Characterizing the functional role of testicular proteins in fertility and epididymal proteins in oncogenesis

Thesis submitted to the University of Hyderabad for the award of Doctor of Philosophy in the Department of Animal Biology

 $\mathbf{B}\mathbf{y}$

Aisha Jamil

(Reg. No. 15LAPH17)

Department of Animal Biology
School of Life Sciences
University of Hyderabad
Hyderabad - 500 046
Telangana, India

December-2022

Department of Animal Biology School of Life Sciences

University of Hyderabad

Gachibowli, Hyderabad - 500046, Telangana, India

CERTIFICATE

This is to certify that this thesis entitled "Characterizing the functional role of testicular proteins in fertility and epididymal proteins in oncogenesis" is a record of bonafide work done by Ms. Aisha Jamil, a research scholar for Ph.D. programme in the Department of Animal Biology, School of Life Sciences, University of Hyderabad under my guidance and supervision. This thesis is free from plagiarism and has not been submitted in part or in full to this or any other University or institution for the award of any degree or diploma. Parts of the thesis have been:

A. Published in the following journal:

Aisha, J., & Yenugu, S. (2022). Characterization of SPINK2, SPACA7 and PDCL2: Effect of immunization on fecundity, sperm function and testicular transcriptome. *Reproductive Biology*, 23(1), 100711. doi:10.1016/j.repbio.2022.100711

B. Presented in the following conferences:

- Aisha Jamil and Suresh Yenugu, Knockdown of Sperm associated antigen 11 A (Spag11a) enhances the susceptibility of epididymis and prostate to chemically induced carcinogenesis.
 Oral presentation at International Conference on Reproductive Biology, Comparative Endocrinology & Development, 14th-16th September, 2022, CSIR-CCMB, Hyderabad.
- Aisha Jamil and Suresh Yenugu, Effect of immunization against SPINK2, SPACA7 and PDCL2 on fertility and testes transcriptome analysis in male rats. Presented poster at International Conference on

Reproductive Healthcare & 32^{nd} Annual Meeting of the Indian Society for the Study of Reproduction and Fertility, 11^{th} - 13^{th} February, 2022.

Further, the student has passed the following courses towards the fulfilment of the coursework requirement for Ph.D.

Course Code	Name	Credits	Pass/Fail
AS 801	Analytical Techniques	4	Pass
AS 802	Research Ethics, Data Analysis and Biostatistics	3	Pass
AS 803	Lab Work and Seminar	5	Pass

Prof. Suresh Yenugu

Supervisor
Dr. SURESH YENUGU
Professor
Department of Animal Biology
School of Life Sciences
University of Hyderabad
Hyderabad-500046. (TS), INDIA

K. Sommindsom

Head

Department of Animal Biology

अध्यक्ष / HEAD जंतु जैविकी विभाग Department of Animal Biology

School of Life Sciences

DEAN School of Life Sciences University of Hyderabad Hyderabad-500 046.

University of Hyderabad

(A Central University established by an act of parliament)
School of Life Sciences
Department of Department of Animal Biology
University of Hyderabad - 500 046, Telangana, India

DECLARATION

I, Aisha Jamil, hereby declare that this thesis entitled "Characterizing the functional role of testicular proteins in fertility and epididymal proteins in oncogenesis" submitted by me under the guidance and supervision of Prof. Suresh Yenugu is an original and independent research work. I also declare that it has not been submitted previously in part or in full to this University or any other University or Institution for the award of any degree or diploma.

Prof. Suresh Yenugu

(Supervisor)

Dr. SURESH YENUGU
Professor
Department of Animal Biology
School of Life Sciences
University of Hyderabad
Hyderabad-500046. (TS), INDIA

Aisha Jamil

(Reg.No.15LAPH17)

Department of Animal Biology School of Life Sciences

University of Hyderabad

Gachibowli, Hyderabad - 500046, Telangana, India

Plagiarism Free-Certificate

This is to certify that the similarity index of this thesis as analysed by the Library of University of Hyderabad is 36 %. Out of this, 26 % similarity has been identified from the candidate, Ms. Aisha Jamil own publication;

26 % from the publication: Aisha, J., & Yenugu, S. (2022). Characterization of SPINK2, SPACA7 and PDCL2: Effect of immunization on fecundity, sperm function and testicular transcriptome. *Reproductive Biology*, 23(1), 100711. doi:10.1016/j.repbio.2022.100711

Only 10 % similarity was identified from external sources in the present thesis. Hence, the present thesis is considered as plagiarism free.

Prof. Suresh Yenugu

Supervisor Dr. SURESH YENUGU

Professor
Department of Animal Biology
School of Life Sciences
University of Hyderabad
Hyderabad-500046. (TS), INDIA

Acknowledgements

I would like to extend my sincere gratitude to Prof. Suresh Yenugu, my valued supervisor and instructor. It was a great delight to work with him on my PhD because of his invaluable advice and support from the beginning to the end. I am extremely indebted to him for his constant guidance and support during my difficult times My sincere gratitude to him in particular for his unceasing support and cooperation in helping me finish my study.

I am grateful to my doctoral committee members Prof. Kota Arun Kumar and Prof. Krishnaveni Mishra for their valuable suggestions, support and encouragement.

I sincerely acknowledge the Head, Prof. Srinivas Kurukuti, Department of Animal Biology, and former Heads Prof. Anita Jagota, Prof. Jagan Pongubala and Prof. B. Senthil Kumaran.

I am extremely thankful to present Dean, Prof. N. Siva Kumar, School of Life Sciences, and former Deans Prof. Dayananda Siddavattam, Prof. Ramaiah, Prof. Pallu Reddanna, and Prof. A.S. Raghavendra.

I thank the entire faculty in the school of life sciences.

I express my sincere thanks to Mr Sreedhar and Dr Mahesh Jerald CCMB, Hyderabad for their help in histopathology analysis.

I thank DBT (JRF and SRF) for providing financial assistance to carry out this work. UGC-SAP, UPE, DST-FIST and DBT-CREBB and the University of Hyderabad are accredited for providing necessary facilities in the school.

Financial assistance to supervisor's laboratory from DST, DBT, CSIR, ICMR and UGC is greatly acknowledged.

I am extremely thankful to my colleagues Dr. Anand, Dr. Sangeeta, Dr. Suresh Babu Munnipalli, M. Maunika and Priyanka Patra for their help and support. I am also thankful to all my project student for help.

My special thanks to my friends for the beautiful memories I shared with them. I am eternally indebted and thankful to my friends Anita and Anju for their help and support in my difficult times. I am extremely lucky to have you people in my life.

I am extremely thankful to my wonderful juniors of the life sciences for their help.

I thank laboratory assistant Mr. Narasimha and non-teaching staff of the department (Mr.Ankineedu, Mr. Gopi, Mr. Jagan, Mr. Nikhil and Mr. Srinivas) for their prompt and speedy administrative service whenever required.

I owe my gratitude towards all my teachers.

I am grateful to the Almighty for providing me the perseverance and patience to accomplish my PhD.

Above all, I want to express my gratitude to my parents and sisters for their unwavering love, support, patience, and inspiration. I dedicate this thesis to my parents.

Table of contents

		Page No.
	Abbreviations	1
	General Introduction	2-16
	References	17-22
Chapter 1		23-62
	Introduction	24-25
	Methods	26-29
	Results	30-54
	Discussion	55-57
	References	58-62
Chapter 2		63-107
	Introduction	64-67
	Methods	68-71
	Results	72-88
	Discussion	89-93
	References	94-107
	Publications	108-109
	Plagiarism report	110-113

Abbreviations

BM: Basal membrane

BSA : Bovine serum albumin

BTB : Blood-testis barrier

cDNA : Complementary DNA

CRISP : Cysteine rich secretory protein

DAPI : 4,6-diamidino-2-phenylindole

DEN : Diethyl nitrosamine

DEPC : Diethyl pyrocarbonate

DNA : Deoxyribonucleic Acid

GAPDH : Glyceraldehyde 3-phosphate dehydrogenase

HE2: Human epididymal protein2

HRP : Horseradish peroxide

Ig-G: Immunoglobulin G

IPTG : Isopropyl β-D-1-thiogalactopyranoside

LB: Luria broth

MRE : Mean residual ellipticity

OPD : O-Phenylene diamine

PBS : Phosphate buffer saline

PBS-T : Phosphate buffer saline with tween

PDCL2 : Phosducin like 2

ppm: Parts per million

RNA: Ribonucleic acid

rpm : Revolutions per minute

RT-PCR : Reverse Transcription-Polymerase chain reaction

SNP : Single nucleotide polymorphism

SPACA7 : Sperm acrosome associated 7

SPAG11A : Sperm associated antigen 11a

SPINK2 : Serine protease inhibitor kazal type 2

GENERAL INTRODUCTION

Male reproductive system

The male reproductive system consists of the gonads i.e. a pair of testes and other ductal structures, namely, epididymides, vasa deferentia, seminal vesicles, ejaculatory ducts and the penis (**Figure 1**). The testis is protected inside a sac like structure called scrotum. Accessory glands of the male reproductive tract include the prostate and the bulbourethral (Cowper) glands. The function of the testis is the production of haploid gametes i.e. spermatozoa and the male steroid hormone, testosterone for the development of secondary sexual characters. Glands of this system release major part of seminal fluid, which provides various nutrients required for the gametes during their movement in the female reproductive tract to enable fertilization.

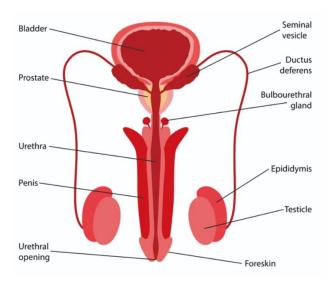
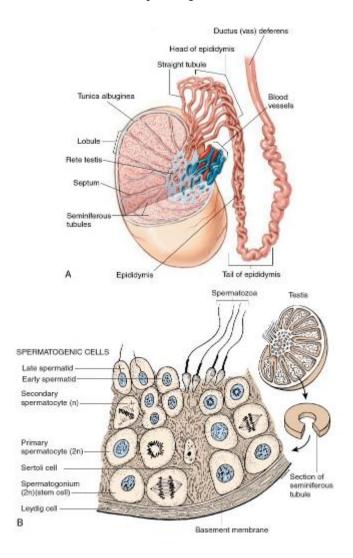


Figure 1. Schematic diagram of the male reproductive system (Adapted from: EMBIBE).

Testis

The testes produce the male gametes and the male hormones and thus are considered as both endocrine and exocrine. The testis hosts the machinery for all the enzymatic events necessary for the synthesis of male steroid hormones and the generation of gametes (Swerdloff, Wang et al. 1992). The testes are extremely effective "sperm factories," producing a huge quantity of these complex cells. The scrotum is a shared musculo-cutaneous sac in which the testes, which are bilateral gonads, are located. The parenchyma (seminiferous tubules) is incompletely divided into about 250 lobules by septa that extend internally from the capsule. The interstitial (Leydig) cells, which produce hormones, are situated within the connective tissue stroma (tunica propria), which divides into 1-4 seminiferous tubules in each lobule (**Figure 2**). The seminiferous epithelium, a complexly stratified epithelium resting upon a basal lamina, contains two cell populations, namely, germ (spermatogenic) cells and sertoli cells (**Figure 2**). Seminiferous ducts are the sites of spermatogenesis, while Leydig cells, which are interspersed between

the seminiferous ducts, are the sites of androgen synthesis. Cells of the seminiferous ducts (spermatogonial stem cells), undergo meiosis during spermatogenesis. This process includes a variety of distinct processes that includes reduction in the number of chromosomes, nuclear condensation and elimination of extra cytoplasm. The spermatogonia at the base of the tubules are the starting point for the germ cells that are present in the germinal epithelium. During meiosis, these spermatocytes differentiate into haploid round spermatids before differentiating into elongated spermatids that are ready to be released into the lumen. The differentiating spermatogonia receive structural and functional support from the Sertoli cells. To acquire sperm motility and fertilisation ability, the sperm cells develop distinct physical traits and structures that includes the formation of flagellum and acrosome. These intricate processes that dictate spermatogenesis and steroidogenesis are reflected by the tightly controlled gene expression process in the testis (Dufau, Tsai-Morris et al. 2001, Walker 2009). Some genes that are specific to the testis have been identified. Examples include FAM46D (Bettoni, Filho et al. 2009), Adam31 (Liu and Smith 2000), PDHA2 (Pinheiro, Faustino et al. 2010), TEX101 and SPATA19 (Ghafouri-Fard, Abbasi et al. 2010), which have been shown to be important in the spermatogenesis and steroidogenesis. One of the most intricately specialised cell types ever identified is the spermatozoan. The goal of this specialised cell is fertilization of the female gamete.


1. Sertoli cells

Also referred to as sustenticular cells, these are the columnar, non-replicating (post-mitotic), and supporting cells (sustenacular cells) that stretch from the basal lamina to the lumen. They contain large apical and lateral projections that encircle the surrounding germ cells and make contact with surrounding Sertoli cells. Highly modified zonula occludens form the basal and lumenal compartments of the epithelium contribute to these interactions. The spermatagonial stem cells and early primary spermatocytes are located in the basal compartment that is located beneath the occluding junctions. The spermatocytes and spermatids in the later stages are housed in the luminal compartment. The blood-testis barrier is also established by the occluding junctions of the Sertoli cells. This barrier serves for both physiological and immunological purposes and thereby causing the luminal fluid to differ from the interstitial fluid. Further, the barrier provides the gametes with a more nutritive environment and prevents an immune reaction to the antigenic haploid spermatids. The Sertoli cells perform the role of nursing the maturing spermatozoa by exchanging metabolic and waste products with them. Additionally, they phagocytoze the leftover bodies created at the final stage of spermatogenesis. In order to increase the concentration of testosterone, they finally produce androgen-binding protein (ABP) into the luminal compartment (Mescher 2018).

2. Germ cells

The four to eight layers of germ cells in the testis are primarily involved in producing spermatozoa. The milieu of germ cells consists of spermatozoa, spermatocytes and spermatids. Primary spermatocytes are produced when the spermatogonial stem cells undergo mitotic division, and these cells further

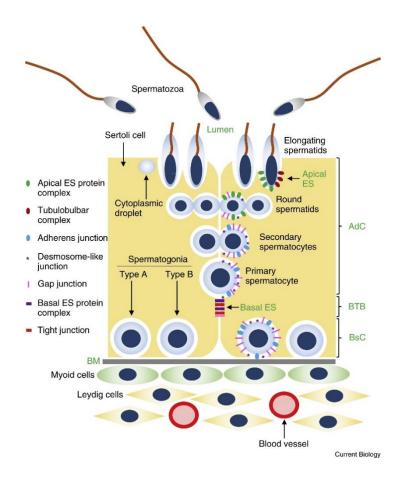
differentiate as they proceed apically through the seminiferous epithelium to produce secondary spermatocytes, spermatids, and eventually spermatozoa. Spermatogenesis, also known as the generation of spermatozoa, is the process of cell division through mitosis and meiosis as well as the final differentiation of spermatozoa, also known as spermiogenesis.

Figure 2. Schematic diagram of the testis. **A.** Sagittal and **B.** transverse section through a portion of seminiferous tubules (Adapted from The Massage connection ANATOMY AND PHYSIOLOGY).

SPERMATOGENESIS

The process through which spermatozoa are created is known as spermatogenesis. The process starts with the spermatogonium, a primitive germ cell with a diameter of just 12 µm and a location close to the basal lamina of the epithelium. Spermatogonia start mitotic division when they reach sexual maturity, creating successive generations of cells (**Figure 3**). Three steps are identified in spermatogenesis (Belousov 2011).

1. Spermatogonial phase:


Primary spermatocytes from stem cells are produced by mitosis in seminiferous tubules. The type Ap spermatogonia (daughter cells of type Ad) undergo recurrent mitotic divisions during the spermatogonial phase to produce many clones. Cytokinesis is incomplete during these divisions, and the daughter cells are all connected by a cytoplasmic bridge. The linked "cells" develop synchronously because of this cytoplasmic continuity. The associated type Ap spermatogonia develop into type B spermatogonia at the end of this phase.

2. Spermatocyte phase:

To form haploid spermatids, primary spermatocytes divide twice throughout the meiotic process. Each type B spermatatagonia undergoes mitotic division during the spermatocyte phase, resulting in two primary spermatocytes that move into the luminal compartment of the seminiferous tubule. These cells copy their DNA so that the chromatids are doubled (4N) and the amount of DNA is increased before going through meiosis I. (2d). Crossover can happen when meiosis I progresses, and the maternal and paternal chromosomes are randomly separated during metaphase. Two secondary spermatocytes (2N, 1d) are produced at the end of meiosis I. The quick entry of the secondary spermatocytes into meiosis II (S phase) without DNA synthesis results in the production of spermatids (1N, 0.5d).

3. Spermatid phase:

Spermatids develop into fully developed sperm cells (spermatozoa). Spermatids (immature gametes) transform into spermatozoa (mature gametes) while still being physically affixed to the Sertoli cells during the spermatid phase (spermiogenesis).

Figure 3. Spermatogenesis. Schematic representation of a cross-section of seminiferous tubule. AdC stands for adluminal compartment, ES for ectoplasmic specialisation, BsC for basal compartment, BM for basement membrane and BTB for blood-testis barrier (Nishimura and L'Hernault 2017).

SPERMIOGENESIS

The process of producing spermatozoa culminates in spermiogenesis. The spermatids become spermatozoa, cells that are highly specialised to transport male DNA to the ovum, during spermiogenesis. During this step, no cell division takes place. The intricate process of spermiogenesis involves the creation of the acrosome, nucleus condensation and elongation, the production of the flagellum, and the loss of most of the cytoplasm. The mature spermatozoon is the final product, and it is subsequently ejected into the lumen of the seminiferous tubule. Formation of Golgi, cap, acrosome and maturation are the 4 stages that occur in this process (Toshimori 2009).

1. Golgi phase

In this phase, the polarity of the spermatids is determined. A single, substantial acrosomal vacuole, which houses the acrosomal granules and is intricately coupled to the nuclear envelope at its core and to the proximal segment of the perinuclear theca at its periphery, is created from the trans-Golgi network's proacrosomal vesicles. The centrioles then move to the opposite end to create the posterior pole and start the construction of the flagellum.

2. Cap phase

In contrast to how the acrosomal vesicle (cap) progressively flattens and extends over the nucleus as spermatids mature, the Golgi apparatus travels distally toward the developing neck area. At this stage, round spermatids synthesize more than 200 different mRNA transcripts. The change from the cap phase to the elongation phase is the crucial step in acrosome biogenesis. Therefore, gene deletion (such as that of the GOPC and Herb genes) at this stage easily disrupts spermiogenesis. These mutants fail to fuse the Golgi-derived vesicles as the spermatids grow, and the acrosomal granules completely detach from the nucleus (Yao, Ito et al. 2002, Toshimori 2009, Yan 2009).

3. Acrosomal phase

The spermatid shifts its orientation such that flagellum protrudes into the lumen and the acrosome points toward the basal layer. The cytoplasm travels posteriorly, the nucleus flattens and lengthens, and the mitochondria are concentrated around the flagellum. The connecting element is formed by the centrioles migrating back to the nucleus (neck). The cytoplasm gets thinner, the acrosome slowly turns to face the plasma membrane, and manchettes begin to form from the region around the nuclear ring as the spermatids elongate. The components of the acrosome eventually compact into an electron-dense matrix as the acrosomal cap lengthens. The next checkpoint is the change from the elongation (acrosome) phase to the maturation phase. The deletion of the IgSF protein RA175 gene leads to the disruption of the early elongating spermatid stage of spermiogenesis and oligoteratozoospermia (Fujita, Kouroku et al. 2006, Toshimori, Maekawa et al. 2006).

4. Maturation phase

The acrosomal membrane is completely covered by the dense substance (acrosomal granule) in the acrosomal vesicles, which finally causes the acrosome to separate into the anterior and posterior acrosomes. During this period, basic molecules appear to flow and coalesce into the anterior and posterior acrosomes. Acrosomal matrix proteins show post-translational modifications in late spermatids, and they also show an unexpected rise in the synthesis of the acrosomal antigen MC41. Just prior to spermiation, the majority of the spermatids' cytoplasm and organelles are expelled in the cytoplasmic droplet, and the remaining spermatids are then released into the lumen as spermatozoa or sperm. The Sertoli cells eventually swallow the leftover bodies that spermatids discharge (Yoshinaga, Tanii et al. 2001).

SPERMATOZOA

In addition to delivering the paternal genome to the egg, mammalian spermatozoa have the capacity to stimulate the oocyte that has been halted at the metaphase of the second meiosis (MII). A mature spermatozoon is a highly differentiated haploid cell with a flagellum and a paddle-shaped head (tail). The sperm head is composed of an acrosome, a nucleus, and a little quantity of cytoplasm in the form of cytoplasmic layers. The paternal DNA is stored in the nucleus together with nuclear proteins called protamines. The mature sperm acrosome, a saccule that resembles a cap and includes hydrolyzing

enzymes and matrix proteins, covers the proximal portion of the sperm head. The cytoplasm thins out and forms confined gaps between the nucleus and the adjacent plasma membrane (Toshimori 2009).

The acrosomal area and the postacrosomal region (PAR) are the two main portions of mammalian sperm head. The anterior acrosome and the posterior acrosome are the two subdomains that make up the acrosome area. The acrosomal reaction involves the anterior acrosome. Gamete membrane fusion appears to be facilitated by the posterior acrosome. The neck area is formed by the PAR, which extends from the posterior acrosome end and the head's distal end's posterior ring (connecting piece). The posterior ring reveals a belt-like restricted zone of plasma membrane. It joins the underlying nuclear envelope through fusion. It is also assumed that the proximal portion of the PAR participates in egg activation (Toshimori 2009).

Axoneme, mitochondria, and cytoskeletal elements like fibrous sheaths (FSs) and outer dense fibres (ODFs) are all found in the tail. The tail is organised structurally into four main parts: the neck, middle portion (midpiece), main piece, and end piece. The neck area has a complicated structural makeup. The basal plate, a redundant nuclear envelope, neck mitochondria, and a connecting portion are its main parts (including the segmented columns attached to the ODFs, the centrosome, and the capitulum). The proximal centriole and several pericentriolar matrix proteins are found in centrosomes. When the sperm reaches the egg, they play a role in microtubule production, and during fertilisation, they morphologically change into the sperm aster. The proximal portion of the axoneme develops from the distal centriole (Toshimori 2009).

The nucleus flattens and condenses during the last stage of spermiogenesis as protamines, a type of nonhistone basic protein, replace the normal histones associated with nuclear DNA, nucleosomal structure is lost and the transcriptional activity in the spermatid is silenced (Eddy, Sauterer et al. 1993). At the same time, the remaining cytoplasm is also condensed into a cytoplasmic droplet. The testicular spermatozoa that are expelled from Sertoli cells are morphologically and genomically developed. The spermatozoa that enter the caput epididymidis are developmentally young; they lack the abilities to go forward and recognise the zona pellucida.

The ribosomes and endoplasmic reticulum (ER) of the sperm are almost completely missing when they are discharged into the lumen of the tubule. All of the components that sperm will need for ascending the female reproductive system must be supplied from the outside, for example, by the cells of the cauda epididymis, as they lack the ability to create proteins. The alkaline nature of sperm prevents them from reaching their maximum motility (hypermotility) until they reach the vagina, when the acidic pH of the vaginal secretions neutralises the alkaline character of the sperm. It takes 20 to 30 minutes for this progressive process. During this period, a clot made of fibrinogen from the seminal vesicles secures and safeguards the sperm. Fibrinolysin from the prostate breaks the clot just as the sperm start to become

hypermotile, enabling optimal sperm movement (Loveland and Schlatt 1997). About 75 days are needed for a spematogonium to produce mature sperm (JM, DillFJ et al. 1992).

FACTORS AFFECTING SPERM MATURATION

The environment that spermatozoa experience as they travel through the human epididymis is diverse in terms of the proteins they come into touch with. Sperm are exposed to proteins involved in membrane remodelling and enzyme activity in the proximal epididymis. To enable the absorption of GPI-anchored zona binding proteins P34H and CD52, the middle region of the sperm membrane may be altered by a distinct group of dominant proteins and enzymes. As sperm move farther away, their survival before ejaculation is aided by the action of lytic enzymes, proteins associated in zona binding and oocyte fusion, the major maturation antigen CD52, antimicrobial activity, and decapitation factors (Cooper 2002).

Epididymosomes

There is evidence that sperm cells pick up proteins devoid of a signal peptide during their transit through the epididymis, suggesting an unique secretion mechanism. In actuality, the P34H protein family, which is unique to the human epididymis, has been described. This glycosyl phosphatidylinositol (GPI) anchor-attached protein is found on the surface of sperms and is necessary for the zona pellucida to be recognised. The "prostasome-like particles" or "epididymosomes," which are epididymal membranous particles found in the lumen, are what anchor the P34h to the sperm surface. The maturation of the sperm cells' epididymis is directly influenced by epididymosomes (Saez, Frenette et al. 2003).

Prostasomes and modifications to post-ejaculatory sperm: At the time of ejaculation, the prostate secretes the "prostasomes," which are combined with the semen. It has been demonstrated that prostasomes contain a wide variety of proteins, some of which have enzymatic characteristics. Prostasomes have an immunosuppressive effect, improve sperm motility, and have an impact on the sperm capacitation process on the maturation of spermatozoa after the testis (Saez, Frenette et al. 2003). The presence of many complement inhibitory molecules, including CD55, CD46, and CD59 (protectin), which prevent the formation of the membrane assault complex, is what gives prostasomes their immunosuppressive properties. These compounds may serve to prevent spermatozoal phagocytosis by white blood cells in the female genital canal. Sperm motility is also influenced by prostasomes. Due to changes in the sperm milieu, they improve spermatozoa's progressive motility (Saez, Frenette et al. 2003). These vesicles include a calcium-dependent ATPase.

Acrosomal reaction and capacitation

Before fertilisation, a number of hydrolytic enzymes, including hyaluronidase, neuraminidase, acid phosphatase, and a protease with trypsin-like activity, are released from the acrosome, a cap-like structure covering the anterior region of the sperm nucleus. These enzymes are known to separate

corona radiata cells and break down the zona pellucida. At the same time, significant alterations happen in each sperm compartment (head and flagellum, membrane, cytosol, and cytoskeleton). Complex signal transduction mechanisms are started, proteins and membrane lipids are rearranged, and factors from seminal plasma and epididymal fluids are lost or redistributed. Acrosomal enzymes are released into the extracellular space when spermatozoa come into contact with an oocyte because the acrosome's outer membrane frequently fuses with the egg's plasma membrane. The acrosomal reaction, a crucial stage in fertilisation, is this process (Marsico, Pizzo et al. 1994, Wassarman 1999).

In mammals, sperm-egg interaction and mutual activation are mediated by the zona pellucida, the egg's glycoprotein coat. The spermatozoon connects to the zona pellucida while the plasma membrane is still intact via specialized receptors distributed throughout the anterior acrosomal area. When the sperm connects to the zona pellucida, an acrosome reaction occurs, allowing the sperm to penetrate the egg and fertilize it. The attachment of the sperm to the egg and occurrence of the acrosome response would only take place if the sperm had previously undergone capacitation in the female reproductive tract (Breitbart and Spungin 1997, Breitbart 2002, Breitbart, Cohen et al. 2005).

Proteome of the testis

It is well known that several different proteins are produced into the male reproductive tract's lumen. These secretions contain enzymes, protease inhibitors, antimicrobial peptides, enzymes, and host defence effector molecules (Hall et al., 2007). (Rang et al). Additionally, they produce proteins that are hypothesised to play a part in sperm maturation, protection, and production (Dacheux et al. 2003). Transcriptome analysis shows that 77% of all human proteins are expressed in the testis and many genes show an elevated expression in the testis compared to other tissue types. The majority of testicular proteins are involved in general metabolism function. 19 % of them are related to structural components and only 2 % are involved in immunity/defence function. 6% of testicular proteins are categorized as unclassified (Djureinovic, Fagerberg et al. 2014) (**Figure 4**). In the testis, a large number of genes are uncharacterized and functionally unknown. The proteins that show enhanced expression in the testes may have a role in spermatogenesis and fertility. Studying the uncharacterized protein with highly predicted expression may help in understanding the crucial role in testicular function.

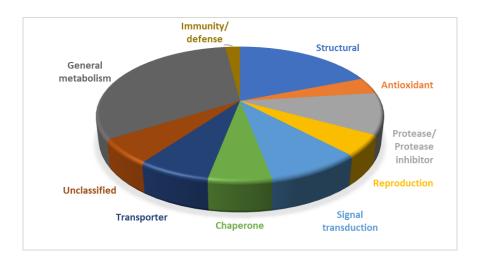


Figure 4. Functional classification of testicular proteome (Djureinovic, Fagerberg et al. 2014).

Epididymis

One of the auxiliary organs, the epididymis is a lengthy, convoluted ductal structure physically split into the caput (head), corpus (body), and cauda (tail) parts (Belleannee, Thimon et al. 2012). (**Figure 5**). Testicular spermatozoa are immotile and incapable of fertilisation (Cosentino and Cockett 1986). They go through capacitation/acrosome response in the female reproductive tract and epididymal maturation in the epididymis to become fertile (Sullivan and Mieusset 2016). The 2 to 6 day epididymal transit, during which sperm mature in the epididymis, can take place. A variety of maturation factors that are produced into the lumen are known to express themselves differently in each epididymal area. Secretory proteins are added to the spermatozoa's surface during transit to speed up maturation, motility acquisition, and fertilisation.

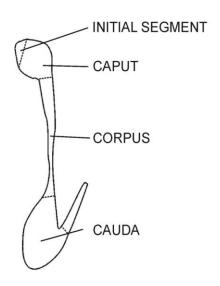
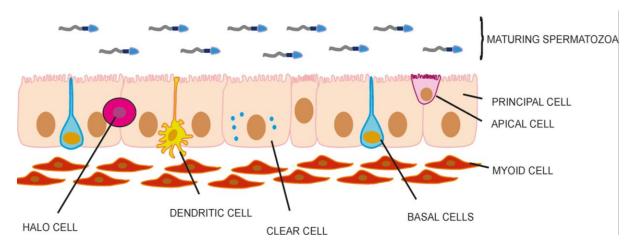



Figure 5. Schematic diagram of the rodent epididymis showing the different epididymal segments (Pinel, Mandon et al. 2019).

The ability of spermatozoa to undergo capacitation in the female reproductive system is similarly influenced by epididymal maturation (Gervasi and Visconti 2017). The epididymis' secretory functions are tightly controlled in a region-specific way (Moser, Weiner et al. 2002). There are various androgen-regulated genes that are unique to the epididymis (Hu, Zou et al. 2014). Thus, androgen is required for sperm maturation in the epididymis (Pujianto, Loanda et al. 2013). Although the caput and corpus are where the majority of sperm maturation takes place, the functionally mature sperm are stored in the cauda area (Yeung and Cooper 2002).

Six separate cell types with specialised physiological roles make up the epididymis. While apical and narrow cells are only found in the proximal region, the primary cells, basal cells, halo cells and clear cells are prevalent throughout the epididymis (**Figure 6**) (Hermo and Robaire 2002). Principal cells, one of the six main types of cells in the epididymis, make up 80% of the total number of 4 cells and are crucial for the production and secretion of epididymal proteins (Abe, Takano et al. 1983). Epithelial cells create a luminal microenvironment by establishing a protective barrier and transporting ions, solutes, proteins, nutrients, and water. The reabsorption of numerous substances from the epididymal fluid is carried out by the main cells (Breton, Nair et al. 2019). The reabsorption of various components from the epididymal fluid is carried out by the main cells (Hermo, Dworkin et al. 1988). The second most prevalent cell type is clear cells, which are found in the caput and cauda. The transparent cells are crucial to endocytosis (Hermo, Dworkin et al. 1988). The beginning segment has narrow cells and apical cells, however it is unknown what they do (Sun and Flickinger 1980, Adamali and Hermo 1996). Basal cells provide a protective role in maintaining the structural integrity of the lumen by being joined to the major cells (Adamali and Hermo 1996).

Figure 6. Schematic diagram of the epididymal epithelium showing the different cells types (Pinel, Mandon et al. 2019).

Epididymal proteome

The epididymal luminal milieu is composed of a variety of proteins, the majority of which are secretory and are added to the surface of spermatozoa to help in sperm maturation and innate immunity (Tollner, Bevins et al. 2012). The distribution of epididymal protein expression varies across the regions (Dacheux, Belleannee et al. 2009, Belleannee, Belghazi et al. 2011). Most region-specific genes are found in the caput area of the epididymis (Zhang, Liu et al. 2006, Dube, Chan et al. 2007, Thimon, Koukoui et al. 2007). Many of them that belong to various families have been discovered and characterised (Cornwall 2009, Caballero, Frenette et al. 2010, Bjorkgren and Sipila 2019), including CRISPs, defensins, SPAG11 family, Cathelicidins, Serine proteases, and protease inhibitors. They support a number of processes, including sperm maturation, sperm stability in the female reproductive system, serving as markers for different malignancies, and innate immunity. For instance, the human epididymis protein 4 (HE4) is a recognised marker for numerous cancer forms (Anastasi, Marchei et al. 2010, James, Carrell et al. 2020). Furthermore, sperm survival and protection are aided by epididymal proteins. Additionally, antioxidant, antibacterial, and antiviral properties of lactotransferrin are known (Jenssen and Hancock 2009).

Defensins

Antimicrobial peptides such as defensins are crucial components of innate immunity (Lehrer 2004). According to their secondary structure and disulphide bond pairing, the three defensin subtypes in humans are known: alpha-defensins (human neutrophil peptides), beta-defensins, and theta-defensins (Ganz 2003, Lehrer 2004, Selsted and Ouellette 2005). Small antimicrobial peptides known as defensins are mostly expressed in the epididymis and testis and are conserved across species (Patil, Cai et al. 2005, Oh, Lee et al. 2006). 52 mouse, 43 rat, and 39 human beta-defensin genes have been found (Patil, Cai et al. 2005). Defensins have antibacterial, antifungal, and antiviral properties that they use to combat several pathogens. Permeabilization of cell membranes and interference with fundamental metabolic processes are part of their mode of action (Selsted and Ouellette 2005). Both in vivo and in vitro evidence of their antibacterial action points to this protective effect (Garcia, Krause et al. 2001, Salzman, Ghosh et al. 2003, Yenugu, Hamil et al. 2003, Yenugu, Hamil et al. 2004, Yenugu, Hamil et al. 2004). Defensins play a role in motility, capacitation, sperm maturation, and male fertility in addition to their antibacterial and host defence functions (Zhou, Zhang et al. 2004, Yudin, Generao et al. 2005, Hall, Yenugu et al. 2007, Tollner, Venners et al. 2011). Male reproductive tracts express defensins (Yamaguchi, Nagase et al. 2002, Rodriguez-Jimenez, Krause et al. 2003, Semple, Rolfe et al. 2003, Patil, Cai et al. 2005), which aid in sperm maturation and capacitation (Yudin, Tollner et al. 2003, Zanich, Pascall et al. 2003, Zhou, Zhang et al. 2004). Seven different β-defensin (Defb) gene location and expression are investigated (Jelinsky, Turner et al. 2007, Guyonnet, Marot et al. 2009). On

chromosomes 8 and 20, the human Defb genes are grouped together (Yenugu, Hamil et al. 2006). Rodents have Defb genes, which are similar to human Defb genes (Froy, Hananel et al. 2005).

Sperm associated antigen 11 family members

The humans chromosome 8p23 harbours the *SPAG11* gene, often referred to as human epididymal protein 2 (*HE2*) and epididymal protein 2 (*EP2*) (Osterhoff, Kirchhoff et al. 1994). The *SPAG11A* gene, which has two promoters, was created as the result of the fusion of two primordial *Defb* genes. Two promoters enable alternative splicing, which results in the translation of more than 20 different protein isoforms (Frohlich, Po et al. 2000). Three distinct *Spag11* genes, *Spag11a* (also known as *Spag11e* or *Bin1b*), *Spag11c*, and *Spag11t*, are found on chromosome 16 in the rat and have been functionally described (Yenugu, Hamil et al. 2006). Rat SPAG11A protein is crucial for sperm maturation and innate defence against pathogens (Li, Chan et al. 2001, Zhou, Zhang et al. 2004). The six-cysteine motif signature found in -defensins is present in the proteins produced by the *Spag11c* and *Spag11a* genes (Yenugu, Hamil et al. 2006) and these proteins have strong antibacterial activity. Their method of action, which is similar to that of -defensins, involves membrane permeation and the suppression of macromolecular formation (Yenugu, Hamil et al. 2004).

Epididymis and cancer

The leading cause of death worldwide is cancer. This disease still poses a major hazard despite improvements in detection, diagnosis, and treatment. Men may have a higher chance of developing cancer because of abnormalities in the Y chromosome, which determines sex, which cause numerous male-specific genes to lose function (Cannon-Albright, Farnham et al. 2014). Male malignancies of the prostate, lung, colorectal, melanoma, and testicles are the most prevalent (Siegel, Miller et al. 2020).

Although most of a man's organs are susceptible to cancer, epididymal carcinoma is extremely uncommon (Yeung, Wang et al. 2012). Young men are more likely than older men to have testicular cancer (Manecksha and Fitzpatrick 2009), and older men are more likely to develop prostate cancer (Jones, Young et al. 1997, Ganem, Jhaveri et al. 1998, Odrzywolski and Mukhopadhyay 2010, Munoz, Wheler et al. 2015). Epididymal cancer is rare, accounting for up to 0.03% of all male cancer cases, however there have never been any reported cases of the epididymal malignancies (Yeung, Wang et al. 2012). Despite sharing a common embryonic beginning, the kidney is 100 times more likely than the epididymis to acquire cancer (Yeung, Wang et al. 2012). This increases the appeal of the physiology of the epididymis significantly.

Epididymal tumours are divided into two groups based on their pathological characteristics: adenomatoid and cystamatoid types (Jones, Young et al. 1997, Pan, Song et al. 1998, Almohaya, Almansori et al. 2021). Adenomatoids are uncommon benign mesothelial tumours that develop in the epididymal tail (Abdullah and Xing 2020). They only make up 0.03% of all reports, yet the majority

were benign. A benign cystic tumour of the gland called a cystadenoma is the most researched epididymal malignancy in humans (Toutziaris, Kampantais et al. 2013). There are no known cases of cancer cells spreading or invading the epididymis to cause secondary tumours. It's possible that the absence of tumorigenic stimuli or the presence of intrinsic neoplasia-inhibitory systems in the human epididymis prevent the development of cancer (Rizk, Scholes et al. 1990, Ganem, Jhaveri et al. 1998, Tilki, Kilic et al. 2008). The occurrence of epididymal 10 tumours is extremely rare, and nothing is known about it. The rarity of cancer is still a mystery. According to a theory, some epididymis-specific elements may be crucial in preventing the development of the tumour.

It is hypothesised that the epididymis's natural microenvironmental factors have a role in the absence of stemness in epithelial cells, strong antioxidative defences, active tumour suppression, and inactivation of oncogene products (Yeung, Wang et al. 2012). Strong immune surveillance in the epididymis keeps hyperplastic cells dormant. The rarity of cancer in this organ system is further influenced by the anti-angiogenic factors, existence of persistent tight junctions, ineffective immune escape, and misdirected pro-angiogenic factors (Mital, Hinton et al. 2011, Yeung, Wang et al. 2012). The threshold for tumour start is higher than it is for other organs due to the epididymal cells' reduced reactivity to tumor-causing stimuli (Yeung, Wang et al. 2012). Additionally, the epididymis possesses an immune-suppressive and anti-oxidative milieu that is required to keep large numbers of spermatozoa dormant and immunologically silent. Its role in sperm maturation and storage may directly contribute to the low incidence of cancer (Zhen, Li et al. 2009).

Role of defensins in cancer

The significance of -defensins in malignancies has grown in recent years (Droin, Hendra et al. 2009). Intriguingly, oral cancer cell lines and tumour tissues revealed that human -defensins are proto-oncogenes that contribute to the spread of the disease (Jin, Kawsar et al. 2010, DasGupta, Nweze et al. 2016, Xu, Zhang et al. 2016). A tumour 11 suppressor gene called human -defensin 1 (hBD-1) is also found on the short arm of chromosome 8 in the defensin cluster (Donald, Sun et al. 2003, Bullard, Gibson et al. 2008). Prostate malignancies and renal cell carcinomas both showed lack of hBD-1 expression (Sun, Arnold et al. 2006). However, it has been noted that hBD-2 is elevated in a number of malignancies, such as oesophageal (Shi, Jin et al. 2014), lung (Arimura, Ashitani et al. 2004, Shestakova, Zhuravel et al. 2008), cervical cancers (Markeeva, Lysovskiy et al. 2005), but downregulated in colon cancer (Gambichler, Skrygan et al. 2006, Semlali, Al Amri et al. 2015). In addition, it was discovered that cancer cell lines expressed more hBD3 than normal cells did (Shnitsar, Lisovskiy et al. 2004). Defensins destroy tumour cells through a mechanism involving DNA damage and membrane lysis (Barker and Reisfeld 1993, Selsted and Ouellette 2005, Mader and Hoskin 2006, McKeown, Lundy et al. 2006, Pazgier, Li et al. 2007). It has been determined that the human epididymal protein 4 (HE4) may serve as a biomarker for a variety of malignancies, renal fibrosis, and chronic

kidney disorders (Chen, Yang et al. 2017, Yuan and Li 2017, Mi and Zhang 2018, Mo and He 2018, Ferraro and Panteghini 2019, Li, Wang et al. 2019). Cancer cell gene expression, proliferation, invasion, and metastasis are all affected by the HE4 protein (Zhu, Guo et al. 2016, Zhu, Zhuang et al. 2016). These data revealed that β -defensins are essential for cell growth and carcinogenesis.

REFERENCES

- Abdullah and J. Xing (2020). "Adenomatoid tumor of epididymis-A case report." <u>Urol Case Rep</u> **28**: 101022.
- Abe, K., H. Takano and T. Ito (1983). "Ultrastructure of the mouse epididymal duct with special reference to the regional differences of the principal cells." <u>Arch Histol Jpn</u> **46**(1): 51-68.
- Adamali, H. I. and L. Hermo (1996). "Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis." <u>J Androl</u> **17**(3): 208-222.
- Almohaya, N., M. Almansori, M. Sammour, A. B. Ajjaj and M. T. Yacoubi (2021). "Leiomyoadenomatoid tumors: A type of rare benign epididymal tumor." Urol Case Rep **38**: 101700.
- Anastasi, E., G. G. Marchei, V. Viggiani, G. Gennarini, L. Frati and M. G. Reale (2010). "HE4: a new potential early biomarker for the recurrence of ovarian cancer." <u>Tumour Biol</u> **31**(2): 113-119.
- Arimura, Y., J. Ashitani, S. Yanagi, M. Tokojima, K. Abe, H. Mukae and M. Nakazato (2004). "Elevated serum beta-defensins concentrations in patients with lung cancer." <u>Anticancer Res</u> **24**(6): 4051-4057.
- Barker, E. and R. A. Reisfeld (1993). "A mechanism for neutrophil-mediated lysis of human neuroblastoma cells." <u>Cancer Res</u> **53**(2): 362-367.
- Belleannee, C., M. Belghazi, V. Labas, A. P. Teixeira-Gomes, J. L. Gatti, J. L. Dacheux and F. Dacheux (2011). "Purification and identification of sperm surface proteins and changes during epididymal maturation." <u>Proteomics</u> **11**(10): 1952-1964.
- Belleannee, C., V. Thimon and R. Sullivan (2012). "Region-specific gene expression in the epididymis." Cell Tissue Res **349**(3): 717-731.
- Belousov, L. V. (2011). "Scott F. Gilbert—Developmental Biology, 2010, Sinauer Associates, Inc., Sunderland, MA Ninth Edition." <u>Russian Journal of Developmental Biology</u> **42**(5): 349.
- Bettoni, F., F. C. Filho, D. M. Grosso, P. A. Galante, R. B. Parmigiani, M. V. Geraldo, F. Henrique-Silva, S. M. Oba-Shinjo, S. K. Marie, F. A. Soares, H. P. Brentani, A. J. Simpson, S. J. de Souza and A. A. Camargo (2009). "Identification of FAM46D as a novel cancer/testis antigen using EST data and serological analysis." <u>Genomics</u> **94**(3): 153-160.
- Bjorkgren, I. and P. Sipila (2019). "The impact of epididymal proteins on sperm function." Reproduction **158**(5): R155-R167.
- Breitbart, H. (2002). "Intracellular calcium regulation in sperm capacitation and acrosomal reaction." Mol Cell Endocrinol **187**(1-2): 139-144.
- Breitbart, H., G. Cohen and S. Rubinstein (2005). "Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction." <u>Reproduction</u> **129**(3): 263-268.
- Breitbart, H. and B. Spungin (1997). "The biochemistry of the acrosome reaction." Mol Hum Reprod 3(3): 195-202.
- Breton, S., A. V. Nair and M. A. Battistone (2019). "Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa." <u>Andrology</u> **7**(5): 631-643.
- Bullard, R. S., W. Gibson, S. K. Bose, J. K. Belgrave, A. C. Eaddy, C. J. Wright, D. J. Hazen-Martin, J. M. Lage, T. E. Keane, T. A. Ganz and C. D. Donald (2008). "Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer." <u>Mol Immunol</u> **45**(3): 839-848.
- Caballero, J., G. Frenette and R. Sullivan (2010). "Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes." <u>Vet Med Int</u> **2011**: 757194.
- Cannon-Albright, L. A., J. M. Farnham, M. Bailey, F. S. Albright, C. C. Teerlink, N. Agarwal, R. A. Stephenson and A. Thomas (2014). "Identification of specific Y chromosomes associated with increased prostate cancer risk." <u>Prostate</u> **74**(9): 991-998.
- Chen, P., Q. Yang, X. Li and Y. Qin (2017). "Potential association between elevated serum human epididymis protein 4 and renal fibrosis: A systemic review and meta-analysis." <u>Medicine (Baltimore)</u> **96**(36): e7824.
- Cooper, T. G. (2002). "Recent advances in sperm maturation in the human epididymis." <u>Andrologie</u> **12**(1): 38-51.
- Cornwall, G. A. (2009). "New insights into epididymal biology and function." <u>Hum Reprod Update</u> **15**(2): 213-227.

- Cosentino, M. J. and A. T. Cockett (1986). "Structure and function of the epididymis." <u>Urol Res</u> **14**(5): 229-240.
- Dacheux, J. L., C. Belleannee, R. Jones, V. Labas, M. Belghazi, B. Guyonnet, X. Druart, J. L. Gatti and F. Dacheux (2009). "Mammalian epididymal proteome." Mol Cell Endocrinol 306(1-2): 45-50.
- DasGupta, T., E. I. Nweze, H. Yue, L. Wang, J. Jin, S. K. Ghosh, H. I. Kawsar, C. Zender, E. J. Androphy, A. Weinberg, T. S. McCormick and G. Jin (2016). "Human papillomavirus oncogenic E6 protein regulates human beta-defensin 3 (hBD3) expression via the tumor suppressor protein p53." Oncotarget 7(19): 27430-27444.
- Djureinovic, D., L. Fagerberg, B. Hallström, A. Danielsson, C. Lindskog, M. Uhlén and F. Pontén (2014). "The human testis-specific proteome defined by transcriptomics and antibody-based profiling." <u>Molecular Human Reproduction</u> **20**(6): 476-488.
- Donald, C. D., C. Q. Sun, S. D. Lim, J. Macoska, C. Cohen, M. B. Amin, A. N. Young, T. A. Ganz, F. F. Marshall and J. A. Petros (2003). "Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas." <u>Lab Invest</u> **83**(4): 501-505.
- Droin, N., J. B. Hendra, P. Ducoroy and E. Solary (2009). "Human defensins as cancer biomarkers and antitumour molecules." J Proteomics **72**(6): 918-927.
- Dube, E., P. T. Chan, L. Hermo and D. G. Cyr (2007). "Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis." <u>Biol Reprod</u> **76**(6): 1034-1044.
- Dufau, M. L., C. Tsai-Morris, P. Tang and A. Khanum (2001). "Regulation of steroidogenic enzymes and a novel testicular RNA helicase." J Steroid Biochem Mol Biol **76**(1-5): 187-197.
- Eddy, R. J., R. A. Sauterer and J. S. Condeelis (1993). "Aginactin, an agonist-regulated F-actin capping activity is associated with an Hsc70 in Dictyostelium." J Biol Chem 268(31): 23267-23274.
- Ferraro, S. and M. Panteghini (2019). "Making new biomarkers a reality: the case of serum human epididymis protein 4." Clin Chem Lab Med **57**(9): 1284-1294.
- Frohlich, O., C. Po, T. Murphy and L. G. Young (2000). "Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2." J Androl 21(3): 421-430.
- Froy, O., A. Hananel, N. Chapnik and Z. Madar (2005). "Differential expression of rat beta-defensins." IUBMB Life 57(1): 41-43.
- Fujita, E., Y. Kouroku, S. Ozeki, Y. Tanabe, Y. Toyama, M. Maekawa, N. Kojima, H. Senoo, K. Toshimori and T. Momoi (2006). "Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily." Mol Cell Biol **26**(2): 718-726.
- Gambichler, T., M. Skrygan, J. Huyn, F. G. Bechara, M. Sand, P. Altmeyer and A. Kreuter (2006). "Pattern of mRNA expression of beta-defensins in basal cell carcinoma." <u>BMC Cancer</u> **6**: 163.
- Ganem, J. P., F. M. Jhaveri and M. C. Marroum (1998). "Primary adenocarcinoma of the epididymis: case report and review of the literature." <u>Urology</u> **52**(5): 904-908.
- Ganz, T. (2003). "Defensins: antimicrobial peptides of innate immunity." Nat Rev Immunol 3(9): 710-720.
- Garcia, J. R., A. Krause, S. Schulz, F. J. Rodriguez-Jimenez, E. Kluver, K. Adermann, U. Forssmann, A. Frimpong-Boateng, R. Bals and W. G. Forssmann (2001). "Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity." <u>FASEB J</u> **15**(10): 1819-1821.
- Gervasi, M. G. and P. E. Visconti (2017). "Molecular changes and signaling events occurring in spermatozoa during epididymal maturation." <u>Andrology</u> **5**(2): 204-218.
- Ghafouri-Fard, S., A. Abbasi, H. Moslehi, N. Faramarzi, S. Taba Taba Vakili, M. B. Mobasheri and M. H. Modarressi (2010). "Elevated expression levels of testis-specific genes TEX101 and SPATA19 in basal cell carcinoma and their correlation with clinical and pathological features." <u>Br J Dermatol</u> **162**(4): 772-779.
- Guyonnet, B., G. Marot, J. L. Dacheux, M. J. Mercat, S. Schwob, F. Jaffrezic and J. L. Gatti (2009). "The adult boar testicular and epididymal transcriptomes." BMC Genomics **10**: 369.
- Hall, S. H., S. Yenugu, Y. Radhakrishnan, M. C. Avellar, P. Petrusz and F. S. French (2007). "Characterization and functions of beta defensins in the epididymis." <u>Asian J Androl</u> **9**(4): 453-462.
- Hermo, L., J. Dworkin and R. Oko (1988). "Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa." Am J Anat 183(2): 107-124.

- Hermo, L. and B. Robaire (2002). Epididymal Cell Types and Their Functions. <u>The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens</u>. B. Robaire and B. T. Hinton. Boston, MA, Springer US: 81-102.
- Hu, S. G., M. Zou, G. X. Yao, W. B. Ma, Q. L. Zhu, X. Q. Li, Z. J. Chen and Y. Sun (2014). "Androgenic regulation of beta-defensins in the mouse epididymis." <u>Reprod Biol Endocrinol</u> **12**: 76.
- James, E. R., D. T. Carrell, K. I. Aston, T. G. Jenkins, M. Yeste and A. Salas-Huetos (2020). "The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction." <u>Int J Mol Sci</u> **21**(15).
- Jelinsky, S. A., T. T. Turner, H. J. Bang, J. N. Finger, M. K. Solarz, E. Wilson, E. L. Brown, G. S. Kopf and D. S. Johnston (2007). "The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides." Biol Reprod **76**(4): 561-570.
- Jenssen, H. and R. E. Hancock (2009). "Antimicrobial properties of lactoferrin." <u>Biochimie</u> **91**(1): 19-29.
- Jin, G., H. I. Kawsar, S. A. Hirsch, C. Zeng, X. Jia, Z. Feng, S. K. Ghosh, Q. Y. Zheng, A. Zhou, T. M. McIntyre and A. Weinberg (2010). "An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis." <u>PLoS One</u> 5(6): e10993.
- JM, F., DillFJ and H. MR (1992). the national medical series for independent study. <u>Genetics:Williams & Wilkins</u>.
- Jones, M. A., R. H. Young and R. E. Scully (1997). "Adenocarcinoma of the epididymis: a report of four cases and review of the literature." <u>Am J Surg Pathol</u> **21**(12): 1474-1480.
- Lehrer, R. I. (2004). "Primate defensins." Nat Rev Microbiol 2(9): 727-738.
- Li, J., X. Wang, W. Qu, J. Wang and S. W. Jiang (2019). "Comparison of serum human epididymis protein 4 and CA125 on endometrial cancer detection: A meta-analysis." <u>Clin Chim Acta</u> **488**: 215-220.
- Li, P., H. C. Chan, B. He, S. C. So, Y. W. Chung, Q. Shang, Y. D. Zhang and Y. L. Zhang (2001). "An antimicrobial peptide gene found in the male reproductive system of rats." <u>Science</u> **291**(5509): 1783-1785.
- Liu, L. and J. W. Smith (2000). "Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia." <u>Endocrinology</u> **141**(6): 2033-2042.
- Loveland, K. L. and S. Schlatt (1997). "Stem cell factor and c-kit in the mammalian testis: lessons originating from Mother Nature's gene knockouts." <u>J Endocrinol</u> **153**(3): 337-344.
- Mader, J. S. and D. W. Hoskin (2006). "Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment." Expert Opin Investig Drugs **15**(8): 933-946.
- Manecksha, R. P. and J. M. Fitzpatrick (2009). "Epidemiology of testicular cancer." <u>BJU Int</u> **104**(9 Pt B): 1329-1333.
- Markeeva, N., I. Lysovskiy, E. Zhuravel, M. Soldatkina, V. Lyzogubov, V. Usenko, V. Potapov and P. Pogrebnoy (2005). "Involvement of human beta-defensin-2 in proliferation of transformed cells of human cervix." Exp Oncol 27(4): 308-313.
- Marsico, S., A. Pizzo, M. F. Grioli and D. Scriva (1994). "[Physiology and pathology of the immune system of reproduction]." <u>Minerva Ginecol</u> **46**(5): 223-233.
- McKeown, S. T., F. T. Lundy, J. Nelson, D. Lockhart, C. R. Irwin, C. G. Cowan and J. J. Marley (2006). "The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro." Oral Oncol 42(7): 685-690.
- Mescher, A. L. (2018). Author. <u>Junqueira's Basic Histology: Text and Atlas, 15e</u>. New York, NY, McGraw-Hill Education.
- Mi, D. and Y. Zhang (2018). "Diagnostic and prognostic value of HE4 in female patients with primary peritoneal carcinoma." <u>Int J Biol Markers</u>: 1724600818796595.
- Mital, P., B. T. Hinton and J. M. Dufour (2011). "The blood-testis and blood-epididymis barriers are more than just their tight junctions." <u>Biol Reprod</u> **84**(5): 851-858.
- Mo, D. and F. He (2018). "Serum Human Epididymis Secretory Protein 4 (HE4) is a Potential Prognostic Biomarker in Non-Small Cell Lung Cancer." Clin Lab **64**(9): 1421-1428.
- Moser, C., D. J. Weiner, E. Lysenko, R. Bals, J. N. Weiser and J. M. Wilson (2002). "beta-Defensin 1 contributes to pulmonary innate immunity in mice." <u>Infect Immun</u> **70**(6): 3068-3072.

- Munoz, J., J. J. Wheler and R. Kurzrock (2015). "Androgen receptors beyond prostate cancer: an old marker as a new target." Oncotarget **6**(2): 592-603.
- Nishimura, H. and S. W. L'Hernault (2017). "Spermatogenesis." <u>Current Biology</u> **27**(18): R988-R994. Odrzywolski, K. J. and S. Mukhopadhyay (2010). "Papillary cystadenoma of the epididymis." <u>Arch Pathol Lab Med</u> **134**(4): 630-633.
- Oh, J., J. Lee, J. M. Woo, E. Choi, I. Park, C. Han, N. Baek, H. Lee, D. H. Kim and C. Cho (2006). "Systematic identification and integrative analysis of novel genes expressed specifically or predominantly in mouse epididymis." <u>BMC Genomics</u> 7: 314.
- Osterhoff, C., C. Kirchhoff, N. Krull and R. Ivell (1994). "Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis." <u>Biol Reprod</u> **50**(3): 516-525.
- Pan, B., Y. Song, X. Kong, Z. Xue and Y. Guo (1998). "[Primary epididymal tumors]." Zhonghua Wai Ke Za Zhi **36**(3): 138-140.
- Patil, A. A., Y. Cai, Y. Sang, F. Blecha and G. Zhang (2005). "Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract." <u>Physiol Genomics</u> **23**(1): 5-17.
- Pazgier, M., X. Li, W. Lu and J. Lubkowski (2007). "Human defensins: synthesis and structural properties." <u>Curr Pharm Des</u> **13**(30): 3096-3118.
- Pinel, L., M. Mandon and D. G. Cyr (2019). "Tissue regeneration and the epididymal stem cell." Andrology **7**(5): 618-630.
- Pinheiro, A., I. Faustino, M. J. Silva, J. Silva, R. Sa, M. Sousa, A. Barros, I. T. de Almeida and I. Rivera (2010). "Human testis-specific PDHA2 gene: methylation status of a CpG island in the open reading frame correlates with transcriptional activity." <u>Mol Genet Metab</u> **99**(4): 425-430.
- Pujianto, D. A., E. Loanda, P. Sari, Y. H. Midoen and P. Soeharso (2013). "Sperm-associated antigen 11A is expressed exclusively in the principal cells of the mouse caput epididymis in an androgen-dependent manner." Reprod Biol Endocrinol 11: 59.
- Rizk, C. C., J. Scholes, S. K. Chen, J. Ward and N. A. Romas (1990). "Epididymal metastasis from prostatic adenocarcinoma mimicking adenomatoid tumor." <u>Urology</u> **36**(6): 526-530.
- Rodriguez-Jimenez, F. J., A. Krause, S. Schulz, W. G. Forssmann, J. R. Conejo-Garcia, R. Schreeb and D. Motzkus (2003). "Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis." <u>Genomics</u> **81**(2): 175-183.
- Saez, F., G. Frenette and R. Sullivan (2003). "Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells." <u>J Androl</u> **24**(2): 149-154.
- Salzman, N. H., D. Ghosh, K. M. Huttner, Y. Paterson and C. L. Bevins (2003). "Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin." <u>Nature</u> **422**(6931): 522-526.
- Selsted, M. E. and A. J. Ouellette (2005). "Mammalian defensins in the antimicrobial immune response." Nat Immunol **6**(6): 551-557.
- Semlali, A., A. Al Amri, A. Azzi, O. Al Shahrani, M. Arafah, M. Kohailan, A. M. Aljebreen, O. Alharbi, M. A. Almadi, N. A. Azzam, N. R. Parine, M. Rouabhia and M. S. Alanazi (2015). "Expression and new exon mutations of the human Beta defensins and their association on colon cancer development." PLoS One 10(6): e0126868.
- Semple, C. A., M. Rolfe and J. R. Dorin (2003). "Duplication and selection in the evolution of primate beta-defensin genes." <u>Genome Biol</u> **4**(5): R31.
- Shestakova, T., E. Zhuravel, L. Bolgova, O. Alekseenko, M. Soldatkina and P. Pogrebnoy (2008). "Expression of human beta-defensins-1, 2 and 4 mRNA in human lung tumor tissue: a pilot study." <u>Exp Oncol</u> **30**(2): 153-156.
- Shi, N., F. Jin, X. Zhang, S. K. Clinton, Z. Pan and T. Chen (2014). "Overexpression of human beta-defensin 2 promotes growth and invasion during esophageal carcinogenesis." Oncotarget 5(22): 11333-11344.
- Shnitsar, V. M., I. L. Lisovskiy, M. A. Soldatkina, S. V. Nespryadko, O. V. Turchak, A. B. Vinnitskaya and P. V. Pogrebniy (2004). "Human beta-defensin 3 (hBD-3) expression in A431 cell line and human vulval tumors." Exp Oncol **26**(4): 328-330.
- Siegel, R. L., K. D. Miller and A. Jemal (2020). "Cancer statistics, 2020." CA Cancer J Clin 70(1): 7-30.

- Sullivan, R. and R. Mieusset (2016). "The human epididymis: its function in sperm maturation." <u>Hum Reprod Update</u> **22**(5): 574-587.
- Sun, C. Q., R. Arnold, C. Fernandez-Golarz, A. B. Parrish, T. Almekinder, J. He, S. M. Ho, P. Svoboda, J. Pohl, F. F. Marshall and J. A. Petros (2006). "Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma." <u>Cancer Res</u> 66(17): 8542-8549.
- Sun, E. L. and C. J. Flickinger (1980). "Morphological characteristics of cells with apical nuclei in the initial segment of the adult rat epididymis." <u>Anat Rec</u> **196**(3): 285-293.
- Swerdloff, R. S., C. Wang and S. Bhasin (1992). "Developments in the control of testicular function." <u>Baillieres Clin Endocrinol Metab</u> **6**(2): 451-483.
- Thimon, V., O. Koukoui, E. Calvo and R. Sullivan (2007). "Region-specific gene expression profiling along the human epididymis." <u>Mol Hum Reprod</u> **13**(10): 691-704.
- Tilki, D., N. Kilic, H. Herbst, O. Reich, M. Seitz, H. Lauke, C. G. Stief and S. Ergun (2008). "High level of endostatin in epididymal epithelium: protection against primary malignancies in this organ?" Histochem Cell Biol 130(3): 527-535.
- Tollner, T. L., C. L. Bevins and G. N. Cherr (2012). "Multifunctional glycoprotein DEFB126--a curious story of defensin-clad spermatozoa." <u>Nat Rev Urol</u> **9**(7): 365-375.
- Tollner, T. L., S. A. Venners, E. J. Hollox, A. I. Yudin, X. Liu, G. Tang, H. Xing, R. J. Kays, T. Lau, J. W. Overstreet, X. Xu, C. L. Bevins and G. N. Cherr (2011). "A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility." <u>Sci Transl Med</u> **3**(92): 92ra65.
- Toshimori, K. (2009). "Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation." <u>Adv Anat Embryol Cell Biol</u> **204**: 5-94.
- Toshimori, K., M. Maekawa, C. Ito, Y. Toyama, F. Suzuki-Toyota and D. K. Saxena (2006). "The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction." Reprod Med Biol **5**(2): 87-93.
- Toutziaris, C., S. Kampantais, I. Perdikis, V. Gourvas, L. Laskaridis, K. Gkagkalidis, S. Lakis and S. Ioannidis (2013). "Papillary cystadenoma of epididymis: Is there a need for further investigation in unilateral cases?" Int J Surg Case Rep 4(7): 616-618.
- Walker, W. H. (2009). "Molecular mechanisms of testosterone action in spermatogenesis." <u>Steroids</u> **74**(7): 602-607.
- Wassarman, P. M. (1999). "Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion." Cell **96**(2): 175-183.
- Xu, D., B. Zhang, C. Liao, W. Zhang, W. Wang, Y. Chang and Y. Shao (2016). "Human beta-defensin 3 contributes to the carcinogenesis of cervical cancer via activation of NF-kappaB signaling." <a href="https://doi.org/10.2016/j.jps.10.2016/j.ps.10.2016/j.ps.10.2016/j.jps.10.2016/j.jp
- Yamaguchi, Y., T. Nagase, R. Makita, S. Fukuhara, T. Tomita, T. Tominaga, H. Kurihara and Y. Ouchi (2002). "Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice." J Immunol **169**(5): 2516-2523.
- Yan, W. (2009). "Male infertility caused by spermiogenic defects: lessons from gene knockouts." <u>Mol Cell Endocrinol</u> **306**(1-2): 24-32.
- Yao, R., C. Ito, Y. Natsume, Y. Sugitani, H. Yamanaka, S. Kuretake, K. Yanagida, A. Sato, K. Toshimori and T. Noda (2002). "Lack of Acrosome Formation in Mice Lacking a Golgi Protein, GOPC." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **99**(17): 11211-11216.
- Yenugu, S., K. G. Hamil, C. E. Birse, S. M. Ruben, F. S. French and S. H. Hall (2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli." <u>Biochem J</u> **372**(Pt 2): 473-483.
- Yenugu, S., K. G. Hamil, F. S. French and S. H. Hall (2004). "Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2." Reprod Biol Endocrinol 2: 61.
- Yenugu, S., K. G. Hamil, F. S. French and S. H. Hall (2006). "Antimicrobial actions of human and macaque sperm associated antigen (SPAG) 11 isoforms: influence of the N-terminal peptide." <u>Mol Cell Biochem</u> **284**(1-2): 25-37.

- Yenugu, S., K. G. Hamil, G. Grossman, P. Petrusz, F. S. French and S. H. Hall (2006). "Identification, cloning and functional characterization of novel sperm associated antigen 11 (SPAG11) isoforms in the rat." Reprod Biol Endocrinol 4: 23.
- Yenugu, S., K. G. Hamil, Y. Radhakrishnan, F. S. French and S. H. Hall (2004). "The androgen-regulated epididymal sperm-binding protein, human beta-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial beta-defensin." <u>Endocrinology</u> **145**(7): 3165-3173.
- Yeung, C.-H. and T. G. Cooper (2002). Acquisition and Development of Sperm Motility Upon Maturation in the Epididymis. <u>The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens</u>. B. Robaire and B. T. Hinton. Boston, MA, Springer US: 417-434.
- Yeung, C. H., K. Wang and T. G. Cooper (2012). "Why are epididymal tumours so rare?" Asian J Androl **14**(3): 465-475.
- Yoshinaga, K., I. Tanii, T. Oh-oka and K. Toshimori (2001). "Changes in distribution and molecular weight of the acrosomal protein acrin2 (MC41) during guinea pig spermiogenesis and epididymal maturation." Cell and Tissue Research 303: 253-261.
- Yuan, T. and Y. Li (2017). "Human Epididymis Protein 4 as a Potential Biomarker of Chronic Kidney Disease in Female Patients With Normal Ovarian Function." <u>Lab Med</u> **48**(3): 238-243.
- Yudin, A. I., S. E. Generao, T. L. Tollner, C. A. Treece, J. W. Overstreet and G. N. Cherr (2005). "Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies." <u>Biol Reprod</u> **73**(6): 1243-1252.
- Yudin, A. I., T. L. Tollner, M. W. Li, C. A. Treece, J. W. Overstreet and G. N. Cherr (2003). "ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process." <u>Biol Reprod</u> **69**(4): 1118-1128.
- Zanich, A., J. C. Pascall and R. Jones (2003). "Secreted epididymal glycoprotein 2D6 that binds to the sperm's plasma membrane is a member of the beta-defensin superfamily of pore-forming glycopeptides." <u>Biol Reprod</u> **69**(6): 1831-1842.
- Zhang, J. S., Q. Liu, Y. M. Li, S. H. Hall, F. S. French and Y. L. Zhang (2006). "Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray." <u>Mol Cell</u> Endocrinol **250**(1-2): 169-177.
- Zhen, W., P. Li, B. He, J. Guo and Y. L. Zhang (2009). "The novel epididymis-specific beta-galactosidase-like gene Glb114 is essential in epididymal development and sperm maturation in rats." Biol Reprod **80**(4): 696-706.
- Zhou, C. X., Y. L. Zhang, L. Xiao, M. Zheng, K. M. Leung, M. Y. Chan, P. S. Lo, L. L. Tsang, H. Y. Wong, L. S. Ho, Y. W. Chung and H. C. Chan (2004). "An epididymis-specific beta-defensin is important for the initiation of sperm maturation." Nat Cell Biol 6(5): 458-464.
- Zhu, L., Q. Guo, S. Jin, H. Feng, H. Zhuang, C. Liu, M. Tan, J. Liu, X. Li and B. Lin (2016). "Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells." Oncol Rep **36**(3): 1592-1604.
- Zhu, L., H. Zhuang, H. Wang, M. Tan, C. L. Schwab, L. Deng, J. Gao, Y. Hao, X. Li, S. Gao, J. Liu and B. Lin (2016). "Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer." Oncotarget 7(1): 729-744.

Chapter 1

In silico, in vivo and functional characterization of rat Spink2, Spaca7 and Pdcl2

INTRODUCTION

Spermatogenesis is a complex process that involves an interplay between a wide variety of molecular factors (Eddy 2002), especially the crucial testis specific factors (Lu, Oura et al. 2019, Bellil, Ghieh et al. 2021). Disruption in the expression of genes that contribute to spermatogenesis caused fertility disorders (Linn, Ghanem et al. 2021). Identification and characterization of protein markers of spermatogenesis and their potential for the management of deregulated spermiation is an active area of investigation (Araujo and Bertolla 2021, Li, Wang et al. 2021). Some of the genes that have been recently characterized for their role in male gametogenesis are Spats1, Rail4, Tex13a, Paz domain, Tcfl5, etc (Capoano, Ortiz-Laquintana et al. 2021, Li, Mi et al. 2021, Qi-Xin, Lu et al. 2021, Wu, Wang et al. 2021, Xu, Zhang et al. 2021). Thus, identification and characterization of genes that may play a crucial role in spermatogenesis continues to be a vibrant area of research till date. In this study, we investigated the role of three rat genes, namely, serine protease inhibitor Kazal-type 2 (Spink2), sperm acrosomal membrane-associated protein 7 (Spaca7) and phosducin-like 2 (Pdcl2), that are predominantly expressed in the testis. The three genes characterized in this study do not belong to the same family or share similar structural or functional domains. However, analyses of a group of proteins belonging to different classes is essential to identify the importance of a diverse nature of proteins in male reproduction.

The SPINK protein family members contain a Kazal domain at the C-terminus of the serine protease inhibitor and have been implicated in a variety of biological processess, including male fertility. *Spink13*, an epididymis specific gene was found to be essential for acrosomal integrity and male fertility (Ma, Yu et al. 2013). Knockout of the *Spink2*, a gene predominantly expressed in the testis resulted in impaired spermatogenesis and fertility in mice (Lee, Park et al. 2011). SPINK3, localized on the acrosome, modulates sperm activity (Ou, Tang et al. 2012). A 4 fold decrease in *Spink2* expression was reported in azoospermic patients (Rockett, Patrizio et al. 2004). SPINK8, SPINK11 and SPINK12 are found to be epididymis specific and their roles in male fertility reported (Jeong, Lee et al. 2019).

Another set of proteins grouped under the SPACA family are known to contribute to the molecular aspects of male fertility. SPACA7 was identified as a novel male germ cell specific protein that is localized to the acrosome and implicated in fertilization in a mouse model (Korfanty, Toma et al. 2012, Nguyen, Westmuckett et al. 2014). In humans and murine models, loss of *Spaca1* gene resulted in autosomal recessive globozoospermia (Fujihara, Satouh et al. 2012, Chen, Saiyin et al. 2021). Regulation of sperm-egg membrane fusion machinery requires the cleavage of SPACA1 (Yamatoya, Kousaka et al. 2020). An association between SPACA1 distribution on sperm and the outcome of IVF was reported (Kishida, Harayama et al. 2016). Loss of SPACA4, a germ cell specific protein results in impaired fertilization in knockout mice (Fujihara, Herberg et al. 2021). Similarly, the essential role of SPACA6 in sperm-oocyte fusion was reported (Barbaux, Ialy-Radio et al. 2020, Noda, Lu et al. 2020).

The exclusive expression of SPACA5 in the elongated spermatids implicated its possible role in sperm function (Zhang, Yan et al. 2016). SPACA3, also known as SLLP1 or SPRASA, is a cancer-testis antigen (Wang, Zhang et al. 2004) and polymorphisms in *Spaca3* gene are associated with infertility (Prendergast, Woad et al. 2014). ACRV1, aka SPACA2 is a testis specific protein and is reported to be an ideal marker for stage specific identification of spermatogenesis (Osuru, Monroe et al. 2014).

PDCL2 family members, initially thought to be having a role in G-protein signaling were later found to act as molecular chaperones (Willardson and Howlett 2007, Krzemień-Ojak, Góral et al. 2017). PDCL3 regulates the expression of VEGF receptor to influence angiogenesis (Srinivasan, Chitalia et al. 2015). PDCL1 was found to be crucial for the assembly of G-protein receptor complex in retinal cone photoreceptors (Tracy, Kolesnikov et al. 2015). Microinjection of phosducin resulted in inhibition of second polar body emission and pronucleus formation (Moore, Ayabe et al. 1994). However, no information is available on the possible role of PDCL2 in reproductive function.

RATIONALE

Though quite a lot of evidence points out to the role of SPINK2 and SPACA7 in male reproductive function in mouse and humans, their role in the rats are not well characterized. The rat Spink2 and Spaca7 were indicated as predicted genes in the genome. It is to be noted that the functional role of a protein may vary among the species and could provide a different perspective. Further, earlier studies focused mostly on the role of SPINK2 and SPACA7 on spermatogenesis related aspects. Thus, we attempted to characterize and elucidate the functional role of SPINK2 and SPACA7 with specific reference to fecundity and sperm function. Our initial analyses indicated that Pdcl2 is predominantly expressed in the rat testes; and in the absence of any evidence for the role of this gene in male reproductive function, we conducted studies in this direction. The role of a specific protein or a set of proteins in gametogenesis and maturation were studied by different approaches such as generation of knockout models (Lu, Oura et al. 2019, Capoano, Ortiz-Laquintana et al. 2021) and by active immunization, a classical method of ablation of a specific protein by generation of autoantibodies in animal models (Aponte, Gutierrez-Reinoso et al. 2018, Sangeeta and Yenugu 2020). As a prelude to studying the role of Spink2, Spaca7 and Pdcl2 in knockout animal models, we conducted initial studies on rats that were subjected to active immunization against these proteins. Further, the significance of this study lies in the fact that though these three proteins characterized in this study are not related, they all appear to play a crucial role in male reproduction. In the recent years, diagnosis of male infertility in patients is being done basing on the detection of an array of multiple markers that are crucial for sperm production, maturation and function (Bieniek, Drabovich et al. 2016). Thus, identification of markers of diverse nature will be of use to develop kits for the diagnosis of infertility.

MATERIALS AND METHODS

In silico analyses

The predicted gene sequences of *Spink2*, *Spaca7* and *Pdcl2* were derived from the rat genome available at National Center for Biological Information (NCBI). PCR primers were designed to amplify the predicted sequences (Supplementary table 1). The amplicons were sequenced and submitted at GENBank. The tools used to analyze the sequences for predicting the properties are listed in supplementary table 2. Genomic neighborhood analysis was performed based on the genome assemblies deposited in NCBI and Ensembl. Self-Optimized Prediction Method with Alignment (SOPMA) was used to predict the secondary structure (α -helix, β -turn, extended strand and random coil; in terms of percentage) (Frishman and Argos 1995, Geourjon and Deléage 1995).

Molecular modeling

I-TASSER based protein modelling was carried out to predict the three-dimensional models of proteins. Excluding the signal peptide sequence, the full-length sequence of the proteins that are retrieved from NCBI were submitted as an input for the program. Using LOMETS, a meta-server threading approach containing multiple threading programs, the best ten templates were identified from the PDB library. Basing on these templates, the three-dimensional structures of the proteins were generated by I-TASSER. The output was generated as a 3D model using nearest homolog as a template with higher sequence identity using BLOSUM 45, 62, 80 at different Pfam value (Arnold, Bordoli et al. 2006). The models generated were validated using PROCHECK (Ramachandran, Ramakrishnan et al. 1963). Proteins showing more than 90% in the core region and not more than 5% in the disallowed region are considered as good model. In cases where the models does not meet the requirements of quality structure, modeling was repeated after loop refinement and energy minimization and the structures were validated by analyzing the stereo chemical features using PROCHECK (Laskowski, Rullmannn et al. 1996). PYMOL was used to visualize the structure of the modelled rat LYZL proteins.

Recombinant protein production

The full length cDNA of rat *Spink2*, *Spaca7* and *Pdcl2* without the signal peptide were amplified using gene specific primers (supplementary table 1) and cloned into pQE80m vector such that there is a His-tag (MRGSHHHHHHGS) at the N-terminus. The cloned plasmid was transformed into *E.coli BL21* and the bacteria were grown to mid-log phase. Using 1 mM IPTG, the bacteria were induced to express the recombinant protein for 3 hr. The bacterial cells were then lysed and the recombinant protein was purified using a commercially available Ni-NTA agarose affinity protein purification kit (Qiagen, Valencia, CA, USA). The purified recombinant protein was confirmed by Western blotting using anti-His tag antibody (Santa Cruz Biotechnology, Dallas, USA; sc-57598 RRID:

AB_831408). Eluted fractions that contained the protein of interest were dialyzed extensively at 4°C against 10 mM sodium phosphate buffer, pH 7.4.

Secondary structure analyses

Circular dichroism was performed for the recombinant proteins using Jasco J-810 spectropolarimeter. $200 \,\mu l$ $(0.1 \mu g/\mu l)$ protein was placed in a Quartz cell with a path length of 0.2 cm and scanned in the far UV region (180-260 nm). Polarimetry data was collected for every 1 nm by accumulating the data collected from three scans at a scan speed of 50 nm/min. The mean residue ellipticity (MRE) was calculated using the polarimetry data and the spectrum was plotted (Sreerama and Woody 2004). Spectra of 10 mM phosphate buffer was subtracted from the spectrum of the protein and the percent of secondary structure elements in the protein were calculated using K2D3 tool of Dichroweb (Louis-Jeune, Andrade-Navarro et al. 2011). To determine the secondary structure at pH 3.0 and 10, citrate and Tris buffers respectively were used.

Gene expression

Total RNA (2ug) isolated from each of the different tissues of male Wistar rats (aged 90 days) was reverse transcribed and the expression pattern of *Spinkl-2*, *Spaca7* and *Pdcl2* was analysed using gene specific primers (Supplementary table 1) under standard PCR conditions (94°C for 1 min followed by 30 cycles at 94°C for 30 sec, 58°C for 30 sec and 72°C for 30 sec, and with a final round of extension at 72°C for 10 min). The expression of glyceraldehyde 3 phosphate dehydrogenase (*Gapdh*) was used for internal control purposes. PCR amplified gene products were analysed by electrophoresis on 2% agarose gels and their identity confirmed by sequencing.

The developmental regulation of *Spinkl-2*, *Spaca7* and *Pdcl2* expression was analyzed using RNA isolated from the testes and epididymides of 10- to 60-day old Wistar rats. All procedures involving animals were conducted using the guidelines for the care and use of laboratory animals and this study was specifically approved by the Institutional Animal Ethics Committee of University of Hyderabad (UH/IAEC/SY/2021-1/18).

Immunofluorescence localization

Testes collected from 90-day old Wistar rats were fixed by immersing in Bouin's solution and 4% paraformaldehyde solution respectively. Serial sections (five microns) were made and preheated to 60°C for 5 min followed by washings with xylene, gradient alcohol (70-100%) and PBS for 10 min each. Antigen retrieval was done by heating in 10 mM citrate buffer, pH 6.5 for 12 min; followed by permeabilization with PBS containing 1% triton X-100 (PBST) for 15 min and blocking with 10% goat serum for 45 min. The processed sections were incubated with polyclonal antibodies (immune serum generated in this study by active immunization) and Goat anti-Rat IgG tagged with FITC (Santa Cruz Biotechnology, Dallas, USA; sc-2091 RRID: AB_649008; sc-2012 RRID: AB_631744) for 1 h each

with washing with PBS in between incubations. The nucleus was stained with 4', 6-diamidino-2-phenylindole (DAPI; Sigma Aldrich, St. Louis, USA)) and images taken using fluorescence microscope. For immunolocalization on the spermatozoa, smears were prepared on glass slides and air dried. Permeabilization was done with PBST, followed by blocking with 10% goat serum and processed in a similar way as that of tissue sections.

Immunization to generate auto antibodies

Male Wistar rats (n = 6 per group) aged 90 days were immunized with SPINK2 or SPACA7 or PDCL2 recombinant protein. Pre-immune serum was prepared from blood obtained by snip tail method. For immunization, 200 μ g of the protein in 100 μ l of PBS mixed with equal volume of Freund's complete adjuvant was administered into the footpad and the remaining subcutaneously. Booster dose was given subcutaneously on 14th day after first immunization using 200 μ g of recombinant protein mixed with Freund's incomplete adjuvant. Control animals received Freund's adjuvant without recombinant protein similar to the immunized animals.

Determining the antibody titer

Antibody titer in the serum of immunized animals was determined by ELISA as described earlier (Sangeeta and Yenugu 2020). Serum was prepared from blood collected through tail vein. Testicular fluids collected at the end of the experiment by making incisions and gentle squeezing were centrifuged at 10000 rpm for 10 min at 4 C. Protein concentration was determined in the supernatant and equal quantity was used for measuring the antibody titer using ELISA. Each of the recombinant protein (40 µg/ml) was coated on to the wells of the microtiter plate and incubated at 37°C overnight and at 60°C for 30 min. BSA (1 mg/ml) was added to each well and incubated for 2 hr to allow blocking. After thorough washing with TBS-T (PBS with 0.1% Tween-20), testicular fluid was added and further incubated for 3 hr followed by washing with TBS-T. HRP-conjugated anti-rat secondary antibody was then added to facilitate binding to the primary antibody. O-Phenylenediamine (OPD), the substrate for HRP was added to each well and the intensity of the color developed was measured at 490 nm. The intensity of the color will be directly proportional to antibody titer. Rats that had a significant serum titer were used for further studies.

Assessment of fecundity

The effect of ablation of testicular proteins on fecundity was analyzed by natural mating. A booster dose was administered (one week prior) to ensure high antibody titer before assessing the fecundity. Each of the control (unimmunized) or immunized male rat (with significant antibody titer) was placed along with two normal female rats for one week. The litter size was noted when the female rats delivered the pups.

Gene chip hybridization, data collection and enrichment analysis.

Total RNA was isolated from the testes of control and immunized rats using TRIzol. The quality of RNA was checked by the Agilent TapeStation system. Samples that had a RIN value of > 7.5 were further analyzed. RNA-seq was carried out using Illumina HiSeq platform. Then the data quality was checked using FastQC and MultiQC software (de Sena Brandine and Smith 2019). The data was checked for base call quality distribution, % bases above Q20, Q30, %GC, and sequencing adapter contamination. All the samples passed the QC threshold (Q30>90%). Raw sequence reads were processed to remove adapter sequences and low-quality bases using fastp (Chen, Zhou et al. 2018) QC passed reads were mapped onto Rattus norvegicus (assembly mRatBN7.2) reference genome using STAR v2 aligner (Dobin, Davis et al. 2013). On average 99.86% of the reads aligned onto the reference genome. Gene level expression values were obtained as read counts using feature Counts software 10.1093/bioinformatics/btt656). Differential expression analysis was carried out using the DESeq2 (Love, Huber et al. 2014). The read counts were normalized (variance stabilized normalized counts) using DESeq2 and differential enrichment analysis was performed. Genes with absolute log2 fold change ≥ 1 and p-value ≤ 0.05 were considered significant. The genes that showed significant differential expression were used for Gene Ontology (GO) and pathway enrichment analysis using DAVID software.

Statistical analyses

Statistical analyses were performed using Holm-Sidak test available in Sigma Plot software (SPSS Inc., Chicago, IL, USA). Values shown are Mean \pm S.D. * indicates p < 0.05 compared to the respective control.

RESULTS

In silico characterization

The predicted sequences of rat Spink2, Spaca7 and Pdcl2 were obtained from the rat genome using the accession numbers XM 003751350.4, XM 006222297.3 and XM 573585.7. Multiple set of primers were designed to for each of the genes and PCR amplified. The amplicons were sequenced and obtained sequence was submitted to GenBank. Accession numbers MK279534, MK364792 and MK364795 were assigned for *Spink2*, *Spaca7* and *Pdcl2* respectively (**Table 1**). The mRNA sequences of Spink2, Spaca7 and Pdcl2 with the predicted protein sequence are presented in figure 1. General features of the characterized genes and their protein counterparts are presented in table 1. Gene neighborhood analyses in the rat, mouse and human indicate that all the three genes are located independently and not in a cluster with the other members of their respective families (Figure 2A, 2B and 2C). Interestingly, those genes that are in the vicinity of Spink2 or Spaca7 or Pdcl2 of rat genome are also conserved in the mouse and human genomes. Hydropathy and amphipathicity analyses indicated a gravy index of -0.737, -1.001 and -0.552 for SPINK2, SPACA7 and PDCL2 respectively (Figure 3). The predicted secondary structure of the three proteins was determined by SOPMA (Figure 4). The percent alpha-helical content was found to be higher in PDCL2 (51.67) followed by SPACA7 (36.30) and SPINK2 (14.29). In SPINK2 and SPACA7, the beta-sheet and extended strand percent content was almost similar. However, the random coil percent is higher in SPINK2 (71.43) followed by SPACA7 (55.56) and PDCL2 (33.75). To gain further insight into the actual distribution of different secondary structures, the proteins were subjected to Circular Dichroism analyses (Figure 4). In all the three proteins it is evident that the percent of random coil is the highest followed by beta-sheet and alpha-helix. Since the structural stability of a protein depends on the microenvironment, we determined the effect of different ion concentrations and pH on the secondary structure of SPINK, SPACA7 and PDCL2. We observed that the percent of the three forms of secondary structure did not vary much with increasing salt concentrations (Figure 5). For SPINK2, the alpha helix and random coil was decreased at pH 3.0 and 7.0, while that of beta-sheet was increased (Figure 6). Alpha-helix content increased at pH 3.0 and 7.0 for SPACA7, which was compensated by a decrease in beta-sheet content. In the case of PDCL2, alpha helix content was decreased at pH 3.0, while it was increased at pH 7.0. A reverse trend was observed for beta-sheet content. Further insight into the higher order conformation of SPINK, SPACA7 and PDCL2 was predicted by three-dimensional modeling. The best protein models for these proteins were generated and their fitment into the Ramachandran plot determined (Figure 7). Only 5% and 3.2% of the amino acids are in the disallowed regions for SPACA7 and PDCL2, while it was 0% for SPINK2.

 Table 1. General features of proteins characterized in this study.

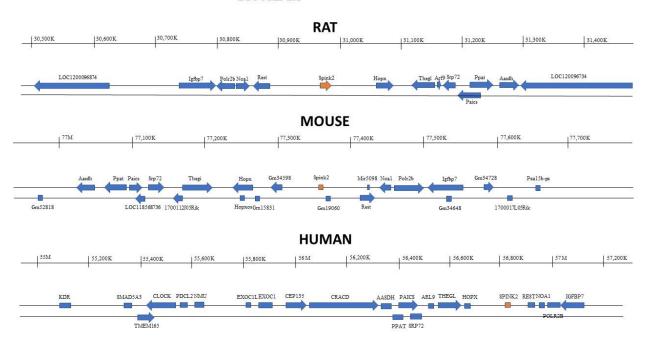
Attribute	SPINK2-like	SPACA7	PDCL2
Chromosome location	14	16	14
Gene accession number	LOC100910138	689077	498352
Gene length	6613	26972	20583
Total no. of exons	4	6	6
mRNA accession no.	MK279534	MK364792	MK364795
Length of mRNA	614	720	828
Coding sequence	105-365	70549	129-851
Number of amino acids	86	159	240
Molecular Weight (kDa)	9.7	17.89	27.72
Localization	Secretory	Secretory	Cytoplasmic
Isoelectric point (pI)	4.93	4.67	4.72
GRAVY index	-0.279	-0.733	-0.521
Signal peptides	1-16	1-24	-
Disulfide bonds 38-68, 46-65, 54		17-18	125-152, 160-182
% homology with human	57.50	31.83	85.83
% homology with mice	82.56	75.47	96.67

Spink2

atg ctg aga ctg gtg ctg ttg ctc ctg gcc aca gac ttt gca gct tct gat gac tct ctg gac tct tcc gat tct M L R L V L L L L A T D F A A S D D S L D S S D S caa etc ata aag agg tea eaa tte aga aca eea gae tgt eat egt ttt gae tae eea gta tge tee aag eae etc Q L I K R S Q F R T P D C H R F D Y P V C S K H L age eet gtg tge gga aeg gat atg aac aet tat ggg aat gaa tge aet etg tge atg aaa ate agg gag gat S P V C G T D M N T Y G N E C T L C M K I R E D ggt age cat att aac atc atc aag gac gag cca tgc tga G S H I N I I K D E P C -

Spaca7

atg gca gcg aat agg gga gca agg acc tte tta tee gtt tte etg etg tge tge tgg eaa gte act gag eta eat MAANRGARTFLSVFLLCCWQVTELH cca gte aag aca act tea ggt eea ate act gaa gge gtt tte aac tea aca act gaa aac ata eet gaa ace tta PVKTTSGPITEGVFNSTTENIPETL gat gaa att eta gee eaa gat att ttg gag eea aga act tea gea atg tet gea aca aca eea ega aca aga teg D E I L A Q D I L E P R T S A M S A T T P R T R S cca aca cag aca aca gta caa acc aag gaa cca aat gct ggt att gaa gaa aac tac caa gag gaa gcc ttt PTQTTVQTKEPNAGIEENYQEEAF gag aac tac cac gag ttc ctg gag aat tta gaa cac tca tct agg aag aag gcg aaa agt gac aat aat gaa E N Y H E F L E N L E H S S R K K A K S D N N E aag aag agt tea aag gat gat gtg tat gag aaa etg tet gtt etg gae aga atg att gaa aac eea gga eaa tet K K S S K D D V Y E K L S V L D R M I E N P G Q S gaa ggc agc ctg gag cta aca gaa agc atc ttt tag


EGSLELTESIF-

Pdcl2

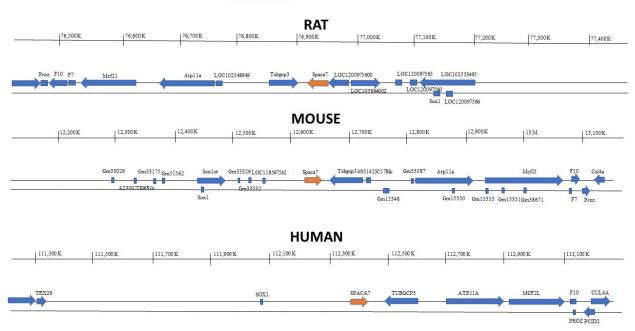
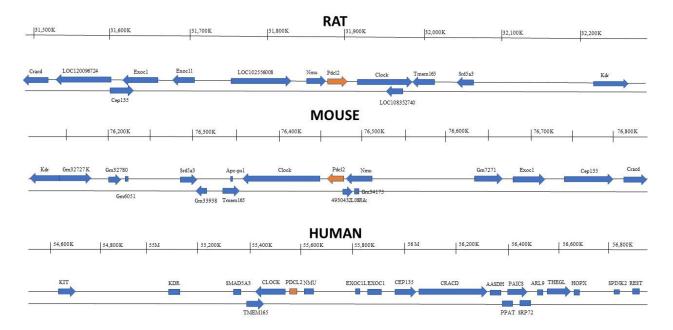

atg cag gat cca aat gaa gat aca gaa tgg aat gaa att tta agg aat ttt ggc att ctt cct cca aaa gaa gaa M Q D P N E D T E W N E I L R N F G I L P P K E E cca aaa gat gaa att gaa gag atg gtg ttg cgc tta cag gag gaa gca atg gtt aag cca tat gag aag atg PKDEIEEMVLRLQEEAMVKPYEKM aca ctt gca cag ctg aaa gaa gca gaa gac gaa ttt gat gaa gac ata aaa gct ata gaa ata tat aga T LA Q L K E A E D E F D E E D I K A I E I Y R gaa aag cgg tta cag gaa tgg aaa gca ctc acg aag aaa caa aaa ttt ggg gaa ttg aga gaa att tct gga EKRLQEWKALTKKQKFGELREISG aat cag tat gta aat gaa gte aca aat gea gaa aaa gae ttg tgg gtt ata att eat eta tae aga tea agt gte N Q Y V N E V T N A E K D L W V I I H L Y R S S V cca atg tgt ttg gtg gtt aac cag cat ctg agt gtc cta gca aga aag ttt cca gaa acc aaa ttt gtt aaa gcc P M C L V V N Q H L S V L A R K F P E T K F V K A atc gtg aat agc tgc att gaa cac tac cat gac aac tgt tta cca aca att ttt gtt tat aaa aat ggt cag ata gaa I V N S C I E H Y H D N C L P T I FV Y K N G Q I E ggc aaa ttc att gga gtt ata gaa tgt gga ggg ata aat ctc aag cta gaa gaa ctt gaa tgg aaa cta tca caa G K F I G V I E C G G I N L K L E E L E W K L S Q gtt gga gca ata cag act gac ttg gaa gaa aac ccc aaa aag ggc att gca gat atg atg gtg tct tcc att V G A I Q T D L E E N P K K G I A D M M V S S I agg aac gtt tee ate tat gae agt gae age tet gge agt gat get gag gee aag tag R N V S I Y D S D S S G S D A E A K -

Figure 1. Sequence alignment of the characterized genes. mRNA sequence obtained by sequencing was translated and aligned with the corresponding protein sequence.


FIGURE 2A

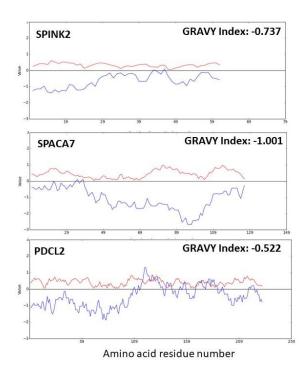

FIGURE 2B

FIGURE 2C

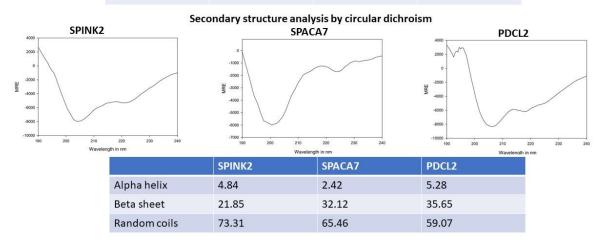

Figure 2. Gene neighbourhood analyses. Rat, mouse and human Spink2, Spaca7 and Pdcl2 genes were identified in the respective genomes and the presence of other genes in the vicinity are indicated. Size of the arrow / bar is not to scale is only indicative and does not correspond to the gene length.

Figure 3. Hydropathy and amphipathicity analyses. The protein sequences of rat SPINK2, SPACA7 and PDCL2 were subjected to in silico analyses. Blue and red lines indicate hydropathy and amphipathicity of the amino acids along the protein.

Secondary structure prediction by SOPMA

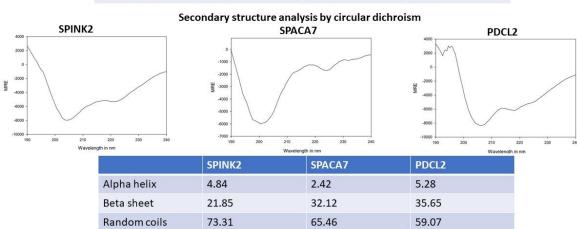
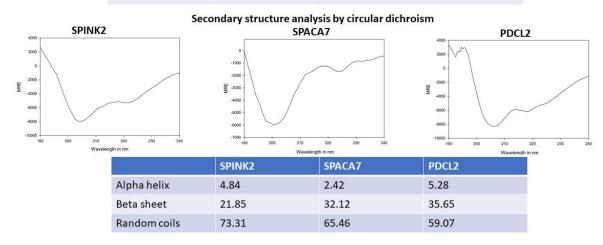
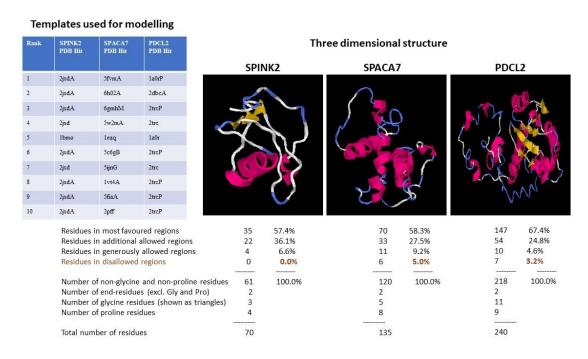

	SPINK2	SPACA7	PDCL2
Alpha helix	14.29	36.30	51.67
Beta sheet	4.29	2.96	4.58
Extended strand	10.00	5.19	10.00
Random coils	71.43	55.56	33.75

Figure 4. Determination of secondary structure. SPINK2, SPACA7 and PDCL2 were subjected to SOPMA and the predicted secondary structural components determined. Soluble fractions of the proteins were analyzed in a spectropolarimeter and the secondary structure calculated using K2D3 tool of Dichroweb.

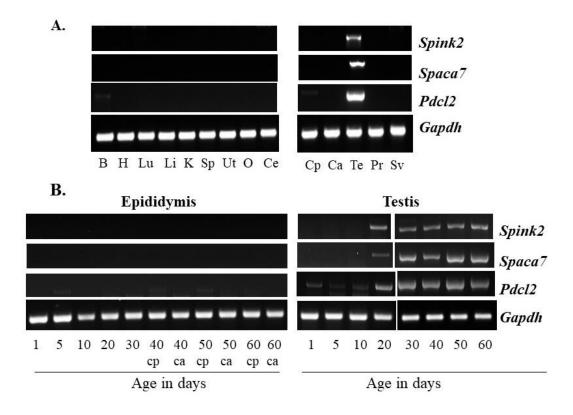
Secondary structure prediction by SOPMA

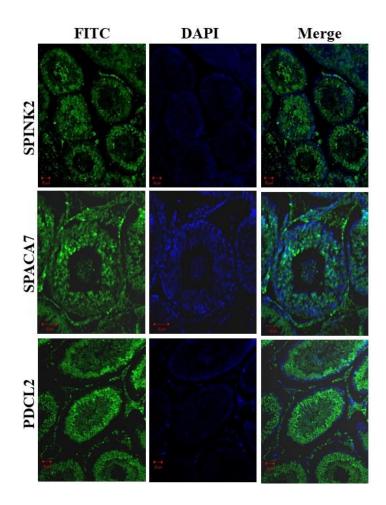

	SPINK2	SPACA7	PDCL2
Alpha helix	14.29	36.30	51.67
Beta sheet	4.29	2.96	4.58
Extended strand	10.00	5.19	10.00
Random coils	71.43	55.56	33.75


Figure 5. Effect of ion strength on the secondary structure. SPINK2, SPACA7 and PDCL2 dissolved in PBS containing 0 to 300 mM NaCl were analyzed in a spectropolarimeter and the secondary structure calculated using K2D3 tool of Dichroweb.

Secondary structure prediction by SOPMA

	SPINK2	SPACA7	PDCL2
Alpha helix	14.29	36.30	51.67
Beta sheet	4.29	2.96	4.58
Extended strand	10.00	5.19	10.00
Random coils	71.43	55.56	33.75


Figure 6. Effect of pH on the secondary structure. SPINK2, SPACA7 and PDCL2 dissolved in buffers of varying pH were analyzed in a spectropolarimeter and the secondary structure calculated using K2D3 tool of Dichroweb.


Figure 7. Three-dimensional structure. The amino acid sequence of SPINK2, SPACA7 and PDCL2 and the three-dimensional structure derived using LOMETS, I-TASSER, BLOSUM AND PROCHECK in silico tools.

Expression pattern of Spink2, Spaca7 and Pdcl2

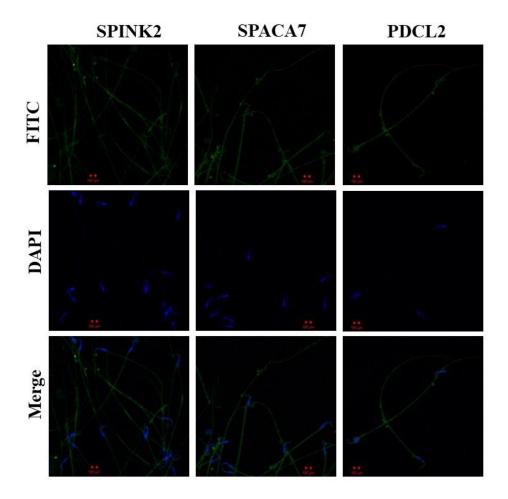

The mRNA expression of *Spink2*, *Spaca7* and *Pdcl2* were analyzed by PCR in different tissues obtained from adult rats (90 day old). All the three genes were found to be predominantly expressed in the testis (**Figure 8A**). A faint expression for *Pdcl2* was observed in the caput epididymis. The developmental expression pattern of these genes was analyzed in the epididymis and testis of 1-to-60-day old rats. The expression of *Spink2* and *Spaca7* was noticed starting from 20 days old, while that of *Pdcl2* was observed in all the age groups analyzed (**Figure 8B**). The faint expression of *Pdcl2* observed in the caput epididymis of adult rats was also reflected in this tissue obtained from all the age groups. Since the expression of *Spink2*, *Spaca7* and *Pdcl2* was found to be predominant in the testis, their protein expression was analyzed by immunofluorescence staining. SPINK2 protein expression appeared to be localized in the periphery of the seminiferous tubule, while that of SPACA7 and PDCL2 are on the periphery and on the spermatids in the lumen (**Figure 9**). Immunofluorescence detection on the spermatozoa revealed that all of these proteins were localized on the head midpiece and tail regions (**Figure 10**).

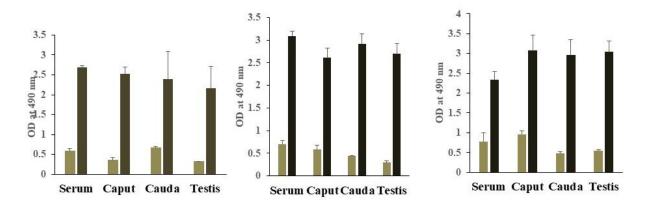
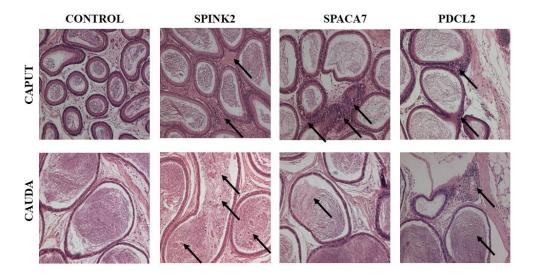
Figure 8. Tissue and developmental expression pattern of Spink2, Spaca 7 and Pdcl2. RNA isolated from different tissues was reverse transcribed and the expression pattern analyzed by PCR using gene specific primers. Cp and Ca denote caput and cauda respectively.

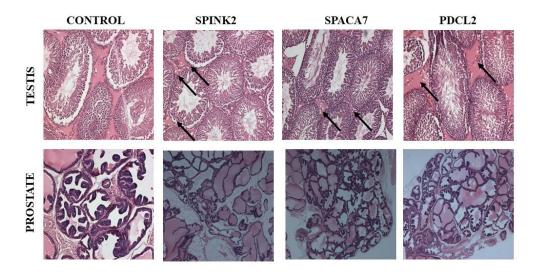
Figure 9. Immunofluorescence localization of SPINK2, SPACA7 and PDCL2. Five-micron sections of testis of adult rats were probed with respective polyclonal antibody and followed by anti-rat secondary antibody tagged with FITC. The sections were also stained with the background nuclear stain DAPI.

Figure 10. Immunofluorescene localization of SPINK2, SPACA7 and PDCL2. Spermatozoa of adult rats smeared on glass slides were probed with respective polyclonal antibody and followed by anti-rat secondary antibody tagged with FITC. The sections were also stained with the background nuclear stain DAPI.

Active immunization and antibody titer

Male rats when immunized with the recombinant SPINK2 or SPACA7 or PDCL2 displayed a significant antibody titer in the serum and the tissues fluids of caput, cauda and testis (**Figure 11**). Rats that had a high titer were used for further experimentation.


Figure 11. Antibody titre in immunized rats. Recombinant SPINK2 or SPACA7 or PDCL2 mixed with complete Fruend's adjuvant was administered via the foot pad route. Booster dose was given two weeks after first immunization. Serum was collected and the antibody titre estimated by ELISA.

Histopathological analyses

To assess the possible anatomical changes that may happen in the epididymis, testis and prostate of SPINK2 or SPACA7 or PDCL2 immunized rats, histopathological examination was carried out (Figures 12 and 13). Histopathological changes observed are presented briefly in table 2. In the caput epididymis of SPINK2 immunized rats, foci of inflammation and fibrosis in between tubules along with infiltration of inflammatory cells. Moderate degeneration of the epithelial cells of tubules was observed in SPACA7 immunized rats while mild mucosal degeneration and hyperplasia of epithelial cells is evident in the PDCL2 counterparts. Cauda epididymis obtained from SPINK2 immunized rats displayed multiple foci of necrosis, clumping of dead sperms and infiltration of plasma cells. Mild accumulation of fluids in few tubules of cauda epididymis was evident in SPACA7 immunized rats. Perivascular inflammation was predominant in the cauda of rats immunized with PDCL2. Cystic degenerative changes in between seminiferous tubules and infiltration of inflammatory cells was evident in the testes of SPINK2 immunized rats. SPACA7 immunization resulted in moderate vacuolar and cystic degeneration in between seminiferous tubules. Edema and accumulation of fluids in between seminiferous tubules are seminiferous tubules. No histopathological changes were observed in the prostate of rats immunized with SPINK2 or SPACA7 or PDCL2.

Figure 12. Histopathological evaluation of epididymis of immunized rats. Caput and cauda epididymis obtained from control and immunized rats were fixed and five-micron sections were prepared. The sections were stained with Hematoxylin and Eosin. Arrows indicate the anatomical change.

Figure 13. Histopathological evaluation of testis and prostate of immunized rats. Testis and prostate obtained from control and immunized rats were fixed and five-micron sections were prepared. The sections were stained with Hematoxylin and Eosin. Arrows indicate the anatomical change.

Table 2. Histological changes in the male reproductive tract tissues of immunized rats.

	SPINK2	SPACA7	PDCL2
Caput	Foci of inflammation and	Moderate degeneration of the	Mild mucosal degeneration
	fibrosis in between tubules	epithelial cells of tubules	and hyperplasia of epithelial
	along with infiltration of		cells
	inflammatory cells		
Cauda	Multiple foci of necrosis,	Mild accumulation of fluids in	Perivascular inflammation
	clumping of dead sperm and	few tubules	
	infiltration of plasma cells		
Testis	Cystic degenerative changes in	Moderate vacuolar and cystic	Edema and accumulation of
	between seminiferous tubules	degeneration in between	fluids in between seminiferous
	and infiltration of inflammatory	seminiferous tubules	tubules
	cells		
Prostate	Normal morphology	Normal morphology	Normal morphology

Fecundity, sperm count and sperm function

The fecundity of SPINK2 or SPACA7 or PDCL2 immunized rats was assessed by the size of the litter produced when the immunized animals were subjected to natural mating with females of proven fertility. Litter size was significantly reduced in the females mated with immunized male rats (**Figure 14**). The average litter size in the SPINK2 or SPACA7 or PDCL2 immunized rats was 1.00 ± 2.00 , 5.00 ± 1.32 and 4.66 ± 2.75 respectively. Sperm count was significantly reduced in rats immunized with SPINK2 or SPACA7 or PDCL2 immunized rats (**Figure 14**).

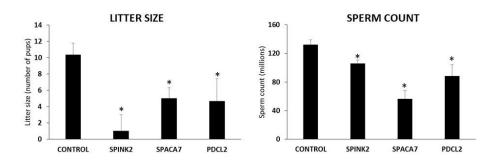


Figure 14. Litter size and sperm count. Each male rat from the control and immunized groups were cohabited with two females. Following detection of pregnancy, they were separated and the number of pups born to each female was noted. For the sperm count, cauda from the control and immunized rats was cut open and the gametes collected in phosphate buffered saline. The number of sperm were

counted using a hemocytometer. Values presented are Mean \pm S.D. *denotes p < 0.05 compared to control.

Testicular transcriptome landscape in immunized rats

RNA isolated from the testes of control or SPINK2 or SPACA7 or PDCL2 immunized rats was subjected to transcriptome analyses to determine the overview of a biological processes that may be affected upon ablation of these proteins. The differentially expressed genes (DEGs) that belong various categories are presented in table 3. The highest number of DEGs (872) was observed in the testes of PDCL2 immunized rats, while it was 434 and 283 in SPACA7 and SPINK2 counterparts respectively. A comprehensive list of up and down regulated genes in the testes of SPINK2 or SPACA7 or PDCL2 immunized rats are compiled in <u>supplementary tables 3 to 8</u>. The top 20 up and down regulated genes for each of these categories are presented in tables 4 to 9. The influence of the differential gene expression on different biological processes and cellular pathways was determined by gene ontology and KEGG pathway analyses (supplementary tables 9 to 14). The gene ontologies in which at least 10 genes were differentially expressed are listed in table 10. In the testes of SPINK2 immunized rats, processes related to extracellular exosome formation, extracellular space and response to drugs had 10 or more of DEGs. In the case of SPACA7 immunization, gene ontologies related to extracellular space, oxidation-reduction processes, endoplasmic reticulum membrane and response to drugs displayed more than 10 differentially expressed genes. There were 30 gene ontologies for which at least 10 genes were differentially expressed in the testes of PDCL2 immunized rats. Among these, gene ontology related to nuclear function had 142 genes that are differentially expressed, while it was 56 and 45 for the gene ontologies of protein binding and positive regulation of transcription from RNA polymerase II promoter respectively.

Table 3. Distribution of genes in the testis of SPINK2 immunized vs control rat.

	SPINK2 IMMUNIZED									
	Coding	Noncoding (lncRNA, snoRNA, snRNA)	Unassigned	Small RNA	Ribosomal	tRNA	Others	TOTAL		
Number of genes analyzed	19567	7480	0	109	11	103	174	27444		
Differentially expressed	169	109	0	1	0	2	2	283		
Upregulated	101	61	0	1	0	1	1	165		

Down	68	48	0	0	0	1	1	118
regulated								
			SPACA7 IM	MUNIZ	ED			
Number of	19538	7455	0	110	11	99	177	27390
genes								
analyzed								
Differentially	268	163	0	0	0	2	1	434
expressed								
Upregulated	172	63	0	0	0	0	0	235
Down	96	100	0	0	0	2	1	199
regulated								
	ı	1	PDCL2 IMN	MUNIZI	ED	l	I.	
Number of	19568	7480	0	113	11	100	176	27448
genes								
analyzed								
Differentially	630	228	0	6	3	1	4	872
expressed								
Upregulated	455	103	0	5	3	0	2	568
Down	175	125	0	1	0	1	2	304
regulated								

 Table 4. Top 20 upregulated genes in the testes of SPINK2 immunized rats.

GENE NAME	GENE	FOLD	р	DESCRIPTION	PROTEIN NAME
	ВІОТУРЕ	CHANGE	value		
		(log2)			
Amer3	protein_coding	9.63	0.02	-	APC membrane recruitment protein 3
LOC120097076	lncRNA	8.55	0.03	-	-
LOC108350879	lncRNA	8.23	0.03	-	-
Igsf23	protein_coding	7.66	0.01	-	immunoglobulin superfamily member 23
LOC120093265	lncRNA	7.21	0.01	-	-
Gzmm	protein_coding	7.16	0.01	granzyme M	granzyme M isoform X1; granzyme M
					precursor; granzyme M isoform X2
LOC120093264	lncRNA	7.11	0.01	-	-
Rrad	protein_coding	6.89	0.01	RRAD, Ras	GTP-binding protein RAD; GTP-binding
				related glycolysis	protein RAD isoform X1
				inhibitor and	
				calcium channel	
				regulator	
LOC120099175	protein_coding	6.83	0.01	-	uncharacterized protein LOC120099175
LOC688459	protein_coding	6.83	0.02	hypothetical	uncharacterized protein C6orf141 homolog
				protein	
				LOC688459	
Zeb2-as1	lncRNA	6.76	0.01	ZEB2 antisense	-
				RNA 1	
LOC120093161	C_region	6.76	0.03	-	-
Mir29c	miRNA	6.63	0.03	microRNA 29c	-
Rcvrn	protein_coding	6.47	0.04	recoverin	recoverin
Edn1	protein_coding	6.39	0.02	endothelin 1	endothelin-1 preproprotein
Tac4	protein_coding	6.39	0.03	tachykinin	tachykinin-4 preproprotein
				precursor 4	
LOC120102259	lncRNA	6.39	0.03	-	-
Klhdc7b	protein_coding	6.30	0.03	-	kelch domain-containing protein 7B
Aicda	protein_coding	6.21	0.04	activation-	single-stranded DNA cytosine deaminase
				induced cytidine	
				deaminase	
Insyn1	protein_coding	6.11	0.03	inhibitory	inhibitory synaptic factor 1
				synaptic factor 1	
			I		

 Table 5. Top 20 down regulated genes in the testes of SPINK2 immunized rats.

GENE NAME	GENE	FOLD	р	DESCRIPTION	PROTEIN NAME
	ВІОТҮРЕ	CHANGE	value		
		(log2)			
LOC102551538	V_segment	-7.67	0.03	-	-
Ces2a	protein_coding	-7.63	0.04	carboxylesterase 2A	pyrethroid hydrolase Ces2a precursor
Adamtsl2	protein_coding	-7.34	0.02	-	ADAMTS-like protein 2 isoform X1; ADAMTS-like protein 2 isoform X2; ADAMTS-like protein 2 isoform X3
Trnas-aga	tRNA	-7.28	0.01	-	-
LOC102548951	lncRNA	-7.23	0.01	-	-
Ifit1	protein_coding	-7.23	0.04	interferon- induced protein with tetratricopeptide repeats 1	interferon-induced protein with tetratricopeptide repeats 1-like protein
LOC120100998	protein_coding	-7.04	0.01	-	60S ribosomal protein L6-like
LOC120093847	IncRNA	-7.04	0.02	-	-
LOC103691619	lncRNA	-6.90	0.02	-	-
LOC120095558	lncRNA	-6.90	0.03	-	-
Wfdc9	protein_coding	-6.90	0.03	WAP four- disulfide core domain 9	protein WFDC9 isoform X1; protein WFDC9 precursor
LOC120100623	lncRNA	-6.90	0.02	-	-
LOC102552337	protein_coding	-6.75	0.03	-	oogenesin-3-like
LOC120094201	lncRNA	-6.67	0.02	-	-
LOC120099009	protein_coding	-6.58	0.03	-	LOW QUALITY PROTEIN: uncharacterized protein LOC120099009, partial
LOC102555382	lncRNA	-6.58	0.02	-	-
LOC120095907	IncRNA	-6.49	0.04	-	-
Lep	protein_coding	-6.28	0.05	leptin	leptin precursor; leptin isoform X1
Clrn1	protein_coding	-6.17	0.04	clarin 1	clarin-1

Ccdc190	protein_coding	-6.17	0.04	coiled-coil	coiled-coil domain-containing protein
				domain	190 isoform X1; coiled-coil domain-
				containing 190	containing protein 190

 Table 6. Top 20 up regulated genes in the testes of SPACA7 immunized rats.

GENE NAME	GENE	FOLD	р	DESCRIPTION	PROTEIN NAME
	ВІОТҮРЕ	CHANGE	value		
		(log2)			
LOC103690754	protein_coding	8.43	0.05	-	Kruppel-like factor 18
LOC120097076	lncRNA	8.13	0.04	-	-
Gabrp	protein_coding	7.48	0.01	gamma-	gamma-aminobutyric acid receptor
				aminobutyric acid	subunit pi precursor; gamma-
				type A receptor	aminobutyric acid receptor subunit pi
				subunit pi	isoform X1; gamma-aminobutyric acid
					receptor subunit pi isoform X2
LOC103692519	protein_coding	7.43	0.03	-	60S ribosomal protein L9-like
LOC120098480	protein_coding	7.13	0.02	-	keratin-associated protein 5-2-like
Afp	protein_coding	7.07	0.02	alpha-fetoprotein	alpha-fetoprotein precursor; alpha-
					fetoprotein isoform X1
Igsf23	protein_coding	7.07	0.01	-	immunoglobulin superfamily member
					23
LOC120093265	lncRNA	6.92	0.01	-	-
LOC120093264	lncRNA	6.84	0.01	-	-
Edn1	protein_coding	6.67	0.02	endothelin 1	endothelin-1 preproprotein
LOC120102259	lncRNA	6.67	0.02	-	-
LOC120103009	lncRNA	6.58	0.03	-	-
LOC102546604	lncRNA	6.48	0.02	-	-
LOC120098271	lncRNA	6.48	0.02	-	-
LOC120099175	protein_coding	6.48	0.02	-	uncharacterized protein LOC120099175
LOC120096012	IncRNA	6.37	0.03	-	-
LOC103691283	IncRNA	6.37	0.02	-	-
Zeb2-as1	IncRNA	6.37	0.02	ZEB2 antisense	-
				RNA 1	
Tnfrsf13c	protein_coding	6.26	0.04	-	tumor necrosis factor receptor
					superfamily member 13C
LOC120095890	IncRNA	6.26	0.03	-	-

 Table 7. Top 20 down regulated genes in the testes of SPACA7 immunized rats.

GENE NAME	GENE	FOLD	p	DESCRIPTION	PROTEIN NAME
	ВІОТҮРЕ	CHANGE	value		
		(log2)			
LOC108349942	IncRNA	-9.70	0.02	-	-
LOC108349630	IncRNA	-7.79	0.01	-	-
LOC108350487	IncRNA	-7.54	0.04	-	-
LOC103691682	V_segment	-7.53	0.00	-	-
LOC120097113	IncRNA	-7.34	0.04	-	-
Thrsp	protein_coding	-7.12	0.03	thyroid hormone	thyroid hormone-inducible hepatic
				responsive	protein
LOC120100746	IncRNA	-7.12	0.01	-	-
LOC120097866	IncRNA	-6.91	0.02	-	-
LOC108348495	IncRNA	-6.60	0.02	-	-
LOC102547251	IncRNA	-6.60	0.02	-	-
Trnal-aag	tRNA	-6.53	0.03	-	-
Trnal-aag	tRNA	-6.46	0.03	-	-
LOC102550954	IncRNA	-6.46	0.03	-	-
Or51t1	protein_coding	-6.46	0.02	-	olfactory receptor 51T1
Ckmt2	protein_coding	-6.38	0.02	creatine kinase,	creatine kinase S-type, mitochondrial
				mitochondrial 2	isoform X1; creatine kinase S-type,
					mitochondrial precursor
LOC120097471	lncRNA	-6.38	0.02	-	-
Rhox5	protein_coding	-6.30	0.02	Rhox homeobox	homeobox protein Rhox5 isoform X1;
				family member 5	homeobox protein Rhox5; homeobox
					protein Rhox5 isoform X2
LOC120100091	IncRNA	-6.30	0.03	-	-
Hephl1	protein_coding	-6.21	0.03	hephaestin-like 1	ferroxidase HEPHL1; ferroxidase
					HEPHL1 isoform X1
Gucy2f	protein_coding	-6.21	0.04	guanylate cyclase	retinal guanylyl cyclase 2 precursor
				2F	

 Table 8. Top 20 upregulated genes in the testes of PDCL2 immunized rats.

GENE NAME	GENE	FOLD	р	DESCRIPTION	PROTEIN NAME
	ВІОТҮРЕ	CHANGE	value		
		(log2)			
LOC120096641	lncRNA	9.02	0.05	-	-
LOC120097076	lncRNA	7.84	0.04	-	-
LOC100912943	protein_coding	6.84	0.03	-	mucin-3A-like
Gpr143	protein_coding	6.78	0.01	G protein-coupled	G-protein coupled receptor 143; G-
				receptor 143	protein coupled receptor 143 isoform
					X1
LOC108352834	protein_coding	6.78	0.02	-	acidic proline-rich protein PRP25-like
Insyn1	protein_coding	6.65	0.02	inhibitory synaptic	inhibitory synaptic factor 1
				factor 1	
Loxl4	protein_coding	6.58	0.02	lysyl oxidase-like 4	lysyl oxidase homolog 4 isoform X1;
					lysyl oxidase homolog 4 precursor; lysyl
					oxidase homolog 4 isoform X2
Zeb2-as1	lncRNA	6.50	0.02	ZEB2 antisense	-
				RNA 1	
LOC120099175	protein_coding	6.50	0.02	-	uncharacterized protein LOC120099175
LOC103691283	lncRNA	6.42	0.02	-	-
Galr1	protein_coding	6.34	0.03	galanin receptor 1	galanin receptor type 1
Fam156b	protein_coding	6.34	0.03	-	protein FAM156A/FAM156B-like
LOC120093264	lncRNA	6.34	0.02	-	-
LOC120103009	lncRNA	6.25	0.03	-	-
Klk13	protein_coding	6.25	0.03	kallikrein related-	kallikrein-13 precursor
				peptidase 13	
LOC120095094	protein_coding	6.25	0.04	-	putative uncharacterized protein
					MSANTD5
Olr1394	protein_coding	6.25	0.03	olfactory receptor	olfactory receptor Olr1394
				1394	
Klhdc7b	protein_coding	6.25	0.03	-	kelch domain-containing protein 7B
Gzmm	protein_coding	6.25	0.03	granzyme M	granzyme M isoform X1; granzyme M
					precursor; granzyme M isoform X2
LOC108349679	lncRNA	6.16	0.04	-	-

 Table 9. Top 20 down regulated genes in the testes of PDCL2 immunized rats.

GENE NAME	GENE	FOLD	р	DESCRIPTION	PROTEIN NAME
	ВІОТҮРЕ	CHANGE	value		
		(log2)			
RT1-N2	protein_coding	-10.94	0.01	RT1 class Ib,	RT1 class Ib, locus N2 isoform X5; RT1
				locus N2	class Ib, locus N2 precursor; RT1 class
					Ib, locus N2 isoform X1; RT1 class Ib,
					locus N2 isoform X3; RT1 class Ib,
					locus N2 isoform X4; RT1 class Ib,
					locus N2 isoform X2
LOC102546775	lncRNA	-9.84	0.02	-	-
Nefl	protein_coding	-7.80	0.01	neurofilament	neurofilament light polypeptide
				light	
LOC120093224	IncRNA	-7.33	0.01	-	-
LOC102549213	lncRNA	-6.95	0.04	-	-
RGD1566006	protein_coding	-6.85	0.03	-	paired immunoglobulin-like type 2
					receptor beta isoform X1; paired
					immunoglobulin-like type 2 receptor
					beta isoform X2; paired
					immunoglobulin-like type 2 receptor
					beta isoform X3
RGD1561736	protein_coding	-6.63	0.05	-	60S ribosomal protein L10-like
Gng4	protein_coding	-6.63	0.02	-	guanine nucleotide-binding protein
					G(I)/G(S)/G(O) subunit gamma-4
Clec4f	protein_coding	-6.63	0.02	C-type lectin	C-type lectin domain family 4 member F
				domain family 4,	
				member F	
Fzd10	protein_coding	-6.54	0.03	frizzled class	frizzled-10 precursor
				receptor 10	
Has1	protein_coding	-6.44	0.03	hyaluronan	hyaluronan synthase 1; hyaluronan
				synthase 1	synthase 1 isoform X1
LOC108350474	lncRNA	-6.44	0.02	-	-
LOC108352734	lncRNA	-6.44	0.04	-	-
LOC120098955	lncRNA	-6.33	0.03	-	-
LOC120102428	lncRNA	-6.33	0.04	-	-
LOC103690816	lncRNA	-6.33	0.02	-	-

LOC102551022	lncRNA	-6.22	0.04	-	-	
Npy5r	protein_coding	-6.22	0.03	neuropeptide Y	neuropeptide Y receptor type 5 isoform	
				receptor Y5	X1; neuropeptide Y receptor type 5	
Defb28	protein_coding	-6.22	0.03	-	beta-defensin 115	
LOC120103273	snoRNA	-6.09	0.04	-	-	

 Table 10. Gene ontology analyses in the testes of immunized rats.

GO	Category	Description	Gene
			count
		SPINK2 IMMUNIZED	
GO:0070062	CC	extracellular exosome	26
GO:0005615	CC	extracellular space	16
GO:0042493	BP	response to drug	10
		SPACA7 IMMUNIZED	
GO 0005615	CC	, 11 1	26
GO:0005615	CC	extracellular space	26
GO:0055114	BP	oxidation-reduction process	18
GO:0005789	CC	endoplasmic reticulum membrane	13
GO:0042493	BP	response to drug	11
	1	PDCL2 IMMUNIZED	1
GO:0005634	CC	Nucleus	142
GO:0005515	MF	protein binding	56
GO:0045944	BP	positive regulation of transcription from RNA polymerase II promoter	45
GO:0000122	BP	negative regulation of transcription from RNA polymerase II	39
GO:0000122	Dr	promoter	39
GO:0006355	BP	regulation of transcription, DNA-templated	39
GO:0003677	MF	DNA binding	38
GO:0006351	BP	transcription, DNA-templated	30
GO:0043565	MF	sequence-specific DNA binding	29
GO:0003700	MF	transcription factor activity, sequence-specific DNA binding	28
GO:0007165	BP	signal transduction	24
GO:0006366	BP	transcription from RNA polymerase II promoter	22
GO:0030054	CC	cell junction	21
GO:0006357	BP	regulation of transcription from RNA polymerase II promoter	20
GO:0000978	MF	RNA polymerase II core promoter proximal region sequence-	19
		specific DNA binding	
GO:0043547	BP	positive regulation of GTPase activity	19
GO:0003682	MF	chromatin binding	18
GO:0043005	CC	neuron projection	18

GO:0030154	BP	cell differentiation	17
GO:0035556	BP	intracellular signal transduction	16
GO:0001077	MF	transcriptional activator activity, RNA polymerase II core	15
		promoter proximal region sequence-specific binding	
GO:0001701	BP	in utero embryonic development	15
GO:0008285	BP	negative regulation of cell proliferation	15
GO:0000981	MF	RNA polymerase II transcription factor activity, sequence-	14
		specific DNA binding	
GO:0004674	MF	protein serine/threonine kinase activity	14
GO:0007420	BP	brain development	14
GO:0005765	CC	lysosomal membrane	13
GO:0005096	MF	GTPase activator activity	12
GO:0005578	CC	proteinaceous extracellular matrix	12
GO:0010629	BP	negative regulation of gene expression	10
GO:0015629	CC	actin cytoskeleton	10

DISCUSSION

Tissue specific expression of genes confer unique properties for an organ. The testis, because of its primary role in gametogenesis, evolved its own physiological process, some of which are general and while some are unique. The uniqueness arises out due the expression of a variety of genes and their protein products that are testis specific dictated by tight transcription control mechanisms (Kimmins, Kotaja et al. 2004, Djureinovic, Fagerberg et al. 2014, Brown 2019). Further, within the testis, the stage specific expression of genes during spermatogenesis is crucial (Johnston, Wright et al. 2008). Recent studies characterized the functional role of testis –specific or –predominantly expressed genes (Lin, Li et al. 2016, Kurihara, Otsuka et al. 2017, Pineau, Hikmet et al. 2019, Hong, Han et al. 2021). Such identification and characterization is an active area of research which contributes to in depth understanding of the molecular mechanisms that govern testicular function. Hence, in this study, we characterized the functional role of three rat genes, namely *Spink2*, *Spaca7* and *Pdcl2* that are predominantly expressed in the testis. It is a well-accepted concept that functional divergence exists between orthologs and paralogs (Altenhoff, Studer et al. 2012, Gabaldón and Koonin 2013). Though the functional role of Spink and *Spaca7* is reported in humans and mice, we attempted to characterize their functional role in the rat.

In silico analyses indicated that rat Spink2, Spaca7 and Pdcl2 exist independently on chromosomes 14, 16 and 14 respectively and not clustered with their homologs. As revealed by neighborhood analyses, it is interesting to note that for each of these rat genes, other genes that are present in their vicinity are same as that are found for mouse and humans, indicating the conserved evolution in the three species. The secondary structure derived by circular dichroism for SPINK2, SPACA7 and PDCL2 varied to a large extent to what was predicted by SOPMA analyses. Absence of significant changes in the secondary structure of these proteins under different ion concentrations and varying pH indicates their stable nature under different physiological conditions. Their stable structural features were also confirmed by Ramachandran plot analyses, wherein very few amino acids were indicated in the disallowed regions, indicating that the models generated may truly reflect the structural aspects at the biological level.

The mRNA expression of rat *Spink2*, *Spaca7* and *Pdcl2* was found to be predominant in the testis. In the humans and mice, *Spink2* expression was predominant in the testis (Fink, Hehlein-Fink et al. 1990, Möritz, Lilja et al. 1991, Lee, Park et al. 2011). Similarly, *Spaca7* expression was restricted to the testis in mice and humans (Korfanty, Toma et al. 2012). On the same lines, the expression of *Pdcl2* is predicted to be testis specific in mice and humans (*PDCL2*)(*PDCL2*)('PDCL2')(Anon). The predominant expression of the three genes in mice, rat and humans indicate a conserved evolution pattern and possibly the functional role. Developmental expression of organ specific genes provides vital information on the correlation between the onsets of a physiological process at specific stages of

ontogeny. Testicular and epididymal genes are developmentally regulated because of the variations in androgen levels during development (Rodriguez, Kirby et al. 2001). We observed the onset of expression of rat *Spink2*, *Spaca7* and *Pdcl2* in 20-day old rats and continued till adulthood. In the rat, testicular androgens begin to increase at around 30 days post-natal age (Harris and Bartke 1974, Harris and Bartke 1981) and this could be a triggering factor for the onset of expression of these genes. Besides testosterone, testicular factors are also known to control gene expression; and their influence on the expression of *Spink2*, *Spaca7* and *Pdcl2* needs further investigation. It appears that *Pdcl2* expression is at low levels until 10 days. This could be due to a variety of testicular factors that govern its expression. Alternatively, the expression of Pdcl2 is required for testicular development right from day 1 of postnatal age, while that of Spink2 and Spaca7 are important at later stages. Immunofluorescence staining SPINK2, SPACA7 and PDCL2 protein expression in the rat testes, thus corroborating the mRNA expression pattern. The distribution of these proteins in all cell types of the testes indicates their functional role in many cellular processes, including gametogenesis. Localization of these proteins on the sperm surface could be due to their addition to the maturing spermatids in the testis. However, the significance of binding of these proteins to the sperm surface should be studied in depth.

Basing on previous studies, we predicted that SPINK2 and SPACA7 may have a role in fertility (Lee, Park et al. 2011, Nguyen, Westmuckett et al. 2014). In the absence of any reports on the role of PDCL2 in fertility; and because of its predominant expression in the testis, we investigated its role in male reproductive function. In this study, active immunization of male rats against the three proteins resulted in significantly decreased fecundity. The reduced fecundity was associated with decreased sperm count in SPINK2 or SPACA7 or PDCL2 immunized rats. Reduction in fecundity was associated with decreased sperm count due to active immunization against testicular and epididymal proteins such as SPAG11A, GnRH, uPA, LYZLs, PATE proteins (Narmadha and Yenugu 2016, Rajesh and Yenugu 2017, Aponte, Gutierrez-Reinoso et al. 2018, Sangeeta and Yenugu 2020). Histopathological examination of caput, cauda and testis of immunized rats revealed damage to the anatomical architecture. Such a damage could affect spermatogenesis and sperm maturation as well. Ablation of SPINK2 or SPACA7 or PDCL2 could affect the male reproductive function at multiple targets. Further analyses on sperm parameters using computer assisted sperm analyzer would provide more information on the exact functions that are affected by these proteins.

The physiological, cellular, biochemical, transcriptional and translational processes governed by a protein is best characterized by eliminating the presence of that protein either by knocking out the gene responsible for its expression or by ablating the protein levels by active immunization. Since active immunization is relatively a simple technique than transgenesis, we chose this method for a preliminary investigation on the changes at the transcriptomics level under conditions of SPINK2 or SPACA7 or PDCL2 ablation. Differential expression of genes that cater to a variety of physiological and cellular processes was evident in the testis of immunized rats. There are only a few studies that reported on the

influence of ablation of a protein by active immunization on changes at the transcriptomics level. Active immunization against inhibin alpha-subunit resulted in the differential expression of genes involved in testicular development, testosterone secretion and testicular function (Akhtar, Wei et al. 2019). In our studies, we observed that ablation of the epididymis specific protein SPAG11A resulted in changes in the transcriptomic profile that favours oncogenesis akin to a condition caused by chemical carcinogen (Sangeeta and Yenugu 2022).

In the testis of SPINK2 and SPACA7 immunized rats, the topmost gene ontology that was affected was extracellular exosome, suggesting that these proteins may play a role in exosome mediated testicular function. The role of exosomes in sperm maturation was proposed earlier (Sullivan, Saez et al. 2005) and their importance in reproductive medicine is gaining importance in the recent years (Kharazi and Badalzadeh 2020). While the components of the exosomes derived from the endothelial cells of the testis play a vital role in spermatogenesis (Song, Gu et al. 2021), Sertoli cell derived exosomes protected the spermatogonial cells from the harmful effects of electromagnetic radiation (Salek, Baharara et al. 2021). The testicular extracellular vesicles from thy 1-positive spermatogonial suppressed the proliferation of spermatogonial stem cells in the mouse (Lin, Fang et al. 2021). These lines of evidence indicate that SPINK2 and SPACA7, may regulate the function of factors involved in extracellular exosomes. Active immunization against PDCL2 caused differential expression of 142 genes that are involved in nuclear function and this topped the gene ontology analyses. Further, majority of the gene ontologies that were affected belonged to cellular processes that occur in the nucleus such as transcription, sequence specific DNA binding, chromatin binding, signal transduction, etc. Members of the phoscucin-like family are characterized to function as molecular chaperones regulators of expression of heteromeric G proteins and interact with the subunits of G proteins (Barhite, Thibault et al. 1998, Gao, Sinha et al. 2013, Krzemień-Ojak, Góral et al. 2017). A plethora of molecular mechanisms occur during spermatogenesis (Guerra-Carvalho, Carrageta et al. 2021). Phosducin-like family members, including PDCL2, being molecular chaperones may have critical role in the nuclear events of male gametogenesis, a domain of research that is not yet explored.

In conclusion, we report the predominant expression of *Spink2*, *Spaca7* and *Pdcl2* in the rat testis. Ablation of SPINK2, SPACA7 and PDCL2 by active immunization resulted in decreased fecundity that was associated with reduced sperm count and damage to the anatomical structure of the epididymis and testis. Further, differential gene expression of the components involved in extracellular exosomes and nuclear function were evident in the testis of SPINK2/SPACA7 and PDCL2 immunized rats. Results of our study indicate the important role of these three proteins in male fertility and their absence may affect cellular and molecular process of gametogenesis.

REFERENCES

- . "PDCL2." from https://www.proteinatlas.org/ENSG00000163440-PDCL2/tissue.
- Akhtar, M. F., Q. Wei, H. Zhu, Z. Chen, E. Ahmad, S. Zhendan and F. Shi (2019). "The role of active immunization against inhibin α-subunit on testicular development, testosterone concentration and relevant genes expressions in testis, hypothalamus and pituitary glands in Yangzhou goose ganders." Theriogenology **128**: 122-132.
- Altenhoff, A. M., R. A. Studer, M. Robinson-Rechavi and C. Dessimoz (2012). "Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs." <u>PLoS Comput Biol</u> 8(5): e1002514.
- Aponte, P. M., M. A. Gutierrez-Reinoso, E. G. Sanchez-Cepeda and M. Garcia-Herreros (2018). "Active immunization against GnRH in pre-pubertal domestic mammals: testicular morphometry, histopathology and endocrine responses in rabbits, guinea pigs and ram lambs." <u>Animal</u> **12**(4): 784-793.
- Araujo, S. C. and R. P. Bertolla (2021). "Protein markers of spermatogenesis and their potential use in the management of azoospermia." <u>Expert Rev Proteomics</u> **18**(11): 939-948.
- Arnold, K., L. Bordoli, J. Kopp and T. Schwede (2006). "The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling." <u>Bioinformatics (Oxford, England)</u> **22**(2): 195-201.
- Barbaux, S., C. Ialy-Radio, M. Chalbi, E. Dybal, M. Homps-Legrand, M. Do Cruzeiro, D. Vaiman, J. P. Wolf and A. Ziyyat (2020). "Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion." Sci Rep **10**(1): 5335.
- Barhite, S., P. Thibault and M. Miles (1998). "Phosducin-like protein (PhLP), a regulator of G beta gamma function, interacts with the proteasomal protein SUG1 " <u>Biochimica et Biophysica Acta</u> **1402**(1): 95-101.
- Bellil, H., F. Ghieh, E. Hermel, B. Mandon-Pepin and F. Vialard (2021). "Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility." <u>Basic Clin Androl</u> **31**(1): 9.
- Bieniek, J. M., A. P. Drabovich and K. C. Lo (2016). "Seminal biomarkers for the evaluation of male infertility." Asian Journal of Andrology **18**(3): 426-433.
- Brown, J. C. (2019). "Control of human testis-specific gene expression." PLoS One 14(9): e0215184.
- Capoano, C. A., L. A. Ortiz-Laquintana, R. Rodríguez-Casuriaga, G. Schlapp, M. N. Meikle, A. P. Mulet, M. Crispo, R. Benavente and A. Geisinger (2021). "SPATS1 (spermatogenesis-associated, serine-rich 1) is not essential for spermatogenesis and fertility in mouse." <u>PLoS One</u> **16**(5): e0251028.
- Chen, P., H. Saiyin, R. Shi, B. Liu, X. Han, Y. Gao, X. Ye, X. Zhang and Y. Sun (2021). "Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex." Hum Reprod **36**(9): 2587-2596.
- Chen, S., Y. Zhou, Y. Chen and J. Gu (2018). "fastp: an ultra-fast all-in-one FASTQ preprocessor." Bioinformatics **34**(17): i884-i890.
- de Sena Brandine, G. and A. D. Smith (2019). "Falco: high-speed FastQC emulation for quality control of sequencing data." F1000Res 8: 1874.
- Djureinovic, D., L. Fagerberg, B. Hallström, A. Danielsson, C. Lindskog, M. Uhlén and F. Pontén (2014). "The human testis-specific proteome defined by transcriptomics and antibody-based profiling." Mol Hum Reprod **20**(6): 476-488.

- Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." <u>Bioinformatics</u> **29**(1): 15-21.
- Eddy, E. M. (2002). "Male germ cell gene expression." Recent Prog Horm Res 57: 103-128.
- Fink, E., C. Hehlein-Fink and M. Eulitz (1990). "Amino acid sequence elucidation of human acrosintrypsin inhibitor (HUSI-II) reveals that Kazal-type proteinase inhibitors are structurally related to beta-subunits of glycoprotein hormones." FEBS Lett 270(1-2): 222-224.
- Frishman, D. and P. Argos (1995). "Knowledge-based protein secondary structure assignment." <u>Proteins</u> **23**(4): 566-579.
- Fujihara, Y., S. Herberg, A. Blaha, K. Panser, K. Kobayashi, T. Larasati, M. Novatchkova, H. C. Theussl, O. Olszanska, M. Ikawa and A. Pauli (2021). "The conserved fertility factor SPACA4/Bouncer has divergent modes of action in vertebrate fertilization." Proc Natl Acad Sci U S A **118**(39).
- Fujihara, Y., Y. Satouh, N. Inoue, A. Isotani, M. Ikawa and M. Okabe (2012). "SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia." Development **139**(19): 3583-3589.
- Gabaldón, T. and E. V. Koonin (2013). "Functional and evolutionary implications of gene orthology." Nat Rev Genet **14**(5): 360-366.
- Gao, X., S. Sinha, M. Belcastro, C. Woodard, V. Ramamurthy, P. Stoilov and M. Sokolov (2013). "Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins." <u>J Biol Chem</u> **288**(36): 25760-25768.
- Geourjon, C. and G. Deléage (1995). "SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments." Computer applications in the biosciences: CABIOS **11**(6): 681-684.
- Guerra-Carvalho, B., D. F. Carrageta, L. Crisóstomo, R. A. Carvalho, M. G. Alves and P. F. Oliveira (2021). "Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects." Anim Reprod Sci: 106896.
- Harris, M. E. and A. Bartke (1974). "Concentration of testosterone in testis fluid of the rat." Endocrinology **95**(3): 701-706.
- Harris, M. E. and A. Bartke (1981). "Androgen levels in the rete testis fluid during sexual development." Experientia **37**(4): 426-427.
- Hong, S. H., G. Han, S. J. Lee, J. Cocquet and C. Cho (2021). "Testicular germ cell-specific lncRNA, Teshl, is required for complete expression of Y chromosome genes and a normal offspring sex ratio." Sci Adv 7(24).
- Jeong, J., B. Lee, J. Kim, J. Kim, S. H. Hong, D. Kim, S. Choi, B. N. Cho and C. Cho (2019). "Expressional and functional analyses of epididymal SPINKs in mice." <u>Gene Expr Patterns</u> **31**: 18-25.
- Johnston, D. S., W. W. Wright, P. Dicandeloro, E. Wilson, G. S. Kopf and S. A. Jelinsky (2008). "Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells." <u>Proc Natl Acad Sci U S A</u> 105(24): 8315-8320.
- Kharazi, U. and R. Badalzadeh (2020). "A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine." Reprod Biol **20**(4): 447-459.
- Kimmins, S., N. Kotaja, I. Davidson and P. Sassone-Corsi (2004). "Testis-specific transcription mechanisms promoting male germ-cell differentiation." <u>Reproduction</u> **128**(1): 5-12.

- Kishida, K., H. Harayama, F. Kimura and T. Murakami (2016). "Individual differences in the distribution of sperm acrosome-associated 1 proteins among male patients of infertile couples; their possible impact on outcomes of conventional in vitro fertilization." Zygote 24(5): 654-661.
- Korfanty, J., A. Toma, A. Wojtas, A. Rusin, N. Vydra and W. Widlak (2012). "Identification of a new mouse sperm acrosome-associated protein." <u>Reproduction</u> **143**(6): 749-757.
- Krzemień-Ojak, Ł., A. Góral, E. Joachimiak, A. Filipek and H. Fabczak (2017). "Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90." J Cell Biochem 118(2): 420-429.
- Kurihara, M., K. Otsuka, S. Matsubara, A. Shiraishi, H. Satake and A. P. Kimura (2017). "A Testis-Specific Long Non-Coding RNA, IncRNA-Tcam1, Regulates Immune-Related Genes in Mouse Male Germ Cells." Front Endocrinol (Lausanne) 8: 299.
- Laskowski, R. A., J. A. Rullmannn, M. W. MacArthur, R. Kaptein and J. M. Thornton (1996). "AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR." Journal of biomolecular NMR **8**(4): 477-486.
- Lee, B., I. Park, S. Jin, H. Choi, J. T. Kwon, J. Kim, J. Jeong, B. N. Cho, E. M. Eddy and C. Cho (2011). "Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testes." J Biol Chem **286**(33): 29108-29117.
- Li, Y., P. Mi, X. Chen, J. Wu, X. Liu, Y. Tang, J. Cheng, Y. Huang, W. Qin, C. Y. Cheng and F. Sun (2021). "Tex13a Optimizes Sperm Motility via Its Potential Roles in mRNA Turnover." Front Cell Dev Biol 9: 761627.
- Li, Y., Y. Wang, Y. Wen, T. Zhang, X. Wang, C. Jiang, R. Zheng, F. Zhou, D. Chen, Y. Yang and Y. Shen (2021). "Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects." <u>Hum Reprod</u> 37(1): 152-177.
- Lin, S. R., Y. C. Li, M. L. Luo, H. Guo, T. T. Wang, J. B. Chen, Q. Ma, Y. L. Gu, Z. M. Jiang and Y. T. Gui (2016). "Identification and characteristics of the testes-specific gene, Ccdc38, in mice." Mol Med Rep 14(2): 1290-1296.
- Lin, Y., Q. Fang, Y. He, X. Gong, Y. Wang, A. Liang, G. Wang, S. Gong, J. Wu and F. Sun (2021). "Thy1-Positive Spermatogonia Suppress the Proliferation of Spermatogonial Stem Cells by Extracellular Vesicles In Vitro." <u>Endocrinology</u> **162**(7).
- Linn, E., L. Ghanem, H. Bhakta, C. Greer and M. Avella (2021). "Genes Regulating Spermatogenesis and Sperm Function Associated With Rare Disorders." <u>Front Cell Dev Biol</u> **9**: 634536.
- Louis-Jeune, C., M. A. Andrade-Navarro and C. Perez-Iratxeta (2011). "Prediction of protein secondary structure from circular dichroism using theoretically derived spectra." <u>Proteins</u> **80**(12): 374-481.
- Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." Genome Biol **15**(12): 550.
- Lu, Y., S. Oura, T. Matsumura, A. Oji, N. Sakurai, Y. Fujihara, K. Shimada, H. Miyata, T. Tobita, T. Noda, J. M. Castaneda, D. Kiyozumi, Q. Zhang, T. Larasati, S. A. M. Young, M. Kodani, C. A. Huddleston, M. J. Robertson, C. Coarfa, A. Isotani, R. J. Aitken, M. Okabe, M. M. Matzuk, T. X. Garcia and M. Ikawa (2019). "CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice†." <u>Biol Reprod</u> 101(2): 501-511.
- Ma, L., H. Yu, Z. Ni, S. Hu, W. Ma, C. Chu, Q. Liu and Y. Zhang (2013). "Spink13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility." <u>J Biol Chem</u> **288**(14): 10154-10165.
- Moore, G. D., T. Ayabe, P. E. Visconti, R. M. Schultz and G. S. Kopf (1994). "Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs." <u>Development</u> **120**(11): 3313-3323.

- Möritz, A., H. Lilja and E. Fink (1991). "Molecular cloning and sequence analysis of the cDNA encoding the human acrosin-trypsin inhibitor (HUSI-II)." FEBS Lett **278**(1): 127-130.
- Narmadha, G. and S. Yenugu (2016). "Immunization against lysozyme-like proteins affect sperm function and fertility in the rat." <u>J Reprod Immunol</u> **118**: 100-108.
- Nguyen, E. B., A. D. Westmuckett and K. L. Moore (2014). "SPACA7 is a novel male germ cell-specific protein localized to the sperm acrosome that is involved in fertilization in mice." <u>Biol</u> Reprod **90**(1): 16.
- Noda, T., Y. Lu, Y. Fujihara, S. Oura, T. Koyano, S. Kobayashi, M. M. Matzuk and M. Ikawa (2020). "Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice." Proc Natl Acad Sci U S A 117(21): 11493-11502.
- Osuru, H. P., J. E. Monroe, A. P. Chebolu, J. Akamune, P. Pramoonjago, S. A. Ranpura and P. P. Reddi (2014). "The acrosomal protein SP-10 (Acrv1) is an ideal marker for staging of the cycle of seminiferous epithelium in the mouse." <u>Mol Reprod Dev</u> **81**(10): 896-907.
- Ou, C. M., J. B. Tang, M. S. Huang, P. S. Sudhakar Gandhi, S. Geetha, S. H. Li and Y. H. Chen (2012). "The mode of reproductive-derived Spink (serine protease inhibitor Kazal-type) action in the modulation of mammalian sperm activity." <u>Int J Androl</u> **35**(1): 52-62.
- Pineau, C., F. Hikmet, C. Zhang, P. Oksvold, S. Chen, L. Fagerberg, M. Uhlén and C. Lindskog (2019). "Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics." <u>J Proteome Res</u> **18**(12): 4215-4230.
- Prendergast, D., K. J. Woad, L. W. Chamley, O. J. Holland and A. N. Shelling (2014). "SPACA3 gene variants in a New Zealand cohort of infertile and fertile couples." <u>Hum Fertil (Camb)</u> **17**(2): 106-113.
- Qi-Xin, G., X. Lu, B. Hao, C. Guo-Hong and C. Guo-Bin (2021). "PAZ domain is critical for spermatogenesis in chicken." <u>Anim Biotechnol</u>: 1-10.
- Rajesh, A. and S. Yenugu (2017). "shRNA mediated ablation of prostate and testis expressed (Pate) messenger RNA results in impaired sperm function and fertility." Andrology **5**(3): 541-547.
- Ramachandran, G. N., C. Ramakrishnan and V. Sasisekharan (1963). "Stereochemistry of polypeptide chain configurations." <u>Journal of Molecular Biology</u> **7**(1): 95-99.
- Rockett, J. C., P. Patrizio, J. E. Schmid, N. B. Hecht and D. J. Dix (2004). "Gene expression patterns associated with infertility in humans and rodent models." <u>Mutat Res</u> **549**(1-2): 225-240.
- Rodriguez, C. M., J. L. Kirby and B. T. Hinton (2001). "Regulation of gene transcription in the epididymis." <u>Reproduction</u> **122**(1): 41-48.
- Salek, F., J. Baharara, K. N. Shahrokhabadi and E. Amini (2021). "The guardians of germ cells; Sertoliderived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells." <u>Theriogenology</u> **173**: 112-122.
- Sangeeta, K. and S. Yenugu (2020). "Transgenesis and active immunization mediated reduction of sperm associated antigen 11A mRNA and protein levels affect fecundity in the rat." <u>Theriogenology</u> **157**: 517-524.
- Sangeeta, K. and S. Yenugu (2022). "Ablation of the sperm-associated antigen 11A (SPAG11A) protein by active immunization promotes epididymal oncogenesis in the rat " <u>Cell and Tissue Research</u>.
- Song, W. P., S. J. Gu, X. H. Tan, Y. Y. Gu, W. D. Song, J. Y. Zeng, Z. C. Xin and R. L. Guan (2021). "Proteomic analysis and miRNA profiling of human testicular endothelial cell-derived exosomes: the potential effects on spermatogenesis." <u>Asian J Androl</u>.

- Sreerama, N. and R. W. Woody (2004). "Computation and Analysis of Protein Circular Dichroism Spectra." methods in enzymology **2**(2): 1-27.
- Srinivasan, S., V. Chitalia, R. D. Meyer, E. Hartsough, M. Mehta, I. Harrold, N. Anderson, H. Feng, L. E. Smith, Y. Jiang, C. E. Costello and N. Rahimi (2015). "Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis." <u>Angiogenesis</u> **18**(4): 449-462.
- Sullivan, R., F. Saez, J. Girouard and G. Frenette (2005). "Role of exosomes in sperm maturation during the transit along the male reproductive tract." <u>Blood Cells Mol Dis</u> **35**(1): 1-10.
- Tracy, C. M., A. V. Kolesnikov, D. R. Blake, C. K. Chen, W. Baehr, V. J. Kefalov and B. M. Willardson (2015). "Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling." <u>PLoS One</u> **10**(2): e0117129.
- Wang, Z., Y. Zhang, A. Mandal, J. Zhang, F. J. Giles, J. C. Herr and S. H. Lim (2004). "The spermatozoa protein, SLLP1, is a novel cancer-testis antigen in hematologic malignancies." <u>Clin Cancer Res</u> **10**(19): 6544-6550.
- Willardson, B. M. and A. C. Howlett (2007). "Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding." <u>Cell Signal</u> **19**(12): 2417-2427.
- Wu, Y., T. Wang, Z. Zhao, S. Liu, C. Shen, H. Li, M. Liu, B. Zheng, J. Yu and X. Huang (2021). "Retinoic Acid Induced Protein 14 (Rai14) is dispensable for mouse spermatogenesis." <u>PeerJ</u> 9: e10847.
- Xu, W., Y. Zhang, D. Qin, Y. Gui, S. Wang, G. Du, F. Yang, L. Li, S. Yuan, M. Wang and X. Wu (2021). "Transcription factor-like 5 is a potential DNA/RNA-binding protein essential for maintaining male fertility in mice." <u>J Cell Sci</u>.
- Yamatoya, K., M. Kousaka, C. Ito, K. Nakata, M. Hatano, Y. Araki and K. Toshimori (2020). "Cleavage of SPACA1 regulates assembly of sperm-egg membrane fusion machinery in mature spermatozoa†." <u>Biol Reprod</u> **102**(3): 750-757.
- Zhang, X. Y., Q. X. Yan, X. Y. Guo, C. R. Chen, R. Q. Chen, Z. M. Cai and A. F. Tang (2016). "Expression profile of SPACA5/Spaca5 in spermatogenesis and transitional cell carcinoma of the bladder." Oncol Lett 12(5): 3731-3738.

Chapter 2

Elucidating the role of *Spag11a* in epididymal oncogenesis and male fertility

INTRODUCTION

Spermatozoa that are generated in the testis pass through a specialized organ called the epididymis, wherein they undergo maturation to gain motility and fertilizing ability. The tubules of the epididymis are primarily lined by epithelial cells (Johnston, Jelinsky et al. 2005). These cells produce proteins that are diverse in nature; and the proteome varies across the three regions (caput, corpus and cauda) (Dacheux, Belleannee et al. 2009). Multiple roles have been assigned to these proteins, especially in sperm function and innate immunity (Aitken, Nixon et al. 2007, Belleannee, Calvo et al. 2012, Li, Wang et al. 2012, Nixon, Stanger et al. 2015). Epididymal proteins are known to contribute to physiological processes that are not limited to male reproduction. For example, in many types of cancers, the human epididymal protein 4 (HE4) is considered as a diagnostic and prognostic marker (Ferraro and Panteghini 2018, Mi and Zhang 2018, Mo and He 2018, Li, Wang et al. 2019).

The human sperm associated antigen 11 (SPAG11) gene a fusion of two ancestral β -defensin genes, is located on chromosome 8p23 and is also referred to as human epididymal protein 2 (HE2) or epididymal protein 2 (EP2) (Osterhoff, Kirchhoff et al. 1994, Frohlich, Po et al. 2000). This gene encodes more than 20 isoforms due to alternate splicing (Frohlich, Po et al. 2000). In the rodents, three independent Spag11 genes viz Spag11t, Spag11c and Spag11a (also referred to as Bin1b or Spag11e) are identified (Yenugu, Hamil et al. 2006). The important role of rodent SPAG11A in sperm function and maturation was demonstrated (Li, Chan et al. 2001). On the other hand, the rodent SPAG11A and SPAG11C proteins have been reported to participate in the first line of defense, because of the presence of a six cysteine motif, that is characteristic to β -defensins (Yenugu, Hamil et al. 2006). Similar to β -defensins, these proteins possess antimicrobial activity, that is mediated by their ability to permeabilize bacterial membranes and inhibition of macromolecular synthesis (Yenugu, Hamil et al. 2004). Human βdefensins, besides contributing to the innate immunity, are also implicated in tumor growth and have been considered as markers for prognosis (Droin, Hendra et al. 2009). Their functional role in lung, oral, colon, prostate, thyroid and cervical carcinogenesis is well documented (Bullard, Gibson et al. 2008, Han, Wang et al. 2014, Uraki, Sugimoto et al. 2014, Zhuravel, Gerashchenko et al. 2014, Cun Gao, Weiming Yue et al. 2016, Xu, Zhang et al. 2016). The anticancer properties of human β-defensin 3 is recently reported (Hanaoka, Yamaguchi et al. 2016).

Epididymis – tumour incidence

While the incidence of tumours is reported in most of the organ systems, the occurrence of epididymal cancers is very rare. Hence, epididymis is considered to be a specialized organ because of its special ability to resist tumour formation. Multiple hypothesis have been proposed on this special property of epididymis, that confers the rarity of tumour incidence (Yeung, Wang et al. 2012). One of the more compelling theories holds that the non-responsiveness of this organ to signals that induce tumours is due in part to processes that make the spermatozoa quiescent and immunologically inert as well as constitutive expression of proteins often induced in tumours. We recently reported that

overexpression of SPAG11A in immortalized epididymal epithelial cell lines resulted in inhibition of proliferation (Sangeeta and Yenugu 2020). On the other hand, siRNA mediated silencing of *Spag11a* mRNA in isolated epididymal primary epithelial cells resulted in promotion of proliferation (Sangeeta and Yenugu 2020). In our animal studies, the ablation of SPAG11A protein by active immunization resulted in the vulnerability of epididymis to a low dose carcinogen (Sangeeta and Yenugu 2022). These studies clearly indicated that SPAG11A plays a crucial part in regulating the cell proliferation and thus could be one of the mechanisms that contribute to the rarity of cancers in the epididymis. The functional importance of a protein can best studied by using transgenic or knock out animal models. To further decipher the functional role of *Spag11a* in the epididymis, especially to the prevention of tumour formation, we used *Spag11a* knock out mice and determined their susceptibility to carcinogenesis under conditions of low dose exposure to a carcinogen.

Epididymis – sperm function

Spermatozoa undergoes maturation while passing through the lumen of the epididymis and during this process a large number of proteins secreted by the epithelial cells are added on to their surface. Segment specific production of proteins in the epididymis is reported (Johnston, Jelinsky et al. 2005). The *Spag11a* gene expression is caput epididymis specific and its protein counterpart localized on the mature spermatozoa contributes to sperm function (Li, Chan et al. 2001, Yenugu, Hamil et al. 2006). Induction of motility in sperm due to the binding of rat SPAG11A to the sperm membrane was demonstrated *in vitro* (Zhou, Zhang et al. 2004). In our recent studies, we demonstrated that male rats immunized against SPAG11A protein or male transgenic rats that over expressed shRNA against *Spag11a* mRNA, displayed lower fecundity, sperm function and damage to the anatomical architecture of the male reproductive organs (Sangeeta and Yenugu 2020). To further explore the role of *Spag11a* in male reproduction, knock out animals were generated (unpublished). These *Spag11a* knock out mice displayed reduced fecundity and impaired sperm function (capacitation and acrosome reaction). Our preliminary results suggested that *Spag11a* has a pivotal role in sperm function. To take this further, we analysed the differential expression of sperm proteome between wild type and *Spag11a* knock out mice.

Gene polymorphisms and male fertility

Genetic changes and their relation to male infertility in the Indian context are reported only in the last ten years. Chromosomal abnormalities involving the heterochromatic regions of Y, chromosome 9 and the acrocentric chromosomes are implicated in infertility in Indian men (Suganya, Kujur et al. 2015). The 677C/T substitution polymorphism in MTHFR gene resulted in serious implications in spermatogenesis of Indian infertile men (Singh, Singh et al. 2005). Y-chromosome micro deletions are reported in Indian infertile males (Mitra, Dada et al. 2008). Further, the following genes were analyzed for polymorphisms in relation to infertility in the Indian context: CFTR, methylenetetrahydrofolate reductase (MTHFR), testicular RNA helicase, interleukin-1beta, TNFα and IL-6, FSHR, progesterone

receptor, mitochondrial DNA polymerase gamma, GSTT1 and GSTM1, APOB, ER-beta, UBE2B, androgen receptor, SRY and AFLP (Janeja, Banga et al. 2003, Shahid, Dhillion et al. 2004, Premi, Srivastava et al. 2006, Rajender, Singh et al. 2007, Suryavathi, Khattri et al. 2008, Khattri, Pandey et al. 2009, Khattri, Pandey et al. 2009, Jaiswal, Sah et al. 2012, Desai, Achrekar et al. 2013, Jaiswal, Trivedi et al. 2013, Poongothai 2013, Sen, Dixit et al. 2013, Shukla, Agnihotri et al. 2013, Naqvi, Hussain et al. 2014, Sharma, Mavuduru et al. 2014, Singh, Koner et al. 2016). It is important to note that the genes analyzed are more related to general physiology. Genetic analyses that directly influence male reproductive function, sperm maturation and function and fertilization are not analyzed in the Indian context.

RATIONALE

I. Spag11a and its role in epididymis tumorigenesis

Experimental proof provided by our preliminary *in vitro* and *in vivo* studies indicated that Spag11a has a potential role in governing epididymal cell proliferation (Sangeeta and Yenugu 2020, Sangeeta and Yenugu 2022). On the other hand, it is well known that β -defensins play a crucial role in tumorigenesis by controlling cell proliferation. SPAG11A protein contains the 6-cysteine domain that is characteristic to β -defensins. It appears that SPAG11A protein is functionally similar to the β -defensins. However, there is no concrete evidence to demonstrate these functional roles. Use of transgenic / knock out animal is the best system to study the functional role of a protein. To decipher, the role of Spag11a in epididymal tumorigenesis, we used Spag11a knock out mice that were treated with a low dose of carcinogen. It is hypothesised that the epididymis of Spag11a knock out mice will be more susceptible to the carcinogen than the wild type counterparts.

II. Spag11a and sperm function

In two animal model systems, namely, active immunization against SPAG11A and transgenic animals expressing shRNA against *Spag11a* mRNA, we showed that there is a reduction in fecundity and sperm function (Sangeeta and Yenugu 2020). Similarly, in the *Spag11a* knock out mice, the fecundity and sperm function was compromised (unpublished). It is possible that the expression of sperm proteins that are important for fecundity and sperm function are under the control or influence of SPAG11A. This can be best studied by analysing the sperm proteome of wild type and SPAG11A knock out mice. Thus, extensive proteome analyses was carried out to identify the differential expression of proteins that may have been affected due to the absence of SPAG11A protein.

III. Spag11a polymorphism and male infertility

Infertility is on the rise and it is attributed to a variety of reasons. Among them, genetic changes that affect the genes important in reproductive function are implicated. Till date, genetic changes such as mutations, single nucleotide polymorphisms and deletions are reported in genes involved in spermatogenesis. It is important to note that a lot of evidence suggests that proteins that are secreted in the epididymis aid in sperm maturation, sperm function and fertilization. Genetic changes in genes that encode epididymal proteins are not analysed. This is more evident in the Indian context. Hence, analyzing genetic changes in genes that encode epididymal proteins will help to identify factors that are to be supplemented for effective in vitro fertilization techniques. In this study, we propose to identify the common gene polymorphisms in human *SPAG11A* gene which may play an important role in sperm function.

METHODOLOGY

Generation of Spag11a knockout mice

Heterozygous Spag11a knockout mice (C57BL/6NJ) were commercially obtained from Mouse Genome Engineering Facility, National Centre for Biological Sciences, Bangalore, India. They were produced by CRISPR-CPF1 (Cas12a/sgRNA) system. The strategy and methodology utilized to produce these mice is described in **figure 1**. Briefly, the nucleotides between 712 and 1002 (291 bp), which includes a portion of exon 1 and intron 1, was excised from the mouse Spag11a gene (NM 153115.1) with the help of specific guide RNAs (**figure 1**). The guide RNAs designed had the following (5' 3'): sgRNA#20 the strand): TTT(PAM) sequences (on plus ACAGCACAAGACATAGAGGCCTCT; and sgRNA#18 (on minus strand): TTT(PAM) CATGTTTTACGGCTCGCTCTCTGT. The sgRNAs #18 and #20 target the genomic sequences 5'-ACAGAGAGCGAGCCGTAAAACAT-3' and 5'-ACAGCACAAGACATAGAGGCCTCT-3' respectively. B6/NJNcbs mice zygotes were injected with a pronuclear microinjection solution containing CPF1 (Cas12a protein; (40 ng/ul final)), sgRNA#18 (10 ng/ul final), and sgRNA#20 (10 ng/ul final). Two backcrosses between B6/NJNcbs wild-type mice and the founders to generate heterozygous mice. Heterozygote Spag11a N2 mice were produced by the two subsequent B6/NJNcbs backcrosses. Male heterozygous Spag11a N2 was crossed with female heterozygous Spag11a N2 to produce Spag 11a exon1 deleted homozygote Spag 11a knockout mice. The DNA extracted from the tail pieces of male and female mice was used for genotyping. The Spag11a knockout mice used in this study were age-matched and were derived from the same founder. Spag11a knockout mice were produced as part of project #AJ-1/2015, which was approved by NCBS-IAEC (R1-E) and the University of Hyderabad Institutional Ethics Committee accepted the use of animals in the study's experiments (UH/IAEC/SY/2021-22/09).

Figure 1. Shows the method used to create mice lacking the Spag11a gene. The mouse Spag11a gene's structure is displayed in the upper panel. The locations that will be the focus of the knockout mice are indicated by scissors. The minus and plus strands were targeted by sgRNAs #18 and #20. Primer sets for genotyping are FP and RP. The exon1 deleted Spag11a gene structure is depicted in the lower panel.

Genotyping

PCR was employed to genotype the mice using the DNA isolated from the tails. Briefly, the tail pieces were placed in 1 ml of lysis buffer (10mM Tris-HCl pH 8.3, 50mM KCl, 0.1mg/ml Gelatin, 2.5mM MgCl2-6H₂0, 0.45% v/v Nonidet P40 (NP40) and 0.45% v/v Tween20) and digested with 10 μl of Proteinase K (20mg/ml glycerol stock). The homogenates were mixed well and heated kept at 56°C overnight for complete lysis. The digested homogenates were centrifuged at 4,000 rpm for 3 minutes. The supernatant was diluted in the ratio of 1:5 and 1 μl of it was used as a template in the PCR reaction containing primers that flank on either side of the targeted region (**Figure 2**). The PCR amplicons expected for the wild-type and *Spag11a* knockout mice are 392 and 101 bp respectively. In the heterozygote mice, two PCR amplicons of sizes 392 bp and 101 bp are expected (**Figure 2**) The PCR amplicons were sequenced and the deletion in the *Spag11a* gene was confirmed.

Total RNA isolation

Total RNA was extracted from tissues by TRIzol® reagent (Gibco). Tissues were crushed and made into powder in liquid nitrogen. 1 ml of TRIzol was added per tissue (100 mg), and vortexed for 1 minute, followed by incubation at room temperature for 5 minutes. Following a 10-minute centrifugation of the homogenate at 10,000 rpm, the supernatant was well mixed by pipetting it up and down several times. Phase separation was accomplished by adding 200 µl of chloroform and centrifuging for 10 minutes at 4 °C at 13,000 rpm. The sample was incubated for 10 minutes at room temperature after the aqueous upper layer was gently scraped off and placed into a new tube. Next, an equal volume of isopropanol was added for precipitation. Samples were centrifuged at 13,000 rpm for 10 minutes at 4 °C and the supernatant was discarded. The pellet was made in 70% ethanol (prepared in DEPC water), dissolved in it, and centrifuged at 10,000 g for 5 minutes before the ethanol was pipetted out completely. The pellet was entirely free of the ethanol by pipetting and air drying after being dissolved in 70% ethanol (made in DEPC water) and centrifuged at 10,000 g for 5 minutes. The pellet was then dissolved in 20 µl of water that had been treated with DEPC. RNA extraction quality was confirmed by electrophoresis of 2 µl of the sample on a 1% agarose gel. With the aid of a reverse transcription reaction kit, cDNA was created from 2 µg of total RNA in order to ascertain the mRNA expression pattern of the genes examined in this work (Promega, cDNA synthesis kit). Gene-specific primer pairs and a PCR 2X master mixture were used for the PCR, which was carried out in a 10 µl reaction solution. The amplified band was then detected using ethidium bromide.

RT-PCR

RNA was extracted to produce cDNA using commercially available kits (Qiagen). Primer sets specific to the *Spag11a* mRNA were created, and the following conditions were used for the RT-PCR: initial denaturation at 94 °C for 10 minutes, 40 cycles of 94 °C for 15 seconds, 60 °C for 1 minutes. PCR amplicons were examined using 2% agarose gel electrophoresis. Real-time PCR was performed

under controlled conditions in an Applied Biosystems thermal cycler using a SYBR master mix kit (Applied Biosystems, Warrington, UK). β-actin expression was used to function as an internal control.

Gene chip hybridization, data collection, and enrichment analysis

Using the Agilent TapeStation system and the Illumina HiSeq platform, the RNA-seq procedure was carried out on the caput epididymis of wild-type and knockout mice (aged 90 days). The data quality was then examined utilising FastQC and MultiQC programmes (de Sena Brandine and Smith 2019). STAR v2 aligner was used to map QC-passed reads onto the reference genome for Mus musculus (GCF 000001635.27 GRCm39 genomic.fna) (Dobin, Davis et al. 2013). Utilizing DESeq2, differential expression analysis was performed (Love, Huber et al. 2014). DESeq2 was used to normalise the read counts (variance stabilised normalised counts), and differential enrichment analysis was carried out. Significant genes were those that displayed an absolute log2 fold change \geq 0.9 and \leq -0.8 with a p-value \leq 0.050. Using the DAVID software, Gene Ontology (GO) was performed on the genes that displayed significantly differential expression levels.

Carcinogen treatment

The effect of a low dose of carcinogen on the susceptibility of various tissues in the *Spag11a* knockout mice was determined by treating the mice with low doses of diethylnitrosamine (DEN) (Thuy le, Morita et al. 2011). Briefly, wild type, heterozygous and *Spag11a* knockout mice were treated with drinking water containing 0.05 ppm DEN for 12 weeks. The animals had free access to drinking water. A Control group without any carcinogen treatment was also maintained. All mice were sacrificed and the tissues dissected after the completion of the treatment period. All the treatments and the experimental protocols were approved by the Institutional Animal Ethics Committee (IAEC) at University of Hyderabad (UH/IAEC/SY/2021-22/09).

Histopathological examination

Histopathological analyses were carried out by hematoxylin and eosin staining. The tissues were removed from the mice, fixed in 4% paraformaldehyde for 24 hours, completely washed in 70% ethanol, and then gradually dehydrated in progressively higher concentrations of ethanol (80, 90, and 100%). Five-micron slices of the tissues, which had been encased in paraffin wax, were created. The sections were next subjected to an isopropanol treatment for an overnight period at 60°C, followed by xylene deparaffinization, rehydration in graded ethanol (100, 90, 80, 70, and 50%), and finally washing with distilled water. Following this, the sections were differentiated in 1% hydrochloric acid for 30 seconds before being submerged in 0.2% Harris hematoxylin solution for 10 minutes. Sections were cleaned with distilled water, counterstained for 1 minute with 0.2% eosin Y solution and serially dehydrated with 50, 70, 80, 90, and 100% alcohol. They were mounted using xylene-based mounting media after three xylene washes. The sections were viewed, photographed, and evaluated by a board-

certified histopathologist who was unaware of the experimental setup or treatment regimen in several fields (at least 25) of each section.

Tandem liquid chromatography and mass spectrometry (LC-MS-MS)

Caudal sperm protein samples were prepared from wild-type and Spag11a knockout mice. Sperm protein was extracted by lysis buffer (7 M urea, 2% (w/v) dithiothreitol (DTT), 2 M thiourea, 4% (w/v) CHAPS, 50 mM NaF, 2mM Na3VO4, containing a protease inhibitor (Sigma- Aldrich, USA). Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyse the protein quality. Trypsin in-solution digestion of a 100µg protein sample was carried out, followed by an overnight incubation at 37 °C. The final sample was vacuum dried, dissolved in 50 µl of water with 0.1% formic acid, spun at 10,000 g, and the supernatant was collected into a different tube. For the purpose of peptide separation, 10 µl of the supernatant sample was loaded onto the BEH C18 UPLC column (UPLC systems, Waters), and three runs per sample were carried out for label-free quantification (LFQ). For MS and MSMS analysis, the peptides separated on the column were sent to a Waters Synapt G2 Q-TOF apparatus. MassLynx 4.1 WATERS processed the raw data. Protein Lynx Global Server (PLGS, WATERS) software was used to match the individual peptides of the MSMS spectra to the sequence of the mouse protein database in order to identify the proteins. The data obtained were further processed for bioinformatics analysis. We next carried out Gene Ontology (GO) based on the differentially expressed proteins and assigned them to their GO categories (biological process, cellular component, and molecular function).

Genomic DNA isolation to analyse SNPs

Blood (2-10 ml) was collected from fertile and infertile men in tubes containing and centrifuged at 3,000 rpm for 10 min. The plasma was collected, equal amount of 2X lysis mix was added and incubated for 10 min to lyse RBC. The samples were then centrifuged at 3,000 rpm for 10 mins. To the pellet of white cells formed at the bottom of the tube, 450 µl of WBC lysing solution and 200 µl of proteinase K (10 mg/ml) were added, votexed and incubated over night at 37°C. Equal amounts of phenol (saturated with 0.1 M Tris HCl, pH 8.0) and the sample were combined, vortexed, and then centrifuged at 3,000 rpm for five minutes. After transferring the top aqueous layer into a clean tube, another equal volume of phenol was added. After vortexing, centrifugation, and removing the aqueous layer, the sample was transferred to a new tube with an equal amount of chloroform and centrifuged at 3,000 rpm for 5 minutes. The supernatant was removed and mixed with 1 µl of 4 M ammonium acetate and 2X volume of 100% ethanol for DNA precipitation. It was mixed and centrifuged for 20 minutes at 5000 rpm at 4°C. After decanting the ethanol, 500 µl of 70% ethanol were used to wash the pellets. The pellet was dissolved in distilled water and left at 4°C for 4-5 hours to allow the DNA to dissolve. NanoDrop provided estimates for the DNA's amount and quality (Thermo

Scientific NanoDrop2000 UV visible spectrophotometer). The Institutional Ethics Committee at the University of Hyderabad granted approval for this part of the research (UH/IEC/2021/07).

RESULTS

Generation of Spag11a knock out mice

Primers that are flanked on each side of the targeted sequence of the *Spag11a* gene were used for genotyping. Genomic PCR using DNA from wild-type animals produced an amplicon of 400 bp, whereas *Spag11a* knockout mice produced an amplicon of 100 bp (**Figure 2**). Two PCR amplicons of 400 bp and 100 bp size were seen in the heterozygote mice (**Figure 2**). PCR analyses showed that the knockout animals had no *Spag11a* mRNA expression (**Figure 2**).

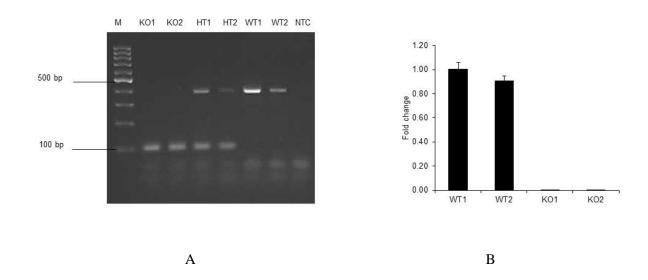


Figure 2. (A). Genotyping of knock out mice. DNA was isolated from the tail of mice and subjected to PCR using primers that flanked the deleted portion of the Spag11a gene. (B). Spag11a mRNA expression. RT-PCR was done to confirm the absence of Spag11a in knock out mice. WT-Wildtype, HT-Heterozygous and KO-Knockout mice.

Transcriptome analysis

We examined the differences in the caput's global transcriptome modifications between *Spag11a* knockout mice and their wild-type counterparts. We observed that 601 genes were differentially expressed of which 280 were up-regulated and 321 were down-regulated (Supplementary table 1 and 2). The fold change in the up regulated genes ranged from 1.0 to 9.26, whereas the fold change in the down regulated genes ranged from -9.7 to -1. Tables 1 and 2 show the top 20 up- and down-regulated genes, respectively. To comprehend the potential physiological processes that the differentially expressed genes may affect, gene ontology was assessed using the DAVID software. Gene ontology using DAVID software was evaluated to understand the possible physiological processes that could be affected by the differentially expressed genes. A comprehensive list of gene ontologies that involve the up and down regulated genes are listed in supplementary tables 3 and 4 respectively. The

top 10 gene ontologies affected by the up regulated genes are presented in **table 3**. Biological processes related to cell cycle, cell division and other cellular processes that are involved basic cellular function were found to be affected by the up regulated genes. Gene ontologies in which at least 10 down regulated genes are involved are listed in **table 4**. Cellular processes that contribute to membrane integrity, signal transduction and inflammatory responses are some of the significant ones affected.

Table 1. Top 20 up regulated genes in the caput of Spag11a knockout mice.

SNo.	Gene Symbol	Log FC	PValue	FDR
1.	Retn	9.265235328	9.71979E-13	3.34555E-09
2.	Zfp42	7.390159423	3.04594E-05	0.013343439
3.	F830010H11Rik	7.230706199	7.55368E-05	0.028888618
4.	Gm17745	7.14384357	0.000120499	0.038710749
5.	Lhfpl3	7.051414104	0.000193974	0.056995302
6.	Hhla1	6.952655111	0.000315208	0.079180087
7.	Gm52343	6.952655111	0.000315208	0.079180087
8.	Gm39604	6.846635558	0.000517265	0.109163668
9.	Sun5	6.732202564	0.00085757	0.1424986
10.	Gm33162	6.732202564	0.00085757	0.1424986
11.	Usp17lb	6.732202564	0.00085757	0.1424986
12.	Gm51538	6.732202564	0.00085757	0.1424986
13.	Gm30871	6.732202564	0.00085757	0.1424986
14.	Gm33230	6.732202564	0.00085757	0.1424986
15.	Gm12052	6.732202564	0.00085757	0.1424986
16.	n-TVcac7	6.732202564	0.00085757	0.1424986
17.	Lypd81	6.732202564	0.00085757	0.1424986
18.	LOC118567349	6.60790479	0.00143701	0.187036315
19.	LOC100504180	6.60790479	0.00143701	0.187036315
20.	Gm29835	6.60790479	0.00143701	0.187036315

 Table 2. Top 20 down regulated genes in the caput of Spag11a knockout mice.

S No.	Gene Symbol	Log FC	P Value	FDR
1.	1700003M07Rik	-9.699640221	3.76863E-15	1.81603E-11
2.	Gm14275	-9.16564178	2.40226E-12	6.43113E-09
3.	Gm40008	-8.662649418	5.21239E-10	1.1417E-06
4.	Fcrl5	-7.970949731	2.40483E-07	0.0002146
5.	Icos	-7.88384623	5.05952E-07	0.000420359
6.	Gm15987	-7.692073463	2.40377E-06	0.001608788
7.	1700112D23Rik	-7.279359549	3.04594E-05	0.013343439
8.	4933402N22Rik	-7.279359549	3.04594E-05	0.013343439
9.	H2ac15	-7.135946873	7.55368E-05	0.028888618
10.	Pnoc	-7.058514108	0.000120499	0.038710749
11.	LOC118568174	-7.058514108	0.000120499	0.038710749
12.	Gm4788	-6.976688458	0.000193974	0.056995302
13.	Gm32666	-6.976688458	0.000193974	0.056995302
14.	Gm30120	-6.889941355	0.000315208	0.079180087
15.	Slc27a5	-6.889941355	0.000315208	0.079180087
16.	Gm31986	-6.699033022	0.00085757	0.1424986
17.	1700061I17Rik	-6.699033022	0.00085757	0.1424986
18.	Ephx4	-6.699033022	0.00085757	0.1424986
19.	Gm46958	-6.699033022	0.00085757	0.1424986
20.	Gm38930	-6.699033022	0.00085757	0.1424986

Table 3. Gene ontologies affected by the up regulated genes.

Category	GO Id and description	Gene count
CC	GO:0005615~extracellular space	22
CC	GO:0005576~extracellular region	19
BP	GO:0007049~cell cycle	13
BP	GO:0009617~response to bacterium	11
CC	GO:0009986~cell surface	11
BP	GO:0051301~cell division	10
CC	GO:0005694~chromosome	9
CC	GO:0000775~chromosome, centromeric region	8
CC	GO:0016324~apical plasma membrane	7
BP	GO:0007059~chromosome segregation	6

Table 4. Gene ontologies affected by the down regulated genes.

Category	GO Id and description	Gene count
CC	GO:0016020~membrane	92
CC	GO:0016021~integral component of membrane	83
CC	GO:0005886~plasma membrane	78
BP	GO:0007165~signal transduction	26
CC	GO:0009897~external side of plasma membrane	24
CC	GO:0005887~integral component of plasma membrane	24
CC	GO:0005615~extracellular space	22
BP	GO:0002376~immune system process	21
MF	GO:0004888~transmembrane signaling receptor activity	18
BP	GO:0006954~inflammatory response	15
CC	GO:0009986~cell surface	15
BP	GO:0006955~immune response	14
BP	GO:0045087~innate immune response	13
MF	GO:0046982~protein heterodimerization activity	13
MF	GO:0005102~receptor binding	11
MF	GO:0005509~calcium ion binding	11
BP	GO:0007166~cell surface receptor signaling pathway	10
BP	GO:0002250~adaptive immune response	10
BP	GO:0007155~cell adhesion	10
BP	GO:0043066~negative regulation of apoptotic process	10

Surprisingly, we found that the knockout animals did not express 480 genes that were shown to be expressed in the caput of wild-type mice (Supplementary table 5). However, 581 genes were discovered to be expressed solely in the caput of knockout mice and undetectable in wild type mice (Supplementary table 6). To understand the physiological processes that the distinct genes in the caput of wild-type or knock out mice potentially affect, gene ontology was assessed using the DAVID software (Supplementary tables 7 and 8). Most noteworthy are those involved in the cell cycle, cell division-related genes and microRNAs related to cancer (Tables 5 and 6). Genes in pathways related to chemical carcinogenesis-receptor activation and chemical carcinogenesis-DNA adduct were differentially regulated were also identified (Tables 5 and 6). The non-occurrence of cancer / tumours in the epididymis could be partly due to the pivotal role of Spag11a in modulating the expression of genes involved in the above-mentioned processes. Pathways for steroid hormone synthesis, olfactory

transduction and cytokine-cytokine receptor interaction are predicted to be affected due to differential expression of genes in *Spag11a* knockout mice. The role of odorant receptors in sperm chemotaxis is becoming more significant. Olfactory receptors and *Spag11a* might interact with one other (**Tables 5 and 6**).

Table 5. Top 20 gene ontologies for genes that are absent in the caput epididymis of Spag11a knockout mice (expressed only in the wild type mice).

Category	GO Id and description
CC	GO:0016021~integral component of membrane
CC	GO:0005886~plasma membrane
BP	GO:0007186~G-protein coupled receptor signaling pathway
CC	GO:0005576~extracellular region
MF	GO:0004930~G-protein coupled receptor activity
CC	GO:0005615~extracellular space
BP	GO:0007165~signal transduction
CC	GO:0005887~integral component of plasma membrane
BP	GO:0007608~sensory perception of smell
MF	GO:0004984~olfactory receptor activity
MF	GO:0004871~signal transducer activity
MF	GO:0043565~sequence-specific DNA binding
BP	GO:0006811~ion transport
BP	GO:0006955~immune response
CC	GO:0009897~external side of plasma membrane
BP	GO:0045087~innate immune response
MF	GO:0004252~serine-type endopeptidase activity
MF	GO:0000978~RNA polymerase II core promoter proximal region sequence-specific
	DNA binding
MF	GO:0005179~hormone activity
MF	GO:0005125~cytokine activity

Table 6. Top 20 gene ontologies for genes that are uniquely expressed in the caput caput epididymis of Spag11a knockout mice (absent in the wild type mice).

Category	GO Id and description
CC	GO:0016021~integral component of membrane
CC	GO:0005886~plasma membrane
CC	GO:0005576~extracellular region
BP	GO:0007186~G-protein coupled receptor signaling pathway
MF	GO:0004930~G-protein coupled receptor activity
CC	GO:0005615~extracellular space
BP	GO:0007165~signal transduction
BP	GO:0007608~sensory perception of smell
MF	GO:0004984~olfactory receptor activity
CC	GO:0005887~integral component of plasma membrane
BP	GO:0006508~proteolysis
MF	GO:0004871~signal transducer activity
MF	GO:0005509~calcium ion binding
MF	GO:0008233~peptidase activity
BP	GO:0006811~ion transport
BP	GO:0007155~cell adhesion
CC	GO:0009897~external side of plasma membrane
MF	GO:0005125~cytokine activity
BP	GO:0055085~transmembrane transport
MF	GO:0004252~serine-type endopeptidase activity

Effect of Spag11a knockout on chemically induced carcinogenesis

There were no differences observed in the average body weight and relative organ weight of DEN treated wild-type and Spag11a knockout male mice. Histopathological analyses was conducted in different tissues of DEN treated wild type, heterozygous and knockout mice. While the anatomical structure remained unaffected in the caput of DEN treated wild type mice, mild to moderate mucosal epithelial cell hyperplasia (red arrow) as well as dysplastic alterations in a few mucosal epithelial cells (green arrow) was evident in the caput of DEN treated Spag11a KO mice (Figure 3). Moderate proliferation of connective tissue, anaplastic nature and hyperplasia were evident in the cauda of Spag11a knockout mice (Figure 4). The mucosal glands of seminal vesicles of Spag11a KO showed mild fibrosis and connective tissue growth (Figure 5). In the testes of Spag11a KO mice, considerable spermatogonial cell degeneration and infiltration of multinucleated cells were evident (Figure 6).

Among the tissues analysed, severe effects were observed in the prostate. In the prostate of Spag11a heterozygous mice, early-stage prostate cancer characterized by dysplastic and anaplastic changes in basal and mucosal cells of prostate epithelium [red arrow] (Figure 7). Further, basal cell tumour of prostate with signs of aggressive neoplastic basal cells invading entire mucosal folds and muscular region were observed. Dysplastic and anaplastic / basophilic changes in basal and mucosal cells of prostate epithelium and invasion of sub mucosal layer indicative of early stage prostate cancer is evident. In the Spag11a knockout mice, DEN treatment resulted in prostate tumour (Figure 7). Atypical basal cells of prostate formed an intra epithelial neoplasia in mucosal folds. The neoplastic cells are pleomorphic, basophilic and had variations in cytoplasm and nucleus ratio. Neoplastic basal cells of prostate invading into adjacent muscular layer and mild inflammatory reaction in mucosal epithelial layer with infiltration of plasma cells and few anaplastic / basophilic epithelial cells are noticed. Spread of dysplastic epithelial cells [no anaplastic] observed in mucosal glands. Gleason's score was assigned to the prostate obtained from wild type, heterozygous and knockout mice treated with DEN. The score was 1, 3.6 and 7.0 for wild type, heterozygous and knockout mice respectively (Table 7). Based on the Gleason's score, the prostate of wild type mice was found to be well differentiated with normal mucosal epithelial cells. The prostate of heterozygous mice with a Gleason's score of 3.6 were classified to are well differentiated with moderate anaplasticity. In the prostate of Spag11a knockout mice, which had a Gleason's score of 7, the tissue was poorly differentiated and severely anaplastic (Table 7).

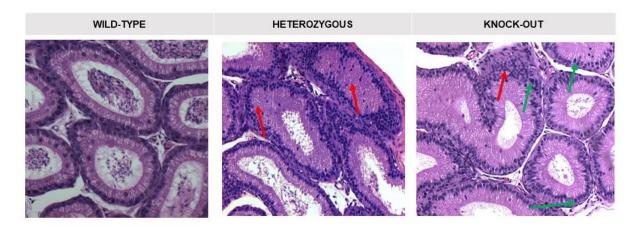
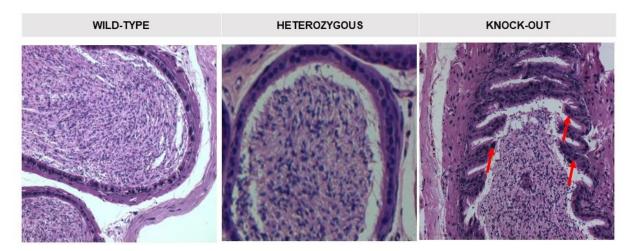
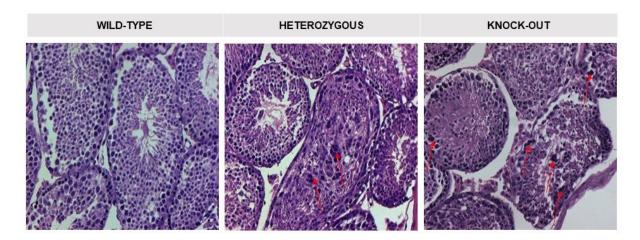


Figure 3. Histopathological changes in the caput epididymis of DEN treated wild type, heterozygous and knock out mice. Caput epididymis from mice treated with DEN mice were fixed and 5-micron sections taken and stained with Hematoxylin and Eosin. Photomicrographs were taken in a phase contrast microscope.

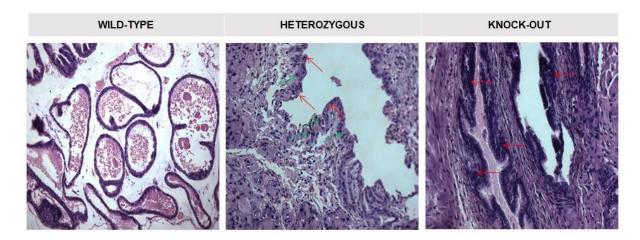

Figure 4. Histopathological changes in the cauda epididymis of DEN treated wild type, heterozygous and knock out mice. Cauda epididymis from mice treated with DEN mice were fixed and 5-micron sections taken and stained with Hematoxylin and Eosin. Photomicrographs were taken in a phase contrast microscope.

Figure 5. Histopathological changes in the seminal veicles of DEN treated wild type, heterozygous and knock out mice. Seminal vesicles from mice treated with DEN mice were fixed and 5-micron sections taken and stained with Hematoxylin and Eosin. Photomicrographs were taken in a phase contrast microscope.

Figure 6. Histopathological changes in the testes of DEN treated wild type, heterozygous and knock out mice. Testes from mice treated with DEN mice were fixed and 5-micron sections taken and stained with Hematoxylin and Eosin. Photomicrographs were taken in a phase contrast microscope.

Figure 7. Histopathological changes in the prostate of DEN treated wild type, heterozygous and knock out mice. Prostate from mice treated with DEN mice were fixed and 5-micron sections taken and stained with Hematoxylin and Eosin. Photomicrographs were taken in a phase contrast microscope.

Table 7. Gleason score for the prostate obtained from DEN treated mice.

Genotype	Gleason's score	Histological changes
Wild-type	1	Well differentiated, normal mucosal epithelial cells
Heterozygous	3.6	Well differentiated, moderate anaplastic
Knock-out	7	Marked anaplastic, poorly differentiated

Sperm proteome analysis

We conducted quantitative proteomic research utilising LC-MS/MS analysis to look into the global proteome profile of spermatozoa in *Spag11a* knockout and wild type mice. These sperm samples yielded a total of 1825 proteins, 91 of which were determined to have significantly varied levels of expression. Of these, 91 proteins, 40 proteins were up regulated and 51 proteins were down regulated (**Tables 8 and 9**). The physiological and cellular processes in which the differentially expressed proteins are involved was determined by DAVID analyses. Proteins that were up regulated in the sperm of knock out mice are involved in spermatogenesis, macromolecular complex formation, protein phosphorylation and microtubule formation (**supplementary table 9**). On the other hand, proteins that were down regulated in the sperm of knock out mice are involved in spliceosomal complex formation, maintenance of cytoskeleton and cell differentiation (**supplementary table 10**). The cellular processes in which differential expression of sperm proteins was observed contribute to the male gametogenesis in a direct or indirect way.

Table 8. Up regulated sperm proteins in wild type versus Spag11a knockout mice.

ID	RATIO	PROTEIN IDENTITY
Q2TV84	1.950558	Transient receptor potential cation channel subfamily M member 1
Q5SQM0	1.953575	Echinoderm microtubule-associated protein-like 6
Q80Z25	1.963358	Oral-facial-digital syndrome 1 protein homolog
Q9R269	1.973866	Periplakin
Q8C9B9	2.003752	Death-inducer obliterator 1
Q9WV02	2.006024	RNA-binding motif protein, X chromosome
Q9D2H5	2.050518	Tripartite motif-containing protein 42
P13542	2.127619	Myosin-8
Q6PH08	2.160618	ERC protein 2
Q9JM99	2.205307	Proteoglycan 4
E9Q3S4	2.290803	Mitogen-activated protein kinase kinase kinase 19
Q8BGV5	2.321679	Zinc finger protein 8
A2AF47	2.379754	Dedicator of cytokinesis protein 11
Q99PG2	2.391928	Opioid growth factor receptor
Q99P68	2.433163	Sclerostin
P97820	2.459133	Mitogen-activated protein kinase kinase kinase kinase 4
P59672	2.490063	Ankyrin repeat and SAM domain-containing protein 1A
Q924N4	2.49095	Solute carrier family 12 member 6
Q9WVM6	2.54533	Tolloid-like protein 2
P51954	2.546261	Serine/threonine-protein kinase Nek1

Q3UZV7	2.716506	UPF0577 protein KIAA1324-like homolog
B2RY56	2.726874	RNA-binding protein 25
Q61235	2.797643	Beta-2-syntrophin
Q9QY23	3.018117	Plakophilin-3
Q497V5	3.022813	S1 RNA-binding domain-containing protein 1
Q9JIS8	3.375356	Solute carrier family 12 member 4
Q64511	3.460825	DNA topoisomerase 2-beta
E5FYH1	3.682227	Protein TOPAZ1
Q3UHD3	3.768917	Microtubule-associated tumor suppressor candidate 2 homolog
Q8BPI1	4.20783	Protein kintoun
Q6PAJ1	4.533588	Breakpoint cluster region protein
Q920G9	4.763753	Germ cell-less protein-like 1
Q6DYE8	4.925315	Ectonucleotide pyrophosphatase/phosphodiesterase family member 3
Q5SX79	5.010236	Protein Shroom1
O09000	6.310371	Nuclear receptor coactivator 3
E9PVD1	6.404218	Coiled-coil domain-containing protein 62
Q9R0K7	8.79002	Plasma membrane calcium-transporting ATPase 2
O35126	9.313592	Atrophin-1
Q99PL5	10.26087	Ribosome-binding protein 1
Q8R422	13.99462	CD109 antigen

 Table 9. Down regulated sperm proteins in wild type vs Spag11a knockout mice.

ID	RATIO	PROTEIN IDENTITY
Q80UG8	0.013756	Tubulin polyglutamylase TTLL4
B1AS29	0.050709	Glutamate receptor ionotropic, kainate 3
Q04592	0.088382	Proprotein convertase subtilisin/kexin type 5
Q3TCX3	0.104994	KH homology domain-containing protein 4
Q69ZU6	0.109891	Thrombospondin type-1 domain-containing protein 7A
Q9Z2K1	0.127844	Keratin, type I cytoskeletal 16
A2AM05	0.132678	Centlein
B2RXC1	0.141631	Trafficking protein particle complex subunit 11
A8C756	0.157444	Thyroid adenoma-associated protein homolog
Q8BMG7	0.168603	Rab3 GTPase-activating protein non-catalytic subunit
Q8BW10	0.179062	RNA-binding protein NOB1
Q62273	0.182429	Sulfate transporter
P14211	0.190812	Calreticulin
Q6ZPZ3	0.192141	Zinc finger CCCH domain-containing protein 4
A2ARA8	0.194214	Integrin alpha-8
Q6NZJ6	0.194226	Eukaryotic translation initiation factor 4 gamma 1
A2RSQ0	0.220325	DENN domain-containing protein 5B
Q920R0	0.247562	Alsin
Q7M6Y6	0.247937	Maestro heat-like repeat-containing protein family member 2B
Q8K4L3	0.249211	Supervillin
Q9CUU3	0.253797	Synaptonemal complex protein 2
Q 9ЈМН9	0.260775	Unconventional myosin-XVIIIa
P97500	0.267728	Myelin transcription factor 1-like protein
Q99NE5	0.270857	Regulating synaptic membrane exocytosis protein 1
Q3U3D7	0.275625	Transmembrane protein 131-like
O08999	0.27977	Latent-transforming growth factor beta-binding protein 2
O88573	0.286471	AF4/FMR2 family member 1
Q02357	0.293993	Ankyrin-1
Q6A068	0.29442	Cell division cycle 5-like protein
Q62018	0.294977	RNA polymerase-associated protein CTR9 homolog
Q64324	0.313077	Syntaxin-binding protein 2
O08648	0.31499	Mitogen-activated protein kinase kinase kinase 4
Q6Y685	0.315953	Transforming acidic coiled-coil-containing protein 1

O35927	0.322679	Catenin delta-2
P01027	0.323783	Complement C3
Q91YE5	0.324717	Bromodomain adjacent to zinc finger domain protein 2A
O35149	0.338733	Zinc transporter 4
P15208	0.350556	Insulin receptor
Q3U492	0.3518	Kielin/chordin-like protein
Q8CGB3	0.381808	Uveal autoantigen with coiled-coil domains and ankyrin repeats
P35951	0.386506	Low-density lipoprotein receptor
Q810J8	0.388335	Zinc finger FYVE domain-containing protein 1
Q3U3C9	0.397378	Genetic suppressor element 1
Q8VHD8	0.400177	Hornerin
A2A4P0	0.404481	ATP-dependent RNA helicase DHX8
Q63ZW7	0.417298	InaD-like protein
Q7TSC1	0.41768	Protein PRRC2A
Q80TJ7	0.450204	Histone lysine demethylase PHF8
Q80TZ9	0.477127	Arginine-glutamic acid dipeptide repeats protein
Q62141	0.47837	Paired amphipathic helix protein Sin3b
Q5XJV7	0.491078	SET domain-containing protein 5

We found it interesting that 983 proteins seen in the sperm of mice with wild types were not found in the sperm of mice with the *Spag11a* deletion (supplementary table 11). Contrarily, 751 proteins that are solely produced in the sperm of *Spag11a* knockout mice were not found in sperm from wild-type mice (supplementary table 12). Detailed assessments of gene ontologies linked to proteins absent in the sperm of knockout mice are shown in supplementary table 13. Similar to this, gene ontologies related to proteins that are only found in the sperm of knockout mice are presented in supplementary table 14. A closer analyses on the effect of *Spag11a* knockout on processes involved in male gametogenesis was performed. Gene ontology analyses reveal that proteins involved in spermatogenesis, protein phosphorylation, male meiosis – I, spermatid development, flagellated sperm motility, etc were affected in the *Spag11a* knock out sperm (Table 10). We also identified 43 proteins that were completely absent in the sperm of *Spag11a* knock out mice (Table 11). The information revealed that sperm motility and spermatogenesis, in particular, were disrupted in *Spag11a* knockout sperm.

Table 10. Gene ontologies associated with male gametogenesis in which the differentially expressed proteins were involved.

Category	GO Id and description	Protein count
BP	GO:0007283~spermatogenesis	4
BP	GO:0007283~spermatogenesis	25
BP	GO:0006468~protein phosphorylation	4
BP	GO:0007141~male meiosis I	5
BP	GO:0007283~spermatogenesis	43
BP	GO:0007286~spermatid development	16
BP	GO:0030317~flagellated sperm motility	12
CC	GO:0005874~microtubule	4
BP	GO:0071392~cellular response to estradiol stimulus	2
MF	GO:0005524~ATP binding	91
CC	GO:0005856~cytoskeleton	85
MF	GO:0005509~calcium ion binding	50
BP	GO:0016310~phosphorylation	39
BP	GO:0006468~protein phosphorylation	38
CC	GO:0005874~microtubule	24
MF	GO:0003779~actin binding	24
MF	GO:0051015~actin filament binding	20
MF	GO:0008017~microtubule binding	20
BP	GO:0030036~actin cytoskeleton organization	19
BP	GO:0070588~calcium ion transmembrane transport	13
BP	GO:0051321~meiotic cell cycle	13
MF	GO:0004714~transmembrane receptor protein tyrosine kinase activity	12
MF	GO:0008236~serine-type peptidase activity	12
BP	GO:0018108~peptidyl-tyrosine phosphorylation	8
BP	GO:0042632~cholesterol homeostasis	8
MF	GO:0005509~calcium ion binding	53

Table 11. Proteins related to the GO term "spermatogenesis" that are not detected in proteome of caudal sperm of Spag11a ko mice.

	PROTEIN ID	GENE NAME	
1	Q9DBR1	5'-3' exoribonuclease 2(Xrn2)	
2	A2CG63	AT rich interactive domain 4B (RBP1-like)(Arid4b)	
3	Q9WV27	ATPase, Na+/K+ transporting, alpha 4	
		polypeptide(Atp1a4)	
4	Q5SXJ3	BRCA1 interacting protein C-terminal helicase	
		1(Brip1)	
5	Q8VHK9	DEAH (Asp-Glu-Ala-His) box polypeptide 36(Dhx36)	
6	P16381	DNA segment, Chr 1, Pasteur Institute 1(D1Pas1)	
7	P05532	KIT proto-oncogene receptor tyrosine kinase(Kit)	
8	O54785	LIM motif-containing protein kinase 2(Limk2)	
9	Q8VCB1	NDC1 transmembrane nucleoporin(Ndc1)	
10	Q9WVM1	Rac GTPase-activating protein 1(Racgap1)	
11	Q6ZPE2	SET binding factor 1(Sbf1)	
12	G5E8Z2	TATA-box binding protein associated factor	
		4b(Taf4b)	
13	B2RR83	YTH domain containing 2(Ythdc2)	
14	Q9R159	a disintegrin and metallopeptidase domain 25 (testase	
		2)(Adam25)	
15	P27038	activin receptor IIA(Acvr2a)	
16	P09470	angiotensin I converting enzyme (peptidyl-	
		dipeptidase A) 1(Ace)	
17	P34821	bone morphogenetic protein 8a(Bmp8a)	
18	Q8C633	calcium binding protein, spermatid specific 1(Cabs1)	
19	O54833	casein kinase 2, alpha prime polypeptide(Csnk2a2)	
20	Q8BRC6	cilia and flagella associated protein 91(Cfap91)	
21	Q8BLA1	deleted in lung and esophageal cancer 1(Dlec1)	
22	Q80XI3	eukaryotic translation initiation factor 4 gamma,	
		3(Eif4g3)	
23	Q5SV77	gametogenetin binding protein 2(Ggnbp2)	
24	Q8K337	inositol polyphosphate-5-phosphatase B(Inpp5b)	
25	Q8K0T4	katanin p60 subunit A-like 1(Katnal1)	
26	A2AG06	meiosis specific with coiled-coil domain(Meioc)	
27	Q61884	meiosis-specific nuclear structural protein 1(Mns1)	

28	O88735	microtubule-associated protein 7(Map7)
29	Q64249	nuclear receptor subfamily 6, group A, member
		1(Nr6a1)
30	Q9JMB7	piwi-like RNA-mediated gene silencing 1(Piwil1)
31	Q8CGT6	piwi-like RNA-mediated gene silencing 4(Piwil4)
32	Q402U7	protease, serine 44(Prss44)
33	Q5SSW2	proteasome (prosome, macropain) activator subunit
		4(Psme4)
34	Q99MV7	ring finger protein 17(Rnf17)
35	P13808	solute carrier family 4 (anion exchanger), member
		2(Slc4a2)
36	Q6IUP1	spermatogenesis and oogenesis specific basic helix-
		loop-helix 1(Sohlh1)
37	Q3UMC0	spermatogenesis associated 5(Spata5)
38	Q9D411	testis-specific serine kinase 4(Tssk4)
39	Q8C0S4	tetratricopeptide repeat domain 21A(Ttc21a)
40	O55047	tousled-like kinase 2 (Arabidopsis)(Tlk2)
41	Q8CHB8	tubulin tyrosine ligase-like family, member 5(Ttll5)
42	Q5VCS6	tudor domain containing 5(Tdrd5)
43	Q8C0R7	zinc finger, MYND-type containing 15(Zmynd15)

SPAG11A gene polymorphisms in infertile men

Blood samples were collected from fertile and infertile men as per the inclusion and exclusion criteria mentioned in the methodology section. Genomic DNA was isolated from samples and PCR was performed using exon-specific primers. Amplicons were sequenced and multi-aligned with the MultAlin tool. *Spag11a* gene polymorphism analyses indicated that the occurrence of four SNPs each in exon 1 and exon 3. Details of the SNPs and their occurrence in infertile and fertile men are presented (**Table 12**). In exon 1, the SNPs were found at positions 88, 100, 135 and 211 and the mutations observed was T/C, G/A, C/G and A/C respectively. There was no statistical difference in the frequency of the SNPs at positions 88, 135 and 211 between the fertile and infertile groups. The frequency of SNP at position 100 was 6% in the infertile men, while it was 13 % in the fertile men. The position of the SNPs in exon 3 were found to be at 25, 30, 37 and 61 and the mutations associated were T/C, A/G, C/T and C/T respectively. The frequency of SNPs at positions 25, 30, 37 and 61 was 14%, 19%, 19% and 14% respectively in infertile men. In the fertile men frequency of SNPs at positions 25, 30, 37 and 61 was 7%, 7%, 7% and 7% respectively. These results indicate that the SNPs found on exon 3 occur at a

significantly higher frequency in infertile men. The association of polymorphisms between an epididymis-specific gene and male infertility is demonstrated for the first time. Analyses of polymorphisms in larger sample numbers will provide further evidence.

Table 12. Frequency of SNPs in the Spag11a gene in fertile and infertile men.

Exon	Position	SNP	Genotype frequency Infertile (n=48)	Genotype frequency Control (n=15)
Exon1	88	T/C	85 %	80 %
Exon1	135	C/G	62 %	60 %
Exon1	211	A/C	97 %	93 %
Exon1	100	G/A	6 %	13 %*
Exon3	25	T/C	14 %	7 %*
Exon3	30	A/G	19 %	7 %*
Exon3	37	C/T	19 %	7 %*
Exon3	61	C/T	14 %	7 %*

DISCUSSION

Spag11a gene and epididymal carcinogenesis

Incidence of cancers is dependent on a variety of factors. At the genetic level, mutations in the DNA sequence that may result in overexpression or downregulation of certain genes are known to contribute to carcinogenesis. Cancers of the male reproductive tract caused by genetic alterations are very common, especially of the testis and prostate. For example, testicular teratoma was evident in animals where in the expression of cyclin D1 (Ccnd1) was perturbed (Lanza, Dawson et al. 2016). Prostate tumorigenesis associated with DNA damage was promoted under conditions of testicular nuclear receptor 4 (Tr4) knock down (Lin, Lee et al. 2014). In the Leydig and Sertoli cell specific conditional knock out mice for Smad4 or Smad1 or Smad5, metastatic tumour formation associated with testicular dysgenesis and haemorrhagic was evident (Pangas, Li et al. 2008, Archambeault and Yao 2014). In knock out mice that lacked xeroderma pigmentosum group A gene (Xpa), testicular tumorigenesis was developed (Nakane, Hirota et al. 2008). In the WWOX hypomorphic mice, occurrence of B-cell lymphomas and testicular atrophy was observed (Ludes-Meyers, Kil et al. 2007). Nbn heterozygous mice displayed testicular tumour incidence compared to their wild type counter parts. (Dumon-Jones, Frappart et al. 2003). However, incidence of cancer in the epididymis is very rare. It is hypothesised that a variety of factors that are epididymis specific contribute to this unique property (Yeung, Wang et al. 2012). Our previous studies demonstrated that the incidence of chemically induced epididymal hyperplasia was higher in rats immunized against the epididymis specific protein SPAG11A (Sangeeta and Yenugu 2022). This indicated that absence of SPAG11A protein renders this organ susceptible to tumorigenesis. To further study the role of SPAG11A in contributing to the resistance towards cancers in the epididymis, in this part of the study, we used Spag11a knock out mice and subjected them to low dose carcinogen treatment.

Tumour initiation is a result of uncontrolled cell proliferation, a tightly regulated process mediated by complex signalling pathways. In majority of the cancers, disturbances in the expression pattern of the components of cell signalling pathways leads to the dysregulation of the cellular processess and thereby leading to imbalance in cell proliferation. A recent study reported that perturbations in gene expression of the components of one or more of the most common ten signalling pathways (Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb, p53, cell cycle (Cdk mediated) and b-catenin/Wnt) are associated with majority of the 33 types of human cancers analysed (Sanchez-Vega, Mina et al. 2018). In this study, as a first step, to determine whether knock out of *Spag11a* will result in disturbances in the cellular signalling pathways, especially related to cell proliferation, whole transcriptome analyses of the caput epididymis was carried out in wild type and *Spag11a* knock out mice. Differentially regulated genes were associated with a wide variety of cellular processes. The top 10 gene ontologies affected by the up regulated genes are were related to cell cycle, cell division and other cellular processes that are involved basic cellular function. On the other hand down regulated genes were in

involved in gene that contribute to membrane integrity, signal transduction and inflammatory responses are some of the significant ones affected. These preliminary results indicated that absence of *Spag11a* could affect the cellular cycle pathways in the caput epididymis. Our previous in vitro studies also indicated that siRNA mediated knock down of *Spag11a* resulted in increased proliferation of isolated epididymal primary epithelial cells (Sangeeta and Yenugu 2020).

In the DEN treated Spag11a knock out mice, the incidence of pathological features akin to tumorigenesis was more evident than their wild type counterparts. Features that reflect hyperplasia, inflammation and tumorigenesis were observed in the caput and cauda epididymis, testis and seminal vesicles. Among all the tissues analysed severe pathological changes that indicate tumorigenesis was observed in the prostate. Previous studies have also reported the onset of tumorigenesis in testis, prostate and other endocrine tissues under conditions of ablation of a specific gene using knock out models (Dumon-Jones, Frappart et al. 2003, Ludes-Meyers, Kil et al. 2007, Nakane, Hirota et al. 2008, Pangas, Li et al. 2008, Sachdeva, Bhardwaj et al. 2012, Archambeault and Yao 2014, Lin, Lee et al. 2014, Lanza, Dawson et al. 2016). Promotion of testicular teratoma initiation in mice that misexpresses cyclin D1, the tumour suppressor activity of TR4 nuclear receptor in the prostate, testicular dysgenesis in Smad4 and Smad5 knock out mice, spontaneous tumorigenesis in xeroderma pigmentosum group A gene (Xpa)-deficient mice, testicular atrophy in WWOX hypomorphic mice and increased susceptibility to tumour formation in Nbn heterozygous mice are some of the latest findings that demonstrate that loss of a specific gene can induce tumorigenesis in the male reproductive tract models (Dumon-Jones, Frappart et al. 2003, Ludes-Meyers, Kil et al. 2007, Nakane, Hirota et al. 2008, Pangas, Li et al. 2008, Archambeault and Yao 2014, Lin, Lee et al. 2014, Lanza, Dawson et al. 2016). However, the incidence of tumorigenesis in the epididymis was not demonstrated earlier. This study, for the first-time reports that knock out of Spag11a contributes to susceptibility of caput epididymis to chemically induced carcinogenesis.

Spag11a gene and sperm function

Transgenic or knockout animals are the best models to study gene function. Such model systems have been extensively used to study the role of a gene or multiple genes in male reproductive physiology. Epididymal or testicular genes have been analysed, some of which were dispensable for fertility, while the rest were crucial for male gametogenesis. For example, the *Lcn8* knockout mice displayed normal spermatogenesis and fertility, but the animals produced defective sperm (Wen, Liu et al. 2021). While the fertility was not affected, the crucial role of calcium-binding protein spermatid-associated 1 (*Cabs1*) in the formation of sperm annulus, tail assembly and motility was demonstrated in a knockout animal model (Zhang, Zhou et al. 2021). Deletion of serine protease 55 (PRSS55) affected energy metabolism of spermatozoa, which ultimately resulted in infertility in mice (Zhu, Li et al. 2021). Cilia and flagella associated protein 45 (CFAP45) knockout mice were characterized with asthenospermia associated with

motile ciliopathy (Dougherty, Mizuno et al. 2020). Deficiencies in sperm function (capacitation and acrosome reaction) and sperm maturation were reported in *Plag1*^{-/-} mice (Wong, Damdimopoulos et al. 2020). On the same lines, the importance of *Cfap97d1*, adenylate kinase 1, autophagy core protein ATG5, *Fam170a, Tmprss12*, NELL2, IFT81, DCP2 and *Prss55* are some of the epididymal and testicular genes whose indispensability has been demonstrated (Devlin, Nozawa et al. 2020, Huang, Liu et al. 2020, Kiyozumi, Noda et al. 2020, Kobayashi, Endo et al. 2020, Larasati, Noda et al. 2020, Li, Zhang et al. 2020, Qu, Yuan et al. 2020, Xie, Zhang et al. 2020). We previously demonstrated that active immunization against SPAG11A or shRNA mediated ablation of *Spag11a* mRNA or knock out of *Spag11a* resulted in decreased fecundity and sperm function (Sangeeta and Yenugu 2020). However, there is no evidence on the specific processes that are affected under conditions of Spag11a knock out. Hence, we analysed the sperm proteome of wild type and *Spag11a* knock out mice to determine whether any proteins that are crucial for spermatogenesis and sperm maturation are affected.

Analysis of the sperm proteome in the Spag11a knock out mice revealed differential expression of Proteins that were up regulated in the sperm of knock out mice are involved in spermatogenesis, macromolecular complex formation, protein phosphorylation and microtubule formation. Proteins that were down regulated in the sperm of knock out mice are involved in spliceosomal complex formation, maintenance of cytoskeleton and cell differentiation. Interestingly, a large number of proteins that were detected in the sperm of wild type mice were not detected in the sperm of Spag11a knockout mice. These proteins have roles in spermatogenesis, protein phosphorylation, male meiosis – I, spermatid development, flagellated sperm motility. Changes in proteome of male reproductive organs, including the sperm under conditions of a gene knockout were demonstrated earlier. Drastic changes in the testicular proteome was reported in Akap-4 knockout mice (Fang, Huang et al. 2019). In the testis of Sun5 knockout mice, differential expression of proteins was evident, which play a key role in spermatogenesis (Zhang, Yang et al. 2021). Homozygous loss-offunction mutations of ORICH2 gene in humans resulted in altered sperm proteome (Shen, Zhang et al. 2019). Loss of LY6/PLAUR domain containing 4 (LYPD4) gene in knockout mice caused perturbations in the expression of proteins in the spermatozoa (Wang, Cheng et al. 2020). It is very clear from out study that the cellular processes in which differential expression of sperm proteins was observed contribute to the male gametogenesis in a direct or indirect way.

Spag11a polymorphism and male infertility

Infertility is a serious problem and affects about 15% of couples throughout the world (de Kretser 1997). Male factor infertility is one of the most complex disorders in reproductive medicine and understanding of the factors responsible for these conditions remained an active area of research in the last three decades. It is estimated that genetic abnormalities are responsible for nearly 30% of male factor infertility (Ferlin, Raicu et al. 2007). A variety of factors such as environmental, hormonal, life

style and genetic abnormalities are responsible for the increase in male infertility rates. Genetic changes affect hormonal homeostasis, spermatogenesis and sperm quality. Majority of the genetic studies focused on genes that are involved in spermatogenesis or factors that aid spermatogenesis. It is important to note that a lot of evidence suggests that proteins that are secreted in the epididymis aid in sperm maturation, sperm function and fertilization. Genetic changes in genes that encode epididymal proteins are not analysed. This is more evident in the Indian context. Hence, analyzing genetic changes in genes that encode testicular and epididymal proteins will help to identify factors that are to be supplemented for effective in vitro fertilization techniques.

In this study, we identified the possible Spag11a gene polymorphisms in fertile and infertile men. In exon 1, the SNPs were found at positions 88, 100, 135 and 211 and the mutations observed was T/C, G/A, C/G and A/C respectively. There was no statistical difference in the frequency of the SNPs at positions 88, 135 and 211 between the fertile and infertile groups. The frequency of SNP at position 100 was 6% in the infertile men, while it was 13 % in the fertile men. The position of the SNPs in exon 3 were found to be at 25, 30, 37 and 61 and the mutations associated were T/C, A/G, C/T and C/T respectively. The frequency of SNPs at positions 25, 30, 37 and 61 was 14%, 19%, 19% and 14% respectively in infertile men. In the fertile men frequency of SNPs at positions 25, 30, 37 and 61 was 7%, 7%, 7% and 7% respectively. These results indicate that the SNPs found on exon 3 occur at a significantly higher frequency in infertile men. Screening for SNPs using microarrays in infertile men is a recent development. Using microarray technology, SNPs and deletions in the SPATA16 and DPY19L2 genes was found to be associated with globozoospermia (Dam, Koscinski et al. 2007, Harbuz, Zouari et al. 2011, Koscinski, Elinati et al. 2011). Besides these, a number of SNPs have been identified using microarray technologies (Aston 2014). Genome wide studies to identify SNPs and their relation to male infertility were reported. SNPs in TGFBR3 and BMP7, human leukocyte antigen (HLA) region were significantly associated with non-obstructive azoospermia. Copy number variations were identified in infertile men using genome wide studies (Dalgaard, Weinhold et al. 2012, Tuttelmann, Laan et al. 2012, Zhao, Xu et al. 2012, Lopes, Aston et al. 2013). In this study, the association of polymorphisms between an epididymis-specific gene and male infertility is demonstrated for the first time. Analyses of polymorphisms in larger sample numbers will provide further evidence.

CONCLUSIONS

This part of the study presents the role of Spag11a, an epididymis specific gene in multiple physiological processes. Loss of Spag11a gene (by knockout) in mice caused differential expression of genes involved in a variety of cellular processes. The KEGG pathway analyses suggested that the absence of Spag 11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation and chemical carcinogenesis-DNA adducts pathways, which may contribute to the promotion of oncogenesis in the epididymis. Further, the epididymis and prostate of Spag11a knockout mice appeared to be more susceptible to DEN-induced carcinogenesis compared to wild type mice, which is evident by histopathological examination. Hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the epididymis and prostate of Spag11a knockout mice, while that of wild type mice displayed normal anatomical structure. Our results provide concrete evidence that the loss of Spag11a makes the epididymis and other tissues more susceptible to chemical carcinogenesis. The involvement of an epididymal gene in carcinogenesis is being demonstrated for the first time and also provides a possible answer to the complex question of why epididymal cancers are rare. On the other hand, the sperm proteome analyses revealed that the loss of Spag11a affected resulted in differential expression of proteins that are crucial for spermatogenesis process and sperm motility. SNPs were detected in the SPAG11A gene in infertile patients for the first time, which indicates that polymorphisms in genes that contribute to sperm maturations can also be a factor for male infertility. Results of this part of the study indicate the role of Spag11a gene in fertility and prevention of tumorigenesis. In depth analyses on the molecular mechanisms through which SPAG11A protein modulates cell proliferation are essential.

REFERENCES

- . "PDCL2." from https://www.proteinatlas.org/ENSG00000163440-PDCL2/tissue.
- Abdullah and J. Xing (2020). "Adenomatoid tumor of epididymis-A case report." <u>Urol Case Rep</u> **28**: 101022.
- Abe, K., H. Takano and T. Ito (1983). "Ultrastructure of the mouse epididymal duct with special reference to the regional differences of the principal cells." <u>Arch Histol Jpn</u> **46**(1): 51-68.
- Adamali, H. I. and L. Hermo (1996). "Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis." <u>J Androl</u> **17**(3): 208-222.
- Aitken, R. J., B. Nixon, M. Lin, A. J. Koppers, Y. H. Lee and M. A. Baker (2007). "Proteomic changes in mammalian spermatozoa during epididymal maturation." <u>Asian J Androl</u> **9**(4): 554-564.
- Akhtar, M. F., Q. Wei, H. Zhu, Z. Chen, E. Ahmad, S. Zhendan and F. Shi (2019). "The role of active immunization against inhibin α -subunit on testicular development, testosterone concentration and relevant genes expressions in testis, hypothalamus and pituitary glands in Yangzhou goose ganders." Theriogenology **128**: 122-132.
- Almohaya, N., M. Almansori, M. Sammour, A. B. Ajjaj and M. T. Yacoubi (2021). "Leiomyoadenomatoid tumors: A type of rare benign epididymal tumor." <u>Urol Case Rep</u> **38**: 101700.
- Altenhoff, A. M., R. A. Studer, M. Robinson-Rechavi and C. Dessimoz (2012). "Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs." <u>PLoS Comput Biol</u> **8**(5): e1002514.
- Anastasi, E., G. G. Marchei, V. Viggiani, G. Gennarini, L. Frati and M. G. Reale (2010). "HE4: a new potential early biomarker for the recurrence of ovarian cancer." <u>Tumour Biol</u> **31**(2): 113-119.
- Aponte, P. M., M. A. Gutierrez-Reinoso, E. G. Sanchez-Cepeda and M. Garcia-Herreros (2018). "Active immunization against GnRH in pre-pubertal domestic mammals: testicular morphometry, histopathology and endocrine responses in rabbits, guinea pigs and ram lambs." <u>Animal</u> **12**(4): 784-793.
- Araujo, S. C. and R. P. Bertolla (2021). "Protein markers of spermatogenesis and their potential use in the management of azoospermia." <u>Expert Rev Proteomics</u> **18**(11): 939-948.
- Archambeault, D. R. and H. H. Yao (2014). "Loss of smad4 in Sertoli and Leydig cells leads to testicular dysgenesis and hemorrhagic tumor formation in mice." <u>Biol Reprod</u> **90**(3): 62.
- Arimura, Y., J. Ashitani, S. Yanagi, M. Tokojima, K. Abe, H. Mukae and M. Nakazato (2004). "Elevated serum beta-defensins concentrations in patients with lung cancer." <u>Anticancer Res</u> **24**(6): 4051-4057.
- Arnold, K., L. Bordoli, J. Kopp and T. Schwede (2006). "The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling." <u>Bioinformatics (Oxford, England)</u> **22**(2): 195-201.
- Aston, K. I. (2014). "Genetic susceptibility to male infertility: news from genome-wide association studies." Andrology **2**(3): 315-321.
- Barbaux, S., C. Ialy-Radio, M. Chalbi, E. Dybal, M. Homps-Legrand, M. Do Cruzeiro, D. Vaiman, J. P. Wolf and A. Ziyyat (2020). "Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion." <u>Sci Rep</u> **10**(1): 5335.
- Barhite, S., P. Thibault and M. Miles (1998). "Phosducin-like protein (PhLP), a regulator of G beta gamma function, interacts with the proteasomal protein SUG1 " <u>Biochimica et Biophysica Acta</u> **1402**(1): 95-101.
- Barker, E. and R. A. Reisfeld (1993). "A mechanism for neutrophil-mediated lysis of human neuroblastoma cells." <u>Cancer Res</u> **53**(2): 362-367.
- Belleannee, C., M. Belghazi, V. Labas, A. P. Teixeira-Gomes, J. L. Gatti, J. L. Dacheux and F. Dacheux (2011). "Purification and identification of sperm surface proteins and changes during epididymal maturation." <u>Proteomics</u> **11**(10): 1952-1964.
- Belleannee, C., E. Calvo, V. Thimon, D. G. Cyr, C. Legare, L. Garneau and R. Sullivan (2012). "Role of microRNAs in controlling gene expression in different segments of the human epididymis." <u>PLoS One</u> **7**(4): e34996.
- Belleannee, C., V. Thimon and R. Sullivan (2012). "Region-specific gene expression in the epididymis." Cell Tissue Res **349**(3): 717-731.

- Bellil, H., F. Ghieh, E. Hermel, B. Mandon-Pepin and F. Vialard (2021). "Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility." <u>Basic Clin Androl</u> **31**(1): 9.
- Belousov, L. V. (2011). "Scott F. Gilbert—Developmental Biology, 2010, Sinauer Associates, Inc., Sunderland, MA Ninth Edition." <u>Russian Journal of Developmental Biology</u> **42**(5): 349.
- Bettoni, F., F. C. Filho, D. M. Grosso, P. A. Galante, R. B. Parmigiani, M. V. Geraldo, F. Henrique-Silva, S. M. Oba-Shinjo, S. K. Marie, F. A. Soares, H. P. Brentani, A. J. Simpson, S. J. de Souza and A. A. Camargo (2009). "Identification of FAM46D as a novel cancer/testis antigen using EST data and serological analysis." <u>Genomics</u> **94**(3): 153-160.
- Bieniek, J. M., A. P. Drabovich and K. C. Lo (2016). "Seminal biomarkers for the evaluation of male infertility." <u>Asian Journal of Andrology</u> **18**(3): 426-433.
- Bjorkgren, I. and P. Sipila (2019). "The impact of epididymal proteins on sperm function." Reproduction **158**(5): R155-R167.
- Breitbart, H. (2002). "Intracellular calcium regulation in sperm capacitation and acrosomal reaction." Mol Cell Endocrinol **187**(1-2): 139-144.
- Breitbart, H., G. Cohen and S. Rubinstein (2005). "Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction." <u>Reproduction</u> **129**(3): 263-268.
- Breitbart, H. and B. Spungin (1997). "The biochemistry of the acrosome reaction." <u>Mol Hum Reprod</u> **3**(3): 195-202.
- Breton, S., A. V. Nair and M. A. Battistone (2019). "Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa." <u>Andrology</u> **7**(5): 631-643.
- Brown, J. C. (2019). "Control of human testis-specific gene expression." PLoS One 14(9): e0215184.
- Bullard, R. S., W. Gibson, S. K. Bose, J. K. Belgrave, A. C. Eaddy, C. J. Wright, D. J. Hazen-Martin, J. M. Lage, T. E. Keane, T. A. Ganz and C. D. Donald (2008). "Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer." <u>Mol Immunol</u> **45**(3): 839-848.
- Caballero, J., G. Frenette and R. Sullivan (2010). "Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes." <u>Vet Med Int</u> **2011**: 757194.
- Cannon-Albright, L. A., J. M. Farnham, M. Bailey, F. S. Albright, C. C. Teerlink, N. Agarwal, R. A. Stephenson and A. Thomas (2014). "Identification of specific Y chromosomes associated with increased prostate cancer risk." <u>Prostate</u> **74**(9): 991-998.
- Capoano, C. A., L. A. Ortiz-Laquintana, R. Rodríguez-Casuriaga, G. Schlapp, M. N. Meikle, A. P. Mulet, M. Crispo, R. Benavente and A. Geisinger (2021). "SPATS1 (spermatogenesis-associated, serine-rich 1) is not essential for spermatogenesis and fertility in mouse." <u>PLoS One</u> **16**(5): e0251028.
- Chen, P., H. Saiyin, R. Shi, B. Liu, X. Han, Y. Gao, X. Ye, X. Zhang and Y. Sun (2021). "Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex." <u>Hum Reprod</u> **36**(9): 2587-2596.
- Chen, P., Q. Yang, X. Li and Y. Qin (2017). "Potential association between elevated serum human epididymis protein 4 and renal fibrosis: A systemic review and meta-analysis." <u>Medicine (Baltimore)</u> **96**(36): e7824.
- Chen, S., Y. Zhou, Y. Chen and J. Gu (2018). "fastp: an ultra-fast all-in-one FASTQ preprocessor." <u>Bioinformatics</u> **34**(17): i884-i890.
- Cooper, T. G. (2002). "Recent advances in sperm maturation in the human epididymis." <u>Andrologie</u> **12**(1): 38-51.
- Cornwall, G. A. (2009). "New insights into epididymal biology and function." <u>Hum Reprod Update</u> **15**(2): 213-227.
- Cosentino, M. J. and A. T. Cockett (1986). "Structure and function of the epididymis." <u>Urol Res</u> **14**(5): 229-240.
- Cun Gao, Weiming Yue, Hui Tian, Lin Li, Shuhai Li and L. Si (2016). "Human beta-defensin 2 promotes the proliferation of lung cancer cells through ATP-binding cassette transporter G2." <u>Int J Clin Exp Pathol</u> **9**(6): 5944-5949.
- Dacheux, J. L., C. Belleannee, R. Jones, V. Labas, M. Belghazi, B. Guyonnet, X. Druart, J. L. Gatti and F. Dacheux (2009). "Mammalian epididymal proteome." <u>Mol Cell Endocrinol</u> **306**(1-2): 45-50.
- Dalgaard, M. D., N. Weinhold, D. Edsgard, J. D. Silver, T. H. Pers, J. E. Nielsen, N. Jorgensen, A. Juul, T. A. Gerds, A. Giwercman, Y. L. Giwercman, G. Cohn-Cedermark, H. E. Virtanen, J. Toppari, G. Daugaard, T. S. Jensen, S. Brunak, E. Rajpert-De Meyts, N. E. Skakkebaek, H. Leffers and R. Gupta

- (2012). "A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation." J Med Genet **49**(1): 58-65.
- Dam, A. H., I. Koscinski, J. A. Kremer, C. Moutou, A. S. Jaeger, A. R. Oudakker, H. Tournaye, N. Charlet, C. Lagier-Tourenne, H. van Bokhoven and S. Viville (2007). "Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia." <u>Am J Hum Genet</u> **81**(4): 813-820.
- DasGupta, T., E. I. Nweze, H. Yue, L. Wang, J. Jin, S. K. Ghosh, H. I. Kawsar, C. Zender, E. J. Androphy, A. Weinberg, T. S. McCormick and G. Jin (2016). "Human papillomavirus oncogenic E6 protein regulates human beta-defensin 3 (hBD3) expression via the tumor suppressor protein p53." Oncotarget 7(19): 27430-27444.
- de Kretser, D. M. (1997). "Male infertility." Lancet 349(9054): 787-790.
- de Sena Brandine, G. and A. D. Smith (2019). "Falco: high-speed FastQC emulation for quality control of sequencing data." F1000Res 8: 1874.
- Desai, S. S., S. K. Achrekar, S. R. Paranjape, S. K. Desai, V. S. Mangoli and S. D. Mahale (2013). "Association of allelic combinations of FSHR gene polymorphisms with ovarian response." <u>Reprod Biomed Online</u> **27**(4): 400-406.
- Devlin, D. J., K. Nozawa, M. Ikawa and M. M. Matzuk (2020). "Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in micedagger." <u>Biol Reprod</u> **103**(2): 205-222.
- Djureinovic, D., L. Fagerberg, B. Hallström, A. Danielsson, C. Lindskog, M. Uhlén and F. Pontén (2014). "The human testis-specific proteome defined by transcriptomics and antibody-based profiling." <u>Mol Hum Reprod</u> **20**(6): 476-488.
- Djureinovic, D., L. Fagerberg, B. Hallström, A. Danielsson, C. Lindskog, M. Uhlén and F. Pontén (2014). "The human testis-specific proteome defined by transcriptomics and antibody-based profiling." <u>Molecular Human Reproduction</u> **20**(6): 476-488.
- Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." <u>Bioinformatics</u> **29**(1): 15-21.
- Donald, C. D., C. Q. Sun, S. D. Lim, J. Macoska, C. Cohen, M. B. Amin, A. N. Young, T. A. Ganz, F. F. Marshall and J. A. Petros (2003). "Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas." <u>Lab Invest</u> **83**(4): 501-505.
- Dougherty, G. W., K. Mizuno, T. Nothe-Menchen, Y. Ikawa, K. Boldt, A. Ta-Shma, I. Aprea, K. Minegishi, Y. P. Pang, P. Pennekamp, N. T. Loges, J. Raidt, R. Hjeij, J. Wallmeier, H. Mussaffi, Z. Perles, O. Elpeleg, F. Rabert, H. Shiratori, S. J. Letteboer, N. Horn, S. Young, T. Strunker, F. Stumme, C. Werner, H. Olbrich, K. Takaoka, T. Ide, W. K. Twan, L. Biebach, J. Grosse-Onnebrink, J. A. Klinkenbusch, K. Praveen, D. C. Bracht, I. M. Hoben, K. Junger, J. Gutzlaff, S. Cindric, M. Aviram, T. Kaiser, Y. Memari, P. P. Dzeja, B. Dworniczak, M. Ueffing, R. Roepman, K. Bartscherer, N. Katsanis, E. E. Davis, I. Amirav, H. Hamada and H. Omran (2020). "CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module." Nat Commun 11(1): 5520.
- Droin, N., J. B. Hendra, P. Ducoroy and E. Solary (2009). "Human defensins as cancer biomarkers and antitumour molecules." <u>J Proteomics</u> **72**(6): 918-927.
- Dube, E., P. T. Chan, L. Hermo and D. G. Cyr (2007). "Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis." <u>Biol Reprod</u> **76**(6): 1034-1044.
- Dufau, M. L., C. Tsai-Morris, P. Tang and A. Khanum (2001). "Regulation of steroidogenic enzymes and a novel testicular RNA helicase." <u>J Steroid Biochem Mol Biol</u> **76**(1-5): 187-197.
- Dumon-Jones, V., P. O. Frappart, W. M. Tong, G. Sajithlal, W. Hulla, G. Schmid, Z. Herceg, M. Digweed and Z. Q. Wang (2003). "Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis." <u>Cancer Res</u> **63**(21): 7263-7269.
- Eddy, E. M. (2002). "Male germ cell gene expression." Recent Prog Horm Res 57: 103-128.
- Eddy, R. J., R. A. Sauterer and J. S. Condeelis (1993). "Aginactin, an agonist-regulated F-actin capping activity is associated with an Hsc70 in Dictyostelium." <u>J Biol Chem</u> **268**(31): 23267-23274.
- Fang, X., L.-L. Huang, J. Xu, C.-Q. Ma, Z.-H. Chen, Z. Zhang, C.-H. Liao, S.-X. Zheng, P. Huang, W.-M. Xu, N. Li and L. Sun (2019). "Proteomics and single-cell RNA analysis of Akap4-knockout mice model confirm indispensable role of Akap4 in spermatogenesis." <u>Developmental Biology</u> **454**(2): 118-127.

- Ferlin, A., F. Raicu, V. Gatta, D. Zuccarello, G. Palka and C. Foresta (2007). "Male infertility: role of genetic background." <u>Reprod Biomed Online</u> **14**(6): 734-745.
- Ferraro, S. and M. Panteghini (2018). "Making new biomarkers a reality: the case of serum human epididymis protein 4." <u>Clin Chem Lab Med</u>.
- Ferraro, S. and M. Panteghini (2019). "Making new biomarkers a reality: the case of serum human epididymis protein 4." Clin Chem Lab Med 57(9): 1284-1294.
- Fink, E., C. Hehlein-Fink and M. Eulitz (1990). "Amino acid sequence elucidation of human acrosin-trypsin inhibitor (HUSI-II) reveals that Kazal-type proteinase inhibitors are structurally related to beta-subunits of glycoprotein hormones." <u>FEBS Lett</u> **270**(1-2): 222-224.
- Frishman, D. and P. Argos (1995). "Knowledge-based protein secondary structure assignment." <u>Proteins</u> **23**(4): 566-579.
- Frohlich, O., C. Po, T. Murphy and L. G. Young (2000). "Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2." <u>J Androl</u> **21**(3): 421-430.
- Froy, O., A. Hananel, N. Chapnik and Z. Madar (2005). "Differential expression of rat beta-defensins." <u>IUBMB Life</u> **57**(1): 41-43.
- Fujihara, Y., S. Herberg, A. Blaha, K. Panser, K. Kobayashi, T. Larasati, M. Novatchkova, H. C. Theussl, O. Olszanska, M. Ikawa and A. Pauli (2021). "The conserved fertility factor SPACA4/Bouncer has divergent modes of action in vertebrate fertilization." <u>Proc Natl Acad Sci U S A</u> **118**(39).
- Fujihara, Y., Y. Satouh, N. Inoue, A. Isotani, M. Ikawa and M. Okabe (2012). "SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia." <u>Development</u> **139**(19): 3583-3589.
- Fujita, E., Y. Kouroku, S. Ozeki, Y. Tanabe, Y. Toyama, M. Maekawa, N. Kojima, H. Senoo, K. Toshimori and T. Momoi (2006). "Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily." <u>Mol Cell Biol</u> **26**(2): 718-726.
- Gabaldón, T. and E. V. Koonin (2013). "Functional and evolutionary implications of gene orthology." Nat Rev Genet **14**(5): 360-366.
- Gambichler, T., M. Skrygan, J. Huyn, F. G. Bechara, M. Sand, P. Altmeyer and A. Kreuter (2006). "Pattern of mRNA expression of beta-defensins in basal cell carcinoma." <u>BMC Cancer</u> **6**: 163.
- Ganem, J. P., F. M. Jhaveri and M. C. Marroum (1998). "Primary adenocarcinoma of the epididymis: case report and review of the literature." Urology **52**(5): 904-908.
- Ganz, T. (2003). "Defensins: antimicrobial peptides of innate immunity." <u>Nat Rev Immunol</u> **3**(9): 710-720.
- Gao, X., S. Sinha, M. Belcastro, C. Woodard, V. Ramamurthy, P. Stoilov and M. Sokolov (2013). "Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins." <u>J Biol Chem</u> **288**(36): 25760-25768.
- Garcia, J. R., A. Krause, S. Schulz, F. J. Rodriguez-Jimenez, E. Kluver, K. Adermann, U. Forssmann, A. Frimpong-Boateng, R. Bals and W. G. Forssmann (2001). "Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity." <u>FASEB J</u> 15(10): 1819-1821. Geourjon, C. and G. Deléage (1995). "SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments." <u>Computer applications in the biosciences</u>: CABIOS 11(6): 681-684.
- Gervasi, M. G. and P. E. Visconti (2017). "Molecular changes and signaling events occurring in spermatozoa during epididymal maturation." <u>Andrology</u> **5**(2): 204-218.
- Ghafouri-Fard, S., A. Abbasi, H. Moslehi, N. Faramarzi, S. Taba Taba Vakili, M. B. Mobasheri and M. H. Modarressi (2010). "Elevated expression levels of testis-specific genes TEX101 and SPATA19 in basal cell carcinoma and their correlation with clinical and pathological features." <u>Br J Dermatol</u> **162**(4): 772-779.
- Guerra-Carvalho, B., D. F. Carrageta, L. Crisóstomo, R. A. Carvalho, M. G. Alves and P. F. Oliveira (2021). "Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects." <u>Anim Reprod Sci</u>: 106896.
- Guyonnet, B., G. Marot, J. L. Dacheux, M. J. Mercat, S. Schwob, F. Jaffrezic and J. L. Gatti (2009). "The adult boar testicular and epididymal transcriptomes." <u>BMC Genomics</u> **10**: 369.
- Hall, S. H., S. Yenugu, Y. Radhakrishnan, M. C. Avellar, P. Petrusz and F. S. French (2007). "Characterization and functions of beta defensins in the epididymis." <u>Asian J Androl</u> **9**(4): 453-462.

- Han, Q., R. Wang, C. Sun, X. Jin, D. Liu, X. Zhao, L. Wang, N. Ji, J. Li, Y. Zhou, L. Ye, X. Liang, L. Jiang, G. Liao, H. Dan, X. Zeng and Q. Chen (2014). "Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients." PLoS One **9**(3): e91867.
- Hanaoka, Y., Y. Yamaguchi, H. Yamamoto, M. Ishii, T. Nagase, H. Kurihara, M. Akishita and Y. Ouchi (2016). "In Vitro and In Vivo Anticancer Activity of Human beta-Defensin-3 and Its Mouse Homolog." Anticancer Res **36**(11): 5999-6004.
- Harbuz, R., R. Zouari, V. Pierre, M. Ben Khelifa, M. Kharouf, C. Coutton, G. Merdassi, F. Abada, J. Escoffier, Y. Nikas, F. Vialard, I. Koscinski, C. Triki, N. Sermondade, T. Schweitzer, A. Zhioua, F. Zhioua, H. Latrous, L. Halouani, M. Ouafi, M. Makni, P. S. Jouk, B. Sele, S. Hennebicq, V. Satre, S. Viville, C. Arnoult, J. Lunardi and P. F. Ray (2011). "A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation." <u>Am J Hum Genet</u> **88**(3): 351-361. Harris, M. E. and A. Bartke (1974). "Concentration of testosterone in testis fluid of the rat." Endocrinology **95**(3): 701-706.
- Harris, M. E. and A. Bartke (1981). "Androgen levels in the rete testis fluid during sexual development." Experientia **37**(4): 426-427.
- Hermo, L., J. Dworkin and R. Oko (1988). "Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa." <u>Am J Anat</u> **183**(2): 107-124.
- Hermo, L. and B. Robaire (2002). Epididymal Cell Types and Their Functions. <u>The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens</u>. B. Robaire and B. T. Hinton. Boston, MA, Springer US: 81-102.
- Hong, S. H., G. Han, S. J. Lee, J. Cocquet and C. Cho (2021). "Testicular germ cell-specific lncRNA, Teshl, is required for complete expression of Y chromosome genes and a normal offspring sex ratio." Sci Adv 7(24).
- Hu, S. G., M. Zou, G. X. Yao, W. B. Ma, Q. L. Zhu, X. Q. Li, Z. J. Chen and Y. Sun (2014). "Androgenic regulation of beta-defensins in the mouse epididymis." <u>Reprod Biol Endocrinol</u> **12**: 76.
- Huang, Q., Y. Liu, S. Zhang, Y. T. Yap, W. Li, D. Zhang, A. Gardner, L. Zhang, S. Song, R. A. Hess and Z. Zhang (2020). "Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice." <u>Autophagy</u>: 1-15.
- Jaiswal, D., R. Sah, N. K. Agrawal, U. S. Dwivedi, S. Trivedi and K. Singh (2012). "Combined effect of GSTT1 and GSTM1 polymorphisms on human male infertility in north Indian population." Reprod Sci 19(3): 312-316.
- Jaiswal, D., S. Trivedi, N. K. Agrawal, R. Singh and K. Singh (2013). "Association of interleukin-1beta C + 3953T gene polymorphism with human male infertility." <u>Syst Biol Reprod Med</u> **59**(6): 347-351.
- James, E. R., D. T. Carrell, K. I. Aston, T. G. Jenkins, M. Yeste and A. Salas-Huetos (2020). "The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction." <u>Int J Mol Sci</u> **21**(15).
- Janeja, H. S., S. S. Banga and M. Lakshmikumaran (2003). "Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus." <u>Theor Appl Genet</u> **107**(1): 148-154.
- Jelinsky, S. A., T. T. Turner, H. J. Bang, J. N. Finger, M. K. Solarz, E. Wilson, E. L. Brown, G. S. Kopf and D. S. Johnston (2007). "The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides." <u>Biol Reprod</u> **76**(4): 561-570.
- Jenssen, H. and R. E. Hancock (2009). "Antimicrobial properties of lactoferrin." <u>Biochimie</u> **91**(1): 19-29.
- Jeong, J., B. Lee, J. Kim, J. Kim, S. H. Hong, D. Kim, S. Choi, B. N. Cho and C. Cho (2019). "Expressional and functional analyses of epididymal SPINKs in mice." <u>Gene Expr Patterns</u> **31**: 18-25. Jin, G., H. I. Kawsar, S. A. Hirsch, C. Zeng, X. Jia, Z. Feng, S. K. Ghosh, Q. Y. Zheng, A. Zhou, T. M. McIntyre and A. Weinberg (2010). "An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis." <u>PLoS One</u> **5**(6): e10993.
- JM, F., DillFJ and H. MR (1992). the national medical series for independent study. <u>Genetics: Williams & Wilkins.</u>

- Johnston, D. S., S. A. Jelinsky, H. J. Bang, P. DiCandeloro, E. Wilson, G. S. Kopf and T. T. Turner (2005). "The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis." <u>Biol Reprod</u> **73**(3): 404-413.
- Johnston, D. S., W. W. Wright, P. Dicandeloro, E. Wilson, G. S. Kopf and S. A. Jelinsky (2008). "Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells." Proc Natl Acad Sci U S A **105**(24): 8315-8320.
- Jones, M. A., R. H. Young and R. E. Scully (1997). "Adenocarcinoma of the epididymis: a report of four cases and review of the literature." <u>Am J Surg Pathol</u> **21**(12): 1474-1480.
- Kharazi, U. and R. Badalzadeh (2020). "A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine." Reprod Biol 20(4): 447-459.
- Khattri, A., R. K. Pandey, N. J. Gupta, B. Chakravarty, M. Deenadayal, L. Singh and K. Thangaraj (2009). "APOB gene signal peptide deletion polymorphism is not associated with infertility in Indian men." <u>J Androl</u> **30**(6): 734-738.
- Khattri, A., R. K. Pandey, N. J. Gupta, B. Chakravarty, M. Deenadayal, L. Singh and K. Thangaraj (2009). "Estrogen receptor beta gene mutations in Indian infertile men." <u>Mol Hum Reprod</u> **15**(8): 513-520.
- Kimmins, S., N. Kotaja, I. Davidson and P. Sassone-Corsi (2004). "Testis-specific transcription mechanisms promoting male germ-cell differentiation." <u>Reproduction</u> **128**(1): 5-12.
- Kishida, K., H. Harayama, F. Kimura and T. Murakami (2016). "Individual differences in the distribution of sperm acrosome-associated 1 proteins among male patients of infertile couples; their possible impact on outcomes of conventional in vitro fertilization." Zygote 24(5): 654-661.
- Kiyozumi, D., T. Noda, R. Yamaguchi, T. Tobita, T. Matsumura, K. Shimada, M. Kodani, T. Kohda, Y. Fujihara, M. Ozawa, Z. Yu, G. Miklossy, K. M. Bohren, M. Horie, M. Okabe, M. M. Matzuk and M. Ikawa (2020). "NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility." Science 368(6495): 1132-1135.
- Kobayashi, K., T. Endo, T. Matsumura, Y. Lu, Z. Yu, M. M. Matzuk and M. Ikawa (2020). "Prss55 but not Prss51 is required for male fertility in micedagger." <u>Biol Reprod</u> **103**(2): 223-234.
- Korfanty, J., A. Toma, A. Wojtas, A. Rusin, N. Vydra and W. Widlak (2012). "Identification of a new mouse sperm acrosome-associated protein." <u>Reproduction</u> **143**(6): 749-757.
- Koscinski, I., E. Elinati, C. Fossard, C. Redin, J. Muller, J. Velez de la Calle, F. Schmitt, M. Ben Khelifa, P. F. Ray, Z. Kilani, C. L. Barratt and S. Viville (2011). "DPY19L2 deletion as a major cause of globozoospermia." <u>Am J Hum Genet</u> **88**(3): 344-350.
- Krzemień-Ojak, Ł., A. Góral, E. Joachimiak, A. Filipek and H. Fabczak (2017). "Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90." <u>J Cell Biochem</u> **118**(2): 420-429.
- Kurihara, M., K. Otsuka, S. Matsubara, A. Shiraishi, H. Satake and A. P. Kimura (2017). "A Testis-Specific Long Non-Coding RNA, lncRNA-Tcam1, Regulates Immune-Related Genes in Mouse Male Germ Cells." Front Endocrinol (Lausanne) 8: 299.
- Lanza, D. G., E. P. Dawson, P. Rao and J. D. Heaney (2016). "Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation." <u>Cell Cycle</u> **15**(7): 919-930.
- Larasati, T., T. Noda, Y. Fujihara, K. Shimada, T. Tobita, Z. Yu, M. M. Matzuk and M. Ikawa (2020). "Tmprss12 is required for sperm motility and uterotubal junction migration in micedagger." <u>Biol Reprod</u> **103**(2): 254-263.
- Laskowski, R. A., J. A. Rullmannn, M. W. MacArthur, R. Kaptein and J. M. Thornton (1996). "AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR." Journal of biomolecular NMR 8(4): 477-486.
- Lee, B., I. Park, S. Jin, H. Choi, J. T. Kwon, J. Kim, J. Jeong, B. N. Cho, E. M. Eddy and C. Cho (2011). "Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testes." J Biol Chem 286(33): 29108-29117.
- Lehrer, R. I. (2004). "Primate defensins." Nat Rev Microbiol 2(9): 727-738.
- Li, J., X. Wang, W. Qu, J. Wang and S. W. Jiang (2019). "Comparison of serum human epididymis protein 4 and CA125 on endometrial cancer detection: A meta-analysis." <u>Clin Chim Acta</u> **488**: 215-220. Li, P., H. C. Chan, B. He, S. C. So, Y. W. Chung, Q. Shang, Y. D. Zhang and Y. L. Zhang (2001). "An antimicrobial peptide gene found in the male reproductive system of rats." <u>Science</u> **291**(5509): 1783-1785.

- Li, R. M., M. N. Zhang, Q. Y. Tang and M. G. Song (2020). "Global deletion of the RNA decapping enzyme Dcp2 postnatally in male mice results in infertility." <u>Biochem Biophys Res Commun</u> **526**(2): 512-518.
- Li, Y., P. Mi, X. Chen, J. Wu, X. Liu, Y. Tang, J. Cheng, Y. Huang, W. Qin, C. Y. Cheng and F. Sun (2021). "Tex13a Optimizes Sperm Motility via Its Potential Roles in mRNA Turnover." <u>Front Cell Dev Biol 9</u>: 761627.
- Li, Y., H. Y. Wang, F. C. Wan, F. J. Liu, J. Liu, N. Zhang, S. H. Jin and J. Y. Li (2012). "Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis." <u>Gene</u> **497**(2): 330-335.
- Li, Y., Y. Wang, Y. Wen, T. Zhang, X. Wang, C. Jiang, R. Zheng, F. Zhou, D. Chen, Y. Yang and Y. Shen (2021). "Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects." <u>Hum Reprod</u> **37**(1): 152-177.
- Lin, S. J., S. O. Lee, Y. F. Lee, H. Miyamoto, D. R. Yang, G. Li and C. Chang (2014). "TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system." <u>Carcinogenesis</u> **35**(6): 1399-1406.
- Lin, S. R., Y. C. Li, M. L. Luo, H. Guo, T. T. Wang, J. B. Chen, Q. Ma, Y. L. Gu, Z. M. Jiang and Y. T. Gui (2016). "Identification and characteristics of the testes-specific gene, Ccdc38, in mice." <u>Mol Med Rep</u> **14**(2): 1290-1296.
- Lin, Y., Q. Fang, Y. He, X. Gong, Y. Wang, A. Liang, G. Wang, S. Gong, J. Wu and F. Sun (2021). "Thy1-Positive Spermatogonia Suppress the Proliferation of Spermatogonial Stem Cells by Extracellular Vesicles In Vitro." <u>Endocrinology</u> **162**(7).
- Linn, E., L. Ghanem, H. Bhakta, C. Greer and M. Avella (2021). "Genes Regulating Spermatogenesis and Sperm Function Associated With Rare Disorders." Front Cell Dev Biol 9: 634536.
- Liu, L. and J. W. Smith (2000). "Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia." <u>Endocrinology</u> **141**(6): 2033-2042.
- Lopes, A. M., K. I. Aston, E. Thompson, F. Carvalho, J. Goncalves, N. Huang, R. Matthiesen, M. J. Noordam, I. Quintela, A. Ramu, C. Seabra, A. B. Wilfert, J. Dai, J. M. Downie, S. Fernandes, X. Guo, J. Sha, A. Amorim, A. Barros, A. Carracedo, Z. Hu, M. E. Hurles, S. Moskovtsev, C. Ober, D. A. Paduch, J. D. Schiffman, P. N. Schlegel, M. Sousa, D. T. Carrell and D. F. Conrad (2013). "Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1." PLoS Genet **9**(3): e1003349.
- Louis-Jeune, C., M. A. Andrade-Navarro and C. Perez-Iratxeta (2011). "Prediction of protein secondary structure from circular dichroism using theoretically derived spectra." <u>Proteins</u> **80**(12): 374-481.
- Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." <u>Genome Biol</u> **15**(12): 550.
- Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." <u>Genome Biology</u> **15**(12): 550.
- Loveland, K. L. and S. Schlatt (1997). "Stem cell factor and c-kit in the mammalian testis: lessons originating from Mother Nature's gene knockouts." <u>J Endocrinol</u> **153**(3): 337-344.
- Lu, Y., S. Oura, T. Matsumura, A. Oji, N. Sakurai, Y. Fujihara, K. Shimada, H. Miyata, T. Tobita, T. Noda, J. M. Castaneda, D. Kiyozumi, Q. Zhang, T. Larasati, S. A. M. Young, M. Kodani, C. A. Huddleston, M. J. Robertson, C. Coarfa, A. Isotani, R. J. Aitken, M. Okabe, M. M. Matzuk, T. X. Garcia and M. Ikawa (2019). "CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice†." Biol Reprod 101(2): 501-511.
- Ludes-Meyers, J. H., H. Kil, M. I. Nuñez, C. J. Conti, J. Parker-Thornburg, M. T. Bedford and C. M. Aldaz (2007). "WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy." <u>Genes Chromosomes Cancer</u> **46**(12): 1129-1136.
- Ma, L., H. Yu, Z. Ni, S. Hu, W. Ma, C. Chu, Q. Liu and Y. Zhang (2013). "Spink13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility." <u>J Biol Chem</u> **288**(14): 10154-10165.
- Mader, J. S. and D. W. Hoskin (2006). "Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment." <u>Expert Opin Investig Drugs</u> **15**(8): 933-946.
- Manecksha, R. P. and J. M. Fitzpatrick (2009). "Epidemiology of testicular cancer." <u>BJU Int</u> **104**(9 Pt B): 1329-1333.

- Markeeva, N., I. Lysovskiy, E. Zhuravel, M. Soldatkina, V. Lyzogubov, V. Usenko, V. Potapov and P. Pogrebnoy (2005). "Involvement of human beta-defensin-2 in proliferation of transformed cells of human cervix." Exp Oncol **27**(4): 308-313.
- Marsico, S., A. Pizzo, M. F. Grioli and D. Scriva (1994). "[Physiology and pathology of the immune system of reproduction]." <u>Minerva Ginecol</u> **46**(5): 223-233.
- McKeown, S. T., F. T. Lundy, J. Nelson, D. Lockhart, C. R. Irwin, C. G. Cowan and J. J. Marley (2006). "The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro." Oral Oncol **42**(7): 685-690.
- Mescher, A. L. (2018). Author. <u>Junqueira's Basic Histology: Text and Atlas, 15e</u>. New York, NY, McGraw-Hill Education.
- Mi, D. and Y. Zhang (2018). "Diagnostic and prognostic value of HE4 in female patients with primary peritoneal carcinoma." Int J Biol Markers: 1724600818796595.
- Mital, P., B. T. Hinton and J. M. Dufour (2011). "The blood-testis and blood-epididymis barriers are more than just their tight junctions." <u>Biol Reprod</u> **84**(5): 851-858.
- Mitra, A., R. Dada, R. Kumar, N. P. Gupta, K. Kucheria and S. K. Gupta (2008). "Screening for Y-chromosome microdeletions in infertile Indian males: utility of simplified multiplex PCR." <u>Indian J Med Res 127</u>(2): 124-132.
- Mo, D. and F. He (2018). "Serum Human Epididymis Secretory Protein 4 (HE4) is a Potential Prognostic Biomarker in Non-Small Cell Lung Cancer." Clin Lab **64**(9): 1421-1428.
- Moore, G. D., T. Ayabe, P. E. Visconti, R. M. Schultz and G. S. Kopf (1994). "Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs." <u>Development</u> **120**(11): 3313-3323.
- Möritz, A., H. Lilja and E. Fink (1991). "Molecular cloning and sequence analysis of the cDNA encoding the human acrosin-trypsin inhibitor (HUSI-II)." FEBS Lett 278(1): 127-130.
- Moser, C., D. J. Weiner, E. Lysenko, R. Bals, J. N. Weiser and J. M. Wilson (2002). "beta-Defensin 1 contributes to pulmonary innate immunity in mice." Infect Immun **70**(6): 3068-3072.
- Munoz, J., J. Wheler and R. Kurzrock (2015). "Androgen receptors beyond prostate cancer: an old marker as a new target." Oncotarget 6(2): 592-603.
- Nakane, H., S. Hirota, P. J. Brooks, Y. Nakabeppu, Y. Nakatsu, Y. Nishimune, A. Iino and K. Tanaka (2008). "Impaired spermatogenesis and elevated spontaneous tumorigenesis in xeroderma pigmentosum group A gene (Xpa)-deficient mice." <u>DNA Repair (Amst)</u> 7(12): 1938-1950.
- Naqvi, H., S. R. Hussain, M. K. Ahmad, F. Mahdi, S. P. Jaiswar, S. N. Shankhwar and A. A. Mahdi (2014). "Role of 677C-->T polymorphism a single substitution in methylenetetrahydrofolate reductase (MTHFR) gene in North Indian infertile men." Mol Biol Rep **41**(2): 573-579.
- Narmadha, G. and S. Yenugu (2016). "Immunization against lysozyme-like proteins affect sperm function and fertility in the rat." <u>J Reprod Immunol</u> **118**: 100-108.
- Nguyen, E. B., A. D. Westmuckett and K. L. Moore (2014). "SPACA7 is a novel male germ cell-specific protein localized to the sperm acrosome that is involved in fertilization in mice." <u>Biol Reprod</u> **90**(1): 16.
- Nishimura, H. and S. W. L'Hernault (2017). "Spermatogenesis." <u>Current Biology</u> **27**(18): R988-R994. Nixon, B., S. J. Stanger, B. P. Mihalas, J. N. Reilly, A. L. Anderson, M. D. Dun, S. Tyagi, J. E. Holt and E. A. McLaughlin (2015). "Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA Expression in Mouse Epididymal Epithelial Cells." <u>PLoS One</u> **10**(8): e0135605.
- Noda, T., Y. Lu, Y. Fujihara, S. Oura, T. Koyano, S. Kobayashi, M. M. Matzuk and M. Ikawa (2020). "Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice." <u>Proc</u> Natl Acad Sci U S A **117**(21): 11493-11502.
- Odrzywolski, K. J. and S. Mukhopadhyay (2010). "Papillary cystadenoma of the epididymis." <u>Arch Pathol Lab Med</u> **134**(4): 630-633.
- Oh, J., J. Lee, J. M. Woo, E. Choi, I. Park, C. Han, N. Baek, H. Lee, D. H. Kim and C. Cho (2006). "Systematic identification and integrative analysis of novel genes expressed specifically or predominantly in mouse epididymis." <u>BMC Genomics</u> 7: 314.
- Osterhoff, C., C. Kirchhoff, N. Krull and R. Ivell (1994). "Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis." <u>Biol Reprod</u> **50**(3): 516-525.

- Osuru, H. P., J. E. Monroe, A. P. Chebolu, J. Akamune, P. Pramoonjago, S. A. Ranpura and P. P. Reddi (2014). "The acrosomal protein SP-10 (Acrv1) is an ideal marker for staging of the cycle of seminiferous epithelium in the mouse." Mol Reprod Dev 81(10): 896-907.
- Ou, C. M., J. B. Tang, M. S. Huang, P. S. Sudhakar Gandhi, S. Geetha, S. H. Li and Y. H. Chen (2012). "The mode of reproductive-derived Spink (serine protease inhibitor Kazal-type) action in the modulation of mammalian sperm activity." <u>Int J Androl</u> **35**(1): 52-62.
- Pan, B., Y. Song, X. Kong, Z. Xue and Y. Guo (1998). "[Primary epididymal tumors]." Zhonghua Wai Ke Za Zhi **36**(3): 138-140.
- Pangas, S. A., X. Li, L. Umans, A. Zwijsen, D. Huylebroeck, C. Gutierrez, D. Wang, J. F. Martin, S. P. Jamin, R. R. Behringer, E. J. Robertson and M. M. Matzuk (2008). "Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice." Mol Cell Biol 28(1): 248-257.
- Patil, A. A., Y. Cai, Y. Sang, F. Blecha and G. Zhang (2005). "Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract." <u>Physiol Genomics</u> **23**(1): 5-17.
- Pazgier, M., X. Li, W. Lu and J. Lubkowski (2007). "Human defensins: synthesis and structural properties." <u>Curr Pharm Des</u> **13**(30): 3096-3118.
- Pineau, C., F. Hikmet, C. Zhang, P. Oksvold, S. Chen, L. Fagerberg, M. Uhlén and C. Lindskog (2019). "Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics." <u>J Proteome Res</u> **18**(12): 4215-4230.
- Pinel, L., M. Mandon and D. G. Cyr (2019). "Tissue regeneration and the epididymal stem cell." <u>Andrology</u> **7**(5): 618-630.
- Pinheiro, A., I. Faustino, M. J. Silva, J. Silva, R. Sa, M. Sousa, A. Barros, I. T. de Almeida and I. Rivera (2010). "Human testis-specific PDHA2 gene: methylation status of a CpG island in the open reading frame correlates with transcriptional activity." <u>Mol Genet Metab</u> **99**(4): 425-430.
- Poongothai, J. (2013). "Mitochondrial DNA polymerase gamma gene polymorphism is not associated with male infertility." <u>J Assist Reprod Genet</u> **30**(9): 1109-1114.
- Premi, S., J. Srivastava, S. P. Chandy, J. Ahmad and S. Ali (2006). "Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation." <u>Mol Hum Reprod</u> **12**(2): 113-121.
- Prendergast, D., K. J. Woad, L. W. Chamley, O. J. Holland and A. N. Shelling (2014). "SPACA3 gene variants in a New Zealand cohort of infertile and fertile couples." <u>Hum Fertil (Camb)</u> **17**(2): 106-113.
- Pujianto, D. A., E. Loanda, P. Sari, Y. H. Midoen and P. Soeharso (2013). "Sperm-associated antigen 11A is expressed exclusively in the principal cells of the mouse caput epididymis in an androgen-dependent manner." Reprod Biol Endocrinol 11: 59.
- Qi-Xin, G., X. Lu, B. Hao, C. Guo-Hong and C. Guo-Bin (2021). "PAZ domain is critical for spermatogenesis in chicken." <u>Anim Biotechnol</u>: 1-10.
- Qu, W., S. Yuan, C. Quan, Q. Huang, Q. Zhou, Y. Yap, L. Shi, D. Zhang, T. Guest, W. Li, S. P. Yee, L. Zhang, C. Cazin, R. A. Hess, P. F. Ray, Z. E. Kherraf and Z. Zhang (2020). "The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility." <u>Am J Physiol Cell Physiol</u> 318(6): C1092-C1106.
- Rajender, S., L. Singh and K. Thangaraj (2007). "Phenotypic heterogeneity of mutations in androgen receptor gene." Asian J Androl **9**(2): 147-179.
- Rajesh, A. and S. Yenugu (2017). "shRNA mediated ablation of prostate and testis expressed (Pate) messenger RNA results in impaired sperm function and fertility." <u>Andrology</u> **5**(3): 541-547.
- Ramachandran, G. N., C. Ramakrishnan and V. Sasisekharan (1963). "Stereochemistry of polypeptide chain configurations." <u>Journal of Molecular Biology</u> 7(1): 95-99.
- Rizk, C. C., J. Scholes, S. K. Chen, J. Ward and N. A. Romas (1990). "Epididymal metastasis from prostatic adenocarcinoma mimicking adenomatoid tumor." <u>Urology</u> **36**(6): 526-530.
- Rockett, J. C., P. Patrizio, J. E. Schmid, N. B. Hecht and D. J. Dix (2004). "Gene expression patterns associated with infertility in humans and rodent models." <u>Mutat Res</u> **549**(1-2): 225-240.
- Rodriguez-Jimenez, F. J., A. Krause, S. Schulz, W. G. Forssmann, J. R. Conejo-Garcia, R. Schreeb and D. Motzkus (2003). "Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis." <u>Genomics</u> **81**(2): 175-183.

- Rodriguez, C. M., J. L. Kirby and B. T. Hinton (2001). "Regulation of gene transcription in the epididymis." Reproduction **122**(1): 41-48.
- Sachdeva, R., N. Bhardwaj, I. Huhtaniemi, U. Aggrawal, S. K. Jain, R. Zaidi, O. Singh and R. Pal (2012). "Transgenesis-mediated reproductive dysfunction and tumorigenesis: effects of immunological neutralization." PLoS One 7(11): e51125.
- Saez, F., G. Frenette and R. Sullivan (2003). "Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells." J Androl **24**(2): 149-154.
- Salek, F., J. Baharara, K. N. Shahrokhabadi and E. Amini (2021). "The guardians of germ cells; Sertoliderived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells." Theriogenology **173**: 112-122.
- Salzman, N. H., D. Ghosh, K. M. Huttner, Y. Paterson and C. L. Bevins (2003). "Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin." <u>Nature</u> **422**(6931): 522-526.
- Sanchez-Vega, F., M. Mina, J. Armenia, W. K. Chatila, A. Luna, K. C. La, S. Dimitriadoy, D. L. Liu, H. S. Kantheti, S. Saghafinia, D. Chakravarty, F. Daian, Q. Gao, M. H. Bailey, W. W. Liang, S. M. Foltz, I. Shmulevich, L. Ding, Z. Heins, A. Ochoa, B. Gross, J. Gao, H. Zhang, R. Kundra, C. Kandoth, I. Bahceci, L. Dervishi, U. Dogrusoz, W. Zhou, H. Shen, P. W. Laird, G. P. Way, C. S. Greene, H. Liang, Y. Xiao, C. Wang, A. Iavarone, A. H. Berger, T. G. Bivona, A. J. Lazar, G. D. Hammer, T. Giordano, L. N. Kwong, G. McArthur, C. Huang, A. D. Tward, M. J. Frederick, F. McCormick, M. Meyerson, E. M. Van Allen, A. D. Cherniack, G. Ciriello, C. Sander and N. Schultz (2018). "Oncogenic Signaling Pathways in The Cancer Genome Atlas." Cell 173(2): 321-337.e310.
- Sangeeta, K. and S. Yenugu (2020). "siRNA-mediated knockdown of sperm-associated antigen 11a (Spag11a) mRNA in epididymal primary epithelial cells affects proliferation: a transcriptome analyses." Cell Tissue Res **379**(3): 601-612.
- Sangeeta, K. and S. Yenugu (2020). "Transgenesis and active immunization mediated reduction of sperm associated antigen 11A mRNA and protein levels affect fecundity in the rat." <u>Theriogenology</u> **157**: 517-524.
- Sangeeta, K. and S. Yenugu (2022). "Ablation of the sperm-associated antigen 11A (SPAG11A) protein by active immunization promotes epididymal oncogenesis in the rat." <u>Cell Tissue Res</u> **389**(1): 115-128. Sangeeta, K. and S. Yenugu (2022). "Ablation of the sperm-associated antigen 11A (SPAG11A) protein by active immunization promotes epididymal oncogenesis in the rat " <u>Cell and Tissue Research</u>.
- Selsted, M. E. and A. J. Ouellette (2005). "Mammalian defensins in the antimicrobial immune response." Nat Immunol 6(6): 551-557.
- Semlali, A., A. Al Amri, A. Azzi, O. Al Shahrani, M. Arafah, M. Kohailan, A. M. Aljebreen, O. Alharbi, M. A. Almadi, N. A. Azzam, N. R. Parine, M. Rouabhia and M. S. Alanazi (2015). "Expression and new exon mutations of the human Beta defensins and their association on colon cancer development." PLoS One **10**(6): e0126868.
- Semple, C. A., M. Rolfe and J. R. Dorin (2003). "Duplication and selection in the evolution of primate beta-defensin genes." Genome Biol **4**(5): R31.
- Sen, S., A. Dixit, C. Thakur, J. Gokral, I. Hinduja, K. Zaveri, K. Thangaraj and D. Modi (2013). "Association of progesterone receptor gene polymorphism with male infertility and clinical outcome of ICSI." <u>J Assist Reprod Genet</u> **30**(9): 1133-1139.
- Shahid, M., V. S. Dhillion, N. Jain, S. Hedau, S. Diwakar, P. Sachdeva, S. Batra, B. C. Das and S. A. Husain (2004). "Two new novel point mutations localized upstream and downstream of the HMG box region of the SRY gene in three Indian 46,XY females with sex reversal and gonadal tumour formation." Mol Hum Reprod **10**(7): 521-526.
- Sharma, H., R. S. Mavuduru, S. K. Singh and R. Prasad (2014). "Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers." <u>Mol Hum Reprod</u> **20**(9): 827-835.
- Shen, Y., F. Zhang, F. Li, X. Jiang, Y. Yang, X. Li, W. Li, X. Wang, J. Cheng, M. Liu, X. Zhang, G. Yuan, X. Pei, K. Cai, F. Hu, J. Sun, L. Yan, L. Tang, C. Jiang, W. Tu, J. Xu, H. Wu, W. Kong, S. Li, K. Wang, K. Sheng, X. Zhao, H. Yue, X. Yang and W. Xu (2019). "Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella." Nature Communications 10(1): 433.

- Shestakova, T., E. Zhuravel, L. Bolgova, O. Alekseenko, M. Soldatkina and P. Pogrebnoy (2008). "Expression of human beta-defensins-1, 2 and 4 mRNA in human lung tumor tissue: a pilot study." <u>Exp Oncol</u> **30**(2): 153-156.
- Shi, N., F. Jin, X. Zhang, S. K. Clinton, Z. Pan and T. Chen (2014). "Overexpression of human beta-defensin 2 promotes growth and invasion during esophageal carcinogenesis." <u>Oncotarget</u> **5**(22): 11333-11344.
- Shnitsar, V. M., I. L. Lisovskiy, M. A. Soldatkina, S. V. Nespryadko, O. V. Turchak, A. B. Vinnitskaya and P. V. Pogrebniy (2004). "Human beta-defensin 3 (hBD-3) expression in A431 cell line and human vulval tumors." <u>Exp Oncol</u> **26**(4): 328-330.
- Shukla, K. K., S. Agnihotri, A. Gupta, A. A. Mahdi, E. A. Mohamed, S. N. Sankhwar and P. Sharma (2013). "Significant association of TNFalpha and IL-6 gene with male infertility--an explorative study in Indian populations of Uttar Pradesh." <u>Immunol Lett</u> **156**(1-2): 30-37.
- Siegel, R. L., K. D. Miller and A. Jemal (2020). "Cancer statistics, 2020." CA Cancer J Clin 70(1): 7-30.
- Singh, A., B. C. Koner, P. C. Ray, S. Prasad, E. Jamatia, M. Masroor and V. K. Singh (2016). "Effect of CYP1A1 gene polymorphism and psychological distress on seminal analysis parameters." Reprod Health **13**(1): 60.
- Singh, K., S. K. Singh, R. Sah, I. Singh and R. Raman (2005). "Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population." Int J Androl 28(2): 115-119.
- Song, W. P., S. J. Gu, X. H. Tan, Y. Y. Gu, W. D. Song, J. Y. Zeng, Z. C. Xin and R. L. Guan (2021). "Proteomic analysis and miRNA profiling of human testicular endothelial cell-derived exosomes: the potential effects on spermatogenesis." <u>Asian J Androl</u>.
- Sreerama, N. and R. W. Woody (2004). "Computation and Analysis of Protein Circular Dichroism Spectra." methods in enzymology **2**(2): 1-27.
- Srinivasan, S., V. Chitalia, R. D. Meyer, E. Hartsough, M. Mehta, I. Harrold, N. Anderson, H. Feng, L. E. Smith, Y. Jiang, C. E. Costello and N. Rahimi (2015). "Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis." <u>Angiogenesis</u> **18**(4): 449-462.
- Suganya, J., S. B. Kujur, K. Selvaraj, M. S. Suruli, G. Haripriya and C. R. Samuel (2015). "Chromosomal Abnormalities in Infertile Men from Southern India." <u>J Clin Diagn Res</u> **9**(7): GC05-10. Sullivan, R. and R. Mieusset (2016). "The human epididymis: its function in sperm maturation." <u>Hum Reprod Update</u> **22**(5): 574-587.
- Sullivan, R., F. Saez, J. Girouard and G. Frenette (2005). "Role of exosomes in sperm maturation during the transit along the male reproductive tract." <u>Blood Cells Mol Dis</u> **35**(1): 1-10.
- Sun, C. Q., R. Arnold, C. Fernandez-Golarz, A. B. Parrish, T. Almekinder, J. He, S. M. Ho, P. Svoboda, J. Pohl, F. F. Marshall and J. A. Petros (2006). "Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma." <u>Cancer Res</u> **66**(17): 8542-8549.
- Sun, E. L. and C. J. Flickinger (1980). "Morphological characteristics of cells with apical nuclei in the initial segment of the adult rat epididymis." <u>Anat Rec</u> **196**(3): 285-293.
- Suryavathi, V., A. Khattri, K. Gopal, D. S. Rani, S. Panneerdoss, N. J. Gupta, B. Chakravarty, M. Deenadayal, L. Singh and K. Thangaraj (2008). "Novel variants in UBE2B gene and idiopathic male infertility." <u>J Androl</u> **29**(5): 564-571.
- Swerdloff, R. S., C. Wang and S. Bhasin (1992). "Developments in the control of testicular function." Baillieres Clin Endocrinol Metab **6**(2): 451-483.
- Thimon, V., O. Koukoui, E. Calvo and R. Sullivan (2007). "Region-specific gene expression profiling along the human epididymis." <u>Mol Hum Reprod</u> **13**(10): 691-704.
- Thuy le, T. T., T. Morita, K. Yoshida, K. Wakasa, M. Iizuka, T. Ogawa, M. Mori, Y. Sekiya, S. Momen, H. Motoyama, K. Ikeda, K. Yoshizato and N. Kawada (2011). "Promotion of liver and lung tumorigenesis in DEN-treated cytoglobin-deficient mice." <u>Am J Pathol</u> **179**(2): 1050-1060.
- Tilki, D., N. Kilic, H. Herbst, O. Reich, M. Seitz, H. Lauke, C. G. Stief and S. Ergun (2008). "High level of endostatin in epididymal epithelium: protection against primary malignancies in this organ?" <u>Histochem Cell Biol</u> **130**(3): 527-535.
- Tollner, T. L., C. L. Bevins and G. N. Cherr (2012). "Multifunctional glycoprotein DEFB126--a curious story of defensin-clad spermatozoa." <u>Nat Rev Urol</u> **9**(7): 365-375.

- Tollner, T. L., S. A. Venners, E. J. Hollox, A. I. Yudin, X. Liu, G. Tang, H. Xing, R. J. Kays, T. Lau, J. W. Overstreet, X. Xu, C. L. Bevins and G. N. Cherr (2011). "A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility." Sci Transl Med **3**(92): 92ra65.
- Toshimori, K. (2009). "Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation." <u>Adv Anat Embryol Cell Biol</u> **204**: 5-94.
- Toshimori, K., M. Maekawa, C. Ito, Y. Toyama, F. Suzuki-Toyota and D. K. Saxena (2006). "The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction." Reprod Med Biol 5(2): 87-93.
- Toutziaris, C., S. Kampantais, I. Perdikis, V. Gourvas, L. Laskaridis, K. Gkagkalidis, S. Lakis and S. Ioannidis (2013). "Papillary cystadenoma of epididymis: Is there a need for further investigation in unilateral cases?" Int J Surg Case Rep 4(7): 616-618.
- Tracy, C. M., A. V. Kolesnikov, D. R. Blake, C. K. Chen, W. Baehr, V. J. Kefalov and B. M. Willardson (2015). "Retinal cone photoreceptors require phosducin-like protein 1 for G protein complex assembly and signaling." <u>PLoS One</u> **10**(2): e0117129.
- Tuttelmann, F., M. Laan, M. Grigorova, M. Punab, S. Sober and J. Gromoll (2012). "Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters." <u>J Clin</u> Endocrinol Metab **97**(10): 3639-3647.
- Uraki, S., K. Sugimoto, K. Shiraki, M. Tameda, Y. Inagaki, S. Ogura, C. Kasai, K. Nojiri, M. Yoneda, N. Yamamoto, Y. Takei, T. Nobori and M. Ito (2014). "Human beta-defensin-3 inhibits migration of colon cancer cells via downregulation of metastasis-associated 1 family, member 2 expression." <u>Int J Oncol</u> **45**(3): 1059-1064.
- Walker, W. H. (2009). "Molecular mechanisms of testosterone action in spermatogenesis." <u>Steroids</u> **74**(7): 602-607.
- Wang, D., L. Cheng, W. Xia, X. Liu, Y. Guo, X. Yang, X. Guo and E. Y. Xu (2020). "LYPD4, mouse homolog of a human acrosome protein, is essential for sperm fertilizing ability and male fertility†." <u>Biology of Reproduction</u> **102**(5): 1033-1044.
- Wang, Z., Y. Zhang, A. Mandal, J. Zhang, F. J. Giles, J. C. Herr and S. H. Lim (2004). "The spermatozoa protein, SLLP1, is a novel cancer-testis antigen in hematologic malignancies." <u>Clin Cancer Res</u> **10**(19): 6544-6550.
- Wassarman, P. M. (1999). "Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion." Cell **96**(2): 175-183.
- Wen, Z., D. Liu, H. Zhu, X. Sun, Y. Xiao, Z. Lin, A. Zhang, C. Ye and J. Gao (2021). "Deficiency for Lcn8 causes epididymal sperm maturation defects in mice." <u>Biochem Biophys Res Commun</u> **548**: 7-13. Willardson, B. M. and A. C. Howlett (2007). "Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding." <u>Cell Signal</u> **19**(12): 2417-2427.
- Wong, J., A. Damdimopoulos, P. Damdimopoulou, J. G. Gasperoni, S. C. Tran, S. V. H. Grommen, B. De Groef and S. Dworkin (2020). "Transcriptome analysis of the epididymis from Plag1 deficient mice suggests dysregulation of sperm maturation and extracellular matrix genes." <u>Dev Dyn</u> **249**(12): 1500-1513.
- Wu, Y., T. Wang, Z. Zhao, S. Liu, C. Shen, H. Li, M. Liu, B. Zheng, J. Yu and X. Huang (2021). "Retinoic Acid Induced Protein 14 (Rai14) is dispensable for mouse spermatogenesis." <u>PeerJ 9</u>: e10847. Xie, M., G. Zhang, H. Zhang, F. Chen, Y. Chen, Y. Zhuang, Z. Huang, F. Zou, M. Liu, G. An, X. Kang and Z. Chen (2020). "Adenylate kinase 1 deficiency disrupts mouse sperm motility under conditions of energy stressdagger." <u>Biol Reprod</u> **103**(5): 1121-1131.
- Xu, D., B. Zhang, C. Liao, W. Zhang, W. Wang, Y. Chang and Y. Shao (2016). "Human beta-defensin 3 contributes to the carcinogenesis of cervical cancer via activation of NF-kappaB signaling." Oncotarget 7(46): 75902-75913.
- Xu, W., Y. Zhang, D. Qin, Y. Gui, S. Wang, G. Du, F. Yang, L. Li, S. Yuan, M. Wang and X. Wu (2021). "Transcription factor-like 5 is a potential DNA/RNA-binding protein essential for maintaining male fertility in mice." <u>J Cell Sci</u>.
- Yamaguchi, Y., T. Nagase, R. Makita, S. Fukuhara, T. Tomita, T. Tominaga, H. Kurihara and Y. Ouchi (2002). "Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice." <u>J Immunol</u> **169**(5): 2516-2523.

- Yamatoya, K., M. Kousaka, C. Ito, K. Nakata, M. Hatano, Y. Araki and K. Toshimori (2020). "Cleavage of SPACA1 regulates assembly of sperm-egg membrane fusion machinery in mature spermatozoa†." Biol Reprod 102(3): 750-757.
- Yan, W. (2009). "Male infertility caused by spermiogenic defects: lessons from gene knockouts." <u>Mol Cell Endocrinol</u> **306**(1-2): 24-32.
- Yao, R., C. Ito, Y. Natsume, Y. Sugitani, H. Yamanaka, S. Kuretake, K. Yanagida, A. Sato, K. Toshimori and T. Noda (2002). "Lack of Acrosome Formation in Mice Lacking a Golgi Protein, GOPC." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **99**(17): 11211-11216.
- Yenugu, S., K. G. Hamil, C. E. Birse, S. M. Ruben, F. S. French and S. H. Hall (2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli." <u>Biochem J</u> 372(Pt 2): 473-483.
- Yenugu, S., K. G. Hamil, F. S. French and S. H. Hall (2004). "Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2." <u>Reprod Biol Endocrinol</u> 2: 61.
- Yenugu, S., K. G. Hamil, F. S. French and S. H. Hall (2004). "Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2." <u>Reprod Biol Endocrinol</u> **2**(1): 61.
- Yenugu, S., K. G. Hamil, F. S. French and S. H. Hall (2006). "Antimicrobial actions of human and macaque sperm associated antigen (SPAG) 11 isoforms: influence of the N-terminal peptide." <u>Mol Cell Biochem</u> **284**(1-2): 25-37.
- Yenugu, S., K. G. Hamil, G. Grossman, P. Petrusz, F. S. French and S. H. Hall (2006). "Identification, cloning and functional characterization of novel Spag11 isoforms in the Rat." <u>Reprod Biol Endocrinol</u> **4**(23): 1-14.
- Yenugu, S., K. G. Hamil, G. Grossman, P. Petrusz, F. S. French and S. H. Hall (2006). "Identification, cloning and functional characterization of novel sperm associated antigen 11 (SPAG11) isoforms in the rat." Reprod Biol Endocrinol 4: 23.
- Yenugu, S., K. G. Hamil, Y. Radhakrishnan, F. S. French and S. H. Hall (2004). "The androgen-regulated epididymal sperm-binding protein, human beta-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial beta-defensin." <u>Endocrinology</u> **145**(7): 3165-3173.
- Yeung, C.-H. and T. G. Cooper (2002). Acquisition and Development of Sperm Motility Upon Maturation in the Epididymis. <u>The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens</u>. B. Robaire and B. T. Hinton. Boston, MA, Springer US: 417-434.
- Yeung, C. H., K. Wang and T. G. Cooper (2012). "Why are epididymal tumours so rare?" <u>Asian J Androl</u> **14**(3): 465-475.
- Yoshinaga, K., I. Tanii, T. Oh-oka and K. Toshimori (2001). "Changes in distribution and molecular weight of the acrosomal protein acrin2 (MC41) during guinea pig spermiogenesis and epididymal maturation." Cell and Tissue Research **303**: 253-261.
- Yuan, T. and Y. Li (2017). "Human Epididymis Protein 4 as a Potential Biomarker of Chronic Kidney Disease in Female Patients With Normal Ovarian Function." <u>Lab Med</u> **48**(3): 238-243.
- Yudin, A. I., S. E. Generao, T. L. Tollner, C. A. Treece, J. W. Overstreet and G. N. Cherr (2005). "Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies." <u>Biol Reprod</u> **73**(6): 1243-1252.
- Yudin, A. I., T. L. Tollner, M. W. Li, C. A. Treece, J. W. Overstreet and G. N. Cherr (2003). "ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process." <u>Biol Reprod</u> **69**(4): 1118-1128.
- Zanich, A., J. C. Pascall and R. Jones (2003). "Secreted epididymal glycoprotein 2D6 that binds to the sperm's plasma membrane is a member of the beta-defensin superfamily of pore-forming glycopeptides." Biol Reprod **69**(6): 1831-1842.
- Zhang, J. S., Q. Liu, Y. M. Li, S. H. Hall, F. S. French and Y. L. Zhang (2006). "Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray." <u>Mol Cell Endocrinol</u> **250**(1-2): 169-177.

- Zhang, X., W. Zhou, P. Zhang, F. Gao, X. Zhao, W. W. Shum and X. Zeng (2021). "Cabs1 Maintains Structural Integrity of Mouse Sperm Flagella during Epididymal Transit of Sperm." <u>Int J Mol Sci</u> **22**(2). Zhang, X. Y., Q. X. Yan, X. Y. Guo, C. R. Chen, R. Q. Chen, Z. M. Cai and A. F. Tang (2016). "Expression profile of SPACA5/Spaca5 in spermatogenesis and transitional cell carcinoma of the bladder." Oncol Lett **12**(5): 3731-3738.
- Zhang, Y., L. Yang, L. Huang, G. Liu, X. Nie, X. Zhang and X. Xing (2021). "SUN5 Interacting With Nesprin3 Plays an Essential Role in Sperm Head-to-Tail Linkage: Research on Sun5 Gene Knockout Mice." Front Cell Dev Biol 9: 684826.
- Zhao, H., J. Xu, H. Zhang, J. Sun, Y. Sun, Z. Wang, J. Liu, Q. Ding, S. Lu, R. Shi, L. You, Y. Qin, X. Zhao, X. Lin, X. Li, J. Feng, L. Wang, J. M. Trent, C. Xu, Y. Gao, B. Zhang, X. Gao, J. Hu, H. Chen, G. Li, J. Zhao, S. Zou, H. Jiang, C. Hao, Y. Zhao, J. Ma, S. L. Zheng and Z. J. Chen (2012). "A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia." <u>Am J Hum Genet</u> **90**(5): 900-906.
- Zhen, W., P. Li, B. He, J. Guo and Y. L. Zhang (2009). "The novel epididymis-specific beta-galactosidase-like gene Glb114 is essential in epididymal development and sperm maturation in rats." <u>Biol Reprod</u> **80**(4): 696-706.
- Zhou, C. X., Y. L. Zhang, L. Xiao, M. Zheng, K. M. Leung, M. Y. Chan, P. S. Lo, L. L. Tsang, H. Y. Wong, L. S. Ho, Y. W. Chung and H. C. Chan (2004). "An epididymis-specific beta-defensin is important for the initiation of sperm maturation." <u>Nat Cell Biol</u> **6**(5): 458-464.
- Zhu, F., W. Li, X. Zhou, X. Chen, M. Zheng, Y. Cui, X. Liu, X. Guo and H. Zhu (2021). "PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice." <u>J Cell Mol Med</u> **25**(4): 2040-2051.
- Zhu, L., Q. Guo, S. Jin, H. Feng, H. Zhuang, C. Liu, M. Tan, J. Liu, X. Li and B. Lin (2016). "Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells." Oncol Rep **36**(3): 1592-1604.
- Zhu, L., H. Zhuang, H. Wang, M. Tan, C. L. Schwab, L. Deng, J. Gao, Y. Hao, X. Li, S. Gao, J. Liu and B. Lin (2016). "Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer." <u>Oncotarget</u> 7(1): 729-744.
- Zhuravel, O. V., O. L. Gerashchenko, M. R. Khetsuriani, M. A. Soldatkina and P. V. Pogrebnoy (2014). "Expression of human beta-defensins-1-4 in thyroid cancer cells and new insight on biologic activity of hBD-2 in vitro." Exp Oncol **36**(3): 174-178.

Publications

Contents lists available at ScienceDirect

Reproductive Biology

journal homepage: www.journals.elsevier.com/reproductive-biology

Characterization of SPINK2, SPACA7 and PDCL2: Effect of immunization on fecundity, sperm function and testicular transcriptome

Jamil Aisha, Suresh Yenugu 1,*

Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India

ARTICLEINFO

Keywords: Spermatogenesis Active immunization Fecundity Testis transcriptome

ABSTRACT

Testicular factors play a vital role in spermatogenesis. We characterized the functional role of rat Spink2, Spaca7 and Pdcl2 genes. Their primary, secondary and tertiary structure were deduced in silico. The genes of rat Spink2, Spaca7 and Pdcl2 mRNA were predominantly expressed in the testis. SPINK2, SPACA7 and PDCL2 protein expression was evident in all the cell types of testis and on spermatozoa. Ablation of each of these proteins by active immunization resulted in reduced fecundity and sperm count. Damage to the anatomical architecture of testis and epididymis was evident. In SPINK2 immunized rats, 283 genes were differentially regulated while it was 434 and 872 genes for SPACA7 and PDCL2 respectively. Genes that were differentially regulated in the testis of SPINK2 immunized rats primarily belonged to extracellular exosome formation, extracellular space and response to drugs. SPACA7 ablation affected genes related to extracellular space, oxidation-reduction processes, endoplasmic reticulum membrane and response to drugs. Differential gene expression was observed for nuclear function, protein binding and positive regulation of transcription from RNA polymerase II promoter in testis of PDCL2 immunized rats. Results of our study demonstrate the role of SPINK2, SPACA7 and PDCL2 in spermatogenesis and in important molecular processes that may dictate testicular function and other physiological responses as well.

1. Introduction

Spermatogenesis is a complex process that involves an interplay of a wide variety of molecular factors [1], especially the testis specific factors [2,3]. Disruption in the expression of genes that contribute to spermatogenesis contribute to fertility disorders [4]. Identification and functional characterization of proteins involved in spermatogenesis is an active area of investigation [5,6]. Some of the genes that have been recently characterized for their role in male gametogenesis are Spats1, Rail4, Tex13a, Paz domain, Tcfl5, etc [7–11]. In this study, we investigated the role of three rat genes, namely, serine protease inhibitor Kazal-type 2 (Spink2), sperm acrosomal membrane-associated protein 7 (Spaca7) and phosducin-like 2 (Pdcl2), that are predominantly expressed in the testis.

The SPINK protein family members contain a Kazal domain at the Cterminus of the serine protease inhibitor and have been implicated in a variety of biological processes, including male fertility. Kazal domain is an evolutionary protein domain predominantly present in serine proteases. They occur in tandem arrays which contain small alpha and beta fold and three disulfide bonds. Spink13, an epididymis specific gene was found to be essential for acrosomal integrity and male fertility [12]. Knockout of the Spink2, resulted in impaired spermatogenesis and fertility in mice [13]. SPINK3, localized on the acrosome, modulates sperm activity [14]. A 4 fold decrease in Spink2 expression was reported in azoospermic patients [15]. SPINK8, SPINK11 and SPINK12 are found to be epididymis specific and their roles in male fertility reported [16].

Members of the SPACA family contribute to the molecular aspects of male fertility. SPACA7, localized on the acrosome, a novel male germ cell specific protein is implicated in mouse fertilization [17]. In humans and murine models, loss of Spaca1 gene resulted in autosomal recessive globozoospermia [18,19]. Regulation of sperm-egg membrane fusion machinery requires the cleavage of SPACA1 [20]. An association

https://doi.org/10.1016/j.repbio.2022.100711

Received 31 August 2022; Received in revised form 8 November 2022; Accepted 12 November 2022 Available online 30 November 2022

1642-431X/© 2022 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier B.V. All rights reserved.

Abbreviations: SPINK2, serine protease inhibitor Kazal-type 2; SPACA7, sperm acrosomal membrane-associated protein 7; PDCL2, phosducin-like 2; SOPMA, Self-Optimized Prediction Method with Alignment; NCBI, National Center for Biological Information; MRE, mean residue ellipticity; ELISA, enzyme linked immunosorbant assay.

^{*} Corresponding author.

E-mail address: ysnaidu@yahoo.com (S. Yenugu).

¹ Orcid ID: 0000-0002-5431-2267.

Plagiarism report

Characterizing the functional role of testicular proteins in fertility and epididymal proteins in oncogenesis

by Aisha Jamil

Submission date: 28-Dec-2022 10:55AM (UTC+0530)

Submission ID: 1987031845

File name: Thesis_for_similarity_check_Aisha_Jamil.docx (395.09K)

Word count: 19040 Character count: 105260

Characterizing the functional role of testicular proteins in fertility and epididymal proteins in oncogenesis

ILARITY INDEX	INTERNET SOURCES	PUBLICATIONS	STUDENT PA	
ARY SOURCES		245.52		
of SPINI immuni	sha, Suresh Yend (2, SPACA7 and zation on fecund licular transcript 2023	PDCL2: Effect dity, sperm fur	D	26%
Submitt Hyderak Student Pape		of Hyderabac		School of Iniversite erabalion
Kiyotaka Toshimori. "Dynamics of the Mammalian Sperm Head", Springer Nature, 2009				1 %
	link.springer.com			1 %
mediate antigen	Sangeeta, Sures d knockdown of 11a (Spag11a) m epithelial cells a	sperm-associ RNA in epidio	ated lymal	1%