Carbocyclization of Alkene-/Alkyne-Tethered Carbonyl Compounds Through *In Situ* Acetal Formation

A Thesis

Submitted for the Degree of

DOCTOR OF PHILOSOPHY

In

CHEMISTRY

By

Golla Ramesh (Regd. No. 15CHPH27)

Under the Supervision of **Prof. R. Balamurugan**

School of Chemistry University of Hyderabad Hyderabad 500 046 India "There is nothing either good or bad, but thinking makes it so"
.....William Shakespeare

School of Chemistry University of Hyderabad

Declaration

I, Golla Ramesh hereby declare that this thesis entitled "Carbocyclization of Alkene-/Alkyne-Tethered Carbonyl Compounds Through In Situ Acetal Formation" submitted by me under the supervision of Prof. R. Balamurugan is a bonafide research work carried out by me in the School of Chemistry, University of Hyderabad, India. I also declare that it has not been submitted previously in part or in full to this University or Institution for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observations, due acknowledgment has been made wherever the work described is based on the findings of other investigators. Any omission, which might have occurred by oversight or error, is regretted. This work is free from plagiarism. I hereby agree that my thesis can be deposited in Shodhganga/INFLIBNET.

University of Hyderabad December 2022

Bulamungm

Golla Ramesh (15CHPH27)

Ramesh

Dr. R. Balamurugan (Thesis Advisor)

Dr. R. Balamurugan Professor School of Chemistry University of Hyderabad Hyderabad-46, India.

School of Chemistry University of Hyderabad

Certificate

This is to certify that the thesis entitled "Carbocyclization of Alkene-/Alkyne-Tethered Carbonyl Compounds Through In Situ Acetal Formation" submitted by Golla Ramesh bearing Registration Number 15CHPH27 in partial fulfilment of the requirements for award of Doctor of Philosophy in the School of Chemistry is a bonfide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Further, the student has the following publications:

- 1. Ramesh, G.; Balamurugan, R. J. Org. Chem. 2021, 86, 16278-16292.
- 2. Ramesh, G.; Ramulu, B. V.; Balamurugan, R. J. Org. Chem. 2022, 87, 8633-8647.
- 3. Ramesh, G.; Srivardhan, V.; Balamurugan, R. Org. Biomol. Chem. 2022, 20, 9698-9702.
- 4. Naveen, N.; Ramesh. G.; Balamurugan, R. Chemistry Select 2019, 4, 13610-13614

and

has made presentations in the following conferences:

1. XIII J-NOST Conference-2017; 2. ChemFest-2019; 3. ChemFest-2020.

Further, the student has passed the following courses towards fulfilment of coursework requirement for Ph.D.

Course Code	Name	Credits	Pass/Fail
CY801	Research Proposal	3	Pass
CY805	Instrumental Methods-A	3	Pass
CY501	Spectroscopic Methods for Structure Elucidation	3	Pass
CY402	Physical Organic Chemistry	3	Pass

Dean

School of Chemistry

Dean
School of Chemistry
University of Hyderabad
P.O. Central University
Gachibowli, Hyderabad-500 046.

Dr. R. Balamurugan (Thesis Advisor)

Dr. R. Balamurugan Professor School of Chemistry University of Hyderabad Hyderabad-46, India.

Acknowledgments

First and foremost, I am extremely grateful to my thesis advisor **Prof. R. Balamurugan** for his invaluable advice, continuous support, and patience during my Ph.D. tenure. I am very much thankful to him for giving me the freedom to think beyond the box and work on various challenges. I can't thank enough him for his support during my hard times. **Prof. R. Balamurugan**, I have learned and grown a lot while working with you, and thank you for being a great supervisor, and you have my deepest thanks.

I thank the present dean of the School of Chemistry, Prof. Ashwini Nangia, and former deans, Prof. M. Durgaprasad, Prof. T. P. Radhakrishnan, Prof. Anunay Samanta, and Prof. K. C. Kumara Swamy for providing necessary research facilities.

I am very much thankful to my doctoral committee members Prof. K. C. Kumara Swamy and Prof. D. B. Ramachary for their encouragement and support during the doctoral tenure. My special thanks to Prof. D. B. Ramachary for his continuous support, motivation, and encouragement throughout my Ph.D. Conversations that we had always ended up with fruitful results. I would also like to extend my thanks to all the faculty members of the School of Chemistry for their encouragement and cooperation.

I extend my sincere thanks to all the non-teaching staff of the School of Chemistry for their cooperation.

My heartfelt thanks to my labmates, Dr. Vanaja, Dr. Naveen, Dr. Ramana, Dr. Saktivel, Dr. Tamilarasan, Dr. Chandrahas, Dr. Mou, Mr. Basha, Mr. Kuldeep, Ms. Rina, Mr. Arun, Mr. Tausif, Ms. Anjali, Dr. Prakash, Dr. Rangarajan, Dr. Manoj, Dr. Venkat Ramulu, Mr. Satyajit, and Mr. Shekar and project fellows Monika, Vibha, Anu, Aiswarya Paul, Supriya, Srivardhan, Naga Sai, Amit, Soumen, Yadhu, Anupama, and Sidharth for supporting me and creating a friendly environment in the lab during my Ph.D. tenure. My special thanks to Dr. Manojveer for teaching me all the necessary work that needed to do research, and for his invaluable suggestions, and support throughout my Ph.D. tenure.

My sincere thanks to my dearest friends of the School of Chemistry, Dr. Surendra, Gujju Narsimhulu, Arun Kumar Kanakati, Dr. Srinivas Vangara (Bammardi), Dr. Prabhakar Thippathi, Dr. Rangu Prasad, Dr. Lee for their unconditional friendship, support, discussions, sittings, and what not.

Other fellow researchers of the School of Chemistry, Ramakrishna (SKD), Srinu (KMD), Naveen (RN), Ramesh (GM), Sasi (AKB), Satish, Suresh, Vikranth, Obaiah, Nandakishor, Umamaheswar, Nagamaiah, Anil, Suryanarayana, Pon Satish, Satish (LGP), Jagjeet, Suresh (DBR), Swamy (DBR), Manish, Harilal, Mageed, Anif, Sameeta, Sipra, Tanmay, Saddam,

Tasnim, Manjoor, Senthil, Sandeep, Suchismita, Laxman, Naresh, Praveen (JJ), Srinu, Sunny, Praveen (PRS), Rajesh, Tabassum, Jazeel, Gorachand, Sayonika, Akram, Ravi (MB), Sai, Sasi, Sneha Benerjee, Ashok, Irfan, Ramesh, Ravi (RC), Anupam, Jyotsna, Pritam, Sarada, Shubham, Alim, Soutrick, Suman (VB), Ravindar, Isfaq, Intazar, Kamala, Vamsi, Anjineyulu, Manash, Rajesh (AS), Navaneetha, Vinay, Shyam, Suman (MJ), Sridatri, Rohullah, Satyam, Vinod, Calvin, Sachin, Santhosh, Ranadeep, Ajay Drisya, Debu, Sneha Latha, Somratan, Athira, Arunava, Jishu, Arun (YSR), Nirupama, Aradhana, Sibani, Shyam, Karishma, Prasanth Thota, Manoj Sethi, Kondalrao, Rajkiran, Dheeraj, Ankur, Prashanth (IISc), Ayesha, Sravan, Alka Singla, Srimoyee.

I gratefully extend my deepest thanks to the UoH family, Sannaki Munna, Debona, Vivek Nenmini, Jobeth Wajri, Lima Bhai, Mohib, Alex, Avishek Bandari, Moatula, Evangelene Carene, Nori, Bharat, Gopiswamy, Bihari Lal, Rajasekhar, Ramesh, Shiva, Samson, Vinod, Iniyavan, Prashanth, Prakash, Tushar, Anant, Parvinder, Suresh, Naresh, Vengadeshwaran, Melchi for their love, affection, and support.

My special thanks to Dr. Chandrababu (SKU), Dr. Ranganath (SKU), Dr. Sudhakar (University of Chicago), Dr. Veeramanohar Reddy (SVU), Dr. Kishor (IISc), Dr. Ramesh (Tumkur University), Dr. Nagendra (NIIST, Thiruvananthapuram), Shiva (IICT), Dr. Srinu (IITH), Dr. Venky (IIT Mandi), Dr. Balanna (IISc), Dr. Ramakrishna (IICT), Dr. Guruprasad (IIT Mandi) for their support and encouragement.

I am eternally grateful to my M.Sc lecturers, Dr. Ramachandra Murthy, Dr. Sailaja, Dr. K. Chandrasekhar, Dr. D. N. Satyanarayana, Dr. K. Sivachandra, Dr. Padmavati, Dr. Sailaja Rani, and Dr. Manjula for igniting interest in me to choose Ph.D. as my carrier through their incredible teaching.

I am exceptionally grateful to my lovely M.Sc. friends, Pullaiah, Ramesh (Cat), Narendra, Ramesh Reddy, Srinu, Bheemaraj, Mounesh, Shiva, Ramakrishna, Mallesh, Venkat anna, Noor, Babu Naik, T. Suresh, K. N. Suresh, Srividya, Tejaswi, Shilpa, Sirisha, Indrani, Geetha, Nirmala, Geetanjali, Padmavathi.

I want to thank my inter friends, Nagabhushana (Mama), Raghavendra, Sai, Srinu, Suresh (STD), Ramesh (Toka), Srikanth, Sunitha, and B.Sc. friends, Manohar, Chinna Ramu, Manju, Purushotham Achari, Ramanjineyulu, Giri, Raghavendra Barakam, Chiru, Bhaskar Naik, Balaji Naik, Mallikarjuna, Bheemalinga, Niru, Allabakash, Sunil, Subramanyam, Giribabu, Viswanath, Raghavendra for their support.

It's a great privilege to thank my SSC friends, Ashok, Ambarish, Maruthi, Bhargava Krishna, Srinu, Govind, Channamalla, Nagabhushana, Gopinath, Gopi, Ramachandra, Nagaraj, Nethaji for giving me most memorable moments and support.

It will be incomplete without thanking my school teachers, Mr. Kullayappa, Mr. Nagarjuna, Mr. Tippeswamy, Ms. Madhavi (my favourite Hindi teacher), Mr. Sivachandra, Mr. Venkatapathi, Mr. Mallikarjuna, Mr. Phanibhushan, Mr. Parameshwar for being strong pillars for my carrier.

This Ph.D. would not have happened without my family members G. Jagulurakka (Grand Mother), G. Eranna (Grand Father), G. kariyamma (Grand Mother), G. Naganna (Grand Father), G. Doddakka (Grand Mother), G. Bommakka (Grand Mother), G. Naganna (Grand Father), Golla Narasimhappa (Father), Golla Nagamma (Mother), Jyothi (Sister), G. Lakshmana Murthy (Brother), G. Mamatha (Sister-in-law), G. Eranna (Mama), G. Doddakka (Atha), G. Eranna (Brother-in-law), G. Naganna (Mama), G. Doddakka (Atha), G. Nagarjuna (Bammardi), G. Triveni, G. Srilatha (Kodalu), G. Ravi (Bammardi), G. Tejaswi (Kodalu), G. Harish (Bammardi), G. Prasanthi (Niece), G. Nishant (Nephew), G. Bharat (Nephew), G. Manusri (Niece) and close relatives G. Nagamma, G. Eranna, G. Kavitha, G. Lakshmi, G. Sankar, G. Nagaraju, G. Bellappa, G. kariyamma, G. Nagaraju, G. Virupakshi, G. Suresh, G. Aruna, G. Govardhan, G. Babu, G. Nagamma, G. Ramachandra, G. Sravani, G. Narasimha (Bannu), G. Lalitha, G. Kistappa, G. Trisha, G. Babu, G. Borappa, G. Narasimha, G. Jyothi, G. Narasimha, G. Sathish, G. Borappa, G. Sannarsi, G. Ashok, G. Puri, and other relatives. I am deeply grateful to them.

I would also thank Gangadhar (Mama), Manjunath, Lakshmi, Sravani, Varshita, Gunadappa, Donathimma, Dasanna, Maruthi (Anna), Ramireddy, Eranna, Thippeswamy (Chakali Thatha), Bojjanna, Vannurswamy, Maruthi, Bhaskar, Thimmaraju, Yasodha, Ramanji (Gunipalli), and my well-wishers from my village, Siva, Ramesh, Ramu, Prakash, Umesh, Mallikarjuna, Nagarjuna, Shiva, Thippeswamy (Kapil), Virupakshi, Veeresh, Thimmaraju, Paramesh, Vijay, Siva (Auto), Ramesh (Ajji), Mahesh, Balu, Balakrishna, Prasad, Krishna Murthy, Chitaiah, Kista, Chithaiah (Baraka), and all others for their love and affection.

I am very lucky to have friends like Bhaskar (Subject expert), Prakash (Soon to be Director), and Srinu (The great businessman). These are the people who listened, and took care of me, and have been taking care of me at every stage after coming into my life.

I want to extend my heartfelt thanks to Prasanna Kumari, Pravallika, Sunitha, Anjali, Srividya, Shilpa, Radhika, Swarna, and Suchana for their support and encouragement.

Last but not the least, I would love to acknowledge Sasikala for her support and unconditional love.

Financial assistance by UoH-IoE is gratefully acknowledged.

Ramesh

Table of Contents

List of acronyms		
Sy	Synopsis	
1	 In Situ Formed Acetal in Organic Synthesis: A Concise Literature Survey 1.1 Introduction 1.2 Synthetic strategies employing in situ formed acetal 1.2.1 Friedel-Crafts-type reactions 1.2.2 Aldol type reactions 1.2.3 Acetal-assisted cycloisomerizations 1.2.4 Nucleophilic additions to acetals 1.2.5 Acetal-assisted oxidation of aldehydes 1.2.6 [4+2]-Cycloadditions of o-quinone methides 1.2.7 Direct α-alkylation of ketones 1.2.8 Incorporation of acetal and cyclization 1.2.9 1,2-Aryl migration 1.2.10 Oxidative rearrangements 1.2.11 Miscellaneous 1.3 Conclusions 	2 3 3 4 6 9 11 13 14 17 18 19 22
	1.4 References	23
2	2 Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives via In Situ Formed Acetals	
	 2.1 Introduction 2.2 Background 2.3 Results and discussion 2.3.1 Reaction optimization study 2.3.2 Substrate scope 2.3.3 Scale-up and subsequent synthetic transformation 2.3.4 Control Experiments 2.3.5 Mechanism 2.3.6 ORTEP diagrams of 2.23g', 2.23l, and 2.27-trans 2.4 Conclusions 2.5 Experimental section 2.5.1 General information 2.5.2 Experimental procedures, analytical and spectral data 	30 33 34 36 39 39 42 44 45 45 45 46
3	2.6 References 2.7 Representative spectra 2.8 Crystallographic data Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement under	63 68 94
	Acetalization Conditions	

	3.1	Introduction	97	
		3.1.1 Selected previous approaches for the synthesis of indanones	97	
	3.2	Background	101	
	3.3	Results and discussion	104	
		3.3.1 Reaction optimization study	104	
		3.3.2 Substrate scope	106	
		3.3.3 Scale up and subsequent synthetic transformation	111	
		3.3.4 Control experiments	112	
		3.3.5 ¹ H NMR monitoring of interrupted M-S rearrangement of		
		3.36a in CDCl ₃	113	
		3.3.6 Plausible mechanism	114	
		3.3.7 ORTEP diagrams of 3.37m' , 3.37r , 3.37s , 3.45s and 3.46a	116	
		Conclusions	117	
	3.5	Experimental section	117	
		3.5.1 General information	117	
		3.5.2 Experimental procedures, analytical and spectral data	117	
		References	140	
		Representative spectra	145	
	3.8	Crystallographic data	173	
4	C3 -	(1)-Catalyzed Cyclization of <i>o</i> -Alkynylacetophenones for the Synthesis of Naphthyl Indole Derivatives	1.70	
	4.1	Introduction	179	
	4.2	4.1.1 Selected previous approaches for the synthesis of C3-naphthyl indoles	179	
		Background Background	182	
	4.3	Results and discussion	183	
		4.3.1 Reaction optimization study	183 185	
		4.3.2 Substrate scope4.3.3 Control experiments	187	
		4.3.4 Plausible mechanism	188	
		4.3.5 Scale-up reaction	191	
		4.3.6 ORTEP diagrams of 4.18af and 4.28ak	192	
	4.4	Conclusions	192	
		Experimental section	192	
		4.5.1 General information	192	
		4.5.2 Experimental procedures, analytical and spectral data	193	
	4.6	References	209	
	4.7	Representative spectra	214	
	4.8	Crystallographic data	230	
Li	st of	Publications	233	
Po	Poster and Oral Presentations			

List of Acronyms

2D	Two dimensional
Å	Angstrom
ACS	American Chemical Society
AIDS	Acquired immunodeficiency syndrome
Ar	Aryl
BA	Brønsted acid
Bn	Benzyl
bs	Broad singlet (spectral)
<i>n</i> -Bu	n-Butyl
t-Bu	<i>tert-</i> Butyl
BIM	Bis-indolylmethanes
°C	Degree celsius
calcd	Calculated
cat.	Catalytic
cm ⁻¹	wavenumber
CADA	Catalytic asymmetric dearomatization
CCDC	Cambridge Crystallographic Data Centre
m-CPBA	meta-Chloroperoxybenzoic acid
COSY	Correlated spectroscopy
$\boldsymbol{\delta}$	Chemical shift in parts per million
d	Doublet (spectral)
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DCM	Dichloromethane
dd	Doublet of doublet (spectral)
dddd	Doublet of doublet of doublet (spectral)
DIPA	Diisopropylamine
DMEDA	1,2-Dimethylethylenediamine
DMF	Dimethylformamide
DMOP	2,2-Dimethoxypropane
DOI	Digital object identifier
dq	Doublet of quartet (spectral)
dr	Diastereomeric ratio
dt	Doublet of triplet (spectral)
equiv	Equivalent
ESI	Electrospray ionization
Et	Ethyl

EtOAc Ethyl acetate g Gram(s)

h Hour(s)

HDAC Histone deacetylases
HFIP Hexafluoroisopropanol

HIV Human immunodeficiency

HMBC Heteronuclear Multiple Bond Correlation

HRMS High-resolution mass spectrometry

HSQC Heteronuclear Single Quantum Coherence

HzHertzi-PrIsopropylIRInfrared

J Coupling constant (in NMR spectroscopy)

LA Lewis acid

LR Laboratory reagent
m Multiplet (spectral)

MAP Mitogen-activated protein

MeMethylmgMilligram(s)MHzMegahertz

min Minute(s)
mL Millilitre(s)
mmol Millimole(s)

Molting poin

 $\begin{array}{ccc} mp & & \text{Melting point} \\ \mu L & & \text{Micrilitre(s)} \\ N_2 & & \text{Nitrogen} \end{array}$

NAD Nicotinamide adenine dinucleotide

NBS N-Bromosuccinimide
NHC N-Heterocyclic carbene
NMP Nuclear magnetic resonar

NMR Nuclear magnetic resonance

NNRTI Non-Nucleoside Reverse Transcriptase
NOESY Nuclear Overhauser Effect Spectroscopy

NR No reaction

ORTEP Oak Ridge Thermal-Ellipsoid Plot

OTf Trifluoromethyl

PCC Pyridinium chlorochromate

Ph Phenyl

PIFA Phenyliodine bis(trifluoroacetate)

PTSA p-Toluenesulfonic acid

PVP Polyvinylpyrrolidon

PWA	Phosphotungstic acid
q	Quartet (spectral)
QM	quinone methide
$R_{ m f}$	Retardation factor
rt	Room temperature
s	Singlet (spectral)
t	Triplet (spectral)
td	Triplet of doublet (spectral)
tdd	Triplet of doublet of doublet (spectral)
TEOF	Triethyl orthoformate
TfOH	Triflic acid
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TIM	Trisindolylmethanes
TLC	Thin-layer chromatography
TMOF	Trimethyl orthoformate
TMS	Tetramethylsilane
TOF	Time of flight
tt	Triplet of triplet (spectral)
TTBP	2,4,6-Tri-tert-butylpyridine
UV	Ultraviolet
VCH	Verlag Chemie
ZSM-5	Zeolite Socony Mobil–5

This thesis contains four chapters.

Chapter 1: In Situ Formed Acetals in Organic Synthesis: A Concise Literature Survey

Chapter 1 presents the different reaction modes of *in situ* formed acetals and selected important literature. Acetals formed *in situ* by the reaction of carbonyl compounds 1 with alcohols or trialkyl orthoformates (eg. trimethyl orthoformate (TMOF)) in the presence of Lewis/Brønsted acid (LA/BA) catalysts react in three routes. Generally, reactions occurring through more reactive oxocarbenium ion 3 (Scheme 1, *path a*) are more studied. The more nucleophilic enol ether 4 formed from the acetal has also been utilized in several reactions (Scheme 1, *path b*). The applications of the third possibility *i.e.*, the migration/transfer of R^1 group (Scheme 1, *path c*) are limited. In this chapter, reactions developed based on the above pathways are discussed in detail with mechanisms.

Scheme 1: Different modes of reactions of *in situ* formed acetal

Chapter 2: Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives via In Situ Formed Acetals

Chapter 2 describes the diastereoselective synthesis of indole-substituted indane derivatives **10** from *o*-alkenylbenzaldehydes **8** and *N*-protected indoles **9** *via in situ* formed acetals under triflic acid catalysis (Scheme 2). In striking contrast to indole's usual reactivity towards

aldehydes of forming bis-indolylmethanes, this transformation involves intramolecular trapping of the carbocation formed after the reaction of one indole molecule. Owing to the importance and ubiquitous nature of the indane core, the construction of indane ring having a biologically active indole ring is always a useful method. The substrate scope has been evaluated with different substrates. Further, from a set of control experiments, the mechanism of the reaction was proposed. This reaction proceeds via the formation of oxocarbenium ion generated from acetal 11 derived in situ from o-alkenylbenzaldehydes 8 and TMOF in the presence of triflic acid. The oxocarbenium ion is then trapped by indole 9 to give bisarylmethyl methyl ether 12. Finally, intermediate 13 undergoes a conrotatory 4π -electron-5-carbon electrocyclization to afford indole-substituted indane derivative 10. The cis and trans isomers of o-alkenylbenzaldehydes show different reactivity in this transformation due to their steric environments.

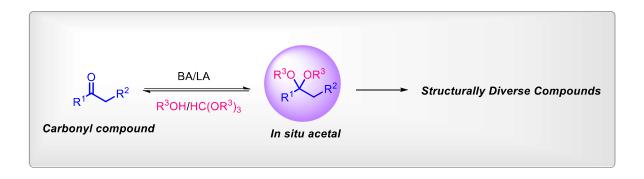
Scheme 2: Synthesis of indole-substituted indanes *via in situ* formed acetals

Chapter 3: Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement under Acetalization Conditions

Chapter 3 demonstrates the synthesis of indanone derivatives **15** *via* intramolecular electrophile intercepted Meyer-Schuster (M-S) rearrangement of *o*-propargyl alcohol benzaldehydes **14** (Scheme 3). Control experiments and NMR studies have been carried out to get more insight into the mechanism of this transformation. This reaction proceeds *via* the formation of acetal **16** *in situ* from *o*-propargyl alcohol benzaldehydes **14** and TMOF in the presence of triflic acid followed by the formation of M-S intermediate **17** which would attack oxocarbenium ion in an intramolecular fashion to afford indanone derivatives **15**. The acetalization conditions allowed even less reactive substrates to undergo the reaction smoothly to provide the desired products.

Furthermore, an alkene-aryl atropisomerism was observed in the corresponding products of *o*-propargyl alcohol benzaldehydes having *ortho*-substituents on the aryl ring at the carbinol center. Formation of a polycyclic compound having cyclic acetal, keto, and conjugated carbonyl functions was observed *via* dimerization of the corresponding M-S intermediate with one of the substrates. The product indanone having different functionalities was further functionalized by performing epoxidation, Grignard reaction, Luche's reduction, and allylation.

Scheme 3: Acetal-assisted intramolecular electrophile-intercepted M-S rearrangement


Chapter 4: Ag(I)-Catalyzed Cyclization of *o*-Alkynylacetophenones for the Synthesis of C3-Naphthyl Indole Derivatives

Chapter 4 deals with the synthesis of C3-naphthyl indole derivatives 19 from o-alkynylacetophenones 18 and indoles 9 under acetalization conditions using TMOF in the presence of Ag(I) catalyst (Scheme 4). The possible reaction intermediates have been evaluated by conducting control experiments. It involves the *in situ* formation of isochromene acetal 20 from o-alkynylacetophenones 18 and TMOF in the presence of AgOTf. The formed acetal reacts with indole 9 to afford isochromen-1-yl-substituted indole derivative 21 followed by skeletal rearrangements to give extended enamine 22 which would cyclize to furnish the product 19. An alternative mechanism involving acyclic acetal was also proposed for this transformation.

Scheme 4: Ag(I)-Catalyzed synthesis of C3-naphthyl indole derivatives via in situ formed acetal

Chapter 1

In Situ Formed Acetals in Organic Synthesis: A Concise Literature Survey

1.1 Introduction

Acetals are a class of protecting groups in synthetic organic chemistry. Being inert to many reaction conditions, they are used as protecting groups for carbonyl compounds in multi-step syntheses.¹ Apart from being used as protecting groups, acetals could be employed in various interesting transformations. These transformations are generally conducted under non-acidic conditions as they undergo facile deprotection under acidic conditions. More electrophilic oxocarbenium ions formed under acidic conditions have extensively been used in nucleophilic addition reactions.² The potential drawback associated with the reactions of acetals under acidic conditions is their conversion back to the parent carbonyl compound. However, when acetals are made under the conditions, such drawback could be countered as the concentration of acetal is maintained by regeneration. This chapter briefly reviews the developments that have been made by exploiting *in situ* formed acetals to construct interesting molecular scaffolds.

Scheme 1.1: Different modes of reactions of *in situ* formed acetal

An Acetal **1.2** can easily be generated *in situ* by treating the carbonyl compound **1.1** with MeOH or trialkyl orthoformates (e.g., trimethyl orthoformate (TMOF)) under Lewis/Brønsted acid (LA/BA) catalysis.³ (Scheme 1.1). A base-promoted acetal formation has also been reported.⁴ Typical modes of reactions of this acetal formed *in situ* are mainly of threefold: (1) a more electrophilic and reactive oxocarbenium ion **1.3** could be formed by the removal of one of the methoxy groups of the acetal **1.2** in the presence of LA/BA (Scheme 1.1, *path a*); This

oxocarbenium ion **1.3** will undergo further transformations with various nucleophiles either in intermolecular or intramolecular fashion to afford acyclic or cyclic products respectively, (2) a more nucleophilic enol ether **1.4** could be formed by the elimination of an alcohol (here MeOH), which would react with different electrophiles in either intermolecular fashion to produce α -functionalized compounds or intramolecular fashion to give cyclic products (Scheme 1.1, *path b*) and (3) migration of R¹ group from acetal **1.2** to an electrophilic center would make a new bond and generate a carbocation intermediate which will be stabilized by the two methoxy groups of acetal (Scheme 1.1, path c). The following sections will describe the reactions developed using *in situ* formed acetals.

1.2 Synthetic strategies employing in situ formed acetals

1.2.1 Friedel-Crafts-type reactions

Synthesis of bis(indolyl)methanes (BIMs) from aldehydes and indoles is a conventional method. Generally, these reactions proceed slowly and give lower yields.⁵ This limitation could be overcome by replacing the aldehydes with corresponding acetals by generating them *in situ* during the reaction. Aldehyde **1.9** generates acetal **1.11** *in situ* upon treatment with methanol in the presence of nanoporous aluminosilicate AS-(13)/polyvinylpyrrolidone (PVP)-phosphotungstic acid (PWA) (Scheme 1.2).⁶ The oxocarbenium ion **1.12**, which is formed from acetal **1.11** undergoes Friedel-Crafts reaction with indole **1.8** to give BIM product **1.10**.

Condition A: AS-(13) catalyst, MeOH,
$$60$$
 °C, 4 h. up to 84% yield

R¹ = H; R² = H, Br; R³ = Ph, 4 -NO₂-C₆H₄, 4 -Me-C₆H₄, 4 -OMe-C₆H₄

Condition B: PVP-PWA, MeOH, rt, 2 h. up to 97% yield

R¹ = H, Me; R² = H, NO₂; R³ = Ph, 4 -NO₂-C₆H₄, 4 -Me-C₆H₄, 4 -OMe-C₆H₄, 3 -indolyl, 2 -furyl, etc.

Mechanism

R³CHO

H⁺

OMe

H⁺

OMe

-MeOH

R³

OMe

-MeOH

R³

OMe

-MeOH

1.11

In situ acetal

Scheme 1.2: Synthesis of bisindolylmethanes from indoles and aldehydes

1.2.2 Aldol-type reactions

Graham and co-workers reported a direct aldol addition on aldehyde **1.9** for the synthesis of aldol adduct **1.15** catalyzed by nanoporous aluminosilicate catalyst (Scheme 1.3).⁷ Aldehyde

1.9 was reacted with 1,3-dicarbonyl compound 1.14 in the presence of acetalizing agents trialkyl orthoformates, and an aluminosilicate catalyst. By doing so, aldehyde 1.9 will be converted into its acetal 1.11 which will be in equilibrium with the oxocarbenium ion 1.12. Subsequent aldol addition of 1,3-dicarbonyl compound 1.14 to 1.12 resulted the aldol addition product 1.15.

Scheme 1.3: Direct aldol addition of 1,3-dicarbonyl compounds with aldehyde through acetal formation

1.2.3 Acetal-assisted cycloisomerizations

In 2014, our group reported the synthesis of benzo[a]fluorene derivatives 1.18 from o-alkynylbenzaldehydes 1.16 and arylalkynes 1.17 in the presence of TMOF under TfOH catalysis (Scheme 1.4).8 This transformation proceeds via the formation acetal 1.19 in situ followed by heteroalkyne metathesis between the oxocarbenium ion 1.21 and the arylalkyne 1.17 to form oxetene intermediate 1.22. Ring-opening of 1.22 would afford the enone intermediate 1.23 which will be in equilibrium with its cis stereo isomer 1.24. Intramolecular nucleophilic attack of the alkyne moiety on the enone in intermediate 1.24 gives the vinyl carbocation intermediate 1.25. Subsequent intramolecular attack of aryl group and isomerization would afford the benzo[a]fluorene derivative 1.18.

Scheme 1.4: Synthesis of benzo[*a*]fluorene derivatives from *o*-alkynylbenzaldehydes and arylalkynes

Scheme 1.4: Mechanism for the formation of benzo[a]fluorene derivatives from oalkynylbenzaldehydes and arylalkynes

Later, in 2018, our group developed a simple and straightforward method for the synthesis of benzo[a]fluorenes **1.30** and benzo[a]fluoreness **1.31** from enynones **1.29** in the presence or absence of TMOF respectively using TfOH as the promotor (Scheme 1.5). The reaction involving TMOF proceeds through the formation of oxocarbenium ion *via in situ* generated acetal, 1,4-addition, annulation, and subsequent isomerisation to form benzo[a]fluoreness **1.30**. Whereas, the formation of benzo[a]fluorenones **1.31** involves the activation of enynone **1.29** by an acid, 1,4-addition, annulation, and keto-enol tautomerism.

1.31
$$up \ to \ 99\% \ yield$$
 $R^1 = H, \ OMe, \ F; \ R^2 = H, \ Br, \ Cl, \ CF_3, \ Me, \ Ph, \ etc.$ $R^3 = H, \ Cl, \ Me, \ etc.$ $R^3 = H, \ Cl, \ Me, \ etc.$ $R^2 = H, \ Br, \ Cl, \ CF_3, \ Me, \ Ph, \ etc.$ $R^3 = H, \ Cl, \ Me, \ etc.$

Scheme 1.5: Synthesis of benzo[a]fluorenes and benzo[a]fluorenones

A divergent synthesis of benzo[a]fluorenes 1.32, benzo[b]fluorenones 1.33, and naphthyl ketones 1.34 from aryl-fused 1,6-diyn-3-ones 1.31 was reported by Mou et al. (Scheme 1.6). The synthesis of benzo[a]fluorenes 1.32, has been achieved in the presence of stoichiometric TfOH and excess of TMOF. On the other hand, TfOH alone was sufficient to promote the formation of benzo[b]fluorenones 1.33. In addition, synthesis of naphthyl ketones 1.34 was achieved in the presence of TMOF under AgBF₄ catalysis. This protocol involves the formation of an oxocarbenium ion via an in situ generated acetal, annulation, and subsequent cycloisomerization to afford benzo[a]fluorenes 1.32 and naphthyl ketones 1.34. Whereas, the formation of benzo[b]fluorenones 1.33 proceeds via a radical mechanism.

Scheme 1.6: Synthesis of benzo-fused fluorenes and fluorenones and naphthyl ketones

1.2.4 Nucleophilic additions to acetals

Hoffman and Salvador developed a one-pot conversion of ketones **1.35** into *N*-methyl lactams **1.37** in the presence of TEOF under *p*-TSA catalysis (Scheme 1.7). The reaction of ketones **1.35** with TEOF in the presence of *p*-TSA would generate acetal **1.38** in situ, which would lose one ethoxy group as ethanol to give oxocarbenium ion **1.39**. Nucleophilic attack of *N*-(((*p*-nitrobenzene)sulfonyl)oxy)methylamine **1.36** furnishes imidate salt **1.41** and subsequent dealkylation of *O*-ethyl imidate salt **1.41** in the presence of sodium iodide in refluxing acetonitrile would lead to *N*-methyl lactam **1.37**.

Scheme 1.7: Synthesis of *N*-methyl lactams from ketones

Wang and Cai independently reported the synthesis of propargyl ethers **1.43** from aldehydes **1.9**, terminal alkynes **1.42**, and trialkyl orthoformate under gold catalysis (Scheme 1.8). This reaction would proceed through the formation of gold alkynilide **1.45** which would attack on oxocarbenium ion **1.12** generated from aldehyde **1.9** and trialkyl orthoformate in the presence of gold or acid catalyst to afford propargyl ethers **1.43**.

Condition A or Condition B

R³ = Me, Et

1.42

R³ = Me, Et

1.43

R²

Condition A: AuPPh₃Cl (5 mol %), AgOTf (5 mol %), HC(OR³)₃ (1.2 equiv.)

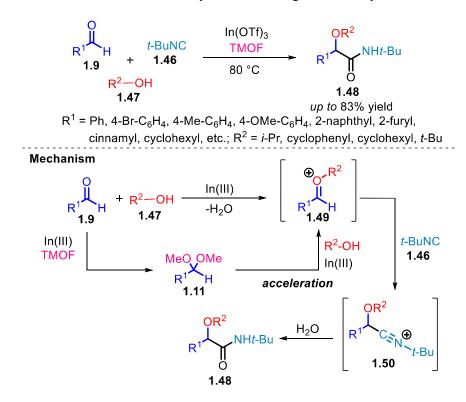
DCE, reflux.
$$up \ to \ 87\%$$
 yield

R¹ = Ph, o -Me-C₆H₄, m -Br-C₆H₄, m -OMe-C₆H₄, p -Cl-C₆H₄, 1-naphthyl, etc.

R² = Ph, p -Br-C₆H₄, p -Ph-C₆H₄, p -NO₂-C₆H₄, 2-naphthyl

Condition B: Fe₃O₄@SiO₂-P-AuOTf (5 mol %)

HC(OR³)₃ (1.2 equiv.), DCE, reflux. $up \ to \ 87\%$ yield


R¹ = Ph, 2-Me-C₆H₄, 4-Br-C₆H₄, 3-OMe-C₆H₄, 4-Cl-C₆H₄, 1-naphthyl, etc.

R² = Ph, 4-Cl-C₆H₄, 4-OMe-C₆H₄

Scheme 1.8: Nucleophilic addition of gold alkylidines to activated C=O bond

Scheme 1.8: Mechanism of nucleophilic addition of gold alkylidines on activated C=O bond

Taguchi and co-workers reported acceleration of the In-catalyzed alkylative Passerini reaction of aldehydes **1.9** and isocyanides **1.46** with free aliphatic alcohols **1.47** in the presence of TMOF for the synthesis of α -alkoxy amide derivatives **1.48** (Scheme 1.9). This reaction proceeds *via* the formation of an oxocarbenium ion **1.49** from aldehydes **1.9** and alcohols **1.47**. The rate of the reaction is accelerated by the addition of TMOF through the formation of acetal **1.11** *in situ*. Nucleophilic attack of *tert*-butyl isocyanide **1.46** on oxocarbenium ion **1.49** followed by the hydrolysis of nitrilium intermediate **1.50** by water would give α -alkoxy amide derivative **1.48**.

Scheme 1.9: Alkylative Passerini reaction *via in situ* formed acetals

Homoallylation of aldehydes **1.9** with allylsilanes **1.51** in the presence of trialkyl orthoformate or alkyloxytrimethylsilane under Bi(III)/Fe(III)/Sc(III) catalysis was independently achieved by Mohan, Oriyama, and Yadav groups (Scheme 1.10). ¹⁴ These reactions proceed through an oxocarbenium ion **1.12** derived from the acetal **1.11** generated *in situ* from aldehydes **1.9** and trialkyl orthoformate or alkyloxytrimethylsilane in the presence of a Lewis acid catalyst. Facile nucleophilic attack of allylsilane **1.51** on oxocarbenium ion **1.12** followed by desilylation would lead to the formation of homoallyl ether **1.52**.

Condition **A**: Bi(OTf)₃•xH₂O (2 mol %), HC(OR²)₃ (2.0 equiv.), CH₃NO₂, rt. up to 89% yield
$$R^1$$
 = Ph, 3-Me-C₆H₄, 4-OMe-C₆H₄, 4-Br-C₆H₄, etc; R^2 = Me, Et; R^3 = H, Me Condition **B**: R^2 OSiMe₃ (1.2 equiv.), FeCl₃ (5 mol %), CH₂Cl₂, rt, 2 h. up to 100% yield R^1 = Ph, p-Cl-C₆H₄, p-Me-C₆H₄, m-Br-C₆H₄, cinnamyl; R^2 = Bn; R^3 = H Condition **C**: Sc(OTf)₃ (10 mol %), HC(OR²)₃ (1.2 equiv.), CH₂Cl₂, rt. up to 90% yield R^1 = Ph, 3,4-(OMe)₂-C₆H₄, 3-OMe-C₆H₄, 4-Br-C₆H₄, cinnamyl, 1-naphthyl, 2-furyl; R^2 = OMe; R^3 = H Mechanism

$$R^1 = R^3$$

$$R^3 = R^3$$

$$R^4 = R^4$$

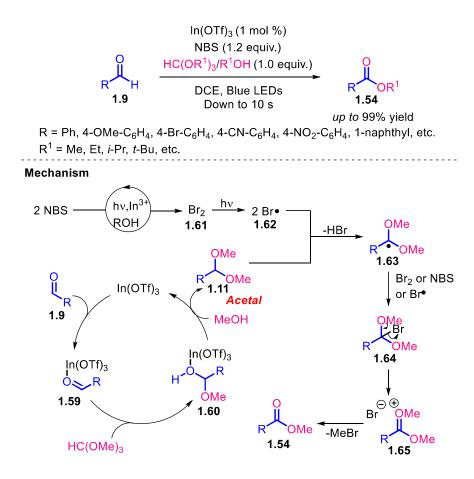
$$R^4$$

Scheme 1.10: Synthesis of homoallyl ethers from aldehydes

1.2.5 Acetal-assisted oxidation of aldehydes

Esters are useful class of organic compounds present in materials, natural products and pharmaceuticals. Synthesis of esters mainly utilizes carboxylic acids or their derivatives such as acyl chlorides, anhydrides and carbodiimides etc. Esterification of aldehydes by converting them into acetals followed by oxidation of acetals is rather a straightforward approach. Rhee *et al.* have demonstrated this strategy for the direct synthesis of esters from aldehydes **1.9** utilizing their *in situ* formed acetals (Scheme 1.11). Formation of acetal **1.11** from aldehyde **1.9** in the presence of TMOF and amberlyst-15 initiates the reaction. Nucleophilic attack of *m*-CPBA on the oxocarbenium ion formed from the acetal **1.11** in the presence of BF₃·OEt₂ would lead to the

formation of peroxy intermediate 1.55. Treatment of the peroxy intermediate 1.55 with DBU would eliminate 3-chlorobenzoic acid to afford the ester derivative 1.54.


Scheme 1.11: Acetal-assisted oxidative esterification of aldehydes

Mastumoto *et al.* developed oxidation of aryl aldehydes **1.9** to phenols **1.56** in the presence of MeOH, hydrogen peroxide, and sulphuric acid (Scheme 1.12). The acetal intermediate **1.11** is generated *in situ* from aldehyde **1.9** and MeOH under acidic conditions. Nucleophilic addition of hydrogen peroxide to the acetal **1.11** would lead to the formation of peroxy intermediate **1.58**, which on subsequent methoxy group-assisted aryl migration afforded the desired phenol derivative **1.56** as the major product. Product of H-migration, the ester derivative **1.54** was formed as a minor product.

$$\begin{array}{c} \text{ArCHO} \\ \textbf{1.9} \\ \hline \\ \text{MeOH, rt} \\ \hline \\ \text{ArOH} \\ \textbf{1.56} \\ up \ to \ 97\% \ yield \\ \hline \\ \text{Ar = 2-OMe-C}_6\text{H}_4, \ 4-\text{OMe-C}_6\text{H}_4, \ 2,3-(\text{OMe})_2-\text{C}_6\text{H}_3, \ 4-\text{Me-C}_6\text{H}_4, \ etc.} \\ \hline \\ \textbf{Mechanism} \\ \hline \\ \text{ArCHO} \\ \hline \\ \textbf{MeOH} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{MeOH} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{MeOH} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{MeOH} \\ \hline \\ \textbf{Ar} \\ \hline \\ \textbf{Ar}$$

Scheme 1.12: Synthesis of phenols *via* acetal-assisted oxidation of aldehydes

Wallentin and co-workers reported a one-pot oxidation of aldehydes 1.9 in the presence of trialkyl orthoformates or alcohols, *N*-bromosuccinimide, and the catalyst In(OTf)₃ mediated by visible-light (Scheme 1.13).²⁰ Formation of acetal intermediate 1.11 from aldehyde 1.9 in the presence of In(OTf)₃ initiates the reaction. Next, generation of bromine radical 1.62 occurs *via* visible-light induced cleavage of molecular bromine 1.61 formed from NBS. Thus, formed bromine radical 1.62 would abstract the activated proton from the acetal intermediate 1.11 to afford acetal radical 1.63 that abstracts bromine from NBS or molecular bromine 1.61 to give brominated intermediate 1.64. This would lose bromine as bromide to give oxocarbenium ion 1.65 which finally affords the ester derivative 1.54.

Scheme 1.13: Oxidative esterification of aldehydes

1.2.6 [4+2] Cycloadditions of o-quinone methides

Gharpure and co-workers reported the synthesis of flavonoids **1.69/1.71** from *o*-hydroxy benzaldehydes **1.66** by reacting them with an ethyl vinyl ether **1.67** or ketones **1.70** and a phenol derivative **1.68** in the presence of TMOF under camphor sulphonic acid catalysis (Scheme 1.14). This reaction proceeds through generation of *o*-quinone methide (*o*-QM) **1.74** *via in situ* generated acetal **1.73** from *o*-hydroxy benzaldehydes **1.66** in the presence of TMOF and an acid catalyst

followed by [4+2] cycloaddition of *o*-QM **1.74** with ethyl vinyl ether **1.67** or ketones **1.70** to give Diels-Alder adduct **1.75**. This Diels-Alder adduct **1.75** would generate another *o*-QM **1.76** which will undergo intermolecular Michael addition with phenol derivatives **1.68** to furnish flavonoid derivatives **1.69/1.71**. This strategy was successfully utilized for the synthesis of myristicyclin A/B **1.72**.

 R^1 = H, OMe; R^2 = H, CO_2 Me; R^3 = 4-OH, 3,5-(OMe)₂, 3,4-(OMe) etc.; R^4 = H, CO_2 Et; R^5 = Me, Ph, 4-Me-C₆H₄, 4-OMe-C₆H₄, 4-Br-C₆H₄, etc. R^6 = 3,5-(OMe)₂

Scheme 1.14: [4+2] Cycloadditions of *o*-quinone methides

Later, the same group demonstrated the synthesis of cassiaflavan (2,4-diarylbenzopyran) derivatives **1.80** and cycloflavan (dioxabicyclo[3.3.1]nonane) derivatives **1.83** from *o*-hydroxy benzaldehydes **1.66** and styrenes **1.77/1.81** in the presence of TMOF under camphor sulphonic acid catalysis (Scheme 1.15).²² This strategy was successfully utilized for the synthesis of myristinins A-F.

 R^1 = H, OMe; Ar = Ph, 4-OMe- C_6H_4 , etc.; R^2 = 1,3,5-(OMe)₃, 2,4-(OH)₂, etc.; R^3 = H, OMe

Scheme 1.15: [4+2] Cycloadditions of *o*-quinone methides

1.2.7 Direct α-alkylation of ketones

α-Alkylation is an important organic transformation to generate a C-C bond at α-carbon of carbonyl compounds.²³ Generally, a strong base is required to get the reactive enolate from the ketone. In this context, direct α-alkylation of ketones with alcohols is a very challenging task. However, the nucleophilicity of the α-carbon of the alkyl ketones can be increased by converting them into enol ethers through acetals. On the basis of this concept, α-alkylation of ketones have been achieved on unactivated ketones 1.84 with alcohols 1.85 in the presence of trialkyl orthoformates and stoichiometric triflic acid or amberlyst-15 or catalytic AgSbF₆ (Scheme 1.16).²⁴ Ketone 1.84 generates acetal 1.89 upon treatment with a trialkyl orthoester in the presence of H⁺/Ag⁺ followed by the formation of enol ether 1.90. This enol ether 1.90 reacts with the carbocation 1.91 generated from alcohol 1.85 in the presence of H⁺/Ag⁺ to give the α-alkylated ketone 1.87. In addition, the enol ether 1.90 generated *in situ* was reacted with activated chalcones 1.92 to form the Michael adducts 1.88.

Condition **A**: TfOH (1.0 equiv.), TMOF (1.0 equiv.), CCl₄, rt. *up* to 97% yield Condition **B**: Amberlyst-15 (4.0 equiv.), [Bmim] [PF₆], TEOF (1.0 equiv.). *up* to 75% yield Condition **C**: AgSbF₆ (10 mol %), TMOF (2.0 equiv.), CH₂Cl₂, rt/heat. *up* to 88% yield Condition **D**: TfOH (1.0 equiv.), TMOF (1.0 equiv.), CCl₄, rt. *up* to 97% yield $\mathbb{R}^1 = \text{Aryl/alkyl}$; $\mathbb{R}^2 = \text{H/alkyl}$; $\mathbb{R}^3 = \text{Aryl/cinnamyl/phenyl/alkynyl/alkyl}$; $\mathbb{R}^4 = \text{Phenyl}$

Scheme 1.16: Direct α-alkylation of ketones with alcohols and Michael addition on chalcones

Mechanism for condition A

$$R^2 \xrightarrow{H^+/Ag^+} \xrightarrow{H^-/Ag^+} \xrightarrow{R^5 \circ H^+/Ag^+} \xrightarrow{R^5 \circ H^-/Ag^+} \xrightarrow{R^5 \circ H$$

Scheme 1.16: Mechanism for direct α -alkylation of ketones with alcohols and Michael addition on chalcones

1.2.8 Incorporation of acetal and cyclization

Incorporation of an acetal moiety at the α -position of ketones is a useful strategy to achieve α -formylated ketones, which, in turn, can be utilized in subsequent transformations for the synthesis of interesting and biologically important compounds. ²⁵ In 2014, our group reported the synthesis of naphthalene derivatives **1.94** from o-alkynylacetophenones **1.93** in the presence of TMOF under triflic acid catalysis (Scheme 1.17). ²⁶ This strategy involves the incorporation of acetal to give intermediate **1.97** via in situ formed acetal **1.95** and the corresponding enol ether **1.96**. Thus, formed intermediate **1.97** will give enone intermediate **1.98** after exclusion of MeOH in the presence of acid. In path a, intermediate **1.98** will undergo [2+2]-cycloaddition to afford the desired naphthyl ketone derivatives **1.94** via an oxetane intermediate **1.99**. On the other hand, in path b, nucleophilic addition of MeOH on alkyne moiety of intermediate **1.98** and intramolecular cyclization would afford intermediate **1.100**. Further, protonation and elimination of MeOH will give the final product **1.94**.

Scheme 1.17: Synthesis of naphthalene derivatives via incorporation of acetal

Scheme 1.17: Plausible mechanism for the synthesis of naphthyl ketone derivatives

In 2021, our group reported the synthesis of biaryls 1.104 from 1,3-dicarbonyls 1.102 and propargyl alcohols 1.103 by treating them with TMOF in the presence of HClO₄ and a Cu(I) catalyst (Scheme 1.18).²⁷ This reaction proceeds *via* an α -formylated intermediate followed by intramolecular annulation (*pathway a*) or [2+2]-cycloaddition (*pathway b*) to afford biaryl derivatives 1.104. It is interesting to mention that ynones 1.105 could be employed in the place of 1,3-carbonyl compounds 1.102 as the former will be converted to the later by hydration under the reaction conditions.

Scheme 1.18: Synthesis of biaryls *via* incorporation of acetal

Recently, Tang *et al.* reported the synthesis of *m*-terphenyls **1.108** from aryl methyl ketones **1.107** in the presence of TEOF under TfOH catalysis (Scheme 1.19).²⁸ This reaction proceeds through the initial incorporation of acetal at the α-position of ketone **1.107** to give acetal **1.109**. Nucleophilic attack of another molecule of ketone **1.107** on acetal **1.109** would afford compound **1.110**. Compound **1.110** would either react with another molecule of ketone **1.107** to produce compound **1.111** or give intermediate **1.112** by the elimination of ethanol. Later, intermediate **1.112** will either undergo self-condensation to afford ion **1.113**²⁹ or produce another intermediate **1.114** by reacting with ketone **1.107**. The intermediate **1.114** eliminates a benzoyl cation **1.115** and form the intermediate **1.116**. The benzoyl cation **1.115** would react with ethanol to give the ester **1.117**. Finally, intermediate **1.116** will undergo self-condensation to afford *m*-terphenyl derivative **1.108**.

Scheme 1.19: Synthesis of *m*-terphenyls from aryl methyl ketones *via* incorporation of acetal

1.2.9 1,2-Aryl migration

In 2014, our group developed a simple protocol for the synthesis of α -diarylacetates **1.119** from benzoins **1.118** in the presence of TEOF and TfOH in short reaction times (Scheme 1.20). This reaction involves the generation of acetal **1.120** in situ from benzoins **1.118**. In the presence of an acid, the hydroxy group gets protonated and a dehydrative aryl migration, assisted by an ethoxy group, will give an oxocarbenium intermediate **1.121**. Ethanol formed during the reaction captures the ethyl group from oxocarbenium ion **1.121** to afford α -diarylacetate derivative **1.119**. Furthermore, this method could also be applied to make various enantioenriched α -diarylacetate derivatives.

Scheme 1.20: Synthesis of α -diarylacetates *via in situ* generated acetal assisted 1,2-aryl migration

1.2.10 Oxidative rearrangements

In 2016, Wirth *et al.* disclosed the synthesis of 2-arylpropionate derivatives **1.123** *via* a chiral hypervalent iodine(III) **1.124** mediated stereoselective rearrangement of aryl alkyl ketones **1.122** in the presence of TfOH and trialkyl orthoformates (Scheme 1.21).³¹ The enol ether **1.126** is formed from the acetal **1.125** generated *in situ* from aryl alkyl ketone **1.122**. Electrophilic addition of iodine(III) reagent assisted by nucleophilic attack of MeOH on enol ether **1.126** afforded intermediate **1.127**. Migration of the aryl group assisted by the methoxy groups will lead to the formation of an oxocarbenium ion **1.128**, which upon quenching with water would afford the 2-arylpropionate derivatives **1.123**.

Scheme 1.21: Iodine(III)-mediated oxidative rearrangement of aryl ketones

1.2.11 Miscellaneous

Miki and co-workers reported a phenyliodine(III)bis(trifluoroacetate) (PIFA)-mediated oxidative rearrangement of 2-aminochalcones 1.129 in the presence of BF₃·Et₂O and trimethyl orthoformate (TMOF) followed by intramolecular cyclization under basic conditions for the synthesis of 3-acylindoles 1.130 (Scheme 1.22).³² This reaction proceeds through an initial formation of intermediate 1.131 by the electrophilic addition of PhI(OAc)₂ to the double bond of chalcone 1.129 in the presence of MeOH and BF₃·Et₂O. An oxidative rearrangement assisted by the methoxy group followed by the migration of aryl moiety forms the oxocarbenium ion 1.132. Nucleophilic addition of MeOH to the oxocarbenium ion 1.132 would generate the acetal 1.133. Deprotection of N-COCF₃ group followed by elimination of methoxy group in 1.133 affords intermediate 1.134 which subsequently undergoes intermolecular cyclization and aromatization to afford 3-acylindoles 1.130.

Scheme 1.22: PIFA-mediated oxidative rearrangement of 2-aminochalcones

Gu et al. reported a simple and efficient method for the synthesis of benzofuran derivatives 1.137 from enolizable ketones 1.107 and benzoquinones 1.136 in the presence of TEOF via a sequential Michael addition and cyclization under Sc(III) catalysis (Scheme 1.23).³³ This reaction proceeds through the formation of enol ether 1.139 derived from an acetal 1.138 generated in situ from the ketone 1.107 in the presence of TEOF and Sc(III) catalyst. This enol ether 1.139 attacks benzoquinone 1.136 in Michael addition fashion and the cyclization of the intermediate 1.141 would afford benzofuran derivatives 1.137. A variety of 5-hydroxy benzofurans were synthesized by this methodology.

Scheme 1.23: Synthesis of benzofuran derivatives

Graham *et al.* reported the esterification of levulinic acid **1.143** in the presence of trialkyl orthoformates catalyzed by ZSM-5-(30) and amberlyst-15 under mild reaction conditions in short reaction times (Scheme 1.24).³⁴ Acetalization of carbonyl function of levulinic acid **1.143** in the presence of trialkyl orthoformates and an acid catalyst would initiate the reaction. Intramolecular cyclization of the hemiacetal **1.145** or the oxocarbenium ion **1.147** afford pseudo lactone intermediate **1.148** which undergoes subsequent ring-opening with alcohol to lead to the formation of levulinate ester **1.144**.

ZSM-5-(30) or Amb-15
$$HC(OR)_3$$

$$DMC, \Delta$$

$$R = Me, Et$$

$$up to 95\% yield$$

$$1.143$$

$$1.144$$

$$HC(OR)_3$$

$$OR$$

$$1.144$$

$$OR$$

$$1.145$$

$$OR$$

$$1.144$$

Scheme 1.24: Conversion of levulinic acid into levulinate ester

Later, the same group achieved etherification of cinnamyl alcohol 1.149 promoted by acetal in the presence of In(OTf)₃ catalyst (Scheme 1.25).³⁵ Nucleophilic attack of alcohol 1.149 on acetal 1.152 would afford a mixed acetal derivative 1.153, which reacts with alcohol to lead to the formation of the desired ether product 1.151. The acetal intermediate 1.152 which promotes the reaction will be regenerated from the resulting starting carbonyl compound 1.150 in the presence of a small excess of alcohol under acidic conditions.

Scheme 1.25: Acetal-promoted etherification of alcohols

Synthesis of benzoxazoles **1.155** from 2-nitrophenols **1.154** and oxazoles **1.157** from α-nitro ketones **1.156** has been achieved by employing trimethyl orthoesters, indium powder, and AcOH *via* reductive heterocyclization (Scheme 1.26).³⁶ This reaction proceeds through the initial reduction of the nitro group of 2-nitrophenols **1.154** to form the aniline derivative **1.159** *via* the nitroso intermediate **1.158** by electron and proton transfer processes. Incorporation of acetal to the amine group would take place to give intermediate **1.160** and subsequently the oxocarbenium ion **1.161** intermediate. This would undergo heterocyclization through oxygen to give benzoxazoles **1.155**/oxazoles **1.157**. An alternate mechanism involving the imidate intermediate **1.162** has also been proposed by the authors.

Scheme 1.26: Synthesis of benzoxazoles/oxazoles *via* incorporation of acetal

1.163

1.155

1.3 Conclusions

Apart from being used as protecting groups to perform chemoselective reactions, acetals in their pre-formed state have been used in various organic transformations which are otherwise difficult to achieve or not possible in the absence of them. However, these reactions will end up with lower yields as acetals will form the parent carbonyl compounds under acidic conditions. This drawback could be overcome by generating acetals *in situ* under the reaction conditions as the concentration of acetal is maintained by regeneration.

Since the pioneering work of Mukaiyama *et al.*,³⁷ acetals as electrophiles have seen spectacular growth in C-C bond forming reactions with different nucleophiles in the past decades. These reactions such as Friedel-Crafts-type reactions, Aldol-type reactions, cycloisomerizations, nucleophilic additions, oxidation of aldehydes, [4+2] cycloadditions of *o*-quinone methides, etc. proceed through oxocarbenium ion which is more reactive than the corresponding parent carbonyl compounds. Moreover, carbonyl compounds having an α -hydrogen could generate more nucleophilic and more reactive enol ether from their corresponding acetals. This enol ether involves in interesting transformations such as direct α -alkylation of ketones, incorporation of acetal and cyclization, etc. for new C-C bond formation at the α -position of the ketones. Furthermore, valuable molecular scaffolds could easily be achieved by 1,2-aryl migrations, and oxidative rearrangements *via in situ* generated acetals.

The next chapters will describe the exploitation of *in situ* formed acetals in interesting transformations developed in our laboratory.

1.4 References

- (1) (a) Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*; Wiley: New York, **1999**. (b) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. *Organic Chemistry*, 2nd ed.; Oxford, 2001; pp 339-347.
- (2) (a) Ramdular, A.; Woerpel, K. A.; Diastereoselective Substitution Reactions of Acyclic β-Alkoxy Acetals via Electrostatically Stabilized Oxocarbenium Ion Intermediates. Org. Lett. 2022, 24, 3217-3222. (b) Zhu, Z.; Odagi, M.; Zhao, C.; Abboud, K. A.; Kirm, U.; Saame, J.; LÅkov, M.; Leito, I.; Seidel, D. Highly Acidic Conjugate-Base-Stabilized Carboxylic Acids Catalyze Enantioselective oxa-Pictet-Spengler Reactions with Ketals. Angew. Chem., Int. Ed. 2020, 59, 2028-2032. (c) Ramdular, A.; Woerpel, K. A. Using Neighboring-Group Participation for Acyclic Stereocontrol in Diastereoselective Substitution Reactions of Acetals. Org. Lett. 2020, 22, 4113-4117. (d) Qin, B.; Schneider, U. Catalytic Use of Elemental Gallium for Carbon-Carbon Bond Formation. J. Am. Chem. Soc. 2016, 138, 13119-13122. (e) Suzuki, I.; Yasuda, M.; Baba, A. Zn(II) chloride-catalyzed direct coupling of various alkynes with acetals: facile and inexpensive access to functionalized propargyl ethers. Chem. Commun. 2013, 49, 11620-11622. (f) Kobayashi, S.; Arai, K.; Yamakawa, T.; Chen, Y.; Salter, M. M.; Yamashita, Y. Adv. Synth. Catal. 2011, 353, 1927-1932. (g) Downey, C. W.; Johnson, M. W.; Tracy, K. J. One-Pot

- Enol Silane Formation-Mukaiyama Aldol-Type Addition to Dimethyl Acetals Mediated by TMSOTf. *J. Org. Chem.* **2008**, *73*, 3299-3302. (h) Umebayashi, N.; Hamashima, Y.; Hashizume, D.; Sodeoka, M. Catalytic enantioselective aldol-type reaction of betaketosters with acetals. *Angew. Chem., Int. Ed.* **2008**, *47*, 4196-4199.
- (3) (a) Gregg, B. T.; Golden, K. C.; Quinn, J. F. Indium(III)trifluoromethanesulfonate as a mild, efficient catalyst for the formation of acetals and ketals in the presence of acid sensitive functional groups. *Tetrahedron* **2008**, *64*, 3287-3295. (b) Kumar, D.; Kumar, R.; Chakraborti, A. K. Tetrafluoroboric Acid Adsorbed on Silica Gel as a Reusable Heterogeneous Dual-Purpose Catalyst for Conversion of Aldehydes/Ketones into Acetals/Ketals and Back Again. *Synthesis* **2008**, 1249-1256.
- (4) Grabowski, J.; Granda, J. M.; Jurczak, J. Preparation of acetals from aldehydes and alcohols under basic conditions. *Org. Biomol. Chem.* **2018**, *16*, 3114-3120.
- (5) For an exclusive review, see: Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). *Chem. Rev.* **2010**, *110*, 2250-2293.
- (6) (a) Kubczyk, T. M.; Williams, S. M.; Kean, J. R.; Davies, T. E.; Taylor, S. H.; Graham, A. E. Nanoporous aluminosilicate catalyzed Friedel-Crafts alkylation reactions of indoles with aldehydes and acetals. *Green Chem.* 2011, 13, 2320-2325. (b) Kamble, S.; Swami, R.; Sakate, S.; Rode, C. V. Highly Efficient Povidone-Phosphotungstic Acid Catalyst for the Tandem Acetalization of Aldehydes to Bis- and Tris(indolyl)methanes. *ChemPlusChem*, 2013, 78, 1393-1399.
- (7) Davies, T. E.; Taylor, S. H.; Graham, A. E. Nanoporous Aluminosilicate-Catalyzed Telescoped Acetalization-Direct Aldol Reactions of Acetals with 1,3-Dicarbonyl Compounds. *ACS Omega* **2018**, *3*, 15482-15491.
- (8) Manojveer, S.; Balamurugan, R. A Facile Access to Substituted Benzo[a]Fluorenes from *o*-Alkynylbenzaldehydes *via in Situ* Formed Acetals. *Chem. Commun.* **2014**, *50*, 9925-9928.
- (9) Mandal, M.; Balamurugan, R. Triflic acid-Mediated Expedient Synthesis of Benzo[a]fluorenes and Fluorescent Benzo[a]fluorenones. *Adv. Synth. Catal.* **2018**, *360*, 1453-1465.
- (10) Mandal, M.; Sakthivel, S.; Balamurugan, R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. *J. Org. Chem.* **2021**, *86*, 333-351.
- (11) Hoffman R. V.; Salvador, J. M. A simple, one-flask transformation of ketones to *N*-methyl lactams. *Tetrahedron Lett.* **1991**, *32*, 2429-2432.

- (12) Li, C.; Mo, F.; Li, W.; Wang, J. AuPPh₃Cl/AgOTf-catalyzed reaction of terminal alkynes: nucleophilic addition to activated C=O bond. *Tetrahedron Lett.* **2009**, *50*, 6053-6056. (b) Zeng, J.; Yi, F.; Cai, M. Heterogeneous gold(I)-catalyzed three-component reaction of aldehydes, alkynes, and orthoformates toward propargyl ethers. *Synth. Commun.* **2020**, *50*, 1936-1945.
- (13) Yanai, H.; Oguchi, T.; Taguchi, T. Direct Alkylative Passerini Reaction of Aldehydes, Isocyanides, and Free Aliphatic Alcohols Catalyzed by Indium(III) Triflate. *J. Org. Chem.* **2009**, *74*, 3927-3929.
- (14) (a) Anzalone, P. W.; Baru, A. R.; Danielson, E. R.; Hayes, P. D.; Nguyen, M.-P.; Panico, A. F.; Smith, R. C.; Mohan, R. S. Bismuth Compounds in Organic Synthesis. A One-Pot Synthesis of Homoallyl Ethers and Homoallyl Acetates from Aldehydes Catalyzed by Bismuth Triflate. *J. Org. Chem.* 2005, 70, 2091-2096. (b) Watahiki, T.; Akabane, Y.; Mori, S.; Oriyama, T. Iron(III)Chloride-Catalyzed Convenient One-Pot Synthesis of Homoallyl Benzyl Ethers Starting from Aldehydes. *Org. Lett.* 2003, 5, 3045-3048. (c) Yadav, J. S.; Reddy, B. V. S.; Srihari, P. Scandium Triflate Catalyzed Allylation of Acetals and gem-Diacetates: A Facile Synthesis of Homoallyl Ethers and Acetates. *Synlett* 2001, 673-675.
- (15) (a) Otera, J.; Nishikido, J.; Esterification: Methods, Reactions, and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. DOI: 10.1002/97835 27627622. (b) Siengalewicz, P.; Mulzer, J.; Rinner, U. Synthesis of Esters and Lactones. In: Knochel P, Molander GA, editors. Comprehensive Organic Synthesis. 2nd ed; 2014;6:355-410. DOI: 10.1016/B978-0-08-097742-3.00612-1.
- (16) Matsumoto, K.; Yanagi, R.; Oe, Y. Recent Advances in the Synthesis of Carboxylic Acid Esters, Carboxylic Acid Key Role in Life Sciences. In Carboxylic Acid Key Role in Life Sciences; IntechOpen: 2018.
- (17) Ekoue-Kovi, K.; Wolf, C. One-Pot Oxidative Esterification and Amidation of Aldehydes. *Chem. -Eur. J.* **2008**, *14*, 6302-6315.
- (18) Rhee, H.; Kim, J. Y. A simple one-pot procedure for the Conversion of Aldehydes to Methyl Esters. *Tetrahedron Lett.* **1998**, *39*, 1365-1368.
- (19) Matsumoto, M.; Kobayashi, K.; Hotta, Y. Acid-catalyzed Oxidation of Benzaldehydes to Phenols by Hydrogen Peroxide. *J. Org. Chem.* **1984**, *49*, 4740-4741.
- (20) Lindroth, R.; Bryce-Rogers, H.P.; Merke, T.P.M.; Wallentin, C.-J. Highly efficient direct visible-light-mediated oxidative esterification of aldehydes. *Photochem Photobiol Sci.* **2022**, *21*, 819-824.
- (21) (a) Gharpure, S. J.; Jegadeesan, S.; Vishwakarma, D. S. Acid-catalysed iterative generation

of o-quinone methides for the synthesis of dioxabicyclo[3.3.1]nonanes: total synthesis of myristicyclins A-B. Chem. Commun. 2021, 57, 13333-13336. For more examples on [4+2] cycloaddition, see: (b) Tanaka, K.; Kishimoto, M.; Asada, Y.; Tanaka, Y.; Hoshino, Y.; Honda, K. Access to Electron-Deficient 2,2-Disubstituted Chromanes: A Highly Regioselective One-Pot Synthesis via an Inverse-Electron-Demand [4 + 2] Cycloaddition of ortho-Quinone Methides. J. Org. Chem. 2019, 84, 13858-13870. (c) Jiang, M.; Shi, M. Lewis Acid Catalyzed Cycloaddition of Methylenecyclopropanes with Salicylaldehydes. Org. Lett. 2010, 12, 2606-2609. (d) Yadav, J. S.; Reddy, B. V. S.; Sadashiv, K.; Padmavani, B. [4 + 2] cycloaddition of ortho-quinone methides promoted by ionic liquids. An efficient and mild protocol for the synthesis of tetrahydropyranobenzopyrans. Adv. Synth. Catal. 2004, 346, 607-610.

- (22) Gharpure, S. J.; Jegadeesan, S.; Vishwakarma, D. S. Total synthesis of myristinins A–F and 30-hydroxy-5,7-dimethoxy-4-O-20-cycloflavan by iterative generation of *o*-quinone methides. *New J. Chem.* **2022**, *46*, 5460-5463.
- (a) Charvieux, A.; Giorgi, J. B.; Duguet, N.; Metay, E. Solvent-Free Direct α-Alkylation of Ketones by Alcohols Catalyzed by Nickel Supported on Silica-Alumina. *Green Chem.* 2018, 20, 4210-4216. (b) Cano, R.; Zakarian, A.; McGlacken, G. P. Direct Asymmetric Alkylation of Ketones: Still Unconquered. *Angew. Chem., Int. Ed.* 2017, 56, 9278-9290. (c) Xu, G.; Li, Q.; Feng, J.; Liu, Q.; Zhang, Z.; Wang, X.; Zhang, X.; Mu, X. Direct α-Alkylation of Ketones with Alcohols in Water. *ChemSusChem* 2014, 7, 105-109. (d) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. An Efficient Direct α-Alkylation of Ketones with Primary Alcohols Catalyzed by [Ir(Cod)CI]₂/PPh₃/KOH System without Solvent. *J. Am. Chem. Soc.* 2004, 126, 72-73.
- (24) (a) Koppolu, S. R.; Balamurugan, R. *In Situ* Formed Acetals Facilitated Direct Michael Addition of Unactivated Ketones. *New J. Chem.* 2017, 41, 1186-1192. (b) Wagh, K. V.; Bhanage, B. M. Direct α-Alkylation of Acetophenones with Benzhydrols as Well as 1-Phenylethanols Using Amberlyst-15/Ionic Liquid as an Efficient Catalytic System. *ACS Sustain. Chem. Eng.* 2016, 4, 445-450. (c) Naveen, N.; Koppolu, S. R.; Balamurugan, R. Silver Hexafluoroantimonate-Catalyzed Direct α-Alkylation of Unactivated Ketones. *Adv. Synth. Catal.* 2015, 357, 1463-1473. (d) Koppolu, S. R.; Naveen N.; Balamurugan, R. Triflic Acid Promoted Direct α-Alkylation of Unactivated Ketones Using Benzylic Alcohols *via In Situ* Formed Acetals. *J. Org. Chem.* 2014, 79, 6069-6078.
- (25) (a) Ghosh, S.; Ghatak, U. R. *Proc. Indian Acad. Sci. (Chem. Sci.)* **1988**, *100*, 235-252. (b) Manojveer, S. Synthetic Utilities of *In Situ* Formed Acetal: A facile Access to Substituted Naphthalene, Benzo[a]fluorene and Indene Derivatives. Ph. D. Dissertation, University of Hyderabad, Hyderabad, 2014. (Incorporation of acetals is explained in detail in chapetr 1, chapter 2, and references cited there in.).

- (26) Manojveer, S.; Balamurugan, R. Synthesis of Naphthalene Derivatives from ortho-Alkynylacetophenone Derivatives *via* Tandem *In Situ* Incorporation of Acetal and Intramolecular Heteroalkyne Metathesis/Annulation. *Org. Lett.* **2014**, *16*, 1712-1715.
- (27) Tarigopula, C.; Manojveer, S.; Balamurugan, R. Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring *via In Situ* Formed Acetals. *J. Org. Chem.* **2021**, *86*, 11871-11883.
- (28) Xiao, X.; Luo, J.; Gan, Z.; Jiang, W.; Tang, Q. Metal-free and solvent-free synthesis of mterphenyls through tandem cyclocondensation of aryl methyl ketones with triethyl orthoformate. *RSC Adv.* **2020**, *10*, 12113-12118.
- (29) Doddi, G.; Ercolani, G. One-Pot Synthesis of 2,6-Di-*t*-butyl- and 2,6-Diarylthiopyrylium Perchlorates. *Synthesis* **1985**, *8*, 789-790.
- (30) Kothapalli, R. B.; Niddana, R.; Balamurugan, R. Synthesis of Chiral α-Diarylacetic Esters by Stereospecific 1,2-Aryl Migration Promoted by *In Situ* Generated Acetals from Benzoins. *Org. Lett.* **2014**, *16*, 1278-1281.
- (31) Malmedy, F.; Wirth, T. Stereoselective Ketone Rearrangements with Hypervalent Iodine Reagents. *Chem. Eur. J.* **2016**, *22*, 16072-16077.
- (32) Nakamura, A.; Tanaka, S.; Imamiya, A.; Takane, R.; Ohta, C.; Fujimura, K.; Maegawa, T.; Miki, Y. Synthesis of 3-acylindoles by oxidative rearrangement of 2-aminochalcones using a hypervalent iodine reagent and cyclization sequence. *Org. Biomol. Chem.* **2017**, *15*, 6702-6705.
- (33) Wu, F.; Bai, R.; Gu, Y. Synthesis of Benzofurans from Ketones and 1,4-Benzoquinones. *Adv. Synth. Catal.* **2016**, *358*, 2307-2316.
- (34) Chaffey, D. R.; Bere, T.; Davies, T. E.; Apperley, D. C.; Taylor, S. H.; Graham. A. E. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. *Appl. Catal. B-Environ.* **2021**, *293*, 120219.
- (35) Chaffey, D. R.; Alamillo-Ferrer, C.; Davies, T. E.; Taylor, S. H.; Tomkinson, N. C. O.; Graham, A. E. Metal Triflate-Promoted Allylic Substitution Reactions of Cinnamyl Alcohol in the Presence of Orthoesters and Acetals. *ACS Omega*, **2019**, *4*, 15985-15991.
- (36) (a) Lee, J. J.; Kim, J.; Jun, Y. M.; Lee, B. M.; Kim, B. H. Indium Mediated One-Pot Synthesis of Benzoxazoles or Oxazoles from 2- Nitrophenols or 1-Aryl-2-Nitroethanones. *Tetrahedron* **2009**, *65*, 8821-8831. For more examples, see: (b) Bunce, R. A; Orthoesters in heterocycle synthesis. *Arkivoc* **2020**, *part i*, 400-436. (c) Nazarian, Z.; Dabiri, M.; Orthoesters: Multiple Role Players in Organic Synthesis *ChemistrySelect* **2020**, *5*, 4394-4412.

(37) Mukaiyama T.; Hayashi, M. New Syntheses of β-Alkoxy Ketones and β-Keto Acetals. *Chem. Lett.* **1974**, 15-16.

Chapter 2

Triflic Acid-Catalyzed Synthesis of Indole Substituted Indane Derivatives *via In Situ* Formed Acetals

$$R^{1} \stackrel{\square}{\coprod} \stackrel{\square}{\longleftarrow} R^{2} + R^{4} \stackrel{\square}{\coprod} \stackrel{\square}{\coprod} \stackrel{\square}{\longrightarrow} R^{3}$$

$$R^{1} \stackrel{\square}{\coprod} \stackrel{\square}{\coprod} \stackrel{\square}{\longrightarrow} R^{2} + R^{1} \stackrel{\square}{\coprod} \stackrel{\square}{\coprod} \stackrel{\square}{\longrightarrow} R^{2}$$

$$R^{4} \stackrel{\square}{\coprod} \stackrel{\square}{\longrightarrow} R^{3}$$

2.1 Introduction

Indane scaffold exists in numerous natural products and pharmaceuticals having diverse biological activities.¹ Notably, Crixivan®, an HIV protease inhibitor used as an important drug developed by Merck for the treatment of AIDS, resveratrol derived natural products such as caraphenols, α-diisoeugenol and endothelin receptor antagonist SB 209670 are a few other biologically important compounds to mention (Figure 2.1).² Owing to their widespread natural and biological relevance, the indane scaffold attracted researchers to pursue its chemical synthesis, and eventually, different protocols have been reported in the literature for the synthesis of indane derivatives in both racemic and asymmetric manner (Figure 2.2).³⁻¹¹ These reactions include Friedel-Crafts cyclization,³ Michael-type addition,⁴ Heck-type cyclizations,⁵ radical-type,⁶ NHC-catalysis,⁷ ring-expansion,⁸ ring-contraction,⁹ miscellaneous,¹⁰ and asymmetric catalysis (Figure 2.2).¹¹

Figure 2.1: Representative natural products and pharmaceutically important compounds containing indane core

Figure 2.2: Selected strategies for the construction of indane core

However, the synthesis of indanes involving the addition of an external nucleophile is a more useful method to access highly functionalized indanes. In 2007, Liu and co-workers reported a cyclization/1,4-double addition of two nucleophiles **2.2** for the synthesis of cyclopentene derivatives **2.3-2.6** from 2,4-dien-1-als **2.1** under gold catalysis (Scheme 2.1).¹²

Scheme 2.1: Au-catalyzed cyclization of cis-2,4-dien-1-als with regioselective addition of two nucleophiles

In 2013, Ploypradith and co-workers reported a BF₃·Et₂O-mediated synthesis of substituted 2-arylindanes **2.9** from E-(2-stilbenyl)methanols **2.7** and trialkylsilyl reagents **2.8** (Scheme 2.2). ^{13a} This protocol involves the generation of a carbocation at the carbinol carbon followed by cyclization and nucleophilic transfer from trialkylsilyl reagent to afford **2.9**.

Scheme 2.2: Lewis acid-mediated cyclization of stilbenyl methanols and nucleophilic transfer from trialkylsilyl reagents

Later, the same group, in 2018, extended the cyclizations of (Z)- and (E)-(2-stilbenyl)methanols **2.10** for the divergent synthesis of indanols **2.11** and indenes **2.12** using PTSA immobilized on silica (Scheme 2.3). Indanones, which are structurally related to the natural product paucifloral F could be synthesized simply by the oxidation of obtained indanols **2.11**.

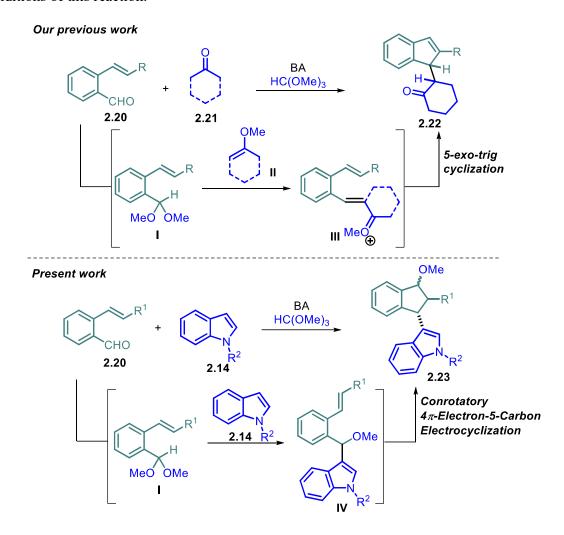
$$(MeO)_{m} \qquad Ar^{1} \qquad PTS-Si \ (1.1 \ equiv.) \qquad (MeO)_{m} \qquad Ar^{1} \qquad (MeO)_{m} \qquad Ar^{1} \qquad (MeO)_{m} \qquad Ar^{1} \qquad (MeO)_{m} \qquad Ar^{1} \qquad Ar^{2} \qquad Ar^{2$$

Scheme 2.3: Brønsted acid-mediated cyclization of (Z)- and (E)-(2-stilbenyl)methanols

Indoles are ubiquitous in nature and several natural and bioactive compounds contain substituted indole rings in their structural frameworks.¹⁴ In this regard, developing strategies addressing the synthesis of indole substituted indanes or their analogues such as indanones have actively been pursued in the recent past. In 2016, Lu and co-workers have shown a palladium-catalyzed synthesis of indole-substituted indanones **2.15** from *o*-alkynylbenzaldehydes **2.13** involving the nucleophilic attack of indoles **2.14** followed by intramolecular cyclization (Scheme 2.4).¹⁵ The formation of indanone ring depends on the electron-withdrawing group attached to the alkyne and the nucleophilicity of indole.

Scheme 2.4: Pd(II)-catalyzed tandem reaction of *o*-alkynyl aryl aldehydes with indoles

In 2013, Ender's group has developed a Michael/Henry domino reaction for the synthesis of chiral indole-substituted indanols **2.18** from *o*-nitrovinylbenzaldehydes **2.16** and indoles **2.17** in the presence of Seidel's thioamide organocatalyst **2.19** (Scheme 2.5).¹⁶


Scheme 2.5: Organocatalytic Michael/Henry domino reaction of *o*-nitrovinylbenzaldehydes with indoles

Yet, there is a necessity for developing a simple strategy to make indole-substituted indanes that does not use expensive transition metal catalysts.

2.2 Background

During our investigations on studying the reactions of *in situ* formed acetals,¹⁷ we found out the formation of indene derivatives **2.22** from *o*-alkenylbenzaldehydes **2.20** and an enolizable ketone **2.21** in the presence of trimethyl orthoformate and catalytic TfOH (Scheme 2.6, our previous work).^{17e} This reaction takes place *via* a Claisen-Schmidt condensation between the oxocarbenium ion generated from *in situ* formed acetal **I** of *o*-alkenylbenzaldehyde **2.20** and the enol ether **II** derived from the enolizable ketone **2.21** followed by cyclization of the double bond on the enone **III**. Inspired by this work, we were curious to know the reactivity of indole **2.14** with *o*-alkenylbenzaldehyde **2.20** under similar conditions. Gratifyingly, indole **2.14** reacted with *o*-

alkenylbenzaldehyde **2.20** in the presence of trimethyl orthoformate (TMOF) under triflic acid (TfOH) catalysis to afford indole-substituted indane derivatives **2.23** in a diastereoselective manner (Scheme 2.6, present work). This reactivity is significantly different from the usual reactivity of indoles of giving bisindolylmethanes upon reaction with activated carbonyls. This reaction would proceed *via* a nucleophilic attack of indole **2.14** on oxocarbenium ion derived from the acetal **I** of *o*-alkenylbenzaldehyde **2.20** to form biarylmethyl methyl ether intermediate **IV** followed by a conrotatory 4π -electron-5-carbon electrocyclization of intermediate **IV** to furnish the product **2.23**. With this preliminary result, we turned our attention to optimize the reaction conditions of this reaction.

Scheme 2.6: Synthesis of indene derivatives (our previous work) and indole substituted indane derivatives (present work)

2.3 Results and discussion

2.3.1 Reaction optimization study

o-Alkenylbenzaldehyde **2.20a** and N-benzylindole **2.14a** were chosen as model substrates to optimize the reaction condition. Initially, we examined the reaction with different catalysts and solvents to find out the most appropriate Brønsted acid and solvent for this transformation.

Table 2.1 Optimization of the reaction conditions^a

Entry	Amount of 2.14a (equiv.)	Catalyst (mol %)	Solvent	Yield ^b (%)	2.23a:2.23a ^{1c}
1	1.2	TfOH (5)	DCM	85	1.3:1
2	1.2	TFA (5)	DCM	NR	-
3	1.2	$(Tf)_2NH(5)$	DCM	65	1.3:1
4	1.2	P-TSA (5)	DCM	NR	-
5	1.2	$Cu(OTf)_2(5)$	DCM	NR	-
6	1.2	$AuBr_3(5)$	DCM	NR	-
7	1.2	$Sc(OTf)_3(5)$	DCM	NR	-
8	1.2	TfOH (5)	DCE	86	1.3:1
9	1.2	TfOH (5)	CHCl ₃	79	1.3:1
10	1.2	TfOH (5)	CH_3NO_2	60	1.2:1
11	1.2	TfOH (5)	CH ₃ CN	48	1.3:1
12	1.2	TfOH (10)	DCM	78	1.5:1
13^d	1.2	TfOH (5)	DCM	70	1.3:1
14^e	1.2	TfOH (5)	DCM	76	1.4:1
15 ^f	1	TfOH (5)	DCM	87	1.4:1
16 ^g	1.2	TfOH (5)	DCM	-	-
17^{h}	1	TfOH (5)	DCM	62	2:1

^aReaction conditions: 1.0 equiv. of **2.20a** and 1.2 equiv. of **2.14a**, solvent (2 mL/100 mg of **2.20a**). ^bisolated yield after column chromatography. ^cdiastereomeric ratio was discerned from ¹H NMR. ^d1.0 equiv of TMOF was used. ^e3.0 equiv of TMOF was used. ^f1.0 equiv. of **2.14a** and 1.2 equiv. of **2.20a** were taken. ^gReaction was carried out in the absence of TMOF. ^hMeOH was used instead of TMOF.

Reaction of 1.0 equiv. of o-alkenylbenzaldehyde **2.20a** with 1.2 equiv. of N-benzylindole 2.14a in the presence of 2.0 equiv. of TMOF and 5 mol% of triflic acid in dichloromethane at room temperature resulted in indole-substituted indanes 2.23a and 2.23a' in 85% yield as an inseparable mixture with a diastereoselectivity of 1.3:1 (Table 2.1, entry 1). It is interesting to note that only two diastereomers were obtained despite the presence of three stereocenters in the indane ring. Milder Brønsted acids like TFA and p-TSA were not suitable for this reaction (Table 2.1, entries 2 and 4). The yield of the product decreased considerably when bistriflimide was used (Table 2.1, entry 3). Lewis acids, such as copper triflate, gold(III) bromide, and scandium triflate were found to be ineffective to furnish the desired product (Table 2.1. entries 5-7). Triflic acid was found to be the optimal catalyst for this transformation. The TfOH-catalyzed reaction was screened in other solvents as well. Other chlorinated solvents such as DCE and CHCl3 were also effective in promoting the reaction (Table 2.1, entries 8 and 9). Comparatively lower yields were noticed when the reaction was carried out in nitromethane and acetonitrile (Table 2.1, entries 10 and 11) respectively. Using 1.0 equiv. of indole 2.14a was equally good as it resulted in 87% yield of the product with a dr of 1.4:1 (Table 2.1, entry 15). This condition was used for the evaluation of substrate scope. Presence of TMOF is crucial for the formation of the indane product 2.23a/2.23a' as the starting o-alkenylbenzaldehyde 2.20a was isolated back when a reaction was carried out in the absence of TMOF (Table 1, entry 16). In this reaction, the indole 2.14a got decomposed in the presence of TfOH. Interestingly, this reaction underwent smoothly to afford the desired product 2.23a/2.23a' with a considerable decreased yield when methanol was used as an acetalysing agent instead of TMOF (Table 2.1, entry 17).

2.3.2 Substrate scope

The outcome of evaluation of the substrate scope for this transformation is depicted in the Table 2.2. The products were obtained as an inseparable mixture of diastereomers in most of the cases except 2.23g, 2.23n, 2.23o, and 2.23v where the diastereomers could be separated by column chromatography. The relative stereochemistry of the substituents in the five-membered ring of the indane products was assigned based on NOESY spectra of major and minor diastereomers of 2.23o and diastereomeric mixture of 2.23w. Interestingly, in both the diastereomers, the indole and the aryl ring on the adjacent carbon are in *trans* stereo relationship. In the major and the minor isomers, the OMe and the aryl groups are in *trans* and *cis* configuration respectively. These assignments were further supported by the single crystal X-ray structures of the minor isomer of 2.23g and the major isomer of 2.23l (Figure 2.3).

Various substituted *N*-benzylindoles (such as 5-F, 5-Br, 5-Cl, 5-CN, and 5-OMe) were subjected to react with **2.20a** under the optimized reaction conditions and the corresponding products **2.23b**, **2.23c**, **2.23d**, **2.23e**, and **2.23f** were obtained in moderate to good yields. The diastereoselectivities were generally just above 1.5:1. Indoles bearing different protecting groups such as methyl, tosyl, and allyl groups were also employed to get their respective products **2.23g**, **2.23h** and **2.23i** with yields comparatively lower than that of **2.23a**. Yield decreased considerably when *N*-tosylindole **2.14h** was used as a substrate. 2-Phenylindole gave the desired product in a

comparatively lower yield (2.23j, 66%). Unfortunately, the formation of indole-substituted indane derivative was not observed when indole with free N-H was employed as it was completely decomposed under reaction conditions. Although the phenyl substituent on the C2-position of indole had an effect on the yield, it did not have a notable effect on the diastereoselectivity. This is understandable as the indole and the aryl rings are in *trans* orientation in both the diastereomers. Then the effect of substituents present on the phenyl ring of o-alkenylbenzaldehyde 2.20 was evaluated. o-Alkenylbenzaldehyde 2.20 having methoxy, methyl, Cl, and F on the phenyl ring were explored. While the substrates having methoxy and methyl groups resulted in good yield of the products (2.23k-2.23m), halogen substituted substrates offered comparatively a lower yield of the products (2.23n and 2.23o). It is remarkable to note that the diastereoselectivity is high (2.23l, 6.6:1) in the reaction of the substrate having o-methyl substituent on phenyl against the no diastereoselection when the methyl is at the para position of the phenyl (2.23m, 1:1). Substrate having a naphthyl ring also showed good diastereoselection {2.23p (3.9:1), 2.23u (6.4:1)}. These results suggest that the steric interactions between the phenyl's ortho-substituent and the -OMe during quenching of the carbocation formed after the cyclization impact the diastereoselectivity (vide supra). o-Alkenylbenzaldehyde having an alkyl substituent such as 2.20q also underwent the reaction to result in the corresponding product 2.23q in moderate yield (56%). Substrates having substituents such as Me and F on the aryl ring were also examined and found smooth conversion to their respective products 2.23r and 2.23s in good yields. The reaction occurred through the C-2 carbon of the indole when the C-3 position of the indole was blocked. For example, product 2.23w was isolated in 62% yield with 1.6:1 diastereomeric ratio when 3-methyl-N-benzylindole was reacted with 2.20a. It has to be noted that the methyl substituent on the indole did not have any influence on the diastereoselectivity.

Table 2.2 Scope of indole-substituted indane synthesis^a

"Reaction conditions: 2.20 (1.2 equiv.), 2.14 (1.0 equiv., 100 mg), TfOH (5 mol %), TMOF (2.0 equiv.), solvent (2 mL/100 mg of 2.14). ^bd.r. was determined by ¹H NMR. ^cd.r. was calculated from the isolated yields.

2.3.3 Scale-up and subsequent synthetic transformation

To check the robustness of this protocol, a gram scale reaction of **2.14a** with **2.20a** under the optimized reaction condition was carried out to afford **2.23a/2.23a'** in 72% yield with 1.5:1 diastereoselectivity (Scheme 2.7). Treatment of **2.23a/2.23a'** with 2.0 equiv. of BBr₃ in DCM at 0 °C for 2 h resulted in indole-substituted indene derivative **2.24a** in 72% yield.¹⁹

Scheme 2.7: Scale-up reaction

2.3.4 Control Experiments

In order to gain more insights into the mechanism, a series of control reactions were performed. To deduce the involvement of acetal, substrate 2.20a-acetal²³ was synthesized from the corresponding aldehyde 2.20a, and treated with 2.14a in the presence of 5 mol% of triflic acid in dichloromethane at room temperature. The indole-substituted indane derivative 2.23a was obtained in 49% yield with 1.8:1 diastereomeric ratio in addition to 30% of the corresponding indene derivative **2.24a** (Scheme 2.8A). On the other hand, the same reaction, in the presence of 2 equivalents of TMOF, yielded 2.23a exclusively in 84% yield with 1.6:1 diastereoselectivity in 5 minutes (Scheme 2.8A). These experiments clearly demonstrate that the reaction occurs via the formation of acetal and the presence of TMOF in the reaction prevents the formation of eliminated product indene from the actual product indane. In addition, to check whether the diastereoselectivity is due to kinetic or thermodynamic outcome, the major and minor isomers of 2.230 were subjected to the reaction conditions separately. From the TLC analysis, it was noted that there was no interconversion between the diastereomers. Moreover, the minor isomer of 2.230 resulted in the formation of indene derivative 2.250 in 54% yield after 46 h along with the unreacted 2.230 (minor isomer), as confirmed by ¹H NMR (Scheme 2.8B). The major isomer of 2.230 completely converted to 2.250 in 46 h under the reaction conditions (Scheme 2.8C). Substrate 2.20a was subjected to the reaction condition in the absence of indole for 7 h (Scheme 2.8D). This reaction resulted in the formation of **2.26a** and **2.26b** in a 2.5:1 diastereomeric ratio, and methanol generated from TMOF has acted as a nucleophile. In this reaction, there is a

possibility of formation of two *meso* compounds in addition to the *dl* isomer. However, only two diastereomers were obtained and, from the ¹H and ¹³C NMR spectra, it was found that the major product is *meso* and the minor product is *dl* forms. NOESY spectra of the *meso* isomer **2.26a** revealed a *trans* stereorelationship between the -OMe and phenyl groups. Other possible *meso* isomer having all *cis* orientation of indane substituents was not isolated at all. However, the results are not sufficient to establish whether the reaction proceeds *via* an *iso*-Nazarov cyclization of the initially formed indole added product followed by trapping of the carbocation or concerted addition of methoxy on the double bond followed by cyclization on the oxocarbenium ion. In two separate reactions, compounds **2.26a** and **2.26b** were treated with indole **2.14a** in the presence of TfOH catalyst to check whether the compounds **2.26a** and **2.26b** are intermediates during the formation of **2.23a**. However, in both reactions, **2.23a** was not formed even after 24 h, and more than 75% of the starting materials were recovered back. Some complex product mixtures were obtained in very less amounts. Therefore, the involvement of bismethoxy compounds as intermediates in this transformation can be omitted conveniently.

Scheme 2.8: Control Experiments

As the reactivity of a methoxy group and indole are different, there is a chance that both might have reacted differently. To get more insight, the cis-isomer 2.20a-cis was synthesized by a slightly modified literature procedure^{13b} and subjected to reaction under the optimized reaction condition (Scheme 2.8E). Interestingly, the reaction resulted in an inseparable mixture of two products along with 50% of the unreacted 2.20a-cis. None of the products in the mixture had an -OMe in it. From the NMR analysis of the mixture, the major and minor products were identified as bis-indolylmethane derivative 2.27-trans and bis-indolylmethane derivative 2.27-cis respectively in a ratio of 2.6:1. This suggested that the initial attack of indole might have happened at the carbonyl carbon activated by the formation of oxocarbenium ion. Thus, the formed diaryl methyl ether ionizes under the acidic condition to form a carbocation which might have isomerized the double bond partially before getting quenched by a molecule of indole. Certainly, the steric constraint posed by the cis olefin had prevented the cyclization to happen at this stage and promoted the addition of another molecule of indole on the resonance-stabilized carbocation leading to bis-indolylmethane derivative with partial isomerization of the double bond. In the presence of 2 equiv. of indole **2.14a**, the substrate **2.20a**-cis resulted in 53% yield of **2.27-trans** in 15 minutes (Scheme 2.8F). The structure of **2.27-trans** was further confirmed by single crystal Xray analysis. This prompted us to react 2.20a with 2 equiv. of 2.14a as well. This reaction also resulted in 2.27-trans in 48% yield after 15 min. It has to be noted that, in either of the cases, the formation of 1,3-bisindole substituted indane derivative via indole addition on oxocarbenium ion, 4π -electrocyclization, and trapping of carbocation by indole sequence was not noted. The high reactivity of indole towards aldehydes followed its usual pathway to result in bis-indolylmethane derivative. To substantiate the involvement of the addition of indole to oxocarbenium ion during the reaction, compound V was synthesized and subjected to two different reaction conditions separately. In the first reaction, it was treated with 5 mol% triflic acid and the product 2.23 was obtained in 37% yield with a diastereoselectivity of 3.2:1 (2.23a/2.23a') along with indene derivative 2.24a in 46% yield (Scheme 2.8H). On the other hand, compound V, when treated with 5 mol% of TfOH in the presence of 2 equivalents of TMOF, resulted in 79% of 2.23 (2.23a/2.23a' = 1.8:1) along with the indene derivative **2.24a** in 18% yield (Scheme 2.8H). These two reactions strongly support the involvement of V as an intermediate during the formation of the product.

2.3.5 Mechanism

Based on the control experiments, the structure of compound **2.23s** in corroboration with NOESY, and other 2D-NMR experiments, a pathway, as shown in the Scheme 2.9, can be proposed to explain the mechanism and the stereochemical outcome of the reaction. The cyclization step may be termed as 4π -electron-5-carbon electrocyclization.²⁰ As the reaction does not occur in the absence of TMOF, the formation of acetal **I** in the presence of catalytic TfOH is expected to initiate the reaction. This can, in turn, generate a more reactive oxocarbenium ion **IV**. At this stage, indole attacks the oxocarbenium ion to form biarylmethyl methyl ether **V**. This will undergo a facile ionization in the presence of strong TfOH to generate a resonance stabilized

carbocation VI. Now a conrotatory 4π -electron-5-carbon electrocyclization^{20c} can occur to form a carbocationic intermediate VII which will be quenched by MeOH to furnish the final product 2.23. The exclusive *trans* stereorelationship of indole and C-2 substituent (aryl/alkyl) is due to the conrotatory electrocyclic ring-closing process. Moreover, the observed high diasteroselectivity in products 2.231, 2.23p, and 2.23u may be explained by the steric crowding at the *ortho* position of the Ar substituent, which made the MeOH to approach from the opposite side more.

OMe
Ph

2.23a/2.23a'

H

Conrotatory 4
$$\pi$$
-electron-5-carbon electrocyclization

Ph

OMe

N

Bn

VI-trans

Ph

OMe

N

Bn

2.14a

H

V

Bn

Scheme 2.9: Plausible mechanism for the synthesis of 2.23

The formation of bis-indolylmethane derivatives **2.27-cis** and **2.27-trans** may be explained based on the mechanism shown in Scheme 2.10. The intermediate **V-cis** which is formed after the initial addition of indole on the oxocarbenium ion of **2.20a-cis**, would ionize in the presence of acid to form the intermediate **VI-cis**. This will have a strong destabilizing steric interaction due to the *cis* geometry of the olefin and thus might not allow it to undergo a 4π -electrocyclization reaction. Quenching this intermediate **VI-cis** with another molecule of indole **2.14a** will lead to the formation of **2.27-cis**. The presence of conjugation in **VI-cis** will facilitate the isomerization of the *cis* olefin to *trans* olefin to form intermediate **VI-trans** which on reaction with another

molecule of indole will result in **2.27-trans**. It has to be remembered that **2.20a** (trans isomer), under the standard optimized condition (Table 2.1), furnished 87% of indane derivative **2.23a**. This suggests that the first indole addition to the oxocarbenium ion of **2.20a** is very fast, that all the indole (1.0 equiv.) instantly reacted with the oxocarbenium ion of **2.20a** (1.2 equiv.) to form intermediate **V** exclusively to result **2.23a** in high yield via 4π -electrocyclization reaction as there is no steric constraint (Scheme 2.9).

Scheme 2.10: Plausible mechanism for the formation of 2.27-trans and 2.27-cis

2.3.6 ORTEP diagrams of 2.23g', 2.23l and 2.27-trans

Single crystal X-ray data for the compounds **2.23g'**, **2.23l** and **2.27-trans** were collected using a Bruker D8 Quest CMOS detector system [λ (Mo-K α) = 0.71073 Å] at 298K, graphite monochromator with a ω scan width of 0.3o, crystal-detector distance 60 mm, collimator 0.5 mm. The SMART software was used for the intensity data acquisition and the SAINTPLUS software was used for the data extraction. In each case, absorption correction was performed with the help of SADABS program, an empirical absorption correction using equivalent reflections was performed with the program. The structure was solved using SHELXS-97, and full-matrix least-squares refinement against F2 was carried out using SHELXL-97.

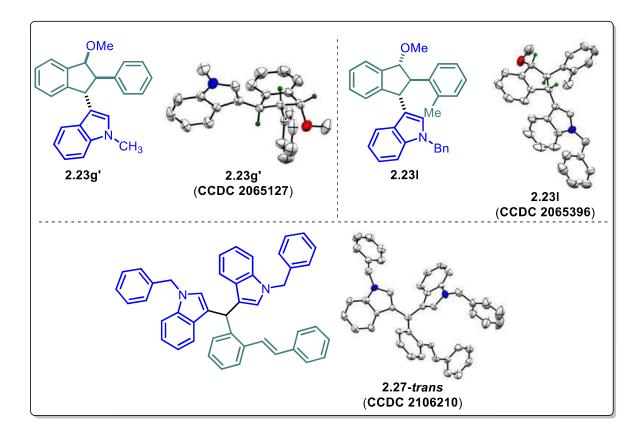


Figure 2.3: ORTEP diagrams of 2.23g', 2.23l and 2.27-trans

2.4 Conclusions

In summary, a catalytic protocol for the synthesis of indole-substituted indane derivatives from o-alkenylbenzaldehydes and N-protected indoles has been achieved exploiting the reactivity of acetal formed *in situ*. The *cis* and *trans* isomers of o-alkenylbenzaldehyde show different reactivity due to their different steric environments. The success of the cyclization reaction with the *trans* isomer of o-alkenylbenzaldehydes is due to the high reactivity of indole on the oxocarbenium ion generated under the reaction condition and thermodynamically favourable 4π -electrocyclization with the *trans* geometry of the olefin. The 4π -conrotatory electrocyclic ring-closing process takes care of the exclusive *trans* geometry of indole and C-2 substituents in the products.

2.5 Experimental section

2.5.1 General information

Unless otherwise mentioned, all chemicals obtained from commercial suppliers were used without further purification. TfOH and TMOF were obtained from Sigma-Aldrich and Avra synthesis respectively, and were used without further purification. All reactions were performed under nitrogen atmosphere and in an oven-dried glassware with magnetic stirring. Dichloromethane (DCM) was dried in the presence of calcium hydride and distilled before use.

Reactions were monitored using silicagel plates 60 F₂₅₄ and were visualized with UV light (254 nm), with Seebach stain followed by heating. Column chromatography was carried out using silica gel (100-200 mesh) packed in glass columns. NMR spectra were recorded at 400, 500 MHz (1 H) and at 100, 125 MHz (13 C), respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (J) are indicated in Hz. HRMS were recorded using ESI-TOF techniques.

2.5.2 Experimental procedures, analytical and spectral data

Synthesis of o-alkenylbenzaldehydes (2.20) and N-protected indoles (2.14):

o-Alkenylbenzaldehydes were prepared according to the previously reported literature.²¹ N-protected indoles were synthesized according to the literature procedure.²²

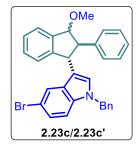
General procedure for the synthesis of indole substituted indane derivatives 2.23

To a stirred solution of aldehyde **2.20** (1.2 equiv.), *N*-protected indole **2.14** (100 mg, 1.0 equiv.) and TMOF (2.0 equiv.) in dichloromethane (2 mL) was added triflic acid (0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution and extracted with ethyl acetate (3x 20 mL). The combined organic layers were washed with saturated brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product **2.23**.

2.23a/2.23a'. This compound was synthesized according to the general procedure as described

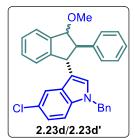
above as a brown solid in 87% yield (180 mg from 100 mg of **2.14a**), mp 141-142 °C, $R_f = 0.5$ (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.5:1). ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 7.5 Hz, 1H, major), 7.50 (d, J = 7.0 Hz, 1H, minor), 7.39-7.26 (m, 8H), 7.25-7.16 (m, 12H), 7.13-7.08 (m, 5H), 7.08-7.6.91 (m, 6H), 6.84 (s, 1H, minor), 6.83 (s, 1H, major), 5.23 (d, J = 7.0 Hz, 1H, major, one of the peak of the doublet of the major isomer is merged with N-CH peak, and the coupling constant of

doublet of major isomer was calculated by using chemical shifts of N-CH peak and one of the doublet peak), 5.23 (s, 2H, N-CH, major), 5.19 (s, 2H, N-CH, minor), 5.12 (d, J = 9.0 Hz, 1H, minor), 4.85 (d, J = 5.5 Hz, 1H, minor), 4.53 (d, J = 9.0 Hz, 1H, major), 3.92 (dd, J = 9.0, 5.5 Hz, 1H, minor), 3.72 (dd, J = 9.0, 7.5 Hz, 1H, major), 3.40 (s, 3H, major), 3.21 (s, 3H, minor). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 147.0, 144.1, 143.2, 142.0, 141.5, 139.2, 137.8, 137.7, 137.1, 129.5, 128.8, 128.6, 128.5, 128.4, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 127.2, 126.8, 126.7, 126.6, 126.5, 126.4, 125.4, 125.3, 124.9, 124.3, 121.7, 121.6, 120.1, 119.9, 119.0, 118.9, 116.2, 115.9, 109.8, 109.7, 89.5, 85.4, 62.2, 58.8, 57.6, 57.1, 49.8, 49.7, 46.5. IR (neat, cm⁻¹): 3059, 3028, 2926, 2823, 1726, 1605, 1552, 1494, 1466, 1334, 1300, 1206, 1172, 1112, 1088, 1016, 966, 739, 700. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₈NO 430.2165; found 430.2161.


2.23b/2.23b'. This compound was synthesized according to the general procedure as described

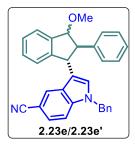
above as a light brown solid in 75% yield (148 mg from 100 mg of **2.14b**), mp 157-159 °C, R_f = 0.4 (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (2.3:1). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 7.6 Hz, 1H, major), 7.52 (d, J = 6.8 Hz, 1H, minor), 7.43-7.24 (m, 19H), 7.17-7.08 (m, 4H), 7.01 (dd, J = 8.0, 2.0 Hz, 2H), 6.94 (dd, J = 7.2, 3.2 Hz, 1H), 6.92 (s, 1H, minor), 6.90 (s, 1H, major), 6.88-6.82 (m, 2H), 6.74 (dd, J = 9.6, 2.4 Hz, 1H), 5.24 (d, J = 7.1 Hz, 1H, major), 5.23 (s, 2H, N-CH, major), 5.20

(s, 2H, N-CH, minor), 5.07 (d, J = 9.6 Hz, 1H, minor), 4.85 (d, J = 5.6 Hz, 1H, minor), 4.49 (d, J = 9.2 Hz, 1H, major), 3.87 (dd, J = 9.2, 5.2 Hz, 1H, minor), 3.66 (dd, J = 9.2, 7.6 Hz, 1H, major), 3.42 (s, 3H, major), 3.23 (s, 3H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 158.5, 156.2, 146.2, 143.6, 143.0, 142.0, 141.5, 138.9, 137.4, 137.3, 133.7, 133.6, 129.5, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 127.9, 127.7, 127.6, 127.5, 127.4, 126.8, 126.7, 126.6, 126.5, 126.4, 125.4, 125.2, 124.7, 124.4, 116.2, 116.1, 115.7, 115.6, 110.5, 110.4, 110.3, 110.2, 110.1, 109.9, 109.8, 105.0, 104.9, 104.8, 104.7, 89.4, 85.3, 62.4, 58.9, 57.7, 57.1, 50.2, 50.1, 49.6, 46.5. IR (KBr, cm $^{-1}$): 3028, 2910, 2822, 1629, 1577, 1484, 1448, 1391, 1319, 1247, 1221, 1164, 1081, 1030, 978, 916, 854, 797, 704, 642, 606, 565. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₁H₂₆FNO 448.2071; found 448.2073.


2.23c/2.23c'. This compound was synthesized according to the general procedure as described

above as a light brown solid in 58% yield (104 mg from 100 mg of **2.14c**), mp 166-170 °C, R_f = 0.5 (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.8:1). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.6 Hz, 1H, major), 7.56 (d, J = 6.8 Hz, 1H, minor), 7.53-7.27 (m, 23H), 7.23-6.93 (m, 10H), 6.90 (s, 1H, minor), 6.89 (s, 1H, major), 5.27 (d, J = 7.6 Hz, 1H, major), 5.19 (s, 2H, N-CH, major), 5.15 (s, 2H, N-CH, minor), 4.88 (d, J = 3.2 Hz, 1H, minor), 4.87 (d, J = 4.0 Hz, 1H, minor) 4.55 (d, J = 9.2 Hz,

1H, major), 3.91 (dd, J = 9.6, 5.6 Hz, 1H, minor), 3.69 (dd, J = 8.8, 7.2 Hz, 1H, major), 3.46 (s, 3H), 3.26 (s, 3H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 146.6, 143.5, 142.9, 142.1, 141.5, 141.4, 138.9, 137.2, 135.8, 135.7, 129.6, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 126.9, 126.8, 126.7, 126.5, 126.4, 125.6, 125.2, 124.9, 124.8, 124.7, 124.6, 124.5, 122.5, 122.4, 115.9, 115.4, 112.5, 112.4, 111.4, 111.3, 89.4, 88.8, 85.2, 62.7, 59.9, 59.0, 57.9, 57.3, 57.1, 50.1, 50.0, 49.5, 46.3. IR (KBr, cm $^{-1}$): 3023, 2915, 1598, 1546, 1489, 1463, 1391, 1350, 1303, 1200, 1164, 1081, 1030, 962, 864, 787, 756, 694, 642, 570, 529. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₁H₂₇BrNO 508.1271; found 508.1278.

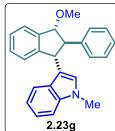

2.23d/2.23d'. This compound was synthesized according to the general procedure as described

above as a brown solid in 62% yield (116 mg from 100 mg of **2.14d**), mp 161-163 °C, R_f = 0.3 (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.6:1). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 7.5 Hz, 1H, major), 7.48 (d, J = 7.0 Hz, 1H, minor), 7.40-7.26 (m, 13H), 7.24 -7.21 (m, 7H), 7.13 -7.02 (m, 8H), 6.96 (dd, J = 8.0, 2.0 Hz, 2H), 6.90 (dd, J = 7.0, 3.5 Hz, 1H), 6.87 (s, 1H, minor), 6.85 (s, 1H, major), 5.20 (d, J = 5.1 Hz, 1H, major), 5.19 (s, 2H, N-CH, major), 5.17 (s, 1H, N-CH, minor), 5.05

(d, J = 9.5 Hz, 1H, minor), 4.81 (d, J = 5.5 Hz, 1H, minor), 4.47 (d, J = 9.0 Hz, 1H, major), 3.83 (dd, J = 9.5, 5.5 Hz, 1H, minor), 3.61 (dd, J = 9.0, 7.5 Hz, 1H, major), 3.39 (s, 3H), 3.19 (s, 3H). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 146.6, 143.5, 142.9, 142.0, 141.4, 138.8, 137.3, 137.2, 135.5, 135.4, 129.5, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 126.8, 126.6, 126.5, 126.4, 126.3, 125.5, 125.2, 125.0, 124.9, 124.8, 124.7, 124.4, 122.0, 121.9, 119.4, 119.3, 115.9, 115.4, 110.8, 89.4, 88.7, 85.2, 62.5, 59.8, 58.9, 57.8, 57.2, 57.0, 50.1, 50.0, 49.4, 46.4. IR (KBr, cm⁻¹): 3065, 3023, 2977, 2915, 2822, 1603, 1541, 1469, 1386, 1303, 1360, 1303, 1200, 1196, 1086, 1024, 968, 792. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₆ClNO 464.1776; found 464.1784.

2.23e/2.23e'. This compound was synthesized according to the general procedure as described

above as a light brown solid in 66% yield (135 mg from 100 mg of **2.14e**), mp 152-155 °C, $R_{\rm f} = 0.4$ (20% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.5:1). ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.21 (m, 28H), 7.09-6.90 (m, 7H), 5.27 (s, 2H), 5.25-5.20 (m, 5H, one doublet corresponding to the proton bound to the carbon attached to 'OMe' group was merged with the peak corresponding to benzylic 'CH₂' group of minor isomer), 5.09 (d, J = 9.6 Hz, 1H, minor), 4.81 (d, J = 5.2 Hz, 1H, minor),


4.52 (d, J = 8.8 Hz, 1H, major), 3.79 (dd, J = 9.6, 5.2 Hz, 1H, minor), 3.56 (dd, J = 9.2, 7.6 Hz, 1H, major), 3.40 (s, 3H, major), 3.21 (s, 3H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 146.0, 142.9, 142.6, 142.1, 141.5, 138.6, 138.5, 138.4, 136.5, 129.5, 129.1, 129.0, 128.9, 128.8, 128.7, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.1, 127.0, 126.9, 126.7, 126.6, 126.5, 126.4, 125.8, 125.7, 125.6, 125.0, 124.8, 124.7, 124.6, 124.5, 120.8, 120.6, 117.7, 116.9, 110.7, 110.6, 102.1, 102.0, 89.3, 85.1, 63.1, 59.5, 57.9, 57.1, 50.2, 50.1, 49.4, 46.5. IR (KBr, cm $^{-1}$): 3023, 2920, 2218, 1608, 1474, 1458, 1360, 1174, 1081, 1030, 797, 746, 699. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₂H₂₇N₂O 455.2118; found 455.2114.

2.23f/2.23f'. This compound was synthesized according to the general procedure as described

OMe MeO N Bn 2.23f/2.23f' above as a white solid in 75% yield (145 mg from 100 mg of **2.14f**), mp 145-147 °C, $R_{\rm f}$ = 0.5 (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.6:1). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 7.6 Hz, 1H), 7.48-7.46 (m, 1H), 7.39 (dt, J = 8.4, 1.2 Hz, 1H), 7.33 (tt, J = 8.4, 1.2 Hz, 1H), 7.29-7.19 (m, 17H), 7.13 (d, J = 7.6 Hz, 1H), 7.05 (m, 2H), 6.98 (dd, J = 8.0, 1.6 Hz, 2H), 6.92 (dd, J = 8.0, 2.8 Hz, 1H), 6.80 (s, 1H, major), 6.79 (s, 1H, minor), 6.76-6.72 (m, 2H), 6.67 (d, J = 2.4 Hz, 1H),

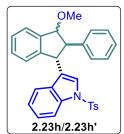
6.46 (d, J = 2.4 Hz, 1H), 5.20 (d, J = 7.2 Hz, 1H, major), 5.17 (s, 2H, N-CH, major), 5.13 (s, 2H, minor, N-CH, minor), 5.08 (d, J = 9.2 Hz, 1H, minor), 4.82 (d, J = 5.2 Hz, 1H, minor), 4.52 (d, J = 9.2 Hz, 1H, major), 3.84 (dd, J = 9.2, 5.6 Hz, 1H, minor), 3.66 (s, 3H, minor), 3.62 (dd, J = 8.8, 7.6 Hz, 1H, major), 3.55 (s, 3H, major), 3.37 (s, 3H, major), 3.19 (s, 3H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 153.6, 153.5, 146.9, 143.9, 143.6, 142.1, 141.6, 139.3, 137.9, 137.8, 132.3, 133.2, 129.5, 128.9, 128.8, 128.7, 128.6, 128.5, 128.2, 128.0, 127.9, 127.7, 127.5, 127.4, 127.3, 127.1, 127.0, 126.7, 126.5, 126.4, 125.5, 125.4, 125.0, 124.4, 116.1, 115.6, 111.9, 111.7, 110.6, 110.5, 101.8, 101.5, 89.8, 85.4, 62.5, 58.9, 57.6, 57.1, 55.7, 55.5, 50.1, 50.0, 49.8, 46.5. IR (neat, cm⁻¹): 3029, 2910, 1485, 1449, 1313, 1230, 1043, 791, 706, 691. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{32}H_{30}NO_2$ 460.2271; found 460.2272.

2.23g (major isomer). This compound was synthesized according to the general procedure as

described above as a brown solid in 47% yield (126 mg from 100 mf of **2.14g**), mp 135-137 °C, $R_f = 0.4$ (in 10% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.33-7.31 (m, 2H), 7.28-7.19 (m, 5H), 7.15 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 6.8 Hz, 1H), 6.79 (s, 1H), 5.21 (d, J = 6.8, Hz, 1H), 4.59 (d, J = 8.8 Hz, 1H), 3.76-3.69 (m, 4H/peaks of -OMe group and H at second carbon of indane ring have merged), 3.44 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃):

 δ 144.4, 143.5, 141.8, 137.4, 128.6, 128.5, 127.8, 127.3, 127.0, 126.4, 125.0, 124.3, 121.4, 119.9, 118.6, 115.9, 109.1, 90.1, 62.1, 57.7, 49.4, 32.6. IR (neat, cm⁻¹): 3027, 2926, 2825, 1611, 1472, 1330, 1235, 1112, 1090, 957, 743, 702. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₄NO 354.1852; found 354.1840.

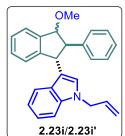
2.23g' (minor isomer). This compound was synthesized according to the general procedure as



described above as a brown solid in 26% yield (70 mg from 100 mg of **2.14g**), mp 148-150 °C, $R_{\rm f}=0.43$ (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.48 (d, J=7.0 Hz, 1H), 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.27-7.26 (m, 2H), 7.25-7.24 (m, 2H), 7.21-7.16 (m, 2H), 7.12 (d, J=7.5 Hz, 1H), 7.00-6.97 (m, 1H), 6.74 (s, 1H), 5.10 (d, J=8.5 Hz, 1H), 4.85 (d, J=5.5 Hz, 1H), 3.93 (dd, J=8.5, 5.5 Hz, 1H), 3.66 (s, 3H), 3.17 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 147.1, 141.5, 139.3, 137.4, 129.4, 128.7, 127.9,

127.3, 126.8, 126.6, 126.4, 125.4, 125.2, 121.4, 119.7, 118.6, 115.4, 109.2, 85.5, 58.6, 57.1, 46.1,

32.6. IR (neat, cm⁻¹): 2921, 1611, 1470, 1330, 1258, 1081, 921, 791, 696. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}NO$ 354.1852; found 354.1848.

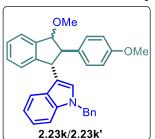

2.23h/2.23h'. This compound was synthesized according to the general procedure as described

above as a light yellow solid in 45% yield (83 mg from 100 mg of **2.14h**), mp 228-230 °C, $R_f = 0.5$ (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.8:1). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.90 (m, 2H), 7.60 (d, J = 8.0 Hz, 2.4H), 7.52-7.20 (m, 23H), 7.17-6.98 (m, 12H), 6.93 (d, J = 8.0 Hz, 3H), 5.18 (d, J = 7.2 Hz, 1H, major), 5.02 (d, J = 9.2 Hz, 1H, minor), 4.78 (d, J = 5.6 Hz, 1H, minor), 4.42 (d, J = 8.8 Hz, 1H, major), 3.79 (dd, J = 9.2, 5.2, Hz, 1H, minor), 3.57 (dd, J = 8.8, 7.2, Hz, 1H, major), 3.36 (s, 3H,

major), 3.18 (s, 3H, minor), 2.34 (s, 3H, major), 2.29 (s, 3H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 145.2, 144.7, 144.5, 142.4, 142.2, 142.0, 141.5, 138.2, 135.8, 135.0, 134.8, 130.2, 129.8, 129.7, 129.4, 129.0, 128.8, 128.6, 128.0, 127.8, 127.6, 127.1, 126.8, 126.7, 126.5, 125.6, 125.0, 124.6, 124.5, 124.4, 124.3, 123.5, 123.4, 123.0, 122.9, 120.6, 120.3, 113.9, 113.8, 89.6, 85.1, 61.5, 58.3, 57.1, 49.5, 46.2, 21.6, 21.5. IR (KBr, cm⁻¹): 3202, 2925, 2282, 1598, 1448, 1365, 1257, 1123, 1092, 1019, 973, 756, 704. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₈NO₃S 494.1784; found 494.1781.

2.23i/2.23i'. This compound was synthesized according to the general procedure described above

as a light yellow solid in 71% yield (171 mg from 100 mg of **2.14i**), mp 128-130 °C, $R_{\rm f} = 0.4$ (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1:1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 7.2 Hz, 1H, major), 7.49 (d, J = 6.8 Hz, 3.5H), 7.39-7.06 (m, 24H), 7.01-6.90 (m, 2H), 6.79 (s, 1H, major), 6.78 (s, 1H, minor), 5.98-5.86 (m, 2H), 5.20 (d, J = 7.2 Hz, 1H), 5.16-5.09 (m, 3H, one doublet corresponding to the proton bound to the carbon which is attached to the methoxy group was merged in the


multiplet), 5.01-4.93 (m, 2H), 4.86 (d, J = 5.6 Hz, 1H), 4.64-4.62 (m, 2H), 4.61-4.59 (m, 2H), 4.54 (d, J = 8.8, Hz, 1H), 3.93 (dd, J = 8.8, 5.6 Hz, 1H), 3.70 (dd, J = 8.8, 7.6 Hz, 1H), 3.40 (s, 3H), 3.19 (s, 3H). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 147.1, 144.3, 143.4, 141.9, 141.5, 139.2, 136.9, 133.5, 129.4, 128.8, 128.5, 128.4, 128.2, 127.9, 127.8, 127.5, 127.3, 127.2, 126.6, 126.5, 126.4, 126.1, 126.0, 125.4, 125.2, 124.9, 124.3, 121.4, 120.0, 119.8, 118.8, 117.0, 116.9, 116.2, 115.8, 109.6, 109.5, 89.8, 85.4, 62.1, 58.6, 57.6, 57.1, 49.6, 48.6, 48.5, 46.3. IR (neat, cm⁻¹): 2998, 1641, 1347, 1230, 1076, 965, 833, 790, 652. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₇H₂₅NNaO 402.1828; found 402.1833.

2.23j/2.23j'. This compound was synthesized according to the general procedure described above as a light yellow solid in 66% yield (135 mg from 100 mg of **2.14j**), mp 123-125 °C, $R_f = 0.4$ (in

10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.1:1). 1 H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 6.8 Hz 1H, major), 7.49 (d, J = 7.0 Hz, 1H), 7.34-7.27 (m, 6H), 7.22-7.15 (m, 19H), 7.14-7.04 (m, 15H), 6.95-6.76 (m, 11H), 5.26 (d, J = 8.0 Hz, 1H, major), 5.11 (s, 2H, N-CH, major), 5.10 (s, 2H, N-CH, minor), 4.91 (d, J = 10.0 Hz, 1H, minor), 4.77 (d, J = 5.5 Hz, 1H, minor), 4.23 (d, J = 10.0 Hz, 1H, major), 4.03 (dd, J = 10.5, 5.5 Hz, 1H, minor), 3.96 (t, J = 8.5 HZ, 1H, major), 3.40 (s, 3H, minor), 3.14 (s, 3H,

major). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 147.6, 143.8, 142.6, 141.8, 141.3, 140.7, 140.4, 138.6, 138.3, 137.2, 137.1, 131.3, 130.9, 130.1, 129.0, 128.9, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.5, 127.2, 127.0, 126.9, 126.5, 126.4, 126.3, 126.2, 126.0, 125.9, 125.5, 125.4, 124.6, 124.1, 121.7, 121.5, 120.7, 120.3, 119.3, 119.0, 112.5, 112.4, 110.4, 88.6, 85.5, 61.9, 58.3, 57.8, 57.0, 49.8, 47.3, 46.8. IR (KBr, cm⁻¹): 3029, 2824, 1492, 1365, 1140, 1027, 926, 762, 694. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₇H₃₂NO 506.2478; found 506.2486.

2.23k/2.23k'. This compound was synthesized according to the general procedure described above

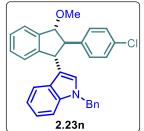
as a light yellow solid in 74% yield (163 mg from 100 mg of **2.14a**), mp 176-178 °C, $R_f = 0.4$ (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.8:1). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 7.6 Hz, 1H, major), 7.50 (d, J = 7.2 Hz, 1H, minor), 7.37-7.22 (m, 16H), 7.20-6.92 (m, 13H), 6.85-6.81 (m, 5H), 5.24 (s, 2H, N-CH, major), 5.21 (s, 2H, minor, N-CH, minor), 5.19 (d, J = 7.6 Hz, 1H, major), 5.06 (d, J = 9.2 Hz, 1H, minor), 4.81 (d, J = 5.6 Hz, 1H, minor), 4.48 (d, J = 9.2

Hz, 1H, major), 3.87 (dd, J = 9.2, 5.6 Hz, 1H, minor), 3.79 (s, 3H, major), 3.78 (s, 3H, minor), 3.68 (t, J = 8.4 Hz, 1H, major), 3.42 (s, 3H, major), 3.23 (s, 3H, minor). 13 C 1 H 1 NMR (100 MHz, CDCl₃): δ 158.2, 147.1, 144.1, 142.0, 141.5, 137.8, 137.7, 137.1, 135.2, 131.2, 130.4, 128.8, 128.7, 128.6, 128.5, 127.6, 127.5, 127.4, 127.2, 126.8, 126.7, 126.6, 126.5, 126.3, 125.4, 125.3, 124.9, 124.2, 121.6, 120.1, 119.9, 118.9, 116.2, 115.9, 113.8, 113.3, 109.8, 109.7, 89.5, 85.3, 61.4, 58.0, 57.7, 57.1, 55.2, 55.1, 49.6, 46.8. IR (KBr, cm⁻¹): 3023, 2977, 1603, 1551, 1463, 1360, 1303, 1252, 1179, 1092, 1024, 962, 839, 740, 699. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₀NO₂ 460.2271; found 460.2277.

2.231/2.231'. This compound was synthesized according to the general procedure described above

as a white solid in 83% yield (177 mg from 100 mg of **2.14a**), mp 156-158 °C, $R_f = 0.3$ (5% EtOAc/hexanes). A mixture of inseparable two diastereomers (6.6:1). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 7.6 Hz, 1H, minor), 7.54 (d, J = 7.6 Hz, 1H, major), 7.50 (d, J = 7.2 Hz, 1H, minor), 7.46 (d, J = 7.6 Hz, 1H, major), 7.37 (t, J = 7.2 Hz, 1H), 7.32-7.08 (m, 12H), 7.05-6.87 (m, 6H), 6.83 (s, 1H), 5.25-5.20 (m, 4H, peaks of 'H' bound to the carbon which is attached to methoxy group and benzylic 'CH₂' group were

merged), 4.85 (d, J = 5.2 Hz, 1H, minor), 4.52 (d, J = 9.2 Hz, 1H, major), 4.20 (dd, J = 10.0, 5.6 Hz, 1H, minor), 4.04 (t, J = 8.4 Hz, 1H, major), 3.35 (s, 3H, major), 3.17 (s, 3H, minor), 2.22 (s,


3H, minor), 1.85 (s, 3H, major). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 147.3, 144.1, 142.2, 142.0, 137.8, 137.7, 137.0, 136.7, 136.6, 130.2, 129.8, 129.2, 128.8, 128.6, 128.1, 127.7, 127.5, 127.4, 127.3, 127.2, 126.8, 126.6, 126.5, 126.2, 126.1, 126.0, 125.6, 125.5, 125.3, 124.8, 124.3, 121.6, 121.5, 120.0, 119.9, 118.9 (two peaks at same δ value), 116.4, 115.4, 109.7, 109.6, 90.4, 83.6, 58.1, 57.6, 57.2, 54.6, 50.6, 49.8, 46.0, 20.1, 19.9. IR (neat, cm⁻¹): 3027, 2926, 2824, 1605, 1553, 1493, 1464, 1354, 1334, 1300, 1203, 1171, 1110, 1088, 1015, 966, 739. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₀NO 444.2322; found 444.2325.

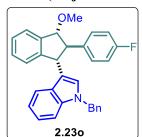
2.23m/2.23m'. This compound was synthesized according to the general procedure described

above as a white solid in 78% yield (167 mg from 100 mg of **2.14a**), mp 149-151 °C, $R_{\rm f}$ = 0.4 (in 10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1:1). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 7.5 Hz, 1H, major), 7.48 (d, J = 7.0 Hz, 1H, minor), 7.35-7.19 (m, 18H), 7.16-7.06 (m, 12H), 7.02-6.91 (m, 7H), 6.84 (s, 2H), 5.23 (s, 2H, N-CH, minor), 5.20-5.19 (m, 3H, peaks of 'H' bound to the carbon which is attached to methoxy group and benzylic 'CH₂' group were merged), 5.08

(d, J = 9.0 Hz, 1H, minor), 4.82 (d, J = 5.5 Hz, 1H, minor), 4.49 (d, J = 9.0 Hz, 1H, major) 3.89 (dd, J = 9.0, 5.5 Hz, 1H, minor), 3.68 (t, J = 7.5 Hz, 1H, major), 3.40 (s, 3H, minor), 3.21 (s, 3H, major), 2.32 (s, 3H, minor), 2.30 (s, 3H, major). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 147.2, 144.3, 142.0, 141.5, 140.2,137.8, 137.7, 137.1, 136.1, 136.0, 135.9, 129.3, 129.2, 128.8, 128.7, 128.6, 127.7, 127.6, 127.5, 127.4, 127.3 (two peaks at same δ value), 126.8, 126.7, 126.6, 126.5, 125.5, 125.4, 124.9, 124.3, 121.6, 120.2, 120.0, 118.9, 116.3, 116.0, 109.8, 109.7, 89.6, 85.4, 61.7, 58.4, 57.7, 57.1, 49.8, 46.5, 21.2, 21.1. IR (neat, cm $^{-1}$): 3028, 2925, 2817, 1613, 1469, 1350, 1329, 1112, 1205, 1086, 1014, 962, 802, 740. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₂H₃₀NO 444.2322; found 444.2318.

2.23n (major isomer). This compound was synthesized according to the general procedure

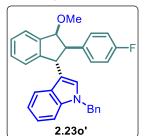
described above as a white solid in 34% yield (75 mg from 100 mg of **2.14a**), mp 148-150 °C, $R_f = 0.4$ (10% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.29-7.23 (m, 5H), 7.22-7.21 (m, 2H), 7.16-7.13 (m, 2H), 7.11-7.04 (m, 3H), 7.00-6.98 (m, 2H), 6.92 (t, J = 7.2 Hz, 1H), 6.80 (s, 1H), 5.21 (s, 2H), 5.17 (d, J = 7.6 Hz, 1H), 4.44 (d, J = 9.6 Hz, 1H), 3.67 (t, J = 8.8 Hz, 1H), 3.38 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.7, 141.7, 141.6, 137.6,


137.2, 132.2, 129.1, 128.8, 128.7, 128.6, 127.5, 127.4, 127.0, 126.8, 126.6, 124.9, 124.3, 121.7, 120.0, 119.0, 115.6, 109.8, 89.3, 61.6, 57.8, 49.8, 49.7. IR (KBr, cm $^{-1}$): 3028, 2930, 1494, 1458, 1396, 1355, 1205, 1174, 1123, 1092, 1009, 962, 828, 751. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₁H₂₇ClNO 464.1776; found 464.1776.

2.23n' (minor isomer). This compound was synthesized according to the general procedure

OMe N_{Bn} 2.23n' described above as a light brown solid in 29% yield (65 mg from 100 mg of **2.14a**), mp 160-162 °C, $R_{\rm f}$ = 0.5 (10% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 6.8 Hz, 1H), 7.31-7.25 (m, 5H), 7.22-7.21 (m, 3H), 7.19-7.08 (m, 5H), 6.98-6.91 (m, 3H), 6.80 (s, 1H), 5.17 (s, 2H), 5.02 (d, J = 9.2 Hz, 1H), 4.79 (d, J = 5.6 Hz, 1H), 3.85 (dd, J = 9.2, 5.6 Hz, 1H), 3.21 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.8, 141.2, 137.7, 137.6, 137.1, 132.2, 130.9, 129.0, 128.7, 128.0, 127.5, 127.3,

126.7, 126.5, 125.5, 125.4, 121.7, 119.9, 119.0, 115.4, 109.9, 85.1, 58.3, 57.0, 49.8, 46.9. IR (KBr, cm⁻¹): 3013, 2977, 2920, 2868, 2812, 1598, 1551, 1494, 1463, 1360, 1329, 1298, 1185, 1086, 1014, 962, 828, 746, 611, 503. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{31}H_{27}CINO$ 464.1776; found 464.1774.


2.230 (major isomer). This compound was synthesized according to the general procedure

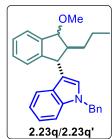
described above as a white solid in 27% yield (57 mg from 100 mg of **2.14a**), mp 128-130 °C, $R_{\rm f}=0.4$ (10% EtOAc/hexanes). ¹H NMR (500MHz, CDCl₃): δ 7.55 (d, J=7.5 Hz, 1H), 7.32-7.27 (m, 5H), 7.24-7.21 (m, 2H), 7.15 (t, J=7.5 Hz, 2H), 7.10 (d, J=7.5 Hz, 1H), 7.04-7.03 (m, 2H), 7.00-6.94 (m, 4H), 6.85 (s, 1H), 5.25 (s, 2H), 5.21 (d, J=8.0 Hz, 1H), 4.49 (d, J=9.5 Hz, 1H), 3.73 (dd, J=8.5, 7.5 Hz, 1H), 3.43 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.6, 160.7, 143.8, 141.8, 138.8,

138.7, 137.6, 137.2, 129.2, 129.1, 128.7, 128.6, 127.5, 127.4, 127.1, 126.7, 126.6, 124.9, 124.3, 121.7, 120.0, 119.0, 115.8, 115.3, 115.2, 109.8, 89.4, 61.5, 57.7, 49.8, 49.7. IR (neat, cm⁻¹): 2921, 2850, 1603, 1507, 1463, 1220, 1158, 1085, 740, 698. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for $C_{31}H_{27}FNO$ 448.2071; found 448.2070.

2.230' (minor isomer). This compound was synthesized according to the general procedure

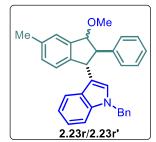
described above as a white solid in 24% yield (51 mg from 100 mg of **2.14a**), mp 134-136 °C, $R_f = 0.4$ (10% EtOAc/hexanes). ¹H NMR (500MHz, CDCl₃): δ 7.52 (d, J = 7.5 Hz, 1H), 7.37-7.35 (m, 3H), 7.33-7.29 (m, 2H), 7.28-7.26 (m, 2H), 7.25-7.23 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.02-6.95 (m, 5H), 6.85 (s, 1H), 5.23 (s, 2H), 5.07 (d, J = 9.5 Hz, 1H), 4.83 (d, J = 5.5 Hz, 1H), 3.91 (dd, J = 9.5, 5.5 Hz, 1H), 3.26 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.6, 160.7,

146.8, 141.3, 137.6, 137.1, 134.9, 134.8, 131.0, 130.9, 128.9, 128.7, 127.5, 127.4, 126.8, 126.7, 126.5, 125.5, 125.4, 121.7, 119.9, 119.0, 115.5, 114.7, 114.6, 109.9, 85.1, 58.1, 57.0, 49.8, 47.0. IR (neat, cm⁻¹): 3059, 3023, 2925, 2817, 1598, 1505, 1458, 1355, 1329, 1298, 1226, 1154, 1092, 1019, 962, 828, 735. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{31}H_{27}FNO$ 448.2071; found 448.2070.


2.23p/2.23p'. This compound was synthesized according to the general procedure described above

as a red solid in 78% yield (180 mg from 100 mg of **2.14a**), mp 173-175 °C, $R_{\rm f} = 0.4$ (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (3.9:1). ¹H NMR (400 MHz, CDCl₃): δ 7.88-7.58 (m, 7H), 7.50-7.15 (m, 15H), 7.06-6.90 (m, 4H), 6.86 (s, 1H), 5.41 (d, J = 7.2 Hz, 1H, major), 5.31 (d, J = 9.2 Hz, 1H, minor), 5.21 (s, 2H, N-CH, major), 5.17 (s, 2H, N-CH, minor), 4.99 (d, J = 4.8 Hz, 1H, minor), 4.69 (d, J = 9.2 Hz, 1H, major), 4.15 (dd, J = 9.2, 5.6 Hz, 1H, minor), 3.98 (t, J = 8.8 Hz, 1H, major), 3.46 (s, 3H,

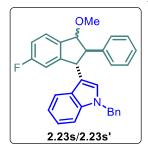
major), 3.26 (s, 1H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 147.1, 144.1, 142.0, 140.8, 137.7, 137.2, 133.6, 132.5, 129.0, 128.7, 128.6, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 127.3, 127.1, 127.0, 126.9, 126.7, 126.6, 126.5, 126.0, 125.9, 125.6, 125.5, 125.4, 125.3, 124.4, 121.7, 120.3, 120.0, 119.0, 115.9, 109.8, 89.6, 85.6, 62.4, 59.0, 57.9, 57.2, 50.0, 49.8, 46.7. IR (neat, cm⁻¹): 3044, 3023, 2925, 1608, 1556, 1469, 1350, 1303, 1200, 1086, 1019, 859, 818, 740. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₃₅H₂₉NNaO 502.2141; found 502.2141.


2.23q/2.23q'. This compound was synthesized according to the general procedure as described

above as a light brown solid in 56% yield (107 mg from 100 mg of **2.14a**), mp 142-144 °C, $R_{\rm f}=0.4$ (5% EtOAc/hexanes). A mixture of inseparable two diastereomers (2.1:1). ¹H NMR (500 MHz, CDCl₃): 7.48 (d, J=7.5 Hz, 2H), 7.40 (d, J=8.0 Hz, 1H), 7.32-7.24 (m, 12H), 7.20-7.01 (m, 12H), 6.98 (s, 1H, major), 6.86 (s, 1H, minor), 5.30 (s, 4H, N-CH, major and minor resonated at same δ value), 5.13 (d, J=7.5 Hz, 1H, minor), 4.74 (d, J=6.5 Hz, 1H, major), 4.69 (d, J=2.5 Hz, 1H, minor), 4.14 (d, J=7.5 Hz, 1H, major), 3.57 (s, 3H,

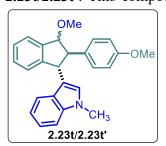
major), 3.51 (s, 3H, minor), 2.76-2.66 (m, 2H), 1.78-1.66 (m, 2H), 1.53-1.42 (m, 2H), 1.35-1.25 (m, 3H), 1.08-0.95 (m, 2H), 0.90 (q, J = 7.5 Hz, 6H), 0.73 (t, J = 7.0 Hz, 3H). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 146.3, 145.7, 142.2, 142.0, 137.8, 137.7, 137.0, 136.7, 128.7, 128.6, 128.2, 127.5, 127.2, 126.8, 126.7, 126.6, 126.5, 126.4, 125.6, 125.0, 124.2, 121.7, 121.6, 119.8, 119.6, 119.0, 118.9, 118.1, 114.6, 109.7, 109.6, 88.9, 88.5, 56.4, 56.3, 53.2, 49.9, 49.8, 49.7, 46.2, 43.5, 36.2, 34.1, 31.3, 22.3, 21.1, 20.8, 14.6, 14.2, 14.0. IR (neat, cm⁻¹): 3028, 2953, 1453, 1351, 1172, 1077, 730, 693, 615, 573. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₃₀NO 396.2322; found 396.2321.

2.23r. This compound was synthesized according to the general procedure described above as a



yellow solid in 84% yield (179 mg from 100 mg **2.14a**), mp 83-85 °C, $R_{\rm f}$ = 0.4 (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (2.4:1). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.20 (m, 21H), 7.16-7.06 (m, 6H), 7.03-6.91 (m, 7H), 6.84 (s, 1H), 5.23 (s, 2H, N-CH, major), 5.21 (d, J = 4.5 Hz, 1H, major), 5.20 (s, 2H, N-CH, major), 5.07 (d, J = 8.8 Hz, 1H, minor), 4.84 (d, J = 5.6 Hz, 1H, minor), 4.49 (d, J = 9.2 Hz, 1H, major), 3.92 (dd, J = 8.8, 5.6 Hz, 1H, minor), 3.70 (dd, J = 8.4, 7.2 Hz,

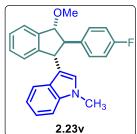
1H, major), 3.40 (s, 3H, major), 3.21 (s, 3H, minor), 2.4 (s, 3H, major), 1.56 (s, 3H, minor).


 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 143.9, 143.5, 142.0, 141.7, 141.2, 139.4, 137.8, 137.7, 137.2, 137.1 (two peaks at same δ value), 136.3, 129.7, 129.6, 129.5, 128.6, 128.4, 127.9, 127.8, 127.6, 127.5, 127.4, 127.2, 126.8, 126.7, 126.6, 126.5, 126.4, 125.9, 125.1, 124.8, 124.7, 121.6, 120.2, 120.0, 118.9, 116.5, 116.3, 109.8, 109.7, 89.6, 85.5, 62.4, 58.9, 57.7, 57.2, 49.8, 49.6, 46.3, 21.4. IR (neat, cm⁻¹): 3027, 2922, 2823, 1552, 1465, 1300, 1261, 1030, 965, 740. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₀NO 444.2322; found 444.2324.

2.23s/2.23s'. This compound was synthesized according to the general procedure described above

9.6 Hz, 1H, minor), 4.81 (d, J = 5.6 Hz, 1H, minor), 4.49 (d, J = 9.2 Hz, 1H, major), 3.95 (dd, J = 9.6, 5.6 Hz, 1H, minor), 3.74 (dd, J = 8.8, 7.2 Hz, 1H, major), 3.38 (s, 3H, major), 3.18 (s, 1H, minor). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 163.5 (d, J = 244.0 Hz), 146.6 (d, J = 8.0 Hz), 138.7, 137.6, 137.5, 137.1, 129.4, 128.7, 128.5, 127.9, 127.7, 127.5, 127.4, 126.9, 126.8, 126.7, 126.6, 126.5, 125.7 (d, J = 9.0 Hz), 121.7, 119.9, 119.7, 119.1, 115.4, 115.0, 114.6 (d, J = 23.0 Hz), 113.8, 112.5, 112.3, 111.7 (d, J = 22.0 Hz), 109.9, 109.8, 88.8, 84.6, 62.5, 59.1, 57.7, 57.0, 49.8, 49.7. IR (neat, cm⁻¹): 3023, 2921, 1605, 1486, 1356, 1350, 1262, 1211, 1200, 1174, 1100, 948, 863, 817, 745. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₆FNNaO 470.1891; found 470.1892.

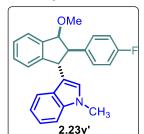
2.23t/2.23t'. This compound was synthesized according to the general procedure as described


above as a red solid in 65% yield (191 mg from 100 mg of **2.14g**), mp 155-157 °C, $R_{\rm f}=0.4$ (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (2:1). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J= 7.5 Hz, 1H, major), 7.48 (d, J= 7.0, Hz, 1H, minor), 7.35-7.23 (m, 8H), 7.20-7.11 (m, 6H), 7.05 (d, J= 7.5 Hz, 1H),7.01-6.92 (m, 2H), 6.84-6.80 (m, 3H), 6.76 (s, 1H, major), 6.74 (s, 1H, minor), 5.12 (d, J= 7.5 Hz, 1H, major), 5.05 (d, J= 8.5 Hz, 1H, minor), 4.80 (d, J= 5.5 Hz,

1H, minor), 4.51 (d, J = 8.5 Hz, 1H, major), 3.87 (dd, J = 9.0, 5.5 Hz, 1H, minor), 3.79 (s, 3H, major), 3.77 (s, 3H, minor), 3.70 (s, 3H, major), 3.68-3.64 (m, 4H, 'dd' of major isomer and 's' of minor isomer were merged), 3.42 (s, 3H, major), 3.20 (s, 3H, minor). $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃): δ 158.3, 147.3, 144.5, 142.0, 141.6, 137.5, 135.5, 131.3, 130.4, 128.8, 128.5, 127.4, 127.3, 127.1, 127.0, 126.6, 125.5, 125.4, 125.0, 124.3, 121.4, 120.0, 119.8, 118.7, 115.9, 115.4, 113.9, 113.4, 109.3, 109.2, 90.1, 85.5, 61.4, 58.0, 57.7, 57.1, 55.2, 55.1, 49.3, 46.4, 32.6. IR (neat, cm⁻¹): 2932, 2828, 1610, 1510, 1462, 1244, 1177, 1108, 1085, 1032, 826, 738. HRMS (ESI-TOF) m/z: $[M+H]^{+}$ calcd for $C_{26}H_{25}NNaO_{2}$ 406.1778; found 406.1781.

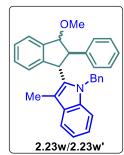
2.23u/2.23u'. This compound was synthesized according to the general procedure described above

OMe 2.23u/2.23u' as a red solid in 70% yield (215 mg from 100 mg of **2.14g**), mp 154-156 °C, $R_{\rm f} = 0.4$ (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (6.4:1). ¹H NMR (500 MHz, CDCl₃): δ 7.81-7.28 (m, 5H), 7.60 (dd, J = 8.5, 2.0 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H, minor), 7.53 (d, J = 7.0 Hz, 1H, major), 7.47-7.40 (m, 3H), 7.38(tt, J = 8.5, 1.0 Hz, 1H, minor), 7.34 (tt, J = 7.5, 1.0Hz, 1H, major), 7.30-7.24 (m, 4H), 7.20-7.08 (m, 3H), 7.01-6.98 (m, 1H, major), 6.93-6.90 (m, 1H, minor), 6.76 (s, 1H, major), 6.74 (s, 1H, minor),


5.28 (d, J = 7.5 Hz, 1H, minor), 5.24 (d, J = 9.0 Hz, 1H, major), 4.93 (d, J = 6.0 Hz, 1H, major), 4.67 (d, J = 8.5 Hz, 1H, minor), 4.10 (dd, J = 9.0, 5.5 Hz, 1H, major), 3.90 (dd, J = 8.5, 7.0 Hz,1H, minor), 3.67 (s, 3H, minor), 3.63 (s, 3H, major), 3.41 (s, 3H, minor), 3.18 (s, 3H, major). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 147.2, 144.4, 141.9, 141.4, 141.0, 137.5, 137.0, 133.6, 133.4, 132.5, 132.4, 128.9, 128.7, 128.2, 128.1, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 127.2, 127.1, 126.9, 126.7, 126.0, 125.6, 125.5, 125.4, 125.3, 125.1, 124.4, 121.4, 121.0, 119.8, 118.6, 115.7, 115.2, 109.3, 109.2, 90.2, 85.7, 62.4, 59.0, 57.9, 57.2, 49.7, 46.3, 32.6. IR (neat, cm⁻¹): 2846, 1508, 1272, 1182, 1142, 948, 855, 764. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₆NO 404.2009; found 404.2016.

2.23v (major isomer). This compound was synthesized according to the general procedure as described above as a white solid in 26% yield (72 mg from 100 mg of **2.14g**), mp 125-127 °C, $R_f = 0.3$ (10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 7.5 Hz, 1H), 7.36 (tt, J = 7.5, 1.0 Hz, 1H), 7.31-7.27 (m, 2H), 7.25-7.22 (m, 2H), 7.22-7.18 (m, 1H), 7.12 (dt, J = 8.0, 1.0 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.99 (dt, J = 9.0, 3.0 Hz, 1H), 6.97-6.94 (m, 2H), 6.77 (s, 1H), 5.15 (d, J = 7.0 Hz, 1H), 4.52 (d, J = 9.0 Hz,1H), 3.72-3.71 (m, 4H, dd and s appearing together), 3.43 (s, 3H) ${}^{13}C\{{}^{1}H\}$

NMR (125 MHz, CDCl₃): δ 162.6, 160.7, 144.2, 141.7, 139.06, 139.04, 137.4, 129.2, 129.1, 128.6, 127.3, 127.0, 126.9, 125.0, 124.3, 121.5, 119.8, 118.7, 115.6, 115.4, 115.2, 109.2, 90.0, 61.4, 57.7, 49.4, 32.6. IR (neat, cm⁻¹): 2932, 2825, 1507, 1472, 1222, 1155, 1092, 836, 739. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₃FNO 372.1758; found 372.1761.


2.23v' (minor isomer). This compound was synthesized according to the general procedure as

described above as a light brown solid in 20% yield (55 mg from 100 mg of **2.14g**), mp 158-160 °C, $R_f = 0.4$ (10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, J = 7.0 Hz, 1H), 7.37-7.33 (m, 3H), 7.32-7.30 (m, 1H), 7.92-7.27 (m, 2H), 7.24-7.22 (m, 1H), 7.20-7.18 (m, 1H), 7.13 (d, J = 7.0 Hz, 1H), 7.02-6.98 (m, 1H), 6.96 (tt, J = 9.0, 3.0 Hz, 2H), 6.74 (s, 1H), 5.04 (d, J = 9.0 Hz, 1H), 4.82 (d, J = 5.5 Hz, 1H), 3.90 (dd, J = 9.0Hz, 5.5 Hz, 1H), 3.68 (s, 3H), 3.21 (s, 3H). ¹³C{¹H} NMR (125 MHz,

CDCl₃): δ 162.6, 160.7, 146.9, 141.3, 137.5, 134.9, 134.9, 130.9, 130.8, 128.8, 127.2, 126.9, 126.7, 125.4, 125.3, 121.5, 119.7, 118.6, 115.2, 114.7, 114.6, 109.3, 85.3, 58.1, 57.0, 46.7, 32.6. IR (neat, cm⁻¹): 2932, 2890, 1506, 1471, 1218, 1154, 1068, 991, 738. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{23}FNO$ 372.1758; found 372.1758.

2.23w/2.23w'. This compound was synthesized according to the general procedure as described

above as a brown solid in 62% yield (120 mg from 100 mg of **2.14k**), mp 90-92 °C, $R_f = 0.4$ (10% EtOAc/hexanes). A mixture of inseparable two diastereomers (1.6:1). ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 7.0 Hz, 1H), 7.52-7.49 (m, 4H), 7.35-7.27 (m, 7H), 7.23-7.21 (m, 12H), 7.18-7.15 (m, 4H), 7.13-7.11 (m, 5H), 7.08-7.05 (m, 4H), 6.87 (d, J = 7.5 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.79 (d, J = 7.0 Hz, 2H, major), 6.75 (d, J = 6.0 Hz, 2H, minor), 5.20 (d, J = 7.5 Hz, 1H, major), 5.15 (d, J = 7.0 Hz, 1H, minor), 5.11 (d, J = 18.0 Hz, 1H, N-CH, minor), 5.01 (d, J = 17.0 Hz, 1H, N-CH, major),

4.95 (d, J = 17.5 Hz, 1H, N-CH, minor), 4.88 (d, J = 10.0 Hz, 1H, minor), 4.42 (d, J = 9.5 Hz, 1H, major), 4.29 (d, J = 17.5 Hz, 1H, N-CH, major), 3.74 (t, J = 8.5 Hz, 1H, major), 3.52 (t, J = 8.5 Hz, 1H, minor), 3.39 (s, 3H, major), 3.09 (s, 3H, minor), 1.99 (s, 3H, minor), 1.91 (s, 3H, major). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 142.7, 142.6, 142.0, 141.9, 141.6, 141.5, 138.3, 138.2, 138.1, 137.6, 136.5, 136.3, 133.9, 129.8, 128.9, 128.8, 128.6, 128.5, 128.4, 128.1, 127.8, 127.6, 127.4, 127.11, 127.09, 127.0, 126.8, 126.6, 126.0, 125.8, 125.6, 124.8, 124.5, 124.4, 124.1, 121.6, 121.3, 118.9, 118.5, 118.2, 110.9, 109.7, 109.3, 109.1, 108.5, 89.8, 89.2, 62.5, 58.9, 57.8, 57.3, 56.8, 49.6, 49.3, 47.5, 45.8, 9.5, 9.3. IR (neat, cm⁻¹): 3059, 3023, 2920, 2822, 1603, 1469, 1350, 1262, 1179, 1092, 1030, 746, 694. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₀NO 444.2322; found 444.2317.

Reaction of 2.20a-acetal with 2.14a:

To a stirred solution of **2.14a** (83 mg, 0.4 mmol, 1.0 equiv.) and **2.20a-acetal**²³ (122 mg, 0.48 mmol, 1.2 equiv.) in CH₂Cl₂ (4 mL) was added triflic acid (1.8 μL, 0.02 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 5 min. Then, the reaction mixture was quenched with saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford pure **2.23a** in 49% (84 mg) and **2.24a** in 30% yield respectively.

2.24a. white solid, mp 163-165 °C, $R_f = 0.5$ (5% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ

7.55 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.38 (s, 1H), 7.35 (d, J = 7.2 Hz, 1H), 7.27-7.22 (m, 3H), 7.20-7.18 (m, 3H), 7.17-7.15 (m, 2H), 7.08 (t, J = 6.8 Hz, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.92 (s, 1H), 6.89-6.88 (m, 2H), 5.31 (s, 1H), 5.22, 5.17 (ABq, 2H, J_{AB} = 16.4 Hz). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 149.8, 148.9, 143.1, 137.6, 136.8, 135.4, 128.6, 128.2, 127.6, 127.4, 127.3, 127.1, 126.9, 126.8, 126.4, 125.3, 123.7, 121.7, 121.0, 119.5, 119.2, 112.9,

109.7, 49.7, 47.7. IR (neat, cm⁻¹): 3023, 2920, 1460, 1332, 1172, 1023, 867, 750, 731. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{30}H_{24}N$ 398.1903; found 398.1907.

Synthesis of 2.26a and 2.26b: To a stirred solution of 2.20a (50 mg, 0.24 mmol, 1.0 equiv.) in CH₂Cl₂(1 mL) was added TMOF (51 μ L, 0.48 mmol, 2.0 equiv.), and TfOH (1.0 μ L, 0.012 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 7 h. After complete conversion of the starting material as shown by TLC, the reaction mixture was quenched with saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford the pure 2.26a and 2.26b.

2.26a (major isomer): This compound was obtained as a yellow liquid in 62% yield (38 mg from

50 mg of **2.20a**), $R_{\rm f} = 0.5$ (5% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.41-7.37 (m, 2H), 7.35-7.32 (m, 2H), 7.30-7.28 (m, 2H), 7.26 (tt, J = 9.0, 1.5 Hz, 1H), 4.80 (d, J = 6.0 Hz, 2H), 3.49 (t, J = 6.0 Hz, 1H), 3.38 (s, 6H (2×OMe)). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.3, 141.5 (2×C), 129 (2×C), 128.9 (2×C), 127.6 (2×C), 126.7, 124.8 (2×C), 88.7 (2×C), 59.9, 57.2

 $(2 \times C \text{ (OMe)})$. IR (neat, cm⁻¹): HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for $C_{17}H_{18}NaO_2$ 277.1199; found 277.1200.

2.26b (minor isomer): This compound was obtained as a yellow liquid in 22% yield (13.2 mg from

50 mg of **2.20a**), $R_{\rm f} = 0.6$ (5% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.45 (m, 1H), 7.43-7.41 (m, 1H), 7.38-7.35 (m, 2H), 7.30-7.29 (m, 4H), 7.26-7.7.22 (m, 1H), 5.15 (d, J = 5.5 Hz, 1H), 4.88 (d, J = 6.0 Hz, 1H), 3.65 (t, J = 6.0 Hz, 1H), 3.37 (s, 3H), 3.14 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.9, 142.0, 138.7, 129.3 (2×C), 128.8, 128.5, 128.1 (2×C), 126.7, 125.4, 125.1, 88.0,

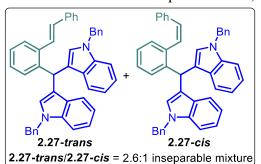
84.5, 57.8, 57.7, 57.3. IR (neat, cm⁻¹): HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{17}H_{18}NaO_2$ 277.1199; found 277.1199.

Synthesis of 2.20a-cis:

Scheme 2.11: Synthesis of 2.20a-cis

Step 1:

Pyridine (348 μ L, 4.32 mmol, 3.0 equiv.) was added to a solution of the compound **2.28**^{13b} (300 mg, 1.44 mmol, 1.0 equiv.) in ethyl acetate and the resulting solution was allowed to pass through H-cube instrument. Catcart was filled with Lindlar's catalyst (300 mg) and silica gel. After 3 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to get the pure compound **2.29** in 80% (240 mg) yield as a yellow sticky gum. ^{13b}


Step 2:

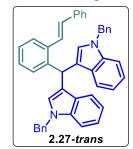
To a stirred solution of **2.29** (200 mg, 0.94 mmol, 1.0 equiv.) in CH₂Cl₂ (8 mL) was added pyridinium chlorochromate (PCC) (304 mg, 1.41 mmol, 1.5 equiv.) at room temperature for 2 h. The resulting mixture was filtered over celite and concentrated. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to get pure compound **2.20a**-*cis* (138 mg) as a yellow sticky gum. ^{13b} ¹H NMR (500 MHz, CDCl₃): δ 10.25 (s, 1H), 7.89 (dd, J = 7.5, 1.0 Hz, 1H), 7.47 (td, J = 7.5, 1.0 Hz, 1H), 7.42-7.38 (m, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.16-7.13 (m, 3H), 7.05-7.02 (m, 2H), 6.98 (d, J = 12.5 Hz, 1H), 6.38 (d, J = 12.0 Hz, 1H).

Reaction of 2.20a-cis with indole 2.14:

To a stirred solution of **2.14a** (20 mg, 0.096 mmol, 1.0 equiv.), **2.20a**-*cis* (24 mg, 0.1152 mmol, 1.2 equiv.), and TMOF (21 μL, 0.192 mmol, 2.0 equiv.) in CH₂Cl₂ (1.0 mL) was added TfOH (0.42 μL, 0.0048 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 15 min and found complete consumption of **2.14a**. Then the reaction mixture was quenched with saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with saturated brine solution, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford **2.27**-*trans* and **2.27**-*cis* as an inseparable mixture in 26% yield (15 mg). In addition, 50% of unreacted **2.20a**-*cis* was also recovered.

2.27-trans and **2.27-cis**: mp 148-150 °C, $R_f = 0.25$ (in 5% EtOAc/hexanes). ¹H NMR (500 MHz,

CDCl₃): δ 7.69-7.67 (m, 0.68H), 7.57 (d, J = 16.0 Hz, 0.72H), 7.42 (d, J = 8.0 Hz, 1.4H), 7.35 (d, J = 8.0 Hz, 0.62H), 7.28-7.12 (m, 18H), 7.08 (ddd, J = 13.0, 5.5, 1.0 Hz, 0.62H), 7.03-6.98 (m, 6H), 6.97-6.94 (m, 0.63H), 6.75 (d, J = 12.0 Hz, 0.28H), 6.68 (s, 1H), 6.64 (s, 0.51H), 6.56 (d, J = 12.0 Hz, 0.26H), 6.29 (s, 0.66H), 6.17 (s, 0.24H), 5.24, 5.20 (ABq, 2.6H, J_{AB} = 16.4 Hz), 5.21 (s, 1H). 13 C{ 1 H} NMR (125 MHz,


CDCl₃): δ 141.9, 141.5, 137.9, 137.8, 137.6, 137.1, 136.9, 136.8, 136.2, 130.7, 130.2, 129.5, 129.0, 128.7, 128.65, 128.62, 128.60, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 127.5, 127.4, 127.35, 127.33, 126.9, 126.5, 126.48, 126.41, 126.3, 126.1, 125.9, 121.7, 121.6, 120.2, 120.1, 119.0, 118.9,

118.2, 118.1, 109.7, 49.9, 36.9, 36.7. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{45}H_{36}N_2Na$ 627.2771; found 627.2764. $[M+H]^+$ calcd for $C_{45}H_{37}N_2$ 605.2951; found 605.2936.

Reaction of 2.20a-cis with 2 equivalents of indole 2.14a:

To a stirred solution of **2.20a-cis** (10 mg, 0.05 mmol, 1.0 equiv.), **2.14a** (21 mg, 0.1 mmol, 2.0 equiv.) and TMOF (11 μL, 0.1 mmol, 2.0 equiv.) in CH₂Cl₂ (0.5 mL) was added TfOH (0.22 μL, 0.0025 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 15 min. The reaction mixture was then quenched with saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford the pure **2.27-trans** as a white solid in 53% yield (16 mg) In addition, 5% of **2.20a-cis** and 16% of **2.14a** were recovered.

2.27-trans: mp 148-150 °C, $R_f = 0.25$ (in 5% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.71

(d, J = 7.5 Hz, 1H), 7.59 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 7.5 Hz, 2H), 7.30-7.28 (m, 3H), 7.27-7.23 (m, 6H), 7.22-7.20 (m, 6H), 7.19-7.15 (m, 3H), 7.05-7.01 (m, 7H), 6.70 (s, 2H), 6.32 (s, 1H), 5.27, 5.23 (ABq, 2H, J_{AB} = 17.0 Hz). 13 C{ 1 H} NMR (125 MHz, CDCl₃): δ 141.5, 137.8, 137.6, 137.1, 136.2, 130.2, 129.0, 128.7, 128.6, 128.5, 127.8, 127.5, 127.4, 127.3, 126.7, 126.6, 126.5, 126.3, 125.9, 121.7, 120.1, 119.0, 118.1, 109.7, 49.9, 36.7. IR (neat, cm⁻¹): 2960, 1445, 1327, 1257, 1011, 867, 790, 743, 631. HRMS (ESI-TOF)

m/z: [M+Na]⁺ calcd for C₄₅H₃₆N₂Na 627.2771; found 627.2772.

Reaction of 2.20a with 2 equivalents of indole 2.14a:

To a stirred solution of **2.20a** (15 mg, 0.072 mmol, 1.0 equiv.), **2.14a** (30 mg, 0.144 mmol, 2.0 equiv.) and TMOF (16 μ L, 0.144 mmol, 2.0 equiv.) in CH₂Cl₂(1 mL) was added TfOH (0.32 μ L, 0.0036 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 15 min. Then it was quenched with saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 3 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to afford pure **2.27-trans** as a white solid in 48% yield (21 mg). In addition, 7% of **2.20a** and 27% of **2.20a** were recovered.

Synthesis of compound V:

Scheme 2.12: Synthesis of compound V

Step 1: To a stirred solution of 2.30²⁴ (658 mg, 2.54 mmol, 2.0 equiv.) in THF (20 mL) was added n-BuLi (2.5 M solution in hexane, 1 mL, 2.54 mmol, 2.0 equiv.) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 30 minutes. After 30 minutes, compound 2.14l²⁵ (300 mg, 1.27 mmol, 1.0 equiv.) in 5 mL of THF was added dropwise to the above mixture and the contents were stirred for 10 minutes at the same temperature. Upon consumption of 2.141 as indicated by TLC, the reaction mixture was quenched with a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent (+ 1% Et₃N) to afford pure **2.31** as a white solid in (400 mg, 75%). This material was stored at -18 °C after isolation as it decomposed at room temperature. mp 90-92 °C, $R_f = 0.5$ (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.75-7.71 (m, 2H), 7.64-7.62 (m, 1H), 7.42 (d, J = 16.0 Hz, 1H), 7.37-7.33 (m, 3H), 7.31-7.29 (m, 2H), 7.28-7.27 (m, 1H), 7.24-7.23 (m, 1H), 7.23-7.22 (m, 1H), 7.21-7.18 (m, 2H), 7.17-7.15 (m, 1H), 7.14-7.11 (m, 2H), 6.99-6.97 (m, 2H), 6.92 (d, J = 16.5 Hz, 1H), 6.83 (s, 1H), 6.53 (d, J = 4.0 Hz, 1H), 5.21 (s, 2H), 2.26 (d, J = 4.5 Hz, 1H). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 140.7, 137.5, 137.4, 137.2, 137.0, 135.5, 130.6, 128.7, 128.68, 128.64, 128.5, 127.7, 127.6, 127.5, 126.6, 126.5, 126.4, 126.09, 126.04, 122.2, 119.8, 118.2, 110.0, 67.6, 50.1. IR (neat, cm⁻¹): 3340, 1546, 1493, 1465, 1451, 1353, 1332, 1214, 1169, 1027, 960, 736, 690. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₃₀H₂₅NNaO 438.1828; found 438.1828.

Step 2: Compound **V** was prepared by a slightly modified reported procedure. To a stirred solution of **2.31** (130 mg, 0.31 mmol, 1.0 equiv.) in methanol (2 mL) was added *p*-TSA (10.6 mg, 0.062 mmol, 0.2 equiv.) at room temperature. The reaction mixture was stirred for 15 minutes. After 15 minutes, upon consumption of **2.31** as indicated by TLC, the reaction mixture was quenched with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford pure **V** as a white solid (54 mg, 40%), mp 120-122 °C, $R_f = 0.4$ (in 10% EtOAc/hexanes). H NMR (500 MHz, CDCl₃): δ 7.75-7.73 (m, 1H), 7.68-7.63 (m, 2H), 7.47 (d, J = 16.0 Hz, 1H), 7.35-7.33 (m, 4H), 7.29-7.26 (m, 3H), 7.23-7.20 (m, 2H), 7.19-7.17 (m, 1H), 7.16-7.14 (m, 2H), 7.13-7.12 (m, 1H), 6.98 (dd, J = 1.0, 7.5 Hz, 2H), 6.93 (d, J = 16.0 Hz, 1H), 6.78 (s, 1H), 5.94 (s, 1H), 5.21, 5.18 (ABq, 2H, $J_{AB} = 16.0$ Hz), 3.48 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.7, 137.5, 137.4, 137.0, 136.4, 130.4, 128.7, 127.9, 127.7, 127.6, 127.5, 127.3, 126.6, 126.5, 126.2, 126.1, 122.1, 119.9, 119.8, 116.3, 110.0, 56.9, 50.0. IR (neat, cm⁻¹): 1548, 1493, 1464, 1451, 1353, 1333, 1170, 1074, 960, 970, 731, 691. HRMS (ESITOF) m/z: [M+Na]⁺ calcd for C₃₁H₂₇NNaO 452.1985; found 452.1983.

Gram scale synthesis of 2.23a:

To a stirred solution of **2.14a** (1.0 g, 4.82 mmol, 1.0 equiv.), **2.20a** (1.2 g, 5.84 mmol, 1.2 equiv.) and TMOF (1.0 mL, 9.64 mmol, 2.0 equiv.) in CH₂Cl₂ (10 mL) was added TfOH (21 μ L, 0.24 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After 5 h, the reaction mixture was quenched with a saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford the pure **2.23a** in 72% (1.5 g) yield with 1.5:1 diastereoselectivity.

Treatment of 2.23a with BBr₃: To a stirred solution of indane derivative 2.23a (40 mg, 0.093 mmol, 1.0 equiv.) in CH₂Cl₂(1 mL) was added boron tribromide {(1 M in CH₂Cl₂), (160 μL, 0.186 mmol, 2.0 equiv.)} at 0 °C under nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 2 h. Then, the reaction mixture was quenched with H₂O, and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford the pure 2.24a in 72% yield (27 mg).

2.250: To a stirred solution of indane derivative **2.230** (major) (40 mg, 0.09 mmol, 1.0 equiv.) in CH₂Cl₂ (1 mL) was added TMOF (20 μ L, 0.18 mmol, 2.0 equiv.), and TfOH (0.4 μ L, 0.0044 mmol, 0.05 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at same temperature for 46 h. The reaction mixture was quenched with saturated sodium bicarbonate solution, and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford the pure **2.250** as a white solid in 80% yield (30 mg).

2.250. mp 148-150 °C, $R_f = 0.54$ (10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.53-7.50

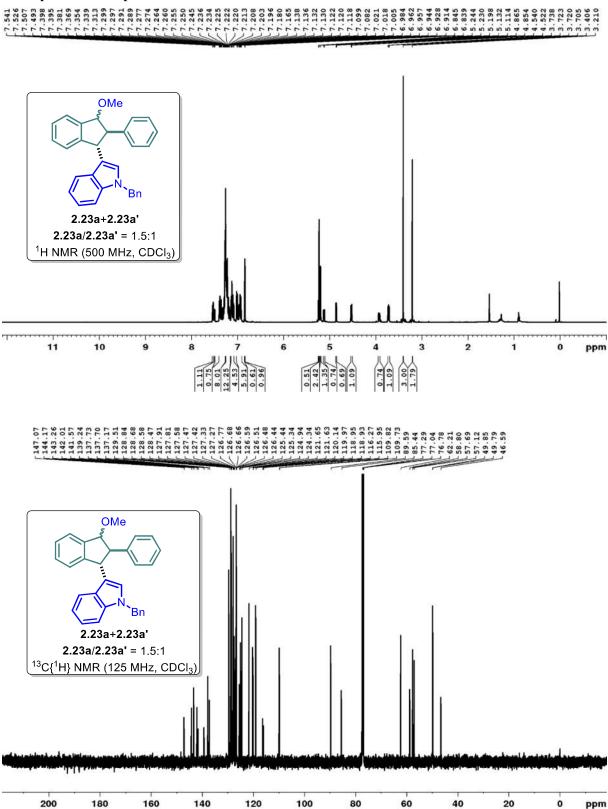
(m, 2H), 7.46-7.42 (m, 2H), 7.3 (d, J = 7.5 Hz, 1H), 7.32 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.23-7.22 (m, 3H), 7.19 (d, J = 8.0 Hz, 1H), 7.10 (q, J = 7.5 Hz, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.931-6.89 (m, 5H), 5.27 (s, 1H), 5.23, 5.19 (ABq, 2H, $J_{AB} = 16.2$ Hz). $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃): δ 163.0, 161.0, 148.7, 148.6, 137.6, 136.8, 131.7, 131.6, 128.6, 128.4, 128.3, 127.4, 127.0, 126.98, 126.92, 126.7, 126.4, 125.3, 123.6, 121.8,

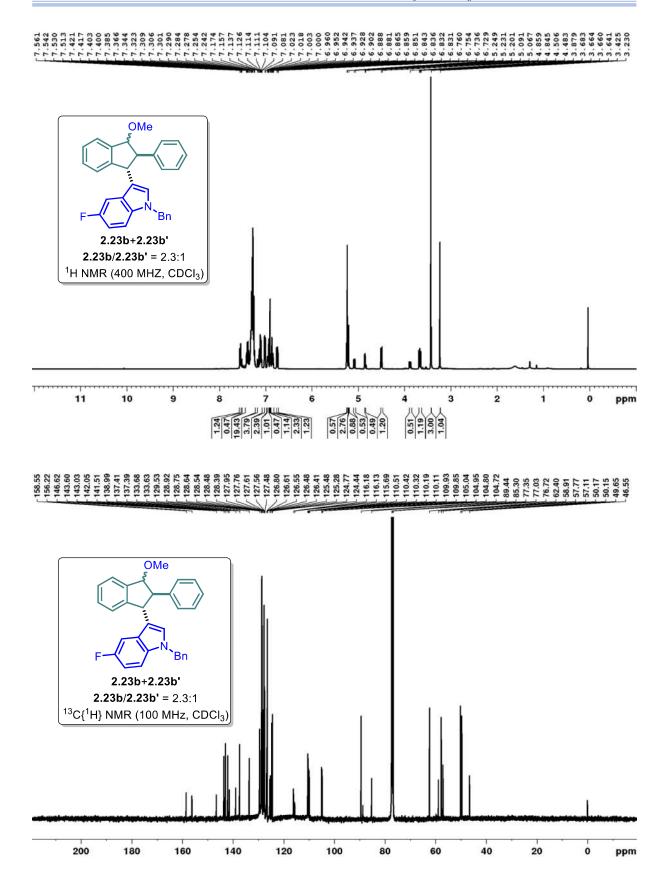
121.0, 119.5, 119.2, 115.2, 115.1, 112.7, 109.7, 49.7, 47.9. IR (neat, cm $^{-1}$): 1501, 1463, 1222, 1156, 827, 746, 733, 702. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₃₀H₂₃FN 416.1809; found 416.1812.

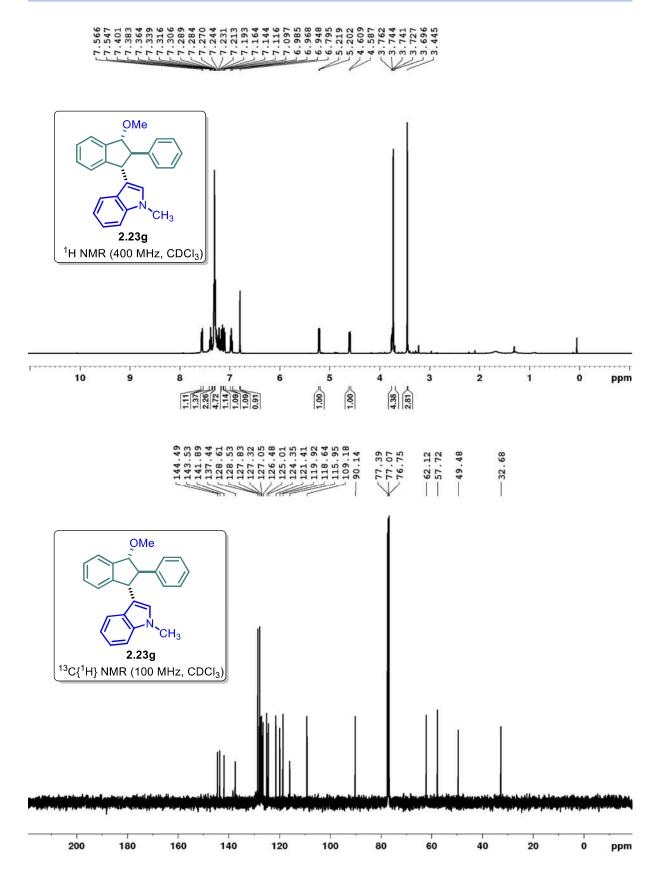
2.6 References

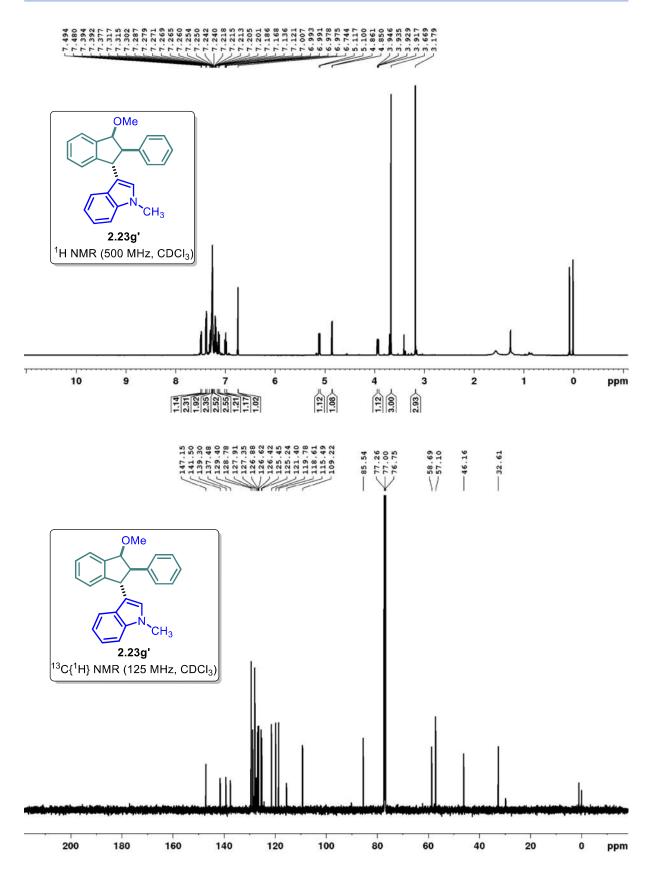
- (1) (a) Liu, F.; Boross, P. I.; Wang, Y.-F.; Tozser, J.; Louis, J. M.; Harrison, R. W.; Weber, I. T. Kinetic, Stability, and Structural Changes in High-Resolution Crystal Structures of HIV-1 Protease with Drug-Resistant Mutations L24I, I50V, and G73S. *J. Mol. Biol.* 2005, *354*, 789-800. (b) Miyauchi, Y.; Jesmin, S.; Sakai, S.; Kamiyama, J.; Shimojo, N.; Rahman, A.; Islam, M.; Zaedi, S.; Maeda, S.; Maruyama, H.; Mizutani, T.; Homma, S.; Aonuma, K.; Miyauchi, T. Effects of Selective Endothelin (ET)-A Receptor Antagonist versus Dual ET-A/B Receptor Antagonist on Hearts of Streptozotocin-Treated Diabetic Rats. *Life Sci.* 2014, *111*, 6-11. (c) Decker, A. M.; Blough, B. E. Development of Serotonin Transporter Reuptake Inhibition Assays Using JAR Cells. *J. Pharmacol. Toxicol. Methods* 2018, *92*, 52-56. (d) Bianco, G. G.; Ferraz, H. M. C.; Costa, A. M.; Costa-Lotufo, L. V; Pessoa, C.; de Moraes, M. O.; Schrems, M. G.; Pfaltz, A.; Silva, L. F. (+)- and (-)-Mutisianthol: First Total Synthesis, Absolute Configuration, and Antitumor Activity. *J. Org. Chem.* 2009, *74*, 2561-2566.
- (2) (a) Snyder, S. A.; Brill, Z. G. Structural Revision and Total Synthesis of Caraphenol B and C. Org. Lett. 2011, 13, 5524-5527. (b) Atsumi, T.; Murakami, Y.; Shibuya, K.; Tonosaki, K.; Fujisawa, S. Induction of Cytotoxicity and Apoptosis and Inhibition of Cyclooxygenase-2 Gene Expression, by Curcumin and Its Analog, α-Diisoeugenol. Anticancer Res. 2005, 25, 4029-4036. (c) Ohlstein, E. H.; Nambi, P.; Douglas, S. A.; Edwards, R. M.; Gellai, M.; Lago, A.; Leber, J. D.; Cousins, R. D.; Gao, A.; Frazee, J. S. SB 209670, a Rationally Designed Potent Nonpeptide Endothelin Receptor Antagonist. Proc. Natl. Acad. Sci. 1994, 91, 8052 LP-8056. For reviews, see: (d) Prasher, P.; Sharma, M. Medicinal Chemistry of Indane and its Analogues: A Mini Review. Chemistryselect 2021, 6, 2658-2677. (e) Borie, C.; Ackermann, L.; Nechab, M. Enantioselective Syntheses of Indanes: From Organocatalysis to C-H Functionalization. Chem. Soc. Rev. 2016, 45, 1368-1386. (f) Gabriele, B.; Mancuso, R.; Veltri, L. Recent Advances in the Synthesis of Indanes and Indenes. Chem. Eur. J. 2016, 22, 5056-5094. (g) Keylor, M. H.; Matsuura, B. S.; Stephenson, C. R. J. Chemistry and Biology of Resveratrol-Derived Natural Products. Chem. Rev. 2015, 115, 8976-9027.
- (3) (a) Chang, M.-Y.; Wu, Y.-S.; Tsai, Y.L.; Chen, H.-Y. Synthesis of 2-Sulfonyl Indenes and Indanes. J. Org. Chem. 2019, 84, 18, 11699-11723. (b) Zerov, A. V; Bulova, A. A.; Khoroshilova, O. V; Vasilyev, A. V. TfOH-Promoted Transformation of TMS-Ethers of Diarylsubstituted CF₃-Allyl Alcohols with Arenes into CF₃-Indanes. Org. Chem. Front. 2019, 6, 3264-3268. (c) Reddel, J. C. T.; Wang, W.; Koukounas, K.; Thomson, R. J. Triflimide-Catalyzed Allylsilane Annulations of Benzylic Alcohols for the Divergent

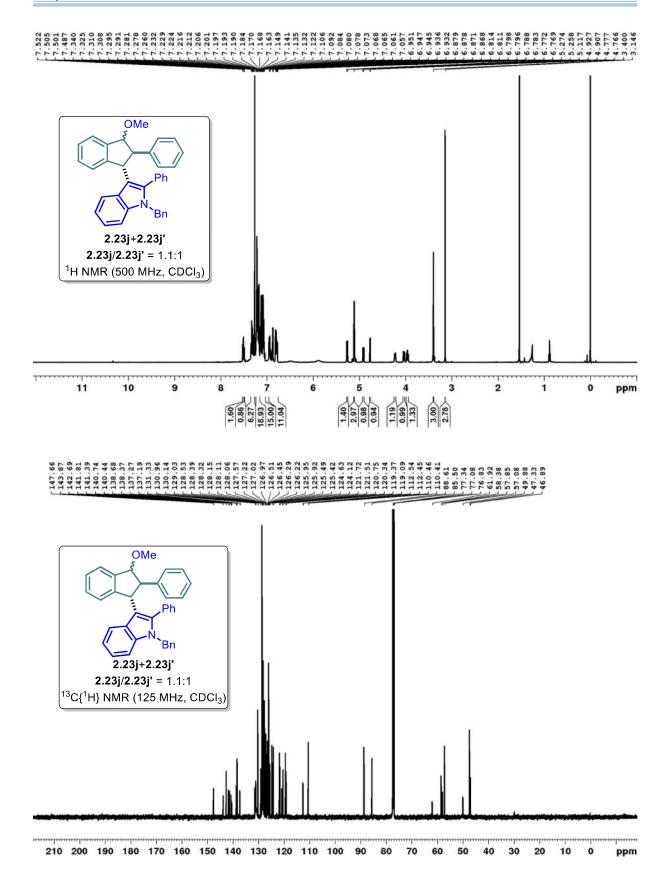
- Synthesis of Indanes and Tetralins. *Chem. Sci.* **2017**, *8*, 2156-2160. (d) Cai, X.; Keshavarz, A.; Omaque, J. D.; Stokes, B. J. Brønsted Acid-Catalyzed Intramolecular Hydroarylation of β-Benzylstyrenes. *Org. Lett.* **2017**, *19*, 2626-2629. (e) Kazakova, A. N.; Iakovenko, R. O.; Boyarskaya, I. A.; Nenajdenko, V. G.; Vasilyev, A. V. Acid-Promoted Reaction of Trifluoromethylated Allyl Alcohols with Arenes. Stereoselective Synthesis of CF₃-Alkenes and CF₃-Indanes. *J. Org. Chem.* **2015**, *80*, 9506-9517. (f) Begouin, J.-M.; Capitta, F.; Wu, X.; Niggemann, M. Diastereoselective Synthesis of Indanes and Tetralins *via* Intramolecular Friedel-Crafts Reaction. *Org. Lett.* **2013**, *15*, 1370-1373.
- (4) Jiang, J.; Guan, X.; Liu, S.; Ren, B.; Ma, X.; Guo, X.; Lv, F.; Wu, X.; Hu, W. Highly Diastereoselective Multicomponent Cascade Reactions: Efficient Synthesis of Functionalized 1-Indanols. *Angew. Chemie Int. Ed.* **2013**, *52*, 1539-1542.
- (5) (a) Wu, X.; Chen, S.-S.; Zhang, L.; Wang, H.-J.; Gong, L.-Z. Palladium-Catalyzed Enantioselective Carboannulation of 1,3-Dienes with Aryl Iodides Enables Access to Chiral Indanes. *Chem. Commun.* 2018, 54, 9595-9598. (b) Fan, Y. C.; Kwon, O. Synthesis of Functionalized Alkylidene Indanes and Indanones through Tandem Phosphine-Palladium Catalysis. *Org. Lett.* 2015, 17, 2058-2061.
- (6) Kong, W.; Fuentes, N.; García-Domínguez, A.; Merino, E.; Nevado, C. Stereoselective synthesis of highly functionalized indanes and dibenzocycloheptadienes through complex radical cascade reactions. *Angew. Chem. Int. Ed.* **2015**, *54*, 2487-2491.
- (7) (a) Wang, Y.; Wu, X.; Robin Chi, Y. Synthesis of Indanes *via* Carbene-Catalyzed Single-Electron-Transfer Processes and Cascade Reactions. *Chem. Commun.* **2017**, *53*, 11952-11955. (b) Feng, Z.-N.; Luo, J.-Y.; Zhang, Y.; Du, G.-F.; He, L. N-Heterocyclic Carbene-Catalyzed Diastereoselective Synthesis of Sulfenylated Indanes *via* Sulfa-Michael-Michael (Aldol) Cascade Reactions. *Org. Biomol. Chem.* **2019**, *17*, 4700-4704.
- (8) Shigeno, M.; Yamamoto, T.; Murakami, M. Stereoselective Restructuring of 3-Arylcyclobutanols into 1-Indanols by Sequential Breaking and Formation of Carbon-Carbon Bonds *Chem. Eur. J.* **2009**, *15*, 12929-12931.
- (9) (a) Ahmad, A.; Silva, L. F. Metal-Free Asymmetric Synthesis of Indanes through Chiral Hypervalent Iodine(III)-Mediated Ring Contraction. *J. Org. Chem.* 2016, 81, 2174-2181.
 (b) Khan, A.; Jr, L. F. S.; Rabnawaz, M. A comparative study of thallium(III) and iodine(III)-mediated ring contraction reactions for the synthesis of indane. *New J. Chem.* 2021, 45, 2078-2084.
- (10) (a) Feng, Z.; Yuan, Z.; Zhao, X. Huang, Y.; Yao. A [4+1] annulation of ortho-electrophile-substituted para-quinone methides for the synthesis of indanes and isoindolines. *Org. Chem. Front.* 2019, 6, 3535-3539. (b) Hu, W.; Zhang, C.; Huang, J.; Guo, Y.; Fu, Z.; Huang, W. Access to Highly Functionalized Indanes from Arynes and α,γ-Diketo Esters. *Org. Lett.*

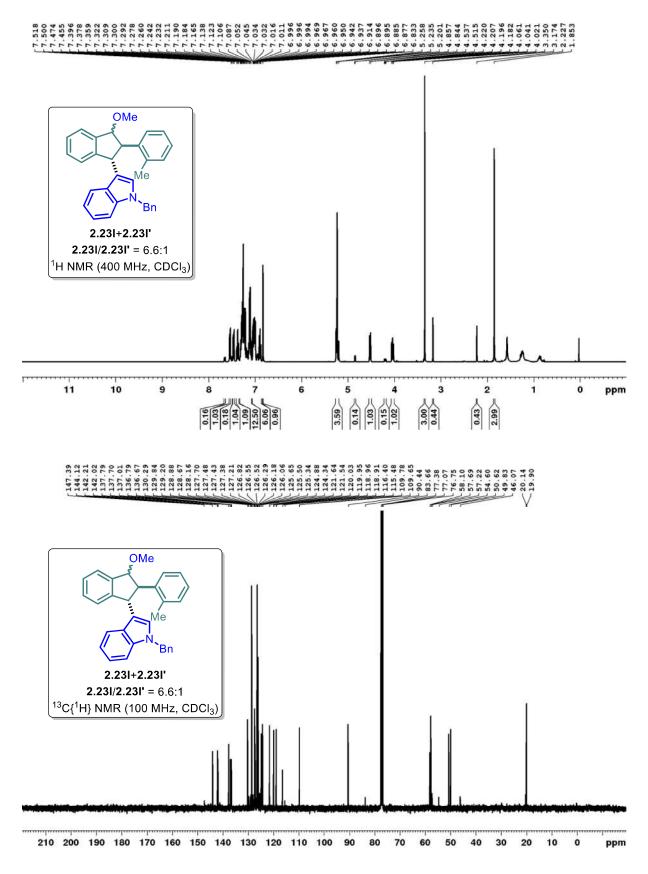

- **2019**, *21*, 941-945. (c) Seiser, T.; Cramer, N. Rhodium(I)-Catalyzed 1,4-Silicon Shift of Unactivated Silanes from Aryl to Alkyl: Enantioselective Synthesis of Indanol Derivatives. *Angew. Chemie Int. Ed.* **2010**, *49*, 10163-10167.
- (11) (a) Johnston, C. P.; Kothari, A.; Sergeieva, T.; Okovytyy, S. I.; Jackson, K. E.; Paton, R. S.; Smith, M. D. Catalytic Enantioselective Synthesis of Indanes by a Cation-Directed 5-Endo-Trig Cyclization. *Nat. Chem.* 2015, 7, 171-177. (b) Loh, C. C. J.; Hack, D.; Enders, D. Asymmetric Domino Synthesis of Indanes Bearing Four Contiguous Stereocentres Catalyzed by Sub-Mol% Loadings of a Squaramide in Minutes. *Chem. Commun.* 2013, 49, 10230-10232. (c) Chua, P. J.; Tan, B.; Yang, L.; Zeng, X.; Zhu, D.; Zhong, G. Highly Stereoselective Synthesis of Indanes with Four Stereogenic Centers *via* Sequential Michael Reaction and [3+2] Cycloaddition. *Chem. Commun.* 2010, 46, 7611-7613. (d) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. Catalytic Asymmetric Reductive Michael Cyclization. *J. Am. Chem. Soc.* 2005, 127 (43), 15036-15037. (e) He, G.; Ma, J.; Zhou, J.; Li, C.; Liu, H.; Zhou, Y. A Metal-Free Method for the Facile Synthesis of Indanones *via* the Intramolecular Hydroacylation of 2-Vinylbenzaldehyde. *Green Chem.* 2021, 23, 1036-1040.
- (12) Lin, C.-C.; Teng, T.-M.; Odedra, A.; Liu, R.-S. Gold-Catalyzed Deoxygenated Cyclization of Cis-2,4-Dien-1-Als with Regioselective Addition of Two Nucleophiles. One-Pot Synthesis of Highly Functionalized Cyclopentene Framework. *J. Am. Chem. Soc.* **2007**, *129*, 3798-3799.
- (13) (a) Sarnpitak, P.; Trongchit, K.; Kostenko, Y.; Sathalalai, S.; Gleeson, M. P.; Ruchirawat, S.; Ploypradith, P. Synthesis of Substituted 2-Arylindanes from E-(2-Stilbenyl)Methanols *via* Lewis Acid-Mediated Cyclization and Nucleophililc Transfer from Trialkylsilyl Reagents. *J. Org. Chem.* **2013**, *78*, 8281-8296. (b) Jongcharoenkamol, J.; Chuathong, P.; Amako, Y.; Kono, M.; Poonswat, K.; Ruchirawat, S.; Ploypradith, P. Selective Divergent Synthesis of Indanols, Indanones, and Indenes *via* Acid-Mediated Cyclization of (Z)- and (E)-(2-Stilbenyl)Methanols and Its Application for the Synthesis of Paucifloral F Derivatives. *J. Org. Chem.* **2018**, *83*, 13184-13210.
- (14) (a) Zheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization (CADA) Reaction-Enabled Total Synthesis of Indole-Based Natural Products. *Nat. Prod. Rep.* 2019, *36*, 1589-1605. (b) Chen, J.-B.; Jia, Y.-X. Recent Progress in Transition-Metal-Catalyzed Enantioselective Indole Functionalizations. *Org. Biomol. Chem.* 2017, *15*, 3550-3567. (c) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. *Chem. Rev.* 2010, *110*, 4489-4497. (d) Bandini, M.; Eichholzer, A. Catalytic Functionalization of Indoles in a New Dimension. *Angew. Chemie Int. Ed.* 2009, *48*, 9608-9644.
- (15) Zhang, J.; Han, X.; Lu, X. Synthesis of Indole-Substituted Indanones via Palladium(II)-

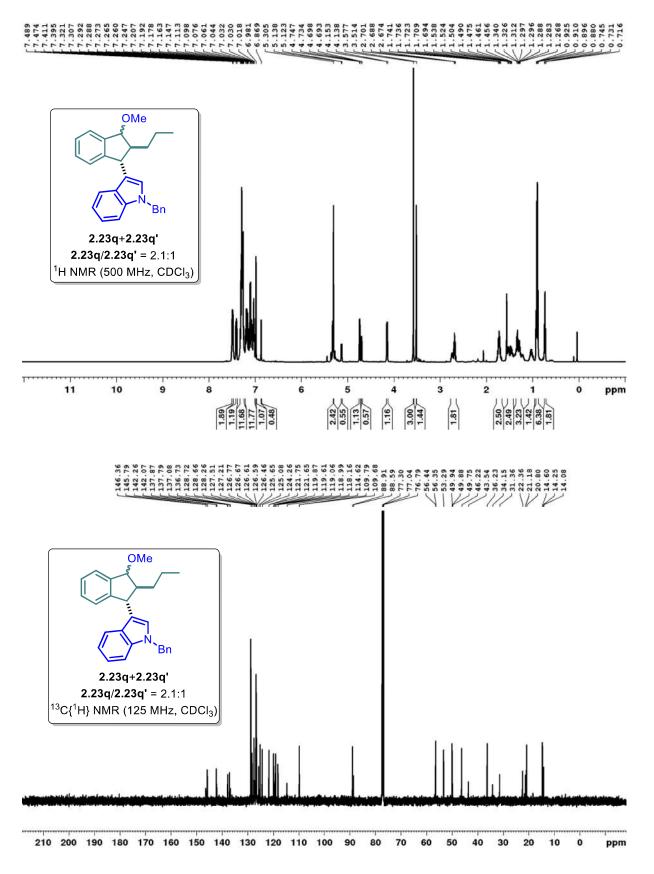

- Catalyzed Tandem Reaction of Ortho-Electron-Deficient Alkynyl-Substituted Aryl Aldehydes with Indoles. *Org. Lett.* **2016**, *18*, 2898-2901.
- (16) Loh, C. C. J.; Atodiresei, I.; Enders, D. Asymmetric Organocatalytic Michael/Henry Domino Reactions through Hydrogen-Bond Activation: Kinetic Access to Indane Scaffolds Bearing Cis-Vicinal Substituents. *Chem. Eur. J.* **2013**, *19*, 10822-10826.
- (17) (a) Mandal, M; Sakthivel, S.: Balamurugan, R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. J. Org. Chem. 2021, 86, 333-351. (b) Mandal, M.; Balamurugan, R. Triflic Acid-Mediated Expedient Synthesis of Benzo[a]Fluorenes and Fluorescent Benzo[a]Fluorenones. Adv. Synth. Catal. 2018, 360, 1453-1465. (c) Koppolu, S. R.; Balamurugan, R. In situ Formed Acetals Facilitated Direct Michael Addition of Unactivated Ketones. New J. Chem. 2017, 41, 1186-1192. (d) Naveen, N.; Koppolu, S. R.; Balamurugan, R. Silver Hexafluoroantimonate-Catalyzed Direct α-Alkylation of Unactivated Ketones. Adv. Synth. Catal. 2015, 357, 1463-1473. (e) Manojveer, S.; Balamurugan, R. In situ Formed Acetal-Facilitated Synthesis of Substituted Indene Derivatives from o-Alkenylbenzaldehydes. Org. Lett. 2015, 17, 3600-3603. (f) Manojveer, S.; Balamurugan, R. A Cascade Approach to Naphthalene Derivatives from o-Alkynylbenzaldehydes and Enolizable Ketones via in Situ Formed Acetals. European J. Org. Chem. 2015, 2015, 4254-4260. (g) Kothapalli, R. B.; Niddana, R.; Balamurugan, R. Synthesis of Chiral α-Diarylacetic Esters by Stereospecific 1,2-Aryl Migration Promoted by In Situ Generated Acetals from Benzoins. Org. Lett. 2014, 16, 1278-1281. (h) Manojveer, S.; Balamurugan, R. Synthesis of Naphthalene Derivatives from ortho-Alkynylacetophenone Derivatives via Tandem In Situ Incorporation of Acetal and Intramolecular Heteroalkyne Metathesis/Annulation. Org. Lett. 2014, 16, 1712-1715. (i) Manojveer, S.; Balamurugan, R. A Facile Access to Substituted Benzo[a]Fluorenes from o-Alkynylbenzaldehydes via In Situ Formed Acetals. Chem. Commun. 2014, 50, 9925-9928.
- (18) For an exclusive review, see: Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). *Chem. Rev.* **2010**, *110*, 2250-2293.
- (19) Rinaldi, A.; Scarpi, D.; Occhiato, E. G. Recent Advances in the Synthesis of Indenes. *European J. Org. Chem.* **2019**, *2019*, 7401-7419.
- (20) For a review on 4π-electrocyclizations, see: (a) Sheikh, N. S. 4π-Electrocyclisation in Domino Processes: Contemporary Trends and Synthetic Applications Towards Natural Products. *Org. Biomol. Chem.* 2015, 13, 10774-10796. For recent reviews on related Iso-Nazarov reactions, see: (b)Yadykov, A. V.; Shirinian, V. Z. Recent Advances in the Interrupted Nazarov Reaction. *Adv. Synth. Catal.* 2020, 362, 702-723. (c) Reveira M. J.; Marsili, L. A.; Mischne, M. P. The iso-Nazarov Reaction. *Org. Biomol. Chem.* 2017, 15,

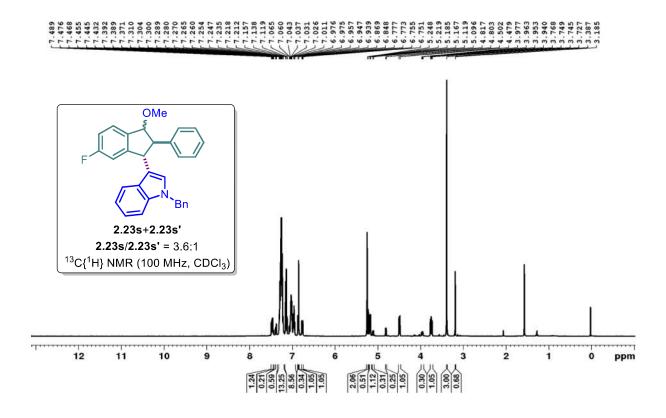

9255-9274.

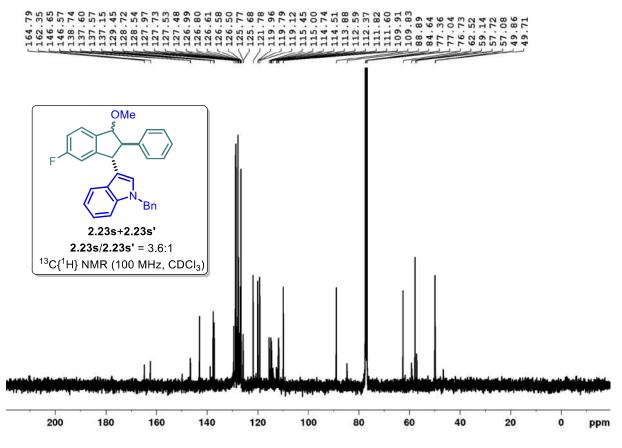

- (21) (a) Yuan, J.; Liu, C.; Chen, Y.; Zhang, Z.; Yan, D.; Zhang, W. Rhodium-Catalyzed Intramolecular Hydroacylation of 1,2-Disubstituted Alkenes for the Synthesis of 2-Substituted Indanones. *Tetrahedron* 2019, 75, 269-277. (b) Youn, S. W.; Lee, S. R.; Kim, Y. A.; Kang, D. Y.; Jang, M. J. Unusual 1,2-Aryl Migration and Depalladation of Alkylpalladium Intermediates Containing a Syn-β-Hydrogen Atom. *ChemistrySelect* 2016, 1, 5749-5757.
- (22) (a) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Palladium-Catalyzed Direct and Regioselective C-H Bond Functionalization/Oxidative Acetoxylation of Indoles. *J. Org. Chem.* 2011, 76, 80-84. (b) Xu, X.-H.; Liu, G.-K.; Azuma, A.; Tokunaga, E.; Shibata, N. Synthesis of Indole and Biindolyl Triflones: Trifluoromethanesulfonylation of Indoles with Tf₂O/TTBP (2,4,6-Tri-Tert-Butylpyridine) System. *Org. Lett.* 2011, 13, 4854-4857. (c) Williams, C. W.; Shenje, R.; France, S. Catalytic, Interrupted Formal Homo-Nazarov Cyclization with (Hetero)Arenes: Access to α-(Hetero)Aryl Cyclohexanones. *J. Org. Chem.* 2016, 81, 8253-8267. (d) Shao, C.; Shi, G.; Zhang, Y.; Pan, S.; Guan, X. Palladium-Catalyzed C-H Ethoxycarbonyldifluoromethylation of Electron-Rich Heteroarenes. *Org. Lett.* 2015, 17, 2652-2655. (e) Omann, L.; Oestreich, M. Catalytic Access to Indole-Fused Benzosiloles by 2-Fold Electrophilic C-H Silylation with Dihydrosilanes. *Organometallics* 2017, 36, 767-776.
- (23) Pawar, S. K.; Wang, C.-D.; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Gold-Catalyzed Formal Cycloaddition of 2-ethynylbenzyl Ethers with Organic Oxides and α-diazoesters. *Angew. Chemie Int. Ed.* **2013**, *52*, 7559-7563.
- (24) Rossi, R.; Carpita, A.; Ribecai, A.; Mannina, L. Stereocontrolled synthesis of carbon-carbon double bond locked analogues of strobilurins which are characterized by a trans-1,2-disubstituted cyclopropane ring. *Tetrahedron* **2001**, *57*, 2847-2856.
- (25) Guo, T.; Han, L.; Wang, T.; Lei, L.; Zhang, J.; Xu, D. Copper-Catalyzed Three-Component Formal [3+1+2] Benzannulation for Carbazole and Indole Synthesis. *J. Org. Chem.* **2020**, *85*, 9117-9128.
- (26) Müller, R.; Mulani, I.; Basson, A. E.; Pribut, N.; Hassam, M.; Morris, L.; Otterlo, W. A. L. V.; Pelly, S. C. Novel indole based NNRTIs with improved potency against wild type and resistant HIV. *Bioorg. Med. Chem. Lett.* 2014, 24, 4376-4380.

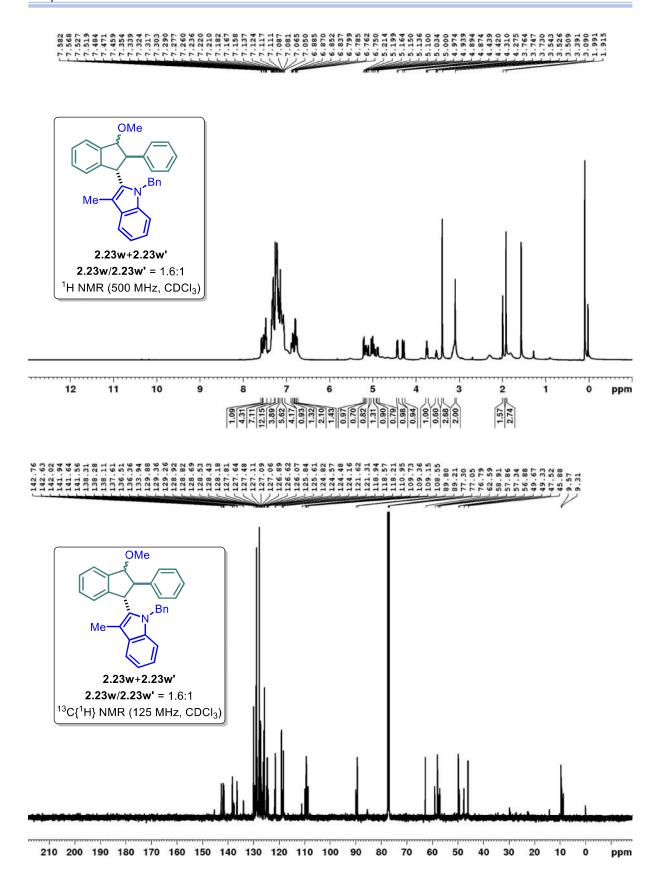

2.7 Representative spectra

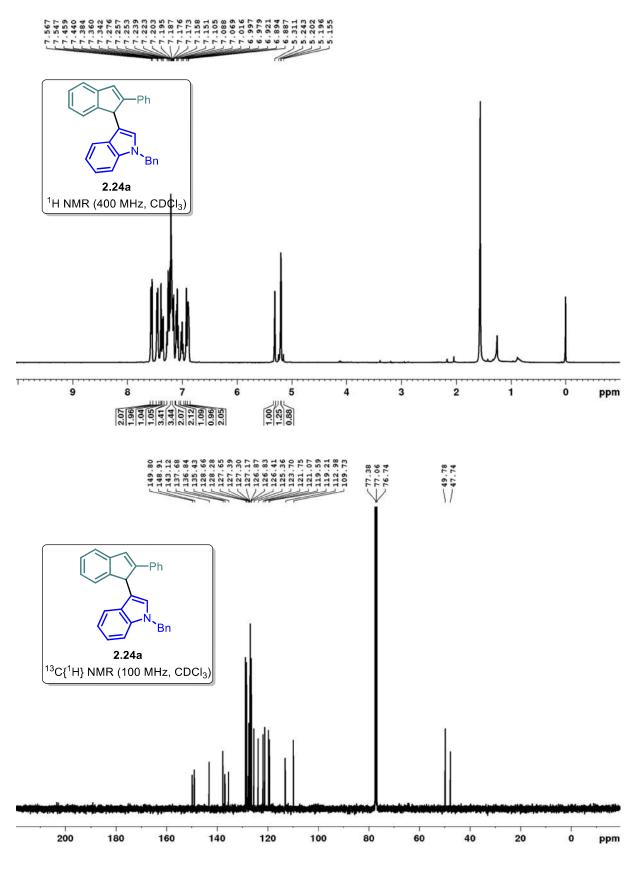


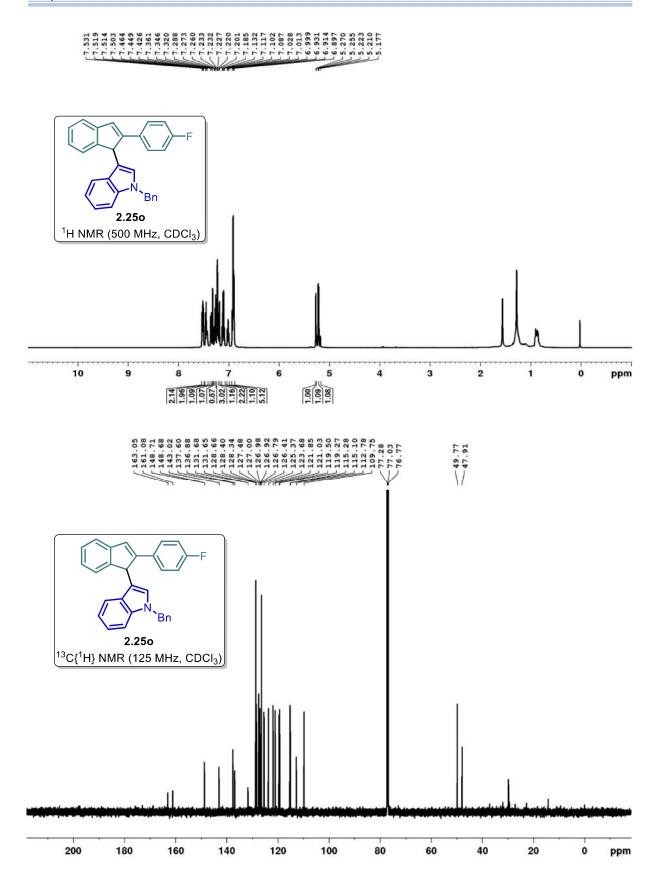


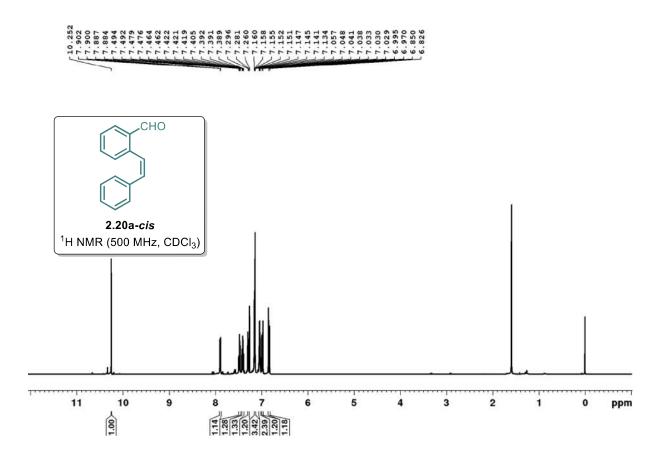


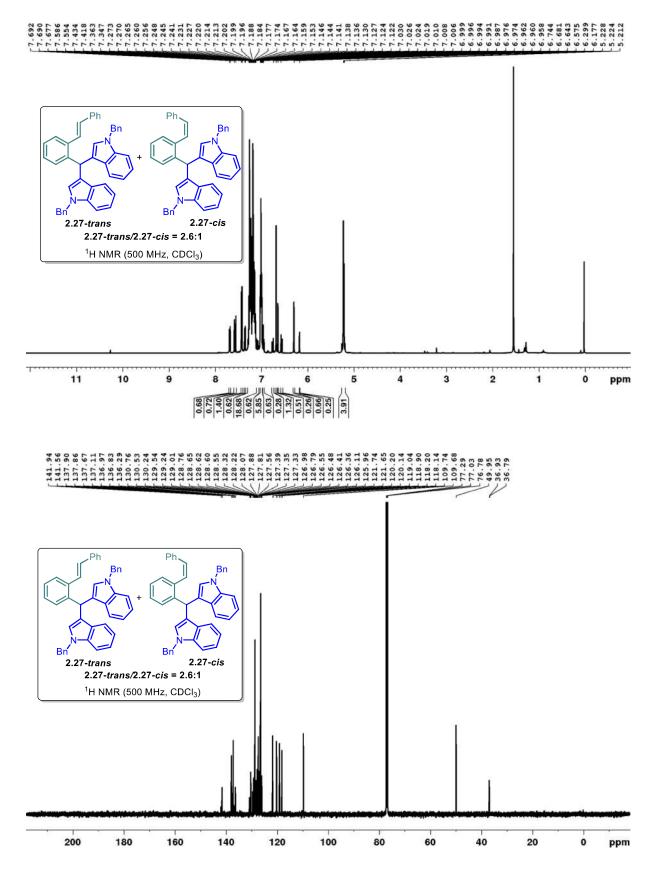


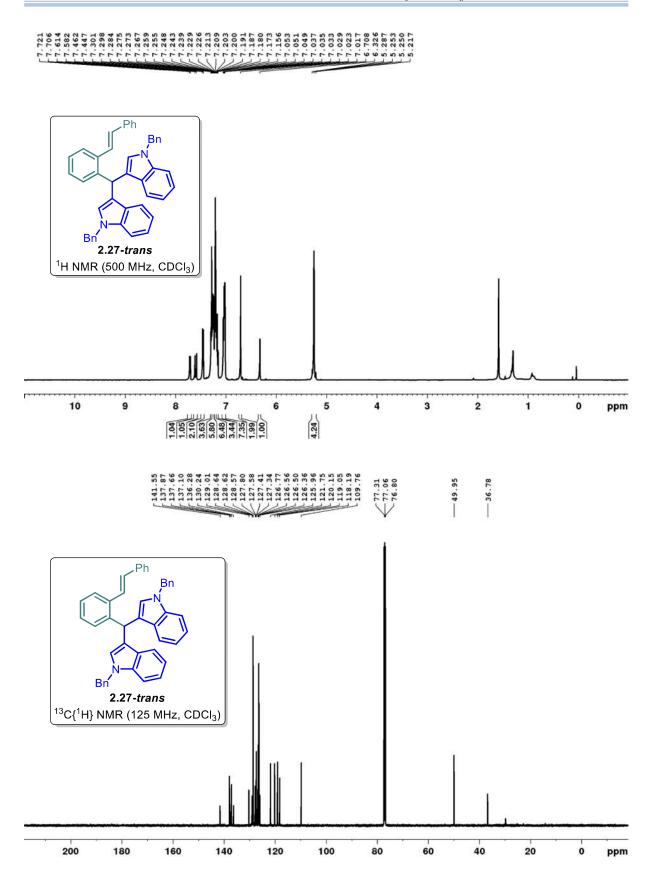


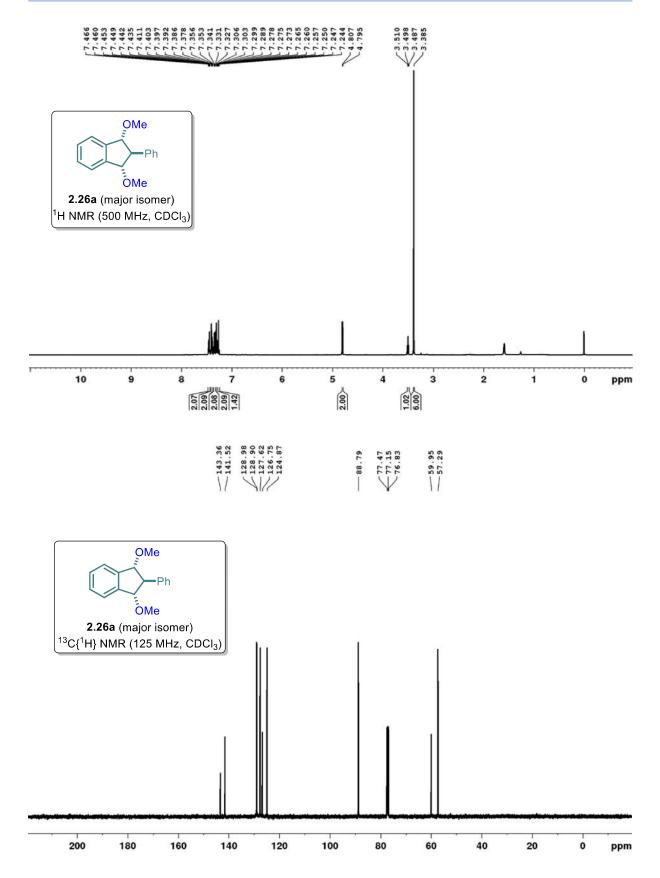


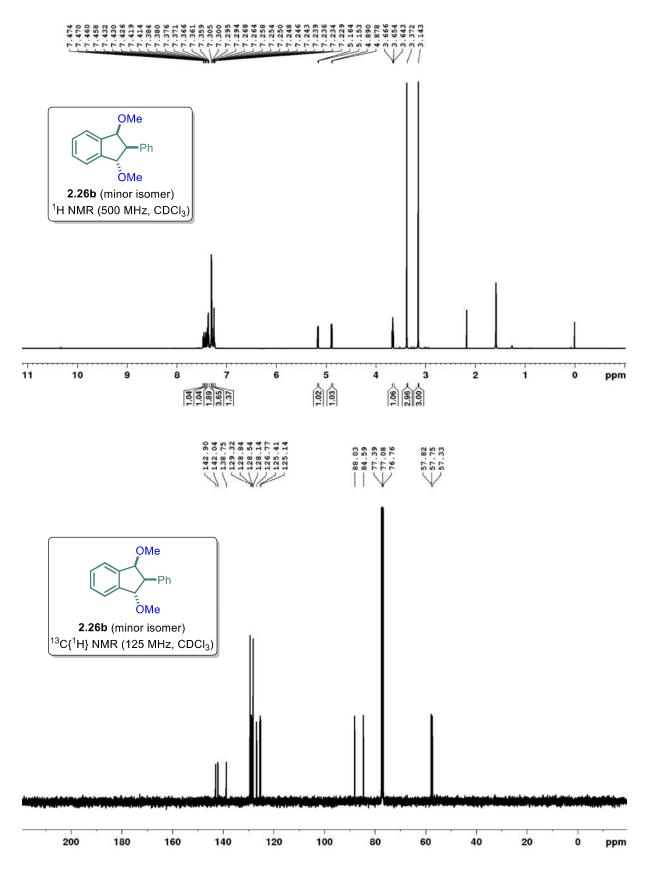


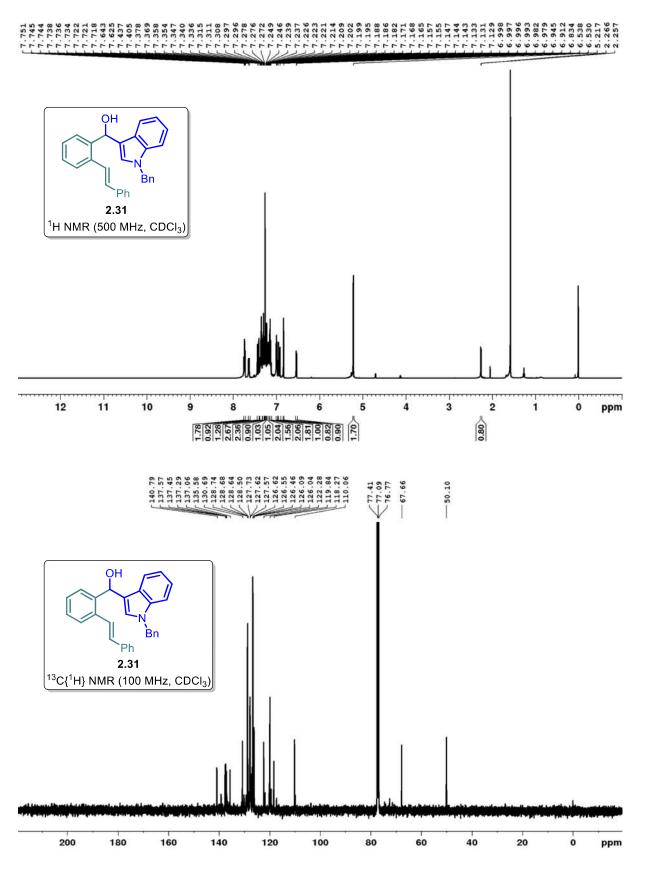


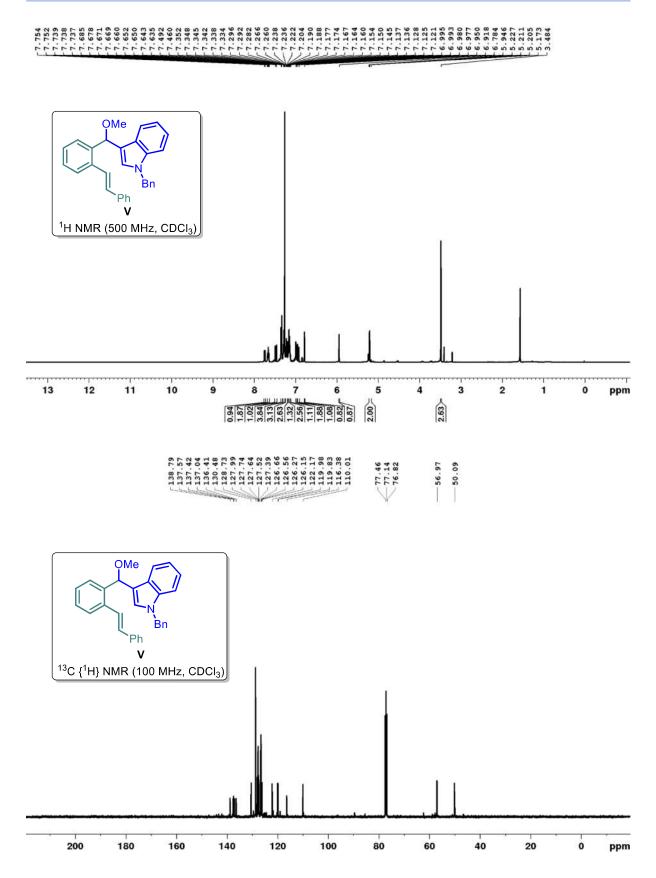


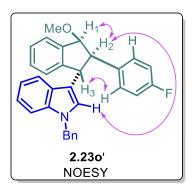


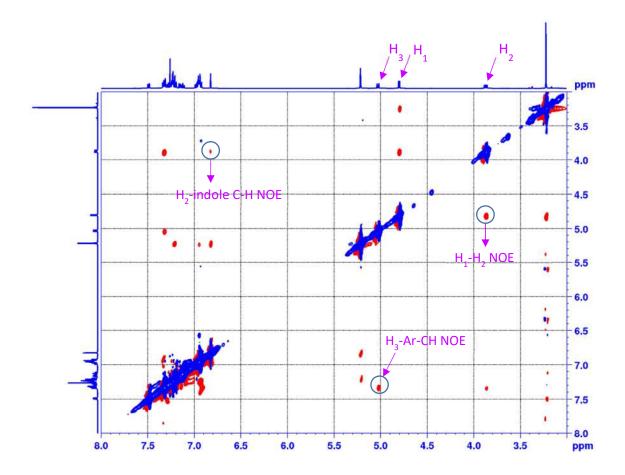


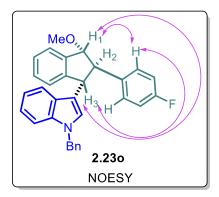


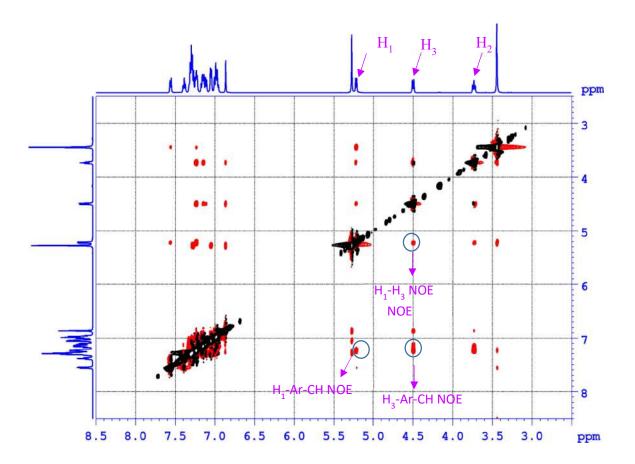


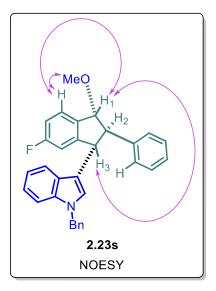


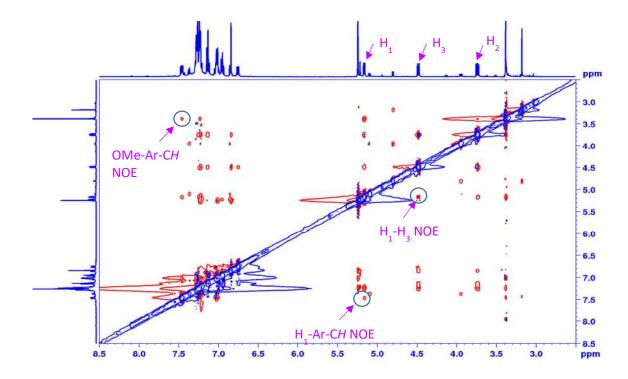


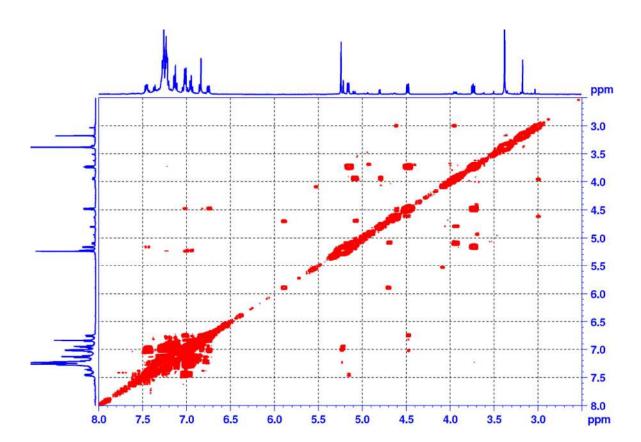


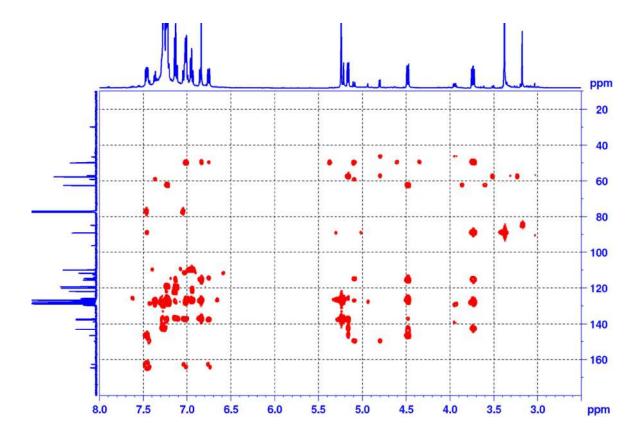


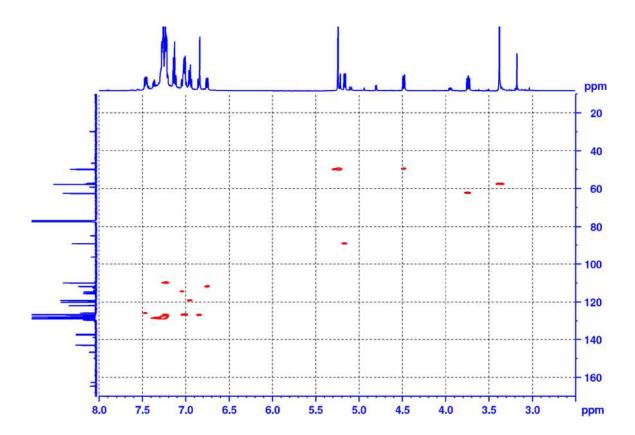




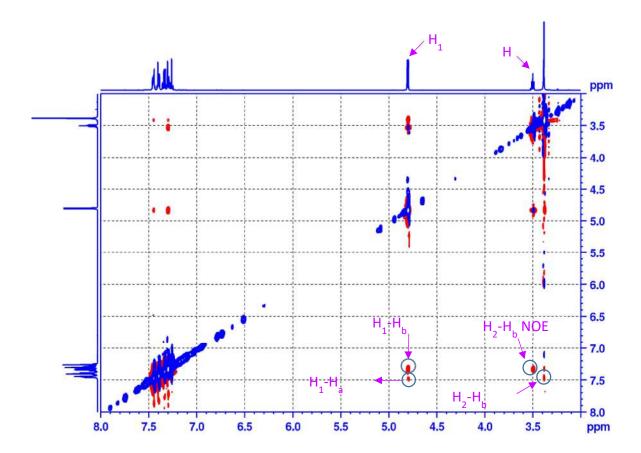


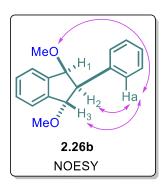


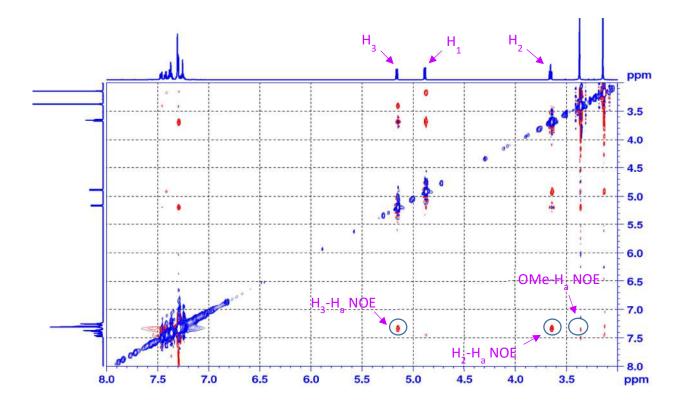




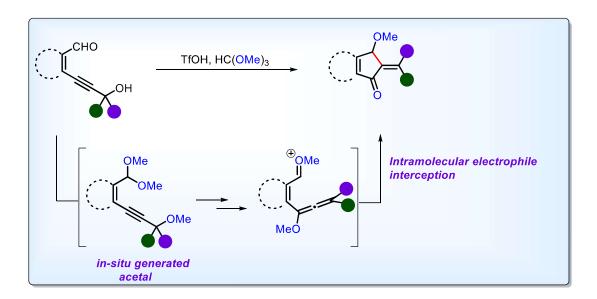






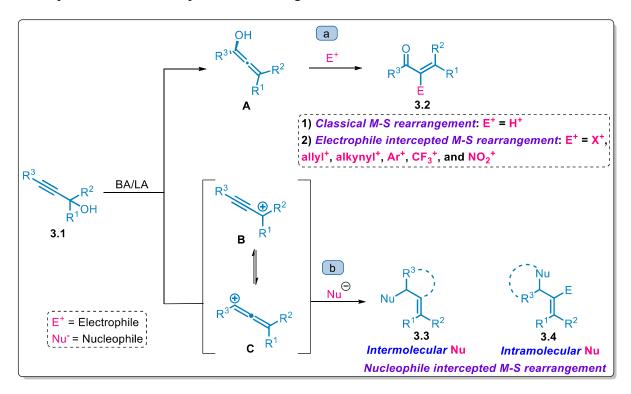


2.8 Crystallographic data


Table 2.3: Crystallographic data for 2.23g', 2.23l and 2.27-trans

Compound	2.23g'	2.231	2.27-trans
Identification code	RB 44	RB 24	RB 26a
CCDC	2065127	2065396	2106210
Empirical formula	$C_{25}H_{23}NO$	$C_{32}H_{30}NO$	$C_{45}H_{36}N_2$
Formula weight	353.44	444.57	605.93
Temperature/K	296	273	119
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P 21/C	P-1	P 1 21/n 1
a/Å	14.865(2)	10.7604(8)	16.8700 (9)
b/ Å	8.3723(13)	11.0540(8)	9.7170 (4)
c/ Å	15.690(2)	11.8385(8)	20.3903 (9)
$\alpha/^0$	90	99.344(3)	90
β/0	101.970(6)	114.034(3)	98.286 (4)
$\gamma/^0$	90	100.665(3)	90
Volume/Å ³	1910.2(5)	1218.70(16)	3307.6 (3)
Z	4	2	4
Density(p)calc g/cm ³	1.229	1.209	1.217
Absorption Coefficient(μ) (mm ⁻¹)	0.074	0.072	0.070
F(000)	752.0	472.2	1282.0
Crystal size/mm ³	0.02 x 0.02 x 0.01	0.02 x 0.02 x 0.01	0.02 x 0.02 x 0.01
Reflections collected	3906	5079	5819
Independent reflections	2143	3552	2788

Completeness to theta = 26.379	99.5%	99.3%	99.9%
R (reflections)	0.0731 (2143)	0.0489 (3552)	0.0977 (2788)
wR2 (reflections)	0.1753 (3906)	0.1253 (5079)	0.2811 (5819)


Chapter 3

Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement under Acetalization Conditions

3.1 Introduction

Synthesis of α , β -unsaturated carbonyl compounds **3.2** by treating propargyl alcohols **3.1** with an acid promoter is known as Meyer-Schuster (M-S) rearrangement (Scheme 3.1). This transformation involves a 1,3-hydroxyl shift to generate an allenol intermediate **A** or Meyer-Schuster (M-S) intermediate in the presence of a Brønsted or Lewis acid (BA or LA). This allenol intermediate **A** could be trapped in two different ways: a) by a proton (Classical M-S rearrangement) in an intermolecular fashion {Scheme 3.1a(1)}, $^{1b-h}$ or by an electrophile other than a proton {Scheme 3.1a(2)}, or b) a nucleophile (Scheme 3.1b) in either inter- or intramolecular fashion leading to a new C-C or C-X (heteroatom) bond formation (intercepted M-S rearrangement). The intercepted M-S rearrangement offers a wide scope for its products as they are highly functionalized. Over the past decade, intercepted M-S rearrangement, in particular, electrophile intercepted M-S rearrangement has extensively been studied. Groups such as halogen, $^{2a-c}$ allyl, 2d alkynyl, 2c aryl, $^{2f-g}$ trifluoromethyl, 2h and nitro 2i have been employed as electrophiles in such intercepted M-S rearrangements.

Scheme 3.1: Classical and intercepted (electrophile and nucleophile) M-S rearrangements

3.1.1 Selected previous approaches for the synthesis of indanones

In 2021, Jiang *et al.* reported a stereoselective synthesis of 1-indanones **3.7** bearing cyano and ester groups from 1,6-enynes **3.5** and cyclobutanone oxime esters **3.6** under Cu(I)-catalysis (Scheme 3.2).³ This reaction allows cyclobutanone oxime esters **3.6** to undergo direct

deconstructive functionalization to form multiple chemical bonds in a one-pot operation *via* a sequential cyanopropyl radical-induced 1,6-addition followed by 5-*exo-dig* cyclization, oxidative addition, and reductive elimination.

Scheme 3.2: Cu(I)-catalyzed cyanoalkyl esterification of 1,6-enynes by cyclic oxime esters

Zhou and co-workers developed a facile protocol for the synthesis of indanones **3.9** through an intramolecular hydroacylation of 2-vinylbenzaldehydes **3.8** under L-proline catalysis (Scheme 3.3).⁴ Furthermore, this method was utilized for the synthesis of AchE inhibitor, donepezil **3.10**.

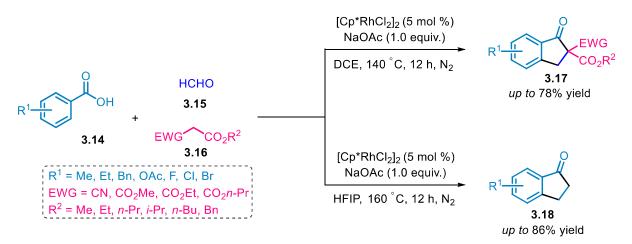
R¹ L-proline (20 mol %)

AcOH, 120 °C, 24 h

$$R^{3}$$
 R^{2}

3.8

 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 $R^{$


Scheme 3.3: L-proline-catalyzed intramolecular hydroacylation of 2-vinylbenzaldehydes

Rh(III)-catalyzed C-H activation and tandem (4+1) annulation of sulfoxonium ylide **3.11** with acrylates **3.12** for the synthesis of indanone derivatives **3.13** was demonstrated by Prabhu and co-workers (Scheme 3.4).⁵ In this protocol, sulfoxonium ylides **3.11** acted as a traceless directing group as well as an internal oxidant.

$$R^{1} \stackrel{\text{II}}{\text{II}} + \frac{\text{OR}^{2}}{\text{OR}^{2}} \frac{[\text{Cp*RhCl}_{2}]_{2} (5 \text{ mol \%})}{\text{AgBF}_{4} (20 \text{ mol \%})} \\ \text{AcOH (1.0 equiv.)} \\ \hline \text{TFE, Ar} \\ 100 \, ^{\circ}\text{C, 16 h} \\ \hline R^{1} = 4\text{-OMe, } 3.5\text{-}(\text{OMe})_{2}, 4\text{-Cl, } 4\text{-Br, } 4\text{-NO}_{2}, 4\text{-CN}} \\ R^{2} = \text{Et, Me, Bu, Ph, Bn, -CH}_{2}\text{CCl}_{3}, \text{-}(\text{CH}_{2})_{2}\text{-O-CH}_{2}\text{-CH}_{3}} \end{bmatrix} \qquad up to 92\% \text{ yield}$$

Scheme 3.4: Rh(III)-catalyzed C-H activation and tandem (4+1) annulation

Zhang *et al.* described a Rh-catalyzed C-H activation of benzoic acids **3.14** and reacted them with formaldehyde **3.15** and malonates **3.16** for the synthesis of indanone derivatives **3.17** and **3.18** (Scheme 3.5).⁶ The solvent plays a vital role in this transformation, and 2-substituted indanones **3.17** were obtained when DCE is used as a solvent. Whereas, nonsubstituted indanones **3.18** were obtained when the reactions were conducted in HFIP solvent.

Scheme 3.5: Rh-catalyzed C-H activation of benzoic acids

Copper-catalyzed denitrogenative transannulation/hydrolyzation of 3-aminoindazoles **3.19** with N-(2-methylallyl)anilines **3.20** for the synthesis of 2-(aminomethyl)-2-methyl-indanones **3.21** was developed by Cheng *et al.* (Scheme 3.6).⁷

Scheme 3.6: Synthesis of 2,2-disubstituted indanones from 3-aminoindazoles under Cu(II)-catalysis

Jiang and co-workers reported the diastereoselective synthesis of 1-indanones **3.24** from β -alkynyl ketones **3.22** and acetonitrile **3.23** *via* 1,4-*oxo*-migration/cyclization strategy co-promoted by *t*-BuOK and DMEDA (Scheme 3.7).⁸

DMEDA (20 mol %) t-BuOK (3.0 equiv.)

R³
3.23

3.24

R¹ = Me, OMe, F, Cl

R² = Cyclopropyl, Me, Et, *i*-Pr, Ph, etc.

R³ = Ph,
$$p$$
-tolyl, m -tolyl, 4-Et-C₆H₄, 4-Cl-C₆H₄, PMP, etc.

Scheme 3.7: 1,4-*Oxo*-Migration/cyclization of *o*-alkynylphenyl alkyl ketones promoted by two bases

Yang *et al.* developed an efficient method for the synthesis of indole-substituted indanones **3.27** from *N*-sulfonyltriazoles **3.25** and indoles **3.26** under rhodium catalysis (Scheme 3.8).

Sulfonyltriazoles **3.25** undergo denitrogenation in the presence of rhodium(II)-catalyst to generate an oxonium ylide, which would be attacked by indole **3.26** followed by subsequent skeletal rearrangement to furnish corresponding indole-substituted indanones **3.27** bearing an all-carbon quaternary stereocenter.

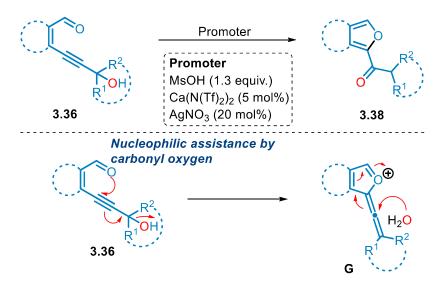
Scheme 3.8: Rh(II)-catalyzed tandem reaction of *N*-sulfonyl triazoles with indoles

3.2 Background

Transfer of an -OMe to an alkyne moiety in *o*-alkynylbenzaldehyde acetal **3.28** upon activation using a gold catalyst is a useful method for the synthesis of indanone derivatives **3.29** (Scheme 3.9, eq. 1).¹⁰ This is followed by electrophilic trapping of vinylgold species with oxocarbenium ion **D** to afford indanones **3.29**. In a related approach, Hashmi's group has reported a gold-catalyzed intermolecular electrophilic trapping of the M-S type intermediate generated from pivaloyl ester **3.31** of propargyl alcohol with an oxocarbenium ion generated from isochromane acetals **3.30** for the synthesis of isochromane derivatives **3.32** (Scheme 3.9, eq. 2).¹¹

Scheme 3.9: Literature background and design of our work

In 2019, we reported an M-S rearrangement protocol for the synthesis of enones $3.33/\alpha$ -iodoenones 3.35 employing a silver catalyst (Scheme 3.9. eq. 3). In this method, iodonium ion generated from *N*-iodosuccinimide 3.34 was successfully trapped by allenol intermediate **A** through an intermolecular M-S rearrangement of tertiary propargyl alcohol 3.1. Inspired by the


above works and in continuation of our efforts towards the development of methodologies using *in situ* generated acetals,¹² we wished to introduce an electrophilic group such as formyl within the same propargyl alcohol **3.1** to explore the electrophilic trapping of the M-S intermediate. The more reactive oxonium ion that will be generated in the presence of TMOF is expected to be handy for the electrophilic trapping. We envisaged that the reaction of *o*-propargyl alcohol benzaldehydes **3.36** with trimethyl orthoformate (TMOF) would lead to the formation of indanone derivative **3.37** under acid catalysis (Scheme 3.9, eq. 4). The acetal **IV** generated under the reaction condition might transfer an -OMe group to the *ortho*-alkyne moiety to form the M-S type intermediate, allenyl methyl ether **VI**. This intermediate **VI** is expected to cyclize on the electrophilic oxocarbenium ion to form the indanone derivative **3.37**.

While successfully exploring this hypothesis, a report by Zhu's group appeared in the literature in which an electrophile intercepted M-S rearrangement using the same system *i.e.*, o-propargyl alcohol benzaldehydes **3.36** in the presence of p-TSA·H₂O and alcohol or sulphonamide at 40 °C for the synthesis of 3-alkoxy and 3-sulfamido indanones **3.37** was achieved (Scheme 3.10). Not surprisingly, the reaction worked only when the substrate contained two aryl rings attached to the propargyl alcohol carbon, as they readily generate the propargyl cation to form the required allenol intermediate for the intramolecular intercepted M-S rearrangement. Other substrates having one aryl/two alkyls/one aryl and one alkyl group on the carbinol carbon of the substrate failed to undergo the reaction. On this basis, it was proposed that an allenol M-S intermediate **F** is formed by the attack of water at the triple bond of the propargyl cation **E** formed from the starting material.

Scheme 3.10: Brønsted acid-catalyzed intramolecular electrophile-intercepted M-S rearrangement

Gratifyingly, under the acetalization condition, *i.e.*, in the presence of TMOF and catalytic TfOH, such less reactive substrates also underwent smooth intercepted M-S rearrangement (*vide infra*). It is believed that the acetal formed under the reaction conditions, through nucleophilic participation, might assist the reaction.

In a sharp contrast, nucleophilic participation of the carbonyl function in similar substrates **3.36** having two alkyl groups on the carbinol carbon to form allenyl ethers **G** in the presence of stoichiometric MsOH has been proposed by Beeraiah and co-workers (Scheme 3.11). Thus formed allenyl ether **G** subsequently transformed into 2-acylfurans **3.38** *via* an intermolecular attack of water. ¹⁴ Therefore, the nucleophilic participation of acetal formed under the reaction conditions offers a unique advantage to intercepted M-S rearrangement. The details of this study are presented below.

Scheme 3.11: Intramolecular nucleophile intercepted M-S rearrangement for the synthesis of 2-acylfurans

3.3 Results and discussion

3.3.1 Reaction optimization study

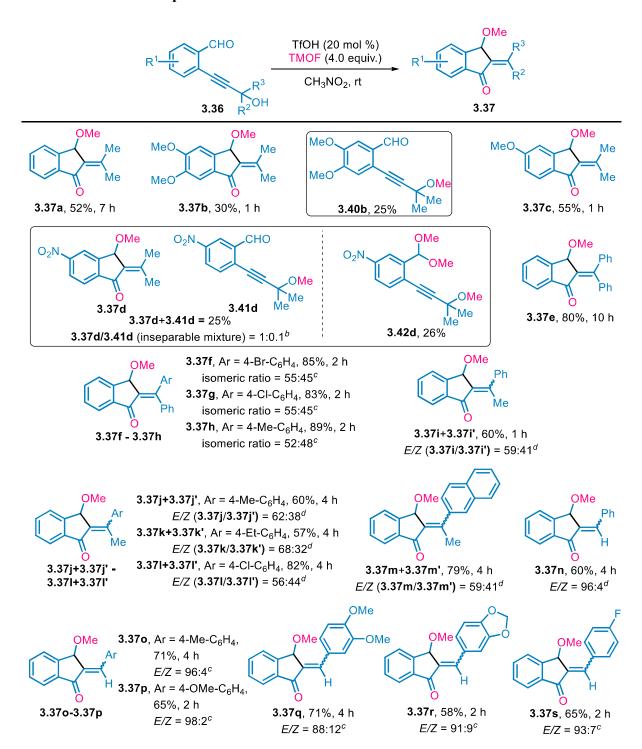
The substrate **3.36** having a less labile propargyl alcohol was chosen as a model substrate to optimize the reaction conditions of this intercepted M-S rearrangement taking the advantage of *in situ* formed acetal. Formation of the intercepted M-S product, indanone **3.37a** in 45% yield upon treatment of **3.36** with 20 mol% of TfOH and 2.0 equiv. of TMOF (Table 3.1, entry 1) in nitromethane at room temperature, prompted us to evaluate the optimal conditions to get a better yield of **3.37a**. In this regard, different Brønsted and Lewis acids were screened in the presence of 2.0 equiv. of TMOF in CH₃NO₂. However, in the reactions involving catalytic CH₃SO₃H, *p*-TsOH·H₂O, and HClO₄, other products **3.38a** and/or **3.39a** were also obtained along with the

desired product **3.37a** (Table 3.1, entries 2-4). These products **3.38a** and **3.39a** are, perhaps, the intermediates formed prior to the cyclization step as both of them were convertible into **3.37a** upon treatment with TMOF and cat. TfOH (*vide infra*). The desired product **3.37a** was obtained in 12% yield along with 15% of **3.39a** when Lewis acid such as AgSbF₆ was used (Table 3.1, entry 5). On the other hand, other Lewis acids, such as Cu(OTf)₂ and Sc(OTf)₃ did not give the cyclized product **3.37a** (Table 3.1, entries 6 and 7). Therefore, further optimization studies were carried out to find out the appropriate amounts of TfOH, TMOF, and the suitable solvent.

Table 3.1 Optimization of the reaction conditions^a

Entry	Catalyst (mol %)	TMOF	Solvent	Time	Yield (%) ^b		
		(equiv.)		(h)	3.37a	3.38a	3.39a
1	TfOH (20)	2	CH ₃ NO ₂	7	45	-	-
2	CH ₃ SO ₃ H (20)	2	CH_3NO_2	24	15	10	12
3	<i>p</i> -TsOH·H ₂ O (20)	2	CH ₃ NO ₂	24	10	12	20
4	HClO ₄ (20)	2	CH ₃ NO ₂	24	15	-	10
5	$AgSbF_6(20)$	2	CH ₃ NO ₂	24	12	-	15
6	$Cu(OTf)_2(20)$	2	CH ₃ NO ₂	24	-	15	25
7	Sc(OTf) ₃ (20)	2	CH ₃ NO ₂	24	-	20	30
8	TfOH (5)	2	CH ₃ NO ₂	48	37	-	11
9	TfOH (10)	2	CH ₃ NO ₂	24	39	-	9
10	TfOH (20)	2	Toluene	24	10		37
11	TfOH (20)	2	CH ₃ CN	24	19	-	37
12	TfOH (20)	2	CCl ₄	12	-	50	15
13	TfOH (20)	2	CH_2Cl_2	24	29	-	22
14	TfOH (20)	1	CH ₃ NO ₂	24	18	-	22
15	TfOH (20)	3	CH ₃ NO ₂	24	48	-	-

16	TfOH (20)	4	CH ₃ NO ₂	7	52	-	-
17	TfOH (20)	nil	CH_3NO_2	24	-	-	-


^aReaction conditions: **3.36** (100 mg), solvent (3 mL/0.2 mmol). ^bIsolated yield after column chromatography.

The yield of **3.37a** decreased When 5 or 10 mol % of triflic acid was used (Table 3.1, entries 8 and 9). Solvents such as toluene, CH₃CN, CCl₄, and CH₂Cl₂ were found to be less appropriate (Table 3.1, entries 10-13). Decreasing the amount of TMOF to 1.0 equiv. had a drastic effect and only 18% of the product **3.37a** was obtained (Table 3.1, entry 14). As the reaction involving 4.0 equiv. of TMOF resulted in 52% of **3.37a**, the condition mentioned in entry 16 of Table 3.1 was found to be the optimal condition to evaluate the substrate scope of this transformation. Although this yield is not very attractive, it is yet significant considering the less reactivity of this dialkyl substrate. The low yields obtained in the case of substrates having alkyl substituents at the carbinol carbon might be attributed to the decomposition triggered by the elimination in the presence of strong Brønsted acid (TfOH). It should be mentioned that substrate **3.36** got decomposed when the reaction was conducted in the absence of TMOF (Table 3.1, entry 17). This result hints at the importance of acetal formed under the reaction conditions for the success of the reaction.

3.3.2 Substrate scope

We have next turned our attention to check the electronic and steric effects of differently substituted o-propargyl alcohol benzaldehydes 3.36 in this in situ formed acetal-assisted intramolecular electrophile intercepted M-S rearrangement, and the results are summarized in Table 3.2. More attention was given to substrates having less reactive propargyl alcohols. At the outset, substrates having symmetrical substituents on the carbinol carbon such as dimethyl, and diphenyl were studied. When the internal aryl group of the benzaldehyde contained electrondonating groups such as -OMe, the reactions were sluggish. For example, product 3.37b was obtained in 30% only along with the methoxy ether derivative of the starting material 3.40b (25%). In the case of a similar dioxolane derivative, only the methyl ether 3.44ac was obtained in 45% yield in 15 minutes (Figure 3.2). Prolonging the reaction time resulted in decomposition of **3.44ac**. Electron-donating alkoxy groups are expected to reduce the electrophilic nature of aldehyde. It is interesting to note that the normal M-S rearrangement of the propargyl alcohol was also not observed in these cases, hinting at a certain role of acetal in the formation of intercepted M-S products in the successful cases. However, a yield of 55% (product 3.37c) was noticed when the substrate with the 5-OMe group was subjected to the reaction conditions. Perhaps, in the substrate **3.36b**, the -OMe group *para* to aldehyde might reduce the electrophilicity of the aldehyde carbon to reduce its propensity to undergo cyclization. An electron-withdrawing group such as NO₂ in the arene ring did not facilitate the cyclization, as it resulted in a poor yield of the desired product 3.37d together with corresponding methylated product 3.41d as an inseparable mixture with a 1:0.1 ratio besides the corresponding acetal 3.42d in 26% yield. This shows that the -NO₂ group might make the formation of oxocarbenium ion less favourable. More reactive propargyl alcohol derivatives having two aryl groups on the carbinol carbon underwent smooth reactions to yield

Table 3.2 Substrate scope^a

^aReaction conditions: **3.36** (100 mg, 1.0 equiv.), CH₃NO₂ (3 mL/0.2 mmol), TfOH (20 mol %), TMOF (4.0 equiv.). ^bRatio was based on ¹H NMR. ^cE/Z ratio was determined by ¹H NMR. ^dE/Z ratio was based on isolated yield.

their respective indanone products in very good yields (Table 3.2, products 3.37e - 3.37h). Substrates having alkyl and aryl groups at the propargylic alcohol carbon were also tested. It has to be mentioned that these substrates were unreactive in the electrophile intercepted M-S rearrangement catalyzed by p-TsOH·H₂O.¹³ Products 3.37i - 3.37m were obtained in good yields from their respective propargylic alcohol derivatives. The E isomers were formed in more amounts than their corresponding Z isomers in these reactions. Importantly, they could be separated by column chromatography. The reactions of aryl propargyl alcohol substrates, which were also unreactive under p-TsOH·H₂O-promoted intercepted M-S rearrangement¹³ were then evaluated under the present reaction conditions. Interestingly, these substrates also underwent facile intramolecular electrophile intercepted M-S rearrangement to form products 3.37n - 3.37s as inseparable mixtures of E and E isomers. E selectivity was generally excellent (> 15:1) in these products except in a couple of cases where a meta substituent was present $\{3.37q (E/Z = 7.3:1)$ and $3.37r (E/Z = 10.1:1)\}$. The steric interaction between meta substituent of the aryl and -OMe substituent during cyclization to form E-isomer could be the reason for the slight reduction in selectivity.

There has been a quite interest in atropisomerism both in terms of finding new types of atropisomers in addition to the classical biaryl systems, and finding applications in catalysis and biology. In this regard, alkene-aryl atropisomerism has drawn certain attention. We explored such atropisomerism in the products of intercepted M-S rearrangement using substrates having *ortho*-substituted aryl ring and a methyl group at the propargyl alcohol carbon. The main reason for the selection of such substrates is the separation of *E* and *Z* isomers in the methyl containing substrates 3.37i – 3.37m. The *E* and *Z* isomers were separated in these cases as well. Interestingly, as expected, atropo-diastereomerism was noted in the products 3.37t/3.37t' – 3.37w/3.37w' (Figure 3.1). The diastereomeric ratios were discerned from the H NMR. While the *Z*-isomer contained an almost 1:1 mixture of atropo-diastereomers, the *E*-isomer showed a slight atropodiastereoselectivity which might be due to the interaction of indane ring -OMe with the aryl ring. H NMR of atropo-diastereomers of 3.37w and 3.37w' are displayed in Figure 3.1.

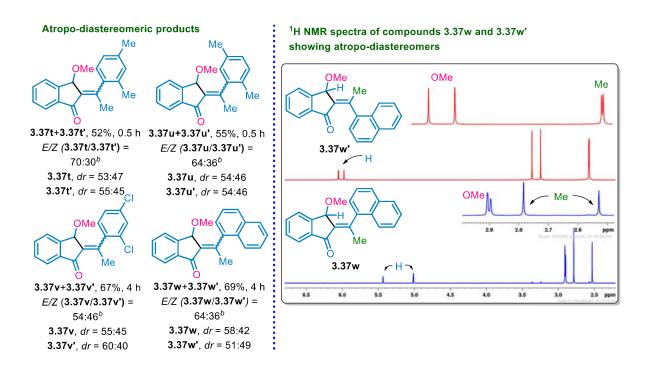
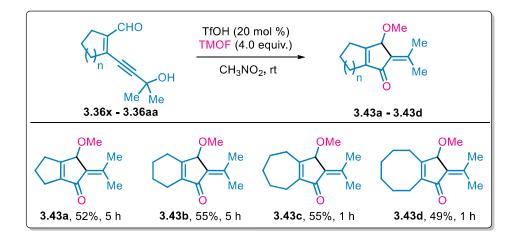



Figure 3.1 Atropo-diastereomeric products (3.37t/3.37t' – 3.3wt/3.37w') and representative ¹H NMR spectra of compounds 3.37w and 3.37w' showing atropo-diastereomers

The scope of this reaction has also been extended to the substrates bearing different cyclic tethers 3.36x - 3.36aa, and the corresponding products 3.43a - 3.43d were obtained in moderate yields (Table 3.3). It should be mentioned that the same substrates, in the absence of TMOF lead to the formation of 2-acylfuran, as reported by Baire's group.¹⁴

Table 3.3 Substrate scope of o-propargyl alcohol aldehydes bearing various tethers

^aReaction conditions: **3.36** (100 mg, 1.0 equiv.), CH₃NO₂ (3 mL/0.2 mmol), TfOH (20 mol %), TMOF (4.0 equiv.).

Unfortunately, substrates 3.36ab - 3.36ae failed to give the desired indanone product but gave the corresponding methylated products 3.44ab - 3.44ae respectively instead (Figure 3.2).

Figure 3.2: Products of unsuccessful cases

Interestingly, a polycyclic by-product **3.45s** along with the desired product **3.37s** was obtained in 8% and 65% yield respectively. The structure of **3.45s** was identified by X-ray single crystal analysis. This kind of oxepinone core is ubiquitous in natural products and biologically active molecules (Scheme 3.12).¹⁷ Formation of this product is specific to 4-F-Ph containing substrate. To check whether an electron-withdrawing substituent on the aryl ring of the aryl propargyl alcohol moiety would facilitate the formation of such a product, *o*-propargyl alcohol benzaldehyde derivative with a CF₃ group in the aryl ring **3.36ae** was treated under the standard reaction conditions. However, it resulted in neither the indane product nor the polycyclic compound. Corresponding methyl propargyl ether **3.44ae** was isolated in 62% yield. A mechanism as shown in Scheme 3.16 could be proposed for the formation of **3.45s**. However, the exact reason for its formation in this particular example is not clear.

Scheme 3.12: Dimerization of M-S intermediate

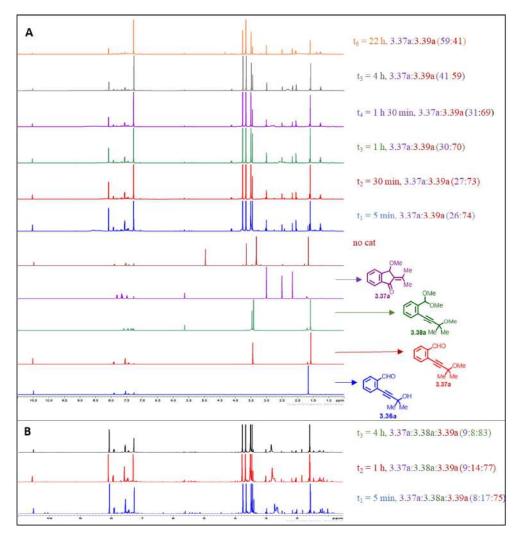
3.3.3 Scale-up reaction and subsequent synthetic transformations

The scalability of this methodology was evaluated by subjecting 1.0 g of 3.36a to the standard reaction conditions. In this case, the indanone 3.37a was obtained in 48% yield after 10 h (Scheme 3.13a). Late-stage functionalizations of indanone 3.37a were explored as it possesses a carbonyl group and an unsaturation at the α , β -position. Indanone 3.37a was treated with m-CPBA in CH₂Cl₂ for 12 h and two diastereomeric epoxides 3.46a and 3.46a' were obtained in 97% yield with a dr of 60:40 (Scheme 3.13b). The structure and stereochemistry of the major diastereomer 3.46a were further confirmed by single crystal X-ray analysis. The addition of methyl magnesium bromide to 3.37a in THF at 0 °C exhibited 1,2-addition of methyl group exclusively to yield the indanol derivative as a mixture of diastereomers 3.47a/3.47a' in 61% yield with a dr of 82:18 (Scheme 3.13c). Not surprisingly, the methyl group was preferably delivered to the carbonyl from the face opposite to the -OMe group. Indanol 3.48 was obtained in 80% yield with moderate diastereoselectivity under Luche's reduction conditions (Scheme 3.13d). Finally, allylation of 3.37a was demonstrated by treating it with allyltrimethylsilane in the presence of catalytic FeCl₃ in CH₃NO₂ at room temperature for 24 h (Scheme 3.13e). Though there is an enone, allylation occurred preferentially at the benzylic position and no 1,2- or 1,4-allylation was noted.

Scheme 3.13: Scale-up reaction and synthetic applications of indanones^a

^aReaction conditions: (a) TfOH (20 mol %), TMOF (4.0 equiv.), CH₃NO₂, rt, 10 h; (b) *m*-CPBA (≥ 77%) (1.5 equiv.), CH₂Cl₂, 0-25 °C, 12 h; (c) MeMgBr (2.0 M in THF) (2.0 equiv.), THF, 0 °C, 2 h; (d) NaBH₄ (3.0 equiv.), CeCl₃·7H₂O (1.1 equiv.), MeOH, 0 °C, 1 h; (e) Allyltrimethylsilane (1.2 equiv.), FeCl₃ (5 mol %), CH₃NO₂, rt, 24 h.

3.3.4 Control Experiments


A series of control experiments were performed in order to ascertain the role of acetal that could form under the reaction condition (Scheme 3.14). The formation of side products 3.38a and **3.39a** in some of the optimization experiments (Table 3.1) prompted us to check whether they were involved as intermediates during the formation of indanone products. Compound 3.38a, when treated with 20 mol % of TfOH, did not cyclize to give 3.37a, and instead resulted in 60% of 3.39a by deprotection of acetal (Scheme 3.14a). However, in the presence of 2.0 equiv. of TMOF, 3.38a resulted in the expected product i.e., indanone 3.37a in 49% isolated yield (Scheme 3.14b). An experiment using ethanol in the place of TMOF to check whether it gets incorporated in the product indanone was not successful as deprotection of acetal was only noted (Scheme 3.14c). Even the methoxy at the propargylic position was intact and no exchange with ethoxy was noted. Then a similar set of reactions were attempted on 3.39a. While 3.39a, when treated with TfOH (20 mol %), got decomposed, it gave 70% of 3.38a when the same reaction was carried along with 2.0 equiv. of TMOF (Schemes 3.14d and 3.14e). The actual product 3.37a was obtained from 3.39a when it was reacted with 4.0 equiv. of TMOF and catalytic TfOH (Scheme 3.14f). These experiments suggest that acetal derivative 3.38a has a strong tendency to undergo deprotection in the presence of strong Brønsted acid like TfOH, and a good amount of TMOF is required to keep its concentration sufficient enough to form the intercepted M-S reaction product. Isolation of considerable amounts 3.38a in the reaction involving comparatively weaker Brønsted acids such as MsOH and p-TSA (Table 3.1, entries 2 and 3, vide infra) reveals that it could be one of the intermediates. Methanol, though less effective than TMOF, is also known for its ability to form acetals of aldehydes in the presence of an acid catalyst. A reaction of 3.36a in the presence of MeOH and catalytic TfOH ended up in the decomposition of the starting material (Scheme 3.14g). This highlights the unique advantage of TMOF for the success of this transformation through in situ formed acetal.

Scheme 3.14: Control Experiments

The formation of methyl ether **3.39a** from more labile propargyl alcohol such as diaryl propargyl alcohol under acidic conditions is understandable as the propargyl alcohol is prone to ionization. However, the formation of methyl ether **3.39a** and **3.44ab** from less reactive propargyl alcohols in this study is a distinctive observation. A possible reason for this is discussed in the proposed mechanism.

3.3.5 ¹H NMR monitoring of interrupted M-S rearrangement of 3.36a

In addition to the above-mentioned control experiments, the reaction was followed by ¹H NMR as well in order to get furthermore insight into the intermediates involved and the mechanism (Figure 3.3). Although, the chlorinated solvents such as CH₂Cl₂ and CCl₄, as realized during the optimization studies, were found to be less effective for this transformation (Table 3.1), a reaction in CDCl₃ was followed by NMR just to know the intermediates involved. In this regard, 3.36a was treated with 1.0 equiv. of TMOF in the presence of 20 mol % of triflic acid in 2.0 mL of CDCl₃ at room temperature (Figure 3.3A). 1,2-Dibromoethane (1.0 equiv.) was added to the reaction mixture as an internal standard. ¹H NMR spectra of aliquots of the reaction mixture (0.2 mL) withdrawn at regular intervals mixed with 0.2 mL of CDCl₃ were recorded. As seen from the spectra, 90% of the starting material 3.36a whose methyl and aldehyde protons appeared at 1.65 ppm and 10.49 ppm respectively got consumed and the methyl ether derivative 3.39a ($\&CH_3 =$ 1.57 ppm; δ OC $H_3 = 3.43$ ppm; δ C $H_0 = 10.51$ ppm) and the indanone product 3.37a (δ C $H_3 = 2.48$ ppm and 2.14 ppm; $\delta CHOCH_3 = 5.62$ ppm; $\delta OCH_3 = 2.98$ ppm) were formed in 3:1 ratio in 5 minutes. In addition, the signals corresponding to methanol and methyl formate were also observed $(\delta MeOH = 3.49 \text{ ppm}; \delta HCO_2Me = 3.75 \text{ ppm}; \delta HCO_2Me = 8.06 \text{ ppm})$. Further, the conversion of 3.39a into 3.37a in CDCl₃ was found to be very slow and the ratio of 3.39a:3.37a became 0.7:1 after 22 h. Another reaction using 2.0 equiv. of TMOF was carried out and followed by ¹H NMR (Figure 3.3B). In this case, the product 3.37a, acetal derivative 3.38a and methyl ether derivative **3.39a** were all observed in 1 H NMR after 5 min of the start of the reaction. However, a similar result was observed in this case also *i.e.*, the formation of the product was slow.

Figure 3.3: ¹H NMR monitoring of interrupted M-S rearrangement of **1a** in CDCl₃. **A**. Reaction was carried out using 1.0 equiv. of TMOF. **B**. Reaction was carried out using 2.0 equiv. of TMOF

3.3.6 Plausible mechanism

Based on the control experiments, ¹H NMR studies of the reaction, and our previous reports, ¹² a plausible mechanism, as depicted in Scheme 3.15, could be proposed for the formation of indanone derivatives 3.37 *via* intramolecular electrophile intercepted M-S rearrangement of *o*-propargyl alcohol benzaldehydes 3.36. *o*-Propargyl alcohol benzaldehyde 3.36a reacts with TMOF in the presence of TfOH catalyst to generate hemiacetal **I** *in situ*. In the presence of TMOF, the acetalization of aldehyde might block the pathway leading to benzofuran, as reported by the Baire's group. ¹⁴ At this point, the propargyl alcohol may get methylated under the reaction

condition to form II.¹⁸ With more amounts of TMOF, as seen in the NMR experiments using 2.0 equiv. of TMOF and the control experiment (Scheme 3.14e), the equilibrium may shift to form acetal intermediate III. As noted from the control experiment (Scheme 3.14a), the intermediate II might undergo fast deacetalization in the presence of an acid catalyst to form the intermediate IV which was observed in good amounts in the ¹H NMR experiments (Figure 3.3). When there is a sufficient concentration of acetal III, it will undergo an intramolecular attack of acetal -OMe on the alkyne with concurrent elimination of -OMe as MeOH to form intermediate V. Ring-opening followed by intramolecular trapping of the oxocarbenium ion, as indicated in intermediates V and VI would lead to the final product 3.37. Control experiments (Schemes 3.14b and 3.14f) substantiate the necessity of acetal for a favorable cyclization step.

Scheme 3.15: Plausible mechanism for the intercepted M-S rearrangement

In a similar way, a plausible mechanism for the formation of the side product 3.45s involving dimerization of the corresponding M-S intermediate VI of 3.36s could be proposed as shown in Scheme 3.16. Nucleophilic attack of allenol ether of the first M-S intermediate VI on the oxocarbenium ion of the second M-S intermediate could deliver intermediate VII. Then, an intramolecular Michael addition on the protonated enone would afford the dimerized product 3.45s.

MeO
$$R^1$$
 R^2 R^2 R^2 R^3 R^4 R^2 R^4 R^4

Scheme 3.16: Plausible mechanism for the formation of 3.45s

3.3.7 ORTEP diagrams of 3.37m', 3.37r, 3.37s, 3.45s, and 3.46a

Single crystal X-ray data for the compounds 3.37m', 3.37s, 3.37s, 3.45s and 3.46a were collected using the Bruker D8 Quest CMOS detector system [λ (Mo-K α) = 0.71073 Å] at 298K, graphite monochromator with a ω scan width of 0.3o, crystal-detector distance 60 mm, collimator 0.5 mm. The SMART software was used for the intensity data acquisition and the SAINTPLUS software was used for the data extraction. In each case, absorption correction was performed with the help of SADABS program. An empirical absorption correction using equivalent reflections was performed with the same program. The structure was solved using SHELXS-97, and full-matrix least-squares refinement against F2 was carried out using SHELXL-97.

Figure 3.4: ORTEP diagrams of 3.37m', 3.37r, 3.37s, 3.45s, and 3.46a

3.4 Conclusion

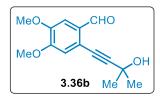
We have successfully demonstrated the synthesis of indanone derivatives *via* intramolecular electrophile intercepted M-S rearrangement of *o*-propargyl alcohol benzaldehydes. Actealization conditions make even the less reactive members of title substrates to take part in the reaction. This may be attributed to the better leaving ability of -OMe of the propargyl methyl ether formed under the reaction condition combined with the intramolecular transfer of -OMe of acetal to form the allenoate M-S intermediate along with more electrophilic oxocarbenium ion. The dimerization of the M-S intermediate to form a polycyclic compound as observed in one example. The functionalities in the indanones offer ample opportunities for further functionalization.

3.5 Experimental section

3.5.1 General information

All chemicals obtained from commercial suppliers were used without further purification. Triflic acid and TMOF were obtained from Sigma-Aldrich, and Avra synthesis respectively, and used without further purification. All reactions were performed in closed and oven-dried glasswares under stirring. LR grade CH_3NO_2 was purchased from Finar Company, and used without further purification. Reactions were monitored using silica gel plates $60 \, F_{254}$ and the spots were visualized with UV light (254 nm), with Seebach stain followed by heating. Column chromatography was carried out using silica gel (100-200 mesh) packed in glass columns. NMR spectra were recorded at 400 and 500 MHz spectrometers. Chemical shifts (δ) are reported in ppm, calibrated to the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (J) are indicated in Hz. HRMS were recorded using ESI-TOF technique.

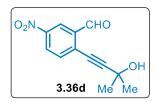
3.5.2 Experimental procedures, analytical, and spectral data Synthesis of *o*-propargyl alcohol benzaldehydes:


o-Propargyl alcohol benzaldehydes 3.36a, 3.36i, 3.36c, 3.36e-3.36h, 3.36n, 3.36p, 3.36ab-3.36ac, and 3.36x-3.36aa were synthesized according to the previous reports. ^{19a-f} The other derivatives were synthesized by following the general procedure A or B.

General Procedure A: An example is given for the synthesis of 2-(3-hydroxy-3-methylbut-1yn-1-yl)-4,5-dimethoxybenzaldehyde 3.36b:

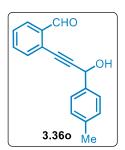
To a stirred solution of 2-bromo-4,5-dimethoxybenzaldehyde (500 mg, 2.04 mmol, 1.0 equiv.), $PdCl_2(PPh_3)_2$ (36 mg, 0.051 mmol, 2.5 mol %), CuI (19 mg, 0.102 mmol, 5 mol %) in freshly degassed Et_3N (16 mL) was added 2-methylbut-3-yn-2-ol (342 μ L, 2.65 mmol, 1.3 equiv.) under N_2 atmosphere. The resulting reaction mixture was stirred in an oil bath at 50 °C until the reaction was completed. Then the reaction mixture was filtered through a celite pad and evaporated

under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane/ethyl acetate mixture as eluent) to obtain the pure product **3.36b** as a yellow solid in 75% (380 mg) yield.


2-(3-hydroxy-3-methylbut-1yn-1-yl)-4,5-dimethoxybenzaldehyde 3.36b:

mp 151-153 °C, R_f = 0.4 (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.34 (s, 1H), 7.37 (s, 1H), 6.93 (s, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 2.27 (s, 1H), 1.65 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 190.4, 153.5, 149.5, 130.0, 121.0, 114.3, 108.0, 96.6, 77.4, 65.5, 56.1, 56.0, 31.2. IR (neat, cm⁻¹): 3364, 1679, 1654, 1586, 1504, 1437, 1352,

1281, 1104, 998, 759. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{14}H_{17}O_4$ 249.1121; found 249.1125.

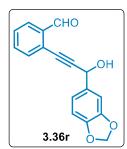

2-(3-hydroxy-3-methylbut-1-yn-1-yl)-5-nitrobenzaldehyde 3.36d:

Synthesized according to the general procedure **A** using 2-bromo-5-nitrobenzaldehyde (300 mg, 1.3 mmol, 1.0 equiv.) and 2-methylbut-3-yn-2-ol (164 μ L, 1.69 mmol, 1.3 equiv.) as a brown liquid in 75% yield (230 mg), $R_{\rm f} = 0.2$ (in 30% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.49 (s, 1H), 8.71 (d, J = 2.5 Hz, 1H), 8.37 (dd, J = 8.5, 2.5

Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 2.27 (bs, 1H), 1.67 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.2, 147.3, 136.6, 134.4, 131.7, 127.6, 122.5, 106.1, 83.9, 65.7, 31.0. IR (neat, cm⁻¹): 3378, 2981, 1694, 1600, 1581, 1523, 1471, 1340, 1269, 1241, 1163, 1071, 962, 940, 913, 846, 807, 744, 694. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₂NO₄ 234.0761; found 234.0760.

2-(3-Hydroxy-3-(p-tolyl)prop-1-yn-1-yl)benzaldehyde 3.360:

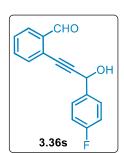
Synthesized according to the general procedure **A** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 1-(p-tolyl)prop-2-yn-1-ol²⁰ (513 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 40% (270 mg) yield, R_f = 0.4 (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.49 (s, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.54-7.59 (m, 2H), 7.50 (d, J = 7.9 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 5.72 (s, 1H), 2.92 (s, 1H), 2.38 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.5, 138.4, 137.5, 136.0,


133.6, 133.43, 133.41, 128.8, 127.3, 126.5, 125.9, 96.2, 81.8, 64.8, 21.1. IR (neat, cm $^{-1}$): 3412, 1693, 1601, 1575, 1511, 1451, 1406, 1267, 1194, 1030, 972, 818, 755. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd. for $C_{17}H_{15}O_2$ 251.1067; found 251.1067.

2-(3-(3,4-Dimethoxyphenyl)-3-hydroxyprop-1-yn-1-yl)benzaldehyde 3.36q:

Synthesized according to the general procedure **A** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 1-(3,4-dimethoxyphenyl)prop-2-yn-1-ol²¹ (674 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 46% (240 mg) yield, R_f = 0.4 (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.48 (s, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.55 (qd, J = 7.5, 1.0 Hz, 3H), 7.46-7.43 (m, 1H), 7.14 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.0 Hz, 1H), 5.69 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.02 (bs, 1H).

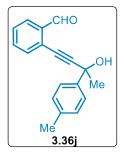
¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.3, 149.3, 149.2, 136.1, 133.6, 133.4, 132.9, 128.8, 127.6, 125.7, 119.0, 111.1, 109.9, 96.0, 81.9, 64.8, 55.93, 55.90. IR (neat, cm⁻¹): 3455, 1693, 1592, 1511, 1461, 1418, 1260, 1137, 1077, 1022, 861, 810, 760. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₁₇O₄ 297.1121; found 297.1126.


2-(3-(Benzo[d][1,3]dioxol-5-yl-)-3-hydroxyprop-1-yn-1-yl)benzaldehyde 3.36r:

Synthesized according to the general procedure **A** using 2-bromobenzaldehyde (600 mg, 3.24 mmol, 1.0 equiv.) and 1-(benzo[d][1,3]dioxol-5-yl)prop-2-yn-1-ol²² (741 mg, 4.2 mmol, 1.3 equiv.) as a brown liquid in 40% (302 mg) yield, $R_{\rm f}$ = 0.3 (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.50 (d, J = 0.5 Hz, 1H), 7.94 (dd, J = 8.0, 1.0 Hz, 1H), 7.62-7.57 (m, 2H), 7.50-7.47 (m, 1H), 7.13 (d, J = 2.0 Hz, 1H), 7.09-7.07 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.01 (s, 2H), 5.68 (s, 1H), 2.48

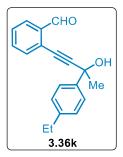
(bs, 1H). 13 C $\{^{1}$ H $\}$ NMR (100 MHz, CDCl₃): δ 191.5, 147.9, 147.8, 136.0, 134.1, 133.7, 133.4, 128.9, 127.5, 125.6, 120.3, 108.2, 107.2, 101.2, 95.8, 82.0, 64.8. IR (neat, cm⁻¹): 3377, 1691, 1592, 1484, 1440, 1237, 1094, 1033, 931, 758. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₁₃O₄ 281.0808; found 281.0808.

2-(3-(4-Fluorophenyl)-3-hydroxyprop-1-yn-1-yl)benzaldehyde 3.36s:



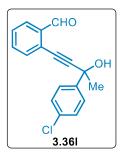
Synthesized according to the general procedure **A** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 1-(4-fluorophenyl)prop-2-yn-1-ol²³ (500 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 35% (245 mg) yield, $R_{\rm f} = 0.4$ (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.45 (d, J = 0.5 Hz, 1H), 7.91-7.89 (m, 1H), 7.59-7.54 (m, 4H), 7.48-7.44 (m, 1H), 7.11-7.06 (m, 2H), 5.73 (s, 1H), 2.82 (bs, 1H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 191.3, 163.8, 161.8, 136.1, 136.06,

136.04, 133.7, 133.5, 129.0, 128.5, 128.4, 127.7, 125.4, 115.7, 115.6, 95.5, 82.4, 64.4. IR (neat, cm⁻¹): 3379, 1691, 1592, 1505, 1476, 1220, 1156, 1012, 963, 836, 758. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{16}H_{12}FO_2$ 255.0816; found 255.0818.


General Procedure B: An example is given for the synthesis of 2-(3-hydroxy-(p-tolyl)-but-1-yn-1-yl)benzaldehyde 3.36j:

To a stirred solution of 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.), $PdCl_2(PPh_3)_2$ (25 mg, 0.135 mmol, 2.5 mol %), CuI (37 mg, 0.054 mmol, 5 mol %) in freshly degassed Et₃N (8 mL) was added 2-(p-tolyl)but-3-yn-2-ol (562 mg, 3.51 mmol, 1.3 equiv.) in THF (8 mL) under N₂ atmosphere. The resulting reaction mixture was stirred in an oil bath at 50 °C until the reaction was completed. After completion of the reaction, the reaction mixture was filtered through a pad of celite and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane/ethyl acetate mixture as eluent) to obtain the pure product **3.36j** as a brown liquid in 75% (540 mg) yield, $R_f = 0.3$ (in 30% EtOAc/hexanes).

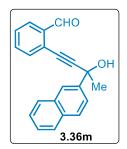
¹H NMR (500 MHz, CDCl₃): δ 10.51 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.59-7.57 (m, 3H), 7.55 (d, J = 8.0 Hz, 1H), 7.47-7.44 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 2.67 (bs, 1H), 2.36 (s, 3H), 1.90 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.4, 142.1, 137.6, 136.1, 133.7, 133.4, 129.1, 128.7, 127.4, 126.0, 124.7, 99.8, 80.3, 70.2, 32.9, 21.0. IR (neat, cm⁻¹): 3427, 1694, 1599, 1482, 1284, 1072, 1019, 936, 817. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₈H₁₆NaO₂ 287.1043; found 287.1036.


2-(3-(4-Ethylphenyl)-3-hydroxy-but-1-yn-1-yl)benzaldehyde 3.36k:

Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 2-(4-ethylphenyl)but-3-yn-2-ol (611 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 72% (545 mg) yield, $R_{\rm f}$ = 0.4 (in 30% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.51 (d, J = 0.5 Hz, 1H), 7.91-7.89 (m, 1H), 7.62-7.60 (m, 2H), 7.58-7.51 (m, 2H), 7.45-7.42 (m, 1H), 7.22 (d, J = 8.5 Hz, 2H), 2.91 (bs, 1H), 2.65 (q, J = 7.5 Hz, 2H), 1.89 (s, 3H), 1.24 (t, J = 8.0 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.5, 144.0, 142.3, 136.0, 133.7, 133.4, 128.7, 127.9,

127.4, 126.0, 124.8, 99.8, 80.2, 70.3, 32.9, 28.4, 15.4. IR (neat, cm $^{-1}$): 3437, 1694, 1600, 1576, 1453, 1411, 1367, 1322, 1204, 1072, 1030, 956, 834, 755. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd. for $C_{19}H_{19}O_2$ 279.1380; found 279.1386.

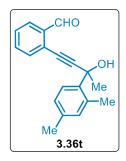
2-(3-(4-Chlorophenyl)-3-hydroxy-but-1-yn-1-yl)benzaldehyde 3.36l:



Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 2-(4-chlorophenyl)but-3-yn-2-ol²⁴ (634 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 66% (520 mg) yield, $R_{\rm f}$ = 0.4 (in 30% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 10.46 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.63 (dt, J = 8.8, 2.4 Hz, 2H), 7.57-7.55 (m, 2H), 7.48-7.44 (m, 1H), 7.34 (dt, J = 8.4, 2.4 Hz, 2H), 3.06 (bs, 1H), 1.88 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 191.3, 143.6, 136.0, 133.78, 133.73, 133.4,

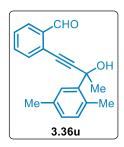
129.0, 128.5, 127.8, 126.3, 125.5, 99.0, 80.7, 69.9, 33.1. IR (neat, cm⁻¹): 3447, 1694, 1594, 1487,

1398, 1362, 1264, 1196, 1092, 1029, 1012, 937, 896, 830, 731, 702. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{17}H_{14}ClO_2$ 285.0677; found 285.0682.


2-(3-Hydroxy-3-(naphthalene-2-yl)-but-1-yn-1-yl)benzaldehyde 3.36m:

Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 2-(naphthalen-2-yl)but-3-yn-2-ol²⁰ (688 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 76% (620 mg) yield, $R_{\rm f}=0.4$ (in 40% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 10.55 (d, J=0.4 Hz, 1H), 8.18-8.17 (m, 1H), 7.94-7.92 (m, 1H), 7.89-7.80 (m, 2H), 7.87-7.84 (m, 1H), 7.79 (dd, J=8.8, 2.0 Hz, 1H), 7.63-7.60 (m, 1H), 7.57 (td, J=7.2, 1.6 Hz, 1H), 7.53-7.51 (m, 1H), 7.50-7.48 (m,

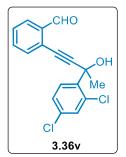
2H), 7.47-7.44 (m, 1H), 2.88 (bs, 1H), 1.99 (s, 3H). 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 191.4, 142.2, 136.0, 133.7, 133.4, 132.9, 132.8, 128.8, 128.4, 128.2, 127.5, 126.3, 126.2, 123.28, 123.25, 99.5, 80.6, 70.5, 32.8. IR (neat, cm⁻¹): 3397, 1692, 1592, 1505, 1475, 1359, 1272, 1244, 1192, 1076, 1047, 940, 897, 748, 701. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₁H₁₇O₂ 301.1223; found 301.1226.


2-(3-(2,4-Dimethylphenyl)-3-hydroxybut-1-yn-1-yl)benzaldehyde 3.36t:

Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (555 mg, 3.0 mmol, 1.0 equiv.) and 2-(2,4-dimethylphenyl)but-3-yn-2-ol (624 mg, 3.9 mmol, 1.3 equiv.) as a brown liquid in 63% yield (530 mg), $R_{\rm f}=0.4$ (in 30% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 10.46 (d, J=1.0 Hz, 1H), 7.89 (dt, J=8.5, 7.5 Hz, 1H), 7.59 (d, J=7.5 Hz, 1H), 7.53-7.52 (m, 2H), 7.45-7.40 (m, 1H), 7.02-7.01 (m, 2H), 2.72 (s, 1H), 2.64 (s, 3H), 2.31 (s, 3H), 1.97 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.5, 138.7, 137.6, 136.0, 135.4, 133.7, 133.28, 133.24,

128.7, 127.3, 126.4, 126.1, 124.9, 100.1, 80.9, 69.9, 30.8, 21.0, 20.7. IR (KBr, cm $^{-1}$): 3423, 1691, 1592, 1475, 1448, 1271, 1192, 1071, 930, 821, 760. HRMS (ESI): [M+Na] $^{+}$ calcd. for $C_{19}H_{18}NaO_{2}$ 301.1204; found 301.1196.

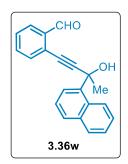
2-(3-(2,5-Dimethylphenyl)-3-hydroxybut-1-yn-1-yl)benzaldehyde 3.36u:



Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (555 mg, 3.0 mmol, 1.0 equiv.) and 2-(2,5-dimethylphenyl)but-3-yn-2-ol (624 mg, 3.9 mmol, 1.3 equiv.) as a brown liquid in 61% yield (510 mg), $R_f = 0.4$ (in 30% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 10.48 (d, J = 0.5 Hz, 1H), 7.91 (dt, J = 8.0, 1.0 Hz, 1H), 7.56-7.54 (m, 3H), 7.47-7.42 (m, 1H), 7.10 (d, J = 7.5 Hz, 1H), 7.05 (dd, J = 7.5, 1.0 Hz, 1H), 2.63 (s, 3H), 2.35 (s, 3H), 2.34 (s, 3H), 1.97 (s, 3H). ¹³C {¹H}

NMR (125 MHz, CDCl₃): δ 191.5, 141.3, 136.0, 135.3, 133.7, 133.2, 132.3, 132.2, 128.7, 128.5, 127.4, 126.1, 125.5, 99.9, 80.1, 70.0, 30.7, 21.1, 20.7. IR (KBr) (neat, cm⁻¹): 3462, 1693, 1598,

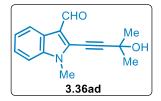
1575, 1452, 1321, 1200, 1101, 1024, 813, 752. HRMS (ESI): $[M+Na]^+$ calcd. for $C_{19}H_{18}NaO_2$ 301.1199; found 301.1198.


2-(3-(2,4-Dichlorophenyl)-3-hydroxybut-1-yn-1-yl)benzaldehyde 3.36v:

Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (555 mg, 3.0 mmol, 1.0 equiv.) and 2-(2,4-dichlorophenyl)but-3-yn-2-ol (624 mg, 3.9 mmol, 1.3 equiv.) as a yellow solid in 54% yield (520 mg), mp 160-162 °C, $R_{\rm f}=0.4$ (in 30% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 10.44 (d, J=0.5 Hz, 1H), 7.89 (d, J=8.0 Hz, 1H), 7.78 (d, J=8.5 Hz, 1H), 7.55-7.53 (m, 2H), 7.45-7.42 (m, 2H), 7.29 (dd, J=2.0, 8.5 Hz, 1H), 3.44 (s, 1H), 2.02 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.6, 139.6, 136.0, 134.2, 133.7, 133.3, 133.2, 130.9, 128.9, 127.5,

127.2, 125.7, 97.9, 80.3, 68.6, 29.5. IR (neat, cm $^{-1}$): 3348, 1678, 1586, 1464, 1447, 1387, 1365, 1295, 1269, 1242, 1193, 1162, 1132, 1085, 1067, 1033, 954, 934, 895, 752, 720. HRMS (ESI): [M+Na] $^{+}$ calcd. for $C_{17}H_{12}Cl_2NaO_2$ 341.0107; found 341.0102.

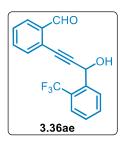
2-(3-Hydroxy-3-(naphthalen-1-yl)but-1-yn-1-yl)benzaldehyde 3.36w:


Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (555 mg, 3.0 mmol, 1.0 equiv.) and 2-(naphthalen-1-yl)but-3-yn-2-ol (624 mg, 3.9 mmol, 1.3 equiv.) as a brown liquid in 56% yield (505 mg), $R_f = 0.4$ (in 40% EtOAc/Hexanes). ¹H NMR (400 MHz, CDCl₃): δ 10.41 (d, J = 0.8 Hz, 1H), 8.82 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 7.6, 1.2 Hz, 1H), 7.90-7.87 (m, 2H), 7.83 (d, J = 8.4 Hz, 1H), 7.57-7.55 (m, 1H), 7.53-7.51 (m, 3H), 7.50-7.46 (m, 1H), 7.44-7.39 (m, 1H), 2.99 (s, 1H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 191.4, 139.2, 136.1, 134.6,

133.6, 133.4, 129.9, 129.4, 129.0, 128.8, 127.4, 125.94, 125.91, 125.7, 125.5, 124.9, 122.8, 100.2, 81.1, 70.3, 31.5. IR (neat, cm $^{-1}$): 3416, 1693, 1593, 1508, 1475, 1449, 1390, 1364, 1272, 1248, 1193, 1116, 1076, 1056, 1025, 994, 962, 935, 896, 777. HRMS (ESI): [M+Na] $^{+}$ calcd. for $C_{21}H_{16}NaO_2$ 323.1043; found 323.1045.

2-(3-Hydroxy-3-methylbut-1-yn-1-yl)-1-methyl-1H-indole-3-carbaldehyde 3.36ad:^{25b}

o-Propargyl alcohol aldehyde **3.36ad** was synthesized by a slightly modified procedure of the reported procedure. To a stirred solution of 2-bromo-1-methyl-1H-indole-3-carbaldehyde^{25a} (300 mg, 1.26 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (17 mg, 0.0252, 2.0 mol %), and CuI (2.5 mg, 0.0126, 1.0 mol %) in CH₃CN (10 mL) were added Et₃N (0.2 mL, 1.52 mmol, 1.2 equiv.) and 2-methylbut-3-yn-2-ol (150 μL, 1.52 mmol, 1.2 equiv.) under N₂ atmosphere. The resulting reaction mixture was stirred in an oil bath at 70 °C for 2 h. After completion of the reaction, the mixture was filtered through a celite pad and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane/ethyl acetate mixture as eluent) to obtain


the pure product **3.36ad** as a yellow solid in 89% (270 mg) yield. mp 152-154 $^{\circ}$ C, $R_f = 0.28$ (in 40% EtOAc/hexanes).

¹H NMR (500 MHz, CDCl₃): δ 10.03 (s, 1H), 8.24 (dd, J = 6.5, 1.5 Hz, 1H), 7.31-7.27 (m, 2H), 3.74 (s, 1H), 3.46 (s, 3H), 1.70 (s, 6H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 185.5, 137.0, 132.0, 124.8, 124.0, 123.4, 121.9, 119.3, 109.6, 106.9, 65.4, 31.0, 30.6. IR (neat, cm⁻¹): 3301, 2976, 1623, 1465, 1370, 1169, 1047, 947, 738. HRMS (ESI-TOF) m/z: [M+H]⁺

calcd. for C₁₅H₁₆NO₂ 242.1176; found 242.1177.

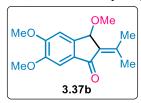
2-(3-hydroxy-3-(2-(trifluoromethyl)phenyl)prop-1-yn-1-yl)benzaldehyde 3.36ae:

Synthesized according to the general procedure **B** using 2-bromobenzaldehyde (500 mg, 2.7 mmol, 1.0 equiv.) and 1-(2-(trifluoromethyl)phenyl)prop-2-yn-1-ol²⁶ (702 mg, 3.51 mmol, 1.3 equiv.) as a brown liquid in 55% yield (450 mg), $R_{\rm f}=0.32$ (in 40% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 10.41 (d, J=0.5 Hz, 1H), 8.07 (d, J=7.5 Hz, 1H), 7.90 (dt, J=7.5, 1.0 Hz, 1H), 7.69 (d, J=8.5 Hz, 1H), 7.66 (d, J=7.5 Hz, 1H), 7.58-7.53 (m, 2H), 7.49-7.44 (m, 2H), 6.14 (d, J=4.5 Hz, 1H), 2.71

(d, J = 4.5 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 191.5, 138.8, 136.0, 133.7, 133.4, 132.6, 129.0, 128.8, 128.6, 127.5, 127.1, 126.8, 125.8 (q, J = 28.2 Hz), 125.4, 95.2, 82.1, 60.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -58.1. IR (KBr, cm⁻¹): 3387, 1691, 1592, 1452, 1309, 1157, 1109, 1059, 1031, 962, 819, 760. HRMS (ESI): [M+Na]⁺ calcd. for C₁₇H₁₁F₃NaO₂ 327.0603; found 327.0605.

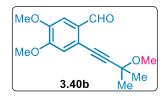
General Procedure for the Synthesis of Indanones:

An example is given for the synthesis of **3-Methoxy-2-(propan-2-ylidene)-2,3-dihydro-1H-inden-1-one 3.37a**:


To a stirred solution of 2-(3-hydroxy-3-methylbut-1-yn-1-yl)benzaldehyde **3.36a** (100 mg, 0.49 mmol, 1.0 equiv.) and TMOF (215 μ L, 1.96 mmol, 4.0 equiv.) in CH₃NO₂ (6 mL) was added triflic acid (8.6 μ L, 0.098 mmol, 20 mol %) at room temperature and stirred for 7 h at the same temperature. Then, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution (10 mL) and extracted with ethyl acetate (3 × 20 mL). Combined organic layers were washed with saturated aqueous brine solution, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate mixture as eluent) to afford the indanones **3.37a** as a yellow solid in 52% (56 mg) yield.

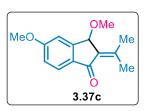
mp 95-97 °C, R_f = 0.4 (in 10% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.6 Hz, 1H), 7.67-7.61 (m, 2H), 7.50-7.46 (m, 1H), 5.63 (s, 1H), 2.99 (s, 3H), 2.49 (s, 3H), 2.15 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 192.4, 156.0, 146.9, 140.2, 134.2, 130.1, 129.4, 125.9, 123.3, 76.1, 50.8, 23.8,

21.0. IR (neat, cm⁻¹): 1692, 1634, 1273, 1116, 1070, 975, 783, 682. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{13}H_{14}NaO_2$ 225.0886; found 225.0888.


3,5,6-Trimethoxy-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-one 3.37b:

Synthesized according to the general procedure described above as a yellow solid in 30% (32 mg) yield, mp 145-147 °C, $R_{\rm f}=0.3$ (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.24 (s, 1H), 7.06 (s, 1H), 5.59 (s, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 2.92 (s, 3H), 2.47 (s, 3H), 2.12 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.5, 155.1, 153.3, 150.9,

141.6, 133.9, 130.1, 106.6, 104.6, 75.8, 56.3, 56.1, 49.9, 23.5, 20.7. IR (neat, cm⁻¹): 1678, 1632, 1589, 1498, 1276, 1061, 873, 751. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{15}H_{18}NaO_4$ 285.1097; found 285.1090.

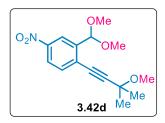

4,5-Dimethoxy-2-(3-methoxy-3-methylbut-1-yn-1-yl)benzaldehyde 3.40b:

Obtained as a yellow solid in 25% (27 mg) yield during the synthesis of **3.37b**. mp 96-98 °C, $R_f = 0.5$ (in 40% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.37 (s, 1H), 7.39 (s, 1H), 6.95 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.44 (s, 3H), 1.58 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 190.3, 153.8, 149.6, 130.2, 121.0, 114.4, 108.0, 96.9, 79.6,

71.0, 56.2, 56.0, 51.9, 28.2. IR (neat, cm $^{-1}$): 2982, 1680, 1587, 1503, 1350, 1219, 1103, 1072, 1004, 868, 752. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd. for C₁₅H₁₈NaO₄ 285.1097; found 285.1095.

3,5-Dimethoxy-2-(propan-2-ylidene)-2,3-dihydro-1H-inden-1-one 3.37c:

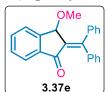
Synthesized according to the general procedure described above as a yellow liquid in 55% (59 mg) yield, $R_{\rm f}$ = 0.45 (in 30% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.24 (s, 1H), 7.06 (s, 1H), 5.59 (s, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 2.92 (s, 3H), 2.47 (s, 3H), 2.12 (s, 3H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 191.2, 164.9, 125.3, 149.7, 133.8, 130.1,


125.1, 117.1, 108.8, 75.9, 55.6, 50.4, 23.6, 20.7. IR (neat, cm $^{-1}$): 1687, 1633, 1595, 1487, 1337, 1246, 1089, 1066, 1024, 836, 792. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd. for $C_{14}H_{17}O_{3}$ 233.1172; found 233.1172.

3-Methoxy-5-nitro-2-(propan-2-ylidene)-2,3-dihydro-1H-inden-1-one 3.37d & 2-(3-hydroxy-3-methylbut-1-yn-1-yl)-5-nitrobenzaldehyde 3.41d:

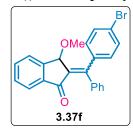
Synthesized according to the general procedure described above as a yellow solid in 25% (27 mg), an inseparable mixture (1:0.1), $R_f = 0.42$ (in 5% EtOAc/CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 10.51 (s, 1H, **3.41d**), 8.72 (d, J = 2.0 Hz, 1H, **3.41d**), 8.51 (d, J = 1.5 Hz, 1H, **3.37d**), 8.38 (dd,

J = 8.5, 2.0 Hz, 1H, **3.41d**), 8.33 (dd, J = 8.0, 1.5 Hz, 1H, **3.37d**), 7.94 (d, J = 8.5 Hz, 1H, **3.37d**), 7.72 (d, J = 8.5 Hz, 1H, **3.41d**), 5.67 (s, 1H, **3.37d**), 3.44 (s, 3H, **3.41d**), 3.05 (s, 3H, **3.37d**), 2.50 (s, 3H, **3.37d**), 2.19 (s, 3H, **3.37d**), 1.59 (s, 6H, **3.41d**). 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 190.0, 189.0, 159.6, 151.5, 148.0, 147.4, 144.2, 136.7, 134.6, 131.7, 129.9, 127.5, 124.9, 124.5, 122.5, 121.5, 104.0, 78.5, 75.8, 71.1, 52.1, 51.6, 27.9, 24.1, 21.4. IR (neat, cm⁻¹): 2927, 1695, 1601, 1522, 1459, 1342, 1272, 1244, 1172, 1148, 1104, 1071, 974, 935, 892, 863, 838, 792, 736, 681, 641. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₃H₁₃NNaO₄ 270.0737; found 270.0739.


2-(Dimethoxymethyl)-1-(3-methoxy-3-methylbut-1-yn-1-yl)-4-nitrobenzene 3.42d:

Obtained as a yellow liquid in 26% (33 mg) yield during the synthesis of **3.37d**. $R_{\rm f}$ = 0.5 (in 5% EtOAc/CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 8.45 (d, J = 2.5 Hz, 1H), 8.13 (dd, J = 8.5, 2.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 5.62 (s, 1H), 3.44 (s, 3H), 3.39 (s, 6H), 1.58 (s, 6H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 147.0, 141.5, 133.3, 128.2, 123.1, 121.8, 101.2, 101.1, 80.2, 71.0, 54.0, 51.9, 28.0. IR (neat, cm⁻¹): 1521,

1464, 1342, 1274, 1171, 1067, 982, 867, 835, 792, 735. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{15}H_{19}NNaO_5$ 316.1155; found 316.1151.


2-(Diphenylmethylene)-3-methoxy-2,3-dihydro-1H-inden-1-one 3.37e:

Synthesized according to the general procedure described above as a yellow solid in 80% (84 mg) yield, mp 210-212 °C, R_f = 0.6 (in 20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.6 Hz, 1H), 7.70-7.64 (m, 2H), 7.54-7.50 (m, 1H), 7.43-7.38 (m, 8H), 7.32-7.29 (m, 2H), 5.82 (s, 1H), 3.01 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.0, 155.2, 147.9, 141.3, 139.7,

139.6, 134.5, 129.5, 129.4, 128.9, 128.7, 128.6, 128.1, 127.8, 125.7, 123.7, 76.7, 52.4. IR (neat, cm⁻¹): 1687, 1602, 1255, 1130, 1075, 987, 769, 696. HRMS (ESI-TOF) m/z: [M+Na] $^+$ calcd. for $C_{23}H_{18}NaO_2$ 349.1199; found 349.1198.

2-((4-Bromophenyl)(phenyl)methylene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37f

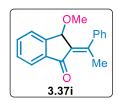
Synthesized according to the general procedure described above as a yellow solid in 85% (90 mg) yield, *E:Z* ratio: 55:45, mp 183-185 °C, $R_{\rm f}$ = 0.4 (in 10% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.4 Hz, 2H), 7.71-7.63 (m, 4H), 7.57-7.50 (m, 6H), 7.45-7.36 (m, 9H), 7.30-7.29 (m, 1H), 7.27-7.24 (m, 3H), 7.18-7.15 (m, 2H), 5.78 (s, 1H, major), 5.77 (s, 1 H, minor), 3.02 (s, 3H, major), 2.99 (s, 3H, minor). ¹³C {¹H} NMR (100 MHz,

CDCl₃): δ 191.0, 190.9, 153.7, 147.9, 147.6, 140.8, 140.1, 139.7, 139.5, 139.1, 138.4, 134.8, 134.7, 133.9, 133.8, 131.4, 131.2, 131.0, 130.7, 129.7, 129.4, 129.0, 128.9, 128.8, 128.3, 127.9, 125.8, 123.83, 123.82, 123.80, 123.2, 123.0, 76.5, 52.7, 52.2. IR (neat, cm⁻¹): 1683, 1578, 1483, 1276, 1129, 1070, 1009, 986, 831, 747. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₁₈BrO₂ 405.0485; found 405.0484.

2-((4-Chlorophenyl)(phenyl)methylene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37g:

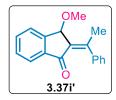
Synthesized according to the general procedure described above as a yellow solid in 83% (87 mg) yield, *E:Z* ratio: 55:45, mp 182-184 °C, R_f = 0.43 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, J = 7.6 Hz, 2H), 7.68-7.61 (m, 4H), 7.50 (t, J = 7.4 Hz, 2H), 7.41-7.31 (m, 15H), 7.25-7.20 (m, 4H), 5.77 (s, 1H, major), 5.76 (s, 1H, minor), 2.99 (s, 3H, minor), 2.97 (s, 3H, major). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 190.9, 190.8, 153.6, 147.96, 147.64, 140.9, 139.6, 139.5, 139.2, 137.9, 134.8, 134.75,

134.71, 133.9, 133.8, 130.9, 130.4, 129.7, 129.4, 128.99, 128.94, 128.7, 128.4, 128.2, 128.1, 127.9, 125.8, 123.7, 76.7, 76.5, 52.7, 52.2. IR (neat, cm $^{-1}$): 1682, 1599, 1463, 1442, 1397, 1285, 1255, 1195, 1153, 1074, 986, 928, 858, 834, 747. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₂₃H₁₈ClO₂ 361.0990; found 361.0995.


3-Methoxy-2-(phenyl(p-tolyl)methylene)-2,3-dihydro-1*H*-inden-1-one 3.37h:

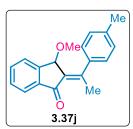
Synthesized according to the general procedure described above as a yellow solid in 89% (91 mg) yield, *E:Z* ratio: 52:48, mp 162-164 °C, $R_{\rm f}$ = 0.5 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.82 (dd, J = 7.2, 5.1 Hz, 2H), 7.63-7.69 (m, 5H), 7.51 (t, J = 7.4 Hz, 2H), 7.37-7.43 (m, 9H), 7.27-7.31 (m, 5H), 7.23 (d, J = 8.1 Hz, 2H), 5.88 (s, 1H, major), 5.80 (s, 1H, minor), 3.00 (s, 3H, major), 2.98 (s, 3H, minor), 2.41 (s, 6H, major and

minor). 13 C $\{^{1}$ H $\}$ NMR (125 MHz, CDCl₃): δ 191.0, 190.9, 155.5, 155.3, 147.9, 147.8, 141.6, 139.9, 139.8, 138.9, 138.7, 138.4, 136.6, 134.4, 133.2, 133.0, 129.6, 129.5, 129.4, 129.1, 129.0, 128.8, 128.6, 128.5, 128.1, 127.7, 125.76, 125.73, 123.67, 123.63, 76.8, 76.6, 52.5, 52.0. IR (neat, cm⁻¹): 1679, 1598, 1488, 1335, 1285, 1256, 1196, 1075, 1021, 985, 929, 819, 750. HRMS (ESITOF) m/z: [M+H]⁺ calcd for $C_{24}H_{21}O_{2}$ 341.1536; found 341.1536.


(E)-3-Methoxy-2-(1-phenylethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37i:

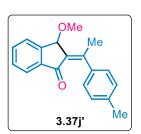
Synthesized according to the general procedure described above as a yellow solid in 35% (36 mg) yield, mp 94-96 °C, $R_{\rm f}$ = 0.4 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 7.6 Hz, 1H), 7.63 (td, J = 7.4, 1.0 Hz, 1H), 7.57 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.44-7.47 (m, 2H), 7.42-7.38 (m, 3H), 5.48 (s, 1H), 2.88 (s, 3H), 2.79 (s, 3H). ¹³C {¹H} NMR (125

MHz, CDCl₃): δ 193.4, 155.3, 147.7, 142.8, 139.7, 134.4, 132.2, 129.4, 128.5, 128.0, 126.5, 125.8, 123.4, 76.2, 52.1, 21.2. IR (neat, cm⁻¹): 1680, 1603, 1488, 1367, 1258, 1083, 938, 749. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₇O₂ 265.1223; found 265.1230.


(Z)-3-Methoxy-2-(1-phenylethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37i':

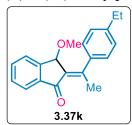
Synthesized according to the general procedure described above as a yellow liquid in 25% (25.5 mg) yield, $R_{\rm f}$ = 0.3 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 8.2 Hz, 2H), 7.63 (td, J = 7.3, 1.1 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.45-7.38 (m, 3H), 7.33-7.31 (m, 2H), 5.82 (s, 1H), 3.16 (s, 3H), 2.46 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.9, 154.9, 146.9,

141.0, 140.0, 134.5, 131.1, 129.6, 128.0, 127.9, 127.1, 125.9, 123.6, 76.2, 51.1, 24.1. IR (neat, cm $^{-1}$): 1695, 1601, 1489, 1369, 1242, 1152, 1074, 927, 748. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd for $C_{18}H_{16}NaO_2$ 287.1043; found 287.1037.


(E)-3-Methoxy-2-(1-(p-tolyl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37j:

Synthesized according to the general procedure described above as a yellow liquid in 37% (39.2 mg) yield, $R_{\rm f}$ = 0.6 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.61 (td, J = 7.4, 1.1 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.32-7.30 (m, 2H), 7.24 (d, J = 7.9 Hz, 2H), 5.51 (s, 1H), 2.85 (s, 3H), 2.75 (d, J = 0.85 Hz, 3H), 2.39 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 193.4, 155.5, 147.6,

139.9, 139.8, 138.0, 134.3, 131.9, 129.4, 128.9, 126.5, 125.8, 123.4, 76.2, 51.7, 21.3, 21.2. IR (neat, cm $^{-1}$): 1688, 1603, 1509, 1322, 1257, 1075, 938, 816, 749. HRMS (ESI-TOF) m/z: calcd for [M+Na] $^{+}$ C₁₉H₁₈NaO₂ 301.1199; found 301.1194.

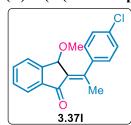

(Z)-3-Methoxy-2-(1-(p-tolyl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37j':

Synthesized according to the general procedure described above as a yellow liquid in 23% (24.5 mg) yield, $R_{\rm f}$ = 0.5 (in 20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.70 (m, 2H), 7.67-7.63 (m, 1H), 7.48-7.45 (m, 1H), 7.21 (s, 4H), 5.79 (s, 1H), 3.12 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 189.8, 155.1, 146.9, 140.1, 138.0, 137.9, 134.4, 130.9, 129.5, 128.6, 127.2, 125.9, 123.5, 76.4, 51.1, 24.0, 21.3. IR

(neat, cm $^{-1}$): 1695, 1604, 1509, 1462, 1241, 1185, 1073, 927, 814, 749. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd for C₁₉H₁₈NaO₂ 301.1199; found 301.1197.

(E)-2-(1-(4-Ethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1H-inden-1-one 3.37k:

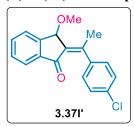
Synthesized according to the general procedure described above as a yellow liquid in 39% (40.9 mg) yield, $R_{\rm f}$ = 0.43 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 7.6 Hz, 1H), 7.63 (td, J = 7.5, 1.1 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.49-7.52 (m, 1H), 7.37-7.35 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 5.51 (s, 1H), 2.88 (s, 3H), 2.78 (s, 3H), 2.72 (q, J = 7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ


189.9, 155.2, 146.9, 144.3, 140.1, 138.1, 134.4, 130.9, 129.6, 127.3, 125.9, 123.6, 76.4, 51.1, 28.6, 24.0, 15.2. IR (neat, cm⁻¹): 1695, 1604, 1508, 1461, 1291, 1242, 1187, 1151, 1074, 928, 906, 830, 749. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{20}H_{21}O_2$ 293.1536; found 293.1540.

(Z)-2-(1-(4-Ethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37k':

OMe Me 3.37k' Synthesized according to the general procedure described above as a yellow liquid in 18% (19.5 mg) yield, $R_{\rm f}$ = 0.43 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.72 (t, J = 7.4 Hz, 2H), 7.66 (td, J = 7.2, 1.0 Hz, 1H), 7.49-7.46 (m, 1H), 7.24 (s, 4H), 5.80 (s, 1H), 3.12 (s, 3H), 2.70 (q, J = 7.6 Hz, 2H), 2.43 (d, J = 0.3 Hz, 3H), 1.28 (t, J = 7.6 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.9, 155.2, 146.9, 144.3, 140.1, 138.1, 134.4,

130.9, 129.6, 127.37, 127.36, 125.9, 123.6, 76.4, 51.1, 28.6, 24.0, 15.2 . IR (neat, cm $^{-1}$): 1695, 1604, 1508, 1461, 1291, 1242, 1187, 1074, 928, 830, 749. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for $C_{20}H_{21}O_2$ 293.1536; found 293.1540.


(E)-2-(1-(4-Chlorophenyl)ethylidene)-3-methoxy-2,3-dihydro-1H-inden-1-one 3.371:

Synthesized according to the general procedure described above as a yellow liquid in 46% (48.2 mg) yield, $R_{\rm f}$ = 0.5 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 7.7 Hz, 1H), 7.60 (td, J = 7.6, 0.7 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.43-7.31 (m, 2H), 7.37-7.34 (m, 2H), 5.43 (s, 1H), 2.89 (s, 3H), 2.75 (s, 3H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 193.1, 153.6, 147.4, 141.1, 139.7, 134.5, 134.0,

132.7, 129.5, 128.5, 128.0, 125.9, 123.5, 76.2, 52.1, 21.0. IR (neat, cm $^{-1}$): 1685, 1586, 1484, 1326, 1259, 1153, 1070, 1010, 936, 825, 700, 616. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₁₈H₁₆ClO₂ 299.0833; found 299.0830.

(Z)-2-(1-(4-Chlorophenyl)ethylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.371':

Synthesized according to the general procedure described above as a yellow solid in 36% (38 mg) yield, mp 113-115 °C, $R_{\rm f}=0.4$ (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.75-7.73 (m, 2H), 7.69 (td, J=7.2, 1.0 Hz, 1H), 7.50 (t, J=7.5 Hz, 1H), 7.39 (dt, J=8.4, 2.4 Hz, 2H), 7.26 (dt, J=8.5, 2.3 Hz, 2H), 5.81 (s, 1H), 3.15 (s, 3H), 2.42 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 189.8, 153.2, 147.0, 139.8, 139.3,

134.6, 133.9, 131.7, 129.7, 128.7, 128.1, 125.9, 123.6, 76.2, 51.3, 23.8. IR (neat, cm $^{-1}$): 1696, 1618, 1525, 1460, 1377, 1337, 1320, 1293, 1240, 1208, 1183, 1149, 1075, 1004, 924, 837, 820, 796, 752, 718, 702, 679. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for C₁₈H₁₆ClO₂ 299.0833; found 299.0832.

(E)-3-Methoxy-2-(1-(naphthalene-2-yl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37m:

Synthesized according to the general procedure described above as a yellow liquid in 46% (48.3 mg) yield, $R_{\rm f}$ = 0.5 (in 10% EtOAc/Hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.88 (m, 5H), 7.63 (td, J = 7.4, 1.2 Hz, 1H), 7.56-7.50 (m, 5H), 5.51 (s, 1H), 2.90 (s, 3H), 2.88 (d, J = 0.4 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 193.4, 155.1, 147.8, 140.2, 139.8, 134.4, 133.0, 132.9, 132.8, 129.5, 128.2, 127.9, 127.7,

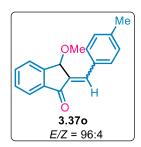
126.42, 126.40, 125.8, 125.7, 123.5, 76.5, 52.5, 21.2. IR (neat, cm⁻¹): 1688, 1603, 1502, 1463,

1432, 1367, 1332, 1260, 1198, 1152, 1124, 1075, 1017, 956, 936, 859, 819, 747, 702, 671, 656. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₈NaO₂ 337.1199; found 337.1202.

(Z)-3-Methoxy-2-(1-(naphthalene-1-yl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37m':

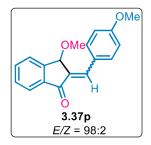
Synthesized according to the general procedure described above as a yellow solid in 33% (33.8 mg) yield, mp 152-154 °C, $R_{\rm f}=0.4$ (in 10% EtOAc/Hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.85 (m, 3H), 7.80-7.75 (m, 3H), 7.70 (td, J=7.3, 1.3 Hz, 1H), 7.53-7.48 (m, 3H), 7.44 (dd, J=8.4, 1.7 Hz, 1H), 5.89 (s, 1H), 3.21 (s, 3H), 2.55 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 189.8, 154.7, 147.0, 140.0, 138.6, 134.5, 133.1, 133.0, 131.4,

129.6, 128.2, 127.7, 127.2, 126.1, 126.03, 126.02, 125.98, 125.93, 123.6, 76.4, 51.2, 24.2. IR (neat, cm⁻¹): 1694, 1620, 1599, 1500, 1462, 1431, 1365, 1341, 1291, 1248, 1231, 1198, 1153, 1123, 1080, 1055, 953, 930, 910, 891, 864, 821, 745, 684. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{22}H_{18}NaO_2$ 337.1199; found 337.1182.


2-Benzylidene-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37n:

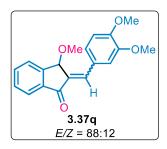
Synthesized according to the general procedure described above as a yellow oil in 60% (68 mg) yield, E:Z ratio: 96:4, $R_f = 0.4$ (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, J = 7.2 Hz, 2H), 7.93 (d, J = 7.6 Hz, 1H), 7.86 (s, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.50-7.43 (m, 3H), 6.00 (s, 1H, major), 5.29 (s, 1H, minor), 3.19 (s, 1H, minor), 2.94 (s, 3H, major). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 192.3,

148.5, 138.7, 138.6, 135.0, 134.0, 133.4, 131.9, 130.4, 129.7, 128.8, 126.1, 123.6, 74.7, 50.4. IR (neat, cm $^{-1}$): 1698, 1625, 1464, 1332, 1261, 1064, 967, 748, 688. HRMS (ESI-TOF) m/z: [M+H] $^{+}$ calcd for $C_{17}H_{15}O_2$ 251.1067; found 251.1069.


3-Methoxy-2-(4-methylbenzylidene)-2,3-dihydro-1*H*-inden-1-one 3.37o:

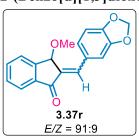
Synthesized according to the general procedure described above as a yellow liquid in 71% (79 mg) yield, *E*:*Z* ratio: 96:4, $R_{\rm f}=0.43$ (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 8.14 (d, J=8.0 Hz, 1H, minor), 7.93 (d, J=7.6 Hz, 1H), 7.88 (d, J=8.1 Hz, 2H), 7.85 (d, J=1.3 Hz, 1H), 7.77 (d, J=7.4 Hz, 1H), 7.73 (td, J=7.2, 1.0 Hz, 1H), 7.56 (t, J=7.5 Hz, 1H), 7.30 (d, J=8.0 Hz, 2H), 5.99 (s, 1H, major), 5.61 (s, 1H, minor), 3.16 (s, 3H, minor), 2.92 (s, 3H, major), 2.41 (s, 3H). ¹³C { ¹H}

NMR (100 MHz, CDCl₃): δ 192.5, 148.5, 141.1, 138.8, 138.7, 134.9, 132.3, 132.0, 131.3, 129.7, 129.6, 126.1, 123.6, 74.8, 50.3, 21.5. IR (neat, cm⁻¹): 1685, 1600, 1510, 1332, 1261, 1184, 1067, 968, 744. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₇O₂ 265.1223; found 265.1227.


3-Methoxy-2-(4-methoxybenzylidene)-2,3-dihydro-1*H*-inden-1-one 3.37p:

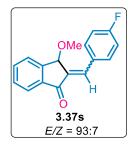
Synthesized according to the general procedure described above as a yellow liquid in 65% (68 mg) yield, *E*:*Z* ratio: 98:2, $R_f = 0.4$ (in 30% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 8.32 (d, J = 9.0 Hz, 1H, minor), 7.95 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 7.6 Hz, 1H), 7.83 (s, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.72 (t, J = 7.1 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.01 (d, J = 8.7 Hz, 2H), 5.99 (s, 1H, major), 5.61 (s, 1H, minor), 3.89 (s, 3H, major), 3.84 (s, 3H, minor), 3.21 (s, 3H, minor), 2.93 (s, 3H, major).

 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 192.4, 161.5, 148.3, 138.8, 138.6, 134.8, 134.0, 130.7, 129.6, 126.8, 126.0, 123.5, 114.4, 74.8, 55.3, 50.2. IR (neat, cm $^{-1}$): 1694, 1594, 1509, 1173, 1127, 1065, 968, 829, 744. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd for C₁₈H₁₆NaO₃ 303.0992; found 303.1002.


3-Methoxy-2-(3,4-dimethoxybenzylidene)-2,3-dihydro-1*H*-inden-1-one 3.37q:

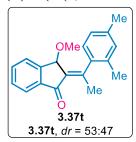
Synthesized according to the general procedure described above as a yellow solid in 71% (77 mg) yield, *E:Z* ratio: 88:12, mp 156-158 °C, R_f = 0.35 (in 15% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H, minor), 7.78 (dd, J = 14.8, 1.6 Hz, 2H), 7.47 (d, J = 7.2 Hz, 1H), 7.70 (td, J = 6.8, 0.8 Hz, 1H), 7.55-7.53 (m, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 8.4, 2.0 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H, major), 6.90 (d, J = 8.4 Hz, 1H, minor),

5.96 (s, 1H, major), 5.60 (s, 1H, minor), 4.05 (s, 3H, minor), 3.97 (s, 3H, major), 3.94 (s, 3H, major), 3.13 (s, 3H, minor), 2.92 (s, 3H, major). 13 C $\{^{1}$ H $\}$ NMR (125 MHz, CDCl₃): δ 192.4, 190.5, 151.5, 151.4, 149.2, 148.5, 148.3, 147.1, 142.5, 140.7, 139.2, 138.9, 134.8, 134.4, 132.3, 131.0, 129.7, 129.6, 128.0, 127.3, 127.1, 127.0, 126.1, 125.9, 123.7, 123.6, 114.2, 114.0, 111.1, 110.3, 75.1, 56.09, 56.00, 55.97, 55.92, 51.5, 50.2. IR (neat, cm⁻¹): 1693, 1619, 1593, 1509, 1462, 1419, 1293, 1376, 1293, 1276, 1186, 1162, 1144, 1090, 1070, 1014, 986, 948, 935, 890, 856, 806, 790, 758, 702. HRMS (ESI-TOF) m/z: [M+H] calcd for $C_{19}H_{19}O_4$ 311.1278; found 311.1271.


2-(Benzo[d][1,3]dioxol-5-ylmethylene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37r:

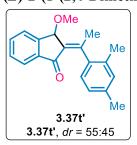
Synthesized according to the general procedure described above as a yellow solid in 58% (62 mg) yield, E:Z ratio: 91:9, mp 177-179 °C, R_f = 0.3 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H, minor), 7.77-7.66 (m, 5H), 7.54 (t, J = 7.0 Hz, 1H), 7.41 (dd, J = 8.1, 1.6 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H, major), 6.86 (d, J = 8.1 Hz, 1H, minor), 6.05 (q, J = 3.2 Hz, 2H), 5.95 (s, 1H, major), 5.59 (s, 1H, minor), 3.14 (s, 3H, minor), 2.93 (s, 3H, major).

¹³C {¹H} NMR (125 MHz, CDCl₃): δ 192.4, 149.8, 148.4, 148.3, 138.87, 138.81, 134.9, 131.2, 129.7, 128.8, 128.5, 126.1, 123.6, 110.7, 108.6, 101.6, 74.7, 50.2. IR (neat, cm⁻¹): 1693, 1582, 1496, 1442, 1241, 1030, 922, 791, 608. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₅O₄ 295.0965; found 295.0959.


2-(4-Fluorobenzylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37s:

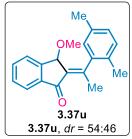
Synthesized according to the general procedure described above as a yellow solid in 65% (58 mg) yield, E:Z ratio: 93:7, mp 132-136 °C, $R_{\rm f}$ = 0.5 (in 20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dd, J = 8.7, 5.6 Hz, 2H, minor), 7.97 (dd, J = 8.7, 5.5 Hz, 2H, major), 7.92 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H, minor), 7.80 (s, 1H), 7.76-7.70 (m, 2H), 7.57-7.53 (m, 1.1H), 7.18-7.09 (m, 2H), 5.96 (s, 1H, major), 5.60 (s, 1H, minor), 3.17 (s, 3H, minor); 2.92 (s, 3H, major). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ

192.2, 163.9 (d, J = 251.5 Hz), 148.3, 147.2, 140.5, 138.6, 137.4, 135.1, 134.7, 134.1 (d, J = 8.6 Hz), 134.0 (d, J = 8.6 Hz), 133.9, 132.95, 132.93, 130.39, 130.35, 129.8, 129.7, 126.1, 125.9, 123.9, 123.8, 116.1 (d, J = 21.4 Hz), 115.2 (d, J = 21.3 Hz), 78.4, 74.6, 51.9, 50.3. ¹⁹F NMR (470 MHz, CDCl₃): δ -108.3. IR (neat, cm⁻¹): 1685, 1593, 1506, 1222, 1058, 932, 819, 740. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₃FNaO₂ 291.0792; found 291.0794.


(E)-2-(1-(2,4-Dimethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1<math>H-inden-1-one 3.37t:

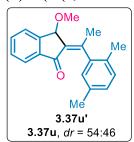
Synthesized according to the general procedure described above as a yellow liquid in 36% (37.9 mg) yield, $R_{\rm f}$ = 0.6 (in 20% EtOAc/hexanes). A Mixture of atropo-diastereomers (dr = 53:47). 1 H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.4 Hz, 2H), 7.53-7.47 (m, 4H), 7.09-7.02 (m, 5H), 6.92 (d, J = 7.6 Hz, 1H), 5.27 (s, 1H, major), 5.04 (s, 1H, minor), 2.84 (s, 3H, minor), 2.83 (s, 3H, major), 2.66 (s, 6H), 2.35 (s, 6H), 2.25 (s, 3H, major), 2.17 (s, 3H, minor). 13 C 1 H 1 H NMR (125 MHz, CDCl₃): δ

193.3, 193.2, 157.2, 156.5, 148.1, 147.6, 139.88, 139.80, 139.0, 137.2, 134.58, 134.52, 134.4, 133.3, 132.5, 131.7, 131.0, 130.9, 129.4, 126.46, 126.42, 126.1, 125.9, 125.8, 125.2, 123.5, 123.4, 76.5, 76.58, 76.51, 54.3, 52.4, 21.5, 21.3, 21.1, 19.3, 19.0. IR (neat, cm⁻¹): 1692, 1629, 1497, 1332, 1258, 1151, 1080, 941, 819, 751. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for $C_{20}H_{20}NaO_2$ 315.1356; found 315.1355.


(Z)-2-(1-(2,4-Dimethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37t':

Synthesized according to the general procedure described above as a yellow liquid in 16% (16.5 mg) yield, $R_{\rm f}$ = 0.54 (in 20% EtOAc/hexanes). Mixture of atropo-diastereomers (dr = 55:45). 1 H NMR (500 MHz, CDCl₃): δ 7.73-7.64 (m, 6.4H), 7.46 (t, J = 7.4 Hz, 2H), 7.07 (s, 2H), 7.04 (d, J = 7.6 Hz, 2H), 6.93 (d, J = 7.6 Hz, 0.9H), 6.87 (d, J = 7.6 Hz, 1H), 5.86 (s, 1H, minor), 5.84 (s, 1H, major), 3.13 (s, 3H, minor), 3.12 (s, 3H, major), 2.36 (s, 2.9H), 2.36 (s, 5.6H), 2.35 (s, 3H, major), 2.21 (s, 3H, major), 2.13 (s, 3H, minor).

 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 190.0, 189.9, 154.9, 154.5, 147.3, 147.2, 140.0, 139.9, 138.8, 138.7, 136.9, 136.8, 134.4, 133.5, 133.1, 132.0, 131.8, 130.8, 130.6, 129.5, 126.5, 126.4, 126.0, 125.5, 123.5, 76.1, 75.8, 51.2, 50.8, 23.7, 23.5, 21.1, 19.4, 19.0. IR (neat, cm⁻¹): 1699, 1633, 1497, 1243, 1191, 1073, 900, 813, 749. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₀NaO₂ 315.1356; found 315.1351.


(E)-2-(1-(2,5-Dimethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37u:

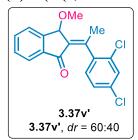
Synthesized according to the general procedure described above as a yellow liquid in 35% (37.8 mg) yield, $R_{\rm f}=0.35$ (in 10% EtOAc/hexanes). A Mixture of atropo diastereomers (dr=54:46). ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J=7.5 Hz, 2H), 7.61 (t, J=7.5 Hz, 2H), 7.53 (t, J=7.0 Hz, 2H), 7.49 (t, J=7.5 Hz, 2H), 7.14 (t, J=8.0 Hz, 2H), 7.06 (d, J=8.0 Hz, 2H), 6.96 (s, 1H, minor), 6.84 (s, 1H, major), 5.25 (s, 1H, major), 4.99 (s, 1H, minor), 2.85 (s, 3H, minor), 2.83 (s, 3H, major), 2.67 (s, 3H, minor), 2.66

(s, 3H, major), 2.35 (s, 3H, minor), 2.33 (s, 3H, major), 2.24 (s, 3H, major), 2.16 (s, 3H, minor). 13 C 1 H 1 NMR (125 MHz, CDCl₃): δ 193.3, 193.2, 157.1, 156.3, 148.2, 147.8, 142.6, 141.7, 139.83, 139.80, 135.1, 134.8, 134.56, 134.50, 133.2, 132.6, 131.4, 130.19, 130.11, 129.47, 129.45, 128.7, 128.36, 128.30, 127.2, 125.9, 125.88, 125.83, 123.55, 123.51, 54.6, 53.1, 21.3, 21.1, 20.98, 20.93, 18.8, 18.6. IR (neat, cm⁻¹): 1692, 1631, 1462, 1259, 1199, 1079, 944, 809, 750. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₁O₂ 293.1536; found 293.1538.

(Z)-2-(1-(2,5-Dimethylphenyl)ethylidene)-3-methoxy-2,3-dihydro-1*H*-inden-1-one 3.37u':

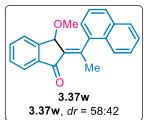
Synthesized according to the general procedure described above as a yellow liquid in 20% (20.8 mg) yield, $R_{\rm f}$ = 0.27 (in 10% EtOAc/hexanes). Mixture of atropo diastereomers (dr = 54:46). 1 H NMR (500 MHz, CDCl₃): δ 7.74-7.65 (m, 6H), 7.46 (t, J = 7.0 Hz, 2H), 7.13 (dd, J = 8.0, 3.0 Hz, 2H), 7.06 (dt, J = 7.5, 2.5 Hz, 2H), 6.84 (s, 1H, minor), 6.79 (s, 1H, major), 5.86 (s, 1H, minor), 5.85 (s, 1H, major), 3.13 (s, 3H, minor), 3.12 (s, 3H, major), 2.36 (s, 3H, major), 2.35 (s, 3H, minor), 2.33 (s, 3H, minor), 2.32 (s, 3H,

major), 2.20 (s, 3H, major), 2.11 (s, 3H, minor). 13 C 1 H} NMR (125 MHz, CDCl₃): δ 190.06, 190.00, 154.8, 154.5, 147.3, 147.2, 141.6, 141.5, 139.94, 139.91, 135.1, 135.0, 134.5, 131.8, 131.5, 130.4, 130.0, 129.8, 129.68, 129.61, 128.1, 126.4, 126.0, 123.5, 76.0, 75.8, 51.1, 50.8, 23.7, 23.5, 21.06, 21.04, 19.0, 18.6. IR (neat, cm⁻¹): 1700, 1634, 1603, 1462, 1247, 1202, 1075, 940, 875, 807, 750. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₀NaO₂ 315.1356; found 315.1359.


(E)-2-(1-(2,4-Dichlorophenyl)ethylidene)-3-methoxy-2,3-dihydro-1H-inden-1-one 3.37v:

Synthesized according to the general procedure described above as a yellow solid in 36% (37.4 mg) yield, mp 126-128 °C, $R_f = 0.51$ (in 10% EtOAc/hexanes). Mixture of atropo-diastereomers (dr = 55.45). ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.5 Hz, 2H), 7.57 (d, J = 7.5 Hz, 2H), 7.52 (q, J = 7.5 Hz, 4H), 7.33 (t, J = 7.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 0.8H), 5.44 (s, 1H, minor), 5.20 (s, 1H, major), 2.89 (s, 3H, major), 2.87 (s, 3H, minor), 2.73 (s, 3H, minor),

2.68 (s, 3H, major). 13 C 1 H} NMR (125 MHz, CDCl₃): δ 192.7, 152.5, 151.0, 147.5, 140.0, 139.9, 139.8, 139.3, 134.8, 134.17, 134.11, 133.9, 132.9, 130.7, 129.8, 129.6, 129.4, 128.1, 127.3, 126.9, 126.0, 123.6, 76.6, 75.6, 52.8, 52.5, 20.4, 20.1. IR (neat, cm⁻¹): 1687, 1626, 1601, 1466, 1373, 1334, 1290, 1266, 1209, 1196, 1145, 1101, 1079, 1031, 944, 916, 861, 814, 789, 749, 725. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for $C_{18}H_{15}Cl_2O_2$ 333.0444; found 333.0440.


(Z)-2-(1-(2,4-Dichlorophenyl)ethylidene)-3-methoxy-2,3-dihydro-1H-inden-1-one 3.37v':

Synthesized according to the general procedure described above as a yellow liquid in 31% (32 mg) yield, $R_f = 0.38$ (in 10% EtOAc/hexanes). Mixture of atropo-diastereomers (dr = 60.40). ¹H NMR (500 MHz, CDCl₃): δ 7.74-7.66 (m, 5.6H), 7.49 (d, J = 7.3 Hz, 1.5H), 7.46 (d, J = 1.9 Hz, 1H), 7.45 (d, J = 2.0 Hz, 0.4H), 7.30 (t, J = 1.9 Hz, 0.8H), 7.28 (t, J = 1.9 Hz, 2H), 7.09 (d, J = 8.2 Hz, 0.7H), 7.04 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 5.84 (s, 1H, minor), 3.16 (s, 3H, minor), 3.09 (s, 3H, major), 2.37 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 3.16 (s, 3H, minor), 3.09 (s, 3H, major), 2.37 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 3.16 (s, 3H, minor), 3.09 (s, 3H, major), 2.37 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 3.90 (s, 3H, major), 2.37 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 3.16 (s, 3H, minor), 3.09 (s, 3H, major), 2.37 (d, J = 8.2 Hz, 1H), 5.88 (s, 1H, major), 3.16 (s, 3H, minor), 3.19 (s, 3H, major), 3.19 (s,

0.4 Hz, 3H, major), 2.36 (d, J = 0.5 Hz, 3H, minor). 13 C $\{^{1}$ H $\}$ NMR (125 MHz, CDCl₃): δ 189.8, 189.7, 149.7, 149.3, 147.4, 139.5, 139.4, 139.3, 139.0, 134.9, 134.8, 133.7, 133.4, 133.3, 131.6, 131.4, 129.8, 129.7, 129.3, 129.2, 129.1, 128.6, 127.2, 127.0, 126.1, 123.7, 123.6, 75.8, 75.5, 51.6, 50.7, 22.4, 22.3. IR (neat, cm⁻¹): 1692, 1632, 1584, 1468, 1372, 1239, 1034, 930, 814, 746. HRMS (ESI): [M+H]⁺ calcd for C₁₈H₁₆Cl₂O₂ 333.0444; found 333.0442.

(E)-3-Methoxy-2-(1-(naphthalene-1-yl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37w:

Synthesized according to the general procedure described above as a yellow liquid in 44% yield (45.6 mg), R_f = 0.45 (in 10% EtOAc/hexanes). Mixture of atropo-diastereomers (dr = 58:42). ¹H NMR (500 MHz, CDCl₃): δ 7.95-7.87 (m, 5.6H), 7.81-7.76 (m, 2H), 7.64-7.56 (m, 3H), 7.55-7.49 (m, 6H), 7.48-7.42 (m, 3.6H), 5.43 (s, 1H, minor), 5.01 (s, 1H, major), 2.90 (d, J = 0.9 Hz, 3H, major), 2.89 (d, J = 0.9 Hz, 3H, minor),

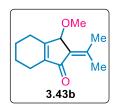
2.78 (s, 3H, major), 2.52 (s, 3H, minor). 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 193.1, 193.0, 155.7, 154.4, 148.1, 147.7, 141.1, 139.83, 139.82, 139.7, 134.6, 134.4, 133.8, 133.58, 133.53, 130.2, 129.4, 128.7, 128.6, 128.2, 127.95, 127.91, 126.5, 125.97, 125.90, 125.8, 125.3, 125.1, 124.4, 124.0, 123.54, 123.50, 122.2, 76.53, 76.50, 53.5, 52.4, 22.0, 21.9. IR (neat, cm⁻¹): 1691, 1630, 1603, 1505, 1463, 1431, 1393, 1365, 1334, 1289, 1261, 1200, 1153, 1106, 1072, 1019, 997, 935, 862, 838, 801, 777, 751. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for $C_{22}H_{19}O_2$ 315.1380; found 315.1385.

(Z)-3-Methoxy-2-(1-(naphthalene-1-yl)ethylidene)-2,3-dihydro-1*H*-inden-1-one 3.37w':

Synthesized according to the general procedure described above as a yellow liquid in 25% yield (25.8 mg), R_f = 0.32 (in 10% EtOAc/hexanes). Mixture of atropo diastereomers (dr = 51:49). ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.81-7.78 (m, 3.3H), 7.72-7.69 (m, 3.3H), 7.66 (d, J = 7.6 Hz, 2H), 7.56-7.52 (m, 2.7H), 7.51-7.41 (m, 6.7H), 7.31 (dd, J = 6.9, 0.8 Hz, 1H), 7.24 (dd, J =

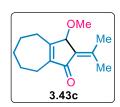
6.9, 0.8 Hz, 0.9H), 6.05 (s, 1H, major), 5.97 (s, 1H, minor), 3.36 (s, 3H, minor), 3.24 (s, 3H, major), 2.57 (s, 3H, minor), 2.56 (s, 3H, major). 13 C $\{^{1}$ H $\}$ NMR (125 MHz, CDCl₃): δ 189.6, 153.3, 153.0, 147.2, 140.3, 140.0, 139.9, 134.5, 134.4, 133.1, 130.3, 129.8, 129.6, 128.6, 127.6, 127.5, 126.1, 126.0, 125.7, 125.4, 125.3, 124.45, 124.40, 123.69, 123.65, 123.6, 123.4, 122.9, 76.4, 75.9, 52.0, 51.1, 24.3, 24.1. IR (neat, cm⁻¹): 1699, 1635, 1602, 1506, 1463, 1433, 1393, 1367, 1334, 1292,

1257, 1241, 1201, 1152, 1107, 1071, 1019, 998, 925, 906, 867, 837, 799, 776, 751, 684, 647. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₁₉O₂ 315.1380; found 315.1380.


3-Methoxy-2-(propan-2-ylidene)-3,4,5,6-tetrahydropentalen-1(2*H*)-one 3.43a:

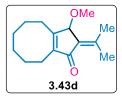
Synthesized according to the general procedure described above as a yellow liquid in 52% (56 mg) yield, $R_{\rm f}$ = 0.41 (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 4.93 (s, 1H), 3.15 (s, 3H), 2.72-2.65 (m, 1H), 2.59-2.40 (m, 3H), 2.34-2.27 (m, 5H, one of the methyl groups was merged in the multiplet at 2.30 ppm), 1.95 (s, 3H), 1.79-1.68 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ

190.8, 173.5, 155.2, 149.1, 133.7, 75.1, 52.5, 30.1, 26.8, 25.2, 23.0, 19.9. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{12}H_{16}NaO_2$ 215.1043; found 215.1047.


3-Methoxy-2-(propan-2-ylidene)-2,3,4,5,6,7-hexahydro-1*H*-inden-1-one 3.43b:

Synthesized according to the general procedure described above as a yellow solid in 55% (59 mg) yield, mp 88-90 °C, $R_{\rm f}$ = 0.4 (in 15% EtOAc/hexanes). 1 H NMR (500 MHz, CDCl₃): δ 4.94 (s, 1H), 2.98 (s, 3H), 2.45-2.40 (m, 1H), 2.34 (s, 3H), 2.26-2.20 (m, 3H), 1.99 (s, 3H), 1.79-1.68 (m, 4H). 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 194.6, 161.5, 149.1, 145.0, 128.2, 78.2, 50.2, 24.5, 23.0, 22.0,

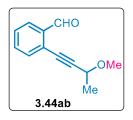
21.6, 20.0, 19.9. IR (neat, cm⁻¹): 1679, 1633, 1432, 1276, 1190, 1054, 967, 876, 785. HRMS (ESITOF) m/z: [M+Na]⁺ calcd. for $C_{13}H_{18}NaO_2$ 229.1199; found 229.1189.


3-Methoxy-2-(propan-2-ylidene)-3,4,5,6,7,8-hexahydroazulen-1(2*H*)-one 3.43c:

Synthesized according to the general procedure described above as a yellow liquid in 55% (56 mg) yield, $R_{\rm f}$ = 0.52 (in 20% EtOAc/hexanes). 1 H NMR (500 MHz, CDCl₃): δ 4.93 (s, 1H), 2.91 (s, 3H), 2.57-2.40 (m, 3H), 2.34 (s, 3H), 1.99 (s, 3H), 1.87-1.67 (m, 3H), 1.66-1.49 (m, 4H). 13 C (1 H) NMR (125 MHz, CDCl₃): δ 194.5, 164.3, 149.5, 148.5, 127.5, 78.5, 49.5, 31.1, 28.9, 26.6, 26.4,

23.5, 23.0, 20.1. IR (neat, cm⁻¹): 1683, 1661, 1638, 1439, 1366, 1279, 1138, 1074, 972, 827, 750. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{14}H_{20}NaO_2$ 243.1356; found 243.1359.

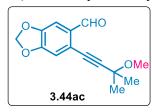
3-Methoxy-2-(propan-2-ylidene)-2,3,4,5,6,7,8,9-octahydro-1*H*-cyclopenta[8]annulen-1-one 3.43d:



Synthesized according to the general procedure described above as a yellow liquid in 49% (56 mg) yield, $R_{\rm f}=0.40$ (in 20% EtOAc/hexanes). $^{1}{\rm H}$ NMR (500 MHz, CDCl₃): δ 4.98 (s, 1H), 2.93 (s, 3H), 2.57-2.51 (m, 3H), 2.39-2.29 (m, 4H, methyl peak was merged in the multiplet), 2.00 (s, 3H), 1.87-1.80 (m, 1H), 1.76-1.66 (m, 2H), 1.58-1.49 (m, 2H), 1.47-1.42 (m, 3H). $^{13}{\rm C}$ { $^{1}{\rm H}$ } NMR

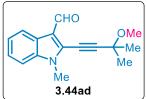
(125 MHz, CDCl₃): δ 194.6, 163.0, 149.3, 146.4, 127.4, 77.7, 49.9, 27.7, 27.1, 26.3, 26.1, 25.6,

23.0, 21.0, 20.1. IR (neat, cm⁻¹): 1684, 1658, 1637, 1443, 1367, 1276, 1133, 1072, 991, 794. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{15}H_{23}O_2$ 235.1693; found 235.1692.


2-(3-Methoxybut-1-yn-1-yl)benzaldehyde 3.44ab:

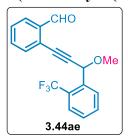
Synthesized according to the general procedure described above as a yellow oil in 55% (59 mg) yield, $R_{\rm f}=0.4$ (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.52 (d, J=1.0 Hz, 1H), 7.91 (tt, J=8.0, 1.0 Hz, 1H), 7.56-7.53 (m, 2H), 7.45-7.42 (m, 1H), 4.35 (q, J=6.5 Hz, 1H), 3.48 (s, 3H), 1.55 (d, J=6.5 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.5, 135.9, 133.7, 133.4, 128.7, 127.1, 126.2, 96.1, 80.6, 67.3, 56.5, 21.8. IR (neat, cm⁻¹)

¹): 2932, 1695, 1590, 1448, 1238, 1190, 1064, 909, 818, 762. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₂H₁₂NaO₂ 211.0730; found 211.0736.


6-(3-Methoxy-3-methylbut-1-yn-1-yl)benzo[d][1,3]dioxole-5-carbaldehyde 3.44ac:

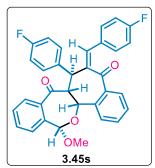
Synthesized according to the general procedure described above as a yellow solid in 60% (64 mg) yield, mp 96-98 °C, $R_{\rm f}$ = 0.5 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.34 (s, 1H), 7.32 (s, 1H), 6.92 (s, 1H), 3.41 (s, 3H), 1.55 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 189.8, 152.3, 148.6, 132.2, 123.1, 112.2, 106.0, 102.3, 97.1, 79.6, 71.0, 51.9, 28.1. IR (neat, cm⁻¹): 2919, 2851, 1672, 1604, 1498,

1476, 1361, 1238, 1066, 1028, 929, 846. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{14}H_{14}NaO_4$ 269.0784; found 269.0785.


2-(3-Methoxy-3-methylbut-1-yn-1-yl)-1-methyl-1*H*-indole-3-carbaldehyde 3.44ad:

Synthesized according to the general procedure described above as a white solid in 63% (68 mg) yield, mp 130-132 °C, R_f = 0.5 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.16 (s, 1H), 8.31 (m, 1H), 7.39-7.36 (m, 1H), 7.33-7.30 (m, 2H), 3.84 (s, 3H), 3.47 (s, 3H), 1.63 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 184.9, 137.3, 131.5,

125.0, 124.3, 123.5, 122.2, 120.0, 109.6, 103.7, 72.6, 71.2, 52.1, 31.0, 28.1. IR (neat, cm⁻¹): 2921,645, 1463, 1382, 1243, 1174, 1067, 833, 741. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for $C_{16}H_{17}NNaO_2$ 278.1151; found 278.1150.


2-(3-Methoxy-3-(2-(trifluoromethyl)phenyl)prop-1-yn-1-yl)benzaldehyde 3.44ae:

Synthesized according to the general procedure described above as a yellow liquid in 62% (65 mg) yield, $R_{\rm f}=0.40$ (in 10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 10.43 (s, 1H), 7.97 (d, J=7.5 Hz, 1H), 7.91 (d, J=7.5 Hz, 1H), 7.69 (d, J=8.0 Hz, 1H), 7.65 (t, J=7.5 Hz, 1H), 7.58-7.53 (m, 2H), 7.49-7.44 (m, 2H), 5.61 (s, 1H), 3.53 (s, 3H).97 (s, 3H), 3.94 (s, 3H), 3.44 (s, 3H), 1.58 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 191.2, 137.1, 136.1, 133.7, 133.5, 132.5, 129.1, 129.0, 128.7, 127.2, 125.8 (q, J=18.5 Hz), 125.6,

93.6, 83.0, 69.4, 57.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -58.3. IR (neat, cm⁻¹): 1697, 1593, 1452, 1310, 1272, 1158, 1115, 1079, 1034, 994, 823, 761. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₈H₁₃F₃NaO₂ 341.0760; found 341.0760.

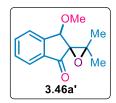
(Z)-6-(4-Fluorobenzylidene-7-(4-fluorophenyl)-13-methoxy-6,7,7a,14a-tetrahydro-5H-benzo[e]benzo[6,7]cyclohepta[1,2-b]oxepine-5,8(13H)-dione 3.45s:

Yellow solid. 8% (17 mg) yield, mp 180-182 °C, $R_{\rm f}$ = 0.4 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 8.04 (dd, J = 8.0, 1.5 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.59 (tdd, J = 15, 3.5,1.5 Hz, 2H), 7.55 (dd, J = 7.5, 1.0 Hz, 1H), 7.52 (td, J = 7.5, 1.0 Hz, 1H), 7.45 (td, J = 7.5, 0.5 Hz, 1H), 7.37-7.34 (m, 2H), 7.06-7.02 (m, 2H), 6.99-6.92 (m, 4H), 6.26 (s, 1H), 6.16 (s, 1H), 5.72 (d, J = 8.0 Hz, 1H), 4.46 (d, J = 11.0 Hz, 1H), 4.27 (dd, J = 11.0, 8.5 Hz, 1H), 3.67 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 197.5, 194.2, 163.3 (d, J

= 135 Hz), 161.3 (d, J = 132.5 Hz), 141.9, 141.8, 139.5, 138.4, 136.7, 134.6 (d, J = 2.5 Hz), 134.5, 133.6, 131.7, 131.5, 131.4, 131.1 (d, J = 2.5 Hz), 129.8, 129.7, 129.5, 129.0, 128.7, 127.9, 126.7, 125.7, 115.6 (d, J = 21.2 Hz), 115.2 (d, J = 21.2 Hz), 101.4, 74.9, 60.8, 55.5, 45.1. ¹⁹F NMR (470 MHz, CDCl₃): δ –111.3, –115.1. IR (neat, cm⁻¹):1724, 1682, 1665, 1597, 1506, 1448, 1373, 1325, 1223, 1202, 1125, 1093, 991, 905, 826, 765, 744, 693. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₃₃H₂₄F₂NaO₄ 545.1535; found 545.1545.

Scale-up Reaction and Synthetic Applications of Indanones:

Typical Procedure for a Gram Scale Synthesis of 3.37a. A solution of TfOH (94 μ L, 1.06 mmol, 20 mol %) was added to a stirred solution of 2-(3-hydroxy-3-methylbut-1-yn-1-yl)benzaldehyde 3.36a (1.0 g, 5.3 mmol, 1.0 equiv.) and TMOF (2.32 mL, 21.2 mmol, 4.0 equiv.) in CH₃NO₂ (75 mL) at room temperature and allowed to stir at the same temperature. After completion of the reaction (10 h), the reaction mixture was quenched with saturated aqueous NaHCO₃ solution (60 mL) and extracted with ethyl acetate (3 × 60 mL). Combined organic layers were washed with saturated aqueous brine solution, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/ethyl acetate mixture as eluent) to afford the indanone 3.37a in 48% (0.52 g) isolated yield.


Synthesis of 3.46a and 3.46': A sample of *m*-CPBA (0.22 mmol, 39 mg, 1.5 equiv.) was added in one portion to a stirred solution of indanone **3.37a** (0.15 mmol, 30 mg, 1.0 equiv.) in dry CH_2Cl_2 (1 mL), at 0 °C. The reaction was brought to room temperature and stirred for 12 h at the same temperature. The solvent was removed and the crude was subjected to silica gel column chromatography (10% hexanes/ethyl acetate) to separate **3.46a** and **3.46'**.²⁷

1-Methoxy-3,3'-dimethylspiro[indene-2,2'-oxiran]-3(1H)-one 3.46a:

Yellow solid, 58% (19 mg) yield, mp 90-92 °C, $R_{\rm f}$ = 0.6 (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 5.09 (s, 1H), 3.26 (s, 3H), 1.74 (s, 3H), 1.66 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 198.6, 149.4, 137.6, 135.5, 129.8, 126.0, 123.4, 79.7, 68.1, 54.7, 23.1, 19.0.

IR (neat, cm $^{-1}$): 1717, 1462, 1372, 1191, 1122, 1073, 970, 908, 742, 672. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd. for C₁₃H₁₄NaO₃ 241.0835; found 241.0831.

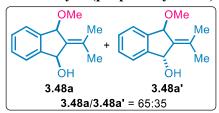
1-Methoxy-3,3'-dimethylspiro[indene-2,2'-oxiran]-3(1*H*)-one 3.46':

Yellow solid, 39% (13 mg) yield, mp 97-99 °C, $R_{\rm f}$ = 0.4 (in 20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.75 (td, J = 7.6, 1.2 Hz, 1H), 7.71-7.69 (m, 1H), 7.59-7.55 (m, 1H), 5.04 (s, 1H), 3.24 (s, 3H), 1.58 (s, 3H), 1.57 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 199.0, 148.7, 137.2, 135.5, 130.2, 127.0, 123.3, 68.7, 66.1, 22.7, 18.1. IR (neat,

cm $^{-1}$): 1717, 1395, 1259, 1152, 1080, 1017, 906, 845, 755. HRMS (ESI-TOF) m/z: [M+Na] $^{+}$ calcd. for $C_{13}H_{14}NaO_3$ 241.0835; found 241.0832.

Synthesis of 3-methoxy-1-methyl-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-ol (3.47a/3.47a'):

A solution of MeMgBr (2.0M in THF, 0.3 mmol, 150 μ L, 2.0 equiv.) was added slowly to a stirred solution of indanone **3.37a** (0.15 mmol, 30 mg, 1.0 equiv.) in dry THF (1 mL), at 0 °C under N₂ atmosphere. The resulting solution was stirred for 2 h at the same temperature. Then, the reaction mixture was quenched with saturated aqueous NH₄Cl solution (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with saturated aqueous brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to afford the pure product **3.47a/3.47a'** as an inseparable diastereomeric mixture.

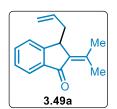

3-methoxy-1-methyl-2-(propan-2-ylidene)-2,3-dihydro-1H-inden-1-ol 3.47a/3.47a':

Colourless liquid in 61% (20 mg) yield. dr = 82:18, $R_f = 0.4$ (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.45-7.29 (m, 5.2H), 5.46 (s, 1H, major), 5.39 (s, 1H, minor), 3.21 (s, 3H, minor), 2.99 (s, 3H, major), 2.15 (d, J = 2 Hz, 1H), 2.11 (d, J = 1.5 Hz, 3H, major), 2.09 (s, 3H, minor), 1.93 (s, 3H, major), 1.92 (s, 3H, minor), 1.64

(s, 3H, major). 13 C 1 H 1 NMR (125 MHz, CDCl₃): δ 150.7, 150.0, 139.0, 138.4, 137.9, 137.7, 137.0, 129.5, 129.4, 128.6, 128.3, 125.3, 125.1, 123.2, 123.0, 81.1, 79.9, 79.6, 78.3, 53.5, 50.8, 28.4, 28.1, 22.5, 22.0, 20.8, 20.4. IR (neat, cm⁻¹): 3409, 1670, 1440, 1366, 1260, 1102, 1032, 930, 895, 764, 659. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₄H₁₈NaO₂ 241.1199; found 241.1200. Synthesis of 3-methoxy-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-ol 3.48a/3.48a':

A pure sample of NaBH₄ (0.3 mmol, 11 mg, 3.0 equiv.) was added in portion wise over 5 minutes to a stirred solution of indanone **3.37a** (0.15 mmol, 30 mg, 1.0 equiv.), $CeCl_3 \cdot 7H_2O$ (0.16 mmol, 61 mg, 1.1 equiv.) in MeOH (1 mL), at 0 °C. The resulting solution was stirred for 2 h at the same temperature. Water (3 mL) was added to the reaction mixture and extracted with ethyl acetate (3 × 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated and purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to afford **3.48a/3.48a'**.

3-methoxy-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-ol 3.48a/3.48a':


Colourless liquid, 80% (24 mg) yield, dr = 65:35. $R_f = 0.4$ (in 20% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, J = 7.0 Hz, 1H), 7.47-7.44 (m, 1.6H), 7.41-7.35 (m, 2.1H), 7.28-7.25 (m, 0.6H), 7.22-7.16 (m, 1.2H), 6.60 (s, 0.5H), 5.69 (s, 1H), 5.66 (s, 0.9H), 5.25 (s, 0.5H), 3.25 (s, 1.9H), 2.96 (s, 3H), 2.05 (s, 3H), 1.95 (s, 3H), 1.56 (s, 1.7H), 1.54 (s, 1.8H).

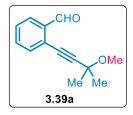
 13 C { 1 H} NMR (125 MHz, CDCl₃): δ 153.4, 145.2, 142.5, 141.5, 140.6, 139.6, 135.0, 129.4, 128.7, 127.0, 125.5(7), 125.5(3), 125.1, 123.9, 121.4, 83.4, 80.5, 74.1, 71.0, 53.6, 51.0, 31.1, 29.2, 21.5, 21.2. IR (neat, cm-1): 3384, 1678, 1458, 1371, 1200, 1074, 935, 864, 750, 632. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for $C_{13}H_{16}NaO_2$ 227.1043; found 227.1044.

Synthesis of 3-allyl-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-one 3.49a:

It was synthesized using a slightly modified procedure of the reported allylation protocol. ²⁸ To a stirred solution of FeCl₃ (0.0055 mmol, 0.9 mg, 5 mol %) in CH₃NO₂ (0.5 mL), allyltrimethylsilane (0.132 mmol, 21 μ L, 2.0 equiv.) and a solution of indanone **3.37a** (0.11 mmol, 20 mg, 1.0 equiv.) in CH₃NO₂ (0.5 mL) were added at room temperature under N₂ atmosphere. The resulting solution was stirred for 24 h at the same temperature. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL), and extracted with Et₂O (3 × 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to get the pure product **3.49a**.

3-allyl-2-(propan-2-ylidene)-2,3-dihydro-1*H*-inden-1-one3.49a:

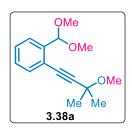
White solid. 43% yield (10 mg), mp 96-98 °C, R_f = 0.56 (in 5% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, J = 7.5 Hz, 1H), 7.53 (td, J = 7.5, 1.0 Hz, 1H), 7.47 (dq, J = 7.5, 1.0 Hz, 1H), 7.37-7.34 (m, 1H), 5.54 (dddd, J = 14.5, 10.0, 8.0, 6.5 Hz, 1H), 4.92-4.86 (m, 2H), 3.98 (dd, J = 7.0, 3.5 Hz, 1H), 2.71-2.65 (m, 1H), 2.50-2.43 (m, 1H), 2.41 (s, 3H), 2.05 (s, 3H). ¹³C { ¹H } NMR (100


MHz, CDCl₃): δ 194.0, 151.8, 148.9, 139.4, 134.5, 134.2, 133.6, 127.4, 125.3, 123.6, 117.5, 42.3, 38.9, 24.3, 20.7. IR (neat, cm⁻¹): 2919, 1684, 1622, 1602, 1464, 1285, 1087, 914, 847, 744. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₅H₁₇O 213.1274; found 213.1275.

Control Experiments and Characterization:

(a) Conversion of 3.38a into 3.39a (Scheme 3.14a): TfOH (0.04 mmol, 3.5 μ L, 20 mol %) was added to a stirred solution of 3.38a (0.2 mmol, 50 mg, 1.0 equiv.) in CH₃NO₂ (2 mL), at room

temperature. The resulting solution was stirred for 2 h at the same temperature. Then the reaction mixture was quenched with saturated aqueous $NaHCO_3$ solution (5 mL), extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried over anhydrous Na_2SO_4 , filtered, concentrated and purified by column chromatography (silica gel, EtOAc/hexanes mixture as eluent) to get **3.39a** as a yellow liquid in 60% isolated yield (24 mg).


2-(3-Methoxy-3-methylbut-1-yn-1-yl)benzaldehyde 3.39a:

¹H NMR (500 MHz, CDCl₃): δ 10.51 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 4.0 Hz, 2H), 7.43 (hept, J = 4.0 Hz, 1H), 3.43 (s, 3H), 1.57 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 191.4, 135.9, 133.7, 133.3, 128.6, 127.1, 126.3, 98.4, 79.8, 71.0, 51.9, 28.1. IR (neat, cm⁻¹): 1696, 1594, 1276, 1170, 1070, 824, 757. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₃H₁₄NaO₂ 225.0886; found 225.0886.

- (b) Conversion of 3.38a into 3.37a (Scheme 3.14b): TfOH (0.04 mmol, 3.5 μ L, 20 mol %) was added to a stirred solution of 3.38a (0.2 mmol, 50 mg, 1.0 equiv.) and TMOF (0.4 mmol, 44 μ L, 2.0 equiv.) in CH₃NO₂ (2 mL) at room temperature. The resulting solution was stirred for 3 h at the same temperature. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated and purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to afford 3.37a as a yellow solid in 49% (36 mg) yield.
- (c) Conversion of 3.39a into 3.38a (Scheme 3.14e): TfOH (0.04 mmol, 3.5 μ L, 20 mol %) was added to a stirred solution of 3.39a (0.2 mmol, 40 mg, 1.0 equiv.), TMOF (0.4 mmol, 44 μ L, 2.0 equiv.) in CH₃NO₂ (2 mL), at room temperature. The resulting solution was stirred for 3 h at the same temperature. The reaction mixture was then quenched with saturated NaHCO₃ solution (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated, and purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to afford 3.38a.

1-(Dimethoxymethyl)-2-(3-methoxy-3-methylbut-1-yn-1-yl)benzene 3.38a:

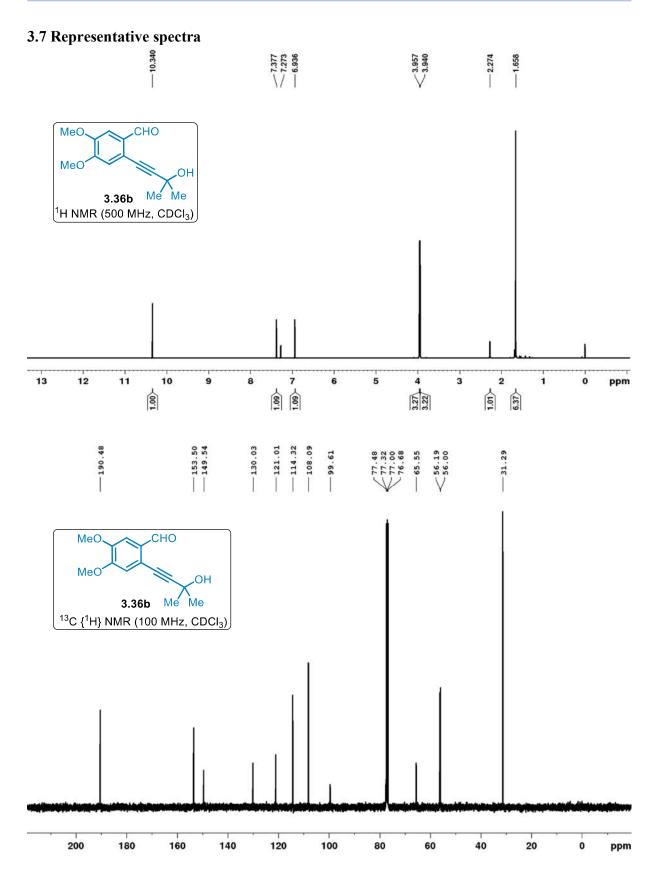
Yellow liquid in 70% (35 mg) yield. ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 7.5 Hz, 1H), 7.44 (dd, J = 8.0, 1.5 Hz, 1H), 7.34 (td, J = 7.5, 1.0 Hz, 1H), 7.28 (dd, J = 7.5, 1.5 Hz, 1H), 5.61 (s, 1H), 3.45 (s, 3H), 3.40 (s, 6H), 1.57 (s, 6H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 139.6, 132.4, 128.2, 126.0, 121.7, 102.8, 95.7, 81.7, 71.0, 54.3, 51.7, 28.3. IR (neat, cm⁻¹) 1360, 1272, 1171, 1146, 1071, 1052, 978, 759: HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd.

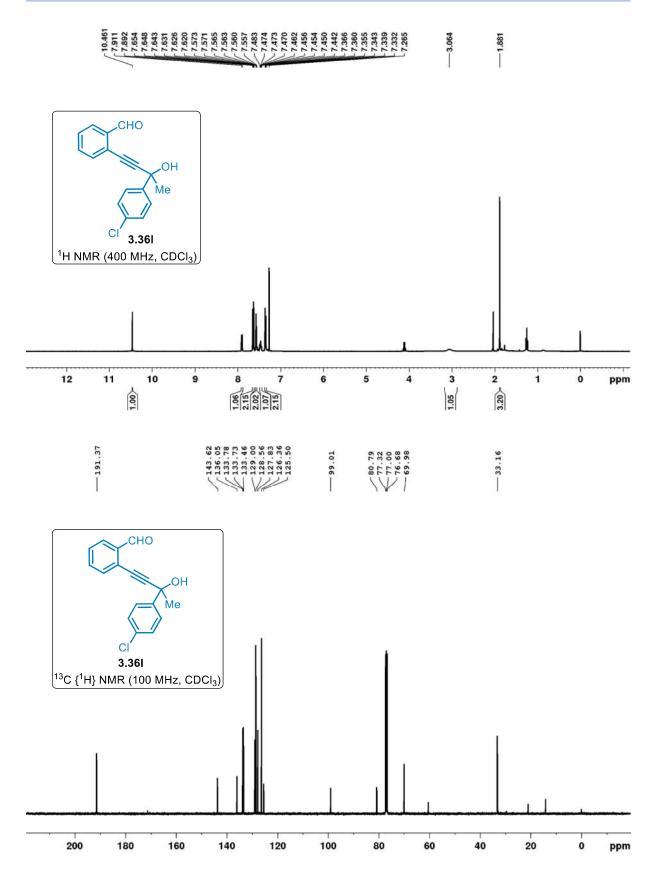
for C₁₅H₂₀NaO₃ 271.1305; found 271.1306.

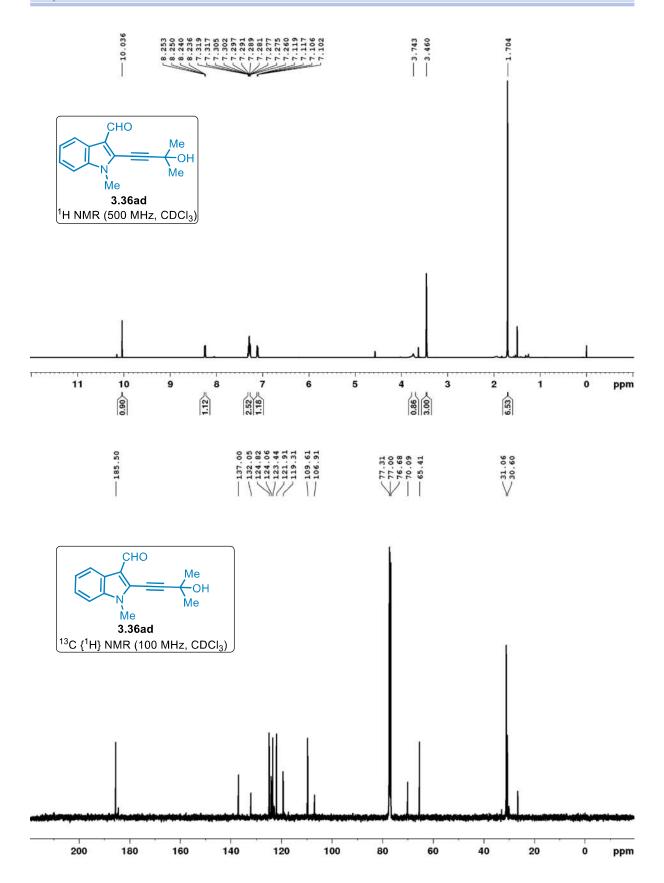
(d) Conversion of 3.39a to 3.37a (Scheme 3.14f): TfOH (0.04 mmol, 3.5 μ L, 20 mol %) was added to a stirred solution of 3.39a (0.2 mmol, 40 mg, 1.0 equiv.), TMOF (0.8 mmol, 88 μ L, 4.0 equiv.) in CH₃NO₂ (2 mL), at room temperature. The resulting solution was stirred for 5 h at the same temperature. Then, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution (5 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, concentrated, and purified by column chromatography (silica gel, EtOAc/hexane mixture as eluent) to afford 3.37a as a yellow solid in 60% (24 mg) yield.

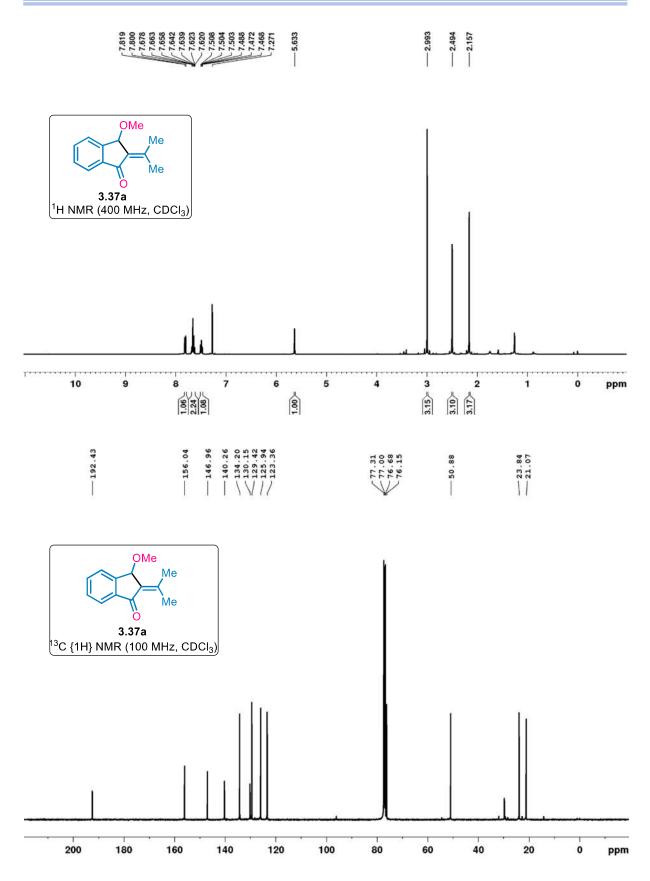
3.6 References

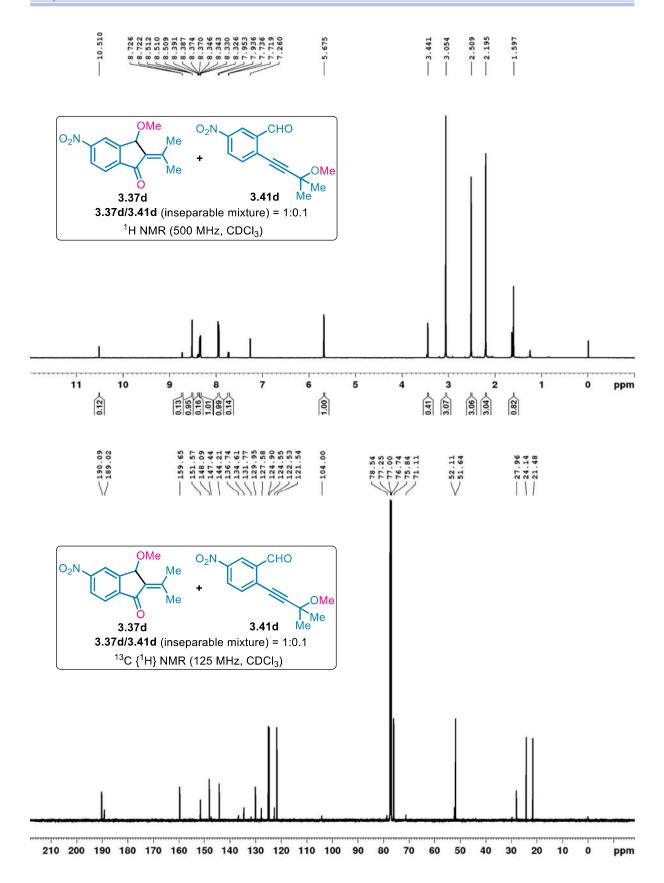
- (a) Meyer, K. H.; Schuster, K. Rearrangement of tert-ethinyl carbinols into unsaturated (1) ketones. Chem. Ber. 1922, 55, 819-823. For reviews, see: (b) Justaud, F.; Hachem, A.; Grée, R. Recent Developments in the Meyer-Schuster Rearrangement. Eur. J. Org. Chem. **2021**, 2021, 514-542. (c) Qian, H.; Huang, D.; Bi, Y.; Yan, G. 2-propargyl alcohols in Organic Synthesis. Adv. Synth. Catal. 2019, 361, 3240-3280. (d) Roy, D.; Tharra, P.; Baire, B. Intercepted Meyer-Schuster Rearrangements in Organic Synthesis. Asian J. Org. Chem., 2018, 7, 1015-1032. (e) Swaminathan, S.; Narayanan, K. V. Rupe and Meyer-Schuster rearrangements. Chem. Rev. 1971, 71, 429-438. (f) Engel, D. A.; Dudley, G. B. The Meyer-Schuster rearrangement for the synthesis of α,β -unsaturated carbonyl compounds. Org. Biomol. Chem. 2009, 7, 4149-4158. (g) Cadierno, V.; Crochet, P.; García-Garrido, S. E.; Gimeno, J. Metal-Catalyzed Transformations of Propargylic Alcohols into α , β -Unsaturated Carbonyl Compounds: From the Meyer-Schuster and Rupe Rearrangements to Redox Isomerizations. Dalton Trans 2010, 39, 4015-4031. (h) Zhu, Y. X.; Sun, L.; Lu, P.; Wang, Y. G. Recent Advances on the Lewis Acid-Catalyzed Cascade Rearrangements of Propargylic Alcohols and Their Derivatives. ACS Catal. 2014, 4, 1911-1925.
- (2) Halogen intercepted M-S rearrangement: (a) Trost, B. M.; Tracy, J. S. Vanadium-Catalyzed Synthesis of Geometrically Defined Acyclic Tri- and Tetrasubstituted Olefins From Propargyl Alcohols. *ACS Catal.* 2019, *9*, 1584-1594. (b) Naveen, N.; Ramesh, G.; Balamurugan, R. Silver catalyzed Synthesis of Enones/α-Iodoenones from Tertiary Propargyl Alcohols. ChemistrySelect 2019, 4, 13610-13614. (c) de Haro, T.; Nevado, C. Domino Gold-Catalyzed Rearrangement and Fluorination of Propargyl Acetates. *Chem. Commun.* 2011, *47*, 248-249. Allyl intercepted M-S rearrangement: (d) Trost, B. M.; Luan, X. Contemporaneous Dual Catalysis by Coupling Highly Transient Nucleophilic and Electrophilic Intermediates Generated *In Situ. J. Am. Chem. Soc.* 2011, *133*, 1706-1709. Alkynyl intercepted M-S rearrangement: (e) Banerjee, S.; Ambegave, S. B.; Mule, R. D.; Senthilkumar, B.; Patil, N. T. Gold-Catalyzed Alkynylative Meyer-Schuster Rearrangement. *Org. Lett.* 2020, *22*, 4792-4796. Aryl-intercepted M-S rearrangement: (f) Um, J.; Yun, H.; Shin, S. Cross-Coupling of Meyer-Schuster Intermediates under Dual Gold-Photoredox Catalysis. *Org. Lett.* 2016, *18*, 484-487. (g) Collins, B. S. L.; Suero, M.

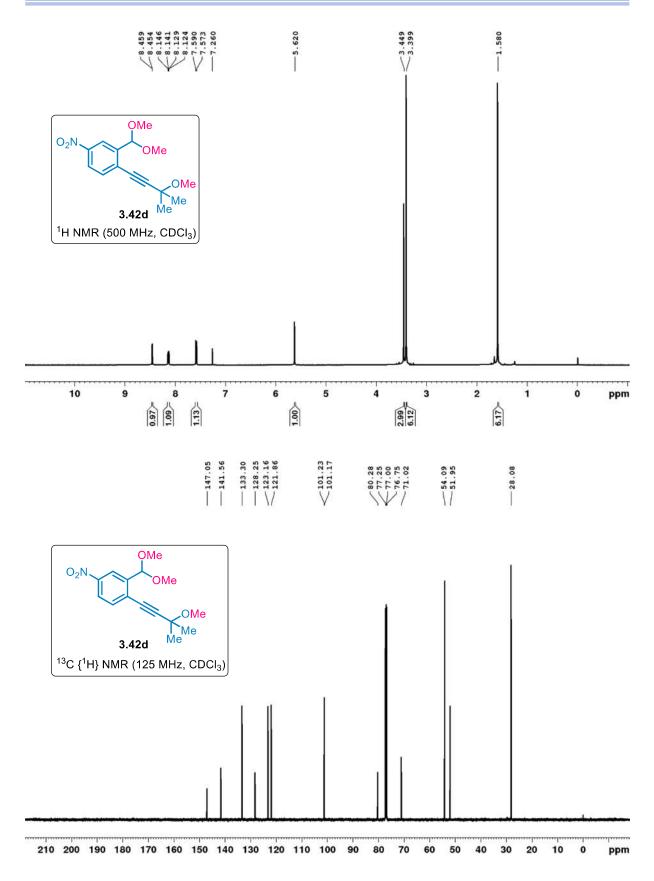

- G.; Gaunt, M. J. Copper-Catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts. *Angew. Chem., Int. Ed.* **2013**, *52*, 5799-5802. CF₃ intercepted M-S rearrangement: (h) Xiong, Y.-P.; Wu, M.-Y.; Zhang, X.-Y.; Ma, C.-L.; Huang, L.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Direct Access to α-Trifluoromethyl Enones *via* Efficient Copper-Catalyzed Trifluoromethylation of Meyer-Schuster Rearrangement. *Org. Lett.* **2014**, *16*, 1000-1003. Nitro intercepted M-S rearrangement: (i) Lin, Y.; Kong, W.; Song, Q. Palladium-Catalyzed Nitration of Meyer-Schuster Intermediates with Tbuono as Nitrogen Source at Ambient Temperature. *Org. Lett.* **2016**, *18*, 3702-3705.
- (3) Wang, S.-C.; Shen, Y.-T.; Zhang, T.-S.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. *J. Org. Chem.* **2021**, *86*, 15488-15497.
- (4) He, G.; Ma, J.; Zhou, J.; Li, C.; Liu, H.; Zhou, Y. A Metal-Free Method for the Facile Synthesis of Indanones *via* the Intramolecular Hydroacylation of 2-Vinylbenzaldehyde. *Green Chem.* **2021**, *23*, 1036-1040.
- (5) Hanchate, V.; Devarajappa, R.; Prabhu, K. R. Sulfoxonium-Ylide-Directed C-H Activation and Tandem (4 + 1) Annulation. *Org. Lett.* **2020**, *22*, 2878-2882.
- (6) Yu, S.; Lv, N.; Hong, C.; Liu, Z.; Zhang, Y. Rh-Catalyzed Annulation of Benzoic Acids, Formaldehyde, and Malonates *via* ortho-Hydroarylation to Indanones. *Org. Lett.* **2020**, *22*, 8354-8358.
- (7) Teng, J.; Sun, S.; Yu, J. T.; Cheng, J. Copper-Catalyzed Cascade Denitrogenative Transannulation/Hydrolyzation of 3-Aminoindazoles toward 2,2-Disubstituted Indanones. *J. Org. Chem.* **2019**, *84*, 15669-15676.
- (8) Shi, H.-N.; Huang, M.-H.; Hao, W.-J.; Tu, X.-C.; Tu, S.-J.; Jiang, B. Synthesis of diastereoenriched 1-indanones *via* double-base cooperatively promoted 1,4-oxomigration/cyclization of β-alkynyl ketones. *J. Org. Chem.* **2019**, *84*, 16027-16035.
- (9) Yuan, H.; Gong, J.; Yang, Z. A rhodium-catalyzed tandem reaction of *N*-sulfonyl triazoles with indoles: access to indole-substituted indanones. *Chem. Commun.* **2017**, *53*, 9089-9092.
- (10) (a) Jiang, J.-J.; Cui, J.-F.; Yang, B.; Ning, Y.; Lai, N. C.-H.; Wong, M.-K. Chiral Cyclometalated Oxazoline Gold(III) Complex-Catalyzed Asymmetric Carboalkoxylation of Alkynes. *Org. Lett.* 2019, *21*, 6289-6294. (b) Zi, W.; Toste, F. D. Gold(I)-Catalyzed Enantioselective Carboalkoxylation of Alkynes. *J. Am. Chem. Soc.* 2013, *135*, 12600-12603.
- (11) Yu, Y.; Yang, W.; Rominger, F.; Hashmi, A. S. K. In Situ Generation of Nucleophilic Allenes by the Gold-Catalyzed Rearrangement of Propargylic Esters for the Highly Diastereoselective Formation of Intermolecular C(sp³)-C(sp²) Bonds. Angew. Chem. Int. Ed. **2013**, 52, 7586-7589.
- (12) (a) Ramesh, G.; Balamurugan, R. Triflic Aicd-Ctalyzed Synthesis of Indole-Substituted Indane Derivatives *via In Situ* Formed Acetal-Facilitated Nucleophilic Addition and 4π -

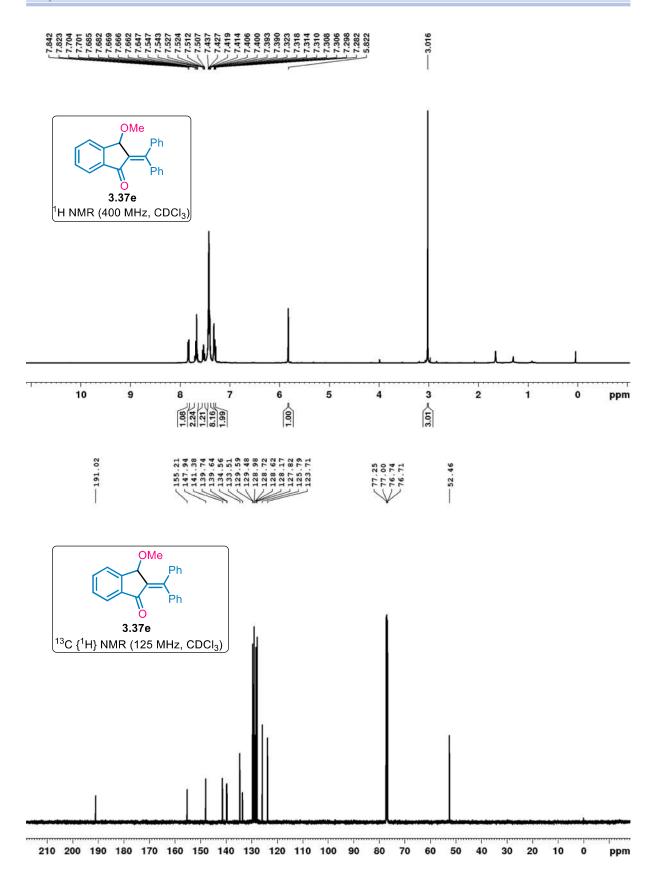

Electron-5-Carbon Electrocyclization Sequence. J. Org. Chem. 2021, 86, 16278-16292. (b) Tarigopula, C.; Manojveer, S.; Balamurugan, R. Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring via In Situ Formed Acetals. J. Org. Chem. 2021, 86, 11871-11883. (c) Mandal, M.; Sakthivel, S; Balamurugan, R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl Fused 1,6-Diyn-3ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. J. Org. Chem. 2021, 86, 333-351. (d) Mandal, M.; Balamurugan, R. Triflic acid-Mediated Expedient Synthesis of Benzo[a]fluorenes and Fluorescent Benzo[a]fluorenones. Adv. Synth. Catal. 2018, 360, 1453-1465. (e) Manojveer, S.; Balamurugan, R. In Situ Formed Acetal-Facilitated Synthesis of Substituted Indene Derivatives from o-Alkenylbenzaldehydes. Org. Lett. 2015, 17, 3600-3603. (f) Manojveer, S.; Balamurugan, R. A Cascade Approach to Naphthalene Derivatives from o -Alkynylbenzaldehydes and Enolizable Ketones via In Situ Formed Acetals. Eur. J. Org. Chem. 2015, 2015, 4254-4260. (g) Manojveer, S.; Balamurugan, R. A facile access to substituted benzo[a]fluorenes from o-alkynylbenzaldehydes via in situ formed acetals. Chem. Commun. 2014, 50, 9925-9928.

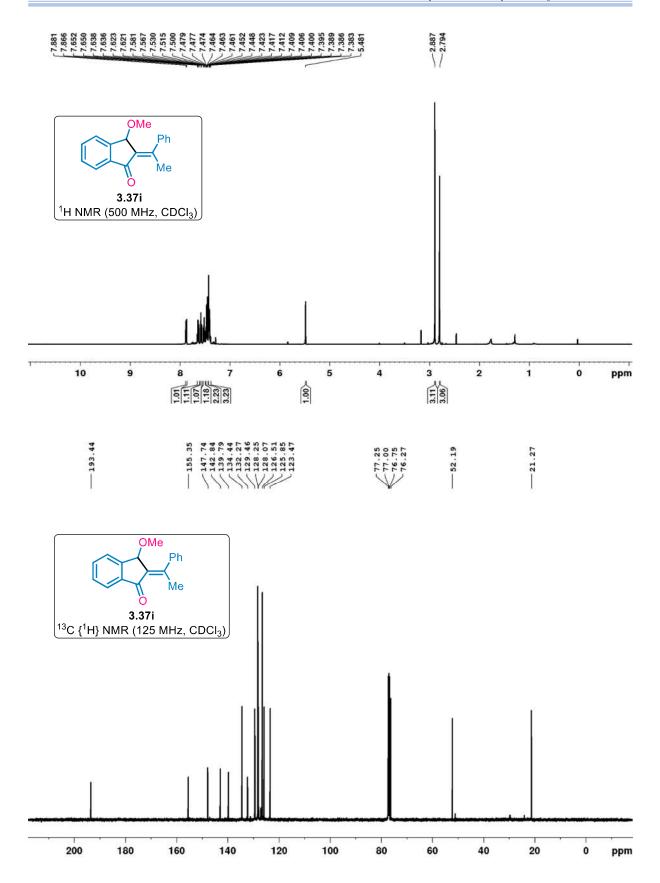

- (13) Zhou, N.-N.; Ning, S.-S.; Tong, X.-J.; Luo, T.-T.; Yang, J.; Li, L.-Q.; Fan, M.-J.; Yang, D.-S.; Zhu, H.-T. Brønsted-Acid-Catalyzed Synthesis of 3-Alkoxy and 3-Sulfamido Indanones *via* a Tandem Cyclization. *J. Org. Chem.* **2019**, *84*, 8497-8508.
- (14) (a) Tharra, P.; Baire, B. Mild Approach to 2-Acylfurans *via* Intercepted Meyer-Schuster Rearrangement of 6-Hydroxyhex-2-en-4-ynals. *J. Org. Chem.* **2015**, *80*, 8314-8328. (b) Gandhi, S.; Baire, B. Calcium (II) Catalyzed Cycloisomerization of cis-6-Hydroxy/ (Acyloxy) hex-2-en-4-ynals to 2-Acyl- and 2-(Acyloxyalkenyl)furans. *ChemistrySelect* **2018**, *3*, 4490-4494. (c) Gandhi, S.; Tharra, P.; Baire, B. Ag(I)-catalyzed Cyclizative Hydration of Alkynes and Propargylic Alcohols. A Mild Approach to 2-Acylfuran Derivatives. *ChemistrySelect* **2017**, *2*, 1058-1062.
- (15) For a recent review on construction of atropisomers, see: Cheng, J. K.; Xiang, S.-H.; Li, S. Y.; Ye, L.; Tan, B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. *Chem. Rev.* 2021, *121*, 4805-4902.
- (16) For a recent review, see: Feng, J.; Gu, Z. Atropisomerism in Styrene: Synthesis, Stability, and Applications. *SynOpen* **2021**, *5*, 68-85.
- (17) (a) Asai, T.; Otsuki, S.; Sakurai, H.; Yamashita, K.; Ozeki, T.; Oshima, Y. Benzophenones from an Endophytic Fungus, *Graphiopsis chlorocephala, form paeonia lactiflora* Cultivated in the Presence of an NAD⁺-Dependent HDAC Inhibitor *Org. Lett.* **2013**, *15*, 2058-2061. (b) Laufer, S. A.; Ahrens, G. M.; Karcher, S. C.; Hering, J. S.; Niess, R. Design, Synthesis, and Biological Evalution of Phenylamino-Subtituted 6,11-Dihydro-dibenzo[*b,e*]oxepin-11-ones and Dibenzo[*a,d*]cycloheptan-5-ones: Novel p38 MAP Kinase Inhibitors. *J. Med. Chem.* **2006**, *49*, 7912-7915.

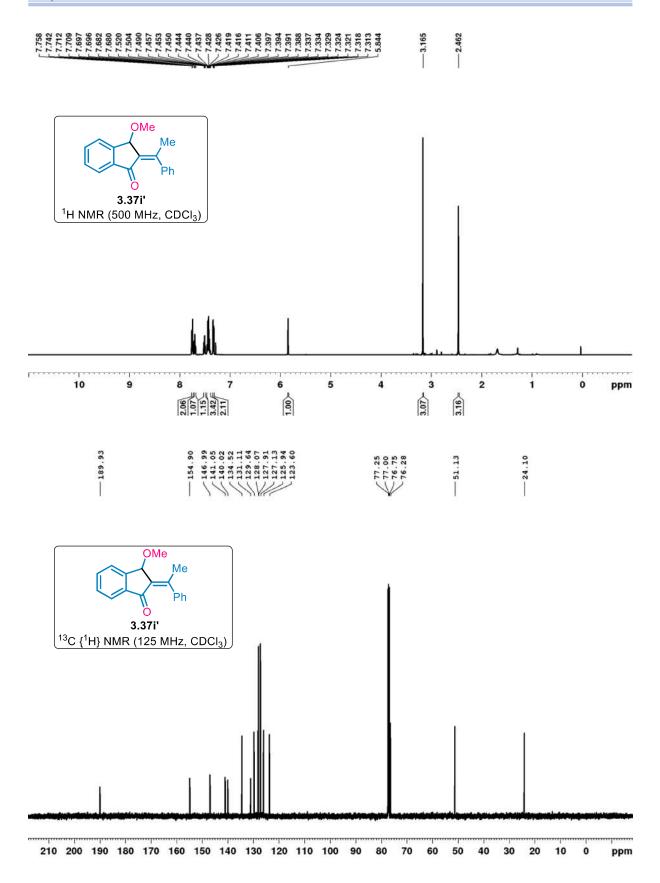

- (18) Chaffey, D. R.; Davies, T. E.; Taylor, S. H.; Graham, A. E. Etherification reactions of furfuryl alcohol in the presence of Orthoesters and ketals: application to the synthesis of furfuryl ether Biofuels. *ACS Sustainable Chem. Eng.* 2018, *6*, 4996-5002.
- (a) Lauterbach, T.; Higuchi, T.; Hussong, M. W.; Rudolph, M.; Rominger, F.; Mashima, (19)K.; Hashmi, A. S. K. Gold-catalyzed carbenoid transfer reactions of diynes-pinacol rearrangement versus retro-Buchner reaction. Adv. Synth. Catal. 2015, 357, 775-781. (b) Tharra, P.; Baire, B. Mild approach to 2-acylfurans via intercepted Meyer-Schuster rearrangement of 6-hydroxyhex-2-en-4-ynals. J. Org. Chem. 2015, 80, 8314-8328. (c) Z hou, N.-N.; Ning, S.-S.; Tong, X.-J.; Luo, T.-T.; Yang, J.; Li, L.-Q.; Fan, M.; Yang, D.; Zhu, H.-T. Brønsted-Acid-Catalyzed Synthesis of 3-Alkoxy and 3-Sulfamido Indanones via a Tandem Cyclization. J. Org. Chem. 2019, 84, 8497-8508. (d) Cao, Z.; Zhu, H.; Meng, X.; Guan, J.; Zhang, Q.; Tian, L.; Sun, X.; Chen, G.; You, J. Metal-Free Reaction of ortho-Carbonylated Alkynyl-Substituted Arylaldehydes with Common Amines: Selective Access to Functionalized Isoindolinone and Indenamine Derivatives. Chem. - Eur. J. 2016, 22, 16979-16985. (e) Tharra, P.; Baire, B. Mild Approach to 2-Acylfurans via Intercepted Meyer-Schuster Rearrangement of 6-Hydroxyhex-2-en-4-ynals. J. Org. Chem. 2015, 80, 8314-8328. (f) Gandhi, S.; Tharra, P.; Baire, B. Ag(I)-catalyzed Cyclizative Hydration of Alkynes and Propargylic Alcohols. A Mild Approach to 2-Acylfuran Derivatives. ChemistrySelect 2017, 2, 1058-1062.
- (20) Mao, L.; Bertermann, R.; Emmert, K.; Szabó, K. J.; Marder, T. B. Synthesis of Vinyl-, Allyl-, and 2-Boryl Allylboronates *via* a Highly Selective Copper-Catalyzed Borylation of Propargylic Alcohols. *Org. Lett.* **2017**, *19*, 6586-6589.
- (21) Kawanishi, S.; Oki, S.; Kundu, D.; Akai, S. Lipase/Oxovanadium Co-Catalyzed Dynamic Kinetic Resolution of Propargyl Alcohols: Competition between Racemization and Rearrangement. *Org. Lett.* **2019**, *21*, 2978-2982.
- (22) Malik, G.; Swyka, R. A.; Tiwari, V. K.; Fei, X.; Applegate, G. A.; Berkowitz, D. B. A thiocyanopalladation/carbocyclization transformation identified through enzymatic screening: stereocontrolled tandem C–SCN and C–C bond formation. *Chem. Sci.* **2017**, *8*, 8050-8060.
- Zheng, M.; Wu, F.; Chen, K.; Zhu, S. Styrene as 4π-Component in Zn(II)-Catalyzed Intermolecular Diels-Alder/Ene Tandem Reaction. *Org. Lett.* **2016**, *18*, 3554-3557.
- (24) Huang, X.; Jiao, N. Brønsted Acid Mediated Nitrogenation of Propargylic Alcohols: An Efficient Approach to Alkenyl Nitriles. *Org. Biomol. Chem.* **2014**, *12*, 4324-4328.
- (25) (a) Verma, S.; Kumar, M.; Mishra, P. K.; Verma, A. K. Metal-Free Carbonyl-Assisted Regioselective Hydration of Alkynes: An Access to Dicarbonyls. *Org. Lett.* 2019, 21, 5059-5063. (b) Zhang, H.; Larock, R. C. Synthesis of β- and γ-Carbolines by the Palladium/Copper-Catalyzed Coupling and Cyclization of Terminal Acetylenes. *J. Org. Chem.* 2002, 67, 7048-7056.

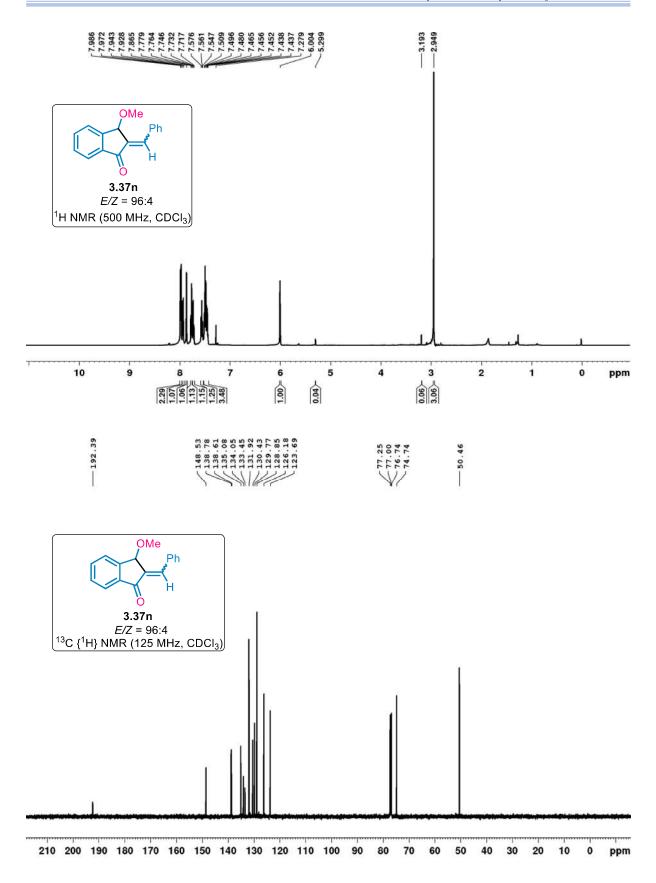

- (26) Guo, R.; Zheng, X.; Zhang, D.; Zhang, G. Rhodium(i)-catalyzed stereoselective [4+2] cycloaddition of oxetanols with alkynes through C(sp3)–C(sp3) bond cleavage. *Chem. Sci.* **2017**, *8*, 3002-3006.
- (27) Chang, Y.-P.; Gurubrahamam, R.; Chen, K. Enantioselective Synthesis of Functionalized Polycarbocycles *via* a Three-Component Organocascade Quadruple Reaction. *Org. Lett.* **2015**, *17*, 2908-2911.
- (28) Watahiki, T.; Akabane, Y.; Mori, S.; Oriyama, T. Iron(III) Chloride-Catalyzed Convenient One-Pot Synthesis of Homoallyl Benzyl Ethers Starting from Aldehydes. *Org. Lett.* **2003**, *17*, 3045-3048.

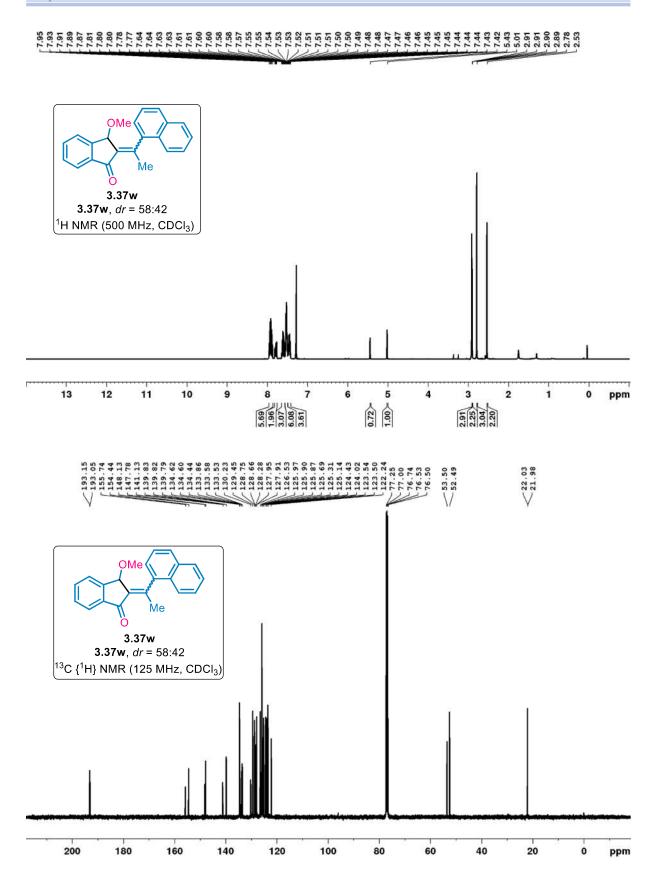


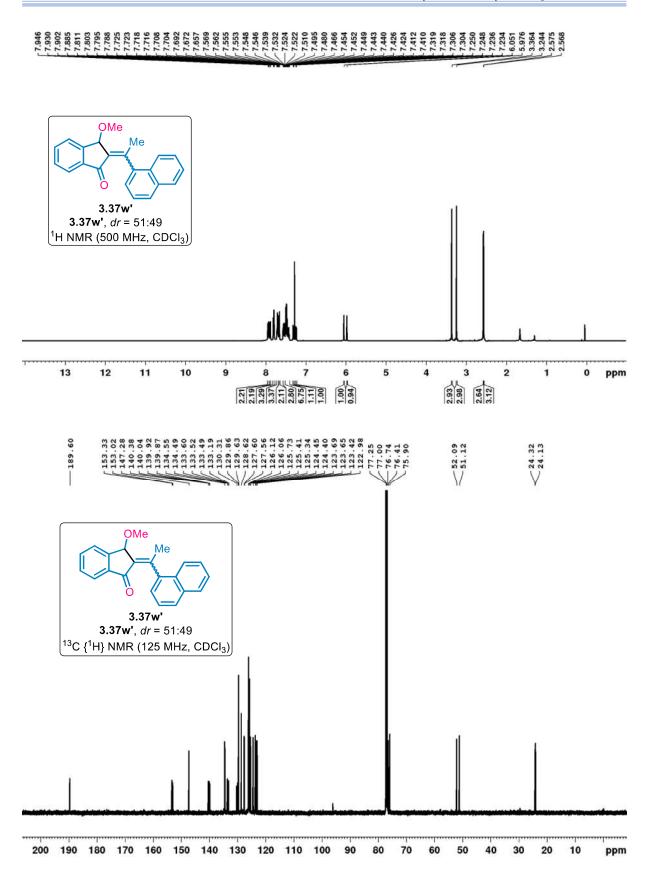


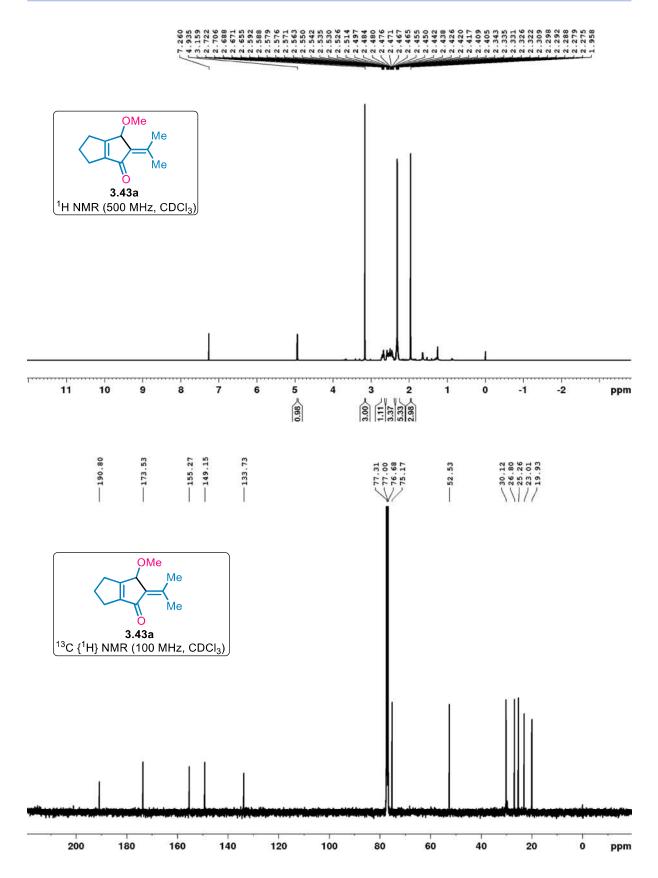


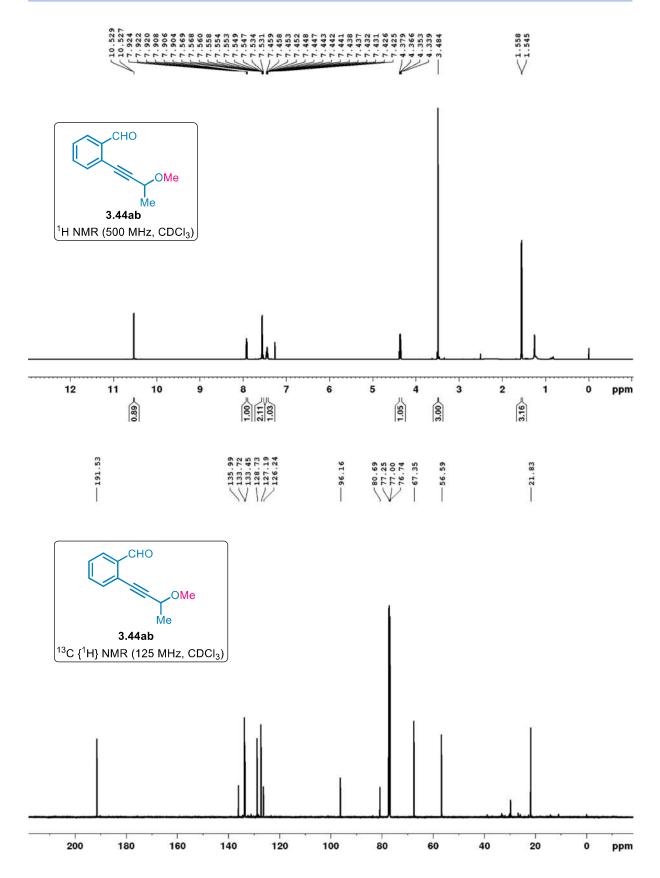


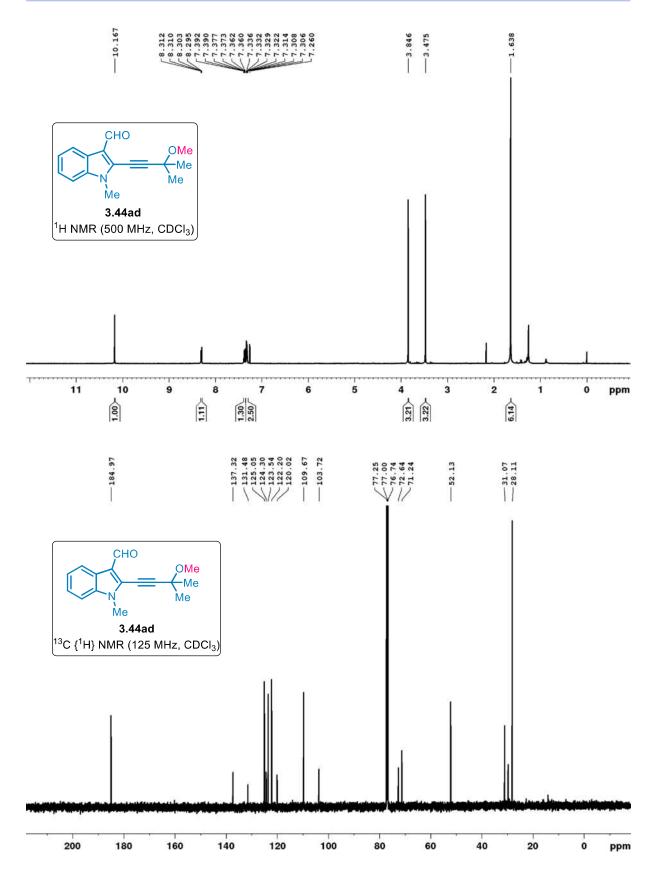


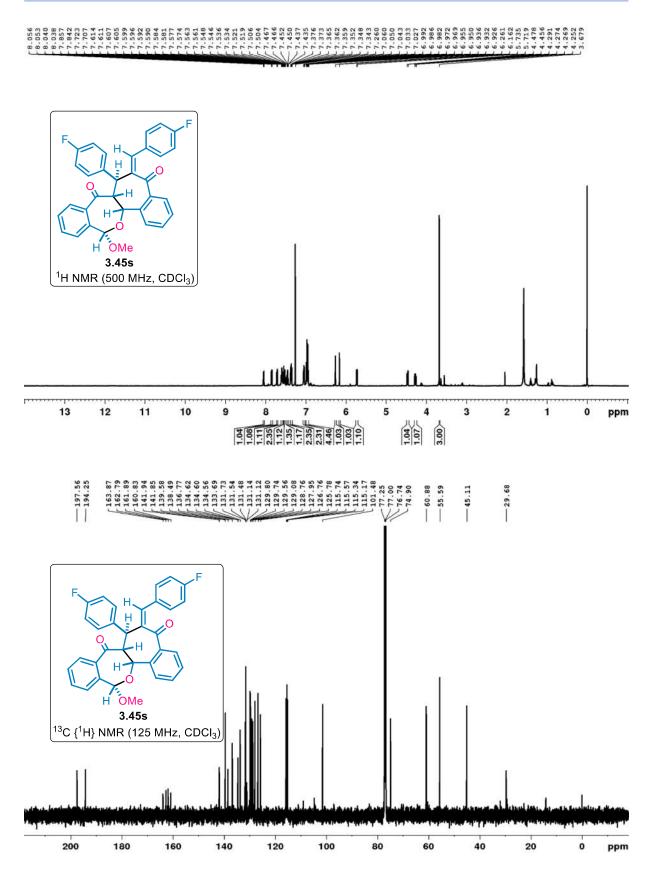


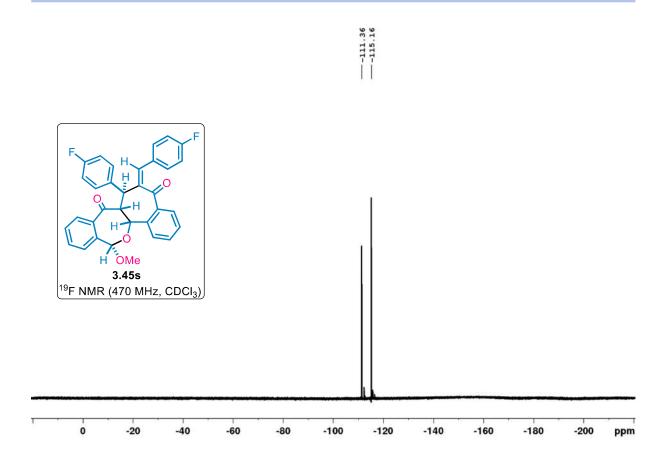


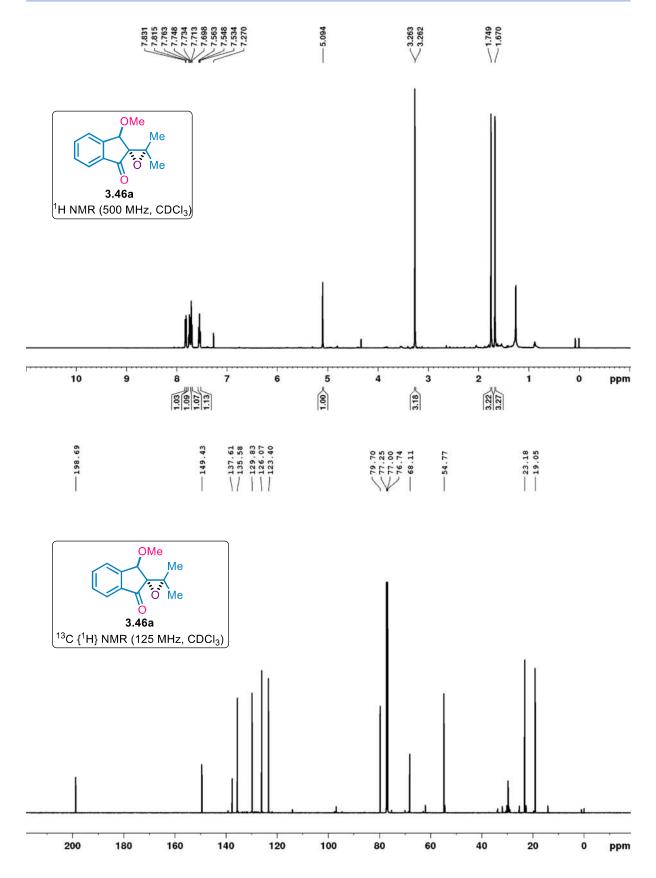


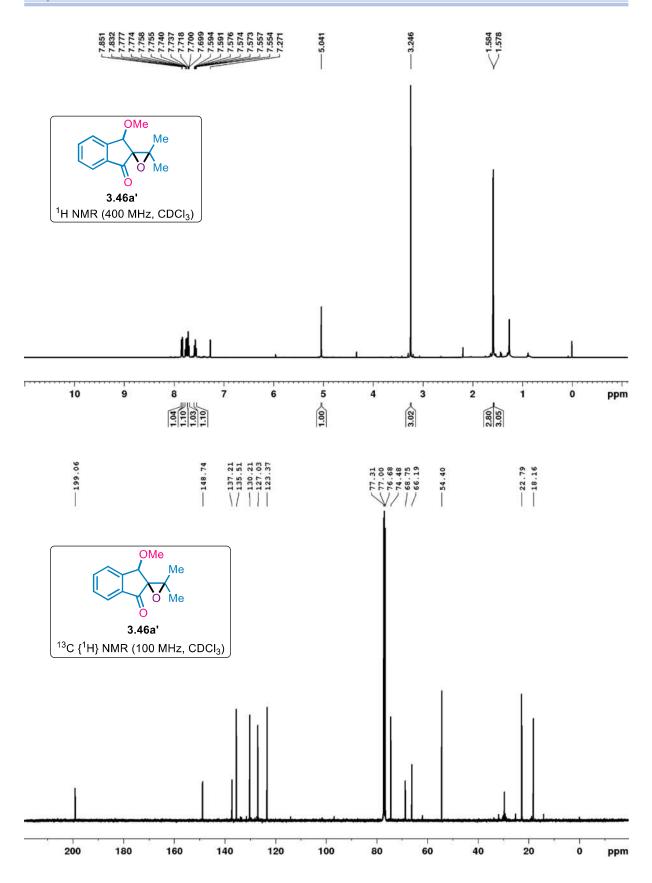


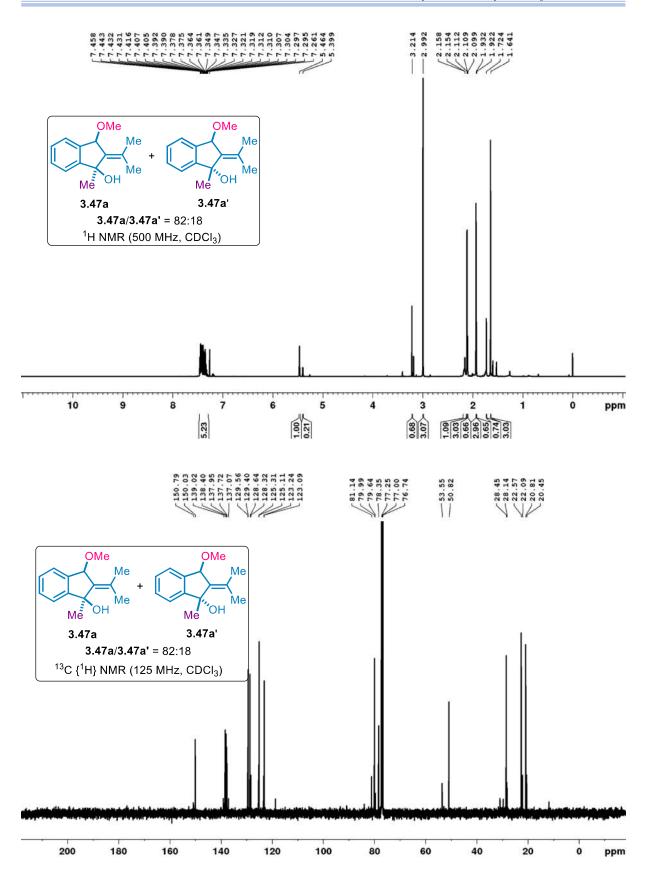


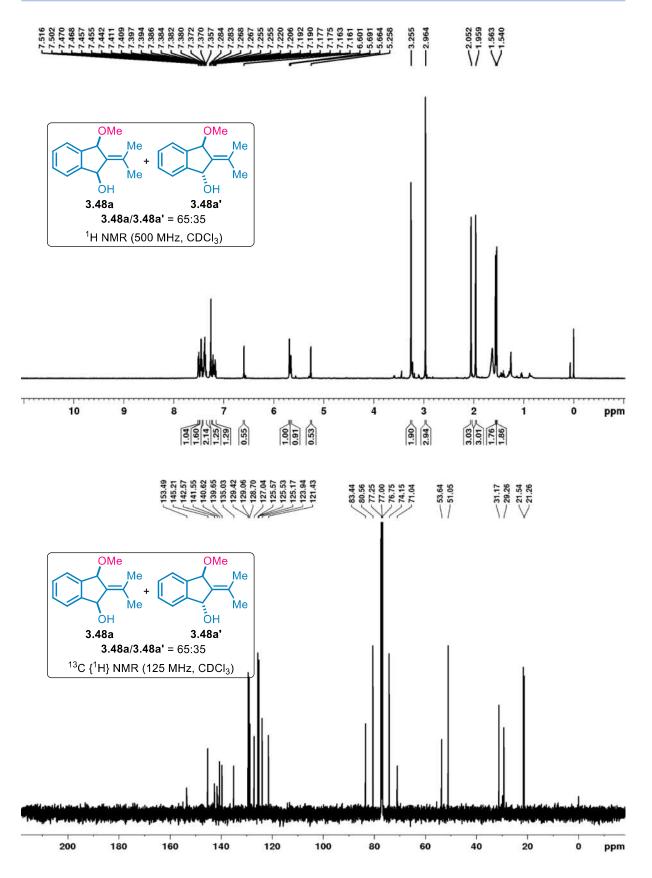


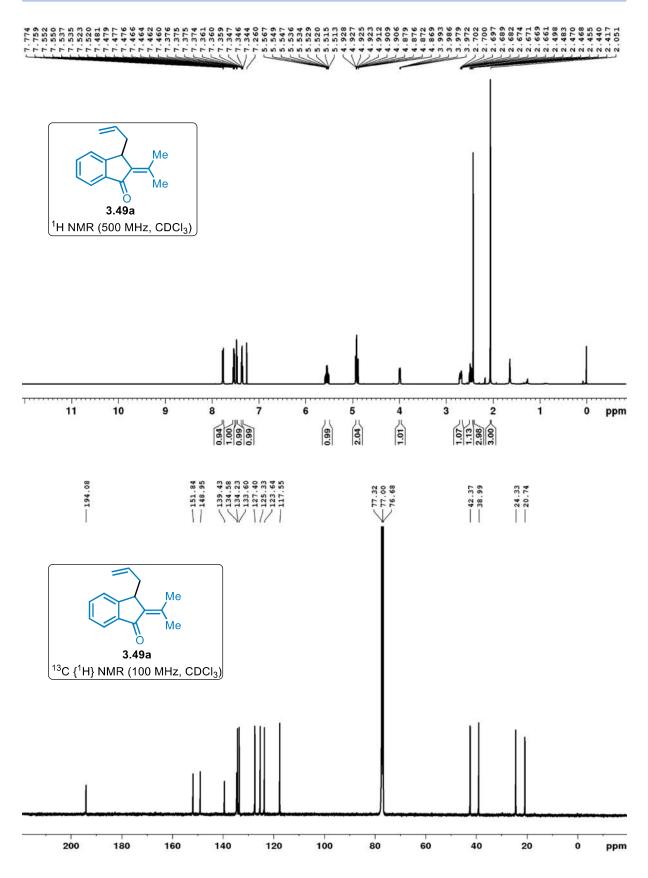


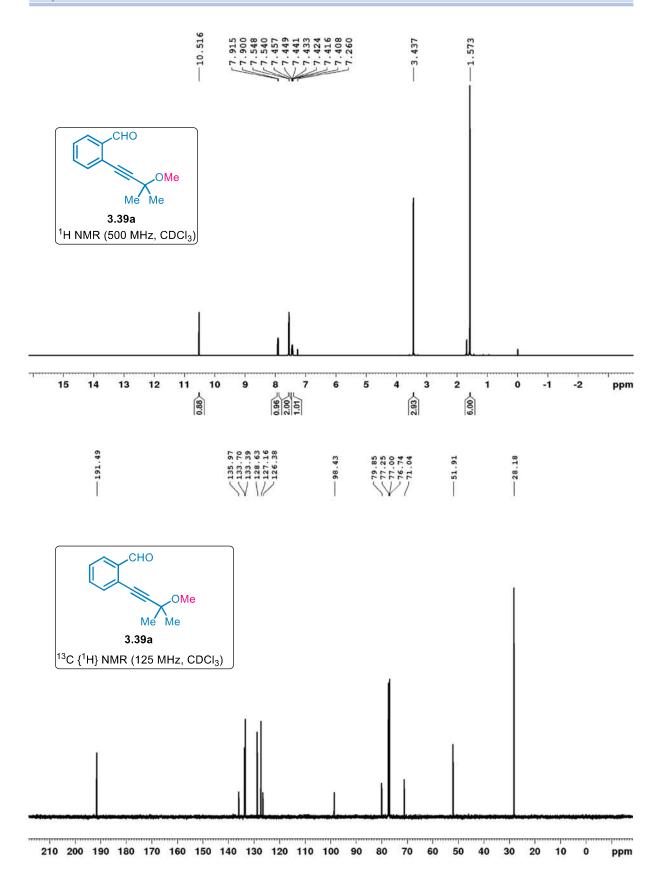


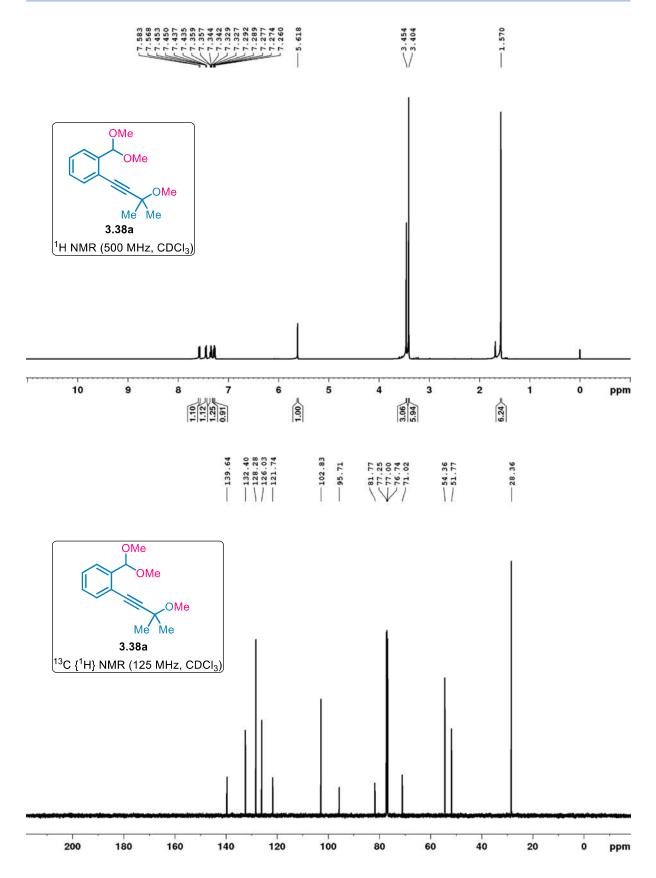


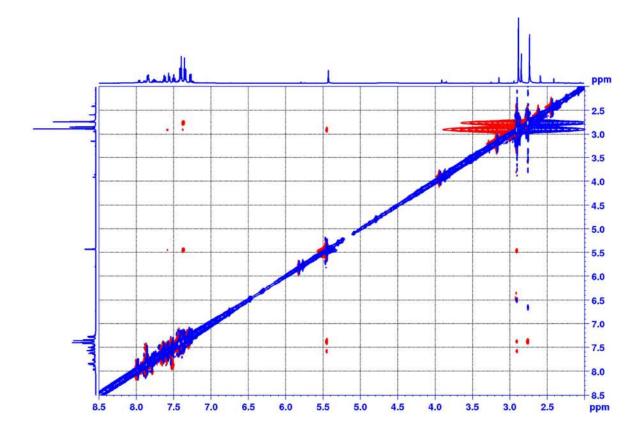


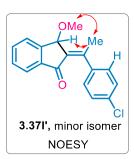


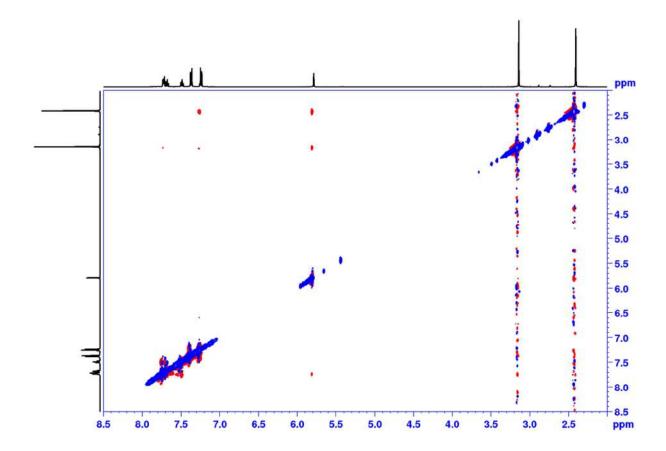


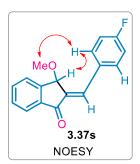


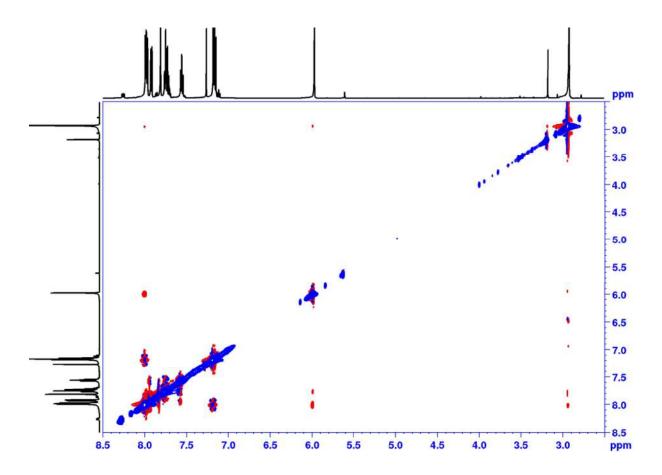


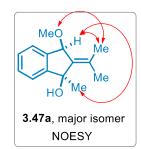


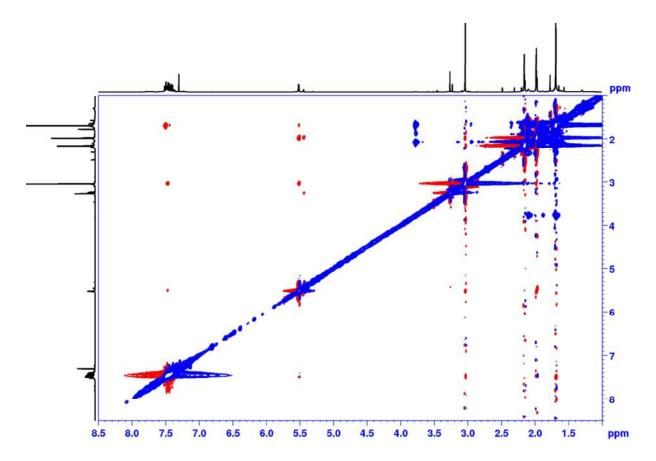












3.8 Crystallographic data

Table 3.4 Crystal and Structure refinement for 3.37m'

Identification code	rb114_0m_a
CCDC	2083247
Empirical formula	$C_{12}H_{18}O_2$
Formula weight	314.36
Temperature/K	299K
Crystal system	Monoclinic
Space group	P 1 21/ C 1
a/Å	5.9683(6)
b/ Å	25.166(3)
c/ Å	11.2165(12)
$\alpha/^0$	90
β / 0	94.676 (6)
$\gamma/^0$	90
Volume/Å ³	1679.1(3)
Z	49
Density(ρ)calc g/cm ³	1.244
Absorption Coefficient(μ) (mm ⁻¹)	0.078
F(000)	664.0
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	3860
Independent reflections	1675
Completeness to theta = 27.538	99.6%
R (reflections)	0.0638 (1675)
wR2 (reflections)	0.1542 (3860)

 $Table\ 3.5\ {\hbox{\formula}} \ {\hbox{\formula}} \$

Identification code	rb_a
CCDC	2083248
Empirical formula	$C_{18}H_{14}O_4$
Formula weight	294.29
Temperature/K	299K
Crystal system	Orthorhombic
Space group	P n a 21
a/Å	17.294(2)
b/ Å	5.7918(7)
c/ Å	14.7449(16)
lpha/0	90
β / 0	90
$\gamma/^0$	90
Volume/Å ³	1476.9(3)
Z	43
Density(ρ)calc g/cm ³	1.324
Absorption Coefficient(μ) (mm ⁻¹)	0.094
F(000)	616.0
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	2862
Independent reflections	2706
Completeness to theta = 26.390	95%
R (reflections)	0.0352 (2706)
wR2 (reflections)	0.0931 (2862)

 $Table \ 3.6 \ \hbox{Crystal and Structure refinement for } 3.37s$

Identification code	rb_a
CCDC	2083256
Empirical formula	$C_{17}H_{13}FO_2$
Formula weight	268.27
Temperature/K	299K
Crystal system	Monoclinic
Space group	P 1 21/ C 1
a/Å	12.184(3)
b/ Å	13.177(3)
c/ Å	8.3915(16)
$\alpha/0$	90
β / 0	95.349 (7)
$\gamma/^0$	90
Volume/Å ³	1341.4(5)
Z	30
Density(ρ)calc g/cm ³	1.328
Absorption Coefficient(μ) (mm ⁻¹)	0.095
F(000)	560.0
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	3083
Independent reflections	2122
Completeness to theta = 27.561	99.6%
R (reflections)	0.0512 (2122)
wR2 (reflections)	0.1283 (3083)

 $Table \ 3.7 \ {\hbox{\formula}} refinement \ for \ 3.45s$

Identification code	rb02
CCDC	2083262
Empirical formula	$C_{13}H_{14}O_3$
Formula weight	218.24
Temperature/K	293K
Crystal system	Monoclinic
Space group	P 1 21/C 1
a/Å	9.8985(3)
b/ Å	14.4405(4)
c/Å	8.3941(3)
$\alpha/^0$	90
β / 0	108.731(6)
$\gamma/^0$	90
Volume/Å ³	1136.30(6)
Z	12
Density(ρ)calc g/cm ³	1.276
Absorption Coefficient(μ) (mm ⁻¹)	0.090
F(000)	464.0
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	1997
Independent reflections	1752
Completeness to theta = 25.000	99.8%
R (reflections)	0.0341 (1752)
wR2 (reflections)	0.1062 (1997)

Table 3.8 Crystal and Structure refinement for 3.46a

Identification code	rb01
CCDC	2116964
Empirical formula	$C_{33}H_{24}F_2O_4$
Formula weight	522.52
Temperature/K	296 K
Crystal system	Orthorhombic
Space group	P b c n
a/Å	22.203 (3)
b/ Å	11.9393 (12)
c/Å	20.097 (2)
$\alpha/^0$	90
β / ⁰	90
$\gamma /^0$	90
Volume/Å ³	5327.4 (10)
Z	8
Density(ρ)calc g/cm ³	1.303
Absorption Coefficient(μ) (mm ⁻¹)	0.094
F(000)	2176.0
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	5607
Independent reflections	1013
Completeness to theta = 27.033	96.1
R (reflections)	0.1221 (1013)
wR2 (reflections)	0.3700 (5607)

Chapter 4

Ag(I)-Catalyzed Cyclization of o-Alkynylacetophenones for the Synthesis of C3-Naphthyl Indole Derivatives

$$\begin{array}{c}
R^{3} \stackrel{\square}{\square} & R^{2} \\
R^{3} \stackrel{\square}{\square} & R^{2} \\
R^{4} & R^{5} \stackrel{\square}{\square} & R^{4} \\
\end{array}$$

$$\begin{array}{c}
R^{5} \stackrel{\square}{\square} & R^{6} \\
R^{4} & R^{4} \\
\end{array}$$

$$\begin{array}{c}
R^{5} \stackrel{\square}{\square} & R^{6} \\
R^{4} & R^{2} \\
\end{array}$$

4.1 Introduction

Indole-linked carbo and heterocycles show plenty of applications in developing biologically active molecules.¹ Having bioactive indole core attached to the ring systems adds more value to these systems. In this context, there has been interest to device efficient strategy to make C3-arylated indoles as they show diverse bioactivities.² In particular, C3-naphthyl indoles show their usefulness as chiral catalysts and antibacterial, antioxidant, and cytotoxic agents. Representative C3-naphthyl indoles have been presented in Figure 4.1.³ With regard to their synthesis, cyclization accompanied by indole incorporation is an attractive and preferred strategy as both complexity and regioselectivity are achieved in a single operation.

Figure 4.1: C3-Napthyl indole core containing chiral catalysts and bioactive molecules

4.1.1 Selected approaches for the synthesis of C3-naphthyl indoles

In 2015, Lee and co-workers reported a Rh(II)-catalyzed direct 3-arylation of indoles **4.5** with 1-diazonaphthalen-2(*IH*)-ones **4.6** for the synthesis of C3-naphthyl indoles **4.7** (Scheme 4.1). This reaction takes place *via* the formation of rhodium carbenoid from diazo compound **4.6** followed by nucleophilic addition of indole **4.5** on rhodium carbenoid, subsequent deprotonation, and removal of rhodium catalyst afforded the C3-naphthyl indoles **4.7**.

R² + R³
$$\frac{\text{Rh}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$$
 + **4.5 4.6** $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OPiv})_4 (2 \text{ mol }\%)}{\text{PhF, rt, 4-12 h}}$ + $\frac{\text{R}_2(\text{OP$

Scheme 4.1: A Rh(II)-catalyzed synthesis of C3-naphthyl-indoles

Later, the same group, in 2017, reported the synthesis of C3-naphthyl indole **4.11** and 3-naphthylbenzo[g]indole fluorophores **4.12** *via* a base-promoted indole annulation-oxidative cross-coupling of 2-nitrocinnamaldehydes **4.8** or **4.9** with β-tetralones **4.10** (Scheme 4.2). This reaction proceeds *via* a sequence of transformations *viz* domino Michael addition, hemiacetalization, intramolecular attack of an enolate on the nitro group, decarbonylation, and oxidative aromatization. Moreover, the products C3-naphthyl indole **4.11** and 3-naphthylbenzo[g]indoles **4.12** have been reported to show excellent photophysical properties.

R1 = H, OMe, -O-CH₂-O-, Br, Cl, CF₃;
$$R^2$$
 = H, OMe, Cl, Br

Scheme 4.2: Synthesis of C3-naphthyl indoles and 3-naphthylbenzo[g]indoles promoted by a base

Synthesis of C3-naphthyl indole derivatives **4.14** from 1,3-dicarbonyl diazo compounds **4.13** and indoles **4.5** *via* intermolecular aromatic substitution under gold(I)-catalysis was demonstrated by Hu and co-workers (Scheme 4.3). A vinyl gold carbene was proposed as the key intermediate from the diazo compound, which by an intermolecular electrophilic aromatic substitution reaction with indole **4.5** would lead to the formation of C3-naphthyl indole derivatives **4.14**.

Scheme 4.3: Au(I)-catalyzed synthesis of polyfunctionalized C3-naphthyl-indole derivatives

Recently, when we were developing the present reaction in an extension of our ongoing research on using *in situ* acetals, a synthesis of C3-naphthyl indole derivatives **4.16** from *o*-alkynylacetophenones **4.15** with indoles **4.5** in the presence of 10 mol % of AgOTf along with 20

mol % of Sc(OTf)₃ at 100 °C was reported by Hao and co-workers (Scheme 4.4).⁷ However, their reaction required 20 mol% of Sc(OTf)₃ in addition to AgOTf (10 mol%) and heating at 100 °C. The catalyst Sc(OTf)₃ was required to activate the methyl ketone for the attack of indole to form the extended enamine which attacks the [Ag]-activated alkyne to form C3-naphthyl indoles.¹⁰ Further, this method is limited to acetophenone derivatives only and, that to, having aryl group as R².

R²

4.5 R¹

AgOTf (10 mol %)
Sc(OTf)₃ (20 mol %)
Toluene, 100 °C, 3 h

4.16

up to 92% yield

R¹ = H, Me; R² = H, Me, OMe, CI; R³ = Ph, 4-CI-C₆H₄,
$$\rho$$
-tolyl, 4-Et-C₆H₄,
4-OMe-C₆H₄, 4-F-C₆H₄

Scheme 4.4: Synthesis of C3-naphthyl indole derivatives from *o*-alkynylacetophenones with indoles

Later, the same group demonstrated the synthesis of C3-naphthyl indole derivatives **4.18** from *o*-alkynylacetophenones **4.15** with *o*-alkynyl anilines **4.17** *via* facile double annulation under dual palladium/scandium catalysis at 110 °C (Scheme 4.5). However, this reaction was completely shut down when the acetyl group on the *o*-alkynylacetophenone was replaced by a propionyl group to give the corresponding product **4.19**. This reaction proceeds *via* a double annulation sequence under PdCl₂\Sc(OTf)₃ cooperative catalysis.

 R^1 = H, Me, CI; R^2 = Ph, p-tolyl, PMP, 4-CI-C $_6$ H $_4$, cyclopropyl, 4-Et-C $_6$ H $_4$ R 3 = H, p-tolyl, m-tolyl, o-tolyl, PMP, 4-CI-C $_6$ H $_4$, 4-F-C $_6$ H $_4$

Scheme 4.5: Synthesis of C3-naphthyl indoles from *o*-alkynylacetophenones and *o*-alkynyl anilines

Very recently, in 2021, Xie and co-workers reported a copper-catalyzed synthesis of C3-naphthol-benzo[e]indoles **4.22** from 3-aryl-2*H*-azirines **4.20** and 2-naphthols **4.21** for the first time

(Scheme 4.6). This reaction is believed to proceed through azirine ring-opening followed by intramolecular cyclization and subsequent cross-dehydrogenative coupling to afford the desired product.

Scheme 4.6: A copper-catalyzed synthesis of C3-naphthol-benzo[*e*]indoles

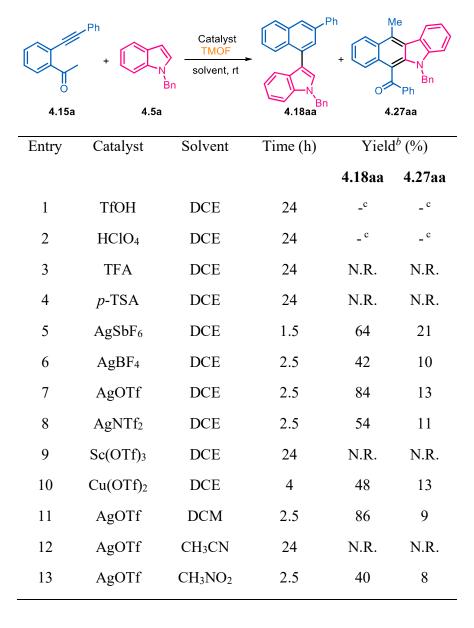
In addition to these racemic protocols, elegant methods for the atropselective synthesis of axially chiral C3-naphthyl indoles have been reported in the literature.¹⁰

4.2 Background

Over the years we have realized that carrying out reactions of carbonyl compounds in the presence of TMOF and a Brønsted/Lewis acid provides a unique opportunity to find new reaction pathways through the formation of acetals under the reaction conditions. 11 In this context, we disclosed the construction of naphthyl ketones 4.23 and benzene rings 4.25 from oalkynylacetophenones 4.15 and propargylated benzoylacetones 4.24 respectively (Scheme 4.7, our earlier works). ¹² These reactions proceeded through the formation of an α -formylated intermediate 4.26 which cyclized on the alkyne. Another reason for us to undertake this study was the contrast reactivity shown by o-alkenylbenzaldehydes towards enolizable ketones and indoles under the acetalization conditions. 13 We were curious to study the reaction of o-alkynylacetophenones with indoles under acetalization conditions. As anticipated, the reaction of o-alkynylacetophenones 4.15 with indole 4.5 in the presence of TMOF and AgOTf resulted in C3-naphthyl indoles 4.18 through a different reaction pathway (Scheme 4.7, present work). In contrast to the work of Jiang, where the reaction required 20 mol% of Sc(OTf)₃ in addition to AgOTf (10 mol%) and heating at 100 °C,7 our reaction occurred at room temperature itself in the presence of TMOF and AgOTf (10 mol%) alone as the sole catalyst. Certainly, assistance through the formation of acetal of the ketone might have helped the reaction to occur under mild conditions. Importantly, this protocol is applicable to substrates having alkyl and heteroaryl groups at R⁶ and ethyl ketone.

Our earlier works

Scheme 4.7: Reactions of alkyne-tethered methyl ketones under acetalization conditions

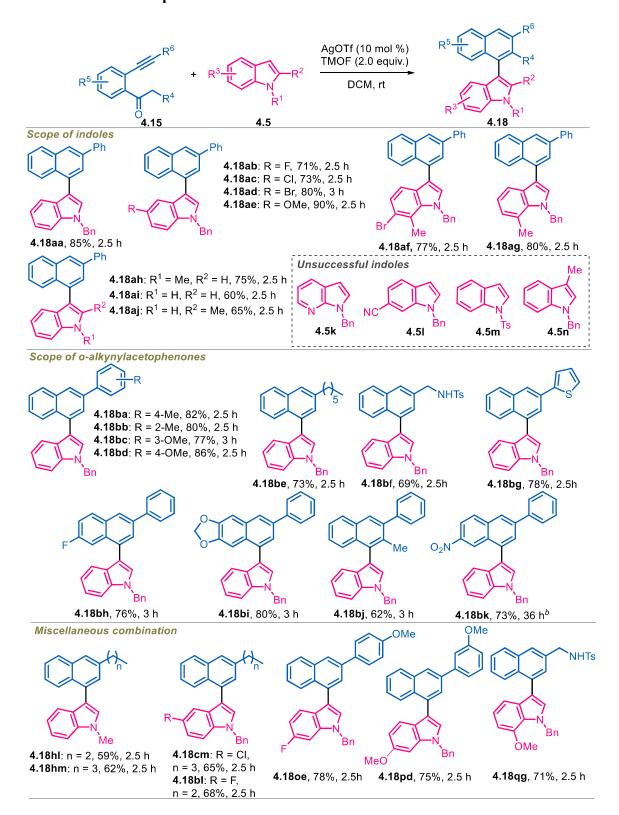

4.3 Results and Discussion

4.3.1 Reaction optimization study

The reaction optimization was carried out on the unsubstituted *o*-alkynylacetophenone derivative **4.15a** and *N*-benzylindole **4.5a** using different acid catalysts. Based on our earlier experiences, ¹² the reaction was examined in the presence of Brønsted acids and 2 equivalents of TMOF. In the case of reactions involving TfOH and HClO₄, decomposition of indole was noted (Table 4.1, entries 1 and 2). Whereas, no reaction was observed in the presence of TFA and *p*-TSA as catalysts (Table 4.1, entries 3 and 4). Gratifyingly, in the presence of 2 equivalents of TMOF, silver catalysts effected the reaction at room temperature to afford the product **4.18aa** (Table 4.1, entries 5-8). Among them, AgOTf was found to be superior as it resulted in 84% yield of the product. In these reactions, compound **4.27aa** was also isolated in low amounts along with the

actual product. While the catalyst Sc(OTf)₃ did not promote the reaction, Cu(OTf)₂ catalyzed the reaction to give **4.18aa** in moderate yield suggesting the need for the activation of the alkyne (Table 4.1, entries 9-10). From a set of experiments (Table 4.1, entries 11-17) it is learnt that the condition involving 10 mol% of AgOTf and 2 equivalents of TMOF in dichloromethane gave a better yield. To our favor, formation of the side product **4.27aa** was almost suppressed when the stoichiometry of the reacting partners **4.15a** and **4.5a** was changed (Table 4.1, entry 18). The product yield considerably decreased with 1.0 equiv. of TMOF (Table 4.1, entry 19). A reaction using MeOH in the place of TMOF was also performed and a considerable reduction in the yield of the product was observed (Table 4.1, entry 20).

Table 4.1 Optimization of the reaction conditions^a


14^d	AgOTf	Toluene	24	-	-
15 ^e	AgOTf	DCM	6	79	14
16 ^f	AgOTf	DCM	2.5	60	15
17^g	AgOTf	DCM	2.5	73	12
18^h	AgOTf	DCM	2.5	85	trace
18^h 19 ⁱ	AgOTf AgOTf	DCM DCM	2.52.5	85 64	trace
	C				
19^i	AgOTf	DCM	2.5	64	7

"Reaction conditions: **4.15a** (0.4 mmol), **4.5a** (0.48 mmol), TMOF (0.8 mmol), catalyst, and solvent (4 mL) at rt. bisolated yields. Indole got decomposed. N.R. = No reaction. disochromen-1-yl-substituted indole derivative **4.28aa** was obtained in 67% yield. 5 mol of AgOTf was used. 20 mol of AgOTf was used. 5.0 equiv. of TMOF was used. 1.0 equiv. of **4.5a** and 1.2 equiv. of **4.15a** were used. 1.0 equiv. of TMOF was used. AReaction was carried out in the absence of TMOF.

4.3.2 Substrate scope

The substrate scope of this transformation was explored using the condition presented in entry 18 of Table 4.1 and the results are summarized in Table 4.2. Firstly, the scope of indoles was evaluated using different substituted indoles 4.5 by reacting them individually with 4.15a. Indoles containing halogen substituents such as 5-F-, 5-Cl-, and 5-Br- underwent the smooth reaction to afford their corresponding C3-naphthyl indoles 4.18ab, 4.18ac, and 4.18ad respectively in good yields. Indole bearing an electron-donating OMe at the C-5 position gave the corresponding product **4.18ae** in a slightly better yield. 1-Benzyl indoles bearing 6-Br-7-Me and 7-Me groups reacted smoothly to give products 4.18af and 4.18ag in 77% and 80% yield respectively. The structure of compound **4.18af** was further confirmed by a single crystal X-ray diffraction analysis. Both N-methyl and N-unprotected indoles gave their respective C3-naphthyl indoles 4.18ah, **4.18ai** and **4.18aj**. The yields of the products obtained from N-unprotected indoles were slightly less. Next, the scope of o-alkynylacetophenones was examined using substrates having different R⁴, R⁵ and R⁶ groups. o-Alkynylacetophenones having electron-donating methyl and methoxy groups in the phenyl ring attached to the alkyne resulted in the products 4.18ba-4.18bd in promising yields. Interestingly, substrates having an alkyl group at the alkyne also reacted smoothly to furnish the corresponding C3-naphthyl indoles (4.18be and 4.18bf). Heterocycle, thiophene attached o-alkynylacetophenone tolerated the reaction condition to furnish the product **4.18bg** in 78% yield. o-Alkynylacetophenones having fluoro and -OCH₂O- groups in the core aryl ring reacted well in giving their respective products 4.18bh and 4.18bi. More importantly, a substrate having an ethyl ketone also reacted and resulted in a moderate yield of the product (4.18bj).

Table 4.2 Substrate scope^a

^aReaction conditions: **4.15** (1.2 equiv.), **4.5** (1 equiv., 0.4 mmol), AgOTf (10 mol %), TMOF (2 equiv.), DCM (4 mL/0.4 mmol of 2). ^bAn additional 10 mol % of AgOTf was added after 20 h.

It has to be mentioned that substrates having alkyl and heterocycle on the alkyne and ethyl ketone were not reported in the published work utilizing AgOTf/Sc(OTf)₃ catalytic system.⁷ Further, the same group, in the extension of their initial work, was not successful in obtaining **4.18bj**. However, a reaction of the substrate having a propyl ketone resulted in a complex mixture of products. When R⁵ is a strong electron-withdrawing NO₂ group, an additional amount of AgOTf (10 mol %) had to be added after 20 h of the reaction to form the corresponding naphthyl indole derivative **4.18bk**.

Then a few more reactions were carried out using random choice of o-alkynylacetophenones and indoles. Moderate to good yields of the products were obtained in these cases (products 4.18hl, 4.18hm, 4.18cm, 4.18bl, 4.18oe, 4.18pd, and 4.18qg).

4.3.3 Control experiments

A series of control experiments were performed to understand the importance of expected acetal formation under the reaction conditions (Scheme 4.8). To our favor, the less reactive oalkynylacetophenone derivative 4.15k afforded a separable mixture of isochromen-1-ylsubstituted indole derivative 4.28ak and isochromene acetal derivative 4.29k after 1 h (Scheme 4.8A). The structure of compound 4.28ak was unambiguously determined by single crystal X-ray diffraction analysis. Assuming these compounds as the likely intermediates, isochromen-1-ylsubstituted indole derivative 4.28ak was treated with 10 mol% of AgOTf. The product C3naphthylindole **4.18bk** was obtained in 78% after 10 h (Scheme 4.8B). However, the isochromene acetal derivative 4.29k resulted in 4.28ak only upon treatment with 10 mol% of AgOTf and did not react further to afford 4.18bk (Scheme 4.8C). 14 The same observation was noted during the evaluation of substrate scope to synthesize 4.18bk from 4.15k. A probable reason for this could be the electron-withdrawing -NO₂ group could reduce the reactivity of the vinyl moiety for its attack on the carbonyl function in intermediate IV (Scheme 4.9). These experiments suggest that the reaction proceeds via the initial formation of acetal which subsequently transforms into 1methoxy-isochrome followed by isochromen-1-yl-substituted indole derivative before resulting the product in contrast to the extended enamine intermediate proposed in the reaction involving AgOTf/Sc(OTf)₃.⁸ In a different experiment, the isochromen-1-yl-substituted indole derivative 4.28aa, obtained during the optimization experiment in toluene, was treated with AgOTf catalyst and the product 4.18aa was obtained in 83% yield in 1h (Scheme 4.8D). Finally, an AgOTfcatalyzed reaction of the preformed acetal 4.30 with indole 4.5a was carried out. Formation of the desired product 4.18aa in 1.5 h (Scheme 4.8E) suggests that acetal generated under the reaction condition facilitates the reaction to occur at room temperature.

Scheme 4.8: Control experiments

4.3.4 Plausible mechanism

In the mechanistic proposal by Jiang and co-workers, for the formation C3-naphthyl indoles from *o*-alkynyl acetophenones and indoles, activation of the carbonyl of the acetophenone derivative by Sc(OTf)₃ for the attack of indole was considered as the key.⁸ In the present reaction, on the basis of the control experiments and our previous reports, ¹² two plausible pathways are

proposed involving the participation of TMOF for the formation of C3-naphthyl indole 3 (Scheme 4.9, $paths\ a$ and b).

It is well-known that *o*-alkynyl benzaldehydes/acetophenones form an isobenzopyrylium intermediate upon activation using a silver catalyst. ¹⁵ In the present reaction, TMOF can promote the formation of such an intermediate II by attacking the carbonyl carbon *via* intermediate I. Formation of the product **4.29k** in the control reaction (Scheme 4.8A) supports the involvement of intermediate I as a simple protodemetalation of I would result in it. Besides, dimethoxymethylium ion will be formed from TMOF after it attacks *o*-alkynylacetophenone. Eventually, H₂O/OMe- would attack the dimethoxymethylium ion to give methyl formate. Indole will readily attack intermediate II to form the intermediate III. Isolation of the product **4.28ak** in the control experiment supports the formation of III. Abstraction of a proton from methyl and ring-opening would result in intermediate IV having a carbonyl¹⁶ and extended enamine moieties. This will undergo a facile cyclization followed by aromatization with the loss of water to form the product **4.18**.

Scheme 4.9: Plausible mechanism (*path a*)

Since the reaction is facilitated by the presence of TMOF, a mechanism involving the formation of acetal **VII** of *o*-alkynyl acetophenones under the reaction condition cannot be ruled out. This possibility is shown in scheme 4.10. The intermediate **VII** will readily form the oxocarbenium ion **VIII** under the Lewis acidic condition. Addition of indole followed by MeOH elimination would result in the extended enamine **XI**, which will cyclize on the Ag-activated alkyne to form the intermediate **XII**. Finally, protodemetallation would result the product **4.18**.

Scheme 4.10: Plausible mechanism (*path b*)

4.3.5 Scale-up reaction

The robustness and scalability of the strategy were demonstrated by performing a gram scale reaction using **4.5a** (1.03 g, 5 mmol) and **4.15a**. The desired product **4.18aa** was obtained in 80% (1.65 g) yield along with 10% of product **4.27aa** (Scheme 4.11).

Scheme 4.11: Scale-up reaction

4.3.6 ORTEP diagrams of 4.18af and 4.28ak

Single crystal X-ray data for the compounds **4.18af** and **4.28ak** was collected using the Bruker D8 Quest CMOS detector system [$\lambda(\text{Mo-K}\alpha) = 0.71073$ Å] at 298K, graphite monochromator with a ω scan width of 0.3o, crystal-detector distance 60 mm, collimator 0.5 mm. The SMART software was used for the intensity data acquisition and the SAINTPLUS software was used for the data extraction. In each case, absorption correction was performed with the help of SADABS program, an empirical absorption correction using equivalent reflections was performed with the program. The structure was solved using SHELXS-97, and full-matrix least-squares refinement against F2 was carried out using SHELXL-97.

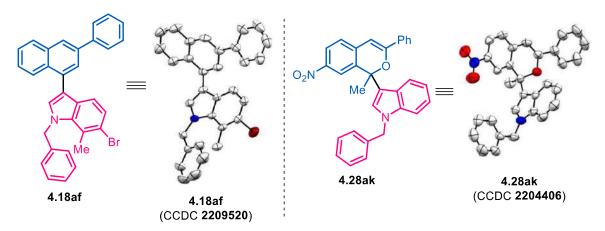


Figure 4.2: ORTEP diagrams of 4.18af and 4.28ak

4.4 Conclusions

In conclusion, we have developed a facile protocol for the synthesis of C3-naphthyl indole derivatives from *o*-alkynylacetophenones and indoles under acetalization conditions using TMOF in the presence of AgOTf catalyst. Presence of TMOF makes the reaction to occur at the room temperature itself by forming acetal. A range of C3-naphthyl indole derivatives have been synthesized in moderate to good yields. Reactions of carbonyl compounds in the presence of TMOF offer beneficial effects in terms of enhancing reactivity or forcing to take new reaction pathways.

4.5 Experimental section

4.5.1 General information

Unless otherwise mentioned, all chemicals obtained from commercial suppliers were used without further purification. AgOTf and TMOF were purchased from Sigma-Aldrich, Avra synthesis respectively, and were used without further purification. All reactions were performed under nitrogen atmosphere and in oven-dried glassware with magnetic stirring. Dichloromethane (DCM) was dried in the presence of calcium hydride and distilled before use. Reactions were

monitored using silica gel plates 60 F₂₅₄ and were visualized with UV light (254 nm), with Seebach stain followed by heating. Column chromatography was carried out using silica gel (100-200 mesh) packed in glass columns. NMR spectra were recorded at 400, 500 MHz (1 H) and at 100, 125 MHz (13 C), respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (J) are indicated in Hz. HRMS were recorded using ESI-TOF techniques.

4.5.2 Experimental procedures, analytical, and spectral data Synthesis of *N*-protected indoles:

N-protected indoles **4.5a-4.5e**, **4.5g**, **4.5h**, and **4.5o-4.5q** were synthesized according to the previous reports.¹⁷ The other indole derivative **4.5f** was synthesized by the following procedure.

Procedure for the synthesis of 1-benzyl-6-bromo-7-methyl-1H-indole 4.5f:

To a stirred solution of 6-bromo-7-methyl-1H-indole **4.31** (120 mg, 0.4 mmol) in DMF (3 mL) was added NaH (22 mg, 0.48 mmol) at 0 °C under nitrogen atmosphere. The reaction mixture was brought up to room temperature and stirred for 30 minutes before adding benzyl bromide **4.32** (53 μ L, 0.44 mmol) at 0 °C. Then, the reaction mixture was allowed to stir overnight at room temperature.

After completion of the reaction, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with saturated brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product **4.5f** as a white solid in 91% (137 mg) yield. mp 98-100 °C, R_f = 0.51 (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.25 (m, 5H), 7.06 (d, J = 3.2 Hz, 1H), 6.91-6.89 (m, 2H), 6.53 (d, J = 3.2 Hz, 1H), 5.57 (s, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 139.1, 135.5, 131.3, 129.1, 128.9, 127.4, 125.3, 124.7, 120.7, 119.9, 119.8, 102.1, 52.8, 18.4. IR (neat, cm⁻¹): 1514, 1492, 1447, 1371, 1384, 1353, 1315, 1177, 1101, 1027, 972, 798, 721, 693. HRMS (ESI): calcd. for [C₁₆H₁₅BrN] [M+H]⁺: 300.0382; found: 300.0381.

Synthesis of *o*-alkynylacetophenones 4.16:

o-Alkynylacetophenones **4.15a-4.15e**, **4.15g**, **4.15h-4.15j**, and **4.15l-4.15m** were synthesized according to the previous reports. ¹⁸ Oher *o*-alkynylacetophenone derivatives **4.15f** and **4.15k** were synthesized by the following procedures.

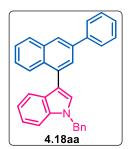
Procedure for the synthesis of N-(3-(2-Acetylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide 4.15g:¹⁹

2-Iodoacetophenone **4.33** (400 mg, 1.62 mmol), and 4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide **4.34** (405 mg, 1.94 mmol), were dissolved in dry THF (17 mL) and then diisopropylamine (DIPA) (1.2 mL, 8.1 mmol) was added to the above stirred solution before cooling down to the 0 °C. Later, Pd(PPh)₃Cl₂ (12 mg, 0.064 mmol), and CuI (22 mg, 0.03 mmol) were

added and the reaction mixture was allowed to warm to room temperature and stirred for overnight. After completion of the reaction, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with saturated brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product **4.15g** as a yellow solid in 85% (461 mg) yield, mp 103–105 °C, R_f = 0.33 (in 40% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 7.79 (dt, J = 8.5, 2.0 Hz, 2H), 7.67-7.65 (m, 1H), 7.40-7.34 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.22-7.20 (m, 1H), 4.90 (t, J = 5.5 Hz, 1H), 4.10 (d, J = 6.0 Hz, 2H), 2.55 (s, 3H), 2.33 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 199.7, 143.6, 140.3, 136.7, 134.1, 131.1, 129.6, 128.5, 128.4, 127.3, 126.3, 120.5, 88.8, 83.6, 33.8, 29.4, 21.3. IR (neat, cm⁻¹): 3282, 1682, 1594, 1478, 1426, 1322, 1246, 1157, 1067, 964, 812, 767, 662, 608. HRMS (ESI): calcd. for [C₁₈H₁₇NNaO₃S] [M+Na]⁺: 350.0821; found: 350.0827.

Procedure for the synthesis of 1-(5-nitro-2-(phenylethynyl)phenyl)ethan-1-one 4.15k:

To a stirred solution of 1-(2-bromo-5-nitrophenyl)ethan-1-one²⁰ **4.35** (500 mg, 2.05 mmol) in triethylamine, Pd(PPh₃)₄ (47 mg, 0.041 mmol) was added under nitrogen atmosphere, and the resulting solution was stirred for 5 min before adding CuI (4 mg, 0.021 mmol). The resulting solution was stirred for another 5 min. After 5 min, phenylacetylene **4.36** (0.27 mL, 2.46 mmol)


was added, and the resulting solution was stirred at 60 °C for 12 h. The reaction mixture was then diluted with EtOAc, filtered through a celite pad, and evaporated under reduced pressure. The crude reaction mixture was purified by column chromatography to obtain pure 1-(5-nitro-2-

(phenylethynyl)phenyl)ethan-1-one **4.15k** as a yellow solid (461 mg, 84%). mp = 111-113°C, R_f = 0.46 (in 10% EtOAc/Hex). IR (neat, cm⁻¹): 3103, 2214, 1686, 1599, 1574, 1509, 1490, 1340, 1294, 1259, 1109, 1061, 910, 890, 845, 743, 685. ¹H NMR (500 MHz, CDCl₃): δ 8.61 (d, J = 2.0 Hz, 1H), 8.31 (dd, J = 8.5, 2.5 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.59-7.57 (m, 2H), 7.45-7.39 (m, 3H), 2.83 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 197.6, 146.7, 141.3, 134.9, 131.8, 129.8, 128.6, 128.0, 125.5, 123.9, 121.8, 100.5, 87.1, 29.7. HRMS (ESI): calcd. for [C₁₆H₁₂NO₃] [M+H]⁺: 266.0812; found: 266.0813.

General procedure for the synthesis of C3-naphthyl indole derivatives 4.18:

To a stirred solution of *o*-alkynylacetophenone **4.15** (1.2 equiv.), *N*-protected indole **4.5** (0.4 mmol, 1.0 equiv.) and TMOF (2.0 equiv.) in DCM (4 mL) was added AgOTf (10 mol %) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product **4.18**.

1-Benzyl-3-(3-phenylnaphthalene-1-yl)-1*H*-indole 4.18aa:

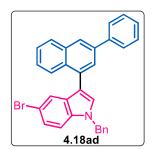
White solid, 85% (140 mg) yield, mp 88-90 °C, $R_{\rm f}$ = 0.5 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.15 (d, J = 8.5 Hz, 1H), 8.08 (s, 1H), 8.49 (d, J = 8.0 Hz, 1H), 7.94-7.93 (m, 1H), 7.81-7.79 (m, 2H), 7.61 (dd, J = 8.0, 0.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.52-7.49 (m, 2H), 7.45-7.40 (m, 3H), 7.38-7.35 (m, 3H), 7.33-7.28 (m, 2H), 7.26 (d, J = 7.0 Hz, 2H), 7.18-7.15 (m, 1H), 5.46 (s, 2H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 141.1, 138.2, 137.3, 136.6, 134.4, 133.5, 131.7, 128.9, 128.8, 128.6, 128.4, 127.7, 127.5, 127.4, 127.3,

127.0, 126.4, 126.1, 125.8, 124.9, 122.2, 120.6, 119.9, 115.6, 110.0, 50.3. IR (neat, cm $^{-1}$): 1549, 1493, 1451, 1383, 1337, 1257, 1167, 1074, 1014, 883, 763, 736, 693. HRMS (ESI): calcd. for $[C_{31}H_{24}N][M+H]^{+}$: 410.1903; found: 410.1905.

1-Benzyl-5-fluoro-3-(3-phenylnaphthalene-1-yl)-1*H*-indole 4.18ab:

White solid, 71% (121 mg) yield, mp 140-142 °C, $R_{\rm f} = 0.38$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.08 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.78 (dd, J = 8.5, 1.0 Hz, 2H), 7.55-7.52 (m, 1H), 7.51-7.48 (m, 2H), 7.45-7.42 (m, 1H), 7.42 (s, 1H), 7.39-7.38 (m, 1H), 7.37-7.35 (m, 2H), 7.33-7.28 (m, 2H), 7.26-7.20 (m, 3H), 7.00 (td, J = 9.5, 2.5 Hz, 1H), 5.43 (s, 2H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 159.1, 157.2, 141.0, 138.2, 136.9, 134.3, 133.1, 132.9, 131.5,

129.2, 128.9, 128.8, 128.6, 127.8, 127.4, 127.3, 127.2, 126.8, 126.1 (d, $J_{CF} = 30 \text{ Hz}$), 125.9, 125.0, 115.5 (d, $J_{CF} = 20 \text{ Hz}$), 110.7 (d, $J_{CF} = 15 \text{ Hz}$), 110.6, 110.5, 105.4, 105.2, 50.5. ¹⁹F NMR (470 MHz, CDCl₃), -124.0. IR (neat, cm⁻¹): 1542, 1480, 1447, 1246, 1181, 955, 895, 853, 790, 761, 693, 651. HRMS (ESI): calcd. for $[C_{31}H_{23}FN]$ [M+H]⁺: 428.1809; found: 428.1809.


1-Benzyl-5-chloro-3-(3-phenylnaphthalene-1-yl)-1*H*-indole 4.18ac:

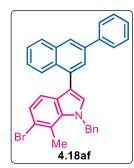
White solid, 73% (130 mg) yield, mp 158-160 °C, $R_{\rm f}=0.41$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.07 (s, 1H), 8.03 (d, J=8.5 Hz, 1H), 7.98 (d, J=8.0 Hz, 1H), 7.85 (d, J=1.5 Hz, 1H), 7.77 (d, J=7.5 Hz, 2H), 7.54 (d, J=7.0 Hz, 1H), 7.51-7.48 (m, 3H), 7.45-7.42 (m, 1H), 7.41-7.39 (m, 1H), 7.37 (s, 1H), 7.35 (d, J=7.5 Hz, 2H), 7.30-7.29 (m, 2H), 7.23-7.19 (m, 3H), 5.42 (s, 2H). ¹³C { ¹H } NMR (125 MHz, CDCl₃): δ 140.9, 138.2, 136.8, 134.9, 134.3, 132.7, 131.6, 129.3, 128.9, 128.8,

128.6, 127.9, 127.44, 127.40, 127.3, 126.8, 126.2, 126.0, 125.9, 125.8, 125.2, 122.5, 119.8, 115.2, 111.0, 50.4. IR (neat, cm⁻¹): 1595, 1494, 1467, 1349, 1267, 1169, 1065, 1028, 884, 851, 747, 693, 642. HRMS (ESI): calcd. for $[C_{31}H_{23}ClN]$ [M+H]⁺: 444.1514; found: 444.1514.

1-Benzyl-5-bromo-3-(3-phenylnaphthalene-1-yl)-1*H*-indole 4.18ad:

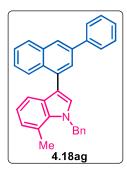
White solid, 80% (156 mg) yield, mp 64-66 °C, $R_{\rm f} = 0.48$ (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 1.6 Hz, 1H), 7.99 (dd, J = 13.6, 8.4 Hz, 2H), 7.83 (d, J = 2.0 Hz, 1H), 7.78-7.75 (m, 2H), 7.65 (d, J = 2.0 Hz, 1H), 7.55-7.47 (m, 3H), 7.45-7.40 (m, 1H), 7.39-7.35 (m, 3H), 7.34-7.30 (m, 3H), 7.25 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 6.8 Hz, 2H), 5.42 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 140.9, 138.2, 136.8, 135.1, 134.3, 132.6, 131.6, 130.0, 128.9, 128.8, 128.7, 128.6,

127.9, 127.4, 127.3, 126.8, 126.2, 126.09, 126.00, 125.2, 125.1, 122.9, 115.1, 113.4, 111.4, 50.4. IR (neat, cm $^{-1}$): 1595, 1493, 1466, 1349, 1266, 1168, 1027, 884, 789, 749, 693. HRMS (ESI): calcd. for [C₃₁H₂₃BrN] [M+H] $^{+}$: 488.1008; found: 488.1008.


1-Benzyl-5-methoxy-3-(3-phenylnaphthalene-1-yl)-1*H*-indole 4.18ae:

White solid, 90% (159 mg) yield, mp 62-64 °C, $R_{\rm f}$ = 0.4 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 1.5 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.79-7.77 (m, 2H), 7.54-7.51 (m, 1H), 7.50-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.39 (dt, J = 7.5, 1.0 Hz, 1H), 7.36 (dt, J = 3.5, 1.0 Hz, 1H), 7.35-7.33 (m, 2H), 7.30-7.27 (m, 2H), 7.24-7.22 (m, 2H), 6.98 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 9.0, 2.5 Hz, 1H), 5.41 (s, 2H), 3.71 (s, 3H).

¹³C {¹H} NMR (100 MHz, CDCl₃): δ 154.4, 141.0, 138.2, 137.3, 134.3, 133.6, 131.7, 131.6, 128.8, 128.6, 128.5, 128.3, 127.7, 127.4, 127.3, 127.2, 126.8, 126.5, 126.1, 125.7, 124.8, 115.1, 112.6, 110.8, 101.9, 55.8, 50.4. IR (neat, cm⁻¹): 1482, 1448, 1338, 1282, 1213, 1175, 1040, 886, 790, 748, 694. HRMS (ESI): calcd. for [C₃₂H₂₆NO] [M+H]⁺: 440.2009; found: 440.2009.


1-Benzyl-6-bromo-7-methyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole 4.18af:

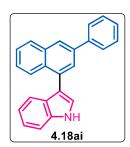
White solid, 77% (156 mg) yield, mp 164-166 °C, $R_f = 0.58$ (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, J = 1.5 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.76 (dt, J = 8.0, 1.5 Hz, 2H), 7.53-7.47 (m, 3H), 7.42-7.41 (m, 1H), 7.39 (dt, J = 7.5, 1.0 Hz, 1H), 7.36-7.33 (m, 2H), 7.31-7.28 (m, 3H), 7.21 (dd, J = 8.5, 0.5 Hz, 1H), 7.05 (d, J = 7.0 Hz, 2H), 5.70 (s, 2H), 2.69 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 140.9, 138.9, 138.1, 135.7, 134.3, 132.7, 131.6, 130.6, 129.0, 128.8, 128.7, 128.6, 127.5, 127.49, 127.43, 127.3, 126.2,

126.1, 125.8, 125.4, 125.1, 124.9, 121.0, 120.3, 119.3, 115.6, 52.9, 18.4. IR (neat, cm $^{-1}$): 1599, 1493, 1448, 1410, 1351, 1171, 1014, 963, 877, 820, 790, 757, 689. HRMS (ESI): calcd. for $[C_{32}H_{25}BrN]$ [M+H] $^{+}$: 502.1165; found: 502.1164.

1-Benzyl-7-methyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole 4.18ag:

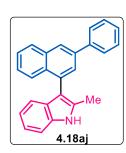
White solid, 80% (136 mg) yield, mp 102-104 °C, $R_{\rm f}=0.57$ (in 10% EtOAc/Hex). ¹H NMR (MHz, CDCl₃): 8.12 (d, J=8.5 Hz, 1H), 8.08 (s, 1H), 7.99 (d, J=8.0 Hz, 1H), 7.92 (d, J=2.0 Hz, 1H), 7.79 (dt, J=8.0, 1.0 Hz, 2H), 7.55-7.49 (m, 3H), 7.45-7.43 (m, 1H), 7.42 (dt, J=7.0, 1.5 Hz, 1H), 7.39 (dt, J=7.5, 1.5 Hz, 1H), 7.35 (tt, J=7.0, 1.0 Hz, 2H), 7.31 (s, 1H), 7.30-7.27 (s, 1H), 7.08 (d, J=7.5 Hz, 2H), 7.04 (t, J=7.0 Hz, 1H), 6.99 (d, J=7.0 Hz, 1H), 5.71 (s, 2H), 2.64 (s, 3H). δ ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 141.0, 139.4, 138.1, 135.2, 134.3, 133.4, 131.7, 129.6, 129.3, 128.9, 128.8,

128.5, 127.4, 127.3, 126.4, 126.1, 125.7, 125.5, 125.0, 124.8, 121.3, 120.1, 118.6, 115.5, 52.3, 19.6. IR (neat, cm⁻¹): 1597, 1493, 1448, 1414, 1375, 1169, 1074, 1028, 883, 812, 745, 693. HRMS (ESI): calcd. for $[C_{32}H_{26}N]$ $[M+H]^+$: 424.2060; found: 424.2060.


1-Methyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole 4.18ah:

White solid, 75% (100 mg) yield, mp 92-94 °C, $R_{\rm f}$ = 0.58 (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.4 Hz, 1H), 8.06 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.80-7.78 (m, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.55-7.49 (m, 3H), 7.48-7.43 (m, 2H), 7.42-7.39 (m, 1H), 7.37-7.33 (m, 1H), 7.31 (s, 1H), 7.17-7.13 (m, 1H), 3.93 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 141.1, 138.1, 136.9, 134.3, 133.6, 131.7, 128.8, 128.5, 128.3, 128.0, 127.4, 127.28, 127.24, 126.4, 126.1, 125.6, 124.7, 121.9, 120.4, 119.6,

114.9, 109.4, 32.8. IR (neat, cm⁻¹): 1594, 1472, 1355, 1227, 1154, 1114, 1064, 1012, 883, 735, 694. HRMS (ESI): calcd. for $[C_{25}H_{20}N]$ [M+H]⁺: 334.1590; found: 334.1593.


3-(3-Phenylnaphthalen-1-yl)-1*H*-indole 4.18ai:

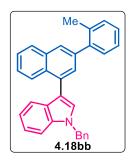
White solid, 60% (80 mg) yield, mp 95-97 °C, $R_{\rm f}$ = 0.30 (in 10% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.36 (bs, 1H), 8.11-8.08 (m, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 2.0 Hz, 1H), 7.80-7.78 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.56-7.53 (m, 1H), 7.52-7.48 (m, 3H), 7.44-7.41 (m, 2H), 7.38 (dt, J = 7.2, 2.0 Hz, 1H), 7.32-7.28 (m, 1H), 7.18-7.14 (m, 1H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 141.0, 138.1, 136.0, 134.3, 133.5, 131.7, 128.8, 128.5, 127.6, 127.4, 127.34, 127.33, 126.3, 126.1, 125.7, 124.9, 123.6, 122.4, 120.3,

120.1, 116.4, 111.2. IR (neat, cm⁻¹): 3412, 1594, 1492, 1452, 1418, 1243, 1092, 884, 739, 694. HRMS (ESI): calcd. for $[C_{24}H_{18}N][M+H]^+$: 320.1434; found: 320.1436.

2-Methyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole 4.18aj:

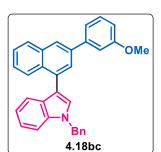
Yellow liquid, 65% (87 mg) yield, $R_{\rm f}$ = 0.33 (in 20% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (bs, 1H), 8.09 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.81-7.77 (m, 4H), 7.53-7.46 (m, 3H), 7.42-7.36 (m, 3H), 7.30 (d, J = 8.0 Hz, 1H), 7.20 (dt, J = 7.5, 1.5 Hz, 1H), 7.08-7.04 (m, 1H), 2.37 (s, 3H). ¹³C { ¹H } NMR (100 MHz, CDCl₃): δ 141.1, 138.1, 135.2, 134.2, 133.5, 132.7, 132.1, 129.3, 128.8, 128.5, 128.1, 127.4, 127.3, 126.6, 126.0, 125.6, 124.9, 121.4, 119.8, 119.3, 112.8, 110.2, 12.5. IR (neat, cm⁻¹): 3399, 1595, 1494, 1457,

1324, 1303, 1244, 1212, 1011, 883, 741, 694. HRMS (ESI): calcd. for $[C_{25}H_{20}N]$ $[M+H]^+$: 334.1590; found: 334.1603.


1-Benzyl-3-(3-(p-tolyl)naphthalen-1-yl)-1*H*-indole 4.18ba:

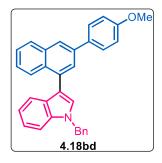
White solid, 82% (140 mg) yield, mp 66–68 °C, $R_{\rm f}$ = 0.59 (in 10% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 1.6 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.68 (dt, J = 8.0, 2.4 Hz, 2H), 7.59 (dt, J = 8.0, 1.2 Hz, 1H), 7.53–7.49 (m, 1H), 7.42–7.40 (m, 2H), 7.38–7.33 (m, 3H), 7.31–7.28 (m, 3H), 7.26–7.24 (m, 3H), 7.16–7.12 (m, 1H), 5.45 (s, 2H), 2.42 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 138.1, 138.0, 137.2, 137.0, 136.5, 134.3, 133.3,

131.5, 129.5, 128.8, 128.5, 128.3, 127.7, 127.6, 127.2, 126.8, 126.3, 126.0, 125.5, 124.4, 122.1, 120.5, 119.8, 115.5, 109.9, 50.1, 21.1. IR (neat, cm $^{-1}$): 1597, 1495, 1464, 1336, 1255, 1168, 1016, 887, 813, 731, 698. HRMS (ESI): calcd. for [$C_{32}H_{26}N$] [M+H] $^{+}$: 424.2060; found: 424.2061.


1-benzyl-3-(3-(o-tolyl)naphthalen-1-yl)-1*H*-indole 4.18bb:

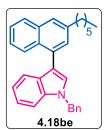
Yellow liquid, 80% (136 mg) yield, $R_f = 0.41$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.16 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 1.5 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.54-7.51 (m, 1H), 7.45-7.41 (m, 1H), 7.40-7.39 (m, 2H), 7.36-7.30 (m, 6H), 7.29-7.27 (m, 2H), 7.24-7.23 (m, 2H), 7.15-7.12 (m, 1H), 5.44 (s, 2H), 2.39 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 141.8, 139.2, 137.2, 136.6, 135.5, 133.9, 132.6, 131.3, 130.3, 130.0, 129.4, 128.8, 128.37, 128.33, 127.75, 127.72, 127.3, 126.9, 126.8, 126.4, 125.9, 125.7, 125.6, 122.1, 120.5, 119.8, 115.5, 109.9, 50.2,

20.6. IR (neat, cm⁻¹): 1595, 1492, 1463, 1336, 1168, 1015, 905, 889, 725, 647. HRMS (ESI): calcd. for $[C_{32}H_{26}N]$ $[M+H]^+$: 424.2060; found: 424.2060.


1-benzyl-3-(3-(3-methoxyphenyl)naphthalen-1-yl)-1*H*-indole 4.18bc:

Yellow liquid, 77% (136 mg) yield, $R_f = 0.39$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 8.0 Hz, 1H), 8.04 (s, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.52-7.49 (m, 1H), 7.41-7.38 (m, 3H), 7.37-7.36 (m, 2H), 7.34-7.32 (m, 2H), 7.29-7.28 (m, 2H), 7.25-7.23 (m, 3H), 7.12 (t, J = 7.0 Hz, 1H), 6.93-6.91 (m, 1H), 5.44 (s, 2H), 3.88 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 159.9, 142.6, 138.0, 137.2, 136.5, 134.3, 133.4, 131.7, 129.7,

128.8, 128.5, 128.3, 127.7, 127.3, 126.9, 126.4, 126.1, 125.7, 124.9, 122.1, 120.5, 119.9(8), 119.9(2), 115.5, 113.1, 112.8, 109.9, 55.3, 50.2. IR (neat, cm $^{-1}$): 1595, 1490, 1383, 1247, 1169, 1041, 780, 730, 693, 618. HRMS (ESI): calcd. for [C₃₂H₂₆NO] [M+H] $^{+}$: 440.2009; found: 440.2010.


1-Benzyl-3-(3-(4-methoxyphenyl)naphthalen-1-yl)-1*H*-indole 4.18bd:

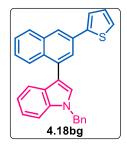
Yellow liquid, 86% (152 mg) yield, R_f = 0.31 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, J = 8.0 Hz, 1H), 8.00 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 7.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.34 (d, J = 7.0 Hz, 1H), 7.29 (t, J = 7.0 Hz, 1H), 7.26-7.24 (m, 3H), 7.13 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.5 Hz, 2H), 5.45 (s, 2H), 3.87 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 159.1, 137.7, 137.2, 136.5, 134.4, 133.5, 133.3, 131.3, 128.7, 128.4, 128.3, 127.7, 127.1, 126.8,

126.3, 126.0, 125.4, 124.0, 122.1, 120.5, 119.8, 115.5, 114.2, 109.9, 55.2, 50.1. IR (neat, cm⁻¹): 1606, 1512, 1462, 1244, 1029, 827, 730, 698. HRMS (ESI): calcd. for $[C_{32}H_{26}NO]$ $[M+H]^+$: 440.2009; found: 440.2009.

1-Benzyl-3-(3-hexylnaphthalen-1-yl)-1*H*-indole 4.18be:

Yellow liquid, 73% (122 mg) yield, $R_{\rm f}=0.7$ (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ. 8.06 (d, J=8.5 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.63 (s, 1H), 7.54 (d, J=8.0 Hz, 1H), 7.48 (d, J=1.5 Hz, 1H), 7.47-7.44 (m, 1H), 7.39 (d, J=8.0 Hz, 1H), 7.35 (tt, J=7.0, 1.5 Hz, 3H), 7.33-7.26 (m, 3H), 7.25-7.23 (m, 3H), 7.14-7.11 (m, 1H), 5.44 (s, 2H), 2.81 (t, J=7.5 Hz, 2H), 1.78-1.72 (m, 2H), 1.45-1.39 (m, 2H), 1.37-1.31 (m, 4H), 0.90 (t, J=7.0 Hz, 3H). ¹³C

 $\{^{1}H\}$ NMR (125 MHz, CDCl₃): δ . 140.1, 137.4, 136.5, 134.3, 132.6, 130.9, 129.3, 128.8, 127.7, 127.6(9), 127.6(0), 126.9, 126.3, 125.6, 125.4, 124.8, 122.0, 120.5, 119.7, 115.7, 109.8, 50.2, 36.1, 31.7, 31.3, 29.1, 22.6. 14.0. IR (neat, cm⁻¹): 1599, 1543, 1495, 1463, 1386, 1352, 1252, 1168, 1075, 1014, 955, 877, 783, 737, 694, 616. HRMS (ESI): calcd. for $[C_{31}H_{32}N]$ [M+H]⁺: 418.2529; found: 418.2529.


N-((4-(1-benzyl-1*H*-indol-3-yl)naphthalen-2-yl)methyl)-4-methylbenzenesulfonamide 4.18bf:

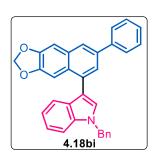
Yellow liquid, 69% (143 mg) yield, $R_{\rm f} = 0.28$ (in 20% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.61 (s, 1H), 7.47 (t, J = 7.0 Hz, 1H), 7.41-7.36 (m, 5H), 7.34 (d, J = 7.5 Hz, 2H), 7.31-7.28 (m, 2H), 7.22 (t, J = 7.5 Hz, 5H), 7.10 (t, J = 7.5 Hz, 1H), 5.42 (s, 2H), 4.73 (t, J = 6.0 Hz, 1H), 4.33 (d, J = 6.5 Hz, 2H), 2.32 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃):

 δ .143.4, 137.2, 136.9, 136.5, 133.8, 133.7, 133.2, 131.9, 129.6, 128.8, 128.1, 127.7, 127.6, 127.2, 127.1, 126.9, 126.5, 126.1, 125.9, 125.7, 122.2, 120.4, 119.9, 115.1, 109.9, 50.2, 47.4, 21.3. IR (neat, cm⁻¹): 3276, 3029, 2923, 1598, 1494, 1464, 1452, 1323, 1153, 1091, 880, 812, 739, 663, 547. HRMS (ESI): calcd. for [C₃₃H₂₉N₂O₂S] [M+H]⁺: 517.1944; found: 517.1945.

1-Benzyl-3-(3-(thiophen-2-yl)naphthalen-1-yl)-1*H*-indole 4.18bg:

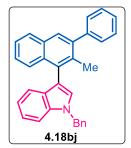
Yellow liquid, 78% (130 mg) yield, $R_f = 0.4$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.07-8.06 (m, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 1.5 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.52-7.48 (m, 1H), 7.46 (dd, J = 3.5 1.0 Hz, 1H), 7.42-7.38 (m, 2H), 7.37 (s, 1H), 7.37-7.36 (m, 2H), 7.33-7.32 (m, 1H), 7.30-7.28 (m, 1H), 7.26-7.25 (m, 3H), 7.16-7.12 (m, 2H), 5.45 (s, 2H). ¹³C { ¹H } NMR (125 MHz, CDCl₃): δ 144.5, 137.2, 136.5, 134.3, 133.6, 131.8, 131.4, 128.8, 128.3, 128.2, 128.0, 127.7, 126.9, 126.4, 126.3, 126.0, 125.7,

124.9, 123.4, 123.3, 122.2, 120.4, 119.9, 115.2, 109.9, 50.2. IR (neat, cm $^{-1}$): 1596, 1542, 1494, 1463, 1385, 1352, 1234, 1167, 1028, 1012, 880, 853, 821, 729, 693. HRMS (ESI): calcd. for $[C_{29}H_{22}NS]$ [M+H] $^{+}$: 416.1467; found: 416.1472.


1-Benzyl-3-(7-fluoro-3-phenylnaphthalen-1-yl)-1*H*-indole 4.18bh:

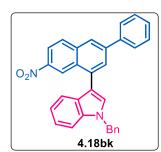
White solid, 76% (130 mg) yield, mp 60-62 °C, $R_{\rm f}=0.5$ (in 10% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ . 8.04 (s, 1H), 7.98-7.93 (m, 2H), 7.77-7.74 (m, 3H), 7.58 (dt, J=7.6, 1.2 Hz, 1H), 7.51-7.47 (m, 2H), 7.43-7.38 (m, 2H), 7.37-7.34 (m, 3H), 7.33-7.25 (m, 6H), 7.18-7.14 (m, 1H), 5.46 (s, 2H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 160.8 (d, J=244.0 Hz), 140.8, 137.5 (d, J=2.5 Hz), 137.1, 136.6, 132.8 (dd, J=50, 5 Hz), 131.3, 130.9, 130.8, 128.8(7), 128.8(5), 128.1(9), 128.1(0), 127.7, 127.6,

127.3, 126.9, 124.6, 122.3, 120.2 (d, J = 21.2 Hz), 116.4 (d, J = 26.2 Hz), 115.0, 110.0, 109.8 (d, J = 21.2 Hz), 50.2. ¹⁹F NMR (470 MHz, CDCl₃): δ -114.0. IR (neat, cm⁻¹): 1598, 1543, 1497, 1451, 1386, 1328, 1241, 1173, 1075, 958, 915, 881, 805, 760, 725, 693. HRMS (ESI): calcd. for $[C_{31}H_{23}FN]$ [M+H]⁺: 428.1809; found: 428.1809.


1-Benzyl-3-(7-phenylnaphtho[2,3-d][1,3]dioxol-5-yl)-1*H*-indole 4.18bi:

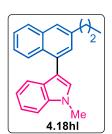
Yellow liquid, 80% (146 mg) yield, $R_{\rm f} = 0.27$ (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 2.0 Hz, 1H), 7.74-7.72 (m, 3H), 7.56 (dt, J = 8.0, 1.0 Hz, 1H), 7.48-7.44 (m, 2H), 7.40 (d, J = 9.0 Hz, 2H), 7.37-7.33(7) (m, 3H), 7.33 (s, 1H), 7.31-7.27 (m, 1H), 7.25-7.23 (m, 3H), 7.15-7.12 (m, 1H), 6.02 (s, 2H), 5.44 (s, 2H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 147.7, 147.6, 141.1, 137.3, 136.8, 136.5, 132.6, 131.5, 128.9, 128.8, 128.7, 128.2, 127.7, 127.4, 127.2, 127.0, 126.9, 126.0, 124.1,

122.1, 120.5, 119.9, 115.9, 109.9, 104.3, 102.9, 101.0, 50.2. IR (neat, cm $^{-1}$): 2922, 1603, 1494, 1455, 1278, 1231, 1173, 1035, 951, 882, 737, 693. HRMS (ESI): calcd. for [$C_{32}H_{24}NO_2$] [M+H] $^{+}$: 454.1802; found: 458.1802.


1-Benzyl-3-(2-methyl-3-phenylnaphthalen-1-yl)-1*H*-indole 4.18bj:

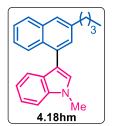
White solid, 62% (105 mg) yield, mp 62-64 °C, $R_{\rm f}$ = 0.35 (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 1H), 7.78 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.49-7.46 (m, 4H), 7.44-7.36 (m, 4H), 7.35-7.30 (m, 3H), 7.29-7.26 (m, 1H), 7.25-7.22 (m, 3H), 7.18 (s, 1H), 7.10-7.06 (m, 1H), 5.47 (s, 2H), 2.18 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 142.7, 141.2, 137.6, 136.5, 133.9, 133.5, 131.8, 131.4, 129.4, 128.9, 128.8, 128.0(9), 128.0(4), 127.9, 127.7, 127.6, 126.8, 126.7, 126.6, 125.6, 125.1,

121.9, 120.5, 119.6, 114.2, 109.8, 50.1, 19.4. IR (neat, cm $^{-1}$): 1595, 1493, 1464, 1451, 1422, 1385, 1349, 1259, 1212, 1171, 1149, 908, 886, 734, 693. HRMS (ESI): calcd. for $[C_{32}H_{26}N]$ [M+H] $^{+}$: 424.2060; found: 424.2061.


1-Benzyl-3-(7-nitro-3-phenylnaphthalen-1-yl)-1*H*-indole derivative 4.18bk:

Yellow solid, (132 mg, 73%), mp 160-162 °C, $R_{\rm f}=0.40$ (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 9.15 (d, J = 2.5 Hz, 1H), 8.26 (dd, J = 9.0, 2.5 Hz, 1H), 8.09-8.08 (m, 2H), 8.05 (d, J = 9.0 Hz, 1H), 7.94-7.77 (m, 2H), 7.62 (dt, J = 5.0, 1.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.47-7.45 (m, 1H), 7.44 (tt, J = 7.5, 1.0 Hz, 1H), 7.40 (s, 1H), 7.39-7.37 (m, 1H), 7.33-7.29 (m, 4H), 7.20-7.16 (m, 1H), 5.49 (s, 2H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 145.4, 142.1, 140.0, 137.1, 136.8,

123.2, 130.3, 129.0(6), 129.0(0), 128.8, 128.2, 128.1, 127.9, 127.5, 127.1, 124.2, 123.5, 122.7, 120.6, 119.6, 113.8, 110.2, 50.3. IR (neat, cm $^{-1}$): 2919, 2850, 1615, 1520, 1487, 1461, 1334, 1157, 1078, 886, 828, 735, 628. HRMS (ESI): calcd. for [C₃₁H₂₃N₂O₂] [M+H] $^{+}$: 455.1754; found: 455.1754


1-Methyl-3-(3-propylnaphthalen-1-yl)-1*H*-indole 4.18hl:

Yellow liquid, 59% (70 mg) yield, R_f = 0.4 (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.67 (s, 1H), 7.58-7.57 (m, 1H), 7.51-7.48 (m, 2H), 7.46 (d, J = 8.5 Hz, 1H), 7.40-7.33 (m, 2H), 7.28 (s, 1H), 7.19-7.16 (m, 1H), 3.92 (s, 3H), 2.84 (t, J = 7.0 Hz, 2H), 1.83 (sext, J = 7.5 Hz, 2H), 1.06 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 139.8, 136.9, 134.2, 132.7, 130.9, 129.2, 128.1, 128.0, 127.7, 126.3,

125.6, 125.4, 124.7, 121.8, 120.4, 119.5, 115.0, 109.3, 38.1, 32.8, 24.4, 13.9. IR (neat, cm $^{-1}$): 1613, 1597, 1574, 1540, 1498, 1476, 1372, 1333, 1244, 1225, 1149, 1130, 1113, 1056, 1011, 920, 850, 823, 807, 734, 647. HRMS (ESI): calcd. for $[C_{22}H_{22}N]$ [M+H] $^{+}$: 300.1747; found: 300.1747.


3-(3-Butylnaphthalen-1-yl)-1-methyl-1*H*-indole 4.18hm:

Yellow liquid, 62% (78 mg) yield, $R_f = 0.5$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.62 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.47-7.45 (m, 2H), 7.43 (d, J = 8.5 Hz, 1H), 7.35-7.29 (m, 2H), 7.25(5)-7.25(2) (m, 1H), 7.14-7.11 (m, 1H), 3.92 (s, 3H), 2.81 (t, J = 8.0 Hz, 2H), 1.77-1.70 (m, 2H), 1.47-1.39 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H). ¹³C { ¹H} NMR (125 MHz, CDCl₃): δ 140.0, 136.9, 134.2, 132.7, 130.9, 129.2,

128.1, 128.0, 127.7, 126.3, 125.6, 125.3, 124.7, 121.8, 120.4, 119.5, 115.0, 109.3, 35.8, 33.5, 32.8, 22.4, 14.0. IR (neat, cm $^{-1}$): 1598, 1542, 1463, 1422, 1358, 1332, 1245, 1227, 1152, 1130, 1115, 1059, 1011, 875, 810, 735, 646. HRMS (ESI): calcd. for [C₂₃H₂₄N] [M+H] $^{+}$: 314.1903; found: 314.1904.

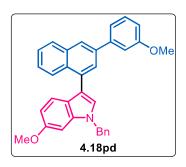
1-Benzyl-3-(3-butylnaphthalen-1-yl)-5-chloro-1*H*-indole 4.18cm:

Yellow liquid, 65% (110 mg) yield, $R_{\rm f}$ = 0.6 (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.5 Hz, 1H), 7.64 (s, 1H), 7.48-7.43 (m, 3H), 7.38-7.36 (m, 2H), 7.34-7.33 (m, 2H), 7.32 (d, J = 7.0 Hz, 1H), 7.28 (d, J = 9.0 Hz, 1H), 7.21 (d, J = 7.5 Hz, 2H), 7.19-7.17 (m, 1H), 5.41 (s, 2H), 2.82 (t, J = 8.0 Hz, 2H), 1.74 (quint, J = 7.5 Hz, 2H), 1.44 (sext, J = 7.5 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H). ¹³C {¹H} NMR (125

MHz, CDCl₃): δ 140.0, 136.9, 134.8, 134.2, 131.8, 130.8, 129.4, 129.3, 128.9, 128.8, 127.8(5), 127.8(3), 126.7, 125.9, 125.8, 125.7(7), 125.7(1), 125.0, 122.4, 119.9, 115.3, 110.9, 50.3, 35.7, 33.5, 22.4, 14.0. IR (neat, cm⁻¹): 1600, 1495, 1468, 1386, 1352, 1261, 1169, 1065, 1025, 956, 872, 849, 789, 747, 729, 696. HRMS (ESI): calcd. for [C₂₉H₂₇CIN] [M+H]⁺: 424.1827; found: 424.1827.

1-Benzyl-5-fluoro-3-(3-propylnaphthalen-1-yl)-1*H*-indole 4.18bl:

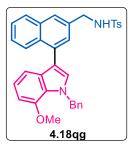
Yellow liquid, 68% (108 mg) yield, R_f = 0.51 (in 5% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.65 (s, 1H), 7.50-7.45 (m, 2H), 7.39-7.36 (m, 3H), 7.35-7.30 (m, 2H), 7.29-7.26 (m, 1H), 7.24-7.22 (m, 2H), 7.18 (dd, J = 9.6, 2.4 Hz, 1H), 6.99 (td, J = 8.8, 2.4 Hz, 1H), 5.41 (s, 2H), 2.80 (t, J = 7.6 Hz, 2H), 1.8 (sext, J = 7.6 Hz, 2H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 158.1 (d, J = 233 Hz), 139.8, 137.0, 134.2, 133.1, 132.0, 130.8, 129.2 (d, J = 4.0 Hz),


128.9, 128.7 (d, J = 10 Hz), 127.8 (d, J = 2.0 Hz), 126.8, 126.0, 125.7 (d, J = 7.0 Hz), 125.0, 115.6 (d, J = 5.0 Hz), 110.6 (d, J = 3.0 Hz), 110.5, 110.4, 105.3 (d, J = 24 Hz), 50.5, 38.1, 24.4, 13.9. ¹⁹F NMR (470 MHz, CDCl₃): δ -124.3. IR (neat, cm⁻¹): 1599, 1576, 1481, 1451, 1353, 1245, 1181, 1092, 1024, 928, 889, 850, 789, 748, 702, 651. HRMS (ESI): calcd. for [C₂₈H₂₅FN] [M+H]⁺: 394.1966; found: 394.1966.

1-Benzyl-6-fluoro-3-(3-(4-methoxyphenyl)naphthalen-1-yl)-1H-indole 4.18oe:

White solid, 78% (143 mg) yield, mp 78-80 °C, $R_{\rm f}$ = 0.48 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, J = 8.5 Hz, 1H), 8.00 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 1.5 Hz, 1H), 7.70 (dt, J = 9.0, 3.0 Hz, 2H), 7.52-7.49 (m, 1H), 7.45 (dd, J = 8.5, 5.5 Hz, 1H), 7.41-7.39 (m, 1H), 7.38-7.35 (m, 2H), 7.34 (s, 1H), 7.32 (m, 1H), 7.24-7.23 (m, 2H), 7.05 (dd, J = 10, 5.0 Hz, 1H), 7.02 (dt, J = 9.0, 3.0 Hz, 2H), 6.88 (td, J = 9.0, 2.0 Hz, 1H), 5.38 (s, 2H), 3.87 (s, 3H). ¹³C {¹H}

NMR (125 MHz, CDCl₃): δ 160.0 (d, J = 236 Hz), 159.2, 137.7, 136.8, 136.5 (d, J = 11.2 Hz), 134.4, 133.4, 132.9, 131.2, 128.9, 128.4(8), 128.4(2), 127.9(3), 127.9(1), 127.8, 127.1, 126.9, 126.1 (d, J = 20 Hz), 125.5, 124.9, 124.3, 121.4 (d, J = 40 Hz), 115.8, 114.2, 108.6 (d, J = 25 Hz), 96.3 (d, J = 25 Hz), 55.3, 50.4. ¹⁹F NMR (470 MHz, CDCl₃): δ -120.1. IR (neat, cm⁻¹): 1606, 1579, 1545, 1512, 1466, 1452, 1332, 1281, 1244, 1170, 1112, 1089, 1029, 951, 907, 859, 826, 749, 701, 615. HRMS (ESI): calcd. for [C₃₂H₂₅FNO] [M+H]⁺: 458.1915; found: 458.1922.


1-Benzyl-6-methoxy-3-(3-(3-methoxyphenyl)naphthalen-1-yl)-1*H*-indole 4.18pd:

White solid, 75% (141 mg) yield, mp 143–145 °C, R_f = 0.48 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 8.5 Hz, 1H), 8.03 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.53–7.49 (m, 1H), 7.44–7.38 (m, 3H), 7.37–7.34 (m, 3H), 7.31–7.28 (m, 2H), 7.26–7.24 (m, 4H), 6.93 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H), 6.84 (d, J = 2.0 Hz, 1H), 6.80 (dd, J = 9.0, 2.5 Hz, 1H), 5.39, (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H). ¹³C { ¹H } NMR (125 MHz, CDCl₃): δ 159.9, 156.6, 142.6, 138.0, 137.3, 137.2, 134.2, 133.5, 131.7, 129.7, 128.8, 128.5,

127.7, 127.1, 126.9, 126.6, 126.4, 126.1, 125.7, 124.8, 122.7, 121.2, 119.9, 115.5, 113.0, 112.7, 93.5, 55.7, 55.3, 50.1. IR (neat, cm⁻¹): 1595, 1571, 1488, 1453, 1331, 1257, 1212, 1168, 1094, 1040, 955, 879, 780, 748, 694. HRMS (ESI): calcd. for $[C_{33}H_{27}NNaO_2]$ $[M+Na]^+$: 492.1934; found: 492.1932.

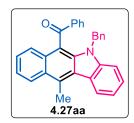
N-((4-(1-Benzyl-7-methoxy-1*H*-indol-3-yl)naphthalen-2-yl)methyl)-4-methylbenzenesulfonamide 4.18qg:



White solid, 71% (156 mg) yield, mp 90–92 °C, $R_{\rm f}=0.41$ (in 20% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J=8.5 Hz, 1H), 7.76 (d, J=8.5 Hz, 1H), 7.74 (dt, J=8.0, 2.0 Hz, 2H), 7.58 (s, 1H), 7.47-7.44 (m, 1H), 7.37-7.34 (m, 1H), 7.33-7.29 (m, 3H), 7.26-7.23 (m, 1H), 7.21-7.19 (dd, J=4H), 7.13 (s, 1H), 7.00-6.97 (m, 1H), 6.96-6.94 (m, 1H), 6.68 (dd, J=7.0, 1.0 Hz, 1H), 5.72 (s, 2H), 4.75 (t, J=6.0 Hz, 1H), 4.31 (d, J=6.0 Hz, 2H), 3.88 (s, 3H), 2.31 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ

147.6, 143.4, 139.3, 136.7, 133.8, 133.7, 133.1, 131.8, 130.1, 129.6, 128.5, 128.0, 127.2, 127.1, 126.8, 126.5, 126.1, 125.8, 125.7, 120.2, 115.3, 113.0, 103.0, 55.4, 52.5, 47.4, 21.3. IR (neat, cm⁻

¹): 1573, 1494, 1452, 1426, 1324, 1257, 1213, 1155, 1089, 1060, 811, 748, 695, 660. HRMS (ESI): calcd. for $[C_{34}H_{31}N_2O_3S]$ [M+H]⁺: 547.2050; found: 547.2049.


1-Benzyl-3-(1-methyl-3-phenyl-1H-isochromen-1-yl)-1*H*-indole 4.28aa:

Yellow solid, mp 150-152 °C, $R_{\rm f}$ = 0.46 (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 7.74-7.72 (m, 2H), 7.67 (dt, J = 8.0, 1.0 Hz, 1H), 7.33-7.29 (m, 4H), 7.28-7.27 (m, 2H), 7.23 (dd, J = 7.5, 1.5 Hz, 1H), 7.21 (dt, J = 8.0, 1.0 Hz, 1H), 7.14 (dd, J = 7.5, 1.0 Hz, 1H), 7.12-7.07 (m, 4H), 7.02-6.98 (m, 1H), 6.97 (dt, J = 7.5, 1.0 Hz, 1H), 6.89 (s, 1H), 6.44 (s, 1H), 5.26 (s, 2H), 2.17 (s, 3H). ¹³C { ¹H} NMR (100 MHz, CDCl₃): δ 151.4, 137.5, 137.4, 135.2, 135.0, 131.2, 128.8, 128.5, 128.2, 127.8, 127.6, 126.7, 126.6, 126.5, 125.3,

124.5, 123.9, 122.0, 121.8, 119.6, 119.4, 109.9, 100.2, 79.6, 50.1, 26.0. IR (neat, cm $^{-1}$): 1594, 1494, 1450, 1384, 1167, 1027, 905, 733. HRMS (ESI): calcd. for [C₃₁H₂₆NO] [M+H] $^{+}$: 428.2009; found: 428.2009.

(5-Benzyl-11-methyl-5*H*-benzo[*b*]carbazol-6-yl)(phenyl)methanone 4.27aa:

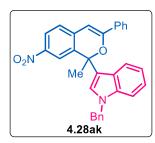
Yellow solid, mp 185-187 °C, R_f = 0.36 (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.49 (d, J = 7.5 Hz, 1H), 8.38 (dq, J = 1.0, 0.5 Hz, 1H), 7.57 (dq, J = 1.5, 1.0 Hz, 3H), 7.49-7.42 (m, 2H), 7.37 (dt, 7.0, 1.5 Hz, 1H), 7.35-7.31 (m, 2H), 7.24 (d, J = 8.5 Hz, 1H), 7.15 (t, J = 8.0 Hz, 2H), 6.98-6.92 (m, 3H), 6.73-6.71 (m, 2H), 5.39 (s, 2H), 3.36 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 199.3, 138.3, 136.6, 133.3, 131.1, 130.2, 129.9, 128.4, 128.2,

127.1, 126.8, 126.7, 125.8, 125.5, 124.9, 124.2, 124.0, 123.8, 123.4, 122.8, 119.8, 114.3, 108.9, 48.1, 15.9. IR (neat, cm $^{-1}$): 1663, 1594, 1470, 1398, 1316, 1228, 1157, 1026, 929, 731. HRMS (ESI): calcd. for [C₃₁H₂₄NO] [M+H] $^{+}$: 426.1852; found: 426.1857.

Procedure for the synthesis of 1-Methoxy-1-methyl-7-nitro-3-phenyl-1*H*-isochromene 4.29k and 1-Benzyl-3-(1-methyl-7-nitro-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole 4.28ak:

To a stirred solution of 1-(5-nitro-2-(phenylethynyl)phenyl)ethan-1-one **4.15k** (127 mg, 0.48 mmol), 1-benzyl-1H-indole **4.5a** (83 mg, 0.48 mmol) and TMOF (88 μ L, 0.8 mmol) in DCM (4 mL) was added AgOTf (10 mg, 0.04 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was purified by column

chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure products 1-methoxy-1-methyl-7-nitro-3-phenyl-1*H*-isochromene **4.29k** and 1-benzyl-3-(1-methyl-7-nitro-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole **4.28ak** in 22% and 41% respectively.


1-Methoxy-1-methyl-7-nitro-3-phenyl-1*H*-isochromene 4.29k:

Yellow solid, 22% (30 mg) yield, mp 86-88 °C, $R_{\rm f}$ = 0.35 (in 10% EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8.4, 2.4 Hz, 1H), 7.85-7.81 (m, 2H), 7.47-7.42 (m, 3H), 7.25 (d, J = 8.4 Hz, 1H), 6.51 (s, 1H), 3.32 (s, 3H), 1.97 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 154.4, 146.1, 137.8, 133.1, 130.5, 130.0, 128.6, 125.3,

124.6, 124.4, 120.6, 102.8, 97.9, 50.6, 25.7. IR (neat, cm $^{-1}$): 1670, 1579, 1526, 1349, 1196, 911, 836, 735, 666. HRMS (ESI): calcd. for [$C_{16}H_{12}NO_3$] [M-OMe] $^{+}$: 266.0812; found: 266.0817.

1-Benzyl-3-(1-methyl-7-nitro-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole 4.28ak:

Yellow solid, 41% (78 mg) yield, mp 142-144 °C, $R_f = 0.15$ (in 10% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (dd, J = 8.0, 2.0 Hz, 1H), 7.79-7.77 (m, 3H), 7.59 (d, J = 8.0 Hz, 1H), 7.37-7.36 (m, 3H), 7.34 (d, J = 7.5 Hz, 2H), 7.30-7.27 (m, 2H), 7.23 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.12 (d, J = 8.5 Hz, 2H), 7.01 (t, J = 7.0 Hz, 2H), 6.53 (s, 1H), 5.33 (s, 2H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 155.5, 145.9, 137.9, 137.6, 137.1, 135.3, 134.0, 129.8, 128.9, 128.4,

 $127.7,\ 127.4,\ 126.7,\ 126.2,\ 125.8,\ 124.0,\ 123.7,\ 122.3,\ 121.5,\ 120.4,\ 119.8,\ 118.3,\ 110.1,\ 98.6,\ 80.3,\ 50.1,\ 26.0.\ IR\ (neat,\ cm^{-1}):\ 1568,\ 1493,\ 1450,\ 1325,\ 1246,\ 1102,\ 1056,\ 899,\ 763,\ 718,\ 690.\ HRMS\ (ESI):\ calcd.\ for\ [C_{31}H_{25}N_2O_3]\ [M+H]^+:\ 473.1860;\ found:\ 473.1864.$

Synthesis of 1-benzyl-3-(7-nitro-3-phenylnaphthalen-1-yl)-1*H*-indole 4.18bk:

To a stirred solution of 1-benzyl-3-(1-methyl-3-phenyl-1H-isochromen-1-yl)-1H-indole **4.28ak** (12 mg, 0.028 mmol) in DCM (1 mL) was added AgOTf (0.7 mg, 0.0028 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure 1-benzyl-3-(7-nitro-3-phenylnaphthalen-1-yl)-1H-indole derivative **4.18bk** as yellow solid in 78% (10 mg) yield, mp 160-162 °C, $R_f = 0.40$ (in 10% EtOAc/Hex). ¹H NMR (500

MHz, CDCl₃): δ 9.15 (d, J = 2.5 Hz, 1H), 8.26 (dd, J = 9.0, 2.5 Hz, 1H), 8.09-8.08 (m, 2H), 8.05 (d, J = 9.0 Hz, 1H), 7.94-7.77 (m, 2H), 7.62 (dt, J = 5.0, 1.0 Hz, 1H), 7.53-7.50 (m, 2H), 7.47-7.45 (m, 1H), 7.44 (tt, J = 7.5, 1.0 Hz, 1H), 7.40 (s, 1H), 7.39-7.37 (m, 1H), 7.33-7.29 (m, 4H), 7.20-7.16 (m, 1H), 5.49 (s, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 145.4, 142.1, 140.0, 137.1, 136.8, 123.2, 130.3, 129.0(6), 129.0(0), 128.8, 128.2, 128.1, 127.9, 127.5, 127.1, 124.2, 123.5, 122.7, 120.6, 119.6, 113.8, 110.2, 50.3. IR (neat, cm⁻¹): 2919, 2850, 1615, 1520, 1487, 1461, 1334, 1157, 1078, 886, 828, 735, 628. HRMS (ESI): calcd. for [C₃₁H₂₃N₂O₂] [M+H]⁺: 455.1754; found: 455.1754.

Reaction of 1-methoxy-1-methyl-7-nitro-3-phenyl-1*H*-isochromene 4.29k with 1-benzyl-1*H*-indole 4.5a:

To a stirred solution of 1-methoxy-1-methyl-7-nitro-3-phenyl-1*H*-isochromene **4.29k** (15 mg, 0.06 mmol) and 1-benzyl-1*H*-indole **4.5a** (10 mg, 0.05 mmol) in DCM (1 mL) was added AgOTf (1.2 mg, 0.005 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure 1-benzyl-3-(1-methyl-7-nitro-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole **4.28ak** as a yellow solid in 84% (10 mg) yield.

Synthesis of 1-benzyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole 4.18aa from 1-benzyl-3-(1-methyl-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole 4.28aa:

To a stirred solution of 1-benzyl-3-(1-methyl-3-phenyl-1*H*-isochromen-1-yl)-1*H*-indole **4.28aa** (23 mg, 0.05 mmol) in DCM (1 mL) was added AgOTf (1.4 mg, 0.005 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, reaction mixture was concentrated under reduced pressure. The

residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure 1-benzyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole **4.18aa** in 83% (17 mg) yield along with trace amount of (5-benzyl-11-methyl-5*H*-benzo[*b*]carbazol-6-yl)(phenyl)methanone **4.27aa**.

Procedure for the synthesis of 1-(1,1-dimethoxyethyl)-2-(phenylethynyl)benzene 4.30:²¹

A solution of 1-(2-(phenylethynyl)phenyl)ethan-1-one **4.15a** (250 mg, 1.1 mmol), MeOH (712 μL, 17.6 mmol), TMOF (182 μL, 1.65 mmol), tetrabutylammonium tribromide (TBATB) (16 mg, 0.03 mmol) and THF (2 mL) were stirred for 4 h at room temperature. After completion of the reaction, the reaction mixture was diluted with EtOAc (15 mL), and washed with saturated aqueous solution of NaHCO₃. The resulting organic layer was concentrated under reduced pressure and purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product 1-(1,1-dimethoxyethyl)-2-(phenylethynyl)benzene **4.30** as a yellow liquid in 58% (170 mg) yield, $R_f = 0.43$ (in 5% EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃): δ 7.72 (dd, J = 8.0, 1.5 Hz, 1H), 7.57 (dd, J = 7.5, 1.5 Hz, 1H), 7.55-7.53 (m, 2H), 7.36-7.32 (m, 3H), 7.32-7.30 (m, 1H), 7.28 (dd, J = 7.5, 1.5 Hz, 1H), 3.25 (s, 6H), 1.75 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 144.0, 134.0, 131.4, 128.2, 128.04, 128.02, 127.5, 127.4, 123.9, 120.8, 101.5, 93.1, 89.1, 48.8, 23.7. IR (neat, cm⁻¹): 1678, 1592, 1491, 1440, 1355, 1275, 1244, 1068, 956, 753, 688, 595. HRMS (ESI): calcd. for [C₁₈H₁₈NaO₂] [M+Na]⁺: 289.1199; found: 289.1194.

Reaction of 1-(1,1-dimethoxyethyl)-2-(phenylethynyl)benzene 4.30 with 1-benzyl-1*H*-indole 4.5a:

To a stirred solution of 1-(1,1-dimethoxyethyl)-2-(phenylethynyl)benzene **4.30** (64 mg, 0.24 mmol) and 1-benzyl-1*H*-indole **4.5a** (41 mg, 0.2 mmol) in DCM (2 mL) was added AgOTf (5 mg, 0.02 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane/EtOAc mixture as eluent) to afford the pure 1-benzyl-3-(3-phenylnaphthalen-1-yl)-1*H*-indole **4.18aa** in 80% (66 mg) yield along with trace amount of (5-benzyl-11-methyl-5*H*-benzo[*b*]carbazol-6-yl)(phenyl)methanone **4.27aa**.

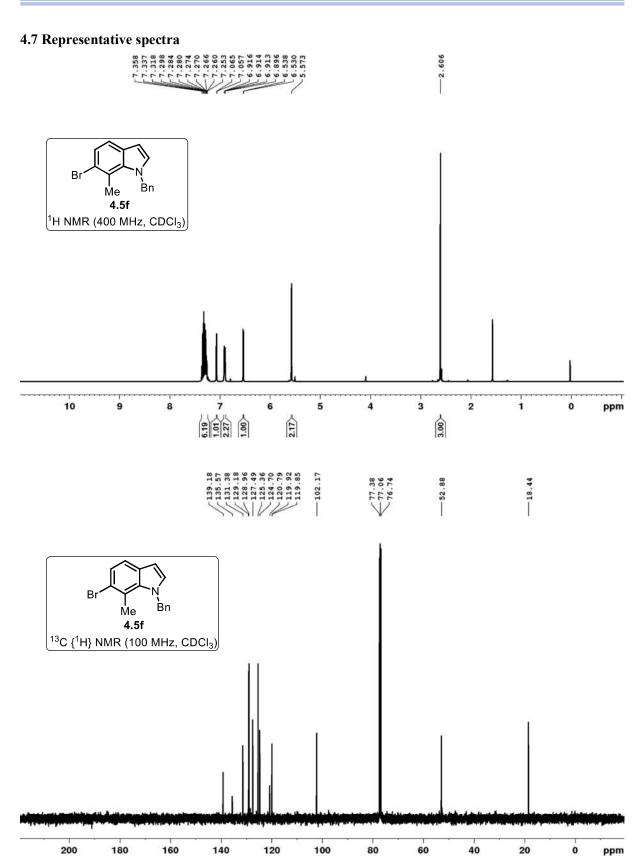
Procedure of scale-up reaction for the synthesis of 4.18aa:

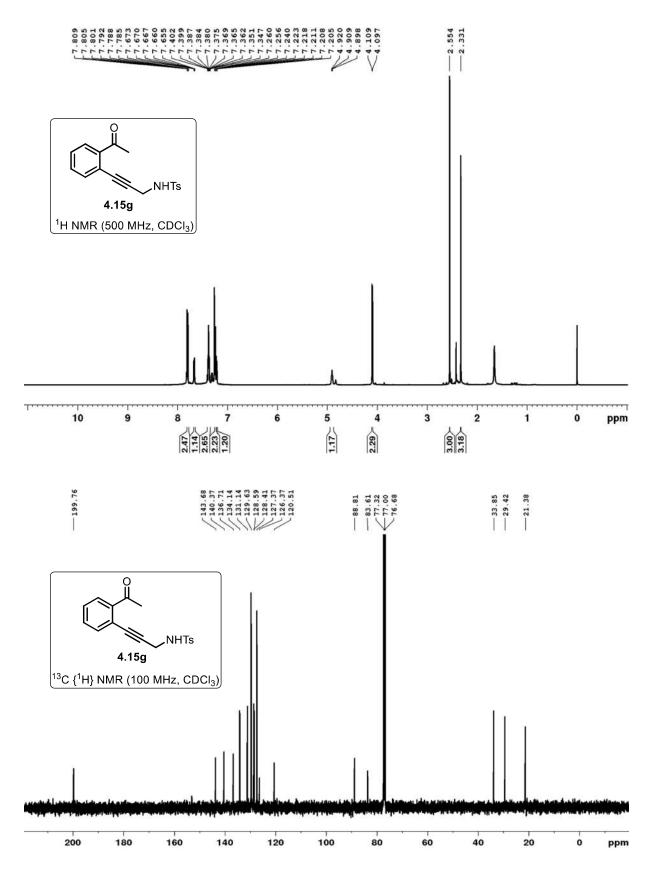
To a stirred solution of 1-(2-(phenylethynyl)phenyl)ethan-1-one **4.15a** (1.32 g, 6 mmol), 1-benzyl-1*H*-indole **4.5a** (1.03 g, 5 mmol) and TMOF (1.09 mL, 10 mmol) in DCM (40 mL) was added AgOTf (128 mg, 0.5 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at the same temperature. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/EtOAc mixture as eluent) to afford the pure product **4.18aa** in 80% (1.65 g) yield along with 10% (212 mg) of the product **4.27aa**.

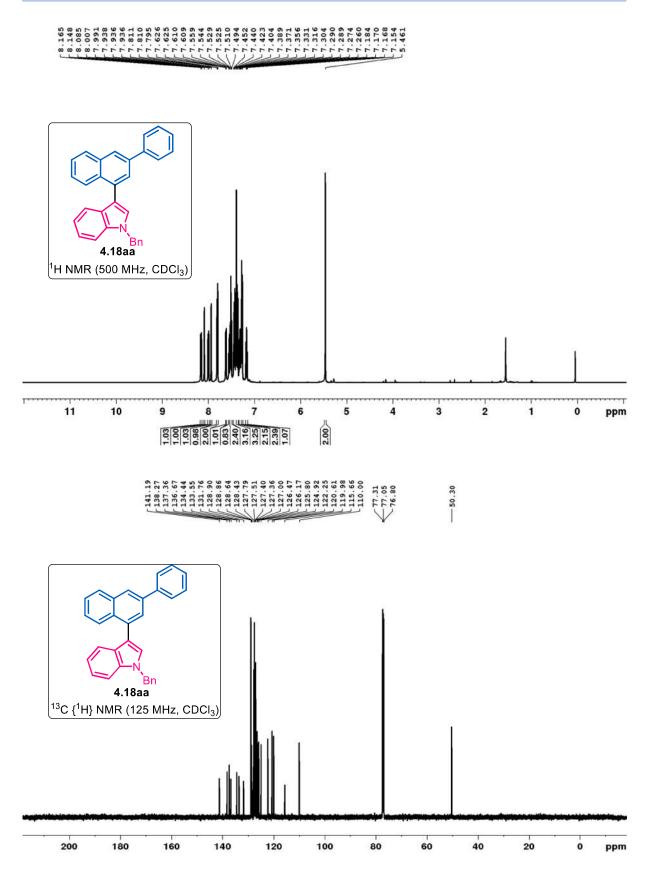
4.6 References

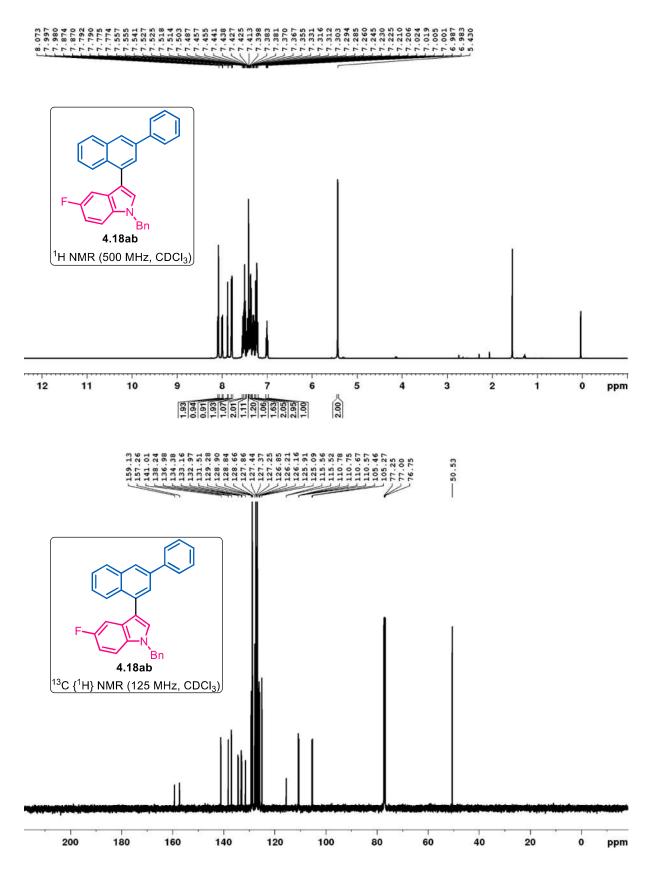
- (a) Richardson, T. I.; Clarke, C. A.; Yu, K.; Yee, Y. K.; Bleisch, T. J.; Lopez, J. E.; Jones, S. A.; Hughs, A. E.; Muehl, B. S.; Lugar, C. W.; Moore, T. L.; Shetler, P. K.; Zink, R. W.; Osborne, J. J.; Montrose-Rafizadeh, C.; Patel, N.; Geiser, A. G.; Galvin R. J. S.; Dodge, J. A. Novel 3-Aryl Indoles as Progesterone Receptor Antagonists for Uterine Fibroids. ACS Med. Chem. Lett. 2011, 2, 148-153. (b) Gözel, Ö.; Maresca, A.; Hall, R. A.; Scozzafava, A.; Mastrolorenzo, A.; Mühlschlegel F. A.; Supuran, C. T. Carbonic anhydrase inhibitors. The β-carbonic anhydrases from the fungal pathogens Cryptococcus neoformans and Candida albicans are strongly inhibited by substituted-phenyl-1H-indole-5-sulfonamides. Bioorg. Med. Chem. Lett. 2010, 20, 2508-2511. (c) Hu, W.; Guo, Z.; Chu, F.; Bai, A.; Yi, X.; Cheng, G.; Li, J. Synthesis and biological evaluation of substituted 2-sulfonyl-phenyl-3-phenyl-indoles: a new series of selective COX-2 inhibitors. Bioorg. Med. Chem. 2003, 11, 1153-1160. (d) Zhang, H.-Z.; Drewe, J.; Tseng, B.; Kasibhatla S.; Cai, S. X. Discovery and SAR of indole-2-carboxylic acid benzylidene-hydrazides as a new series of potent apoptosis inducers using a cell-based HTS assay. Bioorg. Med. Chem. 2004, 12, 3649-3655.
- 2. For selected examples, see: (a) Pandey, R.; Singh, G.; Gour V.; Anand, R. V. Base-mediated sequential one-pot approach for the synthesis of 2,3-disubstituted indoles from 2-(tosylamino)aryl-substituted *para*-quinone methides. *Tetrahedron*, **2021**, *82*, 131950. (b) Dubey, A.; Tiwari A.; Mandal, P. K. Tris(pentafluorophenyl)borane-Catalyzed Stereoselective *C*-Glycosylation of Indoles with Glycosyl Trichloroacetimidates: Access to 3-Indolyl-*C*-glycosides. *J. Org. Chem.* **2021**, *86*, 8516-8526. (c) Xu, P.; Duan, X. H. Pd/β-cyclodextrin-catalyzed C–H functionalization in water: a greener approach to regioselective arylation of (NH)-indoles with aryl bromides. *New J. Chem.*, **2021**, *45*, 19425-19431. (d) Liu, J.; Xiao, X.; Han, P.; Zhou, H.; Yin, Q.-S.; Sun, J.-S. Palladium-catalyzed *C*-glycosylation and annulation of *o*-alkynylanilines with 1-iodoglycals:

convenient access to 3-indolyl-C-glycosides. Org. Biomol. Chem. 2020, 18, 8834-8838. (e) Yuan, H.; Gong, J.; Yang, Z. A rhodium-catalyzed tandem reaction of N-sulfonyl triazoles with indoles: access to indole-substituted indanones. Chem. Commun. 2017, 53, 9089-9092. (f) Zhang, J.; Han, X.; Lu, X. Synthesis of Indole-Substituted Indanones via Reaction of ortho-Electron-Deficient Palladium(II)-Catalyzed Tandem Substituted Aryl Aldehydes with Indoles. Org. Lett. 2016, 18, 2898-2901. (h) Yan, H.; Wang, H.; Li, X.; Xin, X.; Wang, C.; Wan, B. Rhodium-Catalyzed C-H Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3-Diaryl-Substituted Indoles. Angew. Chem., Int. Ed. 2015, 54, 10613-10617. (g) Shao, Z.; Xu, L.; Wang, L.; Wei H.; Xiao, J. Catalyst-free tandem Michael addition/decarboxylation of (thio)coumarin-3-carboxylic acids with indoles: facile synthesis of indole-3-substituted 3,4-dihydro(thio)coumarins. Org. Biomol. Chem. 2014, 12, 2185-2188. (h) Tang, Y.; Ye, M.-C.; Yang, Y. Y.; Sun, X.-L.; Ma Z.; Qin, W. M. Diastereoselective Tandem Michael Additions of Indoles to 3-Nitrocoumarin Derivatives and Methyl Vinyl Ketone. Synlett, 2006, 1240-1244. For recent reviews, see: (i) Shao, Y.-D.; Cheng, D.-J. Chiral Phosphoric Acid: A Powerful Organocatalyst for the Asymmetric Synthesis of Heterocycles with Chiral Atropisomerism. ChemCatChem 2021, 13, 1271-1289. (j) Woldegiorgis, A. G.; Lin, X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J. Org. Chem. 2021, 17, 2729-2764. (k) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem. Rev. 2021, 121, 4805-4902. (1) Zhang, Y. C.; Jiang, F.; Shi, F. Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Acc. Chem. Res. 2020, 53 (2), 425-446. (m) Li, T.-Z.; Liu, S.-J.; Tan, W.; Shi, F. Catalytic Asymmetric Construction of Axially Chiral Indole-Based Frameworks: An Emerging Area. Chem.-Eur. J. 2020, 26, 15779-15792.

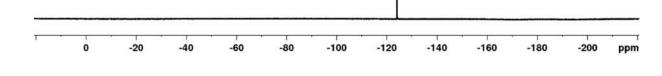

- 3. (a) Zhang, H. H.; Wang, C. S.; Li, C.; Mei, G. J.; Li, Y.; Shi, F. Design and Enantioselective Construction of Axially Chiral Naphthyl-Indole Skeletons. *Angew. Chem., Int. Ed.* **2017**, *56*, 116-121. (b) Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi, F. A Strategy for Synthesizing Axially Chiral Naphthyl-Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. *Angew. Chem., Int. Ed.* **2019**, *58*, 15104-15110. (c) Sharma, K.; Baral, E. R.; Akhtar, M. S.; Lee, Y. R.; Kim, S. H.; Wee, Y.-J. 3-Naphthylindoles as new promising candidate antioxidant, antibacterial, and antibiofilm agents. *Res. Chem. Intermed.* **2017**, *43*, 2387-2399.
- 4. Baral, E. R.; Lee, Y. R.; Kim, S. H. 3-Naphthylindole Construction by Rhodium(II)-Catalyzed Regioselective Direct Arylation of Indoles with 1-Diazonaphthalen-2-(1*H*)-ones. *Adv. Synth. Catal.* **2015**, *357*, 2883-2892.
- 5. Poudel, T. N.; Lee, Y. R. Mild Base-Promoted Indole Annulation—Oxidative Cross-Coupling of 2-Nitrocinnamaldehydes with β-Tetralones for 3-Naphthylindole and 3-Naphthylbenzo[g]indole Fluorophores. *Adv. Synth. Catal.* **2017**, *359*, 1552-1562.

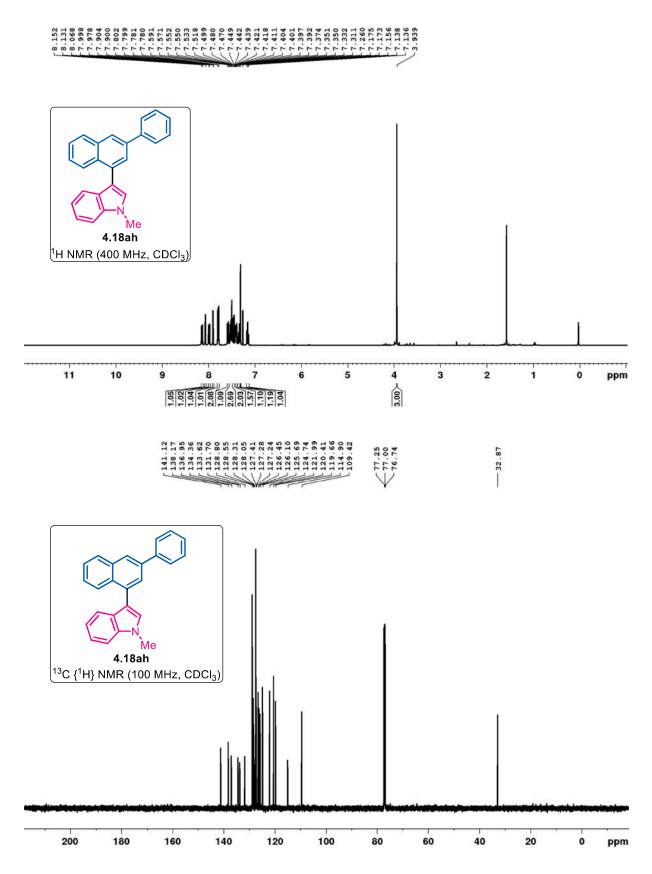

- 6. Zhang, C.; Hong, K.; Dong, S.; Pei, C.; Zhang, X.; He, C.; Hu, W.; Xu, X. Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes. *iScience* **2019**, *21*, 499-508.
- 7. Wang, D.; Wang, S.-C.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Selective Syntheses of Benzo[b]carbazoles and C3-Substituted Indoles *via* Tunable Catalytic Annulations of β -Alkynyl Ketones with Indoles. *Adv. Synth. Catal.* **2020**, *362*, 3416-3422.
- 8. Wang, D.; Wang, S.-C.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Dual Palladium/Scandium Catalysis toward Rotationally Hindered C3-Naphthylated Indoles from β-Alkynyl Ketones and *o*-Alkynyl Anilines. *Chin. J. Chem.* **2021**, *39*, 106-114.
- 9. Xie, F.; Sun, Y.; Song, H.; Zhao, J.; Zhang, Z.; Duan, Y.; Chen, R. Cascade Reaction of 2-Naphthols and Azirines: One-Pot Synthesis of C-3 Naphthol-Substituted Benzo[e]indoles. *J. Org. Chem.* **2021**, *86*, 15631-15639.
- 10. (a) Yang, H.; Sun, H.-R.; He, R.-Q.; Yu, L.; Hu, W.; Chen, J.; Yang, S.; Zhang, G.-G.; Zhou, L. Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nat. Commun. 2022, 13, 632-638. (b) Wang, C.-S.; Wei, L.; Fu, C.; Wang, X.-H.; Wang, C.-J. Asymmetric Synthesis of Axially Chiral Naphthyl-C3-indoles via a Palladium-Catalyzed Cacchi Reaction. Org. Lett. 2021, 23, 7401-7406. (c) Xu, W.-L.; Zhao, W.-M.; Zhang, R.-X.; Chena, J.; Zhou, L. Organocatalytic cycloaddition-elimination cascade for atroposelective construction of heterobiaryls. Chem. Sci., 2021, 12, 14920-14926. (d) Li, X.; Zhao, L.; Qi, Z.; Li, X. Construction of Atropisomeric 3-Arylindoles via Enantioselective Cacchi Reaction. Org. Lett. 2021, 23, 5901-5905. (e) Xi, C.-C.; Zhao, X.-J.; Tian, J.-M.; Chen, Z.-M.; Zhang, K.; Zhang, F-M.; Tu, Y.-Q.; Dong, J.-W. Atroposelective Synthesis of Axially Chiral 3-Arylindoles by Copper-Catalyzed Asymmetric Cross-Coupling of Indoles with Quinones and Naphthoquinones. Org. Lett. 2020, 22, 4995-5000. (f) Jiang, F.; Chen, K.-W.; Wu, P.; Zhang, Y.-C.; Jiao, Y.; Shi F. A Strategy for Synthesizing Axially Chiral Naphthyl-Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angew. Chem. Int. Ed. 2019, 58, 15104-15110. (g) Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 2018, 10, 58-64. (h) He, C.; Hou, M.; Zhu, Z.; Gu, Z. Enantioselective Synthesis of Indole-Based Biaryl Atropisomers via Palladium-Catalyzed Dynamic Kinetic Intramolecular C-H Cyclization. ACS Catal. 2017, 7, 5316-5320. (i) Zhang, H.-H.; Wang, C.-S.; Li, C. Mei, G.-J.; Li, Y.; Shi, F. Design and Enantioselective Construction of Axially Chiral Naphthyl-Indole Skeletons. Angew. Chem. Int. Ed. 2017, 56, 116-121.
- 11. For selected works, see: (a) Ramesh, G.; Ramulu, B. V.; Balamurugan, R. Activation of o-Propargyl Alcohol Benzaldehydes under Acetalization Conditions for Intramolecular Electrophile Intercepted Meyer–Schuster Rearrangement. J. Org. Chem. 2022, 87, 8633-8647. (b) Mandal, M.; Sakthivel, S.; Balamurugan, R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl-Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl

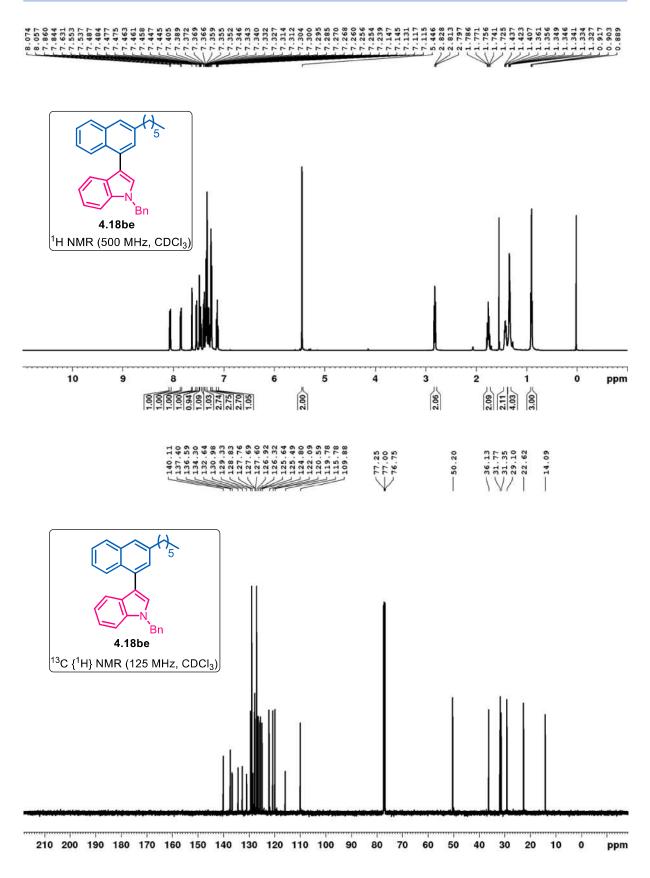

- Ketones. *J. Org. Chem.* **2021**, *86*, 333-351. (c) Mandal, M.; Balamurugan, R. *Adv. Synth. Catal.* **2018**, *360*, 1453-1465. (d) Koppolu, S. R.; Balamurugan, R. *In situ* formed acetals facilitated direct Michael addition of unactivated ketones. *New J. Chem.* **2017**, *41*, 1186-1192. (e) Manojveer, S.; Balamurugan, R. A facile access to substituted benzo[*a*]fluorenes from *o*-alkynylbenzaldehydes *via in situ* formed acetals. *Chem. Commun.* **2014**, *50*, 9925-9928.
- 12. (a) Manojveer, S.; Balamurugan, R. Synthesis of Naphthalene Derivatives from *ortho*-Alkynylacetophenone Derivatives *via* Tandem *in Situ* Incorporation of Acetal and Intramolecular Heteroalkyne Metathesis/Annulation. *Org. Lett.* **2014**, *16*, 1712-1715. (b) Tarigopula, C.; Manojveer, S.; Balamurugan, R. Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring *via In Situ* Formed Acetals. *J. Org. Chem.* **2021**, *86*, 11871-11883.
- 13. (a) Manojveer, S.; Balamurugan, R. *In Situ* Formed Acetal-Facilitated Synthesis of Substituted Indene Derivatives from *o*-Alkenylbenzaldehydes. *Org. Lett.* **2015**, *17*, 3600-3603. (b) Ramesh, G.; Balamurugan, R. Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives *via In Situ* Formed Acetal-Facilitated Nucleophilic Addition and 4π-Electron-5-Carbon Electrocyclization Sequence. *J. Org. Chem.* **2021**, *86*, 16278-16292.
- 14. For similar reactivity of isochromene acetal, see: (a) Zheng, H.; Wang, R.; Wang, K.; Wherritt, D.; Arman H.; Doyle, M. P. Formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloaddition reactions of donor–acceptor cyclobutenes, cyclopropenes and siloxyalkynes induced by Brønsted acid catalysis. *Chem. Sci.* 2021, *12*, 4819-4824. (b) Zheng, H.; Wang, K.; Angelis, L. D.; Arman H. D.; Doyle, M. P. Brønsted Acid Catalyzed Oxocarbenium-Olefin Metathesis/Rearrangements of 1*H*-Isochromene Acetals with Vinyl Diazo Compounds. *J. Am. Chem. Soc.* 2021, *143*, 15391-15399. (c) Zhan, H.; Hou, M.; Li, Y.; Chen, Z.; Wei Y.; Liu, S. Fe(OTf)₃-Catalyzed Cyanation of Isochromene Acetals with Trimethylsilyl Cyanide. *Chemistryselect* 2021, *6*, 11537-11540. (d) Asao, N.; Nogami, T.; Takahashi K.; Yamamoto, Y. Pd(II) Acts Simultaneously as a Lewis Acid and as a Transition-Metal Catalyst: Synthesis of Cyclic Alkenyl Ethers from Acetylenic Aldehydes. *J. Am. Chem. Soc.* 2002, *124*, 764-765.
- 15. For Ag-assisted formation of isobenzopyrylium ion, see: (a) Baire B.; Santhi, J. Ag(I)-Promoted homo-dimerization of 2-(alk-2-yn-1-onyl)-1-alkynylbenzenes via a [4 + 2] cycloaddition of benzopyrylium ions: access to structurally unique naphthalenes. Org. Biomol. Chem. 2022, 20, 247-251. (b) Yu, B.; Huang, R.; Li, R.; Zhang H.; Huang, H. Silver-catalyzed chemodivergent assembly of aminomethylated isochromenes and naphthols. Chem. Commun. 2022, 58, 3969-3972. (c) Kumar, K.; Singh, B.; Singh, R. P. A silver-catalyzed stereoselective domino cycloisomerization—vinylogous aldol reaction of ortho-alkynylbenzaldehydes with 3-alkylidene oxindoles: an entry to functionalized

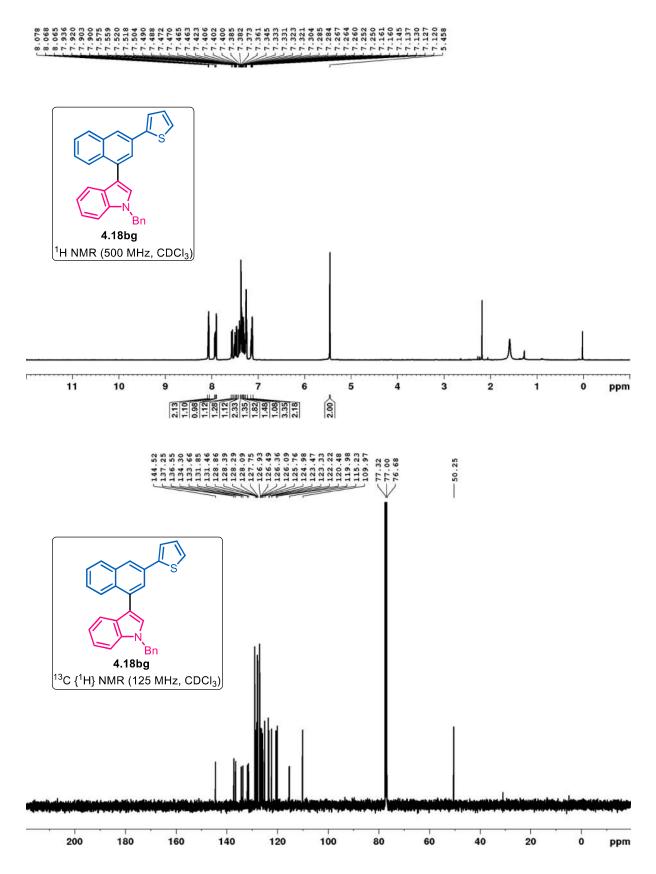

isochromenes. *Chem. Commun.* **2020**, *56*, 15153-15156. (d) Guo, M.; Meng, X.; Zhao, Y.; Dong, Y.; Sun, X.; Tian, L.; Cao, Z. Synthesis of 4-(1*H*-isochromen-1-yl)isoquinolines through the silver-catalysed homodimerization of *ortho*-alkynylarylaldehydes and subsequent condensation of the 1,5-dicarbonyl motif with NH₃. *RSC Adv.* **2019**, *9*, 2703-2707. (e) Li, F.-H.; Li, J.; Wang, S.-Y.; Ji, S.-J. Silver-catalyzed tandem nucleophilic addition/cycloisomerization of *ortho*-alkynylbenzaldehydes: Regioselective synthesis of functionalized 1*H*-isochromene derivatives. *Tetrahedron*, **2017**, *73*, 5731-5737. (f) Sun, J.; Qiu, J.-K.; Wu, Y.-N.; Hao, W.-J.; Guo, C.; Li, G.; Tu, S.-J.; Jiang, B. Silver-Mediated Radical C(sp³)–H Biphosphinylation and Nitration of β-Alkynyl Ketones for Accessing Functional Isochromenes. *Org. Lett.* **2017**, *19*, 754-757. (g) Cai, L.; Chen, Y.; Cao, H.; Wei, Q.; Yang, Y.; Ouyang, Q.; Peng, Y. Asymmetric Cyclization/Nucleophilic Tandem Reaction of *o*-Alkynylacetophenone with (Diazomethyl)phosphonate for the Synthesis of Functional Isochromenes. *Org. Lett.* **2019**, *21*, 7597-7601.

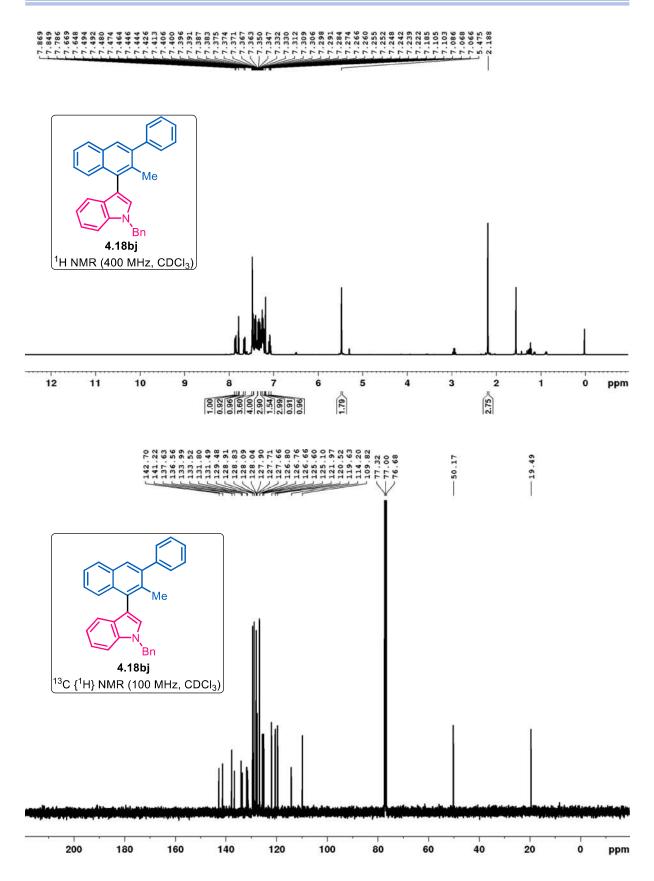
- For similar carbonyl formation, see: Beeler, A. B.; Su, S.; Singleton, C. A. J. A.; Porco Jr. Discovery of Chemical Reactions through Multidimensional Screening. *J. Am. Chem. Soc.*, 2007, 129, 1413-1419.
- 17. (a) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Palladium-Catalyzed Direct and Regioselective C–H Bond Functionalization/Oxidative Acetoxylation of Indoles. *J. Org. Chem.* **2011**, *76*, 80-84. (b) Xu, X.-H.; Liu, G.-K.; Azuma, A.; Tokunaga, E.; Shibata, N. Synthesis of Indole and Biindolyl Triflones: Trifluoromethanesulfonylation of Indoles with Tf₂O/TTBP (2,4,6-tri-*tert*-butylpyridine) System. *Org. Lett.* **2011**, *13*, 4854-4857. (c) Jiang, M.; Chen, S.; Li, J.; Liu, L. The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. *Mar. Drugs*, **2020**, *18*, 114. (d) Sar, S.; Tripathi, A.; Dubey, K. D.; Sen, S. Iodine-Catalyzed Aerobic Diazenylation–Amination of Indole Derivatives. *J. Org. Chem.* **2020**, *85*, 3748-3756. (e) McGough, J. S.; J. Cid, Ingleson, M. J. Catalytic Electrophilic C–H Borylation Using NHC·Boranes and Iodine Forms C2-, not C3-, Borylated Indoles. *Chem. Eur. J.* **2017**, *23*, 8180-8184.
- 18. Manojveer, S.; Balamurugan, R. Synthesis of Naphthalene Derivatives from *ortho*-Alkynylacetophenone Derivatives *via* Tandem *in Situ* Incorporation of Acetal and Intramolecular Heteroalkyne Metathesis/Annulation. *Org. Lett.* **2014**, *16*, 1712-1715.
- 19. Santhi, J.; Baire, B. Carbonyl Directed Regioselective Hydration of Alkynes under Ag-Catalysis. *ChemistrySelect* **2017**, *2* (16), 4338-4342.
- 20. Faggyas, R. J.; Calder, E. D. D.; Wilson, C.; Sutherland, A. One-Pot Asymmetric Synthesis of Alkylidene 1-Alkylindan-1-ols Using Brønsted Acid and Palladium Catalysis. *J. Org. Chem.* **2017**, *82*, 11585-11593.
- 21. Yamada, T.; Park, K.; Tachikawa, T.; Fujii, A.; Rudolph, M.; Hashmi, A. S. K.; Sajiki, H. Gold-Catalyzed Cyclization of 2-Alkynylaldehyde Cyclic Acetals *via* Hydride Shift for the Synthesis of Indenone Derivatives. *Org. Lett.* **2020**, *22*, 1883-1888.

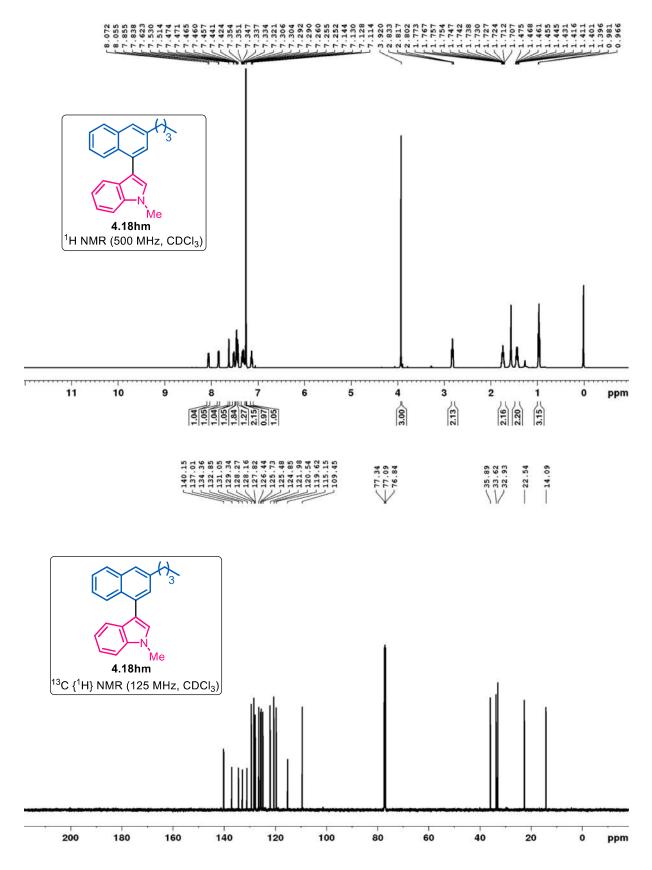


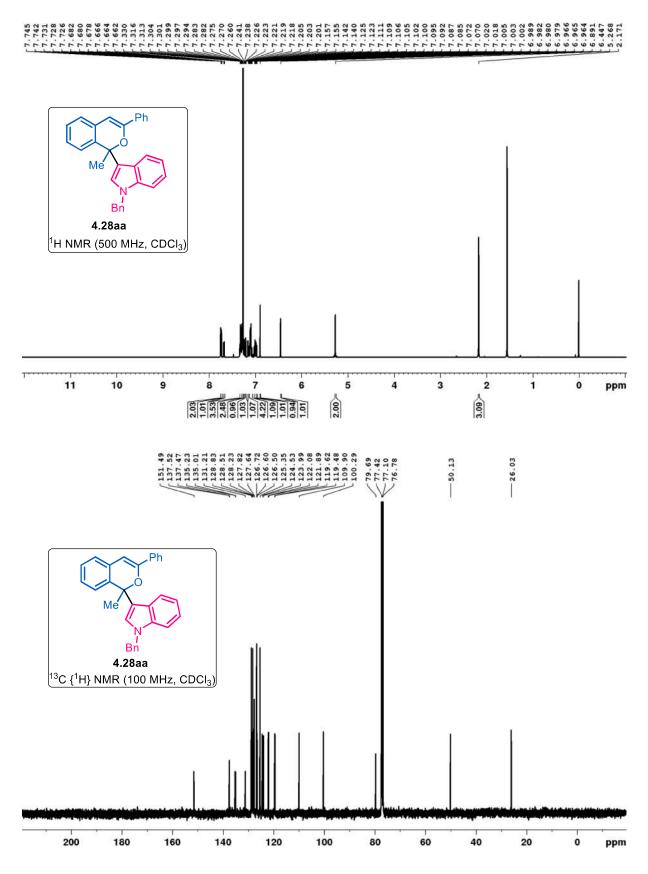




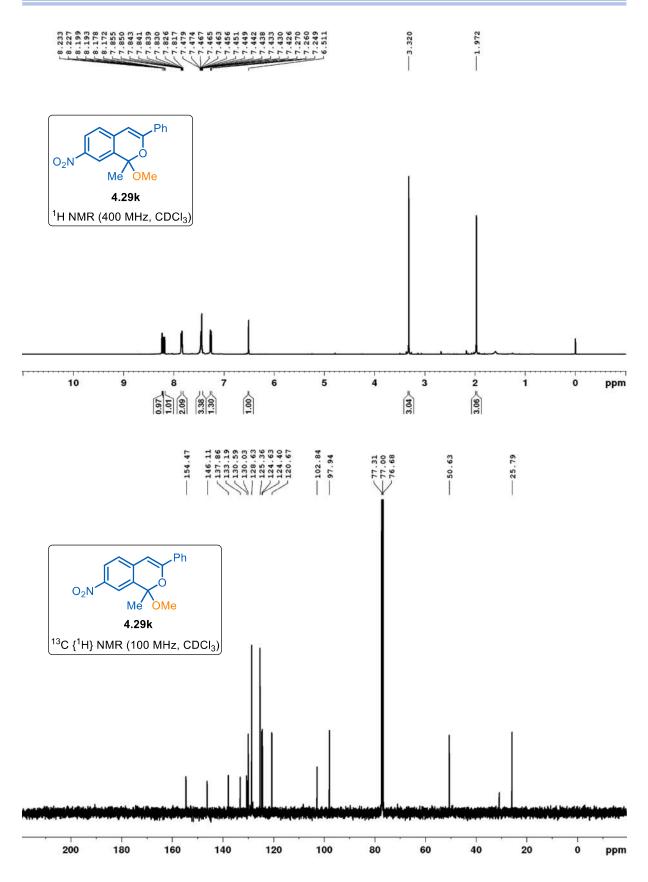


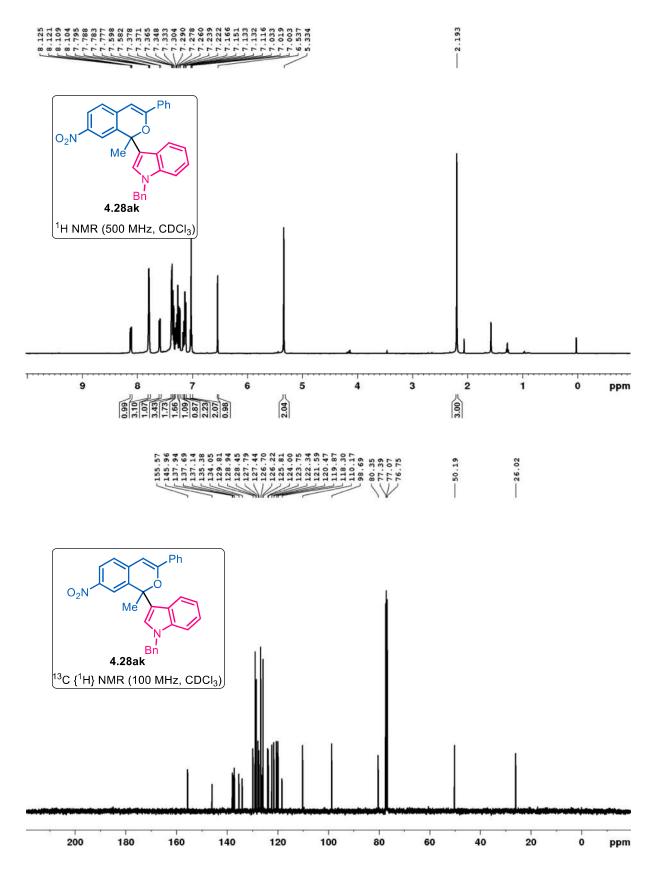


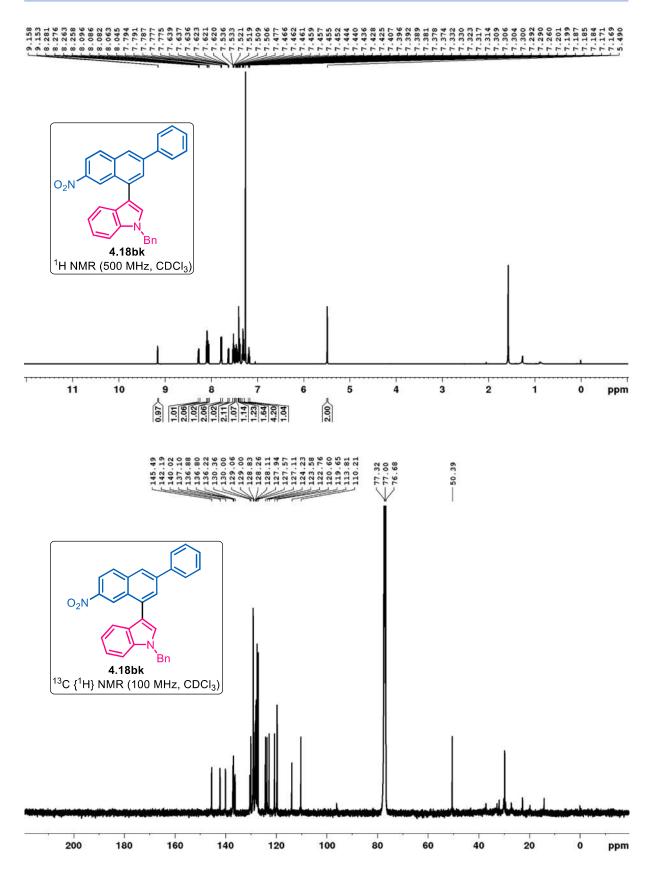


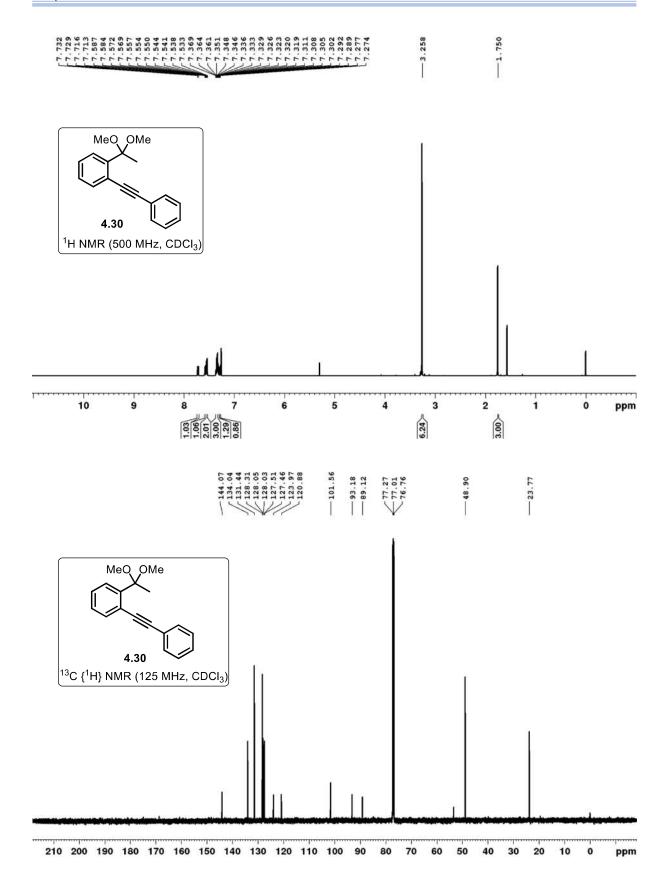












4.8 Crystallographic data

Table 4.3: Crystallographic data for 4.18af

Compound	4.18af
Identification code	RB61
CCDC	2209520
Empirical formula	$C_{32}H_{24}BrN$
Formula weight	502.46
Temperature/K	300
Crystal system	Triclinic
Space group	P -1
a/Å	9.1848 (2)
b/ Å	9.7094 (2)
c/ Å	14.2815 (2)
$lpha/^0$	95.361 (2)
β / 0	92.618 (1)
$\gamma/^0$	109.065 (2)
Volume/Å ³	1194.55 (4)
Z	2
Density(ρ)calc g/cm ³	1.397
Absorption Coefficient(μ) (mm ⁻¹)	1.742
F(000)	515.6
Crystal size/mm ³	0.02 x 0.02 x 0.01
Reflections collected	4208
Independent reflections	3396

Density(ρ)calc g/cm³

Crystal size/mm³

F(000)

Absorption Coefficient(µ) (mm⁻¹)

Completeness to theta = 24.99599.9% R (reflections) 0.0385 (3396) wR2 (reflections) 0.0823 (4208) Table 4.4: Crystallographic data for 4.28ak Compound 4.28ak Identification code rb005a CCDC 2204406 Empirical formula $C_{31}H_{24}N_2O_3$ Formula weight 472.52 Temperature/K 300 Crystal system Monoclinic C12/C1 Space group a/Å 27.630(4) b/ Å 9.6103(12) c/ Å 22.543(3) $\alpha/^0$ 90 $\beta/0$ 123.585(4) $\gamma/^0$ 90 Volume/Å³ 4986.5(11) Z 8

1.259

0.082

1984.0

0.02 x 0.02 x 0.01

231

Reflections collected	3602	
Independent reflections	4385	
Completeness to theta = 24.995	99.9%	
R (reflections)	0.0553 (3602)	
wR2 (reflections)	0.1521 (4385)	

List of publications

1. Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives *via In Situ* Formed Acetal-Facilitated Nucleophilic Addition and 4π -Electron-5-Carbon Electrocyclization Sequence

Ramesh, **G**.; Balamurugan, R. *J. Org. Chem.* **2021**, *86*, 16278-16292.

2. Activation of *o*-Propargyl Alcohol Benzaldehydes under Acetalization Conditions for Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement

Ramesh, G.; Ramulu, B. V.; Balamurugan, R.

J. Org. Chem. 2022, 87, 8633-8647.

3. Ag(I)-Catalyzed Cyclization of *o*-Alkynylacetophenones Facilitated Through Acetal Formation: Synthesis of C3-Naphthyl Indole Derivatives

Ramesh, G.; Srivardhan, V.; Balamurugan, R.

Org. Biomol. Chem. 2022, 20, 9698-9702.

4. Naveen, N.; **Ramesh**, **G**.; Balamurugan, R. Silver catalyzed Synthesis of Enones/α-Iodoenones from Tertiary Propargyl Alcohols. *ChemistrySelect* **2019**, *4*, 13610-13614.

Posters and oral presentations

- 1. Participated and delivered an oral presentation on "*In situ* Generated Acetal Assisted Synthesis of Indanones *via* an Intramolecular Meyer-Schuster Rearrangement" in **CHEM-FEST 2020**, 17th Annual In-House Symposium, held at School of Chemistry, University of Hyderabad, Hyderabad, February 2020.
- 2. Participated, organizing member, and presented a poster on "Diastereoselective Synthesis of Indole-Substituted Indane Derivatives *via in situ* Formed Acetals", in **CHEM-FEST 2019**, 16th Annual In-House Symposium, held at the School of Chemistry, University of Hyderabad, Hyderabad, February 2019.
- 3. Participated and delivered an oral presentation on "Diastereoselective Synthesis of Indole-Substituted Indane Derivatives *via in situ* Formed Acetals", in **XIIIth Junior-National Organic Symposium Trust (J-NOST)** Conference, held at Banaras Hindu University (BHU), Varanasi, November 2017.

Carbocyclization of Alkene-/Alkyne-Tethered Carbonyl Compounds Through In Situ Acetal Formation

by Golla Ramesh

Submission date: 22-Dec-2022 11:04AM (UTC+0530)

Submission ID: 1985759557

File name: Golla_Ramesh_Thesis.pdf (6.03M)

Word count: 16159 Character count: 83344

Carbocyclization of Alkene-/Alkyne-Tethered Carbonyl Compounds Through In Situ Acetal Formation

ORIGINALITY REPORT

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

Golla Ramesh, Bokka Venkat Ramulu, Rengarajan Balamurugan. " Activation of -Propargyl Alcohol Benzaldehydes under Acetalization Conditions for Intramolecular Electrophile Intercepted Meyer-Schuster Rearrangement ", The Journal of Organic Chemistry, 2022

Publication

Dr. R. Balamurugan

Professor School of Chemistry University of Hyderabad Hyderabad-46, India.

Golla Ramesh, Rengarajan Balamurugan. " Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives via Formed Acetal-Facilitated Nucleophilic Addition and 4π-Electron-5-Carbon Electrocyclization Sequence ", The Journal of Organic Chemistry Hyderabad-46, India. 2021

Publication

Dr. R. Balamurugan Professor School of Chemistry University of Hyderabad

Ramesh Golla, Srivardhan Valmuri, Rengarajan Balamurugan. "Ag(I)-Catalyzed Cyclization of o-Alkynylacetophenones Facilitated Through Acetal Formation:

Dr. R. Balamurugan Professor School of Chemistry University of Hyderabad Hyderabad-46, India.

Synthesis of C3-Naphthyl Indole Derivatives", Organic & Biomolecular Chemistry, 2022

Publication

Golla Ramesh, Valmuri Srivardhan,
Rengarajan Balamurugan. " Ag()-catalyzed
cyclization of -alkynylacetophenones
facilitated through acetal formation: synthesis
of C3-naphthyl indole derivatives ", Organic &
Biomolecular Chemistry, 2022
Publication

3%

Dr. R. Balamurugan

Professor
School of Chemistry

University of Hyderabad Hyderabad-46, India.

Submitted to University of Hyderabad, Hyderabad Student Paper

2%

Hashim F. Motiwala, Ahlam M. Armaly, Jackson G. Cacioppo, Thomas C. Coombs et al. "HFIP in Organic Synthesis", Chemical Reviews, 2022

<1%

Seetharaman Manojveer, Rengarajan Balamurugan. "Synthesis of Naphthalene Derivatives from -Alkynylacetophenone Derivatives via Tandem Incorporation of Acetal and Intramolecular Heteroalkyne Metathesis/Annulation ", Organic Letters,

<1%

2014 Publication

Publication

Mou Mandal, Shanmugam Sakthivel, Rengarajan Balamurugan. "Brønsted/Lewis

<1%

27	etheses.bham.ac.uk Internet Source	<1%
28	Hans-Joachim Knölker, Kethiri R Reddy. "Occurrence, Isolation, and Structure Elucidation", Elsevier BV, 2008 Publication	<1%
29	"Catalytic, Asymmetric, Intramolecular Carbon-Hydrogen Insertion", Organic Reactions, 2013. Publication	<1%
30	Guy R. Humphrey, Jeffrey T. Kuethe. "Practical Methodologies for the Synthesis of Indoles", Chemical Reviews, 2006 Publication	<1%
31	Prabhakararao Tharra, Beeraiah Baire. "The Zenoate assisted, Meyer–Schuster rearrangement cascade: unconventional synthesis of α-arylenone esters", Chemical Communications, 2016	<1%
32	Shaomin Chen, Rongxian Bai, Minghao Li, Ping Liu, Yanlong Gu. "Acid - Acid - Catalyzed Tandem Reactions Driven by an Additive - like Component", The Chemical Record, 2020 Publication	<1%
33	academic.oup.com Internet Source	<1%

Exclude quotes On Exclude matches < 14 words

Exclude bibliography On