Broglie wavelength or the
wavefunction associated with this low-lying electron spreads over many lattice points, which
means the discrete nature of the lattice is irrelevant to the electron. Therefore, the radius of
the polaron is much larger than the lattice spacing, which is why the Frohlich polaron is
known as a large polaon. As a result, the lattice essentially seems to be a continuum to the
electron and the electron dressed with the lattice distortion (a complex or quasi-particle) can
move throughout the crystal shown in the Fig.1.3. In field theory, an electron can be treated
as a source of phonons and the interaction between the electron with the oscillating lattice can
be described by the phonon emission and absorption processes. These processes can be
explained through Feynman diagrams. Fig.1.4 displays a process in which an electron with a

momentum k emits a phonon with momentum ¢ and goes into a state with momentum Kk — q.
This is called one-phonon emission process. Fig.1.5 describes a different process where the

electron with a momentum k absorbs a phonon with momentum g and goes into a state with

momentum k + d. This is called one-phonon absorption process. The electron and phonon
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propagators meet at a point, which is called the vertex, where the total momentum should be
conserved. These processes give rise to scattering phenomena in transport mechanisms.

Fig.1.3 Movement of polaron in lattice (picture
source: internet).

Fig.1.2 Displacement of ions in a lattice (picture
source: internet).

k+q
Fig.1.4 One-phonon emission process Fig.1.5 One-phonon absorption process
The FM is described by the following Hamiltonian:
H=H,+ Hpp + He_p, (1.15)

where H,, H,, and H._, denote respectively the Hamiltonians for a free electron, free

phonons and the e-p interaction which are written as

hZ

He = —o v, (1.16)

Hyn = hay ) blbg, (1.17)
C—In

Hep = Z (¢7e7@7bL + h.c.). (1.18)

(—jl
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Here all vectors in general can be N-dimensional (ND) for a ND lattice. 7* is the position
vector of the electron, m* is the effective mass, w, is the dispersionless LO phonon

frequency, bg, (bg) is the creation (annihilation) operator of an LO phonon of wavevector
q’, &5 is the electron-phonon interaction coefficient. We shall use the Feynman units (FU)
[124] in which the energy is scaled by hw,, length by r, which is the inverse of the

h%q

2
wavevector q, i.e., o~ , q, defined by m—° = hw,, wavevectors by q, . Such scalings are

equivalent to putting A = m* = w, = 1. Hamiltonian (1.15) in this unit can be written as
H=—iy2 blb —arpt 4 p 1.19
q q
where &5 is given as

2
VygN-1

1§51 = ) (u) L

a, (1.20)
where Vy is the volume of the N-dimensional lattice and « is the dimensionless e-p coupling

constant given by

2

e 1 (1 1) (1.21)
a= —(———). .
V2r, hwo \ees &g

1.3.1.1 BOUND POLARON

In practice, a crystal is not free from impurities. If the impurity contains electric charge, it
will interact with the vibrating ions by electrostatic interaction as an electron does. Let us
consider a hydrogenic impurity (also called a Coulomb impurity). In this case, both the
electron and the nucleus, interact with the phonons to form a bound polaron. The bound
polaron problem was formulated in the continuum lattice by extending the FM by Platzman
[125]. The Platzman model for the bound polaron can be written in the FU as
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where the second term represents the impurity-electron interaction, F being the position of the

Coulomb impurity, and § the dimensionless impurity-electron coupling strength given by

~ 2
B =—=—. The last term represents the e-p and impurity-phonon interactions. For

h(l)oro €00

simplicity, the impurity can be considered to be located at #=0. The impurity-phonon
coupling can be eliminated exactly by employing the following canonical transformations

bj=bs—&;  bi=Db;—¢&;. (1.23)

QU+

Eq. (1.22) is transformed to
__1n B T * -iq.7 T *
H=-3v2 —;+Z (bl +&;) (bg +£4) +Z (g5(em37 — 1) (b1 + &7) + h.c.)
q q

1., f , 2
=—§V§—;+Zb§bq+2(fge W-Tb(}'+h.c.)+2(|fa| e “”+h.c.)—Z|§a|
q q q

=

q
(1.24)

where the 5™ term can be calculated by substituting Eq. (1.20) for 1§51% (for N = 3) and

converting the g-summation into an integral over ¢ as

2 e a2V _)e‘ia'? V2
Z(|«Sq| e lq.r+h.c.)—> 7 a@ dg P :Ta_ (1.25)

-

q
We can neglect the infinite constant term 25|€5|2. Therefore, the Hamiltonian for the bound

polaron becomes

1, B o
H=—§V§—?+Zb};ba+2(fae @ipt +h.c.), (1.26)

q q

where S is givenas § = § —/2a.
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1.3.1.2 POLARON IN THE PRESENCE OF AN EXTERNAL
MAGNETIC FIELD: MAGNETOPOLARON

To observe the polaron formation experimentally, one has to determine two characteristic

quantities, the polaron radius ry, =./h/m*w, and the e-p coupling constant a =

(\/_ez )(i — i). The Bloch band mass m* can be obtained from mobility data and once
2rghwgy/ \&o £o

this is obtained, one can determine a provided w,, €., and g, are known. To determine the
polaron mass m, one may require from cyclotron resonance experiments the cyclotron mass
m; = eB/w;c, where B is the magnetic field and w; the cyclotron frequency. The m}
essentially gives the measure of my,. Therefore, it is important to study the polaron problem
in the presence of an external magnetic field.

The model Hamiltonian of a polaron in an external magnetic field B (0,0, B) can be written
in the FU as

_1( ed t —ig#pt
H=g(-Ve=) + D biba+ (fqe ba+h.c.), (1.27)

Q.
Q|

where 4 is the magnetic vector potential which can be chosen under the Landau gauge as A=
(—By, 0,0). Under this gauge the Hamiltonian () is modified as

1 1 .
H=2 @+ 097 +5 05 +p3) + ) blbg+ ) (§e7 @bl +he),  (128)
7 7

where @, is given by

_ W, eB (1.29)
W, =—, W= : .
< wp ° mic
1.3.2 SPIN-ORBIT INTERACTIONS

SOI leads to many important phenomena in semiconductor physics. It can be heuristically
derived from the relativistic Dirac equation. When an electron moves in an electric field it
experiences an effective magnetic field in its own inertial reference frame which then couples
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to the spin of the electron giving rise to SOI effect. The full-relativistic Hamiltonian of an
electron moving in an effective magnetic field is governed as

eh
4m2 2

eh p* eh?

8m3c3 + 8m?2c? V-V -

——0. (V(p Xp)

= [ENR — eqly, (1.30)

where the first term refers to the non-relativistic motion. The interaction between the spin-1/2
particle (spin operator § = ha/2) and the magnetic field B=VxA4 is given by the second
term. The third term refers to the relativistic mass correction. The fourth term is the Darwin
term. The fifth term is the contribution coming from the spin-orbit interaction, also known as

the Thomas term. For a spherically symmetric potential, the electric field is given as €=

—Z—(f;and # x p =1, [ being the angular momentum of the electron. The Thomas term for

such a case can also be written as

eh e 1d<p+

HT=_4m2 20(V(p><p)—— —1.5 . (1.31)

2m2c2r dr

The typical value of the SOI energy varies widely in semiconductor materials. The usual

2\2 4
expression for SOI-energy goes like Eqy~ (%) ";l—i o« z2, where z is the atomic number.

Therefore, we can say, the bigger the atom, the bigger the SOI strength. Depending on the
symmetry properties of the solids, the SOI can be classified into two major divisions namely
(A) symmetry-independent SOI and (B) symmetry-dependent SOI.

1.3.2.1 SYMMETRY-INDEPENDENT SPIN-ORBIT INTERACTION

This type of SOI is present in all kinds of crystals. It can be discussed without considering
the special symmetry properties of the lattice which is almost similar to that of atoms. Fig.1.6
illustrates the band splitting due to the usual SOI in a bulk semiconductor. The conduction
band (CB) with orbital angular momenta [ = 0 (s-band) and the valance band (VB) with | =
1 (p-band) are separated by a band gap E,. Each band is two-fold degenerate for spin-up (s =
1/2) and spin-down (s = —1/2) states and the total angular momenta quantum number j is
given by 7 = [ + 3. The heavy hole (hh with j = 3/2, ], = +3/2) and the light hole (Ih with
j=1/2,], = £1/2) bands are separated intrinsically, but degenerate at I'; point.
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Fig.1.6 Splitting in bulk GaAs semiconductor energy bands vs. k near the I'-point (k = 0) (picture
courtesy: Dissertation, V. Lechner, p. 9, 2012).

Due to SOI (f.§term) the 3-fold degeneracy of the VB (p-band) with projection m; =
—1,0,+1 is broken and they are separated by a SO split band gap Ag, measured from I,
point to the I'y point, although the CB (s-band) does not split. However, all the bands are 2-
fold degenerate for two spin orientations.

1.3.2.2 SYMMETRY-DEPENDENT SPIN-ORBIT INTERACTION

This kind of SOI may be explained considering the special symmetry of the lattice. To
discuss this, we first present two most elementary symmetry operations in crystals, which are
(1) time-reversal symmetry and (2) spatial-inversion symmetry.

(1) The former is a theoretical concept where time evolves backwards to describe an event,
or in physics, all the motions are reversed under a mathematical operation 77:t — —t , then
time-reversal symmetry (TRS) is preserved if all the physical properties remain unchanged
back in time. Under T-operation, the physical quantities transform as follows

e Position vector, 7 — 7 as t — —t (even in TRS).
e Linear momentum, k — —k as t — —t (odd in TRS).
e Orbital angular momentum, [——last— —t (odd in TRS).

e Spin angular momentum, § — —§ as t — —t (odd in TRS).
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Therefore, . § term is even under T i.e., TRS is preserved for SOI case and the energy

dispersion obeys the following relation: E¢(k) = E_s(—k).

(2) The other type of symmetry operation is the spatial-inversion symmetry (SIS) which is
governed by the operation R: 7 — —7. Under this operation, if the physical properties remain
unchanged going backwards in position, then the inversion-symmetry is preserved. The
physical quantities change under R-operation as follows

e Linear momentum, k — —k as # — —7 (odd in SIS).

L &

13

-

e Orbital angular momentum, Il — [ as 7 — —7 (even in SIS).
e Spin angular momentum, s — § as ¥ — —7 (even in SIS).
Therefore, the energy dispersion under SIS satisfies the following relation: ES(E) =
Eg(—E). In this context, one can bring in the concept of centrosymmetric and non-

centrosymmetric crystals.

1.3.2.2.1 SPIN-ORBIT INTERACTION IN CENTROSYMMETRIC
CRYSTALS

This is analogous to the symmetry-independent SOI described above where the bands
splitting due to atomic [ — s coupling may occur. If the crystal is symmetric i.e., all the
properties are exactly same with respect to the centre of inversion then it’s known as
centrosymmetric crystals. In these types of crystals, the energy dispersion holds the following
identity under 7" and R-symmetry operations

Es(k) = E_s(-k)
t

——t 7

E_s(k) = Es(k) = E_s(k) (1.32)

(]
e

Hence, two different spin states i.e., up-spin (s, 1) and down-spin (—s, l) states have same
energy which means they are degenerate when both TRS and SIS are maintained shown in
Fig.1.7(a). The degenerate equation Es(k) = E_s(—k) as t — —t is known as Kramer's
doublets followed by Kramer’s theorem which states that all the eigenstates are at least
doubly-degenerate if TRS is preserved. However, the degeneracy can be lifted by applying
external magnetic field, B and then the Kramer’s doublets separate due to the TRS breaking
as shown in Fig. 1.7(b).
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TRS + SIS both preserved TRS breaking + SIS preserved

Fig.1.7 (a) Degenerate bands in centrosymmetric case: Both TRS and SIS are preserved. (b)

Degeneracy lifted by applying external B: TRS is broken, but SIS is present.

The bands will split vertically in E-axis. This is known as Zeeman splitting which is
determined in terms of the effective Landé factor g* which strongly differs from the free-
electron g-factor which is given by: g, = 2. However, it was first shown by Roth et al. [23]
through E.ﬁ method that this effective g-factor is greatly influenced by SOI and given by
[24]:

g A$(Tn° 1), (1.33)

go  3Eg+ 205 \m*

where, m* is the effective band mass and m,, is the bare mass of the free electron.

1.3.2.2.2 SPIN-ORBIT INTERACTION IN NON-CENTROSYMMETRIC
CRYSTALS

If the crystal loses its symmetry properties when inverted around the centre, then it’s no
longer symmetric under inversion and it can be called a non-centrosymmetric crystal. For this
kind of crystals, although the above dispersion satisfies TRS, but does not satisfy the equality
with respect to SIS and holds a different relation which is given by

Eg(E) = E_; —E) * E_g(E), (1.34)
t——t
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which causes additional spin-splitting at k # 0 due to SIS breaking, even when external
magnetic field is zero. This is commonly referred to as ‘zero-field splitting’ shown in
Fig.1.8. This is a left-right splitting along k-axis owing to removal of spin-degeneracies.
From the above equation, one can notice that SIS is broken, but TRS is preserved and hence,

Kramer’s doublets continue to exist at some k-points.

E

TRS preserved + SIS breaking

Fig.1.8 Bands split in non-centrosymmetric crystals even when B = 0. TRS is present. But SIS is
broken.

We will mainly focus on SOI in non-centrosymmetric crystals. These types of SIS
breaking phenomena can be induced as well as they can be intrinsically present in the crystal

eh

itself. One can understand it by looking at the Thomas term H; = — 0. (V(p X ﬁ). Here,

4m?2c?
the quantity V¢, the gradient of crystal potential can either be made asymmetric externally or
it can be intrinsically asymmetric in a non-centrosymmetric crystal, which leads to two
different kinds of SOI in a crystal. One type of SIS breaking can be accomplished by forming
a heterostructure by combining materials of different band gaps. As a result, this causes an
asymmetry in the crystal structure specifically at the interface of the hetero junction which
can be controlled externally. This is known as SIA.

The other type is an asymmetry which is intrinsically present in the bulk-crystal due to the
lack of inversion centre. This is known as BIA. A very common example of this kind of
crystal is Zinc-blende (ZnS) like semiconductor structure (shown in Fig.1.9) such as GaAs,
GaSh, GaP, InAs, InSh, ZnSe, CdSe, CdTe etc. Also, SIA can be induced in these structures
and that will cause additional spin-splitting.



Chapter 1

Fig.1.9 Diagram of the non-centrosymmetric crystal structure of GaAs semiconductor (picture
courtesy: internet).

1.3.2.2.2.1 DRESSELHAUS SPIN-ORBIT INTERACTION

We first like to discuss a few aspects of the SOI due to BIA. The SOI arising due to BIA is
commonly known as the DSOI. As discussed above, SOI induces splitting in bulk bands of
GaAs semiconductor (Fig.1.6). But in Fig.1.6, the spin-degeneracy in LH and HH bands is
still intact. Due to the DSOI present in non-centrosymmetric crystals, there will be an
additional spin-splitting which will lift the spin-degeneracy of the LH and HH bands along k-
axis. This effect is more pronounced as we lower the dimension of the material because with
lowering the dimension, the symmetry also gets reduced. We want to study this effect in a 2D
QW structure where the electrons are confined along a particular direction giving rise to
quantization effect in the energy bands. To incorporate the equal spin-splitting along +k-axis

around k =0, one can add a linear spin-dependent term which is the lowest-order
perturbative term to the Hamiltonian due to SOl in a 2DEG as

ﬁZ

2m*

22
p 1
H = ]1+HSOC =—2m*ﬂ+£ZﬁUO'lp], (135)
ij

where p is the momentum operator, B;; in the second term refers to a material-dependent

pseudo tensor of rank 2, 1 is the 2x2 identity matrix and o; is the Pauli matrix. This term can
be expanded into symmetric and antisymmetric components which gives BIA and SIA
respectively as

> Byon; = ) (B (oups} + BT oupy]) = HEA + HSE . (136)
ij ij
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The Hgp term can also be expressed as following

Hsoc = = 3.0(k), (1.37)

where (k) is the k-dependent effective magnetic field which can be interpreted as the

effective Larmor frequency with which the spins precess. Therefore, the effective zero-field

spin-splitting energy between up and down spin states becomes #|(i(k)|. One may also
notice from Eq. (1.37), that for TRS to be preserved, (k) must satisfy O(—k) = —Q(k).
Now if SIS is also present in addition, then O(—k) = Qi(k) and hence, the only possible

solution for G(k) is (k) = 0. Therefore, for Hgo to be non-vanishing, SIS must be broken.
Here, this term is obviously non-zero as there is no SIS for a non-centrosymmetric crystal,
but TRS may be preserved as long as we do not apply any external magnetic field.

The BIA can be influenced by changing the width of the QW, charge carrier density or
temperature. In 3D bulk structure, the SOI term can be expressed by the power series

expansion of K as
H35: = ve|oxky (k2 — k2) + oy ky (k% — k2) + 0.k, (k2 — k2)], (1.38)

where y, is a material-dependent parameter. This Hamiltonian gives rise to the k3 terms in
the bulk conduction band. The contribution of linear-k terms seen in the lower dimension (for
e.g., in 2D) can be derived from the above Hamiltonian. Let us consider a 2DQW structure of
a zinc-blende crystal which is an ideal candidate for the systems with BIA. One should note
that in 2DQW, both linear-k and cubic-k terms may appear in the conduction band spectrum.
But we can neglect the k3 -spin-splitting terms unless the temperature or the carrier
concentration is too high. Therefore, we mainly focus on linear-k contribution to the spin-
splitting in low-temperature regime. To obtain this we need to consider the effect of quantum
confinement. This allows us to make the following tricks considering the crystal growth
direction along z-direction ([001]). We can replace k, and k2 terms by their expectation
values as: (k,) = 0 and (kZ) # 0 (as (k7) =~ m?/l3y,). Also, we can disregard the terms
containing k3-contributions such as o, kk% and oy, k,kZ as we want to obtain the linear-k

SOI spectrum. By these approximations, the linear-DSOI Hamiltonian originates from BIA as

HEP =y (kZ) (_kax + Uka) = Pp (Gyky - kax)’ (1.39)
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where S is the coefficient of the DSOI. The Hamiltonian for a 2DQW in the presence of
DSOI can be written as

22

p
H =
2m*

B
I+ WD (0,0 — 0xDx), (1.40)

and the 2D eigenstate of this Hamiltonian is given by

1 1 o
Yo (T) = ( M)el T, (1.41)

where, ¢ is the spin-index: o = +1 and k stands for the 2D momentum vector: k = (K ky).

The energy spectrum of this system is given by

hZ
Ex(k) = 5—k* £ Bok, (1.42)

where, k is the magnitude of the 2D k-vector given by k? = k2 + k3. Hence, we can see a

zero-field spin-splitting in the energy spectrum where, ‘+’ sign represents the energy of the
up-spin branch and ‘—’ sign represents that of the down-spin branch. The energy dispersion
and contours are shown in Fig.1.10.

(a) E

BIA

Fig.1.10 (a) Energy dispersion of the DSOI Hamiltonian (b) Contours of constant energy i.e., the
Fermi surface containing two concentric circles of oppositely oriented up and down spins in k,-k,

plane (picture courtesy: Dissertation, V. Lechner, p. 13, 2012).
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1.3.2.2.2.2 RASHBA SPIN-ORBIT INTERACTION

Next, we discuss the SOI due to SIA in a 2DQW structure. This type of SOI is usually
referred as the RSOI. The very first experimental observation in this context was studied by
Stein et al. [126] in 1983, where they observed a zero-field spin-splitting in the electron-spin-
resonance spectra of a 2D GaAs/AlxGaixAs heterostructure. In the same year, Stérmer et al.
[127] also reported by combined magneto-transport and cyclotron-resonance experiments that

the spin-degeneracy is lifted for finite k which gives rise to two cyclotron masses in 2D
GaAs/AlxGaixAs heterostructure. Next year, in 1984, Bychkov and Rashba [128]
theoretically explained the lifting of two-fold spin degeneracy following the SIS-breaking
theory developed by Rashba in 1960 [86].

Before deriving the RSOI Hamiltonian we rewrite the Thomas term (1.31) as

eh 1 - eh - - 1 - >
Hr = ———=3.(Vo X B) = — —3.Bsp(P) = — 5 1z0. Bso (P), (1.43)

4m?c? 4m 2
where, B, is the momentum dependent effective magnetic field experienced by the electron
in its rest frame:

1

. 1 —_ - - —_
Bso(p) = m(wp Xp)= —W(P X €), (1.44)

and up is the Bohr magneton which is given by uz = ef/2m. One can see that the potential,
@ appearing in the above Eqg. (1.44) can be made asymmetric by forming a 2DQW structure
shown in the above Fig.1.11. Here in this diagram, it can be clearly seen that at the interface
the band-mixing is non-uniform which generates a non-spherically symmetric potential
(triangular like with left sharp edge and right curved edge) in space and consequently a non-

zero electric field, € is produced inside the QW.
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Fig.1.11 Structural inversion asymmetry in a 2DQW heterostructure.

Let us consider that this electric field, € = —V(p is directed along the crystal growth direction
Z, then the Thomas term (1.31) can be expressed as the RSOl Hamiltonian as

eh | R
HR = —WO'. (V(p Xp)

et
= amzcz 2 (0 XP)

a
= WR (0xpy — 0y12), (1.45)

where ay denotes the coefficient of the RSOl given as ay = eh?E/4m?c?. The above RSOI
Hamiltonian is just the second term of Eq. (1.36) originating from SIA. One should note that
if the asymmetric potential at the interface is formed keeping the sharp edge right and curved
edge left, then the electric field €Z and hence the RSOI strength ay flips its sign. This is the
consequence of the SIA in a 2DQW heterostructure. Importantly, the Rashba parameter ay
can be tuned externally by applying a gate voltage.

The 2DQW Hamiltonian in the presence of the RSOI can be written as

a2

p
2m*

H =

o
1+ f (axpy - aypx). (1.46)
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The 2D eigenstates and energy spectrum of this Hamiltonian are respectively given by

1
Yio () = (_a_ ky - ikx> i, (1.47)

Zﬂh\/z k

and
2

E,(k) = —k? + agk. (1.48)

2m*

Here also we can see a zero-field spin-splitting in the energy spectrum for up (+) and down
(—) spin states. The contour is shown in Fig.1.12. For each k, the spin-splitting due to RSOI
is A=E, (k) — E_(k) = 2agk .

Fig.1.12 Fermi contours of two concentric circles of two oppositely oriented spin states for RSOI.
(Picture courtesy: Dissertation, V. Lechner, p. 13, 2012).

In a 1D quantum wire, the 1D-RSOI Hamiltonian can be written as

>
p ar

e 1- 7 OyPx: (1.49)

H =

The 1D eigenstates and energies are respectively given as

— 1 1 ikyx
Viyo(X) = m (—ia) el (1.50)
2
Ei(ky) = kZ + agk,. (1.51)

2m*
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If both the RSOI and DSOI are present in a 2DQW, such as a zinc-blende semiconductor, the
Hamiltonian for such system can be written as

2

H = I
2m*

a
+7R(axpy oypx)+ (oypy prx). (1.52)

The eigenstates of this Hamiltonian can be expressed as

1
A 1 / ag(ky = iky) + Bp(ky — ik, ) \ i
l/)kcr(r) 27Tfl\/— ¢
\ \/( Rk ,BD y) + (aRk ﬂD x)

. (1.53)

and the eigenenergies are given by

2

B0 = 5k £ [(agks = Boky)? + (aghy — Boko)? . (159)

In polar coordinates the eigenstates and the energy spectrum are respectively written as

Yo () = :L\/_(l:up) i, (1.55)
£, 00 = 1 [(k +o¢(r.6.92)) - (sn0.80)) | (1.56)

where {(n,6,¢;) is the SOI dependent momentum and is given by ¢(n,6,¢;) =

ny/1+ sin26 sin 2¢;, which describes an angular anisotropy of the spin-splitting where

and 6 are respectively given by: n =m*J/a3 + p3/h* and 6 = tan"1(B,/ ag). One may
notice the spinor phase ¢ in the wavefunction and energy is related to the RSOI and DSOI

coefficients as: ¢ = Arg[aR exp(iqb,;) + ifp exp(—id)ﬁ)].

1.4 DISCRETE LATTICE MODELS

So far, we have discussed the interactions in continuum approximation. In reality, the
discrete lattice models are more suitable for studying the interactions in LDS. The TBM is the
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most studied models as a lattice model, where the electron is considered to be strongly bound
to the individual atom and therefore the discrete nature of the lattice becomes important. If
the wavelength of the electron is greater than a lattice constant, then electronic wavefunctions
can overlap and as a result the electron can hop to the neighbouring atomic site and then the
system behaves a metal. However, for such hopping to happen, the bands have to be partially
filled. On the other hand, if the wavefunctions do not overlap, it is difficult for the electron to
hop from one site to the other, giving rise to an insulating state of the system. This situation
results when the electrons belong to completely filled or empty bands. Therefore, the TBM
provides a suitable ground to explain the MIT in narrow-band systems. In this section, we
present the models applicable to narrow-band systems under the TB approximation.

1.4.1 THE HOLSTEIN MODEL

Holstein formulated this model based on the TBM which can be written as

H= H,+ Hpp + Ho_pp, (1.57)
where,
H, = € ZCL Cig— t Z c;ra Cjg +h.c., (1.58)
io <ij>o
+ 1
Hon = hw, z (bi b + 3 ) (1.59)
i
Ho_p = glznm(bi + b}). (1.60)

io

In Eq. (1.58), the first term represents the total onsite energy, €, being the on-site energy per
site, ci‘;(cw) being the creation (annihilation) operator of an electron at the i™ site with the
spin-index o, the second term is the nearest-neighbour (NN) hopping term, i and j being the
nearest neighbours and t the hopping amplitude. In Eq.(1.59), b;r (b;) is the creation

(annihilation) operator for a phonon at the i site with a dispersionless frequency wg. In

: : . : C
Eq.(1.60), n;, (c;racl-a) is the number operator for the electron at site i with spin o, ¢c; = (ch
l

and g, is the e-p coupling strength.
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1.4.2 THE HUBBARD MODEL

In 1963, Hubbard used this model to study the electronic correlations in narrow-band
systems [129, 130]. Around the same time, this model was proposed independently by
Gutzwiller [131] and Kanamori [132] to study the ferromagnetism in transition metals. Later,
Hubbard gave an improved solution which could predict that the lattice at half-filling (one
electron per site) undergoes the Mott MIT which otherwise was understood to be always
metallic according to the band theory. For the 1D HM, the exact ground state (GS) solution
using the Bethe ansatz (BA) was first given by Lieb and Wu [133] which predicts the absence
of the Mott MIT at a non-zero Hubbard strength, U. Later, Essler et al. [134] have obtained
the complete solution of 1D HM using the BA. The total Hamiltonian of a solid comprises
the kinetic energy (KE) and potential energy (PE) parts as H = Hy;,, + Hpoe , Where the KE
part contains electronic and ionic parts which is given as Hy;, = Hyin—e + Hyin—ion,» and the
PE part contains the contributions from interaction between electrons, electrons and ions and
ions which can be written as Hyoe = He— + He—ijon + Hion—ion- In the limit of the BOA, the
ionic motions can be neglected and one can write: Hyip—ion = 0 and H;y,_ion = CONSstant
(negligibly small). The total Hamiltonian under these approximations takes the form as

h? L
H=Hyino+He_jon +He_p = _ﬁz Vi + Z z V(Ry —7) + He—e,  (1.61)
J n j

where the first term represents the sum of the KEs of the electrons, and the second term
represents the average potential acting on the jth electron created by the ions. Combining
these two terms the above Hamiltonian looks like

H = z h + H,_e, (1.62)
J
where, h; represents the single electron operator which can be written as
h2
— 2 D 2
b= -5V +ZV(Rn —7). (1.63)
n

In the second quantized notation the first term of the Eq. (1.62) can be expressed as
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Z h; = Z(ia| hiljo) c;racja, (1.64)
J

ijo

where (io| h|jo) = [ ¢l (hipjs (7) = tij, where ¢;, is the localized Wannier wave
function of the electron centred at the i site with spin index o denoting either the up-spin (1)
or the down-spin ({) and ¢;; is the amplitude of the overlap integral between any i and j"

sites. The e-e interaction can be represented as

1 e?
He o =% ) —5——, 1.
- ZZM_G (1.65)

i+j

where 7; denotes the position of the electron at i™ lattice site. In the second quantized notation
the H,_, can be expressed as

1 o e?
H,_, = > z z (iu, ju R ko, lt) c;rﬂc;,clrcka, (1.66)
i,j,k,l pvot
where,
2 N GIINGO NGOG
e ey ka,lr)=ezj £ If’—fl’tl YL ARdF = Uy (167)

As these localized wavefunctions fall off exponentially, t;; is most significant when i and j

are NN sites. Therefore, t;; becomes t;; = —t and }.; h; takes the following form

Dh=—t » cl, (1.68)
7

<ij>o

where < ij > denotes the NN hopping. For the same reason mentioned above, U;jy, is
expected to decrease rapidly as |7; — 7;| increases. Therefore, the most valued contribution
comes from the on-site term when i = j = k = L. Then, U, j;, becomes U, = Uy = U. So,

H,_, can be written for the on-site Coulomb interaction as

_ bt
He_e_EU Z Ci—Ci0CioCi—0

io,o=1,1
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N =

T T
u Z Ci,—oci,—dci,aci,a

io,o="T,

t t T T
Z Ci1CiiCirCin + Z Ci,TCi,TCi,lCi,l]

L l

2

= UZ ngn;, , (169)
i

where n;, is the number operator for the electrons at the i site and is written as n;, =

c;racw. Combining Egs. (1.68) and (1.69), we finally get the Hubbard Hamiltonian as

H=-t Z c;racja + UZnimu. (1.70)
<ij>o i
1.4.3 PERSISTENT CURRENT IN A MESOSCOPIC RING AND

GEOMETRIC PHASES

In mesoscopic physics, the system’s size is considered to be in the intermediate regime
between the microscopic (atoms or molecules) objects and macroscopic ones, where the
quantum coherence effects play a significant role. There exists a characteristic length Ly over

which the charge carrier can travel without the loss of their quantum phase (¢) coherence.
This also corresponds to a finite phase breaking time 7. Therefore, the coherence is

maintained over a length scale or a time scale L < Ly or T < 74 respectively. In mesoscopic

devices, the phase coherence can be lost leading to a decoherence effect due to the scattering
processes and high temperature. The typical time and length scale of mesoscopic
semiconductor devices at a low temperature (sub-Kelvin) are of the order of picoseconds and
micrometres respectively. Most of the promising mesoscopic effects are seen in LDS such as
2DEG of semiconductor heterostructures (2DQW), 1D quantum wires and QDs. One of the
most exciting phenomena in mesoscopic effects is A-B oscillations observed in conductance
spectrum of a metallic QR [135]. Surprisingly, in a tiny 1D mesoscopic QR, the PCs can
occur due to the A-B effect even if the ring is non-magnetic. The A-B effect is a quantum
mechanical effect that arises when electrons move along two different paths of a closed
contour (such as a QR) and a magnetic flux is made to pierce through the centre of the closed
contour, then the magnetic field produces a phase (known as the Aharonov-Bohm phase) shift
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in the wavefunction of the electrons. The phase difference between two paths is proportional
to the magnetic flux enclosed by the QR and is given by

e
Aqf)AB—hf’gA.dl—

SRS

@, (1.71)

where 4 is the magnetic vector potential and @ is the magnetic flux (A-B flux) enclosed by
the QR. The A-B effect in a QR results from a gauge invariance of electromagnetic potential.

Consider a particle moving through a region where B=0,4=+0andV is the electrostatic
potential. The SE for such case can be written as

> 2
in 2% [i@\?—%) +V|y. (1.72)

ot 2m

Now applying a transformation ¢ = U, = e 9™y, where g(#) = %fof A#).dr ' the

above equation (1.72) can be transformed to

T
th— [_ﬁ Ve+V l/JO. (173)

We can see that under the transformation, as ¥ — v, the vector potential Ais gone and
the above SE (1.73) holds for the wavefunction y,. The phase factor g(#) is analogous to the
A-B phase ¢,5 which leads to quantum interference effects. To see how quantum
interference effect gives rise to a current we consider a 1D TB-QR consisting of N number of
identical atomic sites as shown in the figure below (Fig.1.13).

o [ ZC@% I@ @I
P 3 |
5 oo Nl o

IR

,[L».i“’ ¥i-1 —telf

Fig.1.13 A 1D QR threaded by an A-B flux ®.  Fig.1.14 2D lattice hopping with Peierls phase 6.
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Consider a 1D QR (in the TB scheme) with periodic boundary condition (PBC): |[N + 1) =

2mm

|1) which allows the quantization of the momenta k = — m= 012,..,N—1. The

wavefunction 1, (solution for A =0) satisfies (¢ + 2m) = Po(p), while the new

wavefunction (/f #+ 0 solution) satisfies the twisted PBC as

2nd

W +2m) = eN0Y(p) = e!®48Y(p) = e P P(g), (1.74)

where 6 is the Peierls phase factor (PPF) which usually appears in the NN hopping term of a

TB Hamiltonian of a crystal under the application of an external magnetic field B and is

related to the A-B phase as ¢,5 = Z;f—d) = N6, ® being the A-B flux and &, = hc/e which is
0

the magnetic flux quantum. The hopping term in Eq. (1.58) modifies after the inclusion of the
Peierls phase factor (without spin) as

S g
i ia .
—t Z cfe; — —t Z ¢! (elfxi x) ¢ =—t Z cfe®@g;, (1.75)

<ij> <ij> <ij>

-

[ Adx o :
where, 6(%) = elf"i A is the PP which originates when the electron hops from the lattice
point ¥; to X; and is proportional to A. This phase factor directly determines the A-B phase
¢4 Which is obtained by summing all the PPs over the closed path shown in Fig.1.14.

Hence, for a 1D QR the A-B phase is the sum of PPs of N lattice sites. Eq. (1.74) can be
achieved by writing the TB Hamiltonian in terms of the PP as

0 .t i2as ¢
H=—tz (e" ¢ ¢ +h.c.)=—tz (e N ¢i¢ +hc)

<ij> <ij>
j2nd
=—t Z (e N®o ler ¢ +h.c.), (1.76)
<ij>

The TB energy for this Hamiltonian (1.76) is obtained as

an)), (1.77)

= —atcosi-
Cos N(DO
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The total PC (Ip¢) in enclosed by the QR can be derived as follows. In the Heisenberg
picture, the current at m™ site can be defined as

dn i
S = = [, H], (1.78)

where n,,, is the number operator of the electron at m™" site of the QR. Calculating the
commutation relation, Eq. (1.78) is expressed as

_im t
N cmcm_1>. (1.79)

—_ = e

Tt - N CpCmi1 — 1Cmte

.I.
m—

The continuity equation for n,, is given in terms of particle current j,, as

dn,,

dr = —Um = Jm-1)» (1.80)

Comparing Egs. (1.79) and (1.80), we can write

. ¢ + _im +
Jm = —%(6 W CmCm+1 —€ N Cm+1cm>' (1.81)

1% it s OH _ ®,0H
]:NZ N_Z( W e — e Cm“Cm):acpAB moo (182)

For the electric current we can write J, = —eJ. Therefore, in stationary state the total PC can
be calculated as

®, OF

Ip = <¢| |¢> ey (1.83)

Therefore, both the energy and current are periodic in A-B flux & with period ®,,.
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1.4.4 SPIN-ORBIT INTERACTIONS IN A QUANTUM RING

The Rashba and Dresselhaus SOls in a 1D QR can be incorporated in a TB Hamiltonian as
H = Hy + Hgy, Where H, represents the TB Hamiltonian (without SOI) and Hg, is the SO
Hamiltonian. H, and Hg, are given by

Hy, = —tz (ciT Ciy1 T h.c.), (1.84)
i

Hgo = —iag Z [c] (0x cos @141 + 0y SN Py141) Ciig + hoc.]

i

Fifp ) [e](0y €05 @ria + Oy sin @) Cn Hhel (185)
i
where ¢ is the azimuthal coordinate of the ring: ¢; ;41 = % where @; = 2”(;]_1), i =

1,2,3,...N, ap and B, are respectively the strengths of RSOl and DSOI. Now, we define a

oxtoy

unitary operator: U = ( ) o, which transforms the Pauli matrices as

Uo, Ut = -0y,  Uo,UT=—0,, U, Ut = —0,. (1.86)
The total Hamiltonian after employing the unitary transformation transforms as

H =UHU' = UH, Ut + UH, Ut

- —tz @ ey +hoc)
i

+iag Z [ (0y cOS Q1101 + Ox SINPy141) Epur + ]

i

—iBp Z [&f(0x cos @iir1 + 0y SiNQ;i41) Gy + hoc], (1.87)

i

where ¢; = Uc; and 617 = ciT’qu. By comparing Egs. (1.85) and (1.87), we see that the RSOI
and DSOI strengths are interchanged in the new basis. Therefore, the RSOI and DSOI are
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unitary conjugate to each other. Interestingly, if g = Bp, H and H become identical which
means the total Hamiltonian is invariant if the strengths of RSOl and DSOI become equal.

1.5 MOLECULAR JUNCTION TRANSISTOR: SMT MODEL
WITH DISSIPATION

Molecular junction transistors are interesting for their potential applications in single
electron charge and spin transport, high gain switching devices, spintronics applications,
quantum interference phenomena, phenomena related to Kondo effect and Coulomb
blockade, molecular superconducting devices and so on. In this thesis, we wish to study the
effect of the interactions discussed earlier and the interplay between these interactions on the
quantum transport in an SMT system. As shown in Fig.1.15, an SMT system contains at its
centre a molecule or a QD connected to two conducting leads which act as a source (S) and a
drain (D). The S-QD-D system is placed on a substrate to which is attached a gate. The
electrons in S and D can be treated as free electrons with continuous momentum states. The
central QD contains discrete energy levels and so the QD electrons are described by localized
states. Because of the application of a bias voltage, electrons from S can travel to D by
tunnelling through QD which can also be controlled by the gate voltage. The tunneling of
electrons from S to QD and QD to D and vice versa can be described by a hybridization term.
The central QD can exhibit e-p, Hubbard and SO interactions and the QD-phonons can
interact with the substrate phonons which will produce quantum dissipations. The model
Hamiltonian for such a system can be described by the Anderson-Holstein-Caldeira-Leggett
(AHCL) Hamiltonian as

Fig.1.15 Schematic representation of an SMT device.
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H = HS,D +HQD +HT+HV' (188)
where,
Hgp = Z €k Nk » (1.89)
ko€S,D
po 1
Hop = ) (g4 — eVy)ngs + Unging, + m. T2 + g ) Nag X, (1.90)
do d do
Hr = ) [Vielstao + clp par) + hocl, (1.91)
kdo
N
Hy = Hgo + Hyp- B—Z[2m+ —m;w?x; I+Z/3ixixo. (1.92)
' i=1

In Eq. (1.89), ni,(= C;acka) denotes the number operator for free electrons in S and D
with momentum k and spin . In QD Hamiltonian (H,p) (EQ.1.90), nge(= clycas) is the
number operator for the QD electrons in the single localized energy level g4, U refers to the
onsite correlation energy. The third term of H,, is the Hamiltonian for the local lattice mode
of QD, where (x,,p,) are the coordinate and the corresponding canonical momentum of the
QD oscillator with mass m, and frequency w,. The fourth term represents the e-p coupling of
the QD, where g gives the strength of the coupling between the electrons and phonon of the
QD. The tunnelling Hamiltonian (1.91) gives tunneling of electrons from S to QD and QD to
D, where V, refers to the hybridization strength of the coupling between the QD and the
leads. The Hamiltonian (1.92) is the vibrational part of the SMT system where x;, p;, m; and
w; denote respectively the position, momentum, mass and frequency of the i bath-oscillator
and f; gives the measure of coupling strength between the QD phonon and the i — th bath
phonon. This term generates dissipation in the QD phonon dynamics which essentially
increases the tunnelling current as shown by Raju and Chatterjee [116].

1.6 OUTLINE OF THE THESIS

The thesis is organized as follows.
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In Chapter 1 of the thesis, we present the motivations behind the work and introduce the
continuum and discrete models used in this thesis and the basic formulations of the
interactions mentioned above. In the continuum model, we describe the Fréhlich polaron,
bound polaron and magnetopolaron and also Rashba and Dresselhaus SOls. In the discrete
model, we present the Hubbard and Holstein models for a narrow-band system. Next, we
discuss how PC can be generated in a QR. We introduce the Hamiltonians for RSOI and
DSOIl in a QR. Finally, we present the model Hamiltonian for an SMT system and discuss the
different processes involved in this system.

In Chapter 2, we investigate the role of RSO interaction on the polaron Zeeman effect in a
two-dimensional parabolic QD. We formulate the system Hamiltonian using the well-known
Frohlich model and calculate the polaronic corrections to the energy states of the QD by
employing an all-coupling Lee-Low-Pines-Huybrechts variational method and the second-
order Raleigh-Schrddinger perturbation theory. It is found that the e-p and RSO interactions
influence each other in the presence of a magnetic field, while this interplay is missing in the
absence of the field.

Chapter 3 of the thesis describes the combined effect of both the SOIs on the spin-
transport across a metal-semiconductor interface in the presence of a delta-function scatterer
at the interface. The tunnelling current, conductance and spin-polarization are calculated
using appropriate boundary conditions and the effects of RSOI and DSOI on the reflected and
refracted spin-resolved currents and spin polarizations are studied. It is shown that the spin-
polarization is greater when both the SOls are present as compared to when only RSOI is
present. The infinite potential across the interface reduces the tunnelling current and
conductance and also makes the reflected spin-polarization zero. However, the refracted spin-
polarization strongly depends on SOls strength. We would like to mention that the delta
potential does not have any effect on the magnitude of spin filtering.

In Chapter 4, we study the effect of DSOI on the persistent charge and spin currents in a
one-dimensional mesoscopic QR threaded by an A-B flux in the presence of e-e and e-p
interactions. In such a narrow-band system, we have a small polaron which is best described
by the Holstein model and the e-e interactions can be treated by the Hubbard model. We
therefore use the Holstein-Hubbard-Dresselhaus model to study the system. After decoupling
the e-p interaction by the much-celebrated Lang-Firsov transformation and eliminating the
DSOI by a unitary transformation, we treat the Hubbard correlation at the Hartree-Fock
mean-field level and finally obtain the energy and current using a self-consistent numerical
diagonalization method. It is observed that the DSOI enhances both the charge and spin
currents and hence the spin-polarization significantly, while the e-p interaction reduces them.
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As the mesoscopic phenomena strongly depend on the electronic number density and
temperature, the effect of chemical potential and temperature have also been studied.

Molecular junction systems such as a single molecular transistor (SMT) show potential
applications in nano-electronic, nano-photonic and spintronics devices. In Chapter 5, we
consider a three-terminal device configured as a metal-QD-metal structure placed on an
insulating substrate and investigate finite-temperature nonequilibrium quantum magneto-
transport in the presence of local e-p and onsite Hubbard interactions and quantum
dissipation. Following the approach of Raju and Chatterjee [116], the interaction between
substrate phonons and the local QD phonon has been incorporated by the linear Caldeira-
Leggett model. This interaction is partially eliminated by a unitary transformation which
produces a dissipative effect in the phonon frequency which in turn influences the tunnelling
current. The e-p interaction is dealt with the Lang-Firsov transformation. The transport
properties such as spectral function, tunnelling current, conductance and spin-polarization are
finally calculated using the nonequilibrium Keldysh Green function technique. It is observed
that a magnetic field produces a spin-filtering effect in spectral function, tunnelling current
and conductance while the temperature diminishes the spin-filtering effect.

In Chapter 6, we study the RSOI-induced quantum transport through a QD embedded in a
two-arm quantum loop of a single molecular transistor at finite temperature in the presence of
e-p and Hubbard interactions, an external magnetic field and quantum dissipation. The
electrons from the source can tunnel to the drain following two paths, one through the arm of
the loop that contains the QD and the other through the other arm of the loop that does not
contain any QD. It is shown that in the absence of the magnetic field, the Rashba coupling
alone separates the spin-up and spin-down currents which are equal and opposite with respect
to the RSOI phase, causing a zero-field spin-polarization. Although, the spin-up and spin-
down currents behave differently in the presence of a magnetic field. We have also studied
the combined effects of polaronic and SO interactions on the transport properties in different
regimes of temperature and field. There exists a critical value of e-e interaction at which the
gap between the spin-up and spin-down currents becomes maximum, causing a sharp
discontinuity in the conductance spectrum. The polaronic interaction enhances the zero-field
spin-polarization substantially. It is important to mention that the spin-polarization can be
manipulated by tuning the Rashba strength, magnetic field and temperature. In this study, we
have also analyzed the condition required to achieve the maximum spin-polarization for a
particular strength of the RSOl and magnetic field at zero temperature in the SMT system.
Our results may find important applications in the fabrication of efficient spin-filtering
devices in which the spin-filtering can be tuned by controlling the external magnetic field,
RSOI and the e-p interaction in different temperature regimes.
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Finally, in Chapter 7, we summarize and conclude our findings.
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CHAPTER 2

ROLE OF RASHBA SPIN-ORBIT INTERACTION ON
POLARON ZEEMAN EFFECT IN A TWO-DIMENSIONAL
QUANTUM DOT WITH PARABOLIC CONFINEMENT

ABSTRACT

We calculate the energies of the ground and the first excited states of a free polaron and that
of a polaron bound to a Coulomb impurity in a QD with harmonic confinement in the
presence of RSOI by employing the variation theory of Lee, Low and Pines as modified by
Huybrechts for an all-coupling range of the e-p interaction and arbitrary confinement length.
We show that in both cases, the RSOI removes the two-fold spin degeneracy of the first-
excited states even in the absence of any applied magnetic field, though the ground state does
not show any such spin splitting. The self-energy corrections due to the polaronic effect are
however not affected by RSOI. We also investigate the combined effect of Rashba and
polaronic interactions in the presence of an external magnetic field using the Rayleigh-
Schrodinger perturbation theory. Application of our results to GaAs and CdS QDs shows that
the suppression of the phonon-induced size-dependent Zeeman splitting in a QD is reduced
by RSOI.
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2.1 INTRODUCTION

Of late, the study of spin-physics in LDS has drawn tremendous attention for its application
in the very important and emerging field of spintronics where the transport and other
properties of the micro-electronic devices can be tuned by using the phenomenon of spin-
polarization [1-6]. The spin polarization is caused by RSOI [7-10] which originates when the
confinement potential of the nanostructures lacks the symmetry under the operation of
structural inversion [11-12]. RSOI removes the spin-degeneracy of the electrons giving rise
to spin-splitting which is tuneable by an external field [13-14]. In recent times, both
theoretical and experimental studies have been carried out to explore the effects of SOI in
guantum systems [15-31].

The coupling between electrons and phonons has been shown to have a key contribution in
understanding electronic and several other important properties of quantum structures [32-40]
and therefore it would be naturally interesting to investigate the combined effect of e-p
interaction and SOI in QDs. Attempts have already been made in this direction, but to our
knowledge, these studies seem to be restricted only to either weak or strong e-p coupling
regime [41-55]. In the present work, we wish to determine the GS and the first excited state
(ES) energies of an electron moving in a 2D PQD for all-e-p coupling in the presence of
RSOI employing the LLPH method [32-39, 56-59]. We also extend our study to the case of a
bound polaron. Imperfections being a rule rather than the exception, this study is more
realistic and thus worth investigation. Finally, we examine the combined effect of RSOI and
e-p interaction on the electron energies in a 2D PQD placed in a magnetic field applied
perpendicular to the QD plane using the second-order RSPT. Our main goal here is to
investigate the interplay between the RSOI and e-p interaction in the context of phonon-
induced Zeeman suppression in a polar QD. We consider two specific materials namely,
GaAs and CdS QDs to which we apply our theory for the sake of concreteness. We observe
that RSOl enhances the Zeeman splitting and thus opposes the suppressive effect of polaronic
interaction.

2.2 ANALYTICAL MODELS AND FORMULATIONS

In this section, we formulate the model Hamiltonian and discuss the analytical techniques
that we have used. This section comprises two parts. First, we formulate the model of a 2D
PQD in the presence of e-p interaction and RSOI and calculate the GS and ES energies of the
system and the polaronic corrections to these energies using LLPH all-coupling variational
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method in the absence of magnetic field. Next, we consider the system in the presence of an
external magnetic field and calculate the polaronic corrections to the GS energy using RSPT.
We also calculate the effective Zeeman splitting modified by the RSOI to see the interplay
between e-p interaction and RSOI.

2.2.1 2D POLARON IN THE PRESENCE OF RSOI wWITH

PARABOLIC CONFINEMENT

We consider an electron of band mass m* in a 2D PQD in the presence of RSOI. The
electron also interacts with the longitudinal optical (LO) phonons of dispersionless frequency
wo. We shall work in FU [32-39,60] in which A =m* = w, = 1. The system can be
modelled by the Hamiltonian in FU as

H =H, + H, + H,,, (2.1)

where the electronic Hamiltonian H,, the phonon Hamiltonian H,, and the e-p interaction

Hamiltonian H,,, are given by

o= (10,0 LN ot dVC(p)( ia) 2.2
7 2\pdp  0p*  p?og? P+ ar o= 7\ "pag) 42
— T
Hy =) blbg, 2.3)
7
H,, = 2(5‘7 e~ bl + h.c.), (2.4)
7

where everything is dimensionless and I is 2D unit matrix. In Eq. (2.1), p (p, ¢) refers to the
electron position vector, V.(p) is the confinement potential of the QD given by V.(p) =

%wthz, wy, being the frequency of the harmonic dot, and the third term describes RSOI, aj
denoting the RSOI coefficient and o, the z-component of the Pauli spin matrix. In Eq. (2.2),
b; (bgq) stands for the creation (annihilation) operator of a LO phonon of wave vector q and
frequency wy. In Eq. (2.3), &, is the e-p interaction coefficient given by:|<$;,|2 = (\/En/Vq)a,

V being the QD area and a the electron-phonon (e-p) coupling constant given by a =
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(e?/2hwy) 2mwo/h)Y?(ex! — e5t) [32-39]. We employ the LLPH technique and
prescribe the variational function as

|¥) = U, U,|0)[y"), (2.5)

where the LLPH transformations U; and U, are respectively given by

(2.6)

-

U, = e5t = exp —iaZ(C?.ﬁ) bgb(j
q

U, = 5 = exp lZ(f;, bl — fibg)|. 2.7)
q ]

|0) is the zero-phonon state. The choice of the electronic wavefunction [{”) depends on the
binding of the electron. As the confinement potential is a harmonic oscillator potential and
the system has a cylindrical symmetry, we choose the following form of the trial
wavefunction

2\m|+2\ 2 2,2
u . _up
[¥?) = ( miml! ) e, (2.8)
where y, = ((1)) or ((1)) m=0,+1,%2,.... , and a, f7 and u as variational parameters.

The LLPH energy of the 2D PQD is calculated as following
Erpn = (VIH|P), (2.9)
Where the wavefunction |W) is given by Eq. (2.5). Therefore, E;;py can be expressed as
Eyipn = V1 (01H|0) [y*), (2.10)

where H is calculated as A = U;*U;7*HU, U, which in other words can be calculated by the

Baker-Campbell-Hausdorff formula as
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H=eSHeS=H+][S H]+l[5 [S, H]] + - (2.11)
) 2! ) ) . .

Therefore, the transformed Hamiltonian H is obtained as

H = e S2e751HeS1e%2

a2 2.2

P 1 a~q > - *
= 7+§wthz+z:<1+ > —ap.q)(bg+fa)(ba+fa)
q

5@ (8] + 57) (8l + 7) (g + )b + )

a.4q’

—(1-0)a 3 . dV.(p); i 0
+z(fa e~(-07 (T 4 f7) +h.c.)+aRJZ:l—p(—;%>. (2.12)
7

The zero-phonon average of the transformed Hamiltonian is written as

(0|H|0) = =3 + 5 wn’p?

116+62+1 0] 1
2|pop 0p?  p?og?| 2

aqg? L] a2 L
+z[1+ zq +ia|7.q |f‘7|2+?zqq|f‘i|2|f€1’|2

q

- av, J
+Z(fa e‘(l"a)q'pf;; +h.c.)+ aRGZ%(———). (2.13)
q

The energy E;;py is then calculated by taking the expectation with respect to the trial
wavefunction |{¥) as

Eppn = (W7 (0 |ﬁ| 0) [y*)

1 1wp?
— 2
=SH (1+|m|)+§ 2 (1+ |ml)
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2.2

[ a~q , v|glv\ 2 2 a’ > >y 2 2
w3 [+ S e Tl + 5 a.dlfal ]
=1 a.q’

+ Z —fa <‘~|Jv|e_i(1_aﬁ'ﬁ|l|1v>f§ + h. c.] + apmw,?. (2.14)
o

Next, we use symmetric QD approximation: Yz g |f§|2 = 0. Under this approximation

E;;py becomes

1 2 1(1)h2
Erppn = EIJ (1+|m|) + EF(l + |ml) + Z
q

+z[5¢7/15*f§ + h.c. | + agmw,?, (2.15)
q
where 4z is given by
G = (W¥1el0-TPpy). (2.16)

To calculate E;; py We must minimize E;;pyWith respect to the variational parameters
fq (f;l*), a and u. Minimizing with respect to fg we obtain f7 as

0E aZ 2 _)/1_)*
=0 IH q lfc7+fﬂa*=0=>f«7=—%—fz- (217)
af5 2 1+%4
2
Substituting this form of fz from Eq. (2.17) in Eq. (2.15), we express Ey; py as
_1 lop? gal gl
Erppn = .U (14 |m|) + (1 + |ml) — 2 >+ agmwp?, (2.18)

q1+

2

where |)L(7|2 can be computed by Eq. (2.16) as
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1 — a)2g2\|*
* = Lorm (—%) (2.19)

Hence, substituting Eq. (2.19) in Eq. (2.18), the variational energy of the 2D polaron with a

|24

parabolic confinement in the presence of RSOl is obtained as

(1 + |ml) 1+ |m|) | agm
Eripy = > u? + 22t 1t
0 0

2.2\

2(1+“2") "dq, (2.20)

f ctramy (~252)

where, the confinement length [, is related to confining harmonic frequency wy as l, = \/w_h
which gives the effective size of QD and L_(;4pm(—(1 — a)?q?/4u?) is the Laguerre
polynomial.

Next, we want to discuss two limiting cases for two extreme values of a. First, a =1
corresponds to the extended-state (weak coupling) limit and variation of E;; p With respect
to u in this case yields for the GS and ES energies respectively as following

Egs = lg" - (nz—a) (2.21)
Eps = 2152 - ("2—0‘) + Z—’i (2.22)

The localized state (strong coupling) limit can be obtained by putting a = 0, and following
the same procedure as above, we obtain:

EGS = laz - @, (223)
20
Vra
Egs = 2152 — 11 <3210> (2.24)

The actual variational energy E is obtained numerically by varying E;; py With respect to a
and u. The polaronic correction is defined as
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AE = E (a) — E (a =0). (2.25)
Thus, the GS and ES polaronic corrections for a 2D PQD can be respectively written as

AEgs = Egs — 1y 7, (2.26)

and

AEgg = Eps — 21,2 (2.27)

In the bound polaron case [32-39,59,61], the electronic Hamiltonian H, contains an extra
Coulomb term: —B/p (see Sec.1.3.1.1 for model Hamiltonian), where g = e?/s, ,

€
denoting the permittivity of QD in the high-frequency limit and the energy reads
pur(iml +3)|
Eg = Epipy — |m|' (2.28)
2.2.2 2D MAGNETOPOLARON IN THE PRESENCE OF RSOI

In the case of a 2D magnetopolaron in a PQD with RSOI, the effective electronic
Hamiltonian in Eq. (2.1) is modified by the presence of a magnetic field as

3 116+62+162 I+1 2 lwca+1 5
¢ 2\ pdp 9p? p?o¢? pr 2 0¢ 72189550z
ch(p)( {0 wcp>
—_— |- , 2.29

where w = (w,? + w.2/4)Y?, w, = eB/m*c, B being the external magnetic field, up the
Bohr magneton, g, the effective Landé- g factor and all other symbols have the same
meaning as defined earlier. Our aim is to study the synergetic effect of e-p interaction and
RSOI. The Hamiltonian (2.29) is exactly soluble and the eigenstates and eigenvalues [16-
29] of H, are given respectively by
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Im| ime-Qsp?

) Q! 1Y oyl me—Qgp” |y 2
nmo (0 @) = [m] Qsp°)2e 2 Ly (Qp" )Xo (2.30)

m
Ey = (2n+ |m|+ DO, + S wct+o ( %wc + ame,%), (2.31)

where ) is expressed as following

.2
Q, = \/whz +TC + cagwplw., (2.32)

the spin function x, in Eq. (2.30) is mentioned earlier where o = +1 correspond to the spin-

polarization in the magnetic field direction and L',,’L"I is the associated Laguerre polynomial.
The polaron self-energy correction to electron energy to second order in RSPT reads

|< 7(19371'0(1)' ¢)| fq e~iap |lpr(gr)w(p, q0)>|2

AEpme = —

n'm’ q (ET(l(')gn’O' - Er(z?r)n,a + 1)
= ¢l (wons] €790 G (p, )|, (2.33)

where G (p, p") is the Green function corresponding to Hamiltonian (2.27) and is given by
[64-66]

oo — O @) (P, 9)
n'm n'm'c nmo

© Q 2 cosh(wc t)
_gl0 _a (2, 0 _ N2 )
1 En,m,o)t 5 (p +p )coth(Qgt) 2p.p SIR(0, )

sinh(wc t)
. ’ ! 2
Ay x)m,

=fdt Qae_(

21 sinh(Q,4t)
(2.34)

which is valid for the entire range of the magnetic field for GS and for weak magnetic field

Q, + % < 1) for the first two ESs. The perturbed energy of the system can be written as
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_g©

En,m,a n,m,o + AEn,m,a'

(2.35)

where the polaronic corrections AE,, ,,, , for the GS and ESs are respectively given as

1
a ® wt\]72
AEyos = — E./n Qg dtet [1 — Gt cosh( ZC )] Z, (2.36)

1 «© - Wc¢
AEO,il,O’ = _an/nﬂo— f dt e_( 1= QG+ T)t(l - e_ZQat )_1
0
— -3/2
x [2f; (95 F ho) +he” = £°|[fo (9ofo + ™) ™7, (237)
where,
w,t
fs = [1 + coth(Q,t) — cosh (TC> sinh™1(Q,t )], (2.38)
w,t
Jo = [1 + coth(Q,t) + cosh (TC> sinh™1(Q,t )], (2.39)
. (DC t . -1
h, = sinh (T) sinh™' (Qqt). (2.40)

We are interested in studying the level splitting as a function of both a and [,. Egs. (2.36)
and (2.37) clearly suggest that both the GS and ES polaronic corrections are linear in a. From
the experimental point of view, it would be useful to define the renormalized cyclotron

frequencies as

weE = Eo 116 = Eooo > (2.41)

o
and the Zeeman (or level) splitting (ZS) as
AZS == (1);-0_ - (1);0_. (242)

The dipole selection rule allows the transitions
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wctr =Eo11 — Eoo1s (2.43)
wct =Eo1,-1— Eop-1, (2.44)
we_ = Eo_1,-1 = Epo,-1, (2.45)
we =Eog—11 = Epoa- (2.46)

In the absence of RSOI, w,”, = w.and w,” = w.~,. Butthe inclusion of RSOI results in

a few more Zeeman lines because of an additional splitting due to RSOI. Here we present our
numerical results for GaAs and CdS QDs. As shown above, one can define four Rashba-
Zeeman (RZ) splittings. We consider, for example, the frequency difference (w.", — w.”)

which we will call Ag,. Therefore, throughout the numerical analysis we refer A, as
Arz = (wct —we7). (2.47)

2.3 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we numerically compute the energies of the 2D polaron in the presence of
RSOI with parabolic confinement both in the absence and presence of the magnetic field. At
first, we show the results for the 2D polaron in the absence of the external magnetic field.
Later, we present the same for the magnetopolaron case.

2.3.1 RESULTS FOR 2D POLARON WITHOUT THE EXTERNAL
MAGNETIC FIELD

In the free-polaron case, Eq. (2.20) is minimized with respect to a and u numerically to get
the energy for all values of the coupling constant a. We take the values of «a from Ref.
[62,63].

Fig.2.1 provides the results for the size-dependence of the GS and the first ES energies of
the polaron in a GaAs QD for a particular value of the RSOI coefficient az. It is clear from
the figure that in the presence of RSOI, the two-fold spin-degeneracy of the first ES of the
2D PQD is lifted even in the absence of a magnetic field and as a result, the ES bifurcates
into two levels corresponding to the two different eigenvalues of the spin operator, though
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GS does not undergo any such split [16-30]. The splitting becomes more pronounced as the
size of the QD is reduced. The spin-splitting also occurs in higher excited states in the m # 0
sectors (not shown here).

Fig.2.2 shows the plot of GS and ES energies with respect to a. The splitting of the ES is
again visible but interestingly, the splitting energy is independent of a.

Figs.2.3(a) and 2.3(b) show the variation of the GS and ES polaronic corrections
respectively for a 2D PQD of GaAs with respect to [, for three « values with az = 0 and
0.05. From the figures, one can see that e-p interaction leads to significantly large polaron
self-energies (AE) at small values of effective QD size [,. As [, is increased, AEs initially
decreases very rapidly, but beyond a certain [, they decrease very slowly, asymptotically
reaching the bulk values. Also, the plots for @y = 0 are identical to those for az=0.05 for
different values of a. Thus, we are led to conclude that the polaron self-energies for GS and
the first ESs of a 2D PQD are unaffected by RSOI for a 2D PQD.

30

\‘ E(+) a =0.068
-~ \ N pa s i
.E \\ LS.uR—().OS GaAs QD
= 20 \/ 5
: -

\ E
= =
g ES.uR—O.OS
=
1y \
& lO [ \
= GS
0 - - - —

0.4 0.6 0.8 1

I0 (Feynman units)

Fig.2.1 GS and first ES energies (E) of a free polaron (in FU) vs. dot size, [, (in FU) with az = 0 and
0.05 (in FU) for a GaAs QD.
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Fig.2.2 GS and first ES energies(E) of a free polaron (in FU) vs. a with az = 0and 0.05 (in FU)
for a GaAs QD.
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Fig.2.3. Polaronic corrections for (a) GS (—AEgs) (b) ES (—AEgs) vs. [y fora =1,5,9 and ap =
0,0.05.

We define the transition frequencies as w® = E;—’S — E.s and Rashba spin-splitting energy
as Agp= Efs — Ezg = wt — w™. It is observed that spin-splitting energy A does not depend
on e-p interaction, a (not shown here) which confirms the observations made in Fig.2.3. But
Ay indeed depends on the size of the QD which can be seen in Fig.2.4. For small [, the effect
is considerably large and it decreases as [, increases and eventually reduces to zero in the
bulk limit. Thus, this size-dependent spin-splitting is purely a quantum phenomenon that
arises when the length scale reaches the quantum domain.
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Fig.2.4 Spin-splitting energy, Ag Vvs. [, for a GaAs QD with az = 0.05.
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Fig.2.5 Bound polaron energy, Eg for GS and first ES vs. [, in FU for a GaAs QD with ap = 0, 0.05.

Figs.2.5 and 2.6 show the GS and ES energies for a bound polaron case. The results have
qualitatively the same nature as those obtained for the free polaron. We have also studied the
behaviour of the GS and ES polaron self-energies with respect to the effective QD size (not
shown here). The behaviour is similar to the free polaron case.
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EB (Feynman units)

Fig.2.6 Eg vs. a for GS and first ES in a GaAs QD with ap = 0 or 0.05 and [, = 0.5 in FU.

2.3.2 RESULTS FOR 2D MAGNETOPOLARON WITH THE EXTERNAL
MAGNETIC FIELD

:
=
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5 ;

: —u
E‘. e, =0.05(+) |
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<

0 0.5 1 1.5 2 2.5 3
I \ (Feynman units)

Fig.2.7 GS self-energy correction AEy, (in FU) of a 2D magnetopolaron vs. [, (in FU) for two

values of w, (in FU).

Fig.2.7 displays the behaviour of the GS polaron self-energy, AE,  , With respect to [, in

the absence and presence of RSOI for two values of B. At a large magnetic field, polaronic
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corrections become different for the spin-up (+) and spin-down (-) electronic states leading to
a splitting of GS due to RSOI. Similar splitting also occurs for the excited states (not shown
here). Interestingly enough, the e-p interaction and RSOI get intertwined in the presence of a
magnetic field.

Fig.2.8 shows the dependence of RZ splitting, Az, on «a for agp = 0 and 0.05 with w. = 0.3
and [, = 2.0. Ag is found to be a linearly decreasing function of a both in the absence and
presence of RSOI. The suppression of ZS caused by e-p interaction in a QD was predicted to
be size-dependent by Mukhopadhyay and Chatterjee and Chatterjee and collaborators [67-
69]. Fig.2.8 suggests that in the presence of RSOI, ZS becomes slightly larger for a small
value of ap which implies that RSOI enhances ZS. However, RSOI can be tuned by applying
an external electric field and RSOI-induced ZS can be increased. Thus, the suppressive effect
of the polaronic interaction on ZS is reduced because of the interplay between e-p interaction
and RSOI.

0.28

0.26 -

ARZ (Feynman units)

0.24

0.22

Fig.2.8 Agz (in FU) vs. a for GaAs QD with w, = 0.3 (in FU) and [, = 2.0 (in FU).

To see the size-dependence of RZ splitting, we plot in Fig.2.9, Az, as a function of [, for
GaAs and CdS QDs. The figure unequivocally shows that in the case of @ = 0 = ag, ZS is
independent of [,. As was predicted earlier [67-69], in the presence of e-p interaction alone,
below a certain l,, ZS becomes size-dependent and decreases rapidly with decreasing [,,.
However, ZS has a weak dependence on RSOI at low [, and the splitting increases rather
slowly as the QD size decreases. Thus, RSOI has an opposite effect on ZS as compared to e-p
interaction. However, this effect is normally smaller than that due to e-p interaction and



Chapter 2

therefore, overall ZS will still decrease with decreasing QD size, but the decrease becomes
less rapid in the presence of RSOI. The important to note is that RSOI can be increased by an
external electric field and therefore RSOI-induced enhancement of ZS can be tuned. Thus,
because of the interplay between e-p interaction and RSOI, ZS in a polar semiconductor QD
can be controlled by tuning both the QD size and the external field and a desired resonant
transition can be obtained. The interplay of e-p interaction and RSOI in the presence of a
magnetic field can give rise to some interesting effects.

0.35
-E 0.3 prosweem ;I"'-:"'E'.'T.:'-'-'."-'-HH-;IH.L'ITH-IHTH-&JEHT.U_
= ) \ I.'I -----
2 W — ol =0
€ GaAS |
g0 oty 0=
q; s — (=527, uR=0-----u=0.068,uR=0.05_
' -----u=9.527, U 0.05 —a=ﬂ.068, aRf 0

1.2 14 16 1;8 ) 12 M
Iu (Feynman units)

Fig.2.9 Ag, for GaAs and CdS QDs as a function of [, with w, = 0.3.

2.3 CONCLUSIONS

The polaron self-energy corrections for the GS and the first ESs of a 2D polar PQD with an
arbitrary size have been calculated using an all-coupling variational theory incorporating the
effect of RSOI. We observe that the two-fold degeneracy of the first ESs with respect to spin
is lifted by RSOI even in the absence of a magnetic field leading to a discernible splitting of
the first ESs, GS does not show any such splitting. Similar results are also observed for the
bound polaron problem. Our calculation, when applied to a GaAs QD, suggests that though
the polaron self-energies of both free and bound polarons are considerably large for small
QDs, they remain unaffected by RSOI.
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We have next considered the same QD system placed in a magnetic field and obtained the
polaronic corrections for GS and the first ESs using the 2nd—order RSPT. In contrast to the
B = 0 case, the polaronic corrections now depend on RSOI for a sufficiently high magnetic
field. Application of our theory to GaAs and CdS QDs reveals that the effects of e-p
interaction and RSOl on ZS are opposite and both are size-dependent. While the e-p
interaction suppresses ZS, RSOI enhances it, though the enhancement by RSOI is normally
much small. However, in the presence of an external electron field, RSOI-induced ZS can be
enhanced. Thus, in conclusion, the suppression of ZS caused by e-p interaction in a polar QD
is reduced by RSOI. This interplay between e-p interaction and RSOI can give rise to some
interesting effects in the presence of a magnetic field.
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CHAPTER 3

SPIN-TRANSPORT ACROSS A TWO-DIMENSIONAL METAL
SEMICONDUCTOR INTERFACE WITH INFINITE POTENTIAL
IN PRESENCE OF SPIN-ORBIT INTERACTIONS: DOUBLE
REFRACTION AND SPIN-FILTERING EFFECT

ABSTRACT

The spin-transport across a 2D metal-semiconductor junction with a Dirac-delta function
potential at the interface and the RSOI and DSOI in the semiconductor region is studied
exactly using discontinuous boundary conditions and the spin-polarized reflected and
refracted current density and differential conductance are calculated. It is shown that in the
presence of an infinite interface potential, an increase in the incident electron’s energy
reduces the spin splitting. It is also shown that the reflected and refracted coefficients, the
spin-polarized currents and the corresponding differential conductance depend strongly on
the SOls. The reflected spin polarization, however, becomes zero due to the infinite potential.
The RSOI enhances the refracted spin polarization while the DSOI reduces it. Thus, the
maximum in polarization occurs at small values of DSOI and large values RSOI.
Interestingly, though the presence of delta-potential at the interface does not change the

magnitude of the spin-filtering, it causes a constant shift in the spin polarization.
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3.1 INTRODUCTION

The SOI effect which has been studied quite extensively for the last few decades in
semiconductor heterostructures and several other surface-alloy systems, lies at the heart of
Spintronics [1,2] which is a new branch of modern condensed matter physics where spin-
splitting due to SOI is used to manipulate properties and fabricate spin-based nano-devices.
The very first spintronic device was proposed in the context of spin-FET by Datta and Das
[3]. Due to the wide range of applicability, many research groups have studied the SOI
effects in LDS [4-15]. Because of the advancement in experimental techniques such as
electron-spin resonance, spin-resolved photoemission spectroscopy, scanning tunnelling
microscopy etc., it is now possible to achieve spin-polarized transport in realistic systems like
ferromagnet-semiconductor-ferromagnet  interface  [16],  ferromagnet-superconductor
interface [17], graphene spin-filter [18] and so on. But the Schottky barrier [19] across the
semiconductor-metal interface should be carefully reduced by implementing suitable
fabrication techniques [20] in order to get high transmissivity. These semiconductors are
useful to get zero-field splitting [21-23] due to RSOl or DSOI, or both SOIls, which gives rise
to many interesting phenomena in spin polarized mesoscopic transport [5, 21, 24-32].
Spin-filtering phenomenon based on SOI was first studied by Koga et al. [30] in a non-
magnetic tunnelling diode which was a proposed device based on RSOI. Srisongmuang et al.
[31] have theoretically shown that under certain conditions, the tunnelling conductance in a
metal-semiconductor junction system can be increased by increasing the spin-flip scattering
potential at the interface. Very recently, Bandyopadhyay et al. have studied the reflection and
refraction of an electron spin at a quasi-2D semiconductor (without SOI)-semiconductor
(with SOI) junction [32] and also separately studied the same at a quasi-2D semiconductor-
topological insulator junction [33]. Khodas et al. [34] have shown that an unpolarized
electron beam obliquely incident on a heterostructure interface separating two regions with
different SOI strengths can undergo double refraction leading to two transmitted beams with
different spin-polarized angles. They have, however, considered only RSOI to achieve this
double refraction. Recently, Kalla et al. [35] have extended this idea to a 2D metal-
semiconductor junction in the presence of both SOIs and found that the presence of DSOI
causes a stronger spin-filtering effect. However, they have studied the system in the absence
of a scattering potential at the interface. In this paper, we consider an infinite Dirac-delta
potential at the metal-semiconductor interface and investigate the combined effect of RSOI
and DSOI on doubly-refracted spin polarization using finite discontinuity condition in the
first derivative of the wave functions at the interface. We show that the presence of delta-
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scatterer has interesting effects on the reflection and transmission of electrons and hence on
spin-polarized tunnelling current and conductance. We however observe that the infinite
barrier does not change the angle of the refracted beams.

3.2 ANALYTICAL MODEL AND FORMULATION

The system considered in our study is an infinite 2D model system lying in the x-y plane
where the region: x < 0 (region-1) denotes a metal and the region: x > 0 (region-I1) denotes
a semiconductor which has non-zero RSOl and DSOI. We write the Hamiltonian of the
system as

H:HI+H”+HA. (31)
Here H; represents the metallic region and can be written as

_ 49

H_ )
'72m " 2m

for—o0o<x <0, (3.2)

where q(qx =qcos0;,q, =qsin Bi) is the momentum vector of the free electrons, 6;

being the incident angle and m is the electronic mass. The Hamiltonian H;; describing the
semiconductor region is written as

P: p3
2m*  2m*

a B
Hy = + - (oy0x — 0xDy) + - (oxpx — 0ypy) +Vp ,for 0 < x < =, (3.3)

where p(px,py) and m* represent respectively the momentum and the effective mass of the
electrons in semiconductor region, the third and fourth terms describe respectively RSOI and

DSOI in the region Il with a and g being the respective strengths of the two interactions and

Vy gives the barrier height in region-II. H, describes the interface Hamiltonian which is
modelled by

Hy = AS(x) (3.4)

where, 8(x) is the Dirac delta-function, A being the strength of the scattering potential. We
can write the Schrodinger equation (SE) for the region-I as
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Hip, =gy, (3.5)

where 1, is the electron wave function for the region-1 and ¢, is the corresponding energy
given by: g, = h?(q% + q2)/2m = h?q?/2m, m and q(q,, q,) being the Bloch mass and
wave function of the electron respectively. The wave function y;; corresponding to energy &,

in the region-I can be expressed as a linear combination of incoming and reflected wave
functions:

] eldxx 4 [ZT] e—ifIxx) eldyy Jfor —o0o < x <0, (3.6)
l

Ui, y) = (% [1

which has an x-part and a y-part. The x-part contains both the incident wave function and the
reflected wave function. As the spins are not polarized in the metallic region-I, the x-part of

the incident wave function consists of equally probable spin-up [é] and spin-down [(1)]

configurations. We assume that the x-part of the reflected state is associated with probability
amplitudes b; and b, for spin-up and spin-down electrons respectively. As the system has
translational invariance along y-direction, the y-part for both incident and reflected wave
functions is same. We can write the SE for the region-11 as

Hypy = Exy (3-7)

where y;; can be written as

® ®

AII I ikyx [BII l —ik x> ik
X, V) = ettx* 4 e X ethyY for0 < x < o0, 3.8
l/)II( y) <[A”(2) B”(Z) ( )

where in general, 4;;Y and 4, denote the transmission amplitudes of spin-up and spin-
down respectively in region-11 and B,,(l) and B;;® denote the same for reflected part. Since

there is no wave reflecting from region-11 we can write B;; = B;;¥ = 0. Using Egs.(3.6)
and (3.8), we obtain the eigen energies of region-II as

Eki = & + VO i k/l(gk) ) (39)



Chapter 3

where &, = A?(kZ + k2)/(2m*) = A?k?/2m* and A(6;) being the angle-dependent
effective SOI strength given by

A(6,) = a2 + B2 + 4ap sin 6y cos ), , (3.10)

where 0y is the angle of refraction for the electron in the semiconductor region and is given
by 6, = tan™'(k,/k,). In Eq. (3.9) we can see the energy splitting of the spin-up (+) and

spin-down (—) states due to SOI. The wavefunction corresponding to E,+ then becomes

, ipr— A ,
Y (x,y) =(A§,” _e_1i¢k+]elk¥x+A§,2) ell" elkxx)e”fyy (3.11)

acos O+ siny
asinBi+p cos by

where ¢, = tan_l( ) We also obtain the magnitude of energy-dependent

momenta, kT, as

2m(E,: — V,
Kt = —kep +\/k520 +% , (3.12)

with ksp = [mA(8,:)/h?] , k™ =k*cos@,+ and k,* =k*sin6,: . Due to the
translational invariance along the y-axis, the projection of the momentum vector should be
continuous atx = 0 i.e., q, = kyJ—r , which leads to 8,+ = sin™*{(q/k*) sin6;}, where the
0,+ and 6,- denote respectively the spin-up and spin-down splitting angles of the incoming
wave in the region-Il. Using 8,+ — equations, we get A(8,+) from Eq. (3.10) and we get
E,: from Eg. (3.9) and then solving Eg. (3.12) self-consistently, we obtain k* and
corresponding energies E,+. The refractive indices corresponding to the two refracted waves
are given by n,+ = (k*/q) = (sin8;/sin 6,+). There will be no transmission of incident
wave when 6; > /2 . Therefore, there exist two critical angles, 6 and 8., in the region-II
for each of the refracted waves which read

1/2

A(2 2n2 (E, .« (Z) -
N+ = sinF = Z/Z—(ng)q 1+ 1+ r(:a E;;)Z VO) . (3.13)
2
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To calculate the probability amplitudes 4;,", A, by and b;, we employ the following
boundary conditions [28,31]:

I,DI(X=O,y)=l/)”(X=O,y)= l/)(x=0,y), (314)

m

[ewn] - 2 [mmen)] = (Gratimkoo)p e =05). @15

m*

The discontinuity in the 2" boundary condition arises due to the presence of infinite barrier
and SOI. We obtain

. 1
_ 2@ ) ip, +
by = A;;" — Ay et Pkt —— (3.16)
T 11 11 (—2
. 1
—_ A —igy- ©))
by =A,,e P + A} ——, 3.17
l 11 11 /—2 ( )

where,

AL — V2 [(1 + pkxi)(l + eii"’ki) + f(ei“ﬁki T 1)]
11 -

, 3.18
M+ N ( )

with, M = (1+pe + 87 ) (L4 +§e'P)  and N =[e7 (1 +p) -
&|[e™ (1 + pyst) — €], where,

=, 3.19

Pix m* Ty hz 0y ( )
m A(6,+)

= 3.20

= (3.20)

The reflection and transmission coefficients are given by

Ry, = |bm|2 : (3.21)
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+‘_
m . @w2)|? (kx * kgo cos Hkx+__>
o = 14 . 3.22

tome 0x (3:22)

From the second boundary condition (3.15), the current continuity equation at the interface
(x = 0) can be expressed as

[% (ﬁx + hksooy — %A ) Yu(x, y)]x=0 = [%ﬁxll)l(X, y)]xzo, (3.23)

where p,, = —ihd/0dx. To see the conservation of probability current we multiply Eg. (3.23)

with the Hermitian conjugate of 1, (x,y) i.e., ¥, (x,y) from the left-hand side which can be
written at x = 0 as

[0 ) (B ksomy =58 ) en)] = [t | . G2

Using the first boundary condition at x = 0, the above equation can be re-expressed as

[‘,[)IIJr (px + hksoay )11’11 (x, J’)] [’J’IT(X' y) %ﬁxwl (x, y)]x=0. (3.25)

Equating the real parts on both sides of Eq. (3.25), in general, we get the probability current
continuity equation as

| AD)? R (AP A (cos i+ — cos p-) + = Im(A*(Z)A(l))(sm Gr+ — SIN Py- )]
hk;
ad R (ATP AP (cos P+ — cos ¢py-) — —Im(A*(l)A(z))(sm i+ — SIn G- )]
ka
—30 [|A(1)| sin ¢y+ — |A |2 sin (l)k—]

hkso [1 «,@\ , 1 H(1) 4 1 (1) 4@
- [Elm(A” A )+Elm(A” Ay )cos(¢k+ + ¢r-) —ERe (A” Aj )sm(q.')k+ +q.'>k—)]

hkso [1 W@, , 1 +2) , (1) 1 +2) ;Y o
+ — [Elm(A” Ay )+Elm(A” Ap )cos(¢k++¢>k—) —ERe (A” Ap )sm(¢k++¢k—)]
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—7 [I (A*(l)A(z))(cos ¢+ — cos P,-) — Re (A*(l)A(Z))(sin Pi+ — sin )]

[Im(A*(Z)A(l))(cos ¢+ — COS Pj-) + Re(A*(Z)A(l))(sm Pi+ — sin )]

hq
=7"[1— |br| = by |2]. (3.26)

In deriving Eq. (3.26) we have assumed both the angle of refractions 6,+ and 6,- and hence
o+ and ¢y~ are real. If the region-11 does not contain SOCs which means a = 0 = 3 so that
Gt = 0= i, A(0) =0, kso = 0, O+ = B, k" =k~ =k, and A = AP | then
double refraction does not occur and in that limit with the help of Egs. (3.21) and (3.22), Eq.
(3.26) satisfies the usual current continuity equation as following

m k,

m* q, [|A(1)| + A(2)| ] I1+Ty=1-Ry—R,. (3.27)

Next, we consider the zero-temperature refracted and reflected currents (]Ref " Ref " which

can be expressed as a function of bias voltage V as

l &
JREITRSL (o) = qf J J de; cos 6; /1 + <E—Z> (ThuRu) . (328)

where [2 is the area of the metal, is the maximum possible angle of the incident wave given
by

0,, = sin™! (%) : (3.29)

and Er and qf are the Fermi energy and Fermi wave vector respectively. We also calculate

the spin-polarized differential conductance in the region-1l as

Ay (V) elrqp (Om eV
GT,l(V)z v = 2th J_emdei cos@i 1+ E_f TT,i' (330)
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To understand the spin-dependent tunnelling conductance more concretely, we define the
spin-polarization of conductance as

Refr,Refl ]Refr,Refl

Refr,Refl _J1 1
P] ~ JRefr,Refl Refr,Refl * (3'31)
) +]l

3.3 NUMERICAL RESULTS AND DISCUSSIONS

A schematic representation of the system is shown in Fig.3.1. We set V,=12 meV, m/
m*=0.042 and kso = 0.05g;. One can see for normal incidence i.e., 8; =0, there is no
refraction. Due to the presence of RSOl and DSOI, the momenta and the corresponding
refracting angles split into spin-up (+) and spin-down (-) branches in the semiconductor
region. We obtain the reflection and transmission coefficients and the spin resolved current
densities and tunnelling conductance of this system in the presence of the infinite delta
potential and the SOls.

In Fig.3.2(a), we show the variation of two refracted angles, 6,+ and 8- with respect to
the angle of incidence (6;) in the presence of delta-function-scatterer at the metal-
semiconductor junction for different strengths of RSOl («a) and DSOI (B). The values of the
Fermi energy, bias voltage and the incident energy of the electrons are chosen as Ef =15
meV, eV = 25 meV and g, = 20 meV respectively, for the purpose of concreteness. It has
been observed that RSOI alone can cause spin-splitting of spin-up and spin-down electrons,
but in the presence of both SOlIs the angle of refraction reduces for both spin-up and spin-
down electrons. However, the spin-down refraction angle reduces much more than the spin-
up refraction angle and as a result the gap between the refracted beams of electrons of two
different spin orientations increases. Thus, the spin-polarization is greater when both RSOI
and DSOI are present as compared to when only RSOI is present. One can also observe that
spin-up electrons can undergo a total internal reflection at a critical angle though the spin-
down electrons do not show any such effect. This feature was also suggested by Khodas et
al. [34]. Kalla et al. [35] have studied this behaviour using continuous boundary conditions in
the absence of the infinite potential at the interface. Here we have studied the system in the
presence of an infinite delta potential at the metal-semiconductor interface using
discontinuous boundary conditions. It is interesting to point out that the behaviour of double
refracted waves for two different spin projections due to SOIs with respect to 6; is exactly the
same for A= 0 and A=+ 0. Therefore, the presence of an infinite potential at the junction does
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not change the path of the spin-up and spin- down refracted electrons with respect to 6;. We
also plot 6,.+ vs. 6; in Fig.3.2(b) to show the effect of incident energy on the refracted angles
of the spin-up and spin-down electrons at particular strengths of RSOl and DSOI keeping E;¢
and eV fixed at 15 meV and 25 meV respectively. It is seen clearly that for A+ 0, the
incident energy decreases the refracted angle of the spin-up electrons and increases that of the
spin- down electrons, while for A= 0, the scenario is completely opposite (inset).

y k
y {} y {L} k*
q k," =K sin B+ k-
qy = qsin 6; \ 7
k,” =k sin6,-
ei ek_ ek+
[0 R > = 1 (O—— ~ :k>
Qx = qcosb; Ax ket =k* cosO,+ X
>
k, = k™ cos6-
A8(X)
Metal: Free electrons (No | Semiconductor: Rashba and
Spin-orbit Interaction) Dresselhaus Spin-orbit Interactions
x=0 X

Fig.3.1 Sketch of the metal-semiconductor junction system.

The refraction coefficients Ty and T, as a function of the incident angle 6; for different a, 3
combinations are shown in Figs.3.3 (a) and (b) respectively at a particular A-value. We set E¢
=15 meV, eV = 25 meV and g, = 20 meV for next few plots. Fig.3.3 (a) shows that for a #
0, B = 0, the behaviour of 6; with respect to 8;=0 is almost symmetric except some kink like
structures. For the ;<0 - region, as |6;| increases, Ty increases from a finite value at 6;=0,
reaches a small maximum and then decreases to zero after going through a Kink structure. In
the 6;>0 region, save for the Kink structure, Ty exhibits the same behaviour leading to the
formation of a dip at 8;=0. One may notice that DSOI enhances the refractivity and the peak-
structure becomes much more prominent in the case of a = 0,3 # 0. For all the cases i. e.,
a> B, a<Band a =, Ty behaves qualitatively in a similar way with respect to 6;. Ty
shows a clear maximum at some value of |6;| in the range —a < 6; < a, where a is a
positive number and falls off to zero as 6; increases on either side of normal incidence. For a

set of set of (o, ), Ty is higher for a < {8 than for a > . This can be concluded from the
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figure by comparing the curve for a =3 meV-nm and =5 meV-nm with that for a =5 meV-
nm and 3 =3 meV-nm. It is also evident that the o« = § — curve lies in between o > {3 and
a < B — curves. One may also notice that the variation of T; is not fully symmetric with
respect to 6;=0 except for the a = f3 - case.

Fig.3.2 (a) 6, as a function of 8; for different a, 3 combinations at A= 20 meV. Inset: at A= 0. (b)

—
- 1
-
-

-
-
-
-

a=5meV-nm,B=0

a=5meV-nm
k- B=5meV-nm

(b)
1.5

A=20

1 k+

Al k- £ =

£ =26meV
q

rrieV4

meV

0+ as a function of 6; for e, = 20 meV and g5 = 26 meV at a=f =5 mev-nm. Inset: at A= 0.

(a)

-

—a=5 meV-nm, =0
—--a=0, =5 meV-nm
1.5} =--a=5 meV-nm, =3 meV-nm
""" a=3 meV-nm, =5 meV-nm
=5 meV-nm, =5 meV-nm
1.0
0.5

(b)

0.75

—0o=5 meV-nm, =0
—--a=0, f=5 meV-nm
= -o=5 meV-nm, =3 meV-nm
""" a=3 meV-nm, =5 meV-nm
- a=5 meV-nm, =5 meV-nm

Fig.3.3 (a) T; (b) T, as a function of 6; for different a, § combinations at A= 20 meV.
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25 . — 1.25 ' ' ‘
(8)1.25 (X | S— —a=0 meV-nm ®) | T 9=0meV-nm
g0 "N = reiTesirl 1.0 - -a=1 meV-nm |
o.ws:‘:‘l—”;:" a=2 meV-nm 0.075ﬁ o=2 meV-nm
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B B

Fig.3.4 (a) Ry (b) Ry as a function of {3 for different o values at A= 15 meV. Insets: at A= 0 meV.

In Fig.3.3(b), we show T, as a function of 6; for the same set of values of «,3 and A.
Interestingly, for a # 0, and B = 0, T, decreases rapidly, essentially in a linearly way on
both sides of 8; = 0 as |0;| increases from zero giving rise to a sharp kink-like peak at 6; = 0.
T, finally becomes zero as |6;| attains a certain value. The peak height in T, for the case of
a # 0 and 3 = 0 is almost equal to the corresponding peak for T;. Also, for T, as a function
of 8;, the peak in the case of a # 0,3 = 0 is higher than that for other combinations of «
and B. As we can see, the Gaussian-like pattern of the T;-0;-variation turns into a triangular
structure in T, plots for a > B and a < B. In the case of T,, there exists a region: |6;| < 0,,
0. being close to 1, where the variations are symmetric fora # 0, =0,a=0,+# 0 and
a = [3. Beyond that region i.e., |6;| = 6,, the refractivities die out to zero. For a« = 0,8 # 0,
T, develops a double-peak structure symmetrically within the |6;| < 6, — region, whereas for
a = B — case, T, shows a single peak. It can be seen that DSOI alone decreases T,. Here also,
a = B curve lies between a > 3 and a < 3 curves, but the a > 8 - curves lie higher than the
a < - curves which is an opposite behaviour compared to the case of T; for the same set of
a, B values. Therefore, the effect of RSOI and DSOI on T; and T, are opposite in nature. One
can see for example, T;pax > T max fora>p, a<pB,a=panda =0,3 # 0, but for a #
0, =0, Trmax = Timax- Thus, in the presence of a finite A, the variations of Ty and T, are
very much different from those for A= 0 considered by Kalla et al. [35].

To see the effect of SOIs on reflection coefficients of spin-polarized electrons we plot R;
and Ry in Fig.3.4(a) and Fig.3.4(b) respectively with 8 for different values of a and a non-
zero value of A. The A= 0 results are shown in the insets. The insets show that if we consider
the non-zero a-cases, both Ry and R, increase as a increases and the behaviour of R;and R;
are also qualitatively the same. For non-zero a values, both Ry and R, initially decrease with
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increasing B, go through a dip and then increase {3 is further increased. But for a = 0, they
monotonically increase with 8 essentially in a linear way. One can notice clearly that at a
finite A value, Ry and R, are independent of both o and 8 .We find that the variations of Ry,
with a are similar to that with g (not shown here). Next, we study in Fig. 3.5, the effect of
SOIs on the refraction coefficients Ty and T,. The A= 0 — cases are shown in insets. Fig.
3.5(a) shows that at A+ 0, T; has a finite discontinuity at a certain a (a,) for small values of
B. At large (3, however, it decreases monotonically with o. Also, the f = 0 — behaviour is
qualitatively different from the B # 0 - behaviour for a < a..

a) 0.7 " 0.75 — b) 0.1 —
@) N =0 (b) A oah,  B=0 —B=0 meV-nm

N N, RRSN = ‘=1 meV-nm

Fig.3.5 (a) T; (b) T, as a function of « for different § values at A= 15 meV. Insets: at A=0 meV.

Another point to be observed is that a, decreases as 8 increases. At A= 0 (inset), Ty
decreases monotonically as o increases for all B except for § = 0 for which it shows a slow
but linearly increasing behaviour over the entire a-range. Thus, the discontinuity in T; (which
is completely absent at A= 0) appears to be directly related to the presence of the delta-
potential at the metal-semiconductor junction. One can also see that the magnitude of T;
increases with increasing B, though $ = 0 curve lies on top of the 3 = 1 and = 2 meV-nm
curves for the intermediate range of a. Fig.3.5(b) shows a similar behaviour of T, as a
function of o for different values of (3. Here also a discontinuity exits at A+ 0. But in the case
of T,, it always increases with increasing . Overall, the value of T; is greater than that of T,
for the same range of a and . Interestingly enough, T; and T, do not show any discontinuity
for A+ 0 when we plot them with B for different values of a. Also, the behaviour is
qualitatively similar for both A= 0 and A+ 0. We have not shown these plots here as they are
well explained by Kalla et al. [35] for A= 0. It is evident from Fig.4 and Fig.5 that for plots at
a =3 =0and A= 15 meV, the refraction (T;,) and reflection (R;,) coefficients satisfy:
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T, + T, + Ry + R, = 1 which is precisely Eq. (3.27). Also, for the other combinations of a
and B, T, and Ry, satisfy Eq. (3.26) for which one has to solve k* self consistently to get
0+ and hence ¢y:+.

As spin-resolved current densities are directly dependent on refraction coefficients, we plot
spin-up current (J;) and spin-down current (J;) as a function of a for several values of in
Fig.3.6 (a) and (b) respectively at a finite value of A. ], stands for the normalization constant
which is given by: ], = el?qs/2mh. As expected, J; (J;) behaves with a qualitatively almost
in a similar way as Ty (T,). Of course, quantitatively, they differ by orders of magnitudes.
The plots of ];, and ], exhibit the same signature of discontinuity at a particular o-value for
A+ 0, which clearly has its genesis in the infinite scattering potential at the metal-
semiconductor junction. A= 0 variations are shown in the insets where, as expected, we do

not see any discontinuity.

(a) 0.06 ——— )0
—R=imeV:nm ' \\ A=0 | —B=0meV-nm
= =B=1 V- % A | g 5
0.055%.. ___g=2"m‘zv_:: 0.008 %, 095 N, |~ B=tmeVenm.
T, i T Y, g— —"-p=2meV-nm
"""""""" = % 2 4 = i
- 0.05/ B e I 0.006 | B=3meV-nm |
~— I _.~_' ‘:'—"-'L'."_'_'-_-: sas N R
< \ i et > Lo M
™ 0.045\\, { ] o 70.004N N,
N " \‘._‘ A= ‘ \ i ~\::: .....
S 7 o8k, T I N S
0.04 ward o e 075 S | 002 N ! e S
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1 2 3 4 5 0 1 2 3 4
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Fig.3.6 (a) J; (b) J, as a function of a for different (3 values at A= 15 meV. Insets: at A=0 meV.

We show the variation of J; and J, with  for different values of a in Fig.3.7(a) and (b)
respectively. As discussed earlier in the case of T; and T,, J; and J; do not exhibit any
discontinuity when drawn as a function of . In Fig.3.7(a), one can see that for a = 0, J;
shows a linear monotonic increase with . However, for a # 0, the behaviour is different. As
B increases from zero, J; first decreases, goes through a minimum and then increases with
further increase in 3. For a # 0, J; increases with increasing a in the weak-f3 regime while,
for higher values of 3, J; decreases as a increases. Fig.3.7(b) displays ], as a function of {3 for
the same set of « values. It can be seen that for a # 0, ], initially increases with 8 but finally
saturates as (3 becomes large. However, for a = 0, ], shows a slow, linear and monotonically
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decreasing behaviour with . For o # 0, ], shows a decreasing behaviour with increasing a
for the entire range of 3. Comparison with the insets shows that the A= 0 variations that are
qualitatively similar to the A+ 0 curves. Quantitatively, however, that the magnitudes of the
current densities at A+ 0 are much smaller compared to those at A= 0. Thus, one can
conclude that the presence of a delta-potential scattering potential at the interface reduces the
transmission current.

—0=0 meV-nm

88 e 02/4=0 _ -4 - -0=1meV-nm
2.5 0.157 4.;2':"—"—':""““ """ 0o=2 meV-nm |
= 10:B1 ";0"""—:‘ ey ) 9 4 ~a=3meV-nm
= 28 .4--/_,,.1’*'" Ll B g
= 075( P sy -
’ 2 A ___:;-;:-f" B
O —f:.:-'r“"'“‘/ —0a=0 meV-nm _gw T .
R AN - SR aVem] 0.05¢ T
----- a=2 meV-nm » ’”.__‘,,,.-----_':‘________-_---—---'
0.65| . ‘ —--a=3 meV-nm| ] {—-/‘_— _________ | A=15 meV
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Fig.3.7 (a) J; (b) J, as a function of B for different & values at A= 15 meV. Insets: at A=0 meV.

Next, we wish to study in Figs.3.8 and 3.9, the variations of J; and J; with respect to the
applied voltage V for different a, § combinations at a certain Fermi energy E; (=15 meV) and
incident energy £4( = 20 meV). Figs.3.8 (a-c) suggest that for all combinations of a and B, J;
increases in a similar fashion with increasing V. In Fig.3.8(a), we can see that the presence of
DSOI alone, J; is much larger than in the presence of RSOI alone at a finite A. This effect is
completely opposite to the A=0 case studied by Kalla et al. [35]. Fig.3.8(b) shows that J;
components for o > 3, are much higher than those for a < 3 at a particular A -value.
Therefore, RSOl dominates over DSOI when both the SOls are present. In Fig.3.8(c), we
show the variations of J; for equal strengths of RSOl and DSOI. In this case, J; increases
much faster than the case for o < 3. So, RSOI enhances J; more compared to DSOI when
both the interactions are present and are of equal strengths. Fig.3.9(a) suggests that when
considered separately, RSOI increases J; more than DSOI at a particular A, which is quite
opposite to the observations shown in Fig.3.8(a). Fig.3.9 (b) and (c) also reveal the same
effect at a finite value of A. It is clear from both the Figs.3.8 and 3.9 that the presence of A
reduces J; and ], significantly for any combination of a and .
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Fig.3.9 ], as a function of eV/E; for different A values with different o, § combinations: (a) o #
0,B=0;a=0+0,b)a>p; a<pB,(c)a=24.

Figs.3.10 and 3.11 display the variations of spin polarized differential conductance G4 and
G, respectively as a function of Fermi energy E; for different combinations of c and  at a
fixed applied voltage eV= 25 meV. We plot G; and G, in units of G, which is given by G, =
e?12q¢/2mh. Fig.3.10(a) shows that G; decreases rapidly as we increase E¢ and saturates after
a certain E;. Here also we can see that at a finite A, when considered separately, G; is
increased more by DSOI than by RSOI. This observation is completely opposite to A= 0 —
case studied by Kalla et al. [35] where they have shown G; is enhanced more by RSOI than
by DSOI. Fig.3. 10(b) shows the same pattern of G with Ef/eV, but now G is found to be
much larger for « > {3 than for a < 8 at a fixed A. This feature is similar to that observed in
Fig.3.8(b). Interestingly, G; for @ = 3 and f = 5 at A=20 meV has the same value as G, for
a =5, f =3 at A=30 meV over the entire range of E;/eV. We wish to mention that for a
particular set of Efand A, Gy-values are higher for the case of : a > 8 than for: « # 0, = 0,
while they are lower for the case of a < 3 case than for: a = 0,3 # 0. The same conclusion
can also be drawn from Figs.3.8(a-b). Thus, we can conclude that when both the SOls are
considered together, the RSOl dominates over DSOI in increasing G, at a fixed value of A.
Fig.3.10(c) shows the Gq-variations for the equal strength of a and 3 for different values of A.
In this case, the decrease in conductance with increasing E; is slower in comparison with the
case of a # 0, = 0, but is faster compared to the case of a =0, # 0. As expected, the
presence of A decreases conductance significantly for all the aforementioned cases. Figs.3.11
(a-c) reveal that with Ef, G, decreases qualitatively in a similar way as G;, though the
quantitative behaviour is different from G; (shown in Fig.3.10). Fig.3.11(a) shows that when
considered separately, G, is enhanced more by RSOl than by DSOI. According to
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Fig.3.11(b), G, as a function of E, increases more in the case of o > {3 than in the case of
a < B. This is consistent with Fig.3.9. The other observations in Fig.3.11 can also be easily
understood from Fig.3.9. For example, A suppresses G, quite significantly. At a fixed A, the
values of J; and G, are much lower than those of J; and G for a particular combination of o
and (.
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Fig.3.10 Gy as a function of E¢/eV for different A values with different a, § combinations: (a) a #
0,=0;a=0,#0,b)a>p; a<p,(C)a=p.

In Figs.3.12 and 3.13, we study the effect of SOIs directly on G; and G, at a fixed value of
A (=15 meV). We set henceforth E¢ =15 meV, eV = 25 meV and g4 = 20 meV. Fig.3.12(a)
shows that for certain values of 3, Gy increases with «, though it can have a non-smooth
behaviour at several values of a. This non-smooth behaviour in G; reduces as 8 increases and
Gy becomes essentially smooth. Interestingly, in the case of § = 0, Gy becomes completely
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smooth and increases monotonically with ain a linear way. One can see from Fig.3.12(b)
that for non-zero values of 8, G, also exhibits a non-smooth behaviour at several values of a.
In fact, G, has more non-smoothness than G;. For =0, G, is also found to increase
monotonically with o in a linear way. It is important to mention that unlike G;-curves, the
non-smoothness in G, does not go away as (8 increases, especially for lower B values.
However, if 3 increases further, this non-smoothness in G, also disappears slowly (not shown
here). Thus, the non-smooth behaviour in G; and G, arises at a non-zero A in the presence of
reasonable values of SOls.
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Fig.3.11 G, as a function of E¢/eV for different A values with different a, f combinations: (a) a #
0,=0;a=0,#0,b)a>p; a<p,(C)a=p.

Figs.3.13(a) and 3.13(b) respectively show the dependence of G; and G; on (3 for different
values of «. It is seen that Gy and G, increase with 3 as  increases from zero, show a
bending at a certain (3 and finally appear to saturate as 3 increases further. How the increase
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in Gy and G, is only discernible at lower values of . The figure also shows that G; increases
with increasing value of a. For a = 0, Gy decreases extremely slowly with increasing (3.
Gy —curve also shows some non-smoothness with respect to 8 at higher values of a. The
observations in Fig.3.13(b) are similar to Fig.3.13(a) except for the « = 0 case, where G, ,
unlike Gy, increases monotonically with . From Figs.3.13(a) and 3.13(b), we can also
conclude that the magnitudes of G; components are smaller than those of the G, components.
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Fig.3.12 (a) Gy (b) G, as a function of a for different 8 values at A= 15 meV.
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Fig.3.14 Reflected spin polarization P]Reﬂ as a function of « for different values of 3 at A= 20 meV.

Inset: By Refl 35 a function of B for different values of o at A= 20 meV.

As the spin-polarization is an important quantity in the context of spin-filtering, we plot
reflected spin-polarization (P,;R°") and refracted spin-polarization (P,R*™) with a and B in

Refl ramains zero

Figs. 3.14 and 3.15 respectively. We can clearly see that at a finite A, B
over the entire a-axis for any value of 3. The inset shows P]Refl remains zero also over the

entire B-axis for any value of a. This can be understood from Fig.3.4 where the spin-up and
spin—down reflection coefficients are constant with respect to SOIs in the presence of a
finite A and hence, the spin-polarization becomes zero for any values of SOls. Fig.3.15(a)

shows that P]Refr increases as a increases at a finite A (A= 20) meV and the behaviour is
slightly nonlinear for non-zero values of 3. Comparison with the inset suggests that the
nonlinearity is more for the case of A= 0. Fig.3.15(b) shows that for « # 0, P]Refr initially
decreases with increasing 8, makes a broad valley in the intermediate region of $ and then
increases again as {3 increases. For « = 0, however, P]Refr is @ monotonically increasing
function of 3, though at small {3, the variation is rather slow. Therefore, the effects of RSOI
and DSOI on P]Refr are opposite to each other. The presence of A appears to cause a constant
shift in P,Re™ with respect to SOls.

Figs.3.16 and 3.17 display the contour plots of refracted spin polarization PJRef". In
Fig.3.16, we show the contour of P]REfr in a- B space at a finite value of A. Light yellow
colour denotes the maximum value of P]Refr. We notice that P]Refr remains maximum over a

finite region of o (2 < a < 5.2) and in a small region close to a = 0, but decreases along the
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B-axis. It decreases significantly if we decrease a below a = 2, though the variations of
P]Refr are different in different o- regimes. For example, when «a is close to zero, we find a
small region where P]Re”is maximum for small a but non-zero value of §8 (i.e., fora =0,
B # 0 case). For the case of a < 3, as a approaches to a = 2, it is seen that P]Refr becomes
maximum (light yellow colour) at a higher value of B(= 5) and P]Re“takes intermediate
values for 1< a<2and 4 < B <5.2. P]Refr attains a minimum (deep blue colour) at
sufficiently small values of a and with {3 in the intermediate range (1 < B < 4) and with 8
beyond 5.2. For a > f3, P]Refr increases as a increases, develops a maximum in the range
2< a<5.2, but drops beyond o = 5.2. Therefore, for A # 0, when both the SOls are
present, either of the two should be higher than the other but restricted to a particular window
to lead to maximum P]Refr. However, interestingly, DSOI alone can make P]Refr significantly

large, when RSOl is almost zero.
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Fig.3.15 (a) Refracted spin polarization PIRefr as a function of a for different values of B at A= 20

meV. (b) P]Refr as a function of B for different values of o at A= 20 meV.

We plot P]REfr in A — B space for a particular value of a in Fig.3.17(a), and the same in
Fig.3.17(b) in A-a astronomical for a particular value . In these plots, one can notice that
P]REfr shows a constant shift in its value as we increase A and furthermore, it decreases along
the increasing value of . It acquires a maximum in a narrow region around f = 4 meV-nm
at a certain a-value. The same behaviour with respect to A is also visible in Fig.3.17(b). Here,

however, P]REfr decreases along the decreasing a value, but it remains maximum over a
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broader regime of a at a certain finite B-value. Thus, the effects of RSOI and DSOI on P]Refr
are opposite and the presence of infinite delta-scatterer makes a change in the magnitude of
PRe. The present results for the maxima in P]Ref " for A+ 0 may be useful for the

determination of the values of a and £.

Fig.3.16 Contour plot of P]Refr in a- B space at A= 20 meV.
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Fig.3.17 Contour plot of P]Refr in (@) A-B space at a = 5 meV-nm (b) A-a space at § = 5 meV-nm.

3.4 CONCLUSIONS

In conclusion, we have studied the effect of both RSOI and DSOI on the electron transport
across a metal-semiconductor junction with a delta-function interface potential by calculating
the reflection and transmission coefficients and the experimentally measurable quantities like
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spin-polarized current densities and differential conductance using discontinuous boundary
conditions. In the presence of both SOls, DSOI reduces the angle of refraction of the spin-up
and spin-down electrons while RSOI increases the same, but the reduction due to DSOI is
much larger than the increase due to RSOI and hence the spin-splitting angle increases in the
presence of DSOI. We have shown that the increase in the incident electron energy decreases
the angle of refraction of the spin-up electrons, while it increases that of the spin-down
electrons which is completely opposite to the A= 0 case. The effect of delta-scatterer
becomes particularly important when we consider the spin-up refraction coefficients Ty and
T, with respect to incident angle 6; and the coefficients o and . The variations of T; and T,
with respect to a show some discontinuities at non-zero A and at lower values of 8 and this
discontinuity effect also reflects in the variations of J; and ], at finite A. The presence of the
finite jJumps in the refracted coefficients and currents is a direct consequence of the infinite
potential at the metal-semiconductor interface, as these discontinuities are completely absent
for A = 0. Interestingly, the discontinuities disappear when J; and ], are plotted with respect
to B. Also, the qualitative behaviour of J; and J, with respect § for A # 0 turns out to be the
same as in the case of A= 0. As expected, the presence of A decreases Ty, T, J; and J,
significantly. Next, we have studied the variations of J;, J, and Gy, G; with respect to the
Fermi energy (E¢) and applied voltage (V) for different combinations of o and {8 at a finite A.
It is observed that the current densities and hence the conductances increase as a function of
V and decrease as a function of E;. As observed with respect to E; and V, the current density
and differential conductance show qualitatively a similar behaviour, though they differ in
their quantitative values. We have shown that spin-up current and conductance with respect
to E¢ and V are increased more by DSOI than by RSOI for A # 0. Here also, the infinite
interface potential causes a significant reduction in the current and conductance. Gy and Gy
increase as a increases, but the presence of  suppresses them. The non-smooth behaviour of
Gy and Gy are seen at low 3 and high a when A= 0. It is important to mention that in the
presence of delta-potential, the reflection coefficients Ry and R; become constant

independent of o and 3 and consequently, reflected spin polarization P]Refr becomes zero as
a function of SOIs. The refracted spin polarization P]Refr , however, has a strong dependence
on SOls at finite A. We have shown that in the presence of both SOls, P]Refr is considerably
large at large o and small . One of the important observations of this investigation is that the
presence of delta potential does not have any effect in changing the path of the refracted
waves of the two different spin orientations, though it makes a constant shift in the P]Refr
spectrum with respect to SOls. Also, in the case of A+ 0, P]Refr develops maxima in a

narrow window of a, 5. This result may be useful for the determination of the SOI strengths.
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CHAPTER 4

PERSISTENT CURRENTS IN & CORRELATED MESOSCOPIC
HOLSTEIN-HUBBARD RING IN THE PRESENCE OF BULK
INVERSION ASYMMETRY

ABSTRACT

The effect of e-p coupling, onsite repulsive Coulomb interaction and temperature on the PC
in a quantum ring is studied in the presence of DSOI. The 1D QR threaded by the A-B flux is
modelled by the Holstein-Hubbard-Dresselhaus Hamiltonian. The e-p interaction and DSOI
are decoupled by respectively employing the standard Lang-Firsov coherent transformation
and a unitary transformation. Thereafter, a mean-field-Hartree-Fock-self-consistent
diagonalization technique is performed numerically to obtain the effective electronic energy
and current. It is shown that the intrinsic DSOI enhances the persistent charge and spin
currents significantly. On the other hand, the PC is effectively reduced by the onsite and
nearest-neighbour e-p interaction and Coulomb interaction. The behaviour of the currents
gets modified by temperature. The spin-splitting of persistent spin current is enhanced
considerably by DSOI and this splitting is tuneable in different regimes of magnetic flux,
temperature, chemical potential and the interactions present in the system.
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4.1 INTRODUCTION

The study of the A-B effect in a mesoscopic ring has been in the focus of attention over the
past few decades. There exists a PC in the QR which is generated by a magnetic flux &
piercing through the ring. This novel phenomenon was first addressed by Blittiker et al. [1]
and then several theoretical [2-8] and experimental [9-15] studies have come up to confirm
the existence of PC in LDS. People have investigated the effect of e-e interaction on PC in a
QR under the framework of the well-known HM [16-21]. But, to our knowledge, most of the
studies have been performed in the absence of e-p interaction which can be crucial in
mesoscopic systems. The effect of this interaction on PC is often dealt with using the
Holstein-Hubbard (H-H) model. Recently, Monisha et al. [22] have studied the PC in an H-H
ring under the influence of the RSOI. They have shown an enhancement of PC due to RSOI
and investigated the effect of e-p interaction, onsite Coulomb repulsion and chemical
potential on PC. In another study, Chatterjee et al. have studied the behaviour of PC in a
chain of two H-H rings in the presence of the RSOI [23].

- T %

N 2
(pl 3¢

\@_’/

Fig.4.1 Schematic representation of a quantum ring threaded by an A-B flux .

We present in Fig. 1, a schematic diagram of a mesoscopic ring threaded by a magnetic flux
®. The A-B effect is a quantum mechanical phenomenon which causes a phase shift by 8 =
2nd /N, in the wavefunctions of the electrons lying on the circumference of the ring. It is
observed that the energy spectrum and thus the PC are periodic in & with period ®, = hc/e
which is the magnetic flux quantum. Since the DSOI is an intrinsic phenomenon for the
materials having zinc blende structure that lacks inversion symmetry, it may be intriguing to
study the effect of this interaction on PC in a ring-shaped nano-structure. Therefore, in this
paper, we wish to study the behaviour of PC in a correlated QR in the presence of the onsite
and NN e-p interaction, onsite e-e Coulomb interaction and DSOI. As the temperature very
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much affects the distributions of the electronic energy levels, we also wish to investigate the
role of temperature on the system considered.

4.2 ANALYTICAL MODEL AND FORMULATION

The model Hamiltonian for an H-H ring pierced through an A-B flux @ in the presence of
DSOI can be written as

H = He + th + He—ph + HSO ) (41)

where H, represents the electronic Hamiltonian, H,, refers to the unperturbed phonon

Hamiltonian, H,_,, describes the e-p interaction and Hj, denotes the SOI. H, is given by

H, = ¢, Z el cig— t z (¢l cjs e +hc)+ UZ nnngy,  (4.2)
i

io <ij>o

where €, is the single-electron energy per site, c;ra(cw) is the electron’s creation(annihilation)

operator at the i site with the spin-index o, i = 1,2,3,...N, N being the total number of

Cit

identical sites in the system and ¢; = (C'J,)’ t is the NN hopping integral, e is the Peierls
l

phase factor originating from the A-B flux, U measures the onsite e-e repulsive Coulomb
correlation and n;,, (cl?;cio) is the electron’s number operator at site i with spin a. In general,
the phase e‘®s can be represented by the spin-dependent magnetic vector potential A, [24] as:
0, = fl
given by

i+1

AT,.EI) = 2n®, /NP, , where @ is the spin-dependent A-B flux [20, 21]. H,, is

1
Hyp = hog z (bi+ b + 5 ) (4.3)

i
where b;r(bi) is the creation (annihilation) operator for a phonon at the i site with a

dispersionless frequency wq. H_pp, is given by

He—ph = glznia(bi + b;l-) + 1) Z nia(bj + b]:r), (44)

io <ij>o
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where g, denotes the strength of the onsite e-p interaction and g, denotes that at the NN sites.
The e-p interactions beyond NN are considered small and therefore neglected. H,, is given

by

Hy, = — Z teo (c ¢jse'% + h.c.), (4.5)

<ij>o
where t,, can be written, in general, as
tso = ia(0y cos @;j + 0, sing;;) —if (0, cos @;; + oy sing;;),  (4.6)

with @ and g being the RSOI and DSOI strength respectively, o, and g,, being the Pauli spin
matrices, ¢ the azimuthal coordinate of the ring: ¢;; = (¢; + ¢;)/2 = 2r(i — 1/2)/N,
where ¢; = 2m(i — 1) /N . In this work, we consider the effect of DSOI only and therefore
we keep a = 0.

First, we perform the celebrated LFT, eS where S is the generator of the transformation:

1
S = m [gl Z nid(bj - bl) + 82 Z nio-(bgl;_a - bi+6)]' (47)
0

io ibo

This is essentially a coherent state transformation which eliminates the phonons from the
system and gives an effective electronic Hamiltonian. We next employ a unitary
transformation U, given by

1 [ 1 -1 ]
U =— mi(1-1 mi(1-1) |, 4.8
L \2 e_ng_ZZ) 6_2 g\iz) (4.8)

with site index [, to diagonalize the spin degrees of freedom. These two transformations
together transform the Hamiltonian H to H,¢.

~ ~ . ~ i@ +E T
Hepp = EoeffZ"ia - Z [Clj-cr {tessF + iBesr 9}5ic e!%*N) 4 . c.
io

<ij>o

L i 4 s o ot RN Y
+U,ff z [niTnil + y (cjT C;y + c;rl Cit ) — (c:rT ¢y + c;rl Ci )Z , (4.9)
i ]
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where,

1
€ =€, — m(gf + zg3), [z = No.of NNs] (4.10)
0

g 40
oy, = t o Gogr E1 D"+ e ] (4.11)

el e —0)2 a(r—1)e2
Beff :ﬁe (flwo)Z[(gl gZ) +(Z 1)g2 ]' (412)

2
Uerr = U — h—wo(g% +283). (4.13)

cos (%) —isin (%)

—isin (%) cos (%) ’

sin (%) icos (%)
—icos (%) —sin (%)

To deal with the e-e interaction we now apply Hartree-Fock mean-field approximation (HF-
MFA) which works well in the weak-coupling regime. The resulting Hamiltonian reads

F = (4.14)

(4.15)

N N
. . s
Hel\]/r[f = 2611- []P + (_1)](@]61 - el(90-+ﬁ) z 511- {teff:F + lBeff gv}éj + h.c.|+K, (416)
i=1 <ij>

where we have divided the total number of sites N (which, for simplicity, is considered as an
even number) into even-numbered sites (A sub-system) and odd-numbered sites (B sub-
system) and introduced the charge density n, CDW parameter ¢ and SDW parameter s

respectively as

1
n=s [(Mar + 1a1) + (Mpr +151)], (4.17)
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1
c=3 [(nar + 1a1) — (npr + n51)], (4.18)
1
S = 2 [(Mar — ay) — (Mpr — 1)) (4.19)
and the notations P, Q as
€ar ‘; €B1 0
P= , 4.20
0 €aL T €y (4:20)
2
€an ; J:5) 0
Q= ) € — €py |’ (4.21)
2
where,
U
en =€l + % (c—s), (4.22)
U
€pr = ngf — % (c—y5), (4.23)
U
e =l + % (c +5), (4.24)
U
ep =€l — % (c+5), (4.25)
Uess 2 2 2
KzTN(n —c® + s5°). (4.26)

Next, we perform Fourier transformation: & = \/iﬁ Yee®a ¢ . a being the lattice

constant and obtain after some algebra, the following Hamiltonian in the momentum space:
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w/a m/a
Hel\]/c{f = Z Ck-l- R Ck + Z Ck-l- @ Ck+1r/a + K, (427)
k=-m/a k=-m/a

where ¢t (¢) are redefined as cT(c) and the matrix R is obtained as

T
St au (k) a1 (k)

€qL t €Ry ’
@31 (K) “ ot ()

(4.28)

where a,,, (m,n = 1,2) are given by

aq11(k) = —2tzf cos (ka + 6, — %) cos (%) + 2Beff Sin (ka +6, — %) sin (%) ,(4.29)

a12(k) = =2t pf sin (ka + 6, — %) sin (%) + 2Peff cOS (ka + 6, — %) cos (%) ,(4.30)

a12(k) = =2t pf sin (ka + 0, — %) sin (%) — 2Peff cOS (ka + 0, — %) cos (%) ,(4.31)

w T s T
(k) = —2tff cos (ka + 6, — N) cos (N) — 2Pesr Sin (ka + 6, — N) sin (N) .(4.32)
Our calculation is performed in the reduced Brillouin zone (RBZ) i.e., k lies in the range:
—n/2a <k < +m/2a and «a satisfies the relation: a;; (k + m/a) = — a;; (k). Therefore,

the effective MF Hamiltonian in the RBZ can be written as

Ckr
T/a Crl
M _ T t T T
Hepp = Z (CkT Cki” Cpalp Cpaly ) W | cpyms + K, (433)
k=0 C,
k+E,~L

where the matrix W is given by
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€ar + Epp €A1 — €t
— t+ ay1(k) aq2(k) — 0
€al T €y €Al — €py
ay1 (k) — + az, (k) 0 —
W =
€At — €p? €ar T €pr
— 0 — 5 aq1 (k) —aq;(k)
€q — € €1+ €
0 L — —ay; (k) A B g, (k)
2 2
(4.34)

To calculate the GS energy of the system, we perform a self-consistent numerical
diagonalization technique which generates the energy spectrum E; with the corresponding

Fermi distribution function: f(E;) = [e(Ei‘”)/kBT]_l, u being the chemical potential, k5 the

Boltzman’s constant and T the temperature. Thus, the GS energy can be expressed as
Egs = ) Eif(E)+K, (435)
i

and following Ref. [20], the persistent charge current (PCC), I can be computed from the
relation

1 /9Es
lc == ((’)(b(,) . where, &, = ®, = d.  (4.36)

As there exist two types of particles namely, the spin-up and spin-down particles, we can
also calculate persistent spin current (PSC), 17, for two different spin-orientations in the 1/2-
spin current unit [20]. 2. is given by

o 1 0E;
PC™ 2mad, ’

where, &y = -9 = P, (4.37)

which can equivalently be expressed as
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4.3 Numerical results and discussions

For convenience, we scale all energies in units of Aw, and set t = 1. We discuss the
numerical results of PCC and PSC in following sections.

4.3.1 Results for persistent charge current

1272, | .
87 :
-1.273 a U=k, T=0 :
"'\‘\ N 7 ?‘ A Y f: 0.2 "
AR PR A xS
IR R A Sy
& . ‘\ '{ :' '.. \‘ /l ; ) 0_ pd
R T S N S N
. | :
t=1
-1.276 _ 02 |
0.0 = = p=10 == p=20 - p=30
-1.2771 0-5 0 ﬂ'; y =
- T o ) 45 0 05
! /0,

Fig.4.2 (a) GS energy and (b) PCC as a function of magnetic flux ®/®, for different values of DSOI
strengthfatlU =g, =g, =kgT =u=0.

In Fig.4.2a and 4.2b we plot respectively the GS energy (E;s) and PCC (Ip.) as a function
of magnetic flux ® which is an integral multiple of magnetic flux quantum &, = hc/2e. The
periodicity with @ in both the figures is clearly visible. Fig.4.2a shows the variation of GS
energy for different values of the DSOI strength 8 and we can see that E;s increases with 8
when all other interactions are absent. In general, the value of g cannot be changed for a
particular material as it originated from the internal BIA of the material. Therefore, our
results are applicable to different materials whose £ lies in the range considered here.
Fig.4.2b shows that PCC increases with increasing DSOI, but the shape of the variation gets
altered after a critical g (S, = 1), though remains symmetrical with respect to & = 0.
Monisha et al. [22] have studied the same in the presence of RSOI alone. We would like to
mention that DSOI can give rise to a greater enhancement of PCC compared to RSOI (not
shown here).
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To see the variation with g explicitly, we have plotted Fig.4.3 both for zero and non-zero
temperature. We observe that I, increases monotonically with g and the effect of
temperature is significant for higher values of 3.

_kBT=0.00
_-_.kBT=0.09

0.4 — b0 — =30 S
t=1 0.4 B8y
., 0.3 gl=g2=0 &3 kBT=0.09
- kT=0 | 03
“g 0.2 B ot 0.05
= = 02N\ T , B0
005 B0 al | = b i
0.1 \ 0
3 0.1 0 2 4
" i
L — 0
0 1 2 3 0 1 2 3 4
U U

Fig.4.4 PCC vs. onsite e-e interaction U for § = 0 (inset) and f =3 at g =g, = u =0 for (a)
kgT = 0 and (b) kgT = 0.09.

Fig.4.4a shows the variation of I, with onsite Coulomb interaction strength U with and
without DSOI at T = 0. In the chosen energy scale hw, = 1, the range of U (0 < U < 4)
provides a weak-coupling regime where MFA is considered to be a plausible approximation.
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The inset is drawn for § = 0. There exists a qualitative difference between f =0and 8 # 0
plots. For B = 0, the behaviour of PCC is primarily constant up to a certain value of U and
after that it falls sharply and becomes zero at U = 2. The reason can be explained simply by
the competition between hopping, t and onsite repulsion due to Coulomb interaction, U. The
electron can go from one site to the other unless U reaches a critical limit U, = 1.3 which
prevents further hopping. Beyond U,, U reduces PCC extremely rapidly. However, the notion
of critical U is not so prominent for = 3, though for small values of U, PCC falls slowly.
Here also, PCC decreases with U rapidly, especially for higher values of U, in a smooth
fashion. In Fig.4.4b the effect of temperature is displayed for both § = 0 (inset) and § = 3.
The PCC reduces much faster with U at a finite temperature for § = 3. The nature of PCC
with U at § = 0 does not change much in the presence of temperature.

0.6, . 08— ——
U=k T=0 = p=0.0 o = =0,
TR —— Y 8,~U=0 —-—f=3.0
~, 04nF ,-bﬁ-ﬁ‘kBT=0.09 I
w U, -
=1 * & - Y
\ a -"" A
% "\ S 04" b "\,
¢ \ =
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Fig.4.5 The effect of onsite e-p interaction, g; on PCC at U =g, = u = 0 for kzgT = 0 and (b)
kT = 0.09.

To see the effect of onsite e-p interaction we plot I as a function g, in Fig.4.5. We look
into the effect of temperature on I vs. g, behaviour in Fig.4.5b while in 4.5a, we consider
the zero-temperature behaviour. In Fig.4.5a, one may notice that PCC drops as g, increases.
This happens because of the polaronic effect. As g, increases, the e-p interaction distorts the
lattice more giving rise to a deeper polarization potential in which the electron gets self-
trapped or localized at that particular site [24-26]. This causes a reduction in mobility of the
electron and as a result PCC decreases. It is obvious that the variation is enhanced for g = 3
which is also suggested by Fig.4.3. Fig.4.5b gives the behaviour at finite temperature (which
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is more realistic). It is evident from the figure that at a finite temperature, PCC increases

initially with g, attains a peak, then declines and becomes zero as g, increases. The

behaviour is same for § = 0 and 8 = 3.
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Fig.4.6 Ipc as a function of ® at U = g, = kgT = u = 0 for different values of g, at (a) 8 = 0 and

(b) g =3.

U=kBT=0

-1 -0.5 0 0.5 1

Fig.4.7 Ip. as a function of ® at U = kzT = pu = 0, g, = 0.4 for different g, values at (a) § = 0 and

(b) g =3.

We study in Fig.4.6, the effect of NN e-p interaction (g,) on the ® —dependence of Ip.

with g; = 0. In Fig. 4.6a, we consider 8 = 0 while 8 = 3-case is studied in Fig. 4.6b. The

figures clearly display that PCC gets reduced as g, increases, though the magnitude of I,

gets increased when S # 0 (Fig.4.6b). Next, in Figs.4.7, we study the effect of NN e-p

interaction (g,) on the Ip. versus ® — curves in the presence of onsite e-p interaction. It is
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evident from Figs.4.7a and 4.7b that the reduction of PC due to polaronic effect is more
significant when g; # 0. Interestingly, it can be seen in Figs.4.7 that I, vanishes completely
at a particular combination of g; and g,.

In Figs.4.8a and 4.8b it is explicitly shown how PCC declines as g, increases. The insets
are drawn for § = 0. Comparison of Fig. 4.8 with 4.5 shows that PCC dies out faster with g,
than with g; This is understandable from the effective hopping term,
tor ~e 1(B1782)° +(-Dg2/(hwo)® n ¢, there is an additional contribution in the exponent
entirely dependent on g, which sets off a more pronounced reduction in PCC than due to g,
alone. The effect of temperature on Ip. with g, is plotted in Fig.4.8b. Here also, PCC exhibits
a peak-like structure, but again the suppression of PCC is stronger in the case of g,. One may
also notice that the resistive effect on PCC due to e-p interaction is much more prominent
than due to e-e interaction.

0 0.2 0.4 0.6
gz
Fig.4.8 Effect of N-N e-p interaction, g, on Ip¢ as a function of @ atU = g; = u =0 for (a) kgT =
0 and (b) kgT = 0.09.

To show the impact of temperature, we plot PCC directly with kzT in Figs. 4.9(a-c) for
different combinations of g, and g, and 8 = 3. Fig.4.9a is shown for g; = g, = 0. (The
B = 0 case is shown in the inset). Fig.4.9b and 4.9c are plotted for g; = 0.5 & g, = 0 and
g: = 0 & g, = 0.5 respectively. The PCC not only reduces with increasing temperature (as
was suggested by Buttiker et al. [28]), but it also exhibits peak at a low temperature. In the
presence of g, or g,, PCC starts from zero at T = 0, whereas it starts from a finite value at
T = 0 when both g, and g, are zero. The peak-like pattern is more noticeable when either g,
or g, is nonzero.
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Fig.4.9 Effect of temperature, T on PCC at § =3.0,U=u=0for: @) g, =g,=0; (b) g, =

As the change of number of particles may have some effect on PCC, we also study the
variation of PCC with chemical potential u. In Fig.4.10a, we plot I versus @ for several
values of pu at £ = 0 with other interactions switched off. Fig.4.10b shows the explicit
dependence of Ip; on u for § # 0 and B = 0 (inset). These two plots are at T = 0. We can
notice clearly that PCC decreases montonically with increasing u at T = 0. Interestingly, in
Fig.4.9c it is seen that PCC increases with u at a finite temperature.
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Fig.4.10 (a) Ipc vs. ®/P, for different values of uat U =g, =g, = kgT = = 0. PC vs. u for
different § valuesat g, = g, = U = 0 for (b) kzgT = 0 & (c) kgT = 0.09.

4.3.2 Results for persistent spin current

Here we wish to investigate PSC ( I3.) in the A-B ring. In Fig. 4.11(a), we plot I3, as a
function of A-B flux @ for a fixed DSOI strength g when all the other interactions and
temperature have been taken equal to zero. The blue solid curve represents PSC for spin-up
electrons and the red dotted curve denotes the same for the spin-down electrons. We can
clearly see that the variations of spin-up PC, I}, and spin-down PC, I}, are completely
opposite with respect to ®/d,. They represent two circulating spin-currents moving in
opposite directions in the A-B ring. Both I}, and I} are periodic in ®/®, with period 1 i.e.,

. Interestingly, I} and I3, meet each other at ®/®d, = 0,40.5. But for these values of
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®/d,, there exists clear separation between I} and I}, which demonstrates a spin-current
splitting at a fixed value of ®/®,. One should notice that this splitting between two spin
currents is an effective splitting arising from the combined effect of A-B flux ®/®, and
DSOI. The inset represents the PSCs in the absence of DSOI i.e., for § = 0. Here, the
splitting in spin-currents is solely determined by magnetic flux @. It can be seen that PSC not
only changes qualitatively, but it also reduces significantly at § = 0 and hence one can
expect that the splitting reduces as B reduces. As mentioned earlier, both I} and I3, equally
exhibit a sharp discontinuity at ®/®, = 0 when all other interactions are zero. To see the
polaronic effects on I7., we plot I as a function of ®/®, for different combinations of g,
and g, in Fig.4.11(b) for =3 and U = kgT = u = 0. We observe that the qualitative
behaviour of I, changes with respect to ®/®, in the presence of e-p interaction, although
the periodicity of Ig. is still preserved. Furthermore, I} and I3, have an opposite behaviour
with respect to ®/d,. In g, = 0.2, g, = 0 case, we notice that unlike Fig.4.11(a), the sharp
discontinuity at ®/d, = 0 vanishes. As expected, the onsite e-p interaction reduces I7.. For
g, = 0,g, = 0.2 case (inset(i)), the pattern of I3, changes and it reduces by the presence of
g,. Interestingly, I} and I} coincide also at ®/d, = +1 in addition to at ®/d, = 0,+0.5
points when either of g; and g, is non-zero. Therefore, one would expect spin-current
splitting becoming zero at half-integral multiples of ®/®, if g, or g, is non-zero. The
existence of these additional crossing points is entirely caused by e-p interaction.
Surprisingly, the degeneracy at ®/®, = +1 is lifted again when g; = g, = 0.2 (inset (ii))

0.05¢
blg 0
-

-0.05

Fig.4.11 PSC Ig. vs. A-B flux ®/®, for  =3.0,U = kgT =p=0at (a) g, = g, = 0. (Inset: at



Chapter 4

resembling the observation in Fig.4.11(a), although the behaviour is very much different now.
Hence, the splitting does not go to zero at ®/d, = +1 when g, and g, become equal.
Another point to be observed in the inset (ii) is that the sharp discontinuity reappears at
®/d, = 0 when g, equals g,.

To see how the spin-current splitting varies for different DSOI and e-p interaction strengths
explicitly, we show splitting gap AI7 as a function of A-B flux ®/®, in Fig.4.12 in the
absence of other interactions. Here we define the spin-current splitting gap as: AIg, = I}, —
I} .. Essentially, it gives the total PSC, Is. However, in Fig.4.12 we show the modulus of AIZ,
i.e., |AIZ;| as we want to study the splitting gap with respect to ®/®,. In Fig.4.12(a), it is
shown that periodicity of |AI7.| with ®/d, remains intact which is expected. More
interestingly, |Alp:| additionally shows a symmetric behaviour. However, |AI7.| changes
considerably with ® and . Thus, one can tune the splitting gap by changing the flux and the
SOl parameters. One may notice that |AIg.| can be enhanced significantly by increasing
DSOI strength, B. This is also expected as £ enhances individual spin-currents shown in
Fig.4.11(a). We want to mention that |AI7;| becomes zero at &/®, = +£0.5. At /P, = 0, it
becomes maximum suggesting a large splitting at zero A-B flux caused entirely due to DSOI.
One can evaluate the strength of DSOI experimentally by measuring the zero-flux splitting.
This zero-flux splitting arises due to the discontinuity of I3, at ®/®, = 0. We can see that
the extrema of |AIg.| occur at half-integral multiples of ®/d as suggested by Fig.4.11(a)
when U = g, = g, = 0. Fig.4.12(b) displays |AI7-| as a function of &/d, for different
combinations of g, and g,. Here also, |AIg.| is periodic with respect to ®/d, even in the
presence of e-p interaction as suggested by Fig.4.11(b), showing more oscillations especially
when g, # 0. It is important to mention that the maximum of splitting gap |AI7| decreases
substantially as we turn on g, or g, or both. This can be understood from the resistive effect
of polaronic interaction on IS, which reduces I} and I3, individually and hence |AIS,|
reduces as e-p interaction increases. It can be seen that unlike in Fig.4.12(a), when either g,
(blue solid curve) or g, (red dotted curve) is present, |AI7.| becomes almost zero at ®/d, =
+1 and at ®/d, = 0 it reaches its minimum (but not exactly zero). However, |AIg.| is non-
zero and finite at &/d, = 0,+1 when g, = g, and U = 0 as suggested by Fig.4.11. Due to
the combined effect of g, and g,, the curve for g; = g, = 0.2 is much lower than that for the
case of g; = g, = 0.But in all cases, |AI7| vanishes at ®/®, = +0.5. Thus, spin-splitting
gap is very much dependent on different regimes of A-B flux and e-p interaction strengths.
These findings also follow from Fig.4.11(b).
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Fig.4.12 Absolute spin-current splitting gap |AIg;| vs. @/ at U = kgT = u = 0 for (a) different
values of at g; = g, = 0, (b) different g, and g, combinations at § = 3.
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Fig.4.13 |AIg.| vs. ®/®d, for different U-values at kzgT = u =g, =g, = 0 for § = 3. Inset: at
gl = gz = 02

Fig.4.13 shows the variation of the magnitude of the spin-splitting gap |AIZ.| as a function
of & /P, for different values of Coulomb strength U with a fixed g-value and g, = 0 = g,
whereas, the inset shows the same nonzero g; and g,. It is clearly shown that the shape and
the value of |AIZ;| change very much as we switch on U, but |AI7 .| maintains periodicity and
symmetry over the entire range of ®/®, for any value of U. One can observe that U reduces
the maximum of splitting-gap, |AI7-| because of the resistive effect produced by the
Coulomb interaction. Also, it is interesting to mention that at equal intervals of half-flux,
|AI7-| reaches zero giving rise to zero splitting for a finite U, whereas, at U = 0, |AIZ,|
becomes zero only at ®/®, = +0.5. These additional zero-splitting points at a finite U occur
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purely due to Coulomb correlation as we have set other interactions as zero. However, |Al7|
remains zero over entire ®-range beyond a particular U. Here, we can see this feature at U =
2. To study the interplay of Coulomb and e-p interactions, we plot |AIZ.| in the inset at g; =
g, = 0.2. We can notice that at a non-zero U, |AIZ.| reduces further because of the combined
resistive effects of both the interactions. Interestingly, for a given U -value, |AIg.| also
becomes zero at &/d, = 0, +1 even when g; = g, = 0.2 which is completely opposite to
what we observe in Fig.4.12(b) for the g; = g, case. Hence, U makes the splitting zero at
half-integral multiples of A-B flux including ® /&, = 0 point for any combinations of g, and
g,. AtU =2and g, =g, = 0.2, |AIJ;| remains zero throughout the ®-axis, but it shows
some spikes at ®/d, = 0, %1 unlike in the g; = g, = 0 case. From Fig.4.12 and 4.13 we
can comment that the interactions present in the system generate a greater number of crossing
points for spin-up and spin-down currents where spin-current splitting gap becomes zero even
in the presence of DSOI.
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Fig.4.14 |AIZ | vs. ®/®,, for different u-values for § =3 atU = kzgT =g, =g, = 0.

In Fig. 14, we study the variation of |AIg.| with & for a fixed value of £ and for different
values of chemical potential w at T = 0 and in the absence of all other interactions. As the
number of particles influences the current in the ring, this study should be important. We
observe that the maximum of |AI7.| decreases with increasing u. |AI7;| shows more
oscillations at around ®/®, = 0, +1. It appears that |AI7.| may approach zero at large p.

Finally, in Fig.4.15, we plot |AI7| versus @ for different values of T with § = 3 in the
absence of all other interactions. f. The periodicity and symmetry of |AIg;| are well-
maintained even at a finite T, but both the qualitative and quantitative variations get affected.
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The central peak of |AlI7;| at ®/d, = 0 splits into two less sharp peaks located at around
®/d, = +0.25 for a non-zero T and other peaks appear close to ®/d, = +0.75 values.
More importantly, |AI7.| becomes zero at &/®, = 0, %1 in the presence of T. Hence |AI7|
exhibits alternate minima and maxima at half-integral multiples of ®/®,. It is worth

mentioning that |AIZ| decreases significantly as T increases and becomes vanishingly small
after a certain T-value.

0.4 - -
—_—k T=0.0 e
i LT
— -k T=0.1
— - T=0.3
03 '/\ Ko l_U A "\
i \“ -k T=0.5 p=3.0 ; '
. | ] f {
i I ‘ /1
IE; ' & 11|
01~ ¥ \ F: \ F i
-.‘-' l' - r ¥ !I
0 e -
-1 -0.5 0 0.5 1

(Df(l)"
Fig.4.15 |AIZ;| vs. ®/®,, for different T-values for § =3 atU = kgT = pu =g, =g, = 0.

4.4 CONCLUSIONS

In conclusion, we have studied the behaviour of PCs in a mesoscopic QR threaded by an
externally applied A-B flux in the presence of e-p interaction, onsite Coulomb interaction and
DSOI. We have performed LFT to eliminate the e-p coupling and then applied a unitary
transformation to treat the SOI. Finally, to treat the onsite e-e interaction, we have employed
HF-MFA on the effective electronic Hamiltonian and performed a self-consistent numerical
diagonalization method to calculate the GS energy and PCC. It is shown that the periodicity
with the magnetic flux is obeyed both in the GS energy and in PCC. PCC is enhanced
significantly by the DSOI. For large values of DSOI strength, the PCC changes its pattern.
Both the e-e and e-p interactions reduce PCC significantly leading to a resistive effect. But
the e-p interaction inhibits the conduction process more than e-e interaction. In the presence
of temperature, the PCC falls more rapidly with e-e interaction. We have furthermore shown
that PCC is suppressed more by the NN e-p interaction compared to the onsite e-p interaction.
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At a finite temperature, PCC as a function of e-p interaction exhibits a peak. For nonzero g,
or g,, a prominent peak in the low-to-intermediate temperature regime occurs, though in the
absence of e-p interactions, PCC decreases with temperature. We have also shown that PCC
decreases monotonically with increasing p at zero temperature, but the behaviour is quite
opposite at finite temperature.

We have also studied PSC in the A-B ring where two oppositely directed periodic spin
currents for two different spin orientations are generated both in the absence and presence of
DSOI. DSOI enhances spin-up and spin-down currents much more than the A-B flux does. In
the presence of e-p interaction, a considerable change in the pattern and magnitude of spin-
currents occur. The spin-current splitting gap (A7) is increases very much by DSOI. At U =
0, the up and down PSCs cross over at every half-integral multiples of A-B flux excluding
®/d, = 0, leading to zero spin-current splitting even in the presence of DSOI when either of
g, IS g, is present, whereas splitting becomes zero only at &/®, = +0.5 when g; = g,.
However, at U # 0, AIg turns out to be zero precisely at every half-integral multiples of
® including ®/®, = 0. Therefore, number of zero-splitting points increases as we turn on
the interactions. A notable reduction in AIZ. happens in the presence of all the interactions,
chemical potential and temperature. The interesting fact is that the spin-splitting is highly
tunable by DSOI, A-B flux, temperature and all the other interactions present in the system.
We can also determine the value of DSOI strength experimentally by measuring the splitting
AIg; at ® = 0.
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CHAPTER D

TEMPERATURE  DEPENDENT  NONEQUILIBRIUM
MAGNETO-TRANSPORT IN A& CORRELATED POLAR
SINGLE MOLECULAR TRANSISTOR WITH QUANTUM
DISSIPATION

ABSTRACT

Quantum magneto-transport in a dissipative SMT is investigated at finite temperature in the
presence of electron correlation and electron-phonon interaction within the framework of the
Anderson-Holstein-Caldeira-Leggett Hamiltonian. The e-p interaction and dissipation are
dealt with by canonical transformations and the Coulomb correlation is treated at the mean-
field level. The transport properties such as spectral function, tunnelling current, differential
conductance and spin polarization are determined using the Keldysh method.
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§.1 INTRODUCTION

Lately, the subject of nano-electronics has emerged as a promising area of research for
technological advancement. In this context, Molecular electronics or moletronics [1-2] has
received particular attention. The first molecular transistor device was fabricated by Aviram
et al. [3]. Recently, a large number of investigations have been carried out on SMT [4-7]
which essentially consists of a QD or a nano-molecule that is placed in the middle region of
the device and connected on either side to two conducting electrodes, one acting as the source
and the other drain. Park et al. [8] were the first to configure such a device with C4, as the
central transistor. Subsequently, several investigations followed because of the potential
applications of these devices [1,2,4-7,9-11]. Several groups have also studied low
temperature transport through an SMT system which incorporates correlation effects, for
example, Coulomb blockade [12] and Kondo effect [13-16]. In the presence of e-e and e-p
interactions, the transport in SMT devices is found to exhibit quantum features [17-23].

The effect of a magnetic field and e-p interaction on the transport properties of an SMT
device have been investigated by Chen et al. [24]. They have calculated the spectral function
(SF), tunneling current and differential conductance employing the non-equilibrium Green
function (NEGF) technique due to Keldysh and observed that the e-p interaction generates
side bands in the spectral density. It has also been revealed that the polaronic effect causes a
considerable decrease in the tunneling current and differential conductance. Recently, Raju
and Chatterjee (RC) [25] have analyzed the role of e-p coupling on electron transport in an
SMT device placed on a substrate that can be considered as a phonon reservoir. The local
phonon of QD can in this case interact with the substrate phonons giving rise to quantum
dissipation. RC have incorporated this dissipation effect using the Caldeira-Leggett (CL)
model in the presence of both e-p coupling and Coulomb correlation and used the Anderson-
Holstein-Caldeira-Leggett (AHCL) model to describe the whole system and studied the effect
of all interactions with the help of the Keldysh method. As expected, the polaron formation
has been found to diminish the tunneling current and the differential conductance, while the
substrate-induced damping effect has been found to enhance the tunneling current. Later,
Kalla et al. [26] have investigated the external magnetic field-induced non-equilibrium
transport in the same SMT system and have shown that the applied field breaks the spin
degeneracy of the strongly coupled QD-electron energy level leading to a spin filtering effect.

The effect of temperature on the SMT devices has been studied experimentally in recent
times [27, 28], but to our knowledge, theoretical investigations on this aspect have been
rather scarce [29]. Kalla et al. [30] have examined the temperature effect on the tunneling
current density in an SMT device. Very recently, Kalla et al. have studied the transient
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dynamics in a dissipative SMT with e-p and e-e interactions [31]. In the present work, we
shall consider the combined effect of both temperature and magnetic field on the current in a
dissipative SMT device. We include the Coulomb correlation between the QD electrons and
consider the polaronic interactions in the Holstein regime. We model the system by the
AHCL Hamiltonian and use the Keldysh finite-temperature Green function formalism to
examine the interplay of temperature and magnetic field on the transport mechanisms.

§.2 ANALYTICAL MODEL AND FORMULATION

A schematic diagram of the SMT device is shown in Fig.5.1. The figure shows that a
central non-magnetic polar semiconducting QD is connected to the source (S) and drain (D)
and a bias voltage, V;, and a gate voltage, V; are applied to the leads and the QD respectively.

One can control the transport through the SMT channel by tuning V, [32,33]. B denotes the

externally applied magnetic field. The whole arrangement is placed on an insulating substrate
that plays the role of a bath of phonons. The model Hamiltonian is given by

H = HS,D + HQD + HT + HV ) (51)

Here, the Hamiltonian Hg p describes S and D and can be written as

Hip = ) &g, (52)
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where ny,(= Cltocko') denotes the number operator for free electrons in S and D with

momentum k and spin o. Hqp is the Hamiltonian of the QD and is given by

2my 2

g ag

2
. Po 1
HQD = Z(Sd - eVg)ndO' + Und,O'nd,—O' -9 MBBsé + ( + —moa)%xg> + 'gz Nag Xo,

(5.3)

where nd0(= cé{ccdo) is the number operator for the QD electrons in the single localized

energy level g4, cgc and cq4, denote respectively the creation and annihilation operator of the
QD electrons, U refers to the onsite correlation energy, B(0,0,B) is the magnetic field
applied along Z, Sj is the z-component of the total spin of the QD electrons which can be

written as S3 = Zch ccgocd(,, g" is the gyromagnetic ratio and ug is the Bohr magneton.

The fourth term of Hyp is the Hamiltonian for the local lattice mode of QD, where (xo, po)
are the coordinate and the corresponding canonical momentum of the QD oscillator with
mass m, and frequency w, which are respectively given by x, = (h/2mywo)*/?(bT + b)
and py = i(Amow,/2)Y?(bT — b). The fifth term represents the e-p coupling of the QD,
where g gives the strength of the coupling between the electrons and phonon of the QD. The
quantum tunneling of electrons from S to QD and QD to D can be described by the
Hamiltonian

Hy = z (Ve cap + h.C), (5.4)
koeS,D

where Vy refers to the strength of the coupling between the QD and the leads.
The Hamiltonian Hy is the vibrational part of the SMT system and comprises two pieces,
Hgo and Hy;,—g, Where Hgq describes the Hamiltonian for the bath oscillators and is given by

A
Hy, = Z l Pi | fwfxfl, (5.5)

where x;, p;, m; and w; denote respectively the position, momentum, mass and the i"" bath-
oscillator frequency and H,;,_g Stands for the coupling between the QD phonon and the bath
phonons which we describe by the C-L Hamiltonian [34]
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N
Hyip-p = Zﬁi XiXg ) (5.6)
im1

where x, refers to the QD oscillator position, x; refers to i bath-oscillator position and pB;

gives the measure of coupling strength between the QD phonon and the bath phonon. This
interaction causes the dissipation effect in the QD phonon dynamics.

First of all, we partially eliminate the interaction between the QD oscillator and the
substrate oscillators by applying a canonical transformation [25, 26]:

Bi
xi+|l—=|«x
l <mi(‘)i2 °

p; = —ih (%) (5.8)

X =

: (5.7)

which incorporates the most important aspect of the effect of the bath phonons which is

dissipation. This renormalizes the frequency w, of the local QD phonon to &, =

(w3 — Aw?)/2, where Aw? is given by

N 2
Aw? = _P

) 5.9
— mem; w;? (59)
1=

For large N, Aw? can be written in an integral form over w as

I(w)
myw

Aw? =2 dw, (5.10)

where I(w) stands for the spectral density of the phonon bath which is given by

Noop2
I(w) = Z 2£l-w- 5(w — wy), (5.11)

l

which can be taken in the Lorentz-Drude model as
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[+ (@]

where y denotes the dissipation rate and w. is the cut-off frequency. As w, is considerably

larger than other SMT frequencies, the deviation in the QD phonon frequency essentially
becomes

I(w) = , (5.12)

Aw? = 2nyw, . (5.13)

After the canonical transformations (7, 8), the transformed Hamiltonian reads

1
H=Hgp+ Z(ed —el, — Eg*,uBBch)nd(I + Ungong g + hdobTh
o

+

4

N -2
. m:
( P T wﬂff) + Ahay, (bt + b)z Nge +Hr, (5.14)
= Zmi 2 =

.y . . 1/2 .
where g and all the multiplicative factors are clubbed into A = g(1/2mohwe@,”) /2 \which
we can call as renormalized e-p interaction coefficient.

Next, we tackle the e-p interaction term of QD by performing the well-known LFT: e¥ =

e bT-b)Zonas [35]. After this transformation, the effective Hamiltonian (= e~SHe®) reads

= z £ Ty + Z Eaotay + Ung oy g + higbTh + Z V¢l cag + h.C), (5.15)
g

koeS,D koeS,D

with
€15 = €q — €Vy — olgB — A*hd, (5.16)
U=U-21ha,, (5.17)
7, = e 20Dy = gy, , (5.18)

where &4, is the effective energy of the QD, U is the modified Coulomb strength and Vi is the
renormalized hybridization strength.
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§.2.1 THE KELDYSH FORMALISM: SPECTRAL FUNCTION, TUNNELING
CURRENT AND DIFFERENTIAL CONDUCTANCE

The tunneling current [36-38] through QD connected to two leads is given by

=5 [ 1T = fol)A@) + (1 = 156 @)]do. (519)

Here f5(¢) and f () refer to the source (S) and the drain (D) Fermi distributions which can
be written as

S,p—¢ -1
fsp(€) = [e(ukBT ) + 1] , (5.20)

where pg and pp are respectively the chemical potentials of S and D which are connected to
the mid-voltage V,,, and the bias voltage, V;, by the relations

Us + Up
2 )

eVp = s — pp; eV = (5.21)

I's and Iy are defined as
Iy p (&) = 2mpsp () ViV, (5.22)
where \:/k is the expectation value of Vi with respect to the relevant phonon state, ps and pp

are the density of states of S and D respectively and A(w) represents the SF which describes
the excitations and is given by

A(w) = i[Ggq(w) — Ggg(w)] = i[Gc?d(w) - Gc?d(w)]' (5.23)

where Ggq(w) and G§4(w) denote the retarded and advanced Green functions of the QD

electrons which are obtained by taking the Fourier transform (FT) of chf‘)(r =t—t')

defined by

Gl (t =t —t") = Fio(xt F t)0|{cz0(0), X, tD}]0),  (5.24)
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and G34(w) and G34(w) are the lesser and greater Keldysh Green functions for the QD
electrons in the energy space which can be obtained by taking the FT of the corresponding
time-dependent Keldysh Green functions G54 (t) and G34(t) [39] which are given by

Gaa(D) = (018}, (0)¢40(7)10), (5.25)
and
Gaa(1) = —i(0]é4s(x) &5,(0)]0). (5.26)
where,
Cio(t) = e Heite, etHert (5.27)
Eao(t) = 7 Cao (D), (5.28)

and |0) refers to the actual ground state of SMT i.e.,
[0} = 10)er[0)ph - (5.29)

For mathematical simplicity, we consider the interaction of QD with S and D to be symmetric
which implies

F@) =5 [R@) + @] (530)
which after the n-phonon averaging becomes
Lyp = 2mp(@)Vl2el ™ Uor+2)] (531)
fon being the phonon distribution function given by

fon = [e"@o/ksT — 1] (5.32)

Thus, the tunneling current for a symmetric SMT simplifies to
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—rf(fs ~ ) A(w) do, (5.33)

where A(w) can be obtained by substituting the expressions of Gj4(w) and G§4(w) in Eq.

(5.23) which can be calculated by taking FT of Gr(a) (t,t") which can be written as
Gai (6,6 = [Gag” 0. )] @ ORT@pn = |Gr” 00)] 0@, (539)
where Gr(a) (t,t") is defined as
[Gas2@. )] = Fi oG T £)(0]{cas (1), ey (t)}]0), (5.35)
and (¥ ()27 (¢")),n is calculated as
(X OFTE)pn = (e Font g etfionte=ifnt pleifnt’y | = ¢~ (536)
with
0(@) = 2 [2fpn + 1 = 2{fon(1+ fon)} " cos(h@o(c +i6/2))], (537

where f,, is the phonon distribution function given by Eq. (5.32). After some algebraic

manipulation, we obtain

o() = - ln[ Z Ln(Z)e‘i”h‘T’OT], (5.38)

n=-—oo

where L, is the spectral weight of the n'" phonon side band [24] and is given by

]1 @), (5.39)

Ln(2) = exp[ 22(2fpn +1) + (Zk T)

where, z = 22%(f,, (1 + f,1)]? , n is the number of phonons and 1, is the Modified Bessel
function of second kind.
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r("")(u)) can be written in the w-space as

[0e]

r(a)( ) = z L,(2) [Gr(a)(w _ nh&jO)]el ) (5.40)

n=-—oo

where the Green functions [G (a))] are the FTs of [Gr(a) (¢, t’)] l in the w — space.
e

ngf) (w) is calculated by the equation of motion approach [39] and is given by the following

expression in w — space as

1

r(a)
w + nhd = — — — ,
( o) = w Fnhdy — &gy — Ulng —o) — 27 @ (w)

(5.41)

where n is the phonon number, {n, _,) is the mean electron occupancy in QD and @ ()

is the retarded (advanced) self-energy which can be expressed as

5@ (W) = lim Z [< Vi >[" = A Filfw), (542)
n-0 W ((U ; nh@o — & i lT]) ’ '
€5,

where the real part of 7@ (w) can be clubbed with the QD energy and the imaginary part
assumes the following expression

= re?(m+s), (5.43)

Substituting Egs. (5.40) and (5.41) in Eq. (5.23), SF can be obtained as

(o]

Aw) = Z iL(2) [Cha(@ F nA@o) — GS4(w F nhay)]

n=-o

o)

_ Z 21 L, (2) (5.44)

(w + nhiy — €45 — U(nd,—cr))z + 12

n=—oo

The mean electron occupancy in QD is given by
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(o) = f dw fD) A(w). (5.45)

Egs. (5.44) and (5.45) can be solved self consistently to obtain A(w) and hence the tunneling
current can be calculated.

The expression of A(w) can also be obtained by calculating the lesser and greater Keldysh
Green functions which assume, after some algebraic manipulations, the following expressions

G3a(®) = {0]cf©)ca(D[0) ,(RTOF @hpn = G5 (D ) Lne™7,  (5.46)

n=—oo

G74(®) = =1{0]ca(De](©]0), (& @R O = G7a(@er Y Lye ™, (547)

n=-—oco
where
Gaa() = i{0]c} (0)cq(D)]0) , = i{0|cf(0)e~Ferrc etMerm |0) , (5.48)
Ga(®) = =i{0]ca(Dc(D)]0) , = —i{0]e~ et etPercl(0) |0) , (5.49)
and
(#1(0)Z (M)pn = (#T(0)e~ T g eFenTy Z Ly, @, (5.50)
n=-—oo
(X @RTO)pn = (e7Hon™ g e o™ 31(0)),,), = Z Ly, e~ "ot (5.51)
n=-—oco
G5, (w) and GZ,(w) are now obtained as
65, (w) = Z L, G5, (0 + nhdy,), (5.52)
n=—oo
63, (w) = Z L, G2, (w — nhay). (5.53)

n=-—oo
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where G5,4(w) and G, (w) are the FTs of Gg,;(t) and G7,(t) respectively, in the w —
space. Thus, in the Fourier space (w), the SF of the SMT system reads

[0e]

A(w) = Z Ly (2)[C” (@ — nhe) — G<(w + nhdo)]. (5.54)

n=-—oo

Applying the Langreth’s analytical continuation rule to the Dyson equations for G><)(w) ,

we obtain
6> (w) = Ggq(w) £ (w) Gi4(w), (5.55)
where £<()(w) can be written as
2<(w) =i I[fs(w) + fp(w)], (5.56)
22 (w) =—iT [2 = (fs(w) + fo(@))]. (5.57)

Substituting the expressions of G from Eq. (5.41) and the expressions of £>(<) () from

(5.56) and (5.57) in Eq. (5.55), we can obtain the lesser and greater Keldysh Green functions
G>(< and hence the SF and the tunneling current.
To obtain the Differential conductance, we calculate dJ/dV;, which gives

d 2r o
G = d_lib - ez—h ) L, J_wdan (@)A(w — nhdy), (5.58)
where F, (w) is given by
1 1 [ _nhde
F(@) = 5= (@)1~ @] + @)1~ fo(@)]} {1 +5 (e ol — 1) (Xs + XD)}
B
nhy
* T (ek— - 1) (fs(@) = fo(@)Xs(1 ~ X5) = Xp(1 = Xp)},  (559)
B

where,

Xs = fs(w —nhwy) ; Xp = fp(w —nhy). (5.60)
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Finally, we determine the spin polarization from the relation:

]0 _]—o
P,_, = .
77 et

(5.61)

§.3 NUMERICAL RESULTS AND DISCUSSIONS

We choose the phonon energy, hw, = 1 to set the energy scale of the system and take I"
= 0.2, Vg = 0, e = 0. We also consider the electronic density of states for the conduction
electrons in S and D are constant (independent of energy). For concreteness, we consider
eV, =0.1,eV,, = 0.5 and U =5 and evaluate the normalized spectral density A/A, ,
normalized tunneling current J/]J,, differential conductance G/G, and spin polarization P, _,
as functions of different parameters of the SMT system at different temperature (T) and
external magnetic field (B).

In Fig.5.2(a) we show the behavior of the normalized spectral function A with energy (w)
incorporating the effects of e-e interaction U, e-p interaction A and dissipation (measured by
the coefficient y) at different temperature T, while in Fig.5.2(b) we display the same for
different values of the magnetic field B. Here we choose other parameters of the system as
eV, =0.5,eV, =0.1,U=5,A=0.6, y=0.02. Ais calculated in the units of A, = 2/T.
We observe interesting peak structure in these plots. Fig.5.2(a) reveals that at constant B, as T
increases, these peaks decrease in height and shift to the right, while Fig.5.2(b) shows that at
constant (finite) T, the peaks increase in height with increasing B. Both the plots exhibit side
bands which arise because of emission or absorption of phonons by the tunneling electron
due to the polaronic effect. At T =0, as higher-order phonon scattering becomes less
probable, the heights of the side-band peaks reduce with increasing w, while as T increases,
the overall spectrum shifts towards right and the side-peaks diminish as temperature has a
debilitating effect on the side bands. The inset (a) of Fig.5.2(a) shows that the distance
between the peaks increases as B increases. This spin separation is completely absent at B =
0 (Inset (b) of Fig.5.2(a)). We notice from Fig.5.2(b) that as B increases, two spin-resolved
peaks appear, the heights and the separation between them increasing with B. The left peak
refers to the up-spin electrons and the right peak the down-spin electrons. This happens
because of the breaking of spin-degeneracy in the QD energy spectrum. This character is also
visible in Fig.5.2(a), though it becomes less prominent in the presence of temperature which
impedes this effect. The inset of Fig.5.2(b) shows that at a higher temperature, the peaks shift
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towards right and splitting of the peaks reduces.
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Fig.5.2 A/A, as a function of w (a) for different values of kgT at ugB = 0.5 (Insets: at ugB = 1.0 &
B = 0.0) and (b) for different ugB values at kgT = 0.5 (Inset: at kgT = 1.0).

To understand the effects of polaronic interaction and dissipation, we study the variation of
the spectral density as a function of w for different values of e-p coupling constant A and
dissipation factor y in Fig.5.3 and Fig.5.4 respectively. Fig.5.3 demonstrates that as we
increase A, the central peak reduces in height and starts developing side bands. We have also
observed (not shown here) that with increasing A, peaks become shorter in height and shift to
the left if ugB > kgT, while for kgT > ugB, the heights and the number of peaks increase.
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When both T and B are equally large, the peaks get sharper and taller in height with
increasing A and they shift toward right. Fig.5.4 exhibits that at low B and T, the peaks of the
spectral function diminish and get more stretched with increasing y reducing the occupancy
of phonon side bands, but it sharply increases with increasing y for ugB > kgT , kgT > ugB
or at high pugB & kgT (not shown here). This signifies a stronger correlation between QD
and bath phonons at higher temperature or magnetic field.
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Fig.5.3 A/A, vs. w for different A values with Fi9.5.4 A/Aq vs. w for different y values with
ugB = kgT = 0.5, eV, =05, eV, =0.1, U= HgB = kgT=05, eV, =05, eV, =0.1,
5,y = 0.02. U =51=06.

Next, we wish to understand the response of the tunnelling current J to magnetic field, e-p
interaction and damping at different temperature. J is measured in the units of J, = e/2h.
Fig.5.5 displays the variation of current density ] with Vi, at different T and B respectively.
For comparison, we also show the plots for zero (lower bunch) and nonzero (upper bunch) B.
We observe that ] initially increases linearly with V,, showing an Ohmic nature and then
saturates. The explanation goes as follows. On application of V,,, the Fermi level of S shifts
up and that of the right lead goes down. Due to this non-uniform alignment of the Fermi
levels electrons enter from S-lead into QD giving rise to a nonzero tunnelling current. But as
the QD is able to accommodate only a limited number of electrons, the current gets saturated
if V}, is raised beyond a certain value. In the B # 0 case, the spin degeneracy of QD’s energy
level is lifted and as result, the spin-up level moves up and spin-down level moves down.
Now either of the two levels can be much closer to the Fermi level of the leads which causes
a hike in the current for B # 0 (upper bunch). However, it is clear from Fig.5.5 that ]
decreases with increasing T for given values of B and the SMT parameters. The inset shows



Ch.5| Temperature dependent non-equilibrium magneto-transport in a correlated polar SMT system

the scenario for T = 0. The response of ] at low temperatures is not so significant unless the
bias voltage is sufficiently high to match the spin levels with the Fermi levels of S and D
leads.

—k, T=0.2
5 [= kyT=04
—-k T=0.6
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Fig.5.5 J/]Jo vs. eV, for different values of kgT atA = 0.6, eV,,0.1,y = 0.02 for ugB = 0 & pugB =
0.5. Inset: Resultsat T = 0.

Fig.5.6 (a) J+/]o and (b) J, /]y Vvs. eVy, for different B values at A = 0.6, eV, = 0.1,y = 0.02 for
kgT = 0.5. Insets: Results at T = 0.

To see the effect separately in up and down-spin current densities, we draw in Fig.5.6, ]
versus V, at a finite T for several B values. The insets in Fig.5.6 give the zero-temperature
behaviour. One may notice from the figures that at finite temperature, both J; and J; grow in
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the Ohmic fashion from V}, = 0 (unlike in the case of T = 0) till some finite V}, beyond which
they grow at a slower rate and finally reach saturation values. Also, the behviour of J; at large
B is non-ohmic. At finite temperature, J; and J; become smaller than their corresponding
zero-temperature values. This is consistent with Fig.5.5. We also see that the current
decreases on increasing B. The decrease in the spin-up current is more than that in the spin-
down current. This happens because the spin-splitting becomes stronger as B increases and as
a result, the spin-up level shifts down more resulting in a lesser tunnelling probability through
QD to D. Interestingly, the staircase-like behavior observed at T = 0 disappears as T is
increased. The behavior of J; and J; with respect to V,, at T = 0 has been explained by Kalla
et al. [26].

The combined effect of magnetic field and polaronic interaction on J; and J, is studied in
Fig.5.7 for a non-zero value of T and a set of A values. One may notice from Fig.5.7(a) that at
nonzero T and a very small value of A, the spin-up current density J; first rises with B and
quickly reaches a maximum and then decreases as B increases further. For larger A values, J;
however reduces monotonically as B rises. The behavior of down-spin current J; is however
more interesting. The effect of A is also interesting here. At a finite temperature, e-p
interaction reduces J; for the entire range of B. This is because the polaronic interactions
restrict the flow of current. In the case of J;, for not too small A, ], first rises with B, reaches a
maximum and then monotonically decreases as B increases further. Interestingly, at low B, J,
decreases with increasing A while at high B, it increases with A. This gives rise to a crossing
behaviour and the crossover point is right shifted as we increase A. This can be explained by
the help of Fig.5.6. The external field splits the spin-degenerate electron states, the spin-down
state being shifted above the Fermi level and the spin-down state below the Fermi level. As
the spin-up state is lowered in energy, it becomes more difficult for an electron in this state to
leave QD. Thus J; may decrease because of lesser availability of tunneling electrons through
the channel. On the other hand, the down-spin state is raised and this favours the flow of
tunneling electrons from QD causing an enhancement in current for low and intermediate
value of B. Above a certain value of B, however, two effects may come into play. First, the
availability of unoccupied states in QD may become less or probability of having tunneling
electrons through QD channel becomes small and as a result J, reduces. This scenario holds
good even at a higher T (insets). It is important to note that the peaks occurring in the current
densities at T = 0 (inset (i)) for small values of A become much flatter and also smaller in
height as temperature increases. The plot of J;, vs. A clearly shows this (not shown here).
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Fig.5.7 (@) J+/Jo (0)]i/Jo Vvs. ugB for a few A values at eV}, = 0.5, eV, = 0.1,y = 0.02 for kgT =
0.6 & kgT = 1.0. Insets: Results at (i) T =0, (ii) T = 1.0.

In Fig.5.8, we plot J; and ], as a function of B for different values y at a finite value of T.
The insets display the variations at T = 0. Fig.5.8(a) reveals that ]; dies out monotonically as
B increases while it increases with y. Here we have considered A = 0.6, because of which J;
decreases from the beginning itself i.e., from B = 0. Interestingly, Fig.5.8(b) suggests that
initially J, increases with B and also gets enhanced by dissipation but then beyond a critical B
it falls off monotonically. In this range it also decreases due to damping. This gives rise to a
crossing behaviour which however disappears as T is increased. At these temperatures, J, is
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always enhanced by dissipation, though changes are marginal for the considered parameters.
It is also clear that the current densities are lower at higher T values at small magnetic field.
At large magnetic field, however, the T-dependence becomes more complicated giving rise to
some interesting crossing behaviour. Also, the rate of decrease in J; ;, with B slows down as T

increases.
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Fig.5.8 (@) J1+/Jo (0) ]y /Jo Vvs. ugB for several y values ateV,, = 0.5, eV, = 0.1,A = 0.6 for kgT =
0.2, 5&1.0.Insets:at T = 0.

The contrasting nature of both J, and J; at high B values with respect to A and vy is
noticeable in Fig.5.7 and Fig.5.8. This can be understood from the effective QD-energy:
€15 = €4 — €V, — ougB — A*hé,. For up-spin case, the energy looks like &, , = 5 — eV, —
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ugB — 2*h@, while for the down-spin case, the same becomes: &; _ = ¢4 — eVy + ugB —
A2h@,. Thus, for the down-spin case, there exists a competition between the relative
strengths of the B and A or y-terms leading to the crossover behaviour.
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Fig.5.9]/], vs. eV, forafew valuesof T and BateV, = 3.6, A = 1.0: (a) U=0,y = 0 (b) U=6,y =
0.02.

Fig.5.9 shows the nature of J as a function of mid-voltage, V,,, for different kgT and pgB
combinations at a fixed A and eV}, fory =U =0 and y = 0.02, U = 6 in Fig.5.9(a) and
Fig.5.9(b) respectively. The behaviour in Fig.5.9(a) turns out to be symmetric with respect to
V, =0aty = U = 0. In this plot we notice that for B= 0, T = 0, as V,,, increases from the
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negative side, initially J increases with V,, and later exhibits a symmetric structure of
shoulder, peak and valley and finally falls off very rapidly at as V,, increases further. This
behaviour has also been observed by Chen et al. [24] (red solid curve) who suggest that this
pattern corresponds to the phonon-assisted conduction peaks. Now as we turn on the
magnetic field (blue solid curve), some of the shoulders also turn into peaks increasing the
total number of conduction peaks, but the height of the peaks decreases. Our figure however
shows that at a finite temperature (black dotted curve), the shoulders disappear making it
more like a Gaussian curve. It is also shown that at this low temperature if we increase
magnetic field to sufficiently high value, a clear double peak structure with less peak-height
and a valley at around V,, = 0 appears corresponding to two spin-resolved (up-down)
conduction peaks, but multiple peak-valley structure seems to disappear. Here, the spin-
resolved current peaks show a broad maximum. This suggests that although the magnetic
field reduces current, but the spin-splitting is favourable at large B and low T. In Fig.5.9(b),
we show the effect of U and y with the same set of other parameters. It can be seen that the
presence of y enhances the current. Here the variations in the presence of U and y become
slightly right-shifted with respect to V,, = 0. However, the qualitative behaviour of the
variations is almost same as Fig.5.9(a). Fig.5.10 displays how the normalized differential
conductance, G/G, changes with V,, at different T value.G conductance is computed in units
of G, = e?/2h. The double-peak structure was already observed in [30] at T=0 in the absence
of a magnetic field. An introduction of a magnetic field brings about a splitting in the peaks.
This was observed in [26]. As the temperature is increased in the B # 0 case, the splitting in
the peaks disappears and the peaks also come down in value. As the temperature is further
increased, the double-peak configuration vanishes and in place of it, a single wide maximum
appears. Thus, at a high temperature, the behaviour in the case of B # 0 is qualitatively same
as in the case of B = 0. The behaviour at B = 0 is shown in the inset. Fig.5.11 shows the
nature of G versus Vi, at a finite T for a few values of B. The behaviour at T = 0 is shown in
the inset. At B = 0, G displays a peak structure. As B is increased from zero (to say ugB =
0.4), the peak structure continues to show up, but the value of G increases for the range of V,
considered and consequently, the peak value of G also becomes higher. This increase at a
nonzero B is suggested by Fig.5.5. As B is increased beyond a certain value, G starts
decreasing because of the localizing effect of B. Also, it is evident that the double-peak
structure occurring in G at T = 0 due to spin-splitting (shown in the inset) vanishes at finite T
as expected until B is made sufficiently strong (ugB = 0.8) when the double-peak structure
reappears.
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Fig.5.10 G/Gq vs. eV for several T values at Fig.5.11 G/Gg vs. eVy, for several B values at
A=0.6, eV, =0.1,y=0.02 for pygB=0.5. A=0.6, eV, =0.1,y = 0.02 for kgT =0.5.
Inset: Results at B = 0. Inset: Results at T = 0.
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Fig.5.12 G/Go vs. V, for several A values at Fig.5.13 G/G, vs. V,, for several vy values at
eVy =01, U=5, y=002 kgT=02 ev,=0.1, U5 A1=0.6, kgT =0.2, pgB =
upB =0.5.Inset: Gat (@) T =0, ugB=0.5; (b) 0.5. Insets: G at (@) T=0, ugB=0.5; (b)
kgT = 0.5, pgB = 0.5. kgT = 0.5, ugB = 0.5.

In Fig.5.12, we show the effect of e-p interaction (A) on the (G —V;,) — plots at a fixed
temperature kgT = 0.2 and magnetic field ugB = 0.5. Insets (a) and (b) show the behaviour
for yugB=05at T=0and T = 0.5 respectively. The main plot shows that for A =0
(central blue curve), as Vy, is increased from zero, G decreases till Vi, acquires some critical
value where it develops a shoulder. After this G again decreases with the further increase in
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Vi,. The figure shows a bit of asymmetry around Vi, = 0. Interestingly, at A = 0.6, the central
peak of G splits into a double-peak structure with a little asymmetry around Vi, = 0. At
higher values of A (A = 0.8, 1.0), G shows more structures. Thus, the splitting also depends
on the strength of the e-p interaction. Interestingly, at low values of T and high values of 2,
small side peaks are fund to occur in G. Of course, as expected, G is reduced by e-p
interaction. The double-peak structure due to B at T = 0 is shown in the inset (a). Inset (b)
shows that both the double-peak structure and the side peaks observed in G at low
temperature due to polaron formation disappear at higher temperature. This is because at high
temperature, real phonons are excited which impede the polaron formation. One can see that
the reduction in G by e-p interaction is pronounced only at a lower T. Also, the temperature in
general reduces the peak height of G making them more Lorentzian-like.

Fig.5.13 shows how damping (y) influences the G vs. Vi, — behaviour at a non-zero
temperature (kgT = 0.2) and in the presence of both e-p interaction (A = 0.6) and an
external magnetic field (ugB = 0.5). The zero-temperature effect is shown in inset (a) and
the effect at high temperature (kgT = 0.5) is shown in inset (b). One can see a double-peak
structure, the minimum occurring at Vi, = 0. As V,, increases, G falls off to zero. At T =0
(inset (a)), a sharp double-peak structure is seen (at A = 0.6) and the peak values are higher
for larger values of y. But we notice that as T increases, the sharpness in the peaks decreases
and above a certain value of T, the double-peak nature of G vanishes completely and G
exhibits a solitary wide maximum which looks like a Lorentzian (inset (b)). We can see that
G has only a marginal dependence of y at finite temperature. Also, at low T, the dependence
is different in different ranges of V;,. Therefore, we conclude that the behavior of G at a fixed
B with respect to A and y changes qualitatively in different temperature regimes.

As the interactions affect the spin-resolved conductivities differently, we plot G; and G,
separately with A T # 0 and B # 0 in Fig.5.14. The insets in Fig.5.14(a) and Fig.5.14(b)
show the behaviour at T = 0, and B = 0. Both G; and G; show almost a similar behaviour.
They first decrease as A increases from zero and then exhibit a shoulder-like feature and
finally again decrease to zero. As temperature is increased, the shoulder disappears and Gq ;
monotonically decreases to zero. Fig.5.14(a) shows that for B # 0, G; dies out quite rapidly
with increasing A. As we increase T, still G decreases with increasing A but now the rate of
decrease is much slower. In fact, the decrease in G with increase in A becomes slower with
increasing T. As can be seen from Fig.5.14(b), the behaviour of G; with respect to A is more
interesting for B # 0. At T = 0, Gy, in the case of B # 0, develops a peak at a certain A and a
shorter side-peak at a higher A value. At temperature rises, this peak-structures disappear and
G, shows a broad maximum and on further increase in T, G, shows a monotonic decrease.
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This can be explained as follows. As mentioned earlier, the magnetic field and the e-p
interaction have competing effects on the spin-down component and this gives rise to a non-
monotonic behaviour at a low temperature. The polaronic effect is mainly controlled by

A2e~**_ Therefore, in the small-A regime, the behavior is dominated by A2 while in the large-A

regime, the behaviour is Gaussian resulting into peaks at T = 0. Higher temperature
minimizes this effect.

Fig.5.14 (a) Gy/Gg (b) G, /Gy vs. Afor a few T values at eV, = 0.5, eV, = 0.1,y = 0.02 for ugB =
0.5. (Inset: B = 0).

Fig.5.15 describes the variation of G with V,,, for a few values of B at kgT = 0.6 with A =
0.6 and y = 0.02. Multiple peaks appear in G due to e-p interaction and these peaks are
spread equally over +V,, axis. Also, the peak heights reduce with increasing B. One may
notice that at a certain temperature, each peak splits into two as a magnetic field is switched
on. Similarly, in Fig.5.16 also, one can see the spin-splitting at a nonzero B. Also, we see
that at nonzero T and B, the heights of the peak in G decrease as A increases.

Fig.5.17 displays the variation of the spin polarization Py, with V,, at few values of T and B.
P, decreases with increasing Vi, at all T except at T = 0, where it initially rises with V,,,
shows a peak and finally falls sharply with additional increase in V,,. It is also visible from
Fig.5.17 that at nonzero T, P;; decreases with increasing T. This is however the behaviour at
low B (ugB = 0.5). At a comparatively higher B (ugB = 2.5) (inset), Py, is generally large
at low T and reaches maximum polarization (Py, max = 1.0) at a certain critical value of V,.
At higher T, P;; remains negligibly small up to a certain V}, above which it sharply rises with
Vp, and reaches a saturation. In general, high B (ugB = 2.5) and low T (kgT = 0.5) may be
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considered as the good criteria for a reasonably good spin-polarization for a given set of SMT
constants. Fig.5.18 shows the effect of e-p interaction, A on the variation of P;; with V,, at
high B and low T. We can see that the phonon-induced spin-polarization increases with
increasing A even at a higher T (inset), although a relatively high T (inset) suppresses P;;.
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Fig.5.15 G/Gg Vs. eVy, for a few B values at A = Fig.5.16 G/Go vs. eV, for a few A values at
0.6, eV, = 0.5,y = 0.02 for kgT = 0.6. ugB = 1.0, kgT = 0.5, eV, = 0.5,y = 0.02.
Inset: Results at B = 0.
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Fig.5.17 Py, vs. eV, for a few T values at A = 0.6, eV, = 0.1,y = 0.02 for uygB = 0.5. Inset:
Results at ugB = 2.5.
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Fig.5.18 Py, vs. eV, for a few A values at eV, = 0.1,y = 0.02 for ugB = 3.0, kgT = 0.5. Inset:
Results at kg T = 1.0.
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Fig.5.19 P4, vs. ugB for a few y values at eV, =
0.1,eV, = 0.5, A = 0.6 for kgT = 0.5. Inset: at

Fig.5.20 Py, vs. kgT for a few B values at eV,
0.1,eV, = 0.5,y =0.02, A = 0.6.

In Fig.5.19, we describe the effect of damping, y on the variation of P;; with B at a given T.
Understandably, Py, is zero at B = 0 for all y. As B increases from zero, Py, increases and
reaches a maximum and then falls off to zero at around pgB = 1.5. As B is further increased,
P;, also increases and now the increase becomes more rapid. However, above a certain B, the
growth in Py, slows down and finally P;; reaches saturation. We thus observe a structure
resembling a swan-neck. At a higher value of T (see inset), however, the swan-structure
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disappears and P;; shows a monotonic increase with B until it saturates at a critical B. With

increase iny, Py, gets reduced and right-shifted. Fig.5.20 shows the behavior of P;; directly
with respect to T at different B. As expected, at B =0, P;; = 0 for all T. At a low magnetic

field (ugB = 0.5), we observe that P;; first decreases monotonically with increasing T,

reaches zero at some critical T and then grows with further rise in T and finally saturates.

Here the neck-part develops a broad maximum and shows a down-turn or a saturation

depending on the value of B. When B becomes sufficiently large, P;; becomes 1.0 in

conformity with Fig.5.19 and continues to have this value till a certain T after which it falls

slowly. This again shows that temperature causes lower polarization, but a magnetic field

increases it.
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Fig.5.21 3D plots of J; with respect to Band A ateV,, = 0.1,eV, = 0.5, U =5,y =0.02for (a) T

0, (b) T # 0.
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Fig.5.22 3D plots of J, with respect to Band A ateV,, = 0.1,eV, =0.5,U=5,y=0.02for (@) T =

0, (b) T # 0.

In Figs.5.21-22, we display the nature of the surface plots of J; and J, in terms of B and A

for kgT = 0 and 0.5 and a set of SMT parameters. The dark red and the blue denote
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respectively the maximum and minimum values of the current densities. We can see from
Fig.5.21 that as T is increased from zero, J; acquires the maximum at low values of 1 and B
and it decreases rather slowly as A or B increases in contrast to what happens at T = 0. The
scenario is quite similar in the case of ], but the maximum of J; is now found slightly shifted
towards higher values of A values. Thus, the e-p interaction acts differently upon J; and J;.
This is in agreement with the observations in Fig.5.7. Similar plots can also be drawn for the
conductance.

The surface plots of G are plotted in Fig.5.23 for a few values of B. One can see that as B is
increased from zero to a small finite value, G does not drop to zero with increasing A in
contrast to its behaviour at B = 0, while with increasing T, it drops faster and reduces to
almost zero which is again a behaviour different from that at B = 0. If B is increased more,
the decrease of G with T again turns slower and it does not drop to zero.
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Fig.5.23 3D plots of G with respect to T and A for a few B values with eV, = 0.1, eV}, = 0.5, U = 5,
y = 0.02.

Figs.5.24-25 show the temperature effect on the contour maps of J and G in the V, — V,
plane for a given set of SMT parameters and a fixed magnetic field. In Fig.5.24, the darker
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red and the darker blue represent the higher values of J; and J; respectively in upper and
lower halves of the graphs. One can notice that in the presence of an external magnetic field,
the behaviour of the spin-up current turns out to be opposite to that of the sin-down one and
both of them get reduced and smoothened on increasing T. The colours fade as V}, approaches
zero indicating that the current densities decrease as V, decreases. The differential
conductance G also shows the similar nature. Here also the darker red represents the higher
G values, but darker blue represents the lower G values. We can see from Fig.5.25 that, at
T = 0, there exists two channels on each side with respect to V,, and V,, axes meeting at
Vi, = V, = 0. These channels represent two spin-resolved parts of G. This can also be seen
from dark blue solid curve of Fig.5.10. One can see from Fig.5.25 (b-c) that as T increases,
the channels become broader indicating the suppression of spin splitting. This can be
understood from Fig.5.10 as well. It is also shown that at a non-zero T and B the G values are
higher at lower V,,, — V,, values.
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Fig.5.24 Contour plots of Jin V,, =V, plain atA=0.6,U=5,y=0.02, ugB=0.5for (a) T =
0,(b) kgT = 0.4, (c) kg T = 0.8.
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In Figs.5.26-27 we depict the dependence of the contour plot of J and G on A and U in the
V, — V,, plane for finite T and B and a given set of SMT parameters. The presence of
Coulomb correlation, U modifies the variation of both ] and G at finite T and B in the V,, —
V,, space. From Fig.5.26, the spin splitting with respect to Vi, = 0 in the J-plots is clearly
visible at U = 0 even at a finite T. As the onsite Coulomb repulsion opposes a further flow of
conduction electrons from the S-lead, U reduces both the spin-resolved components of ] and
makes them chaotic for large values of V,,,. One can see that the higher values of ], and ], lie
in the higher V,, and V,, regions denoted by dark red and dark blue colours. This can be

explained as follows. At low temperature, we can write: (f; —fp) = (exp (—ﬁ)—
B

exp (— %)) where pg = e (Vm + %Vb), Up = € (Vm - %Vb) and thus |(fs — fp)| increases

with increasing V,,, and V;, values and consequently the higher values of ] lie in the high V,,-
Wy, (V, > V) region. One can make the same observation for the variations of G from
Fig.5.27.

0.5
0.4
0.3
0.2
0.1
0.0

0.25
0.20
0.15
0.10
0.05
0.00

Fig.5.25 Contour plots of G in the V,, — V}, plain atA = 0.6,U =5,y = 0.02,ugB=0.5for (a) T =
0 (b) kgT = 0.4 (c) kgT = 0.8.
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Fig.5.26 Contour plots of J in V,, —V, plain atA = 0.6, y =0.02 ,kgT = 0.6, ugB = 0.5 for (a)
U=0and(b)U =5.
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Fig.5.27 Contour plots of Gin V,, —V,, spaceat A = 0.6, y = 0.02 , kgT = 0.6, ugB = 0.5 for (a)
U=0and(b)U =5.

5.4 CONCLUSIONS

In conclusion, we have studied the combined effect of magnetic field B and temperature T
on the quantum transport in SMT in the presence of e-p interaction, e-e correlation and
dissipation. The interaction of the QD phonon and the substrate phonons which causes
dissipation is incorporated by a linear model following Caldeira and Leggett and this
interaction is treated approximately by a canonical transformation which introduces the main
effect of the dissipation namely, the reduction in the frequency of the QD phonon which is
precisely the damping effect. The e-p interaction is decoupled by the conventional Lang-
Firsov approach and the onsite e-e interaction is treated by the Hartree-Fock mean-field
approximation and finally the Keldysh method is used to investigate the effect of dissipation,
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e-p interaction and e-e interaction on the spectral function, tunneling current and the
differential conductance. We find that magnetic field and temperature have contrasting roles
on current. Temperature not only reduces the spectral density, current and differential
conductance but also decreases the spin splitting, while the magnetic field increases the
height of the spectral function and broadens the separation between the spin-up and the spin-
down peaks. The magnetic field, of course, reduces the current and the conductance.

The effects of e-p coupling and dissipation on the transport properties are greatly influenced
by magnetic field and temperature. Also, these effects depend on the range of T and B. We
have shown that the spectral function is reduced by the e-p interaction and damping at low T
and low B while at high T and high B, it is enhanced by polaronic interaction strength and
damping. The spectral function peak is shifted by the magnetic field towards left on the V-
axis and towards right by the temperature. It is also shown that due to polaronic effect, side
peaks develop in the spectral function which become shorter as T rises, but at high T and high
B, they again reappear. AtT # 0, the e-p interaction reduces the tunneling current much
more in the presence of a magnetic field than in the absence of it. On the other hand, though
the enhancement of the tunneling current by damping becomes more pronounced at a non-
zero B, a sufficiently high field suppresses this effect. The differential conductance is reduced
by damping and e-p coupling at T # 0 and B # 0. This reduction becomes more prominent at
high temperature. The temperature and magnetic field have contrasting effects on spin
resolved current densities, conductance and spin-polarization with respect to the interactions.
It is important to mention that finally the temperature effect dominates over the magnetic
field.

Finally, the spin-resolved current density and the conductance are studied as a function of
different SMT parameters through surface and contour plots. This work can have potential
application as a spin-filter which can be tuned by temperature and magnetic field.
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CHAPTER 6

SPIN-FILTERING BY RASHBA COUPLING IN A
CORRELATED POLAR DISSIPATIVE MOLECULAR
TRANSISTOR AT FINITE TEMPERATURE AND IN A
MAGNETIC FIELD

ABSTRACT

The RSOI induced quantum transport through a QD embedded in a two-arm quantum loop of
an SMT is studied at finite temperature in the presence of e-p and Hubbard interactions, an
external magnetic field and quantum dissipation. The Anderson-Holstein-Caldeira-Leggett-
Rashba model is used to describe the system and several unitary transformations are
employed to decouple some of the interactions and the transport properties are calculated
using the Keldysh technique. It is shown that RSOI alone separates the spin-up and spin-
down currents causing zero-field spin-polarization. The gap between the up and down-spin
currents and conductances can be changed by tuning the Rashba strength. In the absence of a
field, the spin-up and spin-down currents show an opposite behaviour with respect to spin-
orbit interaction phase. The spin-polarization increases with increasing e-p interaction at zero
magnetic field. In the presence of a magnetic field, the tunneling conductance and spin-
polarization change differently with the polaronic interaction, SOI and dissipation in different
temperature regimes. This study predicts that for a given Rashba strength and magnetic field,
the maximum spin-polarization in a single molecular device occurs at zero temperature.
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6.1 INTRODUCTION

Spintronics has emerged in the last few decades as a very fascinating area of modern
condensed matter physics due to its potential use in manipulating electron spin [1,2] to
control spin current. The SOI which is one of the key elements of low-dimensional
spintronics physics has been studied by many research groups [3-14]. These studies have
been motivated by the pioneering work of Datta and Das on spin field-effect-transistor [14].
Molecular transistor is another branch which has received so much attention thanks to
Aviram et al. [15] who fabricated the first model of SMT. A molecular junction transistor
contains at its centre a molecule or a QD connected to two conducting leads which act as a
source (S) and a drain (D). The S-QD-D system is placed on a substrate to which is attached
gate. The electrons in S and D can be treated as free electrons with continuous momentum
states. The central QD contains discrete energy levels and so the QD electrons are described
by localized states. Because of the application of a bias voltage, electrons from S can travel to
D through QD giving rise to a tunneling current which can also be controlled by the gate
voltage. The tunneling of electrons from S to QD and QD to D and vice versa can be
described by a hybridization term. Several transport properties have been studied in SMT
systems [16-20] which show potential for promising applications in nano-devices. There have
also been investigations on correlation effects in a SMT system namely, the Coulomb
blockade and Kondo effect [21-25]. It has also been observed that the e-e and local e-p
interactions play a crucial role on the non-equilibrium quantum transport through SMT
structures [26-31]. The effect of e-p interaction on the transport properties in an SMT system
has been studied by Chen et al [30]. They have shown that phonon-assisted conductance is
reduced significantly in the presence of e-p coupling. Recently, Khedri et al. [31] have shown
the phononic responses in the bias-voltage-dependent electric currents in a vibrating
molecular transistor. The effect of quantum dissipation on the tunneling conductance of an
SMT system has been investigated by RC [32]. They have assumed that QD contains a single
localized lattice mode which interacts with the QD electrons through a coupling of Holstein
type. They have further assumed that the insulating substrate contains a large number of
uncoupled harmonic oscillator modes and thus acts as a phonon-reservoir. In the RC picture,
the substrate phonons can interact with the local QD phonon through the linear CL interaction
giving rise to dissipation. They have formulated the whole system by AHCL model and used
the Keldysh NEGF technique to calculate the tunneling current and differential conductance.
It has been shown that dissipation renormalizes the QD phonon frequency and consequently
the polaronic effect decreases leading to an increase in the tunneling current. Later, Kalla et
al. [33] have studied the transport properties of the same set-up in the presence of an external
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magnetic field. This work has useful applications for a spin-filtering device. The SOI is
another important characteristic feature that can lead to spin-dependent transport [34-44]. Sun
et al. [44] have given a derivation of the Rashba SO (RSO) interaction in second quantized
notation and have shown how RSOI and magnetic flux together can polarize the transport
properties of a QD in an A-B ring. Some experimental studies [45, 46] have shown that
temperature can also play a significant role on the non-equilibrium transport. Kalla et al. have
theoretically analysed the effect of between the source and the drain temperature in an SMT
system [47]. Very recently, Kalla et al. have studied the transient dynamics in a dissipative
SMT with e-p and e-e interaction [48].

In this study, we wish to investigate the effect of RSOI on the non-equilibrium quantum
transport in a dissipative SMT device. We consider an SMT system in which a two-arm
quantum loop containing a QD in one of its arms is sandwiched between the source and the
drain (Fig.6.1(a)). Thus, the electrons from S can tunnel to D following two paths, one
through the arm of the loop that contains the QD and the other through the arm of the loop
that does not contain any QD. We assume that the QD electrons can interact with each other
through a Hubbard-like interaction and with the local phonon through an e-p interaction of
Holstein type. Following the approach of Sun et al. [44] we incorporate the RSOI-phase and
model the system by AHCL Hamiltonian and employ the finite Keldysh NEGF technique
[49] to calculate the phonon-induced magneto-transport properties in a correlated dissipative
SMT structure in the presence of RSOI.

6.2 ANALYTICAL MODEL AND FORMULATION

The standard model of an SMT with a QD embedded in a two-arm loop that is attached to
two metallic leads namely Source (S) and Drain (D) is depicted in Fig.6.1(a) where the QD
placed on one arm of the loop contains RSO, e-p and Hubbard interactions and the other arm
(which does not contain RSOI) directly connects S and D with a coupling strength ts, . A
schematic diagram for the realization of the QD used in Fig.6.1(a) is shown in Fig.6.1(b). It is
evident that the heterostructure geometry of Fig.6.1(b) would lead to a band-bending at the
GaAs-AlGaAs interfaces giving rise to a structural inversion asymmetry (shown in
Fig.6.1(c)) which produces the RSO coupling in the GaAs QD. The red part of Fig.6.1(b) is
considered as the central GaAs QD which is attached to S on one side and to D on the other
side. A given number of electrons can be accumulated in the QD by using the voltage V,. The
whole system is mounted on an insulating substrate that contains non-interacting phonons
behaving as a phonon-bath which can interact with the QD-phonon giving rise to a quantum
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damping effect. The bias voltage V;, and the gate voltage V; are applied as shown in the Fig.
6.1(a). Because of the bias voltage, electrons can travel from S to D by tunnelling through the
QD and also by hopping through the other path. It may be noted that the current channel is in
the x-direction and a magnetic field B(0,0, B) is applied in the z-direction. In general, a QD
may have many discrete energy levels, but it may still behave like an SMT system at a
sufficiently small size, as the higher energy levels in that case can be disregarded.

% BZ % z (b)
@ GaAs plate

y C - Vo

AlGaAs E 3
Insulating Substrate J
Gaas Qﬁ
AlGaAs GaAs
—,/I N E.

E;

Structural inversion asymmetry at the interface

J"(c) -

Fig.6.1 Schematic diagram (a) of an SMT device with a QD containing RSOl embedded in a two-
arm loop; (b) for experimental realization of a QD; (¢) showing structural inversion asymmetry at the
GaAs-AlGaAs interface.

The system can be described, in general, by the following AHCL-RSO Hamiltonian
H = HS,D + HQD + HT + HV ) (61)

where,

— T T T
Hgp = z &k (cks,acks,(, + cleaclea) + tsp Z (cks‘ackD,g + h. c.) , (6.2)
ko€S,D ko€S,D

1 6 1
Hqop = Z(Sd —ely =59 upBo)nas + Z Unging, + (22970 + §m0w3x§> + gz Mg Xo
0
do d do

+ Hp, (6.3)
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Hr = Y [VielsoCar + el otar) + hc], 64
kdo
HV_HBO+HQD B = lﬁ'i‘ m(l) x ZﬁlxxO (65)
l

Eq. (6.2) represents the lead Hamiltonian Hg . The first term of Hs ;, gives the total energy of

the conduction electros in S (D), where nysp) s (= C;S(D),Ucks(m,o) denotes the number

operator for the S (D) electrons with momentum k and spin o, C;crs(o),a (Cks(p),s) being the
corresponding creation (annihilation) operator and the second term of Hgp represents the
coupling between the two leads with the hopping strength ts, . Eq. (5.3) gives the
Hamiltonian (Hqp) for the QD which in general can contain many localized energy levels d

with energy e4. The first term of Hyp, shows that the QD energy is modified by the gate
voltage V; and the magnetic field BZ, where ndo( Cdacdd) denotes the number operator for

the QD electrons, cd(, (cqs) being the corresponding creation (annihilation) operator of the d-
th energy level, g, is the z-component of the Pauli matrices o, g* is the gyromagnetic ratio
and up is the Bohr magneton. The second term of Hgp represents the Hubbard interaction

with U as the Coulomb correlation strength. The third term of Hgp, is the Hamiltonian for the

local lattice mode of QD, where (x,, po) are the coordinate and the corresponding canonical
momentum of the QD oscillator with mass m, and frequency w,. The fourth term of Hyp
represents the interaction of the QD electrons with the local QD phonon with g giving the
strength of the coupling. The fifth term of Hq, represents the RSOl which, in general, can be

written in the x — z plane as

eA
ax<ﬁ+_qy 66)

where ay, is the strength of RSOI. Choosing the Landau gauge: A= (0, Bx,0), we can write

Hy, in the second quantized notation in the chosen basis |da) = ¢4 (7) ((1)) as

a
= WRZ [tz;/d (C;/JCdO' - C;/'_Ucd,_o-) + tCZi'd (C;/’_acd - C; —o€ )] + h. c., (67)
dd’
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where t = [d7 ¢ (¥) Px(z) Pa(¥). The first term of Eq. (6.7) denotes the inter-level
hopping between the same spin state and the second term denotes the between a spin-flip
state. Eq. (6.4) represents the tunneling Hamiltonian H; which describes the tunneling of
electrons from S to D through the QD and that of the reverse process, V, being the
hybridization strength. Eq. (6.5) represents the substrate Hamiltonian Hy, which contains two
pieces, Hgop and Hyp_p. Hpo describes a collection of N uncoupled bath oscillators where
(x;, p;) refer to the generalized coordinates and momenta of the i-th bath oscillator of mass
m; and frequency w; and H,p_p gives the linear interaction between the QD-phonon and the
i-th bath-phonon with the coupling strength ;. Hyp_p is chosen in the spirit of the Caldeira-
Leggett model [50].

To decouple SOI, we apply a transformation [44] to H by a unitary operator Uy so that H

transforms to H = U, "H Ug. Uy is chosen as

( 1 for x < xs,
— ¢ tkr(x—xs)0y for xo. < x < xp,
Ur ={2 * P (6.8)
ie‘ikR(xD‘xS)"Z for xp < x.
V2

where, kg = (agm*/h?). Defining a new set of operators: ¢ = U;rc and ¢t = cTUg , we can

express H as

H= z e (€5 oChso + ChpoChno) + tsp Z (6fsoChp,o + hoc.)

ko€S,D ko€S,D

1
+Zednda+ZUndTnd¢+< p +2m0w0x0> + and,,xO

do

AR + = _ - _ _ 4+ =
+ 72 [tc’;,d (cz,acdJ - cg,‘_acd,_a) +ti, (c;,'_acdJ - c;r’_acdra)] + h.c.
dad’

N N
+ + + ; X
leml —mw?x; l Zlﬁlxlxo
=

i=1
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+ Z [Vie(efs o Cage~1okrEx9) 1 &l 4,07 i0krG=2D)) + h. ], (6.9)
kdo

where &; = (ed — el —%g*uBBaZ). For simplicity, we assume that the QD contains

effectively a single localized level and a single lattice mode which allows us to neglect the
terms involving inter-level hopping and spin-flip term in the transformed Hamiltonian (9).
Also, we choose x = 0 and redefine: e'?*r¥*s¢, as c,,. The Hamiltonian H then reads

2 1

H = HS,D + E EqNgy + Undand’_,, + <_Zl:r(; + Emong(%) + g E Ngg Xo + Hy
0

g o

+ Z[(ch;crs,acda +h.c)+ (Vichp scace™9%s0 + h.c)], (6.10)
ko

which shows that the RSOI generates a spin-induced phase factor —o¢g, in the tunneling
Hamiltonian for the (QD -D) - sector, where ¢so = kgl = kg(xs — xp), | = (x5 — xp) being
the length scale over which a is non-zero and 0 = +1 and ¢ = —1 correspond to spin-up
and spin-down electrons respectively.

Next, we proceed to decouple the interaction between the QD phonon and the substrate
phonons as we have done in Ch.5. After applying the canonical transformations (Egs. (5.7)
and (5.8)) and eliminating the substrate phonons partially followed by the algebra mentioned
in Ch.5, the relevant SMT Hamiltonian reads

H=Hgp+ 2 Sy + Ul ol o + A@obTh + 120 (bT + b) z Mgy
g o

+ Z[(chlis,acda +h.c)+ (Vichp scace™9%s0 + h.c)], (6.11)
ko

where g together with all the multiplicative factors are clubbed into A which we can refer to
as the renormalized e-p interaction coefficient. The renormalized frequency is given as @, =
(w2 — Aw?)Y? and Aw? = 2myw, defined in Eq. (5.13) where y is the dissipation
coefficient.
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The next interaction to be dealt with is the e-p interaction. The e-p coupling can be removed

by the well-known LFT [51]: S = exp{A Y, ng4, (b — b)}. The transformed Hamiltonian
can be expressed as

H = HS,D + Z é’dondo + Und’ond‘_a + haob-l-b
o

+ Z[(Vk c,'(rs'acd,, + h.c) + (W, c,;rD‘acd,,e‘i"‘l’SO + h.0)], (6.12)
ko

where the phonon-mediated renormalized energy, modified Hubbard strength and the
effective QD-lead coupling are respectively defined in Egs. (5.16), (5.17) and (5.18).

6.2.1 RASHBA INDUCED SPIN-RESOLVED TUNNELING VIA KELDYSH
METHOD

Following Refs. [28, 29], the tunneling current from S to D through the QD embedded in the
ring can be written as

dNS(D) ie |~
Jspy = —e€ (T> = —?< H;Z C]Is(D),O-CkS(D),O' ), (6.13)
ko

where cs(py,o (1) = e Hiepspy o™t and the averaging is to be done with respect to the
actual ground state of the system |0) which is defined as [0) = |0),;|0),,. In the steady state,

J = Js = —Jp and after symmetrizing, we can write the tunneling current as

Jo =222 e {Zm GEns (60) = Zm% Garen (&, t)}, (6.19)

where 7, has been defined earlier, 7,° = V,e~i9%so, (...} denotes the expectation value of
. with respect to nth-phonon state i. e., (7,) = (n|V,|n) and (7,°) = (n|V,°|n) and
Gioxsy(tt) and  Gg, spy(t,t") are respectively the lesser and the greater (tunneling)

Keldysh Green functions defined as

Gaorso)(tt) = i{0]cls ) (£ g (D)10), (6.15)
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Gaorsp)(tt) = —i{0|cas (t) sy (D]0). (6.16)

Now, we define the retarded (r) and advanced (a) tunneling Green functions G;((f,zs(m (tt")
as

Groasry (6t = FiO(EE F £)(0{Ca0(8), cfs . (¢D}0),  (6.17)
where ¢ ,(t) = e Hetc, elfett and é,,(t) = 7 cq4p(t), Using the equation of motion of
G )(t, t') and applying the analytical continuation rule of Langreth, we get the

do,kS(D

expression for Gz, sy (t,t") as
< ’ dw * o* < a T < —iw(t—t")
Gaoks(t,t') = o [Vii" + Vi tsp ] [Ga (@) gits(@) + Giq(w) gis(w)]e ,(6.18)

dw . . I
Gasin(t,t') = f [V + Vi tsp ] (654 (@) 9o () + Ga (@) gip (@)]e (), (6.19)
where g,:_g‘g,))) (w) and g,fS(D) (w) are the lead Green functions in the energy space which are
related by Fourier transformation (FT) to the corresponding time-dependent Green functions

sy (6t and gispy (&, t") defined by

Grsny (6t = Fib (£t F £)(0|{crs,o (8), ¢lsemy o D}0), (6.20)
Grsy (68 = 1 (cfs )6 (E ) ks (.0 (D), (6.21)

G;f;” (w) and G;f)(w) are the energy-dependent retarded (advanced) and the Keldysh
lesser(greater) Green functions of the QD which can be obtained by Fourier transforming the
corresponding time-dependent Green functions Ggéa)(t, t") and G;f)(r =t —t") defined
respectively by (5.24), (5.25) and (5.26).

Substituting Egs. (6.18) and (6.19) together with (6.20) and (6.21) in Eq. (6.14), we get an
expression of J, which after some algebraic manipulations becomes



Ch.6| Spin-filtering by Rashba coupling in a correlated polar dissipative molecular transistor at finite
temperature and in a magnetic field

e dw
Jo = 5 T+ t5p cos(apso)) [ S (5@) = fo(@)A(@)
dw
—tsp sin(adsp) f o (fs(w) + fD((U)) (ng(a)) + Gc(ild(w))

d
—atgy sin(odso) f ~2 Re{ GFa(@)}], (6.22)

where f; 5 () = (exp [(usp — €)/ksT] + 1 )_1 are the Fermi functions for S and D, pugp
being the corresponding chemical potentials which are related through vV, and V,,, as: eV, =
(s — up), eV = (us + up)/2, I' = (Isx +1Ip)/2, where I and I}, are defined as: I5p =
I = 2mps p(Vi) Vi, psp being the density of states of leads and A(w) is the spectral function
(SF) of the SMT system which can be calculated by Eq. (5.23). We would like to mention
that the derivations of Egs. (6.18) and (6.19) are made under the assumptions:

2
[g,tg‘g,) (t,t’)] zg,zg‘(%) (t,t") and tsp < Vi, so that the terms of order higher than

tsp g,tg‘(‘z,) can be neglected. As we have already mentioned earlier, there exist two different

paths for the metallic electrons to tunnel from S to D, one through a QD with SOI and the
other directly by hopping from S to D. Thus, the SO phase ¢, in Eq. (6.22) is essentially the
phase difference between two paths.

To calculate SF A(w) and hence spin-resolved current J,, we need to calculate G;§a>(w)

and G;f)(w). The derivation of A(w) using G;C(ia)(w) is not shown here as it is already

calculated in detail in Ch.5. We would want the reader to follow Sec. (5.2) from Egs. (5.34)
to (5.45) to see the calculation of A(w). To obtain J,, we also need to calculate G;f) (w). It
is also calculated in Ch.5. One may follow the Egs. (5.46) to (5.57) to see the calculation of
G2 (w).

We finally calculate the Rashba induced spin-resolved differential conductance G, and the
spin-polarization P, _; respectively by Eq. (5.58) and (5.61).

6.3 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we calculate numerically the spin-resolved tunneling current, conductance
and spin-polarization in the presence of e-p interaction, Coulomb interaction and quantum
dissipation and show its behaviour as a function of a few tunable parameters. We normalize
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the energy scale of the system by the phonon-energy, Aw,. For convenience, we set I' = 0.2,
eV, = 0, m* =0.036m,, eV;, =0.1,U =5 and g4 =0.

8 e =1k, T =0.5
e ¢SO:?T/2 tSD = 0.2

A=0.6

Fig.6.2 Spin-resolved current J,/J, vs. eV, for different values of ¢g, for kzyT =05, 1 =
0.6,tsp = 0.2,y = 0.02 at B = 0.

In Fig.6.2, we present the variation of the spin-resolved normalized tunneling current J,; at
finite temperature T as a function of the bias voltage V,, for a given set of SMT parameters

and different RSOI strengths ¢gp = aRT:—:l.]U is measured in the units of J, = e/2h. One

can observe that J, initially increases with increasing V;, in a nonlinear way, then shows an
Ohmic nature in the middle region and finally saturates after a certain value of V,,. This can
be explained as follows. On application of Vi, the Fermi level of S shifts up and that of the
right lead goes down. This causes electrons to enter from the S-lead into QD giving rise to a
nonzero tunneling current. But as the QD is able to accommodate only a limited number of
electrons, the current gets saturated if V,, is raised beyond a certain value. One may notice
that the tunneling is not significant unless V,, is high enough. As mentioned above, for a non-
zero V,, S- and D-Fermi levels shift respectively up and down equally and electrons from S-
Fermi level jump into the spin-up (spin-down) level of the QD and then go to the D-Fermi
level causing a non-zero spin-up (spin-down) current. So, a substantial strength of the bias
voltage is required for this tunnelling to happen. However, the more interesting phenomenon
here is the splitting of J, and J_, for a nonzero value of ¢s, even at B = 0. At ¢5o # 0, the
spin degeneracy is removed due to the RSOl and the single degenerate QD energy level splits
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into spin-up and spin-down levels leading to the separation of the spin-up and spin-down
currents J; and J,. As this separation between J; and J, is entirely due to RSOI, the graphs
for J, and J_, obviously merge with each other for ¢pgo = 0 in the absence of B.

0 /2 r 31/2 2n

Fig.6.3 Spin-resolved current J,/Jo VS. ¢gpo for kgT = 0.5, 1 = 0.6,tsp = 0.2,y = 0.02,eV,, = 0.5
atB = 0.

To study the SOI-induced splitting more specifically, we plot J; and J;, in Fig.6.3, as a
function of ¢pgp at B =0 and T # 0. The periodic behaviour with a period 2m is clearly
visible. At ¢so =0, J; is zero and as ¢, increases, J; also increases and exhibits a
maximum at ¢so, = /2, and then it continues to decrease with further increase in ¢, and
shows a minimum at ¢5, = 3w /2 after which it again rises and becomes zero at ¢5, = 27.
Though both J; and J, have the same period 27, they have the opposite phase. This gives an
interesting crossing behaviour in the J; and ], - curves. The crossing occurs at those values
of ¢, that are even multiples of /2. Obviously, the phase difference between J; and J; in
the case of B = 0, is caused entirely due to the RSOI. It is important to mention that the spin
gap (Jy —J,) can be controlled by varying the RSOl parameter ap which can be
accomplished by tuning the gate voltage. The spin gap shows maxima at odd-integral
multiple values of ¢, and vanishes at even integral values of ¢, including zero.
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Fig.6.4 (a) J;/Jo and (b) J,/Jo Vvs. eV, for different values of 1 at a fixed ¢, for kzT = 0.5and B =
0. Insetsat ugB = 1.0.

In Fig.6.4, we plot J; and J, with respect to V,, for different values of A at a finite T to see
the effect of e-p interaction on J; and J, in the presence of RSOI. Fig.6.4(a) shows the
behaviour of J; while Fig.6.4(b) presents the behaviour of J;. One may notice that for a given
¢so, the qualitative behaviour of J; and J; is similar at B = 0. Both J; and J; decrease with
increasing A for positive V. This can be understood from the mechanism of polaron
formation which impedes the flow of the tunneling of conduction electrons. In the insets we
show the variations at ugB = 1.0. These figures show that the qualitative variations of J; and
J, at a finite value of the magnetic field are different, particularly for higher values of A. This
implies that, in the presence of a magnetic field, the effect of RSOI on J; and J; is
qualitatively different. This can be explained from Eq. 20, which shows that the effective dot-
energy &,, is different for spin-up and spin-down electrons. The expression of &;, also
shows that for the spin-down electrons, there exists a competition between the polaronic
energy and the magnetic energy, whereas no such competition exists for the spin-up
electrons. One may also observe that the changes in current densities in the presence of
magnetic field for lower values of A are minimal for the chosen set of parameters.

Fig.6.5 describes the effect of quantum dissipation (parameterized by y) on spin current
densities in the presence of ¢, at a finite value of T. It is evident that for positive V,,, J; and
], increase as y increases. This can be explained as follows. The coupling of the bath phonons
with the QD phonon reduces the frequency of the phonon w, to @, = (wZ — Aw?)/? which
apparently means that the QD lattice mode undergoes a frictional effect which is precisely the
effect of dissipation. This effect reduces the e-p interaction and consequently increases the
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tunneling current. Here, again the insets suggest that at finite B, the variations of J; and J,
with y are different, though y enhances both J; and J;. At B # 0, the variations of J, are

much more prominent than those of J;.

-4

—y=0.00

- -y=0.01

—--y=0.02
—y=0.03

—-y=0.04

~euy=0.05

-4.5|

Fig.6.5 (a) J;/Jo and (b) J;/Jo vs. eV, for different values of y at a fixed ¢, for kgT = 0.5and B =
0. Insetsat ugB = 1.0.

Fig.6.6 Spin-resolved current J,/J, VS. 5o at A = 0.6, tsp = 0.2, y = 0.02, eV, = 0.5 for different
valuesof : (a) B at kgT = 0.5; (b) T at ugB = 0.5.

In Fig.6.6, we study how J, changes with ¢, at different values of the magnetic field and
temperature in a particular window of the SMT parameters. In Fig.6.6(a), we present the
effect of the magnetic field and in Fig.6.6(b) the effect of temperature. We observe that, in
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general, ], reduces with the increase in both T and B. From Fig.6.6(a), we see that though the
change in J; with B is only marginal, J, exhibits a visible change with B, especially for
higher values of SO coupling (for m < ¢ < 2m). This again suggests that because of the
magnetic field, SOI effects in J; and J, become different. Mathematically, Eq. (35) shows that

the change in J, is mostly dependent on G;éa) and the denominator for J; (o = +1) is greater
than that of J; (¢ = —1) for a given set of parameters. This makes the gap between the ;-
curves for two values of B larger than that of the corresponding J; curves. Thus, the
localizing effect of B is stronger in the case of J, than in the case of J;. We can explain the
reduction in the current densities with increasing B in the following way. The presence of B
gives rise to an additional spitting of the QD’s energy level, the spin-down level rising up and
the spin-up level shifting down. As B increases, the splitting also increases and for a given
dso, it may so happen that the rise in the spin-down level becomes more than the downshift
in the spin-up level. This can cause a large mismatch between the S-Fermi level of the source
and the spin-down of the QD giving rising to a lesser probability of S-electrons to tunnel and
consequently J, decreases with increasing field. Fig.6.6(b) shows the variation of J, with T
As the phonon excitations increase with increasing T, ], reduces as T increases, but unlike in
the case of Fig.6.6(a), here J; and J; will be affected equally at a particular temperature.

Fig.6.7 (a) J;/Jo and (b) J,/Jo Vs. eV, for different ¢pgp at T = 0,41 =1.0,U =0,y = 0.02, eV}, =
3.6 forB=0and B # 0.

In Fig.6.7, we study the variation of J, with respect to the mid-voltage V,,, both for B = 0
and B # 0 at T = 0. One can notice that /, exhibits multiple plateaus and shows a maximum
around V, = 0. Chen et al. [30] have studied this variation at zero temperature for A = 0 and
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A = 1in the absence of a magnetic field, Coulomb correlation, SOI and dissipation and have
obtained plateaus in the current density for A = 1. We observe similar plateaus in the
presence of SOI and dissipation, although the value of the current density is much larger in
our case. The figures also suggest that the current at ¢p5o = m/2 is larger than that at ¢pgp =
/4. Interestingly, at non-zero B, J; undergoes a rigid shift towards left on the 1}, axis while
J, shifts towards right.

-2.8 0 2.8 5 4 -2 0 2 4

Fig.6.8 Spin-resolved differential conductance G,/G, vs. eV, for different values of ¢g, at kgT =
0.5 (@) B =0, (b) ugB = 1.0.

Next, we numerically calculate the differential conductance in the presence of e-p
interaction, Coulomb correlation and quantum dissipation. The conductance is calculated in
units of G, = e?/2h.

We investigate in Figs.6.8, the behaviour of the spin-resolved differential conductance G,
as a function of the bias voltage V,, for different values of ¢, and a set of SMT parameters
both in the absence and presence of a magnetic field B. Fig.6.8(a) provides the results for
B = 0 while Fig.6.8(b) gives the results for B # 0. Fig.6.8(a) shows that variation of G,
with V, is Gaussian-like with a maximum (G qyx) at V, = 0. The variation is also
symmetric with respect to V,, = 0. As expected, G, splits into Gy and G, as we switch on ¢g,
at B = 0. The solid lines describe the variations for ¢, = m/4 and the dotted lines for
¢so = m/2. The peak height of G; is greater than that of G,. It can be seen that for |V, | <2.8,
G1 (G)) is larger (smaller) for ¢p5, = m/2 than for ¢, = 7 /4, but for |V, | >2.8, the situation
reverses. G and G, cross each other at V, = +2.8. The inset shows no splitting at ¢gp = 0
which implies Gy = G, in this case. Fig.6.8(b) shows that the variations are a little different in
the presence of a magnetic field. Interestingly, the graphs now exhibit a central minimum at
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V, = 0 with two more minima, one on each side of V, = 0, placed symmetrically at higher
value of |eV},|. The curves for G; and G, do not cross each other at any value of the bias
voltage. It is clearly evident that the gap between the G; and G,- curves increase as ¢g, is
changed from m/4 to m/2. The gap between ¢so = /2 and ¢so = m/4 curves also
increases in the case of B # 0. As mentioned earlier, this splitting between G, and G, caused
by ¢so can be manipulated by tuning the gate voltage which alters ¢so(x az). The inset
shows that in the case of ¢, = 0, splitting still occurs due to the magnetic field.

-Chen e;t al. result @
o1 B=0) | oot )

\g |
s Our result 1 ‘B:O ‘
‘ fi(65o=/4)
| 3 0 =7 WY

Fig.6.9 Spin-resolved differential conductance G,/G, Vvs. eV,, for ¢so =m/4atT =U =y =0,
A=1.0,eV, = 3.6 for B =0and B # 0: comparison with the Chen et al. [30] result.

In Fig.6.9, we study the behaviour of the differential conductance G, as a function of mid-
voltage V,,, in the presence of RSOI ¢, for both B = 0 and B # 0 with A = 1.0. We also
compare our results with those of Chen et al. [30] who have studied the same in the absence
of RSOI and magnetic field. They have observed a few satellite peaks in the conductance
along with two zero-phonon peaks (taller peaks) symmetrically distributed (solid light green
curve at B = ¢5o = 0) with respect to V,,, = 0 and suggested that these satellite peaks occur
because of the phonon-assisted tunnelling. We like to see the effects of the RSOI and
magnetic field on G, for the same parameter values considered by Chen et al. In the presence
of RSOI (¢pso = m/4) alone, it can be clearly seen that the solid light green curve splits into
two curves (shown in the inset (a)) corresponding to the up-spin (Gy, solid blue) and down-
spin (G,, solid red) spin-resolved conductances respectively. One can also see that the zero-
phonon peaks and the satellite peaks generated by the e-p interaction are symmetric with
respect to V,, = 0. We would like to mention that the conductance peak heights increase and
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become sharper in the presence of RSOI, although the zero-phonon up and down-spin peaks
merge at a particular V;,,. The inset (b) shows that the G- peaks (solid blue) are higher than
the G;- peaks (solid blue). As we turn on B (ugB = 1.0) in addition to RSOI, G; undergoes a
rigid shift towards left and G, towards right equally and as a result the zero-phonon up-spin
(dashed blue curve) and down-spin (dashed red curve) conductance peaks split, though the
heights of the peaks remain the same as in the case of B = 0. Thus, the RSOI enhances the
phonon-assisted conductance by increasing the peak heights and the magnetic field splits the
peaks. This signature of the peak pattern in spin-resolved conductances can also be
understood from Fig.6.7, where one can see the boundary lines before and after the plateaus
associated with the phonon-mediated conductance peaks. The left-right shift at B # 0 can
also be seen in Fig.6.7. Here we have shown results in the absence of quantum dissipation.
Similar studies can also be carried out in the presence of dissipation.

k T=0.5 | —&4=1 (a)
0.8: B —0

A=0.6 —E&,=
0.6/ y=0.02 —e, =1

Fig.6.10 (a) Spin-resolved differential conductance G, /G, Vs. ¢s, for different values of dot energy
ggatd=0.6,tsp = 0.2,y =0.02,eV, = 0.5 (a) for B = 0 (b) ugB = 0.5.

Fig.6.10 displays the nature of G, with respect to ¢, for different values of dot energy.
Fig.6.10(a) provides results for B = 0 and Fig.6.10(b) gives results for non-zero values of B.
From Fig.6.10(a), we see that the variation of G, with ¢, is 2m-periodic, though G; and G,
are out of phase by m in conformity with the plots of J, vs ¢go shown in Figs.6.3 and 6.6. As
the dot energy &4 can be varied by tuning the gate voltage Vg, we consider three values of &4
namely, e, = —1, e, =0and g; = 1. It is clear from Fig.6.10(a) that as e, increases, G;
increases in the range, 0< ¢ < m, and decreases in the range, m < ¢pgp < 2m, and shows
extrema at ¢5o = pr/2,p = 0,1,2,.... The behaviour of G, with g, is just the opposite to
that of G, versus ; and can be obtained from the results of G; by giving a & shift. The
quantitative difference between the results of G; and G, is particularly significant for positive
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€q- One can see in Fig.6.10(b) that in the case of B # 0, G; and G, behave differently from
those at B = 0 and the constant phase correlation between G, and G, is absent except for the
case of &; = 1, where again G and G, as a function of ¢, have a phase difference of m.

1 — — — . 0.55 . i
k T=0.5 —21=0.0 ~. [ I — 1 ] 1
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Fig.6.11 G, /G, Vs. ¢go for different A values at Fig.6.12 Total G vs. ¢, for different tg, values at
kgT = 0.5 tg, = 0.2,y = 0.02,eV,, = 0.5 for kzT =0.5,1 = 0.6,y = 0.02,eV,, = 0.5 for B =
B = 0. Inset: at ugB = 0.5. 0. Inset: at ugB = 1.0.

To study the effects of polaronic interaction on spin-resolved conductance G, we plot, in
Fig.6.11, G, as a function of ¢, for different values of e-p interaction strengthAat B = 0
for a given set of SMT parameters. As discussed above, G; and G, as a function of ¢, are
opposite in phase. For 0 < ¢go < m, the peak-height of G; decreases with increasing A while
that of G, increases. The behaviour becomes just opposite in the region: & < ¢so < 2.
Thus, the e-p interaction which induces the formation of polarons, does not always reduce G,
rather the effect of e-p interaction also depends on the strength of ¢g,. This implies that there
exists an interesting interplay between the Rashba and e-p interactions that has a significant
and decisive effect on the transport process. The inset shows the variations at a finite B where
the phase correlation between G; and G, disappears and the variations of G; and G, with
respect to ¢, become very different. As a magnetic field is switched on, the maxima and
minima in Gy as a function of ¢g, exchange their positions. Interestingly, at B # 0, G;
always decreases with increasing A, though the rate of decrease changes as ¢g, increases.
However, the variation of G, does not change much for the set of parameters used in this
work. This can again be understood from the fact that in J, , there exists a competition
between the magnetic and polaronic energies which is however absent in J;. As a result, J;
varies monotonically with A for a given value of B, whereas for the same value of B, J, may
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not change much with A and consequently, the variations of G; and G; become different. We
wish to mention that as we turn on the magnetic field, one can see a clear separation between
Gr and G, curves vertically like the Zeeman splitting for a given ¢g, Which can, of course, be
tuneable. This can also be observed in Figs.6.8(b) and 6.10(b).

As the SOI phase contains the hopping parameter tgp , it would be interesting to study the
behaviour of the total conductance G(=).,dJ,/d V}) as a function of ¢, for different values
of tgp . The results are presented in Fig.6.12. Let us first describe the results for B = 0. The
figure shows that for tgp = 0, G is independent of ¢g,. At a finite value of tgp, as ¢so
increases from zero, G initially decreases, then forms a minimum at ¢pgo = m and finally
increases with the further increase in ¢go. It is clear from the plot that G increases with
increasing tgsp for 0 < ¢psp < /2 and 3m/2 < 5o < 2m, while in the window /2 <
¢so < 3m/2, it decreases as tg, increases. In the inset, we show the variations at B + 0,
where one can notice that G reduces with increasing tgp in the region 0 < ¢5o < m, While it
decreases with tg, in the other half i.e., in the region & < ¢so < 2m. Interestingly, for tgp, =

0, G remains zero over the entire range of ¢g,.

Fig.6.13 G, /G, Vs. ¢, Tor different U values Fig.6.14 G, /G, vs. U for different ¢, values at
at kT =05 , tgp=02y=0.021= kgT =05, tsp =02,y =0.02,1=0.6,eV, =
0.6,eV, = 0.5 for B = 0. 0.5 for B = 0.

Fig.6.13 displays the variation of spin-polarized conductance G, with ¢, for different
values of U at B = 0. G, exhibits an interesting behaviour with respect to U. For U = 0 and
2, Gy has a minimum at around ¢so, = /2 and a maximum at around ¢, = 3m/2.
However, for U > 2, Gy changes its phase by around mr, showing maximum and minimum at
¢so = /2 and ¢go = 31/2 respectively. It is interesting to see that G, and Gare opposite in
phase with respect to ¢, for all values of U. Thus, there exists a critical value of U at which
the phase of G, reverses with respect to ¢go. To explore this critical behaviour, we plot G, as
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a function of U for different values of ¢5o at B = 0 in Fig.6.14. As our main interest is to
locate the transition point, we consider only a particular window of ¢g,. In particular, we
choose ¢ = 0, m/4 and m/2. One can clearly see that for both ¢p5o = /4 and /2, G,
and G, have an inverted behaviour as a function of U. For ¢5, = 0, we find G; = G, which
is, of course, an expected result. At around U, = 2.6, G, has a discontinuity with respect to U
and with respect to ¢s,, its sign reverses. To understand the discontinuity, we consider the
second derivative of J, with respect to ¢g,.

62

a(ﬁ% = F1(¢50)G1 (@50, U) + {F2(¢s0)G2(Ps0, U) + F3(Ps0)G3(Ps0, U},
SO

62

S = Fi($50)6G1 (s0, U) = (Fa(850)G2 s U) + F3(s0)Gs(s0, )
SO

where F's are periodic functions of ¢5, and G's are functions of Green’s functions. It may be
noted that the Green functions appearing in the above equations change sign at a critical
value of U (U,) causing an overall change in both 82J;/d¢2, and 92],/d¢2, at U = U.,.
Also, at U = U,, the positions of maxima and minima of J; and J; (with respect to ¢gp)
interchange. Hence, the gap between J; and J, at U = U,., becomes maximum. As G, is
directly related to J,, the interchange of maxima and minima of J; and J, causes a
discontinuity at U, in the G,-spectrum.
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Fig.6.15 Spin-polarization Py, vs. ¢, for Fig.6.16 Spin-polarization Py, vs. ¢go for
different ug B values for A = 0.6,tsp = 0.2,y = different kT values for 2 = 0.6,t5p = 0.2,y =
0.02,eV, = 0.5at kT = 0.5. Inset: at T = 0.  0.02,eV}, = 0.5at ugB = 1.0. Inset: at B = 0.
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We study in this section the behaviour of the spin-polarization P; , (defined in Eq. 61) of a
dissipative SMT system at finite temperature as a function of ¢, in the presence of a
magnetic field, e-p interaction, Coulomb correlation and quantum dissipation. Py, gives a
measure of the spin-filtering effect that originates owing to the RSOI.

Fig.6.15 describes the behaviour of P; ; as a function of ¢, for different values of B with
=0.6,tsp = 0.2,y = 0.02,eV,, = 0.5, kyT = 0.5. P;, shows a 2m-periodic pattern. Py, is
positive in the region, 0 < ¢5o < m and negative in the region, © < ¢5o < 2w and is zero at
¢so = 0, m and 2m. Furthermore, |Pm| increases as magnetic field increases. Thus, the
magnetic field favours spin-polarization. Also, the spin-polarization can be tuned by varying
the strength of RSOI. At T = 0 (see the inset), in the absence of the magnetic field, P;
remains essentially constant with ¢so. As B increases, however, P; , does show a significant
variation with ¢5,. The behaviour is again periodic, P;, exhibiting a maximum at ¢go =
/2 (Prymax = 1atugB = 1) and a minimum at¢sy = 37/2 (Py | min = —1 approximately
at ugB = 1). Therefore, it is possible to achieve a fully-polarized spin transport at T = 0 with
the help of a sufficiently high field. Once the maximum polarization is achieved at a
particular ¢s,, one can experimentally determine ay for a given set of SMT parameters.

0.8 T T T 0.2
B=0 ey kBT:0'5 —A=0.0
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Fig.6.17 Spin-polarization ~ Py, Vvs. ¢so fOr Fig.6.18 Spin-polarization P;; vs. ¢g, for
different A values at kzT = 0.5 tsp = 0.2,y = (different y values at kzT = 0.5 tsp = 0.2,1 =
0.02,eV, = 0.5 for B = 0. Inset: at upB = 1.0.  0.6,eV}, = 0.5 for B = 0. Inset: at uzB = 1.0.

In Fig.6.16, P, is varied with ¢, at a finite magnetic field in the regions 0 < ¢gp < 7

and ™ < ¢p5p < 2m for different temperature values. In the region, 0 < ¢ < m, the
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polarization decreases with increasing temperature, while in the region & < ¢, < 2m, the
magnitude of P;, decreases with increasing T except for kzxT = 0.8. Hence, a non-zero
magnetic field can make the P;, variations non-monotonic with respect to T for different
¢so. The inset show the plots for B = 0. It is clear that, with respect to ¢, | Py | has a 27-
periodic variation for different values of T and the behaviour is perfectly antisymmetric
around ¢so = m. Interestingly, in contrast to B # 0, at B = 0, temperature enhances |P; |,
though the values of |P; ;| are less than those at B. One may notice from the inset that P, =
1 cannot be achieved even at T = 0 in the absence of the magnetic field. So, both the
conditions of: B # 0 and T = 0 are required to complete polarization.

In Fig.6.17, we study the effect of e-p interaction on Py, both in the absence and presence
of a magnetic field. It is observed that P; ; shows a periodic pattern with a period 2m It is
important to point out that the polaronic interaction increases the spin-polarization. The inset
shows the behaviour at B # 0. As mentioned earlier, the magnetic field influences the spin-
up and spin-down oppositely and therefore, the contrast in the variations of Py, is
understandable. For completeness, we show the effect of dissipation on P;, in Fig.6.18.
Although y increases the tunneling spin currents J; and J,, Py, reduces with increasing y in
both the regions: 0 < ¢p5p < mand m < ¢pgp < 2. The presence of a magnetic field (inset)
makes the variations different both qualitatively and quantitatively. |(P;;)maqx| becomes
larger in both the regions: 0 < ¢ < m and @ < 5o < 2. Though the nature of the
variations in the region: 0 < ¢, < m remains essentially the same, in the region: m < ¢gp <
2m, Py, seems to be independent of y.

Fig.6.19 Surface plots of (@) J1+/Jo (0) J1/Jo in A — ¢pgo plane at eV, = 0.5,tsp = 0.2,y = 0.02,4 =
0.6,kgT =0.5,U=5&B =0.

Fig.6.19 describes two-dimensional surface plots of spin-polarized current densities J; and
Jyin the A — ¢ plane at B = 0. Red (blue) and blue (red) colours denote the maxima and
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minima of J; (J,) respectively. It is clearly visible that J, is zero at ¢, = 0 and A = 0 and J;
(Jy) has a maximum (minimum) at a particular ¢g, value. The surface plots show more
vividly that /; and J; are completely in opposite phase with respect to ¢, which again
confirms that J; and J, are separated entirely by RSOl at B = 0.

We show in Fig.6.20, the contour plot of the total differential conductance ¢ at a finite T
and a fixed set of SMT parameters in the (B — ¢5o) — plane in the absence and presence of
e-p interaction. There exists a qualitative difference between the plots for A = 0 and for 4 #
0. For A = 0 (Fig.6.20(2)), Gax (deep red) is concentrated at low ¢s, and low B and G
starts decreasing as ¢s, and B increase showing a minimum (deep blue) at a particular region
of ¢pgo and B. Interestingly, Fig.6.20(b) suggests that for A # 0, G goes from a positive to a
negative value at a certain critical value of B. The figure also shows an approximately equal
distribution of red and blue colours separated into two halves indicating two different spin-
polarized conductances. However, the number of contour lines in the two halves are not
equal, which again suggests that the external magnetic field acts on the spin-up and spin-
down electron transport differently. The splitting between the spin-up and spin-down
conductance becomes much more prominent in the presence of e-p interaction. This
observation is supported by Fig.6.17 where we can see that the e-p interaction increases the

spin-polarization.
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Fig.6.20 Contour plots of total differential conductance G (=}, d/,/d V) in ugB — ¢so Space at
eV, =0.5,tsp = 0.2,y = 0.02,kgT = 0.5,U =5for(a) A = 0and (b) 1 = 1.0.

Finally, the surface plots of spin-polarization P;, are shown in the uzB — ¢so plane in
Fig.6.21. Fig.6.21(a) gives results for T # 0 and 6.21(b) provides those for T = 0. We choose
kgT = 0.5 in Fig.6.21(a), as we have used this value for most of our graphs. The figure
reveals that P; ; has a maximum at a particular set of ¢, and B. Fig.6.21(b) shows that P;

is more significant at T = 0. At T = 0, P;, exhibits a sharp peak at a certain combination of
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¢so and B and the peak value is Py 4, = 1. This can be understood from the inset of

Fig.6.15 where we observe the same behaviour at T = 0.

™ 2
~ 0.3
T=0.5
B 1.5
\ 0.1 0.5
- 0
¢SO 0

Fig.6.21 Surface plots of spin-polarization P;, in ugB — ¢so plane at eV, = 0.5,t5p = 0.2,y =
0.02,1=10.6,,U =5 (a)kgT = 0.5and (b) T = 0.

6.4 CONCLUSIONS

To summarize, we have studied the effects of RSOl (measured by ¢go) on the non-
equilibrium transport of a dissipative single molecular transistor system where a single-level
QD is embedded in a closed loop connected to two metallic leads so that transport occurs
through two paths, one of which contains the QD. We consider the QD electrons to have the
Holstein-Hubbard interactions and also the Rashba coupling. To reduce the effect of e-p
coupling we introduce a dissipation term which can arise from the interaction of the QD
phonon with the substrate phonons. This coupling is modelled by the linear Caldeira-Leggett
Hamiltonian and the whole system is modelled by the Anderson-Holstein-Caldeira-Leggett
Hamiltonian together with the RSOI and transport properties are calculated at finite
temperature by Keldysh method. It is shown that without any external field, tunneling current
gets decoupled completely by RSOI into spin-up and spin-down currents that are opposite in
phase with respect to RSOI strengths. They are also 2m-periodic with respect to ¢s, both in
the absence and presence of the magnetic field. This SO interaction induced splitting between
spin-up and spin-down currents and conductances can be tuned through the external gate
voltage and a spatial magnetic field. We observe that the magnetic field influences the effects
of e-p and RSO interactions on the spin-up and spin-down components differently. It also
wipes out the phase correlation between the spin-up and spin-down conductances leading to
complete separation of spin-up and spin-down spectra with no crossover. We also show that
the dissipation originating from the QD-bath phonons interaction enhances the spin-resolved
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current, but the spin-polarization with respect to RSOI decreases with increasing dissipation
in the absence of an external magnetic field. However, the change in the variations of spin-
polarization is not significant as we turn on the magnetic field for the given set of parameters.

Though the e-p interaction usually restricts the flow of conduction electron owing to
polaron formation, in the presence of RSOI, the spin-polarized conductances (G; and G;) do
not always decrease with increasing A in the absence of the magnetic field. G; (G,) decreases
(increases) with increasing A in the window: 0 < ¢5, < m and increases (decreases) with
increasing A in the window: m < ¢5o < 2m. There exists a phase correlation between G; and
G, at zero magnetic field. Interestingly, in the presence of a magnetic field, this phase
correlation is broken and G; reduces as A increases for all values of RSOI, but G, does not
change much which again confirms that magnetic field acts differently on spin-up and spin-
down components. This suggests that the effects of RSO and e-p interactions on spin-
transport get correlated through the external magnetic field. The spin resolved conductance is
also 2m-periodic with respect to ¢, .

Finally, we have studied the variation of spin-polarization P; ; as a function of RSOI for
different ranges of the magnetic field, temperature, and e-p interaction. Like currents and
conductances, the spin-polarization is also 2m-periodic with respect to ¢s,. We have shown
that |P; ;| increases with the external magnetic field at a finite temperature while it reduces
with increasing temperature at a finite field. The polaronic interaction enhances the
phenomenon of separation of up and down spins and consequently |P;,| increases
significantly in the presence of e-p interaction. Our study predicts that though RSOI alone
can produce a spin-filtering effect (without any external field), a fully spin-polarized (i.e.,
Py 1 max = 1) transport can be achieved only at T = 0 and a reasonably large magnetic field
for a particular strength of RSOIl. From the above conditions, one can determine
experimentally the value of RSOI strength at which the maximum spin-polarization can
occur.

Our results may find important applications in the fabrication of stronger spin-filtering
devices in which the spin-filtering can be tuned by controlling the external magnetic field,
RSOI and the e-p interaction in different temperature regimes.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

To summarize, we have studied in this thesis, the effects of e-e, e-p and SO interactions in
different LDS such as QDs, QR, Metal-Semiconductor interface and SMT.

In Chapter 1, we have introduced the basic concepts relevant to the studies undertaken in
the thesis and also different models used in our work. For example, we have discussed the
subject of LDS, polarons, the Frohlich and Holstein models, Persistent current in LDS, e-e
interaction and the Hubbard model, the Rashba and Dresselhaus spin-orbit interactions and
SMT.

In Chapter 2, we have studied the effect of RSOl on the polaron self-energy corrections for
the GS and the first ESs of a 2D polar PQD with an arbitrary size using an all-coupling
variational theory. It is observed that the two-fold spin degeneracy of the first ESs is
substantially lifted by RSOI in the absence of a magnetic field (B). However, the GS does not
show any such splitting. Similar results are also seen for the bound polaron problem.
Application of our theory to a GaAs QD suggests that the self-energies of both free and
bound polarons and spin-splitting are considerably large for small QDs making them a pure
quantum effect. However, polaronic self-energies remain unaffected by RSOI. To study the
interplay of RSOI and e-p interaction, we next studied the same system in the presence of a
magnetic field B and obtained the polaronic corrections for GS and the first ESs using the
2nd-order RSPT. In contrast to the B = 0 case, we see a strong influence of RSOI on the
polaronic corrections in a sufficiently high magnetic field. In GaAs and CdS QDs, it is found
that the effects of e-p interaction and RSOl on Zeeman splitting (ZS) are opposite and both
are size-dependent. While the e-p interaction suppresses ZS, RSOl enhances it. Although, the
enhancement of ZS by RSOI is much small for the chosen set of parameters, but it can be
enhanced by increasing the RSOI strength through a gate voltage. Thus, in summary, RSOI
prevents the suppression of ZS caused by e-p interaction in a polar QD. Our theory can be
applied to magneto-optical experiments to observe some interesting effects.

In Chapter 3, we have studied the electron transport across a metal-semiconductor junction
with a delta-function interface potential (Ad(x)) in the presence of both RSOl and DSOI. We
have calculated the reflection and transmission coefficients and the experimentally
measurable quantities like spin-polarized current densities and differential conductance using
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discontinuous boundary conditions. In the presence of both SOIs, DSOI reduces the angle of
refraction of the spin-up and spin-down electrons while RSOI increases the same, but the
reduction due to DSOI is much larger than the increase due to RSOI and hence the spin-
splitting angle increases in the presence of DSOI. We have shown that the increase in the
incident electron energy decreases the angle of refraction of the spin-up electrons, while it
increases that of the spin-down electrons which is completely opposite to the A = 0 case. In
the A+ 0 case, the variations of spin-up (T;) and spin-down (T}) refraction coefficients and
correspondingly the currents J; and J, with respect to RSOl show some discontinuities at
lower values of DSOI which are absent at A= 0. RSOI and DSOI have contrasting effects on
Gy and G;; while RSOI increases Gy and G;, DSOI suppresses them. The presence of the
infinite interface potential causes a significant reduction in Ty, Ty, J;, J,, Gy and G,. It is
important to mention that in the presence of delta-potential, the reflection coefficients R and

R, become independent of « and § and consequently, reflected spin polarization P]Refr

becomes zero as a function of SOls. The refracted spin polarization P}Refr, however, has a

strong dependence on SOls at a finite A. We have shown that in the presence of both SOls,

P}Refr is considerably large at large @ and small 5. One of the important observations of this

study is that the presence of delta potential does not have any effect on the magnitude of spin
filtering.

In Chapter 4, the role of DSOI on the PCs in a mesoscopic QR threaded by an externally
applied A-B flux in the presence of the e-p interaction and onsite Coulomb interaction has
been studied. It is shown that both the GS and PCC (Ip.) are periodic with respect to A-B
flux. PCC is enhanced significantly by DSOI. Both the e-e interaction and e-p interaction
participate in reducing PCC leading to a resistive effect. But the e-p interaction inhibits the
conduction more strongly than the e-e interaction. In the presence of temperature T, the PCC
falls more rapidly with e-e interaction than at T = 0. We have also shown that the
suppression of PCC by the NN e-p interaction is stronger than that by the onsite e-p
interaction. The PCC exhibits as a function of e-p interaction (g, or g,) a peak at a finite
temperature. In the case of PSC (I7.), DSOI enhances spin-up and spin-down currents and
the hence the spin-current splitting gap (AI7;) considerably. The spin currents change both
quantitatively and qualitatively in the presence of interactions. Interestingly, as we turn on the
interactions and temperature, Al reduces and number of zero-splitting points increases.
However, the spin-splitting can be enhanced in a material with large DSOI strength and can
be tuned by the A-B flux, temperature and all the other interactions present in the system.

In Chapter 5, the combined effect of magnetic field (B) and temperature (T') on the
guantum transport in an SMT system has been investigated by the Keldysh method in the
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presence of e-p interaction, e-e correlation and dissipation. It is found that magnetic field (B)
and temperature (T') have contrasting roles on transport properties. While the magnetic field
increases the height of the spectral function and broadens the separation between the spin-up
and the spin-down peaks, temperature reduces the spectral density and the spin splitting. Both
B and T reduce the current and the conductance as expected. The e-p coupling and
dissipation have interesting effects on the transport properties in different regimes of the
magnetic field and temperature. Interestingly, the spectral function is reduced by the e-p
interaction and damping at low T and low B while at high T and high B, it is enhanced by
polaronic interaction and damping. It is also shown that due to polaronic effect, side peaks
develop in the spectral function which become shorter as T rises, although at high T and high
B, they again reappear. At T # 0, the e-p interaction reduces the tunneling current and
conductance much more in the presence of a magnetic field than in the absence of it.
Although the enhancement of the tunneling current by damping becomes more pronounced at
a non-zero B, a sufficiently high field suppresses this effect. The differential conductance is
reduced by damping at T # 0 (more prominently at high T) and B # 0. It is also shown that
e-p interaction increases the spin-polarization up to a certain T. In general, magnetic field
favours the spin-polarization and temperature reduces it. It is important to mention that the
temperature effect dominates over the magnetic field. This work can have potential
application as a spin-filter which can be tuned by temperature and magnetic field.

In Chapter 6, we have extended our work of Chapter 5 by incorporating RSOI to study the
zero-field spin-filtering effect in SMT. Instead of considering a linear metal-QD-metal
structure, we have considered a closed loop in which QD is embedded in one path of the loop
and the other path is directly connected to the other metallic leads. The QD electrons
experience the Holstein-Hubbard interactions and RSOI. The metallic electrons travel
through two different paths and give rise to a RSOI-phase ¢¢, While going through the QD.
We have shown that the tunneling current gets decoupled by RSOI into spin-up (J;) and spin-
down (J;) currents even in the absence of any external magnetic field. The currents are
opposite and 2w -periodic with respect to ¢g, both in the absence and presence of the
magnetic field. We have also shown that the dissipation originating from the interaction
between the QD phonon and the bath phonons enhances both J; and J;. It is observed that the
magnetic field influences the effects of e-p and RSO interactions on the spin-up and spin-
down components differently and also wipes out the phase correlation between the spin-up
(Gp) and spin-down (G,) conductances leading to complete separation of spin-up and spin-
down conductance with no crossover. Though the e-p interaction usually restricts the flow of
conduction electron owing to polaron formation, in the presence of RSOI, the spin-polarized
conductances do not always decrease with increasing A in the absence of the magnetic field.
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Interestingly, in the presence of a magnetic field, G; reduces as A increases for all values of
RSOI, but G, does not change much which again confirms that magnetic field acts differently
on spin-up and spin-down components. This suggests that the effects of RSO and e-p
interactions on spin-transport get correlated through the external magnetic field. The SOI
induced splitting between spin-up and spin-down currents and conductances can be tuned
through the external gate voltage and magnetic field. Like currents and conductances, the
spin-polarization P;, is also 2m-periodic with respect to ¢so. We have shown that |P; |
increases with the external magnetic field at a finite temperature while it reduces with
increasing temperature at a finite field. The polaronic interaction enhances |P; ;| significantly.
Our study predicts that although RSOI alone can produce a spin-filtering effect (without any
external field), a fully spin-polarized (i.e., P; , mqx = 1) transport can be achieved only at T =
0 and a reasonably large magnetic field for a particular strength of RSOI. From the above
conditions, one can determine experimentally the value of RSOI strength at which the
maximum spin-polarization can occur. Our results may find important applications in the
fabrication of stronger spin-filtering devices in which the spin-filtering can be tuned by
controlling the external magnetic field, RSOI and the e-p interaction in different temperature

regimes.
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