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Abstract

This thesis focuses on the interconnection between two rapidly advancing fields, neutrino
oscillations in high energy physics and quantum information theory. Quantum entanglement
and coherence are two properties emerging from the rule of quantum superposition. Since
neutrinos are weakly interacting particles in superposition states, they should be entangled.
We map the neutrino states to bipartite and tripartite states utilized in quantum optics.
We use the entanglement measures of concurrence, tangle, linear entropy, negativity, three-
tangle, and three-π to characterize the time evolved flavour superposition neutrino states.
We find that the correlations exhibited by neutrino oscillations in the tripartite system
resemble the W-states, making them tangible assets for quantum information tasks. In the
quantum computing language, superposition states are like qubits, which are fundamental
building blocks of quantum computers. We map two flavour neutrino eigenstates to qubits.
We prepare a quantum computer circuit to simulate bipartite flavour mode entanglement
in the two neutrino systems on the IBM quantum processor. Furthermore, we construct
the Poincaré sphere representation for two and three-flavour neutrino states using Pauli and
Gell-Mann matrices. We generalize the concept of tripartite mode flavour entanglement in
the three-neutrino system by considering them as qutrits. These quantum studies enable us
to model neutrinos on quantum computers. The potential viability of neutrinos as quantum
information resources is discussed.
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Ũµµ(t) |01〉µ. Here, two input qubits 1 and 2 are initiated to |0〉. . . . . . . . 77

5.3 The circuit represent the concurrence measurement of νe disappearance in
two-flavour neutrino oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Concurrence circuit for the two qubit νe disappearance bipartite state on the
IBMQ platform [44,197]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 The concurrence varies with time at the IBMQ computer for an initial elec-
tron neutrino flavour state. The concurrence information is shown Histogram
(probabilities in percentage) plot on quantum simulator and IBM quantum
hardware [44,197]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 (a)The time evolution of the concurrence (Red line) compared to the disap-
pearance Pd (Green line) and survival Ps (Black Dashed line) probabilities of
|νµ(t)〉 in the vacuum A=0 [197]. (b) The time evolution of the concurrence
(Red line) compared to the disappearance Pd (Green line) and survival Ps
(Black Dashed line) probabilities of |νµ(t)〉 in the constant effective matter
potential A 6= 0 [197]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Implementation of concurrence circuit for |νµ(t)〉 on IBMQ processor [44,197]. 83

5.8 The concurrence varies with time at the IBMQ computer for an initial muon
neutrino flavour state in vaccum (A=0). The concurrence information is
shown through Histogram (probabilities in percentage) plot on quantum sim-
ulator and IBM quantum hardware [44,197]. . . . . . . . . . . . . . . . . . . 83

5.9 The concurrence varies with time at the IBMQ computer for an initial muon
neutrino flavour state in the uniform matter background (A 6=0) is shown on
quantum simulator and IBM quantum hardware [44,197]. . . . . . . . . . . 84

6.1 In Fig.(a) the equi-mixing curves of E(ρed) in the n3 and n8 plane is shown using
the current experimental bounds of the 3σ range of neutrino parameters [197].
Fig.(b) shows the equi-mixing curves of E(ρed) in the n3 and n8 plane inside
the qutrit triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 The equi-mixing curves of E(ρed) is shown in the n3 and n8 plane when θ and
η are vary from 0 to π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



LIST OF FIGURES xvi

6.3 The violet band shows the νe concurrence C(ρe(t)) (Red, solid line) in the
bi-partite qubit system and the pink band shows the generalized concurrence
C3(ρef 9×9

) (Blue, dash dotted line) in the bi-partite qutrit system. Both en-
tanglement measures are compared with the green band which shows the νe
probability Pe→e (Black, dash dotted line) and with the orange band which
shows the Pe→µ probability (Green, dashed line), using the current experi-
mental bounds of the 3σ range of neutrino parameters [197]. . . . . . . . . . 107

7.1 The blue band shows the short range νe disappearance probability (Black,
dashed line) and the orange band shows concurrence (Red, solid line) in two
flavour neutrino oscillations, using the Daya Bay experimental data [197,211]. 110

7.2 The blue band represents the long-range survival probability νµ → νµ (Black,
dashed line) and it compared with orange band which gives concurrence (Red,
solid line) in two flavour neutrino oscillations, using the Minos experimental
data [197,212]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 The Coherence length LCoh (Km) vs Energy (MeV) graph is shown using the
wave packet sizes σx from ref [197,222]. . . . . . . . . . . . . . . . . . . . . . 114



List of Tables

1.1 The neutrino mixing parameters in normal ordering (m1 < m2 < m3) from
the NuFIT data [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 The truth table of two qubit Bell states. . . . . . . . . . . . . . . . . . . . . 63

6.1 The three constraints coming from star product condition n̂ ? n̂ = n̂ (see
Eq.(6.43)) and their corresponding orthonormal unit vectors. . . . . . . . . . 100

xvii



Chapter 1

Introduction to neutrino oscillations

1.1 Introduction

Despite being the most abundant fermion in the universe, the existence of the neutrino

was postulated by Pauli in 1930 [1]. The investigation of the β-decay process was the first

compelling evidence for the neutrino. The β-decay process is of two types: β− and β+-decay,

in β−-decay1 neutron (n) gets converted into a proton (p), and in that process, an electron

(e−) emitted from the fixed energy of a nucleus, i.e., n → p + e−. Before 1930, this theory

troubled physicists for two main reasons: first, the energy spectrum of the emitted electrons

is continuous in comparison to the spectrum of α, and γ radiation [2–7]. Second, because

both parent and daughter nuclei have either integral spin or half-integer spin, a single e−

of spin 1
2

is inconsistent with angular momentum conservation in β−-decay. In 1930, Pauli

made a hypothesis that solved these difficulties [8]. He proposed that an electrically neutral

particle of spin -1
2

with negligible mass is created and emitted at the same time as the

electron in β−-decay. Thus, the actual decay process of β− is n→ p+ e− + ν̄e [8]. It means

that only a fraction of maximum kinetic energy is taken by e− and the rest of the kinetic

energy is used by antineutrino (ν̄e) in the decay process. Since the neutron was found in

1932 by J.Chadwick [6], Fermi used the name “neutrino” (little neutron) and later proposed

the Fermi hypothesis of beta decay [9]. The finding of an electron type antineutrino was

done by Reines and Cowan in 1956 [10].

In 1957, the first quantum mechanical description of neutrino oscillations was by B. Pon-

1Note that an isolated neutron is unstable, and so it decays easily, unlike an isolated proton. A proton
transforms to a neutron within a nucleus via the β+ -decay process.

1



Ch-1: Introduction to neutrino oscillations 2

tecorvo [11,12] in which he used an analogy of Kaon oscillations suggested by M.Gell-Mann

and A.Pais [13]. In 1959, Pontecorvo proposed the muon neutrino [14] and later, in 1962,

the discovery of muon neutrinos were made in the Brookhaven experiment [15]. Neutrinos

are produced from a charged lepton or together with a charged antilepton in charged cur-

rent weak interaction processes. The leptonic charge current generates a superposition of

massive neutrinos termed as “flavour state”. Oscillations between different flavour states are

possible if neutrinos are massive. In 1962, a model describing the mixing of different mas-

sive neutrinos in a flavour state was proposed [16]. Pontecorvo in 1967 predicted the Solar

Neutrino Problem as a consequence of νe → νµ or νe → ντ transitions [18] before Homestake

experiment [17]. Later, in 1969 Gribov and Pontecorvo discussed solar neutrino oscillations

due to neutrino mixing [19]. In the year 2000, tau neutrino ντ was discovered in DONUT

experiment [20]. Finally, the Super-Kamiokande Observatory [21–24] and the Sudbury Neu-

trino Observatory [25, 26] discovered neutrino oscillations and neutrino mass leading to the

2015 Nobel Prize for Physics. Today, we know neutrinos come in three flavours in the lepton

family, electron neutrinos (νe), muon neutrinos (νµ) and tau neutrinos (ντ ). One strange

aspect of neutrinos is that they do not pick just one flavour and stick to it. They oscillate

between all three. With time, the probability of finding a given neutrino flavour in another

flavour state can be seen experimentally in many ongoing running observatories like CERN,

Fermilab and Japan, in particular NOvA and T2K.

In most theories, neutrino oscillation probabilities are derived based on the plane wave

approximation, which is strictly valid when the neutrino mass eigenstates composing a given

flavour eigenstate either have the same momentum or the same energy [27]. A significant

degree of coherence at great lengths is necessary to sustain the oscillations. Given the

spatial localisation of neutrinos, a more general wave-packet description should be more ap-

propriate for a complete understanding of neutrino oscillations2. Although the plane-wave

treatment is a good approximation for neutrino flavour transitions, the wave-packet deco-

herence and dispersion effects could still be minor corrections to oscillation parameters. In

1981, Kayser discussed quantum mechanical aspects of neutrino oscillations and emphasised

the wave packet treatment [28]. However, detailed calculations and experiments (Daya Bay)

have shown that the plane wave description fits closely with observations [29, 30]. The fact

that neutrino oscillations are coherent over large space-time scales warrants a study of the

entanglement properties of neutrinos. Thus, it is intellectually appealing to evaluate how en-

tangled a neutrino system is quantitative. The entanglement of neutrinos, its relation to the

mixing probabilities and the somewhat futuristic notion of “Neutrino Quantum Computers”

2The theory of neutrino oscillations using the quantum field theoretical approach is not discussed in this
thesis [31–34].
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are the impetus for this study. The philosophy is that once we understand our actual limits,

we can be free to investigate our imagination.

There are still some unsolved issues, like whether there exist different quantifiers of entan-

glement to measure quantum entanglement. How do we measure them in the phenomenon of

neutrino oscillations? Can we simulate such entanglement measures on a quantum computer?

Is there any possibility to investigate neutrino oscillations beyond the qubit dimension? An-

swers to these questions will play an essential role in exploiting neutrinos as a resource in

quantum information processing. In this thesis, we examine these questions by investigating

the quantum nature of neutrinos to study the entanglement of the mass eigenstates, sim-

ulating entangled oscillating neutrinos on the IBM quantum computer, and mapping three

flavour neutrinos to qutrit systems.

In general, we study entanglement with quantum objects called qubits, and a particular

superposition of two-qubit is an example of an entangled state. In quantum optics, the Bell’s

state of two-qubit and the three-qubit GHZ (Greenberger-Horn-Zeilinger) state and W-state

are bi-partite and tri-partite entangled states, respectively [35]. These entangled states have

several applications in quantum information processing [36–41].

The linear superposition state of two flavours of neutrinos is a two-qubit system. Blasone

et al. [42] initiated the study of three-qubit entanglement in three flavour neutrino systems.

Alok et al. [43] quantified entanglement measures such as Bell’s inequalities in oscillation

probabilities. This thesis investigates and quantifies bi-partite and tri-partite entanglement

measures of two and three flavour neutrino oscillations. The bi-partite entanglement re-

sembles the entanglement swapping of a beam splitter in quantum optics. The various

entanglement measures that we calculate are the concurrence, negativity, and three-tangle

for the three neutrino systems. Expressing the monogamy inequality in terms of negativ-

ity leads to a residual entanglement, a signature of genuine tripartite entanglement in the

three neutrino systems. The three neutrino state is similar to a generalised W-state class in

quantum optics. The critical point is that quantification of entanglement measures in terms

of neutrino oscillations probabilities simplifies the use of neutrinos for quantum information

tasks.

In 2016, the IBMQ team designed cloud-based quantum computers, which are made freely

accessible to researchers and scientists online for novel investigations concerning quantum

processing [44]. Qubits are the central building blocks on which quantum computers run [45].

The superconducting-qubit-based quantum processors in quantum computers tackle excep-

tionally significant complex problems which are difficult to address using classical super-
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computers. The quantum computing innovations guarantee reform estimations in numerous

physics, chemistry, and data science spaces. Considering the ongoing advancement in de-

veloping quantum computing facilities dependent on optical and cold-atom techniques, the

algorithm for quantum simulations in the particle physics framework is quickly advancing.

The principle undertaking of the quantum algorithm is to decompose a quantum operator

within the language of quantum gates and circuits acting on qubits. Argüelles and Jones

pioneered the simulation of neutrino oscillations on IBMQ processors [46]. In this thesis,

we discuss the implementation of bi-partite entanglement in the two-neutrino systems in

the vacuum and a uniform matter background on the IBM quantum processor [44]. The

novelty of our work is that we found a way to encode the concurrence measure of entangled

oscillating neutrinos on a quantum computer. The studies show that quantum computers

can simulate the bi-partite entanglement in two flavour neutrinos oscillations.

The application of bipartite entanglement is limited, but entangled states involving more

than two qubits (multipartite entanglement) can establish new protocols for quantum com-

munication. This thesis maps the neutrino states to the qutrit states [47], which generalises

tripartite entanglement in the three-neutrino system.

1.2 Plane-wave approximation

The theory of neutrino oscillations usually use the plane-wave approximation [48–51]. The

three neutrino flavour eigenstates are not neutrino mass eigenstates but a linear superposition

of them given by

|να〉 =
∑
j

U∗αj |νj〉 , (1.1)

where, |να〉 (α = e, µ, τ) are the flavor eigenstates, |νj〉 (j = 1, 2, 3) are the mass eigenstates

and the asterisk (∗) denotes the complex conjugation of Uαj, where Uαj are the elements

of a leptonic mixing matrix called the PMNS (Pontecorvo-Maki-Nakagawa-Sakita) matrix,

characterized by three mixing angles (θ12, θ13, θ23) and a charge conjugation and parity (CP)

violating phase δCP [52, 53].

U(θij, δ) =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 ≡
Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ,

(1.2)
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where, cij = cos θij and sij = sin θij (i, j = 1, 2, 3). Further, orthonormal mass eigenstates

are chosen such that

< νj|νk >= δjk. (1.3)

Thus, |νj〉 are eigenstates of the Hamiltonian (H) with energy eigenvalues Ej

Ej =
√
~p 2 +m2

j , (1.4)

such that

H |νj〉 = Ej |νj〉 . (1.5)

The Schrodinger equation

i
d

dt
|νj(t)〉 = H |νj(t)〉 , (1.6)

implies that the mass eigenstates states evolve as plane waves with time

|νj(t)〉 = e−iEjt |νj〉 . (1.7)

Using the unitary transformation relation

U †U = 1↔ δαβ =
∑
α

U∗αjUαk = δjk, (1.8)

the massive neutrino states can be expressed in flavour states as

|νj〉 =
∑
α

Uαj |να〉 . (1.9)

In the plane wave picture, from Eq.(1.1) and Eq.(1.7) the time evolved flavour neutrino state

is

|να(t)〉 =
∑
j

U∗αje
−iEjt |νj〉 , (1.10)

in which |να(t)〉 refers to the state of the neutrino that started out in flavour να at t=0. Thus,

using Eq.(1.9) in Eq.(1.10), the evolved neutrino flavour state in a coherent superposition of

flavour basis can be written as,

|να(t)〉 =
∑

β=e,µ,τ

(
∑
j

U∗αje
−iEjtUβj) |νβ〉 (1.11)
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where the coefficient of |νβ〉, Ũαβ(t) ≡
∑

j U
∗
αje
−iEjtUβj is the amplitude of transition from

|να〉 to |νβ〉. Consequently, the transition probability | < νβ|να(t) > |2 is then |Ũαβ(t)|2 which

is

Pαβ(t) =
∑
jk

U∗αjUβjUαkU
∗
βke
−i(Ej−Ek)t. (1.12)

Taking the universal constant c = 1, ~ = 1, for ultra-relativistic neutrinos, the dispersion

relation in Eq.(1.4) can be approximated by

Ej ' E +
∆m2

j

2E
. (1.13)

In this case,

Ej − Ek '
∆m2

jk

2E
, (1.14)

where ∆m2
jk ≡ m2

j − m2
k and E = |~P | is the energy, neglecting the mass contribution. In

experiments, the propagation time t is not measured. The known parameter is the distance

L. Since velocity of neutrinos is nearly of light speed, we approximate t = L. The probability

of finding flavour neutrino β = (e, µ, τ) from an initial α neutrino is

Pαβ(L,E) =
∑
j,k

U∗αjUβjUαkU
∗
βke

(−i
∆m2

jkL

2E
). (1.15)

This expression shows that the source-detector distance L, the mass square difference ∆m2
jk

and the neutrino energy E (which varies based on experiments) are the quantities that

determine the phases of neutrino oscillations

Φjk = −
∆m2

jkL

2E
. (1.16)

It is clear that oscillations between different flavours are possible for L > 0 because the

unitary relation

UU † = 1⇔
∑
j

UαjU
∗
βj = δαβ, (1.17)

implies that

Pαβ(L = 0, E) = δαβ. (1.18)
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Sometimes it is convenient to write the transition probability in Eq.(1.15) as

Pαβ(L,E) =
∑
j

|Uαj|2|Uβj|2 + 2Re
∑
j>k

U∗αjUβjUαkU
∗
βke

(−2πi L
Losc
jk

)
, (1.19)

in which we have separated a constant term from the oscillating term and we have defined

the oscillation lengths

Loscjk =
4πE

∆m2
jk

. (1.20)

The oscillation length Loscjk is the length at which the phase generated by ∆m2
jk becomes

2π. Another useful way to write the transition probability in Eq.(1.15) is to separate the

real and the imaginary parts of UβjU
∗
αjU

∗
βkUαk. From the square of the unitary relation in

Eq.(1.17), we obtain

∑
j

|Uαj|2|Uβj|2 = δαβ − 2
∑
j>k

Re[U∗αjUβjUαkU
∗
βk], (1.21)

which allows one to write the transition probability as

Pαβ(L,E) = δαβ − 4
∑
j>k

Re(U∗αjUβjUαkU
∗
βk) sin2

(
∆m2

jk

L

4E

)
+2
∑
j>k

Im(U∗αjUβjUαkU
∗
βk) sin

(
∆m2

jk

L

2E

)
. (1.22)

In the neutrino oscillation experiments, the transition probability of the channel with α 6= β

is the usual disappearance probability (Pd), whereas the transition probability of the channels

with α = β is the survival probability (Ps). The survival probability is

Pαα(L,E) = |Ũαα(t)|2 = 1− 4
∑
j>k

|Uαj |2|Uαk |2 sin2(
∆m2

jkL

4E
). (1.23)

In order to analyze the experimental data of neutrino oscillations, we write the oscillatory

term as

sin2(
∆m2

jkL

4E
) = sin2(1.27

∆m2
jk(eV

2)L(km)

4E(GeV )
). (1.24)

The factor of 1.27 stems from the conversion between the different units. Eq.(1.22) and

Eq.(1.23) is still the general case that applies for any number of generations. The following

subsection derives flavour oscillation probabilities in a vacuum for two and three generations
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of neutrinos.

1.2.1 Two-flavour neutrino oscillations

We consider the oscillation between two flavour neutrinos for e.g., (νe, νµ) in which ν1 and ν2

are mass eigenstates of neutrinos. In this case the PMNS matrix in Eq.(1.2) is a 2x2 unitary

rotation mixing matrix

U(θ) =

(
cosθ sinθ
−sinθ cosθ

)
. (1.25)

Thus, using Eq.(1.1), the unitary matrix U connect flavour state to mass eigenstate as

(
νe
νµ

)
= U∗(θ)

(
ν1

ν2

)
(1.26)

Using Eq.(1.9), the neutrino mass eiegnstates in linear superposition of flavour basis can be

written as

|ν1〉 = cosθ |νe〉+ sinθ |νµ〉 (1.27)

|ν2〉 = −sinθ |νe〉+ cosθ |νµ〉 (1.28)

Using Eq.(1.10), the time evolved neutrino flavour state in a linear superposition of mass

basis can be written as

|νe(t)〉 = cosθe−iE1t |ν1〉 − sinθe−E2t |ν2〉 (1.29)

|νµ(t)〉 = sinθe−iE1t |ν1〉+ cosθe−E2t |ν2〉 (1.30)

Substituting Eq.(1.27) in the Eq.(1.29), the time evolved electron neutrino flavour state in

flavour basis is

|νe(t)〉 = cosθe−iE1t(cosθ |νe〉+ sinθ |νµ〉) +−sinθe−E2t(−sinθ |νe〉+ cosθ |νµ〉,

= (cos2θe−iE1t + sin2θe−iE2t) |νe〉+ sinθcosθ(e−iE1t − e−iE2t) |νµ〉. (1.31)

Since neutrinos are ultra-relativistic particles (t ' L), therefore the standard transition

probabilities are

Pd =< νµ|νe(L)|2 = sin2(2θ)sin2(1.27
∆m2

21(eV 2)L(km)

4E(GeV )
), (α 6= β), (1.32)
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and

Ps =< νe|νe(L)|2 = 1− Pd, (α = β). (1.33)

We can observe from Eq.(1.32) and Eq.(1.33) that the probability of the presence of neutrino

in the state |νµ〉 and |νe〉 is maximal and minimal, respectively, at the distance Losc
2

=
1

1.27
( 2πE

∆m2
21

), where ∆m2
21 = m2

2 − m2
1. The amplitude of the oscillation is determined by

the mixing angle θ, where θ = π
4

corresponds to maximal oscillations. Note that Eq.(1.32)

and Eq.(1.33) does not depend on L and E independently, but only on the ratio L
E

. Using

Eq.(1.6), the evolution equation of the mass eigenstates ν1 and ν2 are

i
d

dt

(
ν1(t)
ν2(t)

)
= H

(
ν1(t)
ν2(t)

)
. (1.34)

Using the approximated expression Eq.(1.13), the Hamiltonian H in diagonal matrix form

can be written as

H =

(
E1 0
0 E2

)
' E +

(
m2

1/2E 0
0 m2

2/2E

)
. (1.35)

Recalling Eq.(1.26), we can rewrite Eq.(1.34) as

i
d

dt

(
νe
νµ

)
= Hvac

(
νe
νµ

)
, (1.36)

where

Hvac = UHU † = E +
m2

1 +m2
2

4E
+

∆m2

4E

(
−cos2θ sin2θ
sin2θ cos2θ

)
, (1.37)

It is a Hamiltonian of flavour eigenstate on a mass basis in a vacuum. In the later section

(see Subsec.(1.2.3)), we use this Hamiltonian to generalise the neutrino oscillation in the

matter.

1.2.2 Three-flavour neutrino oscillations

For simple calculation, we assume the CP conserving case, when the PMNS matrix U is real

i.e., δCP = 0. Thus, Eq.(1.2) become

U(θij) =

 c12c13 s12c13 s13

−s12c23 − c12s13s23 c12c23 − s12s13s23 c13s23

s12s23 − c12s13c23 −c12s23 − s12s13c23 c13c23

 . (1.38)



Ch-1: Introduction to neutrino oscillations 10

In this case the transition probability in Eq.(1.22) i.e, Pαβ is dependent on the three mixing

angles and two independent squared-mass differences which is written as ∆m2
21 and ∆m2

31,

then ∆m2
32 = ∆m2

31 − ∆m2
21. We consider a case where the mass squared differences are

minimal, such that
∆m2

21L

2E
<< 1. (1.39)

Neglecting mass square difference, we get ∆m2
31 = ∆m2

32. Thus, using Eq.(1.38) in Eq.(1.11)

and following Eq.(1.23), the survival probability of the three flavour neutrino oscillations is

reduced to

Ps = 1− sin2(2θ13)sin2(1.27
∆m2

32(eV 2)L(km)

4E(GeV )
). (1.40)

This equation is similar to the two flavour survival probability with terms θ21 and ∆m2
21

in Eq.(1.33) is replaced by θ13 and ∆m2
32, respectively. We observe from Eq.(1.22) and

Eq.(1.23) that the transition probabilities depend on seven independent parameters 3 i.e.,

three mixing angles, two mass-squared differences, distance, and energy. The allowed ranges

of these parameters are obtained by global fit to the accelerator, reactor, atmospheric and

solar neutrino data. Under these neutrino oscillation experiments, for m1 < m2 < m3

(normal hierarchy), the 3σ range best-fit values are listed in Table.(1.1). In the later chapter

of this thesis, we will use the data of Table.(1.1) to plot graphs.

Parameters Best fit ±1σ 3σ range
∆m2

21

10−5eV 2 7.42+0.21
−0.20 6.82→ 8.04

∆m2
31

10−3eV 2 2.514+0.028
−0.0.027 2.431→ 2.598

θ12(deg) 33.44+0.78
−0.75 31.27→ 35.86

θ23(deg) 49.0+1.1
−1.4 39.6→ 51.8

θ13(deg) 8.57+0.13
−0.12 8.20→ 8.97

Table 1.1: The neutrino mixing parameters in normal ordering (m1 < m2 < m3) from the
NuFIT data [54].

1.2.3 Neutrino oscillations in constant matter background

In 1978, L.Wolfenstein [55] and other authors in the early 1980s [56] studied neutrino propa-

gation in a medium with constant matter density. The effective Hamiltonian which governs

3Is neutrino a Dirac fermion or a Majorana fermion? Apart from one CP-violation phases in PMNS matrix
of Dirac neutrinos (see Eq.(1.2)), there exist two Majorana phases if we consider neutrinos as Majorana
fermion. However, neutrino transition probabilities are independent of Majorana phases.
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the propagation of neutrino flavour state in matter is

Heff = HV ac +Hmat, (1.41)

Hvac = 1
2E
U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U †; Hmat =
√

2GFNe

1 0 0
0 0 0
0 0 0

, (1.42)

where U is given in Eq.(1.2), Ne is the electron number density and GF is the Fermi constant.

For the two-flavour neutrino evolution equation in flavour basis, (for e.g., νe and νµ ), the

effective Hamiltonian is

Heff =
1

2E
[U

(
m2

1 0
0 m2

2

)
U † +

(
A
2

0
0 −A

2

)
], (1.43)

= Hvac +Hmat, (1.44)

such that

i
d

dt

(
νe
νµ

)
= Heff

(
νe
νµ

)
, (1.45)

where, A = 2
√

2EGFNe is the constant effective matter potential induced by ordinary

charge-current (contribution from W Boson exchange) weak interactions with electrons; U =(
cosθ sinθ
−sinθ cosθ

)
is a two-flavour mixing matrix in vacuum. By using the approximated value

Hvac of Eq.(1.37) (by neglecting the terms proportional to the unit matrix) in Eq.(1.43), the

effective Hamiltonian in symmetric form can be obtained as [57]

Heff =
1

4E

(
−∆m2cos2θ + A

2
∆m2sin2θ

∆m2sin2θ ∆m2cos2θ − A
2

)
, (1.46)

where ∆m2 = m2
2 −m2

1 and θ is the mixing angle parameters in vacuum. This Heff matrix

is diagonalized by the unitary transformation,

UT
MHeffUM = HM , (1.47)

where, HM = 1
4E

(
−∆m2

M 0
0 ∆m2

M

)
is the effective matrix in the mass basis in matter. The

unitary matrix

UM =

(
cosθM sinθM
−sinθM cosθM

)
, (1.48)
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is the effective mixing matrix in matter. Thus, using Eq.(1.45) and following Eq.(1.23), the

two flavour neutrino survival probability in matter can be obtained from as

Ps = 1− sin2(2θM)sin2(1.27
∆m2

M(eV 2)L(km)

4E(GeV )
), (1.49)

where θM and ∆m2
M are the effective neutrino oscillations in matter. The relation between

the vacuum neutrino oscillations parameters and effective neutrino oscillations parameters

are

∆m2
M =

√
[∆m2cos(2θ)− A]2 + [∆m2sin(2θ)]2, (1.50)

sin22θM =
(∆m2sin2θ)2

(∆m2cos2θ − A)2 + (∆m2Sin2θ)2
. (1.51)

By comparing Eq.(1.49) with Eq.(1.33), we can say that the two flavour neutrino oscillations

in vacuum is modified due to constant matter effect. At the resonance,

AR = ∆m2Cos2θ, (1.52)

the electron number density is given by

NR
e =

∆m2Cos2θ

2
√

2EGF

. (1.53)

Although θ is small, at θM = π
4

the transition from νe and νµ mix maximally. This is called

resonance condition. The possibility of resonant flavour transitions of neutrinos travelling

in a medium with varying matter potential was discovered in 1985 [58, 59]. The MSW

(Mikheeev-Smirnov-Wolfenstein) mechanism specifies the region along the neutrino path in

which the maximum mixing angle is π
4

and this could explain the flavour transition of solar

neutrinos during their propagation out of the Sun, even in the case of small θ [60]. The

developments and concepts behind the MSW effect in 1978-85 are described recently by A.

Yu. Smirnov [61].

1.2.4 Same energy and same momentum approach in neutrino os-

cillations

In Sec.(1.2), in the plane wave picture, when neutrinos propagate in time, the mass eigen-

states νj gets associate with the phase factor eiφj . In general, this phase factor depends on
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both space and time and is defined as

φi = Ejt− ~pj.~x. (1.54)

In order to calculate the disappearance Pαβ (see Eq.(1.22)) or survival Pαβ (see Eq.(1.23))

probabilities, we need to calculate the phase differences between different mass eigenstates

i.e., (the oscillation phases) ∆φjk:

∆φ = ∆E.t−∆~p.~x. (1.55)

Here, the subscripts jk are omitted from ∆φ, ∆E and ∆~p in order to simplify the notation.

Different neutrino mass eigenstates composing a given flavour state cannot simultaneously

have the same energy and momentum, as otherwise, they would have the same mass. There-

fore in many studies, two simplified approaches were adopted:

� Same momentum approach: Assuming the momentum of all the mass eiegenstate

are same, i.e, ∆~p = 0. Then, Eq.(1.55) gives ∆φ = ∆E.t and transition probabilities

Eq.(1.22) depends only on the evolution time t. Since for ultra-relativistic neutrinos

Ej =
√
~p2 +m2

j ' p+
m2
j

2p
, for the oscillation phase one finds

∆φ = ∆E.t ' ∆m2

2p
t, (1.56)

with the approximation4 of t ' L, Eq.(1.56) yields the usual oscillation phase which

leads to the standard transition probability Eq.(1.22).

� Same energy approach: Assuming the energy of all mass eigennstates same, ∆E =

0, then Eq.(1.55) gives ∆φ = −∆~p.~x. When L is large, we can assume that ~x is parallel

to momentum ~p (~x||~p). For ultra-relativistic neutrinos, pj =
√
E2 −m2

j ' E − m2
j

2E
,

and the oscillation phase Eq.(1.55) become

∆φ = −∆p.L ' ∆m2

2E
L. (1.57)

The resulting transition probability is again the same Eq.(1.22).

4Note that for supernova and solar neutrinos, the approximation t ' L is no longer justified [28,64].
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It is to be noted that by assuming the mass eigenstates to have the same momentum or same

energy, the neutrino transition probabilities Pαβ (Eq.(1.22) or Pαα (Eq.(1.23)) in-plane wave

picture does not change. This assumption shows that this model is inconsistent because plane

waves are completely delocalised in space. These assumptions contradict energy-momentum

conservation. In ref. [62], R. G. Winter considered neutrino emission in orbital electron

capture by nuclei, a process with a 2-body final state and simple kinematics. Another

process with a 2-body final form -charged pion decay- was discussed by Giunti and Kim [63].

Let us follow their argument, for a π → µν decay at rest, Ej and pj of the produced neutrino

mass eigenstates νj with mass mj is obtained from the 4-momentum conservation law as

E2
j =

m2
π

4
(1−

m2
µ

m2
π

)2 +
m2
j

2
(1−

m2
µ

m2
π

) +
m4
j

4m2
π

, (1.58)

p2
j =

m2
π

4
(1−

m2
µ

m2
π

)2 −
m2
j

2
(1 +

m2
µ

m2
π

) +
m4
j

4m2
π

, (1.59)

Neglecting terms of order m4
j , one finds

Ej ' E + ξ
m2
j

2E
, pj ' E − (1− ξ)

m2
j

2E
, (1.60)

where

E ≡ mπ

2
(1−

m2
µ

m2
π

) ' 30Mev, ξ ≡ 1

2
(1−

m2
µ

m2
π

) ' 0.2. (1.61)

As seen from Eq.(1.61), the same energy and momentum assumptions correspond to ξ = 0

and ξ = 1, respectively; in reality, however, ξ is neither 0 nor 1 but somewhere between 0 to

1, i.e., 0.2. Thus, an explanation of neutrino oscillations using the wave packet approach is

needed.

1.3 The wave-packet description of neutrino oscilla-

tions

In 1976, Nussinov used the wave-packet approach of oscillating neutrinos and showed a co-

herence length [64]. He suggested that the wave packets corresponding to different mass

eigenstates propagate at varying velocities, so they do not overlap anymore after a while.

Thus, beyond the coherence length, one would not see the interference of different massive
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neutrinos as they would lose coherence [65]. In 1981, Kayser discussed the issues of neutrino

oscillations in quantum mechanics and the need for the wave-packet approach [28]. In 1998,

Carlo and Kim used the Gaussian wave packets to calculate the flavour changing probability

by incorporating the temporal and spatial coherence widths of the detection process [66].

In 2003, Carlo Giunti used the density matrix formalism to describe wave-packet of neu-

trino oscillations in stationary beam and disproved the requirement of equal energy or equal

momentum of different massive neutrinos [67]. The analysis in this paper is as follows:

Let us rewrite Eq.(1.1) by associating the mass eigenstates νj with wave function ψj(x, t)

such that

|να(x, t)〉 =
∑

U∗αjψj(x, t) |νj〉 . (1.62)

Using the Fourier transformation, we can relate this wave function ψj(x, t) with a Gaussian

wave ψj(p) for the momentum distribution of the massive neutrino νj with mass mj as

ψj(x, t) =
1√
2π

∫
dpψj(p)e

i(px−Ej(p)t), (1.63)

where

ψj(p) =
1

(2πσPp
2)

1
4

e
−

(p−pj)2

4σP
2

p . (1.64)

Here, the momentum uncertainty σPp is obtained from the production process with pj and

Ej(p) =
√
p2 +m2

j as average momentum and energy, respectively.

In order to get the solution of Eq.(1.63) analytically, the Gaussian momentum distribution

is taken, Eq.(1.64), which shows sharp peak around the average momentum pj, satisfying

the condition σPp � E2
j (pj)/mj. Thus, approximated energy is

Ej(p) ' Ej + vj(p− pj), (1.65)

where average energy is Ej =
√
p2
j +m2

j and group velocity of wave packet of massive

neutrinos νj is vj =
∂Ej(p)

∂p
|P=Pj =

pj
Ej

. By solving the integration over p of Eq.(1.63) using

the above approximation, we find that the solution is Gaussian as

ψj(x, t) =
1

(2πσP 2

x )
1
4

e
−iEjt+ipjx−

(x−vjt)
2

4σP
2

x , (1.66)

where σPx = 1
2σPp

is the wave packet width in space. We observe that Eq.(1.62) is a pure
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state, therefore we construct the density matrix operator

ρα(x, t) = |να(x, t) >< να(x, t)|. (1.67)

On substituting Eq.(1.66) in Eq.(1.62) and then using it in Eq.(1.67), the density operator

which depends on both space and time is

ρα(x, t) =
1√

2πσPx
2

∑
jk

U∗αjUαke
[−i(Ej−Ek)t+i(pj−pk)x−(x−vjt)2/4σPx

2−(x−vkt)/4σPx
2
]|νj >< νk|.

(1.68)

By applying the Gaussian time integration we get ρα(x) (relevant density operator) as

ρα(x) =
∑
j,k

U∗αjUαke
{−i[

vj+vk

v2
j

+v2
k

(Ej−Ek)−(pj−pk)]x−
(vj−vk)2x2

4(v2
j

+v2
k

)σPx
2−

(Ej−Ek)2

4(v2
j

+v2
k

)σPp
2 }
|νj >< νk|. (1.69)

Thus, in Eq.(1.69) the density matrix of a stationary beam in neutrino oscillations is indepen-

dent of time. To find the flavour transition probability, we use the ultra-relativistic neutrinos

which approximates Ej ' E+ ξP
m2
j

2E
, where massless neutrino energy is E, the dimensionless

quantity dependent on the features of the production process is ξp, pj ' E− (1− ξP )
m2
j

2E
and

vj ' 1− m2
j

2E2
j
. Considering these approximations, ρα(x) becomes

ρα(x) =
∑
j,k

U∗αjUαke
[−i

∆m2
jkx

2E
−(

∆m2
jkx

4
√

2E2σPx
)2−(ξP

∆m2
jk

4
√

2EσPp
)2]
|νj >< νk|, (1.70)

where ∆m2
jk = m2

j −m2
k. To detect β flavour neutrino at distance L, we define an operator

O(x− L) of flavour β in an analogy with the production process such that

Oβ(x− L) =
∑
j,k

U∗βjUβke
[−i

∆m2
jk(x−L)

2E
−(

∆m2
jk(x−L)

4
√

2E2σDx
)2−(ξD

∆m2
jk

4
√

2EσDp
)2]
|νj >< νk|. (1.71)

The probability of transitions from να to νβ is

Pνα→νβ(L) = Tr(ρα(x)Oβ(x− L)) =

∫
dx
∑
j

〈νj| ρα(x)Oβ(x− L) |νj〉 , (1.72)
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=
∑
jk

U∗αjUαkU
∗
βjUβke

[−2πi L
Losc
jk
−( L

Lcoh
jk

)2−2π2(1−ξ)2( σx
Losc
jk

)2]

, (1.73)

where Loscjk is the oscillation length and the Lcohjk = 4
√

2E2

|∆m2
jk|
σx is the coherence length, defined

by

Loscjk =
4πE

∆m2
jk

, Lcohjk =
4
√

2E2

|∆m2
jk|
σx, (1.74)

with σ2
x = σPx

2
+ σDx

2
and ξ2σ2

x = ξ2
Pσ

P
x

2
+ ξ2

Dσ
D
x

2
, where σDx = 1

2σDp
is the detection process

uncertainty and ξD (dimensionless quantity) dependent on the features of the detection

process. The three exponential factors in the Eq.(1.73) are the phase factor (e
−2πi L

Losc
jk ),

the coherence term (e
−( L

Lcoh
jk

)

), and the localisation term (e
−2π2(1−ξ)2( σx

Losc
jk

)2

). The localisation

term suppresses the oscillation if σx >> Loscjk . We can ignore this term because in usual

experiments this condition is very well satisfied. Therefore, we use the effective probability

Pνα→νβ =
∑
jk

U∗αjUαkU
∗
βjUβke

[−2πi L
Losc
jk
−( L

Lcoh
jk

)2]

. (1.75)

We notice that the wave packet approach affirms the standard plane-wave approximated

oscillation length Loscjk . Beyond the coherence length, Lcohjk the interference between the

massive neutrinos is impossible. The reason is that the wave packet cannot be absorbed

coherently because of its significant separation during its arrival at the detector. If L <<

Lcohjk , the coherence condition is satisfied, and the effective probability Eq.(1.75) reduces to

the standard transition probability Eq.(1.19) (or Eq.(1.22)) in the plane-wave picture. We

present a chapter-wise description of the thesis in the next section at this juncture.

1.4 Outline of thesis

Chapter 2 of the thesis explores the meaning of two and three-qubit entangled quantum

systems in detail. A density matrix formalism review helped us characterise the bi-partite

and tri-partite entanglement for two and three-qubit quantum systems. Considering two-

qubit Bell’s state, we investigate bi-partite entanglement measures like the Positive Partial

Transpose (PPT) criterion, negativity, the entanglement of formation, concurrence, tangle,

and linear entropy [68–71]. Further, considering prototype three-qubit GHZ and W-state, we

evaluate two different tri-partite entanglement measures: three-tangle [72] and three-π [35].

In three flavour neutrino oscillations, the neutrino state is |ν(t)〉 = a |100〉+b |010〉+c |001〉,
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which is the “generic form” of the W-class of states in quantum information theory. In

Chapter 3, we have asserted this by examining entanglement measures discussed in chapter

2. Our investigations show that the three-neutrino state has, for sure, genuine tripartite

entanglement more similar to the W-state than the GHZ-state.

Presently, analogues of a quantum system can be encoded coherently in a quantum com-

puter. The first step in this direction is to express the building blocks of a known physical

system in terms of the language of quantum gates and circuits. Chapter 4 is devoted to the

formalism of quantum computing [44]. We have geometrically explained the qubit structure

and defined a few quantum gates of single-qubit and two-qubits. We analyse the universal

quantum gates U3 and other unitary quantum gates, enabling us to create the prototype

GHZ and W-state quantum circuits in Bell’s state. We also explored the simulation of these

circuits on an IBMQ cloud computer. Further, we propose a quantum circuit to simulate the

entanglement measure-concurrence of a two-qubit arbitrary pure state on the IBM quantum

cloud computer.

Chapter 5 quantifies two entanglement measures such as concurrence [70] and l1 norm of

coherence [73] in the two neutrino systems and finds their relation. The construction of

the SU(2) rotation matrix from the Universal quantum gate U3 is encoded on the IBMQ

platform. Using the unitary quantum gates and circuits of chapter 4, we find a way to

simulate the bi-partite entanglement of two neutrino systems in the vacuum and the constant

matter background on the IBM quantum computer.

In Chapter 6, we started our calculation from the SU(2) Pauli matrices and SU(3) Gell-

Mann matrices to develop Poincaré sphere representation for two and three-flavour neutrino

states that describes entanglement of neutrino and also map the neutrino states to the qutrit

states of quantum information theory. This enables us to generalise the concept of tripartite

entanglement in the three-neutrino system. We extend our discussion to construct the Bloch

matrix and Generalised matrix for the two-qubit and two-qutrit neutrino states. Finally, we

quantify and compare the measures of bi-partite qubit entanglement with bi-partite qutrit

entanglement in the two neutrino systems.

Chapter 7 starts with some experimental evidence of neutrino entanglement and presents

the conclusion of the thesis. This chapter also discusses the future perspective of quantum

aspects of oscillatory neutrinos using the wave-packet approach. In addition to entanglement,

coherence is an essential topic globally. Besides the local level, coherence in neutrinos also

occurs at an astronomical level like Supernova. A global-scale neutrino usually maintains

coherence, meaning that the wave-packet size is small and neutrinos do not decohere over
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large distances. We present some preliminary work in this direction with the intention of

future exploration.



Chapter 2

Theory of distributed entanglement

In 1935, the EPR (Einstein, Podolsky, and Rosen) paradox of quantum mechanics was

developed in which they have addressed the issue that the principle of locality and reality

can’t be violated in quantum regimes [74]. To explain this, a hybrid quantum system of

particles A and B is taken with the system’s total spin as zero. Suppose particles A and B

are separated on a certain axis in millions of light-years, and they are in a superposition state.

If the spin of the first particle A is measured up spin on that axis, then the measured spin

of B will be off down spin on the same axis. Thus, measurement done on the first particle A

depends on the outcome of the second particle B. Einstein, and others disagreed with this

result because the event at one point can’t have immediate effect at other points as some

field should mediate the action otherwise the information would travel faster than the light

speed. In fact, in their paradox, they argued that any property measurement on a particle

changes the original quantum state and, therefore, certain quantum effects contradicts the

theory of relativity. They called it “spooky action at a distance” and suggested that the

acknowledged definition of quantum mechanics is incomplete. They said there must be some

hidden variable in the quantum mechanical description that may be responsible for such effect

and proposed Hidden Variable Theory. Later, Schrödinger published a paper expressing the

idea of “entanglement” [75].

In 1964, John Stewart Bell proposed that no hidden variable theory can produce predictions

in quantum mechanics [76]. He introduced inequalities assuming local realism. By many

quantum systems, Bell’s inequalities were violated experimentally [77]. The EPR paradox is

now the basis for defining entanglement, which show the correlation between non-classical

particles. Bell’s work introduced correlations as a resource of quantum information.

20
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In recent times the study of entanglement is now turned into a fundamental asset in

quantum information science, which is the investigation of cutting edge computation and

communication dependent on the laws of quantum mechanics [45, 78, 79]. Accordingly, its

quantification has attracted much consideration in the twenty recent years [80]. To accom-

plish such quantification, one has to define legitimate measures of entanglement.

The current notable bi-partite measures of two-qubit entanglement are the concurrence and

the tangle derived analytically by Wooters et al. [70,72]. The entanglement of formation is a

function of the concurrence and tangle that is monotonical [81,82]. One more valuable entan-

glement measure is Negativity [83], viewed as a quantitative adaptation of Peres’ criterion for

separability. Moreover, the linear entropy can also quantify bi-partite entanglement, which

is a lower approximation of the von Neumann entropy [84]. The study of all these bi-partite

entanglement measures is necessary because they are entanglement monotones. Therefore

they can enter into the fundamental monogamy inequalities for distributed entanglement in

the multi-partite setting [85]. Multi-partite entanglement is an essential aspect in large scale

quantum-information processing [86]. Presently, the widely used basis for characterizing and

quantifying tri-partite entanglement in a three-qubit system are the three-tangle [72], and

three-pi [35].

The chapter’s organization is: In Sec.(2.1), we briefly discuss the one qubit system, and in

Sec.(2.2), density operator formalism is given. Considering two-qubit Bell’s state, we inves-

tigated bi-partite entanglement and explored its various entanglement measures in Sec.(2.3).

Further in Sec.(2.4), we evaluate tri-partite entanglement measures in the three-qubit system.

2.1 The Qubit

Classical communication theory is based on bits that are described by 0 or 1. In quantum

mechanics, the corresponding quantity is called a qubit. The quantum mechanical laws

permit a qubit to truly exist in any linear combinations of the states |0〉 and |1〉, and

mathematically it is given by

|ψ〉 = c1 |0〉+ c2 |1〉 , (2.1)

where c1 and c2 are complex numbers such that |c1|2 + |c2|2 = 1. A qubit lies in a 2-

dimensional complex Hilbert space where a possible orthonormal basis of this qubit are two

orthonormal vectors |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. Qubits are used in atoms and photons,

superconducting circuits and semiconductor quantum dots, and super-fast computing appli-
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cations or fundamentally secure communication. A detailed explanation of qubits is given

in chapter 4.

2.2 Density operator

In finite-dimensional systems, the density matrix ρ is a mathematical representation of the

state of a quantum system which is n × n matrix constrained by the hermiticity, positivity

and trace conditions. Mathematically, a pure state of a quantum system can be represented

by a state vector |ψ〉 which is a unit vector in a Hilbert space H. Moreover, when there is

not enough information to specify the normalized state |ψ〉, we have a probabilistic mixture

of pure states called mixed quantum states. In this case, if the probabilities of determining

the system in the normalized state |ψn〉 are pn, then the expectation value of an operator A

is

< A >=
∑
n

pn < ψn|A|ψn > . (2.2)

Due to partial information about the system, we use density matrix formalism to describe

the mixed state quantum system. Its general form can be written as

ρ =
∑
n

pn |ψn〉 〈ψn| . (2.3)

Here, ρ is a hermitian density operator which represent a statistical mixture of states. For a

pure state, the density operator becomes

ρ = |ψi〉 〈ψi| and ρ2 = ρ. (2.4)

Given that for a pure state, tr(ρ) = 1, it follows that tr(ρ2) = 1. However, for mixed states

tr(ρ2) =
∑

n p
2
n < 1. When density operators are positive, any state |φ〉 can be represented

by

〈φ| ρ |φ〉 =
∑
n

pn| < φ|ψn > |2 ≥ 0. (2.5)

Further, in order to define the unitary time evolution of density operator i.e, ρ(t), we assumed

that the initial state of the system is |ψn(0)〉 with probability pn. Thereby, the initial density
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operator can be written in the diagonalized form as

ρ(0) =
∑
n

pn |ψn(0)〉 〈ψn(0)| , (2.6)

The time evolution of the state |ψn(0)〉 is

|ψn(t)〉 = U(t) |ψn(0)〉 (2.7)

We obtained the above equation by solving the Schrodinger equation: i~ d
dt
|ψn〉ψ = H |ψn〉,

where U(t) = e−i
Ht
~ is a unitary time evolution operator generated by the Hamiltonian H

of the quantum system. Then, the evolved density matrix under unitary condition U †U =

UU † = I is given by

ρ(t) =
∑
n

pnU(t) |ψn(0)〉 〈ψn(0)|U †(t) = U(t)ρ(0)U †(t). (2.8)

A density operator is an essential tool for studying sub-systems of a composite quantum

system given by the reduced density operator and partial positive transposition of the density

operator.

2.3 Bi-partite entanglement

A bi-partite system is composed of two non-interactive sub-systems A and B, and whose

state, pure or mixed, lies in a Hilbert space HAB = HA ⊗ HB that is the tensor product

of Hilbert spaces of two sub-systems. Entanglement is a feature of bi-partite systems. A

bi-partite pure state |Ψ〉 ∈ HAB of dimension dA ⊗ dB is called a separable or product state

if and only if it can be written as tensor product of states |χ〉A ∈ HB of dimension dA and

|φ〉B ∈ HB of dimension dB

|Ψ〉 = |χ〉A ⊗ |φ〉B , (2.9)

otherwise, |Ψ〉 is called an entangled state. For example, Bell states that the EPR states or

EPR pairs are pure bi-partite entangled states. There are four maximally bi-partite entangled

two-qubit Bell states in a composite quantum system seen in different experiments. These
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Bell’s states are generally written as follows

|Ψ+〉 =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B), (2.10)

|Ψ−〉 =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B), (2.11)

|Φ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B), (2.12)

|Φ−〉 =
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B), (2.13)

where {|0〉 ⊗ |0〉 = |00〉 , |0〉 ⊗ |1〉 = |01〉 , |1〉 ⊗ |0〉 = |10〉 , |1〉 ⊗ |1〉 = |11〉} ∈ HAB are the

basis of two qubit Bell’s state. In vector forms, we have

|00〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 ; |01〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0



|10〉 =

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

 ; |11〉 =

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1


These basis are called two qubit mode or occupation number basis. Let |φ1〉 = p |0〉 + q |1〉
and |φ2〉 = r |0〉+ s |1〉 be a normalized states from Hilbert space H2 of dimension 2, which

are single qubit state, where p, q, r, s ∈ C. Here |0〉 and |1〉 are known as computational basis

states and form an orthonormal basis for the states |φ1〉 and |φ2〉. Then, from Eq.(2.9) and

Eq.(2.10), the state of composite system |ψ+〉 ∈ H2 ⊗H2 is separable if it can be written as

|Ψ+〉 = |φ1〉 ⊗ |φ2〉 = (p |0〉+ q |1〉)⊗ (r |0〉+ s |1〉). (2.14)

Therefore,
1√
2

(|01〉+ |10〉) = pr |00〉+ ps |01〉+ qr |10〉+ qs |11〉 . (2.15)

However, there are no individual values of p, q, r, s but they have relations such that ps =

qr = 1√
2

and pr = qs = 0, thus we obtain

|Ψ+〉 6= |φ1〉 ⊗ |φ2〉 , (2.16)
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so the state |Ψ+〉 is entangled. Moreover, If ρAB ∈ HAB is the density operator, then

entanglement of quantum state ρAB is characterized by the von Neumann entropy1 and

defined as [87]

S(ρAB) ≡ −Tr(ρABlog2ρ
AB). (2.17)

If gi are the eigenvalues of ρAB then the above formula can be re-written as:

S(ρAB) = −
∑
i

gilog2(gi). (2.18)

For example, a qubit contains maximum entropy of 1. In 1930, the idea of a reduced density

matrix was introduced by Paul Dirac. In general, the reduced density operator is defined as

ρA = TrB(ρAB) (2.19)

where TrB is known as the partial trace over sub-system B defined by

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2| tr(|b1〉 〈b2|) = |a1〉 〈a2| < b2|b1 > (2.20)

where |a1〉, |a2〉 are any two basis ∈ HA, and |b1〉, |b2〉 ∈ HB. Using Eq.(2.10) in Eq.(2.4),

the density operator of the state |Ψ+〉 is

ρAB = |Ψ+〉 〈Ψ+| = 1

2
(|01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 |10〉) =

1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , (2.21)

where Tr[(ρAB)2] = 1. The reduced density operator read now as follows: ρA = TrB(ρAB)

=
1

2
(|0〉 〈0| < 1|1 > + |0〉 〈1| < 1|0 > |1〉 〈0| < 0|1 > + |1〉 〈1| < 0|0 >) =

1

2

(
1 0
0 1

)
,

(2.22)

and equally

ρB = TrA(ρAB) =
1

2

(
1 0
0 1

)
. (2.23)

1The expected information of a system in information theory is measured by Shannon entropy [88]. Its
quantum counterpart is the von Neumann entropy.
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Even though the total system is pure, it is surprising that the reduced density operator

ρA and ρB correspond to a mixed state. It means that when one state is entangled with

another, specifying the exact state of a single qubit is not possible. Thus, Tr[(ρA)2] < 1 or

Tr[(ρB)2] < 1 for a subsystem of a bi-partite pure state is an example of entanglement.

Bennett et al. have shown that it is sensible to characterize the entanglement as the von

Neumann entropy of both sub-systems (A and B) when considered separately. Thus, the

entanglement of a state with density operator ρAB is

E(ρAB) = −Tr(ρAlog2ρ
A) = −Tr(ρBlog2ρ

B). (2.24)

E(ρAB) is termed as the entropy of entanglement, which is an entanglement measures for

pure bipartite states. It varies from 0 for product states to 1 for the maximally entangled

state. Thus, for the state |Ψ+〉, we get E(ρAB) = 1.

Unlike pure states, all correlated mixed states are not entangled. A non-correlated mixed

state of two systems A and B is taken which is defined as HAB = HA ⊗HB:

ρ = ρA ⊗ ρB. (2.25)

An unentangled correlated state developed from mixture of states will not give any direct

quantum correlations linked with entanglement. It is called separable state:

ρ =
∑
i

piρ
A
i ⊗ ρBi . (2.26)

Any mixed state that does not follow the above equation is called entangled state [79]. To

develop a universal method, we have discussed some operational criteria to measure the

entanglement in the bi-partite system.

2.3.1 Peres-Horodecki Criterion

The Peres-Horodocki criterion (or positive partial transpose (PPT) criterion) is a separability

criterion for density matrices [68] and a condition for find out entanglement in the bi-partite

system [89]. It states that if the partial transposition ρTApq,rs(t) = ρABrq,ps(t) or ρTBpq,rs(t) = ρABps,rq(t)

of a density matrix ρABpq,rs = 〈p| 〈q| ρAB(t) |r〉 |s〉 (where p, q, r, s are matrix elements) is a

positive operator with all positive eigenvalues then the system is unentangled. If the system
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has even one negative eigenvalues then it is entangled. For example, the positive partial

transpose ρTB of the density operator ρAB for the state |Ψ+〉 can be obtained from Eq.(2.21)

as

ρTB(Ψ+) =
1

2


0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

 . (2.27)

The eigenvalues of the density operator ρTB are −1
2
, 1

2
, 1

2
, 1

2
in which one eigenvalue is smaller

than 0, the state |Ψ+〉 becomes a bi-partite entangled state.

2.3.2 Negativity

The negativity is the violation of the PPT criterion and it is defined as [83]

N(ρAB) = ||ρTB || − 1, (2.28)

where the trace norm

||ρTB || = Tr

√
ρTBρTB †(t) = 1 + 2|

∑
i

λi|, (2.29)

and λi < 0 are the negative eigenvalues of partial transposition ρTB . Thus, in other words

negativity measures by how much ρTB fails to be positive definite [90, 91]. N(ρAB) > 0

is the necessary and sufficient condition of the bi-partite entanglement [69]. For example,

one of the eigenvalue of ρTB for the state |Ψ+〉 is negative, i.e, λ1 = −1
2
. Consequently,

||ρTB || = 2 implies N(ρAB) = 1, which mean that the Bell’s state |Ψ+〉 is a maximally

bi-partite entangled state.

2.3.3 Entanglement of formation

The density operator of bi-partite mixed state ρ (see Eq.(2.3)) can be decomposed into pure

state as

ρ =
∑
n

pnρn, (2.30)

where ρn = |ψn〉 〈ψn| is a pure state density operator and pn are non-negative numbers

satisfying
∑

n pn = 1. The quantification of the entropy of entanglement (E(ρn)) for pure
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state to mixed state is given by the entanglement of formation Ef (ρ) which is the minimum

entanglement that can be obtained from all such decomposition defined as [70,81]

Ef (ρ) = min
∑
n

pnE(ρn) (2.31)

where, E(ρn) is given by Eq.(2.24). A state with Ef = 0 is separable and when Ef = 1, the

state is maximally entangled.

2.3.4 Concurrence and Tangle

Concurrence is the quantification of bi-partite quantum correlations which is based on re-

duced density matrix mathematics. For the two-qubit pure state it is defined as [70]

C(|Ψ〉) =
√

2[1− Tr{(ρA)2}] = 2
√
detρA, (2.32)

where ρA = TrB(ρAB) the reduced state of ψ. More general formula of concurrence for pure

or mixed two-qubit states is defined as

C(ρAB) = [max(µ1 − µ2 − µ3 − µ4, 0)], (2.33)

where the µis are the square roots of the eigenvalues of the non-Hermitian matrix ρAB ˜ρAB

in decreasing order and each µi is a non-negative real number. Here, ρ̃AB is defined as

spin-flipped density operator

ρ̃AB = (σy ⊗ σy)ρ∗AB(σy ⊗ σy), (2.34)

where ρ∗AB denotes the complex conjugation in the computational basis {|00〉,|01〉,|10〉,|11〉}

and σy =

(
0 −i
i 0

)
is Pauli matrix. Accordingly, if we consider a general 2-qubit pure

state as |Ψ〉 = p00 |00〉 + p01 |01〉 + p10 |10〉 + p11 |11〉 the concurrence is given by C(ρ) =

2|p00p11 − p01p10|. Moreover, for two qubits Ef (ρ
AB) (see Eq.(2.31) can be expressed in

terms of the Concurrence (C(ρAB)) as [81,82]

Ef (ρ
AB) = h(

1 +
√

1− C2(ρAB)

2
); h(z) = −zlog2(z)− (1− z)log2(1− z) (2.35)
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where, h(z) is the binary entropy function. h is a monotonically increasing function of its

argument and ranges from 0 corresponding to C(ρAB) = 0 and to 1 for C(ρAB) = 1. The

quantity C2(ρAB) in Eq.(2.35) is termed as Tangle (τ) and it is defined as [72]:

τ(ρAB) = C2(ρAB) = [max(µ1 − µ2 − µ3 − µ4, 0)]2. (2.36)

Thus, Ef (ρ
AB) is a monotonically increasing convex function of concurrence and concave

function of tangle. For bi-partite pure state the matrix ρABρ̃AB has only one non-zero

eigenvalue, so the above Eq.(2.36) of tangle is reduced to

τ(|Ψ〉) = C2(|Ψ〉) = 4detρA. (2.37)

Thus, for |Ψ+〉, using Eq.(2.22) in Eq.(2.32) and Eq.(2.37), we get C(|Ψ+〉) = τ(|Ψ+〉) = 1.

2.3.5 Linear entropy

The linear entropy (SL) is the first order approximation of von Neumann entropy. Its physical

significance is that it is straightforwardly connected to the purity of the mixed states. It is

easy to compute because there is no need of diagonalizing the density matrix. The expression

of linear entropy can be obtained by using the Newton-Mercator series2, where we can

approximate the term log2ρ
AB of Eq.(2.17) with first order term (ρAB − 1) such as

− Tr(ρABlog2ρ
AB)→ −Tr(ρAB(ρAB − 1)) = Tr(ρAB − [ρAB]2) (2.38)

Since, Tr(ρAB) = 1 (unit trace property of the density matrix). Thus,

SL(ρAB) = 1− Tr[(ρAB)2]. (2.39)

It is also defined with a different normalization as [84]

SL(ρAB) =
d

d− 1
(1− Tr[(ρAB)2]) (2.40)

2Newton-Mercator series is the Taylor series for the natural logarithm (−1 < q < 1):

log(1 + q) = q − q2

2
+
q3

3
− q4

4
+ ...
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where d is the dimension of the density matrix ρAB. The linear entropy ranges from zero

which is a completely pure state to 1− 1
d

which describes a completely mixed state. For |ψ+〉,
using Eq.(2.21) in Eq.(2.40), we get SL(ρAB) = 0. Thus, |ψ+〉 is a bi-partite pure state. The

linear entropy associated to reduced density operator ρA and ρB can be written as

SL(ρA) =
d

d− 1
(1− Tr[(ρA)2]) ; SL(ρB) =

d

d− 1
(1− Tr[(ρB)2]) (2.41)

For |ψ+〉, using the reduced density matrix Eq.(2.22) and Eq.(2.23) in Eq.(2.41), where the

dimension of ρA and ρB is d = 2, we get SL(ρA) = SL(ρB) = 1
2
.

2.4 Tri-partite entanglement

A tri-partite system in three-qubit mode states comprises of A, B and C whose state (pure

or mixed) lies in a Hilbert space represented by tensor product HABC = HA⊗HB⊗HC with

dimension dA⊗dB⊗dC . There are two different types of separable states that exist for pure

three-qubit states: the entirely separable states can be composed as:

|Ψfs〉A|B|C = |χ〉A ⊗ |φ〉B ⊗ |η〉c (2.42)

and the bi-separable states are formed when two of the three qubits are assembled to one

sub-system or in other words it is the product state in the bi-partite system. There are three

prospects of combining 2 qubits together, thereby forming 3 classes of biseparable states

represented as

|Ψbs〉A|BC = |χ〉A ⊗ |ζ〉BC ,

|Ψbs〉B|AC = |χ〉B ⊗ |ζ〉AC ,

|Ψbs〉C|AB = |χ〉C ⊗ |ζ〉AB .

Here, |ζ〉BC , |ζ〉AC , and |ζ〉AB are bi-partite states that might be entangled. A state |Ψbs〉 =
1
2
(|001〉+ |010〉+ |101〉+ |110〉) can be tensor product of a single qubit state and a Bell-state

|Ψbs〉A|BC =
1√
2

(|0〉+ |1〉)A ⊗
1√
2

(|01〉+ |10〉)BC (2.43)
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which is an example of biseparable state. A pure three-qubit state is called genuine tripartite

entangled if it is neither fully separable nor biseparable.

The genuine entangled three-qubit states are divided into two inequivalent classes. If two

three-qubit states |Ψ〉 and |Φ〉 are given, then the transformation of a single copy of |Ψ〉
into |Φ〉 without local operations and classical communication is accurate. These operations

are called stochastic local operations and classical communication (SLOCC). Surprisingly,

in ref. [92] it is shown that two different equivalent classes of genuine tripartite entangled

states exist, i.e., Greenberger Horne Zeilinger (GHZ) class and W class, which could not be

transformed into another by SLOCC. The GHZ-state can be written as [93,94]

|GHZ〉 =
1√
2

(|000〉+ |111〉). (2.44)

In a tri-partite system there are 8 three-qubit mode computational basis {|000〉 , |001〉 , |010〉 ,
|011〉 , |100〉 , |101〉 , |110〉 , |111〉}. Then the density operator of the GHZ state is

ρABC(GHZ) = |GHZ〉 〈GHZ| = 1

2



1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1


. (2.45)

The reduced density operator ρAB is a mixed state calculated by tracing over the qubit C

such that

ρAB = TrC(ρABC(GHZ) =
1

2
(|00〉 〈00| < 0|0 > + |11〉 〈11| < 1|1 >)

=
1

2
(|00〉 〈00|+ |11〉 〈11|) =

1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (2.46)

By taking its partial positive transposition ρTA (or ρTB), we find no negative eigenvalues of

the resulting matrix. Thus, according to the PPT criterion, ρAB is a remaining mixed state

which is unentangled. Similarly, tracing the other two qubits will give the same result. Thus,

if one qubit is lost in the GHZ state, the state becomes separable. Furthermore, tracing over
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either of the remaining qubits give

ρA = ρB = ρC =
1

2

(
1 0
0 1

)
. (2.47)

with Tr[(ρA)2] = Tr[(ρB)2] = Tr[(ρC)2] < 1. This is the same reduced density operator

which we have obtained in the previous Sec.(2.3) (see Eq.(2.22) and Eq.(2.23)) for the bi-

partite two-qubit pure state example, i.e., |Ψ+〉. These mixed states indicate that the three-

qubit GHZ state is fully entangled and generalizes the two-qubit Bell states.

Another example of a three-qubit pure state in a tri-partite system is the W-state [92]. A

prototype W-state is

|W1〉 =
1√
3

(|001〉+ |010〉+ |100〉), (2.48)

which gives

ρABC(W1) = |W1〉 〈W1| =
1

3



0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2.49)

and

ρAB = ρAC = ρBC =
1

3


1 0 0 0
0 1 1 0
0 1 1 0
0 1 1 0
0 0 0 0

 , (2.50)

and

ρA = ρB = ρC =
1

3

(
2 0
0 1

)
. (2.51)

Taking the partial positive transposition, ρTA (or ρTB) of the remaining two-qubit mixed

state density operator ρAB given in Eq.(2.50), we find that all eigenvalues are not positive or

zero. Therefore, according to the PPT criterion, ρAB is entangled. This result shows that,

unlike the GHZ state, the entanglement of the W state is more robust against qubit losses.

In general, if one qubit is lost in the W-state, the remaining state retains some entanglement.

Now we define the classification of mixed three-qubit state in tri-partite system [95,96]. If

pn are the probabilities to find a fully separable states |Ψfs
n 〉, then the general form of mixed
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states density operator as fully separable ρfs is

ρfs =
∑
n

pn |Ψfs
n 〉 〈Ψfs

n | . (2.52)

Similarly, the density operator for the bi-separable mixed state is

ρbs =
∑
n

pn |Ψbs
n 〉 〈Ψbs

n | (2.53)

and there are 3 classes of biseparable mixed states that are biseparable with respect to fixed

partition. Finally, in a combination of W-type pure state, a fully entangled mixed state

belongs to the W class defined as

ρW =
∑
n

pn |ΨW
n 〉 〈ΨW

n | , (2.54)

otherwise it belongs to the GHZ class. Now, we explore two type of entanglement measures

in tri-partite system.

2.4.1 Three-tangle

Considering three bits A, B and C, in classical theory if A and B are correlated, then there is

no correlation with C. However, in quantum theory, if A, B, C are three qubits, then all are

correlated with each other. For pure 3-qubit states the trade-off is described by Coffman-

Kundu-Wooters (CKW) inequality which is a monogamy inequality in terms of tangle and

it is a criterion for determining tri-partite entanglement [72]. Mathematically, the relation

between A, B and C is

τAB + τAC ≤ τA(BC). (2.55)

where

τAB ≤ Tr(ρABρ̃AB); and τAC ≤ Tr(ρAC ρ̃AC); (2.56)

are the tangle of the mixed states ρAB = TrC(ρABC) and ρAC = TrB(ρABC), respectively

and τA(BC) = 4det(ρA). Here, ρ̃AB and ρ̃AC are spin-flipped density operator defined by

Eq.(2.34). It is to be noted that the definition of τAB and τAC in Eq.(2.56) is true when the

product ρABρ̃AB having at most two non-zero eigenvalues. The CKW monogamy inequality
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can be also defined in terms of concurrence. Since tangle is square of concurrence, therefore

the expression in Eq.(2.55) looks like C2
AB + C2

AC ≤ C2
A(BC). Accordingly to Eq.(2.56) the

three-tangle τABC can be defined as

τABC = τA(BC) − τAB − τAC . (2.57)

which is used to characterize three-way entanglement of the state [92]. For example, quanti-

fied by three-tangle the state |GHZ〉 has only three-way entanglement since τABC(GHZ) ≥ 0,

while the state |W1〉 has only-two way entanglement because τABC(W1) = 0.

For a general mixed 3-qubit state of ρABC , the three-tangle should be

τABC = min[τA(BC)]− τAB − τAC , (2.58)

where τA(BC) has to be minimized for all possible decomposition of ρABC . Later, the gener-

alized CKW inequality for n-qubit states was also proved [97].

2.4.2 Three-π

Interestingly the monogamy of tangle implies monogamy of negativity [35]. For a pure

3-qubit states of tri-partite system the CKW inequality in terms of negativity is defined as

N2
AB +N2

AC ≤ N2
A(BC) (2.59)

where N2
AB and N2

AC are the negativities of the mixed states ρAB = TrC(ρABC) and ρAC =

TrB(ρABC), respectively and N2
A(BC) = τA(BC) = 4detρA. In the similar way, if one takes the

different subscript of qubits B and C, the monogamy inequalities become

N2
BA +N2

BC ≤ N2
B(AC), (2.60)

and

N2
CA +N2

CB ≤ N2
C(AB). (2.61)

If the relation given in Eq.(2.59) is strict for any pure state of three-qubits i.e,

N2
AB +N2

AC < N2
A(BC) (2.62)
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then the difference between the two sides of above equation can be interpreted as the residual

entanglement

πA = N2
A(BC) −N2

AB −N2
AB. (2.63)

Similarly, Eq.(2.60) and Eq.(2.61) forms residual entanglement as

πB = N2
B(AC) −N2

BA −N2
BC . (2.64)

and

πC = N2
C(AB) −N2

CA −N2
CB. (2.65)

respectively. The subscript A, B, and C in πA, πB and πC mean that qubit A, qubit B,

and qubit C are taken into consideration respectively. Unlike the three-tangle, in general

πA 6= πB 6= πc for the class of W-state. This indicates that under permutations of the qubits

the residual entanglement corresponding to the different subscript varies. We take three-π

(πABC) as the average of πA, πB and πC , i.e.,

πABC =
1

3
(πA + πB + πC), (2.66)

which thus becomes invariant under permutations of the qubits, since, for example, permu-

tation of qubit A and qubit B leads to exchanging πA, πB with each other in πABC . Three-π

is a natural entanglement measure, which satisfies three necessary conditions:

� it should be local unitary (LU) invariant;

� it has zero value for pure product states; and

� it has a value greater than zero for genuine tripartite entanglement [35].

In general, for a pure 3-qubit state of ABC belongs to the W-class

|Φ〉 = κ |100〉+ ζ |010〉+ η |001〉 (2.67)

where |κ|2 + |ζ|2 + |η|2 = 1 and κ 6= 0, ζ 6= 0, and η 6= 0, substituting N2
AB = 4|κ|2|ζ|2 +

2|η|4 − 2|η|2
√
|η|4 + 4|κ|2|ζ|2, N2

AC = 4|κ|2|ζ|2 + 2|ζ|4 − 2|ζ|2
√
|ζ|4 + 4|κ|2|η|2 and N2

A(BC) =

4|κ|2(|ζ|2 + |η|2) into Eq.(2.63), Eq.(2.64) and Eq.(2.65) and using its result in Eq.(2.66), an
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entanglement measure three-π we gate as

πABC(Φ) =
4

3
(|κ|2

√
|κ|4 + 4|κ|2|η|2 + |ζ|2

√
|ζ|4 + 4|κ|2|ζ|2

+|η|2
√
|η|4 + 4|κ|2|ζ|2 − |κ|4 − |ζ|4 − |η|4), (2.68)

but substituting τAB = 4|κ|2|ζ|2, τAC = 4|κ|2|η|2, and τA(BC) = 4|κ|2(|ζ|2 + |η|2) in Eq.(2.57),

the three-tangle vanish i.e.,

τABC(Φ) = 0. (2.69)

When κ = ζ = η = 1√
3
, the state |Φ〉 become a prototype W-state |W1〉 (see Eq.(2.48) and

for this state we get πABC(W1) = 4
9
(
√

5 − 1) = 0.549363 and τABC(W1) = 0. Thus, under

the different classes of SLOCC, to quantify tri-partite entanglement of W class we have the

property that

πABC(W ) > τABC(W ) = 0. (2.70)

For the GHZ class,

πABC(GHZ) ≥ τABC(GHZ) > 0, (2.71)

while

πABC(φ) = τABC(φ) = 0 (2.72)

for the states |φ〉ABC belonging to the classes excluding the W and GHZ classes. Note that

for the mixed state density operator ρABC of 3-qubit states of ABC, the monogamy inequality

Eq.(2.59) turns out to be

N2
AB +N2

AC ≤ min[N2
A(BC)], (2.73)

which has to be minimized for all possible decomposition of ρABC . In this case, N2
AB ≤

τAB and N2
AC ≤ τAC . The other inequalities in Eq.(2.60) and Eq.(2.61) need the same

manipulation [98]. The next chapter investigates and quantifies such bi-partite and tri-

partite entanglement measures for two and three-flavour neutrino oscillations, respectively.



Chapter 3

Tri-partite entanglement in neutrino

oscillations

The quantum phenomenon of neutrino oscillations in which a neutrino in a given flavour

state can be found in a different flavour state as it progresses in time is a topic of current,

and theoretical activity [51,99–103]. Oscillations arise because the neutrino flavour state is a

linear superposition of non-degenerate mass eigenstates of neutrinos. Quantum entanglement

and coherence [104] are two fundamental features arising from the principle of quantum

superposition. Therefore, it is natural to examine quantum entanglement in neutrino systems

[79, 105]. For two flavours, the linear superposition state of a neutrino can be mapped to a

two-qubit system [42]. Blasone et al., initially mapped the three flavour system as a 3-qubit

system [106–109]. In this chapter, we investigates the entanglement properties of the three-

particle superposition flavour-neutrino state. We show that the three neutrino state has a

specific three-way entanglement akin to the W-state in quantum optics.

Neutrino oscillations take place because there is a misalignment of mass and flavour states

of the neutrinos [43]. Oscillations are observed over large distances. Therefore there must

be quantum coherence of the mass states [43]. It turns out that the quantum mechanical

approximation of neutrinos has been so successful that they have been used to perform

fundamental tests of quantum mechanics [27, 110, 111]. At the Daya Bay experiment, they

have searched for the fingerprints of the wave packet nature of neutrinos that could affect its

probability of oscillation within a 95% confidence level and found no significant effect of wave

packet over the plane wave treatment [29,30]. Thus the standard plane wave approximation

of neutrinos with significant distance coherently function well and decoherence due to the

37
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wave packet nature is very small because of the small neutrino masses. This means, albeit

theoretically, that neutrinos are candidates for quantum computation [46, 112]. This also

makes a study of their quantum properties fascinating. Neutrino entanglement has been

studied in both modes, flavour mode as well as in mass mode [42, 43, 106–109]. The three-

flavour mode entangled states are analyzed using information-theoretic tools [113]. Besides

mode entanglement, which is the primary subject of this chapter, some astrophysical studies

show the possible effects of neutrino many-body entanglement on flavor oscillations [114–120].

For an all-encompassing perspective on quantum entanglement in neutrino oscillations such

studies are informative.

The entanglement measures that have been studied for two flavour neutrino systems are

Bell’s inequality and Bell-CHSH (Clauser-Horn-Shimoy-Holt) inequality violations, telepor-

tation fidelity, and geometric discord. They have been related to the neutrino oscillation

probabilities [43]. Along with this, the other entanglement measures like “the nonlocal ad-

vantage of quantum coherence” (NAQC), the Bell nonlocality and the entropic uncertainty

have been investigated in the three neutrino systems by comparing their results using the data

obtained from different types of neutrino oscillations experiments [121–123]. Bell’s inequality

derives correlations of measurements on separated systems based on space. In analogy to

that, Leggett and Garg investigated time-based correlations, which they extended to apply

on a macroscopic system [124]. Recent work [125–128] shows that this analogue is sensitive

to the neutrino mass-hierarchy in three neutrino system.

In this chapter, we show that the temporal behaviour of the two-mode entangled neutrino

state resembles entanglement swapping (the procedure of entangling photons without direct

interaction) between two-photon states emerging from a Beam Splitter (BS) [129, 130]. We

extend the study to three-flavour neutrino oscillations by considering distributed entangle-

ment measures for three-mode states [72]. There are two types of non-separable classes in

the 3-qubit system, W and GHZ states. For the W-state there is a property that if one of

the 3 qubits is lost, the remaining 2-qubit state is still entangled. This robustness of W-type

entanglement contrasts sharply with the GHZ-state, which is entirely separable after losing

1 qubit.

In three flavour neutrino oscillations, the neutrino state can always be written in the form

|ν(t)〉 = a |100〉 + b |010〉 + c |001〉, which is the “generic form” of the W-class of states in

quantum optics. We will later reaffirm this by analysis of various entanglement measures. We

do so by examining a measure of distributed entanglement, a monogamy inequality known

as Coffman-Kundu-Wooters (CKW) inequality, which characterizes genuine tri-partite en-

tanglement and enables us to distinguish between different tri-partite states [35, 72]. Our
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studies show that the three neutrino state has robust tripartite state entanglement more

akin to the W-state than the GHZ-state. Laboratory production of a 3-qubit entangled W-

state can be done using spontaneous parametric down-conversion (SPDC) and two BS [131]

(similarly GHZ-state can also be created via experiments [132]). The analogy between W-

states (which can be produced in the lab) and the three neutrino states can lead to a further

understanding of the nature of entanglement in neutrino oscillations. In quantum optical

experiments, one can physically manipulate the system by identifying neutrino states as

quantum optical states; one may be able to get information about the quantum properties

of the neutrino system and demonstrate factors contributing to the decoherence and even

many-body entanglement relevant to astrophysical settings.

The chapter’s organization is : In Sec.(3.1), we investigate and quantify various measures

of bi-partite entanglement such as tangle, concurrence, the entanglement of formation, neg-

ativity and linear entropy in the two-neutrino system. In Sec.(3.2), we examine tri-partite

entanglement measures such as three-tangle and three-π in the three-neutrino system.

3.1 Bi-partite entanglement in two-flavour neutrino os-

cillations

In the plane wave picture, we expand Eq.(1.11) of Chapter 1 to re-write an equation for the

time evolution of the flavour neutrino state in a coherent superposition of flavour basis as,

|να(t)〉 = Ũαe(t) |νe〉+ Ũαµ(t) |νµ〉+ Ũατ (t) |ντ 〉 , (3.1)

where, |Ũαe(t)|2 + |Ũαµ(t)|2 + |Ũατ (t)|2 = 1 and Ũαβ(t) ≡
∑

j U
∗
αje
−iEjt/}Uβj; Ej is the energy

associated with the mass eigenstate |νj〉.

First, we characterize 2 qubit entanglement for two-flavour mixing which are relevant, as a

first approximation, to three cases of neutrino experiments. νµ ↔ ντ transitions are relevant

for atmospheric neutrinos, νe ↔ νµ at reactor experiments and νµ ↔ νe at accelerator

experiments [100, 101, 103, 133]. 2 qubit states are identified with the electron and muon

neutrino with the flavour state at time t=0 by using the occupation number states as [42]

|νe〉 = |1〉e ⊗ |0〉µ ≡ |10〉e ,

and |νµ〉 = |0〉e ⊗ |1〉µ ≡ |01〉µ .
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For two neutrino mixing the SU(2) rotation matrix

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (3.2)

can be identified with the mixing matrix U(θ).

The time evolution of an initial electron-flavour neutrino state in two mode (flavour) system

can be written as,

|νe(t)〉 = Ũee(t) |10〉e + Ũeµ(t) |01〉µ , (3.3)

where Ũee(t) = (cos2θe−iE1t + sin2θe−iE2t); Ũeµ(t) = sinθcosθ(e−iE1t− e−iE2t) and |Ũee(t)|2 +

|Ũeµ(t)|2 = 1 (also see Sec.(1.2.1)). The probability of generating and detecting electron-

neutrino flavour state as a survival probability Ps = |Ũee(t)|2 and, the probability of gener-

ating electron-neutrino flavour state and detecting muon-neutrino flavour state as a disap-

pearance probability Pd = 1− |Ũee(t)|2 are,

Ps = cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos

(
∆m2t

2E

)
(3.4)

and Pd = 4 sin2 θ cos2 θ sin2

(
∆m2t

4E

)
. (3.5)

where θ is a generic two flavour mixing angle and ∆m2 = m2
2−m2

1 is the corresponding mass-

square difference. The corresponding density matrix ρe(t) is given by ρe(t) = |νe(t)〉 〈νe(t)|
such that,

ρe(t) =


0 0 0 0

0 |Ũee(t)|2 Ũee(t)Ũ
∗
eµ(t) 0

0 Ũeµ(t)Ũ∗ee(t) |Ũeµ(t)|2 0
0 0 0 0

 . (3.6)

An excellent optical analogy to the phenomenon of neutrino oscillation is the following

situation. In quantum optics, the action of a quantum mechanical BS (Beam splitter) in-

terferometer is given by the SU(2) matrix R(θ), which performs precisely the same trans-

formation on photons as the neutrino mixing matrix does. Thus, the entanglement in a two

flavour neutrino mixing is akin to entanglement via mode swapping due to a BS [130].

Let ρe(t) be a density operator of an initial electron-neutrino flavour state |νe(t)〉 (see

Eq.(3.3)) which contains electron flavour mode (e) and muon flavour mode (µ) in 2-qubit

mode (flavor) bases (i.e, |10〉e and |01〉µ). ρepq,rs(t) = 〈p| 〈q| ρe(t) |r〉 |s〉. The partial trans-

positions of operator ρe(t) in flavour modes e and µ are defined as ρTepq,rs(t) = ρerq,ps(t) and
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ρ
Tµ
pq,rs(t) = ρeps,rq(t). In Sec.(2.3.1) of Chapter 2, we defined the Peres-Horodecki criterion,

which is a sufficient condition for separability in bi-partite quantum system. The composite

state ρe(t) is separable if and only if ρTe(t) or ρTµ(t) is a positive operator, with all posi-

tive eigenvalues, otherwise the composite state ρe(t) is an entangled state [89]. The partial

transpose in muon-flavour mode from Eq.(3.6) is

ρTµ(t) =


0 0 0 Ũee(t)Ũ

∗
eµ(t)

0 |Ũee(t)|2 0 0

0 0 |Ũeµ(t)|2 0

Ũeµ(t)Ũ∗ee(t) 0 0 0

 . (3.7)

In terms of probabilities, the eigenvalues λi of ρTµ(t) are λ1 = Ps, λ2 = Pd, λ3 =
√
PsPd,

λ4 = −
√
PsPd. Thus, λ4 is not positive which means ρTµ(t) is not a positive operator and

therefore the neutrino state |νe(t)〉 is entangled.

In Sec.(2.3.2) of chapter 2, we have also defined that Negativity (N) is a quantity which

measures by how much ρTµ(t) fails to be positive definite [83, 90]. The condition Negativity

Neµ > 0 is the necessary and sufficient inseparable condition for the bi-partite quantum

system to be entangled and for eµ system it is defined as

Neµ = N(ρe(t)) = ||ρTµ(t)|| − 1, (3.8)

where the trace norm

||ρTµ(t)|| = Tr

√
ρTµ(t)ρTµ†(t) = 1 + 2|

∑
i

λi|, (3.9)

and λi < 0 are the negative eigenvalues of partial transposition ρTµ(t) [91]. For the two

flavour neutrino oscillations,

||ρTµ(t)|| = 1 + 2
√
PsPd. (3.10)

Thus, the negativity is Neµ = 2
√
PsPd which is always greater than 0, so e-µ neutrino system

is entangled [35].

Concurrence and tangle are strong measures of quantum correlations [72]. A general bi-

partite state ψ of a 2 qubit system AB can be written as |ψ〉 = a|10〉+b |01〉, where |a|2+|b|2 =

1. A and B are the e and µ flavour modes respectively. In that case, Eq.(2.34) of chapter 2

become the “spin-flipped ”operator ρ̃e(t) of the state |νe(t)〉 as ρ̃e(t) = (σy⊗σy)ρ∗e(t)(σy⊗σy),
where ρ∗e(t) denotes the complex conjugation in the standard basis (|00〉,|01〉,|10〉,|11〉) and
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σy =

(
0 −i
i 0

)
is Pauli matrix. Thus,

ρ̃e(t) =


0 0 0 0

0 |Ũeµ(t)|2 Ũ∗ee(t)Ũeµ(t) 0

0 Ũ∗eµ(t)Ũee(t) |Ũee(t)|2 0
0 0 0 0

 . (3.11)

As both ρe(t) and ρ̃e(t) are positive operators, it follows that the product

ρe(t)ρ̃e(t) =

0 0 0

0 |Ũee(t)|2|Ũeµ(t)|2 + [Ũ∗
eµ(t)Ũee(t)]2 |Ũee(t)|2Ũ∗

ee(t)Ũeµ(t) + |Ũee(t)|2Ũ∗
eµ(t)Ũee(t) 0

0 |Ũeµ(t)|2Ũ∗
ee(t)Ũeµ(t) + |Ũeµ(t)|2Ũ∗

eµ(t)Ũee(t) [Ũ∗
ee(t)Ũeµ(t)]2 + |Ũeµ(t)|2|Ũee(t)|2 0

0 0 0 0

 , (3.12)

though non-hermitian also has only real and non-negative eigenvalues. Denoting the square

roots of these eigenvalues in decreasing order by µ1, µ2, µ3 and µ4, the tangle of the density

matrix ρe(t) is :

τeµ = [max(µ1 − µ2 − µ3 − µ4, 0)]2. (3.13)

Since, the product ρe(t)ρ̃e(t) has only one non-zero eigenvalue i.e., µ4 = 2
√
|Ũeµ(t)|2|Ũee(t)|2,

using Eq.(3.6) one can show that the tangle is τeµ = 4det[ρe2×2(t)] = 2[1−Tr(ρe2×2(t))2], where

ρe2×2(t) is the density matrix associated to the reduced state after tracing over muon flavor

mode i.e, ρe2×2(t) = Trµ(ρe(t)) =

(
|Ũee(t)|2 0

0 |Ũeµ(t)|2

)
. Therefore, the tangle (τeµ) for two

flavour neutrino oscillations is:

τeµ = 4|Ũee(t)|2|1− Ũee(t)|2 = 4PsPd. (3.14)

Similarly, concurrence1 [70,134] is a measure of entanglement defined in Eq.(2.33) of chapter

2 which for the electron-neutrino flavour system is [43]: Ceµ = 2
√
PsPd. The tangle is the

square of concurrence [72], thus τeµ = C2
eµ.

In the ultra-relativistic approximation, Fig.(3.1) shows all measures of bi-partite quantum

correlations, τeµ (dotted line) and Neµ (full line), with transition probabilities Ps (dashed

line) and Pd (dotted dash line), of an initial electron-neutrino flavour state as a function

of scaled time T ≡ ∆m2t
2E

. The mixing angle θ and the squared mass differences (∆m2) are

fixed at the most recent experimental values reported in ref. [54] (see Table.(1.1)). At T=0,

1In Chapter 5, we execute quantum circuit to simulate concurrence in the two neutrino system on the
IBM quantum computer.
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Figure 3.1: (Color online) Measures of bipartite quantum correlations Tangle (τeµ) = linear

entropy (Seµ) (dotted line), Negativity (Neµ) (full line) vs scaled time T ≡ (∆m2t
2E

) for an
initial electron neutrino state. The dependence on oscillation probabilities, the transition
probabilities Ps (dashed line) and Pd (dotted dash line) are also plotted. The mixing angle
θ is fixed at the experimental value sin2 θ = 0.310 [54]

all measures of entanglement are zero, i.e, Neµ and τeµ corresponds to an unentangled state

and the two flavour modes are not mixed. For T > 0, initial electron-neutrino flavour state

exhibits oscillatory behavior. When transition probabilities is maximum Ps = Pd = 0.5, all

measure of entanglement tends to 1 i.e, Neµ = τeµ, which corresponds to maximally entangled

state. In two flavour neutrino oscillation, among entanglement monotones, linear entropy

(S) (S = d
d−1

[1− Tr(ρe2×2(t))2], see Sec.(2.3.5) of Chapter 2), where d is the dimension of the

reduced density matrix ρe2×2(t)) is linked to the variances associated with the average neutrino

number [42]. The linear entropy for electron-neutrino flavour state, Seµ = 4PsPd = τeµ.

All entanglement measures in the bipartite system- the negativity, and tangle is directly

proportional to the product of survival and disappearance probabilities and coincide with

linear entropy such that

N2
eµ = τeµ = Seµ = 4PsPd. (3.15)

The electron-neutrino flavour state is a pure state and these quantum correlations have a

direct experimental connection with physical quantities in neutrino oscillations [134]. In the

case of bipartite systems, the tangle is the square of negativity. Therefore, it is a redundant

measure for bi-partite entanglement for a pure system. For the mixed state density matrix

ρ, the square of the negativity can be less than tangle (concurrence also) [98].
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At this juncture, we are in a position to compare our single-particle neutrino state with

a single photon system, where the quantum uncertainty on “which path”of the photon at

the output of an unbalanced Beam Splitter (BS) is replaced by the uncertainty on “which

flavour”of the produced neutrino is measured [42]. The coefficients Ũαe(t) and Ũαµ(t) play

the role of transmissivity (T) and the reflectivity (R) of the BS, respectively and BS =

R(θ) ≡ U(θ) (i.e, here BS is identified as a beam splitter transformation matrix U(θ)), in

two-flavour neutrino oscillations. Let us consider the simplest case, Eq.(3.3), when time-

evolved electron neutrino flavour state |νe(t)〉 enters from port 1, and no neutrino enters

from port two into the BS. The single-particle neutrino state take two paths - it either gets

transmitted (T ≡ Ũee(t)) or is reflected (R ≡ Ũeµ(t)). Thus, the state produced by the

|νe(t)〉 has the form of two-mode entangled state (|10〉e and |01〉µ); more precisely it is a

flavour-entangled state like the Bell’s state/two-qubit state in quantum optics.

3.2 Tri-partite entanglement in three-flavour neutrino

oscillations

In the three generation framework of neutrino oscillation system we identify neutrino modes

in the occupation number basis at time t=0 as:

|νe〉 = |1〉e ⊗ |0〉µ ⊗ |0〉τ ≡ |100〉e ,

|νµ〉 = |0〉e ⊗ |1〉µ ⊗ |0〉τ ≡ |010〉µ ,

|ντ 〉 = |0〉e ⊗ |0〉µ ⊗ |1〉τ ≡ |001〉τ . (3.16)

Even though it is discussed in Sec.(2.4) of Chapter 2, for the purpose of specifying entan-

glement, we are again debating here in brief that there are five possible partitions of three

systems (A—B—C, A—BC, B—AC, C—AB, ABC)(see, e.g., Fig.(3.2)), where A, B and

C are denoted by e, µ, and τ flavour modes, respectively. There exist separable (i.e., 2-

separable) states of the following kind: 1-qubit separable states, which are separable for

A—BC but not for B—AC nor C—AB; 2-qubit separable states, which are separable for

A—BC and B—AC but not for C—AB; and 3-qubit tri-separable states are separable to any

bipartition but not fully separable. Together with the fully inseparable states and the fully

separable ones, the above classes constitute a complete classification of mixed three-qubit

state systems; modulo permutations [135].
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Figure 3.2: Different possible ways of visualizing three-mode state entanglement [136].

In this section, the tri-partite quantum system is studied with two measures of entangle-

ment. First, the pairwise entanglement, which treats one flavour mode as one object (e.g.

e) and the other two as a single object (e.g. µτ), and the other two permutations of this

system (see Fig.(3.2(b))). This type of bi-partite entanglement (separable) in a three-flavour

(tri-partite) system can be quantified by bi-partite measures like the tangle and negativity

defined earlier. Later, we will consider genuine tri-partite entanglement (see Fig.(3.2(c))), for

which a measure called residual entanglement in terms of tangle and negativity is constructed

separately. The genuine tri-partite entanglement measure helps us distinguish between two

types of tri-partite states in quantum optics, the W-state or the GHZ-state. While the gen-

eralized W-state has a residual entanglement called three-π (which will defined later), the

GHZ-state has a zero residual three-π. For the three neutrino system, the existence of a

non-zero residual entanglement three-π puts neutrino states in the same class as W-states.

In reactor type neutrino experiment where an electron neutrino produced at the source

can oscillate into other flavours, using Eq.(3.16) in Eq.(3.1), the time evolution of electron
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flavour neutrino state in the occupation number basis can be written as [108]

|νe(t)〉 = Ũee(t) |100〉e + Ũeµ(t) |010〉µ + Ũeτ (t) |001〉τ (3.17)

with normalization condition |Ũee(t)|2 + |Ũeµ(t)|2 + |Ũeτ (t)|2 = 1, where e, µ and τ are a three

modes (flavour) neutrino state |100〉e, |010〉µ, and |001〉τ respectively, in 3-qubit system. The

corresponding density matrix in the standard basis |ijk〉, where each index takes the values

0 and 1 is given by

ρe(t) = |νe(t)〉 〈νe(t)| =



e 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 |Ũee(t)|2 0 Ũee(t)Ũ
∗
eµ(t) Ũee(t)Ũ

∗
eτ (t) 0

0 0 0 0 0 0 0 0

0 0 0 Ũeµ(t)Ũ∗ee(t) 0 |Ũeµ(t)|2 Ũeµ(t)Ũ∗eτ (t) 0

0 0 0 Ũeτ (t)Ũ
∗
ee(t) 0 Ũeτ (t)Ũ

∗
eµ(t) |Ũeτ (t)|2 0

0 0 0 0 0 0 0 0


.

(3.18)

In pairwise entangled tri-partite quantum system, the probability of the three flavour state

to be an e neutrino mode is Ps = |Ũee(t)|2 and to be in the µτ mode (treating as a single

quantum object) is Pd = 1 − |Ũee(t)|2. The partial transposition operator on the density

matrix ρe(t) acts to the matrix elements change under the rule |ijk〉 〈i′j′k′| −→ |i′jk〉 〈ij′k′|.
Thus,

ρTe(t) =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ũeµ(t)Ũ∗ee(t)

0 0 0 0 0 0 0 Ũeτ (t)Ũ∗ee(t)

0 0 0 |Ũee(t)|2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 |Ũeµ(t)|2 Ũeµ(t)Ũ∗eτ (t) 0

0 0 0 0 0 Ũeτ (t)Ũ∗eµ(t) |Ũeτ (t)|2 0

0 Ũee(t)Ũ
∗
eµ(t) Ũee(t)Ũ

∗
eτ (t) 0 0 0 0 0



.

(3.19)
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The eigenvalues of ρTe(t) are,

λ1 = λ2 = λ3 = λ4 = 0,

λ5 = Ps, λ6 = Pd, λ7 =
√
PsPd, λ8 = −

√
PsPd. (3.20)

Thus λ8 is not positive which means ρTe(t) is not positive operator and therefore ρe(t)

is entangled with reference to the PPT criterion. Consequently, finding ||ρTe(t)|| = 1 +

2
√
PsPd, the negativity is given Ne(µτ) = 2

√
PsPd and is positive, fulfilling the criterion of

entanglement.

The reduced density matrix ρe2×2(t) after tracing one mode (flavor) is

ρe2×2(t) = Trµτ (ρ
eµτ (t)) =

(
|Ũee(t)|2 0

0 |Ũeµ(t)|2 + |Ũeτ (t)|2

)
. (3.21)

The tangle, τe(µτ) = 2[1 − Tr(ρe2×2(t))2] = 4PsPd. When neutrino oscillates in between

different modes (flavour), the linear entropy of the reduced state is Se(µτ) = 4PsPd. Hence

all measures of quantum correlations of bi-partite states of 3-qubit mode (flavour) entangled

single particle neutrino state |νe(t)〉 are satisfied. They are related by

N2
e(µτ) = τe(µτ) = Se(µτ) = 4PsPd. (3.22)

Similar calculations for the other two permutations of this system i.e., between flavour

modes µ and single object eτ , and between flavour modes τ and single object eµ (see

Fig.(3.2(b))) correspond to N2
µ(eτ) = τµ(eτ) = Sµ(eτ) = 4|Ũeµ(t)|2(|Ũee(t)|2 + |Ũeτ (t)|2) and

N2
τ(eµ) = ττ(eµ) = Sτ(eµ) = 4|Ũeτ (t)|2(|Ũee(t)|2 + |Ũeµ(t)|2), respectively. This analysis shows

that the entanglement quantified by the tangle and negativity between flavour modes e and

single object µτ , between µ and single object eτ , and between τ and single object eµ for the

time evolved electron-neutrino flavour state (see Eq.(3.17)) has pairwise bipartite entangle-

ment.

However, to understand a genuine tripartite entanglement, the neutrino state should be

neither entirely separable nor biseparable (see Fig.(3.2(c))). The criteria genuine tri-partite

entanglement:

� The quantum correlations in electron-neutrino flavour state Eq.(3.17) have to satisfy

the CKW inequality, which is a monogamy inequality for tangles:

τeµ + τeτ ≤ τe(µτ).
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� The monogamy inequality for negativity

N2
eµ +N2

eτ ≤ N2
e(µτ).

We can also define two quantities that quantify three particle entanglement called the residue

of tangle and negativity τeµτ and πeµτ , respectively by

τeµτ = τe(µτ) − τeµ − τeτ ,

πeµτ =
1

3

(
N2
e(µτ) +N2

µ(eτ) +N2
τ(eµ) − 2N2

eµ − 2N2
eτ − 2N2

µτ

)
. (3.23)

These quantities represent a collective property of three flavour modes of an electron-neutrino

flavour state in a three-qubit system that is unchanged by permutations, similar terms for

µ and τ neutrinos can also be defined [35].

The tangle between e and µ flavour modes τeµ and between e and τ flavour modes τeτ is

found by calculating reduced density matrix

ρeµ(t) = Trτ (ρ
e(t)) =


0 0 0 0

0 |Ũee(t)|2 Ũee(t)Ũ
∗
eµ(t) 0

0 Ũeµ(t)Ũ∗ee(t) |Ũeµ(t)|2 0

0 0 0 |Ũeτ (t)|2

 (3.24)

and

ρeτ (t) = Trµ(ρe(t)) =


0 0 0 0

0 |Ũee(t)|2 Ũee(t)Ũ
∗
eτ (t) 0

0 Ũeτ (t)Ũ
∗
ee(t) |Ũeτ (t)|2 0

0 0 0 |Ũeµ(t)|2

 , (3.25)

respectively. For eτ flavour modes, the eigen values of the product

ρeτ (t)ρ̃eτ (t) =


0 0 0 0

0 2|Ũee(t)|2|Ũeτ (t)|2 2|Ũee(t)|2Ũee(t)Ũ∗eτ (t) 0

0 2|Ũeτ (t)|2Ũeτ (t)Ũ∗ee(t) 2|Ũee(t)|2|Ũeτ (t)|2 0
0 0 0 0

 (3.26)

are µ1 = µ2 = µ3 = 0 and µ4 = 4|Ũee(t)|2|Ũeτ (t)|2, where ρ̃eτ (t) is a “spin-flipped ”density

matrix ρ̃eτ (t) = (σy ⊗ σy)ρ∗eτ (t)(σy ⊗ σy). This leads to the tangle for eτ and similarly, for

eµ flavour modes given by ,

τeτ = Tr(ρeτ (t)ρ̃eτ (t)) = 4|Ũee(t)|2|Ũeτ (t)|2,

τeµ = Tr(ρeµ(t)ρ̃eµ(t)) = 4|Ũee(t)|2|Ũeµ(t)|2. (3.27)
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Figure 3.3: (Color online) Entanglement of formation (Ef ) vs L
E
Km
GeV

graph between e,µ, and
τ satisfying: Ef (τeµ) + Ef (τeτ ) > Ef (τe(µτ)) where Ef (τeµ) (Red line), Ef (τeτ ) (Blue line),
the sum Ef (τeµ) + Ef (τeτ ) (Green line) and Ef (τe(µτ)) (Black line). Here A, B and C are
three qubit e, µ and τ flavour mode neutrino states, respectively.

The CKW inequality in terms of tangle is: τeµ + τeτ = τe(µτ) and is unchanged by per-

mutation (i.e, τµe + τµτ = τµ(eτ), ττe + ττµ = ττ(eµ)). Thus, the residual tangle between

flavour mode e, µ and τ is zero i.e, τeµτ = 0. The result shows that for any values of

the tangle satisfying equality τeµ + τeτ = τe(µτ), there is a quantum state that is consistent

with those values. The CKW inequality is valid when the density matrix of the product

ρAC ρ̃AC should have ≤ two non-zero eigenvalues [72]. Since we get a one non-zero eigenvalue

µ4 = 4|Ũee(t)|2|Ũeτ (t)|2 of the product ρeτ ρ̃eτ which satisfied the condition. In particular,

the CKW inequality becomes equality for this case, and the three-tangle (τeµτ ) vanishes as

it does for the W-state [35]. Thus the tri-partite neutrino system in the case of three qubits

in a pure state satisfies the CKW inequality. The GHZ state, on the other hand, obeys the

CKW inequality (not-equality); therefore, the three-tangle is greater than zero.

Unlike tangle, the entanglement of formation 2 (EOF or Ef (τ)) [72] defined in Eq.(2.35) of

chapter 2 do not satisfy fully the additive property for the tri-partite three neutrino system.

2The solution of an important unsolved problem of whether the EOF is additive in nature is still not
found [71].
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For the time evolved electron flavour neutrino state, the relation follows

Ef (τeµ) + Ef (τeτ ) > Ef (τe(µτ)). (3.28)

This result is shown in Fig.(3.3).

Neµ and Neτ are the negativities of the mixed states ρeµ(t) = Trτ (ρ
eµτ (t)) and ρeτ (t) =

Trµ(ρeµτ (t)), respectively [35]. We find that the entanglement negativity of the e µ flavour

modes is

N2
eµ = 4|Ũee(t)|2|Ũeµ(t)|2 + 2|Ũeτ (t)|4 − 2|Ũeτ (t)|2

√
|Ũeτ (t)|4 + 4|Ũee(t)|2|Ũeµ(t)|2. (3.29)

For e τ flavour modes the negativity is

N2
eτ = 4|Ũee(t)|2|Ũeτ (t)|2 + 2|Ũeµ(t)|4 − 2|Ũeµ(t)|2

√
|Ũeµ(t)|4 + 4|Ũee(t)|2|Ũeτ (t)|2, (3.30)

and also, for the e and (µτ) system we have N2
e(µτ) = 4|Ũee(t)|2(|Ũeµ(t)|2 + |Ũeτ (t)|2). The

resulting CKW inequality: N2
eµ +N2

eτ ≤ N2
e(µτ) implies:

|Ũeµ(t)|4 + |Ũeτ (t)|4 < |Ũeτ (t)|2
√
|Ũeτ (t)|4 + 4|Ũee(t)|2|Ũeµ(t)|2

+|Ũeµ(t)|2
√
|Ũeµ(t)|4 + 4|Ũee(t)|2|Ũeτ (t)|2. (3.31)

Fig.(3.4) shows that in the ultra-relativistic approximation, the time evolution of the sum

of the entanglement negativity between flavour mode e and µ and between e and τ is less than

entanglement negativity between flavour mode e and µτ i.e, N2
eµ + N2

eτ < N2
e(µτ). With this

result, we can say that the CKW inequality in terms of negativity is strict (because Uee(t) 6=
0, Ueµ(t) 6= 0, Ueτ (t) 6= 0) and that, the inequality in terms of a tangle between different

flavour modes of neutrino is characteristic of a general class of W-states. To understand

the tightness of the monogamy inequality in terms of negativity (see Sec.(2.4.2) of chapter

2), the three-π is analogous to three tangles (τeµτ ) is studied in the context of three flavour

neutrino oscillations.

For electron-neutrino flavour (and analogously for a muon or tau neutrino system), it can

be defined as [35]: πeµτ = πe+πµ+πτ
3

, where πe = N2
e(µτ)−N2

eµ−N2
eτ , πµ = N2

µ(eτ)−N2
µe−N2

µτ ,

and πτ = N2
τ(eµ) − N2

τe − N2
τµ are the residual entanglement in terms of negativity and the

subscript e, µ and τ in πe, πµ, πτ mean the flavour mode e, flavour mode µ, and flavour mode
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Figure 3.4: (Color online) Negativity (N2
eµ+N2

eτ ) (Red line) and N2
e(µτ) (Black line) vs L

E
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GeV

)

graph between flavour modes electron, muon, and tau neutrinos satisfying: N2
eµ + N2

eτ <
N2
e(µτ). Parameters θij and ∆m2

ij are fixed at the experimental values [54].

τ are taken as the focus respectively. Using the negativity values calculated earlier to get πe,

πµ, and πτ we find πe 6= πµ 6= πτ . We can see from Fig.(3.5) that unlike tangle, the residual

entanglement have the different maxima (πe, πµ and πτ ) at scale of distance per energy unit
L
E
> 0, and πe 6= πµ 6= πτ . This gives clear indication that the residual entanglement πe, πµ

and πτ are quantified but it can not be the measure of genuine tri-partite entanglement as

the measures are not invariant under permutations. As the measure of genuine tri-partite

entanglement in three flavour neutrino oscillations, we define πeµτ as the average of πe, πµ,

and πτ , such that πeµτ = 1
3
(N2

e(µτ) + N2
µ(eτ) + N2

τ(eµ) − 2N2
eµ − 2N2

eτ − 2N2
µτ ) (see Eq.(3.23)).

πeµτ is now invariant under permutations of flavour mode in an electron- neutrino flavour

state. Thus,

πeµτ =
4

3
[|Ũee(t)|2

√
|Ũee(t)|4 + 4|Ũeµ(t)|2|Ũeτ (t)|2

+ |Ũeµ(t)|2
√
|Ũeµ(t)|4 + 4|Ũee(t)|2|Ũeτ (t)|2

+ |Ũeτ (t)|2
√
|Ũeτ (t)|4 + 4|Ũee(t)|2|Ũeµ(t)|2

− |Ũee(t)|4 − |Ũeµ(t)|4 − |Ũeτ (t)|4]. (3.32)
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ij are fixed at the experimental values [54].

From Fig.(3.6), we note that for L
E
> 0, entanglement among three-flavour modes occurs i.e,

πeµτ > 0, and exhibits a typical oscillatory behavior. At largest mixing i.e, when transition

probabilities are Pνe→e = 0.39602, Pνe→µ = 0.435899, and Pνe→τ = 0.168081, we find that

πeµτ reaches the maximum value 0.436629.

So far, we have considered the time evolution of entanglement characteristics of an elec-

tron neutrino state, which are relevant for reactor experiments. For completeness, we give

the appropriate entanglement measures for a muon neutrino state relevant to accelerator

experiments.

|νµ(t)〉 = Ũµe(t) |100〉e + Ũµµ(t) |010〉µ + Ũµτ |001〉τ (3.33)
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Figure 3.6: (Color online) Residual entanglement πeµτ (Black line) vs L
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) graph between
the flavour modes electron, muon and tau neutrinos. Parameters θij and ∆m2
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and Pνe→τ (Green line) are reported as well for comparison.

where, |Ũµe(t)|2 + |Ũµµ(t)|2 + |Ũµτ (t)|2 = 1. The relevant density matrix is

ρµ(t) = |νµ(t)〉 〈νµ(t)| =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 |Ũµe(t)|2 0 Ũµe(t)Ũ
∗
µµ(t) Ũµe(t)Ũ

∗
µτ (t) 0

0 0 0 0 0 0 0 0

0 0 0 Ũµµ(t)Ũ∗µe(t) 0 |Ũµµ(t)|2 Ũµµ(t)Ũ∗µτ (t) 0

0 0 0 Ũµτ (t)Ũ
∗
µe(t) 0 Ũµτ (t)Ũ

∗
µµ(t) |Ũµτ (t)|2 0

0 0 0 0 0 0 0 0


.

(3.34)

For the initial muon-flavour neutrino state the CKW inequality in terms of tangle becomes

equal, consequently the residual tangle vanishes, i.e τµeτ = 0. Whereas, the CKW inequality

in terms of negativity is strict i.e, N2
µe +N2

µτ < N2
µ(eτ).
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The measure of tri-partite entanglement is

πµeτ =
4

3
[|Ũµe(t)|2

√
|Ũµe(t)|4 + 4|Ũµµ(t)|2|Ũµτ (t)|2

+ |Ũµµ(t)|2
√
|Ũµµ(t)|4 + 4|Ũµe(t)|2|Ũµτ (t)|2

+ |Ũµτ (t)|2
√
|Ũµτ (t)|4 + 4|Ũµe(t)|2|Ũµµ(t)|2

− |Ũµe(t)|4 − |Ũµµ(t)|4 − |Ũµτ (t)|4]. (3.35)

From Fig.(3.7), we observe that at L
E

= 0, πµeτ = 0, which mean the initial muon-neutrino

flavour state is separable. At L
E
> 0, entanglement among three-flavour modes occur and

πµeτ > 0 oscillates. For maximum mixing, πµeτ reaches a value 0.472629 showing tri-partite

entanglement.

The three neutrino state exhibits tri-partite entanglement akin to the W-state. The three-

tangle and the residual entanglement measures of genuine tri-partite entanglement. The
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three-tangle is maximal for the GHZ state but vanishes for the W-state. This means that

the three-tangle is not suitable as a measure of genuine tri-partite entanglement. The three-

tangle reveals the existence of two inequivalent kinds of tripartite entanglement for pure

three-qubit states. This is very briefly explained in the reference [92]. Compared to the

residual entanglement three-π, the three-tangle generally underestimates the entanglement

[35]. For the three-neutrino case, Eq.(3.32) (and Eq.(3.35)) of non-zero πeµτ (and πµeτ ) gives

a reliable measures of tri-partite entanglement. In quantum optics, there are also measures

of entanglement for qutrits, which may be relevant to tri-partite entanglement [47].

We compare the value of πeµτ and πµeτ with the three-π value of prototype W-state i.e.,

πABC(W1) = 0.549363 [35] (see Sec.(2.4.2) of chapter 2), we get

πeµτ (νe) < πµeτ (νµ) < πABC(W1). (3.36)

Hence, satisfying CKW inequality and with all properties of W-state (see Eq.(2.70))

πeµτ > 0; τeµτ = 0

or, πµeτ > 0; τµeτ = 0, (3.37)

implies that the form of mode (flavour) entangled neutrino state Eq.(3.1) has the general

properties of tri-partite entangled W-state.



Chapter 4

Quantum Computing

The theory of quantum computing depends on quantum mechanics to perform quantum

calculations [45]. The method of assembling quantum computers was pioneered by Paul Be-

nioff in 1980 where he proposed Turing machine which is a quantum mechanical model [137].

Later Richard Feynman introduced an idea that quantum computer could efficiently sim-

ulate quantum systems which a classical computer couldn’t possibly [138, 139]. In 1985,

Deutsch’s model of a quantum computer showed us that quantum computers have compu-

tational power more than classical computers [140, 141]. Since then the improved version

of Deutsch’s model was experimentally proved by many scientist like Richard Jozsa [142],

Ethan Bernstein and Umesh Vazirani [143], Daniel R. Simon [144], Peter W. Shor [145], Lov

K. Grover [146] etc., to tackle specific computational issues a lot quicker than classically.

Today, the idea of investigating quantum simulation on quantum computer has reached out

to a wide topics of science like entanglement in many-body systems [147–149], quantum phase

transitions [150], molecular physics [151–153], quantum field theoretic problem [154–157],

biology [158], neural networks [159], pharmacology [160], quantum gravity [161], quan-

tum chaos [162], quantum chromodynamics [163] etc. Likewise, experimental realization

of quantum simulation have effectively been made in frameworks like NMR [164–166], ion-

trap [167, 168], atomic [150, 169] and photonic quantum computers [153, 170]. The current

status of this field can be determined from these recent papers [171–177].

The quantum gates and circuit model is the most broadly used model to study quantum

computing in light of the quantum bit, or “qubit” (a property known as superposition).

In general, IBM quantum provides a superconducting-qubit based quantum computer that

is accessible online to a wide class of researchers [44]. The tasks which can be executed

56
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effectively on IBMQ platform are very well explained in references [178–187].

Chapter 2 of the thesis shows that the superposed Bell’s state of 2 qubit, the GHZ and W

states of 3 qubit are maximally entangled. In this chapter, we construct quantum gates and

circuits to simulate these entangled states on IBM quantum cloud computer [44].

The chapter’s organization is : In Sec.(4.1), we have geometrically explained the struc-

ture of the qubit. Sec.(4.2) defined a few quantum gates of single-qubit and two-qubits. In

Sec.(4.3), the quantum circuits of Bell’s states, the GHZ state, and prototype W-state are

constructed, and Sec.(4.4) shows the simulation of these quantum circuits on the IBM quan-

tum cloud computer. Sec.(4.5) extends our study further and proposes a quantum circuit to

simulate the entanglement measure-concurrence of 2-qubit arbitrary pure state on the IBM

quantum cloud computer.

4.1 Geometrical representation of Qubit

An actual execution of a qubit can be given on a basic level by any quantum framework with

two states (|0〉 and |1〉), for example, the orientation of spin-half particle or 2 orthogonal

polarization states of photon. Another convenient representation of a state of single-qubit

|ψ〉 = c1 |0〉+ c2 |1〉 (see Eq.(2.1) of chapter 2) is

|ψ〉 = cos(
θ

2
) |0〉+ eiφsin(

θ

2
) |1〉 . (4.1)

where 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π. In order to check whether the qubit state |ψ〉 is pure or

mixed, it is possible to express a density matrix ρ of a qubit using the Bloch sphere in which

the points on the surface of sphere are qubit states shown in Fig.(4.1). A general equation

with a positive semi-definite Hermitian matrix of trace 1 which is ρ, is given as

ρ =
1

2
(I + uxσx + uyσy + uzσz) (4.2)

where I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
are Pauli matrices

and ux, uy and uz are real coefficients. This permits us to associate ux, uy and uz with the

x, y and z components of the Bloch vector i.e, ~u = uxx̂ + uyŷ + uz ẑ and the eigenvectors

|λ〉 and |φ〉 of ρ are also eigenvectors of uxσx + uyσy + uzσz corresponding to the eigenvalues
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Figure 4.1: This figure represent the Bloch sphere where |0〉 and |1〉 are north and south
poles, respectively and which are opposite points of mutual orthogonal states. The x, y-axes
have an eigenstates σx and σy, respectively.

±
√
u2
x + u2

y + u2
z. Therefore, the diagonalized density operator ρ is

ρ =
1

2
(1 +

√
u2
x + u2

y + u2
z) |λ〉 〈λ|+

1

2
(1−

√
u2
x + u2

y + u2
z) |φ〉 〈φ| . (4.3)

The states which lie on the surface of the Bloch sphere reduces to pure state |λ〉 〈λ| satisfying

condition u2
x + u2

y + u2
z = 1, while the condition u2

x + u2
y + u2

z < 1 represent mixed states

where the Bloch vector is a point within the sphere. In general, the components of the Bloch

vector can be determined by (i = x, y, z)

< σi >= Tr(ρσi) = ui. (4.4)

For the state |ψ〉 in Eq.(4.1),

ρ = |ψ〉 〈ψ| =

(
cos2( θ

2
) e−iφ sin(θ)

2

eiφ sin(θ)
2

sin2( θ
2
)

)
, (4.5)

with Tr(ρ) = 1. Using Eq.(4.5) in Eq.(4.4), the components of the Bloch vector are obtained

as ux = sinθcosφ, uy = sinθsinφ and uz = cosθ. Thus, the Bloch vector correspond to unit
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length i.e, |~u|2 = 1 implying the state |ψ〉 as a single qubit pure state lying on the Bloch-

sphere surface.

4.2 Quantum gate

To put the qubit in different states of the Bloch-sphere, we require the idea of a quantum

gate. Quantum computers control qubits utilizing quantum gates. A quantum gate of single

qubit is a 2 × 2 unitary matrix where the unitary matrix is chosen such that the quantum

gate is reversible and probability amplitudes are preserved. Therefore, a quantum state can

be evolved using quantum gate where an underlying state |ψ〉 changes into the new state as

|ψ′〉 = U |ψ〉 , (4.6)

where U addresses the unitary quantum gate with U †U = 1, which is matrix-vector multi-

plication. In the following sub-sections, we explore a few unitary quantum gates of one and

two qubits, which would be useful to construct a quantum circuit of a state of a quantum

system.

4.2.1 Universal gate

The most general form of a single-qubit unitary quantum gate is the U3 universal gate

implemented on IBM quantum machine. It is defined in matrix form as

U3(θ, φ, λ) =

(
cos θ

2
−sin θ

2
eiλ

sin θ
2
eiφ cos θ

2
ei(λ+φ)

)
. (4.7)

The unitary operators on single qubits can be pictured in the Bloch sphere. One way of

visualizing this picture is by writing the U3 gate as an arrangement of rotation operators

with respect to x, y, z axes. Setting λ = π
2

and φ = −π
2

define the x-axis rotation gate,

Rx(θ):

Rx(θ) =

(
cos θ

2
−isin θ

2

−isin θ
2

cos θ
2

)
= U3(θ,−π

2
,
π

2
). (4.8)
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Similarly, the y-axis rotation gate can be obtained by setting λ = 0 and φ = 0

Ry(θ) =

(
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

)
= U3(θ, 0, 0). (4.9)

Further, setting θ = 0 and λ = 0 and multiplying by a global-phase e−i
φ
2 , we get the z-axis

rotation gate as

Rz(φ) =

(
e−i

φ
2 0

0 ei
φ
2

)
= e−i

φ
2U3(0, φ, 0). (4.10)

These gates are themselves unitary and so is

U ≡ Rz(φ)Ry(θ)Rz(θ) = U3(θ, φ, λ). (4.11)

Thus, we have the unitary operator quantum gates to rotate the state anywhere in the Bloch

sphere.

4.2.2 Pauli gates

The least complex single qubit gate is a bit-flip gate known as NOT gate denoted by X. Its

matrix representation is obtained from U3(θ, φ, λ) by

X ≡
(

0 1
1 0

)
= U3(π, 0, π). (4.12)

The above matrix is similar to Pauli σx matrix. The action of Pauli-X gate is to flip the state

|0〉 to |1〉 and vice-versa. A qubit can also flip its superposition state if X(c1 |0〉 + c2 |1〉) =

c2 |0〉+ c1 |1〉 .

Similarly, Pauli-Y and Z gate are called phase flip gate and its matrix representation ob-

tained from U3 gate can be written as Y =

(
0 −i
i 0

)
= U3(π, π/2, π/2) and Z =

(
1 0
0 −1

)
=

U3(0, 0, π).

4.2.3 Hadamard gate

In quantum computing the Hadamard gate is an essential quantum gate because if the qubit

starts in a definite |0〉 or |1〉 state, the Hadamard gate places each into a superposition of
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|0〉 and |1〉 states. Mathematically, this gate has following matrix representation

H =
1√
2

(
1 1
1 −1

)
= U3(

π

2
, 0, π). (4.13)

Using matrix multiplication, this gate acts on initial states |0〉 and |1〉 such as:

H |0〉 =
1√
2

(|0〉+ |1〉); H |1〉 =
1√
2

(|0〉 − |1〉). (4.14)

To recover qubit to its definite state we need to apply Hadamard gate two times on |0〉 or

|1〉 state i.e., HH |0〉 = |0〉 and HH |1〉 = |1〉.

4.2.4 Controlled NOT gate

In all the previous sub-sections, we studied the Universal gate, NOT gate, and Hadamard

(H) gate, a single qubit quantum gate. Now we look at the two-qubit quantum gate. The

Controlled-NOT gate (CNOT), also known as the controlled-X (CX) gate, is used for en-

tangling the 2 qubits together and is essential in quantum computing or algorithm. This

gate has two input qubits, the control qubit and the target qubit, respectively. On the com-

putational basis, this gate flips the target qubit if the control qubit is in the |1〉 state. In

equations:

|00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉 . (4.15)

In this sense, the CNOT gate is a generalization of the classical XOR gate, and the action

of the gate may be summarized as

|a, b〉 → |a, b⊕ a〉 (4.16)

where a is a control qubit and b is the target qubit, and ⊕ is addition modulo two, which

is exactly what the XOR gate does. The control qubit and the target qubit are XORed and

stored in the target qubit. The matrix representation of the CNOT gate is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.17)
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with unitary condition (CNOT )†(CNOT ) = I. The schematic symbol notation for the

CNOT gate is given in Fig.(4.2). Even though the CNOT gate is not derived directly

from the Universal gate, both CNOT and single-qubit gates are essential gates in quantum

computing because any multiple qubit logic gates can be composed of them.

Figure 4.2: The Symbol of CNOT gate with two input qubits where a is control qubit and
b is target qubit.

4.2.5 Controlled-U3 gate

A controlled version of the Universal (U3) gate (generic single qubit rotation), also called

Controlled-U3 (CU3) gate includes a global phase eiγ of the U3 gate along with four param-

eter two-qubit gate. The matrix representation of CU3-gate is

CU3(θ, φ, λ, γ) =


1 0 0 0
0 eiγcos( θ

2
) 0 −ei(γ+λ)sin( θ

2
)

0 0 1 0
0 ei(γ+φ)sin( θ

2
) 0 ei(γ+φ+λ)cos( θ

2
)

 (4.18)

The circuit symbol of CU3-gate is shown in Fig.(4.3). In the next section, we introduce some

primary quantum circuits using the combination of U3, Ry(θ), X, H, CNOT, and CU3 gates.

Figure 4.3: The symbol of two qubit Controlled-U3 gate.
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Input
(|ab〉)

Output (Bell states)

|00〉 (|00〉+ |11〉)/
√

2 ≡ |ξ00〉
|01〉 (|01〉+ |10〉)/

√
2 ≡ |ξ01〉

|10〉 (|00〉 − |11〉)/
√

2 ≡ |ξ10〉
|11〉 (|01〉 − |10〉)/

√
2 ≡ |ξ11〉

Table 4.1: The truth table of two qubit Bell states.

4.3 Quantum circuit

Changes to a quantum state are well explained with quantum computing tools. To study

quantum data, a quantum computer consists of quantum circuits of wires and elementary

quantum gates unlike classical computer that uses electrical circuits and logic gates. With

the arrangement of quantum gates and coherent quantum operations on qubits (quantum

data), a quantum circuit also uses data from classical computation. In this segment, we

construct the quantum circuit of quantum states such as Bell states, the GHZ state, and

prototype W-state. The properties of these states are already discussed in Chapter 2.

We construct two-qubit Bell states by applying the Hadamard gate on an initial qubit and

adding a CNOT gate. This is a transformation operation of the four computational basis

states given in the Truth Table.(4.1). For example, to create an output state |ξ00〉, the input

of the Hadamard gate is taken as |00〉 to { (|0〉+|1〉)√
2
⊗|0〉}, and later the operation of the CNOT

gate will give the output state (|00〉+|11〉)√
2

≡ |ξ00〉. Fig.(4.4) shows the Bell states quantum

circuit in which the Hadamard transformation puts the upper qubit in superposition, acting

as a control input to the CNOT while the inversion of target qubit is possible only when the

control is 1. The mnemonic notation of two-qubit Bell states ξ00, ξ01, ξ10, and ξ11 may be

understood via the following equation:

|ξab〉 ≡
|0, b〉+ (−1)a |1, b̄〉√

2
, (4.19)

where b̄ is the negation of b.

The GHZ state is a three-qubit generalization of Bell’s state. The quantum circuit of the

prototype GHZ state |GHZ〉 = |000〉+|111〉√
2

can be seen in Fig.(4.5). The quantum circuit of the

GHZ state comprises of one Hadamard gate and two CNOT gates. Similarly, Fig.(4.6) shows

the prototype W-state quantum circuit. Using Ry(θ) at θ ≈ 1.91 degree, CU3(π
2
, π

2
, π

2
, π

2
),
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Figure 4.4: The figure represent the quantum circuit of two qubit Bell’s state

Figure 4.5: The figure represent quantum circuit of three-qubit GHZ state.

two CNOT and one X quantum gates, we construct the prototype W-state quantum circuit

i.e., |W3〉 = 1√
3
(|001〉+ |010〉+ |100〉).

To generate such quantum states, we need a measurement circuit on the standard basis,

also known as the z basis or computational basis, which when combined with gates can

execute any measurement. The quantum circuit symbol for measurement is represented

by a “meter” symbol shown in Fig.(4.7). Being a non-unitary quantum gate, it does non-

reversible operations. The measurement circuit destroys the superposition, thereby losing

quantum information, and so only one classical state can be observed. This is the reason

why copying of qubit’s state is not allowed. This is also called the “no-cloning theorem”

of quantum computing. For example, the measurement operation transforms a single qubit

Figure 4.6: The figure represent the quantum circuit of three-qubit prototype W-state |W3〉.
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Figure 4.7: The quantum circuit symbol for measurement.

state |ψ〉 = c1 |0〉+c2 |1〉 into a probabilistic classical state M of either 0 value with probability

|c1|2 , or 1 with probability |c2|2 as shown in Fig.(4.7).

In the next section, we measure and simulate the Bell’s state, the GHZ-state and the

prototype W-state quantum circuits on the IBM quantum computer, a cloud-based quantum

computer that was recently launched online in 2016.

4.4 IBM quantum cloud computer

We associate a quantum computer in IBM Quantum (see Fig.(4.8)) [44], which uses a phys-

ical qubit called a superconducting transmon qubit (acts as an artificial atom), constructed

using superconducting materials like niobium and aluminum designed on a silicon substrate.

These are artificial qubits formed by considering two non-interacting energy levels out of

many. Advanced ages of IBM quantum processors show the capability of superconducting

transmon qubits to be the reason for an electrically controlled solid-state quantum com-

puter. With the development of architecture of chips and improvisation of error correc-

tion and mitigation, new age IBM quantum creates system with higher quantum volume

to have advantage in various applications. In the virtual platform of quantum cloud ad-

ministrations, IBM quantum devices can be freely accessible by users through Qiskit (IBM

quantum composer), which is a graphical quantum programming device that allows us to

drag and drop operations to construct quantum circuits and run them on real hardware or

simulator. A useful general-purpose simulator for recreating quantum circuits both ide-

ally and subject to noise modeling is the QASM (Quantum assembly language) simulator

(ibmq qasm simulator). The simulation technique is consequently chosen dependent on the

input circuits and parameters.

In Fig.(4.9), Fig.(4.10(a)) and Fig.(4.10(b)), we construct and test the quantum circuit of

the Bell’s state (see Fig.(4.4)), a prototype of the GHZ-state (see Fig.(4.5) and the W-state

(see Fig.(4.6)), respectively, on simulator of IBM quantum computer and shows measurement

Histograms generated by running these circuits. According to the bottom figures of Fig.(4.9),
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Figure 4.8: Image of IBM quantum computer [44].

Figure 4.9: The quantum circuit and its simulations is shown for the two qubit Bell’s state on
IBMQ computer. The lower part of Fig.(a), Fig.(b), Fig.(c) and Fig.(d) show the generation
of four Bell’s state |ξ00〉, |ξ01〉, |ξ10〉 and |ξ11〉, respectively on IBMQ simulator.
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Figure 4.10: The quantum circuit and its simulations is shown for the GHZ state |GHZ〉
and prototype W-state |W3〉 in Fig.(4.9(a)), Fig.(4.9(b)), respectively on IBMQ simulator.

Fig.(4.10(a)) and Fig.(4.10(b)), each bin in the histograms show almost equal frequency (or

probability) of measurement of the Bell’s state (|ξab〉) in the basis (|00〉 , |01〉 , |10〉 , |11〉),
the GHZ state (|GHZ〉) in the basis (|000〉 , |111〉) and the W-state (|W3〉) in the basis

(|001〉 , |010〉 , |100〉), respectively. The output from each circuit measurement in histogram

exhibits that the quantum state such as Bell’s state, the prototype GHZ, and W-state are

maximally entangled.

4.5 Concurrence circuit

Here, we come up with a quantum circuit to compute concurrence of a 2-qubit pure state

on IBM Quantum simulator and on real quantum hardware. The Concurrence defined in

Eq.(2.33) of chapter 2 can be reduced to simple expression for a pure state as [188,189]

C(|Ψ〉) = | 〈Ψ|σy ⊗ σy |Ψ∗〉 |. (4.20)

The quantum measurement circuit of concurrence for an arbitrary 2-qubit pure state is
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Figure 4.11: The figure represent concurrence quantum circuit of two-qubit pure state.

shown in Fig.(4.11). It is constructed with one CNOT gate, two Pauli σy gates and one

Hadamard gate followed by a measurement gate. The proposed quantum circuit depends

upon the accessibility of two copies of the bi-partite state and the quick estimation of the

occupation probability of the total state of the two copies. The central thought of this

proposition is the transition of the separable form of two copies into a concurrence informative

state which simulate in terms of frequency/probability on four qubits computational basis.

Let us assume that we want to measure the concurrence of the general 2-qubit pure state

|Ψ〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 , (4.21)

and we are provided with two decoupled copies of it |Ψ〉⊗|Ψ〉. It can be shown from Eq.(4.21)

that the concurrence state of |Ψ〉 in terms of coefficients αi is given by

C(|Ψ〉) = 2|α1α2 − α0α3|. (4.22)

Following the proposed quantum circuit of Fig.(4.11), we apply local operations on the second

copy such that global state is depicted by

|Φ〉 = |Ψ〉 ⊗ (σy ⊗ σy |Ψ〉). (4.23)

This state can be written as superposition of states having four qubit computational basis

as

|Φ〉 = −α0α3 |0000〉+ α2α0 |0001〉+ α0α1 |0010〉 − α1α3 |0100〉 − α2α3 |1000〉 − α2
0 |0011〉

−α2
3 |1100〉+ α1α2 |0101〉+ α2

1 |0110〉+ α2
2 |1001〉+ α2α1 |1010〉 − α1α0 |0111〉

−α2α0 |1011〉+ α3α2 |1101〉+ α3α1 |1110〉 − α3α0 |1111〉 . (4.24)
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Figure 4.12: In Fig.(a) and Fig.(b), top and bottom figure represent the quantum circuit
of concurrence and histogram plot for Bell’s state |ξ00〉 and |ξ01〉, respectively on IBMQ
simulator.

Figure 4.13: In Fig.(a) and Fig.(b), top and bottom figure represent the quantum circuit
of concurrence and histogram plot for Bell’s state |ξ10〉 and |ξ11〉, respectively on IBMQ
simulator.
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Figure 4.14: In Fig.(a) Concurrence circuit for the two-qubit Bell state |ξ01〉 = 1√
2
(|01〉+|10〉)

is shown where q0, q1, q2, q3 are initialize to |0〉 state. In Fig.(b) concurrence information
is encoded in four qubit computational basis on IBMQ simulator and on a real quantum
hardware.

Now we apply a CNOT gate operation between the second qubit acting as the control and

the fourth acting as the target, followed by a Hadamard rotation on the second qubit. The

state of the overall systems become

|Φ1〉 =
1√
2
{A− |0000〉+ A+ |0100〉+B− |0001〉 −B+ |0101〉+ 2α2α3 |1100〉 − 2α0α1 |0110〉

C−10 |0011〉+ C+
10 |0111〉+ C−23 |1001〉 − C+

23 |1101〉+ A− |1010〉 − A+ |1110〉

+B+ |1111〉 −B− |1011〉}, (4.25)

where A± = α1α2±α0α3, B± = α0α2±α1α3, and C±ij = α2
i ±α2

j . Thus, in Eq.(4.25) the con-

currence information of the state |Ψ〉 is present in the coefficient of four qubit computational

basis.

For example, in Fig.(4.12) and Fig.(4.13), by considering the two copies of two-qubit Bell’s

state quantum circuit, we do concurrence simulation on IBMQ simulator. The histogram plot

shows an approximately equal distribution of frequency/probability on four qubits computa-

tional basis, which verify that the two-qubit Bell’s state is a bi-partite maximally entangled

pure state. Here, an approximately equal distribution of frequency/probability means that

the quantum computer may have some hardware errors.

It is to be noted that in this chapter, all quantum circuits run only on the IBM quantum

simulator, which tests circuits with no noise. However, in Fig.(4.14), we do python pro-
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gramming on Qiskit 0.23.0 to create the quantum circuit of concurrence for the Bell state

|ξ01〉 = 1√
2
(|01〉+ |10〉) and run the circuit for 1024 shots for a given time to generate the his-

togram of probability on IBMQ simulator (ibmq qasm simulator) and also on real quantum

hardware (the 5-qubit machine (ibm santiago)). The difference between the simulated case

and the code run on the actual quantum hardware is that the simulator simulates a perfect

quantum device. In the meantime, the real quantum hardware is susceptible to small quan-

tum errors. These quantum errors are improving every day as the result of the technology

is improving. So, we expect to see the results obtained from real quantum hardware getting

lower and lower and getting closer to the ideal simulations. However, as we see in Fig.(4.14),

the hardware is not perfect, resulting in a difference in the Histogram plots with the ideal

quantum computer simulator.

In the next chapter, we extend such field of study in particle physics domain and use idea

of quantum simulation to study entanglement in neutrino oscillations on quantum computer.



Chapter 5

Quantum studies of neutrinos on

IMBQ processors

This chapter studies implementation of entangled neutrinos on an IBM quantum computer.

Since neutrinos are weakly interacting, a neutrino beam retains coherence for a significant

distance. Such long-distance coherence can have implications in quantum information theory.

Entanglement of neutrino flavour states means that the coherent evolution of neutrino beams

can be studied using quantum information techniques. The tools of quantum resource theory

quantify quantum coherence using the data from neutrino oscillations experiments [190,

191]. This is the first demonstration of the “quantumness”of quantum particles (neutrinos)

other than photons over a significant macroscopic distance. In this chapter, we examine the

concurrence and coherence of the bi-partite two neutrino system and find an algorithm to

encode our result on the IBM quantum cloud computer within the language of quantum

gates and circuits [44].

In a recent paper, Argüelles and Jones have outlined quantum circuits to simulate neutrino

oscillations on IBMQ processors [46]. Before this, neutrino oscillations were analyzed using

quantum walks [112]. In other similarly significant wonders like in neutral kaon oscillations,

the computation of oscillation probabilities has been done utilizing quantum computing [192].

Apart from this, the study of collective neutrino oscillations on a quantum computer is also

informative [194–196].

72
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5.1 Quantifying concurrence and l1-norm of coherence

in the two neutrino system

In the two flavour (να → νβ) neutrino mixing, the SU(2) rotation matrix U(θ) = R(θ) =(
cosθ −sinθ
sinθ cosθ

)
resolved the atmospheric and solar neutrino problem. Following from the

discussion of Sec.(1.2) of Chapter 1, and using Eq.(1.9), the mass eigenstates (ν1, ν2) can be

obtained as a linear superposition of flavor basis (νe, νµ) explicitly in matrix form as1

(
|ν1〉
|ν2〉

)
=

(
cosθ −sinθ
sinθ cosθ

)(
|νe〉
|νµ〉

)
. (5.1)

Using Eq.(1.11), the time evolved flavour eigenstates of neutrinos in flavour basis are

(
|νe(t)〉
|νµ(t)〉

)
=

(
cosθ sinθ
−sinθ cosθ

)(
1 0
0 eiψ

)(
cosθ −sinθ
sinθ cosθ

)(
νe(0)
νµ(0)

)
≡
(
Ũee(t) Ũeµ(t)

Ũµe(t) Ũµµ(t)

)(
νe(0)
νµ(0)

)
,

(5.2)

where ψ = ∆m2t
2E

, ∆m2 ≡ m2
2 −m2

1. Subsequently, in the ultra-relativistic limit, the survival

(Pee = |Ũee(t)|2) and disappearance (Peµ = |Ũeµ(t)|2) probabilities of the state |νe(t)〉 are

Ps = Pe→e = 1− 4 sin2 θ cos2 θ sin2 ψ
2
, (5.3)

and Pd = Pe→µ = 1− Pee. (5.4)

The two neutrino state space Hν is a two-qubit Hilbert space H1 ⊗H2 spanned by {|1〉1 ⊗

|0〉2 , |0〉1 ⊗ |1〉2}. The matrix {|0〉 =

(
1
0

)
; |1〉 =

(
0
1

)
} is defined by means of the unitary

equivalence defined on the mass basis |ν1〉 = |1〉1 ⊗ |0〉2 and |ν2〉 = |0〉1 ⊗ |1〉2. There is

a bi-partition of the space of quantum states and a neutrino state which is entangled as a

two qubit state is said to be mode entangled. The normalized time evolved electron and

muon neutrino flavour state are two qubit bipartite flavour mode states and yield the Bell

like superposition (see Sec.(3.1) of Chapter 3),

|νe(t)〉 = Ũee(t) |10〉e + Ũeµ(t) |01〉µ , (5.5)

1We are using U(θ) = R(θ) =

(
cosθ −sinθ
sinθ cosθ

)
. On the IBMQ platform this corresponds to the universal

quantum gate U3 (see Eq.(4.7)). The neutrino transition probabilities will not change because U is a unitary
transformation.
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|νµ(t)〉 = Ũµe(t) |10〉e + Ũµµ(t) |01〉µ , (5.6)

where, |νe(0)〉 = |1〉e ⊗ |0〉µ = |10〉e and |νµ(0)〉 = |0〉e ⊗ |1〉µ = |01〉µ are two flavour mode

basis at time t = 0. Using Eq.(5.5) and Eq.(5.6), the density matrix for |νe(t)〉 and |νµ(t)〉
are

ρe(t) = |νe(t)〉 〈νe(t)| =


0 0 0 0

0 |Ũee(t)|2 Ũee(t)Ũ
∗
eµ(t) 0

0 Ũeµ(t)Ũ∗ee(t) |Ũeµ(t)|2 0
0 0 0 0

 (5.7)

and ρµ(t) = |νµ(t)〉 〈νµ(t)| =


0 0 0 0

0 |Ũµe(t)|2 Ũµe(t)Ũ
∗
µµ(t) 0

0 Ũµµ(t)Ũ∗µe(t) |Ũµµ(t)|2 0
0 0 0 0

 , (5.8)

respectively. In Sec.(3.1) of Chapter 3, we have discussed various bi-partite entanglement

measures in the two neutrino system. The concurrence is the study of non-locality of a

bi-partite quantum system (see Eq.(2.33) of chapter 2 for concurrence definition). Using

the “spin-flipped”density matrix ρ̃e(t) = (σy ⊗ σy)ρ∗e(t)(σy ⊗ σy), we find only one square

root of eigenvalue of matrix ρe(t)ρ̃eµ(t) is non zero i.e., µ4 = 2
√
|Ũeµ(t)|2|Ũee(t)|2, thus the

concurrence is quantified for the time evolved electron flavour neutrino states in terms of

survival and disappearance probabilities as

C(ρe(t)) = 2
√
PsPd. (5.9)

Note that Ps < 1, immediately implies Pd > 0. Hence, entanglement is non-zero if the

transition probabilities are non-zero. When Ps = Pd = 0.5, concurrence tends to 1 i.e,

C(ρe(t)) = 1, which corresponds to maximally entangled state. Thus, in a pure bipartite 2-

qubit framework, concurrence is associated with physical parameters in neutrinos oscillations.

Researching quantum measures in neutrino oscillations can be fascinating because it is

a minimal quantum effect. Quantities such as quantum coherence can be studied over an

enormous distance, as much as a few hundred kilometres away. Using the tools of quantum

resource theory, the entanglement measure l1- norm of coherence (Cl1(ρ)) is the summation

over the absolute values of all the off-diagonal elements ρij of a density matrix ρ [190]. This

has been investigated in the context of three-flavour neutrino oscillations in ref. [73, 191].

Cl1(ρ) =
∑
i 6=j

|ρij| ≥ 0. (5.10)
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Figure 5.1: (a) The νe survival probability (Black, dashed line) is shown in the blue band
the concurrence (Red, solid line) is within the orange band [197]. (b) The νe disappearance
probability (Black, dash dotted line) is in the green band the concurrence (Red, solid line)
is shown as red band [197].

We find that for a given density matrix ρe(t) (see Eq.(5.7)), the l1- norm of coherence

Cl1(ρe(t)) and concurrence C(ρe(t)) coincide in the bi-partite two neutrino systems i.e.,

C(ρe(t)) = Cl1(ρe(t)) = 2
√
PsPd. (5.11)

This result shows the similarity of the origin of flavor mode entanglement in neutrino oscil-

lations with quantum coherence in the bi-partite two neutrino system. Thus, one can treat

entanglement and coherence on equal footing. The concurrence for an initial electron flavour

neutrino νe is quantified in terms of the survival Pee and disappearance Peµ probabilities.

The dependence of this on L/E(Km/GeV ) is plotted in the Fig.(5.1(a)) and Fig.(5.1(b)).

We find that when the survival probability Pee is minimum and the disappearance Peµ prob-

ability is maximum, the concurrence is minimum which implies disentanglement. The next

section prepares a quantum computer circuit of two-flavour neutrino states in the bipartite

system.

5.2 Quantum circuit of two flavour neutrino states

In Sec.(4.2) of Chapter 4 various types of single qubit and two-qubit quantum gates have

been defined. The SU(2) rotation matrix R(θ) can be encoded in the IBM quantum computer
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by using universal U3 gate

U3(Φ, ψ, λ) =

(
cosΦ

2
−sinΦ

2
eiλ

sinΦ
2
eiψ cosΦ

2
ei(λ+ψ)

)
. (5.12)

The universal gate U3 is dependent on the three-parameter2 Φ, ψ and λ. In the two flavour

neutrino oscillation, the parameters ψ and λ can be removed by rephasing the charged muon

field via |νµ〉 → e−iψ |νµ〉 and the |ν2〉 field as |ν2〉 → eiλ |ν2〉, respectively. We set the

parameter value ψ = 0 and λ = 0 and therefore we can construct a 2x2 unitary quantum

gate via the definition

R(θ) = U3(2θ, 0, 0) =

(
cosθ −sinθ
sinθ cosθ

)
≡
(
Ũee Ũeµ
Ũµe Ũµµ

)
. (5.13)

Two flavour neutrino oscillations are equivalent to a beam splitter transformation. In two-

qubit Bell’s state, the beam splitter transformation is called the Hadamard transformation

H = 1√
2

(
1 1
1 −1

)
which is a unitary transformation. In two flavour neutrino mixing, SU(2)

rotation matrix R(θ) is also a unitary transformation. Therefore similar to the Bell state

quantum circuit, we construct the Bell-like superposition quantum circuit of two flavour

neutrino oscillations (see Eq.(5.5) and Eq.(5.6)). In the two-qubit system, we first prepare

a quantum circuit of the pure electron neutrino state in the linear superposition of mass

mode basis (see Fig.(5.2(a))). This can be achieved by operating the U3(−2θ, 0, 0) gate on

first qubit (1) (by rotating the mixing angle θ of U3(2θ, 0, 0) gate from 2θ to −2θ), followed

by the CNOT12 quantum gate operation between first (1) and second (2) qubit, where

the action of Controlled Not gate (CNOT) gate can be represented by the matrix form as

CNOT=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. The defined gate arrangement of electron flavour neutrino state in

the two-qubit mass mode basis is

|νe(0)〉 = CNOT12[U3(−2θ, 0, 0) |0〉1 ⊗X |0〉2], (5.14)

where the input qubits in a quantum computation conventionally initialize to the |0〉, and

the |1〉 state can be prepared by application of the Pauli-X gate, |1〉 = X |0〉. The CNOT12

gate is defined as if the control qubit (first (1) qubit) is in the state |0〉 the target qubit

2In Sec.(4.2.1) of Chapter 4, U3 gate is defined as a function of three different parameters θ, φ, λ.
However, for the convenience of this chapter we defined U3 gate with parameters Φ, ψ and λ.
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Figure 5.2: Quantum computer circuit representation of two-flavor neutrino states in two-
qubit systems: (a) |νe〉 = Ũee |10〉1 + Ũeµ |01〉2, (b) |νe(t)〉 = Ũee(t) |10〉e + Ũeµ(t) |01〉µ, (c)

|νµ〉 = Ũµe |10〉1 + Ũµµ |01〉2, (d) |νµ(t)〉 = Ũµe(t) |10〉e + Ũµµ(t) |01〉µ. Here, two input qubits
1 and 2 are initiated to |0〉.

(second (2) qubit ) is not affected, conversely if the control qubit in the state |1〉, the target

is flipped. U3(−2θ, 0, 0) gate transforms the first (1) qubit |0〉1 in a superposition state,

therefore:

U3(−2θ, 0, 0) |0〉1 ⊗X |0〉2 → (Ũee |1〉1 + Ũeµ |0〉1)⊗ |1〉2 , (5.15)

where U3(−2θ, 0, 0) can transfer each bit into qubit as

U3(−2θ, 0, 0) |0〉 = Ũee |1〉+ Ũeµ |0〉,

U3(−2θ, 0, 0) |1〉 = Ũee |0〉+ Ũeµ |1〉.

(5.16)

Further operating CNOT12 gate between first (1) and second (2) qubit will produce an

output state in a linear combination of mass mode basis as (from Eq.(5.14))

|νe(0)〉 = Ũee |10〉1 + Ũeµ |01〉2 . (5.17)

The time-evolution operator is identified as S-gate on IBMQ processor

S(ψ) =

(
1 0
0 eiψ

)
= U1(t) (5.18)
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where, ψ = ∆m2t
2E

. Only the relative phase between the mass eigenstates are relevant for

oscillations. Finally by applying U3(2θ, 0, 0) gate on the first (1) qubit, the overall gate

arrangement of a time evolved electron flavour neutrino state Eq.(5.5) can be obtained as

(see Fig.(5.2(b)))

|νe(t)〉 = CNOT12[U3(2θ, 0, 0)U1(t)U3(−2θ, 0, 0) |0〉1 ⊗X |0〉2]

−→ Ũee(t) |10〉e + Ũeµ(t) |01〉µ. (5.19)

Similarly, we can prepare |νµ〉 in a linear superposition of mass mode basis (see Fig.(5.2(c)))

via

|νµ(0)〉 = CNOT12[U3(−2θ, 0, 0)X |0〉1 ⊗X |0〉2]

−→ Ũµe |10〉1 + Ũµµ |01〉2. (5.20)

The gate arrangement of the time evolved muon flavour neutrino state in a flavoured basis

Eq.(5.6) can be prepared as (see Fig.(5.2(d)))

|νµ(t)〉 = CNOT12[U3(2θ, 0, 0)U1(t)U3(−2θ, 0, 0)X |0〉1 ⊗X |0〉2] (5.21)

−→ Ũµe(t) |10〉e + Ũµµ(t) |01〉µ .

5.3 Quantum simulation of bi-partite entanglement in

the two neutrino system

In this section, we propose a quantum computing technique to measure the concurrence on

IBMQ platform [44, 188, 189]. In the previous section, we constructed a quantum circuit

for the time evolved flavour neutrino state |να(t)〉 in a two-qubit bi-partite mode (flavour)

system. For the concurrence, we perform a spin-flip operation on the density matrix. To

construct a quantum circuit to enable spin-flipping, we have to prepare two copies of bi-

partite neutrino state |να(t)〉⊗ |να(t)〉 in the two flavour system (where α = e, µ), and apply

a “spin-flipped”operation σy ⊗ σy on one of the two copies. We can extract the concurrence

value of the time evolved flavour neutrino oscillation from this global state.



Ch-5: Quantum studies of neutrinos on IMBQ processors 79

Figure 5.3: The circuit represent the concurrence measurement of νe disappearance in two-
flavour neutrino oscillations.

5.3.1 Quantum circuit in vacuum

Now, in order to measure concurrence C(ρe(t)) on the IBMQ processors, let us prepare a

concurrence circuit for the time evolved electron flavour neutrino state |νe(t)〉 in the two qubit

system in vacuum (see Fig.(5.3)). The required operations to create concurrence circuit are

σy⊗σy spin-flip gate, CNOT gate, as well as local rotations Hadamard (H) gate, followed by

a global measurement (M) of all four qubits. In the circuit diagram Fig.(5.3), the first two

channels (1 and 2) stand for the entangled state |νe(t)〉 that we want to measure. The third

and fourth channel (3 and 4) denote the copy of |νe(t)〉. Take two copies of the bi-partite

state |νe(t)〉⊗ |νe(t)〉, and apply spin-flipped operation σy⊗σy on the second copy such that

the global state is described by

|Φ(t)〉 = |νe(t)〉 ⊗ (σy ⊗ σy |νe(t)〉). (5.22)

By using Eq.(5.19) in Eq.(5.22), four qubit global state we get as

|Φ(t)〉 = (Ũee(t) |10〉+ Ũeµ(t) |01〉)⊗ (Ũee(t) |01〉+ Ũeµ(t) |10〉)

= (Ũee(t))
2 |1001〉+ Ũee(t)Ũeµ(t) |1010〉

+Ũeµ(t)Ũee(t) |0101〉+ (Ũeµ(t))2 |0110〉. (5.23)

Now apply CNOT24 operation between second (2) and fourth (4) qubit, and the target qubit

(4) is inverted only when the control qubit (2) is |1〉 i.e, |0101〉 → |0100〉 and |0110〉 → |0111〉,



Ch-5: Quantum studies of neutrinos on IMBQ processors 80

Figure 5.4: Concurrence circuit for the two qubit νe disappearance bipartite state on the
IBMQ platform [44,197].

Figure 5.5: The concurrence varies with time at the IBMQ computer for an initial electron
neutrino flavour state. The concurrence information is shown Histogram (probabilities in
percentage) plot on quantum simulator and IBM quantum hardware [44,197].
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such that we get

|Φ1(t)〉 = (Ũee(t))
2 |1001〉+ Ũee(t)Ũeµ(t) |1010〉

+Ũeµ(t)Ũee(t) |0100〉+ (Ũeµ(t))2 |0111〉. (5.24)

Finally, we perform a rotation operator H which act like the Hadamard transformation,

H = 1√
2

(
1 1
1 −1

)
on the second (2) qubit. The H operation can transfer each qubit as:

H |0〉 =
1√
2

(|0〉+ |1〉);H |1〉 =
1√
2

(|0〉 − |1〉). (5.25)

The state of the overall system is

|Φ2(t)〉 = 1√
2
[(Ũee(t))

2 |1001〉 − (Ũee(t))
2 |1101〉

+Ũee(t)Ũeµ(t) |1010〉 − Ũee(t)Ũeµ(t) |1110〉

+Ũeµ(t)Ũee(t) |0100〉+ Ũeµ(t)Ũee(t) |0000〉

+(Ũeµ(t))2 |0111〉+ (Ũeµ(t))2 |0011〉]. (5.26)

Thus, we observe from Eq.(5.26) that the concurrence information of the electron neutrino

flavour state |νe(t)〉 is then the coefficient Ũee(t)Ũeµ(t) and

C(|νe(t)〉) = 2
√

2P0000 = 2
√
PsPd, (5.27)

where P0000 = |Ũee(t)|2|Ũeµ(t)|2
2

= PsPd
2

. The quantum computer circuit to simulate concurrence

for the time evolved electron flavour neutrino state is shown in Fig.(5.4) on the IBM quantum

platform [44]. In this circuit U3(π, π
2
, π

2
) quantum gate is identified as Pauli σy gate. We used

Python code to program our quantum circuits on the cloud based IBM quantum computer

with the package Qiskit 0.23.0. We run the circuit for 1024 shots for a given time on an ideal

quantum simulator and real quantum hardware of IBM. The quantum simulator that we used

is ibmq qasm simulator and quantum hardware is the five-qubit machine ibm santiago. The

simulation results obtained from simulator and hardware are shown in Fig.(5.5) in the form

of Histogram. The contrast between the outcomes in these two cases can be attributed to

the noises of the quantum devices. If we make envelop of these histogram plots, we can see

the simulation of quantum oscillatory behavior of neutrinos. So far, we have simulated the

concurrence for the time evolved electron flavour neutrino state |νe(t)〉 in a vacuum. For
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Figure 5.6: (a)The time evolution of the concurrence (Red line) compared to the disap-
pearance Pd (Green line) and survival Ps (Black Dashed line) probabilities of |νµ(t)〉 in the
vacuum A=0 [197]. (b) The time evolution of the concurrence (Red line) compared to the
disappearance Pd (Green line) and survival Ps (Black Dashed line) probabilities of |νµ(t)〉 in
the constant effective matter potential A 6= 0 [197].

completeness, in the next section, we encode concurrence for the time evolved muon flavour

neutrino state |νµ(t)〉 in the constant matter potential on the IBMQ platform.

5.3.2 Quantum circuit in the uniform matter background

In Sec.(1.2.3) of Chapter 1, we have discussed neutrino oscillations in the constant matter

background. In neutrino experiments, when neutrinos are traveling through the earth, they

have a minimal weak interaction with the matter of the earth, which can be quantified as the

effective Hamiltonian Heff given in Eq.(1.46). The investigation is how much background

matter affects entanglement, i.e., whether neutrinos decohere by traveling through the earth?

According to Eq.(1.49), the survival (Ps) and disappearance (Pd) probabilities for |νµ(t)〉 (see

Eq.(5.6)) in matter can be modify as:

Ps = Pµ→µ = 1− 4 sin2 θM cos2 θM sin2(ψM
2

),

Pd = Pµ→e = 4 sin2 θM cos2 θM sin2(ψM
2

), (5.28)

where ψM =
∆m2

M t

2E
, θM and ∆m2

M are the effective neutrino oscillations parameters in

matter. These effective neutrino oscillation parameters are related to the vacuum neutrino
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Figure 5.7: Implementation of concurrence circuit for |νµ(t)〉 on IBMQ processor [44,197].

Figure 5.8: The concurrence varies with time at the IBMQ computer for an initial muon
neutrino flavour state in vaccum (A=0). The concurrence information is shown through
Histogram (probabilities in percentage) plot on quantum simulator and IBM quantum hard-
ware [44,197].
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Figure 5.9: The concurrence varies with time at the IBMQ computer for an initial muon
neutrino flavour state in the uniform matter background (A6=0) is shown on quantum simu-
lator and IBM quantum hardware [44,197].

oscillation parameters ∆m2 and θ are given by

∆m2
M =

√
[∆m2Cos(2θ)− A]2 + [∆m2Sin(2θ)]2, (5.29)

SinθM =
1√
2

[1− ∆m2Cos2θ − A√
(∆m2Cos2θ − A)2 + (∆m2Sin2θ)2

], (5.30)

where A is the effective matter potential. In Fig.(5.6(a)) and Fig.(5.6(b)), we show the time

evolution of the concurrence plot vs L
E

(Km
Gev

) for |νµ(t)〉 in vacuum and matter, respectively. In

the uniform matter background disappearance and survival probabilities get modified slightly

due to the effective neutrino oscillations parameters ∆m2
M and θM . Infact, due to the effect of

the uniform matter background, the concurrence is less (see Fig.(5.6(b))), which is a sign of

decoherence. Moreover, to simulate this results on IBMQ processor [44], in Fig.(5.7) first we

prepare quantum computer circuit to measure concurrence for |νµ(t)〉 on the IBMQ platform.

We do not have to construct a new quantum circuit for the inclusion of matter effects; we can

replace the eigenvalue and the vacuum mixing angle for the expression given in Eq.(5.29) and

(Eq.5.30). The result of the time-varying concurrence in a vacuum as well as in matter for

|νµ(t)〉 is in the histogram plot (probabilities in percentage) on an ideal quantum simulator

and quantum hardware of IBM in Fig.(5.8) and Fig.(5.9), respectively. We find that the
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behaviour of the histogram plot of the evolved concurrence slightly changes when we induce

a uniform matter effect to the neutrino system. Thus, in brief, we implemented a way of

finding concurrence information of entangled oscillating neutrinos on a quantum computer,

and we have shown that matter effects do not decohere the neutrinos much.



Chapter 6

Neutrinos as Qubits and Qutrits

Quantum entanglement results from the non-classical correlations between separated quan-

tum systems [45]. Correlations between subsystems of a more extensive system that are

not expressable in terms of correlation between local classical properties of the subsystem

characterize quantum entanglement [47]. A superposition of two orthogonal states is called

a qubit, and most quantum entanglement measures are realized between pairs of the qubit

in a 2-dimensional Hilbert space H2. Such measures include the partial transpose condition

to determine entangled two qubits, and other bi-partite entanglement measures like concur-

rence and the entanglement of formation [70, 72, 198]. Bi-partite entanglement is limited in

its applicability. Studying multipartite entanglement opens up new possibilities in develop-

ing quantum theory and new quantum communication protocols. Tri-partite entanglement

is the simplest example of multipartite entanglement in the three-qubit system. The W state

and the GHZ state of quantum optics are examples of tri-partite entangled states. Genuine

tri-partite measures of entanglement such as the three-tangle and the three-π have been used

to characterize these states [35] and discussed in Chapter 2.

Along with this type of tri-partite entanglement, there has been an interest in generalizing

the concept of a qubit to a qutrit. A qutrit is the superposition of three orthogonal states

rather than the two which characterize a qubit. An operator representation of the qutrit

density matrix has been developed, and qutrit entanglement has been studied in ref. [47].

Physically implementing a qutrit quantum computer in the context of trapped ions has

been studied [199] and quantum computer simulation packages for qutrits have been imple-

mented [200]. Furthermore, the generalized concurrence formula as a measure of two qutrits

entanglement has also been studied [201].

86
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Most of the systems in which quantum entanglement is studied are photonic or atomic

systems. In chapter 3, the ideas of quantum entanglement have been extended to the realm

of particle physics by the study of two and three flavour neutrino systems. We have placed

three-mode entanglement in neutrino oscillations on the same footing as mode entanglement

in optical systems by mapping the neutrinos to the three mode W-state. We have stud-

ied tri-partite measures such as the three-tangle and the three-π for three flavour neutrino

entanglement. In addition to this, in chapter 4, quantum states such as Bell’s states, W

state and GHZ state are realized by quantum computer and in chapter 5, the simulation of

bi-partite entanglement in the two flavour neutrino oscillation has also been shown on IBMQ

processors.

This chapter illustrates tri-partite entanglement in neutrinos by considering them as “qutrits”.

A qutrit is a linear superposition of three orthonormal basis states, |1〉, |2〉 and |3〉 :

|ψ〉 = α |1〉 + β |2〉 + γ |3〉, where |α|2 + |β|2 + |γ|2 = 1 and α, β, γ ∈ C. Since neutrino

flavour states are a superposition of three states, it is only natural to try and characterize

them as qutrits. We do this by mapping the density matrix for neutrinos to a generalized

Poincaré sphere [47, 202]. In the two-flavour neutrino oscillation, geometric and topological

phases such as the Berry’s and Panchratnam’s phase in terms of oscillation probabilities

have been calculated using the Poincaré sphere and are directly observable [203, 204]. The

Poincaré sphere has its origin in optics and is a way of visualizing different types of polarized

light using the mapping from SU(2) to S3. A qubit represents a point on the Poincaré sphere

of SU(2) defined as, complex projective line H2 = CP 1 = SU(2)/U(1). A generalization of

the Poincaré sphere to SU(3) can be constructed [205–207]. This construction has been the

basis for characterizing qutrits that live in a 3-dimensional Hilbert space H3. A qutrit is

taken as a point on the complex projective plane H3 = CP 2 = SU(3)/U(2) [208]. This work

describes the entanglement of neutrinos by constructing Poincaré sphere representation for

two and three-flavour neutrino states using SU(2) Pauli matrices and SU(3) Gell-Mann ma-

trices, respectively, to map the neutrino states to the qutrits states of quantum information

theory.

The chapter’s organization is: In Sec.(6.1), we represent a single qubit density matrix of

two flavour neutrino states in the basis of SU(2) Pauli matrices. In Sec.(6.2), we use the

tensor product of Pauli matrices as a basis to represent a two-qubit density matrix that led

to Bloch matrix construction in the two-qubit neutrino system. We also show bi-partite

entanglement measure concurrence quantification in the two neutrino system. In Sec.(6.3),

we describe a qutrit density matrix of three flavour neutrino states in the basis of SU(3)

Gell-Mann matrices. Under a particular set of constraints, the measure for entanglement
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characterized by the entropy of mixing for a three flavour neutrino system is found. In

Sec.(6.4), we represent a two qutrit density matrix in the basis of SU(3) Gell-Mann matrices

tensor products which describe the generalized matrix construction for two qutrits neutrino

states. Furthermore, we compute generalized concurrence as a measure of bi-partite qutrits

entanglement in the two neutrino system and compared it with the concurrence of the bi-

partite qubit neutrino system.

6.1 SU(2) Poincaré sphere for two-flavour neutrinos

In chapter 3, the two flavour neutrino system has been mapped onto a qubit system in

quantum optics, with the two flavours mixing matrix playing the role of the beam splitter in

a two-level quantum optical system. It is well known that a two-level system can be mapped

to the Poincaré sphere of two level quantum systems [205]. For a two-dimensional complex

Hilbert space H2, a quantum state |ψ〉 can be written as a superposition

|ψ〉 = c1 |0〉+ c2 |1〉), (6.1)

where, |c1|2 + |c2|2 = 1 and c1, c2 ∈ C

|0〉 =

(
1
0

)
; |1〉 =

(
0
1

)
. (6.2)

Using the polar representation c1 = r1e
iϕ0 and c2 = r2e

ϕ1 and the fact that, in the case of

quantum bits, a quantum state |ψ〉 does not change if multiplied by an overall phase e−ϕ0

the equivalent quantum state is

e−iϕ0 |ψ〉 = r1 |0〉+ r2e
iϕ1−iϕ0 |1〉 . (6.3)

Using the angular representation of complex variables and the fact that r2
1 + r2

2 = 1 and

φ = ϕ1 − ϕ0 we get a representation of the equivalent representation of |ψ〉 as

|ψ〉 = cos(θ) |0〉+ sin(θ)eiϕ |1〉 . (6.4)

For a two dimensional complex Hilbert space H2, the density matrix correspond to a pure

state |ψ〉 is given by ρ = |ψ〉 〈ψ|. Its expansion in terms of Pauli matrices σj leads to the
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Poincaré sphere construction

ρ = |ψ〉 〈ψ| = 1

2
(1 + n̂.~σ), (6.5)

where ρ† = ρ2 = ρ ≥ 0, Trρ = 1 =⇒ n̂∗ = n̂, n̂.n̂ = 1 ⇐⇒ n̂ ∈ S2 is the unit vector on the

sphere. Thus there is a one to one correspondence between pure qubit states and points on

the unit sphere S2 embedded in R3, which is known as the Poincaré sphere construction (of

which the Bloch sphere is a particular case). If |ψ′〉 and |ψ〉 are two pure states then

Tr(ρ′ρ) = | < ψ′|ψ) > |2 =
1

2
(1 + n̂′.n̂), (6.6)

where n̂′ is the unit vector on the sphere corresponding to |ψ′〉. For orthogonal states

| < ψ′|ψ) > |2 = 0, so that 1 + n̂′.n̂ = 0 and thus correspond to the diametrically opposite

point on S2 correspond to mutually orthogonal Hilbert space vectors where, < ψ′|ψ > is

the inner product in H2. Applying an SU(2) transformation to |ψ〉 ∈ H2 the representative

point in SU(2) n̂ ∈ S2 (circle) undergoes a rotation belonging to SO(3)

|ψ′〉 = u |ψ〉 , u ∈ SU(2) =⇒ n′j = Rjk(u)nk;Rjk(u) =
1

2
Tr(σjuσku

†), (6.7)

R(u) ∈ SO(3). Thus all elements R ∈ SO(3) are realized in this way, and we have the coset

space identifications (since multiplication by a phase leads to equivalent representations)

S2 = SU(2)/U(1) = SO(3)/SO(2).

Two-flavour neutrino oscillations involve a Hilbert space of two dimension H2, and the

mixing matrix is given by the SU(2) matrix [209]. The expression for the time evolved

flavour neutrino states (|νe(t)〉 and |νµ(t)〉) in linear superposition of two mass eigenstate

basis (|ν1〉, |ν2〉) are given in Eq.(1.29) and Eq.(1.30).

|νe(t)〉 can be parametrized by two angles θ and φ as

|νe(θ, φ)〉 = e−iE1t/~(cosθ |ν1〉 − sinθe−i(E2−E1)t/~ |ν2〉),

= e−iE1t/~(cosθ |ν1〉 − sinθe−iφ |ν2〉), (6.8)

where E1 = (p2 + m2
1)1/2 and E2 = (p2 + m2

2)1/2 and in the ultra-relativistic limit φ =
(E2−E1)t

~ = ∆m2t
2E~ . The overall phase is redundant and leads to an equivalent representation

such that the coefficient of |ν1〉 is real. Thus, the normalized time evolved electron neutrino
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and muon neutrino flavour state are,

|νe(θ, φ)〉 = cosθ |ν1〉 − sinθe−iφ |ν2〉 ,

|νµ(θ, φ)〉 = sinθ |ν1〉+ cosθe−iφ |ν2〉 , (6.9)

respectively. Now we can easily identify the mass eigenstates of a flavour neutrino state to

the qubit states

|0〉 = |ν1〉 =

(
1
0

)
; |1〉 = |ν2〉 =

(
0
1

)
. (6.10)

Identifying the states |ψ〉 and |ψ′〉 with time evolved flavour neutrino states |νe(θ, φ)〉 =(
cosθ

−e−iφsinθ

)
and, |νµ(θ, φ)〉 =

(
sinθ

e−iφcosθ

)
, thus |νe(θ, φ)〉 is an eigenstate with eignvalue

+1.

Ô = n̂(θ, φ).~σ =

(
cos2θ −sin2θeiφ

−sin2θe−iφ −cos2θ

)
∈ SU(2). (6.11)

Here ~σ = (σ1, σ2, σ3) and n̂(θ, φ) = −sin2θcosφê1 + sin2θsinφê2 + cos2θê3 is a real unit

vector called the Poincaré unit vector. Therefore,

Ô |νe(θ, φ)〉 = |νe(θ, φ)〉 . (6.12)

Thus a state |νe(θ, φ)〉 ∈ H2 is expressed in terms of a unit vector n̂(θ, φ) on the surface of

the Poincaré sphere. This correspondence is one-to-one if the ranges of θ and φ are restricted

to 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The 2× 2 density matrix is given by

ρe2×2 =

(
cos2θ −eiφsinθcosθ

−e−iφsinθcosθ sin2θ

)
=

1

2
(I + n̂.~σ), (6.13)

which is the same as Eq.(6.5). The eigenvalues of ρe2×2 are 1 and 0, therefore ρe2×2 is a rank

1 density matrix. This maps the neutrino state |νe(t)〉 to the the surface of the unit sphere

in the three dimensional vector space. A similar mapping can be done for the neutrino state

|νµ(t)〉. The density matrix correspond to |νµ(θ, φ)〉 is

ρµ2×2 =

(
sin2θ eiφsinθcosθ

e−iφsinθcosθ cos2θ

)
=

1

2
(I + n̂′.~σ), (6.14)
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where n̂′(θ, φ) = sin2θcosφê1−sin2θsinφê2−cos2θê3. When θ → θ
2

then the Poincaré sphere

becomes the Bloch sphere used in quantum optics. In the next section, we use Eq.(6.13) and

Eq.(6.14) to describe the Bloch vector and its generalized representation in the two-qubit

neutrino systems.

6.2 Bloch matrix construction of two qubit neutrino

states

A 4×4 density matrix ρ4×4 ∈ H2⊗H2 represent either a single four-level system, or a pair of

coupled two-level systems [202]: two qubits. The study of the Bloch matrix using the density

matrix ρ4×4 will give useful symmetries in the Bloch-vector space. This section studies two-

qubit density matrices of two flavour neutrino states in the Dirac-basis to construct the

Bloch-matrix. We extend this idea to study the entanglement nature of two-qubit neutrino

systems.

In general, any 2× 2 density matrix ρ2×2 of a single qubit state in terms of the Pauli basis

is written as

ρ2×2 =
1

2
(1 + ~u.σµ) =

1

2
rµσµ, (6.15)

where the scalar coefficients rµ = Tr(ρ2×2σµ) (µ = 0, 1, 2, 3) in which r0 is always unity to

ensure Trρ2×2 = 1, and r1, r2, r4 are the components of the Bloch vector ~u, and σµ are the

Pauli matrices. Similarly, using Eq.(6.15), the density matrix ρ4×4 of any two qubit states

can be constructed using the Dirac matrices, denoted Dµν = σµ ⊗ σν as its basis such that

ρ4×4 =
1

4
rµνDµν . (6.16)

where µ, ν = 0, 1, 2, 3. The characterization of the Pauli matrices and Dirac matrices are

shown in ref. [202]. The scalar coefficients rµν is defined as

rµν = Tr(ρ4×4Dµν) =< σµ ⊗ σν > (6.17)

constitute 16 components of the Bloch matrix M which is split into four major components:
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a scalar of unity, two three-dimensional vectors, and a 3×3 matrix written as [202]

M =


1 r01 r02 r03

r10 r11 r12 r13

r20 r21 r22 r23

r30 r31 r32 r33

 , (6.18)

where ui = ri0 and vj = r0j (i, j = 1, 2, 3) are the components of two local Bloch vectors ~u

and ~v, respectively. Rij = rij is the matrix elements of correlation matrix R, and r00 = 1

implies ρ4×4 be a Hermitian matrix, of unit trace, and positive semidefinite.

Using Eq.(6.13) and Eq.(6.14), we construct the density matrix of two qubit neutrino

states |νeµ(θ, φ)〉 = |νe(θ, φ)〉 ⊗ |νµ(θ, φ)〉 in the standard basis (|0〉 ⊗ |0〉 ≡ |00〉 , |0〉 ⊗ |1〉 ≡
|01〉 , |1〉 ⊗ |0〉 ≡ |10〉 , |1〉 ⊗ |1〉 ≡ |11〉) as

ρeµ4×4 = ρe2×2 ⊗ ρ
µ
2×2 = |νeµ(θ, φ)〉 〈νeµ(θ, φ)|

=


cos2θsin2θ eiφcos3θsinθ −eiφcosθsin3θ −e2iφcos2θsin2θ

e−iφcos3θsinθ cos4θ −cos2θsin2θ −eiφcos3θsinθ
−e−iφcosθsin3θ −sin2θcos2θ sin4θ eiφcosθsin3θ
−e−2iφsin2θcos2θ −e−iφsinθcos3θ e−iφcosθsin3θ sin2θcos2θ

 . (6.19)

We can expand the above two qubit density matrix ρeµ4×4 uniquely as

ρeµ4×4 = ρe2×2 ⊗ ρ
µ
2×2 =

1

4
[(I + n̂.~σe)⊗ (I + n̂′.~σµ)]

=
1

4
[I ⊗ I + ~σe.n̂⊗ I + I ⊗ ~σµ.n̂′ +

3∑
i,j=1

rijσ
e
i ⊗ σ

µ
j ], (6.20)

the expansion coefficients are

ni = tr(ρeµσi ⊗ I),

n′j = tr(ρeµI ⊗ σj),

rij = tr(ρeµσi ⊗ σj), (6.21)

where i, j = 1, 2, 3. In Eq.(6.21), ni and n′j are the elements of Poincaré unit vector n̂ and

n̂′, respectively and the coefficients rij of the basis σi ⊗ σj is defined as a correlation matrix
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R between the two sub-system ρe and ρµ as

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (6.22)

Using Eq.(6.21), the elements of rij can be obtained as: r11 = −4cos2θsin2θcos2φ, r12 = r21 =

2cos2θsin2θsin2φ, r13 = r31 = 1
2
sin4θcosφ, r22 = −sin22θsin2φ, r23 = r32 = −1

2
sin4θsinφ,

r33 = −cos22θ. Alternative representation of Eq.(6.20) is Eq.(6.16). So, we can incorporate

this correlation matrix R (see Eq.(6.22)) into the Bloch-matrix M shown in Eq.(6.18).

Following Eq.(6.16) and using Eq.(6.19) in Eq.(6.17), the Bloch matrix for ρeµ4×4 can be

constructed as

Meµ =


1 cosφsin2θ −sin2θsinφ −cos2θ

−cosφsin2θ −4cos2θcos2φsin2θ 2cos2θsin2θsin2φ 1
2
cosφsin4θ

sin2θsinφ 2cos2θsin2θsin2φ −sin22θsin2φ −1
2
sin4θsinφ

cos2θ 1
2
cosφsin4θ −1

2
sin4θsinφ −cos22θ

 . (6.23)

By comparing the matrix elements of Meµ (see Eq.(6.23)) with M (see Eq.(6.18)), we

find that ri0 and r0j are the components of local unit Bloch vectors n̂ and n̂′, respectively

(i,j=1,2,3). The matrix elements rij are the elements of the correlation matrix R which is

exactly equal to Eq.(6.22). Thus, we have incorporated the correlation matrix R inside the

Bloch matrix Meµ. Since, we can decompose the Bloch matrix Meµ in terms of Bloch-vectors

components of two sub-systems (ρe2×2 and ρµ2×2), therefore, the two-qubit density matrix

ρeµ4×4 = ρe2×2 ⊗ ρ
µ
2×2 is a separable state (or product state). In fact, such interpretations of

the Bloch matrix M is also valid for the other product states ρee4×4 = ρe2×2 ⊗ ρe2×2, ρµµ4×4 =

ρµ2×2 ⊗ ρ
µ
2×2, and ρµe4×4 = ρµ2×2 ⊗ ρe2×2.

Furthermore, the concurrence is the measure of entanglement in the two qubit system and

it is defined in Eq.(2.33). Using Eq.(6.19) in Eq.(2.34), we construct the spin-flipped density

matrix ρ̃eµ4×4 = (σy ⊗ σy)ρ∗eµ4×4(σy ⊗ σy) and find that for the state ρeµ4×4 = ρe2×2 ⊗ ρ
µ
2×2 (see

Eq.(6.19)), all eigenvalues of ρeµ4×4ρ̃
eµ
4×4 are zero i.e., λ1 = λ2 = λ3 = λ4 = 0, which mean

according to Eq.(2.33) the concurrence C(ρeµ4×4) is 0. Similarly, for all other possible states:

ρee4×4 = ρe2×2 ⊗ ρe2×2, ρµµ4×4 = ρµ2×2 ⊗ ρ
µ
2×2, and ρµe4×4 = ρµ2×2 ⊗ ρe2×2, the concurrence is

C(ρeµ4×4) = C(ρee4×4) = C(ρµµ4×4) = C(ρµe4×4) = 0. (6.24)

We see that concurrence is zero for all the states as expected because they are separable
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states and we know that there should not be any quantum correlations exist between any

two sub systems (ρe2×2 and ρµ2×2) of a given separable state. However, if a given state is not

separable |νeµ(θ, φ)〉 6= |νe(θ, φ)〉 ⊗ |νµ(θ, φ)〉 then it is an entangled state.

Now, we map the neutrino mass eigenstates |ν1〉 and |ν2〉 directly to the bi-partite qubit

states as |ν1〉 = |1〉1⊗ |0〉2, |ν2〉 = |0〉1⊗ |1〉2. In that case, using Eq.(1.26), the time evolved

electron flavour neutrino state |νe(t)〉 in superposition of two qubit mass eigenstates (see

Eq.(1.29)), parametrized by θ and φ, can be written as

|νe(θ, φ)〉 = cosθ |10〉 − sinθe−iφ |01〉 , (6.25)

and its two-qubit density matrix is

ρe4×4 =


0 0 0 0
0 cos2θ −cosθsinθeiφ 0
0 −sinθcosθe−iφ sin2θ 0
0 0 0 0

 . (6.26)

Using Eq.(6.26) in Eq.(6.16) and in Eq.(6.17), the Bloch matrix M (see Eq.(6.18)) for ρe4×4

is obtained as

Me =


1 0 0 −cos2θ + sin2θ
0 −2sinθcosθcosφ −2cosθsinθsinφ 0
0 2cosθsinθsinφ −2cosθsinθcosφ 0

cos2θ − sin2θ 0 0 −cos2θ − sin2θ

 . (6.27)

We notice from Eq.(6.27) that some components of the local Bloch vector for the individual

system is zero, and thus we cannot decompose the Bloch matrix Me in terms of Bloch-vectors

components of two subsystems. Therefore, the two-qubit density matrix ρe4×4 of the state

|νe(θ, φ)〉 is an entangled state. At θ = π
4

and φ = 0, the Bloch matrix Me of ρe2×2 become

Mψ− =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (6.28)

which is identified as the Bloch matrix of two qubit Bell’s state |ψ−〉 = 1√
2
(|01〉 − |10〉).
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Similarly, for the state |νµ(θ, φ)〉 = sinθ |10〉+ cosθe−iφ |01〉, we have

ρµ4×4 =


0 0 0 0
0 sin2θ cosθsinθeiφ 0
0 sinθcosθe−iφ cos2θ 0
0 0 0 0

 , (6.29)

and the corresponding Bloch Matrix is

Mµ =


1 0 0 −cos2θ + sin2θ
0 2sinθcosθcosφ 2cosθsinθsinφ 0
0 −2cosθsinθsinφ 2cosθsinθcosφ 0

cos2θ − sin2θ 0 0 −cos2θ − sin2θ

 . (6.30)

At θ = π
4

and φ = 0, the Bloch-matrix Mµ become

Mψ+ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (6.31)

which is identified as the Bloch matrix of two qubit Bell’s state |ψ+〉 = 1√
2
(|01〉 + |10〉).

Furthermore, concurrence for ρe4×4 and ρµ4×4 we get as C(ρe4×4) = C(ρµ4×4) = sin2θ, which

tends to 1 at θ = π
4
. The non-zero value of concurrence shows that ρe4×4 and ρµ4×4 is a

bipartite entangled state when time evolved neutrino flavour state are linear superposition

of mass eigestates basis.

However, in general, neutrinos change its flavour while traveling in space with time. There-

fore, it is useful to quantify concurrence when time evolved neutrino flavour states are linear

superposition of flavour basis. In that case, using Eq.(1.27), Eq.(1.28) in Eq.(1.29) and in

Eq.(1.30), the time evolved electron and muon flavour neutrino state (|νe(t)〉 and |νµ(t)〉) in

linear superposition of flavour basis, parametrized by θ, φ, can be simply written as

|νe(θ, φ)〉f = (cos2θ + sin2θe−iφ) |νe〉+ sinθcosθ(1− e−iφ) |νµ〉 , (6.32)

|νµ(θ, φ)〉f = sinθcosθ(1− e−iφ) |νe〉+ (sin2θ + cos2θe−iφ) |νµ〉 ,

respectively, where suffix f represent that the flavour neutrino state should be written in

flavour basis but not in mass basis.

If we map flavour states at time t=0 to bi-partite state in the two qubit system as |νe〉 =
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|1〉e ⊗ |0〉µ and |νµ〉 = |0〉e ⊗ |1〉µ, therefore Eq.(6.32) become

|νe(θ, φ)〉f = (cos2θ + sin2θe−iφ) |10〉+ sinθcosθ(1− e−iφ) |01〉 , (6.33)

|νµ(θ, φ)〉f = sinθcosθ(1− e−iφ) |10〉+ (sin2θ + cos2θe−iφ) |01〉 .

These states are equivalent to Eq.(5.5) and Eq.(5.6) and for such states we have already quan-

tified concurrence in terms of neutrino transitions probabilities which is given in Eq.(5.9).

The result shows that these states are bi-partite qubit entangled state.

6.3 SU(3) Poincaré sphere for three-flavour neutrinos

In this section, we use the Gell-Mann matrices, instead of Pauli’s matrices, to map the

three flavour neutrino states onto the SU(3) Poincaré sphere. In the same way as the mass

eigenstates of a two flavour neutrino system were mapped to qubits in the two-dimensional

Hilbert space H2, we now consider the three-dimension Hilbert space H3. A qutrit is realized

by three mutually orthogonal states [47]: |1〉 , |2〉 , |3〉 .

A quantum state in the Hilbert spaceH3 spanned by the three orthogonal qtrit states |1〉 =1
0
0

 ; |2〉 =

0
1
0

 ; and |3〉 =

0
0
1

 is |ψ〉 = α |1〉+ β |2〉+ γ |3〉 where |α|2 + |β|2 + |γ|2 = 1

. Using the polar representation a quantum state |ψ〉 does not change if multiplied by an

overall phase, the equivalent quantum state is

|ψ〉 = eξ1sin(θ)cos(φ) |1〉+ eiξ2sin(θ) sin(φ) |2〉+ cos(θ) |3〉 . (6.34)

The corresponding density matrix for the state |ψ〉 is

ρ3×3(ψ) = |ψ〉 〈ψ| =

 sin2θcos2φ ei(ξ1−ξ2)

2
sin2θsin(2φ) eiξ1

2
sin(2θ)cosφ

ei(ξ2−ξ1)

2
sin2θsin(2φ) sin2θsin2φ eiξ2

2
sin(2θ)sinφ

e−iξ1
2
sin(2θ)cosφ e−iξ2

2
sin(2θ)sinφ cos2θ

 .

(6.35)

The pure state |ψ〉 in Eq.(6.34) is dependent on 4 parameters θ, φ, ξ1, ξ2. However, the five

parameters are needed to characterize the neutrino state, and the sum of the squares of the

state’s coefficients should be 1.

Now we will define the density operator of a qutrit system using SU(3) in general and
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then map it to the neutrino system. The density matrix ρ3×3 = |ψ〉 〈ψ| is a 3 × 3 unitary

matrix such that (ρ3×3)† = ρ3×3; and Tr(ρ3×3) = 1 . The qutrit representation of the density

matrix takes the eight (Hermitian, traceless) generators of SU(3) as an operator basis called

the Gell-Mann matrices [47]. By supplementing the eight Gellmann matrices λi, i = 1...8

with the unit operator λ0 ≡
√

2
3
1, the qutrit density matrix operator is a vector in the space

spanned by λα, α = 0, ..., 8 and therefore can be written as

ρ3×3 = |ψ〉 〈ψ| = 1

3
cαλα = (α |1〉+ β |2〉+ γ |3〉)(α∗ 〈1|+ β∗ 〈2|+ γ∗ 〈3|), (6.36)

=

√
3

2
λ0 +

1

2
(αβ∗ + βα∗)λ1 +

i

2
(αβ∗ − βα∗)λ2

+
1

2
(|α|2 − |β|2)λ3 +

1

2
(αγ∗ + γα∗)λ4 +

i

2
(αγ∗ − γα∗)λ5

+
1

2
(βγ∗ + γβ∗)λ6 +

i

2
(βγ∗ − γβ∗)λ7 +

1

2
√

3
(|β|2 − 2|γ|2)λ8, (6.37)

the (real) expansion coefficients are

cα =
3

2
tr(ρ3×3λα). (6.38)

Normalization implies that c0 =
√

3
2
, so ρ3×3 can be simplified to the SU(3) equivalent of

Eq.(6.5), which we shall show is the Poincaré sphere representation of the qutrit states

ρ3×3 =
1

3
(1 + cjλj) =

1

3
(1 + ~c.~λ), (6.39)

where, ~c = cj êj and ~λ = λj êj.

To find the coefficients ci we note that

ρ2
3×3 =

1

9
(1 +

2

3
~c.~c)1 +

1

3
~λ.(

2

3
~c+

1

3
√

3
~c ? ~c), (6.40)

where the “star” product is defined as

~c ? ~d ≡ êjdjklckdl. (6.41)
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The characterization of the Gell-Mann matrices and djkl value can be found in [210] or any

group theory textbook. The star product condition is well explained in ref. [47]. For a pure

state |ψ〉, ρ2
3×3 = ρ3×3, ~c.~c = 3 and ~c ?~c =

√
3~c. Taking n̂ = ~c/

√
3 which is eight dimensional

unit vector, qutrit pure state density matrix is

ρ3×3 = |ψ〉 〈ψ| = 1

3
(I +

√
3n̂.~λ), (6.42)

where n̂ satisfies

n̂.n̂ = 1 and n̂ ? n̂ = n̂. (6.43)

Eq.(6.42) is the equation for the 7-dimensional unit sphere n̂ ∈ S7 embedded in Euclidean

eight dimensional space R8 spanned by the Gell-Mann matrices, that represents coset space

SU(3)/U(2) [205], with components of unit vector n̂ given by

nj =

√
3

2
tr(ρ3×3λj) =

√
3

2
〈ψ|λj |ψ〉 . (6.44)

Thus, we have outlined the Poincaré sphere representation of the density matrix in H3.

Three-flavour neutrino oscillations involve a Hilbert space H3 and the mixing matrix is

given by the SU(3) matrix. Let the mass eigenstates of the three flavour neutrino system be

|ν1〉, |ν2〉 and |ν3〉 then the relation between the mass eigenstates and the flavour states is

(see Eq.(1.1)) |νe〉|νµ〉
|ντ 〉

 = U∗(θ, φ, η, δCP )

|ν1〉
|ν2〉
|ν3〉

 , (6.45)

where U(θ, φ, η, δCP ) is the Unitary PMNS neutrino mixing matrix

U(θ, φ, η, δCP ) =

 CθCφ SθCφ Sφe
−iδCP

−SθCη − CθSφSηeiδCP CθCη − SθSφSηeiδCP CφSη
SθSη − CθSφCηeiδCP −CθSη − SθSφCηeiδCP CφCη

 ∈ SU(3),

(6.46)

where (Sθ, Sφ, Sη) ≡ (Sinθ12, Sinθ13, Sinθ23); (Cθ, Cφ, Cη) ≡ (Cosθ12, Cosθ13, Cosθ23), the

θij’s are the neutrino mixing angles between the states i and j (i, j = 1, 2, 3) [52,209]. Here,

Eq.(6.46) is similar to Eq.(1.2).

The three flavour states of a neutrino system can be written in the qutrit basis by identi-

fying the mass eigenstates with the qutrit basis states of the three dimension Hilbert space
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H3 as

|1〉 = |ν1〉 ; |2〉 = |ν2〉 ; |3〉 = |ν3〉 . (6.47)

Without loss of generality, we take δCP = 0 and write the time evolved electron flavour

neutrino state as

|νe(t)〉 = e−iE1t/~CθCφ |1〉+ e−iE2t/~(−SθCη − CθSφSη) |2〉+ e−iE3t/~(SθSη − CθSφCη) |3〉 .(6.48)

Similarly, the time evolved |νµ(t)〉 and |ντ (t)〉 neutrino flavour states can be written as

|νµ(t)〉 = e−iE1t/~SθCφ |1〉+ e−iE2t/~(CθCη − SθSφSη) |2〉+ e−iE3t/~(−CθSη − SθSφCη) |3〉 ,(6.49)

and |ντ (t)〉 = e−iE1t/~Sφ |1〉+ e−iE2t/~CφSη |2〉+ e−iE3t/~CφCη) |3〉 , (6.50)

respectively. Taking the ultra-relativistic limit L ≈ t (c = 1, ~ = 1) and defining ξ1 =

(E3 − E1)t/~ ≈ ∆m2
31L/2E, and ξ2 = (E2 − E1)t/~ ≈ ∆m2

21L/2E, the normalized time

evolved electron neutrino flavour state |νe(t)〉 in qutrit basis, parametrized by three different

mixing angle θ, φ, η and with two arbitrary phases ξ1 and ξ2 (0 ≤ θ, φ, η ≤ π
2
; 0 ≤ ξ1, ξ2 < 2π)

is

|νe(θ, φ, η, ξ1, ξ2)〉 = eiξ1CθCφ |1〉+ eiξ2(−SθCη −CθSφSη) |2〉+ (SθSη −CθSφCη) |3〉 . (6.51)

The 3× 3 density matrix of the state |νe(θ, φ, η, ξ1, ξ2)〉 is

ρe3×3 = |νe(θ, φ, η, ξ1, ξ2)〉 〈νe(θ, φ, η, ξ1, ξ2)| , (6.52)

which, in matrix form, is

=


C2
θC

2
φ −e−i(ξ2−ξ1)CθCφ(SθCη + CθSφSη) eiξ1CθCφ(SθSη −CθCφCη)

−ei(ξ2−ξ1)CθCφ(SθCη + CθSφSη) (SθCη + CθSφSη)2 −eiξ2 (SθCη + CθSφSη)(SθSη −CθCφCη)

e−iξ1CθCφ(SθSη −CθCφCη) −e−iξ2 (SθCη + CθSφSη)(SθSη −CθCφCη) (SθSη −CθCφCη)2

 .

The density matrix ρe3×3 satisfies the relation (ρe3×3)† = (ρe3×3)2 = ρe3×3; and Tr(ρe3×3) = 1.

The density matrix for the time evolved electron flavour neutrino state |νe(θ, φ, η, ξ1, ξ2)〉 can

now be cast into the form

ρe3×3 = |νe(θ, φ, η, ξ1, ξ2)〉 〈νe(θ, φ, η, ξ1, ξ2)| = 1

3
(I +

√
3n̂.~λ). (6.53)



Ch-6: Neutrinos as Qubits and Qutrits 100

The unit vector (n̂.n̂ = 1), in the Euclidean eight dimensional space R8 is

n̂(θ, φ, η, ξ1, ξ2) = n1ê1 + n2ê2 + n3ê3 + n4ê4 + n5ê5 + n6ê6 + n7ê7 + n8ê8. (6.54)

Using the density matrix form (ρe3×3) of Eq.(6.52) in Eq.(6.44), the components of the unit

vector n̂(θ, φ, η, ξ1, ξ2) can be obtained as:

n1 = −
√

3CθCφ(SθCη + CθSφSη)Cos(ξ2 − ξ1);

n2 = −
√

3CθCφ(SθCη + CθSφSη)Sin(ξ2 − ξ1);

n3 =

√
3

2
[C2

θC
2
φ − (SθCη + CθSφSη)

2];

n4 =
√

3CθCφ(SθSη − CθCφCη)Cosξ1;

n5 = −
√

3CθCφ(SθSη − CθCφCη)Sinξ1;

n6 = −
√

3(SθCη + CθSφSη)(SθSη − CθCφCη)Cosξ2;

n7 =
√

3(SθCη + CθSφSη)(SθSη − CθCφCη)Sinξ2;

n8 =
1

2
[C2

θC
2
φ + (SθCη + CθSφSη)

2 − 2(SθSη − CθCφCη)2]. (6.55)

The result shows that the time evolved electron flavour neutrino state lies on the S7 sphere

in the eight dimensional real vector spaces. Not all the operators on the unit-sphere are pure

state, so the star product condition n̂ ? n̂ = n̂ (see Eq.(6.43)) imposes three constraints on

the unit vector n̂(θ, φ, η, ξ1, ξ2) (see Eq.(6.54)) and therefore reduces the number of arbitrary

parameters for the neutrino states. The three constraints give us three orthonormal compo-

nents of n̂(θ, φ, η, ξ1, ξ2). In the following Table.(6.1), we list the three constraints and their

corresponding orthonormal unit vectors.

S.No. Constraints Corresponding n̂

1. θ = φ = 0, η = π
2
, ξ1 and ξ2

are arbitrary
n̂1 =

√
3

2
ê3 + 1

2
ê8

2. θ = π/2, φ = η = 0, ξ1 and
ξ2 are arbitrary

n̂2 = −
√

3
2
ê3 + 1

2
ê8

3. θ = φ = η = π/2, ξ1 and ξ2

are arbitrary
n̂3 = −ê8

Table 6.1: The three constraints coming from star product condition n̂?n̂ = n̂ (see Eq.(6.43))
and their corresponding orthonormal unit vectors.
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These orthonormal states also satisfies the condition [205]

| < ψ|ψ′ > |2 = tr(ρρ′) =
1

3
(1 + 2n̂.n̂′),

0 ≤ tr(ρρ′) ≤ 1⇐⇒ 0 ≤ Cos−1(n̂.n̂′) ≤ 2π

3
. (6.56)

We find that the angle formed between any two unit vectors (n̂1, n̂2, n̂3) is 2π
3

, since

Cos−1(n̂1.n̂2) = Cos−1(n̂1.n̂3) = Cos−1(n̂2.n̂3) = Cos−1(−1
2

) = 2π
3

. Identifying the three or-

thonormal basis of qutrit as the mass eigenstates of neutrinos (see Eq.(6.47)), the Eq.(6.56)

shows that the pure state |νe(θ, φ, η, ξ1, ξ2〉 in an orthonormal basis (|ν1〉, |ν2〉, |ν3〉) has unit

vectors (n̂1, n̂2, n̂3) that lie in a plane at the vertices of an equilateral triangle which we

term as a “qutrit triangle”. If one takes the three canonical basis vectors of H3 as usual, the

three vertices of an equilateral triangle are

(n3, n8)A = (

√
3

2
,
1

2
) −→ (1, 0, 0)T = |1〉 = |ν1〉 ; (6.57)

(n3, n8)B = (−
√

3

2
,
1

2
) −→ (0, 1, 0)T = |2〉 = |ν2〉 ; (6.58)

(n3, n8)c = (0,−1) −→ (0, 0, 1)T = |3〉 = |ν3〉 ; (6.59)

which are identified with the generalized W-states of neutrinos that we have discussed in

Chapter 3. Thus, we generalize the concept of tri-partite mode entanglement by considering

neutrinos as qutrits.

The diagonal density matrix in the orthonormal basis is the triangle operator, or interior

[47, 208]. We map the neutrino state density matrix ρe3×3 of SU(3) space directly to the λ3

and λ8 basis (two diagonal Gell-Mann matrices) to construct a mixed state density matrix

ρed(3×3). Thus, the density matrix ρe3×3 of Eq.(6.53) is now reduced to a mixed state as

ρed(3×3) =
1

3
(I +

√
3(n3λ3 + n8λ8)) =

1

3

1 +
√

3n3 + n8 0 0

0 1−
√

3n3 + n8 0
0 0 1− 2n8

 ,(6.60)

where x1 = 1
3
(1+
√

3n3+n8), x2 = 1
3
(1−
√

3n3+n8), and x3 = 1
3
(1−2n8) are three eigenvalues

of ρed(3×3) in terms of n3 and n8. The value of n3 and n8 are given in Eq.(6.55). We calculate
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Figure 6.1: In Fig.(a) the equi-mixing curves of E(ρed) in the n3 and n8 plane is shown using
the current experimental bounds of the 3σ range of neutrino parameters [197]. Fig.(b) shows
the equi-mixing curves of E(ρed) in the n3 and n8 plane inside the qutrit triangle.
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Figure 6.2: The equi-mixing curves of E(ρed) is shown in the n3 and n8 plane when θ and η
are vary from 0 to π/2.

the entropy of mixing of the mixed state ρed(3×3) by using the formula [208]:

E(ρed(3×3)) = −x1log3(x1)− x2log3(x2)− x3log3(x3). (6.61)
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In Fig.(6.1) (Fig.(a) and Fig.(b)), we plot the equi-mixing curves of E(ρed) in the n3 and

n8 plane. We vary θ ≡ θ12 and η ≡ θ23 over 3σ range of current experimental bounds [197],

we find that neutrinos are inside qutrit triangle for the range of entropy of mixing E(ρed)

approximately between 0.62 to 0.74. In Fig.(6.2) we vary θ and η from 0 to π/2, and we see

that this put the constraints on θ12 and θ23 to be greater than 23 degrees for physical result.

Furthermore, the SU(2) Poincaré sphere representation for two-flavour neutrino oscillations

can be deduced from the three-flavour Poincaré sphere in SU(3) by imposing the conditions

tanθ23 tanθ12 = sinθ13. (6.62)

In the limit when the mixing between 2 and 3 (49 degrees), and 1 and 2 (33.44 degrees)

is greater than the mixing between 1 and 3, θ13 ≈ 0 (8.57 degrees, Sinθ13 ≈ 0.15). We set

θ13 ≈ 0, so that the Eq.(6.51) |νe(θ, φ, η, ξ1, ξ2)〉 can be reduced to

|νe(θ, ξ1, ξ2)〉 =

 eiξ1cosθ
−eiξ2sinθ

0

 (0 ≤ θ ≤ π

2
, 0 ≤ ξ1, ξ2 < 2π). (6.63)

We calculate the density matrix ρe3×3 = |νe(θ, ξ1, ξ2)〉 〈νe(θ, ξ1, ξ2)| of the above reduced state

and use it in Eq.(6.44). We find that the unit vector n̂ in eight-dimensional real vector space

has now reduces to only four non-vanishing components

n1 = −
√

3

2
sin2θcos(ξ2 − ξ1); n2 =

√
3

2
sin2θsin(ξ2 − ξ1); n3 =

√
3

2
cos2θ; n8 =

1

2
,(6.64)

else all are zero i.e, n4 = n5 = n6 = n7 = 0. Hence, when there is a hierarchy of mixing

between the three states 1, 2 and 3 with the third state almost decoupled (small mixing

angle), we retrieve the SU(2) Poincaré sphere from the SU(3) Poincaré sphere.

So far, we have considered the Poincare′ sphere representation of a time evolved electron-

neutrino flavour state. For completeness, we give the Poincare′ sphere representation of a

time evolved muon-neutrino flavour state. The state |νµ(t)〉 (see Eq.(6.49)) parametrized by

θ, φ, η, ξ1, ξ2 in the qutrit basis is

|νµ(θ, φ, η, ξ1, ξ2)〉 = eiξ1SθCφ |1〉+ eiξ2(CθCη−SθSφSη) |2〉+ (−CθSη−SθSφCη) |3〉), (6.65)
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and its corresponding density matrix ρµ3×3 = |νµ(θ, φ, η, ξ1, ξ2)〉 〈νµ(θ, φ, η, ξ1, ξ2)| is

ρ
µ
3×3 =


S2
θC

2
φ e−i(ξ2−ξ1)SθCφ(CθSη − SθSφSη) eiξ1SθCφ(−CθSη − SθSφSη)

ei(ξ2−ξ1)SθCφ(CθSη − SθSφSη) (CθSη − SθSφSη)2 eiξ2 (CθSη − SθSφSη)(−CθSη − SθSφSη)

e−iξ1SθCφ(−CθSη − SθSφSη) e−iξ2 (−CθSη − SθSφSη)(CθSη − SθSφSη) (−CθSη − SθSφSη)2

 . (6.66)

The density matrix ρµ3×3 can be expanded in the Gell-mann basis as

ρµ3×3 =
1

3
(I +

√
3n̂′.~λ), (6.67)

and by using the Eq.(6.66) in Eq.(6.44), we get the components of the unit vector n̂′(θ, φ, η, ξ1, ξ2)

as

n′1 =
√

3SθCφ(CθSη − SθSφSη)Cos(ξ2 − ξ1);

n′2 =
√

3SθCφ(CθSη − SθSφSη)Sin(ξ2 − ξ1);

n′3 =

√
3

2
[S2
θC

2
φ − (CθSη − SθSφSη)2];

n′4 =
√

3SθCφ(−CθSη − SθSφSη)Cosξ1;

n′5 = −
√

3SθCφ(−CθSη − SθSφSη)Sinξ1;

n′6 =
√

3(CθSη − SθSφSη)(−CθSη − SθSφSη)Cosξ2;

n′7 = −
√

3(CθSη − SθSφSη)(−CθSη − SθSφSη)Sinξ2;

n′8 =
1

2
[S2
θC

2
φ + (CθSη − SθSφSη)2 − 2(CθSη − SθSφSη)2]. (6.68)

6.4 Two qutrits flavour neutrino states and generalized

concurrence

In general, any two qutrits state is defined as the tensor product of two three dimensional

Hilbert spaces, i.e., H3⊗H3. This section represents a two-qutrit density matrix of the neu-

trino system based on Gell-Mann matrix tensor products, with the coefficients constituting

a generalized matrix analogous to a two-qubit Bloch matrix of neutrinos.

According to Eq.(6.45), Eq.(6.46) and Eq.(6.47), in the three neutrino system, in general

the time evolved neutrino flavour states in qutrit basis (|1〉 , |2〉 , |3〉) for the two different

sub-system A and B can be represented as (A,B = e, µ, τ) :
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|νA(θ, φ, η, ξ1, ξ2)〉 = α1 |1〉+ α2 |2〉+ α3 |3〉 (6.69)

|νB(θ, φ, η, ξ1, ξ2))〉 = α′1 |1〉+ α′2 |2〉+ α′3 |3〉

where, |νA(θ, φ, η, ξ1, ξ2)〉 ∈ H3
A and |νB(θ, φ, η, ξ1, ξ2)〉 ∈ H3

B, and |α1|2 + |α2|2 + |α3|2 = 1

and |α′1|2 + |α′2|2 + |α′3|2 = 1.

We express the two qutrits time evolved flavour neutrino state as |νAB(θ, φ, η, ξ1, ξ2)〉 =

|νA(θ, φ, η, ξ1, ξ2)〉 ⊗ |νB(θ, φ, η, ξ1, ξ2))〉, and find its the density matrix in the two qutrit

standard basis {|11〉 , |12〉 , |13〉 , |21〉 , |22〉 , |23〉 , |31〉 , |32〉 , |33〉} ∈ H3
A ⊗H3

B as

ρAB9×9 = ρA3×3 ⊗ ρB3×3 = |νA,B(θ, φ, η, ξ1, ξ2)〉 〈νA,B(θ, φ, η, ξ1, ξ2)|

=

|α1|2 α1α
∗
2 α1α

∗
3

α2α
∗
1 |α2|2 α2α

∗
3

α3α
∗
1 α3α

∗
2 |α3|2

⊗
 |α′1|2 α′1α

′
2
∗ α′1α

′∗
3

α′2α
′∗
1 |α′2|2 α′2α

′∗
3

α′3α
′∗
1 α′3α

′∗
2 |α′3|2

 = (...)9X9 (6.70)

where, ρA3×3 = |νA(θ, φ, η, ξ1, ξ2)〉 〈νA(θ, φ, η, ξ1, ξ2)| and ρB3×3 = |νB(θ, φ, η, ξ1, ξ2)〉 〈νB(θ, φ, η, ξ1, ξ2)|
are density matrix of two sub-systems A and B, respectively. Also, α∗1, α

∗
2, α

∗
3 and α′∗1, α

′∗
2, α

′∗
3

are complex cojugate of α1, α2, α3 and α′1, α
′
2, α

′
3, respectively.

Alternatively, the density matrix in Eq.(6.70) is uniquely expanded as

ρAB9×9 = (
1

3
(I +

√
3n̂.~λA)⊗ (

1

3
(I +

√
3n̂′.~λB)

=
1

9
(I ⊗ I +

√
3~λA.n̂⊗ I +

√
3I ⊗ ~λB.n̂′ + 3

2

8∑
i,j=1

cijλ
A
i ⊗ λBj ). (6.71)

The (real) expansion coefficients in Eq.(6.71) are given by

ni =

√
3

2
tr(ρABλi ⊗ I)

n′j =

√
3

2
tr(ρABI ⊗ λj)

cij =
3

2
tr(ρABλi ⊗ λj). (6.72)

where ni and nj are components of unit vector n̂ and n̂′ of the two subsytems: ρA3×3 and ρB3×3
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and i, j = 1, ..., 8. The coefficients cij form a 8× 8 correlation matrix R.

The two qutrit density matrix shown in Eq.(6.71) can be also cast into the form as

ρAB9×9 = ρA3×3 ⊗ ρB3×3 = (
1

3
cαλα)⊗ (

1

3
cβλβ) =

1

9
cαβλα ⊗ λβ, (6.73)

where the expansion coefficients are given by

cαβ =
9

4
tr(ρAB9×9λα ⊗ λβ). (6.74)

α, β = 0, ..., 8 and normalization requires that c00 = 3
2
. Thus, Eq.(6.74) form a generalized

matrix GM which is split into four components: a scalar of 3
2
, two eight-dimensional vectors,

and a 8× 8 correlation matrix R such that

GM =


3
2

c01 ..... c08

c10 c11 ..... c18

: : ..... :
: : ..... :
c80 c81 ..... c88

 , (6.75)

where ni = ci0 and nj = c0j (i, j = 1, ..., 8) are the components of local unit Bloch vectors n̂

and n̂′, respectively of the two single qutrit sub-systems (ρA3×3 and ρB3×3), cij (i, j = 1, ..., 8) are

the matrix elements of correlation matrix R. Therefore, according to the above Eq.(6.75),

all possible combination of neutrinos two qutrits density matrix like ρee9×9 = ρe3×3 ⊗ ρe3×3,

ρeµ9×9 = ρe3×3 ⊗ ρµ3×3, ρµµ9×9 = ρµ3×3 ⊗ ρµ3×3, ρµe9×9 = ρµ3×3 ⊗ ρe3×3, etc., resembles a product or

separable state.

In general, the entanglement measure generalized concurrence for the two qutrits mixed

state density matrix ρ9×9 is defined as [201]

C3(ρ9×9) = max{0, 2µ1 −
9∑
i=1

µi}, (6.76)

where the µi (with i=1,2,...,9) are the square roots of the eigenvalues of the non-Hermitian

matrix ρ9×9ρ̃9×9 in decreasing order. ρ̃9×9 is the spin-flip density matrix

ρ̃9×9 = (O3 ⊗O3)ρ∗9×9(O3 ⊗O3), (6.77)
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Figure 6.3: The violet band shows the νe concurrence C(ρe(t)) (Red, solid line) in the bi-
partite qubit system and the pink band shows the generalized concurrence C3(ρef 9×9

) (Blue,

dash dotted line) in the bi-partite qutrit system. Both entanglement measures are compared
with the green band which shows the νe probability Pe→e (Black, dash dotted line) and with
the orange band which shows the Pe→µ probability (Green, dashed line), using the current
experimental bounds of the 3σ range of neutrino parameters [197].

with ρ∗9×9 being the complex conjugate of ρ9×9 and O3 is the transformation matrix for

qutrits

O3 =

 0 −i i
i 0 −i
−i i 0

 . (6.78)

Here, O3 ⊗ O3 is analogous to the σy ⊗ σy in the two qubit system (see Eq.(2.34)). We

find that the generalized concurrence for possible combination of two qutrits product state

density matrix is zero i.e., C3(ρee9×9) = C3(ρeµ9×9) = C3(ρµµ9×9) = C3(ρµe9×9) = ... = 0.

Furthermore, to investigate two qutrits entanglement in neutrino oscillations, we study

two flavour neutrino oscillations in the bi-partite qutrit system and quantify the generalized

concurrence. We map the neutrino flavour state at t=0 to bi-partite qutrit states as |νe〉 =

|1〉 ⊗ |2〉 and |νµ〉 = |2〉 ⊗ |1〉. Then using Eq.(6.32), the normalized time evolved electron
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flavour neutrino state in linear superposition of bi-partite qutrit neutrino flavour basis is

|νe(θ, φ)〉f = (cos2θ + sin2θe−iφ) |12〉+ sinθcosθ(1− e−iφ) |21〉 , (6.79)

and its density matrix in the two qutrit standard basis {|11〉 , |12〉 , |13〉 , |21〉 , |22〉 , |23〉 ,
|31〉 , |32〉 , |33〉} is

ρef 9×9
= |νe(θ, φ)〉f f 〈νe(θ, φ)| =



0 0 0 0 0 0 0 0 0
0 |a1|2 0 a1b

∗
1 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 a∗1b1 0 |b1|2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(6.80)

where, a1 = (cos2θ+ sin2θe−iφ), and b1 = sinθcosθ(1− e−iφ) are the coefficients of bi-partite

qutrit flavor basis |νe〉 and |νµ〉, respectively, and a∗1, b∗2 are complex conjugate of a1 and b1,

respectively.

Using Eq.(6.80) in Eq.(6.77), we construct the spin-flip density matrix ρ̃ef 9×9
= (O3 ⊗

O3)ρ∗f
e

9×9
(O3⊗O3). We find that one of the square root of eigenvalues of the matrix ρef 9×9

ρ̃ef 9×9

is non-zero, i.e., µ1 = 4cosθsinθ(cos2θ − sin2θ)sin2 φ
2
. Thus using Eq.(6.76), the generalized

concurrence of the time evolved electron flavour neutrino state |νe(θ, φ)〉f in the bi-partite

qutrit system is quantified as

C3(ρef 9×9
) = 4cosθsinθ(cos2θ − sin2θ)sin2φ

2
. (6.81)

In Fig.(6.3), the generalized concurrence C3(ρef 9×9
) (see Eq.(6.81)) of the time evolved

electron flavour neutrino state in the bi-partite qutrit system is compared with the con-

currence C(ρe(t)) (see Eq.(5.9)) in the bi-partite qubit system. Thus, the nonzero value of

the generalized concurrence (C3(ρef 9×9
) 6= 0) shows that in the two neutrino systems, the

time evolved neutrino flavour state is a bi-partite qutrit entangled state. Therefore, the plot

results warrant a study of two qutrits entanglement in the three-flavour neutrino oscillation.



Chapter 7

Conclusion and Future work

7.1 Experimental consideration

The study presented in this thesis naturally prompts the question: What is a measurable

characteristic experimental signal for genuine tri-partite entanglement in Neutrino interac-

tions? Recently, the Daya-Bay experiment has analyzed the wave-packet model of neutrino

oscillations to study quantum entanglement in neutrino systems. The coherent evolution of

the electron neutrino state and subsequent decoherence has been the subject of a recent ex-

perimental paper [29]. Quantum coherence in experimentally observed neutrino oscillations,

using the tools of quantum resource theory, has produced results for the longest distance over

which quantumness has been experimentally determined for quantum particles other than

photon [190]. Different neutrino oscillation experiments, including Daya-Bay, KamLAND,

Minos, and T2K, have assessed Quantum coherence over large length scales. Coherence is re-

lated to the concurrence: bi-partite entanglement and tri-partite entanglement. In Fig.(7.1)

and Fig.(7.2), we show the bi-partite entanglement measure- concurrence (see Eq.(5.9)) vary

with ratio L/E changing for the short-range νe → νe and long-range νµ → νµ survival prob-

abilities using the Daya Bay and Minos experimental data, respectively [211, 212]. Both

experiments exhibited good agreement with the theoretical prediction. We compare the re-

sults of bi-partite entanglement with the experiment. We extend our calculation further to

study both tri-partite entanglement and wave-packet approach in experimentally observed

neutrino oscillations. Thus, it is of interest for future experiments to justify three-way en-

tanglement in neutrino oscillations and see how to explore it further. Since quantum optical

systems, unlike neutrino oscillations experiments, our work is interested in further exploring

109
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Figure 7.1: The blue band shows the short range νe disappearance probability (Black, dashed
line) and the orange band shows concurrence (Red, solid line) in two flavour neutrino oscil-
lations, using the Daya Bay experimental data [197,211].

Figure 7.2: The blue band represents the long-range survival probability νµ → νµ (Black,
dashed line) and it compared with orange band which gives concurrence (Red, solid line) in
two flavour neutrino oscillations, using the Minos experimental data [197,212].
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the characteristics of neutrino oscillation quantum entanglement.

7.2 Conclusion

In the introductory Chapter 1, we briefly reviewed the phenomenon of neutrino oscillations

and discussed the derivation of neutrino flavour transition probabilities using the plane wave

and wave packet picture. In Chapter 2, we have studied different types of entangled quantum

systems, such as the two-qubit Bell’s state and the three-qubit GHZ and W states, which

are valuable resources for quantum information processing. We have also outlined various

entanglement measures of bi-partite and tri-partite quantum systems.

In Chapter 3, we explored various bi-partite and tri-partite entanglement measures for neu-

trino flavour oscillations and compared our results with the two-qubit and three-qubit states

used in quantum information theory. In the bi-partite quantum system, all quantum correla-

tions like tangle, concurrence, and negativity are quantified in terms of neutrino survival and

disappearance probabilities and coincide with the linear entropy (a lower approximation to

the von Neumann entropy). The entanglement measures show that the |νe(t)〉 is a bi-partite

entangled pure state. We find that more substantial mixing leads to more entanglement.

For the bi-partite two ν system, we see a laboratory analogue of a beam splitter placed at

an angle representing the two neutrino systems. Neutrino mixing is akin to entanglement

swapping in quantum optics systems. Moreover, we quantify tri-partite entanglement in the

three neutrino systems in two ways: (a) in terms of measures of bi-partite entanglement and

(b) genuine tri-partite entanglement. Both are related to neutrino transition probabilities.

The three flavour neutrino oscillation satisfies the CKW inequality criterion and exhibits

the property of the class of W-states, which are one of two different genuinely entangled

tri-partite states. We can mimic the three neutrino systems by using a collection of beam

splitters. This analogy helps study neutrino entanglement and understand new phenomena

in quantum information theory.

In Chapter 4, we described quantum computing techniques to simulate the Bell’s state,

the GHZ-state and the W-state on an IBM quantum cloud computer. We have proposed

quantum circuit concurrence for the two-qubit Bell’s state and shown its simulation on IBMQ

processors.

In Chapter 5, we find that in the bi-partite two neutrino system, the l1- norm of coherence

and concurrence coincide. We use this information to study quantum coherence in the

neutrino system based on the IBMQ platform. We have constructed a Bell-like superposition
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quantum computer circuit for the time evolved electron and muon flavour neutrino state using

the Universal quantum gate U(3), S-gate, Controlled-NOT and Pauli (X) gate. Using the

spin-flipped σy ⊗ σy gate and Hadamard gate, we outline the simulation of concurrence in

the two neutrino systems for the time evolved electron flavour neutrino state on a quantum

simulator and quantum hardware of IBM. We discuss the implications of implementing bi-

partite entanglement in the two neutrino systems in a vacuum and the uniform matter

background for the time evolved muon flavour neutrino state on IBMQ processors. The

simulation results strongly suggested that the matter effects do not decohere the neutrinos

much. In subsequent studies, we shall simulate the coherence of neutrinos propagating in

a multi-layer medium with uniform or varying matter background on the IBMQ platform

[213]. In future, the quantum algorithm presented in this chapter could also be helpful to

study the matter effect with non-standard interaction (NSI) [214]. Moreover, the study of

coherence distribution in the neutrino system using the quantum circuit of entanglement,

which measures concurrence, would be of great interest to explore further on the IBMQ

platform [215]. We hope that using quantum computing as a tool for future work in this

could be helpful to learn more about this topic.

In general, the class of W state violates Mermin’s inequality [187] and this result is sim-

ulated on the IBMQ processor in ref. [216, 217]. In future, we shall construct the quantum

circuit for the W state of neutrinos and show violation of Mermin’s inequalities for three

particle neutrino states on the IBMQ platform. Along these lines, we predict that we can

execute a circuit to simulate tri-partite entanglement in neutrino oscillations on a quantum

computer.

In chapter 6, we use the Pauli matrices to characterize the two-flavour neutrino oscillations

on the Poincaré sphere S2 = SU(2)/U(1). The Poincaré vector of the time evolved flavour

neutrino state lies on the unit sphere in the three-dimensional real vector space. This result

helps us to characterize the two neutrino systems as qubits.

In the two-qubit systems, we have shown the Poincaré sphere representation of two neutrino

system. We constructed a two-qubit density matrix of neutrinos based on the Dirac matrices.

The coefficients of the Dirac matrices form the Bloch matrix, which shows that the two-qubit

neutrino state is separable. We map the mass eigenstates of neutrinos directly to the bi-

partite qubit system. The resultant Bloch matrix construction shows that the bi-partite

qubit neutrino state is entangled.

We use the Gell-Mann matrices to construct the Poincaré sphere S7 = SU(3)/U(2) in the

three-flavour neutrino oscillation. The SU(3) result allows us to identify the three neutrino



Ch-7: Conclusion and Future work 113

system as qutrits which generalize the concept of entangled tri-partite states of neutrinos.

We calculate the entropy of mixing E(ρed) of the time evolved flavour neutrino mixed state

in a single qutrit system using the current experimental bound on the neutrino oscillation

parameters, and we find that the equi-mixing curves of E(ρed) lie inside the qutrit triangle.

In the two-qutrit system, constructing a generalized Poincaré sphere using the Gell-Mann

matrix tensor products led to the generalized Bloch matrix in the Bloch vector space of the

three neutrino system. The quantification of the generalized concurrence in the two neutrino

system implies that the two flavour neutrino oscillations are bi-partite qutrit entangled states.

We have compared the generalized concurrence of the bi-partite qutrit neutrinos that of

the bi-partite qubit neutrino. Both measures provide a qualitatively non zero amount of

information in the two neutrino system. In a subsequent study, we shall examine two qutrit

entanglement in the three neutrino system [218].

A quantum computer has done the quantum simulation of bi-partite qubit entanglement

of two flavour neutrino oscillations. New studies claim that qutrits offer a promising path

towards extending the frontier of quantum computers [219,220]. Our results lead us to a new

direction of ternary computing using qutrits. We hope the results of this work will be helpful

to explore neutrino oscillations on a qutrit quantum computer. Thus, in brief, neutrinos can

be considered potential candidates for quantum information and quantum computing task.

7.3 Future work

Neutrino oscillations are a very subtle quantum phenomenon [221]. In the introductory

Chapter 1 two assumptions were made when deriving the oscillation probability formula.

The first was the plane wave approximation for neutrino wave functions; the second was that

all the mass eigenstates have equal momentum and energy. Although they allow reaching the

final result quickly and straightforwardly, there is no reason for these to hold in general. For

pion decay, these requirements are not satisfied. Conceptual problems associated with such

conditions are problematic. A plane wave describes the same momentum of neutrinos with

a flat distribution probability found in any point of the space, which disagrees with the need

for well-defined production and detection regions for the oscillations to occur. To handle

such problems, a wave packet approach is mandatory, and a careful study of the coherence

properties of the wave packet.

In Sec.(1.3), we have discussed about the coherence condition and coherence length (LCoh)

when the propagating neutrinos considered as a superposition of three Gaussian wave pack-
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Figure 7.3: The Coherence length LCoh (Km) vs Energy (MeV) graph is shown using the
wave packet sizes σx from ref [197,222].

ets, one for each mass eigenstate and where each mass eignstate have different momentum.

The expression of neutrino flavour transition probabilities using the wave packet picture is

given in Eq.(1.75) which can be re-written as

Pνα→νβ ∝
∑
jk

exp(−(L/LCohjk )2)×Osc. terms,

where, LCohjk =
4
√

2E2

∆m2
jk

σx. (7.1)

In Fig.(7.3), we estimate the propagation distance LCoh at which the wave packets becomes

separated. We use the wave packet sizes σx from ref. [222]. We observed from Fig.(7.3)

that solar neutrino and supernova neutrino (SN) sources is decoherence relevant. In general,

supernova neutrinos arrives at earth as an incoherent superposition of mass eigenstates [213].

Using the PMNS matrix Eq.(1.2) in the two neutrino system as U(θ) ≡
(
Ue1 Ue2
Uµ1 Uµ2

)
=(

cosθ sinθ
−sinθ cosθ

)
, and putting it in Eq.(1.9), we find an expression for the probability for

observing a ν2 as νe, by assuming neutrinos do not travel through significant amounts of
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Earth matter prior to detection as

Pν2→νe = | < νe|ν2 > |2 = |
∑
α

< νe|Uα2|να > |2 = |Ue2|2. (7.2)

Moreover, this probability expression can be modify if neutrinos travel the Earth before being

detected. The flavour-to-flavour transition matrix for the evolution of neutrinos through layer

with effective θm and ∆m2
m is

U = Umdiag[exp(i
∆m2

mLm
2E

), 1]U †m, Um =

(
cosθm sinθm
−sinθm cosθm

)
. (7.3)

We construct simple Earth with inner core as

UEarth = UmU cUm. (7.4)

Therefore, the probability for observing a ν2 as νe become

Pν2→νe = | < νe|ν2 > |2 = |
∑
α

∑
β

< νe|UEarthαβ Uβ2|να > |2 = |Ue2UEarthee +Uµ2UEartheµ |2, (7.5)

where in the above expression ν2 need to rotate to flavour basis before plugging into UEarth.
This probability expression is useful for studying neutrinos crossing the shock waves in

supernova and for neutrinos propagating inside the earth in a multi-layer medium. Quantum

studies of neutrino oscillations has been done on quantum computer in chapter 6. Recently,

the complete protocol for quantum simulation of oscillations between 2n arbitrarily mixed

neutrinos with arbitrary masses, including CP-violation, has been examined on an n-qubit

quantum computer [223]. Thus, it would be interesting to explore coherence/decoherence

properties of supernova neutrinos using quantum computers in future.
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[178] Daniel Alsina and José Ignacio Latorre, “Experimental test of Mermin inequal-

ities on a five-qubit quantum computer,” Phys. Rev. A 94, 012314 (2016).

https://doi.org/10.1103/PhysRevA.94.012314
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[188] G. Romero, C. E. López, F. Lastra, E. Solano, and J. C. Retamal, “Direct

measurement of concurrence for atomic two-qubit pure states,” Phys. Rev. A

75, 032303 (2007). https://doi.org/10.1103/PhysRevA.75.032303.

[189] Wang Hong-Fu and Zhang Shou “Application of quantum algorithms to direct

measurement of concurrence of a two-qubit pure state,” Chin. Phys. B, 2009,

Vol. 18(7): 02642. https://doi.org/10.1088/1674-1056/18/7/004

[190] X. K. Song, Y. Huang, J. Ling and M. H. Yung, “Quantifying Quantum Co-

herence in Experimentally-Observed Neutrino Oscillations,” Phys. Rev. A 98

(2018) no.5, 050302. https://doi.org/10.1103/PhysRevA.98.050302

[191] M. M. Ettefaghi, Z. S. Tabatabaei Lotfi and R. Ramezani Arani, “Quantum

correlations in neutrino oscillation: Coherence and entanglement,” EPL 132

(2020) no.3, 31002. https://doi.org/10.1209/0295-5075/132/31002

[192] Y. Chen, Y. Ma and S. Zhou, “Quantum Simulations of the Non-Unitary Time

Evolution and Applications to Neutral-Kaon Oscillations,”. https://doi.org/

10.48550/arXiv.2105.04765

[193] A. Mallick, S. Mandal, and C.M Chandrashekar, “Neutrino oscillations in

discrete-time quantum walk framework,” Eur. Phys. J. C 77, 85 (2017).

https://doi.org/10.1140/epjc/s10052-017-4636-9

https://doi.org/10.1103/PhysRevA.96.062339
https://doi.org/10.1103/PhysRevA.96.062339
https://doi.org/10.1007/s11128-018-1920-z
https://doi.org/10.1007/s11128-018-1920-z
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1103/PhysRevA.66.024102
https://doi.org/10.1103/PhysRevA.66.024102
https://doi.org/10.1103/PhysRevA.75.032303
https://doi.org/10.1088/1674-1056/18/7/004
https://doi.org/10.1103/PhysRevA.98.050302
https://doi.org/10.1209/0295-5075/132/31002
https://doi.org/10.48550/arXiv.2105.04765
https://doi.org/10.48550/arXiv.2105.04765
 https://doi.org/10.1140/epjc/s10052-017-4636-9


BIBLIOGRAPHY 135

[194] B. Hall, A. Roggero, A. Baroni and J. Carlson, “Simulation of collective neu-

trino oscillations on a quantum computer,” Phys. Rev. D 104 (2021) no.6,

063009. https://doi.org/10.1103/PhysRevD.104.063009

[195] Yeter-Aydeniz, K., Bangar, S., Siopsis, G. et al. “Collective neutrino oscillations

on a quantum computer,” Quantum Inf Process 21, 84 (2022). https://doi.

org/10.1007/s11128-021-03348-x

[196] A. Roggero, “Dynamical phase transitions in models of collective neutrino oscil-

lations,” Phys. Rev. D 104, no.12, 123023 (2021). https://doi.org/10.1103/

PhysRevD.104.123023

[197] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, “The

fate of hints: updated global analysis of three-flavor neutrino oscillations,”

JHEP 09 (2020), 178. https://doi.org/10.1007/JHEP09(2020)178

[198] P. Horodecki, “Separability criterion and inseparable mixed states with positive

partial transposition,” Phys. Lett. A 232 (1997), 333. https://doi.org/10.

1016/S0375-9601(97)00416-7

[199] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum

computer with trapped ions”, Phys. Rev. A 67, 062313 (2003). https://doi.

org/10.1103/PhysRevA.67.062313
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