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CHAPTER-1

Introduction



1.1 Introduction

A virus is a pathogenic microorganism composed of a protein-coated nucleic acid segment
(either DNA or RNA) (Wu KJ, 2020). A virus cannot multiply by itself; it has to infect a living
host in order to utilize the host cell's replication machinery components to make copies of itself.
A host cell that has been infected is frequently compelled to quickly make several thousands of
copies of the infected virus. Viruses can exist as independent particles or virions, when they are
not inside an infected cell or in the process of infecting a cell. These virions are made up of i) the
genetic material, which are long molecules of DNA or RNA, that encode the structure of the
proteins the virus uses to replicate; (ii) a protein coat, the capsid, which surrounds and protects the

genetic material; and (iii) in some cases, an external envelope of lipids.

Viruses can spread in a wide variety of ways. One technique of transmission involves the
employment of disease-carrying vehicles known as vectors. Insects that feed on blood could also
carry viruses that impact mammals. For instance, aphids, which feed on living plants, are often
used to spread viruses from one plant to another. The two most common ways for viruses to spread
in the air are through coughing and sneezing, including influenza virus (McCullers, 2006), SARS-
CoV-2 (Wang et al., 2020), chickenpox (Tugwell et al., 2004), smallpox (Moore et al., 2006), and
measles (Tatsuo et al., 2000). Norovirus and rotavirus are known to be the main causes of viral
gastroenteritis, and they spread from person to person through hand-to-mouth contact,
contaminated food, or water. Less than 100 infectious norovirus particles are needed to cause an
infection in humans (Robilotti et al., 2015). Several viruses, including human immunodeficiency

virus (HIV) and Zika virus, can be spread through body fluids and by contact with blood that has



been contaminated. The term "host range™ describes the range of host cells that a virus can infect.
A virus may have a limited range of species it may infect, or it may have a wide range and be able

to infect many different hosts.

1.1.1 Structure of virus

Viruses exhibit a vast variety of morphologies, size and shapes (Louten, 2016). The
majority of virus species have virions that are one hundredth of the size of most bacteria and are
therefore too small to be seen with an optical microscope. Viruses are typically much smaller than
bacteria, therefore one can assume that it is possible to fit more than a thousand bacteriophage
viruses inside the cell of an Escherichia coli bacterium. Many known viruses are spherical, with a
diameter ranging from 20 to 300 nanometers (nm). Although the diameter of some filoviruses,
which are filaments, is only about 80 nm, their total length can reach 1400 nm (Britannica, 2017).
Scanning and transmission electron microscopes were used to view viruses because a majority of
them cannot be viewed with an optical microscope (Goldsmith & Miller, 2009). Atomic force
microscopy allows for mechanical (physical) examination of the capsid and the complete virus
structure (Kuznetsov et al., 2001). Electron-dense "stains” were employed to make viruses stand
out better against the background. These are solutions of heavy metal salts, such as tungsten that
scatter electrons from stained areas. Positive staining, the coating of virions with stain, obscures

the fine details. Negative staining solves this issue by simply staining the backdrop.

A whole virus particle or virion, is made up of protein-coated nucleic acid that is encased
in a protective protein shell called the “capsid”. The protective shell is created from protein
building blocks known as capsomeres (Sevvana et al., 2021). Viruses have an outer lipid
"envelope" that is assembled from the lipid membrane of the host cell. The morphological
differentiation of viruses is based on the form of the capsid that is composed of proteins encoded

8



by the viral genome (Caspar & Klug., 1962; Crick & Watson, 1956). In general, the virus genome
must be present for the virally-coded protein components to self-assemble into a capsid. Complex
viruses encode proteins that help build their capsids. Nucleoproteins and nucleocapsids are terms
used to describe proteins that are linked to nucleic acids. There are generally five primary
categories of morphological viruses: icosahedral, prolate, helical, enveloped, and complex. Most
often, viruses have RNA genomes, but some of the viruses also have single-stranded DNA
genomes. Depending on whether the single-strand is complementary to the viral messenger RNA
(mRNA), they are either positive-sense (referred to as "plus-strand™) or negative-sense (referred
to as "minus-strand"). Since the positive-sense viral RNA has the same sense as the viral mMRNA,
the MRNA genome can be translated to synthesize the protein products right away by the host cell.
The viral protein RNA-dependent RNA polymerase (RdRp) must convert negative-sense viral

RNA to positive-sense RNA before the translation occurs because it is complementary to mRNA.

Zika virus is one of the mosquito-borne families of Flaviviridae, genus flavivirus. In the
Zika forest near Lake Victoria in Uganda, febrile sentinel rhesus monkeys were first found to have
the Zika virus in 1947 (Dick et al., 1952). It has been known to occur since 1950 in a small
equatorial belt extending from Africa to Asia. The Zika virus epidemic of 2015-2016 was caused
by the virus spread eastwards from 2007-2016 across the Pacific Ocean to the Americas. The virus
is transmitted by aedes mosquitoes, primarily daytime-active female Aedes aegypti which is
commonly found throughout the tropical and subtropical Americas and it can also be spread by
the Aedes albopictus (Asian tiger) mosquito which is distributed upto the Great Lakes region in
North America (Kraemer et al., 2015). People infected with Zika virus can transmit the virus to
their sexual partners (Centers for Disease Control and Prevention, 2017). The infection caused by

Zika virus is Zika disease or Zika fever that is accompanied by fever, headache, arthralgia,



myalgia, maculopapular rashes (loos et al., 2014). Zika infection of male adult mice can cause
testicular and epididymal damage, resulting in cell death and destruction of the somniferous
tubules (Govero et al., 2016). When a pregnant woman is infected with Zika virus, it can be
transmitted from mother to the fetus, that can manifest in microcephaly and related acute brain
irregularities in the infant (Rasmussen et al., 2016). In addition to several Pacific American islands,
the epidemic also spread to other regions of South and North America. In 29 countries, there have
been nearly 3000 cases of microcephaly-related birth defects, Brazil has been hardest hit, with
2,366 babies being born to Zika-infected women and their families (Lancet, 2017). As of
November 2018, 157 cases have been identified in India out of these 63 were pregnant women
https://www.who.int/emergencies/diseases/zika/india-november-2018/en/. The Zika virus
outbreak was declared as a Public Health Emergency of International Concern by WHO during
February 2016, as there was growing evidence that infection of Zika virus can lead to birth defects

as well as neurological problems (Sikka et al., 2016).

Zika virus belongs to the family of flaviviruses that includes several important viral
pathogens of human, such as dengue, west Nile, yellow fever, Murray valley encephalitis, Japanese
encephalitis, tick-borne encephalitis, Kunjin and Kokobera viruses. Like other flaviviruses, Zika
virus also has icosahedral structure and it comprises ~11-12 kb non-segmented, single-stranded
RNA genome that is capped at the 5° end. The RNA genome of Zika virus is translated in the
cytoplasm of the infected cells into a polyprotein, which is further proteolyzed by either host cell
or viral protease into three structural proteins, called envelope protein, precursor membrane protein
and capsid protein, and seven non-structural (NS) proteins; NS1, NS2A, NS2B, NS3, NS4A, NS4B
and NS5, these NS proteins of Zika virus perform essential roles in genome replication. A multi-

protein replication complex comprising of both NS proteins and host cofactors are assembled on
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the endoplasmic reticulum derived membranes (Welsch et al, 2009), that forms a location for the
RNA replication to occur. Among all the NS proteins, NS5 is a largest enzyme and the most
conserved protein of the replication complex. The Zika virus NS5 protein exhibits two enzymatic
activities, RdRp and methyltransferase (MTase) which are mostly required for viral replication.
The MTase protein is located at the N-terminus and the RdRp is located at the C-terminus of the

NS5 protein.

1.1.2 The life cycle of positive-sense single-stranded RNA viruses

In the flaviviruses, the positive-sense single-stranded RNA can act as mRNA for translation
towards protein synthesis. The replication of viruses occurs in two ways, the ribosome in the host
cell can directly translate into the viral proteins. The other replication process of the positive-sense
RNA genome proceeds through double-stranded RNA intermediates. The positive-strand RNA
encodes an RdRp, which helps to synthesize a complementary negative-strand RNA template to
create a new positive-sense RNA genome during replication. There is a double-stranded RNA
formed in the intermediates. RdRp differs from RNA polymerase as it works to catalyze the
synthesis of an RNA strand complementary to a given RNA template, the RNA replication process
is a four-step mechanism. The first step is to bind nucleoside triphosphate (NTP). Initially, the
protein RdRp has a free active site in which an NTP binds that is complementary to the
corresponding nucleotide on the template strand. Correct NTP binding induces RdRp to change its
conformation. The conformational changes caused by the correct NTP binding result in active site
access restriction and the formation of a catalytically competent state in the second step. In the
third step, a phosphodiester bond formation takes place; with two Mg?* ions located in the
catalytically active state that can rearrange themselves in such a way that around the newly

synthesized RNA chain the substrate NTP can undergo a phosphatidyl transfer and form a
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phosphodiester bond with the newly synthesized chain. Using these Mg?* ions, the active site is
no longer catalytically stable, and the RdRp complex changes to an open conformation. The fourth
step is translocation. Once the active site is open, the RNA template strand can move by one
position through the RdRp protein complex and continue the chain elongation by binding a new

NTP, unless otherwise specified by the template.

Due to the complementary nature of negative-sense viral RNA to mRNA, a RdRp is
required to convert it to positive-sense RNA prior to translation. Positive-sense virus RNA can
directly infect cells even though it may not be as contagious as the entire virus particle. The purified
RNA from a negative-sense virus, in contrast, is not contagious on its own. It has to be converted
into positive-sense RNA, and each virion can be converted into a number of positive-sense RNAS.
Ambisense RNA viruses resemble negative-sense RNA viruses, except that they translate genes
from both their negative and positive strands. The newly produced viral genome is ready to infect
a new cell. Zika virus replication mechanism occurs in this manner and is shown in Figure 1.1. In
the Zika virus replication, the NS proteins, NS3 helicase, NS5 RdRp and MTase (shown in Figure

1.2) play a crucial role in viral genome replication.
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Ready to infect
new cell

Figure 1.1: Life cycle of single-stranded RNA flaviviruses.

~
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Figure 1.2: Structures of Zika virus NS3 helicase, NS5 RdRp and NS5 MTase.
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1.1.3 Zika virus NS3 helicase

The N-terminus of the Zika NS3 helicase contains a protease domain and the C-terminus
contains a helicase domain. The tertiary structure of the Zika virus NS3 helicase is composed of
three domains, each of which contains 130-160 amino acid residues. Despite their low sequence
homology, domains | (residues 192-332) and Il (333-481) share a similar structural fold. Domain
I11 (482-617) is made up of a four-helical bundle that is extended by two anti-parallel strands that
are partially exposed to the solvent. The protease domain is represented by the amino acid
residues 1-174. Two a-helices from domain | interact with a parallel a-helical bundle from
domain Ill; domain Il connects to domain Il via a long B-hairpin, stabilizing interdomain
interactions (Tian et al., 2016), and all three domains have clearly defined binding clefts. The
cofactor ATP is present between domains | and Il in Zika virus NS3 helicase; it is stabilized by
the Mn2" coordinated in octahedral geometry by interactions with side-chain of residues Thr201
and Glu286, two oxygen atoms of B- and y-phosphate groups of ATP and two water molecules.
The binding site of ATP is formed by the residues Gly197, Ala198, Gly199, Lys200, Thr201,
Arg202 and Arg203 (P-loop), and Glu286, Ala317, Asn330, Gly415, Asn4l17, GIn455, Gly458,
Arg459, Arg462 and Asn463. A single-stranded RNA binds the Zika virus NS3 helicase within
the region formed by the amino acid residues; Pro224, Thr225, Arg226, VVal227, Met244, Thr245,
Thr246, Cys262, Ala264, Thr265, Phe289, Asp291, Pro292 (domain I), Pro364, Ser365, Val366,
Arg367, Ser387, Arg388, Thr409, Asp410, lle411, Leu4d30, Lys431, Pro432, Leud42 (domain I1),
His486, Lys537, Asp540, Arg598 and Ser601 (domain IlI). The single-stranded RNA makes

hydrogen bonding interactions with Arg226, Thr245, Thr265, Asp291, Val366, Arg388, Thr409,
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Asp410 and Lys431. RNA helicases play an essential role in the RNA metabolism and viral

infection facilitation for RNA viruses.
1.1.4 NS5 RNA dependent RNA polymerase and NS5 methyltransferase

The Zika virus NS5 RdRp produces a negative-sense RNA by using the positive-sense viral
RNA as a template for the formation of the intermediate stage double-stranded RNA. The Zika
virus NS3 helicase unwound the double-stranded RNA to separate it into negative-sense and
positive-sense single-stranded RNA molecules. The negative-sense RNA serves as a new template
for the production of positive-sense genomic RNA (Xu et al., 2019). The replication of RNA
occurs in a multi-protein replication complex comprising of NS proteins and cofactors, which
assemble on endoplasmic reticulum derived membranes (Welsch et al, 2009). The NS5 protein
comprises a MTase domain at the N-terminus and the C-terminal domain contains a RdRp (Zhao
etal., 2017), The three-dimensional (3-D) structure of NS5 MTase is reported in Protein Data Bank
(PDB), it comprises three domains referred to as finger (amino acid residues 321-488), palm (481-
541 and 609-714) and thumb (715-903). The RdRp synthesizes the genome of RNA in the absence
of a primer strand, in a de novo mechanism wherein single-nucleotide triphosphate provides a
primer for nucleotide polymerization. The flavivirus RdRp contains a functional nuclear
localization sequence, an important key region for viral and host proteins interactions. NS5
interacts with the NS3 protease-helicase and several host proteins (Yap et al., 2007; Tay et al.,
2015). The Zika virus NS5 protein acts as an antagonist due to its enzymatic functions. That is
because the NS5 RdRp plays a crucial role in viral genome replication. MTase enzyme is
responsible for adding the methyl group to the 5' cap RNA structure, using cofactor S-adenosyl-

L-methionine (SAM) as a methyl donor to form S-adenosyl-L-homocysteine (SAH) as a by-
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product (Zhao et al., 2015) to facilitate the translation of polyprotein. These two enzymes RdRp

and MTase are important for viral replication.

1.2 Methods
1.2.1 Databases

The purpose of building a variety of databases is to separate the knowledge information,
create organized data, and make value addition through its annotation. Such databases have been

made accessible for the scientific purposes with payment of a subscription fee or for free of charge.

1.2.1.1 Protein sequence database

The biological structure and function of a protein is determined by its amino acid sequence.
The nucleotide sequences of the gene coding regions are obtained from the complete genome
nucleotide sequencing projects at the organism level, these nucleotide regions are translated to
protein amino acid sequences and is referred to as the primary protein structure (Xu & Xu, 2004).
The protein primary structure information is stored in protein sequence databases. The National
Center for Biotechnology Information (NCBI) available at http://www.ncbi.nlm.nih.gov, hosts a
variety of information including both nucleotide and protein sequences. The NCBI Reference
Sequence (NCBI RefSeq) database is a collection of nonredundant sequences of genomes,
transcripts and proteins that are curated. A stable reference for genome annotation, gene
identification and characterization, mutation and polymorphism analysis, and genetic testing are
included with these entries (O'Leary et al., 2016). There is an issue with explosion of protein
sequence information due to the sequencing of complete genomes. This problem of redundancy or
duplication in protein sequence information has been resolved by creating the prokaryotic RefSeq
protein dataset. This database has grown in size significantly due to the bacterial genome sequence

submissions from individual isolates and their closely related bacterial strains, therefore, the other
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kind of nonredundant RefSeq protein database has already been produced. The Universal Protein
Resource (UniProt) is a comprehensive database of receptor sequences, with annotation data
available online at http://www.uniprot.org/. The protein sequence databases available at NCBI and
UniProt are most frequently used by the researchers. The nucleotide sequence database
(http://www.ebi.ac.uk/embl/index.html) of the European Molecular Biology Laboratory (EMBL)
is a complete set of primary nucleotide sequences maintained at the European Bioinformatics
Institute (EBI). The other useful databases are GenBank (Benson et ai., 2003) PROSITE (Falquet
et al., 2002), PRINTS (Attwood TK et al., 2003), Pfam (Bateman et al., 2003), ProDom (Corpet
et al., 2000) SMART (Letunic et al., 2002), TIGRFAMS (Haft et al., 2003), PIR SuperFamilies

(Huang et al., 2003) and SUPERFAMILY (Gough et al., 2001).

1.2.1.2 Protein structure database

The 3-D proteins structures along with nucleotides, heteromeric complexes, and complexes
with cofactors/inhibitors/substrates are solved using X-ray crystallography, nuclear magnetic
resonance (NMR) and cryo-electron microscopy methods. The high-resolution 3-D structures of
macromolecules is determined using these methods. A publicly accessible database of
biomolecular structures is maintained by Worldwide Protein Data Bank (wwPDB), this is a freely
accessible PDB archive to the research community (Berman et al.,, 2003). The Research
Collaboratory for Structural Bioinformatics Protein Database (RCSB PDB) is one of four
organisation members (PDBe, PDBj, RCSB, and BMRB) for the retrieval of protein 3-D structures

(Velankar et al., 2010; Kinjo et al., 2012; Markley et al., 2008).

1.2.1.3 Small molecule chemical libraries

The 3-D structures of organic molecules and their physical properties are stored in small

molecule databases. The biological activity of small molecules, drug targets and literature citations
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are also available in some of the databases (Bento et al., 2014). While some of these chemical
library databases are freely accessible and can be downloaded in a variety of file formats, other
databases are proprietary and must be procured from the vendors. The accessibility of virtual
libraries of ligand molecules supports the in silico screening, discovery and design of small
molecule inhibitors for a selected receptor target. The virtual libraries of chemical compounds
could hold billions of molecules, allowing a researcher to find hit molecules via virtual database
screening using computational methods. Some of the most commonly used databases in computer-
aided drug design (CADD) are; BindingDB contains data for 1,100,000 compounds and 8,900
targets (Gilson et al., 2016), ChEMBL contains 2,331,700 molecules for 15,072 targets (Gaulton
et al., 2012), ChemSpider contains 115,000,000 chemical structures (Williams et al., 2010),
Cambridge Structural database contains 1,100,000 chemical structures from experimental sources
(Groometal., 2016), DrugBank comprises over 500,000 molecules (Wishart et al., 2018), MCULE
full database comprise 40,075,205 molecules (Kiss et al., 2012), PubChem database comprises
112,000,000 compounds (Kim et al., 2016), SciFinder comprises more than 182,000,000
compounds (Wagner, 2006), ZINC database comprises over 230 million compounds (Irwin &
Shoichet, 2005), MolPort (20,000,000, https://www.molport.com), Asinex database comprises
575,302 compounds (http://www.asinex.com/), ChemBridge comprises over 1.3 million diverse
and target-focused small molecule screening compounds (https://www.chembridge.com/),
Chemical Diversity, ChemDiv comprises more than 180,000 active compounds
(https://www.chemdiv.com/catalog/), AsisChem (2,109,738, http://www.asischem.com/),
Enamine comprises 2,790,127 molecules with a range of molecular weights (Shivanyuk et al.,
2007), SPECS (350,000, http://www.specs.net), and the National Cancer Institute (NCI) natural

compounds set database (n, i, v and V)
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(https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets), FDA approved drugs

(https://www.bindingdb.org/bind/ByFDAdrugs.jsp).

1.2.2 Basic local alignment search tool

A protein sequence of interest (query) can be compared or searched with all of the entries
in a protein sequence database using the heuristic technique known as the Basic Local Alignment
Search Tool Protein (BLASTp). Above a predetermined threshold, it determines the protein
sequences in the database that most closely resemble the query protein. The alignments are
extended from these initial "hot spots™ when short matches are made between two sequences. In
addition to executing pairwise sequence alignments, it also gives statistical data regarding an
alignment, such as the "expect” value, database length of the protein sequence, percentage identity,

query coverage and matching score (Altschul et al., 2005).

1.2.3 Multiple sequence alignment

Sequence alignment is the arrangement of three or more protein amino acid sequences to
identify regions of similarity. The similarity regions between the sequences could be the result of
functional, structural and evolutionary relationships (Edgar & Batzoglou, 2006). The alignments
produced would be examined to find the regions of amino acids insertions, mutations, or deletions
among the sequences of interest (Needleman & Wunsch, 1970; Smith & Waterman, 1981; Lipman
etal., 1989). The output format is used to create phylogenetic trees, which can be used to calculate
evolutionary distances between the protein sequences and search for conserved domains that are
essential for function (Sievers & Higgins, 2014). Multiple sequence alignments can be generated
at both the global and local levels. The global multiple sequence alignment algorithms generate an

alignment that cover the entire sequences and fills in any gaps. While the local multiple sequence
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alignment algorithm aligns only the most similar regions of amino acid residues. The ultimate goal
by both techniques would be to align longer sequence regions of amino acids with higher matching
among the target proteins under consideration. Clustal Omega (Sievers & Higgins, 2014) and
Tcoffee (Notredame et al., 2000) are some of the commonly used software tools to generate
sequence alignment. Clustal omega produces multiple sequence alignments of nucleotide or
protein sequences by selecting seeded guide trees and by applying hidden Markov model profile-
profile techniques (Séding, 2005). The dynamic programming technique is used to identify the
globally optimal alignment solution in a direct method for producing a multiple sequence
alignment. For proteins, this approach typically uses two sets of parameters: a gap penalty and a
substitution matrix that assigns scores or probabilities to the alignment of each potential pair of
amino acids depending on the chemical characteristics of the amino acids and the likelihood that
a mutation will occur over a time period. Similar gap penalties are applied to nucleotide sequences,
but typically the substitution matrix is much more straightforward, taking only identical matches
and mismatches into account. While the substitution matrix results for a global alignment could be
all positive or a mix of positive and negative, they should be both positive and negative for a local

alignment (Larkin et al., 2007; Thompson et al., 1994).

1.2.4 Structural comparison of proteins

Using servers such as DALLI, the 3-D structure of a protein receptor could be evaluated by
comparing with the already known proteins structures (Holm & Laakso, 2016). These searches on
model protein structures support in the identification of protein structures that share comparable
folds, binding sites for ligand, cofactor, and inhibitors binding. This structure comparison provides
clues for the identification of proteins function and further in the drug design studies. Based on the

amino acid side-chains that contribute to the 3-D active site space required for protein function,
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the binding pocket of receptor identified to be similar via structure comparison searches (for

example, based on a high Z score in DALI method) are most likely to have similar functions.

1.2.5 Bioinformatics

Bioinformatics is an emerging multidisciplinary area which has evolved owing to the high
preference for computer assisted data analysis of the large biological data collected over the last
30 years (Luscombe et al., 2001). Bioinformatics incorporates the principles of physics and
chemistry on biological systems by employing computational tools (Searls, 2010). Bioinformatics
studies use biological data such as nucleotide and protein sequences to analyse and compare life
forms and their evolutionary aspects. As a result, it is critical for data management in modern
medical science and biology (Baxevanis et al., 2020). Bioinformatics is a resource for predicting
and recognizing regulatory networks connecting genes, analysing genetic variations and
expression, predicting gene coding regions, prediction of protein structure and function, modelling
protein networks and their dynamics, simulating environment in conditions closer to living cells,

and analyzing metabolic pathways to understand implications in disease.

1.2.6 Chemobioinformatics

Chemobioinformatics is an interdisciplinary field of chemistry, biology, mathematics, and
physics that uses computer modelling and simulation to analyse the structure and characteristics
of molecules and components, which include empirical and ab initio approaches (Martinez-
Mayorga et al., 2020). Chemobioinformatics is a fast-emerging research area with methodologies
for applications in CADD. The availability of high-speed computers with large data storage
capability has accelerated the success in applying chemobioinformatics (Yu & MacKerell, 2017).

To calculate the structure and properties of molecules, it employs theoretical chemistry
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methodologies that are embedded into user friendly computer programmes. Computational
chemistry methods and techniques typically vary from nearly approximate to precise (for large
molecules) to greaterly accurate (for small molecules). The ab initio methods and techniques are
based on quantum mechanics. Additional empirical characteristics are used in semi-empirical or
empirical methods (MacKerell Jr et al., 1998). Computational tools are useful in molecular
modelling ultimately leading up to its experimental synthesis in a laboratory, allowing unsuitable
molecules to be ruled out. Furthermore, some of the molecular properties are more easily obtained

computationally than experimentally.

1.2.7 Molecular animations and visualization

The molecular structures in chemical and biological systems can be visualized on computer
graphics, on the screen in an interactive mode by the use of a variety of systems designed to display
molecules in a virtual mode (Martinez et al., 2019). Designing such technologies for visualization
of molecules necessitates knowledge in chemical as well as computer sciences. The software used
for visualization of 3-D molecular structures in graphics are RasMol (Sayle & Milner-White,
1995), PyMOL (Schrodinger, 2010) (DeLano, 2002), UCSF Chimera (Pettersen et al., 2004), Jmol
(Hanson, 2010), Deep View (Guex et al., 2009), Discovery Studio (DS) visualizer. The verification
of 3-D model structures of proteins and ligand molecules, the manipulation and analysis of their
molecular properties is carried out using these graphics visualizers. Visual molecular dynamics
(VMD) is a freely downloadable 3-D graphics programme for displaying and animating large
biomolecular systems. It is used to view 3-D molecular structures as well as plotting and analyzing
the larger trajectory data files generated by traditional molecular dynamics (MD) simulations

(Humphrey et al., 1996).
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1.2.8 Artificial intelligence in drug discovery

Artificial intelligence is a method that combines computer simulations and intelligence
gathering processing. Obtaining information, continuing to develop rules for using the information
obtained, and reaching reasonable conclusion, and self-correction are all the steps in this process
(McCarthy, 1987; Nilsson & Nilsson, 1998). To extract meaningful information from a large
dataset, artificial intelligence employs complex algorithms and machine learning (Batool et al.,
2019). For example, it aids in the identification of molecules which may bind to 'undruggable
targets,’ targets such as proteins with unidentified structures. A predictive set of molecules can be
identified in a relatively shorter time scale by sequential simulations of intermolecular interactions
in a variety of ligands with different regions in a protein (Hessler & Baringhaus, 2018). In less
than a decade, artificial intelligence is being applied in novel drug discovery, this employs large
data that is generated from gene expression data or libraries of small molecules and on an ensemble
of protein structures. Over the last decade, artificial intelligence methods have employed deep
learning and machine learning in new drug discovery and development. Automated software is
available online that is offered via webservers to carry out studies in quantitative structure activity
relationship (QSAR), pharmacophore generation, protein 3-D fold assessment, in silico screening
of ligands, protein-protein interactions and protein-ligand, drug repurposing, drug design using de
novo methods, evaluation of absorption, distribution, excretion, metabolism and toxicity
(ADMET) properties of drugs (Zhong et al., 2018). Using artificial intelligence in the different
stages of a drug development will decrease the project time and cost while driving the drug

development in becoming more efficient.
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1.2.9 Homology modeling of protein structures

A proteins structure is divided into four stages primary, secondary, tertiary, and quaternary.
The protein 3-D structure is determined by the spatial distribution of all atoms on the main-chain
and side-chains (Lthy et al., 1992). PDB contains the protein 3-D structures defined through
experimental studies (Berman et al., 2007). Knowledge of the protein 3-D structure provides useful
information about the molecular mechanisms of their activities. Employing experimental
techniques to determine structures of protein takes time and may not yield an advantage for
proteins that tend to denature by aggregation under in vitro conditions and therefore precipitate
out of solution. The unavailability of the 3-D structure of a protein has stymied efforts to determine
the location of a ligand to bind the binding pockets in a protein. Under these conditions, one of the
most reliable methods for obtaining structural information for a protein of interest is to build a
model protein structure based on the protein 3-D structure that shares similar amino acid sequence
(Cavasotto & Phatak, 2009). Some 3-D structures can be modelled to use homology modelling, ab
initio, hybrid, and fold prediction methods (Hardin et al., 2002). Comparative modelling of protein
structure, also known as homology modelling (Kopp & Schwede, 2004) is based on the
observation that when primary sequences of two protein have a greater degree of homology, then
their respective structures would have a high degree of similarity as well. The protein sequence of
study with an unknown 3-D structure is referred to as the query sequence. The protein sequence
similarity search method, i.e., BlastP searches against PDB (Altschul et al., 2005) can be employed
to obtain the reference or a homologous structure on which the homology model can be
constructed. The known 3-D structures that have the highest BlastP score, with fewer insertions
and deletions, structures solved at higher resolution, and with none or fewer missing residues are

obtained and are denoted as template structures. The homology modelling protocol necessitates a
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pair-wise or multiple sequence alignment of the query and template protein sequences based on
the availability of single or multiple template 3-D structures, respectively (Holm & Laakso, 2016).
Comparative modelling constructs the 3-D structure of a query protein based on template protein
sequence alignment. MODELLER (Sali & Blundell, 1993) is a popular method in comparative
protein structure modelling methods that is based on the conditions of the satisfaction of spatial
restraints. For building protein models, this software is available in a downloadable form and
installation on local computers. The homology modelling process consists of four steps:
identification of protein target of known 3-D structure, alignment of protein sequences,
construction of model structure and refinement of structure. PRIMO (Hatherley et al., 2016), I-
TASSER (Zhang, 2008), Phyre2 (Kelley et al., 2015) and SWISS-MODEL (Schwede et al., 2003)

are some of the online servers available for homology based modelling of protein structures.

1.2.9.1 AlphaFold

Predicting the 3-D structure that a protein will adopt is purely based on its amino acid
sequence, and this has been an important research problem for more than 50 years (Anfinsen,
1973). Despite recent advances (Senior et al., 2020; Wang et al., 2017; Zheng et al., 2019; Abriata
et al., 2019) current methods fall far short of atomic precision, particularly when no identical
structure is available. AlphaFold is the first computational technique that can predict protein
structures with atomic precision even when no comparable structure exists. In the 14th Critical
Assessment of Protein Structure Prediction (CASP14) (Kryshtafovych et al., 2021), an entirely
newly designed version of a neural network-based model, AlphaFold, provided structures with
high accuracy challenging the experimental structures in the majority of cases and outperformed
other methods significantly. AlphaFold is an innovative machine learning method that incorporates

biological and physical knowledge about structure of protein into the design of the deep neural
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network algorithm by leveraging multi-sequence alignments. The CASP assessment employs
recently remedied structures that have not been placed in the PDB or made publicly available,
resulting in a blind test. CASP has long been the gold standard for determining the accuracy of
structure prediction methods (Moult et al., 1995; Kryshtafovych et al., 2019). The AlphaFold
network predicts the 3-D coordinates of all heavy atoms for a given protein using the primary
amino acid sequence and aligned sequences of homologues as inputs. There are two stages to the
network. The network's trunk first processes the inputs through repeated layers of a novel neural
network block called Evoformer to generate a Nseq X Nres array (Nsegq, number of sequences, Nres,
number of residues) representing a processed multiple sequence alignment and a Nres X Nres array

representing residue pairs.

1.2.9.2 Model validation methods

To ensure proper stereochemistry and protein folding, the protein 3-D structure identified
using modelling methods should be validated. This structure evaluation process is critical in
computational methods because the model structure will be employed for structural comparison of
proteins, docking studies for molecular design, and MD simulations to analyse their transitions in
conformations. The Ramachandran plot (Ramachandran et al., 1963) is used to divide amino acid
residues into three different regions to verify the stereochemical specifications of the structure of
a protein based on torsion angles: these are the preferred regions; allowed regions, disallowed
regions, and the outlier regions. Web servers such as SAVES (https://saves.mbi.ucla.edu) and
PROCHECK (Laskowski et al., 1993) provide additional details like main-chains, side-chains,
bond lengths, bond angles, bonding and nonbonding interactions, ring planarity, and disulfide
bonds. A better model structure has more amino acid residues in the allowed region and fewer

amino acids in the disallowed regions of the Ramachandran plot. The VERIFY 3D server is
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employed to compare the position and surroundings of a generated model 3-D structure with
defined structures and to evaluate its secondary structure, area of buried residues, and side-chains
covered by polar atoms (Luthy et al., 1992). The model with the highest score is believed to be the
best. The nonbonded interactions in protein structures are analysed by ERRAT, and a top scoring

model validates the structures backbone conformations (Colovos & Yeates, 1993).

1.2.10 Computer aided drug design

CADD methodology incorporates chembioinformatics and computational biology methods
(Zheng et al., 2013). These methods further help to generate structure-activity relationship (SAR)
at the atomic level to support in the progression of drug development, limiting cost and time
investment (Van De Waterbeemd, 2003). CADD primary role in drug discovery which is to divide
large databases of compounds into smaller groups and correlate small compounds depends on their
activity, allowing for the optimization and discovery of hit compounds by improving biological
activity; such as ADMET and binding efficiency (Hassan et al., 2016). CADD is categorized into
two approaches: ligand-based drug design and structure-based drug design, both of which convert
features into models based on pharmacophore studies and QSAR (Mercader et al., 2016). CADD
employs previous knowledge available on the 3-D structure of target protein to analyze the extent
of intermolecular interactions between the receptor and ligand in the study. To differentiate
between the known active and inactive molecules, ligand-based CADD employs the chemical
similarity criteria and predict QSAR models that are generated from the molecules. QSAR
modelling teaches about the impact of structure factors on bioactive compounds and how to
construct ligands with enhanced and improved biological activities (Yu and MacKerell, 2017).
The pharmacophore and QSAR models are employed in virtual screening to identify new hit

molecules or ligands from commercial and open source chemical libraries in order to screen
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molecules that make a large number of intermolecular interactions and high binding affinities. As
a result, the CADD approach is important in the process of design and optimization of likely hit
molecules to bind the receptor. It also has a wide range of applications in the different stages of
drug discovery and development, such as drug target identification, validation, molecular design,
improvisation of hit to lead molecule and interactions of hit or lead or drug molecules with protein

targets of interest.

1.2.10.1 Structure-based drug design

Structure-based drug design methodology makes use of understanding of the 3-D structure
target protein in complex with a hit compound and optimise the hit compound or a series of
derivatives of a parent compound. It requires understanding of the protein-hit molecule
intermolecular interactions in the complex formation. The experimental structures or homology
models can be used to obtain structural information (Lounnas et al., 2013; Leach, 1994). This is a
computational approach for locating possible hit compounds which aim to bind to a drug receptor
implicated in a disease. This method involves swiftly searching through vast virtual libraries of
chemical compounds, then docking the successful molecules into a receptor binding pocket of
interest, which might be an active site or an allosteric binding pocket. The scoring function of a
docking study is used to evaluate the potential of the hit molecules to bind with the receptor target
in order to quantify the binding of these two molecules. The in silico screening of chemical
databases by implementation of docking protocols or pharmacophore model based in silico
screening are designed based on important residues that are also present in the template proteins
and occupy similar regions is one of the techniques in structure-based drug design (Yang, 2010).
The de novo molecule design is second category, which involves creating a molecule from

fragments that bind to the active site and joining them together with a linker (Scott et al., 2012).
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In the third category, a molecule can be optimised chemically so that the new analogues are more
potent molecules with higher binding affinity to the receptor target (Pennington et al., 2020). The
noteworthy gain of this exercise is that it enhances the speed of identification of hit compounds by
substantially decreasing the number of hit compounds that need to be evaluated experimentally for
their biological function, which tends to increase the success rate of the experiments from in vitro

and in vivo studies.
1.2.10.2 Ligand-based drug design

In the absence of the 3-D structure of protein, ligand-based drug design is a useful
methodology that relies on experimental data from ligands which are known to bind to the protein
receptor target under consideration. The 3-D QSAR and pharmacophore modelling (Dixon et al.,
2006; Lin, 2000) are important methodologies in ligand-based drug design. In pharmacophore and
QSAR studies, knowledge on both active and inactive molecules evaluated in vitro or in vivo is
represented as a source of data. This analysis results in the development of a model that can be
employed in virtual screening, such as the SwisSimilarity server, to find new hit molecules (Zoete
etal., 2016). These analyses can also provide extrapolative models that can be used to identify and
optimise lead molecules. Analysing compounds that bind to the drug target of interest in a disease
is a useful technique for advancing and improving pharmacologically active molecules. A QSAR
is defined as the relationship that is created between both the hit compounds estimated biological
features and their empirically determined bioactivities. Observations and findings from QSAR
correlations are frequently utilized to identify the biological activity of newly designed and

experimentally validated structural analogue molecules.
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1.2.11 Pharmacophore modeling

A set of electrostatic and steric features that are necessary in order to confirm the
interactions of a ligand with a receptor binding site of a specific biological target that is significant
in disease so as to invoke a biological response is defined as a pharmacophore. The goal of these
interactions is to elicit a biological response from the organism. The CADD technique that
recognizes essential components necessary for function and recognition between macromolecule
and ligand is the pharmacophore modelling (Wolber & Langer, 2005). A combination of inactive
and active components, in addition to intermolecular interactions between ligand and receptor,
make up a pharmacophore model. Hydrogen bond acceptors or donors, anions, hydrophobic
centroids, aromatic rings, cations, metal contacts, and aromatic stacking or charge transfer
interactions are examples of pharmacophore characteristics. A perfect pharmacophore model is
constructed on a set of compounds 3-D characteristics and contains not more than seven desired
features, with the majority of these features interacting with the receptor non-covalently.
Pharmacophore models can be constructed manually or automatically, beginning with the
structures of known active compounds (ligand-based approach) or the 3-D structure of the protein
target (structure-based approach) (Leach et al., 2010). One of the numerous uses for
pharmacophore models would be as a query to quickly screen vast chemical libraries in a virtual
manner (Seidel et al., 2010). The primary objective is to find novel hit compounds that have a
certain set of pharmacophore characteristics that are regarded to be essential for their bioactivity
against a particular target of interest in disease. Screening for pharmacophores consistently yields
hit molecules with a high structural variation. Furthermore, the ease with which pharmacophore
features can be represented allows for rapid virtual screening of large small molecule chemical

databases comprising billions of small organic compounds. Depending on the selection of the
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necessary pharmacophore features, the application of precise matching requirements, and the
volume of the small molecules database, a regular pharmacophore screening can typically yield
tens to thousands or more hit molecules. Pharmit (Sunseri & Koes, 2016) is a dedicated web server
for assigning preferred pharmacophore features and performing virtual screening; others are built

into commercial software such as DS version 3.5 and Maestro, Schrodinger.

1.2.12 Molecular docking

CADD relies heavily on molecular docking, which is one of the important in silico
structure-based rational drug development technique. The primary goal of receptor-ligand docking
is to identify a ligand's predominant binding mode in the binding cavity of a known structure of
protein (Pinzi & Rastelli, 2019). Docking would be the algorithmic plotting of bioactive molecules;
the likely space occupied by all potential hit compounds that will be optimised in the later steps.
The goal of docking is to attain the best conformation and spatial arrangement of a ligand within
a protein's active site (Morris & Lim-Wilby, 2008). Docking protocols are designed in two
components to achieve the highest success rate for the computational algorithm: docking
alignment and scoring function. The molecular docking is a malleable method wherein the
conformation of a ligand or protein can be altered during the docking (Leach, 1994). The docking
techniques are defined into three categories based on the flexibility of the specific protein and hit
compound. The primary objective of docking studies is to evaluate whether the protein or hit
molecule is highly flexible (ligand). Flexible ligand docking, keeps the protein receptor
conformation rigid and ligand is treated as flexible, while in rigid body docking, both the protein
and the ligand are considered to be rigid. In the flexible receptor docking, both the receptor and
ligand remain flexible. Flexible docking is one of most computationally intensive technique. Most

docking processes regard the small ligand molecule as flexible while the receptor as rigid. This is
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incorporated in molecular docking tools such as CDOCKER, AutoDock, FlexX and AutoDock
Vina (Kramer et al., 1999; Morris et al., 2009; Wu et al., 2003; Trott & Olson, 2010). Some other
docking techniques such as, GOLD, DOCK, LeDOCK, Glide (Verdonk et al., 2003; Lang et al.,
2009; Friesner et al., 2004; Zhao & Caflisch, 2013) also recognize both the inhibitor and the
receptor binding cavity as flexible orientations during docking so that the receptor and inhibitor
molecule fit to one another in a complementary manner. Methods like RDOCK, ZDOCK and H-
DOCK (Chen et al., 2003; Li et al., 2003) maintain the receptor and ligand molecules rigid
throughout the docking. Forces of attraction which are van der Waals, hydrogen bonding,
hydrophobic and electrostatic interactions facilitate intermolecular interactions among both small
molecule and receptor. The complex crystal structure serves as a reference for comparing
molecular docking results and predicting the suitable pose of compounds within the protein
binding cavity (Chen et al., 2006). If the crystal structure for reference is not available, a better
compound that binds with more interactions could be selected, and the compounds can be
evaluated based on binding energy or binding scores. Homology models for receptors with
unknown 3-D structures can be generated for docking (Sali & Blundell, 1993). Protein binding site
prediction could be conducted in the absence of active site information for a protein using
programmes such as sitemap (Halgren, 2009), Q-SiteFinder and CASTp (Laurie & Jackson, 2005;
Tian et al., 2018). Molecular docking may also be applied to a single compound or on millions of
compounds from a chemical database. Docking could be performed within binding pocket of a
receptor for guided docking or in the whole receptor for blind docking (Hetényi & van der Spoel,
2006). Docking techniques that work to correctly prioritize docked compounds, search all binding
pockets successfully and then use scoring functions to order the docked compounds (Kitchen et

al., 2004). Docking could be used to conduct high-throughput screening on compound databases,
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prioritize docked conformations, evaluate docked conformation binding to receptors via
nonbonded interactions, and suggest structural hypotheses of how hit compounds inhibit the target,
each of which is a valuable information for lead compound optimization. GOLD, DOCK, FlexX
and ICM (Verdonk et al., 2003; Neves et al., 2012) are commonly used high-throughput docking
tools. MD simulations can verify the stability of the hit chemical compound when bound to the
specific receptor. Ligand scoring is a method for determining how well small molecules bind to
protein binding cavities. The scores are determined by approximating mathematical functions that
evaluate binding energy. Each and every docking process has its own scoring function for
determining the stability of conformations. The popularly used scoring functions are the piecewise
linear potential 1 and 2 (PLP1, PLP2) functions (Gelhaar et al., 1999; Gehlhaar et al., 1995), with
PLP1 having a grid-based functional form and PLP2 having hydrogen bonding interactions that
have an angular dependency. The potential of mean force (PMF, PMF04) scoring functions
(Muegge, 2006; Muegge & Martin, 1999) score complexes by averaging the pairwise interaction

terms of the receptor-hit molecule complexes across all interatomic pairs.

1.2.13 Drug repurposing

The process of FDA approved drugs being repositioned, repurposed, or re-tasked to be
used in multiple diseases, i.e., outside of the purview of the original medical indication, is known
as drug reprofiling or drug repurposing. The traditional drug development pipeline is time-
consuming and expensive in terms of resources. Because of the time and money required to
develop new drugs, several research organizations have focused their efforts on molecules that
have been approved for human use in a disease (Ashburn & Thor, 2004). Some drugs, such as
thalidomide derivatives (Sampaio et al., 1991), antibiotics (Konreddy et al., 2019), and antivirals,

have been repurposed (Mercorelli et al., 2018). These drugs have achieved therapeutic success in
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diseases other than those for which they were originally approved. Drug repurposing approaches
are frequently classified as either drug-based or disease-based. When drug characteristics such as
chemical, physical, and biochemical characteristics are accessible, drug-based techniques are most
common and favoured. The availability of enormous computational capability in terms of space
and cost, along with the advancement of high-throughput molecular, clinical, and molecular
genetics methods, has opened up a new and suitable potential for rationale repurposing of existing
drugs through computational methodologies rather than relying on chance for drug development.
Following initial computational drug reprofiling discoveries, the findings are conformed using in
vitro molecular screening, clinical and structure-based (biophysical) methods. In various rounds
of clinical studies involving patient groups, these medications are even more verified. One can
explore current PDBs and their 3-D amino acid patterns as well as the drug molecule binding

interface on certain web servers, like Drug ReposER (Ghani et al., 2019).

1.2.14 Absorption, distribution, metabolism, excretion and toxicology

ADMET refers to the physical features that a drug-like compound must have in order to
possess optimal pharmacokinetic properties while also having required pharmacological
characteristics (Lipinski et al., 1997). The in vitro and in vivo ADMET properties collected from
experimental studies indicate a thorough consideration of the pharmacokinetic properties of the
chosen molecules. To evaluate the possible potential of the drug-like candidates in the initial
phases of drug development, its effectiveness and safety parameters are critical. Before the
molecule is studied in the first phase of clinical trials, it is necessary to record the safety profile of
the drug-like molecule by evaluating its ADMET properties. Web servers are accessible for
analysing the candidate compounds' physicochemical and drug-like characteristics, as well as their

synthetic accessibility (Tian et al., 2015; Ertl & Schuffenhauer, 2009; Daina et al., 2017). These
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theoretically calculated constraints based on their chemical structures will save time and funds
while also accelerating the design of drug-like compounds that are likely to develop into drugs

with a greater rate of success.

1.2.14.1 SwissADME sever

SwissADME (http://www.swissadme.ch/index.php) server is an online programme that
calculates physicochemical characteristics like ADME properties as well as the physicochemical
characteristics like solubility, lipophilicity and pharmacokinetic properties. Lipinski's rule of five
(Lipinski et al., 1997; Lipinski et al., 2012; Lipinski, 2004) is a crucial requirement for ensuring a

drug-like profile in orally administered drugs.

1.2.15 Molecular dynamics simulations

More than 60 years have passed since the first 3-D protein structure was determined by X-ray
crystallography (Gutte, 1975), and the first MD simulations of proteins were performed in 1970, at the

dawn of the modern computer (Levitt & Lifson, 1969; McCammon et al., 1977). Studies on protein
structure engineering and the relation between sequence, structure and function were scarce at that
time. Protein crystal structures that have been submitted to the PDB are regarded as static structures
since they show the protein's configuration at a certain point in time. Protein structures are known
to be dynamic instead, as the linkages between the single bonds move around, causing changes in
conformation and occasionally even the function. The most popular approach, particularly for
biological macromolecules like proteins, is to perform MD simulations to determine the
conformational space filled by the molecules. One method to mimic their mobility is to use
traditional MD simulations of protein structures derived from experiments, as well as computer
models created using homology modelling (John & Sali, 2003; Dahiyat & Mayo, 1997). The

position of the atom in 3-D space is investigated using MD simulations. This method replaces a
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single-point model with a dynamic model that propels the nuclear system into motion. The
traditional Newtonian dynamic equations are numerically solved to simulate the motion (Pace et
al., 1996). The Newton's second law, also known as the equation of motion, F=ma, in which "F"
stands for the force acting on the particle, "m" for its mass, and "a" for its acceleration, forms the
foundation of the MD simulations technique. It is feasible to calculate each atoms acceleration in
the system by knowing the force acting on it. The trajectory that results from the integration of the
motion equations represents the locations, accelerations and velocities of the atoms as they change
over a time scale. The average values of the attributes can be calculated from this trajectory. The
process is deterministic, allowing for the prediction of the systems state at any point in the past or
future once the locations and velocities of each atom are known. The contributions from
interactions between bonded and nonbonded atoms are taken into account; nonbonded forces result
from van der Waals interactions and are described using the Lennard-Jones potential, while
charged (electrostatic) interactions are treated using Coulombs equation (Childers & Daggett,
2017; Geng et al., 2019). MD simulations can be time-consuming and expensive to run on
computers (Shaw et al., 2008). Multiple software packages can be used to mimic protein flexibility
through MD simulations of solvated proteins. CHARMM (Jo et al., 2008), AMBER (Case et al.,
2005), CHARMm, DL_POLY (Smith et al., 2002), GROMOS (van Gunsteren & Berendsen,
1987), GROMACS (Lindahl et al., 2001), LAMMPS (Grindon et al., 2004), NAMD (Nelson et

al., 1996) are some of the popular software capable of carrying out MD simulations.

1.2.15.1 Force fields

The "force field" refers to a computational methodology for a mathematical formula used
to arrive at a set of parameters and calculate a proteins energy as a function of its all atom

coordinates. A force field is a mathematical statement that describes how a system's energy
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depends on the 3-D coordinates of its constituent components. The term "force field" refers to an
equation and is divided into two terms: the first characterizes bonding interactions, which
represents atoms connected by covalent bonds, and their mathematical form deals with bond
lengths, bond angles, and torsion angles. The second term of the equation describes the
contribution from nonbonding interactions caused by van der Waals and ionic interactions, and it
is calculated using the Lennard-Jones potential and Coulombs law, respectively. It is defined in an
analytical form to indicate the interatomic potential energy, and a set of parameters entering into

the form.

The parameters of force field are often determined either through fitting to experimental
data from techniques including X-ray and NMR, electron diffraction, infrared, Raman and neutron
spectroscopy or through ab initio or semi-empirical quantum mechanical calculations (Weiner &
Kollman, 1981; Chen & Yip, 2017). The force field substitutes a simplified model appropriate to
the region being simulated for the real potential, which is simply defined as a collection of atoms
bound together by simple elastic (harmonic) forces. It should ideally be basic enough to be
evaluated quickly yet detailed enough to be able to recreate the characteristics of the systems being
studied. A number of different types of force fields are available in the literature to describe
compounds with varying levels of complexity and capable of handling different types of systems.
The widely used force fields that include parameters for each and every atom in the periodic table
includes Dreiding and Universal (UFF) force fields (Rappé et al., 1992). CHARMM (Brooks et
al., 1983), GROMOS, AMBER, OPLS (Jorgensen et al., 1996), and COMPASS (Sun et al., 1998).
For example, CHARMM19, CHARMMZ22, CHARMMZ27; GROMOS45A3, GROMOS53A5,
GROMOS96, GROMOS53A6; AMBER02, AMBER91, AMBER94, AMBER96, AMBER99;

etc. are just a few examples of these force fields that are constantly changing and have several
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versions available (Maolepsza et al., 2010). Both the protein and the small chemical molecules

under study must be compatible with the force field that is being used.

1.2.15.2 MD trajectory analysis

The trajectory of MD simulations is used to examine how atomic-level changes in
biological and chemical structures occur over a period of time. Because knowledge about the
proteins dynamical structure can only be achieved through MD simulations to construct an
ensemble of structures, crystal structure is regarded as a snapshot of that structure. This is
important for drug discovery research because it shows alternate protein conformations and, as a

result, the allosteric sites present in the protein structure become available.

1.2.15.2.1 Root mean square deviation

The root mean square deviation (RMSD) is among the most frequently used quantitative
metrics for the structural similarity of two or more molecules by the superposition of their 3-D
atomic coordinates. The RMSD values are calculated for any kind or a subset of atoms in a
molecules, such as all of the Ca-atoms in the protein as a whole or all of the atoms in a particular
subset, or all of the carbon atoms in a protein that are involved in ligand binding. The secondary
structural elements are stable and the loops are more flexible, which causes the RMSD of the
system to increase. It has been shown that a system with stability will display a lower RMSD. The

following equation can be utilized to determine RMSD.

L=

RMSD = =N, 57
(1.1)

52 is the squared difference between the positions of the atom at index i and that same atom in the

reference structure, and N is the number of atoms being counted.
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1.2.15.2.2 Root mean square fluctuation

The term root mean square fluctuation (RMSF) can be employed to describe fluctuations
around well-defined average positions in dynamical molecular systems. Data related to the
temperature stability and regions of flexibility in the structure are provided by RMSF. The distance

between the position of a atom and a reference position is measured by the RMSF.

N
1
RMSF = NZ(XLU) - (Xi))z
! (1.2)

Where x; represents the position at time i and <x;> denoted average value.

1.2.15.2.3 Hydrogen bonds

The nonbonding interactions that contribute to the stability of the molecular systems are
categorized as ionic contacts, hydrogen bonds, hydrophobic and van der Waals interactions. These
interactions contribute to the stability of the molecule in the form of intramolecular interactions
and intermolecular interactions that stabilize the receptor-ligand interactions for sustenance in
biological systems. An electronegative atom (donor) that has a covalent link with a hydrogen atom
(acceptor) is attracted towards the lone pairs of electrons on an additional electronegative atom
(acceptor), either within the same molecule (intramolecular hydrogen bond), or outside of it
(intermolecular hydrogen bond). An average hydrogen bond contains 5-10% covalent bond
character. Protein-ligand complexes are stabilized via hydrogen bonding. The directed connections
provided by hydrogen bonds support protein structure and selectivity to molecular recognition
through intermolecular interactions. A hydrogen bond must have a distance between hydrogen
donor and acceptor of less than 3.2 A and a D-H-A angle of 180° + 30° in order to be considered

to exist. According to Van Der Spoel et al. (2005), the GROMACS command "gmx hbond" can

39



compute the number of hydrogen bonds in a protein complex as well as the distance between the
acceptor and donor atoms participating in hydrogen bonds. The number of intermolecular
hydrogen bonds that are present in the docked conformation and those that are preserved during
MD simulations are analysed by indexing the number of intermolecular hydrogen bonds between

particular atoms.

1.2.15.2.4 Normal mode analysis

A quick and easy method for determining protein flexibility and vibrational modes is
normal mode analysis (NMA) (Bahar et al., 2010). The atoms in NMA are modelled as point
masses connected by springs, which stand for the interatomic force fields, and are occasionally
restricted to Ca atoms exclusively. In order to disclose the dynamic properties of proteins, NMA
have been created (Veldzquez-Muriel et al., 2009; Bakan et al., 2011). The NMA is employed for
analyses of protein structures and to study the slow dynamics and large-scale motion in
biomolecules. One specific kind of NMA is the elastic network model. In this model, only the
atom pairs that are close to a cutoff distance are taken into account, and all of the springs linking

each node to its neighbors are of similar strength.

1.2.15.2.5 Mechanical stiffness

The pulling or stretching forces needed to start protein unfolding differ significantly
depending on where the pressures are applied, which causes a different reaction in each protein to
uniaxial strain. Anisotropic Network Model (ANM), a set of software tools included in
Prodynamics, is used to create mechanical stiffness charts for all molecular systems in response to

all potential pulling directions (Eyal et al., 2015).
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1.2.15.2.6 Principal component analysis

In all the simulated systems, PCA was used to analyse the overall mobility of the residues
in the protein structure. By lining up the structures from MD simulations trajectories, the MODE-
TASK programme (Ross, C., et al. 2018,) was used to eliminate the translational and rotational
motions of the protein Co atoms. Following the creation of the 3N x 3N covariance matrix in
Cartesian coordinates, the covariance matrix diagonalization was used to produce the eigenvectors.

The PCA was generated using MD simulations trajectory data.

1.2.15.3 Binding free energy

For determining binding free energies in biological macromolecular systems like proteins,
a variety of techniques with varying degrees of complexity have been used. Simplified scoring
systems are used to achieve the necessary proficiency in screening vast chemical databases of
small molecules to find a hit molecule that may potentially develop into a lead and therapeutic
molecule (Parenti & Rastelli, 2012). The binding free energy can be estimated using quadratic
fluctuations and continuum solvent approximation around a specific configuration of the
molecular system (Kollman et al., 2000). A widely used methodology is Molecular Mechanics
Poisson-Boltzmann and Surface Area (MM-PBSA\) relies on a mixed scheme which combines free
energy estimators based on an implicit continuum solvent model with configurations sampled from
MD simulations with explicit solvent (Srinivasan et al., 1998; Hou et al., 2011). The MM-PBSA
method is employed to determine the polar, non-polar and binding free energies of biomolecules
(Gilson & Honig, 1988; Sitkoff et al., 1994). The command ‘g mmpbsa’ from a GROMACS
trajectory output determines the binding free energy to a protein ligand complex (Kumari et al.,
2014), and this tool includes a variety of non-polar solvation models, such as those based on the
solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model that covers
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repulsive (SASA SAV). It also estimates the energy contribution of individual amino acid residues
to the binding free energy. The binding free energy is calculated using the following formulae.
When a protein is complexed with an inhibitor in a solvent such as water, the binding free energy

is given as

AGyind = Gcomplex - Gfree-protein - Gfree-inhibitor (13)

where, Geomplex 1S the total free energy of the protein-inhibitor complex and Gtree-protein and Gree-

inhibitor are total free energies of the isolated protein and inhibitor in the solvent, respectively.

The free energy of each individual entity "G" indicated above is represented by

G = Emm — TS + Gsolvation (1.4)

TS denotes the entropic contribution to free energy in vacuum, where T and S represent
temperature and entropy, respectively. Gsoation refers to the free energy of solvation, which is the
amount of energy required to move a solute from vacuum into a solvent. This is expressed as the
total of Gpolar and Gnon-polar, the electrostatic and non-electrostatic contributions to the solvation free

energy, respectively.

Gsolvation= Gpolar+ Gnon—polar (1.5)

Emm, which is determined using the parameters of the molecular mechanics (MM) force field, is
the average molecular mechanics potential energy in vacuum, which contains the energy of both

bonded and nonbonded interactions.

Emm= Ebondedt Enonbonded = Ebondedt (Evaw+ Eelec) (1.6)

where Enonded 1S bonded interactions consisting of the bond length, angle, dihedral and improper

interactions. The Enonbonded IS the nonbonded interactions that include both electrostatic and van der
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Waals interactions and is modeled using Coulomb and Lennard-Jones (LJ) potential functions,

respectively.
1.2.15.3.1 Linear interaction energy

The ligand-binding free energy (AGLig) (AImIOf et al., 2004;Brandsdal et al., 2003) was
computed as the mean of the inhibitors Coulomb and van der Waals interaction differences with
its neighboring atoms upon incorporation, that is, the individual ligand in the solvent (unbound
state denoted as subscript u) and the inhibitor in the binding mode with protein (bound state
denoted as subscript b) approach using gmx lie and gmx energy were calculated for the protein-

ligand molecule complexes from the output trajectories of MD simulations.
AGLE= o ((Vis"™ )b - (Vis"™ yu+ B (Vi )b - (Vi) +y - (L.7)

The above equation was used for calculating LIE. The coefficient y, a constant, is
associated with the alteration of the hydrophobic nature of the binding cleft conceding to various
species of inhibitors, whereas the coefficients o and  are rating parameters for nonpolar and polar

interactions, respectively. The values taken for a, B and y are 0.181, 0.5 and 0, respectively.

1.2.16 Density functional theory calculations

DFT is a computational quantum mechanical modelling technique used to study the
electronic structure (or nuclear structure) (primarily the ground state) of many-body systems such
as atoms, molecules, and condensed phases in physics, chemistry, and materials science. This
hypothesis can be used to determine the characteristics of a many-electron system. Ab initio DFT

calculations, from the standpoint of computational materials science, allow for the prediction and
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estimation of material behavior that depends on quantum mechanical factors without the need for
higher-order parameters such as fundamental material properties. The electronic structure of a

system is examined using a potential acting on its electrons in modern DFT techniques. This DFT

potential is constructed by adding external potentials. Vext is determined solely by the structure

and elemental composition of the system, and Vefs is an effective potential that represents

interelectronic interactions.

Geometry optimizations on all molecules were performed at the B3LYP (Becke, 1993; Lee
et al., 1988) level of theory using the 6-311+G(2d,p) basis set (Petersson et al., 1988; Petersson et
al., 1991). Furthermore, Polarizable Continuum Model (PCM) (Miertus et al., 1981, Tomasi et al.,
1994) optimizations with water as an implicit solvent were performed at the B3LYP/6-
311+G(2d,p) level for all molecules to determine the effect of solvent presence on total energy of
the molecule. The frequency calculations were then used to determine the characteristics of the
stationary point. Molecular orbital analysis was performed at the B3LYP/6-311+G(2d,p) level of
theory to find the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) (Fukuli et al., 1952) for the molecules studied through MD simulations.
The purpose of this analysis was to identify the electron-rich zone in the molecules under
consideration. To accurately analyse the charge distribution around these atoms, the electrostatic
potential (ESP) energy values were determined (Vetrivel et al., 1996) and mapped over an
isodensity surface equivalent to 0.0004 a.u. This ESP incorporates the van der Waals volumes of
the molecules individual atoms, providing an accurate representation of the reactive regions
surrounding the inhibitors. Gauss View was used to visualize the molecular structures. All

calculations were carried out using the Gaussian 09 (Frisch et al., 2009) programme suite.
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CHAPTER-2

Structure stability and drug repurposing of
Zika virus NS3 helicase
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2.1 Introduction

Most viral illnesses are brought on when a virus enters the body of a host
and exploits that system to proliferate. Infections result when viruses multiply and spread to other
cells because the host immune system is unable to prevent them. The following are significant
signs of viral illnesses: Fever, exhaustion, sore throat, headache, irritability, rashes, malaise,
sneezing, swollen tonsils, and excessive weight loss. The Zika virus is an arbovirus that is
transmitted by aedes mosquitos via blood and other bodily fluids. The Zika virus caused mild
illness and rash at first, but it was later discovered to cause Zika virus disease, which is
characterized by fever, headache, arthralgia, myalgia, and maculopapular rashes (Loos et al.,
2014). Because there are no specific drugs available to prevent or treat Zika virus infection, new

drugs for the treatment of this critical disease are required.

New drug discovery is time-consuming and expensive, with a low success rate most of the
time. Drug repurposing, also known as drug repositioning or reprofiling, is a strategy for
identifying new uses for previously approved drugs (Ashburn & Thor, 2004). It is useful for
identifying drugs that can function as multi-disease inhibitors. These drug molecules have already
been tested in humans, and comprehensive information on their pharmacology, formulation,
dosing, and potential toxicity is available (Ashburn & Thor, 2004, Pushpakom et al., 2019). As a
result, this method has advantages over developing new drugs for a disease; specifically, the risk
of drug failure is lower because the repurposed drug has already been proven to be sufficiently
safe, resulting in a shorter timeframe for drug identification and a lower budget investment. For
example, zidovudine was originally developed to treat cancer but was later redeveloped to treat

acquired immune deficiency syndrome (AIDS) that is caused by HIV (Marchbanks, et al 1995).
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The antimalarial drug hydroxychloroquine is an autophagy inhibitor; in vitro studies showed that
it inhibited dengue virus (Al-Bari, 2015), and it is now being used to treat SARS-CoV-2 disease
(Chenetal., 2020). Ivermectin (Mastrangelo et al., 2012), suramin (Basavannacharya et al., 2014),
and aurintricarboxylic acids (Shadrick et al., 2013) have been identified as drugs that inhibit
flavivirus helicase. Amodiaquine, an antimalarial drug, inhibits Zika virus pathogenicity by
blocking autophagy (Han et al., 2018). A patent review of repositioning and investigational drugs
for Zika virus disease identified ribavirin, sofosbuvir, a-interferons, lopinavir-ritonavir
combination, and niclosamide as Zika virus inhibitors in clinical trials (Rosa et al., 2020). In human
clinical trials, some Zika virus vaccine candidates based on nucleic acid vaccines, inactivated
vaccines, viral-vectored vaccines, and attenuated vaccines have shown significant promise
(Pattnaik et al., 2020). However, a systematic investigation for specific targets to discover efficient
and swift-acting drugs are needed for the Zika virus because the virus spreads very fast when it
infects the human host.

Flavinoids and their derivatives have been shown to inhibit the activity of the Zika virus
proteins NS1 (Ahmad et al 2020) and NS2B-NS3 (Yadav et al 2021). The NS3 helicase is essential
in the replication of viral genomes. RNA helicases are essential for RNA virus RNA metabolism
and viral infection facilitation. The Zika virus NS5 RdRp generates a negative-sense RNA by using
the positive-sense RNA as a template for the formation of the intermediate stage double-stranded
RNA. The Zika virus NS3 helicase unwinds the double-stranded RNA to separate it into negative-
and positive-sense single-stranded RNA molecules. Negative-sense RNA serves as a new template
for the production of positive-sense genomic RNA (Xu et al., 2019). Because of its critical role in
viral RNA replication, NS3 helicase has been identified as an important target for antiviral drug

discovery. X-ray diffraction methods were used to report the 3-D structures of helicase from
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dengue, hepatitis C, Zika, and coronaviruses, and their 3-D coordinates are deposited in the PDB
(Abola et al., 1984). The RNA binding domain of the Zika virus NS3 helicase exhibits ATPase
activity, which provides chemical energy that is then converted into mechanical energy required
for viral RNA genome unwinding during viral replication (Tian et al., 2016). Helicase, in
collaboration with the enzyme RdRp, aids in viral genome replication. Zika virus NS3 helicase is
an significant target for drug development against Zika infections due to its critical role in genome
replication. Using computational studies, the 1,4-benzothiazine derivatives were shown to be Zika
virus NS3 inhibitors (Badshah et al., 2019). The crystal structures of Zika virus NS3 helicase
complexed with ATP or RNA explain how the virus identifies its substrates during replication and
provide structural insights for rational Zika virus drug design. However, the mechanisms by which
Zika virus helicase distinguishes between the binding of nucleoside triphosphate (ATP) and viral
RNA remain unknown, making the development of antiviral drugs difficult. These structural
stability studies would aid in determining the molecular basis for cofactor/substrate binding to
Zika virus NS3 helicase activity. Using molecular docking, MD simulations, and post-MD
analyses, structural changes in the Zika virus NS3 helicase when bound to the substrate (RNA),
cofactor (ATP), simultaneously binding to both ATP-RNA, and repurposed drugs are reported in
this chapter.

2.2 Materials and Methods
2.2.1 Dataset
The crystal structures of the apo Zika virus NS3 helicase (PDB id: 5JMT) and when bound

to ATP (5GJC) and RNA (5GJB) are available at 1.8, 2.2, and 1.7 A resolutions, respectively.
Crystal waters were removed from the structures, and the missing residues in the structure (5GJC)

were built using the loop modelling method in MODELLER (Sali & Blundell, 1993). The valency
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of all atoms in the structures were satisfied by the addition of hydrogen atoms, and the geometry
of the structures was optimised using UCSF Chimera 2.1.1 (Petersen et al., 2004).
2.2.2 Drug repurposing and molecular docking studies

It has been proposed that some drugs not only interact with their therapeutic protein targets
but also inhibit other proteins (Sanseau et al., 2011). Figure 2.1 depicts a conceptual diagram of
target-based drug repositioning and the outcome of our workflow. The first steps in drug
repositioning include a high-throughput in silico virtual screening of FDA approved drugs
obtained from the BindingDB. This is followed by virtual screening based on molecular docking
and subsequent validation steps. Molecular docking entails creating different binding poses for a
ligand within the target active site for conformational sampling, as well as evaluating the binding
strength of each protein-ligand complex based on the extent of nonbonding interactions for scoring
the pose (Meng et al., 2011). Both docking methods used in this study, AutoDock (Morris et al.,
2009) and CDOCKER (Gagnon et al., 2016), were validated by docking the cofactor ATP into the

binding site of the NS3 helicase.
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4 Binding Database
1338

Zika virus NS3 helicase

< -7.0 kcal/mol

230 molecules

Non-bonded interactions and - 7.5 to -9.3 kcal/mol

40 molecules

MD simulations and Binding energy calculations

Figure 2.1. Repurposing of FDA approved drugs for Zika virus NS3 helicase.

The BindingDB (Liu et al., 2007; Gilson et al., 2016) is an exhaustive and freely accessible
web resource that contains detailed drug, drug-target, drug action, and drug interaction information
for FDA approved drugs as well as experimental drugs in the FDA approval process. The structures
of 1,338 FDA approved drugs have been deposited in BindingDB (https://www.bindingdb.org/).
These molecules 3-D coordinates were downloaded in .sdf format from BindingDB. The active
site of Zika virus NS3 helicase was identified using key amino acid residues that interact with the
cofactor, ATP. Virtual screening of FDA approved drugs using AutoDock 4.2 tools was employed

to dock the compounds within the 5 A cavities defined around the ATP binding pocket. This
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revealed their predicted binding affinity, binding orientation within the active site of the Zika virus
NS3 helicase, and best binding conformations in order to shortlist the FDA approved drugs. The
protein structure was loaded into AutoDock tools (Morris et al., 2009) to generate the ten best
conformations for each molecule. The molecules were initially loaded; torsions were determined
and saved in PDBQT format. All the heteroatoms and crystal waters were deleted from the loop
modeled structure of Zika virus NS3 helicase (5GJC) prior to molecular docking and saved in
PDBQT format. The Lamarckian Genetic algorithm was used to perform all calculations for
protein-ligand flexible docking (Wiley, et al 2006). A grid box with the dimensions X: 22.987 A,
Y: 19.338 A and Z: 49.646 A was used, with a grid spacing of 0.492 A as the default. The best
conformation with the highest binding affinity and greater number of hydrogen bonding
interactions between the protein and the docked pose of an FDA approved drug was manually

analysed on graphics.

The top-ranked molecules were then subjected to a second round of docking studies with
CDOCKER (Gagnon et al., 2016), which is available in DS 3.5. To define the proteins active site,
a sphere with a radius of 5 A was generated around ATP. Twenty docking poses were generated
for each molecule, and the conformations of molecules generated in the active site of the protein
were shortlisted. The system was heated to 700 K for 2,000 steps as part of the docking protocol,
then cooled to 300 K for 5,000 steps. The binding conformations of the molecules in Zika virus
NS3 helicase were analysed using the "scoring ligand poses” implemented in the receptor-ligand
interactions protocol in DS 3.5, and the docking poses were analysed using the scoring functions
PLP1, PLP2 and PMF (Gehlhaar et al., 1995; Parrill et al., 1999; Muegge et al., 1999; Muegge,

2006). Top scores and intermolecular interactions with the Zika virus NS3 helicase were used to
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select the best docking pose. The top-ranked molecules from the CDOCKER docking method were

studied further using MD simulations to assess complex stability.

2.2.3 Molecular dynamics simulations

MD simulations are computational methodologies used to examine the physical and
conformational changes of proteins as well as their interactions with other molecular species in a
variety of environments (Beveridge & Ravinshanker, 1994; Cheatham et al., 1995; Cheatham et
al., 1997; Young & Beveridge, 1998; Reyes & Kollmann, 1999; Tang & Nilsson, 1999).
GROMACS 5.1.4 (Hess et al., 2008; Van Der Spoel et al., 2005) was used to study the MD
simulations of all molecular systems for 150 ns. There were eight various types of molecular
systems studied: apo Zika virus NS3 helicase, Zika virus NS3 helicase complexed with ATP, RNA,
ATP-RNA, and four FDA approved drugs located within the proteins ATP binding site. Hydrogen
atoms were added to all molecular systems, and the coordinates were saved in .mol2 format.
AMBERO3 force fields were applied by UCSF Chimera using AM1-BCC charges and saved in
.mol2 format. ACPYPE script was used to generate topology of the compounds (Da Silva et al.,
2012). MD simulations were run for 150 ns for each molecular system to investigate the
mechanism of ATP-RNA binding to Zika virus NS3 helicase and the stability of repurposed drugs

within the protein active site in order to validate them.

The molecular systems were solvated in a cubic box with water as the solvent, and the
systems total charge was neutralised by the addition of Na* and CI" ions (Berendsen et al., 1981).
To optimise the geometry of the systems, the steepest descent method was used for 1,000 steps of
energy minimization. The distribution of water molecules was achieved during the position
restraint phase, and the systems were equilibrated under NVT (constant number of particles,

volume, and temperature) and NPT (constant number of particles, pressure, and temperature)
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conditions for 100 ps each using the leap-frog integrator method. For long-range electrostatics, the
particle mesh Ewald method was used, temperature coupling was set using V-rescale (Bussi et al.,
2007), modified Berendsen thermostat (Berendsen et al., 1984) at 300 K, and pressure was
maintained at 1 atm using the Parrinello-Rahman (Parrinello & Rahman, 1981) method. The MD
simulations of all systems were executed using the periodic boundary conditions with a cutoff of
1.0 nm, the Lincs algorithm (Hess et al., 1997) was used to constrain the hydrogen bond
parameters, and the final MD simulations in the production phase were run for 150 ns. The MD
trajectories were analysed with the GROMACS utilities gmx rms, gmx rmsf, gmx gyrate, and gmx
cluster (Van Der Spoel et al., 2005) to obtain the RMSD, RMSF, Rg and cluster analyses. VMD
was used to visualise the MD trajectory file analyses (Humphrey et al., 1996); Chimera and Pymol
were used to generate cartoon image representations. The RMSD, RMSF and Rg graphs were
plotted using the Xmgrace software (http://plasma-gate.weizmann.ac.il/grace/). The secondary
structural changes in the MD simulations as a function of simulations time were examined using
GROMACS gmx do dssp command.
2.2.4 Normal Mode Analysis

Protein flexibility is a major challenge in the accurate prediction of protein-ligand docking
and dynamics. NMA can provide a quick and systematic investigation of protein dynamics. An
elastic network model-based NMA using dihedral angels as independent variables for all
molecular systems was developed using the software suite of programs available in Prodynamics
(Uyar et al., 2011 and Atilgan et al., 2001).
2.2.5 Mechanical Stiffness

It has been demonstrated that the pulling/stretching forces required to initiate protein

unfolding vary considerably depending on the location of the application of the forces, thus
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unraveling specific response of protein to uniaxial tension. Mechanical stiffness plots of all
molecular systems in response to all possible pulling directions were constructed by using ANM
using the software suite of programs in Prodynamics (Eyal et al., 2015).
2.2.6 Principal component analysis
PCA has been used to examine the overall motion of R-loop residues in the Zika virus NS3

helicase in all simulated systems. MODE-TASK software (Ross et al., 2018) was used to eliminate
the translational and rotational motions of the protein Ca-atoms by aligning the structures from
MD simulations trajectories. The 3N/3N covariance matrix was then constructed using Cartesian
coordinates, followed by the construction of eigenvectors by diagonalization of the covariance
matrix. The PCA was computed using MD simulations trajectories ranging from 0 to 150 ns.
2.2.7 Binding free energy calculations

The g mmpbsa tools (Kumari et al., 2014) were employed to evaluate the strength of ATP
and FDA approved molecules binding to Zika virus NS3 helicase. These tools were designed to
work with GROMACS output trajectories in order to calculate the binding free energy of each
molecular system. Based on the RMSD results, binding free energy calculations were run on the
stable region of MD simulations trajectories (140-150 ns). These binding free energy calculations
predict the effective participation of amino acid residues in the Zika virus NS3 helicase in binding
to ligands, as well as the contribution from van der Waals, electrostatic and polar and apolar

solvation energy terms.

2.3 Results and Discussion
2.3.1 Zika virus NS3 helicase complexed with ATP, RNA and ATP-RNA
The missing residues in the ATP-bound Zika virus NS3 helicase (5GJC) structure were

constructed by using MODELLER 9.17 software. Among the 5 generated models, the model with
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the highest negative distinct optimized protein energy (DOPE) score was used for further studies.
The tertiary structure of the Zika virus NS3 helicase is composed of three domains, each of which
contains 130-160 amino acid residues. Despite their low sequence homology, domains |
(residues 192-332) and Il (333-481) have a similar structural fold. Domain 111 (482-617) is made
up of a four-helical bundle that is extended by two anti-parallel p-strands that are partially
exposed to the solvent. The protease domain is represented by the amino acid residues 1-174.
Two a-helices from domain | interact with a parallel a-helical bundle from domain I11; domain
I connects to domain Il via a long B-hairpin, stabilising interdomain interactions (Tian et al.,
2016), and all the three domains have clearly defined binding clefts. The cofactor ATP is located
between the domains | and Il in Zika virus NS3 helicase; it is stabilized by the Mn2* coordinated
in octahedral geometry by interactions with side-chain of residues Thr201 and Glu286, two oxygen
atoms of B and y phosphate groups of ATP and two water molecules. The binding site of ATP is
formed by the residues Gly197, Ala198, Gly199, Lys200, Thr201, Arg202 and Arg203 (P-loop),
and Glu286, Ala317, Asn330, Gly415, Asn417, GIn455, Gly458, Arg459, Arg462 and Asn463.
The single-stranded RNA binds the Zika virus NS3 helicase within the region formed by the amino
acid residues; Pro224, Thr225, Arg226, Val227, Met244, Thr245, Thr246, Cys262, Ala264,
Thr265, Phe289, Asp291, Pro292 (domain 1), Pro364, Ser365, Val366, Arg367, Ser387, Arg388,
Thr409, Asp410, lle411, Leud30, Lys431, Pro432, Leu442 (domain 1), His486, Lys537, Asp540,
Arg598 and Ser601 (domain Il1). The single-stranded RNA makes hydrogen bonding interactions
with Arg226, Thr245, Thr265, Asp291, Val366, Arg388, Thr409, Asp410 and Lys431. The ATP

and single-stranded RNA binding sites in Zika virus NS3 helicase are shown in Figure 2.2A.
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Figure 2.2A: Zika virus NS3 helicase bound to ATP-RNA, amino acid residues in hydrogen

bonding interactions are indicated as green lines.
2.3.2 Virtual screening and molecular docking

To validate the docking methods, the loop-modeled Zika virus NS3 helicase (5GJC) was
used to redock the cofactor ATP into its binding site using AutoDock 4.2 and CDOCKER. The
cofactor docked into the active site pocket. It is located in the cavity formed by the residues
Leul94, His195, Prol196, Gly197, Alal98, Gly199, Lys200, Thr201, Arg202, Arg203, Glu286,
Ala317, Asn330, Gly415, Asn4l7, GIn455, Gly458, Arg459, Arg462 and Asn463 and forms
hydrogen bonding interactions with the amino acids, Gly197, Gly199, Lys200, Thr201, Arg202,
and Arg462. The crystal structures ATP superposition and molecular docking is shown in Figure

2.2B.
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ATP docking by Auto-Dock 4.2

Figure 2.2B: docking of ATP to Zika virus NS3 helicas CDOCKER and AutoDock.

The virtual screening of 1,338 FDA approved drug molecules to bind the cofactor ATP
binding site of Zika virus NS3 helicase was studied by using AutoDock 4.2 software. Out of these,
only 938 molecules could be docked into the ATP binding site of NS3 helicase. From these docked
compounds, 230 molecules were predicted to have binding affinity better than -7.0 kcal/mol. The
docking conformers of each molecule was analysed and selected the molecules based on the
docking score, docking conformation, and hydrogen bonding interactions mediated by key
residues in the ATP binding site. Of these, the best 40 compounds were selected that had a docking
score between (-9.3 to -7.5 kcal/mol). These molecules were further confirmed by docking into the
ATP binding pocket of Zika virus NS3 helicase using CDOCKER. The docking scores and amino
acid residues mediating interactions in the binding site using AutoDock and CDOCKER methods

are shown in Table 2.1.
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Table 2.1: The docking scores of the best selected molecules using AutoDock and CDOCKER

and the interacting amino acids in the NS3 helicase.

No.

Compound
Name

AutoDock
score
-kcal/mol

CDOCKER score

-PLP

-PLP2

-PMF04

Active site amino acid
residues

Lapatinib
GW57201

9.3

82.85

73.09

55.12

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Dicumarol
DB00266

9.0

73.48

52.49

69.41

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Sorafenib
DB16673

8.8

70.48

49.36

61.32

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Votrient
DB26474

8.6

69.48

48.24

60.29

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,

Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
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GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

Fexofenadine
DB22874

8.5

75.36

51.36

68.32

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Beroccapn
DB50367343

8.5

7431

63.48

77.96

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Pemetrexed
DB18796

8.3

64.56

46.14

43.62

Leul94, His195, Pro196,

Gly197, Alal198, Gly199,

Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

Raloxifene
DB1944

8.2

78.86

72.38

55.42

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn417, GIn455, Gly458,
Arg459, Argd62, Asn463,
Pro464

Raltegravir
DB25351

8.2

72.16

53.86

64.92

Leul94, His195, Pro196,
Gly197, Alal198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
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Gly458, Arg459, Arg462,
Asn463, Pro464

10.

Amiodarone
DB01118

8.2

76.51

65.81

77.38

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

11.

Povan
DB78435

8.2

65.54

49.18

46.91

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

12.

Bicalutamide
DB18678

8.1

79.68

71.48

56.21

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

13.

Linezolid
DB00601

8.1

77.21

66.42

75.98

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231,Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

14.

Respiridone
DB50001885

8.1

71.11

62.68

76.96

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
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GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

15.

Erivedge
DB50249522

8.1

68.24

44.19

48.72

Leul94, His195, Pro196,
Gly197, Alal198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

16.

Rondomycin
DB50368780

8.1

73.89

72.56

58.21

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

17.

Lopinavir
DB578

8.0

73.86

54.16

63.96

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

18.

Roxyzine
pamoate
DB38549

8.0

69.51

63.81

76.37

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

19.

Indapamide
DB25901

7.9

67.64

47.16

49.96

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
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Gly458, Arg459, Arg462,
Asn463, Pro464

21.

Chlorthalido
ne
DB25900

7.9

70.68

68.48

58.21

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

22.

Diulo
DB25899

7.9

65.91

61.83

73.32

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,

Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

23.

Tadalafil
DB14777

7.9

67.59

47.27

46.95

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

24.

Vardenafil
DB14476

7.8

72.88

70.48

56.21

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

25.

Fenofibrate
DB28700

7.8

73.21

64.43

72.99

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,

Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
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GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

26.

Azactam
DB50240480

7.8

70.19

61.67

75.97

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

217.

Buspar
DB50001859

7.8

67.54

45.18

49.71

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

28.

Terconazole
DB31769

1.7

71.81

72.51

56.25

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

29.

Azulfidine
DB50143010

1.7

67.55

46.17

49.78

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,
Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

30.

Floxuridine
DB00322

7.6

65.58

44.11

43.35

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Glu231, Ala235,
Glu286, His288, Thr316,

Ala317, Asn317, Asn330,
Gly415, Asn417, Lys419,
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GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

31.

Celecoxib
DB11639

7.6

65.57

41.19

59.72

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

32.

Iressa
DB00317

7.6

72.89

67.51

56.47

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

33.

Belinostat
DB05015

7.5

79.85

73.19

55.22

Leul94, His195, Pro196,
Gly197, Alal198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

34.

Roflumailast
DB14774

7.5

76.51

46.28

53.69

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

35.

Dasatinib
DB82071

7.5

69.87

73.57

59.29

Leul94, His195, Pro196,
Gly197, Alal198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
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Gly458, Arg459, Arg462,
Asn463, Pro464

36.

Brominate
dm
DB50366613

7.5

67.15

47.43

57.18

Leul94, His195, Pro196,

Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,

Asn317, Asn330, Gly415,
Asn4l7, Lys419, GIn455,
Gly458, Arg4a59, Arg462,
Asn463, Pro464

37.

Tazobactam
DB50157692

7.5

65.58

44.11

43.35

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asndl7, Lys419, GIn455,
Gly458, Arg459, Arg462,
Asn463, Pro464

38.

Tindal
DB82475

7.5

69.51

46.21

61.71

Leul194, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, , Asn317, Asn330,
Gly415, Asn417, Lys419,
GIn455, Gly458, Arg459,
Arg462, Asn463, Pro464

39.

Furadantin
DB57045

7.5

71.91

69.61

57.17

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn417, Lys419, Gly458,
Arg459, Argd62, Asn463,
Pro464

40.

Arestin
DB6602603

7.5

65.58

4411

43.35

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn417, Arg459, Argd62,
Asn463,
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The best four molecules identified from both the docking methods and MD simulations were
dicumarol (DB00266), linezolid (DB00601), floxuridine (DB00322) and belinostat (DB015015),
that have a range of docking scores (-9.0, -8.1 -7.6 and -7.5. kcal/mol), respectively as shown in
Figure 2.3 These molecules make hydrogen bonding interactions with active site residues Gly197,
Gly199, Lys200, Thr201, Arg202, Glu286, Asn417, Arg459 and Arg462. These best docking pose
of Zika virus NS3 helicase complexed with four repurposed drugs obtained using CDOCKER

docking were further studied by using MD simulations studies.
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Figure 2.3: The selected docked structures of repurposed compounds binding to Zika virus NS3
helicase along with AutoDock score.
2.3.3 Molecular dynamics simulations

All molecular systems, apo Zika virus NS3 helicase and when complexed with ATP, RNA,
ATP-RNA, and repurposed drugs were subjected to 150 ns MD simulations using GROMACS.
Rg, RMSD, and RMSF plots were created to evaluate the stability of these molecular systems. The
average structure of each molecular system was calculated using the data from 150 ns MD
simulations. The structural changes in the protein before and after MD simulations were observed

by superposing the initial and average structures of the respective molecular systems. The RMSD
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of protein Ca-atoms is an important parameter for analysing the trajectories; these are plotted as a
function of time to understand the stability of each molecular system throughout the MD
simulations. The RMSD plots, as shown in Figure 2.4A, explain the range of deviations of all Ca-
atom positions and indicate that the structures have reached stability after 10 ns of MD simulations.
All complexes show good stability with low RMSD. The RMSD of RNA bound to Zika virus NS3
helicase reached 3.2 nm, which could be attributed to motor residue movement in domain II.
Domain Il moves away from the RNA binding groove during MD simulations. Based on these
findings, it is proposed that the presence of both ATP and RNA improves protein structural

stability.
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Figure 2.4: RMSD of Zika virus NS3 helicase A) apo protein (violet) B) NS3 helicase (violet)
with ATP (brown) C) NS3 helicase (violet) with RNA (brown) and D) NS3 helicase (violet) with

ATP (brown) and RNA (green).

To gain a better understanding of the structural changes that occur in the Zika virus NS3
helicase upon ligand binding, the RMSF of all molecular systems was calculated. The fluctuations
of each Ca-atom in relation to its average position during MD simulations were observed using
the RMSF plots of the protein Figure 2.4B. When NS3 helicase was bound to ATP, two regions
fluctuated significantly: Met244-Ser253, which forms the RNA binding loop (R-loop), and
Pro327-11e333. The Pro327-11e333 region is close to the ATP binding pocket and fluctuates

throughout MD simulations.
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Figure 2.4B: RMSF plots of Zika virus NS3 helicase apo (monomer), and complexed with ATP
(dimer), RNA (dimer), ATP-RNA (trimer).

In the Zika virus NS3 helicase when complexed with ATP-RNA, the nucleotide base
cytosine; C5 from RNA forms hydrogen bonding interactions with Met244 and Thr245 in the R-
loop. In the absence of RNA, this loop displays significant fluctuations as observed from the RMSF
plots. When the conformations of these R-loop residues from MD simulations of apo and
complexed molecular systems were compared, it was discovered that there was a significant
difference in the flexibility of the R-loop in the presence and absence of single-stranded RNA.
These findings are consistent with findings from MD simulations of Hepatitis C virus NS3 helicase

complexed with ATP-RNA (Pérez-Villa et al., 2015). In the absence of RNA, the Zika virus NS3
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helicase bound to ATP had a higher RMSF (0.6 nm) in the R-loop. These loop residues have lower
fluctuations (0.25 nm) in the presence of RNA in all molecular systems, including the trimeric
complex of Zika virus NS3 helicase bound to ATP-RNA, which has lower fluctuations in the R-
loop when compared to the ATP bound protein.

2.3.4 Conformational changes in apo, ATP, RNA, and ATP-RNA bound Zika virus NS3
helicase molecular systems

The triphosphate moiety of ATP is stabilised in the Zika virus NS3 helicase complexed
with ATP by interactions with the Walker A motif residues (195-204), which form the phosphate
binding loop (P-loop residues); Gly197, Gly199, Lys200, and Arg202, and arginine finger residues
(456-463); Argd59 and Arg462. The 3' end of RNA binds to domain | and the 5' end binds to
domain Il in single-stranded RNA binding. The R-loop residues interact with RNA and exhibit
enhanced stability in MD simulations of all molecular systems. The superpositions of the starting
and average structures from MD simulations of each molecular system are used to look into the
structural changes that happen as a result of simulations time.

The comparison of protein conformational changes across all molecular systems
investigated revealed greater changes in the domain | and mobility of the R-loop when bound to
ATP. The results revealed that the R-loop underwent distinct conformational changes (open and
closed) during the 150 ns MD simulations. The R-loop residues in the Zika virus NS3 helicase -
RNA complex have a closed conformation, whereas the R-loop residues in the ATP bound Zika
virus NS3 helicase have an open conformation during MD simulations, as shown in Figure 2.5A.
In domain | of the initial structure of the Zika virus NS3 helicase complexed with ATP, the residues
Ala230, Val242 Met244, Ala247, Val248, His252 and Tyr243 form hydrophobic interactions.

During MD simulations, the ATP bound protein loses hydrophobic interactions with the surface
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of domain | Figure 2.5B, resulting in higher fluctuations in the R-loop of the ATP bound molecular
system compared to the other systems. As a result, in the Zika virus NS3 helicase-ATP complex,
the R-loop residues move away from the RNA binding groove, whereas in the Zika virus NS3
helicase-RNA complex, the R-loop residues move closer to the RNA, such that HG1 of Thr246
interacts with O1P of C5, the residues Met244, Thr245 and Thr246 form hydrogen bonds, and
other nonbonding interactions with RNA. These interactions are retained in the average structures
obtained after MD simulations and are responsible for stabilizing the R-loop in Zika virus NS3

helicase - RNA complexes. These conformational changes are in correlation with the RMSF plots.

Closed-conformation of R-loop
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Figure 2.5A: Open and closed conformations of R-loop before (blue) and after (red) MD
simulations and Zika virus NS3 helicase complexed with ATP and RNA. Initial (green) and after

(blue) MD simulations.

RNA-binding

ATP-binding

Figure 2.5B: Hydrophobic interactions of R-loop residues after MD simulations in Zika virus NS3
helicase binding with RNA and ATP.

The amino acid residues region of domain I, Pro240-Tyr243, is initially present as a p-
strand; however, during MD simulations in the ATP bound system, these residues are converted

to a loop structure with an open conformation throughout the MD simulations, which is caused by
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the loss of hydrophobic interactions between the R-loop and a-helix 2 (Arg226-Glu234) on the
protein surface, which explains the change in the secondary structure of protein during MD
simulations. Secondary structural analysis confirms this observation, demonstrating that in the
ATP bound molecular system, Pro240-Tyr243 changes conformation from B-sheet to loop
structure. From the initial to 150 ns MD simulations of each molecular system, distinct structural
deviations were observed. The ATP, RNA, ATP-RNA bound Zika virus NS3 helicase structures
exhibit more deviations from its apo form, during MD simulations. The distance between domains
I and Il in the apo and ATP bound forms is smaller, indicating that the protein is in a closed
conformation. The distance between domain | and domain Il increased in the Zika virus NS3
helicase when bound to RNA, ATP-RNA and greater movement was observed in RNA binding
compared to ATP-RNA, indicating that these molecular systems are in an open state. This is due
to the fact that when RNA binds to the protein, domain Il moves away from the RNA binding
groove. Previous research found that when dengue NS3 helicase was complexed with ATP and
single-stranded RNA, it changed its conformation (Davidson et al., 2018). The MD simulations of
the hepatitis C virus NS3 helicase revealed significant movement (open and closed conformations)
and hydrogen bonding interactions in domains | and Il (Pérez-Villa et al., 2015). In the case of the
Zika virus NS3 helicase, the residues Arg226, Val227 (domain I) and Glu392 (domain Il) exhibit
hydrogen bonding interactions in apo and ATP bound forms, and these interactions are maintained
during MD simulations. Because of the increased distance between the two domains in RNA and
ATP-RNA bound Zika virus NS3 helicase, hydrogen bonding interactions are not observed. Based
on these findings, it is now proposed that domains I and Il maintain an open conformation in RNA
and a closed conformation in ATP-RNA bound molecular systems. RNA binding to the protein

results in domain Il moving away from the RNA-binding groove, thus increasing the distance
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between the two domains | and I, resulting in an open conformation. ATP binding between the
domains | and Il holds the two domains throughout MD simulations, resulting in a closed

conformation.

2.3.5 Clustering analysis

For clustering analysis of open and closed conformations of Zika virus NS3 helicase,
clustering analysis tool of GROMACS (gmx cluster) was used to explore the conformational
heterogeneity in the ensemble of protein structures generated by computer simulations. The
structurally similar clusters were determined using the GROMOS clustering algorithm (Daura et
al., 1999) with a Ca-RMSD cut-off. The ATP bound molecular system has eight clusters, while
the other molecular systems have two clusters that have distinct structures as shown in Figure

2.6A\.
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Figure 2.6A: Apo (A), bound to ATP (B), RNA (C), ATP-RNA (D), floxuridine (E),

belinostat (F), dicumarol (G) and linezolid (H).

The structures obtained from cluster analyses revealed that the protein changes its
conformation to open state when RNA is bound and in the other molecular systems its exhibits
closed conformation. Whereas in the ATP bound molecular system conformational changes are
observed in the R-loop of all eight structures. The distribution of RMSD in each molecular systems
were also plotted, that showed the RMSD distribution is greater in ATP bound molecular system

(0.28 nm) and the other molecular systems exhibit < 0.25 nm as shown in Figure 2.6B.
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Figure 2.6B: RMS distribution plot of Apo (A), bound to ATP (B), RNA (C), ATP-RNA (D),
floxuridine (E), belinostat (F), dicumarol (G) and linezolid (H).

Molecular docking on the Zika virus NS3 helicase with various molecules at the ATP
binding site were studied (Badshah et al., 2019; Kumar et al., 2020). However, the structural
changes of single-stranded RNA when the Zika virus NS3 helicase is complexed with both ATP
and RNA remain unknown till now. Significant conformational changes in the RNA bases are
observed during MD simulations of both systems (RNA and ATP-RNA). The crystal structure of
the Zika virus NS3 helicase complexed with RNA (Tian et al., 2016) shows hydrophobic and

hydrogen bonding interactions between the RNA bases and the proteins amino acid residues. The
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R-loop forms hydrogen bonding interactions with the C5 on single-stranded RNA. Several MD
simulations studies on RNA have focused on conformational changes and torsional angle
deviations between crystal and MD simulated structures (Hermann et al., 1998; Zacharias et al.,
1999; Zacharias & Martin, 2000; Nifosi et al., 2000; Williams et al., 2000; Koplin et al., 2005).
Protein-RNA interactions were studied structurally and biochemically to determine how a protein
recognises a specific RNA site, the effect it has on RNA structure, and how their interactions
promote a specific function (De Groot et al., 2019). When protein-RNA complex is formed, both
the protein and the RNA undergo significant conformational changes (Draper & David, 1995;
Flores et al., 2018). In this study, for Zika virus NS3 helicase complexed with RNA and ATP-
RNA, significant conformational changes are observed in RNA structure during the course of MD
simulations, the nucleoside bases in single-stranded RNA exhibit movements in opposite
directions (clockwise and anti-clockwise) with respect to the neighboring nucleoside base as
illustrated in Figure 2.7A. The nucleoside bases show alterations in structure throughout MD
simulations. These alterations were analysed by calculating the torsion angles (a, B, v, 9, €, { and
%) of each base by using wDSSR web server (Lu et al., 2015). When the Zika virus NS3 helicase
is bound to RNA and ATP-RNA, the nucleoside bases in RNA show deviations in torsion angles
throughout the MD simulations compared with crystal structure of RNA shown in Table 2.2. This
deviation in torsion angles provides an explanation for the structural alternations in RNA bases,
compared with ATP-RNA molecular system, greater deviations in torsion angles of RNA were
observed in RNA bound molecular system, because of the domain Il that moves away from the
RNA binding groove in RNA-bound system. Whereas for ATP-RNA bound Zika virus NS3
helicase, lower deviations in the torsion angles of RNA are observed because of the closed

conformation of domain | and domain I1I.
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Because of these structural alterations of RNA in Zika virus NS3 helicase bound to both
RNA and ATP-RNA, the interactions between C5 and R-loop increased as a function of
simulations time. The distance between RNA base of C5 and the amino acid residues in the vicinity
were measured. These results show that in the initial structures, RNA base C5 close to R-loop
makes interactions with Arg226, Thr245 and Thr246 in domain I; however, during MD simulations
the RNA base C5 remains close to Thr246 and Thr245, and moves away from Arg226 in Zika
virus NS3 helicase complexed with RNA and ATP-RNA. This deviation is more in ATP-RNA
bound molecular system compared with RNA bound molecular system Figure 2.7B. This indicates
that the nucleosides in RNA change their conformation throughout MD simulations and these
conformational changes proceed to explain the mechanism of the intermediate state of double-

stranded RNA converted into two single-strands, with positive and negative sense of direction.

RNA binding to Zika virus NS3 helicase Movement of bases in RNA-clockwise and antilockwise RNA and ATP-binding to Zika virus NS3 helicase

Figure 2.7A: Movements of each base in RNA initial (Grey) and after (Green) MD simulations
for Zika virus NS3 helicase bound with RNA and ATP-RNA.

Table 2.2: Torsion angles in RNA from X-ray structure (PDB_id: 5GJB), comparison with MD
simulations of RNA bound, and RNA-ATP bound Zika virus NS3 helicase.
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Torsion Al G2 A3 U4 C5
angle

a-X-ray -60.697 -65.678 -45.725 -65.443
a-RNA -61.937 -94.561 -78.09 -93.16
a-RNA-ATP -67.539 -85.072 -49.318 -100.089
B-X-ray 163.33 -176.765 154.303 -169.231
B-RNA 167.611 -154.281 176.831 -168.978
B-RNA-ATP 170.009 -176.233 165.961 -171.833
y-X-ray -163.299 60.022 44.539 56.512 51.134
v-RNA -174.237 45.709 57.277 67.747 59.781
v-RNA-ATP | -135.791 54.445 85.359 66.846 50.501
o-X-ray 81.808 81.286 75.828 80.451 79.677
0-RNA 78.273 82.791 101.034 84.173 90.001
0-RNA-ATP | 79.628 81.225 70.387 89.457 83.455
e-X-ray -131.079 -153.468 -151.614 -150.520

e-RNA -147.364 -178.551 -172.925 -175.998

e-RNA-ATP | -134.217 -176.369 -143.248 -170.563

-X-ray -72.074 -62.401 -99.933 -76.718

C-RNA -75.576 -75.83 -94.731 -77.229

C-RNA-ATP | -68.757 -77.937 -93.544 -18.777

y-X-ray -177.239 -169.297 -159.474 -145.65 -128.1
r-RNA -156.352 -122.174 -109.521 -95.139 -81.279
r-RNA-ATP | -177.134 -177.512 -164.265 -133.777 -140.977
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Figure 2.7B

RNA bound Zika virus NS3 helicase: RNA and ATP bound Zika virus NS3 helicase:
i)) Distance between NH1 of Arg226 and O1P of Cytosine (black) i) Distance between NH1 of Arg226 and O1P of Cytosine (black)
ii) Distance between HG1 of Thr245 and O1P of Cytosine (purple) ii) Distance between HG1 of Thr245 and O1P of Cytosine (purple)

iii) Distance between HG1- Thr246 and O1P Cytosine (green) iii) Distance between HG1- Thr246 and O1P Cytosine (green)

Based on the structural superposition and torsion angles, conformational changes in RNA
when complexed to NS3 helicase in both RNA and ATP-RNA bound molecular systems were
observed. Greater changes in RNA torsions were observed in RNA bound Zika virus NS3 helicase
compared to ATP-RNA bound NS3 helicase. During MD simulations domain Il moves away from
domain I and exhibits open conformation, resulting in the expansion of the RNA binding groove
leading to greater conformational changes in RNA. Whereas in ATP-RNA bound molecular
system, ATP is coordinated between domain | and domain Il, and the movement of domain 1l
decreased throughout MD simulations, because ATP tightly holds domains I and Il which exhibit
closed conformation, and there are no changes in RNA binding groove and distance between the

two domains is decreased which indicated that the interactions between domain Il and RNA are
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maintained throughout MD simulations, because of this conformational changes in RNA have
decreased when protein is complexed with ATP-RNA. These observations lead to propose a
mechanism for the generation of single-stranded RNA from double-stranded RNA of Zika virus.
The hydrogen bonding interactions between RNA and protein in RNA bound, ATP-RNA bound
molecular systems were monitored. The RNA binding complex exhibits hydrogen bonding
interactions with Pro224, Arg226, Thr245, Thr265, Arg388, Thr409, Lys537 that are present
throughout MD simulations, whereas the trimeric complex shows along with these interactions
some additional hydrogen bonding interactions formed with Cys262, Thr246, Met536 and Asp540
throughout 150 ns MD simulations. The hydrogen bonding interactions between protein and RNA
are higher in trimeric complex throughout 150 ns MD simulations. Based on hydrogen bonding
interactions and structural alterations of RNA, the unwinding behavior of RNA was observed in
both molecular systems. The alterations in the conformation from cofactor and substrate binding,

and the mechanism of their recognition in Zika virus NS3 helicase are described in this work.

2.3.6 Molecular dynamics simulations of Zika virus NS3 helicase complexed with FDA
approved drugs

Zika virus NS3 helicase complexed with four FDA approved compounds floxuridine,
belinostat, dicoumarol and linezolid identified from molecular docking studies were proceeded for
150 ns MD simulations studies. The Ca-backbone RMSD of protein was monitored throughout
the 150 ns MD simulations for all molecular systems that attained stability after 10 ns (RMSD < 3
A) as shown in Figure 2.8A. Similarly, the repurposed drugs displayed low RMSD (~ 2 A) as
shown in Figure 2.8B, indicating that these drugs stabilize the Zika virus NS3 helicase protein and
that a stable complex is formed. The RMSF plots Figure 2.8C indicated the stable complexes

formed between Zika virus NS3 helicase and FDA approved drugs.
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Figure 2.8: A) RMSD plots of Zika virus NS3 helicase complexes with floxuridine, belinostat,
dicumarol, and linezolid. B) RMSD plots of repurposed drugs floxuridine, belinostat, dicumarol
and linezolid. C) RMSF plots of Zika virus NS3 helicase complexed with floxuridine, belinostat,
dicumarol and linezolid.

The amino acid residues in the P-loop (Ala198-Arg203) form hydrophobic and hydrogen
bonding interactions with the drug molecules at the active site and show stability during the MD
simulations. The R-loop in domain | that showed high fluctuations when complexed with ATP (~
6 A) is stabilized when Zika virus NS3 helicase is complexed with FDA approved drug molecules
(<4 A). Inthe domain Il, at the Ala325-Val338 region, fluctuations are observed when complexed
with floxuridine similar to ATP bound complex, the fluctuations in the region around (GIn272-
Tyr279) are observed in all molecular systems. The hydrogen bonding analysis of the four FDA

approved drugs was carried out in order to study their hydrogen bonding network at the active site
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based on MD simulations. Comparison of the initial and average structures of all these complexes
showed that they maintain important interactions throughout MD simulations. Figure 2.9
represents the 5 A residue interaction plots of floxuridine, belinostat, dicumarol and linezolid
within the active site of Zika virus NS3 helicase. The residues that line active site pocket for the
four compounds are Gly197, Ala198, Gly199, Lys200, Thr201, Arg202, Glu288, Gly415, Asn417,
Arg459 and Arg462. The residues Gly199, Lys200, Thr201, Arg202, Glu286, Gly415, Asn417
Arg459 and Arg462 formed stable hydrogen bonds with electronegative atoms present in the four
compounds that were retained during MD simulations. These results confirmed that the four FDA
approved drugs maintained the hydrogen bonding interactions throughout MD simulations. This
indicates that these nonbonding interactions stabilize the drug molecules within the active site

cavity of Zika virus NS3 helicase.
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Figure 2.9: Interactions of FDA approved drugs floxuridine, belinostat, dicumarol and linezolid

within 5 A in Zika virus NS3 helicase after MD simulations.

2.3.7 Radius of gyration of Zika virus NS3 helicase binding to ATP, RNA, ATP-RNA and
repurposed drugs

The Rg provides information about the compactness of the molecular systems under study
during the course of MD simulations. The Rg of all molecular systems showed that the repurposed
drugs have lower Rg as seen during the 150 ns MD simulations. When Zika virus NS3 helicase is
bound to RNA the Rg is found to be higher indicating that the compactness of protein decreased
because of the influence of RNA binding, and changes in domain Il throughout MD simulations.
When the protein binds with ATP-RNA, the Rg value slightly decreased compared with RNA
bound protein, because of the decreased conformational changes in domain Il. The Rgis found to
be lowest when the protein is complexed with linezolid and dicumarol indicating the greater

stability of these complexes.
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2.3.8 Normal mode analysis

The NMA is a fast and simple method to calculate vibrational modes and protein flexibility
(Alexandrov et al., 2005). It reveals the structural variations in the protein obtained from MD
simulation studies. The NMA calculations involve atomic fluctuations, two types of atomic
fluctuations are calculated by using this analysis; displacement vectors of individual normal modes
of atoms and their average of all the normal modes and time. The displacement vectors of atoms
for individual normal modes provides significant information on protein dynamics. The individual
normal modes display characteristic motions that differ from mode to mode, the descriptions of
slow-large amplitude motions are important which are analyzed by NMA. This study helps to
explain the conformational changes of apo Zika virus NS3 helicase and its complexes with ATP,
RNA, ATP-RNA and the FDA approved drug molecules. By using normal mode wizard which is
available in the Prodynamics software, ten normal modes were generated for each system from
150 ns MD simulations trajectories and selected the first three modes for each system and analyzed
the structural variations occurring during the MD simulations and compared the movement of each
mode with the apo structure of Zika virus NS3 helicase. These NMA mobility plots indicated that
the residues Val366-Ala379 and Ser387-GIn401 from two helices present in the motor domain
(domain 1) exhibit mobility in all molecular systems as shown in Figure 2.10A-H. However, this
mobility is greater in RNA binding molecular systems compared with others, because of the
movement of domain Il in the presence of RNA. In Zika virus NS3 helicase bound to ATP (Figure
2.10B), the R-loop region displays three modes with high intensity. The movements of these
NMAs have decreased when RNA is bound to Zika virus NS3 helicase and the R-loop residues,
as shown in Figures 2.10C and D. These results indicate that when the protein is complexed with
RNA the conformational changes of R-loop residues have decreased because of decreasing

movements of modes of the residues present in the R-loop. The Zika virus NS3 helicase complexed
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with FDA approved drugs showed lower movements of NMAs compared to the ATP bound
molecular systems. In all the systems, movements in the amino acid residues of motor domain
(Cys562-Thr582) in domain 111 were observed. These results indicate that the FDA approved drugs

binding to Zika virus NS3 helicase form stable complexes throughout MD simulations.
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Figure 2.10: Network and mobility plots of Zika virus NS3 helicase apo and complexed with ATP,
RNA, ATP-RNA, and FDA approved drugs (A) Apo protein, (B) ATP bound protein, (C) RNA
bound protein, (D) ATP-RNA bound protein, (E) floxuridine, (F) belinostat, (G) dicumarol, and

(H) linezolid.

2.3.9 Mechanical stiffness

The mechanical stiffness calculations help to explain the mechanical and elastic nature of
a protein, elastic proteins exhibit lower mechanical stiffness (Gosline et al., 2001). These plots are
useful to identify the anisotropic response of the structure to external perturbations, determination

of weak and strong pairs of interactions depending on the direction of the external force (Eyal &
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Bahar, 2008) and the residues that belong to secondary structural elements display relatively strong
resistance to alterations because of their inherent stabilization due to hydrogen bonds. The mean
plot displays the results averaged over all pairs of residues, which provides an estimate of
mechanical resistance of individual residues to structural alterations. Mechanical stiffness was
calculated for 150 ns MD simulations structures of apo and complexes of Zika virus NS3 helicase
(ATP, RNA, ATP-RNA, and FDA approved drug molecules) in all molecular systems and
generated maps with effective force constant. Lower mechanical stiffness is indicative of the weak
regions and higher mechanical stiffness is indicative of strong and stable regions during MD
simulations. In all the molecular systems when compared with apo Zika virus NS3 helicase, the
structural alterations were noted. From these plots it was observed that the R-loop residues exhibit
lower effective stiffness which is decreased in ATP bound protein, whereas in RNA bound protein
the mechanical stiffness of R-loop remains unchanged compared with the apo form. In the domain
I1, the residues from Ser387-GIn401 and Val366-Ala379 form a-helices and Arg343-Gly357 are
present as loop-helix-loop, all of these regions show greater fluctuations and mechanically weak
behavior in the presence of RNA binding. This is caused by the binding of RNA to NS3 helicase
domain Il that exhibits greater structural changes and mechanically weak behavior throughout MD
simulations. In domain 111, residues (Cys562-Thr582) also exhibit lower stiffness throughout the
MD simulations in all molecular systems Figure 2.11A-H. In the mean plots of mechanical
stiffness, the effective spring constant value of R-loop is less than 7 k (a.u) in the ATP bound
system; whereas in other complexes it is greater than 8 k (a.u). These values indicated that the
elastic nature of R-loop residues (Met244-Ser253) is higher in the ATP bound protein compared
with other MD simulated structures of Zika virus NS3 helicase. From the results of mechanical

stiffness calculations, it is now proposed that Zika virus NS3 helicase interacts with ATP, RNA,
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ATP-RNA and FDA approved drugs. Some regions in the protein are mechanically weak or strong,
but large conformational deviations and elastic nature is observed in the R-loop of ATP bound

protein and motor domain residues (Cys562-Thr582) in domain 111 among all molecular systems.
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Figure 2.11: Mechanical stiffness and mean plots of Zika virus NS3 helicase Apo (A), bound to
ATP (B), RNA (C), ATP-RNA (D), floxuridine (E), belinostat (F), dicumarol (G) and linezolid

(H).

2.3.10 Principal component analysis

PCA was performed on 150 ns MD simulations trajectories to understand the alterations in
the R-loop (Met244-Ser256) residues for open and closed conformations of Zika virus NS3
helicase. PCA is commonly employed on ensembles of protein structures obtained from MD
simulations to reduce dimensionality by clustering the structures into different conformations and
identifying conformational transitions. The resulting clusters allow for comparisons to be made
between conformational changes that are generated during the MD simulations. For each

molecular system 15,000 frames were generated and the motion of Ca-atoms in each molecular
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system of Zika virus NS3 helicase was monitored. It was observed that the first two principal
components (PC1 and PC2) capture the majority of the variance in the original distribution of
conformational ensembles in the molecular systems. The distribution of Ca-atoms in the ATP
bound molecular system is greater than the other molecular systems. The conformational
ensembles of the R-loop residues (Met244-Ser256) in all molecular systems under study were
analyzed by projecting the trajectories of PC1 and PC2 into a two-dimensional (2-D) space. When
these are mapped onto each other, the structures with a high degree of similarity cluster together.
Therefore, each cluster represents a different R-loop conformational state in the protein. The
observed conformational changes of the R-loop in apo, ATP bound, RNA bound, ATP-RNA
bound, and repurposed drugs bound molecular systems were monitored and shown in Figure 2.12.
Projecting the trajectory snapshots onto the plane formed by the PC1 and PC2 reveals a semicircle
relationship; such a pattern probably indicates random diffusion during the simulations and is
interpretable as motion along a shallow free-energy landscape. Among all the systems studied, the
PCs show high-frequency motion in ATP bound Zika virus NS3 helicase as can be seen from the
PCA scatter plots Figure 2.12B, indicating greater conformational changes of R-loop in the ATP
bound molecular system. This demonstrated that the conformational distributions of R-loop
residues in Zika virus NS3 helicase bound with ATP were remarkably different from other
molecular systems. The frequencies of PCA scatter plots were quantified, and the highest
frequency is observed in ATP bound Zika virus NS3 helicase and also in the linezolid bound
system. These results indicated that Zika virus NS3 helicase bound with ATP and linezolid display

more significant R-loop conformational changes compared to other molecular systems.
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Figure 2.12: PCA Scatter plots of Zika virus NS3 helicase Apo (A) bound to ATP (B) RNA (C)
ATP-RNA (D) floxuridine (E) belinostat (F) dicumarol (G) and linezolid (H).
2.3.11 Binding free energies

The binding free energies of the Zika virus NS3 helicase binding to ATP and FDA
approved drug molecules was calculated using MM-PBSA, which has been proved to be an
important complement to the evaluation of protein-ligand interactions (Chen et al., 2018; Sun et
al., 2014; Weng et al., 2019). The predicted binding free energies for Zika virus NS3 helicase
bound to ATP, dicumarol, linezolid, floxuridine and belinostat are summarized in Table 2.3. The
binding free energies for Zika virus NS3 helicase bound with ATP (-186.01+ 0.00 kJ/mol),
dicumarol (—95.007 + 0.52 kJ/mol), floxuridine (—92.91 + 0.62 kJ/mol), linezolid (—85.25 + 0.99
kJ/mol) and belinostat (—68.03 £ 0.82 kJ/mol) are observed. The FDA approved drugs show
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reasonably good binding affinity with Zika virus NS3 helicase. The contribution from electrostatic
energy in ATP binding is higher than the FDA approved drugs. The binding free energy
contribution from active site amino acids in Zika virus NS3 helicase is measured to explain the
importance of active site residues in binding the ligand. The amino acid residues contributing to
the binding free energies of the complexes is shown in the Table 2.4 and Figure 2.13. The negative
values suggested favorable nonbonding interactions with residues in the ligand binding pocket of
Zika virus NS3 helicase. The residues Lys200, Asn417 and Arg462, show the highest binding free
energy contribution, which may be attributed to the hydrophobic and hydrogen bonding
interactions when bound to ATP and FDA approved drugs. These studies indicate that the FDA

approved drugs may have good inhibitory activity against Zika virus NS3 helicase.

Table 2.3: Binding free energies of Zika virus NS3 helicase binding to ATP and FDA drug

molecules.
Compound | van der Waals | Electrostatic Polar solvation | SASA AG
name energy energy (kd/mol) (kd/mol) (kJ/mol)
(kJ/mol) (kJ/mol)

ATP -188.611+/-0.00 | -88.425 +/- 0.00 | 107.156 +/- 0.00 | -17.136+/-0.00 | -186.016+/- 0.00
Dicumarol | -155.663+/-0.35 | -6.390 +/- 0.17 | 83.511 +/- 0.55 | -16.472+/-0.03 | -95.007 +/- 0.52
Floxuridine | -142.676+/-0.55 | -44.149 +/- 0.43 | 107.753+/- 0.86 | -13.805+/- 0.05 | -92.910 +/- 0.63
Linezolid -148.542+/-0.52 | -8.287 +/- 0.33 | 87.110 +/- 1.34 | -15.536+/- 0.04 | -85.250 +/- 0.99
Belinostat -138.846+/-0.56 | -19.299 +/- 0.69 | 104.173 +/- 1.15 | -14.040+/- 0.04 | -68.036 +/- 0.82
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Table 2.4: Residue-wise contribution energy (kJ/mol) of Zika virus NS3 helicase binding with

ATP and FDA approved molecules.

Residues ATP Dicumarol | Floxuridine | Linezolid Belinostat
Gly199 -12.02 -9.11 -8.33 -12.17 -9.82
Lys200 -58.50 -25.77 -22.41 -23.68 -18.77
Thr201 -6.28 -5.27 -2.31 -12.13 -4.19
Arg202 -66.20 -10.50 -71.62 -9.93 -9.78
Glu286 -10.21 -2.63 -1.24 -0.27 -10.64
Ala317 -2.04 -4.14 -2.53 -8.74 -6.03
Asn4l7 -16.43 -20.63 -51.38 -20.00 -19.39
Arg428 -16.58 -2.36 -4.63 -2.01 -1.32
Arg458 -13.33 -10.21 -4.51 -3.66 -4.19
Arg459 -28.33 -5.17 -6.27 -71.54 -5.59
Arg462 -71.42 -45.94 -33.14 -20.36 -37.07
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Figure 2.13: Contribution from amino acid residues in the Zika virus NS3 helicase to the binding

of ATP (A), dicumarol (B), floxuridine (C), linezolid (D) and belinostat (E).
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2.4 Conclusions

The MD simulations studies on apo Zika virus NS3 helicase and when complexed with
ATP, RNA, ATP-RNA and FDA approved drugs was carried out. Conformational changes were
observed in the protein among various molecular systems and significant conformational changes
in single-stranded RNA. From the RMSD and RMSF plots, NMA, mechanical stiffness, PCA and
cluster analysis, it was observed that the RNA binding loop in Zika virus NS3 helicase shows
stable behavior when it binds with RNA and only minor deviation in its conformation in apo form
and when complexed with FDA approved drugs. While the Zika virus NS3 helicase bound to ATP
shows relatively higher fluctuations in the R-loop (Met244-Ser253) residues which leads to their
increased mobility. This R-loop region exhibits mechanically weak behavior and is therefore more
elastic in the presence of ATP. From the PCA, it was observed that the motion of R-loop residues
is higher in ATP binding protein. The conformational changes in the single-stranded RNA
nucleoside bases suggest the replicative mechanism of the conversion of double-stranded RNA to
single-strand RNA molecules. The docking and MD simulations studies were applied to
understand the stability of repurposed drugs within the ATP binding site of Zika virus NS3
helicase, the four FDA approved drugs floxuridine, belinostat, dicumarol and linezolid show
significant stability and good binding affinity within the active site of protein and make hydrogen
bonding interactions with protein amino acid residues which indicates that these drugs may also
possess anti-viral inhibition for Zika virus NS3 helicase. The repurposing studies are helpful to

develop novel anti-viral drugs against the Zika disease.
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CHAPTER-3

Mutational analyses, pharmacophore-
based inhibitor design and in silico
validation for Zika virus NS3 helicase
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3.1 Introduction

Sequence and structure analyses of NS3 helicases from flaviviruses were studied to
understand the similarities and differences in this present study. The sequences of Zika virus NS3
helicases were analyzed for substitution mutations across the evolution of Zika virus. The
availability of a proteins 3-D structures has aided in the rational design and discovery of
pharmaceuticals (Lounnas et al., 2013), and CADD holds great promise for the development of
novel inhibitors. Virtual screening is one of these strategies that is quick and reliable for finding
novel ligands based on biological structures. It uses high-throughput screening techniques so that
virtual libraries comprising millions of structures could be searched quickly and affordably
(Walters et al., 1998). Virtual screening can be done using either ligand-based or structure-based
methods, which are both widely acknowledged methodologies. In ligand-based virtual screening,
vast databases of compounds are compared to known active molecules using 2-D or 3-D similarity
searches. A variety of modelling tools are used in the structure-based virtual screening to simulate
the binding interactions between a ligand and its biomolecular receptor (Merz et al., 2010). The
modelling based on pharmacophore and QSAR generation, molecular docking are examples of
virtual screening techniques used to find novel molecules with certain properties that reflect the
bioactivity of the designed molecules (Cherkasov et al., 2014). The SBDD performs processes
such as target receptor selection, its 3-D structure elucidation, development of compound libraries
of small molecules, in silico screening of compound libraries, molecular docking, analyses of the
results, and prioritizing the results using a standard scoring system. By using these techniques, the
binding mechanism is clarified, the SAR is revealed, and the best compounds are chosen in

comparison to those that have already been described (Irwin, 2008; Rella et al., 2006). Millions of
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small compounds are represented in chemical libraries and the goal is to choose a small number of
molecules with the highest anticipated inhibitory action. In this case, using the pharmacophore-
based technique, potent inhibitors are used to generate a pharmacophore model for in silico
screening of virtual libraries of chemical compounds. The combination of all electronic and steric
properties which are important for binding and to make nonbonding interactions with a definite
receptor in order to stimulate or prevent the biological response is defined as a “pharmacophore”
(Wermuth et al., 1998). Additionally, there are two types of pharmacophore modelling: structure-
based and ligand-based pharmacophore models. In the structure-based pharmacophore models,
residues present in the binding pocket which are crucial to protein-ligand interactions are
constructed. A pharmacophore model is created using a sequence of molecules with a SAR and a
range of different inhibitory actions in the ligand-based pharmacophore model (Kandakatla &
Ramakrishnan, 2014). The created pharmacophore models can be used as queries in a virtual
screening protocol to look for new hit compounds that have the necessary pharmacophore features.
These models were created using ligand-based and structure-based approaches. Molecular docking
is used to validate the virtual screening of hit chemical molecules as potential inhibitors to a
specific target receptor (Yang, 2010). The identification of new hit molecules from searching the
big data is being carried out using the protocols in machine learning combined with virtual
screening methodologies (Lavecchia, 2015). Such techniques are extremely advantageous because

they can search millions of compounds in a short period of time.

Zika virus NS3 helicase comprises of a cofactor ATP bound at the active site and this site is
considered as an active site for developing new inhibitors using the CADD approach. Based on
the essential features of ATP cofactor, ZINC database was screened by applying various filters in

order to find best molecules for molecular docking studies. CDOCKER was used for docking, the
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best molecules at the receptor active site in all possible conformations. The molecules were
validated using MD simulations and binding free energy analysis. The molecules obtained through
MD simulations were used to perform DFT calculations for solvent and gas phase energies and
observed the location of HOMO and LUMO in the molecules located inside the active site of the
Zika virus NS3 helicase.

3.2 Materials and methods

3.2.1 Sequence analyses of Zika virus NS3 helicases and structure analyses of flavivirus NS3

helicases

The representative 3-D crystal structures of flavivirus NS3 helicases were downloaded from
PDB (Berman et al. 2000; Burley et al., 2021). The molecular visualization and structure
superposition was carried out using UCSF Chimera (Pettersen et al., 2004). The sequences of Zika
virus NS3 helicases were retrieved from NCBI using the BLAST searches (Johnson et al., 2008).
The proteins multiple sequence alignment was accomplished with the help of the NGPhylogeny
server (http://www.NGPhylogeny.fr). The Zika virus sequence (NCBI accession code:
YP_009428568.1) was used as a reference protein to examine the amino acid mutations. The
software suite developed by ABREAST (https://www.abreast.in) was used to identify mutations
in the Zika virus NS3 helicases.

3.2.2 Protein and ligand preparation
The crystal structures of apo Zika virus NS3 helicase (PDB_id: 5JMT) (Jain et al., 2016)

and when bound to ATP (5GJC)) (Tian et al., 2016) were determined at 1.8 and 2.2 A resolutions,
respectively. Crystal waters were removed from the structures and the missing residues in 5GJC
were built by the loop modeling method in MODELLER (Sali & Blundell, 1993). Hydrogen atoms

were added and their geometry optimization was performed by using UCSF Chimera.
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3.2.3 Pharmacophore generation

The ligand-based pharmacophore models were generated by using the Pharmit server
(Sunseri & Koes, 2016). Pharmit is an online server, which provides an interactive environment
for the virtual screening of libraries of small molecule databases. Pharmit provides both
pharmacophore and molecular shape-based search on the pre-inbuilt libraries of small molecules.
The pharmacophore models were constructed based on the cofactor ATP complexed with Zika
virus NS3 helicase based on the structure 5GJC obtained from the PDB. To design the
pharmacophore model for ATP, the features of hydrogen bond donor, hydrogen bond acceptor,
negative ionizable, hydrophobic, and aromatic ring that are required for interactions with the
receptor binding pocket were considered. The virtual screening of the ZINC database was carried
out using the generated pharmacophore model comprising 12,996,897 molecules (Irwin et al.,
2012). The molecules retrieved from the ZINC database were filtered and ranked based on lower

RMSD and molecular weight. The hit compounds were downloaded in .sdf format.
3.2.4 Molecular docking

Molecular docking predicts the optimal pose of the ligand within the receptor binding
site. The CDOCKER (Gagnon et al., 2016) molecular docking methodology accessible in DS 3.5
was employed to find the best orientation of the molecules identified from the pharmacophore
based virtual screening of ZINC database when binding to the receptor. A sphere of 5 A radius
was generated around ATP to define the active site of the protein. Twenty docking poses were
generated for each molecule and shortlisted the conformations of molecules defined in the protein
active site. As a part of the docking protocol, the molecular system was heated up to 700 K for
2,000 steps and then cooled to 300 K for 5,000 steps. The binding conformations of the molecules

in Zika virus NS3 helicase were analyzed using “scoring ligand poses” implemented in receptor-
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ligand interactions protocol in DS 3.5, and the scoring functions PLP1, PLP2 and PMF (Gehlhaar
et al., 1995; Parrill & Reddy, 1999; Muegge & Martin 1999; Muegge, 2006) were used to analyze
the docking poses. The best docking pose was selected based on top scores and intermolecular
interactions within the Zika virus NS3 helicase active site. The top-ranked molecules from the

molecular docking results were used further for assessing their drug-like properties.

3.2.5 Drug-like properties

The capability of a drug to permeate, distribute, metabolize, and retain within the host
system for a reasonable period of time are described as the drug-like properties. These are the
significant parameters to be deciphered for hit molecules selection. The SwissADME server
supports the calculation of the ADMET properties (Lipinski et al., 1997; Daina et al., 2017 and
Daina et al., 2014) and drug-like properties of the molecules. The Lipinski’s rule of five indicated
that a drug molecule must exhibit, <5 LogP, <500 molecular weight, <10 hydrogen bond acceptors
and <5 hydrogen bond donors (Lipinski, 2004). The molecules that displayed drug-like properties
were studied using the MD simulations in order to understand their ability to bind the protein active
site, and the nonbonding interactions that stabilize the protein-ligand complexes and to quantify

their binding free energies.

3.2.6 Molecular dynamics simulations

MD simulations of the reference molecule ATP and the screened molecules from ZINC
database in complex with Zika virus NS3 helicase were carried out for 150 ns using GROMACS
5.1.4 (Hess et al., 2008; VVan Der Spoel et al., 2005). Amber99sb force field (Hornak et al., 2006)
was applied to both the receptor and small organic compounds; force fields were assigned to small

molecules in Antechamber using the ACPYPE script (Da Silva et al., 2012) with AM1-BCC
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charges (Wang et al., 2006). All of the molecular systems were immersed in a cubic box, a three-
point model (SPC) was used to solvate the systems. The system was neutralized by the addition of
Na* and CI" ions (Berendsen et al., 1981). The steric stress of the system was eliminated and the
system was allowed to relax, the energy minimization was carried out using steepest descent
algorithm. The maximum force was adjusted at less than 1000 kJ/mol/nm, and a scaling factor of
0.01 was used to limit the number of steps to 50,000. After that, position restraint dynamics was
employed to stabilise the system and retain the solvent and ions in their proper locations around
the protein. Before being equilibrated at 1 atm and 300 K for 1000 ps until it achieved the right
density, this system was heated to 300 K for 100 ps. With a time, step of 0.002 ps, the final MD
simulations were performed at 300 K for 150 ns. The pressure was controlled using the Parrinello-
Rahman method (Parrinello & Rahman, 1981), and the V-rescale thermostat (Bussi et al., 2007)
was used to maintain the temperature. The particle mesh Ewald technique (Darden et al., 1993;
Essmann et al., 1995) was used to manage the long-range electrostatics, with a real-space cutoff
of 10 A, particle mesh Ewald order of 4, and a relative tolerance among both long and short-range
energies of 1076, While Lennard-Jones interactions and real-space electrostatic interactions were
terminated at 9 A, short-range interactions have been analyzed using a neighbour list of 10 A,
which was updated after every ten steps. Using the LINCS algorithm, the hydrogen bonds were
restrained (Hess et al., 1997). After structural stabilization, the final models for each system were
created by averaging the MD simulations generated trajectories. To study the conformational
variations in protein-inhibitor complexes, the Ca-atoms RMSD in relation to their initial structures
was computed using gmx rms. The convergence of MD simulations was examined using RMSD
plots. To investigate the stability of trajectories relative to the initial structure, the RMSF of the

Ca-atoms was calculated using gmx rmsf.
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3.2.7 Binding free energies

The binding free energies on the last ten ns of MD simulations trajectories were calculated
to determine the strength of small molecules binding to Zika virus NS3 helicase. The GROMACS
output trajectory compatible g mmpbsa (Kumari et al., 2014) tools were used to determine the
binding free energy of each complex. To understand the significant contribution of reference
molecule ATP and screened molecules identified in this work, total energies were calculated using
MM-PBSA (Homeyer & Gohlke, 2012; Miller et al., 2012). The computations of the binding free
energy, and the contribution of binding free energies from van der Waals, electrostatic, polar, and

apolar solvation energy components were estimated.

The LIE technique is an end point approach for determining binding affinities. This
technique incorporates explicit conformational sampling (of protein-bound and unbound-ligand
states) with accuracy in determining the protein-ligand binding free energy AGping. LIE is also
defined by calculating differences in average nonbonded (i.e., van der Waals) interaction energies
between the ligand and its surroundings in either the Zika virus NS3 helicase bound and unbound
states (denoted as subscript b) or unbound state (denoted as subscript u) (Aqvist et al., 1994). To
calculate the mean of van der Waals (vdW) and coulomb (cou) interaction energy variation of the
ligand with its neighboring atoms, AGpind from simulations of the ligand bound to free protein or
in solvent, the obtained average van der Waals and coulomb interaction energies of the ligand with
its surroundings are scaled by LIE parameters. The LIE calculations were carried out using gmx
energy and gmx lie for Zika virus bound with ATP and hit molecules from their MD simulation

trajectories.

110



3.2.8 Density functional theory calculations

In order to investigate the strength of the final five screened molecules obtained through
MD simulations, quantum chemical calculations have been performed. Geometry optimizations
have been performed on all molecules at B3LYP (Axel, 1993; Lee et al., 1988) level of theory
using 6-311+G(2d,p) basis set (Petersson et al., 1988; Petersson et al., 1991). Water was used as
an implicit solvent in PCM optimization (Miertus$ et al., 1981; Tomasi & Persico, 1994) at the
B3LYP/6-311+G(2d,p) level for all the substances to obtain an indication of the impact of solvent
presence on total energy of the compound. The nature of the stationary point was then determined
using frequency calculations. Molecular orbital analysis was performed at the B3LYP/6-
311+G(2d,p) level of theory, to evaluate the HOMO and the LUMO (Fukuli et al., 1952) for all
the molecules obtained through MD simulations. This analysis was performed to identify the
electron-rich zone in the compounds under consideration. The calculated values for the ESP energy
were projected onto an isodensity surface that corresponded to 0.0004 a.u. to accurately analyse
the charge distribution around these atoms (Vetrivel et al., 1996). This ESP accurately depicts the
reactive zones surrounding the inhibitors since it takes into account the van der Waals volumes of
each individual atom within the molecule. The Gaussian 09 programme suite was used to perform
all calculations (Frisch et al., 2009).

3.3 Results and discussion

The tertiary structure of Zika virus NS3 helicase has three domains, domain | (residues
182-332) and domain Il (333-481) share a similar structural fold, despite low sequence homology
shared between them. Domain 1l (482-617) comprises a four a-helical bundle extended by two
anti-parallel B-strands partially exposed to the solvent. Two a-helices from domain I interact with

the parallel a-helical bundle from domain III; domain II connects with domain III via a long B-

111



hairpin, thus stabilizing the interdomain interactions, and all the three domains have clearly defined
binding clefts. The cofactor ATP is located between domains-I and Il in Zika virus NS3 helicase;
it is stabilized by the Mn2* coordinated in octahedral geometry by interactions with side-chain of
residues Thr201 and Glu286, two oxygen atoms of  and y phosphate groups of ATP and two
water molecules. The binding site of ATP is formed by the residues Gly197, Alal98, Gly199,
Lys200, Thr201, Arg202 and Arg203 (P-loop), and Glu286, Ala317, Asn330, Gly415, Asn417,

GIn455, Gly458, Arg459, Arg462 and Asn463 as shown in the Figure 3.1.

Figure 3.1: ATP binding site in Zika virus NS3 helicase.

3.3.1 Structure analyses of flavivirus and sequence analyses of Zika virus NS3 helicases

The multiple sequence alignment of flavivirus NS3 helicases reveals that all the amino acid
residues within 4 A from ATP (5GJC) and RNA (5GJB) binding site are highly conserved among
all flaviviruses. The structures are highly superposable with low RMSD indicating their high

structure conservation as shown in Figure 3.2A.
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Figure 3.2A: sequence and structural alignment of Zika virus other flavivirus helicases.

From the NCBI protein sequence database, the primary structures of 1,083 Zika virus NS3
helicases were retrieved. Mutational analyses were carried out on the multiple sequence alignment
generated by NGphylogeny server that revealed 115 unique mutation positions in a protein of 436
amino acid residues (182-617 positions). Also, it was observed that only two mutations lie within
4 A from the ATP binding sites. Gly458 is mutated to Arg only in one instance (NCBI id:
QKF93433.1), and it was observed that the mutation of Gly458Arg increases the possibility of its
interaction with ATP. The Asn463 is mutated to Asp in NCBI id: ATG29292.1. This Asn463Asp
mutation does not make any significant alterations in the ability of the protein to bind ATP. This
infers that despite the presence of mutations, the function of the protein would be retained. In the
RNA binding pocket, mutations were observed at certain locations; Arg226Pro (AHL43503.1),

Met244GIn (AHL43503.1), Asp291Gly (AZS35408.1), Ser365Arg (AMK79469.1), Lys537Arg
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(AQS26826.1, AO0O054270.1, APH11492.1, QLJ57653.1, ARBO07949.1, ANDO01116.2,
AO0Y08529.2, AQS26833.1, AMQ48981.1). The side-chain of Arg226 and Lys537 make
hydrogen bonding interactions with the phosphate oxygen and 2° OH of the ribose sugar
respectively from the C5 of RNA. High frequency mutations are observed at the amino acid
positions, 185 (23 occurrences), 215 (132), 355 (77), 360 (42), 400 (132), 407 (124), 472 (128),
483 (97), 572 (232), 583 (122), 584 (253) and it was observed that these mutations are located in
all the three domains. The B-sheet regions in domains | and 1l accommodate the mutations and also
in the periphery of the protein Figure 3.2B. Interestingly, none of the mutations are located at the
ATP, RNA binding sites and the interdomain interface indicating the unaltered NS3 helicase
function despite a large number of mutations accumulated in the protein over a short period of its

evolution.

Figure 3.2B: Mutation of residues in Zika virus NS3 helicase Thr215Lys, Tyr355His, Val360lle,
His400Met, Val407Ile, Leud72Met, Asp483Gly, Met572Leu, Arg583Lys, His584Tyr.
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3.3.2 Pharmacophore generation and virtual screening

Pharmacophore modeling using the Pharmit server identified the features of ATP that are
required for interactions with the amino acid residues present in its binding site of Zika virus NS3
helicase. The five electronic and steric pharmacophore features, selected in ATP are shown in
Figure 3.3. The aromatic feature that shows Pi-cation interaction with Arg202, four-hydrogen
bond acceptor features; B-phosphate O1p, a-phosphate O3a, a-phosphate Ola and N7 at the
imidazole ring of adenine form hydrogen bonding with Lys200, Gly199, Arg462 and Arg202,
respectively, were selected as pharmacophore features for screening. The pharmacophore model
was validated on 1000 molecules decoy set (inactive molecules) using Pharmit server. The
pharmacophore model could not predict a single decoy molecule, which indicated the

pharmacophore model to successfully qualify the validation process.

N
(arg202 )
S

Figure 3.3: Pharmacophore features of ATP used for virtual screening of ZINC database.
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The validated pharmacophore model was employed for in silico screening of the ZINC database
of small molecules (Irwin et al., 2012). The 12,996,897 molecules in the ZINC database have
164,282,714 confirmations. The five featured pharmacophore model that was used as a 3-D query
retrieved 7,526 hit molecules from the ZINC database. These hits were filtered and ranked based
on RMSD < 0.25 A and molecular weight < 500 Da; based on this criteria, 471 molecules were

selected and downloaded for further molecular docking studies.

3.3.3 Molecular docking

The 471 hit molecules identified through pharmacophore based virtual screening were
further analysed by molecular docking methodology, CDOCKER, to verify the binding orientation
and binding affinity to Zika virus NS3 helicase. The binding site of protein was defined as a sphere
generated 5 A around ATP. For each molecule 20 docking poses were generated, out of the 20
docking poses, the conformers with the high CDOCKER docking scores were visualized on
graphics for nonbonding interactions such as hydrogen bonds, hydrophobic and ionic interactions
with protein active site residues. The results of molecular docking of the best ten hit molecules and
ATP are shown in Table 3.1. These selected molecules bind at the location of the ATP and form

hydrogen bonds with amino acids Gly199, Lys200, Thr201, Arg202, Asn417 and Arg462.

Table 3.1: Scoring of best docking structure of screened hit molecules.

S. No | Compound -PLP1 |-PLP2 |-PMF |-PMF04 | Active site interactions
Name

Leul94, His195, Pro196,
Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202,
Arg203, Ala235, Glu286,
His288, Thr316, Ala317,
Asn317, Asn330, Gly415,
Asn417, Lys419, GIn455,

1. ATP 98.57 98.61 106.27 | -8.4
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Gly458, Arg459, Arg462,

Asn463, Pro464

ZINC0000328
56030

74.53

70.12

58.87

21.45

Prol96, Gly197,
Gly199, Lys200,
Arg202, Arg203,
Glu286, Ala317,
Gly415, Asn4l7,
Arg459, Arg462,
Pro464

Alal98,
Thr201,
Asp285,
Asn330,
Phe418,
Asn463,

ZINC0002995
71648

52.32

47.55

45.09

12.88

Gly197, Alal9s,
Lys200, Thr201,
Arg203, Asp285,
Asn330, Gly415,
Phe418, Arg459,
Asn463, Pro464

Gly199,
Arg202,
Glu286,
Asn4l7,
Arg462,

ZINC0000581
78136

87.1

2.7

57.66

20.26

Gly197, Alal98,
Lys200, Thr201,
Arg203, Asp285,
Gly415, Asn4l7,
Arg459, Arg462,
Pro464

Gly199,
Arg202,
Glu286,
Phe418,
Asn463,

ZINC0004087
50650

88.77

88.48

58.45

5.06

Gly197, Alal98,
Lys200, Thr201,
Arg203, Asp285,
Gly415, Asn4l7,
Argds9, Arg462,
Pro464

Gly199,
Arg202,
Glu286,
Phe418,
Asn463,

ZINC0000156
75488

79.07

71.34

51.92

36.26

Gly197, Alal98,
Lys200, Thr201,
Arg203, Asp285,
Gly415, Asn4l7,
Arg459, Arg462,
Pro464

Gly199,
Arg202,
Glu286,
Phe418,
Asn463,

ZINC0000087
31686

72.18

66.08

53.77

12.95

Gly197, Alal98,
Lys200, Thr201,
Arg203, Asp285,

Gly199,
Arg202,
Glu28s,
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Gly415,
Arg4s9,
Pro464

Asn417,
Arg462,

Phe418,
Asn463,

ZINC0000714
04039

89.6

94.00

47.14

8.62

Gly197,
Lys200,
Arg203,
Gly415,
Arg459,
Pro464

Alal98,
Thr201,
Asp285,
Asn4l7,
Arg462,

Gly199,
Arg202,
Glu286,
Phe418,
Asn463,

ZINC0008881
01786

61.83

53.48

54.14

20.24

Gly197,
Lys200,
Arg203,
Asn330,
Phe418,

Alal98,
Thr201,
Asp285,
Gly415,
Arg459,

Asn463, Pro464

Gly199,
Arg202,
Glu286,
Asn4l7,
Arg462,

10.

ZINC0000211
68927

108.73

102.03

85.91

22.54

Gly197,
Lys200,
Arg203,
Asn330,
Phe418,

Alal98,
Thr201,
Asp285,
Gly415,
Arg459,

Asn463, Pro464

Gly199,
Arg202,
Glu286,
Asn4dl7,
Arg462,

11.

ZINC0006704
57317

91.93

80.19

62.9

14.3

Gly197,
Lys200,
Arg203,
Gly415,
Arg45s9,
Pro464

Alal98,
Thr201,
Asp285,
Asn4l7,
Arg462,

Gly199,
Arg202,
Glu286,
Phe418,
Asn463,

3.3.4 Drug-like properties

The drug-like features of the identified hit molecules were studied using SwissADME

server and Lipinski’s rule of five. The synthetic ease of access of the proposed molecules was

graded on a scale of one to ten on the basis of complexity of the compounds, the total count of

stereocenters, and other factors. The more synthetically accessible the compound should have a
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lower value. The synthetic accessibility values in this work were reported to be less than 4.75,
demonstrating the simplicity of their synthesis. The topological polar surface area (TPSA) is much
less than 140 A?, the solubility in water (given as Log S) indicates that the majority of compounds
are either slightly or fairly soluble in water, and the lipophilicity (represented as cLogP) is less
than 5. The likelihood of skin permeation is indicated by the skin permeation probability
represented as Log Kp, which is also suitable. All of these molecules exhibit LogP <5, molecular
weight < 500, no of hydrogen bond acceptors <10 and no of hydrogen bond donors <5 (Lipinski,
2004). This implies that all the ten selected hit molecules from molecular docking studies qualify
to possess drug-like properties. The ADME properties are shown in Table 3.2. The compound
identities (IDs) were represented in the main text by taking the last four digits of ZINC ID, for
example ZINC000032856030 as ZINC6030. The ten selected hit molecules in complex with Zika
virus NS3 helicase were subjected to MD simulations studies. For the sake of comparison, apo and

ATP complexed Zika virus NS3 helicase were also subjected to MD simulations studies.

Table 3.2: Drug-like properties of screened ZINC compounds.

S.No | Compound TPSA (A)?2 | Consensus po/w | Log kp (cm/s) Synthetic
name Accessibility
1 ZINC6030 68.44 1.93 -6.3 3.50
2 ZINC1648 68.96 1.20 -7.32 3.50
3 ZINC8136 97.04 2.80 -6.73 2.21
4 ZINC0650 132.83 4.03 -5.22 2.97
5 ZINC5488 137.14 0.06 -8.48 4.67
6 ZINC1686 102.54 244 -6.38 3.01
7 ZINC4039 75.97 2.86 -6.19 2.76
8 ZINC1786 110.76 3.27 -6.68 4.25
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9 ZINC6897 122.62 2.61 -6.39 3.75

10. ZINC7317 72.70 2.99 -5.96 3.25

3.3.5 Molecular dynamics simulations

MD simulations offer information on the binding of screened hit molecules to the Zika
virus NS3 helicase at the residue level. Protein-ligand bound complexes were studied in a dynamic
environment to assess the stability of interactions over a period of time. In this analysis, apo-
protein and Zika virus NS3 helicase complexed with ATP and five screened hit molecules
ZINC6030, ZINC1648, ZINC8136, ZINC1786 and ZINC6897 were found to be stable during the
MD simulations. The average structures were generated from 150 ns MD simulations trajectories
for structure comparison. The superposition of the initial and average structures demonstrates that
the molecules have good stability and low RMSD, which was confirmed by conserved hydrogen
bonding interactions with active site residues, denoting that all these molecules are suitable as Zika
virus NS3 helicase inhibitors. The overall conformational changes were analyzed through the Ca-
atoms RMSD as a function of MD simulations time Figure 3.4A. From the plots it can be seen
that the apo-protein gained stability after the initial ten ns of simulation time with an average
RMSD of 2 A. From the comparison of RMSD trajectories, it is evident that ZINC6030,
ZINC8136, and ZINC1786 possess better binding and acquire stable interactions at the ATP
binding pocket of NS3 helicase throughout 150 ns of MD simulations. The screened hit molecules
show lower than 0.25 nm RMSD, as shown in Figure 3.4B, and the molecule ZINC6030 offers

the highest RMSD value ~0.22 nm compared with the other molecules and reference ATP.
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Figure 3.4: A) RMSD plot of Zika virus NS3 helicase apo and bound with screened molecules
B) RMSD plot of screened molecules bounds with Zika virus NS3 helicase.

From the RMSF plots for the Ca-backbone atoms Figure 3.5, it can be seen that most amino acid
residues in the protein have lower fluctuations (< 0.2 nm), and only the residues that form a loop
from Met244 to Ser256 display higher fluctuations and reach until 0.5 nm, in the ATP bound NS3
helicase as well as in complexes with ZINC1648 and ZINC6897 (0.23 nm). This is in
correspondence with our previous studies that reported the mobile nature of the RNA binding loop
(Met244-Sert253) reported in chapter 2. The amino acid residues important for inhibitor binding
are, (Met244-Ser253; RNA-binding loop), (Pro273- Ala278; near to ATP binding site), (Pro319-
Ala325; downward to the ATPase site) and (Pro464-Glu470; adjacent to ATP site) that show
significant fluctuations. The overall RMSF results show that protein attains greater stability
throughout MD simulations when it is complexed with screened hit molecules than the ATP bound

molecular system.
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Figure 3.5: RMSF plots of Zika virus NS3 helicase apo, ATP and screened hit molecule

complexes.

All hit molecules make hydrogen bonds with the active site amino acid residues Gly199,
Lys200, Thr201, Arg202, Glu286, Asn4l7, and Arg462. Hydrogen bonding and hydrophobic
interactions stabilize the Zika virus NS3 helicase screened inhibitor complexes. The protein-ligand
interactions were generated throughout MD simulations using DS 3.5. ATP makes hydrogen
bonding interactions with Gly199, Lys200, Thr201, Arg202, Glu286, Asn417, and Arg462; these
interactions are retained throughout MD simulations. The screened hit molecules show hydrogen
bonding and pi-cation interactions with active site residues; these interactions tightly hold the
molecules inside the active site of Zika virus NS3 helicase. The molecule ZINC6030 shows
Gly199, Lys200, Asn417, Arg462, and pi-cation Arg462, whereas in ZINC1648 shows hydrogen
bonds Gly199, Arg462 and Arg462 involves Pi-cation, ZINC8136 form Lys200, Thr201, Asn417,
Arg462, whereas ZINC1786 exhibits Lys200, Arg202, Arg462 and pi-cation with Arg459, Arg462

and ZINC6897 shows Alal98, Lys200, Arg203 and Arg462 as shown in Figure 3.6.
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Figure 3.6: Interactions of screened molecules ZINC6030 (A), ZINC8136 (B), ZINC1648 (C),

ZINC1786 (D) and ZINC6897 (E) with Zika virus NS3 helicase.

The Rg demonstrated the compactness of the molecular systems under study during MD
simulations. The Rg of all molecular systems showed that the screened hits have lower Rg, during
the 150 ns MD simulations. When Zika virus NS3 helicase is bound to ATP and screened hits, the
Rg is found to be below ~0.23 nm, indicating that all prepared molecular systems attain stability

throughout MD simulations.

3.3.6 Binding free energy and residue-wise contribution energy
The binding free energies of the Zika virus NS3 helicase in complex with ATP and

screened-in hit molecules were calculated using MM-PBSA and LIE methods using GROMACS
as shown in Table 3.3. Reference compound and screened-in hit molecules can be compatible with
one another due to the energy contributions from electrostatic, van der Waals, and polar solvation.
The binding free energy for ATP Zika virus NS3 helicase complex was observed to be -186.016
+/- 0.00 kJ/mol, while the binding free energies for the screened molecules were ZINC6030 (-
92.91 +/- 0.63 kd/mol), ZINC1648 (-96.19 +/- 0.67 kJ/mol), ZINC8136 (-52.95 +/- 0.71 kJ/mol),
ZINC1786 (-95.01 +/- 0.52 kJ/mol) and ZINC6897 (-131.46 +/- 0.71 kJ/mol). The binding site
residues Gly199, Lys200, Thr201, Arg202, Glu286, Ala317, Asn417, Arg428, Gly458, Arg459,
and Arg462 contribute to the highest binding energies in all the complexes studied, as shown in

Figure 3.7.

Table 3.3. Binding free energy calculations of ATP and screened hit molecules.

S.No

d Waals tic energy | energy (kJ/mol)
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Name energy (kd/mol) | (kd/mol)
(kJ/mol)
ATP -188.611 -88.425+/- | 107.156 +/- 0.0 | -17.136 +/- 0.0 | -186.016+/- 0.0 | -168.016
+/- 0.0 0.0
ZINCO0000 | -142.68+/- | -44.15+/- | 107.75+/-0.87 | -13.81+/-0.05 |-92.91+/-0.63 | -123.843
32856030 | 0.55 0.43
ZINCO0002 | -143.63+/- | -48.61+/- | 109.97+/-0.65 | -13.89+/-0.05 |-96.19+/-0.67 | -92.096
99571648 | 0.58 0.42
ZINC0000 | -154.89+/- | -51.09+/- | 168.61+/-1.02 | -15.54+/-0.04 | -52.95+/-0.71 | -47.453
58178136 | 0.47 0.45
ZINC0008 | -155.66+/- | -6.39+/- 83.51+/-0.55 -16.47+/-0.03 | -95.01+/-0.52 | -98.501
88101786 | 0.35 0.17
ZINC0000 | -238.69+/- | -26.69+/- | 154.35+/-0.70 | -20.49+/-0.04 | -131.46+/-0.71 | -90.155
2116897 | 0.48 0.33

BATP wmZINCG6030 = ZINC1648

Residue wise contribution energy plot

F=FF

ZINCS136

mZINC1786 mZINC6897

Figure 3.7: Residue-wise contribution (kJ/mol) of Zika virus NS3 helicase binds with cofactor

ATP and screened molecules.
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The Zika virus NS3 helicase bound with ATP shows LIE of —168.016 kJ/mol and the screened
molecule ZINC6030 shows highest energy -123.843 kJ/mol and the molecule ZINC8136 shows
lower energy (-47.453 kJ/mol), the other complexes ZINC1648, ZINC1786 and ZINC6897 show
reasonably good binding free energies. The binding free energy of ATP is much lower, as it is a
cofactor to the protein and makes several hydrogen bonding and other nonbonding interactions
with the protein compared to the hit molecules. From the binding energy results it was noticed that
the screened molecules attain stability when bound to Zika virus NS3 helicase at the ATP binding

site.

3.4 Density functional theory calculations

The hit molecules ZINC6030, ZINC8136, ZINC1648, ZINC1786 and ZINC6897 validated
through MD simulations, were further explored through DFT calculations. Quantum chemical
calculations have been performed, in order to investigate the strength and nature on potential

energy surface of the five screened molecules.

3.4.1 Geometry optimization

The Geometry optimization and frequency analysis were carried out at B3LYP/6-
311+G(2d,p) level of theory upon the five ZINC6030, ZINC8136, ZINC1648, ZINC1786 and
ZINC6897 molecules validated through MD simulations, to understand the nature and energy of
these molecules. The total energy (in hartrees) in the considered molecules follows the trend
ZINC6897 > ZINC1786 > ZINC1648 > ZINC6030 > ZINC8136. For the current study, all five

conformations were local minima on the PES.
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3.4.2 Solvent effect

To assess the effect of the solvents existence on the molecules total energy, PCM
enhancement at the B3LYP/6-311+G(2d,p) level of theory was performed with water as the
implicit solvent. Though the overall energy (in hartrees) in the solvated molecules is more
compared to gas phase geometries, their trends remain the same ZINC6897 > ZINC1786 >
ZINC1648 > ZINC6030 > ZINC8136. There is a difference of ~ -54 kJ/mol for the molecule
ZINC6030, ~ -58 kJ/mol for the molecule ZINC8136, ~ -61 kJ/mol for the molecule ZINC1648,
~ =55 kJ/mol for the molecule ZINC1786 and ~ -72 kJ/mol for the molecule ZINC6897
respectively, thus suggesting that the molecules are more stable in solvent medium compared to

gas phase as shown in Table 3.4.

Table 3.4: Total energy (in hartrees), point group and frequency of five Zika virus ligands

determined using B3LYP/6-311G+(2d,p). (PCM total energy (in hartrees) in Bold with water as

solvent).

S. Name Geometry Total Energy | PG | NImag

No.

1 ZINC6030 -1024.550965 | C; 0
-1024.571623

2 | ZINC1648 -949.531433 | C, 0
-949.553711
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3.4.3 Molecular orbital analysis

The HOMO and LUMO were analysed to determine the electron-rich (donor) and electron-
poor (acceptor) zones in each of the obtained molecules. In the case of molecule, ZINC6030, the
HOMO is observed on the 1,2,4 triazole, piperidine and pyrimidine rings whereas LUMO is
observed on the only 1,2,4 triazole ring of the inhibitor. For molecule ZINC8136, the HOMO is
observed in piperidine and pyrimidine rings whereas LUMO located at the pyrimidine of the
compound. In the case of the compound ZINC1648, HOMO is located on the quinoline ring and
LUMO is observed on 4-nitro anisoline group of the molecule. For the molecule ZINC1786,

HOMO and LUMO are both located at 1,2,4 oxadiazole and thiazole groups. In the case of
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molecule ZINC6897, HOMO is observed at 1,2,4 oxadiazole, 1,2,4 triazole and pyrimidine rings
whereas LUMO is located on two pyrimidine rings of the molecule, as shown in Table 3.5.
Through this analysis, it was observed that the HOMO exists close to the protein active site amino

acid residues Gly197, Gly199, Lys200 and Thr201 respectively.

Table 3.5: HOMO, LUMO of five Zika virus NS3 helicase screened in molecules determined at

B3LYP/6-311G+(2d,p) level theory.

S. Name HOMO LUMO
No.
1 ZINC6030
ZINC1648
2
3 ZINC8136
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ZINC1786

5 ZINC6897

3.4.4 Electrostatic potential maps

For the molecules obtained through MD simulations, ESP maps were generated, which
support the characterization of non-covalent interactions, including hydrogen bonding
interactions, as well as the comprehension of the sites of nucleophilic and electrophilic attacks.
The red area (electron-rich, negative) represents the electrophilic assault, whereas the blue area
(electron-poor, positive) represents the nucleophilic attack. ESP maps are essentially related to the
electron density of the molecule. The region between -3.560e-2 and +3.560e-2 a.u. is where the
negative and positive electron densities are found. These sections make it easier to see the many
charged regions of the molecules that were studied. The red colored region is observed close to
active site residues of all the molecules in the protein which indicates that these regions play a
major role for the binding of molecule at active site. The negative polarization effect was visible
on the oxygen, nitrogen and sulfur atoms of the molecules as shown in Figure 3.8, thus

representing them as the active regions in making interactions with the surrounding amino acids.
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ZINC8136 ZINC1786

ZINC6897

Figure 3.8: Molecular electrostatic potential (MESP) maps of five Zika virus NS3 helicase

screened in molecules determined at B3LYP/6-311G+(2d, p) level of theory.
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3.5 Conclusions

Sequence and structure analysis of Zika virus and flavivirus NS3 helicases, respectively
revealed that the ATP and RNA binding sites are highly conserved and that the structures are
highly superposable. The crystal structure of Zika virus NS3 helicase bound with ATP was
explored using multiple features in pharmacophore model based on Pharmit for ZINC database
screening to yield diverse leads after employing various filters that included molecular weight,
RMSD and number of rotatable bonds. Molecular docking of the hit molecules and their analyses
based on docking scores, intermolecular hydrogen bonding, ADME properties were applied to
prioritize the molecules. The stability of Zika virus NS3 helicase bound to five hit compounds
(ZINC6030, ZINC1648, ZINC8136, ZINC1786, and ZINC6897) was verified using MD
simulations, and all the screened molecules show reasonable binding affinity throughout MD
simulations. The DFT calculations performed on the molecules obtained through MD simulations
reveal that they are stable on PES in solvent phase as compared to their gas phase energies. In light
of these findings, it was concluded that creating new Zika virus NS3 helicase inhibitors to treat
Zika sickness will benefit from a deeper understanding of the fundamental structural and binding

properties revealed by the pharmacophore-based virtual screening.
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CHAPTER-4

Zika virus NS5 methyltransferase and RNA
dependent RNA polymerase inhibitor design by
pharmacophore-based virtual screening,
molecular docking and molecular dynamics
simulations
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4.1 Introduction

Zika virus NS5 MTase enzyme is responsible for adding a methyl group to the 5' cap RNA
structure, using the cofactor SAM as a methyl donor to form SAH as a by-product (Zhao et al.,
2015) to facilitate the translation of polyprotein. CADD is a broad and rapidly expanding research
field that plays an important role in the early stages of new drug discovery. It includes analyses of
the similarities between the protein sequences and structures, 3-D structure modelling of proteins,
computational screening, docking of molecules, scoring of hit molecules, MD simulations and

binding free energy calculations.

The 3-D structure of Zika virus NS5 MTase is reported in PDB as a complex with SAM
and 7-methylguanosine-P3-adenosine-5',5'-triphosphate (GTA) (RNA analog) (5WZ2). In this
chapter, analysis of primary sequences and 3-D structures of MTase enzyme from flaviviruses was
carried out by sequence alignments, structure-based sequence alignments and structural
comparison. The NS5 MTase comprises of a cofactor SAM bound at the active site and this site is
considered as a druggable site for developing new inhibitors using the CADD approach. Based on
the essential pharmacophore features of SAM, the screened molecules from the ZINC database
were shortlisted by applying various filters, to be used for molecular docking studies in order to
find best molecules. AutoDock 4.2 was used for docking the best molecules at the receptor active
site in all possible conformations. MD simulations and binding free energy calculations were used

to validate the molecules. These analyses provide an efficient method for designing novel hit
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compounds and identifying key amino acid residues for intermolecular interactions in Zika virus

NS5 MTase, which will be useful in future drug discovery studies.

4.2 Methods
4.2.1 Sequence and structure analyses of flavivirus MTases

PDB was used to download representative 3-D crystal structures of flavivirus NS5 MTase
(Berman et al. 2000; Burley et al., 2021). UCSF Chimera was used for molecular visualization and
structure superposition (Pettersen et al.,, 2004). BLAST searches were used to retrieve the
sequences of Zika virus NS5 MTase from the NCBI (Johnson et al., 2008). The proteins multiple

sequence alignment was accomplished using the ClustalW software.

4.2.2 Zika virus NS5 MTase structure and preparation

Zika virus NS5 MTase protein crystal structure complexed with SAM and GTA, a cap
structure of RNA (5WZ2) deposited at 1.8 A in PDB was used. For the preparation of the protein
structure, crystal waters were deleted and hydrogen atoms were added using UCSF Chimera 2.1.1
(Petersen et al., 2004) and the coordinates were saved in PDBQT format. The cofactor SAM
located in the active site was used for pharmacophore generation and to screen the molecules for
further studies.

4.2.3 Structure-based pharmacophore generation

To identify novel hit molecules from in silico screening, the structure of SAM in Zika virus
NS5 MTase was used to create the pharmacophore model for the structure-based pharmacophore
generation. To generate the pharmacophore model for screening, initially, the Pharmit (Sunseri

and Koes, 2016) server was used to map the possible ligand features. The probable interactions
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from the binding cavity of Zika virus NS5 MTase protein with the cofactor SAM was used as a
reference compound for developing interactions, and the pharmacophore features on SAM
participating in nonbonding interactions with the receptor were selected. The list of five set of
features of SAM were used to screen the molecules. These are hydrogen bond acceptor, hydrogen
bond donor, hydrophobic, negative ionizable, and aromatic ring. The modeled pharmacophore
hypothesis was used as a 3-D query for the screening of ZINC database comprising 12,996,897
molecules (Irwin & Shoichet, 2005). The database consisted of 164,282,714 exclusive
conformations and were subjected to pharmacophore screening using the best generated
pharmacophore model. This screening aims to retrieve the potential hit molecules suitable for
further development. The successfully screened hit compounds were filtered based on RMSD
(lower than 2.3 A), molecular weight (< 500). The selected hit compounds were downloaded in
.sdf format. The Lipinski's rule of five (Lipinski et al., 1997; Lipinski et al., 2012; Lipinski, 2004)
are crucial factors in determining whether orally administered drugs will have a drug-like profile.
The Lipinski's rule of five directs that a drug molecule exhibits LogP <5, molecular weight < 500,
number of hydrogen bond acceptors <10 and number of hydrogen bond donors <5 (Lipinski, 2004).

The hit compounds which obey the above properties were selected for docking studies.

4.2.4 Molecular docking

The active site of Zika virus NS5 MTase is identified based on the key amino acid residues
that interact with the cofactor SAM. The screened molecules were prepared by DS 3.5. The
docking study was carried out by using AutoDock 4.2 (Morris et al., 2009). Initially, the molecules
were loaded; torsions were set and saved in PDBQT format and the protein was also saved in
PDBQT format. The protein structure with all the compounds was loaded into AutoDock 4.2 to

generate 20 best conformations for each molecule. The Lamarckian Genetic algorithm was used
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to accomplish all calculations for protein-ligand flexible docking (Wellock & Ross, 2001). A grid
box with the dimensions of X: 22.987 A, Y: 19.338 A, and Z: 49.646 A, with a grid spacing of
0.492 A was used. These grid box dimensions were used to dock the filtered compounds from
ZINC database in order to predict their binding affinity, binding orientation with the target protein
and to analyze the best conformations. The best conformation with higher binding affinity was
chosen, and hydrogen bonding interactions existing between the docked pose and protein were
manually analyzed. The top-ranked molecules from docking method were further studied using

ADMET calculations for their drug-likeness.
4.2.5 ADMET properties

The best docked molecular structures drug-like properties were examined by analyzing the
pharmacokinetics profile with the SwissADME server (http://www.swissadme.ch/index.php).
This is a software tool to calculate ADME and physicochemical properties such as solubility,
lipophilicity and pharmacokinetics. MD simulations were used to study the hit molecules that meet

the criteria of ADME properties.

4.2.6 Molecular dynamics simulations

MD simulations of apo and complexes of Zika virus NS5 MTase was carried out for 100
ns, using GROMACS 5.1.4 (Hess et al., 2008; VVan Der Spoel et al., 2005) software. Four types of
molecular systems were prepared; apo Zika virus NS5 MTase, Zika virus NS5 MTase complexed
with SAM, Zika virus NS5 MTase complexed with SAM and GTA, Zika virus NS5 MTase
complexed with hit molecules. During the preparation of molecular systems, water molecules and
all other hetero atoms were removed from the protein, hydrogens were added and Amber99sb force

field was applied to all the molecular systems. The applicable charges were added to SAM and hit
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molecules using UCSF Chimera-2.1.1, and the coordinates were saved in .mol2 format to generate
force fields using AM1-BCC charge in Antechamber using ACPYPE script (Da Silva et al., 2012).
SPC water models were used to solvate the molecular systems, by adding Na”and CI- ions, such
that the total charge of the systems was neutralized. Energy minimization was accomplished in
1000 steps that use the steepest descent algorithm to remove steric stress and enable the system to
relax. Water molecules and ions were distributed during the position restraint phase. The systems
were heated for 100 ps at 300 K before being equilibrated at 1 atm and 300 K for 1000 ps until the
proper density was achieved. The temperature was kept constant using a V-rescale thermostat
(Bussi et al., 2007), and the pressure was controlled using the Parrinello Rahman technique
(Parrinello & Rahman, 1981). The particle mesh Ewald method was used to deal with long-range
electrostatic interactions (Darden et al., 1993; Essmann et al., 1995). For 1000 ps, molecular
systems were equilibrated using the NVT and NPT ensembles. The Lennard-Jones interactions
and the real-space electrostatic interactions were truncated at 9 A. LINCS algorithm was used to
restrict hydrogen bonds (Hess et al., 1997). After every 2 ps, the coordinates from the production
MD trajectories were generated and saved. Upon structure stabilization, the final models in all
systems were obtained by averaging the snapshots from the output trajectories of MD simulations.
The GROMACS utilities gmx rms, gmx rmsf, gmx hbond, and gmx gyrate were used to analyse
the MD trajectories (Van Der spoel, et al., 2005). The RMSD of the Ca-atoms in relation to their
starting structures was calculated in GROMACS. VMD was used to display the MD trajectory
files (Humphrey et al., 1996). The Xmgrace software was employed for plotting the data obtained
from MD simulations analysis, and UCSF Chimera (Pettersen et al., 2004) was employed for
structure superposition and cartoon image generation.

4.2.7 Binding free energy
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The molecular mechanics levels of energy combined with the MM-PBSA methods are
widely used to estimate the free energy of small ligand molecules binding to biological
macromolecules. The MM-PBSA method (Kumari et al., 2014) was used to calculate the binding
free energy of protein-ligand complexes using g_mmpbsa tools. The output trajectories of MD
simulations were used to calculate the binding free energy of protein-ligand complexes. The output
results obtained by this g_mmbsa method are van der Waals, electrostatic, polar solvation, SASA,

and binding free energies.

4.3 Results and discussions
4.3.1 Sequence and structure analyses

The multiple sequence alignment of flavivirus NS5 MTase (Figure 4.1A) reveals that all
the amino acid residues within 5 A from SAM (5WZ2) binding site are highly conserved among
all flaviviruses. The structures are highly superposable with a low RMSD indicating their high

structure conservation as shown in Figure 4.1B.
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Figure 4.1A: Multiple sequence alignment of Zika and other flavivirus NS5 MTase proteins.
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'SAM binding site

Figure 4.1B: Structural alignment of Zika and other flavivirus NS5 MTase proteins Zika (grey),

Dengue (cyan), Japanese encephalitis (orange) and Murray valley encephalitis (purple).

In the Zika virus NS5 MTase crystal structure (5WZ2), complexed with cofactor SAM and GTA,
the cofactor binding cavity is considered as the active site of the protein. For validation of the
docking methodology, SAM was redocked into its binding site using the AutoDock 4.2. Twenty
conformers were generated, out of these, the final docked poses were selected based on the binding
affinity and intermolecular interactions. The essential interactions were conserved with residues
within the active site of the protein. The redocked SAM was identified to be in the vicinity of
crucial amino acid residues Ser58, Arg59, Gly60, Lys63, Leu82, Gly83, Cys84, Gly85, Arg86,

Gly87, Thrl06, Lys107, Gly108, His112, Glull3, Vall32, Aspl33, Vall34, Phel35, Aspl48,
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lle149, Gly150, Glu151, Lys184 and Tyr222 and showed RMSD of 0.16 A with the crystal
structure conformation. The hydrogen bonding interactions were formed with the residues Ser58,
Lys107, His112, Glul13, Asp133, Vall34, Asp148. The SAM docked into the active site showed

binding affinity -8.4 kcal/mol.

4.3.2 Pharmacophore generation and virtual screening

The structure-based pharmacophore model was generated to understand the key features
necessary for biological functions. The intermolecular interactions between the hit molecule and
the catalytically important active site amino acid residues provide appropriate information as
inputs for the design of the structure-based pharmacophore model for the macromolecular receptor
Zika virus NS5 MTase. Pharmacophore modeling using the Pharmit server identified the features
of SAM required for nonbonded interactions with the amino acid residues available in its binding
site. The five pharmacophore features selected in SAM for virtual screening are; hydrogen bonding
interaction of the N6 atom of NH2 on adenine ring with Asp133, N1 atom on adenine ring with
Vall134, O2 atom of OH on 5-memberd ring moiety with Glu113, the N atom on methionine NH>
with Asp148 and the O atom from methionine carboxylate group with Ser58, shown in Figure 4.2.
The pharmacophore model was validated on 1000 molecules decoy set (inactive molecules) using
Pharmit server. The pharmacophore model could not predict a single decoy molecule, thus
indicating that the pharmacophore model successfully qualified the validation process. The
validated pharmacophore model was employed for virtual screening of small molecules in the
ZINC database. The five featured pharmacophore model that was used as a 3D query retrieved 609
hit molecules from 12,996,897 molecules in the ZINC database and were downloaded as .sdf file.

These hit molecules were filtered and ranked based on lower RMSD (< 0.23 A) and the Lipinski’s
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rule was applied in prefiltering process. This retrieved 92 molecules that were used for molecular

docking studies by AutoDock 4.2.

Figure 4.2: Pharmacophore features of SAM used for virtual screening of ZINC database.

4.3.3 Molecular docking

The 92 hit molecules identified from virtual screening were docked into the SAM binding
cavity of Zika virus NS5 MTase. For each molecule, 20 docking poses were generated and the best
docking pose was selected based on the binding affinity and hydrogen bonding interactions
maintained by key amino acid residues in the SAM binding cavity. The selected 92 hit molecules
were docked with a binding affinity within the range of -9.0 to - 6.8 kcal/mol. Of these, 50 hit
molecules had a binding affinity higher than -7.8 kcal/mol and 15 hit molecules had a binding
affinity between -9.0 to -8.0 kcal/mol. The binding affinities and the amino acid residues in the
binding pocket are shown in Table 4.1.
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Table 4.1. Docking scores of SAM, screened hit molecules along with the interacting residues in

the Zika virus NS5 MTase.

S. No

Structure and Name

Docking
score
(kJ/mol)

Binding site residues

SAM

S-adenosyl-L-methionine

Ser58, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul13,
Vall32, Asp133, Val134,
Phel35, Aspl148, lle149,
Gly150, Glul51, Lys184
and Tyr222

hit-1

N-(3-(4,5-dimethyl-1H-benzo[d]imidazol-2-yl)propyl)-4-((2-
hydroxyethyl)(methyl)amino)benzamide

-8.5

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul13,
Vall32, Aspl33, Vall34,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222
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hit-2

5-((4-(3-hydroxy-3-methylbutyl)benzamido) methyl)-N-
methylfuran-2-carboxamide

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul113,
Vall132, Asp133, Val134,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222

hit-3

(4S,7R)-4-(4-hydroxy-3-methoxyphenyl)-7-(4-
hydroxyphenyl)-3-methyl-4,6,7,8-tetrahydroisoxazolo[5,4-
b]quinolin-5-ol

Ser58, Arg59, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul13,
Vall32, Aspl33, Val134,
Phel35, Aspl48, 1lel49,
Gly150, Glul51, Lys184
and Tyr222

hit-4

N-(2-(5-amino-1,3,4-thiadiazol-2-yl)ethyl)-3-(5-(2-
hydroxypropan-2-yl)pyridin-3-yl)benzamide

-8.5

Ser58, Arg59, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul1g3,
Vall32, Asp133, Val134,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222
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hit-5

(R)-N-(4-hydroxyphenethyl)-3-(N-((tetrahydrofuran-2-
yl)methyl)sulfamoyl)benzamide

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul1s3,
Vall32, Aspl133, Vall34,
Phel35, Aspl48, 1lel49,
Gly150, Glul51, Lys184
and Tyr222

hit-6

(4S,7S)-4-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-
hydroxyphenyl)-3-methyl-4,7,8,9-
tetrahydroisoxazolo[5,4-b]quinolin-5(6H)-one

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul13,
Vall32, Aspl33, Vall34,
Phel35, Aspl48, lle149,
Gly150, Glul51, Lys184
and Tyr222

hit-7

(4S,7S)-4-(4-hydroxy-3-methoxyphenyl)-7-(4-
hydroxyphenyl)-3-methyl-4,7,8,9-tetrahydroisoxazolo[5,4-
b]quinolin-5(6H)-one

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul1g3,
Vall32, Aspl33, Vall34,
Phel35, Aspl48, 1lel49,
Gly150, Glul51, Lys184
and Tyr222
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hit-8

(S)-2-(4-((2-amino-5,6-
dihydrospiro[cyclopenta[d]pyrimidine-7,3'-piperidin]-1'-
yl)methyl)phenoxy)ethan-1-ol

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul1s3,
Vall32, Aspl33, Vall34,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222

10.

hit-9

4-((2S,3R,4S)-4-(4-hydroxy-3-methoxybenzyl)-3-
(hydroxymethyl) tetrahydrofuran-2-yl)-2-methoxyphenol

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul13,
Vall32, Asp133, Val134,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222

11.

hit-10

(S)-5-(N-(2-(3-(hydroxymethyl)piperidin-1-
yl)ethyl)sulfamoyl)thiophene-3-carboxamide

Ser58, Arg59, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul113,
Vall32, Asp133, Val134,
Phel35, Aspl148, lle149,
Gly150, Glul51, Lys184
and Tyr222
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12.

hit-11

(S)-5-(4-((4-hydroxyphenyl)amino)phthalazin-1-yl)-2-
methyl-N-((tetrahydrofuran-2-
yl)methyl)benzenesulfonamide

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glu113,
Vall132, Asp133, Val134,
Phel35, Aspl48, 1lel149,
Gly150, Glul51, Lys184
and Tyr222

13.

hit-12

5-(4-(3-hydroxy-3-methylbutyl)benzyl)-N-methyl-
4,5,6,7-tetrahydrothieno[3,2-c]pyridine-2-carboxamide

Ser58, Arg59, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thr106, Lys107,
Gly108, His112, Glul13,
Vall32, Aspl33, Vall34,
Phel35, Aspl48, lle149,
Gly150, Glul51, Lys184
and Tyr222

14.

hit-13

Serb8, Argh9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul13,
Vall32, Asp133, Val134,
Phel35, Aspl48, 1lel49,
Gly150, Glul51, Lys184
and Tyr222
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(S)-4-(3-(2',4'-dihydroxy-5'H-spiro[azepane-4,6'-furo[2,3-
d]pyrimidin]-1-yl)-3-oxopropyl)-N-
methylbenzenesulfonamide

15.

y.
&/

v 9
&

hit-14

3-(3-hydroxyisoxazol-5-yl)-N-((3R,4R)-4-(4-
(hydroxymethyl)phenoxy)tetrahydro-2H-pyran-3-
yl)propanamide

Ser58, Args9, Gly60,
Lys63, Leu82, Gly83,
Cys84, Gly85, Arg86,
Gly87, Thrl06, Lys107,
Gly108, His112, Glul1s3,
Vall32, Aspl133, Val134,
Phel35, Aspl48, 1le149,
Gly150, Glul51, Lys184
and Tyr222

4.3.4 Drug-like properties

The molecules selected from molecular docking were subjected to the next stage of ADME

calculations using the SwissSADME server and the results are shown in Table 4.2, and selected the

molecules based on acceptable values within the range. The synthetic ease of access of the

suggested compounds is graded on a scale of one to ten, on the basis of the complexity of the

molecules, the number of stereocenters, and other factors. A lower value is indicative of greater

synthetic accessibility of the molecule and the synthetic accessibility value was found to be less

than 5.1, which indicates the ease of their synthesis. The TPSA was lower than 140 A, the extent

of solubility in water, stated as Log S indicated that most of the hit molecules are soluble or

reasonably soluble in water; and lipophilicity expressed as Log Kp was lower than 3.5. The
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possibility of skin permeation expressed as Log Kp was also reasonable. Out of the 15 selected
molecules from docking studies, 12 molecules successfully qualified all the ADME properties
within the range of acceptable values. These 12 molecules were further studied by MD simulations.
The best Zika virus NS5 MTase hit molecule complexes were used as initial conformations for
MD simulations, and complex with SAM and apo protein were also studied for the sake of

comparison.

Table 4.2. Drug-like properties of screened hit compounds.

S.No Compound | TPSA Consensus Log Kp Synthetic
accessibility
(A2 Log Pomw
1. hit-1 96.45 1.64 -7.85 4.88
2. hit-2 122.70 2.24 -7.10 5.08
3. hit-3 109.36 281 -5.53 4.04
4, hit4 88.09 1.86 -7.33 3.27
5. hit-5 87.00 1.81 -7.30 4.04
6. hit-6 109.28 0.57 -8.75 4.19
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7. hit-7 109.28 2.34 -1.37 5.94
8. hit-8 130.08 0.16 -8.75 4.83
9. hit-9 88.38 2.38 -6.79 3.94
10. hit-10 104.73 1.68 -1.17 2.27
11. hit-11 124.32 3.46 -6.46 4.44
12. hit-12 121.67 1.74 -7.36 3.46

4.3.5 Molecular dynamics simulations

The stability and dynamic characteristics of the protein-hit molecule complexes were
determined using atomistic MD simulations with explicit solvent. MD simulations reveal detailed
information about protein-hit molecule interactions as a course of the simulations time that
contribute to their stable binding state, as well as the changes in the conformational states of protein
upon binding to the hit molecule. The apo and Zika virus NS5 MTase complexed with all the 12
selected hit molecules were carried out for 100 ns MD simulations. Out of these 12 hit molecules,
three hit molecules (hit-5, hit-9 and hit-11) obtained stability throughout MD simulations. Each
system within the initial and average structures were compared and then analyzed the
conformational changes of protein and the stability of hit molecules that bind to the protein. The

RMSD plots describe the extent of deviation of all atom positions in the apo and protein-hit
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complexes throughout MD simulations that demonstrated the protein stability throughout MD
simulations. It was observed that the screened hit molecules from ZINC database show good
stability when binding with Zika virus NS5 MTase protein and GTA molecule shows significant
stability throughout MD simulations. Based on RMSD plots, it was observed that the RMSD of
apo is 1.8 A; when complexed with SAM and hit5 (~ 2.1 A) and complexes with hit9 and hit11 (<
1.8 A) as shown in Figure 4.3A. The hit molecules and SAM also show lower than 2 A RMSD.
From RMSF plots, it is seen that the residues from loop regions (Arg43-Thr52, Argl77-Phel81

and Val253-Glu256) show greater fluctuations during MD simulations (Figure 4.3B).
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4.3.6 Hydrogen bonding interactions

One of the essential criteria for stable protein-ligand complex formation is hydrogen
bonding interactions, which hold the molecule tightly in the protein active site. Intermolecular
interactions in protein reference and screened hit molecules structures before and after MD
simulations showed that SAM makes hydrogen bonding interactions with Ser56, Glul111, Val132
and Aspl131 throughout MD simulations. The three hit molecules (hit-5, hit-9 and hit-11) also
make hydrogen bonding interactions with the active site residues (Val57, Ser58, Glul113, Val134
and Asp133). In hit-5 the oxygen atom on phenol group shows hydrogen bonding with Asp133
and Val134, the oxygen atom on C=0 of amide group shows hydrogen bonding with Glu133 and
O atom on sulfate group make hydrogen bonding with Arg86. In hit-9 OH of methoxy phenol
make hydrogen bonding with Ser86, the O atom of methoxy group forms hydrogen bonding with
Arg86 and His112, the O atom of furan exhibits hydrogen bonding with Glu113. In hit-11 the O
and N atoms of benzene sulfonamide show hydrogen bonding interactions with Ser58, Arg86 and
the N of phthalazine shows hydrogen bonding with Glul113, the O atom of phenyl group shows
hydrogen bonding with Asp133 and Vall32 as shown in Figure 4.4, indicating that these

interactions stabilize the complex formation.
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Figure 4.4: Interaction of residues Zika virus NS5 MTase complexed with hit molecules
throughout MD simulations A) NS5 MTase with SAM, B) NS5 MTase with hit-5, C) NS5 MTase

with hit-9 and D) NS5 MTase with hit-11.
4.3.7 Binding free energy calculations

The binding free energies of reference and screened hit compounds in this work were
analysed from MM-PBSA calculations as shown in Table 4.3. The contribution from electrostatic,
van der Waals and polar solvation energies indicate agreement with the reference molecule. The
binding free energies were observed to be SAM (-70.66 kJ/mol), hit-5 (-67.41 kJ/mol), hit-9 (-

70.57 kd/mol) and hit-11 (-62.19 kJ/mol).

Compound | van der Waals | Electrostatic Polar solvation | SASA AG

Name energy (kJ/mol) | energy (kJ/mol) (kJ/mol) (kJ/mol)
(kJ/mol)

SAM -192.22+/0.700 | -46.310+/0.418 | 185.74+/0.849 | -17.89+/0.044 | -70.66+/0.719

hit-5 -135.195+/0.849 | -24.110+/1.012 | 107.495+/1.407 | -15.59+/0.068 | -67.41+/1.249

hit-9 -168.16+/0.516 | -33.36+/0.664 | 147.534+/0.724 | -16.59+/0.050 | -70.58+/0.561

hit-11 -146.26+/0.647 | -56.01+/0.548 | 156.882+/1.158 | -16.790+/0.061 | -62.198 +/- 0.77

In order to explain the importance of active site amino acid residues in binding to the ligands, their
contribution to the binding energy was measured. The binding site residues Ser58, Glull3,
Aspl133 and Vall34 show the highest binding energy contribution, that is attributed to the
hydrogen bonding interactions observed in the residues while interacting with SAM and screened

hit molecules as shown in Table 4.4. From this analysis of binding energy calculations, it is
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suggested that hit molecules show good binding affinity with NS5 MTase and are therefore its

likely inhibitors.

Table 4.4: Contribution of amino acid residues in the Zika virus NS5 MTase protein to the binding

of SAM and screened hit molecules.

S.No | Amino acid | SAM hit-5 hit-9 hit-11
residues
(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)
1 Ser 56 -4.84 -2.45 -2.38 -10.32
2 Arg57 -1.06 -3.35 -1.50 -1.06
3 Glulll -37.21 -4.29 -0.18 -3.96
4 Aspl3l -36.99 -4.44 -0.18 -9.94
5 Vall132 -5.88 -4.97 -6.52 -3.74
6 Phel33 -1.93 -3.12 -8.39 -3.38
7 Aspl46 -14.51 -1.81 -2.96 -14.32
8 lle147 -28.24 -19.41 -15.43 -22.36

4.4 Conclusions
CADD techniques can be employed effectively to accelerate the development of
therapeutic agents for Zika virus disease. The cofactor, SAM was used for pharmacophore based

virtual screening of ZINC database. To investigate the binding interactions among protein and hit
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molecule complexes, molecular docking and MD simulations were used. The stability of the Zika
virus NS5 MTase bound to three hit molecules (hit-5, hit-9, and hit-11) was verified by using MD
simulations followed by binding free energy calculations. Overall, the results indicated that the
pharmacophore-based screening provided significant information towards comprehension of the
essential structural binding features when developing new Zika virus inhibitors to treat Zika

infection.

4.5 Zika virus NS5 RNA dependent RNA polymerase

4.5.1 Introduction

The RdRp synthesizes the genome of RNA in the absence of primer strand called as de
novo mechanism where in single nucleoside triphosphate is provided as a primer for nucleoside
polymerization to form a double-stranded RNA. The flavivirus RdRp incorporates a functional
nuclear localization sequence region, which is important for viral and host protein interactions.
NS5 interacts with the NS3 protease helicase as well as a number of host proteins (Yap et al., 2007;
Tay et al., 2015). The Zika virus NS5 protein serves as an antagonist due to its enzymatic functions.
That is because the NS proteins NS5 RdRp plays an important role in viral genome replication.
The 3-D structure of Zika virus NS5 RdRp is already reported in PDB. This protein has three
domains, called as finger (residues 321-488), palm (residues 481-541 and 609-714) and thumb
(residues715-903) (Figure 4.5). The structure of Zika virus NS5 RdRp has prominent similarities
with the Japanese encephalitis (JEV) NS5 RdRp, with the RMSD of 0.55 A, which is binding with
cofactor GTP at the active site. The missing residues in the crystal structure of Zika virus NS5

RdRp were built on the JEV NS5 RdRp structure. The active site of protein was defined by
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template structure JEV NS5 RdRp (PDB 4HDG) (Surana et al., 2014), extracted the GTP molecule
into Zika virus NS5 RdRp and this site was considered as an active site for developing new
inhibitors using the CADD approach. Based on the essential features of GTP, molecules were
screened from the Asinex database by applying various filters in order to find best molecules for
molecular docking studies. The CDOCKER docking methodology was used for docking the
molecules at the receptor active site in all possible conformations. The molecules were validated

using MD simulations and binding free energy calculations.

Surface and ribbon ribbon structure GTP interactions

Figure 4.5: Structure of Zika virus NS5 RdRp binding with GTP.

4.5.2 Materials and methods
4.5.2.1 NS5 RNA dependent RNA polymerase structure and preparation

Zika virus NS5 RdRp protein crystal structure is already reported at 1.8 A (Duan et al.,
2017). During preparation of protein the protein were subjected to addition of missing residues
and hydrogens. The water molecules and hetero atoms were removed by using UCSF Chimer 2.1.1
(Peterson et al., 2004). The 3-D structure of Zika virus NS5 RdRp was submitted to the Dali server
to find the template structure to build the missing residues. Dali was used to compare the residues

one-to-one and the method removes the amino acids with a mismatch between the two protein
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structures under comparison. This server performs three types of structure associations: (i) The
PDB search to compare one query structure with the members in the PDB to produce a list of
proteins that share similar structure. (ii) A pair-wise comparison to compare the protein structure
of interest with a set of 3-D structures that are provided by the user; (iii) Comparison of all
structures against all to generate a structural similarity matrix, a dendrogram, and a multi-
dimensional scaling projection of the set of structures defined by the user. The Dali server was
also used to perform PDB search comparison to find the protein structures similar to the query
(Zika virus NS5 RdRp) protein structure where the active site of a protein is known and provides
the crystal structure of various flaviviruses which are closely related to Zika virus NS5 RdRp
protein. The JEV NS5 RdRp (4HDG) was selected as the template structure for building the
missing residues in Zika virus NS5 RdRp.
4.5.2.2 Building of missing residues in 3-D structure of Zika virus NS5 RNA dependent RNA
polymerase

The missing residues in Zika virus NS5 RdRp were constructing by using template
structure JEV NS5 RdRp. By using the sequence alignment, a 3-D model of Zika virus NS5 RdRp
with the complete model was constructed by using MODELLER 9.17 (Sali & Blundell, 1993)
based on 4HDG. The generated models were evaluated based on their DOPE scores, with the
highest decreasing trend of DOPE score being ranked first. The template structure JEV NS5 RdRp
(4HDG) has cofactor GTP present in the active site. The two structures Zika virus NS5 RdRp
(5WZ3) and JEV NS5 RdRp (4HDG) were superposed to extract the GTP coordinates into

modeled structure of Zika virus NS5 RdRp protein.
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4.5.2.3 Structure based drug design

To increase the effectiveness of in silico screening in identifying active and novel hits, the
redocked cofactor GTP into Zika virus NS5 RARP protein was used for the structure-based
pharmacophore generation. In this study, the Asinex database with 500,000 exclusive structure

records was screened using a set of pharmacophore features.

4.5.2.4 Pharmacophore generation

After docking the GTP into active site of Zika virus NS5 RdRp protein, this structure was
used for the pharmacophore generation to identify the novel inhibitors development for Zika virus
NS5 RdRp. To develop the pharmacophore model for screening, initially, probable interactions
from the active site of Zika virus NS5 RdRp protein were generated by employing the interaction
generation protocol available in DS 3.5. The cofactor GTP, was used as a reference molecule to
generate intermolecular interactions. The parameters for both density of lipophilic sites and polar
sites were defined. Feature mapping tool available in DS 3.5 pharmacophores protocol was used

to map the feasible ligand features.

4.5.2.5 Library screening

The Asinex database was used in this study which comprises 500,000 exclusive structure
records were transferred to “Screen Library” protocol of DS 3.5 (Kabsch, 1976). In order to
identify the hit molecules, Asinex database was screened by using the best pharmacophore model
with preferred pharmacophore features and scored them on the basis of their fit value. In the Screen
Library protocol DS 3.5, a minimum of two and a maximum of six pharmacophore features were
chosen using a rigid fitting method of the pharmacophore and the small molecule. Based on their

pharmacophore fit value, the molecules were selected.
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4.5.2.6 Molecular docking

Molecular docking is an important application to identify the mechanism of protein-
inhibitor binding. Once the active site of a protein based on the key amino acid residues is
identified different ligand molecules can be docked into the active site of the protein such as Zika
virus NS5 RdRp. DS 3.5 was used to prepare the ligand molecules, hydrogens are added, and the
molecules were energy minimised using the CHARMmMm force field (Brooks et al., 1983). The new
inhibitors were docked using CDOCKER. The temperature of the system heated up to 700 K for
2,000 steps and then cooled to 300 K for 5,000 steps. The protein active site was described based
on GTP binding position and extended to the residues within its 5A cut-off distance, with a total
of 20 docking poses. To test the reliability of the CDOCKER docking protocol, the cofactor GTP
was docked into the active site of Zika virus NS5 RdRp. The docking results were analysed using
the PMF04 ligand scoring method (Muegge, 2006). Following molecular docking, the molecules

were further analysed using MD simulations.
4.5.2.7 Molecular dynamics simulations

Protein 3-D structures have an inherent conformational change. The binding conformations
of the designed compounds, their ability to stay bound to the active site, and the method of
functional control cannot be determined from the docking pose of a single frame of a protein bound
to a ligand. As a result, MD simulations of Zika virus NS5 RdRp bound to the hit compounds and
GTP were performed using GROMACS 5.1.4 software (Hess et al., 2008; Van Der Spoel et al.,
2005). The force fields for protein was generated using Amberff99sb (Da Silva et al., 2012) and
the AM1-BCC (Wang et al., 2006) charges were added to hit molecules and GTP and saved in

.mol2 format. The force fields for hit molecules and GTP was generated in Antechamber with

162



ACPYPE scripts. Each complex was solvated with SPC water models, and then CI- and Na* ions
were added for neutralization. The unit cell was adjusted to cubic box dimensions of 1.0 nm
(Berendsen et al., 1981). Treatment of long-range electrostatic interactions was done using the
particle mesh Ewald approach (Darden et al., 1993; Essmann et al., 1995). Using the LINCS
algorithm, the hydrogen bonds were restrained (Hess et al., 1997). The goal of the first stage of
MD simulations is to remove steric stress and enable the system to relax. To achieve this goal,
50,000 steps were run until the systems maximal force was less than 1000 kJ/mol/nm?. In order
for the solvents and ions to equilibrate around the protein, the system is switched to NVT,
equilibrated, and minimised for 100 ps. Once the system had the correct density, the equilibration
has been set to NPT 1 atm pressure and 300 K for 1000 ps. The approaches used for temperature
and pressure couplings are V-rescale and Parrinello-Rahman, respectively (Bussi et al., 2007;
Parrinello & Rahman, 1981). The final stage of MD simulations on apo Zika virus NS5 RdRp and
hit molecule complexes were carried up to 50 ns. The stability and conformational variations of
the complexes of apo, and protein-hit molecules, GTP complexes are shown by the RMSD and
RMSF graphs.

4.5.3 Results and discussions

The Zika virus NS5 RdRp crystal structure is already reported in PDB (5WZ3), it
comprises missing residues in crystal structure (Pro313-Leu321, 11e342-Thr347 and Ser406-
Glu425). The template protein structure was identified by submitting Zika virus NS5 RdRp to Dali
server. This server compares the 3-D structure of target protein to provide the crystal structure
PDBs which are structurally similar with Zika virus NS5 RdRp. Dali server identified the template
structure of JEV NS5 RdRp (4HDG). The template protein comprises GTP cofactor and shows

sequence identity of 67.34%. The sequence alignment between template JEV NS5 RdRp (4HDG)
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and target Zika virus NS5 RdRp (5WZ3) proteins was performed by ClustalW. These missing
residues in crystal structure of Zika virus NS5 RdRp protein were constructed by
MODELLER9.17. The modeled structure with GTP and sequence alignment shown in Figure

4.6A and 4.6B.

Figure 4.6A: The modeled structure of Zika virus NS5 RdRp complexed with GTP.
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Figure 4.6B: Sequence alignment and conserved active site residues involved hydrogen bonding

interactions of Zika virus NS5 RdRp (5WZ3) and JEV NS5 RdRp (4HDG).

4.5.3.1 Identification of active site and validation

Dali was used for validation of active site, as there is no crystal structure available for Zika
virus NS5 RdRp protein binding to cofactor or any other small molecule. The JEV NS5 RdRp
(4HDG) which is complexed with cofactor GTP in the active site was predicted. For the
authentication of binding site and docking method, the substrate that was bound to the protein was
removed and redocked the cofactor GTP into the defined active site cavity of Zika virus NS5 RdRp
by using CDOCKER protocol from DS 3.5. Selected the final docked pose based on the
CDOCKER score (PMF04 -146.84) and important interactions within the binding cavity residues

of Zika virus NS5 RdRp. The redocked ligand was located in the proximity of important amino
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acids such as, Arg460, Lys462, Lys471, Argd73, Trp539, Asp540, Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715, Arg739, Arg741 and Trp797. Thus, the redocking results demonstrated
that the ligand interacted well with the modelled Zika virus NS5 RdRp protein as shown in Figure

4.7.

Figure 4.7: Interaction of binding site residues of Zika virus NS5 RdRp with GTP from molecular

docking.

4.5.3.2 Feature mapping and pharmacophore generation

Structure-based pharmacophore modeling was used to understand the features which are
important for biological function of protein. The interactions of GTP with the amino acid residues
in the active center of the target protein Zika virus NS5 RdRp were an appropriate input to design

a structure-based pharmacophore model. There are two methods used to generate pharmacophores.
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The generation of interactions was analysed first by considering the docked model within certain
specific dimensions of the interacting region, and then the features were reduced by performing
feature mapping of GTP. The GTP features were mapped, yielding all possible pharmacophore
features of the ligand from the selected features. The pharmacophore of GTP was mapped using
the selected features, hydrogen bond acceptors and hydrogen bond donors. The feature mapping
server generated 66 features on GTP, out of these seven features were considered based on the
essential interactions between the receptor and ligand. Based on various interacting points on the
active site with GTP, four hydrogen bonding acceptor features, two hydrogen bonding donor
features and one negative ionizable feature were selected. The O6 atom of carbonyl group from
the nucleoside base forms hydrogen bond with Ser603. The O2 of y-phosphate forms hydrogen
bonding with Lys462 and Arg739. The O3 of y-phosphate with Arg459 in Zika virus NS5 RdRp.
The hydrogen bond donor features are; N2 atom of NH2 group on guanine ring forms hydrogen
bonding with Asp540. The O2 atom on ribose sugar moiety forms hydrogen bonding with Asp666
and one negative ionizable ion O2 atom of B-phosphate forms hydrogen bonding interaction with
Arg473. The selected pharmacophore features are shown in Figure 4.8. The pharmacophore model
was validated on 1000 molecules decoy set (inactive molecules) using DS 3.5. The pharmacophore
model successfully qualified the validation process. The seven featured validated pharmacophore

model was used for virtual screening of the Asinex database of small molecules.
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Figure 4.8: Pharmacophore features used for virtual screening of Asinex database.

4.5.3.3 Virtual screening and molecular docking

The virtual screening protocol relies on the use of filters to limit the number of compounds.
The finalised pharmacophore was employed to screen the Asinex database with 500,000
compounds, followed by molecular docking studies of the selected hit molecules. The finalised
pharmacophore model was used for virutral screeing of Asinex database based on the generated
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structure based pharmacophore model using screen library protocol avalible in DS 3.5 with the
best conformation generation and flexible fitting methods. This virtual screening retrieved 29,427
molecules from the database. These hit molecules were filtered and ranked based on lower RMSD
(< 0.3 A) and the Lipinski’s rule was applied in prefiltering process. The top 59 hit molecules
recognised through virtual screening were then docked using the CDOCKER docking program to
confirm their binding conformation and affinity to Zika virus NS5 RdRp (5WZ3). The best-scoring
molecules were represented graphically for nonbonding interactions such as hydrogen bonds and
pi-stacking. PMF04 scores were used to assess the binding efficiency of protein-hit molecule
complexes and GTP. The scores of the newly identified hit molecules ranged from -128.08 to -
42.17. The greater docking score was identified for GTP and hit-1 (-146.84 and -128.08). These
59 molecules are docked into 5 A cavity present at GTP binding site in the Zika virus NS5 RdRp
protein. Twenty docking conformations were generated for each molecule by CDOCKER to
predict the best conformer based on CDOCKER score and nonbonding interaction with protein.
Out of the 59 molecules, 12 best molecules were selected for MD simulations studies as shown in

Table 4.5.

Table 4.5: Fit values, docking results of GTP, and hit molecules screened from Asinex database.
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Docking Score

S.No | Compound | Fitvalue | ppFo4 Hydrogen bonding | Active site interactions
interactions
1 GTP 521 -146.84 Argdh9,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Argd73, | Argd73, Trp539, Asp540,
Arg739 Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
2. hit-1 3.45 -128.08 Argd59,  Lys462, | Arg460, Lys462, Lys471,
Ser603, Arg473 and | Arg473, Trp539, Asp540,
Arg739 Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
3. hit-2 3.155 -81.59 Argdh9,  Lys462, | Arg460, Lys462, Lys471,
Argd73, Asn6l2, | Argd73, Trp539, Asp540,
Asp666 and Arg739 | Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
4, hit-3 2.91083 | -76.52 Arg459,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Argd73, | Argd73, Trp539, Asp540,
Arg739,  Trp797, | Ser603, Thr608, Asn612,
Ser798 and His8 00 | Asp666, Asp669, Ser715,
Arg739 and Arg741
5 hit-4 3.73602 | -76.49 Argd59,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Arg473, | Argd73, Trp539, Asp540,
Arg739 Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
6. hit-5 2.49697 | -76.25 Arg4h9, Lys462 | Arg460, Lys462, Lys471,
and Arg473 Arg473, Trp539, Asp540,
Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
7 hit-6 2.6132 -76.13 Arg459,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Argd73, | Argd73, Trp539, Asp540,
Arg739,Trp797, Ser603, Thr608, Asn612,

Ser798 and His8 00

Asp666, Asp669, Ser715,
Arg739 and Arg741
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8 hit-7 3.50634 | -75.11 Arg459, Lys462 | Arg460, Lys462, Lys471,
and Ser603 Arg473, Trp539, Asp540,
Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
9 hit-8 2.98349 | -74.39 Argdb9,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Arg473, | Argd73, Trp539, Asp540,
Arg739 Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
10 hit-9 3.155 -74.35 Arg459, Lys462 | Arg460, Lys462, Lys471,
and Ser603 Arg4d73, Trp539, Asp540,
Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
11 hit-10 3.07037 | -73.61 Argdh9,  Lys462, | Arg460, Lys462, Lys471,
Ser603,  Arg473, | Argd73, Trp539, Asp540,
Arg739 Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
12 hit-11 3.42 -56.13 Argdh9,  Argd73 | Arg460, Lys462, Lys471,
and Arg739 Arg473, Trp539, Asp540,
Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741
13 hit-12 2.64 -42.17 Argdh9,  Lys462, | Arg460, Lys462, Lys471,

Argd73, Arg739

Arg473, Trp539, Asp540,
Ser603, Thr608, Asn612,
Asp666, Asp669, Ser715,
Arg739 and Arg741

4.5.3.4 Molecular dynamics simulations

The stability and dynamic characteristics of the protein-hit molecule complexes were

determined using atomistic MD simulations with explicit solvent. The details into the insights of

intermolecular interactions between the receptor-ligand in motion is provided by MD simulations

studies, which contribute to the protein stable bound conformation, as well as the influence of




ligand binding on protein conformational changes. Protein ligand-bound complexes were studied
in a dynamic environment to determine the stability of interactions over time. In this study, apo
protein and Zika virus NS5 RdRp complexed with GTP and screened hit molecules were used for
50 ns MD simulations. Out of the twelve hit compounds, four compounds obtained stability
throughout MD simulations. The average structures were generated from 50 ns of MD simulations
trajectories for comparison with the initial structures of each system to analyse the conformational
changes of protein and stability of hit molecules binding to protein. The superposition of the initial
and average structures demonstrate that the molecules have good stability and lower RMSD, which
is confirmed by conserved hydrogen bonding interactions with active site residues, indicating that
these molecules are suitable as Zika virus NS5 RdRp inhibitors. The extent to which all atom
positions in the apo and protein-hit complexes deviate during MD simulations is assessed by the
RMSD plots. The overall conformational changes were analyzed through the Ca-atom RMSD as
a function of MD simulations time. From the plots it can be seen that the apo protein gained
stability after the initial ten ns with an average RMSD of 0.33 nm throughout MD simulations and
when binding with hit molecules it shows lower RMSD (< 0.3 nm). The hit molecules also show
less than 0.2 nm RMSD (as shown in Figure 4.9). From these results it is evident that GTP and hit
molecules possess better binding and acquire stable interactions at the binding pocket of NS5

RdRp throughout the 50 ns of MD simulations.
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Figure 4.9: RMSD plots of Zika virus NS5 RdRp apo and bound with GTP, screened hit

molecules.
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From the RMSF plots it was identified that the Ca-backbone atoms Figure 4.10 for majority of
the protein amino acid residues have lower fluctuations (< 0.2 nm), and only the residues that form
a loop display higher fluctuations and reaches until 0.5 nm. The amino acid residues in Zika virus
NS5 RdRp protein from GIn315-Leu323, is the loop residues, Thr348-GIn352 in helices and
Trp748-Thr753 amino acids adjacent to the priming loop show significant fluctuations during MD
simulations in the apo Zika virus NS5 RdRp, and when complexed with hit molecules. The
residues Glu465-Phe487 present in loop-p-sheet-helix shows fluctuations in all complexes. By the
comparison of the RMSF plots from apo, GTP and hit molecules complexed protein, it was
observed that the complexed protein showed greater stability compared with apo Zika virus NS5

RdRp protein.
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Figure 4.10: RMSF plot of Zika virus NS5 RdRp apo, bound with GTP and screened hit

molecules.
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4.5.3.5 Hydrogen bonding interactions

For the majority of receptor-ligand complexes, the formation of hydrogen bonds represents
one of the crucial interactions required to keep the ligand molecule firmly in the receptor binding
cavity. The hydrogen bonding interpretation of the four hit molecule complexes was performed to
investigate their hydrogen bonding network at the binding site based on MD simulations. Based
on a comparison of the initial input and average structures of hit molecules when bound to Zika
virus NS5 RdRp, it was revealed that ligands formed several nonbonding interactions with the
binding pocket residues (Lys462, Arg473, Argd59, Asp540, Ser603, Arg742, Arg739 and
Trp800). Apart from these interactions the characteristic hydrogen bonds with Lys462, Arg473,
Arg459, Ser603, Arg739, Thr796 and Trp797 were retained in all complexes throughout MD

simulations, indicating these interactions stabilized the complexes as shown in Figure 4.11.
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Figure 4.11: Hydrogen bonding interactions of GTP and screened hits with Zika virus NS5 RdRp

MD simulations.

4.5.3.6 Binding free energy analysis

The binding free energies of GTP and screened hit molecules in this work were estimated

using MM-PBSA and indicated in Table 4.6. The contribution from electrostatic, van der Waals

and polar solvation energies show compatibility with the reference (GTP) molecule. The binding

energies were observed to be GTP (-204.66 kJ/mol), hit-2 (-96.41 kJ/mol), hit-3 (-95.01 kJ/mol)

hit-5 (-88.91 kJ/mol) and hit-7 (-74.58 kJ/mol).

Table 4.6: Binding energy of Zika virus NS5 RdRp bound with GTP and screened hit molecules.

Compound | van der Waals | Electrostatic Polar solvation | SASA AG (kJ/mol)
Name energy (kJ/mol) | energy (kJ/mol) (kJ/mol)

(kJ/mol)
GTP -192.22+/0.700 -96.425+/- 0.00 | 102.156 +/- 0.00 | -18.136+/-0.00 | -204.625+/0.719
hit-2 -135.195+/0.849 | -24.110+/1.012 | 107.495+/1.407 | -15.59+/0.068 | -96.41+/1.249
hit-3 -155.663+/- 0.349 | -6.390 +/- 0.17 | 83.511 +/-0.55 | -16.472+/-0.03 | -95.007 +/- 0.52
hit-5 -144.68+/-0.55 -46.15+/-0.43 115.75+/-0.87 -13.81+/-0.05 | -88.91+/-0.63
hit-7 -158.16+/0.516 -38.36+/0.664 | 138.534+/0.724 | -16.59+/0.050 | -74.58+/0.561

In order to explain the importance of active site amino acid residues in binding the ligands,

their contribution to the binding energy was measured. The contribution based on energy

decomposition analysis of majorly participating residues in Zika virus NS5 RdRp to the
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interactions of hit molecules are Arg459, Lys462, Arg4d73, Trp539, Asp540, Ser603, Gly604,
Arg731, Arg739, Thr796 and Trp797. The energy contribution of GTP and screened hit
compounds are shown in Table 4.7. GTP showed greater contribution to the amino acid residues
in the binding pocket, compared to the other hit compounds. The screened hit molecule bound to
NS5 RdRp showed high contribution from the residues Arg459, Lys462, Asp540 and Arg739 and
the residues Trp539 and Gly604 show lower contribution. Figure 4.12 represents the contribution
from binding cavity amino acid residues to the formation of a complex. The compounds discovered
through the virtual screening have nearly the same and greater contributions in comparison with
the GTP. By this analysis of binding energy calculations, it was suggested that hit molecules show

good binding affinity with Zika virus NS5 RdRp.

Table 4.7: Residue-wise contribution (kJ/mol) of Zika virus NS5 RdRp with GTP and screened

hit molecules.
Residues | GTP hit-2 hit-3 hit-5 hit-7
Arg459 -67.44 -46.60 -9.07 -9.44 -62.77
Lys462 -42.28 -18.96 -16.76 -22.26 -33.33
Argd73 -18.77 -7.05 -11.99 -3.04 -4.84
Trp539 -8.19 -6.40 -4.39 -2.98 -6.23
Asp540 -62.15 -41.30 -19.15 -57.60 -14.35
Ser603 -28.23 -5.94 -15.15 -19.76 -7.09
Gly604 -9.24 -4.64 -0.31 -0.65 -3.07
Arg731 -36.20 -18.97 -21.51 -19.76 -9.14
Arg739 -78.04 -32.74 -69.87 -3.43 -56.07
Thr796 -32.32 -26.94 -28.33 -21.50 -14.19
Trp797 -26.18 -10.15 -19.02 -24.97 -18.31
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Figure 4.12: Residue-wise contribution energy (kJ/mol) of Zika virus NS5 RdRp binding with

GTP and screened hit molecules.
4.5.4 Conclusions

CADD methods can be used successfully to accelerate the development of therapeutic
agents for Zika virus disease. The pharmacophore-based virtual screening method combines
modelling based on ligands and modelling based on structures. Compared to a straightforward
ligand-based pharmacophore search, structure-based pharmacophore appears to be more effective
at locating potent hits with structural variety. Four hit molecules (hit-2, hit-3, hit-5, and hit-7) that
were bound to the Zika virus NS5 RdRp were found to be stable using MD simulations. Overall
examination of these findings indicated that the design of new Zika virus inhibitors for the
treatment of Zika infection was made possible by the structure-based pharmacophore modelling,
which supplied the necessary information for understanding the crucial structural binding

properties.
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CHAPTER-5

Computer aided design of NCI natural
products as inhibitors to SARS-CoV-2
main protease
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5.1 Introduction

Acute respiratory illness caused by the SARS-CoV-2 was initially identified as the
COVID-19 in Wuhan, China, in December 2019. Nearly 30K nucleotides from the SARS-CoV-2
genome are translated into the overlapping ppla and pplb. Two proteases, 3C-like and papain-
like, are present in the ppla polypeptide. Leu-GIn|(Ser/Ala/Gly) is the particular recognition
sequence motif for cleavage (|) by the main protease. Because it cleaves polyproteins upon
translation into the host cell cytosol, the protease enzyme is essential in viral protein growth and
development for many viruses. Drug targets for viral proteases are common. Slowing the formation
of mature viral particles can be slowed by inhibiting viral protease. To date, numerous antiviral
drugs have been developed to combat viral infections by targeting proteases. Among the FDA
approved drugs are the HIV-1 protease inhibitors (tipranavir, darunavir, amprenavir, lopinavir,
saquinavir, atazanavir, indinavir, ritonavir, and nelfinavir) (Lv et al., 2015) and hepatitis C virus
(HCV) NS3/4A protease inhibitors (boceprevir). As a result, developing antiviral drugs that inhibit
the main protease of SARS-CoV-2 could have clinical applications. The main protease of
coronaviruses is a potential drug target because it is responsible for its own maturation (Ziebuhr

et al., 2000).

The crystal structure of SARS-CoV-2 main protease (PDB id: 6LU7) is a homodimer. Each
protomer contains three domains I, Il and Ill (Zhang et al., 2020). The crystal structures of the
protein binding with the peptide inhibitor N3 (Jin et al., 2020) and a-ketoamide inhibitor (6Y2G)
(Zhang et al., 2020) shown in Figure 5.1A and B are reported. Another inhibitor GC376, a broad-

spectrum dipeptidyl inhibitor bound at the active site of main protease (7CB7) (Wang et al., 2020)
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is also reported. So far, research on dengue viruses has shown that the molecules in the NCI
Diversity Database have good inhibitory action (Abduraman et al., 2018). These positive outcomes
led to the virtual screening of compounds from natural product datasets in the NCI database using
docking at the main protease active site. Following this, estimates of their binding free energies to
determine their binding affinity when complexed with SARS-CoV-2 main protease, molecular
docking and MD simulations were used to examine the binding interactions of the screened

compounds.

hydrophobic surface and ribbon ribbon hydrogen bonding residues

B

Figure 5.1 A) SARS-CoV-2 main protease binding with N3-inhibitor (PDB id: 6Y2G)

B) SARS-CoV-2 main protease binding with a-ketoamide inhibitor (PDB id: 6LU7).
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5.2 Materials and Methods

5.2.1 Protein preparation

The crystal structures of SARS-CoV-2 main protease complexed with inhibitor N3 (PDB
id: 6LU7) (Jin et al., 2020) and a-ketoamide inhibitor (PDB id:6Y2G) (Zhang et al., 2020)
deposited in PDB were used for this study. The heteroatoms and water molecules were deleted
from the protein crystal structures, hydrogen atoms were added in order to prepare the protein for
screening the molecules and the 3-D structure coordinates were saved in .pdbqt format for virtual

screening using PyRx server (Dallakyan & Olson, 2015).

5.2.2 Ligand preparation

The coordinates of N3 and a-ketoamide inhibitors were extracted from the crystal
structures of main protease. Library of compounds from the NCI natural compounds set database
(11, 11, 1V and V) (https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets) comprising 1,046
molecules were downloaded in .sdf format. Hydrogen atoms were added at pH 7.0 and the

coordinates of the compounds were saved in .pdbqgt format.

5.2.3 Virtual screening and molecular docking

The docking-based virtual screening using PyRx software was performed as the initial step
to identify potential main protease inhibitors. The 1,046 natural compounds were screened by
docking into the active site at the a-ketoamide inhibitor binding location in the PDB id: 6Y2G.
The compounds were ranked according to their binding mode and scoring analysis. The best
molecules obtained from virtual screening were docked using AutoDock Vina (Trott & Olson,

2010; Morris et al., 2009) that employs protein-ligand flexible docking using the Broyden-
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Fletcher-Goldfarb-Shanno method. The protein structure with all the compounds was loaded and
ten conformations were generated for each ligand molecule by AutoDock Vina, the grid box was
centered at 30.71, 50.48, 4.10 A in x, y, z coordinates, respectively, with a grid spacing; 0.492 A,
box size of 25 x 25 x 25 points and exhaustiveness was set to 10. Initially, the molecules were
loaded; torsions were set and saved in .pdbqt format. The screened-in molecules were docked
within a 5 A cavity defined around the a-ketoamide binding pocket in the SARS-CoV-2 main
protease. The best conformer selected based on binding affinity and the number of hydrogen
bonding interactions between the docked pose of natural product and protein were manually
visualized. The virtual screening and molecular docking methods were validated by redocking the

crystal ligands N3 and a-ketoamide inhibitors into the receptor active site.
5.2.4 Validation of molecular docking

The top-ranked molecules from AutoDock Vina were further proceeded for another round
of docking studies using CDOCKER (Gagnon et al., 2016) available in DS 3.5. A sphere of 5 A
radius was generated around a-ketoamide inhibitor to define the active site of protein. Ten docking
poses were generated for each molecule in the protein active site. The binding conformations of
the molecules in SARS-CoV-2 main protease were analyzed using “scoring ligand poses”
implemented in receptor-ligand interactions protocol in DS 3.5. The scoring functions PLP1, PLP2
and PMF (Gehlhaar et al., 1995; Parrill et al., 1999; Muegge et al., 1999; Muegge 2006) were used
to assess the docking poses. The selection of docking pose was based on top scores and
intermolecular interactions with SARS-CoV-2 main protease. The best hit molecules chosen from
both AutoDock Vina and CDOCKER docking methods were subjected to study their drug-like

properties.
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5.2.5 Lipinski rules and ADME properties

The drug-like properties of the best docked compounds were studied by analyzing the
pharmacokinetics profile using the SwisSADME server. This is a software tool to calculate
molecular properties such as ADMET and physicochemical properties such as solubility,
lipophilicity and pharmacokinetics. The Lipinski's rule of five (Lipinski et al., 1997; Lipinski et
al., 2012; Lipinski, 2004) are an essential criterion to ensure a drug-like profile for orally
administered drugs. The hit molecules that qualify the ADME properties were studied by MD

simulations studies in complex with SARS-CoV-2 main protease.
5.2.6 Molecular dynamics simulations

MD simulations of the apo and SARS-CoV-2 main protease in complex with hit molecules
was carried out using GROMACS-5.1.4 for 150 ns. These studies reveal the stability of protein-
ligand complexes during MD simulations. The Amber99sb force field (Hornak et al. 2006) was
applied to the protein, force fields were assigned to the small molecules using ACPYPE script (Da
Silva et al., 2012) with AM1-BCC charges in Antechamber (Wang et al., 2006). The molecular
systems were immersed in a cubic box, SPC waters were added to the system, Na* and CI ions
were added to neutralize (Berendsen et al., 1981) the systems and periodic boundary conditions
were applied. Energy minimization was carried out with a tolerance of 1000 kJ/mol/nm?. The
systems were heated until 300 K for 100 ps; in the subsequent step, the system was equilibrated at
1 atm and 300 K for 1000 ps until it reaches proper density. The temperature was maintained using
a V-rescale thermostat (Bussi et al., 2007) and Parrinello-Rahman method was used to control the
pressure (Parrinello & Rahman 1981). The long-range electrostatics were handled using the

particle mesh Ewald method (Darden et al., 1993 and Essmann et al., 1995). The equilibration of
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molecular systems was performed under NVT and NPT ensembles for 1000 ps. The Lennard Jones
interactions and the real-space electrostatic interactions were truncated at 9 A. Hydrogen bonds
were constrained using the LINCS algorithm (Hess et al., 1997). The coordinates from production
MD trajectories were generated and saved for every 2 ps. The final models in all the systems were
obtained by averaging the snapshots from the trajectories generated by MD simulations after the
structure stabilization was achieved. The RMSD of the Ca-atoms concerning their starting
structures was calculated using gmx rms, and the RMSF were calculated using gmx rmsf
commands in GROMACS. The xmgrace software was used to plot the data, UCSF Chimera
(Pettersen et al., 2004) was used for structure superposition and PyMOL was used for cartoon
image generation. For the sake of comparison; apo, N3 and a-ketoamide bound SARS-CoV-2 main

protease were also studied by MD simulations.
5.2.7 Binding free energies of protein-ligand complexes

The protein-ligand binding affinities describe the extent of intermolecular recognition. The
ligand binding free energies were calculated based on MM-PBSA approach (Kumari et al., 2014)

using g_mmpbsa tools.

The LIE (AlmIof et al., 2004 and Brandsdal et al., 2003) was computed as the mean of van der
Waals (vdW) and coulomb (cou) interaction energy differences of the inhibitor with its
neighboring atoms upon incorporation, that is, the individual ligand in the solvent (unbound state
denoted as subscript u) and the inhibitor in the binding mode with SARS-CoV-2 main protease
(bound state denoted as subscript b). The ligand binding free energies were calculated using gmx
energy and gmx lie for the SARS-CoV-2 main protease-hit molecule complexes from the output

trajectories of MD simulations.
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5.2.8 Normal mode analysis and mechanical stiffness

NMA can provide a quick and systematic investigation of protein dynamics. Elastic
network model-based NMA was developed using dihedral angels as independent variables for all
molecular systems using the software suite of programs in Prodynamics (Uyar et al., 2011; Atilgan
etal., 2001). Mechanical stiffness plots of all molecular systems in response to all possible pulling
directions were constructed by using ANM using the software suite of programs in Prodynamics

(Eyal et al., 2015).

5.2.9 Principal component analysis

PCA was performed to study the overall motion of SARS-CoV-2 main protease in all the
simulated systems using MODE-TASK (Ross et al., 2018). A 3N x 3N covariance matrix was
created using Cartesian coordinates, followed by the construction of eigenvectors by
diagonalization of the covariance matrix. The PCA was calculated from 0 to 150 ns MD
simulations trajectories.

5.3 Results and discussion

The crystal structure of SARS-CoV-2 main protease has three domains: domain I (1-99 amino acid
residues), domain Il (100-182 residues) and domain 111 (199-307 residues). Domains | and 11 are
each made up of a six-stranded B-barrel, with the substrate binding site located at the intersection

of the two domains. The binding site is made up of subsites S1, S2, S3, S4, and S1', which are
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represented in Figure 5.2 based on the position of the substrate (Jin, Zhenming, et al., 2020).

Figure 5.2: Subsites of SARS-CoV-2 main protease N3 and a-ketoamide binding site.

The domains I and I1, which are linked to hinge region residues (182-198), assist in forming
the S3 and S4 subsites. Based on the crystal structure of the a-ketoamide bound protein, the lactam
ring at the P1 position of the inhibitor is in the S1 subsite formed by the side-chains of Phe140,
Asnl42, Glul66, His163 and His172. The lactam nitrogen at position P1 forms hydrogen bonds
with the Phe140 main-chain carbonyl oxygen. The cyclopropyl methyl group at P2 is incorporated
into the S2 subsite constituted by His41, Met49, Tyr54, Met165 and Aspl87 side-chains. The
inhibitors carbonyl oxygen close to the lactam ring forms a hydrogen bond with the His41 side-
chain. The amide nitrogen located between the lactam and cyclopropyl methyl groups forms
hydrogen bonds with His164 main-chain carbonyl oxygen. The carbonyl oxygen on pyridone
forms hydrogen bonds with the main-chain NH of Glu166. The inhibitors OH functional group on
imine carbon forms hydrogen bonds with the main-chain NH of Ser144 and Cys145 in the S1'

subsite. The N3 inhibitor covalently bonded with Cys145 and hydrogen bonded with Phel40,
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Gly143, His164, Glu166 (S1 subsite), GIn189, and Thr190 (S4 subsite) (Jin, Z. et al., 2020). Both

crystal structures are highly superimposable, with a low RMSD of 0.69 A.

5.3.1 Virtual screening and molecular docking

The N3 and a-ketoamide inhibitors binding site was considered as the active site of SARS-
CoV-2 main protease. PyRx server based virtual screening of natural products (1,046 molecules)
into the active site of main protease successfully screened 736 potential hit molecules. These
screened-in molecules were docked into the SARS-CoV-2 main protease active site using
AutoDock Vina. The N3 and a-ketoamide inhibitors docked into the protein active site with
binding affinity -7.8 kcal/mol and -9.6 kcal/mol, respectively, and formed hydrogen bonding
interactions similar to the crystal structure. Thirty natural product molecules were retrieved with
AutoDock Vina score lower than -7.0 kcal/mol that also contribute hydrogen bonding interactions
similar to the reference molecules. These 30 molecules were studied for another round of docking
by CDOCKER using receptor ligand interaction protocols available in DS 3.5. The docking
protocols validated by redocking the reference molecules N3 and a-ketoamide at the active site of
SARS-CoV-2 main protease is shown in Figure 5.3. Eight best compounds Table 5.1 were
selected based on intermolecular hydrogen bonding interactions with SARS-CoV-2 main protease

active site and the highest docking scores from AutoDock Vina and CDOCKER.
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Selected docking pose of N3 with SARS-CoV-2 main protease initial
(green) docked pose (cyan)

GLN1 LA193

o-ketoamide initial (green) docked pose (yellow)
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Selected docking pose of a-ketoamide with SARS-CoV-2 main protease
initial (green) docked pose (yellow)

Figure 5.3: Redocking of N3 and a-ketoamide at active site of SARS-CoV-2 main protease.

Table 5.1. Docking scores of N3, a-ketoamide and screened molecules along with the interacting

residues in the SARS-CoV-2 main protease binding site.

S Compound | AutoDock | CDOCKER score Hydrogen Active site residues
No | name Vina PLP1 |-PLP2 | -PME | bonding
score forming
(kcal/mol) residues
Phel40, Leu27, His41, Leu50,
Gly143, Phel40, Leul41,
1. N3 -7.8 119.02 | 71.73 | 44.22 | Cysl45, Asnl42, Gly143,
His164, Serl44, Cysl145,
Glul6e, His163, His164
GIn189 Met165, Glul66,
Thr190 Leul67, Prol68,

GIn189, Thr190

Leu27, His41, Leu50,
Phel40, Leul41,
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a-ketoamide | -9.6 78.98 |38.17 |46.39 | His4l, Asnl42, Gly143,
Phel140, Serl44, Cysl145,
Serl44, His163,His164
Cys145, Met165, Glu166,
His164, Leul67, Prol68,
Glul66 GIn189
Phel40, Leu27, His41, Leu50,
Leul4dl, Phel40, Leul4l,
NSC36398 -8.1 95.76 | 97.49 | 18.22 | Serl44, Gly143, Serl44,
Met165, Cys145, His163,
Glul66, His164 Met165,
GIn189 Glul66, Leul67,
Pro168 and GIn189
His41, Phel40 | Leu27, His41, Leu50,
Serl144, Phel40, Leul41,
Glul66 Gly143, Ser144,
NSC281245 | -8.0 109.47 | 94.08 | 54.88 Cys145, His163,
His164 Met165,
Glul66, Leul67,
Pro168 and GIn189
Phe140 Leu27, His41, Leu50,
Gly143, Phel40, Asnl142,
NSC11926 -7.8 86.04 | 40.27 |41.69 | Serl44, Gly143, Serl44,
Cys145, Cys145, His163,
Glul66 His164 Met165,
Glul66, Leul67,
Pro168 and GIn189
His41, Leu27, His41, Leu50,
Gly143, Phel40, Leul4l,
NSC44175 -7.8 98.62 |67.12 |42.11 | Cysl4s5, Asnl42, Gly143,
Glu166 Serl144, Cys145,
His163, His164,
Met165, Glu166,
Leul67, Prol68,
GIn189
Leul4l, Leu27, His41, Leu50,
Gly143, Phel40, Leul4l,
NSC5113 -7.6 75.13 | 61.32 |22.13 | Serl44, Gly143, Ser144,
Cysl145, Cys145, His163,
Glul66 His164 Met165,
Glul66, Leul67,
Pro168, GIn189
Leul4dl, Leu27, His41, Leu50,
Gly142, Phel40, Leul4l,
NSC107067 |-7.6 102.59 | 74.27 | 10.25 | Serl44 Gly143, Serl44,

Cys145, His163,
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His164 Met165,
Glul166, Leul67,
Pro168, GIn189

Serl44, Leu27, His41, Leu50,
His163, Phel40, Leul41,
9. NSC22842 -7.5 74.3 70.76 | 11.68 | Glul66 Gly143, Serl44,
Cys145, His163,
His164 Met165,
Glul66, Leul67,
Pro168, GIn189
Serl44, Leu27, His41, Leu50,
Asnl42, Phel40, Leul4l,
10. NSC94600 -7.3 78.97 62.31 |8.2 Glul66 Asnl42, Gly143,

Serl44, Cysl145,
His163, His164,
Met165, Glul66,
Leul67, Prol68,
GIn189

5.3.2 Drug-like properties

The eight molecules selected from both docking methods were assessed for Lipinski's rule

of five and ADME properties. The results shown in Table 5.2 reveal that the selected molecules

were within the acceptable range of synthetic accessibility (score less than 5.93), TPSA was

between 20 and 140 A, lipophilicity; expressed as cLogP was less than 4.4, and water solubility

expressed as Log S shows that most molecules are soluble or moderately soluble in water. The

skin permeation possibility expressed as Log Kp was also reasonable, indicating the possibility of

skin permeation. The ADME properties also lie within the range of acceptable values. Based on

these results, all the eight hit molecules were selected for in silico validation using MD simulations.
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Table 5.2. Drug-like properties of reference and screened NCI natural compounds.

S.No | Compound TPSA A2 LogPomw Log Kp Synthetic
(cm/s) accessibility
1 N3 193.39 2.48 -8.40 6.79
2 a-ketoamide 172.80 1.72 -8.15 5.54
3 NSC5113 100.13 4.40 -4.90 4.23
4 NSC107067 124.54 2.55 -5.28 5.93
5 NSC11926 110.81 2.30 -5.85 2.63
6 NSC22842 83.81 2.46 -5.98 3.16
7 NSC36398 127.45 0.52 -5.79 3.52
8 NSC44175 80.92 3.16 -5.43 2.21
9 NSC281245 72.83 3.78 -5.94 5.42
10 NSC94600 88.14 2.71 -5.86 3.41

Standard values for reference (Ertl P et al., 2000; Daina et al., 2014; Daina et al., 2017; Potts et
al., 1992) TPSA = 0 to 140 A?, Log Pow = -4.0 to 5.6, Log Ky= -6.1 to -0.19 cm/s, Synthetic

accessibility scale = 1 to 10
5.3.3 Molecular dynamics simulations

Classical MD simulations of all the selected molecular systems; apo SARS-CoV-2 main
protease, complexes with inhibitors N3, a-ketoamide and the screened-in molecules was
performed using GROMACS 5.1.4 for 150 ns. Out of eight screened-in hit molecules, four
molecules (NSC36398, NSC281245, NSC44175 and NSC11926) showed stability at the active
site of SARS-CoV-2 main protease as shown in Figure 5.4. The covalent bond between the N3
inhibitor and active site residue Cys145 was not observed during the MD simulations because the

Amber99sb force filed cannot account for a covalent bond formation.
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NSC11926 " NSC281245

Figure 5.4: Location of the stabilized hit molecules in the SARS-CoV-2 main protease active site

throughout MD simulations.

Studies on natural compounds-like bioactive molecules are reported as inhibitors of SARS-
CoV-2 drug targets. For example, assafoetidnol A, conferol, farnesiferol B, sesamin, sesaminol,
sesamolin show potential activity in targeting main protease, spike protein, and human ACE-2
receptors (Natesh, Jagadish, et al. 2021). Plant based natural compounds such as apigenin,
coriandrin, curcumin, glabridin and oleanolic acid (Sampangi-Ramaiah et al., 2020, Verma et al.,
2020) have been reported as main protease inhibitors, and some of the spice molecules (piperine,
capsaicin, gingerol and terpinen-4-ol) (Rout et al., 2020) have been shown to bind spike protein
and main protease. All these studies describe those natural compounds showing good inhibitory
activity on SARS-CoV-2 proteins. The inhibition of these target proteins may lead to either
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attenuation of viral replication or reduce the infectivity of this virus. In this work it was observed
that the screened molecules from natural compounds NCI database show good binding affinity and
nonbonding interactions with SARS-CoV-2 main protease. The results demonstrated that protein
attains stability when it binds with screened-in hit molecules and maintain the hydrogen bonding
interactions with important amino acid residues compared with the reference molecules (N3 and
a-ketoamide). The amino acid Cys145 shows covalent interactions with reference molecules,
which also maintains distance with screened-in hit molecules throughout the MD simulations.
Cys145 interaction is most significant in inhibition of the drug inside the active site of SARS-
CoV-2 main protease. The RMSD plots in Figure 5.5A revealed that the structures attained
stability within the first 10 ns of MD simulations. The main protease when complexed with
NSC36398 showed greater RMSD (~ 0.3 nm) among all the systems studied. The N3, a-
ketoamide, NSC44175, NSC281245 bound main protease displayed lower RMSD (~ 0.22 nm)
indicating greater structural stability of these four complexes. The screened-in hit molecules
NSC11926, NSC281245 and NSC44175 exhibit lower RMSD (lower than 0.1 nm) whereas the
reference molecules N3 and a-ketoamide showed relatively higher RMSD as shown in Figure
5.5B. The RMSF plots analyzed the residual fluctuations of protein during MD simulations. Higher
fluctuations are observed in the regions; Asp153-Val157 and Asn221-Thr225 that are away from
the active site and dimer interface of the SARS-CoV-2 main protease. The region, Leu50-Arg60
that contributes to the S2 subsite undergoes fluctuations up to 0.25 nm, the region Glu270-Gly283
located at the intersubunit interface shows fluctuations between 0.2 to 0.3 nm in all the molecular
systems studied. The residues located in the region Cys117-Pro122 show greater fluctuations in

N3 and a-ketoamide complexed proteins, Ser139-Cys145 (S1° subsite) region also shows higher
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fluctuations in the N3 binding protein. These regions of fluctuations in the apo and complexed

SARS-CoV-2 main protease are shown in the RMSF plots, Figure 5.5C.

"m WMMWHWMM Nw« vMu Wy

— _\.%(‘-0417
NSC11926

ik, MMW‘W?

05 —— 04 —
04} o =,
w== N3-bound 0.3
' b iy, | =
203 ,b ‘h( ) j I‘I I ' iy m Nscasnes o
= NSC44175 s
g j“\(lﬂ MM“W &ﬂ lan w‘“' ‘ i —NSC11926 2 02
02 L . W 1 =
0.1 - i N
i
4 T T T T R | L i m "
0 25000 50000 75000 1e+05 125¢405 150405
e (ps) 0 wm
A
().6 L | L] I T I
04§ -
|
nm
|
\ i (| ‘ ]
0.2 ' , ‘ . ‘ A -
‘ U ) Y
NP AL It A s A O
\ i ii‘ W i 7 VWN
U i W
0 L | . 1 L |
0 100 200 300
Residue
C

Figure 5.5: A) RMSD of apo SARS-CoV-2 main protease

ii)ilb() 750()(} le HH

Time (ps)

B

— Apo
— N3-bound

Ketamide bound

— NSC 36398

NSC 281245

— NSC 44175
— NSC 11926

1. 54-4)5 1.5e+05

and when complexed with N3, a-

ketoamide, NSC36398, NSC281245, NSC44175 and NSC11926. B) RMSD of N3, a-ketoamide,

NSC36398, NSC281245, NSC44175 and NSC11926. C) RMSF plot of SARS-CoV-2 main

protease apo, and when complexed with N3, a-ketoamide and screened-in molecules.

The Rg provides information about the compactness of protein throughout the MD

simulations. It was observed that the apo and NSC281245 complexed SARS-CoV-2 main protease
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have a relatively higher Rg among all the systems studied. The stability of reference and screened
molecules in the protein active site was analysed by comparing the initial and average structures,
different types of nonbonding interactions were measured within 5 A around the ligand. The
intermolecular interactions in the structures between the protein-reference and screened-in
molecules before and after MD simulations showed that the N3-inhibitor maintains interactions
with Gly143, Ser144, Cys145, Glul66, Glul89, GIn192; and a-ketoamide also has interactions
with Leul4l, Serl44, Glul66, His164 and GIn189 throughout MD simulations. The protein
complexed with NSC36398 made hydrogen bonding interactions with Leul4l, Serl44, His163,
Glul66, Argl188, and GIn189; NSC281245 with Ser46, Serl44, Cys145, and Glul66; NSC44175
with Gly143, Cys145, and Glu166 and NSC281245 with Ser144, Cys145, and Glu166 are retained
during the MD simulations. The hydrogen bonding interactions of all molecular systems

throughout MD simulations are shown in Figure 5.6
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Figure 5.6: Hydrogen bonding interaction plot of SARS-CoV-2 main protease with reference and

screened-in hit molecules.

5.3.4 Normal mode and mechanical stiffness analysis

The NMA is a fast and simple method to calculate protein flexibility (Alexandrov et al.,
2005) involving atomic fluctuations. It reveals the structural variations and mobility in protein
which are a collection of micro-ensemble states fluctuating about thermodynamically stable states.
The RMSF plots revealed certain flexible regions in SARS-CoV-2 main protease during the MD
simulations. To further confirm this observation, the NMA for all molecular systems were
performed. Ten normal modes were obtained for each system from MD simulations trajectories,
the first mode was selected and the structural variations were compared with apo structure of main
protease. The regions that displayed higher RMSF (Leu50-Arg60, Asn221-Thr225, Glu240-
Asp245 and Glu270-Gly283), also display normal modes with higher mobility in the presence of

screened molecules as shown in Figure 5.7.
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Figure 5.7: Mobility plot of NMAs in SARS-CoV-2 main protease apo and binding with N3, a-

ketoamide and screened-in hit molecules.

This study explains the conformational changes in apo and ligand bound complexes of
main protease and indicate relatively higher flexibility in domain IIl. The mechanical stiffness
plots are useful to identify the anisotropic response of the protein structure to external
perturbations, and the determination of weak and strong pairs of interactions that depend on the
direction of the external force (Eyal & Bahar, 2008). Lower mechanical stiffness is indicative of
the weak regions and higher mechanical stiffness is indicative of strong regions. In all the
molecular systems studied, structural deformations were noted when compared with apo protein.
From these plots, it was observed that the regions (Leu50-Arg60, Asn221-Thr225, Glu240-Asp245
and Glu270-Gly283) exhibit lower effective stiffness in all molecular systems. In the mean plots
of mechanical stiffness, the effective spring constant value for fluctuating regions of residues was
greater than 8 k (a.u) and was larger than 12 k (a.u) for the stable regions in proteins. These values
indicated that the elastic nature of regions Leu50-Arg60, Asn221-Thr225, Glu240-Asp245 and
Glu270-Gly283 is higher in the all molecular systems throughout MD simulations. From the
results of mechanical stiffness and NMA it was proposed that the regions of residues Leu50-Arg60,
Asn221-Thr225, Glu240-Asp245 and Glu270-Gly283 in the protein exhibit mechanically weak
behavior. These large deviations of conformational changes indicated the elastic nature of protein

in all systems studied.

5.3.5 Principal component analysis

PCA deciphers the conformational changes in a protein as a function of time from the MD
simulations trajectories. The PCA scatter plots of all molecular systems studied is shown in Figure

5.8. The conformational changes of the SARS-CoV-2 main protease in apo form, N3, a-ketoamide
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and natural products bound molecular systems were monitored. The Ca-atoms distribution is
greater in NSC36398 bound molecular system which indicates that greater conformational changes
of protein are observed. This demonstrated that the conformational distributions of main protease
bound with NSC36398 was remarkably different from other molecular systems. The frequencies
of PCA scatter plots were quantified and the highest-frequency is observed in NSC36398 bound
main protease. These results indicated that SARS-CoV-2 main protease bound with NSC36398

displayed higher protein conformational changes compared to other molecular systems.
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Figure 5.8. PCA scatterplots of SARS-CoV-2 main protease apo (A), complex with N3 (B), a-

ketoamide (C), NSC36398 (D), NSC281245 (E), NSC44175 (F) and NSC11926 (G).
5.3.6 Binding free energy and residue-wise contribution analysis

The binding free energies of the reference and screened natural products calculated using
MM-PBSA and LIE methods are shown in Table 5.3. The contributions from van der Waals,
electrostatic and polar solvation energies for MM-PBSA binding free energies show compatibility
with each other and reference molecules already reported. The binding free energies for N3 and a-

ketoamide inhibitors in complex with SARS-CoV-2 main protease were -150.06 kJ/mol and -90.11
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kJ/mol, respectively. The binding energies observed from AutoDock Vina and the MM-PBSA
scores observed in this work are in correspondence with previous reports (Keretsu et al., 2020).
The binding free energies for the natural products selected along with reference were NSC281245
(-133.79 kd/mol), NSC11926 (-93.22 kd/mol), NSC44175 (-81.97 kd/mol) and NSC36398 (-70.75

kJ/mol) as shown in Figure 5.9.
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Figure 5.9: Binding free energy plot of SARS-CoV-2 main protease with screened-in hit

molecules.

The binding site residues Leu27, His4l, Gly143, Serl44, Cys145, His164, Metl165 and
Glul66 contribute to the highest binding free energies in all the complexes studied. Prol168
contributes to binding free energy in both the reference molecules as shown in Figure 5.10. The
LIE values show that the binding free energies of reference and screened-in hit molecules with
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SARS-CoV-2 main protease N3 shows (-140.69 kJ/mol), a-ketoamide (-143.78 kJ/mol),

NSC281245 (-117.63 kJ/mol), NSC36398 (-83.71 kJ/mol), NSC11926 (-78.65 kJ/mol), and

NSC44175 (-73.82 kJ/mol).

Table 5.3: Comparison of docking scores and binding free energy (MM-PBSA and LIE) of

reference and screened-in molecules binds with SARS-CoV-2 main protease.

S. No | Name of the | AutoDock | CDOCKER score ALE AG(Mm-PBSA)
compound | Vina (kJ/mol) (kJ/mol)
score
(kcal/mol)
-PLP | -PLP2 | -PMF04

1. N3 -7.8 119.02 | 71.73 | 44.22 -140.64+/0.01 | -151.04 +/- 0.86
2. a-ketoamide | -9.6 78.98 |38.17 |46.39 -143.76+/0.02 | -90.11 +/- 0.55
4. NSC281245 | -8.0 109.47 | 94.08 | 54.88 -117.627+/0.01 | -133.79 +/- 0.55
5. NSC11926 |-7.8 86.04 |40.27 |41.69 -78.65+/0.01 -93.28 +/- 0.47
3. NSC36398 |-8.1 95.76 | 9749 |18.22 -83.71+/0.01 -70.75 +/- 0.39
6. NSC44175 | -7.8 98.62 |67.12 |4211 -73.82+/0.00 -81.97 +/- 0.49

204




L27,-9.69 H41, -6.53 L27, 987 H41, 4.63
L50, -2.38 P168,-23.84 LS

P168,-39.22

5144, -6.06
S144, -8.16

H164,-19.89
H164, -19.08

o MI165, -44.36 MI6S, -47.11
N3-inhibitor ketoamide inhibiter
P168,-128 1141, 043 P168, -0.64 o
L27. 567 ) 1.27,-5.9 H41,-13.03

G166, -34.07 LS
5,34 G166, -34.95

S144, -5.96
G143,

144, -10.04

M165, -58.59 M165, -28.098

H164,-14.93 H164, -10.18

NSC281245 NSC44175
P168,-0.72 P168,-0.85
t 127,-11.76 3 L7, 2857 411781
G166, -42.01 G166, -27.52

$144,-5.56

S144,-9.32
M165, -35.61

MI65, -47.45

H164,-3.61

H164, -12.62

NSC11926 NSC36398

Figure 5.10: Residual contribution (kJ/mol) of SARS-CoV-2 main protease with reference and

screened hit molecules.

205



5.4 Conclusions

CADD methodologies can be used effectively to speed-up the process of developing
therapeutic agents for the treatment of COVID-19 disease. In this study, the docking based virtual
screening of NCI diversity set of natural compounds were used to identify the potential hits for
SARS-CoV-2 main protease. Molecular docking and MD simulations were carried out to study
the binding interactions between protein and ligand molecules. Binding free energies were
calculated to identify the potential hit molecules for SARS-CoV-2 main protease. Four compounds
that showed good binding affinity and stability in the protein active site throughout 150 ns MD
simulations were identified in this study. The amino acid residues Cys145, Met165 and Glu166
have high contribution to the binding free energies of all the molecules studied. In all molecular
systems studied, certain regions in SARS-CoV-2 main protease domain Ill showed greater
flexibility and NSC36398 bound protein displayed higher protein conformational changes
revealing the molecular mechanisms of protein-NCI natural products interactions. All natural
compounds studied also displayed drug-like properties indicating their suitability as probable

inhibitors for SARS-CoV-2 main protease.
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