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1.1 Introduction  

 

A virus is a pathogenic microorganism composed of a protein-coated nucleic acid segment 

(either DNA or RNA) (Wu KJ, 2020). A virus cannot multiply by itself; it has to infect a living 

host in order to utilize the host cell's replication machinery components to make copies of itself. 

A host cell that has been infected is frequently compelled to quickly make several thousands of 

copies of the infected virus. Viruses can exist as independent particles or virions, when they are 

not inside an infected cell or in the process of infecting a cell. These virions are made up of i) the 

genetic material, which are long molecules of DNA or RNA, that encode the structure of the 

proteins the virus uses to replicate; (ii) a protein coat, the capsid, which surrounds and protects the 

genetic material; and (iii) in some cases, an external envelope of lipids.  

Viruses can spread in a wide variety of ways. One technique of transmission involves the 

employment of disease-carrying vehicles known as vectors. Insects that feed on blood could also 

carry viruses that impact mammals. For instance, aphids, which feed on living plants, are often 

used to spread viruses from one plant to another. The two most common ways for viruses to spread 

in the air are through coughing and sneezing, including influenza virus (McCullers, 2006), SARS-

CoV-2 (Wang et al., 2020), chickenpox (Tugwell et al., 2004), smallpox (Moore et al., 2006), and 

measles (Tatsuo et al., 2000). Norovirus and rotavirus are known to be the main causes of viral 

gastroenteritis, and they spread from person to person through hand-to-mouth contact, 

contaminated food, or water. Less than 100 infectious norovirus particles are needed to cause an 

infection in humans (Robilotti et al., 2015). Several viruses, including human immunodeficiency 

virus (HIV) and Zika virus, can be spread through body fluids and by contact with blood that has 
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been contaminated. The term "host range" describes the range of host cells that a virus can infect. 

A virus may have a limited range of species it may infect, or it may have a wide range and be able 

to infect many different hosts. 

1.1.1 Structure of virus 

Viruses exhibit a vast variety of morphologies, size and shapes (Louten, 2016). The 

majority of virus species have virions that are one hundredth of the size of most bacteria and are 

therefore too small to be seen with an optical microscope. Viruses are typically much smaller than 

bacteria, therefore one can assume that it is possible to fit more than a thousand bacteriophage 

viruses inside the cell of an Escherichia coli bacterium. Many known viruses are spherical, with a 

diameter ranging from 20 to 300 nanometers (nm). Although the diameter of some filoviruses, 

which are filaments, is only about 80 nm, their total length can reach 1400 nm (Britannica, 2017). 

Scanning and transmission electron microscopes were used to view viruses because a majority of 

them cannot be viewed with an optical microscope (Goldsmith & Miller, 2009). Atomic force 

microscopy allows for mechanical (physical) examination of the capsid and the complete virus 

structure (Kuznetsov et al., 2001). Electron-dense "stains" were employed to make viruses stand 

out better against the background. These are solutions of heavy metal salts, such as tungsten that 

scatter electrons from stained areas. Positive staining, the coating of virions with stain, obscures 

the fine details. Negative staining solves this issue by simply staining the backdrop. 

A whole virus particle or virion, is made up of protein-coated nucleic acid that is encased 

in a protective protein shell called the “capsid”. The protective shell is created from protein 

building blocks known as capsomeres (Sevvana et al., 2021). Viruses have an outer lipid 

"envelope" that is assembled from the lipid membrane of the host cell. The morphological 

differentiation of viruses is based on the form of the capsid that is composed of proteins encoded 
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by the viral genome (Caspar & Klug., 1962; Crick & Watson, 1956). In general, the virus genome 

must be present for the virally-coded protein components to self-assemble into a capsid. Complex 

viruses encode proteins that help build their capsids. Nucleoproteins and nucleocapsids are terms 

used to describe proteins that are linked to nucleic acids. There are generally five primary 

categories of morphological viruses: icosahedral, prolate, helical, enveloped, and complex. Most 

often, viruses have RNA genomes, but some of the viruses also have single-stranded DNA 

genomes. Depending on whether the single-strand is complementary to the viral messenger RNA 

(mRNA), they are either positive-sense (referred to as "plus-strand") or negative-sense (referred 

to as "minus-strand"). Since the positive-sense viral RNA has the same sense as the viral mRNA, 

the mRNA genome can be translated to synthesize the protein products right away by the host cell. 

The viral protein RNA-dependent RNA polymerase (RdRp) must convert negative-sense viral 

RNA to positive-sense RNA before the translation occurs because it is complementary to mRNA. 

Zika virus is one of the mosquito-borne families of Flaviviridae, genus flavivirus. In the 

Zika forest near Lake Victoria in Uganda, febrile sentinel rhesus monkeys were first found to have 

the Zika virus in 1947 (Dick et al., 1952). It has been known to occur since 1950 in a small 

equatorial belt extending from Africa to Asia. The Zika virus epidemic of 2015–2016 was caused 

by the virus spread eastwards from 2007–2016 across the Pacific Ocean to the Americas. The virus 

is transmitted by aedes mosquitoes, primarily daytime-active female Aedes aegypti which is 

commonly found throughout the tropical and subtropical Americas and it can also be spread by 

the Aedes albopictus (Asian tiger) mosquito which is distributed upto the Great Lakes region in 

North America (Kraemer et al., 2015). People infected with Zika virus can transmit the virus to 

their sexual partners (Centers for Disease Control and Prevention, 2017). The infection caused by 

Zika virus is Zika disease or Zika fever that is accompanied by fever, headache, arthralgia, 
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myalgia, maculopapular rashes (Ioos et al., 2014). Zika infection of male adult mice can cause 

testicular and epididymal damage, resulting in cell death and destruction of the somniferous 

tubules (Govero et al., 2016). When a pregnant woman is infected with Zika virus, it can be 

transmitted from mother to the fetus, that can manifest in microcephaly and related acute brain 

irregularities in the infant (Rasmussen et al., 2016). In addition to several Pacific American islands, 

the epidemic also spread to other regions of South and North America. In 29 countries, there have 

been nearly 3000 cases of microcephaly-related birth defects, Brazil has been hardest hit, with 

2,366 babies being born to Zika-infected women and their families (Lancet, 2017). As of 

November 2018, 157 cases have been identified in India out of these 63 were pregnant women 

https://www.who.int/emergencies/diseases/zika/india-november-2018/en/. The Zika virus 

outbreak was declared as a Public Health Emergency of International Concern by WHO during 

February 2016, as there was growing evidence that infection of Zika virus can lead to birth defects 

as well as neurological problems (Sikka et al., 2016).  

 Zika virus belongs to the family of flaviviruses that includes several important viral 

pathogens of human, such as dengue, west Nile, yellow fever, Murray valley encephalitis, Japanese 

encephalitis, tick-borne encephalitis, Kunjin and Kokobera viruses. Like other flaviviruses, Zika 

virus also has icosahedral structure and it comprises ~11-12 kb non-segmented, single-stranded 

RNA genome that is capped at the 5’ end. The RNA genome of Zika virus is translated in the 

cytoplasm of the infected cells into a polyprotein, which is further proteolyzed by either host cell 

or viral protease into three structural proteins, called envelope protein, precursor membrane protein 

and capsid protein, and seven non-structural (NS) proteins; NS1, NS2A, NS2B, NS3, NS4A, NS4B 

and NS5, these NS proteins of Zika virus perform essential roles in genome replication. A multi-

protein replication complex comprising of both NS proteins and host cofactors are assembled on 

https://www.who.int/emergencies/diseases/zika/india-november-2018/en/
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the endoplasmic reticulum derived membranes (Welsch et al, 2009), that forms a location for the 

RNA replication to occur. Among all the NS proteins, NS5 is a largest enzyme and the most 

conserved protein of the replication complex. The Zika virus NS5 protein exhibits two enzymatic 

activities, RdRp and methyltransferase (MTase) which are mostly required for viral replication. 

The MTase protein is located at the N-terminus and the RdRp is located at the C-terminus of the 

NS5 protein. 

1.1.2 The life cycle of positive-sense single-stranded RNA viruses 

 In the flaviviruses, the positive-sense single-stranded RNA can act as mRNA for translation 

towards protein synthesis. The replication of viruses occurs in two ways, the ribosome in the host 

cell can directly translate into the viral proteins. The other replication process of the positive-sense 

RNA genome proceeds through double-stranded RNA intermediates. The positive-strand RNA 

encodes an RdRp, which helps to synthesize a complementary negative-strand RNA template to 

create a new positive-sense RNA genome during replication. There is a double-stranded RNA 

formed in the intermediates. RdRp differs from RNA polymerase as it works to catalyze the 

synthesis of an RNA strand complementary to a given RNA template, the RNA replication process 

is a four-step mechanism. The first step is to bind nucleoside triphosphate (NTP). Initially, the 

protein RdRp has a free active site in which an NTP binds that is complementary to the 

corresponding nucleotide on the template strand. Correct NTP binding induces RdRp to change its 

conformation. The conformational changes caused by the correct NTP binding result in active site 

access restriction and the formation of a catalytically competent state in the second step. In the 

third step, a phosphodiester bond formation takes place; with two Mg2+ ions located in the 

catalytically active state that can rearrange themselves in such a way that around the newly 

synthesized RNA chain the substrate NTP can undergo a phosphatidyl transfer and form a 
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phosphodiester bond with the newly synthesized chain. Using these Mg2+ ions, the active site is 

no longer catalytically stable, and the RdRp complex changes to an open conformation. The fourth 

step is translocation.  Once the active site is open, the RNA template strand can move by one 

position through the RdRp protein complex and continue the chain elongation by binding a new 

NTP, unless otherwise specified by the template. 

  Due to the complementary nature of negative-sense viral RNA to mRNA, a RdRp is 

required to convert it to positive-sense RNA prior to translation. Positive-sense virus RNA can 

directly infect cells even though it may not be as contagious as the entire virus particle. The purified 

RNA from a negative-sense virus, in contrast, is not contagious on its own. It has to be converted 

into positive-sense RNA, and each virion can be converted into a number of positive-sense RNAs. 

Ambisense RNA viruses resemble negative-sense RNA viruses, except that they translate genes 

from both their negative and positive strands. The newly produced viral genome is ready to infect 

a new cell. Zika virus replication mechanism occurs in this manner and is shown in Figure 1.1. In 

the Zika virus replication, the NS proteins, NS3 helicase, NS5 RdRp and MTase (shown in Figure 

1.2) play a crucial role in viral genome replication. 
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Figure 1.1: Life cycle of single-stranded RNA flaviviruses. 

 

 

 

 

Figure 1.2: Structures of Zika virus NS3 helicase, NS5 RdRp and NS5 MTase. 
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1.1.3 Zika virus NS3 helicase 

The N-terminus of the Zika NS3 helicase contains a protease domain and the C-terminus 

contains a helicase domain. The tertiary structure of the Zika virus NS3 helicase is composed of 

three domains, each of which contains 130-160 amino acid residues. Despite their low sequence 

homology, domains I (residues 192-332) and II (333-481) share a similar structural fold. Domain 

III (482-617) is made up of a four-helical bundle that is extended by two anti-parallel strands that 

are partially exposed to the solvent. The protease domain is represented by the amino acid 

residues 1-174. Two α-helices from domain I interact with a parallel α-helical bundle from 

domain III; domain II connects to domain III via a long β-hairpin, stabilizing interdomain 

interactions (Tian et al., 2016), and all three domains have clearly defined binding clefts . The 

cofactor ATP is present between domains I and II in Zika virus NS3 helicase; it is stabilized by 

the Mn²+ coordinated in octahedral geometry by interactions with side-chain of residues Thr201 

and Glu286, two oxygen atoms of β- and γ-phosphate groups of ATP and two water molecules. 

The binding site of ATP is formed by the residues Gly197, Ala198, Gly199, Lys200, Thr201, 

Arg202 and Arg203 (P-loop), and Glu286, Ala317, Asn330, Gly415, Asn417, Gln455, Gly458, 

Arg459, Arg462 and Asn463. A single-stranded RNA binds the Zika virus NS3 helicase within 

the region formed by the amino acid residues; Pro224, Thr225, Arg226, Val227, Met244, Thr245, 

Thr246, Cys262, Ala264, Thr265, Phe289, Asp291, Pro292 (domain I), Pro364, Ser365, Val366, 

Arg367, Ser387, Arg388, Thr409, Asp410, Ile411, Leu430, Lys431, Pro432, Leu442 (domain II), 

His486, Lys537, Asp540, Arg598 and Ser601 (domain III). The single-stranded RNA makes 

hydrogen bonding interactions with Arg226, Thr245, Thr265, Asp291, Val366, Arg388, Thr409, 
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Asp410 and Lys431. RNA helicases play an essential role in the RNA metabolism and viral 

infection facilitation for RNA viruses. 

1.1.4 NS5 RNA dependent RNA polymerase and NS5 methyltransferase 

         The Zika virus NS5 RdRp produces a negative-sense RNA by using the positive-sense viral 

RNA as a template for the formation of the intermediate stage double-stranded RNA. The Zika 

virus NS3 helicase unwound the double-stranded RNA to separate it into negative-sense and 

positive-sense single-stranded RNA molecules. The negative-sense RNA serves as a new template 

for the production of positive-sense genomic RNA (Xu et al., 2019). The replication of RNA 

occurs in a multi-protein replication complex comprising of NS proteins and cofactors, which 

assemble on endoplasmic reticulum derived membranes (Welsch et al, 2009). The NS5 protein 

comprises a MTase domain at the N-terminus and the C-terminal domain contains a RdRp (Zhao 

et al., 2017), The three-dimensional (3-D) structure of NS5 MTase is reported in Protein Data Bank 

(PDB), it comprises three domains referred to as finger (amino acid residues 321-488), palm (481-

541 and 609-714) and thumb (715-903). The RdRp synthesizes the genome of RNA in the absence 

of a primer strand, in a de novo mechanism wherein single-nucleotide triphosphate provides a 

primer for nucleotide polymerization. The flavivirus RdRp contains a functional nuclear 

localization sequence, an important key region for viral and host proteins interactions. NS5 

interacts with the NS3 protease-helicase and several host proteins (Yap et al., 2007; Tay et al., 

2015). The Zika virus NS5 protein acts as an antagonist due to its enzymatic functions. That is 

because the NS5 RdRp plays a crucial role in viral genome replication. MTase enzyme is 

responsible for adding the methyl group to the 5' cap RNA structure, using cofactor S-adenosyl-

L-methionine (SAM) as a methyl donor to form S-adenosyl-L-homocysteine (SAH) as a by-
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product (Zhao et al., 2015) to facilitate the translation of polyprotein. These two enzymes RdRp 

and MTase are important for viral replication. 

1.2 Methods 

1.2.1 Databases 

The purpose of building a variety of databases is to separate the knowledge information, 

create organized data, and make value addition through its annotation. Such databases have been 

made accessible for the scientific purposes with payment of a subscription fee or for free of charge. 

1.2.1.1 Protein sequence database 

The biological structure and function of a protein is determined by its amino acid sequence. 

The nucleotide sequences of the gene coding regions are obtained from the complete genome 

nucleotide sequencing projects at the organism level, these nucleotide regions are translated to 

protein amino acid sequences and is referred to as the primary protein structure (Xu & Xu, 2004). 

The protein primary structure information is stored in protein sequence databases. The National 

Center for Biotechnology Information (NCBI) available at http://www.ncbi.nlm.nih.gov, hosts a 

variety of information including both nucleotide and protein sequences. The NCBI Reference 

Sequence (NCBI RefSeq) database is a collection of nonredundant sequences of genomes, 

transcripts and proteins that are curated. A stable reference for genome annotation, gene 

identification and characterization, mutation and polymorphism analysis, and genetic testing are 

included with these entries (O'Leary et al., 2016). There is an issue with explosion of protein 

sequence information due to the sequencing of complete genomes. This problem of redundancy or 

duplication in protein sequence information has been resolved by creating the prokaryotic RefSeq 

protein dataset. This database has grown in size significantly due to the bacterial genome sequence 

submissions from individual isolates and their closely related bacterial strains, therefore, the other 
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kind of nonredundant RefSeq protein database has already been produced. The Universal Protein 

Resource (UniProt) is a comprehensive database of receptor sequences, with annotation data 

available online at http://www.uniprot.org/. The protein sequence databases available at NCBI and 

UniProt are most frequently used by the researchers. The nucleotide sequence database 

(http://www.ebi.ac.uk/embl/index.html) of the European Molecular Biology Laboratory (EMBL) 

is a complete set of primary nucleotide sequences maintained at the European Bioinformatics 

Institute (EBI). The other useful databases are GenBank (Benson et ai., 2003) PROSITE (Falquet 

et al., 2002), PRINTS (Attwood TK et al., 2003), Pfam (Bateman et al., 2003), ProDom (Corpet 

et al., 2000) SMART (Letunic et al., 2002), TIGRFAMS (Haft et al., 2003), PIR SuperFamilies 

(Huang et al., 2003) and SUPERFAMILY (Gough et al., 2001). 

1.2.1.2 Protein structure database 

  The 3-D proteins structures along with nucleotides, heteromeric complexes, and complexes 

with cofactors/inhibitors/substrates are solved using X-ray crystallography, nuclear magnetic 

resonance (NMR) and cryo-electron microscopy methods. The high-resolution 3-D structures of 

macromolecules is determined using these methods. A publicly accessible database of 

biomolecular structures is maintained by Worldwide Protein Data Bank (wwPDB), this is a freely 

accessible PDB archive to the research community (Berman et al., 2003). The Research 

Collaboratory for Structural Bioinformatics Protein Database (RCSB PDB) is one of four 

organisation members (PDBe, PDBj, RCSB, and BMRB) for the retrieval of protein 3-D structures 

(Velankar et al., 2010; Kinjo et al., 2012; Markley et al., 2008). 

1.2.1.3 Small molecule chemical libraries  

The 3-D structures of organic molecules and their physical properties are stored in small 

molecule databases. The biological activity of small molecules, drug targets and literature citations 
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are also available in some of the databases (Bento et al., 2014). While some of these chemical 

library databases are freely accessible and can be downloaded in a variety of file formats, other 

databases are proprietary and must be procured from the vendors. The accessibility of virtual 

libraries of ligand molecules supports the in silico screening, discovery and design of small 

molecule inhibitors for a selected receptor target. The virtual libraries of chemical compounds 

could hold billions of molecules, allowing a researcher to find hit molecules via virtual database 

screening using computational methods. Some of the most commonly used databases in computer-

aided drug design (CADD) are; BindingDB contains data for 1,100,000 compounds and 8,900 

targets (Gilson et al., 2016), ChEMBL contains 2,331,700 molecules for 15,072 targets (Gaulton 

et al., 2012), ChemSpider contains 115,000,000 chemical structures (Williams et al., 2010), 

Cambridge Structural database contains 1,100,000 chemical structures from experimental sources 

(Groom et al., 2016), DrugBank comprises over 500,000 molecules (Wishart et al., 2018), MCULE 

full database comprise 40,075,205 molecules (Kiss et al., 2012), PubChem database comprises 

112,000,000 compounds (Kim et al., 2016), SciFinder comprises more than 182,000,000 

compounds (Wagner, 2006), ZINC database comprises over 230 million compounds (Irwin & 

Shoichet, 2005), MolPort (20,000,000, https://www.molport.com), Asinex database comprises 

575,302 compounds (http://www.asinex.com/), ChemBridge comprises over 1.3 million diverse 

and target-focused small molecule screening compounds (https://www.chembridge.com/), 

Chemical Diversity, ChemDiv comprises more than 180,000 active compounds 

(https://www.chemdiv.com/catalog/), AsisChem (2,109,738, http://www.asischem.com/), 

Enamine comprises 2,790,127 molecules with a range of molecular weights (Shivanyuk et al., 

2007), SPECS (350,000, http://www.specs.net), and the National Cancer Institute (NCI) natural 

compounds set database (II, III, IV and V) 
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(https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets), FDA approved drugs 

(https://www.bindingdb.org/bind/ByFDAdrugs.jsp). 

1.2.2 Basic local alignment search tool  

A protein sequence of interest (query) can be compared or searched with all of the entries 

in a protein sequence database using the heuristic technique known as the Basic Local Alignment 

Search Tool Protein (BLASTp). Above a predetermined threshold, it determines the protein 

sequences in the database that most closely resemble the query protein. The alignments are 

extended from these initial "hot spots" when short matches are made between two sequences. In 

addition to executing pairwise sequence alignments, it also gives statistical data regarding an 

alignment, such as the "expect" value, database length of the protein sequence, percentage identity, 

query coverage and matching score (Altschul et al., 2005). 

1.2.3 Multiple sequence alignment  

 

Sequence alignment is the arrangement of three or more protein amino acid sequences to 

identify regions of similarity. The similarity regions between the sequences could be the result of 

functional, structural and evolutionary relationships (Edgar & Batzoglou, 2006). The alignments 

produced would be examined to find the regions of amino acids insertions, mutations, or deletions 

among the sequences of interest (Needleman & Wunsch, 1970; Smith & Waterman, 1981; Lipman 

et al., 1989). The output format is used to create phylogenetic trees, which can be used to calculate 

evolutionary distances between the protein sequences and search for conserved domains that are 

essential for function (Sievers & Higgins, 2014). Multiple sequence alignments can be generated 

at both the global and local levels. The global multiple sequence alignment algorithms generate an 

alignment that cover the entire sequences and fills in any gaps. While the local multiple sequence 

https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets
https://www.bindingdb.org/bind/ByFDAdrugs.jsp
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alignment algorithm aligns only the most similar regions of amino acid residues. The ultimate goal 

by both techniques would be to align longer sequence regions of amino acids with higher matching 

among the target proteins under consideration. Clustal Omega (Sievers & Higgins, 2014) and 

Tcoffee (Notredame et al., 2000) are some of the commonly used software tools to generate 

sequence alignment. Clustal omega produces multiple sequence alignments of nucleotide or 

protein sequences by selecting seeded guide trees and by applying hidden Markov model profile-

profile techniques (Söding, 2005). The dynamic programming technique is used to identify the 

globally optimal alignment solution in a direct method for producing a multiple sequence 

alignment. For proteins, this approach typically uses two sets of parameters: a gap penalty and a 

substitution matrix that assigns scores or probabilities to the alignment of each potential pair of 

amino acids depending on the chemical characteristics of the amino acids and the likelihood that 

a mutation will occur over a time period. Similar gap penalties are applied to nucleotide sequences, 

but typically the substitution matrix is much more straightforward, taking only identical matches 

and mismatches into account. While the substitution matrix results for a global alignment could be 

all positive or a mix of positive and negative, they should be both positive and negative for a local 

alignment (Larkin et al., 2007; Thompson et al., 1994).  

1.2.4 Structural comparison of proteins 

 

Using servers such as DALI, the 3-D structure of a protein receptor could be evaluated by 

comparing with the already known proteins structures (Holm & Laakso, 2016). These searches on 

model protein structures support in the identification of protein structures that share comparable 

folds, binding sites for ligand, cofactor, and inhibitors binding. This structure comparison provides 

clues for the identification of proteins function and further in the drug design studies. Based on the 

amino acid side-chains that contribute to the 3-D active site space required for protein function, 
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the binding pocket of receptor identified to be similar via structure comparison searches (for 

example, based on a high Z score in DALI method) are most likely to have similar functions.  

1.2.5 Bioinformatics  

 

Bioinformatics is an emerging multidisciplinary area which has evolved owing to the high 

preference for computer assisted data analysis of the large biological data collected over the last 

30 years (Luscombe et al., 2001). Bioinformatics incorporates the principles of physics and 

chemistry on biological systems by employing computational tools (Searls, 2010). Bioinformatics 

studies use biological data such as nucleotide and protein sequences to analyse and compare life 

forms and their evolutionary aspects. As a result, it is critical for data management in modern 

medical science and biology (Baxevanis et al., 2020). Bioinformatics is a resource for predicting 

and recognizing regulatory networks connecting genes, analysing genetic variations and 

expression, predicting gene coding regions, prediction of protein structure and function, modelling 

protein networks and their dynamics, simulating environment in conditions closer to living cells, 

and analyzing metabolic pathways to understand implications in disease.  

1.2.6 Chemobioinformatics  

Chemobioinformatics is an interdisciplinary field of chemistry, biology, mathematics, and 

physics that uses computer modelling and simulation to analyse the structure and characteristics 

of molecules and components, which include empirical and ab initio approaches (Martinez-

Mayorga et al., 2020). Chemobioinformatics is a fast-emerging research area with methodologies 

for applications in CADD. The availability of high-speed computers with large data storage 

capability has accelerated the success in applying chemobioinformatics (Yu & MacKerell, 2017). 

To calculate the structure and properties of molecules, it employs theoretical chemistry 
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methodologies that are embedded into user friendly computer programmes. Computational 

chemistry methods and techniques typically vary from nearly approximate to precise (for large 

molecules) to greaterly accurate (for small molecules). The ab initio methods and techniques are 

based on quantum mechanics. Additional empirical characteristics are used in semi-empirical or 

empirical methods (MacKerell Jr et al., 1998). Computational tools are useful in molecular 

modelling ultimately leading up to its experimental synthesis in a laboratory, allowing unsuitable 

molecules to be ruled out. Furthermore, some of the molecular properties are more easily obtained 

computationally than experimentally. 

 1.2.7 Molecular animations and visualization 

  The molecular structures in chemical and biological systems can be visualized on computer 

graphics, on the screen in an interactive mode by the use of a variety of systems designed to display 

molecules in a virtual mode (Martinez et al., 2019). Designing such technologies for visualization 

of molecules necessitates knowledge in chemical as well as computer sciences. The software used 

for visualization of 3-D molecular structures in graphics are RasMol (Sayle & Milner-White, 

1995), PyMOL (Schrodinger, 2010) (DeLano, 2002), UCSF Chimera (Pettersen et al., 2004), Jmol 

(Hanson, 2010), Deep View (Guex et al., 2009), Discovery Studio (DS) visualizer. The verification 

of 3-D model structures of proteins and ligand molecules, the manipulation and analysis of their 

molecular properties is carried out using these graphics visualizers. Visual molecular dynamics 

(VMD) is a freely downloadable 3-D graphics programme for displaying and animating large 

biomolecular systems. It is used to view 3-D molecular structures as well as plotting and analyzing 

the larger trajectory data files generated by traditional molecular dynamics (MD) simulations 

(Humphrey et al., 1996). 
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1.2.8 Artificial intelligence in drug discovery  

Artificial intelligence is a method that combines computer simulations and intelligence 

gathering processing. Obtaining information, continuing to develop rules for using the information 

obtained, and reaching reasonable conclusion, and self-correction are all the steps in this process 

(McCarthy, 1987; Nilsson & Nilsson, 1998). To extract meaningful information from a large 

dataset, artificial intelligence employs complex algorithms and machine learning (Batool et al., 

2019). For example, it aids in the identification of molecules which may bind to 'undruggable 

targets,' targets such as proteins with unidentified structures. A predictive set of molecules can be 

identified in a relatively shorter time scale by sequential simulations of intermolecular interactions 

in a variety of ligands with different regions in a protein (Hessler & Baringhaus, 2018). In less 

than a decade, artificial intelligence is being applied in novel drug discovery, this employs large 

data that is generated from gene expression data or libraries of small molecules and on an ensemble 

of protein structures. Over the last decade, artificial intelligence methods have employed deep 

learning and machine learning in new drug discovery and development. Automated software is 

available online that is offered via webservers to carry out studies in quantitative structure activity 

relationship (QSAR), pharmacophore generation, protein 3-D fold assessment, in silico screening 

of ligands, protein-protein interactions and protein-ligand, drug repurposing, drug design using de 

novo methods, evaluation of absorption, distribution, excretion, metabolism and toxicity 

(ADMET) properties of drugs (Zhong et al., 2018). Using artificial intelligence in the different 

stages of a drug development will decrease the project time and cost while driving the drug 

development in becoming more efficient. 
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1.2.9 Homology modeling of protein structures  

A proteins structure is divided into four stages primary, secondary, tertiary, and quaternary. 

The protein 3-D structure is determined by the spatial distribution of all atoms on the main-chain 

and side-chains (Lüthy et al., 1992). PDB contains the protein 3-D structures defined through 

experimental studies (Berman et al., 2007). Knowledge of the protein 3-D structure provides useful 

information about the molecular mechanisms of their activities. Employing experimental 

techniques to determine structures of protein takes time and may not yield an advantage for 

proteins that tend to denature by aggregation under in vitro conditions and therefore precipitate 

out of solution. The unavailability of the 3-D structure of a protein has stymied efforts to determine 

the location of a ligand to bind the binding pockets in a protein. Under these conditions, one of the 

most reliable methods for obtaining structural information for a protein of interest is to build a 

model protein structure based on the protein 3-D structure that shares similar amino acid sequence 

(Cavasotto & Phatak, 2009). Some 3-D structures can be modelled to use homology modelling, ab 

initio, hybrid, and fold prediction methods (Hardin et al., 2002). Comparative modelling of protein 

structure, also known as homology modelling (Kopp & Schwede, 2004) is based on the 

observation that when primary sequences of two protein have a greater degree of homology, then 

their respective structures would have a high degree of similarity as well. The protein sequence of 

study with an unknown 3-D structure is referred to as the query sequence.  The protein sequence 

similarity search method, i.e., BlastP searches against PDB (Altschul et al., 2005) can be employed 

to obtain the reference or a homologous structure on which the homology model can be 

constructed. The known 3-D structures that have the highest BlastP score, with fewer insertions 

and deletions, structures solved at higher resolution, and with none or fewer missing residues are 

obtained and are denoted as template structures. The homology modelling protocol necessitates a 
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pair-wise or multiple sequence alignment of the query and template protein sequences based on 

the availability of single or multiple template 3-D structures, respectively (Holm & Laakso, 2016). 

Comparative modelling constructs the 3-D structure of a query protein based on template protein 

sequence alignment. MODELLER (Sali & Blundell, 1993) is a popular method in comparative 

protein structure modelling methods that is based on the conditions of the satisfaction of spatial 

restraints. For building protein models, this software is available in a downloadable form and 

installation on local computers. The homology modelling process consists of four steps: 

identification of protein target of known 3-D structure, alignment of protein sequences, 

construction of model structure and refinement of structure. PRIMO (Hatherley et al., 2016), I-

TASSER (Zhang, 2008), Phyre2 (Kelley et al., 2015) and SWISS-MODEL (Schwede et al., 2003) 

are some of the online servers available for homology based modelling of protein structures. 

1.2.9.1 AlphaFold  

Predicting the 3-D structure that a protein will adopt is purely based on its amino acid 

sequence, and this has been an important research problem for more than 50 years (Anfinsen, 

1973). Despite recent advances (Senior et al., 2020; Wang et al., 2017; Zheng et al., 2019; Abriata 

et al., 2019) current methods fall far short of atomic precision, particularly when no identical 

structure is available. AlphaFold is the first computational technique that can predict protein 

structures with atomic precision even when no comparable structure exists. In the 14th Critical 

Assessment of Protein Structure Prediction (CASP14) (Kryshtafovych et al., 2021), an entirely 

newly designed version of a neural network-based model, AlphaFold, provided structures with 

high accuracy challenging the experimental structures in the majority of cases and outperformed 

other methods significantly. AlphaFold is an innovative machine learning method that incorporates 

biological and physical knowledge about structure of protein into the design of the deep neural 
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network algorithm by leveraging multi-sequence alignments.  The CASP assessment employs 

recently remedied structures that have not been placed in the PDB or made publicly available, 

resulting in a blind test. CASP has long been the gold standard for determining the accuracy of 

structure prediction methods (Moult et al., 1995; Kryshtafovych et al., 2019). The AlphaFold 

network predicts the 3-D coordinates of all heavy atoms for a given protein using the primary 

amino acid sequence and aligned sequences of homologues as inputs. There are two stages to the 

network. The network's trunk first processes the inputs through repeated layers of a novel neural 

network block called Evoformer to generate a Nseq x Nres array (Nseq, number of sequences, Nres, 

number of residues) representing a processed multiple sequence alignment and a Nres x Nres array 

representing residue pairs. 

1.2.9.2 Model validation methods 

  To ensure proper stereochemistry and protein folding, the protein 3-D structure identified 

using modelling methods should be validated. This structure evaluation process is critical in 

computational methods because the model structure will be employed for structural comparison of 

proteins, docking studies for molecular design, and MD simulations to analyse their transitions in 

conformations. The Ramachandran plot (Ramachandran et al., 1963) is used to divide amino acid 

residues into three different regions to verify the stereochemical specifications of the structure of 

a protein based on torsion angles: these are the preferred regions; allowed regions, disallowed 

regions, and the outlier regions. Web servers such as SAVES (https://saves.mbi.ucla.edu) and 

PROCHECK (Laskowski et al., 1993) provide additional details like main-chains, side-chains, 

bond lengths, bond angles, bonding and nonbonding interactions, ring planarity, and disulfide 

bonds. A better model structure has more amino acid residues in the allowed region and fewer 

amino acids in the disallowed regions of the Ramachandran plot. The VERIFY 3D server is 
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employed to compare the position and surroundings of a generated model 3-D structure with 

defined structures and to evaluate its secondary structure, area of buried residues, and side-chains 

covered by polar atoms (Lüthy et al., 1992). The model with the highest score is believed to be the 

best. The nonbonded interactions in protein structures are analysed by   ERRAT, and a top scoring 

model validates the structures backbone conformations (Colovos & Yeates, 1993). 

1.2.10 Computer aided drug design 

CADD methodology incorporates chembioinformatics and computational biology methods 

(Zheng et al., 2013). These methods further help to generate structure-activity relationship (SAR) 

at the atomic level to support in the progression of drug development, limiting cost and time 

investment (Van De Waterbeemd, 2003). CADD primary role in drug discovery which is to divide 

large databases of compounds into smaller groups and correlate small compounds depends on their 

activity, allowing for the optimization and discovery of hit compounds by improving biological 

activity; such as ADMET and binding efficiency (Hassan et al., 2016). CADD is categorized into 

two approaches: ligand-based drug design and structure-based drug design, both of which convert 

features into models based on pharmacophore studies and QSAR (Mercader et al., 2016). CADD 

employs previous knowledge available on the 3-D structure of target protein to analyze the extent 

of intermolecular interactions between the receptor and ligand in the study. To differentiate 

between the known active and inactive molecules, ligand-based CADD employs the chemical 

similarity criteria and predict QSAR models that are generated from the molecules. QSAR 

modelling teaches about the impact of structure factors on bioactive compounds and how to 

construct ligands with enhanced and improved biological activities (Yu and MacKerell, 2017). 

The pharmacophore and QSAR models are employed in virtual screening to identify new hit 

molecules or ligands from commercial and open source chemical libraries in order to screen 
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molecules that make a large number of intermolecular interactions and high binding affinities. As 

a result, the CADD approach is important in the process of design and optimization of likely hit 

molecules to bind the receptor. It also has a wide range of applications in the different stages of 

drug discovery and development, such as drug target identification, validation, molecular design, 

improvisation of hit to lead molecule and interactions of hit or lead or drug molecules with protein 

targets of interest. 

1.2.10.1 Structure-based drug design  

Structure-based drug design methodology makes use of understanding of the 3-D structure 

target protein in complex with a hit compound and optimise the hit compound or a series of 

derivatives of a parent compound. It requires understanding of the protein-hit molecule 

intermolecular interactions in the complex formation. The experimental structures or homology 

models can be used to obtain structural information (Lounnas et al., 2013; Leach, 1994). This is a 

computational approach for locating possible hit compounds which aim to bind to a drug receptor 

implicated in a disease. This method involves swiftly searching through vast virtual libraries of 

chemical compounds, then docking the successful molecules into a receptor binding pocket of 

interest, which might be an active site or an allosteric binding pocket. The scoring function of a 

docking study is used to evaluate the potential of the hit molecules to bind with the receptor target 

in order to quantify the binding of these two molecules. The in silico screening of chemical 

databases by implementation of docking protocols or pharmacophore model based in silico 

screening are designed based on important residues that are also present in the template proteins 

and occupy similar regions is one of the techniques in structure-based drug design (Yang, 2010). 

The de novo molecule design is second category, which involves creating a molecule from 

fragments that bind to the active site and joining them together with a linker (Scott et al., 2012). 
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In the third category, a molecule can be optimised chemically so that the new analogues are more 

potent molecules with higher binding affinity to the receptor target (Pennington et al., 2020). The 

noteworthy gain of this exercise is that it enhances the speed of identification of hit compounds by 

substantially decreasing the number of hit compounds that need to be evaluated experimentally for 

their biological function, which tends to increase the success rate of the experiments from in vitro 

and in vivo studies. 

 1.2.10.2 Ligand-based drug design  

In the absence of the 3-D structure of protein, ligand-based drug design is a useful 

methodology that relies on experimental data from ligands which are known to bind to the protein 

receptor target under consideration. The 3-D QSAR and pharmacophore modelling (Dixon et al., 

2006; Lin, 2000) are important methodologies in ligand-based drug design. In pharmacophore and 

QSAR studies, knowledge on both active and inactive molecules evaluated in vitro or in vivo is 

represented as a source of data. This analysis results in the development of a model that can be 

employed in virtual screening, such as the SwisSimilarity server, to find new hit molecules (Zoete 

et al., 2016). These analyses can also provide extrapolative models that can be used to identify and 

optimise lead molecules. Analysing compounds that bind to the drug target of interest in a disease 

is a useful technique for advancing and improving pharmacologically active molecules. A QSAR 

is defined as the relationship that is created between both the hit compounds estimated biological 

features and their empirically determined bioactivities. Observations and findings from QSAR 

correlations are frequently utilized to identify the biological activity of newly designed and 

experimentally validated structural analogue molecules. 
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1.2.11 Pharmacophore modeling  

A set of electrostatic and steric features that are necessary in order to confirm the 

interactions of a ligand with a receptor binding site of a specific biological target that is significant 

in disease so as to invoke a biological response is defined as a pharmacophore. The goal of these 

interactions is to elicit a biological response from the organism. The CADD technique that 

recognizes essential components necessary for function and recognition between macromolecule 

and ligand is the pharmacophore modelling (Wolber & Langer, 2005). A combination of inactive 

and active components, in addition to intermolecular interactions between ligand and receptor, 

make up a pharmacophore model. Hydrogen bond acceptors or donors, anions, hydrophobic 

centroids, aromatic rings, cations, metal contacts, and aromatic stacking or charge transfer 

interactions are examples of pharmacophore characteristics. A perfect pharmacophore model is 

constructed on a set of compounds 3-D characteristics and contains not more than seven desired 

features, with the majority of these features interacting with the receptor non-covalently. 

Pharmacophore models can be constructed manually or automatically, beginning with the 

structures of known active compounds (ligand-based approach) or the 3-D structure of the protein 

target (structure-based approach) (Leach et al., 2010). One of the numerous uses for 

pharmacophore models would be as a query to quickly screen vast chemical libraries in a virtual 

manner (Seidel et al., 2010). The primary objective is to find novel hit compounds that have a 

certain set of pharmacophore characteristics that are regarded to be essential for their bioactivity 

against a particular target of interest in disease. Screening for pharmacophores consistently yields 

hit molecules with a high structural variation. Furthermore, the ease with which pharmacophore 

features can be represented allows for rapid virtual screening of large small molecule chemical 

databases comprising billions of small organic compounds. Depending on the selection of the 



31 
 

necessary pharmacophore features, the application of precise matching requirements, and the 

volume of the small molecules database, a regular pharmacophore screening can typically yield 

tens to thousands or more hit molecules. Pharmit (Sunseri & Koes, 2016) is a dedicated web server 

for assigning preferred pharmacophore features and performing virtual screening; others are built 

into commercial software such as DS version 3.5 and Maestro, Schrodinger. 

1.2.12 Molecular docking  

CADD relies heavily on molecular docking, which is one of the important in silico 

structure-based rational drug development technique. The primary goal of receptor-ligand docking 

is to identify a ligand's predominant binding mode in the binding cavity of a known structure of 

protein (Pinzi & Rastelli, 2019). Docking would be the algorithmic plotting of bioactive molecules; 

the likely space occupied by all potential hit compounds that will be optimised in the later steps. 

The goal of docking is to attain the best conformation and spatial arrangement of a ligand within 

a protein's active site (Morris & Lim-Wilby, 2008). Docking protocols are designed in two 

components to achieve the highest success rate for the computational algorithm: docking 

alignment and scoring function. The molecular docking is a malleable method wherein the 

conformation of a ligand or protein can be altered during the docking (Leach, 1994). The docking 

techniques are defined into three categories based on the flexibility of the specific protein and hit 

compound. The primary objective of docking studies is to evaluate whether the protein or hit 

molecule is highly flexible (ligand). Flexible ligand docking, keeps the protein receptor 

conformation rigid and ligand is treated as flexible, while in rigid body docking, both the protein 

and the ligand are considered to be rigid. In the flexible receptor docking, both the receptor and 

ligand remain flexible. Flexible docking is one of most computationally intensive technique. Most 

docking processes regard the small ligand molecule as flexible while the receptor as rigid. This is 
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incorporated in molecular docking tools such as CDOCKER, AutoDock, FlexX and AutoDock 

Vina (Kramer et al., 1999; Morris et al., 2009; Wu et al., 2003; Trott & Olson, 2010). Some other 

docking techniques such as, GOLD, DOCK, LeDOCK, Glide (Verdonk et al., 2003; Lang et al., 

2009; Friesner et al., 2004; Zhao & Caflisch, 2013) also recognize both the inhibitor and the 

receptor binding cavity as flexible orientations during docking so that the receptor and inhibitor 

molecule fit to one another in a complementary manner. Methods like RDOCK, ZDOCK and H-

DOCK (Chen et al., 2003; Li et al., 2003) maintain the receptor and ligand molecules rigid 

throughout the docking. Forces of attraction which are van der Waals, hydrogen bonding, 

hydrophobic and electrostatic interactions facilitate intermolecular interactions among both small 

molecule and receptor. The complex crystal structure serves as a reference for comparing 

molecular docking results and predicting the suitable pose of compounds within the protein 

binding cavity (Chen et al., 2006). If the crystal structure for reference is not available, a better 

compound that binds with more interactions could be selected, and the compounds can be 

evaluated based on binding energy or binding scores. Homology models for receptors with 

unknown 3-D structures can be generated for docking (Sali & Blundell, 1993). Protein binding site 

prediction could be conducted in the absence of active site information for a protein using 

programmes such as sitemap (Halgren, 2009), Q-SiteFinder and CASTp (Laurie & Jackson, 2005; 

Tian et al., 2018). Molecular docking may also be applied to a single compound or on millions of 

compounds from a chemical database. Docking could be performed within binding pocket of a 

receptor for guided docking or in the whole receptor for blind docking (Hetényi & van der Spoel, 

2006). Docking techniques that work to correctly prioritize docked compounds, search all binding 

pockets successfully and then use scoring functions to order the docked compounds (Kitchen et 

al., 2004). Docking could be used to conduct high-throughput screening on compound databases, 
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prioritize docked conformations, evaluate docked conformation binding to receptors via 

nonbonded interactions, and suggest structural hypotheses of how hit compounds inhibit the target, 

each of which is a valuable information for lead compound optimization. GOLD, DOCK, FlexX 

and ICM (Verdonk et al., 2003; Neves et al., 2012) are commonly used high-throughput docking 

tools. MD simulations can verify the stability of the hit chemical compound when bound to the 

specific receptor. Ligand scoring is a method for determining how well small molecules bind to 

protein binding cavities. The scores are determined by approximating mathematical functions that 

evaluate binding energy. Each and every docking process has its own scoring function for 

determining the stability of conformations. The popularly used scoring functions are the piecewise 

linear potential 1 and 2 (PLP1, PLP2) functions (Gelhaar et al., 1999; Gehlhaar et al., 1995), with 

PLP1 having a grid-based functional form and PLP2 having hydrogen bonding interactions that 

have an angular dependency. The potential of mean force (PMF, PMF04) scoring functions 

(Muegge, 2006; Muegge & Martin, 1999) score complexes by averaging the pairwise interaction 

terms of the receptor-hit molecule complexes across all interatomic pairs. 

1.2.13 Drug repurposing 

The process of FDA approved drugs being repositioned, repurposed, or re-tasked to be 

used in multiple diseases, i.e., outside of the purview of the original medical indication, is known 

as drug reprofiling or drug repurposing. The traditional drug development pipeline is time-

consuming and expensive in terms of resources. Because of the time and money required to 

develop new drugs, several research organizations have focused their efforts on molecules that 

have been approved for human use in a disease (Ashburn & Thor, 2004). Some drugs, such as 

thalidomide derivatives (Sampaio et al., 1991), antibiotics (Konreddy et al., 2019), and antivirals, 

have been repurposed (Mercorelli et al., 2018). These drugs have achieved therapeutic success in 
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diseases other than those for which they were originally approved. Drug repurposing approaches 

are frequently classified as either drug-based or disease-based. When drug characteristics such as 

chemical, physical, and biochemical characteristics are accessible, drug-based techniques are most 

common and favoured. The availability of enormous computational capability in terms of space 

and cost, along with the advancement of high-throughput molecular, clinical, and molecular 

genetics methods, has opened up a new and suitable potential for rationale repurposing of existing 

drugs through computational methodologies rather than relying on chance for drug development. 

Following initial computational drug reprofiling discoveries, the findings are conformed using in 

vitro molecular screening, clinical and structure-based (biophysical) methods. In various rounds 

of clinical studies involving patient groups, these medications are even more verified. One can 

explore current PDBs and their 3-D amino acid patterns as well as the drug molecule binding 

interface on certain web servers, like Drug ReposER (Ghani et al., 2019). 

1.2.14 Absorption, distribution, metabolism, excretion and toxicology  

ADMET refers to the physical features that a drug-like compound must have in order to 

possess optimal pharmacokinetic properties while also having required pharmacological 

characteristics (Lipinski et al., 1997). The in vitro and in vivo ADMET properties collected from 

experimental studies indicate a thorough consideration of the pharmacokinetic properties of the 

chosen molecules. To evaluate the possible potential of the drug-like candidates in the initial 

phases of drug development, its effectiveness and safety parameters are critical. Before the 

molecule is studied in the first phase of clinical trials, it is necessary to record the safety profile of 

the drug-like molecule by evaluating its ADMET properties. Web servers are accessible for 

analysing the candidate compounds' physicochemical and drug-like characteristics, as well as their 

synthetic accessibility (Tian et al., 2015; Ertl & Schuffenhauer, 2009; Daina et al., 2017). These 
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theoretically calculated constraints based on their chemical structures will save time and funds 

while also accelerating the design of drug-like compounds that are likely to develop into drugs 

with a greater rate of success.  

1.2.14.1 SwissADME sever 

SwissADME (http://www.swissadme.ch/index.php) server is an online programme that 

calculates physicochemical characteristics like ADME properties as well as the physicochemical 

characteristics like solubility, lipophilicity and pharmacokinetic properties. Lipinski's rule of five 

(Lipinski et al., 1997; Lipinski et al., 2012; Lipinski, 2004) is a crucial requirement for ensuring a 

drug-like profile in orally administered drugs. 

1.2.15 Molecular dynamics simulations 

More than 60 years have passed since the first 3-D protein structure was determined by X-ray 

crystallography (Gutte, 1975), and the first MD simulations of proteins were performed in 1970, at the 

dawn of the modern computer (Levitt & Lifson, 1969; McCammon et al., 1977). Studies on protein 

structure engineering and the relation between sequence, structure and function were scarce at that 

time. Protein crystal structures that have been submitted to the PDB are regarded as static structures 

since they show the protein's configuration at a certain point in time. Protein structures are known 

to be dynamic instead, as the linkages between the single bonds move around, causing changes in 

conformation and occasionally even the function. The most popular approach, particularly for 

biological macromolecules like proteins, is to perform MD simulations to determine the 

conformational space filled by the molecules. One method to mimic their mobility is to use 

traditional MD simulations of protein structures derived from experiments, as well as computer 

models created using homology modelling (John & Sali, 2003; Dahiyat & Mayo, 1997). The 

position of the atom in 3-D space is investigated using MD simulations. This method replaces a 
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single-point model with a dynamic model that propels the nuclear system into motion. The 

traditional Newtonian dynamic equations are numerically solved to simulate the motion (Pace et 

al., 1996). The Newton's second law, also known as the equation of motion, F=ma, in which "F" 

stands for the force acting on the particle, "m" for its mass, and "a" for its acceleration, forms the 

foundation of the MD simulations technique. It is feasible to calculate each atoms acceleration in 

the system by knowing the force acting on it. The trajectory that results from the integration of the 

motion equations represents the locations, accelerations and velocities of the atoms as they change 

over a time scale. The average values of the attributes can be calculated from this trajectory. The 

process is deterministic, allowing for the prediction of the systems state at any point in the past or 

future once the locations and velocities of each atom are known. The contributions from 

interactions between bonded and nonbonded atoms are taken into account; nonbonded forces result 

from van der Waals interactions and are described using the Lennard-Jones potential, while 

charged (electrostatic) interactions are treated using Coulombs equation (Childers & Daggett, 

2017; Geng et al., 2019). MD simulations can be time-consuming and expensive to run on 

computers (Shaw et al., 2008). Multiple software packages can be used to mimic protein flexibility 

through MD simulations of solvated proteins. CHARMM (Jo et al., 2008), AMBER (Case et al., 

2005), CHARMm, DL_POLY (Smith et al., 2002), GROMOS (van Gunsteren & Berendsen, 

1987), GROMACS (Lindahl et al., 2001), LAMMPS (Grindon et al., 2004), NAMD (Nelson et 

al., 1996) are some of the popular software capable of carrying out MD simulations. 

1.2.15.1 Force fields  

The "force field" refers to a computational methodology for a mathematical formula used 

to arrive at a set of parameters and calculate a proteins energy as a function of its all atom 

coordinates. A force field is a mathematical statement that describes how a system's energy 
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depends on the 3-D coordinates of its constituent components. The term "force field" refers to an 

equation and is divided into two terms: the first characterizes bonding interactions, which 

represents atoms connected by covalent bonds, and their mathematical form deals with bond 

lengths, bond angles, and torsion angles. The second term of the equation describes the 

contribution from nonbonding interactions caused by van der Waals and ionic interactions, and it 

is calculated using the Lennard-Jones potential and Coulombs law, respectively. It is defined in an 

analytical form to indicate the interatomic potential energy, and a set of parameters entering into 

the form.  

 The parameters of force field are often determined either through fitting to experimental 

data from techniques including X-ray and NMR, electron diffraction, infrared, Raman and neutron 

spectroscopy or through ab initio or semi-empirical quantum mechanical calculations (Weiner & 

Kollman, 1981; Chen & Yip, 2017). The force field substitutes a simplified model appropriate to 

the region being simulated for the real potential, which is simply defined as a collection of atoms 

bound together by simple elastic (harmonic) forces. It should ideally be basic enough to be 

evaluated quickly yet detailed enough to be able to recreate the characteristics of the systems being 

studied. A number of different types of force fields are available in the literature to describe 

compounds with varying levels of complexity and capable of handling different types of systems. 

The widely used force fields that include parameters for each and every atom in the periodic table 

includes Dreiding and Universal (UFF) force fields (Rappé et al., 1992). CHARMM (Brooks et 

al., 1983), GROMOS, AMBER, OPLS (Jorgensen et al., 1996), and COMPASS (Sun et al., 1998). 

For example, CHARMM19, CHARMM22, CHARMM27; GROMOS45A3, GROMOS53A5, 

GROMOS96, GROMOS53A6; AMBER02, AMBER91, AMBER94, AMBER96, AMBER99; 

etc. are just a few examples of these force fields that are constantly changing and have several 



38 
 

versions available (Maolepsza et al., 2010). Both the protein and the small chemical molecules 

under study must be compatible with the force field that is being used. 

1.2.15.2 MD trajectory analysis 

 

The trajectory of MD simulations is used to examine how atomic-level changes in 

biological and chemical structures occur over a period of time. Because knowledge about the 

proteins dynamical structure can only be achieved through MD simulations to construct an 

ensemble of structures, crystal structure is regarded as a snapshot of that structure. This is 

important for drug discovery research because it shows alternate protein conformations and, as a 

result, the allosteric sites present in the protein structure become available.  

1.2.15.2.1 Root mean square deviation  

The root mean square deviation (RMSD) is among the most frequently used quantitative 

metrics for the structural similarity of two or more molecules by the superposition of their 3-D 

atomic coordinates. The RMSD values are calculated for any kind or a subset of atoms in a 

molecules, such as all of the Cα-atoms in the protein as a whole or all of the atoms in a particular 

subset, or all of the carbon atoms in a protein that are involved in ligand binding. The secondary 

structural elements are stable and the loops are more flexible, which causes the RMSD of the 

system to increase. It has been shown that a system with stability will display a lower RMSD. The 

following equation can be utilized to determine RMSD. 

                                                                                   (1.1) 

δ2
i is the squared difference between the positions of the atom at index i and that same atom in the 

reference structure, and N is the number of atoms being counted. 



39 
 

1.2.15.2.2 Root mean square fluctuation  

 

The term root mean square fluctuation (RMSF) can be employed to describe fluctuations 

around well-defined average positions in dynamical molecular systems. Data related to the 

temperature stability and regions of flexibility in the structure are provided by RMSF. The distance 

between the position of a atom and a reference position is measured by the RMSF. 

                                                                              (1.2) 

Where xi represents the position at time i and <xi> denoted average value. 

1.2.15.2.3 Hydrogen bonds 

  The nonbonding interactions that contribute to the stability of the molecular systems are 

categorized as ionic contacts, hydrogen bonds, hydrophobic and van der Waals interactions. These 

interactions contribute to the stability of the molecule in the form of intramolecular interactions 

and intermolecular interactions that stabilize the receptor-ligand interactions for sustenance in 

biological systems. An electronegative atom (donor) that has a covalent link with a hydrogen atom 

(acceptor) is attracted towards the lone pairs of electrons on an additional electronegative atom 

(acceptor), either within the same molecule (intramolecular hydrogen bond), or outside of it 

(intermolecular hydrogen bond). An average hydrogen bond contains 5–10% covalent bond 

character. Protein-ligand complexes are stabilized via hydrogen bonding. The directed connections 

provided by hydrogen bonds support protein structure and selectivity to molecular recognition 

through intermolecular interactions. A hydrogen bond must have a distance between hydrogen 

donor and acceptor of less than 3.2 Å and a D-H-A angle of 180° ± 30° in order to be considered 

to exist. According to Van Der Spoel et al. (2005), the GROMACS command "gmx hbond" can 
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compute the number of hydrogen bonds in a protein complex as well as the distance between the 

acceptor and donor atoms participating in hydrogen bonds. The number of intermolecular 

hydrogen bonds that are present in the docked conformation and those that are preserved during 

MD simulations are analysed by indexing the number of intermolecular hydrogen bonds between 

particular atoms. 

1.2.15.2.4 Normal mode analysis  

A quick and easy method for determining protein flexibility and vibrational modes is 

normal mode analysis (NMA) (Bahar et al., 2010). The atoms in NMA are modelled as point 

masses connected by springs, which stand for the interatomic force fields, and are occasionally 

restricted to Cα atoms exclusively. In order to disclose the dynamic properties of proteins, NMA 

have been created (Velázquez-Muriel et al., 2009; Bakan et al., 2011). The NMA is employed for 

analyses of protein structures and to study the slow dynamics and large-scale motion in 

biomolecules. One specific kind of NMA is the elastic network model. In this model, only the 

atom pairs that are close to a cutoff distance are taken into account, and all of the springs linking 

each node to its neighbors are of similar strength. 

1.2.15.2.5 Mechanical stiffness 

The pulling or stretching forces needed to start protein unfolding differ significantly 

depending on where the pressures are applied, which causes a different reaction in each protein to 

uniaxial strain. Anisotropic Network Model (ANM), a set of software tools included in 

Prodynamics, is used to create mechanical stiffness charts for all molecular systems in response to 

all potential pulling directions (Eyal et al., 2015). 
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1.2.15.2.6 Principal component analysis 

In all the simulated systems, PCA was used to analyse the overall mobility of the residues 

in the protein structure. By lining up the structures from MD simulations trajectories, the MODE-

TASK programme (Ross, C., et al. 2018,) was used to eliminate the translational and rotational 

motions of the protein Cα atoms. Following the creation of the 3N x 3N covariance matrix in 

Cartesian coordinates, the covariance matrix diagonalization was used to produce the eigenvectors. 

The PCA was generated using MD simulations trajectory data. 

1.2.15.3 Binding free energy 

For determining binding free energies in biological macromolecular systems like proteins, 

a variety of techniques with varying degrees of complexity have been used. Simplified scoring 

systems are used to achieve the necessary proficiency in screening vast chemical databases of 

small molecules to find a hit molecule that may potentially develop into a lead and therapeutic 

molecule (Parenti & Rastelli, 2012). The binding free energy can be estimated using quadratic 

fluctuations and continuum solvent approximation around a specific configuration of the 

molecular system (Kollman et al., 2000). A widely used methodology is Molecular Mechanics 

Poisson-Boltzmann and Surface Area (MM-PBSA) relies on a mixed scheme which combines free 

energy estimators based on an implicit continuum solvent model with configurations sampled from 

MD simulations with explicit solvent (Srinivasan et al., 1998; Hou et al., 2011). The MM-PBSA 

method is employed to determine the polar, non-polar and binding free energies of biomolecules 

(Gilson & Honig, 1988; Sitkoff et al., 1994). The command ‘g mmpbsa’  from a GROMACS 

trajectory output determines the binding free energy to a protein ligand complex (Kumari et al., 

2014), and this tool includes a variety of non-polar solvation models, such as those based on the 

solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model that covers 
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repulsive (SASA SAV). It also estimates the energy contribution of individual amino acid residues 

to the binding free energy. The binding free energy is calculated using the following formulae. 

When a protein is complexed with an inhibitor in a solvent such as water, the binding free energy 

is given as 

                           ∆Gbind = Gcomplex – Gfree-protein – Gfree-inhibitor                             (1.3) 

where, Gcomplex is the total free energy of the protein-inhibitor complex and Gfree-protein and Gfree-

inhibitor are total free energies of the isolated protein and inhibitor in the solvent, respectively.  

The free energy of each individual entity "G" indicated above is represented by  

                                 G = EMM − TS + Gsolvation                                                            (1.4) 

TS denotes the entropic contribution to free energy in vacuum, where T and S represent 

temperature and entropy, respectively. Gsolvation refers to the free energy of solvation, which is the 

amount of energy required to move a solute from vacuum into a solvent. This is expressed as the 

total of Gpolar and Gnon-polar, the electrostatic and non-electrostatic contributions to the solvation free 

energy, respectively. 

                                    Gsolvation= Gpolar+ Gnon-polar                                                          (1.5) 

EMM, which is determined using the parameters of the molecular mechanics (MM) force field, is 

the average molecular mechanics potential energy in vacuum, which contains the energy of both 

bonded and nonbonded interactions.  

                   EMM= Ebonded+ Enonbonded = Ebonded+ (EvdW+ Eelec)                      (1.6) 

where Ebonded is bonded interactions consisting of the bond length, angle, dihedral and improper 

interactions. The Enonbonded is the nonbonded interactions that include both electrostatic and van der 
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Waals interactions and is modeled using Coulomb and Lennard-Jones (LJ) potential functions, 

respectively. 

1.2.15.3.1 Linear interaction energy 

The ligand-binding free energy (ΔGLIE) (Almlöf et al., 2004;Brandsdal et al., 2003) was 

computed as the mean of the inhibitors Coulomb and van der Waals interaction differences with 

its neighboring atoms upon incorporation, that is, the individual ligand in the solvent (unbound 

state denoted as subscript u) and the inhibitor in the binding mode with protein (bound state 

denoted as subscript b) approach using gmx lie and gmx energy were calculated for the protein-

ligand molecule complexes from the output trajectories of MD simulations.  

             ∆GLIE = α (⟨Vl-s
vdW ⟩b ˗ ⟨Vl-s

vdW ⟩u + β ⟨ Vl-s
cou ⟩b - ⟨ Vl-s

cou⟩u) + γ         (1.7)       

The above equation was used for calculating LIE. The coefficient γ, a constant, is 

associated with the alteration of the hydrophobic nature of the binding cleft conceding to various 

species of inhibitors, whereas the coefficients α and β are rating parameters for nonpolar and polar 

interactions, respectively. The values taken for α, β and γ are 0.181, 0.5 and 0, respectively. 

 

1.2.16 Density functional theory calculations  

DFT is a computational quantum mechanical modelling technique used to study the 

electronic structure (or nuclear structure) (primarily the ground state) of many-body systems such 

as atoms, molecules, and condensed phases in physics, chemistry, and materials science. This 

hypothesis can be used to determine the characteristics of a many-electron system. Ab initio DFT 

calculations, from the standpoint of computational materials science, allow for the prediction and 
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estimation of material behavior that depends on quantum mechanical factors without the need for 

higher-order parameters such as fundamental material properties. The electronic structure of a 

system is examined using a potential acting on its electrons in modern DFT techniques. This DFT 

potential is constructed by adding external potentials. Vext is determined solely by the structure 

and elemental composition of the system, and Veff is an effective potential that represents 

interelectronic interactions. 

Geometry optimizations on all molecules were performed at the B3LYP (Becke, 1993; Lee 

et al., 1988) level of theory using the 6-311+G(2d,p) basis set (Petersson et al., 1988; Petersson et 

al., 1991). Furthermore, Polarizable Continuum Model (PCM) (Miertuš et al., 1981, Tomasi et al., 

1994) optimizations with water as an implicit solvent were performed at the B3LYP/6-

311+G(2d,p) level for all molecules to determine the effect of solvent presence on total energy of 

the molecule. The frequency calculations were then used to determine the characteristics of the 

stationary point. Molecular orbital analysis was performed at the B3LYP/6-311+G(2d,p) level of 

theory to find the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) (Fukuli et al., 1952) for the molecules studied through MD simulations. 

The purpose of this analysis was to identify the electron-rich zone in the molecules under 

consideration. To accurately analyse the charge distribution around these atoms, the electrostatic 

potential (ESP) energy values were determined (Vetrivel et al., 1996) and mapped over an 

isodensity surface equivalent to 0.0004 a.u. This ESP incorporates the van der Waals volumes of 

the molecules individual atoms, providing an accurate representation of the reactive regions 

surrounding the inhibitors. Gauss View was used to visualize the molecular structures. All 

calculations were carried out using the Gaussian 09 (Frisch et al., 2009) programme suite. 
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2.1 Introduction 

 

 Most viral illnesses are brought on when a virus enters the body of a host 

and exploits that system to proliferate. Infections result when viruses multiply and spread to other 

cells because the host immune system is unable to prevent them. The following are significant 

signs of viral illnesses: Fever, exhaustion, sore throat, headache, irritability, rashes, malaise, 

sneezing, swollen tonsils, and excessive weight loss. The Zika virus is an arbovirus that is 

transmitted by aedes mosquitos via blood and other bodily fluids. The Zika virus caused mild 

illness and rash at first, but it was later discovered to cause Zika virus disease, which is 

characterized by fever, headache, arthralgia, myalgia, and maculopapular rashes (Loos et al., 

2014). Because there are no specific drugs available to prevent or treat Zika virus infection, new 

drugs for the treatment of this critical disease are required.  

             New drug discovery is time-consuming and expensive, with a low success rate most of the 

time. Drug repurposing, also known as drug repositioning or reprofiling, is a strategy for 

identifying new uses for previously approved drugs (Ashburn & Thor, 2004). It is useful for 

identifying drugs that can function as multi-disease inhibitors. These drug molecules have already 

been tested in humans, and comprehensive information on their pharmacology, formulation, 

dosing, and potential toxicity is available (Ashburn & Thor, 2004, Pushpakom et al., 2019). As a 

result, this method has advantages over developing new drugs for a disease; specifically, the risk 

of drug failure is lower because the repurposed drug has already been proven to be sufficiently 

safe, resulting in a shorter timeframe for drug identification and a lower budget investment. For 

example, zidovudine was originally developed to treat cancer but was later redeveloped to treat 

acquired immune deficiency syndrome (AIDS) that is caused by HIV (Marchbanks, et al 1995). 
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The antimalarial drug hydroxychloroquine is an autophagy inhibitor; in vitro studies showed that 

it inhibited dengue virus (Al-Bari, 2015), and it is now being used to treat SARS-CoV-2 disease 

(Chen et al., 2020). Ivermectin (Mastrangelo et al., 2012), suramin (Basavannacharya et al., 2014), 

and aurintricarboxylic acids (Shadrick et al., 2013) have been identified as drugs that inhibit 

flavivirus helicase. Amodiaquine, an antimalarial drug, inhibits Zika virus pathogenicity by 

blocking autophagy (Han et al., 2018). A patent review of repositioning and investigational drugs 

for Zika virus disease identified ribavirin, sofosbuvir, α-interferons, lopinavir-ritonavir 

combination, and niclosamide as Zika virus inhibitors in clinical trials (Rosa et al., 2020). In human 

clinical trials, some Zika virus vaccine candidates based on nucleic acid vaccines, inactivated 

vaccines, viral-vectored vaccines, and attenuated vaccines have shown significant promise 

(Pattnaik et al., 2020). However, a systematic investigation for specific targets to discover efficient 

and swift-acting drugs are needed for the Zika virus because the virus spreads very fast when it 

infects the human host.  

  Flavinoids and their derivatives have been shown to inhibit the activity of the Zika virus 

proteins NS1 (Ahmad et al 2020) and NS2B-NS3 (Yadav et al 2021). The NS3 helicase is essential 

in the replication of viral genomes. RNA helicases are essential for RNA virus RNA metabolism 

and viral infection facilitation. The Zika virus NS5 RdRp generates a negative-sense RNA by using 

the positive-sense RNA as a template for the formation of the intermediate stage double-stranded 

RNA. The Zika virus NS3 helicase unwinds the double-stranded RNA to separate it into negative- 

and positive-sense single-stranded RNA molecules. Negative-sense RNA serves as a new template 

for the production of positive-sense genomic RNA (Xu et al., 2019). Because of its critical role in 

viral RNA replication, NS3 helicase has been identified as an important target for antiviral drug 

discovery. X-ray diffraction methods were used to report the 3-D structures of helicase from 
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dengue, hepatitis C, Zika, and coronaviruses, and their 3-D coordinates are deposited in the PDB 

(Abola et al., 1984). The RNA binding domain of the Zika virus NS3 helicase exhibits ATPase 

activity, which provides chemical energy that is then converted into mechanical energy required 

for viral RNA genome unwinding during viral replication (Tian et al., 2016). Helicase, in 

collaboration with the enzyme RdRp, aids in viral genome replication. Zika virus NS3 helicase is 

an significant target for drug development against Zika infections due to its critical role in genome 

replication. Using computational studies, the 1,4-benzothiazine derivatives were shown to be Zika 

virus NS3 inhibitors (Badshah et al., 2019). The crystal structures of Zika virus NS3 helicase 

complexed with ATP or RNA explain how the virus identifies its substrates during replication and 

provide structural insights for rational Zika virus drug design. However, the mechanisms by which 

Zika virus helicase distinguishes between the binding of nucleoside triphosphate (ATP) and viral 

RNA remain unknown, making the development of antiviral drugs difficult. These structural 

stability studies would aid in determining the molecular basis for cofactor/substrate binding to 

Zika virus NS3 helicase activity. Using molecular docking, MD simulations, and post-MD 

analyses, structural changes in the Zika virus NS3 helicase when bound to the substrate (RNA), 

cofactor (ATP), simultaneously binding to both ATP-RNA, and repurposed drugs are reported in 

this chapter. 

2.2 Materials and Methods 

2.2.1 Dataset 

The crystal structures of the apo Zika virus NS3 helicase (PDB id: 5JMT) and when bound 

to ATP (5GJC) and RNA (5GJB) are available at 1.8, 2.2, and 1.7 Å resolutions, respectively. 

Crystal waters were removed from the structures, and the missing residues in the structure (5GJC) 

were built using the loop modelling method in MODELLER (Sali & Blundell, 1993). The valency 
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of all atoms in the structures were satisfied by the addition of hydrogen atoms, and the geometry 

of the structures was optimised using UCSF Chimera 2.1.1 (Petersen et al., 2004).  

2.2.2 Drug repurposing and molecular docking studies 

It has been proposed that some drugs not only interact with their therapeutic protein targets 

but also inhibit other proteins (Sanseau et al., 2011). Figure 2.1 depicts a conceptual diagram of 

target-based drug repositioning and the outcome of our workflow. The first steps in drug 

repositioning include a high-throughput in silico virtual screening of FDA approved drugs 

obtained from the BindingDB. This is followed by virtual screening based on molecular docking 

and subsequent validation steps. Molecular docking entails creating different binding poses for a 

ligand within the target active site for conformational sampling, as well as evaluating the binding 

strength of each protein-ligand complex based on the extent of nonbonding interactions for scoring 

the pose (Meng et al., 2011). Both docking methods used in this study, AutoDock (Morris et al., 

2009) and CDOCKER (Gagnon et al., 2016), were validated by docking the cofactor ATP into the 

binding site of the NS3 helicase.  
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Figure 2.1. Repurposing of FDA approved drugs for Zika virus NS3 helicase. 

The BindingDB (Liu et al., 2007; Gilson et al., 2016) is an exhaustive and freely accessible 

web resource that contains detailed drug, drug-target, drug action, and drug interaction information 

for FDA approved drugs as well as experimental drugs in the FDA approval process. The structures 

of 1,338 FDA approved drugs have been deposited in BindingDB (https://www.bindingdb.org/). 

These molecules 3-D coordinates were downloaded in .sdf format from BindingDB. The active 

site of Zika virus NS3 helicase was identified using key amino acid residues that interact with the 

cofactor, ATP. Virtual screening of FDA approved drugs using AutoDock 4.2 tools was employed  

to dock the compounds within the 5 Å cavities defined around the ATP binding pocket. This 
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revealed their predicted binding affinity, binding orientation within the active site of the Zika virus 

NS3 helicase, and best binding conformations in order to shortlist the FDA approved drugs. The 

protein structure was loaded into AutoDock tools (Morris et al., 2009) to generate the ten best 

conformations for each molecule. The molecules were initially loaded; torsions were determined 

and saved in PDBQT format. All the heteroatoms and crystal waters were deleted from the loop 

modeled structure of Zika virus NS3 helicase (5GJC) prior to molecular docking and saved in 

PDBQT format. The Lamarckian Genetic algorithm was used to perform all calculations for 

protein-ligand flexible docking (Wiley, et al 2006). A grid box with the dimensions X: 22.987 Å, 

Y: 19.338 Å and Z: 49.646 Å was used, with a grid spacing of 0.492 Å as the default. The best 

conformation with the highest binding affinity and greater number of hydrogen bonding 

interactions between the protein and the docked pose of an FDA approved drug was manually 

analysed on graphics.  

The top-ranked molecules were then subjected to a second round of docking studies with 

CDOCKER (Gagnon et al., 2016), which is available in DS 3.5. To define the proteins active site, 

a sphere with a radius of 5 Å was generated around ATP. Twenty docking poses were generated 

for each molecule, and the conformations of molecules generated in the active site of the protein 

were shortlisted. The system was heated to 700 K for 2,000 steps as part of the docking protocol, 

then cooled to 300 K for 5,000 steps. The binding conformations of the molecules in Zika virus 

NS3 helicase were analysed using the "scoring ligand poses" implemented in the receptor-ligand 

interactions protocol in DS 3.5, and the docking poses were analysed using the scoring functions 

PLP1, PLP2 and PMF (Gehlhaar et al., 1995; Parrill et al., 1999; Muegge et al., 1999; Muegge, 

2006). Top scores and intermolecular interactions with the Zika virus NS3 helicase were used to 
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select the best docking pose. The top-ranked molecules from the CDOCKER docking method were 

studied further using MD simulations to assess complex stability.  

2.2.3 Molecular dynamics simulations 

MD simulations are computational methodologies used to examine the physical and 

conformational changes of proteins as well as their interactions with other molecular species in a 

variety of environments (Beveridge & Ravinshanker, 1994; Cheatham et al., 1995; Cheatham et 

al., 1997; Young & Beveridge, 1998; Reyes & Kollmann, 1999; Tang & Nilsson, 1999). 

GROMACS 5.1.4 (Hess et al., 2008; Van Der Spoel et al., 2005) was used to study the MD 

simulations of all molecular systems for 150 ns. There were eight various types of molecular 

systems studied: apo Zika virus NS3 helicase, Zika virus NS3 helicase complexed with ATP, RNA, 

ATP-RNA, and four FDA approved drugs located within the proteins ATP binding site. Hydrogen 

atoms were added to all molecular systems, and the coordinates were saved in .mol2 format. 

AMBER03 force fields were applied by UCSF Chimera using AM1-BCC charges and saved in 

.mol2 format. ACPYPE script was used to generate topology of the compounds (Da Silva et al., 

2012). MD simulations were run for 150 ns for each molecular system to investigate the 

mechanism of ATP-RNA binding to Zika virus NS3 helicase and the stability of repurposed drugs 

within the protein active site in order to validate them.    

The molecular systems were solvated in a cubic box with water as the solvent, and the 

systems total charge was neutralised by the addition of Na+ and Cl- ions (Berendsen et al., 1981). 

To optimise the geometry of the systems, the steepest descent method was used for 1,000 steps of 

energy minimization. The distribution of water molecules was achieved during the position 

restraint phase, and the systems were equilibrated under NVT (constant number of particles, 

volume, and temperature) and NPT (constant number of particles, pressure, and temperature) 



54 
 

conditions for 100 ps each using the leap-frog integrator method. For long-range electrostatics, the 

particle mesh Ewald method was used, temperature coupling was set using V-rescale (Bussi et al., 

2007), modified Berendsen thermostat (Berendsen et al., 1984) at 300 K, and pressure was 

maintained at 1 atm using the Parrinello-Rahman (Parrinello & Rahman, 1981) method. The MD 

simulations of all systems were executed using the periodic boundary conditions with a cutoff of 

1.0 nm, the Lincs algorithm (Hess et al., 1997) was used to constrain the hydrogen bond 

parameters, and the final MD simulations in the production phase were run for 150 ns. The MD 

trajectories were analysed with the GROMACS utilities gmx rms, gmx rmsf, gmx gyrate, and gmx 

cluster (Van Der Spoel et al., 2005) to obtain the RMSD, RMSF, Rg and cluster analyses. VMD 

was used to visualise the MD trajectory file analyses (Humphrey et al., 1996); Chimera and Pymol 

were used to generate cartoon image representations. The RMSD, RMSF and Rg graphs were 

plotted using the Xmgrace software (http://plasma-gate.weizmann.ac.il/grace/). The secondary 

structural changes in the MD simulations as a function of simulations time were examined using 

GROMACS gmx do dssp command. 

2.2.4 Normal Mode Analysis 

Protein flexibility is a major challenge in the accurate prediction of protein-ligand docking 

and dynamics. NMA can provide a quick and systematic investigation of protein dynamics. An 

elastic network model-based NMA using dihedral angels as independent variables for all 

molecular systems was developed using the software suite of programs available in Prodynamics 

(Uyar et al., 2011 and Atilgan et al., 2001).  

2.2.5 Mechanical Stiffness 

It has been demonstrated that the pulling/stretching forces required to initiate protein 

unfolding vary considerably depending on the location of the application of the forces, thus 
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unraveling specific response of protein to uniaxial tension. Mechanical stiffness plots of all 

molecular systems in response to all possible pulling directions were constructed by using ANM 

using the software suite of programs in Prodynamics (Eyal et al., 2015). 

2.2.6 Principal component analysis  

PCA has been used to examine the overall motion of R-loop residues in the Zika virus NS3 

helicase in all simulated systems. MODE-TASK software (Ross et al., 2018) was used to eliminate 

the translational and rotational motions of the protein Cα-atoms by aligning the structures from 

MD simulations trajectories. The 3N/3N covariance matrix was then constructed using Cartesian 

coordinates, followed by the construction of eigenvectors by diagonalization of the covariance 

matrix. The PCA was computed using MD simulations trajectories ranging from 0 to 150 ns. 

2.2.7 Binding free energy calculations 

         The g mmpbsa tools (Kumari et al., 2014) were employed to evaluate the strength of ATP 

and FDA approved molecules binding to Zika virus NS3 helicase. These tools were designed to 

work with GROMACS output trajectories in order to calculate the binding free energy of each 

molecular system. Based on the RMSD results, binding free energy calculations were run on the 

stable region of MD simulations trajectories (140-150 ns). These binding free energy calculations 

predict the effective participation of amino acid residues in the Zika virus NS3 helicase in binding 

to ligands, as well as the contribution from van der Waals, electrostatic and polar and apolar 

solvation energy terms. 

2.3 Results and Discussion 

2.3.1 Zika virus NS3 helicase complexed with ATP, RNA and ATP-RNA 

The missing residues in the ATP-bound Zika virus NS3 helicase (5GJC) structure were 

constructed by using MODELLER 9.17 software. Among the 5 generated models, the model with 
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the highest negative distinct optimized protein energy (DOPE) score was used for further studies.  

The tertiary structure of the Zika virus NS3 helicase is composed of three domains, each of which 

contains 130-160 amino acid residues. Despite their low sequence homology, domains I 

(residues 192-332) and II (333-481) have a similar structural fold. Domain III (482-617) is made 

up of a four-helical bundle that is extended by two anti-parallel β-strands that are partially 

exposed to the solvent. The protease domain is represented by the amino acid residues 1-174. 

Two α-helices from domain I interact with a parallel α-helical bundle from domain III; domain 

II connects to domain III via a long β-hairpin, stabilising interdomain interactions (Tian et al., 

2016), and all the three domains have clearly defined binding clefts. The cofactor ATP is located 

between the domains I and II in Zika virus NS3 helicase; it is stabilized by the Mn²+ coordinated 

in octahedral geometry by interactions with side-chain of residues Thr201 and Glu286, two oxygen 

atoms of β and γ phosphate groups of ATP and two water molecules. The binding site of ATP is 

formed by the residues Gly197, Ala198, Gly199, Lys200, Thr201, Arg202 and Arg203 (P-loop), 

and Glu286, Ala317, Asn330, Gly415, Asn417, Gln455, Gly458, Arg459, Arg462 and Asn463.  

The single-stranded RNA binds the Zika virus NS3 helicase within the region formed by the amino 

acid residues; Pro224, Thr225, Arg226, Val227, Met244, Thr245, Thr246, Cys262, Ala264, 

Thr265, Phe289, Asp291, Pro292 (domain I), Pro364, Ser365, Val366, Arg367, Ser387, Arg388, 

Thr409, Asp410, Ile411, Leu430, Lys431, Pro432, Leu442 (domain II), His486, Lys537, Asp540, 

Arg598 and Ser601 (domain III). The single-stranded RNA makes hydrogen bonding interactions 

with Arg226, Thr245, Thr265, Asp291, Val366, Arg388, Thr409, Asp410 and Lys431. The ATP 

and single-stranded RNA binding sites in Zika virus NS3 helicase are shown in Figure 2.2A. 
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Figure 2.2A: Zika virus NS3 helicase bound to ATP-RNA, amino acid residues in hydrogen 

bonding interactions are indicated as green lines.  

2.3.2 Virtual screening and molecular docking 

To validate the docking methods, the loop-modeled Zika virus NS3 helicase (5GJC) was 

used to redock the cofactor ATP into its binding site using AutoDock 4.2 and CDOCKER. The 

cofactor docked into the active site pocket. It is located in the cavity formed by the residues 

Leu194, His195, Pro196, Gly197, Ala198, Gly199, Lys200, Thr201, Arg202, Arg203, Glu286, 

Ala317, Asn330, Gly415, Asn417, Gln455, Gly458, Arg459, Arg462 and Asn463 and forms 

hydrogen bonding interactions with the amino acids, Gly197, Gly199, Lys200, Thr201, Arg202, 

and Arg462. The crystal structures ATP superposition and molecular docking is shown in Figure 

2.2B.  



58 
 

 

Figure 2.2B: docking of ATP to Zika virus NS3 helicas CDOCKER and AutoDock. 

The virtual screening of 1,338 FDA approved drug molecules to bind the cofactor ATP 

binding site of Zika virus NS3 helicase was studied by using AutoDock 4.2 software. Out of these, 

only 938 molecules could be docked into the ATP binding site of NS3 helicase. From these docked 

compounds, 230 molecules were predicted to have binding affinity better than -7.0 kcal/mol. The 

docking conformers of each molecule was analysed and selected the molecules based on the 

docking score, docking conformation, and hydrogen bonding interactions mediated by key 

residues in the ATP binding site. Of these, the best 40 compounds were selected that had a docking 

score between (-9.3 to -7.5 kcal/mol). These molecules were further confirmed by docking into the 

ATP binding pocket of Zika virus NS3 helicase using CDOCKER. The docking scores and amino 

acid residues mediating interactions in the binding site using AutoDock and CDOCKER methods 

are shown in Table 2.1.  
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Table 2.1: The docking scores of the best selected molecules using AutoDock and CDOCKER 

and the interacting amino acids in the NS3 helicase. 

 

S. 

No. 

Compound 

Name 

AutoDock 

score  

-kcal/mol 

CDOCKER score  Active site amino acid 

residues 
 

-PLP 

 

-PLP2 

 

-PMF04 

 

1. 

 

Lapatinib 

GW57201 

 

9.3 

 

82.85 

 

73.09 

 

55.12 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

2. 

 

Dicumarol 

DB00266 

 

9.0 

 

73.48 

 

52.49 

 

69.41 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

3. 

 

Sorafenib 

DB16673 

 

8.8 

 

70.48 

 

49.36 

 

61.32 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

4. 

 

Votrient 

DB26474 

 

8.6 

 

69.48 

 

48.24 

 

60.29 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 
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Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

5. 

Fexofenadine 

DB22874 

8.5  

75.36 

 

51.36 

 

68.32 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

6. 

 

Beroccapn 

DB50367343 

 

8.5 

 

74.31 

 

63.48 

 

77.96 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

7. 

 

Pemetrexed 

DB18796 

 

8.3 

 

64.56 

 

46.14 

 

43.62 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

8. 

 

Raloxifene 

DB1944 

 

8.2 

 

78.86 

 

72.38 

 

55.42 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Gln455, Gly458, 

Arg459, Arg462, Asn463, 

Pro464 

 

9. 

 

Raltegravir 

DB25351 

 

8.2 

 

72.16 

 

53.86 

 

64.92 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 
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Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

10. 

 

Amiodarone 

DB01118 

 

8.2 

 

76.51 

 

65.81 

 

77.38 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

11. 

 

Povan 

DB78435 

 

8.2 

 

65.54 

 

49.18 

 

46.91 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

12. 

 

Bicalutamide 

DB18678 

 

8.1 

 

79.68 

 

71.48 

 

56.21 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

13. 

 

Linezolid 

DB00601 

 

8.1 

 

77.21 

 

66.42 

 

75.98 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231,Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

14. 

 

Respiridone 

DB50001885 

 

8.1 

 

71.11 

 

62.68 

 

76.96 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 
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Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

15. 

 

Erivedge 

DB50249522 

 

8.1 

 

68.24 

 

44.19 

 

48.72 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

16. 

 

Rondomycin 

DB50368780 

 

8.1 

 

73.89 

 

72.56 

 

58.21 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

17. 

 

Lopinavir 

DB578 

 

8.0 

 

73.86 

 

54.16 

 

63.96 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

18. 

 

Roxyzine 

pamoate 

DB38549 

 

8.0 

 

69.51 

 

63.81 

 

76.37 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

19. 

 

Indapamide 

DB25901 

 

7.9 

 

67.64 

 

47.16 

 

49.96 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 
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Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

21. 

 

Chlorthalido

ne 

DB25900 

 

7.9 

 

70.68 

 

68.48 

 

58.21 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

22. 

 

Diulo 

DB25899 

 

7.9 

 

65.91 

 

61.83 

 

73.32 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

23. 

 

Tadalafil 

DB14777 

 

7.9 

 

67.59 

 

47.27 

 

46.95 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

24. 

 

Vardenafil 

DB14476 

 

7.8 

 

72.88 

 

70.48 

 

56.21 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

25. 

 

Fenofibrate 

DB28700 

 

7.8 

 

73.21 

 

64.43 

 

72.99 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 
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Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

26. 

 

Azactam 

DB50240480 

 

 

7.8 

 

70.19 

 

61.67 

 

75.97 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

27. 

 

Buspar 

DB50001859 

 

7.8 

 

67.54 

 

45.18 

 

49.71 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

28. 

 

Terconazole 

DB31769 

 

7.7 

 

71.81 

 

72.51 

 

56.25 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

29. 

 

Azulfidine 

DB50143010 

 

7.7 

 

67.55 

 

46.17 

 

49.78 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

30. 

 

Floxuridine 

DB00322 

 

7.6 

 

65.58 

 

44.11 

 

43.35 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Glu231, Ala235, 

Glu286, His288, Thr316, 

Ala317, Asn317, Asn330, 

Gly415, Asn417, Lys419, 
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Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

 

31. 

 

Celecoxib 

DB11639 

 

7.6 

 

65.57 

 

41.19 

 

59.72 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

32. 

 

Iressa 

DB00317 

 

7.6 

 

72.89 

 

67.51 

 

56.47 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

33. 

 

Belinostat 

DB05015 

 

7.5 

 

79.85 

 

73.19 

 

55.22 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

34. 

 

Roflumailast 

DB14774 

 

7.5 

 

76.51 

 

46.28 

 

53.69 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

35. 

 

Dasatinib 

DB82071 

 

7.5 

 

69.87 

 

73.57 

 

59.29 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 



66 
 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

 

36. 

 

Brominate 

dm 

DB50366613 

 

7.5 

 

67.15 

 

47.43 

 

57.18 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

37. Tazobactam 

DB50157692 

 

7.5 

 

65.58 

 

44.11 

 

43.35 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 

Gly458, Arg459, Arg462, 

Asn463, Pro464 

38. Tindal 

DB82475 

 

7.5 

 

69.51 

 

46.21 

 

61.71 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, , Asn317, Asn330, 

Gly415, Asn417, Lys419, 

Gln455, Gly458, Arg459, 

Arg462, Asn463, Pro464 

39. Furadantin 

DB57045 

 

7.5 

 

71.91 

 

69.61 

 

57.17 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gly458, 

Arg459, Arg462, Asn463, 

Pro464 

40. Arestin 

DB6602603 

 

7.5 

 

65.58 

 

44.11 

 

43.35 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Arg459, Arg462, 

Asn463,  
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The best four molecules identified from both the docking methods and MD simulations were 

dicumarol (DB00266), linezolid (DB00601), floxuridine (DB00322) and belinostat (DB015015), 

that have a range of docking scores (-9.0, -8.1 -7.6 and -7.5. kcal/mol), respectively as shown in 

Figure 2.3 These molecules make hydrogen bonding interactions with active site residues Gly197, 

Gly199, Lys200, Thr201, Arg202, Glu286, Asn417, Arg459 and Arg462. These best docking pose 

of Zika virus NS3 helicase complexed with four repurposed drugs obtained using CDOCKER 

docking were further studied by using MD simulations studies. 
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Figure 2.3: The selected docked structures of repurposed compounds binding to Zika virus NS3 

helicase along with AutoDock score. 

2.3.3 Molecular dynamics simulations 

All molecular systems, apo Zika virus NS3 helicase and when complexed with ATP, RNA, 

ATP-RNA, and repurposed drugs were subjected to 150 ns MD simulations using GROMACS. 

Rg, RMSD, and RMSF plots were created to evaluate the stability of these molecular systems. The 

average structure of each molecular system was calculated using the data from 150 ns MD 

simulations. The structural changes in the protein before and after MD simulations were observed 

by superposing the initial and average structures of the respective molecular systems. The RMSD 
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of protein Cα-atoms is an important parameter for analysing the trajectories; these are plotted as a 

function of time to understand the stability of each molecular system throughout the MD 

simulations. The RMSD plots, as shown in Figure 2.4A, explain the range of deviations of all Cα- 

atom positions and indicate that the structures have reached stability after 10 ns of MD simulations. 

All complexes show good stability with low RMSD. The RMSD of RNA bound to Zika virus NS3 

helicase reached 3.2 nm, which could be attributed to motor residue movement in domain II. 

Domain II moves away from the RNA binding groove during MD simulations. Based on these 

findings, it is proposed that the presence of both ATP and RNA improves protein structural 

stability.  
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Figure 2.4: RMSD of Zika virus NS3 helicase A) apo protein (violet) B) NS3 helicase (violet) 

with ATP (brown) C) NS3 helicase (violet) with RNA (brown) and D) NS3 helicase (violet) with 

ATP (brown) and RNA (green). 

 

To gain a better understanding of the structural changes that occur in the Zika virus NS3 

helicase upon ligand binding, the RMSF of all molecular systems was calculated. The fluctuations 

of each Cα-atom in relation to its average position during MD simulations were observed using 

the RMSF plots of the protein Figure 2.4B. When NS3 helicase was bound to ATP, two regions 

fluctuated significantly: Met244-Ser253, which forms the RNA binding loop (R-loop), and 

Pro327-Ile333. The Pro327-Ile333 region is close to the ATP binding pocket and fluctuates 

throughout MD simulations.  
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Figure 2.4B: RMSF plots of Zika virus NS3 helicase apo (monomer), and complexed with ATP 

(dimer), RNA (dimer), ATP-RNA (trimer).  

In the Zika virus NS3 helicase when complexed with ATP-RNA, the nucleotide base 

cytosine; C5 from RNA forms hydrogen bonding interactions with Met244 and Thr245 in the R-

loop. In the absence of RNA, this loop displays significant fluctuations as observed from the RMSF 

plots. When the conformations of these R-loop residues from MD simulations of apo and 

complexed molecular systems were compared, it was discovered that there was a significant 

difference in the flexibility of the R-loop in the presence and absence of single-stranded RNA. 

These findings are consistent with findings from MD simulations of Hepatitis C virus NS3 helicase 

complexed with ATP-RNA (Pérez-Villa et al., 2015). In the absence of RNA, the Zika virus NS3 
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helicase bound to ATP had a higher RMSF (0.6 nm) in the R-loop. These loop residues have lower 

fluctuations (0.25 nm) in the presence of RNA in all molecular systems, including the trimeric 

complex of Zika virus NS3 helicase bound to ATP-RNA, which has lower fluctuations in the R-

loop when compared to the ATP bound protein. 

2.3.4 Conformational changes in apo, ATP, RNA, and ATP-RNA bound Zika virus NS3 

helicase molecular systems 

The triphosphate moiety of ATP is stabilised in the Zika virus NS3 helicase complexed 

with ATP by interactions with the Walker A motif residues (195-204), which form the phosphate 

binding loop (P-loop residues); Gly197, Gly199, Lys200, and Arg202, and arginine finger residues 

(456-463); Arg459 and Arg462. The 3' end of RNA binds to domain I and the 5' end binds to 

domain II in single-stranded RNA binding. The R-loop residues interact with RNA and exhibit 

enhanced stability in MD simulations of all molecular systems. The superpositions of the starting 

and average structures from MD simulations of each molecular system are used to look into the 

structural changes that happen as a result of simulations time. 

The comparison of protein conformational changes across all molecular systems 

investigated revealed greater changes in the domain I and mobility of the R-loop when bound to 

ATP. The results revealed that the R-loop underwent distinct conformational changes (open and 

closed) during the 150 ns MD simulations. The R-loop residues in the Zika virus NS3 helicase - 

RNA complex have a closed conformation, whereas the R-loop residues in the ATP bound Zika 

virus NS3 helicase have an open conformation during MD simulations, as shown in Figure 2.5A. 

In domain I of the initial structure of the Zika virus NS3 helicase complexed with ATP, the residues 

Ala230, Val242 Met244, Ala247, Val248, His252 and Tyr243 form hydrophobic interactions. 

During MD simulations, the ATP bound protein loses hydrophobic interactions with the surface 
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of domain I Figure 2.5B, resulting in higher fluctuations in the R-loop of the ATP bound molecular 

system compared to the other systems. As a result, in the Zika virus NS3 helicase-ATP complex, 

the R-loop residues move away from the RNA binding groove, whereas in the Zika virus NS3 

helicase-RNA complex, the R-loop residues move closer to the RNA, such that HG1 of Thr246 

interacts with O1P of C5, the residues Met244, Thr245 and Thr246 form hydrogen bonds, and 

other nonbonding interactions with RNA. These interactions are retained in the average structures 

obtained after MD simulations and are responsible for stabilizing the R-loop in Zika virus NS3 

helicase - RNA complexes. These conformational changes are in correlation with the RMSF plots. 
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Figure 2.5A: Open and closed conformations of R-loop before (blue) and after (red) MD 

simulations and Zika virus NS3 helicase complexed with ATP and RNA. Initial (green) and after 

(blue) MD simulations. 

 

 

Figure 2.5B: Hydrophobic interactions of R-loop residues after MD simulations in Zika virus NS3 

helicase binding with RNA and ATP. 

 

The amino acid residues region of domain I, Pro240-Tyr243, is initially present as a β-

strand; however, during MD simulations in the ATP bound system, these residues are converted 

to a loop structure with an open conformation throughout the MD simulations, which is caused by 



75 
 

the loss of hydrophobic interactions between the R-loop and α-helix 2 (Arg226-Glu234) on the 

protein surface, which explains the change in the secondary structure of protein during MD 

simulations. Secondary structural analysis confirms this observation, demonstrating that in the 

ATP bound molecular system, Pro240-Tyr243 changes conformation from β-sheet to loop 

structure. From the initial to 150 ns MD simulations of each molecular system, distinct structural 

deviations were observed. The ATP, RNA, ATP-RNA bound Zika virus NS3 helicase structures 

exhibit more deviations from its apo form, during MD simulations. The distance between domains 

I and II in the apo and ATP bound forms is smaller, indicating that the protein is in a closed 

conformation. The distance between domain I and domain II increased in the Zika virus NS3 

helicase when bound to RNA, ATP-RNA and greater movement was observed in RNA binding 

compared to ATP-RNA, indicating that these molecular systems are in an open state. This is due 

to the fact that when RNA binds to the protein, domain II moves away from the RNA binding 

groove. Previous research found that when dengue NS3 helicase was complexed with ATP and 

single-stranded RNA, it changed its conformation (Davidson et al., 2018). The MD simulations of 

the hepatitis C virus NS3 helicase revealed significant movement (open and closed conformations) 

and hydrogen bonding interactions in domains I and II (Pérez-Villa et al., 2015). In the case of the 

Zika virus NS3 helicase, the residues Arg226, Val227 (domain I) and Glu392 (domain II) exhibit 

hydrogen bonding interactions in apo and ATP bound forms, and these interactions are maintained 

during MD simulations. Because of the increased distance between the two domains in RNA and 

ATP-RNA bound Zika virus NS3 helicase, hydrogen bonding interactions are not observed. Based 

on these findings, it is now proposed that domains I and II maintain an open conformation in RNA 

and a closed conformation in ATP-RNA bound molecular systems. RNA binding to the protein 

results in domain II moving away from the RNA-binding groove, thus increasing the distance 
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between the two domains I and II, resulting in an open conformation. ATP binding between the 

domains I and II holds the two domains throughout MD simulations, resulting in a closed 

conformation.  

2.3.5 Clustering analysis 

For clustering analysis of open and closed conformations of Zika virus NS3 helicase, 

clustering analysis tool of GROMACS (gmx cluster) was used to explore the conformational 

heterogeneity in the ensemble of protein structures generated by computer simulations. The 

structurally similar clusters were determined using the GROMOS clustering algorithm (Daura et 

al., 1999) with a Cα-RMSD cut-off. The ATP bound molecular system has eight clusters, while 

the other molecular systems have two clusters that have distinct structures as shown in Figure 

2.6A.  
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Figure 2.6A: Apo (A), bound to ATP (B), RNA (C), ATP-RNA (D), floxuridine (E), 

belinostat (F), dicumarol (G) and linezolid (H).   

 

The structures obtained from cluster analyses revealed that the protein changes its 

conformation to open state when RNA is bound and in the other molecular systems its exhibits 

closed conformation. Whereas in the ATP bound molecular system conformational changes are 

observed in the R-loop of all eight structures. The distribution of RMSD in each molecular systems 

were also plotted, that showed the RMSD distribution is greater in ATP bound molecular system 

(0.28 nm) and the other molecular systems exhibit < 0.25 nm as shown in Figure 2.6B. 
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Figure 2.6B: RMS distribution plot of Apo (A), bound to ATP (B), RNA (C), ATP-RNA (D), 

floxuridine (E), belinostat (F), dicumarol (G) and linezolid (H).   

 

                Molecular docking on the Zika virus NS3 helicase with various molecules at the ATP 

binding site were studied (Badshah et al., 2019; Kumar et al., 2020). However, the structural 

changes of single-stranded RNA when the Zika virus NS3 helicase is complexed with both ATP 

and RNA remain unknown till now. Significant conformational changes in the RNA bases are 

observed during MD simulations of both systems (RNA and ATP-RNA). The crystal structure of 

the Zika virus NS3 helicase complexed with RNA (Tian et al., 2016) shows hydrophobic and 

hydrogen bonding interactions between the RNA bases and the proteins amino acid residues. The 
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R-loop forms hydrogen bonding interactions with the C5 on single-stranded RNA. Several MD 

simulations studies on RNA have focused on conformational changes and torsional angle 

deviations between crystal and MD simulated structures (Hermann et al., 1998; Zacharias et al., 

1999; Zacharias & Martin, 2000; Nifosi et al., 2000; Williams et al., 2000; Koplin et al., 2005). 

Protein-RNA interactions were studied structurally and biochemically to determine how a protein 

recognises a specific RNA site, the effect it has on RNA structure, and how their interactions 

promote a specific function (De Groot et al., 2019). When protein-RNA complex is formed, both 

the protein and the RNA undergo significant conformational changes (Draper & David, 1995; 

Flores et al., 2018).  In this study, for Zika virus NS3 helicase complexed with RNA and ATP-

RNA, significant conformational changes are observed in RNA structure during the course of MD 

simulations, the nucleoside bases in single-stranded RNA exhibit movements in opposite 

directions (clockwise and anti-clockwise) with respect to the neighboring nucleoside base as 

illustrated in Figure 2.7A. The nucleoside bases show alterations in structure throughout MD 

simulations. These alterations were analysed by calculating the torsion angles (α, β, γ, δ, ε, ζ and 

χ) of each base by using wDSSR web server (Lu et al., 2015). When the Zika virus NS3 helicase 

is bound to RNA and ATP-RNA, the nucleoside bases in RNA show deviations in torsion angles 

throughout the MD simulations compared with crystal structure of RNA shown in Table 2.2. This 

deviation in torsion angles provides an explanation for the structural alternations in RNA bases, 

compared with ATP-RNA molecular system, greater deviations in torsion angles of RNA were 

observed in RNA bound molecular system, because of the domain II that moves away from the 

RNA binding groove in RNA-bound system. Whereas for ATP-RNA bound Zika virus NS3 

helicase, lower deviations in the torsion angles of RNA are observed because of the closed 

conformation of domain I and domain II. 



80 
 

Because of these structural alterations of RNA in Zika virus NS3 helicase bound to both 

RNA and ATP-RNA, the interactions between C5 and R-loop increased as a function of 

simulations time. The distance between RNA base of C5 and the amino acid residues in the vicinity 

were measured. These results show that in the initial structures, RNA base C5 close to R-loop 

makes interactions with Arg226, Thr245 and Thr246 in domain I; however, during MD simulations 

the RNA base C5 remains close to Thr246 and Thr245, and moves away from Arg226 in Zika 

virus NS3 helicase complexed with RNA and ATP-RNA.  This deviation is more in ATP-RNA 

bound molecular system compared with RNA bound molecular system Figure 2.7B. This indicates 

that the nucleosides in RNA change their conformation throughout MD simulations and these 

conformational changes proceed to explain the mechanism of the intermediate state of double-

stranded RNA converted into two single-strands, with positive and negative sense of direction. 

 

Figure 2.7A: Movements of each base in RNA initial (Grey) and after (Green) MD simulations 

for Zika virus NS3 helicase bound with RNA and ATP-RNA.  

Table 2.2: Torsion angles in RNA from X-ray structure (PDB_id: 5GJB), comparison with MD 

simulations of RNA bound, and RNA-ATP bound Zika virus NS3 helicase. 
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Torsion 

angle 

A1 G2 A3 U4 C5 

α-X-ray 

α-RNA 

α-RNA-ATP 

 -60.697 

-61.937 

-67.539 

-65.678 

-94.561 

-85.072 

-45.725 

-78.09 

-49.318 

-65.443 

-93.16 

-100.089 

β-X-ray 

β-RNA 

β-RNA-ATP 

 163.33 

167.611 

170.009 

-176.765 

-154.281 

-176.233 

154.303 

176.831 

165.961 

-169.231 

-168.978 

-171.833 

γ-X-ray 

γ-RNA 

γ-RNA-ATP 

-163.299 

-174.237 

-135.791 

60.022 

45.709 

54.445 

44.539 

57.277 

85.359 

56.512 

67.747 

66.846 

51.134 

59.781 

50.501 

δ-X-ray 

δ-RNA 

δ-RNA-ATP 

81.808 

78.273 

79.628 

81.286 

82.791 

81.225 

75.828 

101.034 

70.387 

80.451 

84.173 

89.457 

79.677 

90.001 

83.455 

ε-X-ray 

ε-RNA 

ε-RNA-ATP 

-131.079 

-147.364 

-134.217 

-153.468 

-178.551 

-176.369 

-151.614 

-172.925 

-143.248 

-150.520 

-175.998 

-170.563 

 

ζ-X-ray 

ζ-RNA 

ζ-RNA-ATP 

-72.074 

-75.576 

-68.757 

-62.401 

-75.83 

-77.937 

-99.933 

-94.731 

-93.544 

-76.718 

-77.229 

-78.777 

 

χ-X-ray 

χ-RNA 

χ-RNA-ATP 

-177.239 

-156.352 

-177.134 

-169.297 

-122.174 

-177.512 

-159.474 

-109.521 

-164.265 

-145.65 

-95.139 

-133.777 

-128.1 

-81.279 

-140.977 
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Figure 2.7B 

 

 

 

Based on the structural superposition and torsion angles, conformational changes in RNA 

when complexed to NS3 helicase in both RNA and ATP-RNA bound molecular systems were 

observed. Greater changes in RNA torsions were observed in RNA bound Zika virus NS3 helicase 

compared to ATP-RNA bound NS3 helicase. During MD simulations domain II moves away from 

domain I and exhibits open conformation, resulting in the expansion of the RNA binding groove 

leading to greater conformational changes in RNA. Whereas in ATP-RNA bound molecular 

system, ATP is coordinated between domain I and domain II, and the movement of domain II 

decreased throughout MD simulations, because ATP tightly holds domains I and II which exhibit 

closed conformation, and there are no changes in RNA binding groove and distance between the 

two domains is decreased which indicated that the interactions between domain II and RNA are 

  RNA bound Zika virus NS3 helicase: 

 i)) Distance between NH1 of Arg226 and O1P of Cytosine (black) 

 ii) Distance between HG1 of Thr245 and O1P of Cytosine (purple) 

iii) Distance between HG1- Thr246 and O1P Cytosine (green) 

 

 

RNA and ATP bound Zika virus NS3 helicase: 

 i) Distance between NH1 of Arg226 and O1P of Cytosine (black) 

 ii) Distance between HG1 of Thr245 and O1P of Cytosine (purple) 

iii) Distance between HG1- Thr246 and O1P Cytosine (green) 
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maintained throughout MD simulations, because of this conformational changes in RNA have 

decreased when protein is complexed with ATP-RNA. These observations lead to propose a 

mechanism for the generation of single-stranded RNA from double-stranded RNA of Zika virus. 

The hydrogen bonding interactions between RNA and protein in RNA bound, ATP-RNA bound 

molecular systems were monitored. The RNA binding complex exhibits hydrogen bonding 

interactions with Pro224, Arg226, Thr245, Thr265, Arg388, Thr409, Lys537 that are present 

throughout MD simulations, whereas the trimeric complex shows along with these interactions 

some additional hydrogen bonding interactions formed with Cys262, Thr246, Met536 and Asp540 

throughout 150 ns MD simulations. The hydrogen bonding interactions between protein and RNA 

are higher in trimeric complex throughout 150 ns MD simulations. Based on hydrogen bonding 

interactions and structural alterations of RNA, the unwinding behavior of RNA was observed in 

both molecular systems. The alterations in the conformation from cofactor and substrate binding, 

and the mechanism of their recognition in Zika virus NS3 helicase are described in this work.  

2.3.6 Molecular dynamics simulations of Zika virus NS3 helicase complexed with FDA 

approved drugs 

Zika virus NS3 helicase complexed with four FDA approved compounds floxuridine, 

belinostat, dicoumarol and linezolid identified from molecular docking studies were proceeded for 

150 ns MD simulations studies. The Cα-backbone RMSD of protein was monitored throughout 

the 150 ns MD simulations for all molecular systems that attained stability after 10 ns (RMSD < 3 

Å) as shown in Figure 2.8A. Similarly, the repurposed drugs displayed low RMSD (~ 2 Å) as 

shown in Figure 2.8B, indicating that these drugs stabilize the Zika virus NS3 helicase protein and 

that a stable complex is formed. The RMSF plots Figure 2.8C indicated the stable complexes 

formed between Zika virus NS3 helicase and FDA approved drugs.  
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Figure 2.8: A) RMSD plots of Zika virus NS3 helicase complexes with floxuridine, belinostat, 

dicumarol, and linezolid. B) RMSD plots of repurposed drugs floxuridine, belinostat, dicumarol 

and linezolid. C) RMSF plots of Zika virus NS3 helicase complexed with floxuridine, belinostat, 

dicumarol and linezolid. 

 The amino acid residues in the P-loop (Ala198-Arg203) form hydrophobic and hydrogen 

bonding interactions with the drug molecules at the active site and show stability during the MD 

simulations. The R-loop in domain I that showed high fluctuations when complexed with ATP (~ 

6 Å) is stabilized when Zika virus NS3 helicase is complexed with FDA approved drug molecules 

(< 4 Å).  In the domain II, at the Ala325-Val338 region, fluctuations are observed when complexed 

with floxuridine similar to ATP bound complex, the fluctuations in the region around (Gln272-

Tyr279) are observed in all molecular systems. The hydrogen bonding analysis of the four FDA 

approved drugs was carried out in order to study their hydrogen bonding network at the active site 
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based on MD simulations. Comparison of the initial and average structures of all these complexes 

showed that they maintain important interactions throughout MD simulations. Figure 2.9 

represents the 5 Å residue interaction plots of floxuridine, belinostat, dicumarol and linezolid 

within the active site of Zika virus NS3 helicase. The residues that line active site pocket for the 

four compounds are Gly197, Ala198, Gly199, Lys200, Thr201, Arg202, Glu288, Gly415, Asn417, 

Arg459 and Arg462. The residues Gly199, Lys200, Thr201, Arg202, Glu286, Gly415, Asn417 

Arg459 and Arg462 formed stable hydrogen bonds with electronegative atoms present in the four 

compounds that were retained during MD simulations. These results confirmed that the four FDA 

approved drugs maintained the hydrogen bonding interactions throughout MD simulations. This 

indicates that these nonbonding interactions stabilize the drug molecules within the active site 

cavity of Zika virus NS3 helicase. 
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Figure 2.9: Interactions of FDA approved drugs floxuridine, belinostat, dicumarol and linezolid 

within 5 Å in Zika virus NS3 helicase after MD simulations. 

 

2.3.7 Radius of gyration of Zika virus NS3 helicase binding to ATP, RNA, ATP-RNA and 

repurposed drugs 

             The Rg provides information about the compactness of the molecular systems under study 

during the course of MD simulations. The Rg of all molecular systems showed that the repurposed 

drugs have lower Rg as seen during the 150 ns MD simulations. When Zika virus NS3 helicase is 

bound to RNA the Rg is found to be higher indicating that the compactness of protein decreased 

because of the influence of RNA binding, and changes in domain II throughout MD simulations.  

When the protein binds with ATP-RNA, the Rg value slightly decreased compared with RNA 

bound protein, because of the decreased conformational changes in domain II. The Rg is found to 

be lowest when the protein is complexed with linezolid and dicumarol indicating the greater 

stability of these complexes.   
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2.3.8 Normal mode analysis  

The NMA is a fast and simple method to calculate vibrational modes and protein flexibility 

(Alexandrov et al., 2005). It reveals the structural variations in the protein obtained from MD 

simulation studies. The NMA calculations involve atomic fluctuations, two types of atomic 

fluctuations are calculated by using this analysis; displacement vectors of individual normal modes 

of atoms and their average of all the normal modes and time. The displacement vectors of atoms 

for individual normal modes provides significant information on protein dynamics. The individual 

normal modes display characteristic motions that differ from mode to mode, the descriptions of 

slow-large amplitude motions are important which are analyzed by NMA. This study helps to 

explain the conformational changes of apo Zika virus NS3 helicase and its complexes with ATP, 

RNA, ATP-RNA and the FDA approved drug molecules. By using normal mode wizard which is 

available in the Prodynamics software, ten normal modes were generated for each system from 

150 ns MD simulations trajectories and selected the first three modes for each system and analyzed 

the structural variations occurring during the MD simulations and compared the movement of each 

mode with the apo structure of Zika virus NS3 helicase. These NMA mobility plots indicated that 

the residues Val366-Ala379 and Ser387-Gln401 from two helices present in the motor domain 

(domain II) exhibit mobility in all molecular systems as shown in Figure 2.10A-H.  However, this 

mobility is greater in RNA binding molecular systems compared with others, because of the 

movement of domain II in the presence of RNA. In Zika virus NS3 helicase bound to ATP (Figure 

2.10B), the R-loop region displays three modes with high intensity. The movements of these 

NMAs have decreased when RNA is bound to Zika virus NS3 helicase and the R-loop residues, 

as shown in Figures 2.10C and D. These results indicate that when the protein is complexed with 

RNA the conformational changes of R-loop residues have decreased because of decreasing 

movements of modes of the residues present in the R-loop. The Zika virus NS3 helicase complexed 
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with FDA approved drugs showed lower movements of NMAs compared to the ATP bound 

molecular systems. In all the systems, movements in the amino acid residues of motor domain 

(Cys562-Thr582) in domain III were observed. These results indicate that the FDA approved drugs 

binding to Zika virus NS3 helicase form stable complexes throughout MD simulations.  
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Figure 2.10: Network and mobility plots of Zika virus NS3 helicase apo and complexed with ATP, 

RNA, ATP-RNA, and FDA approved drugs (A) Apo protein, (B) ATP bound protein, (C) RNA 

bound protein, (D) ATP-RNA bound protein, (E) floxuridine, (F) belinostat, (G) dicumarol, and 

(H) linezolid.  

2.3.9 Mechanical stiffness 

The mechanical stiffness calculations help to explain the mechanical and elastic nature of 

a protein, elastic proteins exhibit lower mechanical stiffness (Gosline et al., 2001). These plots are 

useful to identify the anisotropic response of the structure to external perturbations, determination 

of weak and strong pairs of interactions depending on the direction of the external force (Eyal & 
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Bahar, 2008) and the residues that belong to secondary structural elements display relatively strong 

resistance to alterations because of their inherent stabilization due to hydrogen bonds. The mean 

plot displays the results averaged over all pairs of residues, which provides an estimate of 

mechanical resistance of individual residues to structural alterations. Mechanical stiffness was 

calculated for 150 ns MD simulations structures of apo and complexes of Zika virus NS3 helicase 

(ATP, RNA, ATP-RNA, and FDA approved drug molecules) in all molecular systems and 

generated maps with effective force constant.  Lower mechanical stiffness is indicative of the weak 

regions and higher mechanical stiffness is indicative of strong and stable regions during MD 

simulations. In all the molecular systems when compared with apo Zika virus NS3 helicase, the 

structural alterations were noted. From these plots it was observed that the R-loop residues exhibit 

lower effective stiffness which is decreased in ATP bound protein, whereas in RNA bound protein 

the mechanical stiffness of R-loop remains unchanged compared with the apo form. In the domain 

II, the residues from Ser387-Gln401 and Val366-Ala379 form α-helices and Arg343-Gly357 are 

present as loop-helix-loop, all of these regions show greater fluctuations and mechanically weak 

behavior in the presence of RNA binding. This is caused by the binding of RNA to NS3 helicase 

domain II that exhibits greater structural changes and mechanically weak behavior throughout MD 

simulations. In domain III, residues (Cys562-Thr582) also exhibit lower stiffness throughout the 

MD simulations in all molecular systems Figure 2.11A-H. In the mean plots of mechanical 

stiffness, the effective spring constant value of R-loop is less than 7 k (a.u) in the ATP bound 

system; whereas in other complexes it is greater than 8 k (a.u). These values indicated that the 

elastic nature of R-loop residues (Met244-Ser253) is higher in the ATP bound protein compared 

with other MD simulated structures of Zika virus NS3 helicase. From the results of mechanical 

stiffness calculations, it is now proposed that Zika virus NS3 helicase interacts with ATP, RNA, 
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ATP-RNA and FDA approved drugs. Some regions in the protein are mechanically weak or strong, 

but large conformational deviations and elastic nature is observed in the R-loop of ATP bound 

protein and motor domain residues (Cys562-Thr582) in domain III among all molecular systems. 

 



94 
 

 

 



95 
 

 

Figure 2.11: Mechanical stiffness and mean plots of Zika virus NS3 helicase Apo (A), bound to 

ATP (B), RNA (C), ATP-RNA (D), floxuridine (E), belinostat (F), dicumarol (G) and linezolid 

(H).    

 

2.3.10 Principal component analysis 

PCA was performed on 150 ns MD simulations trajectories to understand the alterations in 

the R-loop (Met244-Ser256) residues for open and closed conformations of Zika virus NS3 

helicase. PCA is commonly employed on ensembles of protein structures obtained from MD 

simulations to reduce dimensionality by clustering the structures into different conformations and 

identifying conformational transitions. The resulting clusters allow for comparisons to be made 

between conformational changes that are generated during the MD simulations. For each 

molecular system 15,000 frames were generated and the motion of Cα-atoms in each molecular 
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system of Zika virus NS3 helicase was monitored. It was observed that the first two principal 

components (PC1 and PC2) capture the majority of the variance in the original distribution of 

conformational ensembles in the molecular systems. The distribution of Cα-atoms in the ATP 

bound molecular system is greater than the other molecular systems. The conformational 

ensembles of the R-loop residues (Met244-Ser256) in all molecular systems under study were 

analyzed by projecting the trajectories of PC1 and PC2 into a two-dimensional (2-D) space. When 

these are mapped onto each other, the structures with a high degree of similarity cluster together. 

Therefore, each cluster represents a different R-loop conformational state in the protein. The 

observed conformational changes of the R-loop in apo, ATP bound, RNA bound, ATP-RNA 

bound, and repurposed drugs bound molecular systems were monitored and shown in Figure 2.12. 

Projecting the trajectory snapshots onto the plane formed by the PC1 and PC2 reveals a semicircle 

relationship; such a pattern probably indicates random diffusion during the simulations and is 

interpretable as motion along a shallow free-energy landscape. Among all the systems studied, the 

PCs show high-frequency motion in ATP bound Zika virus NS3 helicase as can be seen from the 

PCA scatter plots Figure 2.12B, indicating greater conformational changes of R-loop in the ATP 

bound molecular system. This demonstrated that the conformational distributions of R-loop 

residues in Zika virus NS3 helicase bound with ATP were remarkably different from other 

molecular systems. The frequencies of PCA scatter plots were quantified, and the highest 

frequency is observed in ATP bound Zika virus NS3 helicase and also in the linezolid bound 

system. These results indicated that Zika virus NS3 helicase bound with ATP and linezolid display 

more significant R-loop conformational changes compared to other molecular systems.  
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Figure 2.12: PCA Scatter plots of Zika virus NS3 helicase Apo (A) bound to ATP (B) RNA (C) 

ATP-RNA (D) floxuridine (E) belinostat (F) dicumarol (G) and linezolid (H).    

2.3.11 Binding free energies 

The binding free energies of the Zika virus NS3 helicase binding to ATP and FDA 

approved drug molecules was calculated using MM-PBSA, which has been proved to be an 

important complement to the evaluation of protein-ligand interactions (Chen et al., 2018; Sun et 

al., 2014; Weng et al., 2019). The predicted binding free energies for Zika virus NS3 helicase 

bound to ATP, dicumarol, linezolid, floxuridine and belinostat are summarized in Table 2.3. The 

binding free energies for Zika virus NS3 helicase bound with ATP (-186.01± 0.00 kJ/mol), 

dicumarol (−95.007 ± 0.52 kJ/mol), floxuridine (−92.91 ± 0.62 kJ/mol), linezolid (−85.25 ± 0.99 

kJ/mol) and belinostat (−68.03 ± 0.82 kJ/mol) are observed. The FDA approved drugs show 
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reasonably good binding affinity with Zika virus NS3 helicase. The contribution from electrostatic 

energy in ATP binding is higher than the FDA approved drugs. The binding free energy 

contribution from active site amino acids in Zika virus NS3 helicase is measured to explain the 

importance of active site residues in binding the ligand. The amino acid residues contributing to 

the binding free energies of the complexes is shown in the Table 2.4 and Figure 2.13. The negative 

values suggested favorable nonbonding interactions with residues in the ligand binding pocket of 

Zika virus NS3 helicase. The residues Lys200, Asn417 and Arg462, show the highest binding free 

energy contribution, which may be attributed to the hydrophobic and hydrogen bonding 

interactions when bound to ATP and FDA approved drugs. These studies indicate that the FDA 

approved drugs may have good inhibitory activity against Zika virus NS3 helicase. 

Table 2.3: Binding free energies of Zika virus NS3 helicase binding to ATP and FDA drug 

molecules. 

 

Compound 

name 

van der Waals 

energy  

(kJ/mol) 

Electrostatic 

energy 

(kJ/mol) 

Polar solvation 

(kJ/mol) 

SASA 

(kJ/mol) 

∆G 

(kJ/mol) 

ATP -188.611+/-0.00 -88.425 +/- 0.00 107.156 +/- 0.00 -17.136+/-0.00 -186.016+/- 0.00 

Dicumarol -155.663+/-0.35 -6.390 +/- 0.17 83.511 +/- 0.55 -16.472+/- 0.03 -95.007 +/- 0.52  

Floxuridine -142.676+/-0.55 -44.149 +/- 0.43 107.753+/- 0.86 -13.805+/- 0.05 -92.910 +/- 0.63 

Linezolid -148.542+/-0.52 -8.287 +/- 0.33 87.110 +/- 1.34 -15.536+/- 0.04 -85.250 +/- 0.99 

Belinostat -138.846+/-0.56 -19.299 +/- 0.69 104.173 +/- 1.15 -14.040+/- 0.04 -68.036 +/- 0.82 
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Table 2.4: Residue-wise contribution energy (kJ/mol) of Zika virus NS3 helicase binding with 

ATP and FDA approved molecules. 

Residues ATP Dicumarol Floxuridine Linezolid Belinostat 

Gly199 -12.02 -9.11 -8.33 -12.17 -9.82 

Lys200 -58.50 -25.77 -22.41 -23.68 -18.77 

Thr201 -6.28 -5.27 -2.31 -12.13 -4.19 

Arg202 -66.20 -10.50 -7.62 -9.93 -9.78 

Glu286 -10.21 -2.63 -1.24 -0.27 -10.64 

Ala317 -2.04 -4.14 -2.53 -8.74 -6.03 

Asn417 -16.43 -20.63 -51.38 -20.00 -19.39 

Arg428 -16.58 -2.36 -4.63 -2.01 -1.32 

Arg458 -13.33 -10.21 -4.51 -3.66 -4.19 

Arg459 -28.33 -5.17 -6.27 -7.54 -5.59 

Arg462 -71.42 -45.94 -33.14 -20.36 -37.07 
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Figure 2.13: Contribution from amino acid residues in the Zika virus NS3 helicase to the binding 

of ATP (A), dicumarol (B), floxuridine (C), linezolid (D) and belinostat (E). 
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2.4 Conclusions 

              The MD simulations studies on apo Zika virus NS3 helicase and when complexed with 

ATP, RNA, ATP-RNA and FDA approved drugs was carried out. Conformational changes were 

observed in the protein among various molecular systems and significant conformational changes 

in single-stranded RNA. From the RMSD and RMSF plots, NMA, mechanical stiffness, PCA and 

cluster analysis, it was observed that the RNA binding loop in Zika virus NS3 helicase shows 

stable behavior when it binds with RNA and only minor deviation in its conformation in apo form 

and when complexed with FDA approved drugs. While the Zika virus NS3 helicase bound to ATP 

shows relatively higher fluctuations in the R-loop (Met244-Ser253) residues which leads to their 

increased mobility. This R-loop region exhibits mechanically weak behavior and is therefore more 

elastic in the presence of ATP. From the PCA, it was observed that the motion of R-loop residues 

is higher in ATP binding protein. The conformational changes in the single-stranded RNA 

nucleoside bases suggest the replicative mechanism of the conversion of double-stranded RNA to 

single-strand RNA molecules. The docking and MD simulations studies were applied to 

understand the stability of repurposed drugs within the ATP binding site of Zika virus NS3 

helicase, the four FDA approved drugs floxuridine, belinostat, dicumarol and linezolid show 

significant stability and good binding affinity within the active site of protein and make hydrogen 

bonding interactions with protein amino acid residues which indicates that these drugs may also 

possess anti-viral inhibition for Zika virus NS3 helicase. The repurposing studies are helpful to 

develop novel anti-viral drugs against the Zika disease. 
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3.1 Introduction 

 

Sequence and structure analyses of NS3 helicases from flaviviruses were studied to 

understand the similarities and differences in this present study. The sequences of Zika virus NS3 

helicases were analyzed for substitution mutations across the evolution of Zika virus. The 

availability of a proteins 3-D structures has aided in the rational design and discovery of 

pharmaceuticals (Lounnas et al., 2013), and CADD holds great promise for the development of 

novel inhibitors. Virtual screening is one of these strategies that is quick and reliable for finding 

novel ligands based on biological structures. It uses high-throughput screening techniques so that 

virtual libraries comprising millions of structures could be searched quickly and affordably 

(Walters et al., 1998). Virtual screening can be done using either ligand-based or structure-based 

methods, which are both widely acknowledged methodologies. In ligand-based virtual screening, 

vast databases of compounds are compared to known active molecules using 2-D or 3-D similarity 

searches. A variety of modelling tools are used in the structure-based virtual screening to simulate 

the binding interactions between a ligand and its biomolecular receptor (Merz et al., 2010). The 

modelling based on pharmacophore and QSAR generation, molecular docking are examples of 

virtual screening techniques used to find novel molecules with certain properties that reflect the 

bioactivity of the designed molecules (Cherkasov et al., 2014). The SBDD performs processes 

such as target receptor selection, its 3-D structure elucidation, development of compound libraries 

of small molecules, in silico screening of compound libraries, molecular docking, analyses of the 

results, and prioritizing the results using a standard scoring system. By using these techniques, the 

binding mechanism is clarified, the SAR is revealed, and the best compounds are chosen in 

comparison to those that have already been described (Irwin, 2008; Rella et al., 2006). Millions of 
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small compounds are represented in chemical libraries and the goal is to choose a small number of 

molecules with the highest anticipated inhibitory action. In this case, using the pharmacophore-

based technique, potent inhibitors are used to generate a pharmacophore model for in silico 

screening of virtual libraries of chemical compounds. The combination of all electronic and steric 

properties which are important for binding and to make nonbonding interactions with a definite 

receptor in order to stimulate or prevent the biological response is defined as a “pharmacophore” 

(Wermuth et al., 1998). Additionally, there are two types of pharmacophore modelling: structure-

based and ligand-based pharmacophore models. In the structure-based pharmacophore models, 

residues present in the binding pocket which are crucial to protein-ligand interactions are 

constructed. A pharmacophore model is created using a sequence of molecules with a SAR and a 

range of different inhibitory actions in the ligand-based pharmacophore model (Kandakatla & 

Ramakrishnan, 2014). The created pharmacophore models can be used as queries in a virtual 

screening protocol to look for new hit compounds that have the necessary pharmacophore features. 

These models were created using ligand-based and structure-based approaches. Molecular docking 

is used to validate the virtual screening of hit chemical molecules as potential inhibitors to a 

specific target receptor (Yang, 2010). The identification of new hit molecules from searching the 

big data is being carried out using the protocols in machine learning combined with virtual 

screening methodologies (Lavecchia, 2015). Such techniques are extremely advantageous because 

they can search millions of compounds in a short period of time. 

Zika virus NS3 helicase comprises of a cofactor ATP bound at the active site and this site is 

considered as an active site for developing new inhibitors using the CADD approach. Based on 

the essential features of ATP cofactor, ZINC database was screened by applying various filters in 

order to find best molecules for molecular docking studies. CDOCKER was used for docking, the 
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best molecules at the receptor active site in all possible conformations. The molecules were 

validated using MD simulations and binding free energy analysis. The molecules obtained through 

MD simulations were used to perform DFT calculations for solvent and gas phase energies and 

observed the location of HOMO and LUMO in the molecules located inside the active site of the 

Zika virus NS3 helicase.  

3.2 Materials and methods 

3.2.1 Sequence analyses of Zika virus NS3 helicases and structure analyses of flavivirus NS3 

helicases 

   The representative 3-D crystal structures of flavivirus NS3 helicases were downloaded from 

PDB (Berman et al. 2000; Burley et al., 2021). The molecular visualization and structure 

superposition was carried out using UCSF Chimera (Pettersen et al., 2004). The sequences of Zika 

virus NS3 helicases were retrieved from NCBI using the BLAST searches (Johnson et al., 2008). 

The proteins multiple sequence alignment was accomplished with the help of the NGPhylogeny 

server (http://www.NGPhylogeny.fr). The Zika virus sequence (NCBI accession code: 

YP_009428568.1) was used as a reference protein to examine the amino acid mutations. The 

software suite developed by ABREAST (https://www.abreast.in) was used to identify mutations 

in the Zika virus NS3 helicases.  

3.2.2 Protein and ligand preparation 

The crystal structures of apo Zika virus NS3 helicase (PDB_id: 5JMT) (Jain et al., 2016) 

and when bound to ATP (5GJC)) (Tian et al., 2016) were determined at 1.8 and 2.2 Å resolutions, 

respectively. Crystal waters were removed from the structures and the missing residues in 5GJC 

were built by the loop modeling method in MODELLER (Šali & Blundell, 1993). Hydrogen atoms 

were added and their geometry optimization was performed by using UCSF Chimera.  
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3.2.3 Pharmacophore generation  

The ligand-based pharmacophore models were generated by using the Pharmit server 

(Sunseri & Koes, 2016). Pharmit is an online server, which provides an interactive environment 

for the virtual screening of libraries of small molecule databases. Pharmit provides both 

pharmacophore and molecular shape-based search on the pre-inbuilt libraries of small molecules. 

The pharmacophore models were constructed based on the cofactor ATP complexed with Zika 

virus NS3 helicase based on the structure 5GJC obtained from the PDB. To design the 

pharmacophore model for ATP, the features of hydrogen bond donor, hydrogen bond acceptor, 

negative ionizable, hydrophobic, and aromatic ring that are required for interactions with the 

receptor binding pocket were considered.  The virtual screening of the ZINC database was carried 

out using the generated pharmacophore model comprising 12,996,897 molecules (Irwin et al., 

2012). The molecules retrieved from the ZINC database were filtered and ranked based on lower 

RMSD and molecular weight. The hit compounds were downloaded in .sdf format. 

3.2.4 Molecular docking 

Molecular docking predicts the optimal pose of the ligand within the receptor binding 

site. The CDOCKER (Gagnon et al., 2016) molecular docking methodology accessible in DS 3.5 

was employed to find the best orientation of the molecules identified from the pharmacophore 

based virtual screening of ZINC database when binding to the receptor. A sphere of 5 Å radius 

was generated around ATP to define the active site of the protein. Twenty docking poses were 

generated for each molecule and shortlisted the conformations of molecules defined in the protein 

active site. As a part of the docking protocol, the molecular system was heated up to 700 K for 

2,000 steps and then cooled to 300 K for 5,000 steps. The binding conformations of the molecules 

in Zika virus NS3 helicase were analyzed using “scoring ligand poses” implemented in receptor-
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ligand interactions protocol in DS 3.5, and the scoring functions PLP1, PLP2 and PMF (Gehlhaar 

et al., 1995; Parrill & Reddy, 1999; Muegge & Martin 1999; Muegge, 2006) were used to analyze 

the docking poses. The best docking pose was selected based on top scores and intermolecular 

interactions within the Zika virus NS3 helicase active site. The top-ranked molecules from the 

molecular docking results were used further for assessing their drug-like properties. 

3.2.5 Drug-like properties 

The capability of a drug to permeate, distribute, metabolize, and retain within the host 

system for a reasonable period of time are described as the drug-like properties. These are the 

significant parameters to be deciphered for hit molecules selection. The SwissADME server 

supports the calculation of the ADMET properties (Lipinski et al., 1997; Daina et al., 2017 and 

Daina et al., 2014) and drug-like properties of the molecules. The Lipinski’s rule of five indicated 

that a drug molecule must exhibit, ≤5 LogP, ≤ 500 molecular weight, ≤10 hydrogen bond acceptors 

and ≤5 hydrogen bond donors (Lipinski, 2004). The molecules that displayed drug-like properties 

were studied using the MD simulations in order to understand their ability to bind the protein active 

site, and the nonbonding interactions that stabilize the protein-ligand complexes and to quantify 

their binding free energies.  

3.2.6 Molecular dynamics simulations 

MD simulations of the reference molecule ATP and the screened molecules from ZINC 

database in complex with Zika virus NS3 helicase were carried out for 150 ns using GROMACS 

5.1.4 (Hess et al., 2008; Van Der Spoel et al., 2005). Amber99sb force field (Hornak et al., 2006) 

was applied to both the receptor and small organic compounds; force fields were assigned to small 

molecules in Antechamber using the ACPYPE script (Da Silva et al., 2012) with AM1-BCC 
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charges (Wang et al., 2006). All of the molecular systems were immersed in a cubic box, a three-

point model (SPC) was used to solvate the systems. The system was neutralized by the addition of 

Na+ and Cl- ions (Berendsen et al., 1981). The steric stress of the system was eliminated and the 

system was allowed to relax, the energy minimization was carried out using steepest descent 

algorithm. The maximum force was adjusted at less than 1000 kJ/mol/nm, and a scaling factor of 

0.01 was used to limit the number of steps to 50,000. After that, position restraint dynamics was 

employed to stabilise the system and retain the solvent and ions in their proper locations around 

the protein. Before being equilibrated at 1 atm and 300 K for 1000 ps until it achieved the right 

density, this system was heated to 300 K for 100 ps. With a time, step of 0.002 ps, the final MD 

simulations were performed at 300 K for 150 ns. The pressure was controlled using the Parrinello-

Rahman method (Parrinello & Rahman, 1981), and the V-rescale thermostat (Bussi et al., 2007) 

was used to maintain the temperature. The particle mesh Ewald  technique (Darden et al., 1993; 

Essmann et al., 1995) was used to manage the long-range electrostatics, with a real-space cutoff 

of 10 Å, particle mesh Ewald order of 4, and a relative tolerance among both long and short-range 

energies of 10−6. While Lennard-Jones interactions and real-space electrostatic interactions were 

terminated at 9 Å, short-range interactions have been analyzed using a neighbour list of 10 Å, 

which was updated after every ten steps. Using the LINCS algorithm, the hydrogen bonds were 

restrained (Hess et al., 1997). After structural stabilization, the final models for each system were 

created by averaging the MD simulations generated trajectories. To study the conformational 

variations in protein-inhibitor complexes, the Cα-atoms RMSD in relation to their initial structures 

was computed using gmx rms. The convergence of MD simulations was examined using RMSD 

plots. To investigate the stability of trajectories relative to the initial structure, the RMSF of the 

Cα-atoms was calculated using gmx rmsf. 
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3.2.7 Binding free energies 

The binding free energies on the last ten ns of MD simulations trajectories were calculated 

to determine the strength of small molecules binding to Zika virus NS3 helicase. The GROMACS 

output trajectory compatible g mmpbsa (Kumari et al., 2014) tools were used to determine the 

binding free energy of each complex. To understand the significant contribution of reference 

molecule ATP and screened molecules identified in this work, total energies were calculated using 

MM-PBSA (Homeyer & Gohlke, 2012; Miller et al., 2012). The computations of the binding free 

energy, and the contribution of binding free energies from van der Waals, electrostatic, polar, and 

apolar solvation energy components were estimated. 

The LIE technique is an end point approach for determining binding affinities. This 

technique incorporates explicit conformational sampling (of protein-bound and unbound-ligand 

states) with accuracy in determining the protein-ligand binding free energy ΔGbind. LIE is also 

defined by calculating differences in average nonbonded (i.e., van der Waals) interaction energies 

between the ligand and its surroundings in either the Zika virus NS3 helicase bound and unbound 

states (denoted as subscript b) or unbound state (denoted as subscript u) (Åqvist et al., 1994).  To 

calculate the mean of van der Waals (vdW) and coulomb (cou) interaction energy variation of the 

ligand with its neighboring atoms, ΔGbind from simulations of the ligand bound to free protein or 

in solvent, the obtained average van der Waals and coulomb interaction energies of the ligand with 

its surroundings are scaled by LIE parameters. The LIE calculations were carried out using gmx 

energy and gmx lie for Zika virus bound with ATP and hit molecules from their MD simulation 

trajectories. 
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3.2.8 Density functional theory calculations 

In order to investigate the strength of the final five screened molecules obtained through 

MD simulations, quantum chemical calculations have been performed. Geometry optimizations 

have been performed on all molecules at B3LYP (Axel, 1993; Lee et al., 1988) level of theory 

using 6-311+G(2d,p) basis set (Petersson et al., 1988; Petersson et al., 1991). Water was used as 

an implicit solvent in PCM optimization (Miertuš et al., 1981; Tomasi & Persico, 1994) at the 

B3LYP/6-311+G(2d,p) level for all the substances to obtain an indication of the impact of solvent 

presence on total energy of the compound. The nature of the stationary point was then determined 

using frequency calculations. Molecular orbital analysis was performed at the B3LYP/6-

311+G(2d,p) level of theory, to evaluate the HOMO and the LUMO (Fukuli et al., 1952) for all 

the molecules obtained through MD simulations. This analysis was performed to identify the 

electron-rich zone in the compounds under consideration. The calculated values for the ESP energy 

were projected onto an isodensity surface that corresponded to 0.0004 a.u. to accurately analyse 

the charge distribution around these atoms (Vetrivel et al., 1996). This ESP accurately depicts the 

reactive zones surrounding the inhibitors since it takes into account the van der Waals volumes of 

each individual atom within the molecule. The Gaussian 09 programme suite was used to perform 

all calculations (Frisch et al., 2009). 

3.3 Results and discussion 

The tertiary structure of Zika virus NS3 helicase has three domains, domain I (residues 

182–332) and domain II (333–481) share a similar structural fold, despite low sequence homology 

shared between them. Domain III (482–617) comprises a four α-helical bundle extended by two 

anti-parallel β-strands partially exposed to the solvent. Two α-helices from domain I interact with 

the parallel α-helical bundle from domain III; domain II connects with domain III via a long β-
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hairpin, thus stabilizing the interdomain interactions, and all the three domains have clearly defined 

binding clefts. The cofactor ATP is located between domains-I and II in Zika virus NS3 helicase; 

it is stabilized by the Mn²+ coordinated in octahedral geometry by interactions with side-chain of 

residues Thr201 and Glu286, two oxygen atoms of β and γ phosphate groups of ATP and two 

water molecules. The binding site of ATP is formed by the residues Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202 and Arg203 (P-loop), and Glu286, Ala317, Asn330, Gly415, Asn417, 

Gln455, Gly458, Arg459, Arg462 and Asn463 as shown in the Figure 3.1. 

 

Figure 3.1:  ATP binding site in Zika virus NS3 helicase.  

 

3.3.1 Structure analyses of flavivirus and sequence analyses of Zika virus NS3 helicases  

 

The multiple sequence alignment of flavivirus NS3 helicases reveals that all the amino acid 

residues within 4 Å from ATP (5GJC) and RNA (5GJB) binding site are highly conserved among 

all flaviviruses. The structures are highly superposable with low RMSD indicating their high 

structure conservation as shown in Figure 3.2A.  
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Figure 3.2A: sequence and structural alignment of Zika virus other flavivirus helicases.  

From the NCBI protein sequence database, the primary structures of 1,083 Zika virus NS3 

helicases were retrieved. Mutational analyses were carried out on the multiple sequence alignment 

generated by NGphylogeny server that revealed 115 unique mutation positions in a protein of 436 

amino acid residues (182-617 positions). Also, it was observed that only two mutations lie within 

4 Å from the ATP binding sites. Gly458 is mutated to Arg only in one instance (NCBI id: 

QKF93433.1), and it was observed that the mutation of Gly458Arg increases the possibility of its 

interaction with ATP. The Asn463 is mutated to Asp in NCBI id: ATG29292.1. This Asn463Asp 

mutation does not make any significant alterations in the ability of the protein to bind ATP. This 

infers that despite the presence of mutations, the function of the protein would be retained. In the 

RNA binding pocket, mutations were observed at certain locations; Arg226Pro (AHL43503.1), 

Met244Gln (AHL43503.1), Asp291Gly (AZS35408.1), Ser365Arg (AMK79469.1), Lys537Arg 
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(AQS26826.1, AOO54270.1, APH11492.1, QLJ57653.1, ARB07949.1, AND01116.2, 

AOY08529.2, AQS26833.1, AMQ48981.1). The side-chain of Arg226 and Lys537 make 

hydrogen bonding interactions with the phosphate oxygen and 2’ OH of the ribose sugar 

respectively from the C5 of RNA. High frequency mutations are observed at the amino acid 

positions, 185 (23 occurrences), 215 (132), 355 (77), 360 (42), 400 (132), 407 (124), 472 (128), 

483 (97), 572 (232), 583 (122), 584 (253) and it was observed that these mutations are located in 

all the three domains. The β-sheet regions in domains I and II accommodate the mutations and also 

in the periphery of the protein Figure 3.2B.  Interestingly, none of the mutations are located at the 

ATP, RNA binding sites and the interdomain interface indicating the unaltered NS3 helicase 

function despite a large number of mutations accumulated in the protein over a short period of its 

evolution.  

                      

Figure 3.2B: Mutation of residues in Zika virus NS3 helicase Thr215Lys, Tyr355His, Val360Ile, 

His400Met, Val407Ile, Leu472Met, Asp483Gly, Met572Leu, Arg583Lys, His584Tyr. 
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3.3.2 Pharmacophore generation and virtual screening 

Pharmacophore modeling using the Pharmit server identified the features of ATP that are 

required for interactions with the amino acid residues present in its binding site of Zika virus NS3 

helicase. The five electronic and steric pharmacophore features, selected in ATP are shown in 

Figure 3.3. The aromatic feature that shows Pi-cation interaction with Arg202, four-hydrogen 

bond acceptor features; β-phosphate O1β, α-phosphate O3α, α-phosphate O1α and N7 at the 

imidazole ring of adenine form hydrogen bonding with Lys200, Gly199, Arg462 and Arg202, 

respectively, were selected as pharmacophore features for screening. The pharmacophore model 

was validated on 1000 molecules decoy set (inactive molecules) using Pharmit server. The 

pharmacophore model could not predict a single decoy molecule, which indicated the 

pharmacophore model to successfully qualify the validation process.  

 

Figure 3.3:  Pharmacophore features of ATP used for virtual screening of ZINC database. 
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The validated pharmacophore model was employed for in silico screening of the ZINC database 

of small molecules (Irwin et al., 2012). The 12,996,897 molecules in the ZINC database have 

164,282,714 confirmations. The five featured pharmacophore model that was used as a 3-D query 

retrieved 7,526 hit molecules from the ZINC database. These hits were filtered and ranked based 

on RMSD < 0.25 Å and molecular weight < 500 Da; based on this criteria, 471 molecules were 

selected and downloaded for further molecular docking studies.  

3.3.3 Molecular docking 

The 471 hit molecules identified through pharmacophore based virtual screening were 

further analysed by molecular docking methodology, CDOCKER, to verify the binding orientation 

and binding affinity to Zika virus NS3 helicase. The binding site of protein was defined as a sphere 

generated 5 Å around ATP. For each molecule 20 docking poses were generated, out of the 20 

docking poses, the conformers with the high CDOCKER docking scores were visualized on 

graphics for nonbonding interactions such as hydrogen bonds, hydrophobic and ionic interactions 

with protein active site residues. The results of molecular docking of the best ten hit molecules and 

ATP are shown in Table 3.1. These selected molecules bind at the location of the ATP and form 

hydrogen bonds with amino acids Gly199, Lys200, Thr201, Arg202, Asn417 and Arg462.  

Table 3.1: Scoring of best docking structure of screened hit molecules. 

S. No Compound 

Name 

-PLP1 -PLP2 -PMF -PMF04 Active site interactions 

 

1. 

 

ATP 

 

98.57 

 

98.61 

 

106.27 

 

-8.4 

Leu194, His195, Pro196, 

Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Ala235, Glu286, 

His288, Thr316, Ala317, 

Asn317, Asn330, Gly415, 

Asn417, Lys419, Gln455, 
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Gly458, Arg459, Arg462, 

Asn463, Pro464 

2. ZINC0000328

56030 

74.53 70.12 58.87 21.45 Pro196, Gly197, Ala198, 

Gly199, Lys200, Thr201, 

Arg202, Arg203, Asp285, 

Glu286, Ala317, Asn330, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

3. ZINC0002995

71648 

52.32 47.55 45.09 12.88 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Asn330, Gly415, Asn417, 

Phe418, Arg459, Arg462, 

Asn463, Pro464 

4. ZINC0000581

78136 

87.1 72.7 57.66 20.26 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

5. ZINC0004087

50650 

88.77 88.48 58.45 5.06 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

6. ZINC0000156

75488 

79.07 71.34 51.92 36.26 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

7. ZINC0000087

31686 

72.18 66.08 53.77 12.95 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 



119 
 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

8. ZINC0000714

04039 

89.6 94.00 47.14 8.62 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

9. ZINC0008881

01786 

61.83 53.48 54.14 20.24 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Asn330, Gly415, Asn417, 

Phe418, Arg459, Arg462, 

Asn463, Pro464 

10. ZINC0000211

68927 

108.73 102.03 85.91 22.54 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Asn330, Gly415, Asn417, 

Phe418, Arg459, Arg462, 

Asn463, Pro464 

11. ZINC0006704

57317 

91.93 80.19 62.9 14.3 Gly197, Ala198, Gly199, 

Lys200, Thr201, Arg202, 

Arg203, Asp285, Glu286, 

Gly415, Asn417, Phe418, 

Arg459, Arg462, Asn463, 

Pro464 

 

3.3.4 Drug-like properties 

The drug-like features of the identified hit molecules were studied using SwissADME 

server and Lipinski’s rule of five. The synthetic ease of access of the proposed molecules was 

graded on a scale of one to ten on the basis of complexity of the compounds, the total count of 

stereocenters, and other factors. The more synthetically accessible the compound should have a 
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lower value. The synthetic accessibility values in this work were reported to be less than 4.75, 

demonstrating the simplicity of their synthesis. The topological polar surface area (TPSA) is much 

less than 140 Å2, the solubility in water (given as Log S) indicates that the majority of compounds 

are either slightly or fairly soluble in water, and the lipophilicity (represented as cLogP) is less 

than 5. The likelihood of skin permeation is indicated by the skin permeation probability 

represented as Log Kp, which is also suitable. All of these molecules exhibit LogP ≤5, molecular 

weight ≤ 500, no of hydrogen bond acceptors ≤10 and no of hydrogen bond donors ≤5 (Lipinski, 

2004). This implies that all the ten selected hit molecules from molecular docking studies qualify 

to possess drug-like properties. The ADME properties are shown in Table 3.2. The compound 

identities (IDs) were represented in the main text by taking the last four digits of ZINC ID, for 

example ZINC000032856030 as ZINC6030. The ten selected hit molecules in complex with Zika 

virus NS3 helicase were subjected to MD simulations studies. For the sake of comparison, apo and 

ATP complexed Zika virus NS3 helicase were also subjected to MD simulations studies. 

Table 3.2: Drug-like properties of screened ZINC compounds. 

S. No Compound 

name 

TPSA (A)² Consensus po/w Log kp (cm/s) Synthetic 

Accessibility 

1 ZINC6030 68.44 1.93 -6.3 3.50 

2 ZINC1648 68.96 1.20 -7.32 3.50 

3 ZINC8136 97.04 2.80 -6.73 2.21 

4 ZINC0650 132.83 4.03 -5.22 2.97 

5 ZINC5488 137.14 0.06 -8.48 4.67 

6 ZINC1686 102.54 2.44 -6.38 3.01 

7 ZINC4039 75.97 2.86 -6.19 2.76 

8 ZINC1786 110.76 3.27 -6.68 4.25 
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9 ZINC6897 122.62 2.61 -6.39 3.75 

10. ZINC7317 72.70 2.99 -5.96 3.25 

 

3.3.5 Molecular dynamics simulations  

MD simulations offer information on the binding of screened hit molecules to the Zika 

virus NS3 helicase at the residue level. Protein-ligand bound complexes were studied in a dynamic 

environment to assess the stability of interactions over a period of time. In this analysis, apo-

protein and Zika virus NS3 helicase complexed with ATP and five screened hit molecules 

ZINC6030, ZINC1648, ZINC8136, ZINC1786 and ZINC6897 were found to be stable during the 

MD simulations. The average structures were generated from 150 ns MD simulations trajectories 

for structure comparison. The superposition of the initial and average structures demonstrates that 

the molecules have good stability and low RMSD, which was confirmed by conserved hydrogen 

bonding interactions with active site residues, denoting that all these molecules are suitable as Zika 

virus NS3 helicase inhibitors. The overall conformational changes were analyzed through the Cα-

atoms RMSD as a function of MD simulations time Figure 3.4A. From the plots it can be seen 

that the apo-protein gained stability after the initial ten ns of simulation time with an average 

RMSD of 2 Å. From the comparison of RMSD trajectories, it is evident that ZINC6030, 

ZINC8136, and ZINC1786 possess better binding and acquire stable interactions at the ATP 

binding pocket of NS3 helicase throughout 150 ns of MD simulations. The screened hit molecules 

show lower than 0.25 nm RMSD, as shown in Figure 3.4B, and the molecule ZINC6030 offers 

the highest RMSD value ~0.22 nm compared with the other molecules and reference ATP.  
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Figure 3.4: A) RMSD plot of Zika virus NS3 helicase apo and bound with screened molecules  

                B) RMSD plot of screened molecules bounds with Zika virus NS3 helicase. 

From the RMSF plots for the Cα-backbone atoms Figure 3.5, it can be seen that most amino acid 

residues in the protein have lower fluctuations (< 0.2 nm), and only the residues that form a loop 

from Met244 to Ser256 display higher fluctuations and reach until 0.5 nm, in the ATP bound NS3 

helicase as well as in complexes with ZINC1648 and ZINC6897 (0.23 nm). This is in 

correspondence with our previous studies that reported the mobile nature of the RNA binding loop 

(Met244-Sert253) reported in chapter 2. The amino acid residues important for inhibitor binding 

are, (Met244-Ser253; RNA-binding loop), (Pro273- Ala278; near to ATP binding site), (Pro319-

Ala325; downward to the ATPase site) and (Pro464-Glu470; adjacent to ATP site) that show 

significant fluctuations. The overall RMSF results show that protein attains greater stability 

throughout MD simulations when it is complexed with screened hit molecules than the ATP bound 

molecular system.  
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Figure 3.5: RMSF plots of Zika virus NS3 helicase apo, ATP and screened hit molecule 

complexes.  

All hit molecules make hydrogen bonds with the active site amino acid residues Gly199, 

Lys200, Thr201, Arg202, Glu286, Asn417, and Arg462. Hydrogen bonding and hydrophobic 

interactions stabilize the Zika virus NS3 helicase screened inhibitor complexes. The protein-ligand 

interactions were generated throughout MD simulations using DS 3.5. ATP makes hydrogen 

bonding interactions with Gly199, Lys200, Thr201, Arg202, Glu286, Asn417, and Arg462; these 

interactions are retained throughout MD simulations. The screened hit molecules show hydrogen 

bonding and pi-cation interactions with active site residues; these interactions tightly hold the 

molecules inside the active site of Zika virus NS3 helicase. The molecule ZINC6030 shows 

Gly199, Lys200, Asn417, Arg462, and pi-cation Arg462, whereas in ZINC1648 shows hydrogen 

bonds Gly199, Arg462 and Arg462 involves Pi-cation, ZINC8136 form Lys200, Thr201, Asn417, 

Arg462, whereas ZINC1786 exhibits Lys200, Arg202, Arg462 and pi-cation with Arg459, Arg462 

and ZINC6897 shows Ala198, Lys200, Arg203 and Arg462 as shown in Figure 3.6. 
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Figure 3.6: Interactions of screened molecules ZINC6030 (A), ZINC8136 (B), ZINC1648 (C), 

ZINC1786 (D) and ZINC6897 (E) with Zika virus NS3 helicase. 

The Rg demonstrated the compactness of the molecular systems under study during MD 

simulations. The Rg of all molecular systems showed that the screened hits have lower Rg, during 

the 150 ns MD simulations. When Zika virus NS3 helicase is bound to ATP and screened hits, the 

Rg is found to be below ~0.23 nm, indicating that all prepared molecular systems attain stability 

throughout MD simulations. 

3.3.6 Binding free energy and residue-wise contribution energy 

The binding free energies of the Zika virus NS3 helicase in complex with ATP and 

screened-in hit molecules were calculated using MM-PBSA and LIE methods using GROMACS 

as shown in Table 3.3. Reference compound and screened-in hit molecules can be compatible with 

one another due to the energy contributions from electrostatic, van der Waals, and polar solvation. 

The binding free energy for ATP Zika virus NS3 helicase complex was observed to be -186.016 

+/- 0.00 kJ/mol, while the binding free energies for the screened molecules were ZINC6030 (-

92.91 +/- 0.63 kJ/mol), ZINC1648 (-96.19 +/- 0.67 kJ/mol), ZINC8136 (-52.95 +/- 0.71 kJ/mol), 

ZINC1786 (-95.01 +/- 0.52 kJ/mol) and ZINC6897 (-131.46 +/- 0.71 kJ/mol). The binding site 

residues Gly199, Lys200, Thr201, Arg202, Glu286, Ala317, Asn417, Arg428, Gly458, Arg459, 

and Arg462 contribute to the highest binding energies in all the complexes studied, as shown in 

Figure 3.7.  

Table 3.3. Binding free energy calculations of ATP and screened hit molecules.  

S.No Compoun

d  

van der 

Waals 

Electrosta

tic energy 

Polar solvation 

energy 

SASA 

(kJ/mol) 

∆G 

(kJ/mol) 

∆GLIE 

(kJ/mol) 
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Name energy 

(kJ/mol) 

(kJ/mol) (kJ/mol) 

1. ATP -188.611 

+/- 0.0 

-88.425+/- 

0.0 

107.156 +/- 0.0 -17.136 +/- 0.0 -186.016+/- 0.0 -168.016 

2. ZINC0000

32856030 

-142.68+/-

0.55 

-44.15+/-

0.43 

107.75+/-0.87 -13.81+/-0.05 -92.91+/-0.63 -123.843 

3. ZINC0002

99571648 

-143.63+/-

0.58 

-48.61+/-

0.42 

109.97+/-0.65 -13.89+/-0.05 -96.19+/-0.67 -92.096 

4. ZINC0000

58178136 

-154.89+/-

0.47 

-51.09+/-

0.45 

168.61+/-1.02 -15.54+/-0.04 -52.95+/-0.71 -47.453 

5. ZINC0008

88101786 

-155.66+/-

0.35 

-6.39+/-

0.17 

83.51+/-0.55 -16.47+/-0.03 -95.01+/-0.52 -98.501 

6. ZINC0000

2116897 

-238.69+/-

0.48 

-26.69+/-

0.33 

154.35+/-0.70 -20.49+/-0.04 -131.46+/-0.71 -90.155 

 

Figure 3.7: Residue-wise contribution (kJ/mol) of Zika virus NS3 helicase binds with cofactor 

ATP and screened molecules. 
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The Zika virus NS3 helicase bound with ATP shows LIE of –168.016 kJ/mol and the screened 

molecule ZINC6030 shows highest energy -123.843 kJ/mol and the molecule ZINC8136 shows 

lower energy (-47.453 kJ/mol), the other complexes ZINC1648, ZINC1786 and ZINC6897 show 

reasonably good binding free energies. The binding free energy of ATP is much lower, as it is a 

cofactor to the protein and makes several hydrogen bonding and other nonbonding interactions 

with the protein compared to the hit molecules. From the binding energy results it was noticed that 

the screened molecules attain stability when bound to Zika virus NS3 helicase at the ATP binding 

site.  

3.4 Density functional theory calculations 

The hit molecules ZINC6030, ZINC8136, ZINC1648, ZINC1786 and ZINC6897 validated 

through MD simulations, were further explored through DFT calculations. Quantum chemical 

calculations have been performed, in order to investigate the strength and nature on potential 

energy surface of the five screened molecules. 

3.4.1 Geometry optimization 

The Geometry optimization and frequency analysis were carried out at B3LYP/6-

311+G(2d,p) level of theory upon the five ZINC6030, ZINC8136, ZINC1648, ZINC1786 and 

ZINC6897 molecules validated through MD simulations, to understand the nature and energy of 

these molecules. The total energy (in hartrees) in the considered molecules follows the trend 

ZINC6897 > ZINC1786 > ZINC1648 > ZINC6030 > ZINC8136. For the current study, all five 

conformations were local minima on the PES. 
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3.4.2 Solvent effect 

To assess the effect of the solvents existence on the molecules total energy, PCM 

enhancement at the B3LYP/6-311+G(2d,p) level of theory was performed with water as the 

implicit solvent. Though the overall energy (in hartrees) in the solvated molecules is more 

compared to gas phase geometries, their trends remain the same ZINC6897 > ZINC1786 > 

ZINC1648 > ZINC6030 > ZINC8136. There is a difference of ~ -54 kJ/mol for the molecule 

ZINC6030, ~ -58 kJ/mol for the molecule ZINC8136, ~ -61 kJ/mol for the molecule ZINC1648, 

~ -55 kJ/mol for the molecule ZINC1786 and ~ -72 kJ/mol for the molecule ZINC6897 

respectively, thus suggesting that the molecules are more stable in solvent medium compared to 

gas phase as shown in Table 3.4.  

 

Table 3.4: Total energy (in hartrees), point group and frequency of five Zika virus ligands 

determined using B3LYP/6–311G+(2d,p). (PCM total energy (in hartrees) in Bold with water as 

solvent). 

S. 

No. 

Name Geometry Total Energy PG NImag 

1 ZINC6030 

 

 

 

  

-1024.550965 

-1024.571623 

 

 

 

C1 

 

 

 

 

0 

 

 

 

 

2 ZINC1648 

 

 

 

 

  

-949.531433 

-949.553711 

 

 

 

 

C1 

 

 

 

 

 

0 
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3 ZINC1648 

 

 

 

  

-1121.028984 

-1121.052370 

 

 

 

C1 

 

 

 

 

0 

 

 

 

 

4 
ZINC1786 

 

 

 

  

-1384.613938 

-1384.635012 

 

 

 

C1 

 

 

 

 

0 

 

 

 

 

 

5 

 

ZINC6897 

 

 

 

 

 

  

-1786.069328 

-1786.096775 

 

 

 

 

 

C1 

 

 

 

 

 

 

0 

 

 

 

 

 

 

 

3.4.3 Molecular orbital analysis  

The HOMO and LUMO were analysed to determine the electron-rich (donor) and electron-

poor (acceptor) zones in each of the obtained molecules. In the case of molecule, ZINC6030, the 

HOMO is observed on the 1,2,4 triazole, piperidine and pyrimidine rings whereas LUMO is 

observed on the only 1,2,4 triazole ring of the inhibitor. For molecule ZINC8136, the HOMO is 

observed in piperidine and pyrimidine rings whereas LUMO located at the pyrimidine of the 

compound. In the case of the compound ZINC1648, HOMO is located on the quinoline ring and 

LUMO is observed on 4-nitro anisoline group of the molecule. For the molecule ZINC1786, 

HOMO and LUMO are both located at 1,2,4 oxadiazole and thiazole groups. In the case of 
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molecule ZINC6897, HOMO is observed at 1,2,4 oxadiazole, 1,2,4 triazole and pyrimidine rings 

whereas LUMO is located on two pyrimidine rings of the molecule, as shown in Table 3.5. 

Through this analysis, it was observed that the HOMO exists close to the protein active site amino 

acid residues Gly197, Gly199, Lys200 and Thr201 respectively. 

 

Table 3.5: HOMO, LUMO of five Zika virus NS3 helicase screened in molecules determined at 

B3LYP/6–311G+(2d,p) level theory. 

 

S. 

No. 

Name HOMO LUMO 

 

1 ZINC6030 

 

 

   

 

 

2 
ZINC1648 

 

 

 

   

 

 

3 ZINC8136 
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4 
ZINC1786 

 

 

   

 

 

5 ZINC6897 

 

 

 

   

 

3.4.4 Electrostatic potential maps 

For the molecules obtained through MD simulations, ESP maps were generated, which 

support the characterization of non-covalent interactions, including hydrogen bonding 

interactions, as well as the comprehension of the sites of nucleophilic and electrophilic attacks. 

The red area (electron-rich, negative) represents the electrophilic assault, whereas the blue area 

(electron-poor, positive) represents the nucleophilic attack. ESP maps are essentially related to the 

electron density of the molecule. The region between -3.560e-2 and +3.560e-2 a.u. is where the 

negative and positive electron densities are found. These sections make it easier to see the many 

charged regions of the molecules that were studied. The red colored region is observed close to 

active site residues of all the molecules in the protein which indicates that these regions play a 

major role for the binding of molecule at active site. The negative polarization effect was visible 

on the oxygen, nitrogen and sulfur atoms of the molecules as shown in Figure 3.8, thus 

representing them as the active regions in making interactions with the surrounding amino acids. 



132 
 

                  

 

Figure 3.8: Molecular electrostatic potential (MESP) maps of five Zika virus NS3 helicase 

screened in molecules determined at B3LYP/6–311G+(2d, p) level of theory. 
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3.5 Conclusions 

Sequence and structure analysis of Zika virus and flavivirus NS3 helicases, respectively 

revealed that the ATP and RNA binding sites are highly conserved and that the structures are 

highly superposable. The crystal structure of Zika virus NS3 helicase bound with ATP was 

explored using multiple features in pharmacophore model based on Pharmit for ZINC database 

screening to yield diverse leads after employing various filters that included molecular weight, 

RMSD and number of rotatable bonds. Molecular docking of the hit molecules and their analyses 

based on docking scores, intermolecular hydrogen bonding, ADME properties were applied to 

prioritize the molecules. The stability of Zika virus NS3 helicase bound to five hit compounds 

(ZINC6030, ZINC1648, ZINC8136, ZINC1786, and ZINC6897) was verified using MD 

simulations, and all the screened molecules show reasonable binding affinity throughout MD 

simulations. The DFT calculations performed on the molecules obtained through MD simulations 

reveal that they are stable on PES in solvent phase as compared to their gas phase energies. In light 

of these findings, it was concluded that creating new Zika virus NS3 helicase inhibitors to treat 

Zika sickness will benefit from a deeper understanding of the fundamental structural and binding 

properties revealed by the pharmacophore-based virtual screening.  
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4.1 Introduction 

 

Zika virus NS5 MTase enzyme is responsible for adding a methyl group to the 5' cap RNA 

structure, using the cofactor SAM as a methyl donor to form SAH as a by-product (Zhao et al., 

2015) to facilitate the translation of polyprotein. CADD is a broad and rapidly expanding research 

field that plays an important role in the early stages of new drug discovery. It includes analyses of 

the similarities between the protein sequences and structures, 3-D structure modelling of proteins, 

computational screening, docking of molecules, scoring of hit molecules, MD simulations and 

binding free energy calculations.  

The 3-D structure of Zika virus NS5 MTase is reported in PDB as a complex with SAM 

and 7-methylguanosine-P3-adenosine-5',5'-triphosphate (GTA) (RNA analog) (5WZ2). In this 

chapter, analysis of primary sequences and 3-D structures of MTase enzyme from flaviviruses was 

carried out by sequence alignments, structure-based sequence alignments and structural 

comparison. The NS5 MTase comprises of a cofactor SAM bound at the active site and this site is 

considered as a druggable site for developing new inhibitors using the CADD approach. Based on 

the essential pharmacophore features of SAM, the screened molecules from the ZINC database 

were shortlisted by applying various filters, to be used for molecular docking studies in order to 

find best molecules. AutoDock 4.2 was used for docking the best molecules at the receptor active 

site in all possible conformations. MD simulations and binding free energy calculations were used 

to validate the molecules. These analyses provide an efficient method for designing novel hit 
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compounds and identifying key amino acid residues for intermolecular interactions in Zika virus 

NS5 MTase, which will be useful in future drug discovery studies. 

 

4.2 Methods 

4.2.1 Sequence and structure analyses of flavivirus MTases 

PDB was used to download representative 3-D crystal structures of flavivirus NS5 MTase 

(Berman et al. 2000; Burley et al., 2021). UCSF Chimera was used for molecular visualization and 

structure superposition (Pettersen et al., 2004). BLAST searches were used to retrieve the 

sequences of Zika virus NS5 MTase from the NCBI (Johnson et al., 2008). The proteins multiple 

sequence alignment was accomplished using the ClustalW software. 

4.2.2 Zika virus NS5 MTase structure and preparation  

Zika virus NS5 MTase protein crystal structure complexed with SAM and GTA, a cap 

structure of RNA (5WZ2) deposited at 1.8 Å in PDB was used. For the preparation of the protein 

structure, crystal waters were deleted and hydrogen atoms were added using UCSF Chimera 2.1.1 

(Petersen et al., 2004) and the coordinates were saved in PDBQT format. The cofactor SAM 

located in the active site was used for pharmacophore generation and to screen the molecules for 

further studies.  

4.2.3 Structure-based pharmacophore generation  

To identify novel hit molecules from in silico screening, the structure of SAM in Zika virus 

NS5 MTase was used to create the pharmacophore model for the structure-based pharmacophore 

generation. To generate the pharmacophore model for screening, initially, the Pharmit (Sunseri 

and Koes, 2016) server was used to map the possible ligand features. The probable interactions 
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from the binding cavity of Zika virus NS5 MTase protein with the cofactor SAM was used as a 

reference compound for developing interactions, and the pharmacophore features on SAM 

participating in nonbonding interactions with the receptor were selected. The list of five set of 

features of SAM were used to screen the molecules. These are hydrogen bond acceptor, hydrogen 

bond donor, hydrophobic, negative ionizable, and aromatic ring. The modeled pharmacophore 

hypothesis was used as a 3-D query for the screening of ZINC database comprising 12,996,897 

molecules (Irwin & Shoichet, 2005). The database consisted of 164,282,714 exclusive 

conformations and were subjected to pharmacophore screening using the best generated 

pharmacophore model. This screening aims to retrieve the potential hit molecules suitable for 

further development. The successfully screened hit compounds were filtered based on RMSD 

(lower than 2.3 Å), molecular weight (< 500). The selected hit compounds were downloaded in 

.sdf format. The Lipinski's rule of five (Lipinski et al., 1997; Lipinski et al., 2012; Lipinski, 2004) 

are crucial factors in determining whether orally administered drugs will have a drug-like profile. 

The Lipinski's rule of five directs that a drug molecule exhibits LogP ≤5, molecular weight ≤ 500, 

number of hydrogen bond acceptors ≤10 and number of hydrogen bond donors ≤5 (Lipinski, 2004). 

The hit compounds which obey the above properties were selected for docking studies.  

4.2.4 Molecular docking 

The active site of Zika virus NS5 MTase is identified based on the key amino acid residues 

that interact with the cofactor SAM. The screened molecules were prepared by DS 3.5. The 

docking study was carried out by using AutoDock 4.2 (Morris et al., 2009). Initially, the molecules 

were loaded; torsions were set and saved in PDBQT format and the protein was also saved in 

PDBQT format. The protein structure with all the compounds was loaded into AutoDock 4.2 to 

generate 20 best conformations for each molecule. The Lamarckian Genetic algorithm was used 
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to accomplish all calculations for protein-ligand flexible docking (Wellock & Ross, 2001). A grid 

box with the dimensions of X: 22.987 Å, Y: 19.338 Å, and Z: 49.646 Å, with a grid spacing of 

0.492 Å was used. These grid box dimensions were used to dock the filtered compounds from 

ZINC database in order to predict their binding affinity, binding orientation with the target protein 

and to analyze the best conformations. The best conformation with higher binding affinity was 

chosen, and hydrogen bonding interactions existing between the docked pose and protein were 

manually analyzed. The top-ranked molecules from docking method were further studied using 

ADMET calculations for their drug-likeness.  

4.2.5 ADMET properties 

The best docked molecular structures drug-like properties were examined by analyzing the 

pharmacokinetics profile with the SwissADME server (http://www.swissadme.ch/index.php). 

This is a software tool to calculate ADME and physicochemical properties such as solubility, 

lipophilicity and pharmacokinetics. MD simulations were used to study the hit molecules that meet 

the criteria of ADME properties. 

4.2.6 Molecular dynamics simulations 

MD simulations of apo and complexes of Zika virus NS5 MTase was carried out for 100 

ns, using GROMACS 5.1.4 (Hess et al., 2008; Van Der Spoel et al., 2005) software. Four types of 

molecular systems were prepared; apo Zika virus NS5 MTase, Zika virus NS5 MTase complexed 

with SAM, Zika virus NS5 MTase complexed with SAM and GTA, Zika virus NS5 MTase 

complexed with hit molecules. During the preparation of molecular systems, water molecules and 

all other hetero atoms were removed from the protein, hydrogens were added and Amber99sb force 

field was applied to all the molecular systems. The applicable charges were added to SAM and hit 

http://www.swissadme.ch/index.php
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molecules using UCSF Chimera-2.1.1, and the coordinates were saved in .mol2 format to generate 

force fields using AM1-BCC charge in Antechamber using ACPYPE script (Da Silva et al., 2012). 

SPC water models were used to solvate the molecular systems, by adding Na+ and Cl- ions, such 

that the total charge of the systems was neutralized. Energy minimization was accomplished in 

1000 steps that use the steepest descent algorithm to remove steric stress and enable the system to 

relax. Water molecules and ions were distributed during the position restraint phase. The systems 

were heated for 100 ps at 300 K before being equilibrated at 1 atm and 300 K for 1000 ps until the 

proper density was achieved. The temperature was kept constant using a V-rescale thermostat 

(Bussi et al., 2007), and the pressure was controlled using the Parrinello Rahman technique 

(Parrinello & Rahman, 1981). The particle mesh Ewald method was used to deal with long-range 

electrostatic interactions (Darden et al., 1993; Essmann et al., 1995). For 1000 ps, molecular 

systems were equilibrated using the NVT and NPT ensembles. The Lennard-Jones interactions 

and the real-space electrostatic interactions were truncated at 9 Å. LINCS algorithm was used to 

restrict hydrogen bonds (Hess et al., 1997). After every 2 ps, the coordinates from the production 

MD trajectories were generated and saved. Upon structure stabilization, the final models in all 

systems were obtained by averaging the snapshots from the output trajectories of MD simulations. 

The GROMACS utilities gmx rms, gmx rmsf, gmx hbond, and gmx gyrate were used to analyse 

the MD trajectories (Van Der spoel, et al., 2005). The RMSD of the Cα-atoms in relation to their 

starting structures was calculated in GROMACS. VMD was used to display the MD trajectory 

files (Humphrey et al., 1996). The Xmgrace software was employed for plotting the data obtained 

from MD simulations analysis, and UCSF Chimera (Pettersen et al., 2004) was employed for 

structure superposition and cartoon image generation.  

4.2.7 Binding free energy 
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The molecular mechanics levels of energy combined with the MM-PBSA methods are 

widely used to estimate the free energy of small ligand molecules binding to biological 

macromolecules. The MM-PBSA method (Kumari et al., 2014) was used to calculate the binding 

free energy of protein-ligand complexes using g_mmpbsa tools. The output trajectories of MD 

simulations were used to calculate the binding free energy of protein-ligand complexes. The output 

results obtained by this g_mmbsa method are van der Waals, electrostatic, polar solvation, SASA, 

and binding free energies.  

4.3 Results and discussions 

4.3.1 Sequence and structure analyses 

The multiple sequence alignment of flavivirus NS5 MTase (Figure 4.1A) reveals that all 

the amino acid residues within 5 Å from SAM (5WZ2) binding site are highly conserved among 

all flaviviruses. The structures are highly superposable with a low RMSD indicating their high 

structure conservation as shown in Figure 4.1B. 

Figure 4.1A: Multiple sequence alignment of Zika and other flavivirus NS5 MTase proteins.   
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Figure 4.1B: Structural alignment of Zika and other flavivirus NS5 MTase proteins Zika (grey), 

Dengue (cyan), Japanese encephalitis (orange) and Murray valley encephalitis (purple).  

 

In the Zika virus NS5 MTase crystal structure (5WZ2), complexed with cofactor SAM and GTA, 

the cofactor binding cavity is considered as the active site of the protein. For validation of the 

docking methodology, SAM was redocked into its binding site using the AutoDock 4.2. Twenty 

conformers were generated, out of these, the final docked poses were selected based on the binding 

affinity and intermolecular interactions. The essential interactions were conserved with residues 

within the active site of the protein. The redocked SAM was identified to be in the vicinity of 

crucial amino acid residues Ser58, Arg59, Gly60, Lys63, Leu82, Gly83, Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, Gly108, His112, Glu113, Val132, Asp133, Val134, Phe135, Asp148, 
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Ile149, Gly150, Glu151, Lys184 and Tyr222 and showed RMSD of 0.16 Å with the crystal 

structure conformation. The hydrogen bonding interactions were formed with the residues Ser58, 

Lys107, His112, Glu113, Asp133, Val134, Asp148. The SAM docked into the active site showed 

binding affinity -8.4 kcal/mol.      

4.3.2 Pharmacophore generation and virtual screening 

The structure-based pharmacophore model was generated to understand the key features 

necessary for biological functions. The intermolecular interactions between the hit molecule and 

the catalytically important active site amino acid residues provide appropriate information as 

inputs for the design of the structure-based pharmacophore model for the macromolecular receptor 

Zika virus NS5 MTase. Pharmacophore modeling using the Pharmit server identified the features 

of SAM required for nonbonded interactions with the amino acid residues available in its binding 

site. The five pharmacophore features selected in SAM for virtual screening are; hydrogen bonding 

interaction of the N6 atom of NH2 on adenine ring with Asp133, N1 atom on adenine ring with 

Val134, O2̍ atom of OH on 5-memberd ring moiety with Glu113, the N atom on methionine NH2 

with Asp148 and the O atom from methionine carboxylate group with Ser58, shown in Figure 4.2. 

The pharmacophore model was validated on 1000 molecules decoy set (inactive molecules) using 

Pharmit server. The pharmacophore model could not predict a single decoy molecule, thus 

indicating that the pharmacophore model successfully qualified the validation process. The 

validated pharmacophore model was employed for virtual screening of small molecules in the 

ZINC database. The five featured pharmacophore model that was used as a 3D query retrieved 609 

hit molecules from 12,996,897 molecules in the ZINC database and were downloaded as .sdf file. 

These hit molecules were filtered and ranked based on lower RMSD (< 0.23 Å) and the Lipinski’s 
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rule was applied in prefiltering process. This retrieved 92 molecules that were used for molecular 

docking studies by AutoDock 4.2. 

                                 

 

Figure 4.2: Pharmacophore features of SAM used for virtual screening of ZINC database. 

4.3.3 Molecular docking 

  

         The 92 hit molecules identified from virtual screening were docked into the SAM binding 

cavity of Zika virus NS5 MTase. For each molecule, 20 docking poses were generated and the best 

docking pose was selected based on the binding affinity and hydrogen bonding interactions 

maintained by key amino acid residues in the SAM binding cavity. The selected 92 hit molecules 

were docked with a binding affinity within the range of -9.0 to - 6.8 kcal/mol. Of these, 50 hit 

molecules had a binding affinity higher than -7.8 kcal/mol and 15 hit molecules had a binding 

affinity between -9.0 to -8.0 kcal/mol. The binding affinities and the amino acid residues in the 

binding pocket are shown in Table 4.1.  
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Table 4.1. Docking scores of SAM, screened hit molecules along with the interacting residues in 

the Zika virus NS5 MTase. 

 

S. No                Structure and Name  Docking 

score  

(kJ/mol) 

Binding site residues 

 

1. 

 

 

                           SAM 

           S-adenosyl-L-methionine 

 

-8.4 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

2. 

 

                            hit-1 

N-(3-(4,5-dimethyl-1H-benzo[d]imidazol-2-yl)propyl)-4-((2-

hydroxyethyl)(methyl)amino)benzamide 

 

-8.5 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 
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3. 

      

                        hit-2                       

5-((4-(3-hydroxy-3-methylbutyl)benzamido) methyl)-N-

methylfuran-2-carboxamide 

 

-8.4 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

 

4. 

 

                          hit-3 

(4S,7R)-4-(4-hydroxy-3-methoxyphenyl)-7-(4-

hydroxyphenyl)-3-methyl-4,6,7,8-tetrahydroisoxazolo[5,4-

b]quinolin-5-ol 

 

 

-8.2 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

5. 

 

                           hit-4 

N-(2-(5-amino-1,3,4-thiadiazol-2-yl)ethyl)-3-(5-(2-

hydroxypropan-2-yl)pyridin-3-yl)benzamide 

 

-8.5 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 
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6. 

 

                            hit-5 

(R)-N-(4-hydroxyphenethyl)-3-(N-((tetrahydrofuran-2-

yl)methyl)sulfamoyl)benzamide 

 

-9.0 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

7. 

 

                           hit-6 

(4S,7S)-4-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-

hydroxyphenyl)-3-methyl-4,7,8,9-

tetrahydroisoxazolo[5,4-b]quinolin-5(6H)-one 

 

-8.3 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

8. 

 

                           hit-7 

(4S,7S)-4-(4-hydroxy-3-methoxyphenyl)-7-(4-

hydroxyphenyl)-3-methyl-4,7,8,9-tetrahydroisoxazolo[5,4-

b]quinolin-5(6H)-one 

 

-8.4 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 
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9. 
 

                              hit-8 

(S)-2-(4-((2-amino-5,6-

dihydrospiro[cyclopenta[d]pyrimidine-7,3'-piperidin]-1'-

yl)methyl)phenoxy)ethan-1-ol 

 

 

-8.2 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

 

10. 

 

 

                             hit-9 

4-((2S,3R,4S)-4-(4-hydroxy-3-methoxybenzyl)-3-

(hydroxymethyl) tetrahydrofuran-2-yl)-2-methoxyphenol 

 

 

-8.3 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

11. 

 

                           hit-10 

(S)-5-(N-(2-(3-(hydroxymethyl)piperidin-1-

yl)ethyl)sulfamoyl)thiophene-3-carboxamide 

 

-8.0 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 
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12. 

 

                           hit-11 

(S)-5-(4-((4-hydroxyphenyl)amino)phthalazin-1-yl)-2-

methyl-N-((tetrahydrofuran-2-

yl)methyl)benzenesulfonamide 

 

-8.6 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

13. 

 

                              hit-12 

5-(4-(3-hydroxy-3-methylbutyl)benzyl)-N-methyl-

4,5,6,7-tetrahydrothieno[3,2-c]pyridine-2-carboxamide 

 

-8.5 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

 

14. 

 

                             hit-13 

 

 

-8.1 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 
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(S)-4-(3-(2',4'-dihydroxy-5'H-spiro[azepane-4,6'-furo[2,3-

d]pyrimidin]-1-yl)-3-oxopropyl)-N-

methylbenzenesulfonamide 

 

 

15. 

 

 

                             hit-14 

3-(3-hydroxyisoxazol-5-yl)-N-((3R,4R)-4-(4-

(hydroxymethyl)phenoxy)tetrahydro-2H-pyran-3-

yl)propanamide 

 

 

 

-8.0 

Ser58, Arg59, Gly60, 

Lys63, Leu82, Gly83, 

Cys84, Gly85, Arg86, 

Gly87, Thr106, Lys107, 

Gly108, His112, Glu113, 

Val132, Asp133, Val134, 

Phe135, Asp148, Ile149, 

Gly150, Glu151, Lys184 

and Tyr222 

 

 4.3.4 Drug-like properties 

The molecules selected from molecular docking were subjected to the next stage of ADME 

calculations using the SwissADME server and the results are shown in Table 4.2, and selected the 

molecules based on acceptable values within the range. The synthetic ease of access of the 

suggested compounds is graded on a scale of one to ten, on the basis of the complexity of the 

molecules, the number of stereocenters, and other factors. A lower value is indicative of greater 

synthetic accessibility of the molecule and the synthetic accessibility value was found to be less 

than 5.1, which indicates the ease of their synthesis. The TPSA was lower than 140 Å, the extent 

of solubility in water, stated as Log S indicated that most of the hit molecules are soluble or 

reasonably soluble in water; and lipophilicity expressed as Log KP was lower than 3.5. The 
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possibility of skin permeation expressed as Log Kp was also reasonable. Out of the 15 selected 

molecules from docking studies, 12 molecules successfully qualified all the ADME properties 

within the range of acceptable values. These 12 molecules were further studied by MD simulations. 

The best Zika virus NS5 MTase hit molecule complexes were used as initial conformations for 

MD simulations, and complex with SAM and apo protein were also studied for the sake of 

comparison. 

Table 4.2. Drug-like properties of screened hit compounds. 

S. No Compound TPSA 

 (Å2) 

Consensus 

Log Po/w 

Log Kp  Synthetic 

accessibility 

1. hit-1 96.45 1.64 -7.85 4.88 

2. hit-2 122.70 2.24 -7.10 5.08 

3. hit-3 109.36 2.81 -5.53 4.04 

4. hit4 88.09 1.86 -7.33 3.27 

5. hit-5 87.00 1.81 -7.30 4.04 

6. hit-6 109.28 0.57 -8.75 4.19 
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7. hit-7 109.28 2.34 -7.37 5.94 

8. hit-8 130.08 0.16 -8.75 4.83 

9. hit-9 88.38 2.38 -6.79 3.94 

10. hit-10 104.73 1.68 -7.17 2.27 

11. hit-11 124.32 3.46 -6.46 4.44 

12. hit-12 121.67 1.74 -7.36 3.46 

 

 

4.3.5 Molecular dynamics simulations 

The stability and dynamic characteristics of the protein-hit molecule complexes were 

determined using atomistic MD simulations with explicit solvent. MD simulations reveal detailed 

information about protein-hit molecule interactions as a course of the simulations time that 

contribute to their stable binding state, as well as the changes in the conformational states of protein 

upon binding to the hit molecule. The apo and Zika virus NS5 MTase complexed with all the 12 

selected hit molecules were carried out for 100 ns MD simulations. Out of these 12 hit molecules, 

three hit molecules (hit-5, hit-9 and hit-11) obtained stability throughout MD simulations. Each 

system within the initial and average structures were compared and then analyzed the 

conformational changes of protein and the stability of hit molecules that bind to the protein. The 

RMSD plots describe the extent of deviation of all atom positions in the apo and protein-hit 
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complexes throughout MD simulations that demonstrated the protein stability throughout MD 

simulations. It was observed that the screened hit molecules from ZINC database show good 

stability when binding with Zika virus NS5 MTase protein and GTA molecule shows significant 

stability throughout MD simulations. Based on RMSD plots, it was observed that the RMSD of 

apo is 1.8 Å; when complexed with SAM and hit5 (~ 2.1 Å) and complexes with hit9 and hit11 (< 

1.8 Å) as shown in Figure 4.3A. The hit molecules and SAM also show lower than 2 Å RMSD. 

From RMSF plots, it is seen that the residues from loop regions (Arg43-Thr52, Arg177-Phe181 

and Val253-Glu256) show greater fluctuations during MD simulations (Figure 4.3B).  
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Figure 4.3A: RMSD plots of Zika virus NS5 MTase bound with SAM, GTA and screened hit 

molecules. 

 

 

Figure 4.3B: RMSF plot of Zika virus NS5 MTase bound with SAM, GTA and screened hit 

molecules. 
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4.3.6 Hydrogen bonding interactions 

One of the essential criteria for stable protein-ligand complex formation is hydrogen 

bonding interactions, which hold the molecule tightly in the protein active site. Intermolecular 

interactions in protein reference and screened hit molecules structures before and after MD 

simulations showed that SAM makes hydrogen bonding interactions with Ser56, Glu111, Val132 

and Asp131 throughout MD simulations. The three hit molecules (hit-5, hit-9 and hit-11) also 

make hydrogen bonding interactions with the active site residues (Val57, Ser58, Glu113, Val134 

and Asp133). In hit-5 the oxygen atom on phenol group shows hydrogen bonding with Asp133 

and Val134, the oxygen atom on C=O of amide group shows hydrogen bonding with Glu133 and 

O atom on sulfate group make hydrogen bonding with Arg86. In hit-9 OH of methoxy phenol 

make hydrogen bonding with Ser86, the O atom of methoxy group forms hydrogen bonding with 

Arg86 and His112, the O atom of furan exhibits hydrogen bonding with Glu113. In hit-11 the O 

and N atoms of benzene sulfonamide show hydrogen bonding interactions with Ser58, Arg86 and 

the N of phthalazine shows hydrogen bonding with Glu113, the O atom of phenyl group shows 

hydrogen bonding with Asp133 and Val132 as shown in Figure 4.4, indicating that these 

interactions stabilize the complex formation. 
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156 
 

Figure 4.4: Interaction of residues Zika virus NS5 MTase complexed with hit molecules 

throughout MD simulations A) NS5 MTase with SAM, B) NS5 MTase with hit-5, C) NS5 MTase 

with hit-9 and D) NS5 MTase with hit-11. 

4.3.7 Binding free energy calculations 

The binding free energies of reference and screened hit compounds in this work were 

analysed from MM-PBSA calculations as shown in Table 4.3. The contribution from electrostatic, 

van der Waals and polar solvation energies indicate agreement with the reference molecule. The 

binding free energies were observed to be SAM (-70.66 kJ/mol), hit-5 (-67.41 kJ/mol), hit-9 (-

70.57 kJ/mol) and hit-11 (-62.19 kJ/mol).  

Compound 

Name 

van der Waals 

energy (kJ/mol) 

Electrostatic  

energy 

(kJ/mol) 

Polar solvation 

(kJ/mol) 

SASA  

(kJ/mol) 

∆G 

 (kJ/mol) 

SAM -192.22+/0.700 -46.310+/0.418 185.74+/0.849 -17.89+/0.044 -70.66+/0.719 

hit-5 -135.195+/0.849 -24.110+/1.012 107.495+/1.407 -15.59+/0.068 -67.41+/1.249 

hit-9 -168.16+/0.516 -33.36+/0.664 147.534+/0.724 -16.59+/0.050 -70.58+/0.561 

hit-11 -146.26+/0.647 -56.01+/0.548 156.882+/1.158 -16.790+/0.061 -62.198 +/- 0.77 

 

In order to explain the importance of active site amino acid residues in binding to the ligands, their 

contribution to the binding energy was measured. The binding site residues Ser58, Glu113,  

Asp133 and Val134 show the highest binding energy contribution, that is attributed to the 

hydrogen bonding interactions observed in the residues while interacting with SAM and screened 

hit molecules as shown in Table 4.4. From this analysis of binding energy calculations, it is 
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suggested that hit molecules show good binding affinity with NS5 MTase and are therefore its 

likely inhibitors.  

Table 4.4: Contribution of amino acid residues in the Zika virus NS5 MTase protein to the binding 

of SAM and screened hit molecules.  

S. No Amino acid 

residues 

SAM  

(kJ/mol) 

hit-5 

(kJ/mol) 

hit-9  

(kJ/mol) 

hit-11 

(kJ/mol) 

1 Ser 56 -4.84 -2.45 -2.38 -10.32 

2 Arg57 -1.06 -3.35 -1.50 -1.06 

3 Glu111 -37.21 -4.29 -0.18 -3.96 

4 Asp131 -36.99 -4.44 -0.18 -9.94 

5 Val132 -5.88 -4.97 -6.52 -3.74 

6 Phe133 -1.93 -3.12 -8.39 -3.38 

7 Asp146 -14.51 -1.81 -2.96 -14.32 

8 Ile147 -28.24 -19.41 -15.43 -22.36 

                                                                                                                                                                                            

4.4 Conclusions 

CADD techniques can be employed effectively to accelerate the development of 

therapeutic agents for Zika virus disease. The cofactor, SAM was used for pharmacophore based 

virtual screening of ZINC database. To investigate the binding interactions among protein and hit 
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molecule complexes, molecular docking and MD simulations were used. The stability of the Zika 

virus NS5 MTase bound to three hit molecules (hit-5, hit-9, and hit-11) was verified by using MD 

simulations followed by binding free energy calculations. Overall, the results indicated that the 

pharmacophore-based screening provided significant information towards comprehension of the 

essential structural binding features when developing new Zika virus inhibitors to treat Zika 

infection. 

 

4.5 Zika virus NS5 RNA dependent RNA polymerase  

4.5.1 Introduction 

The RdRp synthesizes the genome of RNA in the absence of primer strand called as de 

novo mechanism where in single nucleoside triphosphate is provided as a primer for nucleoside 

polymerization to form a double-stranded RNA. The flavivirus RdRp incorporates a functional 

nuclear localization sequence region, which is important for viral and host protein interactions. 

NS5 interacts with the NS3 protease helicase as well as a number of host proteins (Yap et al., 2007; 

Tay et al., 2015). The Zika virus NS5 protein serves as an antagonist due to its enzymatic functions. 

That is because the NS proteins NS5 RdRp plays an important role in viral genome replication. 

The 3-D structure of Zika virus NS5 RdRp is already reported in PDB. This protein has three 

domains, called as finger (residues 321-488), palm (residues 481-541 and 609-714) and thumb 

(residues715-903) (Figure 4.5). The structure of Zika virus NS5 RdRp has prominent similarities 

with the Japanese encephalitis (JEV) NS5 RdRp, with the RMSD of 0.55 Å, which is binding with 

cofactor GTP at the active site. The missing residues in the crystal structure of Zika virus NS5 

RdRp were built on the JEV NS5 RdRp structure. The active site of protein was defined by 
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template structure JEV NS5 RdRp (PDB 4HDG) (Surana et al., 2014), extracted the GTP molecule 

into Zika virus NS5 RdRp and this site was considered as an active site for developing new 

inhibitors using the CADD approach. Based on the essential features of GTP, molecules were 

screened from the Asinex database by applying various filters in order to find best molecules for 

molecular docking studies. The CDOCKER docking methodology was used for docking the 

molecules at the receptor active site in all possible conformations. The molecules were validated 

using MD simulations and binding free energy calculations. 

 

Figure 4.5: Structure of Zika virus NS5 RdRp binding with GTP.   

4.5.2 Materials and methods 

4.5.2.1 NS5 RNA dependent RNA polymerase structure and preparation 

Zika virus NS5 RdRp protein crystal structure is already reported at 1.8 Å (Duan et al., 

2017). During preparation of protein the protein were subjected to addition of missing residues 

and hydrogens. The water molecules and hetero atoms were removed by using UCSF Chimer 2.1.1 

(Peterson et al., 2004). The 3-D structure of Zika virus NS5 RdRp was submitted to the Dali server 

to find the template structure to build the missing residues. Dali was used to compare the residues 

one-to-one and the method removes the amino acids with a mismatch between the two protein 
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structures under comparison. This server performs three types of structure associations: (i) The 

PDB search to compare one query structure with the members in the PDB to produce a list of 

proteins that share similar structure. (ii) A pair-wise comparison to compare the protein structure 

of interest with a set of 3-D structures that are provided by the user; (iii) Comparison of all 

structures against all to generate a structural similarity matrix, a dendrogram, and a multi-

dimensional scaling projection of the set of structures defined by the user. The Dali server was 

also used to perform PDB search comparison to find the protein structures similar to the query 

(Zika virus NS5 RdRp) protein structure where the active site of a protein is known and provides 

the crystal structure of various flaviviruses which are closely related to Zika virus NS5 RdRp 

protein. The JEV NS5 RdRp (4HDG) was selected as the template structure for building the 

missing residues in Zika virus NS5 RdRp. 

4.5.2.2 Building of missing residues in 3-D structure of Zika virus NS5 RNA dependent RNA 

polymerase 

The missing residues in Zika virus NS5 RdRp were constructing by using template 

structure JEV NS5 RdRp. By using the sequence alignment, a 3-D model of Zika virus NS5 RdRp 

with the complete model was constructed by using MODELLER 9.17 (Šali & Blundell, 1993) 

based on 4HDG. The generated models were evaluated based on their DOPE scores, with the 

highest decreasing trend of DOPE score being ranked first. The template structure JEV NS5 RdRp 

(4HDG) has cofactor GTP present in the active site. The two structures Zika virus NS5 RdRp 

(5WZ3) and JEV NS5 RdRp (4HDG) were superposed to extract the GTP coordinates into 

modeled structure of Zika virus NS5 RdRp protein.  
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4.5.2.3 Structure based drug design 

To increase the effectiveness of in silico screening in identifying active and novel hits, the 

redocked cofactor GTP into Zika virus NS5 RdRP protein was used for the structure-based 

pharmacophore generation. In this study, the Asinex database with 500,000 exclusive structure 

records was screened using a set of pharmacophore features.  

4.5.2.4 Pharmacophore generation 

After docking the GTP into active site of Zika virus NS5 RdRp protein, this structure was 

used for the pharmacophore generation to identify the novel inhibitors development for Zika virus 

NS5 RdRp. To develop the pharmacophore model for screening, initially, probable interactions 

from the active site of Zika virus NS5 RdRp protein were generated by employing the interaction 

generation protocol available in DS 3.5. The cofactor GTP, was used as a reference molecule to 

generate intermolecular interactions. The parameters for both density of lipophilic sites and polar 

sites were defined. Feature mapping tool available in DS 3.5 pharmacophores protocol was used 

to map the feasible ligand features. 

4.5.2.5 Library screening 

The Asinex database was used in this study which comprises 500,000 exclusive structure 

records were transferred to “Screen Library” protocol of DS 3.5 (Kabsch, 1976). In order to 

identify the hit molecules, Asinex database was screened by using the best pharmacophore model 

with preferred pharmacophore features and scored them on the basis of their fit value. In the Screen 

Library protocol DS 3.5, a minimum of two and a maximum of six pharmacophore features were 

chosen using a rigid fitting method of the pharmacophore and the small molecule. Based on their 

pharmacophore fit value, the molecules were selected. 
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4.5.2.6 Molecular docking 

Molecular docking is an important application to identify the mechanism of protein-

inhibitor binding. Once the active site of a protein based on the key amino acid residues is 

identified different ligand molecules can be docked into the active site of the protein such as Zika 

virus NS5 RdRp. DS 3.5 was used to prepare the ligand molecules, hydrogens are added, and the 

molecules were energy minimised using the CHARMm force field (Brooks et al., 1983). The new 

inhibitors were docked using CDOCKER. The temperature of the system heated up to 700 K for 

2,000 steps and then cooled to 300 K for 5,000 steps. The protein active site was described based 

on GTP binding position and extended to the residues within its 5Å cut-off distance, with a total 

of 20 docking poses. To test the reliability of the CDOCKER docking protocol, the cofactor GTP 

was docked into the active site of Zika virus NS5 RdRp. The docking results were analysed using 

the PMF04 ligand scoring method (Muegge, 2006). Following molecular docking, the molecules 

were further analysed using MD simulations. 

4.5.2.7 Molecular dynamics simulations 

Protein 3-D structures have an inherent conformational change. The binding conformations 

of the designed compounds, their ability to stay bound to the active site, and the method of 

functional control cannot be determined from the docking pose of a single frame of a protein bound 

to a ligand. As a result, MD simulations of Zika virus NS5 RdRp bound to the hit compounds and 

GTP were performed using GROMACS 5.1.4 software (Hess et al., 2008; Van Der Spoel et al., 

2005). The force fields for protein was generated using Amberff99sb (Da Silva et al., 2012) and 

the AM1-BCC (Wang et al., 2006) charges were added to hit molecules and GTP and saved in 

.mol2 format. The force fields for hit molecules and GTP was generated in Antechamber with 
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ACPYPE scripts. Each complex was solvated with SPC water models, and then Cl- and Na+ ions 

were added for neutralization. The unit cell was adjusted to cubic box dimensions of 1.0 nm 

(Berendsen et al., 1981). Treatment of long-range electrostatic interactions was done using the 

particle mesh Ewald approach (Darden et al., 1993; Essmann et al., 1995). Using the LINCS 

algorithm, the hydrogen bonds were restrained (Hess et al., 1997). The goal of the first stage of 

MD simulations is to remove steric stress and enable the system to relax. To achieve this goal, 

50,000 steps were run until the systems maximal force was less than 1000 kJ/mol/nm2. In order 

for the solvents and ions to equilibrate around the protein, the system is switched to NVT, 

equilibrated, and minimised for 100 ps. Once the system had the correct density, the equilibration 

has been set to NPT 1 atm pressure and 300 K for 1000 ps. The approaches used for temperature 

and pressure couplings are V-rescale and Parrinello-Rahman, respectively (Bussi et al., 2007; 

Parrinello & Rahman, 1981). The final stage of MD simulations on apo Zika virus NS5 RdRp and 

hit molecule complexes were carried up to 50 ns. The stability and conformational variations of 

the complexes of apo, and protein-hit molecules, GTP complexes are shown by the RMSD and 

RMSF graphs. 

4.5.3 Results and discussions 

The Zika virus NS5 RdRp crystal structure is already reported in PDB (5WZ3), it 

comprises missing residues in crystal structure (Pro313-Leu321, Ile342-Thr347 and Ser406-

Glu425). The template protein structure was identified by submitting Zika virus NS5 RdRp to Dali 

server. This server compares the 3-D structure of target protein to provide the crystal structure 

PDBs which are structurally similar with Zika virus NS5 RdRp. Dali server identified the template 

structure of JEV NS5 RdRp (4HDG). The template protein comprises GTP cofactor and shows 

sequence identity of 67.34%. The sequence alignment between template JEV NS5 RdRp (4HDG) 
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and target Zika virus NS5 RdRp (5WZ3) proteins was performed by ClustalW. These missing 

residues in crystal structure of Zika virus NS5 RdRp protein were constructed by 

MODELLER9.17. The modeled structure with GTP and sequence alignment shown in Figure 

4.6A and 4.6B.  

 

Figure 4.6A:  The modeled structure of Zika virus NS5 RdRp complexed with GTP. 
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Figure 4.6B: Sequence alignment and conserved active site residues involved hydrogen bonding 

interactions of Zika virus NS5 RdRp (5WZ3) and JEV NS5 RdRp (4HDG).  

4.5.3.1 Identification of active site and validation 

Dali was used for validation of active site, as there is no crystal structure available for Zika 

virus NS5 RdRp protein binding to cofactor or any other small molecule. The JEV NS5 RdRp 

(4HDG) which is complexed with cofactor GTP in the active site was predicted. For the 

authentication of binding site and docking method, the substrate that was bound to the protein was 

removed and redocked the cofactor GTP into the defined active site cavity of Zika virus NS5 RdRp  

by using CDOCKER protocol from DS 3.5. Selected the final docked pose based on the 

CDOCKER score (PMF04 -146.84) and important interactions within the binding cavity residues 

of Zika virus NS5 RdRp. The redocked ligand was located in the proximity of important amino 
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acids such as, Arg460, Lys462, Lys471, Arg473, Trp539, Asp540, Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, Arg739, Arg741 and Trp797. Thus, the redocking results demonstrated 

that the ligand interacted well with the modelled Zika virus NS5 RdRp protein as shown in Figure 

4.7.  

 

 

Figure 4.7: Interaction of binding site residues of Zika virus NS5 RdRp with GTP from molecular 

docking.  

4.5.3.2 Feature mapping and pharmacophore generation 

Structure-based pharmacophore modeling was used to understand the features which are 

important for biological function of protein. The interactions of GTP with the amino acid residues 

in the active center of the target protein Zika virus NS5 RdRp were an appropriate input to design 

a structure-based pharmacophore model. There are two methods used to generate pharmacophores. 
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The generation of interactions was analysed first by considering the docked model within certain 

specific dimensions of the interacting region, and then the features were reduced by performing 

feature mapping of GTP. The GTP features were mapped, yielding all possible pharmacophore 

features of the ligand from the selected features. The pharmacophore of GTP was mapped using 

the selected features, hydrogen bond acceptors and hydrogen bond donors. The feature mapping 

server generated 66 features on GTP, out of these seven features were considered based on the 

essential interactions between the receptor and ligand. Based on various interacting points on the 

active site with GTP, four hydrogen bonding acceptor features, two hydrogen bonding donor 

features and one negative ionizable feature were selected. The O6 atom of carbonyl group from 

the nucleoside base forms hydrogen bond with Ser603. The O2 of γ-phosphate forms hydrogen 

bonding with Lys462 and Arg739. The O3 of γ-phosphate with Arg459 in Zika virus NS5 RdRp. 

The hydrogen bond donor features are; N2 atom of NH2 group on guanine ring forms hydrogen 

bonding with Asp540. The O2̍ atom on ribose sugar moiety forms hydrogen bonding with Asp666 

and one negative ionizable ion O2 atom of β-phosphate forms hydrogen bonding interaction with 

Arg473. The selected pharmacophore features are shown in Figure 4.8. The pharmacophore model 

was validated on 1000 molecules decoy set (inactive molecules) using DS 3.5. The pharmacophore 

model successfully qualified the validation process. The seven featured validated pharmacophore 

model was used for virtual screening of the Asinex database of small molecules.  
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Figure 4.8: Pharmacophore features used for virtual screening of Asinex database.  

4.5.3.3 Virtual screening and molecular docking 

           The virtual screening protocol relies on the use of filters to limit the number of compounds. 

The finalised pharmacophore was employed to screen the Asinex database with 500,000 

compounds, followed by molecular docking studies of the selected hit molecules. The finalised 

pharmacophore model was used for virutral screeing of Asinex database based on the generated 
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structure based pharmacophore model using screen library protocol avalible in DS 3.5 with the 

best conformation generation and flexible fitting methods. This virtual screening retrieved 29,427 

molecules from the database. These hit molecules were filtered and ranked based on lower RMSD 

(< 0.3 Å) and the Lipinski’s rule was applied in prefiltering process. The top 59 hit molecules 

recognised through virtual screening were then docked using the CDOCKER docking program to 

confirm their binding conformation and affinity to Zika virus NS5 RdRp (5WZ3). The best-scoring 

molecules were represented graphically for nonbonding interactions such as hydrogen bonds and 

pi-stacking. PMF04 scores were used to assess the binding efficiency of protein-hit molecule 

complexes and GTP. The scores of the newly identified hit molecules ranged from -128.08 to -

42.17. The greater docking score was identified for GTP and hit-1 (-146.84 and -128.08). These 

59 molecules are docked into 5 Å cavity present at GTP binding site in the Zika virus NS5 RdRp 

protein. Twenty docking conformations were generated for each molecule by CDOCKER to 

predict the best conformer based on CDOCKER score and nonbonding interaction with protein. 

Out of the 59 molecules, 12 best molecules were selected for MD simulations studies as shown in 

Table 4.5. 

 

Table 4.5: Fit values, docking results of GTP, and hit molecules screened from Asinex database.  
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S. No 

 

Compound 

 

Fit value 

 

Docking Score 

PMF04 

 

Hydrogen bonding 

interactions 

 

Active site interactions 

1 GTP 5.21 -146.84 Arg459, Lys462, 

Ser603, Arg473, 

Arg739  

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

2. hit-1 3.45 -128.08 Arg459, Lys462, 

Ser603, Arg473 and 

Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

3. hit-2 3.155 -81.59 Arg459, Lys462, 

Arg473, Asn612, 

Asp666 and Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

4. hit-3 2.91083 -76.52 Arg459, Lys462, 

Ser603, Arg473, 

Arg739, Trp797, 

Ser798 and His8 00 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

5 hit-4 3.73602 -76.49 Arg459, Lys462, 

Ser603, Arg473, 

Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

6. hit-5 2.49697 -76.25 Arg459, Lys462 

and Arg473 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

7 hit-6 2.6132 -76.13 Arg459, Lys462, 

Ser603, Arg473, 

Arg739,Trp797, 

Ser798 and His8 00 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 
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4.5.3.4 Molecular dynamics simulations 

The stability and dynamic characteristics of the protein-hit molecule complexes were 

determined using atomistic MD simulations with explicit solvent. The details into the insights of 

intermolecular interactions between the receptor-ligand in motion is provided by MD simulations 

studies, which contribute to the protein stable bound conformation, as well as the influence of 

8 hit-7 3.50634 -75.11 Arg459, Lys462 

and Ser603 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

9 hit-8 2.98349 -74.39 Arg459, Lys462, 

Ser603, Arg473, 

Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

10 hit-9 3.155 -74.35 Arg459, Lys462 

and Ser603 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

11 hit-10 3.07037 -73.61 Arg459, Lys462, 

Ser603, Arg473, 

Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

12 hit-11 3.42 -56.13 Arg459, Arg473 

and Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 

13 hit-12 2.64 -42.17 Arg459, Lys462, 

Arg473, Arg739 

Arg460, Lys462, Lys471, 

Arg473, Trp539, Asp540, 

Ser603, Thr608, Asn612, 

Asp666, Asp669, Ser715, 

Arg739 and Arg741 
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ligand binding on protein conformational changes. Protein ligand-bound complexes were studied 

in a dynamic environment to determine the stability of interactions over time. In this study, apo 

protein and Zika virus NS5 RdRp complexed with GTP and screened hit molecules were used for 

50 ns MD simulations. Out of the twelve hit compounds, four compounds obtained stability 

throughout MD simulations. The average structures were generated from 50 ns of MD simulations 

trajectories for comparison with the initial structures of each system to analyse the conformational 

changes of protein and stability of hit molecules binding to protein. The superposition of the initial 

and average structures demonstrate that the molecules have good stability and lower RMSD, which 

is confirmed by conserved hydrogen bonding interactions with active site residues, indicating that 

these molecules are suitable as Zika virus NS5 RdRp inhibitors. The extent to which all atom 

positions in the apo and protein-hit complexes deviate during MD simulations is assessed by the 

RMSD plots. The overall conformational changes were analyzed through the Cα-atom RMSD as 

a function of MD simulations time. From the plots it can be seen that the apo protein gained 

stability after the initial ten ns with an average RMSD of 0.33 nm throughout MD simulations and 

when binding with hit molecules it shows lower RMSD (< 0.3 nm). The hit molecules also show 

less than 0.2 nm RMSD (as shown in Figure 4.9). From these results it is evident that GTP and hit 

molecules possess better binding and acquire stable interactions at the binding pocket of NS5 

RdRp throughout the 50 ns of MD simulations. 



173 
 

 

 

Figure 4.9: RMSD plots of Zika virus NS5 RdRp apo and bound with GTP, screened hit 

molecules. 



174 
 

From the RMSF plots it was identified that the Cα-backbone atoms Figure 4.10 for majority of 

the protein amino acid residues have lower fluctuations (< 0.2 nm), and only the residues that form 

a loop display higher fluctuations and reaches until 0.5 nm. The amino acid residues in Zika virus 

NS5 RdRp protein from Gln315-Leu323, is the loop residues, Thr348-Gln352 in helices and 

Trp748-Thr753 amino acids adjacent to the priming loop show significant fluctuations during MD 

simulations in the apo Zika virus NS5 RdRp, and when complexed with hit molecules. The 

residues Glu465-Phe487 present in loop-β-sheet-helix shows fluctuations in all complexes. By the 

comparison of the RMSF plots from apo, GTP and hit molecules complexed protein, it was 

observed that the complexed protein showed greater stability compared with apo Zika virus NS5 

RdRp protein.  

 

Figure 4.10: RMSF plot of Zika virus NS5 RdRp apo, bound with GTP and screened hit 

molecules. 
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4.5.3.5 Hydrogen bonding interactions 

  For the majority of receptor-ligand complexes, the formation of hydrogen bonds represents 

one of the crucial interactions required to keep the ligand molecule firmly in the receptor binding 

cavity. The hydrogen bonding interpretation of the four hit molecule complexes was performed to 

investigate their hydrogen bonding network at the binding site based on MD simulations. Based 

on a comparison of the initial input and average structures of hit molecules when bound to Zika 

virus NS5 RdRp, it was revealed that ligands formed several nonbonding interactions with the 

binding pocket residues (Lys462, Arg473, Arg459, Asp540, Ser603, Arg742, Arg739 and 

Trp800). Apart from these interactions the characteristic hydrogen bonds with Lys462, Arg473, 

Arg459, Ser603, Arg739, Thr796 and Trp797 were retained in all complexes throughout MD 

simulations, indicating these interactions stabilized the complexes as shown in Figure 4.11.  
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Figure 4.11: Hydrogen bonding interactions of GTP and screened hits with Zika virus NS5 RdRp 

MD simulations. 

4.5.3.6 Binding free energy analysis 

The binding free energies of GTP and screened hit molecules in this work were estimated 

using MM-PBSA and indicated in Table 4.6. The contribution from electrostatic, van der Waals 

and polar solvation energies show compatibility with the reference (GTP) molecule. The binding 

energies were observed to be GTP (-204.66 kJ/mol), hit-2 (-96.41 kJ/mol), hit-3 (-95.01 kJ/mol) 

hit-5 (-88.91 kJ/mol) and hit-7 (-74.58 kJ/mol).  

Table 4.6: Binding energy of Zika virus NS5 RdRp bound with GTP and screened hit molecules. 

Compound 

Name 

van der Waals 

energy (kJ/mol) 

Electrostatic 

energy 

(kJ/mol) 

Polar solvation 

(kJ/mol) 

SASA 

(kJ/mol) 

∆G (kJ/mol) 

GTP -192.22+/0.700 -96.425+/- 0.00 102.156 +/- 0.00 -18.136+/- 0.00 -204.625+/0.719 

hit-2 -135.195+/0.849 -24.110+/1.012 107.495+/1.407 -15.59+/0.068 -96.41+/1.249 

hit-3 -155.663+/- 0.349 -6.390 +/- 0.17 83.511 +/- 0.55 -16.472+/- 0.03 -95.007 +/- 0.52  

hit-5 -144.68+/-0.55 -46.15+/-0.43 115.75+/-0.87 -13.81+/-0.05 -88.91+/-0.63 

hit-7 -158.16+/0.516 -38.36+/0.664 138.534+/0.724 -16.59+/0.050 -74.58+/0.561 

 

          In order to explain the importance of active site amino acid residues in binding the ligands, 

their contribution to the binding energy was measured. The contribution based on energy 

decomposition analysis of majorly participating residues in Zika virus NS5 RdRp to the 
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interactions of hit molecules are Arg459, Lys462, Arg473, Trp539, Asp540, Ser603, Gly604, 

Arg731, Arg739, Thr796 and Trp797. The energy contribution of GTP and screened hit 

compounds are shown in Table 4.7. GTP showed greater contribution to the amino acid residues 

in the binding pocket, compared to the other hit compounds. The screened hit molecule bound to 

NS5 RdRp showed high contribution from the residues Arg459, Lys462, Asp540 and Arg739 and 

the residues Trp539 and Gly604 show lower contribution. Figure 4.12 represents the contribution 

from binding cavity amino acid residues to the formation of a complex. The compounds discovered 

through the virtual screening have nearly the same and greater contributions in comparison with 

the GTP. By this analysis of binding energy calculations, it was suggested that hit molecules show 

good binding affinity with Zika virus NS5 RdRp.  

Table 4.7: Residue-wise contribution (kJ/mol) of Zika virus NS5 RdRp with GTP and screened 

hit molecules. 

Residues GTP  

  

hit-2  

 

hit-3 

 

hit-5 

 

hit-7 

 

Arg459 -67.44 -46.60 -9.07 -9.44 -62.77 

Lys462 -42.28 -18.96 -16.76 -22.26 -33.33 

Arg473 -18.77 -7.05 -11.99 -3.04 -4.84 

Trp539 -8.19 -6.40 -4.39 -2.98 -6.23 

Asp540 -62.15 -41.30 -19.15 -57.60 -14.35 

Ser603 -28.23 -5.94 -15.15 -19.76 -7.09 

Gly604 -9.24 -4.64 -0.31 -0.65 -3.07 

Arg731 -36.20 -18.97 -21.51 -19.76 -9.14 

Arg739 -78.04 -32.74 -69.87 -3.43 -56.07 

Thr796 -32.32 -26.94 -28.33 -21.50 -14.19 

Trp797 -26.18 -10.15 -19.02 -24.97 -18.31 
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Figure 4.12: Residue-wise contribution energy (kJ/mol) of Zika virus NS5 RdRp binding with 

GTP and screened hit molecules. 

4.5.4 Conclusions 

  CADD methods can be used successfully to accelerate the development of therapeutic 

agents for Zika virus disease. The pharmacophore-based virtual screening method combines 

modelling based on ligands and modelling based on structures. Compared to a straightforward 

ligand-based pharmacophore search, structure-based pharmacophore appears to be more effective 

at locating potent hits with structural variety. Four hit molecules (hit-2, hit-3, hit-5, and hit-7) that 

were bound to the Zika virus NS5 RdRp were found to be stable using MD simulations. Overall 

examination of these findings indicated that the design of new Zika virus inhibitors for the 

treatment of Zika infection was made possible by the structure-based pharmacophore modelling, 

which supplied the necessary information for understanding the crucial structural binding 

properties. 
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5.1 Introduction 

 

Acute respiratory illness caused by the SARS-CoV-2 was initially identified as the 

COVID-19 in Wuhan, China, in December 2019. Nearly 30K nucleotides from the SARS-CoV-2 

genome are translated into the overlapping pp1a and pp1b. Two proteases, 3C-like and papain-

like, are present in the pp1a polypeptide. Leu-Gln↓(Ser/Ala/Gly) is the particular recognition 

sequence motif for cleavage (↓) by the main protease. Because it cleaves polyproteins upon 

translation into the host cell cytosol, the protease enzyme is essential in viral protein growth and 

development for many viruses. Drug targets for viral proteases are common. Slowing the formation 

of mature viral particles can be slowed by inhibiting viral protease. To date, numerous antiviral 

drugs have been developed to combat viral infections by targeting proteases. Among the FDA 

approved drugs are the HIV-1 protease inhibitors (tipranavir, darunavir, amprenavir, lopinavir, 

saquinavir, atazanavir, indinavir, ritonavir, and nelfinavir) (Lv et al., 2015) and hepatitis C virus 

(HCV) NS3/4A protease inhibitors (boceprevir). As a result, developing antiviral drugs that inhibit 

the main protease of SARS-CoV-2 could have clinical applications. The main protease of 

coronaviruses is a potential drug target because it is responsible for its own maturation (Ziebuhr 

et al., 2000).  

The crystal structure of SARS-CoV-2 main protease (PDB id: 6LU7) is a homodimer. Each 

protomer contains three domains I, II and III (Zhang et al., 2020). The crystal structures of the 

protein binding with the peptide inhibitor N3 (Jin et al., 2020) and α-ketoamide inhibitor (6Y2G) 

(Zhang et al., 2020) shown in Figure 5.1A and B are reported. Another inhibitor GC376, a broad-

spectrum dipeptidyl inhibitor bound at the active site of main protease (7CB7) (Wang et al., 2020) 
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is also reported. So far, research on dengue viruses has shown that the molecules in the NCI 

Diversity Database have good inhibitory action (Abduraman et al., 2018). These positive outcomes 

led to the virtual screening of compounds from natural product datasets in the NCI database using 

docking at the main protease active site. Following this, estimates of their binding free energies to 

determine their binding affinity when complexed with SARS-CoV-2 main protease, molecular 

docking and MD simulations were used to examine the binding interactions of the screened 

compounds.

 

Figure 5.1 A) SARS-CoV-2 main protease binding with N3-inhibitor (PDB id: 6Y2G) 

                  B) SARS-CoV-2 main protease binding with α-ketoamide inhibitor (PDB id: 6LU7). 
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5.2 Materials and Methods 

5.2.1 Protein preparation 

The crystal structures of SARS-CoV-2 main protease complexed with inhibitor N3 (PDB 

id: 6LU7) (Jin et al., 2020) and α-ketoamide inhibitor (PDB id:6Y2G) (Zhang et al., 2020) 

deposited in PDB were used for this study.  The heteroatoms and water molecules were deleted 

from the protein crystal structures, hydrogen atoms were added in order to prepare the protein for 

screening the molecules and the 3-D structure coordinates were saved in .pdbqt format for virtual 

screening using PyRx server (Dallakyan & Olson, 2015).  

5.2.2 Ligand preparation 

The coordinates of N3 and α-ketoamide inhibitors were extracted from the crystal 

structures of main protease. Library of compounds from the NCI natural compounds set database 

(II, III, IV and V) (https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets) comprising 1,046 

molecules were downloaded in .sdf format. Hydrogen atoms were added at pH 7.0 and the 

coordinates of the compounds were saved in .pdbqt format.  

5.2.3 Virtual screening and molecular docking  

The docking-based virtual screening using PyRx software was performed as the initial step 

to identify potential main protease inhibitors. The 1,046 natural compounds were screened by 

docking into the active site at the α-ketoamide inhibitor binding location in the PDB id: 6Y2G. 

The compounds were ranked according to their binding mode and scoring analysis. The best 

molecules obtained from virtual screening were docked using AutoDock Vina (Trott & Olson, 

2010; Morris et al., 2009) that employs protein-ligand flexible docking using the Broyden-

https://wiki.nci.nih.gov/display/ncidtpdata/compound+sets
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Fletcher-Goldfarb-Shanno method. The protein structure with all the compounds was loaded and 

ten conformations were generated for each ligand molecule by AutoDock Vina, the grid box was 

centered at 30.71, 50.48, 4.10 Å in x, y, z coordinates, respectively, with a grid spacing; 0.492 Å, 

box size of 25 x 25 x 25 points and exhaustiveness was set to 10. Initially, the molecules were 

loaded; torsions were set and saved in .pdbqt format. The screened-in molecules were docked 

within a 5 Å cavity defined around the α-ketoamide binding pocket in the SARS-CoV-2 main 

protease. The best conformer selected based on binding affinity and the number of hydrogen 

bonding interactions between the docked pose of natural product and protein were manually 

visualized. The virtual screening and molecular docking methods were validated by redocking the 

crystal ligands N3 and α-ketoamide inhibitors into the receptor active site. 

5.2.4 Validation of molecular docking 

The top-ranked molecules from AutoDock Vina were further proceeded for another round 

of docking studies using CDOCKER (Gagnon et al., 2016) available in DS 3.5. A sphere of 5 Å 

radius was generated around α-ketoamide inhibitor to define the active site of protein. Ten docking 

poses were generated for each molecule in the protein active site. The binding conformations of 

the molecules in SARS-CoV-2 main protease were analyzed using “scoring ligand poses” 

implemented in receptor-ligand interactions protocol in DS 3.5. The scoring functions PLP1, PLP2 

and PMF (Gehlhaar et al., 1995; Parrill et al., 1999; Muegge et al., 1999; Muegge 2006) were used 

to assess the docking poses. The selection of docking pose was based on top scores and 

intermolecular interactions with SARS-CoV-2 main protease. The best hit molecules chosen from 

both AutoDock Vina and CDOCKER docking methods were subjected to study their drug-like 

properties. 
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5.2.5 Lipinski rules and ADME properties 

The drug-like properties of the best docked compounds were studied by analyzing the 

pharmacokinetics profile using the SwissADME server. This is a software tool to calculate 

molecular properties such as ADMET and physicochemical properties such as solubility, 

lipophilicity and pharmacokinetics. The Lipinski's rule of five (Lipinski et al., 1997; Lipinski et 

al., 2012; Lipinski, 2004) are an essential criterion to ensure a drug-like profile for orally 

administered drugs. The hit molecules that qualify the ADME properties were studied by MD 

simulations studies in complex with SARS-CoV-2 main protease. 

5.2.6 Molecular dynamics simulations 

MD simulations of the apo and SARS-CoV-2 main protease in complex with hit molecules 

was carried out using GROMACS-5.1.4 for 150 ns. These studies reveal the stability of protein-

ligand complexes during MD simulations. The Amber99sb force field (Hornak et al. 2006) was 

applied to the protein, force fields were assigned to the small molecules using ACPYPE script (Da 

Silva et al., 2012) with AM1-BCC charges in Antechamber (Wang et al., 2006). The molecular 

systems were immersed in a cubic box, SPC waters were added to the system, Na+ and Cl- ions 

were added to neutralize (Berendsen et al., 1981) the systems and periodic boundary conditions 

were applied. Energy minimization was carried out with a tolerance of 1000 kJ/mol/nm2. The 

systems were heated until 300 K for 100 ps; in the subsequent step, the system was equilibrated at 

1 atm and 300 K for 1000 ps until it reaches proper density. The temperature was maintained using 

a V-rescale thermostat (Bussi et al., 2007) and Parrinello–Rahman method was used to control the 

pressure (Parrinello & Rahman 1981). The long-range electrostatics were handled using the 

particle mesh Ewald method (Darden et al., 1993 and Essmann et al., 1995). The equilibration of 
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molecular systems was performed under NVT and NPT ensembles for 1000 ps. The Lennard Jones 

interactions and the real-space electrostatic interactions were truncated at 9 Å. Hydrogen bonds 

were constrained using the LINCS algorithm (Hess et al., 1997). The coordinates from production 

MD trajectories were generated and saved for every 2 ps. The final models in all the systems were 

obtained by averaging the snapshots from the trajectories generated by MD simulations after the 

structure stabilization was achieved. The RMSD of the Cα-atoms concerning their starting 

structures was calculated using gmx rms, and the RMSF were calculated using gmx rmsf 

commands in GROMACS. The xmgrace software was used to plot the data, UCSF Chimera 

(Pettersen et al., 2004) was used for structure superposition and PyMOL was used for cartoon 

image generation. For the sake of comparison; apo, N3 and α-ketoamide bound SARS-CoV-2 main 

protease were also studied by MD simulations. 

5.2.7 Binding free energies of protein-ligand complexes 

The protein-ligand binding affinities describe the extent of intermolecular recognition. The 

ligand binding free energies were calculated based on MM-PBSA approach (Kumari et al., 2014) 

using g_mmpbsa tools. 

The LIE (Almlöf et al., 2004 and Brandsdal et al., 2003) was computed as the mean of van der 

Waals (vdW) and coulomb (cou) interaction energy differences of the inhibitor with its 

neighboring atoms upon incorporation, that is, the individual ligand in the solvent (unbound state 

denoted as subscript u) and the inhibitor in the binding mode with SARS-CoV-2 main protease 

(bound state denoted as subscript b). The ligand binding free energies were calculated using gmx 

energy and gmx lie for the SARS-CoV-2 main protease-hit molecule complexes from the output 

trajectories of MD simulations.  
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5.2.8 Normal mode analysis and mechanical stiffness 

NMA can provide a quick and systematic investigation of protein dynamics. Elastic 

network model-based NMA was developed using dihedral angels as independent variables for all 

molecular systems using the software suite of programs in Prodynamics (Uyar et al., 2011; Atilgan 

et al., 2001). Mechanical stiffness plots of all molecular systems in response to all possible pulling 

directions were constructed by using ANM using the software suite of programs in Prodynamics 

(Eyal et al., 2015). 

5.2.9 Principal component analysis 

PCA was performed to study the overall motion of SARS-CoV-2 main protease in all the 

simulated systems using MODE-TASK (Ross et al., 2018). A 3N × 3N covariance matrix was 

created using Cartesian coordinates, followed by the construction of eigenvectors by 

diagonalization of the covariance matrix. The PCA was calculated from 0 to 150 ns MD 

simulations trajectories. 

5.3 Results and discussion 

The crystal structure of SARS-CoV-2 main protease has three domains: domain I (1-99 amino acid 

residues), domain II (100-182 residues) and domain III (199-307 residues). Domains I and II are 

each made up of a six-stranded β-barrel, with the substrate binding site located at the intersection 

of the two domains. The binding site is made up of subsites S1, S2, S3, S4, and S1', which are 
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represented in Figure 5.2 based on the position of the substrate (Jin, Zhenming, et al., 2020).

 

 Figure 5.2: Subsites of SARS-CoV-2 main protease N3 and α-ketoamide binding site. 

The domains I and II, which are linked to hinge region residues (182-198), assist in forming 

the S3 and S4 subsites. Based on the crystal structure of the α-ketoamide bound protein, the lactam 

ring at the P1 position of the inhibitor is in the S1 subsite formed by the side-chains of Phe140, 

Asn142, Glu166, His163 and His172. The lactam nitrogen at position P1 forms hydrogen bonds 

with the Phe140 main-chain carbonyl oxygen. The cyclopropyl methyl group at P2 is incorporated 

into the S2 subsite constituted by His41, Met49, Tyr54, Met165 and Asp187 side-chains. The 

inhibitors carbonyl oxygen close to the lactam ring forms a hydrogen bond with the His41 side-

chain. The amide nitrogen located between the lactam and cyclopropyl methyl groups forms 

hydrogen bonds with His164 main-chain carbonyl oxygen. The carbonyl oxygen on pyridone 

forms hydrogen bonds with the main-chain NH of Glu166. The inhibitors OH functional group on 

imine carbon forms hydrogen bonds with the main-chain NH of Ser144 and Cys145 in the S1' 

subsite. The N3 inhibitor covalently bonded with Cys145 and hydrogen bonded with Phe140, 
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Gly143, His164, Glu166 (S1 subsite), Gln189, and Thr190 (S4 subsite) (Jin, Z. et al., 2020). Both 

crystal structures are highly superimposable, with a low RMSD of 0.69 Å.  

5.3.1 Virtual screening and molecular docking 

The N3 and α-ketoamide inhibitors binding site was considered as the active site of SARS-

CoV-2 main protease. PyRx server based virtual screening of natural products (1,046 molecules) 

into the active site of main protease successfully screened 736 potential hit molecules. These 

screened-in molecules were docked into the SARS-CoV-2 main protease active site using 

AutoDock Vina. The N3 and α-ketoamide inhibitors docked into the protein active site with 

binding affinity -7.8 kcal/mol and -9.6 kcal/mol, respectively, and formed hydrogen bonding 

interactions similar to the crystal structure. Thirty natural product molecules were retrieved with 

AutoDock Vina score lower than -7.0 kcal/mol that also contribute hydrogen bonding interactions 

similar to the reference molecules. These 30 molecules were studied for another round of docking 

by CDOCKER using receptor ligand interaction protocols available in DS 3.5. The docking 

protocols validated by redocking the reference molecules N3 and α-ketoamide at the active site of 

SARS-CoV-2 main protease is shown in Figure 5.3. Eight best compounds Table 5.1 were 

selected based on intermolecular hydrogen bonding interactions with SARS-CoV-2 main protease 

active site and the highest docking scores from AutoDock Vina and CDOCKER.  
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Figure 5.3: Redocking of N3 and α-ketoamide at active site of SARS-CoV-2 main protease. 

 

Table 5.1. Docking scores of N3, α-ketoamide and screened molecules along with the interacting 

residues in the SARS-CoV-2 main protease binding site. 

S 

No 

Compound 

name 

AutoDock 

Vina 

score 

(kcal/mol) 

CDOCKER score Hydrogen 

bonding 

forming 

residues 

Active site residues 

-PLP1 -PLP2 -PMF 

 

 

1. 

 

 

N3 

 

 

-7.8 

 

 

119.02 

 

 

71.73 

 

 

44.22 

Phe140, 

Gly143, 

Cys145, 

His164, 

Glu166, 

Gln189 

Thr190 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164 

Met165, Glu166, 

Leu167, Pro168, 

Gln189, Thr190 

 

 

 

 

 

 

 

 

 

 

 

 

 Leu27, His41, Leu50, 

Phe140, Leu141, 
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2. α-ketoamide -9.6 78.98 38.17 46.39 His41, 

Phe140, 

Ser144, 

Cys145, 

His164, 

Glu166 

Asn142, Gly143, 

Ser144, Cys145, 

His163,His164 

Met165, Glu166, 

Leu167, Pro168, 

Gln189 

 

 

3. 

 

 

NSC36398 

 

 

-8.1 

 

 

95.76 

 

 

97.49 

 

 

18.22 

Phe140, 

Leu141, 

Ser144, 

Met165, 

Glu166, 

Gln189  

Leu27, His41, Leu50, 

Phe140, Leu141, 

Gly143, Ser144, 

Cys145, His163, 

His164 Met165, 

Glu166, Leu167, 

Pro168 and Gln189 

 

 

 

4. 

 

 

 

NSC281245 

 

 

 

-8.0 

 

 

 

109.47 

 

 

 

94.08 

 

 

 

54.88 

His41, Phe140 

Ser144, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Gly143, Ser144, 

Cys145, His163, 

His164 Met165, 

Glu166, Leu167, 

Pro168 and Gln189 

 

 

5. 

 

 

NSC11926 

 

 

-7.8 

 

 

 

86.04 

 

 

40.27 

 

 

41.69 

Phe140 

Gly143, 

Ser144, 

Cys145, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Asn142, 

Gly143, Ser144, 

Cys145, His163, 

His164 Met165, 

Glu166, Leu167, 

Pro168 and Gln189 

 

 

6. 

 

 

NSC44175 

 

 

-7.8 

 

 

98.62 

 

 

67.12 

 

 

42.11 

His41, 

Gly143, 

Cys145, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164, 

Met165, Glu166, 

Leu167, Pro168, 

Gln189 

 

 

7. 

 

 

NSC5113 

 

 

-7.6 

 

 

 

75.13 

 

 

61.32 

 

 

22.13 

Leu141, 

Gly143, 

Ser144, 

Cys145, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Gly143, Ser144, 

Cys145, His163, 

His164 Met165, 

Glu166, Leu167, 

Pro168, Gln189 

 

 

8. 

 

 

NSC107067 

 

 

-7.6 

 

 

102.59 

 

 

74.27 

 

 

10.25 

Leu141, 

Gly142, 

Ser144 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Gly143, Ser144, 

Cys145, His163, 
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His164 Met165, 

Glu166, Leu167, 

Pro168, Gln189 

 

 

9. 

 

 

NSC22842 

 

 

-7.5 

 

 

74.3 

 

 

70.76 

 

 

11.68 

Ser144, 

His163, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Gly143, Ser144, 

Cys145, His163, 

His164 Met165, 

Glu166, Leu167, 

Pro168, Gln189 

 

 

10. 

 

 

NSC94600 

 

 

-7.3 

 

 

78.97 

 

 

62.31 

 

 

8.2 

Ser144, 

Asn142, 

Glu166 

Leu27, His41, Leu50, 

Phe140, Leu141, 

Asn142, Gly143, 

Ser144, Cys145, 

His163, His164, 

Met165, Glu166, 

Leu167, Pro168, 

Gln189 

 

5.3.2 Drug-like properties 

The eight molecules selected from both docking methods were assessed for Lipinski's rule 

of five and ADME properties. The results shown in Table 5.2 reveal that the selected molecules 

were within the acceptable range of synthetic accessibility (score less than 5.93), TPSA was 

between 20 and 140 Å, lipophilicity; expressed as cLogP was less than 4.4, and water solubility 

expressed as Log S shows that most molecules are soluble or moderately soluble in water. The 

skin permeation possibility expressed as Log Kp was also reasonable, indicating the possibility of 

skin permeation. The ADME properties also lie within the range of acceptable values. Based on 

these results, all the eight hit molecules were selected for in silico validation using MD simulations.  
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Table 5.2. Drug-like properties of reference and screened NCI natural compounds. 

S. No Compound TPSA Å2 LogPo/w Log Kp 

(cm/s) 

Synthetic 

accessibility 

1 N3 193.39 2.48 -8.40 6.79 

2 α-ketoamide 172.80 1.72 -8.15 5.54 

3  NSC5113 100.13 4.40 -4.90 4.23 

4 NSC107067 124.54 2.55 -5.28 5.93 

5 NSC11926 110.81 2.30 -5.85 2.63 

6 NSC22842 83.81 2.46 -5.98 3.16 

7 NSC36398 127.45 0.52 -5.79 3.52 

8 NSC44175 80.92 3.16 -5.43 2.21 

9 NSC281245 72.83 3.78 -5.94 5.42 

10 NSC94600 88.14 2.71 -5.86 3.41 

Standard values for reference (Ertl P et al., 2000; Daina et al., 2014; Daina et al., 2017; Potts et 

al., 1992) TPSA = 0 to 140 Å2, Log Po/w  = -4.0 to 5.6, Log Kp= -6.1 to -0.19 cm/s, Synthetic 

accessibility scale = 1 to 10 

5.3.3 Molecular dynamics simulations 

Classical MD simulations of all the selected molecular systems; apo SARS-CoV-2 main 

protease, complexes with inhibitors N3, α-ketoamide and the screened-in molecules was 

performed using GROMACS 5.1.4 for 150 ns. Out of eight screened-in hit molecules, four 

molecules (NSC36398, NSC281245, NSC44175 and NSC11926) showed stability at the active 

site of SARS-CoV-2 main protease as shown in Figure 5.4. The covalent bond between the N3 

inhibitor and active site residue Cys145 was not observed during the MD simulations because the 

Amber99sb force filed cannot account for a covalent bond formation.  
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Figure 5.4: Location of the stabilized hit molecules in the SARS-CoV-2 main protease active site 

throughout MD simulations. 

Studies on natural compounds-like bioactive molecules are reported as inhibitors of SARS-

CoV-2 drug targets. For example, assafoetidnol A, conferol, farnesiferol B, sesamin, sesaminol, 

sesamolin show potential activity in targeting main protease, spike protein, and human ACE-2 

receptors (Natesh, Jagadish, et al. 2021). Plant based natural compounds such as apigenin, 

coriandrin, curcumin, glabridin and oleanolic acid (Sampangi-Ramaiah et al., 2020, Verma et al., 

2020) have been reported as main protease inhibitors, and some of the spice molecules (piperine, 

capsaicin, gingerol and terpinen-4-ol) (Rout et al., 2020) have been shown to bind spike protein 

and main protease. All these studies describe those natural compounds showing good inhibitory 

activity on SARS-CoV-2 proteins. The inhibition of these target proteins may lead to either 
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attenuation of viral replication or reduce the infectivity of this virus. In this work it was observed 

that the screened molecules from natural compounds NCI database show good binding affinity and 

nonbonding interactions with SARS-CoV-2 main protease. The results demonstrated that protein 

attains stability when it binds with screened-in hit molecules and maintain the hydrogen bonding 

interactions with important amino acid residues compared with the reference molecules (N3 and 

α-ketoamide). The amino acid Cys145 shows covalent interactions with reference molecules, 

which also maintains distance with screened-in hit molecules throughout the MD simulations. 

Cys145 interaction is most significant in inhibition of the drug inside the active site of SARS-

CoV-2 main protease. The RMSD plots in Figure 5.5A revealed that the structures attained 

stability within the first 10 ns of MD simulations. The main protease when complexed with 

NSC36398 showed greater RMSD (~ 0.3 nm) among all the systems studied. The N3, α-

ketoamide, NSC44175, NSC281245 bound main protease displayed lower RMSD (~ 0.22 nm) 

indicating greater structural stability of these four complexes. The screened-in hit molecules 

NSC11926, NSC281245 and NSC44175 exhibit lower RMSD (lower than 0.1 nm) whereas the 

reference molecules N3 and α-ketoamide showed relatively higher RMSD as shown in Figure 

5.5B. The RMSF plots analyzed the residual fluctuations of protein during MD simulations. Higher 

fluctuations are observed in the regions; Asp153-Val157 and Asn221-Thr225 that are away from 

the active site and dimer interface of the SARS-CoV-2 main protease. The region, Leu50-Arg60 

that contributes to the S2 subsite undergoes fluctuations up to 0.25 nm, the region Glu270-Gly283 

located at the intersubunit interface shows fluctuations between 0.2 to 0.3 nm in all the molecular 

systems studied. The residues located in the region Cys117-Pro122 show greater fluctuations in 

N3 and α-ketoamide complexed proteins, Ser139-Cys145 (S1’ subsite) region also shows higher 
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fluctuations in the N3 binding protein. These regions of fluctuations in the apo and complexed 

SARS-CoV-2 main protease are shown in the RMSF plots, Figure 5.5C.  

 

 

Figure 5.5: A) RMSD of apo SARS-CoV-2 main protease and when complexed with N3, α-

ketoamide, NSC36398, NSC281245, NSC44175 and NSC11926. B) RMSD of N3, α-ketoamide, 

NSC36398, NSC281245, NSC44175 and NSC11926. C) RMSF plot of SARS-CoV-2 main 

protease apo, and when complexed with N3, α-ketoamide and screened-in molecules. 

The Rg provides information about the compactness of protein throughout the MD 

simulations. It was observed that the apo and NSC281245 complexed SARS-CoV-2 main protease 

C 
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have a relatively higher Rg among all the systems studied. The stability of reference and screened 

molecules in the protein active site was analysed by comparing the initial and average structures, 

different types of nonbonding interactions were measured within 5 Å around the ligand. The 

intermolecular interactions in the structures between the protein-reference and screened-in 

molecules before and after MD simulations showed that the N3-inhibitor maintains interactions 

with Gly143, Ser144, Cys145, Glu166, Glu189, Gln192; and α-ketoamide also has interactions 

with Leu141, Ser144, Glu166, His164 and Gln189 throughout MD simulations. The protein 

complexed with NSC36398 made hydrogen bonding interactions with Leu141, Ser144, His163, 

Glu166, Arg188, and Gln189; NSC281245 with Ser46, Ser144, Cys145, and Glu166; NSC44175 

with Gly143, Cys145, and Glu166 and NSC281245 with Ser144, Cys145, and Glu166 are retained 

during the MD simulations. The hydrogen bonding interactions of all molecular systems 

throughout MD simulations are shown in Figure 5.6 
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Figure 5.6: Hydrogen bonding interaction plot of SARS-CoV-2 main protease with reference and 

screened-in hit molecules.   

5.3.4 Normal mode and mechanical stiffness analysis 

The NMA is a fast and simple method to calculate protein flexibility (Alexandrov et al., 

2005) involving atomic fluctuations. It reveals the structural variations and mobility in protein 

which are a collection of micro-ensemble states fluctuating about thermodynamically stable states. 

The RMSF plots revealed certain flexible regions in SARS-CoV-2 main protease during the MD 

simulations. To further confirm this observation, the NMA for all molecular systems were 

performed. Ten normal modes were obtained for each system from MD simulations trajectories, 

the first mode was selected and the structural variations were compared with apo structure of main 

protease. The regions that displayed higher RMSF (Leu50-Arg60, Asn221-Thr225, Glu240-

Asp245 and Glu270-Gly283), also display normal modes with higher mobility in the presence of 

screened molecules as shown in Figure 5.7.  
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Figure 5.7: Mobility plot of NMAs in SARS-CoV-2 main protease apo and binding with N3, α-

ketoamide and screened-in hit molecules.  

This study explains the conformational changes in apo and ligand bound complexes of 

main protease and indicate relatively higher flexibility in domain III. The mechanical stiffness 

plots are useful to identify the anisotropic response of the protein structure to external 

perturbations, and the determination of weak and strong pairs of interactions that depend on the 

direction of the external force (Eyal & Bahar, 2008). Lower mechanical stiffness is indicative of 

the weak regions and higher mechanical stiffness is indicative of strong regions. In all the 

molecular systems studied, structural deformations were noted when compared with apo protein. 

From these plots, it was observed that the regions (Leu50-Arg60, Asn221-Thr225, Glu240-Asp245 

and Glu270-Gly283) exhibit lower effective stiffness in all molecular systems. In the mean plots 

of mechanical stiffness, the effective spring constant value for fluctuating regions of residues was 

greater than 8 k (a.u) and was larger than 12 k (a.u) for the stable regions in proteins. These values 

indicated that the elastic nature of regions Leu50-Arg60, Asn221-Thr225, Glu240-Asp245 and 

Glu270-Gly283 is higher in the all molecular systems throughout MD simulations. From the 

results of mechanical stiffness and NMA it was proposed that the regions of residues Leu50-Arg60, 

Asn221-Thr225, Glu240-Asp245 and Glu270-Gly283 in the protein exhibit mechanically weak 

behavior. These large deviations of conformational changes indicated the elastic nature of protein 

in all systems studied. 

5.3.5 Principal component analysis 

PCA deciphers the conformational changes in a protein as a function of time from the MD 

simulations trajectories. The PCA scatter plots of all molecular systems studied is shown in Figure 

5.8. The conformational changes of the SARS-CoV-2 main protease in apo form, N3, α-ketoamide 
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and natural products bound molecular systems were monitored. The Cα-atoms distribution is 

greater in NSC36398 bound molecular system which indicates that greater conformational changes 

of protein are observed. This demonstrated that the conformational distributions of main protease 

bound with NSC36398 was remarkably different from other molecular systems. The frequencies 

of PCA scatter plots were quantified and the highest-frequency is observed in NSC36398 bound 

main protease. These results indicated that SARS-CoV-2 main protease bound with NSC36398 

displayed higher protein conformational changes compared to other molecular systems. 
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Figure 5.8. PCA scatterplots of SARS-CoV-2 main protease apo (A), complex with N3 (B), α-

ketoamide (C), NSC36398 (D), NSC281245 (E), NSC44175 (F) and NSC11926 (G). 

5.3.6 Binding free energy and residue-wise contribution analysis 

The binding free energies of the reference and screened natural products calculated using 

MM-PBSA and LIE methods are shown in Table 5.3. The contributions from van der Waals, 

electrostatic and polar solvation energies for MM-PBSA binding free energies show compatibility 

with each other and reference molecules already reported. The binding free energies for N3 and α-

ketoamide inhibitors in complex with SARS-CoV-2 main protease were -150.06 kJ/mol and -90.11 
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kJ/mol, respectively. The binding energies observed from AutoDock Vina and the MM-PBSA 

scores observed in this work are in correspondence with previous reports (Keretsu et al., 2020). 

The binding free energies for the natural products selected along with reference were NSC281245 

(-133.79 kJ/mol), NSC11926 (-93.22 kJ/mol), NSC44175 (-81.97 kJ/mol) and NSC36398 (-70.75 

kJ/mol) as shown in Figure 5.9. 

 

Figure 5.9: Binding free energy plot of SARS-CoV-2 main protease with screened-in hit 

molecules. 

The binding site residues Leu27, His41, Gly143, Ser144, Cys145, His164, Met165 and 

Glu166 contribute to the highest binding free energies in all the complexes studied. Pro168 

contributes to binding free energy in both the reference molecules as shown in Figure 5.10. The 

LIE values show that the binding free energies of reference and screened-in hit molecules with 
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SARS-CoV-2 main protease N3 shows (-140.69 kJ/mol), α-ketoamide (-143.78 kJ/mol), 

NSC281245 (-117.63 kJ/mol), NSC36398 (-83.71 kJ/mol), NSC11926 (-78.65 kJ/mol), and 

NSC44175 (-73.82 kJ/mol). 

Table 5.3: Comparison of docking scores and binding free energy (MM-PBSA and LIE) of 

reference and screened-in molecules binds with SARS-CoV-2 main protease. 

S. No Name of the 

compound 

AutoDock 

Vina 

score 

(kcal/mol) 

CDOCKER score ∆LIE 

(kJ/mol) 

∆G(MM-PBSA) 

(kJ/mol) 

   -PLP -PLP2 -PMF04   

1. N3 -7.8  119.02 71.73 44.22 -140.64+/0.01 -151.04 +/- 0.86 

2. α-ketoamide -9.6  78.98 38.17 46.39 -143.76+/0.02 -90.11 +/- 0.55 

4. NSC281245 -8.0 109.47 94.08 54.88 -117.627+/0.01 -133.79 +/- 0.55 

5. NSC11926 -7.8 86.04 40.27 41.69 -78.65+/0.01 -93.28 +/- 0.47 

3. NSC36398 -8.1 95.76 97.49 18.22 -83.71+/0.01 -70.75 +/- 0.39 

6. NSC44175 -7.8 98.62 67.12 42.11 -73.82+/0.00 -81.97 +/- 0.49 
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Figure 5.10: Residual contribution (kJ/mol) of SARS-CoV-2 main protease with reference and 

screened hit molecules. 
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5.4 Conclusions 

CADD methodologies can be used effectively to speed-up the process of developing 

therapeutic agents for the treatment of COVID-19 disease. In this study, the docking based virtual 

screening of NCI diversity set of natural compounds were used to identify the potential hits for 

SARS-CoV-2 main protease. Molecular docking and MD simulations were carried out to study 

the binding interactions between protein and ligand molecules. Binding free energies were 

calculated to identify the potential hit molecules for SARS-CoV-2 main protease. Four compounds 

that showed good binding affinity and stability in the protein active site throughout 150 ns MD 

simulations were identified in this study. The amino acid residues Cys145, Met165 and Glu166 

have high contribution to the binding free energies of all the molecules studied. In all molecular 

systems studied, certain regions in SARS-CoV-2 main protease domain III showed greater 

flexibility and NSC36398 bound protein displayed higher protein conformational changes 

revealing the molecular mechanisms of protein-NCI natural products interactions. All natural 

compounds studied also displayed drug-like properties indicating their suitability as probable 

inhibitors for SARS-CoV-2 main protease. 
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