Role of eisosome core component Pil1 in mitochondrial dynamics, mitophagy, and cell death in *Saccharomyces cerevisiae*

Thesis submitted for the degree of DOCTOR OF PHILOSOPHY

By

AMITA PAL (16LBPH01)

Department of Biochemistry School of Life Sciences University of Hyderabad-500046

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India

CERTIFICATE

This is to certify that this thesis entitled "Role of eisosome core component Pill in mitochondrial dynamics, mitophagy and cell death in Saccharomyces cerevisiae" submitted to the University of Hyderabad by Ms. Amita Pal, bearing the Reg. No. 16LBPH01 for the degree of Doctor of Philosophy in Biochemistry, is based on the studies carried out by her under my supervision. To the best of my knowledge, this work has not been submitted earlier for the award or diploma from any other University or Institution, including this University.

S. V. Novem P

Prof. Naresh Babu V. Sepuri

NARESH B SEPURI, Ph.D Professor SUPPER BISOTE mistry School of Life Science University of Hyderabad Hyderabad - 500 046.

Dean

School of Life Sciences

School of Life Sciences University of Hyderabad Hyderabad-500 046,

Head

ad HEAD

Dept. of Biochemistry
Dept. of Biochemistry
Dept. of LIFE SCIENCES

Department of Biochemistry ERABAD

VERSITY WINDERSON 046.

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India

Amita Pal

Student

DECLARATION

I, Amita Pal, hereby declare that the work presented in this thesis entitled "Role of eisosome core component Pill in mitochondrial dynamics, mitophagy and cell death in Saccharomyces cerevisiae" is entirely original and was carried out by me in the Department of Biochemistry, University of Hyderabad, under the supervision of Prof. Naresh Babu V Sepuri. I further declare that this work has not been submitted earlier for the award of degree or diploma from any other University or Institution.

S, V. Rough B.
Prof. Naresh Babu V Sepuri

NARESH B SEPURI, Ph.D.

Dept. of Biochemistry School of Life Science University of Hyderabad

Hyderabad - 500 046.

Date: 26/2022

Place: Department of Biochemistry,

University of Hyderabad - 500046

Department of Biochemistry, School of Life Sciences **University of Hyderabad**, Hyderabad-500046, Telangana, India

CERTIFICATE

This is to certify that the thesis entitled "Role of eisosome core component Pill in mitochondrial dynamics, mitophagy and cell death in Saccharomyces cerevisiae" submitted by Ms. Amita Pal bearing Reg. No. 16LBPH01, in partial fulfilment of the requirements for the Doctor of Philosophy in Biochemistry, is genuine work done by her under my supervision.

This thesis is free of plagiarism and has not previously been submitted in part or whole for the award of degree or diploma from this or any other University or Institution. Furthermore, prior to submitting the thesis/monograph for adjudication, the student had the following publication(s) and proof for it in the form of reprints in the relevant field of this study.

Amita Pal, Arun Kumar Paripati, Pallavi Deolal, Arpan Chatterjee, Pushpa Rani Prasad, Priyanka Adla,, Naresh Babu V Sepuri. Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy and cell death in *Saccharomyces cerevisiae*. Journal of Biological Chemistry. 2022.

The student has attended the following conferences during her Ph.D program:

- 1. Presented a poster entitled "Role of Eisosome Proteins, Pil1 and Lsp1, in mitophagy and cell death in Saccharomyces cerevisiae" in XI International Conference on Biology of Yeasts and Filamentous Fungi held on 27th-29th November 2019, organized by University of Hyderabad and Centre for DNA Fingerprinting and Diagnostics, Hyderabad.
- 2. Presented a poster entitled "Role of Eisosome Proteins, Pil1 and Lsp1, in mitophagy and cell death in Saccharomyces cerevisiae" in 90th Annual Meeting of SBC(I)

- "Metabolism to Drug Discovery: Where Chemistry and Biology Unite" organized in virtual mode during 16th to 19th December 2021 by Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University, Haryana (AUH), Gurugram.
- 3. Oral talk entitled "Role of Eisosome Proteins, Pil1 and Lsp1, in mitophagy and cell death in Saccharomyces cerevisiae" in XI International Conference on Biology of Yeasts and Filamentous Fungi held on 27th-29th November 2019, organized by University of Hyderabad and Centre for DNA Fingerprinting and Diagnostics, Hyderabad.
- 4. Participated in conference "International Congress of Cell Biology (ICCB)" held on 27th to 31st January 2018, organized by Centre for Cellular and Molecular biology, Hyderabad.
- 5. Participated in the 10th Conference on Yeast Biology organized by School of Life Sciences, Jawaharlal Nehru University, New Delhi & Amity University, Gurgaon during February 8-11, 2018.

Furthermore, the student has completed the following courses to fulfill the coursework requirement for the Ph.D.

Course Code	Name	Credits	Pass/Fail
BC801	Analytical Techniques	4	Pass
BC802	Research ethics, Data Analysis and Biostatistics	3	Pass
BC803	Lab Seminar and Record	3	Pass

Supervisor

Professor
Dept. of Biochemistry
School of Life Science
University of Hyderabad
Hyderabad - 500 046.

Head

Department of Biochemistry

RABAD

UNIVERSITY OF HYDERAD, HYDERABAD-500 046. Dean

School of Life Sciences

DEAN School of Life Sciences University of Hyderabad Hyderabad-500 046.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor **Prof Naresh Babu Sepuri**. Sir, you are the best PhD guide that I could ever have asked for. My journey of science started only during PhD, and you have been that person without whom I could not have imagined walking this path. I will forever be grateful for your patience and guidance. You have been a constant source of inspiration and motivation, even during the time when I felt like giving up. In all the years that I have worked with you, I have never seen you losing patience even though we goof up a lot. Apart from being a very good guide, you have also been an excellent leader. You have had a profound impact on me, and I wish to emulate you in my professional life.

I would like to thank my doctoral committee members Prof Krishnaveni Mishra and Prof Sharmistha Banerjee for their valuable suggestions and encouragement. I would like to specially thank Krishnaveni ma'am for being so generous in providing various plasmids and strains that were extremely helpful for my work.

I feel so lucky to have worked with diversified people in lab. Dr.Ramana, all your concerns and care for me have not been forgotten. You have been a very responsible senior who was always ready to help and teach me when I joined the lab. Dr. Srinivas, you have been a guiding lamp during my initial days of working with yeast. I still remember all your scientific jokes. Dr. Yerranna, thank you for your care. Working with you has been fun. Dr. Usha and Dr. Nobel, you both treated me like family. Usha di, I have learnt a lot from you. It was nice to have you as a mentor during the initial project of PhD. Dr. Arítra, it always felt good to have you around. You were a combo pack of jollity and sincerity at work. Arpan, your sincerity and devotion to work have been an insipiration to me every single day in lab. I will be thankful to you for always being available for help, be it work or outside work. All the outings with you have been hilarious. Vandana, Priyanka, Pushpa, Niroj, Ankur, and Dahlia, thank you for being such supportive laborates and for providing an amiable working environment.

Fareed, thank you for being a caring, loving and protective big brother to me. You were the one who taught me almost everything when I joined the lab. Your patience has no boundary. You were always ready to help me even without asking for it. Arun, thank you for being such a good friend. Your passion and interest in science always have been a motivation for me. Prasad, I enjoyed all those days of eating together during the days of lockdown. Thank you for all the cooking that you did.

Gungun, you are family to me. Thank you for having my back through all the ups and downs during entire Ph.D. All those days of going together to reading room, late night teas, and our never ending conversations have indeed been so helpful in overcoming the hardships of PhD life.

Neethu, you are like an elder sister. Your selfless love and care for me has tied us together forever. Thank you for patiently clearing all my silly doubts regarding work when I started PhD. You always encouraged me and motivated me both in my professional and personal endeavors. Your hard-work, patience, and sincerity always inspired me.

Salam, thank you for being around. Your presence always fills me with positivity, No matter how difficult the situation was, you always made me laugh. You are a terrific friend.

Pallaví and Vandana, thank you for always being there for me, no matter where we are. Our daily conversations with you over phone were like therapy to me. I cannot think of anybody else who understands me better.

Anita and Neera, going to hostel mess with you and all those conversations over lunches and dinners were nice break for me from work. I always enjoyed your company. Anita, I will always be grateful to you for your wholehearted care. I cannot thank you enough for all the teas that you made for me even when you were busy. Tracy, you were an excellent roommate. Hostel life became easy with you.

Pooja, thank you for your sisterly love. You always gave me "everything is going to be all right" feeling whenever I talked to you.

Pallaví, you were a great roommate. All our late night conversations and endless laughings until our stomachs ached over "cheh piddi ka shorba" things made the final days of Phd life very effortless.

My family has been my backbone. Maa and Papa, I cannot thank God enough to have you both in my life. You always trusted and supported me in all my decisions. Thank you for being so understanding and patient with all my peculiarities. You always kept my wishes, desires and dreams above yours. Maa, you have been the greatest blessing of my life. Nothing would have been the way it is without your selfless and unconditional love for me. Priyank and Rashmi, you both are the nicest siblings one can have. Jiju, thank you for your care and concern. Mishka, you have been a stress buster. Just listening to your voice and watching your videos fill me with so much love that I forget all the problems. Thank you for being so cute and lovely.

I feel grateful to all the faculties of Biochemistry. They have been an inspiration to me ever since I joined M.Sc.

I would like to thank all non-teaching staff in SLS for making our daily lives at work so easy.

Amíta Pal

Table of Contents

CHAPTER 1 Introduction	8
1.1 Mitochondria	9
1.2 Evolution of Mitochondria	9
1.3 Mitochondrial form and structure:	10
1.4 Mitochondrial protein import pathways:	11
1.5 Mitochondrial quality control (MQC)	13
1.6 Mitochondrial communication with other organelles	16
1.7 Mitochondrial Dynamics	17
1.8 Eisosomes	20
1.9 Autophagy	23
1.10 Mitophagy	25
1.11 Reactive Oxygen Species (ROS)	26
1.12 Cell death	27
1.13 Rationale and Objectives	29
CHAPTER 2 Pil1 localizes to mitochondrial outer membrane	30
2.1 BACKGROUND	31
2.2 MATERIALS AND METHODS	33
2.2.a. Media and growth condition	33
2.2.b. Yeast strains and plasmids	33
2.2.c. Yeast transformation	35
2.2.d. Bacterial transformation	35
2.2.e. Mitochondrial fractionation	35
2.2.f. Hypotonic treatment, Trypsin digestion, and Salt extraction	36
2.2.g. Immunoblotting	37
2.3 RESULTS	37
2.3.a. Pil1 localizes to mitochondria	37
2.3.b. Pil1 localizes to mitochondrial outer membrane	39
2.4 CONCLUSION	41
CHAPTER 3 Role of Pil1 in maintaining mitochondrial morphology	42
3.1 BACKGROUND	43
3.2 MATERIALS AND METHODS	44
3.2.a. Media and growth condition	44

3.2.b. Yeast strains and plasmids	44
3.2.c. Yeast two-hybrid assay	48
3.2.d. Growth assay	48
3.2.e. Immunoblotting	49
3.2.f. Co-immunoprecipitation	49
3.2.g. Fluorescence microscopy	49
3.2.h Measurement of Mitochondrial Potential	50
3.2.i. Citrate synthase assay	50
3.3 RESULTS	50
3.3.a. Absence and abundance of Pil1 leads to abnormal morphology of mitochondrial network:	50
3.3.b. Pil1 interacts with Fis1 and Dnm1:	52
3.3.c. Fis1 and Dnm1 are required for the change in mitochondrial morphology caused du Pil1:	
3.3.d. Pil1 does not alter the localization of Fis1 and Dnm1 to mitochondria:	55
3.3.e. Absence of Pil1 leads to increased mitochondrial mass	56
3.4 CONCLUSION	59
CHAPTER 4 Role of Pil1 in autophagy/mitophagy	60
4.1 BACKGROUND	61
4.2 MATERIALS AND METHODS	62
4.2.a. Media and growth condition	62
4.2.b. Yeast strains and plasmids	62
4.2.c. Autophagy and Mitophagy assays	66
4.2.d. Mitochondria isolation	67
4.2.e.Yeast two hybrid	67
4.2.f. Co-immunoprecipitation	67
4.2.g. Whole cell extraction and Immunoblotting	68
4.3 RESULTS	69
4.3. a. Yeast two hybrid analysis to screen the Atg proteins as interacting partners of Pil1	69
4.3.b. Pil1 is involved not only in mitophagy, but also non-selective autophagy:	70
4.3.c. Expression and localization of Pil1 to mitochondria are enhanced during starvation	74
4.4 CONCLUSION	76
CHAPTER 5 Pil1 in oxidative stress and cell death	77
5 1 BACKGROUND	78

5.2 MATERIALS AND METHODS	79
5.2.a. Media and growth condition	79
5.2.b. Yeast strains and plasmids	79
5.2.c. Fluorescence microscopy	80
5.2.d. Measurement of ROS	81
5.2.e. Chronological ageing	81
5.2.f. Cell viability assays	81
5.3 RESULTS	82
5.3.a. Absence of Pil1 leads to elevated ROS levels and protein aggregation:	82
5.3.b. Absence of Pil1 leads to increased chronological ageing:	84
5.3.c. ROS and protein aggregaates caused due to absence of Pil1 are majorly cytosolic	85
5.3.d. $pil1\Delta$ cells are more prone to cell death:	86
5.3.e. Absence of Pil1 induces cell death under stress conditions	89
5.4 CONCLUSION	91
CHAPTER 6 Discussion	92
References	97
Publication	114

Abbreviations

ACD Accidental cell death

ATP Adenosine triphosphate

Atg Autophagy related

BAR Bin/Amphiphysin/Rvs

BF Bright Field

BSA Bovine Serum Albumin

COX Cytochrome c oxidase

DCFDA 2'-7'-Dichlorodihydrofluorescein diacetate

DiOC6(3) 3,3'-dihexyloxacarbocyanine iodide

DIC Differential Interference Contrast

DNA Deoxyribonucleic acid

Dnm1 Dynamin- related

Dpm1 Dolichol Phosphate Mannose synthase

DTNB 5,5'-dithio-bis-(2-nitrobenzoic acid)

EDTA Ethylene diamine tetraacetic acid

ER Endoplasmic Reticulum

Fe-S Iron Sulfur cluster

GFP Green Fluorescence Protein

Gly Glycine

GRIM-19 Gene associated with IFN-beta/RA induced cell mortality

GTP Guanosine triphosphate

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

H₂O₂ Hydrogen peroxide

His Histidine

HSP Heat Shock Protein

Hr Hour(s)

HRP Horseradish peroxidase

IMM Inner mitochondrial membranes

IMS Inter membrane space

KCl Potassium chloride

KOH Potassium hydroxide

LB Luria-Bertani

Leu Leucine

LiAc Lithium Acetate

Lsp1 Long chain bases Stimulate Phosphorylation

MAMs Mitochondria-associated endoplasmic reticulum membranes

MDV Mitochondrial Derived Vesicles

MgCl₂ Magnesium Chloride

MIA Mitochondrial IMS Assembly

Min minute(s)

ml Milliliter

mm Millimeter

mM Millimolar

MnSOD Manganese superoxide dismutase

MOPS 3-(N-morpholino)propanesulfonic acid

MQC Mitochondrial Quality Control

MTS Mitochondrial Targeting Signal

NaCl Sodium chloride

Na₂CO₃ Sodium carbonate

ng Nanogram

nm Nanometer

nM Nanomolar

OD Optical Density

ORF Open reading frame

PAGE Polyacrylamide gel electrophoresis

PAM presequence translocase-associated motor

PBS Phosphate Buffered Saline

PCR Polymerase chain reaction

Pdi1 Protein Disulfide Isomerase

PEG Polyethylene glycol

PI Propidium iodide

Pil1 Phosphorylation Inhibited by Long chain bases

Pgk1 3-PhosphoGlycerate Kinase

Pma1 Plasma Membrane ATPase

RCD Regulated cell death

RIPA Radio immunoprecipitation assay

RNaseA Ribonuclease

ROS Reactive oxygen species

rpm Rotations per minute

SAM Sorting and Assembly Machinery

SCD Synthetic Complete Dextrose

SCL Synthetic Complete Lactate

SDS Sodium dodecyl sulphate

Ser Serine

SGD Saccharomyces Genome Database

SMD Synthetic Minimal Dextose

SML Synthetic Minimal Lactate

TCA Tricarboxylic acid cycle/ Trichloroacetic acid

TGN Trans-Golgi Network

TIM Translocase of Inner Membrane

TOM Translocase of Outer Membrane

TRIS Tris(hydroxymethyl)aminomethane

Tryp Tyrptophan

UPR Unfolded Protein Response

UPS Ubiquitin-proteasome system

Ura Uracil

UT Untreated

VDAC Voltage-dependent anion channel

WCE Whole cell extract

YPD Yeast extract Peptone Dextrose

YPG Yeast extract Peptone Glycerol

YPL Yeast extract Peptone Lactate

μ**g** Micro gram

μl Micro liter

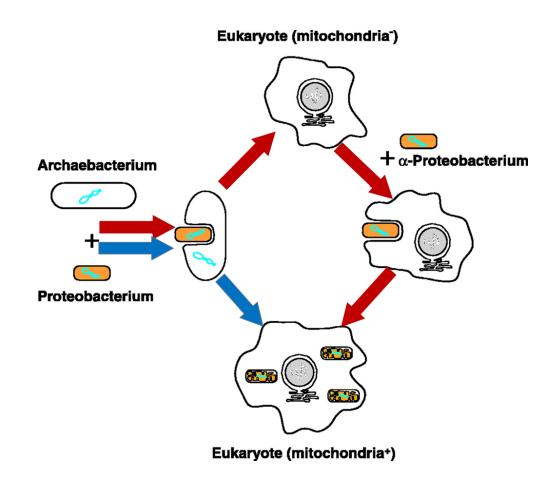
°C degree Celcius

CHAPTER 1

Introduction

1.1 Mitochondria

Mitochondria are essential organelles found in almost all eukaryotes which perform diverse yet interconnected functions. They have been well known as powerhouse of cell because they are responsible for producing the basic unit of energy, ATP, through oxidative phosphorylation. Apart from this, they have various functions such as calcium regulation, apoptosis, Fe-S cluster synthesis, lipid and amino acid metabolism. Several years of study has led to the understanding that mitochondria have potential role in many signaling pathways and stress responses. Mitochondria are highly dynamic in nature and their functions are tightly associated with fission and fusion.


1.2 Evolution of Mitochondria

Studying the mitochondrial genome over past few decades led to the theory of bacterial ancestry (Margulis 1970, Margulis 1981, Sapp 1994). Phylogenetic evidences suggest that mitochondrion originated within the bacterium phylum α -proteobacterium (Yang, Oyaizu et al. 1985, Gillham 1994). The closest known bacterial relatives of mitochondria is intracellular parasites Rickettsia, Ehrlichia, and Anaplasma, the members of the rickettsial subdivision of the α -proteobacterium (Gray, Burger et al. 1999). *Origin of Eukaryotic cells*, book published by Lynn Margulis in 1970 contains an elaborate and substantial details in support of the theory of endosymbiotic origin of mitochondria and plastids. With the advancement of genetic and molecular technologies, several decades of studies support that the origin of mitochondria predates the divergence of eukaryotes, although the details of endosymbiotic theory still remains unclear (Poole and Gribaldo 2014, Pittis and Gabaldon 2016).

Archezoan scenario and symbiogenesis scenario are fundamentally two different themes, the variations of which form the basis for the endosymbiotic models of mitochondrial origin. According to archezoan scenario, a primitive eukaryote lacking mitochondria was host to the proto-mitochondrial endosymbiont. This hypothetical amitochondrial eukaryote was termed as "archezoan". On the other hand, symbiogenesis scenario states that the generation of mitochondria is the result of a single symbiotic event where an archaeal cell engulfed an α -proteobacterium. This was subsequently followed by the compartmentalization of eukaryotic cell and evolution of nucleus (Koonin 2010).

In the course of eukaryotic evolution, though mitochondria maintained their double membrane

structure, their overall composition and form has changed drastically. In the process of acquiring various additional functions, the genetic material of the α - proteobacterium was either lost or largely transferred to the host nuclear genome (Gabaldon and Huynen 2004).

Michael W. Gray, G Burger.1999. Science.

Figure 1.1: Origin of eukaryotic cell.

Blue arrows show fusion of a hydrogen-producing α - proteobacterium (symbiont) with a hydrogen-requiring archaebacterium (host) leading to the origin of eukaryotic mitochondrion and nucleus. Red arrows show the formation of an amitochondriate eukaryote by fusion of a proteobacterium and an archaebacterium, later mitochondrion is acquired through endosymbiosis with an α - proteobacterium.

1.3 Mitochondrial form and structure:

Mitochondria are semi-autonomous organelles ranging from 0.5 to 1.5 µm in diameter. The shape and abundance of mitochondria varies from cell to cell depending on its metabolic state and the energy requirement. For example, a mature human RBC is devoid of mitochondria, whereas a

liver cell contains approximately 2000. The shape usually ranges from round to tubular and they appear like a filament in fused form. They have a double membrane system which separates them from the cytosol and divides it into four compartments - inner mitochondrial membrane (IMM), outer mitochondrial membrane (OMM), intermembrane space (IMS), and matrix. The mitochondrial matrix is the innermost space which is bound by the inner membrane. The presence of various porins on the outer membrane provides permeability for the free diffusion of low molecular weight molecules to the intermembrane space. On the other hand, inner membrane is highly impermeable and requires transporter proteins to transport molecules across the membrane. It extends into the matrix forming invaginations called cristae. In addition to these transporters, inner membrane also contains mitochondrial respiratory complexes. Metabolic pathways like citric acid cycle and beta oxidation of fatty acids are carried out in the matrix.

Human mitochondrial genome is circular and small, approximately 16 kilobases which encodes for 13 proteins. These proteins are core components of respiratory complexes I-IV present in the inner membrane. Mitochondria of *Saccharomyces cerevisiae* has genome of approximately 75 kilobases long encoding for eight proteins. Estimated proteome size of mitochondria in human and yeast is approximately 1500 and 1000, respectively.

Figure 1.2: Basic structure of the mitochondrion

1.4 Mitochondrial protein import pathways:

Around 99% of mitochondrial proteins are encoded by nuclear genome and synthesized on cytoplasmic ribosomes, which are later imported into the mitochondria through mitochondrial translocase machineries. Based on different types of targeting signal, so far five major protein import pathways have been identified.

Presequence pathway is termed as the classical import pathway. N-terminal presequences are present in most of the matrix proteins and various inner-membrane proteins that act as targeting

signals (Roise, Horvath et al. 1986, Abe, Shodai et al. 2000, Vogtle, Wortelkamp et al. 2009). Translocase of the outer membrane (TOM) are the gate for these proteins to cross the outer membrane. Translocase of the inner membrane (TIM23) imports these proteins through inner membrane (Kiebler, Pfaller et al. 1990, Chacinska, Lind et al. 2005, Mokranjac and Neupert 2015). Finally, they are translocated into matrix by presequence translocase-associated motor (PAM) (Hawlitschek, Schneider et al. 1988, Kang, Ostermann et al. 1990, Horst, Oppliger et al. 1997), where the presequence of the proteins are cleaved off by mitochondrial processing peptidase (MPP) (Hawlitschek, Schneider et al. 1988).

In the other four major pathways of protein import, instead of a cleavable presequence, proteins contain different types of internal targeting signals. However, for both cleavable and non-cleavable precursors, the TOM complex act as the entry gate. The second protein import pathway of mitochondria to be discovered was the carrier pathway. Precursors of metabolite carrier proteins having multispanning hydrophobic domain are imported through TOM, the small TIM chaperones of the intermembrane space, and the carrier translocase channel present in the inner membrane (TIM22) (Sirrenberg, Bauer et al. 1996, Koehler, Jarosch et al. 1998, Sirrenberg, Endres et al. 1998).

β-barrel pathway is the third protein import pathway. β-barrel proteins of the outer membrane are imported via the TOM complex and TIM chaperones. Sorting & assembly machinery (SAM), located on the outer membrane, also called topogenesis of outer membrane β-barrel (TOB) then insert these proteins into the outer membrane (Paschen, Waizenegger et al. 2003, Wiedemann, Kozjak et al. 2003). Many IMS proteins containing specific cysteine motifs are imported through TOM and the mitochondrial import and assembly (MIA) machinery of the IMS, which represents the fourth protein import pathway (Chacinska, Pfannschmidt et al. 2004, Naoe, Ohwa et al. 2004).

Outer-membrane proteins containing α -helical transmembrane segment use the fifth protein import pathway. The mitochondrial import (MIM) complex drives the efficient import of multispanning (polytopic) outer-membrane proteins and outer-membrane proteins possessing a signal-anchor sequence at the N-terminus (Becker, Pfannschmidt et al. 2008, Hulett, Lueder et al. 2008, Popov-Celeketic, Waizenegger et al. 2008).

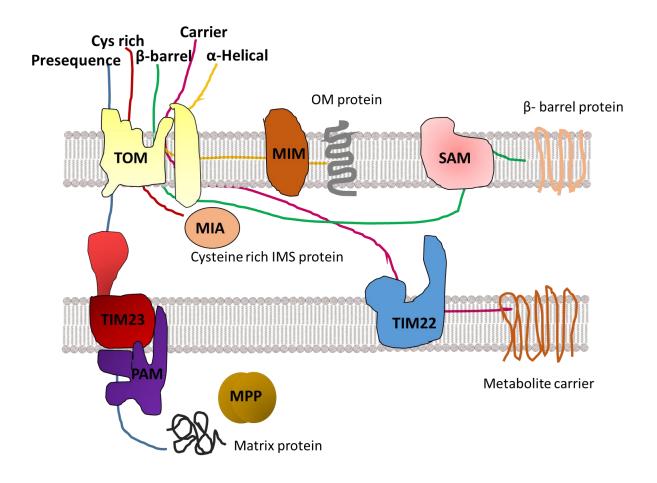


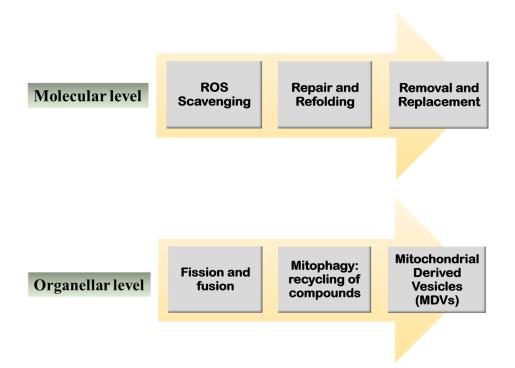
Figure 1.3: Five major pathways of mitochondrial protein import

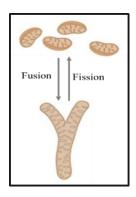
The translocase of the outer mitochondrial membrane (TOM) and the presequence translocase of the inner mitochondrial membrane (TIM23) import the presequence-carrying pre-proteins. Proteins with a hydrophobic sorting signal are released into the inner membrane (IM), whereas presequence translocase-associated motor (PAM) drives the import of hydrophilic proteins into the matrix where presequences are removed by mitochondrial processing peptidase (MPP). Cysteine-rich proteins of the intermembrane space (IMS) are imported via TOM and by the mitochondrial IMS import and assembly (MIA) system, which inserts disulfide bonds in the proteins. The precursors of β -barrel proteins are transported to the small TIM chaperones of the IMS via TOM and are inserted into the outer membrane (OM) by the sorting and assembly machinery (SAM). α -Helical OM proteins are imported by the mitochondrial import (MIM) complex.

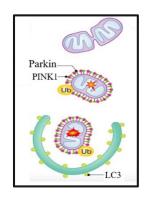
1.5 Mitochondrial quality control (MQC)

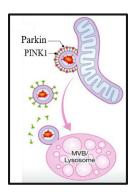
As most of the oxygen in the cell is utilized by mitochondria to generate energy, it produces reactive oxygen species (ROS) as a byproduct (Brand 2010) which at low concentrations act as signaling molecules and are useful for the cell but if in excess, they can cause damage to mitochondrial molecules like DNA, proteins, and lipids, and in turn are harmful for the whole

cell. Therefore, the cell has evolved various pathways of quality control systems which act at molecular and organellar level to counteract the damaging effects and to ensure the healthy state of mitochondria (Tatsuta and Langer 2008, Baker and Haynes 2011, Fischer, Hamann et al. 2012, Roca-Portoles and Tait 2021, Song, Herrmann et al. 2021).




Figure 1.4: Schematic representation of mitochondrial quality control pathways at molecular and organellar levels


ROS scavengers are viewed as a first line of defense in a network of quality control pathways. In mitochondria, ROS scavenging system comprises of enzymes like MnSOD (Superoxide dismutase isoform with manganese in its active centre), glutathione peroxidase, and peroxiredoxin. Molecules like thioredoxin and glutathione also mitigate ROS in mitochondria. Second pathway involves repair and refolding that comes after the damage has happened. These pathways reverse or repair specific modifications and restore the functions of damaged molecules. The methionine sulfide reductase system which consists of MsrA and MsrB, reduces oxidized methionine residues to methionine (Lee, Dikiy et al. 2009). In addition to this, there are chaperones like Hsp22, Hsp60, and Hsp70 that mediate the refolding of misfolded proteins back to their native functional structure (Voos and Rottgers 2002). When the repair and refolding capacity of mitochondria is overwhelmed, mitochondria is capable of inducing mitochondrial


unfolded protein response (mtUPR). This stress response sends signal from mitochondria to nucleus to enhance the expression of nuclear encoded mitochondrial proteins involved in MQC like mtHsp60 and mtHsp70 (Haynes and Ron 2010).

Many proteins cannot be properly refolded or repaired back to their native from. These irreversibly damaged proteins must be efficiently removed by proteolysis. Quality control of proteins that are present on the outer membrane and also those that get imported into the mitochondria is taken care by ubiquitin/26S proteasome system (UPS) of cytosol. (Taylor and Rutter 2011).

Different proteases are active in the inter-membrane space (IMS), the inner mitochondrial membrane (IM) and the mitochondrial matrix (MM) to ensure the quality control inside mitochondria through proteolysis (Koppen and Langer 2007).

Adapted from A.Sugiura et al.2014. The EMBO Journal.

Figure 1.5: Schematic representation of different pathways of mitochondrial quality control at the organellar level.

Mitochondrial fission and fusion is the first pathway of quality control at the organellar level. When mitochondria is damaged severely and cannot be repaired, it undergoes degradation through mitophagy. The damaged portion of mitochondria pinches off the organelle in the form of mitochondrial derived vesicles (MDVs) and gets degraded in the lysosomes.

The first pathway of quality control at the organellar level is fission and fusion of mitochondria that comes into play when the molecular pathways are not sufficient enough to repair the damage. Fission and fusion respond distinctively to different types of stress condition, and maintain mitochondrial function by mixing or separating the mitochondrial contents (Westermann 2010).

When the mitochondria is damaged beyond repair, it is eliminated through the process of

mitophagy where the entire mitochondrion is taken up by autophagosome and gets degraded in the vacuoles/lysosomes (Youle and Narendra 2011).

Lastly, the newly emerging pathway of MQC is where a portion of mitochondria can pinch off and form mitochondria-derived vesicles (MDVs) under stress conditions, carrying the damaged mitochondrial proteins within them, which subsequently fuse with lysosomes/vacuoles for degradation (Sugiura, McLelland et al. 2014).

1.6 Mitochondrial communication with other organelles

Organelles in cell perform essential and distinct functions. Though once they were thought to perform these functions independently, it is now very clear that organelles come in physical contact with each other and these contacts are essential for proper function of organelles and thereby for regulation of cellular homeostasis (Prinz 2014, Eisenberg-Bord, Shai et al. 2016, Gatta and Levine 2017). These contacts are achieved through proteins that tether the organelles directly. Mitochondria make direct contacts with most of the other organelles in the cell, which are of structural and functional relevance. These contacts are mediated through proteins that act as direct tethers between organelles. Hence, such proteins impact on overall mitochondrial homeostasis.

Mitochondria and endoplasmic reticulum contact sites were first visually observed and studied in 1950s and the functional relevance of these contact sites has been extensively studied since 1990s. (Bernhard and Rouiller 1956, Copeland and Dalton 1959, Vance 1990, Rizzuto, Pinton et al. 1998). Over the past two decades, contacts between mitochondria and other organelles have been identified and studied extensively (Figure 6). In addition to ER, mitochondria communicate with vacuoles/lysosomes (Honscher, Mari et al. 2014, John Peter, Herrmann et al. 2017, Wong, Ysselstein et al. 2018), peroxisomes (Fan, Li et al. 2016), lipid droplets (Rambold, Cohen et al. 2015), endosomes (Raiborg, Wenzel et al. 2015), the Golgi (Nagashima, Tabara et al. 2020), the plasma membrane (Lackner, Ping et al. 2013), melanosomes (Daniele, Hurbain et al. 2014), and nucleus (Eisenberg-Bord, Zung et al. 2021). These contacts vary significantly in structural and functional aspects, and have differential impact on various aspects of mitochondrial function and behavior.

Figure 1.6: Mitochondria communicate with different organelles

Diagramatic representation of structural and functional relevant mitochondrial contacts with different organelles like nucleus, plasma membrane, vacuole/lysosome, endoplasmic reticulum, lipid droplets, endosomes, peroxisomes and Golgi.

1.7 Mitochondrial Dynamics

In order to maintain their shape, size, and distribution, mitochondria constantly undergo coordinated cycles of fission and fusion, together called as 'mitochondrial dynamics'. These dynamic and transient morphological adaptations of mitochondria are crucial for many cellular processes such as mitochondrial quality control, metabolism, mitophagy, apoptosis, cell cycle, and immunity. Fusion of mitochondria is required to mitigate the damage and non-functionality by mixing components and protecting them from autophagic degradation during starvation (Blackstone and Chang 2011, Gomes, Di Benedetto et al. 2011). Fission helps produce new mitochondria and ensures quality control by removing damaged or unwanted mitochondria through mitophagy (Burman, Pickles et al. 2017). A coordinated balance of fission and fusion is critical for maintaining mitochondrial biology (Scorrano 2007, Chen and Chan 2009). Deregulation in mitochondrial dynamics has been associated with numerous human disorders.

In *Saccharomyces cerevisiae*, Fzo1, Mgm1, and Ugo1 facilitate mitochondrial fusion. Outer membrane-anchored proteins, Fzo1 and Ugo1 carry out the outer membrane fusion of adjacent mitochondria and inner membrane-anchored Mgm1 forms trans-complexes to tether the apposing inner membranes together (Hermann, Thatcher et al. 1998, Wong, Wagner et al. 2000, Sesaki and Jensen 2001). Dnm1, a dynamin-related GTPase, is the major protein in mitochondrial fission

(Otsuga, Keegan et al. 1998, Bleazard, McCaffery et al. 1999). It is predominantly present in the cytosol and recruited to mitochondria via Fis1 (Mozdy, McCaffery et al. 2000). Dnm1 assembles into oligomers which form rings and spirals at the outer membrane of mitochondria. Recruitment of Dnm1 to the mitochondrial surface is mediated through two adaptor proteins, Mdv1 and Caf4 (Tieu and Nunnari 2000, Griffin, Graumann et al. 2005). These four proteins together constitute the core proteins of the mitochondrial fission machinery. A list of proteins regulating the process of mitochondrial fission and fusion in both yeast and mammals have been listed in Table 1.1 and Table 1.2. However, there is a possibility that other unidentified factors still exist that take part in mitochondrial dynamics (Legesse-Miller, Massol et al. 2003). Several studies have shown that any deregulation in mitochondrial dynamics leads to neuronal disorders like Alzheimer's, Parkinson's, and Huntington's (Narendra, Tanaka et al. 2008, Cho, Nakamura et al. 2009, Shirendeb, Calkins et al. 2012).

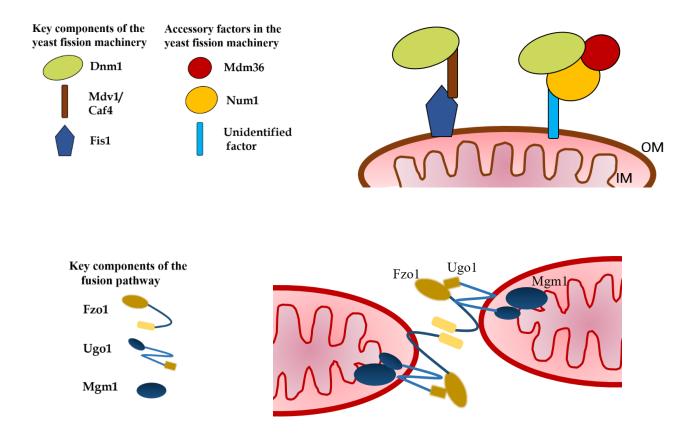


Figure 1.7: Diagrammatic representation of mitochondria fission and fusion in *S. cerevisiae*

In yeast, mitochondrial fission is driven by two major proteins Fis1 and Dnm1. Dnm1 is recruited to mitochondrial outer membrane via Fis1, with the help of two adapter proteins Mdv1 and Caf4. Other accessory proteins like Num1 and Mdm36 also help in mitochondrial divison. Mitochondrial fusion is carried out by three core proteins Fzo1, Mgm1, and Ugo1. Fzo1 and Ugo1 together are repsonsible for the fusion of outer membrane whereas Mgm1 facilitates the fusion of the inner membrane of mitochondria.

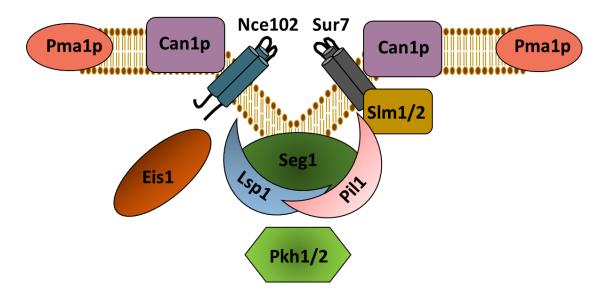
Table 1.1- Mitochondrial fission proteins in yeast and mammals

Protein	Yeast	Mammals	Subcellular Localization
Key Players	Dnm1	Drp1	Cytosol and MOM-associated
	Fis1	Fis1	MOM-anchored
	Mdv1	-	Cytosol and MOM-associated
	Caf4	-	Cytosol and MOM-associated
	-	Mff	MOM-anchored
	-	MiD51/MiD49	MOM-anchored
Regulators	Num1p	-	Cell-cortex and MOM-associated
	Mdm36p	-	MOM-associated
	Mdm33p	-	MIM-anchored
	-	Endophilin B1	Cytosol and MOM-associated
	-	GDAP1	MOM-anchored
	-	MTP18	MIM-associated
	-	MTGM	MIM-anchored

Table 1.2- Mitochondrial fusion proteins in yeast and mammals

Protein	Yeast	Mammals	Subcellular Localization
Key Players	Fzo1p	Mfn1/2	MOM-anchored
	Mgm1p	OPA1	MIM-anchored, IMS
	Ugolp	_	MOM-anchored
	_	MIEF1	MOM-anchored
Regulators	_	MICS1/GHITM	MIM-anchored
	_	MIB/VAT1	Cytosol and MOM-associated
	_	Stoml2/SLP2	IMS/MIM-associated
	_	BAX and BAK	Cytoplasm and MOM-associated
	_	mitoPLD	MOM-anchored
	Mdm38p	LETM1	MIM-anchored

Apart from these proteins, other organelles have also been found at the mitochondrial fission sites. It is well studied that membrane contact sites between mitochondria and ER are essential to drive the initial steps of fission process. Several studies have reported that not only ER, but other organelles like lysosome (Wong, Ysselstein et al. 2018), actin (Korobova, Ramabhadran et al. 2013), and *trans*-Golgi network (TGN) vesicles (Nagashima, Tabara et al. 2020) have important role in mitochondrial division.


Given the complexity of the process, there is possibility that there are still various other factors which are yet to be discovered.

1.8 Eisosomes

What are they?

The fungal plasma membrane is organized in lateral domains with specialized functions like cell

wall synthesis, environmental sensing, nutrient uptake, secretion, and endocytosis (Malinska, Malinsky et al. 2003, Malinsky, Opekarova et al. 2010, Ziolkowska, Christiano et al. 2012). Plasma membrane requires an efficient organization as it performs a vast variety of functions apart from being a protective layer around the cell. The studies over past few years have shown that PM is majorly subdivided into three domains: MCP (membrane compartment of Pma1, the plasma membrane H+- ATPase), MCT (membrane compartment of TORC2) and MCC (membrane compartment of Can1, the arginine permease). MCP is the zone for cell wall synthesis and rapid protein diffusion. It consists of Pma1, which is the most abundant protein of the plasma membrane. MCT domain, as the name suggests, contains TORC2 kinase and is known to regulate cell polarity and sphingolipid synthesis. There are around 50 MCC domains per cell and it has been shown that they are associated with a complex of cytoplasmic proteins called eisosome.

Figure 1.8: Eisosome structure in *S. cerevisiae*

Eisosome is a complex of proteins located peripherally on the plasma membrane. Eisosomes form a furrow like invagination in the plasma membrane. Pil1 and Lsp1 are the core components of this complex.

High resolution electron microscopy of freeze-etched *Saccharomyces cerevisiae* has shown that these domains form furrow like invaginations in the plasma membrane (Moor and Muhlethaler 1963, Malinska, Malinsky et al. 2004, Stradalova, Stahlschmidt et al. 2009). They are known to be found only in a few fungal species, microalgae and lichens (Lee, Heuser et al. 2015). Pil1 and Lsp1 are the major components of eisosomes. Both these proteins contain BAR (Bin/Amphiphysin/Rvs) domains and PIP2-binding PH domains. Around 17 proteins have been

identified so far that form the eisosome complex, and it is possible that many more are are yet to be discovered (Table 1.3).

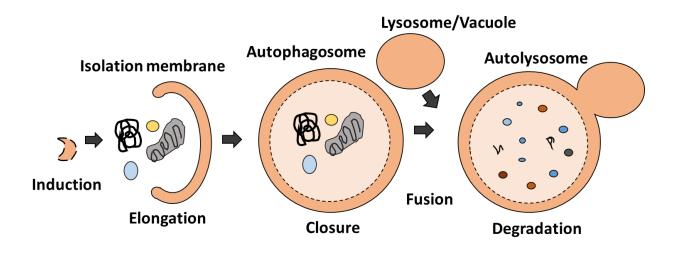
Table 1.3- List of known eisosome proteins

Eisosome proteins

Name	Domain
Pil1	BAR domain
Lsp1	BAR domain
Pkh1	Ser/Thr protein kinase
Pkh2	Ser/Thr protein kinase
Eis1	Unknown
Slm1	BAR domain and PH domain
Slm2	BAR domain and PH domain
Seg1	Unknown
Mdg1	Unknown
Ygr130c	Unknown
Pst2	Similar to flavodoxin-like proteins
Rfs1	Similar to flavodoxin-like proteins
Ycp4	Similar to flavodoxin-like proteins
Msc3	Protein of unknown function

Why the name eisosome?

In early functional studies, it was suggested that eisosomes coincide with sites of endocytosis. Hence, the structures were named eisosomes after the Greek words *eis* which literally translates to 'entry', and *soma* which means 'body'. However, studies carried out this field later have shown that eisosomes are not sites of endocytosis, but the name has remained.


What is their function?

They have been shown to bind membranes and facilitate the membrane curvature and formation of furrows (Karotki, Huiskonen et al. 2011, Douglas and Konopka 2014). Eisosomes regulate the lipid homeostasis at the plasma membrane and also the recruitment of proteins for subsequently protecting them from endocytosis (Grossmann, Opekarova et al. 2007). Another possible function of eisosome is to maintain membrane reservoir for plasma membrane expansion in response to various stresses (Kabeche, Howard et al. 2015). Recent developments in this area of research has piqued interest particularly due to association of eisosomes with RNP granules, stress granules,

P-bodies and their role in protection of nutrient transporters in response to starvation stress (Grousl, Opekarova et al. 2015, Gournas, Gkionis et al. 2018, Moharir, Gay et al. 2018, Amen and Kaganovich 2020).

1.9 Autophagy

Autophagy, which literally translates to "self-eating" has been extensively studied in past three decades. It is a process of cellular degradation and recycling which is highly conserved in eukaryotes. Though autophagy is cytoprotective, it can be deleterious if in excess. Autophagic dysfunction has been linked with various human pathologies like liver, heart and lung diseases, neurodegenerative disorders, myopathies, ageing, cancer, and diabeties (Wirawan, Vanden Berghe et al. 2012). Though extensive study has been done in this area, there are still many unanswered questions that lie at the regulatory and mechanistic levels, and are yet to be resolved.

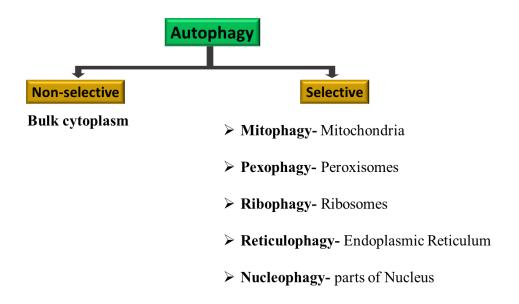


Figure 1.9: General process of Autophagy

Process of autophagy begins with formation of isolation membrane which expands and encloses to form autophagosome. The autophagosome carries the cargo within it and fuses with the lysosome/vacuole where the cargo gets degraded and recycled.

Autophagy can mainly be divided into two types- macroautophagy and microautophagy, both of them consist of selective and non-selective processes (Shintani and Klionsky 2004). In both selective and non-selective autophagy (Suzuki 2013), the morphological hallmark is the formation of isolation membrane which encloses to form the autphagosome that engulfs the cargo in the cytoplasm and fuses with vacuole or lysosome in case of mammals, where the contents undergo

degradation and recycling. Microautophagy refers to the transfer of cytoplasmic components into the lysosome/vacuole by direct invagination and scission to produce intravacuolar vesicles that are degraded subsequently (Kunz, Schwarz et al. 2004) (Uttenweiler and Mayer 2008). Nonselective microautophagy is not very well defined with regard to its physiological role or machinery involved. Selective microautophagy is useful in the turnover of peroxisomes (Dunn, Cregg et al. 2005), mitochondria (Deffieu, Bhatia-Kissova et al. 2009) and parts of nucleus (Krick, Tolstrup et al. 2006). Macroautophagy is the sequestration of the targeted cargo into autophagosomes that subsequently fuse with the vacuole followed by the degradation and recycling of the macromolecules (Eskelinen, Reggiori et al. 2011).

Figure 1.10: Types of Autophagy

Autophagy is mainly divided into selective and non-selective types. Non-selective autophagy involves the random degradation of bulk cytoplasm, whereas selective autophagy targets specific organelles like mitochondria, peroxisomes, ER, or nuclues.

The process of autophagy is carried out by several ATG proteins that form different complexes at the different stages of the autophagic pathway. They were first discovered in yeast and have been studied extensively since past three decades and this work received Nobel Prize in the year 2016. To date, 42 autophagy-related (ATG) genes have been identified. Almost half of them have a clear homolog in higher eukaryotes (Table 1.4). Most of the ATG genes are needed for both non-selective and selective autophagy, but some are specific for specific types of autophagy (Johansen and Lamark 2011).

Table 1.4- List of autophagy genes in yeast and mammals

Yeast ATG gene	Mammalian ATG homolog(s)
ATG1	ULK1
ATG2	ATG2A,ATG2B
ATG3	ATG3
ATG4	ATG4A, ATG4B, ATG4C, ATG4D
ATG5	ATG5
ATG7	ATG7
ATG8	LC3, GABARAP, GABARAPL1, GABARAPL2
ATG9	ATG9
ATG10	ATG10
ATG12	ATG12
ATG13	ATG13
ATG14	ATG14
ATG16	ATG16L1, ATG16L2
ATG17	RB1CC1
ATG18	WIPI1, WIPI2, WIPI3, WIPI4
VPS30/ATG6	BECN1
VPS34	PIK3C3
	VMP1
	EI24
	EPG5
	ATG101

1.10 Mitophagy

Mitochondria perform various important functions in cells apart from its major function of energy generation. During these mitochondrial processes, reactive oxygen species are generated as a byproduct, which is a potential threat for cells as they can cause damage to the organelle as well as the entire cell. In order to maintain the healthy population, mitochondria have evolved various pathways to ensure the quality control (section 1.5). Mitochondria when damaged severely and cannot be efficiently repaired by other pathways of quality control, undergo degradation through mitophagy. Mitophagy is a type of selective autophagy where the damaged mitochondria is engulfed by autophagosomes which fuses to vacuoles and gets degraded. Yeast has simple genetics. As fundamental cellular pathways are conserved among eukaryotes, yeast is an excellent model for studying and understanding the process of mitophagy at the molecular and functional level. In budding yeast, Atg32, a mitochondrial outer membrane anchored protein, acts as a receptor for mitochondrial degradation (Okamoto, Kondo-Okamoto et al. 2009). Atg32 interacts with Atg11 and Atg8. Atg11 acts as an adaptor protein for selective autophagy (Kanki and Klionsky 2008). Atg8 is a ubiquitin-like protein which localizes to the isolation membrane and is

essential for formation of autophagosome (Shpilka, Weidberg et al. 2011).

Recent history of studies have revealed that mitochondrial fission and fusion proteins also come into the play in the process of mitophagy (Abeliovich, Zarei et al. 2013, Burman, Pickles et al. 2017). Because autophagy is a complex phenomenon which involves a large number of proteins and various pathways, it is quite possible that there are other factors as well which need to be explored in order to gain better understanding.

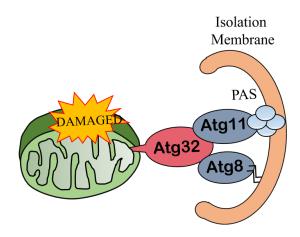


Figure 1.11: Mitophagy in yeast

Atg32, a receptor for mitophagy is present on the outer membrane of mitochondria. Atg32 binds to Atg8 and Atg11, and subsequently the damaged mitochondria are engulfed by autophagosome.

1.11 Reactive Oxygen Species (ROS)

The interest in role of "reactive species" has increased tremendously in the past few decades because they have both beneficial as well as detrimental effects in cell physiology and pathology. In biology and medicine, reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulphur species (RSS) are the known reactive species which are basically the chemically reactive molecules of the respective elements. Out of all three, ROS has attracted interest and is the most widely studied reactive species.

The term ROS broadly includes a wide array of molecular oxygen derivatives which includes oxygen free radicals such as hydroxyl (*OH), superoxide anion (O2*-), and non-radical oxidants such as singlet oxygen ($^{1}O_{2}$) and hydrogen peroxide ($^{1}O_{2}$).

ROS are the natural byproducts of oxidative metabolism in the cells. These are known to play

important roles in the regulation of cell signaling, cell differentiation, inflammation related response, cell survival, and cell death (Mueller, Laude et al. 2005, Touyz 2005).

Reactive Oxygen Species and Mitochondria

Mitochondria are known to be the main source of ROS in cell. ROS production in mitochondria was once considered to be an unwanted by-product of oxidative phosphorylation. But increasing evidence indicates that mitochondrial ROS (mtROS) is also regulated by immune responses and vice versa (Bulua, Simon et al. 2011, West, Shadel et al. 2011). mtROS have also been shown as components of the pathways that regulate stem cell differentiation (Maryanovich and Gross 2013), cellular (Mills and O'Neill 2014, Gurung, Lukens et al. 2015) and tissue level (Mittal, Siddiqui et al. 2014) inflammation, autophagy (Chen, Azad et al. 2009), and apoptosis (Bender and Martinou 2013). ROS and mitochondria have been established as a nexus of cellular homeostasis due to their role in determining the response of cells to cellular physiology.

1.12 Cell death

Cell death is collectively referred to the targeted elimination of irreversibly damaged, potentially harmful, or superfluous cells. There are different genetically encoded mechanisms for a cell to undergo the process of death. It has been now established that regulation of cell death is conserved in yeast (Madeo, Frohlich et al. 1997, Madeo, Carmona-Gutierrez et al. 2009, Carmona-Gutierrez, Eisenberg et al. 2010).

Mainly two types of cell death have been described in yeast (Figure 1.12). One type of cell death in yeast in accidental which occurs when cells are exposed to severely harsh microenvironmental conditions. Another type of cell death is regulated cell death (RCD) which can occur when cells fail to respond to mild stress (Galluzzi, Vitale et al. 2012). While ACD has necrotic characteristics, RCD can exhibit mixed characteristics of regulated necrosis and apoptosis. Though the cytoprotective function of autophagy is well established, what role autophagy has as a cell death pathway still remains unclear. It has been reported in some studies that both cell death and autophagy can be controlled by the same regulators, showing that both the processes are closely connected.

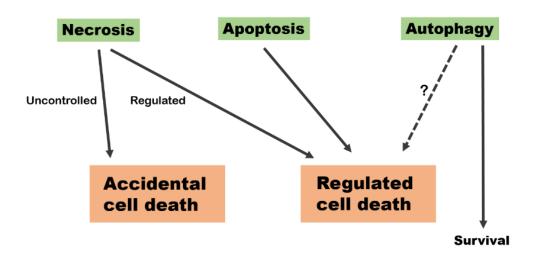


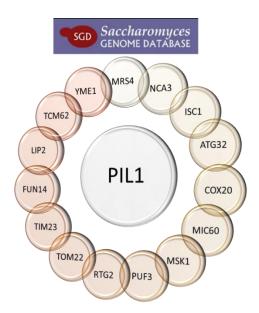
Figure 1.12: Types of cell death in yeast.

An yeast cell can die either via accidental cell death or regulated cell death depending upon the external and internal cues. Uncontrolled necrosis is categorized under ACD while regulated necrosis falls under RCD. Recently yeast has been shown to undergo apoptosis, a type of regulated cell death. Autophagy, though a survival process, can be a regulated cell death process under certain conditions.

1.13 Rationale and Objectives

In this work, we have tried to establish a connection between mitochondria and eisosomal protein Pill. So far no reports are available that hint towards a plausible connection between these two cellular structures. However, in a study, Nce102, a plasma membrane protein implicated in eisosome formation, has been shown to rescue heme defect in mitochondria (Kim, Jeong et al. 2016). Also, high-throughput study shows the presence of eisosome core proteins Pill and Lsp1 in mitochondria (Reinders, Wagner et al. 2007, Ohlmeier, Hiltunen et al. 2010). We tried to understand the topological and functional connection of Pill protein with mitochondria based on its known properties and functions. In order to do that, this work was divided in the following four objectives:

- 1. To study the localization of Pil1 to mitochondria
- 2. To study the role of Pil1 in maintaining mitochondrial morphology
- 3. To study the role of Pil1 in autophagy/mitophagy
- 4. To study the role of Pil1 in oxidative stress and cell death


CHAPTER 2

Pil1 localizes to mitochondrial outer membrane

2.1 BACKGROUND

Though eisosomes were believed to be static structures, a recent study has shown the exchange of Pil1 molecules at the tip of eisosomes indicating their dynamic nature. Also, Pil1 is reversibly phosphorylated at multiple sites which raises the possibility that this protein can be dynamic in nature.

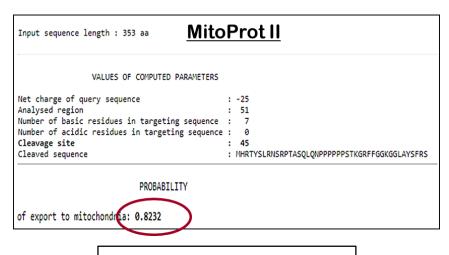

In studies that aimed to characterise the novel role of yeast mitochondrial phosphoproteome, Pil1 has been detected as one of the proteins associated with mitochondria in its phosphorylated form (Reinders, Wagner et al. 2007, Ohlmeier, Hiltunen et al. 2010). When we tried to search literature to find if any link between mitochondria and any eisosome proteins has been reported already, we did not find any direct link. However, there is a report which says that Nce102 protein, which is a component of MCC, but not a part of eisosome complex, rescues heme defect in mitochondria (Kim, Jeong et al. 2016). Apart from this, when we looked into the interacting partners of Pil1 in *Saccharomyces cerevisiae* genome database (SGD), we found many mitochondrial proteins (Fig 2.1)

Figure. 2.1- Mitochondrial interacting partners of Pil1 from high-throughput analysis.

Source: Saccharomyces cerevisiae genome database (SGD)

Around 60 percent of the proteins that are targeted to mitochondria carry mitochondrial targeting Signal (MTS) which is a short peptide of around 15-70 amino acid long that contains positively charged basic amino acid residues that target the protein to the mitochondria. We did bioinformatical analysis using two different online tools (MitoProt II and PSORT II) to check the possibility of Pil1 being targeted to mitochondria on the basis of the presence of MTS. And we found that probability of Pil1 getting into the mitochondria is very high (Figure 2.2). These evidence provides a possible link between mitochondria and eisosomes and it formed the basis of our study.

PSORT II Prediction 65.2%: mitochondrial 21.7%: nuclear 8.7%: cytoplasmic 4.3%: endoplasmic reticulum

Figure 2.2- Probability of Pil1 getting targeted to mitochondria using MitoProt II and PSORT II online bioinformatics tool

2.2 MATERIALS AND METHODS

2.2.a. Media and growth condition

For mitochondria proliferation, cells were grown in lactate medium (YPL; 1% yeast extract, 2% peptone, and 2% lactate). For fluorescence imaging, strains were grown to log phase (OD_{600} = approximately 1) in synthetic minimal media (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as needed) as described previously (Sherman 1991). Yeast cells were grown at 30°C.

2.2.b. Yeast strains and plasmids

The yeast strains used in this study are derivatives of BY4741. All strains, plasmids, and primers used in this study are listed in Table 2.1, Table 2.2, and Table 2.3, respectively. For expression of Pil1-GFP under the control of Pil1 promoter, PIL1 was PCR-amplified (approximately 500 bp of 5'UTR before start codon + Pil1 ORF before stop codon) along with its promoter using yeast genomic DNA as template using primers NB879F and NB755R. The PCR product was digested with BamHI and HindIII. GFP sequence was amplified using Mge1-GFP plasmid as template with primers pair NB806F/NB808R and double digested with HindIII/XhoI. PIL1 3'UTR (approximately 500 bp after stop codon) was amplified using primers pair NB797F/ NB798R and double digested with XhoI/ApaI. All the three inserts were ligated simultaneously with BamHI/ApaI digested pRS313 vector. The expression was confirmed with microscopy as well as western blot.

Pil1-Myc strain was a kind gift from Victor J Cid (Complutense University of Madrid, Madrid. pHS12 Mito-mCherry plasmid was a gift from Shirisha Nagotu (IIT Guwahati). For construction of Pil1 deletion strain (YNB 263) used in this study, PCR-based targeted homologous recombination was used to replace complete open reading frame of *PIL1* with KanMX6 cassette (Longtine, McKenzie et al. 1998). This strategy is based on directing the PCR-amplified cassette to the desired chromosomal loci which is achieved due to flanking homologous sequences provided in the PCR-primers. In this method, the PCR primers (NB985/NB986) used have 5'-ends (50 nucleotides) carrying Pil1 gene sequences and 3'-ends (20 nucleotides) that correspond to selectable marker gene (KanMX6 in this case). The amplified DNA is transformed into yeast cells using standard method, and colonies were screened to select those that carry the deleted *PIL1* gene.

Table 2.1. Strains

Strain	Genotype	Reference
YNB 263	BY4741; <i>PIL1-6XMYC::LEU2</i>	(Mascaraque, Hernaez et al. 2013)
YNB 474	BY4741; $pil1\Delta$:: $KanMX$	This study

Table 2.2. Plasmids

Plasmid		Source/Reference
pNB479	pFA6a-KanMX6	(Longtine, McKenzie et al. 1998)
pNB812	pHS12 Mito-mCherry	Addgene
pNB485	pRS313 Pil1-GFP	This study

Table 2.3. Primers

Primer Name	Sequence (5'-3')	Restriction enzyme
NB755	GCCAAGCTTAGCTGTTGTTTGTTGGGGAA	HindIII
NB879	GCCGGATCCACCATGCACAGAACTTACTCTTTAA	BamHI
NB806F	GCCAAGCTTGGAGGTGGAGGTTCTGGT	HindIII
NB808R	GCCCTCGAGTTTGTATAGTTCATCCATGCCATGTG	XhoI
NB797F	GCCCTCGAGTCAAAATAAATCAACAATCTATTAGAAACA	XhoI
NB798R	GCC GGGCCCGAAGGCGGTGAAAACAAAAA	ApaI
NB985	ATGCACAGAACTTACTCTTTAAGAAATTCCAGGGCACCT ACCGCCTCTCACGGATCCCCGGGTTAATTAA	
NB986	TTAAGCTGTTGTTTGTTGGGGAAGAGACTCACTTTGCTGG TGTCCGACTTGAATTCGAGCTCGTTTAAAC	

2.2.c. Yeast transformation

Yeast transformation was done using standard lithium acetate method (Gietz and Woods 2002). Yeast strains were grown overnight in 30°C in 10 mL YPD and were harvested by centrifuging at 3000 rpm for 5 min. Cells were washed with 15 mL of sterile water, supernatant was discarded and the pellet was resuspended in 1 mL of 100 mM lithium acetate (LiAc). Depending on cell density, cells were aliquoted into 1.5 mL tubes for each transformation. Cells were pelleted down and the supernatant was discarded. 350 μL of transformation mixture (216 μL 50% PEG 3000, 36 μL 1M LiAc, 40 μL ssDNA, 58 μL Milli-Q water) was added to each tube. Tubes were vortexed for proper mixing and incubated at 42° C for 40 min. After incubation, cells were spinned down at 7000 rpm for 1 min. and the transformation mix was discarded using pipet. Cells were resuspended in 100 μL of sterile water and plated on respective selection plates. Plates were incubated for 2-3 days at 30°C.

2.2.d. Bacterial transformation

50 μ L (for plasmid transformation) or 100 μ L (for transformation of ligation product) of ultra-competent DH5 α cells were thawed on ice and approximately 100 ng of plasmid to be transformed was added to it. Cells were incubate on ice for 30 min. and then given a heat shock at 42°C for 90 seconds and immediately placed on ice for 3-5 min. 1 mL of autoclaved LB media without any antibiotic was added to the tube and kept in shaker incubator for 1 hour at 37°C. In case of plasmid transformation, 100 μ L from 1 mL was taken and for transformation of ligated product, cells were pelleted down, resuspended in 100 μ L of LB and then plated on respective antibiotic containing plates. Plates were incubated overnight at 30°C.

2.2.e. Mitochondrial fractionation

Mitochondria isolation was done as described previously (Reinders, Zahedi et al. 2006, Sepuri, Yadav et al. 2007, Sepuri, Gorla et al. 2012). In brief, yeast strains were grown in YPL medium at 30°C, and cells were harvested when the cultures reached OD₆₀₀ of 1 or 2. Cultures were centrifuged at 5,000 rpm for 5 min, and the cell pellets were washed with autoclaved distilled water. The cells were treated with 10 mM dithiothreitol (DTT; Sigma, D0632) in 0.1M Tris-SO4, pH 9.4, buffer for 15 min and centrifuged at 5,000 rpm for 5 min. Cells were converted to spheroplasts by using Zymolyase (20T, USBiologicals, Z1000) in 1.2 M sorbitol/20mM phosphate buffer, pH 7.0. After obtaining 50% lysis of cells (lysis correlated to a decrease in

OD₆₀₀ of 100 µl of cells in 900 µl of water), the resulting spheroplasts were gently washed with 1.2M sorbitol two or three times. The spheroplast pellets were resuspended in SEM buffer (250mM sucrose [Amresco,0335], 1 mM EDTA [Himedia,GRM1195], 10 mM 3-(N-morpholino) propanesulfonic acid [MOPS; Sigma, M1254], 1 mM phenylmethylsulfonyl fluoride [PMSF; Himedia, RM1592], 0.2% bovine serum albumin [BSA; Amresco, 0332], pH 7.0) and homogenized using a Dounce homogenizer (15 times). The homogenates were centrifuged at 3500 rpm. The supernatants were collected and centrifuged at 10,000 rpm for 10 min. The resultant pellets were resuspended in SEM buffer and the supernatant was collected (post-mitochondrial supernatant) and centrifuged at 3500 rpm for 5 min. The supernatants were once again centrifuged at 10,000 rpm for 10 min and pellets were washed three times in SEM buffer. The crude mitochondria were resuspended in SEM buffer (without BSA) and were subjected to 10-15 strokes with a glass-Teflon potter and loaded onto a three-step sucrose gradient (60% 1.5mL, 32% 4mL, 23% 1.5mL, 15% 1.5mL sucrose in EM-buffer) and centrifuged for 1 hr at 1,34,000 g, yielding mitochondrial fraction at the 60-32% sucrose-interface. We repeated the above step to obtain a highly purified mitochondrial fraction.

2.2.f. Hypotonic treatment, Trypsin digestion, and Salt extraction

For making mitoplast, 50 μ g of intact mitochondria was taken and the volume of each was made up to 50 μ L with Milli-Q water. 950 μ L of solubilization buffer (0.6 M sorbitol, 5 mM MgCl₂, 50 mM KCl, 0.1 M potassium acetate, 20 mM HEPES-KOH pH 7.4, 1% Triton X-100) was added and incubated on ice for 15 minutes. Mitochondria was centrifuged at 14,000 rpm for 10 minutes at 4°C. Pellets were washed twice with SEM buffer and then dissolved in 1X RIPA buffer and processed for SDS-PAGE.

For trypsin digestion, 50 μ g of intact mitochondria were taken in 50 μ L of SEM buffer and treated with 1 μ g, 2 μ g and 5 μ g (final concentration) of trypsin (Amresco, 0785) on ice for 15 min. Protease treatment was stopped by adding 5 μ g, 10 μ g and 25 μ g (final concentration) soybean trypsin inhibitor (Amresco, K213), respectively, and incubated on ice for 15 min. Mitochondria were pelleted down at 14,000 g for 10 min at 4°C.

For high salt treatment, 50 µg mitochondria in 50 µl of SEM buffer were incubated with 400 mM KCl on ice for 10 min. Supernatant and pellet were separated by centrifugation at 14,000 rpm for 15 min. For high pH treatment, mitochondria were incubated with 200 mM Na₂CO₃ (pH 11.5) for

15 min followed by centrifugation to separate the pellet and supernatant.

2.2.g. Immunoblotting

After separation in SDS-PAGE, proteins were transferred onto nitrocellulose membranes (PALL, 66485) and blocked with 5% skimmed milk (Himedia, GRM1254) in Tris-buffered saline (TBS). The commercial monoclonal antibody anti-myc (ab9106, Abcam, 1:5000) was used to detect myc epitope-fused protein on immunoblots. Anti-Dpm1 antibody (A-6429) was purchased from Invitrogen. Anti-Por1, Pgk1, Tom70, Tom40, Tim22, and Hsp70 serums were kind gifts from Debkumar Pain (New Jersey Medical School, Rutgers University, Newark, NJ). Anti-Pdi1 antibody (ab4644, Abcam, 1:10000) was a kind gift from Krishnaveni Mishra, University of Hyderabad. Anti-Pma1 antibody (sc-33735) was a kind gift from Rupinder Kaur, Centre for DNA Fingerprinting and Diagnostics, Hyderabad. HRP-conjugated anti-rabbit (Jackson ImmunoResearch Laboratories, 111-035-144, 1:25,000) anti-mouse (Jackson ImmunoResearch Laboratories, 115-035-146, 1:25,000) polyclonal secondary antibodies were used, followed by the detection of signal using ECL reagents (Advansta Western-Bright, K-12045-D20) and imaging in Chemidoc Imaging System (Bio-Rad).

2.3 RESULTS

2.3.a. Pil1 localizes to mitochondria

Previously, in phosphoproteome profiling of yeast mitochondria, it has been reported that Pil1 is present in mitochondria in phosphorylated state (Reinders, Wagner et al. 2007, Ohlmeier, Hiltunen et al. 2010). In order to confirm these findings, we isolated mitochondria from the yeast WT strain where Pil1 is chromosomally tagged with 6XMyc tag at the C-terminus. Whole cell extract, cytosolic fractions (post-mitochondrial supernatant) and sucrose gradient highly purified mitochondrial fractions were processed for SDS-PAGE and probed with antibodies against Myc, Porin, Pgk1, Dpm1, Pdi1 and Pma1. The immunoblotting results show that Pil1 is enriched in mitochondrial fraction as well (Figure 2.3A). Absence of Pgk1 band in mitochondrial fractions shows that it is devoid of any cytosolic contamination. To further check if mitochondrial fraction is contaminated with ER, we used anti-Pdi1 antibody which is ER-lumen specific and anti-Dpm1 antibody which is ER-membrane specific. Though we did not detect Pdi1 band, we could see a

small fraction of Dpm1 in highly purified mitochondrial fraction. As mitochondria are tightly associated with ER membranes, it is highly unlikely to achieve "pure" mitochondria even after sucrose gradient purification. Since eisosome complex is associated with plasma membrane, we wanted to make sure that our mitochondrial extracts do not contain any plasma membrane fractions. Absence of Pma1 band in mitochondrial fraction confirms that it doesn't contain plasma membrane contamination. Additionally, we expressed plasmids carrying Pil1-GFP and mitomCherry in $pil1\Delta$ (BY4741) cells. Fluorescence microscopy showed the coincidence of signals that confirmed the mitochondrial localization of Pil1 (Figure 2.3B).

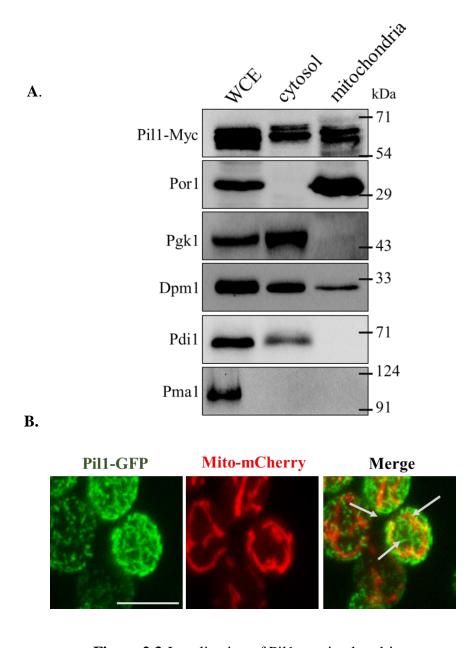


Figure 2.3-Localization of Pil1 to mitochondria:

A.Western blot of whole cell extracts, cytosolic fractions (post-mitochondrial fractions) and mitochondrial fractions ($50\mu g$ each) from Pil1-myc expressing strains. Antibodies against Myc tag, Porin, Pgk1, Dpm1, and Pdi1 were used for the western blot analysis. Antibodies against Por1, Pgk1, and Dpm1/Pdi1, and Pma1 were used as controls for mitochondria, cytosol, ER membrane/ER lumen and plasma membrane, respectively. WCE: Whole Cell Extract. B. Fluorescence microscopy to check the localization of Pil1 to mitochondria. Pil1 tagged with GFP and mitochondria tagged with mCherry were co-expressed in $pil1\Delta$ strain. Maximum projections of z-stacks are shown in the represented images. Scale bar represents 5 μ m.

2.3.b. Pil1 localizes to mitochondrial outer membrane

After confirming the presence of Pill in mitochondria, we investigated its exact submitochondrial localization. The mitoplast was prepared by treating the intact mitochondria with hypertonic solution to remove the outer mitochondrial membrane. Pil1 completely disappears in the mitoplast. Tom40, an outer membrane protein is also not detected in the blot. However, Tim22, an inner membrane protein is intact in the mitoplast (Figure 2.4A). This shows that Pil1 is present on the outer membrane. However, we further wanted to see if it is peripherally or integrally bound to the membrane. The intact mitochondria were treated with increasing concentrations of tryspsin followed by treatment with trypsin inhibitor to stop the reaction. The treated and untreated samples were probed against Myc, Tom70 and Tom40 antibodies. Significant amount of Pil1 is digested when treated with trypsin. Tom70, being a peripheral outer membrane protein gets completely digested and Tom40, an integral outer membrane protein remains intact (Figure 2.4B). Our results clearly show that Pil1 is peripherally bound to the outer mitochondrial membrane. To further determine if Pil1 is a soluble protein or associated with the mitochondrial membrane, we carried out protein extraction with potassium chloride (KCl) and sodium carbonate (Na₂CO₃). When subjected to KCl, Pill was retrieved in the pellet fraction showing that Pill is tightly bound to the mitochondrial membrane. However, after Na₂CO₃ treatment, Pil1 was found in the supernatant fraction (Figure 2.4C). This shows that Pil1, though peripherally and tightly bound to the mitochondrial outer membrane, is a soluble protein. Porin, a membrane protein and Hsp70, a soluble matrix protein were used as controls.

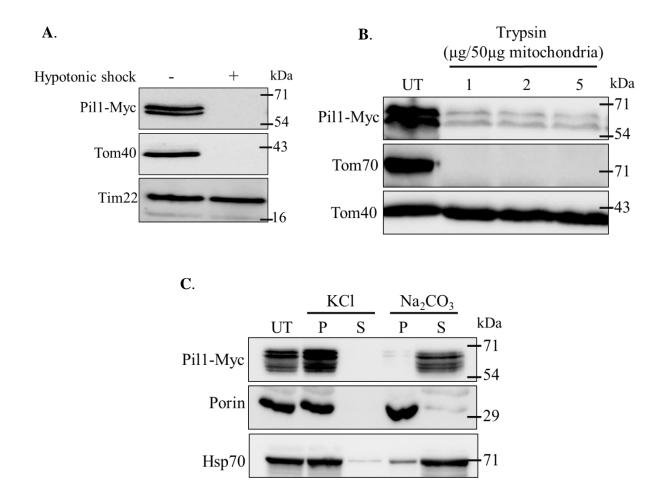


Figure 2.4. Pil1 localizes to outer membrane of mitochondria.

A. Hypotonic treatment. The mitoplast was prepared by treating the intact mitochondria with hypertonic solution to remove the outer mitochondrial membrane and immunoblotted with Myc, Tom40, and Tim22 antibodies. B. Trypsin digestion assay. Mitochondrial fraction (50 μ g) isolated from Pil1-Myc strain was subjected to trypsin treatment and western blotted using antibodies against Myc tag, Tom70, and Tom40. Tom70 and Tom40 are peripheral and integral mitochondrial outer membrane proteins, respectively. C. Salt extractions. Mitochondria (50 μ g) from Pil1-Myc cells were treated with 400 mM KCl and 200 mM Na₂CO₃ (pH 11.4), immunoblotted using antibodies against Myc, Porin, and Hsp70. Porin and Hsp70 are used as controls for membrane and soluble mitochondrial proteins, respectively. UT: Untreated, P: Pellet, S: Supernatant.

2.4 CONCLUSION

In this chapter, we conclude that Pil1 localizes to mitochondria through cellular fractionation, which was confirmed using confocal microscopy. Further, hypotonic treatment and trypsin digestion show that Pil1 is peripherally bound to the outer membrane of mitochondria. Salt extraction assay with KCl show that Pil1, though a peripheral protein, is tightly bound to mitochondria. Salt extraction using Na₂CO₃ confirms that Pil1 is a soluble protein, not a membrane protein.

CHAPTER 3

Role of Pil1 in maintaining mitochondrial morphology

3.1 BACKGROUND

Recently, several studies have recognized that mitochondrial morphology is an important factor in regulating cellular functions. As Pil1 contains BAR-domain and as shown in the first chapter, it localizes to mitochondrial outer membrane, we speculated its role in maintaining mitochondrial morphology by modulating the membrane dynamics. The fundamental cellular roles of BAR domain proteins, from unicellular eukaryotes to vertebrates, includes sensing of membrane curvature, binding GTPases, and molding cellular membranes (Habermann 2004, Peter, Kent et al. 2004).

Mitochondrial fission and fusion generally referred to as mitochondrial dynamics, maintain mitochondrial integrity by regulating its size, shape, distribution, and connectivity. Mitochondrial dynamics regulate mitochondrial quality control, metabolism, apoptosis, mitophagy, and other essential processes. A coordinated balance of fission and fusion is critical for maintaining mitochondrial biology, and therefore a plethora of important cellular processes (Youle and van der Bliek 2012, Bockler, Chelius et al. 2017).

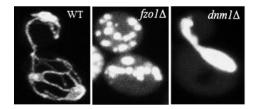


Figure 3.1- Different types of mitochondrial morphologies due to defective fission/fusion.

WT structure of mitochondria is tubular branched, whereas cells lacking fzo1 (defective fusion) show fragmented mitochondria. Cells lacking dnm1 (defective fission) contain hyperfused mitochondria.

Due to experimental advantages, budding yeast *Saccharomces cerevisiae* has been the favorite model to study mitochondrial dynamics (Okamoto and Shaw 2005). Mitochondria have been shown to adopt a variety of shapes in eukaryotic cells, ranging from branched tubular network to multiple small compartments. These different mitochondrial morphologies are maintained by equilibrium between opposing events of fission and fusion of mitochondria. As discussed elaborately in the Introduction (section 1.7), mitochondrial fission in yeast is regulated by four major proteins Dnm1, Fis1, Mdv1, and Caf4. Fzo1, Ugo1, and Mgm1 are the main regulators of

mitochondrial fusion. WT mitochondria forms tubular network, whereas cells lacking any of the core fission proteins have fragmented mitochondria due to defective fission, and the cells lacking any of the core fusion proteins have fragmented mitochondria due to defective fusion process (Figure 3.1).

3.2 MATERIALS AND METHODS

3.2.a. Media and growth conditions

Strains were grown to log phase (OD_{600} = approximately 1) in synthetic complete dextrose media (SCD; 0.8% yeast nitrogen base without amino acids [Becton Dickinson, 291940], 2% dextrose [Himedia, GRM077], pH 5.5) or synthetic minimal media (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as needed) as described previously (Sherman 1991). Yeast cells were grown at 30°C. Yeast transformations were performed using lithium acetate method as previously described (Gietz and Woods 2002).

3.2.b. Yeast strains and plasmids

All strains, plasmids, and primers used in this study are listed in Table 3.1, Table 3.2, and Table 3.3, respectively. The yeast strains used in this study are derivatives of BY4741 or BY4742. PCR-based targeted homologous recombination was used to replace complete open reading frame of *PIL1* with KanMX6 or HIS3MX6 cassettes, as indicated (Longtine, McKenzie et al. 1998). The method of deletion of *PIL1* has been described in Chapter 2 (section 2.2b). Yeast-two-hybrid strains and plasmids were kind gifts from E.A. Craig (Washington University School of Medicine). Pil1-Myc strain was a gift from Victor J Cid (Complutense University of Madrid, Madrid). Deletion strains were kind gifts from Krishnaveni Mishra's yeast deletion library (Euroscarf) collection (Department of Biochemistry, University of Hyderabad). pUG35, pFA6a-HisMX6, and pFA6a-KanMX6 plasmids were provided by Krishnaveni Mishra's lab. Shirisha Nagotu (IIT Guwahati) provided pHS12 Mito-mCherry plasmid.

For the construction of p426TEF Pil1-FLAG, complete coding sequences of yeast *PIL1* was amplified using yeast genomic DNA as a template and the primer pairs NB754/NB755. The PCR amplified product was digested with EcoRI/HindIII and ligated with pNB270 vector as described

previously (Allu, Marada et al. 2015), to replace MXR1 gene with PIL1 to generate pNB441. Pil1-FLAG was subcloned from pNB441 in p425TEF vector at BamHI/XhoI sites to generate pNB656. For yeast two-hybrid vectors pGBD-Pil1 and pGAD-Pil1, the DNA fragment of PIL1 was PCR amplified from yeast genomic DNA using primers NB754/NB850 with EcoRI and SalI restriction sites. The double digested PCR product was ligated into the EcoRI and SalI sites of pGBD-C1 (pNB415) and pGAD-C1 (pNB422) vectors to generate pNB428 and pNB427 respectively. DNA fragments encoding Fis1, Dnm1, Mdv1, and Caf4 were PCR amplified from yeast genomic DNA with primer pairs NB1149/NB1150, NB1151/NB1152, NB1153/NB1154, and NB1155/NB1156, respectively. PCR products were digested with BamHI/SalI, and ligated into pGAD-C1 and pGBD-C1 to generate pGAD-Fis1 (pNB526), pGAD-Mdv1 (pNB527), pGAD-Caf4 (pNB528), and pGBD-Dnm1 (pNB525), respectively. The same PCR products of Fis1 and Dnm1 were also ligated into the BamHI and SalI sites of pUG35-GFP vector to generate pUG35 Fis1-GFP (pNB629) and pUG35 Dnm1-GFP (pNB630) constructs. For cloning of pGAD-C1 Mgm1 (pNB530), pGAD-C1 Fzo1 (pNB813), and pGAD-C1 Ugo1 (pNB531) vectors, MGM1, FZO1, and UGO1 were PCR amplified from yeast genomic DNA using primer pairs NB1195/NB1196, NB1197/NB1198, and NB1199/NB1200, respectively. PCR products of FZO1 and UGO1 were digested with BamHI/SalI and that of MGM1 was digested with XmaI/BglII. The double digested inserts were ligated into the respective sites of pGAD-C1.

To clone Pil1 in pET28a vector for purifying Pil1 protein for antibody generation, Pil1 was PCR amplified using forward primer NB879 and reverse primer NB850. PCR-product and pET28a vector were double digested with BamHI and Sal1, and ligated using T4 DNA ligase enzyme to generate pET28a Pil1 construct (pNB547).

Table 3.1 Strains

Strain	Genotype	Reference
YNB105	BY4741; MATa his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ	Euroscarf
YNB106	BY4742; MATa his $3\Delta 1$; leu $2\Delta 0$; met $15\Delta 0$; ura 3Δ	Euroscarf
YNB 339	PJ469-A	(James, Halladay et al. 1996)
YNB 474	BY4741; pil1Δ::KanMX	This study
YNB 245	BY4742; <i>pil1</i> Δ:: <i>KanMX</i>	Euroscarf

YNB389	BY4741; fis1Δ::KanMX	Euroscarf
YNB511	BY4742; fis1Δ::KanMX	Euroscarf
YNB388	BY4741; $dnm1\Delta$:: $KanMX$	Euroscarf
YNB512	BY4742; $dnm1\Delta$:: $KanMX$	Euroscarf
YNB 454	BY4741; $fis1\Delta$:: $KanMX pil1\Delta$:: $HIS3$	This study
YNB 473	BY4741; $dnm1\Delta$:: $KanMX$ $pil1\Delta$:: $HIS3$	This study

Table 3.2. Plasmids

Plasmid		Source/Reference
pNB356	p425 TEF	(Mumberg, Muller et al. 1995)
pNB357	p426 TEF	(Mumberg, Muller et al. 1995)
pNB656	p425 TEF Pil1-flag	This study
pNB441	p426 TEF Pil1-flag	This study
pNB547	pET28a Pil1	This study
pNB478	pFA6a-HisMX6	(Longtine, McKenzie et al. 1998)
pNB479	pFA6a-KanMX6	(Longtine, McKenzie et al. 1998)
pNB812	pHS12 Mito-mCherry	Addgene
pNB415	pGBD-C1	(James, Halladay et al. 1996)
pNB422	pGAD-C1	(James, Halladay et al. 1996)
pNB428	pGBD-Pil1	This study
pNB427	pGAD-Pil1	This study
pNB526	pGAD-Fis1	This study
pNB525	pGBD-Dnm1	This study
pNB527	pGAD-Mdv1	This study
pNB528	pGAD-Caf4	This study

pNB530	pGAD-C1 Mgm1	This study
pNB531	pGAD-C1 Ugo1	This study
pNB813	pGAD-C1 Fzo1	This study
pNB636	pUG35	Gueldener U, Hegemann JH. Heinrich Heine University, Germany
pNB629	pUG35 Fis1-GFP	This study
pNB630	pUG35 Dnm1-GFP	This study

Table 3.3 Primers

Primer Name	Sequence (5'-3')	Restriction enzyme
NB754 PIL1F	GCCGAATTCACCATGCACAGAACTTACTCTTTAA	EcoRI
NB755 PIL1R	GCCAAGCTTAGCTGTTGTTTGTTGGGGAA	HindIII
NB879 PIL1F	GCCGGATCCACCATGCACAGAACTTACTCTTTAA	BamHI
NB850 PIL1R	GCCGTCGACAGCTGTTGTTTGTTGGGGAA	SalI
NB1149 FIS1F	GCCGGATCCACCATGACCAAAGTAGATTTTT	BamHI
NB1150 FIS1R	GCCGTCGACCCTTCTCTTGTTTCTTAAGA	SalI
NB1151 DNM1F	GCCGGATCCACCATGGCTAGTTTAGAAGATCTT	BamHI
NB1152 DNM1R	GCCGTCGACCAGAATATTACTAATAAGGGTTG	SalI
NB1153 MDV1F	GCC GGATCC ACC ATGTCAGTGAACGACCAAAT	BamHI
NB1154 MDV1R	GCC GTCGAC TACGGCCCAAATATTTACGTC	SalI
NB1155 CAF4F	GCC GGATCC ACC ATGGGTTCGGGCGATACTA	BamHI
NB1156 CAF4R	GCC GTCGAC AAGTGTCCATACATTGATGTC	SalI
NB1195 Mgm1F	GCCCCGGGATGAATGCGAGCCCAGTACGG	XmaI
NB1196 Mgm1R	GCCAGATCTTAAATTTTTGGAGACGCCCTT	BglII
NB1197 Fzo1F	GCCGGATCCATGTCTGAAGGAAAACAACAATT	BamHI
NB1198 Fzo1R	GCCGTCGACATCGATGTCTAAATTTATTTCTT	SalI

NB1199 Ug	go1F GCCGGA	ATCCATGAACAACAATAATGTTACGGA	BamHI
NB1200 Ug	go1R GCCG	TCGACGAACTTCTCTTGTTCCATGTTG	SalI

3.2.c. Yeast two-hybrid assay

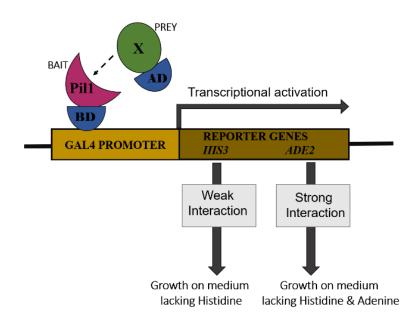


Figure 3.2 Principle of Yeast two-hybrid assay

The basic idea behind two-hybrid assay is to fuse the two proteins of interest X and Y to DNA-binding domain (DBD) and Activation domain (AD) of Gal4, respectively. If there is an interaction between X and Y, it will reconstitute a functional transcription factor which can then drive the expression of reporter genes. Here the reporter genes are *HIS3* which encodes for histidine biosynthesis enzyme and *ADE2* which encodes adenine biosynthesis enzyme.

3.2.d. Growth assay

For performing growth assay on non-fermentable carbon source, indicated strains were freshly streaked on YPD plates and the resultant colonies were grown in YPD medium overnight. These cultures were normalized to O.D.₆₀₀= 0.5. 10-fold serial diluted cultures were spotted on YPD plate and YPG (2% glycerol) plate. Images were taken after 2 days of incubation of these plates at 30°C.

3.2.e. Immunoblotting

After separation in SDS-PAGE, proteins were transferred onto nitrocellulose membranes (PALL, 66485) and blocked with 5% skimmed milk (Himedia, GRM1254) in Tris-buffered saline (TBS). The commercial monoclonal antibody anti-GFP (ab183734, Abcam, 1:5000) was used to detect GFP epitope-fused protein on immunoblots. Anti-Pil1 serum (Anti-rabbit, 1:3000) was generated in the laboratory using full-length Pil1-6XHis protein as immunogen. In the procedure of raising antibody, all the required guidelines were followed which were approved by the Institutional Animal Ethics Committee, University of Hyderabad (UH/IAEC/NS/2014-I/25). HRP-conjugated anti-rabbit (Jackson ImmunoResearch Laboratories, 111-035-144, 1:25,000) or anti-mouse (Jackson ImmunoResearch Laboratories, 115-035-146, 1:25,000) polyclonal secondary antibodies were used, followed by the detection of signal using ECL reagents (Advansta Western-Bright, K-12045-D20) and imaging in Chemidoc Imaging System (Bio-Rad). Quantification of Western Blot images was done using Fiji software. Graphs and statistical analysis were done using GraphPad Prism8.

3.2.f. Co-immunoprecipitation

For Co-IP assays, cells were collected and lysed with glass beads (Sigma, G8772) in lysis buffer ($20 \, \text{mM}$ Tris-HCL [pH 8.0], $100 \, \text{mM}$ NaCl [Himeda, GRM031], $1 \, \text{mM}$ EDTA and $0.5 \, \%$ Nonidet P-40 [Sigma,I8896], protease inhibitor cocktail [Roche, 04693132001]). After bead-beating, cells were centrifuged at $12,000 \, \text{rpm}$ for $10 \, \text{min}$. Supernatant was collected and incubated with anti-Pil1 serum (and pre-immune serum as control) for $12 \, \text{hr}$ at 4°C in an end-over-end rotor. $30 \, \mu\text{L}$ of protein A/G PLUS-Agarose beads (SCBT, SC-2003)) were added and incubated for $2 \, \text{hr}$ at 4°C in an end-over-end rotor. Immunocomplexes were then washed three times with lysis buffer and eluted by SDS-PAGE loading buffer. The proteins were separated by SDS-PAGE and immunoblotted with anti-GFP antibody and anti-Pil1 serum.

3.2.g. Fluorescence microscopy

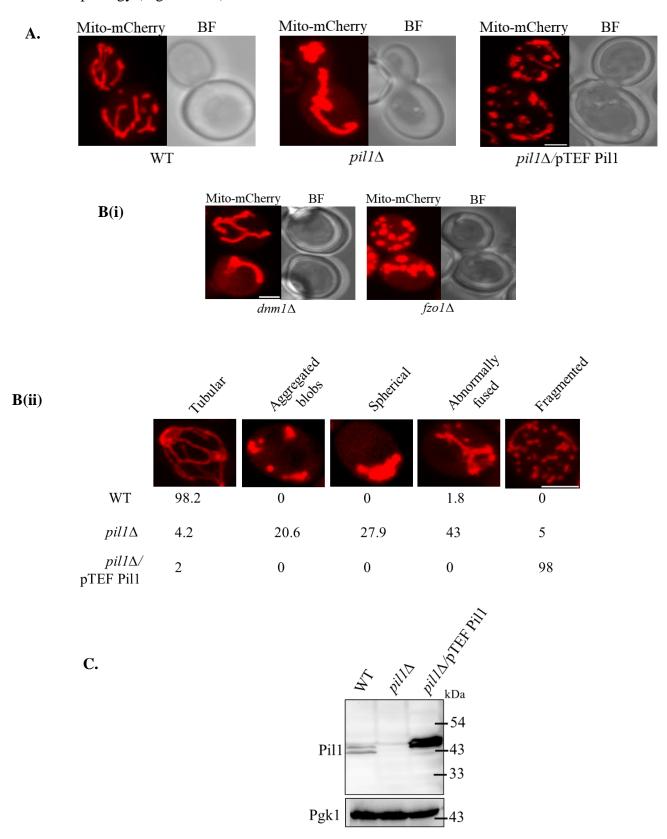
Cells grown till O.D.₆₀₀= approximately 1, were harvested by centrifugation and the pellet was washed twice with fresh SMD media. Cells suspended in SMD media were added to slides coated with 0.1% Concanavalin A (Sigma, C2010) solution. The cells were allowed to settle for 2-3 minutes and mounted with coverslips. Images were acquired either on Leica TCS SP8 (HC PL APO CS2 63X/1.40 OIL objective) or Zeiss LSM NLO 710 (63X/1.5 OIL objective) confocal

microscope. Fiji Software was used to process and analyse the microscopy data. Graphs and statistical analysis were done using GraphPad Prism8.

3.2.h Measurement of Mitochondrial Potential

For measurement of mitochondrial potential, cells growing in SMD medium were harvested by centrifugation (1 O.D. cells), washed with PBS twice and then treated with 200 nM 3,3′-dihexyloxacarbocyanine iodide [DiOC6(3); Invitrogen D273) in 500 µL PBS for 30 min at 30°C. Absorbance was measured in a multiplate reader.

3.2.i. Citrate synthase assay


WT, *pil1*Δ, and Pil1 overexpression cells were grown till log phase, cells were harvested and resuspended in 700 μl SEM buffer. Lysates were prepared by bead-beating (3 cycles; 40 seconds ON, 20 seconds OFF). For measuring citrate synthase activity, following components were taken in a 1 mL cuvette: 500 μl of Tris (200 mM, pH 8.0) with Triton X-100 (0.2%), 300 μl of Milli-Q water, 100 μl of DTNB [5,5′-Dithiobis(2-nitrobenzoic acid) (Sigma, D218200)], 30 μl of Ac CoA [Acetyl CoenzymeA lithium salt ;10 mM; Sigma; A2181]and 20 μg of lysate. MQ water was added to adjusted the volume to 950 μl. Baseline activity was taken at 412 nm for 2 min. 50 μl of 10 mM oxaloacetic acid was added to start the reaction. The reaction solution was mixed by inversion. Increase in absorbance at 412 nm was monitored for 3 min.

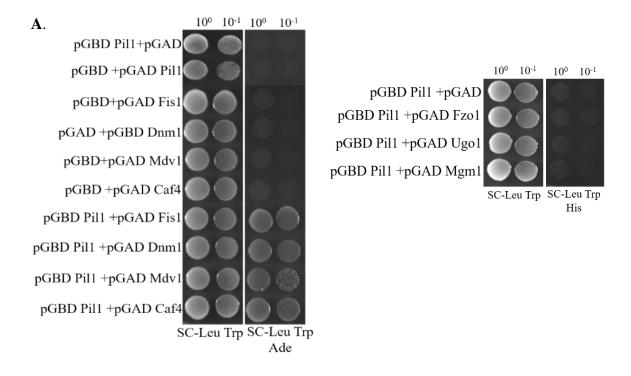
3.3 RESULTS

3.3.a. Absence and abundance of Pil1 leads to abnormal morphology of mitochondrial network:

Next, we examined if Pil1 causes any kind of alteration in mitochondrial morphology by using pHS12 Mito-mCherry plasmid which contains Cox4 presequence that targets mCherry to the mitochondrial matrix. We observed the mitochondrial morphology under fluorescence microscope in WT, $pil1\Delta$ and Pil1 overexpression ($pil1\Delta$ /pTEF Pil1) cells. The transformed cells were grown to log phase (OD₆₀₀=1) and mitochondrial morphology was observed under fluorescence microscope. We observed that instead of forming typical tubular structures, cells

lacking Pil1 as well as those with Pil1 overexpression displayed abnormal mitochondrial morphology (Figure 3.2A).

Figure 3.2- Pil1 regulates mitochondrial morphology.


A. Mitochondrial morphology in WT, $pil1\Delta$ and Pil1 overexpression ($pil1\Delta/pTEF$ Pil1) was observed under fluorescence microscope. Mito-mCherry plasmid (pNB812) was used to tag mitochondria. Images are maximum projection of z-stacks. B(i). $dnm1\Delta$ and $fzo1\Delta$ were used as controls for quantification of mitochondrial morphology. B(ii). Quantification of mitochondrial phenotypes in WT, $pil1\Delta$ and $pil1\Delta/pTEF$ Pil1 cells. Mitochondrial morphology shown for each strain was collected from three independent analysis of at least 80 yeast cells. C. Western blot showing the levels of Pil1 protein in WT, $pil1\Delta$ and $pil1\Delta/pTEF$ Pil1 cells. WT, $pil1\Delta$ and $pil1\Delta/pTEF$ Pil1 cells were lysed, subjected to SDS-PAGE and immunoblotted with anti-Pil1 serum.

Keeping the mitochondrial morphologies in $dnm1\Delta$ (hyperfused) and $fzo1\Delta$ (fragmented) as references [Figure 3.2B(i)], we categorized these morphologies as abnormally fused, aggregated blobs, spherical, and fragmented. We observed that 43% of $pil1\Delta$ cells contained abnormally fused mitochondria while 27.2 % cells displayed a spherical mitochondrial network. To our surprise, we also found that a fraction of $pil1\Delta$ cells (20.6 %) had aggregated mitochondria [Figure 3.2B(ii)]. On the other hand, when we overexpressed Pil1 by transforming $pil1\Delta$ cells with TEF-Pil1 plasmid, almost all cells (98%) contained fragmented mitochondria. The levels of Pil1 protein in WT, $pil1\Delta$ and Pil1 overexpression cells were confirmed by immunoblotting with anti-Pil1 serum (Figure 3.2C). These observations show that Pil1 indeed plays a critical role in regulating mitochondrial morphology.

3.3.b. Pil1 interacts with Fis1 and Dnm1:

As Pil1 induces the change in mitochondrial shape, we were interested to see if it interacts with any of the proteins of mitochondrial fission and fusion machinery. We used yeast two hybrid method to check the interactions. We got the interaction of Pil1 with all four mitochondrial fission proteins (Figure 3.3A).

To confirm the interaction of Pil1 with Fis1 and Dnm1, we expressed Fis1 and Dnm1 in pUG35-GFP vector under *MET25* promoter, and immunoprecipitated with Pil1 antibody. We find that Pil1 specifically pulled down Fis1-GFP and Dnm1-GFP (Figure 3.3B). Based on these data, we conclude that Pil1 physically interacts with major components of mitochondrial fission machinery, Fis1 and Dnm1.

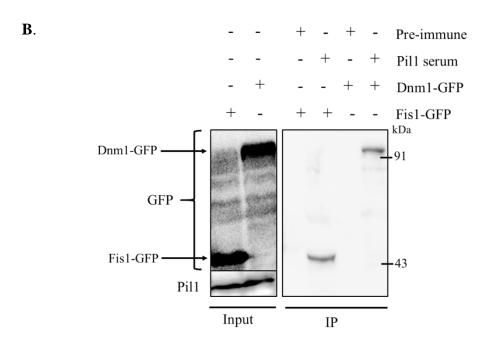
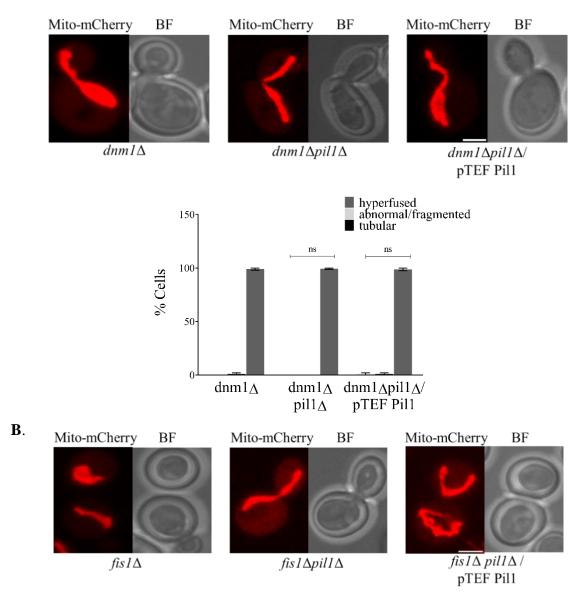


Figure 3.3. Pil1 interacts with mitochondrial fission protein Fis1 and Dnm1


A. Yeast two hybrid analysis between Pil1 and mitochondrial fission and fusion proteins. The PJ69-4A strain was transformed with pGAD-C1 and pGBD-C1 plasmids, which can express the indicated proteins. Cells were grown on +Ade/ –Ade plates or +His/–His at 30°C for 2-3 days. B. Co-immunoprecipitation assays to test the interaction of Pil1 with Fis1-GFP and Dnm1-GFP. $fis1\Delta$ cells expressing Fis1-GFP and $dnm1\Delta$ cells expressing Dnm1-GFP were grown in SMD (SCD lacking uracil and methionine) media until log phase. Anti-Pil1 serum was used to precipitate Fis1-GFP and Dnm1-GFP in respective samples. Pre-immune serum was used as negative control. Western

blotting was done using anti-Pil1 and anti-GFP antibodies.

3.3.c. Fis1 and Dnm1 are required for the change in mitochondrial morphology caused due to Pil1:

Next, we wanted to explore whether major mitochondrial fission factors Fis1 and Dnm1 have any role in generating mitochondrial morphology that we observed in the absence and overexpression of Pil1. We analyzed the mitochondrial morphology in $fis1\Delta pil1\Delta$ and $dnm1\Delta pil1\Delta$ double mutants. Mitochondria remained hyperfused in almost all cells, as reported in $fis1\Delta$ and $dnm1\Delta$ single mutants. Additionally, overexpression of Pil1 did not rescue the fission defect in $fis1\Delta pil1\Delta$ and $dnm1\Delta pil1\Delta$ double mutants (Figure 3.4A&B).

A.

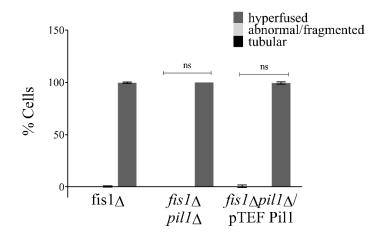
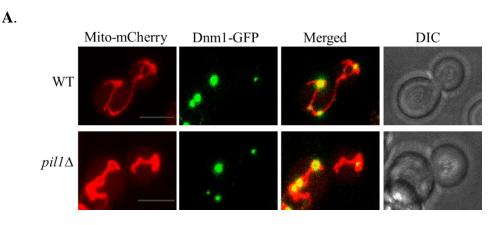



Figure 3.4 Pil1 does not alter mitochondrial morphology without Fis1 and Dnm1

Mitochondrial morphology in $fis1\Delta$, $dnm1\Delta$, $fis1\Delta pil1\Delta$, $dnm1\Delta pil1\Delta$ and $fis1\Delta pil1\Delta$, $dnm1\Delta pil1\Delta$ strains overexpressing Pil1 was observed. Graph represents 3 independent trials of 100 yeast cells. Statistical analysis was done using Multiple Comparisons: Two- way ANOVA. ns:non-significant.

3.3.d. Pil1 does not alter the localization of Fis1 and Dnm1 to mitochondria:

As Pil1 interacts with Fis1 and Dnm1 Section (3.3.b), we speculated that it might also alter the localization of these proteins to mitochondria and thereby leads to change in the mitochondrial dynamics. But we did not see any change in distribution of Dnm1 and Fis1 on mitochondria in the absence of Pil1 (Figure 3.5A&B), which shows that Pil1 does not affect the recruitment of these proteins to mitochondria.

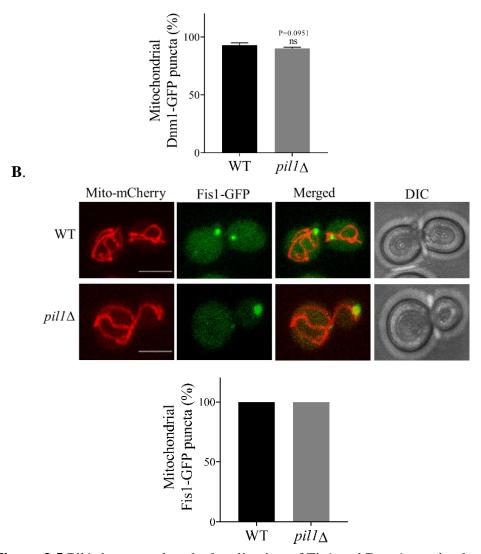
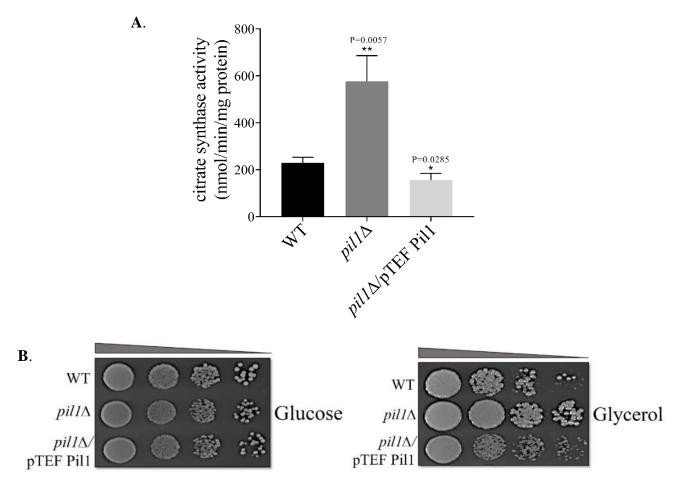


Figure 3.5 Pil1 does not alter the localization of Fis1 and Dnm1 to mitochondria

A. Number of Fis1 foci associated with mitochondria were analysed in WT and $pil1\Delta$ cells transformed with mito-mCherry and Fis1-GFP plasmids. B. Number of Dnm1 foci associated with mitochondria were analysed in WT and $pil1\Delta$ cells transformed with mito-mCherry and Dnm1-GFP plasmids. Maximum projections of z-stacks are shown in the represented images. BF: Brightfield. Data shown is the mean \pm SD of 3 independent trials. Scale bar represents 2 μ m. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph). ns:non-significant.


3.3.e. Absence of Pil1 leads to increased mitochondrial mass

As Pil1 severely affects mitochondrial morphology, we thought that the other aspects like mitochondrial content and its activity might also be getting affected. To check mitochondrial content, we used citrate synthase assay. Citrate synthase is a key enzyme in TCA cycle and its activity is used to measure the mitochondrial content in cells and tissues. We found that $pil1\Delta$

cells have higher activity than WT whereas in Pil1 overexpression cells it was slightly reduced (Figure 3.6A). The reason behind this could be more fused mitochondria in $pil1\Delta$ which tends to be more protected from degradation, and more fragmented mitochondria in Pil1 overexpression which is more prone to degradation.

Also, we checked the growth in glycerol medium. Glycerol is a non-fermentable carbon source, and to utilize the carbon source for energy production, mitochondrial respiration is required. So the change in growth pattern on fermentable vs non-fermentable carbon source is usually an indicative of differential mitochondrial respiration. Compared to WT, $pil1\Delta$ cells grow better while cells overexpressed with Pil1 seem to grow slower on glycerol medium (Figure 3.6B). This phenotype can also be attributed to the altered mitochondrial content in the cells.

We also measured mitochondrial potential using DiOC6, which is green-fluorescent dye that stains mitochondria depending on its potential, when used at a lower concentration. $pil1\Delta$ cells show a little higher mitochondrial potential, which again could be due to more fused membranes as more fused mitochondria tend to have a slightly higher potential (Figure 3.6C).

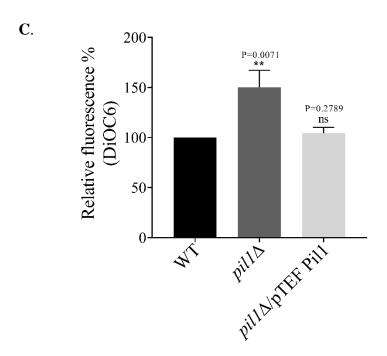
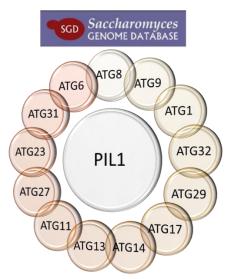


Figure 3.6 Mitochondrial mass increase in the absence of Pil1

A.Citrate synthase activities were determined in whole cell lysates from WT, $pil1\Delta$, and Pil1 overexpression cells. Activities of citrate synthase enzyme was measured in nmol/min/mg protein of the whole cell lysate. The amount of lysate used was 20 µg. B. Growth assay. Comparison of growth of WT, $pil1\Delta$,, and Pil1 overexpression cells in glucose and glycerol media. Cells were grown till O.D. $_{600}$ =1, equalized to 0.5 O.D and serially spotted onto the agar plates. C. Measurement of mitochondrial membrane potential using DiOC6(3) dye. Cells were grown till log phase and then incubated with 200 nM of DiOC6(3) dye for 30 min. Readings were taken in a multiplate reader. Data are presented as mean \pm SD of 3 independent experiments. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph) ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05 vs WT.

3.4 CONCLUSION

In this chapter, we have shown that Pil1 alters the dynamics of mitochondria. Its absence leads to abnormally fused mitochondria while its overexpression causes severe fragmentation. Also, we have seen that it interacts with Fis1 and Dnm1, but the functional relevance of this interaction is not known. Change in mitochondrial shape caused due to Pil1 is dependent on Fis1 and Dnm1. Due to more fused mitochondria in the absence of Pil1, we have observed more mitochondrial activity and membrane potential.


CHAPTER 4

Role of Pil1 in autophagy/mitophagy

4.1 BACKGROUND

Autophagy, which literally translates to "self-eating" is a process of cellular degradation and recycling which is highly conserved in eukaryotes. It can be either selective or non-selective. In non-selective autophagy, also called bulk autophagy, the cytoplasmic contents are randomly targeted for degradation, whereas selective autophagy targets specific organelles. In both selective and non-selective autophagy, the morphological hallmark is the formation of isolation membrane which encloses to form the autophagosome that engulfs the cargo in the cytoplasm and fuses with vacuole/lysosome in case of mammals, where the contents undergo degradation and recycling. The process is carried out by several ATG proteins that form different complexes at the different stages of the autophagic pathway.

One reason why we decided to study the role of Pil1 in autophagy was its interaction with ATG proteins in high throughput analysis (Figure 4.1) and another reason was that we saw (Chapter 2) that Pil1 alters mitochondrial morphology which is very well known to regulate mitochondrial autophagy.

Figure. 4.1-ATG proteins as interacting partners of Pil1 from high-throughput analysis.

Source: Saccharomyces cerevisiae genome database (SGD)

4.2 MATERIALS AND METHODS

4.2.a. Media and growth conditions

Strains were grown to log phase (O.D.₆₀₀ = approximately 1) in synthetic complete dextrose media (SCD; 0.8% yeast nitrogen base without amino acids [Becton Dickinson, 291940], 2% dextrose [Himedia, GRM077], pH 5.5) or synthetic minimal media (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as needed) as described previously (Sherman 1991). For mitochondria proliferation, cells were grown in lactate medium (YPL; 1% yeast extract, 2% peptone, and 2% lactate) or synthetic minimal medium with lactate (SML; 0.67% yeast nitrogen base, 2% lactate, and auxotrophic amino acids and vitamins as needed). Autophagy/mitophagy was induced by shifting the cells to nitrogen starvation medium with glucose (SD-N; 0.17% yeast nitrogen base without ammonium sulfate or amino acids [Becton Dickinson, 233520], and 2% dextrose). Yeast cells were grown at 30°C. Yeast transformations were performed using lithium acetate method as previously described (Gietz and Woods 2002).

4.2.b. Yeast strains and plasmids

All strains, plasmids, and primers used in this study are listed in Table 4.1, Table 4.2, and Table 4.3, respectively. The yeast strains used in this study are derivatives of BY4741 or BY4742. PCRbased targeted homologous recombination was used to replace complete open reading frame of PIL1 with KanMX6 or HIS3MX6 cassettes, as indicated (Longtine, McKenzie et al. 1998). The method of deletion of PIL1 has been described in Chapter 1 (section 2.2b). Construction of pTEF Pil1-FLAG (pNB656, pNB441), pGAD-Pil1 (pNB427), and pGBD-Pil1 (pNB428)) have also been described in Chapter 3 (section 3.2b). Yeast-two-hybrid strains and plasmids were kind gifts from E.A. Craig (Washington University School of Medicine). Pil1-Myc strain was a gift from Victor J Cid (Complutense University of Madrid, Madrid). Deletion strains were kind gifts from Krishnaveni Mishra's yeast deletion library (Euroscarf) collection (Department of Biochemistry, University of Hyderabad). pFA6a-HisMX6 and pFA6a-KanMX6 plasmids were provided by Krishnaveni Mishra's lab. Shirisha Nagotu (IIT Guwahati) provided pHS12 Mito-mCherry plasmid. pRS423 GFP-Atg8 plasmid was a kind gift from Ravi Manjithaya (Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore). pRS316 Su9-DHFR-GFP plasmid was a kind gift from Jared Rutter (University of Utah School of Medicine, Salt Lake City). pRS316 Pgk1-GFP was a kind of gift from Michael Thumm (University Medical Center Göttingen,

Germany). pGBD-Atg8 was a gift from Y.Oshumi (Tokyo Institute of Technology, Japan). pGAD-Atg32 and pRS316 Atg32-HA were kind gifts from Koji Okamoto (Osaka University, Japan). pGBDU-Atg11 was a kind gift from Tomotake Kanki (Niigata University, Japan).

For construction of yeast two-hybrid vectors of Atg genes, DNA fragments encoding Atg1, Atg9, Atg27, Atg29, Atg23, Atg13, Atg14, Atg17, Atg31, and Atg24 were PCR amplified from yeast genomic DNA with primer pairs NB1122/NB1123, NB1124/NB1125, NB1126/NB1127, NB1128/NB1129, NB1130/NB1131, NB1132/NB1133, NB1134/NB1135, NB1136/NB1137, NB1138/NB1139, and NB1140/NB1141, respectively. PCR products of Atg1, Atg9, Atg27, Atg23, Atg14, Atg17, Atg31, and Atg24 were digested with BamHI/SalI, Atg29 with EcoRI/SalI, Atg13 with SmaI/SalI and ligated into respective sites of pGAD-C1.

Table 4.1 Strains

Strain	Genotype	Reference
YNB105	BY4741; MATa his 3Δ 1; leu 2Δ 0; met 15Δ 0; ura 3Δ	Euroscarf
YNB106	BY4742; MATα his $3\Delta1$; leu $2\Delta0$; met $15\Delta0$; ura 3Δ	Euroscarf
YNB 263	BY4741; <i>PIL1-6XMYC:: LEU2</i>	(Mascaraque, Hernaez et
YNB 339	PJ469-A	al. 2013) (James, Halladay et al.
YNB 474	BY4741; <i>pil1</i> Δ:: <i>KanMX</i>	1996) This study
YNB 245	BY4742; <i>pil1</i> Δ:: <i>KanMX</i>	Euroscarf
YNB389	BY4741; $fis1\Delta$:: $KanMX$	Euroscarf
YNB511	BY4742; $fis1\Delta$:: $KanMX$	Euroscarf
YNB388	BY4741; $dnm1\Delta$:: $KanMX$	Euroscarf
YNB512	BY4742; $dnm1\Delta$:: $KanMX$	Euroscarf
YNB 454	BY4741; $fis1\Delta::KanMX\ pil1\Delta::HIS3$	This study
YNB 473	BY4741; $dnm1\Delta$:: $KanMX$ $pil1\Delta$:: $HIS3$	This study
YNB 197	BY4742; atg32Δ::KanMX	Euroscarf
YNB292	BY4742; atg1Δ::KanMX	Euroscarf

Table 4.2. Plasmids

Plasmid		Source/Reference
pNB356	p425 TEF	(Mumberg, Muller et al. 1995)
pNB357	p426 TEF	(Mumberg, Muller et al. 1995)
pNB656	p425 TEF Pil1-flag	This study
pNB441	p426 TEF Pil1-flag	This study
pNB478	pFA6a-HisMX6	(Longtine, McKenzie et al. 1998)
pNB479	pFA6a-KanMX6	(Longtine, McKenzie et al. 1998)
pNB812	pHS12 Mito-mCherry	Addgene
pNB415	pGBD-C1	(James, Halladay et al. 1996)
pNB422	pGAD-C1	(James, Halladay et al. 1996)
pNB428	pGBD-Pil1	This study
pNB427	pGAD-Pil1	This study
pNB508	pGAD-Lsp1	This study
pNB510	pGAD-Atg1	This study
pNB511	pGAD-Atg9	This study
pNB512	pGAD-Atg27	This study
pNB513	pGAD-Atg29	This study
pNB514	pGAD-Atg23	This study
pNB515	pGAD-Atg13	This study
pNB516	pGAD-Atg14	This study
pNB517	pGAD-Atg17	This study
pNB518	pGAD-Atg31	This study
pNB519	pGAD-Atg24	This study
pNB433	pGBD-Atg8	Y.Oshumi, Japan

pGBDU-Atg11	(Aoki, Kanki et al. 2011)
pGAD-Atg32	Koji Okamota, Japan
pRS316 Atg32-HA	Koji Okamoto, Japan
pRS423 GFP-Atg8	Ravi Manjithaya, JNCASR Bangalore
pRS316 Su9-DHFR-GFP	(Heo, Livnat-Levanon et al. 2010)
pRS316 Pgk1-GFP	(Welter, Thumm et al. 2010)
	pGAD-Atg32 pRS316 Atg32-HA pRS423 GFP-Atg8 pRS316 Su9-DHFR-GFP

Table 4.3. Primers

Primer Name	Sequence (5'-3')	Restriction enzyme
NB1122 ATG1F	GCCGGATCCACCATGGGAGACATTAAAAATAA AGAT	BamHI
NB1123 ATG1R	GCCGTCGACATTTTGGTGGTTCATCTTCTG	SalI
NB1124 ATG9F	GCCGGATCCACCATGGAGAGAGATGAATACCA GTTA	BamHI
NB1125 ATG9R	GCCGTCGACTCTTCCGACGTCAGACTTCTT	SalI
NB1126 ATG27F	GCCGGATCCACCATGGTATCGAAGACTTGGAT AT	BamHI
NB1127 ATG27R	GCCGTCGACAACGGCGCTATAACCGCCT	SalI
NB1128 ATG29F	GCCGAATTCACCATGATTATGAATAGTACAAA CACAGT	EcoRI
NB1129 ATG29R	GCCGTCGACGAATTGCAATCTGTCCATTA	SalI
NB1130 ATG23F	GCCGGATCCACCATGGAACTGAATCAGGTTTT	BamHI
NB1131 ATG23R	GCCGTCGACTTCAACTTTTTTTGATATGGCATC	SalI
NB1132 ATG13F	GCCCCGGGACCATGGTTGCCGAAGAGGACAT	SmaI
NB1133 ATG13R	GCCGTCGACACCTTCTTTAGAAAGGTTCATATC AC	SalI
NB1134 ATG14F	GCCGGATCCACCATGCATTGCCCAATTTGCCAC	BamHI

NB1135 ATG14R	GCCGTCGACGCCTACCACGTACCATCGGT	SalI
NB1136 ATG17F	GCCGGATCCACCATGAACGAAGCAGATGTTAC	BamHI
NB1137 ATG17R	GCCGTCGACAGGATTCTTCACGTTGTAATTT	SalI
NB1138 ATG31F	GCCGGATCCACCATGAATGTTACAGTTACTGTT	BamHI
NB1139 ATG31R	GCCGTCGACTACGGAATTGGAGAGCATTTGT	SalI
NB1140 ATG24F	GCCGGATCCACCATGACAGACAAAGGCAAGA AC	BamHI
NB1141 ATG24R	GCCGTCGACTAGACTATCGTCTACTTTTTCCCA TG	SalI

4.2.c. Autophagy and Mitophagy assays

For autophagy, yeast strains to be studied were grown in synthetic minimal (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as needed) media till log phase. Yeast strains to be studied for mitophagy were grown in synthetic minimal (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as required) media. For proliferation of mitochondria, cells were grown in synthetic minimal medium with lactate (SML; 0.67% yeast nitrogen base, 2% lactate, and auxotrophic amino acids and vitamins as needed). Cells equivalent to 3 unit O.D.₆₀₀ were collected for zero time point. Autophagy/mitophagy was induced by shifting the same number of cells (3 unit O.D₆₀₀) to nitrogen starvation medium with glucose (SD-N; 0.17% yeast nitrogen base without ammonium sulfate or amino acids, and 2% glucose). To monitor GFP release by immunoblotting, strains transformed with Su9-DHFR-GFP plasmid were used for mitophagy assays and those transformed with pRS423 Atg8-GFP were used for studying autophagy (Figure 4.2). Autophagy was also studied using pRS316 Pgk-GFP as a marker (Welter, Thumm et al. 2010).

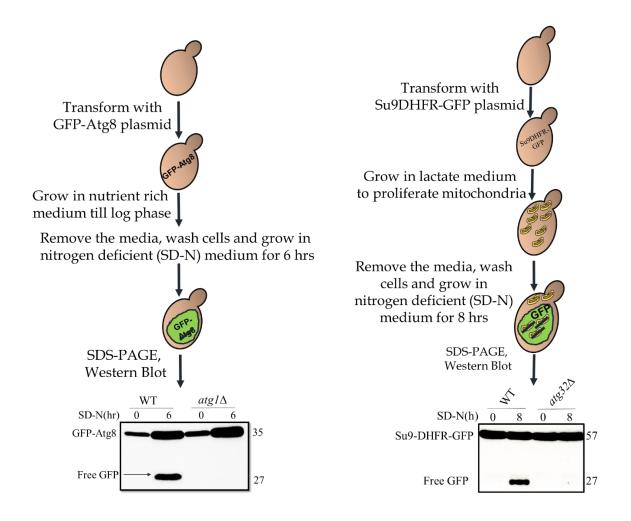


Figure 4.2 Schematic representation of methodology for autophagy and mitophagy assays

4.2.d. Mitochondria isolation

Crude mitochondria isolation was done as mentioned in Chapter 2 (section 2.2e). Sucrose-gradient purification of mitochondria was not done for this study.

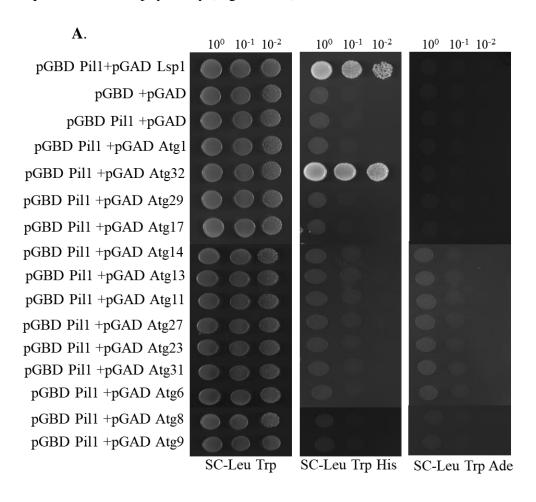
4.2.e. Yeast two hybrid

Yeast two-hybrid was performed as described in Chapter 3 (section 3.2c).

4.2.f. Co-immunoprecipitation

For Co-IP assay, cells were collected and lysed with glass beads (Sigma, G8772) in lysis buffer (20 mM Tris-HCL [pH 8.0], 100 mM NaCl [Himeda, GRM031], 1 mM EDTA and 0.5 % Nonidet P-40 [Sigma, I8896], protease inhibitor cocktail [Roche, 04693132001]. After bead-beating, cells

were centrifuged at 12,000 rpm for 10 min. Supernatant was collected and incubated with anti-HA (Anti-mouse, Abcam, ab130275) antibody for 12 hr at 4°C in an end-over-end rotor. 30 μ L of protein A/G PLUS-Agarose beads (SCBT, SC-2003)) were added and incubated for 2 h at at 4°C in an end-over-end rotor. Immunocomplexes were then washed three times with lysis buffer and eluted by SDS-PAGE loading buffer. The proteins were separated by SDS-PAGE and immunoblotted with anti-Myc antibody.


4.2.g. Whole cell extraction and Immunoblotting

Yeast cells (equivalent to A600 2-4) collected for the analysis were resuspended in 1 ml of water, spinned down at 13,000 rpm for 1 min, and the supernatant was discarded. Cells were resuspended in 160 μl of freshly prepared 1.85 M NaOH [Himedia, MB095], 7.4% β-mercaptoethanol [Sigma, M3148], mixed, and incubated on ice for 10 min. 160 µl of 50% TCA [Himedia,GRM6274] was added, mixed, and allowed to incubate on ice for 10 min. Cells were centrifuged at 13,000 rpm for 2 min, and the pellet was washed (not resuspended) with 500 µl of 1 M Tris base (not pH adjusted) (Sigma, T6066). The pellet was resuspended in 50 µl of SDS-PAGE loading buffer and heated at 95°C for 5 min. After cooling down, cells were centrifuged at 13,000 rpm for 5 min, and the supernatant was collected. Ten microliter of the supernatant was loaded into SDS-PAGE gel (10-12%). After separation in SDS-PAGE, proteins were transferred onto nitrocellulose membranes (PALL, 66485) and blocked with 5% skimmed milk (Himedia, GRM1254) in Trisbuffered saline. The commercial monoclonal antibodies anti-GFP (ab183734, Abcam, 1:5000), anti-Myc (ab9106, Abcam, 1:5000) and anti-HA (ab130275, Abcam) were used to detect GFP, Myc, or HA epitope-fused protein on immunoblots. Anti-Por1 and Pgk1 serums were kind gifts from Debkumar Pain (New Jersey Medical School, Rutgers University). HRP-conjugated anti-rabbit (Jackson ImmunoResearch Laboratories, 111-035-144, 1:25,000) or anti-mouse (Jackson ImmunoResearch Laboratories, 115-035-146, 1:25,000) polyclonal secondary antibodies were used, followed by the detection of signal using ECL reagents (Advansta Western-Bright, K-12045-D20) and imaging in Chemidoc Imaging System (Bio-Rad). Quantification of Western Blot images was done using Fiji software. Graphs and statistical analysis were done using GraphPad Prism8.

4.3 RESULTS

4.3. a. Yeast two hybrid analysis to screen the Atg proteins as interacting partners of Pil1

To screen the Atg proteins that interact with Pil1, we used yeast two-hybrid analysis and found a weak interaction of Pil1 with Atg32 (Figure 4.3A). Atg32 is mitophagy-specific receptor present on the outer membrane of mitochondria which is known to be indispensable for mitophagy. It is known to sequester the mitochondria to the autophagosomes. To confirm this, we performed co-immunoprecipitation study. pRS316 Atg32-HA or empty pRS316 (as control) were transformed in Pil1-Myc strain. Co-IP was performed as described in the materials and methods section. We found that significant amount of Pil1-Myc was pulled down with Atg32-HA, which shows that both the proteins interact physically (Figure 4.3B).

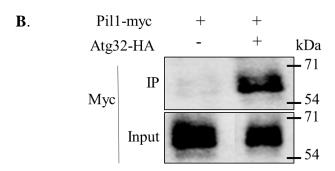
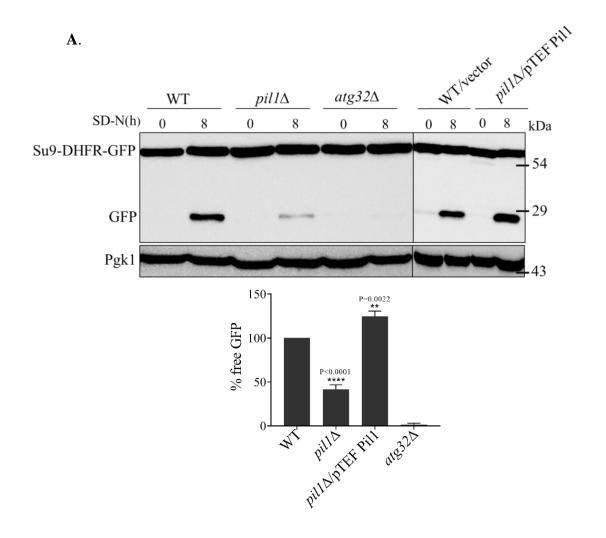
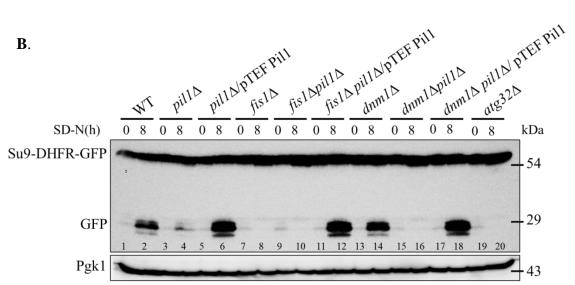
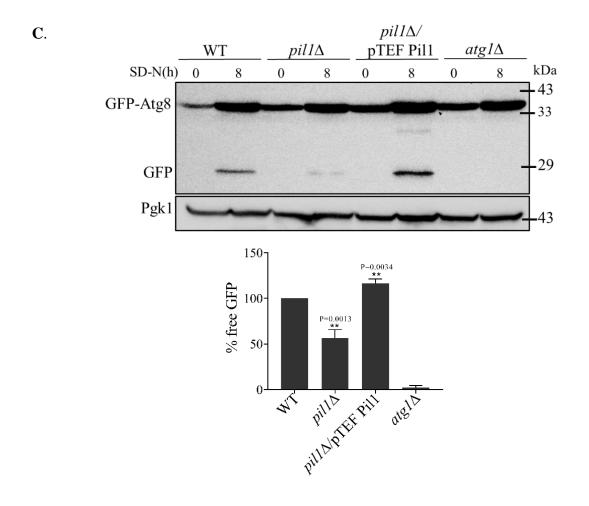


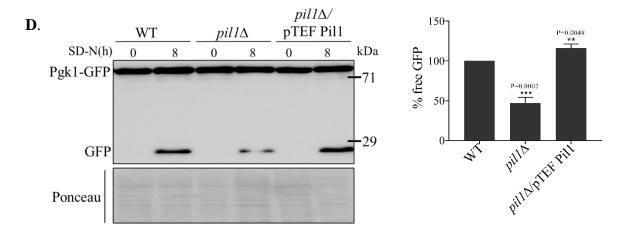
Figure 4.3 Pil1 interacts with Atg32.

A. Yeast two-hybrid analysis. Interaction of Pil1 with the indicated Atg proteins was checked through Y-2-H. The PJ69-4A strain was transformed with pGAD-C1 and pGBD-C1 plasmids, which can express the indicated proteins. Cells were grown on +Ade/ –Ade plates or +His/—His at 30°C for 2-3 days. Pil1 interacts weakly with Atg32. B. Co-immunoprecipitation assay to test the interaction of Pil1-Myc with Atg32-HA. Cells expressing Pil1-Myc were transformed with Atg32-HA plasmid and empty plasmid for control. Transformed cells were grown in SMD (SCD lacking uracil) media until log phase. Anti-HA antibody was used to precipitate Pil1-Myc. Western blotting was done using anti-Myc antibody.


4.3.b. Pil1 is involved not only in mitophagy, but also non-selective autophagy:


Though there is growing evidence that mitochondrial pro-fission factors play a role in mitophagy, there is still a lack of clarity behind the exact mechanism. In mammalian cells, it has been shown that mitophagy is impaired when mitochondrial fission is inhibited, which leads to accumulation of damaged mitochondria (Twig, Elorza et al. 2008). Nevertheless, we decided to check whether Pil1 regulates the fission factors mediated mitophagy or itself alters mitophagy. To measure mitophagy, we used Su9-DHFR-GFP processing assay. This plasmid has DHFR gene with Su9 presequence at the N-terminal and GFP tag at the C-terminal. Su9 presequence targets DHFR-GFP to mitochondria. During mitophagy, mitochondria are sequestered by autophagosomes and targeted to the vacuole where DHFR gets degraded, and GFP moiety, relatively resistant to proteolysis, remains intact. The amount of free GFP by immunoblotting is used as a measure to monitor mitophagy. After 8 h of nitrogen starvation to induce mitophagy, we found that free GFP release was significantly less in $pil1\Delta$ than WT and more in overexpressed Pil1 (Figure 4.4A). No GFP release was seen in $atg32\Delta$ as it is essential for mitophagy (Kanki, Wang et al. 2009, Okamoto, Kondo-Okamoto et al. 2009). Our data indicate that Pil1 is required for mitophagy.


We sought to find out if the function of Pil1 in mitophagy is dependent on Fis1 and Dnm1. For


this, we monitored the mitophagy levels in $fis1\Delta$, $dnm1\Delta$, $fis1\Delta pil1\Delta$ and $dnm1\Delta pil1\Delta$ strains. To our surprise, we found that $fis1\Delta$ and $fis1\Delta pil1\Delta$ cells were defective in mitophagy (Figure 4.4B, lanes 7,8 & 9,10). On the other hand, $dnm1\Delta$ cells showed almost normal mitophagy levels (lanes 13, 14), which were completely inhibited upon Pil1 depletion, i.e., in $dnm1\Delta pil1\Delta$ cells (lanes 15, 16). To get further clarification, we checked mitophagy after overexpressing Pil1 in $fis1\Delta pil1\Delta$ and $dnm1\Delta pil1\Delta$ cells and found that it significantly increased (lanes 11,12 & 17,18). Interestingly, overexpression of Pil1 can complement the mitophagy defect in $fis1\Delta$ cells. Altogether, our data suggest that the role of Pil1 in mitophagy is independent of Fis1 and Dnm1.

Considering that Pil1 has a role in mitophagy, we next wanted to check if role of Pil1 is limited to mitophagy or it regulates non-selective (bulk) autophagy as well. We utilized the GFP-Atg8 processing assay to monitor autophagy. Atg8 is considered as autophagosome marker, and is known to present on both the sides of the phagophore, the precursor to the autophagosome. After completion of autophagosome formation, Atg8 present on the surface is removed, whereas Atg8 present on the inner side is carried to the vacuole and degraded after lysis of the autophagic body. Hence, monitoring of free GFP processed from GFP-Atg8 fusion directly measures the level of autophagy (Shintani and Klionsky 2004). After 8 hr of autophagy induction in nitrogen starvation medium, we could see that free GFP band was much less intense in $pil1\Delta$. In contrast, it was more intense in Pil1 overexpression cells when compared to WT (Figure 4.4C). $atg1\Delta$ is used as a control. Similar results were obtained when GFP release from Pgk1-GFP was monitored to measure autophagy levels (Figure 4.4D). These results suggest that Pil1 is also required for bulk autophagy. However, the mechanism behind its role in the processes of selective and non-selective autophagy needs to be studied in more detail. However, the mechanism behind its role in the processes of selective and non-selective autophagy needs to be studied in more detail.

Figure 4.4. Pil1 regulates mitophagy and bulk autophagy

A and B. Mitophagy assay. Indicated strains transformed with Su9-DHFR-GFP plasmid were grown in SML media (SCL lacking leucine and uracil) to proliferate mitochondria. Cells were then shifted to SD-N media for 8 hrs. Samples were collected before and after nitrogen starvation. Protein extracts were immunoblotted with anti-GFP antibody. Positions of full length Su9-DHFR-

GFP and free GFP are indicated. Anti-Pgk1 serum was used as loading control. Quantification of mitophagy after 8 hr of nitrogen starvation is represented as a percentage of the ratio free GFP to total GFP signal. Data are presented as mean \pm SD of 3 independent assays. C. Autophagy assay. Indicated strains carrying pRS423 GFP-Atg8 plasmid were grown in SMD media (SCD lacking histidine and leucine) and then shifted to SD-N media for 8 hr. Cells were collected before and after nitrogen starvation. Immunoblotting was done with anti-GFP, and positions of full length GFP-Atg8 and free GFP are indicated. Anti-Pgk1 was used as a loading control. Quantification of autophagy is the percentage of free GFP/total GFP signal. D. Pgk1-GFP was used to monitor bulk autophagy. Ponceau is shown as loading control. Indicated strains carrying pRS316 Pgk1-GFP plasmid were grown in SMD media (SCD lacking histidine and leucine) and then shifted to SD-N media for 8 h. Cells were collected before and after nitrogen starvation. Quantification of autophagy is the percentage of free GFP/total GFP signal. Data are presented as mean \pm SD of 3 independent experiments. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph) ****P < 0.001, ***P < 0.001, **P < 0.001, **P

4.3.c. Expression and localization of Pil1 to mitochondria are enhanced during starvation

The levels of autophagy regulating proteins are known to increase by many folds when autophagy is induced by starvation. So we decided to check the levels of Pil1 in the starvation condition and found that it is almost 2-folds higher after 8 hr of N-starvation. We checked the expression levels in both autophagy inducing condition (N-starvation after growing in glucose media; Figure 4.5A) as well as in mitophagy inducing condition (N-starvation after growing in lactate media; Figure 4.5B).

As Pil1 localizes to mitochondria and regulates mitophagy, we were interested to see if the mitochondrial pool of Pil1 also increases when we induce mitophagy. So after growing cells in lactate medium we shifted them to SD-N medium for 2 hr and then separated the mitochondrial and cytosolic fractions. There is a clear increase in Pil1 protein in the mitochondrial fraction as well (Figure 4.5C). Together, these data substantiates the role of Pil1 in autophagy.

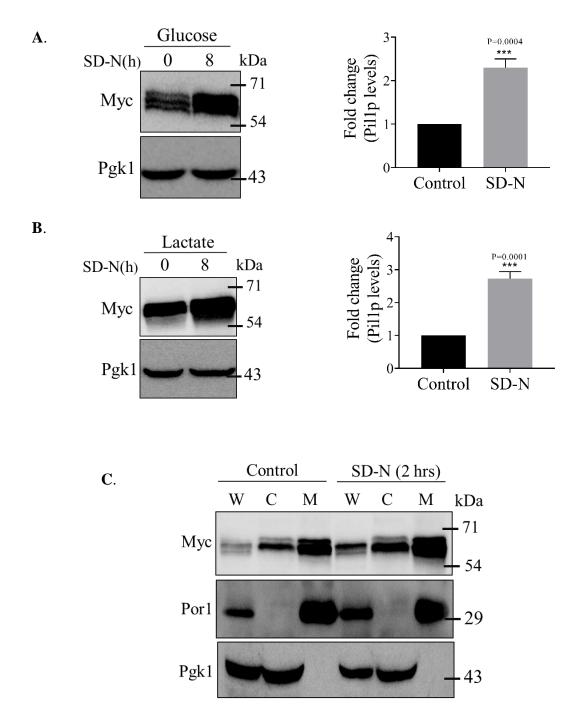
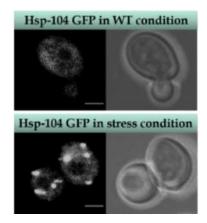


Figure 4.5 Levels of Pil1 and its localization to mitochondria increases after nitrogen starvation

A and B. Pil1-Myc strain was grown in YPD (in A) and YPL media (in B) till log phase. Cells were then shifted to SD-N media for 8 hr. Samples were collected before and after nitrogen starvation. Protein extracts were immunoblotted with anti-Myc antibody. Anti-Pgk1 serum was used as loading control. Quantification of Pil1 levels are presented as mean \pm SD of 3 independent assays. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph) ****P < 0.0001, ***P < 0.001, and *P < 0.05 vs WT. C. Pil1-Myc strain was grown in YPL media and mitochondria was isolated before and after 2 hr of N-starvation. All

three fractions were collected and immunoblotted with Anti-Myc antibody. Anti-Porin and Anti-Pgk1 were used as controls. W: Whole cell extract, C: Cytosolic fraction, M: Mitochondrial fraction.

4.4 CONCLUSION


In this chapter, we found that Pil1 regulates bulk autophagy as well as selective autophagy (mitophagy). However, its role in mitophagy is independent of mitochondrial fission proteins Fis1 and Dnm1. Also, the expression of Pil1 increases during autophagy/mitophagy conditions. Localization of Pil1 to mitochondria was also found to be more after inducing mitophagy indicating that Pil1 might be getting recruited to mitochondria under stress conditions.

CHAPTER 5

Pil1 in oxidative stress and cell death

5.1 BACKGROUND

We have observed that absence of Pil1 leads to drastically reduced autophagy and mitophagy. Aberrations in autophagy have been linked with accumulation of ROS and protein aggregates which can be detrimental for the cell. Protein aggregates in *S. cerevisiae* has been widely studied using Hsp104-GFP (a disaggregase protein that dissolves protein aggregates) as a marker (Parsell, Kowal et al. 1994). Big and bright puncta of Hsp104-GFP are observed whenever there is accumulation of protein aggregates in cells (Figure 5.1).

Figure 5.1 Fluorescence images of Hsp104-GFP in *S.cerevisiae* in WT and stress condition.

Mitochondrial dysfunction, ROS and protein aggregates naturally lead to ageing in cells. There are two main approaches to study ageing in yeast. Replicative lifespan of yeast is the number of times a cell can divide before it dies. It is measured by counting the number of buds that a mother cell produces. Chronological lifespan is the time a cell can survive in a non-dividing state, which is measured by monitoring the decrease in survival (ability to form colony) in a stationary phase culture.

Apart from the role of fission proteins in mitophagy, there is a study which has established the role of Fis1 and Dnm1 in programmed cell death in yeast where Fis1 was shown to have protective role whereas Dnm1 was shown to induce apoptotic cell death (Fannjiang, Cheng et al. 2004). As Pil1 interacts with mitophagy protein (Atg32) as well as fission proteins (Fis1 and Dnm1) and regulates both the pathways, we speculated that Pil1 also might have some role in regulating cell death.

5.2 MATERIALS AND METHODS

5.2.a. Media and growth condition

Strains were grown to log phase (O.D.₆₀₀ = approximately 1) in synthetic complete dextrose media (SCD; 0.8% yeast nitrogen base without amino acids [Becton Dickinson, 291940], 2% dextrose [Himedia, GRM077], pH 5.5) or synthetic minimal media (SMD; 0.67% yeast nitrogen base, 2% glucose, and auxotrophic amino acids and vitamins as needed) as described previously (Sherman 1991). Yeast cells were grown at 30°C. Yeast transformations were performed using lithium acetate method as previously described (Gietz and Woods 2002).

5.2.b. Yeast strains and plasmids

All strains, plasmids, and primers used in this study are listed in Table 5.1, Table 5.2, and Table 5.3, respectively. The yeast strains used in this study are derivatives of BY4741 or BY4742. PCR-based targeted homologous recombination was used to replace complete open reading frame of *PIL1* with KanMX6 or HIS3MX6 cassettes, as indicated (Longtine, McKenzie et al. 1998). The method of deletion of *PIL1* has been described in Chapter 1 (section 2.2b).

For p426TEF Bcl-xL (pNB673) construct, coding region of human Bcl-xL was PCR amplified from HeLa cDNA using primer pair NB838/NB839 with EcoRI and XhoI restriction sites and ligated into p426TEF vector.

Table 5.1 Strains

Strain	Genotype	Reference
YNB105	BY4741; MATa his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ	Euroscarf
YNB106	BY4742; MATα his $3\Delta1$; leu $2\Delta0$; met $15\Delta0$; ura 3Δ	Euroscarf
YNB 474	BY4741; pil1∆::KanMX	This study
YNB 245	BY4742; pil1∆::KanMX	Euroscarf
YNB437	BY4741; HSP104-GFP:: <i>HIS3</i>	(Song, Yang et al. 2014)
YNB438	BY4741; HSP104-GFP:: <i>HIS3 pil1</i> Δ:: <i>KanMX</i>	This study

Table 5.2 Plasmids

	Plasmid	Source/Reference
pNB356	p425 TEF	(Mumberg, Muller et al. 1995)
pNB357	p426 TEF	(Mumberg, Muller et al. 1995)
pNB656	p425 TEF Pil1-flag	This study
pNB441	p426 TEF Pil1-flag	This study
pNB478	pFA6a-HisMX6	(Longtine, McKenzie et al. 1998)
pNB479	pFA6a-KanMX6	(Longtine, McKenzie et al. 1998)
pNB812	pHS12 Mito-mCherry	Addgene

Table 5.3. Primers

Primer Name	Sequence (5'-3')	Restriction enzyme
NB754 PIL1F	GCCGAATTCACCATGCACAGAACTTACTCTTTAA	EcoRI
NB755 PIL1R	GCCAAGCTTAGCTGTTGTTTGTTGGGGAA	HindIII
NB838 bclxlF	GCC GAATTC ATGTCTCAGAGCAACCGGGA	EcoRI
NB839 bclxlR	GCC CTCGAG TTTCCGACTGAAGAGTGAG	XhoI

5.2.c. Fluorescence microscopy

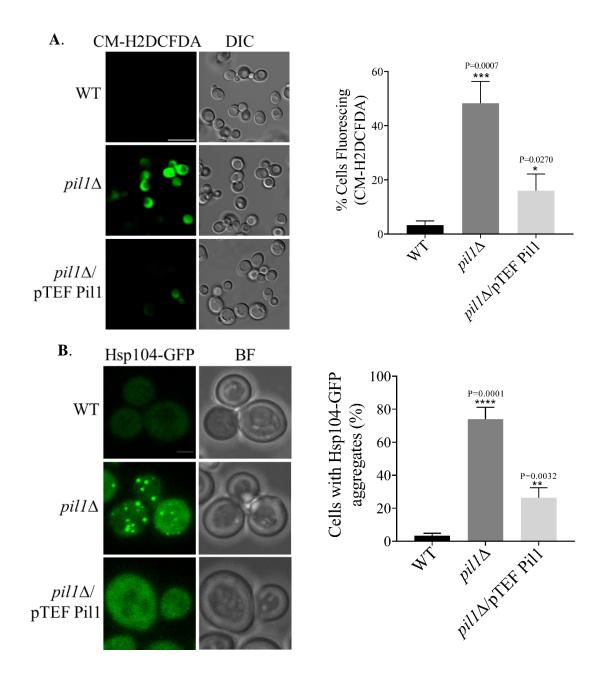
Cells grown till OD₆₀₀= approximately 1, were harvested by centrifugation and the pellet was washed twice with fresh SMD media. Cells suspended in SMD media were added to slides coated with 0.1% Concanavalin A (Sigma, C2010) solution. The cells were allowed to settle for 2-3 min and mounted with coverslips. Images were acquired either on Leica TCS SP8 (HC PL APO CS2 63X/1.40 OIL objective) or Zeiss LSM NLO 710 (63X/1.5 OIL objective) confocal microscope. Fiji Software was used to process and analyse the microscopy data. Graphs and statistical analysis were done using GraphPad Prism8.

5.2.d. Measurement of ROS

For visualization of cellular ROS via fluorescence microscopy, cells growing in SMD medium were harvested by centrifugation (1 unit OD₆₀₀ cells), washed with PBS twice and then treated with 10 mM 5(6)-carboxy-2'7'-dichlorofluorescin diacetate (CM-H2DCFDA; Invitrogen, C6827) in 500 μL PBS for 30 min at 30°C. DCFDA is a non fluorescent compound which gets oxidized by ROS in the cells into fluorescent compound DCF Similarly, for measurement of mitochondrial ROS, cells (1 unit OD₆₀₀ cells) were treated with 5 μM MitoSOXTM Red (Invitrogen, M36008) for 10 min at 30°C in 500 μL of PBS. MitoSOX dye specifically stains mitochondria with high amount of superoxide ions.

5.2.e. Chronological ageing

WT and $pil1\Delta$ cells were grown overnight till stationary phase. Cells were harvested and equal number of cells (1 unit O.D.₆₀₀) were taken and added in fresh medium. This was counted as day one. 5 μ l of culture was plated onto solid YPD medium every one week and number of colonies were counted until 8 weeks. Percent survival was calculated keeping number of colonies on day 1 as control.

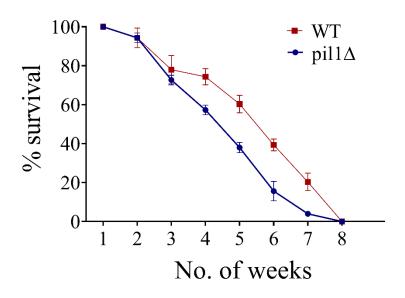

5.2.f. Cell viability assays

Cells were grown in SMD media until OD $_{600}$ reached approximately 1. For colony-forming unit (CFU) assays, cells were normalized to OD $_{600}$ 0.5/mL and 200 μ l of each culture was collected into 96-well plates. Serial dilutions were done using multichannel pipettor and 10 μ L were plated onto SMD solid media. Plates were incubated for 2 days at 30°C and number of colonies were counted. Annexin V/PI co-staining assays using ApoAlert Annexin V-FITC Apoptosis kit (Takara, 630109) were performed as described previously (Buttner, Eisenberg et al. 2007). For trypan blue staining, 10 μ L of cell suspension in PBS were mixed with 0.4% trypan blue (Gibco,15250061) for 2-3 min at room temperature and number of cell stained with the dye were counted.

5.3 RESULTS

5.3.a. Absence of Pil1 leads to elevated ROS levels and protein aggregation:

Because altered mitochondrial network and autophagy dysregulation are linked with abnormal ROS levels and protein aggregation in the cell (Tal, Sasai et al. 2009, Filomeni, De Zio et al. 2015, Bhatti, Bhatti et al. 2017), we next investigated if Pil1 regulates ROS levels and protein aggregation. To measure ROS levels, we used CM-H2DCFDA, a fluorescent ROS indicator. We found that ROS levels were significantly high in $pil1\Delta$ cells compared to WT (Figure 5.2A). In order to study protein aggregation, we used Hsp104, endogenously tagged at the C-terminus with GFP. Hsp104 is a hexameric AAA+ ATPase based chaperone in yeast, a component of disaggregase machinery which is known to bind with protein aggregates, and cause their dissolution (Parsell, Kowal et al. 1994, Glover and Lindquist 1998, Bosl, Grimminger et al. 2006, Doyle and Wickner 2009, Nillegoda and Bukau 2015). Brightness intensity, size, and number of Hsp104-GFP foci increase under the abundance of protein aggregates. Based on the images obtained using confocal microscopy, we quantified the number of Hsp104-GFP aggregates. Surprisingly, we found that Hsp104-GFP foci are much more abundant in $pil1\Delta$, whereas it was negligible in WT cells (Figure 5.2B). However, cells with Pil1 overexpression also showed moderate elevation in Hsp-104 aggregates and ROS levels compared to WT, which could be attributed to the fragmented mitochondrial network upon Pil1 overexpression (Yu, Robotham et al. 2006, Shenouda, Widlansky et al. 2011).


Figure 5.2 Absence of Pil1 leads to elevated ROS and protein aggregates.

A. Measurement of cellular ROS. Indicated strains were grown to log phase in SMD media (SCD lacking uracil) and 1 OD cells were treated with 10mM CM-H2DCFDA for 30 min at 30°C . Imaging by fluorescence microscopy was performed as described in Materials and Methods. Quantification represents the percentage of DCF-positive fluorescing cells, where a minimum of 100 cells for each strain were counted. Scale bar represents 10 μ m. B. Analysis of Hsp104-GFP aggregates. Indicated strains endogenously expressing HSP104-GFP were grown till log phase and imaging was performed by fluorescence microscopy as described in Materials and Methods. Represented images are maximum projections of z-stacks. Cells containing at least two Hsp104-GFP foci were counted in each strain. Minimum of 100 cells were in three independent trials were counted and data are presented as mean \pm SD. Scale bar represents 5 μ m. Imaging was performed by confocal fluorescence microscopy and represented images are flattened z-stacks.

Scale bar represents $5\mu m$. Ratio of Hsp104-GFP foci localized with mitochondria to total Hsp104-GFP foci was calculated as percentage (31%). BF: Brightfield. DIC: Differential Interference Contrast. Data are presented as mean \pm SD of 3 independent experiments. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph) ****P < 0.0001, ***P < 0.01, and *P < 0.05 vs WT.

5.3.b. Absence of Pil1 leads to increased chronological ageing:

Mitochondrial dysfunction, ROS, and protein aggregates naturally lead to ageing in cells. We studied chronological ageing in WT and $pil1\Delta$ cells. After the cell reached stationary phase, we monitored the number of viable colonies by plating the culture on solid media after every one week for 8 weeks and counting the number of colonies. $pil1\Delta$ started showing decreased survival that means enhanced ageing after 3^{rd} week (Figure 5.3). This data suggest that $pil1\Delta$ shows enhanced ageing. Accumulation of ROS and protein aggregates might be the reason for enhanced ageing in $pil1\Delta$ cells.

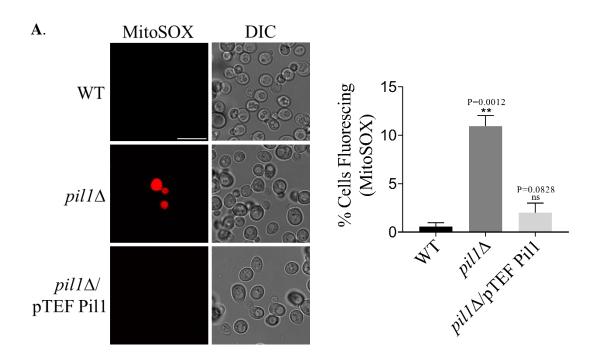


Figure 5.3 Chronological ageing in *pil1*Δ

WT and $pil1\Delta$ cells were grown overnight till stationary phase for two days. Equal number of cells (1 unit O.D.₆₀₀) were inoculated in fresh medium and number of colonies were counted every week for 8 weeks. Survival percentage is shown in the graph. Colonies from three trials were counted and data are presented as mean \pm SD.

5.3.c. ROS and protein aggregaates caused due to absence of Pil1 are majorly cytosolic

Mitochondria are the major source of ROS production in cells. Because we found that the absence of Pil1 leads to abnormal mitochondrial morphology and reduced mitophagy, we decided to check if ROS and protein aggregates that we have observed in $pil1\Delta$ are associated with mitochondria. Using MitoSOX red dye to measure mitochondrial ROS (mtROS), we found a small but statistically significant increase (10.9%) in mtROS between WT and $pil1\Delta$ (Figure 5.4A) which could be due to the defective mitochondrial morphology and mitophagy in $pil1\Delta$. Using confocal microscopy, we analyzed the number of Hsp104-GFP aggregates associated with mitochondria in $pil1\Delta$ cells. We found that mitochondrial associated aggregates (33%) in $pil1\Delta$ cells are much less than those of cytosolic aggregates (67%) (Figure 5.4B). Our data suggest that Pil1-depleted cells have higher levels of ROS and protein aggregates, which might be a result of decreased mitophagy/autophagy.

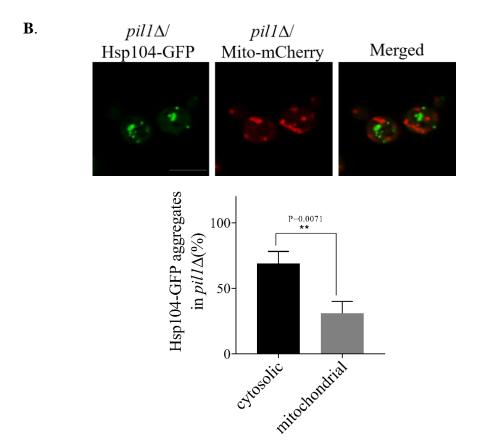
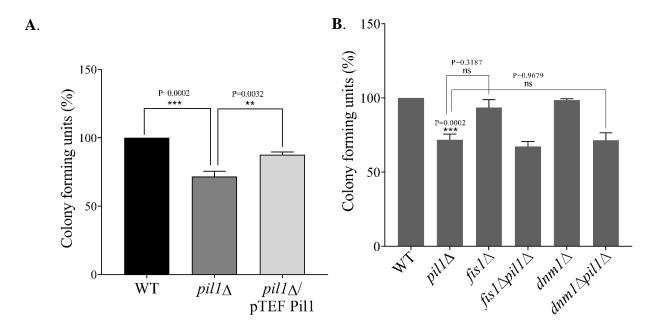
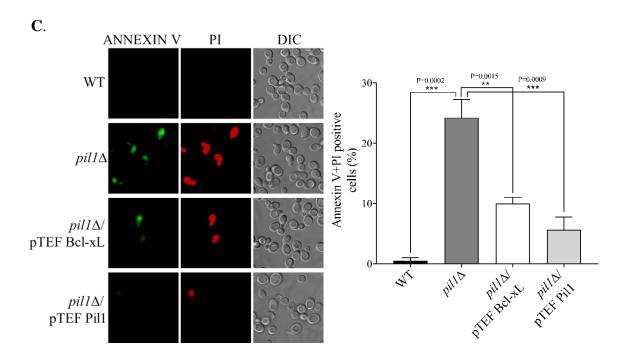
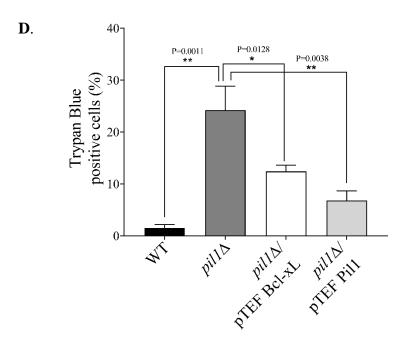


Figure 5.4 ROS and protein aggregaates in $pill\Delta$ are majorly cytosol-associated

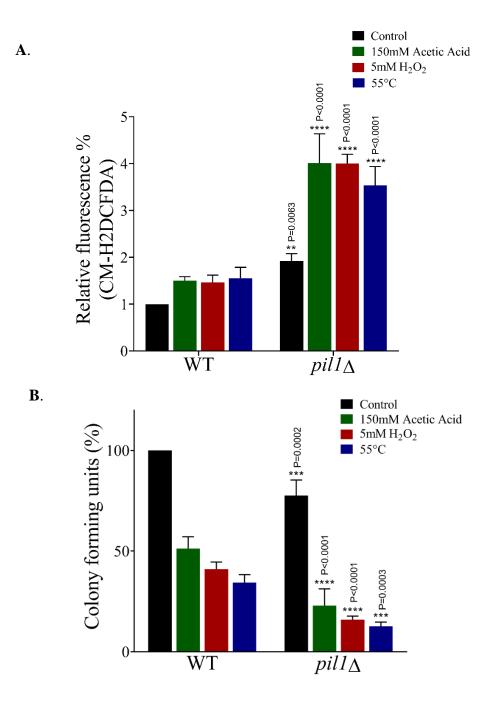

A. Measurement of mitochondrial ROS (mtROS). Indicated strains were grown to log phase in SMD media (lacking uracil) and treated with 5 μ M MitoSOX Red for 10 min at 30°C before imaging by fluorescence microscopy. Quantification represents the percentage of MitoSOX-positive fluorescing cells, where a minimum of 100 cells for each strain were counted. Data are presented as mean \pm SD of 3 independent experiments. Scale bar represents 10 μ m. B. Analysis of mitochondrial associated Hsp104-GFP aggregates in pil1 Δ . Hsp104-GFP *pil1* Δ strain transformed with mito-mCherry and grown till log phase in SMD media. Imaging was performed by confocal fluorescence microscopy and represented images are flattened z-stacks. Scale bar represents 5 μ m. Ratio of Hsp104-GFP foci localized with mitochondria to total Hsp104-GFP foci was calculated as percentage (33%). BF: Brightfield. DIC: Differential Interference Contrast. Data are presented as mean \pm SD of 3 independent experiments. Statistical analysis was done using unpaired Student's t-test (p-value is indicated on the graph) ****P < 0.0001, ***P < 0.001, and *P < 0.05 vs WT.

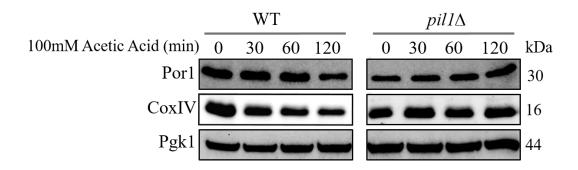

5.3.d. $pil1\Delta$ cells are more prone to cell death:


Abnormalities in mitochondria and ROS have been directly linked with cell death. We wanted to see if the higher ROS levels that we observed in $pill\Delta$ cells make them more prone to cell death. To study viability, we applied the survival assay which is based on the ability of viable cells to form a colony (clonogenicity) on a nutrient-rich solid medium. We found a 29% reduction in

colony formation in $pil1\Delta$ compared to WT which was rescued to some extent by overexpressing Pil1 (13%) (Figure 5.5A). A study has well established the role of Fis1 and Dnm1 in programmed cell death induced by different kinds of death stimuli (Fannjiang, Cheng et al. 2004). However, our aim is to check if role of Pil1 in cell death under normal conditions is dependent on Dnm1 and Fis1. To this end, we applied colony survival assay to $fis1\Delta$, $dnm1\Delta$, $fis1\Delta pil1\Delta$, and $dnm1\Delta pil1\Delta$ cells in the absence of any death stimuli. We found that there was a similar pattern of reduction in colony forming units in $fis1\Delta pil1\Delta$ (31%) and $dnm1\Delta pil1\Delta$ (30.2%) cells as in $pil1\Delta$, indicating that they are more prone to cell death compared to WT (Figure 5.5B).

To determine the mode of cell death, we performed Annexin V/PI co-staining. Externalization of phosphatidylserine on the surface of plasma membrane is one of the characteristics of cells which are in the early to mid-stage of apoptosis. Annexin V binds to the exposed phosphatidylserine on the surface of apoptotic cells, whereas PI stains necrotic cells which have lost the plasma membrane integrity. Cells that are co-stained with Annexin V and PI are considered either in late apoptosis or early necrosis stage. We found that 24.7 % of *pil1*Δ cells were Annexin V⁺/PI⁺ which was significantly reduced Pil1 overexpression (5%). Also, there was a significant reduction in cell death when anti-apoptotic human Bcl-xL protein was overexpressed (Figure 5.5C). Alternatively, we used trypan blue exclusion method. This dye penetrates the plasma membrane and stains the dead cells blue. The results that we obtained were consistent with the Annexin V/PI staining assay (Figure 5.5D). Thus, the absence of Pil1 triggers probably necrotic cell death. However, the role of Bcl-xL in rescuing necrotic cell death in yeast has not been clearly established. Taken together, our data suggest that absence of Pil1 leads to more cell-death but the pathway could be distinct from Fis1 and Dnm1-mediated cell-death pathways.


Figure 5.5 Pil1 regulates cell death.


A and B. Indicated strains were grown till log phase in SMD (in A) or SCD (in D), OD₆₀₀ 0.5/mL, serially diluted and then spotted onto agar plates. Plates were incubated at 30°C for 2 days and colonies were counted. C. Viability was assessed by Annexin V/PI co-staining. Annexin V+/PI+ yeast cells referred to as late apoptotic or early necrotic cells were counted and presented as mean \pm SD for approximately 100 cells per sample in two biological replicates. Scale bar represents 10 μ m. D. Cell viability assay with Trypan Blue. Indicated cells were grown till log phase in SMD media and 10 μ L cells were mixed with 10 μ L 0.4 % Trypan Blue solution and number of cells trypan blue positive cells were counted. DIC: Differential Interference Contrast. Data are presented as mean \pm SD of 3 independent assays. Student's t-test was used to calculate p-values (as indicated on the graph) ****P < 0.0001, ***P < 0.01, **P < 0.01, and *P < 0.05.

5.3.e. Absence of Pil1 induces cell death under stress conditions

So far we have seen that absence of Pil1 leads to accumulated ROS and more cell death in normal condition, without any stress. So we wanted to see what happens when we induce cell death by different stress stimuli. In yeast, there are specific stress conditions like acetic acid, H_2O_2 and heat shock that are used to induce cell death. We used 150 mM acetic acid, 5 mM H_2O_2 for 1 hr and 55°C heat shock for 15 min. Compared to ROS levels and the cell death rate in $pil1\Delta$ without stress, we saw a much dramatic increase in ROS (Figure 5.6A) as well as cell death (Figure 5.6B) after exposing them to the stress conditions. This shows that Pil1 regulates cell death in both uninduced and stress-induced conditions.

As mitochondria is the central player in the regulation of cell death, we have checked the fate of mitochondria in $pil1\Delta$ after treating the cells with acetic acid (100 mM) for different time points, and monitored the levels of mitochondrial proteins Cox4 and Porin (Figure 5.6C). In WT, the levels decrease whereas in $pil1\Delta$, the mitochondrial proteins are accumulated. The reason behind this could be due to more fused mitochondria and decreased mitophagy which protects mitochondria from degradation and hence causes the accumulation of bad mitochondria when stress is induced, which is harmful for the cell.

Figure 5.6 Pil1 regulates stress induced cell death.

A. Measurement of ROS. Indicated strains were grown to log phase in YPD media and exposed to indicated stress conditions. 1 OD cells were collected and treated with 10 mM CM-H2DCFDA for 30 min at 30°C. Imaging by fluorescence microscopy was performed as described in Materials and Methods. Quantification represents the percentage of DCF-positive fluorescing cells, where a minimum of 100 cells for each strain were counted. B. Indicated strains were grown till log phase in YPD, induced to stress conditions. Cells were normalized to OD 0.5/mL, serially diluted and then spotted onto agar plates. Plates were incubated at 30°C for 2 days and colonies were counted. Data are presented as mean \pm SD of 3 independent assays. Student's t-test was used to calculate p-values (as indicated on the graph) ****P < 0.0001, ***P < 0.001, and *P < 0.05. C. WT and *pil1*\$\Delta\$ cells were grown in YPD till log phase and then treated with 100 mM acetic acid for indicated time points. Cells were lysed, subjected to immunoblotting using antibodies against Por1, CoxIV, and Pgk1.

5.4 CONCLUSION

In this chapter, we found absence of Pil1 leads to accumulation of ROS and protein aggregates which inturn leads to increased chronological ageing. Additionally, we found that accumulation of ROS and protein aggregates could lead to increased cell death which can be rescued by overexpressing human anti-apoptotic protein Bcl-xL. Pil1 not only regulates cell death in normal condition, but also in stress-induced conditions.

CHAPTER 6

Discussion

Mitochondrial homeostasis is known to be maintained in the cell with the help of various other organelles. Several studies have shown that mitochondrial dynamics and morphology is known to be sustained through communication with other cellular structures like endoplasmic reticulum (Friedman, Lackner et al. 2011), lysosomes (Wong, Ysselstein et al. 2018), golgi apparatus (Nagashima, Tabara et al. 2020) and actin cytoskeleton (Korobova, Ramabhadran et al. 2013, Ji, Hatch et al. 2015, Li, Xu et al. 2015, Manor, Bartholomew et al. 2015, Lee, Westrate et al. 2016, Moore, Wong et al. 2016, Chen, Cheng et al. 2019). Mitochondrial fission in yeast is known to be executed by four major proteins- Dnm1, Fis1, Mdv1, and Caf4. Other accessory components that have also been shown to be involved in mitochondrial fission (Cerveny, Studer et al. 2007, Hammermeister, Schodel et al. 2010). Given the complexity of the process, there is no denying the fact that unknown factors in the mitochondrial fission machinery are yet to be explored. Recent advances in the study of eisosome functions show that Pill, a major eisosome complex protein, might be associated with cellular stress responses. There is also a possibility that Pil1 is dynamic in nature and does not remain confined to eisosomes (Lacy, Baddeley et al. 2017). In this study, we have shown the evidence that Pil1 is present on mitochondrial outer membrane and maintains the mitochondrial shape. We have observed a drastic modification in mitochondrial morphology in both Pil1-deletion and Pil1-overexpression. $pil1\Delta$ cells have abnormally fused or spherical or, aggregated mitochondria, while cells with Pil1 overexpression have fragmented mitochondria. However, change in mitochondrial morphology in Pil1 overexpression and deletion cannot be caused in the absence of Fis1 or Dnm1 which strengthens the fact that both these proteins are the major player in mitochondrial fission.

It is clear from emerging evidences that mitochondrial dynamics and mitophagy are integrated processes that ensure the quality control of mitochondria. However, the role of canonical fission machinery in mitophagy still remains ambiguous. Though mitochondrial dynamics was shown to modulate mitophagy in some previous reports (Abeliovich, Zarei et al. 2013, Mao, Wang et al. 2013, Bernhardt, Muller et al. 2015), there are studies which show that mitophagy could be independent of these proteins (Mendl, Occhipinti et al. 2011, Graef 2016). According to our data, $fis1\Delta$ is defective in mitophagy while $dnm1\Delta$ is not, which contrasts with some of the previous findings. Though the exact reason behind these discrepancies are not known, there is a possibility that the change in phenotype that we observed could be due to differential expression of suppressors in the yeast deletion strains (Hawthorne and Leupold 1974). Another possibility that we speculate is that the role of Fis1 and Dnm1 in mitophagy could be growth-phase dependent,

hence there is an inconsistency in the phenotype in different studies. We found that absence of Pil1 reduces mitophagy significantly and overexpression enhances it irrespective of the presence or absence of Fis1/Dnm1. Our results also show that overexpression of Pil1 complements the defective mitophagy in $fis1\Delta$ cells. This study clearly shows that Pil1 regulates mitophagy pathway independent of Fis1 and Dnm1.

Mitochondrial dysfunction and defective autophagy are responsible for various irregularities in cell, mainly the accumulation of ROS and protein aggregates. Absence of Pil1 leads to accumulation of ROS and protein aggregates which are majorly cytosolic. However, we cannot completely rule out the possibility that mitochondria could be contributing to the elevated ROS levels that we observed in *pil1*Δ because the link between ROS and mitochondrial dysfunctions is a rather complex phenomenon. Mitochondrial dysfunctions need not necessarily increase ROS in the organelle itself but can trigger the ROS production in other organelles (Leadsham, Sanders et al. 2013, Murphy 2013). ROS release from mitochondria in order to maintain its health has also been reported (Zorov, Juhaszova et al. 2014). Though Pil1 interacts with Fis1 and Dnm1, the change in mitochondrial morphology caused by Pil1 are not seen in the absence of these proteins. On the other hand, Pil1 induces mitophagy independent of Fis1 and Dnm1. Also, there are irregularities in the shape of mitochondria when Pil1 is absent. It could be possible that aberrant mitophagy/autophagy leads to increased levels of cellular ROS and altered mitochondrial morphology.

More than nearly two decades ago, *Saccharomyces cerevisiae* was shown to undergo apoptosis which opened the possibility to study this mode of cell death in a model organism that has a combined technical and logistic simplicity (Madeo, Frohlich et al. 1997, Madeo, Frohlich et al. 1999). Our data show that cells undergo necrotic cell death in the absence of Pil1, even without any death stimuli which can be attributed to accumulated cellular ROS and protein aggregates. Also, the cell death pathway induced in the absence of Pil1 is clearly not dependent on already reported Fis1-mediated cell survival or Dnm1-mediated programmed cell death.

Several studies have established a functional link between mitochondrial fission, mitophagy, and cell death. However there is a lack of sufficient study regarding the regulation of these processes, and our study depicts that Pil1 could be a potential regulator of these processes. Though in our study we have reported the novel functions of eisosome protein Pil1 in mitophagy and cell death, further studies are required to explore how eisosome components interact with other cellular

structures.

Limitations of the study

We show that Pil1 localizes to mitochondria, but we do not know if it is consistently present in mitochondria or it is triggered to change its localization under specific conditions. Apart from Pil1, we have found that Lsp1 also localizes to mitochondria (data not part of the thesis), but whether other components of eisosome are also present in mitochondria has not been studied in this work. We found that Pil1 regulates mitochondrial dynamics, mitophagy, and cell death, but we could not decipher the mechanisms behind these processes. Pil1 interacts with mitophagy protein Atg32 and mitochondrial fission protein Fis1 and Dnm1, but how it regulates these proteins is not clear from our study. In our study we show that role of Pil1 in maintaining mitochondrial shape is dependent on Fis1 and Dnm1, but its role in mitophagy is independent of both the proteins, but we lack the understanding of how Pil1 distinctly regulates mitochondrial dynamics and mitophagy.

Significance of the study

Eisosomes are present only in a few fungal species and Pil1 is obviously not conserved beyond fungal kingdom. However, its ability to bind PI_{4,5}P₂ and promote membrane curvature are in common with those of mammalian BAR-domain family proteins (Zimmerberg and McLaughlin 2004, Olivera-Couto, Grana et al. 2011). Interestingly, recent studies have suggested potential similarities between MCC/eisosome domains and caveolae, a type of membrane invagination present in mammalian cells (Moreira, Schuck et al. 2012, Kabeche, Howard et al. 2015). Role of BAR-domain proteins in modulating mitochondrial membrane dynamics is largely unknown. Presence of BAR-domain protein Pil1 on mitochondrial outer membrane and its potential role in mitophagy and maintaining mitochondrial shape opens up the possibility that counterpart of Pil1 is present in mammals with functional similarities.

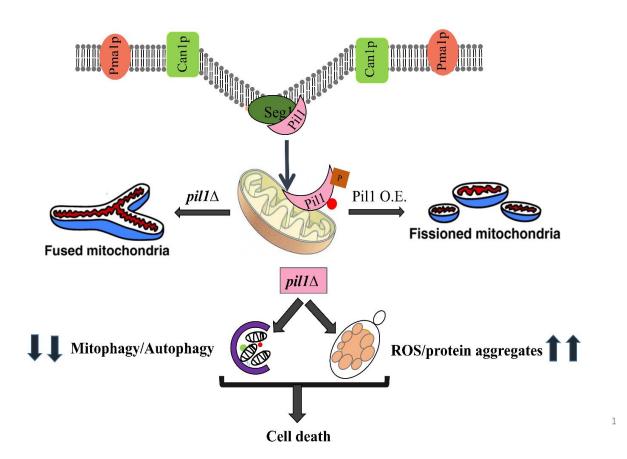


Figure 6.1 Summary model of the work

Pil1, a core component of eisosome complex on the plasma membrane can localize to mitochondria under uknown conditions. It can modulate mitochondrial dynamics. Absence of Pil1 leads to enhanced mitophagy/autophagy and accumulation of ROS & protein aggregates leading to increased cell death.

References

- 1. Abe, Y., T. Shodai, T. Muto, K. Mihara, H. Torii, S. Nishikawa, T. Endo and D. Kohda (2000). "Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20." Cell 100(5): 551-560.
- 2. Abeliovich, H., M. Zarei, K. T. Rigbolt, R. J. Youle and J. Dengjel (2013). "Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy." Nat Commun 4: 2789.
- 3. Allu, P. K., A. Marada, Y. Boggula, S. Karri, T. Krishnamoorthy and N. B. Sepuri (2015). "Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress." Mol Biol Cell 26(3): 406-419.
- 4. Amen, T. and D. Kaganovich (2020). "Stress granules sense metabolic stress at the plasma membrane and potentiate recovery by storing active Pkc1." Sci Signal 13(623).
- 5. Aoki, Y., T. Kanki, Y. Hirota, Y. Kurihara, T. Saigusa, T. Uchiumi and D. Kang (2011). "Phosphorylation of Serine 114 on Atg32 mediates mitophagy." Mol Biol Cell 22(17): 3206-3217.
- 6. Baker, B. M. and C. M. Haynes (2011). "Mitochondrial protein quality control during biogenesis and aging." Trends Biochem Sci 36(5): 254-261.
- 7. Becker, T., S. Pfannschmidt, B. Guiard, D. Stojanovski, D. Milenkovic, S. Kutik, N. Pfanner, C. Meisinger and N. Wiedemann (2008). "Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors." J Biol Chem 283(1): 120-127.
- 8. Bender, T. and J. C. Martinou (2013). "Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis." Cold Spring Harb Perspect Biol 5(1): a011106.
- 9. Bernhard, W. and C. Rouiller (1956). "Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity." J Biophys Biochem Cytol 2(4 Suppl): 73-78.
- 10. Bernhardt, D., M. Muller, A. S. Reichert and H. D. Osiewacz (2015). "Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan." Sci Rep 5: 7885.

- 11. Bhatti, J. S., G. K. Bhatti and P. H. Reddy (2017). "Mitochondrial dysfunction and oxidative stress in metabolic disorders A step towards mitochondria based therapeutic strategies." Biochim Biophys Acta Mol Basis Dis 1863(5): 1066-1077.
- 12. Blackstone, C. and C. R. Chang (2011). "Mitochondria unite to survive." Nat Cell Biol 13(5): 521-522.
- 13. Bleazard, W., J. M. McCaffery, E. J. King, S. Bale, A. Mozdy, Q. Tieu, J. Nunnari and J. M. Shaw (1999). "The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast." Nat Cell Biol 1(5): 298-304.
- 14. Bockler, S., X. Chelius, N. Hock, T. Klecker, M. Wolter, M. Weiss, R. J. Braun and B. Westermann (2017). "Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates." J Cell Biol 216(8): 2481-2498.
- 15. Bosl, B., V. Grimminger and S. Walter (2006). "The molecular chaperone Hsp104--a molecular machine for protein disaggregation." J Struct Biol 156(1): 139-148.
- 16. Brand, M. D. (2010). "The sites and topology of mitochondrial superoxide production." Exp Gerontol 45(7-8): 466-472.
- 17. Bulua, A. C., A. Simon, R. Maddipati, M. Pelletier, H. Park, K. Y. Kim, M. N. Sack, D. L. Kastner and R. M. Siegel (2011). "Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)." J Exp Med 208(3): 519-533.
- 18. Burman, J. L., S. Pickles, C. Wang, S. Sekine, J. N. S. Vargas, Z. Zhang, A. M. Youle, C. L. Nezich, X. Wu, J. A. Hammer and R. J. Youle (2017). "Mitochondrial fission facilitates the selective mitophagy of protein aggregates." J Cell Biol 216(10): 3231-3247.
- 19. Carmona-Gutierrez, D., T. Eisenberg, S. Buttner, C. Meisinger, G. Kroemer and F. Madeo (2010). "Apoptosis in yeast: triggers, pathways, subroutines." Cell Death Differ 17(5): 763-773.
- 20. Cerveny, K. L., S. L. Studer, R. E. Jensen and H. Sesaki (2007). "Yeast mitochondrial division and distribution require the cortical num1 protein." Dev Cell 12(3): 363-375.
- 21. Chacinska, A., M. Lind, A. E. Frazier, J. Dudek, C. Meisinger, A. Geissler, A. Sickmann, H. E. Meyer, K. N. Truscott, B. Guiard, N. Pfanner and P. Rehling (2005). "Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17." Cell 120(6): 817-829.

- 22. Chacinska, A., S. Pfannschmidt, N. Wiedemann, V. Kozjak, L. K. Sanjuan Szklarz, A. Schulze-Specking, K. N. Truscott, B. Guiard, C. Meisinger and N. Pfanner (2004). "Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins." EMBO J 23(19): 3735-3746.
- 23. Chen, H. and D. C. Chan (2009). "Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases." Hum Mol Genet 18(R2): R169-176.
- 24. Chen, Y., M. B. Azad and S. B. Gibson (2009). "Superoxide is the major reactive oxygen species regulating autophagy." Cell Death Differ 16(7): 1040-1052.
- 25. Chen, Y. C., T. H. Cheng, W. L. Lin, C. L. Chen, W. Y. Yang, C. Blackstone and C. R. Chang (2019). "Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly." iScience 11: 305-317.
- 26. Cho, D. H., T. Nakamura, J. Fang, P. Cieplak, A. Godzik, Z. Gu and S. A. Lipton (2009). "S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury." Science 324(5923): 102-105.
- 27. Copeland, D. E. and A. J. Dalton (1959). "An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost." J Biophys Biochem Cytol 5(3): 393-396.
- 28. Daniele, T., I. Hurbain, R. Vago, G. Casari, G. Raposo, C. Tacchetti and M. V. Schiaffino (2014). "Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis." Curr Biol 24(4): 393-403.
- 29. Deffieu, M., I. Bhatia-Kissova, B. Salin, A. Galinier, S. Manon and N. Camougrand (2009). "Glutathione participates in the regulation of mitophagy in yeast." J Biol Chem 284(22): 14828-14837.
- 30. Douglas, L. M. and J. B. Konopka (2014). "Fungal membrane organization: the eisosome concept." Annu Rev Microbiol 68: 377-393.
- 31. Doyle, S. M. and S. Wickner (2009). "Hsp104 and ClpB: protein disaggregating machines." Trends Biochem Sci 34(1): 40-48.
- 32. Dunn, W. A., Jr., J. M. Cregg, J. A. Kiel, I. J. van der Klei, M. Oku, Y. Sakai, A. A. Sibirny, O. V. Stasyk and M. Veenhuis (2005). "Pexophagy: the selective autophagy of peroxisomes." Autophagy 1(2): 75-83.

- 33. Eisenberg-Bord, M., N. Shai, M. Schuldiner and M. Bohnert (2016). "A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites." Dev Cell 39(4): 395-409.
- 34. Eisenberg-Bord, M., N. Zung, J. Collado, L. Drwesh, E. J. Fenech, A. Fadel, N. Dezorella, Y. S. Bykov, D. Rapaport, R. Fernandez-Busnadiego and M. Schuldiner (2021). "Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels." J Cell Biol 220(11).
- 35. Eskelinen, E. L., F. Reggiori, M. Baba, A. L. Kovacs and P. O. Seglen (2011). "Seeing is believing: the impact of electron microscopy on autophagy research." Autophagy 7(9): 935-956.
- 36. Fan, J., X. Li, L. Issop, M. Culty and V. Papadopoulos (2016). "ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis." Mol Endocrinol 30(7): 763-782.
- 37. Fannjiang, Y., W. C. Cheng, S. J. Lee, B. Qi, J. Pevsner, J. M. McCaffery, R. B. Hill, G. Basanez and J. M. Hardwick (2004). "Mitochondrial fission proteins regulate programmed cell death in yeast." Genes Dev 18(22): 2785-2797.
- 38. Filomeni, G., D. De Zio and F. Cecconi (2015). "Oxidative stress and autophagy: the clash between damage and metabolic needs." Cell Death Differ 22(3): 377-388.
- 39. Fischer, F., A. Hamann and H. D. Osiewacz (2012). "Mitochondrial quality control: an integrated network of pathways." Trends Biochem Sci 37(7): 284-292.
- 40. Friedman, J. R., L. L. Lackner, M. West, J. R. DiBenedetto, J. Nunnari and G. K. Voeltz (2011). "ER tubules mark sites of mitochondrial division." Science 334(6054): 358-362.
- 41. Gabaldon, T. and M. A. Huynen (2004). "Shaping the mitochondrial proteome." Biochim Biophys Acta 1659(2-3): 212-220.
- 42. Galluzzi, L., I. Vitale, J. M. Abrams, E. S. Alnemri, E. H. Baehrecke, M. V. Blagosklonny, T. M. Dawson, V. L. Dawson, W. S. El-Deiry, S. Fulda, E. Gottlieb, D. R. Green, M. O. Hengartner, O. Kepp, R. A. Knight, S. Kumar, S. A. Lipton, X. Lu, F. Madeo, W. Malorni, P. Mehlen, G. Nunez, M. E. Peter, M. Piacentini, D. C. Rubinsztein, Y. Shi, H. U. Simon, P. Vandenabeele, E. White, J. Yuan, B. Zhivotovsky, G. Melino and G. Kroemer (2012). "Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012." Cell Death Differ 19(1): 107-120.
- 43. Gatta, A. T. and T. P. Levine (2017). "Piecing Together the Patchwork of Contact Sites." Trends Cell Biol 27(3): 214-229.

- 44. Gietz, R. D. and R. A. Woods (2002). "Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method." Methods Enzymol 350: 87-96.
- 45. Gillham, N. W. (1994). Organelle genes and genomes, Oxford University Press.
- 46. Glover, J. R. and S. Lindquist (1998). "Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins." Cell 94(1): 73-82.
- 47. Gomes, L. C., G. Di Benedetto and L. Scorrano (2011). "During autophagy mitochondria elongate, are spared from degradation and sustain cell viability." Nat Cell Biol 13(5): 589-598.
- 48. Gournas, C., S. Gkionis, M. Carquin, L. Twyffels, D. Tyteca and B. Andre (2018). "Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains." Proc Natl Acad Sci U S A 115(14): E3145-E3154.
- 49. Graef, M. (2016). "A dividing matter: Drp1/Dnm1-independent mitophagy." J Cell Biol 215(5): 599-601.
- 50. Gray, M. W., G. Burger and B. F. Lang (1999). "Mitochondrial evolution." Science 283(5407): 1476-1481.
- 51. Griffin, E. E., J. Graumann and D. C. Chan (2005). "The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria." J Cell Biol 170(2): 237-248.
- 52. Grossmann, G., M. Opekarova, J. Malinsky, I. Weig-Meckl and W. Tanner (2007). "Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast." EMBO J 26(1): 1-8.
- 53. Grousl, T., M. Opekarova, V. Stradalova, J. Hasek and J. Malinsky (2015). "Evolutionarily conserved 5'-3' exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast." PLoS One 10(3): e0122770.
- 54. Gurung, P., J. R. Lukens and T. D. Kanneganti (2015). "Mitochondria: diversity in the regulation of the NLRP3 inflammasome." Trends Mol Med 21(3): 193-201.
- 55. Habermann, B. (2004). "The BAR-domain family of proteins: a case of bending and binding?" EMBO Rep 5(3): 250-255.

- 56. Hammermeister, M., K. Schodel and B. Westermann (2010). "Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae." Mol Biol Cell 21(14): 2443-2452.
- 57. Hawlitschek, G., H. Schneider, B. Schmidt, M. Tropschug, F. U. Hartl and W. Neupert (1988). "Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein." Cell 53(5): 795-806.
- 58. Hawthorne, D. C. and U. Leupold (1974). "Suppressors in yeast." Curr Top Microbiol Immunol 64(0): 1-47.
- 59. Haynes, C. M. and D. Ron (2010). "The mitochondrial UPR protecting organelle protein homeostasis." J Cell Sci 123(Pt 22): 3849-3855.
- 60. Heo, J. M., N. Livnat-Levanon, E. B. Taylor, K. T. Jones, N. Dephoure, J. Ring, J. Xie, J. L. Brodsky, F. Madeo, S. P. Gygi, K. Ashrafi, M. H. Glickman and J. Rutter (2010). "A stress-responsive system for mitochondrial protein degradation." Mol Cell 40(3): 465-480.
- 61. Hermann, G. J., J. W. Thatcher, J. P. Mills, K. G. Hales, M. T. Fuller, J. Nunnari and J. M. Shaw (1998). "Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p." J Cell Biol 143(2): 359-373.
- 62. Honscher, C., M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori and C. Ungermann (2014). "Cellular metabolism regulates contact sites between vacuoles and mitochondria." Dev Cell 30(1): 86-94.
- 63. Horst, M., W. Oppliger, S. Rospert, H. J. Schonfeld, G. Schatz and A. Azem (1997). "Sequential action of two hsp70 complexes during protein import into mitochondria." EMBO J 16(8): 1842-1849.
- 64. Hulett, J. M., F. Lueder, N. C. Chan, A. J. Perry, P. Wolynec, V. A. Likic, P. R. Gooley and T. Lithgow (2008). "The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex." J Mol Biol 376(3): 694-704.
- 65. James, P., J. Halladay and E. A. Craig (1996). "Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast." Genetics 144(4): 1425-1436.
- 66. Ji, W. K., A. L. Hatch, R. A. Merrill, S. Strack and H. N. Higgs (2015). "Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites." Elife 4: e11553.
- 67. Johansen, T. and T. Lamark (2011). "Selective autophagy mediated by autophagic adapter proteins." Autophagy 7(3): 279-296.

- 68. John Peter, A. T., B. Herrmann, D. Antunes, D. Rapaport, K. S. Dimmer and B. Kornmann (2017). "Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ERmitochondria contact sites." J Cell Biol 216(10): 3219-3229.
- 69. Kabeche, R., L. Howard and J. B. Moseley (2015). "Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane." J Cell Sci 128(22): 4057-4062.
- 70. Kang, P. J., J. Ostermann, J. Shilling, W. Neupert, E. A. Craig and N. Pfanner (1990). "Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins." Nature 348(6297): 137-143.
- 71. Kanki, T. and D. J. Klionsky (2008). "Mitophagy in yeast occurs through a selective mechanism." J Biol Chem 283(47): 32386-32393.
- 72. Kanki, T., K. Wang, Y. Cao, M. Baba and D. J. Klionsky (2009). "Atg32 is a mitochondrial protein that confers selectivity during mitophagy." Dev Cell 17(1): 98-109.
- 73. Karotki, L., J. T. Huiskonen, C. J. Stefan, N. E. Ziolkowska, R. Roth, M. A. Surma, N. J. Krogan, S. D. Emr, J. Heuser, K. Grunewald and T. C. Walther (2011). "Eisosome proteins assemble into a membrane scaffold." J Cell Biol 195(5): 889-902.
- 74. Kiebler, M., R. Pfaller, T. Sollner, G. Griffiths, H. Horstmann, N. Pfanner and W. Neupert (1990). "Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins." Nature 348(6302): 610-616.
- 75. Kim, H. J., M. Y. Jeong, T. J. Parnell, M. Babst, J. D. Phillips and D. R. Winge (2016). "The Plasma Membrane Protein Nce102 Implicated in Eisosome Formation Rescues a Heme Defect in Mitochondria." J Biol Chem 291(33): 17417-17426.
- 76. Koehler, C. M., E. Jarosch, K. Tokatlidis, K. Schmid, R. J. Schweyen and G. Schatz (1998). "Import of mitochondrial carriers mediated by essential proteins of the intermembrane space." Science 279(5349): 369-373.
- 77. Koonin, E. V. (2010). "The origin and early evolution of eukaryotes in the light of phylogenomics." Genome Biol 11(5): 209.
- 78. Koppen, M. and T. Langer (2007). "Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases." Crit Rev Biochem Mol Biol 42(3): 221-242.

- 79. Korobova, F., V. Ramabhadran and H. N. Higgs (2013). "An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2." Science 339(6118): 464-467.
- 80. Krick, R., J. Tolstrup, A. Appelles, S. Henke and M. Thumm (2006). "The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy." FEBS Lett 580(19): 4632-4638.
- 81. Kunz, J. B., H. Schwarz and A. Mayer (2004). "Determination of four sequential stages during microautophagy in vitro." J Biol Chem 279(11): 9987-9996.
- 82. Lackner, L. L., H. Ping, M. Graef, A. Murley and J. Nunnari (2013). "Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria." Proc Natl Acad Sci U S A 110(6): E458-467.
- 83. Lacy, M. M., D. Baddeley and J. Berro (2017). "Single-molecule imaging of the BARdomain protein Pil1p reveals filament-end dynamics." Mol Biol Cell 28(17): 2251-2259.
- 84. Leadsham, J. E., G. Sanders, S. Giannaki, E. L. Bastow, R. Hutton, W. R. Naeimi, M. Breitenbach and C. W. Gourlay (2013). "Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast." Cell Metab 18(2): 279-286.
- 85. Lee, B. C., A. Dikiy, H. Y. Kim and V. N. Gladyshev (2009). "Functions and evolution of selenoprotein methionine sulfoxide reductases." Biochim Biophys Acta 1790(11): 1471-1477.
- 86. Lee, J. E., L. M. Westrate, H. Wu, C. Page and G. K. Voeltz (2016). "Multiple dynamin family members collaborate to drive mitochondrial division." Nature 540(7631): 139-143.
- 87. Lee, J. H., J. E. Heuser, R. Roth and U. Goodenough (2015). "Eisosome Ultrastructure and Evolution in Fungi, Microalgae, and Lichens." Eukaryot Cell 14(10): 1017-1042.
- 88. Legesse-Miller, A., R. H. Massol and T. Kirchhausen (2003). "Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission." Mol Biol Cell 14(5): 1953-1963.
- 89. Li, S., S. Xu, B. A. Roelofs, L. Boyman, W. J. Lederer, H. Sesaki and M. Karbowski (2015). "Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission." J Cell Biol 208(1): 109-123.

- 90. Longtine, M. S., A. McKenzie, 3rd, D. J. Demarini, N. G. Shah, A. Wach, A. Brachat, P. Philippsen and J. R. Pringle (1998). "Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae." Yeast 14(10): 953-961.
- 91. Madeo, F., D. Carmona-Gutierrez, J. Ring, S. Buttner, T. Eisenberg and G. Kroemer (2009). "Caspase-dependent and caspase-independent cell death pathways in yeast." Biochem Biophys Res Commun 382(2): 227-231.
- 92. Madeo, F., E. Frohlich and K. U. Frohlich (1997). "A yeast mutant showing diagnostic markers of early and late apoptosis." J Cell Biol 139(3): 729-734.
- 93. Madeo, F., E. Frohlich, M. Ligr, M. Grey, S. J. Sigrist, D. H. Wolf and K. U. Frohlich (1999). "Oxygen stress: a regulator of apoptosis in yeast." J Cell Biol 145(4): 757-767.
- 94. Malinska, K., J. Malinsky, M. Opekarova and W. Tanner (2003). "Visualization of protein compartmentation within the plasma membrane of living yeast cells." Mol Biol Cell 14(11): 4427-4436.
- 95. Malinska, K., J. Malinsky, M. Opekarova and W. Tanner (2004). "Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells." J Cell Sci 117(Pt 25): 6031-6041.
- 96. Malinsky, J., M. Opekarova and W. Tanner (2010). "The lateral compartmentation of the yeast plasma membrane." Yeast 27(8): 473-478.
- 97. Manor, U., S. Bartholomew, G. Golani, E. Christenson, M. Kozlov, H. Higgs, J. Spudich and J. Lippincott-Schwartz (2015). "A mitochondria-anchored isoform of the actinnucleating spire protein regulates mitochondrial division." Elife 4.
- 98. Mao, K., K. Wang, X. Liu and D. J. Klionsky (2013). "The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy." Dev Cell 26(1): 9-18.
- 99. Margulis, L. (1970). Origin of eukaryotic cells: Evidence and research implications for a theory of the origin and evolution of microbial, plant and animal cells on the precambrian Earth, Yale University Press.
- 100. Margulis, L. (1981). "Symbiosis in cell evolution: Life and its environment on the early earth."

- 101. Maryanovich, M. and A. Gross (2013). "A ROS rheostat for cell fate regulation." Trends Cell Biol 23(3): 129-134.
- 102. Mascaraque, V., M. L. Hernaez, M. Jimenez-Sanchez, R. Hansen, C. Gil, H. Martin, V. J. Cid and M. Molina (2013). "Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components." Mol Cell Proteomics 12(3): 557-574.
- 103. Mendl, N., A. Occhipinti, M. Muller, P. Wild, I. Dikic and A. S. Reichert (2011). "Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2." J Cell Sci 124(Pt 8): 1339-1350.
- 104. Mills, E. and L. A. O'Neill (2014). "Succinate: a metabolic signal in inflammation." Trends Cell Biol 24(5): 313-320.
- 105. Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy and A. B. Malik (2014). "Reactive oxygen species in inflammation and tissue injury." Antioxid Redox Signal 20(7): 1126-1167.
- 106. Moharir, A., L. Gay, D. Appadurai, J. Keener and M. Babst (2018). "Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters." Mol Biol Cell 29(17): 2113-2127.
- 107. Mokranjac, D. and W. Neupert (2015). "Cell biology: Architecture of a protein entry gate." Nature 528(7581): 201-202.
- 108. Moor, H. and K. Muhlethaler (1963). "Fine Structure in Frozen-Etched Yeast Cells." J Cell Biol 17(3): 609-628.
- 109. Moore, A. S., Y. C. Wong, C. L. Simpson and E. L. Holzbaur (2016). "Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks." Nat Commun 7: 12886.
- 110. Moreira, K. E., S. Schuck, B. Schrul, F. Frohlich, J. B. Moseley, T. C. Walther and P. Walter (2012). "Seg1 controls eisosome assembly and shape." J Cell Biol 198(3): 405-420.
- 111. Mozdy, A. D., J. M. McCaffery and J. M. Shaw (2000). "Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p." J Cell Biol 151(2): 367-380.
- 112. Mueller, C. F., K. Laude, J. S. McNally and D. G. Harrison (2005). "ATVB in focus: redox mechanisms in blood vessels." Arterioscler Thromb Vasc Biol 25(2): 274-278.

- 113. Mumberg, D., R. Muller and M. Funk (1995). "Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds." Gene 156(1): 119-122.
- 114. Murphy, M. P. (2013). "Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum." Cell Metab 18(2): 145-146.
- 115. Nagashima, S., L. C. Tabara, L. Tilokani, V. Paupe, H. Anand, J. H. Pogson, R. Zunino, H. M. McBride and J. Prudent (2020). "Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division." Science 367(6484): 1366-1371.
- 116. Naoe, M., Y. Ohwa, D. Ishikawa, C. Ohshima, S. Nishikawa, H. Yamamoto and T. Endo (2004). "Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space." J Biol Chem 279(46): 47815-47821.
- 117. Narendra, D., A. Tanaka, D. F. Suen and R. J. Youle (2008). "Parkin is recruited selectively to impaired mitochondria and promotes their autophagy." J Cell Biol 183(5): 795-803.
- 118. Nillegoda, N. B. and B. Bukau (2015). "Metazoan Hsp70-based protein disaggregases: emergence and mechanisms." Front Mol Biosci 2: 57.
- 119. Ohlmeier, S., J. K. Hiltunen and U. Bergmann (2010). "Protein phosphorylation in mitochondria --a study on fermentative and respiratory growth of Saccharomyces cerevisiae." Electrophoresis 31(17): 2869-2881.
- 120. Okamoto, K., N. Kondo-Okamoto and Y. Ohsumi (2009). "A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria." Autophagy 5(8): 1203-1205.
- 121. Okamoto, K., N. Kondo-Okamoto and Y. Ohsumi (2009). "Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy." Dev Cell 17(1): 87-97.
- 122. Okamoto, K. and J. M. Shaw (2005). "Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes." Annu Rev Genet 39: 503-536.
- 123. Olivera-Couto, A., M. Grana, L. Harispe and P. S. Aguilar (2011). "The eisosome core is composed of BAR domain proteins." Mol Biol Cell 22(13): 2360-2372.
- 124. Otsuga, D., B. R. Keegan, E. Brisch, J. W. Thatcher, G. J. Hermann, W. Bleazard and J. M. Shaw (1998). "The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast." J Cell Biol 143(2): 333-349.

- 125. Parsell, D. A., A. S. Kowal, M. A. Singer and S. Lindquist (1994). "Protein disaggregation mediated by heat-shock protein Hsp104." Nature 372(6505): 475-478.
- 126. Paschen, S. A., T. Waizenegger, T. Stan, M. Preuss, M. Cyrklaff, K. Hell, D. Rapaport and W. Neupert (2003). "Evolutionary conservation of biogenesis of beta-barrel membrane proteins." Nature 426(6968): 862-866.
- 127. Peter, B. J., H. M. Kent, I. G. Mills, Y. Vallis, P. J. Butler, P. R. Evans and H. T. McMahon (2004). "BAR domains as sensors of membrane curvature: the amphiphysin BAR structure." Science 303(5657): 495-499.
- 128. Pittis, A. A. and T. Gabaldon (2016). "Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry." Nature 531(7592): 101-104.
- 129. Poole, A. M. and S. Gribaldo (2014). "Eukaryotic origins: How and when was the mitochondrion acquired?" Cold Spring Harb Perspect Biol 6(12): a015990.
- 130. Popov-Celeketic, J., T. Waizenegger and D. Rapaport (2008). "Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane." J Mol Biol 376(3): 671-680.
- 131. Prinz, W. A. (2014). "Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics." J Cell Biol 205(6): 759-769.
- 132. Raiborg, C., E. M. Wenzel and H. Stenmark (2015). "ER-endosome contact sites: molecular compositions and functions." EMBO J 34(14): 1848-1858.
- 133. Rambold, A. S., S. Cohen and J. Lippincott-Schwartz (2015). "Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics." Dev Cell 32(6): 678-692.
- 134. Reinders, J., K. Wagner, R. P. Zahedi, D. Stojanovski, B. Eyrich, M. van der Laan, P. Rehling, A. Sickmann, N. Pfanner and C. Meisinger (2007). "Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase." Mol Cell Proteomics 6(11): 1896-1906.
- 135. Reinders, J., R. P. Zahedi, N. Pfanner, C. Meisinger and A. Sickmann (2006). "Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics." J Proteome Res 5(7): 1543-1554.

- 136. Rizzuto, R., P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty, L. M. Lifshitz, R. A. Tuft and T. Pozzan (1998). "Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses." Science 280(5370): 1763-1766.
- 137. Roca-Portoles, A. and S. W. G. Tait (2021). "Mitochondrial quality control: from molecule to organelle." Cell Mol Life Sci 78(8): 3853-3866.
- 138. Roise, D., S. J. Horvath, J. M. Tomich, J. H. Richards and G. Schatz (1986). "A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers." EMBO J 5(6): 1327-1334.
- 139. Sapp, J. (1994). Evolution by association: a history of symbiosis, Oxford University Press.
- 140. Scorrano, L. (2007). "Multiple functions of mitochondria-shaping proteins." Novartis Found Symp 287: 47-55; discussion 55-49.
- 141. Sepuri, N. B., M. Gorla and M. P. King (2012). "Mitochondrial lysyl-tRNA synthetase independent import of tRNA lysine into yeast mitochondria." PLoS One 7(4): e35321.
- 142. Sepuri, N. B., S. Yadav, H. K. Anandatheerthavarada and N. G. Avadhani (2007). "Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae--role of protein kinase A in the mitochondrial targeting of CYP2E1." FEBS J 274(17): 4615-4630.
- 143. Sesaki, H. and R. E. Jensen (2001). "UGO1 encodes an outer membrane protein required for mitochondrial fusion." J Cell Biol 152(6): 1123-1134.
- 144. Shenouda, S. M., M. E. Widlansky, K. Chen, G. Xu, M. Holbrook, C. E. Tabit, N. M. Hamburg, A. A. Frame, T. L. Caiano, M. A. Kluge, M. A. Duess, A. Levit, B. Kim, M. L. Hartman, L. Joseph, O. S. Shirihai and J. A. Vita (2011). "Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus." Circulation 124(4): 444-453.
- 145. Sherman, F. (1991). "Getting started with yeast." Methods Enzymol 194: 3-21.
- 146. Shintani, T. and D. J. Klionsky (2004). "Autophagy in health and disease: a double-edged sword." Science 306(5698): 990-995.
- 147. Shintani, T. and D. J. Klionsky (2004). "Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway." J Biol Chem 279(29): 29889-29894.

- 148. Shirendeb, U. P., M. J. Calkins, M. Manczak, V. Anekonda, B. Dufour, J. L. McBride, P. Mao and P. H. Reddy (2012). "Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease." Hum Mol Genet 21(2): 406-420.
- 149. Shpilka, T., H. Weidberg, S. Pietrokovski and Z. Elazar (2011). "Atg8: an autophagy-related ubiquitin-like protein family." Genome Biol 12(7): 226.
- 150. Sirrenberg, C., M. F. Bauer, B. Guiard, W. Neupert and M. Brunner (1996). "Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22." Nature 384(6609): 582-585.
- 151. Sirrenberg, C., M. Endres, H. Folsch, R. A. Stuart, W. Neupert and M. Brunner (1998). "Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5." Nature 391(6670): 912-915.
- 152. Song, J., J. M. Herrmann and T. Becker (2021). "Quality control of the mitochondrial proteome." Nat Rev Mol Cell Biol 22(1): 54-70.
- 153. Song, J., Q. Yang, J. Yang, L. Larsson, X. Hao, X. Zhu, S. Malmgren-Hill, M. Cvijovic, J. Fernandez-Rodriguez, J. Grantham, C. M. Gustafsson, B. Liu and T. Nystrom (2014). "Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates." PLoS Genet 10(7): e1004539.
- 154. Stradalova, V., W. Stahlschmidt, G. Grossmann, M. Blazikova, R. Rachel, W. Tanner and J. Malinsky (2009). "Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1." J Cell Sci 122(Pt 16): 2887-2894.
- 155. Sugiura, A., G. L. McLelland, E. A. Fon and H. M. McBride (2014). "A new pathway for mitochondrial quality control: mitochondrial-derived vesicles." EMBO J 33(19): 2142-2156.
- 156. Suzuki, K. (2013). "Selective autophagy in budding yeast." Cell Death Differ 20(1): 43-48.
- 157. Tal, M. C., M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel and A. Iwasaki (2009). "Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling." Proc Natl Acad Sci U S A 106(8): 2770-2775.
- 158. Tatsuta, T. and T. Langer (2008). "Quality control of mitochondria: protection against neurodegeneration and ageing." EMBO J 27(2): 306-314.

- 159. Taylor, E. B. and J. Rutter (2011). "Mitochondrial quality control by the ubiquitin-proteasome system." Biochem Soc Trans 39(5): 1509-1513.
- 160. Tieu, Q. and J. Nunnari (2000). "Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division." J Cell Biol 151(2): 353-366.
- 161. Touyz, R. M. (2005). "Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II." Curr Opin Nephrol Hypertens 14(2): 125-131.
- 162. Twig, G., A. Elorza, A. J. Molina, H. Mohamed, J. D. Wikstrom, G. Walzer, L. Stiles, S. E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B. F. Py, J. Yuan, J. T. Deeney, B. E. Corkey and O. S. Shirihai (2008). "Fission and selective fusion govern mitochondrial segregation and elimination by autophagy." EMBO J 27(2): 433-446.
- 163. Uttenweiler, A. and A. Mayer (2008). "Microautophagy in the yeast Saccharomyces cerevisiae." Methods Mol Biol 445: 245-259.
- 164. Vance, J. E. (1990). "Phospholipid synthesis in a membrane fraction associated with mitochondria." J Biol Chem 265(13): 7248-7256.
- 165. Vogtle, F. N., S. Wortelkamp, R. P. Zahedi, D. Becker, C. Leidhold, K. Gevaert, J. Kellermann, W. Voos, A. Sickmann, N. Pfanner and C. Meisinger (2009). "Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability." Cell 139(2): 428-439.
- 166. Voos, W. and K. Rottgers (2002). "Molecular chaperones as essential mediators of mitochondrial biogenesis." Biochimica Et Biophysica Acta-Molecular Cell Research 1592(1): 51-62.
- 167. Welter, E., M. Thumm and R. Krick (2010). "Quantification of nonselective bulk autophagy in S. cerevisiae using Pgk1-GFP." Autophagy 6(6): 794-797.
- 168. West, A. P., G. S. Shadel and S. Ghosh (2011). "Mitochondria in innate immune responses." Nat Rev Immunol 11(6): 389-402.
- 169. Westermann, B. (2010). "Mitochondrial fusion and fission in cell life and death." Nat Rev Mol Cell Biol 11(12): 872-884.
- 170. Wiedemann, N., V. Kozjak, A. Chacinska, B. Schonfisch, S. Rospert, M. T. Ryan, N. Pfanner and C. Meisinger (2003). "Machinery for protein sorting and assembly in the mitochondrial outer membrane." Nature 424(6948): 565-571.

- 171. Wirawan, E., T. Vanden Berghe, S. Lippens, P. Agostinis and P. Vandenabeele (2012). "Autophagy: for better or for worse." Cell Res 22(1): 43-61.
- 172. Wong, E. D., J. A. Wagner, S. W. Gorsich, J. M. McCaffery, J. M. Shaw and J. Nunnari (2000). "The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria." J Cell Biol 151(2): 341-352.
- 173. Wong, Y. C., D. Ysselstein and D. Krainc (2018). "Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis." Nature 554(7692): 382-386.
- 174. Yang, D., Y. Oyaizu, H. Oyaizu, G. J. Olsen and C. R. Woese (1985). "Mitochondrial origins." Proc Natl Acad Sci U S A 82(13): 4443-4447.
- 175. Youle, R. J. and D. P. Narendra (2011). "Mechanisms of mitophagy." Nat Rev Mol Cell Biol 12(1): 9-14.
- 176. Youle, R. J. and A. M. van der Bliek (2012). "Mitochondrial fission, fusion, and stress." Science 337(6098): 1062-1065.
- 177. Yu, T., J. L. Robotham and Y. Yoon (2006). "Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology." Proc Natl Acad Sci U S A 103(8): 2653-2658.
- 178. Zimmerberg, J. and S. McLaughlin (2004). "Membrane curvature: how BAR domains bend bilayers." Curr Biol 14(6): R250-252.
- 179. Ziolkowska, N. E., R. Christiano and T. C. Walther (2012). "Organized living: formation mechanisms and functions of plasma membrane domains in yeast." Trends Cell Biol 22(3): 151-158.
- 180. Zorov, D. B., M. Juhaszova and S. J. Sollott (2014). "Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release." Physiol Rev 94(3): 909-950.

Publication

BC RESEARCH ARTICLE

Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and cell death in Saccharomyces cerevisiae

Received for publication, March 30, 2022, and in revised form, September 18, 2022 Published, Papers in Press, September 24, 2022, https://doi.org/10.1016/j.jbc.2022.102533

Amita Pal, Arun Kumar Paripati, Pallavi Deolalo, Arpan Chatterjee, Pushpa Rani Prasad, Priyanka Adla, and Naresh Babu V. Sepuri*

From the Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India

Edited by Ursula Jakob

Mitochondrial morphology and dynamics maintain mitochondrial integrity by regulating its size, shape, distribution, and connectivity, thereby modulating various cellular processes. Several studies have established a functional link between mitochondrial dynamics, mitophagy, and cell death, but further investigation is needed to identify specific proteins involved in mitochondrial dynamics. Any alteration in the integrity of mitochondria has severe ramifications that include disorders like cancer and neurodegeneration. In this study, we used budding yeast as a model organism and found that Pil1, the major component of the eisosome complex, also localizes to the periphery of mitochondria. Interestingly, the absence of Pil1 causes the branched tubular morphology of mitochondria to be abnormally fused or aggregated, whereas its overexpression leads to mitochondrial fragmentation. Most importantly, $pil1\Delta$ cells are defective in mitophagy and bulk autophagy, resulting in elevated levels of reactive oxygen species and protein aggregates. In addition, we show that $pil1\Delta$ cells are more prone to cell death. Yeast two-hybrid analysis and co-immunoprecipitations show the interaction of Pil1 with two major proteins in mitochondrial fission, Fis1 and Dnm1. Additionally, our data suggest that the role of Pil1 in maintaining mitochondrial shape is dependent on Fis1 and Dnm1, but it functions independently in mitophagy and cell death pathways. Together, our data suggest that Pil1, an eisosome protein, is a novel regulator of mitochondrial morphology, mitophagy, and cell death.

Organelles have evolved a variety of stress response processes to maintain their proteostasis and cellular homeostasis. Mitochondrion, one of the essential organelles that carry out several important cellular processes, ensures its quality control through various pathways at the molecular, organellar, and cellular levels (1). Mitochondrial fission and fusion, generally referred to as mitochondrial dynamics, maintain mitochondrial integrity by regulating its size, shape, distribution, and connectivity. Mitochondrial dynamics regulate mitochondrial quality control, metabolism, apoptosis, mitophagy, and other essential processes. Fusion of mitochondria is required to mitigate the damage and nonfunctionality by mixing

components and protecting them from autophagic degradation during starvation (2, 3). Fission helps produce new mitochondria and ensures quality control by removing damaged or unwanted mitochondria through mitophagy (4). A coordinated balance of fission and fusion is critical for maintaining mitochondrial biology and therefore a plethora of important cellular processes (5, 6). In Saccharomyces cerevisiae, Fzo1, Mgm1, and Ugo1 facilitate mitochondrial fusion. Outer membrane-anchored proteins, Fzo1p and Ugo1p, carry out the outer membrane fusion of adjacent mitochondria and inner membrane-anchored Mgm1 forms transcomplexes to tether the apposing inner membranes together (7-9). Dnm1, a dynamin-related GTPase, is the major protein in mitochondrial fission (10, 11). It is predominantly present in the cytosol and recruited to mitochondria via Fis1 (12). Dnm1 assembles into oligomers which form rings and spirals at the outer membrane of mitochondria. Recruitment of Dnm1 to the mitochondrial surface is mediated through two adaptor proteins, Mdv1 and Caf4 (13, 14). These four proteins together constitute the core proteins of the mitochondrial fission machinery. However, there is a possibility that other unidentified factors still exist that take part in mitochondrial dynamics (15). Several studies have shown that any dysregulation in mitochondrial dynamics leads to neuronal disorders like Alzheimer's, Parkinson's, and Huntington's (16-18). When the damage is beyond repair, mitochondria undergo mitophagy. Mitophagy is a selective autophagy where autophagosomes engulf the entire mitochondria and deliver them to the vacuole for their degradation (19-21). Mitophagy is required to eliminate the bad mitochondria from cells. Any kind of aberration in mitochondrial dynamics or mitophagy is harmful to cells. Mitochondrial dysfunction has also been linked with protein aggregation and reactive oxygen species (ROS) generation in cells which in turn leads to cell death.

Cellular organelles communicate with each other in order to cope with stress. Since the plasma membrane is positioned at the frontline to combat the external stress stimuli, it requires high degree of organization as it carries out a diverse array of functions and forms the protective barrier around the cell. The fungal plasma membrane is organized in lateral domains with specialized functions like cell wall synthesis, environmental sensing, nutrient uptake, secretion, and endocytosis (22-24). High-resolution electron microscopy of freeze-etched

^{*} For correspondence: Naresh Babu V. Sepuri, nareshuohyd@gmail.com, nbvssl@uohyd.ernet.in.

Role of Eisosome Core Component Pil1 in Mitochondrial Dynamics, Mitophagy and Cell Death

by Amita Pal

Submission date: 14-Nov-2022 03:09PM (UTC+0530)

Submission ID: 1953494724
File name: Amita_Pal.pdf (4.84M)

Word count: 16217 Character count: 90738

Role of Eisosome Core Component Pil1 in Mitochondrial Dynamics, Mitophagy and Cell Death

ORIGINALITY REPORT

SIMILARITY INDEX

45%

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

This paper in TBC was published

Amita Pal, Arunkumar Paripati, Pallavi Deolal, Arpan Chatterjee, Pushpa Rani Prasad, Priyanka Adla, Naresh Babu V. Sepuri. "Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and RESH B SEPURI, Ph.D cell death in Saccharomyces cerevisiae", Journal of Biological Chemistry, 2022 Publication

Professor Dept. of Biochemistry

School of Life Science. University of Hyderabad Hyderabad - 500 046.

www.ncbi.nlm.nih.gov

Internet Source

Amita Pal, Arun Kumar Paripati, Pallavi Deolal, Arpan Chatterjee, Pushpa Rani Prasad, Priyanka Adla, Naresh Babu V. Sepuri. "Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and cell death in Saccharomyces cerevisiae",

Journal of Biological Chemistry, 2022

Publication

NARESH B SEPURI, Ph.D. Professor Dept. of Biochemistry School of Life Science University of Hyderabad Hyderabad - 500 046.

Fischer, Fabian, Andrea Hamann, and Heinz D. Osiewacz. "Mitochondrial quality control: an

integrated network of pathways", Trends in Biochemical Sciences, 2012.

Publication

5	Nils Wiedemann, Nikolaus Pfanner. "Mitochondrial Machineries for Protein Import and Assembly", Annual Review of Biochemistry, 2017 Publication	1 %
6	deepblue.lib.umich.edu Internet Source	<1%
7	hdl.handle.net Internet Source	<1%
8	libres.uncg.edu Internet Source	<1%
9	Francesca De Falco, Chiara Urraro, Anna Cutarelli, Sante Roperto. "Bovine papillomavirus E5 oncoprotein upregulates parkin-dependent mitophagy in urothelial cells of cattle with spontaneous papillomavirus infection: A mechanistic study", Comparative Immunology, Microbiology and Infectious Diseases, 2020 Publication	<1%
10	Tomotake Kanki, Ke Wang, Yang Cao, Misuzu	_1

Tomotake Kanki, Ke Wang, Yang Cao, Misuzu Baba, Daniel J. Klionsky. "Atg32 Is a Mitochondrial Protein that Confers Selectivity during Mitophagy", Developmental Cell, 2009

< | %

11	edepositireland.ie Internet Source	<1%
12	paduaresearch.cab.unipd.it Internet Source	<1%
13	d-nb.info Internet Source	<1%
14	www.nature.com Internet Source	<1%
15	Submitted to La Trobe University Student Paper	<1%
16	M. W. Gray. "Mitochondrial Evolution", Science, 1999 Publication	<1%
17	sutir.sut.ac.th:8080 Internet Source	<1%
18	Fernando Gomes, Helena Turano, Angélica Ramos, Mário Henrique de Barros, Luciana A. Haddad, Luis E. S. Netto. "Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells", Biophysical Reviews, 2021 Publication	<1%
19	Liangliang Zhang, Kai Wang, Luying Yu, Kaijie Luo et al. "Why does sludge-based hydochar	<1%

Luo et al. "Why does sludge-based hydochar

activate peroxydisulfate to remove atrazine more efficiently than pyrochar?", Applied Catalysis B: Environmental, 2021

Publication

20	journals.sagepub.com Internet Source	<1%
21	Submitted to Associatie K.U.Leuven Student Paper	<1%
22	intl.genetics.org Internet Source	<1%
23	krishikosh.egranth.ac.in Internet Source	<1%
24	www.intechopen.com Internet Source	<1%
25	Gang Ren, Parimala Vajjhala, Janet S. Lee, Barbara Winsor, Alan L. Munn. "The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy", Microbiology and Molecular Biology Reviews, 2006 Publication	<1%
26	Submitted to University of Sheffield Student Paper	<1%

Exclude quotes On Exclude bibliography On