Quantum Aspects

Oscillatory

N t . 1
o
ABHISHEK KUMAR JHA




Ph.D. Thesis

Quantum Aspects of Oscillatory

Neutrinos

A thesis submitted for the award of
DOCTOR OF PHILOSOPHY
by

Abhishek Kumar Jha
(Reg. No : 17PHPH3/)

INSTITUTION OF EMINENCE
National Needs, Global Standards

Under the supervision of

Prof. BINDU A. BAMBAH

School of Physics
University of Hyderabad
Central University PO, Prof. C. R. Rao road,
Gachibowli, Hyderabad-500046, Telangana, India.

April-2022



Dedicated to . ..

My parents and my teachers




DECLARATION

I here by declare that the work reported in this thesis entitled “Quantum Aspects of Os-
cillatory Neutrinos” has been carried out by me independently in the School of Physics,
University of Hyderabad, under the supervision of Prof. Bindu A. Bambah. I also declare
that this is my own work and effort, and it has not been submitted at any other University
or Institution for any degree. Wherever contributions of others are involved, every effort
is made to indicate that clearly with due reference to literature, and acknowledgement of

collaborative research and discussions. I hereby agree that my thesis can be deposited in
Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is enclosed.

NO

5 I )
s
Place: Hyderabad (Abhishek Kumar Jha)

Date: |8 |04-|2022

il



CERTIFICATE

(For Ph. D. Dissertation)

This is to certify that the thesis entitled “Quantum Aspects of Oscillatory Neutrinos”
has been carried out by Abhishek Kumar Jha (Reg.No.17PHPH34), under my supervision
for the full period prescribed under Ph.D. ordinance of the University of Hyderabad. It has
been screened by the Turnitin software at the library of the University of Hyderabad. The
software shows 29% similarity index out of which, 24% came from the candidate’s research
articles related to this thesis. 10% came from his publication in journal Modern Physics
Letters A, 4% and 3% (link.springer.com) are from The European Physical Journal Special
Topics, 3% (export.arxiv.org) and 3%(arxiv.org) are from his article in arxiv(2004.14853,
2010.06458) and 2%(indico.fnal.gov) has come from his poster and oral contributions to the
many National /International conferences which are now available online. The remaining
may be from use of some scientific terms and equations, which have not been detected by
the software. Therefore, this thesis is free from plagiarism and has not been submitted
previously in part or in full to this or any other University or Institution for award of any
degree or diploma.

Further, the studies has the following publications before submission of the thesis for
adjudication and has produced evidence for the same in the form of acceptance letter or the
reprint in the relevant area of his research:

Published Papers

1. Abhishek Kumar Jha, Supratik Mukherjee and Bindu A. Bambah, “Tri-Partite
entanglement in Neutrino Oscillations,” Mod. Phys. Lett. A 36 no.09, 2150056
(2021). doi:10.1142/S0217732321500565, [arXiv:2004.14853 [hep-ph]]. https://doi.
org/10.1142/S0217732321500565

2. Abhishek Kumar Jha and Akshay Chatla, “Quantum studies of neutrinos on IBMQ
processors,” Eur. Phys. J. Spec. Top. 231, 141-149 (2022), https://doi.org/10.
1140/epjs/s11734-021-00358-9 [arXiv:2010.06458 [hep-ph]].

3. Abhishek Kumar Jha, Akshay Chatla and Bindu A. Bambah, “Neutrinos as Qubits
and Qutrits,” [arXiv:2203.13485 [hep-ph]|. https://doi.org/10.48550/arXiv.2203.
13485 (under review)

v


https://doi.org/10.1142/S0217732321500565
https://doi.org/10.1142/S0217732321500565
https://doi.org/10.1140/epjs/s11734-021-00358-9
https://doi.org/10.1140/epjs/s11734-021-00358-9
https://doi.org/10.48550/arXiv.2203.13485
https://doi.org/10.48550/arXiv.2203.13485

Conference Proceedings

1. Abhishek Kumar Jha (2021, April 12) “Quantum Studies of Neutrinos,” The pro-
ceedings of the XIX International Workshop on Neutrino Telescopes (Neutel 21),
Padova (Italy) have been published on the Zenodo Platform online. https://doi.
org/10.5281/zenodo .4680524

He has participated in Schools and Conferences and his contributed talks/posters are:

e Completed SERB preparatory school in Theoretical High Energy Physics at University
of Hyderabad during 20" August —15t" September, 2018.

e Contributed a poster on “Quantum entanglement and Neutrino oscillations” in The
National conference on Frontiers in Particle Physics and Cosmology (FIPPC-2019) at
University of Hyderabad, Hyderabad, India, held during 23"¢ — 25! January 2019.

e Completed SERB XXXIIT Main school in Theoretical High Energy Physics at SGTB
Khalsa College, University of Delhi, during 7" — 26" December, 2019.

e Contributed a poster on “Two and Three- Particle Entanglement In Neutrino oscil-
lations” in National Symposium on Theoretical High Energy Physics, December 20,
2019, SGTB Khalsa College, University of Delhi, India.

e Contributed a poster on “Tri-Partite Entanglement In Neutrino Oscillations” (Poster
ID-337), at The XXIX International Conference on Neutrino Physics and Astrophysics
(Neutrino-2020) held online during June 22"¢-July 2"¢ 2020, Fermilab, USA.

e Contributed a poster on “Quantum Entanglement In Neutrino Oscillations” (Poster
ID-44), in 53rd Annual Users Meeting, Fermi National Accelerator Laboratory, held
during 10" — 13" August, 2020.

e Contributed an oral talk on “Quantum simulation of oscillating neutrinos” in the 5th
International Conference on Particle Physics and Astrophysics at Moscow, Russia held
online during 5" — 9** October, 2020.

e Contributed a poster on “Quantum simulation of oscillating neutrinos” in the Young
Quantum - 2020 (YouQu-2020) meeting at HRI, Allahabad, India, during 12" — 15"
October, 2020.

e Contributed a poster on “Quantum simulation of entangled oscillating neutrinos” in
DAE-BRNS High Energy Physics Symposium 2020 at NISER, India held online during
14t — 18" December,2020.

e Contributed an oral talk on “Quantum studies of neutrinos” in XIX International
Workshop on Neutrino Telescopes (Neutel 21) at Padova (Italy) — held online during
18t — 26" February, 2021.


https://doi.org/10.5281/zenodo.4680524
https://doi.org/10.5281/zenodo.4680524

vi

e Contributed a poster on “Quantum simulation of entangled oscillating neutrinos
on IBMQ processors” in Quantum Computing Hard- and Software Summer School
(QCHS-2021)- held online during 15" — 18" June 2021, organized by ETH, Zurich and
EPFL, Lausanne, Switzerland.

e Completed a mini-project on “Coherence in Neutrino Oscillations” in International
Neutrino Summer School (INSS-2021), CERN-held online during 2" — 13" August
2021. '

e Contributed an oral talk on “Entangled states of neutrinos as qutrits” in New Perspec-

tives conference held online during 16" — 19" August, 2021, Fermilab, USA.

Further, the student has passed the following courses towards fulfillment of course work
requirement for his Ph.D.

S.No. | Subject code Name Credits | Pass/Fail
i PY801 Research Methodology 4 Pass
2 PY802 Advanced Quantum Mechanics 4 Pass
3. PY803 Advanced Experimental Techniques 4 Pass
W/’# W | e
\ ¥ l
(Prof. Bindu A. Bambah) (Dr. Soma Sanyal) (Prof. K. C. James Raju)
Thesis Superv1sorb.a\'\ Co-Supervisor, Dean,
School of Plh School of P School of Physics,
Univ %% 20 Umver51t p}f}%@;\ab d. University of Hyderabad.
9(0 “0 \\,\Q\P\ o (oe \,5\0
SC \\\’ \\ S Y P~9 \Jde A6' & ;
wes® 00 o“°. gl 0 © YhE J2121/ Dean
\)“ 50 9 9\\.\’ 6—6 aF ‘:‘Vm s o
Qe"d \)\-\'\\le‘e(a“a adil A=nld uuhool of Physics
f\\’ \’\\Jd /f- hd| »”_’r HQ

; J“I\/t:RSlTY OF HYDERABAD
&<{4i / HYDERABAD-500 046. R / INDIA.



Acknowledgements

First and foremost, I offer my deep and sincere gratitude to my supervisor Prof. Bindu A.
Bambah for all the encouragement and motivation she has provided me with throughout
the thesis. I am grateful to her for suggesting me few problems of physics which are current
interesting areas of research and have a great future. I sincerely thank her for believing in
my capabilities as a researcher.

I would like to acknowledge the use of IBM Quantum Experience for this thesis work. The
views are expressed by me and do not reflect the official policy or position of IBM or the
IBMQ team.

[ would like to thank Prof. C. Mukku (IIIT-Hyderabad) for his insightful inputs in
my research papers and Prof. S. Umasankar (IIT- Mumbai) for his valuable suggestions
to putting forward of my research work. I am thankful to my collaborators Mr. Akshay
Chatla and Mr. Supratik Mukherjee for their fruitful discussions. I am extremely
thankful to Prof. Rukmani Mohanta, Prof. E. Harikumar, Dr. Soma Sanyal
(Co-Supervisor), and Prof. V. Subrahmanyam for their valuable suggestions during my
Doctoral Committee meetings.

I am extremely grateful to Vice-Chancellors: Prof. Apparao Podule and Prof. B. J.
Rao, and the Deans, School of Physics: Prof. Bindu A. Bambah, Prof. V. Sheshubai,
Prof. Ashok Chatterjee and Prof. K. C. James Raju for providing excellent facilities,
good conferences and a nice atmosphere for during my Ph.D. work.

I thank Mrs. Deepika, Mrs. Shailaja and Mr. Sudarshan for their help in adminis-
trative matters and Mr. Shekar, Mr. Prasad, Mr. Mahesh, and all non-teaching staff
for their help in school office.

I would like to thank all of my teachers and friends during my Ph.D., M.Sc, B.Sc, Interme-
diate and School and all of my well wishers for their love, affection and constant encourage-
ment. [ thank my friend Mr. Abhishek Nandan and Ms. Devaparna Bhattacharya,
and my senior Dr. Naveen Kumar Mogurampally for their help in many occasions.

I thank all my family members for their unfailing cooperation and support during my
Ph.D. study. I especially thank my elder brother, Mr. Jitendra Narayan Jha for his

vil



viii
unlimited support through out my educational career.

Finally, I would like to thank everyone whosoever is involved in this effort.

Regards,
Abhishek Kumar Jha.



Abstract

This thesis focuses on the interconnection between two rapidly advancing fields, neutrino
oscillations in high energy physics and quantum information theory. Quantum entanglement
and coherence are two properties emerging from the rule of quantum superposition. Since
neutrinos are weakly interacting particles in superposition states, they should be entangled.
We map the neutrino states to bipartite and tripartite states utilized in quantum optics.
We use the entanglement measures of concurrence, tangle, linear entropy, negativity, three-
tangle, and three-m to characterize the time evolved flavour superposition neutrino states.
We find that the correlations exhibited by neutrino oscillations in the tripartite system
resemble the W-states, making them tangible assets for quantum information tasks. In the
quantum computing language, superposition states are like qubits, which are fundamental
building blocks of quantum computers. We map two flavour neutrino eigenstates to qubits.
We prepare a quantum computer circuit to simulate bipartite flavour mode entanglement
in the two neutrino systems on the IBM quantum processor. Furthermore, we construct
the Poincaré sphere representation for two and three-flavour neutrino states using Pauli and
Gell-Mann matrices. We generalize the concept of tripartite mode flavour entanglement in
the three-neutrino system by considering them as qutrits. These quantum studies enable us
to model neutrinos on quantum computers. The potential viability of neutrinos as quantum
information resources is discussed.
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Chapter 1

Introduction to neutrino oscillations

1.1 Introduction

Despite being the most abundant fermion in the universe, the existence of the neutrino
was postulated by Pauli in 1930 |1]. The investigation of the §-decay process was the first
compelling evidence for the neutrino. The 3-decay process is of two types: 5~ and S1-decay,
in ﬁ_—decayﬂ neutron (n) gets converted into a proton (p), and in that process, an electron
(e7) emitted from the fixed energy of a nucleus, i.e., n — p + e~. Before 1930, this theory
troubled physicists for two main reasons: first, the energy spectrum of the emitted electrons
is continuous in comparison to the spectrum of «, and v radiation [2-7]. Second, because

both parent and daughter nuclei have either integral spin or half-integer spin, a single e~
1
2
made a hypothesis that solved these difficulties [8]. He proposed that an electrically neutral

of spin 3 is inconsistent with angular momentum conservation in f~-decay. In 1930, Pauli
particle of spin —% with negligible mass is created and emitted at the same time as the
electron in S~ -decay. Thus, the actual decay process of f~ isn — p+ e~ + 17, [8]. It means
that only a fraction of maximum kinetic energy is taken by e~ and the rest of the kinetic
energy is used by antineutrino (7,.) in the decay process. Since the neutron was found in
1932 by J.Chadwick [6], Fermi used the name “neutrino” (little neutron) and later proposed
the Fermi hypothesis of beta decay [9]. The finding of an electron type antineutrino was
done by Reines and Cowan in 1956 [10].

In 1957, the first quantum mechanical description of neutrino oscillations was by B. Pon-

!'Note that an isolated neutron is unstable, and so it decays easily, unlike an isolated proton. A proton
transforms to a neutron within a nucleus via the 3% -decay process.



Ch-1: Introduction to neutrino oscillations 2

tecorvo [11,12] in which he used an analogy of Kaon oscillations suggested by M.Gell-Mann
and A.Pais [13]. In 1959, Pontecorvo proposed the muon neutrino [14] and later, in 1962,
the discovery of muon neutrinos were made in the Brookhaven experiment [15]. Neutrinos
are produced from a charged lepton or together with a charged antilepton in charged cur-
rent weak interaction processes. The leptonic charge current generates a superposition of
massive neutrinos termed as “flavour state”. Oscillations between different flavour states are
possible if neutrinos are massive. In 1962, a model describing the mixing of different mas-
sive neutrinos in a flavour state was proposed [16]. Pontecorvo in 1967 predicted the Solar
Neutrino Problem as a consequence of v, — v, or . — v, transitions [18] before Homestake
experiment [17]. Later, in 1969 Gribov and Pontecorvo discussed solar neutrino oscillations
due to neutrino mixing [19]. In the year 2000, tau neutrino v, was discovered in DONUT
experiment [20]. Finally, the Super-Kamiokande Observatory [21-24] and the Sudbury Neu-
trino Observatory [25426] discovered neutrino oscillations and neutrino mass leading to the
2015 Nobel Prize for Physics. Today, we know neutrinos come in three flavours in the lepton
family, electron neutrinos (v.), muon neutrinos (v,) and tau neutrinos (v,). One strange
aspect of neutrinos is that they do not pick just one flavour and stick to it. They oscillate
between all three. With time, the probability of finding a given neutrino flavour in another
flavour state can be seen experimentally in many ongoing running observatories like CERN,
Fermilab and Japan, in particular NOvA and T2K.

In most theories, neutrino oscillation probabilities are derived based on the plane wave
approximation, which is strictly valid when the neutrino mass eigenstates composing a given
flavour eigenstate either have the same momentum or the same energy [27]. A significant
degree of coherence at great lengths is necessary to sustain the oscillations. Given the
spatial localisation of neutrinos, a more general wave-packet description should be more ap-
propriate for a complete understanding of neutrino oscillationd’] Although the plane-wave
treatment is a good approximation for neutrino flavour transitions, the wave-packet deco-
herence and dispersion effects could still be minor corrections to oscillation parameters. In
1981, Kayser discussed quantum mechanical aspects of neutrino oscillations and emphasised
the wave packet treatment [28]. However, detailed calculations and experiments (Daya Bay)
have shown that the plane wave description fits closely with observations [29,30]. The fact
that neutrino oscillations are coherent over large space-time scales warrants a study of the
entanglement properties of neutrinos. Thus, it is intellectually appealing to evaluate how en-
tangled a neutrino system is quantitative. The entanglement of neutrinos, its relation to the

mixing probabilities and the somewhat futuristic notion of “Neutrino Quantum Computers”

2The theory of neutrino oscillations using the quantum field theoretical approach is not discussed in this
thesis [31134].
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are the impetus for this study. The philosophy is that once we understand our actual limits,

we can be free to investigate our imagination.

There are still some unsolved issues, like whether there exist different quantifiers of entan-
glement to measure quantum entanglement. How do we measure them in the phenomenon of
neutrino oscillations? Can we simulate such entanglement measures on a quantum computer?
Is there any possibility to investigate neutrino oscillations beyond the qubit dimension? An-
swers to these questions will play an essential role in exploiting neutrinos as a resource in
quantum information processing. In this thesis, we examine these questions by investigating
the quantum nature of neutrinos to study the entanglement of the mass eigenstates, sim-
ulating entangled oscillating neutrinos on the IBM quantum computer, and mapping three

flavour neutrinos to qutrit systems.

In general, we study entanglement with quantum objects called qubits, and a particular
superposition of two-qubit is an example of an entangled state. In quantum optics, the Bell’s
state of two-qubit and the three-qubit GHZ (Greenberger-Horn-Zeilinger) state and W-state
are bi-partite and tri-partite entangled states, respectively [35]. These entangled states have

several applications in quantum information processing [36-41].

The linear superposition state of two flavours of neutrinos is a two-qubit system. Blasone
et al. [42] initiated the study of three-qubit entanglement in three flavour neutrino systems.
Alok et al. [43] quantified entanglement measures such as Bell’s inequalities in oscillation
probabilities. This thesis investigates and quantifies bi-partite and tri-partite entanglement
measures of two and three flavour neutrino oscillations. The bi-partite entanglement re-
sembles the entanglement swapping of a beam splitter in quantum optics. The various
entanglement measures that we calculate are the concurrence, negativity, and three-tangle
for the three neutrino systems. Expressing the monogamy inequality in terms of negativ-
ity leads to a residual entanglement, a signature of genuine tripartite entanglement in the
three neutrino systems. The three neutrino state is similar to a generalised W-state class in
quantum optics. The critical point is that quantification of entanglement measures in terms
of neutrino oscillations probabilities simplifies the use of neutrinos for quantum information
tasks.

In 2016, the IBMQ team designed cloud-based quantum computers, which are made freely
accessible to researchers and scientists online for novel investigations concerning quantum
processing [44]. Qubits are the central building blocks on which quantum computers run [45].
The superconducting-qubit-based quantum processors in quantum computers tackle excep-

tionally significant complex problems which are difficult to address using classical super-
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computers. The quantum computing innovations guarantee reform estimations in numerous
physics, chemistry, and data science spaces. Considering the ongoing advancement in de-
veloping quantum computing facilities dependent on optical and cold-atom techniques, the
algorithm for quantum simulations in the particle physics framework is quickly advancing.
The principle undertaking of the quantum algorithm is to decompose a quantum operator
within the language of quantum gates and circuits acting on qubits. Argtielles and Jones
pioneered the simulation of neutrino oscillations on IBM(Q processors [46]. In this thesis,
we discuss the implementation of bi-partite entanglement in the two-neutrino systems in
the vacuum and a uniform matter background on the IBM quantum processor [44]. The
novelty of our work is that we found a way to encode the concurrence measure of entangled
oscillating neutrinos on a quantum computer. The studies show that quantum computers

can simulate the bi-partite entanglement in two flavour neutrinos oscillations.

The application of bipartite entanglement is limited, but entangled states involving more
than two qubits (multipartite entanglement) can establish new protocols for quantum com-
munication. This thesis maps the neutrino states to the qutrit states [47], which generalises

tripartite entanglement in the three-neutrino system.

1.2 Plane-wave approximation

The theory of neutrino oscillations usually use the plane-wave approximation [48-51]. The
three neutrino flavour eigenstates are not neutrino mass eigenstates but a linear superposition

of them given by

va) = > U2y 1), (1)

where, |v,) (o = e, u, 7) are the flavor eigenstates, |v;) (7 = 1,2,3) are the mass eigenstates
and the asterisk (x) denotes the complex conjugation of U,;, where U,; are the elements
of a leptonic mixing matrix called the PMNS (Pontecorvo-Maki-Nakagawa-Sakita) matrix,
characterized by three mixing angles (612, 613, 623) and a charge conjugation and parity (CP)

violating phase dcp [52,53].

—10
C12C13 S512€13 s13e”"cr Ut Ue Ue
_ ) ) _
U(Qij, 5) = | —S12C23 — C12513523€"°°7 12023 — S12813823€"°CF C13523 = U,ul Uuz U,u,3
1) )
512823 — C12513C23€"°CF  —C2S93 — $12513C23€"°°F  Ci3C03 Un U Us

(1.2)

)
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where, ¢;; = cosf;; and s;; = sinf;; (i,j = 1,2,3). Further, orthonormal mass eigenstates
are chosen such that
< I/j‘l/k >= 5jk- (13)

Thus, |v;) are eigenstates of the Hamiltonian (H) with energy eigenvalues E;

Ej=\/p?+m3, (1.4)
such that
H |v;) = Ej|v)) (1.5)
The Schrodinger equation
d
i (1)) = H oy (1)), (1.6

implies that the mass eigenstates states evolve as plane waves with time

(1)) = e uy) . (1.7)

Using the unitary transformation relation

UlU=16p=> U*Uwy =0, 1.8
B «) J

the massive neutrino states can be expressed in flavour states as
;) = Uajlva) - (1.9)
«

In the plane wave picture, from Eq.(1.1]) and Eq.([1.7)) the time evolved flavour neutrino state
is

PAG) Z —Eit ), (1.10)

in which |v,(t)) refers to the state of the neutrino that started out in flavour v, at t=0. Thus,
using Eq.(1.9) in Eq.(1.10)), the evolved neutrino flavour state in a coherent superposition of

flavour basis can be written as,

) = 3 (2 Uage ) ) (111)

B=e,u,T
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where the coefficient of |v3), Uss(t) = >, U e *FitUg; is the amplitude of transition from
|Va) to |vg). Consequently, the transition probabllity | < vs|va(t) > |2 is then |Uys(t)|? which
is

Z UsiUaUppe ™" Fim et (1.12)

Taking the universal constant ¢ = 1, h = 1, for ultra-relativistic neutrinos, the dispersion

relation in Eq.(|1.4) can be approximated by

m2
E,~FE+ ol (1.13)
In this case,
Am3y
Ej - Ek: ~ ok s (]_]_4)

where Am? = m3 —mj and E = |P| is the energy, neglecting the mass contribution. In
experiments, the propagation time t is not measured. The known parameter is the distance
L. Since velocity of neutrinos is nearly of light speed, we approximate t = L. The probability

of finding flavour neutrino g = (e, u, 7) from an initial @ neutrino is

2
m]-kL

A
P.s(L,E) = Z " UgiUa Uy ™28 ), (1.15)

This expression shows that the source-detector distance L, the mass square difference Am?k

and the neutrino energy E (which varies based on experiments) are the quantities that
determine the phases of neutrino oscillations

) Amj L 1.16

Y (1.16)

It is clear that oscillations between different flavours are possible for L > 0 because the

unitary relation
UUT =14 ) UyUs; = as, (1.17)
J
implies that
Pog(L =0, E) = dap. (1.18)
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Sometimes it is convenient to write the transition probability in Eq.(1.15]) as

(—2mi&se)
Pos(L, E) Z|Ua]] |Usi* + 2Re Y " Uz,UsiUaiUfpe 5 (1.19)

7>k

in which we have separated a constant term from the oscillating term and we have defined

the oscillation lengths
ATE

W= ———. 1.20
gk Amjzk ( )
The oscillation length L7 is the length at which the phase generated by Am?k becomes
27. Another useful way to write the transition probability in Eq.(1.15]) is to separate the

real and the imaginary parts of Ug;U;;Uf5 Usy. From the square of the unitary relation in

Eq. -, we obtain

Z Ui PUs; > = 0as = 2 ) Re[Uz;UsiUarUsy, (1.21)

>k

which allows one to write the transition probability as

* * L
P.s(L,E) = dup — 4j>ZkRe(UajU5jUakUﬁk> sin? (Am]kélE)

L
+2Z[m oiUsiUarUgy) sin (Am]kZE) . (1.22)

>k

In the neutrino oscillation experiments, the transition probability of the channel with o # 3
is the usual disappearance probability (P;), whereas the transition probability of the channels
with a = 3 is the survival probability (P;). The survival probability is

Am?kL

). (1.23)

Poo(L, E) = |Una(t)]* = 1= 4> |Us, *|Ua, |* sin*(

>k

In order to analyze the experimental data of neutrino oscillations, we write the oscillatory

term as

Am?, L Am? (eV?)L(km)
1 2 —‘]k pum— 1 2 jk
sin®( 1E ) = sin“(1.27 1E(GeV) ). (1.24)

The factor of 1.27 stems from the conversion between the different units. Eq.(1.22)) and
Eq.([1.23)) is still the general case that applies for any number of generations. The following

subsection derives flavour oscillation probabilities in a vacuum for two and three generations
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of neutrinos.

1.2.1 Two-flavour neutrino oscillations

We consider the oscillation between two flavour neutrinos for e.g., (v, v,) in which vy and v,

are mass eigenstates of neutrinos. In this case the PMNS matrix in Eq.(1.2)) is a 2x2 unitary

U(6) ( cost) sz’n@). (1.25)

—sinf cosb

rotation mixing matrix

Thus, using Eq.(|1.1]), the unitary matrix U connect flavour state to mass eigenstate as

(ZH) = U*(0) (2) (1.26)

Using Eq.(|1.9), the neutrino mass eiegnstates in linear superposition of flavour basis can be

written as
l11) = cosb |ve) + sinb |v,) (1.27)

1) = —sinb |v.) + cosb |v,,) (1.28)

Using Eq.(1.10)), the time evolved neutrino flavour state in a linear superposition of mass

basis can be written as
Ve (1)) = cosfe™F1t 1) — sinfe 2! |vy) (1.29)

v, (1)) = sinfle” 1" 1)) + cosfe 2 |1y) (1.30)

Substituting Eq.(1.27)) in the Eq.(1.29), the time evolved electron neutrino flavour state in

flavour basis is

Ve (t)) = cosfe " (cosh |v.) + sinf |v,)) + —sinfe™ P! (—sinf |v.) + cost |v,),

= (cos®0e™ " + sin*0e” ") [v,) + sinfcosf(e " — e ) v,y (1.31)

Since neutrinos are ultra-relativistic particles (¢ ~ L), therefore the standard transition

probabilities are

Am3, (eV?)L(km)
AE(GeV)

Py =< v,|v.(L)|* = sin®(20)sin*(1.27 ), (a#B), (1.32)
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and

P =< v u(L)?=1-P; (a=24). (1.33)

We can observe from Eq.(|1.32)) and Eq.(1.33)) that the probability of the presence of neutrino

in the state |v,) and |v.) is maximal and minimal, respectively, at the distance g =

5 (225-), where Am3; = m3 — mi. The amplitude of the oscillation is determined by
. 21
the mixing angle , where § = 7 corresponds to maximal oscillations. Note that Eq.(1.32)

and Eq. 1} does not depend on L and E independently, but only on the ratio % Using
Eq.(1.6), the evolution equation of the mass eigenstates 14 and vy are

i% (Z;Eg) =" (2%) . (1.34)

Using the approximated expression Eq.(1.13]), the Hamiltonian H in diagonal matrix form

_(E; 0 m2/2E 0
H_(O EQ)_E+( 0 m2E) (1.35)

Recalling Eq.([1.26)), we can rewrite Eq.(1.34]) as

d (v, v
(V) = (7)) 1.36
“at (W) (Vu) (1.3)

mi 4+ m3 n Am? [(—cos20 sin26
4F 4F stn20  cos20 )’

can be written as

where
H,,.=UHU'=FE +

(1.37)

It is a Hamiltonian of flavour eigenstate on a mass basis in a vacuum. In the later section
(see Subsec.(|1.2.3)), we use this Hamiltonian to generalise the neutrino oscillation in the

matter.

1.2.2 Three-flavour neutrino oscillations

For simple calculation, we assume the CP conserving case, when the PMNS matrix U is real
i.e., 0cp = 0. Thus, Eq.(L.2)) become

C12€13 S12€13 513
U(Qij) = | —S12€23 — C12513523  C12C23 — S12513523  C13523 | - (1-38)
512823 — €12513C23  —C12523 — S512513C23  C13C23
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In this case the transition probability in Eq. i.e, P,p is dependent on the three mixing
angles and two independent squared-mass differences which is written as Am3; and Am3,
then Am3, = Am?%, — Am3,. We consider a case where the mass squared differences are
minimal, such that

Am3, L

2F

Neglecting mass square difference, we get Am2, = Am3,. Thus, using Eq.(1.38) in Eq.(1.11)
and following Eq., the survival probability of the three flavour neutrino oscillations is

reduced to

<< 1. (1.39)

Am2,(eV?)L(km)
4E(GeV)

P, =1 — sin*(20,3)sin*(1.27 ). (1.40)

This equation is similar to the two flavour survival probability with terms 6; and AmZ,
in Eq. is replaced by 613 and Am3,, respectively. We observe from Eq. and
Eq. that the transition probabilities depend on seven independent parameters E] ie.,
three mixing angles, two mass-squared differences, distance, and energy. The allowed ranges
of these parameters are obtained by global fit to the accelerator, reactor, atmospheric and
solar neutrino data. Under these neutrino oscillation experiments, for m; < mo < mg
(normal hierarchy), the 30 range best-fit values are listed in Table.(L.1)). In the later chapter
of this thesis, we will use the data of Table.(L.1]) to plot graphs.

Parameters Best fit 10 30 range
102_% 7427021 6.82 — 8.04
iy 2.51410 0% 2.431 — 2.598
012(deg) 33.4470°78 31.27 — 35.86
03(deg) 49.071} 39.6 — 51.8
013(deg) 8.57 015 8.20 — 8.97

Table 1.1: The neutrino mixing parameters in normal ordering (m; < msy < mg) from the
NuFIT data [54].

1.2.3 Neutrino oscillations in constant matter background

In 1978, L.Wolfenstein [55] and other authors in the early 1980s [56] studied neutrino propa-

gation in a medium with constant matter density. The effective Hamiltonian which governs

3Is neutrino a Dirac fermion or a Majorana fermion? Apart from one CP-violation phases in PMNS matrix
of Dirac neutrinos (see Eq.(1.2])), there exist two Majorana phases if we consider neutrinos as Majorana
fermion. However, neutrino transition probabilities are independent of Majorana phases.
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the propagation of neutrino flavour state in matter is

Heff = Hyqc + Hmata (141)

m? 0 0 100
Hye=5U1 0 m 0 |U' Hye=V2GpN. (0 0 0], (1.42)
0 0 m} 000

where U is given in Eq.(|1.2)), N, is the electron number density and G is the Fermi constant.
For the two-flavour neutrino evolution equation in flavour basis, (for e.g., v, and v, ), the

effective Hamiltonian is
1 mi 0\, 4+, (5 O
Heff — ﬁ[U ( O m2> U + O é ], (143)
= Hyge + Hmah (]_44)

d (ve\ v,
ZE (Vu) = Heff (VM) 5 (145)

where, A = 2v/2EGgN, is the constant effective matter potential induced by ordinary

such that

charge-current (contribution from W Boson exchange) weak interactions with electrons; U =
cost)  sind
—sinf  cosf
H,,. of Eq. (by neglecting the terms proportional to the unit matrix) in Eq., the

effective Hamiltonian in symmetric form can be obtained as [57]

is a two-flavour mixing matrix in vacuum. By using the approximated value

1 — 2 A 2.5
( Am?cos20 + 5 Am#sin26 ) ’ (1.46)

Hepy = AE Am?sin20 Am?cos26 — é

where Am? = m3 —m? and 6 is the mixing angle parameters in vacuum. This H,;; matrix

is diagonalized by the unitary transformation,

Ui Hep Uy = Hyy, (1.47)

—Am?%, 0
0 Am?,

[ costy  sinby
Un = (—sin@M COSHM) ’ (1.48)

4F

where, Hy; = - ( ) is the effective matrix in the mass basis in matter. The

unitary matrix
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is the effective mixing matrix in matter. Thus, using Eq.(1.45) and following Eq.(1.23)), the

two flavour neutrino survival probability in matter can be obtained from as

Am?2,(eV?)L(km) )
4E(GeV) ’

P, = 1 — sin?(20,r)sin(1.27 (1.49)

where 0y and Am3, are the effective neutrino oscillations in matter. The relation between
the vacuum neutrino oscillations parameters and effective neutrino oscillations parameters

are

Am?, = \/[Am2cos(20) — A]2 + [Am2sin(20)]2, (1.50)

(Am?sin20)?
(Am2cos20 — A)? + (Am?2Sin26)?

By comparing Eq.(|1.49)) with Eq.(1.33]), we can say that the two flavour neutrino oscillations

in vacuum is modified due to constant matter effect. At the resonance,

sin?20,; =

(1.51)

Al = Am2Cos20, (1.52)

the electron number density is given by

r_ Am?Cos20

_ oM oser 1.53
¢ = 5VBEG, (1.53)

Although 6 is small, at 6, = 7 the transition from v, and v, mix maximally. This is called
resonance condition. The possibility of resonant flavour transitions of neutrinos travelling
in a medium with varying matter potential was discovered in 1985 [58,59]. The MSW
(Mikheeev-Smirnov-Wolfenstein) mechanism specifies the region along the neutrino path in
which the maximum mixing angle is 7 and this could explain the flavour transition of solar
neutrinos during their propagation out of the Sun, even in the case of small § [60]. The
developments and concepts behind the MSW effect in 1978-85 are described recently by A.

Yu. Smirnov [61].

1.2.4 Same energy and same momentum approach in neutrino os-

cillations

In Sec.(1.2)), in the plane wave picture, when neutrinos propagate in time, the mass eigen-

states v; gets associate with the phase factor % . In general, this phase factor depends on
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both space and time and is defined as

In order to calculate the disappearance P,z (see Eq.(1.22))) or survival P,z (see Eq.(1.23))
probabilities, we need to calculate the phase differences between different mass eigenstates

i.e., (the oscillation phases) Ag;x:
A¢p = AE.t — Ap.T. (1.55)

Here, the subscripts jk are omitted from A¢, AE and Ap'in order to simplify the notation.
Different neutrino mass eigenstates composing a given flavour state cannot simultaneously
have the same energy and momentum, as otherwise, they would have the same mass. There-

fore in many studies, two simplified approaches were adopted:

e Same momentum approach: Assuming the momentum of all the mass eiegenstate
are same, i.e, Ap'= 0. Then, Eq.(1.55)) gives A¢p = AFE.t and transition probabilities
Eq.(1.22)) depends only on the evolution time t. Since for ultra-relativistic neutrinos

2

Ej:,/]?—i—mjz-:p—i—ﬂ

T for the oscillation phase one finds

Am?

Ap=AEt ~ 2 t, (1.56)

with the approximationf] of ¢ ~ L, Eq.(L.56) yields the usual oscillation phase which
leads to the standard transition probability Eq.(|1.22]).

e Same energy approach: Assuming the energy of all mass eigennstates same, AE =
0, then Eq.(1.55)) gives A¢ = —Ap.Z. When L is large, we can assume that 7 is parallel
2

m

to momentum p (7||p). For ultra-relativistic neutrinos, p; = \/E? —m3; ~ E — 3£,
and the oscillation phase Eq.((1.55)) become

Am?
2F

A¢p = —Ap.L ~ L. (1.57)

The resulting transition probability is again the same Eq.((1.22)).

4Note that for supernova and solar neutrinos, the approximation ¢ ~ L is no longer justified [28}|64].
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It is to be noted that by assuming the mass eigenstates to have the same momentum or same
energy, the neutrino transition probabilities P,z (Eq. or P, (Eq) in-plane wave
picture does not change. This assumption shows that this model is inconsistent because plane
waves are completely delocalised in space. These assumptions contradict energy-momentum
conservation. In ref. [62], R. G. Winter considered neutrino emission in orbital electron
capture by nuclei, a process with a 2-body final state and simple kinematics. Another
process with a 2-body final form -charged pion decay- was discussed by Giunti and Kim [63].
Let us follow their argument, for a @ — pv decay at rest, F; and p; of the produced neutrino

mass eigenstates v; with mass m; is obtained from the 4-momentum conservation law as

m2 m? m?2 m? m
F?=—"T"(1—-—Ey?4+ 211 -—-£ J 1.58
2 2 2 2 4
o Mz My o 1 m, m;
A o A P A ) 1.59
Neglecting terms of order m}*, one finds
EaEre peE 1o (1.60)
7 o2F> 7T 2F’ '
where ) )
_ Mg My _ 1 My

As seen from Eq.(1.61]), the same energy and momentum assumptions correspond to £ = 0
and & = 1, respectively; in reality, however, £ is neither 0 nor 1 but somewhere between 0 to
1, i.e., 0.2. Thus, an explanation of neutrino oscillations using the wave packet approach is

needed.

1.3 The wave-packet description of neutrino oscilla-

tions

In 1976, Nussinov used the wave-packet approach of oscillating neutrinos and showed a co-
herence length [64]. He suggested that the wave packets corresponding to different mass
eigenstates propagate at varying velocities, so they do not overlap anymore after a while.

Thus, beyond the coherence length, one would not see the interference of different massive
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neutrinos as they would lose coherence [65]. In 1981, Kayser discussed the issues of neutrino
oscillations in quantum mechanics and the need for the wave-packet approach [28]. In 1998,
Carlo and Kim used the Gaussian wave packets to calculate the flavour changing probability
by incorporating the temporal and spatial coherence widths of the detection process [66].
In 2003, Carlo Giunti used the density matrix formalism to describe wave-packet of neu-
trino oscillations in stationary beam and disproved the requirement of equal energy or equal

momentum of different massive neutrinos [67]. The analysis in this paper is as follows:

Let us rewrite Eq.(1.1)) by associating the mass eigenstates v; with wave function v;(z,t)
such that

Ve (2, 1)) Z aili(@, ) |vs) . (1.62)

Using the Fourier transformation, we can relate this wave function v;(z,t) with a Gaussian

wave 1;(p) for the momentum distribution of the massive neutrino v; with mass m; as

0y ) = <= = [ byt (1.63)

where

1 (= p)?

(p) = —— ¢ 9" 1.64
%(p) (271_0_52)& ( )
Here, the momentum uncertainty 05 is obtained from the production process with p; and

Ej(p) = y/p? +m3 as average momentum and energy, respectively.

In order to get the solution of Eq.(1.63]) analytically, the Gaussian momentum distribution
is taken, Eq.(1.64), which shows sharp peak around the average momentum p;, satisfying
the condition ¢} < E7?(p;)/m;. Thus, approximated energy is

Ej(p) ~ Ej +v;(p — pj), (1.65)

where average energy is E; = ,/ p? +m§ and group velocity of wave packet of massive
Dj

aEgp(p) lp=p, = B By solving the integration over p of Eq.(1.63|) using

the above approximation, we find that the solution is Gaussian as

neutrinos v; is v; =

.2
1 —iE]'t—l—ipja:—w

"(Aj(l',lf) = me 4052 , (166)

P

where o, = 2(+p is the wave packet width in space. We observe that Eq.(1.62)) is a pure
p
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state, therefore we construct the density matrix operator
Pa(x,t) = [Vo(z,t) >< vo(z,1)]. (1.67)

On substituting Eq.(1.66) in Eq.(1.62)) and then using it in Eq.(1.67)), the density operator
which depends on both space and time is

Z U;jUak6[—i(Ej—Ek)t+i(pj—pk);B—(;U—th)2/4crf2—(x—vkt)/4052} ij >< Vk|-

oz, t) =
’ \/27TO'P ik
(1.68)

By applying the Gaussian time integration we get p,(z) (relevant density operator) as

vitvg (v‘ka)212 (E'~7E‘k)2
L (B~ B~ (i)~ e
vZtv ( J k J v2 402 o'P2 w2402 UP2
E U: Uake itk Hejrepee ATy > <. (1.69)

Thus, in Eq.([1.69)) the density matrix of a stationary beam in neutrino oscillations is indepen-

dent of time. To find the flavour transition probability, we use the ultra-relativistic neutrinos
2

which approximates £; ~ F +¢§ p%, where massless neutrino energy is E, the dimensionless

2
quantity dependent on the features of the production process is &, p; ~ E—(1—¢ p)% and
2

;. Considering these approximations, p,(z) becomes

Uj_l_QE

Am]kz 2

(T e ok )
vy >< (1.70)

2: _Z 2E

where Am?, =m? —mj. To detect § flavour neutrino at distance L, we define an operator

O(x — L) of flavour § in an analogy with the production process such that

Am?k(sz) Am?k(sz) Am?k

* [~ 2E =( 4v2E25D )?=(¢p 4\/§E0D)2}
D=t Py

lv; >< . (1.71)

The probability of transitions from v, to vg is

Prrsns(L) = Tr(paia) Os(a — L)) = / dr 3" ] pal@)Osle — L) vy, (172)

J
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2 () =2m (16" (1% )]

=D UsUatUsUse — * S (1.73)
ik
where L7 is the oscillation length and the L“’h fﬁ?j 0, is the coherence length, defined
ik
by

AmE 4 E2
= L= v2 (1.74)

Amjk |A ]k:|
with 02 = ¢F? + ¢P? and €202 = 20F% + 20P%, where 0P = 525 18 the detection process

p

uncertainty and &p (dimensionless quantity) dependent on the features of the detection
—2mitHe

process. The three exponential factors in the Eq.(1.73) are the phase factor (e ik ),
) 22 (1-6)2 (3)”

the coherence term (ei B ), and the localisation term (e ). The localisation
term suppresses the oscillation if o, >> L7 We can ignore this term because in usual

experiments this condition is very well satisfied. Therefore, we use the effective probability

[—2mi LoLsc (LcLoh )2}

ua—n/ﬁ ZUszakUEjnge gk ik . (175)

We notice that the wave packet approach affirms the standard plane-wave approximated
oscillation length L%¢. Beyond the coherence length, L“’h the interference between the
massive neutrinos is impossible. The reason is that the wave packet cannot be absorbed
coherently because of its significant separation during its arrival at the detector. If L <<
L;Zh, the coherence condition is satisfied, and the effective probability Eq. reduces to
the standard transition probability Eq. (or Eq.) in the plane-wave picture. We

present a chapter-wise description of the thesis in the next section at this juncture.

1.4 Outline of thesis

Chapter [2| of the thesis explores the meaning of two and three-qubit entangled quantum
systems in detail. A density matrix formalism review helped us characterise the bi-partite
and tri-partite entanglement for two and three-qubit quantum systems. Considering two-
qubit Bell’s state, we investigate bi-partite entanglement measures like the Positive Partial
Transpose (PPT) criterion, negativity, the entanglement of formation, concurrence, tangle,
and linear entropy [68-71]. Further, considering prototype three-qubit GHZ and W-state, we

evaluate two different tri-partite entanglement measures: three-tangle [72] and three-m [35].

In three flavour neutrino oscillations, the neutrino state is |v(t)) = a|100)+5]010)+¢ |001),
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which is the “generic form” of the W-class of states in quantum information theory. In
Chapter [3| we have asserted this by examining entanglement measures discussed in chapter
2l Our investigations show that the three-neutrino state has, for sure, genuine tripartite

entanglement more similar to the W-state than the GHZ-state.

Presently, analogues of a quantum system can be encoded coherently in a quantum com-
puter. The first step in this direction is to express the building blocks of a known physical
system in terms of the language of quantum gates and circuits. Chapter [ is devoted to the
formalism of quantum computing [44]. We have geometrically explained the qubit structure
and defined a few quantum gates of single-qubit and two-qubits. We analyse the universal
quantum gates U3 and other unitary quantum gates, enabling us to create the prototype
GHZ and W-state quantum circuits in Bell’s state. We also explored the simulation of these
circuits on an IBMQ cloud computer. Further, we propose a quantum circuit to simulate the
entanglement measure-concurrence of a two-qubit arbitrary pure state on the IBM quantum

cloud computer.

Chapter [p| quantifies two entanglement measures such as concurrence [70] and /; norm of
coherence [73] in the two neutrino systems and finds their relation. The construction of
the SU(2) rotation matrix from the Universal quantum gate U3 is encoded on the IBMQ
platform. Using the unitary quantum gates and circuits of chapter [ we find a way to
simulate the bi-partite entanglement of two neutrino systems in the vacuum and the constant

matter background on the IBM quantum computer.

In Chapter [6] we started our calculation from the SU(2) Pauli matrices and SU(3) Gell-
Mann matrices to develop Poincaré sphere representation for two and three-flavour neutrino
states that describes entanglement of neutrino and also map the neutrino states to the qutrit
states of quantum information theory. This enables us to generalise the concept of tripartite
entanglement in the three-neutrino system. We extend our discussion to construct the Bloch
matrix and Generalised matrix for the two-qubit and two-qutrit neutrino states. Finally, we
quantify and compare the measures of bi-partite qubit entanglement with bi-partite qutrit

entanglement in the two neutrino systems.

Chapter [7] starts with some experimental evidence of neutrino entanglement and presents
the conclusion of the thesis. This chapter also discusses the future perspective of quantum
aspects of oscillatory neutrinos using the wave-packet approach. In addition to entanglement,
coherence is an essential topic globally. Besides the local level, coherence in neutrinos also
occurs at an astronomical level like Supernova. A global-scale neutrino usually maintains

coherence, meaning that the wave-packet size is small and neutrinos do not decohere over
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large distances. We present some preliminary work in this direction with the intention of

future exploration.



Chapter 2

Theory of distributed entanglement

In 1935, the EPR (Einstein, Podolsky, and Rosen) paradox of quantum mechanics was
developed in which they have addressed the issue that the principle of locality and reality
can’t be violated in quantum regimes [74]. To explain this, a hybrid quantum system of
particles A and B is taken with the system’s total spin as zero. Suppose particles A and B
are separated on a certain axis in millions of light-years, and they are in a superposition state.
If the spin of the first particle A is measured up spin on that axis, then the measured spin
of B will be off down spin on the same axis. Thus, measurement done on the first particle A
depends on the outcome of the second particle B. Einstein, and others disagreed with this
result because the event at one point can’t have immediate effect at other points as some
field should mediate the action otherwise the information would travel faster than the light
speed. In fact, in their paradox, they argued that any property measurement on a particle
changes the original quantum state and, therefore, certain quantum effects contradicts the
theory of relativity. They called it “spooky action at a distance” and suggested that the
acknowledged definition of quantum mechanics is incomplete. They said there must be some
hidden variable in the quantum mechanical description that may be responsible for such effect
and proposed Hidden Variable Theory. Later, Schrodinger published a paper expressing the

idea of “entanglement” [75].

In 1964, John Stewart Bell proposed that no hidden variable theory can produce predictions
in quantum mechanics [76]. He introduced inequalities assuming local realism. By many
quantum systems, Bell’s inequalities were violated experimentally [77]. The EPR paradox is
now the basis for defining entanglement, which show the correlation between non-classical

particles. Bell’'s work introduced correlations as a resource of quantum information.

20
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In recent times the study of entanglement is now turned into a fundamental asset in
quantum information science, which is the investigation of cutting edge computation and
communication dependent on the laws of quantum mechanics [45}78,/79]. Accordingly, its
quantification has attracted much consideration in the twenty recent years [80]. To accom-

plish such quantification, one has to define legitimate measures of entanglement.

The current notable bi-partite measures of two-qubit entanglement are the concurrence and
the tangle derived analytically by Wooters et al. [70,72]. The entanglement of formation is a
function of the concurrence and tangle that is monotonical [81,82]. One more valuable entan-
glement measure is Negativity [83], viewed as a quantitative adaptation of Peres’ criterion for
separability. Moreover, the linear entropy can also quantify bi-partite entanglement, which
is a lower approximation of the von Neumann entropy [84]. The study of all these bi-partite
entanglement measures is necessary because they are entanglement monotones. Therefore
they can enter into the fundamental monogamy inequalities for distributed entanglement in
the multi-partite setting [85]. Multi-partite entanglement is an essential aspect in large scale
quantum-information processing [86]. Presently, the widely used basis for characterizing and
quantifying tri-partite entanglement in a three-qubit system are the three-tangle [72], and
three-pi [35].

The chapter’s organization is: In Sec.([2.1)), we briefly discuss the one qubit system, and in
Sec.(2.2)), density operator formalism is given. Considering two-qubit Bell’s state, we inves-
tigated bi-partite entanglement and explored its various entanglement measures in Sec.({2.3)).

Further in Sec.(2.4)), we evaluate tri-partite entanglement measures in the three-qubit system.

2.1 The Qubit

Classical communication theory is based on bits that are described by 0 or 1. In quantum
mechanics, the corresponding quantity is called a qubit. The quantum mechanical laws
permit a qubit to truly exist in any linear combinations of the states |0) and |1), and
mathematically it is given by

) = c1]0) + 2 1), (2.1)

where ¢; and ¢y are complex numbers such that |c;]? + o[> = 1. A qubit lies in a 2-

dimensional complex Hilbert space where a possible orthonormal basis of this qubit are two

orthonormal vectors |0) = <(1)> and |1) = ((1)

superconducting circuits and semiconductor quantum dots, and super-fast computing appli-

. Qubits are used in atoms and photons,
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cations or fundamentally secure communication. A detailed explanation of qubits is given

in chapter

2.2 Density operator

In finite-dimensional systems, the density matrix p is a mathematical representation of the
state of a quantum system which is n X n matrix constrained by the hermiticity, positivity
and trace conditions. Mathematically, a pure state of a quantum system can be represented
by a state vector |¢) which is a unit vector in a Hilbert space H. Moreover, when there is
not enough information to specify the normalized state |¢)), we have a probabilistic mixture
of pure states called mixed quantum states. In this case, if the probabilities of determining
the system in the normalized state |1,) are p,, then the expectation value of an operator A
is

<A>= " py <l Al > . (2.2)

Due to partial information about the system, we use density matrix formalism to describe

the mixed state quantum system. Its general form can be written as
P="> Pultn) (U (2.3)

Here, p is a hermitian density operator which represent a statistical mixture of states. For a

pure state, the density operator becomes

p = i) (i and p* = p. (2.4)

Given that for a pure state, tr(p) = 1, it follows that tr(p?) = 1. However, for mixed states
tr(p*) =Y., p2 < 1. When density operators are positive, any state |¢) can be represented
by

(8l plo) = pal < Ol > [* > 0. (2.5)

Further, in order to define the unitary time evolution of density operator i.e, p(t), we assumed
that the initial state of the system is |¢,,(0)) with probability p,. Thereby, the initial density
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operator can be written in the diagonalized form as
p(0) =D paltbn(0)) ($n(0)], (2.6)
The time evolution of the state [1,,(0)) is

[¥a(8)) = U(E) 1 (0)) (2.7)

We obtained the above equation by solving the Schrodinger equation: ik |1,) ¢ = H |y,),

- Ht . . . . .
where U(t) = e™"'» is a unitary time evolution operator generated by the Hamiltonian H
of the quantum system. Then, the evolved density matrix under unitary condition UTU =
UUT = I is given by

p(t) =D pal (1) [a(0)) (a(0)| UT (1) = U()p(0)UT (2). (2.8)

A density operator is an essential tool for studying sub-systems of a composite quantum
system given by the reduced density operator and partial positive transposition of the density

operator.

2.3 Bi-partite entanglement

A bi-partite system is composed of two non-interactive sub-systems A and B, and whose
state, pure or mixed, lies in a Hilbert space Has = H4 ® Hp that is the tensor product
of Hilbert spaces of two sub-systems. Entanglement is a feature of bi-partite systems. A
bi-partite pure state |W) € H 45 of dimension ds ® dp is called a separable or product state
if and only if it can be written as tensor product of states |x), € Hp of dimension d4 and
|¢) g € Hp of dimension dp

W) =) a® 195, (2.9)

otherwise, | V) is called an entangled state. For example, Bell states that the EPR states or
EPR pairs are pure bi-partite entangled states. There are four maximally bi-partite entangled

two-qubit Bell states in a composite quantum system seen in different experiments. These
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Bell’s states are generally written as follows

v = 7<\o> A ® 1)+ 1), @ [0)), (2.10)
) = %<|o> ® 1)y — (1), ®0) ), (2.11)
B+ = %<|o> 910+ (1)1 @ 1)), (2.12)
D7) = %uou 10— 1), ® 1)), (2.13)

where {0) ® [0) = (00}, [0) ® |1) = [01),]1) @ [0) = |10),|1) ® |1) = [11)} € Hap are the

basis of two qubit Bell’s state. In vector forms, we have

(o) (3] m-0)=() -
(o)1) =)o)

These basis are called two qubit mode or occupation number basis. Let |¢1) = p|0) + ¢|1)

O R OO O oo
_ o oo OO~k O

and |¢a) = 7]0) + s|1) be a normalized states from Hilbert space Hs of dimension 2, which
are single qubit state, where p, ¢, 7, s € C. Here |0) and |1) are known as computational basis
states and form an orthonormal basis for the states |¢1) and |¢2). Then, from Eq.(2.9) and
Eq., the state of composite system |iT) € Hy ® H, is separable if it can be written as

[TT) = [¢1) @ [d2) = (p[0) + ¢ 1)) @ (r]0) + s[1)). (2.14)

Therefore,

%qow +110Y) = pr [00) + ps [01) + g7 [10) + gs |11) (2.15)

However, there are no individual values of p, ¢, r, s but they have relations such that ps =

qr = \% and pr = ¢s = 0, thus we obtain

() # [f1) @ [d2) (2.16)
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so the state |U7T) is entangled. Moreover, If pA® € H,p is the density operator, then
entanglement of quantum state p*? is characterized by the von Neumann entropyﬂ and
defined as [87]

S(pAB) = —Tr(p*Plog,pP). (2.17)
If g; are the eigenvalues of p4” then the above formula can be re-written as:

S(p*7) = =D _ ilogs(9:): (2.18)

For example, a qubit contains maximum entropy of 1. In 1930, the idea of a reduced density

matrix was introduced by Paul Dirac. In general, the reduced density operator is defined as
pt = Trp(p*?) (2.19)

where T'rg is known as the partial trace over sub-system B defined by
Trp(|ar) (az| @ [b1) (ba|) = la1) (az| tr(|b1) (b2|) = [a1) (az| < balbyr > (2.20)

where |ay), |ag) are any two basis € Ha, and |by), |b2) € Hp. Using Eq.(2.10) in Eq.(2.4)),
the density operator of the state |[UT) is

0000
AB gt - L 110110
prm = TT) (U] = 5 (101) (01 +]01) (10[+[10) O] +10) [10) = 5 [ o ¢ | o> (221)
0000
where Tr[(p"?)?] = 1. The reduced density operator read now as follows: p? = Trp(p*?)

— %(|0> (0] < 1|1 > +10) (1] < 1|0 > |1) (0] < 0|1 > +|1) (1| < 0]0 >) = % ((1) ?) ;

(2.22)
and equally

=T =5 (o 1) (2.23)

IThe expected information of a system in information theory is measured by Shannon entropy [88]. Its
quantum counterpart is the von Neumann entropy.
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Even though the total system is pure, it is surprising that the reduced density operator
p? and pP correspond to a mixed state. It means that when one state is entangled with
another, specifying the exact state of a single qubit is not possible. Thus, Tr[(p*)?] < 1 or

Tr[(pP?)? < 1 for a subsystem of a bi-partite pure state is an example of entanglement.

Bennett et al. have shown that it is sensible to characterize the entanglement as the von
Neumann entropy of both sub-systems (A and B) when considered separately. Thus, the

entanglement of a state with density operator pA? is
E(p*P) = —Tr(ptlogap™) = =Tr(pPlogsp®). (2.24)

E(p"P) is termed as the entropy of entanglement, which is an entanglement measures for
pure bipartite states. It varies from 0 for product states to 1 for the maximally entangled
state. Thus, for the state |[UF), we get E(p8) = 1.

Unlike pure states, all correlated mixed states are not entangled. A non-correlated mixed
state of two systems A and B is taken which is defined as H s = Ha ® Hg:

p=pteph (2.25)

An unentangled correlated state developed from mixture of states will not give any direct

quantum correlations linked with entanglement. It is called separable state:
p=> pipi®pf. (2.26)

Any mixed state that does not follow the above equation is called entangled state [79]. To
develop a universal method, we have discussed some operational criteria to measure the

entanglement in the bi-partite system.

2.3.1 Peres-Horodecki Criterion

The Peres-Horodocki criterion (or positive partial transpose (PPT) criterion) is a separability

criterion for density matrices [68] and a condition for find out entanglement in the bi-partite

system [89]. It states that if the partial transposition pla (t) = piB (t) or plB_(t) = p2B. (1)
of a density matrix p5.5 = (p|(q| p*2(t)|r) |s) (where p,q,r,s are matrix elements) is a

positive operator with all positive eigenvalues then the system is unentangled. If the system
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has even one negative eigenvalues then it is entangled. For example, the positive partial
transpose p’® of the density operator pA? for the state |U'*) can be obtained from Eq.(2.21])

as

0000
1{fo 100
T+ — =
PP =510 0 1 0 (2.27)
1000
The eigenvalues of the density operator p’® are —%, %, %, % in which one eigenvalue is smaller
than 0, the state |[U'") becomes a bi-partite entangled state.
2.3.2 Negativity
The negativity is the violation of the PPT criterion and it is defined as [83]
N(p"") = llp™ | - 1, (2.28)

where the trace norm
1771 = Try/ pTop"o () = 1+ 2] ) A, (2.29)

and )\; < 0 are the negative eigenvalues of partial transposition p’#. Thus, in other words
negativity measures by how much p’2 fails to be positive definite [90,91]. N(pA?) > 0
is the necessary and sufficient condition of the bi-partite entanglement [69]. For example,
one of the eigenvalue of p# for the state |U*) is negative, i.e, \; = —%. Consequently,
[pT2|| = 2 implies N(p*B) = 1, which mean that the Bell’s state |¥*) is a maximally
bi-partite entangled state.

2.3.3 Entanglement of formation

The density operator of bi-partite mixed state p (see Eq.(2.3))) can be decomposed into pure

state as

P=> Dnpu (2.30)

where p, = |t,) (¢,| is a pure state density operator and p, are non-negative numbers

satisfying > p, = 1. The quantification of the entropy of entanglement (E(p,)) for pure
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state to mixed state is given by the entanglement of formation Ey(p) which is the minimum

entanglement that can be obtained from all such decomposition defined as [70,81]
Ey(p) = min'S" puB(py) (2.31)

where, E(p,) is given by Eq.(2.24]). A state with E; = 0 is separable and when E; = 1, the
state is maximally entangled.
2.3.4 Concurrence and Tangle

Concurrence is the quantification of bi-partite quantum correlations which is based on re-

duced density matrix mathematics. For the two-qubit pure state it is defined as [70]

(1) = /2l — Tr{(p"?)] = 2/detp?, (2.32)

where p? = Trg(pAP) the reduced state of ¢». More general formula of concurrence for pure

or mixed two-qubit states is defined as

C(p*?) = [max(puy — pa — ps — pa, 0)], (2.33)

where the p;s are the square roots of the eigenvalues of the non-Hermitian matrix p42 pAB
in decreasing order and each p; is a non-negative real number. Here, p*? is defined as
spin-flipped density operator

~AB __

p = (oy ® Uy)p*AB(Uy ®0y), (2.34)

where p*% denotes the complex conjugation in the computational basis {|00),]01),]10),]11)}

0
state as [¥) = poo [00) + po1 [01) + p1o [10) + p11[11) the concurrence is given by C(p) =

2|poop11 — poipio]. Moreover, for two qubits E;(pP) (see Eq.(2.31) can be expressed in
terms of the Concurrence (C(p?)) as [81,82)]

and o, = (2 _Z) is Pauli matrix. Accordingly, if we consider a general 2-qubit pure

+ /1= C2(p"B)
2

Ey(p"?) = h(* )i h(z) = —#logs() — (1 — 2loga(1—2)  (2.35)
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where, h(z) is the binary entropy function. h is a monotonically increasing function of its
argument and ranges from 0 corresponding to C'(p??) = 0 and to 1 for C(p*®) = 1. The
quantity C?(p*P) in Eq.(2.35)) is termed as Tangle (7) and it is defined as [72]:

T(p*?) = C*(p"P) = [mazx(p — po — s — p1a, 0))%, (236)

Thus, E;(p*P) is a monotonically increasing convex function of concurrence and concave
function of tangle. For bi-partite pure state the matrix pAZ54Z has only one non-zero

eigenvalue, so the above Eq.(2.36]) of tangle is reduced to
7(|¥)) = C*(|¥)) = 4detp™. (2.37)

Thus, for |UT), using Eq.(2.22)) in Eq.(2.32)) and Eq.(2.37), we get C(|¥*)) = 7(]¥*)) = 1.

2.3.5 Linear entropy

The linear entropy (S7) is the first order approximation of von Neumann entropy. Its physical
significance is that it is straightforwardly connected to the purity of the mixed states. It is
easy to compute because there is no need of diagonalizing the density matrix. The expression
of linear entropy can be obtained by using the Newton-Mercator seriesﬂ where we can
approximate the term logyp?? of Eq. with first order term (p4f — 1) such as

= Tr(p*Plogop™?) = =Tr(p"? (p"F = 1)) = Tr(p"® — [p*"]?) (2.38)
Since, Tr(p*8) = 1 (unit trace property of the density matrix). Thus,
SL(p®) = 1= Trl(p"B]. (2:39)

It is also defined with a different normalization as [84]

4
d—1

2Newton-Mercator series is the Taylor series for the natural logarithm (-1 < ¢ < 1):

S(p"?) = (1= Tr[(p"")?]) (2.40)

FLd
P

log(1+q)=q—5+
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where d is the dimension of the density matrix pAZ. The linear entropy ranges from zero
which is a completely pure state to 1—5 which describes a completely mixed state. For [¢)),

using Eq.(2.21)) in Eq.(2.40)), we get Sp(p*P) = 0. Thus, |[¢)T) is a bi-partite pure state. The
linear entropy associated to reduced density operator p and p? can be written as

S0 = (= Tr() + Su(P) = T (=T (241)

For [¢/T), using the reduced density matrix Eq.(2.22) and Eq.(2.23) in Eq.(2.41)), where the

dimension of p* and p” is d = 2, we get Sp(p?) = SL(p?) = 3.

2.4 Tri-partite entanglement

A tri-partite system in three-qubit mode states comprises of A, B and C whose state (pure
or mixed) lies in a Hilbert space represented by tensor product Hape = Ha® Hp ® He with
dimension d4 ® dg ® dc. There are two different types of separable states that exist for pure

three-qubit states: the entirely separable states can be composed as:

|\ijs>A|B|C =[X)a® )5 ®n), (2.42)

and the bi-separable states are formed when two of the three qubits are assembled to one
sub-system or in other words it is the product state in the bi-partite system. There are three
prospects of combining 2 qubits together, thereby forming 3 classes of biseparable states

represented as

|\Pbs>A|Bc =4 ®[0pe
|\Pbs>B\Ac =X ® Q) ac
|\PbS>C|AB =X ® 10 ap -

Here, |C) gos |€) 4y and |C) 45 are bi-partite states that might be entangled. A state |¥%*) =
(]001) + |010) 4 [101) + |110)) can be tensor product of a single qubit state and a Bell-state

U)o = %um e %uow +110)) e (2.43)



Ch-2: Theory of distributed entanglement 31

which is an example of biseparable state. A pure three-qubit state is called genuine tripartite

entangled if it is neither fully separable nor biseparable.

The genuine entangled three-qubit states are divided into two inequivalent classes. If two
three-qubit states |U) and |®) are given, then the transformation of a single copy of |¥)
into |®) without local operations and classical communication is accurate. These operations
are called stochastic local operations and classical communication (SLOCC). Surprisingly,
in ref. [92] it is shown that two different equivalent classes of genuine tripartite entangled
states exist, i.e., Greenberger Horne Zeilinger (GHZ) class and W class, which could not be
transformed into another by SLOCC. The GHZ-state can be written as [93,94]

1

IGHZ) = N

(J000) + [111)). (2.44)

In a tri-partite system there are 8 three-qubit mode computational basis {|000) , |001) ,]010) ,
|011),|100) ,|101),]110),|111)}. Then the density operator of the GHZ state is

P BC(GHZ) = |GHZ) (GHZ| = % (2.45)

_ 0 OO oo o
O O OO O o oo
O O OO O o oo
O O OO oo oo
O O O OO o oo
O O O O oo oo
O O OO oo oo
_ 0 OO oo O

The reduced density operator pAZ is a mixed state calculated by tracing over the qubit C
such that

1
pB = Tro(p*PY(GHZ) = 5(|00> (00| < 0]0 > +[11) (11] < 1|1 >)
1000
1 110000
= 5(100) 0] + 1) (1) =S {4 5 ¢ o (2.46)
0001

By taking its partial positive transposition p’4 (or p’®), we find no negative eigenvalues of
the resulting matrix. Thus, according to the PPT criterion, p4? is a remaining mixed state
which is unentangled. Similarly, tracing the other two qubits will give the same result. Thus,

if one qubit is lost in the GHZ state, the state becomes separable. Furthermore, tracing over
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either of the remaining qubits give

1/10
oA = B = O = 5 (0 1) , (2.47)
with Tr[(p?)?] = Tr[(p?)?] = Tr[(p°)?] < 1. This is the same reduced density operator
which we have obtained in the previous Sec.(2.3) (see Eq.(2.22)) and Eq.(2.23)) for the bi-

partite two-qubit pure state example, i.e., |[¥*). These mixed states indicate that the three-

qubit GHZ state is fully entangled and generalizes the two-qubit Bell states.

Another example of a three-qubit pure state in a tri-partite system is the W-state [92]. A
prototype W-state is

1
[W1) = —=(001) +010) +100)), (2.48)
which gives
00000O0O0O
01101000
01101000
1100000000
ABC _ _ 1t
P M) =W Wil=31g 1 1 01000 (2.49)
00000O0O0O
00000O0CO0DO
00000O00O0O
and
1000
o1t
pAB:pAC:pBC—g 0110], (2.50)
0110
0000
and vy
A_ B_ C_ 1
pt=p"=p —3(0 1)- (2.51)

Taking the partial positive transposition, p™ (or p’#) of the remaining two-qubit mixed
state density operator pA? given in Eq., we find that all eigenvalues are not positive or
zero. Therefore, according to the PPT criterion, pA? is entangled. This result shows that,
unlike the GHZ state, the entanglement of the W state is more robust against qubit losses.

In general, if one qubit is lost in the W-state, the remaining state retains some entanglement.

Now we define the classification of mixed three-qubit state in tri-partite system [95,96]. If

pn are the probabilities to find a fully separable states |U/%), then the general form of mixed
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states density operator as fully separable p/* is
prT= Y o | (U (2.52)
Similarly, the density operator for the bi-separable mixed state is

P = Y pa ) (U] (2.53)

and there are 3 classes of biseparable mixed states that are biseparable with respect to fixed
partition. Finally, in a combination of W-type pure state, a fully entangled mixed state
belongs to the W class defined as

P =D T U)W, (2.54)

otherwise it belongs to the GHZ class. Now, we explore two type of entanglement measures

in tri-partite system.

2.4.1 Three-tangle

Considering three bits A, B and C, in classical theory if A and B are correlated, then there is
no correlation with C. However, in quantum theory, if A, B, C are three qubits, then all are
correlated with each other. For pure 3-qubit states the trade-off is described by Coffman-
Kundu-Wooters (CKW) inequality which is a monogamy inequality in terms of tangle and
it is a criterion for determining tri-partite entanglement [72]. Mathematically, the relation
between A, B and C is

TaB + Tac < TA(BC)- (2.55)

where
Tap < Tr(p*BpAB); and a0 < Tr(pA°pA°); (2.56)

are the tangle of the mixed states pZ = Tro(pAPC) and pA¢ = Trp(pAP°)

, respectively
and Typo) = 4det(p?). Here, p*B and pA¢ are spin-flipped density operator defined by
Eq.(2.34). It is to be noted that the definition of 745 and 74¢ in Eq.(2.56)) is true when the

product pAZp48 having at most two non-zero eigenvalues. The CKW monogamy inequality
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can be also defined in terms of concurrence. Since tangle is square of concurrence, therefore

the expression in Eq. 1) looks like C%5; + C%. < CEX(BC)' Accordingly to Eq. the
three-tangle Tapc can be defined as

TABC = TA(BC) — TAB — TAC- (2.57)

which is used to characterize three-way entanglement of the state [92]. For example, quanti-
fied by three-tangle the state |GH Z) has only three-way entanglement since T4opc(GHZ) > 0,

while the state |[W;) has only-two way entanglement because T4pc (W) = 0.

For a general mixed 3-qubit state of pABC, the three-tangle should be

TABC = MIN[TABc)] — TaB — TaC, (2.58)

where 74(pc) has to be minimized for all possible decomposition of pABC . Later, the gener-

alized CKW inequality for n-qubit states was also proved [97].

2.4.2 Three-7

Interestingly the monogamy of tangle implies monogamy of negativity [35]. For a pure

3-qubit states of tri-partite system the CKW inequality in terms of negativity is defined as
Nip+ Nig < NfX(BC) (2.59)

where N%p and N3, are the negativities of the mixed states pZ = Trc(pABC) and pA¢ =

ABC)

Trg(p , respectively and fo( BC) = TA(BC) = 4detp®. In the similar way, if one takes the

different subscript of qubits B and C, the monogamy inequalities become
Nga+ Npo < Ng}(AC)a (2.60)

and
Néa + Nép < Néapy- (2.61)

If the relation given in Eq.(2.59) is strict for any pure state of three-qubits i.e,

Nip+ Nig < Nfl(BC) (2.62)
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then the difference between the two sides of above equation can be interpreted as the residual

entanglement
A= Nf\(BC’) — Nip — Nip. (2.63)

Similarly, Eq.(2.60) and Eq.(2.61)) forms residual entanglement as
A2 2 2
and
e = N(QJ(AB) — Néy — Nég. (2.65)

respectively. The subscript A, B, and C in w4, 7 and mc mean that qubit A, qubit B,
and qubit C are taken into consideration respectively. Unlike the three-tangle, in general
mA # T # 7. for the class of W-state. This indicates that under permutations of the qubits
the residual entanglement corresponding to the different subscript varies. We take three-m

(mapc) as the average of w4, mp and 7, i.e.,

1
WABC:§(7TA+7TB+7TC>, (2.66)

which thus becomes invariant under permutations of the qubits, since, for example, permu-
tation of qubit A and qubit B leads to exchanging 74, mg with each other in wsgc. Three-7

is a natural entanglement measure, which satisfies three necessary conditions:

e it should be local unitary (LU) invariant;
e it has zero value for pure product states; and

e it has a value greater than zero for genuine tripartite entanglement [35].
In general, for a pure 3-qubit state of ABC belongs to the W-class
|®) = £ |100) + ¢ |010) + 1 |001) (2.67)
where [k + [(|*+ [n]*> = 1 and k # 0, ¢ # 0, and 7 # 0, substituting N3z = 4|x|*|¢]* +

2[n|* = 2[n[>y/Inl* + 4|K[2[C12, Nie = 4|sPICPP + 2(¢]* = 2[CPV/ICI* + 4]s 2] and N 50y =
40k|*([<)* + |nf?) into Eq.(2.63)), Eq.(2.64) and Eq.(2.65) and using its result in Eq.(2.66)), an
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entanglement measure three-m we gate as

4
mapc(®) = (|6 V/Ik]* + 4kl + [P VICH + 4]s[|C]?

P/ Inl* + 4Is2[C2 — |k = [¢]* = [nl), (2.68)

but substituting 7ap = 4|&|*[C|?, Tac = 4|x[*|n|*, and Tasey = 4|&12(|¢]* +|n|?) in Eq.(2.57),
the three-tangle vanish i.e.,
Tapc(®) = 0. (2.69)

When kK =( =n= \/ig, the state |®) become a prototype W-state |W;) (see Eq. and
for this state we get mapc(W1) = 2(v/5 — 1) = 0.549363 and Tapc(W;) = 0. Thus, under
the different classes of SLOCC, to quantify tri-partite entanglement of W class we have the
property that

WABC(W) > TABC(W) =0. (270)
For the GHZ class,
WABc(GHZ) > TABc(GHZ) > O, (271)
while
Tapc(9) = Tapc(9) =0 (2.72)

for the states |¢) 5o belonging to the classes excluding the W and GHZ classes. Note that

for the mixed state density operator pAB¢

Eq.(2.59) turns out to be

of 3-qubit states of ABC, the monogamy inequality

Nip + Nic < mm[fo(BC)L (2.73)

which has to be minimized for all possible decomposition of pAB¢. In this case, N3z <
7ap and N3, < Tac. The other inequalities in Eq.(2.60) and Eq.(2.61) need the same
manipulation [98]. The next chapter investigates and quantifies such bi-partite and tri-

partite entanglement measures for two and three-flavour neutrino oscillations, respectively.



Chapter 3

Tri-partite entanglement in neutrino

osclllations

The quantum phenomenon of neutrino oscillations in which a neutrino in a given flavour
state can be found in a different flavour state as it progresses in time is a topic of current,
and theoretical activity [51,99-103]. Oscillations arise because the neutrino flavour state is a
linear superposition of non-degenerate mass eigenstates of neutrinos. Quantum entanglement
and coherence [104] are two fundamental features arising from the principle of quantum
superposition. Therefore, it is natural to examine quantum entanglement in neutrino systems
[79,/105]. For two flavours, the linear superposition state of a neutrino can be mapped to a
two-qubit system [42]. Blasone et al., initially mapped the three flavour system as a 3-qubit
system [106-H109]. In this chapter, we investigates the entanglement properties of the three-
particle superposition flavour-neutrino state. We show that the three neutrino state has a

specific three-way entanglement akin to the W-state in quantum optics.

Neutrino oscillations take place because there is a misalignment of mass and flavour states
of the neutrinos [43]. Oscillations are observed over large distances. Therefore there must
be quantum coherence of the mass states [43]. It turns out that the quantum mechanical
approximation of neutrinos has been so successful that they have been used to perform
fundamental tests of quantum mechanics [27,110,/111]. At the Daya Bay experiment, they
have searched for the fingerprints of the wave packet nature of neutrinos that could affect its
probability of oscillation within a 95% confidence level and found no significant effect of wave
packet over the plane wave treatment [29,[30]. Thus the standard plane wave approximation

of neutrinos with significant distance coherently function well and decoherence due to the

37
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wave packet nature is very small because of the small neutrino masses. This means, albeit
theoretically, that neutrinos are candidates for quantum computation [46,/112]. This also
makes a study of their quantum properties fascinating. Neutrino entanglement has been
studied in both modes, flavour mode as well as in mass mode [42,43,|106-109]. The three-
flavour mode entangled states are analyzed using information-theoretic tools [113]. Besides
mode entanglement, which is the primary subject of this chapter, some astrophysical studies
show the possible effects of neutrino many-body entanglement on flavor oscillations [114-120].
For an all-encompassing perspective on quantum entanglement in neutrino oscillations such

studies are informative.

The entanglement measures that have been studied for two flavour neutrino systems are
Bell’s inequality and Bell-CHSH (Clauser-Horn-Shimoy-Holt) inequality violations, telepor-
tation fidelity, and geometric discord. They have been related to the neutrino oscillation
probabilities [43]. Along with this, the other entanglement measures like “the nonlocal ad-
vantage of quantum coherence” (NAQC), the Bell nonlocality and the entropic uncertainty
have been investigated in the three neutrino systems by comparing their results using the data
obtained from different types of neutrino oscillations experiments |[121H123]. Bell’s inequality
derives correlations of measurements on separated systems based on space. In analogy to
that, Leggett and Garg investigated time-based correlations, which they extended to apply
on a macroscopic system [124]. Recent work |125H128] shows that this analogue is sensitive

to the neutrino mass-hierarchy in three neutrino system.

In this chapter, we show that the temporal behaviour of the two-mode entangled neutrino
state resembles entanglement swapping (the procedure of entangling photons without direct
interaction) between two-photon states emerging from a Beam Splitter (BS) [129.,[130]. We
extend the study to three-flavour neutrino oscillations by considering distributed entangle-
ment measures for three-mode states [72]. There are two types of non-separable classes in
the 3-qubit system, W and GHZ states. For the W-state there is a property that if one of
the 3 qubits is lost, the remaining 2-qubit state is still entangled. This robustness of W-type
entanglement contrasts sharply with the GHZ-state, which is entirely separable after losing
1 qubit.

In three flavour neutrino oscillations, the neutrino state can always be written in the form
lv(t)) = a]100) + b|010) + ¢|001), which is the “generic form” of the W-class of states in
quantum optics. We will later reaffirm this by analysis of various entanglement measures. We
do so by examining a measure of distributed entanglement, a monogamy inequality known
as Coffman-Kundu-Wooters (CKW) inequality, which characterizes genuine tri-partite en-

tanglement and enables us to distinguish between different tri-partite states [35,/72]. Our
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studies show that the three neutrino state has robust tripartite state entanglement more
akin to the W-state than the GHZ-state. Laboratory production of a 3-qubit entangled W-
state can be done using spontaneous parametric down-conversion (SPDC) and two BS [131]
(similarly GHZ-state can also be created via experiments [132]). The analogy between W-
states (which can be produced in the lab) and the three neutrino states can lead to a further
understanding of the nature of entanglement in neutrino oscillations. In quantum optical
experiments, one can physically manipulate the system by identifying neutrino states as
quantum optical states; one may be able to get information about the quantum properties
of the neutrino system and demonstrate factors contributing to the decoherence and even

many-body entanglement relevant to astrophysical settings.

The chapter’s organization is : In Sec.(3.1)), we investigate and quantify various measures
of bi-partite entanglement such as tangle, concurrence, the entanglement of formation, neg-
ativity and linear entropy in the two-neutrino system. In Sec.(3.2]), we examine tri-partite

entanglement measures such as three-tangle and three-m in the three-neutrino system.

3.1 Bi-partite entanglement in two-flavour neutrino os-

cillations

In the plane wave picture, we expand Eq.(1.11)) of Chapter [1| to re-write an equation for the

time evolution of the flavour neutrino state in a coherent superposition of flavour basis as,
va(t)) = Uae(t) [ve) + Uap(t) [v) + Uar (t) |vr) (3.1)

where, |Une(t)? 4 |Unu(t))? + [Uar (1) > = 1 and Unp(t) = O U;je*iEﬂ't/ﬁUﬁj; E; is the energy

associated with the mass eigenstate |v;).

First, we characterize 2 qubit entanglement for two-flavour mixing which are relevant, as a
first approximation, to three cases of neutrino experiments. v, <+ v, transitions are relevant
for atmospheric neutrinos, v, <+ v, at reactor experiments and v, <> v. at accelerator
experiments [100}/101,/103,/133]. 2 qubit states are identified with the electron and muon

neutrino with the flavour state at time t=0 by using the occupation number states as [42]

|ve) = 1), ®0),, = [10)

m
and |VH> = |O> ® |1>M = |01>M

e’

e
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For two neutrino mixing the SU(2) rotation matrix

—sinf cosf (3.2)

R(O) = ( cos sin9) |

can be identified with the mixing matrix U(0).

The time evolution of an initial electron-flavour neutrino state in two mode (flavour) system
can be written as,

[ve(t)) = Uee(t) [10), + Ueu(?) [01),,, (3-3)

where U, (t) = (cos*0e=1t 4 sin®0e="F2t); U,,(t) = sinfcosO(e "1t — e=1F2t) and |U,.(t)]? +
|Ueu(t)|2 = 1 (also see Sec.(|1.2.1))). The probability of generating and detecting electron-
neutrino flavour state as a survival probability P, = |U,,(t)|? and, the probability of gener-
ating electron-neutrino flavour state and detecting muon-neutrino flavour state as a disap-

pearance probability P; = 1 — |Ue(t)

|2 are,
Am?t
P, = cos* § + sin® § + 2sin? 0 cos? 6 cos < 277; ) (3.4)
Am?t
and P, = 4sin?# cos? f sin® ( 472 ) : (3.5)

where 6 is a generic two flavour mixing angle and Am? = m32 —m? is the corresponding mass-
square difference. The corresponding density matrix p(t) is given by p°(t) = |ve(t)) (ve(?)]
such that,

0 . 0 0 0

cn [0 U@ Ue®UL() 0
=0 G0 10.0R o] (36)

0 0 0

An excellent optical analogy to the phenomenon of neutrino oscillation is the following
situation. In quantum optics, the action of a quantum mechanical BS (Beam splitter) in-
terferometer is given by the SU(2) matrix R(6), which performs precisely the same trans-
formation on photons as the neutrino mixing matrix does. Thus, the entanglement in a two

flavour neutrino mixing is akin to entanglement via mode swapping due to a BS [130].

Let p°(t) be a density operator of an initial electron-neutrino flavour state |v.(t)) (see
Eq.(3.3])) which contains electron flavour mode (e¢) and muon flavour mode (u) in 2-qubit
mode (flavor) bases (i.e, [10), and |01) ). pp,..(t) = (p|(q] p°(t) [r) |s). The partial trans-

positions of operator p°(t) in flavour modes e and p are defined as ple . (1) = pg, ,(t) and



Ch-3: Tri-partite entanglement in neutrino oscillations 41

Pt (t) = Ppsrq(t). In Sec.(2.3.1) of Chapter 2, we defined the Peres-Horodecki criterion,

which is a sufficient condition for separability in bi-partite quantum system. The composite

state p°(t) is separable if and only if p’*(¢) or p»(t) is a positive operator, with all posi-
tive eigenvalues, otherwise the composite state p°(t) is an entangled state |[89]. The partial

transpose in muon-flavour mode from Eq.(3.6|) is

0 0 0 Uee (1)U, (1)
T — 0 ’ ee(t)|2 0 0
=1 0 UL 0 (37)
Uu()UL() 0 0 0

In terms of probabilities, the eigenvalues \; of plr(t) are Ay = Py, Ay = Py, A3 = /PPy,
A\ = —v/P,P;. Thus, \; is not positive which means p’#(t) is not a positive operator and

therefore the neutrino state |v.(t)) is entangled.

In Sec.(2.3.2) of chapter [, we have also defined that Negativity (N) is a quantity which
measures by how much p?#(t) fails to be positive definite [83,/90]. The condition Negativity
Ny > 0 is the necessary and sufficient inseparable condition for the bi-partite quantum

system to be entangled and for ep system it is defined as
New = N(p°(t)) = [l ()] = 1, (3.8)

where the trace norm
1" ()| = Try/ " (£)p"™ (£) = 1+ 2] > i, (3.9)

and )\; < 0 are the negative eigenvalues of partial transposition p’«(t) [91]. For the two

flavour neutrino oscillations,

o™ (Ol = 1+ 2/ PPy (3.10)

Thus, the negativity is N, = 2v/ Ps Py which is always greater than 0, so e-y neutrino system
is entangled [35].

Concurrence and tangle are strong measures of quantum correlations [72]. A general bi-
partite state ¢ of a 2 qubit system AB can be written as |¢)) = a|10)+b|01), where |a|?+]b|? =
1. A and B are the e and p flavour modes respectively. In that case, Eq. of chapter
become the “spin-flipped ”operator p¢(t) of the state |v.(t)) as p°(t) = (o,@0y)p*(t)(0,®0,),
where p*¢(t) denotes the complex conjugation in the standard basis (]00),|01),/10),|11)) and
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oy = 0 ~) is Pauli matrix. Thus,
Y i 0

0
py= [0 Owlr Tl
0

0

u(t) 0

ER (3.11)
0

As both p¢(t) and p°(t) are positive operators, it follows that the product

0 0 0
e ~e 0 [Uee(®)1?1Ten (0 + [0, () Uee (8)]? [Uee )20z (1) Uep (t) + [Uee ()12UZ, () Uce(t) 0
t t — ~ b _I Hep A ~ ’ eel : ! Ten 3‘12
P ()p°(t) 0 NTepuMIPT2 (1) Tep(t) + 1Tep(PTZ, (0 Tee (t) [T (OTen (O + 1Uep(®)?|Tee (1) o)’ ( )
0 0 0 0

though non-hermitian also has only real and non-negative eigenvalues. Denoting the square
roots of these eigenvalues in decreasing order by 1, pe, p3 and 4, the tangle of the density
matrix p°(t) is :

Tew = [mazx (i — pia — pi3 — pa, 0))%. (3.13)

Since, the product p°(t)p°(t) has only one non-zero eigenvalue i.e., py = 2\/]ﬁeu(t)|2|(~]ee(t)]2,
using Eq. (3.6 one can show that the tangle is 7., = 4det[p5,5(t)] = 2[1=Tr(p5,(t))?], where

P50 (t) is the density matrix associated to the reduced state after tracing over muon flavor

3 2
mode i.e, p5.,(t) = Tr,(p°(t)) = (’Ueeo(t)‘ 0 O(t)P) Therefore, the tangle (7,) for two
ep

flavour neutrino oscillations is:
Top = MU ()21 — U, (t)|* = 4P, P;. (3.14)

Similarly, concurrencdT] [70,[134] is a measure of entanglement defined in Eq.(2.33) of chapter
which for the electron-neutrino flavour system is [43|: C., = 2v/P;P;. The tangle is the

square of concurrence [72], thus 7., = CZ,.

In the ultra-relativistic approximation, Fig. shows all measures of bi-partite quantum
correlations, 7., (dotted line) and N, (full line), with transition probabilities P; (dashed
line) and P, (dotted dash line), of an initial electron-neutrino flavour state as a function
of scaled time T' = A;gt

fixed at the most recent experimental values reported in ref. [54] (see Table.(1.1))). At T=0,

. The mixing angle 6 and the squared mass differences (Am?) are

'In Chapter [5| we execute quantum circuit to simulate concurrence in the two neutrino system on the
IBM quantum computer.
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Figure 3.1: (Color online) Measures of bipartite quantum correlations Tangle (7.,) = linear

entropy (Se,) (dotted line), Negativity (Ne,) (full line) vs scaled time T" = (%LE%) for an

initial electron neutrino state. The dependence on oscillation probabilities, the transition
probabilities Ps (dashed line) and P, (dotted dash line) are also plotted. The mixing angle
0 is fixed at the experimental value sin®§ = 0.310 [54]

all measures of entanglement are zero, i.e, N, and 7., corresponds to an unentangled state
and the two flavour modes are not mixed. For T" > 0, initial electron-neutrino flavour state
exhibits oscillatory behavior. When transition probabilities is maximum P, = P; = 0.5, all
measure of entanglement tends to 1i.e, N, = 7., which corresponds to maximally entangled
state. In two flavour neutrino oscillation, among entanglement monotones, linear entropy
(S) (S = %51 — Tr(ps,o(t))?], see Sec.(2.3.5) of Chapter [2), where d is the dimension of the
reduced density matrix p§.,(t)) is linked to the variances associated with the average neutrino

number [42]. The linear entropy for electron-neutrino flavour state, S, = 4P;Py = T,

All entanglement measures in the bipartite system- the negativity, and tangle is directly
proportional to the product of survival and disappearance probabilities and coincide with
linear entropy such that

N2, = Tep = Sep = 4P, Py, (3.15)

The electron-neutrino flavour state is a pure state and these quantum correlations have a
direct experimental connection with physical quantities in neutrino oscillations [134]. In the
case of bipartite systems, the tangle is the square of negativity. Therefore, it is a redundant
measure for bi-partite entanglement for a pure system. For the mixed state density matrix

p, the square of the negativity can be less than tangle (concurrence also) [98].
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At this juncture, we are in a position to compare our single-particle neutrino state with
a single photon system, where the quantum uncertainty on “which path”of the photon at
the output of an unbalanced Beam Splitter (BS) is replaced by the uncertainty on “which
flavour”of the produced neutrino is measured [42]. The coefficients Use(t) and U,,(t) play
the role of transmissivity (T) and the reflectivity (R) of the BS, respectively and BS =
R(0) = U(0) (i-e, here BS is identified as a beam splitter transformation matrix U(0)), in
two-flavour neutrino oscillations. Let us consider the simplest case, Eq., when time-
evolved electron neutrino flavour state |v.(t)) enters from port 1, and no neutrino enters
from port two into the BS. The single-particle neutrino state take two paths - it either gets
transmitted (T = U..(t)) or is reflected (R = U,,(t)). Thus, the state produced by the
|ve(t)) has the form of two-mode entangled state (|10), and [01)); more precisely it is a

flavour-entangled state like the Bell’s state/two-qubit state in quantum optics.

3.2 Tri-partite entanglement in three-flavour neutrino

oscillations

In the three generation framework of neutrino oscillation system we identify neutrino modes

in the occupation number basis at time t=0 as:

ve) = 1), ®0), ®|0), = [100),,
v = 0),®1),®][0), =[010),,
) = |0), ®10), @ 1), =[001), . (3.16)

Even though it is discussed in Sec.(2.4]) of Chapter [2| for the purpose of specifying entan-
glement, we are again debating here in brief that there are five possible partitions of three
systems (A—B—C, A—BC, B—AC, C—AB, ABC)(see, e.g., Fig.(3.2)), where A, B and
C are denoted by e, u, and 7 flavour modes, respectively. There exist separable (i.e., 2-
separable) states of the following kind: 1-qubit separable states, which are separable for
A—BC but not for B—AC nor C—AB; 2-qubit separable states, which are separable for
A—BC and B—AC but not for C—AB; and 3-qubit tri-separable states are separable to any
bipartition but not fully separable. Together with the fully inseparable states and the fully
separable ones, the above classes constitute a complete classification of mixed three-qubit

state systems; modulo permutations |135].
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[vi)

[ve) [vu) [vt)

|ve) [ve) Ivu)
[ve) Ivu)  Ivr)

[ve) [ve) (v}

|ve) o)
(a). Separable (b). Bi-partite Entanglement in Tri-partite System (c)_Genume Tri-partite
(Biseparable) Entanglement

Figure 3.2: Different possible ways of visualizing three-mode state entanglement [136].

In this section, the tri-partite quantum system is studied with two measures of entangle-
ment. First, the pairwise entanglement, which treats one flavour mode as one object (e.g.
e) and the other two as a single object (e.g. u7), and the other two permutations of this
system (see Fig.(3.2(b))). This type of bi-partite entanglement (separable) in a three-flavour
(tri-partite) system can be quantified by bi-partite measures like the tangle and negativity
defined earlier. Later, we will consider genuine tri-partite entanglement (see Fig.(3.2(c))), for
which a measure called residual entanglement in terms of tangle and negativity is constructed
separately. The genuine tri-partite entanglement measure helps us distinguish between two
types of tri-partite states in quantum optics, the W-state or the GHZ-state. While the gen-
eralized W-state has a residual entanglement called three-w (which will defined later), the
GHZ-state has a zero residual three-w. For the three neutrino system, the existence of a

non-zero residual entanglement three-m puts neutrino states in the same class as W-states.

In reactor type neutrino experiment where an electron neutrino produced at the source
can oscillate into other flavours, using Eq.(3.16) in Eq.(3.1]), the time evolution of electron
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flavour neutrino state in the occupation number basis can be written as [10§]
V() = Uee(t) [100), + Ue,(t) [010), + Uer (£) [001),, (3.17)

with normalization condition U, (t)|?+|Up,(t)|? +|Uer (t)|> = 1, where ¢, pu and 7 are a three
modes (flavour) neutrino state [100),, [010) ,, and |001)  respectively, in 3-qubit system. The
corresponding density matrix in the standard basis |ijk), where each index takes the values

0 and 1 is given by

e 0 0 0 0 0 0 00
0 0 O 0 0 0 0 0
0 0 O 0 0 3 0~ ) 0~ 0
. 0 0O celt 0 U()U;,(t) U(t)Us(t) O
Y (t) = |Ve(t)> <Ve(t)| = 00 0 | é )| 0 ( )0 H( ) ( )0 ( ) 0
0 00 U000 0 [UuF U050 0
0 0 0 Tu()0alt) 0 T [Oud? 0
0 0 0 0 0 0 0 0
(3.18)

In pairwise entangled tri-partite quantum system, the probability of the three flavour state
to be an e neutrino mode is P, = |U..(t)|> and to be in the pr mode (treating as a single
quantum object) is Py = 1 — |U..(t)|*>. The partial transposition operator on the density
matrix p(t) acts to the matrix elements change under the rule |ijk) (i'j'k'| — |i'jk) (i'K'|.

Thus,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ten (U (1)

0 0 0 0 0 0 0 Ter (1)U (1)
) = 0 0 0 |Uee()]? 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 [Ueu®)  Ueut)UZ (1) 0

0 0 0 0 0 Ur®Uz,(t)  |Uer(t)]? 0

0 Uee(®)Uz,(t) Uee(t)Ug (1) 0 0 0 0 0
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The eigenvalues of p*(t) are,

)\1 - )\2:)\3:)\4:(),

/\5 - Ps,)\GIPd,A7:\/PSPd,Agz—\/PSPd. (320)

Thus Ag is not positive which means p’¢(t) is not positive operator and therefore p°(t)
is entangled with reference to the PPT criterion. Consequently, finding ||p™(¢)|| = 1 +
2y/ P, P, the negativity is given N, = 24/ FPsFP; and is positive, fulfilling the criterion of

entanglement.

The reduced density matrix p5.,(t) after tracing one mode (flavor) is

ot = rnte0) = (90 o) 320

The tangle, 7(.r) = 2[1 — Tr(p5,,(t))?] = 4P,P;. When neutrino oscillates in between
different modes (flavour), the linear entropy of the reduced state is Se(,;) = 4P, F;. Hence
all measures of quantum correlations of bi-partite states of 3-qubit mode (flavour) entangled
single particle neutrino state |v.(t)) are satisfied. They are related by
2

Ne(w_) = Te(l”) = Se(l”) = 4P3Pd. (3.22)
Similar calculations for the other two permutations of this system i.e., between flavour
modes p and single object er, and between flavour modes 7 and single object eu (see
Fig. B2b))) correspond 10 N2y = Tuer) = Suer) = HTeu(OP(Tuc (O + [T (1)) and
NZ o = Trtew) = Srewy = HUer (D)2 (|Uee(t)]? + |Uen(t)[?), respectively. This analysis shows
that the entanglement quantified by the tangle and negativity between flavour modes e and
single object u7, between p and single object er, and between 7 and single object e for the
time evolved electron-neutrino flavour state (see Eq.(3.17))) has pairwise bipartite entangle-

ment.

However, to understand a genuine tripartite entanglement, the neutrino state should be
neither entirely separable nor biseparable (see Fig.(3.2(c))). The criteria genuine tri-partite

entanglement:

e The quantum correlations in electron-neutrino flavour state Eq.(3.17) have to satisfy
the CKW inequality, which is a monogamy inequality for tangles:

Teu + Ter < Te(ur)-
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e The monogamy inequality for negativity
2 2 2

Ng, + N, < Ne(w).
We can also define two quantities that quantify three particle entanglement called the residue

of tangle and negativity 7.,, and 7, respectively by

Teur = Te(ur) — Tep = Ter

1 2 2 2
(N( n+ Ny +N.

Tewr = 3 2NZ, —2NZ. — 2N ). (3.23)

T(ep)
These quantities represent a collective property of three flavour modes of an electron-neutrino
flavour state in a three-qubit system that is unchanged by permutations, similar terms for

p and 7 neutrinos can also be defined [35].

The tangle between e and p flavour modes 7, and between e and 7 flavour modes 7., is

found by calculating reduced density matrix

0 0 0 0
0 U@  Ueelt)U~ (1) 0
e (t) = Tr,(p°(t)) = el 2 e 3.24
A NGO B T CR (324
0 0 0 |Uer (1)
and
0 0 0 0
er () _ ey |0 0P Ueelt)UL() 0
0 0 0 |Uep(t)]?
respectively. For er flavour modes, the eigen values of the product
0 0 0 0
. 0 2Uec®)’|Uer()*  2|Uece(t)PUsc (1)U (1) 0
pT ()7 () = - = 2 e (3.26)
0 2[Uer()PUer (UZ(1)  2|Ue(t )\2!U B 0
0 0 0

are pi; = iy = i3 = 0 and gy = 4|Uee(t)[?|Uer(t)[2, where p7(t) is a “spin-flipped ”density
matrix p°(t) = (o, ® 0,,)p*"(t)(0y, ® o,). This leads to the tangle for er and similarly, for

e flavour modes given by |

Ter = Tr(p(t)p7 (1)) = 4]
4

T = Tr(p (05" (8)) = 40, ()10, (1) (3.27)
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Figure 3.3: (Color online) Entanglement of formation (Ey) vs % & graph between e,u, and

7 satisfying: Ef(7e,) + Ep(Ter) > Ef(Teur)) where Ef(7e,) (Red line), Ef(7.;) (Blue line),
the sum Ey(7.,) + Ef(7er) (Green line) and Ef(7.(,r)) (Black line). Here A, B and C are
three qubit e, ; and 7 flavour mode neutrino states, respectively.

The CKW inequality in terms of tangle is: 7., + Ter = T¢(ur) and is unchanged by per-
mutation (i.e, 7, + 7, = Tu(er), Tre + Trpy = 7'7-(6#)). Thus, the residual tangle between
flavour mode e, p and 7 is zero i.e, 7., = 0. The result shows that for any values of
the tangle satisfying equality 7., + Ter = Te(ur), there is a quantum state that is consistent
with those values. The CKW inequality is valid when the density matrix of the product
pA¢ pAC¢ should have < two non-zero eigenvalues . Since we get a one non-zero eigenvalue
pts = 4|Uee(t)2|Uer(t)|? of the product p°™ 3¢ which satisfied the condition. In particular,
the CKW inequality becomes equality for this case, and the three-tangle (7.,,) vanishes as
it does for the W-state . Thus the tri-partite neutrino system in the case of three qubits
in a pure state satisfies the CKW inequality. The GHZ state, on the other hand, obeys the

CKW inequality (not-equality); therefore, the three-tangle is greater than zero.

Unlike tangle, the entanglement of formationEl (EOF or E¢(7)) defined in Eq.({2.35)) of
chapter [2| do not satisfy fully the additive property for the tri-partite three neutrino system.

2The solution of an important unsolved problem of whether the EOF is additive in nature is still not

found )
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For the time evolved electron flavour neutrino state, the relation follows
Ef(ﬂau) + Ef(TeT) > Ef(Te(uT))- (328)

This result is shown in Fig.(3.3)).

N, and N, are the negativities of the mixed states p™(t) = Tr.(p*7(t)) and p°(t) =
Tr,(p*7(t)), respectively [35]. We find that the entanglement negativity of the e y flavour

modes is

Ngy = 4HUee(O)P|Ueu(8)* + 2|Uer ()] — 2|Uer(t)\2\/!Uer(t)\4 t+ 4Uec(O P02 (3.29)

For e 7 flavour modes the negativity is

NZ = AUee(OP|Uer (D) + 2|Ueu()]* ~ 2|Ueu(t)|2\/|0w(t)|4 + 4| Uee (1) 2| (1)[2, (3.30)

and also, for the e and (u7) system we have N7 ) = AU )12 (|Uep () ? 4 [Uer (t))?). The

resulting CKW inequality: NEQH + N2 < Nf(m) implies:

Ueu I + Uer (D) < !Uef(t)\Q\/IUeT(t)!4 + 4| Uee () 2| U (1) 2

+|Ueu(t)|2\/\f7eu(t)l4 + 4| Uee ()2 Uer (). (3.31)

Fig. shows that in the ultra-relativistic approximation, the time evolution of the sum
of the entanglement negativity between flavour mode e and p and between e and 7 is less than
entanglement negativity between flavour mode e and p7 ie, N2, + N2 < Nf(m). With this
result, we can say that the CKW inequality in terms of negativity is strict (because U, (t) #
0, Ueu(t) # 0, Uer(t) # 0) and that, the inequality in terms of a tangle between different
flavour modes of neutrino is characteristic of a general class of W-states. To understand
the tightness of the monogamy inequality in terms of negativity (see Sec.(2.4.2)) of chapter
, the three-7 is analogous to three tangles (7.,,) is studied in the context of three flavour

neutrino oscillations.

For electron-neutrino flavour (and analogously for a muon or tau neutrino system), it can
be defined as [35]: 7, = "L where 7, = NZm—No = N2, mu = N3y — Ni.— N7,
and m, = Nf(eu) — N2 — NTQ# are the residual entanglement in terms of negativity and the

subscript e, p and 7 in 7., m,, 7, mean the flavour mode e, flavour mode p, and flavour mode
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Figure 3.4: (Color online) Negativity (NZ,4+NZ,) (Red line) and NEZ(W) (Black line) vs £(52%)
graph between flavour modes electron, muon, and tau neutrinos satisfying: N2, + N2, <

Nf(m). Parameters 6;; and Am?j are fixed at the experimental values ||

T are taken as the focus respectively. Using the negativity values calculated earlier to get ,
7, and 7, we find 7, # 7, # 7. We can see from Fig. that unlike tangle, the residual
entanglement have the different maxima (7., 7, and 7,) at scale of distance per energy unit
% > 0, and 7, # 7, # 7-. This gives clear indication that the residual entanglement 7., m,
and m, are quantified but it can not be the measure of genuine tri-partite entanglement as
the measures are not invariant under permutations. As the measure of genuine tri-partite
entanglement in three flavour neutrino oscillations, we define m,,, as the average of m., m,,
and 7, such that 7o, = 5(NZ,.) + No oy + N2y — 2N2, — 2NZ — 2N ) (see Eq.).
Teur 18 NOW invariant under permutations of flavour mode in an electron- neutrino flavour
state. Thus,

Teur

Uee®)|" = [Ueu(®)|* = [Uer ()]*). (3.32)
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Figure 3.5: (Color online) Residual entanglement 7. (Black line), 7, (Green line), 7, (Red
line) vs £(Am) graph between flavour modes of electron, muon and tau neutrinos satisfying:

E\Gev
Te # Ty # . Parameters 6;; and Am?j are fixed at the experimental values .

From Fig. 1} we note that for % > 0, entanglement among three-flavour modes occurs i.e,
Teur > 0, and exhibits a typical oscillatory behavior. At largest mixing i.e, when transition
= 0.39602, P, ,, = 0.435899, and P, _, = 0.168081, we find that

probabilities are P, e
Teur reaches the maximum value 0.436629.

e—e e—T

So far, we have considered the time evolution of entanglement characteristics of an elec-
tron neutrino state, which are relevant for reactor experiments. For completeness, we give
the appropriate entanglement measures for a muon neutrino state relevant to accelerator

experiments.

V() = Upe(t) [100),, + Uy (t) [010),, + Uyir [001), (3.33)
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Figure 3.6: (Color online) Residual entanglement 7., (Black line) vs £(£%) graph between

the flavour modes electron, muon and tau neutrinos. Parameters 6;; and Am;; are fixed at
the experimental values [54]. The transition probabilities P, ,, (Red line), P,,,, (Blue line)
and P, (Green line) are reported as well for comparison.

Ve—sr

e—e

where, |Uye(t)|? + [T, ()2 + |Uur (t)]? = 1. The relevant density matrix is

000 0 0 0 0 0
000 0 0 0 0 0
000 0 0 0 0 0
000 |U®) 0 Ue)Ur(t) Un®)U*.(t) 0
0 = ) ] = [0 00 10@F 0 DulUL0) G0 (0) 0
00 0 Tu®)Ti(®) 0 [Uu®P  Ou(®)0(1) 0
00 0 Up®Uslt) 0 Upe®Up,(t) U ®F 0
000 0 0 0 0

(3.34)
For the initial muon-flavour neutrino state the CKW inequality in terms of tangle becomes
equal, consequently the residual tangle vanishes, i.e 7., = 0. Whereas, the CKW inequality

in terms of negativity is strict i.e, N, + N7 < N7, .
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Figure 3.7: (Color online) Residual entanglement 7., (Black line) vs £ (A2
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the flavour modes electron, muon and tau neutrinos. Parameters 6;; and Am;; are fixed at
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Vy—st

The measure of tri-partite entanglement is

Tuer = 30Oy 1Tl + 41T O PIT,e O
OO\ 10 ()1 + 410, (0P| Tr (1)

+ |ﬁ#7(t)|2\/|(jlw<t)|4+4|ﬁ#e(t>|2lﬁuu(t)|2
- | ue(t)|4 - |Uuu(t)|4 - |Um(t)|4]- (3-35)

+

R

From Fig. 1) we observe that at % = 0, Tyer = 0, which mean the initial muon-neutrino
flavour state is separable. At % > 0, entanglement among three-flavour modes occur and
Tuer > 0 oscillates. For maximum mixing, 7., reaches a value 0.472629 showing tri-partite

entanglement.

The three neutrino state exhibits tri-partite entanglement akin to the W-state. The three-

tangle and the residual entanglement measures of genuine tri-partite entanglement. The
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three-tangle is maximal for the GHZ state but vanishes for the W-state. This means that
the three-tangle is not suitable as a measure of genuine tri-partite entanglement. The three-
tangle reveals the existence of two inequivalent kinds of tripartite entanglement for pure
three-qubit states. This is very briefly explained in the reference |92]. Compared to the

residual entanglement three-m, the three-tangle generally underestimates the entanglement

[35]. For the three-neutrino case, Eq.(3.32) (and Eq.(3.35))) of non-zero 7, (and m,..) gives
a reliable measures of tri-partite entanglement. In quantum optics, there are also measures

of entanglement for qutrits, which may be relevant to tri-partite entanglement [47].

We compare the value of 7, and m,., with the three-m value of prototype W-state i.e.,
mapc(Wh) = 0.549363 [35] (see Sec.(2.4.2) of chapter [2), we get

Tepr(Ve) < Tper (V) < Tape(Wh). (3.36)
Hence, satisfying CKW inequality and with all properties of W-state (see Eq.(2.70)))

Tepr > 03 Tepr = 0

or, Tper > 0; Tyer = 0, (3.37)

implies that the form of mode (flavour) entangled neutrino state Eq.(3.1)) has the general
properties of tri-partite entangled W-state.



Chapter 4

Quantum Computing

The theory of quantum computing depends on quantum mechanics to perform quantum
calculations [45]. The method of assembling quantum computers was pioneered by Paul Be-
nioff in 1980 where he proposed Turing machine which is a quantum mechanical model [137].
Later Richard Feynman introduced an idea that quantum computer could efficiently sim-
ulate quantum systems which a classical computer couldn’t possibly [138,/139]. In 1985,
Deutsch’s model of a quantum computer showed us that quantum computers have compu-
tational power more than classical computers [140,/141]. Since then the improved version
of Deutsch’s model was experimentally proved by many scientist like Richard Jozsa [142],
Ethan Bernstein and Umesh Vazirani |[143], Daniel R. Simon [144], Peter W. Shor [145], Lov

K. Grover [146] etc., to tackle specific computational issues a lot quicker than classically.

Today, the idea of investigating quantum simulation on quantum computer has reached out
to a wide topics of science like entanglement in many-body systems [147-149], quantum phase
transitions [150], molecular physics [151-153], quantum field theoretic problem [154-157],
biology [158], neural networks [159], pharmacology [160], quantum gravity [161], quan-
tum chaos [162], quantum chromodynamics [163] etc. Likewise, experimental realization
of quantum simulation have effectively been made in frameworks like NMR [164-166], ion-
trap [167,/168], atomic [150,{169] and photonic quantum computers [153,/170]. The current
status of this field can be determined from these recent papers [171H177].

The quantum gates and circuit model is the most broadly used model to study quantum
computing in light of the quantum bit, or “qubit” (a property known as superposition).
In general, IBM quantum provides a superconducting-qubit based quantum computer that

is accessible online to a wide class of researchers [44]. The tasks which can be executed

56
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effectively on IBMQ platform are very well explained in references [178-187].

Chapter [2] of the thesis shows that the superposed Bell’s state of 2 qubit, the GHZ and W
states of 3 qubit are maximally entangled. In this chapter, we construct quantum gates and

circuits to simulate these entangled states on IBM quantum cloud computer [44].

The chapter’s organization is : In Sec., we have geometrically explained the struc-
ture of the qubit. Sec. defined a few quantum gates of single-qubit and two-qubits. In
Sec., the quantum circuits of Bell’s states, the GHZ state, and prototype W-state are
constructed, and Sec. shows the simulation of these quantum circuits on the IBM quan-
tum cloud computer. Sec. extends our study further and proposes a quantum circuit to
simulate the entanglement measure-concurrence of 2-qubit arbitrary pure state on the IBM

quantum cloud computer.

4.1 Geometrical representation of Qubit

An actual execution of a qubit can be given on a basic level by any quantum framework with
two states (|0) and |1)), for example, the orientation of spin-half particle or 2 orthogonal

polarization states of photon. Another convenient representation of a state of single-qubit

|1) = ¢1]0) + 2 |1) (see Eq.(2.1) of chapter [2)) is
7 v . 0
9) = cos(5)[0) + e“sin(5) 1). (4.1)

where 0 < ¢ < 27 and 0 < 0 < 7. In order to check whether the qubit state |¢) is pure or
mixed, it is possible to express a density matrix p of a qubit using the Bloch sphere in which
the points on the surface of sphere are qubit states shown in Fig.(4.1). A general equation

with a positive semi-definite Hermitian matrix of trace 1 which is p, is given as

1
p= 5(] + w0, + uyoy, + u,0;) (4.2)

10 0 1 0 —i 10 . .
where [ = (0 1), Op = (1 0), oy = (z 0) and o, = (O _1> are Pauli matrices

and u,, u, and u, are real coefficients. This permits us to associate u,, u, and u, with the
x, y and z components of the Bloch vector i.e, @ = u,& + u,y + u,2 and the eigenvectors

A) and of p are also eigenvectors of u,o, + u,0, + u,0, corresponding to the eigenvalues
P g yOy g g
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1)

Figure 4.1: This figure represent the Bloch sphere where |0) and |1) are north and south
poles, respectively and which are opposite points of mutual orthogonal states. The x, y-axes
have an eigenstates o, and o, respectively.

uy + uz + uZ. Therefore, the diagonalized density operator p is

p=5( @ @) N+ - 2@ ra)loiel. (@)

The states which lie on the surface of the Bloch sphere reduces to pure state |\) (A| satisfying

2

2 < 1 represent mixed states

condition w2 + u? + uZ = 1, while the condition w3 + u + u
where the Bloch vector is a point within the sphere. In general, the components of the Bloch

vector can be determined by (i = x,y, 2)

< oy >=Tr(po;) = ;. (4.4)
For the state |¢) in Eq.(4.1)),
cos?(8) e _st(e)
_ _ [ o , 45
p |1/)> <¢| <62¢ 51712(9) San(g) ( )

with T'r(p) = 1. Using Eq.(4.5) in Eq.(4.4)), the components of the Bloch vector are obtained

as u, = sinfcosp, u, = sinflsing and u, = cosl. Thus, the Bloch vector correspond to unit
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length i.e, |i@]? = 1 implying the state |¢)) as a single qubit pure state lying on the Bloch-

sphere surface.

4.2 Quantum gate

To put the qubit in different states of the Bloch-sphere, we require the idea of a quantum
gate. Quantum computers control qubits utilizing quantum gates. A quantum gate of single
qubit is a 2 x 2 unitary matrix where the unitary matrix is chosen such that the quantum
gate is reversible and probability amplitudes are preserved. Therefore, a quantum state can

be evolved using quantum gate where an underlying state |1)) changes into the new state as

W)y =Uly), (4.6)

where U addresses the unitary quantum gate with UTU = 1, which is matrix-vector multi-
plication. In the following sub-sections, we explore a few unitary quantum gates of one and
two qubits, which would be useful to construct a quantum circuit of a state of a quantum

system.

4.2.1 Universal gate

The most general form of a single-qubit unitary quantum gate is the U3 universal gate

implemented on IBM quantum machine. It is defined in matrix form as
[2 20 i
coss —singe
0% 0 iDre) ) - (4.7)
singe'?  cosge

U3(0, 6, \) = (

The unitary operators on single qubits can be pictured in the Bloch sphere. One way of

visualizing this picture is by writing the U3 gate as an arrangement of rotation operators

with respect to x, y, z axes. Setting A = 7 and ¢ = —7 define the x-axis rotation gate,

R.(0): :

—181M%  COS%

< cosg —isin?
2 2

6 95) = U3<0,—g, g). (4.8)
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Similarly, the y-axis rotation gate can be obtained by setting A =0 and ¢ =0

0 oy
_ (cos; —sing\
R,(0) = (Smg cos! ) =U3(0,0,0). (4.9)

Further, setting # = 0 and A = 0 and multiplying by a global-phase e_i%, we get the z-axis

rotation gate as

Q¢> = e72U3(0, ¢, 0). (4.10)

These gates are themselves unitary and so is
U=R.(¢)R,(0)R.(0) =U3(0,, ). (4.11)

Thus, we have the unitary operator quantum gates to rotate the state anywhere in the Bloch

sphere.

4.2.2 Pauli gates

The least complex single qubit gate is a bit-flip gate known as NOT gate denoted by X. Its
matrix representation is obtained from U3(6, ¢, \) by

X = ((1’ (1)) — U3(x,0, 7). (4.12)

The above matrix is similar to Pauli o, matrix. The action of Pauli-X gate is to flip the state
|0) to |1) and vice-versa. A qubit can also flip its superposition state if X (¢; |0) +c2]1)) =
c2|0) + ¢ |1).

Similarly, Pauli-Y and Z gate are called phase flip gate and its matrix representation ob-

tained from U3 gate can be written as Y = ((z) BZ> =U3(m,m/2,7/2) and Z = ((1) _01) =
U3(0,0, 7).

4.2.3 Hadamard gate

In quantum computing the Hadamard gate is an essential quantum gate because if the qubit

starts in a definite |0) or |1) state, the Hadamard gate places each into a superposition of
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|0) and |1) states. Mathematically, this gate has following matrix representation

1 /1 1 T
H= E (1 _1) = U3(§,O,7r). (4.13)

Using matrix multiplication, this gate acts on initial states |0) and |1) such as:

1

V2

1

HI0) = 7

(10) + 1)), H[1) = —=(]0) = [1)). (4.14)

To recover qubit to its definite state we need to apply Hadamard gate two times on |0) or
|1) state i.e., HH |0) = |0) and HH |1) = |1).

4.2.4 Controlled NOT gate

In all the previous sub-sections, we studied the Universal gate, NOT gate, and Hadamard
(H) gate, a single qubit quantum gate. Now we look at the two-qubit quantum gate. The
Controlled-NOT gate (CNOT), also known as the controlled-X (CX) gate, is used for en-
tangling the 2 qubits together and is essential in quantum computing or algorithm. This
gate has two input qubits, the control qubit and the target qubit, respectively. On the com-
putational basis, this gate flips the target qubit if the control qubit is in the |1) state. In
equations:

00) — [00): 01) — [01); |10) — [11); |11) — |10). (4.15)

In this sense, the CNOT gate is a generalization of the classical XOR gate, and the action
of the gate may be summarized as

la,b) — |a,b® a) (4.16)

where a is a control qubit and b is the target qubit, and @ is addition modulo two, which
is exactly what the XOR gate does. The control qubit and the target qubit are XORed and
stored in the target qubit. The matrix representation of the CNOT gate is given by

CNOT = (4.17)

o O O
O O = O
_ o O O
O = O O
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with unitary condition (CNOT)/(CNOT) = I. The schematic symbol notation for the
CNOT gate is given in Fig.(4.2). Even though the CNOT gate is not derived directly
from the Universal gate, both CNOT and single-qubit gates are essential gates in quantum

computing because any multiple qubit logic gates can be composed of them.

) )

|b) la®b)
CNOT

Figure 4.2: The Symbol of CNOT gate with two input qubits where a is control qubit and
b is target qubit.

4.2.5 Controlled-U3 gate

A controlled version of the Universal (U3) gate (generic single qubit rotation), also called
Controlled-U3 (CU3) gate includes a global phase e of the U3 gate along with four param-

eter two-qubit gate. The matrix representation of CU3-gate is

1 0 0 0
iy [ —etO N gin (2
CU3(0, 6.\, ) = 8 c 0008(2) (1) c Osm<2) (4.18)
0 e sin(g) 0 0T Neos(9)

The circuit symbol of CU3-gate is shown in Fig.(4.3). In the next section, we introduce some
primary quantum circuits using the combination of U3, R,(9), X, H, CNOT, and CU3 gates.

-

— U3(0, 0, A\, 7)—

CU3-gate

Figure 4.3: The symbol of two qubit Controlled-U3 gate.
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Input Output (Bell states)
(lab))

|00) (100) +[11))/v2 = |&o)
[01) (101) +110))/v2 = [€01)
10) (100) = 111))/v2 = [€10)
11) (101) = 110))/v2 = [€1)

Table 4.1: The truth table of two qubit Bell states.

4.3 Quantum circuit

Changes to a quantum state are well explained with quantum computing tools. To study
quantum data, a quantum computer consists of quantum circuits of wires and elementary
quantum gates unlike classical computer that uses electrical circuits and logic gates. With
the arrangement of quantum gates and coherent quantum operations on qubits (quantum
data), a quantum circuit also uses data from classical computation. In this segment, we
construct the quantum circuit of quantum states such as Bell states, the GHZ state, and

prototype W-state. The properties of these states are already discussed in Chapter [2]

We construct two-qubit Bell states by applying the Hadamard gate on an initial qubit and
adding a CNOT gate. This is a transformation operation of the four computational basis
states given in the Truth Table.. For example, to create an output state [£y), the input
of the Hadamard gate is taken as |00) to {% ®|0)}, and later the operation of the CNOT
gate will give the output state % = |€00)- Fig. shows the Bell states quantum
circuit in which the Hadamard transformation puts the upper qubit in superposition, acting
as a control input to the CNOT while the inversion of target qubit is possible only when the
control is 1. The mnemonic notation of two-qubit Bell states &go, &o1, &10, and &1 may be

understood via the following equation:

0,6) + (=11, )
\/i ’

[Eab) = (4.19)

where b is the negation of b.

The GHZ state is a three-qubit generalization of Bell’s state. The quantum circuit of the
prototype GHZ state |GHZ) = [0+ an be seen in Fig. 1) The quantum circuit of the

V2
GHZ state comprises of one Hadamard gate and two CNO'T gates. Similarly, Fig.(4.6)) shows
the prototype W-state quantum circuit. Using R,(f) at 8 ~ 1.91 degree, CU 3(2, D 5 5)s
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|£a.b>

g T
CNOT

Figure 4.4: The figure represent the quantum circuit of two qubit Bell’s state

0) H
0) b |GHZ>

0) D

Figure 4.5: The figure represent quantum circuit of three-qubit GHZ state.

two CNOT and one X quantum gates, we construct the prototype W-state quantum circuit
ie., [Ws) = 2=(|001) + |010) + [100)).

To generate such quantum states, we need a measurement circuit on the standard basis,
also known as the z basis or computational basis, which when combined with gates can
execute any measurement. The quantum circuit symbol for measurement is represented
by a “meter” symbol shown in Fig.. Being a non-unitary quantum gate, it does non-
reversible operations. The measurement circuit destroys the superposition, thereby losing
quantum information, and so only one classical state can be observed. This is the reason
why copying of qubit’s state is not allowed. This is also called the “no-cloning theorem”

of quantum computing. For example, the measurement operation transforms a single qubit

0)—r, @) T /L [ x F
10)———— Us0.0.1,7) ,L = [Ws)
CT\ll(;T

CU3-gate

Figure 4.6: The figure represent the quantum circuit of three-qubit prototype W-state |IW3).
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) ——

Figure 4.7: The quantum circuit symbol for measurement.

|E

state [10) = ¢1 |0)+co |1) into a probabilistic classical state M of either 0 value with probability
le1]? , or 1 with probability |ca|? as shown in Fig.(4.7)).

In the next section, we measure and simulate the Bell’s state, the GHZ-state and the
prototype W-state quantum circuits on the IBM quantum computer, a cloud-based quantum

computer that was recently launched online in 2016.

4.4 1IBM quantum cloud computer

We associate a quantum computer in IBM Quantum (see Fig.(4.8))) [44], which uses a phys-
ical qubit called a superconducting transmon qubit (acts as an artificial atom), constructed
using superconducting materials like niobium and aluminum designed on a silicon substrate.
These are artificial qubits formed by considering two non-interacting energy levels out of
many. Advanced ages of IBM quantum processors show the capability of superconducting
transmon qubits to be the reason for an electrically controlled solid-state quantum com-
puter. With the development of architecture of chips and improvisation of error correc-
tion and mitigation, new age IBM quantum creates system with higher quantum volume
to have advantage in various applications. In the virtual platform of quantum cloud ad-
ministrations, IBM quantum devices can be freely accessible by users through Qiskit (IBM
quantum composer), which is a graphical quantum programming device that allows us to
drag and drop operations to construct quantum circuits and run them on real hardware or
simulator. A useful general-purpose simulator for recreating quantum circuits both ide-
ally and subject to noise modeling is the QASM (Quantum assembly language) simulator
(ibmq_qasm_simulator). The simulation technique is consequently chosen dependent on the

input circuits and parameters.

In Fig.(4.9)), Fig.(4.10[(a)) and Fig.(4.10[(b)), we construct and test the quantum circuit of
the Bell’s state (see Fig.(4.4))), a prototype of the GHZ-state (see Fig.(4.5) and the W-state

(see Fig.(4.6)) ), respectively, on simulator of IBM quantum computer and shows measurement
Histograms generated by running these circuits. According to the bottom figures of Fig.(4.9)),
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Figure 4.9: The quantum circuit and its simulations is shown for the two qubit Bell’s state on
IBMQ computer. The lower part of Fig.(a), Fig.(b), Fig.(c) and Fig.(d) show the generation
of four Bell’s state |£00), |€01), |£10) and |&11), respectively on IBMQ simulator.
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Figure 4.10: The quantum circuit and its simulations is shown for the GHZ state |GHZ)
and prototype W-state |Ws) in Fig.(4.9(a)), Fig.(4.9(b)), respectively on IBMQ simulator.

Fig.(4.10(a)) and Fig.(4.10(b)), each bin in the histograms show almost equal frequency (or
probability) of measurement of the Bell’s state (|4)) in the basis (|00),]01),]10),|11)),
the GHZ state (|GHZ)) in the basis (|000),[111)) and the W-state (|W5)) in the basis
(l001) ,]010) , [100)), respectively. The output from each circuit measurement in histogram
exhibits that the quantum state such as Bell’s state, the prototype GHZ, and W-state are

maximally entangled.

4.5 Concurrence circuit

Here, we come up with a quantum circuit to compute concurrence of a 2-qubit pure state

on IBM Quantum simulator and on real quantum hardware. The Concurrence defined in
Eq.(2.33) of chapter 2| can be reduced to simple expression for a pure state as [188,/189)

C(1w)) = [{¥|o, @0y [97) |. (4.20)

The quantum measurement circuit of concurrence for an arbitrary 2-qubit pure state is
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v)

g

V)

b

P
o T M
CNOT ,_,L

Figure 4.11: The figure represent concurrence quantum circuit of two-qubit pure state.

shown in Fig.. It is constructed with one CNOT gate, two Pauli o, gates and one
Hadamard gate followed by a measurement gate. The proposed quantum circuit depends
upon the accessibility of two copies of the bi-partite state and the quick estimation of the
occupation probability of the total state of the two copies. The central thought of this
proposition is the transition of the separable form of two copies into a concurrence informative
state which simulate in terms of frequency/probability on four qubits computational basis.

Let us assume that we want to measure the concurrence of the general 2-qubit pure state
W) = ap |00) + oy [01) + a2 |10) + as |11) (4.21)

and we are provided with two decoupled copies of it [¥)®@|¥). It can be shown from Eq.(4.21)

that the concurrence state of |¥) in terms of coefficients a; is given by
C<|\I’>) = 2|CY10[2 — 040053|. (422)

Following the proposed quantum circuit of Fig.(4.11)), we apply local operations on the second
copy such that global state is depicted by

|©) = [¥) © (0y @ 0y V). (4.23)

This state can be written as superposition of states having four qubit computational basis

as

|®) = —apaz |0000) + asag [0001) + agay [0010) — agas [0100) — amars [1000) — af [0011)
—a3 [1100) + aja, |0101) 4 a2 |0110) + a3 [1001) + asay [1010) — ajaqg |0111)
—aag [1011) + azan [1101) + aza; |1110) — aszag [1111) . (4.24)
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Figure 4.12: In Fig.(a) and Fig.(b), top and bottom figure represent the quantum circuit
of concurrence and histogram plot for Bell’s state [£yo) and |£g1), respectively on IBMQ

simulator.
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Figure 4.13: In Fig.(a) and Fig.(b), top and bottom figure represent the quantum circuit
of concurrence and histogram plot for Bell’s state [£19) and |£11), respectively on IBMQ

simulator.
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Figure 4.14: In Fig.(a) Concurrence circuit for the two-qubit Bell state |£p1) = \%(!01) +1]10))
is shown where qo, q1, g2, g3 are initialize to |0) state. In Fig.(b) concurrence information
is encoded in four qubit computational basis on IBM(Q simulator and on a real quantum
hardware.

Now we apply a CNOT gate operation between the second qubit acting as the control and
the fourth acting as the target, followed by a Hadamard rotation on the second qubit. The
state of the overall systems become

D) 10000) + A, |0100) + B_ [0001) — B, [0101) + 2ascr3 |1100) — 29y [0110)

1
— A
\/5{
Cio 10011) + C [0111) + Coy [1001) — Cif [1101) + A_ [1010) — A, |1110)

B, [1111) — B_[1011)}, (4.25)

where AL = ajos Eopas, By = apas £oas, and C’f; = of £aj. Thus, in Eq.(4.25) the con-
currence information of the state |¥) is present in the coefficient of four qubit computational

basis.

For example, in Fig.([4.12) and Fig.([4.13), by considering the two copies of two-qubit Bell’s
state quantum circuit, we do concurrence simulation on IBM(Q simulator. The histogram plot
shows an approximately equal distribution of frequency /probability on four qubits computa-
tional basis, which verify that the two-qubit Bell’s state is a bi-partite maximally entangled
pure state. Here, an approximately equal distribution of frequency/probability means that

the quantum computer may have some hardware errors.

It is to be noted that in this chapter, all quantum circuits run only on the IBM quantum

simulator, which tests circuits with no noise. However, in Fig.(4.14), we do python pro-
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gramming on Qiskit 0.23.0 to create the quantum circuit of concurrence for the Bell state
|€01) = \%(\Ol} +110)) and run the circuit for 1024 shots for a given time to generate the his-
togram of probability on IBMQ simulator (ibmq_qasm_simulator) and also on real quantum
hardware (the 5-qubit machine (ibm_santiago)). The difference between the simulated case
and the code run on the actual quantum hardware is that the simulator simulates a perfect
quantum device. In the meantime, the real quantum hardware is susceptible to small quan-
tum errors. These quantum errors are improving every day as the result of the technology
is improving. So, we expect to see the results obtained from real quantum hardware getting
lower and lower and getting closer to the ideal simulations. However, as we see in Fig.,
the hardware is not perfect, resulting in a difference in the Histogram plots with the ideal

quantum computer simulator.

In the next chapter, we extend such field of study in particle physics domain and use idea

of quantum simulation to study entanglement in neutrino oscillations on quantum computer.



Chapter 5

Quantum studies of neutrinos on

IMBQ processors

This chapter studies implementation of entangled neutrinos on an IBM quantum computer.
Since neutrinos are weakly interacting, a neutrino beam retains coherence for a significant
distance. Such long-distance coherence can have implications in quantum information theory:.
Entanglement of neutrino flavour states means that the coherent evolution of neutrino beams
can be studied using quantum information techniques. The tools of quantum resource theory
quantify quantum coherence using the data from neutrino oscillations experiments 190,
191]. This is the first demonstration of the “quantumness”of quantum particles (neutrinos)
other than photons over a significant macroscopic distance. In this chapter, we examine the
concurrence and coherence of the bi-partite two neutrino system and find an algorithm to
encode our result on the IBM quantum cloud computer within the language of quantum

gates and circuits [44].

In a recent paper, Argiielles and Jones have outlined quantum circuits to simulate neutrino
oscillations on IBMQ processors [46]. Before this, neutrino oscillations were analyzed using
quantum walks [112]. In other similarly significant wonders like in neutral kaon oscillations,
the computation of oscillation probabilities has been done utilizing quantum computing [192].
Apart from this, the study of collective neutrino oscillations on a quantum computer is also
informative [194-H196].

72
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5.1 Quantifying concurrence and /;-norm of coherence

in the two neutrino system

In the two flavour (v, — vg) neutrino mixing, the SU(2) rotation matrix U(§) = R(#) =
(0039 —sinf

. resolved the atmospheric and solar neutrino problem. Following from the
stnf  cost

discussion of Sec.(L.2) of Chapter [1} and using Eq.(1.9)), the mass eigenstates (v, v») can be

obtained as a linear superposition of flavor basis (v., v,) explicitly in matrix form asE]

1)\ [cos —sind\ (|ve)
(|1/2> -~ \sinf  cosf ) ) (5-1)
Using Eq.([1.11]), the time evolved flavour eigenstates of neutrinos in flavour basis are

(|V€(t)>) B ( cost sin&) (1 0) <0059 —smﬁ) (1/6(0)) _ (Uee(t) Uw(t)) (1/6(0)>
(1)) \—sinf cosd) \0 €% ) \sinf cosd vu(0)) T \Ue(t) Uu(t)) \wu(0))°

(5.2)
where 1) = A;th, Am? = m3 — m?. Subsequently, in the ultra-relativistic limit, the survival
(P.. = |U..(t)]?) and disappearance (P., = |U,,(t)|?) probabilities of the state |v.(t)) are

P,=P._,.=1—4sin? cos? f sin® %, (5.3)
and FPy;=PF.,,=1—-P.. (5.4)

The two neutrino state space H, is a two-qubit Hilbert space H; ® H, spanned by {|1), ®
10),,]0); ®[1),}. The matrix {|0) = <(1)> 1) = ((1))} is defined by means of the unitary
equivalence defined on the mass basis |v4) = |1); ® |0), and |v2) = |0); ® |1),. There is
a bi-partition of the space of quantum states and a neutrino state which is entangled as a
two qubit state is said to be mode entangled. The normalized time evolved electron and

muon neutrino flavour state are two qubit bipartite flavour mode states and yield the Bell
like superposition (see Sec.(3.1]) of Chapter |3)),

[ve(t)) = Uee(t) [10), + Ueu(t) [01),,, (5.5)

cosf —sinf
sind  cosf
quantum gate U3 (see Eq.). The neutrino transition probabilities will not change because U is a unitary
transformation.

1We are using U(6) = R(0) = ) On the IBMQ platform this corresponds to the universal
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vu(t)) = 0#6@) 10), + 0##@) ’01>W (5.6)

where, [.(0)) = |1), ®[0), = |10), and |,(0)) = [0), ® [1), = [01), are two flavour mode
basis at time ¢ = 0. Using Eq.(5.5) and Eq.(5.6)), the density matrix for |v.(¢)) and |v,(t))

are

0 . 0 3 O~ 0
0 =) o) = [ g g\l T 5.7)
0 0 h 0 0
0 0 00
and () = o) (0] = | 5 el OB e
0 0 g 0 0

respectively. In Sec. of Chapter , we have discussed various bi-partite entanglement
measures in the two neutrino system. The concurrence is the study of non-locality of a
bi-partite quantum system (see Eq. of chapter [2| for concurrence definition). Using
the “spin-flipped”density matrix p°(t) = (o, ® 0y)p*“(t)(0y, ® 0,), we find only one square

root of eigenvalue of matrix p®(t)p(t) is non zero i.e., gy = 2\/|(~]w(t)|2|ljee(t)]2, thus the
concurrence is quantified for the time evolved electron flavour neutrino states in terms of

survival and disappearance probabilities as

Cp(t)) = 2V PsFa. (5.9)

Note that P, < 1, immediately implies P; > 0. Hence, entanglement is non-zero if the
transition probabilities are non-zero. When P, = P; = 0.5, concurrence tends to 1 i.e,
C(p°(t)) = 1, which corresponds to maximally entangled state. Thus, in a pure bipartite 2-

qubit framework, concurrence is associated with physical parameters in neutrinos oscillations.

Researching quantum measures in neutrino oscillations can be fascinating because it is
a minimal quantum effect. Quantities such as quantum coherence can be studied over an
enormous distance, as much as a few hundred kilometres away. Using the tools of quantum
resource theory, the entanglement measure /;- norm of coherence (Cj, (p)) is the summation
over the absolute values of all the off-diagonal elements p;; of a density matrix p [190]. This

has been investigated in the context of three-flavour neutrino oscillations in ref. [73}|191].

C(p) = lpijl > 0. (5.10)
i
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Figure 5.1: (a) The v, survival probability (Black, dashed line) is shown in the blue band
the concurrence (Red, solid line) is within the orange band [197]. (b) The v, disappearance
probability (Black, dash dotted line) is in the green band the concurrence (Red, solid line)
is shown as red band [197].

We find that for a given density matrix p°(¢) (see Eq.(5.7))), the l1- norm of coherence

Cy, (p(t)) and concurrence C'(p°(t)) coincide in the bi-partite two neutrino systems i.e.,
Cp°(t) = Ciy (p°(t)) = 2/ Ps Py (5.11)

This result shows the similarity of the origin of flavor mode entanglement in neutrino oscil-
lations with quantum coherence in the bi-partite two neutrino system. Thus, one can treat
entanglement and coherence on equal footing. The concurrence for an initial electron flavour
neutrino v, is quantified in terms of the survival P.. and disappearance F,, probabilities.
The dependence of this on L/E(Km/GeV) is plotted in the Fig.(5.1[a)) and Fig.(5.1(b)).
We find that when the survival probability P.. is minimum and the disappearance F,, prob-
ability is maximum, the concurrence is minimum which implies disentanglement. The next
section prepares a quantum computer circuit of two-flavour neutrino states in the bipartite

system.

5.2 Quantum circuit of two flavour neutrino states

In Sec.(4.2) of Chapter 4| various types of single qubit and two-qubit quantum gates have
been defined. The SU(2) rotation matrix R(#) can be encoded in the IBM quantum computer
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by using universal U3 gate

cos2 —sin2ett >

U?)((I),l/}’ >\) = (sm%é“" COS%ei%AJﬂ/}) (512)

The universal gate U3 is dependent on the three—parameterﬂ ®, 1) and A. In the two flavour
neutrino oscillation, the parameters ¢ and A\ can be removed by rephasing the charged muon
field via |v,) — e ™ |v,) and the |1p) field as |va) — €™ |1n), respectively. We set the
parameter value v» = 0 and A = 0 and therefore we can construct a 2x2 unitary quantum

gate via the definition

B _ [cost —sinf\ _ U U;#
R(9) = U3(20,0,0) = <3z’n9 cosd ) = (U;e U;u) . (5.13)

Two flavour neutrino oscillations are equivalent to a beam splitter transformation. In two-

qubit Bell’s state, the beam splitter transformation is called the Hadamard transformation

1 1 o : . . -
H = \/ig 1 1 which is a unitary transformation. In two flavour neutrino mixing, SU(2)

rotation matrix R(f) is also a unitary transformation. Therefore similar to the Bell state
quantum circuit, we construct the Bell-like superposition quantum circuit of two flavour
neutrino oscillations (see Eq. and Eq.). In the two-qubit system, we first prepare
a quantum circuit of the pure electron neutrino state in the linear superposition of mass
mode basis (see Fig.(5.2(a))). This can be achieved by operating the U3(—26,0,0) gate on
first qubit (1) (by rotating the mixing angle 6 of U3(26,0,0) gate from 26 to —26), followed
by the CNOT); quantum gate operation between first (1) and second (2) qubit, where
the action of Controlled Not gate (CNOT) gate can be represented by the matrix form as

1 000

0100 : :
CNOT= 000 11 The defined gate arrangement of electron flavour neutrino state in

0010

the two-qubit mass mode basis is
1ve(0)) = CNOT2[U3(—26,0,0) |0), ® X |0),], (5.14)

where the input qubits in a quantum computation conventionally initialize to the |0), and
the |1) state can be prepared by application of the Pauli-X gate, [1) = X |0). The CNOT},
gate is defined as if the control qubit (first (1) qubit) is in the state |0) the target qubit

’In Sec.(4.2.1) of Chapter U3 gate is defined as a function of three different parameters 6, ¢, A.
However, for the convenience of this chapter we defined U3 gate with parameters ®, 1) and .
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Figure 5.2: Quantum computer circuit representation of two-flavor neutrino states in two-
qubit systems: (a) [ve) = Ue [10); + Ue,i [01),y, (b) [ve(t)) = Uee(t) [10), + Ueu(t) [01) ,, ()
V) = Upe [10); + Uyt [01),, (d) [1u(2)) = Upe(t) [10), + Up(t) |01) .. Here, two input qubits
1 and 2 are initiated to |0).

(second (2) qubit ) is not affected, conversely if the control qubit in the state |1), the target
is flipped. Us3(—26,0,0) gate transforms the first (1) qubit |0), in a superposition state,
therefore:

UB(~26,0,0)[0), © X [0), = (Dee [1), + Uy [0),) & 1), (5.15)

where U3(—26,0,0) can transfer each bit into qubit as

U3(—26,0,0) |0) = U, 1) + U., |0),
U3(—26,0,0) [1) = U, |0) + U, |1).

(5.16)

Further operating CNOT)2 gate between first (1) and second (2) qubit will produce an
output state in a linear combination of mass mode basis as (from Eq.(5.14)))

16(0)) = U [10), + U, |01), . (5.17)

The time-evolution operator is identified as S-gate on IBMQ processor

S0 = (p o) =010 (5.15)
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where, ¢ = A;’gt. Only the relative phase between the mass eigenstates are relevant for

oscillations. Finally by applying U3(26,0,0) gate on the first (1) qubit, the overall gate

arrangement of a time evolved electron flavour neutrino state Eq.(5.5) can be obtained as

(see Fig.(5.2(b)))

ve(t)) = CNOT[U3(26,0,0)U1(t)U3(—26,0,0) [0), @ X |0),]
— Uee(t) [10), + Ue,i(t) [01),,. (5.19)

Similarly, we can prepare |v,) in a linear superposition of mass mode basis (see Fig.(5.2{c)))

via

1,(0)) = CNOT,[U3(—26,0,0)X |0), ® X |0),]
— Uy |10), + U, [01),. (5.20)

The gate arrangement of the time evolved muon flavour neutrino state in a flavoured basis

Eq.(5.6) can be prepared as (see Fig.(5.2(d)))

v, (1)) = CNOTL[U3(26,0,0)U1L(t)U3(—26,0,0)X [0), ® X |0),] (5.21)
— Uye(1) [10), + U,u(t)[01),, -

5.3 Quantum simulation of bi-partite entanglement in

the two neutrino system

In this section, we propose a quantum computing technique to measure the concurrence on
IBMQ platform [44|188,/189]. In the previous section, we constructed a quantum circuit
for the time evolved flavour neutrino state |v,(t)) in a two-qubit bi-partite mode (flavour)
system. For the concurrence, we perform a spin-flip operation on the density matrix. To
construct a quantum circuit to enable spin-flipping, we have to prepare two copies of bi-
partite neutrino state |1, (1)) ® |v4(t)) in the two flavour system (where « = e, u), and apply
a “spin-flipped”operation o, ® o, on one of the two copies. We can extract the concurrence

value of the time evolved flavour neutrino oscillation from this global state.
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Figure 5.3: The circuit represent the concurrence measurement of v, disappearance in two-
flavour neutrino oscillations.

5.3.1 Quantum circuit in vacuum

Now, in order to measure concurrence C'(p°(t)) on the IBMQ processors, let us prepare a
concurrence circuit for the time evolved electron flavour neutrino state |v(t)) in the two qubit
system in vacuum (see Fig.). The required operations to create concurrence circuit are
o, ® o, spin-flip gate, CNOT gate, as well as local rotations Hadamard (H) gate, followed by
a global measurement (M) of all four qubits. In the circuit diagram Fig., the first two
channels (1 and 2) stand for the entangled state |v.(t)) that we want to measure. The third
and fourth channel (3 and 4) denote the copy of |v.(t)). Take two copies of the bi-partite
state |ve(t)) ® |ve(t)), and apply spin-flipped operation o, ® o,, on the second copy such that
the global state is described by

|[B(1)) = [ve(t)) ® (0 ® 0y [ve(t))). (5.22)
By using Eq.(5.19)) in Eq.(5.22)), four qubit global state we get as

[@(2)) = (Uee(t) [10) + Ugya(£) [01)) ® (Uee(t) 101) + Uey(t) [ 10))
)T,

= (Uee())? [1001) + Uee(t) U, (t) [1010)
U, () Uee(£) [0101) 4 (U, (£))2]0110). (5.23)

Now apply CNOT,, operation between second (2) and fourth (4) qubit, and the target qubit
(4) is inverted only when the control qubit (2) is |1) i.e, |0101) — |0100) and |0110) — |0111),
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Figure 5.4: Concurrence circuit for the two qubit v, disappearance bipartite state on the

IBMQ platform ,.
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Figure 5.5: The concurrence varies with time at the IBM(Q computer for an initial electron
neutrino flavour state. The concurrence information is shown Histogram (probabilities in

percentage) plot on quantum simulator and IBM quantum hardware [44,[197].
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such that we get

D1 (1)) = (Uee(t))*]1001) + Uee(t)Uw(t) |1010)
U, (1)U (£) |0100) + (T, (2))?]0111). (5.24)

Finally, we perform a rotation operator H which act like the Hadamard transformation,

H= \/Li G _1 1) on the second (2) qubit. The H operation can transfer each qubit as:

Loy + 1) a1y =

)=

(|0> 1) (5.25)

SI

The state of the overall system is

(1)) = F5[(Ue ())2|1001>—(l7 (t))?[1101)
AU (1)U, (1) [1010) — U,e(£) U, (t) |1110)
U, (1) Uee (t) |0100) + Uy, (1) Uee(t) [0000)
+(U.,(£)210111) + (U, (1))?0011)]. (5.26)

Thus, we observe from Eq.(5.26) that the concurrence information of the electron neutrino
flavour state |v.(t)) is then the coefficient U, (t)U,,(t) and

C([ve(t))) = 2+/2Po000 = 2/ Ps Py, (5.27)

The quantum computer circuit to simulate concurrence

where Pyogo = |Uee (t )\"’Q\Ueu(t)l2 _ PsPd
for the time evolved electron ﬂavour neutrino state is shown in Flg. on the IBM quantum
platform [44]. In this circuit U3(m, 7, ) quantum gate is identified as Pauli o, gate. We used
Python code to program our quantum circuits on the cloud based IBM quantum computer
with the package Qiskit 0.23.0. We run the circuit for 1024 shots for a given time on an ideal
quantum simulator and real quantum hardware of IBM. The quantum simulator that we used
is ibmq_qasm_simulator and quantum hardware is the five-qubit machine ibm_santiago. The
simulation results obtained from simulator and hardware are shown in Fig. in the form
of Histogram. The contrast between the outcomes in these two cases can be attributed to
the noises of the quantum devices. If we make envelop of these histogram plots, we can see
the simulation of quantum oscillatory behavior of neutrinos. So far, we have simulated the

concurrence for the time evolved electron flavour neutrino state |v.(t)) in a vacuum. For
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Figure 5.6: (a)The time evolution of the concurrence (Red line) compared to the disap-
pearance P; (Green line) and survival P; (Black Dashed line) probabilities of |v,(t)) in the
vacuum A=0 [197]. (b) The time evolution of the concurrence (Red line) compared to the
disappearance P, (Green line) and survival P, (Black Dashed line) probabilities of |v,(t)) in
the constant effective matter potential A # 0 [197].

completeness, in the next section, we encode concurrence for the time evolved muon flavour

neutrino state |v,(t)) in the constant matter potential on the IBMQ platform.

5.3.2 Quantum circuit in the uniform matter background

In Sec.(1.2.3) of Chapter , we have discussed neutrino oscillations in the constant matter
background. In neutrino experiments, when neutrinos are traveling through the earth, they
have a minimal weak interaction with the matter of the earth, which can be quantified as the
effective Hamiltonian H,.y; given in Eq.. The investigation is how much background
matter affects entanglement, i.e., whether neutrinos decohere by traveling through the earth?
According to Eq.(1.49), the survival (P;) and disappearance (P;) probabilities for |1, (t)) (see
Eq.(5.6))) in matter can be modify as:

Py =P, =1 — 4sin® Oy cos? Oy sin? (L),
Py = P,,. = 4sin® 0y cos® Oy Siﬂ%%), (5.28)
2
where ¢y, = A;ngft, O and Am3, are the effective neutrino oscillations parameters in

matter. These effective neutrino oscillation parameters are related to the vacuum neutrino
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Figure 5.7: Implementation of concurrence circuit for |v,(t)) on IBMQ processor .
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Figure 5.8: The concurrence varies with time at the IBMQ computer for an initial muon
neutrino flavour state in vaccum (A=0). The concurrence information is shown through
Histogram (probabilities in percentage) plot on quantum simulator and IBM quantum hard-

ware (13197



Ch-5: Quantum studies of neutrinos on IMBQ processors 84

mm Ssimulator

0.236 B hardware
0.24 1

Probabilities

0.06 1

0.00 -

o T e B B T B |
5§8§
o 9

o D
SSS§ S

Figure 5.9: The concurrence varies with time at the IBM(Q computer for an initial muon
neutrino flavour state in the uniform matter background (A#0) is shown on quantum simu-
lator and IBM quantum hardware , 197].

oscillation parameters Am? and 6 are given by

Am?3, = \/[Am2Cos(20) — A2 + [Am2Sin(26)]2, (5.29)

1 Am2Cos20 — A

Sinfy = —[1 — ,
inby \/5[ V (Am2Cos20 — A)? + (Am2Sin20)2]

where A is the effective matter potential. In Fig.(5.6(a)) and Fig.(5.6(b)), we show the time
evolution of the concurrence plot vs %(ggj

the uniform matter background disappearance and survival probabilities get modified slightly

(5.30)

) for |v,(t)) in vacuum and matter, respectively. In

due to the effective neutrino oscillations parameters Am?, and 6,,. Infact, due to the effect of
the uniform matter background, the concurrence is less (see Fig.(5.6(b))), which is a sign of
decoherence. Moreover, to simulate this results on IBMQ processor , in Fig. first we
prepare quantum computer circuit to measure concurrence for |v,(t)) on the IBMQ platform.
We do not have to construct a new quantum circuit for the inclusion of matter effects; we can
replace the eigenvalue and the vacuum mixing angle for the expression given in Eq. and
(Eq. The result of the time-varying concurrence in a vacuum as well as in matter for
|v,(t)) is in the histogram plot (probabilities in percentage) on an ideal quantum simulator
and quantum hardware of IBM in Fig. and Fig., respectively. We find that the
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behaviour of the histogram plot of the evolved concurrence slightly changes when we induce
a uniform matter effect to the neutrino system. Thus, in brief, we implemented a way of
finding concurrence information of entangled oscillating neutrinos on a quantum computer,

and we have shown that matter effects do not decohere the neutrinos much.



Chapter 6

Neutrinos as Qubits and Qutrits

Quantum entanglement results from the non-classical correlations between separated quan-
tum systems [45]. Correlations between subsystems of a more extensive system that are
not expressable in terms of correlation between local classical properties of the subsystem
characterize quantum entanglement [47]. A superposition of two orthogonal states is called
a qubit, and most quantum entanglement measures are realized between pairs of the qubit
in a 2-dimensional Hilbert space H2. Such measures include the partial transpose condition
to determine entangled two qubits, and other bi-partite entanglement measures like concur-
rence and the entanglement of formation [70L|72,/198]. Bi-partite entanglement is limited in
its applicability. Studying multipartite entanglement opens up new possibilities in develop-
ing quantum theory and new quantum communication protocols. Tri-partite entanglement
is the simplest example of multipartite entanglement in the three-qubit system. The W state
and the GHZ state of quantum optics are examples of tri-partite entangled states. Genuine
tri-partite measures of entanglement such as the three-tangle and the three-m have been used
to characterize these states [35] and discussed in Chapter

Along with this type of tri-partite entanglement, there has been an interest in generalizing
the concept of a qubit to a qutrit. A qutrit is the superposition of three orthogonal states
rather than the two which characterize a qubit. An operator representation of the qutrit
density matrix has been developed, and qutrit entanglement has been studied in ref. [47].
Physically implementing a qutrit quantum computer in the context of trapped ions has
been studied [199] and quantum computer simulation packages for qutrits have been imple-
mented [200]. Furthermore, the generalized concurrence formula as a measure of two qutrits

entanglement has also been studied [201].

86
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Most of the systems in which quantum entanglement is studied are photonic or atomic
systems. In chapter [3] the ideas of quantum entanglement have been extended to the realm
of particle physics by the study of two and three flavour neutrino systems. We have placed
three-mode entanglement in neutrino oscillations on the same footing as mode entanglement
in optical systems by mapping the neutrinos to the three mode W-state. We have stud-
ied tri-partite measures such as the three-tangle and the three-m for three flavour neutrino
entanglement. In addition to this, in chapter |4, quantum states such as Bell’s states, W
state and GHZ state are realized by quantum computer and in chapter [5] the simulation of
bi-partite entanglement in the two flavour neutrino oscillation has also been shown on IBMQ

Processors.

This chapter illustrates tri-partite entanglement in neutrinos by considering them as “qutrits”.
A qutrit is a linear superposition of three orthonormal basis states, |1), |2) and [3) :
[V) = a|l) + B|2) + ~v3), where |a]®> + |B]*> + |7]* = 1 and a, 3,7 € C. Since neutrino
flavour states are a superposition of three states, it is only natural to try and characterize
them as qutrits. We do this by mapping the density matrix for neutrinos to a generalized
Poincaré sphere [47,202]. In the two-flavour neutrino oscillation, geometric and topological
phases such as the Berry’s and Panchratnam’s phase in terms of oscillation probabilities
have been calculated using the Poincaré sphere and are directly observable [203,204]. The
Poincaré sphere has its origin in optics and is a way of visualizing different types of polarized
light using the mapping from SU(2) to S®. A qubit represents a point on the Poincaré sphere
of SU(2) defined as, complex projective line H?> = CP' = SU(2)/U(1). A generalization of
the Poincaré sphere to SU(3) can be constructed [205-207]. This construction has been the
basis for characterizing qutrits that live in a 3-dimensional Hilbert space H?. A qutrit is
taken as a point on the complex projective plane H3 = CP? = SU(3)/U(2) [208]. This work
describes the entanglement of neutrinos by constructing Poincaré sphere representation for
two and three-flavour neutrino states using SU(2) Pauli matrices and SU(3) Gell-Mann ma-
trices, respectively, to map the neutrino states to the qutrits states of quantum information

theory.

The chapter’s organization is: In Sec.(6.1)), we represent a single qubit density matrix of
two flavour neutrino states in the basis of SU(2) Pauli matrices. In Sec.(6.2), we use the
tensor product of Pauli matrices as a basis to represent a two-qubit density matrix that led
to Bloch matrix construction in the two-qubit neutrino system. We also show bi-partite
entanglement measure concurrence quantification in the two neutrino system. In Sec.(6.3),
we describe a qutrit density matrix of three flavour neutrino states in the basis of SU(3)

Gell-Mann matrices. Under a particular set of constraints, the measure for entanglement
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characterized by the entropy of mixing for a three flavour neutrino system is found. In
Sec.(6.4), we represent a two qutrit density matrix in the basis of SU(3) Gell-Mann matrices
tensor products which describe the generalized matrix construction for two qutrits neutrino
states. Furthermore, we compute generalized concurrence as a measure of bi-partite qutrits
entanglement in the two neutrino system and compared it with the concurrence of the bi-

partite qubit neutrino system.

6.1 SU(2) Poincaré sphere for two-flavour neutrinos

In chapter [3| the two flavour neutrino system has been mapped onto a qubit system in
quantum optics, with the two flavours mixing matrix playing the role of the beam splitter in
a two-level quantum optical system. It is well known that a two-level system can be mapped
to the Poincaré sphere of two level quantum systems [205]. For a two-dimensional complex

Hilbert space H?, a quantum state |1)) can be written as a superposition

V) = e1]0) + 2 [1)), (6.1)

where, |c1|* + |2/ =1 and ¢;, ¢ € C

0 =(o):m= () (6.2

Using the polar representation ¢; = r1€?° and ¢y = rye®t and the fact that, in the case of
quantum bits, a quantum state |¢)) does not change if multiplied by an overall phase e~#°

the equivalent quantum state is
e~ o) = 1 |0) + roe 0 |1) (6.3)

Using the angular representation of complex variables and the fact that r? + 72 = 1 and

¢ = 1 — o we get a representation of the equivalent representation of [¢) as
[9) = cos(6) |0) + sin(0)e™ |1). (6.4)

For a two dimensional complex Hilbert space H?, the density matrix correspond to a pure

state |¢) is given by p = [¢) (¢0|. Its expansion in terms of Pauli matrices o; leads to the
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Poincaré sphere construction

1

p= I} (Wl = 5(1+7.3), (65)

where pl = p? = p>0,Trp=1= A* =0, h.i = 1 &= n € S? is the unit vector on the
sphere. Thus there is a one to one correspondence between pure qubit states and points on
the unit sphere S? embedded in R3, which is known as the Poincaré sphere construction (of

which the Bloch sphere is a particular case). If [¢)') and |¢) are two pure states then

Tr(pp) = | < W/J) > [ = 5(1+ ), (6.6)

where 7/ is the unit vector on the sphere corresponding to |¢). For orthogonal states
| < '|¢) > | =0, so that 1 +7/.7 = 0 and thus correspond to the diametrically opposite
point on S? correspond to mutually orthogonal Hilbert space vectors where, < 9/[¢) > is
the inner product in H?. Applying an SU(2) transformation to [/} € H? the representative
point in SU(2) n € S? (circle) undergoes a rotation belonging to SO(3)

|¢/) =ul),ue SU12) = n; = Rjp(u)ng; Rjk(u) = %Tr(ajuakuT), (6.7)

R(u) € SO(3). Thus all elements R € SO(3) are realized in this way, and we have the coset
space identifications (since multiplication by a phase leads to equivalent representations)

S? = SU(2)/U(1) = SO(3)/SO(2).

Two-flavour neutrino oscillations involve a Hilbert space of two dimension #H?, and the
mixing matrix is given by the SU(2) matrix [209]. The expression for the time evolved

flavour neutrino states (|v.(t)) and |v,(t))) in linear superposition of two mass eigenstate
basis (|11), |ve)) are given in Eq.(1.29) and Eq.(/1.30)).

|ve(t)) can be parametrized by two angles 6 and ¢ as

1Ve(0, 0)) = e F1/  (cosh 1)) — sinfe " EmEDYR )Y

= e Bt (cos0 [1y) — sinfe™ |1y)), (6.8)

where E; = (p? + m?)/? and E, = (p? + m3)"/? and in the ultra-relativistic limit ¢ =

(Ez_hEl)t = A;g;t. The overall phase is redundant and leads to an equivalent representation

such that the coefficient of |v1) is real. Thus, the normalized time evolved electron neutrino
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and muon neutrino flavour state are,

Ve(6, $)) = cosb |v1) — sinfe™™ |vy)
v,(0,8)) = sind |v1) + cosfe™ ™ |1y) (6.9)

respectively. Now we can easily identify the mass eigenstates of a flavour neutrino state to

the qubit states
o) =) = (o) 10 = = (7). (6.10)

Identifying the states |¢)) and [¢)') with time evolved flavour neutrino states |v.(6,¢)) =
( cosf ) and, |v,(0,9)) = ( sint >, thus |v.(0, ¢)) is an eigenstate with eignvalue

—e " ®sind e~ cosh

A S cos20 —sin26e'®
O=n(0,¢).d = <—sz’n296‘i¢ " 0520 ) € SU(2). (6.11)
Here ¢ = (01, 09,03) and n(0, ¢) = —sin20cospé; + sin20singés + cos20éy is a real unit

vector called the Poincaré unit vector. Therefore,

O lve(0,0)) = |ve(6,0)) . (6.12)

Thus a state |v.(6,¢)) € H? is expressed in terms of a unit vector n(6, ¢) on the surface of
the Poincaré sphere. This correspondence is one-to-one if the ranges of # and ¢ are restricted
to 0 <60 <7mand 0 < ¢ < 27. The 2 x 2 density matrix is given by

e cos*0 —esinfcosl 1 .
P2 = (—€_i¢sin90039 sin20 ) - §(I +7.5), (6.13)

which is the same as Eq.(6.5). The eigenvalues of p$,, are 1 and 0, therefore p§,, is a rank
1 density matrix. This maps the neutrino state |v.(t)) to the the surface of the unit sphere
in the three dimensional vector space. A similar mapping can be done for the neutrino state

|v,(t)). The density matrix correspond to |v,(6, ¢)) is

. 9 i} o
o sin“0 e'?sinfcosf) _ 1 V-
Paxz = (e‘i‘z’sin@cose cos*0 N 2(] +7.5), (6.14)
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where 1/ (0, ¢) = sin26cospé; — sin20singé; —cos20¢e3. When 6 — g then the Poincaré sphere
becomes the Bloch sphere used in quantum optics. In the next section, we use Eq.(6.13]) and
Eq.(6.14) to describe the Bloch vector and its generalized representation in the two-qubit

neutrino systems.

6.2 Bloch matrix construction of two qubit neutrino

states

A 4x4 density matrix pyyq € H2® H? represent either a single four-level system, or a pair of
coupled two-level systems [202]: two qubits. The study of the Bloch matrix using the density
matrix pgx4 will give useful symmetries in the Bloch-vector space. This section studies two-
qubit density matrices of two flavour neutrino states in the Dirac-basis to construct the
Bloch-matrix. We extend this idea to study the entanglement nature of two-qubit neutrino

systems.

In general, any 2 x 2 density matrix ps«2 of a single qubit state in terms of the Pauli basis
is written as ]

1 —
Paxa = 5(1 +u.0,) = 3 H0u; (6.15)

where the scalar coefficients r, = Tr(pax20,) (r = 0,1,2,3) in which 7y is always unity to
ensure 1rpsys = 1, and rq, g, 74 are the components of the Bloch vector #, and o, are the
Pauli matrices. Similarly, using Eq.(6.15]), the density matrix pyx4 of any two qubit states

can be constructed using the Dirac matrices, denoted D, = 0, ® o0, as its basis such that

1
Paxa = ZTuVDuV' (616)

where p,v = 0,1,2,3. The characterization of the Pauli matrices and Dirac matrices are

shown in ref. [202]. The scalar coefficients r,, is defined as
T = Tr(pixaDy) =< 0, ® 0, > (6.17)

constitute 16 components of the Bloch matrix M which is split into four major components:
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a scalar of unity, two three-dimensional vectors, and a 3x3 matrix written as [202]

1 ‘7"01 To2 To3

r r r r
T20 | 21 T22 T23

T30 | 31 732 733

where w; = 10 and v; = ro; (4, = 1,2,3) are the components of two local Bloch vectors @
and v, respectively. R;; = r;; is the matrix elements of correlation matrix R, and 79y = 1

implies psx4 be a Hermitian matrix, of unit trace, and positive semidefinite.

Using Eq.(6.13)) and Eq.(6.14), we construct the density matrix of two qubit neutrino
states e, (6, 0)) = |ve(0, ¢)) ® |v,(0, ¢)) in the standard basis (|0) ® |0) = |00),]0) @ |1) =
01), 1) ® |0) = [10),[1) @ [1) = [11)) as

pili4 - png ® pgx2 = |V€,u(‘9a ¢)> <V€M(0> ¢>|

cos*0sin’6 e®cosP0sind  —e®cosfsin®0  —e?®cos?fsin?6
B e~ cos30sind cos*0 —c0s%0sin?6 —ecos30sind (6.19)
o —e " ®coshsin0 —sin?0cos?0 sin*6 e coshsin’0 ) ’
—e 20 5in20c0s%0 —e ?sinfcos®ld e P coshsin0 sin?6cos®0
We can expand the above two qubit density matrix p§, uniquely as
en e m 1 e N
Paxa = Paxa @ Paxa = Z[([ +n.6%) @ (I +7n'.0")]
3
1 —e A N e M
:ﬂ[@[—i—a.n@[—i—[@a.n—i—Zrijai@Uj], (6.20)
ij=1
the expansion coefficients are
n; =tr(p*o; @ 1),
n; = tr(p™I @ o),
rij = tr(p™o; ® g;), (6.21)

where 4,7 = 1,2,3. In Eq.(6.21), n; and n’; are the elements of Poincaré unit vector fi and

n’, respectively and the coefficients r;; of the basis 0; ® 0; is defined as a correlation matrix
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R between the two sub-system p° and p* as

1 Tiz2 T3
R = 21 T92 T23 . (622)
31 T32 T33

Using Eq., the elements of r;; can be obtained as: r1; = —4cos*0sin*0cos®p, 113 = 191 =
2005*0sin*0sin2¢, 113 = 131 = 1sindfcos, oy = —sin*20sin’¢, ra3 = r3s = —Lsindfsing,
r33 = —cos?20. Alternative representation of Eq. is Eq.. So, we can incorporate
this correlation matrix R (see Eq.(6.22)) into the Bloch-matrix M shown in Eq.(6.18).

Following Eq.(6.16)) and using Eq.(6.19) in Eq.(6.17)), the Bloch matrix for pj}, can be

constructed as

1 ‘ cospsin26 —sin20sing —co0s20
M. - —cospsin20 | —4cos*Ocos®psin’0  2cos?0sin*0sin2¢ %cosqbsméle (6.23)
4 sin20sing | 2cos?0sin*0sin2¢ —sin?20sin*¢p ~ —1sindfsing '
cos20 %cosqﬁsméle —%sinélesinqﬁ —c0s220

By comparing the matrix elements of M., (see Eq.(6.23)) with M (see Eq.(6.18))), we
find that r;y and ro; are the components of local unit Bloch vectors n and n’, respectively

(1,j=1,2,3). The matrix elements 7;; are the elements of the correlation matrix R which is
exactly equal to Eq.. Thus, we have incorporated the correlation matrix R inside the
Bloch matrix M,,,. Since, we can decompose the Bloch matrix M., in terms of Bloch-vectors
components of two sub-systems (p5., and ph. ), therefore, the two-qubit density matrix
Pia = Psua @ phyo is a separable state (or product state). In fact, such interpretations of

the Bloch matrix M is also valid for the other product states pi%, = p5eo ® PS5ua, Phes =
Phxo @ Phyo, and phS, = phyo @ p5o.

Furthermore, the concurrence is the measure of entanglement in the two qubit system and

it is defined in Eq.. Using Eq. in Eq., we construct the spin-flipped density
matrix pgh, = (0, ® 0,)p*xi(0y, ® 0,) and find that for the state pil, = pS.o @ phyo (see
Eq.(6.19)), all eigenvalues of pi;,pi%, are zero ie, Ay = XAy = Ay = Ay = 0, which mean
according to Eq. the concurrence C(pgh,) is 0. Similarly, for all other possible states:

Pixa = Paxa @ Paxas 10554 = png ® pg><27 and Pffi4 = png ® 5y, the concurrence is
C(pixa) = C(psa) = Clpisa) = Cphss) = 0. (6.24)

We see that concurrence is zero for all the states as expected because they are separable
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states and we know that there should not be any quantum correlations exist between any
two sub systems (pS,., and ph, ) of a given separable state. However, if a given state is not
separable |v., (6, ¢)) # |v.(6,¢)) @ [v,(0, ¢)) then it is an entangled state.

Now, we map the neutrino mass eigenstates |v;) and |vs) directly to the bi-partite qubit
states as [v1) = [1); ®0),, [v2) = [0); ® |1),. In that case, using Eq.(1.26), the time evolved
electron flavour neutrino state |v.(t)) in superposition of two qubit mass eigenstates (see
Eq.), parametrized by 6 and ¢, can be written as

Ve (0, ¢)) = cosf [10) — sinfe™'? |01) , (6.25)

and its two-qubit density matrix is

0 0 0 0

. 0 cos?0 —cosfsinfe® 0
Pixa = 1 0 —sinfcosfe sin20 0 (6.26)

0 0 0 0

Using Eq.(6.26) in Eq.(6.16) and in Eq.(6.17)), the Bloch matrix M (see Eq.(6.18))) for p§,,

is obtained as

1 | 0 0 —co0s*0 + sin*0
- 0 —2sinfcosfcos¢p —2coshsinbsing 0
M. = 0 2cosfsinfsing  —2cosfsinfcoso 0 (6.27)
cos?0 — sin*0 0 0 —c0s?0 — sin*0

We notice from Eq. that some components of the local Bloch vector for the individual
system is zero, and thus we cannot decompose the Bloch matrix M, in terms of Bloch-vectors
components of two subsystems. Therefore, the two-qubit density matrix p§,, of the state
[ve(0,¢)) is an entangled state. At § = 7 and ¢ = 0, the Bloch matrix M, of p3,, become

1o 0 0
0|-1 0 0

M1/1__ 0 0 -1 0 ) (628)
00 0 -1

which is identified as the Bloch matrix of two qubit Bell’s state |¢p~) = %(]01) — [10)).
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Similarly, for the state v, (6, )) = sinf [10) + cosfe |01), we have

0 0 0 0
0 sin?0 cosfsinfe’® 0
weoo_
Pixa = 1 0 sinfcosfe=® cos?0 0]’ (6.29)
0 0 0 0
and the corresponding Bloch Matrix is
1 | 0 0 —c0s?0 + sin*0
B 0 2sinfcosfcos¢p  2cosfsinfsing 0
M, = 0 —2cossinfsing 2cosfsinfcoso 0 ’ (6.30)
cos%0 — sin?0 0 0 —c0s?0 — sin?0
At 0 = 7 and ¢ = 0, the Bloch-matrix M, become
1 ‘ 00 O
0|1 0 O
My+ = olo 1 0 , (6.31)
0[]0 0 —1

which is identified as the Bloch matrix of two qubit Bell’s state |[¢T) = \%(\OD + |10)).
Furthermore, concurrence for pS,, and pf,, we get as C(p§,,) = C(plys) = sin260, which
tends to 1 at § = Z. The non-zero value of concurrence shows that pf,, and pl,, is a
bipartite entangled state when time evolved neutrino flavour state are linear superposition

of mass eigestates basis.

However, in general, neutrinos change its flavour while traveling in space with time. There-

fore, it is useful to quantify concurrence when time evolved neutrino flavour states are linear

superposition of flavour basis. In that case, using Eq.(1.27), Eq.(1.28)) in Eq.(1.29) and in
Eq.(|1.30)), the time evolved electron and muon flavour neutrino state (|v.(t)) and |v,(t))) in

linear superposition of flavour basis, parametrized by 6, ¢, can be simply written as

ve(0,0)) ; = (cos®0 + sin*0e™") |v.) + sinfcosd(1 — e ") |v,) (6.32)
V0, 8)) ; = sinfcosf(1 — e ™) |ve) + (sin®0 + cos*0e™?) |v,)

respectively, where suffix f represent that the flavour neutrino state should be written in

flavour basis but not in mass basis.

If we map flavour states at time t=0 to bi-partite state in the two qubit system as |v.) =
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1), ®10), and [v,) = |0), ® |1}, therefore Eq.(6.32) become

ve(0,0)); = (cos*0 + sin*0e"®) |10) + sinfcosf(1 — e ) |01) , (6.33)
v (0, )) ; = sinfcosf(1 — e ) [10) + (sin®0 + cos*0e~") |01) .

These states are equivalent to Eq.(5.5)) and Eq.(5.6)) and for such states we have already quan-
tified concurrence in terms of neutrino transitions probabilities which is given in Eq.(5.9)).

The result shows that these states are bi-partite qubit entangled state.

6.3 SU(3) Poincaré sphere for three-flavour neutrinos

In this section, we use the Gell-Mann matrices, instead of Pauli’s matrices, to map the
three flavour neutrino states onto the SU(3) Poincaré sphere. In the same way as the mass
eigenstates of a two flavour neutrino system were mapped to qubits in the two-dimensional
Hilbert space H?, we now consider the three-dimension Hilbert space H3. A qutrit is realized
by three mutually orthogonal states [47]: [1),]2),3) .

A quantum state in the Hilbert space H3 spanned by the three orthogonal qtrit states |1) =
1 0 0
0)5[2)= (1] :and[3)= (0] is [¢5) = a[t) + B12) +73) where |af? + 82+ |7* = 1
0 0 1

. Using the polar representation a quantum state [¢)) does not change if multiplied by an

overall phase, the equivalent quantum state is
[v) = eStsin(f)cos(¢) [1) + e2sin(f) sin(¢) [2) + cos(6) [3) . (6.34)

The corresponding density matrix for the state |¢) is

_ sin?0cos®¢ ei(gl—;@smwsm(ng) eil sin(20)cosp
pax3(¥) = |[¥) (Y] = @sm%m(w) _sin2(93m2¢ 61252 sin(20)sing
%Sm(%)cosgzﬁ #sm(%)smgb cos?0
(6.35)

The pure state [¢) in Eq.(6.34) is dependent on 4 parameters 0, ¢, &y, &. However, the five
parameters are needed to characterize the neutrino state, and the sum of the squares of the

state’s coefficients should be 1.

Now we will define the density operator of a qutrit system using SU(3) in general and
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then map it to the neutrino system. The density matrix psx3 = [¢) (¢| is a 3 X 3 unitary
matrix such that (p3X3)T = p3x3; and Tr(psx3) = 1 . The qutrit representation of the density
matrix takes the eight (Hermitian, traceless) generators of SU(3) as an operator basis called
the Gell-Mann matrices [47]. By supplementing the eight Gellmann matrices \;,7 = 1...8
with the unit operator Ao = %1, the qutrit density matrix operator is a vector in the space

spanned by \,,a =0, ...,8 and therefore can be written as

p3xs = |1) (Y] = %Ca/\a = (a|1) + B812) +73)) (" (1] + 57 (2| + 7" (3), (6.36)

— \/g/\o + %(aﬁ* + Ba’) A1 + %(Ofﬂ* — Ba) A

1 1 i
+§(|Of|2 — 1B1*)As + 5(01’7* + o)\ + é(cw* — ya*) A5

1 i 1
+=(BY* + 86 + = (BY — 18 r + —=(|B8]* = 2|7*) As, 6.37
3 (B 9806+ 5 (B = 1B + =181 = 217 10) s (6.37)

the (real) expansion coefficients are
3

Co = §tr(p3X3/\a). (6.38)

3
29

Eq.(6.5), which we shall show is the Poincaré sphere representation of the qutrit states

Normalization implies that ¢y = S0 p3x3 can be simplified to the SU(3) equivalent of

1 1 -
P3x3 = g(]_ + CjAj) = g(]. + C.)\)7 (639)

where, ¢ = c;€; and A = \jé;.

To find the coefficients ¢; we note that

1 2, 1.2 1
where the “star” product is defined as
C* CZE éjdjklckdl' (641)



Ch-6: Neutrinos as Qubits and Qutrits 98

The characterization of the Gell-Mann matrices and dj,; value can be found in [210] or any
group theory textbook. The star product condition is well explained in ref. [47]. For a pure
state 1), p2.5 = paxs, &.C = 3 and &x ¢ = /3¢, Taking 7 = ¢/+/3 which is eight dimensional

unit vector, qutrit pure state density matrix is

poes = 0) (0] = 51 + V3. 5) (6.42)

where 1 satisfies

i =1 and A i = . (6.43)

Eq.(6.42)) is the equation for the 7-dimensional unit sphere 7 € S7 embedded in Euclidean
eight dimensional space R® spanned by the Gell-Mann matrices, that represents coset space
SU(3)/U(2) |205], with components of unit vector n given by

V3 V3
n; = _tT(P3x3)\j) = 3

: (Wl ). (6.44)

Thus, we have outlined the Poincaré sphere representation of the density matrix in H3.

Three-flavour neutrino oscillations involve a Hilbert space H? and the mixing matrix is
given by the SU(3) matrix. Let the mass eigenstates of the three flavour neutrino system be

|v1), |2) and |v3) then the relation between the mass eigenstates and the flavour states is

(see Eq.(L.1))

|Ve) lv1)
}Vu; = U"(0, 6,1, 0cp) Iwi : (6.45)

where U(0, ¢,n,0cp) is the Unitary PMNS neutrino mixing matrix

CgC¢, SQC¢ S¢€_iécp
U(Q, gb, n, 5013) = —Sgcn — CgS¢Sn€i(SCP Cgcn — Sng,Snei‘SCP C¢Sn S SU(?}),
S@Sn — O@S¢Cn6iécp _00577 — S@S¢On6iécp C¢Cn
(6.46)
where (Sp, S¢, Sy) = (Sinbia, Sinbis, Sinbas); (Cy, Cy, Cy)) = (Cosba, Cosbyz, Cosblas), the

6,;’s are the neutrino mixing angles between the states ¢ and j (¢,j = 1,2,3) [52,209]. Here,
Eq.(6.46)) is similar to Eq.(1.2)).

The three flavour states of a neutrino system can be written in the qutrit basis by identi-

fying the mass eigenstates with the qutrit basis states of the three dimension Hilbert space



Ch-6: Neutrinos as Qubits and Qutrits 99

H? as
1) =[r1) ;12) = |v2) :[3) =[vs). (6.47)

Without loss of generality, we take dcp = 0 and write the time evolved electron flavour

neutrino state as
V(1)) = e B CyCy 1) + e BRSO, — CpSyS,y) |2) + e (S, S, — CpSyC,y) |3) (6.48)
Similarly, the time evolved |v,(t)) and |v,(t)) neutrino flavour states can be written as

|Vu(t)> = e_iElt/hSQCd, |1> + G_ZE2t/h(CQC — S@S¢ ) |2> + 6_1E3t/h( C@Sn — Sng,Cn) |3> ,(649)
and |, (t)) = e NS (1) 4 e RN, S, [2) 4+ e BT, ) [3) (6.50)
respectively. Taking the ultra-relativistic limit L ~ ¢ (¢ = 1,h = 1) and defining & =
(E3 — Ey)t/h ~ Am% L/2E, and & = (Fy — Ey)t/h ~ Am3,L/2E, the normalized time
evolved electron neutrino flavour state |v.(t)) in qutrit basis, parametrized by three different

mixing angle 6, ¢, n and with two arbitrary phases {; and & (0 < 0,0, < 3;0 < §1,§ < 27)

is
Ve (0, 6,1, 1, &) = €1 CyCy 1) + €2 (=SyC,y — CpSpSy) 12) + (SoS, — CaSsC:y) 3) . (6.51)
The 3 x 3 density matrix of the state |v.(0, ¢,7n,&1,&)) is

Poxs = Ve (0, 0,m, &1, &) (Ve(0, 9,1, 61, &)l (6.52)

which, in matrix form, is

c3cs —e"1827€1)CyuCy (SgCy + CpS4Sy) ei€1CyCy(SgS, — C4CyCh)
= | —elé2=¢1)cyC,(S4Cy + CyS4Sy) (SeCy + CpS4Sy)? —el€2(8,C,) + CpS45,)(SpSy — CeCyCh) | -
e7181CCy(SpSy — CoC,Ch) —ei€2(8)C,, + C4S;,S,)(SeSy — CyCy,Ch) (S9Sy — CoC»Cyy)2

The density matrix p, 4 satisfies the relation (pS,5)" = (p5.4)? = p5.4; and Tr(ps,4) = 1.
The density matrix for the time evolved electron flavour neutrino state |v.(6, ¢, 1, &1, &2)) can

now be cast into the form

s = 1006, 0,m,€,60)) (06, 6,m,61,60)| = (T + V325, (6.53)
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The unit vector (7.7 = 1), in the Euclidean eight dimensional space R® is
fz(G, (b, n, 51, 152) = nlél —+ ngéz + TL3€A3 + TL4é4 + Tl5é5 + n6éﬁ + n7é7 + ngég. (654)

Using the density matrix form (p§,5) of Eq.(6.52) in Eq.(6.44), the components of the unit
vector (0, ¢,n, &1, &) can be obtained as:

= —V/3CyC4(SyCy + S48, ) Cos(Ey — £1);
ny = —V3CCy(SyC, + CpSyS,)Sin(&y — &1);

3
ng = g[CgC’; - (S@Cn + C@S¢Sn)2];

ng = \/§CGC¢( 9.5y — CpCyC,)Coséy;
ns = —V3CyCy(SpS, — CyCyC,)Sinky;
ne = —V'3(SsC,y + CpSyS,, )(S — CyCyC,) Costy;
n7 = V3(SsC,y + C9S45,)(SsS, — CoCyC,)Sinéy;
ms = 5 CR03+ (S0C, + CoS,5,) 2(59577 — CoCuCy)?) (6.55)

The result shows that the time evolved electron flavour neutrino state lies on the S7 sphere
in the eight dimensional real vector spaces. Not all the operators on the unit-sphere are pure
state, so the star product condition 7 x 7 = 7 (see Eq.) imposes three constraints on
the unit vector (6, ¢, 7, &1, &) (see Eq.(6.54)) and therefore reduces the number of arbitrary
parameters for the neutrino states. The three constraints give us three orthonormal compo-

nents of 1(6, ¢,n,&1,&). In the following Table.(6.1]), we list the three constraints and their
corresponding orthonormal unit vectors.

S.No.| Constraints Corresponding n
1. ngb:(),nzg,flandfz ﬁlzTgég*F%ég
are arbitrary
2. [0=7/2,0=n=0,& and | g = — L3¢5 + Lég
&y are arbitrary
3. 9:¢:77:7r/2,§1and§2 ﬁgz—ég
are arbitrary

Table 6.1: The three constraints coming from star product condition fixn = f (see Eq.(6.43))
and their corresponding orthonormal unit vectors.
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These orthonormal states also satisfies the condition [205]

1
| <O > =tr(pp) = (1 +20.0),
2
0<tr(pp) <1<=0<Cos'(ni) < ?ﬂ (6.56)
We find that the angle formed between any two unit vectors (ny, g, 1i3) is %”, since

Cos™!(ny.ng) = Cos™(y.ig) = Cos™*(ng.ng) = Cos™'(5H) = 2. Identifying the three or-
thonormal basis of qutrit as the mass eigenstates of neutrinos (see Eq.), the Eq.
shows that the pure state |v.(0, ¢, 1, &1, &) in an orthonormal basis (|v4), |v2), |v3)) has unit
vectors (11, 1y, 13) that lie in a plane at the vertices of an equilateral triangle which we
term as a “qutrit triangle”. If one takes the three canonical basis vectors of H? as usual, the

three vertices of an equilateral triangle are

V31

(n3,ng)a = (7, 5) — (1,0,0)" = [1) = [11); (6.57)
(sl = (220 0.1.07 = ) = ) (6.5
(n3,ng)e = (0, —1) — (0,0,1)" =[3) = |15); (6.59)

which are identified with the generalized W-states of neutrinos that we have discussed in
Chapter [3] Thus, we generalize the concept of tri-partite mode entanglement by considering

neutrinos as qutrits.

The diagonal density matrix in the orthonormal basis is the triangle operator, or interior
[47,)208]. We map the neutrino state density matrix p§, ; of SU(3) space directly to the A3
and g basis (two diagonal Gell-Mann matrices) to construct a mixed state density matrix
Pg3x3)- Thus, the density matrix p§, 3 of Eq. is now reduced to a mixed state as

1 1+ \/§n3 + ng 0 0
Piex3) = 5 (I + V3(nahs + ngg)) = = 0 1—V3ns+ns 0 (6.60)
3 3 0 0 1—2n
- 8

where 1, = %(1+\/§n3+n8),3}2 = %(1—\/§n3+n8), and x5 = %(1—2718) are three eigenvalues
of pf3x3) in terms of ns and ng. The value of ng and ng are given in Eq.(6.55). We calculate
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Figure 6.1: In Fig.(a) the equi-mixing curves of E(pj) in the n3 and ng plane is shown using
the current experimental bounds of the 3¢ range of neutrino parameters [197]. Fig.(b) shows
the equi-mixing curves of F(pj) in the ng and ng plane inside the qutrit triangle.
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Figure 6.2: The equi-mixing curves of E(p5) is shown in the ns and ng plane when 6 and 7
are vary from 0 to 7/2.

the entropy of mixing of the mixed state p§(3x3) by using the formula [208]:

E(pgsxs)) = —x1logs(x1) — walogs(wa) — xslogs(xs). (6.61)
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In Fig.(6.1) (Fig.(a) and Fig.(b)), we plot the equi-mixing curves of E(p5) in the nj and
ng plane. We vary 6 = 015 and n = 693 over 3o range of current experimental bounds [197],
we find that neutrinos are inside qutrit triangle for the range of entropy of mixing E(p5)
approximately between 0.62 to 0.74. In Fig. we vary 6 and 7 from 0 to 7/2, and we see
that this put the constraints on 615 and 053 to be greater than 23 degrees for physical result.

Furthermore, the SU(2) Poincaré sphere representation for two-flavour neutrino oscillations

can be deduced from the three-flavour Poincaré sphere in SU(3) by imposing the conditions

tan923 tcm912 == sin@lg. (662)

In the limit when the mixing between 2 and 3 (49 degrees), and 1 and 2 (33.44 degrees)
is greater than the mixing between 1 and 3, 613 ~ 0 (8.57 degrees, Sinf3 ~ 0.15). We set
013 ~ 0, so that the Eq.(6.51)) |v.(0, ¢,n,&1,&)) can be reduced to

e cosh -
|ve(0,61,6)) = | —e®2sinf | (0<6 < 5 0<&,8 < 2m). (6.63)
0

We calculate the density matrix p§.5 = [ve(0, &1, &) (Ve(0, &1, &2)]| of the above reduced state
and use it in Eq.(6.44]). We find that the unit vector n in eight-dimensional real vector space

has now reduces to only four non-vanishing components

1
ny = —?5@'7129605(52 —&1); ng= \?sin%sz’n({g —&1); ng= ?cos%; ng = 5,(6.64)

else all are zero i.e, ngy = n5 = ng = ny = 0. Hence, when there is a hierarchy of mixing
between the three states 1, 2 and 3 with the third state almost decoupled (small mixing
angle), we retrieve the SU(2) Poincaré sphere from the SU(3) Poincaré sphere.

So far, we have considered the Poincare’ sphere representation of a time evolved electron-
neutrino flavour state. For completeness, we give the Poincare’ sphere representation of a
time evolved muon-neutrino flavour state. The state |v,(¢)) (see Eq.(6.49)) parametrized by
0,p,1n, &1, & in the qutrit basis is

|Vu(07 ¢7 1, 51’ 52» =% S(?Ofb |1> + e’ (09077 - SGS¢S77) |2> + <_09577 - SHS¢O77) |3>)’ (6-65)
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and its corresponding density matrix p§. 5 = |1,(0, ¢, 1, &1,62)) (Vu(0, 6,1, &1, 62)| 1s

szc? e 1(6281)5,C, (CyS,) — S4S4Sy) e!$15,C,(~CyS, — S4S4Sy)
Phyg = | el62781)5,Cy(CyS, — S4S,4Sy) (CoSy — SeS4Sy)2 €62 (CyS, — 5pS;,S,)(—CySy — SpS4Sy) | - (6.66)
eT1818,C,(~CySy — S4S4S,) e 1€2(—CyS, — 545,45,)(CpSy — S9S4Sy) (—CSy — S9S,5y)?

The density matrix pf, 5 can be expanded in the Gell-mann basis as
1 -
Phs = 5 (1 +V30'.3), (6.67)

and by using the Eq. in Eq. l} we get the components of the unit vector ﬁ’(@, 6,1, &1,&)

as

nh = V3S5Cy(CpS,y — S9855,)Cos(a — &1);
ny = V/389Cy(CoS,y — SpS4Sy)Sin(&r — &1);

. V3
ng = —[5302 — (CoSy — 565659)°;

= V38yC4(—C5S, — SpSyS,)Coséy;

= —\/’56@( CyS, — S9S4S,)Siné;;

ng:f (oes S9S54Sy)(—CoSy — SpSySy,)Cos&y;

n’7— —V/3(CyS, — SpSyS,)(—CyS 595¢>S )Sinéa;
ng = [59% (CyS,y — S5S4Sy)? — ( — 5pS45,)7]. (6.68)

6.4 Two qutrits flavour neutrino states and generalized

concurrence

In general, any two qutrits state is defined as the tensor product of two three dimensional
Hilbert spaces, i.e., H® ® H3. This section represents a two-qutrit density matrix of the neu-
trino system based on Gell-Mann matrix tensor products, with the coefficients constituting

a generalized matrix analogous to a two-qubit Bloch matrix of neutrinos.

According to Eq.(6.45)), Eq.(6.46) and Eq.(6.47)), in the three neutrino system, in general
the time evolved neutrino flavour states in qutrit basis (|1),]2),|3)) for the two different

sub-system A and B can be represented as (A, B = e, i, T) :
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)+ a2 |2) + a3 |3) (6.69)
)+ a5 [2) + a5 3)

|VA(97 ¢7 , 517 52)) =

a1
|VB(97 ¢77]7£17£2))> = ’1
Where, |VA(€7¢a777€17€2)> € Hil and |VB(07¢7777§D§2)> € H%a and |Oz1|2 + |O[2|2 + |a3|2 =1

and |2 + |4 > + |af]? = 1.

We express the two qutrits time evolved flavour neutrino state as |vag(0, ¢, 1,&1,82)) =
lva(0,0,1,61,8)) @ |ve(0,¢,1,£1,&))), and find its the density matrix in the two qutrit
standard basis {|11),]12),[13),]21),|22),]23),|31),132),]33)} € H3 @ H% as

Pg‘fg = P?x:a ® P:?xs = ’VA,B(ea ¢, 1,&1,&2)) <VA,B(97 ®,m,&1,6)|

o w0} mad)  (lofP o’ ooy
= | ) |l aal | @ | aha']  |ab]? abhads | = (- )exo (6.70)
aza; asas  fogl? I

Where, p§4><3 = |VA(97¢777a517§2)> <VA(0>¢J77€17§2)| and p3B><3 = |VB(07¢7777€17€2)> <VB(97¢7777£17§2)|

*

are density matrix of two sub-systems A and B, respectively. Also, af, o, af and o/, /5, o/

are complex cojugate of vy, a9, a3 and of, o, o, respectively.

Alternatively, the density matrix in Eq.(6.70) is uniquely expanded as
1 g 1 —
pite = (G + VB.XY) @ (S(1 + V3l X7

8
1 - - 3
. §(I®I+\/§>\A.ﬁ®l+\/§f®)\3ﬁ’+§ D et @A), (6.71)

ij=1

The (real) expansion coefficients in Eq.(6.71]) are given by

ni =5 (PPN @ 1)
V3
3
Cij = ét’/’(pAB)\i X )\j) (672)

: ~ A1 . A B
where n; and n; are components of unit vector 7 and 7’ of the two subsytems: p3, 5 and p3 4
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and i,7 = 1,...,8. The coefficients ¢;; form a 8 x 8 correlation matrix R.

The two qutrit density matrix shown in Eq.(6.71)) can be also cast into the form as

1 1 1
p9A>j<B9 = p§4><3 ® psBxs = (gca)‘a) ® (gcﬁ)‘ﬂ) = §Ca,8/\a ® Ag, (6.73)
where the expansion coefficients are given by
9
Cap = Ztr(péfg)\a ® Ag). (6.74)

a, 8 = 0,...,8 and normalization requires that coo = 3. Thus, Eq.(6.74) form a generalized
matrix GM which is split into four components: a scalar of %, two eight-dimensional vectors,

and a 8 x 8 correlation matrix R such that

3
B Cor eee-- Cos
Cio | C11 --.-- C18
GM = : D o, (6.75)
Cgo | €81  ----- Css

where n; = ¢;p and n; = co; (4, =1, ..., 8) are the components of local unit Bloch vectors n
and 7/, respectively of the two single qutrit sub-systems (p3, 5 and pZ ), ¢;; (4,7 = 1,...,8) are
the matrix elements of correlation matrix R. Therefore, according to the above Eq.,
all possible combination of neutrinos two qutrits density matrix like p§sg9 = p5.3 @ P53,
Poxo = Pixs ® Paxa: Phko = Paxa @ Phuss Poxo = Phus ® Phys, etc., resembles a product or

separable state.

In general, the entanglement measure generalized concurrence for the two qutrits mixed

state density matrix pgwg is defined as [201]

9
Cs(poxo) = maz{0,2im — Y _ i}, (6.76)
i=1

where the p; (with i=1,2,...,9) are the square roots of the eigenvalues of the non-Hermitian

matrix poxgPoxg in decreasing order. pgw.g is the spin-flip density matrix

Poxy = (03 ® O3)p*g,9(03 ® Os), (6.77)
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Figure 6.3: The violet band shows the v, concurrence C'(p°(t)) (Red, solid line) in the bi-
partite qubit system and the pink band shows the generalized concurrence C'g,(p‘}gX 9) (Blue,

dash dotted line) in the bi-partite qutrit system. Both entanglement measures are compared
with the green band which shows the v, probability P._,. (Black, dash dotted line) and with
the orange band which shows the P,_,, probability (Green, dashed line), using the current
experimental bounds of the 3¢ range of neutrino parameters .

with p*g,o being the complex conjugate of pgyx9 and Os is the transformation matrix for

qutrits

Os=14i 0 —il. (6.78)

Here, O3 ® O3 is analogous to the o, ® o, in the two qubit system (see Eq.(2.34])). We
find that the generalized concurrence for possible combination of two qutrits product state

density matrix is zero i.e., C3(p§sqe) = Cs(porg) = C3(phtg) = Cs(phsng) = ... = 0.

Furthermore, to investigate two qutrits entanglement in neutrino oscillations, we study
two flavour neutrino oscillations in the bi-partite qutrit system and quantify the generalized
concurrence. We map the neutrino flavour state at t=0 to bi-partite qutrit states as |v.) =
1) ® |2) and |v,) = |2) ® |1). Then using Eq.(6.32), the normalized time evolved electron



Ch-6: Neutrinos as Qubits and Qutrits 108

flavour neutrino state in linear superposition of bi-partite qutrit neutrino flavour basis is
ve(0,9)); = (cos®0 + sin*0e ") |12) + sinfcosf(1 — e ?)|21) , (6.79)

and its density matrix in the two qutrit standard basis {|11),[12),]13),]21),|22),|23),
31),132),[33)} is

0 0 0 0 00000
0 Jai> 0 aibf 0 0 0 0 0O
00 0 0 000O0GO0O
0 aby O [byf> 0 0 0 0 0
Doy = 11e(0,0)) ;s (we(0.0)/ =0 0 0 0 00000 (6.80)
00 0 0 00000
0 0 0 0 000O0GO0O
0 0 0 0 000O0GO0O
0 0 0 0 000O0GO0O

where, a; = (cos*0+ sin?0e~"?), and b; = sinfcosf(1 —e~*®) are the coefficients of bi-partite
qutrit flavor basis |v.) and |v,), respectively, and af, b5 are complex conjugate of a; and by,

respectively.

Using Eq.(6.80) in Eq.(6.77), we construct the spin-flip density matrix pNjch o = (O3 ®

03)p}g,.4(O3®03). We find that one of the square root of eigenvalues of the matrix p¢ 0%, o
is non-zero, i.e., py = 4cosfsinf(cos*0 — sin*0)sin?2. Thus using Eq.(6.76)), the generalized
concurrence of the time evolved electron flavour neutrino state |v.(6, ¢)) s in the bi-partite

qutrit system is quantified as

Cs3(0%g,) = 4cosBsind(cos*0 — sin29)sm2§. (6.81)

In Fig., the generalized concurrence C’?)(pjech 9) (see Eq. 1} of the time evolved
electron flavour neutrino state in the bi-partite qutrit system is compared with the con-

currence C(p°(t)) (see Eq.(5.9)) in the bi-partite qubit system. Thus, the nonzero value of
the generalized concurrence (C3(p%,, ,) # 0) shows that in the two neutrino systems, the
time evolved neutrino flavour state is a bi-partite qutrit entangled state. Therefore, the plot

results warrant a study of two qutrits entanglement in the three-flavour neutrino oscillation.



Chapter 7

Conclusion and Future work

7.1 Experimental consideration

The study presented in this thesis naturally prompts the question: What is a measurable
characteristic experimental signal for genuine tri-partite entanglement in Neutrino interac-
tions? Recently, the Daya-Bay experiment has analyzed the wave-packet model of neutrino
oscillations to study quantum entanglement in neutrino systems. The coherent evolution of
the electron neutrino state and subsequent decoherence has been the subject of a recent ex-
perimental paper [29]. Quantum coherence in experimentally observed neutrino oscillations,
using the tools of quantum resource theory, has produced results for the longest distance over
which quantumness has been experimentally determined for quantum particles other than
photon [190]. Different neutrino oscillation experiments, including Daya-Bay, KamLAND,
Minos, and T2K, have assessed Quantum coherence over large length scales. Coherence is re-
lated to the concurrence: bi-partite entanglement and tri-partite entanglement. In Fig.(7.1)
and Fig., we show the bi-partite entanglement measure- concurrence (see Eq.) vary
with ratio L/E changing for the short-range v. — v, and long-range v, — v,, survival prob-
abilities using the Daya Bay and Minos experimental data, respectively [211,1212]. Both
experiments exhibited good agreement with the theoretical prediction. We compare the re-
sults of bi-partite entanglement with the experiment. We extend our calculation further to
study both tri-partite entanglement and wave-packet approach in experimentally observed
neutrino oscillations. Thus, it is of interest for future experiments to justify three-way en-
tanglement in neutrino oscillations and see how to explore it further. Since quantum optical

systems, unlike neutrino oscillations experiments, our work is interested in further exploring

109



Ch-7: Conclusion and Future work 110

10 =-=mm

Probablity\Concurrence
o
IS
————

Probablity\Concurrence

0.2+

--- ee

0.0 4
0.0 —C

4 T T T T (I) 260 4»60 G(I)O 860 1060
[} 5000 10000 15000 20000 25000 30000 LE(km/GeV)
L/E(km/GeV)

Figure 7.1: The blue band shows the short range v, disappearance probability (Black, dashed
line) and the orange band shows concurrence (Red, solid line) in two flavour neutrino oscil-
lations, using the Daya Bay experimental data [197}211].

1.0+

o
]
|

o
o
|

0.4

Probablity\Concurrence

o
[N}
L

——m—=—m—— oo

0.0

=
o
T

10° ul)l 10?

L/E(km/GeV)
Figure 7.2: The blue band represents the long-range survival probability v, — v, (Black,
dashed line) and it compared with orange band which gives concurrence (Red, solid line) in
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the characteristics of neutrino oscillation quantum entanglement.

7.2 Conclusion

In the introductory Chapter (1 we briefly reviewed the phenomenon of neutrino oscillations
and discussed the derivation of neutrino flavour transition probabilities using the plane wave
and wave packet picture. In Chapter [2) we have studied different types of entangled quantum
systems, such as the two-qubit Bell’s state and the three-qubit GHZ and W states, which
are valuable resources for quantum information processing. We have also outlined various

entanglement measures of bi-partite and tri-partite quantum systems.

In Chapter [3] we explored various bi-partite and tri-partite entanglement measures for neu-
trino flavour oscillations and compared our results with the two-qubit and three-qubit states
used in quantum information theory. In the bi-partite quantum system, all quantum correla-
tions like tangle, concurrence, and negativity are quantified in terms of neutrino survival and
disappearance probabilities and coincide with the linear entropy (a lower approximation to
the von Neumann entropy). The entanglement measures show that the |v.(t)) is a bi-partite
entangled pure state. We find that more substantial mixing leads to more entanglement.
For the bi-partite two v system, we see a laboratory analogue of a beam splitter placed at
an angle representing the two neutrino systems. Neutrino mixing is akin to entanglement
swapping in quantum optics systems. Moreover, we quantify tri-partite entanglement in the
three neutrino systems in two ways: (a) in terms of measures of bi-partite entanglement and
(b) genuine tri-partite entanglement. Both are related to neutrino transition probabilities.
The three flavour neutrino oscillation satisfies the CKW inequality criterion and exhibits
the property of the class of W-states, which are one of two different genuinely entangled
tri-partite states. We can mimic the three neutrino systems by using a collection of beam
splitters. This analogy helps study neutrino entanglement and understand new phenomena

in quantum information theory.

In Chapter ] we described quantum computing techniques to simulate the Bell’s state,
the GHZ-state and the W-state on an IBM quantum cloud computer. We have proposed
quantum circuit concurrence for the two-qubit Bell’s state and shown its simulation on IBMQ

Processors.

In Chapter 5, we find that in the bi-partite two neutrino system, the [;- norm of coherence
and concurrence coincide. We use this information to study quantum coherence in the

neutrino system based on the IBMQ platform. We have constructed a Bell-like superposition
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quantum computer circuit for the time evolved electron and muon flavour neutrino state using
the Universal quantum gate U(3), S-gate, Controlled-NOT and Pauli (X) gate. Using the
spin-flipped o, ® 0, gate and Hadamard gate, we outline the simulation of concurrence in
the two neutrino systems for the time evolved electron flavour neutrino state on a quantum
simulator and quantum hardware of IBM. We discuss the implications of implementing bi-
partite entanglement in the two neutrino systems in a vacuum and the uniform matter
background for the time evolved muon flavour neutrino state on IBMQ processors. The
simulation results strongly suggested that the matter effects do not decohere the neutrinos
much. In subsequent studies, we shall simulate the coherence of neutrinos propagating in
a multi-layer medium with uniform or varying matter background on the IBMQ platform
[213]. In future, the quantum algorithm presented in this chapter could also be helpful to
study the matter effect with non-standard interaction (NSI) [214]. Moreover, the study of
coherence distribution in the neutrino system using the quantum circuit of entanglement,
which measures concurrence, would be of great interest to explore further on the IBMQ
platform [215]. We hope that using quantum computing as a tool for future work in this

could be helpful to learn more about this topic.

In general, the class of W state violates Mermin’s inequality [187] and this result is sim-
ulated on the IBMQ processor in ref. [216,217]. In future, we shall construct the quantum
circuit for the W state of neutrinos and show violation of Mermin’s inequalities for three
particle neutrino states on the IBMQ platform. Along these lines, we predict that we can
execute a circuit to simulate tri-partite entanglement in neutrino oscillations on a quantum

computer.

In chapter [, we use the Pauli matrices to characterize the two-flavour neutrino oscillations
on the Poincaré sphere S? = SU(2)/U(1). The Poincaré vector of the time evolved flavour
neutrino state lies on the unit sphere in the three-dimensional real vector space. This result

helps us to characterize the two neutrino systems as qubits.

In the two-qubit systems, we have shown the Poincaré sphere representation of two neutrino
system. We constructed a two-qubit density matrix of neutrinos based on the Dirac matrices.
The coefficients of the Dirac matrices form the Bloch matrix, which shows that the two-qubit
neutrino state is separable. We map the mass eigenstates of neutrinos directly to the bi-
partite qubit system. The resultant Bloch matrix construction shows that the bi-partite

qubit neutrino state is entangled.

We use the Gell-Mann matrices to construct the Poincaré sphere ST = SU(3)/U(2) in the

three-flavour neutrino oscillation. The SU(3) result allows us to identify the three neutrino
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system as qutrits which generalize the concept of entangled tri-partite states of neutrinos.
We calculate the entropy of mixing E(p5) of the time evolved flavour neutrino mixed state
in a single qutrit system using the current experimental bound on the neutrino oscillation

parameters, and we find that the equi-mixing curves of E(p9) lie inside the qutrit triangle.

In the two-qutrit system, constructing a generalized Poincaré sphere using the Gell-Mann
matrix tensor products led to the generalized Bloch matrix in the Bloch vector space of the
three neutrino system. The quantification of the generalized concurrence in the two neutrino
system implies that the two flavour neutrino oscillations are bi-partite qutrit entangled states.
We have compared the generalized concurrence of the bi-partite qutrit neutrinos that of
the bi-partite qubit neutrino. Both measures provide a qualitatively non zero amount of
information in the two neutrino system. In a subsequent study, we shall examine two qutrit

entanglement in the three neutrino system [21§].

A quantum computer has done the quantum simulation of bi-partite qubit entanglement
of two flavour neutrino oscillations. New studies claim that qutrits offer a promising path
towards extending the frontier of quantum computers [219220]. Our results lead us to a new
direction of ternary computing using qutrits. We hope the results of this work will be helpful
to explore neutrino oscillations on a qutrit quantum computer. Thus, in brief, neutrinos can

be considered potential candidates for quantum information and quantum computing task.

7.3 Future work

Neutrino oscillations are a very subtle quantum phenomenon [221]. In the introductory
Chapter (1| two assumptions were made when deriving the oscillation probability formula.
The first was the plane wave approximation for neutrino wave functions; the second was that
all the mass eigenstates have equal momentum and energy. Although they allow reaching the
final result quickly and straightforwardly, there is no reason for these to hold in general. For
pion decay, these requirements are not satisfied. Conceptual problems associated with such
conditions are problematic. A plane wave describes the same momentum of neutrinos with
a flat distribution probability found in any point of the space, which disagrees with the need
for well-defined production and detection regions for the oscillations to occur. To handle
such problems, a wave packet approach is mandatory, and a careful study of the coherence

properties of the wave packet.

In Sec.([1.3)), we have discussed about the coherence condition and coherence length (LE°")

when the propagating neutrinos considered as a superposition of three Gaussian wave pack-
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Figure 7.3: The Coherence length L¢°" (Km) vs Energy (MeV) graph is shown using the

wave packet sizes o, from ref [197,[222].

ets, one for each mass eigenstate and where each mass eignstate have different momentum.
The expression of neutrino flavour transition probabilities using the wave packet picture is
given in Eq.(1.75)) which can be re-written as

Py X Z exp(—(L/Lﬁfh)Q) x Osc. terms,
ik

422
Coh
where, L;”" = Am?k

o (7.1)

In Fig.(7.3), we estimate the propagation distance L¢°" at which the wave packets becomes
separated. We use the wave packet sizes o, from ref. [222]. We observed from Fig.(7.3)
that solar neutrino and supernova neutrino (SN) sources is decoherence relevant. In general,

supernova neutrinos arrives at earth as an incoherent superposition of mass eigenstates [213].

Using the PMNS matrix Eq. 1} in the two neutrino system as U(f) = <g€1 562> =
nl n2

cosf  sind S . .
(—sin@ cos 9), and putting it in Eq., we find an expression for the probability for

observing a vy as 1., by assuming neutrinos do not travel through significant amounts of
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Earth matter prior to detection as

Py = | < Velva > P =) < velUnzlva > P = [Uea. (7.2)

«

Moreover, this probability expression can be modify if neutrinos travel the Earth before being
detected. The flavour-to-flavour transition matrix for the evolution of neutrinos through layer

with effective 6, and Am?, is

Am? L cost stnb
= i ;. Tmm i — m m
U = U, diag[exp(i Y5 ), Ul U, (—sinﬁm cosem) . (7.3)
We construct simple Earth with inner core as
urerth — ymyeu™. (7.4)

Therefore, the probability for observing a 1, as v, become

Pl/24>l/e = | < V€|l/2 > ‘2 = ‘ZZ < U€’u5élrthU52’Va > |2 = ‘UEQZ/{eEeaTth‘i‘UﬂQueE/;arth’Q, (75)
a B

where in the above expression 14 need to rotate to flavour basis before plugging into U/Fth.
This probability expression is useful for studying neutrinos crossing the shock waves in
supernova and for neutrinos propagating inside the earth in a multi-layer medium. Quantum
studies of neutrino oscillations has been done on quantum computer in chapter [6. Recently,
the complete protocol for quantum simulation of oscillations between 2" arbitrarily mixed
neutrinos with arbitrary masses, including CP-violation, has been examined on an n-qubit
quantum computer [223]. Thus, it would be interesting to explore coherence/decoherence

properties of supernova neutrinos using quantum computers in future.
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