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The thesis entitled ‘Studies on Nonadiabatic Dynamics within System-
Bath Framework’ consists of six chapters. My thesis is divided into an
introduction chapter, four working chapters and a chapter enclosing the con-
cluding remarks. All working chapters are divided into (1) Introduction (2)
Methods (3) Results and Discussions (4) Conclusions.

Chapter 1 : Introduction

Chapter 1 begins with a brief revision of Born-Oppenheimer(BO) approxi-
mation. The effects of non-BO approximation and their consequences are
highlighted. Various methods to compute these are briefly mentioned. The
work of Schneider et. al (Ref: J. Chem. Phys., 92:1045–1061,1990) analyzed
the dynamics of a nonadiabatic system (NAS). The spectra of a NAS are
often complex and dissipative. Schneider et. al computationally showed that
the reduced density matrices of the active vibrational modes develop large
amount of statistical entropies monotonically. They have not elaborated the
mechanisms of this. However, they did associate the dephasing of the wave
packet(WP) with the statistical entropy of these modes. This work is the
inspiration for my work presented in this thesis. The goals of the present
thesis are presented along with the structure of the thesis in this chapter.

Chapter 2: Classification of system and bath

DOF

In this chapter, I elaborate the mechanisms associated with the WP dephas-
ing. These are different for the coupling and tuning modes. The differences
are explained in this chapter. We concluded that the dephasing occurs in a
discrete manner each time the WP crosses the conical intersection(CI). The
number of zeroth order vibrational states required to describe the coupling
modes increases during the curve-crossing(CC). Hence, the statistical en-
tropies of these modes increase. The tuning modes, on the other hand, move
seamlessly onto the second surface transferring a small amount of their WPs
to the other surface that depends on the transfer of the electronic state(ES)
populations. Thus, the two types of modes display a different structure in
their WPs. Both, however, happen at the time of CC. A sequence of such
discrete events determine the WP dephasing in the long time limit.

CC happens based on the tuning mode dynamics. The tuning modes carry
the WP into the neighbourhood of the CI. Thus, one should understand which
tuning mode carries the WP towards the CI. To determine this, we carried out

1
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an algorithm in a qualitative manner based on the classical dynamics of these
tuning modes. It turns out that there are two ways by which tuning modes
carry the WP across the CI. We term them as direct crossing involving a
single tuning mode and a mutually-assisted crossing involving two tuning
modes simultaneously. We developed methods to identify these two types of
CC phenomena.

Applications of these criteria are presented in next chapters.

Chapter 3: Numerical studies using

Generalized TDSCF for bath DOF

In this chapter I test the validity of the criteria introduced and outlined
in Chapter 2. Before discussing the numerical results, I present the time-
dependent self-consistent field (TDSCF) method used for the description of
the bath DOF. This is discussed as part of the computational methodology.
Computational methodology encloses discussions on system subspace (SS)
configuration functions, TDSCF ansatz and Gaussian WP for the bath sub-
space (BS). In addition, working equations are derived in this section. Next,
I use two models for the purpose of testing the criteria for the classification of
system and bath variables. These results are presented as part of Results and
Discussions. First is the 24-mode pyrazine molecule. It has a CI between S2

and S1 ESs. It has only one coupling mode and five totally symmetric tuning
modes. I present a thorough analysis for choosing the system DOF in this
case. Auto-correlation functions(ACFs), spectra and electronic populations
are presented for the case study of the comparison of two model systems in
pyrazine. These results elaborate and emphasize the importance of choice
of system DOF. TDSCF results are also compared with numerically exact
results of MCTDH. Second testing case is a 3-mode spin-boson model. The
vibronic Hamiltonian in this case has only tuning modes and no coupling
mode. In this case, I compare the exact 3-mode SS with three 2-mode SSs
in which one mode is dropped in each case. These results emphasize the
importance of the influence of inclusion of a single mode in the SS. Finally I
summarize the conclusions of the chapter.
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Chapter 4: Numerical studies using

MRTDCCM for bath subspace

My aim in this chapter is to test an alternate approach for describing the
bath degrees of freedom(DOF). For this purpose, I use the multi-reference
time-dependent coupled cluster method (MRTDCCM) for treating the bath
DOF. As part of the methodology, I present the bifurcation of total Hilbert
space(HS) done in MRTDCCM into SS and BS. In this approach, system
DOF are treated exactly in terms of numerically converged harmonic oscil-
lator(HO) basis functions. The BS is described by an exponential ansatz of
the excitations operators. These excitation operators can be expanded as a
power series and the series can be conveniently truncated at a lower order of
expansion. The total WF in MRTDCCM is written in terms of bath wave-
operator acting on the system HS. I analyse the bath wave-operator and
present the working equations for the system and bath excitations. Next, as
part of the results and discussion I present ACFs and spectra for the nonadi-
abatic dynamics(NAD) in 18-mode butatriene cation. This system has a CI
between electronic ground state and first excited state. Results are presented
for three cases of MRTDCCM calculations. First case is calculated only for
SS (MS-only), second for SS plus one boson bath excitations(MS+S1) and
third for SS, one boson and two boson bath excitations (MS+S1+S2). A
(2-mode + ES)- SS is chosen for butatriene cation according to the criteria.
I also compare the results with the numerically exact results of MCTDH. I
tried using the MRTDCCM for bath modes in a 3+21 model of pyrazine.
But, unfortunately the calculations break down at (MS+S1+S2) level of cal-
culations. I summarize the chapter with concluding remarks.

Chapter 5: Dynamics of Dimers spectra

An interesting model system for NAD is the case of a simple dimer. We
consider only homogeneous dimers. When the two monomers in a dimer
interact, the ES of the two monomers mix and split into two eigenstates. If
each of the monomers have their own vibrations, these vibrations are also
affected by the mixing of the ESs. Consequently, the overall system becomes
a NAS. The analysis can be extended to larger oligomers as well. My analysis
in this chapter is limited to a simple dimer. The simplest symmetry analysis
of the dimer Hamiltonian indicates that its symmetry can be represented by
a four element symmetry point group, {E,Pe, Pv, Pev}. It can be shown that
this group is isomorphic to the C2h point group. Using the character table of
C2h the symmetry adapted linear combination of the dimer system are worked

3



out in a basis defined by the zeroth order basis. Since, the main problem is of
either two-state interaction of the ESs or of a displaced HO problem, these
are the two limits in which this Hamiltonian is analytically soluble. The
MRTDCCM gives solutions to the displaced HO. In addition, the two ES
problem can be simply diagonalized. Hence, we decided to attempt solving
this problem by MRTDCCM.

One advantage of this choice is that it is also extendable to finite temper-
ature by using thermofield dynamics. Such an extension requires doubling
the vibrational DOF, but no other change in the overall ansatz. A program
has been written for this purpose but I have not fully debugged it so far.
Hence, this work is currently going on and hopefully the results will be ready
soon.

Chapter 6: Conclusions

In this chapter I summarize the overall thesis. I highlight the main features
of the criteria presented in Chapter 2. Gist from the results presented in
Chapter 3 and Chapter 4 are discussed. The important features of these re-
sults are highlighted. The methodology developed for the dimers in Chapter
5 are discussed in short. In addition, I discuss the future scope of the work
presented in this thesis. Once I obtain the results of the on-going calculations
from Chapter 5, my aim in future is to extend this theory to oligomers.

List of publications:

• Manuscript for the work done in Chapter 2 and Chapter 3 is commu-
nicated with Journal of Physical Chemistry(A).

• Manuscript for the work done in Chapter 4 is under preparation.

• Chapter 5 is under development and manuscript will be prepared as
soon as the results are ready.
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Chapter 1

Introduction

1.1 Brief discussion on nonadiabatic dynamics

1.1.1 Born-Oppenheimer approximation

The first step in studying the time-evolution of a molecular system is to solve the time-

dependent Schrödinger equation,

iℏ
∂ψ

∂t
= Hψ. (1.1)

Here, H on the RHS of Eq.1.1 is the total molecular Hamiltonian. It encapsulates terms

for the nuclear kinetic energy, the electronic KE, the electronic repulsion, the electronic-

nuclear attraction and the nuclear-nuclear repulsion,

H = TN + Te + Vee + VeN + VNN. (1.2)

The eigenstates, ψ, of H are,

ψ(r,Q) =
X

i

ϕi(r; Q)Xi(Q). (1.3)

In Eq.1.3, ϕi is a member of the set of the electronic wave functions which depend on

the electronic coordinates, r. They are also parametrically dependent on the nuclear

coordinates, Q. For every nuclear configuration, there exists a different set of electronic

WFs. {Xi} is the set of nuclear WFs, defined for each ith electronic state. It is dependent

1
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on the coordinates of a given nuclear DOF. In its exact form, Eq.1.3 is called Born-

Huang expansion and the set of electronic WFs, ϕi(r; Q), forms a complete orthonormal

basis set for the electronic DOF.

Many chemical studies are restricted to a well-separated single electronic surface,

for example the ground electronic surface. In such cases, an approximation can be

invoked to Eq.1.3 which separates the electronic and nuclear WFs. This is a well-known

approximation named Born-Oppenheimer approximation [1–3]. BOA is based on the

assumption that since the electronic masses are much smaller than the nuclear masses,

the electrons move much faster than the nuclei. Thus, the electrons can be assumed

to be moving in a fixed-nuclei field in BOA. With this, the molecular WF, ψ, becomes

product separable in the electronic and nuclear space. So under BOA, Eq.1.3 can be

rewritten as,

ψ(r,Q) = ϕi(r; Q)Xi(Q). (1.4)

As a result, the molecular Hamiltonian can be written as a sum of the electronic Hamil-

tonian, He, and nuclear Hamiltonian, HN . The eigenvalues of He are generated by solv-

ing the electronic SE,

Heϕi(r; Q) = ϵi(Q)ϕi(r; Q). (1.5)

Here, i is a given ES and He is the electronic Hamiltonian given by,

He = Te + Vee + VeN + VNN. (1.6)

ϵi, dependent on the nuclear geometry, acts as the potential energy surface for the nu-

clear WFs. Hence, the nuclear Hamiltonian becomes,

HN = TN + ϵi(Q), (1.7)

and, the nuclear SE is written as,

HNXi(Q) = εi(Q)Xi(Q). (1.8)

Eq.1.8 is commonly known as adiabatic approximation.
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1.1.2 Breakdown of BOA

While BOA works successfully for the dynamics happening on a well-separated sin-

gle electronic surface, it is rendered completely obsolete in the case of near-degenerate

ESs[2]. In these degenerate regions, the coupled terms resulting from Eq.1.3 become

quite strong and they can no longer be ignored. The break down of BOA is quite com-

mon in the polyatomic molecules where there are more number of near-degenerate ESs

and higher number of nuclear DOF [1, 2]. Under such conditions, approximate ansatz

in Eq.1.4 no longer holds and ansatz in Eq.1.3 must be used in the total SE,

[TN + ϵi(Q)]Xi(Q) = EXi(Q). (1.9)

Upon multiplying with ϕ∗j from the left and integrating over the electronic space, the

coupled equations of motion from SE are obtained,

[TN + ϵ j(Q)]Xj(Q) −
X

i

Λ jiXi(Q) = EXj(Q). (1.10)

Λ ji are the nonadiabatic coupling elements (or, derivative couplings) defined as,

Λ ji = δ jiTN − ⟨ϕ j(Q)|TN |ϕi(Q)⟩ . (1.11)

Nonadiabatic coupling terms describe the interaction between the electronic and nu-

clear DOF in the region of energetically degenerate ESs. Such coupled interactions are

called the vibronic couplings. It should be noted that EOM in Eq.1.10 hold for both the

complex and real matrices for the electronic energies. We can rewrite Eq.1.10 as,

HXi(Q) = EXi(Q), (1.12)

where, H is given by,

H = TN + ϵ j(Q) −
X

i

Λ ji. (1.13)

Dynamics in which the vibronic effects become too essential to ignore are called
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nonadiabatic dynamics. Various photochemical processes, especially those which in-

volve radiationless energy transfers, charge transfer reactions, and electronic quenching,

are some examples where nonadiabatic effects are at the core of the dynamics [4–15].

1.1.3 Conical Intersection and its role in NAD

One prime example where NAD become vital is the case of a CI between two ESs[1–

3, 16]. The CI is the region of continuous points of electronic degeneracies in the mul-

tidimensional coordinate space of nuclear DOF in polyatomic systems. In the neigh-

bourhood of a CI, the derivative couplings Λ ji (Eq.1.11) exhibit rapid growth due to

the decreasing electronic energy gap. Thus, a wave packet that starts from a single elec-

tronic surface can spread over another surface with no loss in its energy. For this reason,

CIs are alternatively called photochemical funnels since they act as the doorways for the

ultrafast radiationless interstate crossing, which occurs at femtosecond-timescale.

From the non-crossing rule, the subspace of a CI (between the ESs of same sym-

metry) is (Nint − 2)-dimensional where Nint is the total internal degrees of freedom [17].

Hence, for same-symmetry case the CI subspace in linear polyatomic systems will be

(3Nint − 7)-dimensional while in non-linear polyatomic systems, it will be (3Nint − 8)-

dimensional. On the other hand, the subspace of the CI is (Nint − 1)-dimensional if the

intersecting ESs belong to two different irreducible representations. CIs are ubiquitous

in polyatomic molecules and there are ample examples available in the literature on the

dynamical studies in the vicinity of CIs [1].
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Figure 1.1: Pictorial representation of a CI in (Nint − 2)-dimensional space [18])

.

1.1.4 Representation of PES and Vibronic Hamiltonian

There are two major ways to represent electronic PESs, adiabatic and diabatic. The

Hamiltonian in Eq.1.13 is adiabatic Hamiltonian. This representation is valid for cases

where ESs are well apart and the derivative couplings in Eq.1.13 can be safely ignored.

However, in the vicinity of a CI, the adiabatic electronic surfaces become highly anhar-

monic. Nonadiabatic couplings gain large and divergent values and so their determina-

tion becomes cumbersome. This can be avoided by opting an alternate representation

for a small set of strongly coupled ESs. A unitary transformation, U, can be carried out

on the adiabatic electronic WFs at each point in space. This provides a new basis for

ESs called the diabatic basis [1–3].

φ = U(Q)ϕ. (1.14)

The subset of quasi-degenerate ESs used in the above transformation is decoupled from

all other ESs in the system. The electronic WFs in the diabatic representation change

slowly and smoothly as the functions of the nuclear coordinates. After carrying out

the unitary transformation, the first-order derivative couplings disappear and the off-

diagonal terms appear. In addition, a diagonal nuclear KE matrix is obtained. Thus, in
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diabatic picture the SE (in matrix notation) is written as,

[TN + P]X̃ = iℏ
∂X̃
∂t
. (1.15)

X̃ and P are the matrix of nuclear functions and the matrix of electronic potential en-

ergies in diabatic basis, respectively. The terms that describe the coupling between the

ESs are included within P.

In addition, the diabatic potential elements can be expanded as a Taylor series

around a fixed nuclear geometry at Q
′
. For example, the expansion can happen around

the point of intersection of two ESs. At Q
′
0, the energies of the two basis are identical.

Hence, the adiabatic PES can be generated as the eigenvalues of the diabatic potentials

by using the following transformation.

ϵ = UPU†. (1.16)

In the case of a two-state system, the transformation in the Eq.1.16 yields two

types of coupling terms at the first and second-order expansion of P. First are the

diagonal coupling terms, ai
ii, where i = 1, 2 are the two ESs. The second are the off-

diagonal linear coupling terms, ci j where i , j. The former set of couplings control the

energy-gap between the two ESs while the latter couples the two states. The vibrational

modes of the first type are called the tuning modes. The modes responsible for the off-

diagonal interstate coupling are called the coupling modes. If two intersecting ESs are

of different symmetries, the diagonal couplings will be non-zero for the modes that fall

in the totally symmetric IRep, Ag. On the other hand, depending on the point group of

the concerned molecule, non-zero linear off-diagonal couplings will be caused by the

modes belonging to a nontotally symmetric IRep. Thus in diabatic picture, the vibronic

Hamiltonian upto second-order can be written as follows [19],
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H =
X

i

ωi

2

− d2

dQ2
i

+ Q2
i

 1 +


∆
2 0

0 ∆
2

 +
X

i∈T1


ai 0

0 bi

Qi+

X

(i, j)∈T2


ai, j 0

0 bi, j

QiQj +
X

i∈C1


0 ci

ci 0

Qi +
X

(i, j)∈C2


0 ci, j

ci, j 0

QiQj.

(1.17)

This Hamiltonian represents the quadratic VC model. At its linear level, the QVC

model becomes the linear VC model. T1 and T2 are the groups of tuning modes at linear

and bilinear levels, respectively. Similarly, C1 and C2 are the groups of coupling modes

at linear and bilinear levels, respectively. It should be noted that the normal modes in

the above Hamiltonian are defined after removing system’s translational and rotational

modes. Second, the rotation-vibration coupling terms are dropped. As a consequence,

the angular momentum and its z-component are constants of motion. The Hamiltonian

is manifestly hermitian within the normal coordinate set. So, its overall energy is also a

conserved quantity throughout the time-propagation.

There are no zeroth-order CI in the diabatic representation. Instead, one has the

surface of curve-crossing. For two ESs of different symmetries, SCC is also a (3Nint−7)-

dimensional hyper-surface in the (3Nint −6)-dimensional normal mode space. The SCC

satisfies the equation,

ϵ1(Q) = ϵ2(Q). (1.18)

For the QVC model, the SCC is defined by the equation,

X

i

(ai − bi) Qi +
X

i, j

�
ai, j − bi, j

�
QiQj = −∆. (1.19)

Though the CI and the SCC are not identical, they follow each other very closely. Con-

sequently, the two terms can be used interchangeably for all practical purposes. Here

onward SCC is used in general.
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1.2 Literature review of theoretical methods for NAD

Perturbative approaches do not work well in simulating NAD because of the strongly

coupled nuclear DOF in nonadiabatic systems. This motivated the development of nu-

merical methods to study NAD. The main objective of such numerical methods is to

calculate the spectra for the ESs involved in the NAD. In time-independent picture, the

spectral density for transition from initial state, ψi to a final state, ψ f is given by,

P(E) =
2π
ℏ

X

f

| ⟨ψi|µ|ψ f ⟩ |2δ(E − E f + Ei). (1.20)

µ is the electronic dipole transition operator and E is the energy absorbed by the system.

In the TD picture, the spectra are obtained by carrying out the Fourier transform of the

autocorrelation function, C(t).

P(ω) =
Z

dteiωtC(t), (1.21)

C(t) = ⟨µψ0,n(0)|µψ0,n(t)⟩ . (1.22)

Here, |ψ0,n(0)⟩ is the initial ES(before the transition) and |ψ0,n(t)⟩ is the final ES(after the

transition).

Earliest numerical studies started with the task of finding the eigenvalues of the

vibronic Hamiltonian and the spectrum using Eq.1.20. To do so, ψ f was expanded in

the direct product basis of diabatic ESs, |ϕi⟩ and suitable harmonic oscillator WFs, |νk⟩.

ψ f =
X

i,ν1,ν2,...,νk

c( f )
i,ν1,ν2,...,ν f

|ϕi⟩ |ν1⟩ |ν2⟩ ... |νk⟩. (1.23)

For each kth mode, {|nI⟩} is the set of basis functions chosen. The size of the vibronic

Hamiltonian matrix increases exponentially with the number of basis functions for each

vibrational mode. So even for 6-7 vibrational modes, each with basis functions less

than 30, the numerical solution of Hamiltonian matrix becomes impossibly tedious. To

address this issue, the primitive numerical calculations on NAD considered systems

with reduced dimensionality. In most cases two ESs and a few vibrational modes (upto

3 modes) were taken into account . Further, the Hamiltonian matrix was diagonalized

in the basis of the unperturbed HO eigenfunctions of the vibrational modes considered.
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This technique made the vibronic Hamiltonian matrix sparse. In sparse matrices most

of the elements are zero and so, they are much easier to solve [2, 20–23].

The basis set expansion method, as discussed above, can handle only a few number

of vibrational modes. It faces the issue of exponential rise in the cost of computations

with increasing number of basis functions for the vibrational DOF. Even though it is

numerically exact, for larger systems computations become impossibly tedious. For

a better description of the NAD it is always desirable to include as many vibrational

modes as possible. TD quantum-mechanical approaches in the semi-classical limit of-

fered a good alternative to include more number of vibrational modes in the numerical

calculations. These approximate approaches were originally designed to study the dy-

namics of collision reactions.[24, 25] Heller’s work offered a trajectory based method

in which a quantum WP was propagated in time. Heller later generalized the EOM of

his TD WP method for a wider class of problems such as CCs.[26] This was a vari-

ational approach based on Dirac-Frenkel-Mclachlan variational principle.[27, 28] In a

way, this method introduced a semi-classical approximation to the TD Hartree theory.

It is assumed that initially the WFs of particles are localized and product-separable.

EOM for each particle evolve in a self-consistent and are described by its own effective

one-particle Hamiltonian. This effective Hamiltonian for each particle includes a mean-

field potential exerted by rest of the particles . In this way, the TD self-consistent-field

method introduced a trajectory based approach to tackle the QM problems in which

some DOF are much more correlated than others. TDSCF was applied in the context of

NAD for a two-state, three-mode problem.[29]

Domcke and co-workers proposed a path-integral based approach to treat the mul-

timode VC problem [30–32]. In the general PI approach the total time-interval for the

calculation of correlation functions is sliced into intervals of equal lengths. Next, a com-

plete basis of electronic WFs is inserted between each of the slices and the terms are

summed up. The total number of terms obtained represents as many electronic paths.

For each of these electronic paths a propagator of the TD Hamiltonian can be expressed

in the vibrational subspace. The vibrational propagators of the Hamiltonian become

separable for each of the electronic trajectories. In this way, the full TD propagator is

factorized into a product of single-mode propagator for each electronic path. Thus, the

exponential scaling in the full propagator calculations is brought down to a linear scal-

ing in the factorized vibrational propagator calculations for each of the electronic paths.

Domcke and co-workers developed the concept of classes of approximately equivalent

paths as an additional approximation to the PI approach. For individual classes, the
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average value of the vibrational propagators is calculated and then it is multiplied with

the combined weight of the class. Thus instead of taking the sum over all the electronic

paths, the mean-weighted contribution of each class (of equivalent paths) to the PI is

taken. This approximation to the PI approach helps in taking a larger number of slices

of the total computational time-interval.

Also various semi-classical methods have been developed over the years with the

main goal of describing larger systems[33–38]. These methods were primarily inspired

from the early work of Miller[39]. In addition, a variety of mixed quantum-classical

approaches have also been developed[40–45].

The numerical calculations on NAD became much more exact with the advent of

system-bath based methods. In SB approaches the total molecular system is divided into

two subspaces which are coupled to each other. First is the system subspace which in-

cludes the DOF which are at the core of the reaction dynamics. Hence, these DOF need

a numerically exact treatment using a suitable basis set. Second is the bath subspace

which includes the DOF which do not significantly influence the overall dynamics.

Such DOF can be approximately described by using a less accurate but computationally

more affordable approaches. SB formulations enable the inclusion of all the vibrational

DOF in the numerical calculations. It gives a considerable improvement in the simu-

lated results while keeping the computational costs at bay. In this way the exponential

bottleneck problem is managed by this approach.

SB formulations have garnered a lot of attraction over the years. Numerical strate-

gies under the SB approach essentially focus on building a TD multiconfiguration treat-

ment for the SS. In this line, MCTDSCF was perhaps the first successful theoretical

method[46]. In MCTDSCF two configurations are taken for system WFs. Every sys-

tem configurations has its own harmonic bath WF. Each of these bath WFs interact with

its associated system WF in an averaged way.

The problem with MCTDSCF method is that it requires a priori introduction of

projection operators to build the MC space. To this end, the multiconfiguration TD

Hartree method introduced much more simpler formulation which does not depend on

the projection operators[19, 47–52]. It became the benchmark method for the theoret-

ical calculations. MCTDH method uses a variationally optimized TD single-particle

basis to construct the basis of the N-particle Hilbert space. The general TD MC ansatz
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for f number of DOF is given as,

Ψ(Q1,Q2, ..,Qf , t) =
N1X

i1=1

...

NfX

i f=1

Ai1,i2,...,i fϕ
(1)
i1

(Q1, t)ϕ
(2)
i2

(Q2, t)...ϕ
( f )
i f

(Qf , t)

(1.24)
ϕ f is the SPFs described for f th DOF. For each DOF, the configuration space is made

up by Nf number of functions. These SPFs form an orthonormal set with each other

and also with their derivatives in time. An effective one-body Hamiltonian operator is

defined to upgrade the SP basis. This Hamiltonian consists of two parts. First is the

non-interacting part and is written as the sum of all the SP operators in the Hamiltonian.

The second is the correlated SP potential. The effective SP potential is generated by

averaging the many-body interactions present in the system over the current WF. The

resulting SP Hamiltonian is similar to the Fock operator, commonly used in the elec-

tronic structure theory particularly for the multi-determinantal many-electron WF. The

influence of all effective one-body interactions are absorbed into the definition of the

Fock-like operator. This improves the quality of the basis at any given time and thus,

the dynamic basis used in MCTDH is expected to be better than a static basis.

MCTDH approach converges very fast even for high-dimensional problems. Hav-

ing said that, this improvement comes at the cost of doing an additional calculation for

constructing the Fock-like operator and the dynamic basis. The ansatz used in Eq.1.24

is very similar to the one used in the exact basis set expansion method (Eq.1.23). So,

MCTDH method is also prone to the exponential rise in the computational costs on

increasing the number of DOF. Recently, a variant of MCTDH has been suggested in

the framework of SB separation of vibrational DOF [53–55]. This variation generalizes

the EOM from MCTDH to incorporate the nonorthogonality of the parametrized bath

WFs. The Gaussian-based MCTDH is a particularly successful hybrid approach. It

can either be applied as a full Gaussian-based method [55] or as a SB-based approach

[54]. In the latter version the system DOF are treated by the numerically exact MCTDH

method. The bath DOF, however, are treated by TD frozen Gaussian WPs which follow

Heller’s GWP equation in the fixed width limit. Essentially, the overall product of SPFs

in Eq.1.24 is partitioned into two products.

fY

i=1

ϕ
( f )
i f

(Qf , t) =
sY

k=1

ϕk
ik

(Qk, t)
bY

k=s+1

ϕk
ik

(Qk, t) (1.25)
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First is the product of SPFs for all system modes, s and other is the product of Gaussians

for all the bath modes, b. It follows that f = s + b. Each single particle configuration

space interacts with the average of the Gaussian CS for each bath mode. Moreover,

these Gaussians are coupled to each other and on each ESa different set of CS for each

type of vibrational modes can be defined. This complex yet numerically exact hybrid

method decreases the exponential scaling issue faced by MCTDH.

1.3 Dynamics of a NAS

In this section, the dynamics of a NAS is summarised in the light of the computational

results of the studies done by Schneider and co-workers [56]. That work was concerned

with the dynamics of a 2-state 3-mode model. It showed that the expectation values of

position and momenta of the totally symmetric normal modes undergo damped oscilla-

tions. For the positions of the tuning mode WPs expectation values become small and

finite in the long-time limit (Figure 5a of Ref. 24). As for the expectation values of the

momenta, they become zero in the long-time limit (Figure 5b of Ref. 24).
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Figure 1.2: Time-evolution of the (a) position expectation values and (b) momen-
tum expectation values for the tuning modes WPs starting from the initial ES(Fig.
5 from Ref. [56], reprinted with permission, Copyright 1990, AIP Publishing)

The authors also observed that the statistical entropies associated with the reduced

density matrices of individual modes increased more or less monotonically throughout

the time-evolution (Figure 13b of Ref. 24).
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Figure 1.3: Time-evolution of the entropies of the vibrational modes considered
in the model system for the WP starting from initial ES(Fig. 13b from Ref. [56],
reprinted with permission, Copyright 1990, AIP Publishing)

The statistical entropies can be associated with the degree of dephasing. The

monotonic increase of the entropies, thus, is a sign of increasing dephasing. The in-

creasing statistical entropy implies an increase in the required number of single-particle

basis functions for that DOF. This properly describes its dynamics in the environment it

moves in.

In addition the reduced probability distribution for tuning and coupling modes

were discussed. For the tuning modes, in the beginning of time the WP remains local-

ized on the initial surface. Gradually as the population on the initial surface starts to

decay the WP along the tuning modes broadens and splits (Fig. 1.4).
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Figure 1.4: Reduced probability distribution of tuning mode WP. An overall
broadening and dephasing of the WP (Fig. 9 from Ref. [56], reprinted with per-
mission, Copyright 1990, AIP Publishing)

On the other hand, the coupling mode WP loses its Gaussian-like structure com-

pletely by the end of time-propagation. The coupling mode WP is highly subjected to

the anharmonicity of the CI region. The WP that started on the upper surface eventu-

ally extends onto the lower surface. A complex interference pattern occurs due to the

irreversible splittings of the WP along the coupling mode (Fig. 1.5).
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Figure 1.5: Reduced probability distribution of coupling mode WP. A complete
loss in the WP structure happens (Fig. 10 from Ref. [56], reprinted with permis-
sion, Copyright 1990, AIP Publishing)

1.4 Goal of the present work and overview of the thesis

My own work is described in Chapters 2-5. The SB approaches (as discussed in the Sec.

1.2) have been implemented to varying degree of success, yet no concrete guidelines for

the systematic classification of the modes into system and bath DOF have been proposed

and tested till date. There have been some efforts in this direction but those were focused

around optimizing the BS[57–59, 59, 60, 60–62]. Continuing on the theme of effective-

mode approach, Santoro and co-workers[63–65] extended the approach in a hierarchical



Chapter 1. Introduction 17

manner to construct a sequence of sets of bath modes which in turn extends the period

of quantum dynamics from short-time to long-time.

The goal of my thesis work is threefold. The first goal is to put forward a set of

criteria that clearly outlines the guidelines for choosing the system modes out of the

total vibrational modes. The second goal of my work is to develop two different theo-

retical approximations for the bath DOF in the SB framework. One of these methods is

the generalized TDSCF approach as described in Chapter 3 and the second is the mul-

tireference time-dependent coupled cluster method, discussed in detail in Chapter 4.

Finally, my third goal in this thesis is to use MRTDCCM for studying the Hamiltonian

of a simple dimer and to extend this approach to finite temperature studies in the dimers

by using the thermofield method.

The discussions on WP CC presented in Sec. 1.3 lay the foundations for the cri-

teria for classifying the system and bath variables which is the first goal of my work.

Essentially the choice of system and bath modes should be made on the extent of WP

dephasing along the coordinate of the concerned mode. Extending from the work of

Schneider and co-workers [56], the mathematical equations for WP CCs are formu-

lated in Chapter 2. CCs along the coupling and tuning modes are explicitly presented.

Repeated CC along a particular mode leads to the rise in its statistical entropy. The im-

portance of this observation is highlighted through these mathematical equations. The

proposed set of the criteria is outlined in detail in Chapter 2. Different mechanisms of

CC along the tuning modes are defined and discussed at length for general case.

In Chapter 3 the first numerical application of these criteria on realistic systems

are presented. The system DOF are treated exactly using a numerically converged HO

basis set. For the description of bath modes, a generalized TDSCF approximation has

been used [26, 29]. This is the first part of the second goal of my work. We use a GWP

to describe the bath DOF. It should be noted that we use the harmonic potential and in

that case, GWP method becomes exact. TDSCF ansatz and the working equations are

presented in this chapter. The first application is on the benchmark 24-mode pyrazine

system which has a CI between S 2 and S 1 ESs. Pyrazine has one non-totally symmetric

coupling mode and five totally symmetric tuning mode. Vibronic Hamiltonian for the

QVC model is used in this case. To support the proposed criteria, a comparative study

between two model cases are carried out. First is 3 + 21-model which has 3 system

modes and 21 bath modes. This is compared against a 4+20-model which has 4 system

modes and 20 bath modes. The results are presented in terms of ACFs, spectra and
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electronic population density. In addition, these results are contrasted against the nu-

merically accurate results of MCTDH and G-MCTDH methods. The second case study

for the support of these criteria is 3-mode spin-boson model. In spin-boson model the

ESs are coupled by a constant. Hence, there is no coupling mode in this model and

the discussions on CC for tuning modes alone are valid in spin-boson model. ACF and

spectra for this model are presented. The effects of dropping one mode out of the SS on

the NAD is discussed using these results.

Chapter 4 serves as the next part of the second goal of this work. It includes the

development of MRTDCCM for describing the BS. MRTDCCM uses a time-evolution

operator which is expressed as an exponential of a cluster operator. The terms in this

cluster operator can be expanded as a Taylor series. MRTDCCM is an attractive ap-

proach for the bath dynamics because the lower order truncations include higher-order

terms because of its exponential feature. It is a size-consistent approach and highly ac-

curate even for lower order truncations. The ansatz and working equations are presented

in detail in this chapter. The 18-mode butatriene cation is used as the first testing case of

this approach within the SB framework. A (2+16)-mode model of the butatriene cation

is used to test the hybrid approach. The system DOF in this case are determined by the

criteria defined in the earlier chapter. ACF and spectra are presented for the study.

We next study the applicability of MRTDCCM to the analysis of the dynamics of

a simplified Hamiltonian of a dimer. This and its extension to the finite temperature is

the final goal of the work presented in this thesis. The model consists of two ESs and

two vibrational modes which are distributed over the two monomers. Consequently,

it is a nonadiabatic problem. The interest here is on the applicability of MRTDCCM

rather than the NAD, which has been studied widely earlier. We present the equations

of the spectra, both at 0 K and at finite temperature. We highlight how MRTDCCM

allows a common formulation in both the conditions. This formalism is presented in

Chapter 5. The computations for this system are not complete, so no numerical results

are presented.

Finally, the overall thesis is concluded in Chapter 6. It includes a brief review of

the proposed criteria which makes the primary goal of this work. The results obtained

using the two approaches, TDSCF and MRTDCCM, for the description of bath modes

are summarised. In addition, the future scope of this work is briefly noted. Lastly the

applicability MRTDCCM is explored in the context of the dimer Hamiltonian.



Chapter 2

Classification of system and bath DOF

2.1 Introduction

In this chapter, we present the WP CC along the tuning and coupling modes. These

equations are written using the discussions on the CC and WP dephasing presented in

Sec. 1.3. We show analytically that the extent of WP fragmentation increases on re-

peated CC. WP dephases extensively along the mode for which repeated CC happens

the most. Using these arguments a detailed set of criteria for separating out the vibra-

tional modes into system and bath DOF is put forward. A greater emphasis is put into

choosing the system DOF. Coupling modes and tuning modes are handled separately in

the proposed criteria.

2.2 WP dynamics along vibrational modes

The dynamics along the coupling modes initiate the significant changes in the WP.

These observations on the coupling mode dynamics are specifically meant for the LVC/QVC

models. Since, the initial nuclear WP is a Gaussian and the driving potentials are har-

monic, the WP starts moving towards the classical turning points along the totally sym-

metric tuning modes. Depending on the potential, they may encounter the SCC. As the

centroid of the vibrational WP approaches the SCC, the effective ES energy-gap be-

comes small. We assume that the WP is initially located on a upper excited electronic

surface. The coupling mode WF on the initial surface, |vc⟩, mixes strongly with an ap-

propriate vibrational state on the other electronic surface because of the small energy

19



Chapter 2. Classification of system and bath DOF 20

gap. The corresponding coupling mode state is determined by the nature of the cou-

pling. At linear level, the change in quantum number is from |vc⟩ to |(vc ± 1)⟩ on the

other surface. For the bilinear couplings, the quantum number changes to |(vc ± 2)⟩ or

|vc⟩. If the coupling is a constant (such as in the spin-boson systems discussed later),

there is no coupling mode. Instead, the electronic WP bifurcates smoothly to move on

both the surfaces. The norm of WP transferred to the other surface would depend on its

residence time in this quasi-degenerate region and the strength of the coupling operator.

Thus, limiting to coupling mode and electronic DOF, before and after crossing the SCC,

the WP would have the following structure,

ψ(0) = |e2⟩ |vc⟩ , (2.1)

and

ψ(δ1) ≈ c2 |e2⟩ |vc⟩+c1 |e1⟩ |vc ± 1⟩+c
′
1 |e1⟩ |vc⟩+c

′′
1 |e1⟩ |vc ± 2⟩ ,

(2.2)
after an elapsed time-interval, (δ1), encompassing t = 0 and the time needed to cross

the SCC. The two fragments of the WPs, one on each electronic surface, go up to

their respective turning points along the tuning modes and return to the SCC. After the

second CC, the mixing between the appropriate coupling mode quantum states on the

two surfaces occurs again. Each component of the coupling mode WP transfers part

of it onto the other surface and to its own allowed vibrational states. Symbolically, the

final WP after second crossing across the SCC (incorporating only coupling mode and

electronic DOF) can be represented as,

ψ(δ1 + δ2) ≈c2 [c22 |e2⟩ |vc⟩ + c21 |e1⟩ |vc ± 1⟩]+ (2.3)

c1 [c12 |e2⟩ |vc, vc ± 2⟩ + c11 |e1⟩ |vc ± 1⟩] .

The coefficients for the fragments from the first and second CC will multiply each

other for the individual surfaces. c2 is the coefficient of the coupling quantum state, |vc⟩
on the initial US after δ1. Similarly, c1 is the linear coefficient of the coupling mode

state, |vc ± 1⟩ on the LS at the end of the first crossing. The influence of bilinear or
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quadratic terms are ignored in writing Eq. 2.3. c22 is the coefficient of the coupling

state of the WP fragment that remained in |vc⟩ on the initial surface at the end of δ2 . A

part of the WP from the US jumps to the LS after the second crossing and it corresponds

to c21 coefficient of the |vc ± 1⟩ state on LS. Similar arguments hold for WP crossing of

the fragment on the LS. c11 corresponds to the WP fragment on the LS that remains in

its initial quantum state, |vc ± 1⟩ at the end of the second CC. c12 is the coefficient for

the part of the WP that jumps from the LS to |vc ± 2⟩ or |vc⟩ state on US. A cartoon

representation of this can be seen in Fig.2.1.

It should be noticed that the number of coupling mode states that are populated

just after the second crossing of SCC is already more than 3 even at LVC level. These

re-crossings of SCC and hence further fragmentation of WP will continue for each of

the components for several vibrational periods. Each of those fragments has its own

weight. Each of these transitions through the SCC will change the population profile of

the coupling mode states. The highest occupied quantum number of the coupling mode

on each surface would generally increase after each CC event is completed. It is obvious

that all coupling mode WFs dephase extensively during the repeated passages through

the SCC. The nature of the WP is no longer like any single HO eigenfunction. It loses its

coherence over time and the statistical entropy associated with it increases more or less

monotonically (Fig. 1.3). From this, it is clear that the multiple re-crossings of the WP

across SCC are at the origin of the coupling mode dephasing. The reduced probability

distribution looks significantly distorted compared to its original coherent shape along

the coordinate of the coupling mode (Fig. 1.5).
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Figure 2.1: WP dynamics for CC along the tuning modes and coupling modes(at
linear level)

Next, the dynamics of the WP along the direction of the tuning modes is discussed.

Crossing the SCC does not affect the tuning mode WF directly. The degeneracy of the

ESs is lifted after each SCC crossing is over. Each of the WP fragments propagates on

one surface. After the first SCC crossing stops, the two chunks of the overall WP differ

from each other in terms of the ESs and the quantum number of the coupling mode

associated with them. The WFs of the tuning mode now evolve differently under the

influence of their new (surface dependent) vibrational Hamiltonians. As a result, their

trajectories would be different. Continuing along the coordinates of the tuning modes

these two fragments go up to their respective (electronic surface dependent) turning

points and return back to the SCC. Incorporating the dynamics of the tuning modes,

Eqs. 2.1 and 2.2 (for only linear level) can be rewritten as

ψ(0) = |e2⟩ |vc⟩ |χt(0)⟩ , (2.4)
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and

ψ(δ1) = c2 |e2⟩ |vc⟩ |χo
t ⟩ + c1 |e1⟩ |vc ± 1⟩ |χo

t ⟩ . (2.5)

Here the evolution along the tuning mode is governed by its Hamiltonian on the US, h2,

as given below

χo
t = e−ih2δ1 |χt(0)⟩ , (2.6)

is defined until the end of the first crossing. Similarly, at the end of δ2, Eq. 2.3 can be

rewritten for the overall dynamics including the tuning mode dynamics.

ψ(δ1 + δ2) =c2

h
c22 |e2⟩ |vc⟩ |χ1

t ⟩ + c21 |e1⟩ |vc ± 1⟩ |χ2
t ⟩
i
+

c1

h
c12 |e2⟩ |vc, vc ± 2⟩ |χ1

t ⟩ + c11 |e1⟩ |vc ± 1⟩ |χ2
t ⟩
i
.

(2.7)

Here,

χ1
t = e−ih2(δ2+δ1) |χt(0)⟩ , (2.8)

and,

χ2
t = e−ih1δ2e−ih2δ1 |χt(0)⟩ . (2.9)

h1 and h2 are harmonic Hamiltonians with different local minima and force con-

stants. Hence, the two WPs are displaced Gaussians with different widths, centroids,

momentum expectation values and phase factors. The trajectories on the two surfaces

are different. As a result, the WPs of the tuning modes are a superposition of rela-

tively displaced Gaussians after the second and subsequent re-crossings. These parts of

the WP are not orthogonal but linearly independent. Consequently, the overall reduced

density matrix has several non-zero eigenvalues. The overall reduced probability dis-

tribution along the position of the tuning modes appears like a sequence of Gaussians

chasing each other (Fig. 1.4). This type of fragmentation will continue on each surface

as long as the WPs on two surfaces have a time-lag in reaching the SCC. This in turn

increases the dephasing of the overall WP. It should be noted that the tuning modes

on each surface would develop a secondary Gaussian such as χ2
t , roughly in the same
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time interval as the coupling mode transition. Thus, it appears as a coupled two-body

excitation. This is one of the origins of the concerted many-body dynamics mediated

through a SCC. It is because of such many-body interaction that a full configuration

interaction(FCI)-like method is necessary for DOF which go through the SCC.

2.3 Criteria for classifying system and bath variables

Based on these discussions, we now present the criteria for dividing the vibrational

modes into the system and bath variables in the system-bath formulation. Vibrational

modes that undergo extensive dephasing are the most affected in the overall system

dynamics. These must be included in the system DOF. The rest of the vibrational modes

that neither touch the SCC nor are strongly affected by the CC can be treated as bath

modes. As a consequence, only the coupling and tuning modes would qualify for the

consideration of the system modes, though not all of them need to be incorporated into

the system DOF. Thus, the first of the criteria is that all the spectator modes that neither

couple the two ESs nor tune the ES energies can be relegated to the bath modes.

Next, the WFs associated with coupling modes are influenced strongly when the

WP motion along the tuning modes carries the system WP through the SCC. This leads

to the redistribution of the coupling mode WFs between the ESs. WPs of all the coupling

modes are affected when the overall WP crosses the SCC irrespective of the magnitude

of the coupling constants they have. So, the second part of the criteria is that all the

coupling modes must be included in the system DOF.

The dephasing of the WP in the direction of the tuning modes depends on its

crossing the SCC for the concerned mode. It is possible that the motion of the WP along

some tuning modes may not take it across the SCC. Such modes have a comparatively

insignificant influence on the overall dynamics and can be classified as bath modes.

We address the question of the WP crossing the SCC in a hierarchical manner. In

the absence of vibronic coupling, the WP follows its classical trajectory. It begins in the

FC zone and goes up to its classical turning point along each tuning mode and returns to

the FC zone from there. We now specialize to the case of a single tuning mode. In this

case, the WP can cross the SCC only if the point of SCC along the concerned tuning

mode, (QS CC
k ), lies between the FC zone and its classical turning point (QT

k ). Thus, the

necessary criterion for extensive dephasing of a tuning mode WP is that its classical

turning point must lie beyond its point of SCC. The qualitative condition for the WP to
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cross the SCC becomes

0 ≤ QS CC
k ≤ QT

k , (Q
S CC
k > 0,QT2

k > 0) (2.10a)

0 ≥ QS CC
k ≥ QT

k , (Q
S CC
k < 0,QT2

k < 0) (2.10b)

In one dimension the SCC point (in the linear approximation to Eq. 1.19) is given by,

QS CC
k =

−∆
bk − ak

. (2.11)

Similarly, the turning point on the US is

QT (2)
k =

−2bk

ωk
. (2.12)

The argument can be extended to all the tuning modes in a straightforward manner. We

call this type of crossing a direct crossing.

Going beyond one dimension, it is not necessary for the WP to cross the SCC

along a single tuning mode alone. It could cross, for example, in a plane defined by two

tuning modes but not in the direction of either of the tuning modes. In this case, our

attention is expanded to a two-dimensional plane formed by two tuning modes, Q1 and

Q2. The SCC in this plane (at linear approximation to Eq. 1.19) is given by the straight

line

(b1 − a1) Q1 + (b2 − a2) Q2 = −∆ (2.13)

Classically, the energetically allowed trajectories in this two-dimensional space

fall within the ellipsoid defined by the initial energy of the WP. We expect that this

holds for the quantum WP as well, at least during the initial phase of its evolution.

The WP is likely to be exposed to the SCC during its sojourn through the plane of two

tuning modes if the line of SCC (Eq. 2.13) has a part within the energetically allowed

region. On the other hand, if they do not have any common region, the WP is unlikely

to touch and cross the SCC in this plane. This type of crossing where the WP flows
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through the SCC in both directions can be called a mutually assisted crossing. It affects

the WPs of both the tuning modes simultaneously. This leads to a correlated two-body

modification in the WP. The presence of such connected two-body correlations over a

period of time is another reason why a FCI type of WF becomes necessary to describe

the dynamics of the system DOF. Some typical examples of the varying extent of SCC

line (blue dashed ) inside the energetically allowed region (red solid line) are presented

in following figures. To simplify the analysis, we have approximate the ellipsoid by a

rectangular region in these figures. The four vertices of this rectangular box (red line in

figures) in the two-mode plane are the origin, (T1, 0), (0, T2) and (T1, T2). Here, T1 and

T2 are the classical turning points of the two modes, respectively.

In Fig. 2.2, a large segment of the SCC falls in the energetically allowed region.

Thus, in this case the journey of the WP through the SCC is significant. WP undergoes

considerable repeated CC. As a result, extensive dephasing of the WP happens in this

case of two-mode vibrational subsystem. Moreover, it could travel in the direction of

both the normal modes.
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Figure 2.2: Two dimensional CC along two modes for which significant part of CI
line falls inside the energetically allowed region.

Fig. 2.3 represents a situation where only a tiny segment of the SCC is present in-

side the energetically accessible rectangle. Thus, only a very small part of the WP can
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pass through the SCC. The extent of WP dephasing for in this plane will be insignifi-

cantly small.
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Figure 2.3: Two dimensional CC along two modes for which insignificant part of
CI line falls inside the energetically allowed region.

In Fig. 2.4 the SCC in the plane lies completely outside the energetically accessible

region. The WP will not cross over the SCC in this plane. And, hence the WP will

not dephase in this plane. It is observed that any extent of mutually-assisted crossing

happens only in the plane where one of the modes is a direct-crossing mode. If there is

no direct-crossing mode involved in the plane, there will be no mutually assisted in that

plane. In Fig. 2.4, the WP does not reach SCC along the direction of both the modes.

In such a case, the WP in their plane will only be limited within the energetically-

accessible box as the line of SCC lies far away from the box. In addition, the direction

of SCC point and turning point from the Franck-Condon zone for a concerned mode on

a given electronic surface will decide the extent of WP crossing. In general, if for both

the modes their SCC point and the turning point lie in opposite direction to each other,

then no mutual crossing will happen in that plane.



Chapter 2. Classification of system and bath DOF 28

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0

1

2

3

4

5

6

allowed region

CI

Q
2

Q
1

C
1

C
2

(T
1
,T

2
)

(c)

Figure 2.4: Two dimensional CC along two modes for which no part of CI line
falls inside the energetically allowed region.

We next turn to possible higher-order mutually assisted, concerted crossing of SCC

by the WP of three or more modes. The energetically accessible region in three modes

has the shape of a cuboid embedded in the three dimensional space of the concerned

normal modes. The two-dimensional segment of the SCC in this three dimensional

subspace has to fall in this cuboid, if a concerted three-body crossing is to happen. Ob-

viously, in such a case, a component of this two-body SCC surface would pass through

at least two of the six faces of the cuboid defining the energetically accessible region

of the three dimensional subspace. However, these modes for which the WP crossing

is happening in three or higher dimensions would have been already recognized at two

dimensional crossing. In another words, modes along which the WP does not cross at

two dimensional level, will not appear in higher order crossings. Therefore, an analysis

of two dimensional correlated crossings of the SCC is adequate to cover all possible

SCC crossings.

Crux of the third part of the criteria is that the tuning modes along which the WP

can directly cross the SCC before it reaches the classical turning point must become a
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system DOF. In addition, tuning modes along which the WP encounters mutual assis-

tance from one of the direct crossing modes may be put in the system-subspace provided

the extent of mutual assistance is significant.

2.4 Conclusion

In summary the choice for the system DOF depends on the extent of the WP dephasing

along a particular mode. Along the coupling mode the WP repeatedly jumps across

SCC. The quantum state of coupling mode keeps on getting populated with repeated

CC. Thus, WP along all the coupling modes undergoes extensive dephasing. So all the

coupling modes must be included in the system subspace. Amongst the totally sym-

metric tuning modes, only some will lead to extensive WP dephasing. The WP CC can

happen in different dimensions along the tuning modes. Along its trajectory, a tuning

mode can have the point of CI before its classical trajectory point. Such tuning modes

will lead to direct-crossing of the WP and will heavily dephase the WP. These tuning

modes must be kept in the system DOF. WP can also dephase through the mutually-

assisted mechanism in second or higher dimensions. In the plane of two modes, where

one is a direct-crossing mode, the extent of dephasing decides whether the second will

be kept in the system subspace or not. For tuning modes which do not lead to WP de-

phasing in any dimension can safely be kept in the bath. Also, rest of the normal modes

in the molecule can be put as bath DOF.



Chapter 3

Numerical studies using Generalized
TDSCF for bath DOF

3.1 Introduction

In the previous chapter the EOM for WP CC and the set of criteria for choosing the

system DOF were proposed. In order to establish the validity of the criteria they have

to be numerically tested on realistic systems. It is clear that the system DOF must be

treated exactly since they dominate the NAD. On the other hand, the bath DOF can be

described by a suitable approximation. As a starting point, we use a TDSCF ansatz to

describe the dynamics of the BS. Generalized TDSCF is a simplistic approach where the

overall molecular WF can be written as a product of system WF and bath WF. A GWP

representation [26] is used to represent the bath DOF. We present the TDSCF ansatz

and the working equations for the system and BSs. We study three model NASs to

verify the generality of the criteria that are put forward here. The first is the well tested

S 2 − S 1 vibronic system of the 24-mode pyrazine. The second is a 18-mode butatriene

cation. Last, we use 3-mode spin-boson system as the testing ground. In all cases, we

compute the ACF and the associated spectra. We identify the important modes and their

influence on ACF and the spectra in each model case.

30
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3.2 Computational Methodology

TDSCF approach has been previously applied on a two-state three-mode NAS[29]. In

that study, the subspace of electronic and coupling mode was treated exactly and a suit-

able number of basis functions was chosen. On the other hand, the tuning modes were

treated by EOM generated from TDSCF method. Although, the spectra was satisfac-

torily reproduced in the short-time limit, the ACF was deprived of dephasing features.

This further emphasizes the point that along with the coupling mode certain tuning

modes must be treated exactly. This interaction can essentially be described by a multi-

configuration self-consistent field ansatz,

ψ ≈ ϕ(s)χ(b)eiθ. (3.1)

Here, s and b refer to system and bath variables and ϕ and χ are the respective WFs of

the two subspaces. θ is the overall phase factor.

The equations required to propagate the two components are generated via Frenkel-

Dirac variational principle[27]. The Hamiltonian defined in Eq. 1.17 is conveniently

partitioned as,

H = Ho
s + Ho

b + Vsb, (3.2)

to simplify the equations later. Here, Ho
s is the Hamiltonian involving all the system

DOF. It is essentially the full Hamiltonian but limited only to the system variables.

Ho
b is similarly defined for the bath modes. Vsb represents the interaction between the

system and bath variables.

The time-dependent variational principle leads to three equations for the three

components of the overall wave packet. The equation for the SS is given by

iϕ̇(s) =
�
Ho

s + Us(s)
�
ϕ(s), (3.3)

where,

Us(s) = ⟨χ(b) |Vsb| χ(b)⟩b. (3.4)

The subscript b implies that partial averaging is to be done on the bath variables alone.

The system variables come out as the additional potential for the system DOF after
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averaging out the bath variables in the SB interaction terms. Similarly, for the bath-

subspace, we find

iχ̇ =
h
Ho

b + Ub(b)
i
χ, (3.5)

where,

Ub(b) = ⟨ϕ(s) |Vsb| ϕ(s)⟩s. (3.6)

And last, the phase factor corrects for the double-counting of the mutual interaction

between the two subspaces

θ̇ = −⟨ψ |Vsb|ψ⟩s,b. (3.7)

We now specify the components ϕ(s) and χ(b) with their respective ansatze. As is well

known, the system DOF interact strongly with each other. A set of HO eigenfunctions,

{ f αk (sα)} is defined for each DOF, α. We define a configuration function, Fi,k1,k2,...,kn as

the product of the WFs of all the system modes.

Fi,k1,k2,...,kn = |ei⟩
nY

α=1

| f αkα⟩ . (3.8)

We describe the system WFs as a superposition of all possible configurations. With this

ϕ(s) takes the following form

ϕ =
X

I

CIFI. (3.9)

Here, FI are the various configuration states in a large basis set of SP WPs. We ex-

perimented with the number of functions for each DOF until the dynamical results con-

verged with respect to the basis (more details are given in Sec. 3.3.1). All configurations

that are possible from that set of SP basis sets have been included in the calculations.

In this sense, the present calculations are said to be numerically converged FCI. I is the

combined index of (n, k1, k2, ..., kn). The working equations for CI are,

iĊI =
X

J

HIJCJ, (3.10)

HIJ = ⟨FI |Ho
s + Us|FJ⟩ . (3.11)

We next turn to the working equations for the bath DOF. Because we are using a

quadratic potential for the vibrational part, the self-consistent field part of the bath mode

potential, Ub(b), is also quadratic. Consequently, the generator for the time-propagation

of bath WF in Eq. 3.5 is a TD harmonic Hamiltonian. The starting WF (at t=0) is
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a multidimensional Gaussian. As a consequence, it remains a Gaussian as long as it

evolves under the influence of a harmonic Hamiltonian. In view of this, we posit a

GWP ansatz for bath DOF as[24]

χ = exp

−
i
ℏ


X

i, j

(bi − bo
i )Ai j(b j − bo

j) +
X

i

pi(bi − bo
i ) + γ



 . (3.12)

We note that in the present approximation, the GWP propagation for the bath modes is

exact[24]. We drop the subscript b in Ub to simplify the equations from here onward.

The working equations for the various parameters in χ are given below.

Ȧi j = −2.0
X

k

AikωkAk j −
h
Ui j + 0.5ω jδi, j

i
. (3.13)

ḃo
i = ωi pi. (3.14)

ṗi = −Ui − ωibo
i −

X

j

Ui jbo
j . (3.15)

γ̇ = i
X

i

0.5ωiAii +
X

i

h
p2

i − bo2

i

i
−

X

i

[Ui] −
X

i, j

Ui j. (3.16)

Ui j =

*
ϕ

�������


X

e,e′
|e⟩Ve,e′

i, j ⟨e′|


�������
ϕ

+
. (3.17)

Ui =

*
ϕ

�������


X

e,e′
|e⟩Ve,e′

i ⟨e′|


�������
ϕ

+
+

*
ϕ

�������


X

e,e′,s

|e⟩Ve,e′
i,s qs ⟨e′|



�������
ϕ

+
. (3.18)
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Our purpose in this exercise is the computation of the electronic spectra. The

spectrum of the system is obtained after performing a Fourier transformation of the

ACF,

X(t) = ⟨ψ(0)|ψ(t)⟩ . (3.19)

The ACF in the framework of this work can be written as,

X(t) = ⟨ϕs(0)|ϕs(t)⟩ ⟨χb(0)|χb(t)⟩ eiθ. (3.20)

The function was multiplied by the window function, cos(πt/2T ), to eliminate

Gibbs phenomenon and further multiplied by an exponentially decaying function, exp(−γ|t|),
where the value of decay, γ was set to be 0.03. This accounts for other decay mech-

anisms and corresponds to damping time of about 22 fs. Thus, the spectrum is given

by,

P(ω) =
Z

eiωtX(t)cos(πt/2T )exp(−γ|t|)dt. (3.21)

Gaussian WFs have been used for describing the bath dynamics earlier also, as

discussed in Sec. 1.2 [54]. The authors in this work have used the following ansatz for

SB dynamics (in our notation)

ψ =
X

I

CIFI

Y

α

gαI . (3.22)

In G-MCTDH, for each bath mode there are as many Gaussians as there are system CFs

since every bath mode is described by a separate Gaussian in each system CF. In con-

trast, in this work we use one Gaussian for each bath mode, independent of the CF of the

SS. These are driven by the average potential felt by that bath mode from the complete

system configurations. Within the framework of our approximation, the bath modes un-

dergo harmonic dynamics and hence, the EOM for Gaussians become quite simple in

our approach. This is not the case in the work of Burghardt et al. because of the more

sophisticated ansatz used for the overall system. The complicated equations used in

G-MCTDH are probably far more accurate in describing SB interactions. We have used

thawed Gaussian in the framework of our calculations. TG yield the exact solution for

the generator of the HO problem and causes no problems with harmonic potentials. This

would not have been possible in the G-MCTDH approach, which use frozen Gaussian

because equations for various Gaussians are coupled. As a consequence, TG approx-

imation is not an exact solution in the case of G-MCTDH. Since, TG approximation
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is known to be susceptible to instabilities during numerical solutions, the authors have

presumably opted to limit themselves to FG approximation.

3.3 Results and Discussion

3.3.1 Applications to Pyrazine

Our first example is the SCC between S 2 and S 1 ESs of pyrazine. Pyrazine has 24

vibrational modes[19]. Of these, ν10a is the sole coupling mode for the given pair of

ESs in this molecule. There are 5 tuning modes, (ν1, ν2, ν6a, ν8a, ν9a) in pyrazine. These

belong to the totally-symmetic representation. The rest of the DOF belong to various

Irreps but act neither as coupling nor as tuning modes. These are the spectator modes

as defined in Chapter 2.

Figure 3.1: Pyrazine molecule

An initial population of S 2 ES is considered. We have taken the PES from Ref.

[19] and calculated the SCC and turning points on S 2 using Eqs. 2.11 and 2.12. We

summarise the data in Table 3.1.
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mode Q1
T Q2

T QSCC

ν6a 2.655 -3.667 -3.622

ν1 0.800 2.719 7.009

v9a -1.904 -0.492 7.855

v2 -0.130 -0.086 99.53

v8a 0.454 -0.171 -13.80

Table 3.1: Turning points and SCC points along tuning modes in pyrazine be-
tween S1 and S2 surfaces. Direct crossing, assisted crossing and (practically) non-
crossing modes are given in red, green and blue, respectively.

As can be seen from the table, only mode ν6a can go through a direct crossing.

For this reason, ν6a is the most important totally symmetric mode in the dynamics of

pyrazine. So, along with the coupling mode, ν10a, ν6a must also be kept in the SS. As we

shall see later, it also influences the other modes in the CC. Next, we look at possible

mutually assisted crossings. Fig. 3.2 represents (ν6a, ν1) plane. Along the trajectory of

v1 the WP does not directly cross the SCC. However, in (ν6a, ν1) plane, a moderately

large segment of the SCC line is enclosed within the energetically accessible region. As

a consequence, mode ν1 also becomes active in the multisurface CC dynamics. How-

ever, this is always together with mode ν6a.
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Figure 3.2: Two dimensional CC in (ν6a, ν1) plane.

The corresponding ACF for the dynamics of the above SS is presented in Fig. 3.3.
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Figure 3.3: ACF for the SS dynamics in (ν6a, ν1) plane.

Fig. 3.4 is a representation of the (ν6a, ν9a) plane. In this case, a very small segment

of the SCC lines falls inside the energetically allowed region. This segment of the SCC
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line is so small that although CC is possible in principle in this plane, it is unlikely to

affect the vibronic dynamics to any noticeable extent. The corresponding ACF for the

dynamics in (ν6a, ν9a) plane is presented in Fig. 3.5.
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Figure 3.4: Two dimensional CC in (ν6a, ν9a) plane.
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Figure 3.5: ACF for the SS dynamics in (ν6a, ν9a) plane.

Unlike in Fig. 3.3, the ACF in Fig. 3.5 is much more resolved. This implies

that WP dynamics in (ν6a, ν9a) plane is not as much dephased as in the (ν6a, ν1) plane.



Chapter 3. Numerical studies using Generalized TDSCF for bath DOF 39

Thus, the CCs in two different planes (Figs. 3.2 and 3.4, respectively) are in harmony

with their respective ACFs. This gives support to the argument presented in our criteria

that the extent of mutually assisted CC decides the degree of WP dephasing along the

involved modes .

For modes ν8a and ν2 the turning points on the upper electronic surface is almost

at the FC zone. On the other hand, the SCC points are too far away and in the case of

ν2, it is in the opposite direction (Table 3.1). So, in (ν6a, ν8a) and (ν6a, ν2) planes there

is practically no CC (Figs. 3.6 and 3.8). As a result, the ACF for their respective SS

dynamics will be resolved and will not show signatures of damped oscillations (Figs.

3.7 and 3.9). Hence in these two planes, there will be no WP dephasing.
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Figure 3.6: Two dimensional CC in (ν6a, ν8a) plane.
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Figure 3.7: ACF for the SS dynamics in (ν6a, ν8a) plane.
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Figure 3.9: ACF for the SS dynamics in (ν6a, ν2) plane.

Hence, according to our criteria, the SS in pyrazine must include the only coupling

mode, ν10a, present in the molecule and the only tuning mode with direct crossing, ν6a.

In addition to these two modes, mode ν1 which undergoes mutually assisted crossing in

the plane with mode ν6a should also be included in the system DOF. While it is difficult

to set quantitative limitations, mode ν9a could be moved to the bath DOF. The effect of

this mode on the overall dynamics is expected to be negligible as the WP has access

only to a small region to make the transition across the SCC. Modes ν8a and ν2 are to be

placed in the bath-subspace.

In order to numerically verify the classification of the vibrational modes in pyrazine,

we carried out the calculations on two model cases for the system subspace. The re-

maining number of modes in each case go into the BS which is dealt with a generalized

TDSCF ansatz. In the first model, modes (ν1, ν6a, ν10a) are the system variables. We did

some experimentation with the number of basis functions for the numerical convergence

in the time-interval for the calculations. Numerical convergence was achieved with 22,

24 and 20 HO eigenfunctions for modes ν1, ν6a and ν10a, respectively. In a second set of

calculations, 4 vibrational modes, (ν1, ν6a, ν9a, ν10a) go into the SS. In this case, for mode

ν9a 5 HO eigenfunctions were sufficient to get the numerically converged results. All

possible configurations that could be generated from these sets of single-particle basis

sets were included in the calculations(Eq. 3.9) leading to 10560 configurations for the
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3-mode SS and 52800 for 4-mode SS. All the equations were numerically integrated by

a fourth order Runge-Kutta method for 330 femtoseconds with a step-length of 0.066 fs.

The ACF was sampled after every 3.3 fs for 1024 steps. δw after the Fourier transform

was 0.012 eV.

For the initial population of S 2 ES, we can rewrite Eq. 3.20 for the three-mode and

four-mode system models with coefficients, C, for the system DOF as follows:

X(t) = C(2, 0, 0, 0) ⟨χb(0)|χb(t)⟩ eiθ, (3.23)

X(t) = C(2, 0, 0, 0, 0) ⟨χb(0)|χb(t)⟩ eiθ. (3.24)

In Fig. 3.10, we compare the ACF for two model cases, (3 + 1) and (4 + 0). In

(3 + 1)-model, the ACF is computed with two ESs and three modes, (ν1, ν6a, ν10a), in

the system DOF and a single bath degree of freedom, ν9a. A second ACF calculation

for (4 + 0)-model is made with two ESs and all the four modes, (ν1, ν6a, ν9a, ν10a) as

system DOF. There are no bath DOF in the second case. As can be seen, the two ACF

are nearly identical up to about 150fs. The quality of agreement goes down but only

marginally after that.
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Figure 3.10: Comparison of ACF in pyrazine between 3 + 1 model (black solid)
with (ν1, ν6a, ν10a) in system and ν9a in bath and 4 + 0 model (red dashed) with
(ν1, ν6a, ν9a, ν10a) in system and no mode in bath
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In Fig. 3.11, we present the ACF for (3 + 21) and (4 + 20) models and compare

these results with the numerically exact results of MCTDH (private communications

from Prof. G. A. Worth) and the digitized G-MCTDH result (Figure 6(b) of Ref. 41) .

In both the model cases, it is implicit that the electronic DOF go into the SS. In (3+21),

(ν1, ν6a, ν10a) are the 3 system-modes and rest 21 vibrational modes go into the bath-

subspace. In the second case we have a (4 + 20) model with 4 modes, (ν1, ν6a, ν9a, ν10a)

in the system DOF and 20 modes in the bath DOF. It is quite apparent that (3 + 21)

and (4 + 20) calculations are very close to each other even in the long time limit. Thus,

incorporating the fourth mode, ν9a in the BS instead of into the system is an acceptable

approximation.
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Figure 3.11: Comparison of ACF in pyrazine between(3+ 21) model (black solid),
(4 + 20) model (red dashed), exact MCTDH calculation (blue dot-dashed)

In addition, it can be seen that our calculations deviate from that of MCTDH to

some extent. Specifically, our results show more pronounced recurrences in the ACF

through the full time interval. This is probably due to the inadequacy in the treatment of

the system-bath interactions implied by ansatz in Eq. 3.1. So, post SB separation, the

ansatz must be improved further. Since, the system part of the WF is described exactly

within the limits of the basis set used, one can only improve upon the nature of the bath

WF and how it couples with the system WF, something on the lines of the ansatz used

in G-MCTDH[54], for example, or some other approach.
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We next present, in Fig. 3.12, the spectrum of pyrazine corresponding to the two

models, (3 + 21) and (4 + 20). The origin of the energy in the computed spectrum is

set to be the mid-point of the two ESs in the FC zone. The two are almost identical.

It is well known that the short time dynamics is adequate for predicting the spectra.

The near identical spectra indicate that the short time dynamics up to 150 fs is correctly

reproduced by the approximations that we have made. In addition, we also compare

our results with the digitized MCTDH spectrum as given in Figure 5 of Ref. [19]. As

is evident from Fig. 3.12, our results capture all the important features of the spectrum

shown by MCTDH approach. We note here that the decay constants used in the two

approaches are different. Due to this some of the smaller peaks seen in the MCTDH

spectrum are missing in our results.
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Figure 3.12: Comparison of 24-mode pyrazine spectra for 3 + 21 model (black
solid), 4 + 20 model (red dashed) and (digitized) MCTDH (blue dot-dash) from
Ref. [19]

Finally, in Fig. 3.13, we present the electronic populations of S 2 and S 1 states

in pyrazine for the two the two models. We also compare them with the near exact

results of Ref. [54]. As is evident from Fig. 3.12, the results of the 3+21- model and

4+20-model are almost identical. These results however deviate to some extent from
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the results of G-MCTDH. Not withstanding that, however, the identity of the two model

systems used in this work support our criteria for classifying the normal modes.

0 25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

3+21

4+20

G-MCTDH

p
o
p

u
la

ti
o
n

time(fs)

Figure 3.13: Diabatic populations for two surfaces compared for the cases of (a)
(3+21) model (black solid line), (b) (4+20) model (red dash trace), (c) 3-mode SS
without bath (black two dots-single dash trace), (d) 4-mode SS without bath (red
dash-dot trace) and (e) G-MCTDH (blue dot-dash trace), digitized from Ref. [54]

All the analysis, done so far, was for the S 2 surface of pyrazine. It can be repeated

for the S 1 surface as well. In such a case, the classical turning points are defined on

S 1 surface (Table 3.1). It turns out that none of the classical trajectories starting from

the FC zone on S 1 surface cross the SCC either directly or through mutual assistance.

The obvious implication is that if the system is excited to the S 1 surface, the resulting

spectrum shows very small signature of vibronic coupling. This is supported by the

experiments.

3.3.2 3-mode spin-boson model

As a second example of the applicability of our criteria , we consider a 3-mode spin-

boson model system. A spin-boson system consists of two ESs and (in our case) three

vibrational tuning modes. The two states are coupled through a constant coupling. The
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vibronic Hamiltonian in this case is written as ,

H =
X

i

ωi

2

 
− d2

dQ2
i

+ Q2
i

!
1 +


∆
2 J

J ∆
2

 +
X

i∈T1


ai 0

0 bi

Qi. (3.25)

The parameters used in the above Hamiltonian are summarised in the Table 3.2

mode ai bi ω

ν1 0.027 -0.362 0.392

ν2 -0.178 0.50 0.155

ν3 0.155 0.102 0.180

Table 3.2: Linear diagonal couplings on two states, ai and bi and vibrational fre-
quencies for the modes in spin-boson model(All values are in eV). ∆ = 1.9eV and
J = 0.402eV .

The arguments for WP dynamics along the tuning modes presented in Sec.2.2 hold

true for a spin-boson model too. However, the arguments for the dynamics along the

coupling mode do not exist in this case. Because of the presence of tuning modes, the

two states intersect and thus have a CI. The dynamics of a spin-boson system are more

or less parallel to the LVC model and reflect similar complexity when the CI is active in

the dynamically significant region of the co-ordinate space. The advantage of studying

a spin-boson system is that it has fewer DOF and thus requires much less computational

efforts than a large molecule like pyrazine.The parameters-set that defines the system

are summarised in Table 3.3.
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mode Q1
T Q2

T QSCC

ν1 -0.138 2.99 4.88

ν2 2.30 -4.88 -2.8

ν3 -1.72 -1.13 35.8

Table 3.3: Turning points of and SCC points along tuning modes in spin-boson
model. Direct crossing, assisted crossing and non-crossing modes are given in red,
green and blue, respectively.

We subjected the three tuning modes to the criteria for selecting important modes.

It turned out that direct surface crossing happens only along mode ν2 on the US. WP

along mode ν1 crosses the surface through assistance from mode ν2. CC in ν1-ν2 plane

shows a behaviour marked in Fig. 3.2. SCC line in ν2-ν3 plane just touches the box of

allowed trajectories. The CC in this plane is similar to that shown in Fig. 3.8.

In following figures we present the ACF of this system for different cases. Fig.

3.14 depicts the ACF of the full 3-mode system. It shows the marked signatures of

damped oscillations. The remaining three panels depict the calculations after dropping

one mode from the system. Fig. 3.15 deals with a 2-mode model system with modes

(ν2,ν3). Mode (ν1) is dropped for this calculation. The ACF still shows damped be-

haviour although the not as much as in Fig. 3.14(a). This implies the loss of mutual

assisted crossing in ν1-ν2 plane by dropping mode ν1. Fig. 3.16 represents ACF with

modes (ν1,ν3) in system by dropping mode ν2. It is completely devoid of any signature

of damped oscillation and is completely resolved. This emphasizes the importance of

ν2 as a direct-crossing mode that leads to extensive dephasing. Finally, in Fig. 3.17 SS
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consists of (ν1,ν2). Absence of mode ν3 in this case has very little effect on the damped

signatures in ACF.
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Figure 3.14: ACF in spin-boson model for an exact 3-mode SS with (ν1, ν2, ν3).
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Figure 3.15: ACF in spin-boson model for a 2-mode SS with (ν2, ν3) and without
ν1.
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Figure 3.16: ACF in spin-boson model for a 2-mode SS with (ν1, ν3) and without
ν2.
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Figure 3.17: ACF in spin-boson model for a 2-mode SS with (ν1, ν2) and without
ν3.
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Thus, ν2 is the most influential mode in the 3-mode spin-boson system. Since

the other two modes cross only with assistance from ν2, dropping it renders the other

two modes vibronically inactive. Consequently, dropping it resolves the dynamics to a

simpler displaced HO dynamics with no nonadiabatic signature. Dropping ν1 or ν3, on

the other hand, still leaves the system as a NAS with noticeable CC. Thus, the ACF of

these two systems will show significant degree of decay.

The corresponding spectra of the four ACFs in Figs. 3.14-3.17 are presented in

Figs. 3.18-3.21. The significance of direct surface crossing along mode ν2 and its

role in assisting crossing along the other two modes are abundantly clear. From these

numerical results, we suggest a model with ν1 and ν2 as system modes and mode ν3 in

bath.
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Figure 3.18: Spectrum in spin-boson model for an exact 3-mode SS with
(ν1, ν2, ν3).
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Figure 3.19: Spectrum in spin-boson model for a 2-mode SS with (ν2, ν3) and
without ν1.
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Figure 3.20: Spectrum in spin-boson model for a 2-mode SS with (ν1, ν3) and
without ν2.
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Figure 3.21: Spectrum in spin-boson model for a 2-mode SS with (ν1, ν2) and
without ν3.

3.4 Conclusions

In the light of the set of criteria presented before, we presented in this chapter some

numerical calculations to validate the theory. We used an FCI-like approach for the

system DOF. Since, our attention is focused on the adequacy of the system dynamics,

we have opted to use a simple GWP for the bath DOF.

We applied our set of criteria to the S 1 and S 2 electronic system of pyrazine and

a 3-mode spin-boson system. Our analysis for pyrazine showed that only three modes

are necessary to define the SS for 24-mode pyrazine. Our ACF calculations made on

(3 + 21) model and (4 + 20) model (where the most active bath mode is added to the

system ) are near identical. The spin-boson system needed all the three modes in the

system space. These results indicate that we are on the right track.

That some normal modes dominate the overall dynamics of a NAS has been ap-

parent for a while. One specific example which illustrates this is the photo-electron

spectrum of allene[66]. In Figure 3 of Ref. 53, the effect of dropping a mode for three

different modes was shown. The spectrum of the molecule is almost harmonic when the

tuning mode, ν3, is dropped from the computations. The complexity increases when ν3
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is incorporated but a second tuning mode, ν2, is dropped. These observations indicate

the importance of few modes among the several modes in the molecule.



Chapter 4

Numerical Studies using MRTDCCM
for bath subspace

4.1 Introduction

In this chapter we develop and test the MRTDCCM formalism[67] for the QM descrip-

tion of the dynamics of the bath DOF. We do this in the context of SB separation of a

NAS as discussed in previous chapters. It is already established that the system DOF

have to be treated exactly by using an appropriate numerically converged basis set. In

the previous chapter, we used a general TDSCF induced GWP approach for the treat-

ment of the bath subspace. We were focused on numerically establishing the validity of

the proposed criteria and so, a simplistic TDSCF ansatz was used. Now that the validity

of the criteria for choosing the system DOF is established, we want to test a different

approximation for the bath subspace. Since, the SS is treated rigorously the only scope

to improve the description of NAD is to improve the approximation used for the bath

DOF and its coupling to the system DOF. In this context, MRTDCCM seems promising.

In this method, the total HS is bifurcated into a model space and a virtual space. In SB

formalism, the MS is same as the SS and the VS is identical to the BS. In this work, we

keep the electronic DOF and the few important vibrational DOF(chosen by the criteria)

in the SS. This SS is treated by a suitable numerically converged (and, in our case) HO

basis set. On the other hand, the rest of the vibrational DOF are kept in the BS(or VS).

For the bath DOF, we posit an exponential time-evolution operator. The time-evolution

operator acts on the MS to cause excitations out of it to the BS. We present the general

structure of MRTDCCM, the ansatz used in the method and the working equations. We

54



Chapter 4. Numerical Studies using MRTDCCM for bath subspace 55

test this approach on two molecular systems, butatriene cation and pyrazine. ACF and

spectra in each case are presented.

4.2 Hilbert spaces and Wave operator

An N-particle Hilbert space is described as the direct product of the HSs of each of the

particles.

H = H1 ⊗ H2 ⊗ H3 ⊗ ...HN (4.1)

Out of these N-particles, we construct a HS for the system DOF. This system HS or

MS is chosen to be made of the electronic DOF and those vibrational modes which

dominate the NAD.

Hs = H1 ⊗ H2 ⊗ ...HM, (M < N) (4.2)

The equations for the SS WF and the related CF is same as in Eqs. 3.9 and 3.8, respec-

tively.

Next, we look at the BS dynamics for which we use TDCCM. The BS in this work

is described by the TD exponential wave operator, U, that acts on the SS. TDSE for the

total WF is given as (keeping ℏ = 1),

i
∂ψ

∂t
= Hψ (4.3)

We use the same vibronic Hamiltonian as written in Eq. 1.17. The partitioning of the

Hamiltonian in the SB framework is same as in Eq. 3.2. A projection operator is defined

to project the full HS onto the system HS,

ϕ(s) = Pψ (4.4)

Next, a wave-operator U is defined which takes us back to the full HS from the WFs on

the SS.

ψ = Uϕ(s) (4.5)
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The two operators are related with each other by the following equations,

PΩ = P, (4.6)

and

ΩP = Ω, (4.7)

where, Ω is the wave-operator that takes the projection back to the full WF. In the mul-

tireference configuration interaction method, the wave operator is written as the sum of

all possible excitations out of the reference SS, taking care that the target final state is

not generated more than once. The system part of the WF is same as in Eq. 3.9. Here,

FI are the CFs and CI are the coefficients. Coupled-cluster theory is inherently a Fock-

space theory. To use that formalism, we augment the ansatz of the system to a more

general form as the set of the functions, {Fi,k1,k2,...,kN

Q
α∈BS
|0k⟩}. This is what we mean by

the MS. We define all excitations from this MS to the rest of the HS. Such operators are

of two types. First are those which induce excitations within the BS alone (Fig.4.1)(3-

4). The second type causes scatterings within the MS (Fig.4.1)(5). Finally, those which

cause simultaneous scatterings in the MS and excitations in the BS (Fig.4.1)(1-2). The

second category of excitation operators are irrelevant, since by construction all the pos-

sible configurations of the MS are already available within the MS.

Figure 4.1: All possible excitations in MRCI
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4.3 MRTDCCM ansatz

MRTDCCM uses a product of the exponentials to map the reference state WFs to the

exact WF.

ψ = exp(S d)exp(S c). (4.8)

The two generators represent the two sets of operators. Here, S d consists of the indi-

vidual excitations in both the BS and the SS. On the other hand, S c consists of the con-

nected excitations from the bath and simultaneous scatterings within the SS. From Lie-

algebraic decoupling theorems, the equations for S d are decoupled from the equations

of S c[68, 69]. Second, there are no bath excitation operators in the Hamiltonian. Con-

sequently, the equations of S d will integrate to give zero throughout the time-evolution.

So, the final ansatz of the dynamics becomes,

ψ = exp(S c) |ϕ(s)⟩ . (4.9)

Here, ϕ(s) is a linear combination of all the configuration states,

ψ(s) =
X

I

CIFI .

This is Eq. 3.9.

4.4 Wave function for MRTDCCM

We now turn to the analysis of the WF in MRTDCCM. We recall that the generalized

TDSCF approach had some limitations in describing NAD. We concluded that the gen-

eralized TDSCF did not provide either a good ansatz or a proper coupling to the system

DOF. We show below that MRTDCCM provides a more complex ansatz for the bath.

It is also more tightly coupled to the individual CFs of the SS. The bath part of the

MRTDCCM WF is governed by the exponential structure of the wave operators.

U = exp


X

i, j,α

S αi jc
†
i c ja†α +

X

i, j,α,β

S αβi j c†i c ja†αa
†
β

 . (4.10)
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The generators of this operator form a Lie-algebra. As a consequence, it can be writ-

ten as a product of multiple exponentials whose generators belong to the same Lie-

algebra[70]. Using this, we rewrite Eq.4.10 as,

U ≈exp


X

i, j,α

S αi jc
†
i c ja†α +

X

i, j,α,β

S αβi j c†i c ja†αa
†
β

 (4.11)

exp


X

i, j,α

S αi jc
†
i c ja†α +

X

i, j,α,β

S αβi j c†i c ja†αa
†
β

 .

In these equations, c†i and c j are the ES creation and annihilation operators. a†α and aβ
are the ladder operators of the bath HO. Notice that the second exponential in Eq. 4.11

is diagonal in the ESs. Consequently, it combines the transformations brought about by

the wave operator independently on each surface. The transformations it brings about

are displacements (from S αiia
†
α), dilations of the WP (through S ααii (a†α)2) and finally, the

coordinate rotations (S αβii a†αa
†
β). This is essentially doing a thawed GWP time-evolution

on each surface. So, this part of the MRTDCCM ansatz is similar to the full GWP

propagation as shown in the previous chapter.

The non-diagonal exponential in Eq.4.11 can be expanded in a power series. This

gives to the first-order, the operator, (S αi jc
†
i c ja

†
α + S αβi j c†i c ja

†
αa
†
β). This transfers the WP

from whichever ES it on to the other ES. It generates two different dynamics on the two

ESs. Since, the position and the width parameters of the vibrational WPs are not the

same on the two surfaces, it will not add to the coefficient of the GWP already present

on that surface. In other words, a non-Gaussian structure develops on that surface.

Since, every S i j is accompanied by a S ji (though different in magnitude and phase), an

overall WF is developed which is more general than the GWP propagation provided by

the generalized TDSCF.

There are two limitations to this generalization. First, the coefficients of the higher

orders are parametrized in terms of the basic variables, S i jα, ... rather than being inde-

pendent. Second, the solutions are not variationally determined. This has the disad-

vantage of losing the state-averaging of the presently occupied states. But, for that as

we discussed, the structure of MRTDCCM is more general than that of the TDSCF ap-

proach. It is more akin to the G-MCTDH[54] except that in G-MCTDH, the Gaussian

expansion coefficients are variationally determined.
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Next, we derive the working equations for the BS and the SS (We note that both

MS and SS language is used here for addressing the system DOF). We write the operator

U generally instead of writing explicitly writing U(t). First, Eq. 4.5 is inserted into the

TDSE to get,

iU |ϕ̇(s)⟩ =
h
HU − iU̇

i
|ϕ(s)⟩ . (4.12)

Premultiply both LHS and RHS by U−1 to get,

iU−1U |ϕ̇(s)⟩ =
h
U−1HU(t) − iU−1U̇(t)

i
|ϕ(s)⟩ . (4.13)

We define an effective Hamiltonian as,

H = U−1HU − iU−1U̇ (4.14)

In term of the effective Hamiltonian, Eq. 4.13 can be written as,

"
i
∂

∂t
− H

#
|ϕ(s)⟩ = 0. (4.15)

Thus, the working equations for the MS is given by,

P
"
i
∂

∂t
− H

#
P |ϕ(s)⟩ = 0, (4.16)

and for the BS the working equation is,

Q
"
i
∂

∂t
− H

#
P |ϕ(s)⟩ = 0. (4.17)

Q is defined so that Q = 1 − P. Eqs. 4.16 and 4.17 can be expanded using Hausdorff

expansion and the terms on the LHS and RHS can be equated to give the terms for the

effective MS Hamiltonian and the time-derivatives of the excitation operators. These

terms are diagrammatically given in the Appendix. These diagrams were programmed

and the numerical integration was carried out by a fourth-order Runge-Kutta integration.
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4.5 Results and Discussion

4.5.1 Application on Butatriene cation

In this section, we test the use of MRTDCCM for bath DOF in the SB approach on

realistic model. Our first testing ground is the 18-mode butatriene cation.

Butatriene belongs to the D2h point group and its cation has a CI between the GS

and the first excited state. It has only one coupling mode and four tuning modes. We

took the electronic energies and the coupling values from the Ref. [71]. According to

our criteria (Table 4.1), the SS in butatriene cation should include the coupling mode,

ν5 and the only direct crossing mode, ν14.

mode Q0
T Q1

T QSCC

ν8 0.975 1.09 85.71

ν12 0.130 -0.113 360

v14 1.262 -2.654 -1.069

v15 0.217 -0.173 7.46

Table 4.1: Turning points and SCC points along tuning modes in butatriene cation
between GS and first excited ES. Direct crossing mode is given in red

Hence, we use a (2 + 14)-model for testing the theoretical approach using MRT-

DCCM for the bath DOF. Our calculations numerically converged for 30 HO functions
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for the coupling mode, ν5 and 15 HO functions for the tuning mode, ν14. We present

the results in terms of ACFs and the spectra. The ACFs are separately presented for the

electronic GS, B2g and the first excited state, B2u. We present ACFs for the two cases.

First, for each ES we compare the ACFs for three levels of calculations done in MRTD-

CCM. These three are MS-only where only SS is considered. The second is (MS+S1)

where in addition to MS, one boson excitations are added. Finally, in (MS+S1+S2)

we include MS, one boson and two boson excitations (Figs. 4.2 and 4.4). In the next

set of calculations, we compare the (MS+S1+S2) calculation to the numerically exact

MCTDH results from Ref. [71](Figs. 4.3 and 4.5). The spectra is presented for the total

population of (B2u + Bg) states. We follow the same set of calculations for MRTDCCM

as done for the ACF (Fig. 4.6). We also compare the spectra for the (MS+S1+S2)

calculation with the spectra of MCTDH method (Fig. 4.7).

In Fig. 4.2 for B2u state, the ACF is clearly damped. This indicates that the WP is

highly dephased for this state. Although the overall shape of the ACFs in Fig. 4.3 look

similar for MRTDCCM and MCTDH, there are clear differences in the two results. We

believe that this is because of the difference in the size of the converged basis set taken

in the two approaches.

In Fig. 4.4 the ACF for the B2g is much less dephased than in the case for B2u state.

This is because the two system vibrational modes do not lead to the dephasing of the

WP as much as they do on the B2u state. In Fig. 4.5 the matching of the ACFs for the

two methods, MRTDCCM and MCTDH, is quite good.
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Figure 4.2: Comparison of ACF for B2u state in butatriene cation for three cases:
MS only, MS+S1 and MS+S1+S2, using MRTDCCM for bath.
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Figure 4.3: Comparison of ACF for B2u state in butatriene cation between
MCTDH method and MRTDCCM (MS+S1+S2)
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Figure 4.4: Comparison of ACF for B2g state in butatriene cation for three cases:
MS only, MS+S1 and MS+S1+S2, using MRTDCCM for bath.
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Figure 4.5: Comparison of ACF for B2g state in butatriene cation between
MCTDH method and MRTDCCM (MS+S1+S2).
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In next two figures, we present the spectra for the overall population of the two

ESs, B2u + B2g. In Fig. 4.6, the spectra using the MRTDCCM is presented. As can be

seen, the famous "mystery" band [20] is well reproduced. This depicts the CI between

the two ES. Further, in Fig. 4.7 the spectra from MRTDCCM is matched against the

MCTDH spectrum. The matching between the two spectra is very good.
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Figure 4.6: Comparison of spectra for (B2u + B2g) states in butatriene cation for
three cases: MS only, MS+S1 and MS+S1+S2, using MRTDCCM for bath.
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Figure 4.7: Comparison of spectra for (B2u + B2g) states in butatriene cation be-
tween MCTDH method and MRTDCCM (MS+S1+S2).

4.5.2 Application on pyrazine

Next, we aim to test the MRTDCCM for bath dof in pyrazine molecule. The details

of the electronic energies and the couplings are giving in the Chapter 3. We used the

(3+21)-model for the testing goal in this section. The numerically converged basis set

used in this work is same as used in the previous chapter. We present the ACF (Fig. 4.8)

and the spectra (Fig. 4.9) for pyrazine using MRTDCCM. Unfortunately, the calcula-

tions could run only upto (MS+S1) level of theory. For (MS+S1+S2) calculations, the

calculations terminated with infinities. This is due to rapid divergence of the renormal-

ization diagrams in the method.
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Figure 4.8: ACF for (3+21)-model of pyrazine using MRTDCCM
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Figure 4.9: Spectra for (3+21)-model of pyrazine using MRTDCCM
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4.6 Conclusions

The main aim of this chapter was to test the performance of the MRTDCCM on the

bath DOF in SB classification. In this method, the MS is same as the SS and the VS is

equivalent to the BS. It uses an exponential time-evolution operator, U(t), for the bath

DOF which acts on the MS. This operator is written in terms of the excitation operators,

S . We expanded U(t) as a power series in S which given an infinite series for various

boson excitations. In this work, we truncated the series to the two boson excitations.

These lower level excitations include the effect of higher order excitations as well. Next,

the working equations for the SS and the BS were derived. These were expanded using

Hausdorff expansion and the similar on the two sides were equated. These MS, effective

MS Hamiltonian and S-derivative diagrams were drawn (as given in the Appendix) and

programmed.

Next, we tested this approach on the 18-mode butatriene cation. We included

the only coupling mode in the SS. In addition, through our analysis of the four tuning

modes, we concluded that only mode ν14 qualifies for the SS. Thus, we used a (2+16)-

model for testing purpose. We presented the ACFs for the two ESs separately. On the

first excited state, the ACF depicts strong WP dephasing through the damped oscilla-

tions. On the other hand, the ACF for the population on the electronic GS is much less

damped. The two ACFs using MRTDCCM match satisfactorily with the corresponding

MCTDH spectra. The differences arise due to the different sizes of the CFs used for

the system DOF. The spectra for MRTDCCM is presented for the total population of

the two ESs. The spectra reproduces the "mystery band" very well. Further, the spectra

from MRTDCCM and MCTDH method exhibit a fairly good agreement.

We also tested MRTDCCM for the description of the bath DOF in (3+21)-model of

pyrazine. Although the method gave good results upto (MS+S1) level of calculations,

it failed to converge for (MS+S1+S2) calculations. This illustrates the divergence of

certain terms in the coupled-cluster method.



Chapter 5

Dynamics of Dimers spectra

5.1 Introduction

An interesting model system for NAD is the case of molecular aggregates[72–74, 74–

78]. The simplest case of this is a dimer[73, 79–83]. A dimer consists of two monomers.

We consider only homogeneous dimers. In a homogeneous system the monomers are

degenerate. Both of them have their own ESs and associated vibrations. We will call

these as local ESs and local vibrations. Given the attractive interaction between the two

monomers, the two associate with each other. It is implicitly assumed that the inter-

monomer interactions are rather weak to the extent that the internal structure of the two

monomers is not noticeably affected. That implies that a zeroth order description is very

much acceptable to begin with. There are also additional internal DOF in the dimer that

were originally part of the relative translational and rotational DOF. We ignore these.

We treat the monomers within the dimer as structure-less particles. The interaction

strength is assumed to be confined to the ESs alone and it is taken to be independent of

any vibrational coordinate.

We now describe the states in detail. We will consider two ESs for each of the

monomers. We will call them as α and β. Here, the energy of the α-state is taken to be

zero. β is the higher energy state with an energy of ϵ. In terms of these two states, four

states can be constructed for the dimer system. These are |α1, α2⟩, |β1, α2⟩,|α1, β2⟩ and

|β1, β2⟩. Only the first three states are relevant for spectroscopic purposes. Within the

approximations commonly used, the interaction between the two monomers are con-

fined to second and third states. This defines the simplified overall Hamiltonian for the

dimer. The GS is assumed to be unaffected by the inter-monomer interactions. The

68
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highest energy state, |β1, β2⟩ is ignored because it is too high in energy to be accessible.

Once the interaction is switched-on the two ESs are coupled through this interaction.

This results in NAD. Each monomer has several local vibrations. For simplicity, we

assume that only one vibrational mode on each monomer is active. It is assumed that

both the local vibrations have the same frequency. It is also assumed that the monomer

vibration suffers a displacement in the excited state compared to its GS geometry. The

displacement coefficient for both the monomers is taken to be identical. This combined

system (interacting ESs and displaced vibrations) forms a vibronic system. Our attempt

is to provide a simple description for the dynamics of such a system. We describe the

Hamiltonian of such a system in the next section. We then look at the symmetry prop-

erties of this simplified Hamiltonian. Next, in Sec. 5.2 it is shown that this symmetry

group is isomorphic to the point group C2h. Using the character table of C2h we con-

struct symmetry adapted linear combinations of the local mode basis. We next analyze

four possible representations of the system and its Hamiltonian to see which of them

would be most convenient for computational purposes.

The dimer problem admits two limiting situations that are analytically soluble.

In the absence of vibrations, the problem reduces to (2 X 2) diagonalization of the

two ESs as its solution. In the other limit where the electronic coupling is zero the

problem reduces to a pair of displaced HO. This is analytically soluble in terms of an

exponential similarity transformation of the vibrational part of the Hamiltonian. Given

these two limiting conditions, we use MRTDCCM which handles both these limiting

conditions. Possible approximations to this ansatz are discussed. We use the system-

bath formalism. The electronic sub-system is taken as the system. The vibrational

part is dealt as the bath part. This is similar to what we did in Chapter 4. The requisite

equations for the MRTDCCM are identical to the equations derived in Chapter 4, except

for an additional diagram to account for intermonomer interactions. This situation holds

in the zeroth order basis. In two other representations the equations are identical. This

is described in Sec. 5.5.

The last topic of our discussion is the finite temperature spectra of dimer systems.

Thermofield dynamics was developed specifically for describing finite temperature be-

haviour of many-body systems[78, 83–86]. Specifically for HOs it has a simple repre-

sentation in ladder operator formalism. Using the permutational symmetry of traces and

transferring part of the density matrix to the left, one can write the finite temperature

dynamics involving excitations from vacuum alone. A single surface spectroscopy at fi-

nite temperatures using thermofield dynamics was developed earlier in our group[85]. It
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will now be generalised to multi-surface excitations. The details of the ansatz and work-

ing equations will be presented in Sec. 5.5. One of the advantages of the MRTDCCM

is that except minor reorganisation of the DOF the ansatz and the working equations re-

main similar both at zero K and finite temperature. This was one of the motivations for

us to choose MRTDCCM to deal with the dimer problem. A program has been written

for this purpose but has not been debugged fully so far. As a consequence, I have no

result to present in this Chapter.

5.2 The Hamiltonian

We now set out our notation. We define the following,

|ϕ1⟩ = |β1α2⟩ . (5.1)

|ϕ2⟩ = |α1β2⟩ . (5.2)

and,

|ϕg⟩ = |α1α2⟩ . (5.3)

In terms of these, the second quantized form of the Hamiltonian of a monomer for the

relevant excited states is given by,

HM = |β⟩ ϵ ⟨β| + ℏω |β⟩ a†mam ⟨β| + V |β⟩ (a†m + am) ⟨β| . (5.4)

Here, the first term gives the electronic energy, the second term gives the vibrational

energy and the last term is the displacement of the vibrational coordinate. HS of the

Hamiltonian will include its electronic GS and one electronic excited state.

A dimer is a case where two monomers interact with each other in such a way that

their ESs mix. This mixing causes splitting of ESs into two eigenstates of the dimer

Hamiltonian. The dimer Hamiltonian is written as,
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HD = |ϕ1⟩ ϵ ⟨ϕ1| + |ϕ2⟩ ϵ ⟨ϕ2| + |ϕ1⟩ J ⟨ϕ2| + |ϕ2⟩ J ⟨ϕ1|+
ℏω |ϕ1⟩ a†1a1 ⟨ϕ1| + ℏω |ϕ2⟩ a†2a2 ⟨ϕ2|+
V |ϕ1⟩ (a†1 + a1) ⟨ϕ1| + V |ϕ2⟩ (a†2 + a2) ⟨ϕ2| .

(5.5)

In Eq. 5.5, |ϕi⟩ are the respective WFs for the monomers with i = 1, 2. The

first two terms are the electronic energies of each monomer, respectively. The third

and fourth terms represent the electronic couplings between the two monomers. The

vibrational energies of monomer 1 and monomer 2 are given by fifth and sixth terms.

Finally, the last two terms are the displacements of the vibrational coordinates for the

two monomers. The vibrations in the two monomers are influenced by the mixing of

the electronic energies.

5.3 Symmetry considerations

The basis for the dimer can be constructed with respect to the two monomers.It is given

by,

{|ϕk⟩ |v1⟩ |v2⟩},∀k, v1, v2. (5.6)

The analysis of the symmetries of the Hamiltonian indicate that it belongs to a

group containing four symmetry elements. The first symmetry element is the usual

identity operator, E. Next, there are permutations of the ESs, Pe. There will be

exchanges amongst the vibrational modes of two monomers and this gives Pv sym-

metry. In addition, the electronic and vibrational DOF can be simultaneously ex-

changed forming Pev symmetry. Hence, the symmetry group formed by these elements

is GD = {E, Pe, Pv, Pev}. Its group multiplication table is,
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E Pe Pv Pev

E E Pe Pv Pev

Pe Pe E Pev Pv

Pv Pv Pev E Pe

Pev Pev Pv Pe E

Table 5.1: Group multiplication table of the symmetry group of a dimer

It can be shown that this table is isomorphic to the point group C2h. The sym-

metry elements in the C2h point group are {E,C2,σh, i}. We label the symmetry ele-

ments {E,C2,σh, i} as {A, B,C,D}, respectively. Thus, the group multiplication table of

C2h can be written in Table5.2. Similarly, we can rewrite Table5.1 where we replace

{E, Pe, Pv, Pev} by A, B,C,D respectively. In this case, the group multiplication table is

identical to Table 5.2. This establishes the mapping of the elements of the two groups

as,

Pe → C2

Pv → σh

Pev → i.
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E C2 σh i

A A B C D

B B A D C

C C D A B

D D C B A

Table 5.2: Group multiplication table for a C2h point group in terms of A, B,C,D

Thus, the character table for the symmetry group of the dimer is,

Ag Au Bg BU

E 1 1 1 1

Pe 1 1 -1 -1

Pv 1 -1 -1 1

Pev 1 -1 1 -1

Table 5.3: Character table for the symmetry group of a dimer.
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5.4 Symmetry adapted linear combinations

The next exercise is to write the symmetry adapted basis functions and vibrational co-

ordinates for the dimer. We use here onward, |k, m, n⟩ in place of |ϕk⟩ |v1
m⟩ |v2

n⟩. The

states |k, m, n⟩ for k = 1, 2 are degenerate with zeroth order energies ,

E = ϵ + (m + n)ω. (5.7)

We form the symmetry adapted basis for it. The projection operators for the SALCs

are,

PAg = E + Pe + Pv + Pev, (5.8)

PAu = E + Pe − Pv − Pev, (5.9)

PBg = E − Pe − Pv + Pev, (5.10)

and,

PAg = E − Pe + Pv − Pev. (5.11)

Thus, for Ag representation the symmetry adapted and normalised basis are,

(E + Pe + Pv + Pev)(|1,m, n⟩) = 1
2

[|1,m, n⟩ + |2,m, n⟩+
|1, n,m⟩ + |2, n,m⟩].

(5.12)
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Similarly the basis functions for Au, Bg and Bu Irreps are given by following equations

(Eqs. 5.13-5.15), respectively.

(E + Pe − Pv − Pev)(|1,m, n⟩) = 1
2

[|1,m, n⟩ + |2,m, n⟩ −
|1, n,m⟩ − |2, n,m⟩].

(5.13)

(E − Pe − Pv + Pev)(|1,m, n⟩) = 1
2

[|1,m, n⟩ − |2,m, n⟩ −
|1, n,m⟩ + |2, n,m⟩].

(5.14)

(E − Pe + Pv − Pev)(|1,m, n⟩) = 1
2

[|1,m, n⟩ − |2,m, n⟩+
|1, n,m⟩ − |2, n,m⟩].

(5.15)

The exact eigenstates can be found by configuration interaction under each sym-

metry Irrep separately. The zeroth order states to which excitation happens are, |ϕ1, n, m⟩

and |ϕ2, n, m⟩ via dipole operators, d1 and d2. Hence, the doorway state for the TD pic-

ture of the spectra is given by,

ψ(0) = d1 |ϕ100⟩ + d2 |ϕ200⟩ (5.16)

This belongs to the totally symmetric representation, Ag and continues to belong

to the Ag representation throughout its time evolution.
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5.5 Dynamics

In this section we consider two topics. The first is the possible representations of the

ESs and the vibrational coordinates. The second is the ansatz for the TD propagation

for spectra.

5.5.1 Possible representations

There are four possible representations for the dimer problem. The first of them is a lo-

cal representation in which both the vibrational coordinates and the ESs are represented

in terms of the variables associated with the local description of the monomers. The

resulting representation leads to the Hamiltonian presented in Eq. 5.5. We call it as the

local representation. As can be noticed, it contains two sets of non-diagonal operators,

the inter-monomer interactions and the vibrational displacement terms. In this sense,

this is not a convenient representation for the description of the dimer. Three other rep-

resentations exist in which one of the non-diagonal terms is eliminated through linear

transformations. We define these below.

5.5.1.1 Symmetrised vibrational representation

In this representation, we symmetrise the vibrational subsystem of the dimer. We define

q1 and q2 as,

q1 =
a1
† + a1√

2
, (5.17)

and,

q2 =
a2
† + a2√

2
. (5.18)

Next, in terms of q1 and q2 we define two new coordinates, Q and q as shown below.

Q =
(q1 + q2)√

2
, (5.19)

and,

q =
(q1 − q2)√

2
. (5.20)
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The ladder operators in this new coordinates system change as,

A† =
a†1 + a†2√

2
(5.21)

a† =
a†1 − a†2√

2
(5.22)

and their hermitian adjoints. The electronic subsystem is left unchanged. In terms of

these new coordinates the Hamiltonian becomes,

HD = |ϕ1⟩ ϵ ⟨ϕ1| + |ϕ2⟩ ϵ ⟨ϕ2| + |ϕ1⟩ J ⟨ϕ2| + |ϕ2⟩ J ⟨ϕ1|+
ℏω

2
|ϕ1⟩ [A†A + A†a + a†A + a†a] ⟨ϕ1|+

ℏω

2
|ϕ2⟩ [A†A − A†a − a†A + a†a] ⟨ϕ2|+ (5.23)

V√
2
|ϕ1⟩ (Q + q) ⟨ϕ1| + V√

2
|ϕ2⟩ (Q − q) ⟨ϕ2|

There is no advantage in the above representation as none of the terms get cancelled.

The nature of the Hamiltonian makes both the coordinates on both the surfaces as tun-

ing.

5.5.1.2 Symmetrised electronic representation

In this representation, we transform the electronic basis, ϕ1 and ϕ2 to a symmetrised

electronic basis. We call them ψ1 and ψ2, respectively. These are defined below.

ψ1 =
(ϕ1 + ϕ2)√

2
(5.24)

and,

ψ1 =
(ϕ1 − ϕ2)√

2
(5.25)
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The vibrational coordinates are left alone. In terms of these coordinates, the Hamilto-

nian transformation is given by,

HD = |ψ1⟩ (ϵ + J) ⟨ψ1| + |ψ2⟩ (ϵ − J) ⟨ψ2|+ (5.26)
ℏω

2
[|ψ1⟩

�
a†1a1 + a†2a2

�
⟨ψ1| + |ψ1⟩

�
a†1a1 − a†2a2

�
⟨ψ2|

+ |ψ2⟩
�
a†1a1 − a†2a2

�
⟨ψ1| + |ψ2⟩

�
a†1a1 + a†2a2

�
⟨ψ2|]+

V
2

[|ψ1⟩
�
a†1 + a1 + a†2 + a2

�
⟨ψ1|+

|ψ1⟩
�
a†1 + a1 − a†2 − a2

�
⟨ψ2|+

|ψ2⟩
�
a†1 + a1 − a†2 − a2

�
⟨ψ1|+

|ψ2⟩
�
a†1 + a1 + a†2 + a2

�
⟨ψ2|]

This representation gets rid of interstate electronic coupling. However, it induces the

vibrational modes to become both coupling and tuning modes on both the surfaces.

5.5.1.3 Global symmetrised representation

In this representation, both vibrational coordinates and ESs are chosen as SALCs. These

are symmetry coordinates, Q, q and the states, ψ1 and ψ2. In these terms these sym-

metrised variables, the Hamiltonian is rewritten as follows,

HD = |ψ1⟩ (ϵ + J) ⟨ψ1| + |ψ2⟩ (ϵ − J) ⟨ψ2|+ (5.27)
ℏω

2
[|ψ1⟩

�
A†A + a†a

�
⟨ψ1| + |ψ1⟩

�
A†a + a†A

�
⟨ψ2|

+ |ψ2⟩
�
A†a + a†A

�
⟨ψ1| + |ψ2⟩

�
A†A + a†a

�
⟨ψ2|]+

V√
2

[|ψ1⟩Q ⟨ψ1| + |ψ1⟩ q ⟨ψ2| + |ψ2⟩ q ⟨ψ1| + |ψ2⟩Q ⟨ψ2|]

It retains the advantages of both the previous representations, in the sense that the
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electronic off-diagonal elements are now eliminated. One of the symmetric normal co-

ordinate vibrations, Q, becomes independent of the ES upto the linear level. It becomes

a globally displaced oscillator and hence, is a tuning mode with identical displacements

on the two surfaces. The two ESs are now coupled through an energy-exchange mech-

anism (A†a+ a†A operator). Otherwise, there is no interstate coupling. The asymmetric

normal coordinate,q couples the two ESs and thus, is a coupling mode. The Hamilto-

nian has a constant of motion (A†A+a†a). A configuration-interaction calculation needs

to be carried out with the subset of |k,m, n⟩, where, (n + m = N) for some fixed N. We

shall develop the MRTDCCM within this and the local mode representation.

5.5.2 Ansatz

As we noted earlier, the dimer problem admits two limiting conditions. In the absence

of vibrations, the WF can be written as,

ψ = C1 |ϕ1⟩ +C2 |ϕ2⟩ . (5.28)

This WF propagates under the influence of the reduced Hamiltonian,

H = |ϕ1⟩ ϵ⟨ϕ1| + |ϕ2⟩ ϵ⟨ϕ2| + |ϕ1⟩ J⟨ϕ2|
+ |ϕ2⟩ J⟨ϕ2| (5.29)

In the other limit, in the absence of interstate couplings in the Hamiltonian, the problem

reduces to a pair of displaced HOs. Displaced HOs can be diagonalised by a simple

exponential ansatz, exp(S a† + S o), if the initial state is a HO GS. The more general

ansatze involving annihilation operators can be written if a more general doorway state

is required. Even for finite temperature systems, the doorway state can be reduced to

a Gaussian, as we will see later. In view of this, we choose the ESs as the system HS

and the vibrational space as bath. With this, just as we did in Chapter 4, we define the

ansatz for the dimer as,

ψ = exp(S ) |ψ0(t)⟩ (5.30)

with,

|ψ0(t)⟩ = C1(t) |ϕ1⟩ +C2(t) |ϕ2⟩ , (5.31)
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and,

S =
X

i j

|ϕi⟩ [S i j
αaα† + S i j

αβaα
†aβ† + ...] ⟨ϕ j|. (5.32)

So, the ansatz is to be substituted in the TDSE for obtaining the dynamics. The equa-

tions are similar to those derived in Chapter 4.

5.6 Extension to finite temperatures

We now move on to the extension of this formalism to finite temperatures. As is well

known, the absorption spectrum from an initial ES, |I⟩ to a final ES, |F⟩ is given by,

P =
Z

dωeiωt ⟨I, v|e−iHFt|I, v⟩. (5.33)

The initial state, |I, v⟩ is not a single vibronic state at finite temperature. Instead,

one has the thermal density matrix to represent the initial thermal state. We need to

extend this state to such a thermal distribution. This leads to the result,

P = Trv

Z
dωeiωt ⟨I, v|e−iHFtρ(β)|I, v⟩. (5.34)

Here, P is the vibrational TDM. Using the invariance of permutations under traces, we

rewrite this equation as,

P = Trv

Z
dωeiωt ⟨Iρ(β/2)|e−iHFt|ρ(β/2)I⟩. (5.35)

We next turn to the evaluation of ρ. We do this for a single oscillator. Extension to

two oscillators is a trivial exercise. We assume that the thermal effects are carried by

vibrational subsystems alone. The TDM, ρ is
X

n

|n⟩ e−βnℏω ⟨n| (5.36)

This in turn is equal to,

ρ =
X

n

(a†)n

n!
|0⟩ e−βnℏω ⟨0| an. (5.37)
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That the annihilation operator acts as if it is a creation operator when acting to the

left, has been used in writing this equation. Given that the vacuum state (the HO GS) is

real, it is possible to define another fictitious oscillator with a creation operator, b† (and,

obviously an associated annihilation operator, b). Thus, we rewrite the above equation

as,

ρ =
X

n

(a†)n

n!
|0a⟩e−βnℏω(b†)n |0b⟩. (5.38)

It is possible to rewrite Eq. 5.38 as ,

ρ =
X (a†b†)n

n!
(e−βHo)|0a⟩ |0b⟩. (5.39)

Here,

Ho = ℏωa†a. (5.40)

In this equation, |0a⟩ and |0b⟩ are the vacuum states of the original HO and the fictitious

HO that we have defined to represent the bra part of the density matrix as in Eq. 5.39.

Notice that the Ho term right in the beginning has replaced nℏω as it acts upon the state,

(a†)n |0a⟩. Thus, it gives the correct probability weight.

We now perform two more changes. First, we move (e−βHo) to the right. Second,

we recognise that a†a |0⟩ = 0. With this,

ρ =
X

n

e−βHo
(a†b†)n

n!
eβHo |0a⟩ |0b⟩, (5.41)

ρ =
X

n

(a†b†e−βℏω)n

n!
e−βHo |0a⟩ |0b⟩, (5.42)

ρ = exp[ f a†b†] |0a⟩ |0b⟩ , (5.43)

where,

f = e−βℏω. (5.44)

Our next goal is to reduce the correlated Gaussian in Eq.5.43 to a separable form.

This is trivially achieved by defining two new HOs as linear combinations of the old set
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a† and b†.

c† =
(a† + b†)√

2
, (5.45)

and,

d† =
(a† − b†)√

2
. (5.46)

Replacing a†b† in Eq.5.43 with the new set, we obtain,

ρ = e
f (c†)2√

2 e
− f (d)2√

2 |0a⟩ |0b⟩ . (5.47)

Note that this is essentially a simple coordinate rotation by 90o in the coordinate

space of a and b oscillators. Since, a and b oscillators are degenerate , the 2-D Gaussian

has cylindrical symmetry. Thus, the state |0a⟩ |0b⟩ is also the vacuum state for the c-d

oscillator space. So,

ρ = e f c†c†e− f d†d† |0c⟩ |0d⟩ . (5.48)

In the final step of our manipulations, we eliminate the operator (e f c†c†) from Eq. 5.48.

We define yet another bosonic operator, r† to carry out the well known Bogoliubov

transformation,

r† = xc† + yc, (5.49)

where,

x =
1p

(1 − 4 f 2)
(5.50)

and,

y =
−2 fp

(1 − 4 f 2)
. (5.51)

Similarly, (e− f d†d†) term is eliminated. The difference is in the signs of f . So, the only

change is in the value of the variable y in Eq. 5.49. It now becomes,

y =
2 fp

1 − 4 f 2
(5.52)
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With this, we have reached our goal of transforming the TDM into a Gaussian vacuum

state in terms of the last set of coordinates, r instead of c and d.

5.7 Conclusion

In summary, we had originally the TDM in terms of

ρ = e f a†b† |0a⟩ |0b⟩ (5.43)

We transformed these to new set of operators and coordinates c and d to give,

ρ = e
f (c†)2√

2 e
− f (d)2√

2 |0c⟩ |0d⟩ (5.51)

involving a simple coordinate rotation,

qc =
(qa + qb)√

2
(5.52)

qd =
(qa − qb)√

2
(5.53)

Next, we carried out a Bogoliubov transformation on the two oscillators c and d in terms

of r and s. Using these space rotations,

qr = (x + y)qc,

= (x + y)
(qa + qb)√

2
,

=

p
1 − 2 f

p
2(1 + 2 f )

(qa + qb).

(5.54)

qr = (x − y)qd

= (x − y)
(qa − qb)√

2

=

p
1 + 2 f

p
2(1 − 2 f )

(qa − qb).

(5.55)
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The TDM acts as a vacuum to the ladder operators defined in terms of qr and qs

and their conjugate momenta. We finally have the vacuum state (albeit with double the

DOF) that represents the TDM. TD calculations can be carried out at 0 K. One only

has to rewrite the Hamiltonian in terms of the thermal coordinates and their conjugate

momenta. This is a trivial exercise since mapping from (qa, qb) to (qr, qs) is a simple

linear transformation.

A program was written to calculate the spectra of model dimer system both at 0 K

and at finite temperatures. It is currently in the debugging phase.



Chapter 6

Conclusions

The focus of this thesis work was on three goals. First aim was to develop a set of

criteria for classifying system and bath variables in the framework of system-bath ap-

proaches to study NAD. Second, the focus was on using two different ansatze for the

bath WFs. And last, the goal was an extension of MRTDCCM to finite temperatures

in the context of dimer spectra. We reviewed some essential methods available in the

literature to simulate the NAD in the vicinity of a CI numerically. We were mainly

focused on the system-bath approaches for the description of NAD. In these methods,

the overall molecular system is divided into two subspaces. The first subspace consists

of the system DOF. These vibrational DOF are crucial in dominating the dynamics in

the neighbourhood of a CI. These DOF must be treated rigorously. The second sub-

space consists of those DOF that have very insignificant effects on the NAD. A suitable

approximation is sufficient to treat these. In this way, SB methods for NAD tackle the

exponential problem associated with the number of vibrational DOF in a NAS. In the

adiabatic representation of the PESs, calculation of the dynamics becomes too complex.

This is because the NAC terms become too large to compute. A diabatic representation

is chosen to get rid of this issue. In this representation, the NAC terms disappear. In-

stead, the off-diagonal interstate couplings arise. We wrote a diabatic Hamiltonian at

the quadratic/bilinear coupling level. We identified the types of the vibrational modes

in this Hamiltonian. The tuning modes belong to the group for on-diagonal coupling,

and these modes modulate the electronic energy gap. Next, the modes belonging to the

off-diagonal interstate couplings are called the coupling modes. The modes that neither

tune nor couple the ESs are called the spectator modes. The guiding principles of our

work were taken from the work of Schneider et al. In this work, the authors analysed

the dissipative features of the NAD. They presented the reduced probability densities

85
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of the tuning modes and a coupling mode for a 2-state, 3-mode system. They showed

that the reduced density matrices were the source of the monotonic increase in the sta-

tistical entropies of such active modes. These, in turn, were linked to the dephasing of

the WP. However, the mechanism of the WP dephasing was not discussed in this work.

Elaborating on this mechanism inspired the work presented in this thesis.

Next, a systematic discussion of the WP CC in the direction of the coupling and

tuning modes was done. In the region of the SCC, the coupling modes become active.

We assumed that the WP was initially located on the upper electronic surface and that

|νc⟩ was its initial coupling mode QS. As this WP reaches the vicinity of the SCC, a part

of it crosses onto the other surface. This CC initiates a change in the QS of the coupling

mode. This CC repeats along the coupling mode, and the WP fragmentation continues

with each crossing. The result is an increased population of the coupling mode states on

both surfaces. We concluded that the increased population of the coupling mode states

due to the repeated CC is the reason for a monotonic increase in the statistical entropies

of the coupling modes. We also noted that the WP dephasing in the direction of the

coupling modes is linked to the repeated CCs. Then, the discussions on the CC in the

direction of the tuning modes were added to the discussions for the coupling modes.

The structure of WP is different for the tuning modes. But, the changes induced in the

WP along the two types of vibrational modes occur more or less simultaneously. After

the CC along the coupling modes ends, the WP fragments move on their respective

ESs in the direction of the tuning modes. This movement is seamless, and each of

the WPs moves under the influence of the Hamiltonian determined by its electronic

surface. There will be some tuning modes along which the WP fragments reach the

SCC more frequently than in the direction of other tuning modes. Hence, such tuning

modes become essential for the dephasing of the WP.

With these discussions, we identified that the extent of the WP dephasing in the

direction of a given vibrational mode determines its classification as either a system

mode or a bath mode. Next, the criteria for choosing the system DOF were outlined.

Outlining these criteria was the primary goal of my thesis work. The first part of the

criteria states that the spectator modes which do not couple or tune the ESs must be put

in the BS. This is because such modes will not significantly affect the overall dynamics.

The next part of the criteria states that all coupling modes must be put in the SS. The

WP CC happens along the coupling modes. Hence, these modes lead to an extensive

dephasing of the WP and must be classified as a system mode. The degree of WP

dephasing along a tuning mode depends on whether the WP encounters the SCC before
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reaching the turning point on its trajectory. At one-dimensional level we labelled the

tuning modes for which the WP crosses the SCC as direct-crossing modes. The direct-

crossing modes must be put in the SS. There will be some tuning modes which do

not take the WP to SCC along their own trajectories but WP can dephase in its two-

dimensional plane with a direct-crossing mode. We labelled these vibrational modes as

mutually-assisted crossing modes. We elaborated these types of crossings in Chapter

2. It was shown that in the plane where none of the two tuning modes is a direct-

crossing mode, there is no WP CC. In addition, it was shown that the extent of WP CC

in the two-dimensional plane differs for different pairs of tuning modes. Whether the

mutually-assisted tuning mode will be identified as a system mode or a bath mode will

be determined by the degree of the WP CC.

After establishing the criteria, in the next three chapters of my thesis some numer-

ical studies were presented to test the validity of these criteria. The first case for testing

was a 24-mode pyrazine molecule. It has a single coupling mode, ν10a and five tuning

modes. Out of the five modes, one tuning mode ν6a is the only direct-crossing mode.

Two other tuning, ν1 and ν9a modes show varying degrees of mutually-assisted crossing

in their respective planes with mode ν6a. For rest of the two tuning mode, ν8a and ν2,

the WP is located more or less near the FC zone and does not undergo any appreciable

extent of mutually-assisted crossing. Thus, according to the guidelines in the criteria,

modes ν10a and ν6a are to be kept in the SS and the modes, ν8a and ν2 are put in the

BS. Based on the CC shown in their two-dimensional planes, we posited that a 3-mode

SS with (ν10a, ν6a, ν1) is adequate to reproduce the overall NAD in pyrazine and that the

fourth mode, ν9a, can be kept in the BS without any significant loss in the description of

the NAD.

For the treatment of the bath DOF, we used the generalized MRTDCCM ansatz

for the BS. It is a simple approximation where the total WF is written as the product

of the WFs for the two subspaces with their averaged interactions taken into account.

In this manner, the SS are treated rigorously by using a numerically converged HO

basis set and the bath DOF are treated by a T-GWP. We use the harmonic potentials

for the bath modes and for these, this approximation becomes exact. To this end, we

tested a (3+1)-model and (4+0)-model for pyrazine.The ACFs in the two cases are near

identical and thus, support our argument that a 3-mode SS is sufficient. We extended the

two model by including the rest of the bath modes to give, (3+21)- and (4+20)-models.

The effect of adding these additional DOF do not induce any significant change in the

ACFs. For all these cases, we presented the corresponding spectra. The spectra catch
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the necessary complexities in the NAD. In addition, the ACF and the spectra for the

TDSCF method was compared against the numerically exact MCTDH results. The

matching of the two ACFs was not appreciable and this is probably because of the

huge difference in the system configurations used in the two approaches. However,

the matching between our spectra (for (3+21)-model) and the MCTDH spectra was

very good. We also presented the comparison of the electronic populations for the two

testing models. The electronic populations for the (3+21)- and (4+20)-models are close

to each other. However, the matching of our results with that of G-MCTDH was not

very good. This is again attributed to the much bigger size of the configurations used

in the G-MCTDH for the system and bath modes. Overall, our results agreed with our

hypothesis that a 3-mode SS for pyrazine is adequate to describe its NAD near CI.

Next, in the same chapter we tested another model in support of our criteria. We

used a 3-mode spin-boson model. In the spin-boson model, the two ESs are coupled by a

constant and hence, there is no off-diagonal coupling term. There are only tuning modes

in this model. As a consequence, the discussions presented in Chapter 2 on the WP CC

are only valid for the case of tuning modes in the spin-boson model. We analysed

the CC for the three tuning modes. We found that there is only one direct-crossing

mode (mode 2) in this model. The other two tuning modes have different extents of

CC in their two dimensional plane with mode 2. We compared the exact SS including

these three modes against three cases of 2-mode SS. In the 2-mode calculations, one

of the three tuning modes was dropped out one at a time and the ACF and the spectra

were compared against those of the exact calculations. These results elaborated the

importance of the second mode as a direct-crossing tuning mode. From comparing the

results for the other two tuning modes, we suggested that a spin-boson mode with 2-

mode SS of mode 1 and mode 2 with the third mode in the bath will reciprocate the

dynamics satisfactorily. Thus, with these we concluded that our criteria stand in good

light against the meticulous numerical testing done in chapter 3. Further, these results

show TDSCF method, even though being simple in nature, is sufficient for the treatment

of the bath DOF.

Chapter 4 of this thesis consists of the formalism of MRTDCCM for treating the

bath DOF. Within the SB framework, the goal of this chapter was to test the MRTD-

CCM as an approximation for the BS. We presented the total WF in terms of the system

and bath WFs. An exponential projection operator for the BS acts upon the MS which

contains the system DOF. This exponential ansatz is written as a power series of the
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excitation operators. We truncated the series upto the two-boson excitations. The work-

ing equations for the MS and the BS were derived and programmed. The numerical

validity of this approach was tested first on the butatriene cation which has a CI be-

tween its electronic GS and the first excited state. In line with our criteria, we suggested

that a (2+16)-model should be adequate for the description of the NAD in butatriene

cation. We presented the numerical results for ACF and the spectra. In the first case,

we separately presented the ACF for the GS and the first excited state using the MRT-

DCCM method. The results were compared at three levels of calculations, (MS-only),

(MS+S1) and (MS+S1+S2). The results seemed to adequately simulate the signatures

of the dynamics upto two boson excitations. We also compared each of the ACFs with

the corresponding results of the MCTDH method. The two ACFs for the B2u state did

not match very well because of the huge configuration-size difference in the two calcu-

lations. However, both ACFs showed high degree of dephasing on the upper surface.

The two ACFs matched well for the case of the electronic GS. The extent of the de-

phasing is much less for the GS. This is explained through our criteria by the fact that

none of the tuning mode lead the WP to CC on this surface. Finally, the spectra for the

net population of the two ESs was presented and the MRTDCCM was able to capture

all the essential features of the NAD in butatriene cation. In addition, the matching

between the two spectra from the MRTDCCM and MCTDH approach was fairly good.

We also tested the MRTDCCM approach on the (3+21)-model case of pyrazine but the

calculation could not be run beyond the (MS+S1) level.

At last, we made an incomplete analysis of the dimer spectra in the framework of

MRTDCCM. We showed that both 0 K and finite temperature situations can be dealt

within the structure of MRTDCCM. The only requirement was to carry out some linear

transformations of the coordinates. We have not been able to complete the computa-

tional studies so far.



Appendix A

In Fig. A.1 terms for the system subspace Hamiltonian, Hs, are drawn. It includes di-

agonal terms for electronic energy and vibrational energy. Linear and bilinear/quadratic

diagonal terms for changes in electronic state via tuning system modes, ts, also go into

Hs. Off-diagonal linear couplings via coupling mode, c and bilinear couplings between

ts and c are included in the system Hamiltonian.

Figure A.1: Diagrammatic representation of terms included in system subspace
Hamiltonian.
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In Fig. A.2 terms for the effective system subspace Hamiltonian, He f f , are drawn.

It includes diagonal changes for electronic energy only which occur due to the contrac-

tion of a V-vertex and S-operators.

Figure A.2: Effective Hamiltonian for SS

In Fig. A.3 some representative diagrams for iṠ 1 are drawn. Various contraction

of V- and S-operators give effective one boson excitation. Thus, higher order diagrams

are absorbed at lower orders. Similarly, Fig. A.4 represent some of the iṠ 2 diagrams.
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Figure A.3: Some representative diagrams for iṠ 1
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Figure A.4: Some representative diagrams for iṠ 2
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