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1 Introduction 
 

 Motivation and Introduction 

Laser-based spectroscopy techniques are advancing rapidly in the detection of hazardous 

compounds such as explosives with the development of new intense and tunable lasers, 

gated and intensified detectors, and the availability of a standard spectroscopic database 

of explosives, biomolecules, and several other hazardous chemical compounds. Detecting 

dangerous materials, especially explosives, is challenging and essential for homeland 

security. The aftermath of an explosion leaves the scene with traces mixed with soil and 

other interferents. Developing the methods to analyze these traces is highly demanding as 

it could help understand the materials used and will be helpful for securely tackling the 

situations in future encounters. Also, probing suspicious materials from standoff distances 

and near fields is equally crucial for security purposes. The laser-based spectroscopic 

techniques are advantageous for precisely investigating the surfaces at desired locations 

by focusing the laser beam and delivering the required power at longer distances. The 

directionality of the lasers for providing the required intensities at the desired location is 

hugely beneficial in standoff spectroscopic studies. Various laser-based techniques 

engaged in explosive detection, either destructively or non-destructively, are (a) laser-

induced fluorescence [1–6], (b) Raman spectroscopy [7–10], (c) infrared spectroscopy and 

imaging [11],  (d) laser-induced breakdown spectroscopy (LIBS) [12], (e) terahertz (THz) 

imaging and spectroscopy (f) photoacoustic spectroscopy, with their advantages and 

disadvantages, should be judiciously selected based on the requirement. They all have a 

common advantage of being able to perform standoff measurements. Based on the 

wavelength of the laser sources used and the underlying fundamental principles, the 

intensity of the source, the technique can be either destructive or non-destructive. Some 

techniques are extremely sensitive, while some are advantageous in probing the sample 

from standoff distances. For example, Raman spectroscopy offers better sensitivity for 

both solid and liquid samples non-destructively. THz radiation is non-ionizing and 

considered ideal when probing for hidden objects under clothes and in non-metallic 

containers. Infrared radiation helps interrogate the suspicious and hazardous compounds 

and rapid imaging of traces on surfaces from standoff distances, from the vibrational 

spectra, with earlier recorded/reported databases of chemical and dangerous biological 

compounds and explosives. 
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In the LIBS technique, the intense pulsed lasers are focused on the sample to vaporize it 

and for the formation of plasma at later stages. The recombination in the cooling plasma 

emits radiation with characteristic elemental signatures simultaneously. LIBS offers a few 

advantages over other optical emission spectroscopy techniques; this technique detects 

almost every element in the periodic table. With a couple of initial cleaning with laser 

pulses, the sample is ready to probe, i.e., it requires significantly less sample preparation. 

It is a rapid technique for data acquisition, and combined with computation tools, real-time 

analysis is possible. Tuned lasers are not required, as in the case of other techniques where 

the laser incident wavelength is matched with the specific transitions of the sample. Pulsed 

lasers of a few tens of mJ energy per pulse are enough for this technique to interrogate any 

sample. Rapid elemental mapping with high spatial resolution and good depth profile 

studies. The experimental setup is simple compared to the other techniques. Easily coupled 

with other laser-based spectroscopy techniques like Raman and infrared to acquire 

complementary information from the sample, which is helpful for better identification 

[13]. LIBS can be extended to standoff studies when intense pulsed lasers (fs) are 

employed. A few of the disadvantages are (a) collecting only the information regarding 

atomic species (not a signature spectrum) in investigating the compounds, (b) and 

unavoidable matrix effects, (c) self-absorption (d) self-reversal. 

 Atomic spectroscopy 
 

 
Figure 1.1 Energy level diagram of a hydrogen atom with the energy levels merging towards the 
higher energies into a continuum [14]. 
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Figure 1.1 shows the energy level diagram of the hydrogen atom with the difference 

between the energy levels reducing and merging into a continuum of levels with increasing 

energy. The radiation is emitted and absorbed in discrete packets of energies equal to the 

energy difference between the two levels.  The frequency of the spectral line resulting from 

a transition between the two levels is given by hν12 = E2 −E1.  Figure 1.2 shows the 

dependency of the absorption and emission between two energy levels, E2 and E1, 

populated with N2 and N1, and the radiation density ρ, respectively. In LIBS, the intense 

pulse focused on the sample results in the absorption of multiple photons  

 

Figure 1.2  The transition between two energy levels with the emission in red and absorption in 
blue between two energy levels [14]. 

Figure 1.2 shows the three possible transitions between the two levels are stimulated 

absorption (in blue), spontaneous emissions (in red), and spontaneous absorption (in red). 

 The spontaneous emissions per second, per cm3
, depends on the population in the 

E 2 level and the transition probability per second A21 from level E2 to E1 and is 

equal to A21N2 

 The stimulated emission and absorption also depend on the number of photons 

available or the radiation density ρ. 

 The probability of stimulated absorption per second per cm3 equals ρB12N1 

sec−1cm−3. 

 The probability of stimulated emission per second per cm3   is equal to ρB21N2 

sec−1cm−3. 
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A21 is Einstein’s coefficient for spontaneous emission, B21 for stimulated emission, and 

B12 for stimulated absorption. These are characteristics of the atom which can be 

determined from the wave function of two states.  

From the dipole approximation, the transitions between the two states must satisfy the 

selection rules for angular momentum quantum number J and spin-orbit coupling L. 

Transitions that are prohibited in the dipole approximation may appear faintly. The line 

strength of a transition depends on the transition probability and the plasma system. When 

the plasma is thick, the light is re-absorbed before leaving the plasma resulting in self-

absorption. The temperature difference in the outer and inner cores leads to self-reversal. 

In the ideal case, the free atom radiates with the intensity in the Lorentzian profile spread 

over a frequency range. The thermal energy contributes to the random motion of the atom, 

and the radiating atom moving in different random directions results in Doppler 

broadening with intensity in the Gaussian profile over a frequency range. The atoms in 

plasma also experience electric fields of moving electrons and ions, resulting in two kinds 

of broadening in the spectral line a) broadened by quadratic Stark effect results in an 

asymmetric spectral line as its center shifts to longer wavelengths, b) linear Stark effect 

gives rise to symmetrically broadened line shapes [14]. 

 Laser-matter interaction and LIBS 

The electric fields in the pulsed lasers [corresponding peak intensities in the range of a few 

tens of GW/cm2] are sufficient to break down the sample when focused. Typically, 108–

1010 W/cm2 is required to produce laser-induced plasmas. The threshold power densities 

for ablation depend on the material and the laser pulse width of typically sub-picoseconds, 

as shown in equation 1.1. 

௠௔௫ܦܲ = ௩   ඨܮߩ
݇
߬ ൬

W
ܿ݉ଶ൰ … … … … … … … … … … … … … . (1.1) 

PDmax is the required power density for ablation, where ρ is the density and Lv is the latent 

heat of vaporization, k is the thermal diffusion of the material, and τ is the laser pulse width 

[15]. The sample absorbs the laser pulse energy through the inverse bremsstrahlung 

process. The sample in the focal region passes through a series of phases. Finally, it forms 

plasma because of rapid ionization from the absorbed energy at the focal point, and the 

absorption may differ depending on the input laser pulse duration. The intense electric 
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fields of the focused laser pulses displace the electrons from the atoms on the sample 

surface within a few picoseconds, and ejected electrons transfer energy to the lattice by 

collisions heating the sample and vaporizing the sample at the focal point resulting in the 

formation of plasma. The excitation of specific energy levels in different atoms is 

multifaceted, and the aspects such as thermodynamic equilibrium and interplay with other 

molecules and atoms, ions in the plasma determine it. The plasma formed is reheated 

towards the end and cools after the pulse duration. The energy is transferred to the medium 

by radiation, conduction, and shock wave expanding into the medium. The decelerating 

electrons in the cooling plasma emit continuum radiation resulting from the 

bremsstrahlung process. The free electrons recombine with the ions resulting in ionization 

peaks and atomic peaks, radiation specific to the elements, and molecular peaks when the 

ions in the plasma recombine with the atoms in the atmosphere and other ions in the 

plasma. In the case of nanosecond LIBS, the plasma decays throughout one to several 

microseconds. In the case of femtosecond LIBS, it decays in an interval of 100 ns to one 

microsecond and depends on the laser energy deposited. The time scales are different when 

working at other pressures and shorter in a vacuum than in an open atmosphere. 

The ultrashort pulses provide better ablation efficiency and a lower threshold when 

compared to the nanosecond and picosecond pulses. While the electron density is 

independent of the laser pulse duration, earlier reports suggest a slight increase in the 

plasma electron temperature. The ablation thresholds were smaller for the fs pulses, and 

they showed better efficiency in material ablation with extraordinary precision and 

minimal damage. The cost of the fs lasers makes it less appealing for LIBS, even though 

they offer better spatial resolution in imaging. And divergence-free propagation and self-

focusing (filamentation) of the fs pulses was useful for standoff studies and better detection 

limits (LOD) with the fs lasers. The gated and intensified detectors with appropriate gate 

delays and gate widths optimal to laser pulse duration are efficient for LIBS studies 

compared to the conventional non-gated linear array detector spectrometers. However, one 

can choose different detectors based on the application envisaged. 

 Application of LIBS   

Several advantages of LIBS made it famous, and have found applications in different 

fields, including the classification of archeological, teeth, and geological samples for 

identifying the place of origin and in planetary exploration. Additionally, it is used 
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extensively in classifying biological and pharmaceutical samples. The technique is also 

expansively used in the detection of explosives in traces both in the near field and standoff 

distances desirable for homeland security. Based on the requirement in various fields in 

science, technology, art, archeology, and industry, the LIBS technique mutated into wide 

varieties with required changes for specific needs. Double pulse [16–23] and magnetic 

confinement LIBS result in a better signal-to-noise ratio(SNR). Double pulse LIBS 

enhanced the signal for a better LOD and SNR in the near field and standoff distance. 

Standoff LIBS is convenient in probing hazardous samples and samples inaccessible and 

in hostile conditions [17, 26-71], and it makes the LIBS more appealing for real-time 

applications. Among the different lasers used in the standoff studies, fs pulses have an 

additional advantage of filamentation phenomenon by which the laser pulses, while 

propagation, and tend to focus instead of diverging as in the case of longer pulses. The 

filamentation is beneficial in the standoff studies of various compounds  [72–93]. 

Nanoparticle-enhanced LIBS (NE-LIBS) utilizes nanoparticles for enhancing the LIBS 

signal and, in turn, the limit of detection (LOD). The use of nanoparticles improves the 

coupling of the laser pulse energy to the sample by local field enhancement and the 

formation of multiple hotspots at the focal spot.   

 

Figure 1.3 Critical points in the history of LIBS and its applications to diverse fields. 
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The enhancement in the emission signal up to 1-2 orders of magnitude by employing NPs 

on the surface is helpful in the microdroplet analysis and the study of samples in traces 

[94–131]. The advantage of rapid, simultaneous multi-elemental data acquisition in LIBS 

with enormous data attracts innovative data analysis techniques from deep learning 

algorithms. Achieved the classification of different compounds and the quantification of 

the elements effortlessly using this algorithm [132–145]. Figure 1.3 summarizes the key 

points of the earlier studies and the kinds of laser sources, samples, and detectors 

predominantly used in LIBS studies. Figure 1.4 summarizes a few significant 

achievements and the earlier reported LIBS studies published by our group. 

Figure 1.4 Critical points on the contributions to LIBS studies from our group. [146-148]. 

Earlier studies have been reported extensively on the LIBS of the explosives on RDX, 

HMX, NTO, AN, AP, and novel nitropyrazoles/pyrazoles [12]. The group advanced in 

discriminating explosives and organic compounds with ratiometric analysis [149,150]. 

They detailed time-resolved studies of the organic compounds [151]. They investigated 

the effect of the pulse width [152] and the surrounding environment of air, nitrogen, and 

argon on the LIBS of various explosives [153] and the correlation between the LIBS 

spectra and detonation parameters of the novel explosive molecules and their structure 

[154-156] in the near field configuration. The group carried out standoff studies in the 

discrimination of explosives (achieved an enhancement in the LIBS signal by introducing 



8 
 

the nanoparticles), and other standoff studies were revised [157,158], metal alloys, and 

geological samples. Further, they used principal component analysis (PCA) for better 

discrimination of the target samples from the low SNR standoff LIBS signal.  

In continuation of the earlier achieved milestone in our group, we made advances in 

analyzing standoff LIBS signals in building machine-learning models to quantify the alloy 

samples. Significant achievements in handling the sparse powder samples and 

nanoparticle-enhanced LIBS. We further made valuable developments in standoff 

instrumentation. Figure 1.5 summarizes the present thesis's considerable contribution to 

LIBS studies.  

Figure 1.5 Key points on the contributions to the LIBS from the present thesis. 

 Difference between femtosecond and nanosecond LIBS 
The alteration in the mechanisms because of the difference in the peak powers and the 

pulse width of the laser sources influences the LIBS studies differently with two different 

plasma formation pathways involved. Table 1.1 summarizes the main features and the 

differences between ns and fs LIBS studies. It is evident that fs LIBS or filament LIBS is 
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advantageous compared to ns LIBS in terms of (a) energy delivery at the desired location, 

(b) propagation of the pulses over long distances, (c) molecular emissions assisting in 

superior identification, and classification (d) better LIBS signals in the case of fs LIBS. 

Table 1.1 Summary of the differences between ns and fs LIBS. 

Sl. 
No. 

Nanosecond LIBS Femtosecond LIBS

1 Generally, they are cost-efficient and 
portable 

Costly (compared to ns lasers) and 
bulk/ portable systems are 
available 

2 Loss of beam quality as the laser propagates 
in the atmosphere over long distances.  

Loss of beam quality is negligible 
in the propagation of long 
distances (even a few kilometers). 

3 Continuum emissions dominate during the 
initial time delays. 

Continuum emissions are 
negligible at any time delay. 

4 The excitation of the atom is not 
reproducible, resulting in lower precision 
and sensitivity in LIBS studies. 

The excitation of atoms is 
reproducible, resulting in sensitive 
and precise LIBS studies.  

5 The beam diffraction occurs, and the 
atmospheric effect is dominant during 
propagation.  

Atmospheric effects are low as the 
self-focusing phenomenon occurs. 

6 Variation in the shot-to-shot pulse energies 
results in fluctuation in LIBS spectra. 

The clamping in filamentation 
irradiance stabilizes the shot-to-
shot variation in filamentation 
LIBS spectra. 

7 The Rayleigh range is limited in the ns case, 
which requires fine adjustments in the 
focusing distance. 

The filamentation, usually a few 
cm long, needs fewer fine 
adjustments during standoff 
studies. 

8 Atomic and ionic emissions are dominant in 
the nanosecond LIBS spectra. 

Molecular emissions are also 
dominant, along with atomic and 
ionic emissions in the fs LIBS 
spectra. 

9 Beam expanders and focusing optics are 
required for standoff studies for required 
irradiance at longer distances and become 
impracticable in some cases. 

The filamentation provides 
necessary irradiance even at long 
distances with no focusing optics. 

 

The difference in the laser matter interaction, time scales involved and the plasma 

evolution process in ns and fs ablation are depicted in figure 1.6, adopted from the work 

of Harilal et al. [159]. 
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Figure 1.6  Contrasting the evolution processes of the plasma from the ns and fs laser pulse 
interaction with the matter (figure adopted from Harilal et al. [159]).  

 Instruments and analysis used in the present thesis 

1.6.1 Color CCD camera 

The common color CCD cameras have Bayer's filters with red, blue, and green channels 

mosaic, with different sensitivities. The camera records the video at 30 frames per second, 

and each frame has three channels red, blue, and green. The color images of the plasma 

emissions from different target vary slightly. The low-resolution spectra, like images from 

different samples, are used to identify different samples when combined with machine 

learning algorithms. 

1.6.2 Two-dimensional correlation analysis 

The system's response is recorded when a systematic perturbation is applied, and the 

corresponding spectra are used for the two-dimensional correlation analysis. The electron 

temperature, the number density decay with time, and the corresponding time-resolved 

spectra could be used for the two-dimensional correlation analysis. It has both synchronous 

(which is symmetrical) and asynchronous (asymmetrical) spectra. It helps understand the 

cross-correlations between different spectral modes and the autocorrelations of the same 

modes. It is also useful in improving the signal-to-noise ratio (SNR) and the resolution of 
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the peaks.  The NMR, IR, and Raman spectra recorded with systematic perturbations on 

the system are analyzed using this analysis [160-163]. 

1.6.3 Principal component analysis 

Principal component analysis (PCA) is an easy and popular technique for dimensionality 

reduction. It uses the eigen vectors and eigen values of the covariance matrix. The 

directions are orthogonal to each other, in which the data's maximum variance is 

considered. The PCA is extensively used in conjunction with the LIBS for the 

classification of materials in various applications like identification of explosives [38, 

60,158], plastics sorting [62], soil analysis [142], alloy discrimination [40,161,162], etc., 

the usage of the PCA in LIBS were reviewed explained elaborately [163]. PCA reduces 

the dimensionality of a given dataset, which at first has many variables and features. 

Dimensionality reduction is achieved by orthogonally transforming a data set into a new 

coordinate system. Scores are assigned to the new variables. The PCs are the axes along 

which there is the most data fluctuation.  

1.6.4 Support vector machine 

Support vector machine (SVM) is a supervised machine learning technique that can be 

used to solve classification or regression issues. Each sample is represented as a point in 

the n-dimensional space where n is the total number of features in each sample. The next 

step is classification, which is done by locating the hyper-plane that effectively separates 

the two classes. Simply put, support vectors are the coordinates of a single observation. 

The SVM classifier is a frontier that best distinguishes between the two classes (hyper-

plane/line) [132]. 

1.6.5 Artificial neural networks 

A non-parametric supervised learning approach known as an artificial neural network 

(ANN) is used in predictions and pattern recognition applications like weather forecasting, 

fraud detection, image identification, etc. An input layer, hidden layers, optimizers, 

activation function, backpropagation, and loss are all used. It functions similarly to the 

information processing compared to the biological nervous system. It creates a nonlinear 

mathematical model to establish significant correlations between the input and output 

variables. The development and operation of a neural network depend on a vast number of 

interconnected neurons, which make up the ANN architecture. Weight (the strength of the 
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interneuron connections) and bias serves as synapse in ANN. Each synapse links the first 

unit of one layer to the second unit of a different layer. It learns during the learning phase 

by adjusting the interneuron connection strengths (weights) based on the knowledge. One 

hidden layer of an ANN is sufficient for approximating any complex nonlinear function, 

and it is established in the real-time measurements of soil samples on-site [166]. The 

forward propagation strategy of the algorithm starts with random values for the weights 

and bias in the first iteration. The output that the ANN has predicted is then matched to the 

actual input, and the resulting error is used in a back-propagation approach to change the 

bias and weights for the subsequent repetition. This process repeats until the error 

converges to a smallest value. ANNs are used in LIBS for the self-absorption correction 

of the peaks [167] and extensively in quantification studies [168-170]. 

1.6.6 Beam steering  
 

Arduino Uno microcontroller with the CNC shield and NEMA 17 stepper motors have 

found application in 3D printing wood carving and wood burning and cutting fields. This, 

combined with the kinematic mirror mounts coupled to stepper motors, are useful in 

precise and rapid beam steering. Kinematic mirror mounts are equipped with two 

differential adjuster screws with a resolution of move 25-micron per revolution resulting 

in a high precision adjustment in the alignment of the beam. The actual images of the 

stepper motor, CNC shield, and Arduino Uno are presented in figure 1.7. 

 
Figure 1.7 (a) stepper motor (b) CNC shield (c) Arduino Uno microcontroller used for the 
automation of the beam steering (photograph of the components used). 
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1.6.7 Schmidt-Cassegrain telescope in standoff LIBS 

In a standoff LIBS uses additional optics to focus the laser on the sample at a distance and 

collect the distant plasma emissions. For the collection, the Schmidt-Cassegrain telescope 

(SCT) is typically employed. The Schmidt-Cassegrain is the combination of a spherical 

primary mirror, a secondary mirror, and a Schmidt corrector plate, an aspheric lens used 

to correct the spherical aberration caused by the spherical primary mirror. The rays that 

enter the optical system travel three times the length of the optical tube. This design is 

incredibly compact, has large-diameter optics, relatively small tube lengths, and a mobility 

option. The SCT's schematic is depicted in figure 1.8. 

 

Figure 1.8 Various components of the Schmidt–Cassegrain telescope (SCT) typically used for 
the collection of standoff LIBS. [https://en.wikipedia.org/wiki/File:Schmidt-Cassegrain-
Telescope.png] 

1.6.8 Perspective on the mechanism(s) of nanoparticle enhancement LIBS 

The threshold power density for breakdown of solid targets (silicon, titanium, copper, iron, 

teflon, Brass, and steel, as well as bronze) with Ag nanoparticles (NPs) on the surface was 

observed to be lesser than those without NPs [128]. Using a pulsed laser, Sherbini et al. 

[126] investigated the differences between bulk and ZnO nanomaterial in the Zn I spectral 

lines from the optical emissions in LIBS. The Zn I spectral lines depicted a significant 

improvement, but the Hα line showed signs of deterioration. By observing that the same 

factor does not enhance all the peaks, it is concluded that the relative atomic density 

influence the enhancement. Plasma temperature, electron density, and relative ground state 

population as a function of time were considered in the studies [126]. The improvement of 

the NELIBS signal was addressed by De Giacomo et al. [107] using surface plasmon 
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resonance and the Keldysh parameter (g), which distinguished between multiphoton 

ionization and field emission. The stylus profilometer was used to study the craters. The 

lack of difference between the craters in LIBS and NELIBS suggests that the ablated mass 

was not the cause of the enhancement. With this finding, it is concluded that the 

improvement is due to the additional energy delivered to the ejected mass. These 

investigations appear to be quite illuminating for comprehending the NELIBS [126]. The 

EF was described by Werner et al. [110], including a single NP evaporating when heated 

above its melting temperature, an ejected electron, and NPs exploding and shrinking in 

size. Quantum chemistry variation methods are used to comprehend the mechanism 

underlying the enhancement. This model was used to investigate enhancement, which 

relies on NPs size, concentration, and dispersion, using templates of NPs linear, one-

dimensional, and two-dimensional chains [172]. From the time-resolved studies, Giacomo 

et al. confirmed a temporal delay in the emission of NPs compared to the substrate.  

 Thesis organization & chapter-wise details 

1.7.1 Introduction 

The chapter 1 briefs on various laser-based techniques used to detect hazardous 

compounds. Discussed the fundamental aspects of the laser-matter interaction and the 

phenomenon which leads to the plasma and emissions from the recombination of free 

electrons and ions in the plasma laying path for LIBS. The overview of the laser-induced 

breakdown spectroscopy and variations in the LIBS technique. On the advances in the 

LIBS technique and the machine learning algorithms used in the data analysis in the LIBS 

technique.  

1.7.2 Experimental details 

The chapter 2 discusses the components of the LIBS experiment. 

1. Ti: sapphire amplified femtosecond pulsed laser and Nd: YAG3+ based nanosecond 
pulsed laser sources used to generate microplasma.  

2. It uses the translation stages and motion controllers for sample displacement.  

3. Optical components were revised, like lenses, optical fibers, and telescopes used for 
standoff studies. These focus on the laser pulses and collect plasma emissions from 
the ablated target. 

4. The gated and non-gated detection systems, such as spectrographs and other 
detectors 



Chapter 1 

15 
 

5. Computers control the detector's gate delay and width and store the spectrum after 
acquisition. 

6. Further, used nanosecond LIBS spectra of Au-Ag alloy with varying compositions 
to estimate the plasma temperature. We utilized Boltzmann plots for this study. 
Further discussed is a novel femtosecond experimental configuration in detecting 
powdered sparse samples.  

 L. M. Narlagiri and V. R. Soma, "Plasma Temperature Evolution with Varying 
Compositions in an Alloy Using Laser Induced Breakdown Spectroscopy," in Frontiers in 
Optics + Laser Science 2021, C. Mazzali, T. (T.-C.) Poon, R. Averitt, and R. Kaindl, eds., 
Technical Digest Series (Optical Society of America, 2021), paper JW7A.29. 

1.7.3 Machine learning and deep learning in LIBS 

Chapter 3 discussed using machine learning algorithms in LIBS for classification and 

quantification studies. The usage of the principal component analysis (PCA), support 

vector machine, and artificial neural network in the analysis of LIBS data are in this 

chapter. The performance of the simple non-gated spectrometers could be improved using 

machine learning algorithms in both classification and quantification studies. We discuss 

a novel experimental method that utilizes the color (from charge-coupled device popularly 

known as CCD) images of the laser-induced plasma emissions along with the PCA and 

SVM algorithms in the classification of metals and alloys were detailed. It discusses the 

use of time-resolved spectra to develop the deep learning model. The model is used to 

quantify Au and Ag in bimetallic alloys simultaneously. 

 Narlagiri, L. M., & Rao, S. V. (2020). Identification of metals and alloys using color 
CCD images of laser-induced breakdown emissions coupled with machine 
learning. Applied Physics B, 126, 1-8. doi.org:10.1007/s00340-020-07469-6 

     Narlagiri, Lingamurthy, and Venugopal Rao Soma "Simultaneous quantification of 
Au and Ag composition from Au–Ag bi-metallic LIBS spectra combined with shallow 
neural network model for multi-output regression." Applied Physics B 127.9 (2021): 1-
11. doi:10.1007/s00340-021-07681-y 

1.7.4 Two-dimensional correlation analysis in LIBS 

In  chapter 4, the application of the two-dimensional (2D) correlation analysis to the LIBS 

data is briefed. The SNR of the standoff LIBS spectra is poor as compared to the nearfield 

studies, and it reduces with the increasing standoff distances. We demonstrate the 

improvement in the SNR of the LIBS spectra from the time-resolved spectra of metals like 

aluminum, copper, and Brass and the spatially resolved standoff LIBS spectra. We used 

time-resolved spectra of aluminum for autocorrelation. And varying compositions of the 

Au-Ag spectra for the cross-correlation studies of LIBS peaks, respectively. Discussed this 
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analysis's advantage in classifying different compositions of Au-Ag alloy and improving 

the SNR of the standoff LIBS data.  Figure 1.9 shows the gated acquisition of the LIBS 

spectra. 

 

Figure 1.9 Acquisition of the LIBS spectra using a gated spectrometer for time-resolved studies. 

   Narlagiri, Linga Murthy, and Venugopal Rao Soma. "Improving the signal-to-
noise ratio of atomic transitions in LIBS using two-dimensional correlation 
analysis." OSA Continuum 4.9 (2021): 2423-2441. doi:10.1364/OSAC.426995 

1.7.5 Nanoparticle enhanced LIBS  

Chapter 5 discusses that LIBS signal can be improved using the nanoparticles on the 

sample and could be particularly useful in detecting traces, demonstrating the 

improvement in the limit of detection (LOD). In this chapter, we briefly described the 

enhancement mechanism using nanoparticles in LIBS studies and its importance in 

detecting samples in traces. We also present the femtosecond NE-LIBS studies of 

acetonitrile in water. The enhancement in the CN violet band in the LIBS spectra of 

solution with and without nanoparticles. We demonstrated the enhancement in the 

aluminum atomic peaks and AlO molecular peaks in the fs-LIBS spectra of an aluminum 

sheet coated with the nanofibers embedded with the gold nanoparticle.  

 Linga Murthy N., Rao S.V. (2021) Nanoparticle Enhanced Laser Induced Breakdown 
Spectroscopy of Liquids. In: Singh K., Gupta A.K., Khare S., Dixit N., Pant K. (eds) ICOL-
2019. Springer Proceedings in Physics, vol 258. Springer, Singapore. 
https://doi.org/10.1007/978-981-15-9259-1_105 

 Kalam, S. A., Murthy, N. L., Krishna, J. R., Srikanth, V. V. S. S., & Rao, S. V. (2016, 
December). Nanoparticle enhanced laser-induced breakdown spectroscopy with 
femtosecond pulses. In International Conference on Fibre Optics and Photonics (pp. Th3A-
89).Optical Society of America. doi:10.1364/photonics.2016.th3a.89 
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 Linga Murthy Narlagiri, Venugopal Rao Soma, "Nanoparticle Enhanced LIBS for Sensing 
Applications," Laser-Induced Breakdown Spectroscopy (LIBS): Concepts, Instrumentation, 
Data Analysis and Applications, Eds: Dr. Vivek K. Singh, Prof. Y. Deguchi, Dr. Zhenzhen 
Wang, and Dr. Durgesh K. Tripathi, John Wiley & Sons, In Press, 2022. 

1.7.6 Automation in the standoff FIBS studies 

Chapter 6 discusses the femtosecond standoff filamentation-induced breakdown 

spectroscopy (fs-ST-FIBS) of possible interferents in fs ST-LIBS like plastic, soil, and 

metal samples and their classification studies using PCA. Earlier standoff studies used a 

translational stage for displacing the sample. To get a new spot for better interaction and 

good SNR, which is impossible in real-life scenarios, we present a rapid beam steering 

with a good precision technique for real-life situations. In detail, we discussed the novel 

instrumentation procedure for the fast and precise beam steering using the readily available 

and easy-to-handle Arduino and CNC shield and the universal G-code sender (UGS). 

Further, we discussed the importance of rapid beam steering when working with kHz 

femtosecond pulses. The instrumentation steered the beam to acquire better FIBS spectra 

of plastic samples, metals, and metal alloys to classify Au-Ag spectra. 

 Murthy, N. L., Kalam, S. A., & Rao, S. V. (2019, December). Stand-off Femtosecond 
Laser-Induced Breakdown Spectroscopy of Metals, Soil, Plastics and Classification 
Studies. In 2019 Workshop on Recent Advances in Photonics (WRAP) (pp. 1-3). IEEE. 
doi:10.1109/WRAP47485.2019.9013674 

 L.M. Narlagiri, C. Byram, S.K. Satani, V.R. Soma, Laser beam steering automation with 
an Arduino-based C.N.C. shield for standoff femtosecond filament-induced breakdown 
spectroscopic studies, Appl. Opt. 61 (2022) 4947–4955. doi:10.1364/AO.453824. 

 Linga Murthy Narlagiri, Venugopal Rao Soma,* "Recent developments in standoff 
laser-induced breakdown spectroscopy," Laser-Induced Breakdown Spectroscopy (LIBS): 
Concepts, Instrumentation, Data Analysis and Applications, Eds: Dr. Vivek K. Singh, 
Prof. Y. Deguchi, Dr. Zhenzhen Wang, and Dr. Durgesh K. Tripathi, John Wiley & Sons, 
In Press, 2022. 

1.7.7 Conclusions and future scope 

The chapter 7 summarizes the progress achieved during the Ph.D. The chapter also 

discusses the improvements required in the LIBS experimental setup. And the analysis of 

the LIBS data, along with the instrumentation innovations, is necessary for standoff studies 

in the trace detection of hazardous compounds. We anticipate that the conclusions drawn 

from the results and difficulties faced in our studies will help detect explosives in the real-

world scenarios presented.  
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2 Experimental details and initial nanosecond, femtosecond 
LIBS studies  

 Experimental details  

In this chapter, we introduce the procedure of Q-switching for the generation of ns laser 

pulses, the measurement of the laser pulse width using the photodiode, and the triggering 

of the ICCD spectrometer with input from the laser. The use of the nanosecond pulses for 

LIBS application, like estimating the gold-silver alloy plasma temperature. Also, the 

phenomenon of mode locking used for the generation of femtosecond pulses using the 

Kerr lensing method is detailed. We detailed the process of femtosecond pulse 

amplification. Reported the measured femtosecond pulse width from the autocorrelation 

technique. We have also briefed on the components of the CCD-based non-gated and 

ICCD-based gated spectrometers, along with the optical fiber and telescope specifications. 

Further, a novel experimental geometry demonstrates the fine powder sample's 

filamentation-induced spectroscopy (FIBS). 

 Nanosecond laser 
Usually, Nd: YAG crystal is used in the generation of nanosecond pulses at 1064 nm in 

the far infrared and is frequency doubled using the KDP crystal to 532 nm in the visible 

region and frequency tripled 256 nm in the UV region. It utilizes the Q-switching technique 

in acquiring the nanosecond pulses with high intensities enough to ablate the sample when 

focused. We have used the commercially available nanosecond laser SpitLight 1200 (the 

number denotes the energy of the pulses 1200 mJ) by Innolas for the present studies. The 

system uses Xenon-filled flash lamps for pumping the gain medium. 

2.2.1 Q-switching 

A low Q-factor of a cavity signifies high losses and low photon density in the laser cavity 

and switching from low to high Q-factor results in high photon density in the cavity, 

stimulating the inversion in the lasing material. The upper-level lifetime of the Nd: YAG-

based laser is 250 µsec. The time it takes before the intensity of the spontaneous emission 

decreases to 1/e of the initial value when the pumping field is switched off. By adding 

losses in the cavity, we reduce the optical feedback in the laser cavity, and the cavity 

feedback switches back on after a large inversion. Figure 2.1 depicts the method of Q-

switching. There are usually two methods for Q-switching a) active and b) passive. In 
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active Q-switching, the losses are modulated using acousto-optic or electro-optic 

modulators and rotating mirrors. In Passive Q-switching, a saturable absorber controls the 

losses based on photon densities in the cavity. A saturable absorber modulates the losses 

to a sufficiently high level.  

 

Figure 2.1 The steps involved in Q-switching in the nanosecond laser. 
 

2.2.2 Q-switching using the Pockels cell 

The Pockels cell contains of a birefringent crystal that alters the polarization of the optical 

beam under an electrical field's influence. The light (stimulated emission) has a definite 

state of polarization, and at a specific voltage, the cell acts as a quarter wave plate. The 

components used for Q-switching are shown in figure 2.2. 

 

Figure 2.2 The major components of the nanosecond laser combining the Pockels cell and two 
polarizers used for Q-switching. 
 

The Pockels cell voltage and the polarizer P1 are adjusted so that the plane-polarized light 

becomes elliptically polarized after passing through the cell. Light does not pass through 
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the polarizer P2 as the plane of polarization is perpendicular to the initial plane of 

polarization. At this stage, the cell acts as a closed shutter with no feedback into the cavity 

reducing the stimulated emission. After achieving the good population inversion, the 

electric field is switched off, the plane-polarized light passes through the cell, and the 

polarizer P2 is without any loss. At this stage, the cell act as an open shutter. The voltage 

applied to the cell determines the high Q (light stays inside the resonator) or low Q (light 

leaves the resonator).  

 Femtosecond laser and ker lens mode locking  

Kerr lens mode locking in the nonlinear crystal like Ti: Sapphire with high absorption and 

emission bandwidth generates femtosecond pulses at 800 nm. The pulses at very low 

energy are amplified six orders of magnitude higher by the chirped pulse amplification 

(CPA). The Ti: sapphire-based amplifier (legend-HE, coherent) amplifies the fs pulses 

from nJ to mJ at a 1 kHz repetition rate at 800 nm central wavelength and ~ 50 fs and ~28 

nm bandwidth (FWHM). Figure 2.3 shows the absorption and emission bands of the Ti: 

sapphire crystal. 

 
Figure 2.3 The broad absorption range in the visible region and the broad emission in the infrared 
region of the Ti: sapphire crystal is helpful in pumping in with a wide range of lasers and also 
results in a large number of modes. [Adopted from the website 
https://micro.magnet.fsu.edu/primer/java/lasers/tsunami/index.html ]. 

Several longitudinal modes contribute in the lasing process. Yet, they are not necessarily 

in phase with one another at a cavity mirror, leading to fluctuations in the output power. 

These laser modes in-phase are coupled at the mirror. In that case, constructive interference 

occurs causing an ultrashort pulse. Modes under the gain bandwidth can lase concurrently, 



32 
 

giving rise to a laser bandwidth of NΔν. Suppose these modes are also locked together in 

phase. In that case, they interfere to produce a succession of intense pulses separated in 

time, behaving like Fourier components of a periodic function. Small fluctuations like 

changing the cavity length can induce mode-locking in the cavity. The atoms in the 

material can be distorted with large electric fields and alter the refractive index. With high-

intensity lasers, this effect is called the Kerr effect. The refractive index is modified 

according to the beam's intensity distribution. As the intensity is maximum at the center 

and falls radially outwards, a gradient index lens is called the Kerr lens. The Kerr lens 

effect reduces the beam diameter when the pulses are intense or mode-locked. Kerr lens 

mode locking is a passive mode-locking technique. The slit at the output is placed only to 

allow the narrow mode-locked pulses but not the broad continuous wave. Unlike the other 

approaches based on transient effects within a laser cavity, mode locking is a dynamic 

steady-state process. Figure 2.4 (a) shows the Ti: Sapphire crystal used to generate the 

mode-locked femtosecond pulses and the chirped mirrors used for the compensation of the 

GVD. Figure 2.4 (b) shows the Nd: YVO4-based frequency-doubled laser for pumping the 

Ti: Sapphire. 

 
Figure 2.4 (a) The schematic of the femtosecond seed generation with pumping (Vitesse) (b) The 
Nd:YVO4  based pumping the Ti:Sapphire crystal (Verdi  laser)  (b)  The Verdi laser with 
Nd:YVO4  gain medium. [Adopted from Vitesse Laser Operator’s Manual 
https://www.coherent.com/resources] 

As the number of lasing modes increases, the mode-locking and Kerr lens effect becomes 

persistent. Once achieved, the mode-locking persists without any initiation mechanism. 

The speed of light in an optical medium depends on its wavelength. As a result, the 

different wavelength components of the ultrashort pulses traveled at different speeds, 

causes temporal reshaping of the pulse, and is called group velocity dispersion. The pulse 

is either broadening or shortening depending on the initial condition, like the pulse chirp. 

As a result of negative GVD, the blue spectral components of the pulse are retarded to red, 

called positively chirped. The red components are retarded in the positive GVD material, 
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and the pulse is negatively chirped. The intensities in the ultrashort pulse are low at the 

leading and tailing edges and high at the center. The intensity-dependent Kerr effect 

modifies the refractive index of the material. As a result, the central part and leading, 

trailing edges move with different velocities altering the pulse shape. The frequency 

components are phase-shifted depending on where they occur in the pulse, generating new 

frequency components and introducing a positive chirp. The pulse undergoes GVD and 

self-phase modulation every time it traverses the cavity. Multi-layer dielectric-coated 

mirrors with high reflectance tackle GVD by introducing wavelength-dependent phase 

delays. Figure 2.4(a) is the schematic of the Vitesse laser generating the mode-locked 

pulses with non-dispersive mirrors (chirped mirrors) for the GVD compensation, and 

figure 2.4(b) is the Verdi laser pumping the Vitesse with ring cavity with Nd: YVO4 gain 

medium and LBO doubling crystal. The gain medium has the highest absorption 

coefficient at 808 nm (easy to pump using diode lasers), performs well with shorter crystal 

lengths, and demonstrates a four-time larger stimulated emission cross-section than ND: 

YAG with strong single line emission at 1064 nm. 

2.3.1 Chirped pulse amplification  

The peak power of the fs pulses is high enough to initiate nonlinear processes like self-

focusing in the gain medium. Further, it could damage the optics during the amplification 

process. Gérard Mourou and Donna Strickland devised a technique called chirped pulse 

amplification (CPA) to avoid such damage. The pulses passed through multiple stages for 

amplification. 

Figure 2.5 The process of the CPA with the stretcher grating, the amplifier, and the compressor 
grating [https://cuos.engin.umich.edu/researchgroups/hfs/facilities/chirped-pulse-amplification/]. 
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Initially, the grating disperses the incident beam into its components resulting in the 

stretching of the pulses. The broadband femtosecond pulses are stretched to picosecond 

pulses (stretched ~10,000 times) by configuring greater path lengths for bluer frequencies 

than the redder components. The redder frequencies exit the stretcher first, resulting in the 

stretched pulse. Ti: sapphire-based regenerative amplifier uses low-energy seed laser 

pulses and a pumping nanosecond Nd:YLF (at second harmonic wavelength 527 nm, 20 

W at 1 kHz repetition rate) to obtain high-energy efficiently. From its polarization, the 

pockels cell selects a single pulse from the mode-locked pulse train. The pulses are 

confined and amplified to appropriate energy by passing it multiple times before ejecting 

from the cavity. The pulse is multi-pass to amplify to a factor of 106 after stretcher grating. 

The pulses are recompressed again to femtosecond time scales after the amplification. 

Compression is the reverse of pulse stretching with gratings arranged for the blue 

frequencies to travel the shortest path to become equal with the redder frequencies. The 

femtosecond seed source (Vitesse) and Nd: YLF laser source pumping the regenerative 

amplifier (Evolution) along with the amplifier and stretcher/compressor compartments in 

the Libra amplifier system is shown in figure 2.6. The parameters related to the Libra 

femtosecond amplifier system are listed in table 2.1. 

 
Figure 2.6 The schematic of the femtosecond amplifier (Coherent, LIBRA) system with the seed 
pulse generator, Vitesse, and the pumping laser, Evolution, and the regenerative amplifier with the 
stretcher the amplifier compartments [https://www.coherent.com/resources/ preinstallation/libra- 
series/Libra_Preinstallation_Manual.pdf ]. 
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Table 2.1 The parameters values of the femtosecond laser source used in the LIBS experiments 

 

 

 

 

 

 

2.3.2 Single shot autocorrelation  

The Coherent single shot autocorrelator (SSA) was used for the pulse width measurements 

of the femtosecond pulses. In the SSA, the 800nm femtosecond laser pulses from the Ti: 

Sapphire-based amplifier are turned into the SSA using the input mirror M1 and are split 

into two beams at the BS1 beam splitter after the beam expander (includes (L1, L2). The 

two pulses travel different paths, as shown in figures 2.7, with a solid line and the delayed 

dotted line. The two beams were made to overlap non-collinearly onto the 800 nm cut KDP 

crystal to generate a second harmonic signal from the two pulses. BG18 bandpass filter 

removes the 800nm wavelength, and the SH signal was recorded in the CCD array.  

 

Figure 2.7 The single shot autocorrelation of the two pulses and the schematic of the coherent 
SSA. The beam splitter splits the beam, and the beam traveled different paths before overlapping 
in the doubling crystal [Adopted from Single Shot Autocorrelator Operator’s Manual 
https://www.coherent.com/resources]. 

An oscilloscope was used to record the output signal from the CCD. The overlap of the 

two tilted wavefronts results in autocorrelation, as shown in figure 2.7. The micrometer 

reading is calibrated with the oscilloscope signal, and zero delays was achieved by 

maximizing the SH signal. The deconvolution factor of  √2  was used in calculating the 

Parameters Vitesse oscillator Libra femtosecond  
amplifier 

Pulse Width ~100 fs ~35 fs 

Output energy ~ 6-7 nJ ~4 mJ 

Repetition rate ~80 MHz 1 kHz 

Beam diameter ~ 3 mm ~9 mm (1/e2) 

Polarization Horizontal Horizontal 
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pulse width from the second harmonic signal assuming the pulses are Gaussian. Figure 2.8 

shows the SH signal at different delays (left) and the signal at zero delays (right). The data 

collected at different delays are shown in figure 2.8, and the SH signal at zero delays. 

 

Figure 2.8 The second harmonic generation with the delay and the second harmonic signal at the 
zero delays with the calculated FWHM of 93 fs (as the roundtrips, propogation length and the 
dispersive elements effects the pulsewidht). Blue, scattered points are the experimental data, while 
the solid red line is the fit. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 The photodiode signal of the 1 kHz femtosecond pulse train was measured using an 
oscilloscope.  

The femtosecond amplifier output was at a 1 kHz repetition rate and was measured using 

the photodiode signal fed to the Tektronix oscilloscope. The signal is shown in figure 2.9. 
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 Detectors 

2.4.1 Non-gated spectrometers 
 

The typical spectrometers use the Czerny-turner configuration for its advantages like 

compactness and flexibility and efficient aberration-free performance. The folded Czerny-

Turner spectrograph provide a good coma correction and a flattened spectral field. Czerny-

Turner optical bench is designed to reduce image aberrations with a f-number of >3, which 

restricts its throughput. Compared to usual multimode fibers (NA ≈ 0.22), the relatively 

large f/# cause a high level of random photons in the optical bench. This can be eased by 

unfolding the optical bench. Typical spectrometers ranging from 190 nm to 1100 nm use 

three filters for order sorting. Some 

spectrometers use thin films 

continuously varying the cut-on 

wavelength of the order sorting filter 

for essential signal detection. SMA-

connector, 2) Collimating mirror, 3) 

Grating, 4) Focusing mirror, 5) Order 

Sorting Filter, 6) Collection lens, 7) 

Line scan detector. The major 

components of the spectrometer are 

shown in figure 2.10 

Figure 2.10 Major components of the CCD-based non-gated spectrometers from the 
entrance to the CCD detector and the grating and mirrors [Adopted 
from https://www.avantes.com/support/theoretical-background/introduction-to-
spectrometers/]. 

2.4.2 Mechelle spectrograph equipped with ICCD 

The echelles gratings are used for cross-dispersion and prisms and are operated at higher 

orders, usually around 100. Figure 2.11 shows the blazed grating with all the angle 

measurements involved in the grating equation 2.1. 
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Figure 2.11 The echelle (blazed) grating is used in the ICCD operates at higher order for better 
resolution. 

ߣ݉ = ߙ݊݅ݏ)݀ +  (2.1)                                                                                                              (ߚ݊݅ݏ

α = incidence angle, β= diffraction angle, d= grating constant, f= focal length, θ=blaze 

angle, m=diffraction order, W= width of grating, N= total number of grooves W/d. 

Intensity is maximum for the wavelength at which α +β= 2θ, and auto-collimation is 

achieved when α=β= θ. Sorting is achieved using cross dispersion from the prism 

(dispersion at right angles to the dispersion from grating). Prisms were chosen as the cross-

dispersing elements of the spectrograph for several reasons. One is that the inter-order 

separation is much less dependent on wavelength than in the case of a diffraction grating. 

This format is suitable for array-based detectors with a square display format. 

2.4.3 High-resolution echelle spectrometer (HRES) 

A uniform order distribution is produced when the prism and echelle grating are combined, 

assisting in effectively using the CCD sensor. The combination also results in 2D dispersed 

light at higher order resulting in high resolution along a broad range. Figure 2.12 displays 

a typical schematic for high-resolution echelle spectrometers. The spectrometer's 

resolution is (λ/Δλ) ~ 5000, and its wavelength range is 200 nm to 920 nm. Compared to 

the CCD sensor, the ICCD sensor offers gating capabilities when coupled with the 

intensifier. 
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Figure 2.12 The schematic of the cross dispersion of the light, from grating and prism combination, 
incident on the 2D sensor [Adopted from https://www2.keck.hawaii.edu/inst/hires/]. 

 
Figure 2.13 The working method of the 2D CCD sensors after the photons are converted to charge 
and transport. 

CCD is a photo-sensors of two- dimensional on semiconductor chips based on silicon 

shown in figure 2.13. The light shined on the sensors produces electrons, a charge pattern 

corresponding to the source is formed, and the charge is transferred from the chip to the 

computer memory. The individual sensors are clocked to shift the charge of one row at a 

time to the shift register, masked from the light, using a series of vertical electrodes. The 

charge in the shift register is further transferred to the output node using the series of 

horizontal electrodes and is converted into a 16-bit binary number using analog to digital 

(A/D) converted.  
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2.4.4 Image intensifier 

Photons from the light source strike the input window with a photocathode on its inner 

surface. The photoelectrons are emitted when photons strike the photocathode and are 

drawn to the microchannel plate by a high electric field. The intensifier consists of three 

significant components i) photocathode, ii) microchannel plate iii) phosphor screen. The 

intensifier can be rapidly turned on and off and used as gating for the CCD detector, as 

shown in figure 2.14. 

 
Figure 2.14 The intensifier with a photocathode, microchannel plate, and phosphor screen. 

The gated LIBS experiments were performed using the Mechelle spectrograph (ME 5000; 

based on echelle grating) outfitted with an Andor iStar intensified charge-coupled device 

(ICCD). Due to their respective triggering speeds of 1 kHz and 500 Hz, Mechelle was 

equipped with the iStar ICCD of model number DH334T-18U-E3 for femtosecond LIBS 

experiments and the iStar ICCD of model number DH734-18U-03 for nanosecond LIBS 

experiments. The Mechelle spectrographs are ideal in field applications because of their 

robustness, high resolving power, and wide spectral range when coupled with CCDs or 

ICCD. For instance, the larger spectral resolving power of 5000 results in the resolution 

of 0.05 nm @ 500 nm. They provide multi-elemental analysis with a wide spectral range 

over ultraviolet (UV) to near-infrared (IR) region, including the visible region (200 to 900 

nm), in an acquisition. Mechelle spectrographs are frequently used to study laser-induced 

plasmas (LIP). 
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Additionally, they offer minimal cross-talks between the orders. Standard mercury-argon 

(Hg-Ar) lamps and Deuterium-Halogen (DH-3) lamps were used for wavelength and 

intensity calibration, respectively. The DH-3 lamp has two sources: a deuterium lamp with 

a wavelength between 200 nm and 400 nm and a tungsten halogen lamp with a wavelength 

between 380 nm and 975 nm due to the difference in intensity between these lamps. Table 

2.2 displays the acquisition parameters applied to the Hg-Ar and DH-3 lamps. 
Table 2.2 Parameters values used in wavelength and intensity calibration of ICCD. 

ICCD parameters Hg-Ar lamp DH-3 Lamp 

Gate delay 0 ns 0 ns 

Exposure time 0.2 S 2.5 S 

Gate width  0.13 S 2.5 S 

Gain (0-4000) 700 3000 

Specifications of the optical fiber used for the experiments are listed in table 2.3 
Table 2.3 Parameters of the optical fiber used for transporting the plasma emissions from the 
collector to the spectrometer. 

Model number QP400-2-SR-BX
Wavelength range(nm) 200-1100 

Fiber core size (microns) 400, 600 
Fiber type UV/SR-VIS
Length (m) 2

Numerical aperture 0.22
Jacket Stainless-steel 

Buffer material Polyimide 
 

2.4.5 Schmidt-Cassegrain telescope for the standoff studies  

The major components of the Schmidt-Cassegrain telescope (SCT) are the a) aspherical 

corrector plate, b) the primary mirror and c) the secondary mirror, d) the Knob to adjust 

the focal length, and e) the eyepiece. The total length traveled by the light inside and the 

aperture of the telescope decides its performance. The focal length of the telescope 

objective is 1500 mm, and the eyepiece focal length is 25 mm. The magnification power 

of the telescope, or the amount that a telescope enlarges its subject, is 60, which is its focal 

length divided by the eyepiece's focal length. The size of the circle of light that hits the 

eye when we look through the eyepiece is 7mm and is called the exit pupil of the telescope. 

The schematic of the SCT is shown in figure 1.8. The other relevant parameters, like the 
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resolving power, the light-gathering power, and the field of view, are tabulated in table 

2.4.  
Table 2.4 The specification of the SC telescope used for the standoff studies. 

Property Value
Objective focal length F 1500 mm 
Eyepiece focal length f 25 mm 
Objective aperture D 150 mm

Magnification M 60x 
F ratio F/10 

Field of view 1.70 
Resolving power 0.77 arc second

Exit pupil 2.5 mm
Approximate Limiting 

Magnitude of Telescope 
12.9

         Light-gathering power 459.18 

2.4.6 Delays involved in acquiring LIBS spectra  

The intensifier increases the signal's strength and is helpful for gating the acquisition in 

LIBS experiments. Due to increased sensitivity, image intensifiers with CCD are typically 

used to study extremely weak processes. In addition to serving as gate control, ICCD is 

useful for recording the spectrum at desired time delays synchronized to the input trigger. 

The gate delay, which occurs after the laser pulse, and gate width, which describes how 

far the emissions are recorded. Thus, LIBS spectra with (i) time-integrated and (ii) time-

resolved spectra, can be recorded using ICCD. Time-resolved emissions are acquired to 

study the transient LIPs and comprehend various molecular and atomic pathways by 

observing the signal-to-background ratio. In the nanosecond LIBS, the ICCD is triggered 

with the help of reference TTL pulse from the Pockels cell. The TTL pulse from the 

Pockels cell is taken as reference T0, and desired delays are produced using the delay 

generator. In this study, the DG535 digital delay generator by Stanford research systems 

was used. The desired initial delay, including the insertion delays by all the components 

like insertion delays from the digital delay generator and the ICCD itself, to the ICCD was 

set by monitoring the LIBS signal with minimum plasma background. The delays included 

in the gated LIBS experiment are measured using the oscilloscope and shown in figures 

2.15 and 2.17. In figure 2.15(a) orange channel represents laser pulse of pulse width 8.6 

ns FWHM. Figure 2.15(b) represents TTL pulse Pockel's cell via delay generator (DG535), 
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with insertion delay of ~90 ns and opening time of 840 ns. Figure 2.16(c) is the ICCD 

trigger monitor showing the ICCD opening time of 1 µs after the laser pulse. 

Figure 2.15  (a) The laser pulse widh measured using photodiode in orange and  (b) the signal 
from pockels cell in blue (b) ICCD trigger monitor in the oscilloscope shows the ICCD gate 
opening time of ~1 µs. 

Figure 2.16 The time delay between the pulse from the SDG and the ICCD trigger monitor is 50 
ns and the time delay between the photo diode response and the ICCD trigger monitor is ~20 ns 
because of propagation delay.  

In the case of the femtosecond LIBS experiments, the TTL pulse from a synchronized 

delay generator (SDG) is used to trigger the ICCD. The violet color in the figure 2.16 

represents the incidence of laser pulse onto the sample surface. The orange line represents 
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the TTL from the SDG, and the green represents ICCD gate monitoring signals. The time 

between the laser pulse and the ICCD gate opening are adjusted for better LIBS signal. 

 Nanosecond laser-induced plasma temperature evolution  

The interaction of nanosecond pulses with varied compositions of Au-Ag bimetal target 

resulted LIBS spectra and the time-resolved spectra was acquired using ICCD. The effect 

of Au-Ag composition on the time evolution of plasma temperature was investigated. 

LIBS is used to identify and quantify elements in plasma discharges [1]. It has found 

application in various disciplines due to its speedy and minimal sample preparation for 

material classification [2] and quantification research [3]. The atomic and ionic peaks and 

corresponding spectroscopic parameters are used for determining the plasma temperature 

[4]. For quantification studies, generally, plasma temperature is employed in conjunction 

with electron density. 

2.5.1  Experimental procedure 

With a 10-cm focal length plano-convex lens made of fused-silica, ~8 ns laser pulses from 

a Q-switched Nd: YAG laser at 1Hz repetition rate, 532 nm were focused on Au-Ag 

bimetal samples. The studies used three distinct compositions (Au30-Ag70, Au50-Ag50, 

and Au80-Ag20). The plasma emissions produced by the intense laser pulse and sample 

interaction were collected using Andor made (ME-OPT-0007) collection optics and fed 

into the (ANDOR ISTAR ICCD and MECHELLE 5000) intensified spectrometer through 

a 600-micron optical cable with a 230nm to 800nm wavelength range. The spectra were 

obtained with a 1 µs gate delay and a 1 µs gate width. Figure 2.17 depicts the setup and 

figure 2.18 the substantial portion of the spectra.  

Figure 2.17 The schematic of the nanosecond laser-induced breakdown spectroscopy experiment. 
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After one second, the plasma is thought to be in local thermodynamic equilibrium (LTE). 

Using the Boltzmann distribution law, Equation 2.2 to equation 2.5 express the 

relationship between peak intensity (I) and wavelength, population n, transition probability 

(A), plasma characteristic length (L), and degeneracy (g). The equations use the symbols 

population (n) at a particular energy E and temperature T of a specific ionization state Z. 

Pz is the partition function, while KB is the Boltzmann constant. The table contains the 

values used in the calculations. The following equations were used to calculate the plasma 

temperature, where Z denotes the element's ionization state. The peak Au intensities were 

employed in the analysis. 

݊௞,௓
݊௓

=
݃௞,௓

௓ܲ(ܶ) ݌ݔ݁ ൬−
௞,௓ܧ
஻ܶ൰                                                                                               (2.2)ܭ

௓ܫ =
ℎܿ

௞௜,௓ߣߨ4
× (2.3)                                                                                                    ܮ௞௜,௓݊௞,௭ܣ

௓ܫ =
ℎܿ

௞௜,௓ߣߨ4
× ௞௜,௓ܣ

݃௞,௓݊௓

௓ܲ(ܶ) × ݌ݔ݁ ൬−
௞,௓ܧ
஻ܶ൰ܭ (2.4)                                                               ܮ

݈݊
௞௜,௓ߣ௓ܫ

݃௞,௓ܣ௞௜,௓
ቇ = −

௞,௓ܧ
஻ܶܭ + ݈݊ ൬

ℎܿ݊ܮ௭
ߨ4 ௭ܲ(ܶ)൰                                                                       (2.5)

Figure 2.18  The time-resolved ns-LIBS spectra of the bimetallic targets (a) Au20-Ag80, (b) 
Au30-Ag70, (c) Au50-Ag50, (d) Au70-Ag30   with identified peaks from the NIST database.  
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Table 2.5 The spectroscopic parameters taken from the NIST database used for the Boltzmann 
plots. 

Sl. 
N0. 

Wavelength 
(nm) 

Aki (S-1) 
×105 

Ei  (eV) Ek (eV) Degen
eracy 

gi 

Degener
acy gk 

1 274.82 103 1.14 5.65 6 8 

2 312.27 190 1.14 5.11 6 4 

3 406.5 850 4.63 7.68 2 4 

4 479.25 890 5.11 7.69 4 6 

5 583.91 295 4.63 6.76 2 2 

6 627.81 34 2.66 4.63 4 2 

 

Figure 2.19 (a) Boltzmann plot of the Au30-Ag70 composition with the ns LIBS taken at 1µs and 
the evolution of plasma electron temperature for the compositions (b) Au30-Ag70 (c) Au50-Ag50 
(d) Au80-Ag20. 

For the investigation, six Au peaks were chosen from the LIBS spectra. For each 

composition, standard deviation of the 20 spectra was calculated, which was used for error 

bars and the mean for the points. The equation 1, along with the spectroscopic parameters 

presented in table 2.5, was utilized to estimate the temperature from Boltzmann plots 

between 1µs and 8µs. The plasma temperature is related to the reciprocal of the slope of 
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the straight line fit, and the intercept is related to the material composition. The electron 

plasma temperature is known to drop rapidly as t-2 (where t is time) within 1 µs [5]. The 

temperature declines consistently during the time (1 µs and 10 µs), as illustrated in figure 

2.19. These investigations can be extended to investigate the relationship between 

composition and temperature evolution, which could aid in quantifying and 

comprehending laser-produced plasma characteristics. 

 

 Novel femtosecond experimental configurations for fine powder 
samples 

A novel experimental geometry for studying sparse fine-powdered samples utilizing 

femtosecond filamentation-induced breakdown spectroscopy is described here (fs FIBS). 

The FIBS spectra were acquired after mowing fine graphite powder and commercially 

available talcum powder on a Brass substrate with a femtosecond filament, considerably 

avoiding substrate interference. The FIBS spectra revealed the production of CN and C2 

bands in graphite and calcium, magnesium, potassium, and sodium peaks. The FIBS signal 

fluctuation and vibrational temperature are important in plasma diagnostics of the CN and 

C2 diatomic molecules. The emission spectra arising from the recombination of free 

electrons and ions, generating neutral atoms and short-lived molecules, from the decaying 

plasma created when an intense pulsed laser is focused on the sample are the basis for 

laser-induced breakdown spectroscopy [6, 7]. The spectra can provide quantitative and 

qualitative information about the elemental composition [8, 9]. Many previous studies 

[10,11] found molecular emissions such as CN and C2 in the LIBS spectra of organic 

materials. The LIBS approach is also utilized to detect trace elements in complicated 

matrices such as minerals and soils [12]. LIBS without calibration is commonly used for 

quantitative analysis of trace materials [13, 14]. 

Furthermore, the LIBS signal can be amplified in the presence of nanoparticles, in the 

detection of substances in micro-drops [15]. The nanoparticle-enhanced LIBS (NE-LIBS) 

signal's molecular bands can be significantly improved [16]. In the case of femtosecond 

(fs) pulses, an exciting phenomenon known as filamentation occurs when narrow plasma 

channels interact with the sample in generating plasma, and atomic and molecular 

emissions are observed during recombination [17,18]. The filamentation is induced by the 

balancing effect of beam self-focusing caused by the nonlinear Kerr effect and self-

defocusing caused by the former [19]. In a gaseous medium, the critical power, Pc, beyond 
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which self-focusing begins, is around a few GW. Both phenomena are affected by the 

intensity of the laser pulse. Equation 2.6 gives the intensity-dependent refractive index 

responsible for self-focusing, where n2 is the Kerr nonlinear index coefficient. 

݊ = ݊௢ + ݊ଶ(2.6)                                                                                                                               ܫ 

The refractive index change due to plasma is  ∆݊௣ = − ఠ೛మ

ଶఠ೚
మ  (here, the central frequency 

of the femtosecond pulses is ω0, and the plasma frequency ωp. The relation between the 

electron density and plasma frequency is shown in equation 2.7. An empirical formula 

relates the electron density Ne to the nonlinear order of ionization 'm' and intensity I, as 

shown in equation 2.8. 

߱௣ = ඨ݁ଶ ௘ܰ

߳௢݉௘
                                                                                                                               (2.7) 

௘ܰ(ݐ) ∝  ௠                                                                                                                                  (2.8)ܫ

Where me and e are the mass of the electron and charge, ε0 is the permittivity of free space.  

The electron density escalates with intensity because of multiphoton ionization is a highly 

nonlinear absorption process. In the air, 'm' is around 8. Therefore, the effective refractive 

index can be written as shown in equation 2.9. 

n = n୭ + Δn୩୰ + Δn୮ = n୭ + nଶI −
eଶ

2ε୭mୣω୭ଶ
βI୫                                                           (2.9) 

This self-balancing effect produces a threshold in intensity (5×1013 W/cm2), which results 

in well-established plasma temperature clamping [20]. Clamping in fs filamentation 

decreases shot-to-shot noise in filamentation-induced breakdown spectroscopy (FIBS) 

spectra and delivers the required irradiance even at greater distances without focusing 

optics [17]. The advantages of FIBS with loosely focused beams over lens-free FIBS are 

higher intensities and persistent emissions. Harilal et al. documented these in their 

extensive research [21, 22]. Earlier spectroscopic experiments with filamentation 

concentrated mostly on employing bulk targets/rocks with normal incidence geometry, 

such as metal and geological samples. The disadvantages of supercontinuum caused by 

distorted pulses on the FIBS signal and the advantages in studying rough surfaces have 

been described [23, 24]. Because of its spectacular self-focusing ability, the filamentation 

phenomenon is useful in investigating targets at vast distances [25]. Filamentation 
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propagation in flames reduces the clamping intensity by a factor of two [26]. Chin et al. 

studied [27] in detail the mechanism of filamentation and its applications. The interaction 

of filamentation revealed contaminants in the atmosphere, breaking down the medium 

along the path [28]. The filamentation LIBS has also been proven helpful in detecting 

radioactive elements at a distance [29]. Our group used principal component analysis on 

FIBS spectra acquired from standoff distances to discriminate Au-Ag bimetallic samples 

with varying weight percentages [30]. The FIBS was also used in explosive discrimination, 

and the parameters impacting the FIBS signal in standoff modes, such as fluence and 

collection optics, were previously described by our group [31]. Milo Burger et al. [32] 

discussed the effect of the starting phase of ultrashort pulses (fs pulses) on uranium FIBS 

spectra and other optimization parameters, such as group delay dispersions. Recently, the 

identification of plastics, the classification of bimetals with a small spectrometer, and the 

benefit of beam steering in FIBS have all been described [33].  Most LIBS applications 

used either the normal incidence or the oblique incidence of laser pulses on the material. 

LIBS investigations are typically performed on bulk samples in pellets, metallic solids, 

and trace components dispersed or drop cast on the substrate material. The peaks of the 

substrate are inescapable in sparse samples, and for the first time, we present the pure 

spectra of sparse samples on the Brass substrate with only the sample's molecular peaks. 

In addition, the vibrational temperatures of the CN and C2 were determined using the GUI-

based software, which employs the BESP-modelled spectra and the NMT algorithm for 

fitting. It was found that fine powder samples produce superior FIBS spectra than coarse 

samples. We are confident that this innovative geometry will improve the FIBS technique's 

capacity to record the clean spectra of finely powdered sparse samples like explosives and 

other sparse samples, which are the primary concerns of homeland security. The 

experimental configuration is possible with fs laser-produced filamentation only. This 

technique can be improved by using a cylindrical lens to capture spectra along the 

filamentation length. Furthermore, the use of nanoparticles could improve the signal in the 

FIBS spectra. 

2.6.1  Experimental setup 

Ti: sapphire-based amplified pulses (~50 fs, ~1.8 mJ, and 1 kHz repetition rate) were 

focused on 50 cm using a convex lens of 50 cm focal length to achieve the filamentation 

of the length ~3 cm. The plasma emissions were subsequently fed to gated (ANDOR make) 

ICCD and (Mechelle) spectrograph combination. An exposure time of 2 s gate delay of 
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120 ns, a gate width of 300 ns, and 5 accumulations were used for a better signal. As the 

sample is sparse, 2 s, 120 ns gate delay, and 500 ns gate width with single accumulation 

were used in the study of the signal fluctuation and temperature estimation via an optical 

fiber of 400 µm core diameter. The synchronized gate delay triggered the ICCD gate, and 

the trigger pulses were monitored using an oscilloscope. Figure 2.20(a) shows the 

schematic of the novel experimental setup used for the standoff femtosecond FIBS studies. 

The fine graphite powder of particle size ≤ 20 µm (~99.5% pure) from Sigma Aldrich 

(CAS No 7782-42-5) and commercially available Ponds (radiance talc) mixture of 

different size particles (from size ~20 µm up to ~ 150 µm) were used for the present study. 

The powder sample of ~20 mg was spread across 2 mm×40 mm line on the Brass plate of 

40 mm × 40 mm perpendicular to the laser direction [see figures 2.20(b) and 2.20(c), 

2.20(d) for the schematics]. The filament was moved tangentially to the fine graphite 

powder on a flat Brass plate surface.  

 

 
Figure 2.20 (a)The experimental setup used for the filamentation mowing of traces of fine graphite 
powder on the Brass, (b) substrate moving tangentially to the filamentation with the ,(c) sample on 
the Brass plate on the optical bench, (d) the collection optics at ~45° to the horizontal Brass plate 
and the red arrow shows the incident laser direction. 
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2.6.2  Results and discussion 

Figure 2.21 The grazing incidence FIBS spectra of sparse fine graphite powder with molecular 
emissions of the CN violet bands, C2 swan band enlarged in the inset. 

 

The sparse sample's FIBS spectra were acquired without any substantial background peaks 

from the substrate. Figure 2.21 depicts the CN violet and C2 swan bands from the graphite 

powder FIBS spectrum. The molecular emissions dominated, and atomic peaks (often the 

carbon peak at 247.9 nm) normally seen in organic compound LIBS spectra were absent. 

Figure 2.21 depicts the molecular transitions (B2Σ+-X2Σ+ ) CN violet band with the intense 

peak of Δν = 0 at 388.3 nm, Δν = 1 at 359.04 nm, and Δν = -1 at 421.58 nm with the CN 

molecular emissions, C2 molecular emissions highlighted in the inset. It is observed that 

the finer the powder, the better the interaction with the filament, hence a better FIBS signal. 

This could be related to the fine powder sample's lower ablation threshold. The fluctuation 

in the FIBS signal is reported to be substantial as compared to the FIBS spectra of solids 

and samples in pellet form. It is useful in qualitative analysis, and the employment of 

superior machine learning methods are essential in quantitative analysis [29]. Figure 2.22 

depicts the standard deviation in the CN and C2 bands of the 14 other graphite powder 

spectra. 
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The vibrational temperature of diatomic molecules such as CN and C2 relevant in plasma 

diagnostics from molecular emissions was estimated using experimentally recorded 

grazing incidence FIBS spectra of fine graphite powder.  
 

Figure 2.22  The standard deviation (in red) and mean (in blue) of the (a) CN band and (b) C2 band 
in the grazing incidence FIBS spectra were calculated from the 14 spectra. Mean of CN peak was 
21090.05 with standard deviation of 6578.48 for peak at 388.34 nm.  Mean of C2 was 8895.05 with 
standard deviation of 2651.24 for peak at 516.52 nm. 

The observed spectrum is fitted to the modeled spectra from the Boltzmann equilibrium 

spectrum program for the CN and C2 transitions. The Nelder-Mead algorithm was utilized 

to optimize the fitting of the theory spectrum with the collected experimental spectrum, 

assuming the local thermodynamic equilibrium described in previous reports [20, 35]. The 

software with the GUI given by Parigger et al. [36, 37] was employed for the current 

experiments. The best fit optimizes variables such as temperature and spectral line FWHM. 

Table 2.6 lists the temperatures of the CN and C2 diatomic molecules that provided the 

best fit. Figure 2.23 depicts the optimal fit and experimental data of a single spectrum's 

CN and C2 bands. As shown in table 2.6, the vibrational temperature was unaffected by 

fluctuations in the intensities of the CN most significant peak at 388.3 nm and the C2 

highest peak at 516.5 nm, as the temperature is dependent on the overall band strength 

[38]. Even though the limit of detection improved with decreasing particle size in the case 

of mesoporous V-SiO2 catalysts [39], more research could aid in better understanding 

because the threshold fluence depends on density and thermal properties of the material 

other than just particle size in powder samples [7,40]. 
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Figure 2.23 The fitting of the computed spectra (fit in blue) with the experimental spectra (in red) 
for the temperature estimation form (a) CN band and (b) C2 band. The temperature of 6536K for 
CN and FEHM was 0.15 nm, and the temperature of C2 was 5436 K and FWHM of 0.25 nm. 

Table 2.6 Vibrational temperature in degrees kelvin and peak intensities of the CN (388.3 nm) and 
C2 (516.5 nm). 

CN (0K) CN peak intensity  
(arb. units)

C2 (0K) 
  

C2 peak intensity 
 (arb. units) 

6536 10128.8  5436  4971.67 

6551 23175.6  6803 7954.85 

6661 16917  6413 8690.26 

6530 33729  6375  13845 

6451 29735.7  6342 11567.7 

6755 19524.5  6239 6989.81 

6689 24779.7  6042  10909.4 

6139 28798.2  6150 12384 

6573 14920.2  6450 5769.55 

5869 20237 6035 9311.04 

6311 19507.6  5999  7813.34 

6239 13736.7  6744  5989.55 

6594 18919.5  6764  7846.85 

6351 23459.7  6296 10557.9 
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The FIBS spectra of commercially available talcum powder (Ponds) were also recorded. 

The interaction was reduced compared to graphite powder and could be attributed to the 

granular nature of talcum powder not as fine as graphite, resulting in a less intense noisy 

spectrum. Figure 2.24 depicts the FIBS spectrum of talcum powder. Figure 2.25 depicts 

the elemental peaks of calcium, magnesium, sodium, and potassium identified from the 

talcum powder spectrum. Figure 2.26 depicts the calcium peaks identified from the NIST 

database. Table 2.7 summarizes all the identified peaks from the FIBS spectra of talcum 

powder. 

 

Figure 2.24 Grazing incidence FIBS spectrum of the commercially available talcum powder 
(Ponds) with the major peaks of calcium, magnesium, sodium, and potassium identified.  

 

Figure 2.25 The elemental peaks of singly ionized (a) calcium, (b) sodium, (c) potassium, (d) 
magnesium were identified from the FIBS spectrum of commercially available talcum powder 
(Ponds). 
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Figure 2.26 shows the doubly ionized calcium peak at 422.67 nm, sodium peaks at 589.03 

nm, 589.63 nm, potassium peaks at 766.56 nm, 769.93 nm, and magnesium peaks at 

516.76 nm, 517.30 nm, and 518.38 nm. As shown in figure 2.26, the calcium singly ionized 

peaks at 428.36 nm, 428.93 nm, 430.25 nm, 442.54 nm, 612.22 nm, 616.21 nm, 643.90 

nm, 644.98 nm, and doubly ionized peaks at 393.36 nm, 396.84 nm were recognized using 

the NIST atomic spectrum database. Compared to graphite powder, the interaction with 

talcum powder was modest, and the accompanying FIBS spectrum was noisy. Table 2.7 

shows the identified peaks from the FIBS spectra of the talcum powder. 

 
Table 2.7 The elemental peaks in the FIBS spectra of talcum powder were identified from the 
NIST database. 

Elements Peaks from FIBS spectrum
(nm) 

Peaks identified from the NIST 
database (nm) 

Mg 516.73,517.29, 518.37 516.73, 517.26, 518.36 
Ca 393.37,396.87,428.31,428.94, 

430.27, 442.56, 443.50, 
 445.49, 612.24, 
 616.25, 643.92, 644.85,  
645.52, 646.31, 649.41. 

393.36, 396.84, 428.36, 428.93, 
 430.25, 442.54, 443.49, 445.47,  
612.22, 616.21, 643.90, 644.98,  
645.56, 646.25, 649.37. 

K 766.56, 769.95  766.48, 769.89 
Na 588.63, 589.63 588.99, 589.59 

 

 
Figure 2.26 The calcium peaks identified from the FIBS spectra of commercially available talcum 
powder in low quantities (a), (b), and (d) singly ionized calcium peaks, and (c) doubly ionized 
calcium peaks. 
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3 Machine learning in LIBS data analysis 

Abstract: The method of categorizing and identifying metals and metal alloys using 

colour CCD (Charge coupled device) images of femtosecond (fs) laser-produced plasma 

emissions has been demonstrated. The machine learning method for identification was 

trained using the non-gated colour CCD images of the plasma emissions. The current work 

investigates the feasibility of identifying Steel, aluminium (Al), Copper (Cu), bronze, and 

other metals using CCD images. The results of the principal component analysis (PCA) 

was used as input to the support vector machine (SVM) for identification. Further gold 

(Au) and silver (Ag) compositions were simultaneously predicted using the multi-output 

regression model from the LIBS spectra from Au-Ag bimetallic target. To estimate the 

composition of one element each, the shallow neural networks model for multi-output 

regression uses two nodes at the output layer. The trained model was used to predict from 

Au30-Ag70 LIBS spectra not seen by the model and weren't a part of the training set after 

being evaluated on the test set. We demonstrate the usefulness of this methodology within 

10% error.  

 Machine learning in the identification of metals and alloys 
3.1.1 Introduction 

Using the emissions from the recombinations from the cooling plasma produced by intense 

and short laser pulses focused on the sample, the constituent elements can be detected 

using the LIBS technique [1-2]. Explosive detection [3-4], mining [5], elemental mapping 

of mineral samples  [6], underwater chemical analysis utilizing standoff LIBS [7], 

exploration of planets [8], and detecting nutrients and pollutants in edibles [9] are just a 

few of the many fields that benefit from LIBS. The ability to increase signal strength using 

techniques like double-pulse with varying wavelength LIBS [10], double-pulse LIBS with 

variable pulse widths [11], and nanoparticle-enhanced LIBS [12–14] is another benefit of 

LIBS. The automated LIBS system was used to separate recyclable metal and plastic. In 

complicated matrices like minerals and soils, it is also utilized for trace element analysis 

[15]. LIBS is a quick technique to securely test material from a distance in hazardous 

industrial contexts [16]. Compared to nanosecond pulses, femtosecond LIBS offers the 

additional benefit of intense molecular emissions [17]. LIBS was used with machine 

learning to identify the geological origins of precious stones like jade [18]. It was used for 
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real-time analysis of geological samples [19]. Even from non-gated spectrometer data with 

a plasma continuum background, machine learning techniques have demonstrated an 

increase in the classification of similar stoichiometry substances, such as pharmaceuticals 

[20]. Compared to regularly processed spectra, the classification accuracy of the chosen 

pixels from an echellogram (greyscale CCD image of plasma emissions through dispersive 

elements) was outstanding [21]. In the classification of plastic materials, Erwan Negre et 

al. used gated ICCD images of plasma plumes acquired with narrow bandwidth filters [22]. 

In rectifying the underwater LIBS signal fluctuations, the images of the plasma plume 

were employed to normalize the spectral line intensity with the plasma intensity [23]. In 

the present study, plasma emissions recorded using colour CCD sensor via an optical fiber 

rather than being imaged or directed to a spectrometer. Machine learning algorithms were 

utilized in the analysis of the images. Many machine-learning techniques were used to 

analyze the standoff data for rapid classification, identification, and accuracy. Studies 

comparing the remote LIBS with the standoff LIBS for standoff up to 2 m and up to 8.5 m 

remote detection were reported [16]. It is asserted that at a 5 m standoff distance, LDA 

(Linear discriminant analysis) performance exceeded PCA in classification and that LDA 

with two spectrometers significantly improved prediction classification accuracy [24]. It 

was also asserted that the LDA method addressed the disadvantage of a miniature 

spectrometer (Czerny-Turner) with a limited spectral range and resolution to achieve high 

classification accuracy. The classification performance of a single-channel spectrometer 

(Czerny-Turner) was nearly identical to that of an Echelle spectrometer with a broad 

spectral range using the research of LDA. The archaeological samples were probed using 

standoff LIBS at 6.2 m, and the PCA scores were used as input data. Additionally, ANN 

was used to predict the material properties with good accuracy. When the PCA was applied 

to remote LIBS spectra of high-energy materials (HEMs), the first three PCs accounted 

for 88% of the variation, equivalent to the results at a standoff distance of 50 cm. Coaxial 

double-pulse laser excitation was employed in standoff LIBS to distinguish between 

different steel classes [25–27]. When heated in air, an oxide layer was formed on the steel 

samples’ surface. The chemical composition of such a layer is different from the bulk. 

Discriminant function analysis, usually called DFA, was selected as the statistical method 

for classifying the steel classes. Junjuri et al. [28] examined standoff (1-m) detection of 

bulk explosives (CL-20, TNT, HMX, RDX, NTO) using nanosecond laser pulses in a 

laboratory setting. An excellent classification was achieved using PCA and the ratiometric 

methods. Junjuri et al. [29] extended their standoff (6.5 m) efforts using a single shot mode 
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and simple CCD spectrometer, employing ANN. A better identification accuracy (98% 

and 94%) was achieved in terms of the data (i) among explosives, (ii) explosives, and non-

explosives.  By carefully selecting a suitable lens that matches the F-number of the 

employed spectrometer, the collection system was optimized for obtaining the best signal. 

The plasma plume was recorded using CCD for an effective light coupling. A 10 cm 

aperture lens was used to record the spectra. The lens's larger aperture resulted in the 

doubled intensity.  LIBS technique was used at 20 m to discriminate between five different 

organophosphate nerve agent simulants [30]. Using a single ST-LIBS sensor in 

conjunction with the partial least square – discriminant analysis (PLS-DA) model for 

hazardous compound detection, the potential of standoff LIBS was exemplified. The 

machine learning algorithms are helpful in the standoff LIBS data analysis in the 

subsequent chapters. 

3.1.2  Experimental details 
  

 

Figure 3.1 Experimental setup for femtosecond LIBS and capturing the colour CCD images. The 
ICCD and spectrometer combination in the green dotted box is used for LIBS studies and imaging 
of plasma emissions, only CCD in the blue dotted box.  
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The femtosecond pulses at 1.2 mJ per pulse were directed at the target sample. The gate 

delay and width used to record the fs LIBS spectra were 150 ns and 100 ns, respectively. 

The blue dotted box in figure 3.1 illustrates how the plasma emissions were collected and 

supplied to a colour CCD (M/s Samsung colour digital isight inside model number SHC-

410PF) through an optical fiber. Twenty spectra obtained with one second exposure time 

were used for the PCA analysis. Locally available Al 6 series with a purity of 98%, Cu 

with a purity of 99% and traces of impurities, Bronze with 90% Cu, 10% zinc, stainless 

steel 304 with 65-70% Fe and 18% Cr, 8% Ni were used for the studies. Only Al and Steel 

have emissions in violet, and the ionic and atomic emissions of Al, Bronze, Cu, and steel 

in the ultraviolet (300 nm) (420 nm). steel, Cu, and Bronze all have peaks in the 

wavelength ranges of blue (470 nm) and cyan (500 nm). Although their magnitude was 

weak, Cu and bronze have transitions in the infrared (800 nm) range. As shown in figure 

3.2, these colours are visible in the corresponding plasma emissions images. AlO, which 

forms in the later stages of plasma recombinations, was found in corresponding colour 

regions of blue, cyan, and partially green regions of the LIBS spectra[31,32]. This 

observation serves as inspiration for the present studies to classify the samples form the 

plasma emissions using coloured CCD images shown in figure 3.3. Using PCA score plots, 

classification and identification capabilities of the recorded fs-LIBS spectra were 

compared to the non-gated colour CCD images from the colour CCD sensor, which were 

taken at regular intervals. The observed persistent peaks are tabulated in table 3.1 below 

correlating with colors. 
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Figure 3.2 Fs-LIBS spectra of Al, Cu, bronze, and steel. The corresponding colour regions (violet, 
indigio, cyan, green, yellow, orange, and red) are for comparison with the colour CCD images 
from the plasma emissions. 

Table 3.1 LIBS spectral peaks identified from NIST database [33] ⁠. 

 

Elements Identified Peaks (nm) 

Al 394.4, 396.15, 386.61, 308.16, 308.405, 309.18, 309.52 

Cu 324.75, 327.39, 465.11, 502.48, 508.83, 510.65, 515.44, 521.89, 

578.29, 

Zn 330.29, 334.5, 472.22, 481.1, 636.23 

Pb 363.97, 368.35, 373.99, 504.78 

Fe 358.11, 371.99, 373.48, 373.71, 374.55, 374.82, 374.94, 375.82,    

382.04, 385.99, 388.62, 404.58, 438.35 

Cr 396.46, 396.68, 398.46, 399.05, 400.2, 416.57, 425.5, 427.25, 434.54,   

435.27, 416.57, 425.5, 427.25, 434.54, 435.27, 520.67, 529.93, 532.92, 

541.1 

Mn 3405.64, 344.13, 344.18, 346.64, 346.05, 347.64, 347.38, 349.15, 

349.8, 405.86, 406.44, 406, 408.41, 408.4,460.17, 460.48, 462.73, 

462.68, 471.2, 471.09, 476.72, 476.35, 478.46, 478.42, 482.47, 482.29 
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3.1.3 Analysis of colour CCD images of plasma emissions 
 

Generally CCDs have three sensitive regions in 350 nm to 850 nm range. The blue, green, 

and red colour regions at the corresponding wavelengths each have one peak in the 

sensitivity curves. The Bayer filter mosaic, a selectively transmissive colour filter array 

(CFA) on a grid of photosensors, is the colour CCD's building block. Most cameras used 

to produce colour images employ single-chip digital image sensors. Green filters cover 

half of the square grid, while red and blue filters cover each of the remaining quadrants. 

As a result, it is also known as red-green-green-blue (RGGB) [34] or green-red-green-blue 

(GRGB) [35]. Using 600 µ optical fibre, the emissions from the plasma are directed toward 

the sensor.  

Figure 3.3 Colour CCD images of plasma emissions produced when the femtosecond laser pulses 
ablating the (a) Al, (b) bronze, (c) Cu, (d) steel targets. The emissions video was recorded at 
29 to 30 frames per second. 
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Figure 3.4 KDE plots of blue, red, and green channels pixel values from the CCD images of plasma 
emissions produced form the (a) Al, (b) bronze, (c) Cu, (d) steel targets. 
 

Histograms and kernel density estimates are closely linked. However, when a kernel uses 

ImageJ software, the images are extracted from the video using ImageJ software [36]. As 

the laser operates at 1 kHz, each frame integrates light from the plasma emission of 33–34 

pulses interacting with the sample. Each image consists of 500 pixels vertically and 700 

pixels horizontally. Only a section of the image, which contains the circular portion and 

ranges in size from 50 to 300 pixels vertically and 50 to 300 pixels horizontally, was 

extracted. Three values represent red, blue, and green channels at each pixel. The RGB 

image's green channel was used for the studies. Pixel values are arranged in a 250 by 250 

matrix on a single channel. The rows of this matrix were added to create an array of 250 

values for the analysis. Figure 3.3 displays the colour CCD images of the plasma emissions 

from the four samples. Figure 3.3  represents the color image of plasma emissions from 

(a) Al, (b) bronze, (c) Cu, and (d) steel. 
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The probability density of a continuous variable is represented by a kernel density estimate 

(KDE). The Gaussian kernel is used for the present studies, and histograms inherit the 

qualities like continuity. The four samples' KDE plots for the image's blue,green and red 

channels are illustrated in figure 3.4, with distinguishable curves from each colour. 

Figure 3.5 Two-dimensional KDE plots correlating the pixel values from blue-green, blue-red and 
red-green channels of the plasma emission images from (a) Al, (b) bronze, (c) Cu, (d) steel. 
 

Intermediate colours like purple, brown, cyan are produced due to the intersection in the 

sensitivity of RGB filters. Each sample's correlation of colour pairs is investigated using 

2D KDE plots. Blue-red in purple, red-green in brown, and the combined blue-green 

channel in cyan. Figure 3.5 illustrates the probability density on pixel values for four 

samples Al, bronze, Cu, and steel forming distinguishable 2D density plots for each of the  

combinations of RGB channels (R-B, R-G,  and G-B). These associations imply that metal 

sample categorization and identification can be accomplished using colour CCD pictures. 

3.1.4  PCA of LIBS spectra and colour CCD images of plasma emissions 

Figure 3.6(a)  shows the categorization of four classes of LIBS spectra, and figure 3.6(b) 

shows the classification using colour CCD images. The LIBS spectra are highly accurately 

identified by comparing LIBS spectra to colour CCD images. 
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3.1.5 Results and discussion 

The model was created by combining supervised (SVM) and unsupervised (PCA) learning 

algorithms. The red, blue, and green channel pixel values make up the CCD picture matrix. 

The green channel of each image is transformed into a 250-value array by summing along 

one dimension of the matrix. The principal component analysis is utilized to reduce the 

dimensionality. Thus, the least useful variables can be discarded while keeping the most 

valuable variable; this procedure is known as feature extraction. The first three PCs 

achieved significant accuracy. As seen in figure 3.6, one point on the plots represents one 

image or one spectrum. 

Figure 3.6  PCA score plots of (a) fs-LIBS spectra of the four samples. The Triangle marker 
corresponds to Al, the square marker to steel, the circle marker to copper, plus marker to bronze, 
and (b) the colour CCD images of plasma emissions from the same samples. 

The first three PCs were fed as input to the SVM algorithm for identification. The 

algorithm takes a one-to-one approach for all the conceivable pairs to achieve multiclass 

classification. It starts with a plane that parts both classes, and the algorithm finds a plane 

splitting the classes with the great margin distance from the two extreme points of both 

classes. The margin distance (γ) and the other factors are adjusted in both cases of LIBS 

spectra and colour images for improved performance. The results are charted in table 

3.2 and table 3.3. 

 The variables that were retrieved from the PCA were divided into two groups at 

random, with the first half being utilized for training the algorithm. The SVM 

algorithm randomly assigned the remaining half of the images without labels for 

identification. 2190 images, in total, were used for testing. Even with little 

adjustments to the parameters C, gamma produced good results despite the image 

data being slightly imbalanced. Remarkably, the average prediction accuracy of 

the images from the four samples of Al, Bronze, Cu, and steel reached 100%.  
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 Precision is the capability of SVM not to label an occurrence positive that is 

negative. Each class is the ratio of true positives to the sum of true and false 

positives. 

 The recall is the capability of SVM to find every positive occurrences. It is the ratio 

of true positives to the sum of true positives and false negatives. 

 The F1 score is a weighted harmonic mean of precision and recall such that the 

best score is 1.0 and the worst is 0.0. Generally, F1 scores are lower than accuracy 

measures as they embed precision and recall into their computation.  

 Support is the number of data points from different classes given to the trained 

SVM to identify.   

3.1.6 Conclusions  

We conclude that the colour CCD images are indispensable for the classification studies 

by comparing the PCA investigations on LIBS spectra and colour CCD images with the 

femtosecond pulses. Given that they are not time-gated, the images form as separate, 

extended clusters. When trained with SVM for identifying metal samples from plasma 

emissions, the colour CCD images provided 100% accuracy, just like LIBS. These 

findings demonstrate that easy class separation from plasma emissions can be 

accomplished even with a broad spectral resolution (in this instance, the green filter). In 

contrast to the 22424 data points from the LIBS spectrum, we could obtain this result with 

just 250 values retrieved from each image. Tables 3.2 and 3.3 present an overview of the 

outcomes of the prediction techniques. We believe this research has great potential for 

industrial applications (e.g., waste management by sorting scrap in environmental 

monitoring). This technique will simplify keeping track of known and pre-labelled simple 

classes for repetitive monitoring. The research can be expanded to include miscellaneous 

classes using multispectral images. For instance, difficult classes like explosives and 

mineral ores can be categorized and identified. 
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Table 3.2 Results of SVM on extracted features from PCA time series LIBS spectra of the samples 
investigated in the present study. 
 

Elements precision recall F1-score support 

Al 1.00 1.00 1.00 12 

Bronze 1.00 1.00 1.00 10 

Cu 1.00 1.00 1.00 8 

Steel 1.00 1.00 1.00 7 

Accuracy   1.00 37 

Macro avg. 1.00 1.00 1.00 37 

weighted avg. 1.00 1.00 1.00 37 

 

Table 3.3 Results of SVM on extracted features from PCA of colour CCD images from the plasma 
emission of the samples studied in the present work. 
 

Elements precision recall F1-score support 

Al 1.00 1.00 1.00 604 

Bronze 1.00 1.00 1.00     517 

Cu 1.00 1.00 1.00 551 

Steel 1.00 0.99 1.00 518 

Accuracy   1.00 2190 

Macro avg. 1.00 1.00 1.00 2190 

weighted avg. 1.00 1.00 1.00 2190 

 Shallow neural network model for multi-output regression for 

quantification 
The elemental analysis of the samples can be achieved using the atomic spectroscopy 

technique known as LIBS. It is based on the emission spectroscopy of the plasma formed 

by focusing a short laser pulse on to the sample, usually in a few nanosecond or ultrashort 

femtoseconds [37-39]. It is a quick method and can be modified for standoff and remote 

detection of target [40–44]. It has the advantage in identifying substances at lower 

concentrations and can also be used in conjunction with Raman spectroscopy [45]. 

Additionally, recent approaches, like NE-LIBS [46–49], found to improve the limit of 

detection by enhancing the LIBS signal. Numerous machine-learning techniques were 

used for categorizing and identifying the samples due to the rapid acquisition of large 



70 
 

amounts of data from atomic and ionic transitions in LIBS [50, 51]. LIBS data was also 

utilized for the quantification, which includes calibration and calibration-free techniques. 

For calibration-free techniques, compositions are estimated using plasma properties with 

the condition that the plasma composition should be representative of the material 

composition (stoichiometric ablation), which is reasonable when the power density on the 

sample surpasses 109 W/cm2. Standard samples and calibration curves are required for the 

calibration method used for quantification. The plasma must be at local thermodynamical 

equilibrium, optically thin, and devoid of self-absorption [52]. The steps in the 

quantification process include i) determining the plasma temperature T using Boltzmann's 

equation, ii) determining the intensity of the peaks iii) determining the electron density ne, 

iv) determining the density ratio of the sample of a particular element, v) and checking the 

criterion for optically thin conditions and LTE [53]. The plasma temperature must be 

calculated to assess the element composition of a sample. For reliable estimation using the 

calibration-free technique, careful spectral treatment is necessary, such as background and 

self-absorption correction. With correction, improved precision of an order of magnitude 

was reported [54]. By optimizing the temporal window of the LIBS acquisition, the CF-

LIBS performance can be made even better [55]. The technique was used to quantify oxide 

layers in thin film [56], alloys and glasses [57], and oxide materials [58], and to monitor 

the composition of several elements in coral skeletons [59]. In environmental monitoring 

[60], monitoring the toxic compounds in the industrial waste [61], analysis of meteorite 

fragments [62], and elemental ratios in intermetallic nanoalloys and nano- composites [63] 

in the analysis of metals in waste foundry sand [64]. Several standardization techniques 

have been used in the calibration-free LIBS [65].  

Simultaneously, regression models using machine learning techniques gradually replace 

the CF-LIBS in quantification investigations using the LIBS spectra. For the quantitative 

analysis of chromium in soil, LIBS in combination with neural networks was used [66]. 

An artificial neural network (ANN) was utilized to identify the primary elements in natural 

rocks and soil samples and quantify several elements using LIBS spectra [67]. This method 

builds a multivariate nonlinear function associating the LIBS spectra to the target 

composition. The study of the LIBS spectral dataset from the target samples with already 

known compositions is used to determine this function empirically. It was used in a variety 

of fields for the quantitative analysis of elements, including ceramics [68], soil analysis 

[69], the quantification of manganese in various glass matrixes [70], and the analysis of 
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plutonium oxide [71]. Calibration is carried out using principal component regression 

(PCR) and partial least-square regression to estimate Mn in glass (PLSR). In addition to 

calibration, the ANN is employed in the elemental analysis of solidified mineral melt 

samples [72] to correct self-absorption peaks in the CF-LIBS. It was found that 

multivariate calibration techniques can be applied in an unsupervised manner and are noise 

resistant. In the instance of pellets containing glass components like manganese at different 

weight percentages, the multivariate calibration was said to perform better than the 

univariate calibration [73]. The following is a list of some of the multivariate algorithms 

used for the calibration analysis in LIBS [74].  

 Principal component regression (PCR)  

 Principal covariates regression (PCovR) 

 Partial least squares regression (PLSR) 

 Multiple linear regression (MLR) 

 Ridge regression (RR) 

 ANN (Artifical Neural Network). 

Unlike machine learning models, which reach saturation in accuracy at a particular data 

size, deep learning models' accuracy rises continuously as the size of the data increases. 

Additionally, many tuning parameters are available for optimizing the models. The use of 

time-resolved LIBS spectra as data augmentation for deep learning models is discussed 

here. We assess the model's performance on the unobserved composition of the one-shot 

multi-output regression result. The time-resolved LIBS spectra served as the training data 

for three shallow neural network models. The LIBS spectra obtained using nanosecond 

laser pulses demonstrate that the Au and Ag in the bimetallic alloy can be quantified 

simultaneously. 
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3.2.1 Experimental details 

Aluminum (Al), copper (Cu), and Brass were utilized as the targets in the studies, along 

with four distinct alloy compositions (Au20-Ag80, Au30-Ag70, Au50-Ag50, and Au80-

Ag20). Figure 2.18 illustrates the LIBS experimental technique, the plasma emissions 

produced by the recombination of ions and electron, were collected and directed through 

a 600-µ optical fiber to the intensified gated spectrometer. The spectra were recorded 

between 230 nm and 800 nm. For the training procedure, a total of 64 spectra from three 

compositions (Au20-Ag80, Au50-Ag50, and Au80-Ag20) as well as 2 spectra from each 

of Al, Cu, and Brass, were used. Each spectrum was collected from various targets 

positioned on the translation stage. Figures 3.7 and 3.8 show the LIBS spectra of the four 

distinct bimetal compositions and Cu, Brass, and Al in the relevant wavelength range. The 

details of the nanosecond laser parameter and the experimental setup are presented in 

chapter 2. 

 
Figure 3.7 LIBS spectra collected at three gate delays of 1µs, 2 µs, and 3 µs. The spectra (a) Au20-
Ag80, (c) Au50-Ag50, (d) Au80-Ag20are used for training the shallow neural network model of, 
and the unseen spectra (b) Au30-Ag70 were used for prediction by the model. 

 

 



Chapter 3 
 

73 
 

 
Figure 3.8 Ns-LIBS spectra collected at the gate delay of 1 µs, 2 µs, and 3 µs of (a) Aluminum, 
(b) copper and (c) Brass are used in the model training as zero composition of Au-Ag. 

Figure 3.9 The schematic of the model built for the quantification studies with various 
compositions of Au-Ag LIBS spectra used for the test and train set and evaluation set, and unseen 
composition used for prediction. 
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Figure 3.9 illustrates the procedures followed in the analyses of the LIBS data. The data 

was divided into three sections, a) 80% for the model's training, b) 10% for its validation 

while being trained, c) and 10% for its evaluation post training. After evaluation, the model 

was used to estimate the composition from the LIBS spectra earlier not seen by the model 

(Au30-Ag70). 

3.2.2 Terminology in the neural network model 

3.2.2.1 Forward propagation  

The neuron's output is determined by taking the inputs, multiplying them by the weights 

to produce the output, and then passing the obtained value through the activation function. 

Equation 3.1 clarifies the relationship between the inputs, biases, weights, and output. 

Y(୧) = ෍ x୨
(୧)

ଷ

୨ୀଵ

w୨ + b୧ = xଵ
(୧)wଵ + xଶ

(୧)wଶ + xଷ
(୧)wଷ + bଵ + bଶ + bଷ                             (3.1) 

Where x's are inputs, b's are bias, w's are weight, and y's are outputs. 

3.2.2.2 Back propagation  

The biases and weights are optimized in each iteration to enhance the model performance, 

and the errors are fed back through the network. The difference between the output and 

the anticipated is used to compute the loss. As stated in equation 3.2, the loss is used to 

modify the weights. 

w୬ୣ୵ = w୭୪ୢ − η
∂L

∂w୬ୣ୵
                                                                                                         (3.2) 

Here L is the cost function, η is the learning rate, and W is the weight. The cost function 

contains the loss function and regularization terms, which is discussed below. 

3.2.2.3 Loss function 

The loss function, necessary for modifying the weights, measures the prediction error in 

the neural network's output. The mean absolute error (MAE), represented by equation 3.3, 

serves as both a measure and the loss function in the model we utilized. 

MAE =
∑ หy୧

୮ − y୧ห୬
୧ୀଵ 

n                                                                                                            (3.3) 

y୧ = expected value  

y୧
୮ = predicted value 

n is the number of data points 
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3.2.2.4 Ridge and lasso regularization 

Regularization discourages some coefficients (weights) in the model or causes them to 

shrink toward zero to prevent overfitting. L2 or Ridge regularization will prefer the 

significant coefficients resulting in a robust model. L2 regularizations include changing 

the cost function by introducing a penalty equal to the square of the coefficients' 

magnitude. By penalizing the model with a penalty termed L2-norm, the sum of the 

squared coefficients, the coefficients are reduced. The model optimization process uses 

the parameter λ from equation 3.4. 

෍ ቌy୧ − w଴ − ෍ w୨x୨
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ቍ
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ଶ

୮

୨ୀଵ

୬

୧ୀଵ

                                                                              (3.4) 

3.2.2.5 Activation function 

Y = activation function ቀ෍(weight ∗ input) + biasቁ 

The hidden layer's activation function was a rectified linear unit (ReLU), whereas the 

output layer's activation function was linear. The process is illustrated in figure 3.10.  

 

Figure 3.10 The role of the activation function in the neural networks is illustrated. The activation 
function introduces the nonlinearity to the regression analysis. 

ReLU is a nonlinear function since it outputs zero for negative inputs and is linear for 

values greater than zero, as illustrated in equation 3.5. 
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f(x) = ቄx                            if   x > 0
0                         if     x < 0ቅ                                                                                       (3.5) 

3.2.2.6 Least absolute shrinkage and selection operator (Lasso) regularizations 

Penalizing the regression model with a penalty L1-norm, the sum of the absolute 

coefficients reduces the regression coefficients to zero. It could mitigate some of the 

coefficients, which are not helping to improve the performance of the model using the λ 

value as indicated in equation 3.6. LAASO regularization, along with additional methods 

like PCA and competitive adaptive reweighted sampling (CARS) was employed for 

feature selection to enhance the model's performance. In improving the accuracy of the 

regression model utilizing LIBS data of mineral samples, shrinkage parameters can be 

applied [75, 76]. 
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                                                                                (3.6) 

3.2.2.7 Dropout 

Different regularizations are used in the model's generalization, and dropout is among 

them. The nodes are dropped probabilistically in each iteration, and the nodes to be 

dropped are optimized. The dropout is illustrated in figure 3.11.  

 

Figure 3.11 The weights are randomly excluded during the forward propagation to improve the 

model in the dropout. 
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3.2.2.8 Learning rate 

The learning rate is used to optimize the step size in minimizing the loss function. It 

decides how fast or slows the model should reach the minimum. The effect of different 

step size η is shown in figure 3.12 in minimizing the function with a single parameter. 

 

Figure 3.12 The effect of the small, moderate, and large step size on the learning rate in optimizing 

the model. 

3.2.2.9 Epoch 

 It is one iteration the model goes through in which the biases and weights are adjusted to 

obtain the output, the process is shown in figure 3.13.  

 

Figure 3.13 The weights and biases are updated in each cycle from the knowledge of the computed 
gradient. The model completes a cycle in one epoch. 
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3.2.2.10 Hyperparameter tuning 

The initial weights, number of hidden layers, number of nodes per hidden layer, dropout 

parameter, L1, L2, batch size, and number of epochs, along with the learning rate, were 

optimized or tuned. As mentioned above, this parameter adjustment process is known as 

hyperparameter tuning. 

3.2.3 Model details 

We made an innovative effort to use LIBS spectra collected at three different gate delays 

to measure the compositions of Au and Ag in bimetallic samples. The model's performance 

was assessed by noticing the learning curves on the training and validation sets with the 

variation in the loss for each epoch. Underfitting is when the model has a low error on the 

validation data set compared to the training data set and a huge variance; on the other hand, 

overfitting is when the model has a small error on the training data set and a great error on 

the validation set. Both examples demonstrate that the model do not generalize to the new 

data since the relationship between the models' output and the inputs are not accurately 

associated, resulting in a significant inaccuracy in the output of the new dataset. The 

learning curves were monitored when the parameters were set to get the best variance and 

bias, also known as the bias-variance trade-off. ReLU was used as the activation function 

for the model, with 1200 nodes in the hidden layer and two nodes in the output layer having 

linear activation functions. The batch sizes the number of epochs and were adjusted for 

each dataset. RMSProp method was used to optimize the loss function's mean absolute 

error. Three different datasets—one with spectra collected only at 1 µs, another with 

spectra obtained at 1 µs and 2 µs, and a third with spectra obtained at 1 µs, 2 µs, and 3 

µs—were used to generate the three models. The number of epochs (35, 40, and 30) and 

the batch size (12, 24, and 36) were adjusted for each model, keeping the other factors the 

same. Reports include the evaluation and prediction results and the learning curves for the 

NN three models. The training/validation errors and losses were seen to decrease with the 

number of epochs simultaneously, demonstrating that the model is fitting appropriately 

[see figures 3.14 (a), (b), and (c) for training and validation errors and figures 3.14(d), (e), 

and (f) for training and validation losses]. Figure 3.14 displays the complete collection of 

learning curves during the evaluation. 
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Figure 3.14 Learning curves of the model during training with the validation and training sets used 
in the optimization. The variation in the loss and error with every epoch in the both the sets for ns-
LIBS spectra acquired a) at 1 µs and, b) at 1 µs+ 2 µs and, c) at 1 µs + 2 µs + 3 µs. and the true 
values vs predicted values from the spectra at d) at 1 µs and, e) at 1 µs + at 2 µs and, f) at 1 µs +  
at 2 µs + at 3 µs. 
 

3.2.4 Results and discussion 

The data were normalized as part of the preprocessing procedure, and the principal 

components from the PCA were then supplied into the neural network (NN) model's input. 

PCA is typically used to reduce dimensionality. To accurately estimate the proportions of 

the two elements in the bimetallic alloy, we have successfully created three shallow NN 
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models. L1, L2 regularizations were fixed to 10-3 each, and initial weights were set to all 

ones. The shallow neural networks model's learning rate, dropout, batch size, and number 

of epochs were optimized for enhanced performance. The percentage error in the predicted 

composition on the test set for each of the three models were trained using the dataset 

collected at the (a) 1 µs, (b) 1 µs and 2 µs, (c) 1 µs, 2 µs, and 3 µs gate delays.The figures 

3.15 (d),(e), (f) represent the true values versus predicted values by the model trained using 

the data collected at 3.15 (d) 1 µs, (e) 1µ s and 2 µs, (f) 1 µs, 2µ s. The test set includes 

spectra from 2 µs and 3 µs, the percentage error for all three models is less than 10, with a 

few outliers in the third model. When the data set is inadequate, and time-resolved spectra 

are accessible, this method can be used for improving the model performance. It should be 

noted that even though there are few outliers, the model still holds true for prediction from 

the data collected at different time windows. This shows that time-resolved LIBS spectra 

are helpful in quantification studies. The model can be expanded to predict several 

elemental compositions from various alloys. Figures 3.15(a), (b), (c) shows the X-axis 

displays the % error in each prediction, and the Y-axis displays the number of counts at 

that error and figures 3.15 (d), (e), (f) the true vs predicted values of the three models. 
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Figure 3.15 The predictions of the model on the test set spectra recorded at a) 1 µs and, b)1 µs + 
2 µs and, c)1 µs + 2 µs + 3 µs. And the true values versus predicted values of the spectra at, d) 1 
µs and, e) 1 µs + 2 µs and, f) 1 µs + 2 µs + 3 µs. The line is just the guide to the eye. 

The results in figures 3.16 (a), (b), (c) illustrate that the number of outliers increased when 

more time-gated data was included, most spectrum were still accurately quantified. Data 

at various shorter time intervals, along with slightly altered acquisition parameters, instead 
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of using enormous amounts of data acquired with the same parameters, could help 

generalize the model. Following the model's evaluation, the LIBS spectra using three 

different datasets 1 µs, 2 µs, and 3 µs gate delay and previously unknown composition 

spectra are provided for prediction. The findings are presented in figure 3.16. The error in 

each bar's forecast from a single spectrum is shown. The graphs below show that, with a 

few outliers, most predictions are within 10% error. It was discovered that the insertion of 

greater delay timed spectra increased the outliers' range. The R-squared error for the 

model's prediction of the Ag-Au composition using training data from only the 1 µs, the 1 

µs and 2 µs, and the first three µs data was 0.98, 0.96, and 0.99, respectively. In all 

situations, the R-squared value was greater than 0.9, although it is seen that this value 

decreases when more spectra are added to the model. Because the test set also includes 

successive time-resolved spectra, the prediction on the test set shows an increase in 

outliers. These results should also serve as a reminder that models can be created for 

composing perdition using data collected at various times. Table 3.4 below lists the mean 

and standard deviation for the one-shot findings on 22 separate spectra for the three 

models' performance on the unknown data, in this case, the composition of Au30 and 

Ag70. 

Table 3.4 The mean and standard deviation of the results predicted by the three different models 
trained with the LIBS spectral data collected at 1 μs, (1 μs and 2 μs), and (1 μs, 2 μs and 3 μs) 
gate delays. 

 

 

 

 

Time-resolved 
Spectra at 

microseconds. 1 μs 
 

1 μs 
1 μs and 

2 μs 
1 μs, and 

2 μs 

 
1 μs, 2 μs 

& 3 μs 

 
1 μs, 2 μs & 

3 μs 

Element Au Ag Au Ag Au Ag 
Predicted Mean 

(Wt. %) 30.73 65.55 29.78 64.39 27.77 70.79 

Standard deviation 
(Wt. %) 1.63 1.47 1.4 1.46 1.37 1.27 
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Figure 3.16 The predictions of the model on the unseen ns-LIBS spectra of Au30-Ag70 at a) 1 µs 
and b) 1 µs + 2 µs and, c) 1 µs + 2 µs + 3 µs. 
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3.2.5 Conclusions 
 

Using the multi-output regression model, the composition of bimetallic alloy was 

quantified from the LIBS spectra. Each model was evaluated during training by keeping 

an eye on the cross-validation learning curves. The time-resolved spectra were employed 

for both training and testing. Composition from the previously unseen Au30-Ag70 LIBS 

spectra was successfully predicted by the models. The studies can be expanded to include 

more than two elements' composition with extra nodes in the output layer. Here, the time-

resolved spectra were used to enhance the data and let the model generalize to predict from 

the spectra collected at three gate delays. Additionally, the standard deviations in the 

predicted composition of the unexplored spectra decreased from 1.63 to 1.37 and from 

1.47 to 1.27. We envision a unified single model that could predict the composition from 

any spectrum, trained from data gathered by varying all conceivable factors.  
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4 Two-dimensional correlation analysis of the LIBS 

spectra 
 

Abstract: The signal-to-noise ratio (SNR) of the laser-induced breakdown spectroscopy 

(LIBS) data was significantly improved in this study using two-dimensional (2D) 

correlation analysis. Time-resolved LIBS spectra of metallic samples and LIBS spectra of 

Au-Ag bimetallic samples with different compositions were used for the analysis. The 

diagonal in the 2D synchronous spectra was used to show the SNR improvement. The peak 

intensities were improved, and the noise was suppressed at the same time. The correlation 

between LIBS peaks was visualized using 2D correlation analysis. aluminum (Al), copper 

(Cu), and Brass display correlation strengths in the atomic transitions, and the Au-Ag 

bimetallic targets with various compositions show correlation strengths in atomic and ionic 

transitions (Au30-Ag70, Au50-Ag50, Au80-Ag20). The principal component analysis was 

utilized to classify the four bimetallic target compositions using the enhanced spectra 

(Au20-Ag80, Au30-Ag70, Au50-Ag50, and Au80-Ag20). The study revealed that the 

variance of the first three components had decreased. The first three components from 

improved spectra could describe 95 percent of the total variation. In contrast, the normal 

LIBS spectra could explain only 80 percent of the total variance from PCA research. 

 Introduction 

The spectral emissions from the cooling plasma produced when powerful short laser pulses 

are focused on the sample surface, are used in the laser-induced breakdown spectroscopy 

(LIBS) technique [1]. Ionic, atomic, and molecular transitions are the main constituents of 

typical LIBS spectra [2]. Additionally, the knowledge of the changing intensities in LIBS 

spectrum with elemental compositions combined with machine learning approaches is 

used for sample categorization and identification. Because of its adaptability, speed, and 

minimal sample preparation requirements, LIBS has found great success in a variety of 

fields, including the classification of bacteria [3-5], the study of ancient paintings [14], the 

study of fundamental plasma properties [15], planetary exploration, minerals [7], 

explosive detection [10, 11], archaeology [8, 9], and in the analysis of the minerals. Due 

to its potential advantage of combining with the Raman spectroscopy [16, 17] and its 

ability to function in double-pulse and standoff mode [18], this technique found a variety 
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of applications. It is a potent tool for the trace detection of samples due to the advantage 

of signal enhancement utilizing nanoparticles [19]. 

Along with ionic and atomic emissions, the LIBS spectra of organic materials and a few 

metals also show molecular emissions [20–22]. These emissions can be used to deduce the 

material's properties [23, 24]. Noda et al. [25] first developed 2D correlation spectroscopy 

(2DCOS). It was primarily utilized to interpret data from Raman, near-infrared, and 

nuclear magnetic resonance spectroscopy (NMR) [25–28]. It has been demonstrated that 

2D spectroscopy improves the resolution of the spectrum [29]. With a slight perturbation, 

it is possible to study the concurrent changes or coupling between the corresponding 

spectral emissions. The 2D correlation spectra provide the ability to better understand the 

sample properties compared to conventional spectra [30]. The correlations in the atomic 

transitions of aluminum, Copper, Brass, and an Au-Ag bimetallic target have been shown. 

The LIBS data of Al, Cu, Brass, and Au-Ag bimetallic metals have been subjected to 2D 

correlation analysis. We used times-resolved LIBS spectra and composition-varying LIBS 

spectra to show the advantage of 2D correlation spectroscopy. Two-dimensional contour 

plots can be used to visualize the analysis. The strength of the diagonal points in the two-

dimensional spectra corresponds to the peaks' self-correlation, also known as 

autocorrelation. It details the temporal association between a specific transition intensity 

and itself. The strength of the off-diagonal points reflects the peak intensity's temporal 

association with other peaks. Similarly, the 2D analysis of spectra with different 

concentrations reveals the autocorrelation and cross-correlation in the LIBS spectra. The 

resolution and SNR of the spectrum could be improved using this technique in addition to 

viewing. Our investigation shows that it is possible to enhance the SNR of the LIBS data 

by at least 3–4 orders of magnitude. It is important to note that the observed improvements 

were (a) not restricted to a small number of peaks or (b) were not random; they were seen 

over the whole LIBS spectrum. Additionally, we have shown that enhanced spectra can be 

employed to improve classification capabilities (here, we used the PCA analysis). 

Applications for this can be found in standoff LIBS and other techniques where the SNR 

is often extremely low. By altering the acquisition time and material composition, the 

perturbation was achieved. To the best of our knowledge, we showed this technique for 

the first-time utilizing nanosecond LIBS data, even though it has been well established in 

the analysis of NMR and IR data. Additionally, we discussed a few more potential 

applications in the section on conclusions. 
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 Experimental procedure 

The experimental setup for the time-resolved ns-LIBS is shown in figure 2.18 of chapter 

2. An ICCD and spectrometer system received the collected LIBS signal. Due to the 

significant plasma emissions from both metals and bimetals, the gate delay and width were 

optimized for each sample. Table 4.1 lists the acquisition parameters. Each spectrum 

resulted from an average of 10 acquisitions obtained repeatedly from different locations. 

Au-Ag bimetallic targets' LIBS spectra were collected for four distinct compositions, 

including 20-80, 30-70, 50-50, and 80-20, respectively. The spectrometer and ICCD, 

activated by the delay generator's output, were connected to the gathered light through a 

600 m optical fiber. Typically, 20 time-resolved kinetic spectra were obtained, averaged 

at each time delay, as shown in figure 4.1. The averaging was carried out to reduce, if any, 

matrix influence. The driving force behind this work to investigate the correlation between 

the transitions in the LIBS spectra was the irregular variation in the intensity of the peaks 

with increasing compositions. The coupling between the Au and Ag peaks for various 

compositions was shown at various ranges. 

 

Figure 4.1 The procedure followed in the acquisition of the time-resolved ns LIBS data from 
various target samples. 
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Table 4.1 Acquisition parameters used in the time-resolved ns-LIBS experiments. 

Samples Gate delay Gate 
width 

Exposure time ICCD Gain 

Al, Cu, Brass 0.5 µs 0.5 µs 2 ms 100

Au-Ag Bimetals 1 µs 1 µs 2 ms 50 

 2D correlation plots 
A set of 'm' LIBS spectra of the system under orderly disturbance resulting a change in the 

spectral intensity are represented by ݕ൫ߣ௝, ݆ ௝forߣ ௜൯. Where the discrete variableݐ =

1,2,3. . ݊   related to the wavelength sampled over 'n' values in the single spectrum 

represents. The second variable to time ݐ௜ for ݅ = 1,2,3. . . ݉ represents the effect of the 

applied perturbation on the system sampled over m time values.  

The dynamic spectrum ݕ෤൫ߣ௝,  ௠ is defined in the belowݐ ଵ toݐ ௜൯ in the time intervalݐ

equation as 
 

,௝ߣ෤൫ݕ       ௜൯ݐ = ,௝ߣ൫ݕ ௜൯ݐ −  ௝൯                                                                                         (4.1)ߣ൫ݕ̄
 

Where ݕ෤൫ߣ௝,  ௜൯  is the averaged spectra used as a reference in calculating the dynamicݐ

spectra. The reference spectra can be either the first or last spectrum of the time-resolved 

spectra and can be set to zero [30]. 

The reference spectrum is set to zero in the present studies. 
 

௝൯ߣ൫ݕ̄ =
1
݉ ෍ ݕ

௠

௜ୀଵ

൫ߣ௝,  ௜൯                                                                                                             (4.2)ݐ

 

The synchronous part ߣ)ߔଵ, ,ଵߣ)ߖ ଶ)and asynchronous partߣ  ଶ) of the correlationߣ

analysis are written as  
 

,ଵߣ)ߔ (ଶߣ =
1

݉ − 1 ෍ ఫ෥ݕ
௠

௝ୀଵ

(ଵߣ) ⋅  (4.3)                                                                                 (ଶߣ)෤௝ݕ

 

Where ݕఫ෥ is the spectral intensity at a point of time ݐ௝ 
 

(௜ߣ)෤௝ݕ = ,௜ߣ෤൫ݕ ݅                                                                                                                    ௝൯ݐ = 1,2 
 

,ଵߣ)ߖ (ଶߣ =
1

݉ − 1 ෍ ෤௝ݕ

௠

௝ୀ଴

(ଵߣ) ⋅ ෍ ௝ܰ௞

௠

௝ୀ଴

⋅  (4.4)                                                                (ଶߣ)෤௞ݕ

 

Where ௝ܰ௞ Hilbert-Noda transformation matrix  
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ቐ
0                          ݂݅  ݆ = ݇
1

݇)ߨ −  ቑ                                                                                      (4.5)݁ݏ݅ݓݎℎ݁ݐ݋                    (݆

 

In general, the perturbations in the system are introduced by changing temperature, 

chemical composition, or varying magnetic or electrical field strengths. The present 

correlation analysis uses the time-resolved LIBS spectra of metal and bimetallic targets 

with different compositions as the perturbing parameters. 

 
Figure 4.2 The time-resolved ns-LIBS spectra of (a) Al, (b) Cu, (c) Brass at five collected at 
regular intervals of 1 µs. The 2D correlation data obtained from the ns-LIBS spectra of (d) Al and, 
(e) Cu, (f) Brass targets, respectively. 
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The resulting synchronous and asynchronous 2D correlation spectra are complementary to 

each another. The 2D asynchronous spectra were not explored in this investigation since 

they did not show significant variation. Figures 4.2 (a), (b), (c) depict the time-resolved 

LIBS spectra of Al, Cu, and Brass at five specific times at regular intervals of one second 

respectively. The same data was used for the 2D correlation studies of Al, Cu, and Brass, 

respectively, in figure 4.2(d), figure 4.2(e), and figure 4.2(f). We have calculated the 

asynchronous correlation spectrum for only Al demonstrating the inconsiderable 

variations and not useful in SNR improvement. The asynchronous spectra of aluminum 

peaks is shown in figure 4.3.  

 
Figure 4.3 The atomic peaks of the Al in the time-resolved LIBS spectra are used for the 
asynchronous correlation analysis. The analysis was discontinued on the other spectra.  

The copper peak at 324.82 nm fitted with a Lorentzian curve before and after the 2D 

correlation analysis, and the width measured before analysis was 0.153 nm and 0.09 nm. 
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It was observed that the FWHM of the peak is reduced, indicating an improvement in the 

resolution, as shown in the figure 4.4.  

 

Figure 4.4  a) Cu peak from the ns-LIBS spectra fitted with Lorentzian before the analysis. b) The 
same data fitted with a Lorentzian function after the analysis it shows the improvement in the 
resolution after the 2D correlation analysis. 

4.3.1 Results and discussion 

The effect of reference spectra on the analysis were tested using four distinct spectra, as 

shown in figure 4.5(a) shows the analysis when the first spectrum collected at 1µs was 

used for the reference. Figure 4.5(b) shows the analysis when the final spectrum collected 

at 5µs was used for the reference. In contrast, figure 4.5(c) shows the analysis when zero 

references were used, and figure 4.5(d) shows the analysis when the average of the five 

spectra was used for the reference. For various reference spectra, the fluctuation in the 

intensity and width is seen. When the first spectrum is used as a reference, as shown in 

figure 4.5(a), the peaks are broad and high, and the breadth and height are decreased in the 

case when the final spectrum was used for reference [figure 4.5(b)] and the zero for 

reference spectrum [figure 4.6(c)]. When the reference spectrum utilized was an average 

of all the spectra, the intensities were too low [figure 4.6(d)] could be the result of the flat 

baseline in LIBS spectra that were acquired using the gated spectrometer, where the 

radiation of the plasma continuum was avoided. The 2D synchronous correlation plot’s 

amplitude depends on the intensity of the correlated peaks in the LIBS signals and the 

degree to which their changes are associated. Because there is no autocorrelation in the 

noise, the contributions from the random noise are insignificant and are supressed in the 

diagonal of the 2D correlation plots.  
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Figure 4.5 2D correlation analysis performed (a) with the spectrum acquired at 1 µs, (b) the 
spectrum at 5 µs,  (c) with the reference taken as zero and (d) the average spectrum of the five 
time-resolved spectra as reference. 

 

The LIBS spectra and the diagonal of the 2D correlation analysis were compared to 

substantiate the improvement in the signal, as shown in figure 4.6. Figure 4.6(a) shows the 

time-resolved LIBS spectra of Al in the spectral region of 303–312 nm, whereas figure 

4.6(b) displays the matching 2D correlation spectra while figure 4.6(c) displays the 

diagonal plot of the 2D correlation analysis. 
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Figure 4.6 The peaks from the regular ns-LIBS spectrum of (a) Al target in the spectral range of 
303-312 nm and the corresponding, (b) 2D correlation analysis, and (c) diagonal of the 2D 
correlation analysis on the LIBS spectra. 
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4.3.2 Correlation studies 

The wavelength serves as the X and Y-axis, and the contour plot's color gradient is the 

correlation strength. The diagonal peaks, also known as auto-peaks, are the autocorrelation 

of the peak, while the off-diagonal peaks, also known as cross-peaks, correlate with other 

peaks. Python program was used to analyze the dynamic spectra and calculate the 

synchronous and asynchronous spectra, using the average spectra as a reference. The 

contour's shape pertains to how uniformly the peak broadens. Because the random noise 

did not correlate with the signal over time, the noise in the 2D spectra was reduced, 

resulting in improved signal-to-noise. The atomic peaks at 309.27 nm and 309.28 nm of 

Al correlate positively, as seen in figure 4.2(d), and the peak values are listed in table 4.2. 

The Cu peaks at 329.54 and 330.20 nm in figure 4.2(e) showed a good association, and 

table 4.3 lists the identified peaks. The magnitude of the cross-peaks reveals the degree of 

correlation. Figure 4.2(f) data of Brass demonstrates the correlation between the atomic 

peaks of copper at 324.75 nm and Zinc at 334.5 nm; this correlation was stronger than the 

Zinc peak autocorrelation. Table 4.4 lists the Brass LIBS peaks in brief. Brass and Cu 

exhibit comparable correlation in the 220-250 nm range and vary in the 320-340 nm range. 

It was discovered that the autocorrelation of the peak at 327.39 nm was weaker than the 

peak at 324.7 nm and the cross peak, indicating that the transition at 327.39 nm and 324.7 

nm was coupled. 

Table 4.2  Peaks identified from the near-field ns-LIBS spectrum of the Al target.  

Sl. No. Wavelength Observed (nm) Element Ionization 
1 305.00 Al I
2 305.71 Al I 
3 308.21 Al I
4 309.27 Al I
5 309.28 Al I
6 358.65 Al II
7 394.40 Al I
8 396.15 Al I
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Table 4.3 Peaks identified from ns-LIBS spectrum of copper target. 

Sl. No. Wavelength Observed (nm) Element Ionization 
1 296.11 Cu I
2 324.75 Cu I
3 327.39 Cu I
4 329.05 Cu I
5 330.79 Cu I
6 333.78 Cu I
7 465.11 Cu I
8 510.55 Cu I
9 515.32 Cu I

10 521.82 Cu I
11 529.25 Cu I
12 578.21 Cu I

 

Table 4.4 Peaks identified from ns-LIBS spectrum of the Brass target. 

Sl. No. Wavelength observed (nm) Element Ionization 
1 324.75 Cu I 
2 327.39 Cu I 
3 32905 Cu I 
4 330.79 Cu I 
5 333.78 Cu I 

6 330.25 Zn I 
7 330.29 Zn I 
8 334.50 Zn I 
9 334.55 Zn I 

10 334.59 Zn I 
11 468.01 Zn I 
12 472.21 Zn I 
13 481.05 Zn I 
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Figure 4.7 data [4.7(a) represents Al, figure 4.7(b) represents Cu, and figure 4.7(c) 

represents Brass] shows that the LIBS signal intensity of the atomic peaks increased by ~5 

orders of magnitude. In contrast, bimetallic targets illustrated ~4 orders of magnitude 

improvement [figure 4.7(d) illustrates Au30-Ag70, figure 4.7(e) illustrates Au50-Ag50, 

and figure 4.7(f) illustrates Au80-Ag20 targets data, respectively]. It is important to note 

here that the SNR gains have only been seen for these specific data sets under the 

previously described experimental circumstances. We beleive that further LIBS data will 

benefit from similar changes as well. This study will be beneficial in cases where the SNR 

is very lowfor instance, standoff LIBS spectra of explosive compounds in the single shot 

mode. However, thorough studies are required to support this claim. Recently, Quaroni et 

al. revealed that for time-resolved infrared spectra, the signal has increased by three orders 

of magnitude [31]. Additionally, the peaks' widths were reduced, indicating improvement 

in resolution. This exemplifies how using multiple spectra taken under perturbed 

conditions can enhance the quality of the spectra. Exploring the use of this strategy to 

combat the matrix effects in LIBS would also require more research.  

Brighter off-diagonal peaks indicate strong correlation between time-resolved spectra. 

Figures 4.8(a), 4.8(b), and 4.8(c) depict the 2D correlations analysis from the time-

resolved LIBS spectra of bimetal targets for Au30-Ag70, Au50-Ag50, and Au80-Ag20, 

respectively. The 2D correlation analyses for the Au30-Ag70, Au50-Ag50, and Au80-

Ag20 targets are illustrated in figure 4.8(d), figure 4.8(e), and figure 4.8(f), respectively, 

using five different gate delays with regular intervals of 1 µs. Superior correlations were 

seen for the Au50-Ag50 than for the other two. Additionally, it is noted that although the 

intensity of the off-diagonal peaks varies with the change in Ag%, the first ionized peak 

of Ag at 241.32 nm does not exhibit considerable variation. Ag's first ionized peak at 

241.32 nanometers and Au's atomic peak at 242.7 nm exhibit a more substantial cross 

peak. 
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Figure 4.7 The improved spectrum extracted from the 2D correlation analysis on LIBS spectra of 
(a) Al, (b) Cu, (c) Brass, (d) Au30Ag70, (e) Au50Ag50 (f) Au80Ag20 targets, respectively. 
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Figure 4.8 Time-resolved LIBS spectra of (a) Au30-Ag70, (b) Au50-Ag50, (c) Au80-Ag20 
bimetallic targets at five delays with regular intervals of 1µs with identified peaks. The 2D 
correlation studies on ns-LIBS spectra of (d) Au30-Ag70, (e) Au50-Ag50, (f) Au80-Ag20 targets. 
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Figure 4.9 2D correlation studies on the ns-LIBS spectra of Au-Ag bimetal with three 
compositions and at two delays in the range (a) 240-250 nm, (b) 260-280 nm, (c) 520-550 nm at 1 
μs and, (d) 240-250 nm, (e) 260-280 nm, (f) 520-550 nm at 2 μs. 
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Figure 4.9 shows the outcomes after using the variable composition of Ag/Au in the Ag-

Au alloy target as a perturbing parameter. The data collected for gate delays of 1 µs and 2 

µs were compared in the 2D analysis for three distinct compositions. Analysis on the LIBS 

spectra in three wavelength range of   240–250 nm, 260–280 nm, and 520–550 nm acquired 

at 1µs and 240–250 nm, 260–280 nm, and 520–550 nm at 2µs after the laser pulse were 

compared. The correlations were better in the 240–250 nm range but worse in the 260–

280 nm and 520–550 nm ranges. For the 2D correlation experiments, LIBS spectra of Au-

Ag bimetal targets at three distinct compositions were utilized. These targets were in the 

240–250 nm [figure 4.10(a)], 260–280 nm [figure 4.10(b)], 520–550 nm [figure 4.10(c)], 

and 240–250 nm [figure 4.10(d)], 260–280 nm [figure 4.10(e)], In the 240–250 nm range, 

the correlations between various compositions grew with time whereas they shrank in the 

other two ranges. Table 4.5 provides an overview of the Au and Ag LIBS peaks that were 

found. 

Table 4.5 Identified peaks form the ns-LIBS spectrum of Au-Ag bimetallic target. 

 

 

 

 

 

 

 

 

 

 

4.3.3 Classification studies  

Figure 4.10 shows the outcomes of PCA on the diagonal of the 2D synchronous analysis 

and the LIBS spectra. PCA achieves dimensional reduction [33] by maximizing the 

principal components' variance; with less dimensional information, we may be able to 

Sl. No.Wavelength Observed 
(nm) 

Element Ionization State

1 241.32 Ag II
2 242.7 Au I 
3 243.77 Ag II
4 247.39 Ag II
5 267.5 Au I 
6 276.7 Au I 
7 328.13 Ag I 
8 338.32 Ag I 
9 520 Ag I 
10 546 Ag I 
11 768 Ag I 
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explain the system. The information contained in the component increases with the 

variation. The cumulative explained variance tells us how many primary components to 

include in the data description. Figure 4.10(a) displays the PCA score plot, while figure 

4.10(b) displays the variance plot (b). The cumulative explained plot for the typical LIBS 

spectra is shown in figure 4.10(c). Additionally, the enhanced spectra score plot, variance 

plot, and cumulative variance plot [figures 4.10(d), 4.10(e), and 4.10(f)] were compared. 

We achieved 95% variance with just the first three principal components in this case, 

whereas in regular spectra (with the noise) it took more than 5 components to get 80% 

variance, which is much lower than the earlier number. This improvement was possible by 

reducing the noise and increasing the peak intensity using the correlation analysis. 

The SNR of the spectra was significantly enhanced in the case of intense peaks and the 

strongly associated peaks in regular spectra. Figure 4.2 depicts the relationship between 

the atomic peaks of Al (303 nm–310 nm range), Cu (320 nm–340 nm range), and Brass 

(320 nm–340 nm range). Brass shows the substantial coupling between the Cu and Zn 

lines in the 320–340 nm range. Compared to the other compositions in the 240 nm–250 

nm range, the cross-peaks for the Au50–Ag50 sample were particularly strong. For various 

compositions, the Au-Ag correlation peaks were plotted from the time-resolved LIBS 

spectra, and the observed cross-peaks were found to be strong in the 260 nm-280 nm 

region, as shown in figure 4.8. By eliminating the components that remain constant, these 

2D plots also aid in differentiating samples of various compositions. We can enhance the 

classification using the diagonal from the 2D analysis data. The classification and 

understanding of the association between various transitions will significantly benefit the 

investigation of diverse samples using different perturbation techniques. Additionally, this 

might be a useful tool for investigating the molecular emissions in fs-LIBS [34, 35] and 

the analysis of data using machine learning applications. 
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Figure 4.10 PCA on the ns-LIBS spectra of bimetal targets and the diagonal of the 2D correlation 
analysis (a) PCA score plot (b) variance plot (c) cumulative explained variance on ns-LIBS spectra 
and (d) PCA score plot (e) variance plot (f) cumulative explained variance on the improved 
diagonal of the 2D spectra. A solid line is a guide to the eye. 

4.3.4 2D correlation analysis of standoff LIBS data 

The improvement in the SNR of the femtosecond LIBS spectra is shown in figures 4.11 

(a), (b), (c) for Polyvinyl chloride (PVC) and 4.12 (a), (b), (c) for Hydroxypropyl Cellulose 

(HPC), wherein the spectra were obtained from a standoff distance of 6.5 m. Figures 4.11 
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(d), (e), (f) and 4.12 (d), (e), (f) illustrate how the SNR is improved using the 2D analysis 

on PVC and HPC data published in our work [18]. 

 

Figure 4.11 The average of fs-standoff LIBS spectra of (a) PVC, (b) CN band, (c) C2   band 
compared with the diagonal of the 2D correlation analysis demonstrating the improvement of five 
orders of magnitude (d) whole spectra (e) the CN band, and (f) C2 band. 
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Figure 4.12 The average of fs-standoff LIBS spectra of (a) HPC, (b) CN band, (c) C2   band 
compared with the diagonal of the 2D correlation analysis demonstrating the improvement of five 
orders of magnitude (d) whole spectra, (e) the CN band, and (f) C2 band. 

 Conclusions 

The randomly fluctuating noise in LIBS spectra has little correlation in time and the 

transitions are well correlated resulting in the improvement of SNR when 2D correlation 

analysis is used. The correlations in the transitions cannot be inferred from the linear 

spectroscopic data. Furthermore, 2D correlation analysis seems to be an effective method 
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for resolving the overlap peaks in the spectra. The interpretation of correlations between 

LIBS transitions is made simpler by 2D correlation analysis, and it helps visualize the 

wavelength shift and time-dependent decay of various LIBS peaks. We also include 

recommendations for future research and the key findings from this work. These 

investigations will improve knowledge of the molecular peaks and their association, 

particularly in the femtosecond LIBS spectra. For instance, molecular emissions such as 

CN, C2, AlO, and TiO in the LIBS spectra may provide further information regarding the 

sample properties. Due to the spread of peaks in second dimension, improved SNR, and 

resolution from regular spectrum with overlapped peaks were achieved, which was 

impossible otherwise. 2D studies in combination with time-resolved LIBS spectra or other 

perturbation methods result in better resolution with the simple spectrometer. To better 

understand the transitions, the same experiments can be carried out with other 

perturbations, such as modifying the input laser energy, gate delays, ICCD gain, the 

distance at which the emissions are collected, compositions, etc. The SNR weakens in the 

standoff LIBS, and this method can be utilized to improve it, particularly in the case of 

explosives detection [36, 37]. 

  



112 
 

Reference  
 
1) S. N. Thakur and J. P. Singh, Fundamentals of laser induced breakdown spectroscopy. In Laser-induced 

breakdown spectroscopy, Elsevier, 2007, 3-21. 
2) S.S. Harilal, J. Yeak, B.E. Brumfield, J.D. Suter, M.C. Phillips, Dynamics of molecular emission 

features from nanosecond, femtosecond laser and filament ablation plasmas, J. Anal. At. Spectrom. 31 
(2016) 1192–1197. doi:10.1039/c6ja00036c. 

3) D. Prochazka, M. Mazura, O. Samek, K. Rebrošová, P. Pořízka, J. Klus, P. Prochazková, J. Novotný, 
K. Novotný and J. Kaiser, Combination of laser-induced breakdown spectroscopy and Raman 
spectroscopy for multivariate classification of bacteria, Spectrochim. Acta Part B At. Spectrosc. 139 
(2018) 6–12. doi:10.1016/j.sab.2017.11.004. 

4) SJ Rehse, A review of the use of laser-induced breakdown spectroscopy for bacterial classification, 
quantification, and identification, Spectrochim. Acta Part B At. Spectrosc. 154 (2019) 50–69. 
doi:10.1016/j.sab.2019.02.005. 

5) Q. Wang, G. Teng, X. Qiao, Y. Zhao, J. Kong, L. Dong, X. Cui, Importance evaluation of spectral lines 
in Laser-induced breakdown spectroscopy for classification of pathogenic bacteria, Biomed. Opt. 
Express. 9 (2018) 5837–5850. doi:10.1364/BOE.9.005837. 

6) S. Abdul Kalam, S. V. Balaji Manasa Rao, M. Jayananda, S. Venugopal Rao, Standoff femtosecond 
filament-induced breakdown spectroscopy for classification of geological materials, J. Anal. At. 
Spectrom. 35 (2020) 3007–3020. doi:10.1039/d0ja00355g. 

7) R.S. Harmon, J. Remus, N.J. McMillan, C. McManus, L. Collins, J.L. Gottfried Jr, FC DeLucia, A.W. 
Miziolek, LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and 
discrimination of minerals, Appl. Geochemistry. 24 (2009) 1125–1141. 
doi:10.1016/j.apgeochem.2009.02.009. 

8) V. Lazic, F. Colao, R. Fantoni, V. Spizzicchino, Recognition of archeological materials underwater by 
laser induced breakdown spectroscopy, Spectrochim. Acta Part B At. Spectrosc. 60 (2005) 1014–1024. 
doi:10.1016/j.sab.2005.06.014. 

9) F. Ruan, T. Zhang, H. Li, Laser-induced breakdown spectroscopy in archeological science: a review of 
its application and future perspectives, Appl. Spectrosc. Rev. 54 (2019) 573–601. 
doi:10.1080/05704928.2018.1491857. 

10) A.K. Myakalwar, N. Spegazzini, C. Zhang, S.K. Anubham, R.R. Dasari, I. Barman, M.K. Gundawar, 
Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive 
detection, Sci. Rep. 5 (2015) 13169. doi:10.1038/srep13169. 

11) FC De Lucia, J.L. Gottfried, A.W. Miziolek, Evaluation of femtosecond laser-induced breakdown 
spectroscopy for explosive residue detection, Opt. Express. 17 (2009) 419–425. 
doi:10.1364/OE.17.000419. 

12) R. González, P. Lucena, L.M. Tobaria, J.J. Laserna, Standoff LIBS detection of explosive residues 
behind a barrier, J. Anal. At. Spectrom. 24 (2009) 1123–1126. doi:10.1039/B821566A. 

13) J. Moros, F.J. Fortes, J.M. Vadillo, J.J. Laserna, LIBS detection of explosives in traces, in: Laser-
Induced Break. Spectrosc. J. Moros, F. J. Fortes, J. M. Vadillo J. J. Laserna, Laser-Induced Break. 
Spectrosc. Springer, 2014, Pp. 349–376 Berlin, Heidelberg. doi:10.1007/978-3-642-45085-3_13  

14) L. Burgio, K. Melessanaki, M. Doulgeridis, R.J.H. Clark, D. Anglos, Pigment identification in 
paintings employing laser induced breakdown spectroscopy and Raman microscopy, Spectrochim. 
Acta Part B At. Spectrosc. 56 (2001) 905–913. doi:10.1016/S0584-8547(01)00215-4. 

15) D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic 
diagnostics and plasmaparticle interactions: Still-challenging issues within the analytical plasma 
community, Appl. Spectrosc. 64 (2010) 335–366. doi:10.1366/000370210793561691. 

16) S.K. Sharma, A.K. Misra, P.G. Lucey, R.C.F. Lentz, A combined remote Raman and LIBS instrument 
for characterizing minerals with 532 nm laser excitation, Spectrochim. Acta Part A Mol. Biomol. 
Spectrosc. 73 (2009) 468–476. doi:10.1016/j.saa.2008.08.005. 

17) A. Giakoumaki, I. Osticioli, D. Anglos, Spectroscopic analysis using a hybrid LIBS-Raman system, 
Appl. Phys. A. 83 (2006) 537–541. doi:10.1007/s00339-006-3541-0. 

18) NL. Murthy, S. Abdul Salam, S.V. Rao, Stand-off Femtosecond Laser Induced Breakdown 
Spectroscopy of Metals, Soil, Plastics and Classification Studies, 2019 Work. Recent Adv. Photonics, 
WRAP 2019. (2019) 16–18. doi:10.1109/WRAP47485.2019.9013674. 

19) A. De Giacomo, M. Dell'Aglio, R. Gaudiuso, C. Koral, G. Valenza, Perspective on the use of 
nanoparticles to improve LIBS analytical performance: nanoparticle enhanced laser induced 
breakdown spectroscopy (NELIBS), J. Anal. At. Spectrom. 31 (2016) 1566–1573. 
doi:10.1039/C6JA00189K. 



Chapter 4 
 

113 
 

20) C.G. Parigger, Atomic and molecular emissions in laser-induced breakdown spectroscopy, 
Spectrochim. Acta Part B At. Spectrosc. 79 (2013) 4–16. doi:10.1016/j.sab.2012.11.012 

21) C.G. Parigger, J.O. Hornkohl, Computation of AlO B2Σ+→ X2Σ+  emission spectra, Spectrochim. 
Acta Part A Mol. Biomol. Spectrosc. 81 (2011) 404–411. doi:10.1016/j.saa.2011.06.029 

22) SJ Mousavi, M. Hemati Farsani, S.M.R. Darbani, A. Mousaviazar, M. Soltanolkotabi, A. Eslami Majd, 
CN and C2 vibrational spectra analysis in molecular LIBS of organic materials, Appl. Phys. B Lasers 
Opt. 122 (2016). doi:10.1007/s00340-016-6371-6. 

23) S.A. Kalam, N.L. Murthy, P. Mathi, N. Kommu, A.K. Singh, S.V. Rao, Correlation of molecular, 
atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high 
energy materials, J. Anal. At. Spectrom. 32 (2017) 1535–1546. doi:10.1039/c7ja00136c. 

24) E.N. Rao, P. Mathi, S.A. Kalam, S. Sreedhar, A.K. Singh, B.N. Jagatap, S.V. Rao, Femtosecond and 
nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data, 
J. Anal. At. Spectrom. 31 (2016) 737–750. doi:10.1039/C5JA00445D. 

25) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) 
correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317–1323. doi:10.1366/0003702934067513 

26) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other 
types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329–1336. doi:10.1366/0003702934067694. 

27) Y.M. Jung, I. Noda, New approaches to generalized two-dimensional correlation spectroscopy and its 
applications, Appl. Spectrosc. Rev. 41 (2006) 515–547. doi:10.1080/05704920600845868. 

28) I. Noda, Y. Liu, Y. Ozaki, Two-Dimensional Correlation Spectroscopy Study of Temperature-
Dependent Spectral Variations of N-Methylacetamide in the Pure Liquid State. 2. Two-Dimensional 
Raman and Infrared- Raman Heterospectral Analysis, J. Phys. Chem. 100 (1996) 8674–8680. 
doi:10.1021/jp9534141. 

29) L. Ma, V. Sikirzhytski, Z. Hong, I.K. Lednev, S.A. Asher, Insight into resolution enhancement in 
generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 67 (2013) 283–290. 
doi:10.1366/11-06541. 

30) M.A. Czarnecki, Interpretation of two-dimensional correlation spectra: Science or art?, Appl. 
Spectrosc. 52 (1998) 1583–1590. doi:10.1366/0003702981943086. 

31) L. Quaroni, E. Normand, Two-Dimensional Correlation Spectroscopy Analysis for the Recovery of 
Weak Bands from Time-Resolved Infrared Spectra of Single Cells, in: AIP Conf. Proc., 2010: pp. 66–
68. doi:10.1063/1.3326352. 

32) P. Pořízka, J. Klus, E. Képeš, D. Prochazka, D.W. Hahn, J. Kaiser, On the utilization of principal 
component analysis in laser-induced breakdown spectroscopy data analysis, a review, Spectrochim. 
Acta Part B At. Spectrosc. 148 (2018) 65–82. doi:https://doi.org/10.1016/j.sab.2018.05.030. 

33) L.M. Narla, S.V. Rao, Identification of metals and alloys using color CCD images of laser-induced 
breakdown emissions coupled with machine learning, Appl. Phys. B Lasers Opt. 126 (2020) 1–8. 
doi:10.1007/s00340-020-07469-6. 

34) E.N. Rao, S. Sunku, S.V. Rao, Femtosecond laser-induced breakdown spectroscopy studies of 
nitropyrazoles: the effect of varying nitro groups, Appl. Spectrosc. 69 (2015) 1342–1354. 

35) E.J. Kautz, P.J. Skrodzki, M. Burger, B.E. Bernacki, I. Jovanovic, M.C. Phillips, S.S. Harilal, Time-
resolved imaging of atoms and molecules in laser-produced uranium plasmas, J. Anal. At. Spectrom. 
34 (2019) 2236–2243. doi: 10.1039/C9JA00228F. 

36) AK Shaik, N.R. Epuru, H. Syed, C. Byram, V.R. Soma, Femtosecond laser induced breakdown 
spectroscopy based standoff detection of explosives and discrimination using principal component 
analysis, Opt. Express. 26 (2018) 8069-8083. doi:10.1364/oe.26.008069. 

37) AK Shaik, V.R. Soma, Standoff discrimination and trace detection of explosive molecules using 
femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles, OSA 
Contin. 2 (2019) 554–562. doi:10.1364/osac.2.000554. 

 
 
 
 
 
 
 
 
 
 





Chapter 5 
 

115 
 

 

5 Nanoparticle-enhanced LIBS 

Abstract: The impact of various nanoparticles (NPs) on the laser-induced plasma 

characteristics and optical emissions of multiple materials are reviewed. There have been 

many recent investigations on the dependence of enhancement on several laser parameters, 

including input wavelength, energy, and pressure. The effects of NPs factors such as size, 

shape, substance, and distribution on the surface are thoroughly studied and reported in 

this chapter. Gold nanoparticles were used to demonstrate the signal improvement from a 

liquid sample in the femtosecond laser-induced breakdown spectroscopy (fs-LIBS). The 

fs laser ablation-produced nanoparticles with average diameters of 10-15 nm were used. 

The strong peak in the CN violet band at 389.4 nm was compared. Achieved two-time 

amplification in fs-LIBS of Al sheet coated with polyvinyl alcohol (PVA) nanofibers 

packed with gold nanoparticles in. The fs laser ablation in liquid approach was used to 

create gold nanoparticles, which had an average size of 10-15 nm.  

 Introduction  

LIBS is a rapid elemental analysis method requiring little to no sample preparation. The 

process depends on recombining the plasma's atomic and molecular emissions [1]. The 

sample is ablated using powerful laser pulses. The laser-generated plasma is commonly 

created using focused nanosecond pulses from a Q-switched Nd: YAG laser or 

femtosecond pulses from a Ti: sapphire laser. The identification and categorization of 

minerals, forensics, national security, planetary exploration, archaeology, and the arts are 

only a few of the essential domains where LIBS has applications [2–6]. This method was 

also used to study samples that were in solid, liquid, and gaseous forms. The LIBS method 

is quick, sensitive, and effective in quantification investigations when integrated with 

machine learning algorithms like PCA, SVM, and ANN [7,8]. Numerous techniques, 

including double pulse LIBS, regulating the environment around the plasma plumes, the 

spatial constraint approach, the magnetic constraint method, chemical replacement 

techniques, and nanoparticle-enhanced LIBS (NE-LIBS), can be used to improve the LIBS 

signal [9]. This method involves pre-treating the material by coating it with NPs, which, 

when exposed to laser pulses, increases the LIBS signal strength. This paper focuses on 

many NELIBS applications, with a particular emphasis on sensing. 
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5.1.1 Earlier reviews 

The field enhancement close to NPs and the change in the field with the distance between 

the NPs and their size were shown in the initial review of the NE-LIBS. Additionally, it 

addressed the issue of the coffee ring effect and the requirement to improve the size and 

dispersion of NPs. Based on the Keldysh parameter, which is affected by the laser settings, 

the work function of the sample, and enhanced field intensity because of the localized 

surface plasmon, the enhancement mechanism was addressed by Dell'Aglio et al. (LSP). 

The spatial distribution effect on the optical emission intensity demonstrated that the 

augmentation was significantly more significant within 1-3 mm of the target. Compared 

to the traditional LIBS, an improvement of two orders of magnitude was recorded [10]. 

Metals and liquids were the subjects of an extensive review. In the presence of NPs on the 

sample, a decrease in the slope of the calibration curve that further lowered the limit of 

detection (LOD) for metal samples and an improvement in the ablation with the NPs was 

held accountable for the improvement in the LIBS signal [11,12]. Hashimoto et al. 

Temperature models speculated that the interaction of pulsed lasers with plasmonic gold 

nanoparticles was used to thoroughly describe the photoinduced dynamics of the NPS, 

including shape transformation, size reduction, and heat transfer from the NPS to the 

surrounding medium. Additionally, the surface on which the NPs are applied has 

undergone nanofabrication, and outstanding characteristics, including light collection and 

efficient light-to-heat conversion of NPs have been described in detail [13]. This review 

captures the critical aspects of the results and applications while also debating the 

mechanisms involved, making it a source of information for the researchers in their early 

stages of NELIBS experiments. Earlier reviews discussed the sample preparation and the 

mechanism(s) responsible for the enhancement to a certain extent. 

 



Chapter 5 
 

117 
 

5.1.2 Enhancement via different conditions  

Enhancement was achieved in the femtosecond LIBS spectra of copper using the 

nanoparticle [14]. With changing input laser fluence, the optical emission spectroscopy of 

ZnO and different nanomaterials, including Fe3O4, Ag2O, TiO2, SiO2, and Al2O3, were 

investigated [15]. A maximum enhancement factor (EF) of roughly 37 was seen with silver 

oxide nanomaterial. Studies report enhancement factors for Zn I-lines at various laser 

fluencies. Only the strong peaks from each material were shown for multiple laser 

fluences. The enhancement was noted to diminish as laser fluence increased, which was 

due to the NPS—fragmenting as laser fluence increased. According to the authors, 

fluctuations in the relative plasma temperature and electron density were sporadic and 

showed no connection to the amplification. According to the author, from the the 

Boltzmann analysis, the enhancement was caused by a higher ground state population. It 

was shown how a potential mechanism might promote improvement in nanomaterials 

instead of bulk materials. Zn I at 468.2 nm was found to have an EF of 5, and the reported 

enhancements were identified as Fe I, Zn I, Si I, Ti I, Al I, and Ag I in that order, 

respectively, in atomic spectral lines [15]. Figure 5.1 (a) Ag2O, (b) ZnO, (c) SiO, (d) Al2O3, 

(e)Fe3O4 and (f) TiO2 depicts the enhncements obtained from various materials. 

Figure 5.1 Exhibites the enhancement by the nanomaterial (blue colored) as compared to bulk (red 
colored) spectral lines of (a) Ag2O, (b) ZnO, (c) SiO, (d) Al2O3, (e)Fe3O4 and (f) TiO2. [adopted 
from IOP publishing, Journal of Physics, Conference series 548 (2014), 012031] [15]. 

 
According to experiments using scanning electron microscopes, De Giacomo et al. [16] 

found that NP explosion on the surface resulted in the creation of several hotspots when 
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compared to a surface devoid of NPs. According to the intensity ratio of LIBS and NELIBS 

at various concentrations, the emissions increased exponentially only after reaching the 

critical concentration and then saturating as the attention was raised further. According to 

the author, only a small number of ignition points were reportedly damaged by the 

ablation. The researchers also noted that when the time delays rose, the NELIBS intensity 

showed a dramatic initial jump before flattening off as the time delays increased. 

Titanium's atomic and ionic lines were compared, and the results showed amplification of 

the order of 2 at a delay of 400 ns for ionic peaks and 1 s for atomic peaks. It was also 

shown that the enhancement increased logarithmically with a higher energy level [16]. The 

silver oxide nanomaterial showed the highest EF, which was ~37.  

Recently, Cu-Ag and Ni-C composites were ablated using pulsed lasers to create 

composite NPs, which were then employed in NELIBS investigations [17]. In the instance 

of Cu-Ag, the Al foil emissions were multiplied by 20. Using LIBS and the NP colloidal 

solution on the surface, the nutrients in the leaf were studied. Both with and without 

applying the NPs colloidal solution, the macronutrients calcium, potassium, and 

molybdenum (Mo I 317.035 nm) were detected, and significant enhancement was noted. 

It was also documented how the concentration and size of the NPs affected the 

enhancement. On an indium sheet with varying concentrations of 20 nm and 80 nm silver 

NPs, an amplification of up to 5 times was recorded. This improvement was caused by 

localized surface plasmon [18]. Pb was measured in human serum at lower amounts using 

the NE-LIBS approach. The increase in the calibration curve's slope was used to measure 

the EF The observed rise in the NELIBS was 25 times the slope of the LIBS calibration 

curve, which has a one-order lower limit of detection (higher sensitivity compared to the 

LIBS approach) (LOD). The studies employed one liter of 500 ppb PbCl2 and Pb(NO3)2 

aqueous solutions. While the authors stated the physiologically relevant concentration of 

Pb in blood was below 50 ppb, NELIBS could measure concentration down to 74 ppb, 

compared to the 5 ppm lower concentration of lead observed by conventional LIBS in 

human serum micro droplet [19]. Adjusting the distance from the sample, the total plasma 

emissions from LIBS were compared to the NELIBS, as shown in figure 5.2. The emission 

in the NELIBS scenario [figure 5.2(b)] was higher than it was in the LIBS case [figure 

5.2(a)]. 
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Figure 5.2 Images of (a) LIBS and (b) NELIBS plasma emissions from 1 µl of 1 ppm PbCl2 (Au-
NPs solution 0.04 mg ml-1. [Adopted  from Analytical Chemistry (2016) 88 (2016), 5251-5257] 
[19]. 
 

When the results from the three ns laser wavelengths of 1064 nm, 532 nm, and 355 nm 

were examined in the work [20], high enhancement factors (EF) were found at lower 

wavelengths. The EF was also higher for lower threshold fluence. The stated relative 

plasma parameters included electron temperature, density, and concentration. The authors 

suggested that boosted emissions and removed mass from sample could be greater than 

the experimentally measured values based on the observed self-absorption ratio >1. The 

scientists attributed the improvement in the NELIBS to altered heat capacity and thermal 

conductivity, with a modification in conduction. The experts also estimated that a decrease 

in thermal conduction length to the nanoscale dimension would result in a 15-fold 

reduction in the laser fluence threshold compared to the bulk material [20]. Figure 5.3 

depicts data about the impact of wavelength and fluence on the enhancement. 
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Figure 5.3 The enhancement in the spectral intensities of Zn I peak at 481 nm and the 
corresponding dotted line with NPs [Adopted from Spectrochimica Acta Part B 116 (2016) 8–15] 
[20]. 
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Figure 5.4  the enhancements obtained for a) Ti II 311.76 nm and b) Ti I 319.99 nm at two different 
delay times [Adopted from Spectrochimica Acta Part B, 179 (2021) 106105, 0584-8547] [21]. 

Recently, it was observed that altering NP size impacts the intensification of LIBS 

emissions [21]. The impact of the size of the NPS was investigated together with the effects 

of surface concentration, fluence, and spot size. The EF for four distinct NP sizes with two 

different Ti II and Ti I emission peak delays is shown in figure 5.4. The impact on NELIBS 

was investigated using four different vacuum pressures [975 mbar, 800 mbar, 400 mbar, 

and 60 mbar]. The NP solution was dropped on a surface with a diameter of about 2 mm, 

and an average of nine shots were taken from each drop. Using composite Marangoni flow-

assisted drop-drying was suggested to ensure that the solution dried evenly. The study 

examined how changes in NP concentration, laser fluence, and gate delay affected the EF 

Pb I's emission lines at 368.34 and 405.78 nm were used for the research. The improvement 

began to rise, peaked at a concentration of 36.3×109 particles/cm2, and then started to fall. 

It was noted that enhancement factors varied with gate delays and laser energy of 96 mJ, 

78 mJ, 61 mJ, and 43 mJ. At 60 mbar for 61 mJ laser pulse intensity and a gate delay of 

100 ns, the maximum EF of four was noted. The authors postulated that the larger standard 

deviation may be due to the non-uniform dispersion of the NP solution and the coffee stain 

effect of the NPs solution. According to a recent study, this method may also detect minor 

and trace elements with higher energy transition levels, such as halides [22]. For smaller 

NPs, it was observed that the plasma emissions were enhanced more. The targets in this 

investigation include zinc monoxide, NP of sizes 20, 40, 70, and 100 nm, and powder 

crushed into tablets. It is reported that the threshold fluence and NP sizes have a linear 

relationship. The authors also reported the simultaneous effects of laser fluence, ranging 

from 0.05 J/cm2 to 0.2 J/cm2, and Zinc NPS size, with the aforementioned diameters [23]. 
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Abdelhamid et al. [24] reported on the EF in the NELIBS by altering the form of the NPs. 

The impact of the NPs' substance on the enhancement is depicted in Figure 5.5. 

Figure 5.5  Enhancement factors of different shaped NPs on the (a) aluminum, (b) zinc, and (c) 
silicon after adding silver chloride nanospheres, nanocubes, and nanowires. [Adopted from J. Anal. 
At. Spectrom., 35 (2020) 2982–2989] [24]. 
 
For NELIBS investigations on copper and soda-lime glass, Qayyum et al. [25] employed 

laser-ablated Au and Ag NPS, and the EF for Au and Ag NPS were compared. The Ag and 

Au NPs, respectively, contributed factors of 8 and 18 to the improvement. The application 

of NPs to the sample surface improved the LIBS signal [26]. Liu et al. claimed that the 

pre-ablated sample would provide superior enhancement to the conventional NELIBS. 

This study [27] compared four separate situations. 

Additionally, the authors have discussed systematic research using RSD and SNR in 

NELIBS. The NELIBS technique on aqueous solutions was supplemented with solid-

phase support [28]. To detect Cr, Pb, and Cu in aqueous solutions, the electrospun fibres 

loaded with Au NPs were employed. With the addition of the NPs, the LODs were seen to 

improve. For detecting trace elements in liquid samples, Liu et al. employed the impact of 

NPs aggregation with metal-chelate [29]. It was observed that the LODs of the trace metals 

in the aqueous solution had decreased 7–10 times. For the NELIBS-based detection of 

heavy trace elements, Niu et al. exploited the adsorption of Al2O3 NPs [30]. Calibration 

curves and RSD studies were used to report the LODs of several trace metals. In the 

NELIBS experiments of commercial tuna fish of various qualities, Ag NPs generated from 

potato extracts were utilized [31]. The C2 and CN bands in the molecular emissions were 

employed for the qualitative and quantitative examination of the protein in the fish when 

the EF of three times was recorded, as shown in figure 5.6. 
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Figure 5.6 The comparison of LIBS and BS-NELIBS of three different quality brands of canned 
tuna from the normalized intensities of CN molecular bands [Adopted from Spectrochimica Acta 
Part B 149 (2018) 112–117] [31]. 

With Au NPs, a spectrum increase of eight times in the trace element Mg in the Al alloy 

was reported [32]. Researchers looked at how the NPs' inclusion affected the electron 

density. Farooq et al. [33] went into detail on the plasma characteristics, such as the 

electron density and temperature, and the temporal evolution studies from nanostructured 

plasma. The research employed the electron number density (END) conservation model 

and self-absorption peak adjustments. After analyzing the Sn and Ni lines, an EF of 

roughly 39 for nanomaterial was reported.  

 NELIBS of liquids 

LIBS is a flexible, rapid method with a wide range of applications in areas like 

environmental monitoring and categorization of geological samples and in the anlysis of 

industrial waste, and space exploration [34] [2]. The multivariate analysis combined with 

LIBS makes a particularly effective tool for both classification and identification. The 

molecular and atomic lines in the spectra are produced by plasma recombination emissions 

from the ablated material in liquid, gaseous and solid states. The signal can be amplified 

using a variety of techniques, including double pulse and nanoparticle-enhanced LIBS 

[35]. Nanoparticles were used by De Giacomo et al. [36] to demonstrate strengthening of 
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the order of two in the LIBS signal. The classification of materials is based on the change 

in intensity of these bands. Compared to nanosecond lasers, ultrashort laser pulses have 

advantages such as lower ablation thresholds and less liquid splashing. Figure 5.7 (a) 

shows the fs-LIBS spectra of water in acetonitrile, figure 5.7 (b) show the TEM image of 

laser ablated Au NPs in water at 20 nm scale bar, figure 5.7 (c) is an attempt to record the 

LIBS spectra of water with no visible peaks. Acetonitrile tend to evoperate when dropped 

on substrate and recording the LIBS spectrum is a challeng to overcome. Here we have 

mixed acetronitrile in water and dropped on to the substrate for recording the LIBS spectra.  

 

Figure 5.7 (a) Fs-LIBS spectrum of acetonitrile in water with dominant CN violet band around 
388 nm, (b) TEM image of fs laser ablated Au nanoparticles in water at 20 nm scale bar, (c) 
spectrum obtained after attempting the recording of LIBS on water.  

5.2.1 Results and discussion 

In the present study, acetonitrile at different concentrations and fs laser-ablated Au NPS 

solution were used. The CN violet band is observed with Δν =0 between 384 and 389 nm. 
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The well reported molecular peaks in LIBS spectrum of organic materials are the CN violet 

band and C2 swan band [37]. Figure.5.8 (a) shows the LIBS spectrum of water and 

acetonitrile in a 1:1 ratio at a wavelength of 384–389 nm (CN band). Figure 5.8 (b) shows 

the LIBS spectrum of acetonitrile and water in a 2:1 ratio with and without NPS. In figure, 

an enhanced signal of around two times and a similar enhancement for a 4:1 ratio are 

shown figure 5.8(c). The improvement in the coupling of the laser pulse energy to the 

material in the presence of NPS is the cause of the signal's improvement. 

 Figure 5.8 The CN violet band in the fs-LIBS spectra of Acetonitrile in water at (a) 1:1 ratio. (b)  
1:2 ratios with and without addition of NPs. (c) 1:4 ratios with and without NPs. 

 NE-fs-LIBS of aluminum sheet coated with gold nanoparticle-
embedded nanofibers 

5.3.1 Introduction  

LIBS provides a quick and safe means to evaluate any material being studied at a distance, 

even in hazardous industrial conditions. This method uses the NIST atomic spectral line 

database to identify the elements present in the sample. This is accomplished by gathering 

the laser-generated plasma's ion, atom, and molecule recombination emission lines. 

Explosive detection, mining, planetary exploration, environmental monitoring, 

archaeology, geological sample analysis, and other fields found uses for LIBS. This 

method can be combined with Raman spectroscopy and inductively coupled plasma 

spectroscopy to enhance its performance. Raman spectroscopy and LIBS can be used 

simultaneously with the same instrumentation to gather both molecular and elemental data. 

The limit of detection for trace elements can be increased using noble metal nanoparticles 

in nanoparticle-enhanced LIBS, which can boost the signal by up to two orders of 

magnitude. The De Giacomo group has published comprehensive reports on the 

enhancement in the atomic and molecular peaks and elemental analysis of analyte 

concentration at sub-ppm level [14, 16, 19, 38, and 41]. The additional generation of local 
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surface plasmons by metal nanoparticles such as gold, silver, and copper lower the ablation 

threshold locally [38, 39, 40] increases the efficiency of the production of seed electrons, 

and promotes multipoint ignition [16, 42]. The method's classification, identification, and 

capabilities are improved by employing machine learning methods for data analysis, such 

as PCA, SVM, and ANN. The current study focuses on the nanoparticle-enhanced LIBS 

studies of Al sheet and its applicability as a substrate in detecting liquid traces of organic 

explosives that have molecular emissions [41] with peaks at 388.3 nm and 516.42 nm, 

respectively. 

5.3.2 Experimental procedure 

The sample was positioned on the Newport transnational stage to displace the sample in 

the horizontal plane. The emissions were routed into a sensitive and time gated ICCD 

spectrometer combination after being captured by the collection optics. The gate was 

opened for 500 ns and the pulse incident on the target, the distinctive optical emissions 

from the plasma appeared after 100 ns (gate delay) (gate width). The electrospinning 

approach is used to produce the Al sheet coated with PVA nanofibers and implant Au in 

PVA nanofibers was described in previous research [43]. Figure 5.9 shows the TEM 

micrograph of nanoparticles embedded in PVA nanofibers (a) at 50 nm scale bar (b) at 20 

nm scale bar. The laser beam's input pulse energy was reduced to 500 µJ because the sheet 

was thin, and stages were operated at a significantly higher speed (2 mm/s) than usual to 

prevent total burnout of the thin sheet. Then, fs LIBS was recorded from 230 nm to 850 

nm for both plain PVA and PVA electro spun nanofibers loaded with nanoparticles. 

Typically, 25 spectra from each target were recorded. 

Figure 5.9 TEM images of PVA nanofibers loaded with colloidal Au NPs at different 
magnifications (a) 50 nm scale bar, (b) 20 nm scale bar. 
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Figure 5.10 Aluminum atomic (a),( b) and molecular peaks (c),(d) from the fs-LIBS with and 

without NPs. Regular LIBS spectra in red and NE-LIBS spectra in blue with the mean and standard 

deviation of 25 spectra each. 

5.3.3 Results 

The intense Al I peaks at 308.4 nm, 309.2 nm, 394.4 nm, and 396.15 nm were amplified 

by gold nanoparticles embedded in PVA nanofibers. Similar augmentation was seen for 

AlO molecular emissions caused by B2Σ+ → X2Σ+ transition bands for Δυ =-1, 0, 1 seen in 

the region of 450 nm to 550 nm, 510 nm to 520 nm, 480 nm to 500 nm, and 465 nm to 460 

nm, respectively. The mean and standard deviation with and without nanoparticles were 

shown using the twenty-five spectra of each recorded sample. Figure 5.10 depicts the 

increased peaks from the Al LIBS and NE-LIBS spectrum with Al atomic (a), (b) and 

molecular peaks (c), (d) from the fs-LIBS with and without NPs. The molecular peaks 

formed later during the recombination of plasma were found to be not overlapped, while 

the atomic peaks formed early during the process were found to be overlapped. More time-

resolved investigations of the NE-LIBS are needed to further understand the phenomena 

because the enhancement of the molecular peaks are modest compared to the atomic peaks. 
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 Conclusions 
 

The majority of the NELIBS studies used Au or Ag NPs. Additionally, in-depth 

investigations on the optimization of the time window, laser energy, surface NP 

distribution and collection distance are carefully assessed for the observation of greater 

improvements. The detection of NPS peaks proved that NPs catalyzed reactions in 

NELIBS. This technique is beneficial for the selective ablation of the sample surface in 

the case of precious stones and the detection of trace elements at remarkably low sample 

volumes. Insightful attempts are made to comprehend the underlying mechanism using the 

LSPR, quantum chemistry variation methods, two temperature models, and observations 

based on the spatial and temporal investigations of the LIBS spectra (s). Three different 

ratios of acetonitrile in water (1:1, 1:2, and 1:4) were used to acquire the LIBS spectra. 

Au-nanoparticles effectively lower the excitation threshold and increase spectral intensity 

in LIBS. We noticed a two-fold increase in the CN band in the region of the nanoparticles, 

demonstrating the viability of NE-LIBS in improving the liquid sample. The 

electrospinning method creates the laser-ablated gold nanoparticles embedded in PVA 

nanofibers on the Al sheet. Additionally, the field between the Al sheet and the 

nanoparticles may cause several ignition hotspots to appear on the surface where the 

nanoparticles are. The gold nanoparticles on the surface can effectively increase intensity 

and lower the excitation threshold. The physical process could be responsible for the LIBS 

signal's two-fold enhancement.  
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6 Standoff LIBS and automation studies 
 

Abstract: To examine materials that are harmful, radioactive, and in inaccessible 

conditions, the standoff LIBS approach is desirable. An overview of the most recent 

advancements in standoff LIBS, including fs-filamentation for sample probing and 

machine learning algorithms for data analysis, as well as instrumentation like the beam 

expander, telescopes, and multi-collector systems are discussed in the chapter. A brief 

overview of the benefits of the double pulse, and the variants that stand out due to their 

distinctiveness, like the standoff LIBS from the structured beams, are included. The 

femtosecond standoff LIBS setup is optimized to acquire the target's optical emissions at 

5 meters. We have used principal component analysis (PCA), in the LIBS spectra of the 

materials used as a target to improve the identification and classification capabilities. Also, 

a novel instrumentation procedure in the automation of laser beam steering for raster/spiral 

scanning of the samples was used in standoff femtosecond LIBS experiments. A readily 

available and easy-to-handle Arduino-based CNC shield, along with the universal G-code 

sender (UGS), was used for the automation. The standoff femtosecond filamentation 

induced breakdown spectroscopy (St-Fs-FIBS) spectra were recorded at a standoff 

distance of ~5 meters utilizing a simple hand-held spectrometer. 

 Literature survey of the standoff LIBS  

6.1.1 Introduction  

The LIBS technique is based on the emission spectroscopy of the recombination from the 

ions and atoms in the plasma that results from the interaction of intense pulsed lasers with 

any targets (samples) [1, 2]. It is helpful when it is necessary to obtain qualitative 

information on the elemental composition quickly. The elemental mapping of samples, 

such as plants, geological rocks, archaeological specimens, etc., was reported with this 

method [3]. Numerous advancements and studies have been made using LIBS-based 

quantitative elemental composition analysis. It is a simple and rapid method that needs 

minimal amounts of samples in their liquid, gaseous, and solid states. Different 

applications have led to the development of LIBS variants, such as the double-pulse LIBS 

for enhancing the signal-to-noise ratio and the nanoparticle-enhanced LIBS for handling 

minimal sample volumes. Raman and fluorescence are two spectroscopic methods that can 

be used with the LIBS methodology for complimentary data acquisition from the sample 
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[4]. The targets at the far field can also be examined using the LIBS since the plasma 

emission intensities following the breakdown are high. The basic experimental setup, 

various analyses were done, enhancements suggested, and different delivering and 

collecting optics (configurations) used are explained in this chapter. We offer an outlook 

for the standoff LIBS bottlenecks, solutions to them, and a few applications after this 

chapter. 

6.1.2 Experimental setup 
 

 The fs pulses (800 nm, 1 kHz repetition rate, 1.8 mJ per pulse) were focused on the sample 

at 6 m using the combination of 100 cm convex lenses and -50 cm concave in Galilean 

configuration. The sample was placed on the translational stage (M/s Newport, USA) to 

displace it in the X and Y planes. A SCT with 6 inche aperture was placed at five meters 

from the target for collecting the optical emissions from the cooling plasma. These 

emissions were sent into an intensified gated spectrograph (Mechelle spectrometer and 

Andor istar ICCD combination) using a 600 µ optical fiber. The setup is shown in figure 

6.1. Pulsed laser systems, such as nanosecond and femtosecond lasers (a few Hz to a few 

kHz repetition rate), are typically employed for standoff LIBS experiments. Typically, 

power densities of at least a few GW/cm2 are required to vaporize the target at a distance 

and make the emissions observable. For the LIBS studies, either mode-locked 

femtosecond lasers or Q-switched nanosecond lasers (fundamental at 1064 nm, second 

harmonic at 532 nm, or third harmonic at 366 nm) were utilized. Ti: Sapphire crystal is 

typically used as a gain medium in mode-locking and chirped pulse amplification to 

produce femtosecond pulses. We used a femtosecond laser that coherently delivered 4 W 

(maximum average power; 4 mJ energy/pulse) at 800 nm wavelength, 1 kHz repetition 

rate, and 50 femtoseconds (fs) pulse duration. 
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Figure 6.1 The experimental schematic of the fs-ST-LIBS with the target placed at beam 6 m. A 
combination of convex and concave lenses used for focusing. The emissions are acquired at 5 
meters from the sample using SC telescope. 

The setup of the optical components detailed, along with the delay generator for starting 

the acquisitions and oscilloscope to see the delays, are included in the standoff LIBS 

experiment. Figure 6.1 depicts the optical components in the standoff LIBS. We can 

continuously change the laser pulses' input power using the half-wave plate and Brewster 

window. The pulses are focused on the target positioned on the translational stage using a 

plano-convex lens. After the prior zone has been ablated, the translational stage 

continuously exposes a new one while preventing pitting-related variations in plasma 

emissions. When employing high-energy fs laser pulses, it would be ideal to steer clear of 

all lenses because they cause filaments [5] to develop as they travel through the 

atmosphere. 

6.1.3 Earlier reviews on standoff LIBS 

Fortes and Laserna [6] have delved into details of the various applications for LIBS, 

including in the preservation of cultural heritage, industrial processing, defense, and 

homeland security. They also detail the instrumentation used in field-capable, portable, at-

a-distance, and commercial LIBS systems. The advancements in laser sources, such as 

microchips and fiber lasers, as well as the LIBS devices created explicitly for in situ field 

applications, were also discussed [6]. The earlier review on remote LIBS by Wanting Li 

et al. [7] covered the various configurations of LIBS, signal augmentation methods like 
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double-pulse LIBS, and remote LIBS applications in multiple fields like geological, 

archaeological, planetary exploration, and industrial for metallurgy monitoring, among 

others. Several LIBS configurations, such as Raman-LIBS instrumentation, were 

presented. Furthermore, the authors reported LIBS's in-situ and real-time measurement 

capabilities. Additionally, the benefits and challenges to be overcome were discussed [7]. 

6.1.4  Notable standoff LIBS studies 
 
Rock samples were analyzed quantitatively from standoff distances in the Martian 

atmosphere. Additionally, the authors note that line intensities decrease exponentially as 

target distance increases. Fe, Si, Al, Ca, Na, Mg, and K were all detected in basalt BON 

samples up to 12 m. Earlier works [8] have described changes in the crater volume changes 

as the target distance increased. The ionic lines of Cl and S were easier to detect in 

comparison studies between air and Martian environments than atomic transitions seen at 

atmospheric pressure in the IR region. To examine the Cathedral of M'alaga, a Spanish 

cultural landmark, mineralogically from 35 meters, standoff LIBS is utilized in the field. 

Because of the significant Si, Al, Ca, and Mg emissions, it is established that the whole 

structure is made of sandstone. The tests also showed how the standoff LIBS may be used 

to identify the source of colored marbles. Other contaminants, including Al, Ba, Si, Ca, 

Mg, Fe, and Sr, came from natural sources (movement of dust and atmospheric 

suspensions linked to marine aerosols). Additionally, Ti, Pb, and Mn, three trace elements, 

were used to study the surface pollutants from the exhaust of gasoline and diesel engines 

[9]. 

The geochemical composition of carbonated rocks at a depth of 15 m was also studied 

using standoff LIBS. The Mg/Ca and Sr/Ca ratios were measured [10]. Correlations were 

found between fluctuations in the LIBS data and the primary geological information about 

the ancient environment (such as temperature, salinity, precipitation, and geological 

events). The 2D mapped data of the Mg/Ca and Sr/Ca ratios of rocks from Yunnan, China 

further supported their conclusion that the geochemical contents vary spatially. The 

surfaces of the geological samples were examined at a standoff distance of 1 m in the 

ultraviolet, visible, near infrared, and longwave infrared spectral areas up to 10 m [11]. At 

a standoff distance of 1 m, several terrestrial minerals were studied. 
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Figure 6.2 Algorithm developed by López-Moreno et al. [13] for the classification of explosive 
residues in standoff mode from the various elemental and molecular intensity ratios of the LIBS 
peaks. 

Additionally described were time-resolved studies of atomic lines and plasma-generated 

molecular species. Geological samples were analyzed using a small spectrograph in 

standoff LIBS under Martian atmospheric conditions [12]. The authors successfully 

showed that the ICCD-based detection was not required for the LIBS measurements at 

reduced pressure (7 torr CO2 for the Mars atmosphere) for elements such as Ba and Li. 

Additionally, Sr. López-Moreno and coworkers investigated the targets at 45 m in the 

standoff mode, and the data was used to classify explosive materials. To distinguish 

between organic explosives, organic non-explosives, and nonorganic samples, the C2 swan 

system, O, H, and N emissions intensity ratios were used. It was proposed that the CN 
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band emissions might result from CN production in the surrounding atmosphere. Thus, it 

was claimed that the sole measurement that could be relied upon for analysis based on an 

open atmosphere was the measurement of the C2 peaks. Figure 6.2 depicts the 

categorization procedure for explosives and non-explosive using the LIBS peak intensity 

ratios. 

Figure 6.3 Intensities from atomic peaks of significant elements in geological rocks observed in 
near-field LIBS (a) and standoff configuration (b) [Adopted from Kalam et al. [17]]. 

The elemental analysis of magnesium alloy was performed using a double-pulse standoff 

LIBS technique. At 2.5 m, the impact of inter-pulse delay on the LIBS spectra was 

documented [14]. When DP LIBS were used instead of the single-pulse LIBS of the Y 

line, the signal strength was increased by approximately 4.7 times at a 6 μs inter-pulse 

delay (366.4 nm). Analysis was done on the link between the plasma temperature, electron 

density, and DP LIBS inter-pulse delay. It was reported that even when the input laser 

pulses were repeatedly focused at the same spot, the ablation depth produced by DP LIBS 

was less than the SP LIBS. The optical breakdown produced at a distance of 10 m allowed 

sodium standoff detection in the aerosol [15, 16]. The authors investigated Na's doublet 

trait (in the 588.6–589.5 nm spectral region). A linear approximation was used to evaluate 

the limit of detection (LOD), and a value of 55 ppm was obtained. Kalam et al. [17] 

contrasted the standoff femtosecond filamentation-induced breakdown spectroscopy and 

the near-field situations. Figure 6.3 displays the line intensities of the significant and trace 

elements in the near-field and standoff LIBS. It was claimed that while using fs filaments 

for ablation, the target roughness (1-2 mm) could be disregarded owing to the filament's 

short (30 cm) length. Compared to the standoff instance (26-52%), the near-field scenario 

had a more fantastic range of observed variation for a single peak (21-68%). The limited 

breakup of the surrounding environment was cited as the cause of lacked O and N lines in 
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their fs LIBS and ST-FIBS spectra. López-Moreno et al. [18] also performed standoff 

LIBS tests for the quantitative characterization of Mn, Cr, and Ni in stainless steel  at 10000 

C between LIBS at normal temperature and LIBS at high temperatures, the calibration was 

transferred [18]. The average ablation rate was inversely related to material hardness, 

thermal conductivity, and elasticity modulus values, proving that the heavy tungsten 

alloy's hardness was determined using LIBS in standoff mode [19]. The relationship 

between the heavy tungsten alloy's thermomechanical characteristics and the study of 

crater size aided in developing the materials detecting application. For the examination of 

complex matrix at 6 m, Tamboli et al. optimized the standoff LIBS parameters [20]. The 

ICCD's gate widths and delays, the laser source's input pulse energy and repetition rate, 

and the choice of emissions lines for the specific sample were all thoroughly reviewed. 

The optimal settings for Ni, Cr, and Pb were gate width (7 s), gate delay (1.0-1.1 s), and 

150 mJ of pulse energy at 100 Hz repetition rate. The analysis was conducted on the lines 

at 356.6, 428.9, and 405.7 nm (Ni, Cr, and Pb). 

 

Figure 6.4 (a) Fluctuation in the diameters of focused laser pulses as a function of the distant. Inset 
shows the prints from laser pulses on heat-sensitive paper at corresponding distances, (b) variation 
in the intensity with range, (c) relative standard deviation in the emission signal. [Adopted from 
Gaona et al.  [21].  
 

Gaona et al. [21] previously reported detailed investigations on the diameters of focused 

laser beam as a function of the distant target position. The experimental observations 

shown in figure 6.4 provide a good description of how the spot size, intensity, and relative 

standard deviation vary with operating distance. According to the target location, the 

emission strength for the Al emission line (around 396 nm) changed over time [21]. It was 

claimed that the transmission-related degradation of beam quality also produces significant 
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ambiguity. Random flutuations in the laser beam's bright central position on the target had 

little impact. Regardless of the working distance, parameters like the pulse-to-pulse 

variation of the input energy remained constant (RSD intra-range of 0.5%). The 

distribution of the beam was noticeably deformed during transmission in the atmosphere. 

The spot diameter "d" is a linear function of the distance from the detector to the target "r" 

after it has been experimentally confirmed that the change in beam diameter over the 

operational range studied (from 30 to 90 m) was minimal. According to the reports, the 

irradiance deteriorates more rapidly with the range. These impact the shot-to-shot 

uncertainty of the emission intensity. 

Furthermore, irrespective of the operating range, it was discovered that the propagation of 

plasma emissions had little to no impact on the total variability (at least in the absence of 

severe weather events). The samples were detected using standoff LIBS at 30 m using a 

range of radioactive surrogates (59Co, 130Ba, 88Sr, 133Cs, 193Ir, and 238U) [22]. 

According to the authors, the laser beam sampled area at a standoff distance was 

unquestionably greater than in the close-contact LIBS. The standoff spot size (diameter of 

1500 μm) was significantly more critical for sampling than the close-contact approach's 

450 μm requirement. It was found that the reported standoff LODs of cesium and iridium 

were better than those calculated in the case of close-contact results. Loosely focused (LF) 

and free propagation (FP) filament-based ablation was shown to have significant 

differences in the decay time of the emission. The lowest was for FP filament ablation, 

with the decay time of 300 ns [23]. In another study less than a 1% false alarm rate, 

filamentation-induced breakdown spectroscopy was employed to detect uranium (U). It is 

also suggested that UO should be considered for detecting U, in addition to U atomic 

transitions because the UO 593.55 nm band is easily visible at 10 m [24]. They compared 

the signal-to-background ratio for atomic and molecular emissions at three different 

standoff distances and the results are shown in figure 6.5. 

Compared to in-situ measurements, standoff detection was reported to have strong S/N 

ratio for detecting LIBS signals below pressure of 1 torr [25]. The authors also showed 

that the univariate analysis produced high correlation coefficients for geological samples. 

According to the authors, the findings would be helpful in standoff LIBS designed for 

harsh environments. In certain places, signal-to-noise ratios were higher (order of a few 

hundred), whereas S/N ratios were just a few tens of orders at high pressures. They 

consequently observed that a greater focused spot size was caused by the beam divergence 
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[26]. Since the LIBS emission process was constrained by the fixed peak intensity and 

filament beam size (~1014 W/cm2, ~100 µm, respectively), authors report the decline in 

LIBS signal as a function of range for low divergence lasers (M2 of 1) by 1/R3. 

 

Figure 6.5 Variation in the SBR with the number of shots for (a) atomic U I, (b) molecular UO for 
the remote collection from 2, 5, and 10 m, (c) for a single shot, (d) for 100 shots at 10 m. [Adopted 
from Finney et al. [24]]. 
 

The burst mode was proposed to compensate for the divergence effects. Toluca (an iron 

meteorite) and Sahara 98222 (an L6 chondrite) samples were subjected to quantitative 

analysis utilizing a standoff arrangement at 5 m [27]. Theoretical calculations for 

wavelength-dependent studies relevant to standoff LIBS transmissions and absorption via 

the atmosphere were reported [28]. When weighed to the attenuation caused by the inverse 

square law, it was discovered that the air extinction of the return plasma light was minimal 

(with target distance).  
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 Standoff fs LIBS studies of possible interferents 
 

6.2.1 Introduction 

Standoff LIBS is a safe technique devised for probing in hazardous industrial 

environments and a quick way of testing any material at a distance to be investigated. LIBS 

has applications in diverse fields. Areas that profit from LIBS technique include explosive 

detection [13], [29], exploration of planets, mining, etc. It is based on the elemental 

analysis from the plasma's emission spectra of molecules, atoms, and ions. It also has the 

benefit of simultaneous use of Raman and LIBS spectroscopy with the analogous 

instrumentation demonstrated in standoff configuration by Moros, Javier, et al. [30]. Both 

the molecular and elemental information were acquired at the same time. Double-pulse 

standoff LIBS can improve the signal-to-noise ratio [31] [32]. These methods can be helpul 

for plastic waste sorting and recycling in real time for environmental benefits. As the SNR 

decreases with the distance LIBS and multivariate analysis [33] combined can overcome 

the difficulty in identification and classification of different compounds [34] [35]. 

6.2.2 Experimental procedure 

The femtosecond laser pulses of 1.5 mJ are used the details of the laser source are mentions 

in the chapter 2. In the acquisition of the LIBS spectrum the gate delay was adjusted for 

intense signals. The gate width is set for 2 µs, and each target spectrum is the integration 

of 2000 pulses and 40 accumulations. The acquired LIBS spectrum wavelength range is 

from 230 nm to 850 nm. Twenty spectra from each target were acquired for classification 

studies. 

6.2.3 Results  

Aluminum atomic emissions at 393.2 nm, 393.56 nm were stronger with 3.0 ×105 counts 

compared to the other materials, and CN emission from HPC were the lowest with 2.0×103 

counts. Major peaks from the copper target were identified are tabulated in table 6.1 (see 

below). Molybdenum, calcium, sodium, potassium, and iron lines were identified in the 

soil target and presented in table 6.2. Iron, manganese, chromium lines were recognized in 

steel target, are tabulated in table 6.3. The spectra of all the six targets used for the studies 

are shown in figure 6.6 (a) aluminum, (b) Cu, (c) HPC, (d) steel, (e) soil in pellet form, (f) 

PVC. 
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Table 6.1  Peaks identified from the standoff LIBS spectrum of copper. 

Sl. No. Observed peaks
(nm) 

Reference
peaks NIST 

(nm)

Ionized state 

1 510.65 510.55 Cu  I
2 515.44 515.32 Cu  I
3 521.89 521.84 Cu  I
4 508.83 508.84 Cu  II
5 502.48 502.40 Cu  II

 

Table 6.2  Elemental peaks identified from the standoff LIBS spectrum of soil. 

Sl. No. Observed peaks
(nm) 

Reference 
peaks NIST 

(nm) 

Ionization state 

1 388.64 388.62 Fe  I
2 393.43 393.52 Ca  I
3 394.5 394.6 Ca  I
4 427.23 427.17 Fe  I
5 428.36 428.36 Fe  I
6 430.34 430.25 Ca  I
7 442.62 442.54 Ca  I
8 443.6 443.49 Ca  I
9 526.31 526.95 Fe   I 
10 572.17 572.27 Mo  I 
11 572.8 572.87 Mo  I
12 589.13 588.99 Na  I 
13 589.71 589.59 Na  I 
14 616.35 616.21 Ca  I
15 649.2 649.37 Ca  I
16 649.5 649.96 Ca  I
17 714.96 714.81 Ca  I
18 766.7 766.48 K    I 
19 770.09 769.89 K    I 
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Figure 6.6 The fs-ST-LIBS spectra from (a) aluminum, (b) copper, (c) HPC, (d) steel, (e) soil in 
pellet form, (f) PVC. 
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Table 6.3 Peaks identified from the fs-ST-LIBS spectrum of steel 

Sl. No. Observed peaks
(nm) 

Reference 
peaks (NIST) 

(nm) 

Ionization state 

1 344.13 344.18 Mn  II 
2 346.64 346.05 Mn  II 
3 347.64 347.38 Mn  II 
4 349.15 348.45 Mn  II 
5 349.83 349.51 Mn  II 
6 396.46 396.38 Cr  I 
7 396.68 396.95 Cr  I 
8 398.46 398.38 Cr  I 
9 399.05 399.13 Cr  I 
10 400.2 400.17 Cr  I 
11 403.16 403.26 Mn  I 
12 403.48 403.88 Fe  I 
13 405.64 405.86 Mn  I 
14 406.44 406 Mn  I 
15 408.41 408.4 Mn  I 
16 416.57 416.56 Cr  I 
17 423.62 423.67 Mn  I 
18 425.5 425.42 Cr  I 
19 427.25 427.5 Cr  I 
20 434.54 434.46 Cr  I 
21 435.27 435.18 Cr  I 
22 438.44 438.9 Fe  I 
23 460.17 460.48 Mn  I 
24 462.73 462.68 Mn  I 
25 471.2 471.09 Mn  I 
26 476.72 476.35 Mn  I 
27 478.46 478.42 Mn  I 
28 482.47 482.29 Mn  I 
29 520.67 520.7 Cr  I 
30 529.93 529.78 Cr  I 
31 532.92 532.96 Cr  I 
32 541.1 541 Cr  I 

 

Aluminum oxide (AlO) band corresponds to the transition B2∑+→X2∑+ for Δυ = -1, 0, 1 

are observed in range 510-520 nm, 480-500 nm and 465-460 nm, respectively [36]. The 

major peak from each transition were identified from the standoff LIBS spectra of Al target 

and shown in figure 6.7 also the major identified peaks are tabulated in table 6.4. 
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Figure 6.7 The aluminum oxide band from the fs-ST-LIBS spectrum with major peaks identified. 

Table 6.4 Peaks identified from the fs-standoff LIBS spectrum of the Al sample. 

Sl.no Observed 
peaks 
(nm) 

Reference peaks 
(NIST) 
(nm) 

Ionization 
state 

1 394.4 394.47 Al   I
2 396.15 396.21 Al   I
3 386.61 386.85 Al   I
4 308.16 308.21 Al   I
5 308.405 308.70 Al   I
6 309.18 308.98 Al   I
7 309.52 309.27 Al   I

 

The CN violet band [37] corresponds to the transition B2∑+→X2∑ +  for Δυ = -1, 0, 1 are 

in the range 357-360 nm, 384-389 nm, and 414-423 nm, respectively, and were detected 

in the PVC LIBS spectra. Δυ = 0 (peak at 388.34 nm) lines with less intensity were 

observed in HPC. The C2 swan band corresponds to the molecular transitions d3Πg → a3Πu 

(with peaks at 471.5 nm, 516.5 nm, and 563.5 nm) Δυ = -1, 0, 1 in the range of 460-475 

nm, 510-520 nm, and 550-565 nm were observed in PVC, and its intensity was greater 

than that of CN band. The C2 peak was not observed in HPC. The CN and C2 peaks are 

presented in table 6.5. The significant peaks of CN and C2 in the PVC are depicted in 

figure 6.8. 
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Figure 6.8 The molecular bands from the fs-ST-LIBS spectrum of the PVC (h) CN violet band 
and, (i) C2 swan band from the PVC traget. 

Table 6.5 Identified peaks from the fs-St-LIBS spectrum of PVC. 

Sl. No. Observed peaks 
(nm) 

Reference
Peaks 
(nm) 

Ionization, 
molecular state 

1 378.88 378.78 Fe  I
2 379.86 379.95 Fe  I
3 385.51 385.03 CN(4,4) 
4 385.88 385.44 CN(3,3) 
5 386.2 386.14 CN(2,2) 
6 387.19 387.08 CN(1,1) 
7 512.97 512.80 C2(0,0)
8 516.57 516.42 C2(1,1)
9 589.13 588.99 Na I 
10 589.71 589.69 Na I 
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Figure 6.9 Classification of the fs-St-LIBS spectrum of Cu, Al, steel, PVC, HPC and soil using 
PCA. Each data point in the plot corresponds to a LIBS spectrum and pluse marker is used for 
copper, circle for Al, triangle for steel, star for PVC, square of HPC, and arrow for soil. 

6.2.4 Conslusions 

Twenty spectra each from six targets were used for the classification studies. Figure 6.9 

shows the 3component PCA with each point in the plot corresponds to a single spectrum 

PVC and HPC, metals and soil form different groups. Figure 6.9 shows the distinguishable 

groups formed by six samples. Most of the atomic and molecular peaks were identified 

and tabulated from the acquired spectra in the standoff configuration for each sample.  

 Laser beam steering with arduino-based CNC shield for standoff 
Fs FIBS studies  

LIBS uses the plasma recombination emissions from the atoms and ions formed when the 

laser beam is focused on the sample (typically nanosecond or femtosecond) for the 

elemental analysis of the given sample [1, 2]. Further, remote, standoff LIBS combined 

with chemometrics have found numerous applications in distinct fields because of ability 

for rapid identification of the samples, classification, and quantification [6, 7, 18, and 27]. 

Detecting hazardous compounds from standoff distances is important for homeland 

security and safety related applications. Rapid improvements in LIBS instrumentation 
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made the techniques portable and compact [38-41]. Recently, the standoff LIBS technique 

was utilized to detect biological and radiological threats [22, 42], such as uranium [24, 43], 

from standoff distances. Standoff LIBS can interrogate the target in inaccessible and 

hostile environments, like probing targets through a shield window [44] and in high-

temperature environments in steel factories [18, 45-47]. The standoff LIBS was tested to 

be helpful in planetary exploration, in studying the elemental composition of rocks in the 

Martian environment [8, 12, 48, and 49]. Standoff LIBS measurements at variable 

distances were recently achieved in environmental monitoring (surface pollutants 

detection) [50]. The standoff detection of heavy metals in complex matrix, like soil, was 

demonstrated using LIBS [20, 51]. The underwater standoff LIBS was also valuable for 

environmental monitoring [52]. The aerosols of NaCl or Na2SO4 suspended in the air at 

different compositions and sizes were also reported using standoff LIBS [15, 16]. Other 

applications in real-life scenarios include the standoff measurement of the hardness of 

tungsten alloy [19], the characterization of the materials at cultural and heritage sites like 

Cathedral Málaga [9], and the classification of marbles used. Likewise, it is used in the 

analysis of geological samples, rocks [10, 17, 25, 53], and trace detection of explosives 

and plastics [5, 26, 54-56].  

The standoff LIBS signal can further be improved using the double pulse technique, as 

demonstrated by Qi et al.  [14]. They attribute the signal enhancement to the higher surface 

penetration and the effect of inter-pulse delay in standoff double-pulse studies of a 

magnesium alloy was emphasized. Wiens et al. demonstrated the classification of solids 

and minerals at standoff distances by combining the standoff LIBS and Raman techniques 

[57, 58]. López-Moreno et al. developed a decision-making strategy based on the 

ratiometric analysis to identify and classify explosives and organic non-explosives in 

traces on a metal surface at 30 m [13]. They also extended the standoff LIBS studies to 

slowly moving targets [59]. The enhanced capabilities like rapidity and better 

classification and quantification results with compact spectrometers in standoff LIBS 

studies for geological samples were achieved using the machine learning algorithms like 

principal component analysis (PCA).  [60-65]. Shaik et al. demonstrated the improvement 

in the standoff LIBS signal in the vicinity of nanoparticles [66-68]. Gaona et al. have 

reported an adaptive range algorithm for identifying explosive samples such as DNT, TNT, 

RDX, or PETN at changing collection distances [69]. The technique was made compact 

by Barnett et al. using a spatial heterodyne spectrometer with a large field of view and high 
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spectral resolution at a 20 m distance [54]. Gaona et al. again have studied the potential 

factors causing the deterioration in standoff LIBS signal strength [21], such as variation in 

the focus spot size with increasing target distance and its Effect on the LIBS intensity. In 

another study, Li et al. reported a reduction in the volume of the collection optics without 

compromising the collection efficiency by using the multi-collector system, where small 

lenses were arranged like an optical compound eye in place of a telescope [70]. 

The propagation of intense femtosecond pulses of wavelength λ and in medium with 

refractive index 'n' and nonlinear refractive index 'n2' (with power >Pc =  ଷ.଻଻ఒబ
మ

଼గ௡మ௡బ
  for a 

linearly polarized light) results in an intriguing diffraction-free phenomenon called self-

focusing. Self-channelized propagation of an intense beam is advantageous in standoff 

interrogation of target samples and remote detection [71, 72]. For solid transparent media, 

the critical power Pc is a few MW, whereas, for gases, it is a few GW. Inside the 

filamentation, the intensity hits a threshold of ~5×1013 W/cm2 [73, 74] and is referred to 

as intensity clamping. The input laser pulse intensity affects both phenomena. In addition 

to free propagation, filamentation can also be accomplished using a focusing lens (low 

energies) (high pulse energies). Due to the challenge in delivering high intensities adequate 

for ablation and ionization of the remote target. While propagating across great lengths in 

the surrounding atmosphere, they frequently experience beam distortion conventional ns-

LIBS is typically limited to 100 meters. By utilizing the intense fs laser pulses' unique 

capability to form filamentation in air the laser beam diameter at great distances (even up 

to 20 km) without the use of focusing lenses can be maintained. Filamentation makes it 

possible to provide laser pulses with the high-power density required to ablate faraway 

samples. Furthermore, the surface/substrate contribution in the ns LIBS example will be 

quite significant due to the longer pulse duration allowing it to interact with the sample for 

a longer time. This will be important if there are traces on the surface that need to be found, 

and in the fs scenario, this is reduced significantly. 

Harilal et al. studied the parameters of the laser ablation and the plasma plume for three 

different situations to understand the optical emissions for LIBS applications better. They 

compared the persistence of the atomic and molecular emissions from plasma plumes by 

pulses focused at close ranges, and by loose focusing, by free propagation. For isotopic 

analysis, laser-induced fluorescence of laser-produced plasmas was used [75, 76]. The 

impact of various structured beams on plasma plume filamentation and filamentation-
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induced optical emissions were reported in detail [77, 78], demonstrating the benefits of 

Airy, Bessel-Gaussian, Laguerre-Gaussian, and Gaussian beams for standoff applications. 

Shaik et al. employed filamentation-induced breakdown spectroscopy (FIBS) to detect and 

classify explosives, geological samples, and bimetallic samples. In-depth research was 

conducted on the impact of the focusing lens's separation from the target in femtosecond 

FIBS [79]. The laser pulses utilized in the LIBS process concentrate on the target, which 

removes the surface material (at the focal spot). 

With the incidence of more pulses at one point, the LIBS signal is severely reduced. Hence 

it is necessary to move the sample or steer the input beam/pulses to capture the LIBS signal 

from a new spot. A few of the earlier standoff LIBS studies were mostly concerned with 

the study of moving targets, such as salt deposits on rotating wind turbine blades and Steel 

on conveyor belts, as well as the impact of sample velocities on the LIBS signal. Samples 

were also put on a motorized translational stage for movement. Here, we provide the 

instrumentation for automated beam steering with precision and speed in probing the 

sample at standoff distances, resulting in an enhanced signal advantageous for real-world 

applications. An Arduino microcontroller was previously employed in laser producing 

microstructures for plasmonic applications and illustrating physics concepts. [80-82]. Data 

acquisition for the ultrafast frequency-resolved pump-probe spectroscopy was built using 

an inexpensive optical chopper based on an Arduino [83]. Here, we've utilized an Arduino-

based CNC to control the mirrors that direct the beam and the lens positioned on the 

manual stage that adjusts the focusing distance. The kinematic mirror mount adjuster, 

which has a net displacement of 25 m each revolution, and the stepper motor, which makes 

200 steps every rotation (1.8° per step), were employed. Here, we show how the two 

components can be used to probe targets at a standoff distance with higher accuracy and 

speed. 

6.3.1 Experimental setup 

Intense femtosecond laser pulses (~50 fs) of ~1.8 mJ energy operating at 1 kHz repetition 

rate were focused at ~5 m distance using a concave lens and convex lens of 50 cm focal 

length to achieve the filamentation. When the filamentation interacts with the target placed 

at 5 m leads to plasma generation. The plasma emissions were fed to a hand-held (MAYA, 

Ocean Optics) spectrometer using an integration time of 200 ms via an optical fiber of 400 

µm core diameter, using a Schmidt-Cassegrain telescope. Figure 6.10 shows the 



152 
 

representation and of the experimental setup used in lab for the standoff femtosecond FIBS 

studies and the actual experimental design with MAYA CCD spectrometer, Celestron 

telescope, Arduino Uno, two kinematic mirror mounts by Thorlabs, and target highlighted 

in the red box in the inset. 

 

Figure 6.10 Fs-ST-FIBS setup with SCT. Inset: The actual laboratory setup with a telescope, Maya 
CCD spectrometer, Arduino microcontroller, two kinematic mirror mounts, variable iris, and target 
highlighted in the red box at 5 m distance, filamentation in the lab.  The bigger inset shows the 
actual experimental setup in the lab whereas the smaller inset depicts the target at 5 m distance. 

From the measurements shown in figure 6.10, the length of filamentation in the current 

investigation was estimated to be around 50 cm. When the crater diameter at the target 

surface was examined with an optical microscope, it was discovered to be between 260 

and 320 nm for various metals. The data in figure 6.11 shows that the crater diameter on 

copper was approximately 320 µm, that on Brass was around 280 µm, and that on Al was 

around 260 µm. This was obtained following a one-second exposure of each target to fs 

pulses (1000 pulses). The fs pulses (~ 50 fs) with energy per pulse of 1.8 mJ, and 36 GW 

peak power were used. An average crater size of about 300 µm yields irradiance at the 

sample surface of about 51 TW/cm2. The laser source centered at 800 nm reflecting from 

the target was removed using a BG18 visible-IR bandpass filter (which blocks light in the 

NIR), allowing the collection of plasma emission in the visible region exclusively. The 

image of the plasma created at the telescope's focal plane was moving since the beam was 

scanning the target at 5 m.  The best spectra filtered using the intensity of the highest peak 

from each target for the analysis. A fish-eye lens with a 5 mm aperture was used to collect 
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the moving image of emissions formed by the telescope. The emissions are fed into the 

spectrometer via optical fiber and fish-eye lens. 

 

Figure 6.11 Optical microscope images of craters formed from the fs-filamentation interaction 
with (a) Cu (diameter of ~320 µm), (b) Brass (diameter of ~280 µm), (c) Al (diameter of ~260 µm) 
for one second (i.e., 1000 number of pulses). 

6.3.2 Automation 

An economic Arduino (an open-source prototyping platform), readily accessible kinetic 

mirror mounts, and free software are used for automation. The stepper motor is connected 

to the differential adjuster of the kinematic mirror mount using a coupler (5 mm one side 

and 6.3 mm on another side). Figure 6.12 (b) shows, the first mirror was at 67.5° with the 

incoming beam, and the second is at 67.5° with the outgoing beam. Stepper motors were 

used to control the high precision (25 m/rev) adjustable differential screw of two separate 

kinematic mirror mounts from M/s Thorlabs (one for X-direction steering and another for 

Y-direction steering). Figure 6.12 (b) shows the two kinematic mirror mounts in the figure 

"4" configuration were then coupled to the NIMA 17 stepper motor mounted on the optical 

bench in the laboratory setup. A coupler connects the Z-axis of the stepper motor to the 

micrometer on the manual translation stage. This was used to optimize the FIBS intensity 

by changing the focus for the best interaction. The stepper motor was mounted on a spring-

loaded slider, which is essential for correcting for jerks and the backward and forward 

movement of the adjuster screw as it passes through the nut. The mirror mount and stepper 

motor on the slider were connected and fastened to the optical table. With the aid of beam 

guiding, the sample scanning over 1 cm2 region at 5 m was accomplished. As indicated in 

figures 6.12(a) the CNC shield V3 board was combined with A4988 drivers in the 

automation process. 
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Figure 6.12  The components used for the automation (a) Arduino Uno microcontroller, CNC 
shield V3, and the A4988 stepper motor drivers (b) the two kinematic mirrors coupled to the 
stepper motors fixed to the optical table. 

The CNC shield V3 is a PCB board with male and female headers compatible with the 

Arduino Uno and the A4988 driver. It has jumpers for adjusting the stepper motor's micro-

stepping and the fourth axis for cloning, as well as built-in 10 k resistors and 100 µF 

capacitors. Power supply up to 36V is supported. The A4988 is an easy-to-use micro-

stepping motor driver with an integrated translator. It supports the five-step modes of the 

whole, half, quarter, eighth, and sixteenth for bipolar stepper motors such as the NIMA 

17. To prevent overheating and thermal shutdown during continuous operation, the 

limiting current (IMAX) in the driver is regulated to 0.9 A by adjusting the tiny 

potentiometer on the device to obtain 0.49 V of VREF using equation 6.1. Using jumpers 

on the CNC shield board attached to the drivers' micro-step pins, the stepper motors 

configured to the sixteenth step's micro-step resolution. Because the driver's limiting 

current is smaller than the motor's rated current of 1.2 A, the stepper motor's torque is 

slightly reduced.                   

   

Vୖ ୉୊ = I୑୅ଡ଼ × 8 × Rୱ (Rୱis taken as 0.068 ohms)                                               (6.1)    

The stepper motors were not connected to the CNC shield until the Arduino flashed with 

the GRBL and uploaded. UGS software, a user-friendly GUI and documentation with step-

by-step operating instructions, was used to control the stepper motors. The G-code 

uploaded to the UGS was used to control the speed and direction of the three stepper 

motors' combined motion for raster and spiral scans. Since plastic samples have a low 
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density, the plastic samples were scanned at high feed rate (40% for plastics and 20% for 

metals). The filamentation took less pulses than the metals to melt and drill through the 

polymers.  

6.3.3 Results and discussions  

After concentrating on the sample, the laser beam was precisely guided within the 1 cm2 

area at a standoff distance of 5 meters. The universal gcode sender (UGS) software's feed 

rate option regulates the laser scanning speed. Low-density targets like plastics were 

scanned at an average speed of 12 mm/s because filamentation drills a hole through the 

material with fewer pulses than it did for metals and metal alloys, which had an average 

rate of 6 mm/s and rapid decline in the plastics FIBS signal was observed. Superior LIBS 

signal was acquired even with the non-gated CCD spectrometer as compared to earlier 

results obtained utilizing a gated ICCD spectrometer from our lab [67]. The better signal 

achieved was primarily due to the rapid scanning and because of near-coaxial geometry. 

Only the Ag-Au FIBS spectra with the intensity of the Ag 546.54 nm peaks higher than 

20000 counts were taken into consideration for the classification investigations, with the 

remaining spectra being eliminated. These spectra were collected for three distinct 

compositions. The femtosecond FIBS spectra of (a) Al with peaks at 394.4 and 396.15 nmi 

n figure 6.13 are shown (a) AlO B2Σ+ → X2Σ+ transition bands in the range of 450-550 nm 

(b) CU with Cu I peaks identified at 510.55 nm, 515.32 nm, and 521.82 nm (c) Brass with 

Cu I peaks determined at 510.55 nm, 515.32 nm, and 521.82 nm and Zn I peaks at 468.01 

nm, 472.21 nm, 481.05 nm, respectively. 
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Figure 6.13 Fs-ST-FIBS spectra of (a) aluminum wherein Al atomic and AlO molecular bands 
were identified, (b) copper (c) Brass. Fifty spectra from each target filtered out using the highest 
intensity. 

Figure 6.14 shows the FIBS spectra of three low-density plastic materials a) PVC, (b) 

CPVC with background noise, (c) UPVC. The swan band from transitions between the C2 

molecule's d3Πg→a3Πu electronic states. The swan band is composed of the sequences (Δν 

= 0) with a peak at 516.5 nm, (Δν = 1) with a peak at 563.5 nm, and (Δν = -1) with a peak 

at 437.7 nm. With Ca I peaks at 422.65 nm, 445.2 nm, 526.62 nm, 559.24 nm, 616.1 nm, 

and 617.58 nm and Ca II peaks at 393.5 nm, 396.77 nm, and 593.16 nm, calcium was also 
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found in UPVC. The spectra of three distinct compositions of Ag-Au bimetallic alloys 

with identifiable Ag I peaks at 520.9 nm, 546.55 nm, Au I peaks at 479.2 nm, and 606.9 

nm, respectively, were confirmed from the NIST database. 

 

Figure 6.14 The fs-ST-FIBS spectra of three plastic samples (a) PVC, (b) CPVC with background 
noise, (c) UPVC. All the spectra contain the C2 swan bands, calcium lines are identified in UPVC 
spectra.  
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Figure 6.15 illustrates the FIBS spectra of Ag-Au alloy [three different compositions of 

(a) Ag30-Au70, (b) Ag50-Au50, (c) Ag70-Au30 were investigated] collected for three 

different compositions, and ~50 spectra of highest intensities were used for the PCA 

studies/analyses. 

 

Figure 6.15 The fs-ST-FIBS spectra of Au-Ag bimetal alloy of three compositions (a) Ag30-Au70, 
(b) Ag50-Au50, (b) Ag70-Au30. Fifty spectra for three compositions were filtered out using the 
intensity of Ag I peak at 546.55 nm. 
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Figure 6.16(a) shows the probe areas of the samples (<1×1cm2 for square/spiral patterns) 

at 5 m standoff distance. Figure 6.16(b) shows the classification of the three different 

compositions of Au-Ag bimetallic alloy targets in which the signal seems to be slightly 

fluctuating and, as a result, the clusters are distributed in two dimensions but well apart. 

In the current instance, we used 1 kHz pulses (1000 pulses/sec), but one can use a single 

pulse and gather as many spectra as feasible in practical situations. In addition to 

minimizing sample destruction, this will help reduce the substrate/surface contribution on 

which the sample is placed (for instance, trace levels of any dangerous chemical). The 

experimental setup will be automated as part of this study. We have shown several 

strategies in enhancing the SNR and classification of alloys and other materials in the near-

field and standoff LIBS investigations. This work will be used to incorporate machine 

learning techniques and LIBS data analysis. [10, 34, 38, 51, 52, 67, 73, 74]. 

 
Figure 6.16 Precision of the automated standoff beam steering is demonstrated from the (a) raster 
scan (box shape) on steel, plastic, and Brass plates and a spiral scan (circle shape) on steel and 
Brass with in 1cm × 1cm area on the target placed at 5 meters standoff distance, (b) Classification 
of three compositions of Au-Ag alloy from the fs-ST-FIBS spectra using PCA. 

 Conclusions 
 

Even under challenging circumstances, the standoff LIBS has enormous promise for quick 

material identification and detection. With several advancements in techniques for 

detection through clear windows and moving objects, underwater applications, and 

samples with uneven surfaces, the area is continuously growing. Combining Raman-LIBS 

with other systems, helps to increase the information about the sample under examination 
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and the SNR. Modern machine learning techniques combined with ST-LIBS data increase 

the speed and precision of detection. These methods adjust the technique range and enable 

higher detection capabilities even with a small spectrometer. When the SNR in the 

collected standoff LIBS data is low, newly discovered algorithms/machine-learning 

approaches and their judicious application are vitally important. To increase the SNR, we 

have been developing 2D correlation approaches [84]. As the number of lenses and mirrors 

is higher than the near field, there is substantial radiation loss on each reflection and 

refaction. As a result, the power densities at the target are compromised. We have 

optimized the technique for collecting emissions from the target at 5 meters, and most of 

the peaks are identified. PCA was implemented on all the acquired spectra and shows that 

it gives better classification and could be used when signal-to-noise ratios are small. By 

separately managing the horizontal and vertical movement of two kinematic mirror mounts 

with differential adjusters for beam steering and the spacing between concave and convex 

lenses for adjusting the focus, we successfully automate the St-Fs-FIBS arrangement. 

Classification analysis was conducted on the spectra of three different Au-Ag alloy 

compositions. The results show that a CCD spectrometer may be utilized for bulk targets, 

such as metals and metal alloys, at standoff distances and that this capability can be 

expanded to include in-depth analyses of geological targets. Translating the filament along 

the Z-axis will help adjust the filament's contact with the target and investigate targets with 

various densities and surface traces without adjusting the input laser pulse energy. The 

standoff LIBS data can be combined with advanced machine learning and deep learning 

methods to quantify the targets [65] further. The variations in the spectra can be reduced 

by lens combination for image stabilization. 
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7 Conclusions and future scope 

 Conclusions 

LIBS is a versatile technique that can interrogate a broad range of samples in different 

phases, standoff distances, and even objects behind transparent materials. The highly 

versatile technique offers enormous scope for development in analysing the data, 

instrumentation, and probing samples in small quantities. Ns-LIBS is well studies as 

compared to fs-LIBS. The plasma temperature and electron densities are well reported 

with diverse samples. The ns laser-induced plasma reaches local thermodynamical 

equilibrium (LTE) land is reliable in the quantification studies. The molecular bands are 

prominent in the fs-LIBS and are useful in the classification studies of the organic 

molecules based on CN and C2 bands in the LIBS spectra. Fs-filamentation offers a 

divergence-free beam propagation useful in depositing the desired laser power on the 

target at standoff distances. The analysis of ns and fs-LIBS data was present in this thesis. 

The concluding points from the thesis are 

 The spectrometers use dispersive optical components like gratings and prism, 

which split the incoming light with a predefined wavelength-dependent resolution. 

A better resolution will be useful in the classification and quantification of target 

samples from the LIBS spectra. 

 Further machine learning algorithms applied to the LIBS data improve the 

classification capabilities of the LIBS spectra from lower-resolution spectrometers. 

Colour CCD uses Bayer's filter with three colour filters with varying sensitivities 

and behaves like a very low-resolution colour-separating spectrometer. A new 

method was demonstrated for classifying metals and alloys from the colour CCD 

images of the fs laser-produced plasma emissions coupled with machine learning. 

 The atomic and ionic emissions from the laser-produced plasma decay with the 

increasing delay between the incident pulse and ICCD gate delay. The correlation 

between the time-resolved LIBS spectra could help improve the SNR and 

resolution of the LIBS spectra. For the first time, two-dimensional correlation 

analysis is proposed for enhancing the quality of noisy standoff LIBS data. 
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 Deep learning algorithms perform well with data size, unlike machine learning 

algorithms. The performance of the deep learning algorithms was demonstrated to 

improve with data augmentation. These two ideas were explored for the first time 

by employing the time-resolved LIBS spectra in the generalization. The model 

improves the multi-output regression's prediction accuracy in estimating the 

composition of the Au & Ag. 

 The fs laser source delivered the pulses at a 1 kHz repetition rate, and the sample 

portion was rapidly ablated when pulses were focussed on it. The SNR of the LIBS 

reduces with the number of pulses incident at the same spot, and the sample needs 

to be displaced continuously to ablate the fresh spot to get better SNR. Translation 

stages are used for the displacement of the samples. Using the translation stages 

for standoff studies is impractical. This problem is addressed by rapid beam 

steering with the motorized kinetic mirrors indigenously developed using the 

simple Arduino and stepper motors in the standoff studies. Better SNR was also 

achieved. 

 The pre-processing of the data, before applying the machine learning algorithms, 

is necessary and mean-centering of similar LIBS spectra resulted in a successful 

discrimination of the high-energy materials. This improved the capability of the fs-

LIBS on the cellulose-based filter paper with similar CN, C2 molecular bands, and 

C peaks, like other organic compounds. 

 The enhancement in the LIBS signal is confirmed with the addition of 

nanoparticles to the target sample. But, the enhancement ~2 times was observed in 

the Al, AlO peaks in the fs-LIBS spectra with the nanoparticle embedded PVC 

nano fibers coating. The enhancement and the standard deviation in the atomic and 

molecular peaks were observed to differ.  

 Most of the reports in the LIBS are of the bulk sample like metal plates or the 

sample pressed to a pellet, and the substrate spectra are unavoidable when working 

with traces. A new experimental configuration with grazing incidence 

filamentation was proposed to address the concern for analyzing sparse fine 

powder samples like graphite. 
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 Femtosecond LIBS for trace detection  

Using principal component analysis, we studied the classification of DNT, picric acid, and 

ammonium nitrate dispersed and dried on filter paper using femtosecond laser-induced 

breakdown (LIBS) spectra.  

7.2.1 Introduction 

Laser-induced breakdown spectroscopy (LIBS) is optical emission spectroscopy capable 

of simultaneous multi-elemental analysis [1]. It uses the atomic and molecular emissions 

from the cooling plasma formed during the interaction of an intense pulse laser and the 

sample. The molecular emissions in the femtosecond LIBS technique are substantial when 

compared to the nanosecond, picosecond LIBS. The atomic and molecular emissions 

combined with the chemometric analysis help identify and classify explosives [2]. LIBS 

technique was employed to detect explosive traces on substrates such as aluminum in the 

near field case and at standoff distances [3, 4]. A further enhancement is achieved in the 

signal by adding nanoparticles to the sample, which improves the capacity for detecting 

traces with the other process [5-7]. Earlier works performed LIBS studies to determine 

calcium ions in water using the solution with filter paper [8]. In the present study, the 

femtosecond LIBS spectra are used to analyze traces of liquid explosive samples drop cast 

on the filter paper. Significant variation in the intensities of CN and C2 bands and the 

spectra were classified using principal component analysis.  

7.2.2 Experimental details  

Employed femtosecond amplifier delivering ~ 50 fs pulses at 800 nm and 500 Hz repetition 

for the present experiments. The experiments were conducted at one mJ laser energy. The 

laser was focused vertically down using a 100 mm focal length lens onto the sample. The 

emissions were collected with the Andor collection optics and fed to a Michelle 

spectrometer coupled with Andor iStar ICCD using a 400 μm fiber. The solutions of 

ammonium nitrate, picric acid, and DNT were prepared and drop cast on filter paper with 

an adjustable-volume micro-pipette. Each spectrum is the accumulation of 10 spectra with 

2 seconds exposure time. The LIBS studies of traces in filter paper are quite challenging 

as the thickness of the paper was ~180 m shown in the inset of figure 7.1 and the need to 
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be ablated rapidly and collected the spectra in the wavelength range of 200- 900 nm. 15-

20 spectra of each sample.  

 

Figure 7.1 Experimental setup used for recording the femtosecond LIBS of traces on filter paper. 
The filter paper ablated with femtosecond laser pulses in the inset during the raster scan.  

Commercially available cellulose (C6H10O5)n filter paper ( Whatman grade 1) with 90 

mm diameter and thickness of ~180 µm, the weight of ~ 87 g/m2 was fixed to the circular 

frame for ablation after drop cast with a solution. The DNT (2,4- Dinitrotoluene, 

C7H6N2O4), Picric acid (C6H3N3O7), Ammonium nitrate NH₄NO₃ solutions were drop cast 

on the filter paper. The filter paper after ablation with a rapid raster scan (2 mm/s) with a 

long step size along the horizontal direction is shown in figure 1 inset. The spectra were 

collected for two secondary explosives, picric acid and DNT, and an oxidizer (ammonium 

nitrate) of 5 milli molar concentration. The solutions were drop-casted, allowed to spread, 

and dried on the filter paper. The filter paper had similar CN, and C2 bands in the LIBS 

spectra, except that the sodium and calcium peaks in the spectra when compared to the 

energetic materials as shown in figure 7.2 (a) CN band and (b) C2 band for the filter paper, 

picric acid (PA) on filter paper, DNT on filter paper, and AN on a filter paper. The 

classification studies on the spectra of three different samples were performed. These 

initial studies are promising for further trace detection studies.  
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7.2.3 Results  

 
Figure 7.2 (a) CN band and (b) C2 band for the filter paper, picric acid (PA) on filter paper, DNT 
on filter paper, and AN on a filter paper. 
 

The CN, C2 molecular band, and the normalized spectra of the three samples demonstrated 

a variation in the CN and C2 band with the major peaks at 388.4 nm and 516.5 nm, and a 

significant variation in the intensities was observed. The spectral data were standardized 

by subtracting the mean and was divided by the standard deviation before performing the 

PCA. The blue square symbols in figure 7.3 correspond to ammonium nitrate, the orange 

plus symbol to picric acid, the green triangle symbol to DNT, and the red diamond symbol 

to filter paper. The ellipses are just a guide to the eye in discriminating the clusters. 

 

Figure 7.3 The principal component analysis on the Fs-LIBS spectra of picric acid (PA) on filter 
paper in blue plus symbols, plane filter paper (FP) in green triangles, DNT on filter paper (DN) in 
orange circles, and ammonium nitrate on filter paper (AN) in red stars. 
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7.2.4 Conclusions  

The three molecules of ammonium nitrate, DNT, and picric acid in traces were 

successfully classified from the fs-LIBS spectra. The spread in the clusters could be due 

to the varying interaction between the laser pulse and deformed filter paper surface after 

the solution is drop cast. The similarities between the spectra of the filter paper to that of 

the molecules are challenging, and the study can be extended with the glass fabrics loaded 

with nanoparticles for superior identification and classification of the explosive molecules 

in traces.  

 Future scope 

7.1.1 Image stabilization in standoff LIBS 

Even though beam steering in the standoff studies resulted in a good SNR, the image 

formation by the telescope was moving as the image was from the scanning beam. This 

moving image leads to the fluctuation in the LIBS signal. A fisheye lens was used to focus 

the image into the optical fiber to reduce the fluctuations. Synchronizing the detector with 

the moving image could be a better option to evade the LIBS spectra fluctuations 

completely. The clone slot in the CNC shield V3 could be particularly useful in addressing 

this problem. Image stabilization in this setup can be especially useful in improving the 

reliability of the LIBS spectra in standoff classification and quantification of the target 

samples. 

7.1.2 Standoff double pulse LIBS 
 

Further, the SNR in the standoff LIBS could be improved with the double pulse 

configuration. The configuration with two polarizers proven more efficient could be 

beneficial compared to other cases and, when combined with the automated beam steering 

instrumentation and better machine learning algorithms, lead to a real-time standoff LIBS 

setup. The effect of the delay between the two pulses could be a fascinating investigation. 

7.1.3 Glass fiber filter paper and nanoparticle LIBS 

The CN and C2 were observed from the fs-LIBS studies of the cellulose-made filter paper, 

and PCA was used to classify the LIBS spectra of filter paper drop cast with explosive 

traces. CN and C2 bands are avoided by using the substrate glass fiber filter instead of 

cellulose. This simple adaptation could make the classification more reliable. In the case 
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of NE-LIBS of the aluminum sheet, time-resolved studies could lead to a better 

understanding of the difference in the enhancement factor for Al atomic and AlO 

molecular peaks.  

7.1.4 Grazing incidence 

 The experimental configuration can be improved with a cylindrical lens to collect the 

plasma emissions along the longitudinal direction. This could enable us to extend the 

studies to compounds other than graphene. Further, the use of nanoparticles for better 

interaction and signal enhancement could be productive.  

7.1.5 Single deep learning model for the quantification from LIBS spectra  

A single model can be trained with the LIBS data of well-calibrated all possible 

compositions of metal alloys to estimate the elemental composition of any metal alloy 

from corresponding LIBS spectra. A deep learning model can be trained with massive data 

for predicting compositions from the LIBS spectra. 

7.1.6 Extension of the classification of the compounds based on the color CCD 
images to the standoff configuration 

The images of plasma emissions from the standoff distances can be used to classify simple 

targets like metal and alloys. Other multispectral images of plasma emissions combined 

with machine learning algorithms could improve classification studies. This method, with 

high potential in reducing the instrumentation, can be deployed in monitoring simple 

compounds in real time. 
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Code used for the pca of the images of plasma emissions. 
from sklearn import svm 
from time import time 
import os 
from sklearn.decomposition import PCA 
import numpy as np 
import matplotlib.image as impg 
 
 
path= path to the images from plasma emissions 
pics=os.chdir(path) 
piclist=os.listdir(pics) 
targets=[] 
for i in range(len(piclist)): 
#    if piclist[i][:4]=='BRON': 
        targets.append((piclist[i][:4])) 
t0=time() 
 
from scipy import signal 
Cxy=[] 
for i in range(0,len(piclist)): 
    img =impg.imread(piclist[i]) 
    x=(img[0:200,150:400,2]) 
    y=(img[200:400,400:650,2]) 
    x=np.array(x).ravel() 
    y=np.array(y).ravel() 
    Cxy.append(signal.coherence(x,y)[1]) 
print("done hist in %0.5fs" % (time() - t0))  
Cxy=np.nan_to_num(Cxy)          
t0=time() 
pca=PCA(3) 
clfp=pca.fit_transform(Cxy) 
 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(   
  clfp,targets , test_size=0.4, random_state=0) 
#targets=np.array(targets) 
clf=svm.SVC(gamma=0.0001,C=100) 
#x,y=clfp[:-1,:],targets[:-1] 
clf.fit(X_train,y_train) 
clf.score(X_test, y_test) 
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Code used for the two-dimensional correalation analysis 
import numpy as np 
import matplotlib.pyplot as plt 
import os 
 
plt.rcParams["font.family"] = "Times New Roman" 
 
path= path to the folder containing data  
pics=os.chdir(path) 
piclist=sorted(os.listdir(pics)) 
#%% 
import scipy.signal 
import time 
dataall=[] 
wavelength=np.genfromtxt(piclist[2],skip_header=10,skip_footer=19000,usecols=0) 
#np.savetxt("wavelength.csv",wavelength,delimiter=',') 
#%% 
plt.rcParams["font.family"] = "Times New Roman" 
plt.rcParams["font.size"]=10 
plt.rcParams["font.weight"]="bold" 
csfont = {'fontname':'Times New Roman','weight':'bold'} 
import seaborn as sns 
start_time=time.time() 
#from scipy.signal import savgol_filter 
#from scipy import signal 
#b, a = signal.butter(8, 0.325) 
for k in range (0,1): 
    file=np.genfromtxt(piclist[k],skip_header=10,skip_footer=19000) 
    A=[] 
#    A.append(file) 
    
    for i in range(1,6): 
        A.append(file[:,i]) 
    A=np.array(A) 
np.round(wavelength[::40],2),fontsize=15,rotation=45,fontweight='bold') 
#     
plt.yticks(range(0,len(wavelength),40),np.round(wavelength[::40],2),fontsize=15,fontweight='bold') 
#     plt.imshow(asy, cmap="RdBu_r",origin="lower") 
#     plt.xlabel("Wavelength[nm]",csfont,fontsize=20,fontweight='bold') 
#     plt.ylabel("Wavelength[nm]",csfont,fontsize=20,fontweight='bold') 
# #    plt.title("2D-correlation of time varying Copper peaks") 
#     plt.savefig("/home/linga009/Documents/bim/{}.{}".format("asyn"+str(k),"png"), 
bbox_inches='tight') 
# #            plt.show() 
#     plt.close() 
#     print(k) 
    # X,Y=np.meshgrid(wavelength,wavelength) 
    # fig = plt.figure() 
    # ax = fig.gca(projection='3d') 
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    # surf = ax.plot_surface(X, Y, asy, rstride=1, cstride=1, cmap="RdBu_r", linewidth=0, 
antialiased=False) 
    # ax.w_xaxis.set_pane_color((1.0,1.0,1.0,0.1)) 
    # ax.w_yaxis.set_pane_color((1.0,0.0,1.0,0.1)) 
    # ax.set_xlabel\ 
    Ar=np.average(A,axis=0) 
# import pandas as pd 
# df=pd.DataFrame(A) 
#df.index=wavelength 
 
    matrix=A.sum(axis=0).reshape(A.shape[1],1) 
    Ad=A 
     #np.transpose((1/A.shape[0])*matrix*np.ones(A.shape[0])) 
    syn=(1/A.shape[0])*np.dot(np.transpose(Ad),Ad) 
    #np.savetxt("syn_Au20_Ag80.csv", syn, delimiter=",") 
     #dataall.append(syn.diagonal()) 
     #plt.plot(wavelength,diag) 
  # scipy.signal.medfilt2d(syn,kernel_size=31) 
 
#plotting in surface_plot 3D 
     
    # X,Y=np.meshgrid(wavelength,wavelength) 
    # fig = plt.figure() 
    # ax = fig.gca(projection='3d') 
    # surf = ax.plot_surface(X, Y, syn, rstride=1, cstride=1, cmap="RdBu_r", linewidth=0, 
antialiased=False) 
    # ax.w_xaxis.set_pane_color((1.0,1.0,1.0,0.1)) 
    # ax.w_yaxis.set_pane_color((1.0,0.0,1.0,0.1)) 
    # ax.set_xlabel('Wavelength [nm]',csfont, fontsize=15) 
    # ax.set_ylabel('Wavelength [nm]',csfont, fontsize=15) 
    # ax.set_zlabel('Intensity (arb.u)',csfont, fontsize=15) 
    # plt.show() 
##%% 
# np.savetxt('bim.asc',syn,delimiter='') 
 
# ax=sns.kdeplot(data=sy) 
# #square=True, xticklabels="auto",yticklabels="auto",cmap="Spectral",cbar=False) 
# ax.invert_yaxis() 
# ax.figure.savefig('output_figure4.png',figsize=(50,50),dpi=2000,bbox_inches='tight') 
#     plt.figure() 
#     syn=sni.zoom(syn,3) 
 
    dpi = 100 # Arbitrary. The number of pixels in the image will always be identical 
     
    # height, width = np.array(syn.shape, dtype=float) / dpi 
    # plt.ioff() 
    # fig = plt.figure(figsize=(width, height),dpi=dpi) 
    plt.xticks(range(0,len(wavelength),160), 
np.round(wavelength[::160],2),fontsize=15,rotation=45,fontweight='bold') 
    
plt.yticks(range(0,len(wavelength),160),np.round(wavelength[::160],2),fontsize=15,fontweight='bol
d') 
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    plt.xlabel("Wavelength[nm]",csfont,fontsize=20,fontweight='bold') 
    plt.ylabel("Wavelength[nm]",csfont,fontsize=20,fontweight='bold') 
#    plt.axis("off") 
#    sns.heatmap(data=syn,cmap="magma",cbar=False) 
    plt.contourf(syn,30,cmap="RdBu_r",origin="lower") 
    plt.show() 
#     #plt.colorbar() 
#   #  "RdBu_r" 
 #   plt.title("2D-correlation of time varying Copper peaks") 
#plt.grid(True) 
    # 
plt.savefig("/home/linga009/Documents/bim/final/{}.{}".format("rbr520_50"+piclist[k][:4]+str(k),"
png"), bbox_inches='tight',dpi=dpi) 
    # plt.close() 
    # time.sleep(1) 
#%% 
#    plt.show() 
# ax.set_xticks(wavelength 
# ax.set_yticks(wavelength) 
# ax.set_xticklabels(wavelength,rotation=90) 
# ax.set_yticklabels(wavelength) 
    print(time.time()-start_time) 
 
    N= np.zeros((A.shape[0],A.shape[0])) 
    for i in range(1,(A.shape[0])): 
        for j in range(i): 
            N[j][i]=1/(np.pi*(j-i)) 
            N[i][j]=-N[j][i] 
    asy=(1/A.shape[0])*np.dot(np.dot(np.transpose(Ad),N),Ad) 
    np.savetxt("asyn_Au20_Ag80.csv", asy, delimiter=",") 
            # ax=sns.heatmap(asy,square=True, 
xticklabels="auto",yticklabels="auto",cmap="Spectral",cbar=False) 
            # ax.invert_yaxis() 
#     fig= plt.figure(figsize=(width, height),dpi=dpi) 
#     plt.xticks(range(0,len(wavelength),40), 
np.round(wavelength[::40],2),fontsize=15,rotation=45,fontweight='bold') 
#     
plt.yticks(range(0,len(wavelength),40),np.round(wavelength[::40],2),fontsize=15,fontweight='bold') 
 
Code used for the diagonal extraction in the two-dimensional 
correlation analysis 
 
import numpy as np 
import matplotlib.pyplot as plt 
import os 
 
 
path=”path to the folder containing data” 
pics=os.chdir(path) 
piclist=sorted(os.listdir(pics)) 
#%% 
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import time 
wavelength=np.genfromtxt(piclist[0],skip_header=1000,skip_footer=1500,usecols=0)  
#%% 
from sklearn.preprocessing import RobustScaler,MinMaxScaler,Normalizer,StandardScaler 
from scipy.signal import savgol_filter 
norm1=StandardScaler() 
norm=MinMaxScaler(feature_range=(0, 100)) 
A=[] 
for k in range (0,5): 
     
    A.append(np.genfromtxt(piclist[k],skip_header=1000,skip_footer=1500,usecols=(1))) 
A=np.array(A) 
           
matrix=A.sum(axis=0).reshape(A.shape[1],1) 
Ad=np.transpose((1/A.shape[0])*matrix*np.ones(A.shape[0])) 
with open('/home/linga009/Documents/ssecond paper/PVC.txt', 'a+') as data: 
np.asarray([np.concatenate((np.diagonal((1/A.shape[0])*np.dot(np.transpose(Ad),Ad)), 
np.diagonal((1/A.shape[0])*np.dot(np.transpose(Ad),Ad),offset=100)))]),delimiter=',',newline='\n') 
        
np.savetxt(data,list(zip(wavelength,(np.diagonal((1/A.shape[0])*np.dot(np.transpose(Ad),Ad)))))) 
print(k) 
 
 
Code used for PCA on the diagonal of the two-dimensional correlation 
analysis  
 
from sklearn.preprocessing import StandardScaler,RobustScaler 
from sklearn.preprocessing import Normalizer 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import axes3d 
import os 
from sklearn.decomposition import PCA 
 
plt.rcParams["font.family"] = "Times New Roman" 
plt.rcParams["font.size"] = 15 
plt.rcParams["font.weight"]="bold" 
diag1= path to the folder containing diagonal data 
path1= path to the folder containing LIBS spectra 
pics=os.chdir(path1) 
piclist=sorted(os.listdir(pics)) 
#%% 
import scipy.signal 
import time 
from sklearn.preprocessing import MinMaxScaler 
A=[] 
for i in range(0,len(piclist)): 
    A.append(np.genfromtxt(piclist[i],skip_header=2000,skip_footer=3500,usecols=1))  
#data1=np.genfromtxt(piclist[1],skip_header=1000,skip_footer=500,usecols=1) 
#%% 
import pandas 
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df0 = pandas.read_csv(diag1,header=None) 
#df1=pandas.read_csv(diag2,header=None) 
#df2=pandas.concat([df0,df1],axis=1) 
#%% 
green=df0.drop([77]) 
#.drop([77]) 
#.iloc[:,1000:6000].drop([77]) 
 
#%% 
norm=Normalizer() 
green=norm.fit_transform(green) 
pca=PCA(5) 
 
clf=pca.fit_transform(np.array(green)) 
#loadings=np.cumsum(clf.explained_variance_ratio_) 
plt.figure(1) 
plt.plot([1,2,3,4,5],np.cumsum(pca.explained_variance_ratio_), '-o', markersize=12,color='black') 
plt.xlim(0.5, 6.0) 
plt.ylim(0.3, 1.0) 
plt.xlabel('Number of components',fontsize=20,fontweight="bold") 
plt.xticks([1,2,3,4,5],weight="bold") 
plt.ylabel('Cumulative explained variance',fontsize=20,fontweight="bold") 
plt.yticks(weight="bold") 
plt.grid(axis='both') 
plt.figure(2) 
features = range(5) 
plt.bar(features, pca.explained_variance_ratio_, color='blue') 
plt.xlim(-1.0, 5.0) 
plt.ylim(0.0, 1.0) 
plt.xlabel('Component number',fontsize=20,fontweight="bold") 
plt.ylabel('Variance',fontsize=20,fontweight="bold") 
plt.yticks(weight="bold") 
plt.xticks([0,1,2,3,4],[1,2,3,4,5],weight = 'bold') 
plt.xticks(features) 
 
Code used for the shallow neural network model 
 
from numpy import asarray 
from sklearn.datasets import make_multilabel_classification 
from keras.models import Sequential 
from keras.layers import Dense,Dropout 
from keras.optimizers import SGD 
from sklearn.preprocessing import QuantileTransformer 
from keras.utils import to_categorical 
from sklearn.model_selection import train_test_split 
#%% 
import os 
import pandas as pd 
import numpy as np 
path= path to the folder containing the time resolved LIBS data 
data_tmp=os.chdir(path) 
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data=sorted(os.listdir(data_tmp)) 
 
train = pd.read_csv(path to the training data)  
 
######################################################### 
header=1000 
footer=3000 
                
X=[] 
y=[] 
from tqdm import tqdm 
for i in tqdm(range(0,len(data))): 
     
    X.append(np.genfromtxt(data[i],skip_header=header,skip_footer=footer,usecols=(1))) 
    y.append(np.array(train.drop([ 'Composition'],axis=1).iloc[i]))    
    X.append(np.genfromtxt(data[i],skip_header=header,skip_footer=footer,usecols=(2))) 
    y.append(np.array(train.drop([ 'Composition'],axis=1).iloc[i])) 
    X.append(np.genfromtxt(data[i],skip_header=header,skip_footer=footer,usecols=(3))) 
    y.append(np.array(train.drop([ 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(4))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(5))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # # # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(6))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(7))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(8))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(9))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
    # X.append(np.genfromtxt(data[i],skip_header=1500,skip_footer=4000,usecols=(10))) 
    # y.append(np.array(train.drop(['Id', 'Composition'],axis=1).iloc[i])) 
     
 
#%% 
from sklearn.preprocessing import MinMaxScaler,StandardScaler,Normalizer,MaxAbsScaler 
X1=np.array(X) 
y1=np.array(y) 
 
#norm1=MaxAbsScaler().fit(np.float64(X1)) 
norm=Normalizer().fit(np.float64(X1)) 
from sklearn.decomposition import PCA 
clf1=norm.transform(X1) 
pca=PCA(len(X1)) 
pc=pca.fit(clf1) 
clf=pc.transform(clf1) 
#print(np.cumsum(pca.explained_variance_ratio_)[-1]) 
 
####################################################################### 
import random as rn 
import tensorflow as tf 
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tf.random.set_seed(43) 
np.random.seed(37) 
rn.seed(1254) 
import keras 
initializer = tf.keras.initializers.Ones() 
from keras.regularizers import l1_l2 
from keras.regularizers import l1 
from keras.regularizers import l2 
from keras.callbacks import EarlyStopping 
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
patience=8,mode="min",restore_best_weights=True) 
X_train, X_test, y_train, y_test = train_test_split(clf, y1,random_state=41,test_size=0.1) 
def create_model(): 
    # initial_learning_rate =0.001 
    # lr_schedule = keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, 
    # decay_steps=1000,decay_rate=0.96,  staircase=False) 
    opt1 = keras.optimizers.RMSprop(learning_rate=0.005,momentum=0.9,epsilon=1e-
9,centered=False) 
    # sgd = SGD(learning_rate=lr_schedule, momentum=0.9, nesterov=True) 
    # opt1 = keras.optimizers.RMSprop(learning_rate=0.0045,momentum=0.9,epsilon=1e-
8,centered=False) 
    opt2=keras.optimizers.Adamax(learning_rate=0.005, beta_1=0.6, beta_2=0.4, epsilon=1e-09, 
name="Adamax") 
    # # create model 
    
    model = Sequential() 
    model.add(Dense(1200,input_dim=X_train.shape[1], activation='relu', 
                    kernel_regularizer=l2(0.0001), 
                    kernel_initializer=initializer)) 
    model.add(Dropout(0.5)) 
    # model.add(Dense(900,activation='relu',kernel_regularizer=l2(0.001))) 
    # model.add(Dropout(0.5)) 
   # model.add(Dense(80,activation='relu')) 
    #                 #,kernel_regularizer=l2(0.01))) 
    # model.add(Dropout(0.3)) 
#    model.add(Dense(10,activation='relu',kernel_regularizer=l2(0.01))) 
    # model.add(Dropout(0.3)) 
    # model.add(Dense(2000,activation='relu',kernel_regularizer=l2(0.001))) 
    # model.add(Dropout(0.1)) 
     
    model.add(Dense(2,activation='linear')) 
    model.compile( optimizer=opt1,loss 
=('mean_absolute_error','mean_absolute_error'),loss_weights=(1,1),metrics 
=["mean_absolute_error"]) 
    return model 
model = create_model() 
model.summary() 
#%% 
from sklearn.metrics import mean_absolute_error,make_scorer 
from sklearn.metrics import mean_absolute_error as MAE 
#from sklearn.metrics import mean_absolute_percentage_error as MAPE 
from sklearn.metrics import r2_score 
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from sklearn.metrics import mean_squared_error as MSE 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import RepeatedStratifiedKFold 
# cv = RepeatedStratifiedKFold(n_splits=6, n_repeats=3, random_state=1) 
# # evaluate model 
# scoring_function=make_scorer(mean_absolute_error,greater_is_better=False) 
# scores = cross_val_score(model, X_train, y_train[:,0], scoring=scoring_function, cv=cv, 
n_jobs=2) 
# report result 
# print('Mean Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) 
history=model.fit(X_train, y_train, 
validation_split=0.1,shuffle=False,epochs=500,batch_size=40,callbacks=[callback]) 
res=model.evaluate(X_test, y_test, verbose=0) 
print('error in Au= %.3f' % res[0],'error in Ag=%.3f' % res[1]) 
#model.save(args["model"], save_format="h5") 
#%% 
from matplotlib import pyplot as plt 
pathout="/home/linga009/Documents/ssecond paper/bimna/Au3g" 
outlist=sorted(os.listdir(os.chdir(pathout))) 
 
out1=[] 
 
for j in range(0,len(outlist)): 
    out1.append(np.genfromtxt(outlist[j],skip_header=header,skip_footer=footer,usecols=1)) 
     
out2=norm.transform(out1) 
#out3=norm2.transform(out1) 
out4=pc.transform(out2) 
seven_three=model.predict(out4) 
print(seven_three) 
 
#print(model.predict(X_test)) 
true=list(zip([30]*19,[70]*19)) 
y_pred = model.predict(X_test) 
print(y_pred-y_test) 
print("R^2",r2_score(y_test, y_pred,multioutput='raw_values')) 
print("RMSE",np.sqrt(MSE(y_test, y_pred,multioutput='raw_values'))) 
print("mean_absolute_error",MAE(y_test,y_pred,multioutput='raw_values')) 
print("RMSE",np.sqrt(MSE(true,seven_three,multioutput='raw_values'))) 
print("mean_absolute_error",MAE(true,seven_three,multioutput='raw_values')) 
 
#%% 
print("STD of Au error",np.std(y_pred[:,0]-y_test[:,0])) 
print("STD of Ag error",np.std(y_pred[:,1]-y_test[:,1])) 
print(abs(np.mean(seven_three[:,0]-30)/30)*100,abs(np.mean(seven_three[:,1]-70)/70)*100) 
print(np.mean(seven_three[:,0]),np.mean(seven_three[:,1])) 
print(np.std(seven_three[:,0]),np.std(seven_three[:,1])) 
# # for i in range(len(y_test)): 
#     print((abs(y_pred[i]-y_test[i])/y_test[i])*100) 
plt.rcParams["font.family"] = "Times New Roman" 
plt.rcParams["font.size"]=25 
plt.rcParams["font.weight"]="bold" 
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fig=plt.figure(figsize=(8,6),constrained_layout=True) 
ax = fig.gca() 
for axis in ['top','bottom','left','right']: 
    ax.spines[axis].set_linewidth(2) 
error1 = abs(y_pred[:,0]-y_test[:,0]) 
error2 = abs(y_pred[:,1]-y_test[:,1]) 
plt.hist(error1,bins=100, alpha=0.7, label="Au",color="red") 
plt.hist(error2,bins=100,alpha=0.7, label="Ag",color='green') 
plt.xlabel(' % Error in prediction',fontsize=30,fontweight="bold") 
plt.ylabel('Count',fontsize=30,fontweight="bold") 
plt.legend(loc='best') 
plt.title("% Error in predicion on test set",fontsize=35,fontweight="bold") 
fig=plt.figure(figsize=(8,6),constrained_layout=True) 
ax = fig.gca() 
for axis in ['top','bottom','left','right']: 
    ax.spines[axis].set_linewidth(2) 
################ 
plt.hist(abs((seven_three[:,0]-30)/30)*100,bins=100, alpha=0.7, label="Au",color='red') 
plt.hist(abs((seven_three[:,1]-70)/70)*100, bins=100, alpha=0.7, label="Ag",color='green') 
plt.xlabel('% Error in prediction ',fontsize=30,fontweight="bold") 
plt.ylabel('Count',fontsize=30,fontweight="bold") 
plt.legend(loc='best') 
plt.title("% Error in Prediction on Au30-Ag70",fontsize=35,fontweight="bold") 
fig=plt.figure(figsize=(8,6),constrained_layout=True) 
 
plt.axes(aspect='equal',alpha=0.8) 
ax = fig.gca() 
for axis in ['top','bottom','left','right']: 
    ax.spines[axis].set_linewidth(2) 
plt.scatter(y_test[:,0], y_pred[:,0], s=50,alpha=0.7, label="Au",color='red') 
plt.scatter(y_test[:,1],y_pred[:,1], s=50,alpha=0.7, label="Ag",color='green') 
plt.xlabel('True Values [% weight]',fontsize=25,fontweight="bold") 
plt.ylabel('Predicted Values [% weight]',fontsize=25,fontweight="bold") 
plt.title('True Vs Predicted values',fontsize=30,fontweight="bold") 
plt.xticks(np.arange(0, 100, step=10)) 
plt.yticks(np.arange(0, 100, step=10)) 
lims = [-10, 100] 
plt.xlim(lims) 
plt.ylim(lims) 
plt.plot(lims, lims) 
plt.grid(True, color = "grey", linewidth = "0.5", linestyle = "-.") 
plt.legend() 
 
 
#%% 
from matplotlib import pyplot as plt 
plt.rcParams["font.family"] = "Times New Roman" 
plt.rcParams["font.size"]=25 
plt.rcParams["font.weight"]="bold" 
fig=plt.figure(figsize=(8,6),constrained_layout=True) 
ax = fig.gca() 
for axis in ['top','bottom','left','right']: 
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    ax.spines[axis].set_linewidth(2) 
plt.plot(history.history['mean_absolute_error'],linewidth=3) 
plt.plot(history.history['val_mean_absolute_error'],linewidth=3) 
plt.title('Training and Validation error',fontsize=35,fontweight="bold") 
plt.ylabel('MAE',fontsize=30,fontweight="bold") 
plt.xlabel('Epoch',fontsize=30,fontweight="bold") 
plt.xticks(np.arange(0, 35, step=5)) 
plt.legend(['Training error', 'Validation error'], loc='upper right') 
plt.grid(True, color = "grey", linewidth = "1", linestyle = "-.")  
plt.show() 
fig=plt.figure(figsize=(8,6),constrained_layout=True) 
ax = fig.gca() 
for axis in ['top','bottom','left','right']: 
    ax.spines[axis].set_linewidth(2) 
plt.plot(history.history['loss'],linewidth=3) 
plt.plot(history.history['val_loss'],linewidth=3) 
plt.title('Training and validation loss',fontsize=35,fontweight="bold") 
plt.ylabel('Loss',fontsize=30,fontweight="bold") 
plt.xlabel('Epoch',fontsize=30,fontweight="bold") 
plt.xticks(np.arange(0, 35, step=5)) 
plt.legend(['Training loss', 'Validation loss'],loc="upper right") 
plt.grid(True, color = "grey", linewidth = "1", linestyle = "-.")  
plt.show() 
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Wang, and Dr. Durgesh K. Tripathi, John Wiley & Sons, In Press, 2022. 

2. Linga Murthy Narlagiri, Venugopal Rao Soma,* "Recent developments in standoff laser 
induced breakdown spectroscopy," Laser-Induced Breakdown Spectroscopy (LIBS): 
Concepts, Instrumentation, Data Analysis and Applications, Eds: Dr. Vivek K. Singh, Prof. Y. 
Deguchi, Dr. Zhenzhen Wang, and Dr. Durgesh K. Tripathi, John Wiley & Sons, In Press, 
2022. 
 

Achievements 
 

1. Received Best Poster Award for the poster titled" Identification of Metals and Metal 
Alloys from the Femtosecond Laser Induced Plasma Emissions using Machine 
Learning" in DAE-BRNS National Laser Symposium (NLS-28) 2020 held at Vellore 
Institute of Technology (VIT), Chennai from 08-11 January, 2020. 

2. Seventh place in Euro-Mediterranean LIBS conference competition results published in 
"J. Vrábel, E. Képeš, L. Duponchel, V. Motto-Ros, C. Fabre, S. Connemann, F. Schreckenberg, 
P. Prasse, D. Riebe, R. Junjuri, M. K. Gundawar, X. Tan, P. Pořízka, and J. Kaiser, 
"Classification of challenging Laser-Induced Breakdown Spectroscopy soil sample data - 
EMSLIBS contest," Spectrochim. Acta - Part B At. Spectrosc. 169, 105872 (2020).” 
 

Workshops Attended 
 

1. Attended the DST-SERB School on Ultrahigh Intensity Laser Produced Plasmas: Physics 
and Applications (Jan 7-25 2019) Laser Plasma Division RRCAT, Indore -452013 MP India. 

2. Attended the GIAN course on Attosecond Photonics, from 07 - 11 Nov.2016 at IIT – Madras. 
3. Attended "International conference on python for education and scientific computing" 

Annual SciPy conference India 2019, held on 29 and 30 November 2019 at I.I.T. Bombay. 
4. Attended the GIAN one-week short term course on "Vibrational Spectroscopy and the 

Molecular Vibrations" (Sponsored by Ministry of Human Resource Development (MHRD), 
Under the Scheme ' GIAN') (15 January 2018 to 19 January 2018) 

 
 
 
 
 
 










