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Chapter 1

CHAPTER 1

Introduction:

1.1 Chemical noise

The main objectives of a living cell are to survive, respond to external conditions and
passing its DNA to its progenies. How a tiny cell performs numerous functions has been a
central question in biological sciences. The mechanism of gene expression, by which
information encoded inside DNA translates into a specific protein, is a key process in
maintaining various cellular functions. The change in the expression level and subsequent
post-translational modifications of proteins allow the cell to carry out different
physiological processes. Physiological processes are often triggered by external cues and
membrane bound receptors transmits the extracellular signals to the nucleus via intra
cellular signalling pathways leading to change in the expression level of the target genes.
The complex process of gene expression and subsequent post-translational modifications
are well coordinated by the machinery of gene and protein regulatory networks of
biochemical reactions. Steps of information flow from cell surface to nucleus is tightly
regulated by regulatory proteins. Numerous numbers of transcripts and proteins are being
produced inside a cell in every moment. Network of biochemical reactions are responsible
for orchestrating the production and post production regulation of the macromolecular
species. In a particular living organism, evolution has defined the network of chemical
reactions. Thus, expectedly the physiological response of a population of cell of a particular

organism under uniform environment must be identical as they are genetically identical.

Quantification of promoter activity and as well as protein abundance during gene
expression by fluorescent probes allowed researchers to measure gene expression at the
single cell level*?34, The findings from these experiments were strikingly different from
the expectation. In a population of genetically identical cell grown in a homogeneous
environment, gene expression was found to be variable leading to population heterogeneity.
Consequently, the probability distribution of the expressed protein showed a significant

width?°, The variable protein production in a population of genetically identical cells was
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Introduction

termed as gene expression noise. Certainly, the observed cell-to-cell variation of the
expressed gene was not due to the variation of the genetic background of these cells or due
to the environmental factors. These experiments posed a serious question on the
conventional understanding of kinetics of chemical reaction where the outcome of the
reaction in a macroscopic scale is deterministic. However, in a tiny cell volume, the
abundance of various reactants is finite and thus the macroscopic laws of chemical reactions
may not be applicable in the context of chemical reactions inside a living cell®. The
fluctuations of finite number of chemical species during the gene expression cannot be
ruled out due to the microscopic to mesoscopic range of abundance of the molecular
species. For example, in a typical gene there are an only a few numbers of promoter
initiation sites available and typically the average abundance of mMRNA ranges in between
1-100 molecules per cell. Thus, any fluctuations of these finite numbers would result a
consequential fluctuation in the downstream processes. In order to explain these new
experimental findings mathematical models were proposed taking into consideration of the

probabilistic nature of chemical reactions involving finite number of chemical species.

Simple model of gene expression was proposed to explain the variability in protein
abundance in prokaryotic cells such as Escherichia coli’ (Figure 1.1). In the model
transcripts are produced from constitutively active gene, mRNAs are translated into protein
and both mRNA and protein are degraded. While the transcription rate or the production
rate of mMRNA is constant and the translation rate or the production rate of protein is directly
proportional to the abundance of mMRNA. The decay of mRNA and protein were assumed

to be first order process.

mRNA(n ) Pro'rien(np) ;

- Ry L
k= Y/
—> > *p_>

| {

~ 25
T v

S

%) %]

Figure 1.1. Schematic diagram for gene expression model for E. coli. The rate constants

of various reactions are indicated accordingly.

Inherent randomness of the chemical reactions involving finite number of molecular

species makes the reaction events stochastic. Therefore, the accurate modelling of the gene
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expression requires probabilistic description of the model. The chemical master equation

(CME) of the simple model of gene expression (See Chapter 2) is given as,
dP(n , My t)
% = ka(nm —1,ny; t) — ka(nm,np; t)

+ VYm (M + DP (i + 1,155 t) = Vil (i, 5 £) 11

+ kpynpP(np, ny — 1;t) — kpny P(ny, s )

+vp(n, + 1)P(npm,ny + 1;t) — ypnpP(ny, s )

For the purpose of calculating steady state gene expression noise in the protein, the
chemical master equation for the model was transformed into linear Fokker-Planck
equation and with the help of fluctuation-dissipation theorem the steady state noise in the
protein was calculated. The squared coefficient of variation (CV) of protein abundance at

steady state is given by’

2 -1
CV2 = 9 = L + 1 . Ym
P\ (ny) (Mm) Ym' +7p"
D 14 m! Vm Vo 1.2
N——
Poisson noise from Noise from mRNA
birth—death process to protein

o, is the standard deviation of protein. (n,)(= k,v, '(n,)) and (n,)(= kmyn') are the
average abundances of protein and mRNA, respectively and are same as the steady state
solution of the deterministic rate equations. The first term on the right-hand side of the
above equation is due to the individual birth and death processes of protein alone and
expectedly it follows Poisson statistics. The second term is due to the noise originating
from the transcription process and the transcriptional noise critically depends on the

average abundance of mRNA and the relative lifetimes of protein and mRNA.

Several important conclusions emerged from the theoretical model: (1) the variability in
protein is mostly due to the mRNA; (2) protein is produced from mRNA in a burst like

manner, known as translational bursts, causing major variability in protein; and (3) protein
noise strength (n = 02 /(ny) = 1+ kv *(vm'/(¥m® +v5*))) depends linearly on the
translational rate (k,) not the transcription rate (k,,) consequently the noise strength
increases linearly with the average protein abundance ({n,)) when k, is varied and is very

weakly dependent on (n,,) when k,, is varied to increase protein abundance.
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The predictions of the model were verified experimentally by single-cell quantification of
protein using fluorescent reporter assays in prokaryotic bacteria Bacillus subtilis by
Ozbudak et al® and also in Escherichia coli by Elowitz et al®. These experiments found the
linear dependence of n with the (n,,) when k,, is increased therefore supporting translational
bursting mechanism of protein production. Translational bursting hypothesis was later
verified directly by real-time counting of protein molecules in individual E. Coli cell®. But
experiments on eukaryotic systems, e.g., in yeast cells, found that n behaves differently
with (n,) when k,, is varied®. This challenged the gene expression model proposed by
Thattai et al. To account for the experimental observations on eukaryotic systems, several
authors proposed that mRNA could also be produced in a burst like manner, terms as

transcriptional bursts.

mRNA(n } ProTien(np)
S P
k - k J,II ’/"

m p ]
———— e~ —> !tl
&

3
|

: v IV
\ m P

Gene Gene
"Off" State  “0on" State(n g) 2 g

A o

Figure 1.2. Schematic diagram for gene expression model with transcriptional noise. Gene
switches between ‘on’ and ‘off” state. From ‘on’ state it transcribes into mRNA which

translates to from protein. The rate constants of various reactions are indicated accordingly.

Transcription of gene to mMRNA needs access of DNA by several different types of
molecules, e.g., transcription factor etc. and due to the higher order packing of the DNA
molecule in higher organisms, it is highly unlikely that the gene will be easily accessible
and thus will be constitutively active. Therefore, one assumes that gene can randomly
switch back and forth between inactive and active states (Figure 1.2) and while only in the
active state it produces mMRNA molecules leading to random production kinetics of mMRNA
called transcriptional bursting. Raser and O’Shea and Paulsson separately determined the
variability in protein in the gene expression model with transcriptional bursts*°. They
applied the linear noise approximation, also known as van Kampen’s ()-expansion, to get

the moments at the steady state. The protein noise is given by
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1 1 Yl

- + .
-1 -1
(ny) (M) ¥m' + 75
——
Intrinsic noise: Extrinsic noise from

V2 =

Poisson mRNA 1.3
1=Pm  Ya' Yg Y AV VeV /¥m'
ng) vm+trvt vgtt+y!t Yol +vm'

Extrinsic noise from gene activation—deactivation

The (n,) indicates the average number of active gene. F,,, is the probability of the gene to
be in the active state and given by ko, /(kon + korf). Whereas, v, (= kon + kosp) is the

average lifetime of the active gene. The different sources of noise contributions are

mentioned at the bottom of the equation. The mRNA noise is given by,

1 1-P, 1,
) (ng) 15+ 7TH

which is very similar to the protein noise expression without the gene activation-

CV2 1.4

deactivation steps (Figure 1.1). The model predicts that depending on the relative
magnitude of activation and deactivation rates there are different types of behavior of noise
strength with the average protein noise possible as transcription rate is varied. The
transcriptional bursts were observed experimentally by directly counting the number of
MRNA molecules over time in living amoeba Dictyostelium cells and in mammalian
cells'* 13, As predicted by stochastic simulations, these bursts in mMRNA causes positively-
skewed non-Poissonian statistics, of mMRNA. Although simple on-off model of gene
provides some light on noise in gene expression but the mechanism through which gene
becomes active or active is still unknown. Due to the transcriptional bursting, even with
average bigger size protein noise in eukaryotic cells is larger than the noise in eukaryotic
cells. In fact, the cells from higher organism show more protein variability compared to
lower organism due to higher transcriptional noise arises from complex packing of DNA.
The analytical calculation of CME for protein reveals that protein distribution follows a

Gamma distribution*.

The stochastic trajectories of gene expression and consequent cellular heterogeneity was
found due to both intrinsic and extrinsic sources of noise inside a living cell. Collectively

these two sources of noise are called as ‘chemical noise’ >,
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1.1.1 Intrinsic noise

Low copy number of reacting species inside the tiny volume of a living cell leads to discrete
firing of reactions events leading to irregular outcome of chemical reactions leading to
stochastic trajectories. Such noisy outcome is purely due to the involvement of finite
number of molecular species and therefore it is often termed as ‘finite number effect’. The
finite number effect is purely intrinsic to a particular chemical reaction and thus the noisy

behavior is said to be due to the intrinsic noise of the chemical system. Based on the CV «
1/+/N scaling law of noise with N number of molecular species, the magnitude of intrinsic

noise increases with decreasing molecular abundance.

1.1.2 Extrinsic noise

In addition to the intrinsic stochasticity, cell to cell variation of external factors also
contribute to the stochasticity of chemical reactions. The extrinsic noise includes global
variations in the factors that do not directly correspond to a specific chemical reaction. Such
factors can be the variations in cellular volume, copy number variations of transcription
factors, ribosome and organelle contents etc. Swain et al.® proposed and Elowitz et al.!8
developed a sophisticated method to measure the origins of gene expression noise. In this
dual-reporter approach, the transcription of two genes is driven by identical promoters,
resulting in the production of two distinct but otherwise nearly similar proteins. In the
absence of intrinsic noise, the amount of both gene products, proteins in a cell would always
be the same if extrinsic sources of noise affect both promoters in a same manner. This
expressly assumes that both genes are translated and transcribed with the same efficiency
under the same extrinsic conditions and that both proteins degrade at the same pace. As a
result, the intrinsic noise is quantified by the size of the variation in protein levels across a
large population of cells, whereas the sum of intrinsic and extrinsic noise characterises the

size of the overall fluctuations.

1.2 Complexity in biological networks

Biological complexity arises at different levels of regulation. For example the information
flow from DNA to proteins which govern the process of metabolism for E.coli is presented
in the Figure 1.3. Around 4,000 genes are encoded into proteins or enzymes that catalyse
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approximately 1,000 biochemical reactions. Each step of protein production is controlled
by multiple and overlapping regulation loops of activator or repressor. These biochemical
reactions dictate different cellular functions. Thus, the overall molecular networks look
remarkably similar to the wired diagram of any modern electronic circuits. Instead of
resistor, capacitors and transistor hooked together by wire, here genes, proteins, metabolites

interacting with each other through chemical reactions.

Interactions Components .
Metabolism

>25.000 ~2000 memboli’ries_/,_.r-l--'

~1000 proteins Biochemical

Reactions )
.‘;

Proteome

>100,000  ~6-10,000 | ——
; | Tandotin )

m——y

>5,000 ~5,000

r | Transcription  }

0 ~4,000 e ‘
S a ERCENER Genome

Figure 1.3. Complex cellular networks for metabolism in E. Coli. Dashed line indicates
the regulatory interactions.

Apart from network complexity each biochemical processes are precisely modelled to work
under specific set of physio-chemical conditions. Like slight change in the temperature, pH
or the concentration would impact largely in the reaction outcome affecting the target
functions. As an example, in case of the cellular differentiation during the cell cycle, a
change in the experiment conditions, e.g., initial conditions, stimulus, can be resulted in a
different cell, even can show counter-intuitive patterns. This is due to the dynamic
characteristics and non-linearity of this process. There is additional level of complexity like

organisation of different cell types which form tissues and leading to an organ.

Recent advancement in molecular biology have been undoubtably taken our knowledge of

biological systems to the next level. However, as mentioned above only genes, protein and
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their interconnections alone are not sufficient to describe all the complexities in
physiological process. Thus, a system level analysis of biological systems is needed to

provide a deeper insight into these biological phenomena.

1.3 Systems biology and mathematical modeling.

The increasing amount of data collected on individual cellular components and a better
understanding of these interactions has led to the emergence of systems biology as a new
interdisciplinary field that regards biological processes as dynamic networks. In general,
this investigates the complex relationships within such systems using mathematical
techniques and computer simulations, with the ultimate goal of developing new, improved
biological systems for practical uses like the efficient prevention or treatment of diseases!®-
2, Here the biological networks are abstracted as a ‘model’. The model basically translates
the information of the temporal evolution of its state in some formal form. It allows to
visualize and predict the cause and effect of the biological system with time through
different computer simulations. With the help of modeling, one can rapidly analyse the
effect of different experimental conditions without performing complex and costly
experiments. These models can be tweaked accordingly to prior known experimental facts.
Further analysing of the model helps to understand with specific part of system which
contribute the most for the desired properties of interest. Therefore, the goal of biological
network modelling is to accurately encode the knowledge of biological systems.

To study biological systems, several modeling and simulation techniques are used. The
deterministic approach, which considers the concentration of molecular species, has the
capacity to forecast the dynamic behaviour of biochemical systems. The law of mass action,
which asserts that the rate of a reaction is directly proportional to the concentration of
reactant molecules, is frequently applied in deterministic approaches. A set of ordinary
differential equations (ODEs), sometimes known as reaction rate equations, thoroughly
describes the time evolution of a biochemical network (RRES). As a result, an analytical or
numerical method can be used to generate the system's full dynamic image given an initial
condition. Further, the behaviour of ODE can also be studied using a variety of well-

developed methods, including as stability and bifurcation analysis??.
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1.4 Network motifs

As already mentioned in the Section 1.2, a living cell is basically a miniature biochemical
machinery which responds towards its environment in a sophisticated manner in order to
sustain and reproduce. The cell membrane is densely packed with different cellular
receptors which are sensitive to various external ques like temperature, pressure, osmotic
stress. A cell's capacity for information processing is carried out via complex networks of
interconnected proteins and genes, an illustration is portrayed in Tyson et al. paper?. Now
the study of overall information processing unit is a tedious task to perform due to large
number of components which result in different reaction time scales, abundances. Thus,
one can look in to different alternatives, apart from studying the such reaction networks at
whole. If these networks are looked closely one can find several repeating sub units, these
are termed as ‘network motifs’?#?°, Each of these sub-units, defined by a certain
arrangement of interactions between nodes connected with edges, may represent a structure
that effectively performs a specific function. These network motifs received a lot of
attention recently as a practical idea for identifying the structural design principles of
complicated networks. Though these network motifs can give a thorough understanding of
the overall network's functional capabilities, but detecting them computationally is

challenging.

Holland and Leinhardt first in 1970 introduced the theory of network motifs by introducing
the idea of a triad census of networks?®. They proposed techniques for counting alternative
subgraph configurations and determining if the subgraph counts deviate statistically from
what is predicted in random networks. Uri Alon and his team in 200224, first generalised
the idea when network motifs were found in the gene regulatory networks of E. coli.
Numerous research projects on the topic have been carried out since then. While some
works are concentrated on the computational theory of network motifs, other studies

concentrate on their biological applications.

A network motif often consists of nodes, which generally represent macromolecules like
genes, proteins, transcription factors, etc and vertices termed as ‘edges’, which describe the
nature of interactions between different nodes. Depending upon the type of interactions and

the arrangement of nodes these network motifs show different functional capabilities.
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1.4.1 Feedback loops

The most common interactions between these systems are the feedback loops. As the name
suggest, in these motifs the output data is fed back to the system’s input. Positive feedback
occurs when output speeds up the transformation input and thus intensify its own
production, i.e.; input and output both helping each other. In negative feedback motif, the
output counters the input (Figure 1.4).

Negative feedback systems make up the majority of biological feedback systems. When a
system's output reduces or dampens the processes that result in its output, the system
produces less output. Thus, negative feedback loops (NFL) typically enable systems to self-
stabilize. A crucial regulating mechanism for maintaining the body's homeostasis is
negative feedback?’. NFL can also generate oscillatory responses?®2°. Various core
regulatory network motifs in circadian clock systems®, cAMP signalling®!, NF-KB
signalling®*®, In general, NFL attenuates noisy input signals by suppressing the signal
amplitudes. Whereas, positive feedback loops (PFL) amplify signals?’3, thus causes
instability. Another aspect of PFL is multistability. System with a PFL and ultrasensitive
response architecture has the capacity to generate digital switch responses, which is termed
as ‘bistability’®*8, Upon increasing the number of PFLs these responses can show
tristability®**! or even multistability. With this switch like phenomena, cell regulates
crucial decision-making process for example is cellular differentiation>4, cell cycle*48

cellular memory#®0,
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Figure 1.4. Schematic diagram of recurrently found network motifs. Different colored
circles denotes different nodes and vertices with different arrow heads represents different
interactions. The normal arrow represents activation, the ‘T’ shaped arrow head represents

inhibition and the rounded arrowhead can be either activation or inhibition.

1.4.2 Feed-forward loops

The feed-forward loop (FFL) is one of the recurrently found network motifs. In FFL
network motif, a regulator, X (input node), controls Z (output node) in two ways, one
directly and other indirectly by controlling Y which in turn controls Z. These FFLs have
eight different structural forms since each of the three interactions in the FFL can either be
an activation or a repression. Network topologies where both the direct arm and the indirect
arm (via Y) from X have similar function of acting activator or repressor on Z are labelled

as ‘Coherent’ and topologies with two dissimilar arms are labelled as ‘Incoherent’ feed-
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forward loops. In many cases, X and Y work together as roughly AND or OR gates to
control Z. The coherent type 1 FFL (C1-FFL) and the incoherent type 1 FFL (I11-FFL) are
the two most prevalent FFLs. The C1-FFL with an AND gate functions as both a
persistence detector and a ‘sign-sensitive delay’ element. I1-FFL can work as a pulse
generator and response accelerator. The I1-FFL has the capability to work as a fold-change
detector for a specific range of parameters, where response dynamics strictly depend only
on the fold-change of the input signal rather than the absolute change®!. Examples of other
network motifs are autoregulations®, cascades, interlinked PFLs and NFLs, and integrated
FFLs®,

1.5 Performance of reaction networks under chemical noise

Now the discussion lies on how the inherent cellular noise affects the function of different
gene regulatory networks. A living cell is programmed in such a way that it can adapt to
any changes in its environment by gathering and processing the information. The same set
of genes are present in all the cells in the human body, yet they code for a wide variety of
cell types. The most accepted conclusion regarding this is that distinctively different stable
states of the underlying gene regulation network typically result in qualitatively different
cell morphologies (Citation). Cells are forced to differentiate into these different
phenotypic states by the developmental programme. This switching can occasionally be
hampered by the random intrinsic and extrinsic fluctuations®6. These inherent
fluctuations can also force the system to make binary cellular decisions®’. For example, a
simple signalling network with fused positive and negative feedback loops produces a
bimodal distributed downstream signalling product instead of an anticipated intermediate
value. Another example, where noise has an impact on cellular dynamics is genetic
oscillators, i.e., the circadian clock. Even when deterministic rate equations predict a stable
steady state, genetic oscillator networks can produce oscillations in the presence of cellular
noise®®. This shows how noise can cause a system to leave a stable fixed point and begin a
new cycle, which is a manifestation of the ‘stochastic resonance’ phenomena. By adjusting

the level of noise, the incidence of oscillations can also be controlled.
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1.6 Objective of the thesis

A living cell must be dependable and robust in order to respond appropriately to diverse
internal and external cues and to ensure their long-term survival. These two crucial
characteristics of biological systems are hindered by the stochasticity of chemical reactions
emanating from both intrinsic and external sources. Typically, this results in a population
heterogeneity of many cellular features that is of little consequence, such as
desynchronization in oscillatory response® and variability in important signalling events
during the cell cycle®®. However, the heterogeneity has occasionally been discovered to be
advantageous for living things®-®2, For instance, under stress, the gene expression noise
enables single-cell organisms to quickly adapt to the new environment. Ultimately, this
enables the organisms to survive and even thrive in an adverse environment through
phenotypic diversity®3%4. Thus, apart from already well investigated gene expression noise,
it is interesting to study the noise propagation in other regulatory reactions which are
equally essential in maintaining proper cellular functions. This thesis work mainly focused
on the study of chemical noise propagation and its effect on the functional properties of

such regulatory reaction networks.

1.6.1 Previous work

Theoretical and computational models of gene expression noise were able to quantitatively
explain many experimental observations on protein noise by using probabilistic
descriptions of chemical events. These models have emphasised the importance of
differences in the average protein and mRNA lifetimes, as well as translational and
transcriptional bursts in the noise of gene expression as discussed in Section 1.1. Further
research was carried out to understand how feedback regulations affect the attenuation or
amplification of biochemical noise. Early research showed that whereas positive feedback
amplifies noise, negative feedback has the potential to reduce noise. Later calculations,
however, showed that PFL also has the capacity to do so with maintaining higher sensitivity
toward the incoming signal as compared to NFL . This study further extended to analysis
of role of different network topology in noise propagation (Citation). Like many gene
regulatory networks found to have multiple positive or negative feedback loop and both
PFL/NFL interlinked as core regulatory motif. Parallel arrangements of interconnected

positive feedback loops are found to be better topology to efficiently reduce chemical noise
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as compared to its serial analogue®®. More recent study also includes the epigenetic controls
of gene expression noise, where effect of nucleosome positioning, TATA box binding
affinity and transcription factor binding sites have all been further investigated in
prokaryotic and eukaryotic systems®”:8,

1.6.2 Layout of thesis

In chapter 2, the methodologies were briefly explained that were used to study the
stochasticity in chemical reaction networks. The intrinsic stochasticity in a chemical
reaction network was quantified by determining the steady state variance or covariance of
the chemical species of interest. Thus, both analytical and numerical routes to determine
various statistical quantities of chemical species was used. In this chapter, the analytical
method of system size expansion of the chemical master equation was first outlined that
allows to quantify statistical quantities. Next, the numerical method of Gillespie’s
stochastic simulation algorithm was summarised that has been used extensively in various
chapters. Finally, recently developed pseudo-potential energy based bifurcation analysis
method was explained which was further tweaked to determine the effect of extrinsic noise

on the heterogeneity of bistable response.

The quantitative and qualitative nature of chemical noise propagation in biochemical
reaction networks depends crucially on the topology of the networks. Multisite reversible
phosphorylation-dephosphorylation of target proteins is one such recurrently found
topology that regulates a host of key functions in living cells. In chapter 3, the stochasticity
in multistep reversible phosphorylation /dephosphorylation reactions were analytically
calculated. Using linear noise approximation, the steady state variance of phosphorylated
species in order to investigate the effect of mass action and Michaelis-Menten kinetics on
the noise of phosphorylated species were determined. The dependence of noise on the
number of phosphorylation sites and the equilibrium constants of the reaction equilibria
was further probed to investigate the chemical noise propagation in the multisite

phosphorylation chain.

Cells often encounter a plethora of external and internal signals in a non-sustained pulsatile
manner with varying amplitude, duration and residual value. However, the effect of signal
pulse on the regulatory networks is poorly understood. In chapter 4, pulse induced
population inversion kinetics was investigated in bistable switches generated either by
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mutual activation or by mutual inhibition motifs to gain a quantitative understating of pulse
processing by noisy chemical reactions involved. Population inversion and its maintenance
required a proper tuning of all three signal parameters. From the investigation it was
concluded that a bistable switch originating from mutual activation loop is found to be less

susceptible to spurious signals as compared to the mutual inhibition loop.

Due to the extrinsic source of heterogeneity in isogenic cell populations, the strength of
regulatory interactions in similar regulatory motifs may vary from one cell to another. This
variability in the strength of regulatory interactions may result in different qualitative
behaviors. In chapter 5, the robustness of such network topologies attaining bistable
responses in presence of extrinsic noise was investigated. Here, total 14 different two-
component positive feedback loop (PFL) networks were worked out, where the PFL was
achieved either by a mutual activation or a mutual inhibition loop topology and both the
components(genes/proteins) are regulated by a common regulator. Using pseudo potential
energy based high-throughput bifurcation analysis, by sampling millions of random
parameter combinations, we found out that these PFL networks with dual signing arms are
capable of generating a variety of noncanonical bistable switches. These noncanonical
switches may consist of one or multiple bistable regions that originate from the fusion of
multiple canonical bistable switches in different orientations. We found that the mutual
inhibition network with coherent signaling and mutual activation network with incoherent
signaling generated both canonical and noncanonical responses. Whereas, other network
topologies were more robust towards any variability in their regulatory interactions,
resulting in only canonical responses. The occurrence probabilities showed that
noncanonical switches such as isola and mushroom are highly probable in randomized
parameter conditions. The phase diagrams of these switches unveiled that the feedback

strengths of the PFL dictated the transition from one switch to another.

The functions of a living cell rely on a complex network of biochemical reactions that allow
it to respond against various internal and external cues. The global network topology of
these gene regulation networks is an intriguing feature. Although the propagation of
chemical noise in biological reaction networks involved in small regulatory motifs has been
extensively studied in the literature, but investigation of stochasticity in a generalised
network is sparse. In the chapter 6, chemical noise was computationally investigated in
these global reaction networks with democratic (Chapter 6a) and autocratic (Chapter 6b)

architecture. The effects of the qualitative and quantitative nature of interactions between
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nodes(genes/proteins) on the propagation of intrinsic noise in the network were extensively
studied. In the case of democratic network, an ultrasensitive switching of average was
found with an increased number of inhibitory signals. This led to a sharp transition of
intrinsic noise and the intrinsic noise exhibits a biphasic power-law scaling with the
average. Whereas in autocratic network architecture, an unconventional scaling of noise
with average abundance was found. Here the noise passed through a minimum, suggested
that the network may be noisy at both low and high abundance. The bursty kinetics of the
trajectories at a higher number of activatory interactions were found to be responsible for

this scaling.

In last chapter, the future scope of the research work was discussed. A pulsatile signal was
used investigate the difference between the transition kinetics for a bistable system
originating two different network topologies. This work can be extended further with other
types of input signals and network topologies with noncanonical responses. The work on
the effect of extrinsic noise on the heterogeneity of bistable switches can be extended to
tristable switches for suitable network motifs with additional feedback loops using our
automated method. Further, the mass action rate law of chemical reactions was used to
model the generalized networks to accurately capture the effect of intrinsic noise using
Gillespie’s SSA. In the future, it will be worthwhile to investigate the propagation of noise
in networks with nonlinear rate laws using approximate simulation methods such as the

chemical Langevin equation.
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CHAPTER 2

Methodology

2.1 Chemical Master Equation (CME)

A realistic strategy to describe the random and discrete nature of biological chemical
reaction is stochastic kinetics, which provides a probabilistic description of chemical
reactions. In stochastic kinetics, the state of a system is represented by a population vector
which contains the information about the abundance of each species involved a coupled
chemical reaction system. A reaction event leads to change in the state of the population
vector according to the stoichiometry of the chemical reaction. The foundation of stochastic
kinetics lies on the propensity function for each reaction, which indicates the likelihood of
a specific reaction occurring in the upcoming infinitesimal time period. This can be derived
based on the Markov property of biochemical reactions. The Chemical Master Equation
(CME) is a full mathematical formulation for expressing the time evolution of the system
state. The CME describes the time evolution of probability of a system having a specific

number of molecular species.

Consider, a homogeneous chemical system in a volume, Q, consisting N and R number of
different chemical species and chemical reactions, respectively. The state of the system at
a time t is defined by the state vector X(= [nq, n,, ....,n;, ""'nimax])' Here, n;(t) is the
molecular abundance of species i at time ¢. Considering v; corresponds to the change in the
state vector for the j™ reaction, the time evolution of the probability density function,
P(X;t), can be given by the CME below:

dP(X, R
Eit 2 Z[af(x —)P(X —v;,t) — ¢;(X)P(X, t)] 2.1

j=1

The summation over the first term on the right-side accounts for the probability of arriving

to a state X during an infinitesimal time interval and this probability is basically the sum of
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probabilities of leaving from (X — v;) state to X state. The second term in the CME

represents the probability of leaving the state X.

Alternatively, the CME can be represented by the use of step operator as

dP(X t) _ ( | ]E-si,- _ 1)ﬁ(x'ﬂ)p(x,t) 2.2

IIM:U

Where, f; is the transition rate of the j-th reaction. The macroscopic concentration vector
is represented by x = X/Q . S;; is the element of the stoichiometric matrix in which the

element S;; gives the stoichiometric coefficient for species i in the j™ reaction. E~Si/ is a

step operator which removes S;; from the i species in the j™ reaction. For example,
E™523f (x1, X3, X3) = f (%1, X2=S23,X3) 23

Now, the direct application of CME, is constrained by the fact that the complete probability
distribution of a biological system over time can only be determined for a simple chemical
system. Furthermore, analytical solution to the master equation may not be possible for
reactions with nonlinear rates. Thus, the exact solution of CME is affected by the ‘curse of
dimensionality’, which means that the number of degrees of freedom required for an
accurate approximation grows exponentially with any increase in the number of
components of the biological system. For instance, if we restrict the copy numbers to a
maximum of 10 molecules per species in a relatively modest system with only three species,
there will be 103 states, which results in 10° ODEs that must be solved in order to get the
answer. Nevertheless, several approximations on CME have been established to obtain
approximate analytical statistical description of the system. Further, there are simulation-

based algorithms which mimics the stochastic kinetics.

2.2 van Kampen’s system size expansion

In chapter 3, we used van Kampen’s system size expansion on the CME in order to calculate
steady state fluctuations in the phosphorylated species in multisite phosphorylation-
dephosphorylation chains. This method have been extensively used to calculate the gene

expression noise and noise in other biochemical reactions=3.
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The main ansatz behind the van Kampen’s system size expansion® is that the variance of
the steady-state probability distribution of the individual population scales with the system
size. Copy number of the i species can be written as a sum of its ‘deterministic’ value with

concentration, ¢;, and a random variable & with a scaling factor Q/2.

Xi =Qd)l(t)+ﬂl/zfl 24

That is, P(X, t) will have a sharp peak location at Q@ and with a width of Q'/2, So, the Q@
is the ‘macroscopic’ part and Q'/2¢ is the fluctuating part of X. Accordingly, the probability
distribution of X now became the probability distribution, IT of &.

P(X, t) = P(Q@ + QY2&,t) = 11, ¢) 2.5

Now following the transformation rules,

ol _ 11/29P op _ ol _ 1p4®00 2.6
¢ X at ot dt ot
Using the Taylor series expansion, the transition rate in terms of random variable ¢ is
written as
_ —1/27y — —1/2yN 9f(®) -1
fi(0) = fi(@i + Q758 = [TV Ry =5, =8+ 0(Q7). -

As the step operation leads to Ef(,;) = f(n+1), the step operator in terms of random

variable & is given by Ef (§) = f(£+Q~1/2). Thus, for all chemical species

5]

L E™S0 =1-Q71/2 Zisija_fi

O S S S +0(Q 3/ 2.8
+TZiZk ij kjm‘F( ) :

Recasting in the CME (2.2) in terms of the new variable leads to
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ONED N 40O

1/2

ot L dt ot

l

R
) )
- Qz(ﬂ Y Sy
+ Q-lzzk:sij Skj %) (fj(d>)

- 0f; (@)
Wfi)”(f,t)

When terms are gathered in various powers of (, this expression results in more sensible

2.9

+ Q12
i=1

outcome. Q1/2 terms give the macroscopic rate equation. The Q° terms result in

anft af(cb)afnft 2M1(&,t
( ) Z(Z ~Sy (kaf(l ) —f](qb)ZSUSk] afl(afk)) 2.10

Which can be written as,

) G 0°
17(5 t) _ ZALR (SklD) %z e, v 211

o&; B 5e08,

of j(@)
Where, A; = (SU af )a d By = X541 (Si;Sk;f; (®))

The equation (2.11) resembles with the linear multivariate Fokker-Plank equation where
A;, and By, are the constant matrices and termed as Linear Noise Approximation (LNA).
The solution of the linear Fokker-Plank equation is known out to be Gaussian, which is
fully determined by calculating the first order (mean) and second order moment
(variance). Solving for the equation of the moments, the equation for time evolution of

covariances is given as,

aO'ik

Fraie Ao + oy A" + B 2.12
The equation (2.13) provides the information about the steady state variances of each
species involved, which is equation (2.12) at steady state =0,
Ao + oy A" = =By 2.13

Where, o is the matrix for covariances, o;; provides the variance of i species. A is the
Jacobian or drift matrix and B is the diffusion matrix.
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However, number of studies provides the insufficiency of the linear noise approximation
as this fails to adequately account for noise in biological contexts>®. This prompted
researchers to look into higher order system size expansion terms that go beyond linear
approximation. With the help of these terms, moment estimates for the variances of the
concentration fluctuations in intracellular pathways as well as the mean concentrations and

concentrations have been more precisely calculated’®.

2.3. Gillespie’s Stochastic Simulation Algorithm

Due to the limitations of analytical methods, numerical simulations have proven to a useful
tool in investigation of noise in the biochemical reaction networks. The primary method for
simulating and accurately estimating noise in reaction networks has been Gillespie's
stochastic simulation algorithm (SSA)*!°. The SSA provides an exact solution of CME for
the coupled chemical reactions whose rates are represented by mass action Kkinetics. A
flowchart for the algorithm is described in the Figure 2.1. The simulation technique is based
on determination of the next time point for a chemical reaction and finding out the specific
reaction that occurs at the time point. Here, the time interval (t) of next reaction is chosen
from an exponentially distributed random variable. This random variable is based on the

sum of all reaction propensities (a, = ). a;) and uniformly distributed random number (r)

in the range [0,1] and given by,

T= (aio) In (/) 2.14

The choice of next reaction (j) which will occur in the infinitesimal time interval [¢,t + 7]
is decided based on the inequality (2.15), basically the reaction probability is calculated by
dividing its propensity by sum of propensities of all the reactions (a, = X.; a;) involved,
and thereafter the species involved in the reaction will be updated according to the reaction

stoichiometry.

jl
. a;
=%, 2.15

Qo

Based on the smallest j value satisfying the inequality, given j™ reaction will fire.

Hereby, a realization for a stochastic process is built by iteratively computing the next time

step at which a reaction happens and sampling which reaction occurs. Letting this iterative
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process to run for a fairly long time, expecting the system has reached their steady state,

we can get a single stochastic trajectory.

Initialise time, t=t,
System state x=xq

Evaluate reaction propensities, oj(x)
sum, a,= > a,(x)

Call random numberr &,
Calculate ¢=(1/a)In(1/r)

Pick the smallest j, a>r.a,

v

Update time, t=t+{
Update species, x=x+v,

Select the reaction firingJ

Stop simulation,
Record x

Figure 2.1. Flow chart of Gillespie’s Stochastic Simulation Algorithm.

High computational cost is the major drawback of SSA. The SSA mimics each and every
reaction event, therefore it becomes sluggish for systems that have a large number of these
events. In this scenario, when there is a very big rate constant and a sizable number of
molecules, Gillespie's algorithm spends a significant portion of its time choosing for
updating that extremely fast reaction!!. This makes the computation ineffective. This has
spurred research into algorithms that trade off part of the SSA's precision for faster
simulation times. The suggested methods, such as the t-leap method!? and the Langevin

method®3,allow more than one reaction event per step which leads to faster simulation.
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2.3 Pseudo Potential Energy Based Bifurcation Analysis Method

As, discussed in the introduction (Chapter 1), biochemical networks may often yield in
distinct steady state and dynamical behaviors such as multistability, temporal pulses and
oscillations etc. A part of thesis work is primarily based on the multistability which is found
to be involved in many cellular decision processes and processing graded input signals into
all or none responses. The signal response curve describes the steady state response of the
system with the variation of signal. Mathematically, the qualitative change of the steady
state behavior of the system with the change of a parameter is represented by 1-parameter
bifurcation diagram. For example, Figure 2.2a shows the 1-parameter bifurcation diagram
for a bistable switch. Conventional methods of generating such bifurcation diagrams in
based on the concept of ‘linear stability analysis’ of the steady state of the system. This
provides the information of change in stability of the system at the bifurcation point by
measuring the eigen value of the Jacobian matrix. As a result, the eigenvalues of the steady
states are tracked while the bifurcation parameter is changed in order to produce a
bifurcation diagram. XPP-AUT is the widely used tool for running bifurcation analysis of
nonlinear dynamical systems and typically bifurcation analysis is carried out by manually
tweaking various control parameters in the numerical continuation method of bifurcation
analysis.

However, in the Chapter 5, large scale bifurcation analysis needed to be performed under
random variation of parameter space. Therefore, the conventional tool of bifurcation
analysis cannot be used due to requirement of manual intervention for each bifurcation run.
Hence, we developed and implemented a new bifurcation analysis method using the pseudo
potential energy of the dynamical system!#'®. The theory underlying potential-based
bifurcation analysis is based on the fact that for nonlinear dynamical systems, the steady
states values correspond to the extrema of potential landscape of the system. The stable and
unstable steady state of a system follows the location of minima and maxima of the
potential, respectively. As a result, bifurcation diagrams can be generated by keeping an
eye on how the extrema changes in and out of the potential landscape. However, the
multidimensional dynamical systems pose the biggest challenge in calculating the potential
landscape. Potential energy for dynamical systems with more than one dimension cannot
be quantified generically because of their non-Newtonian nature. We solved this issue by

applying the transfer function method to transform the multivariate system into a univariate
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system. For example, two-dimensional equation of a mutual inhibition (MI) network model

(2.16) can be written as:
dX

m S =S — kXY —y,X

dt
U dy 1 2.16

Figure 2.2 Schematic for MI network

=kt ky———y,Y
dt o + 24 xn V2

At steady state (dY /dt = 0), Y can be written as a function of X and signal S as

1
ey + kb o
Y = £(S,X) = YA + X" 2.17
2

Substituting the expression of Y at steady state into the equation of X, the dynamics of the
system in reduced dimension can be written as,
Cé—f =S -k, XL(S,X) — X 218
Thus, the right-hand side of the equation is now basically a function of X and signal, S
which is in this case represents the bifurcation parameter. The effective force of the system
now becomes
F(X,85) =S —kXL(S,X) —y X 2.19

Now, the effective potential can be calculated by integrating the force term,

V(X,S) =— f X[S — kyxL(S,x) — y,x] dx 220

0

It is important to note that the effective energy here is not in true sense of energy because
of non-Newtonian nature of the dynamical system, rather it can be termed as a pseudo
potential energy of the system. Using (2.20) the potential energy for a range of X values
can be determined at different values of S. The local extrema values provide the information
about the stable and unstable steady states (Figure 2.2 b-d) of the dynamical system. The
whole 1-paramater bifurcation diagram can be generated by determining the steady states
from the extrema in the potential energy landscape. Implementing this algorithmic
approach in MATLAB, we performed 1-parameter bifurcation analysis in an automated

high throughput manner without any manual intervention.
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oL
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Figure 2.2. 1-parameter bifurcation diagram representing a bistable switch generated by

mutual inhibition loop between two regulatory species (a). The black and red lines represent

the stable and unstable steady states, respectively. The point where the stable and unstable

branches annihilate each other is denoted as saddle-node bifurcation point. Different

colored region represents low, bistable and high expressions. Pseudo potential energy

diagram corresponding to different signal values indicated the plot (b-c). The indicated

location of extrema values in the energy plots (b-d) provides the mentioned steady state

value for the bifurcation diagram (a).

2.4 References

1)

(2)

(3)

(4)

(5)

Paulsson, J. Models of Stochastic Gene Expression. Phys. Life Rev. 2005, 2 (2), 157—
175. https://doi.org/10.1016/J.PLREV.2005.03.003.

Elf, J.; Ehrenberg, M. Fast Evaluation of Fluctuations in Biochemical Networks
With the Linear Noise Approximation. Genome Res. 2003, 13 (11), 2475-2484.
https://doi.org/10.1101/GR.1196503.

Hayot, F.; Jayaprakash, C. The Linear Noise Approximation for Molecular
Fluctuations within Cells. Phys. Biol. 2004, 1 (4), 205. https://doi.org/10.1088/1478-
3967/1/4/002.

Kampen, V. N. G. Stochastic Processes in Physics and Chemistry. Stoch. Process.
Phys. Chem. 2007. https://doi.org/10.1016/B978-0-444-52965-7.X5000-4.

Hayot, F.; Jayaprakash, C. The Linear Noise Approximation for Molecular

33| Page



Methodology

(6)

(")

(8)

9)

(10)

(11)

(12)

(13)

(14)

(15)

Fluctuations within Cells. Phys. Biol. 2004, 1 (4), 205. https://doi.org/10.1088/1478-
3967/1/4/002.

Ferm, L.; Lotstedt, P.; Hellander, A. A Hierarchy of Approximations of the Master
Equation Scaled by a Size Parameter. J. Sci. Comput. 2008, 34 (2), 127-151.
https://doi.org/10.1007/s10915-007-9179-z.

Grima, R.; Thomas, P.; Straube, A. V. How Accurate Are the Nonlinear Chemical
Fokker-Planck and Chemical Langevin Equations? J. Chem. Phys. 2011, 135 (8).
https://doi.org/10.1063/1.3625958.

Grima, R. A Study of the Accuracy of Moment-Closure Approximations for
Stochastic  Chemical Kinetics. J. Chem. Phys. 2012, 136 (15).
https://doi.org/10.1063/1.3702848.

Gillespie, D. T. A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions. J. Comput. Phys. 1976, 22 (4), 403-434.
https://doi.org/10.1016/0021-9991(76)90041-3.

Gillespie, D. T. Exact Stochastic Simulation of Coupled Chemical Reactions. J.
Phys. Chem. 1977, 81 (25), 2340-2361.
https://doi.org/10.1021/J100540A008/ASSET/J100540A008.FP.PNG_VO03.
Bundschuh, R.; Hayot, F.; Jayaprakash, C. Fluctuations and Slow Variables in
Genetic ~ Networks. Biophys.  J. 2003, 84 (3), 1606-1615.
https://doi.org/10.1016/S0006-3495(03)74970-4.

Gillespie, D. T. Approximate Accelerated Stochastic Simulation of Chemically
Reacting  Systems. J.  Chem. Phys. 2001, 115 (4), 1716.
https://doi.org/10.1063/1.1378322.

Gillespie, D. T. The Chemical Langevin Equation. J. Chem. Phys. 2000, 113 (1),
297. https://doi.org/10.1063/1.481811.

Dey, A.; Barik, D. Potential Landscapes, Bifurcations, and Robustness of Tristable
Networks. ACS Synth. Biol. 2021, 10 (2), 391-401.
https://doi.org/10.1021/ACSSYNBI0O.0C00570/SUPPL_FILE/SB0OC00570_SI_00
1.PDF.

Dey, A.; Barik, D. Emergent Bistable Switches from the Incoherent Feed-Forward
Signaling of a Positive Feedback Loop. ACS Synth. Biol. 2021, 10 (11), 3117-3128.
https://doi.org/10.1021/ACSSYNBIO.1C00373/ASSET/IMAGES/LARGE/SB1CO0
0373 _0008.JPEG.

34| Page



Chapter 3

CHAPTER 3

Chemical noise propagation in reversible
multisite phosphorylation-dephosphorylation
chain.

3.1 Introduction

Chemical reaction networks incorporating multiple genes control diverse biological processes.
These networks frequently consist of small regulatory network motifs with unique steady-state
and dynamical characteristicst. Therefore, additional research was done to comprehend how
network topologies such as signalling cascades, feedback loops, and feed-forward loops affect
the propagation of chemical noise?’. One such network motif that controls the catalytic
activity, binding, transport, and degradation of target proteins is multisite reversible
phosphorylation-dephosphorylation of proteins®®. For instance, cyclin-dependent kinase
phosphorylates a number of important proteins several times to control important processes in
the eukaryotic cell cycle!®. Phosphorylation-dephosphorylation of protein can take place either
by processive or distributive manner. In a processive mechanism, the substrate attaches
mutliple phosphate groups after just one interaction between the enzyme and the substrate. In
contrast, a single interaction leads to a single enzymatic event in the distributive mechanism.
An ultrasensitive signal response is produced when a single enzyme catalyses many
phosphorylations in a distributive fashion, which is necessary for producing nonlinear
responses in biochemical reaction networks'*'%13, Due to this, bistability and oscillations have
been mathematically and computationally modelled extensively using multisite
phosphorylation mechanisms®+". While considering its deterministic dynamics, numerous
aspects of multisite phosphorylation have been explored®!:131617 However, systematic
research into stochasticity in multiphosphorylation is limited. Therefore, the characteristics of
chemical noise propagation in multisite phosphorylation chains must be thoroughly studied. It
is important to look into how the rate laws of chemical reactions, kinetic factors, and the overall

number of phosphorylation sites affect the intrinsic noise in multiphosphorylation chains.
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This chapter discussed how intrinsic noise propagated in multisite phosphorylation chains with
varying "chain lengths,” or with different total numbers of phosphorylation sites on the target
protein. In order to understand the impact of non-linearity on noise propagation, investigation
was performed with the mass action (MA) and Michaelis-Menten (MM) rate laws for
phosphorylation and dephosphorylation activities. Linear noise approximation (LNA) to the
chemical master equation, popularly known as the van Kampen’s system size expansion
approach was used to examine the quantitative and qualitative nature of variability in
phosphorylated species®. Additionally, stochastic simulations were carried out for the
chemical reactions in the chain using Gillespie's stochastic simulation algorithm(SSA)*®

technique to benchmark the analytical calculations.

3.2. Model

An ordered distributive multisite phosphorylation was studied, where each enzyme-substrate
interaction results in a single phosphorylation or dephosphorylation of the target protein, and
enzymatic processes take place in a predefined order. Figure 3.1 represents the reaction scheme
for a three component, distributive, reversible multisite phosphorylation-dephosphorylation
network. The assumption is that one enzyme is responsible for all phosphorylation reactions,

and that a different enzyme is responsible for all dephosphorylation reactions.

Figure 3.1: Schematic diagram for multi-phospho chain for protein with two phosphorylation
sites. MPi’s are the different phosphorylated states of protein M, i.e., species with subscripts 0
(M), 1 (MP) and 2 (MP2) refers to unphosphorylated, monophosphorylated and
bisphosphorylated forms. v; and v_; are the macroscopic reaction rates for phosphorylation and

dephosphorylation.

The chemical master equation corresponding to the three-component reaction system can be

represented as,
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dp(no, ny, Ny, t)
dt

=a;(ng+1,ny —1,n,)P(nyg + 1,ny — 1,ny,;t)

+ a;(ng,ny + L,ny, = DP(ng,ny + Lny, — 1L;t) +a_,(ng,ny —Lny, 31
+ 1DP(ng,n; —Lny, + L;t) +a_;(ng —1,ng

+ 1,n)P(ng — 1,1y + 1,ny;t) — [ag(ng, ny, my) + az(ng, ny, ny)

+ a_1(ng, ny,nz)+a_,(ng,ny, ny)P(ng, ny, ny; t)

Where, P(n,,ny,n,;t) represents the joint probability density for ny, n; and n, number of
molecules for the species MPo, MP1 and MP; respectively at time t. The total number of
molecules of, n; (= n, + n,; + ny,), is fixed and holds a mass conservation. The a;’s are the
reaction propensities for phosphorylation (a,, a,) and dephosphorylation (a_,, a_,) reaction
steps in the chain. As, mass conservation law holds in the chain, chemical master equation can
also be written as a function of any two variables of the phospho chain?® as the total number,

nr is fixed all the time.

The system was studied with two different reaction kinetics. In the first case, it was assumed
that the enzymes which catalyzed the forward and backward (i.e., phosphorylation and
dephosphorylation) reactions are in much excess concentrations compared to their substrates
consequently the reactions can be represented by pseudo-first order mass action rate laws. And
in the second case, where each reaction rate follows Michaelis-Menten kinetics. The mean field

dynamical equations of the system are given by

o7,
T (vitvy)—(v2+v_y)
on 3.2
a_tz = (v, —v_p)

Where 7;s are the average values of phosphorylated species. The average for unphosphorylated
species population can be calculated by applying mass conservation. In order to simulate the
dynamics of multisite phosphorylation events, MM rate laws have been widely used.
Particularly since the study of Markevich et al*?, in the context of the mitogen-activated protein
kinase pathway, the applicability of the MM rate laws in multisite phosphorylation has grown
rather substantially. Their research has demonstrated that, under specific circumstances,

bistability can be produced solely by a three-component phosphorylation-dephosphorylation
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cycle, without the need for an external positive feedback loop in the reaction network.
However, an ultrasensitive switch can also be produced via a two-component phosphorylation-
dephosphorylation cycle with MM kinetics?!. Further investigations for various aspects of
multisite phosphorylation with MM kinetics for ultrasensitive switches have been conducted*?.
However, a robust and tunable ultrasensitivity was also found to be generated from MA based
multisite phosphorylation in addition to the MM kinetics'®. The reaction rates for two different

Kinetics, v;’s are listed in the table below,

Table 3.1
Mass-action Kinetics Michaelis-Menten kinetics
vy = ky(ng — iy — 7y ) v, = kiE; (ilT —1_11 — )/Kz_vn
1+ (np — 1y — 13 )/ Ky1 + /Ky
v, = kT v, = _sz1_7_11/KM2 _
1+ (np — 1y — 73 ) /Ky + 11/ K2
V_y = k_pTiy b= _k—zE’ﬁz/K:Mz
147, /K_mz + 7 /K 1
vy = k_y1; v, k_1E' 711 /Ky

147, /Koy + /Ko

In the above set of equations, for the MA Kinetics, k; and k_; are the catalytic conversion rate
constants for phosphorylation (k,, k,) and dephosphorylation (k_,, k_,) respectively. The
abundances of enzymes were kept constant in the entire calculations. Therefore, they are not
mentioned explicitly as they were absorbed in the rate constants k;. In case of MM kinetics the
rate expressions are similar to the expressions as given by Markevich et al.'2 in the context of
phosphorylation of mitogen-activated protein kinase cascade. E; and E’ are the kinase and
phosphatase abundances, respectively and those abundances were kept constant throughout out
calculations. The K,;;’s are the Michaelis constants for phosphorylation (K, Ky) and

dephosphorylation (K_,;1, K_p) reactions.

Now in order to calculate the steady-state noise in the phospho species, Linear Noise
approximation (LNA)(See Chapter 2 Methodology) was used on the chemical master equation.
At the steady state, the drift and diffusion matrices in the Fokker-Plank equation are connected

by a fluctuation-dissipation like relation given by

Ac+cAT+B =0 33
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where A, B and o are the drift or Jacobian matrix, diffusion matrix and covariance matrix
respectively. The covariance matrix holds information about the variance and covariance of
all the molecular species in the network. The elements in the drift matrix A are given by
Ay == 3.4

Y on; ot '

_ - . . . on;
Where 7; is the average number of molecules for the i-th chemical species and % can be

obtained from the macroscopic rate equations. The elements in the diffusion matrix B are
given by

B;j = ZvjkvikRk 35
3

Where v;;, and R;, are the stoichiometric coefficient of the i-th species in the k-th reaction and

the rate of the k-th reaction, respectively.

For the three-component reaction scheme the drift and diffusion matrices are given by,

[ 0 (67‘11) 0 (am)]
_|on,\ ot/ ony\at/| [Anx Alz]
| o (aﬁz) 0 <aﬁ2) T Ay Ay
ony, \ dt / 0dn, \ dt 36
B — [(Vl + Vz + V3 + V4) _(Vz + V3)
—(v2 +v3) (v2 +v3)
Thus, the final matrix equation for the steady state covariances,
Ay Ass 0 11011 —(1/2)(V1 vtV +vy)
Ay (Ant+A4z) Ar 0'12] = (V2 +v_3) 3.7
0 Az Aznlloz ~(1/5) vz +v-2) |

Now for the mass action kinetics the drift and diffusion matrices are given by:

A= [_(k1 +ky+k_y) (kp— k1)] B = [2(k1 + k_)ny _2k2ﬁ1]
kz _k_z _Zk_z‘r_lz Zk_zr_lz 38

Using the above expressions of A and B in the matrix equation (3.3) and applying the symmetry

in covariance (o;; = 0j;), the matrix equation for the steady state variances of stochastic

variables obtained as,
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r 2
z ki+ko, ki —k, 0
i=1 011 —(ky +k_1)My
S
k, - z ki +k_y kep—ki|loa _k_,7%, 3.9
i=1
0 k, “k_,

Solution of the above system of linear equations lead to the variances of species MP1 and
MP- as

g = (kiky + k_1k_3)ny
W piky + kik_y + k_ik_,

) 3.10
(kyk_o + k_1k_;)n,

%22 = 1l + kik_, + k_k_,

In the special case where all the forward and backward rate constants are equal i.e., k; =

k, = ks and k_; = k_, = k,, the steady state variances can be represented as a function of

equilibrium constant (K = k¢ /k;) and they take simple form as,

(1+K*n,

MTA K2k

3.11
(1+ K)n,
2T 11 K)2-K
Although only the variances were calculated, the covariances can also be calculated using (3.9).

Further the macroscopic averages can be obtained from the deterministic dynamical equations.

The general expression of the average for i phospho state is given by

I G720 N o
SN (e /ky) | Dm0

N is the total number of phosphorylation site in the chemical species.

3.12

Similar calculations were done for three component reaction scheme with the MM Kinetics,
where the resulting equations are lengthy and cumbersome. The above matrix was solved using
MATLAB to get the g;; values, variance of species MP1 and MP,. However, for the two-
component  phosphorylation-dephosphorylation ~ chain  the  variance  for  the

monophosphorylated species (MPy) is found to be,

40| Page



Chapter 3

kiEs(np —14) | kLE'R
_ Kyi(np —ny) Koy +ny
O T T ok, E Ky 2k E'K 3.13

[Km1 + (np —19)]%  [K_yq + 142

Multiple phosphorylations of proteins in living cells provide threshold and ultrasensitive signal
responses in protein activity. Additionally, it is known that a chain with more phospho states
will have a sharper signal response curve and higher Hill coefficient values. In this context,
similar calculations were performed for multiphosphorylation chain with four, five, and six
components to study the effect of increasing phospho states on the noise of chemical species
in a chain. The resulting matrix equations were therefore rather large and challenging to solve
analytically. MATLAB was used in order to get the information of variances for different

phosphorylated species.

3.3. Results

In Figure 3.2 presented the dependence of the average, variance, and Fano factor of the
phosphorylated species on the equilibrium constant (K) of phosphorylation-dephosphorylation
reactions in the three-component phosphorylation chain. This presented the findings from both
the MA and the MM Kkinetics of reactions in order to comprehend how the rate laws affect the
statistical features. Additionally, the analytical results were compared from numerical

simulations carried out using Gillespie's SSA.
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Figure 3.2: Dependency of steady state average (7;), variance (o;;) and noise strength (Fano
Factor=variance (o;;)/mean (n;)) of the phosphorylated states on the equilibrium constant of
phosphorylation-dephosphorylation reactions for three component phospho chain. Solid lines
and markers represent analytical and SSA simulation results, respectively. n; =500 was chosen

in all the calculations. Top row: MA Kinetics; bottom row: MM Kinetics.

The results were provided for the situations with k; = k, and k_; = k_,. However, one can
also obtain the dependency of statistical properties the on the individual rate constants (k, k-,
k_q, and k_,). For MA kinetics with the increase of K the steady state variance of the each
phospho state increases and decreases steadily after going through maxima (Figure3.2). The
increase and decrease of variances are much sharper in the case of MM Kkinetics. For the
terminally phosphorylated species (MP2) in particular, the variance shows a sharp peak at K =
1. The ultrasensitive increase of MP; at K = 1 leads to the sudden rise in MP> variance. After
K > 1, the following sharp fall in the variance is due to the decrease in the sizes of fluctuations
owing to the large abundance to MP,. Contrary to MM, in case of MA, the averages do not
follow any sharp increase or decrease with increase in K, the corresponding variance do not
show such sharp change. Thus, the well-known ultrasensitive switching of the terminal species
drives the sharp switching behavior of steady state variance. This is supported by the variation
of Fano factor which measure the strength of noise. Noted that the Fano factor value shows a
deviation from 1, which dictates the non-Poissonian nature of statistics across different values
of K.
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Figure 3.3: Dependency of steady state average (#1;), variance (o;;) of the phosphorylated states
on the equilibrium constant of phosphorylation-dephosphorylation reactions for four
component(4-C) and five component(5-C) phospho chain. Solid lines and markers represent
analytical and SSA simulation results, respectively. To vary K,we kept k, (= k_;= k_,)fixed

at 0.2 and varied kr (=k; = k; ). ky, values are kept constant at 0.5, E; = E’ = 50 ..

For four and five component chain (for equations see Appendix 1, A3.1), the steady-state
averages and variances (solving the final matrix equation in Appendix 1, A3.3 and A3,4 in
MATLAB), of the phosphorylated species with the equilibrium constant K are shown in Figure
3.3. Similar to the three-component chain, the MA Kinetics exhibit less pronounced increase
and decrease of variances than the MM kinetics. Again, due to its deterministic behaviour, the
terminally phosphorylated species exhibit dramatic rises and falls in its variance in MM
kinetics. Gillespie's SSA was used to perform numerical computations to further corroborate
our analytical findings. In every chain, both the outcomes were remarkably consistent. It was
also interesting to notice that in MA kinetics, at K = 1 the variances go through a common

value.

Next our methodology was established, the impact of chain lengths or the total number of
phosphorylation sites (N) on the variability of phosphorylated species was further investigated.
To determine the noise in the chemical species, the coefficient of variation (CV=standard
deviation/mean) was calculated. The CV of every phosphorylated species in chains with 3, 4,

and 5 components was determined.
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Figure 3.4: Comparison of steady noise of a specific phosphorylated species across different
chain length (number of phosphorylated states in a chain). Top row: MA kinetics; bottom row:
MM Kinetics.

To assess the effect of the number of phosphorylation sites on the noise, the CV of a particular
phosphorylated state from different chain lengths was plotted against the K (Figure 3.4). The
results showed that the noise in a given phosphorylated state for MA Kinetics rises with chain
length. This is because the overall population is spread out among all the states, and as the
chain length increases, the average abundance of a given state falls, leading to increased noise
in the various phosphorylation states. However, the CV of other phosphorylated species passes
through a minimum, whereas the CV of the terminally phosphorylated species in any chain
demonstrate a monotonously falling pattern with the K in case of MM. The increase in average
abundance with K is what causes the CV with K for terminally phosphorylated species to
consistently drop. The CV of these species, however, exhibit a reversal tendency because
average abundances of other phosphorylated species pass through maxima when K is increased.
Again, this sharp fall of noise after K = 1 in case of MM as compared to MM is due the average
dynamics. We evaluated the total variance of all the phosphorylated species and compared
them for chains lengths in order to provide a more accurate estimation of the comparative noise
in MA and MM kinetics (Figure 3.5). In MA Kinetics, the total variance increases with K and
after passing through a maximum value it decreases. Consistently, the increase and decreases

are much sharper in case of MM kinetics. The total variance is found to be higher with higher
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number of number of components in the chain in case of MA; whereas, in MM Kinetics, the
total variance of all chains is almost the same. Though the quantitative value of total variance

in case of MM Kkinetics is significantly higher than the MA
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Figure3.5: Total variance (3 g;;) of all phosphorylated species of each phosphorylated chain
is plotted with equilibrium constant. Each color and line style represents different

phosphorylated chains.

kinetics. Thus, it can be concluded that the non-linear rates in the chemical kinetics tends to
amplify the noise. Therefore, though the non-linear reactions kinetics is the requirement for the
ultrasensitive response, this comes under the cost of increased variability.

Since the discovery of gene expression noise, the propagation of chemical noise in a network
of chemical reactions has attracted a lot of attention. The propagation of intrinsic noise has
been studied as a function of cascade ‘length’ in signalling cascade networks, which has
garnered particular interest?>?3, Therefore, it is reasonable to calculate how the noise is
distributed or propagated across the different chemical species in the chain in the case of a
multisite phosphorylation. It is also important to investigate how ‘chain length’ regulates the
noise of the phosphorylated species. Additional simulations were run for higher
phosphorylation chains up to 10 components to address these characteristics of noise

propagation. Figure3.6 presents the noise propagation along the various chains at K = 1.
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Figure 3.6: Plot for CV of the phosphorylated species of different chains with MA (left) and

MM (right) kinetics. Different liner color/marker represent different ‘chain length’.

The noise of all the phosphorylated species for both MA and MM Kinetics for a given chain is
plotted in Figure 3.6. When comparing chains using MA and MM rate laws, a striking variation
in the noise propagation was discovered. For the MA Kkinetics, the noise of all the
phosphorylated species in a given chain length were same, which reflects that the noise was
more or less uniformly distributed among different species and the quantitative value of noise
increases with the ‘chain length’. Therefore, the extent of noise propagation is somewhat
independent on the phosphorylation state. In contrast, the noise in the case of MM Kkinetics
displayed a totally different qualitative trend. Here, the noise profile was found to be a
somewhat parabolic shape in relation to the degree of phosphorylation for each species. The
noise decreased along the chain and after passing through a minimum it increases with
phosphorylation. As a result, compared to the terminal species, the intermediate

phosphorylated species experienced lesser noise.

The dependence of CV on the average number of molecular species is one of the key features

of intrinsic noise. For simple birth-death processes, the CV scales according to CV o« 1/+/n.
For chains with various total numbers of phosphorylation sites, the dependency of CV on the
average abundance of phosphorylated species is shown in Figure 3.7. When it comes to MA
kinetics, the CV showed usual scaling with the average number of species and the CV for every
phosphorylated species behaved in exactly the same way with the average. However, in case
of the MM Kinetics, scaling of CV was found to be complex in nature. In particular, the
intermediate phosphorylated species exhibit a looplike structure.
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Figure 3.7: CV vs average plots for different phosphorylation states in each chain (3, 4, and 5

component). Different colors or line styles represent each phosphorylated species. The dotted

line across the plot represents the CV « 1/+/n scaling.

3.4. Conclusion

In this chapter, the propagation of chemical noise in multisite phosphorylation chains was
examined using the Linear noise approximation method. The analytical results were
supplemented with numerical simulations using Gillespie's SSA. Calculations were performed
using both linear (mass action) and nonlinear (Michaelis-Menten) kinetics for the enzyme
activity in order to understand the role of rate laws in noise propagation. While varying the
equilibrium constant of the phosphorylation-dephosphorylation reactions and the overall
number of phosphorylated states in the chain, the steady-state statistical quantities such as
variance, coefficient of variation, and Fano factor of phosphorylated species were determined.
In case of MA Kkinetics, the variance of phosphorylated states steadily increased and decreased
with the equilibrium constant of the phosphorylation-dephosphorylation reaction. The rise and
fall of variances were far more pronounced in case of MM Kkinetics. Particularly, at K = 1,
when the reaction equilibrium is unbiased, the variance of the terminally phosphorylated
species displayed a sharp peak. Additionally, variability of any phosphorylated species in case
of MM Kinetics is much higher than in the MA kinetics. Since the total variance in all of the

phosphorylated states with MM kinetics was much higher compared to MA kinetics. This was
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also reflected in the CV which estimates the ‘noisiness’ of the chemical species. These
calculations show that, in contrast to MA kinetics, MM Kkinetics contributed to an increase in
the sharpness of the signal response while also amplifying the variability of the phosphorylated
states. As a result, the system made a trade-off by achieving sharp nonlinear response at the
expense of more variability. The study of propagation of intrinsic noise revealed a striking
difference between the chemical noise propagation along the phosphorylated species along
multi phosphorylation chain for MA and MM Kkinetics. In case of MA Kkinetics, the noise
propagation was found to be independent of the phosphorylated states. Whereas, the noise
propagation crucially depended on the different phosphorylated states in MM Kinetics.
Specifically, the noise profile varied in a near parabolic manner with the phosphorylation state
of species along the chain, where the terminal species in the chain were found to be more
‘noisy’. Further we looked into the scaling of noise with the average abundance of species. For
MA case, the system followed the usual scaling law irrespective of the phosphorylated states.
On contrary, system following MM kinetics show complex scaling pattern. Further the distinct
loop like profile for the CV versus average abundance plot for the intermediate phosphorylated
species can be useful to determine the underlying reaction kinetics of phosphorylation-

dephosphorylation reactions.
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CHAPTER 4

Pulse processing of bistable network
motifs in presence of intrinsic noise

4.1 Introduction

Living cells receive plethora of external and internal signals which modifies the gene
expression to perform proper cellular response against these signals?. Signaling pathways
deliver the signal information to the nucleus, where it is targeted for activation or
inactivation of particular genes. The majority of the signalling networks contain a core
regulatory motif that serves as the primary engine in transmitting the information
downstream, despite the fact that the signalling networks can be quite complex with a
sizable number of chemical components(regulators) involved in a various interconnected
reaction network. Signal transducer, feed-forward loop, negative feedback loop and
positive feedback loop are example of these important network motifs?2. In reaction to
internal and external inputs, these networks motifs produce nontrivial dynamical and steady
state responses*® For instance, the incoherent feed-forward loop and negative feedback
loop are discovered to produce temporal pulses and are crucial in controlling adaptation’~
° Additionally, negative feedback loop is the key component for temporal oscillations seen
in the cell division cycle, NF-kB pathway, and circadian oscillations'®°, Positive feedback
loops are known to produce bistability, which causes a macromolecular species like genes
and proteins to abruptly change its activation state or expression. Apoptosis'®’ | cellular
differentiation'®2° | the G1 to S phase transition in mammalian cells, mitotic control in

yeast?!, and biological memory have all been linked to bistability??24,

Typically, while modelling these network motifs, the steady state dose response curves or
the dynamical characteristics of the network motifs are examined along with the presence
of persistent signal®. However, instead of persistent signal, the signals can be discrete.

These signals can appear as a trail of pulses with variable amplitudes and intervals. The
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signal may appear noisy since the amplitude and interval are variable?>. Numerous
instances of pulsatile signalling causing unique gene expression patterns and cellular
responses in various organisms have been documented. Proteomic analysis in
Saccharomyces cerevisiae, reveals pulsatile dynamics of several transcription factors under
different growth conditions?®, and in particular, transcription factor Msn2 has been found
to exhibit dose-dependent pulsatile dynamics, under glucose starvation, controlling the
expression of a number of genes based on the dynamic pattern of Msn2?’. Radiation-
induced DNA damage causes leads to pulsatile dynamics of p53 dynamics, and depending
on the characteristics of these pulses, distinct cellular fates are controlled by the p53
dynamics?®?° . Epithelial cell proliferation depends on EGF concentration-dependent
modulation of ERK pulses®, and Caenorhabditis elegans research has revealed that
pulsatile temporal ERK activity is essential for a variety of cellular fates®'. Temporal
oscillations of expression of transcription factors Ascll and Hesl are required for the
proliferation and thus maintenance of multipotency in the mouse neural progenitor cells
and sustained expression of Ascll leads to differentiation®**, Recently, a correlation
between NF-xB pulses and distinct gene expression patterns has been discovered®**®, As a
result, it is critical to develop a systematic quantitative understanding of how different
network motifs handle pulsatile signals so that the network can analyse the data as a whole

while excluding signals with small amplitudes that can behave as noise.

In this chapter discussed how a bistable switch, that is produced by a positive feedback
loop between two regulators, processes a pulse of signal. The pulse processing for two
different bistable systems that were either generated by mutual activation (MA) or by
mutual inhibition (MI) motif were investigated. In order to study the kinetics of switching
from one stable steady state to another stable steady state for a population of bistable
switches, three different pulse parameters were altered: amplitude, duration, and residual
amplitude. Since an input pulse can cause population inversion in a bistable system, the
population fractions that invert to the alternate steady state, stuck in the inverted state, then
revert to the initial state were measured. In order to better understand the dynamics of pulse-
induced population inversion in bistable systems, the typical time required to carry out

these processes were also calculated.
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4.2 Model

Bistable switches produced by two distinct mechanisms - mutual inhibition or mutual
activation between two regulators to create the necessary positive feedback loop were
created. A double negative feedback loop (DNFL) was produced by the mutual inhibition
(MI) between to regulators, while a positive feedback loop (PFL) motif was produced by
the mutual activation (MA) (Figure 4.1a-b). In order to generate ultrasensitive switch,
multisite phosphorylation-dephosphorylation chain with ten phosphorylation sites was used
similar to discussed in Chapter 3. The process of phosphorylation was catalysed by enzyme
kinase. In case of MI the unphosphorylated protein (X,) accelerated the degradation of
kinase (K) whereas in case of MA the terminally phosphorylated species (X;,), catalysed
the synthesis of the kinase. Thus, the mutual antagonism between X, and K generated a Ml
loop and the mutual activation between X;, and K generates a MA loop. The
dephosphorylation events were catalysed by the phosphatase (S). To simulate the dynamics
of the chemical species present in the network, the mass action kinetics of chemical
processes was employed. Implementation of mass action kinetics was done solely for the
purpose of accurately capturing the effects of intrinsic noise. It was important to note that
only if the kinetics of all chemical reactions adhere to the law of mass action can the well-
established stochastic simulation algorithm developed by Gillespie accurately capture the

effects of intrinsic noise®.
The dynamical equations for the kinase in the DNFL was given by

dNg
dt
The dynamical equation for the Kinase in the PFL was given by

= kS - deK - kaNXONK (41)

dN,
_dtK = ks + kaNXloNK - deK (42)

The dynamical equations for the chemical species in the phosphorylation chain were given
by

dNy,
dt

=S Ny —k, NN
X1 TPTKT X (4.3)
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dNy.
J _ ¢. — —o7
at =S NX]'+1 + kpNKNXj_1 kpNKNXj S NXj for 2 S] <9 (44)
dNy
—dt10 = kpNKNXl) - S ' NX10 (4'5)

In these equations N; represented the molecular abundance of the chemical species j. The
parameters ks, kq, k, and k,, are the rate constants associated with synthesis, degradation,

catalytic effects of X and K, respectively. S was the phosphatase which catalysed the
dephosphorylation step. The parameter values used in the calculations are listed in the table
4.1.

Table 4.1: List of parameters and their values.

Parameters Model
M MA
ks 1.0 0.06
kg 0.001 0.001
kq 0.0002 0.01
k, 0.005 0.01

The 1-parameter bifurcation diagram for MA and MI network were shown in Figure 4.1c
and 4.1d, respectively. The phosphatase, S, was selected as the bifurcation parameter and
the amount of kinase declines via bistable switch with the increase of phosphatase. The
system is bistable between the two saddle-node bifurcation points S; and Si. In the Ml
network, the phosphatase, S increases the amount of X, which accelerated the degradation
of kinase, thus increase of S resulted in decrease of kinase. In the MA network, the
phosphatase decreases the availability of X, that catalysed the production of the kinase
thus the kinase decreases with S. To enable a fair comparison between the two networks,

the models were parameterized such that it generated similar bifurcation diagrams.
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Figure 4.1: Schematic network diagrams of Ml (a) and MA (b) networks, the kinase, K,
catalyzes the phosphorylation of the target protein X. In return, X, catalyzes degradation
of the kinase in the DNFL network and X, , catalyzes production of K in the PFL network
creating net positive feedback loop. The unphosphorylated (X,) and terminally
phosphorylated (X,,) forms are assumed to the active forms of X in the DNFL and PFL
networks, respectively. The bistable on-parameter bifurcation diagrams of the Ml (c) and
MA (d) are presented with the amounts of phosphatase (S) as the bifurcation parameter.
The two different color triangles designate the signal values corresponding to the left (S,)

and right (Sg) saddle-node bifurcation points.

To study the stochastic realization of the dynamical equations for the M1 and MA networks,
Gillespie's stochastic simulation algorithm was employed. In the computational
experimental setup, the system's initial phosphatase concentration was adjusted to a low
level (S = 0.001) and simulated it for a long enough period of time until it reached the
upper steady state (USS) of the bifurcation diagram. For a brief period of time (zp), a
phosphatase (S) pulse of a specific amplitude (S,,,) was applied, and for the remainder of
the simulation, the pulse amplitude was reduced to a resting value (S,) (Figure 4.2a). In
order to study the effects of the pulse amplitude, length, and resting pulse on the transition
kinetics of the bistable systems, these three parameters were altered. The pulse amplitude
(S;,) was varied from starting a minimum value corresponding to the phosphatase
abundance at the right saddle-node bifurcation point (Sz) and S, was varied with a

maximum value corresponding to the left saddle-node bifurcation point (S, ). Four different
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outcomes were possible due to the pulse of phosphatase: the system may not at all respond
to the pulse (Figure 4.2b) or the system may transiently respond to the pulse by lowering
the expression of the kinase (Figure 4.2c) or the system may invert to the other steady state
and remain there (Figure 4.2d) or the system may invert to the other steady state and switch
back to the original state upon removal of the pulse (Figure 4.2e). Therefore, in order to
predict the outcome of bistable system under the pulse, we quantified the different
population fractions involved in different transitions, such as fraction of population i)
inverting to the LSS, lower steady state (f;,,,,), 1) switching back to the upper steady state
after a specific pulse duration (f;,,), iii) locked in the lower SS even after removal of pulse
(fick), V) not responding the pulse (f,s) and v) responding to the pulse transiently (firr,
responded but without reaching the LSS if revert back to its original state).
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Figure 4.2: Schematic representations of the pulsatile signal (a) and various possible
temporal outcomes of the kinase (b-e). The pulse amplitude (S,,,), duration of pulse (z,)
and resting amplitude (S,) are the three parameters that characterize the pulse of
phosphatase. The four possible temporal outcomes of the kinase are: (b) non-responding
trajectory (nrs), (c) transient trajectory with reduced expression without reaching the lower
steady state (trn), (d) inversion (inv) of the state with permanently locked in the lower
steady state (Ick) and (e) inversion and subsequent switching to the upper steady state (swt).
The time scales associated with the inverting into the lower steady state, residing in the
lower steady state and switching into the upper steady state are represented respectively as

Tinv» Trsa aNd Tgy,. The inversion time was divided into an initial delay phase (z4;,) and
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subsequent response phase (7,.s,). The dark and light shaded regions indicate the pulse on

and resting pulse regions.

Time scales associated with various transition kinetics were also quantified. Inversion time
(tinp), the time taken by the system to reach the LSS since the pulse is switched on, was
estimated. The residence time (t,54) and the switching time (z,,;) were also determined
which were the time the system spent in the LSS and time it took to switch back to the USS
upon the removal of pulse, respectively. In order to distinguish the mechanism of inversion
for M1 and MA, the inversion time was divided into two phases, i.e., an initial delay in

response phase (z4;,) and the subsequent rapid response phase (7).

By setting off flags at various kinase values throughout its time course, a pulse of
phosphatase was started, and the trajectory of the kinase was monitored in order to calculate
the fractions of the various populations and the corresponding time scales. Since the pulse
was turned on when the trajectory hit a threshold value of 100, the trajectory was counted
as inverted and the inversion time(t;,,) was estimated. Without reaching 100, the
trajectory with unaltered expression was classified as a non-responder, and the trajectory
with temporarily reduced expression was classified as a transiently responder. The
threshold values of 800 and 600 was used for the MI and MA networks, respectively, to
measure the initial response delay (z4y). 741, Was subtracted from 7;,,, to calculate the
rapid response time, 7,.,. The time taken to achieve a threshold value of 150 following the
removal of the pulse, after it had reached the lower steady state, was used to estimate the
residence time in the LSS (z,54). When the system reached a threshold value of 850 and
the trajectory was labelled as switched, the time required to switch back to its USS (z4,¢)

was estimated.

4.3 Results

For the MI and MA motifs, the fraction of the population that switched to the lower steady
state was presented in Figure 4.3a-b as a function of pulse dose and duration. The f;,,,, grew
nonlinearly with increasing pulse dose and duration, showing that the population inversion
might be achieved by a phosphatase pulse in which a strong pulse for a short duration or a

weak pulse for a long duration both can alter the steady state of the bistable system. The
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sharper curve for f;,,,, Vs Tp as compared to the sharpness in the f;,,, vs A4Sk suggested the
critical dependence of pulse duration, this behavior was found to be more prominent in case
of MA. Although the qualitative effects of the pulse on the bistable transition from MI to
MA motifs were comparable, but the initial delay in the f;,, profile for MA network
suggested that for population inversion the pulse must be exposed for a longer period of
time (large 7p) than in the case of MI. In order to support this finding, the minimum
duration of pulse need to attain 1% of inverted population was calculated across various
values of pulse doses (Figure 4.3c). Results showed that minimum pulse duration needed
to initiate the population inversion decreased with increase in the pulse amplitude. More
importantly, the minimum duration needed was higher in case of MA as compared to Ml
irrespective with any dose value. The flat sections (f;,,, = 1) in the surface plot drew
attention to the fact that any appropriate combination of pulse dose and duration could
result in a complete population inversion, implying that dose and duration played
compensating roles. Additionally, the curve edge of the flat region suggested that a
minimum dose and duration were needed to complete inversion of the population. The area
under the pulse needed to achieve 99% population inversion was computed to identify the
key factor between the dose and duration (Figure 4.3d). The area represented the exposed
integrated phosphatase signal of bistable system. This implied that, in comparison to Ml,
MA was less responsive to the external signal. Consequently, a brief signal (or noisy signal)
might not cause alteration of steady state in case of MA. Further evidence that the pulse
dose had a bigger impact on population inversion than the time does on state flipping is
shown by the reduction of area with increasing dose. To demonstrate that the population
inversion dynamics of a bistable system are independent of the strength of the resting pulse,

similar calculations were performed with various values of S,. (Appendix 2, Figure A5.1).
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Figure 4.3: The fraction of population that inverts into the lower steady state (f;,,) IS
plotted as a function pulse duration (t;) and pulse dose (45 = S,,, — Sg) for the M1 (a)
and MA (b) networks. ASy represents the difference between the pulse dose and the signal
corresponding to the right saddle node bifurcation point. The duration of pulse required to
reach 1% population inversion is plotted as a function of A4Sy for both the switches (c). The
integrated signal required for 99% population inversion is plotted as a function of 7, and
ASy for the Ml (circles) and MA (squares) networks (d). The value of the resting pulse was

the value of the signal corresponding to the left bifurcation point.

The transient dynamics of the DNFL and PFL networks were found to be in sharp contrast
with each other. In the MI motif, f,,,.s declined as the dose and duration increase (Figure
4.4a), while f;,., was quite low at all pulse doses and durations (Figure 4.4b). This
suggested that the majority of trajectories eventually arrived at the LSS after the pulse
induction. Contrarily, in the MA, f,,,.c were almost zero over a range of dose and duration,
indicating that regardless of the quality of pulse, the entire population responded to it
(Figure 4.4c). The f;,,, decreased with the pulse parameters in a dose-dependent manner,
indicating that a large amplitude sustained pulse was necessary to flip the steady state and
that a low amplitude transient pulse caused a transitory response in which the system
returned to its initial state (Figure 4.4d). As a result, in the M, the switching of the steady

state in a single step process depending on the pulse parameters, whereas in the MA, this
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switching decision was made later following an initial transient response. Despite the fact
that a MA motif was more prone to rapid response than the MI, MA required signal for a
prolonged period for state inversion. It was verified that the initial responses of the system
against the pulse were independent of resting pulse (Appendix 2, Figure A5.2).

13 0.175
25 35 v 25 0.35 y
7;/(>(]0 9 25 0.35 ASg 7;/()(]07:1 y  0.35 ASx

Figure 4.4: The non-responding (top row) and transiently responding (bottom row) fraction
of population are plotted as a function of 7, and A4Sy for the MI (left) and MA (right)

networks.

The duration of transition between states for bistable system was a crucial factor since it
provided the information about the kinetics of inversion in the dynamical system. For each
of the two bistable switches, the average amount of time it took for the switch to transition
from the USS to the LSS was plotted as a function of pulse dosage and duration in Figure
4.5a-b. As the transition was facilitated by a strong pulse, the <t;,,> decreased with an
increase in pulse dose. Although <t;,,> grows with 7 for both bistable systems at low
doses, its dependency on pulse duration was somewhat counterintuitive. The increase in
<tT;np> With T, suggests that although a persistently weak signal might cause population
inversion, it came as cost of time. The trajectories of the two bistable systems under the
pulse were examined in order to identify the cause of this counterintuitive behaviour. These

trajectories showed that in case of the MI network, system did not respond to the pulse right
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away; instead, it experienced a little delay before transitioning rapidly to the LSS (Figure
4.5¢). On the contrary, in the case of the MA network, all trajectories responded to the pulse
right away by displaying a sluggishness in decrease of kinase level, and following this first
phase, the system quickly transitioned to the LSS (Figure 4.5d). As a result, the transition
period was divided into two phases: the initial delay phase (z4,,) and the following rapid
response phase (z,s,). In the case of M, the average duration of the initial delay phase
increased with pulse duration in the low dose regime (Figure 4.5e), while the average
duration of the second phase of the response was essentially independent of dose and pulse
duration (Figure 4.5g). As a result, at low doses, the increase in < t;,, >with 7, was
caused by an increase in t4,,. Large pulse durations enabled more trajectories to switch
their states at a later period, lengthening the average time, which caused the initial delay to
increase. It was important to note that, such phenomena happened when the pulse
amplitude(dose) was near to the right saddle-node bifurcation point, i.e.; ASz~0. It
suggested that the critical system slowing down towards the bifurcation point was the cause
of the delay in reaching a decision to flip the steady state. At a high dose, the system was
far from the bifurcation point (4Sz > 0), therefore there was no critical slowing down-
induced delay in response, which caused the system to respond more rapidly and
independently of pulse duration. The system self-propelled itself to the LSS in a pulse-
independent way once the decision to make a transition was taken. As a result, the
increasing delay in the first response phase in the MI system was what caused the average
transition time to increase with pulse duration. The dynamics of the system were very
different in the case of MA compared to the M1 motif. Here, the entire population responded
instantly and displayed a long-lasting gradual decay before switching to the LSS (Figure
4.5d). The time duration for the initial slow decay phase (Figure 4.5f) and the time length
of the transition to LSS (Figure 4.5h) were measured. Contrary to MI, < 74, > was almost
independent of 7, while < 7,, > increased with pulse duration at the low pulse dosage.
Therefore, the effect of the critical slowing down was only reflected in the second phase of
the switching dynamics in the MA motif. These durations were found out to be not
dependent on the relative magnitude of the resting pulse (Appendix 2, Figure A5.3).
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Figure 4.5: The surface plots of average inversion time ({(t;,,)), average response time
({trsp)) and average initial delay time ({z4;,)) are presented as a function of 7, and 4Sg
for the DNFL (top row) and PFL (middle) networks (a-f). The pulse induced temporal
dynamics the kinase is shown for the DNFL (g) and PFL (h) networks. The dark and light
green shaded regions indicate the pulse on state with maximum and resting amplitudes,

respectively.

The fate of the flipped states was then established by calculating the percentage of cells
that return to the upper steady state and the percentage that were locked in the lower steady
state after the pulse had been removed. The magnitude of the resting pulse, S,, had a
significant impact on the fraction of the population that returns to the initial condition
(fswt)- For both bistable systems, the population returned to the upper steady state with low
resting pulses (small 4S,), regardless of the pulse duration (Figure 4.6a-b) and amplitude
(Appendix 2, Figure A5.4). However, the fraction of the population switching back dropped
in a nonlinear fashion as the resting pulse (large A4S, ) increases and as a result, the fraction
of the population locked in the lower steady state increases in a complimentary manner
(Appendix 2, Figure A5.5). The bistable switch of the MA motif had a lower rate of drop

62| Page



Chapter 4

of fiwe With increasing resting pulse as compared to the MI motif (Appendix 2, Figure
Ab.6). This implied that the bistable PFL motif was less prone to transition to the USS after
the pulse was removed. Consistent with population results, a higher average residence
duration (z,¢4) at the lower steady state was caused by an increased resting pulse (Figure
5.6¢-d). The longer pulse permitted the system to stay in the LSS for a longer period of
time, which resulted in a little rise in 7,.;. Compared to the MI, the MA had a larger effect
of 7, on 7,44. The pulse dose had no role on the system's residency and return dynamics.
Although the average switching time (zg,,,) from the LSS to the USS increased slightly
with the resting pulse, the average switching time (zg,,;) was mostly unaffected by the dose

and pulse duration (Figure 4.6e-f).
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Figure 4.6: The fraction of the population that switches back to the USS (f;,,+), the average
residence time in the LSS ({7,.44)) and the average switching time ({z,,.)) are plotted as a
function of pulse duration and resting pulse (45, = S,,, — S;) for the DNFL (top row) and
PFL (bottom row) networks. AS,; represents the resting pulse over and above the signal

value corresponding to the left saddle node bifurcation point. The value of the A4S was 0.1.

The role of regulatory network was essential to reduce the chemical noise caused by
fluctuations in the finite number of macromolecular species. Therefore, the coefficient of
variation (Figure 4.7a-b) and average (Figure 4.c—d) duration of inversion and switching
times were analysed across the MI and MA networks in order to comprehend the role of

feedback loops in the regulation of chemical noise. For both networks, the noise in the
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inversion time found to be increased with 7. This was because there was more relative
time for the system to react to the pulse (= (tp—< Tj >)/Tp) (Figure 4.7¢). The relative
available time quantified how much more time the system had over the typical inversion
time to react to the pulse. A greater fraction of late responders could be accommodated
with a longer relative available time which lead to the increased variability in 7;,,,. When
compared to the MI network, the MA network exhibited much less noisy in case both the
inversion and switching time (Figure 4.7a-b). The CV and average of t,; were
independent of t;, since the switching dynamics was autonomous in nature. It was evident
from these two average time durations that the MA motif required more time for the system
to shift from one steady state to the other steady state of as compared to MI (Figure 4.7c-
d). These two findings implied that, in comparison to the bistable switch from a MI, the
bistable switch from a MA was less sensitive to the external pulse. As a result, a MA motif
would be less likely to undergo a stochastic transition from one state to another as a result
of an external noisy signal. Thus, it could be commented that a MA would be more resistant
to such perturbations by effectively removing the spurious signals. It was confirmed that
greater robustness of MA was maintained across diverse pulse amplitudes by repeating

similar computations for varied values of pulse amplitudes (Appendix 2, Figure A5.7).
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Figure 4.7: The comparison of statistical properties of inversion and switching times
between the MI and MA networks (a-d). The comparison of relative available time vs.
T4 between the MI and MA networks. The values of the pulse dose and resting pulse were
AS, =0 and AS; = 0.

To determine if the history of the system influenced the future dynamics, the correlation
between the inversion time and the residence time of individual trajectories for the M1 motif
was presented in Figure 4.8a—c. The trajectory that made an early transition to the lower
steady state stayed there for a longer period of time, according to the negative correlation
between these two events. The stronger the correlation coefficient, the more tightly the
pulse controlled these two occurrences, or, in other words, the more predictable the system's
temporal behaviour. The correlation for the MI network was stronger at higher 7, (Figure
4.8a). This suggested that continuous exposure to a low amplitude signal may cause a
delayed inversion of the steady state, however such an inversion would only last a short
time. Therefore, when the inversion was caused by a low amplitude sustained signal, the
dynamics of the system are more tightly controlled (or more deterministic/predictable).
Because of the increasing variability of ,.¢4, the correlation for short pulses was weaker.
On the contrary, there was a poor correlation between these two intervals at increased dose
(Figure 4.8b) and resting pulse (Figure 4.8c). However, the reason behind the weaker
correlations for the larger dose and resting pulse were not the same. Larger doses skewed
the population toward smaller 7;,,, without changing the switching dynamics, causing the
two events to become incoherent. At a weak resting pulse, the temporal dynamics of the
system correlate well with the temporal profile of the pulse and consequently, thus strong
correlation between t;,, and t,¢4. At higher resting pulse, the temporal correlation
between the pulse and the dynamics of the system was lost, resulting in a decreased
correlation coefficient. A high resting pulse drove the system to be at a lower steady state
with a greater < 7,54 >. The qualitative effects of pulse parameters on the correlation in
the case of MA are comparable to those of MI, however, the correlations were often worse
than in M1 across different pulse parameters (Figure 4.8d and see Appendix 2, Figure A4.8).
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Figure 4.8: The correlation between the mean-normalized t;,,,, and 7,4 times are plotted
for the indicated values of 7,4 (a), resting pulse (4S;, b) and pulse dose (4Sg, c) for the Ml
network. The values of correlation coefficients are indicated within the parenthesis inside
each plot. In (d) the correlation between these two times is compared for the M1 and MA

networks.

These calculations were expanded to include networks with two merged positive feedback
loops centred around the kinase K. With 10 phosphorylation sites, another protein regulator
called Y was introduced. The active version of Y catalysed the synthesis or degradation of
the kinase. The network diagrams for the two fused Mls and two fused MAs are shown in
Figure 4.9a and 4.9b, respectively. Similar dynamical equations represented the
phosphorylated chain of Y, as shown in the example of a single positive feedback loop
(Eq.4.3-5). The catalytic impact of Y, on the kinase would add another degradation
component to the equation for the kinase in the MI network. Similar to this, Y;, would add
another synthesis term to the dynamical equation for the kinase in the MA network. In order
to produce the same bifurcation diagrams as in the case of a single feedback loop, the value
of k, in this instance was decreased by a factor of two in comparison to the single loop
example. Other than that, nothing had changed. Across different pulse dose and pulse

length, the population fractions that invert to the other steady state in the two loops case
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were consistently marginally greater (Figure 4.9c-d). The additional positive feedback loop

thus facilitated pulse-induced transitions to another steady state.
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Figure 4.9: The network diagrams of two fused DNFLs (a) and two fused PFLs (b). Here,
one more positive feedback loop is introduced either by mutual inhibition (a) or by mutual
activation (b) between K and Y. Analogous to X, the phosphorylation and
dephosphorylations of Y are catalyzed by the kinase, K, and the phosphatase, S,
respectively. The plots of f;,, as a function of pulse dose (4Sg) and duration (t,) are
compared between one-loop (blue lines) and two-loop (red lines) DNFL (c) and PFL (d)

networks. The vertical black lines indicate the difference between the two lines.

4.4 Conclusion

Processing of different internal and external signals is essential for living organism to
maintain a proper function of their physiology. The signal was often assumed to be in
steady state while modelling the information procession by regulatory networks, where the
amplitude of the signal did not change over time. But a cell may receive signals in pulsatile
"packets" with changing amplitude and duration. In this chapter the fate of bistable switches
was investigated produced either by mutual activation or mutual inhibition between two

regulators in order to better understand how such transient signals were processed by
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regulatory motifs. By forcing the bistable system into the other steady state, it was
discovered that this kind of pulsatile signal could cause population inversion. The inversion
could be induced by either a transient strong signal or a prolonged weak signal, or by a
combination of both, showing that the dose or duration work compensatory with one
another. It was found that the dose had a greater impact on the dynamics of the inversion
than the duration of the signal. Irrespective of nature of bistable network, the pulse dose
accelerated the population inversion by cutting down on average inversion time. However,
the pulse duration promoted inversion by allowing late responders to switch their steady
state. As a result, in the weak dose regime, the average transition time dramatically
increased with pulse duration. This further demonstrated that when the signal dose was
close to the saddle-node bifurcation point, the critical slowing of the trajectory had a
significant impact on the dynamics. A significant distinction between how a between the
processing of the pulse of mutual activation loop how a mutual inhibition loop was found.
In case of mutual activation motif, the bistable system responded to the pulse instantly, and
the average initial delay phase was unrelated to the duration of the pulse. Following this
initial delay response, a sluggishness in the inversion process was found which was
significantly influenced by the pulse duration. Whereas in case of mutual inhibition motifs,
there was an initial duration dependent delay followed by a rapid inversion without

exhibiting a transient response.

The percentage of the population locked in the flipped state and the average time spent in
the flipped state greatly depend on the resting pulse. While the dynamics of the locked state
or the switching dynamics to the original state was found to be independent of the pulse
dose and pulse duration. Calculations for population inversion showed that for MA
network, a prolonged duration of pulse was needed in order to population inversion. The
average inversion time and the switching time were found to be higher in case of bistable
switch originating from mutual activation network as compared to mutual inhibition
network. Additionally, the variability in these times was smaller in case of MA network.
These three results supported our conclusion that the mutual activation network is less
susceptible any transient signal and therefore the mutual activation would be a better
topology for a bistable switch to filter out any noisy external signal. These conclusions are
consistent with previous finding that mutual activation networks are better topology in
attenuating chemical noise in the context of sustained signaling®’. According to correlations

between inversion time and residence time, the inversion caused by the pulse and
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subsequent switching to the original state were tightly regulated by weak and long duration

pulses. This implied that when the inversion of steady state was achieved on by a weak

signal with a longer duration, the system behaves in a deterministic or predictable manner.

Thus, even if a short but strong pulse might effectively switch the steady state, the

behaviour of the events that follow becomes less predictable.
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CHAPTER 5

Effect of extrinsic noise on the
heterogeneity of bistable responses

5.1 Introduction

Cellular physiological processes are regulated by complex networks of chemical reactions
involving diverse types of biomolecules. Complexity of the regulatory networks poses a great
difficulty in their characterization and understanding which are crucial in diseases context!?.
Often many complex networks consist of a core regulatory unit that functions as the main
regulatory engine of the physiological processes in the cell®. The core regulatory unit can be
sliced into functional motifs possessing unique steady state and dynamical properties and thus
functional motifs are highly relevant in understanding the behavior of the whole regulatory
network (See Introduction). Signal transducer, positive feedback loop (PFL), negative
feedback loop, feed-forward loop, antithetic integral feedback loop are some of the important
functional motifs that have characteristic properties dictating the behavior of the regulatory

network*®.

As discussed in previous chapters, PFL is well-known for its ability to generate bistable signal
response curve or bistable switch. Binary decision making processes in living cells are often
governed by bistable switch characterized by initial condition dependent gene expression with
distinct signaling thresholds of ON and OFF states of the gene®. In physiological context
bistability has been found to be the principal architect in regulating restriction point in the cell
division cycle of mammalian cells’®°, entry and exit from mitosis in Xenopus laevis'®!,
programmed cell death by apoptosis!?™4, mutually exclusive cell fate choice'®>2° and cellular
memory?1?2, Now, due to the extrinsic source of heterogeneity in isogenic populations of cells
(see Introduction), the strength of regulatory interactions in similar PFL motifs may vary from

one cell to another. This variability in the strength of regulatory interactions may result in
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different qualitative behaviors. In a canonical bistable signal response curve, the gene
expression changes from low-to-high or high-to-low through a bistable switch and a simple
signal transduction of one of the genes in the PFL is sufficient to generate canonical
bistability?>2°. When both the genes in the PFL, created either by mutual inhibition (MI) or
mutual activation (MA) loop, are signaled by the same external regulator it creates a dual
signaling PFL motif (Figure 5.1a). Intuitively such a network motif is expected to generate
bistability. However, due to the combinatorial possibilities on the nature of dual input signals,
new bistable switches may originate as emergent properties of the dual signaling PFL motif.
Previous works have shown that incoherent feed-forward signaling of a self-activating gene
may result mushroom and isola bistable switches®. Mushroom bistability consists of two
bistable switches fused in a face-to-face manner with an intervening monostable region. Isola
switch on the contrary exhibits a single bistable region however with a curious feature of an
island of steady states created by a stable and unstable branch®®3, In both the switches the
expression of the gene changes from low-to-high-to-low (or high-to-low-to-high) as opposed
to a canonical switch that exhibits low-to-high (or high-to-low). This chapter discussed the
robustness of such dual signaling positive feedback loop topologies attaining heterogenous
bistable responses in presence of extrinsic noise. The origin of such heterogenous switches and

their interconversion were also extensively studied.

5.2 Model

Figure 5.1a represented the core topology of PFL model under dual signaling where both the
genes in the PFL are regulated by a common regulator. Accordance with chapter 4, the PFL
was modelled with mutual inhibition (MI) and mutual activation (MA) loops between the
genes. The coherent (same) or incoherent (different) nature of signaling arm towards two genes
landed in a set of three networks for each for the M1 and MA loops (Figure 1b). Further, due
to the prevalence of fused PFLs in cellular differentiation pathways and cancer metastasis,
mutual inhibition self-activation (MISA) and mutual activation self-activation (MASA) motifs
was further included by introducing a self-activatory PFL in the MI and MA motifs,
respectively (Figure 1c). Thus, total number of model network became of 14. Now, it is well
known that depending upon the number of PFLs, networks can produce conventional bistable
(Bs) and dual bistable (DBs) switches consisting of one and two bistable regions, respectively,

and these switches were categorised as canonical bistable switches (Figure 1d). However,
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because of certain possibility of these network generating new emergent bistable switches, a
set of 12 reversible noncanonical switches consisting of one or two or three bistable regions
were considered (Figure 1d). The full 1-p bifurcation diagrams of these switches were listed in
the Appendix 3, Table A5.1. Isola (Is) and inverted isola (Inls) are the two noncanonical
switches that consist of a single bistable region and these switches contain a disconnected stable
branch and an isolated island of steady states created by connecting a stable and an unstable
branch via two saddle-node (SN) bifurcation points. Mushroom (Msh), inverted mushroom
(InMsh), bistable-isola (Bs-Is), bistable-inverted isola (Bs-Inls) and dual isola (Dls) are the
noncanonical switches consisting of two bistable regions and four SN bifurcation points. The
noncanonical switches with three bistable regions with six SN points are isola-mushroom (Is-
Msh), inverted isola-mushroom (Inls-Msh), bistable-mushroom (Bs-Msh), dual bistable-isola
(DBs-Is) and dual bistable-inverted isola (DBs-Inls). All of these noncanonical switches

originate from the fusion of two or more canonical/noncanonical switches in various numbers,
orientations and orders.
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Figure 5.1: Dual signaling PFL networks and noncanonical bistable switches. The core
topology of the dual signaling PFL motif consists of a regulator (S) that signals two genes (A
and B) connected by a PFL (a). Arrows with partially filled circles indicate either coherent or
incoherent nature of the input signals. A set of three unique networks exist both for the M1 and
MA loops (b). The arrow- and blunt-headed lines represent activation and inhibition,
respectively. In each set, the signs of the input signal are (-,-) (+,-) and (+,+). The signs of the

resultant regulation on B via the indirect and direct arms are represented beside each network.
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‘n” and ‘p’ in the network names represent inhibitory (negative) and activatory (positive)
signals on the target genes, respectively. The network becomes asymmetric with the inclusion
of a self-activation and a set of four networks possible both for the MISA and MASA motifs
(c). The networks are categorized into 1-PFL and 2-PFL motifs based on the number of PFLs
in the networks. Bistable switches are categorized into canonical and noncanonical groups and
the noncanonical switches are segregated based on the number of bistable regions (d). The
switches are represented by the one-parameter bifurcation diagram where the steady state of B
is plotted as a function of the signal S (not shown explicitly). The black and red lines represent
the stable and unstable steady states. The complete bifurcation diagrams of these switches are
presented in the Appendix 3, Table A 5.1.

To investigate these noncanonical switches, the networks were modeled using nonlinear
ordinary differential equations. In general, the activation of a target gene (X) by another gene
(Y) is expressed by the Hill function as

51

Where nyxy and Jyy are the Hill coefficient and activation threshold, respectively. The inhibition
of the gene is represented by Hyy = 1 — Hyy. When a target gene is regulated by multiple
regulatory signals, the functionality of the gene may need to satisfy logic gate configurations.
To address this, investigation was done for both the OR- and AND-gate configurations of the
gene A and B in the networks. In the OR-gate, the net regulatory influence on a target gene
was represented by the summation of the individual inputs. As a representative case, the

dynamical equations for the ppMI network were given as,

dA

= 9o + gasHAs(S) + gapHap(B) — vaA 5.2
dB . )

PTRRRAL + gpsHgs(S) + gpaHga(A) — vgB 5.3

Ixo, xy and yx represent the unregulated synthesis, maximal synthesis and degradation rates

of X. On the contrary, the net regulatory influence on a target gene was represented by the
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multiplication of the individual inputs in the AND-gate configuration. The dynamical equations

for the same network were given as

dA

a5 9ao + ga1HAs(S)Hxp(B) — yaA 5.4
dB o

2t~ 9so + gp1Hgs(S)Hgp(A) — vBB 5.5

The dynamical equations for all networks are listed in the Appendix 3, Table A 5.2. Now in
order to investigate the robustness of each network towards generating heterogenous bistable
responses under the influence of extrinsic noise, the steady state responses needed to be studied
for variable regulatory interaction strengths. To implement this condition of variable regulatory
strengths, a random parameter combination space was created. All parameters, except the
activation/inhibition thresholds (Jxy) were sampled from independent uniform distributions
having a particular range (See Appendix 3, Table A 5.3). The ranges were selected in such a
way that the expression level falls in the biologically relevant range. In order to avoid bias in
the threshold values, the half-functional rule was adopted to ensure that the randomly chosen
values of the threshold are not biased towards activation or inhibition®’. The sample space for
parameter combination was 900,000. Now, the conventional method of running 1-p bifurcation
analysis using XPPAUT for every parameter combination for each network would have a
tedious job. Thus, recently developed automated method of pseudo potential based bifurcation
analysis method was deployed in order to avoid any manual intervention of these large-scale
analysis (see chapter 2 for methodology). During each analysis, the types of bistable switches
were also determined by exploiting the number of saddle node points (SNs) and the direction
of the jump in the value of the stable steady state at the bifurcation points (see Appendix 3
Table A5.4 for jump patterns). The number of various types of switches that each network was

counted in order to determine the variability of the steady state responses.

5.3 Results

Figure 5.2a showed the total count (and %) of canonical and noncanonical bistable switches
for all networks under OR- and AND-gate. A group of networks were found to be generating
exclusively canonical bistability without a single noncanonical response, while another group

generated both the canonical and noncanonical responses. Close inspection of the networks
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revealed that the noncanonical bistable switches were produced only when the input signals
are coherent ((+,+) or (-,-)) for the Ml loop and incoherent ((+,-) or (-,+)) for the MA loop
irrespective of the number of PFLs and logic gates (Figure 2b). An alternative view of the PFL
topology resulting in noncanonical responses was the resultant regulatory signs (see Figure 1b)
from S to B (or S to A) via indirect and direct regulations must be dissimilar ((+,-) or (-,+)).
The networks with the same resultant regulatory signs on any gene were only noncanonical
switches across any parameter combination. Thus, it was concluded that the network with same
resultant signs on any gene were more robust towards any variation in their regulatory strengths
as it produces only canonical responses. The presence of the additional self-activation in the
fused PFLs did not influence these conclusions and it only result in the increased absolute
counts of bistable switches. Several additional features also emerged from these total counts.
The MA loops were found to be expressing a larger number of noncanonical switches as
compared to the M1 loops in both the logic gates. Between OR- and AND-gate, M1 loops under
OR-gate were more potent in generating noncanonical responses as compared to the AND-
gate. It was also quite remarkable to note that the counts or the percentage of noncanonical
responses of a pair of MI networks (nnMI and ppMI or nnMISA and ppMISA) and a pair of
MA networks (npMASA and pnMASA) were nearly identical.
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Figure 5.2: Total counts of canonical and noncanonical switches. The total count of
canonical and noncanonical bistable switches from the networks under OR- (bottom row) and
AND-gate (top row) (a). The percentage of canonical switches from a particular network is
indicated within each bar. The signs of the two input signaling arms of each network are
indicated at the top of the corresponding bar. The MI and MA loops under coherent and
incoherent signaling, respectively resulted in generation of both canonical and noncanonical
bistability (b, left), otherwise networks resulted in generation of only canonical response (b,
right).

It was further interesting to look in to the heterogeneity of bistable switches from the counts of
individual switches for the noncanonical switch producing network. The three 1-PFL networks

(nnMI, ppMI and pnMA) produced a large number of canonical Bs switches and do not produce
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any DBs switch (Figure 5.3a). On the contrary 2-PFL networks (hnnMISA, ppMISA, npMASA
and pnMASA) generated a significant number of DBs. In DBs, the expression level of B
changes from low-to-intermediate-to-high (or high-to-intermediate-to-low) and thus it required
two step activation (or inactivation) of the target gene. The additional PFL in the 2-PFL
networks allowed such two-step activation. For comparison convenience, noncanonical
switches were segregated based on the number of bistable regions and compared the counts
from all the networks (Figure 5.3b-d). Both 1-PFL and 2-PFL networks produced a large
number of Is and Inls switches having a single bistable region (Figure 3b). Although 1-PFL Ml
networks were equally capable of producing both types of isola, however the 1-PFL MA
network produced an overwhelmingly larger number of Inls than the normal Is. Across all 2-
PFL networks Inls is the preferred response as compared to Is. InMsh, Msh, Bs-Is and Bs-Inls
were switches with two bistable regions and were generated in significant numbers by these
networks (Figure 5.3c). While Msh and InMsh originated from the fusion of two canonical
bistable switches, the Bs-Is and Bs-Inls result from the conglomeration of canonical Bs with
noncanonical Is (Appendix Table A 5.1). Due to their complex nature, the counts of bistability-
with-isola switches were significantly less as compared to mushroom switches. Analogous to
isola switches, the counts of InMsh were significantly more than the Msh in the 1-PFL MA
network and across all 2-PFL networks. It was important to note that, although 1-PFL networks
did not generate a single switch consisting of two bistable regions (DBs), however, they
generate various noncanonical switches consisting of two bistable regions. The counts of
noncanonical switches with three bistable regions were dramatically less as compared to the
two bistable regions (Figure 3d). All five noncanonical switches with three bistable regions
originate from the fusion of a canonical/noncanonical switch with another noncanonical switch
(Appendix 3, Table A5.1). Bs-Msh was the only noncanonical switch generated by the 1-PFL
networks. However, a small number of other switches were also generated by the 2-PFL
networks. Therefore, with additional fused PFL the counts of rare switches were expected to
increase. In the AND-gate similar results were obatained however with shuttle differences.
Overall, the heterogeneity of the noncanonical switches is less under AND-gate (Appendix 3,
Figure A5.1). As opposed to OR-gate, here the Is and Msh were more as compared to their
inverted counterparts. It was also intriguing to note that networks with MA loop do not generate

any inverted switches (Inls or InMsh).
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Figure 5.3: Heterogeneity of canonical and noncanonical switches. The total number of

various types of canonical (a) and noncanonical (b-d) bistable switches are presented for the 1-

PFL and 2-PFL networks under OR-gate configuration. The noncanonical switches are

segregated into one (b), two (c) and three (d) bistable regions.

To obtain a quantitative estimation of the probability of obtaining these noncanonical switches,

the percentage chance (% Chance) of noncanonical switches by normalizing their counts with

the total count of all bistable switches was calculated (Figure 5.4a-b). The % Chance showed

that the likelihood of obtaining some of the noncanonical switches were quite high from the

dual signaling PFL networks. Among all the noncanonical switches, Inls was found to be the

most likely outcome both from the M1 and MA networks. In fact, there was one in three chances

of obtaining an Inls in MA networks. InMsh was the second most probable noncanonical switch

in MA networks. The chances of generating isola and mushroom were significant in Ml

networks. Probability of obtaining more complex switches involving three bistable regions

were relatively less from networks with a single PFL. However, the counts 2-PFLs indicated
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that complex switches are possible in fused PFL networks. The % Chance of noncanonical
switches from the MI networks having (+,+) input signals correlated very well with that of the
networks having (-,-) input signals (ppMISA vs. nnMISA and ppMI vs. nnMI) (Figure 5.4c).
Similarly the MA network with (+,-) input signals showed a good correlation of %Chance with
the MA network having (-,+) input signals (Figure 5.4d). The near perfect correlations suggest
that the probability of noncanonical switch did not depend on the specific nature of the input
signal pair provided the conditions of dual signaling are satisfied by the network. The % Chance
for the AND-gate networks highlight the overwhelmingly high probability (~80%) of
generating Is switch by the MA network (Appendix 3, Figure A5.2). Further it also showed
that the MA networks under AND-gate are not all capable of producing neither inverted isola

nor inverted mushroom.
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Figure 5.4: Occurrence probability of noncanonical switches. Comparison of % Chance of
obtaining various types of noncanonical switches for the Ml and MA networks under OR-gate

configuration (a-b). The correlation of % Chance of the noncanonical switches of MI networks
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(circle: 1-PFL, square: 2-PFL) under (+,+) input signal with (-,-) input signal (c). Correlation
plot for the 2-PFL MA networks (d).

Next, the origin of these noncanonical switches specifically, most abundant Is and Msh was
analyzed by the respective phase-plane diagrams of the dynamical systems of the ppMI
network. Figure 5.5 presented the isola bifurcation diagram and its nullclines for different
values of S. At small S the two nullclines intersected once leading to a stable steady state with
small B. With increase of S, a new intersection of the nullclines occured at large B leading to
the creation of the left SN bifurcation point (point 1) and consequently it generated a stable and
an unstable node as partners. With further increase of S, the unstable node moved away from
the stable partner node and thereby the separation between the stable and the unstable branches
increased in the bifurcation diagram. However, with subsequent increase of S, the unstable
node started moving towards the same stable partner node and consequently the gap between
the stable and unstable branch decreased in the bifurcation diagram. Ultimately at large S, these
two nodes annihilated each other leading to the second SN point (point 2). Strikingly both the
SN points were created by the creation/annihilation of the same set of stable and unstable nodes.
Consequently, the resulting stable and unstable branches were connected by two SN points
creating an island of steady states in the bifurcation diagram. During this process the other
stable steady node did not undergo any qualitative change and was responsible for creating the
disconnected stable branch in the bifurcation diagram. Inls switch also follows similar merging
characteristics of the stable and unstable nodes (Appendix 3, Figure A5.4). It was emphasized
that the origin of two SN bifurcation points in isola is completely different than the origin of
two SN points in the canonical bistable switch where two different sets of stable and unstable

nodes were responsible for generating two SN points (Appendix 3, Figure A5.5).
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Figure 5.5: Phase-plane analysis of isola switch. The bifurcation diagram of Is switch and
the corresponding phase-plane plots for the indicated values of S for the ppMI network under
OR-gate. The two SN bifurcation points are indicated by the blue circles in the bifurcation
diagram. The black and red circles at the intersections of two nullclines (dA/dt = 0 and
dB/dt = 0) indicate the stable and unstable nodes, respectively. The parameters for the Is
bifurcation are listed in the Appendix 3, Table A5.5.

The Msh bifurcation featured fusion of two canonical bistable switches in a face-to-face
manner with an intervening monostable region (Figure 5.6). Phase-plane analysis indicated that
a pair of new nodes appeared after the birth of the first SN point (point 1) and the system
became bistable. With increasing S, the newly born unstable node moved towards the pre-
existing distant stable node located at low B. The second SN point (point 2) originated from
the coalescence of the unstable node with the distant stable node and beyond the second SN
point the system became monostable with high B. Thus, the forward-facing Bs switch was
generated and the left part of the Msh created. Subsequent increase of S lead to the birth of the
third SN point (point 3) at low B and the system became bistable again. The newly born
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unstable node travelled towards the pre-existing distant stable node located at high B with
progressive increase of S. Finally, the merging of the unstable node with the distant stable node
and the annihilation of both of them resulted in the fourth SN bifurcation point (point 4). The
system became monostable beyond the fourth SN point and the backward facing Bs switch was
generated as the right part of the MSh. During the entire process the expression level of B
changed from low-to-high-to-low via two different bistable switches and this pattern is
different than the dual bistable switch (DBs) consisting of two bistable switches where the level
of B changes from low-to-intermediate-to-high (Appendix 3, Figure A5.5). The behavior of
the nulliclines for the InMsh were similar to Msh but the expression level of B changed from
high-to-low-to-high and two bistable switches congregate in a back-to-back manner in InMsh
(Appendix 3, Figure A5.5).

S

Figure 5.6: Phase-plane analysis of mushroom switch. The bifurcation diagram of Msh
switch and the corresponding nulicline plots for the indicated values of S for the ppMI network
under OR-gate. The parameters are listed in the Appendix 3, Table A5.5.

From the findings, that a single network topology could result in generating numerous

noncanonical responses for r parameters are a key factor in determining the response in
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nonlinear dynamical systems. Particularly it was envisaged that a particular type of
noncanonical switch may transition into another type of switch with the modification of
parameters. To determine the condition of interconversion of the various types of switches, the
phase diagrams of the switches was calculated by carrying out 1-p bifurcation analysis with
respect to S for varying combinations of g,z and gga — the mutual regulatory strengths of gene
A and B on each other. So far, a total of 14 different bistable switches were considered
including two canonical switches. However, considering Bs, Is and Msh as basic building
blocks, various other complex bistable switches might emerge due to the fusion of these three
units in different numbers and orientations. For generating phase diagram, a total of 57 different
reversible bistable switches consisting up to a maximum of three bistable regions were
considered. (See the Appendix 3, Table A5.7). A bistable switch can be irreversible at the
smallest (S=0) or/and at the largest (S=1000) signal values. Irreversibility means the system is
bistable at S=0 or/and at S=1000. In order to account for the possibilities of the irreversible
switches, an additional 69 irreversible switches were considered. Therefore, the phase diagram
calculations were capable of identifying a bistable switch from a basket of 126 unique bistable
switches. The switches were identified based on the number of SN points, jump pattern of
stable steady state at the SN point and the location of irreversibility., Considering a switch as
a particular phase, a total of 126 possible phases were taken into account in the phase diagram
calculations. In phase diagram calculations, a typical phase diagram contained ~30000-40000

1-p bifurcation runs.

In Figure 5.7a the phase diagram of ppMI network starting from Is phase was plotted. The Is
phase transitioned into other bistable phases with the change of feedback strengths represented
by the parameters g,g and gga. The canonical forward facing Bs switch occurred in the region
of small gag and gga, and this phase changed into a Msh phase with increasing gag. A
backward facing Bs switch appeared along with the existing forward facing Bs switch to
generate Msh switch with increasing g (Figure 5.7b). With further increase of g,g, the Msh
phase transformed into an Is phase where the two intermediate SN points of Msh coalesce
creating an island of steady states of the Is switch (Figure 5.7¢). Thus, the phase transition
between Msh and Is was regulated by the regulatory interaction of gene B on gene A (gag).
On the contrary, with the increase of ggathe Is, Msh and Bs switches transformed into their
respective irreversible switches in which the left most SN point lies before S=0 (Figure 5.7d-
f). The clear phase boundaries between two phases indicated the criticality of the parameter in
the transition from one switch to another. Furthermore, the size of the region indicated the
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robustness of the switches with respect to modification of the parameters. In the ppMISA
network with Is as an initial phase, we found a qualitatively similar phase diagram where again

gag dictates the interconversion between Msh and Is (Figure 5.79).
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Figure 5.7: Phase diagrams of initial phase of isola. Phase diagram of Is switch (presented
in the Figure 5) as initial phase in ppMI network under OR-gate (a). Bistable phases are
indicated by the different colors and the representative 1-p bifurcation plots indicate the phase
type (a). The white region represents monostability. 1-p bifurcation plots highlight the
transition from Bs to Msh (b), Msh to Is (c), Is to L-Is (d), Msh to L-Msh (e) and Bs to L-Bs
(f) with the increasing value of either gag or gga (represented by the arrow). The prefix ‘L’
represents irreversibility at left. Phase diagram of ppMISA network under OR-gate with Is as
an initial phase (g). The parameters for the ppMISA phase diagram are listed in the Appendix
3, Table A3.8.

Similar phase diagram analysis was performed for Inls switch in ppMI network under OR-gate
to uncover that various types of switches exist with the variation of g,z and gga (Figure 5.8a).
The forward facing Bs phase transitioned into InMsh phase with the increase of gga. With
increasing g_{BA}, a new backward facing Bs switch appeared on the left of the existing
forward facing Bs switch creating InMsh (Figure 8b). Subsequently with gga, the InMsh phase
changed into Inls phase where the two intermediate SN points of InMsh converged to produce
Inls (Figure 8c). Thus, the transitions between the InMsh and Inls switches were controlled by
the regulatory strength of A on B (gga) These switches transitioned to their respective

irreversible switches on the right with the increase of g,g. The irreversibility on the right was
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a result of the finite value of the signal (S=1000). At a large g,y the InMsh becomes irreversible
on the both sides. We found similar phase transition behavior of the forward facing Bs, InMsh

and Inls switches in the case of ppMISA network under OR-gate (Figure 5.8d).
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Figure 5.8: Phase diagrams of initial phase of inverted isola. Phase diagram of ppMI
network in OR-gate configuration with Inls as an initial phase (a) (see the Supplementary Table
S5 for the parameters). One parameter bifurcation plots highlight the transition from Bs to
InMsh (b) and InMsh to Inls (c) with the variation of gg,. Phase diagram of ppMISA network
in OR-gate configuration with Inls as an initial phase (g). The parameters for the ppMISA
network with initial Inls phase are listed in the Appendix 3, Table A5.8.

Phase transition calculations starting with mushroom phase in the same network revealed the
existence of diverse types of switches with the variation of g,g and gga (Figure 5.9a).
Consistent with Is phase diagram, the interchangeability between Is and Msh was controlled
by gag. It was curious to note that with increased gg, Msh phase changed into Bs-Msh phase
consisting of three bistable regions. With increase of gga, the birth of two new SN points, on
the stable branch located on the left of the Msh, created a backward facing Bs and altogether it
becomes Bs-Msh (Figure 5.9b). Subsequent increase of gg, lead to conversion of Bs-Msh into
Bs-Inls phase where the inverted mushroom (created by the first two bistable switches) of the
Bs-Msh converged to generate the Inls (Figure 5.9c). Again, the conversion of InMsh into an
Inls was triggered by gga as seen in Figure 5.8. On the contrary, with increase of g,p the Bs-
Msh changed into a Bs-Is where the mushroom in the Bs-Msh (last two bistable regions)
converged to produce the Is on the right of the first bistable switch (Figure 5.9d). This transition
was again consistent with the findings of Figure 7 where the transition from Msh to Is was

found to be regulated by gag. The existence of Bs-Msh, Bs-Inls and Bs-Is phases underscored
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that complex switches with multiple bistable regions could be generated by a single PFL under
dual signaling. These switches became irreversible on the left at higher values of g,g. In case
of InMsh as the initial phase, again it was found that the inter-conversion between InMsh and
Inls was dictated by the gga (Figure 9e). To check the consistency, phase transition calculations
of pnMA network were performed with different initial phases and again found that transition
between Is and Msh is regulated by g, and transition between Inls and InMsh is regulated by

9gea (Appendix 3, Figure A5.6).
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Figure 5.9: Phase diagrams of initial phase of mushroom. Phase diagrams of ppMI network
under OR-gate configuration with Msh (a) and InMsh (e) as initial phases. 1-p bifurcations
showcase the transition from Msh to Bs-Msh (b), Bs-Msh to Bs-Inls (c) and Bs-Msh to Bs-Is
(d). The parameters for the initial phases are listed in the Appendix 3, Table A5.5.

In addition to the feedback strengths, activation (or inhibition) thresholds were key parameters

as they dictate the amount of signal required to flip the state of ultrasensitive switch represented
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by the Hill function. Hence, the role of signaling thresholds of the two input signaling arms,
Jas and Jzg, in generating a specific noncanonical response were investigated. From the
searched parameters for the bistable switches, the logarithm of the ratio of average /45 and /g
was calculated to measure of dissimilarity (or similarity) of the two thresholds. Across all
networks and logic gate configurations, the values of these parameters were nearly similar for
the canonical Bs switch (Figure 5.10). However, for the noncanonical switches, the values of
these parameters were dissimilar and followed a pattern based on the type of switch and the
network. The ratios indicated that Is and Msh switches require J,5 < Jgs for the nnMl,
nnMISA, pnMA and pnMASA networks (Figure 5.10a). A closer inspection revealed that in
these four networks, the resultant signs of the two arms from S to B is (+,-) (Figure 5.1b). Both
Is and Msh switches exhibited an expression pattern of low-to-high-to-low for B and therefore
B must be activated first and then deactivated later with signal. In order to satisfy this
requirement, the threshold of activation arm (indirect arm; S to B via A) must be smaller than
the threshold of deactivation arm (direct arm; S to B) such that B is activated and deactivated
at low S and high S, respectively. Consequently, the average /45 was smaller than the average
Jgs in these four networks. On the contrary, the expression pattern of B in Inls and InMsh is
high-to-low-to-high. Therefore, the deactivation and activation of B must occur at the low and
high signal, respectively. In order to satisfy this the threshold of deactivation must be smaller
than the threshold of activation and thus these networks showed J,5 > Jzs (Figure 5.10a).
These inequalities become exactly opposite for the ppMI, ppMISA and npMASA networks
whose resultant signs of two signaling arms are (-,+) (Figure 10b). Due to the flipping of the
regulatory signs of the signaling arms the inequalities now became opposite in these networks.
The cumulative distributions of the two thresholds also show the consistent dissimilarity
patterns for the noncanonical switches (Appendix 3, Figure A5.7). These networks under AND-

gate followed similar inequalities (Figure 5.10c-d).
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Figure 5.10: Conditions of threshold parameters. The logarithm of ratio of average
Jas and Jgs obtained from random parameter search are compared together for the networks
whose resultant regulatory signs from S to B are same. In the left and right panels the resultant
signs of the signal from S to B in two arms are (+,-) and (-,+), respectively. These comparisons

were made both for the OR- (top panels) and AND-gate (bottom panels) configurations.

As the relative magnitudes of J,5 and Jzs were key to obtaining a particular noncanonical
switch, the phase diagrams of Is, Msh, Inls and InMsh with respect to these two parameters
was generated to estimate the phase separation behavior of these switches under the variation
of these thresholds (Figure 5.11). A single phase was obtained in the case of Is and in case of
Msh two other phases were obtained (Figure 5.11a-b). The triangular phase diagrams in these
cases indicated the criticality of the ratio of the two activation thresholds. As J,s increases
relative to that of Jg¢ the region of Is and Msh phase increased consistent with the inequality
conclusion of Figure 5.10a. On the contrary as the value of Jgz¢ increases relative to /4 the
region of Inls and InMsh increased (Figure 11c-d). The triangular phase diagrams highlighted

the importance of relative magnitudes of /45 and Jzs.
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Figure 5.11: Phase diagrams under threshold parameters. Phase diagrams of Is, Msh, Inls and
InMsh switches with the variation of the thresholds /.5 and /¢ for the ppMI network with OR-

gate configuration (parameters are listed in the Appexdix 5, table A5.5).

5.3 Conclusion

Bistability generated by PFLs has been proven to be a key mechanism in cellular decision
making processes and has been investigated extensively. This chapter discussed the fate of
PFLs under dual signaling where both the genes in the PFL are regulated by a common
regulator in presence of extrinsic noise. The objective was to determine the robustness of
network topology in generating bistable response against variation of its regulations. Further
the heterogeneity of bistable responses due to fusion of canonical bistable switches in different
numbers and orientations, heterogeneity of these switches and the conditions of transitions
from one switch type to another type were studied. Recently developed pseudo potential energy
based automated high-throughput bifurcation analysis method was carried out under random
parameter variations in order to account for the effect of extrinsic noise in on the bistable

responses.

94 | Page



Chapter 5

As a result of random parameter variations, for dually signaled PFL with coherent signaling
arm for MI and incoherent signaling arm for MA topologies only generates canonical bistable
switches. Thus, it was concluded that these network topologies are more robust in presence of
extrinsic variability. Otherwise, M| network with coherent and MA network with incoherent
signaling arm respectively generates a variety of noncanonical switches alongside of canonical
switches. These Heterogeneous types of noncanonical switches consist of one, two and three
bistable regions. These conclusions were generic as it did not depend on the logic gate
configurations and the number of additional PFLs in the networks. The extent of heterogeneity
depends on the number of fused PFLs in the networks and logic gate configurations.
Heterogeneity was found to be increased with the number of PFLs and responses from OR-
gate networks were more heterogeneous than the AND-gate networks. The absolute count and
occurrence probability showed that isola and mushroom switches, both normal and inverted,
were highly probable from simple dual signaling PFL motifs. Probability of obtaining more
complex switches with more than two bistable regions were generally lower in networks with
a single PFL. However, with additional fused PFL, the probability of the complex switches
increased and thus inclusion of multiple PFLs in the minimal motif would increase the
possibility of more complex switches. Among the group of noncanonical switches with one,
two and three bistable regions, inverted isola, inverted mushroom and bistable-mushroom were
the most abundant noncanonical switches, respectively. Importantly the probability of
noncanonical switches did not depend on the specific nature of the input signals.

Phase-plane analyses uncovered the distinct origin of the isola switches. The island of steady
states in the isola switch originated from the two SN bifurcation points where each SN point
was born due to coalescence of the same pair of stable and unstable nodes. On the contrary, in
canonical Bs switch a different pair of stable and unstable nodes coalesced for each SN
bifurcation point. The unprecedented phase diagram calculations showed that diverse types of
phases (or switches) were possible with clear phase boundaries and switching from one phase
to another is triggered by the modification of mutual regulatory strengths of the two genes.
Across all networks the transitions between the isola and mushroom were controlled by the
regulatory strength of the terminal gene on the participating gene in the PFL and transition
between the inverted isola and inverted mushroom was dictated by the regulatory strength of
the participating gene on the terminal gene. The ratio of signaling thresholds of two input
signaling arms were a key factor in determining the types of noncanonical response.

Noncanonical switches required distinct values of the two thresholds such that multiple
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conventional bistable switches could emerge sequentially in opposite orientations to emerge as
noncanonical switches. We emphasized that these conclusions were general due to the random
parameter searching approach of the large-scale bifurcation analysis and such analysis was only
possible due to the high-throughput bifurcation analysis tool.

In another way, this work also predicted the new properties of the PFLs under dual signaling.
Such motif is known to exist in several cell fate-choice regulatory networks. In the T helper
(TH) and induced T regulatory (iTreg/) cell fate choices, T cell receptor signaling is known
coherently activate the M1 loop created by T-bet/RORY3, T-bet/GATA3 and FoxP3/RORY3 in
the cell fate choice between Tul/ Tul7, Tul/ Tr2 and iTreg/ TH17 cells, respectively®?*3, TGF-
\beta induced reciprocal cell fates of iTreg/ TH17 cells are regulated by mutual antagonism
between FoxP3/RORy3 where both the transcription factors are coherently activated by TGF-
\beta signaling®*. The reversible transition between the mesenchymal to amoeboid cell fates in
cancer cells is regulated by the network involving a Ml loop between the RhoA and Racl
GTPases and both the GTPases are coherently inhibited by microRNA miR-34 and also
separately by miR-200%. Due to the less familiarity of the isola and mushroom switches, the
relevance of these noncanonical switches had not been explored in these cell fate networks that
satisfy the requirements of generating noncanonical switches. However mathematical
modeling previously had uncovered the role of mushroom bifurcation in the fate choice of
neuronal stem cell that differentiate into either glial cell or neuronal cell under the bone
morphogenesis protein 2 (BMP2) signaling®. A closer inspection of the network reveals the
existence of incoherent BMP2 signaling on the expression of self-activating Mash1l and results
in chapter showed similar conclusion that MA motif only under incoherent dual signaling can
generate mushroom or other noncanonical switches. Altogether this discovery of new emergent
switches originating from a simple dual signaling PFL motif has a great potential to be relevant
in the cell lineage commitment. Furthermore, the rich behavior of such a simple topology in
generating complex switches can also be a new area of exploration in the field of synthetic
biology. The simplicity of the design principles of network motifs enhances the feasibility of

synthetic exploration of new types of bistable switches experimentally.
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CHAPTER 6

Control of chemical noise in general
network topology

6.1 Introduction

Living things must be reliable and robust in order to respond appropriately to different
internal and external stimuli and to ensure their long-term existence. These two crucial
characteristics of biological systems may be hindered by the stochasticity of chemical
processes emanating from both internal and external causes. Therefore, a lot of work has
gone into understanding how living systems control the stochasticity that eventually leads
to population heterogeneity - an inevitable outcome for a population of genetically identical
cells grown in homogenous environments?. Fluctuations caused by limited number of
macromolecules of species in a tiny volume of cell land in generating stochastic trajectories
of chemical reactions. Thus, chemical reactions inside a cell are intrinsically affected by
the ‘finite number effect’. As a result, the expression of gene is bound to be noisy and
termed as ‘gene expression noise’®. The mechanism of gene expression noise has been
well understood by statistical mechanical models of a single gene or a few genes in a
cascade’*3. These models have deciphered the importance of translation and transcription
rate, lifetimes of protein and mRNA in the noise of gene expression. Further works were
done to understand how feedback controls might either attenuate or exacerbate biochemical

noise” 1416,

Although the propagation of chemical noise in biological reaction networks has been
extensively studied in the literature, but examination of stochasticity in a generalised
network is sparse. It is particularly important to keep in mind that living cells’ system level
response depends on the coordinated expression of many genes that are interacted to one
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another. The global network topology of these gene regulation networks is an intriguing
feature!*°. According to recent literature, these organisations of these networks frequently
resemble either a democratic architecture?, in which each gene is controlled by other genes
(or gene products) in the network or autocratic architecture!®-23 where multiple regulators

are present in each rung of the hierarchical organisation of the transcription factors.

This chapter discusses the variability due to intrinsic noise in generalized chemical reaction
architecture. The main objective was to study the correlation between the intrinsic
variability and the qualitative (inhibitory or activatory) and quantitative (strength) nature

of interactions in the networks.
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Part A

Chemical noise propagation in democratic network
topology

S Das and D Barik, Phys. Rev. E 101, 042407 (2020)
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6.A.1 Model

The democratic network model consists of nodes and the edges. The edges represent the
nature of the relationship between the two connected nodes, whereas the nodes serve as
representatives of any macromolecular species such as proteins, genes, transcripts, or
metabolites inside a living cell. The regulatory interactions between two nodes can be
positive (activatory) or negative (inhibitory). A specific number of incoming and outgoing
edges, represented by different types of arrowhead, are present at each node in the network
(Figure.6A.1). While outgoing arrows represent the effect of the source node on the
recipient nodes in the network, the incoming arrows represent the influence of other nodes
on the recipient node. We assumed that each node in the fully connected democratic
network, experiences the same number of incoming and outgoing interactions. This implies
that each node in the network receives inhibitory or activatory signals from every other
node. Therefore, the total number of interactions (m;,;) on each node in the network of d
nodes would be d, — 1. In addition to these interactions, every node engages engages in
uncontrolled synthesis and degradation on its own. The mean field dynamics of the nodes
can be described by a collection of coupled ordinary linear differential equations, assuming

the mass action rate laws of chemical reactions:

dnl
T —yin; + Z a; jnn; -~

i%j

The average molecular abundance of the node i is represented by 7; in the equation above.
The i™ node's unregulated synthesis and degradation are represented by the first and second
terms on the right-hand side of the equation, respectively. The rate constants for the
synthesis and degradation reactions are k; and y; respectively. Mutual interactions between
nodes i and j are represented by the final term. q; ; is the strength of mutual interactions
and the sign of a;; reflects the qualitative nature of interaction. Inhibitory and activatory
interactions are denoted by a; ;<0 and a; ;>0 respectively. It is possible to create many
networks by altering the proportion of negative (m;) and positive (m;") interactions on
each node. The total number of interactions on every node is fixed at m;,; (= m; + m}").
Hence, a democratic network consisting d, nodes will experience dy (dy — 1) number of

regulatory interactions.
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Figure 6A.1. Schematic diagram of democratic network consisting 5 nodes (dy = 5). The
labelled circles and curved arrows represent the nodes and mutual regulations respectively.
Different types of arrowheads represent different type of interactions (mentioned in the
figure). Node 1 was chosen as the representative node for estimating the statistical
properties of the network. Starting with all positive interactions on node 1(m;-, = 0), the
number of incoming negative interactions (m;_,) were systematically varied to determine

the effect of the quality of interactions on the statistical properties of the target node.

The basal synthesis rate constant (k; = 1.0) and the degradation rate constant( y; = 0.01)
was set to a fixed value for each node in the network. However, different values of the
mutual interaction strength (a; ;) was chosen for each pair of interacting nodes. The
a; ; values wer picked from log-normal distributions with average values of a™ (for
negative interactions) and a™ (for positive interactions), with a coefficient of variation of
0.3 in both cases, in order to introduce an asymmetry in the strength of interactions. It is
crucial to remember that the values of the interaction parameters can be selected from any
distribution that can be plausibly connected to the reaction networks. However, the
selection of the distribution for a; ; must not bias the results. With the use of the Gaussian

distribution for a;;in this context, it was confirmed that the conclusions of our

105|Page



Chemical noise in generalised network

investigations remain unchanged. As there were that many binary interactions accessible
in the network, the sample size for the distribution of was dy (dy — 1). Thus, an
asymmetric network in terms of interaction strength was produced by using a lognormal
distribution for interaction strengths. To find out how the strength of interactions affected

the network's statistical characteristics, we repeatedly changed a~ and a*.

The main aim was to investigate the impact of both positive and negative interactions on
the chemical species' steady-state variability in democratic networks. In order to achieve
this, networks with varying numbers of positive and negative interactions were looked
upon. Because of the network's democratic structure, any node can be selected to analyse
the network's statistical features, including mean, noise (coefficient of variation), and noise
strength (Fano factor). Here, node 1 was our choice of investigation. The number of
negative interactions on node 1 (m;_,) was gradually increased, and in each case, the
steady-state statistical properties of both node 1 and all other nodes in the network were
quantified. This allowed to assess the impact of negative interactions on noise. The number
of interactions toward all other nodes, both positive (m /.,) and negative (m ;..,), remained
constant throughout these analyses. Now, to find out the role of the nature of interaction on
the rest of the nodes (i # 1) on the statistical properties of node 1, our similar simulations

were repeated by systematically varying the m ;.

6.A.2 Results

Gillespie’s SSA?* was used to investigate the inherent stochastic Kinetics of chemical
reactions originating from the intrinsic noise. To achieve the exact solutions of the
stochastic kinetics, it was assumed that the reactions follow mass action kinetics and the
corresponding set of mean field dynamical equations were presented in 6A.1. For a network
with dy number of nodes, there are d,, number of both synthesis and degradation reactions
and total number of mutual regulations is d (dy — 1). As a result total number of reactions
turned out to be dy(dy + 1). To assure the trajectories reached their steady states, the
simulations were run for sufficiently long time and repeated for 5000 realisation in order
to estimate the ensemble average. The simulation time increased steeply with increasing
network size (dy) and larger rate constants. In order to cut down the simulation time and
to ignore the trajectories that increases asymptotically, a cut-off rule of 10,000

molecules/node was implemented. According to this rule, a simulation would stop when

106 |Page



Chapter 6

the abundance of any of the nodes crosses beyond this threshold value. This setting of cut-

off was completely reasonable as the noise associated with high abundance will be very

low as based on the 1/,/7n, rule of fluctuations.
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Figure 6A.2. Surface plot of the average abundance of node 1 (77,) as a function of the
number of negative interactions on node 1 (m7) and the number of positive interactions on
other nodes (m /,,) for different combination of average positive and negative interaction
strengths (a_, @, ). (a) (0.001, 0.001), (b) (0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005,
0.005).

Firstly, the average behavior of the system with varying number of negative interactions on
node 1 (mj—,) and the number of positive interactions on all other nodes (m }.,) was
determined. Variation of average abundance of node 1 (#;) with different m;_, and m },,
is shown in Figure. 6A. 2(a) keeping the average strengths of the positive and negative
interactions remains constant. As expected, the average abundance of node 1 decreased
with m;_, for a given value of m /.. The quantitative and qualitative behavior of 7, did
not change with the increasing values of m .. we got comparable qualitative behaviour
of i1,. Notably, there is any bare change in the i, with the increase in m 7.,. Nevertheless,
at higher value of m7,.,(>15) the system diverged, because of the imposed cut off

condition, there was no data point of 71, in the surface plot. Thus, it can be concluded that
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the qualitative and the quantitative behaviour of n, was regulated by the nature of
regulations on the node of interest and the nature of interactions on the other nodes did not
have any influence. It is to be noted that for the sake of ease in implementation, the number
of negative interactions on node 1 was increased in a specific order. Incoming interaction
starting from node 2 and following numerical order, the positive interactions were replaced
with negative interactions in order to increase the number of negative interactions. Similar
order was followed for implementation of m /.,. However, similar calculations were
carried where the implementation was done in arbitrary manner and the results found out

to be independent of any specific ordering.

Calculations were repeated with different average strength of positive and negative
interactions in order to investigate for the dependency of the strength of interactions on
average property. Figure 6A.2b-d presented the results for 5X increase in negative, positive
and both the interactions strength respectively. As expected, with increased value of a_
alone, the m; value decreases (Figure 6A.2b). In addition, fewer negative interactions
(m;_,) were required to "shut down" the node 1. On the other hand, as the value of a, alone
increased, 7, increased considerably and more negative interactions were required to halt
the production of node 1 (Figure 6A.2c). Additionally, the divergence of abundance took
place at a considerably at smaller number of m.,. Finally, just a small change in 71, was

seen when both strengths were increased by the same factor (Figure 6A.2d).
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Figure 6A.3. Dependence of the ultrasensitivity of node 1 on the scaling factors that
systematically modifies that average abundance of all the nodes in the network. The values
of a, and a_ were 0.001 and 0.001, respectively. (b) Dependence of the ultrasensitivity on
the average strength of positive interactions keeping the a_ fixed. (c) Dependence of the

ultrasensitivity on the a_keeping the a, fixed.

From Figure 6A.3a, it appeared that after a certain threshold of m;_,, the average of node
1 (n,) was abruptly decreased from high to low. Thus, the qualitative variation of i; with
m;_, behaved as an ultrasensitive switch of protein abundance. It is important to note that
the inherent nonlinearity of the underlying chemical reactions often contributes to
ultrasensitivity in biochemical systems. The relevance of ultrasensitivity in producing
nonlinear responses like bistability and oscillations makes it crucial for biochemical
reaction networks. Although the democratic network here lacks nonlinear chemical
reaction rates yet it exhibited a weak ultrasensitivity. As a result, the conditions regarding
ultrasensitive switching of node 1 were further investigated. The abundance of the nodes
was progressively increased by 2.5X and 5.0X to answer the query of whether the

switchlike behaviour of node 1 was caused by the extremely few molecules at high
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m;_,(Figure. 6A.3a). The zero- and second-order rate constants were multiplied and
divided respectively by the necessary scaling factor in order to scale up the abundance.
Even with a higher population abundance, node 1's ultrasensitive switching remained
unaffected, suggesting that the ultrasensitivity is inherent to the democratic network. The
stiffness of the switch was found to be dependent on the average strength of the positive
interactions, according to simulations using varying average strengths of positive and
negative interactions. However, the transition threshold of m;_, appeared to be controlled

by the strength of the negative interaction (Figure. 6A.3b-c).
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Figure 6A.4. Surface plot for the coefficient of variation of node 1 (CV) as function of
m;_,.The average strength of negative and positive interaction was (a) (0.001, 0.001), (b)
(0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005, 0.005).

Next, the effect of negative interactions on the noise in node 1 was further examined. The

steady state noise was measured by quantifying the coefficient of variation (CV; = Ui/ﬁ.,
4

where o; is the standard deviation of i node). The noise in node 1 (CV;) displayed a
switchlike behaviour as a function of m;_,, when the strengths of the positive and negative

interactions were equal (Figure. 6A.4a). In particular, CV nearly saturated at a greater
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number of m;_,, and it stayed very low for a smaller number of m;_; (high n;). This
qualitative feature of noise was maintained for an increasing number of positive
interactions on the other nodes, m.,,, quantitatively the noise appeared to increase steadily
with an increase in m;,; on other nodes particularly in the high-noise regime (large m_,).
Overall, the direct negative interactions on node 1 result in a non-monotonous change in
noise, whereas the indirect positive interactions results in only small increase in noise.
Similar calculations were repeated with various average strengths of both interactions
(a_and a, )to determine how these qualitative noise characteristics depends on the strength
of interactions. The transition from low to high noise occurred at a much lower value m;_,
(Figure 6A.4b) with an increased value of a_ alone. In contrast to smaller a_ (Figure
6A.4a), the variability in this instance, increased significantly. This was as a result of a
lower average, intensifying the ‘finite number effect’ with high a_. Furthermore, at high
values of m;_,, the effect of m/,, on CV was more predominant. The change from low to
high noise occurred at a substantially higher value of m;_, with an increasing value of a,
alone (Figure 6A.4c). The noise grew considerably across different values of m;_; and
my,, (Figure 6A.4d) where both interaction strengths were increased by the same factor.

This was most likely due to the efficient noise propagation in the network.
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Figure 6A.5. Surface plots of the average abundance and CV of node 1 for the networks
with 10 (top row) and 20 (bottom row) nodes as a function of m;_,.The values of a_ and

a.,, were 0.001 and 0.001, respectively.
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To ascertain the generality of the qualitative character of noise with m;_,, similar
simulations were run for democratic networks of various sizes. The simulation results from
networks with 10 and 20 nodes are shown in Figure 6A.5. Similar qualitative behavior of
noise and average abundance was found for both network sizes. The CV; vs m;_, of three
different network sizes (dy = 10, 20, and 30) in Figure 6A.6a, where the number of positive
interactions on every other node was kept constant at 0 (m;., = 0). The comparison
demonstrates that the abrupt change in noise from a low to a high number is consistent
across all network sizes. With growing network size, we also see a systematic shift of the
curves towards lower m;_,. Their individual normalised averages were compared in

Figure. 6A.6b to observe the sharp decline of the corresponding averages with m;_,.
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Figure 6A.6. Variation of CV (a) and normalized average (b) of node 1 as a function
normalized m;_,, (mj_,/(dy — 1)) for the indicated sizes of networks with m,,=0. The
average was normalised by dividing by the maximum average value n; in each case. The

values of a_ and a, were same in Figure 5A.5.

It has been important to measure the scaling characteristic of noise with the average
abundance in case of the stochastic calculations of coupled chemical reaction systems. To
address this issue, in Figure 6A.7a CV; with 71, for various values of m}; was plotted.
Two separate power-law scalings (piecewise power-law, CV « n% ) with two different
scaling exponents, a; and a,, best suited the dependency of noise on the average, such

scaling is considerably different from CV o 1/+/f1 scaling. The linear regions of individual
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lines were fitted (in the log-log plot) and determined the average and standard deviation of
the scaling exponents. The scaling exponent was a; = 0.2+ 0.02 in the low to intermediate
abundance regime and a,= 0.9£0.03 in the intermediate to high abundance zone. By
determining the R? (goodness of fit) values for each fit, the accuracy of the fits was
evaluated. For a; and a,, the average R? values were 0.908+0.05 and 0.996+0.002,
respectively. The scaling of noise for node 15, a candidate node in the network whose
average was not immediately affected by the systematic alteration of m;_,, was then

calculated. It was discovered that this node displayed the well-known scaling of CV «

1/+/f across the various values of mj,(Figure 6A.7a). It implied that a node whose
average was directly influenced by negative regulations obeys the biphasic scaling of noise,
but a node, whose average was indirectly modified by negative regulations, follows the
conventional scaling of noise. It is evident from Figure. 6A.7 that the average abundance
range for node 1 was far wider than the abundance range for any other node in the network.
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Figure 6A.7. Dependence of CV vs average of node 1 (a) and node 15 (b). Different lines
represent different values of m;",: from red (m;".;=0) to blue (mj",,=16) the value of m;
increases by 1. The scaling exponents from power-law fitting (CV o« nn%) of the data

segment are indicated inside the plots.
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Figure 6A.8. Variation of biphasic behavior of noise in node 1 (left) and monophasic
behavior of noise in node 15 (right) with the indicated values of scaling factors in the overall

abundance.

This begged the obvious question of whether the disparate scaling behaviours were caused
by the distinct regimes of abundance they experienced. The node 1 was directly influenced
by the changes in m;_, while all other nodes in the network were indirectly impacted, thus
the ranges of node 1 and other nodes were different. Further simulations were performed
with various scaling factors that progressively increased the abundance of each node. For
the networks with m;.., = 0, Figure 6A.8 showed the CV against 71 plots for node 1 and 15
with various scaling factors. The universality of the scaling law of node 1 and the other
nodes in the democratic network was demonstrated by the shifting of entire scaling curves
to the higher abundance regime. The universality of scaling principles was further

demonstrated to be independent of m}.,,. (Figure 6A.9).
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Fig 6A. 9. Plots similar to those in Figure 6A.8 with different values of m;,, for different
total abundance.

In order to determine the effect of strengths of positive and negative interactions on the
scaling exponents, for a variety of values of a_ and a, the exponents were calculated.
Regardless of the values of a,, there was a systematic increase in both exponents with
higher negative interaction strength (Figure 6A.10). It implied that the effect of negative
interaction on noise is stronger for its higher strength. On the other hand, regardless of the
value of a_, the values of both exponents decreased as the a, was increased. As a result,
in contrast to positive interactions, negative interactions strongly regulate the noise in a

democratic network.

14 p——— T 14
——0.001
—a—(0.0025
—4—0.005
——0.01
g 07t 1k 407 &
0‘9/% | N Py
107 107 103 1072
a a_

Figure 6A.10. Variation of scaling exponents o; and a, with the a_ for the indicated values

of a,.

The role of negative regulation in attenuating noise has previously been investigated in the
context of small gene regulatory networks. It has been discovered that it dampens the
intrinsic noise, whereas positive regulations were found to exacerbate the noise. Later
studies, notably in the context of feedback-regulated systems, however, demonstrated that

positive regulations can also reduce noise. The impact of negative interactions on the noise

2
strength (quantified as Fano factor, FF = % / 7. ) was further investigated in order to
4

address this problem within the framework of democratic network. Irrespective value of
mf,,, noise strength passed through a maximum with average, showing that at the
intermediate average (i.e., intermediate number of m;_,), it produced the largest noise
strength (Figure 5A. 11a). The peak noise strength also increases with higher value of m7,, .

While the network displayed similar qualitative behaviour of noise strength over a range of
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a_ values, higher a_ values led to a reduction in overall noise strength (Figures 5A. 11a-

c).
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Figure 6A.11.Variation on noise strength (quantified as Fano factor) as function of #1,. In
all three panels the value of a, was kept fixed to 0.001.

Figure 6A. 12a presented the maximum value of noise strength (maxgz) of node 1 as a
function of a_ in the network with m;,, = 0 to comprehend the impact of both a_ and
m;_,, on the noise strength. These figures showed that, regardless of the strength of the
positive interaction, the maximum noise strength decreases with increasing strength of
negative interaction. The noise attenuation capability of negative restrictions is indicated
by the decreasing of noise intensity with a_ . However, the maximum noise strength
constantly increased with increased strength of positive interaction, demonstrating that the
positive interaction amplifies the noise strength. The conclusion that the negative
interactions attenuate intrinsic noise was further supported by the plot of the number of
negative interactions on node 1 that corresponded to the maximum noise strength

(maxy, ) with a_ (Figure 6A. 12b). Additionally, the anticorrelation between max,—

and a_ showed that either a large number of weak negative interactions or a small number

of strong negative interactions can limit noise.
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Figure 6A.12. a) Dependence of maximum noise strength (maxgr) (obtained from Figure.

6A.11) with a_ for m{,; = 0.b) Variation of maxn,-_, the number of negative interactions

where corresponding to maximum noise strength with a_. Different lines represent

different value of a,.

A fully connected democratic network, in which every node connects with every other node
in the network, served as the foundation for all of our calculations. But in reality, the
networks may be sparse, where a node may not be connected to all other nodes. Thus, the
number of mutual connections were lowered by randomly removing a fixed number of
interactions while leaving the interaction between node 1 and all other nodes intact (a(1, j)
#0 and a(i, 1) # 0) in order to examine the attributes of similar networks with lower
connectivity. As with fully connected networks, these modified networks showed similar

qualitative average and intrinsic noise behaviour (Figure 6A.13).

117 |Page



Chemical noise in generalised network
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Figure 6A.13. Ultrasensitivity (left) and biphasic scaling (right) of node 1 in networks with
removed interactions. The percentage reduction of mutual interactions on all other nodes is

indicated inside the plot. Top row: mf,, = 0 and bottom row: mj,, = 4.

6.A.3 Conclusion

The experimental observations of cellular heterogeneity in single- and multi-cellular
organisms are a result of both variations in external stimuli and fluctuations in the
molecular abundance of a finite number of macromolecular species inside a living cell.
Statistical mechanical models of gene expression noise have been demonstrated the ability
to quantitatively explain observed protein abundance variability. Additional models have
investigated the functions of feedback controls in noise propagation, whether in single
genes or gene networks. Positive feedback loops and the average lifetime of molecular
species have been identified as key components in attenuating chemical noise in system-
level models of cellular physiology, such as the cell cycle. To the best of our knowledge,
no research has yet been done on how chemical noise in a generalised chemical reaction
network is controlled. One must accept that a specific cellular function results from the
well-coordinated effort of a variety of interrelated genes, especially in the context of
organisms' response to external cues. In this context, in chapter discusses how noise
propagates within a democratic chemical network, where each node is connected to the

others via either positive or negative interactions. Here, the main goal was to ascertain how

118 |Page



Chapter 6

the qualitative and quantitative characteristics of interactions dictates the variability of the

chemical species in the network.

A democratic chemical network with 30 interconnected nodes using the mass action rate
laws of chemical reactions was developed. It is discovered that when the number of
negative interactions on the target node increased, the noise, as measured by the coefficient
of variation, sharply increased from low to high. It is significant to note that the qualitative
behavior of the noise was largely unrelated to the qualitative nature of interactions on the
other nodes in the network. It is concluded that the weak ultrasensitive switching of the
average results in switching behavior of noise. Further investigation supported the
conclusion that a democratic network with linear kinetics can also behave in an
ultrasensitive manner. Analyses of noise showed that noise scales with average in according
to a biphasic power-law with two different scaling exponents. The quantitative value of the
mutual interactions had a significant impact on the values of these two exponents.
According to the results of our simulation, the strength of the negative interactions led to
decrease in the noise level, but the strength of the positive interactions amplifies it.
Therefore, it is reasonable to draw the conclusion that positive interactions amplify the

noise and negative interactions attenuate its effect.
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Part B

Chemical noise propagation in autocratic network topology

S Das and D Barik, Phys. Rev. E 2021, 103 (4), 042403 (2021)
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In an autocratic network organisation, the nodes(genes/protein) are arranged in layers. In
addition to controlling the nodes in other levels, the nodes in one layer may also interact
with one another. Furthermore, there appears to be a common pattern of organisation for
regulators in terms of abundance, lifetime and variability.?® These studies demonstrated
that the network designs included both pyramidal??> and nonpyramidal®® architecture.
Protein interaction networks, such as the kinase-phosphatase network in yeast, contain
similar hierarchical networks?®. In an autocratic network, one or more layers of
intermediary genes allow a group of master genes to control the regulation of a vast number

of downstream genes.

6.B.1 Model

This chapter discussed how intrinsic noise is controlled in an autocratic reaction network,
which consists of an input node and an output node coupled by three intermediate layers of
nodes (Figure 6B.1). A node controls the expression of a node in the layer below, resulting
in a unidirectional flow of information and the network is devoid of any feedback
regulations. The network shown in Figure 6B.1 is made up of nodes grouped in layers (or
hierarchy), where nodes in one layer control nodes in the next-level layer below it. Here,
the nodes in a given layer do not interact with one another, and the nodes in the lower level
do not affect the nodes in the upper level. The nodes at the highest and lowest levels, are
referred respectively, as input and output nodes. The top, core, and terminal layers are the
three node levels that lie in between the input and output nodes. The nodes in the autocratic
network are connected either by activatory or inhibitory regulatory interactions. Direct and
indirect regulations on the output node were classified as proximal and nonproximal
regulations, respectively, based on the proximity. The nonproximal interactions were
divided into two categories here: near-nonproximal and far-nonproximal interactions. The
regulations on the top layer and core are collectively referred to as the far-nonproximal

group, while the edges on the terminal layer are referred to as the near-nonproximal group.
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Terminal
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Figure 6B.1. Schematic representation of the autocratic network model. Colored circles
are nodes typically served as a representative of chemical species found inside live cells,
such as genes, proteins, transcripts, or metabolites. The lines with a circle at the other end
represent the regulatory interactions from one node to the next, and in our autocratic

network model, all of these circles point in the same direction.

Networks of different sizes can be created by varying the number of nodes in each layer,
N; (dy = X; N;). Here, the total number of nodes presented in the layer above it (m; ; =
N;_,) determined the total number of interactions on the jth node in the ith layer (m, ;).
Additionally, because a regulatory interaction could be either inhibitory or activatory, we
varied the number of inhibitory (m;;) and activatory (m{fj) interactions using the
conservation relation m;; + m;; = m; ;, in order to study how these interactions effect in
chemical noise propagation in our autocratic network model. The total number of the

inhibitory regulations across all nodes in a particular layer is defined as, M;” = ¥; m; ;.

Each node also has its own uncontrolled production and degradation/dilution processes in
addition to the regulatory interactions. The input, top, core, terminal, and output layers in

this work will each contain the following number of nodes: N; =1, N, =3, N; =6, N, =
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8, and Ny = 1. As a result, 1, 3, 6, and 8 respectively represent the number of regulatory
interactions on each node in the top, core, terminal, and output layers. The mean field

dynamics of the nodes we defined as the following set of coupled ordinary differential

equations,
dn 1
n;j _ _
T Qi j—vying; + 0 kzl Qi Ni—1Ny 68.1

The equation represents the time evolution of the average molecular abundance (72; ;) of the
jth node in the ith layer. The first two terms in the right hand side of equation represents,
respectively, gain and loss resulting from production and degradation/dilution. The
associated rate constants for these two reactions are k; ; and y; ;. Then final term represents
the bimolecular regulatory interaction from kth node in the (i — 1)th layer.The magnitude
and sign of a; respectively, indicate the regulation's strength and kind. Inhibitory and

activatory regulations are represented by a;, <0 and a; > 0 respectively. m;; and m{fj

represent the number of inhibitory and activating interactions on the jth node. The total
number of regulatory interactions, M = };_, N;_;N; shared across d, number of nodes.

We maintained a fixed value of x;; =0.012 and y;; =0.02 for the production and the

degradation rate constants, respectively. For regulatory interactions, a* and a~ were
chosen to be equal to +0.003, respectively for activation and inhibition. We parametrize
our model such that the system must attain a stationary state within a finite simulation time
and that the quantity of molecules per node must be within the realistic range often found
in a live cell. Because timescales can vary greatly from one organism to another, it is
important to note that we have not specified the units of the rate constants, particularly for
the time, to make the model applicable to networks representing various organisms. The
half-life of ~35 time units, which is the most typical half-life for many proteins in budding
yeast 25(in min) and mammalian?’(in hour) systems, is represented by the chosen value of
the degradation constant, y;;. The scaling factor,Q increases the population abundance of
the interconnected nodes while preserving the system's dynamics. We have used Q = 100
throughout the entire work, unless otherwise stated. Using Gillespie's stochastic simulation
algorithm?®, we simulated the chemical reactions associated with our model (Eqn 5B.1) in
order to ascertain the impact of finite numbers in autocratic networks. We calculated the
effect of intrinsic noise accurately thanks to the linearity of the reaction rate laws in our

model. There are 2dy + M number of reactions in an autocratic network of size dy that
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correspond to dy production, dy degradation, and M regulatory interaction. We conducted
an ensemble of 10,000 trajectories for a very long time to acquire reliable steady state
statistics (50,000 time units). When the propensity of chemical reactions increases due to
the involvement of a large number of molecular species and/or significant rate constants of
the chemical processes, the runtime for stochastic simulation can become quite long. In
order to prevent this, we implemented a cut off rule of 100,000 molecules/node to stop the
calculation, where the simulation becomes substantially slower with huge population
abundance. This calculation is left out of the analysis. Given that the finite number effect
will be very insignificant given the huge abundance, this choice of cut-off criterion is quite

reasonable.

The goal in this study was to investigate how the qualitative and quantitative nature of the
proximal and nonproximal regulatory interactions regulate intrinsic chemical noise in the
output node. The nature of the proximal and nonproximal interactions on the output node,

as well as the variation of average and noise in it, were systematically explored.

6B.2 Results

For a specific number of inhibitory near-nonproximal (mg;, =Z?’;‘1m;j) and far-
nonproximal interactions (ms,,, = ?’=1m2_,j + 2?]21"13?,]') on the nodes in different layers,
the average abundance of the output node (ns,) decreased with increasing proximal

inhibitory interactions (m,) (Figure 6B.2).
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Figure 6B.2. Dependency of average abundance of output node ( 725 ;) on the number

of
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negative proximal interactions (m,,) for indicated number of near-nonproximal negative

interactions (m,,;,). The value of my,,,, kept at 6.

In order to increase m;,,,,, one more inhibitory regulation towards each node in the terminal
layer were added. A certain order was followed to allocate the inhibitory interactions on a
particular node in the terminal layer from the nodes in the core layer in order to make
implementation of easier. Particularly, the inhibitory interactions originate from the left
nodes in the core layer. For example, to implement m;,,,, = 8 (m;, = 1) and my,, =
16 (my, = 2), in first only the node n3; and in second case both n3 ; and n; , inhibits all

the nodes in the terminal layer respectively. A similar approach was used to modify mg,,,

. Across various values of m;,,,,, 15 ; falls as m;, increases (Figure 6B.2).

However, a greater number of near-nonproximal inhibitory regulations contributed to the
abundance of the output node when the proximal inhibitory regulations were
proportionately more than the activatory regulations (m,> 4). As a result, both near-
nonproximal and proximal interactions controlled the output node's abundance. Next, 75 4
against m,, for various numbers of mg,,, for a fixed number of m;,,, was plotted to
ascertain how the far-nonproximal interactions in the top and core layer control the
abundance of the output node (Figure 6B.3). Across a range of my,,,, values, the influence

of the far-nonproximal inhibitory interactions on the output node is quite minimal.
Therefore, the proximity of the regulatory interactions was found crucial in determining the

level of regulation in an autocratic network.
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Figure 6B.3. Plot of 715, with m,, for a different number of far-nonproximal inhibitory
interactions (mg,,,) with a particular value of mg,,. Each line type corresponds to a

particular value of my,,,, as indicated.

An essential aspect of noise regulation in biological reaction networks is the scaling of the
noise with average, which is determined from the coefficient of variation (CV) with the
average abundance. In Figure 6B.4a, the CV of the output node at steady state was plotted
against average abundance. The average abundance was altered by modifying the number
of proximal inhibitory contacts (m,) on the output node. It was found that the near-
nonproximal interactions played a crucial role in determining the qualitative behaviour of
noise with the average. The noise decreased with the increase in average for higher values
of My, which is predicted behaviour from ‘the finite number effect’. However, for low
values of m;,,,,, the CV first reduces with increasing average for smaller values of m,, , but
then increases after passing through a minimum (Figure 6B.4a). The ‘finite number effect’
of the stochastic chemical kinetics predicts that noise would decrease as abundance
increases. However, the increase in noise with increased average is counterintuitive by its

very nature, making it a nontrivial or unexpected result for the autocratic system. This non-
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trivial scaling holds for only low number of near-nonproximal interactions. These
computations were repeated by scaling all the rate constants systematically such that the
abundance of all the nodes increases in a consistent manner ( Q = 500) in order to ascertain
the universality of the scaling behaviour. It was found that noise scaling behaviour (Figure
6B.4b) is qualitatively comparable to that shown in Figure 6B.4a with Q = 100. It was noted
that the CV values were now lower and that the greater average abundance marked the

turning point of CV.
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Figure 6B.4. a) Plot for CV with the average abundance of the output node for different
values of my,, with a fixed value of mg,,, = 6. The dashed line corresponding to the
conventional CV « 1/~/f scaling. b) Similar plot for network with 5X increased abundance
(22 = 500).

Thus, these findings suggested that the unusual scaling of noise is a fundamental
characteristic of the autocratic network and that it was influenced by the quantity of
inhibiting interactions on the terminal layer (m;;;). The comparison of the CV for the
various values of m;,,,, also showed that the output node’s variability was decreased by a
significant number of inhibitory interactions on the upstream layer. Plots of the Fano factor
(FF) and the average (Figures 6B.4c-d) showed that the noise strength increased as the

number of proximal inhibitory regulations decreases. Therefore, the direct activatory
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controls are to reason for the increased intrinsic noise. Next, the effect of far-nonproximal
interactions on noise scaling was determined. It was found that for a given value of m;,,,,
the number of far-nonproximal inhibitory interactions had little effect on the scaling of
noise (Figue 6B.5). As a result, the near-nonproximal interactions on the terminal layer,
rather than the far-nonproximal interactions originating at the top and core layers, dictated

the qualitative nature of the scaling of noise in the output node.
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Figure 6B.5. Plot of CV;,; with m,, for a different number of far-nonproximal inhibitory
interactions (mg,,) with a particular value of mg,,. Each line type corresponds to a

particular value of m;,,,, as indicated in Figure 6B.3.

The striking feature in stochasticity for the autocratic network is the rise in noise at high
abundance region. One reason of this high noise at abundance could be the steady state
population splitting. But the model network did not have any nonlinearity or any feedback
regulation, the splitting of population options was ruled out. Thus, to determine the reason
for this high noise at high abundance region, steady state distributions of the output node
population abundance was plotted in Figure 6B.6a with an increasing number of proximal

inhibitory interactions.
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Figure 6B.6: Plot for steady state population distribution of the output node for different

m,, values. Comparison of distributions centered at the abundance corresponding to the

peak of the distribution (inset). (b) Plot of skewness of the steady state population

distributions as a function of m,,. Diffferent color lines represent different values of my,,,,.

These distributions made it abundantly evident that the multimodality of the steady state
distributions was not the cause of the increased noise. These distribution widths in the high
and low abundance regimes (low m; and high m,)were wider than the distribution for
intermediate abundance. To see how the shapes changed as m, increased, these
distributions were further compared, centred at the peak (Figure 6B.6(a) inset). In
comparison to the high value of m;, the distribution associated with a low value of m,, is
positively skewed towards a high of 715 ;. Furthermore, the skewness vs. m,, plot (Figure
6B.6b) demonstrated that the skewness of these distribution decreased with higher m,,
values across different values of my,,,,. Thus, the increase tail of the distribution at large

abundance regime is responsible for high noise.

To examine further, the trajectories of output node for various values of m, were looked

into (Figure 6B.7). The stochastic trajectory displayed a fluctuation pattern resembling
bursty gene expression kinetics in the large abundance limit with m,; = 1. Particularly, the

system becomes highly noisy and the steady state distribution became positively skewed

as a result of the large and irregular fluctuations. The stochasticity in the time courses

129 |Page



Chemical noise in generalised network

appeared to be more regular and free of any significant deviation from the mean value in

the low abundance limit with increasing values of m,. The phase space of the trajectories
were plotted by correlating the time course of the output node against the time course of a
representative node (n,g) in the terminal layer (Figure 6B.7). The bursty nature of the
output node was evident from the phase space plot for m;, = 1, which spanned a bigger

area than the phase space for the larger values of m,,.
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Figure 6B.7: The time course trajectories (left) and the phase space plots (right) of the

network with m;,,,, = 8 and mg,,,, = 6 . In the phase space plot of output node, ns, (t) is

plotted as a function of n,g(t) , a node in the terminal layer.

Form, = 1, the output node receives only one inhibitory and seven activatory input signals
from the nodes in the terminal layer. The production of the output node was accelerated as
a result of the higher quantity of activatory interactions, which cannot be countered by the
smaller number of inhibitory interactions. The bursty kinetics of output node represented
the end outcome of these two antagonistic interactions. An increase in the inhibitory input
interaction which counters the production by accelerating the degradation of output node,

leads to disappearance of the excitable nature of the output node.

Due to higher number of inhibitory interactions from the nodes in the terminal layer to the

output node, the variation of m; changed the average abundance on the output node.

However, it was interesting to study the explicit role of m; on the noise without the
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variation in the average abundance. In order to maintain the same average abundance while

changing m;, the synthesis rate (ks,) was scaled. The average abundance remained
constant as we varied m, in this scenario (inset of Figure 6B.8). It was found that when
m,, increases, the noise in the output node decreases. This was consistent behaviour for
various my.,,, values. However, similar to the findings in Figures 6B.4a-b, the effect of m,,
was more pronounced for smaller values of my;,,,. These findings once more showed that
a high number of activatory interactions (small m;) on the output node contributed to the

increased variability.
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Figure 6B.8: Plot of CVs, with m for different value of m;,,, and mg,, = 6. While
modifying the m;, , the synthesis rate of the output node ks, was adjusted such that the

average remains unchanged (inset). The different color and marker type are for different

values of my,as indicated in Figure 6B.4.

So far, the number of proximal and nonproximal interactions were only altered while
maintaining the strength of the activatory and inhibitory regulations (a* and a~). To
determine the effect of strength of these interactions on the scaling of the intrinsic noise,
next the rate constants of the activatory and inhibitory interactions were varied. The rate

constants ratio was adjusted by a factor of 2.
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Figure 6B.9: Plot of CVs; with m; where a) a*/a™ =2 and b) a*/a™ = 0.5. ¢) and d) are
the phase space plot for the same. The different color and marker type are for different

values of my,,,, as indicated in Figure 6B.4.

In Figures 6B.9a-b the scaling of the noise for a*/a= = 2 and a*/a— = 0.5 was plotted
respectively. The nontrivial scaling of noise became more pronounced across the various
numbers of near-nonproximal interactions when the strength of activatory interactions were
more than the strengths of negative interactions (Figure 6B.9a). In contrast, the network
appeared to show typical scaling the stronger negative interactions (Figure 9b). Similar
bursty nature of output node confirmed from the phase space plots in the case a*/a™ = 2
(Figure 9c) as compared to a*/a~ = 0.5 (Figure 9d). Thus, higher strength of a* supported
the argument of bursty kinetics further by promoting the non-trivial scaling. The scaling
of noise was also considered when the interaction strengths were varied at each layer. To
investigate the layer-specific regulatory function of the interaction strengths on the scaling
of the noise, simulations were ran using various interaction strengths in each layer. Two
sets of calculations were performed, increasing the strength of the interaction from the input

to the output layer in one set (Figure 6B.10a) and decreasing it in the other set (Figure

6B.10b). We have selected the values of interactions as a; /|~ = 0.003, a3/~ = 0.004, a}/"

=0.005, and a;’,]( ~=0.006 for the interaction between input/top, top/core, core/terminal, and

terminal/output layers, respectively, in the situation of increasing strength from the input
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to the output layer. For the decrease in interaction strengths from the input to the output
layers, the reverse order was employed. It was found that the scaling of noise with the
average was comparable in both the situations. However, when the strength of interactions
was stronger in the terminal layer, the high noise in the high abundance nature of noise was

more obvious across different values of m,,,.
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Figure 6B.10: Plot of CVs 4 vs 7154 with an increasing order of interaction strength from
a) top to bottom and b) bottom to top layer of the network. The different color lines and

marker represents different value of my,,,, as indicated.

Every node in the network model was connected to every other node in the layer above it
and below it, making the autocratic network fully connected. In real scenario, networks
may not be entirely interconnected®®. Therefore, a random number of regulatory
interactions were deleted from the network across all layers except the output layer in order
to assess the noise in such sorts of autocratic networks. The values of a; ; were arbitrarily
chosen to be 0 in order to remove a certain number of interactions from the network's top,
core, and terminal layers. For instance, we set 1, 6, and 8 numbers of randomly selected
a; ; from the top, core, and terminal layers, respectively, to exclude 20% of interactions.
Notably, there are 69 interactions overall in these three tiers in the completely connected
network. In the instance of 40%, we multiplied these amounts by two. It was found that
removing 20% and 40% of the regulatory interactions from the network did not change the
scaling of the noise (Figure 6B.11), indicating the universality of the scaling behavior in

the autocratic network.
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Figure 6B.11: Comparison of the scaling of CVs 4 vs 7154, with ~20% (solid lines) and
~40% (dashed lines) reduction of interactions, at random, in the top, core and terminal
layers of the network. The different color lines represent different value of my,, as

indicated in Figure 6B.10.

In order to establish a network with a certain number of inhibitory near-nonproximal and
far-nonproximal connections, we chosen these regulatory interactions in a specific manner
for the autocratic network. A given number of m;,,,, and mg,,,, , the numbers could be
satisfied by a variety of mutual combinations of interactions, leading to the creation of
multiple equivalent networks (microstates). Five such comparable networks were created
where the regulatory interactions were all randomly chosen and had the same values of

Mpnp aNd Mg, to test whether the findings were affected by the particular mutual

interactions (i, j) chosen. Figures 6B.12a-c demonstrated that the nature of the scaling was

independent of the particular mutual interactions that are chosen.

134 |Page



Chapter 6

0.35 prrrrrmr—r—rrry ey T RE
0.3 F Monp = ERCT EN E
Fmp, =6 ) 1M = 1Emm =0 2
~ 0.25 1F 4 F 3
o r 1t 1F ]
C 02f 1b 1F B
i a ][ b1r ]
0.15 vl v vt Eu il il B Lol
10 10° 10° 10° 10? 10°

n51 5.1 5.1

Figure 6B.12: Scaling of CV5; vs 715, for the indicated values of m;,,, and mg,,. For
each combination of m.,,, and ms,, five different networks having randomly chosen

mutual interactions were presented.

Finally, investigation of the scaling of noise was carried out in a mixed network with nodes
in a certain hierarchical layer were connected to each other to create a democratic
architecture. As a result, the nodes in the top, core, and terminal layers controlled one
another, creating an internally democratic subnetwork. As a result, the resulting network
becomes a conglomeration of democratic and autocratic network (Figure 6B.13a). The
scaling of intrinsic noise with the average was found to be unaffected by the democratic
mutual interactions in the three layers (Figure 6B.13b). The hybrid network exhibited
considerable noise in both the low and high abundance regimes, strictly following the

scaling of noise behavior in an autocratic network.
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Figure 6B.13.Schematic representation of the mixed network. The nodes in the top, core,

and terminal layers form democratic subnetworks within themselves. The mutual
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interactions within a democratic subnetwork are represented by the edges with filled circles
at both ends (red lines). (b) The scaling of noise in the output node with its average. The
values of a* and a~were chosen as +0.0025 and —0.0025 respectively. In the democratic
subnetworks activatory and inhibitory interactions were equally distributed with strength
of 0.001 for both interactions.

6B.3 Conclusion

This chapter focussed on how chemical noise propagates in an autocratic network, where
nodes in one layer regulates nodes in another layer. The goal was to determine how the
qualitative (activatory/inhibitory) and quantitative (strength) interactions of regulatory
interactions influence the variability in the autocratic network. In order to employ the
stochastic simulation algorithm to precisely estimate the intrinsic chemical noise in the
network, the mass action rate law of chemical reaction was applied to represent the
network. The qualitative nature of the proximal (direct) and near-nonproximal (indirect)
interactions were found to strongly regulate the steady state statistical properties of the
output node. Whereas the far-nonproximal rules had no impact on such attributes. In
particular, when the network contained more activating near-nonproximal regulations than
inhibiting near-nonproximal regulations, calculations showed that the noise passed through
a minimum as a function of average abundance. This kind of scaling resulted in increased
variability of output node in both the low and high abundance regimes. The system
exhibited greater variability despite having a large average, such scaling of noise with the
average was new and nontrivial. It was demonstrated that the system's bursty kinetics,
which were regulated by a significant number of direct activatory regulations from the
nodes in the neighbouring layer, were the cause of the nontrivial scaling of noise with the
average. The higher strength of activatory regulation enhanced the nontrivial scaling of the
variability by altering the strengths of the activatory and inhibitory interactions. The
activatory regulations, either in high number or in higher strength compared to the
inhibitory regulations, increased the system variability by generating bursty trajectories.
Even with the addition of democratic mutual interactions between nodes in a specific layer,

the qualitative aspect of scaling remains unaltered.

As conclusion, in a network that is entirely democratic the intrinsic noise showed a

biphasic scaling and showed weak ultrasensitivity in the average. Whereas the autocratic
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or mixed networks, both showed a nontrivial scaling of noise in which the downstream

node becomes noisy in both the low abundance and high abundance regimes.

6.2 References:

1)

)

(3)

(4)

(5)

(6)

(")

(8)

Raj, A.; van Oudenaarden, A. Nature, Nurture, or Chance: Stochastic Gene
Expression and Its Consequences. Cell 2008, 135 (2), 216-226.
https://doi.org/10.1016/J.CELL.2008.09.050.

Sanchez, A.; Choubey, S.; Kondev, J. Regulation of Noise in Gene Expression.
http://dx.doi.org/10.1146/annurev-biophys-083012-130401 2013, 42 (1), 469-491.
https://doi.org/10.1146/ANNUREV-BIOPHY S-083012-130401.

Ozbudak, E. M.; Thattai, M.; Kurtser, I.; Grossman, A. D.; Van Oudenaarden, A.
Regulation of Noise in the Expression of a Single Gene. Nat. Genet. 2002 311 2002,
31 (1), 69-73. https://doi.org/10.1038/ng869.

Elowitz, M. B.; Levine, A. J.; Siggia, E. D.; Swain, P. S. Stochastic Gene Expression
in a Single Cell. Science (80-. ). 2002, 297 (5584), 1183-1186.
https://doi.org/10.1126/SCIENCE.1070919/SUPPL_FILE/ELOWITZSOM.PDF.

Blake, W. J.; Karn, M.; Cantor, C. R.; Collins, J. J. Noise in Eukaryotic Gene
Expression.  Nat. 2003 4226932 2003, 422 (6932), 633-637.
https://doi.org/10.1038/nature01546.

Raser, J. M.; O’Shea, E. K. Control of Stochasticity in Eukaryotic Gene Expression.
Science (80-. ). 2004, 304 (5678), 1811-1814.
https://doi.org/10.1126/SCIENCE.1098641/SUPPL_FILE/RASER.SOM.PDF.

Thattai, M.; Van Oudenaarden, A. Intrinsic Noise in Gene Regulatory Networks.
Proc. Natl. Acad. Sci. U. S. A 2001, 98 (15), 8614-86109.
https://doi.org/10.1073/PNAS.151588598/ASSET/296583DD-83EE-408D-8B96-
34237EE6E852/ASSETS/GRAPHIC/PQ1515885005.JPEG.

Pedraza, J. H.; Van Oudenaarden, A. Noise Propagations in Gene Networks. Science
(80-. ). 2005, 307 (5717), 1965-1969.
https://doi.org/10.1126/SCIENCE.1109090/SUPPL_FILE/PEDRAZA-SOM.PDF.

137 |Page



Chemical noise in generalised network

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Paulsson, J. Summing up the Noise in Gene Networks. Nat. 2004 4276973 2004,
427 (6973), 415-418. https://doi.org/10.1038/nature02257.

Friedman, N.; Cai, L.; Xie, X. S. Linking Stochastic Dynamics to Population
Distribution: An Analytical Framework of Gene Expression. Phys. Rev. Lett. 2006,
97 (16), 168302.
https://doi.org/10.1103/PHYSREVLETT.97.168302/FIGURES/3/MEDIUM.

Shahrezaei, V.; Swain, P. S. Analytical Distributions for Stochastic Gene
Expression. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (45), 17256-17261.
https://doi.org/10.1073/PNAS.0803850105/SUPPL_FILE/APPENDIX_PDF.PDF.

Pedraza, J. M.; Paulsson, J. Effects of Molecular Memory and Bursting on
Fluctuations in Gene Expression. Science (80-. ). 2008, 319 (5861), 339-343.
https://doi.org/10.1126/science.1144331.

Jia, T.; Kulkarni, R. V. Intrinsic Noise in Stochastic Models of Gene Expression
with Molecular Memory and Bursting. Phys. Rev. Lett. 2011, 106 (5), 58102.
https://doi.org/10.1103/PHYSREVLETT.106.058102/FIGURES/2/MEDIUM.

Becskel, A.; Serrano, L. Engineering Stability in Gene Networks by Autoregulation.
Nat. 2000 4056786 2000, 405 (6786), 590-593. https://doi.org/10.1038/35014651.

Bruggeman, F. J.; Bllthgen, N.; Westerhoff, H. V. Noise Management by Molecular
Networks. PLoS Comput. Biol. 2009, 5 9), €1000506.
https://doi.org/10.1371/JOURNAL.PCBI.1000506.

Hinczewski, M.; Thirumalai, D. Noise Control in Gene Regulatory Networks with
Negative Feedback. J. Phys. Chem. B 2016, 120 (26), 6166-6177.
https://doi.org/10.1021/ACS.JPCB.6B02093/SUPPL_FILE/JP6B02093_SI_001.P
DF.

Chalancon, G.; Ravarani, C. N. J.; Balaji, S.; Martinez-Arias, A.; Aravind, L.; Jothi,
R.; Babu, M. M. Interplay between Gene Expression Noise and Regulatory Network
Architecture. Trends Genet. 2012, 28 (5), 221-232.
https://doi.org/10.1016/J.T1G.2012.01.006.

Bhardwaj, N.; Yan, K. K.; Gerstein, M. B. Analysis of Diverse Regulatory Networks
in a Hierarchical Context Shows Consistent Tendencies for Collaboration in the

138 | Page



(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Chapter 6

Middle Levels. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15), 6841-6846.
https://doi.org/10.1073/PNAS.0910867107/SUPPL_FILE/PNAS.0910867107_SI.P
DF.

Jothi, R.; Balaji, S.; Wuster, A.; Grochow, J. A.; Gsponer, J.; Przytycka, T. M.;
Aravind, L.; Babu, M. M. Genomic Analysis Reveals a Tight Link between
Transcription Factor Dynamics and Regulatory Network Architecture. Mol. Syst.
Biol. 2009, 5 (1), 294. https://doi.org/10.1038/MSB.2009.52.

Bar-Yam, Y.; Harmon, D.; De Bivort, B. Systems Biology: Attractors and
Democratic Dynamics. Science (80-. ). 2009, 323 (5917), 1016-1017.
https://doi.org/10.1126/SCIENCE.1163225/SUPPL_FILE/BARY AM-SOM-
REV.PDF.

Ma, H. W.; Buer, J.; Zeng, A. P. Hierarchical Structure and Modules in the
Escherichia Coli Transcriptional Regulatory Network Revealed by a New Top-down
Approach. BMC Bioinformatics 2004, 5 (1), 1-10. https://doi.org/10.1186/1471-
2105-5-199/TABLES/2.

Yu, H.; Gerstein, M. Genomic Analysis of the Hierarchical Structure of Regulatory
Networks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (40), 14724-14731.
https://doi.org/10.1073/PNAS.0508637103/SUPPL_FILE/08637FIG12.PDF.

Abd-Rabbo, D.; Michnick, S. W. Delineating Functional Principles of the Bow Tie
Structure of a Kinase-Phosphatase Network in the Budding Yeast. BMC Syst. Biol.
2017, 11 (1), 1-14. https://doi.org/10.1186/S12918-017-0418-0/FIGURES/7.

Gillespie, D. T. A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions. J. Comput. Phys. 1976, 22 (4), 403-434.
https://doi.org/10.1016/0021-9991(76)90041-3.

Jothi, R.; Balaji, S.; Wuster, A.; Grochow, J. A.; Gsponer, J.; Przytycka, T. M.;
Aravind, L.; Babu, M. M. Genomic Analysis Reveals a Tight Link between
Transcription Factor Dynamics and Regulatory Network Architecture. Mol. Syst.
Biol. 2009, 5 (1), 294. https://doi.org/10.1038/MSB.2009.52.

Belle, A.; Tanay, A.; Bitincka, L.; Shamir, R.; O’Shea, E. K. Quantification of
Protein Half-Lives in the Budding Yeast Proteome. Proc. Natl. Acad. Sci. U. S. A.

139 | Page



Chemical noise in generalised network

2006, 103 (35), 13004-13009.
https://doi.org/10.1073/PNAS.0605420103/SUPPL_FILE/SUPPDATASET.TXT.

(27) Cambridge, S. B.; Gnad, F.; Nguyen, C.; Bermejo, J. L.; Kriger, M.; Mann, M.
Systems-Wide Proteomic Analysis in Mammalian Cells Reveals Conserved,
Functional Protein Turnover. J. Proteome Res. 2011, 10 (12), 5275-5284.
https://doi.org/10.1021/PR101183K/SUPPL_FILE/PR101183K_SI_002.XLS.

(28) Gillespie, D. T. Exact Stochastic Simulation of Coupled Chemical Reactions. J.
Phys. Chem. 1977, 81 (25), 2340-2361.
https://doi.org/10.1021/J100540A008/ASSET/J100540A008.FP.PNG_VO03.

(29) Martin, O. C.; Krzywicki, A.; Zagorski, M. Drivers of Structural Features in Gene
Regulatory Networks: From Biophysical Constraints to Biological Function. Phys.
Life Rev. 2016, 17, 124-158. https://doi.org/10.1016/J.PLREV.2016.06.002.

140 | Page



Chapter 7

CHAPTER 7/

Future scope

The thesis work dealt with the investigation of noise propagation across different network
motifs and how the noisy behavior influences the functionality of such networks. Various
non-trivial scaling of chemical noise for different network architectures and reaction
kinetics has been established. Further the effects of extrinsic noise on the heterogeneity
in the bistable responses is investigated. In this chapter the future scope of the work is

discussed.

A single pulsatile signal had been used to investigate the difference in the transition
kinetics for a bistable system originating from two different network topologies, mutual
inhibition and mutual activation in chapter 4. However, cells may experience trail of
pulsatile signals or input signals in the form of decaying oscillations. Additional to
conventional bistable switch, such positive feedback loop network types with slight
tweaking in their architecture can lead to various non canonical responses as mentioned
in chapter 5. In future, this work can be extended further with other types of input signals

and network topologies with noncanonical responses.

Chapter 5 discussed the effect of extrinsic noise on the heterogeneity of bistable switches.
However, in case of cellular differentiation, a growing number of studies have highlighted
the possibility of a mixed state which can be explained by tristable switches. In this regard,
further investigation can be carried out for similar network topologies with an additional
positive feedback loops using the same automated method. New types of complex

tristable switches can be expected.

In chapter 6, to simulate the generalized networks, the mass action rate law was used to
model the chemical reactions involved. However, in both protein interaction and gene
regulatory networks, nonlinear rate laws like the Hill function and Michaelis-Menten

kinetics are frequently used to compare the mathematical predictions to the experimental
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findings. The use of mass action kinetics allowed to accurately estimate intrinsic chemical
noise by using Gillespie's SSA. Additionally, it discarded the other possibilities of nonlinear
phenomena, such as multistability and oscillations. Protein interaction network modeling
based on mass-action kinetics has grown significantly because of its higher accuracy to
predict how intrinsic chemical noise would affect the reaction networks. In future, it will
be interesting to examine how noise propagates in networks with nonlinear rate laws

using approximate simulation techniques like the chemical Langevin equation.
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General form for the dynamical equations for the phosphorylated species involved in
multi-phospho chain with N number of phospho states:

For non-terminal species on;
Frin (vi +v_(irn)) — Wigq + V) A3.1
. . ony
For terminal species FTale (vy —v_p)

Where, v; and v_; are the phosphorylation and dephosphorylation rate of
the i™" species.

Mass action Michaelis Menten
K " kiE(ni—l/KMl-)
V; = e . =
Lot "1+ 3N nia /Ky, A3.2

- k_iE'(ni/K_m,)
1+ B g /Ky,

V_i = k_ini

Final covariance matrix equation for 4-component chain,

— 1 -
=W Fv, v +vy)
Aqq Aqp Agz 0 0 0 77011 2 (v, + )
v, +V_
Azr (A +Az) Azs Aqy Aqs 0 ]2 2 0 z
Azq Az, (A;1+433) O Aqp A |93 _| 1 A3.3
0 A21 0 A22 A23 0 022 _E(Vz + V3 + V_o + V_3) )
0 Azq Az Asy;  (Agp +Az3) Aps|[923
(v3 +v_3)
0 0 Aszq 0 Az, A311033 1
) (vs +v_3)
d(vi+v_y)—(vo+v_ d(vi+v_y)—(vo+v_ d(vi+v_y)—(vo+v_
Where, 4,, = (1 za)ﬁl( 2 1), A, = (1 za)r_lz( 2 1),A13 — 91 26)7‘13( 2 1)’ Ay =
Ivptvog)=(vstvoy) , _ d(vatvz)=(vatvy) , _ 0(vptvoa)—(vatvy) , _ 0lvztvgy) ,
61_11 ) 4122 — 67‘12 ) 4123 — aﬁS )y 4131 — 67_11 ) 4132 —
a(v3+v_3)
ony,
d(v,+v_
and 4, = 203*v=3)

o3
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Appendix 2
(Chapter 4)
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Figure A4.1: Effect of resting pulse on the population inversion. The plot of f;,, as a
function pulse duration (7;) and pulse dose (4Sy) for the Ml (fisrt column) and MA (second
column) networks for two different doses of resting pulse (4S5, = 0.05 top row, and A4S, =
0.1, bottom row). The integrated signal required for 99% population inversion is plotted as
a function of 74, and ASy for two different values of resting pulse (¢ & f) in the Ml (circles)
and MA (squares) networks.
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Figure A4.2: Effect of resting pulse on the transient dynamics. f,,s and f;,,, are plotted as
a function of 7, and A4Sy for the MI (a, ¢, e and f) and MA (b, d, f and h) networks for
different values of resting pulse, 4S5, = 0.05 (a-d) and 4S5, = 0.1 (e-h).
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Figure A4.3: Effect of resting pulse on the time scales of population inversion. The surface
plots of average inversion time ((z;,,,)), average response time ((z,,)) and average initial
delay time ((t4;,)) are presented as a function of 7, and ASg, for the MI (1 and 3" rows)

and MA (2" and 4" rows) networks at two different values of AS;.
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Figure A4.4: Effect of pulse amplitude on residence and switching times. The fraction of
the population that switches back to the upper steady state (f;,), the average residence
time in the lower steady state ((z,.s4)) and the average switching time ((zs,)) are plotted
as a function of pulse duration (z;) and resting pulse (45,) for the M1 (1% and 3™ rows) and

MA (2" and 4" rows) networks. The values of the AS were 0.0 and 0.2.
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Figure A4.5: The effect of pulse amplitude on the population locked in the inverted state.
Fraction of cells locked at lower steady state, f;. is plotted as a function of pulse duration
(t4) and resting pulse (AS;) for the MI (top row) and MA (bottom row) networks for the

indicated values of pulse amplitude.
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Figure A4.6. The fraction of the population that switches back to the upper steady state
(fswe) 1s plotted as a function of resting pulse (AS;) for increasing values of pulse duration,

T4, in case of M1 (red to yellow) and MA (green to yellow) networks. The value of the A5,

was 0.2.
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2.0 . 2.0

Figure A4.7: The comparison of statistical properties of inversion and switching times
between the MI and MA networks for different values of pulse dose (a-d). The comparison
of relative available time vs. 7, between the MI and MA networks. Different colors
represent different value of dose (4Sg) following an increasing trend of red to yellow for

the MI and green to yellow for the MA.
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Figure A4.8: The correlation between the mean-normalized t;,,,, and 7,.¢4 times are plotted
for the indicated values of pulse duration (a), pulse dose (b) and resting pulse (c) for the
MA network. The values of correlation coefficients are indicated within the parenthesis

inside each plot.
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Figure A5.1: The total number of various types of canonical (a) and noncanonical (b-d)
bistable switches are presented for the 1-PFL and 2-PFL networks under AND-gate
configuration. The noncanonical switches are segregated into one (b), two (c) and three (d)

bistable regions.
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Figure A5.2: Percentage chance (% Chance) of obtaining various types of noncanonical
bistable switches are compared for the MI (a) and MA (b) networks under AND-gate
configuration. The correlation of % Chance of noncanonical switches of MI networks
(circle: 1-MA, square: 2-MA) under (+,+) input signal with (-,-) input signal (c). Similar
correlation for the 2-MA MA networks (d).
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Figure A5.3: The inverted isola bifurcation and its phase-plane plots for the indicated
values of S for the ppMI network under OR-gate. The two SN bifurcation points are
indicated by the filled blue circles. The black and red circles at the intersections of two
nuliclines indicate the stable and unstable nodes, respectively. Parameters for the Inls
switch are listed in Table the S5.
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A (x 1079 A (x 1079 A (x 1079

Figure A5.4: The bifurcation diagram of canonical bistable switch and its phase-plane plots
for the indicated values of S for the ppMI network under OR-gate. The unstable node (red
dot) originates with one stable node (black dot) and merges with another stable node
leading to two SN bifurcation points. Parameters are listed in the Table S5.
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Figure A5.5: The inverted mushroom bifurcation and phase-plane plots for the indicated
values of S for the ppMI network with OR-gate configuration. Parameters are listed in the
Table S5.
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Figure A5.6: Phase diagrams in the pnMA network under OR-gate configuration. The
initial phases are indicated within each phase diagrams. The parameters for the initial

phases are listed in the Table S9.
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Figure A5.7: Cumulative distribution function (CDF) plots of the parameters J,s and Jgs
for different switches obtained from various networks. The resultant regulatory signs of S

to B for the networks in the top and bottom rows are (+,-) and (-,+), respectively.
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Table A5.1: One-parameter bifurcation diagrams of canonical and noncanonical bistable
switches. In the bifurcation diagrams the stable and unstable branches are indicated by the
black and red lines, respectively. The solid circles indicate the saddle-node bifurcation
point. The overlaid plot of the potential energy contours and bifurcation diagram is
presented adjacent to the respective bifurcation diagram. The potential energy was obtained
by integrating the effective force (for example Eq.(8) for the ppMI network) and the
bifurcation diagrams were generated from the potential energy. These bifurcation diagrams
were obtained from the ppMI and ppMISA networks and the parameters are listed in the

Table S5 and Table S6.
Switch . . .
Bifurcation diagrams
type
Bistable switches
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Table A5.2: The dynamical equations for all the networks in OR- and AND-gate
configurations.

Network OR-gate AND-gate
nnMI dA
dA _ _ — = + H H,z —y4A
2t - Jao + GasHas + gapHap — Va4 ccillg a0 T Gartastap ~Va
db _ _ — = ggo + gs1HzsHza — V1B
- = 9o + 9ssHas + ggaHzs — Vb B dt Y9po T Yp1lipstips — Vb
pnMI dA dA R
- — = + HiHz —v4A
2t Gaot GasHjis + gapHap — vah cciié Gao T JarHlasTas = Va
dB _ _ — = + HgcHgy — vpB
Tt = 9so + Gpstis + gpallga —vpB | dt Ypo T Gp17lBstiea — Vo
ppMI dA dA + -
- — = + Hi.H,z —y4,A
2t = Jao + gasHis + GasHas — val ccilltg Jao T Jarlldstian — Va
dB _ —= + Hi.Hz, —v,B
2r -~ 9so + gssHgs + gpaHga — VB | dt 9so T Ip1lipstisa = Vb
nnMA dA
dA . —— = Gao + 9arHasHiz — vah
ar = 9ao T ashas + 9apHip — Vah cciilg Gao T JarHlastas = Va
dB _ —_—= + Hz HY, —vpB
—7 = ko + 9gpsHys + ggaHis — VB dr 9o T Ypillpstipa = Vb
pnMA dA dA + o+
=2 = Guo + GarHisHiy — vad
. Gaot 9asHis + gapHip — vl ccilg a0 T GartiasTids ~ Va
dB _ —= + g HzcHZ , — v, B
2; = 9so + gpsHys + geaHis —vpB | dt 9ao T 9p1fpstips — Vb
pPpMA dA dA
2t Gaot 9asHis + gapHip — val g Gaot garHisHip — vaA
dB dB
;s t 9vsHgs + gpatga — VB ;s t 9s1HgsHgs — v B
nnMISA dA
dA _ _ — = gao + GarHasHig — V4A
ar = 9a0 T astas + gapHap = Vad cclilt? G40 T Garlastiap =~ Va
dB - _ — = HysHjH;
- = 9so + 9ssHps + 9paHpa ar _ 9so + gp1HpsHpalipp
—y,B
+ gpsHgs — VB Y
pMISA | dA + o
_ = Gao + garHisHig — vad
2t 9ao + gasHis + gapHap — VaA glt? a0 T JarHlastias — Va
dB - _ — = HysHH;
PTRRLL + 9psHps + gpaHpa dt _ 9so T 9m1Hpstpatlss
—y,B
+ gpsHgs — VB Y
npMISA | dA B ~ dA -
2t 9ao + 9asHas + 9apHap — VaA 2t 940 + 9artasHap — VaA
dB N _ dB P
;- 9eo + 9psHps + 9paHpa ;= ro + 9p1HpsHpaHpp
+ gppHag — V1B —y,B
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PPMISA |/, dA L
_ — = + Hi.H,;» — vV4A
qr a0 + gasHis + gapHip — vaA gg a0 T Jartiastian — Va
aB — = HiHg HE
dr 9so + gpsHgs + gpaHpa at 9B T 9e1pspallse
+ gssHgs — VB ~1bB
nNMASA dA
dA _ — = gao + gar HisHis — V44
qr - 9ao + gasHas + gapHip — vaA gg Yao T Jarblastiap — Va
dB 3 — = Hz.Ht HE
dr 9so + gpsHps + gpatga a9 T 9p1lipstsalice
+ 9gssHpp — VB ~ b
qr - 9ao + gasHis + GasHis — val cciig ~ a0 GarliasTan — ¥a
dB _ 22— o + gpiHpcHi HE
PTERRRLL + gpsHgs + gpaHga dat ~ 980 T gprlisTinatine
+ 9gssHsp — VB ~hbB
npMASA dA dA B
_ == = Guo + G HrsHis — vad
—— = gao + gasHis + gapHip — Va4 ar ~ 940 T Imllastids — Va
Cciilt? 4 _ 9so + 9s1HisHpAHp,
a 9o + 9psHas + gpaHga dt 5o B1TBSTBATBE
—v,B
+ 9gssHsp — VB vb
PPMASA | dA dA
qr - 9ao + gasHis + gapHip — vaA - 9ao + g HisHi — vaA
d_B: + ggsHps + gpaHp d_B: + gp1HasHp  HE
dt 9po T Ypslips T gpalipa dt 9po T gp1lipslipalipp
+ 9ppHgp — V1B Y

Table A5.3: Parameters and their chosen ranges. Parameters were sampled from
independent uniform distributions with the mentioned ranges.

Parameters Parameter types Range
Jao and ggo Basal synthesis rates 1-10
9as: IBs: 9B, IBA: IBB Maximal synthesis rates 1-100

Jas: Is: JaB: Jea /BB

Thresholds of

activation/inhibition

Using half-functional rule

Nas, Nps, NaB, Npa, BB

Hill coefficients

1-10

Yaand yg

Degradation rates

0.01-0.1
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Table A5.4: Jump pattern of the stable branch at the bifurcation points of reversible
canonical and noncanonical switches. The upward and downward jumps are represented by
+ and — sings, respectively.

Number of Number of
Switch | Saddle node . .
i . Jumps Bistable switches
ype points )
(N)
g N=2 I=1 <
£
= Bs (+) Bs (-)
©
c N=4 J=2 } !
4]
© < =
DBs (+,1) DBs (-,-)
J=0
N=2 Is
—
]
Inls (-,+)
% T
£ - 9P P
=2
(7p]
5 Msh (+,-) InMsh (-,+)
= -
2 G A g
S J=1
C
2
N=4 Bs-Is (+)
> <o
J=3 &1 ey
Bs-Inls (+,-,%)
J=0
O
Dls
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N=6

J=2
< D
Is-Msh (+,-)
¢ P
J=4 —
L
Inls-InMsh (-,-,+,+)
AN
|
Bs-Msh (+,-,+) Bs-Msh (-,+,-)
O 1
J=2 \‘
<
DBs-Is (+,+)
sl
J=4 § ©
<

DBs-Inls (+,+,-,+)
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Table A5.5: Parameters for different switches from the ppMI network under OR-gate.
These parameters are relevant for the representative bifurcation diagrams in the Figure 1d
and Table A5.1; phase-plane analysis in Figure 5.5-6 and A5.3-5 Figures; phase diagrams

in Figure 5.7a, Figure 5.8a, Figure 5.9a, Figure 5.9e and Figure 5.11.

© : : : Bistable- | DiStable-
8| "G | Twam | oo | ™0 | oo | et | el | GG | Mustroom | MEGET
§ | digram) | diagram) isola dingram) | ciagram)
g
Jao | 540796 | 2.30238 | 1.16189 | 3.91086 | 5.61338 | 2.14577 | 2.82458 | 8.00958 | 4.94922 | 3.38580
Jas | 98.5099 | 62.7262 | 60.1037 | 82.2862 | 39.7386 | 67.0659 | 38.8018 | 94.5969 | 51.3682 | 94.6726
Jap | 72.9167 | 16.2866 | 58.7307 | 60.5229 | 12.4514 | 51.2801 | 99.7156 | 87.5328 | 50.9559 | 44.9678
gpo | 3.33803 | 3.24908 | 6.08283 | 3.90089 | 5.41966 | 7.51982 | 4.44888 | 3.90556 | 9.61109 | 1.87407
gss | 67.1020 | 10.6801 | 25.6386 | 16.1169 | 43.8093 | 58.4625 | 94.4743 | 65.3754 | 59.7813 | 83.4666
gsa | 37.8199 | 73.9437 | 41.3745 | 78.2889 | 87.6818 | 46.7369 | 62.4992 | 42.0374 | 41.5308 | 93.6896
Jas 180.884 | 379.859 | 141.549 | 27.7697 | 101.614 | 118.419 | 42.3847 | 121.927 | 102.359 | 81.5759
IBs 118.768 | 68.4776 | 37.1898 | 128.319 | 75.1887 | 259.318 | 86.4997 | 148.646 | 115.949 | 46.7086
Jag | 763.437 | 739.303 | 595.305 | 670.519 | 2677.69 | 615.182 | 1237.12 | 535.278 | 1418.68 | 985.783
Jsa | 1243.46 | 682.014 | 141.538 | 1888.71 | 550.999 | 1036.18 | 737.882 | 1047.30 | 2254.29 | 2564.77
Nys 5 6 10 8 1 5 7 6 10 1
Ngs 6 9 3 7 10 8 2 3 3 10
Nup 7 9 3 10 9 10 5 9 10 9
nsa | 6 8 5 7 6 5 5 5 8 8
Ya 0.06515 | 0.03809 | 0.04834 | 0.06916 | 0.05790 | 0.07023 | 0.09215 | 0.09676 | 0.02535 | 0.02448
Vs 0.05701 | 0.09326 | 0.03587 | 0.07449 | 0.03365 | 0.06225 | 0.04864 | 0.08721 | 0.03913 | 0.09828
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Table A5.6: Parameters for different switches reported in the Figure 1d and Table S1
from the ppMISA network.

OR-gate AND-gate
» Dual Dual Dual »

940 5.17627 | 3.55117 | 8.25783 | 1.55466 | 5.39796 | 9.15053 | g4o 9.03108
Jas 27.3560 | 72.7125 | 48.0782 | 49.7661 | 57.1797 | 43.6249 | gu1 24.3663
9aB 95.8391 | 46.2017 | 22.2070 | 63.7841 | 65.2393 | 90.5569 | gz, 5.40892
9Bo 5.24728 | 5.48261 | 4.19034 | 5.90409 | 9.59969 | 9.73973 | g5 82.7562
9Bs 74.8802 | 31.0285 | 12.3761 | 56.6088 | 81.1651 | 69.9967 | J,s 85.3933
9Ba 71.1375 | 99.8927 | 77.8168 | 80.2127 | 29.0245 | 64.5581 | Jgs 40.1371
9BB 80.1445 | 23.0812 | 62.7681 | 96.4198 | 82.9614 | 21.9119 | J,p 782.615
Jas 143.634 | 246.624 | 132.961 | 54.7708 | 99.5336 | 86.8653 | Jp4 219.425
IBs 34.7550 | 170.819 | 85.8930 | 65.5468 | 162.465 | 107.753 | Jgg 215.229
JaB 759.522 | 1747.82 | 770.557 | 529.507 | 805.504 | 1245.86 | nys 1
IBa 982.583 | 1048.99 | 456.526 | 2196.10 | 840.440 | 4334.88 | ngg 2
IBB 1932.44 | 1286.44 | 1301.06 | 2369.74 | 2813.66 | 670.013 | nyup 3
Nys 3 3 8 3 5 10 Npa 7
Nps 1 9 7 8 2 5 Npp 8
NuB 5 4 10 3 2 6 Ya 0.07038
Npa 2 8 2 9 6 4 YB 0.05600
Npp 9 8 10 8 6 8

Ya 0.04370 | 0.05459 | 0.08468 | 0.02396 | 0.04630 | 0.02092

VB 0.07497 | 0.03899 | 0.09009 | 0.06929 | 0.03340 | 0.07324
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Table A5.7: Schematic bifurcation diagrams of reversible and irreversible bistable
switches with a maximum of three bistable regions. The reversible switches are presented
in the 2" column and irreversible switches on the left (S = 0), right (S = 1000) and both
sides of a particular switch are presented on the 4™, 6™ and 8" column, respectively. The
‘L’ and ‘R’ prefix and suffix represents the irreversibility on the left and right, respectively.
The shaded box represents the repetition of the bifurcation represented by the number serial
number of the bifurcation. The irreversible switches that were not considered are
represented by the empty boxes. Forward and backward facing switches are represented by
‘F’ and ‘B’ letters in the names of the switch.

. Irreversible Irrgversible Irreversible
SI Reversible SI bistable Sl bistable Sl bistable
No bistable No itch on left No switch on No itch
switch switch on le right switch on
(S=0) . both sides
(S=1000)
6 -
1sola (1s) L-BsB BsF-R L-Bs-R
el N g
2 ___ > 59 82 106
Istanle Forwar
(BsF) L-BsF
> \\_
3| <« 58 83 | —— 106
Bistable Back d -
ista (eBsgt): war BsB-R
N
4 AN 59 83 106
Inverted isola
(Inls)
NN TN N ~ "
_ - - |7 |—
Dual isola (DlIs) L-Dls R-Dls L-DIs-R
TN N o>
N N —_
6 | L (D] a |~~~ e | O )
Dual inverted isola L-DInls DInls-R L-DInls-R
(DInls)
</( .; = 10
.
T = 62 | = 86| == |4 |—
fDual bistable L-DBsF DBsF-R L-DBsF-R
orward (DBsF)
8 | 63 = 87 — | U ——
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S 2

55 78 122
InMsh-BsB

56 s 81 97 118
BsB-InMsh
O OO

57 77 98 121
Tripple isola

(Tis)

Table A5.8: Parameters for the phase diagram calculations with isola and inverted isola
initial phases in the ppMISA network under OR-gate (for the Figure 7g and Figure 8d in
the main text).

Isola phase | . [
Parameters (Figure 7g) |sc_)la phase
(Figure 8d)

a0 9.26266 8.53582
Jas 53.9575 15.2853
9aB Varied Varied
9IEo 9.92193 2.57871
IBs 39.8924 22.3152
JBa Varied Varied
98B 38.0415 28.6408
Jas 101.757 70.0372
Iss 24.9417 160.348
I 2624.14 1111.90
Jsa 545.969 4851.50
IsB 238.052 4190.46
Nys 6 3
Nps 6 10
Nap 9 6
Nga 7 3
Npg 3 1
Ya 0.08210 0.01237
Vg 0.03667 0.07217
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Table A5.9: Parameters for the phase diagram calculations of the pnMA network under

OR-gate (for the Figure A5.6).

Inverted
Parameters | Isola phase | . L S OEi mushroom
isola phase phase ohase

a0 8.62687 6.40066 3.79978 7.90062
Jas 39.2674 94.9022 45.2186 23.3619
9aB Varied Varied Varied Varied
9IBo 7.37762 2.05024 9.93726 4.46789
IBs 62.3360 77.9861 25.2221 93.2656
9BA Varied Varied Varied Varied
Jas 76.3361 726.918 69.3061 140.891
Jss 96.1479 123.081 210.264 49.9116
Jag 2040.48 1105.94 1006.39 1087.82
J5a 641.550 914.359 633.213 2307.20
Nys 3 5 8 6
Nps 9 6 10 8
Nap 4 1 3 7
Npa 8 9 9 7
Ya 0.09738 0.01660 0.09803 0.01216
VB 0.04797 0.08282 0.08474 0.05817
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