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CHAPTER 1 
 

Introduction: 
 

1.1 Chemical noise 

The main objectives of a living cell are to survive, respond to external conditions and 

passing its DNA to its progenies. How a tiny cell performs numerous functions has been a 

central question in biological sciences. The mechanism of gene expression, by which 

information encoded inside DNA translates into a specific protein, is a key process in 

maintaining various cellular functions. The change in the expression level and subsequent 

post-translational modifications of proteins allow the cell to carry out different 

physiological processes. Physiological processes are often triggered by external cues and 

membrane bound receptors transmits the extracellular signals to the nucleus via intra 

cellular signalling pathways leading to change in the expression level of the target genes. 

The complex process of gene expression and subsequent post-translational modifications 

are well coordinated by the machinery of gene and protein regulatory networks of 

biochemical reactions. Steps of information flow from cell surface to nucleus is tightly 

regulated by regulatory proteins. Numerous numbers of transcripts and proteins are being 

produced inside a cell in every moment. Network of biochemical reactions are responsible 

for orchestrating the production and post production regulation of the macromolecular 

species. In a particular living organism, evolution has defined the network of chemical 

reactions. Thus, expectedly the physiological response of a population of cell of a particular 

organism under uniform environment must be identical as they are genetically identical.  

Quantification of promoter activity and as well as protein abundance during gene 

expression by fluorescent probes allowed researchers to measure gene expression at the 

single cell level1,2,3,4. The findings from these experiments were strikingly different from 

the expectation. In a population of genetically identical cell grown in a homogeneous 

environment, gene expression was found to be variable leading to population heterogeneity. 

Consequently, the probability distribution of the expressed protein showed a significant 

width2,5. The variable protein production in a population of genetically identical cells was 
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termed as gene expression noise. Certainly, the observed cell-to-cell variation of the 

expressed gene was not due to the variation of the genetic background of these cells or due 

to the environmental factors. These experiments posed a serious question on the 

conventional understanding of kinetics of chemical reaction where the outcome of the 

reaction in a macroscopic scale is deterministic. However, in a tiny cell volume, the 

abundance of various reactants is finite and thus the macroscopic laws of chemical reactions 

may not be applicable in the context of chemical reactions inside a living cell6. The 

fluctuations of finite number of chemical species during the gene expression cannot be 

ruled out due to the microscopic to mesoscopic range of abundance of the molecular 

species. For example, in a typical gene there are an only a few numbers of promoter 

initiation sites available and typically the average abundance of mRNA ranges in between 

1-100 molecules per cell. Thus, any fluctuations of these finite numbers would result a 

consequential fluctuation in the downstream processes. In order to explain these new 

experimental findings mathematical models were proposed taking into consideration of the 

probabilistic nature of chemical reactions involving finite number of chemical species.  

Simple model of gene expression was proposed to explain the variability in protein 

abundance in prokaryotic cells such as Escherichia coli7 (Figure 1.1). In the model 

transcripts are produced from constitutively active gene, mRNAs are translated into protein 

and both mRNA and protein are degraded. While the transcription rate or the production 

rate of mRNA is constant and the translation rate or the production rate of protein is directly 

proportional to the abundance of mRNA. The decay of mRNA and protein were assumed 

to be first order process.  

 

Figure 1.1. Schematic diagram for gene expression model for E. coli. The rate constants 

of various reactions are indicated accordingly. 

Inherent randomness of the chemical reactions involving finite number of molecular 

species makes the reaction events stochastic. Therefore, the accurate modelling of the gene 
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expression requires probabilistic description of the model. The chemical master equation 

(CME) of the simple model of gene expression (See Chapter 2) is given as, 

𝑑𝑃(𝑛𝑚, 𝑛𝑝; 𝑡)

𝑑𝑡
= 𝑘𝑚𝑃(𝑛𝑚 − 1, 𝑛𝑝; 𝑡) − 𝑘𝑚𝑃(𝑛𝑚, 𝑛𝑝; 𝑡)

+ 𝛾𝑚(𝑛𝑚 + 1)𝑃(𝑛𝑚 + 1, 𝑛𝑝; 𝑡) − 𝛾𝑚𝑛𝑚(𝑛𝑚, 𝑛𝑝; 𝑡)

+ 𝑘𝑝𝑛𝑚𝑃(𝑛𝑚, 𝑛𝑝 − 1; 𝑡) − 𝑘𝑝𝑛𝑚𝑃(𝑛𝑚, 𝑛𝑝; 𝑡)

+ 𝛾𝑝(𝑛𝑝 + 1)𝑃(𝑛𝑚, 𝑛𝑝 + 1; 𝑡) − 𝛾𝑝𝑛𝑝𝑃(𝑛𝑚, 𝑛𝑝; 𝑡) 

1.1 

 

For the purpose of calculating steady state gene expression noise in the protein, the 

chemical master equation for the model was transformed into linear Fokker-Planck 

equation and with the help of fluctuation-dissipation theorem the steady state noise in the 

protein was calculated. The squared coefficient of variation (CV) of protein abundance at 

steady state is given by7 

𝐶𝑉𝑝
2 = (

𝜎𝑝
〈𝑛𝑝〉

)

2

=
1

〈𝑛𝑝〉⏟
𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑛𝑜𝑖𝑠𝑒 𝑓𝑟𝑜𝑚 
𝑏𝑖𝑟𝑡ℎ−𝑑𝑒𝑎𝑡ℎ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

+
1

〈𝑛𝑚〉
∙

𝛾𝑚
−1

𝛾𝑚
−1 + 𝛾𝑝

−1
⏟          
𝑁𝑜𝑖𝑠𝑒 𝑓𝑟𝑜𝑚 𝑚𝑅𝑁𝐴 

𝑡𝑜 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

 
1.2 

𝜎𝑝 is the standard deviation of protein. 〈𝑛𝑝〉(= 𝑘𝑝𝛾𝑝
−1〈𝑛𝑚〉) and 〈𝑛𝑚〉(= 𝑘𝑚𝛾𝑚

−1) are the 

average abundances of protein and mRNA, respectively and are same as the steady state 

solution of the deterministic rate equations. The first term on the right-hand side of the 

above equation is due to the individual birth and death processes of protein alone and 

expectedly it follows Poisson statistics. The second term is due to the noise originating 

from the transcription process and the transcriptional noise critically depends on the 

average abundance of mRNA and the relative lifetimes of protein and mRNA. 

Several important conclusions emerged from the theoretical model: (1) the variability in 

protein is mostly due to the mRNA; (2) protein is produced from mRNA in a burst like 

manner, known as translational bursts, causing major variability in protein; and (3) protein 

noise strength (𝜂 = 𝜎𝑝
2 〈𝑛𝑝〉⁄ = 1 + 𝑘𝑝𝛾𝑝

−1(𝛾𝑚
−1 (𝛾𝑚

−1 + 𝛾𝑝
−1)⁄ )) depends linearly on the 

translational rate (𝑘𝑝) not the transcription rate (𝑘𝑚) consequently the noise strength 

increases linearly with the average protein abundance (〈𝑛𝑝〉) when 𝑘𝑝 is varied and is very 

weakly dependent on 〈𝑛𝑝〉 when 𝑘𝑚 is varied to increase protein abundance. 
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The predictions of the model were verified experimentally by single-cell quantification of 

protein using fluorescent reporter assays in prokaryotic bacteria Bacillus subtilis by 

Ozbudak et al2 and also in Escherichia coli by Elowitz et al8. These experiments found the 

linear dependence of 𝜂 with the 〈𝑛𝑝〉 when 𝑘𝑝 is increased therefore supporting translational 

bursting mechanism of protein production. Translational bursting hypothesis was later 

verified directly by real-time counting of protein molecules in individual E. Coli cell9. But 

experiments on eukaryotic systems, e.g., in yeast cells, found that 𝜂 behaves differently 

with 〈𝑛𝑝〉  when 𝑘𝑚 is varied4. This challenged the gene expression model proposed by 

Thattai et al. To account for the experimental observations on eukaryotic systems, several 

authors proposed that mRNA could also be produced in a burst like manner, terms as 

transcriptional bursts. 

 

 Figure 1.2. Schematic diagram for gene expression model with transcriptional noise. Gene 

switches between ‘on’ and ‘off’ state. From ‘on’ state it transcribes into mRNA which 

translates to from protein. The rate constants of various reactions are indicated accordingly. 

 

Transcription of gene to mRNA needs access of DNA by several different types of 

molecules, e.g., transcription factor etc. and due to the higher order packing of the DNA 

molecule in higher organisms, it is highly unlikely that the gene will be easily accessible 

and thus will be constitutively active. Therefore, one assumes that gene can randomly 

switch back and forth between inactive and active states (Figure 1.2) and while only in the 

active state it produces mRNA molecules leading to random production kinetics of mRNA 

called transcriptional bursting. Raser and O’Shea and Paulsson separately determined the 

variability in protein in the gene expression model with transcriptional bursts4,10. They 

applied the linear noise approximation, also known as van Kampen’s Ω-expansion, to get 

the moments at the steady state. The protein noise is given by 



  Chapter 1 

5 | P a g e  
 

𝐶𝑉𝑝
2 =

1

〈𝑛𝑝〉⏟
Intrinsic noise:

Poisson

+
1

〈𝑛𝑚〉
∙

𝛾𝑚
−1

𝛾𝑚−1 + 𝛾𝑝−1⏟          
Extrinsic noise from

mRNA

+
1 − 𝑃𝑜𝑛
〈𝑛𝑔〉

∙
𝛾𝑚
−1

𝛾𝑚−1 + 𝛾𝑝−1
∙

𝛾𝑔
−1

𝛾𝑔−1 + 𝛾𝑝−1
∙
𝛾𝑔
−1 + 𝛾𝑝

−1 + 𝛾𝑔
−1𝛾𝑝

−1 𝛾𝑚
−1⁄

𝛾𝑔−1 + 𝛾𝑚−1⏟                                      
Extrinsic noise from gene activation−deactivation

 

1.3 

  

The 〈𝑛𝑔〉 indicates the average number of active gene. 𝑃𝑜𝑛 is the probability of the gene to 

be in the active state and given by 𝑘𝑜𝑛 (𝑘𝑜𝑛 + 𝑘𝑜𝑓𝑓)⁄ . Whereas, 𝛾𝑔 (= 𝑘𝑜𝑛 + 𝑘𝑜𝑓𝑓) is the 

average lifetime of the active gene. The different sources of noise contributions are 

mentioned at the bottom of the equation. The mRNA noise is given by, 

𝐶𝑉𝑚
2 =

1

〈𝑛𝑚〉
+
1 − 𝑃𝑜𝑛
〈𝑛𝑔〉

∙
𝜏𝑔

𝜏𝑔 + 𝜏𝑚
 1.4 

which is very similar to the protein noise expression without the gene activation-

deactivation steps (Figure 1.1). The model predicts that depending on the relative 

magnitude of activation and deactivation rates there are different types of behavior of noise 

strength with the average protein noise possible as transcription rate is varied. The 

transcriptional bursts were observed experimentally by directly counting the number of 

mRNA molecules over time in living amoeba Dictyostelium cells and in mammalian 

cells11–13. As predicted by stochastic simulations, these bursts in mRNA causes positively-

skewed non-Poissonian statistics, of mRNA. Although simple on-off model of gene 

provides some light on noise in gene expression but the mechanism through which gene 

becomes active or active is still unknown. Due to the transcriptional bursting, even with 

average bigger size protein noise in eukaryotic cells is larger than the noise in eukaryotic 

cells. In fact, the cells from higher organism show more protein variability compared to 

lower organism due to higher transcriptional noise arises from complex packing of DNA. 

The analytical calculation of CME for protein reveals that protein distribution follows a 

Gamma distribution14. 

The stochastic trajectories of gene expression and consequent cellular heterogeneity was 

found due to both intrinsic and extrinsic sources of noise inside a living cell. Collectively 

these two sources of noise are called as ‘chemical noise’15–17. 
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1.1.1 Intrinsic noise 

Low copy number of reacting species inside the tiny volume of a living cell leads to discrete 

firing of reactions events leading to irregular outcome of chemical reactions leading to 

stochastic trajectories. Such noisy outcome is purely due to the involvement of finite 

number of molecular species and therefore it is often termed as ‘finite number effect’. The 

finite number effect is purely intrinsic to a particular chemical reaction and thus the noisy 

behavior is said to be due to the intrinsic noise of the chemical system. Based on the 𝐶𝑉 ∝

1 √𝑁⁄  scaling law of noise with N number of molecular species, the magnitude of intrinsic 

noise increases with decreasing molecular abundance.  

 

1.1.2 Extrinsic noise 

In addition to the intrinsic stochasticity, cell to cell variation of external factors also 

contribute to the stochasticity of chemical reactions. The extrinsic noise includes global 

variations in the factors that do not directly correspond to a specific chemical reaction. Such 

factors can be the variations in cellular volume, copy number variations of transcription 

factors, ribosome and organelle contents etc. Swain et al.9 proposed and Elowitz et al.18 

developed a sophisticated method to measure the origins of gene expression noise. In this 

dual-reporter approach, the transcription of two genes is driven by identical promoters, 

resulting in the production of two distinct but otherwise nearly similar proteins. In the 

absence of intrinsic noise, the amount of both gene products, proteins in a cell would always 

be the same if extrinsic sources of noise affect both promoters in a same manner. This 

expressly assumes that both genes are translated and transcribed with the same efficiency 

under the same extrinsic conditions and that both proteins degrade at the same pace. As a 

result, the intrinsic noise is quantified by the size of the variation in protein levels across a 

large population of cells, whereas the sum of intrinsic and extrinsic noise characterises the 

size of the overall fluctuations. 

 

1.2 Complexity in biological networks 

Biological complexity arises at different levels of regulation. For example the information 

flow from DNA to proteins which govern the process of metabolism for E.coli is presented 

in the Figure 1.3. Around 4,000 genes are encoded into proteins or enzymes that catalyse 
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approximately 1,000 biochemical reactions. Each step of protein production is controlled 

by multiple and overlapping regulation loops of activator or repressor. These biochemical 

reactions dictate different cellular functions. Thus, the overall molecular networks look 

remarkably similar to the wired diagram of any modern electronic circuits. Instead of 

resistor, capacitors and transistor hooked together by wire, here genes, proteins, metabolites 

interacting with each other through chemical reactions.  

 

 

  

Figure 1.3. Complex cellular networks for metabolism in E. Coli. Dashed line indicates 

the regulatory interactions.  

Apart from network complexity each biochemical processes are precisely modelled to work 

under specific set of physio-chemical conditions. Like slight change in the temperature, pH 

or the concentration would impact largely in the reaction outcome affecting the target 

functions. As an example, in case of the cellular differentiation during the cell cycle, a 

change in the experiment conditions, e.g., initial conditions, stimulus, can be resulted in a 

different cell, even can show counter-intuitive patterns. This is due to the dynamic 

characteristics and non-linearity of this process. There is additional level of complexity like 

organisation of different cell types which form tissues and leading to an organ.   

Recent advancement in molecular biology have been undoubtably taken our knowledge of 

biological systems to the next level. However, as mentioned above only genes, protein and 
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their interconnections alone are not sufficient to describe all the complexities in 

physiological process. Thus, a system level analysis of biological systems is needed to 

provide a deeper insight into these biological phenomena.  

 

1.3 Systems biology and mathematical modeling. 

The increasing amount of data collected on individual cellular components and a better 

understanding of these interactions has led to the emergence of systems biology as a new 

interdisciplinary field that regards biological processes as dynamic networks. In general, 

this investigates the complex relationships within such systems using mathematical 

techniques and computer simulations, with the ultimate goal of developing new, improved 

biological systems for practical uses like the efficient prevention or treatment of diseases19–

21. Here the biological networks are abstracted as a ‘model’. The model basically translates 

the information of the temporal evolution of its state in some formal form. It allows to 

visualize and predict the cause and effect of the biological system with time through 

different computer simulations. With the help of modeling, one can rapidly analyse the 

effect of different experimental conditions without performing complex and costly 

experiments. These models can be tweaked accordingly to prior known experimental facts. 

Further analysing of the model helps to understand with specific part of system which 

contribute the most for the desired properties of interest. Therefore, the goal of biological 

network modelling is to accurately encode the knowledge of biological systems.  

To study biological systems, several modeling and simulation techniques are used. The 

deterministic approach, which considers the concentration of molecular species, has the 

capacity to forecast the dynamic behaviour of biochemical systems. The law of mass action, 

which asserts that the rate of a reaction is directly proportional to the concentration of 

reactant molecules, is frequently applied in deterministic approaches. A set of ordinary 

differential equations (ODEs), sometimes known as reaction rate equations, thoroughly 

describes the time evolution of a biochemical network (RREs). As a result, an analytical or 

numerical method can be used to generate the system's full dynamic image given an initial 

condition. Further, the behaviour of ODE can also be studied using a variety of well-

developed methods, including as stability and bifurcation analysis22. 
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1.4 Network motifs  

As already mentioned in the Section 1.2, a living cell is basically a miniature biochemical 

machinery which responds towards its environment in a sophisticated manner in order to 

sustain and reproduce. The cell membrane is densely packed with different cellular 

receptors which are sensitive to various external ques like temperature, pressure, osmotic 

stress. A cell's capacity for information processing is carried out via complex networks of 

interconnected proteins and genes, an illustration is portrayed in Tyson et al. paper23. Now 

the study of overall information processing unit is a tedious task to perform due to large 

number of components which result in different reaction time scales, abundances. Thus, 

one can look in to different alternatives, apart from studying the such reaction networks at 

whole. If these networks are looked closely one can find several repeating sub units, these 

are termed as ‘network motifs’24,25. Each of these sub-units, defined by a certain 

arrangement of interactions between nodes connected with edges, may represent a structure 

that effectively performs a specific function. These network motifs received a lot of 

attention recently as a practical idea for identifying the structural design principles of 

complicated networks. Though these network motifs can give a thorough understanding of 

the overall network's functional capabilities, but detecting them computationally is 

challenging. 

Holland and Leinhardt first in 1970 introduced the theory of network motifs by introducing 

the idea of a triad census of networks26. They proposed techniques for counting alternative 

subgraph configurations and determining if the subgraph counts deviate statistically from 

what is predicted in random networks. Uri Alon and his team in 200224, first generalised 

the idea when network motifs were found in the gene regulatory networks of E. coli. 

Numerous research projects on the topic have been carried out since then. While some 

works are concentrated on the computational theory of network motifs, other studies 

concentrate on their biological applications. 

A network motif often consists of nodes, which generally represent macromolecules like 

genes, proteins, transcription factors, etc and vertices termed as ‘edges’, which describe the 

nature of interactions between different nodes. Depending upon the type of interactions and 

the arrangement of nodes these network motifs show different functional capabilities.  

 

 



Introduction   

10 | P a g e  
 

1.4.1 Feedback loops 

The most common interactions between these systems are the feedback loops. As the name 

suggest, in these motifs the output data is fed back to the system’s input. Positive feedback 

occurs when output speeds up the transformation input and thus intensify its own 

production, i.e.; input and output both helping each other.  In negative feedback motif, the 

output counters the input (Figure 1.4).  

Negative feedback systems make up the majority of biological feedback systems. When a 

system's output reduces or dampens the processes that result in its output, the system 

produces less output. Thus, negative feedback loops (NFL) typically enable systems to self-

stabilize. A crucial regulating mechanism for maintaining the body's homeostasis is 

negative feedback27. NFL can also generate oscillatory responses28,29. Various core 

regulatory network motifs in circadian clock systems30, cAMP signalling31, NF-ƘB 

signalling32,33, In general, NFL attenuates noisy input signals by suppressing the signal 

amplitudes. Whereas, positive feedback loops (PFL) amplify signals27,34, thus causes 

instability. Another aspect of PFL is multistability. System with a PFL and ultrasensitive 

response architecture has the capacity to generate digital switch responses, which is termed 

as ‘bistability’35–38. Upon increasing the number of PFLs these responses can show 

tristability39–41 or even multistability. With this switch like phenomena, cell regulates 

crucial decision-making process for example is cellular differentiation42–44, cell cycle45–48 

cellular memory49,50.  
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Figure 1.4. Schematic diagram of recurrently found network motifs. Different colored 

circles denotes different nodes and vertices with different arrow heads represents different 

interactions. The normal arrow represents activation, the ‘T’ shaped arrow head represents 

inhibition and the rounded arrowhead can be either activation or inhibition. 

 

1.4.2 Feed-forward loops 

The feed-forward loop (FFL) is one of the recurrently found network motifs. In FFL 

network motif, a regulator, X (input node), controls Z (output node) in two ways, one 

directly and other indirectly by controlling Y which in turn controls Z. These FFLs have 

eight different structural forms since each of the three interactions in the FFL can either be 

an activation or a repression. Network topologies where both the direct arm and the indirect 

arm (via Y) from X have similar function of acting activator or repressor on Z are labelled 

as ‘Coherent’ and topologies with two dissimilar arms are labelled as ‘Incoherent’ feed-
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forward loops. In many cases, X and Y work together as roughly AND or OR gates to 

control Z. The coherent type 1 FFL (C1-FFL) and the incoherent type 1 FFL (I1-FFL) are 

the two most prevalent FFLs. The C1-FFL with an AND gate functions as both a 

persistence detector and a ‘sign-sensitive delay’ element. I1-FFL can work as a pulse 

generator and response accelerator. The I1-FFL has the capability to work as a fold-change 

detector for a specific range of parameters, where response dynamics strictly depend only 

on the fold-change of the input signal rather than the absolute change51. Examples of other 

network motifs are autoregulations52, cascades, interlinked PFLs and NFLs, and integrated 

FFLs53.  

 

1.5 Performance of reaction networks under chemical noise  

Now the discussion lies on how the inherent cellular noise affects the function of different 

gene regulatory networks. A living cell is programmed in such a way that it can adapt to 

any changes in its environment by gathering and processing the information. The same set 

of genes are present in all the cells in the human body, yet they code for a wide variety of 

cell types. The most accepted conclusion regarding this is that distinctively different stable 

states of the underlying gene regulation network typically result in qualitatively different 

cell morphologies (Citation). Cells are forced to differentiate into these different 

phenotypic states by the developmental programme. This switching can occasionally be 

hampered by the random intrinsic and extrinsic fluctuations54–56. These inherent 

fluctuations can also force the system to make binary cellular decisions57. For example, a 

simple signalling network with fused positive and negative feedback loops produces a 

bimodal distributed downstream signalling product instead of an anticipated intermediate 

value. Another example, where noise has an impact on cellular dynamics is genetic 

oscillators, i.e., the circadian clock. Even when deterministic rate equations predict a stable 

steady state, genetic oscillator networks can produce oscillations in the presence of cellular 

noise58. This shows how noise can cause a system to leave a stable fixed point and begin a 

new cycle, which is a manifestation of the ‘stochastic resonance’ phenomena. By adjusting 

the level of noise, the incidence of oscillations can also be controlled.  
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1.6 Objective of the thesis  

A living cell must be dependable and robust in order to respond appropriately to diverse 

internal and external cues and to ensure their long-term survival. These two crucial 

characteristics of biological systems are hindered by the stochasticity of chemical reactions 

emanating from both intrinsic and external sources. Typically, this results in a population 

heterogeneity of many cellular features that is of little consequence, such as 

desynchronization in oscillatory response59 and variability in important signalling events 

during the cell cycle60. However, the heterogeneity has occasionally been discovered to be 

advantageous for living things61,62. For instance, under stress, the gene expression noise 

enables single-cell organisms to quickly adapt to the new environment. Ultimately, this 

enables the organisms to survive and even thrive in an adverse environment through 

phenotypic diversity63,64. Thus, apart from already well investigated gene expression noise, 

it is interesting to study the noise propagation in other regulatory reactions which are 

equally essential in maintaining proper cellular functions. This thesis work mainly focused 

on the study of chemical noise propagation and its effect on the functional properties of 

such regulatory reaction networks.  

 

1.6.1 Previous work 

Theoretical and computational models of gene expression noise were able to quantitatively 

explain many experimental observations on protein noise by using probabilistic 

descriptions of chemical events. These models have emphasised the importance of 

differences in the average protein and mRNA lifetimes, as well as translational and 

transcriptional bursts in the noise of gene expression as discussed in Section 1.1. Further 

research was carried out to understand how feedback regulations affect the attenuation or 

amplification of biochemical noise. Early research showed that whereas positive feedback 

amplifies noise, negative feedback has the potential to reduce noise. Later calculations, 

however, showed that PFL also has the capacity to do so with maintaining higher sensitivity 

toward the incoming signal as compared to NFL 65. This study further extended to analysis 

of role of different network topology in noise propagation (Citation). Like many gene 

regulatory networks found to have multiple positive or negative feedback loop and both 

PFL/NFL interlinked as core regulatory motif. Parallel arrangements of interconnected 

positive feedback loops are found to be better topology to efficiently reduce chemical noise 
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as compared to its serial analogue66. More recent study also includes the epigenetic controls 

of gene expression noise, where effect of nucleosome positioning, TATA box binding 

affinity and transcription factor binding sites have all been further investigated in 

prokaryotic and eukaryotic systems67,68.  

 

1.6.2 Layout of thesis 

In chapter 2, the methodologies were briefly explained that were used to study the 

stochasticity in chemical reaction networks.  The intrinsic stochasticity in a chemical 

reaction network was quantified by determining the steady state variance or covariance of 

the chemical species of interest. Thus, both analytical and numerical routes to determine 

various statistical quantities of chemical species was used. In this chapter, the analytical 

method of system size expansion of the chemical master equation was first outlined that 

allows to quantify statistical quantities. Next, the numerical method of Gillespie’s 

stochastic simulation algorithm was summarised that has been used extensively in various 

chapters. Finally, recently developed pseudo-potential energy based bifurcation analysis 

method was explained which was further tweaked to determine the effect of extrinsic noise 

on the heterogeneity of bistable response. 

The quantitative and qualitative nature of chemical noise propagation in biochemical 

reaction networks depends crucially on the topology of the networks. Multisite reversible 

phosphorylation-dephosphorylation of target proteins is one such recurrently found 

topology that regulates a host of key functions in living cells. In chapter 3, the stochasticity 

in multistep reversible phosphorylation /dephosphorylation reactions were analytically 

calculated. Using linear noise approximation, the steady state variance of phosphorylated 

species in order to investigate the effect of mass action and Michaelis-Menten kinetics on 

the noise of phosphorylated species were determined. The dependence of noise on the 

number of phosphorylation sites and the equilibrium constants of the reaction equilibria 

was further probed to investigate the chemical noise propagation in the multisite 

phosphorylation chain. 

Cells often encounter a plethora of external and internal signals in a non-sustained pulsatile 

manner with varying amplitude, duration and residual value. However, the effect of signal 

pulse on the regulatory networks is poorly understood. In chapter 4, pulse induced 

population inversion kinetics was investigated in bistable switches generated either by 
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mutual activation or by mutual inhibition motifs to gain a quantitative understating of pulse 

processing by noisy chemical reactions involved. Population inversion and its maintenance 

required a proper tuning of all three signal parameters. From the investigation it was 

concluded that a bistable switch originating from mutual activation loop is found to be less 

susceptible to spurious signals as compared to the mutual inhibition loop. 

Due to the extrinsic source of heterogeneity in isogenic cell populations, the strength of 

regulatory interactions in similar regulatory motifs may vary from one cell to another. This 

variability in the strength of regulatory interactions may result in different qualitative 

behaviors. In chapter 5, the robustness of such network topologies attaining bistable 

responses in presence of extrinsic noise was investigated. Here, total 14 different two-

component positive feedback loop (PFL) networks were worked out, where the PFL was 

achieved either by a mutual activation or a mutual inhibition loop topology and both the 

components(genes/proteins) are regulated by a common regulator. Using pseudo potential 

energy based high-throughput bifurcation analysis, by sampling millions of random 

parameter combinations, we found out that these PFL networks with dual signing arms are 

capable of generating a variety of noncanonical bistable switches. These noncanonical 

switches may consist of one or multiple bistable regions that originate from the fusion of 

multiple canonical bistable switches in different orientations. We found that the mutual 

inhibition network with coherent signaling and mutual activation network with incoherent 

signaling generated both canonical and noncanonical responses. Whereas, other network 

topologies were more robust towards any variability in their regulatory interactions, 

resulting in only canonical responses. The occurrence probabilities showed that 

noncanonical switches such as isola and mushroom are highly probable in randomized 

parameter conditions. The phase diagrams of these switches unveiled that the feedback 

strengths of the PFL dictated the transition from one switch to another.  

The functions of a living cell rely on a complex network of biochemical reactions that allow 

it to respond against various internal and external cues. The global network topology of 

these gene regulation networks is an intriguing feature.  Although the propagation of 

chemical noise in biological reaction networks involved in small regulatory motifs has been 

extensively studied in the literature, but investigation of stochasticity in a generalised 

network is sparse. In the chapter 6, chemical noise was computationally investigated in 

these global reaction networks with democratic (Chapter 6a) and autocratic (Chapter 6b) 

architecture. The effects of the qualitative and quantitative nature of interactions between 
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nodes(genes/proteins) on the propagation of intrinsic noise in the network were extensively 

studied. In the case of democratic network, an ultrasensitive switching of average was 

found with an increased number of inhibitory signals. This led to a sharp transition of 

intrinsic noise and the intrinsic noise exhibits a biphasic power-law scaling with the 

average. Whereas in autocratic network architecture, an unconventional scaling of noise 

with average abundance was found. Here the noise passed through a minimum, suggested 

that the network may be noisy at both low and high abundance. The bursty kinetics of the 

trajectories at a higher number of activatory interactions were found to be responsible for 

this scaling. 

 In last chapter, the future scope of the research work was discussed. A pulsatile signal was 

used investigate the difference between the transition kinetics for a bistable system 

originating two different network topologies. This work can be extended further with other 

types of input signals and network topologies with noncanonical responses.  The work on 

the effect of extrinsic noise on the heterogeneity of bistable switches can be extended to 

tristable switches for suitable network motifs with additional feedback loops using our 

automated method. Further, the mass action rate law of chemical reactions was used to 

model the generalized networks to accurately capture the effect of intrinsic noise using 

Gillespie’s SSA. In the future, it will be worthwhile to investigate the propagation of noise 

in networks with nonlinear rate laws using approximate simulation methods such as the 

chemical Langevin equation. 
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CHAPTER 2 
 

Methodology 
 

2.1 Chemical Master Equation (CME) 

A realistic strategy to describe the random and discrete nature of biological chemical 

reaction is stochastic kinetics, which provides a probabilistic description of chemical 

reactions.  In stochastic kinetics, the state of a system is represented by a population vector 

which contains the information about the abundance of each species involved a coupled 

chemical reaction system. A reaction event leads to change in the state of the population 

vector according to the stoichiometry of the chemical reaction. The foundation of stochastic 

kinetics lies on the propensity function for each reaction, which indicates the likelihood of 

a specific reaction occurring in the upcoming infinitesimal time period. This can be derived 

based on the Markov property of biochemical reactions. The Chemical Master Equation 

(CME) is a full mathematical formulation for expressing the time evolution of the system 

state. The CME describes the time evolution of probability of a system having a specific 

number of molecular species. 

Consider, a homogeneous chemical system in a volume, Ω, consisting 𝑁 and 𝑅  number of 

different chemical species and chemical reactions, respectively. The state of the system at 

a time 𝑡 is defined by the state vector 𝑿(= [𝑛1, 𝑛2, … . , 𝑛𝑖 , … . . 𝑛𝑖𝑚𝑎𝑥
]). Here, 𝑛𝑖(𝑡) is the 

molecular abundance of species 𝑖 at time 𝑡. Considering ν𝑗  corresponds to the change in the 

state vector for the 𝑗th reaction, the time evolution of the probability density function, 

𝑃(𝑿; 𝑡),  can be given by the CME below: 

𝑑𝑃(𝑿, 𝑡)

𝑑𝑡
= ∑[𝑎𝑗(𝑿 − ν𝑗)𝑃(𝑿 − ν𝑗 , 𝑡) − 𝑎𝑗(𝑿)𝑃(𝑿, 𝑡)]

𝑅

𝑗=1

 2.1 

 

The summation over the first term on the right-side accounts for the probability of arriving 

to a state 𝑿 during an infinitesimal time interval and this probability is basically the sum of 
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probabilities of leaving from (𝑿 − νj) state to 𝑿 state. The second term in the CME 

represents the probability of leaving the state 𝑿. 

Alternatively, the CME can be represented by the use of step operator as  

𝑑𝑃(𝑋, 𝑡)

𝑑𝑡
= Ω ∑ (∏ 𝔼−𝑆𝑖𝑗  

𝑁

𝑖=1
− 1) 𝑓𝑗(𝑥, Ω)𝑃(𝑋, 𝑡)

𝑅

𝑗=1

 2.2 

 

Where, 𝑓𝑗 is the transition rate of the j-th reaction. The macroscopic concentration vector 

is represented by 𝑥 = 𝑋 Ω⁄  . 𝑆𝑖𝑗 is the element of the stoichiometric matrix in which the 

element 𝑆𝑖𝑗 gives the stoichiometric coefficient for species 𝑖 in the  𝑗th reaction. 𝔼−𝑆𝑖𝑗 is a 

step operator which removes 𝑆𝑖𝑗 from the 𝑖th species in the  𝑗th reaction. For example, 

𝔼−𝑆23𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1, 𝑥2−𝑆23, 𝑥3) 

 
2.3 

Now, the direct application of CME, is constrained by the fact that the complete probability 

distribution of a biological system over time can only be determined for a simple chemical 

system. Furthermore, analytical solution to the master equation may not be possible for 

reactions with nonlinear rates. Thus, the exact solution of CME is affected by the ‘curse of 

dimensionality’, which means that the number of degrees of freedom required for an 

accurate approximation grows exponentially with any increase in the number of 

components of the biological system. For instance, if we restrict the copy numbers to a 

maximum of 10 molecules per species in a relatively modest system with only three species, 

there will be 103 states, which results in 103 ODEs that must be solved in order to get the 

answer.  Nevertheless, several approximations on CME have been established to obtain 

approximate analytical statistical description of the system. Further, there are simulation-

based algorithms which mimics the stochastic kinetics. 

 

2.2 van Kampen’s system size expansion 

In chapter 3, we used van Kampen’s system size expansion on the CME in order to calculate 

steady state fluctuations in the phosphorylated species in multisite phosphorylation-

dephosphorylation chains. This method have been extensively used to calculate the gene 

expression noise and noise in other biochemical reactions1–3. 

https://en.wikipedia.org/wiki/Stoichiometry#Stoichiometry_matrix
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The main ansatz behind the van Kampen’s system size expansion4 is that the variance of 

the steady-state probability distribution of the individual population scales with the system 

size. Copy number of the 𝑖th species can be written as a sum of its ‘deterministic’ value with 

concentration, 𝜙𝑖 , and a random variable 𝜉 with a scaling factor Ω1/2.   

𝑋𝑖 = Ω𝛷𝑖(𝑡) + Ω1/2𝜉𝑖 

 
2.4 

That is, 𝑃(𝑋, 𝑡) will have a sharp peak location at Ω𝛷 and with a width of Ω1/2. So, the Ω𝛷 

is the ‘macroscopic’ part and Ω1 2⁄ 𝜉 is the fluctuating part of 𝑋. Accordingly, the probability 

distribution of 𝑋 now became the probability distribution, 𝛱 of  𝜉. 

𝑃(𝑋,  𝑡) = 𝑃(Ω𝛷 + Ω1/2𝜉, 𝑡) = 𝛱(𝜉, 𝑡) 2.5 

Now following the transformation rules, 

𝜕𝛱

𝜕𝜉
= Ω1 2⁄

𝜕𝑃

𝜕𝑋
 

𝜕𝑃

𝜕𝑡
=

𝜕𝛱

𝜕𝑡
− Ω1 2⁄

𝑑𝛷

𝑑𝑡

𝜕𝛱

𝜕𝑡
 2.6 

Using the Taylor series expansion, the transition rate in terms of random variable 𝜉 is 

written as    

𝑓𝑗(𝑥) = 𝑓𝑗(𝛷𝑖 + Ω−1/2𝜉𝑖) = 𝑓𝑗(𝛷)+Ω−1/2 ∑
𝜕𝑓𝑗(𝛷)

𝜕𝛷𝑖

𝑁
𝑖=1 𝜉𝑖 + 𝛰(Ω−1). 

 

2.7 

As the step operation leads to 𝔼𝑓(𝑛) = 𝑓(𝑛+1), the step operator in terms of random 

variable 𝜉 is given by 𝔼𝑓(𝜉) = 𝑓(𝜉+Ω−1/2). Thus, for all chemical species 

   ∏ 𝔼−𝑆𝑖𝑗  𝑁
𝑖=1 ≅ 1 − Ω−1/2 ∑ 𝑆𝑖𝑗

𝜕

𝜕𝜉𝑖
𝑖  + 

Ω−1

2
∑ ∑ 𝑆𝑖𝑗𝑘𝑖 𝑆𝑘𝑗

𝜕2

𝜕𝜉𝑖𝜕𝜉𝑘
 +0(Ω−3/2) 2.8 

 

Recasting in the CME (2.2) in terms of the new variable leads to 
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𝜕𝛱(𝜉, 𝑡)

𝜕𝑡
− Ω1/2 ∑

𝑑𝛷𝑖

𝑑𝑡

𝜕𝛱

𝜕𝑡
𝑖

=  Ω ∑ (−Ω−1/2 ∑ 𝑆𝑖𝑗

𝜕

𝜕𝜉𝑖
𝑖

 

𝑅

𝑗=1

+  Ω−1 ∑ ∑ 𝑆𝑖𝑗

𝑘𝑖

𝑆𝑘𝑗

𝜕2

𝜕𝜉𝑖𝜕𝜉𝑘
) (𝑓𝑗(Φ)

+ Ω−1/2 ∑
𝜕𝑓𝑗(𝛷)

𝜕𝛷𝑖

𝑁

𝑖=1

𝜉𝑖) 𝛱(𝜉, 𝑡) 

2.9 

When terms are gathered in various powers of Ω, this expression results in more sensible 

outcome. Ω1/2 terms give the macroscopic rate equation. The Ω0 terms result in 

𝜕𝛱(𝜉, 𝑡)

𝜕𝑡
= ∑ (∑ −𝑆𝑖𝑗

𝜕𝑓𝑗(𝛷)

𝜕𝛷𝑘

𝜕(𝜉𝑘𝛱(𝜉, 𝑡))

𝜕𝜉𝑖
𝑖𝑘

+
1

2
𝑓𝑗(𝛷) ∑ 𝑆𝑖𝑗𝑆𝑘𝑗

𝜕2𝛱(𝜉, 𝑡)

𝜕𝜉𝑖𝜕𝜉𝑘
𝑖𝑘

)

𝑅

𝑗=1

 2.10 

Which can be written as,  

𝜕𝛱(𝜉, 𝑡)

𝜕𝑡
= − ∑ 𝐴𝑖𝑘

𝜕(𝜉𝑘𝛱)

𝜕𝜉𝑖
𝑖𝑘

+
1

2
∑ 𝐵𝑖𝑘

𝜕2𝛱(𝜉, 𝑡)

𝜕𝜉𝑖𝜕𝜉𝑘
𝑖𝑘

 2.11 

Where, 𝐴𝑖𝑘 = ∑ (𝑆𝑖𝑗
𝜕𝑓𝑗(𝛷)

𝜕𝛷𝑘
)𝑅

𝑗=1  and 𝐵𝑖𝑘 = ∑ (𝑆𝑖𝑗𝑆𝑘𝑗𝑓𝑗(𝛷))𝑅
𝑗=1  

The equation (2.11) resembles with the linear multivariate Fokker-Plank equation where 

𝐴𝑖𝑘 and 𝐵𝑖𝑘 are the constant matrices and termed as Linear Noise Approximation (LNA). 

The solution of the linear Fokker-Plank equation is known out to be Gaussian, which is 

fully determined by calculating the first order (mean) and second order moment 

(variance). Solving for the equation of the moments, the equation for time evolution of 

covariances is given as,  

𝜕𝜎𝑖𝑘

𝜕𝑡
= 𝐴𝑖𝑘𝜎𝑖𝑘 + 𝜎𝑖𝑘  𝐴𝑖𝑘

𝑇 + 𝐵𝑖𝑘 2.12 

The equation (2.13) provides the information about the steady state variances of each 

species involved, which is equation (2.12) at steady state, 
𝜕𝜎𝑖𝑘

𝜕𝑡
= 0,  

𝐴𝑖𝑘𝜎𝑖𝑘 + 𝜎𝑖𝑘 𝐴𝑖𝑘
𝑇 = −𝐵𝑖𝑘 2.13 

Where, 𝜎 is the matrix for covariances, 𝜎𝑖𝑖 provides the variance of 𝑖th species. 𝐴 is the 

Jacobian or drift matrix and 𝐵 is the diffusion matrix. 
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However, number of studies provides the insufficiency of  the linear noise approximation 

as this fails to adequately account for noise in biological contexts5,6. This prompted 

researchers to look into higher order system size expansion terms that go beyond linear 

approximation. With the help of these terms, moment estimates for the variances of the 

concentration fluctuations in intracellular pathways as well as the mean concentrations and 

concentrations have been more precisely calculated7,8.   

 

2.3. Gillespie’s Stochastic Simulation Algorithm 

Due to the limitations of analytical methods, numerical simulations have proven to a useful 

tool in investigation of noise in the biochemical reaction networks. The primary method for 

simulating and accurately estimating noise in reaction networks has been Gillespie's 

stochastic simulation algorithm (SSA)9,10. The SSA provides an exact solution of CME for 

the coupled chemical reactions whose rates are represented by mass action kinetics. A 

flowchart for the algorithm is described in the Figure 2.1. The simulation technique is based 

on determination of the next time point for a chemical reaction and finding out the specific 

reaction that occurs at the time point. Here, the time interval (𝜏) of next reaction is chosen 

from an exponentially distributed random variable. This random variable is based on the 

sum of all reaction propensities (𝑎0 = ∑ 𝑎𝑗𝑗 ) and uniformly distributed random number (𝑟1) 

in the range [0,1] and given by, 

𝜏 = (
1

𝑎0
) ln (1

𝑟1
⁄ ) 2.14 

The choice of next reaction (𝑗) which will occur in the infinitesimal time interval [𝑡, 𝑡 + 𝜏] 

is decided based on the inequality (2.15), basically the reaction probability is calculated by 

dividing its propensity by sum of propensities of all the reactions (𝑎0 = ∑ 𝑎𝑗𝑗 ) involved, 

and thereafter the species involved in the reaction will be updated according to the reaction 

stoichiometry. 

∑ 𝑎𝑗
𝑗′

𝑗=1

𝑎0
> 𝑟2 2.15 

Based on the smallest 𝑗 value satisfying the inequality, given 𝑗th reaction will fire.  

Hereby, a realization for a stochastic process is built by iteratively computing the next time 

step at which a reaction happens and sampling which reaction occurs. Letting this iterative 
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process to run for a fairly long time, expecting the system has reached their steady state, 

we can get a single stochastic trajectory. 

 

Figure 2.1. Flow chart of Gillespie’s Stochastic Simulation Algorithm. 

 

High computational cost is the major drawback of SSA. The SSA mimics each and every 

reaction event, therefore it becomes sluggish for systems that have a large number of these 

events. In this scenario, when there is a very big rate constant and a sizable number of 

molecules, Gillespie's algorithm spends a significant portion of its time choosing for 

updating that extremely fast reaction11. This makes the computation ineffective. This has 

spurred research into algorithms that trade off part of the SSA's precision for faster 

simulation times. The suggested methods, such as the τ-leap method12  and the Langevin 

method13,allow more than one reaction event per step which leads to faster simulation. 
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2.3 Pseudo Potential Energy Based Bifurcation Analysis Method  

As, discussed in the introduction (Chapter 1), biochemical networks may often yield in 

distinct steady state and dynamical behaviors such as multistability, temporal pulses and 

oscillations etc. A part of thesis work is primarily based on the multistability which is found 

to be involved in many cellular decision processes and processing graded input signals into 

all or none responses. The signal response curve describes the steady state response of the 

system with the variation of signal. Mathematically, the qualitative change of the steady 

state behavior of the system with the change of a parameter is represented by 1-parameter 

bifurcation diagram. For example, Figure 2.2a shows the 1-parameter bifurcation diagram 

for a bistable switch. Conventional methods of generating such bifurcation diagrams in 

based on the concept of ‘linear stability analysis’ of the steady state of the system. This 

provides the information of change in stability of the system at the bifurcation point by 

measuring the eigen value of the Jacobian matrix. As a result, the eigenvalues of the steady 

states are tracked while the bifurcation parameter is changed in order to produce a 

bifurcation diagram. XPP-AUT is the widely used tool for running bifurcation analysis of 

nonlinear dynamical systems and typically bifurcation analysis is carried out by manually 

tweaking various control parameters in the numerical continuation method of bifurcation 

analysis.  

However, in the Chapter 5, large scale bifurcation analysis needed to be performed under 

random variation of parameter space. Therefore, the conventional tool of bifurcation 

analysis cannot be used due to requirement of manual intervention for each bifurcation run. 

Hence, we developed and implemented a new bifurcation analysis method using the pseudo 

potential energy of the dynamical system14,15. The theory underlying potential-based 

bifurcation analysis is based on the fact that for nonlinear dynamical systems, the steady 

states values correspond to the extrema of potential landscape of the system. The stable and 

unstable steady state of a system follows the location of minima and maxima of the 

potential, respectively. As a result, bifurcation diagrams can be generated by keeping an 

eye on how the extrema changes in and out of the potential landscape. However, the 

multidimensional dynamical systems pose the biggest challenge in calculating the potential 

landscape. Potential energy for dynamical systems with more than one dimension cannot 

be quantified generically because of their non-Newtonian nature. We solved this issue by 

applying the transfer function method to transform the multivariate system into a univariate 
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system. For example, two-dimensional equation of a mutual inhibition (MI) network model 

(2.16) can be written as: 

 

 
 

𝑑𝑋

𝑑𝑡
= 𝑆 − 𝑘1𝑋𝑌 − 𝛾1𝑋 

 
2.16 𝑑𝑌

𝑑𝑡
= 𝑘2 + 𝑘2

′
1

𝐴 + 𝑋𝑛
− γ2Y 

 

Figure 2.2 Schematic for MI network 

 

At steady stat𝑒 (𝑑𝑌 𝑑𝑡⁄ = 0), Y can be written as a function of X and signal S as 

𝑌 = ℒ(𝑆, 𝑋) =
𝑘2 + 𝑘2

′ 1
𝐴 + 𝑋𝑛

𝛾2
 2.17 

 

Substituting the expression of Y at steady state into the equation of X, the dynamics of the 

system in reduced dimension can be written as,  

𝑑𝑋

𝑑𝑡
= 𝑆 − 𝑘1𝑋ℒ(𝑆, 𝑋) − 𝛾1𝑋 

2.18 

 

Thus, the right-hand side of the equation is now basically a function of X and signal, S 

which is in this case represents the bifurcation parameter. The effective force of the system 

now becomes 

𝐹(𝑋, 𝑆) = 𝑆 − 𝑘1𝑋ℒ(𝑆, 𝑋) − 𝛾1𝑋 2.19 

Now, the effective potential can be calculated by integrating the force term,  

𝑉(𝑋, 𝑆) = − ∫ [𝑆 − 𝑘1𝑥ℒ(𝑆, 𝑥) − 𝛾1𝑥]
𝑋

0

𝑑𝑥 
2.20 

 

It is important to note that the effective energy here is not in true sense of energy because 

of non-Newtonian nature of the dynamical system, rather it can be termed as a pseudo 

potential energy of the system. Using (2.20) the potential energy for a range of X values 

can be determined at different values of S. The local extrema values provide the information 

about the stable and unstable steady states (Figure 2.2 b-d) of the dynamical system.  The 

whole 1-paramater bifurcation diagram can be generated by determining the steady states 

from the extrema in the potential energy landscape.  Implementing this algorithmic 

approach in MATLAB, we performed 1-parameter bifurcation analysis in an automated 

high throughput manner without any manual intervention.  
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Figure 2.2. 1-parameter bifurcation diagram representing a bistable switch generated by 

mutual inhibition loop between two regulatory species (a). The black and red lines represent 

the stable and unstable steady states, respectively. The point where the stable and unstable 

branches annihilate each other is denoted as saddle-node bifurcation point. Different 

colored region represents low, bistable and high expressions.  Pseudo potential energy 

diagram corresponding to different signal values indicated the plot (b-c). The indicated 

location of extrema values in the energy plots (b-d) provides the mentioned steady state 

value for the bifurcation diagram (a). 
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CHAPTER 3 
 

Chemical noise propagation in reversible 

multisite phosphorylation-dephosphorylation 

chain. 
 

3.1 Introduction 

Chemical reaction networks incorporating multiple genes control diverse biological processes. 

These networks frequently consist of small regulatory network motifs with unique steady-state 

and dynamical characteristics1. Therefore, additional research was done to comprehend how 

network topologies such as signalling cascades, feedback loops, and feed-forward loops affect 

the propagation of chemical noise2–7. One such network motif that controls the catalytic 

activity, binding, transport, and degradation of target proteins is multisite reversible 

phosphorylation-dephosphorylation of proteins8,9. For instance, cyclin-dependent kinase 

phosphorylates a number of important proteins several times to control important processes in 

the eukaryotic cell cycle10. Phosphorylation-dephosphorylation of protein can take place either 

by processive or distributive manner. In a processive mechanism, the substrate attaches 

mutliple phosphate groups after just one interaction between the enzyme and the substrate. In 

contrast, a single interaction leads to a single enzymatic event in the distributive mechanism. 

An ultrasensitive signal response is produced when a single enzyme catalyses many 

phosphorylations in a distributive fashion, which is necessary for producing nonlinear 

responses in biochemical reaction networks11,12,13. Due to this, bistability and oscillations have 

been mathematically and computationally modelled extensively using multisite 

phosphorylation mechanisms9,14–17. While considering its deterministic dynamics, numerous 

aspects of multisite phosphorylation have been explored8,11,13,16,17. However, systematic 

research into stochasticity in multiphosphorylation is limited. Therefore, the characteristics of 

chemical noise propagation in multisite phosphorylation chains must be thoroughly studied. It 

is important to look into how the rate laws of chemical reactions, kinetic factors, and the overall 

number of phosphorylation sites affect the intrinsic noise in multiphosphorylation chains. 
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This chapter discussed how intrinsic noise propagated in multisite phosphorylation chains with 

varying "chain lengths," or with different total numbers of phosphorylation sites on the target 

protein. In order to understand the impact of non-linearity on noise propagation, investigation 

was performed with the mass action (MA) and Michaelis-Menten (MM) rate laws for 

phosphorylation and dephosphorylation activities. Linear noise approximation (LNA) to the 

chemical master equation, popularly known as the van Kampen’s system size expansion 

approach was used to examine the quantitative and qualitative nature of variability in 

phosphorylated species18. Additionally, stochastic simulations were carried out for the 

chemical reactions in the chain using Gillespie's stochastic simulation algorithm(SSA)19 

technique to benchmark the analytical calculations. 

 

3.2. Model 

An ordered distributive multisite phosphorylation was studied, where each enzyme-substrate 

interaction results in a single phosphorylation or dephosphorylation of the target protein, and 

enzymatic processes take place in a predefined order. Figure 3.1 represents the reaction scheme 

for a three component, distributive, reversible multisite phosphorylation-dephosphorylation 

network. The assumption is that one enzyme is responsible for all phosphorylation reactions, 

and that a different enzyme is responsible for all dephosphorylation reactions. 

 

Figure 3.1: Schematic diagram for multi-phospho chain for protein with two phosphorylation 

sites. MPi’s are the different phosphorylated states of protein M, i.e., species with subscripts 0 

(M), 1 (MP) and 2 (MP2) refers to unphosphorylated, monophosphorylated and 

bisphosphorylated forms. ν𝑖 and ν−𝑖 are the macroscopic reaction rates for phosphorylation and 

dephosphorylation.  

The chemical master equation corresponding to the three-component reaction system can be 

represented as, 
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𝑑𝑃(𝑛0, 𝑛1, 𝑛2; 𝑡)

𝑑𝑡

= 𝑎1(𝑛0 + 1, 𝑛1 − 1, 𝑛2)𝑃(𝑛0 + 1, 𝑛1 − 1, 𝑛2; 𝑡)

+ 𝑎2(𝑛0, 𝑛1 + 1, 𝑛2 − 1)𝑃(𝑛0, 𝑛1 + 1, 𝑛2 − 1; 𝑡) + 𝑎−2(𝑛0, 𝑛1 − 1, 𝑛2

+ 1)𝑃(𝑛0, 𝑛1 − 1, 𝑛2 + 1; 𝑡) + 𝑎−1(𝑛0 − 1, 𝑛1

+ 1, 𝑛2)𝑃(𝑛0 − 1, 𝑛1 + 1, 𝑛2; 𝑡) − [𝑎1(𝑛0, 𝑛1, 𝑛2) + 𝑎2(𝑛0, 𝑛1, 𝑛2)

+ 𝑎−1(𝑛0, 𝑛1, 𝑛2)+𝑎−2(𝑛0, 𝑛1, 𝑛2)]𝑃(𝑛0, 𝑛1, 𝑛2; 𝑡) 

3.1 

 

Where, 𝑃(𝑛𝑜 , 𝑛1, 𝑛2; 𝑡) represents the joint probability density for 𝑛0, 𝑛1 and 𝑛2 number of 

molecules for the species MP0, MP1 and MP2 respectively at time 𝑡. The total number of 

molecules of, 𝑛𝑇 (= 𝑛𝑜 + 𝑛1 + 𝑛2), is fixed and holds a mass conservation. The 𝑎𝑖’s are the 

reaction propensities for phosphorylation (𝑎1, 𝑎2) and dephosphorylation (𝑎−1, 𝑎−2) reaction 

steps in the chain. As, mass conservation law holds in the chain, chemical master equation can 

also be written as a function of any two variables of the phospho chain20 as the total number, 

𝑛𝑇 is fixed all the time. 

The system was studied with two different reaction kinetics. In the first case, it was assumed 

that the enzymes which catalyzed the forward and backward (i.e., phosphorylation and 

dephosphorylation) reactions are in much excess concentrations compared to their substrates 

consequently the reactions can be represented by pseudo-first order mass action rate laws. And 

in the second case, where each reaction rate follows Michaelis-Menten kinetics. The mean field 

dynamical equations of the system are given by 

𝜕𝑛̅1

𝜕𝑡
= (𝜈1 + 𝜈−2) − (𝜈2 + 𝜈−1) 

3.2 𝜕𝑛̅2

𝜕𝑡
= (𝜈2 − 𝜈−2) 

 

Where 𝑛̅𝑖s are the average values of phosphorylated species. The average for unphosphorylated 

species population can be calculated by applying mass conservation. In order to simulate the 

dynamics of multisite phosphorylation events, MM rate laws have been widely used. 

Particularly since the study of Markevich et al12, in the context of the mitogen-activated protein 

kinase pathway, the applicability of the MM rate laws in multisite phosphorylation has grown 

rather substantially. Their research has demonstrated that, under specific circumstances, 

bistability can be produced solely by a three-component phosphorylation-dephosphorylation 
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cycle, without the need for an external positive feedback loop in the reaction network. 

However, an ultrasensitive switch can also be produced via a two-component phosphorylation-

dephosphorylation cycle with MM kinetics21. Further investigations for various aspects of 

multisite phosphorylation with MM kinetics for ultrasensitive switches have been conducted11. 

However, a robust and tunable ultrasensitivity was also found to be generated from MA based 

multisite phosphorylation in addition to the MM kinetics13. The reaction rates for two different 

kinetics, 𝜈𝑖’s are listed in the table below, 

Table 3.1 

Mass-action kinetics Michaelis-Menten kinetics 

 

𝝂𝟏 = 𝒌𝟏(𝒏𝑻 − 𝒏̅𝟏 − 𝒏̅𝟐 ) 𝜈1 =
𝑘1𝐸1 (𝑛𝑇 − 𝑛̅1 − 𝑛̅2 ) 𝐾𝑀1⁄

1 + (𝑛𝑇 − 𝑛̅1 − 𝑛̅2 ) 𝐾𝑀1⁄ + 𝑛̅1 𝐾𝑀2⁄
 

𝝂𝟐 = 𝒌𝟐𝒏̅𝟏 𝜈2 =
𝑘2𝐸1 𝑛̅1 𝐾𝑀2⁄

1 + (𝑛𝑇 − 𝑛̅1 − 𝑛̅2 ) 𝐾𝑀1⁄ + 𝑛̅1 𝐾𝑀2⁄
 

𝝂−𝟐 = 𝒌−𝟐𝒏̅𝟐 𝜈−2 =
𝑘−2𝐸

′ 𝑛̅2 𝐾−𝑀2⁄

1 + 𝑛̅2 𝐾−𝑀2⁄ + 𝑛̅1 𝐾−𝑀1⁄
 

𝝂−𝟏 = 𝒌−𝟏𝒏̅𝟏 

 

𝜈−1 =
𝑘−1𝐸

′ 𝑛̅1 𝐾𝑀4⁄

1 + 𝑛̅2 𝐾−𝑀2⁄ + 𝑛̅1 𝐾−𝑀1⁄
 

 

In the above set of equations, for the MA kinetics, 𝑘𝑖 and 𝑘−𝑖  are the catalytic conversion rate 

constants for phosphorylation (𝑘1, 𝑘2) and dephosphorylation (𝑘−1, 𝑘−2) respectively. The 

abundances of enzymes were kept constant in the entire calculations. Therefore, they are not 

mentioned explicitly as they were absorbed in the rate constants 𝑘𝑖. In case of MM kinetics the 

rate expressions are similar to the expressions as given by Markevich et al.12 in the context of 

phosphorylation of mitogen-activated protein kinase cascade. 𝐸1 and 𝐸′ are the kinase and 

phosphatase abundances, respectively and those abundances were kept constant throughout out 

calculations. The 𝐾𝑀𝑖’s are the Michaelis constants for phosphorylation (𝐾𝑀1, 𝐾𝑀2) and 

dephosphorylation (𝐾−𝑀1, 𝐾−𝑀2) reactions.  

Now in order to calculate the steady-state noise in the phospho species, Linear Noise 

approximation (LNA)(See Chapter 2 Methodology) was used on the chemical master equation. 

At the steady state, the drift and diffusion matrices in the Fokker-Plank equation are connected 

by a fluctuation-dissipation like relation given by 

 𝑨𝝈 + 𝝈𝑨𝑇 + 𝑩 = 0 3.3 



  Chapter 3 

39 | P a g e  
 

 where 𝑨, 𝑩 and 𝝈  are the drift or Jacobian matrix, diffusion matrix and covariance matrix 

respectively. The covariance matrix holds information about the variance and covariance of 

all the molecular species in the network. The elements in the drift matrix 𝑨 are given by  

 𝐴𝑖𝑗 =
𝜕

𝜕𝑛̅𝑗

𝜕𝑛̅𝑖

𝜕𝑡
 3.4 

Where 𝑛̅𝑖 is the average number of molecules for the i-th chemical species and 
𝜕𝑛̅𝑖

𝜕𝑡
 can be 

obtained from the macroscopic rate equations. The elements in the diffusion matrix B are 

given by  

 𝐵𝑖𝑗 = ∑𝜈𝑗𝑘𝜈𝑖𝑘𝑅𝑘

𝑘

 3.5 

Where 𝜈𝑖𝑘 and 𝑅𝑘 are the stoichiometric coefficient of the i-th species in the k-th reaction and 

the rate of the k-th reaction, respectively. 

 For the three-component reaction scheme the drift and diffusion matrices are given by,  

𝑨 =

[
 
 
 

𝜕

𝜕𝑛̅1
(
𝜕𝑛̅1

𝜕𝑡
)

𝜕

𝜕𝑛̅2
(
𝜕𝑛̅1

𝜕𝑡
)

𝜕

𝜕𝑛̅1
(
𝜕𝑛̅2

𝜕𝑡
)

𝜕

𝜕𝑛̅2
(
𝜕𝑛̅2

𝜕𝑡
)
]
 
 
 

= [
𝐴11 𝐴12

𝐴21 𝐴22
] 

 3.6 

𝑩 = [
(𝜈1 + 𝜈2 + 𝜈3 + 𝜈4) −(𝜈2 + 𝜈3)

−(𝜈2 + 𝜈3) (𝜈2 + 𝜈3)
] 

 

Thus, the final matrix equation for the steady state covariances,  

[

𝐴11 𝐴12 0
𝐴21 (𝐴11 + 𝐴22) 𝐴12

0 𝐴12 𝐴22

] [

𝜎11

𝜎12

𝜎22

] = [

−(1 2⁄ )(𝜈1 + 𝜈2 + 𝜈−2 + 𝜈−1)

(𝜈2 + 𝜈−2)

−(1 2⁄ )(𝜈2 + 𝜈−2)

] 

 

3.7 

Now for the mass action kinetics the drift and diffusion matrices are given by: 

 
𝑨 = [

−(𝑘1 + 𝑘2 + 𝑘−1) (𝑘−2 − 𝑘1)

𝑘2 −𝑘−2
]   𝑩 = [

2(𝑘1 + 𝑘−1)𝑛̅1 −2𝑘2𝑛̅1

−2𝑘−2𝑛̅2 2𝑘−2𝑛̅2
 ] 

          

3.8 

Using the above expressions of 𝑨 and 𝑩 in the matrix equation (3.3) and applying the symmetry 

in covariance (𝜎𝑖𝑗 = 𝜎𝑗𝑖), the matrix equation for the steady state variances of stochastic 

variables obtained as,  
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[
 
 
 
 
 
 
∑𝑘𝑖

2

𝑖=1

+ 𝑘−1 𝑘1 − 𝑘−2 0

𝑘2 − ∑𝑘𝑖 + 𝑘−𝑖

2

𝑖=1

𝑘−2 − 𝑘1

0 𝑘2 −𝑘−2 ]
 
 
 
 
 
 

[

𝜎11

𝜎12

𝜎22

] = [

−(𝑘2 + 𝑘−1)𝑛̅1

2𝑘2𝑛̅1

−𝑘−1𝑛̅2

] 

 

        3.9 

Solution of the above system of linear equations lead to the variances of species MP1 and 

MP2 as 

𝜎11 =
(𝑘1𝑘2 + 𝑘−1𝑘−2)𝑛̅1

𝑘1𝑘2 + 𝑘1𝑘−2 + 𝑘−1𝑘−2
 

 
         3.10 

𝜎22 =
(𝑘1𝑘−2 + 𝑘−1𝑘−2)𝑛̅2

𝑘1𝑘2 + 𝑘1𝑘−2 + 𝑘−1𝑘−2
 

 

In the special case where all the forward and backward rate constants are equal i.e., 𝑘1 =

𝑘2 = 𝑘𝑓 and 𝑘−1 = 𝑘−2 = 𝑘𝑏, the steady state variances can be represented as a function of 

equilibrium constant (𝐾 = 𝑘𝑓 𝑘𝑏⁄ ) and they take simple form as, 

𝜎11 =
(1 + 𝐾2)𝑛̅1

(1 + 𝐾)2 − 𝐾
 

 3.11 

𝜎22 =
(1 + 𝐾)𝑛̅2

(1 + 𝐾)2 − 𝐾
 

Although only the variances were calculated, the covariances can also be calculated using (3.9). 

Further the macroscopic averages can be obtained from the deterministic dynamical equations. 

The general expression of the average for ith phospho state is given by  

 𝑛̅𝑖 =
(𝑘𝑓 𝑘𝑏⁄ )

𝑖

∑ (𝑘𝑓 𝑘𝑏⁄ )
𝑖𝑁

𝑖=0

𝑛𝑇 =
(𝐾)𝑖

∑ (𝐾)𝑖𝑁
𝑖=0

𝑛𝑇 3.12 

𝑁 is the total number of phosphorylation site in the chemical species. 

Similar calculations were done for three component reaction scheme with the MM kinetics, 

where the resulting equations are lengthy and cumbersome. The above matrix was solved using 

MATLAB to get the 𝜎𝑖𝑖 values, variance of species MP1 and MP2. However, for the two-

component phosphorylation-dephosphorylation chain the variance for the 

monophosphorylated species (MP1) is found to be, 
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𝜎11 =

𝑘1𝐸1(𝑛𝑇 − 𝑛̅1)
𝐾𝑀1(𝑛𝑇 − 𝑛̅1)

+
𝑘−1𝐸

′𝑛̅1

𝐾−𝑀1+𝑛̅1

2𝑘1𝐸1𝐾𝑀1

[𝐾𝑀1 + (𝑛𝑇 − 𝑛̅1)]2
+

2𝑘−1𝐸′𝐾−𝑀1

[𝐾−𝑀1 + 𝑛̅1]2

 3.13 

 

Multiple phosphorylations of proteins in living cells provide threshold and ultrasensitive signal 

responses in protein activity. Additionally, it is known that a chain with more phospho states 

will have a sharper signal response curve and higher Hill coefficient values. In this context, 

similar calculations were performed for multiphosphorylation chain with four, five, and six 

components to study the effect of increasing phospho states on the noise of chemical species 

in a chain. The resulting matrix equations were therefore rather large and challenging to solve 

analytically. MATLAB was used in order to get the information of variances for different 

phosphorylated species. 

 

 3.3. Results 

In Figure 3.2 presented the dependence of the average, variance, and Fano factor of the 

phosphorylated species on the equilibrium constant (K) of phosphorylation-dephosphorylation 

reactions in the three-component phosphorylation chain. This presented the findings from both 

the MA and the MM kinetics of reactions in order to comprehend how the rate laws affect the 

statistical features. Additionally, the analytical results were compared from numerical 

simulations carried out using Gillespie's SSA. 
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Figure 3.2: Dependency of steady state average (𝑛̅𝑖), variance (𝜎𝑖𝑖) and noise strength (Fano 

Factor=variance (𝜎𝑖𝑖)/mean (𝑛̅𝑖)) of the phosphorylated states on the equilibrium constant of 

phosphorylation-dephosphorylation reactions for three component phospho chain. Solid lines 

and markers represent analytical and SSA simulation results, respectively. 𝑛𝑇 = 500 was chosen 

in all the calculations. Top row: MA kinetics; bottom row: MM kinetics. 

 

The results were provided for the situations with 𝑘1 = 𝑘2 and 𝑘−1 = 𝑘−2. However, one can 

also obtain the dependency of statistical properties the on the individual rate constants (𝑘1, 𝑘2, 

𝑘−1, and 𝑘−2). For MA kinetics with the increase of 𝐾 the steady state variance of the each 

phospho state increases and decreases steadily after going through maxima (Figure3.2). The 

increase and decrease of variances are much sharper in the case of MM kinetics. For the 

terminally phosphorylated species (MP2) in particular, the variance shows a sharp peak at 𝐾 =

 1. The ultrasensitive increase of MP2 at 𝐾 = 1 leads to the sudden rise in MP2 variance. After 

𝐾 > 1, the following sharp fall in the variance is due to the decrease in the sizes of fluctuations 

owing to the large abundance to MP2. Contrary to MM, in case of MA, the averages do not 

follow any sharp increase or decrease with increase in 𝐾, the corresponding variance do not 

show such sharp change. Thus, the well-known ultrasensitive switching of the terminal species 

drives the sharp switching behavior of steady state variance. This is supported by the variation 

of Fano factor which measure the strength of noise. Noted that the Fano factor value shows a 

deviation from 1, which dictates the non-Poissonian nature of statistics across different values 

of 𝐾. 
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Figure 3.3: Dependency of steady state average (𝑛̅𝑖), variance (𝜎𝑖𝑖) of the phosphorylated states 

on the equilibrium constant of phosphorylation-dephosphorylation reactions for four 

component(4-C) and five component(5-C) phospho chain. Solid lines and markers represent 

analytical and SSA simulation results, respectively. To vary 𝐾,we kept 𝑘2 (= 𝑘−1= 𝑘−2)fixed 

at 0.2 and varied 𝑘𝑓 (=𝑘1 = 𝑘2 ). 𝑘𝑀 values are kept constant at 0.5, 𝐸1 = 𝐸′ = 50 . 

 

For four and five component chain (for equations see Appendix 1, A3.1), the steady-state 

averages and variances (solving the final matrix equation in Appendix 1, A3.3 and A3,4 in 

MATLAB), of the phosphorylated species with the equilibrium constant K are shown in Figure 

3.3. Similar to the three-component chain, the MA kinetics exhibit less pronounced increase 

and decrease of variances than the MM kinetics. Again, due to its deterministic behaviour, the 

terminally phosphorylated species exhibit dramatic rises and falls in its variance in MM 

kinetics. Gillespie's SSA was used to perform numerical computations to further corroborate 

our analytical findings. In every chain, both the outcomes were remarkably consistent. It was 

also interesting to notice that in MA kinetics, at 𝐾 = 1 the variances go through a common 

value. 

Next our methodology was established, the impact of chain lengths or the total number of 

phosphorylation sites (𝑁) on the variability of phosphorylated species was further investigated. 

To determine the noise in the chemical species, the coefficient of variation (CV=standard 

deviation/mean) was calculated. The CV of every phosphorylated species in chains with 3, 4, 

and 5 components was determined. 
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Figure 3.4: Comparison of steady noise of a specific phosphorylated species across different 

chain length (number of phosphorylated states in a chain). Top row: MA kinetics; bottom row: 

MM kinetics. 

 

To assess the effect of the number of phosphorylation sites on the noise, the CV of a particular 

phosphorylated state from different chain lengths was plotted against the 𝐾 (Figure 3.4). The 

results showed that the noise in a given phosphorylated state for MA kinetics rises with chain 

length. This is because the overall population is spread out among all the states, and as the 

chain length increases, the average abundance of a given state falls, leading to increased noise 

in the various phosphorylation states. However, the CV of other phosphorylated species passes 

through a minimum, whereas the CV of the terminally phosphorylated species in any chain 

demonstrate a monotonously falling pattern with the K in case of MM. The increase in average 

abundance with K is what causes the CV with K for terminally phosphorylated species to 

consistently drop. The CV of these species, however, exhibit a reversal tendency because 

average abundances of other phosphorylated species pass through maxima when K is increased. 

Again, this sharp fall of noise after 𝐾 = 1 in case of MM as compared to MM is due the average 

dynamics. We evaluated the total variance of all the phosphorylated species and compared 

them for chains lengths in order to provide a more accurate estimation of the comparative noise 

in MA and MM kinetics (Figure 3.5). In MA kinetics, the total variance increases with K and 

after passing through a maximum value it decreases. Consistently, the increase and decreases 

are much sharper in case of MM kinetics. The total variance is found to be higher with higher 
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number of number of components in the chain in case of MA; whereas, in MM kinetics, the 

total variance of all chains is almost the same. Though the quantitative value of total variance 

in case of MM kinetics is significantly higher than the MA  

 

Figure3.5: Total variance (∑𝜎𝑖𝑖) of all phosphorylated species of each phosphorylated chain 

is plotted with equilibrium constant. Each color and line style represents different 

phosphorylated chains. 

 

kinetics. Thus, it can be concluded that the non-linear rates in the chemical kinetics tends to 

amplify the noise. Therefore, though the non-linear reactions kinetics is the requirement for the 

ultrasensitive response, this comes under the cost of increased variability. 

Since the discovery of gene expression noise, the propagation of chemical noise in a network 

of chemical reactions has attracted a lot of attention. The propagation of intrinsic noise has 

been studied as a function of cascade ‘length’ in signalling cascade networks, which has 

garnered particular interest22,23. Therefore, it is reasonable to calculate how the noise is 

distributed or propagated across the different chemical species in the chain in the case of a 

multisite phosphorylation. It is also important to investigate how ‘chain length’ regulates the 

noise of the phosphorylated species. Additional simulations were run for higher 

phosphorylation chains up to 10 components to address these characteristics of noise 

propagation. Figure3.6 presents the noise propagation along the various chains at K = 1.  
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Figure 3.6: Plot for CV of the phosphorylated species of different chains with MA (left) and 

MM (right) kinetics. Different liner color/marker represent different ‘chain length’. 

 

The noise of all the phosphorylated species for both MA and MM kinetics for a given chain is 

plotted in Figure 3.6. When comparing chains using MA and MM rate laws, a striking variation 

in the noise propagation was discovered. For the MA kinetics, the noise of all the 

phosphorylated species in a given chain length were same, which reflects that the noise was 

more or less uniformly distributed among different species and the quantitative value of noise 

increases with the ‘chain length’. Therefore, the extent of noise propagation is somewhat 

independent on the phosphorylation state. In contrast, the noise in the case of MM kinetics 

displayed a totally different qualitative trend. Here, the noise profile was found to be a 

somewhat parabolic shape in relation to the degree of phosphorylation for each species. The 

noise decreased along the chain and after passing through a minimum it increases with 

phosphorylation. As a result, compared to the terminal species, the intermediate 

phosphorylated species experienced lesser noise.  

The dependence of CV on the average number of molecular species is one of the key features 

of intrinsic noise. For simple birth-death processes, the CV scales according to 𝐶𝑉 ∝  1/√𝑛. 

For chains with various total numbers of phosphorylation sites, the dependency of CV on the 

average abundance of phosphorylated species is shown in Figure 3.7. When it comes to MA 

kinetics, the CV showed usual scaling with the average number of species and the CV for every 

phosphorylated species behaved in exactly the same way with the average. However, in case 

of the MM kinetics, scaling of CV was found to be complex in nature. In particular, the 

intermediate phosphorylated species exhibit a looplike structure. 
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Figure 3.7: CV vs average plots for different phosphorylation states in each chain (3, 4, and 5 

component). Different colors or line styles represent each phosphorylated species. The dotted 

line across the plot represents the 𝐶𝑉 ∝  1/√𝑛 scaling. 

 

3.4. Conclusion 

 

In this chapter, the propagation of chemical noise in multisite phosphorylation chains was 

examined using the Linear noise approximation method. The analytical results were 

supplemented with numerical simulations using Gillespie's SSA. Calculations were performed 

using both linear (mass action) and nonlinear (Michaelis-Menten) kinetics for the enzyme 

activity in order to understand the role of rate laws in noise propagation. While varying the 

equilibrium constant of the phosphorylation-dephosphorylation reactions and the overall 

number of phosphorylated states in the chain, the steady-state statistical quantities such as 

variance, coefficient of variation, and Fano factor of phosphorylated species were determined. 

In case of MA kinetics, the variance of phosphorylated states steadily increased and decreased 

with the equilibrium constant of the phosphorylation-dephosphorylation reaction. The rise and 

fall of variances were far more pronounced in case of MM kinetics. Particularly, at 𝐾 =  1, 

when the reaction equilibrium is unbiased, the variance of the terminally phosphorylated 

species displayed a sharp peak. Additionally, variability of any phosphorylated species in case 

of MM kinetics is much higher than in the MA kinetics. Since the total variance in all of the 

phosphorylated states with MM kinetics was much higher compared to MA kinetics. This was 
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also reflected in the CV which estimates the ‘noisiness’ of the chemical species. These 

calculations show that, in contrast to MA kinetics, MM kinetics contributed to an increase in 

the sharpness of the signal response while also amplifying the variability of the phosphorylated 

states. As a result, the system made a trade-off by achieving sharp nonlinear response at the 

expense of more variability. The study of propagation of intrinsic noise revealed a striking 

difference between the chemical noise propagation along the phosphorylated species along 

multi phosphorylation chain for MA and MM kinetics. In case of MA kinetics, the noise 

propagation was found to be independent of the phosphorylated states. Whereas, the noise 

propagation crucially depended on the different phosphorylated states in MM kinetics. 

Specifically, the noise profile varied in a near parabolic manner with the phosphorylation state 

of species along the chain, where the terminal species in the chain were found to be more 

‘noisy’. Further we looked into the scaling of noise with the average abundance of species. For 

MA case, the system followed the usual scaling law irrespective of the phosphorylated states. 

On contrary, system following MM kinetics show complex scaling pattern. Further the distinct 

loop like profile for the CV versus average abundance plot for the intermediate phosphorylated 

species can be useful to determine the underlying reaction kinetics of phosphorylation-

dephosphorylation reactions.  
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CHAPTER 4 
 

Pulse processing of bistable network 

motifs in presence of intrinsic noise  
 

4.1 Introduction 

Living cells receive plethora of external and internal signals which modifies the gene 

expression to perform proper cellular response against these signals1. Signaling pathways 

deliver the signal information to the nucleus, where it is targeted for activation or 

inactivation of particular genes. The majority of the signalling networks contain a core 

regulatory motif that serves as the primary engine in transmitting the information 

downstream, despite the fact that the signalling networks can be quite complex with a 

sizable number of chemical components(regulators) involved in a various interconnected 

reaction network. Signal transducer, feed-forward loop, negative feedback loop and 

positive feedback loop are example of these important network motifs2,3. In reaction to 

internal and external inputs, these networks motifs produce nontrivial dynamical and steady 

state responses4–6 For instance, the incoherent feed-forward loop and negative feedback 

loop are discovered to produce temporal pulses and are crucial in controlling adaptation7–

9.Additionally, negative feedback loop is the key component for temporal oscillations seen 

in the cell division cycle, NF-κB  pathway, and circadian oscillations10–15. Positive feedback 

loops are known to produce bistability, which causes a macromolecular species like genes 

and proteins to abruptly change its activation state or expression. Apoptosis16,17 , cellular 

differentiation18–20 , the G1 to S phase transition in mammalian cells, mitotic control in 

yeast21, and biological memory have all been linked to bistability22–24. 

Typically, while modelling these network motifs, the steady state dose response curves or 

the dynamical characteristics of the network motifs are examined along with the presence 

of persistent signal6. However, instead of persistent signal, the signals can be discrete. 

These signals can appear as a trail of pulses with variable amplitudes and intervals. The 
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signal may appear noisy since the amplitude and interval are variable25. Numerous 

instances of pulsatile signalling causing unique gene expression patterns and cellular 

responses in various organisms have been documented. Proteomic analysis in 

Saccharomyces cerevisiae, reveals pulsatile dynamics of several transcription factors under 

different growth conditions26, and in particular, transcription factor Msn2 has been found 

to exhibit dose-dependent pulsatile dynamics, under glucose starvation, controlling the 

expression of a number of genes based on the dynamic pattern of Msn227. Radiation-

induced DNA damage causes leads to pulsatile dynamics of p53 dynamics, and depending 

on the characteristics of these pulses, distinct cellular fates are controlled by the p53 

dynamics28,29 . Epithelial cell proliferation depends on EGF concentration-dependent 

modulation of ERK pulses30, and Caenorhabditis elegans research has revealed that 

pulsatile temporal ERK activity is essential for a variety of cellular fates31. Temporal 

oscillations of expression of transcription factors Ascl1 and Hes1 are required for the 

proliferation and thus maintenance of multipotency in the mouse neural progenitor cells 

and sustained expression of Ascl1 leads to differentiation32,33. Recently, a correlation 

between NF-κB pulses and distinct gene expression patterns has been discovered34,35. As a 

result, it is critical to develop a systematic quantitative understanding of how different 

network motifs handle pulsatile signals so that the network can analyse the data as a whole 

while excluding signals with small amplitudes that can behave as noise. 

In this chapter discussed how a bistable switch, that is produced by a positive feedback 

loop between two regulators, processes a pulse of signal. The pulse processing for two 

different bistable systems that were either generated by mutual activation (MA) or by 

mutual inhibition (MI) motif were investigated. In order to study the kinetics of switching 

from one stable steady state to another stable steady state for a population of bistable 

switches, three different pulse parameters were altered: amplitude, duration, and residual 

amplitude. Since an input pulse can cause population inversion in a bistable system, the 

population fractions that invert to the alternate steady state, stuck in the inverted state, then 

revert to the initial state were measured. In order to better understand the dynamics of pulse-

induced population inversion in bistable systems, the typical time required to carry out 

these processes were also calculated. 
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4.2 Model 

 

Bistable switches produced by two distinct mechanisms - mutual inhibition or mutual 

activation between two regulators to create the necessary positive feedback loop were 

created. A double negative feedback loop (DNFL) was produced by the mutual inhibition 

(MI) between to regulators, while a positive feedback loop (PFL) motif was produced by 

the mutual activation (MA) (Figure 4.1a-b). In order to generate ultrasensitive switch, 

multisite phosphorylation-dephosphorylation chain with ten phosphorylation sites was used 

similar to discussed in Chapter 3. The process of phosphorylation was catalysed by enzyme 

kinase. In case of MI the unphosphorylated protein (𝑋0) accelerated the degradation of 

kinase (𝐾) whereas in case of MA the terminally phosphorylated species (𝑋10), catalysed 

the synthesis of the kinase. Thus, the mutual antagonism between 𝑋0 and 𝐾 generated a MI 

loop and the mutual activation between  𝑋10 and 𝐾 generates a MA loop. The 

dephosphorylation events were catalysed by the phosphatase (𝑆). To simulate the dynamics 

of the chemical species present in the network, the mass action kinetics of chemical 

processes was employed. Implementation of mass action kinetics was done solely for the 

purpose of accurately capturing the effects of intrinsic noise. It was important to note that 

only if the kinetics of all chemical reactions adhere to the law of mass action can the well-

established stochastic simulation algorithm developed by Gillespie accurately capture the 

effects of intrinsic noise36.  

The dynamical equations for the kinase in the DNFL was given by 

𝑑𝑁𝐾

𝑑𝑡
= 𝑘𝑠 − 𝑘𝑑𝑁𝐾 − 𝑘𝑎𝑁𝑋0

𝑁𝐾 (4.1) 

The dynamical equation for the Kinase in the PFL was given by 

𝑑𝑁𝐾

𝑑𝑡
= 𝑘𝑠 + 𝑘𝑎𝑁𝑋10

𝑁𝐾 − 𝑘𝑑𝑁𝐾 (4.2) 

The dynamical equations for the chemical species in the phosphorylation chain were given 

by 

𝑑𝑁𝑋0

𝑑𝑡
= 𝑆 ∙ 𝑁𝑋1

− 𝑘𝑝𝑁𝐾𝑁𝑋0
 

 

 (4.3) 



Pulse processing of bistable network motifs in presence of intrinsic noise 

54 | P a g e  
 

𝑑𝑁𝑋𝑗

𝑑𝑡
= 𝑆 ∙ 𝑁𝑋𝑗+1

+ 𝑘𝑝𝑁𝐾𝑁𝑋𝑗−1
− 𝑘𝑝𝑁𝐾𝑁𝑋𝑗

− 𝑆 ∙ 𝑁𝑋𝑗
 

 

for 2 ≤ 𝑗 ≤ 9 (4.4) 

𝑑𝑁𝑋10

𝑑𝑡
= 𝑘𝑝𝑁𝐾𝑁𝑋9

− 𝑆 ∙ 𝑁𝑋10
 

 

 (4.5) 

In these equations 𝑁𝑗 represented the molecular abundance of the chemical species 𝑗. The 

parameters 𝑘𝑠, 𝑘𝑑, 𝑘𝑎 and 𝑘𝑝 are the rate constants associated with synthesis, degradation, 

catalytic effects of 𝑋 and 𝐾, respectively. 𝑆 was the phosphatase which catalysed the 

dephosphorylation step. The parameter values used in the calculations are listed in the table 

4.1.  

Table 4.1: List of parameters and their values. 

Parameters 
Model 

MI MA 

𝑘𝑠 1.0 0.06 

𝑘𝑑 0.001 0.001 

𝑘𝑎 0.0002 0.01 

𝑘𝑝 0.005 0.01 

 

The 1-parameter bifurcation diagram for MA and MI network were shown in Figure 4.1c 

and 4.1d, respectively. The phosphatase, S, was selected as the bifurcation parameter and 

the amount of kinase declines via bistable switch with the increase of phosphatase. The 

system is bistable between the two saddle-node bifurcation points 𝑆𝐿 and 𝑆𝑅. In the MI 

network, the phosphatase, 𝑆 increases the amount of X0 which accelerated the degradation 

of kinase, thus increase of 𝑆 resulted in decrease of kinase. In the MA network, the 

phosphatase decreases the availability of 𝑋10 that catalysed the production of the kinase 

thus the kinase decreases with 𝑆. To enable a fair comparison between the two networks, 

the models were parameterized such that it generated similar bifurcation diagrams.  
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Figure 4.1: Schematic network diagrams of MI (a) and MA (b) networks, the kinase, K, 

catalyzes the phosphorylation of the target protein X. In return, X0  catalyzes degradation 

of the kinase in the DNFL network and X10 catalyzes production of K in the PFL network 

creating net positive feedback loop. The unphosphorylated (X0) and terminally 

phosphorylated (X10) forms are assumed to the active forms of X in the DNFL and PFL 

networks, respectively. The bistable on-parameter bifurcation diagrams of the MI (c) and 

MA (d) are presented with the amounts of phosphatase (𝑆) as the bifurcation parameter. 

The two different color triangles designate the signal values corresponding to the left (𝑆𝐿) 

and right (𝑆𝑅) saddle-node bifurcation points. 

 

To study the stochastic realization of the dynamical equations for the MI and MA networks, 

Gillespie's stochastic simulation algorithm was employed. In the computational 

experimental setup, the system's initial phosphatase concentration was adjusted to a low 

level (𝑆 = 0.001) and simulated it for a long enough period of time until it reached the 

upper steady state (USS) of the bifurcation diagram. For a brief period of time (𝜏𝐷), a 

phosphatase (𝑆) pulse of a specific amplitude (𝑆𝑚) was applied, and for the remainder of 

the simulation, the pulse amplitude was reduced to a resting value (𝑆𝑟) (Figure 4.2a). In 

order to study the effects of the pulse amplitude, length, and resting pulse on the transition 

kinetics of the bistable systems, these three parameters were altered. The pulse amplitude 

(𝑆𝑚) was varied from starting a minimum value corresponding to the phosphatase 

abundance at the right saddle-node bifurcation point (𝑆𝑅) and 𝑆𝑟 was varied with a 

maximum value corresponding to the left saddle-node bifurcation point (𝑆𝐿). Four different 
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outcomes were possible due to the pulse of phosphatase: the system may not at all respond 

to the pulse (Figure 4.2b) or the system may transiently respond to the pulse by lowering 

the expression of the kinase (Figure 4.2c) or the system may invert to the other steady state 

and remain there (Figure 4.2d) or the system may invert to the other steady state and switch 

back to the original state upon removal of the pulse (Figure 4.2e). Therefore, in order to 

predict the outcome of bistable system under the pulse, we quantified the different 

population fractions involved in different transitions, such as fraction of population i) 

inverting to the LSS, lower steady state (𝑓𝑖𝑛𝑣), ii) switching back to the upper steady state 

after a specific pulse duration (𝑓𝑠𝑤𝑡), iii) locked in the lower SS even after removal of pulse 

(𝑓𝑙𝑐𝑘), iv) not responding the pulse (𝑓𝑛𝑟𝑠) and v) responding to the pulse transiently (𝑓𝑡𝑟𝑛, 

responded but without reaching the LSS if revert back to its original state).  

 

 

Figure 4.2: Schematic representations of the pulsatile signal (a) and various possible 

temporal outcomes of the kinase (b-e). The pulse amplitude (𝑆𝑚), duration of pulse (𝜏𝑑) 

and resting amplitude (𝑆𝑟) are the three parameters that characterize the pulse of 

phosphatase. The four possible temporal outcomes of the kinase are: (b) non-responding 

trajectory (nrs), (c) transient trajectory with reduced expression without reaching the lower 

steady state (trn), (d) inversion (inv) of the state with permanently locked in the lower 

steady state (lck) and (e) inversion and subsequent switching to the upper steady state (swt). 

The time scales associated with the inverting into the lower steady state, residing in the 

lower steady state and switching into the upper steady state are represented respectively as 

𝜏𝑖𝑛𝑣, 𝜏𝑟𝑠𝑑 and 𝜏𝑠𝑤𝑡. The inversion time was divided into an initial delay phase (𝜏𝑑𝑙𝑦) and 
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subsequent response phase (𝜏𝑟𝑠𝑝). The dark and light shaded regions indicate the pulse on 

and resting pulse regions.  

 

Time scales associated with various transition kinetics were also quantified. Inversion time 

(𝜏𝑖𝑛𝑣), the time taken by the system to reach the LSS since the pulse is switched on, was 

estimated. The residence time (𝜏𝑟𝑠𝑑) and the switching time (𝜏𝑠𝑤𝑡) were also determined 

which were the time the system spent in the LSS and time it took to switch back to the USS 

upon the removal of pulse, respectively. In order to distinguish the mechanism of inversion 

for MI and MA, the inversion time was divided into two phases, i.e., an initial delay in 

response phase (𝜏𝑑𝑙𝑦) and the subsequent rapid response phase (𝜏𝑟𝑒𝑠).  

By setting off flags at various kinase values throughout its time course, a pulse of 

phosphatase was started, and the trajectory of the kinase was monitored in order to calculate 

the fractions of the various populations and the corresponding time scales. Since the pulse 

was turned on when the trajectory hit a threshold value of 100, the trajectory was counted 

as inverted and the inversion time(𝜏𝑖𝑛𝑣) was estimated. Without reaching 100, the 

trajectory with unaltered expression was classified as a non-responder, and the trajectory 

with temporarily reduced expression was classified as a transiently responder. The 

threshold values of 800 and 600 was used for the MI and MA networks, respectively, to 

measure the initial response delay (𝜏𝑑𝑙𝑦). 𝜏𝑑𝑙𝑦 was subtracted from 𝜏𝑖𝑛𝑣 to calculate the 

rapid response time, 𝜏𝑟𝑠𝑝.  The time taken to achieve a threshold value of 150 following the 

removal of the pulse, after it had reached the lower steady state, was used to estimate the 

residence time in the LSS (𝜏𝑟𝑠𝑑). When the system reached a threshold value of 850 and 

the trajectory was labelled as switched, the time required to switch back to its USS (𝜏𝑠𝑤𝑡) 

was estimated. 

 

4.3 Results 

For the MI and MA motifs, the fraction of the population that switched to the lower steady 

state was presented in Figure 4.3a-b as a function of pulse dose and duration. The 𝑓𝑖𝑛𝑣  grew 

nonlinearly with increasing pulse dose and duration, showing that the population inversion 

might be achieved by a phosphatase pulse in which a strong pulse for a short duration or a 

weak pulse for a long duration both can alter the steady state of the bistable system. The 
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sharper curve for 𝑓𝑖𝑛𝑣 vs 𝜏𝐷 as compared to the sharpness in the 𝑓𝑖𝑛𝑣 vs 𝛥𝑆𝑅 suggested the 

critical dependence of pulse duration, this behavior was found to be more prominent in case 

of MA. Although the qualitative effects of the pulse on the bistable transition from MI to 

MA motifs were comparable, but the initial delay in the 𝑓𝑖𝑛𝑣 profile for MA network 

suggested that for population inversion the pulse must be exposed for a longer period of 

time (large 𝜏𝐷) than in the case of MI. In order to support this finding, the minimum 

duration of pulse need to attain 1% of inverted population was calculated across various 

values of pulse doses (Figure 4.3c). Results showed that minimum pulse duration needed 

to initiate the population inversion decreased with increase in the pulse amplitude. More 

importantly, the minimum duration needed was higher in case of MA as compared to MI 

irrespective with any dose value. The flat sections (𝑓𝑖𝑛𝑣 = 1) in the surface plot drew 

attention to the fact that any appropriate combination of pulse dose and duration could 

result in a complete population inversion, implying that dose and duration played 

compensating roles. Additionally, the curve edge of the flat region suggested that a 

minimum dose and duration were needed to complete inversion of the population. The area 

under the pulse needed to achieve 99% population inversion was computed to identify the 

key factor between the dose and duration (Figure 4.3d). The area represented the exposed 

integrated phosphatase signal of bistable system. This implied that, in comparison to MI, 

MA was less responsive to the external signal. Consequently, a brief signal (or noisy signal) 

might not cause alteration of steady state in case of MA. Further evidence that the pulse 

dose had a bigger impact on population inversion than the time does on state flipping is 

shown by the reduction of area with increasing dose. To demonstrate that the population 

inversion dynamics of a bistable system are independent of the strength of the resting pulse, 

similar calculations were performed with various values of 𝑆𝑟 (Appendix 2, Figure A5.1). 
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Figure 4.3:  The fraction of population that inverts into the lower steady state (𝑓𝑖𝑛𝑣) is 

plotted as a function pulse duration (𝜏𝑑) and pulse dose (𝛥𝑆𝑅 = 𝑆𝑚 − 𝑆𝑅) for the MI (a) 

and MA (b) networks. 𝛥𝑆𝑅 represents the difference between the pulse dose and the signal 

corresponding to the right saddle node bifurcation point. The duration of pulse required to 

reach 1% population inversion is plotted as a function of 𝛥𝑆𝑅 for both the switches (c). The 

integrated signal required for 99% population inversion is plotted as a function of 𝜏𝑑 and 

𝛥𝑆𝑅 for the MI (circles) and MA (squares) networks (d). The value of the resting pulse was 

the value of the signal corresponding to the left bifurcation point. 

 

The transient dynamics of the DNFL and PFL networks were found to be in sharp contrast 

with each other. In the MI motif, 𝑓𝑛𝑟𝑠 declined as the dose and duration increase (Figure 

4.4a), while 𝑓𝑡𝑟𝑛  was quite low at all pulse doses and durations (Figure 4.4b). This 

suggested that the majority of trajectories eventually arrived at the LSS after the pulse 

induction. Contrarily, in the MA, 𝑓𝑛𝑟𝑠 were almost zero over a range of dose and duration, 

indicating that regardless of the quality of pulse, the entire population responded to it 

(Figure 4.4c). The 𝑓𝑡𝑟𝑛 decreased with the pulse parameters in a dose-dependent manner, 

indicating that a large amplitude sustained pulse was necessary to flip the steady state and 

that a low amplitude transient pulse caused a transitory response in which the system 

returned to its initial state (Figure 4.4d). As a result, in the MI, the switching of the steady 

state in a single step process depending on the pulse parameters, whereas in the MA, this 
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switching decision was made later following an initial transient response. Despite the fact 

that a MA motif was more prone to rapid response than the MI, MA required signal for a 

prolonged period for state inversion. It was verified that the initial responses of the system 

against the pulse were independent of resting pulse (Appendix 2, Figure A5.2). 

 

 

Figure 4.4: The non-responding (top row) and transiently responding (bottom row) fraction 

of population are plotted as a function of 𝜏𝐷 and 𝛥𝑆𝑅 for the MI (left) and MA (right) 

networks. 

 

The duration of transition between states for bistable system was a crucial factor since it 

provided the information about the kinetics of inversion in the dynamical system. For each 

of the two bistable switches, the average amount of time it took for the switch to transition 

from the USS to the LSS was plotted as a function of pulse dosage and duration in Figure 

4.5a-b. As the transition was facilitated by a strong pulse, the <𝜏𝑖𝑛𝑣> decreased with an 

increase in pulse dose. Although <𝜏𝑖𝑛𝑣> grows with 𝜏𝐷 for both bistable systems at low 

doses, its dependency on pulse duration was somewhat counterintuitive. The increase in 

<𝜏𝑖𝑛𝑣> with 𝜏𝐷 suggests that although a persistently weak signal might cause population 

inversion, it came as cost of time. The trajectories of the two bistable systems under the 

pulse were examined in order to identify the cause of this counterintuitive behaviour. These 

trajectories showed that in case of the MI network, system did not respond to the pulse right 
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away; instead, it experienced a little delay before transitioning rapidly to the LSS (Figure 

4.5c). On the contrary, in the case of the MA network, all trajectories responded to the pulse 

right away by displaying a sluggishness in decrease of kinase level, and following this first 

phase, the system quickly transitioned to the LSS (Figure 4.5d). As a result, the transition 

period was divided into two phases: the initial delay phase (𝜏𝑑𝑙𝑦) and the following rapid 

response phase (𝜏𝑟𝑠𝑝). In the case of MI, the average duration of the initial delay phase 

increased with pulse duration in the low dose regime (Figure 4.5e), while the average 

duration of the second phase of the response was essentially independent of dose and pulse 

duration (Figure 4.5g). As a result, at low doses, the increase in < 𝜏𝑖𝑛𝑣 >with 𝜏𝐷 was 

caused by an increase in 𝜏𝑑𝑙𝑦. Large pulse durations enabled more trajectories to switch 

their states at a later period, lengthening the average time, which caused the initial delay to 

increase. It was important to note that, such phenomena happened when the pulse 

amplitude(dose) was near to the right saddle-node bifurcation point, i.e.; 𝛥𝑆𝑅~0. It 

suggested that the critical system slowing down towards the bifurcation point was the cause 

of the delay in reaching a decision to flip the steady state. At a high dose, the system was 

far from the bifurcation point (𝛥𝑆𝑅 ≫ 0), therefore there was no critical slowing down-

induced delay in response, which caused the system to respond more rapidly and 

independently of pulse duration. The system self-propelled itself to the LSS in a pulse-

independent way once the decision to make a transition was taken. As a result, the 

increasing delay in the first response phase in the MI system was what caused the average 

transition time to increase with pulse duration. The dynamics of the system were very 

different in the case of MA compared to the MI motif. Here, the entire population responded 

instantly and displayed a long-lasting gradual decay before switching to the LSS (Figure 

4.5d). The time duration for the initial slow decay phase (Figure 4.5f) and the time length 

of the transition to LSS (Figure 4.5h) were measured. Contrary to MI, < 𝜏𝑑𝑙𝑦 > was almost 

independent of 𝜏𝐷, while < 𝜏𝑟𝑠𝑝 > increased with pulse duration at the low pulse dosage. 

Therefore, the effect of the critical slowing down was only reflected in the second phase of 

the switching dynamics in the MA motif. These durations were found out to be not 

dependent on the relative magnitude of the resting pulse (Appendix 2, Figure A5.3). 
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Figure 4.5: The surface plots of average inversion time (⟨𝜏𝑖𝑛𝑣⟩), average response time 

(⟨𝜏𝑟𝑠𝑝⟩) and average initial delay time (⟨𝜏𝑑𝑙𝑦⟩) are presented as a function of 𝜏𝑑 and 𝛥𝑆𝑅 

for the DNFL (top row) and PFL (middle) networks (a-f). The pulse induced temporal 

dynamics the kinase is shown for the DNFL (g) and PFL (h) networks. The dark and light 

green shaded regions indicate the pulse on state with maximum and resting amplitudes, 

respectively. 

 

The fate of the flipped states was then established by calculating the percentage of cells 

that return to the upper steady state and the percentage that were locked in the lower steady 

state after the pulse had been removed. The magnitude of the resting pulse, 𝑆𝑟, had a 

significant impact on the fraction of the population that returns to the initial condition 

(𝑓𝑠𝑤𝑡). For both bistable systems, the population returned to the upper steady state with low 

resting pulses (small 𝛥𝑆𝐿), regardless of the pulse duration (Figure 4.6a-b) and amplitude 

(Appendix 2, Figure A5.4). However, the fraction of the population switching back dropped 

in a nonlinear fashion as the resting pulse (large 𝛥𝑆𝐿) increases and as a result, the fraction 

of the population locked in the lower steady state increases in a complimentary manner 

(Appendix 2, Figure A5.5). The bistable switch of the MA motif had a lower rate of drop 
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of 𝑓𝑠𝑤𝑡 with increasing resting pulse as compared to the MI motif (Appendix 2, Figure 

A5.6). This implied that the bistable PFL motif was less prone to transition to the USS after 

the pulse was removed. Consistent with population results, a higher average residence 

duration (𝜏𝑟𝑠𝑑) at the lower steady state was caused by an increased resting pulse (Figure 

5.6c-d). The longer pulse permitted the system to stay in the LSS for a longer period of 

time, which resulted in a little rise in 𝜏𝑟𝑠𝑑. Compared to the MI, the MA had a larger effect 

of 𝜏𝐷 on 𝜏𝑟𝑠𝑑.  The pulse dose had no role on the system's residency and return dynamics. 

Although the average switching time (𝜏𝑠𝑤𝑡) from the LSS to the USS increased slightly 

with the resting pulse, the average switching time (𝜏𝑠𝑤𝑡) was mostly unaffected by the dose 

and pulse duration (Figure 4.6e-f). 

 

Figure 4.6: The fraction of the population that switches back to the USS (𝑓𝑠𝑤𝑡), the average 

residence time in the LSS (⟨𝜏𝑟𝑠𝑑⟩) and the average switching time (⟨𝜏𝑠𝑤𝑡⟩) are plotted as a 

function of pulse duration and resting pulse (𝛥𝑆𝐿 = 𝑆𝑚 − 𝑆𝐿) for the DNFL (top row) and 

PFL (bottom row) networks. 𝛥𝑆𝐿 represents the resting pulse over and above the signal 

value corresponding to the left saddle node bifurcation point. The value of the 𝛥𝑆𝑅 was 0.1. 

 

The role of regulatory network was essential to reduce the chemical noise caused by 

fluctuations in the finite number of macromolecular species. Therefore, the coefficient of 

variation (Figure 4.7a–b) and average (Figure 4.c–d) duration of inversion and switching 

times were analysed across the MI and MA networks in order to comprehend the role of 

feedback loops in the regulation of chemical noise. For both networks, the noise in the 
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inversion time found to be increased with 𝜏𝐷. This was because there was more relative 

time for the system to react to the pulse (= (𝜏𝐷−< 𝜏𝑖𝑛𝑣 >)/𝜏𝐷) (Figure 4.7e). The relative 

available time quantified how much more time the system had over the typical inversion 

time to react to the pulse. A greater fraction of late responders could be accommodated 

with a longer relative available time which lead to the increased variability in 𝜏𝑖𝑛𝑣. When 

compared to the MI network, the MA network exhibited much less noisy in case both the 

inversion and switching time (Figure 4.7a-b). The CV and average of 𝜏𝑠𝑤𝑡 were 

independent of 𝜏𝐷 since the switching dynamics was autonomous in nature. It was evident 

from these two average time durations that the MA motif required more time for the system 

to shift from one steady state to the other steady state of as compared to MI (Figure 4.7c-

d). These two findings implied that, in comparison to the bistable switch from a MI, the 

bistable switch from a MA was less sensitive to the external pulse. As a result, a MA motif 

would be less likely to undergo a stochastic transition from one state to another as a result 

of an external noisy signal. Thus, it could be commented that a MA would be more resistant 

to such perturbations by effectively removing the spurious signals. It was confirmed that 

greater robustness of MA was maintained across diverse pulse amplitudes by repeating 

similar computations for varied values of pulse amplitudes (Appendix 2, Figure A5.7). 
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Figure 4.7:  The comparison of statistical properties of inversion and switching times 

between the MI and MA networks (a-d). The comparison of relative available time vs. 

𝜏𝑑 between the MI and MA networks. The values of the pulse dose and resting pulse were 

𝛥𝑆𝑅 = 0  and 𝛥𝑆𝑅 = 0. 

 

To determine if the history of the system influenced the future dynamics, the correlation 

between the inversion time and the residence time of individual trajectories for the MI motif 

was presented in Figure 4.8a–c. The trajectory that made an early transition to the lower 

steady state stayed there for a longer period of time, according to the negative correlation 

between these two events. The stronger the correlation coefficient, the more tightly the 

pulse controlled these two occurrences, or, in other words, the more predictable the system's 

temporal behaviour. The correlation for the MI network was stronger at higher 𝜏𝐷(Figure 

4.8a). This suggested that continuous exposure to a low amplitude signal may cause a 

delayed inversion of the steady state, however such an inversion would only last a short 

time. Therefore, when the inversion was caused by a low amplitude sustained signal, the 

dynamics of the system are more tightly controlled (or more deterministic/predictable). 

Because of the increasing variability of 𝜏𝑟𝑠𝑑, the correlation for short pulses was weaker. 

On the contrary, there was a poor correlation between these two intervals at increased dose 

(Figure 4.8b) and resting pulse (Figure 4.8c). However, the reason behind the weaker 

correlations for the larger dose and resting pulse were not the same. Larger doses skewed 

the population toward smaller 𝜏𝑖𝑛𝑣 without changing the switching dynamics, causing the 

two events to become incoherent. At a weak resting pulse, the temporal dynamics of the 

system correlate well with the temporal profile of the pulse and consequently, thus strong 

correlation between 𝜏𝑖𝑛𝑣  and 𝜏𝑟𝑠𝑑. At higher resting pulse, the temporal correlation 

between the pulse and the dynamics of the system was lost, resulting in a decreased 

correlation coefficient. A high resting pulse drove the system to be at a lower steady state 

with a greater < 𝜏𝑟𝑠𝑑 >. The qualitative effects of pulse parameters on the correlation in 

the case of MA are comparable to those of MI, however, the correlations were often worse 

than in MI across different pulse parameters (Figure 4.8d and see Appendix 2, Figure A4.8). 
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Figure 4.8: The correlation between the mean-normalized 𝜏𝑖𝑛𝑣 and 𝜏𝑟𝑠𝑑 times are plotted 

for the indicated values of 𝜏𝑑 (a), resting pulse (𝛥𝑆𝐿, b) and pulse dose (𝛥𝑆𝑅, c) for the MI 

network. The values of correlation coefficients are indicated within the parenthesis inside 

each plot. In (d) the correlation between these two times is compared for the MI and MA 

networks. 

 

These calculations were expanded to include networks with two merged positive feedback 

loops centred around the kinase K. With 10 phosphorylation sites, another protein regulator 

called Y was introduced. The active version of Y catalysed the synthesis or degradation of 

the kinase. The network diagrams for the two fused MIs and two fused MAs are shown in 

Figure 4.9a and 4.9b, respectively. Similar dynamical equations represented the 

phosphorylated chain of Y, as shown in the example of a single positive feedback loop 

(Eq.4.3-5). The catalytic impact of 𝑌0 on the kinase would add another degradation 

component to the equation for the kinase in the MI network. Similar to this, 𝑌10 would add 

another synthesis term to the dynamical equation for the kinase in the MA network. In order 

to produce the same bifurcation diagrams as in the case of a single feedback loop, the value 

of 𝑘𝑎 in this instance was decreased by a factor of two in comparison to the single loop 

example. Other than that, nothing had changed. Across different pulse dose and pulse 

length, the population fractions that invert to the other steady state in the two loops case 
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were consistently marginally greater (Figure 4.9c-d). The additional positive feedback loop 

thus facilitated pulse-induced transitions to another steady state. 

 

Figure 4.9: The network diagrams of two fused DNFLs (a) and two fused PFLs (b). Here, 

one more positive feedback loop is introduced either by mutual inhibition (a) or by mutual 

activation (b) between K and Y. Analogous to X, the phosphorylation and 

dephosphorylations of Y are catalyzed by the kinase, K, and the phosphatase, S, 

respectively. The plots of 𝑓𝑖𝑛𝑣 as a function of pulse dose (𝛥𝑆𝑅) and duration (𝜏𝑑) are 

compared between one-loop (blue lines) and two-loop (red lines) DNFL (c) and PFL (d) 

networks. The vertical black lines indicate the difference between the two lines. 

 

4.4 Conclusion 

Processing of different internal and external signals is essential for living organism to 

maintain a proper function of their physiology. The signal was often assumed to be in 

steady state while modelling the information procession by regulatory networks, where the 

amplitude of the signal did not change over time.  But a cell may receive signals in pulsatile 

"packets" with changing amplitude and duration. In this chapter the fate of bistable switches 

was investigated produced either by mutual activation or mutual inhibition between two 

regulators in order to better understand how such transient signals were processed by 
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regulatory motifs. By forcing the bistable system into the other steady state, it was 

discovered that this kind of pulsatile signal could cause population inversion. The inversion 

could be induced by either a transient strong signal or a prolonged weak signal, or by a 

combination of both, showing that the dose or duration work compensatory with one 

another. It was found that the dose had a greater impact on the dynamics of the inversion 

than the duration of the signal. Irrespective of nature of bistable network, the pulse dose 

accelerated the population inversion by cutting down on average inversion time. However, 

the pulse duration promoted inversion by allowing late responders to switch their steady 

state. As a result, in the weak dose regime, the average transition time dramatically 

increased with pulse duration. This further demonstrated that when the signal dose was 

close to the saddle-node bifurcation point, the critical slowing of the trajectory had a 

significant impact on the dynamics. A significant distinction between how a between the 

processing of the pulse of mutual activation loop how a mutual inhibition loop was found. 

In case of mutual activation motif, the bistable system responded to the pulse instantly, and 

the average initial delay phase was unrelated to the duration of the pulse. Following this 

initial delay response, a sluggishness in the inversion process was found which was 

significantly influenced by the pulse duration. Whereas in case of mutual inhibition motifs, 

there was an initial duration dependent delay followed by a rapid inversion without 

exhibiting a transient response.  

The percentage of the population locked in the flipped state and the average time spent in 

the flipped state greatly depend on the resting pulse. While the dynamics of the locked state 

or the switching dynamics to the original state was found to be independent of the pulse 

dose and pulse duration. Calculations for population inversion showed that for MA 

network, a prolonged duration of pulse was needed in order to population inversion. The 

average inversion time and the switching time were found to be higher in case of bistable 

switch originating from mutual activation network as compared to mutual inhibition 

network. Additionally, the variability in these times was smaller in case of MA network.  

These three results supported our conclusion that the mutual activation network is less 

susceptible any transient signal and therefore the mutual activation would be a better 

topology for a bistable switch to filter out any noisy external signal. These conclusions are 

consistent with previous finding that mutual activation networks are better topology in 

attenuating chemical noise in the context of sustained signaling37. According to correlations 

between inversion time and residence time, the inversion caused by the pulse and 
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subsequent switching to the original state were tightly regulated by weak and long duration 

pulses. This implied that when the inversion of steady state was achieved on by a weak 

signal with a longer duration, the system behaves in a deterministic or predictable manner. 

Thus, even if a short but strong pulse might effectively switch the steady state, the 

behaviour of the events that follow becomes less predictable.   
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CHAPTER 5 
 

Effect of extrinsic noise on the 

heterogeneity of bistable responses 
 

 

5.1 Introduction 

Cellular physiological processes are regulated by complex networks of chemical reactions 

involving diverse types of biomolecules. Complexity of the regulatory networks poses a great 

difficulty in their characterization and understanding which are crucial in diseases context1,2. 

Often many complex networks consist of a core regulatory unit that functions as the main 

regulatory engine of the physiological processes in the cell3. The core regulatory unit can be 

sliced into functional motifs possessing unique steady state and dynamical properties and thus 

functional motifs are highly relevant in understanding the behavior of the whole regulatory 

network (See Introduction). Signal transducer, positive feedback loop (PFL), negative 

feedback loop, feed-forward loop, antithetic integral feedback loop are some of the important 

functional motifs that have characteristic properties dictating the behavior of the regulatory 

network4,5.  

As discussed in previous chapters, PFL is well-known for its ability to generate bistable signal 

response curve or bistable switch. Binary decision making processes in living cells are often 

governed by bistable switch characterized by initial condition dependent gene expression with 

distinct signaling thresholds of ON and OFF states of the gene6. In physiological context 

bistability has been found to be the principal architect in regulating restriction point in the cell 

division cycle of mammalian cells7,8,9, entry and exit from mitosis in Xenopus laevis10,11, 

programmed cell death by apoptosis12–14, mutually exclusive cell fate choice15–20 and cellular 

memory21,22. Now, due to the extrinsic source of heterogeneity in isogenic populations of cells 

(see Introduction), the strength of regulatory interactions in similar PFL motifs may vary from 

one cell to another. This variability in the strength of regulatory interactions may result in 
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different qualitative behaviors. In a canonical bistable signal response curve, the gene 

expression changes from low-to-high or high-to-low through a bistable switch and a simple 

signal transduction of one of the genes in the PFL is sufficient to generate canonical 

bistability23–29. When both the genes in the PFL, created either by mutual inhibition (MI) or 

mutual activation (MA) loop, are signaled by the same external regulator it creates a dual 

signaling PFL motif (Figure 5.1a). Intuitively such a network motif is expected to generate 

bistability. However, due to the combinatorial possibilities on the nature of dual input signals, 

new bistable switches may originate as emergent properties of the dual signaling PFL motif. 

Previous works have shown that incoherent feed-forward signaling of a self-activating gene 

may result mushroom and isola bistable switches30. Mushroom bistability consists of two 

bistable switches fused in a face-to-face manner with an intervening monostable region. Isola 

switch on the contrary exhibits a single bistable region however with a curious feature of an 

island of steady states created by a stable and unstable branch30,31. In both the switches the 

expression of the gene changes from low-to-high-to-low (or high-to-low-to-high) as opposed 

to a canonical switch that exhibits low-to-high (or high-to-low). This chapter discussed the 

robustness of such dual signaling positive feedback loop topologies attaining heterogenous 

bistable responses in presence of extrinsic noise. The origin of such heterogenous switches and 

their interconversion were also extensively studied.  

 

5.2 Model 

Figure 5.1a represented the core topology of PFL model under dual signaling where both the 

genes in the PFL are regulated by a common regulator. Accordance with chapter 4, the PFL 

was modelled with mutual inhibition (MI) and mutual activation (MA) loops between the 

genes. The coherent (same) or incoherent (different) nature of signaling arm towards two genes 

landed in a set of three networks for each for the MI and MA loops (Figure 1b). Further, due 

to the prevalence of fused PFLs in cellular differentiation pathways and cancer metastasis, 

mutual inhibition self-activation (MISA) and mutual activation self-activation (MASA) motifs 

was further included by introducing a self-activatory PFL in the MI and MA motifs, 

respectively (Figure 1c). Thus, total number of model network became of 14. Now, it is well 

known that depending upon the number of PFLs, networks can produce conventional bistable 

(Bs) and dual bistable (DBs) switches consisting of one and two bistable regions, respectively, 

and these switches were categorised as canonical bistable switches (Figure 1d). However, 
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because of certain possibility of these network generating new emergent bistable switches, a 

set of 12 reversible noncanonical switches consisting of one or two or three bistable regions 

were considered (Figure 1d). The full 1-p bifurcation diagrams of these switches were listed in 

the Appendix 3, Table A5.1. Isola (Is) and inverted isola (InIs) are the two noncanonical 

switches that consist of a single bistable region and these switches contain a disconnected stable 

branch and an isolated island of steady states created by connecting a stable and an unstable 

branch via two saddle-node (SN) bifurcation points. Mushroom (Msh), inverted mushroom 

(InMsh), bistable-isola (Bs-Is), bistable-inverted isola (Bs-InIs) and dual isola (DIs) are the 

noncanonical switches consisting of two bistable regions and four SN bifurcation points. The 

noncanonical switches with three bistable regions with six SN points are isola-mushroom (Is-

Msh), inverted isola-mushroom (InIs-Msh), bistable-mushroom (Bs-Msh), dual bistable-isola 

(DBs-Is) and dual bistable-inverted isola (DBs-InIs). All of these noncanonical switches 

originate from the fusion of two or more canonical/noncanonical switches in various numbers, 

orientations and orders.  

 

Figure 5.1: Dual signaling PFL networks and noncanonical bistable switches. The core 

topology of the dual signaling PFL motif consists of a regulator (S) that signals two genes (A 

and B) connected by a PFL (a). Arrows with partially filled circles indicate either coherent or 

incoherent nature of the input signals. A set of three unique networks exist both for the MI and 

MA loops (b). The arrow- and blunt-headed lines represent activation and inhibition, 

respectively. In each set, the signs of the input signal are (-,-) (+,-) and (+,+). The signs of the 

resultant regulation on B via the indirect and direct arms are represented beside each network. 
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‘n’ and ‘p’ in the network names represent inhibitory (negative) and activatory (positive) 

signals on the target genes, respectively. The network becomes asymmetric with the inclusion 

of a self-activation and a set of four networks possible both for the MISA and MASA motifs 

(c). The networks are categorized into 1-PFL and 2-PFL motifs based on the number of PFLs 

in the networks. Bistable switches are categorized into canonical and noncanonical groups and 

the noncanonical switches are segregated based on the number of bistable regions (d). The 

switches are represented by the one-parameter bifurcation diagram where the steady state of B 

is plotted as a function of the signal S (not shown explicitly). The black and red lines represent 

the stable and unstable steady states. The complete bifurcation diagrams of these switches are 

presented in the Appendix 3, Table A 5.1. 

 

To investigate these noncanonical switches, the networks were modeled using nonlinear 

ordinary differential equations. In general, the activation of a target gene (X) by another gene 

(Y) is expressed by the Hill function as 

𝐻XY
+ (𝑌) =

(𝑌
𝐽XY

⁄ )
𝑛XY

1 + (𝑌
𝐽XY

⁄ )
𝑛XY

 5.1 

Where 𝑛XY and 𝐽𝑋𝑌 are the Hill coefficient and activation threshold, respectively. The inhibition 

of the gene is represented by 𝐻XY
− = 1 − 𝐻XY

+ . When a target gene is regulated by multiple 

regulatory signals, the functionality of the gene may need to satisfy logic gate configurations. 

To address this, investigation was done for both the OR- and AND-gate configurations of the 

gene A and B in the networks. In the OR-gate, the net regulatory influence on a target gene 

was represented by the summation of the individual inputs. As a representative case, the 

dynamical equations for the ppMI network were given as, 

 

𝑑𝐴

𝑑𝑡
= 𝑔A0 + 𝑔AS𝐻AS

+ (𝑆) + 𝑔AB𝐻AB
− (𝐵) − 𝛾A𝐴 5.2 

𝑑𝐵

𝑑𝑡
= 𝑔B0 + 𝑔BS𝐻BS

+ (𝑆) + 𝑔BA𝐻BA
− (𝐴) − 𝛾B𝐵 5.3 

 

𝑔X0, 𝑔XY and 𝛾X represent the unregulated synthesis, maximal synthesis and degradation rates 

of X. On the contrary, the net regulatory influence on a target gene was represented by the 
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multiplication of the individual inputs in the AND-gate configuration. The dynamical equations 

for the same network were given as 

𝑑𝐴

𝑑𝑡
= 𝑔A0 + 𝑔A1𝐻AS

+ (𝑆)𝐻AB
− (𝐵) − 𝛾A𝐴 5.4 

𝑑𝐵

𝑑𝑡
= 𝑔B0 + 𝑔B1𝐻BS

+ (𝑆)𝐻BA
− (𝐴) − 𝛾B𝐵 5.5 

 

The dynamical equations for all networks are listed in the Appendix 3, Table A 5.2. Now in 

order to investigate the robustness of each network towards generating heterogenous bistable 

responses under the influence of extrinsic noise, the steady state responses needed to be studied 

for variable regulatory interaction strengths. To implement this condition of variable regulatory 

strengths, a random parameter combination space was created. All parameters, except the 

activation/inhibition thresholds (𝐽𝑋𝑌) were sampled from independent uniform distributions 

having a particular range (See Appendix 3, Table A 5.3). The ranges were selected in such a 

way that the expression level falls in the biologically relevant range. In order to avoid bias in 

the threshold values, the half-functional rule was adopted to ensure that the randomly chosen 

values of the threshold are not biased towards activation or inhibition30. The sample space for 

parameter combination was 900,000. Now, the conventional method of running 1-p bifurcation 

analysis using XPPAUT for every parameter combination for each network would have a 

tedious job. Thus, recently developed automated method of pseudo potential based bifurcation 

analysis method was deployed in order to avoid any manual intervention of these large-scale 

analysis (see chapter 2 for methodology). During each analysis, the types of bistable switches 

were also determined by exploiting the number of saddle node points (SNs) and the direction 

of the jump in the value of the stable steady state at the bifurcation points (see Appendix 3 

Table A5.4 for jump patterns). The number of various types of switches that each network was 

counted in order to determine the variability of the steady state responses.  

 

5.3 Results 

Figure 5.2a showed the total count (and %) of canonical and noncanonical bistable switches 

for all networks under OR- and AND-gate. A group of networks were found to be generating 

exclusively canonical bistability without a single noncanonical response, while another group 

generated both the canonical and noncanonical responses. Close inspection of the networks 
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revealed that the noncanonical bistable switches were produced only when the input signals 

are coherent ((+,+) or (-,-)) for the MI loop and incoherent ((+,-) or (-,+)) for the MA loop 

irrespective of the number of PFLs and logic gates (Figure 2b). An alternative view of the PFL 

topology resulting in noncanonical responses was the resultant regulatory signs (see Figure 1b) 

from S to B (or S to A) via indirect and direct regulations must be dissimilar ((+,-) or (-,+)). 

The networks with the same resultant regulatory signs on any gene were only noncanonical 

switches across any parameter combination. Thus, it was concluded that the network with same 

resultant signs on any gene were more robust towards any variation in their regulatory strengths 

as it produces only canonical responses. The presence of the additional self-activation in the 

fused PFLs did not influence these conclusions and it only result in the increased absolute 

counts of bistable switches. Several additional features also emerged from these total counts. 

The MA loops were found to be expressing a larger number of noncanonical switches as 

compared to the MI loops in both the logic gates. Between OR- and AND-gate, MI loops under 

OR-gate were more potent in generating noncanonical responses as compared to the AND-

gate. It was also quite remarkable to note that the counts or the percentage of noncanonical 

responses of a pair of MI networks (nnMI and ppMI or nnMISA and ppMISA) and a pair of 

MA networks (npMASA and pnMASA) were nearly identical.  
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Figure 5.2: Total counts of canonical and noncanonical switches. The total count of 

canonical and noncanonical bistable switches from the networks under OR- (bottom row) and 

AND-gate (top row) (a). The percentage of canonical switches from a particular network is 

indicated within each bar. The signs of the two input signaling arms of each network are 

indicated at the top of the corresponding bar. The MI and MA loops under coherent and 

incoherent signaling, respectively resulted in generation of both canonical and noncanonical 

bistability (b, left), otherwise networks resulted in generation of only canonical response (b, 

right).  

 

It was further interesting to look in to the heterogeneity of bistable switches from the counts of 

individual switches for the noncanonical switch producing network. The three 1-PFL networks 

(nnMI, ppMI and pnMA) produced a large number of canonical Bs switches and do not produce 
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any DBs switch (Figure 5.3a). On the contrary 2-PFL networks (nnMISA, ppMISA, npMASA 

and pnMASA) generated a significant number of DBs. In DBs, the expression level of B 

changes from low-to-intermediate-to-high (or high-to-intermediate-to-low) and thus it required 

two step activation (or inactivation) of the target gene.  The additional PFL in the 2-PFL 

networks allowed such two-step activation. For comparison convenience, noncanonical 

switches were segregated based on the number of bistable regions and compared the counts 

from all the networks (Figure 5.3b-d). Both 1-PFL and 2-PFL networks produced a large 

number of Is and InIs switches having a single bistable region (Figure 3b). Although 1-PFL MI 

networks were equally capable of producing both types of isola, however the 1-PFL MA 

network produced an overwhelmingly larger number of InIs than the normal Is. Across all 2-

PFL networks InIs is the preferred response as compared to Is. InMsh, Msh, Bs-Is and Bs-InIs 

were switches with two bistable regions and were generated in significant numbers by these 

networks (Figure 5.3c). While Msh and InMsh originated from the fusion of two canonical 

bistable switches, the Bs-Is and Bs-InIs result from the conglomeration of canonical Bs with 

noncanonical Is (Appendix Table A 5.1). Due to their complex nature, the counts of bistability-

with-isola switches were significantly less as compared to mushroom switches. Analogous to 

isola switches, the counts of InMsh were significantly more than the Msh in the 1-PFL MA 

network and across all 2-PFL networks. It was important to note that, although 1-PFL networks 

did not generate a single switch consisting of two bistable regions (DBs), however, they 

generate various noncanonical switches consisting of two bistable regions. The counts of 

noncanonical switches with three bistable regions were dramatically less as compared to the 

two bistable regions (Figure 3d). All five noncanonical switches with three bistable regions 

originate from the fusion of a canonical/noncanonical switch with another noncanonical switch 

(Appendix 3, Table A5.1). Bs-Msh was the only noncanonical switch generated by the 1-PFL 

networks. However, a small number of other switches were also generated by the 2-PFL 

networks. Therefore, with additional fused PFL the counts of rare switches were expected to 

increase. In the AND-gate similar results were obatained however with shuttle differences. 

Overall, the heterogeneity of the noncanonical switches is less under AND-gate (Appendix 3, 

Figure A5.1). As opposed to OR-gate, here the Is and Msh were more as compared to their 

inverted counterparts. It was also intriguing to note that networks with MA loop do not generate 

any inverted switches (InIs or InMsh).  
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Figure 5.3: Heterogeneity of canonical and noncanonical switches. The total number of 

various types of canonical (a) and noncanonical (b-d) bistable switches are presented for the 1-

PFL and 2-PFL networks under OR-gate configuration. The noncanonical switches are 

segregated into one (b), two (c) and three (d) bistable regions.  

 

To obtain a quantitative estimation of the probability of obtaining these noncanonical switches, 

the percentage chance (% Chance) of noncanonical switches by normalizing their counts with 

the total count of all bistable switches was calculated (Figure 5.4a-b). The % Chance showed 

that the likelihood of obtaining some of the noncanonical switches were quite high from the 

dual signaling PFL networks. Among all the noncanonical switches, InIs was found to be the 

most likely outcome both from the MI and MA networks. In fact, there was one in three chances 

of obtaining an InIs in MA networks. InMsh was the second most probable noncanonical switch 

in MA networks. The chances of generating isola and mushroom were significant in MI 

networks. Probability of obtaining more complex switches involving three bistable regions 

were relatively less from networks with a single PFL. However, the counts 2-PFLs indicated 
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that complex switches are possible in fused PFL networks. The % Chance of noncanonical 

switches from the MI networks having (+,+) input signals correlated very well with that of the 

networks having (-,-) input signals (ppMISA vs. nnMISA and ppMI vs. nnMI) (Figure 5.4c). 

Similarly the MA network with (+,-) input signals showed a good correlation of %Chance with 

the MA network having (-,+) input signals (Figure  5.4d). The near perfect correlations suggest 

that the probability of noncanonical switch did not depend on the specific nature of the input 

signal pair provided the conditions of dual signaling are satisfied by the network. The % Chance 

for the AND-gate networks highlight the overwhelmingly high probability (~80%) of 

generating Is switch by the MA network (Appendix 3, Figure A5.2). Further it also showed 

that the MA networks under AND-gate are not all capable of producing neither inverted isola 

nor inverted mushroom. 

 

 

Figure 5.4: Occurrence probability of noncanonical switches. Comparison of % Chance of 

obtaining various types of noncanonical switches for the MI and MA networks under OR-gate 

configuration (a-b). The correlation of % Chance of the noncanonical switches of MI networks 
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(circle: 1-PFL, square: 2-PFL) under (+,+) input signal with (-,-) input signal (c). Correlation 

plot for the 2-PFL MA networks (d). 

Next, the origin of these noncanonical switches specifically, most abundant Is and Msh was 

analyzed by the respective phase-plane diagrams of the dynamical systems of the ppMI 

network. Figure 5.5 presented the isola bifurcation diagram and its nullclines for different 

values of S. At small S the two nullclines intersected once leading to a stable steady state with 

small B. With increase of S, a new intersection of the nullclines occured at large B leading to 

the creation of the left SN bifurcation point (point 1) and consequently it generated a stable and 

an unstable node as partners. With further increase of S, the unstable node moved away from 

the stable partner node and thereby the separation between the stable and the unstable branches 

increased in the bifurcation diagram. However, with subsequent increase of S, the unstable 

node started moving towards the same stable partner node and consequently the gap between 

the stable and unstable branch decreased in the bifurcation diagram. Ultimately at large S, these 

two nodes annihilated each other leading to the second SN point (point 2). Strikingly both the 

SN points were created by the creation/annihilation of the same set of stable and unstable nodes. 

Consequently, the resulting stable and unstable branches were connected by two SN points 

creating an island of steady states in the bifurcation diagram. During this process the other 

stable steady node did not undergo any qualitative change and was responsible for creating the 

disconnected stable branch in the bifurcation diagram. InIs switch also follows similar merging 

characteristics of the stable and unstable nodes (Appendix 3, Figure A5.4). It was emphasized 

that the origin of two SN bifurcation points in isola is completely different than the origin of 

two SN points in the canonical bistable switch where two different sets of stable and unstable 

nodes were responsible for generating two SN points (Appendix 3, Figure A5.5).  



Extrinsic noise and heterogenous bistable switches  

86 | P a g e  
 

 

 

Figure 5.5: Phase-plane analysis of isola switch. The bifurcation diagram of Is switch and 

the corresponding phase-plane plots for the indicated values of S for the ppMI network under 

OR-gate. The two SN bifurcation points are indicated by the blue circles in the bifurcation 

diagram. The black and red circles at the intersections of two nullclines (𝑑𝐴 𝑑𝑡⁄ = 0 and 

𝑑𝐵 𝑑𝑡⁄ = 0) indicate the stable and unstable nodes, respectively. The parameters for the Is 

bifurcation are listed in the Appendix 3, Table A5.5. 

 

The Msh bifurcation featured fusion of two canonical bistable switches in a face-to-face 

manner with an intervening monostable region (Figure 5.6). Phase-plane analysis indicated that 

a pair of new nodes appeared after the birth of the first SN point (point 1) and the system 

became bistable. With increasing S, the newly born unstable node moved towards the pre-

existing distant stable node located at low B. The second SN point (point 2) originated from 

the coalescence of the unstable node with the distant stable node and beyond the second SN 

point the system became monostable with high B. Thus, the forward-facing Bs switch was 

generated and the left part of the Msh created. Subsequent increase of S lead to the birth of the 

third SN point (point 3) at low B and the system became bistable again. The newly born 
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unstable node travelled towards the pre-existing distant stable node located at high B with 

progressive increase of S. Finally, the merging of the unstable node with the distant stable node 

and the annihilation of both of them resulted in the fourth SN bifurcation point (point 4). The 

system became monostable beyond the fourth SN point and the backward facing Bs switch was 

generated as the right part of the MSh. During the entire process the expression level of B 

changed from low-to-high-to-low via two different bistable switches and this pattern is 

different than the dual bistable switch (DBs) consisting of two bistable switches where the level 

of B changes from low-to-intermediate-to-high (Appendix 3, Figure A5.5). The behavior of 

the nullclines for the InMsh were similar to Msh but the expression level of B changed from 

high-to-low-to-high and two bistable switches congregate in a back-to-back manner in InMsh 

(Appendix 3, Figure A5.5). 

 

 

Figure 5.6: Phase-plane analysis of mushroom switch. The bifurcation diagram of Msh 

switch and the corresponding nullcline plots for the indicated values of S for the ppMI network 

under OR-gate. The parameters are listed in the Appendix 3, Table A5.5. 

From the findings, that a single network topology could result in generating numerous 

noncanonical responses for r parameters are a key factor in determining the response in 
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nonlinear dynamical systems. Particularly it was envisaged that a particular type of 

noncanonical switch may transition into another type of switch with the modification of 

parameters. To determine the condition of interconversion of the various types of switches, the 

phase diagrams of the switches was calculated by carrying out 1-p bifurcation analysis with 

respect to S for varying combinations of 𝑔AB and 𝑔BA – the mutual regulatory strengths of gene 

A and B on each other. So far, a total of 14 different bistable switches were considered 

including two canonical switches. However, considering Bs, Is and Msh as basic building 

blocks, various other complex bistable switches might emerge due to the fusion of these three 

units in different numbers and orientations. For generating phase diagram, a total of 57 different 

reversible bistable switches consisting up to a maximum of three bistable regions were 

considered. (See the Appendix 3, Table A5.7). A bistable switch can be irreversible at the 

smallest (S=0) or/and at the largest (S=1000) signal values. Irreversibility means the system is 

bistable at S=0 or/and at S=1000. In order to account for the possibilities of the irreversible 

switches, an additional 69 irreversible switches were considered. Therefore, the phase diagram 

calculations were capable of identifying a bistable switch from a basket of 126 unique bistable 

switches. The switches were identified based on the number of SN points, jump pattern of 

stable steady state at the SN point and the location of irreversibility., Considering a switch as 

a particular phase, a total of 126 possible phases were taken into account in the phase diagram 

calculations. In phase diagram calculations, a typical phase diagram contained ~30000-40000 

1-p bifurcation runs.  

In Figure 5.7a the phase diagram of ppMI network starting from Is phase was plotted. The Is 

phase transitioned into other bistable phases with the change of feedback strengths represented 

by the parameters 𝑔AB and 𝑔BA. The canonical forward facing Bs switch occurred in the region 

of small 𝑔AB and 𝑔BA, and this phase changed into a Msh phase with increasing 𝑔AB. A 

backward facing Bs switch appeared along with the existing forward facing Bs switch to 

generate Msh switch with increasing 𝑔AB (Figure 5.7b). With further increase of 𝑔AB, the Msh 

phase transformed into an Is phase where the two intermediate SN points of Msh coalesce 

creating an island of steady states of the Is switch (Figure 5.7c). Thus, the phase transition 

between Msh and Is was regulated by the regulatory interaction of gene B on gene A (𝑔AB). 

On the contrary, with the increase of 𝑔BAthe Is, Msh and Bs switches transformed into their 

respective irreversible switches in which the left most SN point lies before S=0 (Figure 5.7d-

f). The clear phase boundaries between two phases indicated the criticality of the parameter in 

the transition from one switch to another. Furthermore, the size of the region indicated the 
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robustness of the switches with respect to modification of the parameters. In the ppMISA 

network with Is as an initial phase, we found a qualitatively similar phase diagram where again 

𝑔AB dictates the interconversion between Msh and Is (Figure 5.7g).  

 

Figure 5.7: Phase diagrams of initial phase of isola. Phase diagram of Is switch (presented 

in the Figure 5) as initial phase in ppMI network under OR-gate (a). Bistable phases are 

indicated by the different colors and the representative 1-p bifurcation plots indicate the phase 

type (a). The white region represents monostability. 1-p bifurcation plots highlight the 

transition from Bs to Msh (b), Msh to Is (c), Is to L-Is (d), Msh to L-Msh (e) and Bs to L-Bs 

(f) with the increasing value of either 𝑔AB or 𝑔BA (represented by the arrow). The prefix ‘L’ 

represents irreversibility at left. Phase diagram of ppMISA network under OR-gate with Is as 

an initial phase (g). The parameters for the ppMISA phase diagram are listed in the Appendix 

3, Table A3.8. 

Similar phase diagram analysis was performed for InIs switch in ppMI network under OR-gate 

to uncover that various types of switches exist with the variation of 𝑔AB and 𝑔BA (Figure 5.8a). 

The forward facing Bs phase transitioned into InMsh phase with the increase of 𝑔BA. With 

increasing g_{BA}, a new backward facing Bs switch appeared on the left of the existing 

forward facing Bs switch creating InMsh (Figure 8b). Subsequently with 𝑔BA, the InMsh phase 

changed into InIs phase where the two intermediate SN points of InMsh converged to produce 

InIs (Figure 8c). Thus, the transitions between the InMsh and InIs switches were controlled by 

the regulatory strength of A on B (𝑔BA) These switches transitioned to their respective 

irreversible switches on the right with the increase of 𝑔AB. The irreversibility on the right was 
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a result of the finite value of the signal (S=1000). At a large 𝑔AB the InMsh becomes irreversible 

on the both sides. We found similar phase transition behavior of the forward facing Bs, InMsh 

and InIs switches in the case of ppMISA network under OR-gate (Figure 5.8d). 

 

 

Figure 5.8: Phase diagrams of initial phase of inverted isola. Phase diagram of ppMI 

network in OR-gate configuration with InIs as an initial phase (a) (see the Supplementary Table 

S5 for the parameters). One parameter bifurcation plots highlight the transition from Bs to 

InMsh (b) and InMsh to InIs (c) with the variation of 𝑔BA. Phase diagram of ppMISA network 

in OR-gate configuration with InIs as an initial phase (g). The parameters for the ppMISA 

network with initial InIs phase are listed in the Appendix 3, Table A5.8. 

 

Phase transition calculations starting with mushroom phase in the same network revealed the 

existence of diverse types of switches with the variation of 𝑔AB and 𝑔BA (Figure 5.9a). 

Consistent with Is phase diagram, the interchangeability between Is and Msh was controlled 

by 𝑔AB. It was curious to note that with increased 𝑔BA, Msh phase changed into Bs-Msh phase 

consisting of three bistable regions. With increase of 𝑔BA, the birth of two new SN points, on 

the stable branch located on the left of the Msh, created a backward facing Bs and altogether it 

becomes Bs-Msh (Figure 5.9b). Subsequent increase of 𝑔BA lead to conversion of Bs-Msh into 

Bs-InIs phase where the inverted mushroom (created by the first two bistable switches) of the 

Bs-Msh converged to generate the InIs (Figure 5.9c). Again, the conversion of InMsh into an 

InIs was triggered by 𝑔BA as seen in Figure 5.8. On the contrary, with increase of 𝑔AB the Bs-

Msh changed into a Bs-Is where the mushroom in the Bs-Msh (last two bistable regions) 

converged to produce the Is on the right of the first bistable switch (Figure 5.9d). This transition 

was again consistent with the findings of Figure 7 where the transition from Msh to Is was 

found to be regulated by 𝑔AB. The existence of Bs-Msh, Bs-InIs and Bs-Is phases underscored 
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that complex switches with multiple bistable regions could be generated by a single PFL under 

dual signaling. These switches became irreversible on the left at higher values of 𝑔AB. In case 

of InMsh as the initial phase, again it was found that the inter-conversion between InMsh and 

InIs was dictated by the 𝑔BA (Figure 9e). To check the consistency, phase transition calculations 

of pnMA network were performed with different initial phases and again found that transition 

between Is and Msh is regulated by 𝑔AB and transition between InIs and InMsh is regulated by 

𝑔BA (Appendix 3, Figure A5.6). 

 

 

Figure 5.9: Phase diagrams of initial phase of mushroom. Phase diagrams of ppMI network 

under OR-gate configuration with Msh (a) and InMsh (e) as initial phases. 1-p bifurcations 

showcase the transition from Msh to Bs-Msh (b), Bs-Msh to Bs-InIs (c) and Bs-Msh to Bs-Is 

(d). The parameters for the initial phases are listed in the Appendix 3, Table A5.5. 

 

In addition to the feedback strengths, activation (or inhibition) thresholds were key parameters 

as they dictate the amount of signal required to flip the state of ultrasensitive switch represented 
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by the Hill function. Hence, the role of signaling thresholds of the two input signaling arms, 

𝐽𝐴𝑆 and 𝐽𝐵𝑆, in generating a specific noncanonical response were investigated. From the 

searched parameters for the bistable switches, the logarithm of the ratio of average 𝐽𝐴𝑆  and 𝐽𝐵𝑆 

was calculated to measure of dissimilarity (or similarity) of the two thresholds. Across all 

networks and logic gate configurations, the values of these parameters were nearly similar for 

the canonical Bs switch (Figure 5.10). However, for the noncanonical switches, the values of 

these parameters were dissimilar and followed a pattern based on the type of switch and the 

network. The ratios indicated that Is and Msh switches require 𝐽𝐴𝑆 < 𝐽𝐵𝑆 for the nnMI, 

nnMISA, pnMA and pnMASA networks (Figure 5.10a). A closer inspection revealed that in 

these four networks, the resultant signs of the two arms from S to B is (+,-) (Figure 5.1b). Both 

Is and Msh switches exhibited an expression pattern of low-to-high-to-low for B and therefore 

B must be activated first and then deactivated later with signal. In order to satisfy this 

requirement, the threshold of activation arm (indirect arm; S to B via A) must be smaller than 

the threshold of deactivation arm (direct arm; S to B) such that B is activated and deactivated 

at low S and high S, respectively. Consequently, the average 𝐽𝐴𝑆 was smaller than the average 

𝐽𝐵𝑆 in these four networks. On the contrary, the expression pattern of B in InIs and InMsh is 

high-to-low-to-high. Therefore, the deactivation and activation of B must occur at the low and 

high signal, respectively. In order to satisfy this the threshold of deactivation must be smaller 

than the threshold of activation and thus these networks showed 𝐽𝐴𝑆 >  𝐽𝐵𝑆 (Figure 5.10a). 

These inequalities become exactly opposite for the ppMI, ppMISA and npMASA networks 

whose resultant signs of two signaling arms are (-,+) (Figure  10b). Due to the flipping of the 

regulatory signs of the signaling arms the inequalities now became opposite in these networks. 

The cumulative distributions of the two thresholds also show the consistent dissimilarity 

patterns for the noncanonical switches (Appendix 3, Figure A5.7). These networks under AND-

gate followed similar inequalities (Figure 5.10c-d). 
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Figure 5.10: Conditions of threshold parameters. The logarithm of ratio of average  

𝐽𝐴𝑆 𝑎𝑛𝑑 𝐽𝐵𝑆 obtained from random parameter search are compared together for the networks 

whose resultant regulatory signs from S to B are same. In the left and right panels the resultant 

signs of the signal from S to B in two arms are (+,-) and (-,+), respectively. These comparisons 

were made both for the OR- (top panels) and AND-gate (bottom panels) configurations.   

 

As the relative magnitudes of 𝐽𝐴𝑆 𝑎𝑛𝑑 𝐽𝐵𝑆 were key to obtaining a particular noncanonical 

switch, the phase diagrams of Is, Msh, InIs and InMsh with respect to these two parameters 

was generated to estimate the phase separation behavior of these switches under the variation 

of these thresholds (Figure 5.11). A single phase was obtained in the case of Is and in case of 

Msh two other phases were obtained (Figure 5.11a-b). The triangular phase diagrams in these 

cases indicated the criticality of the ratio of the two activation thresholds. As 𝐽𝐴𝑆 increases 

relative to that of  𝐽𝐵𝑆 the region of Is and Msh phase increased consistent with the inequality 

conclusion of Figure 5.10a. On the contrary as the value of 𝐽𝐵𝑆 increases relative to 𝐽𝐴𝑆 the 

region of InIs and InMsh increased (Figure 11c-d). The triangular phase diagrams highlighted 

the importance of relative magnitudes of 𝐽𝐴𝑆 and 𝐽𝐵𝑆.  
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Figure 5.11: Phase diagrams under threshold parameters. Phase diagrams of Is, Msh, InIs and 

InMsh switches with the variation of the thresholds 𝐽𝐴𝑆 and 𝐽𝐵𝑆 for the ppMI network with OR-

gate configuration (parameters are listed in the Appexdix 5, table A5.5). 

 

5.3 Conclusion 

Bistability generated by PFLs has been proven to be a key mechanism in cellular decision 

making processes and has been investigated extensively. This chapter discussed the fate of 

PFLs under dual signaling where both the genes in the PFL are regulated by a common 

regulator in presence of extrinsic noise. The objective was to determine the robustness of 

network topology in generating bistable response against variation of its regulations. Further 

the heterogeneity of bistable responses due to fusion of canonical bistable switches in different 

numbers and orientations, heterogeneity of these switches and the conditions of transitions 

from one switch type to another type were studied. Recently developed pseudo potential energy 

based automated high-throughput bifurcation analysis method was carried out under random 

parameter variations in order to account for the effect of extrinsic noise in on the bistable 

responses.  
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As a result of random parameter variations, for dually signaled PFL with coherent signaling 

arm for MI and incoherent signaling arm for MA topologies only generates canonical bistable 

switches. Thus, it was concluded that these network topologies are more robust in presence of 

extrinsic variability. Otherwise, MI network with coherent and MA network with incoherent 

signaling arm respectively generates a variety of noncanonical switches alongside of canonical 

switches. These Heterogeneous types of noncanonical switches consist of one, two and three 

bistable regions. These conclusions were generic as it did not depend on the logic gate 

configurations and the number of additional PFLs in the networks. The extent of heterogeneity 

depends on the number of fused PFLs in the networks and logic gate configurations. 

Heterogeneity was found to be increased with the number of PFLs and responses from OR-

gate networks were more heterogeneous than the AND-gate networks. The absolute count and 

occurrence probability showed that isola and mushroom switches, both normal and inverted, 

were highly probable from simple dual signaling PFL motifs. Probability of obtaining more 

complex switches with more than two bistable regions were generally lower in networks with 

a single PFL. However, with additional fused PFL, the probability of the complex switches 

increased and thus inclusion of multiple PFLs in the minimal motif would increase the 

possibility of more complex switches. Among the group of noncanonical switches with one, 

two and three bistable regions, inverted isola, inverted mushroom and bistable-mushroom were 

the most abundant noncanonical switches, respectively. Importantly the probability of 

noncanonical switches did not depend on the specific nature of the input signals.  

Phase-plane analyses uncovered the distinct origin of the isola switches. The island of steady 

states in the isola switch originated from the two SN bifurcation points where each SN point 

was born due to coalescence of the same pair of stable and unstable nodes. On the contrary, in 

canonical Bs switch a different pair of stable and unstable nodes coalesced for each SN 

bifurcation point. The unprecedented phase diagram calculations showed that diverse types of 

phases (or switches) were possible with clear phase boundaries and switching from one phase 

to another is triggered by the modification of mutual regulatory strengths of the two genes. 

Across all networks the transitions between the isola and mushroom were controlled by the 

regulatory strength of the terminal gene on the participating gene in the PFL and transition 

between the inverted isola and inverted mushroom was dictated by the regulatory strength of 

the participating gene on the terminal gene. The ratio of signaling thresholds of two input 

signaling arms were a key factor in determining the types of noncanonical response. 

Noncanonical switches required distinct values of the two thresholds such that multiple 
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conventional bistable switches could emerge sequentially in opposite orientations to emerge as 

noncanonical switches. We emphasized that these conclusions were general due to the random 

parameter searching approach of the large-scale bifurcation analysis and such analysis was only 

possible due to the high-throughput bifurcation analysis tool.  

 

In another way, this work also predicted the new properties of the PFLs under dual signaling. 

Such motif is known to exist in several cell fate-choice regulatory networks. In the T helper 

(TH) and induced T regulatory (iTreg/) cell fate choices, T cell receptor signaling is known 

coherently activate the MI loop created by T-bet/RORγ3, T-bet/GATA3 and FoxP3/RORγ3 in 

the cell fate choice between TH1/ TH17, TH1/ TH2 and iTreg/ TH17 cells, respectively32,33. TGF-

\beta induced reciprocal cell fates of iTreg/ TH17 cells are regulated by mutual antagonism 

between FoxP3/RORγ3 where both the transcription factors are coherently activated by TGF- 

\beta signaling34. The reversible transition between the mesenchymal to amoeboid cell fates in 

cancer cells is regulated by the network involving a MI loop between the RhoA and Rac1 

GTPases and both the GTPases are coherently inhibited by microRNA miR-34 and also 

separately by miR-20035. Due to the less familiarity of the isola and mushroom switches, the 

relevance of these noncanonical switches had not been explored in these cell fate networks that 

satisfy the requirements of generating noncanonical switches. However mathematical 

modeling previously had uncovered the role of mushroom bifurcation in the fate choice of 

neuronal stem cell that differentiate into either glial cell or neuronal cell under the bone 

morphogenesis protein 2 (BMP2) signaling36. A closer inspection of the network reveals the 

existence of incoherent BMP2 signaling on the expression of self-activating Mash1 and results 

in chapter showed similar conclusion that MA motif only under incoherent dual signaling can 

generate mushroom or other noncanonical switches. Altogether this discovery of new emergent 

switches originating from a simple dual signaling PFL motif has a great potential to be relevant 

in the cell lineage commitment. Furthermore, the rich behavior of such a simple topology in 

generating complex switches can also be a new area of exploration in the field of synthetic 

biology. The simplicity of the design principles of network motifs enhances the feasibility of 

synthetic exploration of new types of bistable switches experimentally. 
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CHAPTER 6 
 

 

Control of chemical noise in general 

network topology 
 

 

6.1 Introduction 

Living things must be reliable and robust in order to respond appropriately to different 

internal and external stimuli and to ensure their long-term existence. These two crucial 

characteristics of biological systems may be hindered by the stochasticity of chemical 

processes emanating from both internal and external causes. Therefore, a lot of work has 

gone into understanding how living systems control the stochasticity that eventually leads 

to population heterogeneity - an inevitable outcome for a population of genetically identical 

cells grown in homogenous environments1,2. Fluctuations caused by limited number of 

macromolecules of species in a tiny volume of cell land in generating stochastic trajectories 

of chemical reactions. Thus, chemical reactions inside a cell are intrinsically affected by 

the ‘finite number effect’. As a result, the expression of gene is bound to be noisy and 

termed as ‘gene expression noise’3–6. The mechanism of gene expression noise has been 

well understood by statistical mechanical models of a single gene or a few genes in a 

cascade7–13. These models have deciphered the importance of translation and transcription 

rate, lifetimes of protein and mRNA in the noise of gene expression. Further works were 

done to understand how feedback controls might either attenuate or exacerbate biochemical 

noise7,14–16. 

Although the propagation of chemical noise in biological reaction networks has been 

extensively studied in the literature, but examination of stochasticity in a generalised 

network is sparse. It is particularly important to keep in mind that living cells’ system level 

response depends on the coordinated expression of many genes that are interacted to one 
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another. The global network topology of these gene regulation networks is an intriguing 

feature17–19. According to recent literature, these organisations of these networks frequently 

resemble either a democratic architecture20, in which each gene is controlled by other genes 

(or gene products) in the network or autocratic architecture18–23 where multiple regulators 

are present in each rung of the hierarchical organisation of the transcription factors.  

This chapter discusses the variability due to intrinsic noise in generalized chemical reaction 

architecture. The main objective was to study the correlation between the intrinsic 

variability and the qualitative (inhibitory or activatory) and quantitative (strength) nature 

of interactions in the networks.  
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6.A.1 Model 

The democratic network model consists of nodes and the edges. The edges represent the 

nature of the relationship between the two connected nodes, whereas the nodes serve as 

representatives of any macromolecular species such as proteins, genes, transcripts, or 

metabolites inside a living cell. The regulatory interactions between two nodes can be 

positive (activatory) or negative (inhibitory). A specific number of incoming and outgoing 

edges, represented by different types of arrowhead, are present at each node in the network 

(Figure.6A.1). While outgoing arrows represent the effect of the source node on the 

recipient nodes in the network, the incoming arrows represent the influence of other nodes 

on the recipient node. We assumed that each node in the fully connected democratic 

network, experiences the same number of incoming and outgoing interactions. This implies 

that each node in the network receives inhibitory or activatory signals from every other 

node. Therefore, the total number of interactions (𝑚𝑡𝑜𝑡)  on each node in the network of 𝑑𝑁 

nodes would be 𝑑𝑁 − 1. In addition to these interactions, every node engages engages in 

uncontrolled synthesis and degradation on its own. The mean field dynamics of the nodes 

can be described by a collection of coupled ordinary linear differential equations, assuming 

the mass action rate laws of chemical reactions: 

𝑑𝑛̅𝑖

𝑑𝑡
= 𝑘𝑖 − 𝛾𝑖𝑛̅𝑖 + ∑ 𝑎𝑖,𝑗𝑛̅𝑖𝑛̅𝑗

𝑑𝑁

𝑖≠𝑗

 

 

6A.1 

The average molecular abundance of the node 𝑖 is represented by 𝑛̅𝑖 in the equation above. 

The 𝑖th node's unregulated synthesis and degradation are represented by the first and second 

terms on the right-hand side of the equation, respectively. The rate constants for the 

synthesis and degradation reactions are 𝑘𝑖 and 𝛾𝑖  respectively. Mutual interactions between 

nodes 𝑖 and 𝑗 are represented by the final term. 𝑎𝑖,𝑗 is the strength of mutual interactions 

and the sign of  𝑎𝑖,𝑗  reflects the qualitative nature of interaction. Inhibitory and activatory 

interactions are denoted by 𝑎𝑖,𝑗<0  and 𝑎𝑖,𝑗>0  respectively. It is possible to create many 

networks by altering the proportion of negative (𝑚𝑖
−) and positive (𝑚𝑖

+) interactions on 

each node. The total number of  interactions on every node is fixed at 𝑚𝑡𝑜𝑡 (= 𝑚𝑖
− + 𝑚𝑖

+). 

Hence, a democratic network consisting  𝑑𝑁 nodes will experience 𝑑𝑁 (𝑑𝑁 − 1) number of 

regulatory interactions. 
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Figure 6A.1. Schematic diagram of democratic network consisting 5 nodes (𝑑𝑁 = 5). The 

labelled circles and curved arrows represent the nodes and mutual regulations respectively. 

Different types of arrowheads represent different type of interactions (mentioned in the 

figure). Node 1 was chosen as the representative node for estimating the statistical 

properties of the network. Starting with all positive interactions on node 1(𝑚𝑖=1
− = 0), the 

number of incoming negative interactions (𝑚𝑖=1
− ) were systematically varied to determine 

the effect of the quality of interactions on the statistical properties of the target node. 

 

The basal synthesis rate constant (𝑘𝑖 = 1.0) and the degradation rate constant( 𝛾𝑖 =  0.01) 

was set to a fixed value for each node in the network. However, different values of the 

mutual interaction strength (𝑎𝑖,𝑗) was chosen for each pair of interacting nodes. The 

𝑎𝑖,𝑗 values wer picked from log-normal distributions with average values of 𝑎− (for 

negative interactions) and 𝑎+ (for positive interactions), with a coefficient of variation of 

0.3 in both cases, in order to introduce an asymmetry in the strength of interactions. It is 

crucial to remember that the values of the interaction parameters can be selected from any 

distribution that can be plausibly connected to the reaction networks. However, the 

selection of the distribution for 𝑎𝑖,𝑗 must not bias the results. With the use of the Gaussian 

distribution for 𝑎𝑖,𝑗 in this context, it was confirmed that the conclusions of our 
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investigations remain unchanged. As there were that many binary interactions accessible 

in the network, the sample size for the distribution of was 𝑑𝑁 (𝑑𝑁 − 1). Thus, an 

asymmetric network in terms of interaction strength was produced by using a lognormal 

distribution for interaction strengths. To find out how the strength of interactions affected 

the network's statistical characteristics, we repeatedly changed 𝑎−  and 𝑎+. 

The main aim was to investigate the impact of both positive and negative interactions on 

the chemical species' steady-state variability in democratic networks. In order to achieve 

this, networks with varying numbers of positive and negative interactions were looked 

upon. Because of the network's democratic structure, any node can be selected to analyse 

the network's statistical features, including mean, noise (coefficient of variation), and noise 

strength (Fano factor). Here, node 1 was our choice of investigation. The number of 

negative interactions on node 1 (𝑚𝑖=1
− ) was gradually increased, and in each case, the 

steady-state statistical properties of both node 1 and all other nodes in the network were 

quantified. This allowed to assess the impact of negative interactions on noise. The number 

of interactions toward all other nodes, both positive (𝑚 𝑖≠1
+ ) and negative (𝑚 𝑖≠1

− ), remained 

constant throughout these analyses. Now, to find out the role of the nature of interaction on 

the rest of the nodes (i ≠ 1) on the statistical properties of node 1, our similar simulations 

were repeated by systematically varying the  𝑚 𝑖≠1
− . 

 

6.A.2 Results 

Gillespie’s SSA24 was used to investigate the inherent stochastic kinetics of chemical 

reactions originating from the intrinsic noise. To achieve the exact solutions of the 

stochastic kinetics, it was assumed that the reactions follow mass action kinetics and the 

corresponding set of mean field dynamical equations were presented in 6A.1. For a network 

with 𝑑𝑁 number of nodes, there are 𝑑𝑁 number of both synthesis and degradation reactions 

and total number of mutual regulations is 𝑑𝑁(𝑑𝑁 − 1). As a result total number of reactions 

turned out to be 𝑑𝑁(𝑑𝑁 + 1). To assure the trajectories reached their steady states, the 

simulations were run for sufficiently long time and repeated for 5000 realisation in order 

to estimate the ensemble average.  The simulation time increased steeply with increasing 

network size (𝑑𝑁) and larger rate constants. In order to cut down the simulation time and 

to ignore the trajectories that increases asymptotically, a cut-off rule of 10,000 

molecules/node was implemented. According to this rule, a simulation would stop when 
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the abundance of any of the nodes crosses beyond this threshold value. This setting of cut-

off was completely reasonable as the noise associated with high abundance will be very 

low as based on the 1 √𝑛̅1⁄   rule of fluctuations.  

 

Figure 6A.2. Surface plot of the average abundance of node 1 (𝑛̅1) as a function of the 

number of negative interactions on node 1 (𝑚1
−) and the number of positive interactions on 

other nodes (𝑚 𝑖≠1
+ ) for different combination of average positive and negative interaction 

strengths (𝑎̅−, 𝑎̅+). (a) (0.001, 0.001), (b) (0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005, 

0.005). 

 

Firstly, the average behavior of the system with varying number of negative interactions on 

node 1 (𝑚𝑖=1
− )  and the number of positive interactions on all other nodes (𝑚 𝑖≠1

+ ) was 

determined. Variation of average abundance of node 1 (𝑛̅1) with different 𝑚𝑖=1
−  and 𝑚 𝑖≠1

+  

is shown in Figure. 6A. 2(a) keeping the average strengths of the positive and negative 

interactions remains constant. As expected, the average abundance of node 1 decreased 

with 𝑚𝑖=1
−  for a given value of 𝑚 𝑖≠1

+ . The quantitative and qualitative behavior of 𝑛̅1 did 

not change with the increasing values of 𝑚 𝑖≠1
+ . we got comparable qualitative behaviour 

of ni̅. Notably, there is any bare change in the ni̅ with the increase in 𝑚 𝑖≠1
+ . Nevertheless, 

at higher value of 𝑚 𝑖≠1
+ (>15) the system diverged, because of the imposed cut off 

condition, there was no data point of 𝑛̅1 in the surface plot. Thus, it can be concluded that 
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the qualitative and the quantitative behaviour of 𝑛̅1 was regulated by the nature of 

regulations on the node of interest and the nature of interactions on the other nodes did not 

have any influence. It is to be noted that for the sake of ease in implementation, the number 

of negative interactions on node 1 was increased in a specific order. Incoming interaction 

starting from node 2 and following numerical order, the positive interactions were replaced 

with negative interactions in order to increase the number of negative interactions. Similar 

order was followed for implementation of 𝑚 𝑖≠1
+ . However, similar calculations were 

carried where the implementation was done in arbitrary manner and the results found out 

to be independent of any specific ordering.  

Calculations were repeated with different average strength of positive and negative 

interactions in order to investigate for the dependency of the strength of interactions on 

average property. Figure 6A.2b-d presented the results for 5X increase in negative, positive 

and both the interactions strength respectively. As expected, with increased value of 𝑎̅− 

alone, the 𝑛1̅̅ ̅ value decreases (Figure 6A.2b). In addition, fewer negative interactions 

(𝑚𝑖=1
− ) were required to "shut down" the node 1. On the other hand, as the value of 𝑎̅+ alone 

increased, 𝑛̅1 increased considerably and more negative interactions were required to halt 

the production of node 1 (Figure 6A.2c). Additionally, the divergence of abundance took 

place at a considerably at smaller number of 𝑚𝑖≠1
+ . Finally, just a small change in 𝑛̅1 was 

seen when both strengths were increased by the same factor (Figure 6A.2d). 
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Figure 6A.3. Dependence of the ultrasensitivity of node 1 on the scaling factors that 

systematically modifies that average abundance of all the nodes in the network. The values 

of 𝑎̅+ and 𝑎̅− were 0.001 and 0.001, respectively. (b) Dependence of the ultrasensitivity on 

the average strength of positive interactions keeping the 𝑎̅− fixed. (c) Dependence of the 

ultrasensitivity on the 𝑎̅−keeping the 𝑎̅+ fixed.  

 

From Figure 6A.3a, it appeared that after a certain threshold of 𝑚𝑖=1
− , the average of node 

1 (𝑛̅1) was abruptly decreased from high to low. Thus, the qualitative variation of 𝑛̅1  with 

𝑚𝑖=1
−  behaved as an ultrasensitive switch of protein abundance. It is important to note that 

the inherent nonlinearity of the underlying chemical reactions often contributes to 

ultrasensitivity in biochemical systems. The relevance of ultrasensitivity in producing 

nonlinear responses like bistability and oscillations makes it crucial for biochemical 

reaction networks. Although the democratic network here lacks nonlinear chemical 

reaction rates yet it exhibited a weak ultrasensitivity. As a result, the conditions regarding 

ultrasensitive switching of node 1 were further investigated. The abundance of the nodes 

was progressively increased by 2.5X and 5.0X to answer the query of whether the 

switchlike behaviour of node 1 was caused by the extremely few molecules at high 
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𝑚𝑖=1
− (Figure. 6A.3a). The zero- and second-order rate constants were multiplied and 

divided respectively by the necessary scaling factor in order to scale up the abundance. 

Even with a higher population abundance, node 1's ultrasensitive switching remained 

unaffected, suggesting that the ultrasensitivity is inherent to the democratic network. The 

stiffness of the switch was found to be dependent on the average strength of the positive 

interactions, according to simulations using varying average strengths of positive and 

negative interactions. However, the transition threshold of 𝑚𝑖=1
−  appeared to be controlled 

by the strength of the negative interaction (Figure. 6A.3b-c). 

 

 

Figure 6A.4. Surface plot for the coefficient of variation of node 1 (𝐶𝑉) as function of 

𝑚𝑖=1
− .The average strength of negative and positive interaction was (a) (0.001, 0.001), (b) 

(0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005, 0.005). 

 

 

Next, the effect of negative interactions on the noise in node 1 was further examined. The 

steady state noise was measured by quantifying the coefficient of variation (𝐶𝑉𝑖 =
𝜎𝑖

𝑛̅𝑖
⁄ , 

where 𝜎𝑖 is the standard deviation of ith node). The noise in node 1 (𝐶𝑉1) displayed a 

switchlike behaviour as a function of 𝑚𝑖=1
− , when the strengths of the positive and negative 

interactions were equal (Figure. 6A.4a). In particular, CV nearly saturated at a greater 
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number of 𝑚𝑖=1
− , and it stayed very low for a smaller number of 𝑚𝑖=1

−  (high 𝑛̅1). This 

qualitative feature of noise was maintained for an increasing number of positive 

interactions on the other nodes, 𝑚𝑖≠1
+ , quantitatively the noise appeared to increase steadily 

with an increase in mi≠1
+  on other nodes particularly in the high-noise regime (large 𝑚𝑖=1

− ). 

Overall, the direct negative interactions on node 1 result in a non-monotonous change in 

noise, whereas the indirect positive interactions results in only small increase in noise. 

Similar calculations were repeated with various average strengths of both interactions 

(𝑎̅−and 𝑎̅+)to determine how these qualitative noise characteristics depends on the strength 

of interactions. The transition from low to high noise occurred at a much lower value 𝑚𝑖=1
−  

(Figure 6A.4b) with an increased value of 𝑎̅− alone. In contrast to smaller 𝑎̅− (Figure 

6A.4a), the variability in this instance, increased significantly. This was as a result of a 

lower average, intensifying the ‘finite number effect’ with high 𝑎̅−. Furthermore, at high 

values of 𝑚𝑖=1
− , the effect of 𝑚𝑖≠1

+  on CV was more predominant. The change from low to 

high noise occurred at a substantially higher value of mi=1
−  with an increasing value of a̅+ 

alone (Figure 6A.4c). The noise grew considerably across different values of 𝑚𝑖=1
−  and 

𝑚𝑖≠1
+   (Figure  6A.4d) where both interaction strengths were increased by the same factor. 

This was most likely due to the efficient noise propagation in the network.  

 

Figure 6A.5. Surface plots of the average abundance and CV of node 1 for the networks 

with 10 (top row) and 20 (bottom row) nodes as a function of 𝑚𝑖=1
− .The values of 𝑎̅− and 

𝑎̅+, were 0.001 and 0.001, respectively. 
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To ascertain the generality of the qualitative character of noise with 𝑚𝑖=1
− , similar 

simulations were run for democratic networks of various sizes. The simulation results from 

networks with 10 and 20 nodes are shown in Figure 6A.5. Similar qualitative behavior of 

noise and average abundance was found for both network sizes. The 𝐶𝑉1 vs 𝑚𝑖=1
−  of three 

different network sizes (𝑑𝑁 = 10, 20, and 30) in Figure 6A.6a, where the number of positive 

interactions on every other node was kept constant at 0 (𝑚𝑖≠1
+ = 0). The comparison 

demonstrates that the abrupt change in noise from a low to a high number is consistent 

across all network sizes. With growing network size, we also see a systematic shift of the 

curves towards lower 𝑚𝑖=1
− . Their individual normalised averages were compared in 

Figure. 6A.6b to observe the sharp decline of the corresponding averages with 𝑚𝑖=1
− .  

 

 

Figure 6A.6. Variation of CV (a) and normalized average (b) of node 1 as a function 

normalized 𝑚𝑖=1
− , (𝑚𝑖=1

− /(𝑑𝑁  −  1)) for the indicated sizes of networks with 𝑚𝑖≠1
+ =0. The 

average was normalised by dividing by the maximum average value n̅1  in each case. The 

values of 𝑎̅− and 𝑎̅+ were same in Figure 5A.5.  

 

It has been important to measure the scaling characteristic of noise with the average 

abundance in case of the stochastic calculations of coupled chemical reaction systems. To 

address this issue, in Figure 6A.7a  𝐶𝑉1 with 𝑛̅1 for various values of 𝑚𝑖≠1
+  was plotted. 

Two separate power-law scalings (piecewise power-law, 𝐶𝑉 ∝ 𝑛̅𝛼  ) with two different 

scaling exponents, α1 and α2, best suited the dependency of noise on the average, such 

scaling is considerably different from CV ∝ 1/√𝑛̅  scaling. The linear regions of individual 
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lines were fitted (in the log-log plot) and determined the average and standard deviation of 

the scaling exponents. The scaling exponent was α1  = 0.2± 0.02 in the low to intermediate 

abundance regime and α2= 0.9±0.03 in the intermediate to high abundance zone. By 

determining the R2 (goodness of fit) values for each fit, the accuracy of the fits was 

evaluated. For α1 and α2, the average R2 values were 0.908±0.05 and 0.996±0.002, 

respectively. The scaling of noise for node 15, a candidate node in the network whose 

average was not immediately affected by the systematic alteration of 𝑚𝑖=1
− , was then 

calculated. It was discovered that this node displayed the well-known scaling of CV ∝

1/√𝑛̅ across the various values of mi≠1
+ (Figure 6A.7a). It implied that a node whose 

average was directly influenced by negative regulations obeys the biphasic scaling of noise, 

but a node, whose average was indirectly modified by negative regulations, follows the 

conventional scaling of noise. It is evident from Figure. 6A.7 that the average abundance 

range for node 1 was far wider than the abundance range for any other node in the network.  

 

Figure 6A.7. Dependence of CV vs average of node 1 (a) and node 15 (b). Different lines 

represent different values of mi≠1
+ : from red (mi≠1

+ =0) to blue (mi≠1
+ =16) the value of mi≠1

+  

increases by 1. The scaling exponents from power-law fitting (𝐶𝑉 ∝ 𝑛̅𝛼) of the data 

segment are indicated inside the plots.  
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Figure 6A.8. Variation of biphasic behavior of noise in node 1 (left) and monophasic 

behavior of noise in node 15 (right) with the indicated values of scaling factors in the overall 

abundance. 

 

This begged the obvious question of whether the disparate scaling behaviours were caused 

by the distinct regimes of abundance they experienced. The node 1 was directly influenced 

by the changes in 𝑚𝑖=1
−  while all other nodes in the network were indirectly impacted, thus 

the ranges of node 1 and other nodes were different. Further simulations were performed 

with various scaling factors that progressively increased the abundance of each node. For 

the networks with 𝑚𝑖≠1
+  = 0, Figure 6A.8 showed the CV against 𝑛̅ plots for node 1 and 15 

with various scaling factors. The universality of the scaling law of node 1 and the other 

nodes in the democratic network was demonstrated by the shifting of entire scaling curves 

to the higher abundance regime. The universality of scaling principles was further 

demonstrated to be independent of 𝑚𝑖≠1
+ . (Figure 6A.9). 
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Fig 6A. 9. Plots similar to those in Figure  6A.8 with different values of 𝑚𝑖≠1
+  for different 

total abundance. 

 

In order to determine the effect of strengths of positive and negative interactions on the 

scaling exponents, for a variety of values of 𝑎̅− and 𝑎̅+ the exponents were calculated. 

Regardless of the values of  𝑎̅+, there was a systematic increase in both exponents with 

higher negative interaction strength (Figure 6A.10). It implied that the effect of negative 

interaction on noise is stronger for its higher strength. On the other hand, regardless of the 

value of 𝑎̅−, the values of both exponents decreased as the 𝑎̅+ was increased. As a result, 

in contrast to positive interactions, negative interactions strongly regulate the noise in a 

democratic network.  

 

Figure 6A.10. Variation of scaling exponents α1 and α2 with the 𝑎̅− for the indicated values 

of 𝑎̅+. 

The role of negative regulation in attenuating noise has previously been investigated in the 

context of small gene regulatory networks. It has been discovered that it dampens the 

intrinsic noise, whereas positive regulations were found to exacerbate the noise. Later 

studies, notably in the context of feedback-regulated systems, however, demonstrated that 

positive regulations can also reduce noise. The impact of negative interactions on the noise 

strength (quantified as Fano factor, 𝐹𝐹 =
𝜎𝑖

2

𝑛̅𝑖
⁄  ) was further investigated in order to 

address this problem within the framework of democratic network. Irrespective value of  

𝑚𝑖≠1
+ ,  noise strength passed through a maximum with average, showing that at the 

intermediate average (i.e., intermediate number of 𝑚𝑖=1
− ), it produced the largest noise 

strength (Figure 5A. 11a). The peak noise strength also increases with higher value of 𝑚𝑖≠1
+ . 

While the network displayed similar qualitative behaviour of noise strength over a range of 
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𝑎̅− values, higher  a̅− values led to a reduction in overall noise strength (Figures 5A. 11a-

c). 

 

 

Figure 6A.11.Variation on noise strength (quantified as Fano factor) as function of 𝑛̅1. In 

all three panels the value of 𝑎̅+ was kept fixed to 0.001. 

 

Figure 6A. 12a presented the maximum value of noise strength (𝑚𝑎𝑥𝐹𝐹) of node 1 as a 

function of 𝑎̅− in the network with 𝑚𝑖≠1
+ = 0 to comprehend the impact of both 𝑎̅− and 

𝑚𝑖=1
− ,  on the noise strength. These figures showed that, regardless of the strength of the 

positive interaction, the maximum noise strength decreases with increasing strength of 

negative interaction. The noise attenuation capability of negative restrictions is indicated 

by the decreasing of noise intensity with a̅−  . However, the maximum noise strength 

constantly increased with increased strength of positive interaction, demonstrating that the 

positive interaction amplifies the noise strength. The conclusion that the negative 

interactions attenuate intrinsic noise was further supported by the plot of the number of 

negative interactions on node 1 that corresponded to the maximum noise strength 

(𝑚𝑎𝑥𝑚𝑖=1
− ) with 𝑎̅− (Figure 6A. 12b). Additionally, the anticorrelation between 𝑚𝑎𝑥𝑚𝑖=1

−  

and 𝑎̅−  showed that either a large number of weak negative interactions or a small number 

of strong negative interactions can limit noise. 
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Figure 6A.12. a) Dependence of maximum noise strength (𝑚𝑎𝑥𝐹𝐹) (obtained from Figure. 

6A.11) with 𝑎̅− for 𝑚𝑖≠1
+ = 0 .b) Variation of 𝑚𝑎𝑥𝑚𝑖=1

− , the number of negative interactions 

where corresponding to maximum noise strength with 𝑎̅−. Different lines represent 

different value of 𝑎̅+. 

A fully connected democratic network, in which every node connects with every other node 

in the network, served as the foundation for all of our calculations. But in reality, the 

networks may be sparse, where a node may not be connected to all other nodes. Thus,  the 

number of mutual connections were lowered by randomly removing a fixed number of 

interactions while leaving the interaction between node 1 and all other nodes intact (𝑎(1, 𝑗) 

≠0 and 𝑎(𝑖, 1) ≠ 0) in order to examine the attributes of similar networks with lower 

connectivity. As with fully connected networks, these modified networks showed similar 

qualitative average and intrinsic noise behaviour (Figure 6A.13). 
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Figure 6A.13. Ultrasensitivity (left) and biphasic scaling (right) of node 1 in networks with 

removed interactions. The percentage reduction of mutual interactions on all other nodes is 

indicated inside the plot. Top row: 𝑚𝑖≠1
+ = 0 and bottom row: 𝑚𝑖≠1

+ = 4. 

 

6.A.3 Conclusion 

The experimental observations of cellular heterogeneity in single- and multi-cellular 

organisms are a result of both variations in external stimuli and fluctuations in the 

molecular abundance of a finite number of macromolecular species inside a living cell. 

Statistical mechanical models of gene expression noise have been demonstrated the ability 

to quantitatively explain observed protein abundance variability. Additional models have 

investigated the functions of feedback controls in noise propagation, whether in single 

genes or gene networks. Positive feedback loops and the average lifetime of molecular 

species have been identified as key components in attenuating chemical noise in system-

level models of cellular physiology, such as the cell cycle. To the best of our knowledge, 

no research has yet been done on how chemical noise in a generalised chemical reaction 

network is controlled. One must accept that a specific cellular function results from the 

well-coordinated effort of a variety of interrelated genes, especially in the context of 

organisms' response to external cues. In this context, in chapter discusses how noise 

propagates within a democratic chemical network, where each node is connected to the 

others via either positive or negative interactions. Here, the main goal was to ascertain how 
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the qualitative and quantitative characteristics of interactions dictates the variability of the 

chemical species in the network.  

A democratic chemical network with 30 interconnected nodes using the mass action rate 

laws of chemical reactions was developed. It is discovered that when the number of 

negative interactions on the target node increased, the noise, as measured by the coefficient 

of variation, sharply increased from low to high. It is significant to note that the qualitative 

behavior of the noise was largely unrelated to the qualitative nature of interactions on the 

other nodes in the network. It is concluded that the weak ultrasensitive switching of the 

average results in switching behavior of noise. Further investigation supported the 

conclusion that a democratic network with linear kinetics can also behave in an 

ultrasensitive manner. Analyses of noise showed that noise scales with average in according 

to a biphasic power-law with two different scaling exponents. The quantitative value of the 

mutual interactions had a significant impact on the values of these two exponents. 

According to the results of our simulation, the strength of the negative interactions led to 

decrease in the noise level, but the strength of the positive interactions amplifies it. 

Therefore, it is reasonable to draw the conclusion that positive interactions amplify the 

noise and negative interactions attenuate its effect. 
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In an autocratic network organisation, the nodes(genes/protein) are arranged in layers. In 

addition to controlling the nodes in other levels, the nodes in one layer may also interact 

with one another. Furthermore, there appears to be a common pattern of organisation for 

regulators in terms of abundance, lifetime and variability.25 These studies demonstrated 

that the network designs included both pyramidal22 and nonpyramidal25 architecture. 

Protein interaction networks, such as the kinase-phosphatase network in yeast, contain 

similar hierarchical networks23. In an autocratic network, one or more layers of 

intermediary genes allow a group of master genes to control the regulation of a vast number 

of downstream genes. 

 

6.B.1 Model 

This chapter discussed how intrinsic noise is controlled in an autocratic reaction network, 

which consists of an input node and an output node coupled by three intermediate layers of 

nodes (Figure 6B.1). A node controls the expression of a node in the layer below, resulting 

in a unidirectional flow of information and the network is devoid of any feedback 

regulations. The network shown in Figure 6B.1 is made up of nodes grouped in layers (or 

hierarchy), where nodes in one layer control nodes in the next-level layer below it.  Here, 

the nodes in a given layer do not interact with one another, and the nodes in the lower level 

do not affect the nodes in the upper level. The nodes at the highest and lowest levels, are 

referred respectively, as input and output nodes. The top, core, and terminal layers are the 

three node levels that lie in between the input and output nodes. The nodes in the autocratic 

network are connected either by activatory or inhibitory regulatory interactions. Direct and 

indirect regulations on the output node were classified as proximal and nonproximal 

regulations, respectively, based on the proximity. The nonproximal interactions were 

divided into two categories here: near-nonproximal and far-nonproximal interactions. The 

regulations on the top layer and core are collectively referred to as the far-nonproximal 

group, while the edges on the terminal layer are referred to as the near-nonproximal group.  
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Figure 6B.1. Schematic representation of the autocratic network model. Colored circles 

are nodes typically served as a representative of chemical species found inside live cells, 

such as genes, proteins, transcripts, or metabolites. The lines with a circle at the other end 

represent the regulatory interactions from one node to the next, and in our autocratic 

network model, all of these circles point in the same direction. 

 

Networks of different sizes can be created by varying the number of nodes in each layer, 

𝑁𝑖 (𝑑𝑁 = ∑ 𝑁𝑖𝑖 ). Here, the total number of nodes presented in the layer above it (𝑚𝑖,𝑗 =

𝑁𝑖−1)  determined the total number of interactions on the 𝑗th node in the 𝑖th layer (𝑚𝑖,𝑗). 

Additionally, because a regulatory interaction could be either inhibitory or activatory, we 

varied the number of inhibitory (𝑚𝑖,𝑗
− ) and activatory (𝑚𝑖,𝑗

+ ) interactions using the 

conservation relation 𝑚𝑖,𝑗
− + 𝑚𝑖,𝑗

+ = 𝑚𝑖,𝑗, in order to study how these interactions effect in 

chemical noise propagation in our autocratic network model. The total number of the 

inhibitory regulations across all nodes in a particular layer is defined as, 𝑀𝑗
− = ∑ 𝑚𝑖,𝑗

−
𝑗 .  

Each node also has its own uncontrolled production and degradation/dilution processes in 

addition to the regulatory interactions. The input, top, core, terminal, and output layers in 

this work will each contain the following number of nodes: 𝑁1 = 1, 𝑁2 = 3, 𝑁3 = 6, 𝑁4 = 
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8, and 𝑁5 = 1. As a result, 1, 3, 6, and 8 respectively represent the number of regulatory 

interactions on each node in the top, core, terminal, and output layers. The mean field 

dynamics of the nodes we defined as the following set of coupled ordinary differential 

equations, 

𝑑𝑛̅𝑖,𝑗

𝑑𝑡
= 𝛺𝜅𝑖,𝑗 − 𝛾𝑖,𝑗𝑛̅𝑖,𝑗 +

1

𝛺
∑ 𝑎𝑖,𝑘

𝑁𝑖−1

𝑘=1

𝑛̅𝑖−1𝑛̅𝑖,𝑗 6B.1 

The equation represents the time evolution of the average molecular abundance (𝑛̅𝑖,𝑗) of the 

jth node in the ith layer. The first two terms in the right hand side of equation represents, 

respectively, gain and loss resulting from production and degradation/dilution. The 

associated rate constants for these two reactions are 𝜅𝑖,𝑗 and 𝛾𝑖,𝑗. Then final term represents 

the bimolecular regulatory interaction from kth node in the (𝑖 − 1)th layer.The magnitude 

and sign of 𝑎𝑖,𝑘 respectively, indicate the regulation's strength and kind. Inhibitory and 

activatory regulations are represented by 𝑎𝑖,𝑘 < 0 and 𝑎𝑖,𝑘 > 0 respectively. 𝑚𝑖,𝑗
−  and 𝑚𝑖,𝑗

+   

represent the number of inhibitory and activating interactions on the jth node. The total 

number of regulatory interactions, 𝑀 = ∑ 𝑁𝑖−1𝑁𝑖𝑖=2  shared across 𝑑𝑁 number of nodes. 

We maintained a fixed value of 𝜅𝑖,𝑗 =0.012 and 𝛾𝑖,𝑗 =0.02 for the production and the 

degradation rate constants, respectively. For regulatory interactions, 𝑎+ and 𝑎− were 

chosen to be equal to ±0.003, respectively for activation and inhibition. We parametrize 

our model such that the system must attain a stationary state within a finite simulation time 

and that the quantity of molecules per node must be within the realistic range often found 

in a live cell. Because timescales can vary greatly from one organism to another, it is 

important to note that we have not specified the units of the rate constants, particularly for 

the time, to make the model applicable to networks representing various organisms. The 

half-life of ~35 time units, which is the most typical half-life for many proteins in budding 

yeast 26(in min) and mammalian27(in hour) systems, is represented by the chosen value of 

the degradation constant, γi,j. The scaling factor,Ω increases the population abundance of 

the interconnected nodes while preserving the system's dynamics. We have used Ω = 100 

throughout the entire work, unless otherwise stated.  Using Gillespie's stochastic simulation 

algorithm28, we simulated the chemical reactions associated with our model (Eqn 5B.1) in 

order to ascertain the impact of finite numbers in autocratic networks. We calculated the 

effect of intrinsic noise accurately thanks to the linearity of the reaction rate laws in our 

model. There are 2dN  +  M number of reactions in an autocratic network of size dN  that 
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correspond to dN  production, dN  degradation, and M regulatory interaction. We conducted 

an ensemble of 10,000 trajectories for a very long time to acquire reliable steady state 

statistics (50,000 time units). When the propensity of chemical reactions increases due to 

the involvement of a large number of molecular species and/or significant rate constants of 

the chemical processes, the runtime for stochastic simulation can become quite long. In 

order to prevent this, we implemented a cut off rule of 100,000 molecules/node to stop the 

calculation, where the simulation becomes substantially slower with huge population 

abundance. This calculation is left out of the analysis. Given that the finite number effect 

will be very insignificant given the huge abundance, this choice of cut-off criterion is quite 

reasonable. 

The goal in this study was to investigate how the qualitative and quantitative nature of the 

proximal and nonproximal regulatory interactions regulate intrinsic chemical noise in the 

output node. The nature of the proximal and nonproximal interactions on the output node, 

as well as the variation of average and noise in it, were systematically explored. 

 

6B.2 Results 

For a specific number of inhibitory near-nonproximal (𝑚𝑛𝑛𝑝
− = ∑ 𝑚4,𝑗

−𝑁4
𝑗=1 ) and far-

nonproximal interactions (𝑚𝑓𝑛𝑝
− = ∑ 𝑚2,𝑗

−𝑁2
𝑗=1 + ∑ 𝑚3,𝑗

−𝑁3
𝑗=1 ) on the nodes in different layers, 

the average abundance of the output node (𝑛̅5,1) decreased with increasing proximal 

inhibitory interactions (𝑚𝑝
−) (Figure 6B.2). 

 

Figure 6B.2. Dependency of average abundance of output node ( 𝑛̅5,1) on the number 

of 
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negative proximal interactions (𝑚𝑝
−) for indicated number of near-nonproximal negative 

interactions (𝑚𝑛𝑛𝑝
− ). The value of 𝑚𝑓𝑛𝑝

−  kept at 6. 

 

In order to increase 𝑚𝑛𝑛𝑝
− , one more inhibitory regulation towards each node in the terminal 

layer were added. A certain order was followed to allocate the inhibitory interactions on a 

particular node in the terminal layer from the nodes in the core layer in order to make 

implementation of easier. Particularly, the inhibitory interactions originate from the left 

nodes in the core layer. For example, to implement 𝑚𝑛𝑛𝑝
− = 8 (𝑚4,1

− = 1) and 𝑚𝑛𝑛𝑝
− =

16 (𝑚4,1
− = 2), in first only the node 𝑛3,1 and in second case both 𝑛3,1 and 𝑛3,2 inhibits all 

the nodes in the terminal layer respectively. A similar approach was used to modify 𝑚𝑓𝑛𝑝
−  

. Across various values of 𝑚𝑛𝑛𝑝
− , 𝑛̅5,1 falls as 𝑚𝑝

−  increases (Figure 6B.2).  

However, a greater number of near-nonproximal inhibitory regulations contributed to the 

abundance of the output node when the proximal inhibitory regulations were 

proportionately more than the activatory regulations (𝑚𝑝
−> 4). As a result, both near-

nonproximal and proximal interactions controlled the output node's abundance. Next, 𝑛̅5,1 

against 𝑚𝑝
− for various numbers of 𝑚𝑓𝑛𝑝

−  for a fixed number of m𝑛𝑛𝑝
−   was plotted to 

ascertain how the far-nonproximal interactions in the top and core layer control the 

abundance of the output node (Figure 6B.3). Across a range of 𝑚𝑛𝑛𝑝
−   values, the influence 

of the far-nonproximal inhibitory interactions on the output node is quite minimal. 

Therefore, the proximity of the regulatory interactions was found crucial in determining the 

level of regulation in an autocratic network. 
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Figure 6B.3. Plot of  𝑛̅5,1 with 𝑚𝑝
− for a different number of far-nonproximal inhibitory 

interactions (𝑚𝑓𝑛𝑝
− ) with a particular value of 𝑚𝑛𝑛𝑝

− . Each line type corresponds to a 

particular value of 𝑚𝑛𝑛𝑝
−  as indicated. 

An essential aspect of noise regulation in biological reaction networks is the scaling of the 

noise with average, which is determined from the coefficient of variation (CV) with the 

average abundance. In Figure 6B.4a, the CV of the output node at steady state was plotted 

against average abundance. The average abundance was altered by modifying the number 

of proximal inhibitory contacts (𝑚𝑝
−) on the output node. It was found that the near-

nonproximal interactions played a crucial role in determining the qualitative behaviour of 

noise with the average. The noise decreased with the increase in average for higher values 

of 𝑚𝑛𝑛𝑝
− , which is predicted behaviour from ‘the finite number effect’. However, for low 

values of 𝑚𝑛𝑛𝑝
− , the CV first reduces with increasing average for smaller values of 𝑚𝑝

− , but 

then increases after passing through a minimum (Figure 6B.4a). The ‘finite number effect’ 

of the stochastic chemical kinetics predicts that noise would decrease as abundance 

increases. However, the increase in noise with increased average is counterintuitive by its 

very nature, making it a nontrivial or unexpected result for the autocratic system. This non-
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trivial scaling holds for only low number of near-nonproximal interactions.  These 

computations were repeated by scaling all the rate constants systematically such that the 

abundance of all the nodes increases in a consistent manner ( Ω = 500) in order to ascertain 

the universality of the scaling behaviour. It was found that noise scaling behaviour (Figure 

6B.4b) is qualitatively comparable to that shown in Figure 6B.4a with Ω = 100. It was noted 

that the CV values were now lower and that the greater average abundance marked the 

turning point of CV. 

 

Figure 6B.4. a) Plot for CV with the average abundance of the output node for different 

values of mnnp
−  with a fixed value of 𝑚𝑓𝑛𝑝

− = 6. The dashed line corresponding to the 

conventional 𝐶𝑉 ∝ 1/√𝑛̅ scaling. b) Similar plot for network with 5X increased abundance 

(𝛺 = 500). 

 

Thus, these findings suggested that the unusual scaling of noise is a fundamental 

characteristic of the autocratic network and that it was influenced by the quantity of 

inhibiting interactions on the terminal layer (𝑚𝑛𝑛𝑝
− ). The comparison of the CV for the 

various values of 𝑚𝑛𝑛𝑝
−  also showed that the output node's variability was decreased by a 

significant number of inhibitory interactions on the upstream layer. Plots of the Fano factor 

(FF) and the average (Figures 6B.4c-d) showed that the noise strength increased as the 

number of proximal inhibitory regulations decreases. Therefore, the direct activatory 
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controls are to reason for the increased intrinsic noise. Next, the effect of far-nonproximal 

interactions on noise scaling was determined. It was found that for a given value of 𝑚𝑛𝑛𝑝
− , 

the number of far-nonproximal inhibitory interactions had little effect on the scaling of 

noise (Figue 6B.5). As a result, the near-nonproximal interactions on the terminal layer, 

rather than the far-nonproximal interactions originating at the top and core layers, dictated 

the qualitative nature of the scaling of noise in the output node. 

 

Figure 6B.5. Plot of  𝐶𝑉5,1 with 𝑚𝑝
− for a different number of far-nonproximal inhibitory 

interactions (𝑚𝑓𝑛𝑝
− ) with a particular value of 𝑚𝑛𝑛𝑝

− . Each line type corresponds to a 

particular value of 𝑚𝑛𝑛𝑝
−  as indicated in Figure 6B.3. 

 

The striking feature in stochasticity for the autocratic network is the rise in noise at high 

abundance region. One reason of this high noise at abundance could be the steady state 

population splitting. But the model network did not have any nonlinearity or any feedback 

regulation, the splitting of population options was ruled out. Thus, to determine the reason 

for this high noise at high abundance region, steady state distributions of the output node 

population abundance was plotted in Figure 6B.6a with an increasing number of proximal 

inhibitory interactions.  
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Figure 6B.6: Plot for steady state population distribution of the output node for different 

𝑚𝑝
− values. Comparison of distributions centered at the abundance corresponding to the 

peak of the distribution (inset). (b) Plot of skewness of the steady state population 

distributions as a function of 𝑚𝑝
−. Diffferent color lines represent different values of 𝑚𝑛𝑛𝑝

− . 

 

These distributions made it abundantly evident that the multimodality of the steady state 

distributions was not the cause of the increased noise. These distribution widths in the high 

and low abundance regimes (low 𝑚𝑝
− and high 𝑚𝑝

−)were wider than the distribution for 

intermediate abundance. To see how the shapes changed as 𝑚𝑝
− increased, these 

distributions were further compared, centred at the peak (Figure 6B.6(a) inset). In 

comparison to the high value of 𝑚𝑝
−, the distribution associated with a low value of 𝑚𝑝

− is 

positively skewed towards a high of 𝑛̅5,1. Furthermore, the skewness vs. 𝑚𝑝
− plot (Figure 

6B.6b) demonstrated that the skewness of these distribution decreased with higher 𝑚𝑝
− 

values across different values of 𝑚nn𝑝
− . Thus, the increase tail of the distribution at large 

abundance regime is responsible for high noise.  

To examine further, the trajectories of output node for various values of 𝑚𝑝
− were looked 

into (Figure 6B.7). The stochastic trajectory displayed a fluctuation pattern resembling 

bursty gene expression kinetics in the large abundance limit with 𝑚𝑝
− = 1. Particularly, the 

system becomes highly noisy and the steady state distribution became positively skewed 

as a result of the large and irregular fluctuations. The stochasticity in the time courses 
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appeared to be more regular and free of any significant deviation from the mean value in 

the low abundance limit with increasing values of 𝑚𝑝
−. The phase space of the trajectories 

were plotted by correlating the time course of the output node against the time course of a 

representative node (n4,8) in the terminal layer (Figure 6B.7). The bursty nature of the 

output node was evident from the phase space plot for 𝑚𝑝
− = 1, which spanned a bigger 

area than the phase space for the larger values of 𝑚𝑝
−.  

 

Figure 6B.7: The time course trajectories (left) and the phase space plots (right) of the 

network with 𝑚𝑛𝑛𝑝
− = 8 and 𝑚𝑓𝑛𝑝

− = 6 . In the phase space plot of output node, 𝑛5,1(𝑡) is 

plotted as a function of 𝑛4,8(𝑡) , a node in the terminal layer. 

 

For 𝑚𝑝
− = 1, the output node receives only one inhibitory and seven activatory input signals 

from the nodes in the terminal layer. The production of the output node was accelerated as 

a result of the higher quantity of activatory interactions, which cannot be countered by the 

smaller number of inhibitory interactions. The bursty kinetics of output node represented 

the end outcome of these two antagonistic interactions. An increase in the inhibitory input 

interaction which counters the production by accelerating the degradation of output node, 

leads to disappearance of the excitable nature of the output node.  

Due to higher number of inhibitory interactions from the nodes in the terminal layer to the 

output node, the variation of 𝑚𝑝
− changed the average abundance on the output node. 

However, it was interesting to study the explicit role of 𝑚𝑝
− on the noise without the 
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variation in the average abundance. In order to maintain the same average abundance while 

changing 𝑚𝑝
−, the synthesis rate (𝜅5,1) was scaled. The average abundance remained 

constant as we varied 𝑚𝑝
− in this scenario (inset of Figure 6B.8). It was found that when 

𝑚𝑝
− increases, the noise in the output node decreases. This was consistent behaviour for 

various 𝑚𝑛𝑛𝑝
−  values. However, similar to the findings in Figures 6B.4a-b, the effect of 𝑚𝑝

− 

was more pronounced for smaller values of 𝑚𝑛𝑛𝑝
− . These findings once more showed that 

a high number of activatory interactions (small 𝑚𝑝
−) on the output node contributed to the 

increased variability. 

 

Figure 6B.8: Plot of  CV5,1 with mp
− for different value of 𝑚𝑛𝑛𝑝

−  and 𝑚𝑓𝑛𝑝
− = 6. While 

modifying the 𝑚𝑝
− , the synthesis rate of the output node κ5,1 was adjusted such that the 

average remains unchanged (inset). The different color and marker type are for different 

values of mnnp
− as indicated in Figure 6B.4. 

 

 So far, the number of proximal and nonproximal interactions were only altered while 

maintaining the strength of the activatory and inhibitory regulations (𝑎+  and 𝑎−). To 

determine the effect of strength of these interactions on the scaling of the intrinsic noise, 

next the rate constants of the activatory and inhibitory interactions were varied. The rate 

constants ratio was adjusted by a factor of 2. 
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Figure 6B.9: Plot of  𝐶𝑉5,1 with mp
− where a) 𝑎+/𝑎− = 2 and b) 𝑎+/𝑎− = 0.5. c) and d) are 

the phase space plot for the same. The different color and marker type are for different 

values of 𝑚𝑛𝑛𝑝
−  as indicated in Figure 6B.4. 

 

 In Figures 6B.9a-b the scaling of the noise for a+/a− = 2 and a+/a− = 0.5 was plotted 

respectively. The nontrivial scaling of noise became more pronounced across the various 

numbers of near-nonproximal interactions when the strength of activatory interactions were 

more than the strengths of negative interactions (Figure 6B.9a). In contrast, the network 

appeared to show typical scaling the stronger negative interactions (Figure 9b).  Similar 

bursty nature of output node confirmed from the phase space plots in the case a+/a− = 2 

(Figure 9c) as compared to a+/a− = 0.5 (Figure 9d). Thus, higher strength of a+ supported 

the argument of bursty kinetics further by promoting the non-trivial scaling.  The scaling 

of noise was also considered when the interaction strengths were varied at each layer. To 

investigate the layer-specific regulatory function of the interaction strengths on the scaling 

of the noise, simulations were ran using various interaction strengths in each layer. Two 

sets of calculations were performed, increasing the strength of the interaction from the input 

to the output layer in one set (Figure 6B.10a) and decreasing it in the other set (Figure 

6B.10b).  We have selected the values of interactions as a2,j
+/−

 = 0.003, a3,j
+/−

 = 0.004, a4,j
+/−

 

= 0.005, and a5,j
+/−

=0.006 for the interaction between input/top, top/core, core/terminal, and 

terminal/output layers, respectively, in the situation of increasing strength from the input 
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to the output layer. For the decrease in interaction strengths from the input to the output 

layers, the reverse order was employed. It was found that the scaling of noise with the 

average was comparable in both the situations. However, when the strength of interactions 

was stronger in the terminal layer, the high noise in the high abundance nature of noise was 

more obvious across different values of 𝑚𝑛𝑛𝑝
− .  

 

Figure 6B.10: Plot of  𝐶𝑉5,1 vs 𝑛̅5,1 with an increasing order of interaction strength from 

a) top to bottom and b) bottom to top layer of the network. The different color lines and 

marker represents different value of 𝑚𝑛𝑛𝑝
−  as indicated.  

Every node in the network model was connected to every other node in the layer above it 

and below it, making the autocratic network fully connected. In real scenario, networks 

may not be entirely interconnected29. Therefore, a random number of regulatory 

interactions were deleted from the network across all layers except the output layer in order 

to assess the noise in such sorts of autocratic networks. The values of 𝑎𝑖,𝑗  were arbitrarily 

chosen to be 0  in order to remove a certain number of interactions from the network's top, 

core, and terminal layers. For instance, we set 1, 6, and 8 numbers of randomly selected 

𝑎𝑖,𝑗 from the top, core, and terminal layers, respectively, to exclude 20% of interactions. 

Notably, there are 69 interactions overall in these three tiers in the completely connected 

network. In the instance of 40%, we multiplied these amounts by two. It was found that 

removing 20% and 40% of the regulatory interactions from the network did not change the 

scaling of the noise (Figure 6B.11), indicating the universality of the scaling behavior in 

the autocratic network.  
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Figure 6B.11: Comparison of the scaling of 𝐶𝑉5,1 vs 𝑛̅5,1, with ∼20% (solid lines) and 

∼40% (dashed lines) reduction of interactions, at random, in the top, core and terminal 

layers of the network. The different color lines represent different value of 𝑚𝑛𝑛𝑝
−  as 

indicated in Figure 6B.10. 

 

In order to establish a network with a certain number of inhibitory near-nonproximal and 

far-nonproximal connections, we chosen these regulatory interactions in a specific manner 

for the autocratic network. A given number of 𝑚𝑛𝑛𝑝
−  and 𝑚𝑓𝑛𝑝

−   , the numbers could be 

satisfied by a variety of mutual combinations of interactions, leading to the creation of 

multiple equivalent networks (microstates). Five such comparable networks were created 

where the regulatory interactions were all randomly chosen and had the same values of 

𝑚𝑛𝑛𝑝
−  and 𝑚𝑓𝑛𝑝

−   to test whether the findings were affected by the particular mutual 

interactions (𝑖, 𝑗) chosen. Figures 6B.12a-c demonstrated that the nature of the scaling was 

independent of the particular mutual interactions that are chosen.  
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Figure 6B.12:  Scaling of 𝐶𝑉5,1 vs 𝑛̅5,1 for the indicated values of 𝑚𝑛𝑛𝑝
−  and 𝑚𝑓𝑛𝑝

− . For 

each combination of 𝑚𝑛𝑛𝑝
−  and 𝑚𝑓𝑛𝑝

−  five different networks having randomly chosen 

mutual interactions were presented. 

Finally, investigation of the scaling of noise was carried out in a mixed network with nodes 

in a certain hierarchical layer were connected to each other to create a democratic 

architecture. As a result, the nodes in the top, core, and terminal layers controlled one 

another, creating an internally democratic subnetwork. As a result, the resulting network 

becomes a conglomeration of democratic and autocratic network (Figure 6B.13a). The 

scaling of intrinsic noise with the average was found to be unaffected by the democratic 

mutual interactions in the three layers (Figure 6B.13b). The hybrid network exhibited 

considerable noise in both the low and high abundance regimes, strictly following the 

scaling of noise behavior in an autocratic network. 

 

Figure 6B.13.Schematic representation of the mixed network. The nodes in the top, core, 

and terminal layers form democratic subnetworks within themselves. The mutual 
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interactions within a democratic subnetwork are represented by the edges with filled circles 

at both ends (red lines). (b) The scaling of noise in the output node with its average. The 

values of 𝑎+ and 𝑎−were chosen as +0.0025 and −0.0025 respectively. In the democratic 

subnetworks activatory and inhibitory interactions were equally distributed with strength 

of 0.001 for both interactions. 

 

6B.3 Conclusion 

This chapter focussed on how chemical noise propagates in an autocratic network, where 

nodes in one layer regulates nodes in another layer. The goal was to determine how the 

qualitative (activatory/inhibitory) and quantitative (strength) interactions of regulatory 

interactions influence the variability in the autocratic network. In order to employ the 

stochastic simulation algorithm to precisely estimate the intrinsic chemical noise in the 

network, the mass action rate law of chemical reaction was applied to represent the 

network. The qualitative nature of the proximal (direct) and near-nonproximal (indirect) 

interactions were found to strongly regulate the steady state statistical properties of the 

output node. Whereas the far-nonproximal rules had no impact on such attributes. In 

particular, when the network contained more activating near-nonproximal regulations than 

inhibiting near-nonproximal regulations, calculations showed that the noise passed through 

a minimum as a function of average abundance. This kind of scaling resulted in increased 

variability of output node in both the low and high abundance regimes. The system 

exhibited greater variability despite having a large average, such scaling of noise with the 

average was new and nontrivial. It was demonstrated that the system's bursty kinetics, 

which were regulated by a significant number of direct activatory regulations from the 

nodes in the neighbouring layer, were the cause of the nontrivial scaling of noise with the 

average. The higher strength of activatory regulation enhanced the nontrivial scaling of the 

variability by altering the strengths of the activatory and inhibitory interactions. The 

activatory regulations, either in high number or in higher strength compared to the 

inhibitory regulations, increased the system variability by generating bursty trajectories. 

Even with the addition of democratic mutual interactions between nodes in a specific layer, 

the qualitative aspect of scaling remains unaltered. 

 As conclusion, in a network that is entirely democratic the intrinsic noise showed a 

biphasic scaling and showed weak ultrasensitivity in the average. Whereas the autocratic 
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or mixed networks, both showed a nontrivial scaling of noise in which the downstream 

node becomes noisy in both the low abundance and high abundance regimes. 
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CHAPTER 7 
 

Future scope 
 

The thesis work dealt with the investigation of noise propagation across different network 

motifs and how the noisy behavior influences the functionality of such networks. Various 

non-trivial scaling of chemical noise for different network architectures and reaction 

kinetics has been established. Further the effects of extrinsic noise on the heterogeneity 

in the bistable responses is investigated. In this chapter the future scope of the work is 

discussed. 

A single pulsatile signal had been used to investigate the difference in the transition 

kinetics for a bistable system originating from two different network topologies, mutual 

inhibition and mutual activation in chapter 4. However, cells may experience trail of 

pulsatile signals or input signals in the form of decaying oscillations. Additional to 

conventional bistable switch, such positive feedback loop network types with slight 

tweaking in their architecture can lead to various non canonical responses as mentioned 

in chapter 5. In future, this work can be extended further with other types of input signals 

and network topologies with noncanonical responses. 

Chapter 5 discussed the effect of extrinsic noise on the heterogeneity of bistable switches. 

However, in case of cellular differentiation, a growing number of studies have highlighted 

the possibility of a mixed state which can be explained by tristable switches. In this regard, 

further investigation can be carried out for similar network topologies with an additional 

positive feedback loops using the same automated method. New types of complex 

tristable switches can be expected. 

In chapter 6, to simulate the generalized networks, the mass action rate law was used to 

model the chemical reactions involved. However, in both protein interaction and gene 

regulatory networks, nonlinear rate laws like the Hill function and Michaelis-Menten 

kinetics are frequently used to compare the mathematical predictions to the experimental 
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findings. The use of mass action kinetics allowed to accurately estimate intrinsic chemical 

noise by using Gillespie's SSA. Additionally, it discarded the other possibilities of nonlinear 

phenomena, such as multistability and oscillations. Protein interaction network modeling 

based on mass-action kinetics has grown significantly because of its higher accuracy to 

predict how intrinsic chemical noise would affect the reaction networks. In future, it will 

be interesting to examine how noise propagates in networks with nonlinear rate laws 

using approximate simulation techniques like the chemical Langevin equation. 
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                        Appendix 1 

(Chapter 3) 
 

General form for the dynamical equations for the phosphorylated species involved in 

multi-phospho chain with N number of phospho states: 

  

For non-terminal species 
 

 
𝜕𝑛̅𝑖

𝜕𝑡
= (𝜈𝑖 + 𝜈−(𝑖+1)) − (𝜈𝑖+1 + 𝜈−𝑖) A3.1 

For terminal species  
𝜕𝑛̅𝑁

𝜕𝑡
= (𝜈𝑁 − 𝜈−𝑁) 

 
             Where, 𝜈𝑖 and 𝜈−𝑖 are the phosphorylation and dephosphorylation rate of 

the 𝑖th species. 

 
 

Mass action Michaelis Menten 

A3.2 
𝜈𝑖 = 𝑘𝑖𝑛𝑖−1 𝜈𝑖 =

𝑘𝑖𝐸(𝑛𝑖−1/𝐾𝑀𝑖
)

1 + ∑ 𝑛𝑖−1/𝐾𝑀𝑖

𝑁
𝑖=1

 

𝜈−𝑖 = 𝑘−𝑖𝑛𝑖  𝜈−𝑖 =
𝑘−𝑖𝐸

′(𝑛𝑖/𝐾−𝑀𝑖
)

1 + ∑ 𝑛𝑖+1/𝐾−𝑀𝑖

𝑁−1
𝑖=0

 

 
 
Final covariance matrix equation for 4-component chain, 

           

[
 
 
 
 
 
𝐴11 𝐴12 𝐴13 0 0 0
𝐴21 (𝐴11 + 𝐴22) 𝐴23 𝐴12 𝐴13 0
𝐴31 𝐴32 (𝐴11 + 𝐴33) 0 𝐴12 𝐴13

0 𝐴21 0 𝐴22 𝐴23 0
0 𝐴31 𝐴21 𝐴32 (𝐴22 + 𝐴33) 𝐴23

0 0 𝐴31 0 𝐴32 𝐴33]
 
 
 
 
 

[
 
 
 
 
 
𝜎11

𝜎12

𝜎13

𝜎22

𝜎23

𝜎33]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −

1

2
(𝜈1 + 𝜈2 + 𝜈−1 + 𝜈−2)

(𝜈2 + 𝜈−2)
0

−
1

2
(𝜈2 + 𝜈3 + 𝜈−2 + 𝜈−3)

(𝜈3 + 𝜈−3)

−
1

2
(𝜈3 + 𝜈−3) ]

 
 
 
 
 
 
 
 

 A3.3 

 

Where, 𝐴11 =
𝜕(𝜈1+𝜈−2)−(𝜈2+𝜈−1)

𝜕𝑛̅1
, 𝐴12 =

𝜕(𝜈1+𝜈−2)−(𝜈2+𝜈−1)

𝜕𝑛̅2
, 𝐴13 =

𝜕(𝜈1+𝜈−2)−(𝜈2+𝜈−1)

𝜕𝑛̅3
, 𝐴21 =

𝜕(𝜈2+𝜈−3)−(𝜈3+𝜈−2)

𝜕𝑛̅1
, 𝐴22 =

𝜕(𝜈2+𝜈−3)−(𝜈3+𝜈−2)

𝜕𝑛̅2
, 𝐴23 =

𝜕(𝜈2+𝜈−3)−(𝜈3+𝜈−2)

𝜕𝑛̅3
, 𝐴31 =

𝜕(𝜈3+𝜈−3)

𝜕𝑛̅1
, 𝐴32 =

𝜕(𝜈3+𝜈−3)

𝜕𝑛̅2
,  

and 𝐴33 =
𝜕(𝜈3+𝜈−3)

𝜕𝑛̅3
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                         Appendix 2 

(Chapter 4) 
 

 

 

 

 

 

Figure A4.1: Effect of resting pulse on the population inversion. The plot of 𝑓𝑖𝑛𝑣 as a 

function pulse duration (𝜏𝑑) and pulse dose (𝛥𝑆𝑅) for the MI (fisrt column) and MA (second 

column) networks for two different doses of resting pulse (𝛥𝑆𝐿 = 0.05 top row, and 𝛥𝑆𝐿 =

0.1, bottom row). The integrated signal required for 99% population inversion is plotted as 

a function of 𝜏𝑑 and 𝛥𝑆𝑅 for two different values of resting pulse (c & f) in the MI (circles) 

and MA (squares) networks. 
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Figure A4.2: Effect of resting pulse on the transient dynamics. 𝑓𝑛𝑟𝑠 and 𝑓𝑡𝑟𝑛  are plotted as 

a function of 𝜏𝑑 and 𝛥𝑆𝑅 for the MI (a, c, e and f) and MA (b, d, f and h) networks for 

different values of resting pulse, 𝛥𝑆𝐿 = 0.05 (a-d) and 𝛥𝑆𝐿 = 0.1 (e-h). 
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Figure A4.3: Effect of resting pulse on the time scales of population inversion. The surface 

plots of average inversion time (⟨𝜏𝑖𝑛𝑣⟩), average response time (⟨𝜏𝑟𝑠𝑝⟩) and average initial 

delay time (⟨𝜏𝑑𝑙𝑦⟩) are presented as a function of 𝜏𝑑 and 𝛥𝑆𝑅 for the MI (1st and 3rd rows) 

and MA (2nd and 4th rows) networks at two different values of 𝛥𝑆𝐿. 
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Figure A4.4: Effect of pulse amplitude on residence and switching times.  The fraction of 

the population that switches back to the upper steady state (𝑓𝑠𝑤𝑡), the average residence 

time in the lower steady state (⟨𝜏𝑟𝑠𝑑⟩) and the average switching time (⟨𝜏𝑠𝑤𝑡⟩) are plotted 

as a function of pulse duration (𝜏𝑑) and resting pulse (𝛥𝑆𝐿) for the MI (1st and 3rd rows) and 

MA (2nd and 4th rows) networks. The values of the 𝛥𝑆𝑅 were 0.0 and 0.2. 
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Figure A4.5: The effect of pulse amplitude on the population locked in the inverted state. 

Fraction of cells locked at lower steady state, 𝑓𝑙𝑐𝑘 is plotted as a function of pulse duration 

(𝜏𝑑) and resting pulse (Δ𝑆𝐿) for the MI (top row) and MA (bottom row) networks for the 

indicated values of pulse amplitude. 
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Figure A4.6. The fraction of the population that switches back to the upper steady state 

(𝑓𝑠𝑤𝑡) is plotted as a function of resting pulse (Δ𝑆𝐿) for increasing values of pulse duration, 

𝜏𝑑, in case of MI (red to yellow) and MA (green to yellow) networks. The value of the 𝛥𝑆𝑅 

was 0.2.  
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Figure A4.7: The comparison of statistical properties of inversion and switching times 

between the MI and MA networks for different values of pulse dose (a-d). The comparison 

of relative available time vs. 𝜏𝑑 between the MI and MA networks. Different colors 

represent different value of dose (𝛥𝑆𝑅) following an increasing trend of red to yellow for 

the MI and green to yellow for the MA.  
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Figure A4.8: The correlation between the mean-normalized 𝜏𝑖𝑛𝑣 and 𝜏𝑟𝑠𝑑 times are plotted 

for the indicated values of pulse duration (a), pulse dose (b) and resting pulse (c) for the 

MA network. The values of correlation coefficients are indicated within the parenthesis 

inside each plot. 
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                         Appendix 3 

(Chapter 5) 
 
 

 

 
 

Figure A5.1: The total number of various types of canonical (a) and noncanonical (b-d) 

bistable switches are presented for the 1-PFL and 2-PFL networks under AND-gate 

configuration. The noncanonical switches are segregated into one (b), two (c) and three (d) 

bistable regions. 
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Figure A5.2: Percentage chance (% Chance) of obtaining various types of noncanonical 

bistable switches are compared for the MI (a) and MA (b) networks under AND-gate 

configuration. The correlation of % Chance of noncanonical switches of MI networks 

(circle: 1-MA, square: 2-MA) under (+,+) input signal with (-,-) input signal (c). Similar 

correlation for the 2-MA MA networks (d). 
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Figure A5.3: The inverted isola bifurcation and its phase-plane plots for the indicated 

values of S for the ppMI network under OR-gate. The two SN bifurcation points are 

indicated by the filled blue circles. The black and red circles at the intersections of two 

nullclines indicate the stable and unstable nodes, respectively. Parameters for the InIs 

switch are listed in Table the S5. 
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Figure A5.4: The bifurcation diagram of canonical bistable switch and its phase-plane plots 

for the indicated values of S for the ppMI network under OR-gate. The unstable node (red 

dot) originates with one stable node (black dot) and merges with another stable node 

leading to two SN bifurcation points. Parameters are listed in the Table S5. 
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Figure A5.5: The inverted mushroom bifurcation and phase-plane plots for the indicated 

values of S for the ppMI network with OR-gate configuration. Parameters are listed in the 

Table S5. 
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Figure A5.6: Phase diagrams in the pnMA network under OR-gate configuration. The 

initial phases are indicated within each phase diagrams. The parameters for the initial 

phases are listed in the Table S9. 

 

 

 
 

Figure A5.7: Cumulative distribution function (CDF) plots of the parameters 𝐽AS and 𝐽BS 

for different switches obtained from various networks. The resultant regulatory signs of S 

to B for the networks in the top and bottom rows are (+,-) and (-,+), respectively. 
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Table A5.1: One-parameter bifurcation diagrams of canonical and noncanonical bistable 

switches. In the bifurcation diagrams the stable and unstable branches are indicated by the 

black and red lines, respectively. The solid circles indicate the saddle-node bifurcation 

point. The overlaid plot of the potential energy contours and bifurcation diagram is 

presented adjacent to the respective bifurcation diagram. The potential energy was obtained 

by integrating the effective force (for example Eq.(8) for the ppMI network) and the 

bifurcation diagrams were generated from the potential energy. These bifurcation diagrams 

were obtained from the ppMI and ppMISA networks and the parameters are listed in the 

Table S5 and Table S6. 

 

Switch 

type 
Bifurcation diagrams 
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Bistable switches 
 

  

 

  
Bistable (Bs) 

Dual bistable switches 

    
Dual bistable (DBs) 
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Isola switches 

    
Isola (Is) Inverted isola (InIs) 

Mushroom switches 

    
Mushroom (Msh) Inverted mushroom (InMsh) 

Bistable with isola switches 

    
Bistable-Isola (Bs-Is) Bistable-Inverted isola (Bs-InIs) 

Dual isola switches 
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Dual isola (DIs) 

Bistable with mushroom switches 

    
Bistable-Mushroom (BsMsh) 

Isola with mushroom switches 

    
Isola-Mushroom (Is-Msh) Inverted isola-Mushroom (InIs-Msh) 

Dual bistability with isola switches 

    
Dual bistable-Isola (DBs-Is) Dual bistable-Inverted isola (DBs-

InIs) 
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Table A5.2: The dynamical equations for all the networks in OR- and AND-gate 

configurations. 

 

Network OR-gate AND-gate 

nnMI 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

 

pnMI 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

 

ppMI 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
− − 𝛾𝑏𝐵 

 

nnMA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

 

pnMA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

 

ppMA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝑏𝑠𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
+ − 𝛾𝑏𝐵 

nnMISA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
−

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
− 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

pnMISA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
−

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
− 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

npMISA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
−

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
− 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 
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ppMISA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
−

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
− − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
− 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

nnMASA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
+

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
+ 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

pnMASA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

− + 𝑔𝐵𝐴𝐻𝐵𝐴
+

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

− 𝐻𝐵𝐴
+ 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

npMASA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

− + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
+

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

− 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
+ 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

ppMASA 𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴𝑆𝐻𝐴𝑆

+ + 𝑔𝐴𝐵𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵𝑆𝐻𝐵𝑆

+ + 𝑔𝐵𝐴𝐻𝐵𝐴
+

+ 𝑔𝐵𝐵𝐻𝐵𝐵
+ − 𝛾𝑏𝐵 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴0 + 𝑔𝐴1𝐻𝐴𝑆

+ 𝐻𝐴𝐵
+ − 𝛾𝐴𝐴 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵0 + 𝑔𝐵1𝐻𝐵𝑆

+ 𝐻𝐵𝐴
+ 𝐻𝐵𝐵

+

− 𝛾𝑏𝐵 

 

 

Table A5.3: Parameters and their chosen ranges. Parameters were sampled from 

independent uniform distributions with the mentioned ranges. 

 

Parameters Parameter types Range 

𝑔A0 and  𝑔B0 Basal synthesis rates 1-10 

𝑔AS, 𝑔BS, 𝑔AB, 𝑔BA, 𝑔BB Maximal synthesis rates 1-100 

𝐽AS, 𝐽BS, 𝐽AB, 𝐽BA, 𝐽BB 
Thresholds of 

activation/inhibition Using half-functional rule 

𝑛AS, 𝑛BS, 𝑛AB, 𝑛BA, 𝑛BB
 Hill coefficients 1-10 

𝛾A and 𝛾B
 Degradation rates 0.01-0.1 
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Table A5.4: Jump pattern of the stable branch at the bifurcation points of reversible 

canonical and noncanonical switches. The upward and downward jumps are represented by 

+ and – sings, respectively. 

 

Switch 

type 

Number of 

Saddle node 

points 

(N) 

Number of 

Jumps 

(J) 

Bistable switches 

C
a
n

o
n

ic
a
l 

S
w

it
ch

es
 

N=2 J=1 
  

Bs (+) Bs (-) 

N=4 J=2 

  
DBs (+,+) DBs (-,-) 

N
o
n

ca
n

o
n

ic
a
l 

S
w

it
ch

es
 

N=2 

J=0 

 
Is 

J=2 
 

InIs (-,+) 

N=4 

J=2 

  

Msh (+,-) InMsh (-,+) 

J=1 

 
Bs-Is (+) 

J=3 

 
Bs-InIs (+,-,+) 

J=0 

 
DIs 
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N=6 

J=2 

 
Is-Msh (+,-) 

J=4 

 
InIs-InMsh (-,-,+,+) 

J=3 

 
 

Bs-Msh (+,-,+) Bs-Msh (-,+,-) 

J=2 

 
DBs-Is (+,+) 

J=4 

 
DBs-InIs (+,+,-,+) 
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Table A5.5: Parameters for different switches from the ppMI network under OR-gate. 

These parameters are relevant for the representative bifurcation diagrams in the Figure 1d 

and Table A5.1; phase-plane analysis in Figure 5.5-6 and A5.3-5 Figures; phase diagrams 

in Figure 5.7a, Figure 5.8a, Figure 5.9a, Figure 5.9e and Figure 5.11. 

 

P
ar

am
et

er
s 

Bistable 

(left 

diagram) 

Bistable 

(right 

diagram) 

Isola 
Inverted 

Isola 
Mushroom 

Inverted 

Mushroom 

Bistable- 

isola 

Bistable-

Inverted 

isola 

Bistable-

Mushroom 

(left 

diagram) 

Bistable-

Mushroom 

(right 

diagram) 

 

𝑔𝐴0 5.40796 2.30238 1.16189 3.91086 5.61338 2.14577 2.82458 8.00958 4.94922 3.38580 

𝑔𝐴𝑆 98.5099 62.7262 60.1037 82.2862 39.7386 67.0659 38.8018 94.5969 51.3682 94.6726 

𝑔𝐴𝐵 72.9167 16.2866 58.7307 60.5229 12.4514 51.2801 99.7156 87.5328 50.9559 44.9678 

𝑔𝐵0 3.33803 3.24908 6.08283 3.90089 5.41966 7.51982 4.44888 3.90556 9.61109 1.87407 

𝑔𝐵𝑆 67.1020 10.6801 25.6386 16.1169 43.8093 58.4625 94.4743 65.3754 59.7813 83.4666 

𝑔𝐵𝐴 37.8199 73.9437 41.3745 78.2889 87.6818 46.7369 62.4992 42.0374 41.5308 93.6896 

𝐽𝐴𝑆 180.884 379.859 141.549 27.7697 101.614 118.419 42.3847 121.927 102.359 81.5759 

𝐽𝐵𝑆 118.768 68.4776 37.1898 128.319 75.1887 259.318 86.4997 148.646 115.949 46.7086 

𝐽𝐴𝐵
 763.437 739.303 595.305 670.519 2677.69 615.182 1237.12 535.278 1418.68 985.783 

𝐽𝐵𝐴
 1243.46 682.014 141.538 1888.71 550.999 1036.18 737.882 1047.30 2254.29 2564.77 

𝑛𝐴𝑆
 5 6 10 8 1 5 7 6 10 1 

𝑛𝐵𝑆
 6 9 3 7 10 8 2 3 3 10 

𝑛𝐴𝐵
 7 9 3 10 9 10 5 9 10 9 

𝑛𝐵𝑎
 6 8 5 7 6 5 5 5 8 8 

𝛾𝐴
 0.06515 0.03809 0.04834 0.06916 0.05790 0.07023 0.09215 0.09676 0.02535 0.02448 

𝛾𝐵
 0.05701 0.09326 0.03587 0.07449 0.03365 0.06225 0.04864 0.08721 0.03913 0.09828 
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Table A5.6: Parameters for different switches reported in the Figure 1d and Table S1 

from the ppMISA network.  

 

 
 

OR-gate 
 

 

AND-gate 
 

P
ar

am
et

er
s Dual 

bistable 
(left 

diagram) 

Dual 

bistable 
(right 

diagram) 

Isola-
Mushroom 

Inverted 

Isola-

Mushroom 

Dual 

bistable-

Isola 

Dual 

bistable- 
Inverted 

isola 

P
ar

am
et

er
s 

Dual isola 

𝑔𝐴0 5.17627 3.55117 8.25783 1.55466 5.39796 9.15053 𝑔𝐴0 9.03108 

𝑔𝐴𝑆 27.3560 72.7125 48.0782 49.7661 57.1797 43.6249 𝑔𝐴1 24.3663 

𝑔𝐴𝐵 95.8391 46.2017 22.2070 63.7841 65.2393 90.5569 𝑔𝐵0 5.40892 

𝑔𝐵0 5.24728 5.48261 4.19034 5.90409 9.59969 9.73973 𝑔𝐵1 82.7562 

𝑔𝐵𝑆 74.8802 31.0285 12.3761 56.6088 81.1651 69.9967 𝐽𝐴𝑆 85.3933 

𝑔𝐵𝐴 71.1375 99.8927 77.8168 80.2127 29.0245 64.5581 𝐽𝐵𝑆 40.1371 

𝑔𝐵𝐵 80.1445 23.0812 62.7681 96.4198 82.9614 21.9119 𝐽𝐴𝐵 782.615 

𝐽𝐴𝑆 143.634 246.624 132.961 54.7708 99.5336 86.8653 𝐽𝐵𝐴 219.425 

𝐽𝐵𝑆 34.7550 170.819 85.8930 65.5468 162.465 107.753 𝐽𝐵𝐵 215.229 

𝐽𝐴𝐵 759.522 1747.82 770.557 529.507 805.504 1245.86 𝑛𝐴𝑆 1 

𝐽𝐵𝐴 982.583 1048.99 456.526 2196.10 840.440 4334.88 𝑛𝐵𝑆 2 

𝐽𝐵𝐵 1932.44 1286.44 1301.06 2369.74 2813.66 670.013 𝑛𝐴𝐵 3 

𝑛𝐴𝑆 3 3 8 3 5 10 𝑛𝐵𝐴 7 

𝑛𝐵𝑆 1 9 7 8 2 5 𝑛𝐵𝐵 8 

𝑛𝐴𝐵 5 4 10 3 2 6 𝛾𝐴 0.07038 

𝑛𝐵𝐴 2 8 2 9 6 4 𝛾𝐵 0.05600 

𝑛𝐵𝐵 9 8 10 8 6 8   

𝛾𝐴 0.04370 0.05459 0.08468 0.02396 0.04630 0.02092   

𝛾𝐵 0.07497 0.03899 0.09009 0.06929 0.03340 0.07324   
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Table A5.7: Schematic bifurcation diagrams of reversible and irreversible bistable 

switches with a maximum of three bistable regions. The reversible switches are presented 

in the 2nd column and irreversible switches on the left (𝑆 = 0), right (𝑆 = 1000) and both 

sides of a particular switch are presented on the 4th, 6th and 8th column, respectively. The 

‘L’ and ‘R’ prefix and suffix represents the irreversibility on the left and right, respectively. 

The shaded box represents the repetition of the bifurcation represented by the number serial 

number of the bifurcation. The irreversible switches that were not considered are 

represented by the empty boxes. Forward and backward facing switches are represented by 

‘F’ and ‘B’ letters in the names of the switch. 

 

Sl 

No

. 

Reversible 

bistable 

switch 

Sl 

No

. 

Irreversible 

bistable 

switch on left 

(S=0) 

Sl 

No

. 

Irreversible 

bistable 

switch on 

right 

(S=1000) 

Sl 

No

. 

Irreversible 

bistable 

switch on 

both sides 

1 
 

58 
 

82 
 

10

6  
Isola (Is) L-BsB BsF-R L-Bs-R 

2 
 59   82  106 

Bistable Forward 

(BsF) L-BsF 

3  
 

 58 83   106 

Bistable Backward 

(BsB) 
BsB-R 

4 
  59  83  106 

Inverted isola 

(InIs) 

5 
 

60 
 

84 
 

10

7  
Dual isola (DIs) L-DIs R-DIs L-DIs-R 

6 
 61  85  

10

8  
Dual inverted isola 

(DInIs) 
L-DInIs DInIs-R L-DInIs-R 

7 
 62  86  

10

9  
Dual bistable 

forward (DBsF) 
L-DBsF DBsF-R L-DBsF-R 

8  63  87  11

0 
 

Dual bistable 

backward (DBsB) 

 

L-DBsB DBsB-R L-DBsB-R 
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9 
 

64 
 

88 
 

 108 

Mushroom (Msh) L-Msh Msh-R 

10  65  89   107 
Inverted 

mushroom (InMsh) 
L-InMsh InMsh-R 

11 
 

 65  84  107 

Is-BsF 

12 
 

66 
 

 86  109 

BsF-Is L-BsF-Is 

13 
 

 
62 90 

 

 
109 

InIs-BsF  InIs-BsF-R  

14 
 

 
61 

 
88 

 
108 

BsF-InIs    

15 
 

 
63 91 

 

 
110 

Is-BsB  Is-BsB-R  

16 
 

 
64 

 
85 

 
108 

InIs-BsB    

17 
 

 
60 

 
89 

 
107 

BsB-Is    

18 
 

67 
 

 
87 

 
110 

BsB-InIs L-BsB-InIs   

19 
 

  

92 
 

11

1  

TBsF   TBsF-R L-TBsF-R 

20 
 

68 
 

 
 

11

2  

TBsB L-TBsB   L-TBsB-R 
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21 
 

69 
 

93 
 

11

3  

Is-DBsF L-Is-DBsF Is-DBsF-R L-Is-DBsF-R 

22  70  94  11

4 
 

BsF-Is-BsF L-BsF-Is-BsF BsF-Is-BsF-R L-BsF-Is-

BsF-R 

23 
 

71 
 

 

92 
 

111 

DBsF-Is L-DBsF-Is   

24 

 

    
 

111 

 InIs-DBsF      

25 

 

    11

5 
 

 BsF-InIs-

BsF 

     L-BsF-InIs-

BsF-R 

26 

 

    11

6 
 

 DBsF-InIs      L-DBsF-

InIs-R 

27 

 

 

68 
95 

 

 

112 

 Is-DBsB   Is-DBsB-R  

28 

 

72 

 

96 

 

11

7 
 

 BsB-Is-BsB  L-BsB-Is-

BsB 

 BsB-Is-BsB-R  L-BsB-Is-

BsB-R 

29 

 

73 

 

97 

 

11

8 
 

 DBsB-Is  L-DBsB-Is  DBsB-Is-R  L-DBsB-Is-

R 

30 

 

    11

9 
 

 InIs-DBsB      L-InIs-

DBsB-R 

31 

 

    12

0 
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 BsB-InIs-

BsB 

     L-BsB-InIs-

BsB-R 

32 

 

     

112 

 DBsB-InIs      

33 
 

74 
 

98 

 

12

1  

 DIs-BsF  L- Dis-BsF  DIs-BsF-R  L- DIs-BsF-

R 

34 

 

75 

 

 

93 

 

113 

 Is-BsF-Is  L-Is-BsF-Is  

35 

 

76 

 

 

94 

 

114 

 BsF-DIs  L-BsF-DIs  

36 

 

 
72 99 

 

 
117 

 DIs-BsB    Dis-BsB-R   

37 

 

 
73 

10

0 
 

 
 

118 

 Is-BsB-Is    Is-BsB-Is-R   

38 

 

77 

 

10

1 
 

 121 

 BsB-DIs  L-BsB-DIs  BsB-DIs-R   

39 

 

78 

 

10

2 
 

12

2 
 

 Is-Msh  L-Is-Msh  Is-Msh-R  L- Is-Msh-R 

40 

 

79 

 

10

3 
 

12

3 
 

 BsF-Is-BsB  L-BsF-Is-BsB  BsF-Is-BsB-R  L-BsF-Is-

BsB-R 

41 

 

80 

 

10

4 
 

12

4 
 

 Msh-Is  L-Msh-Is  Msh-Is-R  L-Msh-Is-R 

42 

 

     
116 

 InIs-Msh       
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43 

 

    12

5 
 

 BsF-InIs-

BsB 

     L- BsF-InIs-

BsB-R 

44 

 

     
119 

 Msh-InIs       

45 

 

81 

 

 100  118 

 Is-InMsh  L-Is-InMsh     

46 

 

 
74  

 

101 

 
121 

 BsB-Is-BsF      

47 

 

 
75 

10

5 
 

 
113 

 InMsh-Is    InMsh-Is-R   

48 

 

 
   

 
124 

 InIs-InMsh       

49 

 

    
12

6 
 

 BsB-InIs-

BsF 

     L-BsB-InIs-

BsF-R 

50 

 

     
122 

 InMsh-InIs       

51 

 

   
104 

 
124 

 Msh-BsF       

52 

 

     
119 

 Msh-BsB       

53 

 

 69 
 

105 
 

113 

 InMsh-BsF       

54 

 

 
   

 
116 

 BsF-Msh       
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55 
 

 
78 

   
122 

 InMsh-BsB       

56 
 

 
81 

 
97 

 
118 

 BsB-InMsh       

57 
 

 
77 

 
98 

 
121 

 Tripple isola 

(Tis) 
      

 

 

 

Table A5.8: Parameters for the phase diagram calculations with isola and inverted isola 

initial phases in the ppMISA network under OR-gate (for the Figure 7g and Figure 8d in 

the main text). 

 

Parameters 
Isola phase 

(Figure 7g) 

Inverted 

isola phase 

(Figure 8d) 

𝑔𝐴0 9.26266 8.53582 

𝑔𝐴𝑆 53.9575 15.2853 

𝑔𝐴𝐵 Varied Varied 

𝑔𝐵0 9.92193 2.57871 

𝑔𝐵𝑆 39.8924 22.3152 

𝑔𝐵𝐴 Varied Varied 

𝑔𝐵𝐵 38.0415 28.6408 

𝐽𝐴𝑆 101.757 70.0372 

𝐽𝐵𝑆
 24.9417 160.348 

𝐽𝐴𝐵
 2624.14 1111.90 

𝐽𝐵𝐴
 545.969 4851.50 

𝐽𝐵𝐵
 238.052 4190.46 

𝑛𝐴𝑆
 6 3 

𝑛𝐵𝑆
 6 10 

𝑛𝐴𝐵
 9 6 

𝑛𝐵𝐴
 7 3 

𝑛𝐵𝐵 3 1 

𝛾𝐴 0.08210 0.01237 

𝛾𝐵 0.03667 0.07217 
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Table A5.9: Parameters for the phase diagram calculations of the pnMA network under 

OR-gate (for the Figure A5.6). 

 

Parameters Isola phase 
Inverted 

isola phase 

Mushroom 

phase 

Inverted 

mushroom 

phase 

𝑔𝐴0 8.62687 6.40066 3.79978 7.90062 

𝑔𝐴𝑆 39.2674 94.9022 45.2186 23.3619 

𝑔𝐴𝐵 Varied Varied Varied Varied 

𝑔𝐵0 7.37762 2.05024 9.93726 4.46789 

𝑔𝐵𝑆 62.3360 77.9861 25.2221 93.2656 

𝑔𝐵𝐴 Varied Varied Varied Varied 

𝐽𝐴𝑆 76.3361 726.918 69.3061 140.891 

𝐽𝐵𝑆 96.1479 123.081 210.264 49.9116 

𝐽𝐴𝐵 2040.48 1105.94 1006.39 1087.82 

𝐽𝐵𝐴 641.550 914.359 633.213 2307.20 

𝑛𝐴𝑆 3 5 8 6 

𝑛𝐵𝑆 9 6 10 8 

𝑛𝐴𝐵 4 1 3 7 

𝑛𝐵𝑎 8 9 9 7 

𝛾𝐴 0.09738 0.01660 0.09803 0.01216 

𝛾𝐵 0.04797 0.08282 0.08474 0.05817 
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