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Abstract

In modern technologies, data has attracted significant attention from var-
ious fields due to its immense potential value, which can help in decision-
making. However, data is being accumulated very fast and increasing
amounts of data in size results in large-scale data. Processing and stor-
ing large-scale data can incur considerable memory costs and hamper the

scalability of data mining algorithms.

One solution for tackling or scaling large-scale data is through granular
computing (GrC) technology. GrC provides a conceptual framework in the
domain of human-centric systems and computational intelligence. GrC in-
volves the processing of complex information entities through information
granules. Basically, GrC facilitates a higher-level view of data in terms
of granules to tackle the problem much more efficiently. Integrating GrC
and computational intelligence has become a desirable area for several re-

searchers to develop efficient decision-making models for complex problems.

This thesis identifies fuzzy min-max neural network (FMNN) as a suitable
technology for computing information granules due to their simplicity, effec-
tiveness and robustness. FMNN was introduced by Patrick K. Simpson in
1992 as a supervised single-pass dynamic neural network classifier. FMNN
creates n-dimensional hyperboxes to represent pattern spaces. FMNN has
several salient properties that are suitable and adaptable for data mining
tasks, such as online adaptation, non-linear separability, fast training time,
and hard and soft decision-making ability. These hyperboxes as information

granules conceptually capture the essence of the data concisely.

This research focuses on building hybrid soft computing models where
FMNN is one of the components, and the hyperboxes are utilized in other

components to achieve the advantages of granular computing. We inves-
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tigate the applicability of FMNN induced hyperboxes in achieving a few
data mining goals, particularly in building three models. The first part
of the thesis is to build an efficient and enhanced FMNN classifier. The
second part is to build a scalable feature subset selection approach using
fuzzy rough sets. The last is to build an incremental feature subset selec-
tion approach using fuzzy rough sets. The present studies considered these
challenges in this thesis to be much more efficient with employing FMNN

as a granular computing preprocessing strategy.

The first contribution of the thesis is towards overcoming limitations in
FMNN. Several researchers have improved FMNN to overcome its limita-
tions and minimize classification errors. However, these improved variants
of FMNN still suffer from misclassification errors due to tampering with
the non-ambiguous region and increased cost of training as the additional
structure is added to the architecture of FMNN. An enhanced version of
FMNN with kNN is proposed without altering the structure of FMNN and
avoiding the contraction step. The proposed approach has the ability to

handle decision-making in overlapped regions very efficiently.

The second contribution of the thesis is to increase the scalability of FRS
approach. Fuzzy rough sets (FRS) theory is a hybridization of rough set
theory (RST) and fuzzy sets that provides a framework for feature subset
selection (also known as reduct computation). Traditional FRS approaches
can’t scale to large datasets due to the space complexity (O(|U|?|C|)) where
|U| is the size of the object space and |C| is the size of the attribute space.
Several researchers have proposed the scalable FRS approach to deal with
large datasets. However, these FRS approaches have been significantly scal-
able compared to traditional ones, but they still have not met much gain
in computation time to compute reduct computation on large datasets. In
this thesis, a novel scalable FRS-based reduct computation approach is pro-
posed using FMNN as a preprocessing step that can enhance the scalability
of FRS approaches. The proposed algorithm has achieved enhanced scal-
ability to such an extent in large datasets where existing FRS algorithms

are unable to compute. An extension to this work is also presented in the



third contribution with the objective of further increasing the scalability
and empirically arriving at recommendations about when to adopt these

approaches.

Most FRS reduct computation approaches are restricted to batch process-
ing; the entire data and its underlying structure are provided before train-
ing. When a new sample data arrives, the approach must recompute and
reconstruct the model from scratch to compute a reduct. Several researchers
have developed incremental reduct computation approaches to deal with dy-
namic datasets. But these incremental approaches are based on RST, not
FRS. There are very few attempts made to investigate FRS-based incremen-
tal reduct computation. These incremental FRS approaches suffer in terms
of their ability to scale to large datasets. In the fourth contribution, a novel
scalable incremental FRS-based reduct computation approach is proposed

using FMNN as a preprocessing step for dealing with dynamic datasets.

Comparative experimental analysis has been conducted for each contri-
bution with existing state-of-the-art approaches over several benchmark
datasets. Empirically, the results established that the proposed methods
achieved higher scalability than compared approaches while achieving highly
significant computational gain without compromising the performance of
the classification models induced. In the future, we plan to further the scal-
ability of our proposed methods through Apache Spark MapReduce dis-
tributive framework implementation that can deal with such voluminous

datasets requiring memory beyond the availability in a single system.
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Notations and Abbreviations

e GrC: Granular Computing

o FMNN: Fuzzy Min-Max Neural Network

e DT: Decision System

e U: Set of the object space

e C: Set of conditional attributes

e {d}: A single decision attribute

e H: Hyperbox

e kNN: k-nearest neighbour

e HBS: Set of hyperboxes

e 0: User defined parameter to constraint the size of hyperbox H
e I™: N-dimensional unit space

e 10-FCV: Ten-fold cross-validation technique

e CAverage: Average of the individual mean obtained by restricting to only those

datasets in which all algorithms could be evaluated.
e RST: Rough Set Theory
e DM: Discernibility Matrix

e CDM: Crisp Discernibility Matrix



GLOSSARY

e FRS: Fuzzy Rough Sets

e FDM: Fuzzy Discernibility Matrix
e IND: Indiscernibility relation

e DISC: Discernibility relation

e Neg: Negation

e upr,(x,y): A degree to which the objects x and y are dissimilar for numerical

attribute ‘a’.

e upr,(x,y): A degree to which the objects x and y are similar for numerical

attribute ‘a’.
e I': T-norm
e S: T-conorm
e SFS: Sequential forward selection
e SBE: Sequential backward elimination
e HDT: Hybrid Decision System
e C": Set of hybrid conditional attributes
e C™: Set of numeric conditional attributes
e C¢: Set of categorical attributes

e SAT(P): Satisfiability value of subset P for all the entries in the fuzzy discerni-

bility matrix
e IDS: Interval-Valued Decision System

e kKNN-FMNN: Integration of FMNN with kNN for enhancing classification per-

formance.

e FDM-FMFRS: Fuzzy discernibility matrix based feature subset selection using
FMNN



GLOSSARY

e CDM-FMFRS: Crisp discernibility matrix based feature subset selection using
FMNN

e IvFMFRS: Incremental FRS based feature subset selection using FMNN



Chapter 1

Introduction

1.1 Introduction

With the evolution of various modern technologies, the last two decades have witnessed
rapid growth in both generating and collecting data. Information and technology have
revolutionized large data collection [I, [127]. These datasets are collected from multiple
sources of data such as enterprises, customer databases, public health, financial data
etc. The structured form of the dataset for model construction is usually tabular in
nature, where rows correspond to objects and columns correspond to features. These
structured data have attracted significant attention from multiple applications due to
their immense potential value/capability, which can help in decision-making challenges
[7,[100]. The explosive increase in data requires new techniques that can transform the
processed data into valuable knowledge. Consequently, data mining has evolved as an
important research area to deal with data.

Data mining is an essential process for inferring the underlying structural patterns
and knowledge from data and resulting it into valuable information [I1), [102]. So, this
valuable information is utilized by companies to uncover profitable patterns, increase

their revenue amounts and decrease operational costs.

However, data is being accumulated very fast, and increasing amounts of data in
size results in large-scale data. The processing capability of data mining techniques is
critical under this periodical growth. Besides, storing large-scale data can result in a
considerable memory cost and hamper the scalability of data mining algorithms. Even

the data applicable for building applications is augmented with new data at different
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times or different circumstances (called dynamic data), which adds new difficulties for
analysis.

One solution for tackling or scaling large scale data is through granular computing
(GrC) technology [114, 120}, 121]. GrC is an emerging computing paradigm for study-
ing multidisciplinary information processing. It involves the processing of complex
information entities through information granules. Information granule can be viewed
as a composition of elements or objects of a universe drawn together by similarity,
proximity, indistinguishability, or functionality [I14]. In processing large-scale data,
GrC establishes an effective role in providing an improved description of data which is
cost-effective and computationally fast. Basically, GrC facilitates a higher-level view of
data in terms of granules to tackle the problem much more efficiently. Integrating GrC
and computational intelligence has become a desirable field for several researchers to
develop efficient decision-making models for complex problems [100].

Here, we are building efficient solutions for data mining as data sizes are enormously
increasing in scope, and are incrementally being acquired. Also dealing with data at
the object level always has higher complexity in any facet of data mining. Hence, we
acquire GrC technology which is good in both aspects, i.e., scalability and incremental
adaptation. So, with the need for both fast computation and incremental adaptation,
we have found a fine blend of all these aspects simultaneously satisfied in one technology
called fuzzy min-max neural network (FMNN), introduced by Simpson in 1992 [95].

FMNN has several salient properties that are suitable and adaptable for data mining
tasks, such as online adaptation, non-linear separability, fast training time, and hard
and soft decision [95]. FMNN is a supervised single-pass dynamic neural network
classifier to deal with pattern classification [95]. FMNN creates n-dimensional hyperbox
fuzzy sets to represent pattern spaces, i.e., the union of fuzzy hyperboxes forms an
individual pattern class [95]. Hyperboxes obtained from FMNN training can be viewed
as information granules with characteristics of simple representation using minimum
and maximum points and having a computationally efficient single-pass algorithm for
constructing the same.

This thesis explores the applicability of FMNN in achieving a few data mining
goals, particularly building an efficient and scalable classifier, a feature subset selection
approach and an incremental feature subset selection approach. We have considered

all these challenges in this thesis to be much more efficient with employing FMNN as
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a granular computing preprocessing strategy.

1.2 Motivation

With an extensive literature survey of FMNN and its extensions, we have arrived at
the conclusion that FMNN and its extensions are primarily used for classification and
clustering with applications in several real-world scenarios [2], 19 78, 84]. Several re-
searchers have utilized FMNN as a vehicle for a granular computing technique for
computing information granules. Several researchers have introduced hybrid models
in combination with FMNN to increase the ability of classification performance and
computation power, such as FMNN with ant colony optimization [99], FMNN with
particle swarm optimization [3], FMNN with decision tree [55], and FMNN with ge-
netic algorithm [77] etc. We have observed that FMNN can significantly be useful in
feature subset selection and incremental feature subset selection hitherto unexplored
in the literature. This section provides the motivation and context for each problem

considered in this thesis.

Enhancing Generalizability of FMNN:

In 1992, Simpson [95] proposed a supervised single-pass dynamic neural network classi-
fier known as Fuzzy Min-Max Neural Network (FMNN) to deal with pattern classifica-
tion. FMNN creates n-dimensional hyperbox fuzzy sets to represent pattern spaces. A
fuzzy hyperbox is characterized by a minimum point, maximum point in n-dimensional
pattern space [95]. FMNN learning is established by adjusting the min-max points of
hyperboxes (information granules) using three steps, i.e., expansion criteria, overlap
tests and contraction steps, to learn the pattern space [95].

FMNN is a robust and powerful learning model, though this model is still fac-
ing problems due to the contraction process, which may lead to gradation errors in
classification. Contraction steps in FMNN tamper with the non-ambiguous region by
modifying min-max points between hyperboxes in overlapped classes, inducing classifi-
cation errors.

In the literature, several researchers have developed and improved traditional FMNN
to overcome its limitations and minimize classification errors due to the contraction

process [16, 49, [59], [74]. These variants in FMNN are in the direction of better rep-
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resentation of overlapping regions among hyperboxes, optimization and refinement of
resulting hyperboxes and complementary with other soft computing models to enhance
classification performance.

These improved variants of FMNN [16], [49] [59] [74] still suffer from misclassification
errors due to tampering with the non-ambiguous region and the increased cost of train-
ing as the additional structure is added to the architecture of FMNN. These changes
cause problems to the advantage of FMNN with simplified structure in terms of incre-
mental adaptation etc. Hence this work investigates to identify the ways for ambiguity
resolution in “FMNN without contraction” without altering the simple structure of
FMNN.

Scalable Feature Subset Selection:

In the 1980s, Zdzistaw I. Pawlak [70] introduced the concept of classical rough set
theory (RST) as a mathematical tool, useful for feature subset selection in the in-
formation/decision systems [51} [71], 103, 116]. Primarily, RST is applicable to sym-
bolic/categorical decision systems [0, [71, [116]. Application of RST to numeric decision
systems will produce feature subsets with finer granularity. Hence, the induced rules
from the selected features suffer from poor generalizability to test datasets. So, one of
the solutions is to discretize the dataset beforehand and produce a new dataset with
categorical values. But, any discretization process tends to cause a loss of information
and result in classification error in pattern space [62].

Lately, Dubois et al. [22 [80] introduced fuzzy rough sets (FRS) theory which is
a hybridization of rough sets and fuzzy sets that deals with both symbolic and real-
valued conditional attributes. A subset of features selected using RST or FRS is named
reduct, and the process is called reduct computation (feature subset selection).

However, traditional FRS approaches can’t scale to large datasets due to the space
complexity (O(|U|?|C])) where |U| is the size of the object space and |C| is the size of
the attribute space. Several researchers have proposed the scalable FRS approach to
deal with large datasets [14 [40] 65], 106, [131].

Even though these scalable FRS approaches have improved the scalability to some
extent, the problem still requires a better solution for meeting today’s emerging re-
quirements for large data computation. Hence this work investigates in developing

approaches for scalable FRS feature subset selection through FMNN-based granular
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computing.

Scalable Incremental Feature Subset Selection:

Most FRS reduct computation approaches are restricted to batch processing; the entire
data and its underlying structure are provided prior to training at once. However, they
are not designed to deal with dynamic datasets. When a new sample data arrives, the
approach must recompute and reconstruct the model from scratch to compute a reduct.

In the literature, several researchers have explored how to process dynamic data
through incremental learning methodologies that minimize the complexities of pro-
cessing and storage. This idea has prompted several researchers to investigate the
incremental perspective to feature selection in the framework of RST. These ideas have
been investigated in various scenarios, such as the variation of feature set (adding and
deleting features) and the sample set (adding and deleting objects), respectively. There
have been a few studies on FRS based incremental feature selection algorithms under
the variation of objects so far [66], 112} 113 [128§].

Existing incremental FRS algorithms still suffer scalability issues due to object-
based computations. Hence, this work investigates an approach for scalable incremental

FRS feature subset selection through FMNN-based granular computing.

1.3 Problem Definition

This research focuses on building hybrid soft computing models where FMNN is one
of the components, and the hyperboxes are utilized in other components to achieve
advantages of granular computing. Each of the research objective is addressed as

follows:

1. One of the objectives of the thesis is to explore the methodology that combines
the simple structure of FMNN with k-nearest neighbor (kNN) strategy for induc-
ing a better classification model and incurring less computational time without

resorting to modifying the structure of FMNN.

2. The second objective is to investigate a granular-computing based FRS reduct

computation on achieving better scalability in reduct computation. The knowl-
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edge of FMNN can be utilized in decreasing the space complexity and the com-

putational time required in FRS-based reduct computation.

3. The third objective is to investigate the incremental perspective of FRS approach
using FMNN preprocessing to reduce the space complexity that can enhance the

scalability of incremental FRS reduct computation.

The aforementioned objectives of this research can be summarized as follows: The
objective of this thesis is to evolve the hyperboxes to construct hybrid
models for enhancing classification performance, formulating scalable ap-
proaches for reduct computation and incremental reduct computation for

large decision systems.

1.4 Major Contributions and Publications

The contributions of the thesis are elaborated towards the research motivation in which
they are described in the preceding section. Each contribution and its corresponding
publication are enumerated below:

Contribution 1 presents a hybridization of FMNN with kNN algorithm (kNN-
FMNN) for performing the ability to handle decision-making in overlapped regions
without altering the structure of FMNN. The work in this contribution has been pub-

lished as given below.

e Anil Kumar and P. S. V. S. Sai Prasad, Hybridization of Fuzzy Min-Max Neural
Networks with kNN for Enhanced Pattern Classification, In Advances in Comput-
ing and Data Sciences (ICACDS 2019), Pages 32-44, CCIS 1045, Springer 2019,
ISBN 978-981-13-9939-8 (Indexed in SCOPUS).

Contribution 2 proposes a novel FRS based feature subset selection approach
(FDM-FMFRS) utilizing FMNN as a preprocessing step that can enhance the scala-
bility of FRS approach. The work in this contribution has been published as given

below.

e Anil Kumar and P. S. V. S. Sai Prasad, Scalable Fuzzy Rough Set Reduct Com-
putation using Fuzzy Min—Max Neural Network Preprocessing, In IEEE Trans-
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actions on Fuzzy Systems, Vol. 28, Pages. 953-964, IEEE, May 2020. (Indexed
in SCI, SCOPUS).

Contribution 3 proposes an improvised FDM-FMFRS, named as CDM-FMFRS,
in order to increase the scalability of feature subset selection. This work formulates
a way to reduce space utilization in FDM-FMFRS that paves the way to increased

scalability. The work in this contribution has been published as given below.

e Anil Kumar and P. S. V. S. Sai Prasad, Enhancing the Scalability of Fuzzy
Rough Set Approximate Reduct Computation through Fuzzy Min-Max Neural
Network and Crisp Discernibility Relation Formulation, In Engineering Applica-
tions of Artificial Intelligence, Vol. 110, Pages 1-12, Elsevier, Apr 2022. (Indexed
in SCI, SCOPUS).

Contribution 4 proposes a scalable FRS-based incremental feature subset selec-
tion approach (IVFMFRS) using FMNN as a preprocessor step to deal with dynamic

datasets. The work in this contribution has been published as given below:

e Anil Kumar and P. S. V. S. Sai Prasad, Incremental Fuzzy Rough Sets based
Feature Subset Selection using Fuzzy Min-Max Neural Network Preprocessing. In
International Journal of Approximate Reasoning, Vol. 139, Pages 69-87, Elsevier,
Dec 2021. (Indexed in SCI, SCOPUS)

Additional Relevant Publications

Throughout my Doctoral research, I also contributed to the following collaborative

publications. They are not acknowledged as contributions in the thesis.

e Abhimanyu Bar, Anil Kumar, P.S.V.S. Sai Prasad, Finding Optimal Rough Set
Reduct with A* Search Algorithm, In Proceedings of Pattern Recognition and
Machine Intelligence, PReMI 2019, Pages 317-327, LNCS 11941, Springer 2019,
ISBN 978-3-030-34868-7. (Indexed in SCOPUS)

e Abhimanyu Bar, Anil Kumar, P.S.V.S. Sai Prasad. Coarsest granularity-based
optimal reduct using A* search, In Granular Computing, Vol. 7, Pages 1-22,
Springer, March 2022. (Indexed in ESCI, SCOPUS)
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1.5 Organization of the Thesis

The thesis has been structured into seven chapters based on methods.

Chapter [1] presents the introduction part of the thesis. It reviews the usefulness
of granular computing in data mining and its usefulness in the feature subset selection
approach. The chapter also enumerates research motivation, objectives, and the thesis’s
contributions and organization.

Chapter [2| presents an introduction to the concept of granular computing and a
brief overview of FMNN as a granular computing method which is helpful in enhanced
understanding of the contributions.

Chapter (3| discusses a literature review of variants of FMNN and their limitations.
Based on the study of related literature, a proposed enhanced version of FMNN model,
in terms of classification performance and computational time, is presented. The al-
gorithm developed in this chapter is kNN-FMNN. Comparative experimental analysis
of kNN-FMNN with state-of-the-art approaches is presented on benchmark datasets.
The contribution of this chapter is published in the proceedings of ICACDS-2019.

Chapter [4] introduces the basics of classical rough sets and fuzzy rough sets with
discernibility matrix construction and attribute reduction (reduct computation) pro-
cess. Also, it discusses the literature review of scalable FRS reduct computation ap-
proaches and their limitations. A proposed scalable FRS reduct computation using
FMNN as a preprocessing step is introduced. The algorithm developed in this chapter
is FDM-FMFRS. Comparative experimental analysis of FDM-FMFRS with state-of-
the-art approaches is given on benchmark datasets. The contribution of this chapter is
published in IEEE Transactions on Fuzzy Systems.

Chapter [5| presents the inherent possible extensions of a methodology developed
in Chapter [4]in terms of enhancing further scalability. The algorithm developed in this
chapter is CDM-FMFRS. Comparative experimental analysis of CDM-FMFRS with
FDM-FMFRS and compared algorithms are given on benchmark datasets. The contri-
bution of this chapter is published in Engineering Applications of Artificial Intelligence.

Chapter [6] contains the literature review of existing FRS incremental reduct com-
putation approaches and their limitations. A proposed incremental reduct computa-
tion in FRS with FMNN preprocessing step is presented. The algorithm developed
in this chapter is IvFMFRS. Comparative experimental analysis of IvFMFRS with

11
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state-of-the-art incremental approaches is reported. The contribution of this chapter is
published in International Journal of Approximate Reasoning.

The thesis concludes with Chapter [7] which summarizes the research contributions

and presents directions for future work.
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Chapter 2

Granular Computing using Fuzzy
Min-Max Neural Network

This chapter addresses the basic concepts that are used throughout this thesis to un-
derstand the proposed works. Section describes an overview of granular computing.
Section presents one of the granular computing models known as fuzzy min-max

neural network and its architecture and classification process.

2.1 Granular Computing

When humans observe a set of unknown characters, images, or objects that are not
familiar to them, they tend to group them by their similarity, shape, or size and form an
abstract view of those specific things for further decision-making. This renders human
cognition involving several levels of granularity (i.e., abstraction) to understand the
newly acquired information and make our ensuing cognitive process more effective [81].

Granular computing (GrC, in short) is an emerging computing paradigm in the
field of studying multidisciplinary information processing and provides the conceptual
framework in the domain of human-centric systems and computational intelligence.
GrC is subjective for understanding how humans granulate concepts or features and
execute rational decisions in uncertain and imprecise environments. GrC can obtain
different aspects of knowledge, as well as enhance the understanding of the underlying
knowledge structure.

The word granularity has been first used in Loft A. Zadeh’s 1979 paper, “Fuzzy

13
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Sets and Information Granularity”[118]. Granulation is a process that constructs or
decomposes a universe into granules. Lofti Zadeh’s keynote speech [122] on granulation
states:

“Information granulation involves partitioning a class of objects (points) into gran-
ules, with a granule being a clump of objects (points) which are drawn together by
indistinguishability, similarity, or functionality.”

GrC is thus important in human problem-solving and has a very significant im-
pact on the design and implementation of intelligence systems. GrC involves the pro-
cessing of complex information entities through “information granules”. A granule
can be viewed as a composition of elements or objects of a universe as they can be
drawn together by similarity, proximity, indistinguishability or functionality. Informa-
tion granule is a primitive concept in granular computing. Basically, GrC is all about
representing, constructing and processing information granules.

Fuzzy min-max neural network (FMNN) is an emerging soft computing paradigm
of granular computing [95]. FMNN creates n-dimensional hyperbox fuzzy sets to rep-
resent pattern spaces, i.e., the union of fuzzy hyperboxes forms an individual pattern
class. This thesis identifies FMINN as a suitable technology for computing information
granules.

Our research focuses on building hybrid soft computing models where FMNN is one
of the components, and the hyperboxes are utilized in other components to achieve the

advantages of granular computing.

2.2 Overview of Fuzzy Min-Max Neural Network

In 1992, Simpson [95] proposed a single-pass dynamic neural network structure to deal
with pattern classification known as fuzzy min-max neural network (FMNN). This
approach presented in [94] as an extension of earlier work [93] to learn pattern classes.
There are several salient properties of FMNN for using it as a classification model,

which are briefly described as follows:

1. Online adaptation: FMNN has the ability to learn new classes and refine exist-
ing classes with new input patterns over time without eliminating old or previous
classes or retrain the learning model. Hence, FMNN provides an appropriate

solution for “Stability-Plasticity Dilemma” [8] problem.

14
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Max
point

W)

hyperbox in R3

Min
point

V)

Figure 2.1: Hyperbox in 3-D

2. Non-linear separability: FMNN classifier can allow various classes to build
non-linear separable decision regions for classification that separate classes per-

fectly.

3. Overlapping classes: FMNN has the ability to minimize the misclassification

of patterns in all overlapping classes on decision boundaries.

4. Non-parametric classification: FMNN classifier doesn’t depend on any prior
knowledge of the underlying data distribution, thereby is able to provide reliable

decision boundaries.

5. Hard and soft decision: FMNN has the ability to provide both hard and soft
classification decisions. For hard decisions, the decision regarding input test data
is crisp, i.e., either 0 or 1. For soft decisions, a classifier describes the degree to

which input test data fits in each class.

6. Training time: FMNN is a single-pass algorithm. It learns very fast in compar-
ison to other non-linear classification algorithms that require huge computational
time to learn decision boundaries. These other non-linear algorithms require many
passes through the data to achieve optimal objective function to learn decision

boundaries as in the case of back-propagation algorithm [83].

FMNN is a supervised learning neural network that uses n-dimensional hyperbox
fuzzy sets to represent pattern spaces [95]. Each hyperbox restricts a subregion defined

by pairs of minimum point (V) and maximum point (W), and it characterized by a
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fuzzy membership function. The hyperbox having min and max points in 3-dimensional
space is depicted in Fig. Basically, the author presents hyperbox as fuzzy sets due
to their corresponding membership function that allows them to create fuzzy sets in
n-dimensional space.

This membership function of the hyperbox describes the degree of pattern fitting
within the restricted region. The maximum size of hyperbox along each dimension is
restricted by theta (), which is user-defined parameter with range of [0,1] (0 < 6 < 1).
Therefore, the pattern space will be constrained into the n-dimensional unit cube I™.
Given a numeric decision system, all the numeric attributes are scaled into [0, 1] before
applying FMNN. Each hyperbox H; is defined as:

Hj = {X,,V;,W;, Memb;(Xp,)} V X, elI" (2.1)

where X}, = (2h1, Zp2, ..., Thy) is an input pattern in n-dimensional space, and V; =
(vj1,v52, ..., vjn) and W = (wj1, wja, ..., w;n) are the corresponding minimum point and
maximum point for hyperbox H;. Memb;(X}) is the fuzzy membership function that
describes the membership value of the input pattern X w.r.t particular H; hyperbox
and defined as:

1 n
Memb;(Xy) = o Z[ maz(0, 1 —maz (0, ymin( 1,z —wj;)))
i=1
+max( 0,1 —maz (0,v.min( 1,vj — zpi)))] (2.2)

where, v provides the sensitive parameter described to the pace of decrease of the
fuzzy membership values, and 0 < Memb;(X}) < 1. The fuzzy membership function
computes on a dimension by dimension to measure the degree how far each component
is lesser (greater) than the minimum (maximum) point value along with each dimension
that falls outside the min-max bounds of the hyperbox. As the membership approaches
one, the point should be more contained by the hyperbox, with the value one repre-
senting complete hyperbox containment. The membership function (defined in Eqn.
(2.2])) is the sum of two components, first the average amount of max point violation
and the average amount of min point violations.

The aggregation of hyperbox fuzzy sets creates the decision boundaries that separate

classes. So, aggregation of fuzzy set that classifies the k" pattern class (C}) is defined

16
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Class One

Class Two

Figure 2.2: An Example of FMNN Hyperboxes Placed Along Boundary of a Two-Class
Problem

in Eqn. (2.3]).

C.= | H; (2.3)
JjEK
where, K is the index set of the hyperboxes associated with the class k. An example

of aggregation of hyperboxes separated by decision boundary in 2-D is depicted in
Fig.

2.2.1 Architecture of FMNN Classifier

The topology of FMNN classifier is a three-layer feed-forward neural mechanism, as
shown in Fig. The first layer (Fy4) is an input layer for input patterns in n-
dimensional space; the second is a hidden layer where each node represents a hyperbox
fuzzy set; and the third is an output layer where each node represents a decision class.
Each node in the input layer (Fy) is connected with every node in the hidden layer
(Fgr) with two connection weights minimum (stored in V matrix) point and maximum
(stored in W matrix) point. A fuzzy membership function is considered as (Fp) a
transfer function, defined in Eqn. (2.2). The connection between (Fp) and (Fr) nodes
is binary-valued and stored in the matrix U, as defined in Eqn. .

17
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(2.4)

{1 If H; is a hyperbox for class Cy,
Ujk =

0 otherwise,

Fc Class Nodes

Fy Hyperbox Nodes

V&Ww

Fao Input Nodes

Figure 2.3: Three Layer Neural Network Architecture of FMNN

The output of each (F¢) node shows the membership degree to which the input
pattern belongs to a decision class. The transfer function for each of (F) nodes in the

output layer performs the fuzzy union of corresponding hyperbox fuzzy set values, as
described in Eqn. (2.5)).

Ck = mn&i'x Hjujk (25)
]:

2.2.2 Classification Learning in FMNN

FMNN learning process is performed by creating and adjusting hyperboxes in n-dimensions

space for all decision classes. The learning process begins with an input pattern

18
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{X},Cp} that enters the network. We compute the membership of X} into all hy-
perboxes of decision class C},. If any of the membership values is one, in other words,
the input pattern absolutely belongs to one of the existing same class hyperbox, then
no further training is required. Otherwise, the network tries to find the same class
hyperbox that can expand to accommodate the input pattern through the expansion
process (if needed). If the hyperbox cannot meet the expansion criteria to include the
input pattern, then a new hyperbox is created and added to the network. If a hyperbox
expansion has happened, there is a chance of overlapping among similar or different
class existing hyperboxes. Usually, the overlap between hyperboxes representing the
same class is not a problem. But, overlap among hyperboxes from other classes is
important and needs to be eliminated using a contraction process.

FMNN training involves three stages for acquiring knowledge: Hyperbox Expansion
process, Overlap test and Contraction process.

Hyperbox Expansion: Given an input pattern {Xp,Cr}, the network identifies a
winning hyperbox with the highest degree of membership value and represents the
same decision class as C}, for expansion. For the expansion, H; hyperbox must be
bound by the expansion criteria constraint given in Eqn. , to include an input
pattern Xj,.

n

Z (maz(wji, Tp;) — min(vj;, or)) < nb (2.6)
i=1

where, the range of user-defined parameter (¢) in Eqn. is within the range of
(0 < 0 < 1) and controls the maximum size of a hyperbox.

If the expansion criterion, given in Eqn. , is satisfied between the input pattern
X}, and hyperbox Hj, then the minimum and maximum points of hyperbox H; are

altered to accommodate the input pattern Xj using Eqn. (2.7) and Eqn. (2.8).

v = min(vi® xp) Vi=1,2,3,...,n. (2.7)

wit = mam(w}’fd, zpi) Vi=1,2,3,...,n. (2.8)

If the existing hyperbox H; can not be expanded using Eqn. (2.6, then a new point

hyperbox is created to contain X}, whose min and max points are set to Xj.
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Overlap Test: After the expansion process, there is a chance that H; leads to
overlapping with adjacent hyperboxes representing different classes. The overlap test
is to determine any chance of overlapping between hyperboxes through dimension by
dimension comparison. Two hyperboxes don’t overlap as long as there is at least
one dimension that is not overlapping. If overlap existed between two hyperboxes, at
least one of the following four cases is satisfied in each dimension. Suppose both H;
and Hj hyperboxes represent different classes are being examined for possible overlap.
Assuming, 6°¢ = 1, four test cases and their corresponding minimum overlap value for

it" dimensions are as follows:

case 1 :vj; < vg < wjp < Wy

gnew old)

= min(wj; — Vg, 0
case 2 : v < v < Wi < Wjj
5" = min(wy; — vji, 6%
case 3 :vj; < Vg < Wh < Wijj
" = min(min(wy; — vji, Wi — ki), 501d)
case 4 : v < vj; < wj < Wi
6new

= min(min(wki — Uy, Wji — Uki)a 5Old)

(2.9)

Let A indicates the dimension, where the overlap is minimal. If §%¢ — gnew > 0
occurred, then there is overlap in " dimension (A = i), and the next overlapping
testing will continue for the next dimension with assignment 6°¢ = §™°%. If not, then
overlapping checking between hyperboxes will not proceed, and A is set to indicate that
the contraction process is not required, i.e., A = —1. One can say that hyperboxes are
not overlapped means that at least in one dimension, there is no overlap. Hence, there
should be overlapping in each dimension to say that both hyperboxes share boundary
regions.

Contraction Process: If (A > 0), then an overlap existed between hyperboxes (H;
and Hy) on A' dimension is adjusted using the contraction process. Because the
smallest dimension minimally affects the state of hyperboxes and keeps hyperbox size

as large as possible, that delivers a more robust pattern classification. For contraction,

20



2.2 Overview of Fuzzy Min-Max Neural Network

e New Boundary
— ol
Class 1 Old Boundary
Overlap Region
B e ——
|
Class 2

Figure 2.4: Overlap and Contraction Process Between Hyperboxes

case 1:vja < vpa < wja < Wi

old old
new _ ynew _ "WiA T VA
Win = VA = 9
case 2 : vpA < VA < WA < WHA
old old
new __ ,new __ WeA + UiA
WA = UjA = B

four cases are examined for adjustment between hyperboxes, as given below:

case 3 : VA < vpa < wpa < wia and (WA — vja) < (wWja — VEA)

new __ , old
UiA~ = WiA

case 4 : vja < vpa < wra < win and (WA — vja) > (WA — VEA)

new __ ,old
WiA = UgA

case 5 : vpa < vja < wia < wra and (wpa — vja) < (Wja — vgA)

new __ ,.old
WEA = VA

case 6 : vpa < vja < wia < wpa and (WA — vjA) > (WA — VkA)

new __ , old
VgkA = WiA

21
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The overlap and contraction step between hyperboxes H; and Hy of different classes
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are illustrated in Fig. The shaded region showed the overlapping part between
hyperboxes. So, the overlap test finds the minimum overlap region along the x-axis
dimension. Then, the contraction steps alter their min and max points between the
hyperboxes along the selected dimension to eliminate ambiguity, as shown in bold
outline in Fig. [2.4]

In testing phase of FMNN classifier, for a given test pattern X, the fuzzy mem-
bership of X is computed with respect to all the hyperboxes. The test pattern X
is classified as the decision class corresponding to the hyperbox achieving the highest
fuzzy membership or full membership.

These placings and adjustments of hyperboxes create a granular structure of pattern
in pattern space which is useful for pattern classification. This method also establishes
several salient learning features like online learning, non-linear separability and non-
parametric classification, thus, making FMNN more flexible. The main advantage of the
FMNN is that it has the potential to learn approximate decision concepts through single
pass training. The unique blend of single epoch learning combined with adaptability
to incremental learning has made the FMNN suitable for current scenarios of building
intelligent systems in an online environment.

Hyperboxes obtained from FMNN training can be viewed as information granules
with characteristics of simple representation using minimum and maximum points and
having a computationally efficient single-pass algorithm for constructing the same. The
primary objective of our research work is to explore the potential possibility of utilizing
information granules in the form of hyperboxes and formulating algorithms for granular
computing using hyperboxes in solving the standard problems of data mining and
machine learning. Our research focuses on building hybrid soft computing models where
FMNN is one of the components and the hyperboxes are utilized in other components
to achieve advantages of granular computing.

In this thesis, we formulate, design, and develop granular computing-based solutions

using FMNN induced hyperboxes for the following three problems:

1. Efficient classifier model construction for overcoming “contraction step” induced

problems.

2. Feature subset selection using fuzzy rough set theory.

3. Incremental feature subset selection using fuzzy rough set theory.
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The rest of the chapters explained each of the contributions.
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Chapter 3

Enhancement of Fuzzy Min-Max

Neural Network for Classification

Fuzzy min-max neural network (FMNN) is a single-pass dynamic neural network classi-
fier to deal with pattern classification. Indeed, the theory has been performing remark-
ably with further extensions and modifications to enhance the pattern classification in
recent years. However, despite these modifications and extensions, these variants result
in an increase in the computational cost due to additional constructs in the architecture
of FMNN and loss of information owing to the contraction step.

This chapter highlights the related issues associated with FMNN methodology and
its variants and provides a solution that can enhance the pattern classification and
incur less computational time.

The rest of the chapter is designed as follows: Section briefly introduces the
literature survey of variants of FMNN and their disadvantages. Section [3.2] presents the
motivation behind the proposed algorithm. Section [3.3|briefly describes the functioning
of the proposed algorithm kNN-FMNN. Section describes the complexity analysis
of proposed algorithm kNN-FMNN. Section reports a series of experiments and
comparative analysis of KNN-FMNN with state-of-the-art approaches.

3.1 Literature Review FMNN Variants

In 1965, Zadeh [119] introduced fuzzy sets as an extension of the classical sets to

describe and manipulate data that are not precise. Fuzzy logic is a generalization
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of fuzzy sets in which a concept is characterized by a degree of membership ranging
between zero and one. Fuzzy logic aims at creating approximate human reasoning that
is helpful for cognitive decision-making. Several hybrid systems have been developed
by researchers with fuzzy sets combining other soft computing models such as artificial
neural networks, expert systems and genetic algorithms etc [26], 92| 132, [134].

A hybrid system like the artificial neural network with fuzzy logic has proven its ef-
fectiveness in real-world problems [26]. The main advantage of artificial neural systems
is their adaptability, making models good at understanding patterns but not enough to
explain how to reach their soft decisions. So, fuzzy logic systems aid the neural network
in the enhancement of interpretability.

In 1992, Simpson [95] proposed a supervised single-pass dynamic neural network
classifier known as Fuzzy Min-Max Neural Network (FMNN) to deal with pattern clas-
sification using fuzzy sets as pattern classes. FMNN employs n-dimensional hyperbox
fuzzy sets to represent pattern spaces, i.e., the union of fuzzy hyperboxes forms an
individual pattern class. A fuzzy hyperbox is represented as a region in n-dimensional
pattern space and characterized by minimum point, maximum point and fuzzy mem-
bership function [95]. FMNN learning is established by adjusting the min-max points of
hyperboxes (information granules) to acquire or learn knowledge of the pattern space.
This way FMNN exhibits a non-linear separability property of finding decision bound-
aries across decision classes. Complete details of FMNN and its procedure for training
and testing details are explained in Chapter

FMNN has been applied successfully in different applications such as fault detection,
lung cancer, medical data analysis, image processing, video sequence segmentation
and text classification etc [2], 19] 60} [78 [79] 84], 86] 87, 135]. For example, in image
segmentation, instead of processing individual color pixels, a group of pixels (granules)
can be processed efficiently using GRFMNN [60]. GRFMNN model is used to build up
granules through training min-max values of the pixels in each grid. These granules
are then used for classification. This way significantly reduces the computational costs
required to process individual pixels. Similarly, GRFMNN is used to eliminate shadows
from color images and also reduces the dependability of the existing computer vision
approach. There are many examples of FMNN that provides practical solutions in

real-world applications.

Although FMNN is a robust and powerful learning model, this model is still fac-
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ing problems due to the contraction process, which may lead to gradation errors in
classification. Contraction steps in FMNN lead to tempering with the non-ambiguous
region by modifying min-max points between hyperboxes in overlapped classes, which
can induce classification errors.

These issues have motivated several researchers to develop and improve the FMNN
to overcome its limitation and minimize the misclassification error due to the contrac-
tion process. These variants in FMNN are in the direction of better representation of
overlapping regions among hyperboxes, optimization and refinement of resulting hyper-
boxes and complementary with other soft computing models to enhance classification
performance.

Our studies can be viewed as a literature review of existing FMNN approaches in
two different categories (with contraction and without contraction) that include vari-
ous FMNN variants, as depicted in Fig. The first category is to retain traditional
FMNN learning stages (expansion, overlap, and contraction steps) along with modifi-
cations and enhancements. The second category highlights the FMNN variants that

eliminate the contraction procedure.

3.1.1 FMNN Variants with Contraction

In 2000, Gabrys et al. [27] proposed a generalization and extension of FMNN, called a
General Fuzzy Min-Max Neural Network (GFMNN) to enhance FMNN classification’s
effectiveness by addressing a few issues in using traditional FMNN. These issues are
related to fuzzy membership function and hyperbox expansion criterion. GFMNN
appears to work on both supervised and unsupervised learning within a framework,
while traditional FMNN presents two different approaches. The authors also propose
a new membership function describing the degree to which an input pattern belongs
within the hyperbox and a new expansion criterion to expand the hyperbox to cover
the input pattern. Comparatively, GFMNN achieves better pattern classifiability by
generating fewer hyperboxes than FMNN.

In 2005, Kim et al. [46] proposed an extension of FMNN, called a Weighted Fuzzy
Min-Max Neural Network (WFMNN) that considers weights into account. The author
gives the importance of each feature in each hyperbox using weights. This weight value
is assigned to a feature based on the frequency of occurrence of patterns against other

features of the same hyperbox. The authors also present a new fuzzy membership
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FMNN
A

Variants with Contraction Variants without Contraction
Gabrys et al., 2000 | GFMNN EFC Bargiela et al., 2004
Kim et al., 2005 | WFMNN EEFC Bargiela et al., 2004

Quteishat et al., 2008 | MFMNN FMCN Nandedkar et al., 2007

Quteishat et al., 2010 |FMNN-GA DCFMNN | Zhang et al. 2011
Mohammed et al., 2017 | EFMNN MFMCN | Devtalab et al., 2012
Mohammed et al., 2017 |EFMNN-II MLF Devtalab et al., 2014
Santhos et al., 2020 IFMNN 4 FMNWSM | Forghani et al., 2015

Figure 3.1: Variants of FMNN With and Without Contraction Process

function by considering the weight factor which encourage to exploit the importance of
features. The proposed model compensates for the distortion and noise of the hyperbox
during expansion and contraction steps by employing feature distribution information.
WFEFMNN was successfully applied in the fields of feature extraction [4§] and face de-

tection applications [47].

In 2008, Quteishat et al. [79] proposed a modification of FMNN as MFMNN in an
endeavor to increase the classification performance of FMNN. MFMNN strategy focuses
on the scenario when a few large hyperboxes are created, i.e., expansion parameter (6)
is large. Authors incorporate a confidence factor-based pruning strategy into FMNN to
remove low confidence factor hyperboxes after training the FMNN network. Also, they
include the Euclidean distance along with fuzzy membership function in the FMNN
network to predict the test pattern class, especially when the 6 is large. The winning
hyperbox is the one obtaining the shortest Euclidean distance from test pattern to the

centroid of the hyperbox.
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In 2010, Quteishat et al. [77] proposed an extension of MFMNN;, called a MEMNN
with genetic algorithm (GA)-based rule extractor (MFMNN-GA) for enhancing the
classification performance. The first stage of MEFMNN-GA is to generate hyperboxes
through the base model (MFMNN) and then prune hyperboxes using a confidence
factor to decrease the model’s complexity. The idea of using the confidence factor is
for identifying the frequent occurring hyperboxes. The pruning method removes low
confidence factor hyperboxes to minimize the network complexity. The second stage is
to apply ‘don’t care’ strategy by GA-rule extractor to reduce the number of features in
the extracted rule and improve the classification performance.

In 2017, Mohammed et al. [56] presented an improved FMNN; called an Enhanced
Fuzzy Min-Max Neural Network (EFMNN), to address the limitation in the learning
process of FMNN and improve the performance of classification. These limitations
address overlapping rules and contraction rules to remove the overlapped region between
hyperboxes. Authors extend standard overlapping steps with new ones to manage all
possible overlapped regions between hyperboxes missing in the earlier one. Besides, a
new contraction step is also provided to resolve all possible overlapping cases.

In 2017, Mohammed et al. [57] introduced an enhanced version of FMNN, called a
FMNN with a K-nearest hyperbox expansion rule (KnFMNN) to improve the classifica-
tion. Authors associated a new hyperbox expansion rule using k-NN strategy to reduce
FMNN network complexity. In KnFMNN, a set of k& hyperboxes is selected to cover
input patterns, i.e., if one hyperbox is not satisfied with the expansion criteria, then
the next hyperbox is considered for expansion till the set goes empty. This has resulted
in the model being more generic and creating fewer hyperboxes, thus increasing the
classification performance.

In 2017, Mohammed et al. [58] presented an extension of EFMNN as EFMNN-II by
incorporating two strategies: k-nearest hyperbox expansion rule and pruning strategy.
k-nearest hyperbox expansion rule is employed to select the winning hyperbox, and the
pruning process is formulated to eliminate less efficient hyperboxes. This way increases
EFMNN performance in terms of classification and network complexity.

In 2020, Santhos et al. [49] presented an enhanced version of FMNN, called Improved
FMNN (IFMNN), to increase classification performance. The authors employ k-nearest
hyperbox expansion rule along with the perimeter of hyperbox to choose a winning

hyperbox for expansion. And a weighted procedure based on the perimeter is proposed
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to check the expandability of the selected hyperbox. Also, a set of contraction rules
based on FMNN and EFMNN are altered using a perimeter of a given hyperbox to
balance the overlapping regions. IFMNN is a refinement of FMNN, k-FMNN and
EFMNN approaches.

Although these proposed approaches (having contraction steps) are an enhanced and
improved version of the original FMNN to reduce classification error as aforementioned,
these FMNN variants still suffer the data distortion and gradation error, which may
result in a classification error. These variants still employ the same contraction process
as FMNN with few improved versions that tempered the acquired knowledge in the

non-ambiguous region, causing gradation error in classification.

3.1.2 FMNN Variants without Contraction

Many researchers have achieved an innovative way to exclude the contraction process
in FMNN to retain overlapping information for better pattern classification.

In 2004, Bargiela et al. [5] proposed an improved FMNN classifier, known as inclu-
sion/exclusion fuzzy hyperbox classifier (EFC). It provides a new learning methodology
to deal with the overlapping region problem in FMNN by dropping the contraction
process. EFC considers two types of hyperboxes named as inclusion and exclusion
hyperboxes. Inclusion hyperboxes can contain input patterns belonging to the same
decision class. The exclusion hyperboxes include input patterns that fall in the over-
lap region of different class hyperboxes. Using exclusion hyperboxes reduces FMNN
three-step learning process (expansion, overlap test and contraction) into two steps
process (expansion and overlap test). However, this method resulted in a reduction in
misclassification owing to the discarding of exclusion hyperboxes.

In 2004, Bargiela et al. [82] proposed an extension of EFC, called a Adaptive In-
clusion/Exclusion Fuzzy Hyperbox Classifier (EEFC) to improve classification perfor-
mance. Like EFC, the authors consider two kinds of hyperboxes named inclusion and
exclusion hyperboxes but use a modified expansion step. In FMNN, the maximum size
of the hyperbox is to be fixed in advance. In this paper, the authors induce the adap-
tive nature of the expansion parameter of all hyperboxes, which means no parameter
is fixed in advance. This way, the overlap regions don’t become too large, which is
possible in EFC algorithm.

In 2007, Nandedkar et al. [59] introduced a novel FMNN classifier, called a Fuzzy
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Min-Max Neural Network Classifier with Compensatory Neurons Architecture (FMCN).
FMCN incorporates two additional types of compensatory neuron architecture along
with classifying neurons (CLNs, which represent a pure hyperbox) in the original FMNN
architecture named as containment compensation neurons (CCNs) and overlapped com-
pensation neurons (OCNs). The idea of FMCN is to protect the min-max points of the
overlapped region between hyperboxes using compensatory neurons to address over-
lapped regions. CCNs represent an overlap region (containment region), where the
hyperbox is entirely and partially encloses another hyperbox belonging to a different
class. OCNs address the overlap region between hyperboxes of distinct classes, where
a new hyperbox is created to represent the overlap region’s size. A new fuzzy mem-
bership function is also presented for compensatory neurons. This method can protect
the min-max points of the overlap region to enhance the learning algorithm as this
information is highly significant for pattern classification.

In 2007, Zhang et al. [124] proposed a new approach, called a Data Core Based
Fuzzy Neural Network (DCFMN), to overcome the limitation of FMCN with the help
of the geometrical center and data core of hyperbox. DCFMN also has the benefit
of handling noisy data. Like FMCN, DCFMN also contains a compensatory neuron
and classifying neurons (CLNs, representing a pure hyperbox). Compensatory neurons
address all form of overlapping region problems among hyperboxes of different classes.
In contrast with FMCN, DCFMN needs only one type of compensatory neurons, known
as overlapping neurons (OLNSs), to handle both overlapped and containment regions to
classify data patterns. Two different fuzzy membership functions for OLN and CLNs

are also presented based on the geometric center and data core of the hyperbox.

In 2012, Devtalab et al. [I7] proposed a modified version of FMCN [59], called a
Modified Fuzzy Min-Max Classifier Using Compensatory Neurons (MFMCN), to handle
overlapping regions problems. FMCN adds compensatory neurons straight after occur-
ring of overlap region between hyperboxes due to the expansion step. But, MFMCN
first creates all hyperboxes and after that adds compensatory neurons based on the
overlap region between hyperboxes. This way results in a decrease in time and space
complexity against FMCN.

In 2014, Devtalab et al. [I6] proposed a novel FMNN, known as Multi-Level Fuzzy
Min-Max Neural Network (MLF) classifier employing a multi-level tree structure to

classify the pattern. Each node in MLF is known as a subnet and works as an inde-
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pendent classifier to classify patterns belonging to the particular region (overlap region
in a node). At the first level (root node), the classifier is reliable to distinguish the
non-boundary region (non-overlap region) patterns. Classifier at the second level is
responsible for the remaining regions (overlapped region) of the root subnet (belongs
to the first level). Similarly, each node in the level (except the first level) is responsible
for classifying patterns belonging to an overlapped region in the previous level (parent
node) in the network. Consequently, each level of the model operates in various sizes
of hyperboxes to handle the overlap region.

In 2015, Forghani et al. [25] proposed an extension of FMNN, called FMNN for
Learning a Classifier with Symmetric Margin (FMNWSM). FMNWSM avoids using
the contraction process and additional compensatory nodes to deal with overlapped
regions. The authors proposed a fuzzy membership function based on the radius and
midpoint of the hyperbox. FMNWSM performs better in classification accuracy when
the training and testing data are from an identical probability distribution; however, it
is not practically possible to use large real-world data.

The above-mentioned approaches do not use the contraction step and provide addi-
tional structures in FMNN for decision-making in overlapped regions, overcoming the
contraction’s problem with the cost of an increase in training complexity of FMNN.
Although these proposed approaches (without contraction) are an enhanced version
of the original FMNN to reduce classification error, these FMNN variants tend to in-
crease the cardinality of hyperboxes and complexity, thus increasing the time and space

complexity.

3.2 Motivation

Although these FMNN variants include various improvements and enhancements on
original FMNN to increase classification performance, they still exhibit certain limi-
tations that affect FMNN classification performance negatively. These limitations are
summarized in two aspects.

First, the improved and enhanced version of FMNN that include contraction proce-
dures in learning process such as GFMNN [27], WFMNN [25], EFMNN [56], KnFMNN [57],
EFMNN-2 [58] and IFMNN [49], are introduced to enhance the classification perfor-

mance. However, these variants still employ the same contraction process of FMNN
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with few improved versions that tempered the acquired knowledge in the boundary
region (overlapped and non-overlapped region) and caused gradation error in pattern
classification. Even it creates classification errors for the learned data itself.

Second, the information loss due to the contraction procedure of FMNN leads to sev-
eral improvements in literature to work without contraction procedures during learning
such as EFC [5], EEFC [82], FMCN [59], MFMCN [17], DCFMN [124], FMNWSM [25]
and MLF [16]. These approaches do not use the contraction steps. Still, they have em-
bedded more complex structures within the simple architecture of FMNN for handling
the overlapped regions that increase the cost of training and the cardinality of hyper-
boxes.

K-Nearest Neighbors algorithm (kNN) [24] is a supervised and non-parametric clas-
sification learning technique in the field of pattern recognition, data mining and machine
learning. kNN classification algorithm doesn’t have any training phase but performs an
expensive testing phase for each test pattern. In kNN, each test pattern must compute
the euclidean distance measure with all the training patterns. The nearest k training
patterns are selected as the nearest neighbours. Based on the classes of those k nearest
neighbours, voting is conducted, and the test pattern is characterized by the majority
class of nearest neighbours patterns. However, in the presence of large training data,
kNN requires significant testing time, making the procedure significantly expensive.

This motivated us to explore the methodology that combines the simple structure
of FMNN and kNN strategy for inducing a better classification model without resorting
to modifying the structure of FMNN and not including the contraction procedure. The
combined hybrid model overcomes the limitation of individual models and minimizes

the complexities of each of the individual models.

3.3 Proposed kNN-FMNN Algorithm

Traditional FMNN with contraction steps [05], described in Section results in non-
overlapping among the hyperboxes of different classes. However, there is an information
loss in the contracted boundary region; even there is a possibility that objects of one
class are being absolute members of hyperboxes of another class. The defuzzification
of the overlapping region affects the generalizability of the FMNN. The existing ap-

proaches dealing with the representation of overlapping regions by avoiding overlapping
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and contraction procedures increase the complexity of FMNN structure.

This work presents a hybridization of FMNN with kNN algorithm for performing
the ability to handle decision-making in the overlapped region without altering the
structure of FMNN. In one way, we are solving the problem of FMNN, and in another
way, with the advantage of FMNN learning and results in granulation of training data
through hyperboxes, we minimize the complexity of kNN classification algorithm.

Here, we introduce three changes to the traditional FMNN for enhancement. The
first two modifications are in the training phase, and the third part is in the testing
phase. In the training phase, first, we eliminate the contraction procedure to protect the
dimensions of overlapped hyperboxes. Second, we have relaxed the k-nearest hyperbox
expansion rule in papers [49 [57] to the maximum possibility. This way, we avoid the
creation of too many hyperboxes that reduce the network complexity. In traditional
FMNN, if the winning hyperbox with the highest membership value, out of hyperboxes
corresponding to the same decision class, does not meet the expansion criterion to
include the input pattern, then a new point hyperbox is created. Here, we provide the
opportunity to the vicinity of winning hyperbox, which means hyperbox with the next
highest membership value is checked for expansion. This process continues until any
existing hyperbox can include the input pattern. If all hyperbox of same class are failed
to expand, then a new point hyperbox is created. Here, we give a maximum chance for
existing hyperboxes to expand fully to avoid creating new hyperboxes.

FMNN gives a natural way to group the nearest objects into the granular structure
of a hyperbox. So, in this chapter, we restrict the space within hyperboxes in which
kNN computation needs to be performed to classify test patterns. Here, we are utilizing
the vicinity of the overlapping region in FMNN testing phase described below.

The rest of the section described the training and testing phases of KNN-FMNN
algorithms given in Algorithm [1] and Algorithm [2| respectively.

3.3.1 Training of kNN-FMNN Algorithm

Let DT = (U,C™ U {d}) be decision system where U represents a set of training pat-
terns, C" is a set of numeric conditional attributes and {d} represents a single decision
attribute. Let HBS is a set of hyperboxes and F'M represents FMNN learning model.
Initially, HBS is an empty set, and as training proceeds, hyperboxes are added to FM
model, as described in Section For each hyperbox H, the stored information is min
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Table 3.1: Description of Function Name and Notation in Algorithm H and Algorithm \|

Notation Meaning

FM Represents FMNN learning model.

Membpg(x) Returns membership value of  on H using Eqn. (2.2).
FM.Belongs(x) Checks absolute memberhsip value of x on any existing hy-

perboxes of same class and return a hyperbox.

FM.ObjSave(H, x) Includes object x in hyperbox H.

FM.Save(HBS,H) | Save H in HBS set.

FM.HMemb(x) Returns a set of hyperboxes with their membership value

correspond to x of same class label.

FM.Exp(H,x) Checks expansion of H to include x using expansion criterion

Eqn. (2.6).

FM.Update(HBS, H)| Updates the expanded hyperbox H in the set HBS.

FM.Ezpand(H,x) Expands the hyperbox H to include z using Eqn. 1) and

Eqn. (]ﬁ[)

Break Breaks current loop.

FM.Create(x) Creates a new point hyperbox to include z.

AbsMemb(x, HBS) Returns a set of hyperboxes which have full membership for
the object = using Eqn. (2.2).

pure(H B) Checks whether all hyperboxes in H B that contain = corre-
spond to the same decision class or not.

ObjMemb(H) Returns the objects belonging to particular hyperbox H.

LocalSet(HB) Collecting all objects belonging to all hyperboxes in H B.

knnLocal(HO, x) Computing kNN on objects belonging HO for testing object
x.

point and max point along with objects indices having full membership into H. We
preserve the object indices in kNN-FMNN for the purpose of the testing phase. Only
the expansion step is performed for each input pattern z belonging to DT to preserve
the overlapping region. Based on FMNN expansion criteria given in Eqn. , hy-
perbox can expand non-uniformly in a different dimension as cumulative widths of all

dimensions need to be less than n#.

Based on Algorithm [1], for every training pattern z, Belongs(x) finds fuzzy mem-
bership value of 2 with all hyperboxes representing the same class using Eqn. (2.2) and
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Algorithm 1: Training of kNN-FMNN

Input : DT: Training Samples, v: Gamma parameter, 8: Theta parameter
Output: HBS: Collection of hyperboxes of different classes, Learning model
FM.
1 Let HBS = 0;

2 for every x in DT do

3 | if FM.Belong(z) # () then

4 H = FM.Belong(x);

5 FM.ObjSave(H,x);

6 else

7 HS = FM.HMemb(x);

8 Flag = 0;

9 if HS # () then

10 for every H in HS do
11 if Exp(H,z) == True then
12 FM.Expand(H,x);
13 FM.Update(HBS,H);
14 Flag = 1;

15 Break;

16 end

17 end

18 if Flag == 0 then

19 H=FM.Create(x);

20 FM.ObjSave(H,x);
21 FM.Save(HBS,H);

22 end

23 else

24 H=FM.Create(x);

25 FM.ObjSave(H,x);

26 FM.Save(HBS,H);

27 end

28 end
29 end

30 return HBS, FM
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return a hyperbox (H) with full membership value of one to z.
Belong(x) ={H | H € HBS N Memby(z) == 1Ad(z) == d(H)} (3.1)

If Belongs(x) is non-empty, then x is added to the particular hyperbox (H) giving
the full membership without modifying the hyperbox using ObjSave(H, x). Otherwise,
HMemb(zx) gives a list of hyperboxes HS with membership value. For each H € HS
with the highest membership value, if Exp(H,z) (Expansion Criteria) is satisfied, the
hyperbox H is expanded using Eqn. and Eqn. and object x saved to the
hyperbox H using ObjSave(H,z). If Exp(H, x) is not satisfied on a particular hyperbox
H, then the next hyperbox in HS with the highest membership hyperbox is checked for
expansion whether it includes input pattern x or not. This process continues until any
hyperbox that can include the input pattern. If none of the hyperboxes in HS are met
expansion criteria or HMemb(x) returns an empty set, a point hyperbox H is created
using Create(x), and z is added to the point hyperbox created using ObjSave(H, )
and resulting H is added in HBS.

3.3.2 Testing of KNN-FMNN Algorithm

Let DS be a set of testing samples. Based on Algorithm , for every testing pattern
x in DS, we compute the fuzzy membership value w.r.t. all hyperboxes HBS in FM
model. Because the overlapping among hyperboxes is allowed in the training phase
due to eliminating contraction step and extended expansion criteria, it is possible to
obtain absolute membership of one to multiple hyperboxes. AbsMemb(x) returns all

the hyperboxes (H B) giving full membership value.

AbsMemb(x, HBS) ={H | H € HBS AN Memby(z) == 1} (3.2)

If HB set is empty, then the testing pattern x does not belong to any of the hyper-
boxes and a decision is taken like traditional FMNN testing by assigning the decision
class corresponding to the nearest hyperbox; otherwise, the purity of the collection is

examined using pure(H B).

pure(HB) =

U {class(H)}' ==1 (3.3)

HeHB
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The resulting collection is pure only if all hyperboxes correspond to a single decision
class, in which case, without ambiguity, that class is assigned to the testing pattern.
In the case of impurity, objects belonging to all these hyperboxes using ObjMemb(H)
are collected in LocalSet(H B) set and then applied kNN using knnLocal function on

these objects locally to determine the decision class of .

LocalSet(HB) = | | (ObjMemb(H)) (3.4)
HeHB

Algorithm 2: Testing of kNN-FMNN
Input : DS: Testing Samples, Learning Model FM, HBS: Set of hyperboxes,

k: k-nearest neighbour value

[u—y

for every x in DS do

// Compute fuzzy membership value of z w.r.t. all hyperboxes
in HBS

HB = FM.AbsMemb(x, HBS);

if HB # () then

if pure(HB) == True then

‘ Classify = as decision class of HB;

else
HObj = FM.LocalSet(H B);
Classify x as decision class of F'M.knnLocal(HObj,x);

9 end

o N O vt~ W N

10 else

11 ‘ Classify x to highest membership hyperbox decision class;
12 end

13 end

3.4 Complexity Analysis of kNN-FMNN Algorithm

This section shows the time and space complexity analysis of the proposed algorithm
kNN-FMNN. The following variables are used in the complexity analysis of kINN-
FMNN.

e |U|: the number of objects.
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e |HBS|: the number of hyperboxes.

e |C"|: the number of numeric conditional attribute.

Table shows the time complexity of the proposed algorithm. In the Table,
Algorithm [I| (training phase) with steps 1-29 computes for each training data to check
complete belonging to the existing hyperboxes or modifying of hyperbox or creation
of hyperbox with time complexity O(|U| % |[HBS| % |C"|). In Table, from steps 1-12
in Algorithm [2| (Testing phase) performs to classify a test pattern by checking the
belongingness over trained hyperboxes |HBS| with time complexity O(|HBS| * |C™|).
If selected hyperboxes where a test pattern exist are in different classes, steps 7-8 are
computed to classify a test pattern using kNN with complexity O(|U| x |C™|). Hence,
the time complexity of the algorithm (testing phase) for each test pattern is obtained:
O(|JHBS| = |C™|) + O(|U]| = |C™|) = O(|U| x |C™|) since, |HBS| << |U].

So, the total complexity of the proposed algorithm kNN-FMNN| including both the
training and testing phase, is: O(|U| x |[HBS| * |C™]) + O(|U| % |C™]).

The entire decision system is required to be present in memory using kKNN-FMNN.
For preserving FMNN model, O(|HBS]| % |C"|) space is needed, and for kNN process
where data needs to be available, O(|U| x |C™|) space is required. Thus, the space
complexity of KNN-FMNN algorithm is O(|HBS|*|C"|)+O(|U|x|C™|) = O(|U| x|C™)
since, |HBS| << |U]|.

Table 3.2: Time Complexity Analysis of kKNN-FMNN

Algorithm Steps in Algorithm Time complexity
(phase)

Training 2-29. Creation of hyperboxes O(|U| x |HBS| = |C™)
(Algorithm i

Testing 1-13. Testing on hyperboxes O(|HBS| = |C™|)
(Algorithm ) 7-s. Testing on overlap region with kNN O(|U| * |C™])

3.5 Experiments and Results

The system configuration used for experimentation are CPU: Intel(R) i7-8500, Clock
Speed: 3.40GHz x 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit and Soft-

ware: Matlab R2017a. The detailed experimental evaluation is conducted on seventeen
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Table 3.3: Benchmark Datasets

Dataset Attributes Objects Classes
Tonosphere 32 351 2
Vehicle 18 846 4
Segment 16 2310 2
Steel 27 1941 7
Ozone Layer 72 1848 2
Page 10 5472 5
Robot 24 5456 4
Waveform2 40 5000 3
Texture 40 5500 11
Gamma 10 19020 2
Satimage 36 6435 6
Ring 20 7400 2
Musk?2 166 6598 2
Shuttle 9 57999 7
Sensorless 48 58509 11
MiniBooNE 50 129596 2
Winnipeg 174 325834 7

benchmark numeric decision systems taken from UCI machine learning repository [20],
the details are given in Table|3.3] The proposed algorithm kNN-FMNN is implemented
in the Matlab environment. In our experiments, we set the sensitive parameter v value

equal to 4, as recommended in the paper [50, [95].
We have experimented kNN-FMNN with different theta () values, and all the re-

sults were not reported due to space constraints. It is observed that small theta values
such as 0.01 or 0.02 create the large cardinality of hyperboxes that may avoid data
overfitting but with circumstances where each object or input is learned as individ-
ual hyperboxes. On the other hand, the large theta values such as 0.85 or 0.9 create
fewer cardinality of hyperboxes but gradually decrease the capability to capture non-
linear separability boundaries between multiple classes, and also is almost like a kNN
algorithm because of the large boundary region. So, our objective is to select theta
values that minimize the cardinality of hyperboxes and optimize the classification per-

formance. Hence, on results obtained from conducted experiment empirically, we have
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finalized the value of theta as 0.3. This value is adopted throughout the thesis. And,
k in kNN is set to be 3, which was found sufficient for the testing phase. The perfor-
mance of KNN-FMNN is examined through a comparative evaluation through ten-fold

cross-validation (10-FCV).

3.5.1 Relevance of Proposed Approach through 10-FCV

This section assesses the performance of the proposed algorithm kNN-FMNN by com-
paring it with the original FMNN and some popular variants of FMNN approaches,
such as GFMNN [27], EFMNN [56], MLF [16] and IFMNN [49]. We implement the
comparative algorithms i.e. GFMNN [27], EFMNN [56], and IFMNN [49] in the Matlab
environment, and MLF code is provided by author [16] in Matlab. We set the sensitive
parameter v and theta value to 4 and 0.3, respectively. The comparative experiments
are conducted in the same system using the Matlab environment.

10-FCV based comparative experiment is conducted to assess the performance of
kNN-FMNN. 10-FCV is performed on the original dataset to comprehend the model’s
ability. In 10-FCV, the original dataset is partitioned into ten subsets. In each iteration,
one subset is retained for the testing part, and the remaining nine subsets are used for
training the model.

Furthermore, a paired t-test with a significance level of 0.05 is performed to analyze
the statistical evaluation of KNN-FMNN results over given compared algorithms. Each
column in Tables reports the results of the respective algorithm in the
form of mean and standard deviation along with p-value except kNN-FMNN column.
KNN-FMNN column contained only mean and standard deviation. The p-value index
is the significant level between the respective algorithm with kNN-FMNN algorithm.
For classification, if p-value is greater than 0.05, then there is no statistically signifi-
cant difference, marked with the symbol ‘0’. If p-value is less than 0.05, and the result
obtained by the respective algorithm is less than KNN-FMNN, then the particular al-
gorithm is statistically inferior to KNN-FMNN and marked as a loss ‘-’. Otherwise, it
represents a win ‘4+’. The contrary measure is for computational time and obtained
hyperboxes which means if the p-value is less than 0.05, and the result obtained by the
respective algorithm is less than KNN-FMNN, then the particular algorithm is statisti-
cally significant than kKNN-FMNN and marked as a win ‘4+’; otherwise, it represents a

loss “-7.
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The last three lines in each Table and correspond to Average (NOD),
CAverage, and Lose/Win/Tie. It can be observed that the datasets over which
an algorithm is executing vary from one to another. Hence, the average of individual
mean values is reported in two forms. Average (NOD) corresponds to the average
value obtained by an algorithm on datasets where it could be evaluated along with
reporting the number of datasets (NOD) involved in brackets. CAverage value depicts
the average of the individual mean obtained by restricting to only those datasets in
which all algorithms could be evaluated. For the comparative analysis, CAverage plays
an important role. The last line indicates the count of the number of statistically loss(‘-
"), better(‘+’), and equivalent(‘0’) for each algorithm in comparison with the proposed
kNN-FMNN.

Table reports the comparative classification accuracy results of classifiers based
on 10-FCV. Also, Table and Table show the computational time results and
number of obtained hyperboxes results by respective algorithms on 10-FCV. Fig. [3.2]
Fig. and Fig. depict the box-plot representation of results given in Table
Table [3.5] and Table [3.6] respectively.

Note: In the comparative experiment, the computational results include both train-
ing and testing phase times. ‘#’ sign in each Tables and represents the
scenario of non-termination of the code even after several hours of computation. In all
Figures and the range of Y-axis varies based on obtained results in each

dataset.
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3.5.2 Analysis of Results

Classification Results

Table and Fig. present the obtained classification accuracy results in 10-FCV.
Based on Table kNN-FMNN reached the highest CAverage value (91.13) than
compared approaches. KNN-FMNN obtained statistically significant or similar results
than compared algorithms in most of the datasets. Considering the overall 75 accu-
racy results across all the compared algorithms, the cumulative lose/win/tie results as
56/3/16. Hence, in the majority of 56 results, the proposed algorithm kNN-FMNN per-
formed significantly better than the compared algorithms. Only in 3 results (in Steel
dataset by EFMNN;, in Robot dataset by GFMNN, in Gamma by MLF), the compared
algorithms performed statistically better than kNN-FMNN. And in the remaining 16
results, KNN-FMNN performed statistically similar to compared algorithms.

This significantly validates the utility of hybridization of kNN and FMNN through
the proposed kKNN-FMNN algorithm in obtaining better generalization.

Computational Time Results

The computational complexity of FMNN training algorithm is proportional to the car-
dinality of hyperboxes created. In addition to the cardinality of hyperboxes, the cost
of complex structures and procedures such as contraction steps and hierarchical layers
in algorithms like GFMNN, EFMNN, IFMNN and MLF increases the complexity. The
computational time reported in Table and Fig. validates that kKNN-FMNN in-
curred significantly less computational time than compared algorithms on all datasets.
Based on a subset of datasets where all compared algorithms can execute, the proposed
method kNN-FMNN obtained the lowest CAverage value (1.66 seconds), which is sig-
nificantly lesser than compared algorithms with CAverage in the range of 26 to 736
seconds.

Even the resulting standard deviation of computation time presented very little vari-
ation, thus showing that the methodology is reliable compared to others approaches.
These substantial reductions in computational time of kNN-FMNN are due to adapt-
ing FMNN with only the expansion step and relaxing k-nearest hyperbox expansion
rule to the maximum possibility for expansion that achieves a much lesser cardinal-

ity of hyperboxes compared to other approaches. Thus, the speed-up in computation

48



3.6 Summary

and classification model performance demonstrates the potential of the kNN-FMNN
algorithm and its suitability for larger datasets.

In MiniBooNE and Winnipeg datasets, kKNN-FMNN classifier could learn in signifi-
cantly less computational time, whereas compared algorithms were unable to compute.
Because considering the maximum possibility of expansion rule to select hyperboxes
for expansion allowed hyperboxes to expand fully or give more chances to acquire full
knowledge. This way excluded from creating too many hyperboxes whereas, in com-
pared algorithms, they imposed restrictions on expansion rule which may lead to cre-
ating many hyperboxes that are not even used and result in a need for excess memory

requirement.

Cardinality of Hyperboxes Results

The obtained cardinality of hyperboxes result, shown in Table and Fig. is sig-
nificantly lesser than compared algorithms for all given datasets because of the relaxing
the k-nearest hyperbox expansion step for selecting hyperboxes for expansion that in-
clude the more training patterns and create less number of hyperboxes in the training
phase. kKNN-FMNN achieved the lowest CAverage value (278.22) than compared algo-
rithms having CAverage values ranging between 1315.18 to 2747.60. The substantial
reduction in hyperboxes of KNN-FMNN resulted in a significant drop in computational
time.

In summary, the relevance of kKNN-FMNN is significantly validated as it computes a
lesser number of hyperboxes and incurs less computational time while inducing classi-
fication models with similar or better classification accuracies than the model induced

through compared algorithms.

3.6 Summary

Several improvements of FMNN were proposed to overcome limitations that arise due
to the contraction step. These extensions added additional complexity to FMNN, thus
increasing the training time and network complexity. This work proposed kKNN-FMNN
as a hybridization of FMNN with kNN to overcome the contraction step while pre-
serving the simple structure (no modification) of FMNN. The proposed kKNN-FMNN

method considered only expansion steps and enriched them with a relaxed expansion
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rule to capture the potential underlying structure of data. The proposed approach re-
sulted in building the classification model with relatively fewer cardinality of hyperboxes
and achieved good classification accuracy by utilizing kNN locally for disambiguating
classification decisions in the overlapping region. Comparative experimental studies of
kNN-FMNN with existing state-of-the-art approaches [16] 27, [49] 56] over benchmark
datasets proved the utility of the proposed kKNN-FMNN approach in terms of better
classification performance incurring less computational time and obtaining the least
number of hyperboxes. Also, kNN-FMNN enhanced scalability to such large decision
systems, where existing state-of-the-art FMNN methods failed to execute. Our pro-
posed hybrid model KNN-FMNN successfully lessen the limitations of individual FMNN
and kNN models.
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Chapter 4

Hybridization of Fuzzy Min-Max
Neural Networks with Fuzzy
Rough Sets for Feature Subset

Selection

This chapter addresses the issue related to scalability of the existing fuzzy rough sets
(FRS) approaches on large decision systems. The FRS theory provides a robust frame-
work for feature subset selection. Indeed, the theory has been performing remarkably
with further extensions and modifications in recent years. Despite having these mod-
ifications and extensions, FRS approaches suffer from their ability to scale to large
decision systems due to the space complexity of FRS methodology. This chapter ad-
dresses the related issue associated with FRS methodology and proposes an algorithm

that can scale to large decision systems.

The rest of the chapter is designed as follows: Section [d.1] present the brief introduc-
tion. Section present the basic notions about rough set theory and fuzzy rough set
theory with its corresponding feature subset selection methods via discernibility ma-
trix. Section briefly introduces the literature survey of fuzzy rough sets approaches
and their disadvantages. Section [4.4] presents the motivation of the proposed algorithm.
Section describes the functioning of the proposed algorithm FDM-FMFRS. Section
describes the complexity analysis of proposed algorithm FDM-FMFRS. Section

reports a series of experiments and comparative analysis of FDM-FMFRS with state-
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4. HYBRIDIZATION OF FUZZY MIN-MAX NEURAL NETWORKS
WITH FUZZY ROUGH SETS FOR FEATURE SUBSET SELECTION

of-the-art approaches.

4.1 Introduction

Making a decision under imprecision and uncertainty is one of the most challenging top-
ics in the field of data analysis. Data analysis aims to find or learn hidden patterns in
a dataset, which is beneficial to find dependencies. Feature selection plays an essential
role in analyzing the datasets where some features might be redundant/irrelevant that
degrade the performance and increase the model’s computational complexity [103] [116].
Thus, it is well essential to preprocess the data to eliminate irrelevant features that neg-
atively impact the performance of learning models. Feature selection is a primary task
in many disciplines, i.e., machine learning, pattern recognition etc., for both description
and prediction purposes.

In the 1980s, Zdzistaw I. Pawlak [70] introduced the concept of classical rough
set theory (RST) as a mathematical tool useful for feature selection (semantic pre-
serving dimensionality reduction) and rule induction in the information/decision sys-
tems [51) [71], 03], 116]. RST methodology gives new momentum to data mining [125]
and knowledge discovery [133], and provides a unique insight into artificial intelligence
and cognitive sciences both in practical and theoretical perspectives [18, [T01] 103} [109].
RST, as a soft computing paradigm, has been successfully hybridized with other soft
computing models like fuzzy sets and artificial neural networks [4], 52, 67, [72].

Particularly, RST applies primarily to symbolic/categorical decision systems [70),
71, 116]. However, the application of classical rough sets to numeric decision systems
produces feature subsets with finer granularity. Hence, the induced rules from the
selected features suffer from poor generalizability in classification. One solution is to
discretize the numeric dataset beforehand and produce a new dataset with categorical
values. Discretization is a method to partition continuous attribute domains into a
finite number of discrete (non-overlapping) intervals and further assigning categorical
labels to intervals [28], 53], [61], [63]. The discretization process exhibits the simplification
of data in more concise, compact and making learning faster.

Nevertheless, any discretization process tends to cause a loss of information and
result in classification error in pattern space [62]. Even obtaining an optimal way

for the discretization process in a dataset is an NP-Hard problem [62]. The choice
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4.1 Introduction

of discretizer will affect the success of the posterior learning task in classification [98].
However, the discretization method is often inadequate and causes essential information
loss to hamper subsequent feature subset selection quality. Alternate approaches were
developed to deal with the hybrid decision system without relying on a discretization
step by generalizing the rough set theory in different scenarios [9].

Lately, Dubois et al. [22], R0] generalize the RST into a fuzzy rough sets (FRS)
using fuzzification that deals with both symbolic and real-valued conditional attributes
without any need for domain-specific knowledge. This generalization provides much
greater flexibility in theoretical and application viewpoints and evolves extensively to
reduct computation in hybrid decision systems [117]. FRS can approximate the crisp
decision concepts in the fuzzy approximation space. Thus, FRS extends the notion of
rough equivalence relation into an idea of fuzzy equivalence relation or a fuzzy tolerance
relation, resulting in a fuzzy partition of the universe U.

The basic idea of the fuzzy rough model is to induce a fuzzy similarity relation,
which can further be used in the construction of the fuzzy lower/upper approximation
and construction of discernibility relation of a given decision system [31]. The sizes of
the lower and upper approximation reflect the discriminating capability of a feature
subset. The union of fuzzy lower approximation forms the fuzzy positive region of
decision. The fuzzy dependency is defined as the ratio of the sizes of fuzzy positive
regions over all samples in the feature space. It is used to evaluate the significance of
a computed subset of features.

Skowron et al. [96] [136] introduced a feature selection mechanism based on the con-
cept of crisp discernibility matrix (DM) in the context of Pawlak’s RST. The idea of
discernibility matrix construction establishes a theoretical and logical foundation for
reduct computation on symbolic decision systems. Though finding all/minimal reducts
with these techniques is an NP-Hard problem, these methods provide a crucial math-
ematical foundation for reduct computation [10, 115]. Even though these approaches
can be guaranteed to obtain the exact reduct, they require a substantial computational
complexity for large datasets. Jensen et al. [35] further extended the crisp DM into the
fuzzy DM to determine the FRS reducts.

Various FRS reduct algorithms have been developed to perform reduct computation.
These methods include information entropy based [32] [129] [130], dependency function-
based [35] 39, [40], [105], 106] and discernibility matrix (DM) based [10, 14} [35], [105] reduct
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computation.

4.2 Preliminaries

This section present the basic notions about rough set theory and fuzzy rough set theory
with its corresponding feature subset selection methods via discernibility matrix that

are useful in understanding our proposed work.

4.2.1 Rough Set Theory

Rough set theory (RST), proposed by Z. Pawlak in the early 1980s, is a mathematical
framework for describing and concisely exploiting data dependencies from a domain
without any need of prior and external knowledge about data [69, [70, [71]. In particu-
lar, a rough set approach serves very well in the direction of reduction of superfluous
attributes preserving the same knowledge as given by the full set of attributes.

Let DT = (U,C°U{d},{Va, fa | a € C¢},{Vy, fa}) be the decision system, where
U = {z1,22,...,2,} is a non-empty finite set of objects (universe of discourse), C¢ =
{a1,a9,...,an,} is a non-empty finite set of categorical conditional attributes. {d} is a
distinguished attribute or decision attribute such that C° N {d} = 0. V, is the set of
conditional attribute values of ‘a’, and f, is an information mapping from U to V; i.e.,
fa : U — V,. Vg is the set of decision attribute values (decision categories), and f; is
an information mapping from U to Vj i.e., fg: U — Vj.

Given a decision system DT with any subset P C C¢, there is an associated equiv-

alence (indiscernibility) relation I N D(P) defined over U x U, and defined as follows:

IND(P) ={(xz1,22) € U x U |Va € P, fo(x1) = fa(x2)} (4.1)

where, f,(x) represents the value of object = on attribute a. (z1,z2) € IND(P)
denotes that x and y are indiscernible by attributes from P means, they have same
vectors of attribute values for attributes in P. The equivalence relation IND(P) par-
titions the universe U into a family of disjoint subsets, which are the set of equivalence
classes generated by IND(P). The family of all equivalence classes of the relation
IND(P) are represented as U/IND(P), or U/P. In particular, U/D denotes the set
of decision equivalence classes. An equivalence class of any object x € U is represented
as [z]p and defined as: [z]p ={y € U | (z,y) € IND(P)}.
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A subset of features selected using RST is named as reduct, and the process is
called reduct computation (feature subset selection). Reduct is defined as a minimal
subset of conditional attributes preserving the classifying ability of the original decision
system [42]. There are two important procedures/approaches to finding rough set
reducts: Degree of Dependency and Discernibility Matrix.

Our proposed work is based on a discernibility matrixz construction. So,
we are only providing the preliminaries about discernibility matrixz based

reduct computation.

4.2.1.1 Decision-Relative Crisp Discernibility Matrix

Skowron and Rauszer [96] 115] introduced the concept of crisp discernibility matrix
(DM) for finding rough reducts of a given decision system. Crisp DM is a repre-
sentation for crisp discernibility relation. In discernibility relation (a complement of
indiscernibility relation), two objects can be discernible in a given decision system if
their values differ in at least one attribute. Given P C C°, a discernibility relation on
P is denoted as DISC(P) where a pair of objects z and y in U belong to DISC(P) if

and only if there exists at least one attribute in P having different values for x and y.

DISC(P) ={(z,y) € U x U | Ja € P,a(x) # al(y)} (4.2)

A discernibility matrix of DT is a symmetric matrix of order |U|x |U| i.e., M (x,z) =
() and M(x,y) = M(y,z). Hence we consider only the lower or the upper triangular
of the matrix. DM stores the sets of conditional attributes that can discern pairwise
comparison of all objects from U.

The objective of finding reducts is more interesting when considering only those
object pair discernibility when their corresponding decision attribute differ, called a

decision-relative discernibility matrix. Each entry is defined in Eqn. (4.3).

M(aﬁ,y) — {{a | a € Cc’ fa(x) 7& fa(y)}v if fd($) ?é fd(y) (43)

0, otherwise
Each entry M (zx,y) consists of those conditional attributes that differentiate object
pair x and y.
From this, the discernibility function for a given decision system DT can be in-

troduced. A discernibility function f({d}) is a boolean function of the discernibility
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matrix (M) and can be defined as:

f{d}) = M VM (z,y) | V(z,y) € U x U, M(z,y) # 0} (4.4)

The expression VM (z,y) is the disjunction of all conditional attributes in M(x,y),
implying that the object pair can be distinguished by any attribute of M(z,y). The
expression A{VM (z,y)} is the conjunction of all VM (x,y), implies that all pairs of
objects of different decision classes need to be discerned.

Finding the reducts of the decision system DT is equivalent to the problem of
transforming the discernibility function (conjunctive normal form) into reduced logical
expression disjunctive normal forms (without negation) using absorption and distribu-
tion law. The logical expression of each conjunction of the reduced disjunctive form is
known as a prime implicant.

If a set of attributes set P C C is a reduct if and only if the conjunction of all
attributes in P is a prime implicant of f({d}). Hence, finding the set of all individual
prime implicants of the discernibility function provides all minimal solutions to the
boolean function. Although this is guaranteed to find all reducts of DT, still it is an
NP-Hard approach [73], 96, 1T5].

Skowron and Rauszer [96] also proposed different characterization of a reduct P
based on DM. Given a decision system DT, a set of conditional attributes P is said to

be reduct if and only if:

Property 1: V(z,y) € U x U : [M(z,y) # 0 = PN M(x,y) # 0]

Property 2: Va € P, 3(z,y) € U x U : [M(z,y) #0OA (P —{a}) N M(z,y) = 0)]

Property 1 presents that reduct R is sufficient to distinguish all discernible objects
pairs means, every entry of DM holds property 1. Property 2 establishes that each
attribute in reduct P is important and indispensable. Both properties provide a suffi-
cient way to examine whether a resulted subset of attributes is reduct or not. However,
many researchers have developed several efficient heuristic algorithms based on DM for
reduct computation [42], [136]. Out of them, the Johnson Reducer strategy is one of the

popular approaches widely used for reduct computation [42].
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4.2.2 Fuzzy Rough Set Theory

The formulation of classical Pawlak’s rough sets [70] can only operate effectively with
datasets containing symbolic (qualitative) attributes where indiscernibility relation
plays an important role. Application of classical rough sets to real-valued attributes
will produce feature subsets with finer granularity. Hence, the induced rules from the

selected features suffer from poor generalizability to test datasets.

So, one of the solutions is to discretize the dataset beforehand and produce a new
dataset with categorical values [61], 64]. However, the discretization method is often
inadequate and causes essential information loss that can hamper subsequent feature
subset selection quality and result in significant misclassification in pattern space. Even
finding an optimal way for the discretization process in a dataset is an NP-Hard prob-
lem [63].

Dubois and Prade [21] 22] introduce the constructive approach called fuzzy rough
sets (FRS) in the early 1990s to combine the coarseness of rough sets [70] with the
vagueness of fuzzy sets [119] to operate on hybrid decision systems.

Let HDT = (U,C" = (C°U C™) U {d}, {Va,, fac Yaceceuiay {Vans fan taneon) be
the hybrid decision system, where U is the finite set of universe, C¢ is the categor-
ical/qualitative conditional attributes, C™ is the numerical/quantitative conditional
attributes, C" constitutes hybrid conditional attributes C¢ and C™ along with discrete
decision attribute d. V, is a finite domain value set of attribute a. € C°U {d} and f,,
is a mapping of assigning a symbol from U to value set V,, ie., fo, : U — V.. Vg,
is a finite set of domain values having real-valued attribute a,, with range of interval
V' s.t. ap € C™ and f,, is a mapping assigning a value from universe U to value set
Va, 1.€., fa, : U =V, . Notation, a.(x) and a,(x) are used in the place of the symbol
fa.(x) and f,, (x) for simplicity and better readability.

Fuzzy rough set theory extends the notion of rough equivalence relation 70} [71] into
an idea of fuzzy similarity /equivalence relation or a fuzzy tolerance relation, resulting in
a fuzzy partition of the universe U. The key concept of FRS is fuzzy similarity relation.
Fuzzy similarity relation determines the degree to which any two objects (z,y) € U xU

are similar in U for given quantitative attribute values.

Fuzzy similarity relation pg, on U x U on attribute a € C* satisfying the following

requirements is called as fuzzy tolerance relation, if
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ur, (x, ) =1Ver € U (4.5)
/’LRa(l'vy) = /,LRa(y,l') v T,y € U (46)
KR, (:B?Z) > F(:“Ra(:nay)nuRa(ya Z)) v T,Y,z € U (47)

Eqn. (4.5) and Eqn. hold the reflexivity and symmetry properties of equiva-
lence relation, while Eqn. (4.7)) renders additional requirement of I-transitivity i.e.,
given a t-norm I'. A triangular norm (t-norm) I' is an associative binary opera-
tor on the interval [0, 1] holding increasing, monotonic, commutative and associa-
tive property with [0,1]?> — [0,1] information mapping satisfying boundary condition
I'(1,z) = x,Vx € [0, 1] [6,34]. Hence, ug, is also called as fuzzy I'-equivalence relations
to represent the approximate equality.

Given a hybrid decision system H DT, the fuzzy equivalence relation with respect
to each numeric attribute a, (Va, € C") is defined as ug, , where ug, (x,y) represent
the degree of similarity between x and y for attribute values of a,,. To express the fuzzy
similarity relation pr, between two objects (z,y) € U w.r.t. ‘a,’ attribute, there are

some widely used examples of fuzzy relations pg, for this purpose, such as [38]:

(an(‘r) _an(y))2) (48)

/’LRan (IE, y) = exp <_ 20’371

(an(y) — (an(®) — 04,)) (an(z) + 04,) — an(y))
an(z) — (an(x) — 04,))" (an(x) + 0q,) — an(z

0
(4.9)

where, o0,, is the standard deviation for a,, attribute, agn is the variance of a,

[R,, (T,y) = maz (mm <

attribute and a,(x) represent object value on attribute a,,.
In particular for qualitative attributes a., fuzzy equivalence relation is considered

to be crisp equivalence relation based on indiscernibility relation and thus defined as,

[ ale) = ady)
mr =0 i o) 7 o (4.10)

Given a HDT, a fuzzy similarity relation is expanded to a subset of attributes

P C C" using t-norm (I).

prp (2, y) =T (ugr,(2,y)) Yo,y € U (4.11)
P
ae
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4.2.2.1 Decision-Relative Fuzzy Discernibility Matrix

The development of crisp DM [96], [115] is often used in RST for reduct computation
may also be extended in fuzzy rough reduct computation. Jensen et al. [38] proposed
an extension of crisp DM to fuzzy case for use in FRS model to determine fuzzy-rough
reducts. Crisp DM is extended to Fuzzy DM by considering fuzzy clauses as discerni-
bility entries instead of crisp clauses [38]. Each entry (known as clause) corresponds to
fuzzy DM is a fuzzy set over attribute space containing the discernibility value of each
attribute [38].

Let pg,(x,y) is a fuzzy similarity relation between objects = and y on an attribute
a € Ch. A fuzzy discernibility measure (uprg, (z,y)) w.r.t. attribute ‘a’ is obtained by

performing fuzzy negation on (ugr, (z,v)).

UDR,(7,y) = Neg(ur,(v,y)) v,y €U (4.12)

where Neg is a fuzzy negator, and ppg, (x,y) is a degree of the fuzzy discernibility
of objects = and y w.r.t attribute ‘a’ (a € C"). A fuzzy negator Neg is a decreasing
[0,1] — [0, 1] mapping that satisfies Neg(1) = 0 and Neg(0) =1 for all z in [0, 1]. The
standard negation is defined as Neg(z) = 1 — x and the same is used in our work.

For a crisp case, the resulting relation is determined to be upg,(x,y) = 1 (when
objects are discernible w.r.t. attribute ‘a’) and pupg,(x,y) = 0 (when objects are
indiscernible w.r.t. attribute ‘a’). For a fuzzy case, the respective value for upg, (z,y)
is in range of [0, 1], providing a graded discernible measure.

Given a HDT, each entry (or clause) M (z,y) in the fuzzy DM contains a set of
all conditional attributes of size |C"| associated with their discern membership/degree
for objects x and y. To a given decision system, only those object pairs entries with
different classes are included in fuzzy DM [38], called a decision-relative fuzzy DM.

Each entry is defined as:

M(z,y) = {{as |a e Chas = Neg(ur,(z,y))}, if fa(z) # fa(y) (4.13)

0, otherwise

For example, M (z,y) might be {ag3,b05,c09}. Here, ags indicates pupr,(z,y) =
0.3. The fuzzy discernibility relation is stored in |U| x |U| a symmetric matrix with

each entry as an array of discernibility values.
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As similar to the crisp discernibility function, the discernibility function f({d}) is

encoded in fuzzy version once the decision-relative fuzzy DM is constructed.

f({d}) = {/\{ \/M(xay)} A d(Neg(uRd(x,y)))} v (x,y) eUxU (414)

< represents fuzzy implication. The discernibility function returns value in range
of [0,1]. Only clauses with different decision values are included in fuzzy DM. The
different decision values affect the overall satisfiability of the clauses largely. Reducts
are calculated via fuzzy intersection of all clauses from the construction of fuzzy dis-
cernibility function may not render sufficient information to evaluate subsets [38]. So,
considering the individual satisfiability of each clause for a given set of attributes pro-
vide more information to evaluate subsets.

The degree of satisfaction of a clause M (z,y) for a given subset of attributes P

(P € C") with respect to the decision attribute {d} is defined as:

SATp 0y (M(w,9) = 5 {M(z,9)} (4.15)

where S is a t-conorm, and M%(z,y) is a degree of satisfaction of a clause w.r.t.
attribute ‘a’. The dual notion to a t-norm is a t-conorm, where its neutral element is 0
instead of 1 [34]. A triangular conorm (t-conorm) S is a binary operator on the interval
[0, 1] holding monotonic, commutative and associative property with [0,1]> — [0, 1]
information mapping satisfying boundary condition S(z,0) = z,Vx € [0, 1] [34].

In crisp propositional satisfiability, each clause has been completely satisfied if at
least one variable in the clause is set to true. For fuzzy cases, each clause has been
satisfied when it reaches to maximum satisfiability degree.

Based on Eqn. , the total satisfiability of entire clauses for a subset P € C"

can be calculated as:

>, SATpqy(M(z,y))

SAT(P) = Zyvelrzy v U 4.16
P = S i o (i) Y € (4.16)
z,ycU,x#y

A minimal subset of conditional attributes P C C” is referred as a fuzzy rough

reduct, if and only if the following condition satisfies:

1. SAT(P) = SAT(C") =1 (Jointly Sufficient Condition)
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2. VP' C P,SAT(P') < SAT(P) (Individually Necessary Condition)

Property 1 shows that given a decision system, the jointly sufficient condition states
that the satisfiability measure of reduct (P) is collectively sufficient to induce the same
satisfiability measure of all conditional attribute (C"). Property 2 shows that the
individually necessary condition states that none of the reduct attributes can be omitted

as each of them is necessary.

4.3 Literature Review of Fuzzy Rough Set Theory

The traditional FRS approaches are proved very popular for feature subset selection.
The first pioneering work in fuzzy rough feature selection (FRFS) is presented by Jensen
et al. [35] using Dubois-Prade’s fuzzy rough set model. It performed well in terms of
retaining fewer attributes with higher classification accuracy than RST based reduction
on web dataset, which aided in web categorization. In [35], the authors proposed an
algorithm to compute a close-to-minimal reduct based on dependency function and also
measure the quality of attributes. Subsequently, several aspects of improvement based
on features selection [30], 37, [88] and computation time were done for [35].

In [38], the authors introduced three robust techniques based on the fuzzy similarity
relation, which overcame the problems in papers [35, 37] and also developed the fuzzy
DM for computing the feature selection. In particular, these techniques have shown
high flexibility and reduced the complexity of computing the cartesian product of fuzzy
equivalence classes in [35], 37]. This approach [38] received the several considerations of
researchers in [10] 12, 13| 14, 42} [76, [85] and became an effective approach for reduct
computation.

Standard FRS approaches consider every data object compared with every other
object of different classes in generating the fuzzy similarity relations for calculating
the dependency measure and constructing a DM. These approaches show scalability
issues for large datasets because they consider all objects contained in the data while
generating fuzzy similarity relations. So, each data object is compared with every
other object for inducing fuzzy similarity relations. This calculation requires O(n?)
comparisons (where n is the number of data objects). Thus, the memory utilization
for constructing similarity matrices is O(|U|?|C"|), where |U]| is the size of the object

space and |C"| is the size of the attribute space. An increase in data size will have a
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negative impact on runtime on these FRS approaches. These algorithms face problems
from both data storage and computational complexity viewpoints. Several attempts
have been developed in literature in developing a scalable approach for FRS reduct
computation [I4} 40, 106, 131]. These approaches primarily aim to reduce the requisite
space complexity. Some examples in this direction are representative instance-based
approaches [I31], accelerating positive region [65], transforming fuzzy DM into crisp
DM [14, [41].

To mitigate the processing overhead on FRS approaches, In 2015, Jensen et al. [40]
presented two approaches to FRS intending to reduce the computational complexity
in reduct computation on large datasets. The first approach (nnFDM) is to compute
the membership degree of each object with k-nearest neighbour objects of different
decision classes in both calculating dependency measures and constructing fuzzy DM.
The second approach is to create a set of groups of features through correlation and then
use the fuzzy-rough dependency measure to discover good subsets and then choose the
top-ranked feature from each discovered group. After selecting features, the process of
creating groups is iterated, avoiding earlier chosen features. This process repeats until
the stopping criterion is reached. Although these two ideas are tackling the problem of
computation associated with large data, their performance is also being affected [40].

In 2015, Wang et al. [106] introduced a fitting model for the classical FRS model
(NFRS) for overcoming the problem of overfitting by reduct, resulting in misclassifica-
tion, especially in datasets with high overlapping across different categories. The idea
is to compute a fuzzy decision of a sample using the concept of fuzzy neighborhood
that can fit a given sample and guarantee to determine maximal membership degree
on its own category, which effectively prevents classification error.

In 2018, Zhang et al. [I31] developed an FRS based feature selection approach
(FWARA) using representative instances to alleviate the computational complexity
through minimal knowledge. The objective is to determine the representative in-
stances as minimal knowledge that can cover the same decision discrimination ability
as compared to all objects to induce all the fuzzy granular rules. Then, a fuzzy depen-
dency function is formulated to compute feature subset selection using representative
instances. Furthermore, a wrapper strategy is applied to selected features subset to

find the best quality feature subset that achieves classification ability.
In 2018, Dai et al. [I4] presented two different diverse approaches (RMDPS and
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WRMDPS) for FRS reduct computation with the concern of reduced maximal dis-
cernibility pairs in fuzzy DM construction. They follow the idea of transforming the
notion of fuzzy DM into crisp DM construction to consider those pairwise comparison
of objects that can have maximal discernible attributes or minimal fuzzy similarity
attributes.

In 2019, Peng et al. [65] proposed an accelerator based on the positive region in
the process of feature selection (PARA). The author’s idea is to keep only discernible
objects which can update the positive region to avoid redundant computation and

accelerate attribute reduction.

4.4 Motivation

The above-mentioned scalable FRS approaches, i.e., nnFDM [40], NFRS [106], FWARA [131],
RMDPS [14], WRMDPS [14] and PARA [65], achieved significant scalability against
traditional FRS approaches. However, they still have some limitations that they could
not compute to such an extent on large datasets. nnFDM approach requires nearest
neighbour calculation for each object prior to computing which is a costly task. Both
FWARA and PARA require the generation of fuzzy similarity matrices having a mem-
ory requirement of O(|U|?|C"|) beforehand to select representative instances where |U|
is the size of the object space and |C"| is the size of the attribute space. RMDPS and
WRMDPS require O(|U[?|C"|) memory space priorly for DM construction as a pair-
wise comparison of every object against every object that belongs to different classes.
An increase in object space would have adverse impacts upon computational overhead
in these approaches. They are also preserving the information of every object, which
may lead to the fact that these reduction algorithms select more features and consume
more computational time.

The objective of the thesis is to reduce the space complexity using FMNN as a
granular computing technique (as described in Chapter [2)) for enhancing the scalability
of FRS feature subset selection approach. In this chapter, we explored how to achieve
this objective of achieving better scalability in reduct computation without sacrificing
model accuracy using FMNN as preprocessing step. The knowledge of FMNN in terms
of hyperboxes can decrease the space complexity and the computation time required in

FRS-based reduct computation.
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In this chapter, such an intuitive idea is introduced for a solution to FRS feature
subset selection by using the concept of hyperbox utilizing FMNN [95] as a preprocessor.
Note: Due to the nature of FMNN, the proposed approach works only on numeric
decision systems. Let DT = (U,C™ U{d},{Va, fa | a € C"},{Va, fa}) be the decision
system with numeric conditional attributes and in the remaining part of the thesis, DT

refers to numeric decision system.

4.5 Proposed FDM-FMFRS Reduct Algorithm

In this section we propose a fuzzy DM based fuzzy rough reduct computation algorithm
named as FDM-FMFRS (FDM: Fuzzy discernibility matrix, FM: Fuzzy min-max neural
network, FRS: Fuzzy rough set). We propose a novel approach to increase the scalability
of the FRS approach by constructing the granular model from object space before
applying it to the FRS model. This granular model is designed by collecting information
granules regarded as hyperboxes using FMNN [95], described in Section Chapter

This chapter aims to compute an approximate reduct efficiently with the advantage
in space and time complexity. The concept of the approximate reduct is introduced
by Slezak [97] that contains the potential attributes to achieving near to exact reduct
capability. Even, the above-mentioned approaches [40], 65 76, 131] also result in an
approximate reduct. In FDM-FMFRS, we introduce a solution for FRS reduct com-
putation, utilizing the FMNN learning as a preprocessor step. The proposed work
FDM-FMFRS is summarized as follows:

1. Creation of interval-valued decision system from FMNN preprocessing.
2. Fuzzy discernibility matrix construction based on interval-valued decision system.

3. Find an approximate reduct computation based on fuzzy discernibility matrix.

4.5.1 Creation of Interval-Valued Decision System from FMNN

The traditional FMNN algorithm, as described in Section has a three-step learning
procedure such as expansion, overlap, and contraction for each input pattern. The
overlapping and contraction steps result in non-overlapping between pairs of hyperboxes

belonging to different decision classes. This disambiguation helps in crisp decision-
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making for classification but results in crucial information loss of boundary regions

between decision classes.

In this chapter, our objective of FMNN preprocessor is to aid in the construction
of fuzzy DM. But, following the traditional procedure of FMNN may lose valuable
information to represent discernibility among the objects of different classes. Hence,
we have considered a simplified FMNN training procedure to restrict only the expansion
step for preserving the naturally overlapping regions among the hyperboxes of multiple
decision classes. We have incorporated the proposed kNN-FMNN training phase, as
described in the Algorithm [1] (Section , for the proposed FDM-FMFRS.

Algorithm [|1] gives the simplified FMNN training process for arriving at hyperboxes
with possible overlap among multiple decision classes. FMNN preprocessing results in
hyperboxes where each hyperbox represents granule of objects of a decision class. The
set of objects of hyperbox is the objects having absolute membership of one. As the
objects are in the nearby vicinity, there are chances that most of them represent a
single decision class; still, some exceptions can exist as overlapping among hyperboxes

can’t be avoided as described in Section B.3.11

Here, we construct the interval-valued decision system (IDS) based on hyperboxes,
resulting from the training of kKNN-FMNN (as described in Chapter [3)) on the given
decision system DT. IDS can retain the boundary information of overlapping intervals
to each attribute in the decision system. The hyperbox is bounded by V (minimum
point), and W (maximum point) represents the area in space belonging to a particular
decision class. This representative hyperbox is taken as a single entity for representing

the member objects and becomes an object in the resulting IDS.

Let IDS = (HBS,C™ U {d}) be interval-valued decision system, where HBS =
{Hy, Ho,...,H,} represents the universe of hyperboxes. Let [V W] represent the

minimum and maximum points of hyperbox H. In IDS, the value of a hyperbox H €

HBS over an attribute a € O™ is represented by the interval v to wi ([l w!]),
where, vf is component of minimum point V¥ and wf is component of maximum

point WH corresponding to the attribute a. The value of decision attribute d is taken

as per the decision class to which H belongs.
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4.5.2 Fuzzy Discernibility Matrix Construction based on Interval-
Valued Decision System

In this section, we are constructing the fuzzy DM based on IDS, as obtained in Section
4.5.1] Each clause in the fuzzy DM corresponds to a pair of hyperboxes representing
different classes. Based on Eqn. (£.13), an entry of fuzzy DM corresponding to hy-
perboxes H; and Hj is a vector of fuzzy discernibility measure for all attributes. In
fuzzy DM construction for the decision system, the valid entries are defined as a pair of
hyperboxes belonging to different decision classes. To find a fuzzy discernibility mea-
sure, we require a fuzzy similarity measure applicable to interval-valued data. Several
similarity measures are defined in the literature for interval-valued data [33] [45]. Out

of these, Jaccard’s similarity measure (JS) [33] is used for the proposed work.

Algorithm 3: Creating Fuzzy Discernibility Matrix
Input : HBS': Set of hyperboxes, C™: Set of conditional attributes

Output: M: Fuzzy Discernibility Matrix.
for every H; in |HBS| do

=

2 for every H; in |HBS| do
// Compute M (H;, H;) for i*" hyperbox with each j* hyperbox
of different class labels
3 if d(H;) # d(H;) then
4 for each a in C™ do
5 ‘ M%(H;, H;) = Neg(JS([vi wli], (v wi))) from Eqn. (4.19
6 end
7 end
8 end
9 end

10 return M

Jaccard’s similarity measure [33] introduces the concept of similarity measure for
interval-valued data based on real numbers. It satisfies the boundness, symmetry, re-
flexivity, and transitivity properties of a similarity measure. Hence, Jaccard’s similarity
is a fuzzy equivalence relation defined over the universe of interval-valued data objects.
Let I, and I, represent two overlapping intervals. The Jaccard’s similarity measure
JS(Iy, 1) is defined as:
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L1,
JS(Iy, 1) = 417
Uo L) = S LT F TN, T 1\ T (4.17)

where, |I, N I,| is the size of intersection between I, and I. |I, \ I,| is the size of
the interval segment of I, that are not overlapping with I,. Similarly, |1, \ I,| is the
size of the interval segment of I, that are not overlapping with I. If I, and I,, do not
overlap, then JS(I;,I,) = 0 indicates both intervals are completely different from each
other. Likewise, if I, and I, are fully overlapping, then JS(I,, ;) = 1 indicates both
intervals are completely identical.

Using JS, the fuzzy DM entry between H; and H;, denoted as M (H;, H;), belonging

to different classes is defined as:

M, ) — {0 | Va € O s = Negls([uft, wlt), ol wi )}, it d(H) # a(H))
T 0, otherwise
(4.18)
The component corresponding to attribute a € C" is:
M (H;, Hj) = Neg(JS([vf, wll], [va” , wa"]) (4.19)

where, Neg denotes the fuzzy negation and we have used standard negation i.e., Neg(x)
= 1-x in our implementation.

Algorithm [3] presents the structure for computing the fuzzy DM based on IDS.
In Algorithm , for every pair of hyperboxes of different classes, an entry M (H;, H;)
corresponds to fuzzy discernibility measure for all attributes between H; and H;, based
on Eqn. .

Fuzzy DM constructed in this manner is an approximation to fuzzy DM constructed
at an object level. So, one can say that a pair of hyperboxes comparison absorbs many
pairs of objects based comparison. The cardinality of hyperboxes (|HBS]|) is usually
much lesser than the cardinality of objects (|U]) i.e., (|(HBS| << |U|). An FDM entry
between a pair of objects of different classes is always a superset of the correspond-
ing fuzzy discernibility matrix entry between the hyperboxes containing these objects.
Hence, the fuzzy rough reduct computed using fuzzy DM for IDS results as an approx-
imate reduct. Hence, validating the quality of the approximate reduct becomes the

important objective in our experimental studies described in Section [4.7}
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4.5.3 Approximate Reduct Computation based on Fuzzy Discernibil-
ity Matrix

Algorithm 4: Finding an Approximate Reduct
Input : FDM :Fuzzy discernibility matrix, C™: Conditional attributes

Output: Red: Approximate Reduct
1 Red =10 ;
2 SAT(Red) =0, SAT(C™) =1 ;
3 while SAT(Red) # SAT(C") do

4 st —= 0, agbest — @;

5 for each a € C™ — Red do
6 Se = SAT(Red U {a}) ;
7 if S, > a* then

8 a’® = S,;

9 qbest — {a};

10 end
11 end
12 Red = Red U {ab®t};
13 end

14 return Red

In this section, we provide an approximate reduct computation algorithm using
fuzzy DM constructed on IDS as given in the Section Algorithm [4] gives the
procedure for computing an approximate reduct based on fuzzy DM. The satisfiability
measure with Lukasiewicz t-conorm (S(x,y) = min{l,z + y}) is considered [14] to
calculate individual satisfaction of each clause over attributes. The Algorithm [4] follows
the sequential forward selection (SFS) control strategy. Algorithm starts with reduct
Red initialize to an empty set. In each iteration, SAT measure is computed using
Eqn. for each attribute ((Red U {a}) Ya € C™ — Red) not already included in

best)

Red. The attribute achieving maximum SAT measure (a is included in the reduct

set Red. The algorithm terminates when SAT(Red) becomes equal to SAT(C") (i.e.,

1) and returns the obtained approximate reduct Red.

Here, the entire motivation behind this work is to use an interval-valued decision

system instead of an object space decision system in Fuzzy DM construction for reduct
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computation that can significantly decrease computational time and memory utiliza-

tion.

4.6 Complexity Analysis of FDM-FMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm
FDM-FMFRS. The following variables are used in the complexity analysis of FDM-
FMFRS.

e |U]: the number of objects.

e |HBS]|: the number of hyperboxes.

e |C™|: the number of numeric conditional attribute.
e |M]|: Size of discernibility matrix

Table shows the time complexity of the proposed algorithm FDM-FMFRS. In
Table Algorithm [I] corresponds to the construction of IDS, whose time complexity
was discussed in Chapter [3| (Section and had a time complexity of O(|U| x |HBS|
|C™|). In Table Algorithm (3| with steps 1-9 constructs the fuzzy DM based on IDS
given in Algorithm [1| with a time complexity O(|H BS|?*|C"|). Algorithm [4| with steps
3-13 perform reduct computation on fuzzy DM using SFS based control strategy with
a time complexity of O(|M| * |C"|?) = O(|HBS|?  |C™|?), since |M| = O(|HBS|?).

So, the total complexity of the proposed algorithm FDM-FMFRS is: O(|U|*|H BS||*
[C™]) + O(IHBS|?  |C" ).

The space requirement of FDM-FMFRS is for three sources: First, the decision
system is required for constructing IDS with a space complexity of O(|U|x|C™]). Second,
IDS-based fuzzy DM is constructed with a requirement of space complexity O(|H BS|
|C™|). Finally, the fuzzy DM is required for generating the reduct having a space
complexity O(|M| % |C™|) = O(|HBS|?|C"|). Thus, the total space complexity of
FDM-FMFRS algorithm is O(|U] * |C™]) + O(|HBS|? % |C™).

4.7 Experiments and Results

The hardware configuration of the system used for experiments is CPU: Intel(R) i7-
8500, Clock Speed: 3.40GHz x 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit
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Table 4.1: Time Complexity Analysis of FDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity

(phase)

Algorithm [1] 2-29. Construction of IDS O(|U| = |HBS| = |C™|)

Algorithm [3| 1-9. Construction of fuzzy DM O(|HBS|? x |C™)

Algorithm |4| 3-13. Reduct computation o(|M| = |C™?) =
O(HBSP x|C"P)

Table 4.2: Benchmark Datasets

Dataset Attributes Objects Class
Tonosphere 32 351 2
Vehicle 18 846 4
Segment 16 2310 2
Steel 27 1941 7
Ozone Layer 72 1848 2
Page 10 o472 5
Robot 24 5456 4
Waveform2 40 5000 3
Texture 40 5500 11
Gamma 10 19020 2
Satimage 36 6435 6
Ring 20 7400 2
Musk2 166 6598 2
Shuttle 9 57999 7
Sensorless 48 58509 11
MiniBooNE 50 129596 2
Winnipeg 174 325834 7

and Software: Matlab R2017a. The detailed experimental evaluation is conducted on
seventeen benchmark numeric decision systems taken from UCI machine learning repos-
itory [20], the details are given in Table The proposed algorithm FDM-FMFRS is
implemented in the Matlab environment. In our experiments, we set the sensitive pa-
rameter v value equal to 4, as recommended [56], 95]. And, based on the selected theta

(0) parameter in Chapter , we deduced that theta value of 0.3 are appropriate in com-
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putation FDM-FMFRS reduct. In FDM-FMFRS experiment, Lukasiewicz t-conorm
(S(x,y) = min{z+vy,1}) for Eqn. and fuzzy standard negation (Neg(x) = 1—x)
Eqn. are used.

The performance of the proposed algorithm FDM-FMFRS is assessed by compar-
ing it with recent state-of-the-art approaches developed for FRS reduct computation in
2018 and 2019, named as RMDPS [14], WRMDPS [14], FWARA [131] and PARA [65].
FWARA and PARA codes are provided by their corresponding author in Matlab
environment, and RMDPS and WRMDPS codes are implemented by my supervisor
in Matlab environment. Furthermore, these comparative approaches (RMDPS, WR-
MDPS, FWARA and PARA) follow their own fuzzy model with t-norm, t-conorm and
fuzzy similarity relations as given in the respective publications and experiments are
conducted in the same environment stated above. The comparative experiments are
conducted in the same system using Matlab environment. The performance of FDM-
FMFRS is examined through a comparative evaluation with respect to the following

objectives:

1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers
through ten-fold cross-validation (10-FCV).

4.7.1 Evaluating Quality of Reduct Computed by FDM-FMFRS

Reduct computation in FDM-FMFRS is based on a discernibility matrix construction
in the hyperbox space. Since fuzzy DM on IDS is an approximation of fuzzy DM on
objects, theoretically, it results in an approximate reduct. Hence, naturally, it suffers
from some information loss.

This section aims to assess the quality of approximate reduct obtained based on
validation by computing the obtained gamma measure by reduct over the original
decision system. The formulation of each algorithm uses its own FRS model to compute
reduct. To avoid bias and to validate the relevance of reduct quality comparison, we
needed to utilize a different FRS model so that the comparisons of gamma measures
are with respect to a single FRS model. Similar to SAT measure, gamma measure

is a widely employed dependency measure in FRS for accessing the quality of reduct.
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Table 4.3: Relevance of FDM-FMFRS reduct through Gamma measure

Datsets Gamma Meausre

UNRED | FDM-FMFRS | RMDPS | WRMDPS | FRAWA | PARA
Tonosphere 0.99 0.98 0.99 0.99 0.99 0.99
Segment 0.98 0.94 0.98 0.98 0.98 0.96
Steel 0.98 0.94 0.98 0.98 0.98 0.98
Vehicle 0.99 0.99 0.99 0.99 0.99 0.99
Ozone 1 0.99 1 1 1 1
Page 0.87 0.85 0.87 0.87 0.87 0.87
Texture 0.99 0.94 0.99 0.99 0.99 0.93
Waveform?2 1 1 1 1 1 1
Robot 0.97 0.90 0.97 0.97 0.97 0.97
Satimage 0.99 0.98 0.99 0.99 0.99 0.98
Ring 1 1 1 1 1 1

Reduct Length

Datsets

UNRED | FDM-FMFRS | RMDPS | WRMDPS | FRAWA | PARA
Tonosphere 32 7 27 27 31 18
Segment 16 9 15 15 14 10
Steel 27 11 21 21 18 15
Vehicle 18 15 18 18 17 14
Ozone 72 9 39 42 54 29
Page 10 8 10 10 10 9
Texture 41 8 37 37 37
Waveform2 40 13 21 22 40 24
Robot 24 13 24 24 24 24
Satimage 36 14 36 36 36 14
Ring 20 17 20 20 20 18

Hence, Gaussian kernel FRS (GKFRS) [30] is used for computation of gamma measure
by reducts from the compared algorithms as none of these algorithms uses this particular
approach (GKFRS) in their model.

Table contains the resulting gamma value and reduct length by applying the
proposed algorithm as well as the compared algorithms on the entire dataset. Also,
Table represents the gamma measure obtained from the unreduced decision system
(mention as ‘UNRED’ in Table to validate the relevance of resulted reducts through
checking whether the obtained reduct is satisfying or reaching near to (UNRED) gamma

measure or not.

Table reports the gamma value () for only eleven datasets out of seventeen
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benchmark datasets due to exceeding the memory limit while processing the GKFRS.

Analysis of Results

In Table it is observed that FDM-FMFRS achieved the same gamma value as
obtained by UNRED satisfying the required reduct property fully in Vehicle, Waveform?2
and Ring datasets. In the remaining datasets, FDM-FMFRS achieved almost near to
expected gamma measure w.r.t. entire dataset gamma value.

Overall, it can be seen that the approximate reduct from FDM-FMFRS is not
resulting in any significant loss in the quality of reduct. Also, it can be observed that
the size of reduct for FDM-FMFRS is much lesser than compared algorithms for all
datasets. The compared algorithms have also achieved the relevant or approximate
gamma measure in given datasets, but even that approximation is negligible, as in
the case of FDM-FMFRS. Hence, empirically, we have established that FDM-FMFRS
computed quality reduct with almost near gamma measure as UNRED and with a
relatively shorter size reduct.

Section [4.7.2] explores the relevance of obtained approximate reduct of the FDM-
FMFRS in achieving the construction of the classification learning model, which is the
primary objective of the feature subset selection. Moreover, the comparative analysis
with reduct length and computational time will be elaborated as part of Section [4.7.2]

using tenfold cross-validation.

4.7.2 Relevance of the Proposed Approach in Construction of Classi-
fiers

This section contains the comparative experiments conducted among algorithms for
reduct computation, i.e., FDM-FMFRS, RMDPS [14], WRMDPS [14], FWARA [131]
and PARA [65] algorithms. The relevance of reduct in inducing a classification model is
studied through ten-fold cross-validation (10-FCV) experiments. In each iteration, one
fold is preserved for the testing data, and the remaining nine folds are used for training
data. A reduct algorithm is applied to the training data. So, based on the reduct that
is obtained, the classification model is constructed for comparison. The classification
accuracy of the resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-
tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier
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(described in Chapter [3)) is also employed for inducing classification model. To examine
the relevance of reducts, we also construct the classification model with an unreduced

dataset (mentioned as ‘UNRED’ in the given Tables) for comparison.

Table [£.4] Table [4.5 and Table [£.6] presents the results of the 10-FCV experiment
for classification accuracies with CART, kNN, and kKNN-FMNN respectively. Similarly,
Table [£.7] and Table illustrate the reduct length and computational time of the
algorithms. Fig. Fig. Fig. Fig. [4.4) and Fig. depict the box-plot rep-
resentation of results given in Table Table Table Table [4.7] and Table

respectively.

The student’s paired t-test with a significance level of 0.05 is performed in order
to evaluate the statistical significance of the FDM-FMFRS algorithm with RMDPS,
WRMDPS, FWARA, PARA and UNRED. Each column in Tables [£.4] [4.6] [4.7 and
4.8| reports the results of the respective algorithm in the form of mean and standard
deviation along with p-value except FDM-FMFRS column. FDM-FMFRS column
contained only mean and standard deviation. The p-value index is the significant
level between the respective algorithm and UNRED with FDM-FMFRS. If p-value >
0.05, then both approaches are no statistically significant difference and represented
as a tie with the symbol of ‘0’. For classification, if the p-value is less than equal to
0.05 and the result obtained by the respective algorithm is less than FDM-FMFRS,
then the particular algorithm is statistically inferior to FDM-FMFRS and marked as

[

a loss *-’. Otherwise, it is represented as a win ‘+’. The contrary is for reduct size
and computational time analysis, which means if the p-value is less than 0.05, and
the result obtained by the respective algorithm is less than FDM-FMFRS, then the
particular algorithm is statistically significant than FDM-FMFRS and marked as a win

(]

‘4+’; otherwise, it is representing a loss For example, in classification Table [1.4]
and computational time Table [4.7] the p-value column of PARA shows the ‘-’ sign in
Waveform?2 dataset, which means that PARA is performing inferior to FDM-FMFRS

in both classification and computational time.

The last three lines in each Table [£.4] [4.7 and [4-8| correspond to Average
(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over
which an algorithm is executing vary from one to another. Hence, the average of
individual mean values is reported in two forms. Average (NOD) corresponds to the

average value obtained by an algorithm on datasets where it could be evaluated along
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with reporting the number of datasets (NOD) involved in brackets. CAverage value
depicts the average of the individual mean obtained by restricting to only those datasets
in which all algorithms could be evaluated. For the comparative analysis, CAverage
plays an important role. The last line indicates the count of the number of statistically
loss(‘-"), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the
proposed kNN-FMNN.

Note: The ‘*’ sign in Tables and shows the corresponding
algorithm is intractable to a particular dataset to compute the reduct due to insufficient
memory. And, ‘#’ sign represents the scenario of non-termination of the code even after
several hours of computation.

In Figures and the range of Y-axis varies based on obtained
results in each dataset. For large datasets, as the results are available only for FDM-

FMFRS algorithm, Figures are respectively given in Figure (b) part.
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4.7 Experiments and Results

4.7.3 Analysis of Results

Classification Results

Table Table and Table show the classification results of CART, kNN and
KNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm
FDM-FMFRS is higher than compared algorithms and very near to UNRED.

In Table [4.4] considering the overall 66 accuracy results across all the compared
algorithms and UNRED in CART classifier, the cumulative lose/win/tie results are
4/11/51. Hence in the majority of results (51), the proposed algorithm FDM-FMFRS
performed statistically similar to compared algorithms and UNRED. Also, it is ob-
served that wherever FDM-FMFRS performed a little inferior to compared algorithms
and UNRED (i.e., 11 results), the differences in average mean are very small. In the
remaining 4 results, the proposed algorithm FDM-FMFRS performed significantly bet-
ter than the compared algorithms, and here also, it is observed that the difference in
mean value is small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table [£.5] and Ta-
ble majorly all algorithms performed statistically similar to each other. The cumu-
lative lose/win/tie results in kNN classifier is 13/10/43 and in kKNN-FMNN is 4/7/55.
The further observation analysis details are given below.

FDM-FMFRS achieved statistically better than RMDPS, WRMDPS and PARA
algorithms in Waveform2 dataset in all classifiers, as shown in Fig. [£.1] [{.2) and .3} In
Musk?2 dataset, FDM-FMFRS performed statistically inferior to UNRED.

Based on results given in Table[d.4and Fig. for Ring, MiniBooNE and Winnipeg
datasets, FDM-FMFRS incurred statistically inferior to UNRED, but the difference in
average classification accuracies for both algorithms is insignificant on datasets, for
example, In Winnipeg, FDM-FMFRS is 98.46 and UNRED is 98.92. Similarly, in
Robot datasets, FDM-FMFRS obtained statistically inferior results than compared
algorithms (including UNRED), but the difference in their results is almost quite low.
Moreover, FDM-FMFRS resulted statistically better than UNRED in Ozone dataset.

Similar conclusions is obtained from the results given in Table and Fig. for
the kNN classifier. FDM-FMFRS achieved statistically better results than compared
algorithms (including UNRED) in Robot and Ring datasets. In contrast, FDM-FMFRS
is statistically inferior to compared algorithms (except PARA) and UNRED in Texture
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4.7 Experiments and Results

and Satimage datasets, but the difference in their average classification accuracies are
very less on these datasets.

Similarly, in KNN-FMNN classifier, based on Table [£.6| and Fig. 4.3 FDM-FMFRS
obtained statistically better than UNRED in Winnipeg dataset. However, FDM-
FMFRS performed statistically inferior to UNRED in Sensorless dataset with a high
difference in their average classification accuracy.

In Sensorless dataset, FDM-FMFRS incurred much similar classification results in
CART and kNN classifiers; however, it suffered a little bit in KNN-FMNN classifier.
But as we can observe, it obtained a much more significant reduct with a substantial
reduction in the size of the actual attributes from 58 to 9.

In Musk?2 dataset, FDM-FMFRS performed statistically inferior to compared al-
gorithms in all classifiers, but there is not much difference in mean value. And the
decrease in classification accuracy might be due to the reduction of attributes from 166
to 22.

In MiniBooNE and Winnipeg datasets, FDM-FMFRS incurred less significantly
than UNRED in CART and kNN classifiers, but their difference in classification accu-
racies is very minor, for example, in kNN classifier, FDM-FMFRS got 91.36% accuracy
where UNRED got 92.19%. In sensorless and musk2 datasets, FDM-FMFRS performed
less significant than UNRED in given classifiers.

Hence, in most of the results, FDM-FMFRS has performed similar or better classi-
fication accuracy than compared algorithms, and in those results where FDM-FMFRS
has performed inferior, their mean accuracy is very near. Hence, on the whole, one
can conclude that the approximate reduct through FDM-FMFRS preserved the qual-
ity of reduct in inducing a good classification model. We can see that the average
value of the individual mean of classification accuracy of the FDM-FMFRS algorithm
on overall datasets is quite near the average value results in UNRED, which shows
effectiveness in classification performance. Also, It is further observed that RMDPS,
WRMDPS, FWARA and PARA algorithms could not obtain reduct in Shuttle, Musk2,
Sensorless, MinibooNE and Winnepeg datasets due to memory overflow (Sign ‘“*’) or
non-termination even after 24 hours (Sign ‘#’) at given system configuration where
FDM-FMFRS can obtain reduct in few seconds. Eventually, it can be seen that the
idea of computing the approximate reduct by FDM-FMFRS is satisfactory and effec-

tive.
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Computational Time Results

In terms of computational times, as shown given in Table and Fig. FDM-
FMFRS incurred significantly less computational time than compared algorithms for
all datasets and evidently seen that the cumulative lose/win/tie results of compared
algorithms are 49/0/0. Also, the proposed method FDM-FMFRS obtained the least
CAverage value (2.85 seconds), which is significantly lesser than compared algorithms

with CAverage in the range of 38 to 266 seconds.
The average mean value of FDM-FMFRS on 17 datasets is 110.37 seconds. But,

none of the compared algorithms could scale to all 17 datasets. This significantly es-
tablished that FDM-FMFRS is computationally scalable than all compared algorithms.
Even the resulting standard deviation of computation time presented very little varia-

tion, thus showing that the methodology is reliable compared to others.

These substantial reductions of computational time of FDM-FMFRS are due to
the dealing with hyperboxes constructed by FMNN model where |HBS| << |U]. In
order to understand the significance of space complexity reduction in fuzzy DM size,
we compared |U|? with an average of |[HBS|? in 10-FCV. The results are shown in
Table Table provides the average and standard deviation of the obtained
number of hyperboxes (NOH), the average value of |HBS|? obtained in fuzzy DM size
(PHDS) and the percentage of reduction (POR) of HBS based fuzzy DM size over U
based fuzzy DM size. Based on Table[4.9] the percentage of reduction (POR) of |H BS|?
over |U|? got in the range of 78-99% across the given datasets. One can say that a pair
of hyperboxes comparison in hyperbox based-fuzzy DM absorbs many pairs of objects
comparison in object based-fuzzy DM (i.e., |HBS| << |U|). Owing to this significant
reduction, FDM-FMFRS could be applied on such datasets where compared algorithms
(RMDPS, WRMDPS, FWARA and PARA) would not execute, as the required memory

space for these datasets is not available in the given system considered.

Traditional or, Scalable FRS time complexity is O(|U[?|C™|?) which hinders the ap-
plicability to large decision systems, whereas FDM-FMFRS achieves O(|H BS|?|C"|?)
against O(|U|?|C™|?) which enhance scalability. FDM-FMFRS outperformed and saved
more than 90-99% of the average computational time than other compared algorithms.
Thus, the speed-up computation and performance demonstrate the potential of FDM-

FMFRS algorithm and its suitability for larger datasets.
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Hence, working through granular computing and performing feature subset selection

at the hyperbox level has resulted in obtaining a quality reduct with scalability.

Table 4.9: Reduction of Datasets with FMNN as a Preprocessor

Datasets EDS NOH PHDS POR
|U|? Mean + Std

Ionosphere | 351 x 351 79.60 £+ 2.80 80 x 80 77.20%
Vehicle 846 x 846 71.40 £+ 5.21 71 x 71 91.60%
Segment 2310 x 2310 33.10 + 1.66 33 x 33 98.57%
Steel 1941 x 1941 188.10 £+ 6.97 188 x 188 90.31%
Ozone 1848 x 1848 279.00 + 2.94 279 x 279 84.90%
Page 5472 x 5472 24.30 + 1.25 24 x 24 99.56%
Robot 5456 x 5456 578.70 £ 11.22 | 578 x 578 89.40%
Waveform2 | 5000 x 5000 963.20 + 3.33 963 x 963 80.74%
Texture 5500 x 5500 44.50 £+ 2.17 45 x 45 99.18%
Gamma 19020 x 19020 302.20 + 8.16 302 x 302 98.41%
Satimage 6435 x 6435 218.67 £+ 218.67 | 219 x 219 96.59%
Ring 7400 x 7400 630.70 £ 3.27 631 x 631 91.47%
Musk2 6598 x 6598 751.40 + 10.44 | 751 x 751 88.61%
Shuttle 57999 x 57999 14.30 £ 0.67 14 x 14 99.97%
Sensorless 58509 x 58509 26.10 + 1.52 26 x 26 99.95%
MiniBooNE | 129596 x 129596 | 1938.20 + 13.35 | 1938 x 1938 | 98.50%
Winnipeg 325834 x 325834 | 3591.80 + 22.65 | 3591 x 3591 | 98.89%

Notes: EDS: Estimated Fuzzy DM sizes, NOH: Number of hyperboxes,
PHDS: Proportional Fuzzy DM sizes, POR: Percentage of reduction.

Reduct length Results

The results given in Table and Fig. established that FDM-FMFRS obtained
reduct with statistically lesser size than RMDPS, WRMDPS and FWARA for all
datasets except Gamma dataset and evidently seen that the cumulative lose/win/tie

results of compared algorithms are 42/4/3. In Gamma dataset, all algorithms including

the proposed work FDM-FMFRS obtained entire attributes as reduct. FDM-FMFRS
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got a statistically larger reduct size than PARA with Vehicle, Texture, Gamma and
Satimage datasets, but the quality of reduct from FDM-FMFRS in terms of average
classification accuracies statistically is not compromised.

The experimental results established that the applicability of the FRS reduct algo-
rithm is enhanced strongly with FMNN preprocessing. The proposed approach FDM-
FMFRS exhibits enhanced scalability on large datasets and induce better or similar

classification performance with relevant reduct.

4.8 Summary

We proposed FDM-FMFRS as a hybridization of FMNN with FRS for reduct compu-
tation, intending to increase scalability on benchmark datasets. Here, we replaced DM
construction in object space with hyperbox space which is obtained through FMNN.
A hyperbox based fuzzy DM construction approximated traditional DM, so that the
computed reduct is also an approximate reduct. The extensive experimental study was
done with state-of-the-art FRS approaches on several benchmark datasets to establish
the relevance of FDM-FMFRS reduct. And results demonstrated that FDM-FMFRS
achieved significant computational gains over existing state-of-the-art FRS approaches
while achieving similar or better classification accuracies. Also, FDM-FMFRS could
scale to such large datasets where existing FRS algorithms are unable to compute due

to space constraints.
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Chapter 5

Variant of FDM-FMFRS for

Feature Subset Selection

This chapter explores an extension of FDM-FMFRS approach discussed in chapter
In chapter 4 FDM-FMFRS approach has enhanced the scalability FRS based at-
tribute reduction to large datasets due to the construction of fuzzy DM in hyperbox
space instead of object space. This chapter investigates a scenario emerging through
modification and adaptation in FDM-FMFRS that can enhance further scalability in
hyperbox space. We propose an alternative approach even though FDM-FMFRS is
complete and sufficient. This design can tune FDM-FMFRS approach being applicable
to much larger size datasets.

The rest of the chapter is designed as follows: Section [5.] present the brief introduc-
tion. Section introduces the motivation of the proposed algorithm. Section de-
scribes the functioning of the proposed algorithm CDM-FMFRS. Section describes
the complexity analysis of proposed algorithm CDM-FMFRS. Section reports a se-
ries of experiments and comparative analysis of CDM-FMFRS with FDM-FMFRS and

state-of-the-art approaches.

5.1 Motivation

In the previous chapter |4l we adopt FMNN learning model as a preprocessor to work on
granular based computing for FRS reduct computation (FDM-FMFRS). FDM-FMFRS

approach indeed enhanced the scalability in large decision systems due to the construc-
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tion of fuzzy DM in hyperbox space instead of object space. Also, FDM-FMFRS ap-
proach significantly decreases the computation and space complexity on several bench-
mark datasets in a given memory constraint.

In this chapter, we are improvising the performance of FDM-FMFRS in terms of
scalability. We further increase the scalability of reduct computation in hyperbox space
in FDM-FMFRS approach. Hence, our work formulates a way to reduce space utiliza-
tion of fuzzy DM in paving the way to increased scalability. An approach is proposed
by adopting the crisp DM construction over fuzzy DM construction in hyperbox space
that can increase the scalability of datasets on the given memory constraints. The
formation of crisp DM naturally incurs information loss. So, we also enriched crisp DM
with a defined tolerance parameter to facilitate the perseverance of potential attributes

in crisp DM entries.

5.2 Space Utilization of Fuzzy DM vs Crisp DM

The enhanced scalability in FDM-FMFRS is because of the construction of fuzzy DM
in hyperbox space. As it is demonstrated in the experiment section for a very
large dataset, the cardinality of hyperbox space itself grows to such large numbers such
that the construction of fuzzy DM in hyperbox space itself is not permissible. So, our
work aims at overcoming this limitation to further increase the scalability of hyperbox

space-based FRS reduct computation.

The sections [4.2.1.1] and |4.2.2.1| introduce the concept of crisp DM and fuzzy

DM. Theoretically, the space complexity of both approaches in hyperbox space is
O(|JHBS|?|C™]). An entry of crisp DM is a subset of C™, whereas an entry of fuzzy
DM is a real-valued array of size C™. Adapting the characteristic function for the
representation of a subset of C™ and using bitset representation for same, the entry of
crisp DM requires |C™| bits. Assume that a real-valued numbered is represented in the
computer using ‘k’ bytes. Then it follows that the space utilization of crisp DM is 8ka
of the space utilization of fuzzy DM. Hence, the reduction in space utilization in crisp
DM construction is highly significant.

However, the construction of crisp DM for a numerical decision system involves
information loss. In the literature, it is arrived at by discretization of the numerical

decision system or application of threshold fuzzy discernibility value [42]. Either way,
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a lot of information in fuzzy DM is lost in the conversion to crisp DM. So it becomes
imperative to arrive at a crisp DM formulation for availing of space reduction using a
methodology aiming at lessening the information loss.

Hence, with the objective of further increasing the scalability of FDM-FMFRS, we
proposed a novel crisp DM formulation instead of fuzzy DM for FRS reduct compu-
tation. The adaptation of crisp DM for FRS reduct computation is motivated from

works [10], 14}, 105, 112] that significantly reduces the space complexity.

5.3 Proposed CDM-FMFRS Reduct Algorithm

In this section, we propose an approach CDM-FMFRS (CDM: Crisp discernibility
matrix, FM: Fuzzy min-max neural network, FRS: Fuzzy rough set) to increase the
scalability of FDM-FMFRS in hyperbox space. This paper also aims to compute an
approximate reduct efficiently with significant gains in space and time complexity. The
proposed work (CDM-FMFRS) is summarized as follows:

1. Creation of interval-valued decision system (IDS) from FMNN preprocessing.
2. Crisp Discernibility matrix construction based on interval-valued decision system.

3. Compute an approximate reduct computation based on crisp discernibility matrix.

Moreover, we incorporate the following features in crisp DM formation with the ob-
jective of minimizing the inevitable information loss and preserving potential attributes
as part of discernibility matrix entries. Furthermore, we extend the overlapping criteria
amidst hyperboxes with three additional rules in achieving crisp DM formulation and
also enrich with a defined tolerance parameter to facilitate the perseverance of potential

attributes in crisp discernibility relation through hyperboxes.

5.3.1 Creation of Interval-Valued Decision System from FMNN

In the proposed CDM-FMFRS, the construction of IDS based on fuzzy hyperboxes is
done as per the procedure given and described in the Section
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5.3.2 FMNN Preprocessor based crisp Discernibility Matrix

Here, we provide the procedure for formulation of crisp DM on IDS. This is based on
discernibility between two hyperboxes. Each entry M (H;, H;) in crisp DM is obtained
from a pair of hyperboxes H; and H; of different classes. Each clause contains a set of
attributes that have non-overlapping or allowable proportions (user defined parameter

61) of overlapping intervals between hyperboxes H; and H;. Each clause M (H;, Hj) is
defined in Eqn. (5.1)).

M(H;, H;) = {a | a € CA OverlapInDim(H;, H;,a) == False V

(OverlapInDim(H;, Hj,a) == True A propoverlap < 91)} (51)

The expression OverlapInDim(H;, Hj, a) performs the overlap test between hyper-
boxes H; and H; along ‘a’ dimension. Simpson [95] introduces the four conditions to
check the overlapping along a particular dimension in FMNN model. In [I05], authors
extend the conditions for overlapping cases when min point and max point coincide at
the considered dimension. We have further introduced three more conditions for ac-
commodating overlapping in the case at least one of the hyperbox is a point hyperbox.
The following are the eleven conditions over which overlapping status is determined and
can be considered as a complete set of conditions for checking overlap. The following
11 cases contain the possible way of overlapping a dimension between hyperboxes to

become true (OverlapInDim(H;, H;,a) == True).

case 1 : vt == wli and vfj == wfj and vl == vfj
case 2 : vili == wli and vy’ # wili

if (Uf’ < vfl and v < wfj)
case 3 : vf" #* wfi and vf' == wfj

if (Ufz Svfj and vfj Swfi)

case 4 : vl < T <l < 4y

0p :wfi —vf]

case 5: vy’ < vl <w,’ < wl
H; )
Op = W’ vf’
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case 6 : v < o7 < l7 < i

H.
Op = W’ — Vg’

case 7: vy’ < vili <wlli < w,’
op:wfi—vaHi

case 8 : vl = oI < wHi <,
H; H
Op = W, "' — Vg’

case 9: vy’ < vl < wli = ki
H; ,
op:wa]—vfl

case 10 : vl = vHi < wHI < 4l
_ o Hj _Hj
op =w, ' — v,

case 11 : v,? < vfli < wli =,
op:wf"—vfi

(5.2)

Cases from first to third correspond to newly introduced overlapping conditions for
point hyperboxes, cases 4th to 7th correspond to overlapping conditions in FMNN [95],
and the remaining cases are the additional conditions introduced in EFMNN [56]. In
each overlap step, we are adding the partial overlapping check (Eqn. (5.3)) based on
the proportion between hyperboxes.

The importance of considering partial overlapping steps between hyperboxes lessens
the imposition of rigid rules such as sufficient separability between the hyperboxes along
the chosen dimensions that can result in significant information loss and possibly a
sparse DM. Even if two hyperboxes have a slight overlap in a dimension, then there is
a sufficient chance that the attribute is discerning most of the objects of one hyperbox
from that of another hyperbox. Preserving such discernible attributes in the crisp DM
formation is very important in minimizing the information loss in crisp DM formation.
Hence, the following properties are arrived at for deciding when an attribute becomes

a discernible attribute.
1. An attribute is considered as discerning, if it is a non-overlapping dimension.

2. An attribute is considered as discerning, if it is an overlapping dimension, but

the proportion of overlapping is tolerable based on user-defined parameter 6y
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(0<91§1).

The partial overlapping check based on proportions is irrelevant to point hyper-
boxes. In all the other cases 4th to 11th, the proportionality of overlap (propoverlap)

is determined as follows:

Op Op )
. . b . .
(wa' = va"") " (wh — vl

The amount of overlapping existing in each case is given by o,. propoverlap gives

propoverlap = max(

(5.3)

the maximum of proportionality of overlap in both hyperboxes, and it should be lesser
than given #; for an attribute to be included in discernibility matrix entry.

Algorithm [5] presents the structure for computing the crisp DM based on IDS. In
Algorithm [5, for every pair of hyperboxes of different classes, an entry M (H;, H;)
is created by considering only those attributes over which no overlapping exists, or
permissible partial overlapping exists.

The crisp DM construction through fuzzy hyperboxes is an approximation of crisp
DM based on object space. Therefore, the reduct often computed through crisp DM
is always a sub-reduct of the exact reduct; hence it is an approximate reduct for the
original decision system.

The advantage of the proposed approach is that the discernibility entry preserves
those important attributes which have the potential to discern most of the pair of
objects from both hyperboxes. Hence, attributes with higher discerning power retained
in M, thus paving the way for the construction of approximate reduct containing useful

attributes.

5.3.3 Reduct Computation using Johnson’s Reducer

In the last phase, Johnson’s algorithm [I36] is used to find a single reduct through crisp
DM. Johnson’s algorithm is given in Algorithm [6]

Johnson’s algorithm is a greedy hill-climbing algorithm based on maximal discerni-
bility heuristic (MDHeuristic). MDHeuristic is an estimation of the discernibility power
of an attribute, and is equal to the number of DM entries containing the attribute.
Johnson’s algorithm is a sequential forward selection strategy based algorithm and
starts with an empty set reduct. In each iteration, MDHeuristic computes for each

attribute not already included in reduct. The best discerning attribute is included into
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Algorithm 5: Creating Crisp Discernibility Matrix
Input : HBS: Set of hyperboxes, #;: User-defined tolerance parameter, C™:

Set of conditional attributes
Output: M: Crisp Discernibility Matrix.
1 for every H; in |HBS| do

2 for every H; in |HBS| do
// Compute M (H;, H;) for i'h hyperbox with each j* hyperbox
of different class labels

3 if d(H;) # d(H;) then

4 for each a in C" do

5 if OverlapInDim(H;, H;,a) == False then

6 | add(M(H;, Hj),a);

7 end

8 propoverlap = ma:c((wfio_”yfi), (wfjo—pvfj)) ;

9 if OverlapInDim(H;, H;,a) == True and propoverlap < 6,

then

10 | add(M(H;, Hy),a);

11 end

12 end

13 end
14 end
15 end

16 return M

the reduct, and the corresponding clauses containing the attribute are removed before
proceeding to the next iteration. The removal of clauses is needed as the discerning
pair of objects (in our case a pair of hyperboxes) require only a single attribute of the
corresponding matrix entries.

Further, the removal of clauses reduces space complexity for successive iterations.
The iteration continues till M becomes empty. After the end condition is reached the
reduct obtained is returned by Johnson’s algorithm.

M is an approximation of the crisp DM for the given dataset, the application of
Johnson’s algorithm on M results in an approximate reduct for the decision systems.

Hence, checking the quality of the approximate reduct is one of the objectives of the
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experiment conducted in Section

Algorithm 6: Finding Single Reduct using Johnson’s Reducer

Input : M: Crisp discernibility matrix, C™: Set of conditional attributes
Output: Red: Approximate reduct

1 Red = 0;

2 while M not empty do

3 bestM D = 0;
4 for each a in C™ — Red do
5 R = MDHeuristic(a);
6 if R > bestMD then
7 bestM D = R;
8 abest = a;
9 end
10 end
11 | Red = Red U {a"*'} ;
12 RemoveClauses(M,a’s");
13 end

14 return Red

5.4 Complexity Analysis of CDM-FMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm
CDM-FMFRS. The following variables are used in the complexity analysis of CDM-
FMFRS.

e |U]: the number of objects.

e |HBS]|: the number of hyperboxes.

e |C"|: the number of numeric conditional attribute.
e |M]|: Size of discernibility matrix

Table shows the time complexity of the proposed algorithm CDM-FMFRS. In
Table the procedure for IDS construction is as same as FDM-FMFRS having a

98



5.5 Experiment

time complexity of O(|U| * |HBS] x |C™|). In Table Algorithm [5| with steps 2-
29 constructs the crisp DM based on IDS with a time complexity O(|HBS|? * |C"|)
which is also theoretically equivalent to the construction of fuzzy DM in FDM-FMFRS.
Algorithm [6] with steps 2-13 perform reduct computation based on Johnson reducer on
crisp DM using SFS based control strategy with a time complexity of O(|M|*|C"|?) =
O(|HBS|? x |C™|?), since |M| = O(|HBS|?).

So, the total complexity of the proposed algorithm CDM-FMFRS is: O(|U || H BS |
[C"[) + O(|HBS|? = |C"?).

Theoretically, the space complexity of CDM-FMFRS is equivalent to FDM-FMFRS,
i.e., O(|U| * |C™]) + O(|JHBS|? * |C™|). But, as described in Section practically,
CDM-FMFRS space complexity is measured in terms of space utilization of crisp DM,

1

which is g (k" is the computer real-valued numbered bytes) of space utilization of

fuzzy DM that forms the main advantage of CDM-FMFRS.

Table 5.1: Time Complexity Analysis of CDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity

(phase)

Algorithm [1f 2-29. Construction of IDS O(|U| = |HBS| = |C™|)

Algorithm |5 1-15. Construction of fuzzy DM O(|HBS|? x |C™|)

Algorithm 6| 2-13. Reduct computation o(|M| = |C™?) =
O(IHBS|? = |C"[*)

5.5 Experiment

The hardware configuration of the system used for experiments is CPU: Intel(R) i7-
8500, Clock Speed: 3.40GHz x 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit
and Software: Matlab R2017a. The detailed experimental evaluation is conducted on
twenty benchmark numeric decision systems taken from UCI machine learning repos-
itory [20], the details are given in Table The proposed algorithm FDM-FMFRS
is implemented in the Matlab environment. In our experiments, we set the sensitive
parameter v value equal to 4, as recommended [56, [95]. And, based on the selected
theta (0) parameter in Chapter 3| we deduced that theta values of 0.3 and propoverlap
#1 value of 0.1 are appropriate in the computation of CDM-FMFRS algorithm.
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Table 5.2: Benchmark Datasets

Dataset Attributes Objects Class
Tonosphere 32 351 2
Vehicle 18 846 4
Segment 16 2310 2
Steel 27 1941 7
Ozone Layer 72 1848 2
Page 10 5472 5
Robot 24 5456 4
Waveform2 40 5000 3
Texture 40 5500 11
Thyroid 21 7200 3
Gamma 10 19020 2
Satimage 36 6435 6
Ring 20 7400 2
Musk2 166 6598 2
Shuttle 9 57999 7
Sensorless 48 58509 11
MiniBooNE 50 129596 2
Winnipeg 174 325834 7
Susy 18 5000000 2
Hepmass 29 (50000)10500000 2
Swarm Behaviour 2400 24017 2

The performance of the proposed algorithm CDM-FMFRS is assessed by comparing
it with FDM-FMFRS and recent state-of-the-art approaches developed for FRS reduct
computation in 2018 and 2019 (same used in Chaptercomparative experiment) named
as RMDPS [14], WRMDPS [14], FWARA [131] and PARA [65]. Furthermore, these
comparative approaches (RMDPS, WRMDPS, FWARA and PARA) follow their own
fuzzy model with t-norm, t-conorm and fuzzy similarity relations as given in the re-
spective publications and experiments are conducted in the same environment stated
above. The comparative experiments are conducted in the same system using Matlab
environment. The performance of CDM-FMFRS is examined through a comparative

evaluation with respect to the following objectives:
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1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers

through ten-fold cross-validation (10-FCV).

3. Evaluate the performance on big datasets in achieving increased scalability.

5.5.1 Evaluating Quality of Reduct Computed by Proposed Approach

Reduct computation in CDM-FMFRS is based on a discernibility matrix construction
in the hyperbox space. Since crisp DM on IDS is a transformation of fuzzy DM on IDS,
theoretically, it results in an approximate reduct. Hence, some information loss is also
present naturally.

The details of Gamma measure are precisely the same as followed in Chapter [ on
page number 71.

Table contains the resulting gamma value and reduct length by applying the
proposed algorithm as well as the compared algorithms on the entire dataset. Also,
Table represents the gamma measure obtained from the unreduced decision system
(mention as ‘UNRED’ in Table to validate the relevance of resulted reducts through
checking whether the obtained reduct is satisfying or reaching near to (UNRED) gamma
measure or not.

Table reports the gamma value for only eleven datasets out of twenty benchmark
datasets due to exceeding the memory limit while processing the GKFRS.

Analysis of Results

In Table [5.3] it is observed that CDM-FMFRS have achieved the same gamma value
as obtained by UNRED satisfying the required reduct property fully in all datasets.

It can also observe that the size of reduct for CDM-FMFRS is larger than FDM-
FMFRS for all datasets except Page dataset (in page, all are giving full attribute size).
CDM-FMFRS simply returns as a super-reduct of FDM-FMFRS as it achieves full
gamma value. Due to information loss in crisp DM construction, there is a sparsity in
crisp DM results in a larger reduct size.

Section explores the relevance of obtained approximate reduct of the FDM-
FMFRS in achieving the construction of the classification learning model, which is the

primary objective of the feature subset selection. Moreover, the comparative analysis
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Table 5.3: Relevance of CDM-FMFRS reduct through Gamma measure

Gamma Meausre

Datsets " NRED | CDM-FMFRS | FDM-FMFRS | RMDPS | WRMDPS | FRAWA | PARA
Tonosphere 0.99 0.99 0.98 0.99 0.99 0.99 0.99
Segment 0.98 0.98 0.94 0.98 0.98 0.98 0.96
Steel 0.98 0.98 0.94 0.98 0.98 0.98 0.98
Vehicle 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Ozone 1 1 0.99 1 1 1 1
Page 0.87 0.87 0.85 0.87 0.87 0.87 0.87
Texture 0.99 0.99 0.94 0.99 0.99 0.99 0.93
Waveform2 1 1 1 1 1 1 1
Robot 0.97 0.97 0.90 0.97 0.97 0.97 0.97
Satimage 0.99 0.99 0.98 0.99 0.99 0.99 0.98
Ring 1 1 1 1 1 1 1
Datsets Reduct Length

UNRED | CDM-FMFRS | FDM-FMFRS | RMDPS | WRMDPS | FRAWA | PARA
Tonosphere 32 13 7 27 27 31 18
Segment 16 15 9 15 15 14 10
Steel 27 22 11 21 21 18 15
Vehicle 18 16 15 18 18 17 14
Ozone 72 46 39 42 54 29
Page 10 8 10 10 10 9
Texture 41 20 37 37 37 8
Waveform?2 40 40 13 21 22 40 24
Robot 24 24 13 24 24 24 24
Satimage 36 36 14 36 36 36 14
Ring 20 20 17 20 20 20 18

with reduct length and computational time will be elaborated as part of Section [5.5.2]

using tenfold cross-validation.

5.5.2 Relevance of the Proposed Approach in Construction of Classi-

fiers

This section contains the comparative experiments conducted among algorithms for
reduct computation, i.e., CDM-FMFRS and FDM-FMFRS, RMDPS [14], WRMDPS [14],

FWARA [131] and PARA [65].

The relevance of reduct in inducing a classification

model is studied through ten-fold cross-validation (10-FCV) experiments. In each iter-

ation, one fold is preserved for the testing data, and the remaining nine folds are used

for training data. A reduct algorithm is applied to the training data. So, based on the

reduct that is obtained, the classification model is constructed for comparison. The
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classification accuracy of the resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-
tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier
(Chapter [3) is also employed for inducing classification. To examine the relevance of
reducts, we are also constructed the classification model with an unreduced dataset
(mentioned as ‘UNRED’ in the given Tables) for comparison.

Table Table and Table presents the results of the 10-FCV experiment
for classification accuracies with CART, kNN, and kNN-FMNN respectively. Similarly,
Table and Table illustrates the reduct length and computational time of the
algorithms. Fig. .1} Fig. 5.2 Fig. p.3} Fig. and Fig. depict the box-plot rep-

resentation of Table Table Table Table and Table respectively.
The results reported for FDM-FMFRS and other compared algorithms are as same as

given in Chapter [4| (Section [4.7.2]) and are reproduced here for each comprehension of
comparative analysis with the proposed algorithm CDM-FMFRS.
The detailed student’s paired t-test analysis and how the values are represented in

Tables and [5.8| are precisely the same as followed in Chapter [4 on page

number 74.

The last three lines in each Table and [5.8] correspond to Average
(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over
which an algorithm is executing vary from one to another. Hence, the average of
individual mean values is reported in two forms. Average (NOD) corresponds to the
average value obtained by an algorithm on datasets where it could be evaluated along
with reporting the number of datasets (NOD) involved in brackets. CAverage value
depicts the average of the individual mean obtained by restricting to only those datasets
in which all algorithms could be evaluated. For the comparative analysis, CAverage
plays an important role. The last line indicates the count of the number of statistically
loss(‘-"), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the
proposed CDM-FMFRS.

Note: The ‘*’ sign in Tables and shows the corresponding
algorithm is intractable to a particular dataset to compute the reduct due to insufficient
memory. And, ‘#’ sign represents the scenario of non-termination of the code even after

several hours of computation.

In Figures and , the range of Y-axis varies based on obtained

103



5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

results in each dataset. For large datasets, as the results are available only for CDM-
FMFRS and FDM-FMFRS algorithms, Figures are respectively given in Figure (b)
part.
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Figure 5.1: Boxplot for Classification Accuracies Results with CART of Table
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Analysis of Results

Classification accuracy results

Table Table [5.5] and Table [5.6] show the classification results of CART, kNN and
KNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm
CDM-FMFRS is higher than compared algorithms (including FDM-FMFRS) and very
near to UNRED.

In Table considering the overall 83 accuracy results across all the compared
algorithms (including FDM-FMFRS) and UNRED in CART classifier, the cumulative
lose/win/tie results are 12/3/68. In 68 classification results, the proposed algorithm
CDM-FMFRS performed statistically similar to compared algorithms and UNRED.
Also, it is observed that wherever CDM-FMFRS performed a little inferior to com-
pared algorithms and UNRED (i.e., 3 results), the differences in average mean are very
small. In the remaining 12 results, the proposed algorithm FDM-FMFRS performed
significantly better than the compared algorithms, and here also, it is observed that
the difference in mean value is small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table and Ta-
ble majorly all algorithms performed statistically similar to each other. The cumu-
lative lose/win/tie results in kNN classifier is 9/10/64 and in kKNN-FMNN is 11/4/68.
The further observation analysis details are given below.

CDM-FMFRS achieved statistically better than RMDPS, WRMDPS and PARA
algorithms in Waveform2 dataset in all classifiers, as shown in Fig. and In
Shuttle datasets, CDM-FMFRS performed statistically inferior to FDM-FMFRS and
UNRED in all classifiers, but differences in mean classification accuracy is very less.

Based on results in Table and Fig. in Segment, Steel, Robot, MiniBooNE
and Winnipeg datasets, CDM-FMFRS incurred statistically better classification re-
sults than FDM-FMFRS in CART classifier. Also, It resulted statistically better than
RMDPS, PARA and UNRED in Segment dataset. In Shuttle and Sensorless datasets,
CDM-FMFRS obtained statistically inferior results than UNRED, but the difference
in their results is almost quite low, for example, in Shuttle, CDM-FMFRS is 98.68 and
UNRED is 99.96. Moreover, CDM-FMFRS resulted in statistically similar or significant

results in most of the datasets in CART classifier.

Similar conclusions is obtained from results given in Table and Fig. for the
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kNN classifier. CDM-FMFRS achieved statistically better results than FDM-FMFRS
in Texture, Satimage, Musk2 and MiniBooNE datasets. CDM-FMFRS is statistically
inferior to compared algorithms (except PARA) in Texture dataset, but the difference
in their average classification accuracies are very less on these datasets. CDM-FMFRS
performed statistically inferior to FDM-FMFRS and UNRED in Sensorless dataset
with a high difference in their average classification accuracy. CDM-FMFRS resulted
in statistically similar or significant results in most of the datasets in kNN classifier.

In kNN-FMNN classifier, based on Table [5.6] and Fig. CDM-FMFRS obtained
statistically better than FDM-FMFRS in Segment, Musk2, Sensorless and MiniBooNE
datasets. However, CDM-FMFRS performed statistically inferior to FDM-FMFRS
in Winnipeg datasets with a minor difference in their average classification accuracy.
CDM-FMFRS resulted in statistically similar results in most of the datasets in kINN-
FMNN classifier.

Eventually, it can be seen that the idea of computing the approximate reduct by
CDM-FMFRS is satisfactory and effective in terms of classification results in the given
classifiers. Also, It is further observed that RMDPS, WRMDPS, FWARA and PARA
algorithms could not obtain reduct in Shuttle, Musk2, Sensorless, MinibooNE and
Winnepeg datasets due to memory overflow (Sign ‘“*’) or non-termination even after 24
hours (Sign ‘#’) at given system configuration where CDM-FMFRS can obtain reduct

in few seconds.

Computational time results

In terms of computational time given in Table and Fig. CDM-FMFRS al-
gorithm achieved significantly less computational time than compared algorithms in
all datasets and evidently seen that the cumulative lose/win/tie results of compared
algorithms are 63/2/1. Against FDM-FMFRS, CDM-FMFRS obtained statistically
less computational time in most of the datasets. The proposed method CDM-FMFRS
obtained the lowest CAverage value (1.68 seconds) on datasets, whereas compared al-
gorithms and UNRED with CAverage showed a range between 3 and 267 seconds. The
average mean value of CDM-FMFRS on 17 datasets is 35.15 seconds, which is much
smaller than FDM-FMFRS and compared algorithms. Even the resulting standard
deviation of computation time in 10-FCV carried very less variation as compared with

compared approaches showing that the methodology is reliable.
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Basically, both FDM-FMFRS and CDM-FMFRS algorithms achieved much less
computational times than other algorithms. This is due to utility arising from FMNN
preprocessing, which makes both algorithms operate in hyperbox space rather than
object space where |HBS| << |U| in all datasets. Further, it is observed that CDM-
FMFRS achieved better computation time than FDM-FMFRS. This is attributed to
using crisp DM in CDM-FMFRS in contrast to fuzzy DM in FDM-FMFRS.

Reduct length results

The results given in Table and Fig. established that CDM-FMFRS obtained
reduct with a statistically significant larger size than FDM-FMFRS on most of the
datasets because of adapting crisp DM formulation against fuzzy DM formulation. In
FDM-FMFRS, the partial fuzzy membership is calculated based on s-norm computa-
tion, and it satisfies the total required s-norm for the entire DM entry with a fewer
number of attributes. In FDM-FMFRS, if one attribute is selected, then it contributes
some partial membership value to all the entries in fuzzy DM. Whereas, in CDM-
FMFRS, if one attribute is selected, then it contributes only to the entries in crisp
DM containing that attribute and does no effect on the remaining entries. Hence, it
is observed that the average reduct size in FDM-FMFRS is lesser than CDM-FMFRS
in most of the datasets. Evidently, the cumulative lose/win/tie results of compared
algorithms w.r.t. CDM-FMFRS are 21/27/18.

Moreover, CDM-FMFRS obtained a statistically lesser reduct size than compared
algorithms (except FDM-FMFRS) on a few datasets, but the quality of reduct from
CDM-FMFRS in terms of average classification accuracies statistically is not compro-

mised.

5.5.3 Role of crisp DM in increased scalability of CDM-FMFRS over
FDM-FMFRS

On given datasets, we have seen that in spite of getting higher reduct lengths, CDM-
FMFRS methodology has obtained significant gain in computational time over FDM-
FMFRS. It is seeing that despite restricting to crisp DM construction, CDM-FMFRS
is able to give good quality approximate reduct, which could induce a classification
model with comparable or better accuracy. So far, all the experiments are conducted

on such datasets over which compared algorithms can be executed for demonstrating
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the quality of CDM-FMFRS approximate reduct comparatively.

In this section, we demonstrate the improved scalability of CDM-FMFRS over
FDM-FMFRS, which is the prime objective for the proposed work. It is also to be noted
that all the other FRS reduct approaches are not executable on considered datasets in
this experiment owing to memory overflow.

Table also gives details of the big numeric datasets (Susy, Swarm Behaviour and
Hepmass) used in this experiment. Both datasets Susy, Hepmass and Swarm Behaviour,
along with few given datasets from Table[5.2] are considered for experiments. A random
sample of Hepmass dataset is considered with 500000 objects.

We have applied CDM-FMFRS and FDM-FMFRS on these datasets, and detailed
results are reported in Table As the stage for FMNN preprocessing is common
to the algorithm, the number of hyperboxes and computational time (in seconds) for
FMNN preprocessing is specified only once. Each column in Table[5.9 reports the result
size of DM matrix (in MB), DM construction time (in seconds), Reduct Computation
Time (in seconds), Reduct Size and Total Time (in seconds) of both CDM-FMFRS
and FDM-FMFRS algorithms along with percentage gain of CDM-FMFRS over FDM-
FMFRS.

Analysis of results

Based on the results in Table CDM-FMFRS achieved significant gain in DM mem-
ory size as compared with FDM-FMFRS with the same percentage of 87.50% in all
datasets. Because in Matlab environment, a real number is represented in 8 bytes, and
the logical number is represented in 1 byte. Hence, crisp DM size of CDM-FMFRS is
1/8 of fuzzy DM size of FDM-FMFRS. In other programming environments where the
logical value is represented in 1 bit, we would obtain a reduction of 1/64 size of fuzzy
DM. Also, CDM-FMFRS obtained a significant gain on time for the construction of
DM over FDM-FMFRS with a range of 8-60% on given datasets.

Furthermore, there is a significant percentage gain in reduct computation time on
constructed DM in CDM-FMFRS over FDM-FMFRS, more than 90% in all datasets.
This is due to Johnson algorithms [I36] having lesser computations when applied to
crisp DM in comparison to being applied on fuzzy DM. Hence, the total computation
time gain of CDM-FMFRS was achieved with a range of 4 to 88.79% in given datasets
against FDM-FMFRS algorithm.
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Table 5.9: Experiment Results of CDM-FMFRS and FDM-FMFRS

FMNN DM Size DM Time
Datsets " NoH | ToFM | CDM- | FDM- | Gain | CDM- | FDM- | Gain
FMFRS| FMFRS| (%) FMFRS| FMFRS| (%)

Shuttle 13 0.33 0.0006 0.0045 87.50 | 0.0185 0.0201 7.92
Sensorless 26 0.37 0.0136 0.1088 87.50 | 0.0205 0.0233 12.11
MiniBooNE | 2074 | 144.25 | 32.82 262.64 87.50 | 2.74 6.0281 54.59
Winnipeg 3881 | 246.18 | 952.27 7618.19 | 87.50 | 47.14 82.01 42.52
Susy 13356 | 7254.8 | 630.78 5048.32 | 87.50 | 82.30 90.42 8.92
Hepmass 26212 | 2998.8 | 4741.12 | * * 478.8 * *
SwarmB 2528 | 856.95 | 2742.6 * * 121.8 * *
Datsets Reduct Time Reduct Size Total Time

CDM- | FDM- | Gain | CDM- | FDM- | Gain CDM- | FDM- | Gain

FMFRS| FMFRS| (%) FMFRS| FMFRS| (%) FMFRS| FMFRS| (%)
Shuttle 0.0007 0.012 94.65 | 4 5 20.00 0.3505 0.3658 4.19
Sensorless 0.0013 0.034 96.22 | 7 7 0.00 0.3586 0.3867 7.26
MiniBooNE | 1.04 81.31 98.73 | 50 22 -127.27 | 154.12 231.5956 | 33.45
Winnipeg 32.53 2323.16 | 98.60 | 167 20 -735.00 | 298.08 2651.35 | 88.76
Susy 4.82 831.01 99.41 | 18 18 0 7341.12 | 8175.43 | 10.20
Hepmass 6.47 * * 26 * * 3484.07 | * *
SwarmB 5.16 * * 50 * * 983.94 * *

Note:-‘*’ represents non-executable due to memory overflow. NoH: Number of Hyperboxes,
ToFM: Time for FMNN construction (in seconds), Gain (%): Percentage gain of
CDM-FMFRS over FDM-FMFRS, DM: Discernibility Matrix, DM Memory Size (in
MegaBytes), DM Time (in Seconds), Reduct Time (in Seconds), Total Time (in Seconds).

In Susy dataset, CDM-FMFRS computed reduct in a significantly lower time of
around 5 seconds than 831 seconds in FDM-FMFRS. Additionally, DM construction
time for CDM-FMFRS has a slight gain of 8% against FDM-FMFRS, and also a sig-
nificant reduction in the size of DM in RAM is obtained in CDM-FMFRS. DM size in
CDM-FMFRS (630.78 MB) is 1/8 of DM size of FDM-FMFRS (5048.32 MB).

CDM-FMFRS could obtain reduct in Hepmass and SwarmB datasets, whereas
FDM-FMFRS failed to do so because of memory overflow. Because the current system
employed with 32 GB RAM and hence the requirement of fuzzy DM for FDM-FMFRS
for Hepmass dataset in FDM-FMFRS would have been 37.04GB (as the size of crisp DM
is 4.63GB size, therefore fuzzy DM size would be 37.04 ((4.63GB) x 8 (> 32GB)) size
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and which is the reason for FDM-FMFRS is failing the reduct computation as required
memory size exceeds available memory of 32 GB. This experiment vividly demonstrates
the increased applicability of CDM-FMFRS to much larger numeric datasets and es-
tablishes the relevance of CDM-FMFRS over FDM-FMFRS.

Based on these results, one can clearly say that crisp DM formulation significantly
reduces the size of DM and reduct computation time. CDM-FMFRS facilitates in-
creased scalability with the disadvantage of a higher length reduct than FDM-FMFRS
due to information loss in the crisp DM formulation. Even though we obtain a higher
size reduct in some datasets through crisp formulation, the quality of reduct is not com-
promised as clearly established in obtained Gamma measure showing in Section [5.5.7]
and comparable classification model construction in Section [5.5.2] Even, tolerance pa-
rameter enriched the quality of reduct. Hence, we recommend CDM-FMFRS as an
alternative to FDM-FMFRS in a situation where FDM-FMFRS fails to obtain reduct

owing to a memory overflow error.

5.6 Summary

The proposed work (CDM-FMFRS) is an improved mechanism of FDM-FMFRS method
to enhance the scalability of reduct computation in hyperbox-space. In CDM-FMFRS,
a novel approach for crisp DM formulation in IDS is proposed subject to tolerance
criteria for preserving maximal discernible attributes. Hence, the approach achieved
significant gain in computation time over FDM-FMFRS and other existing FRS reduct
approaches on given benchmark datasets with similar or better classification accura-
cies over induced different classifiers. Even the space utilization of crisp DM is ﬁ of
space utilization of fuzzy DM. Moreover, CDM-FMFRS approach can handle very large
datasets where FDM-FMFRS and other existing state-of-art FRS reduct approaches
fail to obtain reduct. In the future, distributed/parallel algorithms for CDM-FMFRS
will be investigated for scaling to such voluminous datasets requiring memory beyond
the availability in a single system. CDM-FMFRS resulted in higher length reduct due
to crisp DM formulation. So, we improve the crisp DM formulation with objective of

reducing reduct length in the future work.
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Chapter 6

Incremental Feature Subset
Selection using Fuzzy Rough Sets
with Fuzzy Min-Max Neural

Network Preprocessing

Chapter [4land Chapter[5] provide FRS-based feature subset selection approaches. These
approaches are restricted to batch processing; the entire data and its underlying struc-
ture are provided prior to training at once. However, they are not designed for dealing
with dynamic datasets. When a new sample data arrives, these approaches have to
recompute and reconstruct the model from scratch to learn new data and compute a
reduct. Hence, these FRS algorithms suffer a lack of model adaptability, i.e., not contin-
uously integrating new information into existing models on continually succeeding new
information/data. One solution is to implement the incremental technique to handle
dynamic datasets and update a reduct dynamically on data arrival. The challenge of
the incremental strategy is to retain the previously acquired knowledge while acquiring
new information. This chapter focuses on an incremental FRS-based feature selection
algorithm using FMNN preprocessing.

Section briefly introduces the literature survey of incremental FRS approaches
and their limitations. Section [6.2| presents the motivation of the proposed algorithm.
Section briefly describes the functioning of the proposed incremental algorithm
IvFMFRS. Section describes the complexity analysis of proposed algorithm IvFM-
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FRS. Section reports a series of experiments and comparative analysis of I'FMFRS

with state-of-the-art incremental approaches.

6.1 Existing Approaches

Based on the literature reviewed in Chapter [4) many of the existing FRS approaches
are implemented in a classical batch setting, which can handle all data at once prior to
training, and training can rely on the assumption that the data and its underlying struc-
ture are static [29) [112]. These approaches suffer from continuous model adaptation,
i.e., not continuously integrating new information into existing models on constantly
(subsequently) arriving new information/data. Hence, this results in the recomputation
and reconstruction of new models from scratch, which is repeatedly a time-consuming
task.

The incremental learning process is a machine learning paradigm that extends and
learns the existing model’s knowledge whenever new examples emerge without losing
previous information/data [29]. The primary objective for incremental learning is to
update or learn a continual basis of knowledge on constant arriving at new data. Incre-
mental learning drives the limit of current learning systems over time with data [29].
Thus, this property becomes essential for discovering knowledge and an important facet
of human intelligence.

In the last decades, several researchers have explored how to process dynamic data
through incremental learning methodologies that minimize the complexities of pro-
cessing and storage. This idea has prompted several researchers to investigate the
incremental perspective to feature selection in the framework of RST for categorical
decision systems. These ideas have been investigated in various scenarios, such as
the variation of feature set (adding and deleting features) and the sample set (adding
and deleting objects), respectively. For incrementally adding and deleting features,
some incremental reduct computation algorithms are introduced based on information
entropy [10§], discernibility matrix [126], knowledge granularity [43] [75] and positive
domain [91]. For incrementally adding and deleting objects, there are some incremental
algorithms based on information entropy [15} [89, [107], discernibility matrix [54) [110],
knowledge granularity [44], positive domain [90], bijective soft sets [68] and represen-

tative instances [111].
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There have been a few studies on FRS based incremental feature selection algo-
rithms. As our work is based on an incremental approach under object space variation,
the associated literature is briefly described here.

In 2017, Yang et al. [113] proposed two incremental algorithms for feature selection
based on FRS for dealing with dynamic datasets. These two incremental algorithms
are designed primarily upon the arrival of one sample and multiple samples over time.
On arrival of the sample subset (one or multiple), the approach updates the relative
discernibility relation for each conditional attribute. Then, an incremental process is to
update the current reduct by adding new attributes and deleting redundant attributes
based on updated discernibility relations.

Again, in 2018, Yang et al. [I12] proposed two incremental feature selection algo-
rithms (IV-FS-FRS(1) and IV-FS-FRS(2)) based on FRS, which is an extension of [113]
on dynamic datasets. These approaches provide a way to add and delete attributes from
the current reduct based on updated relative discernibility relations on sample subsets
arrival. The authors designed two algorithms to update the current reduct with each
incoming subsets arrival. One (IV-FS-FRS(1)) is to incrementally update only rela-
tive discernibility relation on subsequent arrival of sample subsets but only perform
feature selection when no further sample subset is left. Another (IV-FS-FRS(2)) is to
update the relative DM incrementally with an incoming sample and then update the
corresponding current reduct with adding and deleting attributes through an updated
discernibility matrix. We are using IV-FS-FRS(2) algorithm for our comparison with
proposed algorithm.

The aforementioned incremental algorithms perform discernibility matrix-based
computation [I12] I13] and their corresponding feature selection. However, these al-
gorithms require a large amount of memory space which is sometimes intractable for
large decision systems.

In 2020, Zhang et al. [I28] proposed an incremental feature selection algorithm
(AIFWAR) based on FRS using information entropy on new incoming subsets. Infor-
mation entropy doesn’t require much memory compared to relative discernibility matrix
construction. In [I28], the author aims first to select representative instances from the
arriving sample subset using FRS concept, and then an incremental mechanism of the
information entropy is measured using representative instances. Then, a corresponding

incremental feature selection approach is developed by using information entropy. Fi-
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nally, a wrapper procedure is applied to the resultant feature subset to select the best

features that achieve maximum accuracy by inducing a classification model.

In 2020, Peng et al. [66] introduced a positive region-based incremental feature
selection (PIAR) using FRS concepts. The author’s idea is to select key instance
set containing representative instances on arriving sample subsets. These instances
consist of all instances that do not reach the maximum positive region values. Then
based on key instances, the incremental mechanism of updating current reduct with
adding attributes with the current reduct and eliminating redundant attributes using

dependency degree measure.

6.2 Motivation

The aforementioned incremental FRS algorithms [I12] 1T3] require object-based com-
putation that impacts an increase in space and computation overhead. Sometimes it is
impossible to load discernibility matrix entries on memory for new information/data.
Even selecting the representative instances, given in [66] [128], from incoming instances
also requires additional computational time. They require the generation of fuzzy sim-
ilarity matrices beforehand to select representative instances. An increase in object

space would adversely impact computational overhead on these approaches.

Based on the results of FDM-FMFRS in Chapter [4] we have established the utility
of the granular computing aspect for reduct computation in a batch environment. And
in the entire literature review of incremental mechanism, we have not noticed any such
utilization of granular computing aspect in incremental reduct computation, which can
significantly reduce time and space computation. This motivates us to investigate the
incremental perspective of FRS approach on reducing the space complexity that can

enhance the scalability of incremental FRS reduct computation.

In this chapter, such an intuitive idea is introduced for a solution to incremental
FRS feature subset selection by using the concept of hyperbox utilizing FMNN as a

preprocessor.
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6.3 Proposed Approach

This section describes the proposed FRS incremental algorithm IvFMFRS (Iv:Incremental
version, FM: Fuzzy Min-Max Neural Network, FRS: Fuzzy Rough Set) to compute an
approximate reduct utilizing FMNN learning model. The proposed algorithm has ex-
tended the FDM-FMFRS, described in Chapter [4] to an incremental perspective for
computing a reduct for the real-valued dynamic decision system, where samples data

are arriving sequentially.

6.3.1 Incremental Environment Description and Notation

This section describes the incremental environment and the used symbols/notations in
algorithms. The description of function and notation inside the Algorithm , Algo-
rithm [8] and Algorithm @ are mentioned in Table Also, we present a flowchart
of IVFMFRS algorithm for better understandability and as depicted in Fig.

Table 6.1: Description of Function Name and Notation in Algorithms

Notation Meaning
FM Represents FMNN learning model.
FM.Belongs(x) Checks absolute membership value (Eqn. 1) of x on any

existing hyperboxes of same class.

Next Breaks the current iteration and continues the next iteration in

the loop.

FM.HMemb(xz) | Finds the highest membership value correspond to z with ex-

isting hyperbox of same class label.

FM.Exp(H,x) Checks expansion of H to include z is possible or not using
expansion criterion Eqn. (2.6).

Remove(HBS, H) | Removes H from set HBS.

FM.Expand(H,z)| Expands the hyperbox H to include z using Eqn. and
Eqn. 1}

Insert(HBS,H) | Inserts newly H into set of hyperbox HBS.

Update(HBS, H) | Updates the expanded hyperbox H in the set HBS.
FM.Create(x) Creates a new point hyperbox to include z.

AUB Merge of A and B.

Here, we assume that the data is presented in sample subsets (Uy, Us, Us, ... ) that
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arriving sequentially. So, in each iteration, a new sample subset is provided to an

algorithm to perform incrementally.

Every incremental algorithm starts with the corresponding base algorithm. For our
case, we used FDM-FMFRS, described in Chapter [4] as the base algorithm. Initially,
we compute a set of hyperboxes HBSp, fuzzy DM M; and base reduct R; through
FDM-FMFRS for a sample U; to further incremental computation. For the next sample
subset arrival Uy, we apply our incremental I'FMFRS with given HB.S1, M; and R; to
incrementally compute H BSy, My and reduct Ry. Similarly, the algorithm is repeated

Initial R = {},

[Expansion Restricted FMNN]

Relative FDM -I ReductR
Next
Subset Sequence ?

No An incoming subset

subset
[ Incremental FMNN updation ]

'

[ Update the relative FDM ]

Case 1 Case 2
A

[Strategy of Feature Selection]

for subsequent samples.

A
[Strategy of Feature Deletion]

,, )

[ Updated selected feature subset ]'—/
k—)[ Output final selected feature subset ]

Figure 6.1: Flow chart of I'FMFRS
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Basically, for arriving sample U;11, I'FMFRS is initialized with HB.S;, M; and R;
as inputs to compute HBS;11, M;+1 and R; 11 as outputs.

The proposed incremental step of R;11 computation involves the following steps:
1. Updating H BS; with incremental training on U;4; as HBS;1.
2. Updating M; with HB.S; 1 as M;;;.

3. Updating R; on M;,; for getting R;yi.

6.3.2 Updating fuzzy hyperboxes through FMNN learning model

This section shows the updation of existing hyperboxes H B.S; by training FMNN with
a new batch sample U; 1. The procedures for implementing FMNN is similar to the
proposed work kNN-FMNN as described in Chapter Algorithm [7] performs updation
of hyperboxes. For incubation of an input pattern z in hyperbox space, if x gives an
absolute membership value with any existing hyperbox representing the same class
using Eqn. , then no modification on hyperbox takes place. If x is outside the
hyperbox, then a hyperbox H corresponding to the highest membership value is selected
to verify whether it can be expanded or not using expansion criterion Eqn. . If
yes, then hyperbox H is expanded to accommodate input x by adjusting their min and
max points of H using Eqn. and Eqn. . If not, then a hyperbox with the next
highest membership value is chosen for expansion to include pattern z. This process
continues until any hyperbox can include the input pattern x. If none of the hyperboxes
is met expansion criteria, then a new point hyperbox is created to incorporate the input
pattern x.

After completion of training with all input patterns in U; 1, hyperboxes are divided

into three categories:
1. Hyperboxes exist in H BS; but are not modified.

2. Hyperboxes exist in HBS; but are modified as part of the expansion process.

These hyperboxes are removed from HBS; and saved in set HBS™4.

3. Newly created hyperboxes that represents input patterns are saved in set H BS™".

These hyperboxes may be updated as part of the expansion process.
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Hence, the final hyperbox space HBS;,1 = HBS; U HBS™*? J HBS"v,

Algorithm 7: Updating Fuzzy Hyperboxes through FMNN

Input :U;,.1,HBS;

Output: HBS;,1, HBS;, HBS™ HBS"V
1 Initialize, HBS™? = (), HBS"*" = ();

// Let FM represents FMNN model comprises HBS;U HBS™? U HBS™v
2 for every x in U;41 do

3 if F'M.Belongs(x) == True then

4 ‘ Next;

5 end

6 HS = FM.HMemb(z);

7 Flag = 0;

8 if HS # () then

9 for every H in HS do

10 if FM.Exp(H,x) == True then

11 if H € HBS; then

12 Remove(H BS;, H); FM.Expand(H, x);
13 Insert(HBS™? H);

14 else if H € HBS™" then

15 | FM.Expand(H, z); Update(HBS™", H);
16 else if H € HBS™ then

17 FM.Expand(H, z); Update(H BS™?, H);
18 Flag = 1;

19 Break;

20 end

21 end

22 if Flag == 0 then

23 H™" = FM.Create(x);

24 Insert(HBS™", H™ V),

25 end

26 end

27 else

28 H"" = FM.Create(x);

29 Insert(H BS™", H"Y);

30 end
31 end

32 HBS; 1 = HBS; U H™d U H™v,
33 return HBS,,, HBS;, HBS™ HBS"v
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6.3.3 Updating Fuzzy Discernibility Matrix

This section focuses on updating fuzzy DM (M;), and the approach depends on the
categories of hyperboxes presented in the previous section. Algorithm [8] performs an
update of fuzzy DM. Hyperboxes in the first category H B'S; are unmodified; hence they
don’t contribute to changes into any existing fuzzy DM entries. In an ideal scenario,
we have the hyperboxes in HBS; that are representative of all-new patterns in Uj41.
In that case, no modification of hyperboxes structure occurs which mean HBS;y1 =
HBS;. Hence, there is no update of fuzzy DM, and the reduct remains unchanged. So,
R; becomes R;y1 and the algorithm immediately returns reduct. The chance for this

ideal scenario increases as more training data arrives.

Whereas in the second category, modified hyperboxes HBS™? change the learn-
ing model by adjusting their V (min point) and W (max point) values so that their

respective entries in M; need to be modified.

For the third category, the hyperboxes in H BS™" are the new objects augmented
to current IDS. For their fuzzy DM entries, corresponding new entries are added to the
existing fuzzy DM. These hyperboxes are compared with different class hyperboxes of
HBS; 1.

Modified entries of fuzzy DM resulting from second and third category hyperboxes
are removed from M; and placed in a new collection M"" representing either new or

updated entries of current fuzzy DM.

The final fuzzy DM is M;y; = M; U M™Y.

6.3.3.1 Remark

There is an advantage of the granularity concept in our proposed algorithm over any
object-based incremental learning approach. In existing object-based incremental ap-
proaches [66], 112), 1T3], 123| 128], for every new object arrival, new fuzzy DM entries
must be created which is a time-consuming task. But in the proposed approach, for
all the new training input patterns that have obtained absolute membership into any
of the existing hyperboxes, no fuzzy DM update is required reducing frequent alter-
ations of fuzzy DM. This significantly diminishes the computational times and space

requirements of the proposed approach.
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Algorithm 8: Updating Fuzzy Discernibility Matrix
Input : HBS;, HBS™< HBS"" M;
Output: M; 1, M™"

1 Initialize, M"" = {;

2 for each H™ € HBS™? do

3 for each H € (HBS; U HBS™) do
4 if d(H™) # d(H) then
// Update M;(H™,H) using Eqn. (4.17
5 Mrew = Mrew G (M (H™, H)};
6 end
7 end
8 end

// Remove all updated entries from M;

9 for each H" € HBS™" do
10 for each H € {HBS; U HBS™U HBS™"} do
11 if d(H") # d(H) then
// Compute M (H",H) using Eqn. (4.17
12 Mrew = Mrew y{M(H", H)};
13 end
14 end
15 end

16 M;1 = M; UM™Y,
17 return M; ., M™

6.3.4 Incremental Computation of Reduct

Algorithm @]] performs an update of current reduct R; to become R;;1. After updating
fuzzy DM, as discussed in the above section, the incremental process for updating
current reduct R; is performed by using two case strategies, as summarized below:

Case 1: SATynew (R;) == SATpnew (C™);

Case 2: SATynew(R;) # SATpnew (C™);

If the Case 1 holds, means, the current reduct R; is satisfied the newly added or
modified entries in M"™" and R; is already satisfied unmodified entries (old records)
of M;. Hence, the updation of current reduct is not required and existing R; becomes

reduct of M;, 1. So, current reduct R,y is R; for sample U4 .
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If Case 2 is satisfied, means, the current reduct R; doesn’t satisfy some of the newly
added entries in M™% leading to requirement for update of R; for becoming reduct.
The process of computing R;1 is started with initializing R; 1 to R;. The remaining
computations are done in two phases.

In the first phase, the additional attributes are added (Ve € C™ — R;41) into R;y1
using SFS strategy apply only on M"™". Here in each iteration, SAT measure is
computed with a different attribute that is not already included in R;i1, given in
Eqn. for (Ri+1 U{c}) Vc € C™ — R;y1. Then, the attribute having a maximum
SAT measure is included in R;1;. This strategy for attribute selection is repeated
till SATpnew(Rir1) = SATymew(C™). The SFS strategy of reduct updation is only
restricted to M™" as R;;1 already satisfies unmodified entries in M;.

The modified R;;1 is a super reduct for M;4q(= M; U M™") and can contain the
redundant attributes. Hence, in the second phase, SBE strategy in [30], which is an
efficient third order complexity approach, is followed on M;y; to remove redundant
attributes in R;11. Here for each attribute ‘c’ in R; 1, it is checked whether omission
of the attribute ‘c’ affects SAT measure. It is verified whether SATyy,, , (Riy1 —{c}) is
one or not. If one, then the attribute ‘¢’ is redundant and hence removed from R;1.
Otherwise, the attribute ‘c’ is indispensable and retained in R;y.

Finally, the current R;y; is the final reduct for samples Ui-+1 Uj.

Jj=1

6.4 Complexity Analysis of IVFMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm

IvFMFRS. The following variables are used in the complexity analysis of I'FMFRS.

e |Uit1]: the number of objects in U;41.

|HBS;|: the number of all hyperboxes in H BS; based on Uj.

|HBS;11]: the number of all hyperboxes in HB.S; 1 based on U, 41.

|HBS™4|: the number of modified hyperboxes in HBS™?.

|HBS™"|: the number of newly created hyperboxes in HBS™".

|C™]: the number of numeric conditional attribute.
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Algorithm 9: Incremental Way to Compute Reduct
Input : R;, M™", M;,

Output: R;;

if SATy\new(R;) == SATpmew (C™) then

[uny

2 Rit1 = Ry;

3 else

4 Rit1 = R;;

5 while SATynew(Rit1) # SATymew (C™) do

6 For each ¢ € C™ — R;;+1, Compute SAT prnew (Rit1 U {c});

7 Select feature ¢, € C™ — R4, satisfying

8 SATyrew (Rip1 U{co}) = maxeecn—r,, SATpnew (Riyq U {c});
9 Rit1 = Rip1 U {col;
10 end

// Compute SAT), (C")
11 for each ¢c € C" — R;y1 do
// Compute SATy,  (Rit1 — {c})

12 if SATyy,,,(C") == SATn;,,, (Riy1 — {c}) then
13 Rit1 = Riy1 — {c};

14 end

15 end

16 end

17 return R;;

| M| Size of discernibility matrix M™¢".

|M;11]: Size of discernibility matrix M;q.

|R;|: Current reduct based on Us.

|R;+1|: Updated reduct based on U, 1.

Table shows the time complexity of the proposed algorithm IvEMFRS for one
iteration from U; to U;11. In Table Algorithm [7] with steps 2 to 32 performs
updation of IDS using FMNN, with time complexity of O(|U;+1|* |HBS;y1|*|C"|). In
Table Algorithm |8 with steps 2 to 16 incrementally computes fuzzy DM (M;) based
on IDS from Algorithm 7| with time complexity of O(|HS™°¢ U HBS™" | % |HBS; 1| *
7).
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In Table Algorithm [9] with steps 4-10 performs SFS computation for adding
features into the current reduct, with time complexity of O(|M™%| % |C™ — R;|?) =
O(|HBS™4UH BS™|?%|C™—R;|?). Algorithm ﬂg]], Steps 11-15 performs the strategies
of deleting redundant features in current reduct, with third order time complexity of
O(|Mis1] * |Rit1]) = O(|HBSi11]* * |Riqal).

So, the total time complexity of the proposed algorithm IvVEMFRS is: O(|U;41]| *
|HBS; 11| %|C™|) +O(|HBS™U HBS™| % |HBS;| % |C™|) + O(|M"?| % |C™ — R;|?) +
O(|Miy1] * [Risal).

The space requirement of IvFMFRS in one iteration is for three sources: The de-
cision system U, is required for updating IDS with a space complexity of O(|U;11] *
|C™|). Second, IDS-based fuzzy DM (M;) is updated with a requirement of space com-
plexity O(|HBS;+1| = |C™|). Finally, fuzzy DM is required for updating the current
reduct having a space complexity O(|M; 1] * |C™]) = O(|HBS;11|*|C™|).

Thus, the space complexity of 'FMFRS algorithm is O(|U;41|*|C™|)+O(|H BS; 41 |**
o).

Table 6.2: Time Complexity Analysis of FDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity
(phase)
Algorithm|7] 2-32. Updation of IDS using O(|Ujt1]* |HBSit+1]*|C™|)
~ FMNN
Algorithm|8| 2-16. Updation of fuzzy DM O(|HS™? U HBS"™™| x
~ based on IDS |HBS; 1| |C™))
Algorithm[9] 4-10. Adding features into cur- O(|M™*| x |C" — R;|?) =
 rent reduct O(|HBS™? U HBS"™|? x
" — Rif)
11-15. Removing redundant fea- O(|M;+1| * |Rit+1]) =
tures from current reduct O(|HBS;11]? * |Riz1|)

6.5 Experiments

This section evaluates the experimental performance of the proposed incremental al-

gorithm IvFMFRS. The comparative analysis of proposed incremental algorithm is
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conducted with the recent (published in 2018-20) incremental FRS reduct approaches
namely IV-FS-FRS [112], AIFWAR [12§] and PIAR [66].

6.5.1 Environment and Objectives of Experimentation

Table 6.3: Benchmark Datasets

Dataset Attributes Objects Class
Tonosphere 32 351 2
Vehicle 18 846 4
Segment 16 2310 2
Steel 27 1941 7
Ozone Layer 72 1848 2
Page 10 5472 5
Robot 24 5456 4
Waveform2 40 5000 3
Texture 40 5500 11
Gamma 10 19020 2
Satimage 36 6435 6
Ring 20 7400 2
Musk?2 166 6598 2
Shuttle 9 57999 7
Sensorless 48 58509 11
MiniBooNE 50 129596 2
Winnipeg 174 325834 7

Seventeen benchmark datasets of different sizes were collected from the UCI machine
learning repository [20] for experimental evaluation, as outlined in Table The
hardware environment of the system applied for experiments is CPU: Intel(R) i7-8500,
Clock Speed: 3.40GHz x 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit and
Software: Matlab R2017a. The proposed algorithm is implemented in the Matlab
environment. For I'FMFRS, the Lukasiewicz t-conorm (S(z,y) = min{z + y,1}) for
Eqn. and fuzzy standard negation (Neg(z) = 1—x) for Eqn. are employed.

We selected the value of the sensitive parameter gamma () to 4 as recommended
from the original FMNN paper [95]. Also, we have chosen the theta (6) parameter to 0.3
based on experimental results obtained for base algorithm FDM-FMFRS for restricting
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hyperboxes size in FMNN learning model [95]. Moreover, the compared algorithms
(IV-FS-FRS, AIFWAR and PIAR) follow their fuzzy model of t-norm, t-conorm and
fuzzy similarity relations for computing as given in the respective publications and
experiments are conducted in the same environment stated above. The performance of
IvFMFRS is examined through a comparative evaluation with respect to the following

objectives:

1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers
through ten-fold cross-validation (10-FCV).

3. Comparative analysis of incremental reduct algorithms.

6.5.2 Evaluating Quality of Reduct Computed through Gamma Mea-

sure

Reduct computation in IvFMFRS is based on a discernibility matrix construction in the
hyperbox space. Since fuzzy DM on IDS is an approximation of fuzzy DM on objects,
theoretically, it results in an approximate reduct. Hence, some information loss is also
present naturally.

The details of Gamma measure are precisely the same as followed in Chapter [4| on
page number 71.

Table contains the resulting gamma value and reduct length by applying the
proposed algorithm as well as the compared algorithms on the entire dataset. We ran-
domly divided the entire dataset into ten equal subsets from an incremental perspective.
Each subset sequentially updates the incremental models for reduct computation. The
last subset outcome is the final reduct. Also, Table represents the gamma measure
obtained from the unreduced decision system (mention as ‘UNRED’ in Table [6.4) to
validate the relevance of resulted reducts through checking whether the obtained reduct
is satisfying or reaching near to (UNRED) gamma measure or not.

Table reports the gamma value for only eleven datasets out of seventeen bench-
mark datasets due to exceeding the memory limit while processing the GKFRS. And,

out of eleven datasets, IV-FS-FRS could compute reduct in only seven datasets.
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Table 6.4: Relevance of I'TFMFRS reduct through Gamma measure

Datsots Gamma Meausre

UNRED | IvFMFRS | IV-FS-FRS | AIFWAR | PIAR
Ionosphere 0.99 0.99 0.99 0.99 0.99
Segment 0.98 0.90 0.14 0.97 0.97
Steel 0.99 0.99 0.80 0.94 0.99
Vehicle 0.99 0.99 0.19 0.99 0.99
Ozone 1 0.99 0.99 1 1
Page 0.87 0.87 0.04 0.87 0.87
Texture 0.99 0.99 * 0.99 0.99
Waveform2 1 1 * 1 1
Robot 0.97 0.91 0.97 0.38 0.97
Satimage 0.99 0.98 * 0.99 0.97
Ring 1 1 * 0.98 1

Reduct Length

Datsets

UNRED | IvFMFRS | IV-FS-FRS | AIFWAR | PIAR
Tonosphere 32 7 9 8 17
Segment 16 8 1 9 9
Steel 27 12 5 6 15
Vehicle 18 12 2 15 10
Ozone 72 10 22 21 28
Page 10 9 2 9 9
Texture 41 13 * 14 7
Waveform2 40 14 * 39 26
Robot 24 14 24 4 24
Satimage 36 15 * 36 13
Ring 20 16 * 7 18

Notes: * represents non-executable due to memory overflow.

Analysis of Results

In Table it is observed that IvVFMFRS achieved an equal gamma measure as ob-
tained by “UNRED” satisfying the required reduct property fully in Ionosphere, Steel,
Vehicle, Page, Texture, Waveform2 and Ring datasets. In the remaining datasets,
IvFMFRS indeed achieved almost near to expected gamma measure w.r.t the entire

dataset gamma value.
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Overall, it can be seen that the approximate reduct from IvVFMFRS is not resulting
in any significant loss in the quality of reduct. Also, it can be observed that the
size of reduct for I'FMFRS is lesser than ATFWAR and PIAR algorithms in most of
the datasets. Moreover, IV-FS-FRS achieved less reduct size than IvFMFRS in some
datasets, but their corresponding gamma value is significantly less than our proposed
approach in those instances. Even, in Texture, Waveform2, Satimage and Ring datasets,
IvFMFRS could compute reduct whereas IV-FS-FRS could not. Hence, empirically, we
have established that IvFMFRS results in quality reduct with the same or very similar
gamma measure as that of UNRED.

Section explores the relevance of obtained approximate reduct of IvFMFRS
in achieving the construction of the classification learning model, which is the primary
objective of the feature subset selection. Moreover, the comparative analysis with
reduct length and computational time will be elaborated as part of Section in

tenfold cross-validation.

6.5.3 The Relevance of IVFMFRS Algorithm in Construction of clas-
sifiers

This section contains the comparative experiments conducted among algorithms for
reduct computation, i.e., I'FMFRS, IV-FS-FRS [112], AIFWAR [128] and PIAR [60]
algorithms. The relevance of reduct in inducing a classification model is studied through
ten-fold cross-validation (10-FCV) experiments. In each iteration, one fold is preserved
for the testing data, and the remaining nine folds are used for training data. For in-
cremental algorithms, we randomly divided the training dataset into ten equal subsets.
Each subset sequentially updates the incremental learning model for reduct computa-
tion. The last subset outcome of an algorithm is the final reduct for each fold. A reduct
algorithm is applied to the training data. So, based on the reduct that is obtained, the
classification model is constructed for comparison. The classification accuracy of the
resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-
tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier
(Chapter |3) is also employed for inducing classification model. To examine the rele-
vance of reducts, we have also constructed the classification model with an unreduced

dataset (mentioned as ‘UNRED’ in the given Tables) for comparison.
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Table Table [6.6] and Table [6.7] presents the results of the 10-FCV experiment
for classification accuracies with CART, kNN, and kNN-FMNN respectively. Simi-
larly, Table [6.8 and Table [6.9] illustrates the reduct length and computational time of
the algorithms. Fig. [6.2] Fig. [6.3] Fig. [6.4, Fig. and Fig. depict the box-plot
representation of Table Table Table Table [6.8 and Table [6.9] respectively.

The detailed student’s paired t-test analysis and how the values are represented in

Tables and [6.9] are precisely the same as followed in Chapter [f on page

number 74.

The last three lines in each Tabld6.5] and correspond to Average
(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over
which an algorithm is executing vary from one to another. Hence, the average of
individual mean values is reported in two forms. Average (NOD) corresponds to the
average value obtained by an algorithm on datasets where it could be evaluated along
with reporting the number of datasets (NOD) involved in brackets. CAverage value
depicts the average of the individual mean obtained by restricting to only those datasets
in which all algorithms could be evaluated. For the comparative analysis, CAverage
plays an important role. The last line indicates the count of the number of statistically
loss(‘-"), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the
proposed IvEFMFRS.

Note: The ‘*’ sign in Tables andandshows the corresponding
algorithm is intractable to a particular dataset to compute the reduct due to insufficient
memory. And, ‘#’ sign represents the scenario of non-termination of the code even after
several hours of computation.

In Figures and the range of Y-axis varies based on obtained
results in each dataset. For large datasets, as results are available only for I'FMFRS,

ATFWAR and PIAR algorithms, Figures are respectively given in Figure (b) part.
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Analysis of Results

Classification accuracy results

Table Table [6.6] and Table [6.7 show the classification results of CART, kNN and
KNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm
IvFMFRS is higher than compared algorithms and very near to UNRED.

In Table considering the overall 54 accuracy results across all the compared
algorithms and UNRED in CART classifier, the cumulative lose/win/tie results are
10/11/33. In 33 classification results, the proposed algorithm IVFMFRS returned sig-
nificantly similar results to compared algorithms and UNRED. Also, it is observed that
wherever IvFMFRS performed a little inferior to compared algorithms and UNRED
(i.e., 11 results), the differences in average mean are very small. In the remaining
10 results, the proposed algorithm IVEFMFRS performed significantly better than the
compared algorithms, and here also, it is observed that the difference in mean value is
small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table and Ta-
ble majorly all algorithms performed statistically similar to each other. The cumu-
lative lose/win/tie results in kNN classifier is 13/12/29 and in kNN-FMNN is 11/9/34.
The further observation analysis details are given below.

IvVFMFRS achieved statistically better than AIFWAR and PIAR algorithms in
Waveform2 dataset in all classifiers.

Based on CART classifier results in Table [6.5] and Fig. in Robot and Ring
datasets, I'FMFRS performed statistically significant than AIFWAR. Moreover, IvEM-
FRS obtained better in classification than IV-FS-FRS in Vehicle, Segment, Steel and
Page datasets. However, in Robot and Musk2, IvFMFRS performed statistically in-
ferior to PTAR, although the difference in average classification accuracies for both
algorithms is insignificant. A similar case for AIFWAR algorithm, where it performed
better than IvVFMFRS in Robot and Ring datasets.

Similar conclusions can be obtained in the kNN and kNN-FMNN classifiers from
Table [6.5] and Table [6.7] and their respective Fig. and Fig. In both classifiers,
IvFMFRS achieved statistically significant than IV-FS-FRS in Vehicle, Segment, and
Steel datasets. In Robot, Texture and Ring datasets, PIAR performed statistically
inferior to I'FMFRS in kNN classifiers. Also, PIAR could not be able to compute reduct
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in a reasonable amount of time in Sensorless, MiniBooNE and Winnipeg datasets, where
IvFMFRS algorithm could compute reduct with comparative classification accuracies.
Moreover, I'FMFRS showed statistically equivalent to other algorithms and UNRED
in most datasets. AIFWAR performed significantly better in Texture dataset than
IvFMFRS, but the difference in mean value is very less.

Eventually, it can be seen that the idea of computing the approximate reduct by
IvFMFRS is satisfactory and effective in terms of classification results in given classi-
fiers. As we can see, the average value of the individual mean of classification accuracy
of the IvFMFRS algorithm for all datasets is quite similar to AIFWAR, PTAR, FDM-
FMFRS and UNRED.

It is further observed that, in Waveform2, Gamma, Texture, Ring, Satimage, Musk2
and Shuttle datasets, IV-FS-FRS could not obtain reduct due to memory overflow at
given system configuration where IVFMFRS, AIFWAR obtained reduct in reasonable
computational time. A similar case happened for PIAR, IvFMFRS got reduct in Sen-
sorless and MiniBooNE where PIAR could not. This is due to the aspect of represen-
tative instances in AIFWAR and fuzzy hyperboxes based granularization in IvFMFRS,
achieving a significant reduction in space utilization. In Winnipeg dataset, IvFMFRS

could compute reduct, whereas all compared algorithms could not.

Computational time results

In terms of computational times, as shown in Table and Fig. IvVFMFRS in-
curred significantly less computational time than compared incremental algorithms
(IV-FS-FRS, AIFWAR and PIAR) for all datasets except for Waveform2, Musk2 and
MiniBooNE datasets. The proposed method IvFMFRS obtained the lowest CAverage
value (3.63 seconds) on datasets, whereas compared algorithms and UNRED with CAv-
erage showed a range between 5 and 19 seconds and evidently, seen that the cumulative
lose/win/tie results of compared algorithms w.r.t. IvFMFRS are 33/3/1.

These substantial reductions in computational time of IvFMFRS are due to the
dealing with hyperboxes constructed by the FMNN model where |HBS| << |U|. Thus,
the speed-up computation and performance demonstrate the potential of the I'FMFRS
algorithm and its suitability for larger datasets.

However, in Waveform2 and Musk2 datasets, [I'TFMFRS obtained statistically higher

computational time than compared algorithms. Because, in each subset arrival, a
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large number of existing hyperboxes got updated or new hyperboxes created results in
their corresponding entries in fuzzy DM are also updated and newly entered on each
arrival. This way increased the substantial amount of computation time of I'FMFRS.
Generally, in IvVFMFRS, on each subset arrival, only a few hyperboxes are updated
which results in less updation of entries in fuzzy DM. Because of this reason, I'FMFRS
incurred less computation in most of the datasets.

The average mean value of I'FMFRS on overall datasets is 2459.83 seconds which
is higher than compared algorithms. Because considering Winnipeg dataset results
in average individual mean results higher than others, where our proposed algorithm
could run on Winnipeg dataset where compared algorithms could not. None of the
compared algorithms could scale to Winnipeg datasets. In all datasets, the resulting
standard deviation of computation time presented very less variation, thus showing

that the methodology is reliable as compared to others.

Reduct length results

From the results on reduct length shown in Table[6.9and Fig. IvFMFRS performed
statistically significant, which means computed relevant attributes with smaller reduct
size than IV-FS-FRS, AIFWAR and PIAR algorithms in most of the datasets and
evidently seen that the cumulative lose/win/tie results of compared algorithms are
22/9/6. IvFMFRS performed statistically inferior in terms of reduct size from IV-FS-
FRS in some datasets. But, the quality of reduct from IV-FS-FRS algorithm in terms
of average classification accuracy is statistically inferior to I'TFMFRS. Even IvFMFRS
achieved statistically better than PTAR in all datasets. The average individual mean
of IvFMFRS is lower than AIFWAR and PIAR and higher than IV-FS-FRS.

In summary, the relevance of IVFMFRS is significantly validated as it computes
incremental reduct with lesser length and incurs less computational time while preserv-
ing similar or better classification accuracies than compared incremental approaches in

most of the time.

6.5.4 Comparative Analysis of Incremental Reduct Algorithms

This section investigates the comparative analysis of the incremental algorithms (IvFM-
FRS, IV-FS-FRS, AIFWAR and PIAR) in aspects of reduct length and computational

time in the incremental step of reduct computation. We are presenting two figures
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(Fig. and Fig. depicting the detailed change of the computational time and
reduct size of I'FMFRS, IV-FS-FRS, AIFWAR and PIAR with subset continuously
entering. Each dataset is randomly partitioned into the ten equal subsets for an exper-
iment. We incrementally update an algorithm with a subset in each iteration to learn
and find the corresponding approximate reduct. Here, we are depicting the cumulative
computational time till that iteration and reduct size at that iteration in Fig. and
Fig. respectively.

In both figures, the x-axis represents the sequence size of the data. And, the y-axis
represents the computational time (in seconds) in Fig. and reduct length in Fig.
The dashed line shows the results of I'FMFRS; the dotted line shows IVFSFRS; the
solid line shows AIFWAR in figures. This experiment is conducted on only thirteen
datasets, out of which in seven datasets, IV-FS-FRS could not compute the reduct on
the given system. Both figures illustrate the efficiency of incremental algorithms on

arriving subset sequences one by one.

Analysis of Results

In Fig. the computational time starts with base reduct computation from the first
base part, and the rest of the timestamps are the time that is incurred for updating
the reduct when a next sample subset has arrived. It can be seen from Fig. that
in most of the given datasets, the computational time for each subsequent sample as
the number of samples increases result in a significant increase in computational time
for both IV-FS-FRS and PIAR algorithms. However, in I'FMFRS and AIFWAR, the
computational time is showing almost like a flat line for most datasets, indicating a
roughly negligible amount of time is incurred when a subsequent sample is added after
the base reduct computation on Uj.

In IVFMFRS, the changes that have happened to the fuzzy DM and computational
effort are actually very much minimal when it comes to our proposed algorithm. The
size of fuzzy DM signifies the computational time that is involved when a new subset is
added. This process is further attributed to utilizing FMNN as a preprocessor in fuzzy
DM construction. FMNN is absorbing many new objects accommodated into the exist-
ing hyperboxes result in no changes in fuzzy DM, and the changes that are happening
almost equivalent when the subsequent subset is added. Hence, the computation effort

seems very small (near to zero ) in each subsequent step after the first step. Usually,
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changes in FMNN tend to update in fuzzy DM construction. So in our case, the fuzzy
DM size is not significantly growing from one sample to subsequent sample arriving in
most datasets. However, in respective algorithms, fuzzy DM (especially in IV-FS-FRS)
sizes are significantly changing, increasing computation time as the sample subset is

growing.

In Waveform2, IvFMFRS shows a significant increase in computational time for
each subsequent sample arrival. Because, in each arrival, almost all existing hyper-
boxes are updated, or new hyperboxes are created to accommodate objects, results in
many changes and update in their entries in fuzzy DM. These substantial changes in
hyperboxes and their corresponding entries in fuzzy DM in each subsequent sample

arrival impacts significant growth in computational time.

From Fig. it can be seen that both AIFWAR and IV-FS-FRS reduct exhibit
a significant fluctuation in reduct size when a new sample is added. However, in
IvVFMFRS, the change in reduct size is very gradual, and it goes from a smaller reduct
length to a little bigger length as the sample subset arrives. This gradual increase in
reduct size is perhaps due to the following reason. In IVFMFRS algorithm, whenever a
sample is entered, the SF'S algorithm adds new attributes in the existing reduct, followed
by the SBE algorithm to remove redundant attributes. In the AIFWAR algorithm, the
attributes that are included in the existing reduct through the SF'S process are followed

by the wrapper technique for searching for the best attribute subset in reduct.

So, in the case of SBE inclusion or wrapper technique, removing most of the earlier
present reduct attributes exhibits a lot of variance in reduct size, which can be seen in
IV-FS-FRS and AIFWAR algorithms in Fig. But in our case, the change is not
much significant and not much variation in the reduct size observed. The attributes that
are added in our approach are significant even after new attributes are included in the
SF'S process, which is getting retained in SBE process. As in our approach, attributes
are selected based on discernibility over hyperboxes, which represent a set of objects of
the decision system, leading to the selection of highly significant attributes. This aspect
of selecting significant attributes as part of the SFS process due to FMNN preprocessing

is aiding in making very less oscillation in reduct length, as seen in Fig.
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6.6 Summary

The proposed IvFMFRS is an incremental adaptation of FDM-FMFRS for incremental
reduct computation using FRS. The incremental updation of reduct with the onset of
new training data involves three phases: updation of hyperboxes through FMNN to
include new training patterns, updation of fuzzy DM based on updated hyperboxes and
update current reduct using SF'S strategy followed by SBE strategy. FMNN preprocess-
ing results in relatively fewer changes to the discernibility matrix than object-based,
resulting in IVFMFRS being efficient from the aspects of both computational time and
space utilization simultaneously. The detailed comparative experimental study is con-
ducted with state of the art incremental FRS approaches and established the relevance
of IvFMFRS in obtaining reduct with increased scalability and comparable or improved
generalizability of the classifier models induced. It is also observed that the changes to
the reduct in incremental learning of I'FMFRM are gradual in nature with better sta-
bility. IvFMFRS can scale to much larger datasets than the compared approaches. In
the future, we will investigate distributed/parallel algorithms for I'TFMFRS for achiev-

ing scalability to very large scale decision systems.
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Chapter 7

Conclusions and Future Work

The primary objective of our research work is to explore the potential possibility of
utilizing information granules in the form of hyperboxes and formulating algorithms
for granular computing using hyperboxes in solving the standard problems of data
mining and machine learning. Our research focuses on building hybrid soft computing
models where fuzzy min-max neural network (FMNN) is one of the components, and
the hyperboxes are utilized in other components to achieve the advantages of granular

computing.

7.1 Conclusions

This section provides the brief conclusion of the contributions.

In Chapter [3] we proposed an algorithm kKNN-FMNN as the hybridization of FMNN
with kNN to overcome the contraction step in FMNN and enhance pattern classifica-
tion. The comparative experiment was performed on kKNN-FMNN with state-of-the-art
FMNN approaches on several benchmark datasets. The experimental results estab-
lished that kKNN-FMNN achieved better classification accuracy than state-of-the-art
FMNN algorithms in significantly less computational time in most datasets with a
fewer number of hyperboxes. Also, we identified empirically that 0.3 is the appropriate
value for parameter 6, which controls the size of the hyperbox.

In Chapter we investigated fuzzy rough sets (FRS) approaches that provide
a framework for reduct (feature subset selection) computation for decision systems.

However, the existing FRS-based feature selection approaches are intractable for large
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decision systems due to the space complexity of the FRS methodology. We studied
and proposed FDM-FMFRS as the hybridization of FMNN with FRS model for reduct
computation, intending to increase scalability on benchmark datasets. The extensive
experimental study was done on several benchmark datasets to establish the relevance
of FDM-FMFRS reduct. Results demonstrated that FDM-FMFRS achieved significant
computational gains over existing state-of-the-art FRS approaches with similar or bet-
ter classification accuracies and could scale to such large datasets where existing FRS
algorithms are unable to compute due to space constraints.

In Chapter |5, we extended the FDM-FMFRS into a proposed algorithm (CDM-
FMFRS) in terms of further scalability and improvised the reduct computation. Also,
we enriched crisp discernibility relation with extended overlapping criteria and toler-
ance parameter. The comparative experiment was done on CDM-FMFRS with FDM-
FMFRS and state-of-the-art FRS approaches. And results demonstrated that CDM-
FMFRS achieved significant scalability against FDM-FMFRS but an increase in reduct
size due to crisp formulation. Whenever possible, we recommend CDM-FMFRS as an
alternative to FDM-FMFRS in a situation where FDM-FMFRS fails to obtain reduct
owing to a memory overflow error.

In Chapter [6] we explored and proposed a scalable incremental reduct computation
in FRS with FMNN preprocessing. IvVFMFRS is an incremental adaptation of FDM-
FMFRS. FMNN preprocessing resulted in relatively fewer changes to the discernibility
matrix, resulting in [IVFMFRS being efficient from aspects of computational time and
space utilization simultaneously. The detailed comparative experimental study was con-
ducted with state-of-the-art incremental FRS algorithms and established the relevance
of I'FMFRS in obtaining reduct with increased scalability and comparable or improved
generalizability of the classifier models induced. Also, the changes to the reduct in in-
cremental learning in IVFMFRS were gradual in nature with better stability against

compared algorithms.

7.2 Future Work

This section provides some insights into future work.
In the current scenario, Big data has gained much attention from every industry

and made promising for business applications [23, [104]. Three aspects characterize big
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data, i.e., volume, variety and velocity [50]. The aspect of the velocity is dealt with
in this thesis with our proposed incremental approaches to FRS reduct computation.
We have made a significant achievement in the volume aspect through our proposed
FDM-FMFRS and CDM-FMFRS approaches. To deal with the scenario when the
hyperboxes-based representation of the discernibility matrix doesn’t fit into single sys-
tem memory, we will be proposing Apache Spark MapReduce-based adaptations of
FDM-FMFRS and CDM-FMFRS in the future. Thus, our proposed work will deal
with the volume characteristics of big data.

Due to the nature of FMNN, currently, our proposed approaches work only on
numeric decision systems. As data comes from multiple sources and in multiple types,
dealing with a variety of data will be a problem for our approaches. In the future,
we plan to generalize our models on hybrid datasets that include both categorical and
numeric attributes and apply the distributive framework to deal with big data scenarios.

Thus, our proposed work will deal the variety characteristics of big data.
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Abstract. Fuzzy Min-Max Neural Networks (FMNN) is a single epoch
learning Pattern Classification algorithm with several advantages for
online learning. The information loss due to Contraction step of FMNN
leads to several improvements in literature such as MLF, FMCN etc.
These approaches do not use Contraction step and provide additional
structures in FMNN for decision making in overlapped regions overcom-
ing the problem of Contraction with the cost of an increase in training
complexity of FMNN. This work proposes a hybridization of FMNN
with kNN algorithm for achieving the ability to handle decision making
in overlapped regions without altering the structure of FMNN. Compar-
ative studies with existing approaches over benchmark decision systems
have proved the utility of the proposed kNN-FMNN approach.

Keywords: Fuzzy Min-Max Neural Network - FMNN - Fuzzy sets -
Neural networks - Classification - kNN - Hybrid system - MLF

1 Introduction

In 1965, Zadeh [16] introduced the new concept called Fuzzy sets, to manipu-
late the imprecise data into the fuzzy pattern. The Fuzzy logic aims at creat-
ing approximate human reasoning that is helpful on cognitive decision making.
Several Hybrid systems were developed with Fuzzy sets combining other soft
computing models such as artificial neural networks, expert systems and genetic
algorithm etc. [6,12,14,18,19].

A hybrid system like the combination of the artificial neural network with
fuzzy logic has proved their effectiveness in being helpful for real-world prob-
lems [6]. In 1992, Simpson [15] proposed Fuzzy Min-Max Neural Network
(FMNN) classifier based on fuzzy hyperboxes. The union of fuzzy hyperboxes
represents individual decision classes. A hyperbox is defined as a region in n-
dimensional pattern space characterized by minimum points, maximum points
and fuzzy membership function. FMNN learning algorithm computes the min-
max points of hyperboxes to acquire knowledge. These placing and adjustment
© Springer Nature Singapore Pte Ltd. 2019
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Scalable Fuzzy Rough Set Reduct Computation Using
Fuzzy Min—Max Neural Network Preprocessing

Anil Kumar

Abstract—A fuzzy rough set (FRS) is a hybridization of rough
sets and fuzzy sets and provides a framework for reduct (fea-
ture subset selection) computation for hybrid decision systems.
However, the existing FRS-based feature selection approaches are
intractable for large decision systems due to the space complexity
of the FRS methodology. We propose a novel fuzzy min-max neural
network (FMNN)-FRS reduct computation approach utilizing the
FMNN to enhance the scalability of FRS approaches. The FMNN
provides a single pass epoch learning of arriving at granules of
objects in the form of fuzzy hyperboxes for multiple decision classes.
In the proposed approach, the FMNN model is used to recon-
struct the object-based decision system into a fuzzy hyperbox-based
interval-valued decision system. Then, a novel way of constructing
the fuzzy discernibility matrix (FDM) from the interval-valued
decision system is introduced. A fuzzy rough approximate reduct
computation algorithm is developed with the induced FDM. The
FMNN-FRS approach reduces the space complexity of FRS reduct
computation significantly and results in enhanced scalability. Com-
parative experimental analysis has been done with the existing
FRS reduct approaches on benchmark hybrid decision systems
and established the relevance of the FMNN-FRS approach. The
FMNN-FRS approach obtained the exact reduct in most of the
datasets in much lesser computational time than existing FRS
approaches while preserving similar classification accuracy. The
FMNN-FRS method achieved enhanced scalability to such large
decision systems, at which it is not possible to obtain reduct by
existing FRS approaches.

Index Terms—Discernibility matrix, feature subset selection,
fuzzy min—-max neural network (FMNN), fuzzy rough sets (FRSs),
granular computing, hyperbox, reduct, rough sets.

I. INTRODUCTION

AKING a decision under imprecision and uncertainty
M is one of the most challenging topics in the field of
data analysis. The objective of data analysis is to find or learn
hidden patterns in a dataset, which is beneficial to find depen-
dencies. Feature selection plays an essential role in analyzing the
datasets when some of the features might be redundant/irrelevant
degrading the performance and increasing the computational
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complexity of the model [1]. The selection of essential features
after discarding irrelevant features is always a challenging task
that preserves the discernment knowledge of datasets.

In the 1980s, Pawlak [2] introduced the concept of classical
rough set theory (RST) as a mathematical tool for classification
and analysis of incomplete and uncertain information. RST
gave new momentum to data mining [3] and knowledge discov-
ery [4] and provided a unique insight into artificial intelligence
and cognitive sciences both in practical and theoretical views
(11, [5].

Application of classical rough sets to numeric decision sys-
tems will produce feature subsets with finer granularity. Hence,
the induced rules from the selected features suffer from poor
generalizability to test datasets. So, one of the solutions is to
discretize the dataset beforehand and produce a new dataset
with categorical values [6]. However, the discretization method
is often inadequate and causes essential information loss that
can hamper the quality of subsequent feature subset selection.
Lately, Dubois et al. [7], [8] generalized the RST that deals
with symbolic and real-valued conditional attributes without the
need for domain specific knowledge with fuzzy rough set (FRS)
theory. The FRS can approximate the crisp decision concepts in
the fuzzy approximation space.

The first pioneering work on feature selection based on the
FRS was introduced by Jensen and Shen [9]. It performed
well in terms of retaining fewer attributes with higher clas-
sification accuracy than RST-based reduction on web dataset,
which aided in web categorization. In [9], the authors proposed
an algorithm to compute close-to-minimal reduct based on the
dependence function and also measure the quality of attributes.
Subsequently, several aspects of improvement [10]-[12] based
on feature selection and computation time were done for [9].
In [11], the authors introduced three robust techniques based
on the fuzzy similarity relation and also developed the fuzzy
discernibility matrix (FDM) for computing the feature selection.
In particular, these techniques have shown high flexibility and
reduced the complexity of computing the Cartesian product of
fuzzy equivalence classes in [10]. This approach [11] received
the consideration of researchers in [13]-[15] and became an
effective approach for reduct computation.

Skowron and Rauszer [16] introduced a feature selection
mechanism based on the concept of a crisp discernibility matrix
in the context of Pawlak’s RST. Jensen and Shen [11] further
extended into the FDM to determine the FRS reducts. Though
finding all/minimal reducts with these techniques is an NP-
Hard problem, these methods provide a crucial mathematical

1063-6706 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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ABSTRACT

Fuzzy rough sets (FRS) framework is proven to be useful in computing predictive features in the presence
of incompleteness and uncertainty in hybrid systems. However, the existing FRS methods for feature subset
selection (reduct computation) are not scalable to large datasets due to higher space and time complexities.
Towards increasing the scalability of FRS reduct computation, FMNN-FRS approach is proposed earlier,
utilizing fuzzy min-max neural network (FMNN) preprocessing to enable reduct computation in fuzzy hyperbox
space instead of object space. FMNN-FRS approach considers fuzzy discernibility matrix (DM) for computation
of an approximate reduct. However, it is observed that the space utilization of fuzzy DM limits the scalability of
FMNN-FRS. To further increase the scalability of FMNN-FRS method by the reduction in the space complexity,
in this work, a novel way of crisp DM construction is proposed from the knowledge derived from FMNN
preprocessing (CDM-FMFRS). Extended overlapping criteria, with tolerance parameter, are also designed for
arriving at the crisp discernibility relation through fuzzy hyperboxes. The proposed CDM-FMFRS approach
computes an approximate reduct using SFS strategy on the generated crisp DM. Empirically, the experimental
results established that the classifiability of the induced model from the proposed algorithm is similar or better
than FMNN-FRS and other state-of-the-art FRS reduct approaches with a significant reduction in computational
time. Results also established better scalability achieved by CDM-FMFRS than FMNN-FRS.

1. Introduction

Feature subset selection is one of the dominant techniques in ma-

FRS establishes a remarkable role in feature subset selection without
any need for additional information. Several aspects of improvement
and extension of FRS have been done in search of reliable feature

chine learning and data mining that hugely influences the learning
model’s performance. Thus it is important to preprocess the data to
eliminate irrelevant features that negatively impact the performance
of learning models. In 1980s, Pawlak (1982) introduces classical rough
set theory (RST), as a mathematical tool useful for feature subset selec-
tion (semantic preserving dimensionality reduction) and rule induction
in the information/decision systems. RST is primarily applicable to
symbolic decision systems (Pawlak, 1991; Yao et al., 2006). However,
the induced rules from the feature subset (also called reduct) through
the RST approach in the numeric decision system always suffer poor
generalizability in classification.

Later, Dubois and Prade (1992, 1990) have extended the RST con-
cept into the fuzzy rough set (FRS) to work on hybrid decision systems.

subset selection (Qu et al., 2013; Chen et al., 2007; Jensen et al., 2014;
Jensen and Shen, 2004; Jensen and Shen, 2009; Bhatt and Gopal, 2005;
Cornelis et al., 2010; Jensen and Shen, 2007; Tsang et al., 2008).

Jensen and Shen (2004) introduce a pioneering work on FRS based
feature selection to the domain of web classification. This work shows
well in web categorization on web dataset, with promising results.
Later, several researchers have done work in the aspects of devel-
opment and extensions (Bhatt and Gopal, 2005; Jensen and Shen,
2009, 2007) for (Jensen and Shen, 2004). Jensen and Shen (2009)
propose a reduct computation approach based on fuzzy similarity-
based reduct computation methodology, which attracted considerable
attention from researchers and became an effective method for feature
subset selection.
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Article history: Fuzzy rough sets (FRS) provides effective ways for selecting the compact/relevant feature
Received 6 May 2021 subset for hybrid decision systems. However, the underlying complexity of the existing
Received in revised form 25 July 2021 FRS methods through batch processing is often costly or intractable on large data and

Accepted 16 September 2021

Available online 22 September 2021 also suffer from continuous model adaptation on dynamic data. This paper proposes a

FRS based incremental feature subset selection (IVFMFRS) framework using fuzzy min-max
neural network (FMNN) as a preprocessor step in aiding to deal with data dynamically

Keywords:

Fuzzy rough set without sacrificing classification performance. FMNN is a single epoch learning algorithm
Fuzzy discernibility matrix employed to construct fuzzy hyperboxes (information granules) of pattern spaces very
Incremental learning fast. Fuzzy hyperboxes facilitate the formation of interval-valued decision system (IDS)
Fuzzy min-max neural network from the numerical decision system of much smaller size. In IVFMFRS, on each sample
Feature subset selection subset arrival, an incremental mechanism for updating fuzzy discernibility matrix (FDM)

based on constructed IDS is first formulated and then update feature subset by adding
and deleting features based on updated FDM. A comparative analysis has been conducted
comprehensively to assess the performance of the proposed algorithm with the existing
FRS methods on numerical datasets. And, the results show that the IVFMFRS obtained
the relevant feature subsets with similar classification accuracy with significantly less
computational time than existing FRS methods.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Data mining is an essential process to infer the underlying structural pattern and knowledge from given data. The major-
ity of data mining applications are restricted to classical batch setting; i.e., the entire data are provided prior to training for
learning. Sometimes batch procedures can not work for large data that easily exceed the memory limit. Moreover, they may
also lack in model adaptability according to constantly arriving new information/data thus resulting in the reconstruction
of new models from scratch, which is repeatedly a time-consuming task. Incremental learning, in contrast, is a solution for
dynamic data with properties of gradual model adaptation on sequentially arriving data without sacrificing model accu-
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