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Abstract

In modern technologies, data has attracted significant attention from var-

ious fields due to its immense potential value, which can help in decision-

making. However, data is being accumulated very fast and increasing

amounts of data in size results in large-scale data. Processing and stor-

ing large-scale data can incur considerable memory costs and hamper the

scalability of data mining algorithms.

One solution for tackling or scaling large-scale data is through granular

computing (GrC) technology. GrC provides a conceptual framework in the

domain of human-centric systems and computational intelligence. GrC in-

volves the processing of complex information entities through information

granules. Basically, GrC facilitates a higher-level view of data in terms

of granules to tackle the problem much more efficiently. Integrating GrC

and computational intelligence has become a desirable area for several re-

searchers to develop efficient decision-making models for complex problems.

This thesis identifies fuzzy min-max neural network (FMNN) as a suitable

technology for computing information granules due to their simplicity, effec-

tiveness and robustness. FMNN was introduced by Patrick K. Simpson in

1992 as a supervised single-pass dynamic neural network classifier. FMNN

creates n-dimensional hyperboxes to represent pattern spaces. FMNN has

several salient properties that are suitable and adaptable for data mining

tasks, such as online adaptation, non-linear separability, fast training time,

and hard and soft decision-making ability. These hyperboxes as information

granules conceptually capture the essence of the data concisely.

This research focuses on building hybrid soft computing models where

FMNN is one of the components, and the hyperboxes are utilized in other

components to achieve the advantages of granular computing. We inves-
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tigate the applicability of FMNN induced hyperboxes in achieving a few

data mining goals, particularly in building three models. The first part

of the thesis is to build an efficient and enhanced FMNN classifier. The

second part is to build a scalable feature subset selection approach using

fuzzy rough sets. The last is to build an incremental feature subset selec-

tion approach using fuzzy rough sets. The present studies considered these

challenges in this thesis to be much more efficient with employing FMNN

as a granular computing preprocessing strategy.

The first contribution of the thesis is towards overcoming limitations in

FMNN. Several researchers have improved FMNN to overcome its limita-

tions and minimize classification errors. However, these improved variants

of FMNN still suffer from misclassification errors due to tampering with

the non-ambiguous region and increased cost of training as the additional

structure is added to the architecture of FMNN. An enhanced version of

FMNN with kNN is proposed without altering the structure of FMNN and

avoiding the contraction step. The proposed approach has the ability to

handle decision-making in overlapped regions very efficiently.

The second contribution of the thesis is to increase the scalability of FRS

approach. Fuzzy rough sets (FRS) theory is a hybridization of rough set

theory (RST) and fuzzy sets that provides a framework for feature subset

selection (also known as reduct computation). Traditional FRS approaches

can’t scale to large datasets due to the space complexity (O(|U |2|C|)) where

|U | is the size of the object space and |C| is the size of the attribute space.

Several researchers have proposed the scalable FRS approach to deal with

large datasets. However, these FRS approaches have been significantly scal-

able compared to traditional ones, but they still have not met much gain

in computation time to compute reduct computation on large datasets. In

this thesis, a novel scalable FRS-based reduct computation approach is pro-

posed using FMNN as a preprocessing step that can enhance the scalability

of FRS approaches. The proposed algorithm has achieved enhanced scal-

ability to such an extent in large datasets where existing FRS algorithms

are unable to compute. An extension to this work is also presented in the

v



third contribution with the objective of further increasing the scalability

and empirically arriving at recommendations about when to adopt these

approaches.

Most FRS reduct computation approaches are restricted to batch process-

ing; the entire data and its underlying structure are provided before train-

ing. When a new sample data arrives, the approach must recompute and

reconstruct the model from scratch to compute a reduct. Several researchers

have developed incremental reduct computation approaches to deal with dy-

namic datasets. But these incremental approaches are based on RST, not

FRS. There are very few attempts made to investigate FRS-based incremen-

tal reduct computation. These incremental FRS approaches suffer in terms

of their ability to scale to large datasets. In the fourth contribution, a novel

scalable incremental FRS-based reduct computation approach is proposed

using FMNN as a preprocessing step for dealing with dynamic datasets.

Comparative experimental analysis has been conducted for each contri-

bution with existing state-of-the-art approaches over several benchmark

datasets. Empirically, the results established that the proposed methods

achieved higher scalability than compared approaches while achieving highly

significant computational gain without compromising the performance of

the classification models induced. In the future, we plan to further the scal-

ability of our proposed methods through Apache Spark MapReduce dis-

tributive framework implementation that can deal with such voluminous

datasets requiring memory beyond the availability in a single system.
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Notations and Abbreviations

• GrC: Granular Computing

• FMNN: Fuzzy Min-Max Neural Network

• DT: Decision System

• U: Set of the object space

• C: Set of conditional attributes

• {d}: A single decision attribute

• H: Hyperbox

• kNN: k-nearest neighbour

• HBS: Set of hyperboxes

• θ: User defined parameter to constraint the size of hyperbox H

• In: N-dimensional unit space

• 10-FCV: Ten-fold cross-validation technique

• CAverage: Average of the individual mean obtained by restricting to only those

datasets in which all algorithms could be evaluated.

• RST: Rough Set Theory

• DM: Discernibility Matrix

• CDM: Crisp Discernibility Matrix
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GLOSSARY

• FRS: Fuzzy Rough Sets

• FDM: Fuzzy Discernibility Matrix

• IND: Indiscernibility relation

• DISC: Discernibility relation

• Neg: Negation

• µRa(x, y): A degree to which the objects x and y are dissimilar for numerical

attribute ‘a’.

• µDRa(x, y): A degree to which the objects x and y are similar for numerical

attribute ‘a’.

• Γ: T-norm

• S: T-conorm

• SFS: Sequential forward selection

• SBE: Sequential backward elimination

• HDT: Hybrid Decision System

• Ch: Set of hybrid conditional attributes

• Cn: Set of numeric conditional attributes

• Cc: Set of categorical attributes

• SAT(P): Satisfiability value of subset P for all the entries in the fuzzy discerni-

bility matrix

• IDS: Interval-Valued Decision System

• kNN-FMNN: Integration of FMNN with kNN for enhancing classification per-

formance.

• FDM-FMFRS: Fuzzy discernibility matrix based feature subset selection using

FMNN
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GLOSSARY

• CDM-FMFRS: Crisp discernibility matrix based feature subset selection using

FMNN

• IvFMFRS: Incremental FRS based feature subset selection using FMNN
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Chapter 1

Introduction

1.1 Introduction

With the evolution of various modern technologies, the last two decades have witnessed

rapid growth in both generating and collecting data. Information and technology have

revolutionized large data collection [1, 127]. These datasets are collected from multiple

sources of data such as enterprises, customer databases, public health, financial data

etc. The structured form of the dataset for model construction is usually tabular in

nature, where rows correspond to objects and columns correspond to features. These

structured data have attracted significant attention from multiple applications due to

their immense potential value/capability, which can help in decision-making challenges

[7, 100]. The explosive increase in data requires new techniques that can transform the

processed data into valuable knowledge. Consequently, data mining has evolved as an

important research area to deal with data.

Data mining is an essential process for inferring the underlying structural patterns

and knowledge from data and resulting it into valuable information [11, 102]. So, this

valuable information is utilized by companies to uncover profitable patterns, increase

their revenue amounts and decrease operational costs.

However, data is being accumulated very fast, and increasing amounts of data in

size results in large-scale data. The processing capability of data mining techniques is

critical under this periodical growth. Besides, storing large-scale data can result in a

considerable memory cost and hamper the scalability of data mining algorithms. Even

the data applicable for building applications is augmented with new data at different
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times or different circumstances (called dynamic data), which adds new difficulties for

analysis.

One solution for tackling or scaling large scale data is through granular computing

(GrC) technology [114, 120, 121]. GrC is an emerging computing paradigm for study-

ing multidisciplinary information processing. It involves the processing of complex

information entities through information granules. Information granule can be viewed

as a composition of elements or objects of a universe drawn together by similarity,

proximity, indistinguishability, or functionality [114]. In processing large-scale data,

GrC establishes an effective role in providing an improved description of data which is

cost-effective and computationally fast. Basically, GrC facilitates a higher-level view of

data in terms of granules to tackle the problem much more efficiently. Integrating GrC

and computational intelligence has become a desirable field for several researchers to

develop efficient decision-making models for complex problems [100].

Here, we are building efficient solutions for data mining as data sizes are enormously

increasing in scope, and are incrementally being acquired. Also dealing with data at

the object level always has higher complexity in any facet of data mining. Hence, we

acquire GrC technology which is good in both aspects, i.e., scalability and incremental

adaptation. So, with the need for both fast computation and incremental adaptation,

we have found a fine blend of all these aspects simultaneously satisfied in one technology

called fuzzy min-max neural network (FMNN), introduced by Simpson in 1992 [95].

FMNN has several salient properties that are suitable and adaptable for data mining

tasks, such as online adaptation, non-linear separability, fast training time, and hard

and soft decision [95]. FMNN is a supervised single-pass dynamic neural network

classifier to deal with pattern classification [95]. FMNN creates n-dimensional hyperbox

fuzzy sets to represent pattern spaces, i.e., the union of fuzzy hyperboxes forms an

individual pattern class [95]. Hyperboxes obtained from FMNN training can be viewed

as information granules with characteristics of simple representation using minimum

and maximum points and having a computationally efficient single-pass algorithm for

constructing the same.

This thesis explores the applicability of FMNN in achieving a few data mining

goals, particularly building an efficient and scalable classifier, a feature subset selection

approach and an incremental feature subset selection approach. We have considered

all these challenges in this thesis to be much more efficient with employing FMNN as
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1. INTRODUCTION

a granular computing preprocessing strategy.

1.2 Motivation

With an extensive literature survey of FMNN and its extensions, we have arrived at

the conclusion that FMNN and its extensions are primarily used for classification and

clustering with applications in several real-world scenarios [2, 19, 78, 84]. Several re-

searchers have utilized FMNN as a vehicle for a granular computing technique for

computing information granules. Several researchers have introduced hybrid models

in combination with FMNN to increase the ability of classification performance and

computation power, such as FMNN with ant colony optimization [99], FMNN with

particle swarm optimization [3], FMNN with decision tree [55], and FMNN with ge-

netic algorithm [77] etc. We have observed that FMNN can significantly be useful in

feature subset selection and incremental feature subset selection hitherto unexplored

in the literature. This section provides the motivation and context for each problem

considered in this thesis.

Enhancing Generalizability of FMNN:

In 1992, Simpson [95] proposed a supervised single-pass dynamic neural network classi-

fier known as Fuzzy Min-Max Neural Network (FMNN) to deal with pattern classifica-

tion. FMNN creates n-dimensional hyperbox fuzzy sets to represent pattern spaces. A

fuzzy hyperbox is characterized by a minimum point, maximum point in n-dimensional

pattern space [95]. FMNN learning is established by adjusting the min-max points of

hyperboxes (information granules) using three steps, i.e., expansion criteria, overlap

tests and contraction steps, to learn the pattern space [95].

FMNN is a robust and powerful learning model, though this model is still fac-

ing problems due to the contraction process, which may lead to gradation errors in

classification. Contraction steps in FMNN tamper with the non-ambiguous region by

modifying min-max points between hyperboxes in overlapped classes, inducing classifi-

cation errors.

In the literature, several researchers have developed and improved traditional FMNN

to overcome its limitations and minimize classification errors due to the contraction

process [16, 49, 59, 74]. These variants in FMNN are in the direction of better rep-
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resentation of overlapping regions among hyperboxes, optimization and refinement of

resulting hyperboxes and complementary with other soft computing models to enhance

classification performance.

These improved variants of FMNN [16, 49, 59, 74] still suffer from misclassification

errors due to tampering with the non-ambiguous region and the increased cost of train-

ing as the additional structure is added to the architecture of FMNN. These changes

cause problems to the advantage of FMNN with simplified structure in terms of incre-

mental adaptation etc. Hence this work investigates to identify the ways for ambiguity

resolution in “FMNN without contraction” without altering the simple structure of

FMNN.

Scalable Feature Subset Selection:

In the 1980s, Zdzis law I. Pawlak [70] introduced the concept of classical rough set

theory (RST) as a mathematical tool, useful for feature subset selection in the in-

formation/decision systems [51, 71, 103, 116]. Primarily, RST is applicable to sym-

bolic/categorical decision systems [70, 71, 116]. Application of RST to numeric decision

systems will produce feature subsets with finer granularity. Hence, the induced rules

from the selected features suffer from poor generalizability to test datasets. So, one of

the solutions is to discretize the dataset beforehand and produce a new dataset with

categorical values. But, any discretization process tends to cause a loss of information

and result in classification error in pattern space [62].

Lately, Dubois et al. [22, 80] introduced fuzzy rough sets (FRS) theory which is

a hybridization of rough sets and fuzzy sets that deals with both symbolic and real-

valued conditional attributes. A subset of features selected using RST or FRS is named

reduct, and the process is called reduct computation (feature subset selection).

However, traditional FRS approaches can’t scale to large datasets due to the space

complexity (O(|U |2|C|)) where |U | is the size of the object space and |C| is the size of

the attribute space. Several researchers have proposed the scalable FRS approach to

deal with large datasets [14, 40, 65, 106, 131].

Even though these scalable FRS approaches have improved the scalability to some

extent, the problem still requires a better solution for meeting today’s emerging re-

quirements for large data computation. Hence this work investigates in developing

approaches for scalable FRS feature subset selection through FMNN-based granular
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computing.

Scalable Incremental Feature Subset Selection:

Most FRS reduct computation approaches are restricted to batch processing; the entire

data and its underlying structure are provided prior to training at once. However, they

are not designed to deal with dynamic datasets. When a new sample data arrives, the

approach must recompute and reconstruct the model from scratch to compute a reduct.

In the literature, several researchers have explored how to process dynamic data

through incremental learning methodologies that minimize the complexities of pro-

cessing and storage. This idea has prompted several researchers to investigate the

incremental perspective to feature selection in the framework of RST. These ideas have

been investigated in various scenarios, such as the variation of feature set (adding and

deleting features) and the sample set (adding and deleting objects), respectively. There

have been a few studies on FRS based incremental feature selection algorithms under

the variation of objects so far [66, 112, 113, 128].

Existing incremental FRS algorithms still suffer scalability issues due to object-

based computations. Hence, this work investigates an approach for scalable incremental

FRS feature subset selection through FMNN-based granular computing.

1.3 Problem Definition

This research focuses on building hybrid soft computing models where FMNN is one

of the components, and the hyperboxes are utilized in other components to achieve

advantages of granular computing. Each of the research objective is addressed as

follows:

1. One of the objectives of the thesis is to explore the methodology that combines

the simple structure of FMNN with k-nearest neighbor (kNN) strategy for induc-

ing a better classification model and incurring less computational time without

resorting to modifying the structure of FMNN.

2. The second objective is to investigate a granular-computing based FRS reduct

computation on achieving better scalability in reduct computation. The knowl-
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edge of FMNN can be utilized in decreasing the space complexity and the com-

putational time required in FRS-based reduct computation.

3. The third objective is to investigate the incremental perspective of FRS approach

using FMNN preprocessing to reduce the space complexity that can enhance the

scalability of incremental FRS reduct computation.

The aforementioned objectives of this research can be summarized as follows: The

objective of this thesis is to evolve the hyperboxes to construct hybrid

models for enhancing classification performance, formulating scalable ap-

proaches for reduct computation and incremental reduct computation for

large decision systems.

1.4 Major Contributions and Publications

The contributions of the thesis are elaborated towards the research motivation in which

they are described in the preceding section. Each contribution and its corresponding

publication are enumerated below:

Contribution 1 presents a hybridization of FMNN with kNN algorithm (kNN-

FMNN) for performing the ability to handle decision-making in overlapped regions

without altering the structure of FMNN. The work in this contribution has been pub-

lished as given below.

• Anil Kumar and P. S. V. S. Sai Prasad, Hybridization of Fuzzy Min-Max Neural

Networks with kNN for Enhanced Pattern Classification, In Advances in Comput-

ing and Data Sciences (ICACDS 2019), Pages 32-44, CCIS 1045, Springer 2019,

ISBN 978-981-13-9939-8 (Indexed in SCOPUS).

Contribution 2 proposes a novel FRS based feature subset selection approach

(FDM-FMFRS) utilizing FMNN as a preprocessing step that can enhance the scala-

bility of FRS approach. The work in this contribution has been published as given

below.

• Anil Kumar and P. S. V. S. Sai Prasad, Scalable Fuzzy Rough Set Reduct Com-

putation using Fuzzy Min–Max Neural Network Preprocessing, In IEEE Trans-
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actions on Fuzzy Systems, Vol. 28, Pages. 953-964, IEEE, May 2020. (Indexed

in SCI, SCOPUS).

Contribution 3 proposes an improvised FDM-FMFRS, named as CDM-FMFRS,

in order to increase the scalability of feature subset selection. This work formulates

a way to reduce space utilization in FDM-FMFRS that paves the way to increased

scalability. The work in this contribution has been published as given below.

• Anil Kumar and P. S. V. S. Sai Prasad, Enhancing the Scalability of Fuzzy

Rough Set Approximate Reduct Computation through Fuzzy Min-Max Neural

Network and Crisp Discernibility Relation Formulation, In Engineering Applica-

tions of Artificial Intelligence, Vol. 110, Pages 1-12, Elsevier, Apr 2022. (Indexed

in SCI, SCOPUS).

Contribution 4 proposes a scalable FRS-based incremental feature subset selec-

tion approach (IvFMFRS) using FMNN as a preprocessor step to deal with dynamic

datasets. The work in this contribution has been published as given below:

• Anil Kumar and P. S. V. S. Sai Prasad, Incremental Fuzzy Rough Sets based

Feature Subset Selection using Fuzzy Min-Max Neural Network Preprocessing. In

International Journal of Approximate Reasoning, Vol. 139, Pages 69-87, Elsevier,

Dec 2021. (Indexed in SCI, SCOPUS)

Additional Relevant Publications

Throughout my Doctoral research, I also contributed to the following collaborative

publications. They are not acknowledged as contributions in the thesis.

• Abhimanyu Bar, Anil Kumar, P.S.V.S. Sai Prasad, Finding Optimal Rough Set

Reduct with A* Search Algorithm, In Proceedings of Pattern Recognition and

Machine Intelligence, PReMI 2019, Pages 317-327, LNCS 11941, Springer 2019,

ISBN 978-3-030-34868-7. (Indexed in SCOPUS)

• Abhimanyu Bar, Anil Kumar, P.S.V.S. Sai Prasad. Coarsest granularity-based

optimal reduct using A* search, In Granular Computing, Vol. 7, Pages 1-22,

Springer, March 2022. (Indexed in ESCI, SCOPUS)
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1.5 Organization of the Thesis

The thesis has been structured into seven chapters based on methods.

Chapter 1 presents the introduction part of the thesis. It reviews the usefulness

of granular computing in data mining and its usefulness in the feature subset selection

approach. The chapter also enumerates research motivation, objectives, and the thesis’s

contributions and organization.

Chapter 2 presents an introduction to the concept of granular computing and a

brief overview of FMNN as a granular computing method which is helpful in enhanced

understanding of the contributions.

Chapter 3 discusses a literature review of variants of FMNN and their limitations.

Based on the study of related literature, a proposed enhanced version of FMNN model,

in terms of classification performance and computational time, is presented. The al-

gorithm developed in this chapter is kNN-FMNN. Comparative experimental analysis

of kNN-FMNN with state-of-the-art approaches is presented on benchmark datasets.

The contribution of this chapter is published in the proceedings of ICACDS-2019.

Chapter 4 introduces the basics of classical rough sets and fuzzy rough sets with

discernibility matrix construction and attribute reduction (reduct computation) pro-

cess. Also, it discusses the literature review of scalable FRS reduct computation ap-

proaches and their limitations. A proposed scalable FRS reduct computation using

FMNN as a preprocessing step is introduced. The algorithm developed in this chapter

is FDM-FMFRS. Comparative experimental analysis of FDM-FMFRS with state-of-

the-art approaches is given on benchmark datasets. The contribution of this chapter is

published in IEEE Transactions on Fuzzy Systems.

Chapter 5 presents the inherent possible extensions of a methodology developed

in Chapter 4 in terms of enhancing further scalability. The algorithm developed in this

chapter is CDM-FMFRS. Comparative experimental analysis of CDM-FMFRS with

FDM-FMFRS and compared algorithms are given on benchmark datasets. The contri-

bution of this chapter is published in Engineering Applications of Artificial Intelligence.

Chapter 6 contains the literature review of existing FRS incremental reduct com-

putation approaches and their limitations. A proposed incremental reduct computa-

tion in FRS with FMNN preprocessing step is presented. The algorithm developed

in this chapter is IvFMFRS. Comparative experimental analysis of IvFMFRS with
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state-of-the-art incremental approaches is reported. The contribution of this chapter is

published in International Journal of Approximate Reasoning.

The thesis concludes with Chapter 7, which summarizes the research contributions

and presents directions for future work.
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Chapter 2

Granular Computing using Fuzzy

Min-Max Neural Network

This chapter addresses the basic concepts that are used throughout this thesis to un-

derstand the proposed works. Section 2.1 describes an overview of granular computing.

Section 2.2 presents one of the granular computing models known as fuzzy min-max

neural network and its architecture and classification process.

2.1 Granular Computing

When humans observe a set of unknown characters, images, or objects that are not

familiar to them, they tend to group them by their similarity, shape, or size and form an

abstract view of those specific things for further decision-making. This renders human

cognition involving several levels of granularity (i.e., abstraction) to understand the

newly acquired information and make our ensuing cognitive process more effective [81].

Granular computing (GrC, in short) is an emerging computing paradigm in the

field of studying multidisciplinary information processing and provides the conceptual

framework in the domain of human-centric systems and computational intelligence.

GrC is subjective for understanding how humans granulate concepts or features and

execute rational decisions in uncertain and imprecise environments. GrC can obtain

different aspects of knowledge, as well as enhance the understanding of the underlying

knowledge structure.

The word granularity has been first used in Loft A. Zadeh’s 1979 paper, “Fuzzy
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Sets and Information Granularity”[118]. Granulation is a process that constructs or

decomposes a universe into granules. Lofti Zadeh’s keynote speech [122] on granulation

states:

“Information granulation involves partitioning a class of objects (points) into gran-

ules, with a granule being a clump of objects (points) which are drawn together by

indistinguishability, similarity, or functionality.”

GrC is thus important in human problem-solving and has a very significant im-

pact on the design and implementation of intelligence systems. GrC involves the pro-

cessing of complex information entities through “information granules”. A granule

can be viewed as a composition of elements or objects of a universe as they can be

drawn together by similarity, proximity, indistinguishability or functionality. Informa-

tion granule is a primitive concept in granular computing. Basically, GrC is all about

representing, constructing and processing information granules.

Fuzzy min-max neural network (FMNN) is an emerging soft computing paradigm

of granular computing [95]. FMNN creates n-dimensional hyperbox fuzzy sets to rep-

resent pattern spaces, i.e., the union of fuzzy hyperboxes forms an individual pattern

class. This thesis identifies FMNN as a suitable technology for computing information

granules.

Our research focuses on building hybrid soft computing models where FMNN is one

of the components, and the hyperboxes are utilized in other components to achieve the

advantages of granular computing.

2.2 Overview of Fuzzy Min-Max Neural Network

In 1992, Simpson [95] proposed a single-pass dynamic neural network structure to deal

with pattern classification known as fuzzy min-max neural network (FMNN). This

approach presented in [94] as an extension of earlier work [93] to learn pattern classes.

There are several salient properties of FMNN for using it as a classification model,

which are briefly described as follows:

1. Online adaptation: FMNN has the ability to learn new classes and refine exist-

ing classes with new input patterns over time without eliminating old or previous

classes or retrain the learning model. Hence, FMNN provides an appropriate

solution for “Stability-Plasticity Dilemma” [8] problem.
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2.2 Overview of Fuzzy Min-Max Neural Network

Figure 2.1: Hyperbox in 3-D

2. Non-linear separability: FMNN classifier can allow various classes to build

non-linear separable decision regions for classification that separate classes per-

fectly.

3. Overlapping classes: FMNN has the ability to minimize the misclassification

of patterns in all overlapping classes on decision boundaries.

4. Non-parametric classification: FMNN classifier doesn’t depend on any prior

knowledge of the underlying data distribution, thereby is able to provide reliable

decision boundaries.

5. Hard and soft decision: FMNN has the ability to provide both hard and soft

classification decisions. For hard decisions, the decision regarding input test data

is crisp, i.e., either 0 or 1. For soft decisions, a classifier describes the degree to

which input test data fits in each class.

6. Training time: FMNN is a single-pass algorithm. It learns very fast in compar-

ison to other non-linear classification algorithms that require huge computational

time to learn decision boundaries. These other non-linear algorithms require many

passes through the data to achieve optimal objective function to learn decision

boundaries as in the case of back-propagation algorithm [83].

FMNN is a supervised learning neural network that uses n-dimensional hyperbox

fuzzy sets to represent pattern spaces [95]. Each hyperbox restricts a subregion defined

by pairs of minimum point (V) and maximum point (W), and it characterized by a
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fuzzy membership function. The hyperbox having min and max points in 3-dimensional

space is depicted in Fig. 2.1. Basically, the author presents hyperbox as fuzzy sets due

to their corresponding membership function that allows them to create fuzzy sets in

n-dimensional space.

This membership function of the hyperbox describes the degree of pattern fitting

within the restricted region. The maximum size of hyperbox along each dimension is

restricted by theta (θ), which is user-defined parameter with range of [0, 1] (0 < θ ≤ 1).

Therefore, the pattern space will be constrained into the n-dimensional unit cube In.

Given a numeric decision system, all the numeric attributes are scaled into [0, 1] before

applying FMNN. Each hyperbox Hj is defined as:

Hj = {Xh, Vj ,Wj ,Membj(Xh)} ∀ Xh ∈ In (2.1)

where Xh = (xh1, xh2, ..., xhn) is an input pattern in n-dimensional space, and Vj =

(vj1, vj2, ..., vjn) and Wj = (wj1, wj2, ..., wjn) are the corresponding minimum point and

maximum point for hyperbox Hj . Membj(Xh) is the fuzzy membership function that

describes the membership value of the input pattern Xh w.r.t particular Hj hyperbox

and defined as:

Membj(Xh) =
1

2n

n∑
i=1

[ max(0, 1−max ( 0, γ.min ( 1, xhi − wji)))

+max( 0, 1−max ( 0, γ.min ( 1, vji − xhi)))] (2.2)

where, γ provides the sensitive parameter described to the pace of decrease of the

fuzzy membership values, and 0 ≤ Membj(Xh) ≤ 1. The fuzzy membership function

computes on a dimension by dimension to measure the degree how far each component

is lesser (greater) than the minimum (maximum) point value along with each dimension

that falls outside the min-max bounds of the hyperbox. As the membership approaches

one, the point should be more contained by the hyperbox, with the value one repre-

senting complete hyperbox containment. The membership function (defined in Eqn.

(2.2)) is the sum of two components, first the average amount of max point violation

and the average amount of min point violations.

The aggregation of hyperbox fuzzy sets creates the decision boundaries that separate

classes. So, aggregation of fuzzy set that classifies the kth pattern class (Ck) is defined
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2.2 Overview of Fuzzy Min-Max Neural Network

Figure 2.2: An Example of FMNN Hyperboxes Placed Along Boundary of a Two-Class

Problem

in Eqn. (2.3).

Ck =
⋃
j∈K

Hj (2.3)

where, K is the index set of the hyperboxes associated with the class k. An example

of aggregation of hyperboxes separated by decision boundary in 2-D is depicted in

Fig. 2.2.

2.2.1 Architecture of FMNN Classifier

The topology of FMNN classifier is a three-layer feed-forward neural mechanism, as

shown in Fig. 2.3. The first layer (FA) is an input layer for input patterns in n-

dimensional space; the second is a hidden layer where each node represents a hyperbox

fuzzy set; and the third is an output layer where each node represents a decision class.

Each node in the input layer (FA) is connected with every node in the hidden layer

(FH) with two connection weights minimum (stored in V matrix) point and maximum

(stored in W matrix) point. A fuzzy membership function is considered as (FH) a

transfer function, defined in Eqn. (2.2). The connection between (FH) and (FC) nodes

is binary-valued and stored in the matrix U , as defined in Eqn. (2.4).
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ujk =

{
1 If Hj is a hyperbox for class Ck

0 otherwise,
(2.4)

Figure 2.3: Three Layer Neural Network Architecture of FMNN

The output of each (FC) node shows the membership degree to which the input

pattern belongs to a decision class. The transfer function for each of (FC) nodes in the

output layer performs the fuzzy union of corresponding hyperbox fuzzy set values, as

described in Eqn. (2.5).

Ck =
m

max
j=1

Hjujk (2.5)

2.2.2 Classification Learning in FMNN

FMNN learning process is performed by creating and adjusting hyperboxes in n-dimensions

space for all decision classes. The learning process begins with an input pattern
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{Xh, Ch} that enters the network. We compute the membership of Xh into all hy-

perboxes of decision class Ch. If any of the membership values is one, in other words,

the input pattern absolutely belongs to one of the existing same class hyperbox, then

no further training is required. Otherwise, the network tries to find the same class

hyperbox that can expand to accommodate the input pattern through the expansion

process (if needed). If the hyperbox cannot meet the expansion criteria to include the

input pattern, then a new hyperbox is created and added to the network. If a hyperbox

expansion has happened, there is a chance of overlapping among similar or different

class existing hyperboxes. Usually, the overlap between hyperboxes representing the

same class is not a problem. But, overlap among hyperboxes from other classes is

important and needs to be eliminated using a contraction process.

FMNN training involves three stages for acquiring knowledge: Hyperbox Expansion

process, Overlap test and Contraction process.

Hyperbox Expansion: Given an input pattern {Xh, Ch}, the network identifies a

winning hyperbox with the highest degree of membership value and represents the

same decision class as Ch for expansion. For the expansion, Hj hyperbox must be

bound by the expansion criteria constraint given in Eqn. (2.6), to include an input

pattern Xh.

n∑
i=1

(max(wji, xhi)−min(vji, xhi)) ≤ nθ (2.6)

where, the range of user-defined parameter (θ) in Eqn. (2.6) is within the range of

(0 < θ ≤ 1) and controls the maximum size of a hyperbox.

If the expansion criterion, given in Eqn. (2.6), is satisfied between the input pattern

Xh and hyperbox Hj , then the minimum and maximum points of hyperbox Hj are

altered to accommodate the input pattern Xh using Eqn. (2.7) and Eqn. (2.8).

vnewji = min(voldji , xhi) ∀i = 1, 2, 3, . . . , n. (2.7)

wnew
ji = max(wold

ji , xhi) ∀i = 1, 2, 3, . . . , n. (2.8)

If the existing hyperbox Hj can not be expanded using Eqn. (2.6), then a new point

hyperbox is created to contain Xh, whose min and max points are set to Xh.
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Overlap Test: After the expansion process, there is a chance that Hj leads to

overlapping with adjacent hyperboxes representing different classes. The overlap test

is to determine any chance of overlapping between hyperboxes through dimension by

dimension comparison. Two hyperboxes don’t overlap as long as there is at least

one dimension that is not overlapping. If overlap existed between two hyperboxes, at

least one of the following four cases is satisfied in each dimension. Suppose both Hj

and Hk hyperboxes represent different classes are being examined for possible overlap.

Assuming, δold = 1, four test cases and their corresponding minimum overlap value for

ith dimensions are as follows:

case 1 : vji < vki < wji < wki

δnew = min(wji − vki, δ
old)

case 2 : vki < vji < wki < wji

δnew = min(wki − vji, δ
old)

case 3 : vji < vki < wki < wji

δnew = min(min(wki − vji, wji − vki), δ
old)

case 4 : vki < vji < wji < wki

δnew = min(min(wki − vji, wji − vki), δ
old)

(2.9)

Let ∆ indicates the dimension, where the overlap is minimal. If δold − δnew > 0

occurred, then there is overlap in ith dimension (∆ = i), and the next overlapping

testing will continue for the next dimension with assignment δold = δnew. If not, then

overlapping checking between hyperboxes will not proceed, and ∆ is set to indicate that

the contraction process is not required, i.e., ∆ = −1. One can say that hyperboxes are

not overlapped means that at least in one dimension, there is no overlap. Hence, there

should be overlapping in each dimension to say that both hyperboxes share boundary

regions.

Contraction Process: If (∆ > 0), then an overlap existed between hyperboxes (Hj

and Hk) on ∆th dimension is adjusted using the contraction process. Because the

smallest dimension minimally affects the state of hyperboxes and keeps hyperbox size

as large as possible, that delivers a more robust pattern classification. For contraction,
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Figure 2.4: Overlap and Contraction Process Between Hyperboxes

four cases are examined for adjustment between hyperboxes, as given below:

case 1 : vj∆ < vk∆ < wj∆ < wk∆

wnew
j∆ = vnewk∆ =

wold
j∆ + voldk∆

2
case 2 : vk∆ < vj∆ < wk∆ < wj∆

wnew
k∆ = vnewj∆ =

wold
k∆ + voldj∆

2
case 3 : vj∆ < vk∆ < wk∆ < wj∆ and (wk∆ − vj∆) < (wj∆ − vk∆)

vnewj∆ = wold
k∆

case 4 : vj∆ < vk∆ < wk∆ < wj∆ and (wk∆ − vj∆) > (wj∆ − vk∆)

wnew
j∆ = voldk∆

case 5 : vk∆ < vj∆ < wj∆ < wk∆ and (wk∆ − vj∆) < (wj∆ − vk∆)

wnew
k∆ = voldj∆

case 6 : vk∆ < vj∆ < wj∆ < wk∆ and (wk∆ − vj∆) > (wj∆ − vk∆)

vnewk∆ = wold
j∆

(2.10)

The overlap and contraction step between hyperboxes H1 and H2 of different classes
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are illustrated in Fig. 2.4. The shaded region showed the overlapping part between

hyperboxes. So, the overlap test finds the minimum overlap region along the x-axis

dimension. Then, the contraction steps alter their min and max points between the

hyperboxes along the selected dimension to eliminate ambiguity, as shown in bold

outline in Fig. 2.4.

In testing phase of FMNN classifier, for a given test pattern X, the fuzzy mem-

bership of X is computed with respect to all the hyperboxes. The test pattern X

is classified as the decision class corresponding to the hyperbox achieving the highest

fuzzy membership or full membership.

These placings and adjustments of hyperboxes create a granular structure of pattern

in pattern space which is useful for pattern classification. This method also establishes

several salient learning features like online learning, non-linear separability and non-

parametric classification, thus, making FMNN more flexible. The main advantage of the

FMNN is that it has the potential to learn approximate decision concepts through single

pass training. The unique blend of single epoch learning combined with adaptability

to incremental learning has made the FMNN suitable for current scenarios of building

intelligent systems in an online environment.

Hyperboxes obtained from FMNN training can be viewed as information granules

with characteristics of simple representation using minimum and maximum points and

having a computationally efficient single-pass algorithm for constructing the same. The

primary objective of our research work is to explore the potential possibility of utilizing

information granules in the form of hyperboxes and formulating algorithms for granular

computing using hyperboxes in solving the standard problems of data mining and

machine learning. Our research focuses on building hybrid soft computing models where

FMNN is one of the components and the hyperboxes are utilized in other components

to achieve advantages of granular computing.

In this thesis, we formulate, design, and develop granular computing-based solutions

using FMNN induced hyperboxes for the following three problems:

1. Efficient classifier model construction for overcoming “contraction step” induced

problems.

2. Feature subset selection using fuzzy rough set theory.

3. Incremental feature subset selection using fuzzy rough set theory.
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2.2 Overview of Fuzzy Min-Max Neural Network

The rest of the chapters explained each of the contributions.
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Chapter 3

Enhancement of Fuzzy Min-Max

Neural Network for Classification

Fuzzy min-max neural network (FMNN) is a single-pass dynamic neural network classi-

fier to deal with pattern classification. Indeed, the theory has been performing remark-

ably with further extensions and modifications to enhance the pattern classification in

recent years. However, despite these modifications and extensions, these variants result

in an increase in the computational cost due to additional constructs in the architecture

of FMNN and loss of information owing to the contraction step.

This chapter highlights the related issues associated with FMNN methodology and

its variants and provides a solution that can enhance the pattern classification and

incur less computational time.

The rest of the chapter is designed as follows: Section 3.1 briefly introduces the

literature survey of variants of FMNN and their disadvantages. Section 3.2 presents the

motivation behind the proposed algorithm. Section 3.3 briefly describes the functioning

of the proposed algorithm kNN-FMNN. Section 3.4 describes the complexity analysis

of proposed algorithm kNN-FMNN. Section 3.5 reports a series of experiments and

comparative analysis of kNN-FMNN with state-of-the-art approaches.

3.1 Literature Review FMNN Variants

In 1965, Zadeh [119] introduced fuzzy sets as an extension of the classical sets to

describe and manipulate data that are not precise. Fuzzy logic is a generalization
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of fuzzy sets in which a concept is characterized by a degree of membership ranging

between zero and one. Fuzzy logic aims at creating approximate human reasoning that

is helpful for cognitive decision-making. Several hybrid systems have been developed

by researchers with fuzzy sets combining other soft computing models such as artificial

neural networks, expert systems and genetic algorithms etc [26, 92, 132, 134].

A hybrid system like the artificial neural network with fuzzy logic has proven its ef-

fectiveness in real-world problems [26]. The main advantage of artificial neural systems

is their adaptability, making models good at understanding patterns but not enough to

explain how to reach their soft decisions. So, fuzzy logic systems aid the neural network

in the enhancement of interpretability.

In 1992, Simpson [95] proposed a supervised single-pass dynamic neural network

classifier known as Fuzzy Min-Max Neural Network (FMNN) to deal with pattern clas-

sification using fuzzy sets as pattern classes. FMNN employs n-dimensional hyperbox

fuzzy sets to represent pattern spaces, i.e., the union of fuzzy hyperboxes forms an

individual pattern class. A fuzzy hyperbox is represented as a region in n-dimensional

pattern space and characterized by minimum point, maximum point and fuzzy mem-

bership function [95]. FMNN learning is established by adjusting the min-max points of

hyperboxes (information granules) to acquire or learn knowledge of the pattern space.

This way FMNN exhibits a non-linear separability property of finding decision bound-

aries across decision classes. Complete details of FMNN and its procedure for training

and testing details are explained in Chapter 2.

FMNN has been applied successfully in different applications such as fault detection,

lung cancer, medical data analysis, image processing, video sequence segmentation

and text classification etc [2, 19, 60, 78, 79, 84, 86, 87, 135]. For example, in image

segmentation, instead of processing individual color pixels, a group of pixels (granules)

can be processed efficiently using GRFMNN [60]. GRFMNN model is used to build up

granules through training min-max values of the pixels in each grid. These granules

are then used for classification. This way significantly reduces the computational costs

required to process individual pixels. Similarly, GRFMNN is used to eliminate shadows

from color images and also reduces the dependability of the existing computer vision

approach. There are many examples of FMNN that provides practical solutions in

real-world applications.

Although FMNN is a robust and powerful learning model, this model is still fac-

25
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ing problems due to the contraction process, which may lead to gradation errors in

classification. Contraction steps in FMNN lead to tempering with the non-ambiguous

region by modifying min-max points between hyperboxes in overlapped classes, which

can induce classification errors.

These issues have motivated several researchers to develop and improve the FMNN

to overcome its limitation and minimize the misclassification error due to the contrac-

tion process. These variants in FMNN are in the direction of better representation of

overlapping regions among hyperboxes, optimization and refinement of resulting hyper-

boxes and complementary with other soft computing models to enhance classification

performance.

Our studies can be viewed as a literature review of existing FMNN approaches in

two different categories (with contraction and without contraction) that include vari-

ous FMNN variants, as depicted in Fig. 3.1. The first category is to retain traditional

FMNN learning stages (expansion, overlap, and contraction steps) along with modifi-

cations and enhancements. The second category highlights the FMNN variants that

eliminate the contraction procedure.

3.1.1 FMNN Variants with Contraction

In 2000, Gabrys et al. [27] proposed a generalization and extension of FMNN, called a

General Fuzzy Min-Max Neural Network (GFMNN) to enhance FMNN classification’s

effectiveness by addressing a few issues in using traditional FMNN. These issues are

related to fuzzy membership function and hyperbox expansion criterion. GFMNN

appears to work on both supervised and unsupervised learning within a framework,

while traditional FMNN presents two different approaches. The authors also propose

a new membership function describing the degree to which an input pattern belongs

within the hyperbox and a new expansion criterion to expand the hyperbox to cover

the input pattern. Comparatively, GFMNN achieves better pattern classifiability by

generating fewer hyperboxes than FMNN.

In 2005, Kim et al. [46] proposed an extension of FMNN, called a Weighted Fuzzy

Min-Max Neural Network (WFMNN) that considers weights into account. The author

gives the importance of each feature in each hyperbox using weights. This weight value

is assigned to a feature based on the frequency of occurrence of patterns against other

features of the same hyperbox. The authors also present a new fuzzy membership
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3.1 Literature Review FMNN Variants

Figure 3.1: Variants of FMNN With and Without Contraction Process

function by considering the weight factor which encourage to exploit the importance of

features. The proposed model compensates for the distortion and noise of the hyperbox

during expansion and contraction steps by employing feature distribution information.

WFMNN was successfully applied in the fields of feature extraction [48] and face de-

tection applications [47].

In 2008, Quteishat et al. [79] proposed a modification of FMNN as MFMNN in an

endeavor to increase the classification performance of FMNN. MFMNN strategy focuses

on the scenario when a few large hyperboxes are created, i.e., expansion parameter (θ)

is large. Authors incorporate a confidence factor-based pruning strategy into FMNN to

remove low confidence factor hyperboxes after training the FMNN network. Also, they

include the Euclidean distance along with fuzzy membership function in the FMNN

network to predict the test pattern class, especially when the θ is large. The winning

hyperbox is the one obtaining the shortest Euclidean distance from test pattern to the

centroid of the hyperbox.
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In 2010, Quteishat et al. [77] proposed an extension of MFMNN, called a MFMNN

with genetic algorithm (GA)-based rule extractor (MFMNN-GA) for enhancing the

classification performance. The first stage of MFMNN-GA is to generate hyperboxes

through the base model (MFMNN) and then prune hyperboxes using a confidence

factor to decrease the model’s complexity. The idea of using the confidence factor is

for identifying the frequent occurring hyperboxes. The pruning method removes low

confidence factor hyperboxes to minimize the network complexity. The second stage is

to apply ‘don’t care’ strategy by GA-rule extractor to reduce the number of features in

the extracted rule and improve the classification performance.

In 2017, Mohammed et al. [56] presented an improved FMNN, called an Enhanced

Fuzzy Min-Max Neural Network (EFMNN), to address the limitation in the learning

process of FMNN and improve the performance of classification. These limitations

address overlapping rules and contraction rules to remove the overlapped region between

hyperboxes. Authors extend standard overlapping steps with new ones to manage all

possible overlapped regions between hyperboxes missing in the earlier one. Besides, a

new contraction step is also provided to resolve all possible overlapping cases.

In 2017, Mohammed et al. [57] introduced an enhanced version of FMNN, called a

FMNN with a K-nearest hyperbox expansion rule (KnFMNN) to improve the classifica-

tion. Authors associated a new hyperbox expansion rule using k-NN strategy to reduce

FMNN network complexity. In KnFMNN, a set of k hyperboxes is selected to cover

input patterns, i.e., if one hyperbox is not satisfied with the expansion criteria, then

the next hyperbox is considered for expansion till the set goes empty. This has resulted

in the model being more generic and creating fewer hyperboxes, thus increasing the

classification performance.

In 2017, Mohammed et al. [58] presented an extension of EFMNN as EFMNN-II by

incorporating two strategies: k-nearest hyperbox expansion rule and pruning strategy.

k-nearest hyperbox expansion rule is employed to select the winning hyperbox, and the

pruning process is formulated to eliminate less efficient hyperboxes. This way increases

EFMNN performance in terms of classification and network complexity.

In 2020, Santhos et al. [49] presented an enhanced version of FMNN, called Improved

FMNN (IFMNN), to increase classification performance. The authors employ k-nearest

hyperbox expansion rule along with the perimeter of hyperbox to choose a winning

hyperbox for expansion. And a weighted procedure based on the perimeter is proposed
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to check the expandability of the selected hyperbox. Also, a set of contraction rules

based on FMNN and EFMNN are altered using a perimeter of a given hyperbox to

balance the overlapping regions. IFMNN is a refinement of FMNN, k-FMNN and

EFMNN approaches.

Although these proposed approaches (having contraction steps) are an enhanced and

improved version of the original FMNN to reduce classification error as aforementioned,

these FMNN variants still suffer the data distortion and gradation error, which may

result in a classification error. These variants still employ the same contraction process

as FMNN with few improved versions that tempered the acquired knowledge in the

non-ambiguous region, causing gradation error in classification.

3.1.2 FMNN Variants without Contraction

Many researchers have achieved an innovative way to exclude the contraction process

in FMNN to retain overlapping information for better pattern classification.

In 2004, Bargiela et al. [5] proposed an improved FMNN classifier, known as inclu-

sion/exclusion fuzzy hyperbox classifier (EFC). It provides a new learning methodology

to deal with the overlapping region problem in FMNN by dropping the contraction

process. EFC considers two types of hyperboxes named as inclusion and exclusion

hyperboxes. Inclusion hyperboxes can contain input patterns belonging to the same

decision class. The exclusion hyperboxes include input patterns that fall in the over-

lap region of different class hyperboxes. Using exclusion hyperboxes reduces FMNN

three-step learning process (expansion, overlap test and contraction) into two steps

process (expansion and overlap test). However, this method resulted in a reduction in

misclassification owing to the discarding of exclusion hyperboxes.

In 2004, Bargiela et al. [82] proposed an extension of EFC, called a Adaptive In-

clusion/Exclusion Fuzzy Hyperbox Classifier (EEFC) to improve classification perfor-

mance. Like EFC, the authors consider two kinds of hyperboxes named inclusion and

exclusion hyperboxes but use a modified expansion step. In FMNN, the maximum size

of the hyperbox is to be fixed in advance. In this paper, the authors induce the adap-

tive nature of the expansion parameter of all hyperboxes, which means no parameter

is fixed in advance. This way, the overlap regions don’t become too large, which is

possible in EFC algorithm.

In 2007, Nandedkar et al. [59] introduced a novel FMNN classifier, called a Fuzzy
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Min-Max Neural Network Classifier with Compensatory Neurons Architecture (FMCN).

FMCN incorporates two additional types of compensatory neuron architecture along

with classifying neurons (CLNs, which represent a pure hyperbox) in the original FMNN

architecture named as containment compensation neurons (CCNs) and overlapped com-

pensation neurons (OCNs). The idea of FMCN is to protect the min-max points of the

overlapped region between hyperboxes using compensatory neurons to address over-

lapped regions. CCNs represent an overlap region (containment region), where the

hyperbox is entirely and partially encloses another hyperbox belonging to a different

class. OCNs address the overlap region between hyperboxes of distinct classes, where

a new hyperbox is created to represent the overlap region’s size. A new fuzzy mem-

bership function is also presented for compensatory neurons. This method can protect

the min-max points of the overlap region to enhance the learning algorithm as this

information is highly significant for pattern classification.

In 2007, Zhang et al. [124] proposed a new approach, called a Data Core Based

Fuzzy Neural Network (DCFMN), to overcome the limitation of FMCN with the help

of the geometrical center and data core of hyperbox. DCFMN also has the benefit

of handling noisy data. Like FMCN, DCFMN also contains a compensatory neuron

and classifying neurons (CLNs, representing a pure hyperbox). Compensatory neurons

address all form of overlapping region problems among hyperboxes of different classes.

In contrast with FMCN, DCFMN needs only one type of compensatory neurons, known

as overlapping neurons (OLNs), to handle both overlapped and containment regions to

classify data patterns. Two different fuzzy membership functions for OLN and CLNs

are also presented based on the geometric center and data core of the hyperbox.

In 2012, Devtalab et al. [17] proposed a modified version of FMCN [59], called a

Modified Fuzzy Min-Max Classifier Using Compensatory Neurons (MFMCN), to handle

overlapping regions problems. FMCN adds compensatory neurons straight after occur-

ring of overlap region between hyperboxes due to the expansion step. But, MFMCN

first creates all hyperboxes and after that adds compensatory neurons based on the

overlap region between hyperboxes. This way results in a decrease in time and space

complexity against FMCN.

In 2014, Devtalab et al. [16] proposed a novel FMNN, known as Multi-Level Fuzzy

Min-Max Neural Network (MLF) classifier employing a multi-level tree structure to

classify the pattern. Each node in MLF is known as a subnet and works as an inde-
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pendent classifier to classify patterns belonging to the particular region (overlap region

in a node). At the first level (root node), the classifier is reliable to distinguish the

non-boundary region (non-overlap region) patterns. Classifier at the second level is

responsible for the remaining regions (overlapped region) of the root subnet (belongs

to the first level). Similarly, each node in the level (except the first level) is responsible

for classifying patterns belonging to an overlapped region in the previous level (parent

node) in the network. Consequently, each level of the model operates in various sizes

of hyperboxes to handle the overlap region.

In 2015, Forghani et al. [25] proposed an extension of FMNN, called FMNN for

Learning a Classifier with Symmetric Margin (FMNWSM). FMNWSM avoids using

the contraction process and additional compensatory nodes to deal with overlapped

regions. The authors proposed a fuzzy membership function based on the radius and

midpoint of the hyperbox. FMNWSM performs better in classification accuracy when

the training and testing data are from an identical probability distribution; however, it

is not practically possible to use large real-world data.

The above-mentioned approaches do not use the contraction step and provide addi-

tional structures in FMNN for decision-making in overlapped regions, overcoming the

contraction’s problem with the cost of an increase in training complexity of FMNN.

Although these proposed approaches (without contraction) are an enhanced version

of the original FMNN to reduce classification error, these FMNN variants tend to in-

crease the cardinality of hyperboxes and complexity, thus increasing the time and space

complexity.

3.2 Motivation

Although these FMNN variants include various improvements and enhancements on

original FMNN to increase classification performance, they still exhibit certain limi-

tations that affect FMNN classification performance negatively. These limitations are

summarized in two aspects.

First, the improved and enhanced version of FMNN that include contraction proce-

dures in learning process such as GFMNN [27], WFMNN [25], EFMNN [56], KnFMNN [57],

EFMNN-2 [58] and IFMNN [49], are introduced to enhance the classification perfor-

mance. However, these variants still employ the same contraction process of FMNN
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with few improved versions that tempered the acquired knowledge in the boundary

region (overlapped and non-overlapped region) and caused gradation error in pattern

classification. Even it creates classification errors for the learned data itself.

Second, the information loss due to the contraction procedure of FMNN leads to sev-

eral improvements in literature to work without contraction procedures during learning

such as EFC [5], EEFC [82], FMCN [59], MFMCN [17], DCFMN [124], FMNWSM [25]

and MLF [16]. These approaches do not use the contraction steps. Still, they have em-

bedded more complex structures within the simple architecture of FMNN for handling

the overlapped regions that increase the cost of training and the cardinality of hyper-

boxes.

K-Nearest Neighbors algorithm (kNN) [24] is a supervised and non-parametric clas-

sification learning technique in the field of pattern recognition, data mining and machine

learning. kNN classification algorithm doesn’t have any training phase but performs an

expensive testing phase for each test pattern. In kNN, each test pattern must compute

the euclidean distance measure with all the training patterns. The nearest k training

patterns are selected as the nearest neighbours. Based on the classes of those k nearest

neighbours, voting is conducted, and the test pattern is characterized by the majority

class of nearest neighbours patterns. However, in the presence of large training data,

kNN requires significant testing time, making the procedure significantly expensive.

This motivated us to explore the methodology that combines the simple structure

of FMNN and kNN strategy for inducing a better classification model without resorting

to modifying the structure of FMNN and not including the contraction procedure. The

combined hybrid model overcomes the limitation of individual models and minimizes

the complexities of each of the individual models.

3.3 Proposed kNN-FMNN Algorithm

Traditional FMNN with contraction steps [95], described in Section 2.2, results in non-

overlapping among the hyperboxes of different classes. However, there is an information

loss in the contracted boundary region; even there is a possibility that objects of one

class are being absolute members of hyperboxes of another class. The defuzzification

of the overlapping region affects the generalizability of the FMNN. The existing ap-

proaches dealing with the representation of overlapping regions by avoiding overlapping
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and contraction procedures increase the complexity of FMNN structure.

This work presents a hybridization of FMNN with kNN algorithm for performing

the ability to handle decision-making in the overlapped region without altering the

structure of FMNN. In one way, we are solving the problem of FMNN, and in another

way, with the advantage of FMNN learning and results in granulation of training data

through hyperboxes, we minimize the complexity of kNN classification algorithm.

Here, we introduce three changes to the traditional FMNN for enhancement. The

first two modifications are in the training phase, and the third part is in the testing

phase. In the training phase, first, we eliminate the contraction procedure to protect the

dimensions of overlapped hyperboxes. Second, we have relaxed the k-nearest hyperbox

expansion rule in papers [49, 57] to the maximum possibility. This way, we avoid the

creation of too many hyperboxes that reduce the network complexity. In traditional

FMNN, if the winning hyperbox with the highest membership value, out of hyperboxes

corresponding to the same decision class, does not meet the expansion criterion to

include the input pattern, then a new point hyperbox is created. Here, we provide the

opportunity to the vicinity of winning hyperbox, which means hyperbox with the next

highest membership value is checked for expansion. This process continues until any

existing hyperbox can include the input pattern. If all hyperbox of same class are failed

to expand, then a new point hyperbox is created. Here, we give a maximum chance for

existing hyperboxes to expand fully to avoid creating new hyperboxes.

FMNN gives a natural way to group the nearest objects into the granular structure

of a hyperbox. So, in this chapter, we restrict the space within hyperboxes in which

kNN computation needs to be performed to classify test patterns. Here, we are utilizing

the vicinity of the overlapping region in FMNN testing phase described below.

The rest of the section described the training and testing phases of kNN-FMNN

algorithms given in Algorithm [1] and Algorithm [2] respectively.

3.3.1 Training of kNN-FMNN Algorithm

Let DT = (U,Cn ∪ {d}) be decision system where U represents a set of training pat-

terns, Cn is a set of numeric conditional attributes and {d} represents a single decision

attribute. Let HBS is a set of hyperboxes and FM represents FMNN learning model.

Initially, HBS is an empty set, and as training proceeds, hyperboxes are added to FM

model, as described in Section 2.2. For each hyperbox H, the stored information is min
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Table 3.1: Description of Function Name and Notation in Algorithm [1] and Algorithm [2]

Notation Meaning

FM Represents FMNN learning model.

MembH(x) Returns membership value of x on H using Eqn. (2.2).

FM.Belongs(x) Checks absolute memberhsip value of x on any existing hy-

perboxes of same class and return a hyperbox.

FM.ObjSave(H,x) Includes object x in hyperbox H.

FM.Save(HBS,H) Save H in HBS set.

FM.HMemb(x) Returns a set of hyperboxes with their membership value

correspond to x of same class label.

FM.Exp(H,x) Checks expansion of H to include x using expansion criterion

Eqn. (2.6).

FM.Update(HBS,H) Updates the expanded hyperbox H in the set HBS.

FM.Expand(H,x) Expands the hyperbox H to include x using Eqn. (2.7) and

Eqn. (2.8).

Break Breaks current loop.

FM.Create(x) Creates a new point hyperbox to include x.

AbsMemb(x,HBS) Returns a set of hyperboxes which have full membership for

the object x using Eqn. (2.2).

pure(HB) Checks whether all hyperboxes in HB that contain x corre-

spond to the same decision class or not.

ObjMemb(H) Returns the objects belonging to particular hyperbox H.

LocalSet(HB) Collecting all objects belonging to all hyperboxes in HB.

knnLocal(HO, x) Computing kNN on objects belonging HO for testing object

x.

point and max point along with objects indices having full membership into H. We

preserve the object indices in kNN-FMNN for the purpose of the testing phase. Only

the expansion step is performed for each input pattern x belonging to DT to preserve

the overlapping region. Based on FMNN expansion criteria given in Eqn. (2.6), hy-

perbox can expand non-uniformly in a different dimension as cumulative widths of all

dimensions need to be less than nθ.

Based on Algorithm [1], for every training pattern x, Belongs(x) finds fuzzy mem-

bership value of x with all hyperboxes representing the same class using Eqn. (2.2) and
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Algorithm 1: Training of kNN-FMNN

Input : DT: Training Samples, γ: Gamma parameter, θ: Theta parameter

Output: HBS: Collection of hyperboxes of different classes, Learning model

FM.

1 Let HBS = ∅;
2 for every x in DT do

3 if FM.Belong(x) ̸= ∅ then
4 H = FM.Belong(x);

5 FM.ObjSave(H,x);

6 else

7 HS = FM.HMemb(x);

8 Flag = 0;

9 if HS ̸= ∅ then
10 for every H in HS do

11 if Exp(H,x) == True then

12 FM.Expand(H,x);

13 FM.Update(HBS,H);

14 Flag = 1;

15 Break;

16 end

17 end

18 if Flag == 0 then

19 H=FM.Create(x);

20 FM.ObjSave(H,x);

21 FM.Save(HBS,H);

22 end

23 else

24 H=FM.Create(x);

25 FM.ObjSave(H,x);

26 FM.Save(HBS,H);

27 end

28 end

29 end

30 return HBS, FM

35



3. ENHANCEMENT OF FUZZY MIN-MAX NEURAL NETWORK
FOR CLASSIFICATION

return a hyperbox (H) with full membership value of one to x.

Belong(x) = {H | H ∈ HBS ∧MembH(x) == 1 ∧ d(x) == d(H)} (3.1)

If Belongs(x) is non-empty, then x is added to the particular hyperbox (H) giving

the full membership without modifying the hyperbox using ObjSave(H,x). Otherwise,

HMemb(x) gives a list of hyperboxes HS with membership value. For each H ∈ HS

with the highest membership value, if Exp(H,x) (Expansion Criteria) is satisfied, the

hyperbox H is expanded using Eqn. (2.7) and Eqn. (2.8) and object x saved to the

hyperbox H using ObjSave(H,x). If Exp(H,x) is not satisfied on a particular hyperbox

H, then the next hyperbox in HS with the highest membership hyperbox is checked for

expansion whether it includes input pattern x or not. This process continues until any

hyperbox that can include the input pattern. If none of the hyperboxes in HS are met

expansion criteria or HMemb(x) returns an empty set, a point hyperbox H is created

using Create(x), and x is added to the point hyperbox created using ObjSave(H,x)

and resulting H is added in HBS.

3.3.2 Testing of kNN-FMNN Algorithm

Let DS be a set of testing samples. Based on Algorithm [2], for every testing pattern

x in DS, we compute the fuzzy membership value w.r.t. all hyperboxes HBS in FM

model. Because the overlapping among hyperboxes is allowed in the training phase

due to eliminating contraction step and extended expansion criteria, it is possible to

obtain absolute membership of one to multiple hyperboxes. AbsMemb(x) returns all

the hyperboxes (HB) giving full membership value.

AbsMemb(x,HBS) = {H | H ∈ HBS ∧MembH(x) == 1} (3.2)

If HB set is empty, then the testing pattern x does not belong to any of the hyper-

boxes and a decision is taken like traditional FMNN testing by assigning the decision

class corresponding to the nearest hyperbox; otherwise, the purity of the collection is

examined using pure(HB).

pure(HB) =

∣∣∣∣∣ ⋃
H∈HB

{class(H)}

∣∣∣∣∣ == 1 (3.3)
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The resulting collection is pure only if all hyperboxes correspond to a single decision

class, in which case, without ambiguity, that class is assigned to the testing pattern.

In the case of impurity, objects belonging to all these hyperboxes using ObjMemb(H)

are collected in LocalSet(HB) set and then applied kNN using knnLocal function on

these objects locally to determine the decision class of x.

LocalSet(HB) =
⋃

H∈HB

(ObjMemb(H)) (3.4)

Algorithm 2: Testing of kNN-FMNN

Input : DS: Testing Samples, Learning Model FM, HBS: Set of hyperboxes,

k: k-nearest neighbour value

1 for every x in DS do

// Compute fuzzy membership value of x w.r.t. all hyperboxes

in HBS

2 HB = FM.AbsMemb(x, HBS);

3 if HB ̸= ∅ then
4 if pure(HB) == True then

5 Classify x as decision class of HB;

6 else

7 HObj = FM.LocalSet(HB);

8 Classify x as decision class of FM.knnLocal(HObj, x);

9 end

10 else

11 Classify x to highest membership hyperbox decision class;

12 end

13 end

3.4 Complexity Analysis of kNN-FMNN Algorithm

This section shows the time and space complexity analysis of the proposed algorithm

kNN-FMNN. The following variables are used in the complexity analysis of kNN-

FMNN.

• |U |: the number of objects.
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• |HBS|: the number of hyperboxes.

• |Cn|: the number of numeric conditional attribute.

Table 3.2 shows the time complexity of the proposed algorithm. In the Table,

Algorithm 1 (training phase) with steps 1-29 computes for each training data to check

complete belonging to the existing hyperboxes or modifying of hyperbox or creation

of hyperbox with time complexity O(|U | ∗ |HBS| ∗ |Cn|). In Table, from steps 1-12

in Algorithm 2 (Testing phase) performs to classify a test pattern by checking the

belongingness over trained hyperboxes |HBS| with time complexity O(|HBS| ∗ |Cn|).
If selected hyperboxes where a test pattern exist are in different classes, steps 7-8 are

computed to classify a test pattern using kNN with complexity O(|U | ∗ |Cn|). Hence,

the time complexity of the algorithm (testing phase) for each test pattern is obtained:

O(|HBS| ∗ |Cn|) + O(|U | ∗ |Cn|) = O(|U | × |Cn|) since, |HBS| << |U |.
So, the total complexity of the proposed algorithm kNN-FMNN, including both the

training and testing phase, is: O(|U | ∗ |HBS| ∗ |Cn|) + O(|U | ∗ |Cn|).
The entire decision system is required to be present in memory using kNN-FMNN.

For preserving FMNN model, O(|HBS| ∗ |Cn|) space is needed, and for kNN process

where data needs to be available, O(|U | ∗ |Cn|) space is required. Thus, the space

complexity of kNN-FMNN algorithm is O(|HBS|∗|Cn|)+O(|U |∗|Cn|) = O(|U |×|Cn|)
since, |HBS| << |U |.

Table 3.2: Time Complexity Analysis of kNN-FMNN

Algorithm Steps in Algorithm Time complexity

(phase)

Training 2-29. Creation of hyperboxes O(|U | ∗ |HBS| ∗ |Cn|)
(Algorithm 1)

Testing 1-13. Testing on hyperboxes O(|HBS| ∗ |Cn|)
(Algorithm 2) 7-8. Testing on overlap region with kNN O(|U | ∗ |Cn|)

3.5 Experiments and Results

The system configuration used for experimentation are CPU: Intel(R) i7-8500, Clock

Speed: 3.40GHz × 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit and Soft-

ware: Matlab R2017a. The detailed experimental evaluation is conducted on seventeen
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3.5 Experiments and Results

Table 3.3: Benchmark Datasets

Dataset Attributes Objects Classes

Ionosphere 32 351 2

Vehicle 18 846 4

Segment 16 2310 2

Steel 27 1941 7

Ozone Layer 72 1848 2

Page 10 5472 5

Robot 24 5456 4

Waveform2 40 5000 3

Texture 40 5500 11

Gamma 10 19020 2

Satimage 36 6435 6

Ring 20 7400 2

Musk2 166 6598 2

Shuttle 9 57999 7

Sensorless 48 58509 11

MiniBooNE 50 129596 2

Winnipeg 174 325834 7

benchmark numeric decision systems taken from UCI machine learning repository [20],

the details are given in Table 3.3. The proposed algorithm kNN-FMNN is implemented

in the Matlab environment. In our experiments, we set the sensitive parameter γ value

equal to 4, as recommended in the paper [56, 95].

We have experimented kNN-FMNN with different theta (θ) values, and all the re-

sults were not reported due to space constraints. It is observed that small theta values

such as 0.01 or 0.02 create the large cardinality of hyperboxes that may avoid data

overfitting but with circumstances where each object or input is learned as individ-

ual hyperboxes. On the other hand, the large theta values such as 0.85 or 0.9 create

fewer cardinality of hyperboxes but gradually decrease the capability to capture non-

linear separability boundaries between multiple classes, and also is almost like a kNN

algorithm because of the large boundary region. So, our objective is to select theta

values that minimize the cardinality of hyperboxes and optimize the classification per-

formance. Hence, on results obtained from conducted experiment empirically, we have
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finalized the value of theta as 0.3. This value is adopted throughout the thesis. And,

k in kNN is set to be 3, which was found sufficient for the testing phase. The perfor-

mance of kNN-FMNN is examined through a comparative evaluation through ten-fold

cross-validation (10-FCV).

3.5.1 Relevance of Proposed Approach through 10-FCV

This section assesses the performance of the proposed algorithm kNN-FMNN by com-

paring it with the original FMNN and some popular variants of FMNN approaches,

such as GFMNN [27], EFMNN [56], MLF [16] and IFMNN [49]. We implement the

comparative algorithms i.e. GFMNN [27], EFMNN [56], and IFMNN [49] in the Matlab

environment, and MLF code is provided by author [16] in Matlab. We set the sensitive

parameter γ and theta value to 4 and 0.3, respectively. The comparative experiments

are conducted in the same system using the Matlab environment.

10-FCV based comparative experiment is conducted to assess the performance of

kNN-FMNN. 10-FCV is performed on the original dataset to comprehend the model’s

ability. In 10-FCV, the original dataset is partitioned into ten subsets. In each iteration,

one subset is retained for the testing part, and the remaining nine subsets are used for

training the model.

Furthermore, a paired t-test with a significance level of 0.05 is performed to analyze

the statistical evaluation of kNN-FMNN results over given compared algorithms. Each

column in Tables 3.4, 3.5, 3.6 reports the results of the respective algorithm in the

form of mean and standard deviation along with p-value except kNN-FMNN column.

kNN-FMNN column contained only mean and standard deviation. The p-value index

is the significant level between the respective algorithm with kNN-FMNN algorithm.

For classification, if p-value is greater than 0.05, then there is no statistically signifi-

cant difference, marked with the symbol ‘o’. If p-value is less than 0.05, and the result

obtained by the respective algorithm is less than kNN-FMNN, then the particular al-

gorithm is statistically inferior to kNN-FMNN and marked as a loss ‘-’. Otherwise, it

represents a win ‘+’. The contrary measure is for computational time and obtained

hyperboxes which means if the p-value is less than 0.05, and the result obtained by the

respective algorithm is less than kNN-FMNN, then the particular algorithm is statisti-

cally significant than kNN-FMNN and marked as a win ‘+’; otherwise, it represents a

loss ‘-’.
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The last three lines in each Table 3.4, 3.5 and 3.6 correspond to Average (NOD),

CAverage, and Lose/Win/Tie. It can be observed that the datasets over which

an algorithm is executing vary from one to another. Hence, the average of individual

mean values is reported in two forms. Average (NOD) corresponds to the average

value obtained by an algorithm on datasets where it could be evaluated along with

reporting the number of datasets (NOD) involved in brackets. CAverage value depicts

the average of the individual mean obtained by restricting to only those datasets in

which all algorithms could be evaluated. For the comparative analysis, CAverage plays

an important role. The last line indicates the count of the number of statistically loss(‘-

’), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the proposed

kNN-FMNN.

Table 3.4 reports the comparative classification accuracy results of classifiers based

on 10-FCV. Also, Table 3.5 and Table 3.6 show the computational time results and

number of obtained hyperboxes results by respective algorithms on 10-FCV. Fig. 3.2,

Fig. 3.3 and Fig. 3.4 depict the box-plot representation of results given in Table 3.4,

Table 3.5 and Table 3.6 respectively.

Note: In the comparative experiment, the computational results include both train-

ing and testing phase times. ‘#’ sign in each Tables 3.4, 3.5 and 3.6 represents the

scenario of non-termination of the code even after several hours of computation. In all

Figures 3.2, 3.3 and 3.4, the range of Y-axis varies based on obtained results in each

dataset.
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3.5 Experiments and Results

Figure 3.2: Boxplots for Classification Accuracies Results of Table 3.4
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3.5 Experiments and Results

Figure 3.3: Boxplots for Computational Time Results of Table 3.5
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3.5 Experiments and Results

Figure 3.4: Boxplots for Obtained Cardinality of Hyperboxes of Table 3.6
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3.5.2 Analysis of Results

Classification Results

Table 3.4 and Fig. 3.2 present the obtained classification accuracy results in 10-FCV.

Based on Table 3.4, kNN-FMNN reached the highest CAverage value (91.13) than

compared approaches. kNN-FMNN obtained statistically significant or similar results

than compared algorithms in most of the datasets. Considering the overall 75 accu-

racy results across all the compared algorithms, the cumulative lose/win/tie results as

56/3/16. Hence, in the majority of 56 results, the proposed algorithm kNN-FMNN per-

formed significantly better than the compared algorithms. Only in 3 results (in Steel

dataset by EFMNN, in Robot dataset by GFMNN, in Gamma by MLF), the compared

algorithms performed statistically better than kNN-FMNN. And in the remaining 16

results, kNN-FMNN performed statistically similar to compared algorithms.

This significantly validates the utility of hybridization of kNN and FMNN through

the proposed kNN-FMNN algorithm in obtaining better generalization.

Computational Time Results

The computational complexity of FMNN training algorithm is proportional to the car-

dinality of hyperboxes created. In addition to the cardinality of hyperboxes, the cost

of complex structures and procedures such as contraction steps and hierarchical layers

in algorithms like GFMNN, EFMNN, IFMNN and MLF increases the complexity. The

computational time reported in Table 3.5 and Fig. 3.3 validates that kNN-FMNN in-

curred significantly less computational time than compared algorithms on all datasets.

Based on a subset of datasets where all compared algorithms can execute, the proposed

method kNN-FMNN obtained the lowest CAverage value (1.66 seconds), which is sig-

nificantly lesser than compared algorithms with CAverage in the range of 26 to 736

seconds.

Even the resulting standard deviation of computation time presented very little vari-

ation, thus showing that the methodology is reliable compared to others approaches.

These substantial reductions in computational time of kNN-FMNN are due to adapt-

ing FMNN with only the expansion step and relaxing k-nearest hyperbox expansion

rule to the maximum possibility for expansion that achieves a much lesser cardinal-

ity of hyperboxes compared to other approaches. Thus, the speed-up in computation
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3.6 Summary

and classification model performance demonstrates the potential of the kNN-FMNN

algorithm and its suitability for larger datasets.

In MiniBooNE and Winnipeg datasets, kNN-FMNN classifier could learn in signifi-

cantly less computational time, whereas compared algorithms were unable to compute.

Because considering the maximum possibility of expansion rule to select hyperboxes

for expansion allowed hyperboxes to expand fully or give more chances to acquire full

knowledge. This way excluded from creating too many hyperboxes whereas, in com-

pared algorithms, they imposed restrictions on expansion rule which may lead to cre-

ating many hyperboxes that are not even used and result in a need for excess memory

requirement.

Cardinality of Hyperboxes Results

The obtained cardinality of hyperboxes result, shown in Table 3.6 and Fig. 3.4, is sig-

nificantly lesser than compared algorithms for all given datasets because of the relaxing

the k-nearest hyperbox expansion step for selecting hyperboxes for expansion that in-

clude the more training patterns and create less number of hyperboxes in the training

phase. kNN-FMNN achieved the lowest CAverage value (278.22) than compared algo-

rithms having CAverage values ranging between 1315.18 to 2747.60. The substantial

reduction in hyperboxes of kNN-FMNN resulted in a significant drop in computational

time.

In summary, the relevance of kNN-FMNN is significantly validated as it computes a

lesser number of hyperboxes and incurs less computational time while inducing classi-

fication models with similar or better classification accuracies than the model induced

through compared algorithms.

3.6 Summary

Several improvements of FMNN were proposed to overcome limitations that arise due

to the contraction step. These extensions added additional complexity to FMNN, thus

increasing the training time and network complexity. This work proposed kNN-FMNN

as a hybridization of FMNN with kNN to overcome the contraction step while pre-

serving the simple structure (no modification) of FMNN. The proposed kNN-FMNN

method considered only expansion steps and enriched them with a relaxed expansion

49
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rule to capture the potential underlying structure of data. The proposed approach re-

sulted in building the classification model with relatively fewer cardinality of hyperboxes

and achieved good classification accuracy by utilizing kNN locally for disambiguating

classification decisions in the overlapping region. Comparative experimental studies of

kNN-FMNN with existing state-of-the-art approaches [16, 27, 49, 56] over benchmark

datasets proved the utility of the proposed kNN-FMNN approach in terms of better

classification performance incurring less computational time and obtaining the least

number of hyperboxes. Also, kNN-FMNN enhanced scalability to such large decision

systems, where existing state-of-the-art FMNN methods failed to execute. Our pro-

posed hybrid model kNN-FMNN successfully lessen the limitations of individual FMNN

and kNN models.
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Chapter 4

Hybridization of Fuzzy Min-Max

Neural Networks with Fuzzy

Rough Sets for Feature Subset

Selection

This chapter addresses the issue related to scalability of the existing fuzzy rough sets

(FRS) approaches on large decision systems. The FRS theory provides a robust frame-

work for feature subset selection. Indeed, the theory has been performing remarkably

with further extensions and modifications in recent years. Despite having these mod-

ifications and extensions, FRS approaches suffer from their ability to scale to large

decision systems due to the space complexity of FRS methodology. This chapter ad-

dresses the related issue associated with FRS methodology and proposes an algorithm

that can scale to large decision systems.

The rest of the chapter is designed as follows: Section 4.1 present the brief introduc-

tion. Section 4.2 present the basic notions about rough set theory and fuzzy rough set

theory with its corresponding feature subset selection methods via discernibility ma-

trix. Section 4.3 briefly introduces the literature survey of fuzzy rough sets approaches

and their disadvantages. Section 4.4 presents the motivation of the proposed algorithm.

Section 4.5 describes the functioning of the proposed algorithm FDM-FMFRS. Section

4.6 describes the complexity analysis of proposed algorithm FDM-FMFRS. Section 4.7

reports a series of experiments and comparative analysis of FDM-FMFRS with state-
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of-the-art approaches.

4.1 Introduction

Making a decision under imprecision and uncertainty is one of the most challenging top-

ics in the field of data analysis. Data analysis aims to find or learn hidden patterns in

a dataset, which is beneficial to find dependencies. Feature selection plays an essential

role in analyzing the datasets where some features might be redundant/irrelevant that

degrade the performance and increase the model’s computational complexity [103, 116].

Thus, it is well essential to preprocess the data to eliminate irrelevant features that neg-

atively impact the performance of learning models. Feature selection is a primary task

in many disciplines, i.e., machine learning, pattern recognition etc., for both description

and prediction purposes.

In the 1980s, Zdzis law I. Pawlak [70] introduced the concept of classical rough

set theory (RST) as a mathematical tool useful for feature selection (semantic pre-

serving dimensionality reduction) and rule induction in the information/decision sys-

tems [51, 71, 103, 116]. RST methodology gives new momentum to data mining [125]

and knowledge discovery [133], and provides a unique insight into artificial intelligence

and cognitive sciences both in practical and theoretical perspectives [18, 101, 103, 109].

RST, as a soft computing paradigm, has been successfully hybridized with other soft

computing models like fuzzy sets and artificial neural networks [4, 52, 67, 72].

Particularly, RST applies primarily to symbolic/categorical decision systems [70,

71, 116]. However, the application of classical rough sets to numeric decision systems

produces feature subsets with finer granularity. Hence, the induced rules from the

selected features suffer from poor generalizability in classification. One solution is to

discretize the numeric dataset beforehand and produce a new dataset with categorical

values. Discretization is a method to partition continuous attribute domains into a

finite number of discrete (non-overlapping) intervals and further assigning categorical

labels to intervals [28, 53, 61, 63]. The discretization process exhibits the simplification

of data in more concise, compact and making learning faster.

Nevertheless, any discretization process tends to cause a loss of information and

result in classification error in pattern space [62]. Even obtaining an optimal way

for the discretization process in a dataset is an NP-Hard problem [62]. The choice
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4.1 Introduction

of discretizer will affect the success of the posterior learning task in classification [98].

However, the discretization method is often inadequate and causes essential information

loss to hamper subsequent feature subset selection quality. Alternate approaches were

developed to deal with the hybrid decision system without relying on a discretization

step by generalizing the rough set theory in different scenarios [9].

Lately, Dubois et al. [22, 80] generalize the RST into a fuzzy rough sets (FRS)

using fuzzification that deals with both symbolic and real-valued conditional attributes

without any need for domain-specific knowledge. This generalization provides much

greater flexibility in theoretical and application viewpoints and evolves extensively to

reduct computation in hybrid decision systems [117]. FRS can approximate the crisp

decision concepts in the fuzzy approximation space. Thus, FRS extends the notion of

rough equivalence relation into an idea of fuzzy equivalence relation or a fuzzy tolerance

relation, resulting in a fuzzy partition of the universe U .

The basic idea of the fuzzy rough model is to induce a fuzzy similarity relation,

which can further be used in the construction of the fuzzy lower/upper approximation

and construction of discernibility relation of a given decision system [31]. The sizes of

the lower and upper approximation reflect the discriminating capability of a feature

subset. The union of fuzzy lower approximation forms the fuzzy positive region of

decision. The fuzzy dependency is defined as the ratio of the sizes of fuzzy positive

regions over all samples in the feature space. It is used to evaluate the significance of

a computed subset of features.

Skowron et al. [96, 136] introduced a feature selection mechanism based on the con-

cept of crisp discernibility matrix (DM) in the context of Pawlak’s RST. The idea of

discernibility matrix construction establishes a theoretical and logical foundation for

reduct computation on symbolic decision systems. Though finding all/minimal reducts

with these techniques is an NP-Hard problem, these methods provide a crucial math-

ematical foundation for reduct computation [10, 115]. Even though these approaches

can be guaranteed to obtain the exact reduct, they require a substantial computational

complexity for large datasets. Jensen et al. [35] further extended the crisp DM into the

fuzzy DM to determine the FRS reducts.

Various FRS reduct algorithms have been developed to perform reduct computation.

These methods include information entropy based [32, 129, 130], dependency function-

based [35, 39, 40, 105, 106] and discernibility matrix (DM) based [10, 14, 35, 105] reduct
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computation.

4.2 Preliminaries

This section present the basic notions about rough set theory and fuzzy rough set theory

with its corresponding feature subset selection methods via discernibility matrix that

are useful in understanding our proposed work.

4.2.1 Rough Set Theory

Rough set theory (RST), proposed by Z. Pawlak in the early 1980s, is a mathematical

framework for describing and concisely exploiting data dependencies from a domain

without any need of prior and external knowledge about data [69, 70, 71]. In particu-

lar, a rough set approach serves very well in the direction of reduction of superfluous

attributes preserving the same knowledge as given by the full set of attributes.

Let DT = (U,Cc ∪ {d}, {Va, fa | a ∈ Cc}, {Vd, fd}) be the decision system, where

U = {x1, x2, . . . , xn} is a non-empty finite set of objects (universe of discourse), Cc =

{a1, a2, . . . , am} is a non-empty finite set of categorical conditional attributes. {d} is a

distinguished attribute or decision attribute such that Cc ∩ {d} = ∅. Va is the set of

conditional attribute values of ‘a’, and fa is an information mapping from U to Va i.e.,

fa : U → Va. Vd is the set of decision attribute values (decision categories), and fd is

an information mapping from U to Vd i.e., fd : U → Vd.

Given a decision system DT with any subset P ⊆ Cc, there is an associated equiv-

alence (indiscernibility) relation IND(P ) defined over U × U , and defined as follows:

IND(P ) = {(x1, x2) ∈ U × U | ∀a ∈ P, fa(x1) = fa(x2)} (4.1)

where, fa(x) represents the value of object x on attribute a. (x1, x2) ∈ IND(P )

denotes that x and y are indiscernible by attributes from P means, they have same

vectors of attribute values for attributes in P . The equivalence relation IND(P ) par-

titions the universe U into a family of disjoint subsets, which are the set of equivalence

classes generated by IND(P ). The family of all equivalence classes of the relation

IND(P ) are represented as U/IND(P ), or U/P . In particular, U/D denotes the set

of decision equivalence classes. An equivalence class of any object x ∈ U is represented

as [x]P and defined as: [x]P = {y ∈ U | (x, y) ∈ IND(P )}.
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A subset of features selected using RST is named as reduct, and the process is

called reduct computation (feature subset selection). Reduct is defined as a minimal

subset of conditional attributes preserving the classifying ability of the original decision

system [42]. There are two important procedures/approaches to finding rough set

reducts: Degree of Dependency and Discernibility Matrix.

Our proposed work is based on a discernibility matrix construction. So,

we are only providing the preliminaries about discernibility matrix based

reduct computation.

4.2.1.1 Decision-Relative Crisp Discernibility Matrix

Skowron and Rauszer [96, 115] introduced the concept of crisp discernibility matrix

(DM) for finding rough reducts of a given decision system. Crisp DM is a repre-

sentation for crisp discernibility relation. In discernibility relation (a complement of

indiscernibility relation), two objects can be discernible in a given decision system if

their values differ in at least one attribute. Given P ⊆ Cc, a discernibility relation on

P is denoted as DISC(P ) where a pair of objects x and y in U belong to DISC(P ) if

and only if there exists at least one attribute in P having different values for x and y.

DISC(P ) = {(x, y) ∈ U × U | ∃a ∈ P, a(x) ̸= a(y)} (4.2)

A discernibility matrix of DT is a symmetric matrix of order |U |×|U | i.e., M(x, x) =

∅ and M(x, y) = M(y, x). Hence we consider only the lower or the upper triangular

of the matrix. DM stores the sets of conditional attributes that can discern pairwise

comparison of all objects from U .

The objective of finding reducts is more interesting when considering only those

object pair discernibility when their corresponding decision attribute differ, called a

decision-relative discernibility matrix. Each entry is defined in Eqn. (4.3).

M(x, y) =

{
{a | a ∈ Cc, fa(x) ̸= fa(y)}, if fd(x) ̸= fd(y)

∅, otherwise
(4.3)

Each entry M(x, y) consists of those conditional attributes that differentiate object

pair x and y.

From this, the discernibility function for a given decision system DT can be in-

troduced. A discernibility function f({d}) is a boolean function of the discernibility
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matrix (M) and can be defined as:

f({d}) = ∧{ ∨M(x, y) | ∀(x, y) ∈ U × U,M(x, y) ̸= ∅} (4.4)

The expression ∨M(x, y) is the disjunction of all conditional attributes in M(x, y),

implying that the object pair can be distinguished by any attribute of M(x, y). The

expression ∧{∨M(x, y)} is the conjunction of all ∨M(x, y), implies that all pairs of

objects of different decision classes need to be discerned.

Finding the reducts of the decision system DT is equivalent to the problem of

transforming the discernibility function (conjunctive normal form) into reduced logical

expression disjunctive normal forms (without negation) using absorption and distribu-

tion law. The logical expression of each conjunction of the reduced disjunctive form is

known as a prime implicant.

If a set of attributes set P ⊆ C is a reduct if and only if the conjunction of all

attributes in P is a prime implicant of f({d}). Hence, finding the set of all individual

prime implicants of the discernibility function provides all minimal solutions to the

boolean function. Although this is guaranteed to find all reducts of DT, still it is an

NP-Hard approach [73, 96, 115].

Skowron and Rauszer [96] also proposed different characterization of a reduct P

based on DM. Given a decision system DT , a set of conditional attributes P is said to

be reduct if and only if:

Property 1: ∀(x, y) ∈ U × U : [M(x, y) ̸= ∅ ⇒ P ∩M(x, y) ̸= ∅]

Property 2: ∀a ∈ P, ∃(x, y) ∈ U × U : [M(x, y) ̸= ∅ ∧ ((P − {a}) ∩M(x, y) = ∅)]

Property 1 presents that reduct R is sufficient to distinguish all discernible objects

pairs means, every entry of DM holds property 1. Property 2 establishes that each

attribute in reduct P is important and indispensable. Both properties provide a suffi-

cient way to examine whether a resulted subset of attributes is reduct or not. However,

many researchers have developed several efficient heuristic algorithms based on DM for

reduct computation [42, 136]. Out of them, the Johnson Reducer strategy is one of the

popular approaches widely used for reduct computation [42].
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4.2.2 Fuzzy Rough Set Theory

The formulation of classical Pawlak’s rough sets [70] can only operate effectively with

datasets containing symbolic (qualitative) attributes where indiscernibility relation

plays an important role. Application of classical rough sets to real-valued attributes

will produce feature subsets with finer granularity. Hence, the induced rules from the

selected features suffer from poor generalizability to test datasets.

So, one of the solutions is to discretize the dataset beforehand and produce a new

dataset with categorical values [61, 64]. However, the discretization method is often

inadequate and causes essential information loss that can hamper subsequent feature

subset selection quality and result in significant misclassification in pattern space. Even

finding an optimal way for the discretization process in a dataset is an NP-Hard prob-

lem [63].

Dubois and Prade [21, 22] introduce the constructive approach called fuzzy rough

sets (FRS) in the early 1990s to combine the coarseness of rough sets [70] with the

vagueness of fuzzy sets [119] to operate on hybrid decision systems.

Let HDT = (U,Ch = (Cc ∪ Cn) ∪ {d}, {Vac , fac}ac∈Cc∪{d}, {Van , fan}an∈Cn) be

the hybrid decision system, where U is the finite set of universe, Cc is the categor-

ical/qualitative conditional attributes, Cn is the numerical/quantitative conditional

attributes, Ch constitutes hybrid conditional attributes Cc and Cn along with discrete

decision attribute d. Vac is a finite domain value set of attribute ac ∈ Cc ∪ {d} and fac

is a mapping of assigning a symbol from U to value set Vac i.e., fac : U → Vac . Van

is a finite set of domain values having real-valued attribute an with range of interval

V n
a s.t. an ∈ Cn and fan is a mapping assigning a value from universe U to value set

Van i.e., fan : U → Van . Notation, ac(x) and an(x) are used in the place of the symbol

fac(x) and fan(x) for simplicity and better readability.

Fuzzy rough set theory extends the notion of rough equivalence relation [70, 71] into

an idea of fuzzy similarity/equivalence relation or a fuzzy tolerance relation, resulting in

a fuzzy partition of the universe U . The key concept of FRS is fuzzy similarity relation.

Fuzzy similarity relation determines the degree to which any two objects (x, y) ∈ U×U

are similar in U for given quantitative attribute values.

Fuzzy similarity relation µRa on U ×U on attribute a ∈ Ch satisfying the following

requirements is called as fuzzy tolerance relation, if
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µRa(x, x) = 1 ∀x ∈ U (4.5)

µRa(x, y) = µRa(y, x) ∀ x, y ∈ U (4.6)

µRa(x, z) ≥ Γ(µRa(x, y), µRa(y, z)) ∀ x, y, z ∈ U (4.7)

Eqn. (4.5) and Eqn. (4.6) hold the reflexivity and symmetry properties of equiva-

lence relation, while Eqn. (4.7) renders additional requirement of Γ-transitivity i.e.,

given a t-norm Γ. A triangular norm (t-norm) Γ is an associative binary opera-

tor on the interval [0, 1] holding increasing, monotonic, commutative and associa-

tive property with [0, 1]2 → [0, 1] information mapping satisfying boundary condition

Γ(1, x) = x,∀x ∈ [0, 1] [6, 34]. Hence, µRa is also called as fuzzy Γ-equivalence relations

to represent the approximate equality.

Given a hybrid decision system HDT , the fuzzy equivalence relation with respect

to each numeric attribute an (∀an ∈ Cn) is defined as µRan
, where µRan

(x, y) represent

the degree of similarity between x and y for attribute values of an. To express the fuzzy

similarity relation µRan
between two objects (x, y) ∈ U w.r.t. ‘an’ attribute, there are

some widely used examples of fuzzy relations µRan
for this purpose, such as [38]:

µRan
(x, y) = exp

(
−(an(x)− an(y))2

2σ2
an

)
(4.8)

µRan
(x, y) = max

(
min

(
(an(y)− (an(x)− σan))

(an(x)− (an(x)− σan))
,

(an(x) + σan)− an(y))

(an(x) + σan)− an(x))

)
, 0

)
(4.9)

where, σan is the standard deviation for an attribute, σ2
an is the variance of an

attribute and an(x) represent object value on attribute an.

In particular for qualitative attributes ac, fuzzy equivalence relation is considered

to be crisp equivalence relation based on indiscernibility relation and thus defined as,

µRac
=

{
1 if ac(x) = ac(y)
0 if ac(x) ̸= ac(y)

(4.10)

Given a HDT, a fuzzy similarity relation is expanded to a subset of attributes

P ⊆ Ch using t-norm (Γ).

µRP
(x, y) = Γ (µRa(x, y))︸ ︷︷ ︸

a∈P

∀x, y ∈ U (4.11)
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4.2.2.1 Decision-Relative Fuzzy Discernibility Matrix

The development of crisp DM [96, 115] is often used in RST for reduct computation

may also be extended in fuzzy rough reduct computation. Jensen et al. [38] proposed

an extension of crisp DM to fuzzy case for use in FRS model to determine fuzzy-rough

reducts. Crisp DM is extended to Fuzzy DM by considering fuzzy clauses as discerni-

bility entries instead of crisp clauses [38]. Each entry (known as clause) corresponds to

fuzzy DM is a fuzzy set over attribute space containing the discernibility value of each

attribute [38].

Let µRa(x, y) is a fuzzy similarity relation between objects x and y on an attribute

a ∈ Ch. A fuzzy discernibility measure (µDRa(x, y)) w.r.t. attribute ‘a’ is obtained by

performing fuzzy negation on (µRa(x, y)).

µDRa(x, y) = Neg(µRa(x, y)) x, y ∈ U (4.12)

where Neg is a fuzzy negator, and µDRa(x, y) is a degree of the fuzzy discernibility

of objects x and y w.r.t attribute ‘a’ (a ∈ Ch). A fuzzy negator Neg is a decreasing

[0, 1]→ [0, 1] mapping that satisfies Neg(1) = 0 and Neg(0) = 1 for all x in [0, 1]. The

standard negation is defined as Neg(x) = 1− x and the same is used in our work.

For a crisp case, the resulting relation is determined to be µDRa(x, y) = 1 (when

objects are discernible w.r.t. attribute ‘a’) and µDRa(x, y) = 0 (when objects are

indiscernible w.r.t. attribute ‘a’). For a fuzzy case, the respective value for µDRa(x, y)

is in range of [0, 1], providing a graded discernible measure.

Given a HDT, each entry (or clause) M(x, y) in the fuzzy DM contains a set of

all conditional attributes of size |Ch| associated with their discern membership/degree

for objects x and y. To a given decision system, only those object pairs entries with

different classes are included in fuzzy DM [38], called a decision-relative fuzzy DM.

Each entry is defined as:

M(x, y) =

{
{as | a ∈ Ch, s = Neg(µRa(x, y))}, if fd(x) ̸= fd(y)

∅, otherwise
(4.13)

For example, M(x, y) might be {a0.3, b0.5, c0.9}. Here, a0.3 indicates µDRa(x, y) =

0.3. The fuzzy discernibility relation is stored in |U | × |U | a symmetric matrix with

each entry as an array of discernibility values.
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As similar to the crisp discernibility function, the discernibility function f({d}) is

encoded in fuzzy version once the decision-relative fuzzy DM is constructed.

f({d}) = {∧{ ∨M(x, y)} ← d(Neg(µRd
(x,y)))} ∀ (x, y) ∈ U × U (4.14)

← represents fuzzy implication. The discernibility function returns value in range

of [0, 1]. Only clauses with different decision values are included in fuzzy DM. The

different decision values affect the overall satisfiability of the clauses largely. Reducts

are calculated via fuzzy intersection of all clauses from the construction of fuzzy dis-

cernibility function may not render sufficient information to evaluate subsets [38]. So,

considering the individual satisfiability of each clause for a given set of attributes pro-

vide more information to evaluate subsets.

The degree of satisfaction of a clause M(x, y) for a given subset of attributes P

(P ∈ Ch) with respect to the decision attribute {d} is defined as:

SATP,{d}(M(x, y)) = S
a∈P
{Ma(x, y)} (4.15)

where S is a t-conorm, and Ma(x, y) is a degree of satisfaction of a clause w.r.t.

attribute ‘a’. The dual notion to a t-norm is a t-conorm, where its neutral element is 0

instead of 1 [34]. A triangular conorm (t-conorm) S is a binary operator on the interval

[0, 1] holding monotonic, commutative and associative property with [0, 1]2 → [0, 1]

information mapping satisfying boundary condition S(x, 0) = x,∀x ∈ [0, 1] [34].

In crisp propositional satisfiability, each clause has been completely satisfied if at

least one variable in the clause is set to true. For fuzzy cases, each clause has been

satisfied when it reaches to maximum satisfiability degree.

Based on Eqn. (4.15), the total satisfiability of entire clauses for a subset P ∈ Ch

can be calculated as:

SAT (P ) =

∑
x,y∈U,x ̸=y

SATP,{d}(M(x, y))∑
x,y∈U,x ̸=y

SATCh,{d}(M(x, y))
∀ x, y ∈ U (4.16)

A minimal subset of conditional attributes P ⊆ Ch is referred as a fuzzy rough

reduct, if and only if the following condition satisfies:

1. SAT (P ) = SAT (Ch) = 1 (Jointly Sufficient Condition)
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2. ∀P ′ ⊂ P, SAT (P ′) < SAT (P ) (Individually Necessary Condition)

Property 1 shows that given a decision system, the jointly sufficient condition states

that the satisfiability measure of reduct (P) is collectively sufficient to induce the same

satisfiability measure of all conditional attribute (Ch). Property 2 shows that the

individually necessary condition states that none of the reduct attributes can be omitted

as each of them is necessary.

4.3 Literature Review of Fuzzy Rough Set Theory

The traditional FRS approaches are proved very popular for feature subset selection.

The first pioneering work in fuzzy rough feature selection (FRFS) is presented by Jensen

et al. [35] using Dubois-Prade’s fuzzy rough set model. It performed well in terms of

retaining fewer attributes with higher classification accuracy than RST based reduction

on web dataset, which aided in web categorization. In [35], the authors proposed an

algorithm to compute a close-to-minimal reduct based on dependency function and also

measure the quality of attributes. Subsequently, several aspects of improvement based

on features selection [36, 37, 88] and computation time were done for [35].

In [38], the authors introduced three robust techniques based on the fuzzy similarity

relation, which overcame the problems in papers [35, 37] and also developed the fuzzy

DM for computing the feature selection. In particular, these techniques have shown

high flexibility and reduced the complexity of computing the cartesian product of fuzzy

equivalence classes in [35, 37]. This approach [38] received the several considerations of

researchers in [10, 12, 13, 14, 42, 76, 85] and became an effective approach for reduct

computation.

Standard FRS approaches consider every data object compared with every other

object of different classes in generating the fuzzy similarity relations for calculating

the dependency measure and constructing a DM. These approaches show scalability

issues for large datasets because they consider all objects contained in the data while

generating fuzzy similarity relations. So, each data object is compared with every

other object for inducing fuzzy similarity relations. This calculation requires O(n2)

comparisons (where n is the number of data objects). Thus, the memory utilization

for constructing similarity matrices is O(|U |2|Ch|), where |U | is the size of the object

space and |Ch| is the size of the attribute space. An increase in data size will have a
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negative impact on runtime on these FRS approaches. These algorithms face problems

from both data storage and computational complexity viewpoints. Several attempts

have been developed in literature in developing a scalable approach for FRS reduct

computation [14, 40, 106, 131]. These approaches primarily aim to reduce the requisite

space complexity. Some examples in this direction are representative instance-based

approaches [131], accelerating positive region [65], transforming fuzzy DM into crisp

DM [14, 41].

To mitigate the processing overhead on FRS approaches, In 2015, Jensen et al. [40]

presented two approaches to FRS intending to reduce the computational complexity

in reduct computation on large datasets. The first approach (nnFDM) is to compute

the membership degree of each object with k-nearest neighbour objects of different

decision classes in both calculating dependency measures and constructing fuzzy DM.

The second approach is to create a set of groups of features through correlation and then

use the fuzzy–rough dependency measure to discover good subsets and then choose the

top-ranked feature from each discovered group. After selecting features, the process of

creating groups is iterated, avoiding earlier chosen features. This process repeats until

the stopping criterion is reached. Although these two ideas are tackling the problem of

computation associated with large data, their performance is also being affected [40].

In 2015, Wang et al. [106] introduced a fitting model for the classical FRS model

(NFRS) for overcoming the problem of overfitting by reduct, resulting in misclassifica-

tion, especially in datasets with high overlapping across different categories. The idea

is to compute a fuzzy decision of a sample using the concept of fuzzy neighborhood

that can fit a given sample and guarantee to determine maximal membership degree

on its own category, which effectively prevents classification error.

In 2018, Zhang et al. [131] developed an FRS based feature selection approach

(FWARA) using representative instances to alleviate the computational complexity

through minimal knowledge. The objective is to determine the representative in-

stances as minimal knowledge that can cover the same decision discrimination ability

as compared to all objects to induce all the fuzzy granular rules. Then, a fuzzy depen-

dency function is formulated to compute feature subset selection using representative

instances. Furthermore, a wrapper strategy is applied to selected features subset to

find the best quality feature subset that achieves classification ability.

In 2018, Dai et al. [14] presented two different diverse approaches (RMDPS and
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WRMDPS) for FRS reduct computation with the concern of reduced maximal dis-

cernibility pairs in fuzzy DM construction. They follow the idea of transforming the

notion of fuzzy DM into crisp DM construction to consider those pairwise comparison

of objects that can have maximal discernible attributes or minimal fuzzy similarity

attributes.

In 2019, Peng et al. [65] proposed an accelerator based on the positive region in

the process of feature selection (PARA). The author’s idea is to keep only discernible

objects which can update the positive region to avoid redundant computation and

accelerate attribute reduction.

4.4 Motivation

The above-mentioned scalable FRS approaches, i.e., nnFDM [40], NFRS [106], FWARA [131],

RMDPS [14], WRMDPS [14] and PARA [65], achieved significant scalability against

traditional FRS approaches. However, they still have some limitations that they could

not compute to such an extent on large datasets. nnFDM approach requires nearest

neighbour calculation for each object prior to computing which is a costly task. Both

FWARA and PARA require the generation of fuzzy similarity matrices having a mem-

ory requirement of O(|U |2|Ch|) beforehand to select representative instances where |U |
is the size of the object space and |Ch| is the size of the attribute space. RMDPS and

WRMDPS require O(|U |2|Ch|) memory space priorly for DM construction as a pair-

wise comparison of every object against every object that belongs to different classes.

An increase in object space would have adverse impacts upon computational overhead

in these approaches. They are also preserving the information of every object, which

may lead to the fact that these reduction algorithms select more features and consume

more computational time.

The objective of the thesis is to reduce the space complexity using FMNN as a

granular computing technique (as described in Chapter 2) for enhancing the scalability

of FRS feature subset selection approach. In this chapter, we explored how to achieve

this objective of achieving better scalability in reduct computation without sacrificing

model accuracy using FMNN as preprocessing step. The knowledge of FMNN in terms

of hyperboxes can decrease the space complexity and the computation time required in

FRS-based reduct computation.
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In this chapter, such an intuitive idea is introduced for a solution to FRS feature

subset selection by using the concept of hyperbox utilizing FMNN [95] as a preprocessor.

Note: Due to the nature of FMNN, the proposed approach works only on numeric

decision systems. Let DT = (U,Cn ∪ {d}, {Va, fa | a ∈ Cn}, {Vd, fd}) be the decision

system with numeric conditional attributes and in the remaining part of the thesis, DT

refers to numeric decision system.

4.5 Proposed FDM-FMFRS Reduct Algorithm

In this section we propose a fuzzy DM based fuzzy rough reduct computation algorithm

named as FDM-FMFRS (FDM: Fuzzy discernibility matrix, FM: Fuzzy min-max neural

network, FRS: Fuzzy rough set). We propose a novel approach to increase the scalability

of the FRS approach by constructing the granular model from object space before

applying it to the FRS model. This granular model is designed by collecting information

granules regarded as hyperboxes using FMNN [95], described in Section 2.2, Chapter 2.

This chapter aims to compute an approximate reduct efficiently with the advantage

in space and time complexity. The concept of the approximate reduct is introduced

by Slezak [97] that contains the potential attributes to achieving near to exact reduct

capability. Even, the above-mentioned approaches [40, 65, 76, 131] also result in an

approximate reduct. In FDM-FMFRS, we introduce a solution for FRS reduct com-

putation, utilizing the FMNN learning as a preprocessor step. The proposed work

FDM-FMFRS is summarized as follows:

1. Creation of interval-valued decision system from FMNN preprocessing.

2. Fuzzy discernibility matrix construction based on interval-valued decision system.

3. Find an approximate reduct computation based on fuzzy discernibility matrix.

4.5.1 Creation of Interval-Valued Decision System from FMNN

The traditional FMNN algorithm, as described in Section 2.2, has a three-step learning

procedure such as expansion, overlap, and contraction for each input pattern. The

overlapping and contraction steps result in non-overlapping between pairs of hyperboxes

belonging to different decision classes. This disambiguation helps in crisp decision-
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making for classification but results in crucial information loss of boundary regions

between decision classes.

In this chapter, our objective of FMNN preprocessor is to aid in the construction

of fuzzy DM. But, following the traditional procedure of FMNN may lose valuable

information to represent discernibility among the objects of different classes. Hence,

we have considered a simplified FMNN training procedure to restrict only the expansion

step for preserving the naturally overlapping regions among the hyperboxes of multiple

decision classes. We have incorporated the proposed kNN-FMNN training phase, as

described in the Algorithm [1] (Section 3.3.1), for the proposed FDM-FMFRS.

Algorithm [1] gives the simplified FMNN training process for arriving at hyperboxes

with possible overlap among multiple decision classes. FMNN preprocessing results in

hyperboxes where each hyperbox represents granule of objects of a decision class. The

set of objects of hyperbox is the objects having absolute membership of one. As the

objects are in the nearby vicinity, there are chances that most of them represent a

single decision class; still, some exceptions can exist as overlapping among hyperboxes

can’t be avoided as described in Section 3.3.1.

Here, we construct the interval-valued decision system (IDS) based on hyperboxes,

resulting from the training of kNN-FMNN (as described in Chapter 3) on the given

decision system DT . IDS can retain the boundary information of overlapping intervals

to each attribute in the decision system. The hyperbox is bounded by V (minimum

point), and W (maximum point) represents the area in space belonging to a particular

decision class. This representative hyperbox is taken as a single entity for representing

the member objects and becomes an object in the resulting IDS.

Let IDS = (HBS,Cn ∪ {d}) be interval-valued decision system, where HBS =

{H1, H2, . . . ,Hr} represents the universe of hyperboxes. Let [V H ,WH ] represent the

minimum and maximum points of hyperbox H. In IDS, the value of a hyperbox H ∈
HBS over an attribute a ∈ Cn is represented by the interval vHa to wH

a ([vHa , wH
a ]),

where, vHa is component of minimum point V H and wH
a is component of maximum

point WH corresponding to the attribute a. The value of decision attribute d is taken

as per the decision class to which H belongs.
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4.5.2 Fuzzy Discernibility Matrix Construction based on Interval-

Valued Decision System

In this section, we are constructing the fuzzy DM based on IDS, as obtained in Section

4.5.1. Each clause in the fuzzy DM corresponds to a pair of hyperboxes representing

different classes. Based on Eqn. (4.13), an entry of fuzzy DM corresponding to hy-

perboxes Hi and Hj is a vector of fuzzy discernibility measure for all attributes. In

fuzzy DM construction for the decision system, the valid entries are defined as a pair of

hyperboxes belonging to different decision classes. To find a fuzzy discernibility mea-

sure, we require a fuzzy similarity measure applicable to interval-valued data. Several

similarity measures are defined in the literature for interval-valued data [33, 45]. Out

of these, Jaccard’s similarity measure (JS) [33] is used for the proposed work.

Algorithm 3: Creating Fuzzy Discernibility Matrix

Input : HBS: Set of hyperboxes, Cn: Set of conditional attributes

Output: M: Fuzzy Discernibility Matrix.

1 for every Hi in |HBS| do
2 for every Hj in |HBS| do

// Compute M(Hi, Hj) for ith hyperbox with each jth hyperbox

of different class labels

3 if d(Hi) ̸= d(Hj) then

4 for each a in Cn do

5 Ma(Hi, Hj) = Neg(JS([vHi
a , wHi

a ], [v
Hj
a , w

Hj
a ])) from Eqn. (4.19)

6 end

7 end

8 end

9 end

10 return M

Jaccard’s similarity measure [33] introduces the concept of similarity measure for

interval-valued data based on real numbers. It satisfies the boundness, symmetry, re-

flexivity, and transitivity properties of a similarity measure. Hence, Jaccard’s similarity

is a fuzzy equivalence relation defined over the universe of interval-valued data objects.

Let Ix and Iy represent two overlapping intervals. The Jaccard’s similarity measure

JS(Ix, Iy) is defined as:
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JS(Ix, Iy) =
|Ix ∩ Iy|

|Ix ∩ Iy|+ |Ix \ Iy|+ |Iy \ Ix|
(4.17)

where, |Ix ∩ Iy| is the size of intersection between Ix and Iy. |Ix \ Iy| is the size of

the interval segment of Ix that are not overlapping with Iy. Similarly, |Iy \ Ix| is the

size of the interval segment of Iy that are not overlapping with Ix. If Ix and Iy do not

overlap, then JS(Ix, Iy) = 0 indicates both intervals are completely different from each

other. Likewise, if Ix and Iy are fully overlapping, then JS(Ix, Iy) = 1 indicates both

intervals are completely identical.

Using JS, the fuzzy DM entry between Hi and Hj , denoted as M(Hi, Hj), belonging

to different classes is defined as:

M(Hi, Hj) =

{
{as | ∀a ∈ Cn, s = Neg(JS([vHi

a , wHi
a ], [v

Hj
a , w

Hj
a ]))}, if d(Hi) ̸= d(Hj)

∅, otherwise

(4.18)

The component corresponding to attribute a ∈ Cn is:

Ma(Hi, Hj) = Neg(JS([vHi
a , wHi

a ], [v
Hj
a , w

Hj
a ])) (4.19)

where, Neg denotes the fuzzy negation and we have used standard negation i.e., Neg(x)

= 1-x in our implementation.

Algorithm [3] presents the structure for computing the fuzzy DM based on IDS.

In Algorithm [3], for every pair of hyperboxes of different classes, an entry M(Hi, Hj)

corresponds to fuzzy discernibility measure for all attributes between Hi and Hj , based

on Eqn. (4.18).

Fuzzy DM constructed in this manner is an approximation to fuzzy DM constructed

at an object level. So, one can say that a pair of hyperboxes comparison absorbs many

pairs of objects based comparison. The cardinality of hyperboxes (|HBS|) is usually

much lesser than the cardinality of objects (|U |) i.e., (|HBS| << |U |). An FDM entry

between a pair of objects of different classes is always a superset of the correspond-

ing fuzzy discernibility matrix entry between the hyperboxes containing these objects.

Hence, the fuzzy rough reduct computed using fuzzy DM for IDS results as an approx-

imate reduct. Hence, validating the quality of the approximate reduct becomes the

important objective in our experimental studies described in Section 4.7.
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4.5.3 Approximate Reduct Computation based on Fuzzy Discernibil-

ity Matrix

Algorithm 4: Finding an Approximate Reduct

Input : FDM :Fuzzy discernibility matrix, Cn: Conditional attributes

Output: Red: Approximate Reduct

1 Red = ∅ ;

2 SAT (Red) = 0, SAT (Cn) = 1 ;

3 while SAT (Red) ̸= SAT (Cn) do

4 asat = 0, abest = ∅;
5 for each a ∈ Cn −Red do

6 Sa = SAT (Red ∪ {a}) ;

7 if Sa > asat then

8 asat = Sa;

9 abest = {a};
10 end

11 end

12 Red = Red ∪ {abest};
13 end

14 return Red

In this section, we provide an approximate reduct computation algorithm using

fuzzy DM constructed on IDS as given in the Section 4.5.2. Algorithm 4 gives the

procedure for computing an approximate reduct based on fuzzy DM. The satisfiability

measure with Lukasiewicz t-conorm (S(x,y) = min{1, x + y}) is considered [14] to

calculate individual satisfaction of each clause over attributes. The Algorithm [4] follows

the sequential forward selection (SFS) control strategy. Algorithm starts with reduct

Red initialize to an empty set. In each iteration, SAT measure is computed using

Eqn. (4.16) for each attribute ((Red ∪ {a}) ∀a ∈ Cn − Red) not already included in

Red. The attribute achieving maximum SAT measure (abest) is included in the reduct

set Red. The algorithm terminates when SAT (Red) becomes equal to SAT (Cn) (i.e.,

1) and returns the obtained approximate reduct Red.

Here, the entire motivation behind this work is to use an interval-valued decision

system instead of an object space decision system in Fuzzy DM construction for reduct
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computation that can significantly decrease computational time and memory utiliza-

tion.

4.6 Complexity Analysis of FDM-FMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm

FDM-FMFRS. The following variables are used in the complexity analysis of FDM-

FMFRS.

• |U |: the number of objects.

• |HBS|: the number of hyperboxes.

• |Cn|: the number of numeric conditional attribute.

• |M |: Size of discernibility matrix

Table 4.1 shows the time complexity of the proposed algorithm FDM-FMFRS. In

Table 4.1, Algorithm 1 corresponds to the construction of IDS, whose time complexity

was discussed in Chapter 3 (Section 3.4) and had a time complexity of O(|U | ∗ |HBS| ∗
|Cn|). In Table 4.1, Algorithm 3 with steps 1-9 constructs the fuzzy DM based on IDS

given in Algorithm 1 with a time complexity O(|HBS|2 ∗ |Cn|). Algorithm 4 with steps

3-13 perform reduct computation on fuzzy DM using SFS based control strategy with

a time complexity of O(|M | ∗ |Cn|2) = O(|HBS|2 ∗ |Cn|2), since |M | = O(|HBS|2).
So, the total complexity of the proposed algorithm FDM-FMFRS is: O(|U |∗|HBS|∗

|Cn|) + O(|HBS|2 ∗ |Cn|2).
The space requirement of FDM-FMFRS is for three sources: First, the decision

system is required for constructing IDS with a space complexity of O(|U |∗|Cn|). Second,

IDS-based fuzzy DM is constructed with a requirement of space complexity O(|HBS| ∗
|Cn|). Finally, the fuzzy DM is required for generating the reduct having a space

complexity O(|M | ∗ |Cn|) = O(|HBS|2|Cn|). Thus, the total space complexity of

FDM-FMFRS algorithm is O(|U | ∗ |Cn|) + O(|HBS|2 ∗ |Cn|).

4.7 Experiments and Results

The hardware configuration of the system used for experiments is CPU: Intel(R) i7-

8500, Clock Speed: 3.40GHz × 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit
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Table 4.1: Time Complexity Analysis of FDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity

(phase)

Algorithm 1 2-29. Construction of IDS O(|U | ∗ |HBS| ∗ |Cn|)
Algorithm 3 1-9. Construction of fuzzy DM O(|HBS|2 ∗ |Cn|)
Algorithm 4 3-13. Reduct computation O(|M | ∗ |Cn|2) =

O(|HBS|2 ∗ |Cn|2)

Table 4.2: Benchmark Datasets

Dataset Attributes Objects Class

Ionosphere 32 351 2

Vehicle 18 846 4

Segment 16 2310 2

Steel 27 1941 7

Ozone Layer 72 1848 2

Page 10 5472 5

Robot 24 5456 4

Waveform2 40 5000 3

Texture 40 5500 11

Gamma 10 19020 2

Satimage 36 6435 6

Ring 20 7400 2

Musk2 166 6598 2

Shuttle 9 57999 7

Sensorless 48 58509 11

MiniBooNE 50 129596 2

Winnipeg 174 325834 7

and Software: Matlab R2017a. The detailed experimental evaluation is conducted on

seventeen benchmark numeric decision systems taken from UCI machine learning repos-

itory [20], the details are given in Table 4.2. The proposed algorithm FDM-FMFRS is

implemented in the Matlab environment. In our experiments, we set the sensitive pa-

rameter γ value equal to 4, as recommended [56, 95]. And, based on the selected theta

(θ) parameter in Chapter 3, we deduced that theta value of 0.3 are appropriate in com-
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putation FDM-FMFRS reduct. In FDM-FMFRS experiment, Lukasiewicz t-conorm

(S(x, y) = min{x+y, 1}) for Eqn. (4.15) and fuzzy standard negation (Neg(x) = 1−x)

Eqn. (4.17) are used.

The performance of the proposed algorithm FDM-FMFRS is assessed by compar-

ing it with recent state-of-the-art approaches developed for FRS reduct computation in

2018 and 2019, named as RMDPS [14], WRMDPS [14], FWARA [131] and PARA [65].

FWARA and PARA codes are provided by their corresponding author in Matlab

environment, and RMDPS and WRMDPS codes are implemented by my supervisor

in Matlab environment. Furthermore, these comparative approaches (RMDPS, WR-

MDPS, FWARA and PARA) follow their own fuzzy model with t-norm, t-conorm and

fuzzy similarity relations as given in the respective publications and experiments are

conducted in the same environment stated above. The comparative experiments are

conducted in the same system using Matlab environment. The performance of FDM-

FMFRS is examined through a comparative evaluation with respect to the following

objectives:

1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers

through ten-fold cross-validation (10-FCV).

4.7.1 Evaluating Quality of Reduct Computed by FDM-FMFRS

Reduct computation in FDM-FMFRS is based on a discernibility matrix construction

in the hyperbox space. Since fuzzy DM on IDS is an approximation of fuzzy DM on

objects, theoretically, it results in an approximate reduct. Hence, naturally, it suffers

from some information loss.

This section aims to assess the quality of approximate reduct obtained based on

validation by computing the obtained gamma measure by reduct over the original

decision system. The formulation of each algorithm uses its own FRS model to compute

reduct. To avoid bias and to validate the relevance of reduct quality comparison, we

needed to utilize a different FRS model so that the comparisons of gamma measures

are with respect to a single FRS model. Similar to SAT measure, gamma measure

is a widely employed dependency measure in FRS for accessing the quality of reduct.
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Table 4.3: Relevance of FDM-FMFRS reduct through Gamma measure

Datsets
Gamma Meausre

UNRED FDM-FMFRS RMDPS WRMDPS FRAWA PARA

Ionosphere 0.99 0.98 0.99 0.99 0.99 0.99

Segment 0.98 0.94 0.98 0.98 0.98 0.96

Steel 0.98 0.94 0.98 0.98 0.98 0.98

Vehicle 0.99 0.99 0.99 0.99 0.99 0.99

Ozone 1 0.99 1 1 1 1

Page 0.87 0.85 0.87 0.87 0.87 0.87

Texture 0.99 0.94 0.99 0.99 0.99 0.93

Waveform2 1 1 1 1 1 1

Robot 0.97 0.90 0.97 0.97 0.97 0.97

Satimage 0.99 0.98 0.99 0.99 0.99 0.98

Ring 1 1 1 1 1 1

Datsets
Reduct Length

UNRED FDM-FMFRS RMDPS WRMDPS FRAWA PARA

Ionosphere 32 7 27 27 31 18

Segment 16 9 15 15 14 10

Steel 27 11 21 21 18 15

Vehicle 18 15 18 18 17 14

Ozone 72 9 39 42 54 29

Page 10 8 10 10 10 9

Texture 41 8 37 37 37 8

Waveform2 40 13 21 22 40 24

Robot 24 13 24 24 24 24

Satimage 36 14 36 36 36 14

Ring 20 17 20 20 20 18

Hence, Gaussian kernel FRS (GKFRS) [30] is used for computation of gamma measure

by reducts from the compared algorithms as none of these algorithms uses this particular

approach (GKFRS) in their model.

Table 4.3 contains the resulting gamma value and reduct length by applying the

proposed algorithm as well as the compared algorithms on the entire dataset. Also,

Table 4.3 represents the gamma measure obtained from the unreduced decision system

(mention as ‘UNRED’ in Table 4.3) to validate the relevance of resulted reducts through

checking whether the obtained reduct is satisfying or reaching near to (UNRED) gamma

measure or not.

Table 4.3 reports the gamma value (γ) for only eleven datasets out of seventeen
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benchmark datasets due to exceeding the memory limit while processing the GKFRS.

Analysis of Results

In Table 4.3, it is observed that FDM-FMFRS achieved the same gamma value as

obtained by UNRED satisfying the required reduct property fully in Vehicle, Waveform2

and Ring datasets. In the remaining datasets, FDM-FMFRS achieved almost near to

expected gamma measure w.r.t. entire dataset gamma value.

Overall, it can be seen that the approximate reduct from FDM-FMFRS is not

resulting in any significant loss in the quality of reduct. Also, it can be observed that

the size of reduct for FDM-FMFRS is much lesser than compared algorithms for all

datasets. The compared algorithms have also achieved the relevant or approximate

gamma measure in given datasets, but even that approximation is negligible, as in

the case of FDM-FMFRS. Hence, empirically, we have established that FDM-FMFRS

computed quality reduct with almost near gamma measure as UNRED and with a

relatively shorter size reduct.

Section 4.7.2 explores the relevance of obtained approximate reduct of the FDM-

FMFRS in achieving the construction of the classification learning model, which is the

primary objective of the feature subset selection. Moreover, the comparative analysis

with reduct length and computational time will be elaborated as part of Section 4.7.2

using tenfold cross-validation.

4.7.2 Relevance of the Proposed Approach in Construction of Classi-

fiers

This section contains the comparative experiments conducted among algorithms for

reduct computation, i.e., FDM-FMFRS, RMDPS [14], WRMDPS [14], FWARA [131]

and PARA [65] algorithms. The relevance of reduct in inducing a classification model is

studied through ten-fold cross-validation (10-FCV) experiments. In each iteration, one

fold is preserved for the testing data, and the remaining nine folds are used for training

data. A reduct algorithm is applied to the training data. So, based on the reduct that

is obtained, the classification model is constructed for comparison. The classification

accuracy of the resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-

tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier
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(described in Chapter 3) is also employed for inducing classification model. To examine

the relevance of reducts, we also construct the classification model with an unreduced

dataset (mentioned as ‘UNRED’ in the given Tables) for comparison.

Table 4.4, Table 4.5 and Table 4.6 presents the results of the 10-FCV experiment

for classification accuracies with CART, kNN, and kNN-FMNN respectively. Similarly,

Table 4.7 and Table 4.8 illustrate the reduct length and computational time of the

algorithms. Fig. 4.1, Fig. 4.2, Fig. 4.3, Fig. 4.4 and Fig. 4.5 depict the box-plot rep-

resentation of results given in Table 4.4, Table 4.5, Table 4.6, Table 4.7 and Table 4.8

respectively.

The student’s paired t-test with a significance level of 0.05 is performed in order

to evaluate the statistical significance of the FDM-FMFRS algorithm with RMDPS,

WRMDPS, FWARA, PARA and UNRED. Each column in Tables 4.4, 4.5, 4.6, 4.7 and

4.8 reports the results of the respective algorithm in the form of mean and standard

deviation along with p-value except FDM-FMFRS column. FDM-FMFRS column

contained only mean and standard deviation. The p-value index is the significant

level between the respective algorithm and UNRED with FDM-FMFRS. If p-value >

0.05, then both approaches are no statistically significant difference and represented

as a tie with the symbol of ‘o’. For classification, if the p-value is less than equal to

0.05 and the result obtained by the respective algorithm is less than FDM-FMFRS,

then the particular algorithm is statistically inferior to FDM-FMFRS and marked as

a loss ‘-’. Otherwise, it is represented as a win ‘+’. The contrary is for reduct size

and computational time analysis, which means if the p-value is less than 0.05, and

the result obtained by the respective algorithm is less than FDM-FMFRS, then the

particular algorithm is statistically significant than FDM-FMFRS and marked as a win

‘+’; otherwise, it is representing a loss ‘-’. For example, in classification Table 4.4

and computational time Table 4.7, the p-value column of PARA shows the ‘-’ sign in

Waveform2 dataset, which means that PARA is performing inferior to FDM-FMFRS

in both classification and computational time.

The last three lines in each Table 4.4, 4.5, 4.6, 4.7 and 4.8 correspond to Average

(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over

which an algorithm is executing vary from one to another. Hence, the average of

individual mean values is reported in two forms. Average (NOD) corresponds to the

average value obtained by an algorithm on datasets where it could be evaluated along
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with reporting the number of datasets (NOD) involved in brackets. CAverage value

depicts the average of the individual mean obtained by restricting to only those datasets

in which all algorithms could be evaluated. For the comparative analysis, CAverage

plays an important role. The last line indicates the count of the number of statistically

loss(‘-’), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the

proposed kNN-FMNN.

Note: The ‘*’ sign in Tables 4.4, 4.5, 4.6, 4.7 and 4.8 shows the corresponding

algorithm is intractable to a particular dataset to compute the reduct due to insufficient

memory. And, ‘#’ sign represents the scenario of non-termination of the code even after

several hours of computation.

In Figures 4.1, 4.2, 4.3, 4.4 and 4.5, the range of Y-axis varies based on obtained

results in each dataset. For large datasets, as the results are available only for FDM-

FMFRS algorithm, Figures are respectively given in Figure (b) part.
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4.7 Experiments and Results

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS and UNRED

Figure 4.1: Boxplot for Classification Accuracies Results with CART of Table 4.4
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4.7 Experiments and Results

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS and UNRED

Figure 4.2: Boxplot for Classification Accuracies Results with kNN of Table 4.5
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4.7 Experiments and Results

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS and UNRED

Figure 4.3: Boxplot for Classification Accuracies Results with kNN-FMNN of Table 4.6
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4.7 Experiments and Results

Figure 4.4: Boxplot for Computational Time Results of Table 4.7
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4.7 Experiments and Results

4.7.3 Analysis of Results

Classification Results

Table 4.4, Table 4.5 and Table 4.6 show the classification results of CART, kNN and

kNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm

FDM-FMFRS is higher than compared algorithms and very near to UNRED.

In Table 4.4, considering the overall 66 accuracy results across all the compared

algorithms and UNRED in CART classifier, the cumulative lose/win/tie results are

4/11/51. Hence in the majority of results (51), the proposed algorithm FDM-FMFRS

performed statistically similar to compared algorithms and UNRED. Also, it is ob-

served that wherever FDM-FMFRS performed a little inferior to compared algorithms

and UNRED (i.e., 11 results), the differences in average mean are very small. In the

remaining 4 results, the proposed algorithm FDM-FMFRS performed significantly bet-

ter than the compared algorithms, and here also, it is observed that the difference in

mean value is small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table 4.5 and Ta-

ble 4.6, majorly all algorithms performed statistically similar to each other. The cumu-

lative lose/win/tie results in kNN classifier is 13/10/43 and in kNN-FMNN is 4/7/55.

The further observation analysis details are given below.

FDM-FMFRS achieved statistically better than RMDPS, WRMDPS and PARA

algorithms in Waveform2 dataset in all classifiers, as shown in Fig. 4.1, 4.2 and 4.3. In

Musk2 dataset, FDM-FMFRS performed statistically inferior to UNRED.

Based on results given in Table 4.4 and Fig. 4.1, for Ring, MiniBooNE and Winnipeg

datasets, FDM-FMFRS incurred statistically inferior to UNRED, but the difference in

average classification accuracies for both algorithms is insignificant on datasets, for

example, In Winnipeg, FDM-FMFRS is 98.46 and UNRED is 98.92. Similarly, in

Robot datasets, FDM-FMFRS obtained statistically inferior results than compared

algorithms (including UNRED), but the difference in their results is almost quite low.

Moreover, FDM-FMFRS resulted statistically better than UNRED in Ozone dataset.

Similar conclusions is obtained from the results given in Table 4.5 and Fig. 4.2 for

the kNN classifier. FDM-FMFRS achieved statistically better results than compared

algorithms (including UNRED) in Robot and Ring datasets. In contrast, FDM-FMFRS

is statistically inferior to compared algorithms (except PARA) and UNRED in Texture
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Figure 4.5: Boxplot for Reduct Length Results of Table 4.8
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and Satimage datasets, but the difference in their average classification accuracies are

very less on these datasets.

Similarly, in kNN-FMNN classifier, based on Table 4.6 and Fig. 4.3, FDM-FMFRS

obtained statistically better than UNRED in Winnipeg dataset. However, FDM-

FMFRS performed statistically inferior to UNRED in Sensorless dataset with a high

difference in their average classification accuracy.

In Sensorless dataset, FDM-FMFRS incurred much similar classification results in

CART and kNN classifiers; however, it suffered a little bit in kNN-FMNN classifier.

But as we can observe, it obtained a much more significant reduct with a substantial

reduction in the size of the actual attributes from 58 to 9.

In Musk2 dataset, FDM-FMFRS performed statistically inferior to compared al-

gorithms in all classifiers, but there is not much difference in mean value. And the

decrease in classification accuracy might be due to the reduction of attributes from 166

to 22.

In MiniBooNE and Winnipeg datasets, FDM-FMFRS incurred less significantly

than UNRED in CART and kNN classifiers, but their difference in classification accu-

racies is very minor, for example, in kNN classifier, FDM-FMFRS got 91.36% accuracy

where UNRED got 92.19%. In sensorless and musk2 datasets, FDM-FMFRS performed

less significant than UNRED in given classifiers.

Hence, in most of the results, FDM-FMFRS has performed similar or better classi-

fication accuracy than compared algorithms, and in those results where FDM-FMFRS

has performed inferior, their mean accuracy is very near. Hence, on the whole, one

can conclude that the approximate reduct through FDM-FMFRS preserved the qual-

ity of reduct in inducing a good classification model. We can see that the average

value of the individual mean of classification accuracy of the FDM-FMFRS algorithm

on overall datasets is quite near the average value results in UNRED, which shows

effectiveness in classification performance. Also, It is further observed that RMDPS,

WRMDPS, FWARA and PARA algorithms could not obtain reduct in Shuttle, Musk2,

Sensorless, MinibooNE and Winnepeg datasets due to memory overflow (Sign ‘*’) or

non-termination even after 24 hours (Sign ‘#’) at given system configuration where

FDM-FMFRS can obtain reduct in few seconds. Eventually, it can be seen that the

idea of computing the approximate reduct by FDM-FMFRS is satisfactory and effec-

tive.
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Computational Time Results

In terms of computational times, as shown given in Table 4.7 and Fig. 4.4, FDM-

FMFRS incurred significantly less computational time than compared algorithms for

all datasets and evidently seen that the cumulative lose/win/tie results of compared

algorithms are 49/0/0. Also, the proposed method FDM-FMFRS obtained the least

CAverage value (2.85 seconds), which is significantly lesser than compared algorithms

with CAverage in the range of 38 to 266 seconds.

The average mean value of FDM-FMFRS on 17 datasets is 110.37 seconds. But,

none of the compared algorithms could scale to all 17 datasets. This significantly es-

tablished that FDM-FMFRS is computationally scalable than all compared algorithms.

Even the resulting standard deviation of computation time presented very little varia-

tion, thus showing that the methodology is reliable compared to others.

These substantial reductions of computational time of FDM-FMFRS are due to

the dealing with hyperboxes constructed by FMNN model where |HBS| << |U |. In

order to understand the significance of space complexity reduction in fuzzy DM size,

we compared |U |2 with an average of |HBS|2 in 10-FCV. The results are shown in

Table 4.9. Table 4.9 provides the average and standard deviation of the obtained

number of hyperboxes (NOH), the average value of |HBS|2 obtained in fuzzy DM size

(PHDS) and the percentage of reduction (POR) of HBS based fuzzy DM size over U

based fuzzy DM size. Based on Table 4.9, the percentage of reduction (POR) of |HBS|2

over |U |2 got in the range of 78-99% across the given datasets. One can say that a pair

of hyperboxes comparison in hyperbox based-fuzzy DM absorbs many pairs of objects

comparison in object based-fuzzy DM (i.e., |HBS| << |U |). Owing to this significant

reduction, FDM-FMFRS could be applied on such datasets where compared algorithms

(RMDPS, WRMDPS, FWARA and PARA) would not execute, as the required memory

space for these datasets is not available in the given system considered.

Traditional or, Scalable FRS time complexity is O(|U |2|Cn|2) which hinders the ap-

plicability to large decision systems, whereas FDM-FMFRS achieves O(|HBS|2|Cn|2)
against O(|U |2|Cn|2) which enhance scalability. FDM-FMFRS outperformed and saved

more than 90–99% of the average computational time than other compared algorithms.

Thus, the speed-up computation and performance demonstrate the potential of FDM-

FMFRS algorithm and its suitability for larger datasets.
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4.7 Experiments and Results

Hence, working through granular computing and performing feature subset selection

at the hyperbox level has resulted in obtaining a quality reduct with scalability.

Table 4.9: Reduction of Datasets with FMNN as a Preprocessor

Datasets
EDS NOH

PHDS POR
|U |2 Mean ± Std

Ionosphere 351 × 351 79.60 ± 2.80 80 × 80 77.20%

Vehicle 846 × 846 71.40 ± 5.21 71 × 71 91.60%

Segment 2310 × 2310 33.10 ± 1.66 33 × 33 98.57%

Steel 1941 × 1941 188.10 ± 6.97 188 × 188 90.31%

Ozone 1848 × 1848 279.00 ± 2.94 279 × 279 84.90%

Page 5472 × 5472 24.30 ± 1.25 24 × 24 99.56%

Robot 5456 × 5456 578.70 ± 11.22 578 × 578 89.40%

Waveform2 5000 × 5000 963.20 ± 3.33 963 × 963 80.74%

Texture 5500 × 5500 44.50 ± 2.17 45 × 45 99.18%

Gamma 19020 × 19020 302.20 ± 8.16 302 × 302 98.41%

Satimage 6435 × 6435 218.67 ± 218.67 219 × 219 96.59%

Ring 7400 × 7400 630.70 ± 3.27 631 × 631 91.47%

Musk2 6598 × 6598 751.40 ± 10.44 751 × 751 88.61%

Shuttle 57999 × 57999 14.30 ± 0.67 14 × 14 99.97%

Sensorless 58509 × 58509 26.10 ± 1.52 26 × 26 99.95%

MiniBooNE 129596 × 129596 1938.20 ± 13.35 1938 × 1938 98.50%

Winnipeg 325834 × 325834 3591.80 ± 22.65 3591 × 3591 98.89%

Notes: EDS: Estimated Fuzzy DM sizes, NOH: Number of hyperboxes,

PHDS: Proportional Fuzzy DM sizes, POR: Percentage of reduction.

Reduct length Results

The results given in Table 4.8 and Fig. 4.5 established that FDM-FMFRS obtained

reduct with statistically lesser size than RMDPS, WRMDPS and FWARA for all

datasets except Gamma dataset and evidently seen that the cumulative lose/win/tie

results of compared algorithms are 42/4/3. In Gamma dataset, all algorithms including

the proposed work FDM-FMFRS obtained entire attributes as reduct. FDM-FMFRS
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got a statistically larger reduct size than PARA with Vehicle, Texture, Gamma and

Satimage datasets, but the quality of reduct from FDM-FMFRS in terms of average

classification accuracies statistically is not compromised.

The experimental results established that the applicability of the FRS reduct algo-

rithm is enhanced strongly with FMNN preprocessing. The proposed approach FDM-

FMFRS exhibits enhanced scalability on large datasets and induce better or similar

classification performance with relevant reduct.

4.8 Summary

We proposed FDM-FMFRS as a hybridization of FMNN with FRS for reduct compu-

tation, intending to increase scalability on benchmark datasets. Here, we replaced DM

construction in object space with hyperbox space which is obtained through FMNN.

A hyperbox based fuzzy DM construction approximated traditional DM, so that the

computed reduct is also an approximate reduct. The extensive experimental study was

done with state-of-the-art FRS approaches on several benchmark datasets to establish

the relevance of FDM-FMFRS reduct. And results demonstrated that FDM-FMFRS

achieved significant computational gains over existing state-of-the-art FRS approaches

while achieving similar or better classification accuracies. Also, FDM-FMFRS could

scale to such large datasets where existing FRS algorithms are unable to compute due

to space constraints.
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Chapter 5

Variant of FDM-FMFRS for

Feature Subset Selection

This chapter explores an extension of FDM-FMFRS approach discussed in chapter

4. In chapter 4, FDM-FMFRS approach has enhanced the scalability FRS based at-

tribute reduction to large datasets due to the construction of fuzzy DM in hyperbox

space instead of object space. This chapter investigates a scenario emerging through

modification and adaptation in FDM-FMFRS that can enhance further scalability in

hyperbox space. We propose an alternative approach even though FDM-FMFRS is

complete and sufficient. This design can tune FDM-FMFRS approach being applicable

to much larger size datasets.

The rest of the chapter is designed as follows: Section 5.1 present the brief introduc-

tion. Section 5.2 introduces the motivation of the proposed algorithm. Section 5.3 de-

scribes the functioning of the proposed algorithm CDM-FMFRS. Section 5.4 describes

the complexity analysis of proposed algorithm CDM-FMFRS. Section 5.5 reports a se-

ries of experiments and comparative analysis of CDM-FMFRS with FDM-FMFRS and

state-of-the-art approaches.

5.1 Motivation

In the previous chapter 4, we adopt FMNN learning model as a preprocessor to work on

granular based computing for FRS reduct computation (FDM-FMFRS). FDM-FMFRS

approach indeed enhanced the scalability in large decision systems due to the construc-
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tion of fuzzy DM in hyperbox space instead of object space. Also, FDM-FMFRS ap-

proach significantly decreases the computation and space complexity on several bench-

mark datasets in a given memory constraint.

In this chapter, we are improvising the performance of FDM-FMFRS in terms of

scalability. We further increase the scalability of reduct computation in hyperbox space

in FDM-FMFRS approach. Hence, our work formulates a way to reduce space utiliza-

tion of fuzzy DM in paving the way to increased scalability. An approach is proposed

by adopting the crisp DM construction over fuzzy DM construction in hyperbox space

that can increase the scalability of datasets on the given memory constraints. The

formation of crisp DM naturally incurs information loss. So, we also enriched crisp DM

with a defined tolerance parameter to facilitate the perseverance of potential attributes

in crisp DM entries.

5.2 Space Utilization of Fuzzy DM vs Crisp DM

The enhanced scalability in FDM-FMFRS is because of the construction of fuzzy DM

in hyperbox space. As it is demonstrated in the experiment section 4.7.2 for a very

large dataset, the cardinality of hyperbox space itself grows to such large numbers such

that the construction of fuzzy DM in hyperbox space itself is not permissible. So, our

work aims at overcoming this limitation to further increase the scalability of hyperbox

space-based FRS reduct computation.

The sections 4.2.1.1 and 4.2.2.1 introduce the concept of crisp DM and fuzzy

DM. Theoretically, the space complexity of both approaches in hyperbox space is

O(|HBS|2|Cn|). An entry of crisp DM is a subset of Cn, whereas an entry of fuzzy

DM is a real-valued array of size Cn. Adapting the characteristic function for the

representation of a subset of Cn and using bitset representation for same, the entry of

crisp DM requires |Cn| bits. Assume that a real-valued numbered is represented in the

computer using ‘k′ bytes. Then it follows that the space utilization of crisp DM is 1
8×k

of the space utilization of fuzzy DM. Hence, the reduction in space utilization in crisp

DM construction is highly significant.

However, the construction of crisp DM for a numerical decision system involves

information loss. In the literature, it is arrived at by discretization of the numerical

decision system or application of threshold fuzzy discernibility value [42]. Either way,
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a lot of information in fuzzy DM is lost in the conversion to crisp DM. So it becomes

imperative to arrive at a crisp DM formulation for availing of space reduction using a

methodology aiming at lessening the information loss.

Hence, with the objective of further increasing the scalability of FDM-FMFRS, we

proposed a novel crisp DM formulation instead of fuzzy DM for FRS reduct compu-

tation. The adaptation of crisp DM for FRS reduct computation is motivated from

works [10, 14, 105, 112] that significantly reduces the space complexity.

5.3 Proposed CDM-FMFRS Reduct Algorithm

In this section, we propose an approach CDM-FMFRS (CDM: Crisp discernibility

matrix, FM: Fuzzy min-max neural network, FRS: Fuzzy rough set) to increase the

scalability of FDM-FMFRS in hyperbox space. This paper also aims to compute an

approximate reduct efficiently with significant gains in space and time complexity. The

proposed work (CDM-FMFRS) is summarized as follows:

1. Creation of interval-valued decision system (IDS) from FMNN preprocessing.

2. Crisp Discernibility matrix construction based on interval-valued decision system.

3. Compute an approximate reduct computation based on crisp discernibility matrix.

Moreover, we incorporate the following features in crisp DM formation with the ob-

jective of minimizing the inevitable information loss and preserving potential attributes

as part of discernibility matrix entries. Furthermore, we extend the overlapping criteria

amidst hyperboxes with three additional rules in achieving crisp DM formulation and

also enrich with a defined tolerance parameter to facilitate the perseverance of potential

attributes in crisp discernibility relation through hyperboxes.

5.3.1 Creation of Interval-Valued Decision System from FMNN

In the proposed CDM-FMFRS, the construction of IDS based on fuzzy hyperboxes is

done as per the procedure given and described in the Section 4.5.1.
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5.3.2 FMNN Preprocessor based crisp Discernibility Matrix

Here, we provide the procedure for formulation of crisp DM on IDS. This is based on

discernibility between two hyperboxes. Each entry M(Hi, Hj) in crisp DM is obtained

from a pair of hyperboxes Hi and Hj of different classes. Each clause contains a set of

attributes that have non-overlapping or allowable proportions (user defined parameter

θ1) of overlapping intervals between hyperboxes Hi and Hj . Each clause M(Hi, Hj) is

defined in Eqn. (5.1).

M(Hi, Hj) =
{
a | a ∈ C ∧ OverlapInDim(Hi, Hj , a) == False ∨

(OverlapInDim(Hi, Hj , a) == True ∧ propoverlap < θ1)
} (5.1)

The expression OverlapInDim(Hi, Hj , a) performs the overlap test between hyper-

boxes Hi and Hj along ‘a’ dimension. Simpson [95] introduces the four conditions to

check the overlapping along a particular dimension in FMNN model. In [105], authors

extend the conditions for overlapping cases when min point and max point coincide at

the considered dimension. We have further introduced three more conditions for ac-

commodating overlapping in the case at least one of the hyperbox is a point hyperbox.

The following are the eleven conditions over which overlapping status is determined and

can be considered as a complete set of conditions for checking overlap. The following

11 cases contain the possible way of overlapping a dimension between hyperboxes to

become true (OverlapInDim(Hi, Hj , a) == True).

case 1 : vHi
a == wHi

a and v
Hj
a == w

Hj
a and vHi

a == v
Hj
a

case 2 : vHi
a == wHi

a and v
Hj
a ̸= w

Hj
a

if (v
Hj
a ≤ vHi

a and vHi
a ≤ w

Hj
a )

case 3 : vHi
a ̸= wHi

a and v
Hj
a == w

Hj
a

if (vHi
a ≤ v

Hj
a and v

Hj
a ≤ wHi

a )

case 4 : vHi
a < vHj

a < wHi
a < wHj

a

op = wHi
a − vHj

a

case 5 : v
Hj
a < vHi

a < w
Hj
a < wHi

a

op = w
Hj
a − vHi

a
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case 6 : vHi
a < vHj

a < wHj
a < wHi

a

op = w
Hj
a − v

Hj
a

case 7 : v
Hj
a < vHi

a < wHi
a < w

Hj
a

op = wHi
a − vHi

a

case 8 : vHi
a = vHj

a < wHi
a < w

Hj
a

op = wHi
a − v

Hj
a

case 9 : v
Hj
a < vHi

a < wHj
a = wHi

a

op = w
Hj
a − vHi

a

case 10 : vHi
a = vHj

a < wHj
a < wHi

a

op = wHj
a − vHj

a

case 11 : v
Hj
a < vHi

a < wHi
a = w

Hj
a

op = wHi
a − vHi

a

(5.2)

Cases from first to third correspond to newly introduced overlapping conditions for

point hyperboxes, cases 4th to 7th correspond to overlapping conditions in FMNN [95],

and the remaining cases are the additional conditions introduced in EFMNN [56]. In

each overlap step, we are adding the partial overlapping check (Eqn. (5.3)) based on

the proportion between hyperboxes.

The importance of considering partial overlapping steps between hyperboxes lessens

the imposition of rigid rules such as sufficient separability between the hyperboxes along

the chosen dimensions that can result in significant information loss and possibly a

sparse DM. Even if two hyperboxes have a slight overlap in a dimension, then there is

a sufficient chance that the attribute is discerning most of the objects of one hyperbox

from that of another hyperbox. Preserving such discernible attributes in the crisp DM

formation is very important in minimizing the information loss in crisp DM formation.

Hence, the following properties are arrived at for deciding when an attribute becomes

a discernible attribute.

1. An attribute is considered as discerning, if it is a non-overlapping dimension.

2. An attribute is considered as discerning, if it is an overlapping dimension, but

the proportion of overlapping is tolerable based on user-defined parameter θ1
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(0 < θ1 ≤ 1).

The partial overlapping check based on proportions is irrelevant to point hyper-

boxes. In all the other cases 4th to 11th, the proportionality of overlap (propoverlap)

is determined as follows:

propoverlap = max(
op

(wHi
a − vHi

a )
,

op

(w
Hj
a − v

Hj
a )

) (5.3)

The amount of overlapping existing in each case is given by op. propoverlap gives

the maximum of proportionality of overlap in both hyperboxes, and it should be lesser

than given θ1 for an attribute to be included in discernibility matrix entry.

Algorithm 5 presents the structure for computing the crisp DM based on IDS. In

Algorithm 5, for every pair of hyperboxes of different classes, an entry M(Hi, Hj)

is created by considering only those attributes over which no overlapping exists, or

permissible partial overlapping exists.

The crisp DM construction through fuzzy hyperboxes is an approximation of crisp

DM based on object space. Therefore, the reduct often computed through crisp DM

is always a sub-reduct of the exact reduct; hence it is an approximate reduct for the

original decision system.

The advantage of the proposed approach is that the discernibility entry preserves

those important attributes which have the potential to discern most of the pair of

objects from both hyperboxes. Hence, attributes with higher discerning power retained

in M , thus paving the way for the construction of approximate reduct containing useful

attributes.

5.3.3 Reduct Computation using Johnson’s Reducer

In the last phase, Johnson’s algorithm [136] is used to find a single reduct through crisp

DM. Johnson’s algorithm is given in Algorithm 6.

Johnson’s algorithm is a greedy hill-climbing algorithm based on maximal discerni-

bility heuristic (MDHeuristic). MDHeuristic is an estimation of the discernibility power

of an attribute, and is equal to the number of DM entries containing the attribute.

Johnson’s algorithm is a sequential forward selection strategy based algorithm and

starts with an empty set reduct. In each iteration, MDHeuristic computes for each

attribute not already included in reduct. The best discerning attribute is included into
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Algorithm 5: Creating Crisp Discernibility Matrix

Input : HBS: Set of hyperboxes, θ1: User-defined tolerance parameter, Cn:

Set of conditional attributes

Output: M: Crisp Discernibility Matrix.

1 for every Hi in |HBS| do
2 for every Hj in |HBS| do

// Compute M(Hi, Hj) for ith hyperbox with each jth hyperbox

of different class labels

3 if d(Hi) ̸= d(Hj) then

4 for each a in Cn do

5 if OverlapInDim(Hi, Hj , a) == False then

6 add(M(Hi, Hj),a);

7 end

8 propoverlap = max
( op

(w
Hi
a −v

Hi
a )

,
op

(w
Hj
a −v

Hj
a )

)
;

9 if OverlapInDim(Hi, Hj , a) == True and propoverlap < θ1

then

10 add(M(Hi, Hj),a);

11 end

12 end

13 end

14 end

15 end

16 return M

the reduct, and the corresponding clauses containing the attribute are removed before

proceeding to the next iteration. The removal of clauses is needed as the discerning

pair of objects (in our case a pair of hyperboxes) require only a single attribute of the

corresponding matrix entries.

Further, the removal of clauses reduces space complexity for successive iterations.

The iteration continues till M becomes empty. After the end condition is reached the

reduct obtained is returned by Johnson’s algorithm.

M is an approximation of the crisp DM for the given dataset, the application of

Johnson’s algorithm on M results in an approximate reduct for the decision systems.

Hence, checking the quality of the approximate reduct is one of the objectives of the
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experiment conducted in Section 5.5.

Algorithm 6: Finding Single Reduct using Johnson’s Reducer

Input : M: Crisp discernibility matrix, Cn: Set of conditional attributes

Output: Red: Approximate reduct

1 Red = ∅;
2 while M not empty do

3 bestMD = 0;

4 for each a in Cn −Red do

5 R = MDHeuristic(a);

6 if R > bestMD then

7 bestMD = R;

8 abest = a;

9 end

10 end

11 Red = Red ∪ {abest} ;

12 RemoveClauses(M,abest);

13 end

14 return Red

5.4 Complexity Analysis of CDM-FMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm

CDM-FMFRS. The following variables are used in the complexity analysis of CDM-

FMFRS.

• |U |: the number of objects.

• |HBS|: the number of hyperboxes.

• |Cn|: the number of numeric conditional attribute.

• |M |: Size of discernibility matrix

Table 5.1 shows the time complexity of the proposed algorithm CDM-FMFRS. In

Table 5.1, the procedure for IDS construction is as same as FDM-FMFRS having a
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time complexity of O(|U | ∗ |HBS| ∗ |Cn|). In Table 5.1, Algorithm 5 with steps 2-

29 constructs the crisp DM based on IDS with a time complexity O(|HBS|2 ∗ |Cn|)
which is also theoretically equivalent to the construction of fuzzy DM in FDM-FMFRS.

Algorithm 6 with steps 2-13 perform reduct computation based on Johnson reducer on

crisp DM using SFS based control strategy with a time complexity of O(|M | ∗ |Cn|2) =

O(|HBS|2 ∗ |Cn|2), since |M | = O(|HBS|2).
So, the total complexity of the proposed algorithm CDM-FMFRS is: O(|U |∗|HBS|∗

|Cn|) + O(|HBS|2 ∗ |Cn|2).
Theoretically, the space complexity of CDM-FMFRS is equivalent to FDM-FMFRS,

i.e., O(|U | ∗ |Cn|) + O(|HBS|2 ∗ |Cn|). But, as described in Section 5.2, practically,

CDM-FMFRS space complexity is measured in terms of space utilization of crisp DM,

which is 1
8×k (‘k’ is the computer real-valued numbered bytes) of space utilization of

fuzzy DM that forms the main advantage of CDM-FMFRS.

Table 5.1: Time Complexity Analysis of CDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity

(phase)

Algorithm 1 2-29. Construction of IDS O(|U | ∗ |HBS| ∗ |Cn|)
Algorithm 5 1-15. Construction of fuzzy DM O(|HBS|2 ∗ |Cn|)
Algorithm 6 2-13. Reduct computation O(|M | ∗ |Cn|2) =

O(|HBS|2 ∗ |Cn|2)

5.5 Experiment

The hardware configuration of the system used for experiments is CPU: Intel(R) i7-

8500, Clock Speed: 3.40GHz × 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit

and Software: Matlab R2017a. The detailed experimental evaluation is conducted on

twenty benchmark numeric decision systems taken from UCI machine learning repos-

itory [20], the details are given in Table 5.2. The proposed algorithm FDM-FMFRS

is implemented in the Matlab environment. In our experiments, we set the sensitive

parameter γ value equal to 4, as recommended [56, 95]. And, based on the selected

theta (θ) parameter in Chapter 3, we deduced that theta values of 0.3 and propoverlap

θ1 value of 0.1 are appropriate in the computation of CDM-FMFRS algorithm.
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Table 5.2: Benchmark Datasets

Dataset Attributes Objects Class

Ionosphere 32 351 2

Vehicle 18 846 4

Segment 16 2310 2

Steel 27 1941 7

Ozone Layer 72 1848 2

Page 10 5472 5

Robot 24 5456 4

Waveform2 40 5000 3

Texture 40 5500 11

Thyroid 21 7200 3

Gamma 10 19020 2

Satimage 36 6435 6

Ring 20 7400 2

Musk2 166 6598 2

Shuttle 9 57999 7

Sensorless 48 58509 11

MiniBooNE 50 129596 2

Winnipeg 174 325834 7

Susy 18 5000000 2

Hepmass 29 (50000)10500000 2

Swarm Behaviour 2400 24017 2

The performance of the proposed algorithm CDM-FMFRS is assessed by comparing

it with FDM-FMFRS and recent state-of-the-art approaches developed for FRS reduct

computation in 2018 and 2019 (same used in Chapter 4 comparative experiment) named

as RMDPS [14], WRMDPS [14], FWARA [131] and PARA [65]. Furthermore, these

comparative approaches (RMDPS, WRMDPS, FWARA and PARA) follow their own

fuzzy model with t-norm, t-conorm and fuzzy similarity relations as given in the re-

spective publications and experiments are conducted in the same environment stated

above. The comparative experiments are conducted in the same system using Matlab

environment. The performance of CDM-FMFRS is examined through a comparative

evaluation with respect to the following objectives:
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1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers

through ten-fold cross-validation (10-FCV).

3. Evaluate the performance on big datasets in achieving increased scalability.

5.5.1 Evaluating Quality of Reduct Computed by Proposed Approach

Reduct computation in CDM-FMFRS is based on a discernibility matrix construction

in the hyperbox space. Since crisp DM on IDS is a transformation of fuzzy DM on IDS,

theoretically, it results in an approximate reduct. Hence, some information loss is also

present naturally.

The details of Gamma measure are precisely the same as followed in Chapter 4 on

page number 71.

Table 5.3 contains the resulting gamma value and reduct length by applying the

proposed algorithm as well as the compared algorithms on the entire dataset. Also,

Table 5.3 represents the gamma measure obtained from the unreduced decision system

(mention as ‘UNRED’ in Table 5.3) to validate the relevance of resulted reducts through

checking whether the obtained reduct is satisfying or reaching near to (UNRED) gamma

measure or not.

Table 5.3 reports the gamma value for only eleven datasets out of twenty benchmark

datasets due to exceeding the memory limit while processing the GKFRS.

Analysis of Results

In Table 5.3, it is observed that CDM-FMFRS have achieved the same gamma value

as obtained by UNRED satisfying the required reduct property fully in all datasets.

It can also observe that the size of reduct for CDM-FMFRS is larger than FDM-

FMFRS for all datasets except Page dataset (in page, all are giving full attribute size).

CDM-FMFRS simply returns as a super-reduct of FDM-FMFRS as it achieves full

gamma value. Due to information loss in crisp DM construction, there is a sparsity in

crisp DM results in a larger reduct size.

Section 5.5.2 explores the relevance of obtained approximate reduct of the FDM-

FMFRS in achieving the construction of the classification learning model, which is the

primary objective of the feature subset selection. Moreover, the comparative analysis
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Table 5.3: Relevance of CDM-FMFRS reduct through Gamma measure

Datsets
Gamma Meausre

UNRED CDM-FMFRS FDM-FMFRS RMDPS WRMDPS FRAWA PARA

Ionosphere 0.99 0.99 0.98 0.99 0.99 0.99 0.99

Segment 0.98 0.98 0.94 0.98 0.98 0.98 0.96

Steel 0.98 0.98 0.94 0.98 0.98 0.98 0.98

Vehicle 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Ozone 1 1 0.99 1 1 1 1

Page 0.87 0.87 0.85 0.87 0.87 0.87 0.87

Texture 0.99 0.99 0.94 0.99 0.99 0.99 0.93

Waveform2 1 1 1 1 1 1 1

Robot 0.97 0.97 0.90 0.97 0.97 0.97 0.97

Satimage 0.99 0.99 0.98 0.99 0.99 0.99 0.98

Ring 1 1 1 1 1 1 1

Datsets
Reduct Length

UNRED CDM-FMFRS FDM-FMFRS RMDPS WRMDPS FRAWA PARA

Ionosphere 32 13 7 27 27 31 18

Segment 16 15 9 15 15 14 10

Steel 27 22 11 21 21 18 15

Vehicle 18 16 15 18 18 17 14

Ozone 72 46 9 39 42 54 29

Page 10 8 8 10 10 10 9

Texture 41 20 8 37 37 37 8

Waveform2 40 40 13 21 22 40 24

Robot 24 24 13 24 24 24 24

Satimage 36 36 14 36 36 36 14

Ring 20 20 17 20 20 20 18

with reduct length and computational time will be elaborated as part of Section 5.5.2

using tenfold cross-validation.

5.5.2 Relevance of the Proposed Approach in Construction of Classi-

fiers

This section contains the comparative experiments conducted among algorithms for

reduct computation, i.e., CDM-FMFRS and FDM-FMFRS, RMDPS [14], WRMDPS [14],

FWARA [131] and PARA [65]. The relevance of reduct in inducing a classification

model is studied through ten-fold cross-validation (10-FCV) experiments. In each iter-

ation, one fold is preserved for the testing data, and the remaining nine folds are used

for training data. A reduct algorithm is applied to the training data. So, based on the

reduct that is obtained, the classification model is constructed for comparison. The
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classification accuracy of the resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-

tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier

(Chapter 3) is also employed for inducing classification. To examine the relevance of

reducts, we are also constructed the classification model with an unreduced dataset

(mentioned as ‘UNRED’ in the given Tables) for comparison.

Table 5.4, Table 5.5 and Table 5.6 presents the results of the 10-FCV experiment

for classification accuracies with CART, kNN, and kNN-FMNN respectively. Similarly,

Table 5.7 and Table 5.8 illustrates the reduct length and computational time of the

algorithms. Fig. 5.1, Fig. 5.2, Fig. 5.3, Fig. 5.4 and Fig. 5.5 depict the box-plot rep-

resentation of Table 5.4, Table 5.5, Table 5.6, Table 5.7 and Table 5.8 respectively.

The results reported for FDM-FMFRS and other compared algorithms are as same as

given in Chapter 4 (Section 4.7.2) and are reproduced here for each comprehension of

comparative analysis with the proposed algorithm CDM-FMFRS.

The detailed student’s paired t-test analysis and how the values are represented in

Tables 5.4, 5.5, 5.6, 5.7 and 5.8 are precisely the same as followed in Chapter 4 on page

number 74.

The last three lines in each Table 5.4, 5.5, 5.6, 5.7 and 5.8 correspond to Average

(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over

which an algorithm is executing vary from one to another. Hence, the average of

individual mean values is reported in two forms. Average (NOD) corresponds to the

average value obtained by an algorithm on datasets where it could be evaluated along

with reporting the number of datasets (NOD) involved in brackets. CAverage value

depicts the average of the individual mean obtained by restricting to only those datasets

in which all algorithms could be evaluated. For the comparative analysis, CAverage

plays an important role. The last line indicates the count of the number of statistically

loss(‘-’), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the

proposed CDM-FMFRS.

Note: The ‘*’ sign in Tables 5.4, 5.5, 5.6, 5.7 and 5.8 shows the corresponding

algorithm is intractable to a particular dataset to compute the reduct due to insufficient

memory. And, ‘#’ sign represents the scenario of non-termination of the code even after

several hours of computation.

In Figures 5.1, 5.2, 5.3, 5.4 and 5.5 , the range of Y-axis varies based on obtained

103



5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

results in each dataset. For large datasets, as the results are available only for CDM-

FMFRS and FDM-FMFRS algorithms, Figures are respectively given in Figure (b)

part.
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS, CDM-FMFRS and UNRED

Figure 5.1: Boxplot for Classification Accuracies Results with CART of Table 5.4
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS, CDM-FMFRS and UNRED

Figure 5.2: Boxplot for Classification Accuracies Results with kNN of Table 5.5
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by FDM-FMFRS, CDM-FMFRS and UNRED

Figure 5.3: Boxplot for Classification Accuracies Results with kNN-FMNN of Table 5.6
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

(a) Datasets having computational time results by all algorithms

(b) Datasets having computational time results by FDM-FMFRS and CDM-FMFRS

Figure 5.4: Boxplot for Computational Time Results of Table 5.7
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

Analysis of Results

Classification accuracy results

Table 5.4, Table 5.5 and Table 5.6 show the classification results of CART, kNN and

kNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm

CDM-FMFRS is higher than compared algorithms (including FDM-FMFRS) and very

near to UNRED.

In Table 5.4, considering the overall 83 accuracy results across all the compared

algorithms (including FDM-FMFRS) and UNRED in CART classifier, the cumulative

lose/win/tie results are 12/3/68. In 68 classification results, the proposed algorithm

CDM-FMFRS performed statistically similar to compared algorithms and UNRED.

Also, it is observed that wherever CDM-FMFRS performed a little inferior to com-

pared algorithms and UNRED (i.e., 3 results), the differences in average mean are very

small. In the remaining 12 results, the proposed algorithm FDM-FMFRS performed

significantly better than the compared algorithms, and here also, it is observed that

the difference in mean value is small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table 5.5 and Ta-

ble 5.6, majorly all algorithms performed statistically similar to each other. The cumu-

lative lose/win/tie results in kNN classifier is 9/10/64 and in kNN-FMNN is 11/4/68.

The further observation analysis details are given below.

CDM-FMFRS achieved statistically better than RMDPS, WRMDPS and PARA

algorithms in Waveform2 dataset in all classifiers, as shown in Fig. 5.1, 5.2 and 5.3. In

Shuttle datasets, CDM-FMFRS performed statistically inferior to FDM-FMFRS and

UNRED in all classifiers, but differences in mean classification accuracy is very less.

Based on results in Table 5.4 and Fig. 5.1, in Segment, Steel, Robot, MiniBooNE

and Winnipeg datasets, CDM-FMFRS incurred statistically better classification re-

sults than FDM-FMFRS in CART classifier. Also, It resulted statistically better than

RMDPS, PARA and UNRED in Segment dataset. In Shuttle and Sensorless datasets,

CDM-FMFRS obtained statistically inferior results than UNRED, but the difference

in their results is almost quite low, for example, in Shuttle, CDM-FMFRS is 98.68 and

UNRED is 99.96. Moreover, CDM-FMFRS resulted in statistically similar or significant

results in most of the datasets in CART classifier.

Similar conclusions is obtained from results given in Table 5.5 and Fig. 5.2 for the
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5.5 Experiment

(a) Datasets having reduct length results by all algorithms

(b) Datasets having reduct length results by FDM-FMFRS and CDM-FMFRS

Figure 5.5: Boxplot for Reduct Length Results of Table 5.8
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kNN classifier. CDM-FMFRS achieved statistically better results than FDM-FMFRS

in Texture, Satimage, Musk2 and MiniBooNE datasets. CDM-FMFRS is statistically

inferior to compared algorithms (except PARA) in Texture dataset, but the difference

in their average classification accuracies are very less on these datasets. CDM-FMFRS

performed statistically inferior to FDM-FMFRS and UNRED in Sensorless dataset

with a high difference in their average classification accuracy. CDM-FMFRS resulted

in statistically similar or significant results in most of the datasets in kNN classifier.

In kNN-FMNN classifier, based on Table 5.6 and Fig. 5.3, CDM-FMFRS obtained

statistically better than FDM-FMFRS in Segment, Musk2, Sensorless and MiniBooNE

datasets. However, CDM-FMFRS performed statistically inferior to FDM-FMFRS

in Winnipeg datasets with a minor difference in their average classification accuracy.

CDM-FMFRS resulted in statistically similar results in most of the datasets in kNN-

FMNN classifier.

Eventually, it can be seen that the idea of computing the approximate reduct by

CDM-FMFRS is satisfactory and effective in terms of classification results in the given

classifiers. Also, It is further observed that RMDPS, WRMDPS, FWARA and PARA

algorithms could not obtain reduct in Shuttle, Musk2, Sensorless, MinibooNE and

Winnepeg datasets due to memory overflow (Sign ‘*’) or non-termination even after 24

hours (Sign ‘#’) at given system configuration where CDM-FMFRS can obtain reduct

in few seconds.

Computational time results

In terms of computational time given in Table 5.7 and Fig. 5.4, CDM-FMFRS al-

gorithm achieved significantly less computational time than compared algorithms in

all datasets and evidently seen that the cumulative lose/win/tie results of compared

algorithms are 63/2/1. Against FDM-FMFRS, CDM-FMFRS obtained statistically

less computational time in most of the datasets. The proposed method CDM-FMFRS

obtained the lowest CAverage value (1.68 seconds) on datasets, whereas compared al-

gorithms and UNRED with CAverage showed a range between 3 and 267 seconds. The

average mean value of CDM-FMFRS on 17 datasets is 35.15 seconds, which is much

smaller than FDM-FMFRS and compared algorithms. Even the resulting standard

deviation of computation time in 10-FCV carried very less variation as compared with

compared approaches showing that the methodology is reliable.
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5.5 Experiment

Basically, both FDM-FMFRS and CDM-FMFRS algorithms achieved much less

computational times than other algorithms. This is due to utility arising from FMNN

preprocessing, which makes both algorithms operate in hyperbox space rather than

object space where |HBS| << |U | in all datasets. Further, it is observed that CDM-

FMFRS achieved better computation time than FDM-FMFRS. This is attributed to

using crisp DM in CDM-FMFRS in contrast to fuzzy DM in FDM-FMFRS.

Reduct length results

The results given in Table 5.8 and Fig. 5.4 established that CDM-FMFRS obtained

reduct with a statistically significant larger size than FDM-FMFRS on most of the

datasets because of adapting crisp DM formulation against fuzzy DM formulation. In

FDM-FMFRS, the partial fuzzy membership is calculated based on s-norm computa-

tion, and it satisfies the total required s-norm for the entire DM entry with a fewer

number of attributes. In FDM-FMFRS, if one attribute is selected, then it contributes

some partial membership value to all the entries in fuzzy DM. Whereas, in CDM-

FMFRS, if one attribute is selected, then it contributes only to the entries in crisp

DM containing that attribute and does no effect on the remaining entries. Hence, it

is observed that the average reduct size in FDM-FMFRS is lesser than CDM-FMFRS

in most of the datasets. Evidently, the cumulative lose/win/tie results of compared

algorithms w.r.t. CDM-FMFRS are 21/27/18.

Moreover, CDM-FMFRS obtained a statistically lesser reduct size than compared

algorithms (except FDM-FMFRS) on a few datasets, but the quality of reduct from

CDM-FMFRS in terms of average classification accuracies statistically is not compro-

mised.

5.5.3 Role of crisp DM in increased scalability of CDM-FMFRS over

FDM-FMFRS

On given datasets, we have seen that in spite of getting higher reduct lengths, CDM-

FMFRS methodology has obtained significant gain in computational time over FDM-

FMFRS. It is seeing that despite restricting to crisp DM construction, CDM-FMFRS

is able to give good quality approximate reduct, which could induce a classification

model with comparable or better accuracy. So far, all the experiments are conducted

on such datasets over which compared algorithms can be executed for demonstrating
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5. VARIANT OF FDM-FMFRS FOR FEATURE SUBSET SELECTION

the quality of CDM-FMFRS approximate reduct comparatively.

In this section, we demonstrate the improved scalability of CDM-FMFRS over

FDM-FMFRS, which is the prime objective for the proposed work. It is also to be noted

that all the other FRS reduct approaches are not executable on considered datasets in

this experiment owing to memory overflow.

Table 5.2 also gives details of the big numeric datasets (Susy, Swarm Behaviour and

Hepmass) used in this experiment. Both datasets Susy, Hepmass and Swarm Behaviour,

along with few given datasets from Table 5.2, are considered for experiments. A random

sample of Hepmass dataset is considered with 500000 objects.

We have applied CDM-FMFRS and FDM-FMFRS on these datasets, and detailed

results are reported in Table 5.9. As the stage for FMNN preprocessing is common

to the algorithm, the number of hyperboxes and computational time (in seconds) for

FMNN preprocessing is specified only once. Each column in Table 5.9 reports the result

size of DM matrix (in MB), DM construction time (in seconds), Reduct Computation

Time (in seconds), Reduct Size and Total Time (in seconds) of both CDM-FMFRS

and FDM-FMFRS algorithms along with percentage gain of CDM-FMFRS over FDM-

FMFRS.

Analysis of results

Based on the results in Table 5.9, CDM-FMFRS achieved significant gain in DM mem-

ory size as compared with FDM-FMFRS with the same percentage of 87.50% in all

datasets. Because in Matlab environment, a real number is represented in 8 bytes, and

the logical number is represented in 1 byte. Hence, crisp DM size of CDM-FMFRS is

1/8 of fuzzy DM size of FDM-FMFRS. In other programming environments where the

logical value is represented in 1 bit, we would obtain a reduction of 1/64 size of fuzzy

DM. Also, CDM-FMFRS obtained a significant gain on time for the construction of

DM over FDM-FMFRS with a range of 8-60% on given datasets.

Furthermore, there is a significant percentage gain in reduct computation time on

constructed DM in CDM-FMFRS over FDM-FMFRS, more than 90% in all datasets.

This is due to Johnson algorithms [136] having lesser computations when applied to

crisp DM in comparison to being applied on fuzzy DM. Hence, the total computation

time gain of CDM-FMFRS was achieved with a range of 4 to 88.79% in given datasets

against FDM-FMFRS algorithm.
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5.5 Experiment

Table 5.9: Experiment Results of CDM-FMFRS and FDM-FMFRS

Datsets
FMNN DM Size DM Time

NoH ToFM CDM-

FMFRS

FDM-

FMFRS

Gain

(%)

CDM-

FMFRS

FDM-

FMFRS

Gain

(%)

Shuttle 13 0.33 0.0006 0.0045 87.50 0.0185 0.0201 7.92

Sensorless 26 0.37 0.0136 0.1088 87.50 0.0205 0.0233 12.11

MiniBooNE 2074 144.25 32.82 262.64 87.50 2.74 6.0281 54.59

Winnipeg 3881 246.18 952.27 7618.19 87.50 47.14 82.01 42.52

Susy 13356 7254.8 630.78 5048.32 87.50 82.30 90.42 8.92

Hepmass 26212 2998.8 4741.12 * * 478.8 * *

SwarmB 2528 856.95 2742.6 * * 121.8 * *

Datsets
Reduct Time Reduct Size Total Time

CDM-

FMFRS

FDM-

FMFRS

Gain

(%)

CDM-

FMFRS

FDM-

FMFRS

Gain

(%)

CDM-

FMFRS

FDM-

FMFRS

Gain

(%)

Shuttle 0.0007 0.012 94.65 4 5 20.00 0.3505 0.3658 4.19

Sensorless 0.0013 0.034 96.22 7 7 0.00 0.3586 0.3867 7.26

MiniBooNE 1.04 81.31 98.73 50 22 -127.27 154.12 231.5956 33.45

Winnipeg 32.53 2323.16 98.60 167 20 -735.00 298.08 2651.35 88.76

Susy 4.82 831.01 99.41 18 18 0 7341.12 8175.43 10.20

Hepmass 6.47 * * 26 * * 3484.07 * *

SwarmB 5.16 * * 50 * * 983.94 * *

Note:-‘*’ represents non-executable due to memory overflow. NoH: Number of Hyperboxes,

ToFM: Time for FMNN construction (in seconds), Gain (%): Percentage gain of

CDM-FMFRS over FDM-FMFRS, DM: Discernibility Matrix, DM Memory Size (in

MegaBytes), DM Time (in Seconds), Reduct Time (in Seconds), Total Time (in Seconds).

In Susy dataset, CDM-FMFRS computed reduct in a significantly lower time of

around 5 seconds than 831 seconds in FDM-FMFRS. Additionally, DM construction

time for CDM-FMFRS has a slight gain of 8% against FDM-FMFRS, and also a sig-

nificant reduction in the size of DM in RAM is obtained in CDM-FMFRS. DM size in

CDM-FMFRS (630.78 MB) is 1/8 of DM size of FDM-FMFRS (5048.32 MB).

CDM-FMFRS could obtain reduct in Hepmass and SwarmB datasets, whereas

FDM-FMFRS failed to do so because of memory overflow. Because the current system

employed with 32 GB RAM and hence the requirement of fuzzy DM for FDM-FMFRS

for Hepmass dataset in FDM-FMFRS would have been 37.04GB (as the size of crisp DM

is 4.63GB size, therefore fuzzy DM size would be 37.04 ((4.63GB)× 8 (> 32GB)) size
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and which is the reason for FDM-FMFRS is failing the reduct computation as required

memory size exceeds available memory of 32 GB. This experiment vividly demonstrates

the increased applicability of CDM-FMFRS to much larger numeric datasets and es-

tablishes the relevance of CDM-FMFRS over FDM-FMFRS.

Based on these results, one can clearly say that crisp DM formulation significantly

reduces the size of DM and reduct computation time. CDM-FMFRS facilitates in-

creased scalability with the disadvantage of a higher length reduct than FDM-FMFRS

due to information loss in the crisp DM formulation. Even though we obtain a higher

size reduct in some datasets through crisp formulation, the quality of reduct is not com-

promised as clearly established in obtained Gamma measure showing in Section 5.5.1

and comparable classification model construction in Section 5.5.2. Even, tolerance pa-

rameter enriched the quality of reduct. Hence, we recommend CDM-FMFRS as an

alternative to FDM-FMFRS in a situation where FDM-FMFRS fails to obtain reduct

owing to a memory overflow error.

5.6 Summary

The proposed work (CDM-FMFRS) is an improved mechanism of FDM-FMFRS method

to enhance the scalability of reduct computation in hyperbox-space. In CDM-FMFRS,

a novel approach for crisp DM formulation in IDS is proposed subject to tolerance

criteria for preserving maximal discernible attributes. Hence, the approach achieved

significant gain in computation time over FDM-FMFRS and other existing FRS reduct

approaches on given benchmark datasets with similar or better classification accura-

cies over induced different classifiers. Even the space utilization of crisp DM is 1
8×k of

space utilization of fuzzy DM. Moreover, CDM-FMFRS approach can handle very large

datasets where FDM-FMFRS and other existing state-of-art FRS reduct approaches

fail to obtain reduct. In the future, distributed/parallel algorithms for CDM-FMFRS

will be investigated for scaling to such voluminous datasets requiring memory beyond

the availability in a single system. CDM-FMFRS resulted in higher length reduct due

to crisp DM formulation. So, we improve the crisp DM formulation with objective of

reducing reduct length in the future work.
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Chapter 6

Incremental Feature Subset

Selection using Fuzzy Rough Sets

with Fuzzy Min-Max Neural

Network Preprocessing

Chapter 4 and Chapter 5 provide FRS-based feature subset selection approaches. These

approaches are restricted to batch processing; the entire data and its underlying struc-

ture are provided prior to training at once. However, they are not designed for dealing

with dynamic datasets. When a new sample data arrives, these approaches have to

recompute and reconstruct the model from scratch to learn new data and compute a

reduct. Hence, these FRS algorithms suffer a lack of model adaptability, i.e., not contin-

uously integrating new information into existing models on continually succeeding new

information/data. One solution is to implement the incremental technique to handle

dynamic datasets and update a reduct dynamically on data arrival. The challenge of

the incremental strategy is to retain the previously acquired knowledge while acquiring

new information. This chapter focuses on an incremental FRS-based feature selection

algorithm using FMNN preprocessing.

Section 6.1 briefly introduces the literature survey of incremental FRS approaches

and their limitations. Section 6.2 presents the motivation of the proposed algorithm.

Section 6.3 briefly describes the functioning of the proposed incremental algorithm

IvFMFRS. Section 6.4 describes the complexity analysis of proposed algorithm IvFM-
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FRS. Section 6.5 reports a series of experiments and comparative analysis of IvFMFRS

with state-of-the-art incremental approaches.

6.1 Existing Approaches

Based on the literature reviewed in Chapter 4, many of the existing FRS approaches

are implemented in a classical batch setting, which can handle all data at once prior to

training, and training can rely on the assumption that the data and its underlying struc-

ture are static [29, 112]. These approaches suffer from continuous model adaptation,

i.e., not continuously integrating new information into existing models on constantly

(subsequently) arriving new information/data. Hence, this results in the recomputation

and reconstruction of new models from scratch, which is repeatedly a time-consuming

task.

The incremental learning process is a machine learning paradigm that extends and

learns the existing model’s knowledge whenever new examples emerge without losing

previous information/data [29]. The primary objective for incremental learning is to

update or learn a continual basis of knowledge on constant arriving at new data. Incre-

mental learning drives the limit of current learning systems over time with data [29].

Thus, this property becomes essential for discovering knowledge and an important facet

of human intelligence.

In the last decades, several researchers have explored how to process dynamic data

through incremental learning methodologies that minimize the complexities of pro-

cessing and storage. This idea has prompted several researchers to investigate the

incremental perspective to feature selection in the framework of RST for categorical

decision systems. These ideas have been investigated in various scenarios, such as

the variation of feature set (adding and deleting features) and the sample set (adding

and deleting objects), respectively. For incrementally adding and deleting features,

some incremental reduct computation algorithms are introduced based on information

entropy [108], discernibility matrix [126], knowledge granularity [43, 75] and positive

domain [91]. For incrementally adding and deleting objects, there are some incremental

algorithms based on information entropy [15, 89, 107], discernibility matrix [54, 110],

knowledge granularity [44], positive domain [90], bijective soft sets [68] and represen-

tative instances [111].
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6.1 Existing Approaches

There have been a few studies on FRS based incremental feature selection algo-

rithms. As our work is based on an incremental approach under object space variation,

the associated literature is briefly described here.

In 2017, Yang et al. [113] proposed two incremental algorithms for feature selection

based on FRS for dealing with dynamic datasets. These two incremental algorithms

are designed primarily upon the arrival of one sample and multiple samples over time.

On arrival of the sample subset (one or multiple), the approach updates the relative

discernibility relation for each conditional attribute. Then, an incremental process is to

update the current reduct by adding new attributes and deleting redundant attributes

based on updated discernibility relations.

Again, in 2018, Yang et al. [112] proposed two incremental feature selection algo-

rithms (IV-FS-FRS(1) and IV-FS-FRS(2)) based on FRS, which is an extension of [113]

on dynamic datasets. These approaches provide a way to add and delete attributes from

the current reduct based on updated relative discernibility relations on sample subsets

arrival. The authors designed two algorithms to update the current reduct with each

incoming subsets arrival. One (IV-FS-FRS(1)) is to incrementally update only rela-

tive discernibility relation on subsequent arrival of sample subsets but only perform

feature selection when no further sample subset is left. Another (IV-FS-FRS(2)) is to

update the relative DM incrementally with an incoming sample and then update the

corresponding current reduct with adding and deleting attributes through an updated

discernibility matrix. We are using IV-FS-FRS(2) algorithm for our comparison with

proposed algorithm.

The aforementioned incremental algorithms perform discernibility matrix-based

computation [112, 113] and their corresponding feature selection. However, these al-

gorithms require a large amount of memory space which is sometimes intractable for

large decision systems.

In 2020, Zhang et al. [128] proposed an incremental feature selection algorithm

(AIFWAR) based on FRS using information entropy on new incoming subsets. Infor-

mation entropy doesn’t require much memory compared to relative discernibility matrix

construction. In [128], the author aims first to select representative instances from the

arriving sample subset using FRS concept, and then an incremental mechanism of the

information entropy is measured using representative instances. Then, a corresponding

incremental feature selection approach is developed by using information entropy. Fi-
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nally, a wrapper procedure is applied to the resultant feature subset to select the best

features that achieve maximum accuracy by inducing a classification model.

In 2020, Peng et al. [66] introduced a positive region-based incremental feature

selection (PIAR) using FRS concepts. The author’s idea is to select key instance

set containing representative instances on arriving sample subsets. These instances

consist of all instances that do not reach the maximum positive region values. Then

based on key instances, the incremental mechanism of updating current reduct with

adding attributes with the current reduct and eliminating redundant attributes using

dependency degree measure.

6.2 Motivation

The aforementioned incremental FRS algorithms [112, 113] require object-based com-

putation that impacts an increase in space and computation overhead. Sometimes it is

impossible to load discernibility matrix entries on memory for new information/data.

Even selecting the representative instances, given in [66, 128], from incoming instances

also requires additional computational time. They require the generation of fuzzy sim-

ilarity matrices beforehand to select representative instances. An increase in object

space would adversely impact computational overhead on these approaches.

Based on the results of FDM-FMFRS in Chapter 4, we have established the utility

of the granular computing aspect for reduct computation in a batch environment. And

in the entire literature review of incremental mechanism, we have not noticed any such

utilization of granular computing aspect in incremental reduct computation, which can

significantly reduce time and space computation. This motivates us to investigate the

incremental perspective of FRS approach on reducing the space complexity that can

enhance the scalability of incremental FRS reduct computation.

In this chapter, such an intuitive idea is introduced for a solution to incremental

FRS feature subset selection by using the concept of hyperbox utilizing FMNN as a

preprocessor.
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6.3 Proposed Approach

This section describes the proposed FRS incremental algorithm IvFMFRS (Iv:Incremental

version, FM: Fuzzy Min-Max Neural Network, FRS: Fuzzy Rough Set) to compute an

approximate reduct utilizing FMNN learning model. The proposed algorithm has ex-

tended the FDM-FMFRS, described in Chapter 4, to an incremental perspective for

computing a reduct for the real-valued dynamic decision system, where samples data

are arriving sequentially.

6.3.1 Incremental Environment Description and Notation

This section describes the incremental environment and the used symbols/notations in

algorithms. The description of function and notation inside the Algorithm [7], Algo-

rithm [8] and Algorithm [9] are mentioned in Table 6.1. Also, we present a flowchart

of IvFMFRS algorithm for better understandability and as depicted in Fig. 6.1.

Table 6.1: Description of Function Name and Notation in Algorithms

Notation Meaning

FM Represents FMNN learning model.

FM.Belongs(x) Checks absolute membership value (Eqn. (2.2)) of x on any

existing hyperboxes of same class.

Next Breaks the current iteration and continues the next iteration in

the loop.

FM.HMemb(x) Finds the highest membership value correspond to x with ex-

isting hyperbox of same class label.

FM.Exp(H,x) Checks expansion of H to include x is possible or not using

expansion criterion Eqn. (2.6).

Remove(HBS,H) Removes H from set HBS.

FM.Expand(H,x) Expands the hyperbox H to include x using Eqn. (2.7) and

Eqn. (2.8).

Insert(HBS,H) Inserts newly H into set of hyperbox HBS.

Update(HBS,H) Updates the expanded hyperbox H in the set HBS.

FM.Create(x) Creates a new point hyperbox to include x.

A ∪B Merge of A and B.

Here, we assume that the data is presented in sample subsets (U1, U2, U3, . . . ) that
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arriving sequentially. So, in each iteration, a new sample subset is provided to an

algorithm to perform incrementally.

Every incremental algorithm starts with the corresponding base algorithm. For our

case, we used FDM-FMFRS, described in Chapter 4, as the base algorithm. Initially,

we compute a set of hyperboxes HBS1, fuzzy DM M1 and base reduct R1 through

FDM-FMFRS for a sample U1 to further incremental computation. For the next sample

subset arrival U2, we apply our incremental IvFMFRS with given HBS1, M1 and R1 to

incrementally compute HBS2, M2 and reduct R2. Similarly, the algorithm is repeated

for subsequent samples.

Figure 6.1: Flow chart of IvFMFRS
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Basically, for arriving sample Ui+1, IvFMFRS is initialized with HBSi, Mi and Ri

as inputs to compute HBSi+1, Mi+1 and Ri+1 as outputs.

The proposed incremental step of Ri+1 computation involves the following steps:

1. Updating HBSi with incremental training on Ui+1 as HBSi+1.

2. Updating Mi with HBSi+1 as Mi+1.

3. Updating Ri on Mi+1 for getting Ri+1.

6.3.2 Updating fuzzy hyperboxes through FMNN learning model

This section shows the updation of existing hyperboxes HBSi by training FMNN with

a new batch sample Ui+1. The procedures for implementing FMNN is similar to the

proposed work kNN-FMNN as described in Chapter 3. Algorithm [7] performs updation

of hyperboxes. For incubation of an input pattern x in hyperbox space, if x gives an

absolute membership value with any existing hyperbox representing the same class

using Eqn. (2.2), then no modification on hyperbox takes place. If x is outside the

hyperbox, then a hyperbox H corresponding to the highest membership value is selected

to verify whether it can be expanded or not using expansion criterion Eqn. (2.6). If

yes, then hyperbox H is expanded to accommodate input x by adjusting their min and

max points of H using Eqn. (2.7) and Eqn. (2.8). If not, then a hyperbox with the next

highest membership value is chosen for expansion to include pattern x. This process

continues until any hyperbox can include the input pattern x. If none of the hyperboxes

is met expansion criteria, then a new point hyperbox is created to incorporate the input

pattern x.

After completion of training with all input patterns in Ui+1, hyperboxes are divided

into three categories:

1. Hyperboxes exist in HBSi but are not modified.

2. Hyperboxes exist in HBSi but are modified as part of the expansion process.

These hyperboxes are removed from HBSi and saved in set HBSmod.

3. Newly created hyperboxes that represents input patterns are saved in set HBSnew.

These hyperboxes may be updated as part of the expansion process.

127



6. INCREMENTAL FEATURE SUBSET SELECTION USING FUZZY
ROUGH SETS WITH FUZZY MIN-MAX NEURAL NETWORK
PREPROCESSING

Hence, the final hyperbox space HBSi+1 = HBSi ∪HBSmod ∪HBSnew.

Algorithm 7: Updating Fuzzy Hyperboxes through FMNN

Input : Ui+1, HBSi

Output: HBSi+1, HBSi, HBSmod, HBSnew

1 Initialize, HBSmod = ∅, HBSnew = ∅;
// Let FM represents FMNN model comprises HBSi ∪HBSmod ∪HBSnew

2 for every x in Ui+1 do
3 if FM.Belongs(x) == True then
4 Next;
5 end
6 HS = FM.HMemb(x);
7 Flag = 0;
8 if HS ̸= ∅ then
9 for every H in HS do

10 if FM.Exp(H,x) == True then
11 if H ∈ HBSi then
12 Remove(HBSi, H); FM.Expand(H,x);

13 Insert(HBSmod, H);

14 else if H ∈ HBSnew then
15 FM.Expand(H,x); Update(HBSnew, H);

16 else if H ∈ HBSmod then
17 FM.Expand(H,x); Update(HBSmod, H);
18 Flag = 1;
19 Break;

20 end

21 end
22 if Flag == 0 then
23 Hnew = FM.Create(x);
24 Insert(HBSnew, Hnew);

25 end

26 end

27 else
28 Hnew = FM.Create(x);
29 Insert(HBSnew, Hnew);

30 end

31 end

32 HBSi+1 = HBSi ∪Hmod ∪Hnew;

33 return HBSi+1, HBSi, HBSmod, HBSnew
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6.3.3 Updating Fuzzy Discernibility Matrix

This section focuses on updating fuzzy DM (Mi), and the approach depends on the

categories of hyperboxes presented in the previous section. Algorithm [8] performs an

update of fuzzy DM. Hyperboxes in the first category HBSi are unmodified; hence they

don’t contribute to changes into any existing fuzzy DM entries. In an ideal scenario,

we have the hyperboxes in HBSi that are representative of all-new patterns in Ui+1.

In that case, no modification of hyperboxes structure occurs which mean HBSi+1 =

HBSi. Hence, there is no update of fuzzy DM, and the reduct remains unchanged. So,

Ri becomes Ri+1 and the algorithm immediately returns reduct. The chance for this

ideal scenario increases as more training data arrives.

Whereas in the second category, modified hyperboxes HBSmod change the learn-

ing model by adjusting their V (min point) and W (max point) values so that their

respective entries in Mi need to be modified.

For the third category, the hyperboxes in HBSnew are the new objects augmented

to current IDS. For their fuzzy DM entries, corresponding new entries are added to the

existing fuzzy DM. These hyperboxes are compared with different class hyperboxes of

HBSi+1.

Modified entries of fuzzy DM resulting from second and third category hyperboxes

are removed from Mi and placed in a new collection Mnew representing either new or

updated entries of current fuzzy DM.

The final fuzzy DM is Mi+1 = Mi ∪Mnew.

6.3.3.1 Remark

There is an advantage of the granularity concept in our proposed algorithm over any

object-based incremental learning approach. In existing object-based incremental ap-

proaches [66, 112, 113, 123, 128], for every new object arrival, new fuzzy DM entries

must be created which is a time-consuming task. But in the proposed approach, for

all the new training input patterns that have obtained absolute membership into any

of the existing hyperboxes, no fuzzy DM update is required reducing frequent alter-

ations of fuzzy DM. This significantly diminishes the computational times and space

requirements of the proposed approach.
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Algorithm 8: Updating Fuzzy Discernibility Matrix

Input : HBSi, HBSmod, HBSnew, Mi

Output: Mi+1, Mnew

1 Initialize, Mnew = ∅;
2 for each Hm ∈ HBSmod do

3 for each H ∈ (HBSi ∪HBSmod) do

4 if d(Hm) ̸= d(H) then

// Update Mi(H
m, H) using Eqn. (4.17)

5 Mnew = Mnew ∪ {Mi(H
m, H)};

6 end

7 end

8 end

// Remove all updated entries from Mi

9 for each Hn ∈ HBSnew do

10 for each H ∈ {HBSi ∪HBSmod ∪HBSnew} do
11 if d(Hn) ̸= d(H) then

// Compute M(Hn, H) using Eqn. (4.17)

12 Mnew = Mnew ∪ {M(Hn, H)};
13 end

14 end

15 end

16 Mi+1 = Mi ∪Mnew;

17 return Mi+1, Mnew

6.3.4 Incremental Computation of Reduct

Algorithm [9] performs an update of current reduct Ri to become Ri+1. After updating

fuzzy DM, as discussed in the above section, the incremental process for updating

current reduct Ri is performed by using two case strategies, as summarized below:

Case 1: SATMnew(Ri) == SATMnew(Cn);

Case 2: SATMnew(Ri) ̸= SATMnew(Cn);

If the Case 1 holds, means, the current reduct Ri is satisfied the newly added or

modified entries in Mnew and Ri is already satisfied unmodified entries (old records)

of Mi. Hence, the updation of current reduct is not required and existing Ri becomes

reduct of Mi+1. So, current reduct Ri+1 is Ri for sample Ui+1.
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If Case 2 is satisfied, means, the current reduct Ri doesn’t satisfy some of the newly

added entries in Mnew leading to requirement for update of Ri for becoming reduct.

The process of computing Ri+1 is started with initializing Ri+1 to Ri. The remaining

computations are done in two phases.

In the first phase, the additional attributes are added (∀c ∈ Cn − Ri+1) into Ri+1

using SFS strategy apply only on Mnew. Here in each iteration, SAT measure is

computed with a different attribute that is not already included in Ri+1, given in

Eqn. (4.16) for (Ri+1 ∪ {c}) ∀c ∈ Cn − Ri+1. Then, the attribute having a maximum

SAT measure is included in Ri+1. This strategy for attribute selection is repeated

till SATMnew(Ri+1) = SATMnew(Cn). The SFS strategy of reduct updation is only

restricted to Mnew as Ri+1 already satisfies unmodified entries in Mi.

The modified Ri+1 is a super reduct for Mi+1(= Mi ∪Mnew) and can contain the

redundant attributes. Hence, in the second phase, SBE strategy in [30], which is an

efficient third order complexity approach, is followed on Mi+1 to remove redundant

attributes in Ri+1. Here for each attribute ‘c’ in Ri+1, it is checked whether omission

of the attribute ‘c’ affects SAT measure. It is verified whether SATMi+1(Ri+1−{c}) is

one or not. If one, then the attribute ‘c’ is redundant and hence removed from Ri+1.

Otherwise, the attribute ‘c’ is indispensable and retained in Ri+1.

Finally, the current Ri+1 is the final reduct for samples
⋃i+1

j=1 Uj .

6.4 Complexity Analysis of IvFMFRS Algorithm

This section shows the time and space complexity analysis of the proposed algorithm

IvFMFRS. The following variables are used in the complexity analysis of IvFMFRS.

• |Ui+1|: the number of objects in Ui+1.

• |HBSi|: the number of all hyperboxes in HBSi based on Ui.

• |HBSi+1|: the number of all hyperboxes in HBSi+1 based on Ui+1.

• |HBSmod|: the number of modified hyperboxes in HBSmod.

• |HBSnew|: the number of newly created hyperboxes in HBSnew.

• |Cn|: the number of numeric conditional attribute.
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Algorithm 9: Incremental Way to Compute Reduct

Input : Ri, Mnew, Mi+1

Output: Ri+1

1 if SATMnew(Ri) == SATMnew(Cn) then

2 Ri+1 = Ri;

3 else

4 Ri+1 = Ri;

5 while SATMnew(Ri+1) ̸= SATMnew(Cn) do

6 For each c ∈ Cn −Ri+1, Compute SATMnew(Ri+1 ∪ {c});
7 Select feature co ∈ Cn −Ri+1, satisfying

8 SATMnew(Ri+1 ∪ {co}) = maxc∈Cn−Ri+1SATMnew(Ri+1 ∪ {c});
9 Ri+1 = Ri+1 ∪ {co};

10 end

// Compute SATMi+1(Cn)

11 for each c ∈ Cn −Ri+1 do

// Compute SATMi+1(Ri+1 − {c})
12 if SATMi+1(Cn) == SATMi+1(Ri+1 − {c}) then

13 Ri+1 = Ri+1 − {c};
14 end

15 end

16 end

17 return Ri+1

• |Mnew|: Size of discernibility matrix Mnew.

• |Mi+1|: Size of discernibility matrix Mi+1.

• |Ri|: Current reduct based on Ui.

• |Ri+1|: Updated reduct based on Ui+1.

Table 6.2 shows the time complexity of the proposed algorithm IvFMFRS for one

iteration from Ui to Ui+1. In Table 6.2, Algorithm [7] with steps 2 to 32 performs

updation of IDS using FMNN, with time complexity of O(|Ui+1| ∗ |HBSi+1| ∗ |Cn|). In

Table 6.2, Algorithm 8 with steps 2 to 16 incrementally computes fuzzy DM (Mi) based

on IDS from Algorithm 7 with time complexity of O(|HSmod ∪HBSnew| ∗ |HBSi+1| ∗
|Cn|).
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In Table 6.2, Algorithm [9] with steps 4-10 performs SFS computation for adding

features into the current reduct, with time complexity of O(|Mnew| ∗ |Cn − Ri|2) =

O(|HBSmod∪HBSnew|2∗|Cn−Ri|2). Algorithm [9], Steps 11-15 performs the strategies

of deleting redundant features in current reduct, with third order time complexity of

O(|Mi+1| ∗ |Ri+1|) = O(|HBSi+1|2 ∗ |Ri+1|).

So, the total time complexity of the proposed algorithm IvFMFRS is: O(|Ui+1| ∗
|HBSi+1| ∗ |Cn|) +O(|HBSmod∪HBSnew| ∗ |HBSi| ∗ |Cn|) +O(|Mnew| ∗ |Cn−Ri|2) +

O(|Mi+1| ∗ |Ri+1|).

The space requirement of IvFMFRS in one iteration is for three sources: The de-

cision system Ui+1 is required for updating IDS with a space complexity of O(|Ui+1| ∗
|Cn|). Second, IDS-based fuzzy DM (Mi) is updated with a requirement of space com-

plexity O(|HBSi+1| ∗ |Cn|). Finally, fuzzy DM is required for updating the current

reduct having a space complexity O(|Mi+1| ∗ |Cn|) = O(|HBSi+1|2|Cn|).

Thus, the space complexity of IvFMFRS algorithm is O(|Ui+1|∗|Cn|)+O(|HBSi+1|2∗
|Cn|).

Table 6.2: Time Complexity Analysis of FDM-FMFRS Algorithm

Algorithm Steps in Algorithm Time complexity

(phase)

Algorithm 7 2-32. Updation of IDS using

FMNN

O(|Ui+1| ∗ |HBSi+1| ∗ |Cn|)

Algorithm 8 2-16. Updation of fuzzy DM

based on IDS

O(|HSmod ∪ HBSnew| ∗
|HBSi+1| ∗ |Cn|)

Algorithm 9 4-10. Adding features into cur-

rent reduct

O(|Mnew| ∗ |Cn − Ri|2) =

O(|HBSmod ∪ HBSnew|2 ∗
|Cn −Ri|2)

11-15. Removing redundant fea-

tures from current reduct

O(|Mi+1| ∗ |Ri+1|) =

O(|HBSi+1|2 ∗ |Ri+1|)

6.5 Experiments

This section evaluates the experimental performance of the proposed incremental al-

gorithm IvFMFRS. The comparative analysis of proposed incremental algorithm is
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conducted with the recent (published in 2018-20) incremental FRS reduct approaches

namely IV-FS-FRS [112], AIFWAR [128] and PIAR [66].

6.5.1 Environment and Objectives of Experimentation

Table 6.3: Benchmark Datasets

Dataset Attributes Objects Class

Ionosphere 32 351 2

Vehicle 18 846 4

Segment 16 2310 2

Steel 27 1941 7

Ozone Layer 72 1848 2

Page 10 5472 5

Robot 24 5456 4

Waveform2 40 5000 3

Texture 40 5500 11

Gamma 10 19020 2

Satimage 36 6435 6

Ring 20 7400 2

Musk2 166 6598 2

Shuttle 9 57999 7

Sensorless 48 58509 11

MiniBooNE 50 129596 2

Winnipeg 174 325834 7

Seventeen benchmark datasets of different sizes were collected from the UCI machine

learning repository [20] for experimental evaluation, as outlined in Table 6.3. The

hardware environment of the system applied for experiments is CPU: Intel(R) i7-8500,

Clock Speed: 3.40GHz × 6, RAM: 32 GB DDR4, OS: Ubuntu 18.04 LTS 64 bit and

Software: Matlab R2017a. The proposed algorithm is implemented in the Matlab

environment. For IvFMFRS, the Lukasiewicz t-conorm (S(x, y) = min{x + y, 1}) for

Eqn. (4.16) and fuzzy standard negation (Neg(x) = 1−x) for Eqn. (4.17) are employed.

We selected the value of the sensitive parameter gamma (γ) to 4 as recommended

from the original FMNN paper [95]. Also, we have chosen the theta (θ) parameter to 0.3

based on experimental results obtained for base algorithm FDM-FMFRS for restricting
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hyperboxes size in FMNN learning model [95]. Moreover, the compared algorithms

(IV-FS-FRS, AIFWAR and PIAR) follow their fuzzy model of t-norm, t-conorm and

fuzzy similarity relations for computing as given in the respective publications and

experiments are conducted in the same environment stated above. The performance of

IvFMFRS is examined through a comparative evaluation with respect to the following

objectives:

1. Evaluate quality of approximate reduct through Gamma measure.

2. Comparative analysis of proposed approach in construction of different classifiers

through ten-fold cross-validation (10-FCV).

3. Comparative analysis of incremental reduct algorithms.

6.5.2 Evaluating Quality of Reduct Computed through Gamma Mea-

sure

Reduct computation in IvFMFRS is based on a discernibility matrix construction in the

hyperbox space. Since fuzzy DM on IDS is an approximation of fuzzy DM on objects,

theoretically, it results in an approximate reduct. Hence, some information loss is also

present naturally.

The details of Gamma measure are precisely the same as followed in Chapter 4 on

page number 71.

Table 6.4 contains the resulting gamma value and reduct length by applying the

proposed algorithm as well as the compared algorithms on the entire dataset. We ran-

domly divided the entire dataset into ten equal subsets from an incremental perspective.

Each subset sequentially updates the incremental models for reduct computation. The

last subset outcome is the final reduct. Also, Table 6.4 represents the gamma measure

obtained from the unreduced decision system (mention as ‘UNRED’ in Table 6.4) to

validate the relevance of resulted reducts through checking whether the obtained reduct

is satisfying or reaching near to (UNRED) gamma measure or not.

Table 6.4 reports the gamma value for only eleven datasets out of seventeen bench-

mark datasets due to exceeding the memory limit while processing the GKFRS. And,

out of eleven datasets, IV-FS-FRS could compute reduct in only seven datasets.
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Table 6.4: Relevance of IvFMFRS reduct through Gamma measure

Datsets
Gamma Meausre

UNRED IvFMFRS IV-FS-FRS AIFWAR PIAR

Ionosphere 0.99 0.99 0.99 0.99 0.99

Segment 0.98 0.90 0.14 0.97 0.97

Steel 0.99 0.99 0.80 0.94 0.99

Vehicle 0.99 0.99 0.19 0.99 0.99

Ozone 1 0.99 0.99 1 1

Page 0.87 0.87 0.04 0.87 0.87

Texture 0.99 0.99 * 0.99 0.99

Waveform2 1 1 * 1 1

Robot 0.97 0.91 0.97 0.38 0.97

Satimage 0.99 0.98 * 0.99 0.97

Ring 1 1 * 0.98 1

Datsets
Reduct Length

UNRED IvFMFRS IV-FS-FRS AIFWAR PIAR

Ionosphere 32 7 9 8 17

Segment 16 8 1 9 9

Steel 27 12 5 6 15

Vehicle 18 12 2 15 10

Ozone 72 10 22 21 28

Page 10 9 2 9 9

Texture 41 13 * 14 7

Waveform2 40 14 * 39 26

Robot 24 14 24 4 24

Satimage 36 15 * 36 13

Ring 20 16 * 7 18

Notes: * represents non-executable due to memory overflow.

Analysis of Results

In Table 6.4, it is observed that IvFMFRS achieved an equal gamma measure as ob-

tained by “UNRED” satisfying the required reduct property fully in Ionosphere, Steel,

Vehicle, Page, Texture, Waveform2 and Ring datasets. In the remaining datasets,

IvFMFRS indeed achieved almost near to expected gamma measure w.r.t the entire

dataset gamma value.
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Overall, it can be seen that the approximate reduct from IvFMFRS is not resulting

in any significant loss in the quality of reduct. Also, it can be observed that the

size of reduct for IvFMFRS is lesser than AIFWAR and PIAR algorithms in most of

the datasets. Moreover, IV-FS-FRS achieved less reduct size than IvFMFRS in some

datasets, but their corresponding gamma value is significantly less than our proposed

approach in those instances. Even, in Texture, Waveform2, Satimage and Ring datasets,

IvFMFRS could compute reduct whereas IV-FS-FRS could not. Hence, empirically, we

have established that IvFMFRS results in quality reduct with the same or very similar

gamma measure as that of UNRED.

Section 6.5.3 explores the relevance of obtained approximate reduct of IvFMFRS

in achieving the construction of the classification learning model, which is the primary

objective of the feature subset selection. Moreover, the comparative analysis with

reduct length and computational time will be elaborated as part of Section 6.5.3 in

tenfold cross-validation.

6.5.3 The Relevance of IvFMFRS Algorithm in Construction of clas-

sifiers

This section contains the comparative experiments conducted among algorithms for

reduct computation, i.e., IvFMFRS, IV-FS-FRS [112], AIFWAR [128] and PIAR [66]

algorithms. The relevance of reduct in inducing a classification model is studied through

ten-fold cross-validation (10-FCV) experiments. In each iteration, one fold is preserved

for the testing data, and the remaining nine folds are used for training data. For in-

cremental algorithms, we randomly divided the training dataset into ten equal subsets.

Each subset sequentially updates the incremental learning model for reduct computa-

tion. The last subset outcome of an algorithm is the final reduct for each fold. A reduct

algorithm is applied to the training data. So, based on the reduct that is obtained, the

classification model is constructed for comparison. The classification accuracy of the

resulting model is evaluated based on the test data.

Two different classifier models are used, namely CART and kNN with default op-

tions, and for kNN experiments, k is taken as 3, and our proposed kNN-FMNN classifier

(Chapter 3) is also employed for inducing classification model. To examine the rele-

vance of reducts, we have also constructed the classification model with an unreduced

dataset (mentioned as ‘UNRED’ in the given Tables) for comparison.
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Table 6.5, Table 6.6 and Table 6.7 presents the results of the 10-FCV experiment

for classification accuracies with CART, kNN, and kNN-FMNN respectively. Simi-

larly, Table 6.8 and Table 6.9 illustrates the reduct length and computational time of

the algorithms. Fig. 6.2, Fig. 6.3, Fig. 6.4, Fig. 6.5 and Fig. 6.6 depict the box-plot

representation of Table 6.5, Table 6.6, Table 6.7, Table 6.8 and Table 6.9 respectively.

The detailed student’s paired t-test analysis and how the values are represented in

Tables 6.5, 6.6, 6.7, 6.8 and 6.9 are precisely the same as followed in Chapter 4 on page

number 74.

The last three lines in each Table6.5, 6.6, 6.7, 6.8 and 6.9 correspond to Average

(NOD), CAverage, and Lose/Win/Tie. It can be observed that the datasets over

which an algorithm is executing vary from one to another. Hence, the average of

individual mean values is reported in two forms. Average (NOD) corresponds to the

average value obtained by an algorithm on datasets where it could be evaluated along

with reporting the number of datasets (NOD) involved in brackets. CAverage value

depicts the average of the individual mean obtained by restricting to only those datasets

in which all algorithms could be evaluated. For the comparative analysis, CAverage

plays an important role. The last line indicates the count of the number of statistically

loss(‘-’), better(‘+’), and equivalent(‘o’) for each algorithm in comparison with the

proposed IvFMFRS.

Note: The ‘*’ sign in Tables 6.5, 6.6, 6.7, 6.8 and 6.9 and 5.8 shows the corresponding

algorithm is intractable to a particular dataset to compute the reduct due to insufficient

memory. And, ‘#’ sign represents the scenario of non-termination of the code even after

several hours of computation.

In Figures 6.2, 6.3, 6.4, 6.5 and 6.6, the range of Y-axis varies based on obtained

results in each dataset. For large datasets, as results are available only for IvFMFRS,

AIFWAR and PIAR algorithms, Figures are respectively given in Figure (b) part.
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6. INCREMENTAL FEATURE SUBSET SELECTION USING FUZZY
ROUGH SETS WITH FUZZY MIN-MAX NEURAL NETWORK
PREPROCESSING

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by IvFMFRS, AIFWAR, PIAR and UNRED

Figure 6.2: Boxplot for Classification Accuracies Results with CART of Table 6.5
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6. INCREMENTAL FEATURE SUBSET SELECTION USING FUZZY
ROUGH SETS WITH FUZZY MIN-MAX NEURAL NETWORK
PREPROCESSING

(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by IvFMFRS, AIFWAR, PIAR and UNRED

Figure 6.3: Boxplot for Classification Accuracies Results with kNN of Table 6.6
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(a) Datasets having classification results by all algorithms

(b) Datasets having classification results by IvFMFRS, AIFWAR, PIAR and UNRED

Figure 6.4: Boxplot for Classification Accuracies Results with kNN-FMNN of Table 6.7
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(a) Datasets having computational time results by all algorithms

(b) Datasets having computational time results by IvFMFRS, AIFWAR and PIAR

Figure 6.5: Boxplot for Computational Time Results of Table 6.8
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Analysis of Results

Classification accuracy results

Table 6.5, Table 6.6 and Table 6.7 show the classification results of CART, kNN and

kNN-FMNN classifiers. In all classifiers, the CAverage value of the proposed algorithm

IvFMFRS is higher than compared algorithms and very near to UNRED.

In Table 6.5, considering the overall 54 accuracy results across all the compared

algorithms and UNRED in CART classifier, the cumulative lose/win/tie results are

10/11/33. In 33 classification results, the proposed algorithm IvFMFRS returned sig-

nificantly similar results to compared algorithms and UNRED. Also, it is observed that

wherever IvFMFRS performed a little inferior to compared algorithms and UNRED

(i.e., 11 results), the differences in average mean are very small. In the remaining

10 results, the proposed algorithm IvFMFRS performed significantly better than the

compared algorithms, and here also, it is observed that the difference in mean value is

small.

Similarly, in other kNN and kNN-FMNN classifiers, as given in Table 6.6 and Ta-

ble 6.7, majorly all algorithms performed statistically similar to each other. The cumu-

lative lose/win/tie results in kNN classifier is 13/12/29 and in kNN-FMNN is 11/9/34.

The further observation analysis details are given below.

IvFMFRS achieved statistically better than AIFWAR and PIAR algorithms in

Waveform2 dataset in all classifiers.

Based on CART classifier results in Table 6.5 and Fig. 6.2, in Robot and Ring

datasets, IvFMFRS performed statistically significant than AIFWAR. Moreover, IvFM-

FRS obtained better in classification than IV-FS-FRS in Vehicle, Segment, Steel and

Page datasets. However, in Robot and Musk2, IvFMFRS performed statistically in-

ferior to PIAR, although the difference in average classification accuracies for both

algorithms is insignificant. A similar case for AIFWAR algorithm, where it performed

better than IvFMFRS in Robot and Ring datasets.

Similar conclusions can be obtained in the kNN and kNN-FMNN classifiers from

Table 6.5 and Table 6.7 and their respective Fig. 6.3 and Fig. 6.4. In both classifiers,

IvFMFRS achieved statistically significant than IV-FS-FRS in Vehicle, Segment, and

Steel datasets. In Robot, Texture and Ring datasets, PIAR performed statistically

inferior to IvFMFRS in kNN classifiers. Also, PIAR could not be able to compute reduct
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(a) Datasets having reduct length results by all algorithms

(b) Datasets having reduct length results by IvFMFRS, AIFWAR and PIAR

Figure 6.6: Boxplot for Reduct Length Results of Table 6.9
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in a reasonable amount of time in Sensorless, MiniBooNE and Winnipeg datasets, where

IvFMFRS algorithm could compute reduct with comparative classification accuracies.

Moreover, IvFMFRS showed statistically equivalent to other algorithms and UNRED

in most datasets. AIFWAR performed significantly better in Texture dataset than

IvFMFRS, but the difference in mean value is very less.

Eventually, it can be seen that the idea of computing the approximate reduct by

IvFMFRS is satisfactory and effective in terms of classification results in given classi-

fiers. As we can see, the average value of the individual mean of classification accuracy

of the IvFMFRS algorithm for all datasets is quite similar to AIFWAR, PIAR, FDM-

FMFRS and UNRED.

It is further observed that, in Waveform2, Gamma, Texture, Ring, Satimage, Musk2

and Shuttle datasets, IV-FS-FRS could not obtain reduct due to memory overflow at

given system configuration where IvFMFRS, AIFWAR obtained reduct in reasonable

computational time. A similar case happened for PIAR, IvFMFRS got reduct in Sen-

sorless and MiniBooNE where PIAR could not. This is due to the aspect of represen-

tative instances in AIFWAR and fuzzy hyperboxes based granularization in IvFMFRS,

achieving a significant reduction in space utilization. In Winnipeg dataset, IvFMFRS

could compute reduct, whereas all compared algorithms could not.

Computational time results

In terms of computational times, as shown in Table 6.8 and Fig. 6.5, IvFMFRS in-

curred significantly less computational time than compared incremental algorithms

(IV-FS-FRS, AIFWAR and PIAR) for all datasets except for Waveform2, Musk2 and

MiniBooNE datasets. The proposed method IvFMFRS obtained the lowest CAverage

value (3.63 seconds) on datasets, whereas compared algorithms and UNRED with CAv-

erage showed a range between 5 and 19 seconds and evidently, seen that the cumulative

lose/win/tie results of compared algorithms w.r.t. IvFMFRS are 33/3/1.

These substantial reductions in computational time of IvFMFRS are due to the

dealing with hyperboxes constructed by the FMNN model where |HBS| << |U |. Thus,

the speed-up computation and performance demonstrate the potential of the IvFMFRS

algorithm and its suitability for larger datasets.

However, in Waveform2 and Musk2 datasets, IvFMFRS obtained statistically higher

computational time than compared algorithms. Because, in each subset arrival, a
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large number of existing hyperboxes got updated or new hyperboxes created results in

their corresponding entries in fuzzy DM are also updated and newly entered on each

arrival. This way increased the substantial amount of computation time of IvFMFRS.

Generally, in IvFMFRS, on each subset arrival, only a few hyperboxes are updated

which results in less updation of entries in fuzzy DM. Because of this reason, IvFMFRS

incurred less computation in most of the datasets.

The average mean value of IvFMFRS on overall datasets is 2459.83 seconds which

is higher than compared algorithms. Because considering Winnipeg dataset results

in average individual mean results higher than others, where our proposed algorithm

could run on Winnipeg dataset where compared algorithms could not. None of the

compared algorithms could scale to Winnipeg datasets. In all datasets, the resulting

standard deviation of computation time presented very less variation, thus showing

that the methodology is reliable as compared to others.

Reduct length results

From the results on reduct length shown in Table 6.9 and Fig. 6.6, IvFMFRS performed

statistically significant, which means computed relevant attributes with smaller reduct

size than IV-FS-FRS, AIFWAR and PIAR algorithms in most of the datasets and

evidently seen that the cumulative lose/win/tie results of compared algorithms are

22/9/6. IvFMFRS performed statistically inferior in terms of reduct size from IV-FS-

FRS in some datasets. But, the quality of reduct from IV-FS-FRS algorithm in terms

of average classification accuracy is statistically inferior to IvFMFRS. Even IvFMFRS

achieved statistically better than PIAR in all datasets. The average individual mean

of IvFMFRS is lower than AIFWAR and PIAR and higher than IV-FS-FRS.

In summary, the relevance of IvFMFRS is significantly validated as it computes

incremental reduct with lesser length and incurs less computational time while preserv-

ing similar or better classification accuracies than compared incremental approaches in

most of the time.

6.5.4 Comparative Analysis of Incremental Reduct Algorithms

This section investigates the comparative analysis of the incremental algorithms (IvFM-

FRS, IV-FS-FRS, AIFWAR and PIAR) in aspects of reduct length and computational

time in the incremental step of reduct computation. We are presenting two figures
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(Fig. 6.7 and Fig. 6.8) depicting the detailed change of the computational time and

reduct size of IvFMFRS, IV-FS-FRS, AIFWAR and PIAR with subset continuously

entering. Each dataset is randomly partitioned into the ten equal subsets for an exper-

iment. We incrementally update an algorithm with a subset in each iteration to learn

and find the corresponding approximate reduct. Here, we are depicting the cumulative

computational time till that iteration and reduct size at that iteration in Fig. 6.7 and

Fig. 6.8 respectively.

In both figures, the x-axis represents the sequence size of the data. And, the y-axis

represents the computational time (in seconds) in Fig. 6.7 and reduct length in Fig. 6.8.

The dashed line shows the results of IvFMFRS; the dotted line shows IVFSFRS; the

solid line shows AIFWAR in figures. This experiment is conducted on only thirteen

datasets, out of which in seven datasets, IV-FS-FRS could not compute the reduct on

the given system. Both figures illustrate the efficiency of incremental algorithms on

arriving subset sequences one by one.

Analysis of Results

In Fig. 6.7, the computational time starts with base reduct computation from the first

base part, and the rest of the timestamps are the time that is incurred for updating

the reduct when a next sample subset has arrived. It can be seen from Fig. 6.7 that

in most of the given datasets, the computational time for each subsequent sample as

the number of samples increases result in a significant increase in computational time

for both IV-FS-FRS and PIAR algorithms. However, in IvFMFRS and AIFWAR, the

computational time is showing almost like a flat line for most datasets, indicating a

roughly negligible amount of time is incurred when a subsequent sample is added after

the base reduct computation on U1.

In IvFMFRS, the changes that have happened to the fuzzy DM and computational

effort are actually very much minimal when it comes to our proposed algorithm. The

size of fuzzy DM signifies the computational time that is involved when a new subset is

added. This process is further attributed to utilizing FMNN as a preprocessor in fuzzy

DM construction. FMNN is absorbing many new objects accommodated into the exist-

ing hyperboxes result in no changes in fuzzy DM, and the changes that are happening

almost equivalent when the subsequent subset is added. Hence, the computation effort

seems very small (near to zero ) in each subsequent step after the first step. Usually,
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Figure 6.7: Cumulative Computational Results
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changes in FMNN tend to update in fuzzy DM construction. So in our case, the fuzzy

DM size is not significantly growing from one sample to subsequent sample arriving in

most datasets. However, in respective algorithms, fuzzy DM (especially in IV-FS-FRS)

sizes are significantly changing, increasing computation time as the sample subset is

growing.

In Waveform2, IvFMFRS shows a significant increase in computational time for

each subsequent sample arrival. Because, in each arrival, almost all existing hyper-

boxes are updated, or new hyperboxes are created to accommodate objects, results in

many changes and update in their entries in fuzzy DM. These substantial changes in

hyperboxes and their corresponding entries in fuzzy DM in each subsequent sample

arrival impacts significant growth in computational time.

From Fig. 6.8, it can be seen that both AIFWAR and IV-FS-FRS reduct exhibit

a significant fluctuation in reduct size when a new sample is added. However, in

IvFMFRS, the change in reduct size is very gradual, and it goes from a smaller reduct

length to a little bigger length as the sample subset arrives. This gradual increase in

reduct size is perhaps due to the following reason. In IvFMFRS algorithm, whenever a

sample is entered, the SFS algorithm adds new attributes in the existing reduct, followed

by the SBE algorithm to remove redundant attributes. In the AIFWAR algorithm, the

attributes that are included in the existing reduct through the SFS process are followed

by the wrapper technique for searching for the best attribute subset in reduct.

So, in the case of SBE inclusion or wrapper technique, removing most of the earlier

present reduct attributes exhibits a lot of variance in reduct size, which can be seen in

IV-FS-FRS and AIFWAR algorithms in Fig. 6.8. But in our case, the change is not

much significant and not much variation in the reduct size observed. The attributes that

are added in our approach are significant even after new attributes are included in the

SFS process, which is getting retained in SBE process. As in our approach, attributes

are selected based on discernibility over hyperboxes, which represent a set of objects of

the decision system, leading to the selection of highly significant attributes. This aspect

of selecting significant attributes as part of the SFS process due to FMNN preprocessing

is aiding in making very less oscillation in reduct length, as seen in Fig. 6.8.
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6.6 Summary

The proposed IvFMFRS is an incremental adaptation of FDM-FMFRS for incremental

reduct computation using FRS. The incremental updation of reduct with the onset of

new training data involves three phases: updation of hyperboxes through FMNN to

include new training patterns, updation of fuzzy DM based on updated hyperboxes and

update current reduct using SFS strategy followed by SBE strategy. FMNN preprocess-

ing results in relatively fewer changes to the discernibility matrix than object-based,

resulting in IvFMFRS being efficient from the aspects of both computational time and

space utilization simultaneously. The detailed comparative experimental study is con-

ducted with state of the art incremental FRS approaches and established the relevance

of IvFMFRS in obtaining reduct with increased scalability and comparable or improved

generalizability of the classifier models induced. It is also observed that the changes to

the reduct in incremental learning of IvFMFRM are gradual in nature with better sta-

bility. IvFMFRS can scale to much larger datasets than the compared approaches. In

the future, we will investigate distributed/parallel algorithms for IvFMFRS for achiev-

ing scalability to very large scale decision systems.
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Chapter 7

Conclusions and Future Work

The primary objective of our research work is to explore the potential possibility of

utilizing information granules in the form of hyperboxes and formulating algorithms

for granular computing using hyperboxes in solving the standard problems of data

mining and machine learning. Our research focuses on building hybrid soft computing

models where fuzzy min-max neural network (FMNN) is one of the components, and

the hyperboxes are utilized in other components to achieve the advantages of granular

computing.

7.1 Conclusions

This section provides the brief conclusion of the contributions.

In Chapter 3, we proposed an algorithm kNN-FMNN as the hybridization of FMNN

with kNN to overcome the contraction step in FMNN and enhance pattern classifica-

tion. The comparative experiment was performed on kNN-FMNN with state-of-the-art

FMNN approaches on several benchmark datasets. The experimental results estab-

lished that kNN-FMNN achieved better classification accuracy than state-of-the-art

FMNN algorithms in significantly less computational time in most datasets with a

fewer number of hyperboxes. Also, we identified empirically that 0.3 is the appropriate

value for parameter θ, which controls the size of the hyperbox.

In Chapter 4, we investigated fuzzy rough sets (FRS) approaches that provide

a framework for reduct (feature subset selection) computation for decision systems.

However, the existing FRS-based feature selection approaches are intractable for large
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decision systems due to the space complexity of the FRS methodology. We studied

and proposed FDM-FMFRS as the hybridization of FMNN with FRS model for reduct

computation, intending to increase scalability on benchmark datasets. The extensive

experimental study was done on several benchmark datasets to establish the relevance

of FDM-FMFRS reduct. Results demonstrated that FDM-FMFRS achieved significant

computational gains over existing state-of-the-art FRS approaches with similar or bet-

ter classification accuracies and could scale to such large datasets where existing FRS

algorithms are unable to compute due to space constraints.

In Chapter 5, we extended the FDM-FMFRS into a proposed algorithm (CDM-

FMFRS) in terms of further scalability and improvised the reduct computation. Also,

we enriched crisp discernibility relation with extended overlapping criteria and toler-

ance parameter. The comparative experiment was done on CDM-FMFRS with FDM-

FMFRS and state-of-the-art FRS approaches. And results demonstrated that CDM-

FMFRS achieved significant scalability against FDM-FMFRS but an increase in reduct

size due to crisp formulation. Whenever possible, we recommend CDM-FMFRS as an

alternative to FDM-FMFRS in a situation where FDM-FMFRS fails to obtain reduct

owing to a memory overflow error.

In Chapter 6, we explored and proposed a scalable incremental reduct computation

in FRS with FMNN preprocessing. IvFMFRS is an incremental adaptation of FDM-

FMFRS. FMNN preprocessing resulted in relatively fewer changes to the discernibility

matrix, resulting in IvFMFRS being efficient from aspects of computational time and

space utilization simultaneously. The detailed comparative experimental study was con-

ducted with state-of-the-art incremental FRS algorithms and established the relevance

of IvFMFRS in obtaining reduct with increased scalability and comparable or improved

generalizability of the classifier models induced. Also, the changes to the reduct in in-

cremental learning in IvFMFRS were gradual in nature with better stability against

compared algorithms.

7.2 Future Work

This section provides some insights into future work.

In the current scenario, Big data has gained much attention from every industry

and made promising for business applications [23, 104]. Three aspects characterize big
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data, i.e., volume, variety and velocity [50]. The aspect of the velocity is dealt with

in this thesis with our proposed incremental approaches to FRS reduct computation.

We have made a significant achievement in the volume aspect through our proposed

FDM-FMFRS and CDM-FMFRS approaches. To deal with the scenario when the

hyperboxes-based representation of the discernibility matrix doesn’t fit into single sys-

tem memory, we will be proposing Apache Spark MapReduce-based adaptations of

FDM-FMFRS and CDM-FMFRS in the future. Thus, our proposed work will deal

with the volume characteristics of big data.

Due to the nature of FMNN, currently, our proposed approaches work only on

numeric decision systems. As data comes from multiple sources and in multiple types,

dealing with a variety of data will be a problem for our approaches. In the future,

we plan to generalize our models on hybrid datasets that include both categorical and

numeric attributes and apply the distributive framework to deal with big data scenarios.

Thus, our proposed work will deal the variety characteristics of big data.
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vey of Discretization Techniques: Taxonomy and Empirical Analysis in

Supervised Learning. IEEE Transactions on Knowledge and Data Engineering,

25(4):734–750, 2013. ()

[29] Alexander Gepperth and Barbara Hammer. Incremental learning algo-

rithms and applications. In European Symposium on Artificial Neural Networks

(ESANN), pages 1–12, Bruges, Belgium, 2016. ()

[30] Soumen Ghosh, P. S. V. S. Sai Prasad, and C. Raghavendra Rao. Third

Order Backward Elimination Approach for Fuzzy-Rough Set Based Fea-

ture Selection. In B. Uma Shankar, Kuntal Ghosh, Deba Prasad Mandal,

Shubhra Sankar Ray, David Zhang, and Sankar K. Pal, editors, Pattern

Recognition and Machine Intelligence, pages 254–262, Cham, 2017. Springer Inter-

national Publishing. ()

[31] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Fuzzy

Similarity Relation as a Basis for Rough Approximations. In Lech

Polkowski and Andrzej Skowron, editors, Rough Sets and Current Trends in

Computing, 1424 of Lecture Notes in Computer Science, pages 283–289. Springer,

1998. ()

[32] Qinghua Hu, Daren Yu, and Zongxia Xie. Information-preserving hy-

brid data reduction based on fuzzy-rough techniques. Pattern Recognition

Letters, 27(5):414–423, 2006. ()

[33] Paul Jaccard. Nouvelles Recherches Sur la Distribution Florale. Bulletin

de la Societe Vaudoise des Sciences Naturelles, 44:223–70, 01 1908. ()

[34] Balasubramaniam Jayaram and Radko Mesiar. On special fuzzy impli-

cations. Fuzzy Sets and Systems, 160(14):2063–2085, 2009. Theme: Aggregation

Operators. ()

[35] R. Jensen and Q. Shen. Fuzzy-rough attribute reduction with applica-

tion to web categorization. Fuzzy Sets and Systems, 141(3):469 – 485, 2004.

()

163



REFERENCES

[36] R. Jensen and Q. Shen. Semantics-preserving dimensionality reduction:

rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge

and Data Engineering, 16(12):1457–1471, 2004. ()

[37] R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection.

IEEE Transactions on Fuzzy Systems, 15(1):73–89, Feb 2007. ()

[38] R. Jensen and Q. Shen. New Approaches to Fuzzy-Rough Feature Se-

lection. IEEE Transactions on Fuzzy Systems, 17(4):824–838, 2009. ()

[39] Richard Jensen and Neil Mac Parthalain. Nearest Neighbour-

Based Fuzzy-Rough Feature Selection. In Chris Cornelis, Marzena

Kryszkiewicz, Dominik Slezak, Ernestina Menasalvas Ruiz, Rafael

Bello, and Lin Shang, editors, RSCTC, 8536 of Lecture Notes in Computer

Science, pages 35–46. Springer, 2014. ()

[40] Richard Jensen and Neil Mac Parthaláin. Towards scalable fuzzy-
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Abstract. Fuzzy Min-Max Neural Networks (FMNN) is a single epoch
learning Pattern Classification algorithm with several advantages for
online learning. The information loss due to Contraction step of FMNN
leads to several improvements in literature such as MLF, FMCN etc.
These approaches do not use Contraction step and provide additional
structures in FMNN for decision making in overlapped regions overcom-
ing the problem of Contraction with the cost of an increase in training
complexity of FMNN. This work proposes a hybridization of FMNN
with kNN algorithm for achieving the ability to handle decision making
in overlapped regions without altering the structure of FMNN. Compar-
ative studies with existing approaches over benchmark decision systems
have proved the utility of the proposed kNN-FMNN approach.

Keywords: Fuzzy Min-Max Neural Network · FMNN · Fuzzy sets ·
Neural networks · Classification · kNN · Hybrid system · MLF

1 Introduction

In 1965, Zadeh [16] introduced the new concept called Fuzzy sets, to manipu-
late the imprecise data into the fuzzy pattern. The Fuzzy logic aims at creat-
ing approximate human reasoning that is helpful on cognitive decision making.
Several Hybrid systems were developed with Fuzzy sets combining other soft
computing models such as artificial neural networks, expert systems and genetic
algorithm etc. [6,12,14,18,19].

A hybrid system like the combination of the artificial neural network with
fuzzy logic has proved their effectiveness in being helpful for real-world prob-
lems [6]. In 1992, Simpson [15] proposed Fuzzy Min-Max Neural Network
(FMNN) classifier based on fuzzy hyperboxes. The union of fuzzy hyperboxes
represents individual decision classes. A hyperbox is defined as a region in n-
dimensional pattern space characterized by minimum points, maximum points
and fuzzy membership function. FMNN learning algorithm computes the min-
max points of hyperboxes to acquire knowledge. These placing and adjustment

c� Springer Nature Singapore Pte Ltd. 2019
M. Singh et al. (Eds.): ICACDS 2019, CCIS 1045, pp. 32–44, 2019.
https://doi.org/10.1007/978-981-13-9939-8_4
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Scalable Fuzzy Rough Set Reduct Computation Using
Fuzzy Min–Max Neural Network Preprocessing

Anil Kumar and P. S. V. S. Sai Prasad , Member, IEEE

Abstract—A fuzzy rough set (FRS) is a hybridization of rough
sets and fuzzy sets and provides a framework for reduct (fea-
ture subset selection) computation for hybrid decision systems.
However, the existing FRS-based feature selection approaches are
intractable for large decision systems due to the space complexity
of the FRS methodology. We propose a novel fuzzy min–max neural
network (FMNN)-FRS reduct computation approach utilizing the
FMNN to enhance the scalability of FRS approaches. The FMNN
provides a single pass epoch learning of arriving at granules of
objects in the form of fuzzy hyperboxes for multiple decision classes.
In the proposed approach, the FMNN model is used to recon-
struct the object-based decision system into a fuzzy hyperbox-based
interval-valued decision system. Then, a novel way of constructing
the fuzzy discernibility matrix (FDM) from the interval-valued
decision system is introduced. A fuzzy rough approximate reduct
computation algorithm is developed with the induced FDM. The
FMNN-FRS approach reduces the space complexity of FRS reduct
computation significantly and results in enhanced scalability. Com-
parative experimental analysis has been done with the existing
FRS reduct approaches on benchmark hybrid decision systems
and established the relevance of the FMNN-FRS approach. The
FMNN-FRS approach obtained the exact reduct in most of the
datasets in much lesser computational time than existing FRS
approaches while preserving similar classification accuracy. The
FMNN-FRS method achieved enhanced scalability to such large
decision systems, at which it is not possible to obtain reduct by
existing FRS approaches.

Index Terms—Discernibility matrix, feature subset selection,
fuzzy min–max neural network (FMNN), fuzzy rough sets (FRSs),
granular computing, hyperbox, reduct, rough sets.

I. INTRODUCTION

MAKING a decision under imprecision and uncertainty
is one of the most challenging topics in the field of

data analysis. The objective of data analysis is to find or learn
hidden patterns in a dataset, which is beneficial to find depen-
dencies. Feature selection plays an essential role in analyzing the
datasets when some of the features might be redundant/irrelevant
degrading the performance and increasing the computational
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11, 2019; accepted December 31, 2019. Date of publication January 13, 2020;
date of current version May 4, 2020. This work was supported by the All India
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complexity of the model [1]. The selection of essential features
after discarding irrelevant features is always a challenging task
that preserves the discernment knowledge of datasets.

In the 1980s, Pawlak [2] introduced the concept of classical
rough set theory (RST) as a mathematical tool for classification
and analysis of incomplete and uncertain information. RST
gave new momentum to data mining [3] and knowledge discov-
ery [4] and provided a unique insight into artificial intelligence
and cognitive sciences both in practical and theoretical views
[1], [5].

Application of classical rough sets to numeric decision sys-
tems will produce feature subsets with finer granularity. Hence,
the induced rules from the selected features suffer from poor
generalizability to test datasets. So, one of the solutions is to
discretize the dataset beforehand and produce a new dataset
with categorical values [6]. However, the discretization method
is often inadequate and causes essential information loss that
can hamper the quality of subsequent feature subset selection.
Lately, Dubois et al. [7], [8] generalized the RST that deals
with symbolic and real-valued conditional attributes without the
need for domain specific knowledge with fuzzy rough set (FRS)
theory. The FRS can approximate the crisp decision concepts in
the fuzzy approximation space.

The first pioneering work on feature selection based on the
FRS was introduced by Jensen and Shen [9]. It performed
well in terms of retaining fewer attributes with higher clas-
sification accuracy than RST-based reduction on web dataset,
which aided in web categorization. In [9], the authors proposed
an algorithm to compute close-to-minimal reduct based on the
dependence function and also measure the quality of attributes.
Subsequently, several aspects of improvement [10]–[12] based
on feature selection and computation time were done for [9].
In [11], the authors introduced three robust techniques based
on the fuzzy similarity relation and also developed the fuzzy
discernibility matrix (FDM) for computing the feature selection.
In particular, these techniques have shown high flexibility and
reduced the complexity of computing the Cartesian product of
fuzzy equivalence classes in [10]. This approach [11] received
the consideration of researchers in [13]–[15] and became an
effective approach for reduct computation.

Skowron and Rauszer [16] introduced a feature selection
mechanism based on the concept of a crisp discernibility matrix
in the context of Pawlak’s RST. Jensen and Shen [11] further
extended into the FDM to determine the FRS reducts. Though
finding all/minimal reducts with these techniques is an NP-
Hard problem, these methods provide a crucial mathematical

1063-6706 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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A B S T R A C T
Fuzzy rough sets (FRS) framework is proven to be useful in computing predictive features in the presence
of incompleteness and uncertainty in hybrid systems. However, the existing FRS methods for feature subset
selection (reduct computation) are not scalable to large datasets due to higher space and time complexities.
Towards increasing the scalability of FRS reduct computation, FMNN-FRS approach is proposed earlier,
utilizing fuzzy min–max neural network (FMNN) preprocessing to enable reduct computation in fuzzy hyperbox
space instead of object space. FMNN-FRS approach considers fuzzy discernibility matrix (DM) for computation
of an approximate reduct. However, it is observed that the space utilization of fuzzy DM limits the scalability of
FMNN-FRS. To further increase the scalability of FMNN-FRS method by the reduction in the space complexity,
in this work, a novel way of crisp DM construction is proposed from the knowledge derived from FMNN
preprocessing (CDM-FMFRS). Extended overlapping criteria, with tolerance parameter, are also designed for
arriving at the crisp discernibility relation through fuzzy hyperboxes. The proposed CDM-FMFRS approach
computes an approximate reduct using SFS strategy on the generated crisp DM. Empirically, the experimental
results established that the classifiability of the induced model from the proposed algorithm is similar or better
than FMNN-FRS and other state-of-the-art FRS reduct approaches with a significant reduction in computational
time. Results also established better scalability achieved by CDM-FMFRS than FMNN-FRS.

1. Introduction

Feature subset selection is one of the dominant techniques in ma-
chine learning and data mining that hugely influences the learning
model’s performance. Thus it is important to preprocess the data to
eliminate irrelevant features that negatively impact the performance
of learning models. In 1980s, Pawlak (1982) introduces classical rough
set theory (RST), as a mathematical tool useful for feature subset selec-
tion (semantic preserving dimensionality reduction) and rule induction
in the information/decision systems. RST is primarily applicable to
symbolic decision systems (Pawlak, 1991; Yao et al., 2006). However,
the induced rules from the feature subset (also called reduct) through
the RST approach in the numeric decision system always suffer poor
generalizability in classification.

Later, Dubois and Prade (1992, 1990) have extended the RST con-
cept into the fuzzy rough set (FRS) to work on hybrid decision systems.

✩ The work is supported by DST, Government of India under ICPS project [Grant Number : File No. DST/ICPS/CPS-Individual/2018/579] and UoH-IoE by
MHRD, Government of India [Grant Number: F11/9/2019-U3(A)].
✩✩ Authors would like to acknowledge (Zhang et al., 2018 [1,2]) for providing the source code for FRGS and FRSEnt.
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FRS establishes a remarkable role in feature subset selection without
any need for additional information. Several aspects of improvement
and extension of FRS have been done in search of reliable feature
subset selection (Qu et al., 2013; Chen et al., 2007; Jensen et al., 2014;
Jensen and Shen, 2004; Jensen and Shen, 2009; Bhatt and Gopal, 2005;
Cornelis et al., 2010; Jensen and Shen, 2007; Tsang et al., 2008).

Jensen and Shen (2004) introduce a pioneering work on FRS based
feature selection to the domain of web classification. This work shows
well in web categorization on web dataset, with promising results.
Later, several researchers have done work in the aspects of devel-
opment and extensions (Bhatt and Gopal, 2005; Jensen and Shen,
2009, 2007) for (Jensen and Shen, 2004). Jensen and Shen (2009)
propose a reduct computation approach based on fuzzy similarity-
based reduct computation methodology, which attracted considerable
attention from researchers and became an effective method for feature
subset selection.

https://doi.org/10.1016/j.engappai.2022.104697
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Fuzzy rough sets (FRS) provides effective ways for selecting the compact/relevant feature 
subset for hybrid decision systems. However, the underlying complexity of the existing 
FRS methods through batch processing is often costly or intractable on large data and 
also suffer from continuous model adaptation on dynamic data. This paper proposes a 
FRS based incremental feature subset selection (IvFMFRS) framework using fuzzy min-max 
neural network (FMNN) as a preprocessor step in aiding to deal with data dynamically 
without sacrificing classification performance. FMNN is a single epoch learning algorithm 
employed to construct fuzzy hyperboxes (information granules) of pattern spaces very 
fast. Fuzzy hyperboxes facilitate the formation of interval-valued decision system (IDS) 
from the numerical decision system of much smaller size. In IvFMFRS, on each sample 
subset arrival, an incremental mechanism for updating fuzzy discernibility matrix (FDM) 
based on constructed IDS is first formulated and then update feature subset by adding 
and deleting features based on updated FDM. A comparative analysis has been conducted 
comprehensively to assess the performance of the proposed algorithm with the existing 
FRS methods on numerical datasets. And, the results show that the IvFMFRS obtained 
the relevant feature subsets with similar classification accuracy with significantly less 
computational time than existing FRS methods.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Data mining is an essential process to infer the underlying structural pattern and knowledge from given data. The major-
ity of data mining applications are restricted to classical batch setting; i.e., the entire data are provided prior to training for 
learning. Sometimes batch procedures can not work for large data that easily exceed the memory limit. Moreover, they may 
also lack in model adaptability according to constantly arriving new information/data thus resulting in the reconstruction 
of new models from scratch, which is repeatedly a time-consuming task. Incremental learning, in contrast, is a solution for 
dynamic data with properties of gradual model adaptation on sequentially arriving data without sacrificing model accu-
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